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ABSTRACT 
Due to mass production, many modern instruments are so simple to use that students are driven away from their 
inside complexity (and this fact can be very nice); but too often now students prefer to blindly accept those results, 
without any criticism.  This happens also with modern computers. In modern physical measurements, computers 
can play a double role: the automatic management of data acquisition and the final analysis of data by dedicated 
software.  Instead of being wonderful examples of “how things” work, they become just magic boxes totally 
outside the student comprehension. Of course these considerations can be applied to any study discipline.  In this 
paper, we present only examples related to our direct teaching experience in experimental physics: first a few 
cases that came out when we introduced the use of GPS (Global Positioning System) both for space localization 
and extremely precise time synchronisation;  then some anomalous behaviour of data analysis even with the most 
common spreadsheets, in simple situations; finally how can be artificially regenerated the “sound” of an 
interplanetary spacecraft like Cassini we recently recorded from the Italian radiotelescope in Noto.  We also 
describe the teaching strategies we have verified to be more efficient to drive students in checking how closely the 
computer representation can match the reality.  
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INTODUCTION 
 
Teaching Experimental Physics in Modern Measuring Environment 
We think that “good teaching” can be reached only when the students, after having received new 
information, can also get the tools needed for feeling the boundary limits of their new spectrum of 
knowledge, and for succeeding in the later process of integrating together new and older pieces of 
information.    
 
From this point of view, Computer Learning, well due to its obvious boost in opening completely new 
capabilities, it also offers new challenges for a “responsible learning”.   As an example, it is quite 
common nowadays to find students (and even professionals) who give much more value of truth to a 
computer simulation than to the reality itself.  Of course, experimental verifications are cumbersome, 
require time, additional costs, knowledge of technical details and even more: “manual skills”.  But 
without making systematic checks in all the relevant methodological cornerstones, in our opinion, new 
teaching technologies can be or very dangerous or simply fake. 
   
We are focusing this science education challenge since ten years, with regard to university students in 
physics, following the first experimental physics course.  We soon realised how hard it is for a teacher 
to point out the limits of validity of the modern measurements, especially if they are achieved with 
technologically complex instruments, then virtually “perfect”.  It is mandatory instead for students to 
understand that the measurement result is not only a “simple number”, but a collection of information 
about how all the experiment has been made, and an estimation of its uncertainty. 
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At the beginning of the course, our students learn the theoretical background needed for a correct 
understanding of even the simplest kind of measurements.   Then, by the use of simple instruments, 
they can immediately check their own level of comprehension, in a well-defined environment.    Later 
in the year, they study some higher level of data analysis and can get into the real world of modern 
measurements by choosing to make one among different kinds of so-called “open experiments”. Here, 
after a teacher’s introduction, they are invited to proceed autonomously toward some original results 
(from their point of view). The last opened working area has been around measurements made by 
receivers for the Global Positioning System (GPS). 
 
THE GLOBAL POSITIONING SYSTEM 
 
The primary results of a GPS receiver are the  Latitude and Longitude co-ordinates of the user, 
wherever staying, in any point of the Earth’s surface or around it (Wells, 1987).   Designed for 
military use, this is a system of more than 18 satellites, in circular orbits around the Earth, at an altitude 
of almost 20000 Km and a period of 12 hours, in such a way that, from any site and at any time, at least  
three satellites are visible above the horizon. Each satellite transmits two radio carriers (L1 at 1575.42 
MHz and L2 at 1227.6 MHz), which are modulated by two pseudo-random codes (C/A, the coarse 
acquisition code, and P, the precision code), and by a navigation message. A Caesium atomic clock, on 
board of each spacecraft, controls the time synchronisation of the radio signals.    The cheaper GPS 
receivers track the less precise, commercially available coarse code, or, in the most expensive units, 
both codes.  For  each satellite the receiver measures the delay between the time t1 , when a signal was 
transmitted, and the instant of its reception t2 at the user antenna. This time interval ( t2 - t1 ) multiplied 
by the propagation speed of radio waves in the atmosphere (which is closely related to the speed of light 
c ), gives the distance  di from each satellite to the user's antenna.    This computation is correct only if 
the user’s clock is synchronised with the GPS time. To avoid the need for the user of an expensive and 
complex atomic clock, it is sufficient to take an extra delay measurement, to solve for the 
synchronisation error.  In conclusion, in  a two dimensional localisation (Lat and Long), at least three 
satellites in view are needed.  If more satellites are available, a solution in three dimensions is 
achievable. 
 
The localisation accuracy, can spread from a few centimetres to a few meters 1, depending on many 
different factors.  The most important ones are: the type of codes used, the particular geometry of the 
satellite positions in the sky and the uncertainties in their real orbits, the length of measurement time, 
the ionospheric and tropospheric delays, the quality of the receiving system, the level of sophistication 
of data analysis.  
 
We started this research activity in 1994, when we bought the receiver XR4-PC from Navstar, which is 
a full size PC card (Caporaloni Ambrosini, 1995). More recently, we bought two Motorola VP 
Oncore modules.  In both cases we chose GPS receivers that can operate both as a navigation aids 
(giving in real time Longitude and Latitude while the receiver is moving), and also as a source of an 
extremely stable time scale, if the unit is kept in a fixed place.  The timing ticks come out in the form of 
a pulse, with one peak per second (1PPS) of repetition interval, made available to the user with TTL 
levels. The GPS theory and the manufacturers guarantee that this signal is synchronised within almost 
50 nanoseconds from UTC.  
 
EXAMPLES OF FALSE INTERPRETATIONS BY STUDENTS 
 
Figure 1 shows the experimental set-up we built to allow students to compare, over different and 
properly selected time scales, the 1 PPS signal generated locally by a good quartz oscillator (directly 
projected and assembled by a couple of them) with the one obtained by a GPS receiver .  These signals 

                                                 
1 Until May 2000, this intrinsic accuracy of the GPS technique was artificially degraded for military reasons down 
to a few hundred meters for civil users.    
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are inputted into an HP universal counter, which can be configured to measure both the frequencies or 
the time interval beteween the two signals. 

Figure 1. Our measurement chain: the frequency of the 1PPS made available by the GPS receiver (VP 
module) and by the quartz oscillator (RS oscillator) can be read in real time  

both on the counter display and on the PC monitor 
  
While the main students’ activities are described in previous works (Caporaloni Ambrosini, 1999 and 
2002), here we want to illustrate two cases where the results shown on the PC monitor, drove them to 
get wrong ideas, and give false interpretation of the reality. The first example refers to a set of 
frequency measurements done over rather short time scale (a few tens of minutes)  of the  1PPS signal 
derived by the GPS receiver. Students’ surprise was to discover that the GPS pulse didn’t produce the 
nominally expected value of 1Hz (or better 1.000 000 0xx Hz): the first offset figure showed up in the 
sixth decimal place (see Tab.1), instead of the eighth one, in agreement with the manufacture’s 
specifications.   

 
Table 1.  The GPS signal frequency read in real time on the display.  

The up pointing arrow indicates the first gittering figure 
 

GPS receiver 
                                                                         ↓ offset 

Frequency   =   1. 000 001 341  Hz   
                                                                              ↑ fluctuations  
 
At this level, students did not show any doubt to believe in the results shown on the PC monitor. We 
had to guide them by critical discussions to get a correct comprehension of the reality: the GPS has to 
be trusted as an extremely accurate frequency standard. This consideration comes out from its main 
application: the navigation. Ships want to approach harbours with the same level of accuracy all year 
around!  Nowadays, the system guarantees a localisation accuracy of a few meters also to civil users.   
By the help of a hand held GPS receiver (Garmin e-map), we made with students this check: walk with 
the GPS receiver in your hands and look at the arrow pointing at your position in the street where you 
are, then turn yourself of 180 degrees and again walk;  after  three-four meters you will see that also the 
arrow changes its direction of 180 degrees.  If we express this uncertainty of, let’s say, ten meters in 
space localisation,  as a timing uncertainty in the arrival time of the GPS signals, we get around 30 ns.    
  
All these arguments show that the GPS 1PPS signal is a reliable frequency standard with an accuracy 
better than 10-7.  Then the results shown on the counter display must be wrong.  Where is the problem?   
It is in the accuracy of the time base reference of the frequency counter, that due to ambient temperature 
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changes and quartz ageing, can produce frequency offsets as large as a few parts per millions, according 
to the manufacturer specifications. In conclusion  this explains the discrepancy of 1.3 µHz on the GPS 
frequency reading.  Then students, really aware of how things are going on, decided to adjust  the 
internal reference oscillator of the counter manually, by the relative setting screw, until they could read 
on the display the correct value of 1.000 000 0xx Hz.  
  
The second surprise for students was that the short-term frequency fluctuations of the GPS were larger 
than those of the quartz oscillator that they have been able to build by themselves.  

 
Table 2.  The quartz oscillator frequency read in real time on the display.   

The up pointing arrow indicates the first gittering figure 
 

Quartz Oscillator 
                                                                             ↓  offset                                                            

Frequency  = 1.000 000 793  Hz    
                                                                                 ↑    fluctuations                                

 
To substantiate, in a quantitative way, the real time impressions, students made two series of frequency 
measurements, one for the GPS and one for the quartz oscillator, along with 6 minutes, one data point 
every three seconds. The time scale in this example (360 seconds) was chosen long enough, to have a 
sufficiently high number of data points (low statistical uncertainty) and not too long to be corrupted by 
drift effects. 
 
Then students used EXCEL to compute the mean values and the standard deviations.  These are their 
results: 

 
GPS  <F> = 1. 000 001 323 Hz  σ = 53 nHz 
Quartz  <F> = 1. 000 000 791  Hz  σ = 0  nHz 
 

The direct calculus of the standard deviation of the quartz oscillator data gave zero!  
In spite of the fact that the popular spreadsheet we used allows to show up to 30 digits, it evidently does 
not make the calculus with all those figures. It was then necessary to adopt a trick: by subtracting 1 
from each data point  the standard deviation algorithm can work on the significant decimal figures, 
without wasting resolution on the large offset of the average value. The final, correct, result was  

 
Quartz  <F> = 1. 000 000 791  Hz  σ = 1.9 nHz 
 

This was another example for students to become aware that attention and criticism are needed to make 
good use also of popular spreadsheets, in order to get correct interpretation of the physical reality. 
 
Finally we want to report a third, even subtler, example of computer misinterpretation. The off-the-shelf 
automatic data acquisition program we used to read the counter gave strange results when displaying 
the 1PPS data.  To make the thing short, the reason of the error came from the fact that the program was 
reading the data at its own prefixed data rate, so time to time, it simply missed a data point!    The 
final message is rather clear: never use in an automatic system two independent time synchronisations.  
One action should wait for the completion of the other or you should use data buffers. 

 
Another example opened up just a few months ago is the following. In January 2003 we have organized 
the Doppler tracking of the Cassini spacecraft from the Italian radiotelescope of Noto. The downlink 
radio signal was recorded at that time as an audio tone.  Now the question to the students: how can you 
judge if that recording is the true Cassini signal?  Can you identify its characteristics, reproduce them 
by a personal computer and compare it with the supposed original one? The music experts answered 
that two types of audio generators would have been needed at least, one for a tone with some sweeping 
capability (to emulate the variable Doppler) and another for the measurement noise, to be appropriately 
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filtered; a Labview code, developed to reconstruct the sound, showed that the real signal was even more 
complex than expected. 

 
CONCLUSIONS 
  
Teaching strategies for helping students’ consciousness 
In our ten year experience of teaching experimental physics, we met many situations where students 
were drawn to wrong interpretation of reality. This is mainly due to their absence of criticism of the 
new instruments and personal computers, which are considered virtually “perfect”. 
 
In order to point out the limits of validity of these modern devices, we have found very successful to 
divide the laboratory activities in two levels. In the first part of the course, simple instruments with 
different resolutions allow to critically discuss the theoretical aspects of each step of the measuring 
procedure.   By the way, at this stage, we take great care in teaching a metrologically correct glossary.   
In the second part, several “open experiments” let the students to feel the emotion of research, and to 
become aware of a correct way of making measurements.  Here the students utilise instruments of the 
most  sophisticated technology.  These are so easy to use and so complex inside that they can hide the 
real measurement limitations or even they can generate artifacts, very difficult to identify.   Our 
teaching strategies aim to improve the student criticism toward the discovery of the range of validity of 
the experimental configuration, and the search of the random fluctuations and the systematic effects 
always present in real measurements.   Modern computers offer in this regard a variety of occasions for 
misunderstandings.  Putting their computing capabilities at some border line or simply toward some 
unusual situations, it can be rather easy to show how they can give wrong results.  From this point of 
view we have found that the GPS technique is very attractive for the students and is fruitful of many 
didactic applications. The final result of this process is a better comprehension of the subject by the 
students.   Proofs of that are their activities that they develop autonomously, like the design of the 
experiment from data acquisition to data analysis, the allocation of different tasks within subgroups, the 
final presentation of their results, both oral and in a written report. 
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