
 266

PROBLEM SOLVING AND COGNITIVE FOUNDATIONS
FOR PROGRAM DEVELOPMENT: AN INTEGRATED

MODEL

Fadi P. Deek, James A. McHugh

ABSTRACT
This paper addresses the interdependence among problem solving, cognition, and program development. The
goal is to present a coherent and complete theoretical model which can serve as a basis for program development
environments. To determine the type of support such environments should provide we first identify the actual
difficulties involved in learning programming. We then synthesize a common model for problem solving based
on existing methodologies. We next examine the problem solving tasks specific to program development,
identifying how to adapt or enhance the general common model to the area of program development. Finally, we
determine the cognitive science and learning theory relevant to problem solving identifying for each task of the
common model the appropriate cognitive techniques required, thus defining a Dual Common Model which
integrates the problem solving methodology and program development tasks with the cognitive knowledge and
skills needed at each stage of the process.

KEYWORDS
Problem solving, program development, cognitive model, cognition, human information processing, human
learning

PROBLEM SOLVING AND PROGRAM DEVELOPMENT

It is now widely agreed that the ability to write programs, and the difficulties encountered therein,
extends far beyond learning the syntax of a specific programming language. There are three kinds of
challenges students face when learning the tasks of program development: deficiencies in problem
solving strategies and tactical knowledge; misconceptions about syntax, semantics, and pragmatics of
language constructs; and ineffective pedagogy of programming instruction. While not minimizing the
importance of syntactical issues [Shneiderman 1980; Rogalski and Samurcay 1990, 1993], research
clearly indicates that the most fundamental obstacles to learning programming are related to its
problem solving character [Mayer 1981; Perkins and Martin 1986; Perkins, Hancock, Hobbs, Martin,
and Simmons 1986; Spohrer and Soloway 1986; Rist 1986; Johnson 1990; Lee and Pennington 1993;
Ebrahimi 1994; Ennis 1994; Weidenbeck and Scholtz 1996.

Deek (1997) reviewed twelve different models of problem solving developed this century. Two of the
earliest methods for problem solving were given by Dewey (1910) and Wallas (1926), and represent
opposite approaches. Dewey’s approach essentially articulates the scientific method for problem
solving, while Wallas’ approach represents the non-systematic, creative view of problem solving.
Subsequent models combined elements of both the scientific and the creative approaches. Principal
among these is Polya’s famous work on problem solving. The Polya model (1945 and 1962)
elaborately specifies a problem solving method supported with examples and documented in a series
of books. Independently, Johnson’s model (1955) refers to Wallas, while Kingsley and Garry’s model
(1957) elaborated on Dewey. A separate, but similar, model was presented by Osborn (1953) and
Parnes (1967). Neither Johnson nor Kingsley and Garry introduced significant development over their

 267

predecessors. Despite the independence of these three methods, they are basically consistent in their
approach, an important indication of the stability of the methodology over time. A different approach
was introduced by Simon (1960) who viewed the process as a collection of four cognitive abilities:
intelligence, design, choices and implementation. More recent methods were developed to provide
mathematics, science and engineering students with a method for problem solving. Generally, these
models divided the problem solving process into a more finely specified process than the earlier
methods. Notable among these models is the work of Rubinstein (1975), who introduces an element
of reservation. One such reservation is at the problem understanding stage where he looks at possible
solutions before finalizing the problem statement; there is a similar withholding of commitment at the
final problem solution. Otherwise his method represents the standard view. Other popular methods
are Stepien, Gallagher, and Workman (1993), Etter’s (1995), Meier, Hovde and Meier (1996), and
Hartman’s (1996) who presented models that basically follow the Polya model without any radical
changes.

One can identify a common integrated model for problem solving based on the models just reviewed.
Although the general form of the methodology is clear from the review, it will be beneficial to
carefully synthesize these methods into a common model for problem solving. The goal is to capture
the essential features of these problem-solving approaches, and to provide an established, recognized
framework which can serve as the basis for a problem solving method that we will later adapt to the
area of program development. It is clear that an integrated view of problem solving includes the
following: understanding and defining the problem, developing a plan for solving the problem,
designing and implementing the plan to produce a solution, and verifying and presenting the results.
A synthetic view of the tasks involved by these objectives follows. Later on, a more comprehensive
model that explicitly addresses the cognitive and program development aspects of the process will be
defined.

Programmers must develop skills which include: learning the language, composing new programs,
comprehending, reusing and integrating existing programs, debugging, testing, modifying, and
documenting the programs they write. All of these skills are essential to carry out the tasks of program
development. These are cognitive tasks related to language and require knowledge of the syntax and
semantics of the programming language [Shneiderman 1980; Rogalski and Samurcay 1990, 1993].
Other cognitive tasks, related to problem solving, such as problem understanding, analysis, and design
of the solution, require domain, strategic and tactical knowledge, as well as practical knowledge of the
programming language [Wirth 1971; Pennington and Grabowski 1990].

A DUAL COMMON MODEL FOR PROBLEM SOLVING AND PROGRAM
DEVELOPMENT

In this section, our common model of problem solving and the tasks of program development will be
joined with the work of Bloom (1956) on cognition, Sternberg (1985) on human information-
processing, and Gagne (1985) on human learning to create a Dual Common Model for Problem
Solving and Program Development supported by the necessary knowledge and skills that must be
developed and the expected tasks that must be performed at each stage of the process. This dual
model (called dual because it explicitly brings the problem solving method/program development tasks
and cognition into one model) can form the basis for specifying environments for problem solving and
program development. The remaining parts of this section describe the six stages of the model and
Figure 1 illustrates the cognitive system of the problem solving and program development.

Formulating the Problem
We identify three activities for this stage: preliminary problem description, preliminary mental model,
and structured problem representation. Domain knowledge, problem modeling and communication
skills are required to carry out these activities. Identification of knowledge through information
gathering methods and representation of this knowledge are primary requirements of the problem
solving process. From the viewpoint of the cognitive model, the combination of this information with

 268

other knowledge such as domain knowledge, leads to comprehension of the problem question, a major
objective of this stage [Bloom 1956]. In terms of cognitive structures, knowledge acquisition
processes are used to acquire, recall, and integrate the information and knowledge needed to devise
and implement a solution [Sternberg 1985]. In terms of cognitive outcomes, verbal information that
confirms problem understanding and identifies facts is an important result of this stage [Gagne 1985.

Planning the Solution
We identify three activities for this stage: strategy discovery, goal decomposition, and data modeling.
Domain, problem, and strategic knowledge are required to carry out these activities. From a process
viewpoint, the major cognitive activities at this stage are the application of knowledge, and problem
analysis and decomposition. Understanding of knowledge is demonstrated by the appropriate
application of that knowledge. The use of knowledge, facts, and the application of concepts, theories
or principles to plan a solution are in turn demonstrated by outlining the steps necessary to reach a
solution by solving simpler, related problem, or by drawing charts and graphs which visually depict a
solution. The cognitive processes of analysis and decomposition, which involve breaking the problem
into component parts, entail identifying and establishing a hierarchy which organizes the problem into
its parts and sub-parts [Bloom 1956]. The most relevant cognitive structure is the performance
component which directs the solution planning and the problem decomposition process [Sternberg
1985]. The important cognitive outcomes of this stage include intellectual skills, which demonstrate
the ability to apply knowledge and outline a detailed plan for a solution [Gagne 1985].

Designing the Solution
We identify three activities for this stage: Organization and refinement, data/function specification,
and module logic specification. The same cognitive knowledge and skills are required for design as
for planning. From a process viewpoint, the major cognitive activity at this stage is synthesis, which is
concerned with the reintegration of interrelated components into a coherent whole, rearranging when
necessary, establishing relationships, and producing a new and well-organized whole as a viable
solution to the problem [Bloom 1956]. The most relevant cognitive structure is the performance
component which in addition to directing the decomposition process is concerned with the
identification and selection of tasks; and the organization, sequencing and execution of these tasks
[Sternberg 1985]. The important cognitive outcomes of this stage include cognitive strategies which
demonstrate the ability to carry out the transformation of previously developed plan for a solution into
an actual solution [Gagne 1985].

Translation
We identify three activities for this stage: Implementation, integration, and diagnosis (of errors). The
cognitive knowledge and skills required for translation include those for design, but supplemented by
organizational, syntactical, semantic, and pragmatic skills. From a process viewpoint, the major
cognitive activities at this stage are the application of knowledge, synthesis, and organization [Bloom
1956]. Application in this stage refers to the pragmatic ability to use the general knowledge of
language syntax and semantics to implement a coded solution. Synthesis enters in two ways: first,
with respect to the integration of existing software components into the solution, and secondly, with
respect to the piecemeal integration of the modules under development. The relevant cognitive
structures are the knowledge acquisition and the performance components [Sternberg 1985]. The
knowledge acquisition component is concerned primarily with determining relevant language features
and integrating previously identified partial solutions. As usual, the performance component involves
the organization and execution of these tasks. The important cognitive outcomes of this stage include
intellectual skills demonstrated by the ability to apply knowledge the diagnostic analysis of errors
[Gagne 1985].

Testing
We identify three activities for this stage: Critical analysis, evaluation, and revision. The knowledge
and skills for this stage are the same as for the previous translation stage, with the important exception
that organization skills that predominate there are now replaced by metacognitive skills. From a

 269

process viewpoint, the major cognitive activities at this stage are analysis, evaluation, and
metacognition [Bloom 1956]. The most relevant cognitive structure is the metacognitive component,
concerned with monitoring the thinking process and evaluating the solution [Sternberg 1985]. The
important cognitive outcome is a self-critical attitude [Gagne 1985], which demonstrates the ability to
critically assess one’s own thought processes as well as ones’ own intellectual creations.

Delivery
We identify three activities for this stage: documentation, presentation, and dissemination of the
different solution parts in an organized and comprehensible form. From a process viewpoint, the
major cognitive activity at this stage is synthesis which requires the ability to produce a well-organized
whole [Bloom 1956]. The most relevant cognitive structure is the performance component directing
task organization [Sternberg 1985]. The important cognitive outcome of this stage is verbal
information as exhibited by the ability to formulate and organize a complete and coherent report
[Gagne 1985].

Figure 1. The cognitive activities, knowledge, and skills in the dual common model

CONCLUSION

Research into teaching and learning programming, as well as the development of computing systems
which assist novice programmers, underscores the need for a comprehensive framework for
programming which includes not only programming language skills but also problem solving,
software engineering concepts, and cognitive skills. The tasks of problem solving and program
development form an interdependent process, each stage requiring specific knowledge and cognitive
skills. Problem solving skills are essential to understanding the fundamentals of computing, and
should be learned while studying programming. Problem formulation, planning and design are
essential prerequisite tasks to coding and testing because any difficulties or errors at these earlier
stages lead to errors in the final stages. Despite this, research and development on the teaching and

Domain Knowledge

Problem Modeling
Skills

Communication
Skills

Domain &
Problem

Knowledge

 Strategic Skills

Domain &
Problem

Knowledge

 Strategic Skills

Organizational

 and

Communication
Skills

Preliminary Problem
Description

Strategy Discovery

Logic
Specification

Integration

Diagnosis

Implementation Critical Analysis

Evaluation

Revision

Documentation

Presentation

Dissemination

Activities Activities Activities Activities Activities Activities

Problem
Formulation

Solution
Planning

Solution
Design

Solution
Translation

Solution
Testing

Solution
Delivery

Domain &
Problem

Knowledge

Strategic &
Organizational Skills

Syntax,Semantic &
Pragmatic Skills

Domain &
Problem

Knowledge

Metacognitive &
Strategic Skills

Syntax,Semantic &
Pragmatic Skills

Goal Decomposition

Data Modeling

Pr
ob

le
m

 S
ta

te
m

en
t

K
no

w
le

dg
e

B
as

e

So
lu

tio
n

Pl
an

V
er

ifi
ed

 S
ol

ut
io

n
an

d
R

es
ul

ts

D
oc

u m
en

te
d

S o
lu

ti o
n

an
d

R
es

ul
ts

Function/Data
Specification

Organization &
Refinement

Preliminary Mental
Model

Structured Problem
Representation

Knowledge & Skills Knowledge & Skills Knowledge & Skills Knowledge & Skills Knowledge & Skills Knowledge & Skills

So
lu

tio
n

D
es

ig
n

C
od

ed
 S

ol
ut

io
n

 270

learning of programming have devoted disproportionate attention to language-related activities, with
less attention given to the earlier tasks of problem definition, requirement, and specification.

REFERENCES

Bloom, B.S., (Ed.), Taxonomy of Educational Objectives, Handbook I: Cognitive Domain, New York,
New York: McKay, 1956.

Deek, F.P., An Integrated Environment for Problem Solving and Program Development, Unpublished
Ph.D. Dissertation, New Jersey Institute of Technology, 1997.

Dewey, J., How We Think, Boston, Massachusetts: Heath, 1910.

Ebrahimi, A., “Novice programmer error: language constructs and plan composition” International
Journal of Human-Computer Studies, 41, pp. 457-480, 1994.

Ennis, D., “Combining problem solving and programming instruction to increase the problem solving
abilities in high school students”, Journal of Research on Computing in Education, 26 (4), pp. 488-
496, 1994.

Etter, D.M., “Engineering Problem Solving with ANSI C: Fundamental Concepts”, Englewood Cliffs,
New Jersey: Prentice Hall, 1995.

Gagne, R.M., The Conditions of Learning, Fourth edition, New York: Holt, Rinehart and Winston,
1985.

Hartman, H., Intelligent Tutoring, preliminary edition, Clearwater, Florida: H&H Publishing
Company, 1996.

Johnson, W.L., “Understanding and debugging novice programs”, Artificial Intelligence, 42, pp. 51-
97, 1990.

Johnson, D.M., The Psychology of Thought and Judgment, New York, New York: Harper, 1955.

Kingsley, H.L., and R. Garry, The Nature and Conditions of Learning, Englewood Cliffs, New Jersey:
Prentice Hall, 1957.

Lee, A.Y. and N. Pennington, "Learning Computer Programming: A Route to General Reasoning
Skills?" in C.R. Cook, J.C. Sholtz and J.C. Spohrer (Eds.) Empirical Studies of Programmers: Fifth
Workshop, pp. 113-136, Norwood, New Jersey, Ablex, 1993.

Mayer, R.E, “The psychology of how novices learn computer programming”, ACM Computing
Surveys, 3 (1), pp. 121-141, March 1981.

Meier, S.L., R.L. Hovde, and R.L. Meier, “Problem solving: Teachers’ perception, content area
models, and interdisciplinary connections”, Journal of School Science and Mathematics, 96 (5), pp.
230-237, 1996.

Osborn, A., Applied Imagination, New York: Scribner’s Sons, 1953.

Parnes, S.J., Creative Behavior Guidebook, New York: Scribner’s Sons, 1967.

 271

Perkins, D.N. and F. Martin, "Fragile Knowledge and Neglected Strategies in Novice Programmers",
in E.Soloway and S. Iyengar (Eds.) Empirical Studies of Programmers: First Workshop, pp. 213-229,
Norwood, New Jersey, Ablex, 1986.

Perkins, D.N., C. Hancock, R. Hobbs, F. Martin, and R. Simmons, “Conditions of learning in novice
programmers”, Journal of Educational Computing Research, 2 (1), pp. 37-56, 1986.

Polya, G., How to Solve It, Princeton, New Jersey: Princeton University Press, 1945.

Polya, G., Mathematical Discovery: On Understanding, Learning and Teaching problem Solving, New
York: Wiley, 1962.

Rist, R.S., "Plans in Programming: Definition, Demonstration and Development", in E.Soloway and S.
Iyengar (Eds.) Empirical Studies of Programmers: First Workshop, pp. 28-47, Norwood, New Jersey,
Ablex, 1986.

Rogalski, J., and R. Samurcay, “Acquisition of programming knowledge and skills”, Psychology of
Programming, in J.-M. Hoc, T.R.G. Green, R. Samurcay, D. Gilmore (Eds.), pp. 157-174, London:
Academic Press, 1990.

Rogalski, J., and R. Samurcay, “Task analysis and cognitive model as a framework to analyze
environments for learning programming”, in E. Lemut, B. du Boulay, G. Dettori (Eds.), Cognitive
Models and Intelligent environments for Learning programming. pp. 6-19, Berlin: Springer-Verlag,
1993.

Rubinstein, M., Patterns of Problem Solving, Englewood Cliffs: New Jersey, Prentice Hall, 1975.
Shneiderman, B., Software Psychology: Human Factors in Computer and Information Systems,
Boston, Massachusetts: Little, Brown and Company, 1980.

Simon, H.A., The New Science of Management, New York, New York: Harper and Row, 1960.
Spohrer, J., and E. Soloway, “Novice mistakes: are the folk wisdom correct?”, Communications of the
ACM, 29 (7), pp. 624-632, 1986.

Sternberg, R.J., Beyond IQ: A Triarchic Theory of Human Intelligence, Cambridge, Massachusetts:
Cambridge University Press, 1985.

Wallas, G., The Art of Thought, New York: Harcourt Brace Jovanovich, 1926.

Weidenbeck, S., V. Fix, and J. Scholtz, “Characteristics of the mental representations of novice and
expert programmers: an empirical study”, International Journal of Man-Machine Studies, 39, pp. 793-
812, 1993.

Wirth, N., “Program development by stepwise refinement, Communications of the ACM, 14 (4), pp.
221-227, 1971.

Fadi P. Deek, James A. McHugh
College of Computing Sciences
New Jersey Institute of Technology
Newark, NJ 07102
973.596.2997 (O)
973.596.5777 (FAX)
Email: fadi.deek@njit.edu

