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ΠΕΡΙΛΗΨΗ  
 
Η μακροαυτοφαγία (ή αυτοφαγία) αποτελεί εξελικτικά συντηρημένο ευκαρυωτικό 
καταβολικό μηχανισμό κυτταρικής ομοιόστασης. Υπό συνθήκες stress δημιουργούνται 
αυτοφαγοσώματα, διπλομεμβρανικά κυστίδια απομόνωσης κυτταροπλασματικού υλικού 
που οδηγείται σε αποικοδόμηση στα λυσοσώματα/κενοτόπια “ανακυκλώνοντας” δομικά 
στοιχεία του κυττάρου. Η αυτοφαγία συχνά εκτελείται επιλεκτικά, υποβοηθούμενη από 
πρωτεΐνες-υποδοχείς που προσδένουν τα φορτία με εξειδικευμένες αλληλεπιδράσεις. 
Ταυτόχρονα, μέσω ενός βραχέως γραμμικού μοτίβου (LIR-motif) προσδένουν πρωτεΐνες 
της οικογένειας Atg8, που βρίσκονται ομοιοπολικά συνδεδεμένες στη μεμβράνη του 
αυτοφαγοσώματος. Επιπλέον, πρωτεΐνες-προσαρμογείς αλληλεπιδρούν με τις Atg8 με LIR-
motifs για την επιτέλεση άλλων αυτοφαγικών λειτουργιών. Κατά την περίοδο έναρξης αυτής 
της διδακτορικής διατριβής είχαν χαρακτηριστεί 25 περίπου πρωτεΐνες-
υποδοχείς/προσαρμογείς της αυτοφαγίας και τα LIR-motifs τους. 
 
Εξετάσαμε τη δυνατότητα ανάπτυξης υπολογιστικών μεθόδων/εργαλείων χαρακτηρισμού 
LIR-motifs, στοχεύοντας στη διεύρυνση της γνώσης σχετικά με τις πρωτεΐνες 
υποδοχείς/προσαρμογείς. Συγκεκριμένα, έχοντας υπόψη προηγούμενες προσπάθειες 
περιγραφής των LIR-motifs, προτείναμε μια γενικευμένη κανονική έκφραση (xLIR) 

στοχεύοντας στην απόλυτη ευαισθησία. Αναμενόμενα, η προσέγγιση αυτή οδηγεί σε 
ανίχνευση πλήθους μοτίβων χωρίς βιολογική σημασία. Προκειμένου να μειώσουμε τον 
αριθμό τους, διατηρώντας ταυτόχρονα υψηλή ευαισθησία ανίχνευσης των βιολογικά 
σημαντικών μοτίβων, αξιολογήσαμε συστηματικά πληθώρα συμπληρωματικών 
χαρακτηριστικών. Παρατηρώντας ότι (α) οι πρωτεΐνες της αυτοφαγίας τείνουν να περιέχουν 
εγγενώς μη δομημένες περιοχές (IDRs), και (β) βραχέα μοτίβα πρόσδεσης συχνά βρίσκονται 
σε IDRs,  αρχικά επιβεβαιώσαμε ότι ισχύουν στο σύνολο αναφοράς και τις εφαρμόσαμε ως 
φίλτρο, βελτιώνοντας σημαντικά την ειδικότητα. Δείξαμε επίσης ότι η πιθανοθεωρητική 
αναπαράσταση των βιολογικά λειτουργικών LIR-motifs μέσω PSSMs αυξάνει περισσότερο 
την ειδικότητα, οδηγώντας σε προβλέψεις υψηλότερης ακρίβειας. Βασιζόμενοι στα 
παραπάνω, αναπτύξαμε την πρώτη σχετική μέθοδο στη βιβλιογραφία, η οποία διατίθεται 
ελεύθερα για χρήση στην ερευνητική κοινότητα (διαδικτυακή εφαρμογή iLIR).  
  
Στοχεύοντας να κατανοήσουμε σε βάθος τις σχέσεις της αμινοξικής ακολουθίας και των 
δομικών χαρακτηριστικών των πρωτεϊνών με λειτουργικά LIR-motifs και να βελτιώσουμε 
περαιτέρω την απόδοση της iLIR: (α) Μελετήσαμε συστηματικά διάφορες πηγές δεδομένων 
που αφορούν IDRs. Προτείνουμε πολύ-κριτηριακές προβλέψεις, που μπορούν να 

IO
ANNA KALV

ARI 



 vi 

χρησιμοποιηθούν σε διαφορετικές εφαρμογές, στοχεύοντας σε υψηλότερη ειδικότητα ή 
ευαισθησία. (β) Πραγματοποιήσαμε συστηματική συλλογή πειραματικά προσδιορισμένων 
τρισδιάστατων δομών πρωτεϊνών της οικογένειας Atg8 και LIR-motifs. Μετά από 
προεπεξεργασία των δεδομένων για τον καθορισμό των περιοχών δέσμευσης των LIR-
motifs, εκτελέσαμε πειράματα αγκυροβόλησης πεπτιδίων στις δομές “στόχους”, 

καταδεικνύοντας ότι μπορούμε με επιτυχία να αναγνωρίζουμε περιπτώσεις ειδικότητας 
αλληλεπίδρασης των LIR-motifs με συγκεκριμένα ομόλογα της Atg8. Αναπτύξαμε μια 
εξειδικευμένη βάση δεδομένων για την καταχώρηση και περαιτέρω ανάλυση των 
αποτελεσμάτων, η οποία θα διατεθεί σύντομα προς χρήση.  
  
Στο ταχύτατα αναπτυσσόμενο αυτό ερευνητικό πεδίο είναι παρακινδυνευμένο να κάνει 
κανείς επιτυχημένες προβλέψεις των εξελίξεων σε βάθος χρόνου. Το γεγονός ότι σήμερα 
(συχνά με τη βοήθεια μεθόδων που αναπτύχθηκαν σε αυτή τη διατριβή) έχει 
πολλαπλασιαστεί η γνώση μας για τους υποδοχείς/προσαρμογείς της επιλεκτικής 
μακροαυτοφαγίας δημιουργεί νέες προοπτικές. Η αύξηση των διαθέσιμων δεδομένων 
αναφοράς επιτρέπει την ανάπτυξη εξελιγμένων μεθόδων πρόβλεψης (π.χ. βασισμένων σε 
τεχνικές μηχανικής μάθησης) που, σε συνδυασμό με δεδομένα μεταγραφομικής, μπορούν 
να προσφέρουν νέα γνώση για τους μηχανισμούς ρύθμισης της επιλεκτικής αυτοφαγίας σε 
διαφορετικούς κυτταρικούς τύπους, ιστούς και αναπτυξιακά στάδια. Παράλληλα, 
ανακαλύψεις νέων μοριακών οντοτήτων που εμπλέκονται ενεργά στην επιλεκτική 
αυτοφαγία (π.χ. ncRNAs) αναμένεται να μας προσφέρουν “εκπλήξεις” αλλά και νέο υλικό 
και πεδίο δράσης για πειραματισμό, τόσο στο εργαστήριο όσο και in silico.   
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ABSTRACT  
 
Macroautophagy (hereinafter autophagy) is a catabolic, cellular homeostasis mechanism 
conserved throughout the eukaryotes. Under stress conditions, double membraned vesicles 
(autophagosomes) isolate cytoplasmic material, eventually targeted to the lysosome/vacuole 
for degradation, thus recycling structural blocks for use by the cell. Selective modes of 
autophagy are facilitated by receptor proteins capable of binding specific cargos via cargo-
specific interactions. These receptors bind to members of the Atg8 protein family 
(conjugated to the autophagosome membrane) via short linear motifs (LIR-motifs). 
Furthermore, protein adaptors interact with Atg8 proteins via LIR-motifs for performing 
other autophagic functions. At the initiation of this PhD project approximately 25 selective 
autophagy receptors/adaptors had been characterized along with their LIR-motifs.  
 
We set to develop computational methods and tools for characterizing LIR-motifs, aiming 
to broaden our knowledge on selective autophagy receptors/adaptors. Based on previous 
attempts to describe LIR-motifs, we propose a generic regular expression (xLIR) aspiring to 

achieve absolute sensitivity. Expectedly, this approach leads to many false positive hits 
without any biological relevance. We systematically examined additional sequence-derived 
features to reduce false positives.  
 
Knowing that:   

a) autophagy proteins are enriched in intrinsically disordered regions (IDRs), and  
b) short linear motifs are often found in IDRs  

 
we confirm these observations in our reference autophagy receptor/adaptor dataset and, 
consequently, apply these principles as filters, leading to increased specificity. We also 
demonstrate that using a profile representation of LIR-motifs (in the form of a PSSM) further 
increases specificity, yielding high quality predictions. This work led to the first method of 
its kind reported in the literature, now freely available for use by the research community 
via the iLIR web server.  
 
In our quest for deeper understanding the relationships between aminoacid sequences and 
the structural features of proteins with functional LIR-motifs (and to further improve iLIR 
efficiency):   
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a) We systematically studied different data resources regarding IDRs, proposing multi-
scheme predictions, each suited for different applications aiming at higher 
specificity/sensitivity.  

 
b) We compiled a comprehensive collection of experimentally determined 3D-

structures of Atg8 proteins and LIR-motifs. Following data pre-processing for 
defining the LIR-motif interaction interfaces, we conduct peptide docking 
experiments, illustrating that this approach is useful for predicting LIR::Atg8 
binding-specificity. We develop a specialized database for storing this information, 
facilitating downstream analyses, which we plan to make freely available for use.  

 
It is difficult to make successful long-term predictions in a rapidly developing field like 
autophagy. The increasing number of selective autophagy receptors/adaptors discovered 
(often using the methods/tools developed for this thesis) opens exciting research 
perspectives. Access to substantially broader reference datasets enables (or, better, requires) 
development of more sophisticated methods/tools (e.g. based on machine-learning 
techniques) to successfully capture hidden dependencies between sequence-features and 
functional properties of LIR-motifs. Combined with the increasing availability of -omics 
data, we envisage cutting-edge research towards elucidating regulation of autophagy in 
different cell types, tissues and developmental stages. In addition, the discovery of novel 
molecular entities (e.g. ncRNAs) with active roles in autophagy guarantees further 
‘surprises’ but also new data material and research directions for experimentation, in vivo, 
in vitro or in silico. 
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1 Introduction		

1.1 Autophagy	

Autophagy is an essential conserved catabolic biological process through which the cell 
maintains energy homeostasis and protects itself against pathogens. This is achieved via the 
breakdown of cytosolic material at the lytic compartments of the cell, which is the vacuole 
in plants and fungi and the lysosome in higher eukaryotes. To put it in simple terms, one can 
see autophagy as the recycling machinery of the cell (Yang and Klionsky 2009; White et al. 

2015). 
 
There are three different types of autophagy known in mammals: microautophagy, 
chaperone mediated autophagy and macroautophagy. Microautophagy involves the 
invagination of the lysosomal membrane and at the same time engulfing cytosolic material, 
which will be broken down once completely secluded. Chaperone mediated autophagy, as 
the name denotes, is coordinated via heat shock cognate 70 proteins and their co-chaperones, 
tethering proteins to the lysosome via a KFERQ like motif (Wirawan et al. 2012).  

 

Macroautophagy is more distinctive compared to the other two types of autophagy in the 
sense that it requires an intermediate double membrane vesicle called the autophagosome, 
to transport cytosolic material to the lysosome for degradation (Wirawan et al. 2012).   
 

 
 

Figure 1. The three different types of autophagy in mammals 

This figure was obtained from (Wirawan et al. 2012). 
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1.2 Selective macroautophagy 

 
Macroautophagy (or simply autophagy) is known to be induced by stress or nutrient 
starvation leading to the  degradation of cytosolic material to the lysosome/vacuole, resulting 
in the generation of  “fresh” building blocks such as amino acids for protein synthesis 
(Onodera & Ohsumi 2005). 
 
Autophagy was identified as a cellular response to nutrient starvation (Scott et al. 2004; 
Rubinsztein et al. 2011) and although it was initially considered to be a bulk process, where 
cytoplasmic material is recycled in an unselective manner, relevant work over the years 
showed that it can happen in a highly selective manner. A wide range of different cargo 

degraded by this process includes from single protein molecules or protein aggregates 
(Lamark & Johansen 2012; Lamark et al. 2017; Zaffagnini et al. 2018) to damaged organelles 
like mitochondria (mitophagy), endoplasmic reticulum (reticuloplagy) and chloroplasts 
(chlorophagy – in plants) (Palikaras et al. 2018; Avin-Wittenberg & Fernie 2014), 
peroxisomes (pexophagy) (Marshall & Vierstra 2018) and even pathogens (xenophagy) 
(Knodler & Celli 2011). 
 
Upon nutrient starvation, this biological mechanism starts with the generation of the double 
membrane organelle – the phagophore – near the endoplasmic reticulum, a process known 
as the nucleation. The phagophore then elongates, sequestering cytosolic material and, 
finally, closes forming a completely structured vesicle known as the autophagosome 
(closure). In a final step, the autophagosome travels to the lysosome (or the vacuole in plants 
and fungi) with which it fuses to form the autolysosome (Parzych & Klionsky 2014) 
(Zaffagnini & Martens 2016). Its constituents will then be degraded and recycled material is 
released back to the cytoplasm to be reused by the cell (Yang and Klionsky 2009; White et 
al. 2015).  
 
Selective autophagy is orchestrated by specialised proteins called selective autophagy 

receptor (SARs) and adaptor proteins (Pankiv et al. 2007). SARs recognize and tether cargo 
from the cytoplasm to the phagophore and all the way to the lysosome in a selective manner 
(Stolz et al. 2014; Johansen & Lamark 2011; Rogov et al. 2017). Recruitment of cargo to the 
phagophore is enabled via interaction with proteins of the Atg8 family, located on the inner 
(receptors) and outer (adaptor) membranes of the phagophore (Rogov et al. 2014).  
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Atg8 proteins were first identified in yeast, where they also get their name from, and 
although there is only one gene encoded in Saccharomyces cerevisiae, more than one 
homologs are expressed in higher eukaryotes. For instance, there are 4 distinct Atg8 
homologs expressed in the human genome (Shpilka et al. 2011):  
 

1. Microtubule-associated proteins 1A/1B light chains 3A, 3B and 3C (MAP1LC3A, 
MAP1LC3B, MAP1LC3C) 

2. Gamma-aminobutyric acid receptor-associated protein (GABARAP) 
3. Gamma-aminobutyric acid receptor-associated protein-like 1 

(GABARAPL1/GEC1) 
4. Gamma-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2/  

GATE-16 
 
The proteins of the Atg8 family and selective autophagy receptors and adaptors all together 
constitute the key players of the autophagic apparatus. Members of the Atg8 family are 
ubiquitin-like proteins (C-terminal), but do not share any similarities with Ubiquitins at 
sequence level and their N-terminal contains two consecutive α-helices, which is also what 
distinguishes them between ubiquitin proteins (Noda et al. 2010; Shpilka et al. 2011). 
 
The interaction between Atg8 and selective autophagy receptor and adaptor proteins is 
facilitated through short linear motifs (SLIMs) often named as LIRs (Pankiv et al. 2007), 
AIMs (Noda et al. 2010), or GIMs (Rogov et al. 2014) based on their species of origin or 
their preference towards a certain type of Atg8 homolog. From this point onwards, we will 

collectively refer to these motifs as LIR-motifs, unless we specify otherwise. 
 
LIR-motifs bind to the two conserved hydrophobic pockets of the Atg8 proteins – the W-
site and L-site named after the amino acids firstly identified to interact with –  by adopting 
an extended β-strand conformation, forming a parallel intermolecular β-sheet with that of 
the Atg8 proteins (Rogov et al. 2014).  
  
Apart from autophagy’s central role in the survival of the cell, this intracellular procedure is 
also known to be implicated in many biological pathways and mechanisms such as apoptosis 
(Mukhopadhyay et al. 2014), innate immunity (Boyle & Randow 2013), development e.g. 
embryogenesis (Mizushima & Levine 2010; Qu et al. 2007) and ageing (Mizushima 2007; 
Rubinsztein et al. 2011). In its defective form, autophagy can result in serious diseases from 
neurodegeneration (e.g. Altzheimer’s (Uddin et al. 2018), Parkinson’s (Lynch-Day et al. 
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2012; Wang et al. 2016)), retinitis pigmentosa (Moreno et al. 2018)), metabolic diseases 
(Rocchi & He 2015), diseases related with the heart (Martinet et al. 2007; Mei et al. 2015), 
liver (Ueno & Komatsu 2017) and lungs (Ryter & Choi 2015; Racanelli et al. 2018) as well 
as cancer (Amaravadi et al. 2016; Santana-Codina et al. 2017; Degenhardt et al. 2006) 
(Figure 2). With such a complex interplay of autophagy with other cellular processes and 

external stimuli a better understanding of this mechanism and its course of action seems to 
be crucial. 
 

 

Figure 2. The multifaceted view of autophagy. 

The figure was obtained from (Marshall and Vierstra 2018). 

 
In the past decade a great curiosity around this biological mechanism emerged with studies 
concentrating on the characterization of LIR-motifs through sequence and structural 
analysis. The latter enabled scientists to define a short linear motif in the form of WXXL, 
where the amino acids tryptophan (W) and leucine (L) were proven to be significant for the 
interaction of the autophagic proteins with the two hydrophobic binding sites of the LC3 
receptor (Birgisdottir et al. 2013; Noda et al. 2008). Later on, Noda et al. re-defined the linear 
motif by extending it to the form of X-3X-2X-1[WY]X1X2[LIV], suggesting that acidic 
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residues at the leftmost end of the motif (positions -3 to -1) favoured interaction with the 
Atg8 receptor, also naming this short peptide AIM for Atg8 Interacting Motif (Noda et al. 
2010).  
 
Another team, in their experimental work towards the identification of LIR-motifs of the 

ULK complex, Alemu and colleagues also made an effort to devise a consensus LIR-motif 
to further explore common aspects of these linear peptides. They collected 27 experimentally 
verified LIR-motifs from the literature. From a multiple sequence alignment composed using 
the sequences they gathered, the authors proposed the following regular expression: 
[DE][DEST][WFY][DELIV]X[ILV] (Alemu et al. 2012) and gave rise to a plethora of 
successive analogous studies. The timeline of the “evolution” of the notion of the 
AIM/LIR/GIM-motif as drawn by the traces of the pioneers in the field is shown in Figure 

3. 
 

 

Figure 3. The “evolution” of the notion of a LIR/AIM/GIM motif. 

 

1.3 Intrinsic disorder and LIR-motifs 

 
Intrinsically disordered proteins (IDPs) are proteins which in their free state do not fold into 
a unique stable conformation (Wright & Dyson 1999). IDPs have been intensively studied 

during the last two decades and an increasing amount of knowledge continues to accumulate 
regarding to their possible functions (Wright & Dyson 2015; Dyson & Wright 2005; Oldfield 
& Dunker 2014; Darling & Uversky 2018). In several cases, a single protein may contain 
both globular (i.e. well-folded) and disordered (i.e. unstructured) domains, e.g. p53 
(Derbyshire et al. 2002; Rowell et al. 2012; Suad et al. 2009). 
 
In the majority of the currently documented cases, the conformation of the LIR-motif is 
extended when bound to the LIR docking site (LDS) of Atg8 homologs. An intriguing case 
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is the CLTC LIR-motif, which adopts an α-helical structure (Fotin et al. 2004). If we assume 
that during its interaction with the LDS a LIR-motif must have an extended conformation, 
then it would be possible that LIR-motifs may have the characteristics of so-called 
“chameleon sequences” (Mezei 1998) or “conformational switches” (Tsolis et al. 2013), that 
is, short sequences found to adopt more than one distinct secondary structure state. Such 

sequences have been long known to be important in protein aggregation and amyloid 
formation (Kelly 1996). 
 
Additionally, it has been postulated that the function of LIR-motifs may be facilitated by 
short-range (with respect to the LIR-motif) conformational changes. Such structural 
rearrangements could bring this short linear motif in a suitable extended conformation in 
order to interact with the 2 well-conserved hydrophobic pockets on the surface of Atg8 
homologs (Noda et al. 2008; Noda et al. 2010). Combined with the recent observation that 
autophagy-related proteins are relatively rich in intrinsically disordered regions (Mei et al. 
2014), it is possible that the LIR-motifs may adopt the required conformation after switching 
from a disordered to an ordered state.  
 

1.4 Hypothesis and objectives 

 
Despite the central role of selective autophagy in cell physiology, at the beginning of this 
project only a few instances of selective autophagy receptors had been experimentally 
verified and reported in the literature. In addition, throughout the years several groups 
identified and refined the definition of LIR/AIM motifs. However, there was no systematic 

manner (e.g. dedicated computational tools) to look for instances of functionally relevant 
LIR motifs in amino acid sequences. Thus, a molecular biologist that wanted to investigate 
whether a protein sequence of interest had the potential to interact with an Atg8 protein, 
would have to manually check for an instance of the LIR motif or tweak existing software 
to perform this task. In addition, in the absence of automated tools, scanning of complete 
proteomes for the presence of LIR containing proteins (LIRCPs) was simply impossible. 
 
We examined the efficacy of the consensus regular expression (cLIR) introduced in Alemu 
et al. (Alemu et al. 2012) and found it to be weak in discriminating LIR instances. The cLIR 
with a reported sensitivity of only 40.7% would only capture 11 out of the 27 verified LIR-
motifs, a simple method which evidently required further improvement. Therefore, we 
hypothesised that a systematic study of experimentally known LIR-motifs and LIRCPs could 
facilitate the development of useful tools for the identification of functional LIR-motifs in 
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protein sequences. Moreover, accumulating structural evidence, started to highlight 
structural properties of the LIR-motif mediated interactions between LIRCPs and Atg8 
proteins (Noda et al. 2008; Noda et al. 2010). In particular, an important observation related 
these Short Linear Motifs with disorder to order transitions upon binding with their 
compactly folded partners, proposing intrinsic disorder as a potentially important property 

of functional LIR-motifs (Noda et al. 2010). 
 
In this study, we focus on the following objectives: 
 

1. Development of in silico methods and user-friendly tools for detecting putative LIR-
motifs and for providing useful information for downstream prioritizing LIR-motifs 
for experimental validation. Such a method can facilitate the discovery of novel 

selective autophagy receptor/adaptor proteins across eukaryotes. Towards this goal, 
it is necessary to delimit the structural and functional properties of functional LIR-
motifs and to possibly devise new representations of the LIR-motif. 

2. Determination of sequence features of functional LIR-motifs and their (predicted) 
structural properties. Available experimental data highlight the importance of 
flexibility in the regions containing functional LIR-motifs, thus systematically 
investigating the role of intrinsically disordered regions in LIR-motifs is a main focus 
of this study. 

3. Development of tools and databases for exploiting existing structural data for 
enhancing our understanding of the properties of LIR-mediated interactions between 
LIRCPs and Atg8 proteins. 

 
With the fulfilment of the above objectives, we also aim to generate new knowledge that 
may enhance our understanding of autophagy-related protein-protein interactions and open 
new avenues for research in the elucidation of the molecular mechanisms underlying 
selective autophagy. 
 
In the following chapters, we present:  

i. The development of the freely available iLIR server which provides an easy way to 
analyse protein sequences for the presence of LIR motifs. The underlying method is 
carefully validated in a set of well-studied proteins known to interact with Atg8 
proteins. 

ii. The systematic validation of different sources of information (including predictions) 
of intrinsic disorder as a feature for enhancing LIR-motif prediction methods. 
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iii. The development of tools to analyse structural instances of complexes of LIRCPs 
and Atg8 proteins (including the results of peptide docking experiments) and the 
development of a specialised database to make these results available to the wider 
scientific community. 

 

We anticipate that the tools and types of analyses presented in the following sections will be 
useful in the elucidation of novel players in selective autophagy (receptor and adaptor 
proteins). Furthermore, it will enable the study of autophagy in species other than human 
and yeast (where, traditionally, most knowledge regarding this important cellular process 
has been acquired) and may inspire complementary computational approaches which may 
facilitate further advances in this rapidly evolving and exciting field of research. 
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2 Computational steps towards the characterization and 

identification of LIR-motifs 

2.1 Preface 

2.1.1 The Atg8 protein family 

An undoubtedly central role in autophagy hold the proteins belonging to the autophagy-
related 8 (Atg8) family, a name deriving from the Atg8 protein primarily identified in 
Saccharomyces cerevisiae. Although there is only one Atg8 protein encoded in the yeast 
genome, higher eukaryotes come with 4 distinct types: 
 

● Microtubule associated protein 1 light chain 3, known as MAPL1LC3 or LC3 and its 
4 isoforms including: 

ᐨ LC3A, LC3B, LC3B2 and LC3C 

● Gamma-aminobutyric acid receptor-associated protein (GABARAP) 
● Gamma-aminobutyric acid receptor-associated protein-like 1 

(GABARAPL1/GEC1) 
● Gamma-aminobutyric acid receptor-associated protein-like 2 

(GABARAPL2/GATE16/GEF2) 
 
According to the work of Noda et al. (Noda et al. 2010), who very nicely demonstrated the 
secondary and tertiary structural aspects of the proteins belonging to the Atg8 family, these 
proteins comprise a C-terminal domain that resembles ubiquitin-like structures, but without 
any (or below the detection threshold) similarities at sequence level, and an N-terminal 
extension with two consecutive α-helices. Their distinction from ubiquitin proteins relies on 
this conserved and unique feature.    
 
The binding to the adaptor and receptor proteins is achieved via short linear motifs known 
in the literature as AIMs, LIRs or GIMs, a name driven from the Atg8 homolog they 

preferably interact with. The LIR-motifs are located on the surface of adaptor and receptor 
proteins and upon binding with the Atg8 homologs they also interact with the two conserved 
hydrophobic pockets on the surface of the Atg8 receptors, undertaking an extended β-sheet 
conformation (Figure 4). In particular, their interaction with the LIR motifs is achieved via 
binding to their 2 hydrophobic pockets named W-site and L-site, a name given by the amino 
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acids initially found to be interacting with those, a Tryptophan (Trp - W) and a Leucine (Leu 
- L) at positions 3 and 6 of the LIR-motif respectively. The adoption of an extended β-strand 
conformation by the core of the LIR motif facilitates its interaction in a parallel fashion with 
the second β-strand of the Atg8 target forming an intermolecular β-sheet (Rogov et al. 2014). 
 

 

Figure 4. Three of the receptors belonging to the Atg8 family in complex with a LIR-motif peptide 

Three of the receptors belonging to the Atg8 family in complex with a LIR-motif peptide. Structure A (PDB 
id: 2K6Q) is the MAP1LC3B protein in complex with the LIR-motif of p62. Structure B (PDB id: 2L8J) is the 
GABARAPL1 protein in complex with the LIR-motif of NBR1 and structure C (PDB id: 2ZPN) is the actual 
Atg8 protein in complex with the LIR peptide of cargo-receptor protein Atg19. In all three structures the LIR 
peptides (green) take on an extended β-strand conformation at the two hydrophobic pockets of the Atg8 proteins  
(W-site, L-site;  illustrated in yellow and orange respectively).  

 
Until very recently, the majority of studies focused on the characterisation of Atg8 
Interacting Motifs (AIMs) (Noda et al. 2010) and LC3 Interacting Regions (LIRs) (Pankiv 
et al. 2007). Recently, Rogov and colleagues in their structural analysis on binders of the 
GABARAP isoforms, suggested the classification of the LIR-motifs based on their preferred 
Atg8 partner and gave emphasis to those motifs found to be specific to the GABARAP 
proteins, which they named GABARAP Interaction Motifs (GIMs). For the purposes of this 
study we maintain the term LIR-motif for all motifs regardless of binding specificity or 
species of origin.  
 

2.1.2 Selective autophagy receptor and adaptor proteins 

Autophagy is mediated by adaptor and receptor proteins, that selectively recruit cargo to an 
enclosed double membrane structure called the autophagosome. The autophagosome will 
travel carrying all its freight to fuse with a lysosome (or vacuole) to form the autolysosome. 
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This event causes all intra-autophagosomal components to be broken down by lysosomal 
hydrolases and released back to the cytosol to be re-used by the cell.  
 
The distinction between receptor and adaptor proteins is based on the way they interact with 
the proteins of the Atg8 family. Selective autophagy adaptors interact with proteins of the 

Atg8 family on the outer membrane of the autophagosome and are found to be implicated in 
many different processes from autophagy initiation to the degradation of materials by the 
autolysosome. A couple of examples are the ULK1 and ULK2 adaptor proteins participate 
in autophagosome formation (Kraft et al. 2012), FYCO1 which participates in 
autophagosome transport (Pankiv et al. 2010), TBC1D5, establishes communication with 
the endocytic network (Popovic et al. 2012) and PLEKHM1 with a key role in the 
autophagosome-lysosome fusion (McEwan et al. 2015). In contrast, selective autophagy 
receptors (SARs) interact with the Atg8 proteins on the inner side of the autophagosome and 
as a consequence being degraded with the rest of the cytosolic material. Clearly the fate of 
the adaptor proteins is less “tragic”.  
 
As previously mentioned, interaction with the proteins of the Atg8 family is achieved via 
short linear motifs, namely LIR-motifs. With respect to structural features, in the majority 
of the currently documented cases, LIR-motifs are shown to take an extended conformation 
when bound to the LIR docking site (LDS) of Atg8 homologs. An exception to the standard 
is the LIR-motif of the Clathrin heavy chain 1 (CLH1_HUMAN), which instead folds into 
an α-helical structure (Fotin et al. 2004).  
 

Building on that observation and based on the fact that a LIR-motif during its interaction 
with the LDS must have an extended conformation, then it is highly probable for LIR-motifs 
to have the characteristics of “chameleon sequences” (Mezei 1998) or conformational 
switches (Tsolis et al. 2013).  Those are found to be short sequences that adopt more than 
one distinct secondary structure state and have been long known to be important in protein 
aggregation and amyloid formation (Kelly 1996).  
 
Another assumption is that the function of LIR-motifs may be facilitated by a short-range 
(with respect to the length of these sequences) of conformational changes. Such structural 
rearrangements could bring this short linear motif in a suitable extended conformation in 
order to interact with the 2 well-conserved hydrophobic pockets on the surface of Atg8 
homologs (Noda et al. 2008; Noda et al. 2010). Combined with the observation that 
autophagy-related proteins are relatively rich in intrinsically disordered regions (IDRs) (Mei 
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et al. 2014), it is possible that the LIR-motifs may adopt the required conformation after 
switching from a disordered to an ordered state.  
 
In order to test this hypothesis, we scanned all of the proteins containing experimentally 
verified LIR-motifs (Table 1), in search for the presence of intrinsically disordered regions 

(IDRs). Disorder LIR-motifs were initially determined using the ANCHOR software 
(Mészáros et al. 2018), a dataset that was later enhanced by incorporating data from MobiDB 
(Piovesan et al. 2018) and 2 additional disorder prediction tools IUPRED2A (Mészáros et 
al. 2018) and SPOT-disorder (Hanson et al. 2017) (see next chapter 3).  
 

2.2 Data and Methods  

2.2.1 Data 

2.2.1.1 Compiling a sequence dataset 

The sequences used in this study were obtained from the UniProt Knowledgebase 
(https://www.uniprot.org/) and saved locally in flat files in FASTA format. Access to each 
sequence was established via their corresponding accession which is used as parameter, 
search by protein or gene name or keywords.  
 

Name Species UniProt  
Accession Name Species UniProt  

Accession 
ATG4B H. sapiens Q9Y4P1 TP53INP2/DOR H. sapiens Q8IXH6 
ATG13 H. sapiens O75143 TP53INP1 H. sapiens Q96A56 

Calreticulin H. sapiens P27797 TBC1D5 LIR2 H. sapiens Q92609 
Clathrin HC H. sapiens Q00610 Stbd1 H. sapiens O95210 

c-Cbl H. sapiens P22681 p62 H. sapiens Q13501 
Dvl2 H. sapiens O14641 NIX H. sapiens O60238 

FUNDC1 H. sapiens Q8IVP5 FIP200 H. sapiens Q8TDY2 
FYCO1 H. sapiens Q9BQS8 AtNBR1 A. thaliana Q9SB64 
NBR1 H. sapiens Q14596 DmATG1B D. melanogaster Q8MQJ7 

OATL1/TBC1D25 H. sapiens Q3MII6 ScAtg1 S. cerevisiae P53104 
Optineurin H. sapiens Q96CV9 ScAtg3 S. cerevisiae P40344 

ULK1 H. sapiens O75385 ScAtg19 S. cerevisiae P35193 
ULK2 H. sapiens Q8IYT8 ScAtg32 S. cerevisiae P40458 

Table 1. Selective autophagy receptor and adaptor proteins with experimentally determined LIR-motifs.  

Gene or protein names, species of origin and the UniProt accession numbers are displayed. 
 
All sequences underwent manual curation to ensure their validity and the exact position of 
the LIR-motifs. In cases where searches resulted in multiple hits, we manually selected 

complete sequences over truncated ones with preference to curated entries matching the 
sequences reported in the respective literature. The 26 UniProt entries were retrieved using 
this procedure and are listed in Table 1.   
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In particular, for the LIRCPs studied for the updated definition of the LIR-motif (xLIR) we 
followed a manual data-cleansing procedure, where instances of LIR-motifs reported in the 
literature that did not match with UniProt sequences were corrected for downstream analyses 
(Table 2).  

 

2.2.1.2 Randomised sequence dataset 

Randomisation of datasets is necessary in order to eliminate any biased interpretation of the 
outcome and ensure that what is being observed is not happening at random. For this end, 
we devised a randomized dataset where randomised versions of the sequences in Table 2 
were generated by shuffling, thus maintaining composition of the peptides using the 
shuffleseq program available from the EMBOSS explorer server 
(http://emboss.bioinformatics.nl/).   
 

2.2.2 Methods 

2.2.2.1 Intrinsic disorder prediction with ANCHOR software 

We hypothesize that several of the genuine LIR-motifs will lie in intrinsically disordered 
regions which have the potential to become ordered upon interaction with the Atg8 proteins. 
This seems to be a general property of several SLIMs (Davey et al. 2012). Therefore, we 
decided to use the ANCHOR software which predicts (using single-sequence information) 
subsequences flanking or overlapping intrinsically disordered regions - herein called 
anchors - with a high potential to be stabilized upon binding to a target molecule (Mészáros 
et al. 2018). 

2.2.2.2 Revising the LIR-motif regular expression 

A first scanning using the canonical LIR (cLIR) [DE][DEST][WFY][DELIV]X[ILV] 

introduced by Alemu et al. (Alemu et al. 2012), revealed its weakness in identifying LIR 
motifs, with it being able to only recognize 11 out of the 27 experimentally determined LIR 
motifs (40.7%). Driven by that outcome, we downloaded all protein sequences proposed in 
their study and manually created a multiple sequence alignment composed of the 27 verified 
LIR sequences illustrated in Table 3 under the block of Alemu et al.  
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Name Species UniProt 
ACC LIR-motif LIR 

Position 
LIR 

Limits Masked Masked 
Residues References 

ATG4B H. sapiens Q9Y4P1 DAATLTYDTLRF 8 2-13 N (N) D (Satoo et al. 2009) 

ATG13 H. sapiens O75143 GNTHDDFVMIDF 429* 
(444) 438-449 N (N) - (Alemu et al. 2012) 

Calreticulin H. sapiens P27797 GSLEDDWDFLPP 183** 
(200) 194-205 Y (Y) E 

(Mohrlüder, 
Stangler, et al. 

2007) 

Clathrin HC H. sapiens Q00610 VGYTPDWIFLLR 513+ 

(514) 508-519 N (N) - 
(Mohrlüder, 

Hoffmann, et al. 
2007) 

c-Cbl H. sapiens P22681 ASSSFGWLSLDG 802 796-807 Y (Y) P, S, G, 
H, D 

(Sandilands et al. 
2011) 

Dvl2 H. sapiens O14641 EVRDRMWLKITI 444 438-449 Y (N) P, R, S (Gao et al. 2010) 

FUNDC1 H. sapiens Q8IVP5 ESDDDSYEVLDL 18 12-23 N (N) - (Liu et al. 2012) 

FYCO1 H. sapiens Q9BQS8 PPDDAVFDIITD 1280 1274-
1285 Y (N) Q, S, E (Pankiv et al. 2010) 

NBR1 H. sapiens Q14596 SASSEDYIIILP 732 726-737 Y (Y) E, K (Kirkin et al. 2009) 

OATL1/TBC1D25 H. sapiens Q3MII6 SPLLEDWDIISP 136 130-141 Y (N) P, S (Itoh et al. 2011) 

Optineurin H. sapiens Q96CV9 GSSEDSFVEIRM 178 172-183 Y (Y) E (Wild et al. 2011) 

ULK1 H. sapiens O75385 SCDTDDFVMVPA 357 351-362 Y (Y) S, P (Alemu et al. 2012) 

ULK2 H. sapiens Q8IYT8 SCDTDDFVLVPH 353 347-358 Y (Y) S (Alemu et al. 2012) 

TP53INP2/DOR H. sapiens Q8IXH6 EDEVDGWLIIDL 35 29-40 Y (N) R, P (Sancho et al. 2012) 

TP53INP1 H. sapiens Q96A56 EKEDDEWILVDF 31 25-36 Y (Y) E (Sancho et al. 2012) 

TBC1D5 LIR2 H. sapiens Q92609 SSKDSGFTIVSP 788* 
(787) 781-792 Y (Y) S (Popovic et al. 

2012) 

Stbd1 H. sapiens O95210 RVDHEEWEMVPR 203 197-208 Y (N) S (Jiang et al. 2011) 

p62 H. sapiens Q13501 SGGDDDWTHLSS 338 332-343 Y (Y) S (Pankiv et al. 2007) 

NIX H. sapiens O60238 AGLNSSWVELPM 36 30-41 Y (Y) N, S (Novak et al. 2010) 

FIP200 H. sapiens Q8TDY2 DAHTFDFETIPH 702 696-707 Y (N) E, S (Alemu et al. 2012) 

AtNBR1 A. thaliana Q9SB64 LCGVSEWDPILE 661 655-666 Y (N) S (Svenning et al. 
2011) 

DmATG1B D. 
melanogaster Q8MQJ7 HEDSDDFVLVPK 391 385-396 Y (Y) S, Q (Alemu et al. 2012) 

ScAtg1 S. cerevisiae P53104 RSFEREYVVVEK 391* 
(429) 423-434 Y (Y) S, E 

(Alemu et al. 2012; 
Nakatogawa et al. 
2012; Kraft et al. 

2012) 

ScAtg3 S. cerevisiae P40344 LDGVGDWEDLQD 270 264-275 Y (Y) D (Yamaguchi et al. 
2010) 

ScAtg19 S. cerevisiae P35193 NEKALTWEEL 412 406-415 Y (Y) E (Noda et al. 2008) 

ScAtg32 S. cerevisiae P40458 DSISGSWQAIQP 86 80-91 Y (Y) S, D (Okamoto et al. 
2009) 

Table 2. Selective autophagy receptor/adaptor proteins with experimentally verified LIR-motifs. 

Name: protein/gene name. Species: the particular species it belongs to. UniProt ACC: a unique identifier 
assigned by UniProtKB. LIR-motif: the sequence of the LIR-motif*. LIR Position: center of LIR-motif based 
on Alemu et al. (Alemu et al. 2012) – in parenthesis corrected the position of the LIR-motif on the UniProtKB 
sequence. LIR Limits: start-end positions of the LIR-motif based on the sequence retrieved from UniProtKB. 
Masked: presence of Low Complexity Region (Υ/Ν) – in parenthesis a “binary” value indicating if the LCR 
overlaps the LIR-motif. Masked Residues: residues identified as LCRs – in bold is the residue participating 
in the overlap. Reference: the study in which a particular motif was experimentally verified. *We could not 
trace the difference with the UniProt entry based on the evidence listed therein. **Calreticulin is known to 
contain a cleavable signal peptide (residues 1-17). Low complexity regions (in particular, local compositional 
bias) was detected using CAST with default parameters (Promponas et al. 2000), which for each detected LCR 
assigns a specific residue type. 
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With the help of explicitly developed software that loops over the MSA and identifies all 
distinct amino acids that appear at each column of the alignment, we generated a new more 
relaxed regular expression. The resulting regular expression is 
[ADEFGLPRSK][DEGMSTV][WFY][DEILQTV][ADEFHIKLMPSTV][ILV], keeping 
the conserved residues W, F, Y at the 3rd position and maintaining the aliphatic amino acids 

I, L, V at the 6th position of the sequence and allowing all possible amino acids at remaining 
positions. We named this regular expression as the eXtended LIR motif (xLIR-motif). 
 
As expected, this revised regular expression matches all 27 experimentally verified LIR-
motifs introduced by Alemu et al. (Alemu et al. 2012) with a 100% sensitivity. At this point 
one can argue that in proteome-wide scans, this would introduce many spurious hits. In fact, 
we compute the probability of occurrence of cLIR- and xLIR-motifs in random sequences 

as 1.8 × 10−6 and 1.5 × 10−3 respectively (see Results) – therefore, many false positive hits 

are expected to be detected by the xLIR motif. In the following sections we propose 

additional methods that work in a synergistic manner for the elimination of falsely classified 
instances. 
 

2.2.2.3 Generation of an xLIR Position Specific Scoring Matrix (PSSM) 

Regular expressions are very useful tools for quickly scanning large volume of data in search 
for meaningful patterns. However, due to their deterministic nature, speed comes at the 
expense of their expressive power, meaning that a subsequence either matches the regex at 
hand or not. In the case of allowing almost all possible amino acid alternatives at each 
position in an attempt to capture as many instances as possible, the pattern on one hand can 
become more sensitive, but on the other hand it comes with the hazardous drawback that the 
regular expression becomes saturated. 

 
Another disadvantage is that in the case of LIR-motifs, the short length of the peptides 
increases the probability of such patterns to occur by chance in long protein sequences, thus 
resulting in many spurious hits. Imagine using a regular expression to annotate complete 
proteomes with LIR-motifs. It is anticipated that the saturated xLIR regex would result in 
numerous hits, the majority of which would be have falsely predicted as such. It is therefore 
very crucial that more sophisticated methods are employed in order to be able to filter out as 
many of those falsely annotated LIR regions.  
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In 2009, Mohrlüder and colleagues used position specific scoring matrices (PSSMs) as a 
means for detecting LIR-motifs. The PSSM was composed from data coming from phage 
display screening data of a randomised peptide library (Mohrlüder, Stangler, et al. 2007). A 
scan of the entire SwissProt database using the PSSM they constructed, resulted in the 
discovery of calreticulin (CALR) and its interaction with GABARAP. Two other known 

LIRCPs identified during this process was clathrin heavy chain Hc (CLTC) and 
BNIP3L/NIX (Mohrlüder, Stangler, et al. 2007).  
 
Building on that idea and driven by the fact that regular expressions could be insufficient in 
correctly identifying LIR-motifs in an attempt to filter false positives, we constructed a 
PSSM based on the list of 27 experimentally verified LIR-motifs, in support of the instances 
predicted by the xLIR motif. This required the creation of a multiple sequence alignment 
(MSA), which contained all 27 verified LIRs from Alemu et al. (Alemu et al. 2012).  
 
A PSSM is a L x 20 scoring matrix based on the amino acid frequencies at every position of 
a multiple sequence alignment (MSA), where L is the length of the sequences comprising 
the MSA (Figure 5). Each element in a PSSM matrix is a log-odds score representing the 
appearance of an amino acid in a particular position. Highly frequent amino acids are 
assigned very high and positive scores, whereas rarely occurring residues are assigned 
negative values. The strength of this approach relies on the fact that apart from the presence 
of different amino acid residues in a specific position of the pattern, PSSMs are also able to 
capture the significance of each residue type occupying a certain position, compensating in 
a combinational model for the weakness of the regular expression. Residues absent from the 

alignment can be assigned log-odds scores based on the background probabilities encoded 
in a typical (position in-specific) scoring matrix, or by introducing pseudocounts, which is 
equivalent to multiplying the probabilities of occurrence of each residue in a specific column 
of the MSA by a Dirichlet distribution.  In order to construct an xLIR specific PSSM we 
used the stand-alone (command-line) version of PSI-BLAST with default parameters and 
the MSA of the 27 experimentally verified LIR-motifs as input. The properties of the MSA 
(and thus the resulting PSSM) are summarized in the sequence logo in Figure 6-C.  

 
In principle, we could scan our set of protein candidates with the aforementioned PSSM 
using a simple script that moves the PSSM along the query sequences in search for highly 
scoring hexapeptides, irrespectively of the presence of a cLIR- or xLIR-motif. The sliding 
of the PSSM would happen one residue at a time, meaning that at each iteration the starting 
point of the PSSM window is at position pn+1 = pn+1, with the final iteration at position pfinal 
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= L-w+1, where L is the length of the target sequence and w is the size of the sliding window 
(the length of the PSSM/LIR-motifs), thus not allowing for gaps. However, as the xLIR-
motif is designed to be highly sensitive, we decided to only scan LIR-motif candidates with 
the PSSM in order to optimize consumption of computational resources necessary for 
scanning (possibly) large sequence datasets. A custom software tool was built to use this 

PSSM for scanning protein sequences. Since the vast majority of the known LIR-motifs are 
of length 6, we implement our search procedure by sliding the PSSM along the query 
sequence with infinite gap-penalty (i.e. without allowing for gaps). 

 

 
Figure 5. The xLIR-PSSM. 

The actual matrix of the PSSM with amino acid log-odds scores for each position of the LIR-motif. The PSSM 
was constructed based on the MSA of the 27 LIR-motifs from Alemu et al. (Alemu et al. 2012), using the 
stand-alone version of PSI-BLAST (see text for details). 
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Figure 6.  Graphical representation of the xLIR-PSSM 

A – Heatmap plot representation of the xLIR-PSSM, where “hot” colours correspond to higher PSSM scores. 
B – Correlation plot showing between position similarities for the xLIR-PSSM. For each PSSM position pair 
the Euclidean distance serves as the clustering metric. C - The sequence logo resulted from the multiply aligned 
verified LIR-motifs and used to define the xLIR regular expression. The xLIR-PSSM heatmap and correlation 
plot were generated using http://www2.heatmapper.ca/ (Babicki et al. 2016), and the sequence logo was 
generated using the PSSMsearch webserver (Krystkowiak et al. 2018). 

 
 

2.2.2.4 Metrics for assessing the quality of predictions 

In this section, the evaluation of all prediction schemes was performed by calculating the 
following metrics: 
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The values were computed under the following assumptions: 
 

● A true positive (TP) LIR-motif is a functional LIR motif with experimental evidence 
reported in the literature  

● A true negative (TN) LIR motifs is one whose experimental validation shows they 
are not functional and predicted as such  

● A false positive (FP) LIR-motif is one predicted as functional, but without existing 
experimental support  

● A false negative (FN) LIR-motif the case where experimental evidence proves it is 
functional, but not predicted as such 

 

2.3 Results 

 
A collective illustration of our results is portrayed in Table 3, followed by a thorough 
analysis and discussion that is organised in distinct sections. The table lists the entire 
collection of proteins rigorously examined in this study, including their experimentally 
validated LIR-motifs and their corresponding computational predictions (i.e cLIR, xLIR, 
Anchor, PSSM). The sections are conversed exhaustively hereunder.  
 
 
 
  MOTIF      

 

UNIPROT ID UNIPROT 
ACC Sequence Position Verified cLIR xLIR Anchor PSSM score 

(e-value) Species 

Data set from Alemu et al. (Alemu et al. 2012) 
ATG13_HUMAN O75143 EGFQTV 166–171 No No Yes No 11 (1.5e-01) Human 

  DDFVMI 442–447 Yes Yes Yes Yes 20 (8.4e-03) Human 
Atg1_YEAST P53104 REYVVV 427–432 Yes No Yes Yes 14 (5.7e-02) Yeast 

Atg32_YEAST P40458 GSWQAI 84–89 Yes No Yes Yes 17 (2.2e-02) Yeast 
  KEYQSL 235–240 No No Yes No 12 (1.1e-01) Yeast 
  LGYILL 524–529 No No Yes No 10 (2.0e-01) Yeast 
ATG4B_HUMAN** 

[MM] Q9Y4P1 LTYDTL 6–11 Yes No Yes No 12 (1.1e-01) Human 
  PMFELV 347–352 No No Yes No 10 (2.0e-01) Human 
  EDFEIL 386–391 No Yes Yes No 17 (2.2e-02) Human 

Atg19_YEAST P35193 LTWEEL 410–415 Yes No Yes No 18 (1.6e-02) Yeast 
Atg3_YEAST P40344 GDWEDL 268–273 Yes No Yes No 22 (4.4e-03) Yeast 

BNI3L_HUMAN O60238 SSWVEL 34–39 Yes No Yes Yes 20 (8.4e-03) Human 
  AEFLKV 183–188 No No Yes No 10 (2.0e-01) Human 

CALR_HUMAN P27797 GGYVKL 107–112 No No Yes No 12 (1.1e-01) Human 
  DEFTHL 166–171 No No Yes No 14 (5.7e-02) Human 
  DDWDFL 198–203 Yes Yes Yes Yes 26 (1.2e-03) Human 
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CBL_HUMAN P22681 DTYQHL 90–95 No No Yes No 14 (5.7e-02) Human 
  LTYDEV 272–277 No No Yes No 11 (1.5e-01) Human 
  FGWLSL 800–805 Yes No Yes Yes 18 (1.6e-02) Human 
  REFVSI 893–898 No No Yes Yes* 13 (7.9e-02) Human 

FUND1_HUMAN Q8IVP5 DSYEVL 16–21 Yes Yes Yes No 16 (3.0e-02) Human 
  GGFLLL 81–86 No No Yes No 10 (2.0e-01) Human 

OPTN_HUMAN Q96CV9 DSFVEI 176–181 Yes Yes Yes Yes 15 (4.2e-02) Human 

Q8MQJ7_DROME Q8MQJ7 ADYLSV 96–101 No No Yes No 14 (5.7e-02) Drosophila 

  DDFVLV 389–394 Yes Yes Yes Yes 17 (2.2e-02) Drosophila 

Q9SB64_ARATH Q9SB64 RVWVLI 479–484 No No Yes No 15 (4.2e-02) Arabidopsis 

  SEWDPI 659–664 Yes No Yes No 20 (8.4e-03) Arabidopsis 
RBCC1_HUMAN Q8TDY2 FDFETI 700–705 Yes No Yes Yes 17 (2.2e-02) Human 

SQSTM_HUMAN** 
[LL] Q13501 DDWTHL 336–341 Yes No Yes Yes 24 (2.3e-03) Human 

STBD1_HUMAN** 
[LN] O95210 EEWEMV 201–206 Yes Yes Yes No 21 (6.1e-03) Human 

T53I1_HUMAN Q96A56 DEWILV 29–34 Yes Yes Yes Yes 20 (8.4e-03) Human 
TBC25_HUMAN Q3MII6 EVYLSL 95–100 No No Yes No 8 (3.9e-01) Human 

  EDWDII 134–139 Yes Yes Yes No 24 (2.3e-03) Human 
TBCD5_HUMAN Q92609 KEWEEL 57–62 Yes No Yes No 20 (8.4e-03) Human 

  DDFILI 713–718 No Yes Yes Yes* 17 (2.2e-02) Human 
  SGFTIV 785–790 Yes No Yes Yes 11 (1.5e-01) Human 

T53I2_HUMAN Q8IXH6 DGWLII 33–38 Yes No Yes Yes 21 (6.1e-03) Human 
ULK1_HUMAN O75385 DDFVMV 355–360 Yes Yes Yes Yes 19 (1.2e-02) Human 
ULK2_HUMAN Q8IYT8 DDFVLV 351–356 Yes Yes Yes Yes 17 (2.2e-02) Human 
CLH1_HUMAN Q00610 PDWIFL 512–517 Yes No Yes No 22 (4.4e-03) Human 

  GMFTEL 1315–1320 No No Yes No 11 (1.5e-01) Human 

  EDYQAL 1475–1480 No No Yes No 16 (3.0e-02) Human 
DVL2_HUMAN O14641 RMWLKI 442–447 Yes No Yes No 18 (1.6e-02) Human 

FYCO1_HUMAN** 
[MM] Q9BQS8 ADYQAL 644–649 No No Yes Yes* 15 (4.2e-02) Human 

  AVFDII 1278–1283 Yes No Yes Yes 8 (3.9e-01) Human 
NBR1_HUMAN Q14596 LSFELL 561–566 No No Yes Yes* 10 (2.0e-01) Human 

  EDYIII 730–735 Yes Yes Yes Yes 17 (2.2e-02) Human 
Additional LIRCPs from Birgisdottir et al. (Birgisdottir et al. 2013) 

BNIP3_HUMAN Q12983 GSWVEL 16–21 Yes No Yes Yes 19 (1.2e-02) Human 
  AEFLKV 159–164 No No Yes No 10 (2.0e-01) Human 

MK15_HUMAN Q8TD08 RVYQMI 338–343 Yes No Yes Yes 10 (2.0e-01) Human 
CACO2_HUMAN Q13137 FMWVTL 72–77 No No Yes No 20 (8.4e-03) Human 

  DILVV 132–136 Yes No No No N/A Human 

C0H519_PLAF7 C0H519 NDWLLP 103–108 Yes No No No 12 (1.2e-02) Plasmodium 
ATG34_YEAST Q12292 KVYEKL 194–199 No No Yes No 8 (3.9e-01) Yeast 

  FTWEEI 407–412 Yes No Yes No 20 (8.4e-03) Yeast 
TAXB1_HUMAN Q86VP1 DMLVV 139–143 Yes No No No N/A Human 

  ADFDIV 514–519 No No Yes Yes 15 (4.2e-02) Human 
CTNB1_HUMAN P35222 SHWPLI 502–507 Yes No No No 11 (1.5e-01) Human 

Data set from Behrends et al. (Behrends et al. 2010) 
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STK4_HUMAN 
[MM] Q13043 EVFDVL 28–33 No No Yes No 9 (2.8e-01) Human 

  GDYEFL 431–436 No No Yes Yes 17 (2.2e-02) Human 
STK3_HUMAN 

[LM] Q13188 EVFDVL 25–30 No No Yes No 9 (2.8e-01) Human 
  GDFDFL 435–440 No No Yes Yes 16 (3.0e-02) Human 

RASF5_HUMAN 
[MN] Q8WWW0 - - N/A N/A N/A N/A N/A Human 

NEDD4_HUMAN 
[LL] P46934 SEYIKL 410–415 No No Yes No 13 (7.9e-02) Human 

  PGWVVL 589–594 No No Yes Yes 19 (1.2e-02) Human 

  ESFEEL 1296–1301 No Yes Yes No 13 (7.9e-02) Human 
A16L1_HUMAN 

[MM] Q676U5 DEYDAL 164–169 No Yes Yes Yes 16 (3.0e-02) Human 
TFCP2_HUMAN 

[LN] Q12800 - - N/A N/A N/A N/A N/A Human 
SF3A1_HUMAN 

[LN] Q15459 PEFEFI 148–153 No No Yes No 13 (7.9e-02) Human 
FNBP1_HUMAN 

[MN] Q96RU3 - - N/A N/A N/A N/A N/A Human 
TBC15_HUMAN 

[LL] Q8TC07 AEWDMV 96–101 No No Yes No 20 (8.4e-03) Human 
  PGFEVI 295–300 No No Yes No 12 (1.1e-01) Human 
  FSFLDI 540–545 No No Yes No 11 (1.5e-01) Human 

ANFY1_HUMAN 
[MN] Q9P2R3 - - N/A N/A N/A N/A N/A Human 

TCPR2_HUMAN 
[LM] O15040 GDYIAV 45–50 No No Yes No 14 (5.7e-02) Human 

  AVFQLV 102–107 No No Yes No 5 (1.0e+00) Human 
  AVFVAL 894–899 No No Yes No 7 (5.3e-01) Human 

  DEWEVI 1406–1411 No Yes Yes No 23 (3.2e-03) Human 
ECHA_HUMAN 

[LM] P40939 AVFEDL 447–452 No No Yes No 7 (5.3e-01) Human 
NIPS2_HUMAN 

[MM] O75323 - - N/A N/A N/A N/A N/A Human 
ATG5_HUMAN 

[MM] Q9H1Y0 - - N/A N/A N/A N/A N/A Human 
ATG7_HUMAN 

[MM] O95352 SSFQSV 258–263 No No Yes No 10 (2.0e-01) Human 
KPCI_HUMAN 

[LM] P41743 - - N/A N/A N/A N/A N/A Human 
EPN4_HUMAN 

[LM] Q14677 - - N/A N/A N/A N/A N/A Human 
ATG3_HUMAN 

[LL] Q9NT62 - - N/A N/A N/A N/A N/A Human 
DYXC1_HUMAN 

[LL] Q8WXU2 AVFLSL 16–21 No No Yes No 6 (7.4e-01) Human 
  AMWETL 81–86 No No Yes No 19 (1.2e-02) Human 

NEK9_HUMAN 
[LL] Q8TD19 - - N/A N/A N/A N/A N/A Human 

UBA5_HUMAN 
[MM] Q9GZZ9 SDYEKI 66–71 No No Yes No 17 (2.2e-02) Human 

  FDYDKV 103–108 No No Yes No 16 (3.0e-02) Human 
TBD2B_HUMAN 

[LM] Q9UPU7 EEWELL 252–257 No Yes Yes Yes 20 (8.4e-03) Human 
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KBTB6_HUMAN 
[LL] Q86V97 ESFEVL 120–125 No Yes Yes No 13 (7.9e-02) Human 

IPO5_HUMAN 
[LN] O00410 ETYENI 31–36 No Yes No No 11 (1.5e-01) Human 

  DGWEFV 655–660 No No Yes No 21 (6.1e-03) Human 
  LSWLPL 997–1002 No No Yes No 16 (3.0e-02) Human 

NCOA7_HUMAN 
[LM] Q8NI08 AEYDKL 185–190 No No Yes No 13 (7.9e-02) Human 

  GEWEDL 308–313 No No Yes No 19 (1.2e-02) Human 
  DDFVDL 414–419 No Yes Yes Yes 18 (1.6e-02) Human 
  KSWEII 745–750 No No Yes No 19 (1.2e-02) Human 

KAP0_HUMAN 
[MM] P10644 EEFVEV 310–315 No Yes Yes No 13 (7.9e-02) Human 

GYS1_HUMAN 
[NN] P13807 - - N/A N/A N/A N/A N/A Human 

KBTB7_HUMAN 
[LL] Q8WVZ9 ESFEVL 120–125 No Yes Yes No 13 (7.9e-02) Human 

ATG2A_HUMAN 
[LM] Q2TAZ0 PEYTEI 534–539 No No Yes No 13 (7.9e-02) Human 

  EVYESI 828–833 No No Yes No 9 (2.8e-01) Human 

  LEFLDV 1090–1095 No No Yes No 9 (2.8e-01) Human 
FAN_HUMAN 

[ML] Q92636 ESFEDL 600–605 No Yes Yes No 12 (1.1e-01) Human 
  LVWDLL 869–874 No No Yes No 13 (7.9e-02) Human 
 
Table 3. Sequences used in this study. 

The data portrayed are divided into 3 distinct segments according to the study in which they were published. 
The top section refers to the dataset created by Alemu et al. (Alemu et al. 2012), which was used to construct 
the xLIR-motif and to validate both the cLIR and xLIR motifs. With the term “Verified” we refer to 
experimentally verified LIR-motifs, whereas “Anchor” refers to intrinsic disorder binding regions predicted by 
the ANCHOR tool, and found to overlap with a LIR-motif by at least 3 residues (>3). Middle and bottom data 
blocks derive from the works of Birgisdottir (Birgisdottir et al. 2013) and Behrends (Behrends et al. 2010) and 
colleagues respectively. Entries marked with a single asterisk (*) correspond to possible spurious xLIR hits, 
which are also predicted to overlap with anchors. A double asterisk (**) denotes that a sample was identifiable 
in all 3 studies. Since the xLIR-PSSM corresponds to a hexapeptide and is aligned to sequences in a gapless 
fashion, for the atypical LIR sequences (pentapeptides) of CALCOCO2/NDP52 (CACO2_HUMAN) and 
TAX1BP1 (TAXB1_HUMAN) their corresponding PSSM scores are marked as “N/A”. The 2 characters in 
the square brackets accompanying the UniProt IDs are used to distinguish between 3 possible interactions with 
the GABARAP and MAP1LC3B receptors respectively, as reported in the survey of Behrends and colleagues 
(Behrends et al. 2010). ‘N’ denotes no binding with the wild-type Atg8 homolog, ‘L’ is used to denote loss of 
binding with the mutant form, whereas ‘M’ denotes that binding is maintained with the mutant form - i.e. [ML] 
signifies a case where both the wild-type and the mutated form bind GABARAP, while the wild-type form 
binds MAP1LC3B and this interaction is abolished in the mutated form. Entries highlighted in red correspond 
to motifs detected by the xLIR regular expression which at the time of the initial analysis (fall 2013) were 
considered as false positives, but for which later work has validated that they are genuine LIR motifs: EDFEIL 
(ATG4B_HUMAN) (Skytte Rasmussen et al. 2017) and DEWEVI (TCPR2_HUMAN) (Stadel et al. 2015) 
respectively. 
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2.3.1 Combining the predictive power of xLIR and Anchors 

 
The xLIR matches by design all 27 experimentally verified LIR-motifs at a 100% sensitivity. 
Positions 1, 2 and 4 ([ADEFGLPRSK]1, [DEGMSTV]2, [DEILQTV]4) are less 
constrained compared to the cLIR-motif ([DE]1, [DEST]2, [DELIV]4), whereas position 5 
is more restricted. To be exact, the 5th position in the cLIR regex is occupied by the wild-
card character X, which means that this position can be taken by any of the 20 amino acids, 
whilst in the case of the xLIR regular expression, that particular position can only be 
occupied by any of the following residues: ADEFHIKLMPSTV. 
 
Using the background frequencies for amino acid residues in a then recent version of the 

UniProt/SwissProt database (Table 4) we estimated the probability of occurrence of the 
cLIR- and xLIR-motif in random sequences drawn from this distribution as 1.8 x 10-6 and 
1.5 x 10-3 respectively (Nevill-Manning et al. 1998). This means that overall, the xLIR-motif 
should be more sensitive but less specific compared to cLIR. In fact, this is the case since 
(in the same sequence data) the xLIR-motif detects 20 additional subsequences, which can 
be regarded as false positives for being non-functional as LIRs. As expected, the higher 
sensitivity of the xLIR-motif comes at the expense of lower specificity and therefore a larger 
number of bogus hits when examining large datasets (i.e. a complete proteome). In terms of 
accuracy, the cLIR regex seems to outperform the xLIR with accuracies 61.7% and 57.4% 
respectively (Table 5). A figure that may be misleading due to the imbalanced nature of the 
dataset, and by imbalanced we mean that the dataset is not comprised by an equal number 
of functional and non-functional LIRs. 
 
However, the design of the negative dataset that would consist of new motif sequences 
complying with the xLIR motif, would not permit us to compute meaningful values for 
specificity and balanced accuracies for the xLIR motif as specificity is estimated at 0% and 
the balanced accuracy at a borderline value of 50%. In contrast, the specificity and balanced 
accuracy for cLIR, is estimated at 90% and 65.4% respectively (Table 5). 

 
Such a result makes apparent the need to obtain a more unbiased estimate of the false positive 
rate for both motifs and for that purpose we constructed a sequence dataset composed of 
randomized (shuffled) versions of the 27 validated LIRCPs. When scanning these sequences 
with the xLIR and cLIR regular expressions, a number of 23 and 8 hits were reported 
respectively. It is worth mentioning that this figure for the xLIR-motif is somewhat in 
agreement with the number of the extra motifs identified in the original dataset (20 matches). 
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This case does not apply to the cLIR-motif as it deviates significantly from the false positive 
motifs in the unshuffled sequences with by 4x times.  
 
With respect to intrinsic disorder binding regions, 17 out of the 27 verified LIR-motifs (about 
63%) were found to substantially overlap with an anchor segment by >3 residues (Table 3; 

Table 5). Even though it is difficult to draw a significant conclusion from such a small 
dataset, it is worth mentioning that 14 out of 21 LIR-motifs from human LIRCPs (66.7%) 
overlap with an anchor. Interestingly the number of anchors discovered in the remaining 
species namely, S. cerevisiae, D. melanogaster and A. thaliana, is slightly lower (50%). 
Nevertheless, it seems that the combination of anchor prediction and a LIR regex may be a 
good approach for discriminating genuine (i.e. functional) LIR-motifs. An observation 
which consequently lead us to the next step of testing the two together.  
 

Residue Abundance (%) Residue Abundance (%) Residue Abundance (%) 
Ala 8.25 Gly 7.07 Pro 4.70 
Arg 5.53 His 2.27 Ser 6.56 
Asn 4.06 Ile 5.96 Thr 5.34 
Asp 5.45 Leu 9.66 Trp 1.08 
Cys 1.37 Lys 5.84 Tyr 2.92 
Gln 3.93 Met 2.42 Val 6.87 
Glu 6.75 Phe 3.86   

 

Table 4. Amino acid residue background distribution. 

Data regarding the 20 common amino acid residues, calculated from UniprotKB/Swiss-Prot release 2013_04, 
April 2013; available from the ProtScale tool (https://web.expasy.org/protscale). 
 

When using the cLIR regular expression and posing an additional requirement that the 
functional LIR-motif should overlap with an anchor segment, only 8 functional LIRs would 
be predicted as such (Table 3; Table 5), resulting in very low coverage 8/27 or 29.6%. 
Contrary, the xLIR-motif in combination with anchor detection recovers 17 out of the 27 
verified LIR-motifs (63.0%) and at the same time eliminates most of the false positives. To 
be precise, based on this compound criterion, only 4 unverified xLIRs from the human 
LIRCPs were predicted to be functional LIR-motifs (Table 3). 
 

 xLIR cLIR xLIR+A cLIR+A xLIR+A+P13 xLIR+A|P13 

TP 27 11 17 8 15 26 

TN 0 18 16 19 18 11 

FP 20 2 4 1 2 9 
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FN 0 16 10 19 12 1 

Sensitivity (%) 100.00 40.70 63.00 29.60 55.60 96.30 

Specificity (%) 0.00 90.00 80.00 95.00 90.00 55.00 

ACC (%) 57.40 61.70 70.20 57.40 70.20 78.70 

BACC (%) 50.00 65.40 71.50 62.30 72.80 75.70 
 

Table 5. Validation of xLIR and cLIR motif-based predictors. 

Different schemes are validated for the prediction of functional LIR-motifs on the set of 26 proteins with 
validated LIRs described by Alemu and colleagues (Alemu et al. 2012). xLIR and cLIR are based simply on 
the detection of the xLIR and cLIR motifs, respectively, whereas xLIR+A and cLIR+A require that a functional 
motif should overlap with an anchor as predicted by the ANCHOR tool. The 2 rightmost columns correspond 
to xLIR-motifs that overlap with an anchor and have a PSSM score > 13 (xLIR+A+P13) and xLIR-motifs that 
either overlap with an anchor or have a PSSM score > 13 (xLIR+A|P13). ACC is for Accuracy (%), and BACC 
is for Balanced Accuracy (%). For each validation metric the highest recorded value is depicted in bold. 
 

2.3.2 Using profile-based methods to identify functional LIR-motifs 

 
Using the PSSM derived from the 27 experimentally verified LIR-motifs, we scanned the 
sequences of the 26 verified LIRCPs to investigate whether the PSSM can be used as a more 
successful means to identify functional LIR-motifs.  
 
On top of the 47 hexapeptides matching the xLIR-motif (27 verified, 20 unverified) we also 
obtained a score against the PSSM for a total of 18,018 hexapeptides (termed background) 
stemming from the 26 LIRCP sequences of our reference dataset. More specifically, by 
“sliding” the PSSM over each sequence one residue at a time, a score for the comparison of 
the PSSM to the hexapeptide starting at the given sequence position is computed. The 
median of scores for the 3 classes of hexapeptides (i.e. verified LIRs, unverified LIRs, 
background) was 18, 12 and -8, respectively and the score distributions indicate significant 
differences between these classes (Figure 7). 
 
To further validate the xLIR-PSSM we performed a randomisation experiment, where 

hexapeptides were generated on the shuffled dataset of the 26 proteins from Alemu et al.in 
a similar fashion as done for the “background” hexapeptides, but repeated a 1000 times. This 
resulted in 18,040,000 PSSM scores after scanning the shuffled sequences with our xLIR-
PSSM. The median of this sample equals the median of the background dataset (-8). 
Furthermore, the randomisation experiment enabled us to compute the corresponding z-
scores and p-values at varying PSSM threshold levels (Table 6). From our combined results, 
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it becomes evident that a xLIR-PSSM score >12 can be a trustworthy computational method 
for the discrimination between genuine and non-genuine LIR-motifs. 
 
 

 

Figure 7. PSSM score distributions for different classes of hexapeptides.  

Box-plot representation of PSSM score distributions for xLIR-motifs in the 26 sequences of LIRCPs (verified 
and unverified), the remaining hexapeptides (“background”) and 1000 randomized versions of the LIRCP 
dataset. Scores were obtained by evaluating the match of a sliding-PSSM along the sequences in the set of 26 
sequences reported by Alemu et al. (Alemu et al. 2012) or simulated datasets. The differences indicated here 
suggest that the PSSMs may be able to reliably discriminate between functional and non-functional xLIRs. In 
particular, a Wilcoxon rank sum test with continuity correction demonstrates significant differences between 
both verified and unverified xLIRs compared to background (P < 2.2x10-16 and 1.2x10-14 respectively) and 
verified vs. unverified xLIRs (P = 6.0x10-6). Similar trends are observed against the fully randomized dataset 
(verified vs random: P<2.2x10-16 ; unverified vs random: P=1.2x10-14), whereas the background and 
randomized datasets showed no statistically significant differences (P=0.06). 

 
 

 
Above 
cutoff 

PSSM 
validation 

 
  

    

PSSM 
score 
cutoff 

xLIR 
(verified) 

N = 27 

xLIR 
(unverified) 

N = 20 

Background 
N=18018 

(randomized, 
N = 18065) 

z-scores p-values 
Sens  
(%) 

Spec 
(%) 

ACC 
 (%) 

BACC  
(%) 

9 26 19 93 (85) 3.08 1.04e-03 96.3 5 57.4 50.7 
10 26 14 63 (63) 3.27 5.39e-04 96.3 30 68.1 63.2 
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11 25 11 47 (49) 3.46 2.70e-04 92.6 45 72.3 68.8 
12 24 9 28 (32) 3.65 1.31e-04 88.9 55 74.5 72 
13 24 8 17 (25) 3.84 6.10e-05 88.9 60 76.6 74.5 
14 23 5 13 (16) 4.03 2.76e-05 85.2 75 80.9 80.1 
15 22 3 10 (14) 4.22 1.20e-05 81.5 85 83 83.3 
16 21 2 4 (11) 4.41 5.07e-06 77.8 90 83 83.9 
17 16 0 2 (7) 4.61 2.06e-06 59.3 100 76.6 79.7 
18 13 0 0 (5) 4.80 8.09e-07 48.2 100 70.2 74.1 

 
Table 6. Validation of the PSSM method as a predictor of LIR-motifs. 

We report the number of hexapeptides with a PSSM score above different threshold values. Peptides from the background 
dataset scoring above the threshold would be regarded as false positives if there were no restriction to comply with the 
xLIR-motif. Results for the randomised versions of the 26 verified LIRCPs are displayed in parentheses next to 
“background” data. Z-values and P-values were generated using the “Random” dataset. For each validation metric the 
highest recorded value is depicted in bold.  

 
 

2.3.3 Validating xLIR, anchors and PSSM with independent datasets 

As more studies came to the surface, it only made sense to test our methods on new datasets. 
In 2013, when we were about to publish the iLIR paper, Birgisdottir and colleagues 
published a list of 7 new LIRCPs with an equal number of experimentally determined LIR-
motifs (Birgisdottir et al. 2013). Once again, we extracted all the samples from the papers 
and downloaded all the sequences from UniProt Knowledgebase in FASTA format. For the 
analysis we followed exactly the same approach as with the dataset of Alemu et al. (Alemu 
et al. 2012), as this would allow us to get a more unbiased estimate of how our approach 
performed.  

 
Interestingly, the cLIR-motif would not match any of these sequences in contrast to xLIR 
that matched 3 of the 7 experimentally verified LIR-motifs, giving 4 additional “hits”, which 
can be safely considered as “false positives”. The 4 missed experimentally verified LIRs 
include the following: 
 

● Human proteins CALCOCO2/NDP52 and TAX1BP1 reported to contain a non-
canonical LIR-motif which is only 5 residues long (von Muhlinen et al. 2012; 
Newman et al. 2012). As expected, no PSSM scores have been computed for these 
“unconventional” LIR-motifs. 
 

● Plasmodium falciparum Atg3 homolog (PfAtg3; UniProt ID: C0H519), with 2 
mismatches to the xLIR-motif at positions 1 and 6, with asparagine and proline 
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occupying those positions respectively. This is however the highest scoring 
hexapeptide of this sequence against the PSSM (score = 12). 
 
 

● Human CTNNB1/β-catenin, also with 2 mismatches to the LIR-motif with a histidine 
at position 2 and a proline residue occupying position 4. Again, the top-scoring 
hexapeptide against the PSSM (score = 11). 

 
Notably, none of the aforementioned LIR-motifs is predicted to be an anchor.  
 
Another important source of LIRCP-related information, stems from the work of Behrends 
and colleagues and  their effort to decipher the selective autophagy protein-protein 
interaction network (Behrends et al. 2010). In particular, we focus on the data presented 
therein in order to unravel the LIR-dependence of interactions of human Atg8 homologs 
GABARAP and MAP1LC3B with 34 proteins (Table 3, bottom).  
 
Briefly, these authors recorded binding of these 34 proteins against the wild type and mutated 

forms of Atg8 homologs (Y49A, L50A for GABARAP and F52A, L53A for MAP1LC3B). 
Since the mutated residues lie in the LDS and are considered critical for typical LIR-
mediated interactions, maintenance of the interaction after mutation indicates LIR-
independent binding, whereas loss of interaction suggests LIR-dependence. Below we 
summarize the computational results on those proteins showing consistent interaction 
patterns against both GABARAP and MAP1LC3B. 
 
For 7 of the 9 proteins that demonstrated LIR-independence for both Atg8 homologs 
(marked as [MM] in Table 1) there was at least one match of the xLIR-motif (only 3 for 
cLIR); interestingly only 2 of these proteins [FYCO1, FYVE and coiled-coil domain 
containing 1 (FYCO1_HUMAN) and ATG16L1, autophagy related 16-like 1 (S. cerevisiae) 
(A16L1_HUMAN)] had at least one xLIR overlapping with a predicted anchor.  
 
Another 8 proteins were shown to interact with both Atg8 homologs in a LIR-dependent 
manner (marked as [LL] in Table 3). Six were detected to have at least an instance of the 
xLIR-motif (3 with cLIR) of which only 2 overlapped with an anchor: these are the validated 
LIR-motif of SQSTM1 and the second xLIR match of the E3 ubiquitin-protein ligase 
NEDD4 (PGWVVL with a PSSM score = 19). 
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An interesting case is the serine/threonine protein kinase NEK9, which is predicted to have 
10 anchor segments, 2 of which overlap with hexapeptides scoring high against the PSSM, 
albeit the fact that they do not match the xLIR-motif; RGWHTI (positions: 716-721; PSSM 
score: 19) and DSWCLL (positions: 965-970; PSSM score: 16). Both of these hexapeptides 
have a single mismatch to the xLIR motif (a His and Cys residue respectively at position 4) 

and, along with NEDD4, they could be good candidates for further experimental validation. 
Intriguingly, from all the known LIRCPs with a verified LIR-motif the only protein 
belonging to this class is SQSTM. Interestingly, the single case in this dataset of a protein 
not interacting with the wild type Atg8 homologs (GYS1) does not match either the xLIR or 
the cLIR-motif.  
 

2.3.4 Assembling everything into a unified resource: the iLIR webserver 

 
Driven by our findings that the power of our approach makes a good means for an overall 
estimate of the genuineness of a new LIR-motif, the next logical step was to develop a 
resource to make our predictive methods available to the scientific community.  
 
In 2014 we released a new web resource called iLIR, where iLIR stands for “identify LIR”. 
iLIR is a resource purposely designed to guide autophagy researchers to make rational 
decisions on which targets to select, rather than providing explicit predictions of putative 
LIR-motifs. iLIR is freely accessible to the research community via the URL 
http://repeat.biol.ucy.ac.cy/iLIR/ and provides a unified resource combining all of our 
predictive tools in a single, publicly and freely available unit. The iLIR web server was 
developed following very simple web technologies such as the Common Gateway Interface 
(CGI) standard protocol, JavaScript/AJAX and Cascade Style Sheets (CSS) for the provision 
of common formatting between all web pages and also improve content accessibility and 
web page interactivity. 
 
The Common Gateway Interface (CGI) is part of the Hypertext Transfer Protocol (HTTP) 

and a simple form of establishing front to back-end communication in a web resource and 
vice versa. The back-end can be a collection of application scripts, with each script mapping 
to its dedicated HTML page. CGI is language independent, so the application scripts can be 
implemented in any language from python and perl to C/C++ for faster processing. 
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2.3.4.1 iLIR: Home page 

 
A novice iLIR user lands in the home page, where a brief description on the functionalities 
offered by iLIR are presented (Figure 8). Here, hyperlinks are provided to launch a new 
prediction (Submit a job) or examine a page with examples pre-ran sequences (Examples). 
 
 

 

Figure 8. Home page of the iLIR webserver.  

 

2.3.4.2 iLIR: Launching a new prediction 

 
When a user makes this selection, a simple input form is dynamically generated by the 
underlying CGI perl script (iLIR_cgi). The input required by the user is purposely designed 
to be very simple, knowing that most biologists do not want to deal with many different 
parameters (whose meaning they often fail to understand!!). 
The user only needs to input the sequence of interest in FASTA format either by entering 
text (typing or copy-and-paste) or by uploading a plain ASCII text file (Figure 9). Since 
iLIR calls external services, only one amino acid sequence is expected by the server. Once 
the sequence is uploaded or made available in the text box, the user can launch the processing 
by pressing the submit button. 
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Figure 9. iLIR server user interface. 

A simple user interface enables sequence data entry in FASTA format either by copy-pasting the sequence in 
the respective text box or uploading the data via a local FASTA formatted text file. At its current state only a 
single sequence can be processed at a time.  

 
Initial checks on the sequence are performed and then the iLIR server takes care of executing 
the pipeline of tools as follows: 
 

a. ANCHOR prediction: the sequence in submitted to a locally installed instance of the 
ANCHOR software for the prediction of anchors. Anchors are regions within or 
neighbouring unstructured regions with the potential to undergo a disorder to order 
conformational change and bind to a globular protein. 

b. Retrieval of domain information: an automatic sequence query is executed against 

the SMART database (Letunic et al. 2012), resulting in a list of annotated domains 
and motifs including PFAM domains (Punta et al. 2012). 
 

c. Detection of homologs with known structure: a remote BLASTP (Blast 1997) query 
is issued against the Protein Data Bank (Berman et al. 2000) (using the PDB REST 
API), thus facilitating access to relevant structural data. More specifically all 
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significant hits with alignments including the reported motif are compiled in a list, 
linking to the respective PDB entry, and the complete output is also available for 
further analysis. BLAST parameters are pre-set to E-value cutoff of 0.001 and the 
BLOSUM62 substitution matrix. 

 

d. Detection of LIR-motifs: instances of xLIR- and the simpler WxxL-motifs 
(xx[WFY]xx[VLI]) are scanned throughout the submitted sequence. 

 
e. Computation of PSSM scores: Whenever a successful hit is recorded, the matched 

hexapeptide is scored against the position specific scoring matrix developed using 
the collection of experimentally verified LIR-motifs. The PSSM score is 
accompanied by an e-value computed using the Karlin-Altschul equation (Karlin and 
Altschul 1990). The e-value represents the number of random (i.e. unrelated) 
hexapeptides expected to achieve a score at least as high as the one reported by 
chance alone. 

 
f. Output is sent to the web browser for display (see next section). 

 

2.3.4.3 iLIR: Results page 

 
The results are presented in two formats: a graphical illustration of the different motif regions 
spanning the protein sequence (Figure 10 - A), and a series of tables that provide extended 
information about the identified regions (Figure 10 - B). The graphical representation of the 
protein domains is generated using the domains graphic generator used by Pfam 
(https://pfam.xfam.org/generate_graphic), which provides a clean and familiar depiction to 
most users.  The coloured representation of the various domains in the schematic has as 
follows: any Pfam domains are displayed in orange, while domains known to be associated 
with specific classes of selective autophagy LIRCPs are illustrated in green. Other sequence 
features reported by SMART/PFAM, such as low complexity regions—blue boxes are 
displayed along the sequence, with detected xLIR-motifs painted in magenta. 
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Figure 10. iLIR results page.  

The output page of the human SQSTM1 (Uniprot accession: Q13501) is displayed. A graphical representation 
of the identified domains (A) is accompanied with detailed results from ANCHOR and SMART searches (B). 
By moving the mouse over any domain/feature on the graphic, a pop-up tip displays further information. It is 
in the user’s discretion if the tables containing further information regarding ANCHOR and SMART regions 
will remain hidden or not.  
 

 
For a simple resource like iLIR, the minimal technologies used are sufficient for provisioning 
the required functionality.  
 

2.3.4.4 iLIR: examples page 

 
To gain a better understanding on what kind of output a user may expect to get from the iLIR 
server, we have compiled a simple “examples page” (available at the URL: 
http://repeat.biol.ucy.ac.cy/iLIR/examples.html) with static web-pages containing 
hyperlinks to pre-ran iLIR results on all protein sequences mentioned in Table 1 (Figure 

11). For simplicity, the results for WxxL-motifs have been omitted from these pages. 
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Figure 11. The full collection of pre-ran examples as they appear on the iLIR website.  

The various autophagy proteins are listed by UniProt ID and organised by the source literature in 3 distinct 
sections as in Table 1.  

 

2.4 Conclusions 

 
The work presented in this chapter resulted in the development and provision to the scientific 
community of a new web resource for the identification of novel LIR-motifs in putative 
proteins of the autophagic apparatus. iLIR, although nowadays is not the sole available 
resource, it was the first of its kind when launched in late 2013. A couple of years later the 
hfAIM server was developed, however with limited usage so far, if judged by the number of 
citations to the respective paper. 
 
Retrospectively, we speculate that the simplicity of the user interface, combined with the 
uniqueness of the iLIR web server, has attracted tens of thousands of submissions since the 
server became available online. In particular, more than 70,000 sequences have been 
submitted to the iLIR server since becoming publicly available online (fall 2013 till fall 
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2018). Moreover, we assume that the comprehensive output provided by the iLIR web server 
provides information that can easily be utilized by experimental biologists aiming to 
decipher the modes of interaction of putative Atg8/LC3 binding proteins. The detailed output 
of iLIR provides orthogonal evidence that can be related to structural (e.g. ANCHOR 
predictions, PDB-homologs) and functional (e.g. SMART/PFAM domains) properties of 

examined protein sequences. Consequently, the iLIR server has driven the experimental 
discovery of several new instances of functional LIR-motifs, as seen in a number of papers 
(http://goo.gl/yzGUFe) citing our original publication (Kalvari et al. 2014). 
 
Despite the fact that iLIR was immediately proven to be a useful resource for autophagy 
researchers and is being continuously used by researchers all over the world, we can already 
think of improvements for enhancing its performance and providing novel features for an 
improved user experience. 
  
First, methodological developments may increase the predictive performance of iLIR, thus 
streamlining efforts for the efficient characterisation of novel autophagy receptor and 
adaptor proteins. With the current trend of deep machine learning architectures and their 
applications in several sequence analysis problems in bioinformatics and computational 
biology (Singh et al. 2018; Wei et al. 2018) this might look like a straightforward option. 
However, the currently small amount of well characterized data for functional LIR-motifs 
makes such a scenario sound premature. Nevertheless, our group is already performing 
preparatory work, where the existing literature corpus on LIR-motifs is manually analyzed 
for cataloging hopefully all known functional LIR-motifs. This effort will be further assisted 

by custom, semi-automated biomedical literature mining tools, currently under development 
in our group (Chadjichristofi and Promponas, work in progress) to extract available 
information from publications in XML or PDF format. This information needs to be cleansed 
(remove unrelated instances), extracted from text (and independently validated on its 
accuracy) and (possibly) organized in a database until we come up with a large enough data 
set for training and validating machine learning schemes. Before reaching the desired 
volume, these data may be used for a thorough evaluation of future algorithms performing 
this task. 
 
Second, the iLIR server could provide richer options and a more interactive graphical user 
interface. Some novel features we consider for expanding the iLIR server include the 
possibility of providing a number of different output formats and report alternatively defined 
LIR-motifs (e.g. hfAIM regular expressions). In particular, more powerful and modernized 
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technologies should be put into practice, such as REACT (https://reactjs.org/ - a Javascript 
library for the construction of user interfaces) and perhaps Django REST framework 
(https://www.django-rest-framework.org/) for the development and provisioning of 
additional services. 
 

Third, based on several requests made by users of the system, the option to execute batch 
runs (e.g. scanning a complete proteome) is being taken into consideration. In fact, based on 
a preliminary analysis of the iLIR server logs, a large fraction of the sequence submissions 
seems to originate from automated software queries. In addition, in several cases, we have 
been directly contacted by individual researchers to assist with the analyses of complete 
proteomes and other large datasets. Possible implementations would be from a simple 
standalone toolkit with a basic CLI (code distribution with appropriate licence) made 
available through code versioning systems such as GitHub or Bitbucket, or a more “official” 
programmatic access to the resource via a REST API, to more advanced and modernised 
infrastructures employing Cloud technologies (Markstedt 2017; Novella et al. 2018) (e.g. 
running iLIR as a containerised application on a Kubernetes cluster, with access through 
user accounts). 
  

IO
ANNA KALV

ARI 



 37 

3 Intrinsic Disorder as a means for the identification of genuine 

LIR-motifs 

3.1 Preface 

3.1.1 Intrinsically disordered proteins 

 
Intrinsically disordered proteins (IDPs) are proteins with no stable secondary or tertiary 
structure that do not conform to the traditional paradigm of proteins folding into a unique 

stable conformation (Wright & Dyson 1999). IDPs have been intensively studied during the 
last two decades and an increasing amount of knowledge accumulates regarding to their 
possible functions (Wright & Dyson 2015; Dyson & Wright 2005; Oldfield & Dunker 2014; 
Darling & Uversky 2018). In several cases, a single protein may contain both globular (i.e. 
well-folded) and disordered (i.e. unstructured) domains. 
 
A large number of prediction tools have been developed to predict intrinsically disordered 
regions (IDRs) from sequence information (Oldfield & Dunker 2014). In addition, a number 
of other resources focusing on intrinsic disorder in proteins have been available, as for 
example DisProt (Piovesan et al. 2017), DIBS (Schad et al. 2018), MobiDB (Piovesan et al. 
2018), FuzDB (Miskei et al. 2017). 
 
It is often the case that Short Linear Motifs (SLIMs), such as the LIR-motif, are found within 
IDRs (Davey et al. 2012), with the flexibility of the disordered region facilitating the motif 
interaction to a globular partner. Having observed that ANCHOR predictions were very 
successful in eliminating a significant number of false positives detected by iLIR (Kalvari et 
al. 2014), we set to investigate whether predictions of IDRs could be used to enhance the 
discrimination of functional LIR-motifs. 

 

3.2 Data and Methods 

3.2.1 Data 

3.2.1.1 Sequences 

The sequences used in this study are updated versions of the proteins listed in Table 1 (Table 

3 in this document) from Kalvari et al (Kalvari et al. 2014). As a quality assurance measure 
all sequences were re-downloaded from UniProt Knowledgebase (The UniProt Consortium 
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2018) using UniProt accessions (https://www.uniprot.org/) and saved in flat files in FASTA 
format.  
 

3.2.1.2 Disorder Data 

 
Disorder data was obtained from MobiDB v.3.0.0 (http://mobidb.bio.unipd.it), a database of 
protein disorder and mobility annotations (Piovesan et al. 2018). MobiDB incorporates 
protein disorder data from various databases, which groups them in three categories: DB - 
manually curated disorder data extracted from DisProt (Piovesan et al. 2017), FuzDB 
(Miskei et al. 2017) and UniProt (The UniProt Consortium 2018) databases, Predicted - an 
ensemble of predicted data from tools like  DisEMBL (Linding, Jensen, et al. 2003), ESpritz 

(Walsh et al. 2012), GlobPlot (Linding, Russell, et al. 2003), IUPred (Mészáros et al. 2018), 
Jronn (Yang et al. 2005), VSL2b (Peng et al. 2006) with long disorder annotation calculated 
using MobiDB-lite (Necci et al. 2017), and finally Indirect - structural disorder descriptions 
collected from PDB (Rose et al. 2015) structures.  
 
To compare the power of an aggregating resource like MobiDB as opposed to stand alone 
predictors, disorder regions were also computed using the SPOT-disorder webserver 
(http://sparks-lab.org/server/SPOT-disorder) (Hanson et al. 2017) (whose authors claim that 
it performs in par with the top IDP prediction methods), and the most recent release of 
IUPred (IUPred2A - https://iupred2a.elte.hu) (Mészáros et al. 2018) using its command line 
interface (CLI). ANCHOR2 disordered binding regions were recomputed alongside to 
evaluate the potential of this revised version. Data extraction as well as the determination of 
disorder/LIR overlaps was exploited programmatically using explicit software developed in 
python 2.7.  
 

3.2.1.3 New autophagy proteins and LIR-motifs 

 
More recent studies, in an attempt to further characterise members of the autophagic 
machinery, introduced new proteins and LIR-motifs (Xie et al. 2016; Rogov et al. 2017; 
Svenning et al. 2011), which also gave rise to the generation of new LIR prediction tools 
(Xie et al. 2016). To examine how our optimal methods would behave on a new dataset, we 
manually selected a small number of samples from the papers of Rogov (Rogov et al. 2017) 
and Svenning et al. (Svenning et al. 2011) that were not included in our previous 
experiments. The protein sequences were downloaded from UniProt (The UniProt 
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Consortium 2018) in FASTA format using Gene ids or simple keywords like “FIP200”. Start 
and end positions of the LIR-motifs were extracted from the papers and analysed using the 
iLIR webserver (Kalvari et al. 2014). The samples along with other computationally 
produced features are summarised in Table 7. 
 

3.2.2 Methods 

3.2.2.1 Identification of LIR-disorder region overlaps using MobiDB data 

 
Overlaps were computed for each of the 96 motif regions depicted in Table 7 using custom-
made software called dizscan (see supplement 7.1). The algorithm takes as input a tab 
delimited file with each line mapping the UniProt accession numbers of each protein and 
their corresponding LIRs (sequence, start-end points), along with their experimental status: 
verified, unverified. For each line in the input file dizscan extracts disordered regions from 
MobiDB on the fly (using the provided REST API), using UniProt accession numbers to 

access the data. MobiDB data type can be specified using the option --type followed by 

one of the keywords all: incorporates all three types of data indirect, predicted and curated, 
or indirect: MobiDB derived data only, predicted: MobiDB predictions or curated: to take 
into account regions deposited in disorder databases by expert curators.  
 
The second step was to search for overlaps with the LIR sequences by taking into account 
their start and end positions on the peptides. Tracing of disordered residues in the LIR motifs 
was accomplished by applying simple hashing techniques with the exploitation hash data 
structures. Each LIR motif is represented by a hash, where start-end positions work as keys 

whose associated values are characters. The characters are in agreement with MobiDB’s 
naming scheme, where ‘S’ is for structured, ‘D’ is used to denote disorder. All values in the 
hashes are initialized with question marks ‘?’, to represent an unknown primary state.  
 
Disorder overlaps are determined dynamically, meaning that the disorder state of each value 
in the dictionary may change over time. There is also a moderate greediness towards 
disorder, such that it only allows the transitions S -> D, ? -> S, ? -> D. This means that once 
a residue has been labelled as disordered (‘D’) its status cannot be changed to structured ‘S’ 
or back to unknown ‘?’, this way preserving as much disorder information as possible.   
 
Finally, the information concealed within each hash is converted to what we hereby call a 
disorder string (dSTR), with the same length as the motif sequence. Disorder strings are 
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used as a simple means of visualisation giving further insight on the per residue disorder 
status. For instance, the LIR-motif DDWTHL of human p62 (UniProt accession: Q13501) in 

positions 336-341 is classified as completely disordered with a dSTR DDDDDD both for 

curated and predicted data. On the other hand, the resulting dSTR from indirect regions was 
??????, suggesting that no structural information was available for that particular region 

in MobiDB or that in presence of disorder regions none of those overlapped with the LIR-
motifs. In several cases, Indirect, Predicted and Curated data provided by MobiDB can be 
conflicting. One such case is depicted in Figure 12. The flowchart in Figure 13 provides a 
graphical representation of the algorithm.   
 
To assess the level of disorderliness of each LIR motif, the percentage of disorder was 
calculated based on the frequency of ‘D’ characters in the output string. Sensitivity, 
specificity, accuracy, balanced accuracy (Baldi et al. 2000) and F1-score (Lipton et al. 2014), 
were calculated on the set of 96 LIR motifs (verified and unverified) and at 6 incremental 

cutoffs of 16% (1 residue), 33% (2 residues), 50% (3 residues), 66% (4 residues), 83% (5 
residues) and 100% (6 residues) (Table 7) .  
 

 
 
Figure 12. Calculation of disorder in Calreticulin LIR-motif DDWDFL at positions 198-203. 

The leftmost schematic shows the disorder string (dSTR) using MobiDB’s Indirect regions (structural data) 
and the rightmost the dSTR obtained from curated data, with the predicted one in between. This particular 
example makes apparent how difficult it is to come to a conclusion when dSTRs among the various types of 
data are contradictory. The ‘C’ characters in the curated dSTR denote conflict.  
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Figure 13. The flowchart of the dizscan algorithm. 

The above flowchart is a graphical representation of the dizscan algorithm described in detailed herein. For 
the generation of the flowchart we used draw.io software (https://www.draw.io) 
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3.2.2.2 Calculating MobiDB consensus disorder 

 
Alongside MobiDB’s consensus data, we devised another script called 
consensus_disorder_calculator (see supplement 7.2), which combines all computed dSTRs 
regardless of their data type origin (predicted, indirect, curated). This is somewhat a “binary” 
calculator meaning that each residue position can only be assigned one of Disorder (‘D’) or 
Structured (‘S’) tags, while the initial ‘?’ characters are being ignored. 
 
Visualise a multiple sequence alignment of all dSTRs, the idea is to identify between the 
maximum count of Ds and Ss in each column and assign that as the final indicator of structure 
or disorder for that specific position. For that purpose, the algorithm starts by loading all 
dSTRs in a unified structure - a hash - mapping all LIR accessions to their corresponding list 
of pre-calculated dSTRs. The next step is to take each individual LIR accession and construct 
temporary hashes, with key-value pairs that will serve as counters for the ‘D’ and ‘S’ 
characters. For instance, the residue positions 336-341 of the LIR sequence of 
SQSTM_HUMAN would be the keys, each of which is associated with a nested “binary” 
hash keeping record of the occurrence of Ds and Ss, each initially set to zero: 0.  

 
The two final steps include the generation of the consensus dSTR (cdSTR) and the 
computation of the disorder percentage (Figure 14). Having computed the counts of Ds and 
Ss in each column, the one with the highest value (majority rule) is appointed as the disorder 
status in that column. The procedure continues until all columns have been evaluated 
resulting to the final consensus disorder string (cdSTR). Ties are resolved in a conservative 
fashion making a decision in favour of ordered structure (‘S’). This also compensates our 
previous greediness towards favouring disorder during the construction of dSTRs. Finally, 
the percentage of disorder is calculated based on the frequency of ‘D’ characters in the 
cdSTR exactly as described in the previous section. 
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Figure 14. Construction of the consensus disorder string (cdSTR) of the LIR-motif of Optineurin.  

In this particular case the consensus disorder string derived from two types of data: Indirect/structural and 
Predicted. Once again ‘D’ denotes disorder and ‘S’ structure, whereas ‘C’ is used by MobiDB to represent 
conflicts among resources or methods and are handled as missing data (‘?’). A multiple sequence alignment of 
the precalculated dSTRs shows variability in each column. The final cdSTR is the majority vote between ‘D’ 
and ‘S’ states, ignoring missing information. Under this scheme, optineurin cdSTR appears to have two 
disordered residues at positions 176 and 179, while the rest of the peptide is structured.  

 
As another “consensus-like” but less radical approach, was the selection of the dSTR with 
the highest disorder. This was achieved by applying a rather rudimentary method which 
consisted of grouping together all dSTRs belonging to a specific LIR-motif and selecting the 
one with the maximum disorder percentage (MAX(all)). The findings of the aforementioned 
methods are juxtaposed (Table 7) and thoroughly analysed in the following sections. 
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3.2.2.3 Incorporating IUPred2A/Anchor2 disorder predictions  

 
In conjunction with MobiDB consensus disorder data, we scanned our datasets for intrinsic 
disorder regions using IUPred2A, an intrinsic disorder predictor which identifies disorder in 
proteins using an energy estimation approach to calculate the interaction potential of amino 
acids, by capturing the physicochemical properties of IDPs (Mészáros et al. 2018). 
 
IUPred2A predictions of disordered regions were generated for all 52 proteins listed in Table 

7, and disorder overlaps were identified with a new explicitly developed python script (2.7) 
called anchor2_scanner. Prior to scanning, disordered regions were determined in all 
proteins using the command line version of IUPred2A (https://iupred2a.elte.hu). The output 

files were then supplied as input to anchor2_scanner (see supplement 7.3). 
 
The algorithm works in a similar manner as dizscan - making use of has structures - but the 
scanning process is significantly simpler as there only can be one match for each LIR-motif, 
whereas the case of MobiDB - dealing with regions from multiple resources - was slightly 
more challenging.  
 
Here, a residue belonging to a LIR-motif is tagged as disordered (‘D’) if its IUPred2A score 
is ≥ 0.5, otherwise the residue is considered to be structured (‘S’). anchor2_scanner follows 
the same notion as dizscan constructing a dSTR with the final disorder percentage calculated 
according to the frequency of ‘D’ and ’S’ characters in the string. In addition to IUPred2A 
default score (0.5) disorder was also computed, capturing disorder at lower values of 0.2-
0.4. Performance metrics were once again calculated for the 6 different thresholds of 16%, 
33%, 50%, 66%, 83% and 100% disorder. Disorder binding regions were computed using 
the --anchor2 option, while --iupred2 option - as the name suggests - scans for 

disorder regions in general.  
 

3.2.2.4 Annotating LIR-motifs with disorder using SPOT-disorder 

 
Since MobiDB predicted data also incorporate predictions from IUPRED (Mészáros et al. 
2018), we wanted to compare our results to a completely independent tool. For that reason 

we turned to a newly published disorder prediction tool SPOT-disorder (Hanson et al. 2017) 
that employs contemporary methods, deep bidirectional long short-term memory recurrent 
neural networks. In their paper Hanson J et al. (Hanson et al. 2017) showcase that their 
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algorithm supersedes all other methods compared in their benchmark, including those 
comprised in MobiDB.  
 
To evaluate the performance of this method on our dataset, we searched our 52 proteins for 
disorder regions using SPOT-disorder webserver (Hanson et al. 2017) and processed the 

output in a similar manner as the previous methods with the notation followed by SPOT-
disorder (see supplement 7.4). Similarly, SPOT-disorder marks any disordered residues with 
‘D’ characters but uses ‘O’ for order instead of ‘S’ for structure.  
 

3.2.2.5 Quality assessment of the predictions 

To evaluate the performance of our disorder prediction strategies and in order for the results 

to be comparable to what discussed in (Kalvari et al. 2014), we followed an analogous 
approach by calculating the numbers of true positives (TP), true negatives (TN), false 
positives (FP) and false negatives (FN),  examining disorder at six incremental levels of 16% 
(1 residue), 33% (2 residues), 50% (3 residues), 66% (4 residues), 83% (5 residues) and 
100% (6 residues) disorder. In particular, to evaluate the effectiveness of X% disorder in a 
given sequence, a LIR-motif supported by experimental validation is considered a true 
positive (TP) if its dSTR disorder percentage is ≥ X%. In the same setting a LIR-motif is 
classified as TN if there is no experimental evidence in the literature and the disorder level 
is below X%. In a similar manner, we consider as a FP a LIR-motif with no experimental 
evidence and disorder of X% or higher and as FN we label the verified LIRs with predicted 
disorder lower than X%.  

With respect to the preceding assumptions and in accordance with the work presented in the 
previous chapter, we evaluated our methods using the same metrics in addition to the 
following 2 metrics: 

+5"1%$%<# = 	 *+
*+ + -+ 

-1 − $1<5" = 	 2*+
2*+ + -+ + -. 
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3.4 Results 

 
Disorder data retrieved from MobiDB were programmatically examined for overlaps with 
the 96 LIR-motifs listed in Table 3 (see code supplement 7.2). Disorder was computed using 
the start-end positions of each LIR-motif. To assess the power of the various predictive 
methods we evaluated the level of disorder at meaningful thresholds reflecting disorder at 
residue scale. For instance, a LIR-motif with 1 disordered residue corresponds to 16% 
disorder, 2 disordered residues to 33% disorder and so forth up to a 100% disorder indicating 
a completely disordered peptide. Along these lines, values for each of the quality assessment 
metrics were generated at 16%, 33%, 50%, 66%, 83% and 100% disorder by utilizing the 
information encapsulated in the dSTRs and cdSTRs for the consensus scheme. The findings 

of our different strategies are discussed below.  
 
 MOTIF         

Uniprot Id UniProt 
Accession Sequence Position Verified cLIR xLIR Anchor2 PSSM score 

(e-value) cdSTR Disorder 
percentage (%) 

Alemu et al. (Alemu et al. 2012) 
ATG13_HUMAN O75143 EGFQTV 166-171 0 0 1 0 11 (1.5E-01) SSSSSS 0 

 O75143 DDFVMI 442-447 1 1 1 1 20 (8.4E-03) DDDDDD 100 
Atg19_YEAST P35193 LTWEEL 410-415 1 0 1 0 18 (1.6E-02) DDSSSS 33 
Atg1_YEAST P53104 REYVVV 427-432 1 0 1 1 14 (5.7E-02) DDDDDD 100 

Atg32_YEAST P40458 GSWQAI 84-89 1 0 1 1 17 (2.2E-02) DSSSSS 16 
 P40458 KEYQSL 235-240 0 0 1 0 12 (1.1E-01) SSSSSS 0 
 P40458 LGYILL 524-529 0 0 1 0 10 (2.0E-01) DDSSDD 66 

Atg3_YEAST P40344 GDWEDL 268-273 1 0 1 0 22 (4.4E-03) SSSDDD 50 
ATG4B_HUMAN Q9Y4P1 LTYDTL 6-11 1 0 1 0 12 (1.1E-01) DDSSSS 33 

 Q9Y4P1 PMFELV 347-352 0 0 1 0 10 (2.0E-01) SSSSSS 0 
 Q9Y4P1 EDFEIL 386-391 1 1 1 0 17 (2.2E-02) DDSSSS 33 

BNI3L_HUMAN O60238 SSWVEL 34-39 1 0 1 1 20 (8.4E-03) DDDDDD 100 
 O60238 AEFLKV 183-188 0 0 1 0 10 (2.0E-01) SSSSSS 0 

CALR_HUMAN P27797 GGYVKL 107-112 0 0 1 0 12 (1.1E-01) CCCCCC 0 
 P27797 DEFTHL 166-171 0 0 1 0 14 (5.7E-02) CCCCCC 0 
 P27797 DDWDFL 198-203 1 1 1 1 26 (1.2E-03) CCCCCC 0 

CBL_HUMAN P22681 DTYQHL 90-95 0 0 1 0 14 (5.7E-02) SSSSSS 0 
 P22681 LTYDEV 272-277 0 0 1 0 11 (1.5E-01) SSSSSS 0 
 P22681 FGWLSL 800-805 1 0 1 1 18 (1.6E-02) DDDDDD 100 
 P22681 REFVSI 893-898 0 0 1 1 13 (7.9E-02) SSSSSS 0 

CLH1_HUMAN Q00610 PDWIFL 512-517 1 0 1 0 22 (4.4E-03) SSSSSS 0 
 Q00610 GMFTEL 1315-1320 0 0 1 0 11 (1.5E-01) SSSSSS 0 
 Q00610 EDYQAL 1475-1480 0 0 1 0 16 (3.0E-02) SSSSSS 0 

DVL2_HUMAN O14641 RMWLKI 442-447 1 0 1 0 18 (1.6E-02) SSSSSS 0 
FUND1_HUMAN Q8IVP5 DSYEVL 16-21 1 1 1 0 16 (3.0E-02) SSSSSS 0 

 Q8IVP5 GGFLLL 81-86 0 0 1 0 10 (2.0E-01) SSSSSS 0 
FYCO1_HUMAN Q9BQS8 ADYQAL 644-649 0 0 1 1 15 (4.2E-02) DDDDDD 100 

 Q9BQS8 AVFDII 1278-1283 1 0 1 1 8 (3.9E-01) SSSSSS 0 
NBR1_HUMAN Q14596 LSFELL 561-566 0 0 1 1 10 (2.0E-01) SSSSSS 0 

 Q14596 EDYIII 730-735 1 1 1 1 17 (2.2E-02) DDSSSS 33 
OPTN_HUMAN Q96CV9 DSFVEI 176-181 1 1 1 1 15 (4.2E-02) DSSSSS 16 

Q8MQJ7_DROME Q8MQJ7 ADYLSV 96-101 0 0 1 0 14 (5.7E-02) SSSSSS 0 
 Q8MQJ7 DDFVLV 389-394 1 1 1 1 17 (2.2E-02) DDDDDD 100 
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Q9SB64_ARATH Q9SB64 RVWVLI 479-484 0 0 1 0 15 (4.2E-02) SSSSSS 0 
 Q9SB64 SEWDPI 659-664 1 0 1 0 20 (8.4E-03) SSSSSS 0 
RBCC1_HUMAN Q8TDY2 FDFETI 700-705 1 0 1 1 17 (2.2E-02) DDDDDD 100 
SQSTM_HUMAN Q13501 DDWTHL 336-341 1 0 1 1 24 (2.3E-03) DDDDDD 100 
STBD1_HUMAN O95210 EEWEMV 201-206 1 1 1 0 21 (6.1E-03) DDDDDD 100 
T53I1_HUMAN Q96A56 DEWILV 29-34 1 1 1 1 20 (8.4E-03) DDDDDD 100 
T53I2_HUMAN Q8IXH6 DGWLII 33-38 1 0 1 1 21 (6.1E-03) DDDDDD 100 

TBC25_HUMAN Q3MII6 EVYLSL 95-100 0 0 1 0 8 (3.9E-01) SSSSSS 0 
 Q3MII6 EDWDII 134-139 1 1 1 0 24 (2.3E-03) DDDDDD 100 
TBCD5_HUMAN Q92609 KEWEEL 57-62 1 0 1 0 20 (8.4E-03) SSSSSS 0 

 Q92609 DDFILI 713-718 0 1 1 1 17 (2.2E-02) DDDDDD 100 
 Q92609 SGFTIV 785-790 1 0 1 1 11 (1.5E-01) DDDDDD 100 

ULK1_HUMAN O75385 DDFVMV 355-360 1 1 1 1 19 (1.2E-02) DDDDDD 100 
ULK2_HUMAN Q8IYT8 DDFVLV 351-356 1 1 1 1 17 (2.2E-02) DDDDDD 100 

Birgisdottir et al. (Birgisdottir et al. 2013) 
ATG34_YEAST Q12292 KVYEKL 194-199 0 0 1 0 8 (3.9E-01) SSSSSS 0 

 Q12292 FTWEEI 407-412 1 0 1 0 20 (8.4E-03) DDDDDD 100 
BNIP3_HUMAN Q12983 GSWVEL 16-21 1 0 1 1 19 (1.2E-02) DDDDDD 100 

 Q12983 AEFLKV 159-164 0 0 1 0 10 (2.0E-01) DDDDDD 100 
C0H519_PLAF7 C0H519 NDWLLP 103-108 1 0 0 0 12 (1.2E-02) SSSSSS 0 

CACO2_HUMAN Q13137 FMWVTL 72-77 0 0 1 0 20 (8.4E-03) SSSSSS 0 
 Q13137 DILVV 132-136 1 0 0 0 0 (0) SSSSSS 0 
CTNB1_HUMAN P35222 SHWPLI 502-507 1 0 0 0 11 (1.5E-01) SSSSSS 0 
MK15_HUMAN Q8TD08 RVYQMI 338-343 1 0 1 1 10 (2.0E-01) DDDDDD 100 

TAXB1_HUMAN Q86VP1 DMLVV 139-143 1 0 0 0 0 (0) DDDDDD 100 
 Q86VP1 ADFDIV 514-519 0 0 1 1 15 (4.2E-02) DDDDDD 100 

Behrends et al. (Behrends et al. 2010) 
A16L1_HUMAN Q676U5 DEYDAL 164-169 0 1 1 1 16 (3.0E-02) DDDDSS 66 
ATG2A_HUMAN Q2TAZ0 PEYTEI 534-539 0 0 1 0 13 (7.9E-02) DDDSDD 83 
 Q2TAZ0 EVYESI 828-833 0 0 1 0 9 (2.8E-01) SSSSSS 0 
 Q2TAZ0 LEFLDV 1090-1095 0 0 1 0 9 (2.8E-01) SSSSSS 0 

ATG7_HUMAN O95352 SSFQSV 258-263 0 0 1 0 10 (2.0E-01) SSSSSS 0 
DYXC1_HUMAN Q8WXU2 AVFLSL 16-21 0 0 1 0 6 (7.4E-01) SSSDDD 50 
 Q8WXU2 AMWETL 81-86 0 0 1 0 19 (1.2E-02) SSSSSS 0 

ECHA_HUMAN P40939 AVFEDL 447-452 0 0 1 0 7 (5.3E-01) SSSSSS 0 
FAN_HUMAN Q92636 ESFEDL 600-605 0 1 1 0 12 (1.1E-01) DDDDDD 100 

 Q92636 LVWDLL 869-874 0 0 1 0 13 (7.9E-02) SSSSSS 0 
IPO5_HUMAN O00410 ETYENI 31-36 0 1 0 0 11 (1.5E-01) DDDDDD 100 

 O00410 DGWEFV 655-660 0 0 1 0 21 (6.1E-03) DDDDDD 100 
 O00410 LSWLPL 997-1002 0 0 1 0 16 (3.0E-02) SSSSSS 0 

KAP0_HUMAN P10644 EEFVEV 310-315 0 1 1 0 13 (7.9E-02) SSSSSS 0 
KBTB6_HUMAN Q86V97 ESFEVL 120-125 0 1 1 0 13 (7.9E-02) SSSSSS 0 
KBTB7_HUMAN Q8WVZ9 ESFEVL 120-125 0 1 1 0 13 (7.9E-02) SSSSSS 0 
NCOA7_HUMAN Q8NI08 AEYDKL 185-190 0 0 1 0 13 (7.9E-02) DDDDDD 100 
 Q8NI08 GEWEDL 308-313 0 0 1 0 19 (1.2E-02) DDDDDD 100 
 Q8NI08 DDFVDL 414-419 0 1 1 1 18 (1.6E-02) DDDDDD 100 
 Q8NI08 KSWEII 745-750 0 0 1 0 19 (1.2E-02) DDDDDD 100 
NEDD4_HUMAN P46934 SEYIKL 410-415 0 0 1 0 13 (7.9E-02) DDDDDD 100 
 P46934 PGWVVL 589-594 0 0 1 1 19 (1.2E-02) DDDDDD 100 
 P46934 ESFEEL 1296-1301 0 1 1 0 13 (7.9E-02) SSSSSS 0 

SF3A1_HUMAN Q15459 PEFEFI 148-153 0 0 1 0 13 (7.9E-02) DDDDDD 100 
STK3_HUMAN Q13188 EVFDVL 25-30 0 0 1 0 9 (2.8E-01) SSSSSS 0 

 Q13188 GDFDFL 435-440 0 0 1 1 16 (3.0E-02) DSSSSS 16 
STK4_HUMAN Q13043 EVFDVL 28-33 0 0 1 0 9 (2.8E-01) SSSSSS 0 

 Q13043 GDYEFL 431-436 0 0 1 1 17 (2.2E-02) SSSSSS 0 
TBC15_HUMAN Q8TC07 AEWDMV 96-101 0 0 1 0 20 (8.4E-03) DDDDDD 100 

 Q8TC07 PGFEVI 295-300 0 0 1 0 12 (1.1E-01) DDDSSS 50 
 Q8TC07 FSFLDI 540-545 0 0 1 0 11 (1.5E-01) SSSSSS 0 
TBD2B_HUMAN Q9UPU7 EEWELL 252-257 0 1 1 1 20 (8.4E-03) DDDDDD 100 
TCPR2_HUMAN O15040 GDYIAV 45-50 0 0 1 0 14 (5.7E-02) SSSSSS 0 
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 O15040 AVFQLV 102-107 0 0 1 0 5 (1.0E-00) SSSDDD 50 
 O15040 AVFVAL 894-899 0 0 1 0 7 (5.3E-01) SSSSSS 0 
 O15040 DEWEVI 1406-1411 1 1 1 0 23 (3.2E-03) DDDDDD 100 

UBA5_HUMAN Q9GZZ9 SDYEKI 66-71 0 0 1 0 17 (2.2E-02) DDSSSS 33 
 Q9GZZ9 FDYDKV 103-108 0 0 1 0 16 (3.0E-02) SSSSSS 0 
 
Table 7. A collection of 52 proteins with their experimentally validated LIR-motifs. 

Disorder percentage is calculated based on occurrence of ‘D’ characters in cdSTRs. Verified column indicates 
whether a LIR-motif is functional (verified=1) or non-functional (verified=0), which is a result of literature 
curation. The values in columns xLIR and Anchor2 indicate whether a LIR-motif is discoverable (value=1) by 
the tool or not (value=0). PSSM scores and e-values were computed using iLIR webserver (Kalvari et al. 2014). 
 

3.4.1 In seek of the optimal predictive method and disorder threshold  

 
This section focuses solely on consensus disorder data retrieved from MobiDB v.3.0.0 and 
aims at determining the method that best fits our data. We hereby examine the potential of 
the three methods MobiDB-simple, Consensus, MAX(all) and disorder being used as another 
variable in the equation towards discriminating genuine LIR-motifs.  
 
MobiDB makes available two consensus predicted schemes by default, mobidb-lite and 
simple. Although the two methods aggregate predicted data from the exact same tools and 
in similar fashion, each approach captures disorder by employing different thresholds and 
strategies. For instance, mobidb-simple is less stringent by allowing a residue to be appointed 
as disordered (‘D’) if only half of the tools are agreement (>=50%), whereas mobidb-lite is 

slightly more strict requiring that at least 6 out of 8 tools moving the bar to 75% and up 
(Damiano Piovesan, personal communication). On top of that mobidb-lite also includes a 
post-processing step which filters out short regions, therefore further investigation was 
required to choose the best for our dataset. 
 
With respect to our samples, mobidb-lite lacked information for a small number of LIR-
motifs, possibly due to its filtering of short regions. One-on-one comparison to mobidb-
simple revealed a rather fixed nature when alternating between thresholds. Meaning that 
mobidb-lite reached a Balanced Accuracy of about 55% with a very low F1 score of 0.23 
(0.27 at max) and did not deviate much from those values. This outcome was also the worst 
amongst all methods and therefore excluded from further analysis. 
 
The predictive power of the remaining three methods MobiDB-simple, consensus disorder 
and Max(all) was evaluated at six distinct thresholds of 16%, 33%, 50%, 66%, 83% and 
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100% disorder encapsulated in disorder strings (dSTRs) and consensus dSTRs (cdSTRs). 
The results are depicted in Table 8. 
 
From balanced accuracy and F1-scores it is evident that MobiDB-simple outperforms the 
two other methods at all different thresholds, reaching a peak of about 74% Balanced 

Accuracy (BACC) and an F1-score of 0.68 at 100% disorder. With respect to the other 
metrics, we observe an oscillation between the leading method at different thresholds. For 
example, the consensus method prevails over the other two at the lowest threshold (16%) in 
terms of specificity, precision as well as Accuracy, and MAX(all) in terms of sensitivity. 
However, MobiDB-simple persists in achieving the highest BACC add F1 values. Balanced 
accuracy and F1-score are metrics that balance precision and recall given an uneven set, 
therefore deemed to be more representative of our dataset and will be used extensively to 
compare different predictive schemes in the following. 
 
Once we selected MobiDB-simple as the utmost method for disorder prediction in LIR-
motifs, the next step was the in-depth exploration of False Positive and False Negative 
predictions, going through each case one by one (Table 9). From these results it becomes 
apparent that MobiDB-derived data cannot yield a perfect discrimination between functional 
and non-functional LIRs – at least not as a sole parameter. For instance, MobiDB-simple 
annotates all non-functional LIRs with a 100% disorder, which under the assumption that a 
completely disordered peptide is also a functional LIR, falsely classify those as such. Thus, 
additional parameters (or other proxies to the disorderliness of LIR-motifs) need to be taken 
into consideration when searching for genuine LIR-motifs. 
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1+ residues 2+ residues 3+ residues 4+ residues 5+ residues 6 residues 
Disorder >= 16% Disorder >= 33% Disorder >= 50% Disorder >= 66% Disorder >= 83% Disorder 100% 

MAX(all) MobiDB 
simple Consensus MAX(all) MobiDB 

simple Consensus MAX(all) MobiDB 
simple Consensus MAX(all) MobiDB 

simple Consensus MAX(all) MobiDB 
simple Consensus MAX(all) MobiDB 

simple Consensus 
TP 35 30 26 35 30 24 33 30 20 29 30 19 18 29 19 13 29 19 
TN 11 32 36 15 32 37 21 33 38 29 36 41 40 38 43 46 40 44 
FP 49 28 24 45 28 23 39 27 22 31 24 19 20 22 17 14 20 16 
FN 1 6 10 1 6 12 3 6 16 7 6 17 18 7 17 23 7 17 

Sensitivity 
(%) 97.22 83.33 72.22 97.22 83.33 66.67 91.67 83.33 55.56 80.56 83.33 52.78 50.00 80.56 52.78 36.11 80.56 52.78 

Specificity 
(%) 18.33 53.33 60.00 25.00 53.33 61.67 35.00 55.00 63.33 48.33 60.00 68.33 66.67 63.33 71.67 76.67 66.67 73.33 

Precision 
(%) 41.67 51.72 52.00 43.75 51.72 51.06 45.83 52.63 47.62 48.33 55.56 50.00 47.37 56.86 52.78 48.15 59.18 54.29 

Accuracy 
(%) 47.92 64.58 64.58 52.08 64.58 63.54 56.25 65.63 60.42 60.42 68.75 62.50 60.42 69.79 64.58 61.46 71.88 65.63 

Balanced 
Accuracy 

(%) 
57.78 68.33 66.11 61.11 68.33 64.17 63.33 69.17 59.44 64.44 71.67 60.56 58.33 71.94 62.22 56.39 73.61 63.06 

F1 - score 0.58 0.64 0.60 0.60 0.64 0.58 0.61 0.65 0.51 0.60 0.67 0.51 0.49 0.67 0.53 0.41 0.68 0.54 
 
Table 8. Disorder results as computed from MobiDB 3.0.0 data. 

The three algorithms described in methods were tested for their predictive power on the collection of verified and non-verified LIR-motifs of Alemu et al (Alemu et al. 2012) as 
illustrated in Table 7. Evaluation was carried out based on six metrics: Sensitivity, Specificity, Precision, Accuracy (ACC), Balanced Accuracy (BACC) and F1-score with the top 
score for each metric represented in bold.  
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UniProt id Sequence Positions Verified PSSM 
(e-value) xLIR dSTR cdSTR 

False Positives 
BNIP3_HUMAN AEFLKV 159-164 0 10 (2.0E-01) 1 DDDDDD DDDDDD 
CALR_HUMAN GGYVKL 107-112 0 12 (1.1E-01) 1 DDDDDD CCCCCC 
FAN_HUMAN ESFEDL 600-605 0 12 (1.1E-01) 1 DDDDDD DDDDDD 

FYCO1_HUMAN ADYQAL 644-649 0 15 (4.2E-02) 1 DDDDDD DDDDDD 
IPO5_HUMAN ETYENI 31-36 0 11 (1.5E-01) 0 DDDDDD DDDDDD 
IPO5_HUMAN DGWEFV 655-660 0 21 (6.1E-03) 1 DDDDDD DDDDDD 
KAP0_HUMAN EEFVEV 310-315 0 13 (7.9E-02) 1 DDDDDD SSSSSS 

NCOA7_HUMAN AEYDKL 185-190 0 13 (7.9E-02) 1 DDDDDD DDDDDD 
NCOA7_HUMAN GEWEDL 308-313 0 19 (1.2E-02) 1 DDDDDD DDDDDD 
NCOA7_HUMAN DDFVDL 414-419 0 18 (1.6E-02) 1 DDDDDD DDDDDD 
NCOA7_HUMAN KSWEII 745-750 0 19 (1.2E-02) 1 DDDDDD DDDDDD 
NEDD4_HUMAN SEYIKL 410-415 0 13 (7.9E-02) 1 DDDDDD DDDDDD 
NEDD4_HUMAN PGWVVL 589-594 0 19 (1.2E-02) 1 DDDDDD DDDDDD 
SF3A1_HUMAN PEFEFI 148-153 0 13 (7.9E-02) 1 DDDDDD DDDDDD 
STK3_HUMAN EVFDVL 25-30 0 9 (2.8E-01) 1 DDDDDD SSSSSS 
STK3_HUMAN GDFDFL 435-440 0 16 (3.0E-02) 1 DDDDDD DSSSSS 

TAXB1_HUMAN ADFDIV 514-519 0 15 (4.2E-02) 1 DDDDDD DDDDDD 
TBC15_HUMAN AEWDMV 96-101 0 20 (8.4E-03) 1 DDDDDD DDDDDD 
TBCD5_HUMAN DDFILI 713-718 0 17 (2.2E-02) 1 DDDDDD DDDDDD 
TBD2B_HUMAN EEWELL 252-257 0 20 (8.4E-03) 1 DDDDDD DDDDDD 

False Negatives 
CACO2_HUMAN DILVV 132-136 1 N/A 0 ????? SSSSSS 
CLH1_HUMAN PDWIFL 512-517 1 22 (4.4E-03) 1 ?????? SSSSSS 

CTNB1_HUMAN SHWPLI 502-507 1 11 (1.5E-01) 0 ?????? SSSSSS 
DVL2_HUMAN RMWLKI 442-447 1 18 (1.6E-02) 1 ?????? SSSSSS 

FUND1_HUMAN DSYEVL 16-21 1 16 (3.0E-02) 1 DDDD?? SSSSSS 
Q9SB64_ARATH SEWDPI 659-664 1 20 (8.4E-03) 1 ?????? SSSSSS 
TBCD5_HUMAN KEWEEL 57-62 1 20 (8.4E-03) 1 ?????? SSSSSS 

 

Table 9. Classification of LIR-motifs using disorder data from MobiDB.  

List of LIR-motifs that were falsely categorized as functional LIRs (False Positives) or falsely predicted as 

non-functional (False Negatives).  

 
 
With respect to False Negatives what can be observed is that almost all dSTRs are in their 

initial state ‘??????’ at 0% disorder, apart from the dSTR of FUND1_HUMAN LIR-motif 

(DSYEVL) at 66% disorder (DDDD??). This is due to the stringent disorder filter of 100% 

that we apply, but based on the results in Table 8, a lower threshold of 66% disorder (4+ 

residues) would have come with the expense of additional False positives.  
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3.4.2 Assessing the power of MobiDB over IUPRED2A and SPOT-disorder 

 
MobiDB (Piovesan et al. 2018) is a composite database combining disorder proteomic data 

and mobility annotations from a wide range of resources including IUPred. In the previous 

section we explored the predictive power of MobiDB-simple based on a set of metrics which 

we computed at different thresholds. In this segment, we analyse its potential in opposition 

to stand alone methods: the newest IUPred, namely IUPred2A (Mészáros et al. 2018) and a 

newly published tool called SPOT-disorder (Hanson et al. 2017). To evaluate the 

performance of each tool, we tested their ability to correctly distinguish the genuine LIRs 

out of the collection of 96 LIRs listed in Table 7.  

 

In opposition to ModiDB-simple and SPOT-disorder (used with their default options), 

IUPRED2A was examined more thoroughly by experimenting with several other scores 

beyond the default value of 0.5 suggested by its authors. This process revealed that a score 

of 0.3 is perhaps more suitable for our dataset and was the one selected for further analysis. 

We hereby evaluate the strength of each method based on the six selected thresholds of 16%, 

33%, 50%, 66%, 83% and 100% disorder for all aforementioned metrics. The performance 

of the three methods are juxtaposed in Table 10.  
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Metrics 

1+ residues 2+ residues 3+ residues 4+ residues 5+ residues 6 residues 

Disorder >= 16 Disorder >= 33 Disorder >=50 Disorder >= 66 Disorder >= 83 Disorder 100 

IUPRED2A 
(0.3) SPOT IUPRED2A 

(0.3) SPOT IUPRED2A 
(0.3) SPOT IUPRED2A 

(0.3) SPOT IUPRED2A 
(0.3) SPOT IUPRED2A 

(0.3) SPOT MobiDB 
simple 

TP 31 17 29 15 29 13 27 13 26 12 24 12 29 
TN 35 46 36 46 38 47 38 48 42 50 42 51 40 
FP 25 14 24 14 22 13 22 12 18 10 18 9 20 
FN 5 19 7 21 7 23 9 23 10 24 12 24 7 

Sensitivity 
(%) 86.11 47.22 80.56 41.67 80.56 36.11 75.00 36.11 72.22 33.33 66.67 33.33 80.56 

Specificity 
(%) 58.33 76.67 60.00 76.67 63.33 78.33 63.33 80.00 70.00 83.33 70.00 85.00 66.67 

Precision (%) 55.36 54.84 54.72 51.72 56.86 50.00 55.10 52.00 59.09 54.55 57.14 57.14 59.18 

Accuracy (%) 68.75 65.63 67.71 63.54 69.79 62.50 67.71 63.54 70.83 64.58 68.75 65.63 71.88 

Balanced 
Accuracy (%) 72.22 61.94 70.28 59.17 71.94 57.22 69.17 58.06 71.11 58.33 68.33 59.17 73.61 

F1-score 0.67 0.51 0.65 0.46 0.67 0.42 0.64 0.43 0.65 0.41 0.62 0.42 0.68 

 

Table 10. Comparison of IUPRED2A, SPOT and MobiDB. 
Performance of MobiDB-simple, IUPRED2A and SPOT-disorder as calculated on the 96 LIR-motifs presented in Table 7. Assessment is conducted based on six incremental 
thresholds 16%, 33%, 50%, 66%, 83% and 100% disorder with optimum values in each test case represented in bold. IO
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Giving emphasis to Balanced accuracy and F1-scores one can notice that IUPRED2A0.3 
outperforms MobiDB-simple almost at all disorder thresholds apart from the case of 
complete disorder (100%). That is where MobiDB-simple is once again the best method with 
a 74% BACC and a 0.68 F1-score. The difference between IUPRED2A and MobiDB-simple 
is very small with a 72% BACC/0.67 F1-score and a 68% BACC/0.64 F1-score respectively. 
SPOT appears to be the weakest with a BACC of only 62% and an F1-score of 0.51 
calculated at 16% disorder, which continues to gradually downdrift as the level of disorder 
increases and consequently thrown out of competition. 
 
With respect to the other four metrics SPOT does not fall far behind IUPRED2A0.3, but a 
very interesting observation is that IUPRED2A0.3 is more sensitive, whereas SPOT is more 
specific and this trend persists at all thresholds. 
 
Coming back to IUPRED2A and MobiDB-simple, one can confidently accept MobiDB-
simple as the optimal method overtaking all other methods at all tested thresholds. However, 
since the difference between the two is not large, we re-assess both for their contribution in 
a multi-scheme predictor in the sections that follow. 

 

3.4.3 Scrutinizing the potential of disorder binding regions in the 

determination of genuine LIRs 

 
In 2014, driven by the observation that proteins involved in autophagy are highly abundant 
in intrinsically disordered regions (Mei et al. 2014), we investigated the possibility of LIR-
motifs undergoing a disorder to order conformational change upon binding to Atg8 
homologs. For that purpose, we used the ANCHOR software (Meireles et al. 2010) to search 
for such regions in our collection of proteins. A residue with score over 0.5 (by default) was 
considered to belong to a disorder binding region with motif classified as such if the 
constraint that at least 66% of LIR-motif being disordered was met (4 out of 6 residues). 
 
With the release of the new IUPred2A software (Mészáros et al. 2018) a new revised version 
of the ANCHOR tool became available referred to as ANCHOR2. According to Meszaros 
et al., ANCHOR2 underwent major revision which lead to better results. This current version 
has been modified to take into account interactions with globular domains as well as local 
disorder sequence environment and was re-trained using a new dataset from DIBS database 
(Schad et al. 2018). From their findings it is evident that ANCHOR2 outperforms its 
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predecessor in all tested scenarios and for that reason we herein assess its power on our 
dataset. For this purpose, new anchors were generated for all 52 proteins with LIR-motifs 
that are listed in Table 7. We also went a step further by testing disorder prediction at lower 
scores to investigate whether an alternative could fit our dataset better than the default. We 
examined three alternative thresholds for ANCHOR2 scores in addition to the default 0.5 
used by IUPRED2A 0.2, 0.3 and 0.4, and which pinpointed 0.3 as another candidate for 
annotating LIR-motif residues with anchors. 
 
In order to determine the optimum anchor score for our dataset, the two anchor schemes 
were assessed for their predictive strength in combination with other parameters such us the 
characterisation of LIR-motifs by xLIR (xLIR=1) and its corresponding PSSM score. Our 
findings showed that anchor predictions with the default score of 0.5 (Anchor20.5) was more 
efficient, reaching a Balanced Accuracy of 78% and an F1-score of 0.85 as opposed to a 
72% BACC and 0.83 F1 achieved with anchor score of 0.3 (Anchor20.3). Consequently 
Anchor20.5 was selected to further compare its efficacy to its former version as contributor 
to the multi-scheme predictors. The results are depicted in Table 11. 
 
 xLIR xLIR + A xLIR + A2 xLIR + A + P13 xLIR + A2 + P13 xLIR + A | P13 xLIR + A2 | P13 

TP 27 17 12 15 11 26 26 
TN 0 16 18 18 18 11 11 
FP 20 4 1 2 1 9 8 
FN 0 10 16 12 17 1 2 

Sensitivity 
(%) 100.00 62.96 42.86 55.56 39.29 96.30 92.86 

Specificity 
(%) 0.00 80.00 94.74 90.00 94.74 55.00 57.89 

Precision 
(%) 57.45 80.95 92.31 88.24 91.67 74.29 76.47 

Accuracy 
(%) 57.45 70.21 63.83 70.21 61.70 78.72 78.72 

Balanced 
Accuracy 

(%) 
50.00 71.48 68.80 72.78 67.01 75.65 75.38 

F1-score 
(%) 0.73 0.71 0.59 0.68 0.55 0.84 0.84 

 

Table 11. Comparing the efficacy of ANCHOR and ANCHOR2 on different predictive schemes. 

 
In order for the results to be comparable to those in Table 3 of the iLIR paper (Kalvari et al. 
2014) both versions were reassessed on the subset of proteins introduced by Alemu et al, but 
using the same schemes we studied before. ANCHOR appears to supersede ANCHOR2 in 
terms of accuracy (ACC), balanced accuracy (BACC) and F1-score in all schemes although 
in the case of xLIR+AX|P13, the difference in balanced accuracy in only marginal and both 
versions of the tool give an F1 score of 0.84. One can argue that since the old version of 
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ANCHOR seems to be better than its successor, that updating to the new version would not 
come with a positive outcome, however both of the tools give an F1 score of 0.84. If we are 
to compare the two data-wise, the difference is only an additional FN for ANCHOR2 at the 
expense of a single FP. Since ANCHOR2 is the latest version and the one that is most likely 
to be maintained for the foreseeable future, it is also the one we will be including in any 
further analysis.   
    

3.4.4 Assessing the efficacy of multi-scheme predictors 

 
In our previous work we showed that combining different metrics resulted in more powerful 
LIR prediction schemes. Supporting evidence is the inclusion of anchors and PSSMs as an 
enhancing means for discriminating genuine LIR-motifs reaching a maximum of 75.7% 
BACC (Table 5 (Kalvari et al. 2014)). With the refinement of ANCHOR (ANCHOR2), 
xLIR+A2|P13 BACC went up to 78% (~2% improvement) with an F1-score of 0.85, an 
even greater better performance compared to MobiDB-simple100 with an increased BACC 
and F1-score by 5% and 0.17 respectively. 
 
In this final section we investigated the relevance of intrinsic disorder as a predictor of 
autophagy LC3 interacting regions. Carrying over from the previous section, we examined 
whether incorporating intrinsic disorder in the multi-scheme logic equation would further 
improve its predictive power. Table 12 lists an expanded version of all predictive schemes 
presented in Table 5 from Kalvari et al (Kalvari et al. 2014), with the addition of intrinsic 
disorder. When discussing about multi-scheme predictors we refer to simple logic (e.g. 
xLIR+A2+D|P13) equations that combine binarized LIR-motif descriptors such as anchors, 
disordered etc. 
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 xLIR xLIR+D xLIR+A2+D xLIR+A2|D xLIR+A2+D|P13 xLIR+A2|D|P13 

TP 27 23 12 23 26 28 

TN 0 16 18 16 11 10 

FP 20 3 1 3 8 9 

FN 0 5 16 5 2 0 

Sensitivity 
(%) 100.00 82.14 42.86 82.14 92.86 100.00 

Specificity 
(%) 0.00 84.21 94.74 84.21 57.89 52.63 

Precision 
(%) 57.45 88.46 92.31 88.46 76.47 75.68 

Accuracy 
(%) 57.45 82.98 63.83 82.98 78.72 80.85 

Balanced 
Accuracy 

(%) 
50.00 83.18 68.80 83.18 75.38 76.32 

F1-score 0.73 0.85 0.59 0.85 0.84 0.86 
 
Table 12. Multi-scheme predictors applied on the 47 LIR-motifs collected by Alemu et al. 

Assessment of their power in discriminating functional LIR-motifs was conducted based on Sensitivity, 
Specificity, Precision, Accuracy, Balanced Accuracy (BACC) and F1-score. A2 represents the latest version 
of ANCHOR, D is for disorder and P13 for pssm scores > 13. The top scores in each row are marked in bold. 
 

 
Overall our findings suggest that disorder is a good indicator of genuine LIR-motifs reaching 
a balanced accuracy of 83% for schemes xLIR+D and xLIR+A2|D, surpassing our previous 
top score by 5%. Both predictors appear to perform exactly the same with nicely balanced 
Specificity and Sensitivity of 84% and 82% respectively, suggesting that intrinsic disorder 
in LIR-motifs is a critical feature. Further evidence that justify this conclusion can be derived 
by comparing the two aforementioned schemes with predictor xLIR+A2+D. This latter case 
appears to be the weakest of the combinational schemes being in favour of Specificity (~ 
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95%) with a balanced accuracy of 69% and an F1-score of 0.6. Disorder (D) in xLIR+A2|D 
seems to be overpowering A2, with that particular logical equation giving the exact same 
results with xLIR+D obliterating anchors (A2) completely. However, it is very likely that a 
larger collection of samples the two tools can better compensate for one another with A2 
picking up cases that disorder eludes and vice versa. 
 
Looking into PSSM scores, the inclusion of P13 (PSSM > 13) to the schemes 
(xLIR+A2|D|P13) seems to have had a negative effect, an outcome which is contradictory 
to our previous findings. With respect to balanced accuracy, it still performs better with a 
slight improvement of 0.6% compared to our old optimal case xLIR+A|P13 (Kalvari et al. 
2014). Its 7% declination from the 83% of the best scheme (xLIR+A2|D) came with 100% 
Sensitivity - similar to using xLIR solely - but with a 53% gain in Specificity. Although with 
a lower balanced accuracy of 76%, this scheme comes with an F1-score of 0.86, which is 
also the best across all tests performed. This raises the question whether there are other ways 
to fine tune this multi-scheme predictor to achieve even higher scores.  
 
Building on that notion, the PSSM score is the only descriptor that is still parameterizable, 
meaning that it is the only one not tested for an optimum value. To look into PSSM 
alternatives, we computed all metrics on the same dataset we worked with before using the 
multi-scheme predictor xLIR+A2|D|PX, where X parametrized different PSSM thresholds 
tested. We captured its performance at six incremental PSSM scores starting from P13, P14 
up to P18, where P18, where PX denotes a PSSM score > X. The Balanced accuracy for both 
disorder methods mobidb-simple and IUPRED2A (iupred2) computed at the six distinct 
PSSM scores is illustrated in Figure 15.  
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Figure 15. Balanced Accuracy (%) achieved with multi-scheme predictor xLIR+A2|D|PX captured at 

various PSSM thresholds. 

All scores were calculated based on the 47 xLIRs detected in the sequences stemming from the paper of Alemu 
and colleagues (Alemu et al. 2012). IUPRED2A scores are in blue and mobidb-simple BACC is presented in 
green.  

 
From the results portrayed in Figure 15 what is apparent is that, overall, mobidb-simple has 
a better effect than IUPRED2A when used synergistically in the multi-scheme predictor, 
although at P13 IUPRED2A seems more favourable with a BACC of 77.16% over the 
76.32% achieved with mobidb-simple. At PSSM > 14 the balanced accuracy of mobidb-
simple begins to increase and precedes up to P16 (89.47% vs 87.69%). At P17 both tools 
reach a peak value of 90% BACC, a value that mobidb-simple preserves at P18, followed 
by a downdrift at P19. This raises another question of whether P17 is the optimum PSSM 
score. To answer this question, the multischeme predictor xLIR+A2|D|PX was applied on the 
entire collection of 96 LIRs (Table 1) and all metrics where re-computed at all different 
PSSM scores. The results are depicted in Figure 16. 
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Figure 16. Balanced Accuracy (%) achieved with multi-scheme predictor xLIR+A2|D|PX captured at 

various PSSM thresholds. 

All scores were calculated based on the entire collection of 96 LIR-motifs listed in Table 7. IUPRED2A BACC 
values are in blue and mobidb-simple BACC is presented in green. 

 
These new results illustrate the strength of mobidb-simple in helping to distinguish genuine 
LIR-motifs. The multi-scheme predictor scheme in collaboration with mobidb-simple once 
again outperforms the one with IUPRED2A, but both schemes start at lower BACCs of 63% 
and 62% respectively. It also became clearer the PSSM score at which each method is at 
peak. For instance, if IUPRED2A were to be used in the multi-scheme predictor, then the 
PSSM threshold at which the predictor is at its utmost performance would be > 17 reaching 
a BACC of 74% and F1-score of 0.69. MobiDB-simple, as we also observed in the results 
depicted in Figure 16, reaches its peak performance at a PSSM threshold > 18 with a 75.6% 
BACC and F1-score of 0.7. This slight improvement in balanced accuracy comes with two 
additional True Negatives which were previously falsely characterized as functional LIR-
motifs. A significant outcome in studies that take the identification of LIR-motifs at 
proteome scale.  
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Before closing, it is important to discuss a very intriguing outcome of the comparison of the 
two multi-scheme predictors xLIR+A2+D|PX and xLIR+A2|D|PX at different PSSM scores. 
At PSSM scores > 13, the difference in balanced accuracy and F1 scores between the two 
methods is marginal (Table 12), therefore we went a step further by examining those values 
at different PSSM cutoffs. Although xLIR+A2|D|PX outperformed xLIR+A2+D|PX for a 
PSSM score > 13 when tested on both datasets of Alemu et al. (for comparison with iLIR 
results) and the complete set of LIR-motifs (Table 1), a result that also persisted when we 
tried different PSSM scores on the Alemu dataset (Figure 17-left), this same experiment 
yielded the opposite outcome on the entire collection of LIR-motifs (Figure 17-right). 
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Figure 17. Multi-scheme method comparison. 
The performance of the two multi-scheme predictors xLIR+A2+D|PX and xLIR+A2|D|PX was tested on the Alemu (left) and complete (right) datasets of LIR-motifs, were 
balanced accuracy is measured at different PSSM thresholds.  
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What can be observed from the right chart in Figure 17-right, is that the multi-scheme 
predictor xLIR+A2+D|PX performs better than the xLIR+A2|D|PX for all PSSM scores > 
14, reaching a maximum BACC of 77.5% (F1: 0.72) over 73.8% (F1: 0.69) at PSSM >17 
respectively. Detailed results for PSSM >17 are presented in Table 13. 
 
A possible explanation to this result is that xLIR+A2+D|PX requires that both ANCHOR2 
and MobiDB-simple predict a LIR-motif as functional, giving more power to ANCHOR2 
which we previously saw that the number of correctly identified LIR-motifs was low, hence 
controlling the outcome of the logical equation A2+D. This means that the outcome relies 
on the PSSM score solely.  
 
 

 xLIR+A2+D|P17 xLIR+A2|D|P17 
TP 27 31 
TN 48 37 
FP 12 23 
FN 9 5 

Sensitivity 
(%) 75.00 86.11 

Specificity 
(%) 80.00 61.67 

Precision 
(%) 69.23 57.41 

Accuracy 
(%) 78.13 70.83 

Balanced 
Accuracy 

(%) 
77.50 73.89 

F1-score 0.72 0.69 
 
Table 13. Multi-scheme predictor results on the complete dataset. 

Comparison of the performance of the multi-scheme predictors xLIR+A2+D|P17 and xLIR+A2|D|P17 on the 
complete dataset of experimentally verified LIR-motifs.  

 

It is important to understand that the purpose of this study is to provide the users with tools 
and strategies to identify LIR-motifs in putative proteins and various filtering methods based 
of the requirements of each experiment. The users should use their discretion in selecting the 
optimal parameters that best fit their needs, taking into account whether specificity or 
sensitivity is more important. For example, it is expected that when scanning a complete 
proteome for identifying selective autophagy receptors, choosing a scheme tuned for high 
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specificity will provide an accurate list of proteins. On the other hand, when scanning a 
particular protein for candidate LIR-motifs, a high sensitivity scheme will provide a larger 
number of candidates which can be rationally prioritized using additional features, e.g. those 
provided by the iLIR server.   
 

3.4.5 Independent validation  

 
Ever since the publication of the iLIR (Kalvari et al. 2014) webserver, new studies exploring 
the world of selective autophagy came to the surface. Some branched out to other types of 
autophagy that also resulted in the production of new tools, an example of which is the 
hfAIM (Xie et al. 2016) web resource that focuses on locating LIR-motifs in proteins 
participating in pexophagy. To divert from the computational side of things, significant were 
the experimental surveys that were able to validate functional LIRs that previous studies 
failed to detect (Skytte Rasmussen et al. 2017; Stadel et al. 2015) and finally studies that 
introduced novel proteins to the research community (Rogov et al. 2017).   
 
With the best predictive scheme in hand, the next step was to test it on new LIR-motifs. We 
manually hand-picked four candidate protein sequences with experimentally verified 
functional LIRs from previous works (Rogov et al. 2017) (Svenning et al. 2011). The 
sequence of each protein specimen was manually downloaded from the UniProtKB 
Knowledgebase (https://www.uniprot.org/) (The UniProt Consortium 2018) and iLIR 
webserver was used to search the sequences for an xLIR match, and to generate the PSSM 
scores used in the multi-scheme predictor. Anchors and disorder strings (dSTR, cdSTR) were 
generated using the tools described in the methods. The results are presented in Table 14.  
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UniProt ID UniProt 
Accession Sequence Position Verified xLIR Anchor2 PSSM score 

(e-value) dSTR cdSTR Author Prediction 

C0Z2C5_ARATH C0Z2C5 REYVLV 358-363 1 1 0 13 (7.90E-02) DDDDDD DDDDDD Svenning et al. TP 

JMY_HUMAN Q8N9B5 SDWVAV 11-16 1 1 0 22 (4.40E-03) DDDDDD DDDDDD Rogov et al. TP 
  

FSFQDL 233-238 0 1 0 11 (1.50E-01) DDDDDD DDDDDD Rogov et al. FP 
  GMWTVL 265-270 0 1 0 18 (1.60E-02) DDDDDD DDDDDD Rogov et al. FP 
  KGYEEV 329-334 0 1 0 12 (1.10E-01) DDDDDD DDDDDD Rogov et al. FP 
  ESFTLL 945-950 0 1 0 11 (1.50E-01) DDDDDD DDDDDD Rogov et al. FP 

PKHM1_HUMAN Q9Y4G2* DEWVNV 633-638 1 0 0 19 (1.20E-02) DDDDDD DSSSSS Rogov et al. FN 

RETR1_HUMAN Q9H6L5 ESWEVI 152-157 0 1 0 20 (8.40E-03) ??DDDD SSDDDD Rogov et al. FP 
  

LSYLLL 219-224 0 1 0 10 (2.00E-01) ?????? SSSSSS Rogov et al. TN 
  DDFELL 453-458 1 1 1 18 (1.60E-02) DDDDDD DDDDDD Rogov et al. TP 

 

Table 14. New proteins and their corresponding verified LIR motifs. 

xLIR, PSSM scores, e-values, LIR requence and positions were generated using iLIR web server (Kalvari et al. 2014). Anchors (Anchor2), dSTRs and cdSTRs were generated using 

the tools described in methods. *The sequence Q9Y4G2 does not conform to the xLIR motif but only to the most generic WxxL-motif, yet we include it for completeness. 
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Assuming a wet lab researcher was interested in studying these four sequences: 

 

1. C0Z2C5_ARATH: she would be unambiguously pointed to the correct functional 

motif. 

 

2. JMY_HUMAN: among the 5 detected xLIR motifs with intrinsic disorder 

prediction, the top-scoring against the PSSM is the correct one, which would be 

prioritized. 

 

3. PKHM1_HUMAN: the xLIR motif fails to recognize the functional LIR motif. 

However, among the 15 WxxL motifs detected by iLIR, the top scoring one is the 

genuine LIR motif (see Figure 18). 

 

4. RETR1_HUMAN: the genuine LIR-motif –even though slightly outscored by 

another xLIR-motif in the PSSM comparison– still has a high PSSM score, and is the 

only xLIR-motif overlapping an ANCHOR prediction as well as it is predicted to be 

completely disordered. 

 

All in all, in all of the above cases, even though the predictions are far from perfect, our 

multi-scheme analysis approach provides useful information for the prioritization of 

candidate LIR motifs for downstream experimentation. 

 

It is worth mentioning that the validation presented here is by no means comprehensive, as 

this would require an exhaustive screen of all newly reported proteins with experimentally 

verified LIR-motifs in the current literature. In fact, we have recently compiled data (Kalvari, 

Chadjichristofi and Promponas, unpublished data) about dozens of newly reported instances 

of LIR-motifs - a number of which were discovered based on iLIR predictions. However, a 

time-consuming manual verification for annotating entries based on literature evidence and 

cleansing of these data is necessary prior to availability of this dataset for proper analysis. 

The small dataset analysed here highlights that even though the prediction accuracy of 

existing and novel prediction schemes developed in this work is not perfect, they can provide 

valuable guidelines to experimental scientists for rational design of experiments for 

identifying novel instances of functionally important LIR-motifs. 
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Figure 18. iLIR results for human Pleckstrin homology domain-containing family M member 

The top scoring detected WxxL-motif (score: 19) against the xLIR PSSM corresponds to the functional LIR-

motif of human Pleckstrin (Uniprot acc: Q9Y4G2) and additionally has 4 conserved positions compared to the 

verified LIR-motif of T53I1. 

 

It turns out that this particular set of proteins is a good example to demonstrate the efficacy 

of the multi-scheme predictor. Interestingly, not all motifs match the xLIR regular 

expression. As the xLIR regular expression derives mostly from human proteins, one would 

expect this to occur for the case of the plant protein C0Z2C5_ARATH. This shows the 

weakness of the xLIR method and once again signifies the necessity of involving additional 

characteristics. This is the reason why the iLIR server also reports the more generic WxxL 

motif and we introduced the anchors and the PSSM scores in the past.  
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Moving on to Anchors, C0Z2C5_ARATH REYVLV and JMY_HUMAN SDWVAV are not 

predicted to switch from a disordered to order state upon binding to partners, a case that 

would result in 2 false negative predictions if anchors were an essential characteristic of 

functional LIRs e.g. xLIR+A2. However, PSSM scores in the multi-scheme predictor 

xLIR+A2|P13 make up for this by successfully picking up all genuine LIRs (Table 15). The 

problem is that with those correctly classified LIRs the PSSM also falsely collects 2 false 

positives too. This is because almost all of these LIR-motifs appear to be completely 

disordered, but even if we eliminate this parameter, the PSSM scores of 2 of the unverified 

LIRs RETR1_HUMAN ESWEVI and JMY_HUMAN GMWTVL are quite high, therefore 

they would still be falsely characterised as functional.  

 

One solution to this problem would be to add more constraints to the predictors. For instance, 

setting upper and lower thresholds to the PSSM scores to filter out outliers. Although this 

could work for this scenario, there are two cases in the dataset. Unverified LIRs with very 

high PSSM scores and verified LIRs whose PSSM score is very low. For example, 

FYCO1_HUMAN AVFDII and MK15_HUMAN RVYQMI with PSSM scores 8 and 10 

respectively. Another case is the case of atypical LIRs (CACO2_HUMAN DILVV, 

TAXB1_HUMAN DMLVV) for which PSSMs are unavailable.   

 

 

 xLIR+A2 xLIR+A2|P13 xLIR+A2|D|P13 

TP 1 3 3 

TN 6 4 1 

FP 0 2 5 

FN 3 1 1 

 

Table 15. Classification of novel LIR-motifs based on 3 different prediction schemes 

TP, TN, FP and FN values computed based on the Verified, xLIR, Anchor2, PSSM-score and dSTR values in 

Table 14, using the 3 multi-scheme predictors xLIR+A2, xLIR+A2|P13, xLIR+A2|D|P13. The final result is 

presented under column “Prediction” in Table 14. 

 
 

It is evident that this is not a one fits all case. As more experimental data become available 

the better the results of the predictors will be, but it is also expected that more complex 

methodologies will be required to classify such instances, such as machine learning 

algorithms that will learn from the data and be able to evaluate multiple parameters at a time.  
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3.4.6 A comparison to existing tools 

The release of the iLIR resource in 2013 paved the way for the development of new 

resources. In fact about 2 years later a web server called hfAIM 

(http://bioinformatics.psb.ugent.be/hfAIM/) - for high fidelity AIM - made its way out to the 

scientific community, providing additional computational methods for the identification of 

Atg8 Interacting Proteins (AIPs), that is selective autophagy receptors and adaptors, with a 

particular focus in plants (Xie et al. 2016). Their methodology applies more stringent rules 

requiring that acidic amino acids (Asp (D), Glu (E)) occupying the X-1 and X+1 positions 

surrounding the F/W/Y position of the core AIM X-1[F/W/Y-X+1-X-L/I/V] defined by 

Schreiber et al. (Schreiber & Peter 2014). These amino acid residues seem to increase the 

fidelity of the AIM Containing Protein (ACP) interaction with the Atg8 protein (Noda et al. 

2008; Wild et al. 2011). Following this notion, they compiled a collection of experimentally 

verified AIMs (Table S1 in their supplementary material), which resulted in the generation 

of 5 regular expressions in the form of X-2X-1[F/W/Y]X+1X+2[L/I/V] with acidic amino acids 

occupying positions X-1 and X+1.   

 

The 5 regular expressions are the following: 

 

A. hfAIM1: X[DE][DE][WFY][ADCQEIGNLMFPSTWYV]X[LIV] 

B. hfAIM2: 

[DE][DE][ADCQEIGNLMFPSTWYV][WFY][ADCQEIGNLMFPSTWYV]X[LI

V] 

C. hfAIM3: XX[ADCQEIGNLMFPSTWYV][WFY][DE][DE][LIV] 

D. hfAIM4: [DE]X[DE][WFY][ADCQEIGNLMFPSTWYV]X[LIV] 

E. hfAIM5: XX[DE][WFY][DE]X[LIV] 

 

A comparative analysis they conducted revealed that their approach was able to detect AIMs 

with a higher specificity compared to the iLIR. As follow-up study and in order to be able 

to further directly assess this outcome, we used the hfAIM resource to identify LIR-motifs 

on the protein collection of Alemu et al. The results from the hfAIM scan are presented in 

the following table. 
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UniProt 
ACC UniProt ID Verified Range Sequence hfAIM-1 hfAIM-2 hfAIM-3 hfAIM-4 hfAIM-5 #Y 

Q8MQJ7 Q8MQJ7_DROME Y [388,394] SDDFVLV Y N N N N 1 
O75143 ATG13_HUMAN Y [441,447] HDDFVMI Y N N N N 1 
Q9Y4P1 ATG4B_HUMAN Y [6,11] LTYDTL N N N N N 0 

  Y [385,391] DEDFEIL Y Y N Y Y 4 
P27797 CALR_HUMAN N [165,171] DDEFTHL Y Y N Y N 3 

  Y [197,203] EDDWDFL Y Y N Y Y 4 
Q00610 CLH1_HUMAN Y [512,517] PDWIFL N N N N N 0 

  N [1147,1153] SGNWEEL N N Y N N 1 
  N [1293,1299] RGYFEEL N N Y N N 1 
  N [1474,1480] EEDYQAL Y Y N Y N 3 

O14641 DVL2_HUMAN N [61,67] DQDFGVV N N N Y N 1 
  Y [442,447] RMWLKI N N N N N 0 

Q8TDY2 RBCC1_HUMAN N [602,608] LCDFEPL N N N N Y 1 
  Y [699,705] TFDFETI N N N N Y 1 
  N [910,916] DNEFALV N N N Y N 1 
  N [1000,1006] IQEFEKV N N N N Y 1 

Q8IVP5 FUND1_HUMAN Y [15,21] DDSYEVL N Y N N N 1 
Q9BQS8 FYCO1_HUMAN Y [1278–1283] AVFDII N N N N N 0 
Q14596 NBR1_HUMAN Y [729,735] SEDYIII Y N N N N 1 
O60238 BNI3L_HUMAN Y [34-39] SSWVEL N N N N N 0 
Q3MII6 TBC25_HUMAN Y [133,139] LEDWDII Y N N N Y 2 

  N [262,268] SREYEQL N N N N Y 1 
Q96CV9 OPTN_HUMAN Y [175,181] EDSFVEI N Y N N N 1 

O95210 STBD1_HUMAN Y [200,206] HEEWEMV Y N N N Y 2 

Q92609 TBCD5_HUMAN Y [56,62] RKEWEEL N N Y N Y 2 
  N [712,718] SDDFILI Y N N N N 1 
  Y [785,790] SGFTIV N N N N N 0 

Q96A56 T53I1_HUMAN Y [28,34] DDEWILV Y Y N Y N 3 
Q8IXH6 T53I2_HUMAN Y [33,38] DGWLII N N N N N 0 
O75385 ULK1_HUMAN Y [354,360] TDDFVMV Y N N N N 1 
Q8IYT8 ULK2_HUMAN Y [350,356] TDDFVLV Y N N N N 1 IO
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P22681 CBL_HUMAN N [111,117] ENEYFRV N N N Y N 1 
  N [271,277] FLTYDEV N N Y N N 1 
  Y [800,805] FGWLSL N N N N N 0 

Q13501 SQSTM_HUMAN Y [335,341] DDDWTHL Y Y N Y N 3 
Q9SB64 Q9SB64_ARATH Y [658,664] VSEWDPI N N N N Y 1 
P53104 ATG1_YEAST Y [426,432] EREYVVV N N N Y N 1 
P35193 ATG19_YEAST N [225,231] YHDYERL N N N N Y 1 

  Y [409,415] ALTWEEL N N Y N N 1 
P40344 ATG3_YEAST N [199,205] EQMFEDI N N Y N N 1 

  Y [267,273] VGDWEDL N N Y N Y 2 
P40458 ATG32_YEAST Y [84,89] GSWQAI N N N N N 0 

 

Table 16. hfAIM AIM predictions on the protein collection of Alemu et al.  

hfAIM1-hfAIM5 correspond to the hfAIM regular expressions and ‘Y’ (Yes) indicates a positive hit - hfAIM captures a particular LIR-motif, whilst ‘N’ (No) denotes no matches. 
Column #Y captures the number of hfAIM models reporting a positive hit (Y). 
 

 

To compare the two resources, iLIR vs the predictive power of hfAIM, we juxtapose the  results of the 5 hfAIM regular expressions to the results of the 

best iLIR schemes xLIR+A|P13 discussed in the iLIR paper (Kalvari et al. 2014) and our top multi-scheme xLIR+A2|D|PX presented in this chapter at 

PSSM scores 13 and 17. In addition to the 5 regular expressions introduced by Xie at al.(Xie et al. 2016), we computed a sixth column (#Y) counting the 

number of hfAIM regular expressions with a match (Y) on each single LIR-motif in the Alemu dataset. Our findings are presented in Table 17. 
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 hfAIM-1 hfAIM-2 hfAIM-3 hfAIM-4 hfAIM-5 hfAIM-any xLIR xLIR+A|P13 xLIR+A2|D|P13 

TP 11 6 3 5 8 19 27 26 28 

TN 11 13 25 9 10 0 0 11 10 

FP 3 2 4 5 4 14 20 9 9 

FN 17 21 10 23 20 9 0 1 0 

Sensitivity 

(%) 
39.29 22.22 23.08 17.86 28.57 67.86 100.00 96.30 100.00 

Specificity 

(%) 
78.57 86.67 86.21 64.29 71.43 0.00 0.00 55.00 52.63 

Accuracy 

(%) 
52.38 45.24 66.67 33.33 42.86 45.24 57.45 78.72 80.85 

Balanced 

Accuracy 

(%) 

58.93 54.44 54.64 41.07 50.00 33.93 50.00 75.65 76.32 

F1 0.52 0.34 0.30 0.26 0.40 0.62 0.73 0.84 0.86 

 

Table 17. iLIR and hfAIM predictive power assessment. 

hfAIM-1 to hfAIM-5 are the predictions of each regular expression provided by the hfAIM web server. hfAIM-any this is a union consensus of the 5 hfAIM methods, which evaluates 

to a positive LIR-motif prediction if any of the methods hfAIM1 to hfAIM5 predict an instance of a putative functional AIM-motif. The total number of LIR-motif instances considered 

for hfAIM- and xLIR-based predictions differ, since they rely on the additional pattern introduced by the different regular expressions, which are by definition considered as false 
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Before going into comparing the two tools (hfAIM, iLIR) it is very important to mention 
that the results are not directly comparable. hfAIM predictions rely on the 5 regular 
expressions of length 7, whereas the iLIR service identifies LIR-motifs based on a single 
regular expression xLIR of length 6, which is more sensitive, but less specific that the hfAIM 
regular expressions, but eliminates spurious hits with the application of various filters (e.g. 

PSSM, ANCHOR).  
 
By looking at the TP and FN instances in Table 17, what can be observed is that each hfAIM 
regular expression is of high specificity (> 64%) but of low sensitivity (< 40%, in some cases 
lower than 25%). When combined in an OR fashion (hfAIM-any) approximately 70% of 
experimentally verified LIR-motifs can be detected. A relatively good outcome considering 
that these patterns were initially designed to target peroxisomal autophagic proteins at a great 
extent. True negatives are specific to the hfAIM regular expressions with every method 
having its own search-space, and therefore not directly comparable to those of xLIR-based 
tools. 
 
With respect to the hfAIM web server, although it provides the option for scanning 
sequences of interest with user-defined patterns, it reports results for each pattern 
independently. While they allow for multiple sequences to be submitted in each run, the 
results are provided in separate files. Although this feature is currently not supported by the 
iLIR web server, it requires that the hfAIM users have at least some programming experience 
in order to be able to integrate (and prioritize) predictions from the different motifs. Even 
for a single protein, more than one of the hfAIM patterns may match the same part of the 

sequence and it is not straightforward (at least not for an average wet biologist) to combine 
all these results under a single prediction per sequence. 
 

3.5 Conclusions 

 
Our findings show that intrinsic disorder data is a relatively good indicator of genuine LIR-
motifs, achieving a 73% of balanced accuracy when used on its own to distinguish between 
functional and non-functional LIR-motifs from the entire collection presented in Table 7. 
This outcome appears to be 2% lower compared to the multis-cheme predictor, but when 
combined with other parameters like anchors and PSSM predictions, the power of the 
resulting multi-scheme predictor gives a balanced accuracy that is increased by 1% 

compared to the one previously introduced in the iLIR paper (Kalvari et al. 2014).   
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With respect to that dataset, an upgrade to the latest version of disorder binding region 
predictor ANCHOR2 increased the predictive power of the model by about 3% (78% 
balanced accuracy). Building on the multi-scheme predictor by incorporating disorder data 
from MobiDB100simple increased balanced accuracy nearly by 1% (78.95%), a score which 

increased the number of correctly identified LIR-motifs and at the same time eliminated any 
false negatives completely.  
 
It seems that ANCHOR2 in presence of Disorder data does not have an effect on balanced 
accuracy. Evidence to this are the logical equations xLIR+D and xLIR+A2|D, both of which 
result in a balanced accuracy of 83 percent. However, since disorder (D) is the optimal, this 
multi-scheme predictor cannot be improved any further. A work around this limitation is the 
selection of multi-scheme predictor xLIR+A2|D|PX, where PX is a parameterizable PSSM 
score for fine tuning the predictor. In fact, testing a range of PSSM values from P13 to P18, 
it seems that the best performance for this particular dataset was PSSM > 17. Balanced 
accuracy under this scheme reaches a maximum value of about 76% on the complete dataset, 
whilst for the proteins of Alemu and colleagues (Alemu et al. 2012), balanced accuracy is 
even higher at 88%.  
 
A more balanced and richer dataset will allow us to understand how such prediction schemes 
would behave under those circumstances. but that one was only tested on the dataset 
retrieved from the work of Alemu at al. (Alemu et al. 2012). 
 
 

IO
ANNA KALV

ARI 



 75 

4 iLIR3D: Delving into selective autophagy structural data 

4.1 Preface 

In the previous chapters we discussed the development of new tools for the identification of 
novel LIR-motifs in putative selective autophagy receptor/adaptor proteins. We further 

improved the prediction accuracy of our tools by incorporating intrinsic disorder data and 
by devising new multi-scheme predictors that we thoroughly assessed on the efficacy of our 
methods in our complete dataset of experimentally validated LIR-motifs (Table 3), but also 
for the prediction of novel instances.  
 
The next logical step was to turn to structural data as an alternative predictive method, but 
also to acquire new knowledge and better understanding of the mechanism of selective 
macroautophagy. For this purpose, we compiled a dataset of protein structures based on 
existing data and ran a considerable amount of baseline docking experiments that are further 
supported by additional experiments of in-house produced decoy sets. 
 
To make our data available to the scientific community we designed and developed a 
MySQL database that is provided in the form of a MySQL dump. The database can easily 
be built up and manipulated via database management tools such as MySQL Workbench. 
The tables were populated with data and metadata accumulated from all the different studies 
discussed throughout this document with broad usage capabilities.  
 
As a possible use of this dataset we envisage the systematic study of the specificity of known 

LIR-motifs to different Atg8 homologs (Rogov et al. 2017). Furthermore, peptides from the 
decoy set with unexpectedly high docking scores may indicate alternative modes of 
interaction (e.g. via α-helical coiled-coils as in the case of (Mandell et al. 2014)). This 
chapter provides more details on the structure and contents of the iLIR3D database and 
demonstrates the potential of such a data resource with real examples.  
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4.2 Data and Methods 

4.2.1 Data 

4.2.1.1 Creating a collection of 3D structures 

 

The first task was to create a collection of 3D structures of Atg8 homologs, either isolated 
or in complex with bound LIR-motifs. For this purpose we searched the RCSB PDB (Berman 
et al. 2000) (https://www.rcsb.org/) with keywords: “ATG8”, “Autophagy”, “GABARAP” 
and “MAP1LC3” in search for structures of Atg8 homologs and selective autophagy receptor 
and adaptor proteins. In addition, relevant PDB entries referring to the interaction of a LIR-
motif with an Atg8 homolog were also manually retrieved from relevant publications in the 
biomedical literature. Secondly, to ensure the completeness of the dataset we further 
automatically retrieved from the UniProt Knowledgebase (The UniProt Consortium 2018) 
(UniprotKB - http://www.uniprot.org) any PDB IDs associated with each protein accession 
listed in Table 3. Then all structures were downloaded programmatically from the RCSB 
Protein Databank (Berman et al. 2000) (PDB - http://www.rcsb.org). Manual curation was 
conducted as a quality assurance measure, a procedure which discarded any non-relevant 
structures. 
 
The remaining protein structures (N=40) correspond to PDB entries with an Atg8 protein – 
or their mammalian homologs (GABARAP, GABARAPL1, GABARAPL2, MAP1LC3, 
MAP1LC3A, MAP1LC3B, MAP1LC3C) –, which can either be single or in complex with 
selective autophagy receptor/adaptor proteins, bound via a LIR-motif. From these structures, 

we further select those entries bound to a LIR-motif cargo (N=21); these will serve to 
initially identify the LIR-motif binding regions for the definition of the 3D volumes that the 
docking experiments will target. In addition, these structures provide information about the 
binding conformation of LIR-motifs (ligands). It is worth mentioning that most of these 
cases refer to engineered versions of the LIRCPs, e.g. a LIR-motif (possibly with flanking 
residues) co-crystalized with the Atg8 protein or a construct of the LIR-motif fused to the 
Atg8 protein via a flexible linker. The structures are listed in Table 18. 
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Table 18. Proteins of the Atg8 family, herein “receptors”, found in template structures.  
All 21 receptors participating in the docking experiments. The structures come from 4 distinct species 
including Human and can be further divided into 6 categories based on receptor type (e.g. GABARAP, 
MAP1LC3B, etc.)  
 
 

The following sections provide detailed information regarding each data category, pre-
processing algorithms and tools utilised in each step.      

 

4.2.1.1.1 Template structures 

Template structures are complexes of Atg8 homologs bound to LIR-motif peptides. These 
pairs are also the ones used for the calculation of the the receptor binding site. For that 
purpose, the molecules composing the complex structure are separated to the receptor 
(Atg8) structure and its corresponding ligand (LIR peptide) to be put back together by the 
protein-protein docking algorithm. The scores deriving from the docking of receptor and its 
native ligand are used as reference for an accurate interpretation of any downstream 
analyses. There are 24 such structures in total, however we were able to calculate the binding 
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site for only 20 of those due to structural data artefacts (i.e. modified sequences). In all 
template structures which were determined by NMR we have arbitrarily chosen only the first 
model reported in the respective PDB file. 
 

4.2.1.1.2 Ligands (3DLIRs) 

Contrary to receptors, the collection of ligands, that is 3DLIR-motifs, is significantly larger. 
The number of structures we retrieved is about 10 times the number of “good” receptor 
structures, including both X-RAY crystallography as well as Nuclear Magnetic Resonance 
(NMR) samples. This is because we have a larger number of protein candidates (64 in Table 
3) compared to the few Atg8 homologs of the respective species. In addition to that, several 
of these proteins often come with multiple three-dimensional structures in the PDB, starting 
with a minimum of 1 structure per protein up to a maximum of 22 structures, as is the case 
of E3 ubiquitin-protein ligase CBL (CBL_HUMAN). It is important to mention that structure 
availability was very limited for the case of ligands too.  
 
Back in 2016 when we last updated this dataset, there were 3D structures available for only 
34 out of the 64 proteins (53%), but more may have been deposited to RSCB PDB ever 

since. The total number of SARs structures is 182, from which we manage to extract 246 
3DLIR-motifs. Preliminary docking experiments revealed that the length of the ligand was 
influencing the docking scores significantly, therefore setting a constraint that 3DLIR-motifs 
are at least 6 residues long was essential, therefore any 3D peptides of shorter than 6 residues 
were filtered out, including the non-canonical LIR-motifs of CACO2_HUMAN and 
TAXB1_HUMAN. This reduced the number of ligands exploited in the docking experiments 
to 211. 
   
The ligand structures were computationally collected in accordance with Table 3, using the 
REST APIs from both resources UniProt and RCSB PDB using in-house code developed in 
python 2.7. Ligand extraction methodology and issues we stumbled upon during the 
collection process are thoroughly described in the sections that follow. 
 

4.2.1.2 Collecting useful protein metadata 

The final step was to devise a set of metadata that would help us better organize the docking 
results in a such a way that they can be easily utilized by the end users. The set of metadata 
comprises data extracted from the UniProt and the RSCB PDB database, as for example 
species per chain in the structure, LIRCP/Atg8 interactions, structure resolution in Angstrom 
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(Å), methodology applied (NMR, X-ray crystallography), function of molecule, PubMed ID, 
source (i.e. UniProt, PDB). We also generated additional information, such as labelling a 
structure as “Template” or not (1,0), tags like the filename or numbering of the LIR-motifs 
of a particular protein, start-end positions on the model sequence the LIR peptide was 
extracted from etc.    

 

4.2.1.3 Decoy Set generation 

 
Decoy sets are used in virtual screening experiments to investigate whether a docking 
algorithm is able to discriminate between genuine and non-genuine ligands. As a quality 
assurance measure and in order to ensure that the scores of docking results diverged from 

what is observed at random, we devised a small collection of sensible decoy sets.  
 
For the generation of the decoy sets we searched the RSCB PDB for human proteins 
matching the xLIR regular expression pattern, and reduced redundancy at the 30% sequence 
identity level. This process retrieved a total of 1507 human structures. The protein structures 
were downloaded using the aforementioned tools and they were further processed for the 
generation of the decoy sets used in this study. Generation of the decoy sets was done 
programmatically using the method described in 4.2.2.1.1. 
 
The resulting decoy sets can be divided in the following three categories: 
 

1. iLIR ligands: A total of 12 ligands (3D peptides) extracted from the 1507 human 
proteins. Two constraints were applied in this case: 

a. The 3DLIR matches the xLIR regular expression 
b. The 3DLIR matches the LIR-motifs illustrated in Table 1 exactly (100% 

identity). 
 

2. Random dataset: A total of 3215 6-residue peptides randomly extracted from the 

collection of proteins we retrieved from RSCB PDB using custom in-house code. To 
limit the size of this dataset only 2 3DLIRs were extracted from each of the 1507 
human proteins. Extraction was enabled using a random number generator that 
produced random start-end hexapeptide coordinates at any position within the protein 
sequence at hand. 
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3. xLIR peptides: A total of 564 6-residue peptides that match the xLIR motif with no 
restriction on matching any of the verified and unverified LIR-motifs listed in Table 
3. This means there is chance that this dataset also includes the hexapeptides from 
decoy dataset 1.   

 

4.2.2 Methods 

4.2.2.1 Computational methods for data extraction from UniProt KB and 
RSCB PDB databases 

 
4.2.2.1.1 A computational method for 3D structure retrieval from RSCB PDB 
 
Three-dimensional structures were retrieved from RSCB PDB with a custom-made script 
developed in python 2.7. Structure retrieval is achieved using UniProt KB and RSCB PDB 
REST APIs with simple utilization of widely used python libraries httplib and requests. An 
http request to the UniProt REST API retrieves the correct metadata of a particular protein 
in text (.txt) format. The algorithm then parses the text by searching for the labels “DR” and 
“PDBsum;”, which contain the PDB IDs corresponding to a specific protein. If available, a 
list of PDB IDs is created.  
 
Following the PDB ID extraction, the script then does another http call to RSCB PDB’s 
REST API and fetches the corresponding PDB file, which then saves locally at a specified 
destination directory. The process repeats for every UniProt accession listed in Table 3.  
  

4.2.2.1.2 Metadata extraction 
 
Metadata are very important for the correct interpretation of the data as well as the results. 
For this reason and the necessities of this project, specialized software has been developed 
developed in Python 2.7 for the collection of useful and relevant metadata from related 
resources such as UniProt (The UniProt Consortium 2018) and RSCB PDB (Rose et al. 
2015). The algorithm uses RSCB PDB and UniProt REST APIs to gather and extract 
metadata per UniProt entry, which is then imported in the database.  
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4.2.2.2 Atg8 receptor binding site calculation      

Defining the search space of the Atg8 binding site was one of the most crucial steps for the 
protein-protein docking experiments to be efficient and successful. A predefined search 
space minimizes the search space to just the area of interest and at the same time eliminates 
the chance for misplaced ligands. 
 
The binding site has been calculated for the Atg8 receptors including mammalian homologs 
and their isoforms for all complexes in the PDB template structures. That is, all native 
receptors in complex with one of their LIRCP binding partner. 
 
This process comprises two steps: 

1. Identification of the interface of the protein-protein interaction 
2. Translation of the interface residue coordinates into x,y,z coordinates of the search 

area 
 
Identification of the interface residues for each of template was achieved by manually 
submitting relevant PDB structures to the PDBePISA (Krissinel & Henrick 2007) web server 

- a tool for the exploration of macromolecular interfaces (http://www.ebi.ac.uk/msd-
srv/prot_int/cgi-bin/piserver) - allowing only for 10% of buried area at most for each residue 
participating in the interface. This ensures that the entire receptor search space is captured 
and that there will be no limitations on the rotational grid.  
 
This tool returns the interfacial residues for each input, which were manually extracted for 
all template structures. We only took into account the participating residues from the receptor 
side. The reason why we did this is because in the presence of the receptor interface residues 
the ligand residues become redundant and I will explain why this is true with the following 
example. Imagine that the receptor is a mass of clay onto which we press down an object, in 
such a way that when we pull the two apart, the 3D shape of the object is imprinted on the 
clay. The interface residues of the receptor are 3D descriptors of the formed cavity. The 
actual 3D coordinates that allow us to calculate the centre of the grid and the volume of the 
search space. Visual examples are depicted in Figure 19. 
 
The docking grid was calculated using explicitly developed in-house software. All the 
residues that participate in the interface are provided to the tool as a string of integers that 

are separated by commas ‘,’. The algorithm converts the string of integers to a list and then 
reads and parses the corresponding PDB file and calculates the average of the x,y,z 
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coordinates of each residue specified in the list - interface residue - resulting in a single x,y,z 
triplet that defines the center of the docking grid. All these data (interfacial residues and the 
grid center coordinates) are collected and stored in the database. 
 

 
 
Figure 19.  The docking grids of the Atg8 family.  
Binding sites of the yeast Atg8 receptor and its two homologs, human GABARAPL1 and rat MAP1LC3B. The 
coloured cubes define the binding site area with the exact x,y,z coordinates provided in the parenthesis.  
 
 

4.2.2.3 Manual ligand extraction of 3DLIRs 

Ligand extraction required manual curation due to the various artefacts that come along with 
structural data. The problem is that iLIR identifies the LIR motifs on the canonical sequence, 
which in many cases start-end points on the model sequence (sequence in the PDB structure) 
may be shifted or missing (short fragment) or even re-engineered for the purposes of an 
experiment. To ensure the high quality and accuracy of the 3DLIR-motifs, we manually 
extracted all 3DLIRs using PyMol (DELANO & L 2002) for Education v1.7.4.5 based on 

the start-end coordinates listed in Table 3. As previously mentioned in the preceding data 
section, the difference in the total number of 3DLIRs (246) and the actual set used in the 
docking experiments (211), is due to six residue peptide constraint applied to all samples for 
the following reasons:       
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1. LIR-motif sequence coordinates generated from the actual protein sequences 
(UniProtKB FASTA files) do not always match the model sequence in the 
corresponding structures. 
 

2. Structure mutations:  Many of the experiments are designed in order to study specific 

features which are very often address by bioengineering a molecule at hand and 
introducing mutations.  
 

3. Short or fragmented model sequences:  Many of the PDB structures may only contain 
small segments or fragmented model sequences rather than entire canonical protein 
sequence. As a result, this limits the number of 3DLIRs as many of the available 
structures lacked the model sequence fragment at the position where a LIR was 
identified. 

  
4. Low structure resolution: This results in worse docking scores which is hard to assess 

when we need to compare these to the scores of the docked templates. 
 
Following model sequence examination, if the LIR-motif sequence reported by iLIR 
webserver matches the model subsequence in the exact residue position e.g. 
SQSTM_HUMAN, positions 336-341, the 3DLIR-motif is extracted using PyMOL’s 
command line interface (CLI) and saved into a separate PDB file to be used as a ligand in 
the docking experiments.  
 

The following command is an example of the extraction of the 3DLIR-motif of the p62 
selective autophagy receptor (SQSTM_HUMAN) using PyMOL: 
 
PyMOL> select 2K6Q_LIR1_A_6,2K6Q_A & resi 336-341 

 
Where 2K6Q_LIR1_A_6 is the name of the resulting molecule that will also be the filename. 
2K6Q is the PDB ID, LIR1 a tag specifying the order in which the LIR-motif was identified 
in a given sequence by iLIR, A is the chain in the structure and 6 specifies the number of the 
residues extracted.  
 
In cases where the LIR-motif is found on the model sequence, but with a slight shift 
compared to the coordinates of the LIR-motif on canonical sequence, the 3DLIR is manually 
extracted from the corrected positions.  
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4.2.2.3.1 Computational methods for mass ligand extraction and decoy set generation 
 
Manual extraction of 3DLIRs was feasible due to the relatively small size of the PDB dataset 
constructed by collecting all PDB structures associated with the UniProt accessions listed in 
Table 3. In the case of the decoy sets, the number of proteins increased significantly, 
therefore the number of extracted ligands was expected to be even larger, which made it 
nearly impossible to generate manually.  
 
We devised a new script combining functionality from the broadly used chemical tool open 
babel (O’Boyle et al. 2011) and custom-made complementary functions. The script is called 
ligand_generator and was implemented in python 2.7. The script takes as input a directory 
of protein pdb files, each of which contains a single chain only, and a destination directory 

where the ligand files will be stored at. With respect to the type of ligands, the algorithm has 
two methods of ligand extraction defined by two options --rand for random and --regex for 
extraction using one of the regular expressions cLIR or xLIR.  
 
Briefly, the process starts by loading the PDB file in an openbabel (O’Boyle et al. 2011) 
molecule object, which is used to make scanning of the model sequence easier. If the option 
--regex is provided, meaning that the 3DLIR needs to match the xLIR regular expression 

[DE][DEST][WFY][DELIV][DERHKSTNQCUGPAVILMFYW][ILV], then 
depending on the length of the peptide that we need to generate, the model sequence is 

scanned from left to right by sliding the window as many residues as its length, meaning that 
at each iteration the first residue in the window is located at position 
index+window_length+1. If the sequence at the current position of the window matches the 
regular expression, the start and end positions are stored in a dictionary structure, along with 
the sequence string, to be extracted at a final step by the ligand_generator. This last function 
parses the PDB file and extracts the sequence segment at the designated positions. Structural 
coordinates for these peptides are extracted from the PDB file using a custom function in 
Python. The process completes when all input PDB files have been scanned.  
 
If random ligand generation is selected, the process does not vary much, in a sense that the 
PDB structure is once again loaded in an openbabel molecule object, but instead of a sliding 
window a random number generator randomly selects start-end points within the margins of 
the chain sequence at hand. The extraction of the 3D peptide is done the same way as using 
the --regex option.  
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4.2.2.3.2 Protein-protein docking using FRODOCK 
 
To investigate whether a 3DLIR-motif is a genuine binder of the Atg8 proteins, we apply 
protein-protein docking techniques to evaluate the force of the interaction. Such algorithms 
try to fit two unbound protein structures together, the receptor and the ligand. Given the 
binding site on the receptor molecule, the ligand is rotated within the defined search space 
for the optimal position. With every new positioning of the ligand - conformation - within 
the binding site, the binding energy or a correlation value is measured and reported (Figure 
20). The best conformation is the one with the highest docking score and the lowest root 
mean square deviation (RMSD, Å) from the reference ligand (template molecule).  
 
 

 
 
Figure 20. Protein-protein docking example. 
An illustration of rigid rotation of the ligand within the receptor binding site in search for the optimal 
positioning/conformation. The tested ligand is presented in blue, and in red colour we present the orientation 
of the template molecule. Conformation 1 (C1) is the optimum case with the placement of the tested ligand 
(blue), almost at the exact same position of its template. The example is a result of the docking of the 3DLIR-
motif of Human selective autophagy receptor NBR1 to the binding site of GABARAPL1 (PDB id: 2L8J).  
 

 
The tool we used for the protein-protein docking experiments is FRODOCK (Garzon et al. 
2009), a fast rotational protein-protein docking tool based on global energy minimization 
and three interaction potentials including electrostatic, van der Waals and desolvation 
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potentials that was firstly introduced in 2009 (Garzon et al. 2009). Initial experiments were 
performed using the primary version of the tool, but with the addition of new structures to 
the data, we also updated to the latest version of FRODOCK v.2.0 (Ramírez-Aportela et al. 
2016), which also resulted in higher scores. All the structures (receptors, ligands) prior to 
docking were further enhanced with the addition of polar hydrogen atoms. 

 
For the docking experiments we used FRODOCK’s linux CLI, and implemented a python 
wrapper to FRODOCK’s preprocessing, processing and post-processing tools. The python 
script is called pyFrodock and it comes with 3 distinct options --ligands, --receptors, and --
pydock. The first two options are responsible for the execution of all the required pre-
processing steps in preparation of the input files for the docking experiments, whilst the latter 
--pydock performs the actual docking using the inputs generated by the other two options. 

Ligand as well as receptor pre-processing are both compulsory and the output files are 
organised in distinct directories one for each input PDB file (ligand, receptor). The pre-

processing steps include the generation of the three interaction potentials, electrostatic 
(_E.ccp4), van der waals (_W.ccp4) and desolvation (_DS.ccp4), which are computed in 
three steps. The python script serves as an abstraction to the various options required for the 
generation of the files and at the same time simplifies the entire procedure.  
 
FRODOCK (Ramírez-Aportela et al. 2016) includes 4 distinct tools for preprocessing 
(frodockgrid), docking (frodock), clustering of conformations (frodockclust) and finally for 
the extraction and visualisation of the results (frodockview). Any receptor and ligand 
structures participating in the docking experiments need to undergo pre-processing with 
frodockgrid for the generation of the required files. The following are the compulsory files 
for each type of molecule: 
 

- Receptor:  
- Van der Waals potential map 
- Electrostatic potential map 
- Desolvation potential map 

- Ligand 
- Desolvation potential map 

  
Finally, --pydock based on a text file (.txt) that specifies the list of docking experiments 

to be performed (receptor vs ligand), conducts the actual docking of the pair and processes 
the output to report the X top results, where X is the number of conformations specified by 
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the user. The 3 top conformations (by default) are also saved in PDB format for further 
manual inspection during the evaluation process.  
  

FRODOCK is Linux based by default, therefore it does not run on other operating systems 
(OS) such as Mac OS X and Windows. To address this limitation, we developed this as a 
dockerized application, modernized virtualization techniques that enable software to run on 
any machine. The dockerized version of pyFrodock was tested in a docker container on Mac 
OS X version 10.13 (Sierra).   
 

4.2.2.3.3 Evaluation Metrics 
 
Similar to the evaluation metrics set we devised to assess our methodologies presented in 
the previous chapters, we also had to come up with a new set of sensible metrics that would 
allow us to assess our results. The main aim is to define a set of thresholds for the selection 
genuine LIR-motifs based on docking scores and comparison of the docked molecule 
conformation to a template.  
 
For the analysis of outcome of the docking experiments, we will be using the following 
metrics: 
 

● Docking score MAX, MIN: The maximum and minimum values from the docking 
scores will allow us to define a range of accepted values for which a docking score 
can indicate a genuine LIR. 
 

● Mean (MEAN): The central value of the group of docking scores being evaluated. 
 

● Standard deviation (STDEV): A value indicating how close or far the values fall from 
the mean, where low STDEV shows that the values concentrate around the mean, 
whilst a high STDEV shows that the values fall far from the mean. 
 

● Average (AVG): An average value of a set of docking scores being examined. 
 

● Root mean square deviation (RMSD): Per residue distance of two superimposed 
molecules. This will allow us to choose the optimum conformations. The smaller the 
RMSD the more the docked molecule resembles a template in terms of orientation 
and interaction with the receptor. 

 

IO
ANNA KALV

ARI 



 88 

In the following chapter we provide some baseline analyses and preliminary results that may 
highlight possible uses of the 3DLIR-motif database. 
 

4.3 Results 

4.3.1 The iLIR3D MySQL database 

 
The docking experiments resulted in the generation of a large amount of data. In particular, 
36,810 receptor-ligand pairs were generated by docking the manually extracted verified and 
unverified 3DLIRs, and 68,022 additional instances produced from docking the decoys. A 
total of 104,832 samples, a substantial amount of information that deserves further analysis. 
With such data volumes it was essential that we developed a resource that would enable us 
to manage, update and analyse all of that information with the minimum possible effort. 
 
A solution to this problem was the design and development of a relational database in 
MySQL, which structures all the information in the form of tables and enables data retrieval 
by association. A good analogy to a database table is that of a class in objective 
programming. Each table has its own attributes (the columns) that describe a particular 
entity. For example, the table sars contains information about selective autophagy receptors 
such as UniProt accession, UniProt id, sequence length, taxonomic identifier (tax id), author 

etc. Table rows or else the records, are more like object instances of a class. Records, like 
objects, have their own values that define a particular object e.g. protein SQSTM_HUMAN 
has tax id: 9606, is 440 amino acids long and was obtained from the paper of Alemu et al 
(Alemu et al. 2012).  
 
The programming language used to manipulate data held in a relational database is called 
SQL, for Structured Query Language. SQL provides a way of communication between the 
user and the database through the formation of queries, that is conditional statements for data 
extraction that aim to answer specific questions.  For example, such questions could be 
“How many ligands bind the GABARAPL1 receptor with a score > 1200” or “How 
many Atg8 structures are there” and many others. The following (Figure 21) is a very 
simple query example that retrieves the template docking scores illustrated in Table 20: 
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Figure 21. MySQL query that retrieves the template structure results presented in Table 20. 
 

The power of such tools becomes more apparent upon data analysis. It would be very 
difficult to combine many different attributes without the help of a relational database. To 
demonstrate its usefulness, one interesting thing we could look into is the top scoring ligands 
per receptor type (Atg8, GABARAPL1 etc), for which there is also evidence for its actual 
interaction with that particular Atg8 homolog. For this purpose, we would have to combine 
information from the tables experiment, sars, sars_lir, sars_lir_3d and 
sars_atg8_interaction using their relationships - foreign key references - as it appears in 

Figure 21. 
 

iLIR3D is a manageable database (nearly 3 MB in size) - excluding the actual output files of 
the docking experiments - and is organised in 9 tables. Figure 22 illustrates the database 
model portraying all its components: the tables, fields and relationships. Short descriptions 
about the data stored in each table are provided in Table 19.  
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Figure 22. iLIR3D relational model created using MySQL workbench by application of reverse 
engineering. 
The model illustrates the tables composing the database as well as the different fields belonging to each table 
and the relationships.  
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Table Description 

receptor 
Receptor information including pdb id, chain, receptor type 
(ATG8, GABARAP, MAP1LC3 etc) as well as the binding site 
coordinates (x,y,z) 

sars UniProt related information such as UniProt accessions and IDs 
for all proteins in Table 1 and metadata retrieved from UniProt 
such as sequence length, tax_id, author etc 

sars_atg8_interactions Atg8 homologs and LIRCPs relationships 
sars_lirs All LIR entries as presented in Table 1 
sars_lir_3d All available 3DLIRs for each LIR in table sars_lir_3d 

sars_structures All 3D structures collected for each of the selective autophagy 
proteins 

structure_chains Chain metadata per available SARs structure retrieved from 
UniProt and RSCB PDB 

sars_lir_disorder Disorder predictions generated for each individual case of SARs 

experiments 
Experiment table holding useful information on each 
ATG8/SARS docking experiment such as docking score per 
conformation, RMSD etc 

 
Table 19. Short descriptions of the tables composing the iLIR3D database. 

 
 
 
Although the iLIR3D database was initially developed to organise, analyse and provision 
the structural data, it also became very useful in other areas covered in this study. For 
example, sars_lir_disorder table contains all the disorder data that we generated and helped 
a lot with the analysis of those results. Computation of the true positives (TP), true negatives 
(TN), false positives (FP) and false negative (FN) instances, in the majority of cases was 
achieved using mysql queries. An example of the queries used to compute the 
aforementioned values based on predicted data produced by MobiDB (Piovesan et al. 2018) 
using its simple method with the constraint that LIR-motifs are 50% composed by disordered 
residues (Figure 23).  
 
 
IO

ANNA KALV
ARI 



 92 

 
 
Figure 23. Query examples for the computation of the TP, TN, FP, FN values for disorder predictions. 
The values derive from disorder data from MobiDB’s simple method at 50% disorder (percentage < 50). 
 
 
This database constitutes the stepping stone towards the development of another web-
resource, or it could work as a future enhancement of the currently existing iLIR webserver. 
On top of that, the collection of Atg8 receptors can be used in other projects as well, a subject 
that is discussed in the following segment.  
 

4.3.2 Learning from template structures 

 
Having separated template complexes to receptors (Atg8 homologs) and ligands (3DLIR-
motifs), the next step was to make an attempt to put them back together by employing 
protein-protein docking algorithms. It was essential that we created a reference set of trusted 
docking scores of known verified Atg8 binders in order to be able to interpret the results of 
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any downstream “virtual screening” (VS) experiments. Our reference dataset includes 5 
distinct types of Atg8 homologs from 3 species: Human, Rat and yeast, which serve as the 
receptors and 3DLIR-motifs from 7 distinct LIRCPs originating from the same species, with 
an additional sample from Mouse (2ZJD).  
 

Preliminary results from docking experiments (Table 20) conducted with the molecules of 
the template structures, although a relatively small dataset, they provide a broad spectrum of 
examples that demonstrate many of the obstacles that we will need to address for a correct 
evaluation of the results. The results were split into smaller segments isolating this way the 
docking scores per type of receptor.  
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Table 20. Top scoring conformations of the template structures. 
The docking scores of the various Atg8 homologs are presented in distinct segments Numbering of the LIR tags i.e. LIR1, LIR2 was done based on the location (start-end) of the LIR-
motif on the sequence. IO

ANNA KALV
ARI 



 95 

To analyse the docking results, one can look into the following aspects: 
 

1. Species: We want to compare the scores we get with a receptor/ligand pair of the 
same species to a pair where the species differs (e.g. docking experiments with 
MAP1LC3B structures 2ZJD, 2Z0E, 2Z0D, 2ZZP) 
 

2. 3DLIR length: Comparing these scores will allow us to understand how to evaluate 
the docking scores achieved with the non-canonical LIR-motifs, a case which we 
could not properly assess using the sequence-based methods presented in the first 
two chapters of this thesis 
 

3. Ligand chains: In several templates, more than one instances of a 3DLIR-motif may 
be located (i.e. in different polypeptide chains) and these peptides may be in (slightly) 
different conformations and could behave differently in peptide docking 
experiments. Therefore, it is essential to grasp how 3DLIRs extracted from non-
native structures would perform with the same receptor. This could be considered 
equivalent of a novel 3DLIR in the case we want to test its interaction with a protein 
of the Atg8 family 
 

4. Receptor preference: LIRCPs have preference towards the various Atg8 proteins. 
Such evidence is the work of Rogov et al. (Rogov et al. 2017), which concentrates 
on LIR-motifs (GIM) that bind the GABARAP receptors 
 

5. Positioning and orientation in the binding site: The correct amino acids need to 
interact with the two hydrophobic pockets of the Atg8 binding site. This will require 
additional visualization software and manual curation 
 

6. Structure resolution: The resolution of the structures is also something that someone 
could look into. It’s important to know what to expect when we have a novel 3DLIR 
of low resolution docked in a high-resolution binding site and vice versa. Structural 
data is very limited, so we need to be able to take advantage of as much as possible 
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4.3.2.1 A real use-case scenario driven by experimental evidence 

 
Driven by the work of Olsvik et al. (Olsvik et al. 2015), which showed that FYCO1 has 
preference for LC3A and LC3B over GABARAP, we will be using data generated from our 
docking experiments in an attempt to examine whether we will be able to highlight this 
preference.  
 
 

4.3.2.1.1 Forming a MySQL query to fetch the FYCO1 docking scores 
 
The first step was to retrieve the docking scores of pre-ran docking experiments of the 
FYCO1 functional LIR-motif (AVFDII) to the binding site of MAPL1LC3 (MAP1LC3A, 
MAP1LC3B, MAP1LC3C) and GABARAP structures. The corresponding query is depicted 
in Figure 24. 
 

 
 

Figure 24. MySQL query snippet for the retrieval of FYCO1/Atg8 docking scores.  
Conformation=1 restricts the results to only the top conformations, lir_acc corresponds to an integer number which is the 
accession of a LIR-motif in the database where lir_acc=95 in the lir_acc of FYCO1 functional LIR-motif AVFDII. Filtering 
of the receptors by limiting the results strictly to MAP1LC3 and GABARAP only is achieved with lines 10-11.   

 
 
The query in Figure 24, fetches all top docking scores (conformation=1) of FYCO1 
functional LIR-motif AVFDII ran using FRODOCK v.2.0 (line 8). Data retrieval requires 
joint information from 4 iLIR3D database tables: receptor, sars_lir, sars_lir_3d and 
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experiment based on receptor accession (rec_acc), 3DLIR accession (lir_3d_acc) and LIR-
motif accession (lir_acc), which resulted in a total of 45 entries. Strict filtering to MAP1LC3 
and GABARAP only is done with the help of lines 10 and 11, where ‘<>’ denotes that the 
receptor type (rec_type) should not be equal to ‘Atg8’ nor ‘GABARAPL1’. Simple grouping 
of the results is done by ordering the query outcome based on receptor type (rec_type).  
 
The number of records retrieved per receptor are as follows: 
 

● GABARAP: 5 entries 
● MAP1LC3A: 5 entries 
● MAP1LC3B: 30 entries 
● MAP1LC3C: 5 entries 

 

4.3.2.1.2 Assessing the docking results 
 
The boxplot representation of the distributions of FYCO1 3DLIR docking scores against the 
4 “receptors” GABARAP and MAP1LC3A-C (Figure 25) shows a preference towards the 
MAP1LC3 type, a result which is in agreement with work of Olsvik and colleagues (Olsvik 
et al. 2015). Further into details the computed median values of the docking scores were 
800.31, 1170.81, 1064.06 and 1092.36 respectively and pairwise Wilcoxon rank sum tests 
yielded significant differences between the GABARAP and LC3 “receptors” (p<0.01). This 
result showcases how powerful such a resource can be and suggests the scores of functional 
3DLIR peptides could potentially reveal Atg8 homolog preference.  
 
It would be very interesting to investigate whether we can discriminate between functional 
LIR-motifs via docking experiments, either by docking score comparison to template 
structures or visual inspection of the formed complex using visualisation tools like PyMOL 
(https://pymol.org/2/) (DELANO & L 2002) or UCSF Chimera 
(http://www.cgl.ucsf.edu/chimera/) (Pettersen et al. 2004). In in the latter case an expert 
curator/scientist would be looking for correct binding LIR-motif residues to the 2 
hydrophobic pockets of the proteins of the Atg8 family.  
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Figure 25. Boxplot representation of the distributions of scores of FYCO1 peptides docked against the 
Atg8 family.  
FYCO1 peptides were docked against proteins of the Atg8 family, specifically GABARAP (N=5), LC3A (N=5), LC3B 
(N=30) and LC3C (N=5). Center lines show the medians; box limits indicate the 25th and 75th percentiles as determined 
by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers are represented 
by dots. Plot created using BoxPlotR (http://shiny.chemgrid.org/boxplotr/). 
 

 

4.3.3 A comprehensive set of experiments 

 
Following the docking of the template structures, we designed and conducted a 
comprehensive series of protein-protein experiments using the datasets mentioned in the data 
section.  
 
The experiments involved the docking of all the ligands in the following list with each and 
every one of the receptors isolated from the template structures. The reason why we use 
those in the experiments is because we can compute the exact coordinates of the binding site 
from the interface of the interaction with the native 3DLIR. In addition to the calculation of 
the grid, those receptors are also in the correct conformation to and ready to receive a binding 
partner.  
 
The experiments we conducted are the following: 
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1. Non-native verified LIR motifs: In this set of experiments we extracted as many 
verified LIR peptides available from the structures we downloaded and we docked 
those with the template receptors at the designated binding site 
 

2. Unverified LIR motifs from native and non-native structures: This set of experiment 
aimed at producing a set of scores of non-functional LIRs to get a new range of 
docking scores of peptides that should not interact with the Atg8 family 
 

3. Randomly selected peptides (decoy set): This will allow us to compare the results of 
docking experiments performed with peptides extracted from proteins known to be 
involved in autophagy, with the scores resulting from docking random peptides 
extracted from a collection of human proteins from diverse biological processes 
 

4. 3DLIRs from non-autophagy proteins: With these experiments we wanted to test 
whether LIR peptides matching the sequences in Table 1, would produce the same 
results as the ones in the templates 

 
These docking experiments resulted in >100,000 samples that took weeks of computations 
to complete. In order to make these results useful to the scientific community we developed 
a relational database which described in detail in the following section. 
 

4.3.4 Availability 

 
The iLIR3D database is currently available as a MySQL dump that can be provided upon 
user request. We aim to make it more openly available to the scientific community after 
publishing initial analyses on this dataset. An instance of the database can be created within 
seconds following a creation of a new MySQL schema using the MySQL client CLI. 
Provision of the MySQL statements to build up an empty schema can also be provided, for 
users who want to use the schema to store their own data.  
 

4.4 Conclusion 

 
In this last chapter we attempted to “give form” to our collection of LIR-motifs by exploring 
the 3D world. We first discussed about the steps we took towards creating a structural dataset 
that would allow us to obtain a better understanding of protein-protein interactions between 
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selective autophagy receptor and adaptor proteins and the proteins of the Atg8 family. A 
process that revealed many issues afflicting this area, one of which is relatively limited 
availability of structural data compared to a great abundance of sequence data, which 
nevertheless resulted in two powerful outcomes: 
 

1. A re-usable collection of Atg8 “receptors” for “virtual screening” experiments in 
autophagy 

2. iLIR3D: A MySQL database that scientists can use to answer autophagy related 
biological questions 

 
A straightforward application of the iLIR3D database would be to devise rules for LIR-motif 
specificities towards different Atg8/LC3/GAPARAP homologs. In fact, recent data (Rogov 
et al. 2017) can provide a nice ground truth dataset for predicting GABARAP versus LC3 
specificity. The iLIR3D database (or its possible expansions) could be exploited to 
generalize to different types of specificity or even to predict interactions in heterologous 
systems. Preliminary results in line of with these expectations, is the FYCO1 preference 
towards the MAP1LC3 homologs the Atg8 family we showed using pre-ran docking 
experiments from the iLIR3D database. Our outcome was in also agreement with the 
experimental work of Olsvik and colleagues (Olsvik et al. 2015) showing preference of 
FYCO1 on the LC3 type, which makes the power iLIR3D even more apparent. 
 
One important limitation of our methods that is very crucial to mention is that FRODOCK 
is a tool that performs rigid-body docking. The problem with this approach is that torsion 
angles, bond angles and bond lengths of the participating molecules do not change during 
the formation of the complex. This means that it is highly probable for a genuine 3DLIR to 
be misclassified if it is not initially in a 3D conformation that favours interaction with the 
binding site of the Atg8 proteins. Although a first taste of our results with the preceding 
examples shows that this may work, a more thorough investigation is required in order to 
confidently say whether rigid-body docking is sufficient or not. Perhaps a better solution to 
this would be the transitioning to flexible protein-protein docking (usually coming at a higher 
computational cost) as future work, that would also reflect the disorder to order nature of the 
proteins involved in selective macroautophagy. 
 
Additional future activities to expand this line of research could also include: 
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- Model peptides with post-translational modifications, especially phosphorylation 
which is suspected to be important when within or in the proximity of LIR-motifs 
((Birgisdottir et al. 2013); also important in other SLIM-mediated interactions) 

- Build models of characterized Atg8/LC3/GABARAP proteins from other (model) 
species using comparative modeling or threading techniques. Execute the pipeline 
and populate the database. 

- Enable incorporation of data stemming from molecular dynamics simulations. 
 
Diverting from protein-protein docking, a recently published resource called Autophagic 
Compound Database (Deng et al. 2018), which makes autophagy effective compounds 
publicly available, along with useful data such as functionality, pathways, binding partners 
etc, hints another future direction of this research area. Although this resource does not seem 
very user friendly at its current state, long standing titans like CHEMBL (Gaulton et al. 2012; 
Gaulton et al. 2017) - a manually curated chemical database of bioactive molecules with 
drug-like properties - could constitute a potential resource in search of good chemical 
compound candidates. In such case we could re-use our current set of Atg8 “receptors” in 
virtual screening experiments, to looking for possible targets that could treat autophagy 
associated diseases. A broadly used and very efficient software in molecular docking that 
we also used in previous projects is Autodock Vina (Trott & Olson 2010).   
 
Finally, as in this chapter we are discussing about molecular interactions, another aspect that 
would be very interesting to explore is the interaction of the proteins of the autophagic 
machinery with regulatory elements such as non-coding RNAs. In a pre-print released by 
Horos and colleagues showed evidence of such interaction of the the Vault RNA with the 
Zinc finger of p62 (Horos et al. 2017), suggesting regulation of autophagy by non-coding 
RNAs. A very intriguing finding and another potential target for the development of 
treatments to autophagy related diseases (Amort et al. 2015).  
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5 Discussion and Future Goals 
 
Even though this research field has been around for a couple of decades, our understanding 
of the mechanics and the dynamics of this biological process is still at its infancy with many 
different paths to be explored. Speaking of which, Richard S. Marshall and Richard D. 
Vierstra in their very recent review in Plant Biology catalogued at least 7 different types of 
selective autophagy including mitophagy, chlorophagy, xenophagy, pexophagy and many 
others (Marshall & Vierstra 2018).   
 
The pioneering works of Pankiv (Pankiv et al. 2007), Inchimura (Ichimura et al. 2008), Noda 
(Noda et al. 2008; Noda et al. 2010), Alemu and colleagues (Alemu et al. 2012) were pivotal 
for the definitions and characterizations of the AIM/LIR-motifs, which paved the way for 
the development and establishment of computational approaches for the in-silico 
identification of novel key players of the autophagic machinery. A tool made available to 
the scientific community is iLIR (Kalvari et al. 2014), which was also the first of its kind. 
Since its release back in 2013, iLIR seems to have served more than 70 thousand user 
queries, but also appears to have influenced and driven the development of analogous 
resources such as the hfAIM (Xie et al. 2016). Although the two resources have significant 
differences - xLIR composed majorly from human LIR-motifs, hfAIMs composed from 
proteins involved in pexophagy - they both rely on regular expressions for the identification 
of putative LIR-motifs, which are somewhat limiting. iLIR however, by incorporating 
ANCHOR predictions and PSSMs manages to balance out the gap between sensitivity and 
specificity, resulting in high balanced accuracy. Importantly, the iLIR server is built in such 
a way that it does not provide ‘yes’-’no’ type of predictions, but rather reports all possibly 
relevant biological information: apart from the highly sensitive (but also inspecific xLIR-
motifs), WxxL motifs are also reported, along with predicted ANCHORs and PSSM scores. 
Additional contextual information (e.g. the presence of specific PFAM domains or low 
complexity regions) becomes also available to its end-users for making informative 
decisions with regards to downstream experimental validation of specific LIR-motif 
candidates. 
 
Based on the methods developed for iLIR, batch processing of the complete proteomes of 8 
model organisms lead to the development of a freely available database resource for the 
provision of a collection of LIRCPs (Jacomin et al. 2016). A follow-up work which identified 
putative LIRCPs in viral species, resulted in the development of a similar database specific 
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to viruses, namely iLIR@viral (Jacomin et al. 2017). It can be envisaged that, eventually, all 
sequenced genomes or protein sequences available in sequence databases can be scanned 
with iLIR (or its successors) and made available to the scientific community.  
 
Driven by the fact that proteins of the autophagic apparatus are abundant in intrinsic disorder 
regions (Mei et al. 2014) and based on our previous positive results with ANCHOR, we 
consequently turned to intrinsic disorder data to see whether such information could further 
enhance the power of our multi-scheme predictors. With data retrieved from MobiDB, we 
employed a variety of algorithms in search for one that would best fit our data. Compared to 
our previous results this work yielded even higher balanced accuracies, an outcome that was 
further improved with the parametrization of the PSSM scores, revealing a PSSM sweetspot 
at scores > 17.  
 
Additional predicted features, such as secondary structure, surface accessibility and 
amyloidogenicity have been tested as independent parameters for filtering LIR motif 
prediction but without significant results (data not shown). However, we foresee that several 
of these (and possibly other physicochemical) features could be incorporated into more 
sophisticated techniques for discriminating functional LIR motifs. For example, as more 
experimentally verified LIRCPs become available it can be envisaged that powerful machine 
learning methods (e.g. deep learning artificial neural networks) could be recruited to boost 
prediction performance. 
 
To allow a different dynamic to our data, we diverted from sequence analysis and 
transitioned to structural data. As we showcased with the example of FYCO1 preference of 
MAP1LC3 proteins of the Atg8 family, which is backed up by the experimental work of 
Olsvik and colleagues (Olsvik et al. 2015), such data could potentially enable the scientific 
community to give answers to biological questions that sequence data fail to capture. For 
instance, in their recent work Rogov et al (Rogov et al. 2017) pinpointed the preference of 
autophagy receptor and adaptor proteins toward the GABARAP Atg8 homologs and in 
addition to the previously defined AIM and LIR-motifs, introduced for the first time the 
GABARAP Interacting Motifs (GIMs). It would be very intriguing to examine whether our 
data could be used to discriminate autophagy proteins based on their Atg8 preference. 
 
Moving on to further structural aspects of the selective autophagy receptor and adaptor 
proteins and their interactions with Atg8 homologs, the recently determined structure of 
TRIM5α in complex with LC3B (Keown et al. 2018) provided fresh insights to features that 
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we previously eluded. In contrast to the conventional intermolecular parallel β-strand 
interaction between the LIR-motifs and the Atg8 homologs demonstrated so far, these 
proteins bind to the Atg8 proteins via an α-helix of their coiled coil domain (Mandell et al. 
2014). It is anticipated that such proteins will give rise to new research. For example, let’s 
assume that we have a novel protein candidate that binds to an Atg8 homolog via an α-helix 
with a presumably good docking score too. Before the existence of experimental evidence 
to support this unorthodox interaction, a TRIM protein could be falsely discarded from a list 
of positive samples. This suggests that we can expect more surprises in the years to come 
and leaves the field open for many more discoveries.  
 
Moreover, post-translational modifications (in particular phosphorylation) can be important 
around (or within) LIR motifs. Thus, post-translational modification predictions could be 
combined in the sequence-based prediction and/or incorporated in structural 
modeling/peptide docking experiments. 
 
Before closing we would like to make apparent that we are aiming to use the knowledge we 
acquired from this project towards the development of novel and improved tools to better 
serve the scientific community. For instance, our analysis on disorder data suggested that 
multi-scheme predictor xLIR+A2|D|P17 to be the optimal for the most accurate 
determination of functional LIR-motifs. A possible future improvement would be to fine 
tune the iLIR web server to take into account intrinsic disorder and predict novel LIRCP 
instances based on this new multi-scheme predictor. Another potential feature would be to 
allow batch searches and even upgrade the iLIR web server with more modernized web 
technologies e.g. AngularJS (https://angularjs.org/), Django framework 
(https://www.djangoproject.com/). 
 
We are currently working on expanding our existing LIRCP datasets with manual literature 
curation (Kalvari and Chadjichristofi, currently underway), a work that may result in better 
benchmarks, but also in the compilation of suitable datasets. We anticipate that the analysis 
of a comprehensive dataset will demand utilization of more sophisticated methods e.g. 
machine learning algorithms.   
 
Finally, solely from personal interest it would be very intriguing to explore the world of 
RNA-binding proteins (RBPs). In particular the interactions between the proteins of the 
autophagic machinery and regulatory RNAs, non-coding RNAs. There is evidence showing 
ncRNAs being recruited to phagophores and ending up to the lysosomes where they get 
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degraded (Frankel et al. 2017). Preliminary results from Horos and colleagues shed light on 
the regulation of autophagy by non-coding RNAs, with the Vault RNA interacting with the 
Zinc finger of p62 (Horos et al. 2017). 
 
One interesting RNA-meets-autophagy topic to explore would be to take all known/predicted 
LIRCPs from human (or other model species), catalog experimental and/or predicted 
miRNA sites on the respective genes and see when/whether/which of these miRNA sites get 
spliced out in alternatively spliced transcripts. Such data are sitting in existing resources and 
waiting to be analysed. RNAcentral (The RNAcentral Constortium 2018) - the 
comprehensive database of non-coding RNAs - currently combines non-coding RNA data 
from 28 expert ncRNA databases constituting a very strong candidate from where we could 
collect miRNAs, whereas an extensive set of human LIRCPs can be obtained from iLIR 
database (Jacomin et al. 2016). Exciting times lie ahead.  
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7 Supplement 
 

UniProt 
Accession UniProt ID PDB 

ID #Chains Resolution 
(Å) Method Function Template 

C0H519 C0H519_PLAF7 4EOY 6 2.22 X-RAY 
DIFFRACTION TRANSPORT PROTEIN Yes 

O14641 DVL2_HUMAN 5SUZ 2 1.84 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

  3CBX 2 1.7 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  2REY 1 1.55 X-RAY 
DIFFRACTION GENE REGULATION No 

  3CC0 3 1.75 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  3CBY 2 1.5 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  4WIP 3 2.69 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

  5LNP 4 1.99 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

  5SUY 4 1.88 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

  3CBZ 1 1.38 X-RAY 
DIFFRACTION PROTEIN BINDING No 

O75143 ATG13_HUMAN 3WAO 4 2.6 X-RAY 
DIFFRACTION APOPTOSIS No 

  5C50 2 1.63 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  3WAP 1 3.1 X-RAY 
DIFFRACTION PROTEIN TRANSPORT No 

  3WAN 2 1.77 X-RAY 
DIFFRACTION PROTEIN BINDING No 

O75385 ULK1_HUMAN 4WNP 4 1.88 X-RAY 
DIFFRACTION 

TRANSFERASE/TRANSFERASE 
INHIBITOR No 

  5CI7 1 1.74 X-RAY 
DIFFRACTION 

TRANSFERASE/TRANSFERASE 
Inhibitor No 

  4WNO 1 1.56 X-RAY 
DIFFRACTION 

TRANSFERASE/TRANSFERASE 
Inhibitor No 

O95352 ATG7_HUMAN 3VH2 1 3.3 X-RAY 
DIFFRACTION METAL BINDING PROTEIN No 

P22681 CBL_HUMAN 2K4D 1 N/A SOLUTION NMR Ligase No 
  2Y1M 6 2.67 X-RAY 

DIFFRACTION LIGASE No 

  1B47 3 2.2 X-RAY 
DIFFRACTION SIGNAL TRANSDUCTION No 

  1YVH 2 2.05 X-RAY 
DIFFRACTION 

LIGASE,SIGNALING 
PROTEIN,IMMUNE SYSTEM No 

  3BUM 2 2 X-RAY 
DIFFRACTION LIGASE No 

  3BUW 4 1.45 X-RAY 
DIFFRACTION LIGASE/SIGNALING PROTEIN No 

  3OB2 2 2.1 X-RAY 
DIFFRACTION Ligase/signaling Protein No 

  4A4C 3 2.7 X-RAY 
DIFFRACTION LIGASE/TRANSFERASE No 
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  2OO9 3 2.1 X-RAY 
DIFFRACTION LIGASE No 

  2Y1N 4 2 X-RAY 
DIFFRACTION LIGASE/TRANSFERASE No 

  2JUJ 1 N/A SOLUTION NMR LIGASE No 

  3BUN 2 2 X-RAY 
DIFFRACTION LIGASE/SIGNALING PROTEIN No 

  4A49 2 2.21 X-RAY 
DIFFRACTION LIGASE No 

  2CBL 2 2.1 X-RAY 
DIFFRACTION 

COMPLEX (PROTO-
ONCOGENE/PEPTIDE) No 

  3BUX 4 1.35 X-RAY 
DIFFRACTION LIGASE/SIGNALING PROTEIN No 

  3PLF 4 1.92 X-RAY 
DIFFRACTION PROTEIN BINDING/LIGASE No 

  4GPL 1 3 X-RAY 
DIFFRACTION Ligase/ligase inhibitor No 

  5J3X 6 2.82 X-RAY 
DIFFRACTION LIGASE No 

  1FBV 3 2.9 X-RAY 
DIFFRACTION LIGASE No 

  3BUO 4 2.6 X-RAY 
DIFFRACTION LIGASE/SIGNALING PROTEIN No 

  3OB1 2 2.2 X-RAY 
DIFFRACTION Ligase/signaling Protein No 

  4A4B 3 2.79 X-RAY 
DIFFRACTION LIGASE/TRANSFERASE No 

P27797 CALR_HUMAN 3POS 3 1.65 X-RAY 
DIFFRACTION CHAPERONE No 

  5LK5 10 2.3 X-RAY 
DIFFRACTION calcium-binding protein No 

  3DOW 2 2.3 X-RAY 
DIFFRACTION PROTEIN TRANSPORT No 

  3POW 1 1.55 X-RAY 
DIFFRACTION CHAPERONE No 

  3RG0 1 2.57 X-RAY 
DIFFRACTION CHAPERONE No 

P35193 Atg19_YEAST 

5JGE 6 1.91 X-RAY 
DIFFRACTION PROTEIN TRANSPORT No 

2ZPN 8 2.7 X-RAY 
DIFFRACTION PROTEIN TRANSPORT Yes 

2KZB 1 N/A SOLUTION NMR PROTEIN TRANSPORT No 

P35222 CTNB1_HUMAN 1JPW 6 2.5 X-RAY 
DIFFRACTION CELL ADHESION No 

  2G57 1 N/A SOLUTION NMR ONCOPROTEIN No 
  3FQR 3 1.7 X-RAY 

DIFFRACTION IMMUNE SYSTEM No 

  3SL9 8 2.2 X-RAY 
DIFFRACTION 

SIGNALING PROTEIN, 
PROTEIN BINDING No 

  1G3J 4 2.1 X-RAY 
DIFFRACTION TRANSCRIPTION No 

  1TH1 4 2.5 X-RAY 
DIFFRACTION 

CELL ADHESION/ANTITUMOR 
PROTEIN No 

  3TX7 2 2.76 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  1LUJ 2 2.5 X-RAY 
DIFFRACTION STRUCTURAL PROTEIN No 
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  2GL7 6 2.6 X-RAY 
DIFFRACTION TRANSCRIPTION No 

  1QZ7 2 2.2 X-RAY 
DIFFRACTION CELL ADHESION No 

  2Z6H 1 2.2 X-RAY 
DIFFRACTION CELL ADHESION No 

  3SLA 5 2.5 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

  1JDH 2 1.9 X-RAY 
DIFFRACTION TRANSCRIPTION No 

  3FQN 3 1.65 X-RAY 
DIFFRACTION IMMUNE SYSTEM No 

  1P22 3 2.95 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

  4DJS 1 3.03 X-RAY 
DIFFRACTION 

SIGNALING 
PROTEIN/INHIBITOR No 

  1T08 3 2.1 X-RAY 
DIFFRACTION cell adhesion/cell cycle No 

  3DIW 4 2.1 X-RAY 
DIFFRACTION 

SIGNALING PROTEIN/CELL 
ADHESION No 

P40344 Atg3_YEAST 4GSL 4 2.7 X-RAY 
DIFFRACTION PROTEIN TRANSPORT No 

  2DYT 1 2.5 X-RAY 
DIFFRACTION LIGASE No 

  3T7G 4 2.08 X-RAY 
DIFFRACTION LIGASE No 

P40458 Atg32_YEAST 3VXW 2 3 X-RAY 
DIFFRACTION PROTEIN TRANSPORT Yes 

P41743 KPCI_HUMAN 5LI1 2 2 X-RAY 
DIFFRACTION TRANSFERASE No 

  3A8W 2 2.1 X-RAY 
DIFFRACTION TRANSFERASE No 

  5LI9 1 1.79 X-RAY 
DIFFRACTION TRANSFERASE No 

  1WMH 2 1.5 X-RAY 
DIFFRACTION Transferase/CELL CYCLE No 

  3A8X 2 2 X-RAY 
DIFFRACTION TRANSFERASE No 

  3ZH8 3 2.74 X-RAY 
DIFFRACTION TRANSFERASE No 

  1VD2 1 N/A SOLUTION NMR transferase No 
  5LIH 4 3.25 X-RAY 

DIFFRACTION TRANSFERASE No 

  1ZRZ 1 3 X-RAY 
DIFFRACTION TRANSFERASE No 

P46934 NEDD4_HUMAN 4BE8 1 3 X-RAY 
DIFFRACTION LIGASE No 

  4N7F 2 1.1 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  5C91 1 2.44 X-RAY 
DIFFRACTION ligase/ligase inhibitor No 

  5AHT 1 N/A SOLUTION NMR ISOMERASE No 
  2KQ0 2 N/A SOLUTION NMR LIGASE No 
  2XBF 1 2.5 X-RAY 

DIFFRACTION LIGASE No 
  4N7H 2 1.7 X-RAY 

DIFFRACTION PROTEIN BINDING No 

  2M3O 2 N/A SOLUTION NMR PEPTIDE BINDING 
PROTEIN/PROTEIN BINDING No 
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  4BBN 3 2.51 X-RAY 
DIFFRACTION LIGASE/SIGNALING PROTEIN No 

  5C7J 4 3 X-RAY 
DIFFRACTION LIGASE/SIGNALING PROTEIN No 

  3B7Y 2 1.8 X-RAY 
DIFFRACTION LIGASE No 

  2KPZ 2 N/A SOLUTION NMR LIGASE No 
  2XBB 4 2.68 X-RAY 

DIFFRACTION LIGASE/PROTEIN BINDING No 

Q00610 CLH1_HUMAN 3LVG 6 7.94 X-RAY 
DIFFRACTION STRUCTURAL PROTEIN No 

  1BPO 3 2.6 X-RAY 
DIFFRACTION MEMBRANE PROTEIN No 

  3LVH 6 9 X-RAY 
DIFFRACTION STRUCTURAL PROTEIN No 

  4G55 1 1.69 X-RAY 
DIFFRACTION ENDOCYTOSIS No 

  2XZG 1 1.7 X-RAY 
DIFFRACTION ENDOCYTOSIS No 

Q12292 ATG34_YEAST 2KZK 1 N/A SOLUTION NMR PROTEIN TRANSPORT No 

Q12983 BNIP3_HUMAN 2KA2 2 N/A SOLUTION NMR MEMBRANE PROTEIN No 

  2J5D 2 N/A SOLUTION NMR MEMBRANE PROTEIN No 

  2KA1 2 N/A SOLUTION NMR MEMBRANE PROTEIN No 

Q13043 STK4_HUMAN 2JO8 2 N/A SOLUTION NMR TRANSFERASE No 
  3COM 2 2.2 X-RAY 

DIFFRACTION TRANSFERASE No 

  4NR2 8 2 X-RAY 
DIFFRACTION Transferase No 

Q13137 CACO2_HUMAN 4XKL 4 2.1 X-RAY 
DIFFRACTION 

PROTEIN BINDING/METAL 
BINDING PROTEIN No 

  2MXP 1 N/A SOLUTION NMR METAL BINDING PROTEIN No 
  5AAQ 1 N/A SOLUTION NMR CALCIUM-BINDING PROTEIN No 

  3VVW 2 2.5 X-RAY 
DIFFRACTION PROTEIN TRANSPORT Yes 

  4GXL 2 2.02 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  3VVV 1 1.35 X-RAY 
DIFFRACTION PROTEIN TRANSPORT No 

  4HAN 4 2.55 X-RAY 
DIFFRACTION SUGAR BINDING PROTEIN No 

Q13188 STK3_HUMAN 5BRM 15 2.65 X-RAY 
DIFFRACTION Transferase/Signaling Protein No 

  5DH3 2 2.47 X-RAY 
DIFFRACTION 

TRANSFERASE/TRANSFERASE 
INHIBITOR No 

  3WWS 4 2.01 X-RAY 
DIFFRACTION TRANSFERASE No 

  4HKD 4 1.5 X-RAY 
DIFFRACTION TRANSFERASE No 

  4OH9 2 1.7 X-RAY 
DIFFRACTION TRANSFERASE No 

  4L0N 10 1.4 X-RAY 
DIFFRACTION TRANSFERASE No 
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  4LG4 6 2.42 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

Q13501 SQSTM_HUMAN 4UF9 3 10.3 ELECTRON 
MICROSCOPY SIGNALING PROTEIN No 

  1Q02 1 N/A SOLUTION NMR PROTEIN BINDING No 
  2JY8 1 N/A SOLUTION NMR PROTEIN BINDING No 

  2K6Q 2 N/A SOLUTION NMR APOPTOSIS 
INHIBITOR/APOPTOSIS Yes 

  2KNV 2 N/A SOLUTION NMR PROTEIN BINDING No 
  2K0B 1 N/A SOLUTION NMR SIGNALING PROTEIN No 

  4MJS 24 2.5 X-RAY 
DIFFRACTION 

TRANSFERASE/PROTEIN 
BINDING No 

  4UF8 4 10.9 ELECTRON 
MICROSCOPY SIGNALING PROTEIN No 

  2JY7 1 N/A SOLUTION NMR PROTEIN BINDING No 
  2ZJD 4 1.56 X-RAY 

DIFFRACTION Apoptosis inhibitor/Apoptosis Yes 

Q14596 NBR1_HUMAN 1WJ6 1 N/A SOLUTION NMR PROTEIN BINDING No 
  2CP8 1 N/A SOLUTION NMR PROTEIN BINDING No 
  2BKF 1 1.56 X-RAY 

DIFFRACTION ZINC-FINGER PROTEIN No 
  2MGW 1 N/A SOLUTION NMR PROTEIN BINDING No 

  2L8J 2 N/A SOLUTION NMR SIGNALING 
PROTEIN/PROTEIN BINDING Yes 

  4OLE 4 2.52 X-RAY 
DIFFRACTION 

STRUCTURAL GENOMICS, 
UNKNOWN FUNCTION No 

  2G4S 1 2.15 X-RAY 
DIFFRACTION METAL BINDING PROTEIN No 

  2MJ5 2 N/A SOLUTION NMR PROTEIN BINDING No 

Q14677 EPN4_HUMAN 2V8S 2 2.22 X-RAY 
DIFFRACTION PROTEIN TRANSPORT No 

  1XGW 1 1.9 X-RAY 
DIFFRACTION Endocytosis No 

  2QY7 3 2 X-RAY 
DIFFRACTION PROTEIN BINDING No 

Q15459 SF3A1_HUMAN 2DT6 1 N/A SOLUTION NMR RNA BINDING PROTEIN No 

  1ZKH 1 N/A SOLUTION NMR GENE REGULATION No 

  2DT7 2 N/A SOLUTION NMR RNA BINDING PROTEIN No 

Q86V97 KBTB6_HUMAN 4XC2 8 1.9 X-RAY 
DIFFRACTION IMMUNE SYSTEM No 

Q86VP1 TAXB1_HUMAN 4NLH 2 1.9 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  4Z4K 2 2.8 X-RAY 
DIFFRACTION 

Flurorescent Protein, Metal 
Binding Protein No 

  4BMJ 11 2.75 X-RAY 
DIFFRACTION APOPTOSIS No 

  5AAS 1 N/A SOLUTION NMR PROTEIN BINDING No 
  4Z4M 2 2.15 X-RAY 

DIFFRACTION 
Flurorescent Protein, Metal 

Binding Protein No 
  2M7Q 1 N/A SOLUTION NMR Metal Binding Protein No 
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Q8TD19 NEK9_HUMAN 
3ZKF 12 2.6 X-RAY 

DIFFRACTION 
CONTRACTILE 

PROTEIN/PEPTIDE No 

3ZKE 12 2.2 X-RAY 
DIFFRACTION 

CONTRACTILE 
PROTEIN/PEPTIDE No 

Q8WWW0 RASF5_HUMAN 
4LGD 8 3.05 X-RAY 

DIFFRACTION SIGNALING PROTEIN No 

4OH8 2 2.28 X-RAY 
DIFFRACTION transferase/Apoptosis No 

Q96CV9 OPTN_HUMAN 3VTV 1 1.7 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  2LUE 2 N/A SOLUTION NMR PROTEIN BINDING No 
  5EOA 4 2.5 X-RAY 

DIFFRACTION 
PROTEIN 

BINDING/TRANSFERASE No 

  3VTW 3 2.52 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  5B83 6 2.69 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

  5EOF 4 2.05 X-RAY 
DIFFRACTION 

PROTEIN 
BINDING/TRANSFERASE No 

  2LO4 1 N/A SOLUTION NMR PROTEIN TRANSPORT No 
  5AAZ 1 N/A SOLUTION NMR PROTEIN BINDING No 

Q96RU3 FNBP1_HUMAN 2EFL 1 2.61 X-RAY 
DIFFRACTION ENDOCYTOSIS/EXOCYTOSIS No 

Q9BQS8 FYCO1_HUMAN 5LXI 4 1.44 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

  5D94 2 1.53 X-RAY 
DIFFRACTION PROTEIN BINDING/PEPTIDE No 

  5CX3 8 2.3 X-RAY 
DIFFRACTION PROTEIN BINDING Yes 

  5LXH 6 1.58 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

Q9GZZ9 UBA5_HUMAN 5HKH 3 2.55 X-RAY 
DIFFRACTION SIGNALING PROTEIN No 

  3GUC 2 2.25 X-RAY 
DIFFRACTION TRANSFERASE No 

  5IAA 4 1.85 X-RAY 
DIFFRACTION CELL CYCLE No 

  5L95 4 2.1 X-RAY 
DIFFRACTION CELL CYCLE No 

  3H8V 2 2 X-RAY 
DIFFRACTION TRANSFERASE No 

Q9H1Y0 ATG5_HUMAN 4TQ0 6 2.7 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  5D7G 8 3 X-RAY 
DIFFRACTION APOPTOSIS No 

  4GDL 3 2.88 X-RAY 
DIFFRACTION protein binding No 

  4TQ1 2 1.8 X-RAY 
DIFFRACTION PROTEIN BINDING No 

  4GDK 6 2.7 X-RAY 
DIFFRACTION PROTEIN BINDING No 

Q9NT62 ATG3_HUMAN 4NAW 16 2.19 X-RAY 
DIFFRACTION PROTEIN TRANSPORT/LIGASE No 

Q9Y4P1 ATG4B_HUMAN 2Z0E 2 1.9 X-RAY 
DIFFRACTION 

HYDROLASE/STRUCTURAL 
PROTEIN Yes 

  2CY7 1 1.9 X-RAY 
DIFFRACTION hydrolase No 
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  2ZZP 2 2.05 X-RAY 
DIFFRACTION 

HYDROLASE/STRUCTURAL 
PROTEIN Yes 

  2D1I 2 2 X-RAY 
DIFFRACTION HYDROLASE No 

  2Z0D 2 1.9 X-RAY 
DIFFRACTION 

HYDROLASE/STRUCTURAL 
PROTEIN Yes 

 

Table 21. Selective autophagy receptor and adaptor protein structures. 

PDB IDs were extracted from UniProt using the UniProt accession. Metadata such as structure resolution, 
function, number of chains and method of structure determination were obtained RSCB PDB using PDB IDs.  
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7.1 dizscan.py	code		
 
   1 
   2 
   3 
   4 
   5 
   6 
   7 
   8 
   9 
  10 
  11 
  12 
  13 
  14 
  15 
  16 
  17 
  18 
  19 
  20 
  21 
  22 
  23 
  24 
  25 
  26 
  27 
  28 
  29 
  30 
  31 
  32 
  33 
  34 
  35 
  36 

""" 
dizscan.py 
 
This is a script to identify disorder regions 
overlaps by incorporating data from MobiDB 
 
Developer: Ioanna Kalvari 
""" 
 
 
import os 
import sys 
import copy 
import urllib2 
import json 
 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def fetch_concensus_disorder_curated_data(accession): 
    """ 
    Fetches concensus curated data from MobiDB based on 
    UniProt accession and re-organises them in a simpler 
    way in a dictionary 
 
    accession: A valid UniProt accession 
 
    return: A reconstructed dictionary with MobiDB data 
    """ 
 
    disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus" 
    acceptHeader = 'application/json' # text/csv and text/plain supported 
    request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader}) 
 
    # Send request IO
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  37 
  38 
  39 
  40 
  41 
  42 
  43 
  44 
  45 
  46 
  47 
  48 
  49 
  50 
  51 
  52 
  53 
  54 
  55 
  56 
  57 
  58 
  59 
  60 
  61 
  62 
  63 
  64 
  65 
  66 
  67 
  68 
  69 
  70 
  71 
  72 
  73 
  74 
  75 
  76 

    response = urllib2.urlopen(request) 
 
    # Parse JSON response di Python dict 
    data = json.load(response) 
 
    curated_data = {} 
 
    # [u'solvent_exposure', u'lips', u'ss_populations', u'disorder', u'interactions'] 
    # print data["mobidb_consensus"].keys() 
    if "db" in data["mobidb_consensus"]["disorder"]: 
        for item in data["mobidb_consensus"]["disorder"]["db"]: 
            if item["method"] not in curated_data: 
                curated_data[item["method"]] = item["regions"] 
 
    return curated_data 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def fetch_concensus_disorder_indirect_data_by_method(accession): 
    """ 
    Fetces consensus indirect (derived) data from MobiDB based on 
    UniProt accession and re-organises them in a simpler 
    way in a dictionary 
 
    accession: A valid UniProt accession 
 
    return: A reconstructed dictionary with MobiDB data 
    """ 
 
    disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus" 
    acceptHeader = 'application/json' # text/csv and text/plain supported 
    request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader}) 
 
    # Send request 
    response = urllib2.urlopen(request) 
 
    # Parse JSON response di Python dict 
    data = json.load(response) 
 IO
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  77 
  78 
  79 
  80 
  81 
  82 
  83 
  84 
  85 
  86 
  87 
  88 
  89 
  90 
  91 
  92 
  93 
  94 
  95 
  96 
  97 
  98 
  99 
 100 
 101 
 102 
 103 
 104 
 105 
 106 
 107 
 108 
 109 
 110 
 111 
 112 
 113 
 114 
 115 
 116 

    indirect_data = {} 
 
    # [u'solvent_exposure', u'lips', u'ss_populations', u'disorder', u'interactions'] 
    # print data["mobidb_consensus"].keys() 
    if "derived" in data["mobidb_consensus"]["disorder"]: 
        for item in data["mobidb_consensus"]["disorder"]["derived"]: 
            # organise disorder regions by method 
            if item["method"] not in indirect_data: 
                indirect_data[item["method"]]=item["regions"] 
 
    return indirect_data 
 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def fetch_concensus_disorder_predicted_data_by_method(accession): 
    """ 
    Fetces consensus predicted data from MobiDB based on 
    UniProt accession and re-organises them in a simpler 
    way in a dictionary 
 
    accession: A valid UniProt accession 
 
    return: A reconstructed dictionary with MobiDB data 
    """ 
 
    disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus" 
    acceptHeader = 'application/json' # text/csv and text/plain supported 
    request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader}) 
 
    # Send request 
    response = urllib2.urlopen(request) 
 
    # Parse JSON response di Python dict 
    data = json.load(response) 
 
 
    predicted_data = {} 
 IO
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 117 
 118 
 119 
 120 
 121 
 122 
 123 
 124 
 125 
 126 
 127 
 128 
 129 
 130 
 131 
 132 
 133 
 134 
 135 
 136 
 137 
 138 
 139 
 140 
 141 
 142 
 143 
 144 
 145 
 146 
 147 
 148 
 149 
 150 
 151 
 152 
 153 
 154 
 155 
 156 

    # [u'solvent_exposure', u'lips', u'ss_populations', u'disorder', u'interactions'] 
    # print data["mobidb_consensus"].keys() 
    if "predictors" in data["mobidb_consensus"]["disorder"]: 
        for item in data["mobidb_consensus"]["disorder"]["predictors"]: 
            # organise disorder regions by method 
            if item["method"] not in predicted_data: 
                predicted_data[item["method"]]=item["regions"] 
 
    return predicted_data 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
def fetch_disorder_data(accession, type="curated"): 
    """ 
    Returns all indirect disorder data associated with the accession 
    provided. The type of data  retrieved from MobiDB needs to be 
    specified and the output is a dictionary with raw MobiDB 
    data. 
 
    accession: A valid UniProt accession 
    type: The type of data to fetch (predicted, indirect, curated) 
 
    return: A dictionary with raw data of a particular type 
    """ 
    disorder_url = "http://mobidb.bio.unipd.it/ws/%s/disorder" 
    acceptHeader = 'application/json' # text/csv and text/plain supported 
    request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader}) 
 
    # Send request 
    response = urllib2.urlopen(request) 
 
    # Parse JSON response di Python dict 
    data = json.load(response) 
 
    # handle data 
    if type == "curated": 
        type = "db" 
 
    elif type == "indirect": 
        type = "derived" IO
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 157 
 158 
 159 
 160 
 161 
 162 
 163 
 164 
 165 
 166 
 167 
 168 
 169 
 170 
 171 
 172 
 173 
 174 
 175 
 176 
 177 
 178 
 179 
 180 
 181 
 182 
 183 
 184 
 185 
 186 
 187 
 188 
 189 
 190 
 191 
 192 
 193 
 194 
 195 
 196 

 
    elif type == "pedicted": 
        type = "predictors" 
 
    if type not in data["mobidb_data"]["disorder"]: 
        return None 
 
    return data["mobidb_data"]["disorder"][type] 
 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def scan_db_data_for_disorder_regions(accession, start, end, lir, type): 
    """ 
    This function will scan the provided lir for any possible disorder 
    regions that match the data retrieved from mobiDB 
 
    accession: A valid Uniprot protein id (e.g. Q13501) 
    start: Start coordinate of the LIR region 
    end: End coordinate of the LIR region 
    lir: A string representing the amino acid sequence of the LIR peptide 
    type: The type of the disordered dat ato fetch (e.g. curated, indirect, predicted) 
 
    return: A dictionary of all LIR/mobiDB overlaps found per method (e.g. ) 
    """ 
 
    disorder_strings = {} 
 
    disorder_data = fetch_disorder_data(accession, type) 
 
    if disorder_data is not None: 
 
        dislir_dict = None 
        for database in disorder_data: 
            for region in database["regions"]: 
                dislir_dict = search_for_overlaps(start, end, region[0], region[1], 
                                                  str(region[2]), len(lir), pos_dict = dislir_dict) 
 
            # construct disordered lir string IO
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 197 
 198 
 199 
 200 
 201 
 202 
 203 
 204 
 205 
 206 
 207 
 208 
 209 
 210 
 211 
 212 
 213 
 214 
 215 
 216 
 217 
 218 
 219 
 220 
 221 
 222 
 223 
 224 
 225 
 226 
 227 
 228 
 229 
 230 
 231 
 232 
 233 
 234 
 235 
 236 

            disorder_string = construct_disorder_lir_string(dislir_dict) 
 
            # update dictionary 
            disorder_strings[str(database["method"])] = disorder_string 
 
        return disorder_strings 
 
    return None 
 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def scan_indirect_data_for_disorder_regions(accession, start, end, lir, concensus=False): 
    """ 
    """ 
 
    disorder_strings = {} 
    disorder_data = fetch_disorder_data(accession, type="derived") 
 
    if disorder_data is not None: 
        if concensus is False: 
            struct_dislir_dict = None 
            for structure_case in disorder_data: 
                if "pdb_id" in structure_case: 
                    pdb_label = structure_case["pdb_id"] + '_' + structure_case["chain_id"] 
                    method = structure_case["method"] 
                    regions = structure_case["regions"] 
                    for region in regions: 
                        struct_dislir_dict = search_for_overlaps(start, end, region[0], region[1], 
                                                          str(region[2]), len(lir), pos_dict = struct_dislir_dict) 
 
                    disorder_string = '' 
                    disorder_string = construct_disorder_lir_string(struct_dislir_dict) 
 
                    if pdb_label not in disorder_strings: 
                        disorder_strings[pdb_label] = {"distring": disorder_string, "method": method} 
        else: 
            struct_dislir_dict = {} 
            for structure_case in disorder_data: IO
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 237 
 238 
 239 
 240 
 241 
 242 
 243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 
 251 
 252 
 253 
 254 
 255 
 256 
 257 
 258 
 259 
 260 
 261 
 262 
 263 
 264 
 265 
 266 
 267 
 268 
 269 
 270 
 271 
 272 
 273 
 274 
 275 
 276 

                regions = structure_case["regions"] 
                for region in regions: 
                    struct_dislir_dict = search_for_overlaps(start, end, region[0], region[1], 
                                                      str(region[2]), len(lir), pos_dict = struct_dislir_dict) 
 
            disorder_strings = construct_disorder_lir_string(struct_dislir_dict) 
 
    return disorder_strings 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
# deprecated 
def _search_for_overlaps(lir_start, lir_end, mobi_start, mobi_end, mobi_label, seq_length, pos_dict = None): 
    """ 
    Deprecated function 
 
    lir_start: LIR peptide start position 
    lir_end: LIR peptide end position 
    mobi_start: MobiDB start position 
    mobi_end:   MobiDB end position 
    mobi_label: A character indicating if the position is disordered or structured D=disorder, S=structured, 
    seq_length: The length of the peptide 
 
    return: A dictionary where keys are the start-end range numbers and values are the D/S labels from 
    MobiDB or ? depending on whether there's an overlap or data available 
    """ 
 
    # variable declaration and initialization 
    positions = {} 
    index = -1 
    boundary = -1 
 
    # initialising position matrix 
    if pos_dict is None: 
        index = lir_start 
        while index <= lir_end: 
            positions[index] = '?' 
            index +=1 
    else: 
        positions = copy.deepcopy(pos_dict) IO
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 277 
 278 
 279 
 280 
 281 
 282 
 283 
 284 
 285 
 286 
 287 
 288 
 289 
 290 
 291 
 292 
 293 
 294 
 295 
 296 
 297 
 298 
 299 
 300 
 301 
 302 
 303 
 304 
 305 
 306 
 307 
 308 
 309 
 310 
 311 
 312 
 313 
 314 
 315 
 316 

 
    # case A - partial overlap 
    if lir_start > mobi_start and lir_start < mobi_end and lir_end > mobi_end: 
        boundary = mobi_end 
        index = lir_start 
 
    # case B - partial overlap 
    elif lir_start < mobi_start and lir_end > mobi_start and lir_end < mobi_end: 
        boundary = lir_end 
        index = mobi_start 
 
    # case C - partial overlap 
    elif mobi_start < lir_start and lir_end < mobi_end and lir_start < mobi_end: 
        boundary = lir_end 
        index = lir_start 
 
    # case D - partial overlap 
    elif lir_start < mobi_start and lir_start < mobi_end and lir_end > mobi_end: 
        boundary = mobi_end 
        index = mobi_start 
 
    # need to check length here - full overlap (I) 
    elif lir_start == mobi_start and lir_end == mobi_end: 
        boundary = lir_end 
        index = lir_start 
 
    # case G - partial overlap starting from the same position 
    elif lir_start == mobi_start and lir_end > mobi_start and lir_end < mobi_end: 
        boundary = lir_end 
        index = lir_start 
 
    # case H - partial overlap, same ending coords 
    elif mobi_start > lir_start and lir_start < mobi_end and lir_end == mobi_end: 
        boundary = lir_end 
        index = mobi_start 
 
    # case J 
    elif lir_start == mobi_start and lir_end > mobi_start and lir_end > mobi_end: 
        boundary = mobi_end 
        index = lir_start IO
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 317 
 318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 
 333 
 334 
 335 
 336 
 337 
 338 
 339 
 340 
 341 
 342 
 343 
 344 
 345 
 346 
 347 
 348 
 349 
 350 
 351 
 352 
 353 
 354 
 355 
 356 

 
    # case K 
    elif mobi_start < lir_start and lir_start < mobi_end and lir_end == mobi_end: 
        boundary = mobi_end 
        index = lir_start 
 
    # case E - no overlap left end 
    elif lir_start < mobi_start and lir_end < mobi_start and lir_end < mobi_end: 
        return positions 
 
    # case F - no overlap right end 
    elif mobi_start < lir_start and mobi_end < lir_start and lir_start > mobi_start: 
        return positions 
 
    else: 
        return positions 
 
    while index<=boundary: 
        positions[index] = mobi_label 
        index+=1 
 
    return positions 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def search_for_overlaps(lir_start, lir_end, mobi_start, mobi_end, mobi_label, pos_dict = None): 
    """ 
    Searches for LIR-motif/disorder overlaps based on the data retrieved from MobiDB. Identification of 
    overlaps is done using iLIR and MobiDB coordinates and returns a dictionary which encapsulates 
    disordered positions of the LIR-motif 
 
    lir_start: LIR-motif start position 
    lir_end: LIR-motif end position 
    mobi_start: MobiDB start position 
    mobi_end: MobiDB end position 
    mobi_label: MobiDB residue label D/S 
    pos_dict: The position dictionary to be modified. Either an initialised ?????? or an intermediate 
    one when processing many different predictions 
 IO
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 357 
 358 
 359 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 
 368 
 369 
 370 
 371 
 372 
 373 
 374 
 375 
 376 
 377 
 378 
 379 
 380 
 381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
 394 
 395 
 396 

    return: A dictionary with all disorder positions identified 
    """ 
    # variable declaration and initialization 
    positions = {} 
    index = -1 
    boundary = -1 
 
    # initialising position matrix 
    if pos_dict is None: 
        index = lir_start 
        while index <= lir_end: 
            positions[index] = '?' 
            index +=1 
    else: 
        positions = copy.deepcopy(pos_dict) 
 
    # A 
    if lir_start < mobi_start and mobi_start < lir_end and lir_end < mobi_end: 
        boundary = lir_end 
        index = mobi_start 
    # B 
    elif mobi_start < lir_start and lir_start < mobi_end and mobi_end < lir_end: 
        boundary = mobi_end 
        index = lir_start 
    # C 
    elif lir_start == mobi_start and lir_end < mobi_end: 
        boundary = lir_end 
        index = lir_start 
    # D 
    elif lir_start == mobi_start and mobi_end < lir_end: 
        boundary = mobi_end 
        index = mobi_start 
    # E 
    elif mobi_start < lir_start and lir_end == mobi_end: 
        boundary = lir_end 
        index = lir_start 
    # F 
    elif lir_start < mobi_start and lir_end == mobi_end: 
        boundary = lir_end 
        index = mobi_start IO
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 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
 407 
 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
 420 
 421 
 422 
 423 
 424 
 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 

    # G 
    elif lir_start < mobi_start and mobi_start < lir_end and mobi_end < lir_end: 
        boundary = mobi_end 
        index = mobi_start 
    # H 
    elif mobi_start < lir_start and lir_end > mobi_start and lir_end < mobi_end: 
        boundary = lir_end 
        index = lir_start 
    # I 
    elif lir_start == mobi_start and lir_end == mobi_end: 
        boundary = lir_end 
        index = lir_start 
    # J 
    elif lir_start < mobi_start and lir_end <= mobi_start and lir_end < mobi_end: 
        return positions 
    # K 
    elif mobi_start < lir_start and mobi_end <= lir_start and lir_end > mobi_end: 
        return positions 
 
 
    while index<=boundary: 
        positions[index] = mobi_label 
        index+=1 
 
    return positions 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def calculate_disorder_fraction(disorder_str): 
    """ 
    Calculates the fraction of disorder residues 
    found in a LIR-motif 
 
    disorder_str: The disorder string in the form of 'DDDDSD' 
 
    return: disorder fraction in float 
    """ 
 
    length = len(disorder_str) IO
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 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
 457 
 458 
 459 
 460 
 461 
 462 
 463 
 464 
 465 
 466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 

 
    count_ds = disorder_str.count('D') 
 
    dis_fraction = count_ds/length 
 
 
    return dis_fraction 
 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def calculate_disorder_percentage(disorder_str): 
    """ 
    Calculate and return the proportion of the disordered region in a peptide 
    given a disordered string as generated by a disorder scanner 
 
    disorder_str: A disorder string representing the disordered residues in 
    a given string 
 
    return: returns the disorder percentage 
    """ 
 
    # D_PPE, D_NPE, D_PA, D_WC D_WCD_WCD_WCD_WCD_WCD_WC 
    # replace predicted D types with Ds 
    dtypes = ["D_PPE", "D_NPE", "D_PA", "D_WC"] 
 
    for case in dtypes: 
        disorder_str = disorder_str.replace(case, 'D') 
 
    count_ds = disorder_str.count('D') 
 
    # counting length after replacement for accuracy purposes 
    length = len(disorder_str) 
    disorder_proportion = 0 
 
    if length > 0: 
        disorder_proportion = count_ds*100/length 
 
    return disorder_proportion IO
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 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 
 516 

 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def construct_disorder_lir_string(dispos): 
    """ 
    Takes the dictionary of calculated disordered LIR-motif 
    positions and constructs the disorder string dSTR 
 
    dispos: Calculated disorder positions 
 
    return: Disorder string 
    """ 
 
    disordered_string = '' 
    if dispos is not None: 
        pos_list = sorted(dispos.keys()) 
 
 
        for pos in pos_list: 
            disordered_string = disordered_string + dispos[pos] 
 
    return disordered_string 
 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def print_lir_disorder_data(uniprot_acc, lir, start, end, scanner_results_dict): 
    """ 
    Prints the disorder region scanning results in a "pretty" format 
 
    uniprot_acc: A valid UniProt accession 
    lir: The  LIR-motif sequence (as in iLIR3D) 
    start: The start position of the LIR-motif 
    end: The end position of the LIR-motif 
    scanner_results_dict: 
 
    returns: void 
    """ IO
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 517 
 518 
 519 
 520 
 521 
 522 
 523 
 524 
 525 
 526 
 527 
 528 
 529 
 530 
 531 
 532 
 533 
 534 
 535 
 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
 547 
 548 
 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 

 
    for db in scanner_results_dict.keys(): 
 
        disorder_string = scanner_results_dict[db] 
 
        disorder_percentage = calculate_disorder_percentage(disorder_string) 
 
        print "%s\t%s-%s\t%s\t%s\t%s%s\t%s" % (uniprot_acc, str(start), str(end), lir, 
                                               disorder_string, str(disorder_percentage), 
                                               chr(37), db) 
 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def print_disorder_report(peptide_file, type): 
    """ 
    Prints on the screen the disorder results that were computed, in a 
    veyr simple tab delimited format 
 
    peptide_file: This is a tab delimited file containing the lir string, 
    start and end coordinates per 
    candidate uniprot accession 
 
    return: void 
    """ 
 
    peptide_file_handle = open(peptide_file, 'r') 
 
    for peptide_line in peptide_file_handle: 
        components = peptide_line.strip().split('\t') 
 
        uniprot_acc = components[0] 
        start = int(components[2]) 
        end = int(components[3]) 
        lir = components[1] 
 
        disorder_overlaps = scan_db_data_for_disorder_regions(uniprot_acc, start, end, lir, type) 
 
        if disorder_overlaps is not None: IO
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 572 
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 575 
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 578 
 579 
 580 
 581 
 582 
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 584 
 585 
 586 
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 592 
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 594 
 595 
 596 

            for db in disorder_overlaps.keys(): 
 
                dstring = disorder_overlaps[db] 
                disorder_percentage = calculate_disorder_percentage(dstring) 
 
                print "%s\t%s-%s\t%s\t%s\t%s%s\t%s" % (uniprot_acc, str(start), str(end), lir, 
                                               dstring, str(disorder_percentage), 
                                               chr(37), db) 
        else: 
            print "%s NA" % uniprot_acc 
 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def mobidb_indirect_list_data_to_pdb_dict(uniprot_accession): 
    """ 
    Coverts the MobiDB indirect data into a dictionary where keys are in the form of 
    pdb_id followed by chain_id and separated by '_' e.g. 2K6Q_B, to simplify the 
    scanning process with structures. Values are lists of tuples (start, end, method) 
 
    uniprot_accession: A valid uniprot accession 
 
    return: The new reformated dictionary 
    """ 
 
    pdb_formated_data = {} 
 
    accession_data = fetch_disorder_data(uniprot_accession, type="indirect") 
    indirect_data = accession_data["mobidb_data"]["disorder"]["derived"] 
 
    for structure in indirect_data: 
        new_key = structure["pdb_id"] + '_' + structure["chain_id"] 
 
        if new_key not in pdb_formated_data: 
            pdb_formated_data[new_key] = [{"regions": indirect_data["regions"] 
                                              ,"method": indirect_data["method"]}] 
            #pdb_formated_data[new_key]["regions"] = indirect_data["regions"] 
            #pdb_formated_data[new_key]["method"] = indirect_data["method"] 
        else: IO
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 608 
 609 
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 612 
 613 
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 636 

            pdb_formated_data[new_key].append({"regions": indirect_data["regions"] 
                                              ,"method": indirect_data["method"]}) 
 
    return pdb_formated_data 
 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def scan_peptide_for_consensus_disorder_regions(accession, lir_start, lir_end, lir, type = "curated"): 
    """ 
    Scans a LIR-motif and looks for disorder overlaps with MobiDB based on the 
    start-end coordinates (lir_start, lir_end) and the corresponding UniProt 
    accession, which is used to retrieve the data. 
 
    accession: A valid UniProt accession 
    lir_start: The start position of a LIR-motif 
    lir_end: The end position of a LIR-motif 
    lir: The LIR-motif sequence 
    type: Type of data to retrieve from MobiDB (curated, predicted, indirect) 
 
    return: A dictionary with constructed disorder strings 
    """ 
 
    data = {} 
    disorder_strings = {} 
 
    if type == "curated": 
        data = fetch_concensus_disorder_curated_data(accession) 
 
    elif type == "indirect": 
        data = fetch_concensus_disorder_indirect_data_by_method(accession) 
 
    elif type == "predicted": 
        data = fetch_concensus_disorder_predicted_data_by_method(accession) 
 
    if bool(data) is not False: 
        #dis_dict = None 
        for method in data.keys(): 
            disorder_string = '' IO
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 640 
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 642 
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 645 
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 651 
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            dis_dict = None 
            regions = data[method] 
            if len(regions)>0: 
                for region in regions: 
                    mobi_start = region[0] 
                    mobi_end = region[1] 
                    mobi_label = region[2] 
                    seq_length = len(lir) 
 
                    dis_dict = search_for_overlaps(lir_start, lir_end, mobi_start, mobi_end, 
                                                   mobi_label, seq_length, pos_dict = dis_dict) 
 
 
                disorder_string = construct_disorder_lir_string(dis_dict) 
 
            else: 
                lir_len = len(lir) 
                i=0 
 
                while i<lir_len: 
                    disorder_string +='?' 
                    i+=1 
 
            disorder_strings[method] = disorder_string 
 
    return disorder_strings 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def disorder_report_generator(protein_file, type = "all"): 
    """ 
    Generates a human readable report showing the disorder 
    residues identified for each LIR-motif 
 
    protein_file: The input file with uniprot protein id and protein accession, 
    start and end coordinates of the lir motif, the lir string and verified digit 
    1 if so, 0 if unverified 
    type: The type of data we want to use in the calculation of the disorder data 
 IO
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    return: void 
    """ 
 
    # Move code from main here 
 
    fp = open(protein_file, 'r') 
    verified = '' 
 
    for line in fp: 
        line = line.strip().split('\t') 
        uniprot_id = line[1].strip() 
        uniprot_acc = line[2].strip() 
        start = int(line[3].strip()) 
        end = int(line[4].strip()) 
        lir = line[5].strip() 
        verif_val = line[6].strip() 
 
        if verif_val == "1": 
            verified = "verified" 
        else: 
            verified = "unverified" 
 
 
        if type == "indirect": 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "indirect") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           chr(37),verified,method, "indirect") 
        elif type == "curated": 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "curated") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir, IO
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                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           chr(37), verified, method, "curated") 
        elif type == "predicted": 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "predicted") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           chr(37), verified, method, "predicted") 
        # print all 
        else: 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "curated") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           chr(37), verified, method, "curated") 
 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "indirect") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           chr(37), verified, method, "indirect") 
 
 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "predicted") 
 
            if bool(disorder_strings) is not False: IO
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                for method in disorder_strings.keys(): 
                    print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           chr(37), verified, method, "predicted") 
 
 
    fp.close() 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
def check_disorder_data_availability_by_accession(uniprot_acc_input): 
    """ 
    This function loads all data from MobiDB and checks whether 
    there's available data for each accession provided 
 
    uniprot_acc_input: It can either be a list of valid uniprot 
    accessions or a single uniprot accession 
 
    return: A dictionary with the accession data retrieved from MobiDB 
    """ 
 
    acc_data = {} 
    uniprot_accs = [] 
 
    if os.path.isfile(uniprot_acc_input): 
        fp = open(uniprot_acc_input, 'r') 
        uniprot_accs = [x.strip() for x in fp] 
        fp.close() 
 
    else: 
        uniprot_accs.append(uniprot_acc_input) 
 
 
    disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus" 
    acceptHeader = 'application/json' # text/csv and text/plain supported 
 
 
    for accession in uniprot_accs: 
        request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader}) IO
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        # Send request 
        response = urllib2.urlopen(request) 
 
        # Parse JSON response di Python dict 
        data = json.load(response) 
 
        predicted_data = {} 
 
        if accession not in acc_data: 
            acc_data[accession] = {} 
 
            if "derived" in data["mobidb_consensus"]["disorder"]: 
                acc_data[accession]["indirect"] = "Yes" 
            else: 
                acc_data[accession]["indirect"] = "No" 
            if "predictors" in data["mobidb_consensus"]["disorder"]: 
                acc_data[accession]["predicted"] = "Yes" 
            else: 
                acc_data[accession]["predicted"] = "No" 
            if "db" in data["mobidb_consensus"]["disorder"]: 
                acc_data[accession]["curated"] = "Yes" 
            else: 
                acc_data[accession]["curated"] = "No" 
 
    return acc_data 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def check_disorder_data_availability_by_data_type(uniprot_acc_input): 
    """ 
    This function loads all data from MobiDB and checks whether 
    there's available data for each accession provided. 
 
    uniprot_acc_input: It can either be a list of valid uniprot 
    accessions or a single uniprot accession 
 
    return: A dictionary with the accession data retrieved from MobiDB 
    """ IO
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    acc_data = {} 
    uniprot_accs = [] 
 
    if os.path.isfile(uniprot_acc_input): 
        fp = open(uniprot_acc_input, 'r') 
        uniprot_accs = [x.strip() for x in fp] 
        fp.close() 
 
    else: 
        uniprot_accs.append(uniprot_acc_input) 
 
 
    disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus" 
    acceptHeader = 'application/json' # text/csv and text/plain supported 
 
 
    for accession in uniprot_accs: 
        request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader}) 
 
        # Send request 
        response = urllib2.urlopen(request) 
 
        # Parse JSON response di Python dict 
        data = json.load(response) 
 
        predicted_data = {} 
 
        if accession not in acc_data: 
            acc_data[accession] = {} 
 
            if "derived" in data["mobidb_consensus"]["disorder"]: 
                acc_data[accession]["indirect"] = "Yes" 
            else: 
                acc_data[accession]["indirect"] = "No" 
            if "predictors" in data["mobidb_consensus"]["disorder"]: 
                acc_data[accession]["predicted"] = "Yes" 
            else: 
                acc_data[accession]["predicted"] = "No" 
            if "db" in data["mobidb_consensus"]["disorder"]: IO
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                acc_data[accession]["curated"] = "Yes" 
            else: 
                acc_data[accession]["curated"] = "No" 
 
    return acc_data 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
def disorder_to_iLIR3Ddb(protein_file, type = "all"): 
    """ 
    Based on the uniprot accessions listed in the protein_file input and according to the specified type, 
    it fetches all relevant data from MobiDB and searches for disorder overlaps. The overlaps are computed 
    for all the LIR regions supplied in the input file. The output is in tabular format arranged specifically 
    to be loaded into iLIR3D database using mysqlimport. 
 
    protein_file: A file in tabular format which contains the uniprot id and accession, the start and end 
    coordinates of the LIR, the LIR sequence and LIR acc and if the LIR is experimentally verified or not. 
    type: The type of disorder data to fetch from MobiDB. One of ('all', 'predicted', 'curated', 'indirect') 
 
    return: void 
    """ 
 
    str_with_ver_string = "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" 
    str_no_ver = "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" 
 
    # Move code from main here 
 
    fp = open(protein_file, 'r') 
    verified = '' 
    for line in fp: 
        line = line.strip().split('\t') 
        lir_acc = line[0].strip() 
        uniprot_id = line[1].strip() 
        uniprot_acc = line[2].strip() 
        start = int(line[3].strip()) 
        end = int(line[4].strip()) 
        lir = line[5].strip() 
        verified = line[6].strip() 
 
        """ IO
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        if len(line) > 6: 
            if line[6] == '0': 
                verified = "unverified" 
            else: 
                verified = "verified" 
        """ 
 
        if type == "indirect": 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type="indirect") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    if len(line) == 5: 
                        print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                                               disorder_strings[method], 
                                                               str(calculate_disorder_percentage(disorder_strings[method])), 
                                                               method, "indirect") 
                    else: 
                        print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                            disorder_strings[method], 
                                            str(calculate_disorder_percentage(disorder_strings[method])), 
                                            verified, method, "indirect") 
 
        elif type == "curated": 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "curated") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    if len(line) == 5: 
                        print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                            method, "curated") 
                    else: 
                        print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                            disorder_strings[method], 
                                            str(calculate_disorder_percentage(disorder_strings[method])), 
                                            verified, method, "curated") IO
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        elif type == "predicted": 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "predicted") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    if len(line) == 5: 
                        print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           method, "predicted") 
                    else: 
                        print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                            disorder_strings[method], 
                                            str(calculate_disorder_percentage(disorder_strings[method])), 
                                            verified, method, "predicted") 
 
        # print all 
        else: 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "curated") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    if len(line) == 5: 
                        print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           method, "curated") 
 
                    else: 
                        print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           verified, method, "curated") 
 
 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type="indirect") IO
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            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    if len(line) == 5: 
                        print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           method, "indirect") 
                    else: 
                        print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                            disorder_strings[method], 
                                            str(calculate_disorder_percentage(disorder_strings[method])), 
                                            verified, method, "indirect") 
 
 
            disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end, 
                                                                           lir, type = "predicted") 
 
            if bool(disorder_strings) is not False: 
                for method in disorder_strings.keys(): 
                    if len(line) == 5: 
                        print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                                           disorder_strings[method], 
                                                           str(calculate_disorder_percentage(disorder_strings[method])), 
                                                           method, "predicted") 
                    else: 
                        print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir, 
                                            disorder_strings[method], 
                                            str(calculate_disorder_percentage(disorder_strings[method])), 
                                            verified, method, "predicted") 
 
    fp.close() 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
 
def complex_distring_to_simple(complex_str): 
    """ 
    Convert from complex disorder string to a simpler form only containing 
    D,S and ? characters IO
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    complex_str: The complex disorder string to modify 
 
    return: A simpler form of the complex query 
    """ 
 
    # D_PPE, D_NPE, D_PA, D_WC D_WCD_WCD_WCD_WCD_WCD_WC 
    # replace predicted D types with Ds 
    dtypes = ["D_PPE", "D_NPE", "D_PA", "D_WC"] 
 
    for case in dtypes: 
        simple_disorder_str = complex_str.replace(case, 'D') 
 
 
    return simple_disorder_str 
 
# ---------------------------------------------------------------------------------------------------------------------- 
 
if __name__=='__main__': 
 
    # input here is: 
    # lir_acc\tuniprot_id\tuniprot_acc\tlir_start\tlir_end\tlir_sequence\tverified 
 
    protein_file = sys.argv[1] 
    # predicted, indirect, curated, all 
    data_type = sys.argv[2] 
 
    # This function prints out iLIR3D ready disorder data 
    disorder_to_iLIR3Ddb(protein_file, type = data_type) 
 
  

 
 IO
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7.2 consensus_disorder_calculator.py	code	
 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 

import os 
import sys 
import dizscan as dislib 
from ilir3d.lib import lir3d_db_connector as db 
 
 
""" 
MySQL query to generate inputs used by this query 
select lir_acc, disorder_string from sars_lir_disorder 
""" 
 
# ----------------------------------------------------------------------------------------------------------- 
 
 
def calculate_per_residue_consensus_disorder_score(disorder_string_list, dis_percentage = 50, todb=False): 
    """ 
    Computes the consensus disorder string and loads the data into the database 
 
    disorder_string_list: A file containing all disorder strings per LIRCP protein 
    percentage_per_position: disorder percentage of each LIR-motif residue position 
 
    return: void 
    """ 
 
    disorder_dict = {} 
    fp_in = open(disorder_string_list, 'r') 
 
    consensus_disorder = {} 
    db_data = [] 
 
    for line in fp_in: 
        line = line.strip().split('\t') 
        lir_acc = line[0] 
        dis_lir = line[1] 
 IO
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        if lir_acc not in disorder_dict: 
            disorder_dict[lir_acc] = [dis_lir] 
        else: 
            disorder_dict[lir_acc].append(dis_lir) 
 
    fp_in.close() 
 
    dis_string_list = [] 
    diz_string_score_dict = {} 
    db_disorder_data = [] 
    for lir in disorder_dict.keys(): 
        no_dis_strings = len(disorder_dict[lir]) 
        # convert complex chars to Ds&Ss 
        dis_string_list = [dislib.complex_distring_to_simple(x) for x in disorder_dict[lir]] 
 
        # FIX LIR LENGTH HERE ... 
 
        # calculate the length of the lir simply by using the first element in the list 
        lir_len = len(dis_string_list[0]) 
 
        # initialize diz string score dictionary 
        temp_diz_string = {} 
        index = 0 
        while index < lir_len: 
            diz_string_score_dict[index] = 0 
            index+=1 
 
        index = 0 
        # loop over residues 
        while index < lir_len: 
            # loop over strings 
            for diz_str in dis_string_list: 
                # need to revise this and see how to handle these cases 
                if len(diz_str)==lir_len: 
                    if diz_str[index] == 'D': 
                        diz_string_score_dict[index]+=1 
            index+=1 
 
        # now generate consensus 
        consensus_dis_str = generate_percentage_consensus_per_residue_dizstring(diz_string_score_dict, IO
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                                                                                no_dis_strings, 
                                                                                dis_percentage = dis_percentage) 
        # calculate consensus disorder percentage 
        calc_dis_percentage = dislib.calculate_disorder_percentage(consensus_dis_str) 
 
        if todb is True: 
            db_disorder_data.append((consensus_dis_str, calc_dis_percentage, lir)) 
        else: 
            print "%s\t%s\t%s" % (lir, consensus_dis_str, calc_dis_percentage) 
 
 
    if todb is True: 
        load_consensus_disorder_todb(db_disorder_data) 
 
# ----------------------------------------------------------------------------------------------------------- 
 
 
def generate_percentage_consensus_per_residue_dizstring(diz_string_score_dict, no_samples, dis_percentage = 50): 
    """ 
    Computes the percentage per residue position of the disorder string dSTR 
 
    diz_string_score_dict: A dictionary with all disorder scores 
    percentage: The percentage per residue position of the LIR-motif 
 
    return: 
    """ 
 
    lir_len = len(diz_string_score_dict.keys()) 
 
    index = 0 
    consensus_diz_string = "" 
    while index < lir_len: 
        # calculated disorder percentage 
        calc_dis_percentage = (diz_string_score_dict[index]/no_samples)*100 
        if calc_dis_percentage >= int(dis_percentage): 
            consensus_diz_string = consensus_diz_string + 'D' 
        # if percentage does not meet requirement we consider the residue as structured 
        else: 
            consensus_diz_string = consensus_diz_string + 'S' 
        index+=1 IO

ANNA KALV
ARI 



 

 154 

116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 

 
    return consensus_diz_string 
 
# ----------------------------------------------------------------------------------------------------------- 
 
 
def load_consensus_disorder_todb(disorder_data): 
    """ 
    A list of tuples with the new disorder data to load to db 
 
    disorder_data: Disorder data 
 
    return: void 
    """ 
 
    cnx = db.connect() 
    cursor = cnx.cursor(buffered=True) 
 
    query = "update sars_lir set cdSTR=%s,disorder_percentage=%s where lir_acc=%s" 
 
    cursor.executemany(query, disorder_data) 
    cnx.commit() 
 
    cursor.close() 
    cnx.close() 
 
    print "Done loading disorder data in the database" 
 
# ----------------------------------------------------------------------------------------------------------- 
 
def calculate_per_residue_consensus_disorder_score_advanced(disorder_string_list, dis_percentage = 50, todb=False): 
 
    disorder_dict = {} 
    fp_in = open(disorder_string_list, 'r') 
 
    consensus_disorder = {} 
    db_data = [] 
 
    for line in fp_in: 
        line = line.strip().split('\t') IO
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        lir_acc = line[0] 
        dis_lir = line[1] 
        source = line[2] # predicted, indirect, curated 
 
        if lir_acc not in disorder_dict: 
            disorder_dict[lir_acc] = {source: [dis_lir]} 
        else: 
            if source in disorder_dict[lir_acc]: 
                disorder_dict[lir_acc][source].append(dis_lir) 
            else: 
                disorder_dict[lir_acc][source] = [dis_lir] 
 
    fp_in.close() 
 
    dis_string_list = [] 
    diz_string_score_dict = {} 
    db_disorder_data = [] 
 
    for lir in disorder_dict.keys(): 
        # assuming there's only one curated dSTR, but might need to work with a list 
        if "curated" in disorder_dict[lir]: 
            consensus_dis_str = disorder_dict[lir]["curated"][0] 
            # calculate consensus disorder percentage 
            calc_dis_percentage = dislib.calculate_disorder_percentage(consensus_dis_str) 
 
            if todb is True: 
                db_disorder_data.append((consensus_dis_str, calc_dis_percentage, lir)) 
            else: 
                print "%s\t%s\t%s" % (lir, consensus_dis_str, calc_dis_percentage) 
 
            continue 
 
        else: 
            # construct a unified dSTR list 
            unified_dSTR_list = [] 
            for source in disorder_dict[lir]: 
                unified_dSTR_list.extend(disorder_dict[lir][source]) 
 
            no_dis_strings = len(unified_dSTR_list) 
            # convert complex chars to Ds&Ss IO
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            dis_string_list = [dislib.complex_distring_to_simple(x) for x in unified_dSTR_list] 
 
            # calculate the length of the lir simply by using the first element in the list 
            lir_len = len(dis_string_list[0]) 
 
            # initialize diz string score dictionary 
            temp_diz_string = {} 
 
            index = 0 
            while index < lir_len: 
                diz_string_score_dict[index] = {'D': 0, 'S': 0} 
                index+=1 
 
            index = 0 
            # loop over residues 
            while index < lir_len: 
                # loop over strings 
                for diz_str in dis_string_list: 
                    # see how to handle the cases where len(diz_str) != lir_len 
                    if len(diz_str) == lir_len: 
                        if diz_str[index] == 'D': 
                            diz_string_score_dict[index]['D']+=1 
                        elif diz_str[index] == 'S': 
                            diz_string_score_dict[index]['S']+=1 
                index+=1 
 
            # now generate consensus 
 
            consensus_dis_str = generate_consensus_dSTR(diz_string_score_dict) 
            # calculate consensus disorder percentage 
            calc_dis_percentage = dislib.calculate_disorder_percentage(consensus_dis_str) 
 
            if todb is True: 
                db_disorder_data.append((consensus_dis_str, calc_dis_percentage, lir)) 
            else: 
                print "%s\t%s\t%s" % (lir, consensus_dis_str, calc_dis_percentage) 
 
 
    if todb is True: 
        load_consensus_disorder_todb(db_disorder_data) IO
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# ----------------------------------------------------------------------------------------------------------- 
 
def generate_consensus_dSTR(diz_string_score_dict): 
 
    dSTR = "" 
    for position in sorted(diz_string_score_dict.keys()): 
        if diz_string_score_dict[position]['D'] > diz_string_score_dict[position]['S']: 
            dSTR+='D' 
        else: 
            dSTR+='S' 
 
    return dSTR 
 
# ----------------------------------------------------------------------------------------------------------- 
if __name__=='__main__': 
 
 
    """ Query to generate input list 
    select lir_acc, disorder_string, mobidb_data from sars_lir_disorder 
    where lir_acc > 96 
    order by lir_acc 
    """ 
 
    disorder_string_list = sys.argv[1] 
    disorder_percentage = int(sys.argv[2]) 
 
 
    if "--loadDB" in sys.argv: 
        calculate_per_residue_consensus_disorder_score_advanced(disorder_string_list, 
                                                                dis_percentage = 50, todb=True) 
    else: 
        calculate_per_residue_consensus_disorder_score_advanced(disorder_string_list, 
                                                                dis_percentage = disorder_percentage) 

 
 IO
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7.3 anchor2_scanner.py	code		
 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 

import os 
import sys 
 
from ilir3d.lib import lir3d_db_connector as db 
 
# -------------------------------------------------------------------------------------------- 
 
 
def iupred2_results_to_dict(anchor2_result_file): 
    """ 
    Parses iupred2 result output and loads iupred2 and anchor2 
    (if available) scores into a dictionary where keys are the 
    position of each residue 
 
    anchor2_result_file: The output of iupred2A script running with 
    -d option for ANCHOR2 
 
    return: a dictionary with all data in the iupred2A results file 
    """ 
 
    fp = open(anchor2_result_file, 'r') 
 
    iupred2_dict = {} 
 
    for iupred2_line in fp: 
        if iupred2_line[0] != '#': 
            iupred2_scores = iupred2_line.strip().split('\t') 
 
            if len(iupred2_scores) == 3: # only iupred2 prediction 
                iupred2_dict[int(iupred2_scores[0])] = {"IUPred2": float(iupred2_scores[2])} 
            else: 
                iupred2_dict[int(iupred2_scores[0])] = {"IUPred2": float(iupred2_scores[2]), 
                                                 "ANCHOR2": float(iupred2_scores[3])} 
 
    fp.close() 
 
    return iupred2_dict IO
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# -------------------------------------------------------------------------------------------- 
 
 
def pull_lir_information_from_db(uniprot_id): 
    """ 
    Pulls all the necessary LIR information based on uniprot id. 
    This is the LIR accession and start-end positions 
 
    uniprot_id: A valid uniprot id 
 
    return: Data retrieved from the database 
    """ 
 
    cnx = db.connect() 
    cursor = cnx.cursor(buffered=True) 
 
    query = "select lir_acc, lir_start, lir_end from sars_lir where uniprot_id=\'%s\'" 
 
    cursor.execute(query % uniprot_id) 
 
 
    data = cursor.fetchall() 
 
    cursor.close() 
    cnx.close() 
 
    return data 
 
# -------------------------------------------------------------------------------------------- 
 
 
def calculate_iupred2_prediction_percentage(iupred2_dict, lir_start, lir_end, type = "IUPred2", threshold = 0.5): 
    """ 
    Predicts iupred percentage based on the iupred type and the lir overlap 
 
    iupred2_dict: A dictionary with the relevant protein iupred2 scores 
    lir_start: The lir start coordinate 
    lir_end: The lir end coordinate 
    threshold: A threshold according to which the prediction is considered true IO
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    return: The percentage of the overlap 
    """ 
 
    num_involved_residues = 0 
    index = int(lir_start) 
 
    while index <= int(lir_end): 
        if iupred2_dict[index][type] >= threshold: 
            num_involved_residues+=1 
        index+=1 
 
    lir_len = int(lir_end)-int(lir_start)+1 
 
    prediction_percentage = (num_involved_residues*100)/lir_len 
 
    return prediction_percentage 
 
# -------------------------------------------------------------------------------------------- 
 
 
def get_iupred2_lir_disorder_string(iupred2_dict, lir_start, lir_end, threshold = 0.5): 
    """ 
    Generates a disorder string based on the iupred2 disorder presictions in iupred2_dict 
    and the corresponding lir coordinates 
 
    iupred2_dict: A dictionary with the relevant protein iupred2 scores 
    lir_start: The lir start coordinate 
    lir_end: The lir end coordinate 
    threshold: A threshold according to which the prediction is considered true 
 
    return: A disorder string 
    """ 
 
    disorder_string = "" 
    index = int(lir_start) 
 
    while index <= int(lir_end): 
        if iupred2_dict[index]["IUPred2"] >= threshold: 
            disorder_string = disorder_string +'D' IO
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        else: 
            disorder_string = disorder_string +'S' 
        index+=1 
 
    return disorder_string 
 
# -------------------------------------------------------------------------------------------- 
 
def load_anchor2_results_to_db(data): 
    """ 
    This function updates anchor2 field in sars_lir table in iLIR3D database 
 
    data: A list of tuples in the format (X,Y) where X: anchor2 prediction and 
    Y: the accession of the corresponding lir (lir_acc) 
    """ 
 
    cnx = db.connect() 
    cursor = cnx.cursor(buffered=True) 
 
    query = "update sars_lir set anchor3=%s where lir_acc=%s" 
 
    cursor.executemany(query, data) 
    cnx.commit() 
 
    cursor.close() 
    cnx.close() 
 
    print "Archor2 results loaded to DB!" 
 
# -------------------------------------------------------------------------------------------- 
 
 
def load_iupred2_results_to_db(data): 
    """ 
    Creates a new iupred2 entry in the database, disorder table in particular 
 
    data: sars_lir_disorder attributes to load into the database 
 
    return: void 
    """ IO
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    cnx = db.connect() 
    cursor = cnx.cursor(buffered=True) 
 
    query = "insert into sars_lir_disorder(lir_acc2,uniprot_id,lir_start,lir_end,lir,disorder_string,percentage,verified,mobidb_method,mobidb_data,threshold) 
values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" 
 
    cursor.executemany(query, data) 
    cnx.commit() 
 
    cursor.close() 
    cnx.close() 
 
    print "Iupred2 results loaded to DB!" 
 
# -------------------------------------------------------------------------------------------- 
 
 
def pull_input_for_iupred2_predictions(uniprot_id=None): 
    """ 
    Pulls necessary information from the DB for 
 
    uniprot_id: If uniprot_id is None, it will pull information of all lirs 
 
    return a dictionary of values to be used to produce iupred2 entries for 
    sars_lir_disorder 
    """ 
 
    cnx = db.connect() 
    cursor = cnx.cursor(buffered=True) 
 
    query = "" 
    data = {} 
    if uniprot_id is None: 
        query = "select lir_acc, uniprot_id, lir_start, lir_end, lir, verified from sars_lir order by uniprot_id" 
        cursor.execute(query) 
 
    else: 
        query = "select lir_acc, uniprot_id, lir_start, lir_end, lir, verified from sars_lir where uniprot_id=%s" 
        cursor.execute(query % uniprot_id) IO
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    for row in cursor: 
        if row[1] not in data: 
            data[row[1]] = {row[0]: {"start": row[2], "end": row[3], "lir": row[4], "verified": row[5]}} 
        else: 
            data[row[1]][row[0]] = {"start": row[2], "end": row[3], "lir": row[4], "verified": row[5]} 
 
    cursor.close() 
    cnx.close() 
 
    return data 
 
# -------------------------------------------------------------------------------------------- 
 
 
def produce_anchor2_data_binary(iupred_results, threshold = 0.5, cutoff = 50): 
    """ 
    Produces new data based on the iupred2 preditions provided and a threshold for the 
    anchor2 overlap 
 
    iupred_results: An iupred2 result file or 
    threshold = 50 
    """ 
 
    anchor2_data = [] 
    if os.path.isdir(iupred_results): 
 
        iupred2_result_files = os.listdir(iupred2_result_directory) 
 
        for iupred2_result_file in iupred2_result_files: 
            # parse iupred2 
            iupred2_result_file_path = os.path.join(iupred2_result_directory, iupred2_result_file) 
            iupred2_dict = iupred2_results_to_dict(iupred2_result_file_path) 
 
            uniprot_id = iupred2_result_file.partition('.')[0] 
            protein_lirs = pull_lir_information_from_db(uniprot_id) 
 
            for lir in protein_lirs: 
                lir_start = lir[1] 
                lir_end = lir[2] IO
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                anchor2_score = calculate_iupred2_prediction_percentage(iupred2_dict, 
                                                                        lir_start, lir_end, 
                                                                        type = "ANCHOR2",threshold = threshold) 
                # convert anchor2 prediction to binary based on 
                if anchor2_score >= cutoff: 
                    anchor2_data.append((1, lir[0])) 
                else: 
                    anchor2_data.append((0, lir[0])) 
 
    elif os.path.isfile(iupred_results): 
        iupred2_dict = iupred2_results_to_dict(iupred_results) 
 
        uniprot_id = iupred_results.partition('.')[0] 
        protein_lirs = pull_lir_information_from_db(uniprot_id) 
 
        for lir in protein_lirs: 
            lir_start = lir[1] 
            lir_end = lir[2] 
            anchor2_score = calculate_iupred2_prediction_percentage(iupred2_dict, 
                                                                    lir_start, lir_end, 
                                                                    type = "ANCHOR2",threshold = threshold) 
            # convert anchor2 prediction to binary based on 
            if anchor2_score >= threshold: 
                anchor2_data.append((1, lir[0])) 
            else: 
                anchor2_data.append((0, lir[0])) 
 
    load_anchor2_results_to_db(anchor2_data) 
 
# -------------------------------------------------------------------------------------------- 
 
 
def produce_iupred2_data(iupred_results, threshold = 0.5, uniprot_id = None): 
    """ 
 
    iupred_results: A dictionary with multiple iupred results or a single file 
    threshold: Threshold defines accepted values for disorder prediction 
    return: 
    """ 
    db_iupred2_data = pull_input_for_iupred2_predictions(uniprot_id=uniprot_id) IO
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    iupred2_data = [] 
 
 
    method = '' 
 
    if "--anchor2" in sys.argv: 
        method = "anchor2" 
    elif "--iupred2" in sys.argv: 
        method = "iupred2" 
 
    if os.path.isdir(iupred_results): 
 
        iupred2_result_files = os.listdir(iupred2_result_directory) 
 
        for iupred2_result_file in iupred2_result_files: 
            # parse iupred2 
            iupred2_result_file_path = os.path.join(iupred2_result_directory, iupred2_result_file) 
            iupred2_dict = iupred2_results_to_dict(iupred2_result_file_path) 
 
            uniprot_id = iupred2_result_file.partition('.')[0] 
            protein_lirs = pull_lir_information_from_db(uniprot_id) 
 
            for lir in protein_lirs: 
                lir_start = lir[1] 
                lir_end = lir[2] 
 
                lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict, 
                                                                        lir_start, lir_end, 
                                                                        type = "IUPred2",threshold = threshold) 
 
                lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict, 
                                                                       lir_start, 
                                                                       lir_end, threshold = threshold) 
 
                lir_acc = lir[0] 
                lir_string = db_iupred2_data[uniprot_id][lir_acc]["lir"] 
                verified = db_iupred2_data[uniprot_id][lir_acc]["verified"] 
                #method = "iupred2" 
                data_type = "predicted" IO

ANNA KALV
ARI 



 

 166 

318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 

 
 
                iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end, lir_string, 
                                     lir_iupred2_disrting, lir_iupred2_score, 
                                     verified, method, data_type, threshold)) 
 
    elif os.path.isfile(iupred_results): 
 
        iupred2_dict = iupred2_results_to_dict(iupred_results) 
        uniprot_id = iupred_results.partition('.')[0] 
        protein_lirs = pull_lir_information_from_db(uniprot_id) 
 
        for lir in protein_lirs: 
            lir_start = lir[1] 
            lir_end = lir[2] 
 
            lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict, 
                                                                    lir_start, lir_end, 
                                                                    type = "IUPred2",threshold = threshold) 
 
            lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict, 
                                                                       lir_start, 
                                                                       lir_end, threshold = threshold) 
            lir_acc = lir[0] 
            lir_string = db_iupred2_data[uniprot_id][lir_acc]["lir"] 
            verified = db_iupred2_data[uniprot_id][lir_acc]["verified"] 
            #method = "iupred2" 
            data_type = "predicted" 
 
            iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end, 
                                     lir_string, lir_iupred2_disrting, lir_iupred2_score, 
                                     verified, method, data_type, threshold)) 
 
    # function to update the database 
    load_iupred2_results_to_db(iupred2_data) 
 
# -------------------------------------------------------------------------------------------- 
 
def produce_anchor2_data_disorder(iupred_results, threshold = 0.5, uniprot_id = None): 
    """ IO
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    :param iupred_results: 
    :param threshold: 
    :return: 
    """ 
    db_iupred2_data = pull_input_for_iupred2_predictions(uniprot_id=uniprot_id) 
 
    iupred2_data = [] 
 
 
    method = 'anchor2' 
 
    """ 
    if "--anchor2" in sys.argv: 
        method = "anchor2" 
    elif "--iupred2" in sys.argv: 
        method = "iupred2" 
    """ 
 
    if os.path.isdir(iupred_results): 
 
        iupred2_result_files = os.listdir(iupred2_result_directory) 
 
        for iupred2_result_file in iupred2_result_files: 
            # parse iupred2 
            iupred2_result_file_path = os.path.join(iupred2_result_directory, iupred2_result_file) 
            iupred2_dict = iupred2_results_to_dict(iupred2_result_file_path) 
 
            uniprot_id = iupred2_result_file.partition('.')[0] 
            protein_lirs = pull_lir_information_from_db(uniprot_id) 
 
            for lir in protein_lirs: 
                lir_start = lir[1] 
                lir_end = lir[2] 
 
                lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict, 
                                                                        lir_start, lir_end, 
                                                                        type = "ANCHOR2",threshold = threshold) 
 
                lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict, IO
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                                                                       lir_start, 
                                                                       lir_end, threshold = threshold) 
 
                lir_acc = lir[0] 
                lir_string = db_iupred2_data[uniprot_id][lir_acc]["lir"] 
                verified = db_iupred2_data[uniprot_id][lir_acc]["verified"] 
                #method = "iupred2" 
                data_type = "predicted" 
 
 
                iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end, lir_string, 
                                     lir_iupred2_disrting, lir_iupred2_score, 
                                     verified, method, data_type, threshold)) 
 
    elif os.path.isfile(iupred_results): 
 
        iupred2_dict = iupred2_results_to_dict(iupred_results) 
        uniprot_id = iupred_results.partition('.')[0] 
        protein_lirs = pull_lir_information_from_db(uniprot_id) 
 
        for lir in protein_lirs: 
            lir_start = lir[1] 
            lir_end = lir[2] 
 
            lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict, 
                                                                    lir_start, lir_end, 
                                                                    type = "ANCHOR2",threshold = threshold) 
 
            lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict, 
                                                                       lir_start, 
                                                                       lir_end, threshold = threshold) 
            lir_acc = lir[0] 
            lir_string = db_iupred2_data[uniprot_id][lir_acc]["lir"] 
            verified = db_iupred2_data[uniprot_id][lir_acc]["verified"] 
 
            data_type = "predicted" 
 
            iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end, 
                                     lir_string, lir_iupred2_disrting, lir_iupred2_score, 
                                     verified, method, data_type, threshold)) IO

ANNA KALV
ARI 



 

 169 

438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 

 
 
    # function to update the database 
    load_iupred2_results_to_db(iupred2_data) 
 
# -------------------------------------------------------------------------------------------- 
 
if __name__=='__main__': 
 
 
 
    iupred2_result_directory = sys.argv[1] 
    threshold = float(sys.argv[2]) 
    cutoff = int(sys.argv[3]) 
 
    if "--anchor2" in sys.argv: 
        produce_anchor2_data_binary(iupred2_result_directory, threshold = threshold, cutoff=cutoff) 
        #produce_anchor2_data_disorder(iupred2_result_directory, threshold = threshold, uniprot_id = None) 
    elif "--iupred2" in sys.argv: 
        produce_iupred2_data(iupred2_result_directory, threshold = threshold, uniprot_id = None)  
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7.4 spot_scanner.py	code	
 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 

import os 
import sys 
 
import ilir3d.lib.lir3d_db_connector as db 
 
 
# ----------------------------------------------------------------------------------------------------------- 
 
def parse_spot_list_desc(spot_desc): 
    """ 
    Parses the SPOT-disorder description file 
 
    spot_desc: The output SPOT-disorder description file 
    return: A disctionary with uniprot_ids and filename mappings 
    """ 
 
    id_mapings = {} 
    fp = open(spot_desc, 'r') 
 
    for line in fp: 
        line = line.strip().split(' ') 
        filename = line[0] 
        if filename not in id_mapings: 
            id_mapings[filename] = {} 
        uniprot = line[1].split('|') 
        uniprot_id = uniprot[2] 
        uniprot_acc = uniprot[1] 
        desc = (' ').join(line[3:]) 
 
        id_mapings[filename]["id"] = uniprot_id 
        id_mapings[filename]["acc"] = uniprot_acc 
        id_mapings[filename]["desc"] = desc 
 
    fp.close() 
 
    return id_mapings 
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 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 

# ----------------------------------------------------------------------------------------------------------- 
 
def parse_spot_file(spot_file): 
    """ 
    Parses the SPOT-disorder output file and loads all data 
    in a dictionary 
 
    spot_file: The output file of SPOT-disorder 
 
    return: A dictionary wit SPOT disorder data 
    """ 
 
    spot_dict = {} 
 
    fp = open(spot_file, 'r') 
 
    # drop header 
    header = fp.readline() 
 
    for line in fp: 
        line = line.strip().split('\t') 
        spot_dict[int(line[0])] = line[3] 
 
    fp.close() 
 
    return spot_dict 
 
# ----------------------------------------------------------------------------------------------------------- 
 
def load_regions_from_db(uniprot_id): 
    """ 
    Loads all necessary regions from iLIR3D database in order 
    to identify disorder overlaps 
 
    return: Query data in a list 
    """ 
 
    cnx = db.connect() 
    cursor = cnx.cursor(buffered=True) 
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 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
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 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 

    # this will limit results to only the old ones 
    query = "select lir_acc, lir_start, lir_end from sars_lir where uniprot_id=\'%s\'" 
 
    cursor.execute(query % uniprot_id) 
 
    data = cursor.fetchall() 
 
    cursor.close() 
    cnx.close() 
 
    return data 
 
# ----------------------------------------------------------------------------------------------------------- 
 
def dstr_constructor(lir_dstr_dict): 
    """ 
    Constructs the disorder string (dstr) based on the given dictionary 
 
    lir_dstr_dict: A dictionary with disordered residues for each position 
    of a LIR-motif 
 
    return: The disorder string dSTR 
    """ 
 
    dstr = "" 
 
    for lir_index in sorted(lir_dstr_dict.keys()): 
        dstr+=lir_dstr_dict[lir_index] 
 
    return dstr 
 
# ----------------------------------------------------------------------------------------------------------- 
 
def spot_disorder_overlap_scanner(spot_results, lir_regions): 
    """ 
    Scans a LIR-motif for disordered residues based on the LIR-motif 
    start and end positions. 
 
    uniprot_id: A valid UniProt id 
    spot_file: The output file of SPOT-disorder with all calculated IO
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118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
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142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 

    disordered regions of a sequence file defined by uniprot_id 
    lir_regions: A list with all lir regions strored in tuples as (lir_acc, start, end) 
 
    return: A dictionary with lir all disorder strings 
    """ 
 
    prot_dstrs = {} 
    lir_dstr_dict = {} 
 
    spot_annotations = parse_spot_file(spot_results) 
 
    for region in lir_regions: 
 
        # initialize dictionary 
        start = int(region[1]) 
        end = int(region[2]) 
        index = start 
 
        while index <= end: 
            lir_dstr_dict[index] = '?' 
            index += 1 
 
        # now look for disorder annotations 
        index = start 
        while index <= end: 
            if index in spot_annotations: 
                lir_dstr_dict[index] = spot_annotations[index] 
            index += 1 
 
        # assign the dstr to its corresponsing LIR 
        dstr = '' # sanity initialization 
        dstr = dstr_constructor(lir_dstr_dict) 
 
        prot_dstrs[region[0]] = dstr 
        lir_dstr_dict = {} 
 
    return prot_dstrs 
 
# ----------------------------------------------------------------------------------------------------------- 
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158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 

def calculate_disorder_percentage(dstr): 
 
    """ 
    Calculates percentage of D characters found in dstr 
 
    dstr: Disorder string dSTR (e.g. DDDSSD) 
 
    return: Disorder percentage 
    """ 
 
    lir_length = len(dstr) 
    number_of_Ds = dstr.count('D') 
 
    disorder_percentage = (number_of_Ds * 100) / lir_length 
 
    return disorder_percentage 
 
# ----------------------------------------------------------------------------------------------------------- 
 
def fetch_disorder_fields_from_db(lir_acc): 
    """ 
 
    uniprot_id: 
    return: 
    """ 
 
    cnx = db.connect() 
    cursor = cnx.cursor(buffered=True) 
 
    # this will limit results to only the old ones 
    query = "select lir, verified from sars_lir where lir_acc=%s" 
 
    cursor.execute(query % lir_acc) 
 
    data = cursor.fetchall()[0] 
 
    cursor.close() 
    cnx.close() 
 
    return data IO
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198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 

 
# ----------------------------------------------------------------------------------------------------------- 
 
if __name__=='__main__': 
 
    # main produces iLIR3D ready data for import in tabular format 
 
    spot_desc = sys.argv[1] # /path/to/spotd/list.desc 
    spot_output_dir = sys.argv[2] # /path/to/spotd 
 
    metadata = parse_spot_list_desc(spot_desc) 
 
    for case in metadata: 
        uniprot_id = metadata[case]["id"] 
        uniprot_acc = metadata[case]["acc"] 
 
        lir_regions = [] 
        lir_regions = load_regions_from_db(uniprot_id) 
 
        lir_region_dict = {} 
 
        for region in lir_regions: 
            lir_region_dict[region[0]] = {"start": region[1], "end": region[2]} 
 
        spot_file = os.path.join(spot_output_dir, case + ".spotd") 
 
        spot_dstrs = spot_disorder_overlap_scanner(spot_file, lir_regions) 
 
        for lir_acc in sorted(spot_dstrs.keys()): 
            dstr = spot_dstrs[lir_acc] 
            lir_start = lir_region_dict[lir_acc]["start"] 
            lir_end = lir_region_dict[lir_acc]["end"] 
 
            (lir_seq, verified) = fetch_disorder_fields_from_db(int(lir_acc)) 
 
            print "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % (lir_acc, uniprot_id, 
                                                                  lir_start, lir_end, 
                                                                  lir_seq,dstr, 
                                                                  str(calculate_disorder_percentage(dstr)), 
                                                                  verified, "spot","predicted", "") IO
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