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ABSTRACT

Route Reservation Architecture seems to be a reliable and durable traffic congestion mitigation

mechanism that can significantly reduce drivers’ travel-times. In this framework, a Route Reser-

vation controller is responsible for coordinating drivers’ departure times and routes to follow so

as to arrive at their destination at the earliest time. Despite its great efficiency, its real-life imple-

mentation is a significant challenge considering the size and the complexity of urban networks.

This work investigates and develops all the modules required to realize the Route Reservation

Architecture as a real-life traffic and demand management mechanism. In doing so, this work

proposes all the needed communication protocols and algorithmic methods that ensure its fast and

reliable application and addresses any architecture’s scalability issues. The developed modules

are evaluated over a large-scale urban area where a microscopic simulation serves as a realistic

transportation network.
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Chapter 1

Introduction

Traffic congestion is a significant problem for modern societies, with transport operators and

city dwellers thoroughly looking for solutions. The impact of congestion is noticeably large in

economic, psychological and environmental terms. In more detail, idling with the engine running

wastes fuel, resulting in not only burdening the drivers’ pockets but also increasing the amount of

harmful emissions in the environment. What is more, engaging in congestion wastes some serious

amount of time that could have been used more productively, hence making drivers anxious.

The main cause for congestion to occur in a road network is to have multiple vehicles de-

manding simultaneously the same road segment. At the same time, some other road segments

of the road network might remain unutilized, although they could have been accommodating part

of the traffic and thus disentangling congestion [4]. In this direction, a better distribution of the

demand on both the space and time domains could ease the situation, without altering the existing

infrastructure of the road network.

This principle is followed by the Route Reservation Architecture (RRA), as described in [22],

which is an alternative routing method that can avoid congestion in the first place. In this frame-

work, when drivers want to utilize road infrastructure, they send a reservation request to the Route

Reservation Controller (RRC), including their origin-destination pair and their desired departure

time. In turn, the RRC is responsible for identifying each driver’s appropriate route and depar-

ture time in such a way as to ensure that none of the road segments will be utilized at times that

their critical capacities are expected to be reached. Afterwards, the RRC responds to the driver

with a route to follow and a departure time, while making the appropriate reservations at the time

frame that the driver is expected to traverse each road segment. This ensures that none of the next

requests will utilize the same part of the infrastructure at the same time.

1
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2

Among other mechanisms, the RRA seems to be a promising solution to the traffic conges-

tion problem. It guides vehicles through uncongested road segments hence benefiting individual

drivers, as well as it denies traversal in road segments that are nearly at capacity, hence ensuring

that no congestion occurs and thus benefiting all other drivers in the road network. Neverthe-

less, the RRA requires a reliable implementation that can serve real-time route requests, as well

as a complete driver compliance. The former will be investigated in this thesis, describing the

implementation, while the second regards future work.

1.1 Objective

Despite the great efficiency of the RRA, its real-life implementation has not been investi-

gated yet. Therefore, this work aims to examine all the implementation aspects of the RRA and

overcome performance buries that may arise. It also aims to ensure a safe, reliable and scalable

operation as well as to investigate and develop the necessary communication protocol between the

drivers and the RRC. Finally, it aims for an evaluation of the RRA, using a microscopic simulation

to represent reality.

1.2 Contribution

The contribution of this thesis is to investigate and develop all the required modules to realize

the RRA as a real-life traffic and demand management mechanism. Therefore, we explicitly de-

signed and implemented all the required modules (e.g., data structures, optimization algorithms,

and database designs) to transform the RRA into a real-life traffic monitoring and control tool.

In more detail, a user-friendly User Interface was implemented as an Android application that

is capable of sending route reservation requests to the RRC and visualizing the results. Moreover,

the RRC was implemented in JAVA, being able to serve real-time requests by conducting the

Reservation Database, following the RRA principle of calculating a path and a departure time as

to avoid congestion.

Nevertheless, the interaction with the Database as well as the algorithm for finding the solution

can escalate to high computation times for large urban areas and hence should be optimized in

order to be applicable for a real-time implementation. One of the optimizations made for the

RRC regarded the technology used for the Database, which was chosen to be appropriate for

time-series data, as well as allowing batch storing and retrieving of data, thus resulting in fast

interactions between the RRC and the Database. Another optimization regarded the algorithm

responsible for calculating the route path and departure time as to avoid congestion. Specifically,
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3

by using different than the ordinary data structures, the computational complexity of the algorithm

was reduced.

Finally, a simulator was used in order to represent reality and hence allow the conduction of

experiments. This allowed the comparison between the RRA and a no control approach, as to get

information about the effect of the RRA in the road network’s utilization.

1.3 Outline

The rest of this thesis is organized as follows. In Chapter 2 some related work is presented.

In Chapter 3 a detail description of the RRA is given while Chapter 4 describes this work’s im-

plementation. Chapter 5 provides a performance evaluation considering a realistic as possible

environment, where Chapter 6 concludes this work and elaborates future research avenues.
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Chapter 2

Related Work

2.1 Traffic mitigation mechanisms

Recent technological developments enable a plethora of traffic mitigation mechanisms such

as route guidance schemes and navigation services (e.g., WAZE and HERE WeGo) [29]. The

majority of navigation services aim to minimize the travel time of individual drivers by providing

them with accurate real-time network-level state information. However, despite their significant

advances, routing methods that benefit the travel time of individuals seem to negatively affect the

overall network operation, as they worsen the traffic congestion problem [7].

A recent work in route guidance schemes is included in [2] where even though it can offer

drivers with their shortest travel time path and network’s state information, it can also predict

future states of the network (e.g., average travel time and speed) by utilizing either static [17]

or stochastic models [30]. Nevertheless, according to [11], such predictive mechanisms might

oversight the negative effects of congested road segments and hence have inaccurate predictions

of the future states of the network. Moreover, despite the exceptional technological innovation

of the current available routing services (e.g., WAZE), they might significantly advert effects to

the network [7]. The reason is that by providing real-time traffic state information to users, all

rational drivers will prefer to follow the least congested paths. Thus, the non-congested parts of

the network will become overloaded and vice-versa. This behavior aggravates congestion and

disregards the utilization of the road infrastructure, even with not so high demand.

Another approach is the dynamic system-optimal traffic assignment method [5]. It formu-

lates a control problem using states, aiming to minimize the total travel time, constraining a rigid

amount of traffic for a specific pre-defined period of time. A promising extension of this approach

4
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5

is described in [32], settled for regional routing. It uses aggregation and approximation tech-

niques, by taking into consideration each region’s macroscopic dynamics. Similarly, the work in

[33] reduces congestion in urban areas, by using a route choice strategy, with limited traffic state

measurements.

Other efforts aiming to address the traffic congestion problem include the gating and perimeter

control methods [1]. These methods assume that an urban area is partitioned into a set of homoge-

neous regions[21], within which a boundary flow control mechanism is responsible to restrict the

input flows within each region in case that the density of the region is going to exceed its critical

density [15] [16]. Nevertheless, their successful implementation requires a vast amount of data to

be acquired from the network (e.g., using loop detectors) [1].

Finally, the proposed implementation regards the RRA, which first originated from solutions

of the ground holding problem for Air Traffic Management and Control Systems (ATM/ATC),

[23]. The ATM/ATC systems utilize an airport’s runway without altering its capacity [9], by

dividing it into both the space and time domains and using a time-slot reservation mechanism to

improve its efficiency, [8], [28]. Similarly, the RRA uses a time-slot reservation model in order to

avoid congestion, by dividing the road network into segments of both the space and time domains.

In more detail, the RRA uses a controller responsible to keep track of the estimated number of

vehicles that are expected to be traversing each road segment at each time-slot. In order for the

controller to be able to estimate these values, each driver that wants to use the road network needs

to first make a reservation by informing the controller about their origin, destination and desired

departure time. The controller then responds with a route and a departure time, depending on the

current reservation state, in such a way as to ensure that the critical density of all road segments

will not be exceeded. Regarding the RRA, the work in [24] describes the Earliest-Destination

Arrival Time (EDAT) problem, as well as the Traffic Load Balancing Problem, while proposing

solutions for both of them. Although, their complexity is relatively high, [22] proposed a low-

complexity solution algorithm for the EDAT problem, which is the one implemented in this thesis.

2.2 Existing technologies

A dynamic route guidance demonstration program took place in Illinois [3], where an in-

vehicle navigation and route guidance system was implemented. It used dynamically updated

travel time information on a specific road system, monitored and assessed by loop detectors, on-

board sensors, video-based license plate recognition units and a radar system to track vehicles,

extracting average travel times over the road network.
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6

A more modern solution which also uses dynamic route guidance, is using maximum flow the-

ory to balance the traffic load of the road network and hence avoid congestion [31]. In order to be

promising for large areas, it uses a Ford-Fulkerson algorithm for finding routes that maximize the

network’s flow [12], implementing MapReduce primitives[6] through a Cloud Computing Plat-

form [19]. In more detail it partitions the road network into smaller maps, distributed in a cloud of

computers. This way each map’s flow is being maximized without exceeding any road segment’s

capacity. Nevertheless, this approach has great computational need by the cloud.

Another solution uses multi-modal routing [13], which is a combination of routing guidance

using vehicles and other means of transport. In this context, a mobile application was set up,

able to propose routes according to the preferences of commuters in terms of private and public

transport. The application has access to a real time database, which handles information about

traffic congestion, as well public transportation means’ schedules. Although such a mechanism

can reduce the demands of the road network, it does not focus on solving the general problem of

congestion, rather it aims on accommodating a user of the road network and hence the individual

benefit.

Chri
sto

s M
ak

rid
is



Chapter 3

Route Reservation Architecture

As mentioned in Chapter 1, the RRA is a routing method that can avoid congestion in the

first place, by using a reservation scheme. Drivers utilize the road network by requesting a route

for a source and destination pair at a specific departure time. The RRA, according to previous

reservations, proposes an appropriate route and departure time in order to ensure that congestion

is avoided. Fig. 1 depicts the overview of the RRA. Its main component is the RRC, which consists

of two units:

• The Road Network Information Storage unit, which is responsible for holding an overview

of a road infrastructure (e.g., geographic boundaries, connections between road segments,

speed limits), by parsing a Road Network XML File from a map service (i.e., OpenStreetMap

[27]).

• The Route Dispatcher unit, which is responsible for receiving route reservation requests

from Drivers. By consulting the Reservation Database (DB), it responds back with proposed

routes and departure times, coordinated by a communication protocol.

3.1 Communication Protocol

In the RRA, information is interchanged between the RRC, drivers and the reservation DB

through a communication protocol. Fig. 2 shows this communication protocol. First, the RRC

requests a connection with the DB that responds with the current reservation status. Once the DB

connection is established, the RRC is able to accept requests from drivers. Then, a driver can

request a connection, for which the RRC responds with the necessary road network information

that regard the driver (i.e., the network’s geographic boundaries). For the next step, the driver sends

7
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12/16/2020 diagram.drawio

1/1

Road Network File

Route Reservation Controller

Route Dispatcher

Reservation Database
Driver

Road Network 
Information Storage 

Figure 1: RRA overview

a route reservation request to the RRC, that includes the driver’s origin, destination and desired

departure time, which comply to the aforementioned network information. Based on the current

reservation status, the RRC identifies the appropriate route and departure time of the request. It

then updates the DB for the reserved road segments and response to the drivers with the route to

follow and the time to depart.

11/18/2020 sequence_diagram.drawio

1/1

Accept connection

Request connection

:Reservation
Dispatcher:Driver

Request connection

Accept connection

Send Route Request

Receive Route Response

Disconnect

Connection disconnected

:Reservation
Database

Request Data

Receive Data

Update Data

Figure 2: Communication Protocol sequential diagram

The format of the interactions between the RRC and the drivers was chosen to be in JSON, as

it is a lightweight format for transporting data between entities. Fig. 3 shows how JSON allows

a compact yet complete representation of the data. The route reservation requests are described

utilizing tags, consisted of the source, the destination and the desired departure time of the driver.

The response is also described in tags, consisting of the departure time and the route. Note that
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for each tag, JSON allows to include various further details, such as coordinates (i.e., latitude and

longitude) for the source and destination, as well as for each road segment of the resulted route.

12/14/2020 JSON.drawio

1/1

Route Reservation Request
Destination Desired

Departure Time

Route Reservation Response

Determined
Departure time

 Route
Road 1 ...

LongLat
Source

LongLat

LongLat
Road 2

LongLat
Road N

LongLat

Figure 3: JSON representations

3.2 Driver Interface

A driver can interact with the RRC and vice versa through either smart-phones or onboard

vehicle devices. In this work we developed an Android application, which encodes and decodes

JSON formatted interactions into user-friendly dialogs, map indicators and buttons. Figs. 4 illus-

trates the three screens of a route reservation user interface. More specific, Fig. 4a depicts the

screen that enables drivers to choose their origin and destination, by utilizing a black and a blue

pin-point, respectively. The requested departure time can be set b clicking the “Set Departure

time” button and then the request can be sent by clicking the “Route Request” button. While the

RRC is processing the request, a corresponding message is indicated to the driver, as viewed on

Fig. 4b. When a solution is found, a response is created, containing the departure time and a list of

longitudes and latitudes that represent the route’s roads. As seen on Fig. 4c, this information can

be interpreted as the route indicated with a blue line and a dialog box that indicates the departure

time.
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11/9/2020 map3.drawio
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Figure 4: User Interface Prototype: (a) Reservation Request, (b) Waiting response, (c) Response
illustration
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Chapter 4

Implementation

The real-life application of the RRA is a challenge due to the sufficiently low response time

required for the RRC to respond to a driver, as well as for the vast amount of data needed for

making decisions. These requirements raise the need of tolerating that amount of data, hence

investigating to utilize a reliable and responsive DB solution. Moreover, optimizing the time

complexity of the algorithm is also considered, thus investigating optimization techniques using

data structures. Among various programming options, the RRC was implemented in JAVA due to

the reliability, portability and maintainability of the language, as well as because it implements an

extensive amount of high-level data structures and tools. Such tools include libraries which allow

parsing of road network files, exactly as generated from open source maps (i.e., openStreetMap

[27]), conversions between geographical representations, the communication between the RRC

and the DB and various other necessary fundamental processes for the overall development of the

application.

4.1 Database

Databases are a great tool for storing large quantities of data. For the purposes of realizing

the RRA, due to the size of urban cities, the amount of information needed is significantly large.

Therefore, some solutions were investigated in order to be able to store such quantities of data,

while being able to retrieve them fast and reliably in real time. In more detail, for this implementa-

tion, the DB stores reservation information for all road segments (i, j), such as their accumulated

number of vehicle reservations nij(t) and their admissibility states xij(t) for all time slots t. This

information can escalate to high space requirements, especially for big cities.

11
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As the RRC requires access to all this data, a reliable storage system is needed. A candidate

open source solution was MySQL [25]. Its framework requires a pre-configuration of the schema

(i.e., formal description of relationships between data), which although it allows it to store and

retrieve great volumes of data structurally, it draws back in real time usage of these operations.

Therefore it was rejected due to the latency caused by the high amount of retrieval requests, as

relational DBs are not optimized for.

Another open source solution was investigated, called InfluxDB, a time series DB optimized

for fast, high-availability storage and retrieval of time series data, derived from various real-time

operations [26]. It works with schema-free, SQL-like queries, requested through an HTTP API,

hence allowing multiple independent data retrievals. This makes InfluxDB appropriate for real-

time storing and retrieving of information.

In order to take advantage of the capabilities of InfluxDB, relational DB approaches should

be avoided. Therefore, tables (i.e., measurements in InfluxDB terminology) should contain infor-

mation only associated with time (i.e., time series), regarding solely one entity. As a result, for

this implementation, every road segment (i, j) implements its own two measurements, one for its

accumulated number of reservations nij(t) and one for its admissibility states xij(t) over time t.

Moreover, in order to benefit from the multiple independent queries functionality of InfluxDB, a

batch technique for the communication between the RRC and the DB was used. It creates mul-

tiple independent queries for any operation that requires information for multiple road segments

from the DB, grouped together into a non sequential batch request, thus minimizing connection

overheads.

The benefit of this approach is illustrated in a toy example on Fig. 5, where three sequential re-

trieval requests are shown to take up time almost twice as that of three non sequential independent

retrieval. This is beneficial, as the connection overhead in the non sequential approach of each re-

quest mostly overlaps with other requests’ overheads, hence needing less time overall.commented

line goes before the last sentence.

4.2 Data structures for optimization

We investigated some alternative data representations to be exploited by the Route Reservation

Architecture Algorithm (RRAA), in order to reduce its space and time complexity, ending up with

solutions for improving two of its most computationally complex operations.
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Figure 5: Sequential and Non Sequential Batch for data retrieval requests

4.2.1 First solution

The first solution is the use of min-heap data structure, as it gives an excellent advantage over

retrieving the lowest value from a set. It utilizes two operations, referred to as the extract-min and

decrease-key [14]. The former is responsible for finding the minimum value in a set and removing

it. The decrease-key operation is responsible for changing the value of an element in the set to

a lower value. These operations are crucial for applications such as the Dijkstra algorithm [10],

which the RRAA is based on. Although both of them could be implemented for a simple set data

structure, they would require at least complexity of O(m), by using a search algorithm, where m

is the number of elements in the set. Nevertheless, the retrieval of the minimum value, as well as

the decreasing of a key value for a min-heap, both have complexities of O(logm). As a result,

this implementation has used the JAVA data structure of PriorityQueue, which implements the

min-heap.

4.2.2 Second solution

The second solution regards the computation of the altered cost c′ij(t) of each road segment

(i, j) traversed at time t, expressed mathematically as:

c′ij(t) =

τij , if xij(t) = 1

τij + wij(t), if xij(t) = 0 (1)

τij is the known travel time of (i, j). xij(t) is the admissibility state of (i, j) when departing

from junction i at time t and is considered admissible when xij(t) = 1, or non admissible when

xij(t) = 0. wij(t) is the respective intermediate delay and is calculated based on how long a

vehicle needs to wait for the road segment to become admissible. That is the difference between

the time t′ of the first admissible state xij(t′) = 1 and the vehicle’s departure time t from junction
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i, with t <= t′. The operation of finding t′ with a simple search algorithm would have had a

time complexity of O(N), where N is the number of time slots to check for admissibility. In

contrast, the following approach allows for a better time complexity, by exploiting the fact that

the admissibility states are represented by a binary value (i.e., 0 and 1) and thus can be grouped

together into intervals of the same values. Note that one value is the compliment of the other, hence

it is sufficient to store solely intervals of a certain admissibility (e.g., admissibility states of value

0). Therefore, we chose to only store the non-admissible time intervals into a non overlapping

sorted list for every road segment. Mathematically the non-admissibility list is expressed by:

Sij = {[tlij1, tuij1], · · · , [tlijKij
, tuijKij

]}. Variables tlijk and tuijk denote respectively the lower and

upper bounds of the closed range [tlijk, t
u
ijk] that defines a time interval, in which the road segment

(i, j) is non admissible, with k ∈ {1, · · · ,Kij}. Variable Kij is the number of non-admissible

time intervals of (i, j). Note that tlijk ≤ tuijk < tlijk+1. In the case of new intervals overlapping

with some of the sorted previous ones, a merging process is needed, following an algorithm of time

complexityO(N), guaranteeing that the resulted intervals will also be sorted. Moreover, by using

this representation, it is possible to use a less computationally complex search algorithm, such

as Binary Search. Therefore, finding an interval in Sij needs time complexity O(logN). More

specifically, for obtaining the first admissible state of road segment (i, j) when traversing at time t,

if xij(t) = 0, the Binary Search algorithm will find a matching intervals such that t′ ∈ [tlijk, t
u
ijk],

meaning that (i, j) will become admissible at time t′ = tuijk + 1. In the other case of xij(t) = 1,

it will not find such an interval, concluding that (i, j) at time t′ = t is admissible.

A simple example can be depicted in Fig. 6, where a set of admissibility states xij(t) is repre-

sented by a list of non admissible time ranges Sij(t).

Time t: 0 1 2 3 4 5 6 7 8 9 10 11 12
Admissibility state xij(t): 1 1 0 1 0 0 0 0 0 1 1 0 0

Non-admissible Time Ranges S ij(t):    [2-2], [4-8], [11-12]

Figure 6: Time ranges example

4.3 Route Reservation Architecture Algorithm

The RRAA, as proposed in [22], relies on two loops: the inner and the outer. The inner loop is

responsible for finding the least time consuming route from an origin to a destination, departing at
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a specific time, by taking into consideration the travel time plus the delays of waiting for congested

road segments to become uncongested. The outer loop calls the inner loop, first using a departure

time equal to the requested departure time t = t0. When the inner loop ends, the outer loop checks

whether the solution contains any road segments that include waiting times. If so, the maximum

wait time W of the route is added to the accumulated wait at the origin wij(t), and the inner loop

runs again, with departure time equal to t = t+W . This process repeats, until the resulting route’s

road segments do not incorporate any waiting times. In order to run the aforementioned loops, the

RRC needs to communicate with the DB, gaining knowledge of the admissibility states of the road

segments and thus be able to calculate the delay time for congested roads to become uncongested.

This procedure breaks down to the steps shown on Fig. 7 and will be explained further in the next

paragraphs. Its input is a Route Request which contains the source, the destination and the desired

departure time of a driver.

12/14/2020 algorithm.drawio

1/1

3. Find Route

4. Request Route's  
data from DB

5. Reserve Route's  
Road Segments

6. Update Route's
Admissibility States

7. Upload Reservations and
Admissibility States to DB

No

Yes

1. 
Cached 

Admissibility
States?

Route Request
(Source, Destination,

Departure Time)

2. Cache Admissibility States
from DB

Figure 7: Route Reservation Architecture Algorithm

Step 1: Cached Admissibility States?

The RRAA is caching admissibility states xij(t) for all road segments, (i, j) ∈ E , for all

time slots t ∈ R, where E defines the set of road segments of the network and R a predefined

quantized time range for caching. As a result, the RRAA firstly needs to check if R includes the

Chri
sto

s M
ak

rid
is



16

departure time and a sufficient period ahead of it. If that is not the case, the RRAA moves to step

2. Otherwise it moves on to step 3.

Step 2: Cache Admissibility States from DB

The RRAA requests from the DB the missing admissibility states xij(t), of all road segments

(i, j) and for all time slots t ∈ R, such that R contains the requested departure time and a sufficient

period ahead of it.

Step 3: Find Route

The RRAA identifies the appropriate route d∗D for the request, using the aforementioned outer

and inner loops. In more detail, the inner loop uses the min-heap data structure that goes over the

two basic operations extract-min and decrease-key, as described in Section 4.2. At first, it assumes

an infinite arrival time aj for all junctions j, except for the origin junction of the requested route

O, which is set to zero. Then, it labels the origin O as i and expands its adjacent road segments

(i, j). For each one of them, the altered cost c′ij(t) is being calculated and hence the expected

arrival time a′j at junction j. The decrease-key operation checks if the newly calculated expected

arrival a′j is lower than the previously known expected arrival aj . If so, the old value is replaced

with the new one aj = a′j . The inner loop repeats, but this time, instead of the origin junction O,

it uses the extract-min operation to find the junction i with the lowest calculated expected arrival

a∗i that has not been expanded yet. The inner loop ends when the extract-min operation finds the

destination junction D and returns the route dD. The outer loop repeats this process M times,

by increasing the initial departure time t0 in each iteration, until route d∗D is found, which has no

intermediate delays.

Step 4: Request Route’s data from DB

Once the RRAA finds the best route d∗D, it needs to reserve the elaborated segments at the

time frame that the driver is expected to traverse them. To do so, it requests from the DB the

accumulated number of reservations nij(t) for all the route’s road segments (i, j) ∈ d∗D, at all time

slots t that the driver is expected to be traveling. Note that this is not needed for the admissibility

state, as it is already cached.
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Step 5: Reserve Route’s Road Segments

This step reserves the road segments of the solution, by increasing by one the value of the

accumulated number of reservations nij(t), for each time slot t that the driver is expected to

occupy for all the route’s road segments (i, j) ∈ d∗D.

Step 6: Update Route’s Admissibility States

This step calculates the new admissibility states xij(t) for the elaborated segments at the time

frame that the driver is expected to traverse them. In more detail, a road segment at a given time is

considered admissible only if the addition of another vehicle keeps the density of the road below

its critical density. Note that when a road segment at a specific time becomes non-admissible, it

must also become non-admissible for τij previous time-slots as well, regardless of its accumulated

number of reservations nij(t). In more detail, with nCij denoting the critical accumulated number

of reservations of road segment (i, j), if nij(t) + 1 > nCij holds, then the range [1 + t − τij , t],

with t − τij ≥ −1 is considered non admissible. This will guarantee that a vehicle that enters a

road segment will surely exit it without causing congestion in the meantime. All newly calculated

admissibility states need to be merged with the already stored admissibility states.

Step 7: Upload Reservations and Admissibility States to DB

This last step uploads the updated accumulated number of reservations nij(t) and admissibility

states xij(t) to the DB.

4.4 Toy Example

Fig. 8a illustrates a toy example road network, where five junctions connect five one-way road

segments. Three vehicles are shown to each make a reservation request for a route starting from

junction A and destining to junction E, departing at time t0 = 0 s. The RRC is first configured

for this particular road network by processing the network’s XML file representation and storing

its information in the RRC’s storage unit, as depicted in Fig. 8b. In more detail, it includes the

formulation of the graph G that represents the road network:

G = (V, E)

{A,B,C,D,E} ∈ V

{(A,B), (B,E), (A,C), (C,D), (D,E)} ∈ E
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Figure 8: Example road network: (a) Illustration, (b) Formulation

with E representing the road segments and V the junctions of the road network. For each road

segment (i, j), the XML file defines their length:

λAB = λAC = λCD = λDE = 48m

λBE = 60m

and their number of lanes:

NAB = NAC = NCD = NDE = NBE = 1

Moreover, it states the time-slots duration T = 1 s, the speed at capacity vc = 12m s−1, the ratio

of the networks critical density over its jam density (ρC/ρJ) = 0.25 and the jam density ρJij =

0.1 veh/m for each road segment (i, j). Finally, the RRC calculates the number of time-slots τij
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required to traverse each road segment (i, j) and its critical density ρCij , using the equations:

τij =
⌊
λij/vc/T

⌉
(2)

ρCij = (ρC/ρJ)ρJij (3)

Note that bze defines the closest integer to z, thus:

τAB = τAC = τCD = τDE = 4 slots

τBE = 5 slots

ρCij = 0.025 veh/m,∀(i, j) ∈ E

For simplicity, another variable is introduced, which denotes the critical number of accumulated

vehicles nCij = ρCij ∗ λij ∗Nij . By the inequation of the instantaneous density being less or equal

than the critical density we get:

ρij(t) ≤ ρCij (4)

ρij(t) ∗ λij ∗Nij ≤ ρCij ∗ λij ∗Nij (5)

nij(t) ≤ nCij (6)

Therefore, the critical number of accumulated vehicles for each road segment is:

nCAB = nCAC = nCCD = nCDE = 1.2 veh

nCBE = 1.5 veh/m

In order to serve a route reservation request, the accumulated numbers of reservations nij(t)

for each road segment (i, j) ∈ E and each time-slot t are needed. These values are solely stored

in the DB and are only requested by the RRC when a route is found, to be updated. Fig. 9

depicts both the accumulated number of reservations nij(t) and the non-admissibility lists Sij ,

with empty cells representing zero reservations. The RRC checks the non-admissibility list Sij

of each road segment, to determine the amount of wait time wij(t) needed for (i, j) at time t to

become admissible. This list is initially empty for each road segment and is filled depending on

upcoming reservations. It is stored on the DB and cached in the RRC’s storage unit.

All three reservations in this example regard a route departing from junction A at time t0 = 0

and arriving at junction E. For each one of them, the RRC runs the outer loop of the RRAA,

which in turn runs its inner loop for departure time t = t0 = 0.
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4.4.1 First reservation

Only for the first reservation, the RRC requests to cache the non-admissibility list Sij of each

road segment (i, j) ∈ E from the DB for the whole day. The inner loop takes the road segments

that begin from the origin of the route A and calculates their altered costs c′AB(t) and c′AC(t). It

repeats the process for road segments (B,E), (C,D), (D,E), choosing them in an increasing

order of their leading road segment’s arrival time.

Inner loop

Beginning on junction A, the RRC calculates the altered cost of the two road segments (A,B)

and (A,C) with departure time at t = t0 = 0. For road segment (A,B), due to the fact that the

non-admissibility list SAB is empty, any time slot is admissible and hence:

wAB(0) = 0

c′AB(0) = τAB + wAB(0) = 4

Similarly for road segment (A,C), we get:

wAC(0) = 0

c′AC(0) = τAC + wAC(0) = 4

The algorithm then defines a new variable for the arrival time of each road segment aij = c′ij(t)+t.

Therefore:

aAB = c′AB(t) + t = c′AB(0) + 0 = 4

aAC = c′AC(t) + t = c′AC(0) + 0 = 4

After that, the algorithm chooses the road segment with the lowest arrival time. Regardless

that the values are equal in this case, it chooses the (A,B) road segment. Then, it repeats the

previous process, but now beginning on junction B. It checks the only road segment starting from

that junction, which is (B,E), departing at time t = aAB = 4. Similarly to the previous cases,

the non-admissibility list is empty, hence:

wBE(4) = 0

c′BE(4) = τBE + wBE(4) = 5

aBE = c′BE(4) + 4 = 9
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The process repeats. This time the lowest arrival time is for road segment (A,C). Therefore,

departing from junction C at time t = aAC = 4, the RRC checks the altered cost of road segment

(C,D). The non-admissibility list is empty, hence:

wCD(4) = 0

c′CD(4) = τCD + wCD(4) = 4

aCD = c′CD(4) + 4 = 8

The process repeats for another time. Now, the lowest arrival time is for road segment (D,E).

Therefore, departing from junction D at time t = aCD = 8, the RRC checks the altered cost of

road segment (D,E). The non-admissibility list is empty, hence:

wDE(8) = 0

c′DE(8) = τDE + wDE(8) = 4

aDE = c′DE(8) + 8 = 12

The inner loop ends when the chosen road segment leads to the destination E. For this case

it is (B,E) with arrival time aBE = 9, hence the route: {(A,B), (B,E)}. Now, the outer loop

checks if there are any wij(t) > 0 in the solution. As there are none, the outer loop also ends.

The accumulated numbers of reservations nij(t) are then being requested from the DB, as shown

in Fig. 9a. It then increases their initial values by one and updates their non-admissibility lists.

As a result, for the road segment (A,B), slots in the range [0, 3] are incremented and set as

non admissible, while for road segment (B,E), slots in the range [4, 8] are incremented and are

considered non admissible for the range [0, 8], resulting in Fig. 9b.

4.4.2 Second reservation

The inner loop repeats the same process as the first reservation. The fastest route of the pre-

vious reservation becomes non-admissible, thus having a later arrival time due to incorporating
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Inner loop

Beginning on junction A, the RRC calculates the altered cost of the two road segments (A,B)

and (A,C) with departure time at t = t0 = 0. Firstly, for road segment (A,B), as the non-

admissibility list SAB = {[tlAB1, t
u
AB1] = [0, 3] contains t = 0, it calculates:

wAB(0) = tuAB1 + 1− t = 4

c′AB(0) = τAB + wAB(0) = 8

aAB = c′AB() + 0 = 8

On the other hand, for road segment (A,C), the non-admissibility list is empty, hence:

wAC(0) = 0

c′AC(0) = τAC + wAC(0) = 4

aAC = c′AC(0) + 0 = 4

The process repeats by taking the road segment with the lowest arrival time. This is road

segment (A,C). Therefore, departing from junction C at time t = aAC = 4, the RRC checks the

altered cost of road segment (C,D). The non-admissibility list is empty, hence:

wCD(4) = 0

c′CD(4) = τCD + wCD(4) = 4

aCD = c′CD(4) + 4 = 8

The process repeats for another time. Now, the lowest arrival time is for road segment (D,E).

Therefore, departing from junction D at time t = aCD = 8, the RRC checks the altered cost of

road segment (D,E). The non-admissibility list is empty, hence:

wDE(8) = 0

c′DE(8) = τDE + wDE(8) = 4

aDE = c′DE(8) + 8 = 12

The lowest arrival time is now for road segment (A,B). Therefore, departing from junction

B at time t = aAB = 8, the RRC checks the altered cost of road segment (B,E). The non-

admissibility list SBE = {[tlBE1, t
u
BE1] = [0, 8] contains t = 8, hence:

wBE(8) = tuBE1 + 1− t = 1

c′BE(8) = τBE + wBE(8) = 6

aBE = c′BE(8) + 8 = 14
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As a result, a different route is concluded: {(A,C), (C,D), (D,E)}. As there are nowij(t) >

0 in this solution, the outer loop also ends and the appropriate accumulated numbers of reservations

nij(t) are being requested from the DB as shown in Fig. 9b. It then increases their values by one

and updates their non-admissibility lists, resulting in Fig. 9c.

4.4.3 Third reservation

The inner loop repeats the same process as the previous reservations.

Inner loop 1

Beginning on junction A, the RRC calculates the altered cost of the two road segments (A,B)

and (A,C) with departure time at t = t0 = 0. For road segment (A,B), as the non-admissibility

list SAB = {[tlAB1, t
u
AB1] = [0, 3] contains t = 0, it calculates:

wAB(0) = tuAB1 + 1− t = 4

c′AB(0) = τAB + wAB(0) = 8

aAB = c′AB(0) + 0 = 8

Similarly for road segment (A,C), with the non-admissibility list SAC = {[tlAC1, t
u
AC1] = [0, 3],

which contains t = 0, we get:

wAC(0) = tuAC1 + 1− t = 4

c′AC(0) = τAC + wAC(0) = 8

aAC = c′AC(0) + 0 = 8

The process repeats with the road segment with the lowest arrival time. Regardless that the

values are equal, it takes (A,B). Therefore, departing from junction B at time t = aAB = 8,

the RRC checks the altered cost of road segment (B,E). The non-admissibility list SBE =

{[tlBE1, t
u
BE1] = [0, 8] contains t = 8, hence:

wBE(8) = tuBE1 + 1− t = 1

c′BE(8) = τBE + wBE(8) = 6

aBE = c′BE(8) + 8 = 14

The road segment with the lowest arrival time now is (A,C). Therefore, departing from

junction C at time t = aAC = 8, the RRC checks the altered cost of road segment (C,D). The
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non-admissibility list SCD = {[tlCD1, t
u
CD1] = [1, 7], which does not contain t = 8, hence:

wCD(8) = 0

c′CD(8) = τCD + wCD(8) = 4

aCD = c′CD(8) + 8 = 12

Next, the lowest arrival time is for road segment (C,D). Therefore, departing from junction

D at time t = aCD = 12, the RRC checks the altered cost of road segment (D,E). The non-

admissibility list SDE = {[tlDE1, t
u
DE1] = [5, 11], which does not contain t = 12, hence:

wDE(12) = 0

c′DE(12) = τDE + wDE(12) = 4

aDE = c′DE(12) + 12 = 16

The inner loop results in the lowest arrival time to be for road segment (B,E) with aBE = 14,

hence the route {(A,B), (B,E)}. Now, the outer loop checks if there are any wij(t) > 0 in the

solution, which are: wAB(0) = 4 and wBE(8) = 1.

The outer loop calls the inner loop again, but this time for departure time t′ = t+max(wAB(0), wBE(8)) =

4.

Inner loop 2

Beginning on junction A, the RRC calculates the altered cost of the two road segments (A,B)

and (A,C) with departure time at t = t′ = 4. For road segment (A,B), as the non-admissibility

list SAB = {[tlAB1, t
u
AB1] = [0, 3] does not contain t = 4, it calculates:

wAB(4) = 0

c′AB(4) = τAB + wAB(4) = 4

aAB = c′AB(4) + 4 = 8

Similarly for road segment (A,C), with the non-admissibility list SAC = {[tlAC1, t
u
AC1] = [0, 3],

which does not contain t = 4, we get:

wAC(4) = 0

c′AC(4) = τAC + wAC(4) = 4

aAC = c′AC(4) + 4 = 8
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The rest of the steps of this inner loop have the same results as the previous run of the inner

loop, resulting in having the road segment with the lowest arrival time at the end to be (B,E) with

aBE = 14, hence the route {(A,B), (B,E)}. Nevertheless, the outer loop finds a waiting time,

which is wBE(8) = 1.

The outer loop calls the inner loop again, but this time for departure time t′′ = t′+wBE(8) =

5.

Inner loop 3

Beginning on junction A, the RRC calculates the altered cost of the two road segments (A,B)

and (A,C) with departure time at t = t0 = 5. For road segment (A,B), as the non-admissibility

list SAB = {[tlAB1, t
u
AB1] = [0, 3] does not contain t = 5, it calculates:

wAB(5) = 0

c′AB(5) = τAB + wAB(5) = 4

aAB = c′AB(5) + 5 = 9

Similarly for road segment (A,C), with the non-admissibility list SAC = {[tlAC1, t
u
AC1] = [0, 3],

which does not contain t = 4, we get:

wAC(5) = 0

c′AC(5) = τAC + wAC(5) = 4

aAC = c′AC(5) + 5 = 9

The process repeats with the road segment with the lowest arrival time which is (A,B). There-

fore, departing from junction B at time t = aAB = 9, the RRC checks the altered cost of road

segment (B,E). The non-admissibility list SBE = {[tlBE1, t
u
BE1] = [0, 8] does not contain t = 9,

hence:

wBE(9) = 0

c′BE(9) = τBE + wBE(9) = 5

aBE = c′BE(9) + 9 = 14

The road segment with the lowest arrival time now is (A,C). Therefore, departing from

junction C at time t = aAC = 9, the RRC checks the altered cost of road segment (C,D). The
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non-admissibility list SCD = {[tlCD1, t
u
CD1] = [1, 7] does not contain t = 9, hence:

wCD(9) = 0

c′CD(9) = τCD + wCD(9) = 4

aCD = c′CD(9) + 9 = 13

Next, the lowest arrival time is for road segment (C,D). Therefore, departing from junction

D at time t = aCD = 13, the RRC checks the altered cost of road segment (D,E). The non-

admissibility list SDE = {[tlDE1, t
u
DE1] = [5, 11] does not contain t = 13, hence:

wDE(13) = 0

c′DE(13) = τDE + wDE(13) = 4

aDE = c′DE(13) + 13 = 17

Finally, the inner loop takes the road segment with the lowest arrival time, (B,E) with aBE =

14, hence the route {(A,B), (B,E)}. Now that there are no intermediate delays wij(t) > 0

the outer loop ends and the appropriate accumulated numbers of reservations nij(t) are being

requested from the DB as shown in Fig. 9c. It then increases their values by one and updates their

non-admissibility lists, resulting in Fig. 9d.

This concludes the toy example, with the proposed route to be {(A,B), (B,E)}, departing at

time t′′ = 5.
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nAB(t) nBE(t) nAC(t) nCD(t) nDE(t)
0
1
2
3
4
5
6
7
8
9

10
11
12
13

SAB SBE SAC SCD SDE

[ ] [ ] [ ] [ ] [ ]
(a)

nAB(t) nBE(t) nAC(t) nCD(t) nDE(t)
0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9

10
11
12
13

SAB SBE SAC SCD SDE

[0, 3] [0, 8] [ ] [ ] [ ]
(b)

nAB(t) nBE(t) nAC(t) nCD(t) nDE(t)
0 1 1
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1

10 1
11 1
12
13

SAB SBE SAC SCD SDE

[0, 3] [0, 8] [0,3] [1,7] [5,11]
(c)

nAB(t) nBE(t) nAC(t) nCD(t) nDE(t)
0 1 1
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1

10 1 1
11 1 1
12 1
13 1

SAB SBE SAC SCD SDE

[0, 8] [0, 13] [0,3] [1,7] [5,11]
(d)

Figure 9: Database tables for the accumulated number of vehicle reservations nij(t) and non-
admissibility list Sij for road segments (i, j): (a) No reservations, (b) First reservation, (c) Second
reservation, (d) Third reservation
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Chapter 5

Experimental results

The proposed developments are evaluated over a microsimulator (i.e., SUMO, [20]), which is

a traffic simulation package designed for handling large networks. It has various configurations

for making a scenario appropriate for different investigations. Among them is configuring a road

network’s parameters to represent reality. Moreover, it allows vehicles to be modeled using car-

following models such as the Krauss’ model [18], or to be set to travel at speeds that follow the

speed limit. Moreover input flows in the network can be set up, while vehicles departure times

can be set explicitly. SUMO is able to run the scenarios in a graphical representation, hence

also visualizing congestion where it occurs. Finally, some statistics can be obtained from the

run simulations, such as average times spent driving or waiting in traffic, average fuel used or

emissions produced, as well as numbers of vehicles that have entered or left the road network over

time.

For this implementation, SUMO simulator is considering an urban area in the city of Nicosia

(e.g., Aglantzia area). Aglantzia is an area that its road network spans over 7 km2, consisting of

approximately 2700 single-lane, 170 double-lane and 20 triple-lane road segments. The experi-

ment is evaluated over ten different demand scenarios starting form 3000 veh/h to 21 000 veh/h

by increasing demand by 3000 veh/h for each subsequent scenario. All of them follow a demand

duration of one hour, with simulation time-step T = 0.5 s. The O-D pairs of the requests are dis-

tributed randomly according to binomial distribution, with drivers modeled according to Krauss’

car-following model, see [18]. Moreover, vehicles are assumed to travel at speed at capacity, while

the critical density of road segments is set to 0.25 ∗ ρJij . For each scenario, a server was set up,

running the implementation of the RRC and through the smartphone application, a client (i.e.,
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a driver) connected to the server and requested routes1 . The results of the dispatcher, instead

of being sent to the client, were forwarded to the SUMO simulator, which in turn visualized the

scenario.

5.1 Overall results

Fig. 10 depicts, the average travel times (TT) of all the vehicles that were routed in the road

network, without elaborating any departure or intermediate delays. From the figure it is clear that

for the lower flow rate scenarios of 3000 veh/h up to 12 000 veh/h, the average TT is similar for

both approaches, approximately near 3.5min, as no congestion is experienced. With a further

increase in the flow rate of the NC, congestion starts to emerge, a fact that dramatically affects

the TT. On the other hand with the same increase of flow rate, the RRC sustains the network’s

operation up to its critical capacity, benefiting the system operation by maintaining TT near to the

no congestion conditions.
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Figure 10: Average Travel Time

Fig. 11 indicates the average total travel times (TTT) of all the vehicles in each scenario.

TTT incorporates all delays that occur between the departure and the arrival of a vehicle, but

not the origin delays before departure. It can be observed that for the lower flow rate scenarios

of 3000 veh/h up to 12 000 veh/h, the average TTT is similar for both approaches, at around

3.5min. As the flow rates increase, the average TTT becomes higher for the NC, reaching almost

300min, while for the RRC, the increase is insignificant remaining near 3.5min.
1For the purposes of the experiment, the client is able to request more than one routes with different O-D pairs and

departure times that comply with the desired flow rates of the experiment.
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Figure 11: Average Total Travel Time

Fig. 12 shows the average origin delays that occur before departure of all vehicles in each sce-

nario. According to the findings, as the flow rate increases, the average origin delays for the RRC

increase, reaching 20min for the largest flow rate scenario of 21 000 veh/h. Note that although

the NC will never give origin delays, the ones given by the RRC are essential for maintaining no

congestion, thus the average delayed departure times of the RRC are significantly lower than the

average total delays of the NC.
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Figure 12: Average Origin Delay

The computational performance of the RRC approach is illustrated in Fig. 13, where the av-

erage computation time was measured to be between 30ms and 41ms for the lowest and highest
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demand scenarios, respectively. These results of serving a request are fast enough and thus are

applicable for a real-life application.
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Figure 13: Average Origin Delay

5.2 Lowest and highest demand results

Fig. 14 illustrates the mean speed of the lowest demand of 3000 veh/h and highest demand of

21 000 veh/h. The results are similar between the two approaches for the low demand scenario,

fluctuating around 11m s−1. This is expected due to the fact that on a relatively empty network,

the RRC acts like it uses a simple shortest path algorithm. Although the network is not empty, the

demand is not high enough to cause significant changes in routes or origin delays. On the other

hand, the high demand scenario results for the RRC to be fluctuating around the value of 10m s−1,

while for the NC to drop to nearly 0m s−1 through the first 0.75 h and stay there.

Figs. 15 depict the two scenarios’ cumulative curves of vehicles for each approach. The cu-

mulative curves for each scenario and each approach indicate the amount of vehicles that have

departed from their origin and those that have arrived at their destination over time. As shown in

both the low and high demand figures, the solid lines illustrate the results for the RRC, with the

blue line for the departed and the orange line for the arrived at destination vehicles. On the other

hand, dashed lines indicate the NC, with the green line for the departed and the red line for the

arrived at destination vehicles. For the low demand scenario, the cumulative curves of both the

RRC and NC seem to be almost identical for the departures. The same is true for the arrivals of

both approaches. However, it is clear for the high demand scenario that these findings are much

different. The NC seems to have tried to depart most of the vehicles in a relatively short period of
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time of about one hour, resulting in congestion, while the RRC spreads the demand over a larger

period of around 2.25 h. All of the RRC’s vehicles have arrived at their destination shortly after

their departure, while the network stays congestion free, as indicated by the horizontal difference

of the departed and arrived vehicles. As expected, the NC, due to suffering from congestion, has

much lower arrivals from the RRC at any time. Note that the RRC manages to have all of the

21 000 vehicles arrived at their destination at around 2.5 h, while the NC at 15.5 h.

A closer look on the experiment, running a scenario with a flow rate of 2000 veh/h can be

visualized in this video2 .

2https://www.dropbox.com/s/f5tximh1mjirs4n/ RRA vs NoControl.mpeg?dl=0
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Figure 14: Mean speed for scenarios running the RRC and the NC: (a) Low demand scenario of
3000 veh/h, (b) High demand scenario of 21 000 veh/h.Chri
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Figure 15: Cumulative curves for scenarios running the RRC and the NC: (a) Low demand sce-
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Chapter 6

Conclusions

This work implements all the required modules to realize the RRA as a real-life traffic and

demand management mechanism. It defines a communication protocol to ensure a fast and reliable

real-life interaction between the dispatcher and drivers. Moreover, it implements the appropriate

algorithms for the RRA, considering the vast amount of data that have to be exchanged between

different actors and to be stored in order to keep track of reservation status. This work solves any

architecture’s scalability issues by investigating for the appropriate database and using specific

data structures and optimization techniques. Finally, it evaluates the developed modules over a

large-scale urban area, where a microscopic simulation served as a realistic transportation network.

The results showed that the RRA is indeed an implementable solution for solving the congestion-

free routing problem, which is also applicable for real-life scenarios.

Future work will include the realization of the RRA for multi-region networks. This can be

done by accumulating reservations in larger subareas instead of individual links. Moreover, a more

ambitious application would be a pilot city where drivers will be using this work’s implementation.

Finally, an extension of this work could be realized, in which a pricing mechanism is conducted,

responsible for handling driver deviation of the proposed routes and departure times.
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