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ABSTRACT 
Every future teacher of mathematics must know symbolic approaches, for example, for finding derivations and 
integrals, solving algebraic and differential equations very well. But most of the problems from practice are not 
solvable by a symbolic way and therefore numerical ones must be used.  That is way the basic knowledge of some 
numerical methods for solving problems of the real world is a component of the complex training of teachers of 
mathematics. Different computer systems for symbolic and numerical mathematics as MatLab, Maple, 
Mathematica or Derive enable their effective use. The posibility to join numerical and symbolic computation in 
these systems makes them very well suited for expressing numerical algorithms, testing them out and 
postprocessing the results, for example in a graphical form. Their ability for high-precision or exact calculations is 
also important. This contribution deals with a concrete illustration of using the system Mathematica for solving 
several typical physical problems by differential equations or their systems.  
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INTRODUCTION 
 
Mathematica is a powerful mathematical software system for students, researchers, and someone 
finding an effective tool for mathematical analysis. As the portable electronic calculator made doing 
simple arithmetic unnecessary, so powerful and sophisticated symbolic processing programs, such as  
 
Mathematica, do calculus unnecessary by hand. Algebraic manipulation, finding roots of equations, 
derivatives of functions, solutions of differential equations and very large number of other mathematical 
operations have been done in a similar way and the solutions appear in symbolic form.  
 
Mathematica also has extensive and powerful graphic capabilities.  Such a symbolic processing 
programs have profound implications for mathematically rich fields (for example physics), where a 
great deal of time and much accumulated skill goes into master handling about complicated 
mathematics. With the advent of Mathematica educators have endeavored to make use of the 
mathematical manipulation power of this software system to improve the traditional way of teaching 
mathematics, physics and engineering. 
 
 Mathematica has been incorporated in a number of universities as a productivity tool to help students 
in analytical performance, numerical and graphical work.  
 
Mathematica provides facilities for doing both of symbolic and numerical mathematics, or mixing the 
two as required.  
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Mathematica contains an extensive collection of algorithms for the users, covering almost every field of 
mathematics, including calculus, differential equations, matrix algebra, etc.  
 
In our contribution we take two types of problems, the problems solvable symbolically using build-in 
commands in the system Mathematica (commands Integrate[], DSolve[] and so on) and the problems 
whose solution can be found only by numerical way. In this second case we use the fourth order Runge-
Kutta method for numerical integration of autonomous systems of ordinary first-order differential 
equations. For example, we take solving the problem of movement projectile with resistance of air, the 
motion of satellite of the Earth in its gravitational field and oscillating of a simple pendulum in vacuum 
and with resistance of environment too. In all these examples we are going to show a mathematical 
description of the problem, a numerical solution, the graphs of functional dependencies of various 
quantities and computer animations of the movements.  
 
THE RUNGE-KUTTA METHOD  
 
An autonomous first-order system of differential equations of n variables nyyy ,...,, 21  with the initial 
conditions at  0020021001 )(...,,)(,)( nn yxyyxyyxy ===  in the system 
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The constant 0>h  is called the step size. 
 
There are many different formulaes for this purpose. We take the fourth order Runge-Kutta method in 
solutions of the following problems. 
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This Runge-Kutta method can be easily programmed in Mathematica because it contains a special type 
of object for vectors and many functions for operations with them. If we use built-in functions 
SetAttributes, ClearAttributes, Flatten, Append, While and Module we get this Mathematica’s function 
for implementation of Runge-Kutta method: 
 
 
RungeKuttaMethod[f_,{x_,x0_},{y_,y0_},b_,h_]:= 
    Module[{k1,k2,k3,k4, 
            xk=x0, yk=y0, res={ Flatten[{x0,y0}] } }, 
            SetAttributes[Rule, Listable]; 
          While[xk<b, 
                 k1=f/.x->xk     /. y->yk; 
                 k2=f/.x->xk+h/2 /. y->yk+h/2 k1; 
                 k3=f/.x->xk+h/2 /. y->yk+h/2 k2; 
                 k4=f/.x->xk+h   /. y->yk+h   k3; 
                 yk=yk+h/6 (k1+2(k2+k3)+k4); 
                 xk=xk+h; 
                 res=Append[res, Flatten[{xk,yk}] ] 
               ]; 
          ClearAttributes[Rule, Listable]; 
          res 
          ] 
 
THE SIMPLE PENDULUM 
 
The pendulum should be thought of as a weight hung on a rigid rod of negligible mass from a pivot 
without friction in a medium which offers no resistance to things moving through it. The state of the 
motion at any time is defined completely by the position and velocity at that time. If we know those 
values we can calculate its position and velocity for any time in the  future or past. 
 

 
Figure 1 
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Using the second Newton law the differencial equation for a description of the movement of the 
pendulum is 

Θ−=
Θ sin2

2

mg
dt
dml

 
 
where Θ  is the angle of the pendulum from the vertical, m is the mass, l is the length, and g is the 

acceleration due to gravity. Introducing the angular velocity
dt
dΘ

=ω    we can rewrite this equation as a 

system of two first order ordinary differential equations, 
 

                                                        
ω=Θ

dt
d

 

                                                       
Θ−= sin

l
g

dt
dω

. 
Analytically the motion of a pendulum is given in an implicit form by elliptic integrals. We will solve 
the system of equations numerically using system Mathematica. The computed displacement of the 
value Θ  of the pendulum versus time t is shown in the following  Figure 2:  
 

 
 

Figure 2 
 
Now we relax some of our unrealistic requirements for our  system and we allow an air consistence. We 
get the similar secondary-order equation: 

dt
dcmg

dt
dml Θ

−Θ−=
Θ sin2

2

. 

 

We can transform it into two first order equations with the variables Θ=1y , 
dt
dy Θ

=2 . 

The equations become: 
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l
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The displacement of the pendulum is in the Figure 3 
 
 

 
Figure 3 
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MOVEMENT OF PROJECTILE 
 
Now we will study elements of a projectile motion with the resistence of air if it is shot with a initial 

velocity 0

→

v  and the mass is m. Using the second Newton law we again obtain the differential equations 
for x and y coordinates positions of the projectile: 
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The system can be rewritten to the four first-order equations with variables xy =1 , 
dt
dxy =2 , yy =3 , 
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with the initial conditions 0)0(1 =y , xvy 02 )0( = , 0)0(3 =y , yvy 04 )0( = . 
Fig. 4 shows the displacement of the projectile and Fig. 5 the graph of the velocity versus time 
( 80,100 00 == yx vv ). 
 

 
 

Figure 4 

 
Figure 5 
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MOVEMENT OF A SATELITE OF  PLANETS 
 
 In this part we find satelite orbits for the case of one planet and then for the case of a couple of  planets. 
Using the second Newton law and Newton’s classical law of gravity we get an equation for the 
description of orbits of satelite  
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 is the acceleration of the satelite, m the mass of it, M  the mass of the planet, 

κ the universal constant of gravity and ),( yxr =
→

 is a position vector of the satelite. We get 
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which can be rewritten to the four first-order equations with variables xy =1 , 
dt
dxy =2 , yy =3 , 

dt
dyy =4 : 
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with 0)0(1 =y , xvy 02 )0( = , Hy =)0(3 , 0)0(4 =y . 
 
Figure 6 contains the orbits of the satelite of one planet for two different initial velocities of the satelite 
(circular resp. parabolical  orbits): 
 
 

        
 

Figure 6 
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Similarly we get the equation for the orbit of the satelite of a couple of planets, which are in the distance 
D: 
 

→→→

−−= 23
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where ),(1 yDxr −=
→

 and ),(2 yDxr +=
→

 and we can again rewrite it to four first-order differential 
equations. The computed orbits of the satelite of the couple of planets for different velocities of the 
satelite are in Figure 7. 
 

 
 
 
 
 

 
 

Figure 7 
 
 
CONCLUSION 
 
We showed an approach of finding solutions of  several physical problems of using function 
RungeKuttaMethod[], which we created. The system Mathematica contains from version 2.0 
built-in command NDSolve[], which can be used to solve out majority of  the solved problems. 
Practical use of the theory of  numerical methods is on this way more important for our students. 
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