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ABSTRACT 

Fourier trigonometric series are a constant component of the basic course of calculus at Universities. If we teach 

the topic about the Fourier series in the classical way it is often necessary to give a lot of time to a tedious 

mechanical performing of some operations. For a given function and a given interval, a student must count the 

coefficients of the Fourier series by definite integrals, to investigate the convergence of this series, to draw graphs 

and so on. Then a teacher with his students cannot sufficiently deal with such an important problem as the 

approximation of functions in a given interval by the Fourier polynomial, it means by the sum of several initial 

terms of the Fourier series. The reasons for it are the lack of time and the fact that these problems require more 

complex calculating and graphics tools for their solution. Fourier series occur very frequently in the problems of 

mathematical physics. The expansions of the functions can help to solve them in various physical problems. Our 

aim is to show on concrete simple examples that the graphical and numerical investigations Fourier series 

expansions by Mathematica commands and programs may be effectively used.  
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INTRODUCTION 

 

Many nature and technical phenomena have a periodic character. Fourier series are used extensively in 

engineering, especially for processing images and other signals. Finding the coefficients of a Fourier 

series is the same as doing a spectral analysis of a function. Fourier trigonometric series are expansions 

of periodic functions f(x) on an interval [-l, l], l > 0, in terms of an infinite sum of sines and cosines. 

This form is  
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The Fourier coefficients an , bn are given by the relations  
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The series expansion converges to the function  (equal to the original function at points of continuity or 

the average of the two limits at points of discontinuity) 
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if the function f satisfies some sufficient conditions for convergence of Fourier series. For instance these 

conditions are such that f and f ' are sectionally continuous in [-l, l]  ( f is periodic outside [-l, l] with a 

period 2l). In the Fourier series corresponding to an odd (respectively even) function, only sine 

(respectively cosine) terms can be present (Widder, 1989). A great thing about using Fourier series on 

periodic functions is that the first few terms are often a very good approximation to the whole function, 

not just the region around a special point. 

 

USING MATHEMATICA FOR FOURIER EXPANSION 

 

The Mathematica system contains a large number of built - in functions. Most versions of Mathematica 

also include a collection of standard add - on packages that define many additional functions in areas 

such as algebra, calculus, discrete and numerical mathematics, number theory and statistics. One of 

these packages provides function giving numerical approximation to Fourier transforms and also 

provides functions for Fourier series, Fourier coefficients and their numerical counterparts. The 

numerical approximations use Mathematica's numerical integration and summation directly without 

first trying for an exact solution. The Fourier trigonometric decomposition, which expresses a periodic 

function as a superposition of trigonometric functions, may be computed using the function 

FourierTrigSeries (Wolfram at all). In certain circumstances we will not want exact or symbolic 

coefficients, but numerical approximation to the coefficients. In these cases we can use the numerical 

version of the Fourier series functions. If we want to demonstrate how the precision of the 

approximation of the function by its Fourier expansion increases in respect of the order of the used 

Fourier polynomial (in the given interval) we have two possibilities of visualization of it. The first way 

is more static. We can show successively (but divided to several different screens) the graph of the 

given function and the graphs of the sum of several initial terms (for example three, six and so on) of its 

expansion. The second possibility is to use animated graphs which better exploit the strong visual 

elements of Fourier analyses. The terms of the Fourier expansion are added up one by one for example 

by click of the mouse. Students see immediately that the more terms there are, the better the 

approximation is. The graphic possibilities enable to use only the first way in this contribution. 
If a function f is given by the unique formula then its Fourier expansion can be obtained by using the 

function FourierTrigSeries for example from the additional package Calculus`FourierTransform` of 

Mathematica version 4.1. But a function f is often given by various formulas in different parts of its 

domain. Therefore we had to create a new function FourierSer for finding the Fourier expansion of f in 

these cases. The definition of this function has the following form (only for two formulas).  
 

FourierSer[f1_, {x_, x1_, x2_}, f2_, {x_, x2_, x3_}, n_] :=  

 Module[{a0, a},  

 a0 = Integrate[f1, {x, x1, x2}] + Integrate[f2, {x, x2, x3}];  

 Do[a[i] = Integrate[f1*Cos[(2*i*Pi*x)/(x3-x1)], {x, x1, x2}] +     

           Integrate[f2*Cos[(2*i*Pi*x)/(x3-x1)],{x,x2,x3}];  

   b[i] = Integrate[f1*Sin[(2*i*Pi*x)/(x3-x1)],{x,x1,x2}] +  

Integrate[f2*Sin[(2*i*Pi*x)/(x3-x1)],{x,x2,x3}],       

{i,1,n}];  

    a0/2 + Sum[a[i]*Cos[(2*i*Pi*x)/(x3 - x1)] +  

       b[i]*Sin[(2*Pi*i*x)/(x3 - x1)], {i, 1, n}]] 

 

Now let us show three examples of the Fourier trigonometric expansion of typical wave functions. The 

commentary on every case is done in two parts. The output of the first part is the list of several initial 
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terms of the Fourier expansion calculated in Mathematica. The second part includes the graph of the 

given function, the graph of the sum of  three or six initial terms of its Fourier series. 

 

Example 1.  Square wave function 

 

     2)( xf ,  ),0,2(x   
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 In[1] = FourierSer[-2, {x,-2,0}, 2, {x,0,2}, 12]  

 

                         Pi x                  3 Pi x                     5 Pi x                         7 Pi x 

                8 Sin[-----]        8 Sin[------]          8 Sin[--------]            8 Sin[--------] 

                           2                       2                             2                                2 

Out[1]= --------------  +  ------------------- + ------------------- +    --------------------- +  

                      Pi                     3 Pi                           5 Pi                          7 Pi 

 

 

                   9 Pi x                          11 Pi x 

         8 Sin[--------]              8 Sin[---------] 

                      2                                  2 

   +   ------------------    +    --------------------- 

                  9 Pi                           11 Pi 

 

 

 
 

 

Figure 1a. The graph of the given function 

 

 

             
 

 

Figure 1b. The graph of the sum of  three  terms 
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Figure 1c. The graph of the sum of  six terms 

 

Example 2. Swath (triangle) wave function 
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In[2]= FourierTrigSeries[x+3,{x,-3,3}, 6] 

 

                                Pi x                  2 Pi x                                                   4 Pi x 

                       6 Sin[----]        3 Sin[------]                                        3 Sin[--------] 

                                  3                        3                 2 Sin[Pi x]                       3 

Out[2]= 3 +   ---------------  ------------------  +  ----------------     ---------------- +  

                            Pi                       Pi                           Pi                         2 Pi 

 

                    5 Pi x 

           6 Sin[------] 

                       3                  Sin[2 Pi x] 

+     --------------------    ------------------ 

                  5 Pi                         Pi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2a. The graph of the given function 
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Figure 2b. The graph of the sum of  three terms                                                        

 

 

 

 

 

 

 

 

 

 

 

   

Figure 2c. The graph of the sum of  six terms 

 

Example 3. Rectifier wave function 
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In[3]= FourierSer[0, {x,-Pi,0}, Sin[x], {x,0,Pi}, 6]           

                   1            2 Cos[2 x]            2 Cos[4 x]           2 Cos[6 x] 

 Out[2]=  -----  -    -----------------   -   ---------------   -   ----------------   - 

                  Pi                3Pi                       15Pi                      35Pi   

          

         2 Cos[8 x]            2 Cos[10 x]       2 Cos[12 x]         Sin[x] 

   - ------------------  -   ----------------- - ---------------- +  ------------ 

            63Pi                        99Pi                143Pi                   2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3a. The graph of the given function 
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Figure 3b. The graph of the sum of  three  terms                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3c. The graph of the sum of  six  terms 

 

 

OTHER CALCULATIONS 

 

The difference between the values of the given function f and the values of its Fourier polynomial Fn on 

an interval (-l, l) can be also expressed numerically. The mean quadratic deviation can be defined as 
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Example 4: Evaluate the mean quadratic deviation for the swath (triangle)  

).3,3(   , 3)(  xxxf  

wave function for even n from 2 to 10. 

 

We get these values of the mean quadratic deviation using the function 

Delta[f_,Fn_,l_]:= Sqrt[Integrate[(f-Fn)^2, {x,-l,l}]] 

in the system Mathematica: 

 

n 2 4 6 8 10 

 2.07886 1.55624 1.29622 1.13397 1.02048 
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It is clearly to see from table that the mean quadratic deviation is a decreasing function of n. It means 

that the approximation of a function  f  by its Fourier polynomial is the more precise if it is used the 

greater value of n. The system Mathematica can be also used for other calculations connected with 

Fourier series. The process of differentiation or integration of Fourier series term by term is such 

example. One of the interesting cases is the possibility to obtain the Fourier series expansion of a 

function F on term by term integration of the Fourier series expansion of the function f knowing only 

this expansion and the function itself can be unknown. 

 

CONCLUDING REMARK 

 

Fourier series analysis is integral to the study physics, mathematics and engineering, but the methods 

can be difficult to reach and apply. The Application of the system Mathematica eliminates time 

constraints typically associated with the treatment of Fourier series and provides a platform for learning 

and investigating more interesting and complicated problems. The basic features of this system give 

teachers an opportunity to explore different methods in depth and help students develop deeper 

understanding of this numerical technique. The program tools can remove not only tedious numerical 

calculations but even to use the calculating and graphic possibilities of software to help students better 

understand the solution of relevant problems. And this is one of the most important tasks of training in 

mathematics at Universities. 
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