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I[TEPIAHYH

H pokpoavtopayia (7 avtoeoyio) amotedel eEEMKTIKA CUVINPNUEVO  EVKOPLOTIKO
KATOBOAMKO UNYOVIGUO KLTTOPIKNG OHOLO0TOONG. YO GuvOnKes stress dmuovpyovvtot
ALTOPOYOCHUOTO, STAOUEUPPOVIKG KVOTIOW OTOUOVMOONG KVTTOPOTANGHOTIKOD VAIKOV
OV 0ONYEITAL GE AMOWKOOOUNGT) GTO. AVGOCHUATO/KEVOTOTIOL “OVAKVKADVOVTOS SOIKA
otoyela Tov KuTTdpov. H avtopayio cvyvd exteleitor emlektikd, vrofonbovuevn amnd
TPOTEIVEG-VTOO0YELG OV TPocdEvouy To. Poption pe &edkevpéveg OAAAETIOPAGELS.
Tavtdypova, péom evog Bpayéws ypoapptkov potifov (LIR-motif) mpocdévouv mpmteiveg
™G owoyévelng Atg8, mov Ppiokovtal OpolomoAKAE cvvdedepéves otn pepPpdvn tov
avtopayocopotoc. Emmiéov, mpoteivec-npocappoyeic aAAnienidpovv pe tig Atg8 pe LIR-
motifs ylo tnv emtéheon GAAOV 0LTOPAYIK®V AetTovpYldv. Katd v mepiodo évapéng avtg
™G OWoKTOpKNG  oTpiPng  elyav  yopaxtmprotet 25  mepimov  mpwTeivec-

vrodoyeig/mpocapuoyeic g avtoeayiog kot to. LIR-motifs tovg.

E&etdoape t duvatdmto ovAmTTuéng VTOAOYICTIKGOV HEBOSWV/EPYOAEI®V YOPAKTPIGHOD
LIR-motifs, otoygvoviag otn JOlevpuven NG YVAONG OYETIKA UE TIG TPOTEIVEG
VTOJ0YEIG/TPOGAPUOYEIC. ZVYKEKPIUEVE, EYOVTOS VROYN TPONYOVUEVEG TPOCTAOEIES
neptypapng towv LIR-motifs, mpoteivape o yevikeopévn kovovikny ékepaocr (xLIR)
oToXevOVTOG OTNV amoOALTN gvaicHnoio. AVoUevOUEvVa, 1 TPOGEYYIOT aUTH 00MYel o€
aviyvevon mAnbovg potifov yopic Proroywkn onuacio. [Ipokeévov va peudoovpe Tov
aplBpd TOovG, JTNPAOVING TOVTOYPOVE. VYNAN gvouctncio aviyvevong tov Proloyud
ONUOVTIKOV  HoTiBev, 0 OAOYNCOUE  CLOTNUOTIKA TANODPO  GUUTANPOUATIKOV
yopaxtnpotikov. Hapatnpaviag ot (o) ot TpoTeEiveg TG avtoPayiog TEvouy vo TEPLEXOVV
gyyevag un dounuéves meproyés (IDRs), kot (B) Bpayéa potifa mpdcdeong cvyva Ppickovrol
oe IDRs, apywd emPePordoape 6Tt 16X00VV 6TO GHVOLO OVOPOPAS KO TIC EPOPLOCALE MG
¢QiATpo, PerTidvoVTag onuavtikd v ewwotnta. Aeifape eniong 6Tt 1 mBavoBempnTIKY
avamopdotacn TV froioyikd Asttovpyikdv LIR-motifs péow PSSMs av&avel mepiocotepo
™MV eKOTNTO, 00NYOVTOS o TPOPAEWELS vVYNAOTEPNS akpifelag. Baociwldupevol ota
TOPOTAV®, OVOTTOEAUE TNV TPOTY oYeTIKN péEBodo ot PiAoypagia, 1 omoia dwatiBeton

erebBepa o xprion otV gpevvnTIKn Kowvdtnta (Sradiktvakn epappoyn iLIR).

Ytoyevovtag va Kotavonoovpue oe Bdbog Tig oyxéoelg g apvolikng akolovdiog Kot twv
SOUIK®V YOPOUKTNPLOTIKOV TOV TPOTEIVOV e Asttovpyikd LIR-motifs kot va BeAtiddcovpie
nepaltépm TV amoddoon g iLIR: (o) Medetioape cuotnuatikd dStdpope TNyEG 0ed0UEVOV
nmov oa@opovv IDRs. Tlpoteivovpe moAv-kpitnplokés mpoPAEYELS, MOV UTOPOVV Vo
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YPNOLOTONO0VV GE JUPOPETIKEG EPAPLOYES, GTOYEVOVIONG GE VYNAOTEPT EWOIKOTNTA 1)
evaoOnoia. (B) Ipayuatomocae GUCTNUATIKY GVAAOYN TEWPAUATIKE TPOGOIOPICUEVOV
TPIGOICTATOV OOU®MY TPOTEIVOV NG owoyévewng Atg8 war LIR-motifs. Metd omd
npoeneepyacio TV dedOUEVOV Yo Tov Kaboplopd tov meploydv déopevong tov LIR-
motifs, exteAéoape mepdpoata  aykvpofoAnong menTiov otig douég  “otdyovs”,
KOTOOEIKVOOVTAG OTL UTOPOVUE UE EMLTUYIO VO avayVOPILOVUE TEPUTTOCELS EOIKOTNTOG
aAnAenidpaong tov LIR-motifs pe cvykexpipéva opdroyo e Atg8. Avamtoape o
eedwkevpévn Phorn Sedopévov Yoo TNV KOTOXOPNON KOl TEPAUTEP® OVAALGN TOV

aroteAecpudTmv, 1 ool Ba dtotebel cHvTopa TPOG YPNoN.

210 TayOTOTO OVOTTUGGOUEVO OVTO EPELVNTIKO Tedio €ival TOPAKIVOLVELHEVO VO KAVEL
Kaveig emroynuéveg mpoPAréyelg tov eEeditemv oe Pabog ypdvov. To yeyovog oL onpepa
(cuyvéd pe 1 Ponberer peBdGO®V mOL ovamTOYONKOV o oLt TN JTPIPN) ExEl
TOAMOTAQGLOGTEL 1) YVOON HOG YL TOVG VTOO0YEIC/TPOCUPUOYEIG TNG EMAEKTIKNG
pokpoovto@ayiog onpovpyel véeg mpoontikéc. H avénon tov dwbéciumv dedopévmv
avapopdg emttpénet TV avamtuén eCelMypévov peboddwv tpoPieyng (n.y. Pacicpuévov oe
TEYVIKEG UNYOVIKNG LABNONG) TTOv, GE GUVOLAGUO LE OEOOUEVA LETOYPOPOUIKNG, UTOPOHV
VO TPOGPEPOVY VEQ YVAOOT] Y10l TOVS UNYOVICHOVS pOOLLOTG TNG EMAEKTIKNG OLTOPAYIOG OE
SPOPETIKOVS  KVTTAPIKOVG TOMOVG, 10TOLG Kot oavortuélakd otadw.  [Mapdiinio,
OVOKOADWELS VEOV HOPIK®Y OVIOTHTOV TOV EUTAEKOVIOL EVEPYH OTNV EMIAEKTIKY
avtopayia (m.y. ncRNAS) avopévetatl va pog Tpocs@Epouvy “ekmAngels” aAld Kot VEO LAIKO

Kot edio dpaomg Yo TEWPAUATICUO, TOGO GTO EPpYUCTHPLO 060 Kat in silico.
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ABSTRACT

Macroautophagy (hereinafter autophagy) is a catabolic, cellular homeostasis mechanism
conserved throughout the eukaryotes. Under stress conditions, double membraned vesicles
(autophagosomes) isolate cytoplasmic material, eventually targeted to the lysosome/vacuole
for degradation, thus recycling structural blocks for use by the cell. Selective modes of
autophagy are facilitated by receptor proteins capable of binding specific cargos via cargo-
specific interactions. These receptors bind to members of the Atg8 protein family
(conjugated to the autophagosome membrane) via short linear motifs (LIR-motifs).
Furthermore, protein adaptors interact with Atg8 proteins via LIR-motifs for performing
other autophagic functions. At the initiation of this PhD project approximately 25 selective

autophagy receptors/adaptors had been characterized along with their LIR-motifs.

We set to develop computational methods and tools for characterizing LIR-motifs, aiming
to broaden our knowledge on selective autophagy receptors/adaptors. Based on previous
attempts to describe LIR-motifs, we propose a generic regular expression (xLIR) aspiring to
achieve absolute sensitivity. Expectedly, this approach leads to many false positive hits
without any biological relevance. We systematically examined additional sequence-derived

features to reduce false positives.

Knowing that:
a) autophagy proteins are enriched in intrinsically disordered regions (IDRs), and

b) short linear motifs are often found in IDRs

we confirm these observations in our reference autophagy receptor/adaptor dataset and,
consequently, apply these principles as filters, leading to increased specificity. We also
demonstrate that using a profile representation of LIR-motifs (in the form of a PSSM) further
increases specificity, yielding high quality predictions. This work led to the first method of
its kind reported in the literature, now freely available for use by the research community

via the iLIR web server.
In our quest for deeper understanding the relationships between aminoacid sequences and

the structural features of proteins with functional LIR-motifs (and to further improve iLIR

efficiency):
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a) We systematically studied different data resources regarding IDRs, proposing multi-
scheme predictions, each suited for different applications aiming at higher

specificity/sensitivity.

b) We compiled a comprehensive collection of experimentally determined 3D-
structures of Atg8 proteins and LIR-motifs. Following data pre-processing for
defining the LIR-motif interaction interfaces, we conduct peptide docking
experiments, illustrating that this approach is useful for predicting LIR::Atg8
binding-specificity. We develop a specialized database for storing this information,

facilitating downstream analyses, which we plan to make freely available for use.

It is difficult to make successful long-term predictions in a rapidly developing field like
autophagy. The increasing number of selective autophagy receptors/adaptors discovered
(often using the methods/tools developed for this thesis) opens exciting research
perspectives. Access to substantially broader reference datasets enables (or, better, requires)
development of more sophisticated methods/tools (e.g. based on machine-learning
techniques) to successfully capture hidden dependencies between sequence-features and
functional properties of LIR-motifs. Combined with the increasing availability of -omics
data, we envisage cutting-edge research towards elucidating regulation of autophagy in
different cell types, tissues and developmental stages. In addition, the discovery of novel
molecular entities (e.g. ncRNAs) with active roles in autophagy guarantees further
‘surprises’ but also new data material and research directions for experimentation, in vivo,

1n vitro or in silico.
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1 Introduction

1.1 Autophagy

Autophagy is an essential conserved catabolic biological process through which the cell
maintains energy homeostasis and protects itself against pathogens. This is achieved via the
breakdown of cytosolic material at the lytic compartments of the cell, which is the vacuole
in plants and fungi and the lysosome in higher eukaryotes. To put it in simple terms, one can
see autophagy as the recycling machinery of the cell (Yang and Klionsky 2009; White et al.
2015).

There are three different types of autophagy known in mammals: microautophagy,
chaperone mediated autophagy and macroautophagy. Microautophagy involves the
invagination of the lysosomal membrane and at the same time engulfing cytosolic material,
which will be broken down once completely secluded. Chaperone mediated autophagy, as
the name denotes, is coordinated via heat shock cognate 70 proteins and their co-chaperones,

tethering proteins to the lysosome via a KFERQ like motif (Wirawan et al. 2012).

Macroautophagy is more distinctive compared to the other two types of autophagy in the
sense that it requires an intermediate double membrane vesicle called the autophagosome,

to transport cytosolic material to the lysosome for degradation (Wirawan et al. 2012).
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Figure 1. The three different types of autophagy in mammals

This figure was obtained from (Wirawan et al. 2012).



1.2 Selective macroautophagy

Macroautophagy (or simply autophagy) is known to be induced by stress or nutrient
starvation leading to the degradation of cytosolic material to the lysosome/vacuole, resulting
in the generation of “fresh” building blocks such as amino acids for protein synthesis
(Onodera & Ohsumi 2005).

Autophagy was identified as a cellular response to nutrient starvation (Scott et al. 2004;
Rubinsztein et al. 2011) and although it was initially considered to be a bulk process, where
cytoplasmic material is recycled in an unselective manner, relevant work over the years
showed that it can happen in a highly selective manner. A wide range of different cargo
degraded by this process includes from single protein molecules or protein aggregates
(Lamark & Johansen 2012; Lamark et al. 2017; Zaffagnini et al. 2018) to damaged organelles
like mitochondria (mitophagy), endoplasmic reticulum (reticuloplagy) and chloroplasts
(chlorophagy — in plants) (Palikaras et al. 2018; Avin-Wittenberg & Fernie 2014),
peroxisomes (pexophagy) (Marshall & Vierstra 2018) and even pathogens (xenophagy)
(Knodler & Celli 2011).

Upon nutrient starvation, this biological mechanism starts with the generation of the double
membrane organelle — the phagophore — near the endoplasmic reticulum, a process known
as the nucleation. The phagophore then elongates, sequestering cytosolic material and,
finally, closes forming a completely structured vesicle known as the autophagosome
(closure). In a final step, the autophagosome travels to the lysosome (or the vacuole in plants
and fungi) with which it fuses to form the autolysosome (Parzych & Klionsky 2014)
(Zaffagnini & Martens 2016). Its constituents will then be degraded and recycled material is
released back to the cytoplasm to be reused by the cell (Yang and Klionsky 2009; White et
al. 2015).

Selective autophagy is orchestrated by specialised proteins called selective autophagy
receptor (SARs) and adaptor proteins (Pankiv et al. 2007). SARs recognize and tether cargo
from the cytoplasm to the phagophore and all the way to the lysosome in a selective manner
(Stolz et al. 2014; Johansen & Lamark 2011; Rogov et al. 2017). Recruitment of cargo to the
phagophore is enabled via interaction with proteins of the Atg8 family, located on the inner

(receptors) and outer (adaptor) membranes of the phagophore (Rogov et al. 2014).



Atg8 proteins were first identified in yeast, where they also get their name from, and
although there is only one gene encoded in Saccharomyces cerevisiae, more than one
homologs are expressed in higher eukaryotes. For instance, there are 4 distinct Atg8

homologs expressed in the human genome (Shpilka et al. 2011):

1. Microtubule-associated proteins 1A/1B light chains 3A, 3B and 3C (MAP1LC3A,
MAPILC3B, MAPILC3C)
2. Gamma-aminobutyric acid receptor-associated protein (GABARAP)

3. Gamma-aminobutyric acid receptor-associated protein-like 1
(GABARAPLI/GEC1)

4. Gamma-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2/
GATE-16

The proteins of the Atg8 family and selective autophagy receptors and adaptors all together
constitute the key players of the autophagic apparatus. Members of the Atg8 family are
ubiquitin-like proteins (C-terminal), but do not share any similarities with Ubiquitins at
sequence level and their N-terminal contains two consecutive a-helices, which is also what

distinguishes them between ubiquitin proteins (Noda et al. 2010; Shpilka et al. 2011).

The interaction between Atg8 and selective autophagy receptor and adaptor proteins is
facilitated through short linear motifs (SLIMs) often named as LIRs (Pankiv et al. 2007),
AIMs (Noda et al. 2010), or GIMs (Rogov et al. 2014) based on their species of origin or
their preference towards a certain type of Atg8 homolog. From this point onwards, we will

collectively refer to these motifs as LIR-motifs, unless we specify otherwise.

LIR-motifs bind to the two conserved hydrophobic pockets of the Atg8 proteins — the W-
site and L-site named after the amino acids firstly identified to interact with — by adopting
an extended f-strand conformation, forming a parallel intermolecular B-sheet with that of

the Atg8 proteins (Rogov et al. 2014).

Apart from autophagy’s central role in the survival of the cell, this intracellular procedure is
also known to be implicated in many biological pathways and mechanisms such as apoptosis
(Mukhopadhyay et al. 2014), innate immunity (Boyle & Randow 2013), development e.g.
embryogenesis (Mizushima & Levine 2010; Qu et al. 2007) and ageing (Mizushima 2007;
Rubinsztein et al. 2011). In its defective form, autophagy can result in serious diseases from

neurodegeneration (e.g. Altzheimer’s (Uddin et al. 2018), Parkinson’s (Lynch-Day et al.



2012; Wang et al. 2016)), retinitis pigmentosa (Moreno et al. 2018)), metabolic diseases
(Rocchi & He 2015), diseases related with the heart (Martinet et al. 2007; Mei et al. 2015),
liver (Ueno & Komatsu 2017) and lungs (Ryter & Choi 2015; Racanelli et al. 2018) as well
as cancer (Amaravadi et al. 2016; Santana-Codina et al. 2017; Degenhardt et al. 2006)
(Figure 2). With such a complex interplay of autophagy with other cellular processes and
external stimuli a better understanding of this mechanism and its course of action seems to

be crucial.
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Figure 2. The multifaceted view of autophagy.

The figure was obtained from (Marshall and Vierstra 2018).

In the past decade a great curiosity around this biological mechanism emerged with studies
concentrating on the characterization of LIR-motifs through sequence and structural
analysis. The latter enabled scientists to define a short linear motif in the form of WXXL,
where the amino acids tryptophan (W) and leucine (L) were proven to be significant for the
interaction of the autophagic proteins with the two hydrophobic binding sites of the LC3
receptor (Birgisdottir et al. 2013; Noda et al. 2008). Later on, Noda et al. re-defined the linear
motif by extending it to the form of XXX [WY]XiXo[LIV], suggesting that acidic
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residues at the leftmost end of the motif (positions -3 to -1) favoured interaction with the
Atg8 receptor, also naming this short peptide AIM for Atg8 Interacting Motif (Noda et al.
2010).

Another team, in their experimental work towards the identification of LIR-motifs of the
ULK complex, Alemu and colleagues also made an effort to devise a consensus LIR-motif
to further explore common aspects of these linear peptides. They collected 27 experimentally
verified LIR-motifs from the literature. From a multiple sequence alignment composed using
the sequences they gathered, the authors proposed the following regular expression:
[DE][DEST][WFY][DELIV]X[ILV] (Alemu et al. 2012) and gave rise to a plethora of
successive analogous studies. The timeline of the “evolution” of the notion of the
AIM/LIR/GIM-motif as drawn by the traces of the pioneers in the field is shown in Figure
3.

LIR AIM GIM
22 residue

XXX WYX X[LL XV
peptide p62 (LIV] (WFIVI]

Pankiv et al. 2 8 Noda et al. 201 2 Rogov et al.

00
- Y I Y

T ‘ ,-

v

I - am—

LRS LIR
2007 WxxL 201 o [DE][DEST][WFY][DELIV]X[ILV] 201 7
Ichimura et al., Noda et al. Alemu et al.

Figure 3. The “evolution” of the notion of a LIR/AIM/GIM motif.

1.3 Intrinsic disorder and LIR-motifs

Intrinsically disordered proteins (IDPs) are proteins which in their free state do not fold into
a unique stable conformation (Wright & Dyson 1999). IDPs have been intensively studied
during the last two decades and an increasing amount of knowledge continues to accumulate
regarding to their possible functions (Wright & Dyson 2015; Dyson & Wright 2005; Oldfield
& Dunker 2014; Darling & Uversky 2018). In several cases, a single protein may contain
both globular (i.e. well-folded) and disordered (i.e. unstructured) domains, e.g. p53
(Derbyshire et al. 2002; Rowell et al. 2012; Suad et al. 2009).

In the majority of the currently documented cases, the conformation of the LIR-motif is

extended when bound to the LIR docking site (LDS) of Atg8 homologs. An intriguing case
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is the CLTC LIR-motif, which adopts an a-helical structure (Fotin et al. 2004). If we assume
that during its interaction with the LDS a LIR-motif must have an extended conformation,
then it would be possible that LIR-motifs may have the characteristics of so-called
“chameleon sequences” (Mezei 1998) or “conformational switches” (Tsolis et al. 2013), that
is, short sequences found to adopt more than one distinct secondary structure state. Such
sequences have been long known to be important in protein aggregation and amyloid
formation (Kelly 1996).

Additionally, it has been postulated that the function of LIR-motifs may be facilitated by
short-range (with respect to the LIR-motif) conformational changes. Such structural
rearrangements could bring this short linear motif in a suitable extended conformation in
order to interact with the 2 well-conserved hydrophobic pockets on the surface of Atg8
homologs (Noda et al. 2008; Noda et al. 2010). Combined with the recent observation that
autophagy-related proteins are relatively rich in intrinsically disordered regions (Mei et al.
2014), it is possible that the LIR-motifs may adopt the required conformation after switching

from a disordered to an ordered state.

1.4 Hypothesis and objectives

Despite the central role of selective autophagy in cell physiology, at the beginning of this
project only a few instances of selective autophagy receptors had been experimentally
verified and reported in the literature. In addition, throughout the years several groups
identified and refined the definition of LIR/AIM motifs. However, there was no systematic
manner (e.g. dedicated computational tools) to look for instances of functionally relevant
LIR motifs in amino acid sequences. Thus, a molecular biologist that wanted to investigate
whether a protein sequence of interest had the potential to interact with an Atg8 protein,
would have to manually check for an instance of the LIR motif or tweak existing software
to perform this task. In addition, in the absence of automated tools, scanning of complete

proteomes for the presence of LIR containing proteins (LIRCPs) was simply impossible.

We examined the efficacy of the consensus regular expression (cLIR) introduced in Alemu
et al. (Alemu et al. 2012) and found it to be weak in discriminating LIR instances. The cLIR
with a reported sensitivity of only 40.7% would only capture 11 out of the 27 verified LIR-
motifs, a simple method which evidently required further improvement. Therefore, we
hypothesised that a systematic study of experimentally known LIR-motifs and LIRCPs could

facilitate the development of useful tools for the identification of functional LIR-motifs in



protein sequences. Moreover, accumulating structural evidence, started to highlight
structural properties of the LIR-motif mediated interactions between LIRCPs and Atg8
proteins (Noda et al. 2008; Noda et al. 2010). In particular, an important observation related
these Short Linear Motifs with disorder to order transitions upon binding with their
compactly folded partners, proposing intrinsic disorder as a potentially important property

of functional LIR-motifs (Noda et al. 2010).

In this study, we focus on the following objectives:

1. Development of in silico methods and user-friendly tools for detecting putative LIR-
motifs and for providing useful information for downstream prioritizing LIR-motifs
for experimental validation. Such a method can facilitate the discovery of novel
selective autophagy receptor/adaptor proteins across eukaryotes. Towards this goal,
it is necessary to delimit the structural and functional properties of functional LIR-
motifs and to possibly devise new representations of the LIR-motif.

2. Determination of sequence features of functional LIR-motifs and their (predicted)
structural properties. Available experimental data highlight the importance of
flexibility in the regions containing functional LIR-motifs, thus systematically
investigating the role of intrinsically disordered regions in LIR-motifs is a main focus
of this study.

3. Development of tools and databases for exploiting existing structural data for
enhancing our understanding of the properties of LIR-mediated interactions between
LIRCPs and Atg8 proteins.

With the fulfilment of the above objectives, we also aim to generate new knowledge that
may enhance our understanding of autophagy-related protein-protein interactions and open
new avenues for research in the elucidation of the molecular mechanisms underlying

selective autophagy.

In the following chapters, we present:

i.  The development of the freely available iLIR server which provides an easy way to
analyse protein sequences for the presence of LIR motifs. The underlying method is
carefully validated in a set of well-studied proteins known to interact with Atg8
proteins.

ii.  The systematic validation of different sources of information (including predictions)

of intrinsic disorder as a feature for enhancing LIR-motif prediction methods.



iii.  The development of tools to analyse structural instances of complexes of LIRCPs
and Atg8 proteins (including the results of peptide docking experiments) and the
development of a specialised database to make these results available to the wider

scientific community.

We anticipate that the tools and types of analyses presented in the following sections will be
useful in the elucidation of novel players in selective autophagy (receptor and adaptor
proteins). Furthermore, it will enable the study of autophagy in species other than human
and yeast (where, traditionally, most knowledge regarding this important cellular process
has been acquired) and may inspire complementary computational approaches which may

facilitate further advances in this rapidly evolving and exciting field of research.



2 Computational steps towards the characterization and

identification of LIR-motifs
2.1 Preface

2.1.1 The Atg8 protein family

An undoubtedly central role in autophagy hold the proteins belonging to the autophagy-
related 8 (Atg8) family, a name deriving from the Atg8 protein primarily identified in
Saccharomyces cerevisiae. Although there is only one Atg8 protein encoded in the yeast

genome, higher eukaryotes come with 4 distinct types:

Microtubule associated protein 1 light chain 3, known as MAPL1LC3 or LC3 and its

4 isoforms including:

- LC3A, LC3B, LC3B2 and LC3C
e (Gamma-aminobutyric acid receptor-associated protein (GABARAP)
e Gamma-aminobutyric acid receptor-associated protein-like 1
(GABARAPLI1/GEC1)
e Gamma-aminobutyric acid receptor-associated protein-like 2

(GABARAPL2/GATE16/GEF2)

According to the work of Noda et al. (Noda et al. 2010), who very nicely demonstrated the
secondary and tertiary structural aspects of the proteins belonging to the Atg8 family, these
proteins comprise a C-terminal domain that resembles ubiquitin-like structures, but without
any (or below the detection threshold) similarities at sequence level, and an N-terminal
extension with two consecutive a-helices. Their distinction from ubiquitin proteins relies on

this conserved and unique feature.

The binding to the adaptor and receptor proteins is achieved via short linear motifs known
in the literature as AIMs, LIRs or GIMs, a name driven from the Atg8 homolog they
preferably interact with. The LIR-motifs are located on the surface of adaptor and receptor
proteins and upon binding with the Atg8 homologs they also interact with the two conserved
hydrophobic pockets on the surface of the Atg8 receptors, undertaking an extended -sheet
conformation (Figure 4). In particular, their interaction with the LIR motifs is achieved via

binding to their 2 hydrophobic pockets named W-site and L-site, a name given by the amino



acids initially found to be interacting with those, a Tryptophan (Trp - W) and a Leucine (Leu
- L) at positions 3 and 6 of the LIR-motif respectively. The adoption of an extended p-strand
conformation by the core of the LIR motif facilitates its interaction in a parallel fashion with

the second B-strand of the Atg8 target forming an intermolecular B-sheet (Rogov et al. 2014).

2K6Q 2L8J 2ZPN
MAP1LC3B/p62-LIR GABARAPL1/NBR1-LIR Atg8/Atg19-LIR

Figure 4. Three of the receptors belonging to the Atg8 family in complex with a LIR-motif peptide

Three of the receptors belonging to the Atg8 family in complex with a LIR-motif peptide. Structure A (PDB
id: 2K6Q) is the MAP1LC3B protein in complex with the LIR-motif of p62. Structure B (PDB id: 2L8J) is the
GABARAPLI protein in complex with the LIR-motif of NBR1 and structure C (PDB id: 2ZPN) is the actual
Atgg8 protein in complex with the LIR peptide of cargo-receptor protein Atgl9. In all three structures the LIR
peptides (green) take on an extended -strand conformation at the two hydrophobic pockets of the Atg8 proteins

(W-site, L-site; illustrated in yellow and orange respectively).

Until very recently, the majority of studies focused on the characterisation of Atg8
Interacting Motifs (AIMs) (Noda et al. 2010) and LC3 Interacting Regions (LIRs) (Pankiv
et al. 2007). Recently, Rogov and colleagues in their structural analysis on binders of the
GABARAP isoforms, suggested the classification of the LIR-motifs based on their preferred
Atg8 partner and gave emphasis to those motifs found to be specific to the GABARAP
proteins, which they named GABARAP Interaction Motifs (GIMs). For the purposes of this
study we maintain the term LIR-motif for all motifs regardless of binding specificity or

species of origin.

2.1.2 Selective autophagy receptor and adaptor proteins

Autophagy is mediated by adaptor and receptor proteins, that selectively recruit cargo to an
enclosed double membrane structure called the autophagosome. The autophagosome will

travel carrying all its freight to fuse with a lysosome (or vacuole) to form the autolysosome.
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This event causes all intra-autophagosomal components to be broken down by lysosomal

hydrolases and released back to the cytosol to be re-used by the cell.

The distinction between receptor and adaptor proteins is based on the way they interact with
the proteins of the Atg8 family. Selective autophagy adaptors interact with proteins of the
Atg8 family on the outer membrane of the autophagosome and are found to be implicated in
many different processes from autophagy initiation to the degradation of materials by the
autolysosome. A couple of examples are the ULK1 and ULK2 adaptor proteins participate
in autophagosome formation (Kraft et al. 2012), FYCOIl which participates in
autophagosome transport (Pankiv et al. 2010), TBC1D5, establishes communication with
the endocytic network (Popovic et al. 2012) and PLEKHM1 with a key role in the
autophagosome-lysosome fusion (McEwan et al. 2015). In contrast, selective autophagy
receptors (SARs) interact with the Atg8 proteins on the inner side of the autophagosome and
as a consequence being degraded with the rest of the cytosolic material. Clearly the fate of

the adaptor proteins is less “tragic”.

As previously mentioned, interaction with the proteins of the Atg8 family is achieved via
short linear motifs, namely LIR-motifs. With respect to structural features, in the majority
of the currently documented cases, LIR-motifs are shown to take an extended conformation
when bound to the LIR docking site (LDS) of Atg8 homologs. An exception to the standard
is the LIR-motif of the Clathrin heavy chain 1 (CLHI HUMAN), which instead folds into

an o-helical structure (Fotin et al. 2004).

Building on that observation and based on the fact that a LIR-motif during its interaction
with the LDS must have an extended conformation, then it is highly probable for LIR-motifs
to have the characteristics of “chameleon sequences” (Mezei 1998) or conformational
switches (Tsolis et al. 2013). Those are found to be short sequences that adopt more than
one distinct secondary structure state and have been long known to be important in protein

aggregation and amyloid formation (Kelly 1996).

Another assumption is that the function of LIR-motifs may be facilitated by a short-range
(with respect to the length of these sequences) of conformational changes. Such structural
rearrangements could bring this short linear motif in a suitable extended conformation in
order to interact with the 2 well-conserved hydrophobic pockets on the surface of Atg8
homologs (Noda et al. 2008; Noda et al. 2010). Combined with the observation that

autophagy-related proteins are relatively rich in intrinsically disordered regions (IDRs) (Mei
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et al. 2014), it is possible that the LIR-motifs may adopt the required conformation after

switching from a disordered to an ordered state.

In order to test this hypothesis, we scanned all of the proteins containing experimentally
verified LIR-motifs (Table 1), in search for the presence of intrinsically disordered regions
(IDRs). Disorder LIR-motifs were initially determined using the ANCHOR software
(Mészaros et al. 2018), a dataset that was later enhanced by incorporating data from MobiDB
(Piovesan et al. 2018) and 2 additional disorder prediction tools [IUPRED2A (Mészaros et
al. 2018) and SPOT-disorder (Hanson et al. 2017) (see next chapter 3).

2.2 Data and Methods
2.2.1 Data

2.2.1.1 Compiling a sequence dataset

The sequences used in this study were obtained from the UniProt Knowledgebase

(https://www.uniprot.org/) and saved locally in flat files in FASTA format. Access to each

sequence was established via their corresponding accession which is used as parameter,

search by protein or gene name or keywords.

Name Species A[ilcl:els):i(:)tn Name Species Ali lclzl::i‘:)tn
ATG4B H. sapiens Q9Y4P1 TPS3INP2/DOR H. sapiens Q8IXH6
ATG13 H. sapiens 075143 TPS3INP1 H. sapiens Q96A56

Calreticulin H. sapiens P27797 TBC1DS5 LIR2 H. sapiens Q92609
Clathrin HC H. sapiens Q00610 Stbd1 H. sapiens 095210
¢-Cbl H. sapiens P22681 p62 H. sapiens Q13501

DvI2 H. sapiens 014641 NIX H. sapiens 060238

FUNDC1 H. sapiens Q8IVP5 FIP200 H. sapiens Q8TDY2
FYCO1 H. sapiens Q9BQS8 AtNBR1 A. thaliana Q9SB64
NBR1 H. sapiens Q14596 DmATGI1B D. melanogaster Q8MQIJ7
OATL1/TBC1D25 H. sapiens Q3MII6 ScAtgl S. cerevisiae P53104
Optineurin H. sapiens Q96CV9 ScAtg3 S. cerevisiae P40344
ULK1 H. sapiens 075385 ScAtgl9 S. cerevisiae P35193
ULK2 H. sapiens Q8IYTS ScAtg32 S. cerevisiae P40458

Table 1. Selective autophagy receptor and adaptor proteins with experimentally determined LIR-motifs.

Gene or protein names, species of origin and the UniProt accession numbers are displayed.

All sequences underwent manual curation to ensure their validity and the exact position of
the LIR-motifs. In cases where searches resulted in multiple hits, we manually selected
complete sequences over truncated ones with preference to curated entries matching the
sequences reported in the respective literature. The 26 UniProt entries were retrieved using
this procedure and are listed in Table 1.
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In particular, for the LIRCPs studied for the updated definition of the LIR-motif (xLIR) we
followed a manual data-cleansing procedure, where instances of LIR-motifs reported in the

literature that did not match with UniProt sequences were corrected for downstream analyses

(Table 2).

2.2.1.2 Randomised sequence dataset

Randomisation of datasets is necessary in order to eliminate any biased interpretation of the
outcome and ensure that what is being observed is not happening at random. For this end,
we devised a randomized dataset where randomised versions of the sequences in Table 2
were generated by shuffling, thus maintaining composition of the peptides using the
shuffleseq  program available from the EMBOSS explorer server

(http://emboss.bioinformatics.nl/).

2.2.2 Methods

2.2.2.1 Intrinsic disorder prediction with ANCHOR software

We hypothesize that several of the genuine LIR-motifs will lie in intrinsically disordered
regions which have the potential to become ordered upon interaction with the Atg8 proteins.
This seems to be a general property of several SLIMs (Davey et al. 2012). Therefore, we
decided to use the ANCHOR software which predicts (using single-sequence information)
subsequences flanking or overlapping intrinsically disordered regions - herein called
anchors - with a high potential to be stabilized upon binding to a target molecule (Mészéros
et al. 2018).

2.2.2.2 Revising the LIR-motif regular expression

A first scanning using the canonical LIR (cLIR) [DE][DEST][WFY][DELIV]X[ILV]
introduced by Alemu et al. (Alemu et al. 2012), revealed its weakness in identifying LIR
motifs, with it being able to only recognize 11 out of the 27 experimentally determined LIR
motifs (40.7%). Driven by that outcome, we downloaded all protein sequences proposed in
their study and manually created a multiple sequence alignment composed of the 27 verified

LIR sequences illustrated in Table 3 under the block of Alemu et al.
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. UniProt . LIR LIR Masked
Name Species ACC LIR-motif Position Limits Masked Residues References
ATG4B H. sapiens Q9Y4P1 DAATLTYDTLRF 8 2-13 N N) D (Satoo et al. 2009)
ATG13 H. sapiens 075143 | GNTHDDFVMIDF (‘ﬁ&) 438-449 N (N) - (Alemu et al. 2012)
183~ (Mohrliider,
Calreticulin H. sapiens P27797 GSLEDDWDFLPP (200) 194-205 Y (Y) E Stangler, et al.
2007)
513 (Mobhrliider,
Clathrin HC H. sapiens Q00610 | VGYTPDWIFLLR (514) 508-519 1 N(N) - Hoffmann, et al.
2007
. P,S, G, (Sandilands et al.
c-Cbl H. sapiens P22681 ASSSFGWLSLDG 802 796-807 Y (Y) H.D 2011)
DvI2 H. sapiens 014641 | EVRDRMWLKITI | 444 438-449| Y(N)  P,R,S | (Gaoetal 2010)
FUNDC1 H. sapiens QS8IVPS ESDDDSYEVLDL 18 12-23 ' N (N) - (Liu et al. 2012)
FYCOI1 H.sapiens | Q9BQSS PPDDAVFDIITD 1280 1% Y(N) Q.S.E (Pankivetal. 2010)
NBR1 H. sapiens Q14596 SASSEDYIIILP 732 726-737 Y (Y) E,K  (Kirkin et al. 2009)
OATL1/TBC1D25 H. sapiens Q3MII6 = SPLLEDWDIISP 136 | 130-141 Y (N) P, S (Itoh et al. 2011)
Optineurin H. sapiens  Q96CV9 GSSEDSFVEIRM 178 172-183 Y (Y) E (Wild et al. 2011)
ULK1 H. sapiens 075385 | SCDTDDFVMVPA | 357 351-362 Y (Y) S,P  |(Alemu et al. 2012)
ULK2 H. sapiens Q8IYT8 SCDTDDFVLVPH 353 347-358 | Y (Y) S (Alemu et al. 2012)
TP53INP2/DOR | H. sapiens | Q8IXH6 EDEVDGWLIIDL 35 2940 | Y(N) R,P |(Sancho et al. 2012)
TPS53INP1 H. sapiens Q96A56 EKEDDEWILVDF 31 25-36 Y (Y) E (Sancho et al. 2012),
. 788 Popovic et al.
TBC1D5 LIR2 H. sapiens Q92609 | SSKDSGFTIVSP (787) 781-792 1 Y (Y) S 2012)

Stbd1 H. sapiens 095210 | RVDHEEWEMVPR 203 197-208 Y (N) S (Jiang et al. 2011)
p62 H. sapiens Q13501 | SGGDDDWTHLSS | 338 332-343 Y (Y) S (Pankiv et al. 2007)
NIX H. sapiens 060238 = AGLNSSWVELPM 36 30-41 | Y (Y) N,S | (Novaketal.2010)

FIP200 H. sapiens | Q8TDY2 | DAHTFDFETIPH | 702 | 696-707 | Y (N) E,S [(Alemuetal. 2012)
. (Svenning et al.
AtNBR1 A. thaliana ~ Q9SB64 LCGVSEWDPILE 661 655-666 Y (N) S 2011)
DmATGI1B D Q8MQJ7 | HEDSDDFVLVPK | 391 385-396| Y (Y) S,Q |(Alemuetal. 2012
melanogaster
(Alemu et al. 2012;
o 391 Nakatogawa et al.
ScAtgl S. cerevisiae = P53104  RSFEREYVVVEK (429) 423-434 Y (Y) S.E 2012: Kraft ot al.
2012)
. b, (Yamaguchi et al.

ScAtg3 S. cerevisiae | P40344 | LDGVGDWEDLQD & 270 264-275 Y (Y) D 2010

ScAtgl9 S. cerevisiae =~ P35193 NEKALTWEEL 412 406-415 | Y (Y) E (Noda et al. 2008)
- ( .
ScAtgd? | S.cerevisice | PAO4SS | DSISGSWQAIQP 86 | 8091 Y(v) sp (Ckemesc

Table 2. Selective autophagy receptor/adaptor proteins with experimentally verified LIR-motifs.

Name: protein/gene name. Species: the particular species it belongs to. UniProt ACC: a unique identifier
assigned by UniProtKB. LIR-metif: the sequence of the LIR-motif*. LIR Position: center of LIR-motif based
on Alemu et al. (Alemu et al. 2012) — in parenthesis corrected the position of the LIR-motif on the UniProtKB
sequence. LIR Limits: start-end positions of the LIR-motif based on the sequence retrieved from UniProtKB.
Masked: presence of Low Complexity Region (Y/N) — in parenthesis a “binary” value indicating if the LCR
overlaps the LIR-motif. Masked Residues: residues identified as LCRs — in bold is the residue participating
in the overlap. Reference: the study in which a particular motif was experimentally verified. *We could not
trace the difference with the UniProt entry based on the evidence listed therein. **Calreticulin is known to
contain a cleavable signal peptide (residues 1-17). Low complexity regions (in particular, local compositional
bias) was detected using CAST with default parameters (Promponas et al. 2000), which for each detected LCR

assigns a specific residue type.
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With the help of explicitly developed software that loops over the MSA and identifies all
distinct amino acids that appear at each column of the alignment, we generated a new more
relaxed regular expression. The resulting regular expression is
[ADEFGLPRSK][DEGMSTV][WFY][DEILQTV][ADEFHIKLMPSTV][ILV], keeping
the conserved residues W, F, Y at the 3rd position and maintaining the aliphatic amino acids
I, L, V at the 6th position of the sequence and allowing all possible amino acids at remaining

positions. We named this regular expression as the eXtended LIR motif (xLIR-motif).

As expected, this revised regular expression matches all 27 experimentally verified LIR-
motifs introduced by Alemu et al. (Alemu et al. 2012) with a 100% sensitivity. At this point
one can argue that in proteome-wide scans, this would introduce many spurious hits. In fact,
we compute the probability of occurrence of cLIR- and xLIR-motifs in random sequences

as 1.8 x 10~% and 1.5 x 1073 respectively (see Results) — therefore, many false positive hits

are expected to be detected by the xLIR motif. In the following sections we propose
additional methods that work in a synergistic manner for the elimination of falsely classified

instances.

2.2.2.3 Generation of an xLIR Position Specific Scoring Matrix (PSSM)

Regular expressions are very useful tools for quickly scanning large volume of data in search
for meaningful patterns. However, due to their deterministic nature, speed comes at the
expense of their expressive power, meaning that a subsequence either matches the regex at
hand or not. In the case of allowing almost all possible amino acid alternatives at each
position in an attempt to capture as many instances as possible, the pattern on one hand can
become more sensitive, but on the other hand it comes with the hazardous drawback that the

regular expression becomes saturated.

Another disadvantage is that in the case of LIR-motifs, the short length of the peptides
increases the probability of such patterns to occur by chance in long protein sequences, thus
resulting in many spurious hits. Imagine using a regular expression to annotate complete
proteomes with LIR-motifs. It is anticipated that the saturated xLIR regex would result in
numerous hits, the majority of which would be have falsely predicted as such. It is therefore
very crucial that more sophisticated methods are employed in order to be able to filter out as

many of those falsely annotated LIR regions.
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In 2009, Mohrliider and colleagues used position specific scoring matrices (PSSMs) as a
means for detecting LIR-motifs. The PSSM was composed from data coming from phage
display screening data of a randomised peptide library (Mohrliider, Stangler, et al. 2007). A
scan of the entire SwissProt database using the PSSM they constructed, resulted in the
discovery of calreticulin (CALR) and its interaction with GABARAP. Two other known
LIRCPs identified during this process was clathrin heavy chain Hc (CLTC) and
BNIP3L/NIX (Mohrliider, Stangler, et al. 2007).

Building on that idea and driven by the fact that regular expressions could be insufficient in
correctly identifying LIR-motifs in an attempt to filter false positives, we constructed a
PSSM based on the list of 27 experimentally verified LIR-motifs, in support of the instances
predicted by the XxLIR motif. This required the creation of a multiple sequence alignment
(MSA), which contained all 27 verified LIRs from Alemu et al. (Alemu et al. 2012).

A PSSM is a L x 20 scoring matrix based on the amino acid frequencies at every position of
a multiple sequence alignment (MSA), where L is the length of the sequences comprising
the MSA (Figure 5). Each element in a PSSM matrix is a log-odds score representing the
appearance of an amino acid in a particular position. Highly frequent amino acids are
assigned very high and positive scores, whereas rarely occurring residues are assigned
negative values. The strength of this approach relies on the fact that apart from the presence
of different amino acid residues in a specific position of the pattern, PSSMs are also able to
capture the significance of each residue type occupying a certain position, compensating in
a combinational model for the weakness of the regular expression. Residues absent from the
alignment can be assigned log-odds scores based on the background probabilities encoded
in a typical (position in-specific) scoring matrix, or by introducing pseudocounts, which is
equivalent to multiplying the probabilities of occurrence of each residue in a specific column
of the MSA by a Dirichlet distribution. In order to construct an XxLIR specific PSSM we
used the stand-alone (command-line) version of PSI-BLAST with default parameters and
the MSA of the 27 experimentally verified LIR-motifs as input. The properties of the MSA

(and thus the resulting PSSM) are summarized in the sequence logo in Figure 6-C.

In principle, we could scan our set of protein candidates with the aforementioned PSSM
using a simple script that moves the PSSM along the query sequences in search for highly
scoring hexapeptides, irrespectively of the presence of a cLIR- or xLIR-motif. The sliding
of the PSSM would happen one residue at a time, meaning that at each iteration the starting

point of the PSSM window is at position pa+1 = pat+1, with the final iteration at position Pfinat
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= L-w+1, where L is the length of the target sequence and w is the size of the sliding window
(the length of the PSSM/LIR-motifs), thus not allowing for gaps. However, as the xLIR-
motif is designed to be highly sensitive, we decided to only scan LIR-motif candidates with
the PSSM in order to optimize consumption of computational resources necessary for
scanning (possibly) large sequence datasets. A custom software tool was built to use this
PSSM for scanning protein sequences. Since the vast majority of the known LIR-motifs are
of length 6, we implement our search procedure by sliding the PSSM along the query

sequence with infinite gap-penalty (i.e. without allowing for gaps).

LIR-PSSM
A 0 -2 -4 -2 0 2
R 1 -2 -4 -2 -1 -4
N -1 0 -5 ) -2 -4
D 3 5 -6 2 0 -5
C -3 -3 -4 -3 -2 -2
Q -1 -1 -4 1 -1 -4
E 1 2 -5 2 1 -4
G 0 1 -5 -3 -2 -5
H -2 -2 -3 2 0 -4
| -2 -3 -4 1 1 4
L -1 -3 -3 1 0 4
K 0 -1 -5 -1 0 -4
M -2 1 -3 -1 2 1
F 1 -4 4 -2 1 -1
P 0 -2 -5 -3 0 -4
S 1 1 -4 -1 0 -3
T -1 1 4 1 1 -2
w -3 -4 11 -3 -3 -3
Y -2 -3 5 -2 -1 -2
Y -2 -3 -4 2 1 3
X, X4 Xo X; X; X3

Figure 5. The xLIR-PSSM.

The actual matrix of the PSSM with amino acid log-odds scores for each position of the LIR-motif. The PSSM
was constructed based on the MSA of the 27 LIR-motifs from Alemu et al. (Alemu et al. 2012), using the
stand-alone version of PSI-BLAST (see text for details).
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Figure 6. Graphical representation of the xLIR-PSSM

A — Heatmap plot representation of the XLIR-PSSM, where “hot” colours correspond to higher PSSM scores.
B — Correlation plot showing between position similarities for the xLIR-PSSM. For each PSSM position pair
the Euclidean distance serves as the clustering metric. C - The sequence logo resulted from the multiply aligned
verified LIR-motifs and used to define the XLIR regular expression. The xLIR-PSSM heatmap and correlation
plot were generated using http://www?2.heatmapper.ca/ (Babicki et al. 2016), and the sequence logo was

generated using the PSSMsearch webserver (Krystkowiak et al. 2018).

2.2.2.4 Metrics for assessing the quality of predictions

In this section, the evaluation of all prediction schemes was performed by calculating the

following metrics:

o TP
Sensitivity = TP+ FN

e TN
Specificity = FP+TN

TP+TN
Accuracy = o Y TN + FN
TPR 4+ TNR

Balanced accuracy = —
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The values were computed under the following assumptions:

e A true positive (TP) LIR-motif is a functional LIR motif with experimental evidence

reported in the literature

e A true negative (TN) LIR motifs is one whose experimental validation shows they
are not functional and predicted as such

e A false positive (FP) LIR-motif is one predicted as functional, but without existing

experimental support

e A false negative (FN) LIR-motif the case where experimental evidence proves it is

functional, but not predicted as such

2.3 Results

A collective illustration of our results is portrayed in Table 3, followed by a thorough

analysis and discussion that is organised in distinct sections. The table lists the entire

collection of proteins rigorously examined in this study, including their experimentally

validated LIR-motifs and their corresponding computational predictions (i.e cLIR, xLIR,

Anchor, PSSM). The sections are conversed exhaustively hereunder.

MOTIF
UNIPROT ID UNilgzOT Sequence | Position | Verified [cLIR|xLIR |Anchor Pfjxls::)re Species
Data set from Alemu et al. (Alemu et al. 2012)

ATG13 HUMAN 075143 EGFQTV 166-171 No No [ Yes [ No |11 (1.5e-01) Human
DDFVMI 442447 Yes Yes | Yes | Yes |20(8.4e-03) Human

Atgl YEAST P53104 REYVVV | 427-432 Yes No | Yes | Yes |[14(5.7e-02) Yeast

Atg32 YEAST P40458 GSWQAI 84-89 Yes No | Yes [ Yes [17(2.2¢-02) Yeast

KEYQSL 235-240 No No | Yes No 12 (1.1e-01) Yeast

LGYILL 524-529 No No [ Yes [ No [10(2.0e-01) Yeast

ATG4B_HUMAN®**

[MM] Q9Y4P1 LTYDTL 611 Yes No [ Yes [ No [12(1.1e-01) Human
PMFELV 347-352 No No [ Yes [ No [10(2.0e-01) Human
EDFEIL 386-391 No Yes | Yes No |17 (2.2¢-02) Human

Atgl9_YEAST P35193 LTWEEL | 410-415 Yes No | Yes | No [18(1.6e-02) Yeast

Atg3 YEAST P40344 GDWEDL | 268-273 Yes No | Yes | No (22 (4.4e-03) Yeast
BNI3L HUMAN 060238 SSWVEL 34-39 Yes No | Yes [ Yes [20(8.4e-03) Human
AEFLKV 183-188 No No [ Yes [ No [10(2.0e-01) Human

CALR_HUMAN P27797 GGYVKL | 107-112 No No | Yes | No [12(1.1e-01) Human
DEFTHL 166-171 No No [ Yes [ No |14 (5.7¢-02) Human

DDWDFL | 198-203 Yes Yes | Yes | Yes |26(1.2e-03) Human
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CBL_HUMAN P22681 DTYQHL 90-95 No No [ Yes [ No |14 (5.7¢-02) Human
LTYDEV | 272-277 No No | Yes [ No [11(1.5e-01) Human
FGWLSL 800-805 Yes No [ Yes [ Yes |18 (1.6e-02) Human
REFVSI 893-898 No No | Yes | Yes* [13(7.9¢-02) Human
FUNDI HUMAN QS8IVPS DSYEVL 16-21 Yes Yes | Yes | No |16 (3.0e-02) Human
GGFLLL 81-86 No No [ Yes [ No [10(2.0e-01) Human
OPTN_HUMAN Q96CV9 DSFVEI 176-181 Yes Yes | Yes | Yes |15 (4.2e-02) Human
Q8MQJ7_DROME Q8MQIJ7 ADYLSV 96-101 No No | Yes [ No [14(5.7¢-02)| Drosophila
DDFVLV | 389-39%4 Yes Yes | Yes | Yes |17 (2.2e-02) | Drosophila
Q9SB64 ARATH QI9SB64 RVWVLI | 479-484 No No | Yes | No [15(4.2¢-02)| Arabidopsis
SEWDPI 659-664 Yes No | Yes No |20 (8.4e-03) [ Arabidopsis
RBCC1_HUMAN Q8TDY2 FDFETI 700-705 Yes No | Yes [ Yes [17(2.2e-02) Human
SQSTM_HUMAN**
[LL] Q13501 DDWTHL | 336-341 Yes No [ Yes [ Yes [24(2.3e-03) Human
STBD1_HUMAN**
[LN] 095210 EEWEMV | 201-206 Yes Yes | Yes | No |21(6.1e-03) Human
T5311 HUMAN Q96A56 DEWILV 29-34 Yes Yes | Yes | Yes |20(8.4e-03) Human
TBC25_HUMAN Q3MlII6 EVYLSL 95-100 No No | Yes | No 8(3.9¢-01) Human
EDWDII 134-139 Yes Yes | Yes | No |24 (2.3e-03) Human
TBCDS5_HUMAN Q92609 KEWEEL 57-62 Yes No | Yes [ No [20(8.4e-03) Human
DDFILI 713-718 No Yes | Yes | Yes* |17 (2.2e-02) Human
SGFTIV 785-790 Yes No | Yes [ Yes |11 (1.5¢-01) Human
T5312 HUMAN Q8IXH6 DGWLII 33-38 Yes No [ Yes [ Yes |21 (6.1e-03) Human
ULK1 HUMAN 075385 DDFVMV [ 355-360 Yes Yes | Yes | Yes |19 (1.2e-02) Human
ULK2 HUMAN QSIYTS DDFVLV | 351-356 Yes Yes | Yes | Yes |17(2.2e-02) Human
CLH1 HUMAN Q00610 PDWIFL 512-517 Yes No | Yes [ No (22 (4.4e-03) Human
GMFTEL | 1315-1320 No No [ Yes [ No |11 (1.5e-01) Human
EDYQAL | 1475-1480 No No | Yes [ No [16(3.0e-02) Human
DVL2 HUMAN 014641 RMWLKI | 442-447 Yes No [ Yes [ No [18(1.6e-02) Human
FYCO1_HUMAN**
[MM] Q9BQS8 ADYQAL | 644-649 No No | Yes [ Yes* [15(4.2¢-02) Human
AVFDII | 1278-1283 Yes No [ Yes [ Yes [ 8(3.9¢-01) Human
NBR1_HUMAN Q14596 LSFELL 561-566 No No | Yes [ Yes* [10(2.0e-01) Human
EDYIII 730-735 Yes Yes | Yes | Yes |17(2.2e-02) Human
Additional LIRCPs from Birgisdottir et al. (Birgisdottir et al. 2013)
BNIP3 HUMAN Q12983 GSWVEL 16-21 Yes No [ Yes [ Yes |19 (1.2e-02) Human
AEFLKV 159-164 No No [ Yes [ No [10(2.0e-01) Human
MK15 HUMAN Q8TDO08 RVYQMI | 338-343 Yes No [ Yes [ Yes [10(2.0e-01) Human
CACO2_HUMAN Q13137 FMWVTL 72-77 No No | Yes [ No [20(8.4e-03) Human
DILVV 132-136 Yes No | No No N/A Human
COH519 PLAF7 COHS519 NDWLLP 103-108 Yes No | No No |12(1.2e-02) | Plasmodium
ATG34 YEAST Q12292 KVYEKL | 194-199 No No | Yes [ No 8 (3.9¢-01) Yeast
FTWEEI 407412 Yes No | Yes [ No [20(8.4e-03) Yeast
TAXB1 HUMAN Q86VP1 DMLVV 139-143 Yes No | No No N/A Human
ADFDIV 514-519 No No | Yes [ Yes [15(4.2¢-02) Human
CTNB1 HUMAN P35222 SHWPLI 502-507 Yes No | No No |11(1.5e-01) Human

Data set from Behrends et al. (Behrends et al. 2010)
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STK4 HUMAN

[MM] Q13043 EVFDVL 28-33 No No | Yes | No 9 (2.8e-01) Human
GDYEFL 431-436 No No | Yes [ Yes [17(2.2¢-02) Human
STK3 HUMAN
[LM] Q13188 EVFDVL 25-30 No No | Yes | No 9 (2.8e-01) Human
GDFDFL 435-440 No No | Yes [ Yes [16(3.0e-02) Human
RASF5 HUMAN
[MN] Q8WWWO - - N/A | N/A|N/A| NA N/A Human
NEDD4 HUMAN
[LL] P46934 SEYIKL 410415 No No [ Yes [ No [13(7.9¢-02) Human
PGWVVL | 589-5%4 No No [ Yes [ Yes |19 (1.2e-02) Human
ESFEEL | 1296-1301 No Yes | Yes | No |13(7.9e-02) Human
Al6L1 HUMAN
[MM] Q676US5 DEYDAL 164-169 No Yes | Yes | Yes |16 (3.0e-02) Human
TFCP2_HUMAN
[LN] Q12800 - - N/A | N/A|NA| NA N/A Human
SF3A1 HUMAN
[LN] Q15459 PEFEFI 148-153 No No [ Yes [ No [13(7.9¢-02) Human
FNBP1 _HUMAN
[MN] QI96RU3 - - N/A |N/A|NA| NA N/A Human
TBC15 HUMAN
[LL] Q8TCO07 AEWDMV | 96-101 No No [ Yes [ No [20 (8.4e-03) Human
PGFEVI 295-300 No No [ Yes [ No [12(1.1e-01) Human
FSFLDI 540-545 No No [ Yes [ No |11 (1.5e-01) Human
ANFY1 HUMAN
[MN] Q9P2R3 - - N/A | N/A|NA| NA N/A Human
TCPR2 HUMAN
[LM] 015040 GDYIAV 45-50 No No [ Yes [ No [14(5.7¢-02) Human
AVFQLV 102-107 No No | Yes | No 5 (1.0e+00) Human
AVFVAL | 894-899 No No | Yes | No 7 (5.3e-01) Human
DEWEVI | 1406-1411 No Yes | Yes No |23 (3.2¢-03) Human
ECHA HUMAN
[LM] P40939 AVFEDL 447452 No No | Yes | No 7 (5.3e-01) Human
NIPS2 HUMAN
[MM] 075323 - - N/A | N/A|N/A| NA N/A Human
ATG5 HUMAN
[MM] QI9H1YO - - N/A | N/A|N/A| NA N/A Human
ATG7_HUMAN
[MM] 095352 SSFQSV 258-263 No No [ Yes [ No [10(2.0e-01) Human
KPCI HUMAN
[LM] P41743 - - N/A | N/A|N/A| NA N/A Human
EPN4 HUMAN
[LM] Q14677 - - N/A |N/A|NA| NA N/A Human
ATG3 HUMAN
[LL] QINT62 - - N/A | N/A|N/A| NA N/A Human
DYXC1 _HUMAN
[LL] Q8WXU2 AVFLSL 16-21 No No | Yes | No 6 (7.4e-01) Human
AMWETL 81-86 No No [ Yes [ No |19 (1.2e-02) Human
NEK9 HUMAN
[LL] Q8TDI19 - - N/A |N/A|NA| NA N/A Human
UBAS5 HUMAN
[MM] Q9GZZ9 SDYEKI 6671 No No [ Yes [ No [17(2.2e-02) Human
FDYDKV 103-108 No No [ Yes [ No [16(3.0e-02) Human
TBD2B HUMAN
[LM] Q9UPU7 EEWELL | 252-257 No Yes | Yes | Yes |20 (8.4e-03) Human
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KBTB6 HUMAN

[LL] Q86V97 ESFEVL 120-125 No Yes | Yes | No |13(7.9e-02) Human
IPO5_ HUMAN
[LN] 000410 ETYENI 31-36 No Yes | No No |11(1.5e-01) Human

DGWEFV | 655660 No No [ Yes [ No [21(6.1e-03) Human
LSWLPL | 997-1002 No No [ Yes [ No [16(3.0e-02) Human

NCOA7_HUMAN
[LM] QS8NIO8 AEYDKL 185-190 No No [ Yes [ No [13(7.9¢-02) Human

GEWEDL | 308-313 No No [ Yes [ No |19 (1.2e-02) Human
DDFVDL | 414419 No Yes | Yes | Yes |18 (1.6e-02) Human
KSWEII 745-750 No No [ Yes [ No |19 (1.2e-02) Human

KAPO HUMAN
[MM] P10644 EEFVEV 310-315 No Yes | Yes | No |13(7.9e-02) Human
GYS1 HUMAN
[NN] P13807 - - N/A | N/A|N/A| NA N/A Human
KBTB7_ HUMAN
[LL] Q8WVZ9 ESFEVL 120-125 No Yes | Yes | No |13(7.9e-02) Human
ATG2A HUMAN
[LM] Q2TAZ0 PEYTEI 534-539 No No [ Yes [ No [13(7.9¢-02) Human

EVYESI 828-833 No No | Yes | No 9 (2.8e-01) Human

LEFLDV | 1090-1095 No No | Yes | No 9 (2.8e-01) Human

FAN_HUMAN
[ML] Q92636 ESFEDL 600—-605 No Yes | Yes | No |12(l.le-01) Human

LVWDLL | 869-874 No No [ Yes [ No [13(7.9¢-02) Human

Table 3. Sequences used in this study.

The data portrayed are divided into 3 distinct segments according to the study in which they were published.
The top section refers to the dataset created by Alemu et al. (Alemu et al. 2012), which was used to construct
the xLIR-motif and to validate both the cLIR and xLIR motifs. With the term “Verified” we refer to
experimentally verified LIR-motifs, whereas “Anchor” refers to intrinsic disorder binding regions predicted by
the ANCHOR tool, and found to overlap with a LIR-motif by at least 3 residues (>3). Middle and bottom data
blocks derive from the works of Birgisdottir (Birgisdottir et al. 2013) and Behrends (Behrends et al. 2010) and
colleagues respectively. Entries marked with a single asterisk (*) correspond to possible spurious XLIR hits,
which are also predicted to overlap with anchors. A double asterisk (**) denotes that a sample was identifiable
in all 3 studies. Since the xLIR-PSSM corresponds to a hexapeptide and is aligned to sequences in a gapless
fashion, for the atypical LIR sequences (pentapeptides) of CALCOCO2/NDP52 (CACO2 HUMAN) and
TAXIBP1 (TAXB1 _HUMAN) their corresponding PSSM scores are marked as “N/A”. The 2 characters in
the square brackets accompanying the UniProt IDs are used to distinguish between 3 possible interactions with
the GABARAP and MAP1LC3B receptors respectively, as reported in the survey of Behrends and colleagues
(Behrends et al. 2010). ‘N’ denotes no binding with the wild-type Atg8 homolog, ‘L’ is used to denote loss of
binding with the mutant form, whereas ‘M’ denotes that binding is maintained with the mutant form - i.e. [ML]
signifies a case where both the wild-type and the mutated form bind GABARAP, while the wild-type form
binds MAP1LC3B and this interaction is abolished in the mutated form. Entries highlighted in red correspond
to motifs detected by the XLIR regular expression which at the time of the initial analysis (fall 2013) were
considered as false positives, but for which later work has validated that they are genuine LIR motifs: EDFEIL
(ATG4B_HUMAN) (Skytte Rasmussen et al. 2017) and DEWEVI (TCPR2_ HUMAN) (Stadel et al. 2015)

respectively.
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2.3.1 Combining the predictive power of xLIR and Anchors

The xLIR matches by design all 27 experimentally verified LIR-motifs at a 100% sensitivity.
Positions 1, 2 and 4 ([ADEFGLPRSK];, [DEGMSTV],, [DEILQTV]s) are less
constrained compared to the cLIR-motif ([DE]:, [DEST],, [DELIV]s), whereas position 5
is more restricted. To be exact, the 5th position in the cLIR regex is occupied by the wild-
card character X, which means that this position can be taken by any of the 20 amino acids,
whilst in the case of the xLIR regular expression, that particular position can only be
occupied by any of the following residues: ADEFHIKLMPSTV.

Using the background frequencies for amino acid residues in a then recent version of the
UniProt/SwissProt database (Table 4) we estimated the probability of occurrence of the
cLIR- and XxLIR-motif in random sequences drawn from this distribution as 1.8 x 10 and
1.5 x 107 respectively (Nevill-Manning et al. 1998). This means that overall, the xLIR-motif
should be more sensitive but less specific compared to cLIR. In fact, this is the case since
(in the same sequence data) the xLIR-motif detects 20 additional subsequences, which can
be regarded as false positives for being non-functional as LIRs. As expected, the higher
sensitivity of the xLIR-motif comes at the expense of lower specificity and therefore a larger
number of bogus hits when examining large datasets (i.e. a complete proteome). In terms of
accuracy, the cLIR regex seems to outperform the XLIR with accuracies 61.7% and 57.4%
respectively (Table 5). A figure that may be misleading due to the imbalanced nature of the
dataset, and by imbalanced we mean that the dataset is not comprised by an equal number

of functional and non-functional LIRs.

However, the design of the negative dataset that would consist of new motif sequences
complying with the xLIR motif, would not permit us to compute meaningful values for
specificity and balanced accuracies for the xLIR motif as specificity is estimated at 0% and
the balanced accuracy at a borderline value of 50%. In contrast, the specificity and balanced

accuracy for cLIR, is estimated at 90% and 65.4% respectively (Table 5).

Such a result makes apparent the need to obtain a more unbiased estimate of the false positive
rate for both motifs and for that purpose we constructed a sequence dataset composed of
randomized (shuffled) versions of the 27 validated LIRCPs. When scanning these sequences
with the XxLIR and cLIR regular expressions, a number of 23 and 8 hits were reported
respectively. It is worth mentioning that this figure for the xLIR-motif is somewhat in

agreement with the number of the extra motifs identified in the original dataset (20 matches).

23



This case does not apply to the cLIR-motif as it deviates significantly from the false positive

motifs in the unshuffled sequences with by 4x times.

With respect to intrinsic disorder binding regions, 17 out of the 27 verified LIR-motifs (about
63%) were found to substantially overlap with an anchor segment by >3 residues (Table 3;
Table 5). Even though it is difficult to draw a significant conclusion from such a small
dataset, it is worth mentioning that 14 out of 21 LIR-motifs from human LIRCPs (66.7%)
overlap with an anchor. Interestingly the number of anchors discovered in the remaining
species namely, S. cerevisiae, D. melanogaster and A. thaliana, is slightly lower (50%).
Nevertheless, it seems that the combination of anchor prediction and a LIR regex may be a
good approach for discriminating genuine (i.e. functional) LIR-motifs. An observation

which consequently lead us to the next step of testing the two together.

Residue | Abundance (%) [Residue |Abundance (%)| Residue [Abundance (%)

Ala 8.25 Gly 7.07 Pro 4.70
Arg 5.53 His 2.27 Ser 6.56
Asn 4.06 Ile 5.96 Thr 5.34
Asp 5.45 Leu 9.66 Trp 1.08
Cys 1.37 Lys 5.84 Tyr 2.92
Gln 3.93 Met 2.42 Val 6.87
Glu 6.75 Phe 3.86

Table 4. Amino acid residue background distribution.
Data regarding the 20 common amino acid residues, calculated from UniprotKB/Swiss-Prot release 2013 04,

April 2013; available from the ProtScale tool (https://web.expasy.org/protscale).

When using the cLIR regular expression and posing an additional requirement that the
functional LIR-motif should overlap with an anchor segment, only 8 functional LIRs would
be predicted as such (Table 3; Table 5), resulting in very low coverage 8/27 or 29.6%.
Contrary, the XLIR-motif in combination with anchor detection recovers 17 out of the 27
verified LIR-motifs (63.0%) and at the same time eliminates most of the false positives. To
be precise, based on this compound criterion, only 4 unverified XxLIRs from the human
LIRCPs were predicted to be functional LIR-motifs (Table 3).

xLIR cLIR xLIR+A | cLIR+A | xLIR+A+P13 | xLIR+A|P13

TP 27 11 17 8 15 26
TN 0 18 16 19 18 11
FP 20 2 4 1 2 9
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FN 0 16 10 19 12 1
Sensitivity (%) | 100.00 | 40.70 63.00 29.60 55.60 96.30
Specificity (%) 0.00 90.00 80.00 95.00 90.00 55.00

ACC (%) 57.40 61.70 70.20 57.40 70.20 78.70
BACC (%) 50.00 65.40 71.50 62.30 72.80 75.70

Table 5. Validation of xLIR and cLIR motif-based predictors.

Different schemes are validated for the prediction of functional LIR-motifs on the set of 26 proteins with
validated LIRs described by Alemu and colleagues (Alemu et al. 2012). xLIR and cLIR are based simply on
the detection of the XxLIR and cLIR motifs, respectively, whereas XLIR+A and cLIR+A require that a functional
motif should overlap with an anchor as predicted by the ANCHOR tool. The 2 rightmost columns correspond
to xLIR-motifs that overlap with an anchor and have a PSSM score > 13 (xLIR+A+P13) and xLIR-motifs that
either overlap with an anchor or have a PSSM score > 13 (xLIR+A|P13). ACC is for Accuracy (%), and BACC

is for Balanced Accuracy (%). For each validation metric the highest recorded value is depicted in bold.

2.3.2 Using profile-based methods to identify functional LIR-motifs

Using the PSSM derived from the 27 experimentally verified LIR-motifs, we scanned the
sequences of the 26 verified LIRCPs to investigate whether the PSSM can be used as a more

successful means to identify functional LIR-motifs.

On top of the 47 hexapeptides matching the xLIR-motif (27 verified, 20 unverified) we also
obtained a score against the PSSM for a total of 18,018 hexapeptides (termed background)
stemming from the 26 LIRCP sequences of our reference dataset. More specifically, by
“sliding” the PSSM over each sequence one residue at a time, a score for the comparison of
the PSSM to the hexapeptide starting at the given sequence position is computed. The
median of scores for the 3 classes of hexapeptides (i.e. verified LIRs, unverified LIRs,
background) was 18, 12 and -8, respectively and the score distributions indicate significant

differences between these classes (Figure 7).

To further validate the xLIR-PSSM we performed a randomisation experiment, where
hexapeptides were generated on the shuffled dataset of the 26 proteins from Alemu et al.in
a similar fashion as done for the “background” hexapeptides, but repeated a 1000 times. This
resulted in 18,040,000 PSSM scores after scanning the shuffled sequences with our xLIR-
PSSM. The median of this sample equals the median of the background dataset (-8).
Furthermore, the randomisation experiment enabled us to compute the corresponding z-

scores and p-values at varying PSSM threshold levels (Table 6). From our combined results,
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it becomes evident that a XLIR-PSSM score >12 can be a trustworthy computational method

for the discrimination between genuine and non-genuine LIR-motifs.
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Figure 7. PSSM score distributions for different classes of hexapeptides.

Box-plot representation of PSSM score distributions for xLIR-motifs in the 26 sequences of LIRCPs (verified

and unverified), the remaining hexapeptides (‘“background”) and 1000 randomized versions of the LIRCP

dataset. Scores were obtained by evaluating the match of a sliding-PSSM along the sequences in the set of 26

sequences reported by Alemu et al. (Alemu et al. 2012) or simulated datasets. The differences indicated here

suggest that the PSSMs may be able to reliably discriminate between functional and non-functional xLIRs. In

particular, a Wilcoxon rank sum test with continuity correction demonstrates significant differences between

both verified and unverified xLIRs compared to background (P < 2.2x107!'6 and 1.2x10°!* respectively) and

verified vs. unverified xLIRs (P = 6.0x10). Similar trends are observed against the fully randomized dataset

(verified vs random: P<2.2x10°'® ; unverified vs random: P=1.2x10-'%), whereas the background and

randomized datasets showed no statistically significant differences (P=0.06).

Above PSSM
cutoff | validation
Background
e My XLIR N=18018 Sens | Spec | ACC | BACC
score |(verified)|(unverified) . z-scores |p-values| o o °
cutoff| N =27 N =20 (randomized, (%) | (%) | (%) (%)
N =18065)
9 26 19 93 (85) 3.08 [1.04e-03| 96.3 5 57.4 50.7
10 26 14 63 (63) 3.27 [5.39e-04| 96.3 30 68.1 63.2

26




11 25 11 47 (49) 3.46 (2.70e-04| 92.6 45 72.3 68.8
12 24 9 28 (32) 3.65 ([1.31e-04| 88.9 55 74.5 72

13 24 8 17 (25) 3.84 [6.10e-05| 88.9 60 76.6 | 74.5
14 23 5 13 (16) 4.03 |2.76e-05| 85.2 75 80.9 80.1
15 22 3 10 (14) 4.22 |1.20e-05| 81.5 85 83 83.3
16 21 2 4(11) 441 |5.07e-06| 77.8 90 83 83.9
17 16 0 2(7) 4.61 |2.06e-06| 59.3 | 100 | 76.6 | 79.7
18 13 0 0(5) 4.80 |8.09¢-07| 48.2 | 100 | 70.2 | 74.1

Table 6. Validation of the PSSM method as a predictor of LIR-motifs.

We report the number of hexapeptides with a PSSM score above different threshold values. Peptides from the background
dataset scoring above the threshold would be regarded as false positives if there were no restriction to comply with the
xLIR-motif. Results for the randomised versions of the 26 verified LIRCPs are displayed in parentheses next to
“background” data. Z-values and P-values were generated using the “Random” dataset. For each validation metric the

highest recorded value is depicted in bold.

2.3.3 Validating xLIR, anchors and PSSM with independent datasets

As more studies came to the surface, it only made sense to test our methods on new datasets.
In 2013, when we were about to publish the iLIR paper, Birgisdottir and colleagues
published a list of 7 new LIRCPs with an equal number of experimentally determined LIR-
motifs (Birgisdottir et al. 2013). Once again, we extracted all the samples from the papers
and downloaded all the sequences from UniProt Knowledgebase in FASTA format. For the
analysis we followed exactly the same approach as with the dataset of Alemu et al. (Alemu
et al. 2012), as this would allow us to get a more unbiased estimate of how our approach

performed.

Interestingly, the cLIR-motif would not match any of these sequences in contrast to XLIR
that matched 3 of the 7 experimentally verified LIR-motifs, giving 4 additional “hits”, which
can be safely considered as “false positives”. The 4 missed experimentally verified LIRs

include the following:

e Human proteins CALCOCO2/NDP52 and TAX1BPI1 reported to contain a non-
canonical LIR-motif which is only 5 residues long (von Muhlinen et al. 2012;
Newman et al. 2012). As expected, no PSSM scores have been computed for these

“unconventional” LIR-motifs.

® Plasmodium falciparum Atg3 homolog (PfAtg3; UniProt ID: COH519), with 2

mismatches to the xLIR-motif at positions 1 and 6, with asparagine and proline
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occupying those positions respectively. This is however the highest scoring

hexapeptide of this sequence against the PSSM (score = 12).

e Human CTNNBI1/B-catenin, also with 2 mismatches to the LIR-motif with a histidine
at position 2 and a proline residue occupying position 4. Again, the top-scoring

hexapeptide against the PSSM (score = 11).

Notably, none of the aforementioned LIR-motifs is predicted to be an anchor.

Another important source of LIRCP-related information, stems from the work of Behrends
and colleagues and their effort to decipher the selective autophagy protein-protein
interaction network (Behrends et al. 2010). In particular, we focus on the data presented
therein in order to unravel the LIR-dependence of interactions of human Atg8 homologs
GABARAP and MAP1LC3B with 34 proteins (Table 3, bottom).

Briefly, these authors recorded binding of these 34 proteins against the wild type and mutated
forms of Atg8 homologs (Y49A, L50A for GABARAP and F52A, L53A for MAP1LC3B).
Since the mutated residues lie in the LDS and are considered critical for typical LIR-
mediated interactions, maintenance of the interaction after mutation indicates LIR-
independent binding, whereas loss of interaction suggests LIR-dependence. Below we
summarize the computational results on those proteins showing consistent interaction

patterns against both GABARAP and MAP1LC3B.

For 7 of the 9 proteins that demonstrated LIR-independence for both Atg8 homologs
(marked as [MM] in Table 1) there was at least one match of the xLIR-motif (only 3 for
cLIR); interestingly only 2 of these proteins [FYCO1, FYVE and coiled-coil domain
containing 1 (FYCO1 _HUMAN) and ATG16L1, autophagy related 16-like 1 (S. cerevisiae)
(A16L1 HUMAN)] had at least one xLIR overlapping with a predicted anchor.

Another 8 proteins were shown to interact with both Atg8 homologs in a LIR-dependent
manner (marked as [LL] in Table 3). Six were detected to have at least an instance of the
xLIR-motif (3 with cLIR) of which only 2 overlapped with an anchor: these are the validated
LIR-motif of SQSTM1 and the second xLIR match of the E3 ubiquitin-protein ligase
NEDD4 (PGWVVL with a PSSM score = 19).
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An interesting case is the serine/threonine protein kinase NEK9, which is predicted to have
10 anchor segments, 2 of which overlap with hexapeptides scoring high against the PSSM,
albeit the fact that they do not match the xLIR-motif; RGWHTI (positions: 716-721; PSSM
score: 19) and DSWCLL (positions: 965-970; PSSM score: 16). Both of these hexapeptides
have a single mismatch to the XxLIR motif (a His and Cys residue respectively at position 4)
and, along with NEDDA4, they could be good candidates for further experimental validation.
Intriguingly, from all the known LIRCPs with a verified LIR-motif the only protein
belonging to this class is SQSTM. Interestingly, the single case in this dataset of a protein
not interacting with the wild type Atg8 homologs (GYS1) does not match either the xLIR or
the cLIR-motif.

2.3.4 Assembling everything into a unified resource: the iLIR webserver

Driven by our findings that the power of our approach makes a good means for an overall
estimate of the genuineness of a new LIR-motif, the next logical step was to develop a

resource to make our predictive methods available to the scientific community.

In 2014 we released a new web resource called iLIR, where iLIR stands for “identify LIR”.
iLIR is a resource purposely designed to guide autophagy researchers to make rational
decisions on which targets to select, rather than providing explicit predictions of putative
LIR-motifs. iLIR 1is freely accessible to the research community via the URL

http://repeat.biol.ucy.ac.cy/iLIR/ and provides a unified resource combining all of our

predictive tools in a single, publicly and freely available unit. The iLIR web server was
developed following very simple web technologies such as the Common Gateway Interface
(CGI) standard protocol, JavaScript/AJAX and Cascade Style Sheets (CSS) for the provision
of common formatting between all web pages and also improve content accessibility and

web page interactivity.

The Common Gateway Interface (CGI) is part of the Hypertext Transfer Protocol (HTTP)
and a simple form of establishing front to back-end communication in a web resource and
vice versa. The back-end can be a collection of application scripts, with each script mapping
to its dedicated HTML page. CGI is language independent, so the application scripts can be

implemented in any language from python and perl to C/C++ for faster processing.
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2.3.4.1 iLIR: Home page

A novice iLIR user lands in the home page, where a brief description on the functionalities
offered by iLIR are presented (Figure 8). Here, hyperlinks are provided to launch a new
prediction (Submit a job) or examine a page with examples pre-ran sequences (Examples).

A In silico identification of functional LC3 Interacting Region Motifs
- - - -

iLIR provides easy integrated access to bioinformatics tools aiming to help researchers for assessing
whether a protein is a potential functional LIR containing protein based solely on its amino acid
sequence. A query sequence is analysed for:

¢ the presence of a generic, thus sensitive, extended LIR-motif (xLIR-motif), also scored against a
PSSM constructed of experimentally validated set of LIR-motifs

e domain architecture based on SMART and PFAM, and

¢ predicted anchors, i.e. disordered linear segments with the potential to become ordered following
protein interaction.

Results are displayed in a simple graphical form, accompanied with detailed tables. Examples of iLIR
output for experimentally validated functional LIR containing proteins may be found in the Examples
Page.

Note: noncanonical LIR-motifs, as for example the atypical motif recently discovered in NDP52 (von
Mubhlinen et al., 2012), are not currently detected by iLIR.

iLIR Home Submitajob Examples

To get some assistance e-mail: vprobon@ucy.ac.cy

Go to the Bioinformatics Research Laboratory web site

If you use iLIR please cite: Kalvari |, Tsompanis S, Mulakkal NC, Osgood R, Johansen T, Nezis IP,
Promponas VJ. iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy 2014;
10:166 - 178; PMID: 24589857; [Open access full text]

Figure 8. Home page of the iLIR webserver.

2.3.4.2 iLIR: Launching a new prediction

When a user makes this selection, a simple input form is dynamically generated by the
underlying CGI perl script (iLIR cgi). The input required by the user is purposely designed
to be very simple, knowing that most biologists do not want to deal with many different
parameters (whose meaning they often fail to understand!!).

The user only needs to input the sequence of interest in FASTA format either by entering
text (typing or copy-and-paste) or by uploading a plain ASCII text file (Figure 9). Since
iLIR calls external services, only one amino acid sequence is expected by the server. Once
the sequence is uploaded or made available in the text box, the user can launch the processing

by pressing the submit button.
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(-]
@m In silico identification of functional LC3 Interacting Region Motifs
- - - -

Please paste a single sequence in FASTA format

GN=SQSTM1 PE=1 SV=1
MASLTVKAYLLGKEDAAREIRRFSFCCSPEPEAEAEAAAGPGPCERLLSRVAALFPALRP
GGFQAHYRDEDGDLVAFSSDEELTMAMSYVKDDIFRIYIKEKKECRRDHRPPCAQEAPRN
MVHPNVICDGCNGPVVGTRYKCSVCPDYDLCSVCEGKGLHRGHTKLAFPSPFGHLSEGFS
HSRWLRKVKHGHFGWPGWEMGPPGNWSPRPPRAGEARPGPTAESASGPSEDPSVNFLKNV
GESVAAALSPLGIEVDIDVEHGGKRSRLTPVSPESSSTEEKSSSQPSSCCSDPSKPGGNV
EGATQSLAEQMRKIALESEGRPEEQMESDNCSGGDDDWTHLSSKEVDPSTGELQSLQMPE |
SEGPSSLDPSQEGPTGLKEAALYPHLPPEADPRLIESLSQMLSMGFSDEGGWLTRLLQTK
NYDIGAALDTIQYSKHPPPL P

or upload a FASTA formatted plain text file Choose file No file chosen

SUBMIT  RESET

iLIR Home Submita job Examples

Go to the Bioinformatics Research Laboragrv web site

If you use iLIR please cite: Kalvari |, Tsompanis S, Mulakkal NC, Osgood R, Johansen T, Nezis IP,
Promponas VJ. iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy 2014;
10:166 - 178; PMID: 24589857; [Open access full text]

Figure 9. iLIR server user interface.
A simple user interface enables sequence data entry in FASTA format either by copy-pasting the sequence in
the respective text box or uploading the data via a local FASTA formatted text file. At its current state only a

single sequence can be processed at a time.

Initial checks on the sequence are performed and then the iLIR server takes care of executing

the pipeline of tools as follows:

a. ANCHOR prediction: the sequence in submitted to a locally installed instance of the
ANCHOR software for the prediction of anchors. Anchors are regions within or
neighbouring unstructured regions with the potential to undergo a disorder to order
conformational change and bind to a globular protein.

b. Retrieval of domain information: an automatic sequence query is executed against
the SMART database (Letunic et al. 2012), resulting in a list of annotated domains
and motifs including PFAM domains (Punta et al. 2012).

c. Detection of homologs with known structure: a remote BLASTP (Blast 1997) query
is issued against the Protein Data Bank (Berman et al. 2000) (using the PDB REST

API), thus facilitating access to relevant structural data. More specifically all
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significant hits with alignments including the reported motif are compiled in a list,
linking to the respective PDB entry, and the complete output is also available for
further analysis. BLAST parameters are pre-set to E-value cutoff of 0.001 and the
BLOSUMG62 substitution matrix.

d. Detection of LIR-motifs: instances of XxLIR- and the simpler WxxL-motifs
(xx[WFY ]xx[VLI]) are scanned throughout the submitted sequence.

e. Computation of PSSM scores: Whenever a successful hit is recorded, the matched
hexapeptide is scored against the position specific scoring matrix developed using
the collection of experimentally verified LIR-motifs. The PSSM score is
accompanied by an e-value computed using the Karlin-Altschul equation (Karlin and
Altschul 1990). The e-value represents the number of random (i.e. unrelated)
hexapeptides expected to achieve a score at least as high as the one reported by

chance alone.

f.  Output is sent to the web browser for display (see next section).

2.3.4.3 iLIR: Results page

The results are presented in two formats: a graphical illustration of the different motif regions
spanning the protein sequence (Figure 10 - A), and a series of tables that provide extended
information about the identified regions (Figure 10 - B). The graphical representation of the
protein domains is generated using the domains graphic generator used by Pfam

(https://pfam.xfam.org/generate graphic), which provides a clean and familiar depiction to

most users. The coloured representation of the various domains in the schematic has as
follows: any Pfam domains are displayed in orange, while domains known to be associated
with specific classes of selective autophagy LIRCPs are illustrated in green. Other sequence
features reported by SMART/PFAM, such as low complexity regions—blue boxes are

displayed along the sequence, with detected xLIR-motifs painted in magenta.
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A.

m In silico identification of functional LC3 Interacting Region Motifs

Submitted 1 sequence
>spjQ13501|SQSTM_HUMAN Sequestosome-1 OS=Homo sapiens OX=9606 GN=SQSTM1 PE=1
Sv=1

xLIR motifs are displayed as magenta rectangles in the domain architecture graphic

MOTH STARZ END LIRsequencé PSSMscord SimilarLIRs ¢ PDB & Anchob
xLIR 336 M1 DOWTHI 24 (2.30-03] CALR HUMAN 198-203 (4) Yos
SQSTM_HUMAN 336-341 (6
Wxxl 53 58 ALFPAL 2(2.60+00) [+]
4UF9 ABD
4UF8 ABCI
Wl 170 175 SPFGHL 4(1.40400) [C2) No
SYPG AB
SYPE ABCD
Wil 381 386 ALYPHL 3 (1.90+00) Yos

Figure 10. iLIR results page.

B.

[+/-] Show/Hide Detailed ANCHOR results
DOMAIN ¢ START ¢ END
ANCHOR1 184 195
ANCHOR2 23 27
ANCHOR3 285 207
ANCHOR4 299 320
ANCHORS 326 364
ANCHORS a4 430

[+/-] Show/Hide Detailed SMART results

DOMAIN ¢ START & END ¢ EVALUE ¢
SMART.PB1 3 102 24615
Plam.PB1 21 102 38014
low_complexity_region 29 43 0

SMARTZnF 22 122 165 1.0017
PlamZZ 122 165 1.30-14
low_complexity_region 208 220 0
low_complexity_region 269 206 0

PamUBA_§ are 440 6.0047
SMART.UBA 294 43 93006

TYPE ¢
SMART

PFAM
INTRINSIC
SMART

PFAM
INTRINSIC
INTRINSIC
PFAM

SMART

STATUS
visibie|OK
hiddenjoveriap
hadenjoveriap
visie]OK
hiddenjoveriap
visie]OK
visidie|OK
hiddenjoveriap

visibie|OK

The output page of the human SQSTM1 (Uniprot accession: Q13501) is displayed. A graphical representation
of the identified domains (A) is accompanied with detailed results from ANCHOR and SMART searches (B).

By moving the mouse over any domain/feature on the graphic, a pop-up tip displays further information. It is

in the user’s discretion if the tables containing further information regarding ANCHOR and SMART regions

will remain hidden or not.

For a simple resource like iLIR, the minimal technologies used are sufficient for provisioning

the required functionality.

2.3.4.4 iLIR: examples page

To gain a better understanding on what kind of output a user may expect to get from the iLIR

server, we have compiled a simple “examples page” (available at the URL:

http://repeat.biol.ucy.ac.cy/iLIR/examples.html)  with static ~web-pages

containing

hyperlinks to pre-ran iLIR results on all protein sequences mentioned in Table 1 (Figure

11). For simplicity, the results for WxxL-motifs have been omitted from these pages.
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| , 'D In silico identification of functional LC3 Interacting Region Motifs

Experimentally validated LIR-motif containing proteins, taken from Alemu et al., 2012, analysed by iLIR.
The * symbol indicates proteins which were also included in Behrends et al., 2010 (see below).

ATG13_HUMAN  ATG19_YEAST ATG1_YEAST ATG32_YEAST ATG3_YEAST
ATG4B_HUMAN* BNI3L_HUMAN CALR_HUMAN CBL_HUMAN CLH1_HUMAN
DVL2 _HUMAN FUND1_HUMAN FYCO1_HUMAN* NBR1_HUMAN OPTN_HUMAN
Q8MQJ7_DROME Q9SB64_ARATH RBCC1_HUMAN SQSTM_HUMAN* STBD1_HUMAN*
T5311_HUMAN T5312_HUMAN TBC25_HUMAN  TBCDS5 HUMAN  ULK1_HUMAN
ULK2_HUMAN

Additional experimentally validated LIR-motif containing proteins, taken from Birgisdottir, Lamark and
Johansen, 2013, analyzed by iLIR.

ATG34_YEAST COH519_PLAF7 BNIP3_HUMAN CACO2_HUMAN CTNB1_HUMAN
MK15_HUMAN TAXB1_HUMAN

Human proteins tested for LIR-dependent interactions with GABARAP and MAP1LC3B, taken from
Behrends et al., 2010, analyzed by iLIR.

STK4_HUMAN STK3_HUMAN RASF5_HUMAN NEDD4_HUMAN A16L1_HUMAN
TFCP2_HUMAN  SF3A1_HUMAN FNBP1_HUMAN  TBC15_HUMAN  ANFY1_HUMAN
TCPR2 HUMAN ECHA HUMAN NIPS2_HUMAN ATG5_HUMAN ATG7_HUMAN

KPCI_HUMAN EPN4_HUMAN ATG3_HUMAN DYXC1_HUMAN NEK9_HUMAN

UBA5_HUMAN TBD2B_HUMAN  KBTB6_HUMAN  IPO5_HUMAN NCOA7_HUMAN
KAPO_HUMAN GYS1_HUMAN KBTB7_HUMAN  ATG2A_HUMAN FAN_HUMAN

Figure 11. The full collection of pre-ran examples as they appear on the iLIR website.
The various autophagy proteins are listed by UniProt ID and organised by the source literature in 3 distinct

sections as in Table 1.

2.4 Conclusions

The work presented in this chapter resulted in the development and provision to the scientific
community of a new web resource for the identification of novel LIR-motifs in putative
proteins of the autophagic apparatus. iLIR, although nowadays is not the sole available
resource, it was the first of its kind when launched in late 2013. A couple of years later the
hfAIM server was developed, however with limited usage so far, if judged by the number of

citations to the respective paper.

Retrospectively, we speculate that the simplicity of the user interface, combined with the
uniqueness of the iLIR web server, has attracted tens of thousands of submissions since the
server became available online. In particular, more than 70,000 sequences have been

submitted to the iLIR server since becoming publicly available online (fall 2013 till fall

34



2018). Moreover, we assume that the comprehensive output provided by the iLIR web server
provides information that can easily be utilized by experimental biologists aiming to
decipher the modes of interaction of putative Atg8/LC3 binding proteins. The detailed output
of iLIR provides orthogonal evidence that can be related to structural (e.g. ANCHOR
predictions, PDB-homologs) and functional (e.g. SMART/PFAM domains) properties of
examined protein sequences. Consequently, the iLIR server has driven the experimental
discovery of several new instances of functional LIR-motifs, as seen in a number of papers

(http://goo.gl/yzGUFe) citing our original publication (Kalvari et al. 2014).

Despite the fact that iLIR was immediately proven to be a useful resource for autophagy
researchers and is being continuously used by researchers all over the world, we can already
think of improvements for enhancing its performance and providing novel features for an

improved user experience.

First, methodological developments may increase the predictive performance of iLIR, thus
streamlining efforts for the efficient characterisation of novel autophagy receptor and
adaptor proteins. With the current trend of deep machine learning architectures and their
applications in several sequence analysis problems in bioinformatics and computational
biology (Singh et al. 2018; Wei et al. 2018) this might look like a straightforward option.
However, the currently small amount of well characterized data for functional LIR-motifs
makes such a scenario sound premature. Nevertheless, our group is already performing
preparatory work, where the existing literature corpus on LIR-motifs is manually analyzed
for cataloging hopefully all known functional LIR-motifs. This effort will be further assisted
by custom, semi-automated biomedical literature mining tools, currently under development
in our group (Chadjichristofi and Promponas, work in progress) to extract available
information from publications in XML or PDF format. This information needs to be cleansed
(remove unrelated instances), extracted from text (and independently validated on its
accuracy) and (possibly) organized in a database until we come up with a large enough data
set for training and validating machine learning schemes. Before reaching the desired
volume, these data may be used for a thorough evaluation of future algorithms performing

this task.

Second, the iLIR server could provide richer options and a more interactive graphical user
interface. Some novel features we consider for expanding the iLIR server include the
possibility of providing a number of different output formats and report alternatively defined

LIR-motifs (e.g. hfAIM regular expressions). In particular, more powerful and modernized

35



technologies should be put into practice, such as REACT (https://reactjs.org/ - a Javascript

library for the construction of user interfaces) and perhaps Django REST framework

(https://www.django-rest-framework.org/) for the development and provisioning of

additional services.

Third, based on several requests made by users of the system, the option to execute batch
runs (e.g. scanning a complete proteome) is being taken into consideration. In fact, based on
a preliminary analysis of the iLIR server logs, a large fraction of the sequence submissions
seems to originate from automated software queries. In addition, in several cases, we have
been directly contacted by individual researchers to assist with the analyses of complete
proteomes and other large datasets. Possible implementations would be from a simple
standalone toolkit with a basic CLI (code distribution with appropriate licence) made
available through code versioning systems such as GitHub or Bitbucket, or a more “official”
programmatic access to the resource via a REST API, to more advanced and modernised
infrastructures employing Cloud technologies (Markstedt 2017; Novella et al. 2018) (e.g.
running iLIR as a containerised application on a Kubernetes cluster, with access through

user accounts).

36



3 Intrinsic Disorder as a means for the identification of genuine

LIR-motifs
3.1 Preface

3.1.1 Intrinsically disordered proteins

Intrinsically disordered proteins (IDPs) are proteins with no stable secondary or tertiary
structure that do not conform to the traditional paradigm of proteins folding into a unique
stable conformation (Wright & Dyson 1999). IDPs have been intensively studied during the
last two decades and an increasing amount of knowledge accumulates regarding to their
possible functions (Wright & Dyson 2015; Dyson & Wright 2005; Oldfield & Dunker 2014;
Darling & Uversky 2018). In several cases, a single protein may contain both globular (i.e.

well-folded) and disordered (i.e. unstructured) domains.

A large number of prediction tools have been developed to predict intrinsically disordered
regions (IDRs) from sequence information (Oldfield & Dunker 2014). In addition, a number
of other resources focusing on intrinsic disorder in proteins have been available, as for
example DisProt (Piovesan et al. 2017), DIBS (Schad et al. 2018), MobiDB (Piovesan et al.
2018), FuzDB (Miskei et al. 2017).

It is often the case that Short Linear Motifs (SLIMs), such as the LIR-motif, are found within
IDRs (Davey et al. 2012), with the flexibility of the disordered region facilitating the motif
interaction to a globular partner. Having observed that ANCHOR predictions were very
successful in eliminating a significant number of false positives detected by iLIR (Kalvari et
al. 2014), we set to investigate whether predictions of IDRs could be used to enhance the

discrimination of functional LIR-motifs.

3.2 Data and Methods
3.2.1 Data

3.2.1.1 Sequences

The sequences used in this study are updated versions of the proteins listed in Table 1 (Table
3 in this document) from Kalvari et al (Kalvari et al. 2014). As a quality assurance measure

all sequences were re-downloaded from UniProt Knowledgebase (The UniProt Consortium
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2018) using UniProt accessions (https://www.uniprot.org/) and saved in flat files in FASTA

format.

3.2.1.2 Disorder Data

Disorder data was obtained from MobiDB v.3.0.0 (http://mobidb.bio.unipd.it), a database of

protein disorder and mobility annotations (Piovesan et al. 2018). MobiDB incorporates
protein disorder data from various databases, which groups them in three categories: DB -
manually curated disorder data extracted from DisProt (Piovesan et al. 2017), FuzDB
(Miskei et al. 2017) and UniProt (The UniProt Consortium 2018) databases, Predicted - an
ensemble of predicted data from tools like DisEMBL (Linding, Jensen, et al. 2003), ESpritz
(Walsh et al. 2012), GlobPlot (Linding, Russell, et al. 2003), IUPred (Mészaros et al. 2018),
Jronn (Yang et al. 2005), VSL2b (Peng et al. 2006) with long disorder annotation calculated
using MobiDB-lite (Necci et al. 2017), and finally Indirect - structural disorder descriptions
collected from PDB (Rose et al. 2015) structures.

To compare the power of an aggregating resource like MobiDB as opposed to stand alone
predictors, disorder regions were also computed using the SPOT-disorder webserver

(http://sparks-lab.org/server/SPOT-disorder) (Hanson et al. 2017) (whose authors claim that

it performs in par with the top IDP prediction methods), and the most recent release of
IUPred (IUPred2A - https://iupred2a.elte.hu) (Mészaros et al. 2018) using its command line

interface (CLI). ANCHOR?2 disordered binding regions were recomputed alongside to
evaluate the potential of this revised version. Data extraction as well as the determination of
disorder/LIR overlaps was exploited programmatically using explicit software developed in

python 2.7.

3.2.1.3 New autophagy proteins and LIR-motifs

More recent studies, in an attempt to further characterise members of the autophagic
machinery, introduced new proteins and LIR-motifs (Xie et al. 2016; Rogov et al. 2017,
Svenning et al. 2011), which also gave rise to the generation of new LIR prediction tools
(Xie et al. 2016). To examine how our optimal methods would behave on a new dataset, we
manually selected a small number of samples from the papers of Rogov (Rogov et al. 2017)
and Svenning et al. (Svenning et al. 2011) that were not included in our previous

experiments. The protein sequences were downloaded from UniProt (The UniProt
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Consortium 2018) in FASTA format using Gene ids or simple keywords like “FIP200”. Start
and end positions of the LIR-motifs were extracted from the papers and analysed using the
iLIR webserver (Kalvari et al. 2014). The samples along with other computationally

produced features are summarised in Table 7.

3.2.2 Methods

3.2.2.1 Identification of LIR-disorder region overlaps using MobiDB data

Overlaps were computed for each of the 96 motif regions depicted in Table 7 using custom-
made software called dizscan (see supplement 7.1). The algorithm takes as input a tab
delimited file with each line mapping the UniProt accession numbers of each protein and
their corresponding LIRs (sequence, start-end points), along with their experimental status:
verified, unverified. For each line in the input file dizscan extracts disordered regions from
MobiDB on the fly (using the provided REST API), using UniProt accession numbers to
access the data. MobiDB data type can be specified using the option —-type followed by
one of the keywords all: incorporates all three types of data indirect, predicted and curated,
or indirect: MobiDB derived data only, predicted: MobiDB predictions or curated: to take

into account regions deposited in disorder databases by expert curators.

The second step was to search for overlaps with the LIR sequences by taking into account
their start and end positions on the peptides. Tracing of disordered residues in the LIR motifs
was accomplished by applying simple hashing techniques with the exploitation hash data
structures. Each LIR motif is represented by a hash, where start-end positions work as keys
whose associated values are characters. The characters are in agreement with MobiDB’s
naming scheme, where ‘S’ is for structured, ‘D’ is used to denote disorder. All values in the

hashes are initialized with question marks ‘?’, to represent an unknown primary state.

Disorder overlaps are determined dynamically, meaning that the disorder state of each value
in the dictionary may change over time. There is also a moderate greediness towards
disorder, such that it only allows the transitions S -> D, ? -> S, ? -> D. This means that once
a residue has been labelled as disordered (‘D’) its status cannot be changed to structured S’

or back to unknown ‘?’, this way preserving as much disorder information as possible.

Finally, the information concealed within each hash is converted to what we hereby call a

disorder string (dASTR), with the same length as the motif sequence. Disorder strings are
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used as a simple means of visualisation giving further insight on the per residue disorder
status. For instance, the LIR-motif DDWTHL of human p62 (UniProt accession: Q13501) in
positions 336-341 is classified as completely disordered with a dSTR DDDDDD both for

curated and predicted data. On the other hand, the resulting dSTR from indirect regions was

in MobiDB or that in presence of disorder regions none of those overlapped with the LIR-
motifs. In several cases, Indirect, Predicted and Curated data provided by MobiDB can be
conflicting. One such case is depicted in Figure 12. The flowchart in Figure 13 provides a

graphical representation of the algorithm.

To assess the level of disorderliness of each LIR motif, the percentage of disorder was
calculated based on the frequency of ‘D’ characters in the output string. Sensitivity,
specificity, accuracy, balanced accuracy (Baldi et al. 2000) and F1-score (Lipton et al. 2014),
were calculated on the set of 96 LIR motifs (verified and unverified) and at 6 incremental
cutoffs of 16% (1 residue), 33% (2 residues), 50% (3 residues), 66% (4 residues), 83% (5
residues) and 100% (6 residues) (Table 7) .

>CALR_HUMAN Calreticulin

198 203 198 203 198 203

xLIR DDWDFL DDWDFL DDWDFL

dSTR SSSSSS DDDDDD CCCcCcCC

Indirect Predicted Curated

Figure 12. Calculation of disorder in Calreticulin LIR-motif DDWDFL at positions 198-203.

The leftmost schematic shows the disorder string (dSTR) using MobiDB’s Indirect regions (structural data)
and the rightmost the dSTR obtained from curated data, with the predicted one in between. This particular
example makes apparent how difficult it is to come to a conclusion when dSTRs among the various types of

data are contradictory. The ‘C’ characters in the curated dSTR denote conflict.
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Figure 13. The flowchart of the dizscan algorithm.

The above flowchart is a graphical representation of the dizscan algorithm described in detailed herein. For
the generation of the flowchart we used draw.io software (https://www.draw.io)
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3.2.2.2 Calculating MobiDB consensus disorder

Alongside MobiDB’s consensus data, we devised another script called
consensus_disorder _calculator (see supplement 7.2), which combines all computed dSTRs
regardless of their data type origin (predicted, indirect, curated). This is somewhat a “binary”
calculator meaning that each residue position can only be assigned one of Disorder (‘D”) or

Structured (°S’) tags, while the initial *?” characters are being ignored.

Visualise a multiple sequence alignment of all dSTRs, the idea is to identify between the
maximum count of Ds and Ss in each column and assign that as the final indicator of structure
or disorder for that specific position. For that purpose, the algorithm starts by loading all
dSTRs in a unified structure - a hash - mapping all LIR accessions to their corresponding list
of pre-calculated dSTRs. The next step is to take each individual LIR accession and construct
temporary hashes, with key-value pairs that will serve as counters for the ‘D’ and ‘S’
characters. For instance, the residue positions 336-341 of the LIR sequence of
SQSTM_HUMAN would be the keys, each of which is associated with a nested “binary”

hash keeping record of the occurrence of Ds and Ss, each initially set to zero: 0.

The two final steps include the generation of the consensus dSTR (cdSTR) and the
computation of the disorder percentage (Figure 14). Having computed the counts of Ds and
Ss in each column, the one with the highest value (majority rule) is appointed as the disorder
status in that column. The procedure continues until all columns have been evaluated
resulting to the final consensus disorder string (cdSTR). Ties are resolved in a conservative
fashion making a decision in favour of ordered structure (‘S’). This also compensates our
previous greediness towards favouring disorder during the construction of dSTRs. Finally,
the percentage of disorder is calculated based on the frequency of ‘D’ characters in the

cdSTR exactly as described in the previous section.
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xLIR

dSTR;
dSTR:2
dSTR3
dSTR4
dSTRs
dSTRe

cdSTR

>OPTN_HUMAN Optineurin

Indirect/mobile
Indirect/missing res
Indirect/full
Indirect/bfactor
Predicted/simple
Predicted/mobidb-lite

Figure 14. Construction of the consensus disorder string (cdSTR) of the LIR-motif of Optineurin.

In this particular case the consensus disorder string derived from two types of data: Indirect/structural and

Predicted. Once again ‘D’ denotes disorder and ‘S’ structure, whereas ‘C’ is used by MobiDB to represent

conflicts among resources or methods and are handled as missing data (‘?”). A multiple sequence alignment of

the precalculated dSTRs shows variability in each column. The final cdSTR is the majority vote between ‘D’

and ‘S’ states, ignoring missing information. Under this scheme, optineurin cdSTR appears to have two

disordered residues at positions 176 and 179, while the rest of the peptide is structured.

As another “consensus-like” but less radical approach, was the selection of the dSTR with

the highest disorder. This was achieved by applying a rather rudimentary method which

consisted of grouping together all dSTRs belonging to a specific LIR-motif and selecting the

one with the maximum disorder percentage (MAX(all)). The findings of the aforementioned

methods are juxtaposed (Table 7) and thoroughly analysed in the following sections.
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3.2.2.3 Incorporating IUPred2A/Anchor2 disorder predictions

In conjunction with MobiDB consensus disorder data, we scanned our datasets for intrinsic
disorder regions using [UPred2A, an intrinsic disorder predictor which identifies disorder in
proteins using an energy estimation approach to calculate the interaction potential of amino

acids, by capturing the physicochemical properties of IDPs (Mészaros et al. 2018).

IUPred2A predictions of disordered regions were generated for all 52 proteins listed in Table
7, and disorder overlaps were identified with a new explicitly developed python script (2.7)
called anchor2 scanner. Prior to scanning, disordered regions were determined in all

proteins using the command line version of [UPred2A (https://iupred2a.elte.hu). The output

files were then supplied as input to anchor2 _scanner (see supplement 7.3).

The algorithm works in a similar manner as dizscan - making use of has structures - but the
scanning process is significantly simpler as there only can be one match for each LIR-motif,
whereas the case of MobiDB - dealing with regions from multiple resources - was slightly

more challenging.

Here, a residue belonging to a LIR-motif is tagged as disordered (‘D’) if its [UPred2A score
is > 0.5, otherwise the residue is considered to be structured (°S’). anchor2 scanner follows
the same notion as dizscan constructing a dSTR with the final disorder percentage calculated
according to the frequency of ‘D’ and ’S’ characters in the string. In addition to I[UPred2A
default score (0.5) disorder was also computed, capturing disorder at lower values of 0.2-
0.4. Performance metrics were once again calculated for the 6 different thresholds of 16%,
33%, 50%, 66%, 83% and 100% disorder. Disorder binding regions were computed using
the ——anchor2 option, while —-iupred2 option - as the name suggests - scans for

disorder regions in general.

3.2.2.4 Annotating LIR-motifs with disorder using SPOT-disorder

Since MobiDB predicted data also incorporate predictions from IUPRED (Mészaros et al.
2018), we wanted to compare our results to a completely independent tool. For that reason
we turned to a newly published disorder prediction tool SPOT-disorder (Hanson et al. 2017)
that employs contemporary methods, deep bidirectional long short-term memory recurrent

neural networks. In their paper Hanson J et al. (Hanson et al. 2017) showcase that their
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algorithm supersedes all other methods compared in their benchmark, including those

comprised in MobiDB.

To evaluate the performance of this method on our dataset, we searched our 52 proteins for
disorder regions using SPOT-disorder webserver (Hanson et al. 2017) and processed the
output in a similar manner as the previous methods with the notation followed by SPOT-
disorder (see supplement 7.4). Similarly, SPOT-disorder marks any disordered residues with

‘D’ characters but uses ‘O’ for order instead of ‘S’ for structure.

3.2.2.5 Quality assessment of the predictions

To evaluate the performance of our disorder prediction strategies and in order for the results
to be comparable to what discussed in (Kalvari et al. 2014), we followed an analogous
approach by calculating the numbers of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), examining disorder at six incremental levels of 16%
(1 residue), 33% (2 residues), 50% (3 residues), 66% (4 residues), 83% (5 residues) and
100% (6 residues) disorder. In particular, to evaluate the effectiveness of X% disorder in a
given sequence, a LIR-motif supported by experimental validation is considered a true
positive (TP) if its dSTR disorder percentage is > X%. In the same setting a LIR-motif is
classified as TN if there is no experimental evidence in the literature and the disorder level
is below X%. In a similar manner, we consider as a FP a LIR-motif with no experimental
evidence and disorder of X% or higher and as FN we label the verified LIRs with predicted

disorder lower than X%.

With respect to the preceding assumptions and in accordance with the work presented in the
previous chapter, we evaluated our methods using the same metrics in addition to the

following 2 metrics:

TP

p , 4 -
recision TP + FP

2TP
2TP + FP +FN

F1 — score =
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3.4 Results

Disorder data retrieved from MobiDB were programmatically examined for overlaps with

the 96 LIR-motifs listed in Table 3 (see code supplement 7.2). Disorder was computed using

the start-end positions of each LIR-motif. To assess the power of the various predictive

methods we evaluated the level of disorder at meaningful thresholds reflecting disorder at

residue scale. For instance, a LIR-motif with 1 disordered residue corresponds to 16%

disorder, 2 disordered residues to 33% disorder and so forth up to a 100% disorder indicating

a completely disordered peptide. Along these lines, values for each of the quality assessment
metrics were generated at 16%, 33%, 50%, 66%, 83% and 100% disorder by utilizing the

information encapsulated in the dSTRs and cdSTRs for the consensus scheme. The findings

of our different strategies are discussed below.

MOTIF
Uniprot Id Alilcli:ls):i?)tn Sequence | Position | Verified | cLIR | xLIR | Anchor2 P?es-lz/;ls:;))re cdSTR per]c)eilsl‘:;g:l;% )
Alemu et al. (Alemu et al. 2012)

ATG13_HUMAN | 075143 EGFQTV 166-171 0 0 1 0 11 (1.5E-01) | SSssSss 0
075143 DDFVMI 442-447 1 1 1 1 20 (8.4E-03) | DDDDDD 100
Atgl9_YEAST P35193 LTWEEL 410-415 1 0 1 0 18 (1.6E-02) | DDSSSS 33
Atgl_YEAST P53104 REYVVV 427-432 1 0 1 1 14 (5.7E-02) | DDDDDD 100
Atg32 YEAST P40458 GSWQOAT 84-89 1 0 1 1 17 (2.2E-02) | DSSSSS 16
P40458 KEYQSL 235-240 0 0 1 0 12 (1.1E-01) | ssssss 0
P40458 LGYILL 524-529 0 0 1 0 10 (2.0E-01) | DDSSDD 66
Atg3_YEAST P40344 GDWEDL 268-273 1 0 1 0 22 (4.4E-03) | SSSDDD 50
ATG4B_HUMAN | Q9Y4P1 LTYDTL 6-11 1 0 1 0 12 (1.1E-01) | DDSSSS 33
QI9Y4P1 PMFELV 347-352 0 0 1 0 10 (2.0E-01) | ssssss 0
Q9Y4P1 EDFEIL 386-391 1 1 1 0 17 (2.2E-02) | DDSSSS 33
BNI3L_HUMAN | 060238 SSWVEL 34-39 1 0 1 1 20 (8.4E-03) | DDDDDD 100
060238 AEFLKV 183-188 0 0 1 0 10 (2.0E-01) | ssssss 0
CALR_HUMAN | P27797 GGYVKL 107-112 0 0 1 0 12 (1.1E-01) | cccccc 0
P27797 DEFTHL 166-171 0 0 1 0 14 (5.7E-02) | cccccc 0
P27797 DDWDFL 198-203 1 1 1 1 26 (1.2E-03) | cccccc 0
CBL_HUMAN P22681 DTYQHL 90-95 0 0 1 0 14 (5.7E-02) | SSSSSS 0
P22681 LTYDEV 272-277 0 0 1 0 11 (1.5E-01) | sSSSSs 0
P22681 FGWLSL 800-805 1 0 1 1 18 (1.6E-02) | DDDDDD 100
P22681 REFVSI 893-898 0 0 1 1 13 (7.9E-02) | ssssss 0
CLH1_HUMAN | Q00610 PDWIFL 512-517 1 0 1 0 22 (4.4E-03) | SSSSSS 0
Q00610 GMFTEL | 1315-1320 0 0 1 0 11 (1.5E-01) | ssssss 0
Q00610 EDYQAL | 1475-1480 0 0 1 0 16 (3.0E-02) | SSSSss 0
DVL2_HUMAN [ 014641 RMWLKI 442-447 1 0 1 0 18 (1.6E-02) | SSssss 0
FUND1_HUMAN | Q8IVP5 DSYEVL 16-21 1 1 1 0 16 (3.0E-02) | SSSSSS 0
Q8IVPS GGFLLL 81-86 0 0 1 0 10 (2.0E-01) | sSSSSs 0
FYCO1_HUMAN | Q9BQS8 | ADYQAL 644-649 0 0 1 1 15 (4.2E-02) | DDDDDD 100
QY9BQS8 | AVFDII |1278-1283 1 0 1 1 8 (3.9E-01) | ssssss 0
NBR1_HUMAN | Q14596 LSFELL 561-566 0 0 1 1 10 (2.0E-01) | ssssss 0
Q14596 EDYIII 730-735 1 1 1 1 17 (2.2E-02) | DDSSSS 33
OPTN_HUMAN | Q96CV9 | DSFVEI 176-181 1 1 1 1 15 (4.2E-02) | DSSSSS 16
Q8MQJ7_DROME | Q8MQJ7 | ADYLSV 96-101 0 0 1 0 14 (5.7E-02) | ssssss 0
Q8MQJ7 | DDFVLV 389-394 1 1 1 1 17 (2.2E-02) | DDDDDD 100
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Q9SB64 _ARATH | Q9SB64 RVWVLI 479-484 0 0 1 0 15 (4.2E-02) | SSSSSS 0
QI9SB64 SEWDPI 659-664 1 0 1 0 20 (8.4E-03) | ssssss 0
RBCCI_HUMAN | Q8TDY2 | FDFETI 700-705 1 0 1 1 17 (2.2E-02) | DDDDDD 100
SQSTM_HUMAN | Q13501 DDWTHL 336-341 1 0 1 1 24 (2.3E-03) | DDDDDD 100
STBDI_HUMAN [ 095210 EEWEMV 201-206 1 1 1 0 21 (6.1E-03) | DDDDDD 100
T53I1_HUMAN [ Q96A56 DEWILV 29-34 1 1 1 1 20 (8.4E-03) | DDDDDD 100
T5312_HUMAN [ QS8IXH6 DGWLII 33-38 1 0 1 1 21 (6.1E-03) | DDDDDD 100
TBC25_HUMAN | Q3MII6 EVYLSL 95-100 0 0 1 0 8 (3.9E-01) | ssssss 0
Q3MlII6 EDWDII 134-139 1 1 1 0 24 (2.3E-03) | DDDDDD 100
TBCDS5_HUMAN [ Q92609 KEWEEL 57-62 1 0 1 0 20 (8.4E-03) | SSSSSS 0
Q92609 DDFILI 713-718 0 1 1 1 17 (2.2E-02) | DDDDDD 100
Q92609 SGFTIV 785-790 1 0 1 1 11 (1.5E-01) | DDDDDD 100
ULKI_HUMAN [ O75385 DDFVMV 355-360 1 1 1 1 19 (1.2E-02) | DDDDDD 100
ULK2_HUMAN [ QS8IYTS8 DDFVLV 351-356 1 1 1 1 17 (2.2E-02) | DDDDDD 100
Birgisdottir et al. (Birgisdottir et al. 2013)
ATG34_YEAST | Q12292 KVYEKL 194-199 0 0 1 0 8 (3.9E-01) | ssssss 0
Q12292 FTWEEI 407-412 1 0 1 0 20 (8.4E-03) | DDDDDD 100
BNIP3_HUMAN | Q12983 GSWVEL 16-21 1 0 1 1 19 (1.2E-02) | DDDDDD 100
Q12983 AEFLKV 159-164 0 0 1 0 10 (2.0E-01) | DDDDDD 100
COH519_PLAF7 | COH519 NDWLLP 103-108 1 0 0 0 12 (1.2E-02) | SSSSSS 0
CACO2_HUMAN | Q13137 FMWVTL 72-77 0 0 1 0 20 (8.4E-03) | SSSSSS 0
Q13137 DILVV 132-136 1 0 0 0 0 (0) SSSSSS 0
CTNBI_HUMAN | P35222 SHWPLI 502-507 1 0 0 0 11 (1.5E-01) | ssssss 0
MK15 HUMAN | Q8TDO08 | RVYQMI 338-343 1 0 1 1 10 (2.0E-01) | DDDDDD 100
TAXB1_HUMAN [ Q86VP1 DMLVV 139-143 1 0 0 0 0(0) DDDDDD 100
Q86VP1 ADFDIV 514-519 0 0 1 1 15 (4.2E-02) | DDDDDD 100
Behrends et al. (Behrends et al. 2010)
Al6L1_HUMAN | Q676U5 DEYDAL 164-169 0 1 1 1 16 (3.0E-02) | DDDDSS 66
ATG2A_HUMAN | Q2TAZ0 | PEYTEI 534-539 0 0 1 0 13 (7.9E-02) | DDDSDD 83
Q2TAZO | EVYESI 828-833 0 0 1 0 9 (2.8E-01) | ssssss 0
Q2TAZO | LEFLDV [ 1090-1095 0 0 1 0 9 (2.8E-01) | ssssss 0
ATG7_HUMAN [ 095352 SSFQSV 258-263 0 0 1 0 10 (2.0E-01) | ssssss 0
DYXC1_HUMAN | Q8WXU2 | AVFLSL 16-21 0 0 1 0 6 (7.4E-01) | SSSDDD 50
Q8WXU2 | AMWETL 81-86 0 0 1 0 19 (1.2E-02) | SSSSss 0
ECHA_HUMAN | P40939 AVFEDL 447-452 0 0 1 0 7 (5.3E-01) | ssssss 0
FAN_HUMAN Q92636 ESFEDL 600-605 0 1 1 0 12 (1.1E-01) | DDDDDD 100
Q92636 LVWDLL 869-874 0 0 1 0 13 (7.9E-02) | ssssss 0
IPO5_HUMAN 000410 ETYENI 31-36 0 1 0 0 11 (1.5E-01) | DDDDDD 100
000410 DGWEFV 655-660 0 0 1 0 21 (6.1E-03) | DDDDDD 100
000410 LSWLPL | 997-1002 0 0 1 0 16 (3.0E-02) | SSSSss 0
KAPO_HUMAN P10644 EEFVEV 310-315 0 1 1 0 13 (7.9E-02) | SSSSss 0
KBTB6_HUMAN [ Q86V97 ESFEVL 120-125 0 1 1 0 13 (7.9E-02) | SSSSss 0
KBTB7_HUMAN [ Q8WVZ9 | ESFEVL 120-125 0 1 1 0 13 (7.9E-02) | ssssss 0
NCOA7_HUMAN [ Q8NIO8 AEYDKL 185-190 0 0 1 0 13 (7.9E-02) | DDDDDD 100
Q8NI08 GEWEDL 308-313 0 0 1 0 19 (1.2E-02) | DDDDDD 100
Q8NI08 DDFVDL 414-419 0 1 1 1 18 (1.6E-02) | DDDDDD 100
Q8NI08 KSWEII 745-750 0 0 1 0 19 (1.2E-02) | DDDDDD 100
NEDD4 HUMAN | P46934 SEYIKL 410-415 0 0 1 0 13 (7.9E-02) | DDDDDD 100
P46934 PGWVVL 589-594 0 0 1 1 19 (1.2E-02) | DDDDDD 100
P46934 ESFEEL | 1296-1301 0 1 1 0 13 (7.9E-02) | SSSSss 0
SF3A1_HUMAN | Q15459 PEFEFI 148-153 0 0 1 0 13 (7.9E-02) | DDDDDD 100
STK3_HUMAN Q13188 EVFDVL 25-30 0 0 1 0 9 (2.8E-01) | ssssss 0
Q13188 GDFDFL 435-440 0 0 1 1 16 (3.0E-02) | DSSSSS 16
STK4_HUMAN Q13043 EVFDVL 28-33 0 0 1 0 9 (2.8E-01) | Ssssss 0
Q13043 GDYEFL 431-436 0 0 1 1 17 (2.2E-02) | ssssss 0
TBC15_HUMAN | Q8TC07 | AEWDMV 96-101 0 0 1 0 20 (8.4E-03) | DDDDDD 100
Q8TCO07 PGFEVI 295-300 0 0 1 0 12 (1.1E-01) | DDDSSS 50
Q8TCO07 FSFLDI 540-545 0 0 1 0 11 (1.5E-01) | SSssSss 0
TBD2B_HUMAN | Q9UPU7 | EEWELL 252-257 0 1 1 1 20 (8.4E-03) | DDDDDD 100
TCPR2_HUMAN | 015040 GDYIAV 45-50 0 0 1 0 14 (5.7E-02) | SSSSss 0
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015040 AVFQLV 102-107 0 0 1 0 5 (1.0E-00) | ssSDDD 50
015040 AVFVAL 894-899 0 0 1 0 7 (5.3E-01) | ssssss 0
015040 DEWEVI | 1406-1411 1 1 1 0 23 (3.2E-03) | DDDDDD 100
UBA5_HUMAN | Q9GZZ9 SDYEKI 66-71 0 0 1 0 17 (2.2E-02) | DDSSSS 33
Q9GZZ9 FDYDKV 103-108 0 0 1 0 16 (3.0E-02) | ssssss 0

Table 7. A collection of 52 proteins with their experimentally validated LIR-motifs.

Disorder percentage is calculated based on occurrence of ‘D’ characters in cdSTRs. Verified column indicates
whether a LIR-motif is functional (verified=1) or non-functional (verified=0), which is a result of literature
curation. The values in columns xLIR and Anchor2 indicate whether a LIR-motif is discoverable (value=1) by

the tool or not (value=0). PSSM scores and e-values were computed using iLIR webserver (Kalvari et al. 2014).

3.4.1 In seek of the optimal predictive method and disorder threshold

This section focuses solely on consensus disorder data retrieved from MobiDB v.3.0.0 and
aims at determining the method that best fits our data. We hereby examine the potential of
the three methods MobiDB-simple, Consensus, MAX(all) and disorder being used as another

variable in the equation towards discriminating genuine LIR-motifs.

MobiDB makes available two consensus predicted schemes by default, mobidb-lite and
simple. Although the two methods aggregate predicted data from the exact same tools and
in similar fashion, each approach captures disorder by employing different thresholds and
strategies. For instance, mobidb-simple is less stringent by allowing a residue to be appointed
as disordered (‘D’) if only half of the tools are agreement (>=50%), whereas mobidb-lite is
slightly more strict requiring that at least 6 out of 8 tools moving the bar to 75% and up
(Damiano Piovesan, personal communication). On top of that mobidb-lite also includes a
post-processing step which filters out short regions, therefore further investigation was

required to choose the best for our dataset.

With respect to our samples, mobidb-lite lacked information for a small number of LIR-
motifs, possibly due to its filtering of short regions. One-on-one comparison to mobidb-
simple revealed a rather fixed nature when alternating between thresholds. Meaning that
mobidb-lite reached a Balanced Accuracy of about 55% with a very low F1 score of 0.23
(0.27 at max) and did not deviate much from those values. This outcome was also the worst

amongst all methods and therefore excluded from further analysis.

The predictive power of the remaining three methods MobiDB-simple, consensus disorder
and Max(all) was evaluated at six distinct thresholds of 16%, 33%, 50%, 66%, 83% and

48



100% disorder encapsulated in disorder strings (dSTRs) and consensus dSTRs (cdSTRs).
The results are depicted in Table 8.

From balanced accuracy and F1-scores it is evident that MobiDB-simple outperforms the
two other methods at all different thresholds, reaching a peak of about 74% Balanced
Accuracy (BACC) and an Fl-score of 0.68 at 100% disorder. With respect to the other
metrics, we observe an oscillation between the leading method at different thresholds. For
example, the consensus method prevails over the other two at the lowest threshold (16%) in
terms of specificity, precision as well as Accuracy, and MAX(all) in terms of sensitivity.
However, MobiDB-simple persists in achieving the highest BACC add F1 values. Balanced
accuracy and Fl-score are metrics that balance precision and recall given an uneven set,
therefore deemed to be more representative of our dataset and will be used extensively to

compare different predictive schemes in the following.

Once we selected MobiDB-simple as the utmost method for disorder prediction in LIR-
motifs, the next step was the in-depth exploration of False Positive and False Negative
predictions, going through each case one by one (Table 9). From these results it becomes
apparent that MobiDB-derived data cannot yield a perfect discrimination between functional
and non-functional LIRs — at least not as a sole parameter. For instance, MobiDB-simple
annotates all non-functional LIRs with a 100% disorder, which under the assumption that a
completely disordered peptide is also a functional LIR, falsely classify those as such. Thus,
additional parameters (or other proxies to the disorderliness of LIR-motifs) need to be taken

into consideration when searching for genuine LIR-motifs.
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1+ residues 2+ residues 3+ residues 4+ residues 5+ residues 6 residues
Disorder >=16% Disorder >=33% Disorder >= 50% Disorder >= 66% Disorder >= 83% Disorder 100%
MAXall)| MOPIPB| o ensus MA@l MOPIPB| o sensus |MAX @il [MOPIPB| consensus [MAX ally | MOPIPB| ¢ gnsensus | MaX @l | MOPIPB| consensus [ MaX @) | MOPIPB| consensus
simple simple simple simple simple simple
TP 35 30 26 35 30 24 33 30 20 29 30 19 18 29 19 13 29 19
TN 11 32 36 15 32 37 21 33 38 29 36 41 40 38 43 46 40 44
FP 49 28 24 45 28 23 39 27 22 31 24 19 20 22 17 14 20 16
FN 1 6 10 1 6 12 3 6 16 7 6 17 18 7 17 23 7 17
Sensitivity
(%) 97.22 83.33 72.22 97.22 83.33 66.67 91.67 83.33 55.56 80.56 83.33 52.78 50.00 80.56 52.78 36.11 80.56 52.78
Spe(f,‘/ﬁ)c“y 1833 | 5333 | 60.00 2500 | 5333 | 61.67 3500 | 55.00 | 63.33 4833 | 60.00 | 6833 66.67 | 6333 | 7167 76.67 | 66.67 | 73.33
0
Precision
(%) 41.67 51.72 52.00 43.75 51.72 51.06 45.83 52.63 47.62 48.33 55.56 50.00 47.37 56.86 52.78 48.15 59.18 54.29
Accuracy
(%) 47.92 64.58 64.58 52.08 64.58 63.54 56.25 65.63 60.42 60.42 68.75 62.50 60.42 69.79 64.58 61.46 71.88 65.63
Balanced
Accuracy | 57.78 68.33 66.11 61.11 68.33 64.17 63.33 69.17 59.44 64.44 71.67 60.56 58.33 71.94 62.22 56.39 73.61 63.06
(%)
F1-score| 0.58 0.64 0.60 0.60 0.64 0.58 0.61 0.65 0.51 0.60 0.67 0.51 0.49 0.67 0.53 0.41 0.68 0.54

Table 8. Disorder results as computed from MobiDB 3.0.0 data.

The three algorithms described in methods were tested for their predictive power on the collection of verified and non-verified LIR-motifs of Alemu et al (Alemu et al. 2012) as

illustrated in Table 7. Evaluation was carried out based on six metrics: Sensitivity, Specificity, Precision, Accuracy (ACC), Balanced Accuracy (BACC) and F1-score with the top

score for each metric represented in bold.
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UniProt id Sequence | Positions | Verified PSSM xLIR| dSTR c¢dSTR
(e-value)

False Positives
BNIP3 HUMAN | AEFLKV | 159-164 0 10 (2.0E-01)| 1 | DDDDDD | DDDDDD
CALR HUMAN | GGYVKL | 107-112 0 12 (1.1E-01)| 1 | DDDDDD | CCCCCC
FAN HUMAN | ESFEDL | 600-605 0 12 (1.1E-01)| 1 | DDDDDD | DDDDDD
FYCO1 HUMAN | ADYQAL | 644-649 0 15 (4.2E-02)| 1 | DDDDDD | DDDDDD
IPO5 HUMAN | ETYENI 31-36 0 11 (1.5E-01)| 0 | DDDDDD | DDDDDD
IPO5 HUMAN | DGWEFV | 655-660 0 21(6.1E-03)| 1 | DDDDDD | DDDDDD
KAPO HUMAN | EEFVEV | 310-315 0 13 (7.9E-02)| 1 DDDDDD | SSSSSS
NCOA7 HUMAN | AEYDKL | 185-190 0 13(7.9E-02)| 1 | DDDDDD | DDDDDD
NCOA7 HUMAN| GEWEDL | 308-313 0 19 (1.2E-02)| 1 | DDDDDD | DDDDDD
NCOA7 HUMAN | DDFVDL | 414-419 0 18 (1.6E-02)| 1 DDDDDD | DDDDDD
NCOA7 HUMAN| KSWEII | 745-750 0 19 (1.2E-02)| 1 | DDDDDD | DDDDDD
NEDD4 HUMAN | SEYIKL | 410-415 0 13 (7.9E-02)| 1 | DDDDDD | DDDDDD
NEDD4 HUMAN | PGWVVL | 589-594 0 19 (1.2E-02)| 1 | DDDDDD | DDDDDD
SF3A1 HUMAN | PEFEFI | 148-153 0 13(7.9E-02)| 1 | DDDDDD | DDDDDD
STK3 HUMAN | EVFDVL 25-30 0 9 (2.8E-01) 1 DDDDDD | SSSSSS
STK3 HUMAN | GDFDFL | 435-440 0 16 (3.0E-02)| 1 | DDDDDD | DSSSSS
TAXB1 HUMAN | ADFDIV | 514-519 0 15(4.2E-02)| 1 | DDDDDD | DDDDDD
TBC15 HUMAN | AEWDMV | 96-101 0 20 (8.4E-03)| 1 | DDDDDD | DDDDDD
TBCD5 HUMAN | DDFILI | 713-718 0 17 (2.2E-02)| 1 | DDDDDD | DDDDDD
TBD2B HUMAN | EEWELL | 252-257 0 20 (8.4E-03)| 1 | DDDDDD | DDDDDD

False Negatives
CACO2 HUMAN| DILVV 132-136 1 N/A 0 22?2272 SSSSSS
CLH1 HUMAN | PDWIFL | 512-517 1 22 (4.4E-03)| 1 2?2?2222 | SSSSSS
CTNB1 _HUMAN | SHWPLI | 502-507 1 11 (1.5E-01)] O | 222222 | SSSSSS
DVL2 HUMAN | RMWLKI | 442-447 1 18 (1.6E-02)| 1 2?2?2222 | SSSSSS
FUND1 HUMAN | DSYEVL 16-21 1 16 (3.0E-02)| 1 | DDDD?? | SSSSSS
QI9SB64 ARATH | SEWDPI | 659-664 1 20 (8.4E-03)| 1 2?2?2222 | SSSSSS
TBCD5 HUMAN | KEWEEL | 57-62 1 20 (8.4E-03)| 1 | 222222 | SSSSSS

Table 9. Classification of LIR-motifs using disorder data from MobiDB.

List of LIR-motifs that were falsely categorized as functional LIRs (False Positives) or falsely predicted as

non-functional (False Negatives).

With respect to False Negatives what can be observed is that almost all dSTRs are in their

(DSYEVL) at 66% disorder (DDDD? ?). This is due to the stringent disorder filter of 100%
that we apply, but based on the results in Table 8, a lower threshold of 66% disorder (4+

residues) would have come with the expense of additional False positives.
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3.4.2 Assessing the power of MobiDB over IUPRED2A and SPOT-disorder

MobiDB (Piovesan et al. 2018) is a composite database combining disorder proteomic data
and mobility annotations from a wide range of resources including [UPred. In the previous
section we explored the predictive power of MobiDB-simple based on a set of metrics which
we computed at different thresholds. In this segment, we analyse its potential in opposition
to stand alone methods: the newest [UPred, namely [UPred2A (Mészéros et al. 2018) and a
newly published tool called SPOT-disorder (Hanson et al. 2017). To evaluate the
performance of each tool, we tested their ability to correctly distinguish the genuine LIRs
out of the collection of 96 LIRs listed in Table 7.

In opposition to ModiDB-simple and SPOT-disorder (used with their default options),
IUPRED2A was examined more thoroughly by experimenting with several other scores
beyond the default value of 0.5 suggested by its authors. This process revealed that a score
of 0.3 is perhaps more suitable for our dataset and was the one selected for further analysis.
We hereby evaluate the strength of each method based on the six selected thresholds of 16%,
33%, 50%, 66%, 83% and 100% disorder for all aforementioned metrics. The performance

of the three methods are juxtaposed in Table 10.
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1+ residues

2+ residues

3+ residues

4+ residues

5+ residues

6 residues

Disorder >= 16

Disorder >= 33

Disorder >=50

Disorder >= 66

Disorder >= 83

Disorder 100

Metrics
IUPRED2A IUPRED2A IUPRED2A IUPRED2A IUPRED2A IUPRED2A MobiDB
©0.3) SPOT ©0.3) SPOT ©0.3) SPOT ©0.3) SPOT ©0.3) SPOT ©0.3) SPOT simple
TP 31 17 29 15 29 13 27 13 26 12 24 12 29
TN 35 46 36 46 38 47 38 48 42 50 42 51 40
FP 25 14 24 14 22 13 22 12 18 10 18 9 20
FN 5 19 7 21 7 23 9 23 10 24 12 24 7
Se“(so‘/i‘)v ity 86.11 4722 80.56 41.67 80.56 36.11 75.00 36.11 72.22 33.33 66.67 33.33 80.56
Spe(f,‘/ﬁ)c"y 58.33 76.67 60.00 76.67 63.33 78.33 63.33 80.00 70.00 83.33 70.00 85.00 66.67
(]
Precision (%) 55.36 54.84 54.72 51.72 56.86 50.00 55.10 52.00 59.09 54.55 57.14 57.14 59.18
Accuracy (%) 68.75 65.63 67.71 63.54 69.79 62.50 67.71 63.54 70.83 64.58 68.75 65.63 71.88
Balanced 7222 61.94 70.28 59.17 71.94 57.22 69.17 58.06 7111 58.33 68.33 59.17 73.61
Accuracy (%)
Fl-score 0.67 0.51 0.65 0.46 0.67 0.42 0.64 0.43 0.65 0.41 0.62 0.42 0.68

Table 10. Comparison of [IUPRED2A, SPOT and MobiDB.

Performance of MobiDB-simple, [UPRED2A and SPOT-disorder as calculated on the 96 LIR-motifs presented in Table 7. Assessment is conducted based on six incremental
thresholds 16%, 33%, 50%, 66%, 83% and 100% disorder with optimum values in each test case represented in bold.
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Giving emphasis to Balanced accuracy and Fl-scores one can notice that [UPRED2Ay 3
outperforms MobiDB-simple almost at all disorder thresholds apart from the case of
complete disorder (100%). That is where MobiDB-simple is once again the best method with
a 74% BACC and a 0.68 F1-score. The difference between [UPRED2A and MobiDB-simple
is very small with a 72% BACC/0.67 F1-score and a 68% BACC/0.64 F1-score respectively.
SPOT appears to be the weakest with a BACC of only 62% and an Fl-score of 0.51
calculated at 16% disorder, which continues to gradually downdrift as the level of disorder

increases and consequently thrown out of competition.

With respect to the other four metrics SPOT does not fall far behind [UPRED2A, 3, but a
very interesting observation is that [UPRED2A 3 is more sensitive, whereas SPOT is more

specific and this trend persists at all thresholds.

Coming back to IUPRED2A and MobiDB-simple, one can confidently accept MobiDB-
simple as the optimal method overtaking all other methods at all tested thresholds. However,
since the difference between the two is not large, we re-assess both for their contribution in

a multi-scheme predictor in the sections that follow.

3.4.3 Scrutinizing the potential of disorder binding regions in the

determination of genuine LIRs

In 2014, driven by the observation that proteins involved in autophagy are highly abundant
in intrinsically disordered regions (Mei et al. 2014), we investigated the possibility of LIR-
motifs undergoing a disorder to order conformational change upon binding to Atg8
homologs. For that purpose, we used the ANCHOR software (Meireles et al. 2010) to search
for such regions in our collection of proteins. A residue with score over 0.5 (by default) was
considered to belong to a disorder binding region with motif classified as such if the

constraint that at least 66% of LIR-motif being disordered was met (4 out of 6 residues).

With the release of the new [UPred2A software (Mészaros et al. 2018) a new revised version
of the ANCHOR tool became available referred to as ANCHOR2. According to Meszaros
et al., ANCHOR?2 underwent major revision which lead to better results. This current version
has been modified to take into account interactions with globular domains as well as local
disorder sequence environment and was re-trained using a new dataset from DIBS database

(Schad et al. 2018). From their findings it is evident that ANCHOR2 outperforms its
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predecessor in all tested scenarios and for that reason we herein assess its power on our
dataset. For this purpose, new anchors were generated for all 52 proteins with LIR-motifs
that are listed in Table 7. We also went a step further by testing disorder prediction at lower
scores to investigate whether an alternative could fit our dataset better than the default. We
examined three alternative thresholds for ANCHOR?2 scores in addition to the default 0.5
used by IUPRED2A 0.2, 0.3 and 0.4, and which pinpointed 0.3 as another candidate for

annotating LIR-motif residues with anchors.

In order to determine the optimum anchor score for our dataset, the two anchor schemes
were assessed for their predictive strength in combination with other parameters such us the
characterisation of LIR-motifs by xLIR (xLIR=1) and its corresponding PSSM score. Our
findings showed that anchor predictions with the default score of 0.5 (Anchor2¢.s) was more
efficient, reaching a Balanced Accuracy of 78% and an F1-score of 0.85 as opposed to a
72% BACC and 0.83 F1 achieved with anchor score of 0.3 (Anchor2y3). Consequently
Anchor2gs was selected to further compare its efficacy to its former version as contributor

to the multi-scheme predictors. The results are depicted in Table 11.

xLIR |xLIR+A |xLIR + A2 | xLIR+ A + P13 | xLIR+ A2+ P13 | xLIR + A | P13 | xLIR + A2 | P13
TP 27 17 12 15 11 26 26
TN 0 16 18 18 18 11 11
FP 20 4 1 2 1 9 8
FN 0 10 16 12 17 1 2
Sensitivity
%) 100.00 | 62.96 42.86 55.56 39.29 96.30 92.86
Spe(f,‘/ﬁ)c“y 0.00 | 80.00 | 9474 90.00 94.74 55.00 57.89
0
Priﬁ/‘:)“’“ 57.45 | 80.95 92.31 88.24 91.67 74.29 76.47
A“E},}r;wy 57.45 | 70.21 63.83 70.21 61.70 78.72 78.72
0
Balanced
Accuracy | 50.00 | 71.48 68.80 72.78 67.01 75.65 75.38
(%)
F1-score
%) 0.73 0.71 0.59 0.68 0.55 0.84 0.84

Table 11. Comparing the efficacy of ANCHOR and ANCHOR?2 on different predictive schemes.

In order for the results to be comparable to those in Table 3 of the iLIR paper (Kalvari et al.
2014) both versions were reassessed on the subset of proteins introduced by Alemu et al, but
using the same schemes we studied before. ANCHOR appears to supersede ANCHOR?2 in
terms of accuracy (ACC), balanced accuracy (BACC) and F1-score in all schemes although
in the case of xLIR+AX]|P13, the difference in balanced accuracy in only marginal and both

versions of the tool give an F1 score of 0.84. One can argue that since the old version of
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ANCHOR seems to be better than its successor, that updating to the new version would not
come with a positive outcome, however both of the tools give an F1 score of 0.84. If we are
to compare the two data-wise, the difference is only an additional FN for ANCHOR?2 at the
expense of a single FP. Since ANCHOR?2 is the latest version and the one that is most likely
to be maintained for the foreseeable future, it is also the one we will be including in any

further analysis.

3.4.4 Assessing the efficacy of multi-scheme predictors

In our previous work we showed that combining different metrics resulted in more powerful
LIR prediction schemes. Supporting evidence is the inclusion of anchors and PSSMs as an
enhancing means for discriminating genuine LIR-motifs reaching a maximum of 75.7%
BACC (Table 5 (Kalvari et al. 2014)). With the refinement of ANCHOR (ANCHOR2),
xLIR+A2|P13 BACC went up to 78% (~2% improvement) with an F1-score of 0.85, an
even greater better performance compared to MobiDB-simpleigo with an increased BACC

and F1-score by 5% and 0.17 respectively.

In this final section we investigated the relevance of intrinsic disorder as a predictor of
autophagy LC3 interacting regions. Carrying over from the previous section, we examined
whether incorporating intrinsic disorder in the multi-scheme logic equation would further
improve its predictive power. Table 12 lists an expanded version of all predictive schemes
presented in Table 5 from Kalvari et al (Kalvari et al. 2014), with the addition of intrinsic
disorder. When discussing about multi-scheme predictors we refer to simple logic (e.g.
xLIR+A2+D[P13) equations that combine binarized LIR-motif descriptors such as anchors,

disordered etc.

56



xLIR |XLIR+D|xLIR+A2+D |xLIR+A2|D | xLIR+A2+D|P13 | xLIR+A2|D|P13
TP 27 23 12 23 26 28
TN 0 16 18 16 11 10
FP 20 3 1 3 8 9
FN 0 5 16 5 2 0

Se“g}/f)‘)“ty 100.00| 82.14 |  42.86 82.14 92.86 100.00

Sl’e(f,‘/f‘)c“y 0.00 | 84.21 94.74 84.21 57.89 52.63

Priﬁ/f)“’“ 57.45 | 88.46 92.31 88.46 76.47 75.68

Acf},}:)acy 57.45 | 82.98 63.83 82.98 78.72 80.85

Balanced

Accuracy | 50.00 | 83.18 68.80 83.18 75.38 76.32
(“o)

Fl-score | 0.73 | 0.85 0.59 0.85 0.84 0.86

Table 12. Multi-scheme predictors applied on the 47 LIR-motifs collected by Alemu et al.
Assessment of their power in discriminating functional LIR-motifs was conducted based on Sensitivity,
Specificity, Precision, Accuracy, Balanced Accuracy (BACC) and F1-score. A2 represents the latest version

of ANCHOR, D is for disorder and P13 for pssm scores > 13. The top scores in each row are marked in bold.

Overall our findings suggest that disorder is a good indicator of genuine LIR-motifs reaching
a balanced accuracy of 83% for schemes xLIR+D and xLIR+A2|D, surpassing our previous
top score by 5%. Both predictors appear to perform exactly the same with nicely balanced
Specificity and Sensitivity of 84% and 82% respectively, suggesting that intrinsic disorder
in LIR-motifs is a critical feature. Further evidence that justify this conclusion can be derived
by comparing the two aforementioned schemes with predictor xLIR+A2+D. This latter case

appears to be the weakest of the combinational schemes being in favour of Specificity (~
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95%) with a balanced accuracy of 69% and an F1-score of 0.6. Disorder (D) in xLIR+A2|D
seems to be overpowering A2, with that particular logical equation giving the exact same
results with XLIR+D obliterating anchors (A2) completely. However, it is very likely that a
larger collection of samples the two tools can better compensate for one another with A2

picking up cases that disorder eludes and vice versa.

Looking into PSSM scores, the inclusion of P13 (PSSM > 13) to the schemes
(xLIR+A2|D|P13) seems to have had a negative effect, an outcome which is contradictory
to our previous findings. With respect to balanced accuracy, it still performs better with a
slight improvement of 0.6% compared to our old optimal case XLIR+A|P13 (Kalvari et al.
2014). Its 7% declination from the 83% of the best scheme (XLIR+A2|D) came with 100%
Sensitivity - similar to using xLIR solely - but with a 53% gain in Specificity. Although with
a lower balanced accuracy of 76%, this scheme comes with an F1-score of 0.86, which is
also the best across all tests performed. This raises the question whether there are other ways

to fine tune this multi-scheme predictor to achieve even higher scores.

Building on that notion, the PSSM score is the only descriptor that is still parameterizable,
meaning that it is the only one not tested for an optimum value. To look into PSSM
alternatives, we computed all metrics on the same dataset we worked with before using the
multi-scheme predictor XLIR+A2|D|PX, where X parametrized different PSSM thresholds
tested. We captured its performance at six incremental PSSM scores starting from P13, P14
up to P18, where P18, where PX denotes a PSSM score > X. The Balanced accuracy for both
disorder methods mobidb-simple and [UPRED2A (iupred2) computed at the six distinct
PSSM scores is illustrated in Figure 15.
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XxLIR+A2|D|PX BACC captured at different PSSM thresholds
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Figure 15. Balanced Accuracy (%) achieved with multi-scheme predictor xLIR+A2|D|PX captured at
various PSSM thresholds.

All scores were calculated based on the 47 xLIRs detected in the sequences stemming from the paper of Alemu
and colleagues (Alemu et al. 2012). IUPRED2A scores are in blue and mobidb-simple BACC is presented in

green.

From the results portrayed in Figure 15 what is apparent is that, overall, mobidb-simple has
a better effect than [UPRED2A when used synergistically in the multi-scheme predictor,
although at P13 ITUPRED2A seems more favourable with a BACC of 77.16% over the
76.32% achieved with mobidb-simple. At PSSM > 14 the balanced accuracy of mobidb-
simple begins to increase and precedes up to P16 (89.47% vs 87.69%). At P17 both tools
reach a peak value of 90% BACC, a value that mobidb-simple preserves at P18, followed
by a downdrift at P19. This raises another question of whether P17 is the optimum PSSM
score. To answer this question, the multischeme predictor xLIR+A2|D|PX was applied on the
entire collection of 96 LIRs (Table 1) and all metrics where re-computed at all different

PSSM scores. The results are depicted in Figure 16.
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XxLIR+A2|D|PX BACC captured at different PSSM thresholds
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Figure 16. Balanced Accuracy (%) achieved with multi-scheme predictor xLIR+A2|D|PX captured at
various PSSM thresholds.
All scores were calculated based on the entire collection of 96 LIR-motifs listed in Table 7. IUPRED2A BACC

values are in blue and mobidb-simple BACC is presented in green.

These new results illustrate the strength of mobidb-simple in helping to distinguish genuine
LIR-motifs. The multi-scheme predictor scheme in collaboration with mobidb-simple once
again outperforms the one with [IUPRED2A, but both schemes start at lower BACCs of 63%
and 62% respectively. It also became clearer the PSSM score at which each method is at
peak. For instance, if IUPRED2A were to be used in the multi-scheme predictor, then the
PSSM threshold at which the predictor is at its utmost performance would be > 17 reaching
a BACC of 74% and F1-score of 0.69. MobiDB-simple, as we also observed in the results
depicted in Figure 16, reaches its peak performance at a PSSM threshold > 18 with a 75.6%
BACC and F1-score of 0.7. This slight improvement in balanced accuracy comes with two
additional True Negatives which were previously falsely characterized as functional LIR-
motifs. A significant outcome in studies that take the identification of LIR-motifs at

proteome scale.
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Before closing, it is important to discuss a very intriguing outcome of the comparison of the
two multi-scheme predictors XLIR+A2+D|PX and xLIR+A2|D|PX at different PSSM scores.
At PSSM scores > 13, the difference in balanced accuracy and F1 scores between the two
methods is marginal (Table 12), therefore we went a step further by examining those values
at different PSSM cutoffs. Although xLIR+A2|D|PX outperformed xLIR+A2+D|PX for a
PSSM score > 13 when tested on both datasets of Alemu et al. (for comparison with iLIR
results) and the complete set of LIR-motifs (Table 1), a result that also persisted when we
tried different PSSM scores on the Alemu dataset (Figure 17-left), this same experiment

yielded the opposite outcome on the entire collection of LIR-motifs (Figure 17-right).
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Multischeme comparison on the Alemu dataset
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Figure 17. Multi-scheme method comparison.

The performance of the two multi-scheme predictors XLIR+A2+D|PX and xXLIR+A2|D|PX was tested on the Alemu (left) and complete (right) datasets of LIR-motifs, were

balanced accuracy is measured at different PSSM thresholds.
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What can be observed from the right chart in Figure 17-right, is that the multi-scheme
predictor XLIR+A2+D|PX performs better than the xLIR+A2|D|PX for all PSSM scores >
14, reaching a maximum BACC of 77.5% (F1: 0.72) over 73.8% (F1: 0.69) at PSSM >17
respectively. Detailed results for PSSM >17 are presented in Table 13.

A possible explanation to this result is that xLIR+A2+D|PX requires that both ANCHOR2
and MobiDB-simple predict a LIR-motif as functional, giving more power to ANCHOR2
which we previously saw that the number of correctly identified LIR-motifs was low, hence

controlling the outcome of the logical equation A2+D. This means that the outcome relies

on the PSSM score solely.
xLIR+A2+D|P17| xLIR+A2|D|P17
TP 27 31
TN 48 37
FP 12 23
FN 9 5
Sensitivity
(%) 75.00 86.11
Specificity
(%) 80.00 61.67
Precision
(%) 69.23 57.41
Accuracy
(%) 78.13 70.83
Balanced
Accuracy 77.50 73.89
(%0)
F1-score 0.72 0.69

Table 13. Multi-scheme predictor results on the complete dataset.
Comparison of the performance of the multi-scheme predictors XLIR+A2+D|P17 and xLIR+A2|D|P17 on the

complete dataset of experimentally verified LIR-motifs.

It is important to understand that the purpose of this study is to provide the users with tools
and strategies to identify LIR-motifs in putative proteins and various filtering methods based
of the requirements of each experiment. The users should use their discretion in selecting the
optimal parameters that best fit their needs, taking into account whether specificity or
sensitivity is more important. For example, it is expected that when scanning a complete

proteome for identifying selective autophagy receptors, choosing a scheme tuned for high
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specificity will provide an accurate list of proteins. On the other hand, when scanning a
particular protein for candidate LIR-motifs, a high sensitivity scheme will provide a larger
number of candidates which can be rationally prioritized using additional features, e.g. those

provided by the iLIR server.

3.4.5 Independent validation

Ever since the publication of the iLIR (Kalvari et al. 2014) webserver, new studies exploring
the world of selective autophagy came to the surface. Some branched out to other types of
autophagy that also resulted in the production of new tools, an example of which is the
hfAIM (Xie et al. 2016) web resource that focuses on locating LIR-motifs in proteins
participating in pexophagy. To divert from the computational side of things, significant were
the experimental surveys that were able to validate functional LIRs that previous studies
failed to detect (Skytte Rasmussen et al. 2017; Stadel et al. 2015) and finally studies that

introduced novel proteins to the research community (Rogov et al. 2017).

With the best predictive scheme in hand, the next step was to test it on new LIR-motifs. We
manually hand-picked four candidate protein sequences with experimentally verified
functional LIRs from previous works (Rogov et al. 2017) (Svenning et al. 2011). The
sequence of each protein specimen was manually downloaded from the UniProtKB

Knowledgebase (https://www.uniprot.org/) (The UniProt Consortium 2018) and iLIR

webserver was used to search the sequences for an xLIR match, and to generate the PSSM
scores used in the multi-scheme predictor. Anchors and disorder strings (dASTR, cdSTR) were

generated using the tools described in the methods. The results are presented in Table 14.
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UniProt

PSSM score

UniProt ID Accession Sequence |Position|Verified|xLIR|Anchor2 (e-value) dSTR c¢dSTR Author Prediction

C0Z2C5_ARATH | C0Z2C5 | REYVLV |358-363 1 1 0 13 (7.90E-02) | DDDDDD DDDDDD Svenning et al. TP
JMY HUMAN | Q8N9BS5 | SDWVAV | 11-16 1 1 0 22 (4.40E-03) | DDDDDD DDDDDD Rogov et al. TP
FSFQDL (233-238 0 1 0 11 (1.50E-01) DDDDDD DDDDDD Rogov et al. FP

GMWTVL |265-270 0 1 0 18 (1.60E-02) DDDDDD DDDDDD Rogov et al. FP

KGYEEV [329-334| 0 1 0 12 (1.10E-01) | DDDDDD DDDDDD Rogov et al. FP

ESFTLL |945-950 0 1 0 11 (1.50E-01) DDDDDD DDDDDD Rogov et al. FP

PKHM1 HUMAN|Q9Y4G2*| DEWVNV [633-638 1 0 0 19 (1.20E-02) | DDDDDD DSSSSS Rogov et al. FN
RETR1 _HUMAN | Q9H6LS | ESWEVI |152-157 0 1 0 20 (8.40E-03) | 22DDDD SSDDDD Rogov et al. FP
LSYLLL |219-224 0 1 0 10 (2.00E-01) | 222222 SSSSSS Rogov et al. TN

DDFELL (453-458 1 1 1 18 (1.60E-02) DDDDDD DDDDDD Rogov et al. TP

Table 14. New proteins and their corresponding verified LIR motifs.

xLIR, PSSM scores, e-values, LIR requence and positions were generated using iLIR web server (Kalvari et al. 2014). Anchors (Anchor2), dSTRs and cdSTRs were generated using

the tools described in methods. *The sequence Q9Y4G2 does not conform to the xLIR motif but only to the most generic WxxL-motif, yet we include it for completeness.
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Assuming a wet lab researcher was interested in studying these four sequences:

1. C0Z2C5_ARATH: she would be unambiguously pointed to the correct functional

motif.

2. JMY_HUMAN: among the 5 detected XxLIR motifs with intrinsic disorder
prediction, the top-scoring against the PSSM is the correct one, which would be

prioritized.

3. PKHM1_HUMAN: the xLIR motif fails to recognize the functional LIR motif.
However, among the 15 WxxL motifs detected by iLIR, the top scoring one is the
genuine LIR motif (see Figure 18).

4. RETR1_HUMAN: the genuine LIR-motif —even though slightly outscored by
another xLIR-motif in the PSSM comparison— still has a high PSSM score, and is the
only xLIR-motif overlapping an ANCHOR prediction as well as it is predicted to be

completely disordered.

All in all, in all of the above cases, even though the predictions are far from perfect, our
multi-scheme analysis approach provides useful information for the prioritization of

candidate LIR motifs for downstream experimentation.

It is worth mentioning that the validation presented here is by no means comprehensive, as
this would require an exhaustive screen of all newly reported proteins with experimentally
verified LIR-motifs in the current literature. In fact, we have recently compiled data (Kalvari,
Chadjichristofi and Promponas, unpublished data) about dozens of newly reported instances
of LIR-motifs - a number of which were discovered based on iLIR predictions. However, a
time-consuming manual verification for annotating entries based on literature evidence and
cleansing of these data is necessary prior to availability of this dataset for proper analysis.
The small dataset analysed here highlights that even though the prediction accuracy of
existing and novel prediction schemes developed in this work is not perfect, they can provide
valuable guidelines to experimental scientists for rational design of experiments for

identifying novel instances of functionally important LIR-motifs.
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wxxL 31 36 KQYVSL 10 (2.0e-01) [+/-] No
2CXL_A
2CXF_A
WxxL 87 92  PVFWPL 2 (2.6e+00) [+/-] No
2CXL_A
2CXF_A
wxxL 119 124  RAWLRL 14 (5.7e-02) [+/-] No
2CXL_A
2CXF_A
wxxL 132 137  ECYLKL 8 (3.9¢-01) [+/-] No
2CXL_A
2CXF_A
WxxL 516 521  KSFRW 7 (5.3¢-01) No
WxxL 530 535  NPFRGL 1 (3.6e+00) No
WxxL 548 553  GIWKEL 12 (1.1e-01) No
WxxL 592 597  GRFELV 7 (5.3e-01) No
@xxL 633 638  DEWVNV 19 (1.2e-02)  T5311_HUMAN 29-34 (4) No )
WxxL 743 748  PSFFKI 7 (5.3¢-01) No
WxxL 766 771 ALWRDL 10 (2.0e-01) No
WxxL 838 843  IGFSFV 6 (7.4e-01) No
WxxL 848 853  CAFSGL 0 (5.0e+00) No
WxxL 907 912  SLYEHV 8 (3.9¢-01) No
WxxL 929 934  GDYLGL 13 (7.9e-02) No

Figure 18. iLIR results for human Pleckstrin homology domain-containing family M member

The top scoring detected WxxL-motif (score: 19) against the XLIR PSSM corresponds to the functional LIR-
motif of human Pleckstrin (Uniprot acc: Q9Y4G2) and additionally has 4 conserved positions compared to the
verified LIR-motif of T5311.

It turns out that this particular set of proteins is a good example to demonstrate the efficacy
of the multi-scheme predictor. Interestingly, not all motifs match the xLIR regular
expression. As the xLIR regular expression derives mostly from human proteins, one would
expect this to occur for the case of the plant protein C0Z2CS5_ARATH. This shows the
weakness of the XxLIR method and once again signifies the necessity of involving additional
characteristics. This is the reason why the iLIR server also reports the more generic WxxL

motif and we introduced the anchors and the PSSM scores in the past.

67



Moving on to Anchors, C0Z2C5 ARATH REYVLV and JMY HUMAN SDWVAV are not
predicted to switch from a disordered to order state upon binding to partners, a case that
would result in 2 false negative predictions if anchors were an essential characteristic of
functional LIRs e.g. xXLIR+A2. However, PSSM scores in the multi-scheme predictor
xLIR+A2|P13 make up for this by successfully picking up all genuine LIRs (Table 15). The
problem is that with those correctly classified LIRs the PSSM also falsely collects 2 false
positives too. This is because almost all of these LIR-motifs appear to be completely
disordered, but even if we eliminate this parameter, the PSSM scores of 2 of the unverified
LIRs RETRI HUMAN ESWEVI and JMY HUMAN GMWTVL are quite high, therefore

they would still be falsely characterised as functional.

One solution to this problem would be to add more constraints to the predictors. For instance,
setting upper and lower thresholds to the PSSM scores to filter out outliers. Although this
could work for this scenario, there are two cases in the dataset. Unverified LIRs with very
high PSSM scores and verified LIRs whose PSSM score is very low. For example,
FYCOl HUMAN AVFDII and MK15 HUMAN RVYQMI with PSSM scores 8 and 10
respectively. Another case is the case of atypical LIRs (CACO2 HUMAN DILVV,
TAXB1 HUMAN DMLVV) for which PSSMs are unavailable.

XLIR+A2 xLIR+A2[P13 xLIR+A2|D|P13
TP 1 3 3
TN 6 4 1
FP 0 2 5
FN 3 1 1

Table 15. Classification of novel LIR-motifs based on 3 different prediction schemes
TP, TN, FP and FN values computed based on the Verified, xLIR, Anchor2, PSSM-score and dSTR values in
Table 14, using the 3 multi-scheme predictors XLIR+A2, xLIR+A2|P13, xLIR+A2|D|P13. The final result is

presented under column “Prediction” in Table 14.

It is evident that this is not a one fits all case. As more experimental data become available
the better the results of the predictors will be, but it is also expected that more complex
methodologies will be required to classify such instances, such as machine learning

algorithms that will learn from the data and be able to evaluate multiple parameters at a time.
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3.4.6 A comparison to existing tools

The release of the iLIR resource in 2013 paved the way for the development of new
resources. In fact about 2 years later a web server called hfAIM

(http://bioinformatics.psb.ugent.be/hfAIM/) - for high fidelity AIM - made its way out to the

scientific community, providing additional computational methods for the identification of
Atg8 Interacting Proteins (AIPs), that is selective autophagy receptors and adaptors, with a
particular focus in plants (Xie et al. 2016). Their methodology applies more stringent rules
requiring that acidic amino acids (Asp (D), Glu (E)) occupying the X_; and X+ positions
surrounding the F/W/Y position of the core AIM X.[F/W/Y-X41-X-L/I/V] defined by
Schreiber et al. (Schreiber & Peter 2014). These amino acid residues seem to increase the
fidelity of the AIM Containing Protein (ACP) interaction with the Atg8 protein (Noda et al.
2008; Wild et al. 2011). Following this notion, they compiled a collection of experimentally
verified AIMs (Table S1 in their supplementary material), which resulted in the generation
of 5 regular expressions in the form of X »X_1[F/W/Y]X+1X+2[L/I/V] with acidic amino acids

occupying positions X.; and X+1.

The S regular expressions are the following:

A. hfAIM1: X[DE][DE][WFY][ADCQEIGNLMFPSTWYV]X[LIV]

B. hfAIM2:
[DE][DE]J[ADCQEIGNLMFPSTWY V][WFY][ADCQEIGNLMFPSTWY VIX[LI
V]

C. hfAIM3: XX[ADCQEIGNLMFPSTWY V][WFY][DE][DE][LIV]

D. hfAIM4: [DE]X[DE][WFY][ADCQEIGNLMFPSTWYV]X[LIV]

E. hfAIM5: XX[DE][WFY][DE]X[LIV]

A comparative analysis they conducted revealed that their approach was able to detect AIMs
with a higher specificity compared to the iLIR. As follow-up study and in order to be able
to further directly assess this outcome, we used the hfAIM resource to identify LIR-motifs
on the protein collection of Alemu et al. The results from the hfAIM scan are presented in

the following table.
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UniProt
ACC
Q8MQJ7
075143
Q9Y4P1

P27797

Q00610

014641

Q8TDY2

QSIVPS
QYBQSS
Q14596
060238
Q3MII6

Q96CV9
095210
Q92609

Q96A56
QSIXH6
075385
QSIYTS

UniProt ID

Q8MQJ7 DROME
ATG13_HUMAN
ATG4B_HUMAN

CALR HUMAN

CLH1 HUMAN

DVL2 HUMAN

RBCC1 _HUMAN

FUNDI HUMAN
FYCO1 HUMAN
NBR1 HUMAN
BNI3L HUMAN
TBC25 HUMAN

OPTN HUMAN
STBD1 HUMAN
TBCD5 HUMAN

T5311 HUMAN
T5312 HUMAN
ULK1 HUMAN
ULK2 HUMAN

Verified

M<K ZIK < (R ZK << <K 2|2 <2< 22| 2| Z /<< |Z| << < =<

Range

[388,394]
[441,447]
[6,11]
[385,391]
[165,171]
[197,203]
[512,517]
[1147,1153]
[1293,1299]
[1474,1480]
[61,67]
[442,447]
[602,608]
[699,705]
[910,916]
[1000,1006]
[15,21]
[1278-1283]
[729,735]
[34-39]
[133,139]
[262,268]
[175,181]
[200,206]
[56,62]
[712,718]
[785,790]
[28,34]
[33,38]
[354,360]
[350,356]

Sequence

SDDFVLV
HDDFVMI
LTYDTL
DEDFEIL
DDEFTHL
EDDWDFL
PDWIFL
SGNWEEL
RGYFEEL
EEDYQAL
DODFGVV
RMWLKT
LCDFEPL
TFDFETI
DNEFALV
IQEFERV
DDSYEVL
AVFDII
SEDYTIIT
SSWVEL
LEDWDII
SREYEQL
EDSFVEI

HEEWEMV

RKEWEEL
SDDFILT
SGFTIV
DDEWILV
DGWLIT
TDDFVMV
TDDFVLV

hfAIM-1 | hfAIM-2 | hfAIM-3 hfAIM-4 hfAIM-5 #Y

KKIZIKZ<Z < Z2Z2<KZ2<ZZ2Z22Z22Z22ZZZ~<2ZZ2Z< K< 2Z<~<

Zz2z2<Zz22Z22Z Z KZZZ2Z2Z2ZKZZ2Z2Z2Z2ZZ<ZZZ<K<2ZZZ

2722272722 Z|Z2Z2ZZ2ZZZ2Z2ZZ2ZZZZ<<KZ2Z2Z2Z22ZZZ

ZZZ~<Z2Z2Z Z ZZZ2ZZZZZZKRZZZKKRZZZ<KR<K<ZZZ

ZZ22Z2ZZ722ZK <K |ZKKZZ2ZZ<Z<<ZZ2Z222Z272<Z<2ZZZ

—_——m O WO =N N = =N = OO WP —=ORANWRARO -
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P22681 CBL_HUMAN N [111,117] ENEYFRV N N N Y N 1
N [271,277] FLTYDEV N N Y N N 1
Y [800,805] FGWLSL N N N N N 0
Q13501 SQSTM_HUMAN Y [335,341] DDDWTHL Y Y N Y N 3
Q9SB64  Q9SB64 ARATH Y [658,664] VSEWDPI N N N N Y 1
P53104 ATG! YEAST Y [426,432] EREYVVV N N N Y N 1
P35193 ATG19 YEAST N [225,231] YHDYERL N N N N Y 1
Y [409,415] ALTWEEL N N Y N N 1
P40344 ATG3 YEAST N [199,205] EQMFEDI N N Y N N 1
Y [267,273] VGDWEDL N N Y N Y 2
P40458 ATG32 YEAST Y [84,89] GSWQAI N N N N N 0

Table 16. hfAIM AIM predictions on the protein collection of Alemu et al.

hfAIM1-hfAIMS correspond to the hfAIM regular expressions and ‘Y’ (Yes) indicates a positive hit - hfAIM captures a particular LIR-motif, whilst ‘N’ (No) denotes no matches.
Column #Y captures the number of hfAIM models reporting a positive hit (Y).

To compare the two resources, iLIR vs the predictive power of hfAIM, we juxtapose the results of the 5 hfAIM regular expressions to the results of the
best iLIR schemes xLIR+A|P13 discussed in the iLIR paper (Kalvari et al. 2014) and our top multi-scheme XxLIR+A2|D|PX presented in this chapter at
PSSM scores 13 and 17. In addition to the 5 regular expressions introduced by Xie at al.(Xie et al. 2016), we computed a sixth column (#Y) counting the

number of hfAIM regular expressions with a match (Y) on each single LIR-motif in the Alemu dataset. Our findings are presented in Table 17.
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hfAIM-1

TP 11
TN 11
FP 3
FN 17
Sensitivity
39.29
(%)
Specificit
P Y 78.57
(%)
Accuracy
52.38
(%)
Balanced
Accuracy 58.93
(%)
F1 0.52

hfAIM-2 hfAIM-3

6
13
2
21

22.22

86.67

45.24

54.44

0.34

3
25
4
10

23.08

86.21

66.67

54.64

0.30

Table 17. iLIR and hfAIM predictive power assessment.

hfAIM-4
5
9
5
23

17.86

64.29

33.33

41.07

0.26

hfAIM-5 = hfAIM-any

8
10
4
20

28.57

71.43

42.86

50.00

0.40

19
0
14
9

67.86

0.00

45.24

33.93

0.62

xLIR
27
0
20
0

100.00

0.00

57.45

50.00

0.73

XxLIR+A|P13
26
11
9
1

96.30

55.00

78.72

75.65

0.84

xLIR+A2|D|P13
28
10
9
0

100.00

52.63

80.85

76.32

0.86

hfAIM-1 to hfAIM-5 are the predictions of each regular expression provided by the hfAIM web server. hfAIM-any this is a union consensus of the 5 hfAIM methods, which evaluates

to a positive LIR-motif prediction if any of the methods hfAIM1 to hfAIMS predict an instance of a putative functional AIM-motif. The total number of LIR-motif instances considered

for hfAIM- and xLIR-based predictions differ, since they rely on the additional pattern introduced by the different regular expressions, which are by definition considered as false

positives.
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Before going into comparing the two tools (hfAIM, iLIR) it is very important to mention
that the results are not directly comparable. hfAIM predictions rely on the 5 regular
expressions of length 7, whereas the iLIR service identifies LIR-motifs based on a single
regular expression XLIR of length 6, which is more sensitive, but less specific that the hfAIM
regular expressions, but eliminates spurious hits with the application of various filters (e.g.

PSSM, ANCHOR).

By looking at the TP and FN instances in Table 17, what can be observed is that each hfAIM
regular expression is of high specificity (> 64%) but of low sensitivity (< 40%, in some cases
lower than 25%). When combined in an OR fashion (hfAIM-any) approximately 70% of
experimentally verified LIR-motifs can be detected. A relatively good outcome considering
that these patterns were initially designed to target peroxisomal autophagic proteins at a great
extent. True negatives are specific to the hfAIM regular expressions with every method
having its own search-space, and therefore not directly comparable to those of xLIR-based

tools.

With respect to the hfAIM web server, although it provides the option for scanning
sequences of interest with user-defined patterns, it reports results for each pattern
independently. While they allow for multiple sequences to be submitted in each run, the
results are provided in separate files. Although this feature is currently not supported by the
iLIR web server, it requires that the hfAIM users have at least some programming experience
in order to be able to integrate (and prioritize) predictions from the different motifs. Even
for a single protein, more than one of the hfAIM patterns may match the same part of the
sequence and it is not straightforward (at least not for an average wet biologist) to combine

all these results under a single prediction per sequence.

3.5 Conclusions

Our findings show that intrinsic disorder data is a relatively good indicator of genuine LIR-
motifs, achieving a 73% of balanced accuracy when used on its own to distinguish between
functional and non-functional LIR-motifs from the entire collection presented in Table 7.
This outcome appears to be 2% lower compared to the multis-cheme predictor, but when
combined with other parameters like anchors and PSSM predictions, the power of the
resulting multi-scheme predictor gives a balanced accuracy that is increased by 1%

compared to the one previously introduced in the iLIR paper (Kalvari et al. 2014).
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With respect to that dataset, an upgrade to the latest version of disorder binding region
predictor ANCHOR?2 increased the predictive power of the model by about 3% (78%
balanced accuracy). Building on the multi-scheme predictor by incorporating disorder data
from MobiDB100simple increased balanced accuracy nearly by 1% (78.95%), a score which
increased the number of correctly identified LIR-motifs and at the same time eliminated any

false negatives completely.

It seems that ANCHOR?2 in presence of Disorder data does not have an effect on balanced
accuracy. Evidence to this are the logical equations XLIR+D and xLIR+A2|D, both of which
result in a balanced accuracy of 83 percent. However, since disorder (D) is the optimal, this
multi-scheme predictor cannot be improved any further. A work around this limitation is the
selection of multi-scheme predictor xLIR+A2|D|PX, where PX is a parameterizable PSSM
score for fine tuning the predictor. In fact, testing a range of PSSM values from P13 to P18,
it seems that the best performance for this particular dataset was PSSM > 17. Balanced
accuracy under this scheme reaches a maximum value of about 76% on the complete dataset,
whilst for the proteins of Alemu and colleagues (Alemu et al. 2012), balanced accuracy is

even higher at 88%.
A more balanced and richer dataset will allow us to understand how such prediction schemes

would behave under those circumstances. but that one was only tested on the dataset

retrieved from the work of Alemu at al. (Alemu et al. 2012).
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4 iLIR3D: Delving into selective autophagy structural data

4.1 Preface

In the previous chapters we discussed the development of new tools for the identification of
novel LIR-motifs in putative selective autophagy receptor/adaptor proteins. We further
improved the prediction accuracy of our tools by incorporating intrinsic disorder data and
by devising new multi-scheme predictors that we thoroughly assessed on the efficacy of our
methods in our complete dataset of experimentally validated LIR-motifs (Table 3), but also

for the prediction of novel instances.

The next logical step was to turn to structural data as an alternative predictive method, but
also to acquire new knowledge and better understanding of the mechanism of selective
macroautophagy. For this purpose, we compiled a dataset of protein structures based on
existing data and ran a considerable amount of baseline docking experiments that are further

supported by additional experiments of in-house produced decoy sets.

To make our data available to the scientific community we designed and developed a
MySQL database that is provided in the form of a MySQL dump. The database can easily
be built up and manipulated via database management tools such as MySQL Workbench.
The tables were populated with data and metadata accumulated from all the different studies

discussed throughout this document with broad usage capabilities.

As a possible use of this dataset we envisage the systematic study of the specificity of known
LIR-motifs to different Atg8 homologs (Rogov et al. 2017). Furthermore, peptides from the
decoy set with unexpectedly high docking scores may indicate alternative modes of
interaction (e.g. via a-helical coiled-coils as in the case of (Mandell et al. 2014)). This
chapter provides more details on the structure and contents of the iLIR3D database and

demonstrates the potential of such a data resource with real examples.
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4.2 Data and Methods
4.2.1 Data

4.2.1.1 Creating a collection of 3D structures

The first task was to create a collection of 3D structures of Atg8 homologs, either isolated
or in complex with bound LIR-motifs. For this purpose we searched the RCSB PDB (Berman
et al. 2000) (https://www.rcsb.org/) with keywords: “ATGS8”, “Autophagy”, “GABARAP”
and “MAPI1LC3” in search for structures of Atg8 homologs and selective autophagy receptor
and adaptor proteins. In addition, relevant PDB entries referring to the interaction of a LIR-
motif with an Atg8 homolog were also manually retrieved from relevant publications in the
biomedical literature. Secondly, to ensure the completeness of the dataset we further
automatically retrieved from the UniProt Knowledgebase (The UniProt Consortium 2018)

(UniprotKB - http://www.uniprot.org) any PDB IDs associated with each protein accession

listed in Table 3. Then all structures were downloaded programmatically from the RCSB

Protein Databank (Berman et al. 2000) (PDB - http://www.rcsb.org). Manual curation was

conducted as a quality assurance measure, a procedure which discarded any non-relevant

structures.

The remaining protein structures (N=40) correspond to PDB entries with an Atg8 protein —
or their mammalian homologs (GABARAP, GABARAPL1, GABARAPL2, MAPI1LC3,
MAPILC3A, MAPILC3B, MAPILC3C) —, which can either be single or in complex with
selective autophagy receptor/adaptor proteins, bound via a LIR-motif. From these structures,
we further select those entries bound to a LIR-motif cargo (N=21); these will serve to
initially identify the LIR-motif binding regions for the definition of the 3D volumes that the
docking experiments will target. In addition, these structures provide information about the
binding conformation of LIR-motifs (ligands). It is worth mentioning that most of these
cases refer to engineered versions of the LIRCPs, e.g. a LIR-motif (possibly with flanking
residues) co-crystalized with the Atg8 protein or a construct of the LIR-motif fused to the
Atg8 protein via a flexible linker. The structures are listed in Table 18.
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Receptor PDB Taxonomy

No. Type D Chain Species D Method Resolution
1 GABARAP  3DOW A Homo sapiens 9606 X-RAY DIFFRACTION 2.3
2 GABARAP 4XC2 C Homo sapiens 9606 X-RAY DIFFRACTION 1.9
3  GABARAPL1 5LXH C Homo sapiens 9606 X-RAY DIFFRACTION 1.58
4  GABARAPL1 5LXI D Homo sapiens 9606 X-RAY DIFFRACTION 1.44
5 GABARAPL1 2L8J A Homo sapiens 9606 SOLUTION NMR N/A
6 MAP1LC3A  5CX3 A Homo sapiens 9606 X-RAY DIFFRACTION 2.3
7 MAP1LC3A  3WAN B Homo sapiens 9606 X-RAY DIFFRACTION 1.77
8 MAP1LC3A  3WAN A Homo sapiens 9606 X-RAY DIFFRACTION 1.77
9 MAP1LC3B  2K6Q A Rattus norvegicus 10116 SOLUTION NMR N/A

10 MAP1LC3B  2LUE A Homo sapiens 9606 SOLUTION NMR N/A
11 MAP1LC3B 277P B Rattus norvegicus 10116 X-RAY DIFFRACTION 2.05

12 MAP1LC3B 2Z0D B Rattus norvegicus 10116 X-RAY DIFFRACTION 1.9

13  MAP1LC3B 2Z0E B Rattus norvegicus 10116 X-RAY DIFFRACTION 1.9

14  MAP1LC3B 5D94 A Homo sapiens 9606 X-RAY DIFFRACTION 1.53

15  MAP1LC3B 2ZJD A Rattus norvegicus 10116 X-RAY DIFFRACTION 1.56

16 MAP1LC3C  3WAP A Homo sapiens 9606 X-RAY DIFFRACTION 3.1

17  MAP1LC3C  3VVW B Homo sapiens 9606 X-RAY DIFFRACTION 25

18 Atg8 4EQY C Plasmodium falciparum 5833 X-RAY DIFFRACTION 2.22

19 Atg8 3VXW A Saccharomyces 4932 X-RAY DIFFRACTION 3

cerevisiae

20 Atg8 2ZPN C Saccharomyces 4932 X-RAY DIFFRACTION 2.7

cerevisiae

21 Atg8 2ZPN B Saccharomyces 4932 X-RAY DIFFRACTION 2.7

cerevisiae

Table 18. Proteins of the Atg8 family, herein “receptors”, found in template structures.

All 21 receptors participating in the docking experiments. The structures come from 4 distinct species
including Human and can be further divided into 6 categories based on receptor type (e.g. GABARAP,
MAPI1LC3B, etc.)

The following sections provide detailed information regarding each data category, pre-

processing algorithms and tools utilised in each step.

4.2.1.1.1 Template structures

Template structures are complexes of Atg8 homologs bound to LIR-motif peptides. These
pairs are also the ones used for the calculation of the the receptor binding site. For that
purpose, the molecules composing the complex structure are separated to the receptor
(Atg8) structure and its corresponding ligand (LIR peptide) to be put back together by the
protein-protein docking algorithm. The scores deriving from the docking of receptor and its
native ligand are used as reference for an accurate interpretation of any downstream

analyses. There are 24 such structures in total, however we were able to calculate the binding
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site for only 20 of those due to structural data artefacts (i.e. modified sequences). In all
template structures which were determined by NMR we have arbitrarily chosen only the first

model reported in the respective PDB file.

4.2.1.1.2 Ligands (3DLIRs)

Contrary to receptors, the collection of ligands, that is 3DLIR-motifs, is significantly larger.
The number of structures we retrieved is about 10 times the number of “good” receptor
structures, including both X-RAY crystallography as well as Nuclear Magnetic Resonance
(NMR) samples. This is because we have a larger number of protein candidates (64 in Table
3) compared to the few Atg8 homologs of the respective species. In addition to that, several
of these proteins often come with multiple three-dimensional structures in the PDB, starting
with a minimum of 1 structure per protein up to a maximum of 22 structures, as is the case
of E3 ubiquitin-protein ligase CBL (CBL_HUMAN). It is important to mention that structure

availability was very limited for the case of ligands too.

Back in 2016 when we last updated this dataset, there were 3D structures available for only
34 out of the 64 proteins (53%), but more may have been deposited to RSCB PDB ever
since. The total number of SARs structures is 182, from which we manage to extract 246
3DLIR-motifs. Preliminary docking experiments revealed that the length of the ligand was
influencing the docking scores significantly, therefore setting a constraint that 3DLIR-motifs
are at least 6 residues long was essential, therefore any 3D peptides of shorter than 6 residues
were filtered out, including the non-canonical LIR-motifs of CACO2 HUMAN and
TAXB1 HUMAN. This reduced the number of ligands exploited in the docking experiments
to 211.

The ligand structures were computationally collected in accordance with Table 3, using the
REST APIs from both resources UniProt and RCSB PDB using in-house code developed in
python 2.7. Ligand extraction methodology and issues we stumbled upon during the

collection process are thoroughly described in the sections that follow.

4.2.1.2 Collecting useful protein metadata

The final step was to devise a set of metadata that would help us better organize the docking
results in a such a way that they can be easily utilized by the end users. The set of metadata
comprises data extracted from the UniProt and the RSCB PDB database, as for example

species per chain in the structure, LIRCP/Atg8 interactions, structure resolution in Angstrom
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(A), methodology applied (NMR, X-ray crystallography), function of molecule, PubMed ID,
source (i.e. UniProt, PDB). We also generated additional information, such as labelling a
structure as “Template” or not (1,0), tags like the filename or numbering of the LIR-motifs
of a particular protein, start-end positions on the model sequence the LIR peptide was

extracted from etc.

4.2.1.3 Decoy Set generation

Decoy sets are used in virtual screening experiments to investigate whether a docking
algorithm is able to discriminate between genuine and non-genuine ligands. As a quality
assurance measure and in order to ensure that the scores of docking results diverged from

what is observed at random, we devised a small collection of sensible decoy sets.

For the generation of the decoy sets we searched the RSCB PDB for human proteins
matching the XLIR regular expression pattern, and reduced redundancy at the 30% sequence
identity level. This process retrieved a total of 1507 human structures. The protein structures
were downloaded using the aforementioned tools and they were further processed for the
generation of the decoy sets used in this study. Generation of the decoy sets was done

programmatically using the method described in 4.2.2.1.1.

The resulting decoy sets can be divided in the following three categories:

1. iLIR ligands: A total of 12 ligands (3D peptides) extracted from the 1507 human
proteins. Two constraints were applied in this case:
a. The 3DLIR matches the xLIR regular expression
b. The 3DLIR matches the LIR-motifs illustrated in Table 1 exactly (100%
identity).

2. Random dataset: A total of 3215 6-residue peptides randomly extracted from the

collection of proteins we retrieved from RSCB PDB using custom in-house code. To
limit the size of this dataset only 2 3DLIRs were extracted from each of the 1507
human proteins. Extraction was enabled using a random number generator that
produced random start-end hexapeptide coordinates at any position within the protein

sequence at hand.
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3. xLIR peptides: A total of 564 6-residue peptides that match the xLIR motif with no

restriction on matching any of the verified and unverified LIR-motifs listed in Table
3. This means there is chance that this dataset also includes the hexapeptides from

decoy dataset 1.

4.2.2 Methods

4.2.2.1 Computational methods for data extraction from UniProt KB and
RSCB PDB databases

4.2.2.1.1 A computational method for 3D structure retrieval from RSCB PDB

Three-dimensional structures were retrieved from RSCB PDB with a custom-made script
developed in python 2.7. Structure retrieval is achieved using UniProt KB and RSCB PDB
REST APIs with simple utilization of widely used python libraries httplib and requests. An
http request to the UniProt REST API retrieves the correct metadata of a particular protein
in text (.txt) format. The algorithm then parses the text by searching for the labels “DR” and
“PDBsum;”, which contain the PDB IDs corresponding to a specific protein. If available, a
list of PDB IDs is created.

Following the PDB ID extraction, the script then does another http call to RSCB PDB’s
REST API and fetches the corresponding PDB file, which then saves locally at a specified

destination directory. The process repeats for every UniProt accession listed in Table 3.

4.2.2.1.2 Metadata extraction

Metadata are very important for the correct interpretation of the data as well as the results.
For this reason and the necessities of this project, specialized software has been developed
developed in Python 2.7 for the collection of useful and relevant metadata from related
resources such as UniProt (The UniProt Consortium 2018) and RSCB PDB (Rose et al.
2015). The algorithm uses RSCB PDB and UniProt REST APIs to gather and extract
metadata per UniProt entry, which is then imported in the database.
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4.2.2.2 Atg8 receptor binding site calculation

Defining the search space of the Atg8 binding site was one of the most crucial steps for the
protein-protein docking experiments to be efficient and successful. A predefined search
space minimizes the search space to just the area of interest and at the same time eliminates

the chance for misplaced ligands.

The binding site has been calculated for the Atg8 receptors including mammalian homologs
and their isoforms for all complexes in the PDB template structures. That is, all native

receptors in complex with one of their LIRCP binding partner.

This process comprises two steps:
1. Identification of the interface of the protein-protein interaction
2. Translation of the interface residue coordinates into X,y,z coordinates of the search

arca

Identification of the interface residues for each of template was achieved by manually
submitting relevant PDB structures to the PDBePISA (Krissinel & Henrick 2007) web server

- a tool for the exploration of macromolecular interfaces (http://www.ebi.ac.uk/msd-

srv/prot_int/cgi-bin/piserver) - allowing only for 10% of buried area at most for each residue

participating in the interface. This ensures that the entire receptor search space is captured

and that there will be no limitations on the rotational grid.

This tool returns the interfacial residues for each input, which were manually extracted for
all template structures. We only took into account the participating residues from the receptor
side. The reason why we did this is because in the presence of the receptor interface residues
the ligand residues become redundant and I will explain why this is true with the following
example. Imagine that the receptor is a mass of clay onto which we press down an object, in
such a way that when we pull the two apart, the 3D shape of the object is imprinted on the
clay. The interface residues of the receptor are 3D descriptors of the formed cavity. The
actual 3D coordinates that allow us to calculate the centre of the grid and the volume of the

search space. Visual examples are depicted in Figure 19.

The docking grid was calculated using explicitly developed in-house software. All the
residues that participate in the interface are provided to the tool as a string of integers that
are separated by commas °,’. The algorithm converts the string of integers to a list and then

reads and parses the corresponding PDB file and calculates the average of the x,y,z
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coordinates of each residue specified in the list - interface residue - resulting in a single x,y,z
triplet that defines the center of the docking grid. All these data (interfacial residues and the

grid center coordinates) are collected and stored in the database.

GABARAPL1

HUMAN YEAST
(-5.797, -1.402, -3.709) (73.872, -18.521, -43.764) (7.264, 0.707, -6.046)

Figure 19. The docking grids of the Atg8 family.
Binding sites of the yeast Atg8 receptor and its two homologs, human GABARAPLI and rat MAP1LC3B. The

coloured cubes define the binding site area with the exact x,y,z coordinates provided in the parenthesis.

4.2.2.3 Manual ligand extraction of 3DLIRs

Ligand extraction required manual curation due to the various artefacts that come along with
structural data. The problem is that iLIR identifies the LIR motifs on the canonical sequence,
which in many cases start-end points on the model sequence (sequence in the PDB structure)
may be shifted or missing (short fragment) or even re-engineered for the purposes of an
experiment. To ensure the high quality and accuracy of the 3DLIR-motifs, we manually
extracted all 3DLIRs using PyMol (DELANO & L 2002) for Education v1.7.4.5 based on
the start-end coordinates listed in Table 3. As previously mentioned in the preceding data
section, the difference in the total number of 3DLIRs (246) and the actual set used in the
docking experiments (211), is due to six residue peptide constraint applied to all samples for

the following reasons:
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1. LIR-motif sequence coordinates generated from the actual protein sequences
(UniProtKB FASTA files) do not always match the model sequence in the

corresponding structures.

2. Structure mutations: Many of the experiments are designed in order to study specific
features which are very often address by bioengineering a molecule at hand and

introducing mutations.

3. Short or fragmented model sequences: Many of the PDB structures may only contain
small segments or fragmented model sequences rather than entire canonical protein
sequence. As a result, this limits the number of 3DLIRs as many of the available
structures lacked the model sequence fragment at the position where a LIR was

identified.

4. Low structure resolution: This results in worse docking scores which is hard to assess

when we need to compare these to the scores of the docked templates.

Following model sequence examination, if the LIR-motif sequence reported by iLIR
webserver matches the model subsequence in the exact residue position e.g.
SQSTM_HUMAN, positions 336-341, the 3DLIR-motif is extracted using PyMOL’s
command line interface (CLI) and saved into a separate PDB file to be used as a ligand in

the docking experiments.

The following command is an example of the extraction of the 3DLIR-motif of the p62
selective autophagy receptor (SQSTM_HUMAN) using PyMOL.:

PyMOL> select 2K6Q LIR1 A 6,2K6Q A & resi 336-341

Where 2K6Q LIR1 A 6 is the name of the resulting molecule that will also be the filename.
2K6Q is the PDB ID, LIR1 a tag specifying the order in which the LIR-motif was identified
in a given sequence by iLIR, A is the chain in the structure and 6 specifies the number of the

residues extracted.

In cases where the LIR-motif is found on the model sequence, but with a slight shift
compared to the coordinates of the LIR-motif on canonical sequence, the 3DLIR is manually

extracted from the corrected positions.
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4.2.2.3.1 Computational methods for mass ligand extraction and decoy set generation

Manual extraction of 3DLIRs was feasible due to the relatively small size of the PDB dataset
constructed by collecting all PDB structures associated with the UniProt accessions listed in
Table 3. In the case of the decoy sets, the number of proteins increased significantly,
therefore the number of extracted ligands was expected to be even larger, which made it

nearly impossible to generate manually.

We devised a new script combining functionality from the broadly used chemical tool open
babel (O’Boyle et al. 2011) and custom-made complementary functions. The script is called
ligand generator and was implemented in python 2.7. The script takes as input a directory
of protein pdb files, each of which contains a single chain only, and a destination directory
where the ligand files will be stored at. With respect to the type of ligands, the algorithm has
two methods of ligand extraction defined by two options --rand for random and --regex for

extraction using one of the regular expressions cLIR or xLIR.

Briefly, the process starts by loading the PDB file in an openbabel (O’Boyle et al. 2011)
molecule object, which is used to make scanning of the model sequence easier. If the option
--regex is provided, meaning that the 3DLIR needs to match the xLIR regular expression
[DE][DEST][WFY][DELIV][DERHKSTNQCUGPAVILMFYW]|[ILV], then
depending on the length of the peptide that we need to generate, the model sequence is
scanned from left to right by sliding the window as many residues as its length, meaning that
at each iteration the first residue in the window 1is located at position
index+window_length+1. If the sequence at the current position of the window matches the
regular expression, the start and end positions are stored in a dictionary structure, along with
the sequence string, to be extracted at a final step by the ligand generator. This last function
parses the PDB file and extracts the sequence segment at the designated positions. Structural
coordinates for these peptides are extracted from the PDB file using a custom function in

Python. The process completes when all input PDB files have been scanned.

If random ligand generation is selected, the process does not vary much, in a sense that the
PDB structure is once again loaded in an openbabel molecule object, but instead of a sliding
window a random number generator randomly selects start-end points within the margins of
the chain sequence at hand. The extraction of the 3D peptide is done the same way as using

the -—regex option.

84



4.2.2.3.2 Protein-protein docking using FRODOCK

To investigate whether a 3DLIR-motif is a genuine binder of the Atg8 proteins, we apply
protein-protein docking techniques to evaluate the force of the interaction. Such algorithms
try to fit two unbound protein structures together, the receptor and the ligand. Given the
binding site on the receptor molecule, the ligand is rotated within the defined search space
for the optimal position. With every new positioning of the ligand - conformation - within
the binding site, the binding energy or a correlation value is measured and reported (Figure
20). The best conformation is the one with the highest docking score and the lowest root

mean square deviation (RMSD, A) from the reference ligand (template molecule).

Figure 20. Protein-protein docking example.

An illustration of rigid rotation of the ligand within the receptor binding site in search for the optimal
positioning/conformation. The tested ligand is presented in blue, and in red colour we present the orientation
of the template molecule. Conformation 1 (C1) is the optimum case with the placement of the tested ligand
(blue), almost at the exact same position of its template. The example is a result of the docking of the 3DLIR-
motif of Human selective autophagy receptor NBR1 to the binding site of GABARAPL1 (PDB id: 2L8J).

The tool we used for the protein-protein docking experiments is FRODOCK (Garzon et al.
2009), a fast rotational protein-protein docking tool based on global energy minimization

and three interaction potentials including electrostatic, van der Waals and desolvation
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potentials that was firstly introduced in 2009 (Garzon et al. 2009). Initial experiments were
performed using the primary version of the tool, but with the addition of new structures to
the data, we also updated to the latest version of FRODOCK v.2.0 (Ramirez-Aportela et al.
2016), which also resulted in higher scores. All the structures (receptors, ligands) prior to

docking were further enhanced with the addition of polar hydrogen atoms.

For the docking experiments we used FRODOCK’s linux CLI, and implemented a python
wrapper to FRODOCK’s preprocessing, processing and post-processing tools. The python
script is called pyFrodock and it comes with 3 distinct options --ligands, --receptors, and --
pydock. The first two options are responsible for the execution of all the required pre-
processing steps in preparation of the input files for the docking experiments, whilst the latter
--pydock performs the actual docking using the inputs generated by the other two options.
Ligand as well as receptor pre-processing are both compulsory and the output files are
organised in distinct directories one for each input PDB file (ligand, receptor). The pre-
processing steps include the generation of the three interaction potentials, electrostatic
(_E.ccp4), van der waals (_W.ccp4) and desolvation (_DS.ccp4), which are computed in
three steps. The python script serves as an abstraction to the various options required for the

generation of the files and at the same time simplifies the entire procedure.

FRODOCK (Ramirez-Aportela et al. 2016) includes 4 distinct tools for preprocessing
(frodockgrid), docking (frodock), clustering of conformations (frodockclust) and finally for
the extraction and visualisation of the results (frodockview). Any receptor and ligand
structures participating in the docking experiments need to undergo pre-processing with
frodockgrid for the generation of the required files. The following are the compulsory files

for each type of molecule:

- Receptor:
- Van der Waals potential map
- Electrostatic potential map
- Desolvation potential map

- Ligand

- Desolvation potential map

Finally, -—pydock based on a text file (.txt) that specifies the list of docking experiments
to be performed (receptor vs ligand), conducts the actual docking of the pair and processes

the output to report the X top results, where X is the number of conformations specified by
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the user. The 3 top conformations (by default) are also saved in PDB format for further

manual inspection during the evaluation process.

FRODOCK is Linux based by default, therefore it does not run on other operating systems
(OS) such as Mac OS X and Windows. To address this limitation, we developed this as a
dockerized application, modernized virtualization techniques that enable software to run on
any machine. The dockerized version of pyFrodock was tested in a docker container on Mac
OS X version 10.13 (Sierra).

4.2.2.3.3 Evaluation Metrics

Similar to the evaluation metrics set we devised to assess our methodologies presented in
the previous chapters, we also had to come up with a new set of sensible metrics that would
allow us to assess our results. The main aim is to define a set of thresholds for the selection
genuine LIR-motifs based on docking scores and comparison of the docked molecule

conformation to a template.

For the analysis of outcome of the docking experiments, we will be using the following

metrics:

e Docking score MAX, MIN: The maximum and minimum values from the docking
scores will allow us to define a range of accepted values for which a docking score

can indicate a genuine LIR.

e Mean (MEAN): The central value of the group of docking scores being evaluated.

e Standard deviation (STDEV): A value indicating how close or far the values fall from
the mean, where low STDEV shows that the values concentrate around the mean,
whilst a high STDEV shows that the values fall far from the mean.

e Average (AVG): An average value of a set of docking scores being examined.

e Root mean square deviation (RMSD): Per residue distance of two superimposed
molecules. This will allow us to choose the optimum conformations. The smaller the

RMSD the more the docked molecule resembles a template in terms of orientation

and interaction with the receptor.
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In the following chapter we provide some baseline analyses and preliminary results that may

highlight possible uses of the 3DLIR-motif database.

4.3 Results

4.3.1 The iLIR3D MySQL database

The docking experiments resulted in the generation of a large amount of data. In particular,
36,810 receptor-ligand pairs were generated by docking the manually extracted verified and
unverified 3DLIRs, and 68,022 additional instances produced from docking the decoys. A
total of 104,832 samples, a substantial amount of information that deserves further analysis.
With such data volumes it was essential that we developed a resource that would enable us

to manage, update and analyse all of that information with the minimum possible effort.

A solution to this problem was the design and development of a relational database in
MySQL, which structures all the information in the form of tables and enables data retrieval
by association. A good analogy to a database table is that of a class in objective
programming. Each table has its own attributes (the columns) that describe a particular
entity. For example, the table sars contains information about selective autophagy receptors
such as UniProt accession, UniProt id, sequence length, taxonomic identifier (tax id), author
etc. Table rows or else the records, are more like object instances of a class. Records, like
objects, have their own values that define a particular object e.g. protein SQSTM_HUMAN
has tax id: 9606, is 440 amino acids long and was obtained from the paper of Alemu et al
(Alemu et al. 2012).

The programming language used to manipulate data held in a relational database is called
SQL, for Structured Query Language. SQL provides a way of communication between the
user and the database through the formation of queries, that is conditional statements for data
extraction that aim to answer specific questions. For example, such questions could be
“How many ligands bind the GABARAPLI1 receptor with a score > 1200” or “How
many Atg8 structures are there” and many others. The following (Figure 21) is a very

simple query example that retrieves the template docking scores illustrated in Table 20:
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template_scores.sql Raw

1 select exp.exp_acc, rec.rec_type, sl.uniprot_id, rec.chain,

2 sld.pdb_id as common_pdb_id, sld.filename, sld.sequence, exp.dock_score
3 from experiment exp, receptor rec, sars_lir_3d sld, sars_lir sl, sars_structure ss
4  where exp.rec_acc=rec.rec_acc

5 and exp.lir_3d_acc=sld.lir_3d_acc

6 and rec.pdb_id=sld.pdb_id

7 and ss.pdb_id=s1d.pdb_id

8 and sl.lir_acc=sld.lir_acc

9 and exp.software='FRODOCK2'

10  and exp.conformation=1 and rec.rec_acc in

11  (select rec_acc from receptor where template=1 and

12 x_coord<>0 and y_coord<>0 and z_coord<>0);

Figure 21. MySQL query that retrieves the template structure results presented in Table 20.

The power of such tools becomes more apparent upon data analysis. It would be very
difficult to combine many different attributes without the help of a relational database. To
demonstrate its usefulness, one interesting thing we could look into is the top scoring ligands
per receptor type (Atg8, GABARAPLI etc), for which there is also evidence for its actual
interaction with that particular Atg8 homolog. For this purpose, we would have to combine
information from the tables experiment, sars, sars lir, sars lir 3d and
sars_atg8 interaction using their relationships - foreign key references - as it appears in

Figure 21.

iLIR3D is a manageable database (nearly 3 MB in size) - excluding the actual output files of
the docking experiments - and is organised in 9 tables. Figure 22 illustrates the database
model portraying all its components: the tables, fields and relationships. Short descriptions

about the data stored in each table are provided in Table 19.
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] sars_lir v | receptor v | sars_structure v

lir_acc INT(4) rec_acc INT(11) pdb_id VARCHAR(4)
% uniprot_id VARCHAR(20) rec_type ENUM(...) & sars_acc VARCHAR(20)
lir VARCHAR(6) nebi_id INT(10) » chains INT(4)
lir_start MEDIUMINT(8) species VARCHAR(100) » resolution FLOAT(5,2)
lir_end MEDIUMINT(8) pdb_id VARCHAR(4) method VARCHAR(100)
verified TINYINT(1) Pl— — — | & inter_res VARCHAR(400) [ — — i conformers INT(5)
clir TINYINT(1) x_coord DOUBLE | » mol_function VARCHAR(200)
xlir TINYINT(1) y_coord DOUBLE H— JI. — = > pmid VARCHAR(20)
anchor TINYINT(1) z_coord DOUBLE L — — 4 14 © mutations TINYINT(1) Bl = 3
pssm_score INT(4) x_coord_bk DOUBLE | template TINYINT(1) |
e_value VARCHAR(15) y_coord_bk DOUBLE : 3dlirs TINYINT(1) {
lir_tag VARCHAR(4) — — — 1 z_coord_bk DOUBLE | new_struct TINYINT(1) |
mobidb TINYINT(1) chain VARCHAR(1) : . source ENUM(..) :
anchor2_05 TINYINT(1) length MEDIUMINT(8) | description LONGTEXT - 5+ 1
cdSTR VARCHAR(20) template TINYINT(4) : released DATE "] sars v
disorder_percentage INT(11) > | . modified DATE uniprot_id VARCHAR(20)
anchor2_03 TINYINT(1) I I _| & current TINYINT(1) _ _ 4 > uniprot_acc VARCHAR(10)
> :: > > nebi_id INT(10)
q': |I | » length INT(10)
I A | 4l © num_ver_lirs INT(10)
: _| structure_chain v : : num_non_ver_lirs INT(10)
| entry_id INT(11) | num_wxx|_motifs INT(10)
A & pdb_id VARCHAR(4) _ _ _ [ () sars_lir_disorder . -'r H1 5 INT(10)
] sars_lir_3d \ > chain_id VARCHAR(1) @ fir_ace INT(4) | author VARCHAR(30)
lir_3d_acc INT(6) » mol_name VARCHAR(200) # uniprot_id VARCHAR(20) | >
& lir_acc INT(4) > uniprot_id VARCHAR(20) +lir_start MEDIUMINT(8) : |
» pdb_id VARCHAR(4) . uniprot_acc VARCHAR(20) + lir_end MEDIUMINT(8) |
chain VARCHAR(1) nebi_id BIGINT(10) RUQRRCHARE) :
 pdb_start MEDIUMINT(8)  species VARCHAR(100) [~ — —I<g  disorder_string VARCHAR(20) B|— (™7 experiment v
pdb_end MEDIUMINT(8) -~ — — — | . residues VARCHAR(10) - —n | ~ Percentage VARCHAR(4) exp_ace INT(11)
1ir6 TINYINT(1) > length MEDIUMINT(8) : » verified TINYINT(1) % rec_ace INT(11)
lir12 TINYINT(1) pfam_accs VARCHAR(300) | | |~ mobido_method VARCHAR(20) % lir_3d_acc INT(6)
sequence VARCHAR(12) description LONGTEXT : » mobidb_data VARCHAR(20) L — —i< ., conformation INT(11)
filename VARCHAR(25) > | threshold VARCHAR(S) » dock_score DOUBLE(10,6)
comments VARCHAR(200) 1 | > rmsd FLOAT(6,3)
> KI : surface_area FLOAT(4,2)
| sars_atg8_interaction v | _ | - software ENUM(...
interact_id INT(11) inter_grid TINYINT(1)
% uniprot_id VARCHAR(20) lig_grid TINYINT(1)
> atg8_type ENUM(...) created TIMESTAMP
> >

Figure 22. iLIR3D relational model created using MySQL workbench by application of reverse
engineering.
The model illustrates the tables composing the database as well as the different fields belonging to each table

and the relationships.
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Table

Description

receptor

Receptor information including pdb id, chain, receptor type
(ATGS, GABARAP, MAPI1LC3 etc) as well as the binding site
coordinates (x,y,z)

sars

UniProt related information such as UniProt accessions and IDs
for all proteins in Table 1 and metadata retrieved from UniProt
such as sequence length, tax id, author etc

sars_atg8 interactions

Atg8 homologs and LIRCPs relationships

sars_lirs

All LIR entries as presented in Table 1

sars_lir 3d

All available 3DLIRs for each LIR in table sars_lir 3d

sars_structures

All 3D structures collected for each of the selective autophagy
proteins

structure chains

Chain metadata per available SARs structure retrieved from
UniProt and RSCB PDB

sars_lir disorder

Disorder predictions generated for each individual case of SARs

experiments

Experiment table holding useful information on each
ATGB8/SARS docking experiment such as docking score per
conformation, RMSD etc

Table 19. Short descriptions of the tables composing the iLIR3D database.

Although the iLIR3D database was initially developed to organise, analyse and provision

the structural data, it also became very useful in other areas covered in this study. For

example, sars_lir_disorder table contains all the disorder data that we generated and helped
a lot with the analysis of those results. Computation of the true positives (TP), true negatives
(TN), false positives (FP) and false negative (FN) instances, in the majority of cases was
achieved using mysql queries. An example of the queries used to compute the

aforementioned values based on predicted data produced by MobiDB (Piovesan et al. 2018)

using its simple method with the constraint that LIR-motifs are 50% composed by disordered

residues (Figure 23).
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disorder_queries.sq|l Raw

1 —— TPs

2 select count(x) from sars_lir_disorder
3  where mobidb_method="'simple’

4 and mobidb_data='predicted’

5 and lir_acc < 97

6 and verified=1

7 and percentage >= 50;

8

9 — TNs

10  select count(x) from sars_lir_disorder
11  where mobidb_method="'simple’

12 and mobidb_data='predicted’

13  and lir_acc < 97

14 and verified=0

15 and percentage < 50;

17 —— FPs

18 select count(x) from sars_lir_disorder
19 where mobidb_method="'simple’

20  and mobidb_data='predicted’

21 and lir_acc < 97

22 and verified=0

23 and percentage >= 50;

25 —— FNs

26 select count(x) from sars_lir_disorder
27  where mobidb_method="'simple’

28 and mobidb_data='predicted’

29 and lir_acc < 97

30 and verified=1

31 and percentage < 50;

Figure 23. Query examples for the computation of the TP, TN, FP, FN values for disorder predictions.

The values derive from disorder data from MobiDB’s simple method at 50% disorder (percentage < 50).

This database constitutes the stepping stone towards the development of another web-
resource, or it could work as a future enhancement of the currently existing iLIR webserver.
On top of that, the collection of Atg8 receptors can be used in other projects as well, a subject

that is discussed in the following segment.

4.3.2 Learning from template structures

Having separated template complexes to receptors (Atg8 homologs) and ligands (3DLIR-
motifs), the next step was to make an attempt to put them back together by employing
protein-protein docking algorithms. It was essential that we created a reference set of trusted

docking scores of known verified Atg8 binders in order to be able to interpret the results of
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any downstream “virtual screening” (VS) experiments. Our reference dataset includes 5
distinct types of Atg8 homologs from 3 species: Human, Rat and yeast, which serve as the
receptors and 3DLIR-motifs from 7 distinct LIRCPs originating from the same species, with

an additional sample from Mouse (2ZJD).

Preliminary results from docking experiments (Table 20) conducted with the molecules of
the template structures, although a relatively small dataset, they provide a broad spectrum of
examples that demonstrate many of the obstacles that we will need to address for a correct
evaluation of the results. The results were split into smaller segments isolating this way the

docking scores per type of receptor.
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. Receptor |Receptor| Receptor . Ligand | Ligand LIR-Motif 3D Motif e Docking
Experiment j . Uniprot Id \ , PDBID LIRtag | Length Verified

Type chain Species chain | Species Sequence sequence Score

33721 MAP1LC3A A Human FYCO1_HUMAN E Human 5CX3 AVFDII LIR2 6 AVFDII Yes 1152.35
33731 MAP1LC3A A Human FYCO1_HUMAN F Human 5CX3 AVEDII LIR2 6 AVEDII Yes 1248.50
33741 | MAP1LC3A A Human | FYCO1_HUMAN G Human | 5CX3 AVFDII LIR2 6 AVFDII Yes 1188.43
33751 MAP1LC3A A Human FYCO1_HUMAN H Human 5CX3 AVFDII LIR2 6 AVEDII Yes 1170.81
34351 | MAP1LC3B A Human | FYCO1_HUMAN B Human | 5D94 AVFDII LIR2 6 AVFDII Yes 1079.11
36801 MAP1LC3B A Rat SQSTM_HUMAN B Rat 2K6Q | DDWTHL LIR1 6 DDWTHL Yes 1033.15
29891 MAP1LC3B A Human |SQSTM_HUMAN B Mouse 271D DDWTHL LIR1 6 DDWTHL Yes 1110.16
28801 | MAP1LC3B B Rat ATG4B_HUMAN A Human | 2Z0E LTYDTL LIR1 6 LTYDTL Yes 998.70
28201 MAP1LC3B B Rat ATG4B_HUMAN A Human 220D LTYDTL LIR1 6 LTYDTL Yes 958.68
31161 | MAP1LC3B B Rat ATG4B_HUMAN A Human | 22zZP LTYDTL LIR1 6 LTYDTL Yes 1158.17
32031 MAP1LC3C B Human | CACO2_HUMAN A Human | 3VVW DILVV LIR2 5 DILVV Yes 717.43
32041 | MAP1LC3C B Human |CACO2_HUMAN| A Human | 3VVW DILVV LIR2 5 DILVV Yes 800.83
27631 |GABARAPLL| A Human | NBR1L.HUMAN | B | Human | 218) | EDVIl | UR2 | 6 EDYIII Yes | 1226.46
29911 Atg8 B Yeast Atgl9_YEAST E Yeast 2ZPN LTWEEL | LIR1 4 WEEL Yes 802.03
29921 Atg8 B Yeast Atgl9_YEAST F Yeast 2ZPN LTWEEL | LIR1 4 WEEL Yes 775.44
29931 Atg8 B Yeast Atgl9_YEAST G Yeast 2ZPN LTWEEL LIR1 4 WEEL Yes 834.26
29941 Atg8 B Yeast Atgl9_YEAST H Yeast 2ZPN LTWEEL | LIR1 4 WEEL Yes 819.03
30501 Atg8 C Yeast Atgl9_YEAST E Yeast 2ZPN LTWEEL LIR1 4 WEEL Yes 781.45
30511 Atg8 C Yeast Atgl9 YEAST F Yeast 2ZPN LTWEEL LIR1 4 WEEL Yes 787.74
30521 Atg8 C Yeast Atgl9_YEAST G Yeast 2ZPN LTWEEL | LIR1 4 WEEL Yes 830.80
30531 Atg8 C Yeast Atgl9_YEAST H Yeast 2ZPN LTWEEL LIR1 4 WEEL Yes 804.56
32541 Atg8 A Yeast Atg32_YEAST B Yeast 3VXW | GSWQAI | LIR1 6 GSWOQAI Yes 1273.54

Table 20. Top scoring conformations of the template structures.

The docking scores of the various Atg8 homologs are presented in distinct segments Numbering of the LIR tags i.e. LIR1, LIR2 was done based on the location (start-end) of the LIR-

motif on the sequence.
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To analyse the docking results, one can look into the following aspects:

1. Species: We want to compare the scores we get with a receptor/ligand pair of the
same species to a pair where the species differs (e.g. docking experiments with
MAPILC3B structures 2ZJD, 2Z0E, 270D, 277P)

2. 3DLIR length: Comparing these scores will allow us to understand how to evaluate
the docking scores achieved with the non-canonical LIR-motifs, a case which we
could not properly assess using the sequence-based methods presented in the first

two chapters of this thesis

3. Ligand chains: In several templates, more than one instances of a 3DLIR-motif may
be located (i.e. in different polypeptide chains) and these peptides may be in (slightly)
different conformations and could behave differently in peptide docking
experiments. Therefore, it is essential to grasp how 3DLIRs extracted from non-
native structures would perform with the same receptor. This could be considered
equivalent of a novel 3DLIR in the case we want to test its interaction with a protein

of the Atg8 family

4. Receptor preference: LIRCPs have preference towards the various Atg8 proteins.
Such evidence is the work of Rogov et al. (Rogov et al. 2017), which concentrates
on LIR-motifs (GIM) that bind the GABARAP receptors

5. Positioning and orientation in the binding site: The correct amino acids need to

interact with the two hydrophobic pockets of the Atg8 binding site. This will require

additional visualization software and manual curation

6. Structure resolution: The resolution of the structures is also something that someone

could look into. It’s important to know what to expect when we have a novel 3DLIR
of low resolution docked in a high-resolution binding site and vice versa. Structural

data is very limited, so we need to be able to take advantage of as much as possible

95



4.3.2.1 A real use-case scenario driven by experimental evidence

Driven by the work of Olsvik et al. (Olsvik et al. 2015), which showed that FYCO1 has
preference for LC3A and LC3B over GABARAP, we will be using data generated from our
docking experiments in an attempt to examine whether we will be able to highlight this

preference.

4.3.2.1.1 Forming a MySQL query to fetch the FYCO1 docking scores

The first step was to retrieve the docking scores of pre-ran docking experiments of the
FYCOL1 functional LIR-motif (AVFDII) to the binding site of MAPLI1LC3 (MAPILC3A,
MAPILC3B, MAPILC3C) and GABARAP structures. The corresponding query is depicted
in Figure 24.

FYCO1_docking_scores.sql Raw

select r.rec_type, exp.dock_score

from receptor r, sars_lir sl, sars_lir_3d sld, experiment exp
where exp.rec_acc=r.rec_acc

and sld.lir_3d_acc=exp.lir_3d_acc

and sl.lir_acc=sld.lir_acc

and sl.uniprot_id='FYCO1_HUMAN' selection
and exp.conformation=1 best conformation
and exp.software='FRODOCK2'

o~NOOUTE WN -

9 and sl.lir_acc=95 LIR accession

10 and rec_type<>'Atg8’ filters on

11 and rec_type<>'GABARAPLL' es
12  order by rec_type;

Figure 24. MySQL query snippet for the retrieval of FYCO1/Atg8 docking scores.

Conformation=1 restricts the results to only the top conformations, lir_acc corresponds to an integer number which is the
accession of a LIR-motif in the database where lir_acc=95 in the lir_acc of FYCO1 functional LIR-motif AVFDII. Filtering
of the receptors by limiting the results strictly to MAP1LC3 and GABARAP only is achieved with lines 10-11.

The query in Figure 24, fetches all top docking scores (conformation=1) of FYCOI
functional LIR-motif AVFDII ran using FRODOCK v.2.0 (line 8). Data retrieval requires

joint information from 4 iLIR3D database tables: receptor, sars lir, sars lir 3d and
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experiment based on receptor accession (rec_acc), 3DLIR accession (lir 3d acc) and LIR-
motifaccession (lir_acc), which resulted in a total of 45 entries. Strict filtering to MAP1LC3
and GABARAP only is done with the help of lines 10 and 11, where ‘<>’ denotes that the
receptor type (rec_type) should not be equal to ‘Atg8’ nor ‘GABARAPLI’. Simple grouping

of the results is done by ordering the query outcome based on receptor type (rec_type).

The number of records retrieved per receptor are as follows:

e GABARAP: 5 entries
e MAPILC3A: 5 entries
e MAPILC3B: 30 entries
e MAPILC3C: 5 entries

4.3.2.1.2 Assessing the docking results

The boxplot representation of the distributions of FYCO1 3DLIR docking scores against the
4 “receptors” GABARAP and MAPI1LC3A-C (Figure 25) shows a preference towards the
MAPILC3 type, a result which is in agreement with work of Olsvik and colleagues (Olsvik
et al. 2015). Further into details the computed median values of the docking scores were
800.31, 1170.81, 1064.06 and 1092.36 respectively and pairwise Wilcoxon rank sum tests
yielded significant differences between the GABARAP and LC3 “receptors” (p<<0.01). This
result showcases how powerful such a resource can be and suggests the scores of functional

3DLIR peptides could potentially reveal Atg8 homolog preference.

It would be very interesting to investigate whether we can discriminate between functional
LIR-motifs via docking experiments, either by docking score comparison to template
structures or visual inspection of the formed complex using visualisation tools like PyMOL
(https://pymol.org/2/) (DELANO & L 2002) or UCSF Chimera
(http://www.cgl.ucsf.edu/chimera/) (Pettersen et al. 2004). In in the latter case an expert

curator/scientist would be looking for correct binding LIR-motif residues to the 2

hydrophobic pockets of the proteins of the Atg8 family.
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FYCO1 3DLIR docked against different "receptors”
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Figure 25. Boxplot representation of the distributions of scores of FYCO1 peptides docked against the
Atg8 family.
FYCOIL peptides were docked against proteins of the Atg8 family, specifically GABARAP (N=5), LC3A (N=5), LC3B

(N=30) and LC3C (N=5). Center lines show the medians; box limits indicate the 25th and 75th percentiles as determined
by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers are represented

by dots. Plot created using BoxPlotR (http:/shiny.chemgrid.org/boxplotr/).

4.3.3 A comprehensive set of experiments

Following the docking of the template structures, we designed and conducted a
comprehensive series of protein-protein experiments using the datasets mentioned in the data

section.

The experiments involved the docking of all the ligands in the following list with each and
every one of the receptors isolated from the template structures. The reason why we use
those in the experiments is because we can compute the exact coordinates of the binding site
from the interface of the interaction with the native 3DLIR. In addition to the calculation of
the grid, those receptors are also in the correct conformation to and ready to receive a binding

partner.

The experiments we conducted are the following:
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1. Non-native verified LIR motifs: In this set of experiments we extracted as many

verified LIR peptides available from the structures we downloaded and we docked

those with the template receptors at the designated binding site

2. Unverified LIR motifs from native and non-native structures: This set of experiment

aimed at producing a set of scores of non-functional LIRs to get a new range of

docking scores of peptides that should not interact with the Atg8 family

3. Randomly selected peptides (decoy set): This will allow us to compare the results of

docking experiments performed with peptides extracted from proteins known to be
involved in autophagy, with the scores resulting from docking random peptides

extracted from a collection of human proteins from diverse biological processes

4. 3DLIRs from non-autophagy proteins: With these experiments we wanted to test

whether LIR peptides matching the sequences in Table 1, would produce the same

results as the ones in the templates

These docking experiments resulted in >100,000 samples that took weeks of computations
to complete. In order to make these results useful to the scientific community we developed

a relational database which described in detail in the following section.

4.3.4 Availability

The iLIR3D database is currently available as a MySQL dump that can be provided upon
user request. We aim to make it more openly available to the scientific community after
publishing initial analyses on this dataset. An instance of the database can be created within
seconds following a creation of a new MySQL schema using the MySQL client CLI.
Provision of the MySQL statements to build up an empty schema can also be provided, for

users who want to use the schema to store their own data.

4.4 Conclusion

In this last chapter we attempted to “give form” to our collection of LIR-motifs by exploring
the 3D world. We first discussed about the steps we took towards creating a structural dataset

that would allow us to obtain a better understanding of protein-protein interactions between
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selective autophagy receptor and adaptor proteins and the proteins of the Atg8 family. A
process that revealed many issues afflicting this area, one of which is relatively limited
availability of structural data compared to a great abundance of sequence data, which

nevertheless resulted in two powerful outcomes:

1. A re-usable collection of Atg8 “receptors” for “virtual screening” experiments in
autophagy
2. iLIR3D: A MySQL database that scientists can use to answer autophagy related

biological questions

A straightforward application of the iLIR3D database would be to devise rules for LIR-motif
specificities towards different Atg8/LC3/GAPARAP homologs. In fact, recent data (Rogov
et al. 2017) can provide a nice ground truth dataset for predicting GABARAP versus LC3
specificity. The iLIR3D database (or its possible expansions) could be exploited to
generalize to different types of specificity or even to predict interactions in heterologous
systems. Preliminary results in line of with these expectations, is the FYCOI preference
towards the MAP1LC3 homologs the Atg8 family we showed using pre-ran docking
experiments from the iLIR3D database. Our outcome was in also agreement with the
experimental work of Olsvik and colleagues (Olsvik et al. 2015) showing preference of

FYCOI on the LC3 type, which makes the power iLIR3D even more apparent.

One important limitation of our methods that is very crucial to mention is that FRODOCK
is a tool that performs rigid-body docking. The problem with this approach is that torsion
angles, bond angles and bond lengths of the participating molecules do not change during
the formation of the complex. This means that it is highly probable for a genuine 3DLIR to
be misclassified if it is not initially in a 3D conformation that favours interaction with the
binding site of the Atg8 proteins. Although a first taste of our results with the preceding
examples shows that this may work, a more thorough investigation is required in order to
confidently say whether rigid-body docking is sufficient or not. Perhaps a better solution to
this would be the transitioning to flexible protein-protein docking (usually coming at a higher
computational cost) as future work, that would also reflect the disorder to order nature of the

proteins involved in selective macroautophagy.

Additional future activities to expand this line of research could also include:
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- Model peptides with post-translational modifications, especially phosphorylation
which is suspected to be important when within or in the proximity of LIR-motifs
((Birgisdottir et al. 2013); also important in other SLIM-mediated interactions)

- Build models of characterized Atg8/LC3/GABARAP proteins from other (model)
species using comparative modeling or threading techniques. Execute the pipeline
and populate the database.

- Enable incorporation of data stemming from molecular dynamics simulations.

Diverting from protein-protein docking, a recently published resource called Autophagic
Compound Database (Deng et al. 2018), which makes autophagy effective compounds
publicly available, along with useful data such as functionality, pathways, binding partners
etc, hints another future direction of this research area. Although this resource does not seem
very user friendly at its current state, long standing titans like CHEMBL (Gaulton et al. 2012;
Gaulton et al. 2017) - a manually curated chemical database of bioactive molecules with
drug-like properties - could constitute a potential resource in search of good chemical
compound candidates. In such case we could re-use our current set of Atg8 “receptors” in
virtual screening experiments, to looking for possible targets that could treat autophagy
associated diseases. A broadly used and very efficient software in molecular docking that

we also used in previous projects is Autodock Vina (Trott & Olson 2010).

Finally, as in this chapter we are discussing about molecular interactions, another aspect that
would be very interesting to explore is the interaction of the proteins of the autophagic
machinery with regulatory elements such as non-coding RNAs. In a pre-print released by
Horos and colleagues showed evidence of such interaction of the the Vault RNA with the
Zinc finger of p62 (Horos et al. 2017), suggesting regulation of autophagy by non-coding
RNAs. A very intriguing finding and another potential target for the development of
treatments to autophagy related diseases (Amort et al. 2015).
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5 Discussion and Future Goals

Even though this research field has been around for a couple of decades, our understanding
of the mechanics and the dynamics of this biological process is still at its infancy with many
different paths to be explored. Speaking of which, Richard S. Marshall and Richard D.
Vierstra in their very recent review in Plant Biology catalogued at least 7 different types of
selective autophagy including mitophagy, chlorophagy, xenophagy, pexophagy and many
others (Marshall & Vierstra 2018).

The pioneering works of Pankiv (Pankiv et al. 2007), Inchimura (Ichimura et al. 2008), Noda
(Noda et al. 2008; Noda et al. 2010), Alemu and colleagues (Alemu et al. 2012) were pivotal
for the definitions and characterizations of the AIM/LIR-motifs, which paved the way for
the development and establishment of computational approaches for the in-silico
identification of novel key players of the autophagic machinery. A tool made available to
the scientific community is iLIR (Kalvari et al. 2014), which was also the first of its kind.
Since its release back in 2013, iLIR seems to have served more than 70 thousand user
queries, but also appears to have influenced and driven the development of analogous
resources such as the hfAIM (Xie et al. 2016). Although the two resources have significant
differences - xLIR composed majorly from human LIR-motifs, hfAIMs composed from
proteins involved in pexophagy - they both rely on regular expressions for the identification
of putative LIR-motifs, which are somewhat limiting. iLIR however, by incorporating
ANCHOR predictions and PSSMs manages to balance out the gap between sensitivity and
specificity, resulting in high balanced accuracy. Importantly, the iLIR server is built in such
a way that it does not provide ‘yes’-’no’ type of predictions, but rather reports all possibly
relevant biological information: apart from the highly sensitive (but also inspecific xLIR-
motifs), WxxL motifs are also reported, along with predicted ANCHORs and PSSM scores.
Additional contextual information (e.g. the presence of specific PFAM domains or low
complexity regions) becomes also available to its end-users for making informative
decisions with regards to downstream experimental validation of specific LIR-motif

candidates.

Based on the methods developed for iLIR, batch processing of the complete proteomes of 8
model organisms lead to the development of a freely available database resource for the
provision of a collection of LIRCPs (Jacomin et al. 2016). A follow-up work which identified

putative LIRCPs in viral species, resulted in the development of a similar database specific



to viruses, namely iLIR@viral (Jacomin et al. 2017). It can be envisaged that, eventually, all
sequenced genomes or protein sequences available in sequence databases can be scanned

with iLIR (or its successors) and made available to the scientific community.

Driven by the fact that proteins of the autophagic apparatus are abundant in intrinsic disorder
regions (Mei et al. 2014) and based on our previous positive results with ANCHOR, we
consequently turned to intrinsic disorder data to see whether such information could further
enhance the power of our multi-scheme predictors. With data retrieved from MobiDB, we
employed a variety of algorithms in search for one that would best fit our data. Compared to
our previous results this work yielded even higher balanced accuracies, an outcome that was
further improved with the parametrization of the PSSM scores, revealing a PSSM sweetspot

at scores > 17.

Additional predicted features, such as secondary structure, surface accessibility and
amyloidogenicity have been tested as independent parameters for filtering LIR motif
prediction but without significant results (data not shown). However, we foresee that several
of these (and possibly other physicochemical) features could be incorporated into more
sophisticated techniques for discriminating functional LIR motifs. For example, as more
experimentally verified LIRCPs become available it can be envisaged that powerful machine
learning methods (e.g. deep learning artificial neural networks) could be recruited to boost

prediction performance.

To allow a different dynamic to our data, we diverted from sequence analysis and
transitioned to structural data. As we showcased with the example of FYCO1 preference of
MAPILC3 proteins of the Atg8 family, which is backed up by the experimental work of
Olsvik and colleagues (Olsvik et al. 2015), such data could potentially enable the scientific
community to give answers to biological questions that sequence data fail to capture. For
instance, in their recent work Rogov et al (Rogov et al. 2017) pinpointed the preference of
autophagy receptor and adaptor proteins toward the GABARAP Atg8 homologs and in
addition to the previously defined AIM and LIR-motifs, introduced for the first time the
GABARAP Interacting Motifs (GIMs). It would be very intriguing to examine whether our

data could be used to discriminate autophagy proteins based on their Atg8 preference.

Moving on to further structural aspects of the selective autophagy receptor and adaptor
proteins and their interactions with Atg8 homologs, the recently determined structure of

TRIMSa in complex with LC3B (Keown et al. 2018) provided fresh insights to features that
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we previously eluded. In contrast to the conventional intermolecular parallel B-strand
interaction between the LIR-motifs and the Atg8 homologs demonstrated so far, these
proteins bind to the Atg8 proteins via an a-helix of their coiled coil domain (Mandell et al.
2014). It is anticipated that such proteins will give rise to new research. For example, let’s
assume that we have a novel protein candidate that binds to an Atg8 homolog via an a-helix
with a presumably good docking score too. Before the existence of experimental evidence
to support this unorthodox interaction, a TRIM protein could be falsely discarded from a list
of positive samples. This suggests that we can expect more surprises in the years to come

and leaves the field open for many more discoveries.

Moreover, post-translational modifications (in particular phosphorylation) can be important
around (or within) LIR motifs. Thus, post-translational modification predictions could be
combined in the sequence-based prediction and/or incorporated in structural

modeling/peptide docking experiments.

Before closing we would like to make apparent that we are aiming to use the knowledge we
acquired from this project towards the development of novel and improved tools to better
serve the scientific community. For instance, our analysis on disorder data suggested that
multi-scheme predictor XLIR+A2|D|P17 to be the optimal for the most accurate
determination of functional LIR-motifs. A possible future improvement would be to fine
tune the iLIR web server to take into account intrinsic disorder and predict novel LIRCP
instances based on this new multi-scheme predictor. Another potential feature would be to
allow batch searches and even upgrade the iLIR web server with more modernized web

technologies e.g. AngularJS (https://angularjs.org/), Django framework

(https://www.djangoproject.com/).

We are currently working on expanding our existing LIRCP datasets with manual literature
curation (Kalvari and Chadjichristofi, currently underway), a work that may result in better
benchmarks, but also in the compilation of suitable datasets. We anticipate that the analysis
of a comprehensive dataset will demand utilization of more sophisticated methods e.g.

machine learning algorithms.

Finally, solely from personal interest it would be very intriguing to explore the world of
RNA-binding proteins (RBPs). In particular the interactions between the proteins of the
autophagic machinery and regulatory RNAs, non-coding RNAs. There is evidence showing

ncRNAs being recruited to phagophores and ending up to the lysosomes where they get
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degraded (Frankel et al. 2017). Preliminary results from Horos and colleagues shed light on
the regulation of autophagy by non-coding RNAs, with the Vault RNA interacting with the
Zinc finger of p62 (Horos et al. 2017).

One interesting RNA-meets-autophagy topic to explore would be to take all known/predicted
LIRCPs from human (or other model species), catalog experimental and/or predicted
miRNA sites on the respective genes and see when/whether/which of these miRNA sites get
spliced out in alternatively spliced transcripts. Such data are sitting in existing resources and
waiting to be analysed. RNAcentral (The RNAcentral Constortium 2018) - the
comprehensive database of non-coding RNAs - currently combines non-coding RNA data
from 28 expert ncRNA databases constituting a very strong candidate from where we could
collect miRNAs, whereas an extensive set of human LIRCPs can be obtained from iLIR

database (Jacomin et al. 2016). Exciting times lie ahead.
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7 Supplement

UniProt . PDB .| Resolution .
Accession UniProt ID D #Chains (A) Method Function Template
COHS519 COH519_PLAF7 | 4EOY 6 2.22 X-RAY TRANSPORT PROTEIN Yes
- ’ DIFFRACTION
014641 DVL2 HUMAN | 5SUZ 2 1.84 X-RAY SIGNALING PROTEIN N
- : DIFFRACTION °
X-RAY
3CBX 2 1.7 DIFFRACTION PROTEIN BINDING No
X-RAY
2REY 1 1.55 DIFFRACTION GENE REGULATION No
X-RAY
3CCO 3 1.75 DIFFRACTION PROTEIN BINDING No
X-RAY
3CBY 2 1.5 DIFFRACTION PROTEIN BINDING No
X-RAY
4WIP 3 2.69 DIFFRACTION SIGNALING PROTEIN No
X-RAY
SLNP 4 1.99 DIFFRACTION SIGNALING PROTEIN No
X-RAY
5SUY 4 1.88 DIFFRACTION SIGNALING PROTEIN No
X-RAY
3CBZ 1 1.38 DIFFRACTION PROTEIN BINDING No
075143 ATG13_HUMAN ([3WAO 4 2.6 ZRAY APOPTOSIS N
- : DIFFRACTION °
X-RAY
5C50 2 1.63 DIFFRACTION PROTEIN BINDING No
X-RAY
3WAP 1 3.1 DIFFRACTION PROTEIN TRANSPORT No
X-RAY
3WAN 2 1.77 DIFFRACTION PROTEIN BINDING No
X-RAY TRANSFERASE/TRANSFERASE
075385 ULK1 HUMAN [ 4WNP 4 1.88 DIFFRACTION INHIBITOR No
X-RAY TRANSFERASE/TRANSFERASE
Sl ! 174 DIFFRACTION Inhibitor No
X-RAY TRANSFERASE/TRANSFERASE
4WNO ! 1.56 DIFFRACTION Inhibitor No
095352 ATG7_ HUMAN | 3VH2 1 33 X-RAY METAL BINDING PROTEIN N
- : DIFFRACTION °
P22681 CBL_HUMAN 2K4D 1 N/A SOLUTION NMR Ligase No
X-RAY
2Y1IM 6 2.67 DIFFRACTION LIGASE No
X-RAY
1B47 3 22 DIFFRACTION SIGNAL TRANSDUCTION No
X-RAY LIGASE,SIGNALING
1YVH 2 2.05 DIFFRACTION PROTEIN,IMMUNE SYSTEM No
X-RAY
3BUM 2 2 DIFFRACTION LIGASE No
X-RAY
3BUW 4 1.45 DIFFRACTION LIGASE/SIGNALING PROTEIN No
30B2 2 2.1 DIF?&?;I{ION Ligase/signaling Protein No
X-RAY
4A4C 3 2.7 DIFFRACTION LIGASE/TRANSFERASE No
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X-RAY
2009 3 2.1 DIFFRACTION LIGASE No
X-RAY
2YIN 4 2 DIFFRACTION LIGASE/TRANSFERASE No
2JUJ 1 N/A SOLUTION NMR LIGASE No
X-RAY
3BUN 2 2 DIFFRACTION | LIGASE/SIGNALING PROTEIN No
X-RAY
4A49 2 221 DIFFRACTION LIGASE No
X-RAY COMPLEX (PROTO-
2CBL 2 21 DIFFRACTION ONCOGENE/PEPTIDE) No
X-RAY
3BUX 4 1.35 DIFFRACTION | LIGASE/SIGNALING PROTEIN No
X-RAY
3PLF 4 1.92 DIFFRACTION PROTEIN BINDING/LIGASE No
4GPL 1 3 DIF;(&?S}I{ION Ligase/ligase inhibitor No
X-RAY
513X 6 2.82 DIFFRACTION LIGASE No
X-RAY
IFBV 3 29 DIFFRACTION LIGASE No
X-RAY
3BUO 4 2.6 DIFFRACTION | LIGASE/SIGNALING PROTEIN No
30B1 2 2.2 DIF?&}I{ION Ligase/signaling Protein No
X-RAY
4A4B 3 2.79 DINBRACTION LIGASE/TRANSFERASE No
P27797 CALR_HUMAN [ 3POS 3 1.65 X-RAY CHAPERONE N
= : DIFFRACTION °
X-RAY . . .
SLKS 10 23 DIFFRACTION calcium-binding protein No
X-RAY
3DOW| 2 23 DIFFRACTION PROTEIN TRANSPORT No
X-RAY
3POW 1 1.55 DIFFRACTION CHAPERONE No
X-RAY
3RGO 1 2.57 DIFFRACTION CHAPERONE No
X-RAY
5JGE 6 1.91 DIFFRACTION PROTEIN TRANSPORT No
P35193 Atgl9_YEAST | 27PN 8 2.7 X-RAY PROTEIN TRANSPORT Yes
- : DIFFRACTION
2KZB 1 N/A SOLUTION NMR PROTEIN TRANSPORT No
P35222 CTNB1_HUMAN | 1JPW 6 25 X-RAY CELL ADHESION N
- : DIFFRACTION °
2G57 1 N/A SOLUTION NMR ONCOPROTEIN No
X-RAY
3FQR 3 1.7 DIFFRACTION IMMUNE SYSTEM No
X-RAY SIGNALING PROTEIN,
3SL9 8 22 DIFFRACTION PROTEIN BINDING No
X-RAY
1G3J 4 2.1 DIFFRACTION TRANSCRIPTION No
X-RAY CELL ADHESION/ANTITUMOR
ITHI 4 23 DIFFRACTION PROTEIN No
X-RAY
3TX7 2 2.76 DIFFRACTION PROTEIN BINDING No
X-RAY
1LUJ 2 25 DIFFRACTION STRUCTURAL PROTEIN No




2GL7 2.6 DIF;(&?S}EION TRANSCRIPTION No

1Qz7 22 DIF?&?}}EI ON CELL ADHESION No

27Z6H 22 DIF;(&?S}EION CELL ADHESION No

3SLA 2.5 DIF?&?}}EI ON SIGNALING PROTEIN No

1JDH 1.9 DIF?&?}}EI ON TRANSCRIPTION No

3FQN 1.65 DIF?&?}}EION IMMUNE SYSTEM No

1P22 2.95 DIF;(&?S}EION SIGNALING PROTEIN No

T T R B O S I

1TO8 2.1 DIF;(&?S}I{ION cell adhesion/cell cycle No

P40344 Atg3_YEAST 4GSL 2.7 DIF?&?}?ION PROTEIN TRANSPORT No
2DYT 2.5 DIF?&}E‘ION LIGASE No

3T7G 2.08 DIF;(}iié}EION LIGASE No

P40458 Atg32_YEAST |3VXW 3 DIF;(&?S}EION PROTEIN TRANSPORT Yes
P41743 KPCI_HUMAN SLI1 2 QRAY TRANSFERASE No

- DIFFRACTION

3A8W 2.1 DIF?&?}?ION TRANSFERASE No

SLI9 1.79 DIF?&?}}EION TRANSFERASE No

1WMH 1.5 DIF;(I;:?;I{ION Transferase/CELL CYCLE No

3A8X 2 DIF?&?}?ION TRANSFERASE No

3ZHS8 2.74 DIF;(&?S}EION TRANSFERASE No

1VD2 N/A SOLUTION NMR transferase No

SLIH 3.25 DIF?&?}?ION TRANSFERASE No

1ZRZ 3 DIF;(&?S}EION TRANSFERASE No

P46934 NEDD4_HUMAN | 4BE8 3 DIF?&?}?ION LIGASE No
4N7F 1.1 DIF;(&?S}EION PROTEIN BINDING No

5C91 2.44 DIF;(&?D}EION ligase/ligase inhibitor No

SAHT N/A SOLUTION NMR ISOMERASE No

2KQO0 N/A SOLUTION NMR LIGASE No

2XBF 2.5 DIF?&?}?I ON LIGASE No

4N7TH 1.7 DIF?&?}?ION PROTEIN BINDING No

w0 2 | | sowurionnum | o mEmEmRONG
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4BBN 3 2.51 DIF?&?}}EION LIGASE/SIGNALING PROTEIN No

5C71 4 3 DIF;(&?S}EION LIGASE/SIGNALING PROTEIN No

3B7Y 2 1.8 DIF?&?}}EI ON LIGASE No

2KPZ 2 N/A SOLUTION NMR LIGASE No

2XBB 4 2.68 DIF?&?}?ION LIGASE/PROTEIN BINDING No

Q00610 CLH1_HUMAN | 3LVG 6 7.94 X-RAY STRUCTURAL PROTEIN No

- DIFFRACTION

1BPO 3 2.6 DIF?&?}}EI ON MEMBRANE PROTEIN No

3LVH 6 9 DIF;(&?S}EION STRUCTURAL PROTEIN No

4GS55 1 1.69 DIF?&?}}EI ON ENDOCYTOSIS No

2XZG 1 1.7 DIF?&?}?I ON ENDOCYTOSIS No

Q12292 ATG34_YEAST | 2KZK 1 N/A SOLUTION NMR PROTEIN TRANSPORT No
Q12983 BNIP3_HUMAN | 2KA2 2 N/A SOLUTION NMR MEMBRANE PROTEIN No
2J5D 2 N/A SOLUTION NMR MEMBRANE PROTEIN No

2KA1 2 N/A SOLUTION NMR MEMBRANE PROTEIN No

Q13043 STK4_HUMAN | 2JO8 2 N/A SOLUTION NMR TRANSFERASE No
3COM 2 22 DIF?&?}}EION TRANSFERASE No

4NR2 8 2 DIF;(&?S}I{ION Transferase No

Q13137 CACO2_HUMAN | 4XKL 4 2.1 DIF?&?}}EION PROEFI\IIEII;IEIIEE\(I)CF}/EETAL No
2MXP 1 N/A SOLUTION NMR METAL BINDING PROTEIN No

5AAQ 1 N/A SOLUTION NMR | CALCIUM-BINDING PROTEIN No

3VVW 2 2.5 DIF;(&?S}EION PROTEIN TRANSPORT Yes

4GXL 2 2.02 DIF?&?}?I ON PROTEIN BINDING No

3VVV 1 1.35 DIF;(&?S}EION PROTEIN TRANSPORT No

4HAN 4 2.55 DIF?&?}}EI ON SUGAR BINDING PROTEIN No

Q13188 STK3_HUMAN | SBRM 15 2.65 DIF;(I;:?;I{ION Transferase/Signaling Protein No
e T Nl L I

3WWS 4 2.01 DIF;(&?S}EION TRANSFERASE No

4HKD 4 1.5 DIF?&?}}EI ON TRANSFERASE No

40H9 2 1.7 DIF?&?}}EION TRANSFERASE No

4LON 10 1.4 DIF;(&?S}EION TRANSFERASE No
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X-RAY
4LG4 6 2.42 DIFFRACTION SIGNALING PROTEIN No
ELECTRON
Q13501 SQSTM_HUMAN | 4UF9 3 10.3 MICROSCOPY SIGNALING PROTEIN No
1Q02 1 N/A SOLUTION NMR PROTEIN BINDING No
2JY8 1 N/A SOLUTION NMR PROTEIN BINDING No
APOPTOSIS
2K6Q 2 N/A SOLUTION NMR INHIBITOR/APOPTOSIS Yes
2KNV 2 N/A SOLUTION NMR PROTEIN BINDING No
2K0B 1 N/A SOLUTION NMR SIGNALING PROTEIN No
X-RAY TRANSFERASE/PROTEIN
4MIS 24 25 DIFFRACTION BINDING o
ELECTRON
4UF8 4 10.9 MICROSCOPY SIGNALING PROTEIN No
2JY7 1 N/A SOLUTION NMR PROTEIN BINDING No
27D 4 1.56 DIF?&}F’ION Apoptosis inhibitor/Apoptosis Yes
Q14596 NBR1_HUMAN [ 1WJ6 1 N/A SOLUTION NMR PROTEIN BINDING No
2CP8 1 N/A SOLUTION NMR PROTEIN BINDING No
X-RAY
2BKF 1 1.56 DIFFRACTION ZINC-FINGER PROTEIN No
2MGW 1 N/A SOLUTION NMR PROTEIN BINDING No
SIGNALING
218] 2 N/A SOLUTION NMR PROTEIN/PROTEIN BINDING Yes
X-RAY STRUCTURAL GENOMICS,
40LE 4 ] DIFFRACTION UNKNOWN FUNCTION No
X-RAY
2G4S 1 2.15 DIFFRACTION METAL BINDING PROTEIN No
2MJ5 2 N/A SOLUTION NMR PROTEIN BINDING No
X-RAY
Q14677 EPN4_HUMAN | 2V8S 2 222 DIFFRACTION PROTEIN TRANSPORT No
X-RAY .
IXGW 1 1.9 DIFFRACTION Endocytosis No
X-RAY
2QY7 3 2 DIFFRACTION PROTEIN BINDING No
Q15459 SF3A1_HUMAN | 2DT6 1 N/A SOLUTION NMR RNA BINDING PROTEIN No
1ZKH 1 N/A SOLUTION NMR GENE REGULATION No
2DT7 2 N/A SOLUTION NMR RNA BINDING PROTEIN No
X-RAY
Q86V97 KBTB6_HUMAN | 4XC2 8 1.9 DIFFRACTION IMMUNE SYSTEM No
X-RAY
Q86VP1 TAXB1_HUMAN | 4NLH 2 1.9 DIFFRACTION PROTEIN BINDING No
X-RAY Flurorescent Protein, Metal
424K 2 28 DIFFRACTION Binding Protein No
X-RAY
4BMJ 11 2.75 DIFFRACTION APOPTOSIS No
SAAS 1 N/A SOLUTION NMR PROTEIN BINDING No
X-RAY Flurorescent Protein, Metal
4z4M 2 215 DIFFRACTION Binding Protein No
2M7Q 1 N/A SOLUTION NMR Metal Binding Protein No
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X-RAY CONTRACTILE
3ZKF 12 2.6 DIFFRACTION PROTEIN/PEPTIDE No
Q8TD19 NEK9 HUMAN
X-RAY CONTRACTILE
3ZKE 12 22 DIFFRACTION PROTEIN/PEPTIDE No
4LGD 8 3.05 DIF;(I;:?Z}F,I ON SIGNALING PROTEIN No
Q8WWWO RASF5_HUMAN
40HS 2 2.28 DIF?&}F’ION transferase/Apoptosis No
X-RAY
Q96CV9 OPTN_HUMAN | 3VTV 1 1.7 DIFFRACTION PROTEIN BINDING No
2LUE 2 N/A SOLUTION NMR PROTEIN BINDING No
X-RAY PROTEIN
SEOA 4 25 DIFFRACTION BINDING/TRANSFERASE No
X-RAY
3VTW 3 2.52 DIFFRACTION PROTEIN BINDING No
X-RAY
5B83 6 2.69 DIFFRACTION SIGNALING PROTEIN No
X-RAY PROTEIN
SEOF 4 2.05 DIFFRACTION BINDING/TRANSFERASE No
2L0O4 1 N/A SOLUTION NMR PROTEIN TRANSPORT No
SAAZ 1 N/A SOLUTION NMR PROTEIN BINDING No
X-RAY
Q96RU3 FNBP1_HUMAN | 2EFL 1 2.61 DIFFRACTION ENDOCYTOSIS/EXOCYTOSIS No
X-RAY
Q9BQS8 FYCOI_HUMAN | SLXI 4 1.44 DIFFRACTION SIGNALING PROTEIN No
X-RAY
5D9%4 2 1.53 DIFFRACTION PROTEIN BINDING/PEPTIDE No
X-RAY
5CX3 8 2.3 DIFFRACTION PROTEIN BINDING Yes
X-RAY
SLXH 6 1.58 DIFFRACTION SIGNALING PROTEIN No
X-RAY
Q9GZZ9 UBA5_HUMAN | SHKH 3 2.55 DIFFRACTION SIGNALING PROTEIN No
X-RAY
3GUC 2 2.25 DIFFRACTION TRANSFERASE No
X-RAY
SIAA 4 1.85 DIFFRACTION CELL CYCLE No
X-RAY
5L95 4 2.1 DIFFRACTION CELL CYCLE No
X-RAY
3H8V 2 2 DIFFRACTION TRANSFERASE No
X-RAY
Q9H1YO ATG5_HUMAN | 4TQO 6 2.7 DIFFRACTION PROTEIN BINDING No
X-RAY
5D7G 8 3 DIFFRACTION APOPTOSIS No
X-RAY S
4GDL 3 2.88 DIFFRACTION protein binding No
X-RAY
4TQ1 2 1.8 DIFFRACTION PROTEIN BINDING No
X-RAY
4GDK 6 2.7 DIFFRACTION PROTEIN BINDING No
X-RAY
QINT62 ATG3_HUMAN |4NAW 16 2.19 DIFFRACTION PROTEIN TRANSPORT/LIGASE No
X-RAY HYDROLASE/STRUCTURAL
QI9Y4P1 ATG4B_HUMAN | 2Z0E 2 1.9 DIFFRACTION PROTEIN Yes
X-RAY
2CY7 1 1.9 DIFFRACTION hydrolase No
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X-RAY HYDROLASE/STRUCTURAL

2zzp 2.05 DIFFRACTION PROTEIN Yes
X-RAY

2D11 2 DIFFRACTION HYDROLASE No
X-RAY HYDROLASE/STRUCTURAL

220D 1.9 DIFFRACTION PROTEIN Yes

Table 21. Selective autophagy receptor and adaptor protein structures.

PDB IDs were extracted from UniProt using the UniProt accession. Metadata such as structure resolution,

function, number of chains and method of structure determination were obtained RSCB PDB using PDB IDs.
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7.1 dizscan.py code

dizscan.py

This is a script to identify disorder regions
overlaps by incorporating data from MobiDB

Developer: Ioanna Kalvari

import os
import sys
import copy
import urllib2
import json

def fetch_concensus_disorder_curated_data(accession):
Fetches concensus curated data from MobiDB based on
UniProt accession and re-organises them in a simpler
way in a dictionary

accession: A valid UniProt accession

return: A reconstructed dictionary with MobiDB data

disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus"
acceptHeader = 'application/json' # text/csv and text/plain supported
request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})

DN WINIFRFISIOWIONOIIAIWINIRISIOIINIDIVTIEIWNIFISIVI0 NG U IWIN -

# Send request
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response = urllib2.urlopen(request)

# Parse JSON response di Python dict
data = json.load(response)

curated_data = {}

# [u'solvent_exposure', u'lips', u'ss_populations', u'disorder', u'interactions']

# print data["mobidb_consensus"].keys()
if "db" in data['"mobidb_consensus"]["disorder"]:
for item in datal"mobidb consensus"]["disorder”]["db"]:
if item['method"] not in curated_data:
curated_datal[item["method"]1] = item["regions"]

return curated_data

def

fetch_concensus_disorder_indirect_data_by_method(accession):

Fetces consensus indirect (derived) data from MobiDB based on
UniProt accession and re-organises them in a simpler
way in a dictionary

accession: A valid UniProt accession

return: A reconstructed dictionary with MobiDB data

disorder_url
acceptHeader

"http://mobidb.bio.unipd.it/ws/%s/consensus"
'application/json' # text/csv and text/plain supported

request = urllib2.Request(disorder_url % accession, headers={"Accept" :

# Send request
response = urllib2.urlopen(request)

# Parse JSON response di Python dict
data = json.load(response)

acceptHeader})
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indirect_data = {}

# [u'solvent_exposure', u'lips', u'ss_populations', u'disorder', u'interactions']
# print data["mobidb_consensus"].keys()
if "derived" in data["mobidb_consensus"]["disorder"]:
for item in datal["mobidb consensus"]["disorder"]["derived"]:
# organise disorder regions by method
if item["method"] not in indirect_data:
indirect_datal[item["method"]]=item["regions"]

return indirect_data

def fetch_concensus_disorder_predicted_data_by_method(accession):

Fetces consensus predicted data from MobiDB based on
UniProt accession and re-organises them in a simpler
way in a dictionary

accession: A valid UniProt accession

return: A reconstructed dictionary with MobiDB data

disorder_url = "http://mobidb.bio.unipd.it/ws/%s/consensus"
acceptHeader = 'application/json' # text/csv and text/plain supported
request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})

# Send request
response = urllib2.urlopen(request)

# Parse JSON response di Python dict
data = json.load(response)

predicted_data = {}
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# [u'solvent_exposure', u'lips', u'ss_populations', u'disorder', u'interactions']
# print data["mobidb_consensus"].keys()
if "predictors" in datal["mobidb_consensus"]["disorder"]:
for item in datal["mobidb_consensus"]["disorder"]["predictors"]:
# organise disorder regions by method
if item['method"] not in predicted_data:
predicted_datal[item["'method"]]=item["regions"]

return predicted_data

def fetch_disorder_data(accession, type="curated"):
Returns all indirect disorder data associated with the accession
provided. The type of data retrieved from MobiDB needs to be
specified and the output is a dictionary with raw MobiDB
data.

accession: A valid UniProt accession
type: The type of data to fetch (predicted, indirect, curated)

return: A dictionary with raw data of a particular type

disorder_url = "http://mobidb.bio.unipd.it/ws/%s/disorder"
acceptHeader = 'application/json' # text/csv and text/plain supported
request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})

# Send request
response = urllib2.urlopen(request)

# Parse JSON response di Python dict
data = json.load(response)

# handle data

if type == "curated":
type - Ildbll
elif type == "indirect":

type = "derived"
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elif type == "pedicted":
type = "predictors"

if type not in data["mobidb_data"]["disorder"]:
return None

return data["mobidb_data"]["disorder"] [typel

def scan_db_data_for_disorder_regions(accession, start, end, lir, type):
This function will scan the provided lir for any possible disorder
regions that match the data retrieved from mobiDB

accession: A valid Uniprot protein id (e.g. Q13501)

start: Start coordinate of the LIR region

end: End coordinate of the LIR region

lir: A string representing the amino acid sequence of the LIR peptide

type: The type of the disordered dat ato fetch (e.g. curated, indirect, predicted)

return: A dictionary of all LIR/mobiDB overlaps found per method (e.g. )

disorder_strings = {}
disorder_data = fetch_disorder_data(accession, type)
if disorder_data is not None:

dislir_dict = None

for database in disorder_data:

for region in database['regions']:
dislir_dict = search_for_overlaps(start, end, region[@], region[1],
str(region[2]), len(lir), pos_dict = dislir_dict)

# construct disordered lir string
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def

disorder_string = construct_disorder_lir_string(dislir_dict)

disorder_strings[str(database["'method"])] = disorder_string
return disorder_strings

return

scan_indirect_data_for_disorder_regions(accession, start, end, lir, concensus=

disorder_strings = {}
disorder_data = fetch_disorder_data(accession, ="derived")

if disorder_data is not
if concensus is :
struct_dislir_dict =
for structure_case in disorder_data:
if "pdb_id" in structure_case:

pdb_label = structure_case["pdb_id"] +
method = structure_case["method"]
regions = structure_case["regions"]
for region in regions:

+ structure_case["chain_id"]

struct_dislir_dict = search_for_overlaps(start, end, region[@], region[1],

(region[21), (lir), pos_dict = struct_dislir_dict)

disorder_string
disorder_string

if pdb_label not in disorder_strings:

disorder_strings[pdb_label]l = {"distring": disorder_string, "method":

else:
struct_dislir_dict = {}
for structure_case in disorder_data:

construct_disorder_lir_string(struct_dislir_dict)

method}

129



ND
~N

N
W
(oe]

N
W
(o]

ND
S

ND
=

N
N

ND
(V)

N
IS

ND
(O}

ND
(o)}

regions = structure_case["regions"]
for region in regions:
struct_dislir_dict = search_for_overlaps(start, end, region[@], region[1],
str(region[2]), len(lir), pos_dict = struct_dislir_dict)

disorder_strings = construct_disorder_lir_string(struct_dislir_dict)

return disorder_strings
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# deprecated
def _search_for_overlaps(lir_start, lir_end, mobi_start, mobi_end, mobi_label, seq_length, pos_dict = None):
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Deprecated function

lir_start: LIR peptide start position

lir_end: LIR peptide end position

mobi_start: MobiDB start position

mobi_end: MobiDB end position

mobi_label: A character indicating if the position is disordered or structured D=disorder, S=structured,
seq_length: The length of the peptide

return: A dictionary where keys are the start-end range numbers and values are the D/S labels from
MobiDB or ? depending on whether there's an overlap or data available

# variable declaration and initialization
positions = {}

index = =1

boundary = -1

# initialising position matrix
if pos_dict is None:
index = lir_start
while index <= lir_end:
positions[index] = '?'
index +=1
else:
positions = copy.deepcopy(pos_dict)
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if lir_start > mobi_start and lir_start < mobi_end and lir_end > mobi_end:
boundary = mobi_end
index = lir_start

elif lir_start < mobi_start and lir_end > mobi_start and lir_end < mobi_end:
boundary = lir_end
index = mobi_start

elif mobi_start < lir_start and lir_end < mobi_end and lir_start < mobi_end:
boundary = lir_end
index = lir_start

elif lir_start < mobi_start and lir_start < mobi_end and lir_end > mobi_end:
boundary = mobi_end
index = mobi_start

elif lir_start == mobi_start and lir_end == mobi_end:
boundary = lir_end
index = lir_start

T 1 1

elif lir_start == mobi_start and lir_end > mobi_start and lir_end < mobi_end:

boundary = lir_end
index = lir_start

y

)y me en
elif mobi_start > lir_start and lir_start < mobi_end and lir_end == mobi_end:
boundary = lir_end
index = mobi_start
elif lir_start == mobi_start and lir_end > mobi_start and lir_end > mobi_end:

boundary = mobi_end
index = lir_start
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# case K

elif mobi_start < lir_start and lir_start < mobi_end and lir_end == mobi_end:
boundary = mobi_end
index = lir_start

# case E - no overlap left end
elif lir_start < mobi_start and lir_end < mobi_start and lir_end < mobi_end:
return positions

# case F — no overlap right end
elif mobi_start < lir_start and mobi_end < lir_start and lir_start > mobi_start:
return positions

else:
return positions

while index<=boundary:
positions[index] = mobi_label
index+=1

return positions

def search_for_overlaps(lir_start, lir_end, mobi_start, mobi_end, mobi_label, pos_dict = None):
Searches for LIR-motif/disorder overlaps based on the data retrieved from MobiDB. Identification of
overlaps is done using iLIR and MobiDB coordinates and returns a dictionary which encapsulates
disordered positions of the LIR-motif

lir_start: LIR-motif start position
lir_end: LIR-motif end position
mobi_start: MobiDB start position
mobi_end: MobiDB end position
mobi_Tlabel: MobiDB residue label D/S

one when processing many different predictions

132



98]
~N

w
U1
00

w
U1
e}

1Y
S

o8]
[@)]
=

(€9
N

o8]
(O8]

(€9
IS

o8]
(O]

1Y
(o)}

o8]
~N

1Y
00

1Y
o

9}
S

9}
=

(&)
N

(&)
~
W

(&)
IS

98]
(O]

9}
(o)}

98]
~N

9}
e}

9}
~
o

Y
S

W
(0]
=

(&9
N

W
(O8]

(&9
IS

W
(O]

Y
(o)}

W
~N

Y
o]

Y
o

W
S

W
—

W
N

W
e}
W

W
IS

W
e}
(O}

W
(o)}

return: A dictionary with all disorder positions identified

positions = {}
index = -1
boundary = -1

if pos_dict is
index = lir_start
while index <= lir_end:
positions[index] = '7
index +=1

else:
positions = copy.deepcopy(pos_dict)

if lir_start < mobi_start and mobi_start < lir_end and lir_end < mobi_end:
boundary = lir_end
index = mobi_start

elif mobi_start < lir_start and lir_start < mobi_end and mobi_end < lir_end:
boundary = mobi_end
index = lir_start

elif lir_start == mobi_start and lir_end < mobi_end:
boundary = lir_end
index = lir_start

elif lir_start == mobi_start and mobi_end < lir_end:
boundary = mobi_end
index = mobi_start

elif mobi_start < lir_start and lir_end == mobi_end:
boundary = lir_end
index = lir_start

elif lir_start < mobi_start and lir_end == mobi_end:

boundary = lir_end
index = mobi_start
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#G

elif lir_start < mobi_start and mobi_start < lir_end and mobi_end < lir_end:
boundary = mobi_end
index = mobi_start

# H

elif mobi_start < lir_start and lir_end > mobi_start and lir_end < mobi_end:
boundary = lir_end
index = lir_start

# I

elif lir_start == mobi_start and lir_end == mobi_end:
boundary = lir_end
index = lir_start

# J

elif lir_start < mobi_start and lir_end <= mobi_start and lir_end < mobi_end:
return positions

# K

elif mobi_start < lir_start and mobi_end <= lir_start and lir_end > mobi_end:
return positions

while index<=boundary:
positions[index] = mobi_label
index+=1

return positions

def calculate_disorder_fraction(disorder_str):

Calculates the fraction of disorder residues
found in a LIR-motif

disorder_str: The disorder string in the form of 'DDDDSD'

return: disorder fraction in float

length = len(disorder_str)
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count_ds = disorder_str.count('D")

dis_fraction = count_ds/length

return dis_fraction

def

calculate_disorder_percentage(disorder_str):

Calculate and return the proportion of the disordered region in a peptide
given a disordered string as generated by a disorder scanner

disorder_str: A disorder string representing the disordered residues in
a given string

return: returns the disorder percentage

# D_PPE, D_NPE, D_PA, D_WC D_WCD_WCD_WCD_WCD_WCD_WC
# replace predicted D types with Ds
dtypes = ["D_PPE", "D_NPE", "D_PA", "D_WC"]

for case in dtypes:
disorder_str = disorder_str.replace(case, 'D')

count_ds = disorder_str.count('D")

# counting length after replacement for accuracy purposes
length = len(disorder_str)

disorder_proportion = 0

if length > 0:
disorder_proportion = count_dsx100/1length

return disorder_proportion
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def

construct_disorder_lir_string(dispos):

Takes the dictionary of calculated disordered LIR-motif
positions and constructs the disorder string dSTR

dispos: Calculated disorder positions

return: Disorder string

disordered_string =
if dispos is not None:
pos_list = sorted(dispos.keys())

for pos in pos_list:
disordered_string = disordered_string + dispos[pos]

return disordered_string

def

print_lir_disorder_data(uniprot_acc, lir, start, end, scanner_results_dict):

Prints the disorder region scanning results in a "pretty" format

uniprot_acc: A valid UniProt accession

lir: The LIR-motif sequence (as in iLIR3D)
start: The start position of the LIR-motif
end: The end position of the LIR-motif
scanner_results_dict:

returns: void
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for db in scanner_results_dict.keys():
disorder_string = scanner_results_dict [db]
disorder_percentage = calculate_disorder_percentage(disorder_string)
print "%s\t%s-%s\t%s\t%s\t%s%s\t%s" % (uniprot_acc, str(start), str(end), lir,

disorder_string, str(disorder_percentage),
chr(37), db)

def print_disorder_report(peptide_file, type):
Prints on the screen the disorder results that were computed, in a
veyr simple tab delimited format

peptide_file: This is a tab delimited file containing the lir string,
start and end coordinates per
candidate uniprot accession

return: void

peptide_file_handle = open(peptide_file, 'r')

for peptide_line in peptide_file_handle:
components = peptide_line.strip().split('\t")

uniprot_acc = components[0]
start = int(components[2])
end = int(components[3])
lir = components[1]

disorder_overlaps = scan_db_data_for_disorder_regions(uniprot_acc, start, end, lir, type)

if disorder_overlaps is not None:
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for db in disorder_overlaps.keys():

dstring = disorder_overlaps[db]

disorder_percentage

print "%s\t%s-%s\1t%s\t%s\t%s%s\t%s" % (uniprot_acc, str(start), str(end), lir,

else:

calculate_disorder_percentage(dstring)

dstring, str(disorder_percentage),
chr(37), db)

print "%s NA" % uniprot_acc

Coverts the MobiDB indirect data into a dictionary where keys are in the form of

def mobidb_indirect_list_data_to_pdb_dict(uniprot_accession):

pdb_id followed by chain_id and separated by '_' e.g. 2K6Q_B, to simplify the

scanning process with structures. Values are lists of tuples (start, end, method)

uniprot_accession: A valid uniprot accession

return: The new reformated dictionary

pdb_formated_data = {}

accession_data = fetch_disorder_data(uniprot_accession, type="indirect")
indirect_data = accession_datal["mobidb data"]["disorder"]["derived"]

for structure in indirect_data:

new_key = structure["pdb_id"] + '_' + structure["chain_id"]

if new_key not in pdb_formated_data:
pdb_formated_datal[new_key] = [{"regions”: indirect_data["regions"]

,"method": indirect_datal["method"]1}]

#pdb_formated_data[new_key]["regions"] = indirect_data["regions"]
#pdb_formated_data[new_key]["method"] = indirect_data["method" ]

else:
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pdb_formated_datalnew_key].append({"regions": indirect_datal"regions"]
,'method": indirect_datal["method"]})

return pdb_formated_data

def

scan_peptide_for_consensus_disorder_regions(accession, lir_start, lir_end, lir, type = "curated"):
Scans a LIR-motif and looks for disorder overlaps with MobiDB based on the

start-end coordinates (lir_start, lir_end) and the corresponding UniProt

accession, which is used to retrieve the data.

accession: A valid UniProt accession

lir_start: The start position of a LIR-motif

lir_end: The end position of a LIR-motif

lir: The LIR-motif sequence

type: Type of data to retrieve from MobiDB (curated, predicted, indirect)

return: A dictionary with constructed disorder strings

data = {}
disorder_strings = {}

if type == "curated":
data = fetch_concensus_disorder_curated_data(accession)

elif type == "indirect":
data = fetch_concensus_disorder_indirect_data_by_method(accession)

elif type == "predicted":
data = fetch_concensus_disorder_predicted_data_by_method(accession)

if bool(data) is not False:
#dis_dict = None
for method in data.keys():
disorder_string = "'
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dis_dict = None

regions = datal[method]

if len(regions)>0:

for region in regions:

mobi_start = region[0]
mobi_end = region[1]
mobi_label = region[2]
seq_length = len(lir)

dis_dict = search_for_overlaps(lir_start, lir_end, mobi_start, mobi_end,

mobi_label, seqg_length, pos_dict = dis_dict)

disorder_string = construct_disorder_lir_string(dis_dict)
else:
lir_len = len(lir)
i=0
while i<lir_len:
disorder_string +='7"'
i+=1
disorder_strings[method] = disorder_string

return disorder_strings

def disorder_report_generator(protein_file, type = "all"):
Generates a human readable report showing the disorder
residues identified for each LIR-motif

protein_file: The input file with uniprot protein id and protein accession,
start and end coordinates of the lir motif, the lir string and verified digit
1 if so, @ if unverified

type: The type of data we want to use in the calculation of the disorder data
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return: void

# Move code from main here

fp = open(protein_file, 'r')
verified = "'

for line in fp:
line = line.strip().split('\t")
uniprot_id = line[1].strip()
uniprot_acc = line[2].strip()
start = int(line[3].strip())
end = int(line[4].strip())
lir = line[5].strip()
verif_val = line[6].strip()

if verif_val == "1":
verified = "verified"
else:
verified = "unverified"

if type == "indirect":
disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, type = "indirect")

if bool(disorder_strings) is not False:
for method in disorder_strings.keys():
print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir,
disorder_strings[method],
str(calculate_disorder_percentage(disorder_strings[method])),
chr(37),verified,method, "indirect")
elif type == "curated":
disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, type = "curated")

if bool(disorder_strings) is not False:

for method in disorder_strings.keys():
print "%s\t%s\t%s\t%s\t%s\t%s%s\ t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir,
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disorder_strings[method],

(calculate_disorder_percentage(disorder_strings[method])),

(37), verified, method, "curated")

elif == "predicted":
disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, > = "predicted")
if (dlsorder _strings) is not
for method in disorder_strings. keys()
print "%s\t%s\t%s\t%s\t%s\t%s%s\t%s\t%s\t%s" %(uniprot_id, str(start), (end), 1lir,
disorder_strings[method],
(calculate_disorder_percentage(disorder_strings[method])),
(37), verified, method, "predicted")
else:
disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, = "curated")
if (disorder_strings) is not
for method in disorder_strings. keys()
print "%s\t%s\t%s\t%s\t%s\t%s%s\ t%s\t%s\t%s" %(uniprot_id, (start), (end), 1lir,

disorder_strings[method],

(calculate_disorder_percentage(disorder_strings[method])),

(37), verified, method, "curated")

disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,

lir, = "indirect")
if (disorder_strings) is not
for method in disorder_strings. keys()
print "%s\t%s\t%s\t%s\ %5\ t%s%s\ t%s\t%s\t%s" %(uniprot_id, (start), (end), 1lir,

disorder_strings[method],

(calculate_disorder_percentage(disorder_strings[method])),

(37), verified, method, "indirect")

disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, = "predicted")

if (disorder_strings) is not

142



~
~

~
U1
00

~
U1
e}

~
S

~
(=
=

~
N

~
W

~
~

~
(O]

~
(o)}

~
~

~
00

~
o

~
S

~
=

~
N

~
~
W

~
~

~
(O]

~
(o)}

~
~

~
e}

~
~
o

~
S

~
o
=

~
N

~
W

~
~

~
(O]

~
(o)}

~
~

~
o]

~
o

~l
e}
S

~
[y

~
N

~l
W

~
O
~

~l
Ne}
(4}

~l
(o)}

for method in disorder_strings.keys():
print "%s\t%s\t%s\t%s\t%s\t%s%s\ t%s\t%s\t%s" %(uniprot_id, str(start), str(end), lir,
disorder_strings[method],
str(calculate_disorder_percentage(disorder_strings[method])),
chr(37), verified, method, "predicted")

fp.close()

def check_disorder_data_availability by accession(uniprot_acc_input):
This function loads all data from MobiDB and checks whether
there's available data for each accession provided

uniprot_acc_input: It can either be a list of valid uniprot
accessions or a single uniprot accession

return: A dictionary with the accession data retrieved from MobiDB

acc_data = {}
uniprot_accs = []

if os.path.isfile(uniprot_acc_input):
fp = open(uniprot_acc_input, 'r')
uniprot_accs = [x.strip() for x in fpl
fp.close()

else:
uniprot_accs.append(uniprot_acc_input)

disorder_url
acceptHeader

"http://mobidb.bio.unipd.it/ws/%s/consensus"
‘application/json' # text/csv and text/plain supported

for accession in uniprot_accs:
request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})
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# Send request
response = urllib2.urlopen(request)

# Parse JSON response di Python dict
data = json.load(response)

predicted_data = {}

if accession not in acc_data:
acc_datalaccession] = {}

if "derived" in data["mobidb_consensus"]["disorder"]:

acc_datalaccession] ["indirect"] = "Yes"
else:
acc_datalaccession] ["indirect"] = "No"
if "predictors" in data["mobidb_consensus"] ["disorder"]:
acc_datalaccession] ["predicted"] = "Yes"
else:
acc_datalaccession] ['predicted"] = "No"
if "db" in data["mobidb_consensus"]["disorder"]:
acc_datalaccession] ["curated"] = "Yes"
else:
acc_datalaccession] ["curated"] = "No"

return acc_data

def check_disorder_data_availability_by_data_type(uniprot_acc_input):

This function loads all data from MobiDB and checks whether
there's available data for each accession provided.

uniprot_acc_input: It can either be a list of valid uniprot
accessions or a single uniprot accession

return: A dictionary with the accession data retrieved from MobiDB
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acc_data = {}
uniprot_accs = []

if os.path.isfile(uniprot_acc_input):
fp = open(uniprot_acc_input, 'r')
uniprot_accs = [x.strip() for x in fp]
fp.close()

else:
uniprot_accs.append(uniprot_acc_input)

disorder_url
acceptHeader

"http://mobidb.bio.unipd.it/ws/%s/consensus"
'application/json' # text/csv and text/plain supported

for accession in uniprot_accs:
request = urllib2.Request(disorder_url % accession, headers={"Accept" : acceptHeader})

# Send request
response = urllib2.urlopen(request)

# Parse JSON response di Python dict
data = json.load(response)

predicted_data = {}

if accession not in acc_data:
acc_datalaccession] = {}

if "derived" in data["mobidb_consensus"]["disorder"]:

acc_datalaccession] ["indirect"] = "Yes"
else:
acc_datalaccession] ["indirect"] = "No"
if "predictors" in datal["mobidb_consensus"]["disorder"]:
acc_datalaccession] ["predicted"] = "Yes"
else:
acc_datalaccession] ["predicted”] = "No"

if "db" in data["mobidb_consensus"]["disorder"]:
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acc_datalaccession] ["curated"] "Yes"
else:

acc_datalaccession] ["curated"] "No"

return acc_data

def disorder_to_iLIR3Ddb(protein_file, type = "all"):
Based on the uniprot accessions listed in the protein_file input and according to the specified type,
it fetches all relevant data from MobiDB and searches for disorder overlaps. The overlaps are computed
for all the LIR regions supplied in the input file. The output is in tabular format arranged specifically
to be loaded into iLIR3D database using mysqlimport.

protein_file: A file in tabular format which contains the uniprot id and accession, the start and end
coordinates of the LIR, the LIR sequence and LIR acc and if the LIR is experimentally verified or not.
type: The type of disorder data to fetch from MobiDB. One of ('all', 'predicted', 'curated', 'indirect')

return: void

str_with_ver_string = "%s\t%s\t%s\t%s\t%s\t%s\t%s\ t%s\t%s\t%s"
str_no_ver = "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s"

# Move code from main here

fp = open(protein_file, 'r')

verified = "'

for line in fp:
line = line.strip().split('\t")
lir_acc = line[0].strip()
uniprot_id = line[1]l.strip()
uniprot_acc = line[2].strip()
start = int(line[3].strip())
end = int(line[4].strip())
lir = line[5].strip()
verified = line[6].strip()
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if len(line) > 6:

if line[6] == '0':
verified = "unverified"
else:
verified = "verified"
if == "indirect":

disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, type="indirect")

if (disorder_strings) is not :
for method in disorder_strings.keys():
if (line) ==
print str_no_ver % (lir_acc, uniprot_id, str(start), (end), 1lir,
disorder_strings[method],
str(calculate_disorder_percentage(disorder_strings[method])),
method, "indirect")
else:
print str_with_ver_string % (lir_acc, uniprot_id, (start), (end), lir,

disorder_strings[method],
(calculate_disorder_percentage(disorder_strings[method])),
verified, method, "indirect™)

elif == "curated":
disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, = "curated")
if (disorder_strings) is not
for method in disorder_strings.keys():
if (line) ==
print str_no_ver % (lir_acc, uniprot_id, (start), (end), 1lir,
disorder_strings[method],
(calculate_disorder_percentage(disorder_strings[method])),
method, "curated")
else:
print str_with_ver_string % (lir_acc, uniprot_id, (start), (end), lir,

disorder_strings[method],
(calculate_disorder_percentage(disorder_strings[method])),
verified, method, "curated")
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elif == "predicted":
disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, type = "predicted")
if (disorder_strings) is not :
for method in disorder_strings.keys():
if (line) ==
print str_no_ver % (lir_acc, uniprot_id, (start), str(end), 1lir,
disorder_strings[method],
(calculate_disorder_percentage(disorder_strings[method])),
method, "predicted")
else:
print str_with_ver_string % (lir_acc, uniprot_id, (start), (end), lir,
disorder_strings[method],
(calculate_disorder_percentage(disorder_strings[method]l)),
verified, method, "predicted")
else:
disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, = "curated")
if (disorder_strings) is not False:
for method in disorder_strings.keys():
if (line) ==
print str_no_ver % (lir_acc, uniprot_id, (start), (end), lir,
disorder_strings[method],
(calculate_disorder_percentage(disorder_strings[method])),
method, "curated")
else:
print str_with_ver_string % (lir_acc, uniprot_id, (start), (end), 1lir,

disorder_strings[method],
(calculate_disorder_percentage(disorder_strings[method])),
verified, method, "curated")

disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, ="indirect")
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if bool(disorder_strings) is not False:
for method in disorder_strings.keys():
if len(line) ==
print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir,
disorder_strings[method],
str(calculate_disorder_percentage(disorder_strings[method])),
method, "indirect')
else:
print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir,
disorder_strings[method],
str(calculate_disorder_percentage(disorder_strings[method])),
verified, method, "indirect")

disorder_strings = scan_peptide_for_consensus_disorder_regions(uniprot_acc, start, end,
lir, type = "predicted")

if bool(disorder_strings) is not False:
for method in disorder_strings.keys():
if len(line) ==
print str_no_ver % (lir_acc, uniprot_id, str(start), str(end), lir,
disorder_strings[method],
str(calculate_disorder_percentage(disorder_strings[method])),
method, "predicted")
else:
print str_with_ver_string % (lir_acc, uniprot_id, str(start), str(end), lir,
disorder_strings[method],
str(calculate_disorder_percentage(disorder_strings[method])),
verified, method, "predicted")

fp.close()

def complex_distring_to_simple(complex_str):

Convert from complex disorder string to a simpler form only containing
D,S and ? characters
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complex_str: The complex disorder string to modify

return: A

simpler form of the complex query

# D_PPE, D_NPE, D_PA, D_WC D_WCD_WCD_WCD_WCD_WCD_WC

# replace
dtypes =

predicted D types with Ds
[IID_PPEII, ”D_NPE”, "D_PA“, “D_WC”]

for case in dtypes:
simple_disorder_str = complex_str.replace(case,

return simple_disorder_str

#

IDI)

if _ name__ ==

__main__":

# input here is:

# lir_acc\tuniprot_id\tuniprot_acc\tlir_start\tlir_end\tlir_sequence\tverified

protein_file = sys.argv[1]
# predicted, indirect, curated, all

data_type

= sys.argv[2]

# This function prints out iLIR3D ready disorder data
disorder_to_iLIR3Ddb(protein_file, type = data_type)
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7.2 consensus_disorder_calculator.py code

VB WINRISIVIONODO IR IWINIRISIOIODNBDIUTERIWIN RSO0 IN DU IWIN -

import os
import sys
import dizscan as dislib

from ilir3d.lib import lir3d_db_connector as db

MySQL query to generate inputs used by this query
select lir_acc, disorder_string from sars_lir_disorder

#

def calculate_per_residue_consensus_disorder_score(disorder_string_list, dis_percentage = 50, todb=False):

Computes the consensus disorder string and loads the data into the database

disorder_string_list: A file containing all disorder strings per LIRCP protein
percentage_per_position: disorder percentage of each LIR-motif residue position

return: void

disorder_dict = {}
fp_in = open(disorder_string_list, 'r')

consensus_disorder = {}
db_data = []

for line in fp_in:
line = line.strip().split('\t")
lir_acc = line[0]
dis_lir = linel[1]

151



skl el alelsialamlaizie 2l als alalel a g sl Hakalsasheldled s
VI IWINIFRISIWIDINODO IVTIARIWINIRISIOIONDIUTIBRIWIN IR ISIOI00ND U IWIN RIS O I00 IN O

if lir_acc not in disorder_dict:
disorder_dict[lir_acc]l = [dis_1lir]

else:
disorder_dict([lir_acc].append(dis_lir)

fp_in.close()

dis_string_list = []
diz_string_score_dict = {}
db_disorder_data = []
for lir in disorder_dict.keys():
no_dis_strings = len(disorder_dict[lir])
# convert complex chars to Ds&Ss
dis_string_list = [dislib.complex_distring_to_simple(x) for x in disorder_dict[lir]]

# FIX LIR LENGTH HERE ...

# calculate the length of the lir simply by using the first element in the list
lir_len = len(dis_string_list[0])

# initialize diz string score dictionary

temp_diz_string = {}

index = 0

while index < lir_len:
diz_string_score_dict[index] = 0
index+=1

index = 0
# loop over residues
while index < lir_len:
# loop over strings
for diz_str in dis_string_list:
# need to revise this and see how to handle these cases
if len(diz_str)==1lir_len:
if diz_str[index] == 'D':
diz_string_score_dict[index]+=1
index+=1

# now generate consensus
consensus_dis_str = generate_percentage_consensus_per_residue_dizstring(diz_string_score_dict,
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no_dis_strings,

dis_percentage = dis_percentage)
# calculate consensus disorder percentage
calc_dis_percentage = dislib.calculate_disorder_percentage(consensus_dis_str)

if todb is True:

db_disorder_data.append((consensus_dis_str, calc_dis_percentage, lir))
else:

print "S%s\t%s\t%s" % (lir, consensus_dis_str, calc_dis_percentage)

if todb is True:
load_consensus_disorder_todb(db_disorder_data)

def generate_percentage_consensus_per_residue_dizstring(diz_string_score_dict, no_samples, dis_percentage = 50):

Computes the percentage per residue position of the disorder string dSTR

diz_string_score_dict: A dictionary with all disorder scores
percentage: The percentage per residue position of the LIR-motif

return:

lir_len = len(diz_string_score_dict.keys())

index = 0
consensus_diz_string = ""
while index < lir_len:
# calculated disorder percentage
calc_dis_percentage = (diz_string_score_dict[index]/no_samples)*100
if calc_dis_percentage >= int(dis_percentage):
consensus_diz_string = consensus_diz_string + 'D'
# 1if percentage does not meet requirement we consider the residue as structured
else:
consensus_diz_string = consensus_diz_string + 'S'
index+=1
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return consensus_diz_string

def

load_consensus_disorder_todb(disorder_data):
A list of tuples with the new disorder data to load to db
disorder_data: Disorder data

return: void

cnx = db.connect()
cursor = cnx.cursor(buffered=True)

query = "update sars_lir set cdSTR=%s,disorder_percentage=%s where lir_acc=%s"

cursor.executemany(query, disorder_data)
cnx.commit()

cursor.close()
cnx.close()

print "Done loading disorder data in the database"

def

calculate_per_residue_consensus_disorder_score_advanced(disorder_string_list, dis_percentage = 50, todb=False):

disorder_dict = {}
fp_in = open(disorder_string_list, 'r')

consensus_disorder = {}
db_data = []

for line in fp_in:
line = line.strip().split('\t")
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lir_acc = line[0]
dis_lir = linel[1]
source = line[2] # predicted, indirect, curated

if lir_acc not in disorder_dict:
disorder_dict[lir_acc] = {source: [dis_lir]}
else:
if source in disorder_dict[lir_acc]:
disorder_dict[lir_acc] [source].append(dis_1lir)
else:
disorder_dict[lir_acc] [source] = [dis_lir]

fp_in.close()
dis_string_list = []
diz_string_score_dict = {}
db_disorder_data = []

for lir in disorder_dict.keys():

# assuming there's only one curated dSTR, but might need to work with a list
if "curated" in disorder_dict[lir]:
consensus_dis_str = disorder_dict[lir] ["curated"][0]
# calculate consensus disorder percentage
calc_dis_percentage = dislib.calculate_disorder_percentage(consensus_dis_str)

if todb is True:

db_disorder_data.append((consensus_dis_str, calc_dis_percentage, lir))
else:

print "S%s\t%s\t%s" % (lir, consensus_dis_str, calc_dis_percentage)

continue

else:
# construct a unified dSTR list
unified_dSTR_list = []
for source in disorder_dict[lir]:
unified_dSTR_list.extend(disorder_dict[lir] [source])

no_dis_strings = len(unified_dSTR_list)
# convert complex chars to Ds&Ss
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dis_string_list = [dislib.complex_distring_to_simple(x) for x in unified_dSTR_list]

# calculate the length of the lir simply by using the first element in the list
lir_len = len(dis_string_list[0])

# initialize diz string score dictionary
temp_diz_string = {}

index = 0

while index < lir_len:
diz_string_score_dict[index] = {'D': 0, 'S': 0}
index+=1

index = 0
# loop over residues
while index < lir_len:
# loop over strings
for diz_str in dis_string_list:

# see how to handle the cases where len(diz_str) != 1lir_len
if len(diz_str) == lir_len:
if diz_strlindex] == 'D':
diz_string_score_dict[index] ['D']+=1
elif diz_strlindex] == 'S':

diz_string_score_dict[index] ['S']+=1
index+=1

# now generate consensus

consensus_dis_str = generate_consensus_dSTR(diz_string_score_dict)
# calculate consensus disorder percentage
calc_dis_percentage = dislib.calculate_disorder_percentage(consensus_dis_str)

if todb is True:

db_disorder_data.append((consensus_dis_str, calc_dis_percentage, 1lir))
else:

print "Ss\t%s\t%s'" % (lir, consensus_dis_str, calc_dis_percentage)

if todb is True:
load_consensus_disorder_todb(db_disorder_data)
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#

def generate_consensus_dSTR(diz_string_score_dict):

dSTR = "
for position in sorted(diz_string_score_dict.keys()):
if diz_string_score_dict[position] ['D'] > diz_string_score_dict[position]['S']:
dSTR+='D"
else:
dSTR+='S"

return dSTR

#
if _ _name_ ==

__main__"':

Query to generate input list

select lir_acc, disorder_string, mobidb_data from sars_lir_disorder
where lir_acc > 96

order by lir_acc

disorder_string_list = sys.argv[1]
disorder_percentage = int(sys.argv([2])

if "—-1oadDB" in sys.argv:
calculate_per_residue_consensus_disorder_score_advanced(disorder_string_list,
dis_percentage = 50, todb=True)
else:
calculate_per_residue_consensus_disorder_score_advanced(disorder_string_list,
dis_percentage = disorder_percentage)
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7.3 anchor2_scanner.py code

sahelzl
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import os
import sys

from ilir3d.lib import lir3d_db_connector as db

#

def iupred2_results_to_dict(anchor2_result_file):

Parses iupred2 result output and loads iupred2 and anchor2
(if available) scores into a dictionary where keys are the
position of each residue

anchor2_result_file: The output of iupred2A script running with
—-d option for ANCHOR2

return: a dictionary with all data in the iupred2A results file

fp = open(anchor2_result_file, 'r')
iupred2_dict = {}

for iupred2_line in fp:
if iupred2_line[0] != '#':
iupred2_scores = iupred2_line.strip().split('\t")

if len(iupred2_scores) == 3: # only iupred? prediction
iupred2_dict[int(iupred2_scores[0])] = {"IUPred2": float(iupred2_scores[2])}
else:
iupred2_dict[int(iupred2_scores[0])] = {"IUPred2": float(iupred2_scores[2]),
"ANCHOR2": float(iupred2_scores[3])}

fp.close()

return iupred2_dict
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def

pull_lir_information_from_db(uniprot_id):

Pulls all the necessary LIR information based on uniprot id.
This is the LIR accession and start-end positions

uniprot_id: A valid uniprot id

return: Data retrieved from the database

cnx = db.connect()
cursor = cnx.cursor(buffered=True)

query = "select lir_acc, lir_start, lir_end from sars_lir where uniprot_id=\"'%s\""

cursor.execute(query % uniprot_id)

data = cursor.fetchall()

cursor.close()
cnx.close()

return data

def

calculate_iupred2_prediction_percentage(iupred2_dict, lir_start, lir_end, type = "IUPred2", threshold = 0.5):

Predicts iupred percentage based on the iupred type and the lir overlap

iupred2_dict: A dictionary with the relevant protein iupred2 scores
lir_start: The lir start coordinate

lir_end: The lir end coordinate

threshold: A threshold according to which the prediction is considered true
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return: The percentage of the overlap

num_involved_residues = 0
index = int(lir_start)

while index <= int(lir_end):
if iupred2_dict[index][type] >= threshold:
num_involved_residues+=1
index+=1
lir_len = int(lir_end)=-int(lir_start)+1
prediction_percentage = (num_involved_residuesx100)/1ir_1len

return prediction_percentage

def get_iupred2_lir_disorder_string(iupred2_dict, lir_start, lir_end, threshold = 0.5):
Generates a disorder string based on the iupred2 disorder presictions in iupred2_dict
and the corresponding lir coordinates

iupred2_dict: A dictionary with the relevant protein iupred2 scores
lir_start: The lir start coordinate

lir_end: The lir end coordinate

threshold: A threshold according to which the prediction is considered true

return: A disorder string

disorder_string = ""
index = int(lir_start)

while index <= int(lir_end):

if iupred2_dict[index] ["IUPred2"] >= threshold:
disorder_string = disorder_string +'D’
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else:
disorder_string = disorder_string +'S’'
index+=1

return disorder_string

def load_anchor2_results_to_db(data):

This function updates anchor2 field in sars_lir table in iLIR3D database

data: A list of tuples in the format (X,Y) where X: anchor2 prediction and
Y: the accession of the corresponding lir (lir_acc)

cnx = db.connect()
cursor = cnx.cursor(buffered=True)

query = "update sars_lir set anchor3=%s where lir_acc=%s"

cursor.executemany(query, data)
cnx.commit()

cursor.close()
cnx.close()

print "Archor2 results loaded to DB!"

def load_iupred2_results_to_db(data):
Creates a new iupred2 entry in the database, disorder table in particular
data: sars_lir_disorder attributes to load into the database

return: void
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cnx = db.connect()
cursor = cnx.cursor(buffered=True)

query = "insert into sars_lir_disorder(lir_acc2,uniprot_id, lir_start,lir_end, lir,disorder_string,percentage,verified,mobidb_method, mok
values(%s,%s,%S,%S,%S,%S,%S,%S,%S,%S,%S )"

cursor.executemany(query, data)
cnx.commit()

cursor.close()
cnx.close()

print "Iupred2 results loaded to DB!"

def pull_input_for_iupred2_predictions(uniprot_id=None):

Pulls necessary information from the DB for
uniprot_id: If uniprot_id is None, it will pull information of all lirs

return a dictionary of values to be used to produce iupred2 entries for
sars_lir_disorder

cnx = db.connect()
cursor = cnx.cursor(buffered=True)

query =
data = {}
if uniprot_id is None:

query = "select lir_acc, uniprot_id, lir_start, lir_end, 1lir, verified from sars_lir order by uniprot_id"

cursor.execute(query)
else:

query = "select lir_acc, uniprot_id, lir_start, lir_end, lir, verified from sars_lir where uniprot_id=%s"
cursor.execute(query % uniprot_id)
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for row in cursor:
if row[1] not in data:
datalrowl[1]l] = {rowl0l: {"start": rowl[2], "end": rowl[31, "1lir": rowl[4], "verified": row[51}}
else:
datalrowl[1]][rowl[0]1] = {"start": rowl[2], "end": rowl[3], "lir": rowl[4], "verified": rowl[51}

cursor.close()
cnx.close()

return data

def produce_anchor2_data_binary(iupred_results, threshold = 0.5, cutoff = 50):
Produces new data based on the iupred2 preditions provided and a threshold for the
anchor2 overlap

iupred_results: An iupred2 result file or
threshold = 50

anchor2_data = []
if os.path.isdir(iupred_results):

iupred2_result_files = os.listdir(iupred2_result_directory)

for iupred2_result_file in iupred2_result_files:
# parse iupred?
iupred2_result_file_path = os.path.join(iupred2_result_directory, iupred2_result_file)
iupred2_dict = iupred2_results_to_dict(iupred2_result_file_path)

uniprot_id = iupred2_result_file.partition('."')[0]
protein_lirs = pull_lir_information_from_db(uniprot_id)

for lir in protein_lirs:

lir_start = lir[1]
lir_end = lir[2]
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anchor2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
lir_start, lir_end,
type = "ANCHOR2",threshold = threshold)
# convert anchor2 prediction to binary based on
if anchor2_score >= cutoff:
anchor2_data.append((1, 1ir[0]))
else:
anchor2_data.append((0, 1ir[0]))

elif os.path.isfile(iupred_results):
iupred2_dict = iupred2_results_to_dict(iupred_results)

uniprot_id = iupred_results.partition('.")[0]
protein_lirs = pull_lir_information_from_db(uniprot_id)

for lir in protein_lirs:
lir_start = lir[1]
lir_end = lir[2]
anchor2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
lir_start, lir_end,
type = "ANCHOR2",threshold = threshold)
# convert anchor2 prediction to binary based on
if anchor2_score >= threshold:
anchor2_data.append((1, lir[0e]l))
else:
anchor2_data.append((0, 1ir[0]))

load_anchor2_results_to_db(anchor2_data)

def produce_iupred2_data(iupred_results, threshold = 0.5, uniprot_id = None):

iupred_results: A dictionary with multiple iupred results or a single file
threshold: Threshold defines accepted values for disorder prediction
return:

db_iupred2_data = pull_input_for_iupred2_predictions(uniprot_id=uniprot_id)
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iupred2_data = []

method = '

if "——anchor2" in sys.argv:
method = "anchor2"

elif "——iupred2" in sys.argv:
method = "iupred2"

if os.path.isdir(iupred_results):
iupred2_result_files = os.listdir(iupred2_result_directory)
for iupred2_result_file in iupred2_result_files:

iupred2_result_file_path = os.path.join(iupred2_result_directory, iupred2_result_file)
iupred2_dict = iupred2_results_to_dict(iupred2_result_file_path)

uniprot_id = iupred2_result_file.partition('.")[0]
protein_lirs = pull_lir_information_from_db(uniprot_id)

for lir in protein_lirs:
lir_start = lir[1]
lir_end = lir[2]

lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
lir_start, lir_end,
= "IUPred2",threshold = threshold)

lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict,
lir_start,
lir_end, threshold = threshold)

lir_acc = lir[0]

lir_string = db_iupred2_datal[uniprot_id] [lir_acc]["Tlir"]

verified = db_iupred2_dataluniprot_id] [lir_acc] ["verified"]
d =

data_type = "predicted"
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iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end, lir_string,
lir_iupred2_disrting, lir_iupred2_score,
verified, method, data_type, threshold))

elif os.path.isfile(iupred_results):

iupred2_dict = iupred2_results_to_dict(iupred_results)
uniprot_id = iupred_results.partition('.")[0]
protein_lirs = pull_lir_information_from_db(uniprot_id)

for lir in protein_lirs:
lir_start = lir[1]
lir_end = lir[2]

lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
lir_start, lir_end,
= "IUPred2",threshold = threshold)

lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict,
lir_start,
lir_end, threshold = threshold)
lir_acc = lir[0]
lir_string = db_iupred2_dataluniprot_id] [lir_acc]l["lir"]
verified = db_iupred2_dataluniprot_id] [lir_acc]["verified"]

data_type = "predicted"

iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end,
lir_string, lir_iupred2_disrting, lir_iupred2_score,
verified, method, data_type, threshold))

e the datab
load_iupred2_results_to_db(iupred2_data)

def produce_anchor2_data_disorder(iupred_results, threshold = 0.5, uniprot_id = ):
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:param iupred_results:
:param threshold:
rreturn:

db_iupred2_data = pull_input_for_iupred2_predictions(uniprot_id=uniprot_id)

iupred2_data = []

method = 'anchor2'

if "——anchor2" in sys.argv:
method = "anchor2"

elif "——iupred2" in sys.argv:
method = "iupred2"

if os.path.isdir(iupred_results):
iupred2_result_files = os.listdir(iupred2_result_directory)

for iupred2_result_file in iupred2_result_files:
# parse iupred?
iupred2_result_file_path = os.path.join(iupred2_result_directory, iupred2_result_file)
iupred2_dict = iupred2_results_to_dict(iupred2_result_file_path)

uniprot_id = iupred2_result_file.partition('."')[0]
protein_lirs = pull_lir_information_from_db(uniprot_id)

for lir in protein_lirs:
lir_start = lir[1]
lir_end = lir[2]
lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
lir_start, lir_end,
type = "ANCHOR2",threshold = threshold)

lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict,
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lir_start,
lir_end, threshold = threshold)

lir_acc = lir[o]
lir_string = db_iupred2_dataluniprot_id] [lir_acc]["1lir"]
verified = db_iupred2_dataluniprot_id][lir_acc] ["verified"]

data_type = "predicted"

iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end, lir_string,
lir_iupred2_disrting, lir_iupred2_score,
verified, method, data_type, threshold))

elif os.path.isfile(iupred_results):

iupred2_dict = iupred2_results_to_dict(iupred_results)
uniprot_id = iupred_results.partition('.")[0]
protein_lirs = pull_lir_information_from_db(uniprot_id)

for lir in protein_lirs:
lir_start = lir[1]
lir_end = lir[2]

lir_iupred2_score = calculate_iupred2_prediction_percentage(iupred2_dict,
lir_start, lir_end,
= "ANCHOR2",threshold = threshold)

lir_iupred2_disrting = get_iupred2_lir_disorder_string(iupred2_dict,
lir_start,
lir_end, threshold = threshold)
lir_acc = lir[0]
lir_string = db_iupred2_dataluniprot_id] [lir_acc]l["lir"]
verified = db_iupred2_dataluniprot_id][lir_acc]["verified"]

data_type = "predicted”
iupred2_data.append((lir_acc, uniprot_id, lir_start, lir_end,

lir_string, lir_iupred2_disrting, lir_iupred2_score,
verified, method, data_type, threshold))
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# function to update the database
load_iupred2_results_to_db(iupred2_data)

#

if _ name__=='__main_ ':

iupred2_result_directory = sys.argv[1]
threshold = float(sys.argv[2])
cutoff = int(sys.argv[3])

if "——anchor2" in sys.argv:
produce_anchor2_data_binary(iupred2_result_directory, threshold = threshold, cutoff=cutoff)
#produce_anchor2_data_disorder(iupred2_result_directory, threshold = threshold, uniprot_id = None)
elif "——iupred2" in sys.argv:
produce_iupred2_data(iupred2_result_directory, threshold = threshold, uniprot_id = None)
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7.4 spot_scanner.py code
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import os
import sys

import ilir3d.lib.lir3d_db_connector as db

#

def parse_spot_list_desc(spot_desc):

Parses the SPOT-disorder description file

spot_desc: The output SPOT-disorder description file
return: A disctionary with uniprot_ids and filename mappings

id_mapings = {}
fp = open(spot_desc, 'r')

for line in fp:

line = line.strip().split(' ")

filename = line[0]

if filename not in id_mapings:
id_mapings[filenamel = {}

uniprot = line[1].split('|")

uniprot_id = uniprot[2]

uniprot_acc = uniprot[1]

desc = (' '").join(line[3:])

id_mapings[filename] ["id"] = uniprot_id

id_mapings[filename] ["acc"] = uniprot_acc

id_mapings[filenamel ["desc"] = desc
fp.close()

return id_mapings
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#

def

parse_spot_file(spot_file):

Parses the SPOT-disorder output file and loads all data
in a dictionary

spot_file: The output file of SPOT-disorder

return: A dictionary wit SPOT disorder data

spot_dict = {}
fp = open(spot_file, 'r'")

# drop header
header = fp.readline()

for line in fp:
line = line.strip().split('\t")
spot_dict[int(line[0])] = linel3]
fp.close()

return spot_dict

def

load_regions_from_db(uniprot_id):
Loads all necessary regions from iLIR3D database in order
to identify disorder overlaps

return: Query data in a list

cnx = db.connect()
cursor = cnx.cursor(buffered=True)
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# this will limit results to only the old ones
query = "select lir_acc, lir_start, lir_end from sars_lir where uniprot_id=\"'%s\""

cursor.execute(query % uniprot_id)
data = cursor.fetchall()

cursor.close()
cnx.close()

return data

def dstr_constructor(lir_dstr_dict):

Constructs the disorder string (dstr) based on the given dictionary

lir_dstr_dict: A dictionary with disordered residues for each position
of a LIR-motif

return: The disorder string dSTR

dstr = "

for lir_index in sorted(lir_dstr_dict.keys()):
dstr+=lir_dstr_dict[lir_index]

return dstr

def spot_disorder_overlap_scanner(spot_results, lir_regions):

Scans a LIR-motif for disordered residues based on the LIR-motif
start and end positions.

uniprot_id: A valid UniProt id
spot_file: The output file of SPOT-disorder with all calculated
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disordered regions of a sequence file defined by uniprot_id
lir_regions: A list with all lir regions strored in tuples as (lir_acc, start, end)

return: A dictionary with lir all disorder strings

prot_dstrs = {}
lir_dstr_dict = {}

spot_annotations = parse_spot_file(spot_results)
for region in lir_regions:

# initialize dictionary
start = int(region[1])
end = int(region[2]1)
index = start

while index <= end:
lir_dstr_dict[index] = '7'
index += 1

# now look for disorder annotations
index = start
while index <= end:
if index in spot_annotations:
lir_dstr_dict[index] = spot_annotations[index]
index += 1

# assign the dstr to its corresponsing LIR
dstr "' # sanity initialization
dstr = dstr_constructor(lir_dstr_dict)

prot_dstrs[region[0]] = dstr
lir_dstr_dict = {}

return prot_dstrs
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def calculate_disorder_percentage(dstr):

Calculates percentage of D characters found in dstr
dstr: Disorder string dSTR (e.g. DDDSSD)

return: Disorder percentage

lir_length = len(dstr)
number_of_Ds = dstr.count('D")

disorder_percentage = (number_of_Ds % 100) / lir_length

return disorder_percentage

def fetch_disorder_fields_from_db(lir_acc):

uniprot_id:
return:

cnx = db.connect()
cursor = cnx.cursor(buffered=True)

# this will limit results to only the old ones
query = "select lir, verified from sars_lir where lir_acc=%s"

cursor.execute(query % lir_acc)
data = cursor.fetchall()[0]

cursor.close()
cnx.close()

return data
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#

if _ name__=='__main__ ':
# main produces iLIR3D ready data for import in tabular format

spot_desc = sys.argvI[l] # /path/to/spotd/list.desc
spot_output_dir = sys.argvI[2] # /path/to/spotd

metadata = parse_spot_list_desc(spot_desc)
for case in metadata:

uniprot_id = metadatalcasel ["id"]
uniprot_acc = metadatal[case] ["acc"]

[]

load_regions_from_db(uniprot_id)

lir_regions
lir_regions

lir_region_dict = {}

for region in lir_regions:
lir_region_dict[region[0]] = {"start": region[1], "end": region[2]}

spot_file = os.path.join(spot_output_dir, case + ".spotd")
spot_dstrs = spot_disorder_overlap_scanner(spot_file, lir_regions)

for lir_acc in sorted(spot_dstrs.keys()):
dstr = spot_dstrs[lir_acc]
lir_start = lir_region_dict[lir_acc]["start"]
lir_end = lir_region_dict[lir_acc]["end"]

(lir_seq, verified) = fetch_disorder_fields_from_db(int(lir_acc))

print "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % (lir_acc, uniprot_id,
lir_start, lir_end,
lir_seq,dstr,
str(calculate_disorder_percentage(dstr)),
verified, "spot","predicted", "")
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