
DEPARTMENT OF BIOLOGICAL SCIENCES

Computational approaches for the identification
of LIR-motifs in selective autophagy receptor

and adaptor proteins

IOANNA KALVARI

A Dissertation Submitted to the University of Cyprus in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

December 2018

IO
ANNA KALV

ARI

 ii

©Ioanna Kalvari, 2018

IO
ANNA KALV

ARI

 iii

VALIDATION PAGE

Doctoral Candidate: Ioanna Kalvari

Doctoral Thesis Title: Computational approaches for the identification of LIR-motifs in
selective autophagy receptor and adaptor proteins

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy at the Department of Biological Sciences and was

approved on the 11th of December by the members of the Examination Committee.

Examination Committee:

Research Supervisor: Dr. Vasilis I. Promponas, Assistant Professor ______________

 (Name, position and signature)

Committee Member: Dr. Paris Skourides, Associate Professor ___________________

 (Name, position and signature)

Committee Member: Dr. Pantelis Georgiades, Associate Professor________________

 (Name, position and signature)

Committee Member: Dr. Miguel Andrade, Professor ___________________________

 (Name, position and signature)

Committee Member: Dr. Costas Bouyioukos, Assistant Professor ________________

 (Name, position and signature)

 IO

ANNA KALV
ARI

 iv

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original
work of my own, unless otherwise mentioned through references, notes, or any other

statements.

…………………………………..Full Name of Doctoral Candidate

…………………………………..Signature

IO
ANNA KALV

ARI

 v

ΠΕΡΙΛΗΨΗ

Η μακροαυτοφαγία (ή αυτοφαγία) αποτελεί εξελικτικά συντηρημένο ευκαρυωτικό
καταβολικό μηχανισμό κυτταρικής ομοιόστασης. Υπό συνθήκες stress δημιουργούνται
αυτοφαγοσώματα, διπλομεμβρανικά κυστίδια απομόνωσης κυτταροπλασματικού υλικού
που οδηγείται σε αποικοδόμηση στα λυσοσώματα/κενοτόπια “ανακυκλώνοντας” δομικά
στοιχεία του κυττάρου. Η αυτοφαγία συχνά εκτελείται επιλεκτικά, υποβοηθούμενη από
πρωτεΐνες-υποδοχείς που προσδένουν τα φορτία με εξειδικευμένες αλληλεπιδράσεις.
Ταυτόχρονα, μέσω ενός βραχέως γραμμικού μοτίβου (LIR-motif) προσδένουν πρωτεΐνες
της οικογένειας Atg8, που βρίσκονται ομοιοπολικά συνδεδεμένες στη μεμβράνη του
αυτοφαγοσώματος. Επιπλέον, πρωτεΐνες-προσαρμογείς αλληλεπιδρούν με τις Atg8 με LIR-
motifs για την επιτέλεση άλλων αυτοφαγικών λειτουργιών. Κατά την περίοδο έναρξης αυτής
της διδακτορικής διατριβής είχαν χαρακτηριστεί 25 περίπου πρωτεΐνες-
υποδοχείς/προσαρμογείς της αυτοφαγίας και τα LIR-motifs τους.

Εξετάσαμε τη δυνατότητα ανάπτυξης υπολογιστικών μεθόδων/εργαλείων χαρακτηρισμού
LIR-motifs, στοχεύοντας στη διεύρυνση της γνώσης σχετικά με τις πρωτεΐνες
υποδοχείς/προσαρμογείς. Συγκεκριμένα, έχοντας υπόψη προηγούμενες προσπάθειες
περιγραφής των LIR-motifs, προτείναμε μια γενικευμένη κανονική έκφραση (xLIR)

στοχεύοντας στην απόλυτη ευαισθησία. Αναμενόμενα, η προσέγγιση αυτή οδηγεί σε
ανίχνευση πλήθους μοτίβων χωρίς βιολογική σημασία. Προκειμένου να μειώσουμε τον
αριθμό τους, διατηρώντας ταυτόχρονα υψηλή ευαισθησία ανίχνευσης των βιολογικά
σημαντικών μοτίβων, αξιολογήσαμε συστηματικά πληθώρα συμπληρωματικών
χαρακτηριστικών. Παρατηρώντας ότι (α) οι πρωτεΐνες της αυτοφαγίας τείνουν να περιέχουν
εγγενώς μη δομημένες περιοχές (IDRs), και (β) βραχέα μοτίβα πρόσδεσης συχνά βρίσκονται
σε IDRs, αρχικά επιβεβαιώσαμε ότι ισχύουν στο σύνολο αναφοράς και τις εφαρμόσαμε ως
φίλτρο, βελτιώνοντας σημαντικά την ειδικότητα. Δείξαμε επίσης ότι η πιθανοθεωρητική
αναπαράσταση των βιολογικά λειτουργικών LIR-motifs μέσω PSSMs αυξάνει περισσότερο
την ειδικότητα, οδηγώντας σε προβλέψεις υψηλότερης ακρίβειας. Βασιζόμενοι στα
παραπάνω, αναπτύξαμε την πρώτη σχετική μέθοδο στη βιβλιογραφία, η οποία διατίθεται
ελεύθερα για χρήση στην ερευνητική κοινότητα (διαδικτυακή εφαρμογή iLIR).

Στοχεύοντας να κατανοήσουμε σε βάθος τις σχέσεις της αμινοξικής ακολουθίας και των
δομικών χαρακτηριστικών των πρωτεϊνών με λειτουργικά LIR-motifs και να βελτιώσουμε
περαιτέρω την απόδοση της iLIR: (α) Μελετήσαμε συστηματικά διάφορες πηγές δεδομένων
που αφορούν IDRs. Προτείνουμε πολύ-κριτηριακές προβλέψεις, που μπορούν να

IO
ANNA KALV

ARI

 vi

χρησιμοποιηθούν σε διαφορετικές εφαρμογές, στοχεύοντας σε υψηλότερη ειδικότητα ή
ευαισθησία. (β) Πραγματοποιήσαμε συστηματική συλλογή πειραματικά προσδιορισμένων
τρισδιάστατων δομών πρωτεϊνών της οικογένειας Atg8 και LIR-motifs. Μετά από
προεπεξεργασία των δεδομένων για τον καθορισμό των περιοχών δέσμευσης των LIR-
motifs, εκτελέσαμε πειράματα αγκυροβόλησης πεπτιδίων στις δομές “στόχους”,

καταδεικνύοντας ότι μπορούμε με επιτυχία να αναγνωρίζουμε περιπτώσεις ειδικότητας
αλληλεπίδρασης των LIR-motifs με συγκεκριμένα ομόλογα της Atg8. Αναπτύξαμε μια
εξειδικευμένη βάση δεδομένων για την καταχώρηση και περαιτέρω ανάλυση των
αποτελεσμάτων, η οποία θα διατεθεί σύντομα προς χρήση.

Στο ταχύτατα αναπτυσσόμενο αυτό ερευνητικό πεδίο είναι παρακινδυνευμένο να κάνει
κανείς επιτυχημένες προβλέψεις των εξελίξεων σε βάθος χρόνου. Το γεγονός ότι σήμερα
(συχνά με τη βοήθεια μεθόδων που αναπτύχθηκαν σε αυτή τη διατριβή) έχει
πολλαπλασιαστεί η γνώση μας για τους υποδοχείς/προσαρμογείς της επιλεκτικής
μακροαυτοφαγίας δημιουργεί νέες προοπτικές. Η αύξηση των διαθέσιμων δεδομένων
αναφοράς επιτρέπει την ανάπτυξη εξελιγμένων μεθόδων πρόβλεψης (π.χ. βασισμένων σε
τεχνικές μηχανικής μάθησης) που, σε συνδυασμό με δεδομένα μεταγραφομικής, μπορούν
να προσφέρουν νέα γνώση για τους μηχανισμούς ρύθμισης της επιλεκτικής αυτοφαγίας σε
διαφορετικούς κυτταρικούς τύπους, ιστούς και αναπτυξιακά στάδια. Παράλληλα,
ανακαλύψεις νέων μοριακών οντοτήτων που εμπλέκονται ενεργά στην επιλεκτική
αυτοφαγία (π.χ. ncRNAs) αναμένεται να μας προσφέρουν “εκπλήξεις” αλλά και νέο υλικό
και πεδίο δράσης για πειραματισμό, τόσο στο εργαστήριο όσο και in silico.

IO
ANNA KALV

ARI

 vii

ABSTRACT

Macroautophagy (hereinafter autophagy) is a catabolic, cellular homeostasis mechanism
conserved throughout the eukaryotes. Under stress conditions, double membraned vesicles
(autophagosomes) isolate cytoplasmic material, eventually targeted to the lysosome/vacuole
for degradation, thus recycling structural blocks for use by the cell. Selective modes of
autophagy are facilitated by receptor proteins capable of binding specific cargos via cargo-
specific interactions. These receptors bind to members of the Atg8 protein family
(conjugated to the autophagosome membrane) via short linear motifs (LIR-motifs).
Furthermore, protein adaptors interact with Atg8 proteins via LIR-motifs for performing
other autophagic functions. At the initiation of this PhD project approximately 25 selective
autophagy receptors/adaptors had been characterized along with their LIR-motifs.

We set to develop computational methods and tools for characterizing LIR-motifs, aiming
to broaden our knowledge on selective autophagy receptors/adaptors. Based on previous
attempts to describe LIR-motifs, we propose a generic regular expression (xLIR) aspiring to

achieve absolute sensitivity. Expectedly, this approach leads to many false positive hits
without any biological relevance. We systematically examined additional sequence-derived
features to reduce false positives.

Knowing that:

a) autophagy proteins are enriched in intrinsically disordered regions (IDRs), and
b) short linear motifs are often found in IDRs

we confirm these observations in our reference autophagy receptor/adaptor dataset and,
consequently, apply these principles as filters, leading to increased specificity. We also
demonstrate that using a profile representation of LIR-motifs (in the form of a PSSM) further
increases specificity, yielding high quality predictions. This work led to the first method of
its kind reported in the literature, now freely available for use by the research community
via the iLIR web server.

In our quest for deeper understanding the relationships between aminoacid sequences and
the structural features of proteins with functional LIR-motifs (and to further improve iLIR
efficiency):

IO
ANNA KALV

ARI

 viii

a) We systematically studied different data resources regarding IDRs, proposing multi-
scheme predictions, each suited for different applications aiming at higher
specificity/sensitivity.

b) We compiled a comprehensive collection of experimentally determined 3D-

structures of Atg8 proteins and LIR-motifs. Following data pre-processing for
defining the LIR-motif interaction interfaces, we conduct peptide docking
experiments, illustrating that this approach is useful for predicting LIR::Atg8
binding-specificity. We develop a specialized database for storing this information,
facilitating downstream analyses, which we plan to make freely available for use.

It is difficult to make successful long-term predictions in a rapidly developing field like
autophagy. The increasing number of selective autophagy receptors/adaptors discovered
(often using the methods/tools developed for this thesis) opens exciting research
perspectives. Access to substantially broader reference datasets enables (or, better, requires)
development of more sophisticated methods/tools (e.g. based on machine-learning
techniques) to successfully capture hidden dependencies between sequence-features and
functional properties of LIR-motifs. Combined with the increasing availability of -omics
data, we envisage cutting-edge research towards elucidating regulation of autophagy in
different cell types, tissues and developmental stages. In addition, the discovery of novel
molecular entities (e.g. ncRNAs) with active roles in autophagy guarantees further
‘surprises’ but also new data material and research directions for experimentation, in vivo,
in vitro or in silico.

IO
ANNA KALV

ARI

 ix

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Vasilis J. Promponas for giving
me the opportunity to join his lab, which I personally consider a privilege. Prof. Promponas
is an incredibly brilliant and talented scientist with a broad and very impressive spectrum of
knowledge. I must admit I have always admired his unbelievable enthusiasm and impeccable
competence with which he takes in new science and technologies coming his way.
Information that he skilfully manifests into many original and fascinating project ideas, like
the inception of my PhD project.

Apart from a great scientist my deep appreciation towards him stems from his high qualities
as a person. Most importantly his tremendous patience, continuous support, his dedication
and selfless attitude. The last couple of months he has been working along my side very long
and late hours making sure that I bring this project to completion. For that and many more I
will be sincerely and wholeheartedly forever grateful.

I would also like to thank the members of my examining committee Prof. Miguel Andrade
from Johannes Gutenberg University Mainz, Prof. Costas Bouyioukos from Paris Diderot
University and our two internal examiners from the University of Cyprus Prof. Paris

Skourides and Prof. Pantelis Georgiades. Especially for being kind and considerate enough
to accept my PhD thesis for review very close to my defence date.

A big thank you should also go to the Department of Computer Science for the provision of
computational resources used for running big portion of the docking experiments. Special
thanks go to Prof. George Pallis for granting me access to the resources of the Department
of Computer Sciences, and Mr. Thanasis Tryfonos in particular, for providing technical
support.

For the last three years I have been part of an incredible team at the European Bioinformatics
Institute (EMBL-EBI) under the supervision of Dr. Rob D. Finn and Dr. Anton I. Petrov. I
would like to express my deep appreciation and respect for all their patience and continuous
support. I would not have made it without all the flexible working arrangements they agreed
to the last month, which allowed me to bring my PhD thesis to completion. For that and all
the opportunities I have been given so far, I am truly grateful.

IO
ANNA KALV

ARI

 x

Last but not least I would like to thank my family and my friends for standing by my side
throughout this long journey, making every step of the way lighter and more fun. Pursuing
a Doctorate of Philosophy is not an easy task and as an athlete I personally believe that
almost 90% of the credit should go to the people who work behind the scenes. I am feeling
very fortunate being part of a larger pack composed of amazing people. You are my heroes.

IO
ANNA KALV

ARI

 xi

Table of Contents
Table of Contents

1 INTRODUCTION .. 1
 AUTOPHAGY .. 1
1.1 ... 1
1.2 SELECTIVE MACROAUTOPHAGY .. 2
1.3 INTRINSIC DISORDER AND LIR-MOTIFS .. 5
1.4 HYPOTHESIS AND OBJECTIVES ... 6

2 COMPUTATIONAL STEPS TOWARDS THE CHARACTERIZATION AND

IDENTIFICATION OF LIR-MOTIFS .. 9
2.1 PREFACE .. 9

2.1.1 The Atg8 protein family ... 9
2.1.2 Selective autophagy receptor and adaptor proteins .. 10

2.2 DATA AND METHODS .. 12
2.2.1 Data ... 12
2.2.2 Methods ... 13

2.3 RESULTS .. 19
2.3.1 Combining the predictive power of xLIR and Anchors .. 23
2.3.2 Using profile-based methods to identify functional LIR-motifs ... 25
2.3.3 Validating xLIR, anchors and PSSM with independent datasets ... 27
2.3.4 Assembling everything into a unified resource: the iLIR webserver .. 29

2.4 CONCLUSIONS ... 34

3 INTRINSIC DISORDER AS A MEANS FOR THE IDENTIFICATION OF GENUINE LIR-

MOTIFS ... 37
3.1 PREFACE .. 37

3.1.1 Intrinsically disordered proteins .. 37
3.2 DATA AND METHODS .. 37

3.2.1 Data ... 37
3.2.2 Methods ... 39

3.4 RESULTS .. 46
3.4.1 In seek of the optimal predictive method and disorder threshold .. 48
3.4.2 Assessing the power of MobiDB over IUPRED2A and SPOT-disorder 52
3.4.3 Scrutinizing the potential of disorder binding regions in the determination of genuine LIRs . 54
3.4.4 Assessing the efficacy of multi-scheme predictors ... 56
3.4.5 Independent validation .. 64
3.4.6 A comparison to existing tools ... 69

3.5 CONCLUSIONS ... 73

4 ILIR3D: DELVING INTO SELECTIVE AUTOPHAGY STRUCTURAL DATA 75
4.1 PREFACE .. 75
4.2 DATA AND METHODS .. 76

4.2.1 Data ... 76
4.2.2 Methods ... 80

4.3 RESULTS .. 88
4.3.1 The iLIR3D MySQL database .. 88
4.3.2 Learning from template structures ... 92
4.3.3 A comprehensive set of experiments .. 98
4.3.4 Availability ... 99

4.4 CONCLUSION ... 99

5 DISCUSSION AND FUTURE GOALS .. 102
6 REFERENCES .. 106
7 SUPPLEMENT ... 117

IO
ANNA KALV

ARI

 xii

7.1 DIZSCAN.PY CODE .. 124
7.2 CONSENSUS_DISORDER_CALCULATOR.PY CODE .. 151
7.3 ANCHOR2_SCANNER.PY CODE .. 158
7.4 SPOT_SCANNER.PY CODE ... 170

IO
ANNA KALV

ARI

 xiii

Table of Figures

FIGURE 1. THE THREE DIFFERENT TYPES OF AUTOPHAGY IN MAMMALS .. 1
FIGURE 2. THE MULTIFACETED VIEW OF AUTOPHAGY. .. 4
FIGURE 3. THE “EVOLUTION” OF THE NOTION OF A LIR/AIM/GIM MOTIF. ... 5
FIGURE 4. THREE OF THE RECEPTORS BELONGING TO THE ATG8 FAMILY IN COMPLEX WITH A LIR-MOTIF PEPTIDE 10
FIGURE 5. THE XLIR-PSSM. ... 17
FIGURE 6. GRAPHICAL REPRESENTATION OF THE XLIR-PSSM ... 18
FIGURE 7. PSSM SCORE DISTRIBUTIONS FOR DIFFERENT CLASSES OF HEXAPEPTIDES. .. 26
FIGURE 8. HOME PAGE OF THE ILIR WEBSERVER. .. 30
FIGURE 9. ILIR SERVER USER INTERFACE. ... 31
FIGURE 10. ILIR RESULTS PAGE. .. 33
FIGURE 11. THE FULL COLLECTION OF PRE-RAN EXAMPLES AS THEY APPEAR ON THE ILIR WEBSITE. .. 34
FIGURE 12. CALCULATION OF DISORDER IN CALRETICULIN LIR-MOTIF DDWDFL AT POSITIONS 198-203. 40
FIGURE 13. THE FLOWCHART OF THE DIZSCAN ALGORITHM. .. 41
FIGURE 14. CONSTRUCTION OF THE CONSENSUS DISORDER STRING (CDSTR) OF THE LIR-MOTIF OF OPTINEURIN. 43
FIGURE 15. BALANCED ACCURACY (%) ACHIEVED WITH MULTI-SCHEME PREDICTOR XLIR+A2|D|PX CAPTURED AT VARIOUS

PSSM THRESHOLDS. .. 59
FIGURE 16. BALANCED ACCURACY (%) ACHIEVED WITH MULTI-SCHEME PREDICTOR XLIR+A2|D|PX CAPTURED AT VARIOUS

PSSM THRESHOLDS. .. 60
FIGURE 17. MULTI-SCHEME METHOD COMPARISON. ... 62
FIGURE 18. ILIR RESULTS FOR HUMAN PLECKSTRIN HOMOLOGY DOMAIN-CONTAINING FAMILY M MEMBER 67
FIGURE 19. THE DOCKING GRIDS OF THE ATG8 FAMILY. ... 82
FIGURE 20. PROTEIN-PROTEIN DOCKING EXAMPLE. ... 85
FIGURE 21. MYSQL QUERY THAT RETRIEVES THE TEMPLATE STRUCTURE RESULTS PRESENTED IN TABLE 20. 89
FIGURE 22. ILIR3D RELATIONAL MODEL CREATED USING MYSQL WORKBENCH BY APPLICATION OF REVERSE ENGINEERING. .. 90
FIGURE 23. QUERY EXAMPLES FOR THE COMPUTATION OF THE TP, TN, FP, FN VALUES FOR DISORDER PREDICTIONS. 92
FIGURE 24. MYSQL QUERY SNIPPET FOR THE RETRIEVAL OF FYCO1/ATG8 DOCKING SCORES. ... 96
FIGURE 25. BOXPLOT REPRESENTATION OF THE DISTRIBUTIONS OF SCORES OF FYCO1 PEPTIDES DOCKED AGAINST THE ATG8

FAMILY. .. 98
	

Table of Tables
	
TABLE 1. SELECTIVE AUTOPHAGY RECEPTOR AND ADAPTOR PROTEINS WITH EXPERIMENTALLY DETERMINED LIR-MOTIFS. 12
TABLE 2. SELECTIVE AUTOPHAGY RECEPTOR/ADAPTOR PROTEINS WITH EXPERIMENTALLY VERIFIED LIR-MOTIFS. 14
TABLE 3. SEQUENCES USED IN THIS STUDY. .. 22
TABLE 4. AMINO ACID RESIDUE BACKGROUND DISTRIBUTION. .. 24
TABLE 5. VALIDATION OF XLIR AND CLIR MOTIF-BASED PREDICTORS. ... 25
TABLE 6. VALIDATION OF THE PSSM METHOD AS A PREDICTOR OF LIR-MOTIFS. ... 27
TABLE 7. A COLLECTION OF 52 PROTEINS WITH THEIR EXPERIMENTALLY VALIDATED LIR-MOTIFS. .. 48
TABLE 8. DISORDER RESULTS AS COMPUTED FROM MOBIDB 3.0.0 DATA. ... 50
TABLE 9. CLASSIFICATION OF LIR-MOTIFS USING DISORDER DATA FROM MOBIDB. .. 51
TABLE 10. COMPARISON OF IUPRED2A, SPOT AND MOBIDB. ... 53
TABLE 11. COMPARING THE EFFICACY OF ANCHOR AND ANCHOR2 ON DIFFERENT PREDICTIVE SCHEMES. 55
TABLE 12. MULTI-SCHEME PREDICTORS APPLIED ON THE 47 LIR-MOTIFS COLLECTED BY ALEMU ET AL. 57
TABLE 13. MULTI-SCHEME PREDICTOR RESULTS ON THE COMPLETE DATASET. ... 63
TABLE 14. NEW PROTEINS AND THEIR CORRESPONDING VERIFIED LIR MOTIFS. .. 65
TABLE 15. CLASSIFICATION OF NOVEL LIR-MOTIFS BASED ON 3 DIFFERENT PREDICTION SCHEMES ... 68
TABLE 16. HFAIM AIM PREDICTIONS ON THE PROTEIN COLLECTION OF ALEMU ET AL. ... 71
TABLE 17. ILIR AND HFAIM PREDICTIVE POWER ASSESSMENT. .. 72
TABLE 18. PROTEINS OF THE ATG8 FAMILY, HEREIN “RECEPTORS”, FOUND IN TEMPLATE STRUCTURES. 77
TABLE 19. SHORT DESCRIPTIONS OF THE TABLES COMPOSING THE ILIR3D DATABASE. .. 91
TABLE 20. TOP SCORING CONFORMATIONS OF THE TEMPLATE STRUCTURES. ... 94
TABLE 21. SELECTIVE AUTOPHAGY RECEPTOR AND ADAPTOR PROTEIN STRUCTURES. ... 123
	

IO
ANNA KALV

ARI

 xiv

Abbreviations

AIM: Atg8-family Interacting Motif
Atg: Autophagy-related
cdSTR: Consensus Disorder String
CGI: Common Gateway Interface
CLI: Command Line Interface
cLIR: Canonical LIR-motif
dSTR: Disorder String
FN: False Negative
FP: False Positive
GABARAP: Gamma-AminoButyric Acid Receptor Associated Protein
GIM: GABARAP Interaction Motif
HTTP: Hypertext Transfer Protocol
IDP: Intrinsically Disordered Protein

IDR: Intrinsically Disordered Region
LDS: LIR Docking Site
LIR: LC3 Interacting Region
LIRCP: LIR Containing Protein
MAP1LC3/LC3: Microtubule-associated protein 1 light chain 3
MSA: Multiple Sequence Alignment
NMR: Nuclear Magnetic Resonance
PSSM: Position Specific Scoring Matrix
REGEX: Regular Expression
RMSD: Root Mean Square Deviation
SAR: Selective Autophagy Receptor
SLIM: Short Linear Motifs
SMART: Simple Modular Architecture Research Tool
SQL: Structured Query Language
SQSTM1: Sequestosome 1
TN: True Negative
TP: True Positive

URL: Uniform Resource Locator
xLIR: Extended LIR-motif
RBP: RNA-binding protein

IO
ANNA KALV

ARI

 xv

Publications directly related to this thesis

Kalvari, Ioanna, Stelios Tsompanis, Nitha C. Mulakkal, Richard Osgood, Terje Johansen,
Ioannis P. Nezis, and Vasilis J. Promponas. 2014. “iLIR: A Web Resource for

Prediction of Atg8-Family Interacting Proteins.” Autophagy 10 (5): 913–25.

Kalvari Ioanna, Chatzichristofi Agathangelos and Promponas V.J., 2018 “Intrinsically
disordered regions in selective macroautophagy receptors and adaptors”, in preparation

Kalvari Ioanna and Promponas V.J., 2018 “iLIR3D: a database to explore macroautophagy
in 3D”, in preparation

Other publications

Kalvari, Ioanna, Joanna Argasinska, Natalia Quinones-Olvera, Eric P. Nawrocki, Elena

Rivas, Sean R. Eddy, Alex Bateman, Robert D. Finn, and Anton I. Petrov. 2018. “Rfam
13.0: Shifting to a Genome-Centric Resource for Non-Coding RNA Families.” Nucleic
Acids Research 46 (D1): D335–42.

Kalvari, Ioanna, Eric P. Nawrocki, Joanna Argasinska, Natalia Quinones-Olvera, Robert D.
Finn, Alex Bateman, and Anton I. Petrov. 2018. “Non-Coding RNA Analysis Using the
Rfam Database.” Current Protocols in Bioinformatics / Editoral Board, Andreas D.
Baxevanis ... [et Al.] 62 (1): e51.

The RNAcentral Consortium. 2017. “RNAcentral: A Comprehensive Database of Non-
Coding RNA Sequences.” Nucleic Acids Research 45 (D1): D128–34.

The RNAcentral Constortium. 2018. “RNAcentral: A Hub of Information for Non-Coding
RNA Sequences.” Nucleic Acids Research, November.
https://doi.org/10.1093/nar/gky1034.

Kannas, C. C., K. G. Achilleos, Z. Antoniou, C. A. Nicolaou, C. S. Pattichis, I. Kalvari, I.
Kirmitzoglou, and V. J. Promponas. 2012. “A Workflow System for Virtual Screening
in Cancer Chemoprevention.” In 2012 IEEE 12th International Conference on
Bioinformatics Bioengineering (BIBE), 439–46.

IO
ANNA KALV

ARI

 xvi

Kannas, Christos C., Ioanna Kalvari, George Lambrinidis, Christiana M. Neophytou,
Christiana G. Savva, Ioannis Kirmitzoglou, Zinonas Antoniou, et al. 2015. “LiSIs: An
Online Scientific Workflow System for Virtual Screening.” Combinatorial Chemistry
& High Throughput Screening 18 (3): 281–95.

Antoniades, Athos, Ioanna Kalvari, Constantinos Pattichis, Neil Jones, Paul M. Matthews,
Enrico Domenici, and Pierandrea Muglia. 2009. “Discovering Genetic Polymorphism
Associated with Gene Expression Levels across the Whole Genome.” Conference
Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine

and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
2009: 5466–69.

IO
ANNA KALV

ARI

 1

1 Introduction		

1.1 Autophagy	

Autophagy is an essential conserved catabolic biological process through which the cell
maintains energy homeostasis and protects itself against pathogens. This is achieved via the
breakdown of cytosolic material at the lytic compartments of the cell, which is the vacuole
in plants and fungi and the lysosome in higher eukaryotes. To put it in simple terms, one can
see autophagy as the recycling machinery of the cell (Yang and Klionsky 2009; White et al.

2015).

There are three different types of autophagy known in mammals: microautophagy,
chaperone mediated autophagy and macroautophagy. Microautophagy involves the
invagination of the lysosomal membrane and at the same time engulfing cytosolic material,
which will be broken down once completely secluded. Chaperone mediated autophagy, as
the name denotes, is coordinated via heat shock cognate 70 proteins and their co-chaperones,
tethering proteins to the lysosome via a KFERQ like motif (Wirawan et al. 2012).

Macroautophagy is more distinctive compared to the other two types of autophagy in the
sense that it requires an intermediate double membrane vesicle called the autophagosome,
to transport cytosolic material to the lysosome for degradation (Wirawan et al. 2012).

Figure 1. The three different types of autophagy in mammals

This figure was obtained from (Wirawan et al. 2012).

IO
ANNA KALV

ARI

 2

1.2 Selective macroautophagy

Macroautophagy (or simply autophagy) is known to be induced by stress or nutrient
starvation leading to the degradation of cytosolic material to the lysosome/vacuole, resulting
in the generation of “fresh” building blocks such as amino acids for protein synthesis
(Onodera & Ohsumi 2005).

Autophagy was identified as a cellular response to nutrient starvation (Scott et al. 2004;
Rubinsztein et al. 2011) and although it was initially considered to be a bulk process, where
cytoplasmic material is recycled in an unselective manner, relevant work over the years
showed that it can happen in a highly selective manner. A wide range of different cargo

degraded by this process includes from single protein molecules or protein aggregates
(Lamark & Johansen 2012; Lamark et al. 2017; Zaffagnini et al. 2018) to damaged organelles
like mitochondria (mitophagy), endoplasmic reticulum (reticuloplagy) and chloroplasts
(chlorophagy – in plants) (Palikaras et al. 2018; Avin-Wittenberg & Fernie 2014),
peroxisomes (pexophagy) (Marshall & Vierstra 2018) and even pathogens (xenophagy)
(Knodler & Celli 2011).

Upon nutrient starvation, this biological mechanism starts with the generation of the double
membrane organelle – the phagophore – near the endoplasmic reticulum, a process known
as the nucleation. The phagophore then elongates, sequestering cytosolic material and,
finally, closes forming a completely structured vesicle known as the autophagosome
(closure). In a final step, the autophagosome travels to the lysosome (or the vacuole in plants
and fungi) with which it fuses to form the autolysosome (Parzych & Klionsky 2014)
(Zaffagnini & Martens 2016). Its constituents will then be degraded and recycled material is
released back to the cytoplasm to be reused by the cell (Yang and Klionsky 2009; White et
al. 2015).

Selective autophagy is orchestrated by specialised proteins called selective autophagy

receptor (SARs) and adaptor proteins (Pankiv et al. 2007). SARs recognize and tether cargo
from the cytoplasm to the phagophore and all the way to the lysosome in a selective manner
(Stolz et al. 2014; Johansen & Lamark 2011; Rogov et al. 2017). Recruitment of cargo to the
phagophore is enabled via interaction with proteins of the Atg8 family, located on the inner
(receptors) and outer (adaptor) membranes of the phagophore (Rogov et al. 2014).

IO
ANNA KALV

ARI

 3

Atg8 proteins were first identified in yeast, where they also get their name from, and
although there is only one gene encoded in Saccharomyces cerevisiae, more than one
homologs are expressed in higher eukaryotes. For instance, there are 4 distinct Atg8
homologs expressed in the human genome (Shpilka et al. 2011):

1. Microtubule-associated proteins 1A/1B light chains 3A, 3B and 3C (MAP1LC3A,
MAP1LC3B, MAP1LC3C)

2. Gamma-aminobutyric acid receptor-associated protein (GABARAP)
3. Gamma-aminobutyric acid receptor-associated protein-like 1

(GABARAPL1/GEC1)
4. Gamma-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2/

GATE-16

The proteins of the Atg8 family and selective autophagy receptors and adaptors all together
constitute the key players of the autophagic apparatus. Members of the Atg8 family are
ubiquitin-like proteins (C-terminal), but do not share any similarities with Ubiquitins at
sequence level and their N-terminal contains two consecutive α-helices, which is also what
distinguishes them between ubiquitin proteins (Noda et al. 2010; Shpilka et al. 2011).

The interaction between Atg8 and selective autophagy receptor and adaptor proteins is
facilitated through short linear motifs (SLIMs) often named as LIRs (Pankiv et al. 2007),
AIMs (Noda et al. 2010), or GIMs (Rogov et al. 2014) based on their species of origin or
their preference towards a certain type of Atg8 homolog. From this point onwards, we will

collectively refer to these motifs as LIR-motifs, unless we specify otherwise.

LIR-motifs bind to the two conserved hydrophobic pockets of the Atg8 proteins – the W-
site and L-site named after the amino acids firstly identified to interact with – by adopting
an extended β-strand conformation, forming a parallel intermolecular β-sheet with that of
the Atg8 proteins (Rogov et al. 2014).

Apart from autophagy’s central role in the survival of the cell, this intracellular procedure is
also known to be implicated in many biological pathways and mechanisms such as apoptosis
(Mukhopadhyay et al. 2014), innate immunity (Boyle & Randow 2013), development e.g.
embryogenesis (Mizushima & Levine 2010; Qu et al. 2007) and ageing (Mizushima 2007;
Rubinsztein et al. 2011). In its defective form, autophagy can result in serious diseases from
neurodegeneration (e.g. Altzheimer’s (Uddin et al. 2018), Parkinson’s (Lynch-Day et al.

IO
ANNA KALV

ARI

 4

2012; Wang et al. 2016)), retinitis pigmentosa (Moreno et al. 2018)), metabolic diseases
(Rocchi & He 2015), diseases related with the heart (Martinet et al. 2007; Mei et al. 2015),
liver (Ueno & Komatsu 2017) and lungs (Ryter & Choi 2015; Racanelli et al. 2018) as well
as cancer (Amaravadi et al. 2016; Santana-Codina et al. 2017; Degenhardt et al. 2006)
(Figure 2). With such a complex interplay of autophagy with other cellular processes and

external stimuli a better understanding of this mechanism and its course of action seems to
be crucial.

Figure 2. The multifaceted view of autophagy.

The figure was obtained from (Marshall and Vierstra 2018).

In the past decade a great curiosity around this biological mechanism emerged with studies
concentrating on the characterization of LIR-motifs through sequence and structural
analysis. The latter enabled scientists to define a short linear motif in the form of WXXL,
where the amino acids tryptophan (W) and leucine (L) were proven to be significant for the
interaction of the autophagic proteins with the two hydrophobic binding sites of the LC3
receptor (Birgisdottir et al. 2013; Noda et al. 2008). Later on, Noda et al. re-defined the linear
motif by extending it to the form of X-3X-2X-1[WY]X1X2[LIV], suggesting that acidic

IO
ANNA KALV

ARI

 5

residues at the leftmost end of the motif (positions -3 to -1) favoured interaction with the
Atg8 receptor, also naming this short peptide AIM for Atg8 Interacting Motif (Noda et al.
2010).

Another team, in their experimental work towards the identification of LIR-motifs of the

ULK complex, Alemu and colleagues also made an effort to devise a consensus LIR-motif
to further explore common aspects of these linear peptides. They collected 27 experimentally
verified LIR-motifs from the literature. From a multiple sequence alignment composed using
the sequences they gathered, the authors proposed the following regular expression:
[DE][DEST][WFY][DELIV]X[ILV] (Alemu et al. 2012) and gave rise to a plethora of
successive analogous studies. The timeline of the “evolution” of the notion of the
AIM/LIR/GIM-motif as drawn by the traces of the pioneers in the field is shown in Figure

3.

Figure 3. The “evolution” of the notion of a LIR/AIM/GIM motif.

1.3 Intrinsic disorder and LIR-motifs

Intrinsically disordered proteins (IDPs) are proteins which in their free state do not fold into
a unique stable conformation (Wright & Dyson 1999). IDPs have been intensively studied

during the last two decades and an increasing amount of knowledge continues to accumulate
regarding to their possible functions (Wright & Dyson 2015; Dyson & Wright 2005; Oldfield
& Dunker 2014; Darling & Uversky 2018). In several cases, a single protein may contain
both globular (i.e. well-folded) and disordered (i.e. unstructured) domains, e.g. p53
(Derbyshire et al. 2002; Rowell et al. 2012; Suad et al. 2009).

In the majority of the currently documented cases, the conformation of the LIR-motif is
extended when bound to the LIR docking site (LDS) of Atg8 homologs. An intriguing case

IO
ANNA KALV

ARI

 6

is the CLTC LIR-motif, which adopts an α-helical structure (Fotin et al. 2004). If we assume
that during its interaction with the LDS a LIR-motif must have an extended conformation,
then it would be possible that LIR-motifs may have the characteristics of so-called
“chameleon sequences” (Mezei 1998) or “conformational switches” (Tsolis et al. 2013), that
is, short sequences found to adopt more than one distinct secondary structure state. Such

sequences have been long known to be important in protein aggregation and amyloid
formation (Kelly 1996).

Additionally, it has been postulated that the function of LIR-motifs may be facilitated by
short-range (with respect to the LIR-motif) conformational changes. Such structural
rearrangements could bring this short linear motif in a suitable extended conformation in
order to interact with the 2 well-conserved hydrophobic pockets on the surface of Atg8
homologs (Noda et al. 2008; Noda et al. 2010). Combined with the recent observation that
autophagy-related proteins are relatively rich in intrinsically disordered regions (Mei et al.
2014), it is possible that the LIR-motifs may adopt the required conformation after switching
from a disordered to an ordered state.

1.4 Hypothesis and objectives

Despite the central role of selective autophagy in cell physiology, at the beginning of this
project only a few instances of selective autophagy receptors had been experimentally
verified and reported in the literature. In addition, throughout the years several groups
identified and refined the definition of LIR/AIM motifs. However, there was no systematic

manner (e.g. dedicated computational tools) to look for instances of functionally relevant
LIR motifs in amino acid sequences. Thus, a molecular biologist that wanted to investigate
whether a protein sequence of interest had the potential to interact with an Atg8 protein,
would have to manually check for an instance of the LIR motif or tweak existing software
to perform this task. In addition, in the absence of automated tools, scanning of complete
proteomes for the presence of LIR containing proteins (LIRCPs) was simply impossible.

We examined the efficacy of the consensus regular expression (cLIR) introduced in Alemu
et al. (Alemu et al. 2012) and found it to be weak in discriminating LIR instances. The cLIR
with a reported sensitivity of only 40.7% would only capture 11 out of the 27 verified LIR-
motifs, a simple method which evidently required further improvement. Therefore, we
hypothesised that a systematic study of experimentally known LIR-motifs and LIRCPs could
facilitate the development of useful tools for the identification of functional LIR-motifs in

IO
ANNA KALV

ARI

 7

protein sequences. Moreover, accumulating structural evidence, started to highlight
structural properties of the LIR-motif mediated interactions between LIRCPs and Atg8
proteins (Noda et al. 2008; Noda et al. 2010). In particular, an important observation related
these Short Linear Motifs with disorder to order transitions upon binding with their
compactly folded partners, proposing intrinsic disorder as a potentially important property

of functional LIR-motifs (Noda et al. 2010).

In this study, we focus on the following objectives:

1. Development of in silico methods and user-friendly tools for detecting putative LIR-
motifs and for providing useful information for downstream prioritizing LIR-motifs
for experimental validation. Such a method can facilitate the discovery of novel

selective autophagy receptor/adaptor proteins across eukaryotes. Towards this goal,
it is necessary to delimit the structural and functional properties of functional LIR-
motifs and to possibly devise new representations of the LIR-motif.

2. Determination of sequence features of functional LIR-motifs and their (predicted)
structural properties. Available experimental data highlight the importance of
flexibility in the regions containing functional LIR-motifs, thus systematically
investigating the role of intrinsically disordered regions in LIR-motifs is a main focus
of this study.

3. Development of tools and databases for exploiting existing structural data for
enhancing our understanding of the properties of LIR-mediated interactions between
LIRCPs and Atg8 proteins.

With the fulfilment of the above objectives, we also aim to generate new knowledge that
may enhance our understanding of autophagy-related protein-protein interactions and open
new avenues for research in the elucidation of the molecular mechanisms underlying
selective autophagy.

In the following chapters, we present:

i. The development of the freely available iLIR server which provides an easy way to
analyse protein sequences for the presence of LIR motifs. The underlying method is
carefully validated in a set of well-studied proteins known to interact with Atg8
proteins.

ii. The systematic validation of different sources of information (including predictions)
of intrinsic disorder as a feature for enhancing LIR-motif prediction methods.

IO
ANNA KALV

ARI

 8

iii. The development of tools to analyse structural instances of complexes of LIRCPs
and Atg8 proteins (including the results of peptide docking experiments) and the
development of a specialised database to make these results available to the wider
scientific community.

We anticipate that the tools and types of analyses presented in the following sections will be
useful in the elucidation of novel players in selective autophagy (receptor and adaptor
proteins). Furthermore, it will enable the study of autophagy in species other than human
and yeast (where, traditionally, most knowledge regarding this important cellular process
has been acquired) and may inspire complementary computational approaches which may
facilitate further advances in this rapidly evolving and exciting field of research.

IO
ANNA KALV

ARI

 9

2 Computational steps towards the characterization and

identification of LIR-motifs

2.1 Preface

2.1.1 The Atg8 protein family

An undoubtedly central role in autophagy hold the proteins belonging to the autophagy-
related 8 (Atg8) family, a name deriving from the Atg8 protein primarily identified in
Saccharomyces cerevisiae. Although there is only one Atg8 protein encoded in the yeast
genome, higher eukaryotes come with 4 distinct types:

● Microtubule associated protein 1 light chain 3, known as MAPL1LC3 or LC3 and its
4 isoforms including:

ᐨ LC3A, LC3B, LC3B2 and LC3C

● Gamma-aminobutyric acid receptor-associated protein (GABARAP)
● Gamma-aminobutyric acid receptor-associated protein-like 1

(GABARAPL1/GEC1)
● Gamma-aminobutyric acid receptor-associated protein-like 2

(GABARAPL2/GATE16/GEF2)

According to the work of Noda et al. (Noda et al. 2010), who very nicely demonstrated the
secondary and tertiary structural aspects of the proteins belonging to the Atg8 family, these
proteins comprise a C-terminal domain that resembles ubiquitin-like structures, but without
any (or below the detection threshold) similarities at sequence level, and an N-terminal
extension with two consecutive α-helices. Their distinction from ubiquitin proteins relies on
this conserved and unique feature.

The binding to the adaptor and receptor proteins is achieved via short linear motifs known
in the literature as AIMs, LIRs or GIMs, a name driven from the Atg8 homolog they

preferably interact with. The LIR-motifs are located on the surface of adaptor and receptor
proteins and upon binding with the Atg8 homologs they also interact with the two conserved
hydrophobic pockets on the surface of the Atg8 receptors, undertaking an extended β-sheet
conformation (Figure 4). In particular, their interaction with the LIR motifs is achieved via
binding to their 2 hydrophobic pockets named W-site and L-site, a name given by the amino

IO
ANNA KALV

ARI

 10

acids initially found to be interacting with those, a Tryptophan (Trp - W) and a Leucine (Leu
- L) at positions 3 and 6 of the LIR-motif respectively. The adoption of an extended β-strand
conformation by the core of the LIR motif facilitates its interaction in a parallel fashion with
the second β-strand of the Atg8 target forming an intermolecular β-sheet (Rogov et al. 2014).

Figure 4. Three of the receptors belonging to the Atg8 family in complex with a LIR-motif peptide

Three of the receptors belonging to the Atg8 family in complex with a LIR-motif peptide. Structure A (PDB
id: 2K6Q) is the MAP1LC3B protein in complex with the LIR-motif of p62. Structure B (PDB id: 2L8J) is the
GABARAPL1 protein in complex with the LIR-motif of NBR1 and structure C (PDB id: 2ZPN) is the actual
Atg8 protein in complex with the LIR peptide of cargo-receptor protein Atg19. In all three structures the LIR
peptides (green) take on an extended β-strand conformation at the two hydrophobic pockets of the Atg8 proteins
(W-site, L-site; illustrated in yellow and orange respectively).

Until very recently, the majority of studies focused on the characterisation of Atg8
Interacting Motifs (AIMs) (Noda et al. 2010) and LC3 Interacting Regions (LIRs) (Pankiv
et al. 2007). Recently, Rogov and colleagues in their structural analysis on binders of the
GABARAP isoforms, suggested the classification of the LIR-motifs based on their preferred
Atg8 partner and gave emphasis to those motifs found to be specific to the GABARAP
proteins, which they named GABARAP Interaction Motifs (GIMs). For the purposes of this
study we maintain the term LIR-motif for all motifs regardless of binding specificity or
species of origin.

2.1.2 Selective autophagy receptor and adaptor proteins

Autophagy is mediated by adaptor and receptor proteins, that selectively recruit cargo to an
enclosed double membrane structure called the autophagosome. The autophagosome will
travel carrying all its freight to fuse with a lysosome (or vacuole) to form the autolysosome.

IO
ANNA KALV

ARI

 11

This event causes all intra-autophagosomal components to be broken down by lysosomal
hydrolases and released back to the cytosol to be re-used by the cell.

The distinction between receptor and adaptor proteins is based on the way they interact with
the proteins of the Atg8 family. Selective autophagy adaptors interact with proteins of the

Atg8 family on the outer membrane of the autophagosome and are found to be implicated in
many different processes from autophagy initiation to the degradation of materials by the
autolysosome. A couple of examples are the ULK1 and ULK2 adaptor proteins participate
in autophagosome formation (Kraft et al. 2012), FYCO1 which participates in
autophagosome transport (Pankiv et al. 2010), TBC1D5, establishes communication with
the endocytic network (Popovic et al. 2012) and PLEKHM1 with a key role in the
autophagosome-lysosome fusion (McEwan et al. 2015). In contrast, selective autophagy
receptors (SARs) interact with the Atg8 proteins on the inner side of the autophagosome and
as a consequence being degraded with the rest of the cytosolic material. Clearly the fate of
the adaptor proteins is less “tragic”.

As previously mentioned, interaction with the proteins of the Atg8 family is achieved via
short linear motifs, namely LIR-motifs. With respect to structural features, in the majority
of the currently documented cases, LIR-motifs are shown to take an extended conformation
when bound to the LIR docking site (LDS) of Atg8 homologs. An exception to the standard
is the LIR-motif of the Clathrin heavy chain 1 (CLH1_HUMAN), which instead folds into
an α-helical structure (Fotin et al. 2004).

Building on that observation and based on the fact that a LIR-motif during its interaction
with the LDS must have an extended conformation, then it is highly probable for LIR-motifs
to have the characteristics of “chameleon sequences” (Mezei 1998) or conformational
switches (Tsolis et al. 2013). Those are found to be short sequences that adopt more than
one distinct secondary structure state and have been long known to be important in protein
aggregation and amyloid formation (Kelly 1996).

Another assumption is that the function of LIR-motifs may be facilitated by a short-range
(with respect to the length of these sequences) of conformational changes. Such structural
rearrangements could bring this short linear motif in a suitable extended conformation in
order to interact with the 2 well-conserved hydrophobic pockets on the surface of Atg8
homologs (Noda et al. 2008; Noda et al. 2010). Combined with the observation that
autophagy-related proteins are relatively rich in intrinsically disordered regions (IDRs) (Mei

IO
ANNA KALV

ARI

 12

et al. 2014), it is possible that the LIR-motifs may adopt the required conformation after
switching from a disordered to an ordered state.

In order to test this hypothesis, we scanned all of the proteins containing experimentally
verified LIR-motifs (Table 1), in search for the presence of intrinsically disordered regions

(IDRs). Disorder LIR-motifs were initially determined using the ANCHOR software
(Mészáros et al. 2018), a dataset that was later enhanced by incorporating data from MobiDB
(Piovesan et al. 2018) and 2 additional disorder prediction tools IUPRED2A (Mészáros et
al. 2018) and SPOT-disorder (Hanson et al. 2017) (see next chapter 3).

2.2 Data and Methods

2.2.1 Data

2.2.1.1 Compiling a sequence dataset

The sequences used in this study were obtained from the UniProt Knowledgebase
(https://www.uniprot.org/) and saved locally in flat files in FASTA format. Access to each
sequence was established via their corresponding accession which is used as parameter,
search by protein or gene name or keywords.

Name Species UniProt
Accession Name Species UniProt

Accession
ATG4B H. sapiens Q9Y4P1 TP53INP2/DOR H. sapiens Q8IXH6
ATG13 H. sapiens O75143 TP53INP1 H. sapiens Q96A56

Calreticulin H. sapiens P27797 TBC1D5 LIR2 H. sapiens Q92609
Clathrin HC H. sapiens Q00610 Stbd1 H. sapiens O95210

c-Cbl H. sapiens P22681 p62 H. sapiens Q13501
Dvl2 H. sapiens O14641 NIX H. sapiens O60238

FUNDC1 H. sapiens Q8IVP5 FIP200 H. sapiens Q8TDY2
FYCO1 H. sapiens Q9BQS8 AtNBR1 A. thaliana Q9SB64
NBR1 H. sapiens Q14596 DmATG1B D. melanogaster Q8MQJ7

OATL1/TBC1D25 H. sapiens Q3MII6 ScAtg1 S. cerevisiae P53104
Optineurin H. sapiens Q96CV9 ScAtg3 S. cerevisiae P40344

ULK1 H. sapiens O75385 ScAtg19 S. cerevisiae P35193
ULK2 H. sapiens Q8IYT8 ScAtg32 S. cerevisiae P40458

Table 1. Selective autophagy receptor and adaptor proteins with experimentally determined LIR-motifs.

Gene or protein names, species of origin and the UniProt accession numbers are displayed.

All sequences underwent manual curation to ensure their validity and the exact position of
the LIR-motifs. In cases where searches resulted in multiple hits, we manually selected

complete sequences over truncated ones with preference to curated entries matching the
sequences reported in the respective literature. The 26 UniProt entries were retrieved using
this procedure and are listed in Table 1.

IO
ANNA KALV

ARI

 13

In particular, for the LIRCPs studied for the updated definition of the LIR-motif (xLIR) we
followed a manual data-cleansing procedure, where instances of LIR-motifs reported in the
literature that did not match with UniProt sequences were corrected for downstream analyses
(Table 2).

2.2.1.2 Randomised sequence dataset

Randomisation of datasets is necessary in order to eliminate any biased interpretation of the
outcome and ensure that what is being observed is not happening at random. For this end,
we devised a randomized dataset where randomised versions of the sequences in Table 2
were generated by shuffling, thus maintaining composition of the peptides using the
shuffleseq program available from the EMBOSS explorer server
(http://emboss.bioinformatics.nl/).

2.2.2 Methods

2.2.2.1 Intrinsic disorder prediction with ANCHOR software

We hypothesize that several of the genuine LIR-motifs will lie in intrinsically disordered
regions which have the potential to become ordered upon interaction with the Atg8 proteins.
This seems to be a general property of several SLIMs (Davey et al. 2012). Therefore, we
decided to use the ANCHOR software which predicts (using single-sequence information)
subsequences flanking or overlapping intrinsically disordered regions - herein called
anchors - with a high potential to be stabilized upon binding to a target molecule (Mészáros
et al. 2018).

2.2.2.2 Revising the LIR-motif regular expression

A first scanning using the canonical LIR (cLIR) [DE][DEST][WFY][DELIV]X[ILV]

introduced by Alemu et al. (Alemu et al. 2012), revealed its weakness in identifying LIR
motifs, with it being able to only recognize 11 out of the 27 experimentally determined LIR
motifs (40.7%). Driven by that outcome, we downloaded all protein sequences proposed in
their study and manually created a multiple sequence alignment composed of the 27 verified
LIR sequences illustrated in Table 3 under the block of Alemu et al.

IO
ANNA KALV

ARI

 14

Name Species UniProt
ACC LIR-motif LIR

Position
LIR

Limits Masked Masked
Residues References

ATG4B H. sapiens Q9Y4P1 DAATLTYDTLRF 8 2-13 N (N) D (Satoo et al. 2009)

ATG13 H. sapiens O75143 GNTHDDFVMIDF 429*
(444) 438-449 N (N) - (Alemu et al. 2012)

Calreticulin H. sapiens P27797 GSLEDDWDFLPP 183**
(200) 194-205 Y (Y) E

(Mohrlüder,
Stangler, et al.

2007)

Clathrin HC H. sapiens Q00610 VGYTPDWIFLLR 513+

(514) 508-519 N (N) -
(Mohrlüder,

Hoffmann, et al.
2007)

c-Cbl H. sapiens P22681 ASSSFGWLSLDG 802 796-807 Y (Y) P, S, G,
H, D

(Sandilands et al.
2011)

Dvl2 H. sapiens O14641 EVRDRMWLKITI 444 438-449 Y (N) P, R, S (Gao et al. 2010)

FUNDC1 H. sapiens Q8IVP5 ESDDDSYEVLDL 18 12-23 N (N) - (Liu et al. 2012)

FYCO1 H. sapiens Q9BQS8 PPDDAVFDIITD 1280 1274-
1285 Y (N) Q, S, E (Pankiv et al. 2010)

NBR1 H. sapiens Q14596 SASSEDYIIILP 732 726-737 Y (Y) E, K (Kirkin et al. 2009)

OATL1/TBC1D25 H. sapiens Q3MII6 SPLLEDWDIISP 136 130-141 Y (N) P, S (Itoh et al. 2011)

Optineurin H. sapiens Q96CV9 GSSEDSFVEIRM 178 172-183 Y (Y) E (Wild et al. 2011)

ULK1 H. sapiens O75385 SCDTDDFVMVPA 357 351-362 Y (Y) S, P (Alemu et al. 2012)

ULK2 H. sapiens Q8IYT8 SCDTDDFVLVPH 353 347-358 Y (Y) S (Alemu et al. 2012)

TP53INP2/DOR H. sapiens Q8IXH6 EDEVDGWLIIDL 35 29-40 Y (N) R, P (Sancho et al. 2012)

TP53INP1 H. sapiens Q96A56 EKEDDEWILVDF 31 25-36 Y (Y) E (Sancho et al. 2012)

TBC1D5 LIR2 H. sapiens Q92609 SSKDSGFTIVSP 788*
(787) 781-792 Y (Y) S (Popovic et al.

2012)

Stbd1 H. sapiens O95210 RVDHEEWEMVPR 203 197-208 Y (N) S (Jiang et al. 2011)

p62 H. sapiens Q13501 SGGDDDWTHLSS 338 332-343 Y (Y) S (Pankiv et al. 2007)

NIX H. sapiens O60238 AGLNSSWVELPM 36 30-41 Y (Y) N, S (Novak et al. 2010)

FIP200 H. sapiens Q8TDY2 DAHTFDFETIPH 702 696-707 Y (N) E, S (Alemu et al. 2012)

AtNBR1 A. thaliana Q9SB64 LCGVSEWDPILE 661 655-666 Y (N) S (Svenning et al.
2011)

DmATG1B D.
melanogaster Q8MQJ7 HEDSDDFVLVPK 391 385-396 Y (Y) S, Q (Alemu et al. 2012)

ScAtg1 S. cerevisiae P53104 RSFEREYVVVEK 391*
(429) 423-434 Y (Y) S, E

(Alemu et al. 2012;
Nakatogawa et al.
2012; Kraft et al.

2012)

ScAtg3 S. cerevisiae P40344 LDGVGDWEDLQD 270 264-275 Y (Y) D (Yamaguchi et al.
2010)

ScAtg19 S. cerevisiae P35193 NEKALTWEEL 412 406-415 Y (Y) E (Noda et al. 2008)

ScAtg32 S. cerevisiae P40458 DSISGSWQAIQP 86 80-91 Y (Y) S, D (Okamoto et al.
2009)

Table 2. Selective autophagy receptor/adaptor proteins with experimentally verified LIR-motifs.

Name: protein/gene name. Species: the particular species it belongs to. UniProt ACC: a unique identifier
assigned by UniProtKB. LIR-motif: the sequence of the LIR-motif*. LIR Position: center of LIR-motif based
on Alemu et al. (Alemu et al. 2012) – in parenthesis corrected the position of the LIR-motif on the UniProtKB
sequence. LIR Limits: start-end positions of the LIR-motif based on the sequence retrieved from UniProtKB.
Masked: presence of Low Complexity Region (Υ/Ν) – in parenthesis a “binary” value indicating if the LCR
overlaps the LIR-motif. Masked Residues: residues identified as LCRs – in bold is the residue participating
in the overlap. Reference: the study in which a particular motif was experimentally verified. *We could not
trace the difference with the UniProt entry based on the evidence listed therein. **Calreticulin is known to
contain a cleavable signal peptide (residues 1-17). Low complexity regions (in particular, local compositional
bias) was detected using CAST with default parameters (Promponas et al. 2000), which for each detected LCR
assigns a specific residue type.

IO
ANNA KALV

ARI

 15

With the help of explicitly developed software that loops over the MSA and identifies all
distinct amino acids that appear at each column of the alignment, we generated a new more
relaxed regular expression. The resulting regular expression is
[ADEFGLPRSK][DEGMSTV][WFY][DEILQTV][ADEFHIKLMPSTV][ILV], keeping
the conserved residues W, F, Y at the 3rd position and maintaining the aliphatic amino acids

I, L, V at the 6th position of the sequence and allowing all possible amino acids at remaining
positions. We named this regular expression as the eXtended LIR motif (xLIR-motif).

As expected, this revised regular expression matches all 27 experimentally verified LIR-
motifs introduced by Alemu et al. (Alemu et al. 2012) with a 100% sensitivity. At this point
one can argue that in proteome-wide scans, this would introduce many spurious hits. In fact,
we compute the probability of occurrence of cLIR- and xLIR-motifs in random sequences

as 1.8 × 10−6 and 1.5 × 10−3 respectively (see Results) – therefore, many false positive hits

are expected to be detected by the xLIR motif. In the following sections we propose

additional methods that work in a synergistic manner for the elimination of falsely classified
instances.

2.2.2.3 Generation of an xLIR Position Specific Scoring Matrix (PSSM)

Regular expressions are very useful tools for quickly scanning large volume of data in search
for meaningful patterns. However, due to their deterministic nature, speed comes at the
expense of their expressive power, meaning that a subsequence either matches the regex at
hand or not. In the case of allowing almost all possible amino acid alternatives at each
position in an attempt to capture as many instances as possible, the pattern on one hand can
become more sensitive, but on the other hand it comes with the hazardous drawback that the
regular expression becomes saturated.

Another disadvantage is that in the case of LIR-motifs, the short length of the peptides
increases the probability of such patterns to occur by chance in long protein sequences, thus
resulting in many spurious hits. Imagine using a regular expression to annotate complete
proteomes with LIR-motifs. It is anticipated that the saturated xLIR regex would result in
numerous hits, the majority of which would be have falsely predicted as such. It is therefore
very crucial that more sophisticated methods are employed in order to be able to filter out as
many of those falsely annotated LIR regions.

IO
ANNA KALV

ARI

 16

In 2009, Mohrlüder and colleagues used position specific scoring matrices (PSSMs) as a
means for detecting LIR-motifs. The PSSM was composed from data coming from phage
display screening data of a randomised peptide library (Mohrlüder, Stangler, et al. 2007). A
scan of the entire SwissProt database using the PSSM they constructed, resulted in the
discovery of calreticulin (CALR) and its interaction with GABARAP. Two other known

LIRCPs identified during this process was clathrin heavy chain Hc (CLTC) and
BNIP3L/NIX (Mohrlüder, Stangler, et al. 2007).

Building on that idea and driven by the fact that regular expressions could be insufficient in
correctly identifying LIR-motifs in an attempt to filter false positives, we constructed a
PSSM based on the list of 27 experimentally verified LIR-motifs, in support of the instances
predicted by the xLIR motif. This required the creation of a multiple sequence alignment
(MSA), which contained all 27 verified LIRs from Alemu et al. (Alemu et al. 2012).

A PSSM is a L x 20 scoring matrix based on the amino acid frequencies at every position of
a multiple sequence alignment (MSA), where L is the length of the sequences comprising
the MSA (Figure 5). Each element in a PSSM matrix is a log-odds score representing the
appearance of an amino acid in a particular position. Highly frequent amino acids are
assigned very high and positive scores, whereas rarely occurring residues are assigned
negative values. The strength of this approach relies on the fact that apart from the presence
of different amino acid residues in a specific position of the pattern, PSSMs are also able to
capture the significance of each residue type occupying a certain position, compensating in
a combinational model for the weakness of the regular expression. Residues absent from the

alignment can be assigned log-odds scores based on the background probabilities encoded
in a typical (position in-specific) scoring matrix, or by introducing pseudocounts, which is
equivalent to multiplying the probabilities of occurrence of each residue in a specific column
of the MSA by a Dirichlet distribution. In order to construct an xLIR specific PSSM we
used the stand-alone (command-line) version of PSI-BLAST with default parameters and
the MSA of the 27 experimentally verified LIR-motifs as input. The properties of the MSA
(and thus the resulting PSSM) are summarized in the sequence logo in Figure 6-C.

In principle, we could scan our set of protein candidates with the aforementioned PSSM
using a simple script that moves the PSSM along the query sequences in search for highly
scoring hexapeptides, irrespectively of the presence of a cLIR- or xLIR-motif. The sliding
of the PSSM would happen one residue at a time, meaning that at each iteration the starting
point of the PSSM window is at position pn+1 = pn+1, with the final iteration at position pfinal

IO
ANNA KALV

ARI

 17

= L-w+1, where L is the length of the target sequence and w is the size of the sliding window
(the length of the PSSM/LIR-motifs), thus not allowing for gaps. However, as the xLIR-
motif is designed to be highly sensitive, we decided to only scan LIR-motif candidates with
the PSSM in order to optimize consumption of computational resources necessary for
scanning (possibly) large sequence datasets. A custom software tool was built to use this

PSSM for scanning protein sequences. Since the vast majority of the known LIR-motifs are
of length 6, we implement our search procedure by sliding the PSSM along the query
sequence with infinite gap-penalty (i.e. without allowing for gaps).

Figure 5. The xLIR-PSSM.

The actual matrix of the PSSM with amino acid log-odds scores for each position of the LIR-motif. The PSSM
was constructed based on the MSA of the 27 LIR-motifs from Alemu et al. (Alemu et al. 2012), using the
stand-alone version of PSI-BLAST (see text for details).

IO
ANNA KALV

ARI

 18

Figure 6. Graphical representation of the xLIR-PSSM

A – Heatmap plot representation of the xLIR-PSSM, where “hot” colours correspond to higher PSSM scores.
B – Correlation plot showing between position similarities for the xLIR-PSSM. For each PSSM position pair
the Euclidean distance serves as the clustering metric. C - The sequence logo resulted from the multiply aligned
verified LIR-motifs and used to define the xLIR regular expression. The xLIR-PSSM heatmap and correlation
plot were generated using http://www2.heatmapper.ca/ (Babicki et al. 2016), and the sequence logo was
generated using the PSSMsearch webserver (Krystkowiak et al. 2018).

2.2.2.4 Metrics for assessing the quality of predictions

In this section, the evaluation of all prediction schemes was performed by calculating the
following metrics:

!"#$%&%'%&(= *+
*+ + -.	

!0"1%2%1%&(= *.
-+ + *.

3114561(= *+ + *.
*+ + -+ + *. + -.

7686#1"9	6114561(= *+: + *.:
2

	

IO
ANNA KALV

ARI

 19

The values were computed under the following assumptions:

● A true positive (TP) LIR-motif is a functional LIR motif with experimental evidence
reported in the literature

● A true negative (TN) LIR motifs is one whose experimental validation shows they
are not functional and predicted as such

● A false positive (FP) LIR-motif is one predicted as functional, but without existing
experimental support

● A false negative (FN) LIR-motif the case where experimental evidence proves it is
functional, but not predicted as such

2.3 Results

A collective illustration of our results is portrayed in Table 3, followed by a thorough
analysis and discussion that is organised in distinct sections. The table lists the entire
collection of proteins rigorously examined in this study, including their experimentally
validated LIR-motifs and their corresponding computational predictions (i.e cLIR, xLIR,
Anchor, PSSM). The sections are conversed exhaustively hereunder.

 MOTIF

UNIPROT ID UNIPROT
ACC Sequence Position Verified cLIR xLIR Anchor PSSM score

(e-value) Species

Data set from Alemu et al. (Alemu et al. 2012)
ATG13_HUMAN O75143 EGFQTV 166–171 No No Yes No 11 (1.5e-01) Human

 DDFVMI 442–447 Yes Yes Yes Yes 20 (8.4e-03) Human
Atg1_YEAST P53104 REYVVV 427–432 Yes No Yes Yes 14 (5.7e-02) Yeast

Atg32_YEAST P40458 GSWQAI 84–89 Yes No Yes Yes 17 (2.2e-02) Yeast
 KEYQSL 235–240 No No Yes No 12 (1.1e-01) Yeast
 LGYILL 524–529 No No Yes No 10 (2.0e-01) Yeast
ATG4B_HUMAN**

[MM] Q9Y4P1 LTYDTL 6–11 Yes No Yes No 12 (1.1e-01) Human
 PMFELV 347–352 No No Yes No 10 (2.0e-01) Human
 EDFEIL 386–391 No Yes Yes No 17 (2.2e-02) Human

Atg19_YEAST P35193 LTWEEL 410–415 Yes No Yes No 18 (1.6e-02) Yeast
Atg3_YEAST P40344 GDWEDL 268–273 Yes No Yes No 22 (4.4e-03) Yeast

BNI3L_HUMAN O60238 SSWVEL 34–39 Yes No Yes Yes 20 (8.4e-03) Human
 AEFLKV 183–188 No No Yes No 10 (2.0e-01) Human

CALR_HUMAN P27797 GGYVKL 107–112 No No Yes No 12 (1.1e-01) Human
 DEFTHL 166–171 No No Yes No 14 (5.7e-02) Human
 DDWDFL 198–203 Yes Yes Yes Yes 26 (1.2e-03) Human

IO
ANNA KALV

ARI

 20

CBL_HUMAN P22681 DTYQHL 90–95 No No Yes No 14 (5.7e-02) Human
 LTYDEV 272–277 No No Yes No 11 (1.5e-01) Human
 FGWLSL 800–805 Yes No Yes Yes 18 (1.6e-02) Human
 REFVSI 893–898 No No Yes Yes* 13 (7.9e-02) Human

FUND1_HUMAN Q8IVP5 DSYEVL 16–21 Yes Yes Yes No 16 (3.0e-02) Human
 GGFLLL 81–86 No No Yes No 10 (2.0e-01) Human

OPTN_HUMAN Q96CV9 DSFVEI 176–181 Yes Yes Yes Yes 15 (4.2e-02) Human

Q8MQJ7_DROME Q8MQJ7 ADYLSV 96–101 No No Yes No 14 (5.7e-02) Drosophila

 DDFVLV 389–394 Yes Yes Yes Yes 17 (2.2e-02) Drosophila

Q9SB64_ARATH Q9SB64 RVWVLI 479–484 No No Yes No 15 (4.2e-02) Arabidopsis

 SEWDPI 659–664 Yes No Yes No 20 (8.4e-03) Arabidopsis
RBCC1_HUMAN Q8TDY2 FDFETI 700–705 Yes No Yes Yes 17 (2.2e-02) Human

SQSTM_HUMAN**
[LL] Q13501 DDWTHL 336–341 Yes No Yes Yes 24 (2.3e-03) Human

STBD1_HUMAN**
[LN] O95210 EEWEMV 201–206 Yes Yes Yes No 21 (6.1e-03) Human

T53I1_HUMAN Q96A56 DEWILV 29–34 Yes Yes Yes Yes 20 (8.4e-03) Human
TBC25_HUMAN Q3MII6 EVYLSL 95–100 No No Yes No 8 (3.9e-01) Human

 EDWDII 134–139 Yes Yes Yes No 24 (2.3e-03) Human
TBCD5_HUMAN Q92609 KEWEEL 57–62 Yes No Yes No 20 (8.4e-03) Human

 DDFILI 713–718 No Yes Yes Yes* 17 (2.2e-02) Human
 SGFTIV 785–790 Yes No Yes Yes 11 (1.5e-01) Human

T53I2_HUMAN Q8IXH6 DGWLII 33–38 Yes No Yes Yes 21 (6.1e-03) Human
ULK1_HUMAN O75385 DDFVMV 355–360 Yes Yes Yes Yes 19 (1.2e-02) Human
ULK2_HUMAN Q8IYT8 DDFVLV 351–356 Yes Yes Yes Yes 17 (2.2e-02) Human
CLH1_HUMAN Q00610 PDWIFL 512–517 Yes No Yes No 22 (4.4e-03) Human

 GMFTEL 1315–1320 No No Yes No 11 (1.5e-01) Human

 EDYQAL 1475–1480 No No Yes No 16 (3.0e-02) Human
DVL2_HUMAN O14641 RMWLKI 442–447 Yes No Yes No 18 (1.6e-02) Human

FYCO1_HUMAN**
[MM] Q9BQS8 ADYQAL 644–649 No No Yes Yes* 15 (4.2e-02) Human

 AVFDII 1278–1283 Yes No Yes Yes 8 (3.9e-01) Human
NBR1_HUMAN Q14596 LSFELL 561–566 No No Yes Yes* 10 (2.0e-01) Human

 EDYIII 730–735 Yes Yes Yes Yes 17 (2.2e-02) Human
Additional LIRCPs from Birgisdottir et al. (Birgisdottir et al. 2013)

BNIP3_HUMAN Q12983 GSWVEL 16–21 Yes No Yes Yes 19 (1.2e-02) Human
 AEFLKV 159–164 No No Yes No 10 (2.0e-01) Human

MK15_HUMAN Q8TD08 RVYQMI 338–343 Yes No Yes Yes 10 (2.0e-01) Human
CACO2_HUMAN Q13137 FMWVTL 72–77 No No Yes No 20 (8.4e-03) Human

 DILVV 132–136 Yes No No No N/A Human

C0H519_PLAF7 C0H519 NDWLLP 103–108 Yes No No No 12 (1.2e-02) Plasmodium
ATG34_YEAST Q12292 KVYEKL 194–199 No No Yes No 8 (3.9e-01) Yeast

 FTWEEI 407–412 Yes No Yes No 20 (8.4e-03) Yeast
TAXB1_HUMAN Q86VP1 DMLVV 139–143 Yes No No No N/A Human

 ADFDIV 514–519 No No Yes Yes 15 (4.2e-02) Human
CTNB1_HUMAN P35222 SHWPLI 502–507 Yes No No No 11 (1.5e-01) Human

Data set from Behrends et al. (Behrends et al. 2010)

IO
ANNA KALV

ARI

 21

STK4_HUMAN
[MM] Q13043 EVFDVL 28–33 No No Yes No 9 (2.8e-01) Human

 GDYEFL 431–436 No No Yes Yes 17 (2.2e-02) Human
STK3_HUMAN

[LM] Q13188 EVFDVL 25–30 No No Yes No 9 (2.8e-01) Human
 GDFDFL 435–440 No No Yes Yes 16 (3.0e-02) Human

RASF5_HUMAN
[MN] Q8WWW0 - - N/A N/A N/A N/A N/A Human

NEDD4_HUMAN
[LL] P46934 SEYIKL 410–415 No No Yes No 13 (7.9e-02) Human

 PGWVVL 589–594 No No Yes Yes 19 (1.2e-02) Human

 ESFEEL 1296–1301 No Yes Yes No 13 (7.9e-02) Human
A16L1_HUMAN

[MM] Q676U5 DEYDAL 164–169 No Yes Yes Yes 16 (3.0e-02) Human
TFCP2_HUMAN

[LN] Q12800 - - N/A N/A N/A N/A N/A Human
SF3A1_HUMAN

[LN] Q15459 PEFEFI 148–153 No No Yes No 13 (7.9e-02) Human
FNBP1_HUMAN

[MN] Q96RU3 - - N/A N/A N/A N/A N/A Human
TBC15_HUMAN

[LL] Q8TC07 AEWDMV 96–101 No No Yes No 20 (8.4e-03) Human
 PGFEVI 295–300 No No Yes No 12 (1.1e-01) Human
 FSFLDI 540–545 No No Yes No 11 (1.5e-01) Human

ANFY1_HUMAN
[MN] Q9P2R3 - - N/A N/A N/A N/A N/A Human

TCPR2_HUMAN
[LM] O15040 GDYIAV 45–50 No No Yes No 14 (5.7e-02) Human

 AVFQLV 102–107 No No Yes No 5 (1.0e+00) Human
 AVFVAL 894–899 No No Yes No 7 (5.3e-01) Human

 DEWEVI 1406–1411 No Yes Yes No 23 (3.2e-03) Human
ECHA_HUMAN

[LM] P40939 AVFEDL 447–452 No No Yes No 7 (5.3e-01) Human
NIPS2_HUMAN

[MM] O75323 - - N/A N/A N/A N/A N/A Human
ATG5_HUMAN

[MM] Q9H1Y0 - - N/A N/A N/A N/A N/A Human
ATG7_HUMAN

[MM] O95352 SSFQSV 258–263 No No Yes No 10 (2.0e-01) Human
KPCI_HUMAN

[LM] P41743 - - N/A N/A N/A N/A N/A Human
EPN4_HUMAN

[LM] Q14677 - - N/A N/A N/A N/A N/A Human
ATG3_HUMAN

[LL] Q9NT62 - - N/A N/A N/A N/A N/A Human
DYXC1_HUMAN

[LL] Q8WXU2 AVFLSL 16–21 No No Yes No 6 (7.4e-01) Human
 AMWETL 81–86 No No Yes No 19 (1.2e-02) Human

NEK9_HUMAN
[LL] Q8TD19 - - N/A N/A N/A N/A N/A Human

UBA5_HUMAN
[MM] Q9GZZ9 SDYEKI 66–71 No No Yes No 17 (2.2e-02) Human

 FDYDKV 103–108 No No Yes No 16 (3.0e-02) Human
TBD2B_HUMAN

[LM] Q9UPU7 EEWELL 252–257 No Yes Yes Yes 20 (8.4e-03) Human

IO
ANNA KALV

ARI

 22

KBTB6_HUMAN
[LL] Q86V97 ESFEVL 120–125 No Yes Yes No 13 (7.9e-02) Human

IPO5_HUMAN
[LN] O00410 ETYENI 31–36 No Yes No No 11 (1.5e-01) Human

 DGWEFV 655–660 No No Yes No 21 (6.1e-03) Human
 LSWLPL 997–1002 No No Yes No 16 (3.0e-02) Human

NCOA7_HUMAN
[LM] Q8NI08 AEYDKL 185–190 No No Yes No 13 (7.9e-02) Human

 GEWEDL 308–313 No No Yes No 19 (1.2e-02) Human
 DDFVDL 414–419 No Yes Yes Yes 18 (1.6e-02) Human
 KSWEII 745–750 No No Yes No 19 (1.2e-02) Human

KAP0_HUMAN
[MM] P10644 EEFVEV 310–315 No Yes Yes No 13 (7.9e-02) Human

GYS1_HUMAN
[NN] P13807 - - N/A N/A N/A N/A N/A Human

KBTB7_HUMAN
[LL] Q8WVZ9 ESFEVL 120–125 No Yes Yes No 13 (7.9e-02) Human

ATG2A_HUMAN
[LM] Q2TAZ0 PEYTEI 534–539 No No Yes No 13 (7.9e-02) Human

 EVYESI 828–833 No No Yes No 9 (2.8e-01) Human

 LEFLDV 1090–1095 No No Yes No 9 (2.8e-01) Human
FAN_HUMAN

[ML] Q92636 ESFEDL 600–605 No Yes Yes No 12 (1.1e-01) Human
 LVWDLL 869–874 No No Yes No 13 (7.9e-02) Human

Table 3. Sequences used in this study.

The data portrayed are divided into 3 distinct segments according to the study in which they were published.
The top section refers to the dataset created by Alemu et al. (Alemu et al. 2012), which was used to construct
the xLIR-motif and to validate both the cLIR and xLIR motifs. With the term “Verified” we refer to
experimentally verified LIR-motifs, whereas “Anchor” refers to intrinsic disorder binding regions predicted by
the ANCHOR tool, and found to overlap with a LIR-motif by at least 3 residues (>3). Middle and bottom data
blocks derive from the works of Birgisdottir (Birgisdottir et al. 2013) and Behrends (Behrends et al. 2010) and
colleagues respectively. Entries marked with a single asterisk (*) correspond to possible spurious xLIR hits,
which are also predicted to overlap with anchors. A double asterisk (**) denotes that a sample was identifiable
in all 3 studies. Since the xLIR-PSSM corresponds to a hexapeptide and is aligned to sequences in a gapless
fashion, for the atypical LIR sequences (pentapeptides) of CALCOCO2/NDP52 (CACO2_HUMAN) and
TAX1BP1 (TAXB1_HUMAN) their corresponding PSSM scores are marked as “N/A”. The 2 characters in
the square brackets accompanying the UniProt IDs are used to distinguish between 3 possible interactions with
the GABARAP and MAP1LC3B receptors respectively, as reported in the survey of Behrends and colleagues
(Behrends et al. 2010). ‘N’ denotes no binding with the wild-type Atg8 homolog, ‘L’ is used to denote loss of
binding with the mutant form, whereas ‘M’ denotes that binding is maintained with the mutant form - i.e. [ML]
signifies a case where both the wild-type and the mutated form bind GABARAP, while the wild-type form
binds MAP1LC3B and this interaction is abolished in the mutated form. Entries highlighted in red correspond
to motifs detected by the xLIR regular expression which at the time of the initial analysis (fall 2013) were
considered as false positives, but for which later work has validated that they are genuine LIR motifs: EDFEIL
(ATG4B_HUMAN) (Skytte Rasmussen et al. 2017) and DEWEVI (TCPR2_HUMAN) (Stadel et al. 2015)
respectively.

IO
ANNA KALV

ARI

 23

2.3.1 Combining the predictive power of xLIR and Anchors

The xLIR matches by design all 27 experimentally verified LIR-motifs at a 100% sensitivity.
Positions 1, 2 and 4 ([ADEFGLPRSK]1, [DEGMSTV]2, [DEILQTV]4) are less
constrained compared to the cLIR-motif ([DE]1, [DEST]2, [DELIV]4), whereas position 5
is more restricted. To be exact, the 5th position in the cLIR regex is occupied by the wild-
card character X, which means that this position can be taken by any of the 20 amino acids,
whilst in the case of the xLIR regular expression, that particular position can only be
occupied by any of the following residues: ADEFHIKLMPSTV.

Using the background frequencies for amino acid residues in a then recent version of the

UniProt/SwissProt database (Table 4) we estimated the probability of occurrence of the
cLIR- and xLIR-motif in random sequences drawn from this distribution as 1.8 x 10-6 and
1.5 x 10-3 respectively (Nevill-Manning et al. 1998). This means that overall, the xLIR-motif
should be more sensitive but less specific compared to cLIR. In fact, this is the case since
(in the same sequence data) the xLIR-motif detects 20 additional subsequences, which can
be regarded as false positives for being non-functional as LIRs. As expected, the higher
sensitivity of the xLIR-motif comes at the expense of lower specificity and therefore a larger
number of bogus hits when examining large datasets (i.e. a complete proteome). In terms of
accuracy, the cLIR regex seems to outperform the xLIR with accuracies 61.7% and 57.4%
respectively (Table 5). A figure that may be misleading due to the imbalanced nature of the
dataset, and by imbalanced we mean that the dataset is not comprised by an equal number
of functional and non-functional LIRs.

However, the design of the negative dataset that would consist of new motif sequences
complying with the xLIR motif, would not permit us to compute meaningful values for
specificity and balanced accuracies for the xLIR motif as specificity is estimated at 0% and
the balanced accuracy at a borderline value of 50%. In contrast, the specificity and balanced
accuracy for cLIR, is estimated at 90% and 65.4% respectively (Table 5).

Such a result makes apparent the need to obtain a more unbiased estimate of the false positive
rate for both motifs and for that purpose we constructed a sequence dataset composed of
randomized (shuffled) versions of the 27 validated LIRCPs. When scanning these sequences
with the xLIR and cLIR regular expressions, a number of 23 and 8 hits were reported
respectively. It is worth mentioning that this figure for the xLIR-motif is somewhat in
agreement with the number of the extra motifs identified in the original dataset (20 matches).

IO
ANNA KALV

ARI

 24

This case does not apply to the cLIR-motif as it deviates significantly from the false positive
motifs in the unshuffled sequences with by 4x times.

With respect to intrinsic disorder binding regions, 17 out of the 27 verified LIR-motifs (about
63%) were found to substantially overlap with an anchor segment by >3 residues (Table 3;

Table 5). Even though it is difficult to draw a significant conclusion from such a small
dataset, it is worth mentioning that 14 out of 21 LIR-motifs from human LIRCPs (66.7%)
overlap with an anchor. Interestingly the number of anchors discovered in the remaining
species namely, S. cerevisiae, D. melanogaster and A. thaliana, is slightly lower (50%).
Nevertheless, it seems that the combination of anchor prediction and a LIR regex may be a
good approach for discriminating genuine (i.e. functional) LIR-motifs. An observation
which consequently lead us to the next step of testing the two together.

Residue Abundance (%) Residue Abundance (%) Residue Abundance (%)
Ala 8.25 Gly 7.07 Pro 4.70
Arg 5.53 His 2.27 Ser 6.56
Asn 4.06 Ile 5.96 Thr 5.34
Asp 5.45 Leu 9.66 Trp 1.08
Cys 1.37 Lys 5.84 Tyr 2.92
Gln 3.93 Met 2.42 Val 6.87
Glu 6.75 Phe 3.86

Table 4. Amino acid residue background distribution.

Data regarding the 20 common amino acid residues, calculated from UniprotKB/Swiss-Prot release 2013_04,
April 2013; available from the ProtScale tool (https://web.expasy.org/protscale).

When using the cLIR regular expression and posing an additional requirement that the
functional LIR-motif should overlap with an anchor segment, only 8 functional LIRs would
be predicted as such (Table 3; Table 5), resulting in very low coverage 8/27 or 29.6%.
Contrary, the xLIR-motif in combination with anchor detection recovers 17 out of the 27
verified LIR-motifs (63.0%) and at the same time eliminates most of the false positives. To
be precise, based on this compound criterion, only 4 unverified xLIRs from the human
LIRCPs were predicted to be functional LIR-motifs (Table 3).

 xLIR cLIR xLIR+A cLIR+A xLIR+A+P13 xLIR+A|P13

TP 27 11 17 8 15 26

TN 0 18 16 19 18 11

FP 20 2 4 1 2 9

IO
ANNA KALV

ARI

 25

FN 0 16 10 19 12 1

Sensitivity (%) 100.00 40.70 63.00 29.60 55.60 96.30

Specificity (%) 0.00 90.00 80.00 95.00 90.00 55.00

ACC (%) 57.40 61.70 70.20 57.40 70.20 78.70

BACC (%) 50.00 65.40 71.50 62.30 72.80 75.70

Table 5. Validation of xLIR and cLIR motif-based predictors.

Different schemes are validated for the prediction of functional LIR-motifs on the set of 26 proteins with
validated LIRs described by Alemu and colleagues (Alemu et al. 2012). xLIR and cLIR are based simply on
the detection of the xLIR and cLIR motifs, respectively, whereas xLIR+A and cLIR+A require that a functional
motif should overlap with an anchor as predicted by the ANCHOR tool. The 2 rightmost columns correspond
to xLIR-motifs that overlap with an anchor and have a PSSM score > 13 (xLIR+A+P13) and xLIR-motifs that
either overlap with an anchor or have a PSSM score > 13 (xLIR+A|P13). ACC is for Accuracy (%), and BACC
is for Balanced Accuracy (%). For each validation metric the highest recorded value is depicted in bold.

2.3.2 Using profile-based methods to identify functional LIR-motifs

Using the PSSM derived from the 27 experimentally verified LIR-motifs, we scanned the
sequences of the 26 verified LIRCPs to investigate whether the PSSM can be used as a more
successful means to identify functional LIR-motifs.

On top of the 47 hexapeptides matching the xLIR-motif (27 verified, 20 unverified) we also
obtained a score against the PSSM for a total of 18,018 hexapeptides (termed background)
stemming from the 26 LIRCP sequences of our reference dataset. More specifically, by
“sliding” the PSSM over each sequence one residue at a time, a score for the comparison of
the PSSM to the hexapeptide starting at the given sequence position is computed. The
median of scores for the 3 classes of hexapeptides (i.e. verified LIRs, unverified LIRs,
background) was 18, 12 and -8, respectively and the score distributions indicate significant
differences between these classes (Figure 7).

To further validate the xLIR-PSSM we performed a randomisation experiment, where

hexapeptides were generated on the shuffled dataset of the 26 proteins from Alemu et al.in
a similar fashion as done for the “background” hexapeptides, but repeated a 1000 times. This
resulted in 18,040,000 PSSM scores after scanning the shuffled sequences with our xLIR-
PSSM. The median of this sample equals the median of the background dataset (-8).
Furthermore, the randomisation experiment enabled us to compute the corresponding z-
scores and p-values at varying PSSM threshold levels (Table 6). From our combined results,

IO
ANNA KALV

ARI

 26

it becomes evident that a xLIR-PSSM score >12 can be a trustworthy computational method
for the discrimination between genuine and non-genuine LIR-motifs.

Figure 7. PSSM score distributions for different classes of hexapeptides.

Box-plot representation of PSSM score distributions for xLIR-motifs in the 26 sequences of LIRCPs (verified
and unverified), the remaining hexapeptides (“background”) and 1000 randomized versions of the LIRCP
dataset. Scores were obtained by evaluating the match of a sliding-PSSM along the sequences in the set of 26
sequences reported by Alemu et al. (Alemu et al. 2012) or simulated datasets. The differences indicated here
suggest that the PSSMs may be able to reliably discriminate between functional and non-functional xLIRs. In
particular, a Wilcoxon rank sum test with continuity correction demonstrates significant differences between
both verified and unverified xLIRs compared to background (P < 2.2x10-16 and 1.2x10-14 respectively) and
verified vs. unverified xLIRs (P = 6.0x10-6). Similar trends are observed against the fully randomized dataset
(verified vs random: P<2.2x10-16 ; unverified vs random: P=1.2x10-14), whereas the background and
randomized datasets showed no statistically significant differences (P=0.06).

Above
cutoff

PSSM
validation

PSSM
score
cutoff

xLIR
(verified)

N = 27

xLIR
(unverified)

N = 20

Background
N=18018

(randomized,
N = 18065)

z-scores p-values
Sens
(%)

Spec
(%)

ACC
 (%)

BACC
(%)

9 26 19 93 (85) 3.08 1.04e-03 96.3 5 57.4 50.7
10 26 14 63 (63) 3.27 5.39e-04 96.3 30 68.1 63.2

IO
ANNA KALV

ARI

 27

11 25 11 47 (49) 3.46 2.70e-04 92.6 45 72.3 68.8
12 24 9 28 (32) 3.65 1.31e-04 88.9 55 74.5 72
13 24 8 17 (25) 3.84 6.10e-05 88.9 60 76.6 74.5
14 23 5 13 (16) 4.03 2.76e-05 85.2 75 80.9 80.1
15 22 3 10 (14) 4.22 1.20e-05 81.5 85 83 83.3
16 21 2 4 (11) 4.41 5.07e-06 77.8 90 83 83.9
17 16 0 2 (7) 4.61 2.06e-06 59.3 100 76.6 79.7
18 13 0 0 (5) 4.80 8.09e-07 48.2 100 70.2 74.1

Table 6. Validation of the PSSM method as a predictor of LIR-motifs.

We report the number of hexapeptides with a PSSM score above different threshold values. Peptides from the background
dataset scoring above the threshold would be regarded as false positives if there were no restriction to comply with the
xLIR-motif. Results for the randomised versions of the 26 verified LIRCPs are displayed in parentheses next to
“background” data. Z-values and P-values were generated using the “Random” dataset. For each validation metric the
highest recorded value is depicted in bold.

2.3.3 Validating xLIR, anchors and PSSM with independent datasets

As more studies came to the surface, it only made sense to test our methods on new datasets.
In 2013, when we were about to publish the iLIR paper, Birgisdottir and colleagues
published a list of 7 new LIRCPs with an equal number of experimentally determined LIR-
motifs (Birgisdottir et al. 2013). Once again, we extracted all the samples from the papers
and downloaded all the sequences from UniProt Knowledgebase in FASTA format. For the
analysis we followed exactly the same approach as with the dataset of Alemu et al. (Alemu
et al. 2012), as this would allow us to get a more unbiased estimate of how our approach
performed.

Interestingly, the cLIR-motif would not match any of these sequences in contrast to xLIR
that matched 3 of the 7 experimentally verified LIR-motifs, giving 4 additional “hits”, which
can be safely considered as “false positives”. The 4 missed experimentally verified LIRs
include the following:

● Human proteins CALCOCO2/NDP52 and TAX1BP1 reported to contain a non-
canonical LIR-motif which is only 5 residues long (von Muhlinen et al. 2012;
Newman et al. 2012). As expected, no PSSM scores have been computed for these
“unconventional” LIR-motifs.

● Plasmodium falciparum Atg3 homolog (PfAtg3; UniProt ID: C0H519), with 2
mismatches to the xLIR-motif at positions 1 and 6, with asparagine and proline

IO
ANNA KALV

ARI

 28

occupying those positions respectively. This is however the highest scoring
hexapeptide of this sequence against the PSSM (score = 12).

● Human CTNNB1/β-catenin, also with 2 mismatches to the LIR-motif with a histidine
at position 2 and a proline residue occupying position 4. Again, the top-scoring
hexapeptide against the PSSM (score = 11).

Notably, none of the aforementioned LIR-motifs is predicted to be an anchor.

Another important source of LIRCP-related information, stems from the work of Behrends
and colleagues and their effort to decipher the selective autophagy protein-protein
interaction network (Behrends et al. 2010). In particular, we focus on the data presented
therein in order to unravel the LIR-dependence of interactions of human Atg8 homologs
GABARAP and MAP1LC3B with 34 proteins (Table 3, bottom).

Briefly, these authors recorded binding of these 34 proteins against the wild type and mutated

forms of Atg8 homologs (Y49A, L50A for GABARAP and F52A, L53A for MAP1LC3B).
Since the mutated residues lie in the LDS and are considered critical for typical LIR-
mediated interactions, maintenance of the interaction after mutation indicates LIR-
independent binding, whereas loss of interaction suggests LIR-dependence. Below we
summarize the computational results on those proteins showing consistent interaction
patterns against both GABARAP and MAP1LC3B.

For 7 of the 9 proteins that demonstrated LIR-independence for both Atg8 homologs
(marked as [MM] in Table 1) there was at least one match of the xLIR-motif (only 3 for
cLIR); interestingly only 2 of these proteins [FYCO1, FYVE and coiled-coil domain
containing 1 (FYCO1_HUMAN) and ATG16L1, autophagy related 16-like 1 (S. cerevisiae)
(A16L1_HUMAN)] had at least one xLIR overlapping with a predicted anchor.

Another 8 proteins were shown to interact with both Atg8 homologs in a LIR-dependent
manner (marked as [LL] in Table 3). Six were detected to have at least an instance of the
xLIR-motif (3 with cLIR) of which only 2 overlapped with an anchor: these are the validated
LIR-motif of SQSTM1 and the second xLIR match of the E3 ubiquitin-protein ligase
NEDD4 (PGWVVL with a PSSM score = 19).

IO
ANNA KALV

ARI

 29

An interesting case is the serine/threonine protein kinase NEK9, which is predicted to have
10 anchor segments, 2 of which overlap with hexapeptides scoring high against the PSSM,
albeit the fact that they do not match the xLIR-motif; RGWHTI (positions: 716-721; PSSM
score: 19) and DSWCLL (positions: 965-970; PSSM score: 16). Both of these hexapeptides
have a single mismatch to the xLIR motif (a His and Cys residue respectively at position 4)

and, along with NEDD4, they could be good candidates for further experimental validation.
Intriguingly, from all the known LIRCPs with a verified LIR-motif the only protein
belonging to this class is SQSTM. Interestingly, the single case in this dataset of a protein
not interacting with the wild type Atg8 homologs (GYS1) does not match either the xLIR or
the cLIR-motif.

2.3.4 Assembling everything into a unified resource: the iLIR webserver

Driven by our findings that the power of our approach makes a good means for an overall
estimate of the genuineness of a new LIR-motif, the next logical step was to develop a
resource to make our predictive methods available to the scientific community.

In 2014 we released a new web resource called iLIR, where iLIR stands for “identify LIR”.
iLIR is a resource purposely designed to guide autophagy researchers to make rational
decisions on which targets to select, rather than providing explicit predictions of putative
LIR-motifs. iLIR is freely accessible to the research community via the URL
http://repeat.biol.ucy.ac.cy/iLIR/ and provides a unified resource combining all of our
predictive tools in a single, publicly and freely available unit. The iLIR web server was
developed following very simple web technologies such as the Common Gateway Interface
(CGI) standard protocol, JavaScript/AJAX and Cascade Style Sheets (CSS) for the provision
of common formatting between all web pages and also improve content accessibility and
web page interactivity.

The Common Gateway Interface (CGI) is part of the Hypertext Transfer Protocol (HTTP)

and a simple form of establishing front to back-end communication in a web resource and
vice versa. The back-end can be a collection of application scripts, with each script mapping
to its dedicated HTML page. CGI is language independent, so the application scripts can be
implemented in any language from python and perl to C/C++ for faster processing.

IO
ANNA KALV

ARI

 30

2.3.4.1 iLIR: Home page

A novice iLIR user lands in the home page, where a brief description on the functionalities
offered by iLIR are presented (Figure 8). Here, hyperlinks are provided to launch a new
prediction (Submit a job) or examine a page with examples pre-ran sequences (Examples).

Figure 8. Home page of the iLIR webserver.

2.3.4.2 iLIR: Launching a new prediction

When a user makes this selection, a simple input form is dynamically generated by the
underlying CGI perl script (iLIR_cgi). The input required by the user is purposely designed
to be very simple, knowing that most biologists do not want to deal with many different
parameters (whose meaning they often fail to understand!!).
The user only needs to input the sequence of interest in FASTA format either by entering
text (typing or copy-and-paste) or by uploading a plain ASCII text file (Figure 9). Since
iLIR calls external services, only one amino acid sequence is expected by the server. Once
the sequence is uploaded or made available in the text box, the user can launch the processing
by pressing the submit button.

IO
ANNA KALV

ARI

 31

Figure 9. iLIR server user interface.

A simple user interface enables sequence data entry in FASTA format either by copy-pasting the sequence in
the respective text box or uploading the data via a local FASTA formatted text file. At its current state only a
single sequence can be processed at a time.

Initial checks on the sequence are performed and then the iLIR server takes care of executing
the pipeline of tools as follows:

a. ANCHOR prediction: the sequence in submitted to a locally installed instance of the
ANCHOR software for the prediction of anchors. Anchors are regions within or
neighbouring unstructured regions with the potential to undergo a disorder to order
conformational change and bind to a globular protein.

b. Retrieval of domain information: an automatic sequence query is executed against

the SMART database (Letunic et al. 2012), resulting in a list of annotated domains
and motifs including PFAM domains (Punta et al. 2012).

c. Detection of homologs with known structure: a remote BLASTP (Blast 1997) query
is issued against the Protein Data Bank (Berman et al. 2000) (using the PDB REST
API), thus facilitating access to relevant structural data. More specifically all

IO
ANNA KALV

ARI

 32

significant hits with alignments including the reported motif are compiled in a list,
linking to the respective PDB entry, and the complete output is also available for
further analysis. BLAST parameters are pre-set to E-value cutoff of 0.001 and the
BLOSUM62 substitution matrix.

d. Detection of LIR-motifs: instances of xLIR- and the simpler WxxL-motifs
(xx[WFY]xx[VLI]) are scanned throughout the submitted sequence.

e. Computation of PSSM scores: Whenever a successful hit is recorded, the matched

hexapeptide is scored against the position specific scoring matrix developed using
the collection of experimentally verified LIR-motifs. The PSSM score is
accompanied by an e-value computed using the Karlin-Altschul equation (Karlin and
Altschul 1990). The e-value represents the number of random (i.e. unrelated)
hexapeptides expected to achieve a score at least as high as the one reported by
chance alone.

f. Output is sent to the web browser for display (see next section).

2.3.4.3 iLIR: Results page

The results are presented in two formats: a graphical illustration of the different motif regions
spanning the protein sequence (Figure 10 - A), and a series of tables that provide extended
information about the identified regions (Figure 10 - B). The graphical representation of the
protein domains is generated using the domains graphic generator used by Pfam
(https://pfam.xfam.org/generate_graphic), which provides a clean and familiar depiction to
most users. The coloured representation of the various domains in the schematic has as
follows: any Pfam domains are displayed in orange, while domains known to be associated
with specific classes of selective autophagy LIRCPs are illustrated in green. Other sequence
features reported by SMART/PFAM, such as low complexity regions—blue boxes are
displayed along the sequence, with detected xLIR-motifs painted in magenta.

IO
ANNA KALV

ARI

 33

Figure 10. iLIR results page.

The output page of the human SQSTM1 (Uniprot accession: Q13501) is displayed. A graphical representation
of the identified domains (A) is accompanied with detailed results from ANCHOR and SMART searches (B).
By moving the mouse over any domain/feature on the graphic, a pop-up tip displays further information. It is
in the user’s discretion if the tables containing further information regarding ANCHOR and SMART regions
will remain hidden or not.

For a simple resource like iLIR, the minimal technologies used are sufficient for provisioning
the required functionality.

2.3.4.4 iLIR: examples page

To gain a better understanding on what kind of output a user may expect to get from the iLIR
server, we have compiled a simple “examples page” (available at the URL:
http://repeat.biol.ucy.ac.cy/iLIR/examples.html) with static web-pages containing
hyperlinks to pre-ran iLIR results on all protein sequences mentioned in Table 1 (Figure

11). For simplicity, the results for WxxL-motifs have been omitted from these pages.

IO
ANNA KALV

ARI

 34

Figure 11. The full collection of pre-ran examples as they appear on the iLIR website.

The various autophagy proteins are listed by UniProt ID and organised by the source literature in 3 distinct
sections as in Table 1.

2.4 Conclusions

The work presented in this chapter resulted in the development and provision to the scientific
community of a new web resource for the identification of novel LIR-motifs in putative
proteins of the autophagic apparatus. iLIR, although nowadays is not the sole available
resource, it was the first of its kind when launched in late 2013. A couple of years later the
hfAIM server was developed, however with limited usage so far, if judged by the number of
citations to the respective paper.

Retrospectively, we speculate that the simplicity of the user interface, combined with the
uniqueness of the iLIR web server, has attracted tens of thousands of submissions since the
server became available online. In particular, more than 70,000 sequences have been
submitted to the iLIR server since becoming publicly available online (fall 2013 till fall

IO
ANNA KALV

ARI

 35

2018). Moreover, we assume that the comprehensive output provided by the iLIR web server
provides information that can easily be utilized by experimental biologists aiming to
decipher the modes of interaction of putative Atg8/LC3 binding proteins. The detailed output
of iLIR provides orthogonal evidence that can be related to structural (e.g. ANCHOR
predictions, PDB-homologs) and functional (e.g. SMART/PFAM domains) properties of

examined protein sequences. Consequently, the iLIR server has driven the experimental
discovery of several new instances of functional LIR-motifs, as seen in a number of papers
(http://goo.gl/yzGUFe) citing our original publication (Kalvari et al. 2014).

Despite the fact that iLIR was immediately proven to be a useful resource for autophagy
researchers and is being continuously used by researchers all over the world, we can already
think of improvements for enhancing its performance and providing novel features for an
improved user experience.

First, methodological developments may increase the predictive performance of iLIR, thus
streamlining efforts for the efficient characterisation of novel autophagy receptor and
adaptor proteins. With the current trend of deep machine learning architectures and their
applications in several sequence analysis problems in bioinformatics and computational
biology (Singh et al. 2018; Wei et al. 2018) this might look like a straightforward option.
However, the currently small amount of well characterized data for functional LIR-motifs
makes such a scenario sound premature. Nevertheless, our group is already performing
preparatory work, where the existing literature corpus on LIR-motifs is manually analyzed
for cataloging hopefully all known functional LIR-motifs. This effort will be further assisted

by custom, semi-automated biomedical literature mining tools, currently under development
in our group (Chadjichristofi and Promponas, work in progress) to extract available
information from publications in XML or PDF format. This information needs to be cleansed
(remove unrelated instances), extracted from text (and independently validated on its
accuracy) and (possibly) organized in a database until we come up with a large enough data
set for training and validating machine learning schemes. Before reaching the desired
volume, these data may be used for a thorough evaluation of future algorithms performing
this task.

Second, the iLIR server could provide richer options and a more interactive graphical user
interface. Some novel features we consider for expanding the iLIR server include the
possibility of providing a number of different output formats and report alternatively defined
LIR-motifs (e.g. hfAIM regular expressions). In particular, more powerful and modernized

IO
ANNA KALV

ARI

 36

technologies should be put into practice, such as REACT (https://reactjs.org/ - a Javascript
library for the construction of user interfaces) and perhaps Django REST framework
(https://www.django-rest-framework.org/) for the development and provisioning of
additional services.

Third, based on several requests made by users of the system, the option to execute batch
runs (e.g. scanning a complete proteome) is being taken into consideration. In fact, based on
a preliminary analysis of the iLIR server logs, a large fraction of the sequence submissions
seems to originate from automated software queries. In addition, in several cases, we have
been directly contacted by individual researchers to assist with the analyses of complete
proteomes and other large datasets. Possible implementations would be from a simple
standalone toolkit with a basic CLI (code distribution with appropriate licence) made
available through code versioning systems such as GitHub or Bitbucket, or a more “official”
programmatic access to the resource via a REST API, to more advanced and modernised
infrastructures employing Cloud technologies (Markstedt 2017; Novella et al. 2018) (e.g.
running iLIR as a containerised application on a Kubernetes cluster, with access through
user accounts).

IO
ANNA KALV

ARI

 37

3 Intrinsic Disorder as a means for the identification of genuine

LIR-motifs

3.1 Preface

3.1.1 Intrinsically disordered proteins

Intrinsically disordered proteins (IDPs) are proteins with no stable secondary or tertiary
structure that do not conform to the traditional paradigm of proteins folding into a unique

stable conformation (Wright & Dyson 1999). IDPs have been intensively studied during the
last two decades and an increasing amount of knowledge accumulates regarding to their
possible functions (Wright & Dyson 2015; Dyson & Wright 2005; Oldfield & Dunker 2014;
Darling & Uversky 2018). In several cases, a single protein may contain both globular (i.e.
well-folded) and disordered (i.e. unstructured) domains.

A large number of prediction tools have been developed to predict intrinsically disordered
regions (IDRs) from sequence information (Oldfield & Dunker 2014). In addition, a number
of other resources focusing on intrinsic disorder in proteins have been available, as for
example DisProt (Piovesan et al. 2017), DIBS (Schad et al. 2018), MobiDB (Piovesan et al.
2018), FuzDB (Miskei et al. 2017).

It is often the case that Short Linear Motifs (SLIMs), such as the LIR-motif, are found within
IDRs (Davey et al. 2012), with the flexibility of the disordered region facilitating the motif
interaction to a globular partner. Having observed that ANCHOR predictions were very
successful in eliminating a significant number of false positives detected by iLIR (Kalvari et
al. 2014), we set to investigate whether predictions of IDRs could be used to enhance the
discrimination of functional LIR-motifs.

3.2 Data and Methods

3.2.1 Data

3.2.1.1 Sequences

The sequences used in this study are updated versions of the proteins listed in Table 1 (Table

3 in this document) from Kalvari et al (Kalvari et al. 2014). As a quality assurance measure
all sequences were re-downloaded from UniProt Knowledgebase (The UniProt Consortium

IO
ANNA KALV

ARI

 38

2018) using UniProt accessions (https://www.uniprot.org/) and saved in flat files in FASTA
format.

3.2.1.2 Disorder Data

Disorder data was obtained from MobiDB v.3.0.0 (http://mobidb.bio.unipd.it), a database of
protein disorder and mobility annotations (Piovesan et al. 2018). MobiDB incorporates
protein disorder data from various databases, which groups them in three categories: DB -
manually curated disorder data extracted from DisProt (Piovesan et al. 2017), FuzDB
(Miskei et al. 2017) and UniProt (The UniProt Consortium 2018) databases, Predicted - an
ensemble of predicted data from tools like DisEMBL (Linding, Jensen, et al. 2003), ESpritz

(Walsh et al. 2012), GlobPlot (Linding, Russell, et al. 2003), IUPred (Mészáros et al. 2018),
Jronn (Yang et al. 2005), VSL2b (Peng et al. 2006) with long disorder annotation calculated
using MobiDB-lite (Necci et al. 2017), and finally Indirect - structural disorder descriptions
collected from PDB (Rose et al. 2015) structures.

To compare the power of an aggregating resource like MobiDB as opposed to stand alone
predictors, disorder regions were also computed using the SPOT-disorder webserver
(http://sparks-lab.org/server/SPOT-disorder) (Hanson et al. 2017) (whose authors claim that
it performs in par with the top IDP prediction methods), and the most recent release of
IUPred (IUPred2A - https://iupred2a.elte.hu) (Mészáros et al. 2018) using its command line
interface (CLI). ANCHOR2 disordered binding regions were recomputed alongside to
evaluate the potential of this revised version. Data extraction as well as the determination of
disorder/LIR overlaps was exploited programmatically using explicit software developed in
python 2.7.

3.2.1.3 New autophagy proteins and LIR-motifs

More recent studies, in an attempt to further characterise members of the autophagic
machinery, introduced new proteins and LIR-motifs (Xie et al. 2016; Rogov et al. 2017;
Svenning et al. 2011), which also gave rise to the generation of new LIR prediction tools
(Xie et al. 2016). To examine how our optimal methods would behave on a new dataset, we
manually selected a small number of samples from the papers of Rogov (Rogov et al. 2017)
and Svenning et al. (Svenning et al. 2011) that were not included in our previous
experiments. The protein sequences were downloaded from UniProt (The UniProt

IO
ANNA KALV

ARI

 39

Consortium 2018) in FASTA format using Gene ids or simple keywords like “FIP200”. Start
and end positions of the LIR-motifs were extracted from the papers and analysed using the
iLIR webserver (Kalvari et al. 2014). The samples along with other computationally
produced features are summarised in Table 7.

3.2.2 Methods

3.2.2.1 Identification of LIR-disorder region overlaps using MobiDB data

Overlaps were computed for each of the 96 motif regions depicted in Table 7 using custom-
made software called dizscan (see supplement 7.1). The algorithm takes as input a tab
delimited file with each line mapping the UniProt accession numbers of each protein and
their corresponding LIRs (sequence, start-end points), along with their experimental status:
verified, unverified. For each line in the input file dizscan extracts disordered regions from
MobiDB on the fly (using the provided REST API), using UniProt accession numbers to

access the data. MobiDB data type can be specified using the option --type followed by

one of the keywords all: incorporates all three types of data indirect, predicted and curated,
or indirect: MobiDB derived data only, predicted: MobiDB predictions or curated: to take
into account regions deposited in disorder databases by expert curators.

The second step was to search for overlaps with the LIR sequences by taking into account
their start and end positions on the peptides. Tracing of disordered residues in the LIR motifs
was accomplished by applying simple hashing techniques with the exploitation hash data
structures. Each LIR motif is represented by a hash, where start-end positions work as keys

whose associated values are characters. The characters are in agreement with MobiDB’s
naming scheme, where ‘S’ is for structured, ‘D’ is used to denote disorder. All values in the
hashes are initialized with question marks ‘?’, to represent an unknown primary state.

Disorder overlaps are determined dynamically, meaning that the disorder state of each value
in the dictionary may change over time. There is also a moderate greediness towards
disorder, such that it only allows the transitions S -> D, ? -> S, ? -> D. This means that once
a residue has been labelled as disordered (‘D’) its status cannot be changed to structured ‘S’
or back to unknown ‘?’, this way preserving as much disorder information as possible.

Finally, the information concealed within each hash is converted to what we hereby call a
disorder string (dSTR), with the same length as the motif sequence. Disorder strings are

IO
ANNA KALV

ARI

 40

used as a simple means of visualisation giving further insight on the per residue disorder
status. For instance, the LIR-motif DDWTHL of human p62 (UniProt accession: Q13501) in

positions 336-341 is classified as completely disordered with a dSTR DDDDDD both for

curated and predicted data. On the other hand, the resulting dSTR from indirect regions was
??????, suggesting that no structural information was available for that particular region

in MobiDB or that in presence of disorder regions none of those overlapped with the LIR-
motifs. In several cases, Indirect, Predicted and Curated data provided by MobiDB can be
conflicting. One such case is depicted in Figure 12. The flowchart in Figure 13 provides a
graphical representation of the algorithm.

To assess the level of disorderliness of each LIR motif, the percentage of disorder was
calculated based on the frequency of ‘D’ characters in the output string. Sensitivity,
specificity, accuracy, balanced accuracy (Baldi et al. 2000) and F1-score (Lipton et al. 2014),
were calculated on the set of 96 LIR motifs (verified and unverified) and at 6 incremental

cutoffs of 16% (1 residue), 33% (2 residues), 50% (3 residues), 66% (4 residues), 83% (5
residues) and 100% (6 residues) (Table 7) .

Figure 12. Calculation of disorder in Calreticulin LIR-motif DDWDFL at positions 198-203.

The leftmost schematic shows the disorder string (dSTR) using MobiDB’s Indirect regions (structural data)
and the rightmost the dSTR obtained from curated data, with the predicted one in between. This particular
example makes apparent how difficult it is to come to a conclusion when dSTRs among the various types of
data are contradictory. The ‘C’ characters in the curated dSTR denote conflict.

IO
ANNA KALV

ARI

 41

Figure 13. The flowchart of the dizscan algorithm.

The above flowchart is a graphical representation of the dizscan algorithm described in detailed herein. For
the generation of the flowchart we used draw.io software (https://www.draw.io)

IO
ANNA KALV

ARI

 42

3.2.2.2 Calculating MobiDB consensus disorder

Alongside MobiDB’s consensus data, we devised another script called
consensus_disorder_calculator (see supplement 7.2), which combines all computed dSTRs
regardless of their data type origin (predicted, indirect, curated). This is somewhat a “binary”
calculator meaning that each residue position can only be assigned one of Disorder (‘D’) or
Structured (‘S’) tags, while the initial ‘?’ characters are being ignored.

Visualise a multiple sequence alignment of all dSTRs, the idea is to identify between the
maximum count of Ds and Ss in each column and assign that as the final indicator of structure
or disorder for that specific position. For that purpose, the algorithm starts by loading all
dSTRs in a unified structure - a hash - mapping all LIR accessions to their corresponding list
of pre-calculated dSTRs. The next step is to take each individual LIR accession and construct
temporary hashes, with key-value pairs that will serve as counters for the ‘D’ and ‘S’
characters. For instance, the residue positions 336-341 of the LIR sequence of
SQSTM_HUMAN would be the keys, each of which is associated with a nested “binary”
hash keeping record of the occurrence of Ds and Ss, each initially set to zero: 0.

The two final steps include the generation of the consensus dSTR (cdSTR) and the
computation of the disorder percentage (Figure 14). Having computed the counts of Ds and
Ss in each column, the one with the highest value (majority rule) is appointed as the disorder
status in that column. The procedure continues until all columns have been evaluated
resulting to the final consensus disorder string (cdSTR). Ties are resolved in a conservative
fashion making a decision in favour of ordered structure (‘S’). This also compensates our
previous greediness towards favouring disorder during the construction of dSTRs. Finally,
the percentage of disorder is calculated based on the frequency of ‘D’ characters in the
cdSTR exactly as described in the previous section.
 IO

ANNA KALV
ARI

 43

Figure 14. Construction of the consensus disorder string (cdSTR) of the LIR-motif of Optineurin.

In this particular case the consensus disorder string derived from two types of data: Indirect/structural and
Predicted. Once again ‘D’ denotes disorder and ‘S’ structure, whereas ‘C’ is used by MobiDB to represent
conflicts among resources or methods and are handled as missing data (‘?’). A multiple sequence alignment of
the precalculated dSTRs shows variability in each column. The final cdSTR is the majority vote between ‘D’
and ‘S’ states, ignoring missing information. Under this scheme, optineurin cdSTR appears to have two
disordered residues at positions 176 and 179, while the rest of the peptide is structured.

As another “consensus-like” but less radical approach, was the selection of the dSTR with
the highest disorder. This was achieved by applying a rather rudimentary method which
consisted of grouping together all dSTRs belonging to a specific LIR-motif and selecting the
one with the maximum disorder percentage (MAX(all)). The findings of the aforementioned
methods are juxtaposed (Table 7) and thoroughly analysed in the following sections.

IO
ANNA KALV

ARI

 44

3.2.2.3 Incorporating IUPred2A/Anchor2 disorder predictions

In conjunction with MobiDB consensus disorder data, we scanned our datasets for intrinsic
disorder regions using IUPred2A, an intrinsic disorder predictor which identifies disorder in
proteins using an energy estimation approach to calculate the interaction potential of amino
acids, by capturing the physicochemical properties of IDPs (Mészáros et al. 2018).

IUPred2A predictions of disordered regions were generated for all 52 proteins listed in Table

7, and disorder overlaps were identified with a new explicitly developed python script (2.7)
called anchor2_scanner. Prior to scanning, disordered regions were determined in all
proteins using the command line version of IUPred2A (https://iupred2a.elte.hu). The output

files were then supplied as input to anchor2_scanner (see supplement 7.3).

The algorithm works in a similar manner as dizscan - making use of has structures - but the
scanning process is significantly simpler as there only can be one match for each LIR-motif,
whereas the case of MobiDB - dealing with regions from multiple resources - was slightly
more challenging.

Here, a residue belonging to a LIR-motif is tagged as disordered (‘D’) if its IUPred2A score
is ≥ 0.5, otherwise the residue is considered to be structured (‘S’). anchor2_scanner follows
the same notion as dizscan constructing a dSTR with the final disorder percentage calculated
according to the frequency of ‘D’ and ’S’ characters in the string. In addition to IUPred2A
default score (0.5) disorder was also computed, capturing disorder at lower values of 0.2-
0.4. Performance metrics were once again calculated for the 6 different thresholds of 16%,
33%, 50%, 66%, 83% and 100% disorder. Disorder binding regions were computed using
the --anchor2 option, while --iupred2 option - as the name suggests - scans for

disorder regions in general.

3.2.2.4 Annotating LIR-motifs with disorder using SPOT-disorder

Since MobiDB predicted data also incorporate predictions from IUPRED (Mészáros et al.
2018), we wanted to compare our results to a completely independent tool. For that reason

we turned to a newly published disorder prediction tool SPOT-disorder (Hanson et al. 2017)
that employs contemporary methods, deep bidirectional long short-term memory recurrent
neural networks. In their paper Hanson J et al. (Hanson et al. 2017) showcase that their

IO
ANNA KALV

ARI

 45

algorithm supersedes all other methods compared in their benchmark, including those
comprised in MobiDB.

To evaluate the performance of this method on our dataset, we searched our 52 proteins for
disorder regions using SPOT-disorder webserver (Hanson et al. 2017) and processed the

output in a similar manner as the previous methods with the notation followed by SPOT-
disorder (see supplement 7.4). Similarly, SPOT-disorder marks any disordered residues with
‘D’ characters but uses ‘O’ for order instead of ‘S’ for structure.

3.2.2.5 Quality assessment of the predictions

To evaluate the performance of our disorder prediction strategies and in order for the results

to be comparable to what discussed in (Kalvari et al. 2014), we followed an analogous
approach by calculating the numbers of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), examining disorder at six incremental levels of 16%
(1 residue), 33% (2 residues), 50% (3 residues), 66% (4 residues), 83% (5 residues) and
100% (6 residues) disorder. In particular, to evaluate the effectiveness of X% disorder in a
given sequence, a LIR-motif supported by experimental validation is considered a true
positive (TP) if its dSTR disorder percentage is ≥ X%. In the same setting a LIR-motif is
classified as TN if there is no experimental evidence in the literature and the disorder level
is below X%. In a similar manner, we consider as a FP a LIR-motif with no experimental
evidence and disorder of X% or higher and as FN we label the verified LIRs with predicted
disorder lower than X%.

With respect to the preceding assumptions and in accordance with the work presented in the
previous chapter, we evaluated our methods using the same metrics in addition to the
following 2 metrics:

+5"1%$%<# = 	 *+
*+ + -+

-1 − $1<5" = 	 2*+
2*+ + -+ + -.

IO
ANNA KALV

ARI

 46

3.4 Results

Disorder data retrieved from MobiDB were programmatically examined for overlaps with
the 96 LIR-motifs listed in Table 3 (see code supplement 7.2). Disorder was computed using
the start-end positions of each LIR-motif. To assess the power of the various predictive
methods we evaluated the level of disorder at meaningful thresholds reflecting disorder at
residue scale. For instance, a LIR-motif with 1 disordered residue corresponds to 16%
disorder, 2 disordered residues to 33% disorder and so forth up to a 100% disorder indicating
a completely disordered peptide. Along these lines, values for each of the quality assessment
metrics were generated at 16%, 33%, 50%, 66%, 83% and 100% disorder by utilizing the
information encapsulated in the dSTRs and cdSTRs for the consensus scheme. The findings

of our different strategies are discussed below.

 MOTIF

Uniprot Id UniProt
Accession Sequence Position Verified cLIR xLIR Anchor2 PSSM score

(e-value) cdSTR Disorder
percentage (%)

Alemu et al. (Alemu et al. 2012)
ATG13_HUMAN O75143 EGFQTV 166-171 0 0 1 0 11 (1.5E-01) SSSSSS 0

 O75143 DDFVMI 442-447 1 1 1 1 20 (8.4E-03) DDDDDD 100
Atg19_YEAST P35193 LTWEEL 410-415 1 0 1 0 18 (1.6E-02) DDSSSS 33
Atg1_YEAST P53104 REYVVV 427-432 1 0 1 1 14 (5.7E-02) DDDDDD 100

Atg32_YEAST P40458 GSWQAI 84-89 1 0 1 1 17 (2.2E-02) DSSSSS 16
 P40458 KEYQSL 235-240 0 0 1 0 12 (1.1E-01) SSSSSS 0
 P40458 LGYILL 524-529 0 0 1 0 10 (2.0E-01) DDSSDD 66

Atg3_YEAST P40344 GDWEDL 268-273 1 0 1 0 22 (4.4E-03) SSSDDD 50
ATG4B_HUMAN Q9Y4P1 LTYDTL 6-11 1 0 1 0 12 (1.1E-01) DDSSSS 33

 Q9Y4P1 PMFELV 347-352 0 0 1 0 10 (2.0E-01) SSSSSS 0
 Q9Y4P1 EDFEIL 386-391 1 1 1 0 17 (2.2E-02) DDSSSS 33

BNI3L_HUMAN O60238 SSWVEL 34-39 1 0 1 1 20 (8.4E-03) DDDDDD 100
 O60238 AEFLKV 183-188 0 0 1 0 10 (2.0E-01) SSSSSS 0

CALR_HUMAN P27797 GGYVKL 107-112 0 0 1 0 12 (1.1E-01) CCCCCC 0
 P27797 DEFTHL 166-171 0 0 1 0 14 (5.7E-02) CCCCCC 0
 P27797 DDWDFL 198-203 1 1 1 1 26 (1.2E-03) CCCCCC 0

CBL_HUMAN P22681 DTYQHL 90-95 0 0 1 0 14 (5.7E-02) SSSSSS 0
 P22681 LTYDEV 272-277 0 0 1 0 11 (1.5E-01) SSSSSS 0
 P22681 FGWLSL 800-805 1 0 1 1 18 (1.6E-02) DDDDDD 100
 P22681 REFVSI 893-898 0 0 1 1 13 (7.9E-02) SSSSSS 0

CLH1_HUMAN Q00610 PDWIFL 512-517 1 0 1 0 22 (4.4E-03) SSSSSS 0
 Q00610 GMFTEL 1315-1320 0 0 1 0 11 (1.5E-01) SSSSSS 0
 Q00610 EDYQAL 1475-1480 0 0 1 0 16 (3.0E-02) SSSSSS 0

DVL2_HUMAN O14641 RMWLKI 442-447 1 0 1 0 18 (1.6E-02) SSSSSS 0
FUND1_HUMAN Q8IVP5 DSYEVL 16-21 1 1 1 0 16 (3.0E-02) SSSSSS 0

 Q8IVP5 GGFLLL 81-86 0 0 1 0 10 (2.0E-01) SSSSSS 0
FYCO1_HUMAN Q9BQS8 ADYQAL 644-649 0 0 1 1 15 (4.2E-02) DDDDDD 100

 Q9BQS8 AVFDII 1278-1283 1 0 1 1 8 (3.9E-01) SSSSSS 0
NBR1_HUMAN Q14596 LSFELL 561-566 0 0 1 1 10 (2.0E-01) SSSSSS 0

 Q14596 EDYIII 730-735 1 1 1 1 17 (2.2E-02) DDSSSS 33
OPTN_HUMAN Q96CV9 DSFVEI 176-181 1 1 1 1 15 (4.2E-02) DSSSSS 16

Q8MQJ7_DROME Q8MQJ7 ADYLSV 96-101 0 0 1 0 14 (5.7E-02) SSSSSS 0
 Q8MQJ7 DDFVLV 389-394 1 1 1 1 17 (2.2E-02) DDDDDD 100

IO
ANNA KALV

ARI

 47

Q9SB64_ARATH Q9SB64 RVWVLI 479-484 0 0 1 0 15 (4.2E-02) SSSSSS 0
 Q9SB64 SEWDPI 659-664 1 0 1 0 20 (8.4E-03) SSSSSS 0
RBCC1_HUMAN Q8TDY2 FDFETI 700-705 1 0 1 1 17 (2.2E-02) DDDDDD 100
SQSTM_HUMAN Q13501 DDWTHL 336-341 1 0 1 1 24 (2.3E-03) DDDDDD 100
STBD1_HUMAN O95210 EEWEMV 201-206 1 1 1 0 21 (6.1E-03) DDDDDD 100
T53I1_HUMAN Q96A56 DEWILV 29-34 1 1 1 1 20 (8.4E-03) DDDDDD 100
T53I2_HUMAN Q8IXH6 DGWLII 33-38 1 0 1 1 21 (6.1E-03) DDDDDD 100

TBC25_HUMAN Q3MII6 EVYLSL 95-100 0 0 1 0 8 (3.9E-01) SSSSSS 0
 Q3MII6 EDWDII 134-139 1 1 1 0 24 (2.3E-03) DDDDDD 100
TBCD5_HUMAN Q92609 KEWEEL 57-62 1 0 1 0 20 (8.4E-03) SSSSSS 0

 Q92609 DDFILI 713-718 0 1 1 1 17 (2.2E-02) DDDDDD 100
 Q92609 SGFTIV 785-790 1 0 1 1 11 (1.5E-01) DDDDDD 100

ULK1_HUMAN O75385 DDFVMV 355-360 1 1 1 1 19 (1.2E-02) DDDDDD 100
ULK2_HUMAN Q8IYT8 DDFVLV 351-356 1 1 1 1 17 (2.2E-02) DDDDDD 100

Birgisdottir et al. (Birgisdottir et al. 2013)
ATG34_YEAST Q12292 KVYEKL 194-199 0 0 1 0 8 (3.9E-01) SSSSSS 0

 Q12292 FTWEEI 407-412 1 0 1 0 20 (8.4E-03) DDDDDD 100
BNIP3_HUMAN Q12983 GSWVEL 16-21 1 0 1 1 19 (1.2E-02) DDDDDD 100

 Q12983 AEFLKV 159-164 0 0 1 0 10 (2.0E-01) DDDDDD 100
C0H519_PLAF7 C0H519 NDWLLP 103-108 1 0 0 0 12 (1.2E-02) SSSSSS 0

CACO2_HUMAN Q13137 FMWVTL 72-77 0 0 1 0 20 (8.4E-03) SSSSSS 0
 Q13137 DILVV 132-136 1 0 0 0 0 (0) SSSSSS 0
CTNB1_HUMAN P35222 SHWPLI 502-507 1 0 0 0 11 (1.5E-01) SSSSSS 0
MK15_HUMAN Q8TD08 RVYQMI 338-343 1 0 1 1 10 (2.0E-01) DDDDDD 100

TAXB1_HUMAN Q86VP1 DMLVV 139-143 1 0 0 0 0 (0) DDDDDD 100
 Q86VP1 ADFDIV 514-519 0 0 1 1 15 (4.2E-02) DDDDDD 100

Behrends et al. (Behrends et al. 2010)
A16L1_HUMAN Q676U5 DEYDAL 164-169 0 1 1 1 16 (3.0E-02) DDDDSS 66
ATG2A_HUMAN Q2TAZ0 PEYTEI 534-539 0 0 1 0 13 (7.9E-02) DDDSDD 83
 Q2TAZ0 EVYESI 828-833 0 0 1 0 9 (2.8E-01) SSSSSS 0
 Q2TAZ0 LEFLDV 1090-1095 0 0 1 0 9 (2.8E-01) SSSSSS 0

ATG7_HUMAN O95352 SSFQSV 258-263 0 0 1 0 10 (2.0E-01) SSSSSS 0
DYXC1_HUMAN Q8WXU2 AVFLSL 16-21 0 0 1 0 6 (7.4E-01) SSSDDD 50
 Q8WXU2 AMWETL 81-86 0 0 1 0 19 (1.2E-02) SSSSSS 0

ECHA_HUMAN P40939 AVFEDL 447-452 0 0 1 0 7 (5.3E-01) SSSSSS 0
FAN_HUMAN Q92636 ESFEDL 600-605 0 1 1 0 12 (1.1E-01) DDDDDD 100

 Q92636 LVWDLL 869-874 0 0 1 0 13 (7.9E-02) SSSSSS 0
IPO5_HUMAN O00410 ETYENI 31-36 0 1 0 0 11 (1.5E-01) DDDDDD 100

 O00410 DGWEFV 655-660 0 0 1 0 21 (6.1E-03) DDDDDD 100
 O00410 LSWLPL 997-1002 0 0 1 0 16 (3.0E-02) SSSSSS 0

KAP0_HUMAN P10644 EEFVEV 310-315 0 1 1 0 13 (7.9E-02) SSSSSS 0
KBTB6_HUMAN Q86V97 ESFEVL 120-125 0 1 1 0 13 (7.9E-02) SSSSSS 0
KBTB7_HUMAN Q8WVZ9 ESFEVL 120-125 0 1 1 0 13 (7.9E-02) SSSSSS 0
NCOA7_HUMAN Q8NI08 AEYDKL 185-190 0 0 1 0 13 (7.9E-02) DDDDDD 100
 Q8NI08 GEWEDL 308-313 0 0 1 0 19 (1.2E-02) DDDDDD 100
 Q8NI08 DDFVDL 414-419 0 1 1 1 18 (1.6E-02) DDDDDD 100
 Q8NI08 KSWEII 745-750 0 0 1 0 19 (1.2E-02) DDDDDD 100
NEDD4_HUMAN P46934 SEYIKL 410-415 0 0 1 0 13 (7.9E-02) DDDDDD 100
 P46934 PGWVVL 589-594 0 0 1 1 19 (1.2E-02) DDDDDD 100
 P46934 ESFEEL 1296-1301 0 1 1 0 13 (7.9E-02) SSSSSS 0

SF3A1_HUMAN Q15459 PEFEFI 148-153 0 0 1 0 13 (7.9E-02) DDDDDD 100
STK3_HUMAN Q13188 EVFDVL 25-30 0 0 1 0 9 (2.8E-01) SSSSSS 0

 Q13188 GDFDFL 435-440 0 0 1 1 16 (3.0E-02) DSSSSS 16
STK4_HUMAN Q13043 EVFDVL 28-33 0 0 1 0 9 (2.8E-01) SSSSSS 0

 Q13043 GDYEFL 431-436 0 0 1 1 17 (2.2E-02) SSSSSS 0
TBC15_HUMAN Q8TC07 AEWDMV 96-101 0 0 1 0 20 (8.4E-03) DDDDDD 100

 Q8TC07 PGFEVI 295-300 0 0 1 0 12 (1.1E-01) DDDSSS 50
 Q8TC07 FSFLDI 540-545 0 0 1 0 11 (1.5E-01) SSSSSS 0
TBD2B_HUMAN Q9UPU7 EEWELL 252-257 0 1 1 1 20 (8.4E-03) DDDDDD 100
TCPR2_HUMAN O15040 GDYIAV 45-50 0 0 1 0 14 (5.7E-02) SSSSSS 0

IO
ANNA KALV

ARI

 48

 O15040 AVFQLV 102-107 0 0 1 0 5 (1.0E-00) SSSDDD 50
 O15040 AVFVAL 894-899 0 0 1 0 7 (5.3E-01) SSSSSS 0
 O15040 DEWEVI 1406-1411 1 1 1 0 23 (3.2E-03) DDDDDD 100

UBA5_HUMAN Q9GZZ9 SDYEKI 66-71 0 0 1 0 17 (2.2E-02) DDSSSS 33
 Q9GZZ9 FDYDKV 103-108 0 0 1 0 16 (3.0E-02) SSSSSS 0

Table 7. A collection of 52 proteins with their experimentally validated LIR-motifs.

Disorder percentage is calculated based on occurrence of ‘D’ characters in cdSTRs. Verified column indicates
whether a LIR-motif is functional (verified=1) or non-functional (verified=0), which is a result of literature
curation. The values in columns xLIR and Anchor2 indicate whether a LIR-motif is discoverable (value=1) by
the tool or not (value=0). PSSM scores and e-values were computed using iLIR webserver (Kalvari et al. 2014).

3.4.1 In seek of the optimal predictive method and disorder threshold

This section focuses solely on consensus disorder data retrieved from MobiDB v.3.0.0 and
aims at determining the method that best fits our data. We hereby examine the potential of
the three methods MobiDB-simple, Consensus, MAX(all) and disorder being used as another
variable in the equation towards discriminating genuine LIR-motifs.

MobiDB makes available two consensus predicted schemes by default, mobidb-lite and
simple. Although the two methods aggregate predicted data from the exact same tools and
in similar fashion, each approach captures disorder by employing different thresholds and
strategies. For instance, mobidb-simple is less stringent by allowing a residue to be appointed
as disordered (‘D’) if only half of the tools are agreement (>=50%), whereas mobidb-lite is

slightly more strict requiring that at least 6 out of 8 tools moving the bar to 75% and up
(Damiano Piovesan, personal communication). On top of that mobidb-lite also includes a
post-processing step which filters out short regions, therefore further investigation was
required to choose the best for our dataset.

With respect to our samples, mobidb-lite lacked information for a small number of LIR-
motifs, possibly due to its filtering of short regions. One-on-one comparison to mobidb-
simple revealed a rather fixed nature when alternating between thresholds. Meaning that
mobidb-lite reached a Balanced Accuracy of about 55% with a very low F1 score of 0.23
(0.27 at max) and did not deviate much from those values. This outcome was also the worst
amongst all methods and therefore excluded from further analysis.

The predictive power of the remaining three methods MobiDB-simple, consensus disorder
and Max(all) was evaluated at six distinct thresholds of 16%, 33%, 50%, 66%, 83% and

IO
ANNA KALV

ARI

 49

100% disorder encapsulated in disorder strings (dSTRs) and consensus dSTRs (cdSTRs).
The results are depicted in Table 8.

From balanced accuracy and F1-scores it is evident that MobiDB-simple outperforms the
two other methods at all different thresholds, reaching a peak of about 74% Balanced

Accuracy (BACC) and an F1-score of 0.68 at 100% disorder. With respect to the other
metrics, we observe an oscillation between the leading method at different thresholds. For
example, the consensus method prevails over the other two at the lowest threshold (16%) in
terms of specificity, precision as well as Accuracy, and MAX(all) in terms of sensitivity.
However, MobiDB-simple persists in achieving the highest BACC add F1 values. Balanced
accuracy and F1-score are metrics that balance precision and recall given an uneven set,
therefore deemed to be more representative of our dataset and will be used extensively to
compare different predictive schemes in the following.

Once we selected MobiDB-simple as the utmost method for disorder prediction in LIR-
motifs, the next step was the in-depth exploration of False Positive and False Negative
predictions, going through each case one by one (Table 9). From these results it becomes
apparent that MobiDB-derived data cannot yield a perfect discrimination between functional
and non-functional LIRs – at least not as a sole parameter. For instance, MobiDB-simple
annotates all non-functional LIRs with a 100% disorder, which under the assumption that a
completely disordered peptide is also a functional LIR, falsely classify those as such. Thus,
additional parameters (or other proxies to the disorderliness of LIR-motifs) need to be taken
into consideration when searching for genuine LIR-motifs.

IO
ANNA KALV

ARI

 50

1+ residues 2+ residues 3+ residues 4+ residues 5+ residues 6 residues
Disorder >= 16% Disorder >= 33% Disorder >= 50% Disorder >= 66% Disorder >= 83% Disorder 100%

MAX(all) MobiDB
simple Consensus MAX(all) MobiDB

simple Consensus MAX(all) MobiDB
simple Consensus MAX(all) MobiDB

simple Consensus MAX(all) MobiDB
simple Consensus MAX(all) MobiDB

simple Consensus
TP 35 30 26 35 30 24 33 30 20 29 30 19 18 29 19 13 29 19
TN 11 32 36 15 32 37 21 33 38 29 36 41 40 38 43 46 40 44
FP 49 28 24 45 28 23 39 27 22 31 24 19 20 22 17 14 20 16
FN 1 6 10 1 6 12 3 6 16 7 6 17 18 7 17 23 7 17

Sensitivity
(%) 97.22 83.33 72.22 97.22 83.33 66.67 91.67 83.33 55.56 80.56 83.33 52.78 50.00 80.56 52.78 36.11 80.56 52.78

Specificity
(%) 18.33 53.33 60.00 25.00 53.33 61.67 35.00 55.00 63.33 48.33 60.00 68.33 66.67 63.33 71.67 76.67 66.67 73.33

Precision
(%) 41.67 51.72 52.00 43.75 51.72 51.06 45.83 52.63 47.62 48.33 55.56 50.00 47.37 56.86 52.78 48.15 59.18 54.29

Accuracy
(%) 47.92 64.58 64.58 52.08 64.58 63.54 56.25 65.63 60.42 60.42 68.75 62.50 60.42 69.79 64.58 61.46 71.88 65.63

Balanced
Accuracy

(%)
57.78 68.33 66.11 61.11 68.33 64.17 63.33 69.17 59.44 64.44 71.67 60.56 58.33 71.94 62.22 56.39 73.61 63.06

F1 - score 0.58 0.64 0.60 0.60 0.64 0.58 0.61 0.65 0.51 0.60 0.67 0.51 0.49 0.67 0.53 0.41 0.68 0.54

Table 8. Disorder results as computed from MobiDB 3.0.0 data.

The three algorithms described in methods were tested for their predictive power on the collection of verified and non-verified LIR-motifs of Alemu et al (Alemu et al. 2012) as
illustrated in Table 7. Evaluation was carried out based on six metrics: Sensitivity, Specificity, Precision, Accuracy (ACC), Balanced Accuracy (BACC) and F1-score with the top
score for each metric represented in bold.

IO
ANNA KALV

ARI

 51

UniProt id Sequence Positions Verified PSSM
(e-value) xLIR dSTR cdSTR

False Positives
BNIP3_HUMAN AEFLKV 159-164 0 10 (2.0E-01) 1 DDDDDD DDDDDD
CALR_HUMAN GGYVKL 107-112 0 12 (1.1E-01) 1 DDDDDD CCCCCC
FAN_HUMAN ESFEDL 600-605 0 12 (1.1E-01) 1 DDDDDD DDDDDD

FYCO1_HUMAN ADYQAL 644-649 0 15 (4.2E-02) 1 DDDDDD DDDDDD
IPO5_HUMAN ETYENI 31-36 0 11 (1.5E-01) 0 DDDDDD DDDDDD
IPO5_HUMAN DGWEFV 655-660 0 21 (6.1E-03) 1 DDDDDD DDDDDD
KAP0_HUMAN EEFVEV 310-315 0 13 (7.9E-02) 1 DDDDDD SSSSSS

NCOA7_HUMAN AEYDKL 185-190 0 13 (7.9E-02) 1 DDDDDD DDDDDD
NCOA7_HUMAN GEWEDL 308-313 0 19 (1.2E-02) 1 DDDDDD DDDDDD
NCOA7_HUMAN DDFVDL 414-419 0 18 (1.6E-02) 1 DDDDDD DDDDDD
NCOA7_HUMAN KSWEII 745-750 0 19 (1.2E-02) 1 DDDDDD DDDDDD
NEDD4_HUMAN SEYIKL 410-415 0 13 (7.9E-02) 1 DDDDDD DDDDDD
NEDD4_HUMAN PGWVVL 589-594 0 19 (1.2E-02) 1 DDDDDD DDDDDD
SF3A1_HUMAN PEFEFI 148-153 0 13 (7.9E-02) 1 DDDDDD DDDDDD
STK3_HUMAN EVFDVL 25-30 0 9 (2.8E-01) 1 DDDDDD SSSSSS
STK3_HUMAN GDFDFL 435-440 0 16 (3.0E-02) 1 DDDDDD DSSSSS

TAXB1_HUMAN ADFDIV 514-519 0 15 (4.2E-02) 1 DDDDDD DDDDDD
TBC15_HUMAN AEWDMV 96-101 0 20 (8.4E-03) 1 DDDDDD DDDDDD
TBCD5_HUMAN DDFILI 713-718 0 17 (2.2E-02) 1 DDDDDD DDDDDD
TBD2B_HUMAN EEWELL 252-257 0 20 (8.4E-03) 1 DDDDDD DDDDDD

False Negatives
CACO2_HUMAN DILVV 132-136 1 N/A 0 ????? SSSSSS
CLH1_HUMAN PDWIFL 512-517 1 22 (4.4E-03) 1 ?????? SSSSSS

CTNB1_HUMAN SHWPLI 502-507 1 11 (1.5E-01) 0 ?????? SSSSSS
DVL2_HUMAN RMWLKI 442-447 1 18 (1.6E-02) 1 ?????? SSSSSS

FUND1_HUMAN DSYEVL 16-21 1 16 (3.0E-02) 1 DDDD?? SSSSSS
Q9SB64_ARATH SEWDPI 659-664 1 20 (8.4E-03) 1 ?????? SSSSSS
TBCD5_HUMAN KEWEEL 57-62 1 20 (8.4E-03) 1 ?????? SSSSSS

Table 9. Classification of LIR-motifs using disorder data from MobiDB.

List of LIR-motifs that were falsely categorized as functional LIRs (False Positives) or falsely predicted as

non-functional (False Negatives).

With respect to False Negatives what can be observed is that almost all dSTRs are in their

initial state ‘??????’ at 0% disorder, apart from the dSTR of FUND1_HUMAN LIR-motif

(DSYEVL) at 66% disorder (DDDD??). This is due to the stringent disorder filter of 100%

that we apply, but based on the results in Table 8, a lower threshold of 66% disorder (4+

residues) would have come with the expense of additional False positives.

IO
ANNA KALV

ARI

 52

3.4.2 Assessing the power of MobiDB over IUPRED2A and SPOT-disorder

MobiDB (Piovesan et al. 2018) is a composite database combining disorder proteomic data

and mobility annotations from a wide range of resources including IUPred. In the previous

section we explored the predictive power of MobiDB-simple based on a set of metrics which

we computed at different thresholds. In this segment, we analyse its potential in opposition

to stand alone methods: the newest IUPred, namely IUPred2A (Mészáros et al. 2018) and a

newly published tool called SPOT-disorder (Hanson et al. 2017). To evaluate the

performance of each tool, we tested their ability to correctly distinguish the genuine LIRs

out of the collection of 96 LIRs listed in Table 7.

In opposition to ModiDB-simple and SPOT-disorder (used with their default options),

IUPRED2A was examined more thoroughly by experimenting with several other scores

beyond the default value of 0.5 suggested by its authors. This process revealed that a score

of 0.3 is perhaps more suitable for our dataset and was the one selected for further analysis.

We hereby evaluate the strength of each method based on the six selected thresholds of 16%,

33%, 50%, 66%, 83% and 100% disorder for all aforementioned metrics. The performance

of the three methods are juxtaposed in Table 10.

IO
ANNA KALV

ARI

 53

Metrics

1+ residues 2+ residues 3+ residues 4+ residues 5+ residues 6 residues

Disorder >= 16 Disorder >= 33 Disorder >=50 Disorder >= 66 Disorder >= 83 Disorder 100

IUPRED2A
(0.3) SPOT IUPRED2A

(0.3) SPOT IUPRED2A
(0.3) SPOT IUPRED2A

(0.3) SPOT IUPRED2A
(0.3) SPOT IUPRED2A

(0.3) SPOT MobiDB
simple

TP 31 17 29 15 29 13 27 13 26 12 24 12 29
TN 35 46 36 46 38 47 38 48 42 50 42 51 40
FP 25 14 24 14 22 13 22 12 18 10 18 9 20
FN 5 19 7 21 7 23 9 23 10 24 12 24 7

Sensitivity
(%) 86.11 47.22 80.56 41.67 80.56 36.11 75.00 36.11 72.22 33.33 66.67 33.33 80.56

Specificity
(%) 58.33 76.67 60.00 76.67 63.33 78.33 63.33 80.00 70.00 83.33 70.00 85.00 66.67

Precision (%) 55.36 54.84 54.72 51.72 56.86 50.00 55.10 52.00 59.09 54.55 57.14 57.14 59.18

Accuracy (%) 68.75 65.63 67.71 63.54 69.79 62.50 67.71 63.54 70.83 64.58 68.75 65.63 71.88

Balanced
Accuracy (%) 72.22 61.94 70.28 59.17 71.94 57.22 69.17 58.06 71.11 58.33 68.33 59.17 73.61

F1-score 0.67 0.51 0.65 0.46 0.67 0.42 0.64 0.43 0.65 0.41 0.62 0.42 0.68

Table 10. Comparison of IUPRED2A, SPOT and MobiDB.
Performance of MobiDB-simple, IUPRED2A and SPOT-disorder as calculated on the 96 LIR-motifs presented in Table 7. Assessment is conducted based on six incremental
thresholds 16%, 33%, 50%, 66%, 83% and 100% disorder with optimum values in each test case represented in bold. IO

ANNA KALV
ARI

 54

Giving emphasis to Balanced accuracy and F1-scores one can notice that IUPRED2A0.3
outperforms MobiDB-simple almost at all disorder thresholds apart from the case of
complete disorder (100%). That is where MobiDB-simple is once again the best method with
a 74% BACC and a 0.68 F1-score. The difference between IUPRED2A and MobiDB-simple
is very small with a 72% BACC/0.67 F1-score and a 68% BACC/0.64 F1-score respectively.
SPOT appears to be the weakest with a BACC of only 62% and an F1-score of 0.51
calculated at 16% disorder, which continues to gradually downdrift as the level of disorder
increases and consequently thrown out of competition.

With respect to the other four metrics SPOT does not fall far behind IUPRED2A0.3, but a
very interesting observation is that IUPRED2A0.3 is more sensitive, whereas SPOT is more
specific and this trend persists at all thresholds.

Coming back to IUPRED2A and MobiDB-simple, one can confidently accept MobiDB-
simple as the optimal method overtaking all other methods at all tested thresholds. However,
since the difference between the two is not large, we re-assess both for their contribution in
a multi-scheme predictor in the sections that follow.

3.4.3 Scrutinizing the potential of disorder binding regions in the

determination of genuine LIRs

In 2014, driven by the observation that proteins involved in autophagy are highly abundant
in intrinsically disordered regions (Mei et al. 2014), we investigated the possibility of LIR-
motifs undergoing a disorder to order conformational change upon binding to Atg8
homologs. For that purpose, we used the ANCHOR software (Meireles et al. 2010) to search
for such regions in our collection of proteins. A residue with score over 0.5 (by default) was
considered to belong to a disorder binding region with motif classified as such if the
constraint that at least 66% of LIR-motif being disordered was met (4 out of 6 residues).

With the release of the new IUPred2A software (Mészáros et al. 2018) a new revised version
of the ANCHOR tool became available referred to as ANCHOR2. According to Meszaros
et al., ANCHOR2 underwent major revision which lead to better results. This current version
has been modified to take into account interactions with globular domains as well as local
disorder sequence environment and was re-trained using a new dataset from DIBS database
(Schad et al. 2018). From their findings it is evident that ANCHOR2 outperforms its

IO
ANNA KALV

ARI

 55

predecessor in all tested scenarios and for that reason we herein assess its power on our
dataset. For this purpose, new anchors were generated for all 52 proteins with LIR-motifs
that are listed in Table 7. We also went a step further by testing disorder prediction at lower
scores to investigate whether an alternative could fit our dataset better than the default. We
examined three alternative thresholds for ANCHOR2 scores in addition to the default 0.5
used by IUPRED2A 0.2, 0.3 and 0.4, and which pinpointed 0.3 as another candidate for
annotating LIR-motif residues with anchors.

In order to determine the optimum anchor score for our dataset, the two anchor schemes
were assessed for their predictive strength in combination with other parameters such us the
characterisation of LIR-motifs by xLIR (xLIR=1) and its corresponding PSSM score. Our
findings showed that anchor predictions with the default score of 0.5 (Anchor20.5) was more
efficient, reaching a Balanced Accuracy of 78% and an F1-score of 0.85 as opposed to a
72% BACC and 0.83 F1 achieved with anchor score of 0.3 (Anchor20.3). Consequently
Anchor20.5 was selected to further compare its efficacy to its former version as contributor
to the multi-scheme predictors. The results are depicted in Table 11.

 xLIR xLIR + A xLIR + A2 xLIR + A + P13 xLIR + A2 + P13 xLIR + A | P13 xLIR + A2 | P13

TP 27 17 12 15 11 26 26
TN 0 16 18 18 18 11 11
FP 20 4 1 2 1 9 8
FN 0 10 16 12 17 1 2

Sensitivity
(%) 100.00 62.96 42.86 55.56 39.29 96.30 92.86

Specificity
(%) 0.00 80.00 94.74 90.00 94.74 55.00 57.89

Precision
(%) 57.45 80.95 92.31 88.24 91.67 74.29 76.47

Accuracy
(%) 57.45 70.21 63.83 70.21 61.70 78.72 78.72

Balanced
Accuracy

(%)
50.00 71.48 68.80 72.78 67.01 75.65 75.38

F1-score
(%) 0.73 0.71 0.59 0.68 0.55 0.84 0.84

Table 11. Comparing the efficacy of ANCHOR and ANCHOR2 on different predictive schemes.

In order for the results to be comparable to those in Table 3 of the iLIR paper (Kalvari et al.
2014) both versions were reassessed on the subset of proteins introduced by Alemu et al, but
using the same schemes we studied before. ANCHOR appears to supersede ANCHOR2 in
terms of accuracy (ACC), balanced accuracy (BACC) and F1-score in all schemes although
in the case of xLIR+AX|P13, the difference in balanced accuracy in only marginal and both
versions of the tool give an F1 score of 0.84. One can argue that since the old version of

IO
ANNA KALV

ARI

 56

ANCHOR seems to be better than its successor, that updating to the new version would not
come with a positive outcome, however both of the tools give an F1 score of 0.84. If we are
to compare the two data-wise, the difference is only an additional FN for ANCHOR2 at the
expense of a single FP. Since ANCHOR2 is the latest version and the one that is most likely
to be maintained for the foreseeable future, it is also the one we will be including in any
further analysis.

3.4.4 Assessing the efficacy of multi-scheme predictors

In our previous work we showed that combining different metrics resulted in more powerful
LIR prediction schemes. Supporting evidence is the inclusion of anchors and PSSMs as an
enhancing means for discriminating genuine LIR-motifs reaching a maximum of 75.7%
BACC (Table 5 (Kalvari et al. 2014)). With the refinement of ANCHOR (ANCHOR2),
xLIR+A2|P13 BACC went up to 78% (~2% improvement) with an F1-score of 0.85, an
even greater better performance compared to MobiDB-simple100 with an increased BACC
and F1-score by 5% and 0.17 respectively.

In this final section we investigated the relevance of intrinsic disorder as a predictor of
autophagy LC3 interacting regions. Carrying over from the previous section, we examined
whether incorporating intrinsic disorder in the multi-scheme logic equation would further
improve its predictive power. Table 12 lists an expanded version of all predictive schemes
presented in Table 5 from Kalvari et al (Kalvari et al. 2014), with the addition of intrinsic
disorder. When discussing about multi-scheme predictors we refer to simple logic (e.g.
xLIR+A2+D|P13) equations that combine binarized LIR-motif descriptors such as anchors,
disordered etc.

IO
ANNA KALV

ARI

 57

 xLIR xLIR+D xLIR+A2+D xLIR+A2|D xLIR+A2+D|P13 xLIR+A2|D|P13

TP 27 23 12 23 26 28

TN 0 16 18 16 11 10

FP 20 3 1 3 8 9

FN 0 5 16 5 2 0

Sensitivity
(%) 100.00 82.14 42.86 82.14 92.86 100.00

Specificity
(%) 0.00 84.21 94.74 84.21 57.89 52.63

Precision
(%) 57.45 88.46 92.31 88.46 76.47 75.68

Accuracy
(%) 57.45 82.98 63.83 82.98 78.72 80.85

Balanced
Accuracy

(%)
50.00 83.18 68.80 83.18 75.38 76.32

F1-score 0.73 0.85 0.59 0.85 0.84 0.86

Table 12. Multi-scheme predictors applied on the 47 LIR-motifs collected by Alemu et al.

Assessment of their power in discriminating functional LIR-motifs was conducted based on Sensitivity,
Specificity, Precision, Accuracy, Balanced Accuracy (BACC) and F1-score. A2 represents the latest version
of ANCHOR, D is for disorder and P13 for pssm scores > 13. The top scores in each row are marked in bold.

Overall our findings suggest that disorder is a good indicator of genuine LIR-motifs reaching
a balanced accuracy of 83% for schemes xLIR+D and xLIR+A2|D, surpassing our previous
top score by 5%. Both predictors appear to perform exactly the same with nicely balanced
Specificity and Sensitivity of 84% and 82% respectively, suggesting that intrinsic disorder
in LIR-motifs is a critical feature. Further evidence that justify this conclusion can be derived
by comparing the two aforementioned schemes with predictor xLIR+A2+D. This latter case
appears to be the weakest of the combinational schemes being in favour of Specificity (~

IO
ANNA KALV

ARI

 58

95%) with a balanced accuracy of 69% and an F1-score of 0.6. Disorder (D) in xLIR+A2|D
seems to be overpowering A2, with that particular logical equation giving the exact same
results with xLIR+D obliterating anchors (A2) completely. However, it is very likely that a
larger collection of samples the two tools can better compensate for one another with A2
picking up cases that disorder eludes and vice versa.

Looking into PSSM scores, the inclusion of P13 (PSSM > 13) to the schemes
(xLIR+A2|D|P13) seems to have had a negative effect, an outcome which is contradictory
to our previous findings. With respect to balanced accuracy, it still performs better with a
slight improvement of 0.6% compared to our old optimal case xLIR+A|P13 (Kalvari et al.
2014). Its 7% declination from the 83% of the best scheme (xLIR+A2|D) came with 100%
Sensitivity - similar to using xLIR solely - but with a 53% gain in Specificity. Although with
a lower balanced accuracy of 76%, this scheme comes with an F1-score of 0.86, which is
also the best across all tests performed. This raises the question whether there are other ways
to fine tune this multi-scheme predictor to achieve even higher scores.

Building on that notion, the PSSM score is the only descriptor that is still parameterizable,
meaning that it is the only one not tested for an optimum value. To look into PSSM
alternatives, we computed all metrics on the same dataset we worked with before using the
multi-scheme predictor xLIR+A2|D|PX, where X parametrized different PSSM thresholds
tested. We captured its performance at six incremental PSSM scores starting from P13, P14
up to P18, where P18, where PX denotes a PSSM score > X. The Balanced accuracy for both
disorder methods mobidb-simple and IUPRED2A (iupred2) computed at the six distinct
PSSM scores is illustrated in Figure 15.

IO
ANNA KALV

ARI

 59

Figure 15. Balanced Accuracy (%) achieved with multi-scheme predictor xLIR+A2|D|PX captured at

various PSSM thresholds.

All scores were calculated based on the 47 xLIRs detected in the sequences stemming from the paper of Alemu
and colleagues (Alemu et al. 2012). IUPRED2A scores are in blue and mobidb-simple BACC is presented in
green.

From the results portrayed in Figure 15 what is apparent is that, overall, mobidb-simple has
a better effect than IUPRED2A when used synergistically in the multi-scheme predictor,
although at P13 IUPRED2A seems more favourable with a BACC of 77.16% over the
76.32% achieved with mobidb-simple. At PSSM > 14 the balanced accuracy of mobidb-
simple begins to increase and precedes up to P16 (89.47% vs 87.69%). At P17 both tools
reach a peak value of 90% BACC, a value that mobidb-simple preserves at P18, followed
by a downdrift at P19. This raises another question of whether P17 is the optimum PSSM
score. To answer this question, the multischeme predictor xLIR+A2|D|PX was applied on the
entire collection of 96 LIRs (Table 1) and all metrics where re-computed at all different
PSSM scores. The results are depicted in Figure 16.

IO
ANNA KALV

ARI

 60

Figure 16. Balanced Accuracy (%) achieved with multi-scheme predictor xLIR+A2|D|PX captured at

various PSSM thresholds.

All scores were calculated based on the entire collection of 96 LIR-motifs listed in Table 7. IUPRED2A BACC
values are in blue and mobidb-simple BACC is presented in green.

These new results illustrate the strength of mobidb-simple in helping to distinguish genuine
LIR-motifs. The multi-scheme predictor scheme in collaboration with mobidb-simple once
again outperforms the one with IUPRED2A, but both schemes start at lower BACCs of 63%
and 62% respectively. It also became clearer the PSSM score at which each method is at
peak. For instance, if IUPRED2A were to be used in the multi-scheme predictor, then the
PSSM threshold at which the predictor is at its utmost performance would be > 17 reaching
a BACC of 74% and F1-score of 0.69. MobiDB-simple, as we also observed in the results
depicted in Figure 16, reaches its peak performance at a PSSM threshold > 18 with a 75.6%
BACC and F1-score of 0.7. This slight improvement in balanced accuracy comes with two
additional True Negatives which were previously falsely characterized as functional LIR-
motifs. A significant outcome in studies that take the identification of LIR-motifs at
proteome scale.

IO
ANNA KALV

ARI

 61

Before closing, it is important to discuss a very intriguing outcome of the comparison of the
two multi-scheme predictors xLIR+A2+D|PX and xLIR+A2|D|PX at different PSSM scores.
At PSSM scores > 13, the difference in balanced accuracy and F1 scores between the two
methods is marginal (Table 12), therefore we went a step further by examining those values
at different PSSM cutoffs. Although xLIR+A2|D|PX outperformed xLIR+A2+D|PX for a
PSSM score > 13 when tested on both datasets of Alemu et al. (for comparison with iLIR
results) and the complete set of LIR-motifs (Table 1), a result that also persisted when we
tried different PSSM scores on the Alemu dataset (Figure 17-left), this same experiment
yielded the opposite outcome on the entire collection of LIR-motifs (Figure 17-right).

IO
ANNA KALV

ARI

 62

Figure 17. Multi-scheme method comparison.
The performance of the two multi-scheme predictors xLIR+A2+D|PX and xLIR+A2|D|PX was tested on the Alemu (left) and complete (right) datasets of LIR-motifs, were
balanced accuracy is measured at different PSSM thresholds.

IO
ANNA KALV

ARI

 63

What can be observed from the right chart in Figure 17-right, is that the multi-scheme
predictor xLIR+A2+D|PX performs better than the xLIR+A2|D|PX for all PSSM scores >
14, reaching a maximum BACC of 77.5% (F1: 0.72) over 73.8% (F1: 0.69) at PSSM >17
respectively. Detailed results for PSSM >17 are presented in Table 13.

A possible explanation to this result is that xLIR+A2+D|PX requires that both ANCHOR2
and MobiDB-simple predict a LIR-motif as functional, giving more power to ANCHOR2
which we previously saw that the number of correctly identified LIR-motifs was low, hence
controlling the outcome of the logical equation A2+D. This means that the outcome relies
on the PSSM score solely.

 xLIR+A2+D|P17 xLIR+A2|D|P17
TP 27 31
TN 48 37
FP 12 23
FN 9 5

Sensitivity
(%) 75.00 86.11

Specificity
(%) 80.00 61.67

Precision
(%) 69.23 57.41

Accuracy
(%) 78.13 70.83

Balanced
Accuracy

(%)
77.50 73.89

F1-score 0.72 0.69

Table 13. Multi-scheme predictor results on the complete dataset.

Comparison of the performance of the multi-scheme predictors xLIR+A2+D|P17 and xLIR+A2|D|P17 on the
complete dataset of experimentally verified LIR-motifs.

It is important to understand that the purpose of this study is to provide the users with tools
and strategies to identify LIR-motifs in putative proteins and various filtering methods based
of the requirements of each experiment. The users should use their discretion in selecting the
optimal parameters that best fit their needs, taking into account whether specificity or
sensitivity is more important. For example, it is expected that when scanning a complete
proteome for identifying selective autophagy receptors, choosing a scheme tuned for high

IO
ANNA KALV

ARI

 64

specificity will provide an accurate list of proteins. On the other hand, when scanning a
particular protein for candidate LIR-motifs, a high sensitivity scheme will provide a larger
number of candidates which can be rationally prioritized using additional features, e.g. those
provided by the iLIR server.

3.4.5 Independent validation

Ever since the publication of the iLIR (Kalvari et al. 2014) webserver, new studies exploring
the world of selective autophagy came to the surface. Some branched out to other types of
autophagy that also resulted in the production of new tools, an example of which is the
hfAIM (Xie et al. 2016) web resource that focuses on locating LIR-motifs in proteins
participating in pexophagy. To divert from the computational side of things, significant were
the experimental surveys that were able to validate functional LIRs that previous studies
failed to detect (Skytte Rasmussen et al. 2017; Stadel et al. 2015) and finally studies that
introduced novel proteins to the research community (Rogov et al. 2017).

With the best predictive scheme in hand, the next step was to test it on new LIR-motifs. We
manually hand-picked four candidate protein sequences with experimentally verified
functional LIRs from previous works (Rogov et al. 2017) (Svenning et al. 2011). The
sequence of each protein specimen was manually downloaded from the UniProtKB
Knowledgebase (https://www.uniprot.org/) (The UniProt Consortium 2018) and iLIR
webserver was used to search the sequences for an xLIR match, and to generate the PSSM
scores used in the multi-scheme predictor. Anchors and disorder strings (dSTR, cdSTR) were
generated using the tools described in the methods. The results are presented in Table 14.

IO
ANNA KALV

ARI

 65

UniProt ID UniProt
Accession Sequence Position Verified xLIR Anchor2 PSSM score

(e-value) dSTR cdSTR Author Prediction

C0Z2C5_ARATH C0Z2C5 REYVLV 358-363 1 1 0 13 (7.90E-02) DDDDDD DDDDDD Svenning et al. TP

JMY_HUMAN Q8N9B5 SDWVAV 11-16 1 1 0 22 (4.40E-03) DDDDDD DDDDDD Rogov et al. TP

FSFQDL 233-238 0 1 0 11 (1.50E-01) DDDDDD DDDDDD Rogov et al. FP
 GMWTVL 265-270 0 1 0 18 (1.60E-02) DDDDDD DDDDDD Rogov et al. FP
 KGYEEV 329-334 0 1 0 12 (1.10E-01) DDDDDD DDDDDD Rogov et al. FP
 ESFTLL 945-950 0 1 0 11 (1.50E-01) DDDDDD DDDDDD Rogov et al. FP

PKHM1_HUMAN Q9Y4G2* DEWVNV 633-638 1 0 0 19 (1.20E-02) DDDDDD DSSSSS Rogov et al. FN

RETR1_HUMAN Q9H6L5 ESWEVI 152-157 0 1 0 20 (8.40E-03) ??DDDD SSDDDD Rogov et al. FP

LSYLLL 219-224 0 1 0 10 (2.00E-01) ?????? SSSSSS Rogov et al. TN
 DDFELL 453-458 1 1 1 18 (1.60E-02) DDDDDD DDDDDD Rogov et al. TP

Table 14. New proteins and their corresponding verified LIR motifs.

xLIR, PSSM scores, e-values, LIR requence and positions were generated using iLIR web server (Kalvari et al. 2014). Anchors (Anchor2), dSTRs and cdSTRs were generated using

the tools described in methods. *The sequence Q9Y4G2 does not conform to the xLIR motif but only to the most generic WxxL-motif, yet we include it for completeness.

IO
ANNA KALV

ARI

 66

Assuming a wet lab researcher was interested in studying these four sequences:

1. C0Z2C5_ARATH: she would be unambiguously pointed to the correct functional

motif.

2. JMY_HUMAN: among the 5 detected xLIR motifs with intrinsic disorder

prediction, the top-scoring against the PSSM is the correct one, which would be

prioritized.

3. PKHM1_HUMAN: the xLIR motif fails to recognize the functional LIR motif.

However, among the 15 WxxL motifs detected by iLIR, the top scoring one is the

genuine LIR motif (see Figure 18).

4. RETR1_HUMAN: the genuine LIR-motif –even though slightly outscored by

another xLIR-motif in the PSSM comparison– still has a high PSSM score, and is the

only xLIR-motif overlapping an ANCHOR prediction as well as it is predicted to be

completely disordered.

All in all, in all of the above cases, even though the predictions are far from perfect, our

multi-scheme analysis approach provides useful information for the prioritization of

candidate LIR motifs for downstream experimentation.

It is worth mentioning that the validation presented here is by no means comprehensive, as

this would require an exhaustive screen of all newly reported proteins with experimentally

verified LIR-motifs in the current literature. In fact, we have recently compiled data (Kalvari,

Chadjichristofi and Promponas, unpublished data) about dozens of newly reported instances

of LIR-motifs - a number of which were discovered based on iLIR predictions. However, a

time-consuming manual verification for annotating entries based on literature evidence and

cleansing of these data is necessary prior to availability of this dataset for proper analysis.

The small dataset analysed here highlights that even though the prediction accuracy of

existing and novel prediction schemes developed in this work is not perfect, they can provide

valuable guidelines to experimental scientists for rational design of experiments for

identifying novel instances of functionally important LIR-motifs.

IO
ANNA KALV

ARI

 67

Figure 18. iLIR results for human Pleckstrin homology domain-containing family M member

The top scoring detected WxxL-motif (score: 19) against the xLIR PSSM corresponds to the functional LIR-

motif of human Pleckstrin (Uniprot acc: Q9Y4G2) and additionally has 4 conserved positions compared to the

verified LIR-motif of T53I1.

It turns out that this particular set of proteins is a good example to demonstrate the efficacy

of the multi-scheme predictor. Interestingly, not all motifs match the xLIR regular

expression. As the xLIR regular expression derives mostly from human proteins, one would

expect this to occur for the case of the plant protein C0Z2C5_ARATH. This shows the

weakness of the xLIR method and once again signifies the necessity of involving additional

characteristics. This is the reason why the iLIR server also reports the more generic WxxL

motif and we introduced the anchors and the PSSM scores in the past.

IO
ANNA KALV

ARI

 68

Moving on to Anchors, C0Z2C5_ARATH REYVLV and JMY_HUMAN SDWVAV are not

predicted to switch from a disordered to order state upon binding to partners, a case that

would result in 2 false negative predictions if anchors were an essential characteristic of

functional LIRs e.g. xLIR+A2. However, PSSM scores in the multi-scheme predictor

xLIR+A2|P13 make up for this by successfully picking up all genuine LIRs (Table 15). The

problem is that with those correctly classified LIRs the PSSM also falsely collects 2 false

positives too. This is because almost all of these LIR-motifs appear to be completely

disordered, but even if we eliminate this parameter, the PSSM scores of 2 of the unverified

LIRs RETR1_HUMAN ESWEVI and JMY_HUMAN GMWTVL are quite high, therefore

they would still be falsely characterised as functional.

One solution to this problem would be to add more constraints to the predictors. For instance,

setting upper and lower thresholds to the PSSM scores to filter out outliers. Although this

could work for this scenario, there are two cases in the dataset. Unverified LIRs with very

high PSSM scores and verified LIRs whose PSSM score is very low. For example,

FYCO1_HUMAN AVFDII and MK15_HUMAN RVYQMI with PSSM scores 8 and 10

respectively. Another case is the case of atypical LIRs (CACO2_HUMAN DILVV,

TAXB1_HUMAN DMLVV) for which PSSMs are unavailable.

 xLIR+A2 xLIR+A2|P13 xLIR+A2|D|P13

TP 1 3 3

TN 6 4 1

FP 0 2 5

FN 3 1 1

Table 15. Classification of novel LIR-motifs based on 3 different prediction schemes

TP, TN, FP and FN values computed based on the Verified, xLIR, Anchor2, PSSM-score and dSTR values in

Table 14, using the 3 multi-scheme predictors xLIR+A2, xLIR+A2|P13, xLIR+A2|D|P13. The final result is

presented under column “Prediction” in Table 14.

It is evident that this is not a one fits all case. As more experimental data become available

the better the results of the predictors will be, but it is also expected that more complex

methodologies will be required to classify such instances, such as machine learning

algorithms that will learn from the data and be able to evaluate multiple parameters at a time.

IO
ANNA KALV

ARI

 69

3.4.6 A comparison to existing tools

The release of the iLIR resource in 2013 paved the way for the development of new

resources. In fact about 2 years later a web server called hfAIM

(http://bioinformatics.psb.ugent.be/hfAIM/) - for high fidelity AIM - made its way out to the

scientific community, providing additional computational methods for the identification of

Atg8 Interacting Proteins (AIPs), that is selective autophagy receptors and adaptors, with a

particular focus in plants (Xie et al. 2016). Their methodology applies more stringent rules

requiring that acidic amino acids (Asp (D), Glu (E)) occupying the X-1 and X+1 positions

surrounding the F/W/Y position of the core AIM X-1[F/W/Y-X+1-X-L/I/V] defined by

Schreiber et al. (Schreiber & Peter 2014). These amino acid residues seem to increase the

fidelity of the AIM Containing Protein (ACP) interaction with the Atg8 protein (Noda et al.

2008; Wild et al. 2011). Following this notion, they compiled a collection of experimentally

verified AIMs (Table S1 in their supplementary material), which resulted in the generation

of 5 regular expressions in the form of X-2X-1[F/W/Y]X+1X+2[L/I/V] with acidic amino acids

occupying positions X-1 and X+1.

The 5 regular expressions are the following:

A. hfAIM1: X[DE][DE][WFY][ADCQEIGNLMFPSTWYV]X[LIV]

B. hfAIM2:

[DE][DE][ADCQEIGNLMFPSTWYV][WFY][ADCQEIGNLMFPSTWYV]X[LI

V]

C. hfAIM3: XX[ADCQEIGNLMFPSTWYV][WFY][DE][DE][LIV]

D. hfAIM4: [DE]X[DE][WFY][ADCQEIGNLMFPSTWYV]X[LIV]

E. hfAIM5: XX[DE][WFY][DE]X[LIV]

A comparative analysis they conducted revealed that their approach was able to detect AIMs

with a higher specificity compared to the iLIR. As follow-up study and in order to be able

to further directly assess this outcome, we used the hfAIM resource to identify LIR-motifs

on the protein collection of Alemu et al. The results from the hfAIM scan are presented in

the following table.

IO
ANNA KALV

ARI

 70

UniProt
ACC UniProt ID Verified Range Sequence hfAIM-1 hfAIM-2 hfAIM-3 hfAIM-4 hfAIM-5 #Y

Q8MQJ7 Q8MQJ7_DROME Y [388,394] SDDFVLV Y N N N N 1
O75143 ATG13_HUMAN Y [441,447] HDDFVMI Y N N N N 1
Q9Y4P1 ATG4B_HUMAN Y [6,11] LTYDTL N N N N N 0

 Y [385,391] DEDFEIL Y Y N Y Y 4
P27797 CALR_HUMAN N [165,171] DDEFTHL Y Y N Y N 3

 Y [197,203] EDDWDFL Y Y N Y Y 4
Q00610 CLH1_HUMAN Y [512,517] PDWIFL N N N N N 0

 N [1147,1153] SGNWEEL N N Y N N 1
 N [1293,1299] RGYFEEL N N Y N N 1
 N [1474,1480] EEDYQAL Y Y N Y N 3

O14641 DVL2_HUMAN N [61,67] DQDFGVV N N N Y N 1
 Y [442,447] RMWLKI N N N N N 0

Q8TDY2 RBCC1_HUMAN N [602,608] LCDFEPL N N N N Y 1
 Y [699,705] TFDFETI N N N N Y 1
 N [910,916] DNEFALV N N N Y N 1
 N [1000,1006] IQEFEKV N N N N Y 1

Q8IVP5 FUND1_HUMAN Y [15,21] DDSYEVL N Y N N N 1
Q9BQS8 FYCO1_HUMAN Y [1278–1283] AVFDII N N N N N 0
Q14596 NBR1_HUMAN Y [729,735] SEDYIII Y N N N N 1
O60238 BNI3L_HUMAN Y [34-39] SSWVEL N N N N N 0
Q3MII6 TBC25_HUMAN Y [133,139] LEDWDII Y N N N Y 2

 N [262,268] SREYEQL N N N N Y 1
Q96CV9 OPTN_HUMAN Y [175,181] EDSFVEI N Y N N N 1

O95210 STBD1_HUMAN Y [200,206] HEEWEMV Y N N N Y 2

Q92609 TBCD5_HUMAN Y [56,62] RKEWEEL N N Y N Y 2
 N [712,718] SDDFILI Y N N N N 1
 Y [785,790] SGFTIV N N N N N 0

Q96A56 T53I1_HUMAN Y [28,34] DDEWILV Y Y N Y N 3
Q8IXH6 T53I2_HUMAN Y [33,38] DGWLII N N N N N 0
O75385 ULK1_HUMAN Y [354,360] TDDFVMV Y N N N N 1
Q8IYT8 ULK2_HUMAN Y [350,356] TDDFVLV Y N N N N 1 IO

ANNA KALV
ARI

 71

P22681 CBL_HUMAN N [111,117] ENEYFRV N N N Y N 1
 N [271,277] FLTYDEV N N Y N N 1
 Y [800,805] FGWLSL N N N N N 0

Q13501 SQSTM_HUMAN Y [335,341] DDDWTHL Y Y N Y N 3
Q9SB64 Q9SB64_ARATH Y [658,664] VSEWDPI N N N N Y 1
P53104 ATG1_YEAST Y [426,432] EREYVVV N N N Y N 1
P35193 ATG19_YEAST N [225,231] YHDYERL N N N N Y 1

 Y [409,415] ALTWEEL N N Y N N 1
P40344 ATG3_YEAST N [199,205] EQMFEDI N N Y N N 1

 Y [267,273] VGDWEDL N N Y N Y 2
P40458 ATG32_YEAST Y [84,89] GSWQAI N N N N N 0

Table 16. hfAIM AIM predictions on the protein collection of Alemu et al.

hfAIM1-hfAIM5 correspond to the hfAIM regular expressions and ‘Y’ (Yes) indicates a positive hit - hfAIM captures a particular LIR-motif, whilst ‘N’ (No) denotes no matches.
Column #Y captures the number of hfAIM models reporting a positive hit (Y).

To compare the two resources, iLIR vs the predictive power of hfAIM, we juxtapose the results of the 5 hfAIM regular expressions to the results of the

best iLIR schemes xLIR+A|P13 discussed in the iLIR paper (Kalvari et al. 2014) and our top multi-scheme xLIR+A2|D|PX presented in this chapter at

PSSM scores 13 and 17. In addition to the 5 regular expressions introduced by Xie at al.(Xie et al. 2016), we computed a sixth column (#Y) counting the

number of hfAIM regular expressions with a match (Y) on each single LIR-motif in the Alemu dataset. Our findings are presented in Table 17.

IO
ANNA KALV

ARI

 72

 hfAIM-1 hfAIM-2 hfAIM-3 hfAIM-4 hfAIM-5 hfAIM-any xLIR xLIR+A|P13 xLIR+A2|D|P13

TP 11 6 3 5 8 19 27 26 28

TN 11 13 25 9 10 0 0 11 10

FP 3 2 4 5 4 14 20 9 9

FN 17 21 10 23 20 9 0 1 0

Sensitivity

(%)
39.29 22.22 23.08 17.86 28.57 67.86 100.00 96.30 100.00

Specificity

(%)
78.57 86.67 86.21 64.29 71.43 0.00 0.00 55.00 52.63

Accuracy

(%)
52.38 45.24 66.67 33.33 42.86 45.24 57.45 78.72 80.85

Balanced

Accuracy

(%)

58.93 54.44 54.64 41.07 50.00 33.93 50.00 75.65 76.32

F1 0.52 0.34 0.30 0.26 0.40 0.62 0.73 0.84 0.86

Table 17. iLIR and hfAIM predictive power assessment.

hfAIM-1 to hfAIM-5 are the predictions of each regular expression provided by the hfAIM web server. hfAIM-any this is a union consensus of the 5 hfAIM methods, which evaluates

to a positive LIR-motif prediction if any of the methods hfAIM1 to hfAIM5 predict an instance of a putative functional AIM-motif. The total number of LIR-motif instances considered

for hfAIM- and xLIR-based predictions differ, since they rely on the additional pattern introduced by the different regular expressions, which are by definition considered as false

positives. IO
ANNA KALV

ARI

 73

Before going into comparing the two tools (hfAIM, iLIR) it is very important to mention
that the results are not directly comparable. hfAIM predictions rely on the 5 regular
expressions of length 7, whereas the iLIR service identifies LIR-motifs based on a single
regular expression xLIR of length 6, which is more sensitive, but less specific that the hfAIM
regular expressions, but eliminates spurious hits with the application of various filters (e.g.

PSSM, ANCHOR).

By looking at the TP and FN instances in Table 17, what can be observed is that each hfAIM
regular expression is of high specificity (> 64%) but of low sensitivity (< 40%, in some cases
lower than 25%). When combined in an OR fashion (hfAIM-any) approximately 70% of
experimentally verified LIR-motifs can be detected. A relatively good outcome considering
that these patterns were initially designed to target peroxisomal autophagic proteins at a great
extent. True negatives are specific to the hfAIM regular expressions with every method
having its own search-space, and therefore not directly comparable to those of xLIR-based
tools.

With respect to the hfAIM web server, although it provides the option for scanning
sequences of interest with user-defined patterns, it reports results for each pattern
independently. While they allow for multiple sequences to be submitted in each run, the
results are provided in separate files. Although this feature is currently not supported by the
iLIR web server, it requires that the hfAIM users have at least some programming experience
in order to be able to integrate (and prioritize) predictions from the different motifs. Even
for a single protein, more than one of the hfAIM patterns may match the same part of the

sequence and it is not straightforward (at least not for an average wet biologist) to combine
all these results under a single prediction per sequence.

3.5 Conclusions

Our findings show that intrinsic disorder data is a relatively good indicator of genuine LIR-
motifs, achieving a 73% of balanced accuracy when used on its own to distinguish between
functional and non-functional LIR-motifs from the entire collection presented in Table 7.
This outcome appears to be 2% lower compared to the multis-cheme predictor, but when
combined with other parameters like anchors and PSSM predictions, the power of the
resulting multi-scheme predictor gives a balanced accuracy that is increased by 1%

compared to the one previously introduced in the iLIR paper (Kalvari et al. 2014).

IO
ANNA KALV

ARI

 74

With respect to that dataset, an upgrade to the latest version of disorder binding region
predictor ANCHOR2 increased the predictive power of the model by about 3% (78%
balanced accuracy). Building on the multi-scheme predictor by incorporating disorder data
from MobiDB100simple increased balanced accuracy nearly by 1% (78.95%), a score which

increased the number of correctly identified LIR-motifs and at the same time eliminated any
false negatives completely.

It seems that ANCHOR2 in presence of Disorder data does not have an effect on balanced
accuracy. Evidence to this are the logical equations xLIR+D and xLIR+A2|D, both of which
result in a balanced accuracy of 83 percent. However, since disorder (D) is the optimal, this
multi-scheme predictor cannot be improved any further. A work around this limitation is the
selection of multi-scheme predictor xLIR+A2|D|PX, where PX is a parameterizable PSSM
score for fine tuning the predictor. In fact, testing a range of PSSM values from P13 to P18,
it seems that the best performance for this particular dataset was PSSM > 17. Balanced
accuracy under this scheme reaches a maximum value of about 76% on the complete dataset,
whilst for the proteins of Alemu and colleagues (Alemu et al. 2012), balanced accuracy is
even higher at 88%.

A more balanced and richer dataset will allow us to understand how such prediction schemes
would behave under those circumstances. but that one was only tested on the dataset
retrieved from the work of Alemu at al. (Alemu et al. 2012).

IO
ANNA KALV

ARI

 75

4 iLIR3D: Delving into selective autophagy structural data

4.1 Preface

In the previous chapters we discussed the development of new tools for the identification of
novel LIR-motifs in putative selective autophagy receptor/adaptor proteins. We further

improved the prediction accuracy of our tools by incorporating intrinsic disorder data and
by devising new multi-scheme predictors that we thoroughly assessed on the efficacy of our
methods in our complete dataset of experimentally validated LIR-motifs (Table 3), but also
for the prediction of novel instances.

The next logical step was to turn to structural data as an alternative predictive method, but
also to acquire new knowledge and better understanding of the mechanism of selective
macroautophagy. For this purpose, we compiled a dataset of protein structures based on
existing data and ran a considerable amount of baseline docking experiments that are further
supported by additional experiments of in-house produced decoy sets.

To make our data available to the scientific community we designed and developed a
MySQL database that is provided in the form of a MySQL dump. The database can easily
be built up and manipulated via database management tools such as MySQL Workbench.
The tables were populated with data and metadata accumulated from all the different studies
discussed throughout this document with broad usage capabilities.

As a possible use of this dataset we envisage the systematic study of the specificity of known

LIR-motifs to different Atg8 homologs (Rogov et al. 2017). Furthermore, peptides from the
decoy set with unexpectedly high docking scores may indicate alternative modes of
interaction (e.g. via α-helical coiled-coils as in the case of (Mandell et al. 2014)). This
chapter provides more details on the structure and contents of the iLIR3D database and
demonstrates the potential of such a data resource with real examples.
 IO

ANNA KALV
ARI

 76

4.2 Data and Methods

4.2.1 Data

4.2.1.1 Creating a collection of 3D structures

The first task was to create a collection of 3D structures of Atg8 homologs, either isolated
or in complex with bound LIR-motifs. For this purpose we searched the RCSB PDB (Berman
et al. 2000) (https://www.rcsb.org/) with keywords: “ATG8”, “Autophagy”, “GABARAP”
and “MAP1LC3” in search for structures of Atg8 homologs and selective autophagy receptor
and adaptor proteins. In addition, relevant PDB entries referring to the interaction of a LIR-
motif with an Atg8 homolog were also manually retrieved from relevant publications in the
biomedical literature. Secondly, to ensure the completeness of the dataset we further
automatically retrieved from the UniProt Knowledgebase (The UniProt Consortium 2018)
(UniprotKB - http://www.uniprot.org) any PDB IDs associated with each protein accession
listed in Table 3. Then all structures were downloaded programmatically from the RCSB
Protein Databank (Berman et al. 2000) (PDB - http://www.rcsb.org). Manual curation was
conducted as a quality assurance measure, a procedure which discarded any non-relevant
structures.

The remaining protein structures (N=40) correspond to PDB entries with an Atg8 protein –
or their mammalian homologs (GABARAP, GABARAPL1, GABARAPL2, MAP1LC3,
MAP1LC3A, MAP1LC3B, MAP1LC3C) –, which can either be single or in complex with
selective autophagy receptor/adaptor proteins, bound via a LIR-motif. From these structures,

we further select those entries bound to a LIR-motif cargo (N=21); these will serve to
initially identify the LIR-motif binding regions for the definition of the 3D volumes that the
docking experiments will target. In addition, these structures provide information about the
binding conformation of LIR-motifs (ligands). It is worth mentioning that most of these
cases refer to engineered versions of the LIRCPs, e.g. a LIR-motif (possibly with flanking
residues) co-crystalized with the Atg8 protein or a construct of the LIR-motif fused to the
Atg8 protein via a flexible linker. The structures are listed in Table 18.

IO
ANNA KALV

ARI

 77

Table 18. Proteins of the Atg8 family, herein “receptors”, found in template structures.
All 21 receptors participating in the docking experiments. The structures come from 4 distinct species
including Human and can be further divided into 6 categories based on receptor type (e.g. GABARAP,
MAP1LC3B, etc.)

The following sections provide detailed information regarding each data category, pre-
processing algorithms and tools utilised in each step.

4.2.1.1.1 Template structures

Template structures are complexes of Atg8 homologs bound to LIR-motif peptides. These
pairs are also the ones used for the calculation of the the receptor binding site. For that
purpose, the molecules composing the complex structure are separated to the receptor
(Atg8) structure and its corresponding ligand (LIR peptide) to be put back together by the
protein-protein docking algorithm. The scores deriving from the docking of receptor and its
native ligand are used as reference for an accurate interpretation of any downstream
analyses. There are 24 such structures in total, however we were able to calculate the binding

IO
ANNA KALV

ARI

 78

site for only 20 of those due to structural data artefacts (i.e. modified sequences). In all
template structures which were determined by NMR we have arbitrarily chosen only the first
model reported in the respective PDB file.

4.2.1.1.2 Ligands (3DLIRs)

Contrary to receptors, the collection of ligands, that is 3DLIR-motifs, is significantly larger.
The number of structures we retrieved is about 10 times the number of “good” receptor
structures, including both X-RAY crystallography as well as Nuclear Magnetic Resonance
(NMR) samples. This is because we have a larger number of protein candidates (64 in Table
3) compared to the few Atg8 homologs of the respective species. In addition to that, several
of these proteins often come with multiple three-dimensional structures in the PDB, starting
with a minimum of 1 structure per protein up to a maximum of 22 structures, as is the case
of E3 ubiquitin-protein ligase CBL (CBL_HUMAN). It is important to mention that structure
availability was very limited for the case of ligands too.

Back in 2016 when we last updated this dataset, there were 3D structures available for only
34 out of the 64 proteins (53%), but more may have been deposited to RSCB PDB ever

since. The total number of SARs structures is 182, from which we manage to extract 246
3DLIR-motifs. Preliminary docking experiments revealed that the length of the ligand was
influencing the docking scores significantly, therefore setting a constraint that 3DLIR-motifs
are at least 6 residues long was essential, therefore any 3D peptides of shorter than 6 residues
were filtered out, including the non-canonical LIR-motifs of CACO2_HUMAN and
TAXB1_HUMAN. This reduced the number of ligands exploited in the docking experiments
to 211.

The ligand structures were computationally collected in accordance with Table 3, using the
REST APIs from both resources UniProt and RCSB PDB using in-house code developed in
python 2.7. Ligand extraction methodology and issues we stumbled upon during the
collection process are thoroughly described in the sections that follow.

4.2.1.2 Collecting useful protein metadata

The final step was to devise a set of metadata that would help us better organize the docking
results in a such a way that they can be easily utilized by the end users. The set of metadata
comprises data extracted from the UniProt and the RSCB PDB database, as for example
species per chain in the structure, LIRCP/Atg8 interactions, structure resolution in Angstrom

IO
ANNA KALV

ARI

 79

(Å), methodology applied (NMR, X-ray crystallography), function of molecule, PubMed ID,
source (i.e. UniProt, PDB). We also generated additional information, such as labelling a
structure as “Template” or not (1,0), tags like the filename or numbering of the LIR-motifs
of a particular protein, start-end positions on the model sequence the LIR peptide was
extracted from etc.

4.2.1.3 Decoy Set generation

Decoy sets are used in virtual screening experiments to investigate whether a docking
algorithm is able to discriminate between genuine and non-genuine ligands. As a quality
assurance measure and in order to ensure that the scores of docking results diverged from

what is observed at random, we devised a small collection of sensible decoy sets.

For the generation of the decoy sets we searched the RSCB PDB for human proteins
matching the xLIR regular expression pattern, and reduced redundancy at the 30% sequence
identity level. This process retrieved a total of 1507 human structures. The protein structures
were downloaded using the aforementioned tools and they were further processed for the
generation of the decoy sets used in this study. Generation of the decoy sets was done
programmatically using the method described in 4.2.2.1.1.

The resulting decoy sets can be divided in the following three categories:

1. iLIR ligands: A total of 12 ligands (3D peptides) extracted from the 1507 human
proteins. Two constraints were applied in this case:

a. The 3DLIR matches the xLIR regular expression
b. The 3DLIR matches the LIR-motifs illustrated in Table 1 exactly (100%

identity).

2. Random dataset: A total of 3215 6-residue peptides randomly extracted from the

collection of proteins we retrieved from RSCB PDB using custom in-house code. To
limit the size of this dataset only 2 3DLIRs were extracted from each of the 1507
human proteins. Extraction was enabled using a random number generator that
produced random start-end hexapeptide coordinates at any position within the protein
sequence at hand.

IO
ANNA KALV

ARI

 80

3. xLIR peptides: A total of 564 6-residue peptides that match the xLIR motif with no
restriction on matching any of the verified and unverified LIR-motifs listed in Table
3. This means there is chance that this dataset also includes the hexapeptides from
decoy dataset 1.

4.2.2 Methods

4.2.2.1 Computational methods for data extraction from UniProt KB and
RSCB PDB databases

4.2.2.1.1 A computational method for 3D structure retrieval from RSCB PDB

Three-dimensional structures were retrieved from RSCB PDB with a custom-made script
developed in python 2.7. Structure retrieval is achieved using UniProt KB and RSCB PDB
REST APIs with simple utilization of widely used python libraries httplib and requests. An
http request to the UniProt REST API retrieves the correct metadata of a particular protein
in text (.txt) format. The algorithm then parses the text by searching for the labels “DR” and
“PDBsum;”, which contain the PDB IDs corresponding to a specific protein. If available, a
list of PDB IDs is created.

Following the PDB ID extraction, the script then does another http call to RSCB PDB’s
REST API and fetches the corresponding PDB file, which then saves locally at a specified
destination directory. The process repeats for every UniProt accession listed in Table 3.

4.2.2.1.2 Metadata extraction

Metadata are very important for the correct interpretation of the data as well as the results.
For this reason and the necessities of this project, specialized software has been developed
developed in Python 2.7 for the collection of useful and relevant metadata from related
resources such as UniProt (The UniProt Consortium 2018) and RSCB PDB (Rose et al.
2015). The algorithm uses RSCB PDB and UniProt REST APIs to gather and extract
metadata per UniProt entry, which is then imported in the database.

IO
ANNA KALV

ARI

 81

4.2.2.2 Atg8 receptor binding site calculation

Defining the search space of the Atg8 binding site was one of the most crucial steps for the
protein-protein docking experiments to be efficient and successful. A predefined search
space minimizes the search space to just the area of interest and at the same time eliminates
the chance for misplaced ligands.

The binding site has been calculated for the Atg8 receptors including mammalian homologs
and their isoforms for all complexes in the PDB template structures. That is, all native
receptors in complex with one of their LIRCP binding partner.

This process comprises two steps:

1. Identification of the interface of the protein-protein interaction
2. Translation of the interface residue coordinates into x,y,z coordinates of the search

area

Identification of the interface residues for each of template was achieved by manually
submitting relevant PDB structures to the PDBePISA (Krissinel & Henrick 2007) web server

- a tool for the exploration of macromolecular interfaces (http://www.ebi.ac.uk/msd-
srv/prot_int/cgi-bin/piserver) - allowing only for 10% of buried area at most for each residue
participating in the interface. This ensures that the entire receptor search space is captured
and that there will be no limitations on the rotational grid.

This tool returns the interfacial residues for each input, which were manually extracted for
all template structures. We only took into account the participating residues from the receptor
side. The reason why we did this is because in the presence of the receptor interface residues
the ligand residues become redundant and I will explain why this is true with the following
example. Imagine that the receptor is a mass of clay onto which we press down an object, in
such a way that when we pull the two apart, the 3D shape of the object is imprinted on the
clay. The interface residues of the receptor are 3D descriptors of the formed cavity. The
actual 3D coordinates that allow us to calculate the centre of the grid and the volume of the
search space. Visual examples are depicted in Figure 19.

The docking grid was calculated using explicitly developed in-house software. All the
residues that participate in the interface are provided to the tool as a string of integers that

are separated by commas ‘,’. The algorithm converts the string of integers to a list and then
reads and parses the corresponding PDB file and calculates the average of the x,y,z

IO
ANNA KALV

ARI

 82

coordinates of each residue specified in the list - interface residue - resulting in a single x,y,z
triplet that defines the center of the docking grid. All these data (interfacial residues and the
grid center coordinates) are collected and stored in the database.

Figure 19. The docking grids of the Atg8 family.
Binding sites of the yeast Atg8 receptor and its two homologs, human GABARAPL1 and rat MAP1LC3B. The
coloured cubes define the binding site area with the exact x,y,z coordinates provided in the parenthesis.

4.2.2.3 Manual ligand extraction of 3DLIRs

Ligand extraction required manual curation due to the various artefacts that come along with
structural data. The problem is that iLIR identifies the LIR motifs on the canonical sequence,
which in many cases start-end points on the model sequence (sequence in the PDB structure)
may be shifted or missing (short fragment) or even re-engineered for the purposes of an
experiment. To ensure the high quality and accuracy of the 3DLIR-motifs, we manually
extracted all 3DLIRs using PyMol (DELANO & L 2002) for Education v1.7.4.5 based on

the start-end coordinates listed in Table 3. As previously mentioned in the preceding data
section, the difference in the total number of 3DLIRs (246) and the actual set used in the
docking experiments (211), is due to six residue peptide constraint applied to all samples for
the following reasons:

IO
ANNA KALV

ARI

 83

1. LIR-motif sequence coordinates generated from the actual protein sequences
(UniProtKB FASTA files) do not always match the model sequence in the
corresponding structures.

2. Structure mutations: Many of the experiments are designed in order to study specific

features which are very often address by bioengineering a molecule at hand and
introducing mutations.

3. Short or fragmented model sequences: Many of the PDB structures may only contain
small segments or fragmented model sequences rather than entire canonical protein
sequence. As a result, this limits the number of 3DLIRs as many of the available
structures lacked the model sequence fragment at the position where a LIR was
identified.

4. Low structure resolution: This results in worse docking scores which is hard to assess

when we need to compare these to the scores of the docked templates.

Following model sequence examination, if the LIR-motif sequence reported by iLIR
webserver matches the model subsequence in the exact residue position e.g.
SQSTM_HUMAN, positions 336-341, the 3DLIR-motif is extracted using PyMOL’s
command line interface (CLI) and saved into a separate PDB file to be used as a ligand in
the docking experiments.

The following command is an example of the extraction of the 3DLIR-motif of the p62
selective autophagy receptor (SQSTM_HUMAN) using PyMOL:

PyMOL> select 2K6Q_LIR1_A_6,2K6Q_A & resi 336-341

Where 2K6Q_LIR1_A_6 is the name of the resulting molecule that will also be the filename.
2K6Q is the PDB ID, LIR1 a tag specifying the order in which the LIR-motif was identified
in a given sequence by iLIR, A is the chain in the structure and 6 specifies the number of the
residues extracted.

In cases where the LIR-motif is found on the model sequence, but with a slight shift
compared to the coordinates of the LIR-motif on canonical sequence, the 3DLIR is manually
extracted from the corrected positions.

IO
ANNA KALV

ARI

 84

4.2.2.3.1 Computational methods for mass ligand extraction and decoy set generation

Manual extraction of 3DLIRs was feasible due to the relatively small size of the PDB dataset
constructed by collecting all PDB structures associated with the UniProt accessions listed in
Table 3. In the case of the decoy sets, the number of proteins increased significantly,
therefore the number of extracted ligands was expected to be even larger, which made it
nearly impossible to generate manually.

We devised a new script combining functionality from the broadly used chemical tool open
babel (O’Boyle et al. 2011) and custom-made complementary functions. The script is called
ligand_generator and was implemented in python 2.7. The script takes as input a directory
of protein pdb files, each of which contains a single chain only, and a destination directory

where the ligand files will be stored at. With respect to the type of ligands, the algorithm has
two methods of ligand extraction defined by two options --rand for random and --regex for
extraction using one of the regular expressions cLIR or xLIR.

Briefly, the process starts by loading the PDB file in an openbabel (O’Boyle et al. 2011)
molecule object, which is used to make scanning of the model sequence easier. If the option
--regex is provided, meaning that the 3DLIR needs to match the xLIR regular expression

[DE][DEST][WFY][DELIV][DERHKSTNQCUGPAVILMFYW][ILV], then
depending on the length of the peptide that we need to generate, the model sequence is

scanned from left to right by sliding the window as many residues as its length, meaning that
at each iteration the first residue in the window is located at position
index+window_length+1. If the sequence at the current position of the window matches the
regular expression, the start and end positions are stored in a dictionary structure, along with
the sequence string, to be extracted at a final step by the ligand_generator. This last function
parses the PDB file and extracts the sequence segment at the designated positions. Structural
coordinates for these peptides are extracted from the PDB file using a custom function in
Python. The process completes when all input PDB files have been scanned.

If random ligand generation is selected, the process does not vary much, in a sense that the
PDB structure is once again loaded in an openbabel molecule object, but instead of a sliding
window a random number generator randomly selects start-end points within the margins of
the chain sequence at hand. The extraction of the 3D peptide is done the same way as using
the --regex option.

IO
ANNA KALV

ARI

 85

4.2.2.3.2 Protein-protein docking using FRODOCK

To investigate whether a 3DLIR-motif is a genuine binder of the Atg8 proteins, we apply
protein-protein docking techniques to evaluate the force of the interaction. Such algorithms
try to fit two unbound protein structures together, the receptor and the ligand. Given the
binding site on the receptor molecule, the ligand is rotated within the defined search space
for the optimal position. With every new positioning of the ligand - conformation - within
the binding site, the binding energy or a correlation value is measured and reported (Figure
20). The best conformation is the one with the highest docking score and the lowest root
mean square deviation (RMSD, Å) from the reference ligand (template molecule).

Figure 20. Protein-protein docking example.
An illustration of rigid rotation of the ligand within the receptor binding site in search for the optimal
positioning/conformation. The tested ligand is presented in blue, and in red colour we present the orientation
of the template molecule. Conformation 1 (C1) is the optimum case with the placement of the tested ligand
(blue), almost at the exact same position of its template. The example is a result of the docking of the 3DLIR-
motif of Human selective autophagy receptor NBR1 to the binding site of GABARAPL1 (PDB id: 2L8J).

The tool we used for the protein-protein docking experiments is FRODOCK (Garzon et al.
2009), a fast rotational protein-protein docking tool based on global energy minimization
and three interaction potentials including electrostatic, van der Waals and desolvation

IO
ANNA KALV

ARI

 86

potentials that was firstly introduced in 2009 (Garzon et al. 2009). Initial experiments were
performed using the primary version of the tool, but with the addition of new structures to
the data, we also updated to the latest version of FRODOCK v.2.0 (Ramírez-Aportela et al.
2016), which also resulted in higher scores. All the structures (receptors, ligands) prior to
docking were further enhanced with the addition of polar hydrogen atoms.

For the docking experiments we used FRODOCK’s linux CLI, and implemented a python
wrapper to FRODOCK’s preprocessing, processing and post-processing tools. The python
script is called pyFrodock and it comes with 3 distinct options --ligands, --receptors, and --
pydock. The first two options are responsible for the execution of all the required pre-
processing steps in preparation of the input files for the docking experiments, whilst the latter
--pydock performs the actual docking using the inputs generated by the other two options.

Ligand as well as receptor pre-processing are both compulsory and the output files are
organised in distinct directories one for each input PDB file (ligand, receptor). The pre-

processing steps include the generation of the three interaction potentials, electrostatic
(_E.ccp4), van der waals (_W.ccp4) and desolvation (_DS.ccp4), which are computed in
three steps. The python script serves as an abstraction to the various options required for the
generation of the files and at the same time simplifies the entire procedure.

FRODOCK (Ramírez-Aportela et al. 2016) includes 4 distinct tools for preprocessing
(frodockgrid), docking (frodock), clustering of conformations (frodockclust) and finally for
the extraction and visualisation of the results (frodockview). Any receptor and ligand
structures participating in the docking experiments need to undergo pre-processing with
frodockgrid for the generation of the required files. The following are the compulsory files
for each type of molecule:

- Receptor:
- Van der Waals potential map
- Electrostatic potential map
- Desolvation potential map

- Ligand
- Desolvation potential map

Finally, --pydock based on a text file (.txt) that specifies the list of docking experiments

to be performed (receptor vs ligand), conducts the actual docking of the pair and processes
the output to report the X top results, where X is the number of conformations specified by

IO
ANNA KALV

ARI

 87

the user. The 3 top conformations (by default) are also saved in PDB format for further
manual inspection during the evaluation process.

FRODOCK is Linux based by default, therefore it does not run on other operating systems
(OS) such as Mac OS X and Windows. To address this limitation, we developed this as a
dockerized application, modernized virtualization techniques that enable software to run on
any machine. The dockerized version of pyFrodock was tested in a docker container on Mac
OS X version 10.13 (Sierra).

4.2.2.3.3 Evaluation Metrics

Similar to the evaluation metrics set we devised to assess our methodologies presented in
the previous chapters, we also had to come up with a new set of sensible metrics that would
allow us to assess our results. The main aim is to define a set of thresholds for the selection
genuine LIR-motifs based on docking scores and comparison of the docked molecule
conformation to a template.

For the analysis of outcome of the docking experiments, we will be using the following
metrics:

● Docking score MAX, MIN: The maximum and minimum values from the docking
scores will allow us to define a range of accepted values for which a docking score
can indicate a genuine LIR.

● Mean (MEAN): The central value of the group of docking scores being evaluated.

● Standard deviation (STDEV): A value indicating how close or far the values fall from
the mean, where low STDEV shows that the values concentrate around the mean,
whilst a high STDEV shows that the values fall far from the mean.

● Average (AVG): An average value of a set of docking scores being examined.

● Root mean square deviation (RMSD): Per residue distance of two superimposed
molecules. This will allow us to choose the optimum conformations. The smaller the
RMSD the more the docked molecule resembles a template in terms of orientation
and interaction with the receptor.

IO
ANNA KALV

ARI

 88

In the following chapter we provide some baseline analyses and preliminary results that may
highlight possible uses of the 3DLIR-motif database.

4.3 Results

4.3.1 The iLIR3D MySQL database

The docking experiments resulted in the generation of a large amount of data. In particular,
36,810 receptor-ligand pairs were generated by docking the manually extracted verified and
unverified 3DLIRs, and 68,022 additional instances produced from docking the decoys. A
total of 104,832 samples, a substantial amount of information that deserves further analysis.
With such data volumes it was essential that we developed a resource that would enable us
to manage, update and analyse all of that information with the minimum possible effort.

A solution to this problem was the design and development of a relational database in
MySQL, which structures all the information in the form of tables and enables data retrieval
by association. A good analogy to a database table is that of a class in objective
programming. Each table has its own attributes (the columns) that describe a particular
entity. For example, the table sars contains information about selective autophagy receptors
such as UniProt accession, UniProt id, sequence length, taxonomic identifier (tax id), author

etc. Table rows or else the records, are more like object instances of a class. Records, like
objects, have their own values that define a particular object e.g. protein SQSTM_HUMAN
has tax id: 9606, is 440 amino acids long and was obtained from the paper of Alemu et al
(Alemu et al. 2012).

The programming language used to manipulate data held in a relational database is called
SQL, for Structured Query Language. SQL provides a way of communication between the
user and the database through the formation of queries, that is conditional statements for data
extraction that aim to answer specific questions. For example, such questions could be
“How many ligands bind the GABARAPL1 receptor with a score > 1200” or “How
many Atg8 structures are there” and many others. The following (Figure 21) is a very
simple query example that retrieves the template docking scores illustrated in Table 20:

IO
ANNA KALV

ARI

 89

Figure 21. MySQL query that retrieves the template structure results presented in Table 20.

The power of such tools becomes more apparent upon data analysis. It would be very
difficult to combine many different attributes without the help of a relational database. To
demonstrate its usefulness, one interesting thing we could look into is the top scoring ligands
per receptor type (Atg8, GABARAPL1 etc), for which there is also evidence for its actual
interaction with that particular Atg8 homolog. For this purpose, we would have to combine
information from the tables experiment, sars, sars_lir, sars_lir_3d and
sars_atg8_interaction using their relationships - foreign key references - as it appears in

Figure 21.

iLIR3D is a manageable database (nearly 3 MB in size) - excluding the actual output files of
the docking experiments - and is organised in 9 tables. Figure 22 illustrates the database
model portraying all its components: the tables, fields and relationships. Short descriptions
about the data stored in each table are provided in Table 19.

IO
ANNA KALV

ARI

 90

Figure 22. iLIR3D relational model created using MySQL workbench by application of reverse
engineering.
The model illustrates the tables composing the database as well as the different fields belonging to each table
and the relationships.

IO
ANNA KALV

ARI

 91

Table Description

receptor
Receptor information including pdb id, chain, receptor type
(ATG8, GABARAP, MAP1LC3 etc) as well as the binding site
coordinates (x,y,z)

sars UniProt related information such as UniProt accessions and IDs
for all proteins in Table 1 and metadata retrieved from UniProt
such as sequence length, tax_id, author etc

sars_atg8_interactions Atg8 homologs and LIRCPs relationships
sars_lirs All LIR entries as presented in Table 1
sars_lir_3d All available 3DLIRs for each LIR in table sars_lir_3d

sars_structures All 3D structures collected for each of the selective autophagy
proteins

structure_chains Chain metadata per available SARs structure retrieved from
UniProt and RSCB PDB

sars_lir_disorder Disorder predictions generated for each individual case of SARs

experiments
Experiment table holding useful information on each
ATG8/SARS docking experiment such as docking score per
conformation, RMSD etc

Table 19. Short descriptions of the tables composing the iLIR3D database.

Although the iLIR3D database was initially developed to organise, analyse and provision
the structural data, it also became very useful in other areas covered in this study. For
example, sars_lir_disorder table contains all the disorder data that we generated and helped
a lot with the analysis of those results. Computation of the true positives (TP), true negatives
(TN), false positives (FP) and false negative (FN) instances, in the majority of cases was
achieved using mysql queries. An example of the queries used to compute the
aforementioned values based on predicted data produced by MobiDB (Piovesan et al. 2018)
using its simple method with the constraint that LIR-motifs are 50% composed by disordered
residues (Figure 23).

IO

ANNA KALV
ARI

 92

Figure 23. Query examples for the computation of the TP, TN, FP, FN values for disorder predictions.
The values derive from disorder data from MobiDB’s simple method at 50% disorder (percentage < 50).

This database constitutes the stepping stone towards the development of another web-
resource, or it could work as a future enhancement of the currently existing iLIR webserver.
On top of that, the collection of Atg8 receptors can be used in other projects as well, a subject
that is discussed in the following segment.

4.3.2 Learning from template structures

Having separated template complexes to receptors (Atg8 homologs) and ligands (3DLIR-
motifs), the next step was to make an attempt to put them back together by employing
protein-protein docking algorithms. It was essential that we created a reference set of trusted
docking scores of known verified Atg8 binders in order to be able to interpret the results of

IO
ANNA KALV

ARI

 93

any downstream “virtual screening” (VS) experiments. Our reference dataset includes 5
distinct types of Atg8 homologs from 3 species: Human, Rat and yeast, which serve as the
receptors and 3DLIR-motifs from 7 distinct LIRCPs originating from the same species, with
an additional sample from Mouse (2ZJD).

Preliminary results from docking experiments (Table 20) conducted with the molecules of
the template structures, although a relatively small dataset, they provide a broad spectrum of
examples that demonstrate many of the obstacles that we will need to address for a correct
evaluation of the results. The results were split into smaller segments isolating this way the
docking scores per type of receptor.

IO
ANNA KALV

ARI

 94

Table 20. Top scoring conformations of the template structures.
The docking scores of the various Atg8 homologs are presented in distinct segments Numbering of the LIR tags i.e. LIR1, LIR2 was done based on the location (start-end) of the LIR-
motif on the sequence. IO

ANNA KALV
ARI

 95

To analyse the docking results, one can look into the following aspects:

1. Species: We want to compare the scores we get with a receptor/ligand pair of the
same species to a pair where the species differs (e.g. docking experiments with
MAP1LC3B structures 2ZJD, 2Z0E, 2Z0D, 2ZZP)

2. 3DLIR length: Comparing these scores will allow us to understand how to evaluate
the docking scores achieved with the non-canonical LIR-motifs, a case which we
could not properly assess using the sequence-based methods presented in the first
two chapters of this thesis

3. Ligand chains: In several templates, more than one instances of a 3DLIR-motif may
be located (i.e. in different polypeptide chains) and these peptides may be in (slightly)
different conformations and could behave differently in peptide docking
experiments. Therefore, it is essential to grasp how 3DLIRs extracted from non-
native structures would perform with the same receptor. This could be considered
equivalent of a novel 3DLIR in the case we want to test its interaction with a protein
of the Atg8 family

4. Receptor preference: LIRCPs have preference towards the various Atg8 proteins.
Such evidence is the work of Rogov et al. (Rogov et al. 2017), which concentrates
on LIR-motifs (GIM) that bind the GABARAP receptors

5. Positioning and orientation in the binding site: The correct amino acids need to
interact with the two hydrophobic pockets of the Atg8 binding site. This will require
additional visualization software and manual curation

6. Structure resolution: The resolution of the structures is also something that someone
could look into. It’s important to know what to expect when we have a novel 3DLIR
of low resolution docked in a high-resolution binding site and vice versa. Structural
data is very limited, so we need to be able to take advantage of as much as possible

IO
ANNA KALV

ARI

 96

4.3.2.1 A real use-case scenario driven by experimental evidence

Driven by the work of Olsvik et al. (Olsvik et al. 2015), which showed that FYCO1 has
preference for LC3A and LC3B over GABARAP, we will be using data generated from our
docking experiments in an attempt to examine whether we will be able to highlight this
preference.

4.3.2.1.1 Forming a MySQL query to fetch the FYCO1 docking scores

The first step was to retrieve the docking scores of pre-ran docking experiments of the
FYCO1 functional LIR-motif (AVFDII) to the binding site of MAPL1LC3 (MAP1LC3A,
MAP1LC3B, MAP1LC3C) and GABARAP structures. The corresponding query is depicted
in Figure 24.

Figure 24. MySQL query snippet for the retrieval of FYCO1/Atg8 docking scores.
Conformation=1 restricts the results to only the top conformations, lir_acc corresponds to an integer number which is the
accession of a LIR-motif in the database where lir_acc=95 in the lir_acc of FYCO1 functional LIR-motif AVFDII. Filtering
of the receptors by limiting the results strictly to MAP1LC3 and GABARAP only is achieved with lines 10-11.

The query in Figure 24, fetches all top docking scores (conformation=1) of FYCO1
functional LIR-motif AVFDII ran using FRODOCK v.2.0 (line 8). Data retrieval requires
joint information from 4 iLIR3D database tables: receptor, sars_lir, sars_lir_3d and

IO
ANNA KALV

ARI

 97

experiment based on receptor accession (rec_acc), 3DLIR accession (lir_3d_acc) and LIR-
motif accession (lir_acc), which resulted in a total of 45 entries. Strict filtering to MAP1LC3
and GABARAP only is done with the help of lines 10 and 11, where ‘<>’ denotes that the
receptor type (rec_type) should not be equal to ‘Atg8’ nor ‘GABARAPL1’. Simple grouping
of the results is done by ordering the query outcome based on receptor type (rec_type).

The number of records retrieved per receptor are as follows:

● GABARAP: 5 entries
● MAP1LC3A: 5 entries
● MAP1LC3B: 30 entries
● MAP1LC3C: 5 entries

4.3.2.1.2 Assessing the docking results

The boxplot representation of the distributions of FYCO1 3DLIR docking scores against the
4 “receptors” GABARAP and MAP1LC3A-C (Figure 25) shows a preference towards the
MAP1LC3 type, a result which is in agreement with work of Olsvik and colleagues (Olsvik
et al. 2015). Further into details the computed median values of the docking scores were
800.31, 1170.81, 1064.06 and 1092.36 respectively and pairwise Wilcoxon rank sum tests
yielded significant differences between the GABARAP and LC3 “receptors” (p<0.01). This
result showcases how powerful such a resource can be and suggests the scores of functional
3DLIR peptides could potentially reveal Atg8 homolog preference.

It would be very interesting to investigate whether we can discriminate between functional
LIR-motifs via docking experiments, either by docking score comparison to template
structures or visual inspection of the formed complex using visualisation tools like PyMOL
(https://pymol.org/2/) (DELANO & L 2002) or UCSF Chimera
(http://www.cgl.ucsf.edu/chimera/) (Pettersen et al. 2004). In in the latter case an expert
curator/scientist would be looking for correct binding LIR-motif residues to the 2
hydrophobic pockets of the proteins of the Atg8 family.

IO
ANNA KALV

ARI

 98

Figure 25. Boxplot representation of the distributions of scores of FYCO1 peptides docked against the
Atg8 family.
FYCO1 peptides were docked against proteins of the Atg8 family, specifically GABARAP (N=5), LC3A (N=5), LC3B
(N=30) and LC3C (N=5). Center lines show the medians; box limits indicate the 25th and 75th percentiles as determined
by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers are represented
by dots. Plot created using BoxPlotR (http://shiny.chemgrid.org/boxplotr/).

4.3.3 A comprehensive set of experiments

Following the docking of the template structures, we designed and conducted a
comprehensive series of protein-protein experiments using the datasets mentioned in the data
section.

The experiments involved the docking of all the ligands in the following list with each and
every one of the receptors isolated from the template structures. The reason why we use
those in the experiments is because we can compute the exact coordinates of the binding site
from the interface of the interaction with the native 3DLIR. In addition to the calculation of
the grid, those receptors are also in the correct conformation to and ready to receive a binding
partner.

The experiments we conducted are the following:

IO
ANNA KALV

ARI

 99

1. Non-native verified LIR motifs: In this set of experiments we extracted as many
verified LIR peptides available from the structures we downloaded and we docked
those with the template receptors at the designated binding site

2. Unverified LIR motifs from native and non-native structures: This set of experiment
aimed at producing a set of scores of non-functional LIRs to get a new range of
docking scores of peptides that should not interact with the Atg8 family

3. Randomly selected peptides (decoy set): This will allow us to compare the results of
docking experiments performed with peptides extracted from proteins known to be
involved in autophagy, with the scores resulting from docking random peptides
extracted from a collection of human proteins from diverse biological processes

4. 3DLIRs from non-autophagy proteins: With these experiments we wanted to test
whether LIR peptides matching the sequences in Table 1, would produce the same
results as the ones in the templates

These docking experiments resulted in >100,000 samples that took weeks of computations
to complete. In order to make these results useful to the scientific community we developed
a relational database which described in detail in the following section.

4.3.4 Availability

The iLIR3D database is currently available as a MySQL dump that can be provided upon
user request. We aim to make it more openly available to the scientific community after
publishing initial analyses on this dataset. An instance of the database can be created within
seconds following a creation of a new MySQL schema using the MySQL client CLI.
Provision of the MySQL statements to build up an empty schema can also be provided, for
users who want to use the schema to store their own data.

4.4 Conclusion

In this last chapter we attempted to “give form” to our collection of LIR-motifs by exploring
the 3D world. We first discussed about the steps we took towards creating a structural dataset
that would allow us to obtain a better understanding of protein-protein interactions between

IO
ANNA KALV

ARI

 100

selective autophagy receptor and adaptor proteins and the proteins of the Atg8 family. A
process that revealed many issues afflicting this area, one of which is relatively limited
availability of structural data compared to a great abundance of sequence data, which
nevertheless resulted in two powerful outcomes:

1. A re-usable collection of Atg8 “receptors” for “virtual screening” experiments in
autophagy

2. iLIR3D: A MySQL database that scientists can use to answer autophagy related
biological questions

A straightforward application of the iLIR3D database would be to devise rules for LIR-motif
specificities towards different Atg8/LC3/GAPARAP homologs. In fact, recent data (Rogov
et al. 2017) can provide a nice ground truth dataset for predicting GABARAP versus LC3
specificity. The iLIR3D database (or its possible expansions) could be exploited to
generalize to different types of specificity or even to predict interactions in heterologous
systems. Preliminary results in line of with these expectations, is the FYCO1 preference
towards the MAP1LC3 homologs the Atg8 family we showed using pre-ran docking
experiments from the iLIR3D database. Our outcome was in also agreement with the
experimental work of Olsvik and colleagues (Olsvik et al. 2015) showing preference of
FYCO1 on the LC3 type, which makes the power iLIR3D even more apparent.

One important limitation of our methods that is very crucial to mention is that FRODOCK
is a tool that performs rigid-body docking. The problem with this approach is that torsion
angles, bond angles and bond lengths of the participating molecules do not change during
the formation of the complex. This means that it is highly probable for a genuine 3DLIR to
be misclassified if it is not initially in a 3D conformation that favours interaction with the
binding site of the Atg8 proteins. Although a first taste of our results with the preceding
examples shows that this may work, a more thorough investigation is required in order to
confidently say whether rigid-body docking is sufficient or not. Perhaps a better solution to
this would be the transitioning to flexible protein-protein docking (usually coming at a higher
computational cost) as future work, that would also reflect the disorder to order nature of the
proteins involved in selective macroautophagy.

Additional future activities to expand this line of research could also include:

IO
ANNA KALV

ARI

 101

- Model peptides with post-translational modifications, especially phosphorylation
which is suspected to be important when within or in the proximity of LIR-motifs
((Birgisdottir et al. 2013); also important in other SLIM-mediated interactions)

- Build models of characterized Atg8/LC3/GABARAP proteins from other (model)
species using comparative modeling or threading techniques. Execute the pipeline
and populate the database.

- Enable incorporation of data stemming from molecular dynamics simulations.

Diverting from protein-protein docking, a recently published resource called Autophagic
Compound Database (Deng et al. 2018), which makes autophagy effective compounds
publicly available, along with useful data such as functionality, pathways, binding partners
etc, hints another future direction of this research area. Although this resource does not seem
very user friendly at its current state, long standing titans like CHEMBL (Gaulton et al. 2012;
Gaulton et al. 2017) - a manually curated chemical database of bioactive molecules with
drug-like properties - could constitute a potential resource in search of good chemical
compound candidates. In such case we could re-use our current set of Atg8 “receptors” in
virtual screening experiments, to looking for possible targets that could treat autophagy
associated diseases. A broadly used and very efficient software in molecular docking that
we also used in previous projects is Autodock Vina (Trott & Olson 2010).

Finally, as in this chapter we are discussing about molecular interactions, another aspect that
would be very interesting to explore is the interaction of the proteins of the autophagic
machinery with regulatory elements such as non-coding RNAs. In a pre-print released by
Horos and colleagues showed evidence of such interaction of the the Vault RNA with the
Zinc finger of p62 (Horos et al. 2017), suggesting regulation of autophagy by non-coding
RNAs. A very intriguing finding and another potential target for the development of
treatments to autophagy related diseases (Amort et al. 2015).
 IO

ANNA KALV
ARI

5 Discussion and Future Goals

Even though this research field has been around for a couple of decades, our understanding
of the mechanics and the dynamics of this biological process is still at its infancy with many
different paths to be explored. Speaking of which, Richard S. Marshall and Richard D.
Vierstra in their very recent review in Plant Biology catalogued at least 7 different types of
selective autophagy including mitophagy, chlorophagy, xenophagy, pexophagy and many
others (Marshall & Vierstra 2018).

The pioneering works of Pankiv (Pankiv et al. 2007), Inchimura (Ichimura et al. 2008), Noda
(Noda et al. 2008; Noda et al. 2010), Alemu and colleagues (Alemu et al. 2012) were pivotal
for the definitions and characterizations of the AIM/LIR-motifs, which paved the way for
the development and establishment of computational approaches for the in-silico
identification of novel key players of the autophagic machinery. A tool made available to
the scientific community is iLIR (Kalvari et al. 2014), which was also the first of its kind.
Since its release back in 2013, iLIR seems to have served more than 70 thousand user
queries, but also appears to have influenced and driven the development of analogous
resources such as the hfAIM (Xie et al. 2016). Although the two resources have significant
differences - xLIR composed majorly from human LIR-motifs, hfAIMs composed from
proteins involved in pexophagy - they both rely on regular expressions for the identification
of putative LIR-motifs, which are somewhat limiting. iLIR however, by incorporating
ANCHOR predictions and PSSMs manages to balance out the gap between sensitivity and
specificity, resulting in high balanced accuracy. Importantly, the iLIR server is built in such
a way that it does not provide ‘yes’-’no’ type of predictions, but rather reports all possibly
relevant biological information: apart from the highly sensitive (but also inspecific xLIR-
motifs), WxxL motifs are also reported, along with predicted ANCHORs and PSSM scores.
Additional contextual information (e.g. the presence of specific PFAM domains or low
complexity regions) becomes also available to its end-users for making informative
decisions with regards to downstream experimental validation of specific LIR-motif
candidates.

Based on the methods developed for iLIR, batch processing of the complete proteomes of 8
model organisms lead to the development of a freely available database resource for the
provision of a collection of LIRCPs (Jacomin et al. 2016). A follow-up work which identified
putative LIRCPs in viral species, resulted in the development of a similar database specific

IO
ANNA KALV

ARI

 103

to viruses, namely iLIR@viral (Jacomin et al. 2017). It can be envisaged that, eventually, all
sequenced genomes or protein sequences available in sequence databases can be scanned
with iLIR (or its successors) and made available to the scientific community.

Driven by the fact that proteins of the autophagic apparatus are abundant in intrinsic disorder
regions (Mei et al. 2014) and based on our previous positive results with ANCHOR, we
consequently turned to intrinsic disorder data to see whether such information could further
enhance the power of our multi-scheme predictors. With data retrieved from MobiDB, we
employed a variety of algorithms in search for one that would best fit our data. Compared to
our previous results this work yielded even higher balanced accuracies, an outcome that was
further improved with the parametrization of the PSSM scores, revealing a PSSM sweetspot
at scores > 17.

Additional predicted features, such as secondary structure, surface accessibility and
amyloidogenicity have been tested as independent parameters for filtering LIR motif
prediction but without significant results (data not shown). However, we foresee that several
of these (and possibly other physicochemical) features could be incorporated into more
sophisticated techniques for discriminating functional LIR motifs. For example, as more
experimentally verified LIRCPs become available it can be envisaged that powerful machine
learning methods (e.g. deep learning artificial neural networks) could be recruited to boost
prediction performance.

To allow a different dynamic to our data, we diverted from sequence analysis and
transitioned to structural data. As we showcased with the example of FYCO1 preference of
MAP1LC3 proteins of the Atg8 family, which is backed up by the experimental work of
Olsvik and colleagues (Olsvik et al. 2015), such data could potentially enable the scientific
community to give answers to biological questions that sequence data fail to capture. For
instance, in their recent work Rogov et al (Rogov et al. 2017) pinpointed the preference of
autophagy receptor and adaptor proteins toward the GABARAP Atg8 homologs and in
addition to the previously defined AIM and LIR-motifs, introduced for the first time the
GABARAP Interacting Motifs (GIMs). It would be very intriguing to examine whether our
data could be used to discriminate autophagy proteins based on their Atg8 preference.

Moving on to further structural aspects of the selective autophagy receptor and adaptor
proteins and their interactions with Atg8 homologs, the recently determined structure of
TRIM5α in complex with LC3B (Keown et al. 2018) provided fresh insights to features that

IO
ANNA KALV

ARI

 104

we previously eluded. In contrast to the conventional intermolecular parallel β-strand
interaction between the LIR-motifs and the Atg8 homologs demonstrated so far, these
proteins bind to the Atg8 proteins via an α-helix of their coiled coil domain (Mandell et al.
2014). It is anticipated that such proteins will give rise to new research. For example, let’s
assume that we have a novel protein candidate that binds to an Atg8 homolog via an α-helix
with a presumably good docking score too. Before the existence of experimental evidence
to support this unorthodox interaction, a TRIM protein could be falsely discarded from a list
of positive samples. This suggests that we can expect more surprises in the years to come
and leaves the field open for many more discoveries.

Moreover, post-translational modifications (in particular phosphorylation) can be important
around (or within) LIR motifs. Thus, post-translational modification predictions could be
combined in the sequence-based prediction and/or incorporated in structural
modeling/peptide docking experiments.

Before closing we would like to make apparent that we are aiming to use the knowledge we
acquired from this project towards the development of novel and improved tools to better
serve the scientific community. For instance, our analysis on disorder data suggested that
multi-scheme predictor xLIR+A2|D|P17 to be the optimal for the most accurate
determination of functional LIR-motifs. A possible future improvement would be to fine
tune the iLIR web server to take into account intrinsic disorder and predict novel LIRCP
instances based on this new multi-scheme predictor. Another potential feature would be to
allow batch searches and even upgrade the iLIR web server with more modernized web
technologies e.g. AngularJS (https://angularjs.org/), Django framework
(https://www.djangoproject.com/).

We are currently working on expanding our existing LIRCP datasets with manual literature
curation (Kalvari and Chadjichristofi, currently underway), a work that may result in better
benchmarks, but also in the compilation of suitable datasets. We anticipate that the analysis
of a comprehensive dataset will demand utilization of more sophisticated methods e.g.
machine learning algorithms.

Finally, solely from personal interest it would be very intriguing to explore the world of
RNA-binding proteins (RBPs). In particular the interactions between the proteins of the
autophagic machinery and regulatory RNAs, non-coding RNAs. There is evidence showing
ncRNAs being recruited to phagophores and ending up to the lysosomes where they get

IO
ANNA KALV

ARI

 105

degraded (Frankel et al. 2017). Preliminary results from Horos and colleagues shed light on
the regulation of autophagy by non-coding RNAs, with the Vault RNA interacting with the
Zinc finger of p62 (Horos et al. 2017).

One interesting RNA-meets-autophagy topic to explore would be to take all known/predicted
LIRCPs from human (or other model species), catalog experimental and/or predicted
miRNA sites on the respective genes and see when/whether/which of these miRNA sites get
spliced out in alternatively spliced transcripts. Such data are sitting in existing resources and
waiting to be analysed. RNAcentral (The RNAcentral Constortium 2018) - the
comprehensive database of non-coding RNAs - currently combines non-coding RNA data
from 28 expert ncRNA databases constituting a very strong candidate from where we could
collect miRNAs, whereas an extensive set of human LIRCPs can be obtained from iLIR
database (Jacomin et al. 2016). Exciting times lie ahead.

IO
ANNA KALV

ARI

 106

6 References

Alemu, E.A. et al., 2012. ATG8 family proteins act as scaffolds for assembly of the ULK
complex: sequence requirements for LC3-interacting region (LIR) motifs. The Journal

of biological chemistry, 287(47), pp.39275–39290.

Amaravadi, R., Kimmelman, A.C. & White, E., 2016. Recent insights into the function of
autophagy in cancer. Genes & development, 30(17), pp.1913–1930.

Amort, M. et al., 2015. Expression of the vault RNA protects cells from undergoing
apoptosis. Nature communications, 6, p.7030.

Avin-Wittenberg, T. & Fernie, A.R., 2014. At long last: evidence for pexophagy in plants.
Molecular plant, 7(8), pp.1257–1260.

Babicki, Sasha, David Arndt, Ana Marcu, Yongjie Liang, Jason R. Grant, Adam
Maciejewski, and David S. Wishart. 2016. “Heatmapper: Web-Enabled Heat Mapping
for All.” Nucleic Acids Research 44 (W1): W147–53

Baldi, P. et al., 2000. Assessing the accuracy of prediction algorithms for classification: an
overview. Bioinformatics , 16(5), pp.412–424.

Behrends, C. et al., 2010. Network organization of the human autophagy system. Nature,
466(7302), pp.68–76.

Berman, H.M. et al., 2000. The Protein Data Bank. Nucleic acids research, 28(1), pp.235–
242.

Birgisdottir, Å.B., Lamark, T. & Johansen, T., 2013. The LIR motif - crucial for selective
autophagy. Journal of cell science, 126(Pt 15), pp.3237–3247.

Blast, G., 1997. PSI-BLAST: a new generation of protein database search programs
Altschul. Stephen F, pp.3389–3402.

Boyle, K.B. & Randow, F., 2013. The role of “eat-me” signals and autophagy cargo
receptors in innate immunity. Current opinion in microbiology, 16(3), pp.339–348.

Darling, A.L. & Uversky, V.N., 2018. Intrinsic Disorder and Posttranslational
Modifications: The Darker Side of the Biological Dark Matter. Frontiers in genetics, 9,
p.158.

Davey, N.E. et al., 2012. Attributes of short linear motifs. Molecular bioSystems, 8(1),

IO
ANNA KALV

ARI

 107

pp.268–281.

Degenhardt, K. et al., 2006. Autophagy promotes tumor cell survival and restricts necrosis,
inflammation, and tumorigenesis. Cancer cell, 10(1), pp.51–64.

DELANO & L, W., 2002. The PyMOL Molecular Graphics System. http://www.pymol.org.
Available at: https://ci.nii.ac.jp/naid/10020095229/ [Accessed November 12, 2018].

Deng, Y. et al., 2018. Autophagic compound database: A resource connecting autophagy-
modulating compounds, their potential targets and relevant diseases. Cell proliferation,
51(3), p.e12403.

Derbyshire, Dean J., Balaku P. Basu, Louise C. Serpell, Woo S. Joo, Takayasu Date,
Kuniyoshi Iwabuchi, and Aidan J. Doherty. 2002. “Crystal Structure of Human 53BP1
BRCT Domains Bound to p53 Tumour Suppressor.” The EMBO Journal 21 (14): 3863–
72.

Dyson, H.J. & Wright, P.E., 2005. Intrinsically unstructured proteins and their functions.
Nature reviews. Molecular cell biology, 6(3), pp.197–208.

Fotin, A. et al., 2004. Structure of an auxilin-bound clathrin coat and its implications for the
mechanism of uncoating. Nature, 432(7017), pp.649–653.

Frankel, L.B., Lubas, M. & Lund, A.H., 2017. Emerging connections between RNA and
autophagy. Autophagy, 13(1), pp.3–23.

Gao, C. et al., 2010. Autophagy negatively regulates Wnt signalling by promoting
Dishevelled degradation. Nature cell biology, 12(8), pp.781–790.

Garzon, J.I. et al., 2009. FRODOCK: a new approach for fast rotational protein-protein
docking. Bioinformatics , 25(19), pp.2544–2551.

Gaulton, A. et al., 2012. ChEMBL: a large-scale bioactivity database for drug discovery.
Nucleic acids research, 40(Database issue), pp.D1100–7.

Gaulton, A. et al., 2017. The ChEMBL database in 2017. Nucleic acids research, 45(D1),
pp.D945–D954.

Hanson, J. et al., 2017. Improving protein disorder prediction by deep bidirectional long
short-term memory recurrent neural networks. Bioinformatics , 33(5), pp.685–692.

Horos, R. et al., 2017. The small non-coding vault RNA1-1 acts as a riboregulator of

IO
ANNA KALV

ARI

 108

autophagy. bioRxiv, p.177949. Available at:
https://www.biorxiv.org/content/early/2017/08/18/177949 [Accessed November 4,
2018].

Ichimura, Y. et al., 2008. Structural basis for sorting mechanism of p62 in selective
autophagy. The Journal of biological chemistry, 283(33), pp.22847–22857.

Itoh, T. et al., 2011. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates
autophagosomal maturation. The Journal of cell biology, 192(5), pp.839–853.

Jacomin, A.-C. et al., 2016. iLIR database: A web resource for LIR motif-containing proteins
in eukaryotes. Autophagy, 12(10), pp.1945–1953.

Jacomin, A.-C. et al., 2017. iLIR@viral: A web resource for LIR motif-containing proteins
in viruses. Autophagy, 13(10), pp.1782–1789.

Jiang, S., Wells, C.D. & Roach, P.J., 2011. Starch-binding domain-containing protein 1
(Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif
(AIM) in Stbd1 required for interaction with GABARAPL1. Biochemical and

biophysical research communications, 413(3), pp.420–425.

Johansen, T. & Lamark, T., 2011. Selective autophagy mediated by autophagic adapter
proteins. Autophagy, 7(3), pp.279–296.

Kalvari, I. et al., 2014. iLIR: A web resource for prediction of Atg8-family interacting
proteins. Autophagy, 10(5), pp.913–925.

Karlin, S., and S. F. Altschul. 1990. “Methods for Assessing the Statistical Significance of
Molecular Sequence Features by Using General Scoring Schemes.” Proceedings of the

National Academy of Sciences of the United States of America 87 (6): 2264–68.

Kelly, J.W., 1996. Alternative conformations of amyloidogenic proteins govern their
behavior. Current opinion in structural biology, 6(1), pp.11–17.

Keown, J.R. et al., 2018. A helical LC3-interacting region mediates the interaction between
the retroviral restriction factor Trim5α and mammalian autophagy-related ATG8
proteins. The Journal of biological chemistry, 293(47), pp.18378–18386.

Kirkin, V. et al., 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated
substrates. Molecular cell, 33(4), pp.505–516.

Knodler, L.A. & Celli, J., 2011. Eating the strangers within: host control of intracellular

IO
ANNA KALV

ARI

 109

bacteria via xenophagy. Cellular microbiology, 13(9), pp.1319–1327.

Kraft, C. et al., 2012. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8
regulates autophagy. The EMBO journal, 31(18), pp.3691–3703.

Krissinel, E. & Henrick, K., 2007. Inference of macromolecular assemblies from crystalline
state. Journal of molecular biology, 372(3), pp.774–797.

Krystkowiak, I., Manguy, J. & Davey, N.E., 2018. PSSMSearch: a server for modeling,
visualization, proteome-wide discovery and annotation of protein motif specificity
determinants. Nucleic acids research, 46(W1), pp.W235–W241.

Lamark, T. & Johansen, T., 2012. Aggrephagy: selective disposal of protein aggregates by
macroautophagy. International journal of cell biology, 2012, p.736905.

Lamark, T., Svenning, S. & Johansen, T., 2017. Regulation of selective autophagy: the
p62/SQSTM1 paradigm. Essays in biochemistry, 61(6), pp.609–624.

Letunic, I., Doerks, T. & Bork, P., 2012. SMART 7: recent updates to the protein domain
annotation resource. Nucleic acids research, 40(Database issue), pp.D302–5.

Linding, R., Jensen, L.J., et al., 2003. Protein disorder prediction: implications for structural
proteomics. Structure , 11(11), pp.1453–1459.

Linding, R., Russell, R.B., et al., 2003. GlobPlot: Exploring protein sequences for
globularity and disorder. Nucleic acids research, 31(13), pp.3701–3708.

Lipton, Z.C., Elkan, C. & Naryanaswamy, B., 2014. Optimal Thresholding of Classifiers to
Maximize F1 Measure. Machine learning and knowledge discovery in databases :

European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference),
8725, pp.225–239.

Liu, L. et al., 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-
induced mitophagy in mammalian cells. Nature cell biology, 14(2), pp.177–185.

Lynch-Day, M.A. et al., 2012. The role of autophagy in Parkinson’s disease. Cold Spring

Harbor perspectives in medicine, 2(4), p.a009357.

Mandell, M.A. et al., 2014. TRIM proteins regulate autophagy: TRIM5 is a selective
autophagy receptor mediating HIV-1 restriction. Autophagy, 10(12), pp.2387–2388.

Markstedt, O., 2017. Kubernetes as an approach for solving bioinformatic problems.

IO
ANNA KALV

ARI

 110

Available at: https://uu.diva-portal.org/smash/get/diva2:1145028/FULLTEXT01.pdf.

Marshall, R.S. & Vierstra, R.D., 2018. Autophagy: The Master of Bulk and Selective
Recycling. Annual review of plant biology, 69, pp.173–208.

Martinet, W. et al., 2007. Autophagy in cardiovascular disease. Trends in molecular

medicine, 13(11), pp.482–491.

McEwan, D.G. et al., 2015. PLEKHM1 regulates autophagosome-lysosome fusion through
HOPS complex and LC3/GABARAP proteins. Molecular cell, 57(1), pp.39–54.

Mei, Y. et al., 2014. Intrinsically disordered regions in autophagy proteins. Proteins, 82(4),
pp.565–578.

Mei, Y. et al., 2015. Autophagy and oxidative stress in cardiovascular diseases. Biochimica

et biophysica acta, 1852(2), pp.243–251.

Meireles, L.M.C., Dömling, A.S. & Camacho, C.J., 2010. ANCHOR: a web server and
database for analysis of protein-protein interaction binding pockets for drug discovery.
Nucleic acids research, 38(Web Server issue), pp.W407–11.

Mészáros, B., Erdos, G. & Dosztányi, Z., 2018. IUPred2A: context-dependent prediction of
protein disorder as a function of redox state and protein binding. Nucleic acids research,
46(W1), pp.W329–W337.

Mezei, M., 1998. Chameleon sequences in the PDB. Protein engineering, 11(6), pp.411–
414.

Miskei, M., Antal, C. & Fuxreiter, M., 2017. FuzDB: database of fuzzy complexes, a tool to
develop stochastic structure-function relationships for protein complexes and higher-
order assemblies. Nucleic acids research, 45(D1), pp.D228–D235.

Mizushima, N. & Levine, B., 2010. Autophagy in mammalian development and
differentiation. Nature cell biology, 12(9), pp.823–830.

Mizushima, N., 2007. Autophagy: process and function. Genes & development, 21(22),
pp.2861–2873.

Mohrlüder, J., Hoffmann, Y., et al., 2007. Identification of clathrin heavy chain as a direct
interaction partner for the gamma-aminobutyric acid type A receptor associated protein.
Biochemistry, 46(50), pp.14537–14543.

IO
ANNA KALV

ARI

 111

Mohrlüder, J., Stangler, T., et al., 2007. Identification of calreticulin as a ligand of
GABARAP by phage display screening of a peptide library. The FEBS journal, 274(21),
pp.5543–5555.

Moreno, M.-L. et al., 2018. Autophagy Dysfunction and Oxidative Stress, Two Related
Mechanisms Implicated in Retinitis Pigmentosa. Frontiers in physiology, 9, p.1008.

Mukhopadhyay, S. et al., 2014. Autophagy and apoptosis: where do they meet? Apoptosis:

an international journal on programmed cell death, 19(4), pp.555–566.

Nakatogawa, H. et al., 2012. The autophagy-related protein kinase Atg1 interacts with the
ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate
autophagosome formation. The Journal of biological chemistry, 287(34), pp.28503–
28507.

Necci, M. et al., 2017. MobiDB-lite: fast and highly specific consensus prediction of intrinsic
disorder in proteins. Bioinformatics , 33(9), pp.1402–1404.

Nevill-Manning, C.G., Wu, T.D. & Brutlag, D.L., 1998. Highly specific protein sequence
motifs for genome analysis. Proceedings of the National Academy of Sciences of the

United States of America, 95(11), pp.5865–5871.

Newman, A.C. et al., 2012. TBK1 kinase addiction in lung cancer cells is mediated via
autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling. PloS one, 7(11),
p.e50672.

Noda, N.N. et al., 2008. Structural basis of target recognition by Atg8/LC3 during selective
autophagy. Genes to cells: devoted to molecular & cellular mechanisms, 13(12),
pp.1211–1218.

Noda, N.N., Ohsumi, Y. & Inagaki, F., 2010. Atg8-family interacting motif crucial for
selective autophagy. FEBS letters, 584(7), pp.1379–1385.

Novak, I. et al., 2010. Nix is a selective autophagy receptor for mitochondrial clearance.
EMBO reports, 11(1), pp.45–51.

Novella, J.A. et al., 2018. Container-based bioinformatics with Pachyderm. Bioinformatics

. Available at: http://dx.doi.org/10.1093/bioinformatics/bty699.

O’Boyle, N.M. et al., 2011. Open Babel: An open chemical toolbox. Journal of

cheminformatics, 3, p.33.

IO
ANNA KALV

ARI

 112

Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y., 2009. Mitochondria-anchored receptor
Atg32 mediates degradation of mitochondria via selective autophagy. Developmental

cell, 17(1), pp.87–97.

Oldfield, C.J. & Dunker, A.K., 2014. Intrinsically disordered proteins and intrinsically
disordered protein regions. Annual review of biochemistry, 83, pp.553–584.

Olsvik, H.L. et al., 2015. FYCO1 Contains a C-terminally Extended, LC3A/B-preferring
LC3-interacting Region (LIR) Motif Required for Efficient Maturation of
Autophagosomes during Basal Autophagy. The Journal of biological chemistry,
290(49), pp.29361–29374.

Onodera, J. & Ohsumi, Y., 2005. Autophagy is required for maintenance of amino acid levels
and protein synthesis under nitrogen starvation. The Journal of biological chemistry,
280(36), pp.31582–31586.

Palikaras, K., Lionaki, E. & Tavernarakis, N., 2018. Mechanisms of mitophagy in cellular
homeostasis, physiology and pathology. Nature cell biology, 20(9), pp.1013–1022.

Pankiv, S. et al., 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of
ubiquitinated protein aggregates by autophagy. The Journal of biological chemistry,
282(33), pp.24131–24145.

Pankiv, S. et al., 2010. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate
microtubule plus end-directed vesicle transport. The Journal of cell biology, 188(2),
pp.253–269.

Parzych, K.R. & Klionsky, D.J., 2014. An overview of autophagy: morphology, mechanism,
and regulation. Antioxidants & redox signaling, 20(3), pp.460–473.

Peng, K. et al., 2006. Length-dependent prediction of protein intrinsic disorder. BMC

bioinformatics, 7, p.208.

Pettersen, E.F. et al., 2004. UCSF Chimera--a visualization system for exploratory research
and analysis. Journal of computational chemistry, 25(13), pp.1605–1612.

Piovesan, D. et al., 2017. DisProt 7.0: a major update of the database of disordered proteins.
Nucleic acids research, 45(D1), pp.D219–D227.

Piovesan, D. et al., 2018. MobiDB 3.0: more annotations for intrinsic disorder,
conformational diversity and interactions in proteins. Nucleic acids research, 46(D1),

IO
ANNA KALV

ARI

 113

pp.D471–D476.

Popovic, D. et al., 2012. Rab GTPase-activating proteins in autophagy: regulation of
endocytic and autophagy pathways by direct binding to human ATG8 modifiers.
Molecular and cellular biology, 32(9), pp.1733–1744.

Promponas, V.J. et al., 2000. CAST: an iterative algorithm for the complexity analysis of
sequence tracts. Bioinformatics , 16(10), pp.915–922.

Punta, M. et al., 2012. The Pfam protein families database. Nucleic acids research,
40(Database issue), pp.D290–301.

Qu, X. et al., 2007. Autophagy gene-dependent clearance of apoptotic cells during
embryonic development. Cell, 128(5), pp.931–946.

Racanelli, A.C. et al., 2018. Autophagy and inflammation in chronic respiratory disease.
Autophagy, 14(2), pp.221–232.

Ramírez-Aportela, E., López-Blanco, J.R. & Chacón, P., 2016. FRODOCK 2.0: fast protein-
protein docking server. Bioinformatics , 32(15), pp.2386–2388.

Rocchi, A. & He, C., 2015. Emerging roles of autophagy in metabolism and metabolic
disorders. Frontiers of biology, 10(2), pp.154–164.

Rogov, V. et al., 2014. Interactions between autophagy receptors and ubiquitin-like proteins
form the molecular basis for selective autophagy. Molecular cell, 53(2), pp.167–178.

Rogov, V.V. et al., 2017. Structural and functional analysis of the GABARAP interaction
motif (GIM). EMBO reports, p.e201643587.

Rose, P.W. et al., 2015. The RCSB Protein Data Bank: views of structural biology for basic
and applied research and education. Nucleic acids research, 43(Database issue),
pp.D345–56.

Rowell, John P., Kathryn L. Simpson, Katherine Stott, Matthew Watson, and Jean O.
Thomas. 2012. “HMGB1-Facilitated p53 DNA Binding Occurs via HMG-Box/p53
Transactivation Domain Interaction, Regulated by the Acidic Tail.” Structure 20 (12):
2014–24.

Rubinsztein, D.C., Mariño, G. & Kroemer, G., 2011. Autophagy and aging. Cell, 146(5),
pp.682–695.

IO
ANNA KALV

ARI

 114

Ryter, S.W. & Choi, A.M.K., 2015. Autophagy in lung disease pathogenesis and
therapeutics. Redox biology, 4, pp.215–225.

Sancho, A. et al., 2012. DOR/Tp53inp2 and Tp53inp1 constitute a metazoan gene family
encoding dual regulators of autophagy and transcription. PloS one, 7(3), p.e34034.

Sandilands, E. et al., 2011. Autophagic targeting of Src promotes cancer cell survival
following reduced FAK signalling. Nature cell biology, 14(1), pp.51–60.

Santana-Codina, N., Mancias, J. & Kimmelman, A.C., 2017. The Role of Autophagy in
Cancer. Annual Review of Cancer Biology, 1(1), pp.19–39.

Satoo, K. et al., 2009. The structure of Atg4B-LC3 complex reveals the mechanism of LC3
processing and delipidation during autophagy. The EMBO journal, 28(9), pp.1341–
1350.

Schad, E. et al., 2018. DIBS: a repository of disordered binding sites mediating interactions
with ordered proteins. Bioinformatics , 34(3), pp.535–537.

Schreiber, A. & Peter, M., 2014. Substrate recognition in selective autophagy and the
ubiquitin-proteasome system. Biochimica et biophysica acta, 1843(1), pp.163–181.

Scott, R.C., Schuldiner, O. & Neufeld, T.P., 2004. Role and regulation of starvation-induced
autophagy in the Drosophila fat body. Developmental cell, 7(2), pp.167–178.

Shpilka, T. et al., 2011. Atg8: an autophagy-related ubiquitin-like protein family. Genome

biology, 12(7), p.226.

Singh, A.P., Mishra, S. & Jabin, S., 2018. Sequence based prediction of enhancer regions
from DNA random walk. Scientific reports, 8(1), p.15912.

Skytte Rasmussen, M. et al., 2017. ATG4B contains a C-terminal LIR motif important for
binding and efficient cleavage of mammalian orthologs of yeast Atg8. Autophagy,
13(5), pp.834–853.

Stadel, D. et al., 2015. TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER
Export. Molecular cell, 60(1), pp.89–104.

Stolz, A., Ernst, A. & Dikic, I., 2014. Cargo recognition and trafficking in selective
autophagy. Nature cell biology, 16(6), pp.495–501.

Suad, Oded, Haim Rozenberg, Ran Brosh, Yael Diskin-Posner, Naama Kessler, Linda J. W.

IO
ANNA KALV

ARI

 115

Shimon, Felix Frolow, Atar Liran, Varda Rotter, and Zippora Shakked. 2009.
“Structural Basis of Restoring Sequence-Specific DNA Binding and Transactivation to
Mutant p53 by Suppressor Mutations.” Journal of Molecular Biology 385 (1): 249–65.

Svenning, S. et al., 2011. Plant NBR1 is a selective autophagy substrate and a functional
hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy,
7(9), pp.993–1010.

The RNAcentral Constortium, 2018. RNAcentral: a hub of information for non-coding RNA
sequences. Nucleic acids research. Available at:
http://dx.doi.org/10.1093/nar/gky1034.

The UniProt Consortium, 2018. UniProt: the universal protein knowledgebase. Nucleic acids

research. Available at: http://dx.doi.org/10.1093/nar/gky092.

Trott, O. & Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of

computational chemistry, 31(2), pp.455–461.

Tsolis, A.C. et al., 2013. A consensus method for the prediction of “aggregation-prone”
peptides in globular proteins. PloS one, 8(1), p.e54175.

Uddin, M.S. et al., 2018. Autophagy and Alzheimer’s Disease: From Molecular Mechanisms
to Therapeutic Implications. Frontiers in aging neuroscience, 10, p.04.

Ueno, T. & Komatsu, M., 2017. Autophagy in the liver: functions in health and disease.
Nature reviews. Gastroenterology & hepatology, 14(3), pp.170–184.

von Muhlinen, N. et al., 2012. LC3C, bound selectively by a noncanonical LIR motif in
NDP52, is required for antibacterial autophagy. Molecular cell, 48(3), pp.329–342.

Walsh, I. et al., 2012. ESpritz: accurate and fast prediction of protein disorder.
Bioinformatics , 28(4), pp.503–509.

Wang, B. et al., 2016. Dysregulation of autophagy and mitochondrial function in Parkinson’s
disease. Translational neurodegeneration, 5, p.19.

Wei, L. et al., 2018. Comparative analysis and prediction of quorum-sensing peptides using
feature representation learning and machine learning algorithms. Briefings in

bioinformatics. Available at: http://dx.doi.org/10.1093/bib/bby107.

White, Eileen, Janice M. Mehnert, and Chang S. Chan. 2015. “Autophagy, Metabolism, and

IO
ANNA KALV

ARI

 116

Cancer.” Clinical Cancer Research: An Official Journal of the American Association

for Cancer Research 21 (22): 5037–46.

Wild, P. et al., 2011. Phosphorylation of the autophagy receptor optineurin restricts
Salmonella growth. Science, 333(6039), pp.228–233.

Wirawan, Ellen, Tom Vanden Berghe, Saskia Lippens, Patrizia Agostinis, and Peter
Vandenabeele. 2012. “Autophagy: For Better or for Worse.” Cell Research 22 (1): 43–
61.

Wright, P.E. & Dyson, H.J., 1999. Intrinsically unstructured proteins: re-assessing the
protein structure-function paradigm. Journal of molecular biology, 293(2), pp.321–331.

Wright, P.E. & Dyson, H.J., 2015. Intrinsically disordered proteins in cellular signalling and
regulation. Nature reviews. Molecular cell biology, 16(1), pp.18–29.

Xie, Q. et al., 2016. hfAIM: A reliable bioinformatics approach for in silico genome-wide
identification of autophagy-associated Atg8-interacting motifs in various organisms.
Autophagy, 12(5), pp.876–887.

Yamaguchi, M. et al., 2010. Autophagy-related protein 8 (Atg8) family interacting motif in
Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole
targeting pathway. The Journal of biological chemistry, 285(38), pp.29599–29607.

Yang, Z.R. et al., 2005. RONN: the bio-basis function neural network technique applied to
the detection of natively disordered regions in proteins. Bioinformatics , 21(16),
pp.3369–3376.

Yang, Zhifen, and Daniel J. Klionsky. 2009. “An Overview of the Molecular Mechanism of
Autophagy.” Current Topics in Microbiology and Immunology 335: 1–32.

Zaffagnini, G. & Martens, S., 2016. Mechanisms of Selective Autophagy. Journal of

molecular biology, 428(9 Pt A), pp.1714–1724.

Zaffagnini, G. et al., 2018. Phasing out the bad-How SQSTM1/p62 sequesters ubiquitinated
proteins for degradation by autophagy. Autophagy, 14(7), pp.1280–1282.

IO
ANNA KALV

ARI

 117

7 Supplement

UniProt
Accession UniProt ID PDB

ID #Chains Resolution
(Å) Method Function Template

C0H519 C0H519_PLAF7 4EOY 6 2.22 X-RAY
DIFFRACTION TRANSPORT PROTEIN Yes

O14641 DVL2_HUMAN 5SUZ 2 1.84 X-RAY
DIFFRACTION SIGNALING PROTEIN No

 3CBX 2 1.7 X-RAY
DIFFRACTION PROTEIN BINDING No

 2REY 1 1.55 X-RAY
DIFFRACTION GENE REGULATION No

 3CC0 3 1.75 X-RAY
DIFFRACTION PROTEIN BINDING No

 3CBY 2 1.5 X-RAY
DIFFRACTION PROTEIN BINDING No

 4WIP 3 2.69 X-RAY
DIFFRACTION SIGNALING PROTEIN No

 5LNP 4 1.99 X-RAY
DIFFRACTION SIGNALING PROTEIN No

 5SUY 4 1.88 X-RAY
DIFFRACTION SIGNALING PROTEIN No

 3CBZ 1 1.38 X-RAY
DIFFRACTION PROTEIN BINDING No

O75143 ATG13_HUMAN 3WAO 4 2.6 X-RAY
DIFFRACTION APOPTOSIS No

 5C50 2 1.63 X-RAY
DIFFRACTION PROTEIN BINDING No

 3WAP 1 3.1 X-RAY
DIFFRACTION PROTEIN TRANSPORT No

 3WAN 2 1.77 X-RAY
DIFFRACTION PROTEIN BINDING No

O75385 ULK1_HUMAN 4WNP 4 1.88 X-RAY
DIFFRACTION

TRANSFERASE/TRANSFERASE
INHIBITOR No

 5CI7 1 1.74 X-RAY
DIFFRACTION

TRANSFERASE/TRANSFERASE
Inhibitor No

 4WNO 1 1.56 X-RAY
DIFFRACTION

TRANSFERASE/TRANSFERASE
Inhibitor No

O95352 ATG7_HUMAN 3VH2 1 3.3 X-RAY
DIFFRACTION METAL BINDING PROTEIN No

P22681 CBL_HUMAN 2K4D 1 N/A SOLUTION NMR Ligase No
 2Y1M 6 2.67 X-RAY

DIFFRACTION LIGASE No

 1B47 3 2.2 X-RAY
DIFFRACTION SIGNAL TRANSDUCTION No

 1YVH 2 2.05 X-RAY
DIFFRACTION

LIGASE,SIGNALING
PROTEIN,IMMUNE SYSTEM No

 3BUM 2 2 X-RAY
DIFFRACTION LIGASE No

 3BUW 4 1.45 X-RAY
DIFFRACTION LIGASE/SIGNALING PROTEIN No

 3OB2 2 2.1 X-RAY
DIFFRACTION Ligase/signaling Protein No

 4A4C 3 2.7 X-RAY
DIFFRACTION LIGASE/TRANSFERASE No

IO
ANNA KALV

ARI

 118

 2OO9 3 2.1 X-RAY
DIFFRACTION LIGASE No

 2Y1N 4 2 X-RAY
DIFFRACTION LIGASE/TRANSFERASE No

 2JUJ 1 N/A SOLUTION NMR LIGASE No

 3BUN 2 2 X-RAY
DIFFRACTION LIGASE/SIGNALING PROTEIN No

 4A49 2 2.21 X-RAY
DIFFRACTION LIGASE No

 2CBL 2 2.1 X-RAY
DIFFRACTION

COMPLEX (PROTO-
ONCOGENE/PEPTIDE) No

 3BUX 4 1.35 X-RAY
DIFFRACTION LIGASE/SIGNALING PROTEIN No

 3PLF 4 1.92 X-RAY
DIFFRACTION PROTEIN BINDING/LIGASE No

 4GPL 1 3 X-RAY
DIFFRACTION Ligase/ligase inhibitor No

 5J3X 6 2.82 X-RAY
DIFFRACTION LIGASE No

 1FBV 3 2.9 X-RAY
DIFFRACTION LIGASE No

 3BUO 4 2.6 X-RAY
DIFFRACTION LIGASE/SIGNALING PROTEIN No

 3OB1 2 2.2 X-RAY
DIFFRACTION Ligase/signaling Protein No

 4A4B 3 2.79 X-RAY
DIFFRACTION LIGASE/TRANSFERASE No

P27797 CALR_HUMAN 3POS 3 1.65 X-RAY
DIFFRACTION CHAPERONE No

 5LK5 10 2.3 X-RAY
DIFFRACTION calcium-binding protein No

 3DOW 2 2.3 X-RAY
DIFFRACTION PROTEIN TRANSPORT No

 3POW 1 1.55 X-RAY
DIFFRACTION CHAPERONE No

 3RG0 1 2.57 X-RAY
DIFFRACTION CHAPERONE No

P35193 Atg19_YEAST

5JGE 6 1.91 X-RAY
DIFFRACTION PROTEIN TRANSPORT No

2ZPN 8 2.7 X-RAY
DIFFRACTION PROTEIN TRANSPORT Yes

2KZB 1 N/A SOLUTION NMR PROTEIN TRANSPORT No

P35222 CTNB1_HUMAN 1JPW 6 2.5 X-RAY
DIFFRACTION CELL ADHESION No

 2G57 1 N/A SOLUTION NMR ONCOPROTEIN No
 3FQR 3 1.7 X-RAY

DIFFRACTION IMMUNE SYSTEM No

 3SL9 8 2.2 X-RAY
DIFFRACTION

SIGNALING PROTEIN,
PROTEIN BINDING No

 1G3J 4 2.1 X-RAY
DIFFRACTION TRANSCRIPTION No

 1TH1 4 2.5 X-RAY
DIFFRACTION

CELL ADHESION/ANTITUMOR
PROTEIN No

 3TX7 2 2.76 X-RAY
DIFFRACTION PROTEIN BINDING No

 1LUJ 2 2.5 X-RAY
DIFFRACTION STRUCTURAL PROTEIN No

IO
ANNA KALV

ARI

 119

 2GL7 6 2.6 X-RAY
DIFFRACTION TRANSCRIPTION No

 1QZ7 2 2.2 X-RAY
DIFFRACTION CELL ADHESION No

 2Z6H 1 2.2 X-RAY
DIFFRACTION CELL ADHESION No

 3SLA 5 2.5 X-RAY
DIFFRACTION SIGNALING PROTEIN No

 1JDH 2 1.9 X-RAY
DIFFRACTION TRANSCRIPTION No

 3FQN 3 1.65 X-RAY
DIFFRACTION IMMUNE SYSTEM No

 1P22 3 2.95 X-RAY
DIFFRACTION SIGNALING PROTEIN No

 4DJS 1 3.03 X-RAY
DIFFRACTION

SIGNALING
PROTEIN/INHIBITOR No

 1T08 3 2.1 X-RAY
DIFFRACTION cell adhesion/cell cycle No

 3DIW 4 2.1 X-RAY
DIFFRACTION

SIGNALING PROTEIN/CELL
ADHESION No

P40344 Atg3_YEAST 4GSL 4 2.7 X-RAY
DIFFRACTION PROTEIN TRANSPORT No

 2DYT 1 2.5 X-RAY
DIFFRACTION LIGASE No

 3T7G 4 2.08 X-RAY
DIFFRACTION LIGASE No

P40458 Atg32_YEAST 3VXW 2 3 X-RAY
DIFFRACTION PROTEIN TRANSPORT Yes

P41743 KPCI_HUMAN 5LI1 2 2 X-RAY
DIFFRACTION TRANSFERASE No

 3A8W 2 2.1 X-RAY
DIFFRACTION TRANSFERASE No

 5LI9 1 1.79 X-RAY
DIFFRACTION TRANSFERASE No

 1WMH 2 1.5 X-RAY
DIFFRACTION Transferase/CELL CYCLE No

 3A8X 2 2 X-RAY
DIFFRACTION TRANSFERASE No

 3ZH8 3 2.74 X-RAY
DIFFRACTION TRANSFERASE No

 1VD2 1 N/A SOLUTION NMR transferase No
 5LIH 4 3.25 X-RAY

DIFFRACTION TRANSFERASE No

 1ZRZ 1 3 X-RAY
DIFFRACTION TRANSFERASE No

P46934 NEDD4_HUMAN 4BE8 1 3 X-RAY
DIFFRACTION LIGASE No

 4N7F 2 1.1 X-RAY
DIFFRACTION PROTEIN BINDING No

 5C91 1 2.44 X-RAY
DIFFRACTION ligase/ligase inhibitor No

 5AHT 1 N/A SOLUTION NMR ISOMERASE No
 2KQ0 2 N/A SOLUTION NMR LIGASE No
 2XBF 1 2.5 X-RAY

DIFFRACTION LIGASE No
 4N7H 2 1.7 X-RAY

DIFFRACTION PROTEIN BINDING No

 2M3O 2 N/A SOLUTION NMR PEPTIDE BINDING
PROTEIN/PROTEIN BINDING No

IO
ANNA KALV

ARI

 120

 4BBN 3 2.51 X-RAY
DIFFRACTION LIGASE/SIGNALING PROTEIN No

 5C7J 4 3 X-RAY
DIFFRACTION LIGASE/SIGNALING PROTEIN No

 3B7Y 2 1.8 X-RAY
DIFFRACTION LIGASE No

 2KPZ 2 N/A SOLUTION NMR LIGASE No
 2XBB 4 2.68 X-RAY

DIFFRACTION LIGASE/PROTEIN BINDING No

Q00610 CLH1_HUMAN 3LVG 6 7.94 X-RAY
DIFFRACTION STRUCTURAL PROTEIN No

 1BPO 3 2.6 X-RAY
DIFFRACTION MEMBRANE PROTEIN No

 3LVH 6 9 X-RAY
DIFFRACTION STRUCTURAL PROTEIN No

 4G55 1 1.69 X-RAY
DIFFRACTION ENDOCYTOSIS No

 2XZG 1 1.7 X-RAY
DIFFRACTION ENDOCYTOSIS No

Q12292 ATG34_YEAST 2KZK 1 N/A SOLUTION NMR PROTEIN TRANSPORT No

Q12983 BNIP3_HUMAN 2KA2 2 N/A SOLUTION NMR MEMBRANE PROTEIN No

 2J5D 2 N/A SOLUTION NMR MEMBRANE PROTEIN No

 2KA1 2 N/A SOLUTION NMR MEMBRANE PROTEIN No

Q13043 STK4_HUMAN 2JO8 2 N/A SOLUTION NMR TRANSFERASE No
 3COM 2 2.2 X-RAY

DIFFRACTION TRANSFERASE No

 4NR2 8 2 X-RAY
DIFFRACTION Transferase No

Q13137 CACO2_HUMAN 4XKL 4 2.1 X-RAY
DIFFRACTION

PROTEIN BINDING/METAL
BINDING PROTEIN No

 2MXP 1 N/A SOLUTION NMR METAL BINDING PROTEIN No
 5AAQ 1 N/A SOLUTION NMR CALCIUM-BINDING PROTEIN No

 3VVW 2 2.5 X-RAY
DIFFRACTION PROTEIN TRANSPORT Yes

 4GXL 2 2.02 X-RAY
DIFFRACTION PROTEIN BINDING No

 3VVV 1 1.35 X-RAY
DIFFRACTION PROTEIN TRANSPORT No

 4HAN 4 2.55 X-RAY
DIFFRACTION SUGAR BINDING PROTEIN No

Q13188 STK3_HUMAN 5BRM 15 2.65 X-RAY
DIFFRACTION Transferase/Signaling Protein No

 5DH3 2 2.47 X-RAY
DIFFRACTION

TRANSFERASE/TRANSFERASE
INHIBITOR No

 3WWS 4 2.01 X-RAY
DIFFRACTION TRANSFERASE No

 4HKD 4 1.5 X-RAY
DIFFRACTION TRANSFERASE No

 4OH9 2 1.7 X-RAY
DIFFRACTION TRANSFERASE No

 4L0N 10 1.4 X-RAY
DIFFRACTION TRANSFERASE No

IO
ANNA KALV

ARI

 121

 4LG4 6 2.42 X-RAY
DIFFRACTION SIGNALING PROTEIN No

Q13501 SQSTM_HUMAN 4UF9 3 10.3 ELECTRON
MICROSCOPY SIGNALING PROTEIN No

 1Q02 1 N/A SOLUTION NMR PROTEIN BINDING No
 2JY8 1 N/A SOLUTION NMR PROTEIN BINDING No

 2K6Q 2 N/A SOLUTION NMR APOPTOSIS
INHIBITOR/APOPTOSIS Yes

 2KNV 2 N/A SOLUTION NMR PROTEIN BINDING No
 2K0B 1 N/A SOLUTION NMR SIGNALING PROTEIN No

 4MJS 24 2.5 X-RAY
DIFFRACTION

TRANSFERASE/PROTEIN
BINDING No

 4UF8 4 10.9 ELECTRON
MICROSCOPY SIGNALING PROTEIN No

 2JY7 1 N/A SOLUTION NMR PROTEIN BINDING No
 2ZJD 4 1.56 X-RAY

DIFFRACTION Apoptosis inhibitor/Apoptosis Yes

Q14596 NBR1_HUMAN 1WJ6 1 N/A SOLUTION NMR PROTEIN BINDING No
 2CP8 1 N/A SOLUTION NMR PROTEIN BINDING No
 2BKF 1 1.56 X-RAY

DIFFRACTION ZINC-FINGER PROTEIN No
 2MGW 1 N/A SOLUTION NMR PROTEIN BINDING No

 2L8J 2 N/A SOLUTION NMR SIGNALING
PROTEIN/PROTEIN BINDING Yes

 4OLE 4 2.52 X-RAY
DIFFRACTION

STRUCTURAL GENOMICS,
UNKNOWN FUNCTION No

 2G4S 1 2.15 X-RAY
DIFFRACTION METAL BINDING PROTEIN No

 2MJ5 2 N/A SOLUTION NMR PROTEIN BINDING No

Q14677 EPN4_HUMAN 2V8S 2 2.22 X-RAY
DIFFRACTION PROTEIN TRANSPORT No

 1XGW 1 1.9 X-RAY
DIFFRACTION Endocytosis No

 2QY7 3 2 X-RAY
DIFFRACTION PROTEIN BINDING No

Q15459 SF3A1_HUMAN 2DT6 1 N/A SOLUTION NMR RNA BINDING PROTEIN No

 1ZKH 1 N/A SOLUTION NMR GENE REGULATION No

 2DT7 2 N/A SOLUTION NMR RNA BINDING PROTEIN No

Q86V97 KBTB6_HUMAN 4XC2 8 1.9 X-RAY
DIFFRACTION IMMUNE SYSTEM No

Q86VP1 TAXB1_HUMAN 4NLH 2 1.9 X-RAY
DIFFRACTION PROTEIN BINDING No

 4Z4K 2 2.8 X-RAY
DIFFRACTION

Flurorescent Protein, Metal
Binding Protein No

 4BMJ 11 2.75 X-RAY
DIFFRACTION APOPTOSIS No

 5AAS 1 N/A SOLUTION NMR PROTEIN BINDING No
 4Z4M 2 2.15 X-RAY

DIFFRACTION
Flurorescent Protein, Metal

Binding Protein No
 2M7Q 1 N/A SOLUTION NMR Metal Binding Protein No

IO
ANNA KALV

ARI

 122

Q8TD19 NEK9_HUMAN
3ZKF 12 2.6 X-RAY

DIFFRACTION
CONTRACTILE

PROTEIN/PEPTIDE No

3ZKE 12 2.2 X-RAY
DIFFRACTION

CONTRACTILE
PROTEIN/PEPTIDE No

Q8WWW0 RASF5_HUMAN
4LGD 8 3.05 X-RAY

DIFFRACTION SIGNALING PROTEIN No

4OH8 2 2.28 X-RAY
DIFFRACTION transferase/Apoptosis No

Q96CV9 OPTN_HUMAN 3VTV 1 1.7 X-RAY
DIFFRACTION PROTEIN BINDING No

 2LUE 2 N/A SOLUTION NMR PROTEIN BINDING No
 5EOA 4 2.5 X-RAY

DIFFRACTION
PROTEIN

BINDING/TRANSFERASE No

 3VTW 3 2.52 X-RAY
DIFFRACTION PROTEIN BINDING No

 5B83 6 2.69 X-RAY
DIFFRACTION SIGNALING PROTEIN No

 5EOF 4 2.05 X-RAY
DIFFRACTION

PROTEIN
BINDING/TRANSFERASE No

 2LO4 1 N/A SOLUTION NMR PROTEIN TRANSPORT No
 5AAZ 1 N/A SOLUTION NMR PROTEIN BINDING No

Q96RU3 FNBP1_HUMAN 2EFL 1 2.61 X-RAY
DIFFRACTION ENDOCYTOSIS/EXOCYTOSIS No

Q9BQS8 FYCO1_HUMAN 5LXI 4 1.44 X-RAY
DIFFRACTION SIGNALING PROTEIN No

 5D94 2 1.53 X-RAY
DIFFRACTION PROTEIN BINDING/PEPTIDE No

 5CX3 8 2.3 X-RAY
DIFFRACTION PROTEIN BINDING Yes

 5LXH 6 1.58 X-RAY
DIFFRACTION SIGNALING PROTEIN No

Q9GZZ9 UBA5_HUMAN 5HKH 3 2.55 X-RAY
DIFFRACTION SIGNALING PROTEIN No

 3GUC 2 2.25 X-RAY
DIFFRACTION TRANSFERASE No

 5IAA 4 1.85 X-RAY
DIFFRACTION CELL CYCLE No

 5L95 4 2.1 X-RAY
DIFFRACTION CELL CYCLE No

 3H8V 2 2 X-RAY
DIFFRACTION TRANSFERASE No

Q9H1Y0 ATG5_HUMAN 4TQ0 6 2.7 X-RAY
DIFFRACTION PROTEIN BINDING No

 5D7G 8 3 X-RAY
DIFFRACTION APOPTOSIS No

 4GDL 3 2.88 X-RAY
DIFFRACTION protein binding No

 4TQ1 2 1.8 X-RAY
DIFFRACTION PROTEIN BINDING No

 4GDK 6 2.7 X-RAY
DIFFRACTION PROTEIN BINDING No

Q9NT62 ATG3_HUMAN 4NAW 16 2.19 X-RAY
DIFFRACTION PROTEIN TRANSPORT/LIGASE No

Q9Y4P1 ATG4B_HUMAN 2Z0E 2 1.9 X-RAY
DIFFRACTION

HYDROLASE/STRUCTURAL
PROTEIN Yes

 2CY7 1 1.9 X-RAY
DIFFRACTION hydrolase No

IO
ANNA KALV

ARI

 123

 2ZZP 2 2.05 X-RAY
DIFFRACTION

HYDROLASE/STRUCTURAL
PROTEIN Yes

 2D1I 2 2 X-RAY
DIFFRACTION HYDROLASE No

 2Z0D 2 1.9 X-RAY
DIFFRACTION

HYDROLASE/STRUCTURAL
PROTEIN Yes

Table 21. Selective autophagy receptor and adaptor protein structures.

PDB IDs were extracted from UniProt using the UniProt accession. Metadata such as structure resolution,
function, number of chains and method of structure determination were obtained RSCB PDB using PDB IDs.

IO
ANNA KALV

ARI

 124

7.1 dizscan.py	code		

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36

"""
dizscan.py

This is a script to identify disorder regions
overlaps by incorporating data from MobiDB

Developer: Ioanna Kalvari
"""

import os
import sys
import copy
import urllib2
import json

--

def fetch_concensus_disorder_curated_data(accession):
 """
 Fetches concensus curated data from MobiDB based on
 UniProt accession and re-organises them in a simpler
 way in a dictionary

 accession: A valid UniProt accession

 return: A reconstructed dictionary with MobiDB data
 """

 disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus"
 acceptHeader = 'application/json' # text/csv and text/plain supported
 request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})

 # Send request IO

ANNA KALV
ARI

 125

 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76

 response = urllib2.urlopen(request)

 # Parse JSON response di Python dict
 data = json.load(response)

 curated_data = {}

 # [u'solvent_exposure', u'lips', u'ss_populations', u'disorder', u'interactions']
 # print data["mobidb_consensus"].keys()
 if "db" in data["mobidb_consensus"]["disorder"]:
 for item in data["mobidb_consensus"]["disorder"]["db"]:
 if item["method"] not in curated_data:
 curated_data[item["method"]] = item["regions"]

 return curated_data

--

def fetch_concensus_disorder_indirect_data_by_method(accession):
 """
 Fetces consensus indirect (derived) data from MobiDB based on
 UniProt accession and re-organises them in a simpler
 way in a dictionary

 accession: A valid UniProt accession

 return: A reconstructed dictionary with MobiDB data
 """

 disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus"
 acceptHeader = 'application/json' # text/csv and text/plain supported
 request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})

 # Send request
 response = urllib2.urlopen(request)

 # Parse JSON response di Python dict
 data = json.load(response)
 IO

ANNA KALV
ARI

 126

 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116

 indirect_data = {}

 # [u'solvent_exposure', u'lips', u'ss_populations', u'disorder', u'interactions']
 # print data["mobidb_consensus"].keys()
 if "derived" in data["mobidb_consensus"]["disorder"]:
 for item in data["mobidb_consensus"]["disorder"]["derived"]:
 # organise disorder regions by method
 if item["method"] not in indirect_data:
 indirect_data[item["method"]]=item["regions"]

 return indirect_data

--

def fetch_concensus_disorder_predicted_data_by_method(accession):
 """
 Fetces consensus predicted data from MobiDB based on
 UniProt accession and re-organises them in a simpler
 way in a dictionary

 accession: A valid UniProt accession

 return: A reconstructed dictionary with MobiDB data
 """

 disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus"
 acceptHeader = 'application/json' # text/csv and text/plain supported
 request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})

 # Send request
 response = urllib2.urlopen(request)

 # Parse JSON response di Python dict
 data = json.load(response)

 predicted_data = {}
 IO

ANNA KALV
ARI

 127

 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156

 # [u'solvent_exposure', u'lips', u'ss_populations', u'disorder', u'interactions']
 # print data["mobidb_consensus"].keys()
 if "predictors" in data["mobidb_consensus"]["disorder"]:
 for item in data["mobidb_consensus"]["disorder"]["predictors"]:
 # organise disorder regions by method
 if item["method"] not in predicted_data:
 predicted_data[item["method"]]=item["regions"]

 return predicted_data

--

def fetch_disorder_data(accession, type="curated"):
 """
 Returns all indirect disorder data associated with the accession
 provided. The type of data retrieved from MobiDB needs to be
 specified and the output is a dictionary with raw MobiDB
 data.

 accession: A valid UniProt accession
 type: The type of data to fetch (predicted, indirect, curated)

 return: A dictionary with raw data of a particular type
 """
 disorder_url = "http://mobidb.bio.unipd.it/ws/%s/disorder"
 acceptHeader = 'application/json' # text/csv and text/plain supported
 request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})

 # Send request
 response = urllib2.urlopen(request)

 # Parse JSON response di Python dict
 data = json.load(response)

 # handle data
 if type == "curated":
 type = "db"

 elif type == "indirect":
 type = "derived" IO

ANNA KALV
ARI

 128

 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196

 elif type == "pedicted":
 type = "predictors"

 if type not in data["mobidb_data"]["disorder"]:
 return None

 return data["mobidb_data"]["disorder"][type]

--

def scan_db_data_for_disorder_regions(accession, start, end, lir, type):
 """
 This function will scan the provided lir for any possible disorder
 regions that match the data retrieved from mobiDB

 accession: A valid Uniprot protein id (e.g. Q13501)
 start: Start coordinate of the LIR region
 end: End coordinate of the LIR region
 lir: A string representing the amino acid sequence of the LIR peptide
 type: The type of the disordered dat ato fetch (e.g. curated, indirect, predicted)

 return: A dictionary of all LIR/mobiDB overlaps found per method (e.g.)
 """

 disorder_strings = {}

 disorder_data = fetch_disorder_data(accession, type)

 if disorder_data is not None:

 dislir_dict = None
 for database in disorder_data:
 for region in database["regions"]:
 dislir_dict = search_for_overlaps(start, end, region[0], region[1],
 str(region[2]), len(lir), pos_dict = dislir_dict)

 # construct disordered lir string IO

ANNA KALV
ARI

 129

 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236

 disorder_string = construct_disorder_lir_string(dislir_dict)

 # update dictionary
 disorder_strings[str(database["method"])] = disorder_string

 return disorder_strings

 return None

--

def scan_indirect_data_for_disorder_regions(accession, start, end, lir, concensus=False):
 """
 """

 disorder_strings = {}
 disorder_data = fetch_disorder_data(accession, type="derived")

 if disorder_data is not None:
 if concensus is False:
 struct_dislir_dict = None
 for structure_case in disorder_data:
 if "pdb_id" in structure_case:
 pdb_label = structure_case["pdb_id"] + '_' + structure_case["chain_id"]
 method = structure_case["method"]
 regions = structure_case["regions"]
 for region in regions:
 struct_dislir_dict = search_for_overlaps(start, end, region[0], region[1],
 str(region[2]), len(lir), pos_dict = struct_dislir_dict)

 disorder_string = ''
 disorder_string = construct_disorder_lir_string(struct_dislir_dict)

 if pdb_label not in disorder_strings:
 disorder_strings[pdb_label] = {"distring": disorder_string, "method": method}
 else:
 struct_dislir_dict = {}
 for structure_case in disorder_data: IO

ANNA KALV
ARI

 130

 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276

 regions = structure_case["regions"]
 for region in regions:
 struct_dislir_dict = search_for_overlaps(start, end, region[0], region[1],
 str(region[2]), len(lir), pos_dict = struct_dislir_dict)

 disorder_strings = construct_disorder_lir_string(struct_dislir_dict)

 return disorder_strings

--

deprecated
def _search_for_overlaps(lir_start, lir_end, mobi_start, mobi_end, mobi_label, seq_length, pos_dict = None):
 """
 Deprecated function

 lir_start: LIR peptide start position
 lir_end: LIR peptide end position
 mobi_start: MobiDB start position
 mobi_end: MobiDB end position
 mobi_label: A character indicating if the position is disordered or structured D=disorder, S=structured,
 seq_length: The length of the peptide

 return: A dictionary where keys are the start-end range numbers and values are the D/S labels from
 MobiDB or ? depending on whether there's an overlap or data available
 """

 # variable declaration and initialization
 positions = {}
 index = -1
 boundary = -1

 # initialising position matrix
 if pos_dict is None:
 index = lir_start
 while index <= lir_end:
 positions[index] = '?'
 index +=1
 else:
 positions = copy.deepcopy(pos_dict) IO

ANNA KALV
ARI

 131

 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316

 # case A - partial overlap
 if lir_start > mobi_start and lir_start < mobi_end and lir_end > mobi_end:
 boundary = mobi_end
 index = lir_start

 # case B - partial overlap
 elif lir_start < mobi_start and lir_end > mobi_start and lir_end < mobi_end:
 boundary = lir_end
 index = mobi_start

 # case C - partial overlap
 elif mobi_start < lir_start and lir_end < mobi_end and lir_start < mobi_end:
 boundary = lir_end
 index = lir_start

 # case D - partial overlap
 elif lir_start < mobi_start and lir_start < mobi_end and lir_end > mobi_end:
 boundary = mobi_end
 index = mobi_start

 # need to check length here - full overlap (I)
 elif lir_start == mobi_start and lir_end == mobi_end:
 boundary = lir_end
 index = lir_start

 # case G - partial overlap starting from the same position
 elif lir_start == mobi_start and lir_end > mobi_start and lir_end < mobi_end:
 boundary = lir_end
 index = lir_start

 # case H - partial overlap, same ending coords
 elif mobi_start > lir_start and lir_start < mobi_end and lir_end == mobi_end:
 boundary = lir_end
 index = mobi_start

 # case J
 elif lir_start == mobi_start and lir_end > mobi_start and lir_end > mobi_end:
 boundary = mobi_end
 index = lir_start IO

ANNA KALV
ARI

 132

 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356

 # case K
 elif mobi_start < lir_start and lir_start < mobi_end and lir_end == mobi_end:
 boundary = mobi_end
 index = lir_start

 # case E - no overlap left end
 elif lir_start < mobi_start and lir_end < mobi_start and lir_end < mobi_end:
 return positions

 # case F - no overlap right end
 elif mobi_start < lir_start and mobi_end < lir_start and lir_start > mobi_start:
 return positions

 else:
 return positions

 while index<=boundary:
 positions[index] = mobi_label
 index+=1

 return positions

--

def search_for_overlaps(lir_start, lir_end, mobi_start, mobi_end, mobi_label, pos_dict = None):
 """
 Searches for LIR-motif/disorder overlaps based on the data retrieved from MobiDB. Identification of
 overlaps is done using iLIR and MobiDB coordinates and returns a dictionary which encapsulates
 disordered positions of the LIR-motif

 lir_start: LIR-motif start position
 lir_end: LIR-motif end position
 mobi_start: MobiDB start position
 mobi_end: MobiDB end position
 mobi_label: MobiDB residue label D/S
 pos_dict: The position dictionary to be modified. Either an initialised ?????? or an intermediate
 one when processing many different predictions
 IO

ANNA KALV
ARI

 133

 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396

 return: A dictionary with all disorder positions identified
 """
 # variable declaration and initialization
 positions = {}
 index = -1
 boundary = -1

 # initialising position matrix
 if pos_dict is None:
 index = lir_start
 while index <= lir_end:
 positions[index] = '?'
 index +=1
 else:
 positions = copy.deepcopy(pos_dict)

 # A
 if lir_start < mobi_start and mobi_start < lir_end and lir_end < mobi_end:
 boundary = lir_end
 index = mobi_start
 # B
 elif mobi_start < lir_start and lir_start < mobi_end and mobi_end < lir_end:
 boundary = mobi_end
 index = lir_start
 # C
 elif lir_start == mobi_start and lir_end < mobi_end:
 boundary = lir_end
 index = lir_start
 # D
 elif lir_start == mobi_start and mobi_end < lir_end:
 boundary = mobi_end
 index = mobi_start
 # E
 elif mobi_start < lir_start and lir_end == mobi_end:
 boundary = lir_end
 index = lir_start
 # F
 elif lir_start < mobi_start and lir_end == mobi_end:
 boundary = lir_end
 index = mobi_start IO

ANNA KALV
ARI

 134

 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436

 # G
 elif lir_start < mobi_start and mobi_start < lir_end and mobi_end < lir_end:
 boundary = mobi_end
 index = mobi_start
 # H
 elif mobi_start < lir_start and lir_end > mobi_start and lir_end < mobi_end:
 boundary = lir_end
 index = lir_start
 # I
 elif lir_start == mobi_start and lir_end == mobi_end:
 boundary = lir_end
 index = lir_start
 # J
 elif lir_start < mobi_start and lir_end <= mobi_start and lir_end < mobi_end:
 return positions
 # K
 elif mobi_start < lir_start and mobi_end <= lir_start and lir_end > mobi_end:
 return positions

 while index<=boundary:
 positions[index] = mobi_label
 index+=1

 return positions

--

def calculate_disorder_fraction(disorder_str):
 """
 Calculates the fraction of disorder residues
 found in a LIR-motif

 disorder_str: The disorder string in the form of 'DDDDSD'

 return: disorder fraction in float
 """

 length = len(disorder_str) IO

ANNA KALV
ARI

 135

 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476

 count_ds = disorder_str.count('D')

 dis_fraction = count_ds/length

 return dis_fraction

--

def calculate_disorder_percentage(disorder_str):
 """
 Calculate and return the proportion of the disordered region in a peptide
 given a disordered string as generated by a disorder scanner

 disorder_str: A disorder string representing the disordered residues in
 a given string

 return: returns the disorder percentage
 """

 # D_PPE, D_NPE, D_PA, D_WC D_WCD_WCD_WCD_WCD_WCD_WC
 # replace predicted D types with Ds
 dtypes = ["D_PPE", "D_NPE", "D_PA", "D_WC"]

 for case in dtypes:
 disorder_str = disorder_str.replace(case, 'D')

 count_ds = disorder_str.count('D')

 # counting length after replacement for accuracy purposes
 length = len(disorder_str)
 disorder_proportion = 0

 if length > 0:
 disorder_proportion = count_ds*100/length

 return disorder_proportion IO

ANNA KALV
ARI

 136

 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516

--

def construct_disorder_lir_string(dispos):
 """
 Takes the dictionary of calculated disordered LIR-motif
 positions and constructs the disorder string dSTR

 dispos: Calculated disorder positions

 return: Disorder string
 """

 disordered_string = ''
 if dispos is not None:
 pos_list = sorted(dispos.keys())

 for pos in pos_list:
 disordered_string = disordered_string + dispos[pos]

 return disordered_string

--

def print_lir_disorder_data(uniprot_acc, lir, start, end, scanner_results_dict):
 """
 Prints the disorder region scanning results in a "pretty" format

 uniprot_acc: A valid UniProt accession
 lir: The LIR-motif sequence (as in iLIR3D)
 start: The start position of the LIR-motif
 end: The end position of the LIR-motif
 scanner_results_dict:

 returns: void
 """ IO

ANNA KALV
ARI

 137

 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556

 for db in scanner_results_dict.keys():

 disorder_string = scanner_results_dict[db]

 disorder_percentage = calculate_disorder_percentage(disorder_string)

 print "%s\t%s-%s\t%s\t%s\t%s%s\t%s" % (uniprot_acc, str(start), str(end), lir,
 disorder_string, str(disorder_percentage),
 chr(37), db)

--

def print_disorder_report(peptide_file, type):
 """
 Prints on the screen the disorder results that were computed, in a
 veyr simple tab delimited format

 peptide_file: This is a tab delimited file containing the lir string,
 start and end coordinates per
 candidate uniprot accession

 return: void
 """

 peptide_file_handle = open(peptide_file, 'r')

 for peptide_line in peptide_file_handle:
 components = peptide_line.strip().split('\t')

 uniprot_acc = components[0]
 start = int(components[2])
 end = int(components[3])
 lir = components[1]

 disorder_overlaps = scan_db_data_for_disorder_regions(uniprot_acc, start, end, lir, type)

 if disorder_overlaps is not None: IO

ANNA KALV
ARI

 138

 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596

 for db in disorder_overlaps.keys():

 dstring = disorder_overlaps[db]
 disorder_percentage = calculate_disorder_percentage(dstring)

 print "%s\t%s-%s\t%s\t%s\t%s%s\t%s" % (uniprot_acc, str(start), str(end), lir,
 dstring, str(disorder_percentage),
 chr(37), db)
 else:
 print "%s NA" % uniprot_acc

--

def mobidb_indirect_list_data_to_pdb_dict(uniprot_accession):
 """
 Coverts the MobiDB indirect data into a dictionary where keys are in the form of
 pdb_id followed by chain_id and separated by '_' e.g. 2K6Q_B, to simplify the
 scanning process with structures. Values are lists of tuples (start, end, method)

 uniprot_accession: A valid uniprot accession

 return: The new reformated dictionary
 """

 pdb_formated_data = {}

 accession_data = fetch_disorder_data(uniprot_accession, type="indirect")
 indirect_data = accession_data["mobidb_data"]["disorder"]["derived"]

 for structure in indirect_data:
 new_key = structure["pdb_id"] + '_' + structure["chain_id"]

 if new_key not in pdb_formated_data:
 pdb_formated_data[new_key] = [{"regions": indirect_data["regions"]
 ,"method": indirect_data["method"]}]
 #pdb_formated_data[new_key]["regions"] = indirect_data["regions"]
 #pdb_formated_data[new_key]["method"] = indirect_data["method"]
 else: IO

ANNA KALV
ARI

 139

 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636

 pdb_formated_data[new_key].append({"regions": indirect_data["regions"]
 ,"method": indirect_data["method"]})

 return pdb_formated_data

--

def scan_peptide_for_consensus_disorder_regions(accession, lir_start, lir_end, lir, type = "curated"):
 """
 Scans a LIR-motif and looks for disorder overlaps with MobiDB based on the
 start-end coordinates (lir_start, lir_end) and the corresponding UniProt
 accession, which is used to retrieve the data.

 accession: A valid UniProt accession
 lir_start: The start position of a LIR-motif
 lir_end: The end position of a LIR-motif
 lir: The LIR-motif sequence
 type: Type of data to retrieve from MobiDB (curated, predicted, indirect)

 return: A dictionary with constructed disorder strings
 """

 data = {}
 disorder_strings = {}

 if type == "curated":
 data = fetch_concensus_disorder_curated_data(accession)

 elif type == "indirect":
 data = fetch_concensus_disorder_indirect_data_by_method(accession)

 elif type == "predicted":
 data = fetch_concensus_disorder_predicted_data_by_method(accession)

 if bool(data) is not False:
 #dis_dict = None
 for method in data.keys():
 disorder_string = '' IO

ANNA KALV
ARI

 140

 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676

 dis_dict = None
 regions = data[method]
 if len(regions)>0:
 for region in regions:
 mobi_start = region[0]
 mobi_end = region[1]
 mobi_label = region[2]
 seq_length = len(lir)

 dis_dict = search_for_overlaps(lir_start, lir_end, mobi_start, mobi_end,
 mobi_label, seq_length, pos_dict = dis_dict)

 disorder_string = construct_disorder_lir_string(dis_dict)

 else:
 lir_len = len(lir)
 i=0

 while i<lir_len:
 disorder_string +='?'
 i+=1

 disorder_strings[method] = disorder_string

 return disorder_strings

--

def disorder_report_generator(protein_file, type = "all"):
 """
 Generates a human readable report showing the disorder
 residues identified for each LIR-motif

 protein_file: The input file with uniprot protein id and protein accession,
 start and end coordinates of the lir motif, the lir string and verified digit
 1 if so, 0 if unverified
 type: The type of data we want to use in the calculation of the disorder data
 IO

ANNA KALV
ARI

 141

 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716

 return: void
 """

 # Move code from main here

 fp = open(protein_file, 'r')
 verified = ''

 for line in fp:
 line = line.strip().split('\t')
 uniprot_id = line[1].strip()
 uniprot_acc = line[2].strip()
 start = int(line[3].strip())
 end = int(line[4].strip())
 lir = line[5].strip()
 verif_val = line[6].strip()

 if verif_val == "1":
 verified = "verified"
 else:
 verified = "unverified"

 if type == "indirect":
 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "indirect")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 chr(37),verified,method, "indirect")
 elif type == "curated":
 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "curated")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir, IO

ANNA KALV
ARI

 142

 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756

 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 chr(37), verified, method, "curated")
 elif type == "predicted":
 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "predicted")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 chr(37), verified, method, "predicted")
 # print all
 else:
 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "curated")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 chr(37), verified, method, "curated")

 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "indirect")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 chr(37), verified, method, "indirect")

 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "predicted")

 if bool(disorder_strings) is not False: IO

ANNA KALV
ARI

 143

 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796

 for method in disorder_strings.keys():
 print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 chr(37), verified, method, "predicted")

 fp.close()

--

def check_disorder_data_availability_by_accession(uniprot_acc_input):
 """
 This function loads all data from MobiDB and checks whether
 there's available data for each accession provided

 uniprot_acc_input: It can either be a list of valid uniprot
 accessions or a single uniprot accession

 return: A dictionary with the accession data retrieved from MobiDB
 """

 acc_data = {}
 uniprot_accs = []

 if os.path.isfile(uniprot_acc_input):
 fp = open(uniprot_acc_input, 'r')
 uniprot_accs = [x.strip() for x in fp]
 fp.close()

 else:
 uniprot_accs.append(uniprot_acc_input)

 disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus"
 acceptHeader = 'application/json' # text/csv and text/plain supported

 for accession in uniprot_accs:
 request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader}) IO

ANNA KALV
ARI

 144

 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836

 # Send request
 response = urllib2.urlopen(request)

 # Parse JSON response di Python dict
 data = json.load(response)

 predicted_data = {}

 if accession not in acc_data:
 acc_data[accession] = {}

 if "derived" in data["mobidb_consensus"]["disorder"]:
 acc_data[accession]["indirect"] = "Yes"
 else:
 acc_data[accession]["indirect"] = "No"
 if "predictors" in data["mobidb_consensus"]["disorder"]:
 acc_data[accession]["predicted"] = "Yes"
 else:
 acc_data[accession]["predicted"] = "No"
 if "db" in data["mobidb_consensus"]["disorder"]:
 acc_data[accession]["curated"] = "Yes"
 else:
 acc_data[accession]["curated"] = "No"

 return acc_data

--

def check_disorder_data_availability_by_data_type(uniprot_acc_input):
 """
 This function loads all data from MobiDB and checks whether
 there's available data for each accession provided.

 uniprot_acc_input: It can either be a list of valid uniprot
 accessions or a single uniprot accession

 return: A dictionary with the accession data retrieved from MobiDB
 """ IO

ANNA KALV
ARI

 145

 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876

 acc_data = {}
 uniprot_accs = []

 if os.path.isfile(uniprot_acc_input):
 fp = open(uniprot_acc_input, 'r')
 uniprot_accs = [x.strip() for x in fp]
 fp.close()

 else:
 uniprot_accs.append(uniprot_acc_input)

 disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus"
 acceptHeader = 'application/json' # text/csv and text/plain supported

 for accession in uniprot_accs:
 request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})

 # Send request
 response = urllib2.urlopen(request)

 # Parse JSON response di Python dict
 data = json.load(response)

 predicted_data = {}

 if accession not in acc_data:
 acc_data[accession] = {}

 if "derived" in data["mobidb_consensus"]["disorder"]:
 acc_data[accession]["indirect"] = "Yes"
 else:
 acc_data[accession]["indirect"] = "No"
 if "predictors" in data["mobidb_consensus"]["disorder"]:
 acc_data[accession]["predicted"] = "Yes"
 else:
 acc_data[accession]["predicted"] = "No"
 if "db" in data["mobidb_consensus"]["disorder"]: IO

ANNA KALV
ARI

 146

 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916

 acc_data[accession]["curated"] = "Yes"
 else:
 acc_data[accession]["curated"] = "No"

 return acc_data

--

def disorder_to_iLIR3Ddb(protein_file, type = "all"):
 """
 Based on the uniprot accessions listed in the protein_file input and according to the specified type,
 it fetches all relevant data from MobiDB and searches for disorder overlaps. The overlaps are computed
 for all the LIR regions supplied in the input file. The output is in tabular format arranged specifically
 to be loaded into iLIR3D database using mysqlimport.

 protein_file: A file in tabular format which contains the uniprot id and accession, the start and end
 coordinates of the LIR, the LIR sequence and LIR acc and if the LIR is experimentally verified or not.
 type: The type of disorder data to fetch from MobiDB. One of ('all', 'predicted', 'curated', 'indirect')

 return: void
 """

 str_with_ver_string = "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s"
 str_no_ver = "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s"

 # Move code from main here

 fp = open(protein_file, 'r')
 verified = ''
 for line in fp:
 line = line.strip().split('\t')
 lir_acc = line[0].strip()
 uniprot_id = line[1].strip()
 uniprot_acc = line[2].strip()
 start = int(line[3].strip())
 end = int(line[4].strip())
 lir = line[5].strip()
 verified = line[6].strip()

 """ IO

ANNA KALV
ARI

 147

 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956

 if len(line) > 6:
 if line[6] == '0':
 verified = "unverified"
 else:
 verified = "verified"
 """

 if type == "indirect":
 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type="indirect")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 if len(line) == 5:
 print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 method, "indirect")
 else:
 print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 verified, method, "indirect")

 elif type == "curated":
 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "curated")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 if len(line) == 5:
 print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 method, "curated")
 else:
 print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 verified, method, "curated") IO

ANNA KALV
ARI

 148

 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996

 elif type == "predicted":
 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "predicted")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 if len(line) == 5:
 print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 method, "predicted")
 else:
 print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 verified, method, "predicted")

 # print all
 else:
 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "curated")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 if len(line) == 5:
 print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 method, "curated")

 else:
 print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 verified, method, "curated")

 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type="indirect") IO

ANNA KALV
ARI

 149

 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 if len(line) == 5:
 print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 method, "indirect")
 else:
 print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 verified, method, "indirect")

 disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
 lir, type = "predicted")

 if bool(disorder_strings) is not False:
 for method in disorder_strings.keys():
 if len(line) == 5:
 print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 method, "predicted")
 else:
 print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir,
 disorder_strings[method],
 str(calculate_disorder_percentage(disorder_strings[method])),
 verified, method, "predicted")

 fp.close()

--

def complex_distring_to_simple(complex_str):
 """
 Convert from complex disorder string to a simpler form only containing
 D,S and ? characters IO

ANNA KALV
ARI

 150

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

 complex_str: The complex disorder string to modify

 return: A simpler form of the complex query
 """

 # D_PPE, D_NPE, D_PA, D_WC D_WCD_WCD_WCD_WCD_WCD_WC
 # replace predicted D types with Ds
 dtypes = ["D_PPE", "D_NPE", "D_PA", "D_WC"]

 for case in dtypes:
 simple_disorder_str = complex_str.replace(case, 'D')

 return simple_disorder_str

--

if __name__=='__main__':

 # input here is:
 # lir_acc\tuniprot_id\tuniprot_acc\tlir_start\tlir_end\tlir_sequence\tverified

 protein_file = sys.argv[1]
 # predicted, indirect, curated, all
 data_type = sys.argv[2]

 # This function prints out iLIR3D ready disorder data
 disorder_to_iLIR3Ddb(protein_file, type = data_type)

 IO

ANNA KALV
ARI

 151

7.2 consensus_disorder_calculator.py	code	

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

import os
import sys
import dizscan as dislib
from ilir3d.lib import lir3d_db_connector as db

"""
MySQL query to generate inputs used by this query
select lir_acc, disorder_string from sars_lir_disorder
"""

def calculate_per_residue_consensus_disorder_score(disorder_string_list, dis_percentage = 50, todb=False):
 """
 Computes the consensus disorder string and loads the data into the database

 disorder_string_list: A file containing all disorder strings per LIRCP protein
 percentage_per_position: disorder percentage of each LIR-motif residue position

 return: void
 """

 disorder_dict = {}
 fp_in = open(disorder_string_list, 'r')

 consensus_disorder = {}
 db_data = []

 for line in fp_in:
 line = line.strip().split('\t')
 lir_acc = line[0]
 dis_lir = line[1]
 IO

ANNA KALV
ARI

 152

 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75

 if lir_acc not in disorder_dict:
 disorder_dict[lir_acc] = [dis_lir]
 else:
 disorder_dict[lir_acc].append(dis_lir)

 fp_in.close()

 dis_string_list = []
 diz_string_score_dict = {}
 db_disorder_data = []
 for lir in disorder_dict.keys():
 no_dis_strings = len(disorder_dict[lir])
 # convert complex chars to Ds&Ss
 dis_string_list = [dislib.complex_distring_to_simple(x) for x in disorder_dict[lir]]

 # FIX LIR LENGTH HERE ...

 # calculate the length of the lir simply by using the first element in the list
 lir_len = len(dis_string_list[0])

 # initialize diz string score dictionary
 temp_diz_string = {}
 index = 0
 while index < lir_len:
 diz_string_score_dict[index] = 0
 index+=1

 index = 0
 # loop over residues
 while index < lir_len:
 # loop over strings
 for diz_str in dis_string_list:
 # need to revise this and see how to handle these cases
 if len(diz_str)==lir_len:
 if diz_str[index] == 'D':
 diz_string_score_dict[index]+=1
 index+=1

 # now generate consensus
 consensus_dis_str = generate_percentage_consensus_per_residue_dizstring(diz_string_score_dict, IO

ANNA KALV
ARI

 153

 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

 no_dis_strings,
 dis_percentage = dis_percentage)
 # calculate consensus disorder percentage
 calc_dis_percentage = dislib.calculate_disorder_percentage(consensus_dis_str)

 if todb is True:
 db_disorder_data.append((consensus_dis_str, calc_dis_percentage, lir))
 else:
 print "%s\t%s\t%s" % (lir, consensus_dis_str, calc_dis_percentage)

 if todb is True:
 load_consensus_disorder_todb(db_disorder_data)

def generate_percentage_consensus_per_residue_dizstring(diz_string_score_dict, no_samples, dis_percentage = 50):
 """
 Computes the percentage per residue position of the disorder string dSTR

 diz_string_score_dict: A dictionary with all disorder scores
 percentage: The percentage per residue position of the LIR-motif

 return:
 """

 lir_len = len(diz_string_score_dict.keys())

 index = 0
 consensus_diz_string = ""
 while index < lir_len:
 # calculated disorder percentage
 calc_dis_percentage = (diz_string_score_dict[index]/no_samples)*100
 if calc_dis_percentage >= int(dis_percentage):
 consensus_diz_string = consensus_diz_string + 'D'
 # if percentage does not meet requirement we consider the residue as structured
 else:
 consensus_diz_string = consensus_diz_string + 'S'
 index+=1 IO

ANNA KALV
ARI

 154

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

 return consensus_diz_string

def load_consensus_disorder_todb(disorder_data):
 """
 A list of tuples with the new disorder data to load to db

 disorder_data: Disorder data

 return: void
 """

 cnx = db.connect()
 cursor = cnx.cursor(buffered=True)

 query = "update sars_lir set cdSTR=%s,disorder_percentage=%s where lir_acc=%s"

 cursor.executemany(query, disorder_data)
 cnx.commit()

 cursor.close()
 cnx.close()

 print "Done loading disorder data in the database"

def calculate_per_residue_consensus_disorder_score_advanced(disorder_string_list, dis_percentage = 50, todb=False):

 disorder_dict = {}
 fp_in = open(disorder_string_list, 'r')

 consensus_disorder = {}
 db_data = []

 for line in fp_in:
 line = line.strip().split('\t') IO

ANNA KALV
ARI

 155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

 lir_acc = line[0]
 dis_lir = line[1]
 source = line[2] # predicted, indirect, curated

 if lir_acc not in disorder_dict:
 disorder_dict[lir_acc] = {source: [dis_lir]}
 else:
 if source in disorder_dict[lir_acc]:
 disorder_dict[lir_acc][source].append(dis_lir)
 else:
 disorder_dict[lir_acc][source] = [dis_lir]

 fp_in.close()

 dis_string_list = []
 diz_string_score_dict = {}
 db_disorder_data = []

 for lir in disorder_dict.keys():
 # assuming there's only one curated dSTR, but might need to work with a list
 if "curated" in disorder_dict[lir]:
 consensus_dis_str = disorder_dict[lir]["curated"][0]
 # calculate consensus disorder percentage
 calc_dis_percentage = dislib.calculate_disorder_percentage(consensus_dis_str)

 if todb is True:
 db_disorder_data.append((consensus_dis_str, calc_dis_percentage, lir))
 else:
 print "%s\t%s\t%s" % (lir, consensus_dis_str, calc_dis_percentage)

 continue

 else:
 # construct a unified dSTR list
 unified_dSTR_list = []
 for source in disorder_dict[lir]:
 unified_dSTR_list.extend(disorder_dict[lir][source])

 no_dis_strings = len(unified_dSTR_list)
 # convert complex chars to Ds&Ss IO

ANNA KALV
ARI

 156

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

 dis_string_list = [dislib.complex_distring_to_simple(x) for x in unified_dSTR_list]

 # calculate the length of the lir simply by using the first element in the list
 lir_len = len(dis_string_list[0])

 # initialize diz string score dictionary
 temp_diz_string = {}

 index = 0
 while index < lir_len:
 diz_string_score_dict[index] = {'D': 0, 'S': 0}
 index+=1

 index = 0
 # loop over residues
 while index < lir_len:
 # loop over strings
 for diz_str in dis_string_list:
 # see how to handle the cases where len(diz_str) != lir_len
 if len(diz_str) == lir_len:
 if diz_str[index] == 'D':
 diz_string_score_dict[index]['D']+=1
 elif diz_str[index] == 'S':
 diz_string_score_dict[index]['S']+=1
 index+=1

 # now generate consensus

 consensus_dis_str = generate_consensus_dSTR(diz_string_score_dict)
 # calculate consensus disorder percentage
 calc_dis_percentage = dislib.calculate_disorder_percentage(consensus_dis_str)

 if todb is True:
 db_disorder_data.append((consensus_dis_str, calc_dis_percentage, lir))
 else:
 print "%s\t%s\t%s" % (lir, consensus_dis_str, calc_dis_percentage)

 if todb is True:
 load_consensus_disorder_todb(db_disorder_data) IO

ANNA KALV
ARI

 157

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

def generate_consensus_dSTR(diz_string_score_dict):

 dSTR = ""
 for position in sorted(diz_string_score_dict.keys()):
 if diz_string_score_dict[position]['D'] > diz_string_score_dict[position]['S']:
 dSTR+='D'
 else:
 dSTR+='S'

 return dSTR

if __name__=='__main__':

 """ Query to generate input list
 select lir_acc, disorder_string, mobidb_data from sars_lir_disorder
 where lir_acc > 96
 order by lir_acc
 """

 disorder_string_list = sys.argv[1]
 disorder_percentage = int(sys.argv[2])

 if "--loadDB" in sys.argv:
 calculate_per_residue_consensus_disorder_score_advanced(disorder_string_list,
 dis_percentage = 50, todb=True)
 else:
 calculate_per_residue_consensus_disorder_score_advanced(disorder_string_list,
 dis_percentage = disorder_percentage)

 IO

ANNA KALV
ARI

 158

7.3 anchor2_scanner.py	code		

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

import os
import sys

from ilir3d.lib import lir3d_db_connector as db

--

def iupred2_results_to_dict(anchor2_result_file):
 """
 Parses iupred2 result output and loads iupred2 and anchor2
 (if available) scores into a dictionary where keys are the
 position of each residue

 anchor2_result_file: The output of iupred2A script running with
 -d option for ANCHOR2

 return: a dictionary with all data in the iupred2A results file
 """

 fp = open(anchor2_result_file, 'r')

 iupred2_dict = {}

 for iupred2_line in fp:
 if iupred2_line[0] != '#':
 iupred2_scores = iupred2_line.strip().split('\t')

 if len(iupred2_scores) == 3: # only iupred2 prediction
 iupred2_dict[int(iupred2_scores[0])] = {"IUPred2": float(iupred2_scores[2])}
 else:
 iupred2_dict[int(iupred2_scores[0])] = {"IUPred2": float(iupred2_scores[2]),
 "ANCHOR2": float(iupred2_scores[3])}

 fp.close()

 return iupred2_dict IO

ANNA KALV
ARI

 159

 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77

--

def pull_lir_information_from_db(uniprot_id):
 """
 Pulls all the necessary LIR information based on uniprot id.
 This is the LIR accession and start-end positions

 uniprot_id: A valid uniprot id

 return: Data retrieved from the database
 """

 cnx = db.connect()
 cursor = cnx.cursor(buffered=True)

 query = "select lir_acc, lir_start, lir_end from sars_lir where uniprot_id=\'%s\'"

 cursor.execute(query % uniprot_id)

 data = cursor.fetchall()

 cursor.close()
 cnx.close()

 return data

--

def calculate_iupred2_prediction_percentage(iupred2_dict, lir_start, lir_end, type = "IUPred2", threshold = 0.5):
 """
 Predicts iupred percentage based on the iupred type and the lir overlap

 iupred2_dict: A dictionary with the relevant protein iupred2 scores
 lir_start: The lir start coordinate
 lir_end: The lir end coordinate
 threshold: A threshold according to which the prediction is considered true IO

ANNA KALV
ARI

 160

 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

 return: The percentage of the overlap
 """

 num_involved_residues = 0
 index = int(lir_start)

 while index <= int(lir_end):
 if iupred2_dict[index][type] >= threshold:
 num_involved_residues+=1
 index+=1

 lir_len = int(lir_end)-int(lir_start)+1

 prediction_percentage = (num_involved_residues*100)/lir_len

 return prediction_percentage

--

def get_iupred2_lir_disorder_string(iupred2_dict, lir_start, lir_end, threshold = 0.5):
 """
 Generates a disorder string based on the iupred2 disorder presictions in iupred2_dict
 and the corresponding lir coordinates

 iupred2_dict: A dictionary with the relevant protein iupred2 scores
 lir_start: The lir start coordinate
 lir_end: The lir end coordinate
 threshold: A threshold according to which the prediction is considered true

 return: A disorder string
 """

 disorder_string = ""
 index = int(lir_start)

 while index <= int(lir_end):
 if iupred2_dict[index]["IUPred2"] >= threshold:
 disorder_string = disorder_string +'D' IO

ANNA KALV
ARI

 161

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

 else:
 disorder_string = disorder_string +'S'
 index+=1

 return disorder_string

--

def load_anchor2_results_to_db(data):
 """
 This function updates anchor2 field in sars_lir table in iLIR3D database

 data: A list of tuples in the format (X,Y) where X: anchor2 prediction and
 Y: the accession of the corresponding lir (lir_acc)
 """

 cnx = db.connect()
 cursor = cnx.cursor(buffered=True)

 query = "update sars_lir set anchor3=%s where lir_acc=%s"

 cursor.executemany(query, data)
 cnx.commit()

 cursor.close()
 cnx.close()

 print "Archor2 results loaded to DB!"

--

def load_iupred2_results_to_db(data):
 """
 Creates a new iupred2 entry in the database, disorder table in particular

 data: sars_lir_disorder attributes to load into the database

 return: void
 """ IO

ANNA KALV
ARI

 162

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

 cnx = db.connect()
 cursor = cnx.cursor(buffered=True)

 query = "insert into sars_lir_disorder(lir_acc2,uniprot_id,lir_start,lir_end,lir,disorder_string,percentage,verified,mobidb_method,mobidb_data,threshold)
values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"

 cursor.executemany(query, data)
 cnx.commit()

 cursor.close()
 cnx.close()

 print "Iupred2 results loaded to DB!"

--

def pull_input_for_iupred2_predictions(uniprot_id=None):
 """
 Pulls necessary information from the DB for

 uniprot_id: If uniprot_id is None, it will pull information of all lirs

 return a dictionary of values to be used to produce iupred2 entries for
 sars_lir_disorder
 """

 cnx = db.connect()
 cursor = cnx.cursor(buffered=True)

 query = ""
 data = {}
 if uniprot_id is None:
 query = "select lir_acc, uniprot_id, lir_start, lir_end, lir, verified from sars_lir order by uniprot_id"
 cursor.execute(query)

 else:
 query = "select lir_acc, uniprot_id, lir_start, lir_end, lir, verified from sars_lir where uniprot_id=%s"
 cursor.execute(query % uniprot_id) IO

ANNA KALV
ARI

 163

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

 for row in cursor:
 if row[1] not in data:
 data[row[1]] = {row[0]: {"start": row[2], "end": row[3], "lir": row[4], "verified": row[5]}}
 else:
 data[row[1]][row[0]] = {"start": row[2], "end": row[3], "lir": row[4], "verified": row[5]}

 cursor.close()
 cnx.close()

 return data

--

def produce_anchor2_data_binary(iupred_results, threshold = 0.5, cutoff = 50):
 """
 Produces new data based on the iupred2 preditions provided and a threshold for the
 anchor2 overlap

 iupred_results: An iupred2 result file or
 threshold = 50
 """

 anchor2_data = []
 if os.path.isdir(iupred_results):

 iupred2_result_files = os.listdir(iupred2_result_directory)

 for iupred2_result_file in iupred2_result_files:
 # parse iupred2
 iupred2_result_file_path = os.path.join(iupred2_result_directory, iupred2_result_file)
 iupred2_dict = iupred2_results_to_dict(iupred2_result_file_path)

 uniprot_id = iupred2_result_file.partition('.')[0]
 protein_lirs = pull_lir_information_from_db(uniprot_id)

 for lir in protein_lirs:
 lir_start = lir[1]
 lir_end = lir[2] IO

ANNA KALV
ARI

 164

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

 anchor2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
 lir_start, lir_end,
 type = "ANCHOR2",threshold = threshold)
 # convert anchor2 prediction to binary based on
 if anchor2_score >= cutoff:
 anchor2_data.append((1, lir[0]))
 else:
 anchor2_data.append((0, lir[0]))

 elif os.path.isfile(iupred_results):
 iupred2_dict = iupred2_results_to_dict(iupred_results)

 uniprot_id = iupred_results.partition('.')[0]
 protein_lirs = pull_lir_information_from_db(uniprot_id)

 for lir in protein_lirs:
 lir_start = lir[1]
 lir_end = lir[2]
 anchor2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
 lir_start, lir_end,
 type = "ANCHOR2",threshold = threshold)
 # convert anchor2 prediction to binary based on
 if anchor2_score >= threshold:
 anchor2_data.append((1, lir[0]))
 else:
 anchor2_data.append((0, lir[0]))

 load_anchor2_results_to_db(anchor2_data)

--

def produce_iupred2_data(iupred_results, threshold = 0.5, uniprot_id = None):
 """

 iupred_results: A dictionary with multiple iupred results or a single file
 threshold: Threshold defines accepted values for disorder prediction
 return:
 """
 db_iupred2_data = pull_input_for_iupred2_predictions(uniprot_id=uniprot_id) IO

ANNA KALV
ARI

 165

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

 iupred2_data = []

 method = ''

 if "--anchor2" in sys.argv:
 method = "anchor2"
 elif "--iupred2" in sys.argv:
 method = "iupred2"

 if os.path.isdir(iupred_results):

 iupred2_result_files = os.listdir(iupred2_result_directory)

 for iupred2_result_file in iupred2_result_files:
 # parse iupred2
 iupred2_result_file_path = os.path.join(iupred2_result_directory, iupred2_result_file)
 iupred2_dict = iupred2_results_to_dict(iupred2_result_file_path)

 uniprot_id = iupred2_result_file.partition('.')[0]
 protein_lirs = pull_lir_information_from_db(uniprot_id)

 for lir in protein_lirs:
 lir_start = lir[1]
 lir_end = lir[2]

 lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
 lir_start, lir_end,
 type = "IUPred2",threshold = threshold)

 lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict,
 lir_start,
 lir_end, threshold = threshold)

 lir_acc = lir[0]
 lir_string = db_iupred2_data[uniprot_id][lir_acc]["lir"]
 verified = db_iupred2_data[uniprot_id][lir_acc]["verified"]
 #method = "iupred2"
 data_type = "predicted" IO

ANNA KALV
ARI

 166

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

 iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end, lir_string,
 lir_iupred2_disrting, lir_iupred2_score,
 verified, method, data_type, threshold))

 elif os.path.isfile(iupred_results):

 iupred2_dict = iupred2_results_to_dict(iupred_results)
 uniprot_id = iupred_results.partition('.')[0]
 protein_lirs = pull_lir_information_from_db(uniprot_id)

 for lir in protein_lirs:
 lir_start = lir[1]
 lir_end = lir[2]

 lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
 lir_start, lir_end,
 type = "IUPred2",threshold = threshold)

 lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict,
 lir_start,
 lir_end, threshold = threshold)
 lir_acc = lir[0]
 lir_string = db_iupred2_data[uniprot_id][lir_acc]["lir"]
 verified = db_iupred2_data[uniprot_id][lir_acc]["verified"]
 #method = "iupred2"
 data_type = "predicted"

 iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end,
 lir_string, lir_iupred2_disrting, lir_iupred2_score,
 verified, method, data_type, threshold))

 # function to update the database
 load_iupred2_results_to_db(iupred2_data)

--

def produce_anchor2_data_disorder(iupred_results, threshold = 0.5, uniprot_id = None):
 """ IO

ANNA KALV
ARI

 167

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

 :param iupred_results:
 :param threshold:
 :return:
 """
 db_iupred2_data = pull_input_for_iupred2_predictions(uniprot_id=uniprot_id)

 iupred2_data = []

 method = 'anchor2'

 """
 if "--anchor2" in sys.argv:
 method = "anchor2"
 elif "--iupred2" in sys.argv:
 method = "iupred2"
 """

 if os.path.isdir(iupred_results):

 iupred2_result_files = os.listdir(iupred2_result_directory)

 for iupred2_result_file in iupred2_result_files:
 # parse iupred2
 iupred2_result_file_path = os.path.join(iupred2_result_directory, iupred2_result_file)
 iupred2_dict = iupred2_results_to_dict(iupred2_result_file_path)

 uniprot_id = iupred2_result_file.partition('.')[0]
 protein_lirs = pull_lir_information_from_db(uniprot_id)

 for lir in protein_lirs:
 lir_start = lir[1]
 lir_end = lir[2]

 lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
 lir_start, lir_end,
 type = "ANCHOR2",threshold = threshold)

 lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict, IO

ANNA KALV
ARI

 168

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

 lir_start,
 lir_end, threshold = threshold)

 lir_acc = lir[0]
 lir_string = db_iupred2_data[uniprot_id][lir_acc]["lir"]
 verified = db_iupred2_data[uniprot_id][lir_acc]["verified"]
 #method = "iupred2"
 data_type = "predicted"

 iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end, lir_string,
 lir_iupred2_disrting, lir_iupred2_score,
 verified, method, data_type, threshold))

 elif os.path.isfile(iupred_results):

 iupred2_dict = iupred2_results_to_dict(iupred_results)
 uniprot_id = iupred_results.partition('.')[0]
 protein_lirs = pull_lir_information_from_db(uniprot_id)

 for lir in protein_lirs:
 lir_start = lir[1]
 lir_end = lir[2]

 lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
 lir_start, lir_end,
 type = "ANCHOR2",threshold = threshold)

 lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict,
 lir_start,
 lir_end, threshold = threshold)
 lir_acc = lir[0]
 lir_string = db_iupred2_data[uniprot_id][lir_acc]["lir"]
 verified = db_iupred2_data[uniprot_id][lir_acc]["verified"]

 data_type = "predicted"

 iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end,
 lir_string, lir_iupred2_disrting, lir_iupred2_score,
 verified, method, data_type, threshold)) IO

ANNA KALV
ARI

 169

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

 # function to update the database
 load_iupred2_results_to_db(iupred2_data)

--

if __name__=='__main__':

 iupred2_result_directory = sys.argv[1]
 threshold = float(sys.argv[2])
 cutoff = int(sys.argv[3])

 if "--anchor2" in sys.argv:
 produce_anchor2_data_binary(iupred2_result_directory, threshold = threshold, cutoff=cutoff)
 #produce_anchor2_data_disorder(iupred2_result_directory, threshold = threshold, uniprot_id = None)
 elif "--iupred2" in sys.argv:
 produce_iupred2_data(iupred2_result_directory, threshold = threshold, uniprot_id = None)

IO
ANNA KALV

ARI

 170

7.4 spot_scanner.py	code	

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

import os
import sys

import ilir3d.lib.lir3d_db_connector as db

def parse_spot_list_desc(spot_desc):
 """
 Parses the SPOT-disorder description file

 spot_desc: The output SPOT-disorder description file
 return: A disctionary with uniprot_ids and filename mappings
 """

 id_mapings = {}
 fp = open(spot_desc, 'r')

 for line in fp:
 line = line.strip().split(' ')
 filename = line[0]
 if filename not in id_mapings:
 id_mapings[filename] = {}
 uniprot = line[1].split('|')
 uniprot_id = uniprot[2]
 uniprot_acc = uniprot[1]
 desc = (' ').join(line[3:])

 id_mapings[filename]["id"] = uniprot_id
 id_mapings[filename]["acc"] = uniprot_acc
 id_mapings[filename]["desc"] = desc

 fp.close()

 return id_mapings
 IO

ANNA KALV
ARI

 171

 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77

def parse_spot_file(spot_file):
 """
 Parses the SPOT-disorder output file and loads all data
 in a dictionary

 spot_file: The output file of SPOT-disorder

 return: A dictionary wit SPOT disorder data
 """

 spot_dict = {}

 fp = open(spot_file, 'r')

 # drop header
 header = fp.readline()

 for line in fp:
 line = line.strip().split('\t')
 spot_dict[int(line[0])] = line[3]

 fp.close()

 return spot_dict

def load_regions_from_db(uniprot_id):
 """
 Loads all necessary regions from iLIR3D database in order
 to identify disorder overlaps

 return: Query data in a list
 """

 cnx = db.connect()
 cursor = cnx.cursor(buffered=True)
 IO

ANNA KALV
ARI

 172

 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

 # this will limit results to only the old ones
 query = "select lir_acc, lir_start, lir_end from sars_lir where uniprot_id=\'%s\'"

 cursor.execute(query % uniprot_id)

 data = cursor.fetchall()

 cursor.close()
 cnx.close()

 return data

def dstr_constructor(lir_dstr_dict):
 """
 Constructs the disorder string (dstr) based on the given dictionary

 lir_dstr_dict: A dictionary with disordered residues for each position
 of a LIR-motif

 return: The disorder string dSTR
 """

 dstr = ""

 for lir_index in sorted(lir_dstr_dict.keys()):
 dstr+=lir_dstr_dict[lir_index]

 return dstr

def spot_disorder_overlap_scanner(spot_results, lir_regions):
 """
 Scans a LIR-motif for disordered residues based on the LIR-motif
 start and end positions.

 uniprot_id: A valid UniProt id
 spot_file: The output file of SPOT-disorder with all calculated IO

ANNA KALV
ARI

 173

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

 disordered regions of a sequence file defined by uniprot_id
 lir_regions: A list with all lir regions strored in tuples as (lir_acc, start, end)

 return: A dictionary with lir all disorder strings
 """

 prot_dstrs = {}
 lir_dstr_dict = {}

 spot_annotations = parse_spot_file(spot_results)

 for region in lir_regions:

 # initialize dictionary
 start = int(region[1])
 end = int(region[2])
 index = start

 while index <= end:
 lir_dstr_dict[index] = '?'
 index += 1

 # now look for disorder annotations
 index = start
 while index <= end:
 if index in spot_annotations:
 lir_dstr_dict[index] = spot_annotations[index]
 index += 1

 # assign the dstr to its corresponsing LIR
 dstr = '' # sanity initialization
 dstr = dstr_constructor(lir_dstr_dict)

 prot_dstrs[region[0]] = dstr
 lir_dstr_dict = {}

 return prot_dstrs

 IO

ANNA KALV
ARI

 174

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

def calculate_disorder_percentage(dstr):

 """
 Calculates percentage of D characters found in dstr

 dstr: Disorder string dSTR (e.g. DDDSSD)

 return: Disorder percentage
 """

 lir_length = len(dstr)
 number_of_Ds = dstr.count('D')

 disorder_percentage = (number_of_Ds * 100) / lir_length

 return disorder_percentage

def fetch_disorder_fields_from_db(lir_acc):
 """

 uniprot_id:
 return:
 """

 cnx = db.connect()
 cursor = cnx.cursor(buffered=True)

 # this will limit results to only the old ones
 query = "select lir, verified from sars_lir where lir_acc=%s"

 cursor.execute(query % lir_acc)

 data = cursor.fetchall()[0]

 cursor.close()
 cnx.close()

 return data IO

ANNA KALV
ARI

 175

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

if __name__=='__main__':

 # main produces iLIR3D ready data for import in tabular format

 spot_desc = sys.argv[1] # /path/to/spotd/list.desc
 spot_output_dir = sys.argv[2] # /path/to/spotd

 metadata = parse_spot_list_desc(spot_desc)

 for case in metadata:
 uniprot_id = metadata[case]["id"]
 uniprot_acc = metadata[case]["acc"]

 lir_regions = []
 lir_regions = load_regions_from_db(uniprot_id)

 lir_region_dict = {}

 for region in lir_regions:
 lir_region_dict[region[0]] = {"start": region[1], "end": region[2]}

 spot_file = os.path.join(spot_output_dir, case + ".spotd")

 spot_dstrs = spot_disorder_overlap_scanner(spot_file, lir_regions)

 for lir_acc in sorted(spot_dstrs.keys()):
 dstr = spot_dstrs[lir_acc]
 lir_start = lir_region_dict[lir_acc]["start"]
 lir_end = lir_region_dict[lir_acc]["end"]

 (lir_seq, verified) = fetch_disorder_fields_from_db(int(lir_acc))

 print "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % (lir_acc, uniprot_id,
 lir_start, lir_end,
 lir_seq,dstr,
 str(calculate_disorder_percentage(dstr)),
 verified, "spot","predicted", "") IO

ANNA KALV
ARI

 176

IO
ANNA KALV

ARI

