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ΠΕΡΙΛΗΨΗ

Η κυκλοφοριακή συμφόρηση έχει σημαντικές οικονομικές και κοινωνικές επιπτώσεις τόσο

στις σύγχρονες πόλεις όσο και στους πολίτες που ζουν σε αυτές, με τις κυριότερες συ-

νέπειες να περιλαμβάνουν την σπάταλη καυσίμων, την μείωση της παραγωγικότητας καθώς

και τον εκνευρισμό των οδηγών. Η κυκλοφοριακή συμφόρηση οφείλεται κατεξοχήν στο

γεγονός ότι η ζήτηση υπερβαίνει την χωρητικότητα σε κάποιες περιοχές του οδικού δι-

κτύου. Πάρα το γεγονός ότι διαφορά συστήματα ελέγχου και διαχείρισης της οδικής

κυκλοφορίας έχουν η ήδη προταθεί, το φαινόμενο της κυκλοφοριακής συμφόρησης παρα-

μένει καθώς τα μέχρι τώρα προτεινόμενα συστήματα προσπαθούν μόνο να αναδιανείμουν

τις ροές κυκλοφορίας στα κύρια τμήματα του οδικού δικτύου μειώνοντας ή καθυστερώντας

την δημιουργία κυκλοφοριακής συμφόρησης χωρίς όμως να επιτυγχάνουν πάντα την πλήρη

αποτροπή της.

Η παρούσα διδακτορική διατριβή στοχεύει στην πλήρη αποτροπή της κυκλοφοριακής

συμφόρησης και στη μεγιστοποίηση της απόδοσης του οδικού δικτύου συνδυάζοντας τα

υπάρχοντα μέτρα ελέγχου (π.χ., καθοδήγηση διαδρομής και έλεγχος της κυκλοφοριακής

ροής) με καινοτόμες στρατηγικές διαχείρισης της ζήτησης. Η διαχείριση της ζήτησης επι-

τυγχάνεται μέσω μιας ενιαίας αρχιτεκτονικής κρατήσεων η οποία καθορίζει την πρόσβαση

στο δίκτυο ούτος ώστε ένα όχημα (ή ροή οχημάτων) να ταξιδεύει μόνο διαμέσου οδικών

αρτηριών (ή τμημάτων του δικτύου) όπου δεν υπάρχει κυκλοφοριακή συμφόρηση. Το

πρόβλημα διερευνάται τόσο σε μικροσκοπικό όσο και σε μακροσκοπικό επίπεδό.

Σε μικροσκοπικό επίπεδο, η προτεινόμενη αρχιτεκτονική κρατήσεων παρέχει οδηγίες

σε κάθε όχημα σχετικά με τη διαδρομή που θα ακολουθήσει και τον χρόνο αναχώρη-

σης του, με αποτέλεσμα να βελτιστοποιεί μία ή περισσότερες μετρικές απόδοσης (π.χ. η

διαδρομή που επιτυγχάνει είτε το συντομότερο χρόνο άφιξης στον προορισμό, είτε την

διαδρομή με την πιο μικρή απόκλιση από μια επιθυμητή ώρα άφιξης) διασφαλίζοντας ότι

τα οχήματα θα ταξιδέψουν διαμέσου οδικών αρτηριών στις οποίες δεν επικρατεί κυκλο-
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φοριακή συμφόρηση. Η προτεινόμενη αρχιτεκτονική ενδέχεται να ενημερώνει τα οχήματα

να καθυστερήσουν την αναχώρηση τους έτσι ώστε να δώσουν χρόνο να αποτραπεί η

συμφόρηση στις αρτηρίες που θα χρησιμοποιήσουν ή να ακολουθήσουν εναλλακτικές δια-

δρομές που ελαχιστοποιούν τις προεπιλεγμένες μετρικές απόδοσης. Στην συνέχεια με

την χρήση μαθηματικής μοντελοποίησης, γίνεται διατύπωση του προβλήματος το οποίο

φαίνεται να είναι ένα δισεπίλυτο πρόβλημα. Παρά τη πολυπλοκότητα του προβλήματος,

διάφορες λύσεις έχουν αναπτυχθεί, βασισμένες στον μαθηματικό προγραμματισμό, στο

δυναμικό προγραμματισμό, καθώς και στη θεωρία των γράφων οι οποίες προσφέρουν δια-

φορετικό διακανονισμό μεταξύ υπολογιστικού κόστους και ποιότητας της λύσης. Για την

περαιτέρω μείωση της πολυπλοκότητας, προτείνεται ένα σύστημα συνάθροισης στο οποίο

το οδικό δίκτυό χωρίζεται σε επιμέρους περιφέρειες όπου ένας γράφος επικάλυψης δη-

μιουργείτε με στόχο να καθοδήγει τα οχήματα με βάση οδηγιών σε περιφερειακό επίπεδο.

Σε μακροσκοπικό επίπεδο, με την χρήση μακροσκοπικών μοντέλων προτείνετε ο συν-

δυασμός των συστημάτων καθοδήγησης ροών και διαχείρισης ζήτησης στοχεύοντας τον

έλεγχο δικτύων ευρείας κλίμακας, τα οποία αποτελούνται από πολλαπλές περιφέρειες. Η

καθοδήγηση διαδρομής σε περιφερειακό επίπεδο, χρησιμοποιείται για την εύρεση των βέλ-

τιστων ροών μεταξύ γειτονικών περιφερειών, με στόχο την μεγιστοποίηση των αριθμών

των ταξιδιών που ολοκληρώνουν την διαδρομή τους ανά περιφέρεια. Η διαχείριση της ζήτη-

σης χρησιμοποιείται για τον έλεγχο των ροών κυκλοφορίας που προτίθενται να εισέλθουν

στο δίκτυο, προτρέποντας μέρος των ροών ζήτησης να περιμένουν στο σημείο προέλευσής

τους. Το συγκεκριμένο πρόβλημα διαμορφώνεται ως πρόβλημα μη γραμμικού προγραμμα-

τισμού και με την χρήση μη γραμμικού ρυθμιστή προβλεπτικού μοντέλου στοχεύει στην

ελαχιστοποίηση του συνολικού χρόνου ταξιδιού (συμπεριλαμβανομένου του χρόνου ανα-

μονής κατά την προέλευση) για όλες τις ροές κίνησης, βελτιστοποιώντας από κοινού τις

ροές ζήτησης που επιτρέπεται να εισέλθουν στο δίκτυο, καθώς και την αναλογία των ροών

μεταφοράς μεταξύ περιφερειών. Παρά το γεγονός ότι το πρόβλημα είναι μη γραμμικό και

μη κυρτό και ως εκ τούτου πολύ δύσκολο να επιλυθεί, αυτή η εργασία αναπτύσσει δύο

γραμμικούς ρυθμιστές προβλεπτικού μοντέλου που παρέχουν στενά κατώτερα και ανώτε-

ρα όρια σε σχέση με την βέλτιστη λύση. Ο γραμμικός ρυθμιστής προβλεπτικού μοντέλου

ανώτερου ορίου υλοποιείται κάτω από τον περιορισμό ότι κάθε περιοχή λειτουργεί πάντο-

τε σε κατάσταση ελεύθερης ροής η οποία εξαλείφει τους μη γραμμικούς και μη κυρτούς

περιορισμούς από τη μοντελοποίηση του προβλήματος. Ο περιορισμός αυτός μπορεί να
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αποφέρει άριστα αποτελέσματα όταν η βέλτιστη λύση απαιτεί την λειτουργία της κάθε

περιοχής σε κατάσταση ελεύθερης ροής για κάποια χρονική περίοδο. Ο γραμμικός ρυθ-

μιστής προβλεπτικού μοντέλου κατώτερου ορίου επιτυγχάνεται με τη χαλάρωση των μη

κυρτών περιορισμών σε πιο χαλαρούς αλλά γραμμικούς περιορισμούς. Επειδή οι ρυθμιστές

προβλεπτικού μοντέλου που προκύπτουν είναι γραμμικοί, μπορούν να λυθούν με βέλτιστο

τρόπο πολύ γρηγορά για όλα τα σενάρια κυκλοφορίας, καθιστώντας την πρακτική τους

εφαρμογή πολύ ελκυστική.

΄Ολες οι προτεινόμενες μεθοδολογίες και αλγόριθμοι αξιολογούνται μέσω εκτεταμένων

ρεαλιστικών προσομοιώσεων λαμβάνοντας υπόψη είτε μακροσκοπικά είτε μικροσκοπικά

μαθηματικά πρότυπα κυκλοφοριακής ροής. Τα αποτελέσματα καταδεικνύουν τις σημα-

ντικές βελτιώσεις που μπορούν να επιτευχθούν με την εφαρμογή της ενσωμάτωσης της

καθοδήγησης δρομολόγησης με την διαχείριση της ζήτησης όσον αφορά την αύξηση της

αποδοτικής λειτουργίας του δικτύου και την μείωση του χρόνου ταξιδιού.
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Abstract

Traffic congestion has significant economic and social consequences in modern cities

and their citizens, including fuel waste, productivity loss, and driver frustration.

Congestion mainly occurs because the traffic demand exceeds the capacity of a cer-

tain area of a road transportation network. Although several traffic management

and control schemes have been proposed, the phenomenon still exists because cur-

rent strategies regulate or redistribute traffic flows through different road segments

aiming only to reduce or delay the effect of congestion without preventing traffic

overload in high demand scenarios.

This Ph.D. thesis aims to develop a framework that completely eliminates con-

gestion while at the same time, it maximizes the efficiency of the road network

by combining existing control measures (such as route guidance and traffic flow

control) with innovative demand management strategies. Demand management is

achieved through a novel reservation architecture that grants access to the network

only in case that it is ensured that the requested vehicle (or traffic flow) will travel

only through congestion-free road segments (or network regions). The problem is

investigated at microscopic and macroscopic levels.

At the microscopic level, the proposed reservation architecture provides instruc-

tions to each vehicle regarding the route to follow and the departure time from the

origin in order to optimize one or more performance metrics (e.g., earliest destina-

tion arrival time, deviation from on-time arrival) without passing through congested

road segments. This implies that vehicles may be instructed to delay their departure

until some road segments become uncongested or even follow alternative routes that

minimize the considered metrics. The problem is formulated in rigorous mathemat-

ical terms and shown to be NP-complete in most of the cases. Despite the difficulty

of the problem, several solution methods are developed based on mathematical
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and dynamic programming, as well as on graph theory, which exhibit a different

trade-off between computational cost and optimality. To further reduce complexity,

an aggregation scheme is also proposed for multi-region large-scale networks that

constructs an overlay graph and derives instructions at the regional level.

At the macroscopic level, the proposed scheme aims to provide both regional

route guidance and demand management to control vehicles in a multi-region net-

work considering macroscopic traffic dynamics. Regional route guidance is used

to identify the optimal transfer flows between neighboring regions so that the trip

completion rate across all regions is maximized. Demand management is utilized to

control the traffic flows entering the network by allowing a portion of the demand

flows to wait at their origin. The considered problem is formulated as a non-linear

Model Predictive Control (MPC) problem that aims to minimize the total travel time

(including the waiting time at the origin) over all flows by jointly optimizing the

demand flows allowed to enter in the network, and the ratio of transfer flows be-

tween regions. Despite the fact that the problem is highly non-convex and hence

very challenging to solve, this thesis develops two linear programming MPC for-

mulations that provide tight lower and upper bounds to the optimal solution. The

upper bounding linear MPC formulation is obtained by restricting each region to

always operate in the free-flow regime which eliminates the non-linear constraints

from the formulation but may yield sub-optimal results if the optimal solution re-

quires operation in the congested regime at some time period. The lower bounding

linear MPC formulation is obtained by relaxing the non-convex constraints to looser

but linear constraints. Because the resulting MPC formulations are linear programs,

they can be solved in a fast and optimal manner under all traffic scenarios, making

their practical implementation very attractive.

All proposed methodologies and algorithms are evaluated through extensive

realistic simulations considering different microscopic and macroscopic level traffic

dynamics. The provided results demonstrate the significant improvements that can

be realized by applying the proposed integration of routing guidance with demand

management in terms of network efficiency and travel time reduction.
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Chapter 1

Introduction

1.1 Motivation and objectives

Road transportation networks are one of the critical infrastructures that significantly

contribute to a country’s economic growth as they support the movement of people

and goods when and where they are needed. For instance, in EU road transport

accounts for up to 5% of its gross domestic product (GDP) [1]. Despite the fact

that road transportation is a significant contributor to growth, it also has significant

adverse effects to cities and society, with traffic congestion being the primary one.

Traffic congestion has become a critical threat in modern city landscapes resulting

in multiple adverse effects such as environmental pollution, non-predictable travel

times, and unwanted delays [2]. Time wasted in congestion entails many socio-

economic problems, while congestion annually costs up to 1% of the EU’s GDP

(around 100 billione each year) [1]. Besides, an increase in congestion leads to

higher travel times, with drivers experiencing about 26 hours of travel delays due

to the traffic congestion on average per year [3].

Congestion occurs as traffic demand surpasses the infrastructure’s available ca-

pacity, a phenomenon mostly observed during rush-hours and is characterized by

increased vehicular queuing, lower speeds, and hence longer journey times. Cur-

rently, traffic congestion countermeasures fall into three categories, as shown in

Fig. 1.1:

1. Modification and expansion of the road infrastructure, e.g., building new

roads and improving current road junctions (e.g., grade separation) [4].

1

Cha
ral

am
bo

s M
en

ela
ou



• Building new roads.
• Improving current intersections.
• Widening roads/intersections.
• Expanding the supply and availability of travelling 

modes. 

Infrastructure
Expansion

• Perimeter Control/Gating.
• Ramp Metering.
• Route Guidance.
• Variable Speed Limits 

Traffic 
Management

• Providing incentives and rewards for sustainable 
travel habits.

• Imposing pricing and tolling schemes. 

Demand 
Management

Figure 1.1: The three major categories of traffic congestion countermeasures.

2. Traffic management which aims to minimize the travel times of vehicles and

also to improve the overall network operation. Recent advances in information

and communication technologies (ICT) facilitate the management and control

of all vehicular movements within a region of interest, e.g., using ramp meter-

ing, gating, perimeter control, and route guidance [5].

3. Demand management which intends to alleviate traffic congestion by applying

various restriction policies such as economic instruments (road and congestion

pricing), regulatory measures and physical restraints (e.g., road closures and

parking restrictions) [6]. Switching to alternative modes of transport (buses,

trains, etc.) is also considered as demand management.

Nonetheless, traffic congestion does not necessarily occur due to lack of the overall

network capacity, and thus, expanding the road infrastructure will be inefficient.

Besides, the investment cost and operating expenses of such solutions are quite high,

limiting their applicability with recent studies focusing on online demand and traffic

management techniques. On the other hand, controlling and managing large-scale

transportation networks is a challenging task that becomes even harder to tackle as

an increase in demand1 for mobility results in higher levels of congestion [7].

1In this thesis the word “demand” always refers to the number of vehicles that want to access the

network.
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Figure 1.2: A Typical traffic demand pattern observed within an urban area during morning

and evening peaks (orange line). Demand management schemes aim to redistribute traffic

demand in space and time (red line).

The recent advances in ICT can substantially reduce the congestion problem

by employing a plethora of intelligent traffic management strategies [5]. For in-

stance, the existing route guidance strategies can provide real-time trip information

to drivers or can offer advice on alternative congestion-free routes in an effort to re-

duce traffic imbalances across the road network while minimizing travel time [8, 9].

Interestingly, offering real-time state information to drivers has been shown to cre-

ate additional side effects to network utilization, since all rational drivers would

opt to follow less congested road segments instead of following the shortest dis-

tance paths; this leads to high demand in some road segments, while the rest of the

network remains under-utilized [10].

Despite these significant advancements, traffic congestion still persists because

the existing route guidance methods seek to improve the User Optimum (referred

also as the Wardrop Equilibrium [11]). Selfish routing often results in transferring

congestion to other road links, which results in network state oscillations, with

congestion levels shifting back and forth to different parts of the network [12].

On the contrary, routing solutions that aim to improve the Social Optimum can

substantially reduce travel times by slightly decreasing traffic demand [10]. Besides

social optimum requires some vehicles to be willing to sacrifice some of their travel

time or to take longer routes if these actions benefit the network operation. In this

way, the number of vehicles sacrificing some of their time for a late departure (i.e.,

demand management) can be significantly smaller than the number of vehicles that

are actually benefiting [13]. Hence, an alternative approach to the problem is to

manage driver actions (i.e., routes and departure times) to prevent the occurrence
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of congestion so that the increasing demand could be served without building more

infrastructure [14].

An example of a traffic demand pattern that can be observed within an urban

area is depicted with the orange line in Fig. 1.2. The two peaks represent the

morning and the evening peak during which traffic demand surpasses the maximum

amount of the traffic capable of being handled by the infrastructure (capacity), in

which traffic congestion is unavoidable. Under these circumstances, a demand

management scheme intents to influence drivers’ travel routine by employing a

combination of operational strategies to reduce or redistribute traffic demand in

space and time (as depicted with the red line in Fig. 1.2). This problem can be

resolved either by promoting alternative travel modes (e.g., public transportation or

vehicle sharing) or by suggesting alternative routes to follow or even by providing

travel time information to drivers influencing their decisions (in respect to the travel

mode choice) [3, 15]. These key facts emphasize that congestion can be potentially

alleviated only through innovative policies that can integrate an intelligent demand

management scheme with vehicle routing (i.e., traffic management) to support the

changing demand while steering traffic away from hot-spot regions [3]. For instance,

one approach is to affect drivers’ routing decisions (traffic management) and at the

same time to control vehicle departure times (demand management). In this thesis

demand management refers to the regulation of traffic inflow inside a network, (e.g.,

by controlling the departure time and route to follow either on a per vehicle basis

(microscopic level) or even on a traffic flow basis (macroscopic level)) aiming to

eliminate traffic congestion and to minimize travel time.

Interestingly, congestion within an urban area can be reduced by curbing the

number of vehicles concurrently using the road infrastructure [16]. Several ap-

proaches have been proposed to alleviate the problem. Most of them offer fully

connected systems that utilize very detailed link-level information. Hence, their

real-life implementation requires various mobility characteristics to be taken into

consideration, such as the critical density and the maximum capacity of different

links which may be difficult to acquire due to sensor sparsity, the large-scale nature

of the network, and the inherent uncertainty that exists due to unpredictable human

behavior factors that limit their real-life application [17]. Under these circumstances,
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the accurate knowledge of all road segment characteristics is challenging, if not im-

possible to achieve.

To anticipate the complexity of the detailed link-level information, recent litera-

ture proposed the Macroscopic Fundamental Diagram (MFD), which serves as the

primary mathematical tool to develop aggregated traffic models for control [18].

The MFD framework offers low complexity modeling of the large-scale urban char-

acteristics capturing the macroscopic relationship between the three main mobility

parameters, i.e., speed, flow, and density [18]. The MFD is composed of two distinct

regimes, separated at the critical density point: 1) the free-flow regime where traffic

flows at its maximum speed (i.e., the free-flow speed) and 2) the congested regime

where traffic experiences a speed reduction as congestion emerges. According to

the MFD, within the congested regime, an increase in the region’s density results in

lower vehicle speeds with a higher possibility of gridlock. On the other hand, the

probability of gridlock diminishes within the free-flow regime where both driver

and network dynamics are well-approximated [16]. The existence of the MFD is

shown in [19] (using real data), demonstrating that it can be used to estimate the

outflow rate (trip completion rate) of different city regions [18]. Nonetheless, these

macroscopic relations are also present when autonomous vehicles are assumed [20].

Guided by the MFD analysis, in this thesis, it is assumed that a critical density

exists for every road segment in accordance to the corresponding MFD of the region

such that, vehicles can travel with high speeds when operating in the congestion-free

regime. On the other hand, if the critical density is overreached (congested regime)

then vehicle flows, and speeds become unpredictable. Thus, the key objective of the

proposed demand management methodologies is to prevent the vehicle density in a

region from exceeding its critical density value. For this Ph.D. thesis, we assume that

the critical density of each road segment is known (e.g., through the MFD analysis)

however, even if these are not known they can be computed through extensive

simulations or other tools like perturbation analysis [21].

Under the above framework, simple control mechanisms can be employed to

maintain traffic flow below the critical density of each road segment. As such,

in this thesis, we proposed a novel Route Reservation Architecture which ensures
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that each vehicle is scheduled to only traverse along congestion-free2 road segments.

When a vehicle is about to begin its journey, it sends a route reservation request to

a centralized Road Side Unit (RSU) to inform it about its origin and destination.

The RSU is responsible for all route reservations, by keeping track of the number

of vehicles that have reserved different time frames along specific road segments.

Road segments become temporarily unavailable whenever reservations reach their

critical density value, and they are reconsidered only when the allocated time slots

have elapsed. Hence, these route reservations provide estimates of the future state

of each road segment, and thus when reserved density of a segment exceeds its

critical density during particular time intervals, the RSU flags it as non-admissible.

Whenever the RSU receives a route request, it computes the Earliest Destination

Arrival Time (EDAT) route for the vehicle such that any road segment that reaches

its critical density is avoided taking into consideration the fact that it may be better

for a vehicle to wait at its origin until certain road segments become admissible.

Once the RSU determines the best path, it updates its reservation table with the

assumptions that: (a) vehicles follow the recommended path and (b) vehicles travel

with free flow speed (or the speed at capacity).

Another motivation of this thesis is to use the above reservation principles to

distribute the flattening of demand over a larger period (i.e., some vehicles should

enter the network earlier or later) such that the peak demand will not exceed the

network’s capacity. As a result, congestion will be avoided, and vehicles will arrive

at their destination on-time, without excessive delays in the road network. In that

case, the reservation architecture is similar; however, the optimization problem and

objective are different with vehicles sending to the RSU their origin-destination pair

and their desired arrival time at the destination. Then, the RSU determines the time

that the vehicle should depart from its origin and the path to follow, such that it will

arrive at the destination on or before the desired arrival time. In this approach, the

objective of the RSU is to minimize the difference between the departure and the

desired arrival times such that congested road segments are avoided and travelers

are not significantly inconvenienced (e.g., they do not arrive too early at their desti-

2Congestion-free road segments, also referred as admissible road segments, are those that their critical

density value is not reached.
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nation). Furthermore, through the reservation architecture, the RSU has a reasonable

estimate of the future states of the network; thus, it will route vehicles only through

non-congested road segments. Note that this approach and the route reservation

architecture operate considering microscopic traffic dynamics (microscopic level).

Furthermore, this Ph.D. thesis proposes a multi-regional level Model Predictive

Control (MPC) scheme that integrates route guidance with a demand management

method (macroscopic level). Given the origin and destination pairs of the vehicular

flows that request to navigate within the considered road network, the proposed

scheme tries to find the path that minimizes the destination arrival time of all ve-

hicles. The proposed MPC scheme does not only suggest a path to follow but also

manages the entering rate of the external inflow rates, resulting in a congestion-

free operation since a portion of the inflows is restricted at their origins (demand

management). In this way, route guidance finds the optimal transfer flows across

neighboring regions, while demand management regulates the external inflow rates

in the same manner as proposed in the route-reservation architecture. The resulting

formulation assumes that all routes within a region have a constant length indepen-

dent of their origin-destination pair. However, this assumption is often violated in

practice; thus, in this thesis, we also present a reformulation of the problem that

explicitly defines the paths followed for each origin-destination pair. The novelty

of this thesis lies both in modeling and solving the resulting problem under these

control measures.

An important assumption of the proposed methodologies is that each region’s

critical density is constant and known in advance. However, in realistic scenarios,

the critical density can change over time for a variety of reasons including, changes

in demand or OD pairs, due to roadworks or accidents and due to environmental

factors, such as weather conditions [22]. In this way, the above assumption is relaxed

on the intention to estimate its value in an online fashion by employing Infinitesimal

Perturbation Analysis (IPA) which can be utilized to capture the dynamic changes

in the critical density value.

7

Cha
ral

am
bo

s M
en

ela
ou



1.2 Benefits of the proposed demand management method-

ologies

The introduced methodologies have the following benefits.

• Vehicles are routed through non-congested paths which is a benefit for the

individual vehicle in the sense of the experienced travel time.

• By not allowing vehicles to go through segments that are above their capacity,

it “protects” other vehicles that have already reserved those segments and it

guarantees that they will not experience congestion either; thus the approach

has also a social benefit. This is in contrast to other time-depended routing

approaches which may allow a vehicle to enter a road but change the road

segment cost dynamically (e.g., the time to traverse the road segment). In this

case, if the vehicle finds it beneficial, to traverse a slightly congested road in

terms of arrival time at the destination, it also adversely affects the delays of

all other vehicles that are also scheduled to traverse the same road segment.

• By suggesting vehicles for a delayed departure, means that they are kept away

from the road network minimizing their travel time and the cost associated with

the lost productivity or the environmental impact. Furthermore, sustaining

network operation under free-flow conditions facilitates accurate travel time

estimation (i.e., assuming free-flow speed conditions) which in turn enables

the estimation of the destination arrival time.

• The late departures ensure that no congested conditions will appear and hence

the adverse effects of congestion such as unnecessary fuel consumption, time

losses, and health issues can be potentially eliminated.

• By sustaining a region’s density below its critical value, the related macroscopic

level problems (i.e., the MPC framework which is a Non-Convex Non-Linear

program) can be relaxed into a linear formulation that leads to fast and optimal

solutions, which enables real-life implementation.
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1.3 Thesis contributions

The primary purpose of this thesis is to enhance an urban network operation through

effective joint demand management and route guidance methodologies in which

vehicles can either be delayed at their origins or routed through longer but non-

congested routes in order to minimize their travel time. This results in congestion

elimination with beneficial effects for the entire transportation system. Hence, this

thesis has made several significant contributions to the field of demand management

and control of urban transportation networks, which are briefly summarized below:

• A novel route-reservation architecture is introduced for congestion-free rout-

ing, in the context of Intelligent Transportation Systems (ITS). Given the ob-

tained reservations, the mathematical formulation of the related routing prob-

lem (referred to as the Earliest Destination Arrival Time (EDAT) problem) is

derived in both the continuous and discrete time domains. In the process, we

examine the potential of the proposed architecture as an approach to alleviate

road congestion and to minimize the time for vehicles to reach their destination.

A rigorous complexity analysis of the EDAT problem is derived in Chapter 3

that demonstrates the NP-completeness of the problem. To solve the EDAT

problem optimally, a Mixed Integer Linear Programming (MILP) approach is

developed that allows delayed departures and considers admissible road seg-

ments in the continuous time domain. Although this approach yields to the

optimal solution, it is computationally expensive and hence, three alternative

heuristic algorithms are proposed to solve the EDAT problem. The proposed

algorithms offer different trade-offs between the solution quality and com-

putational complexity with the iterative Dijkstra’s-based Route-Reservation

Algorithm (RRA) being the primary heuristic used for solving the EDAT prob-

lem. Furthermore, to resolve any fairness issue that may arise due to the first-

come-first-served execution of the EDAT problem, a load balancing scheme is

developed that leads to better network performance in high congestion sce-

narios. This is achieved by balancing the traffic across different road segments

to improve the homogeneity of the network. A Time-Varying Multiple Linear

Regression method (TVMLR) is proposed in Chapter 4 to enhance the accuracy
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of route reservations through better travel time predictions.

• Furthermore, an extension of the route reservation architecture is presented in

Chapter 5 in which an aggregated and scalable route-reservation architecture

is proposed that employs an overlay graph to summarise the per link route

reservations into regional level metrics. In addition, a load balancing scheme

that operates over the overlay graph is proposed in Chapter 5; aiming to

enhance the performance of the aggregated route reservation scheme.

• Another extension of the route reservation architecture is presented in Chap-

ter 6 where a novel reservation-based architecture is developed to compute

vehicles routes and departure times such that drivers reach their destination

at the desired arrival time while guaranteeing a network-wide congestion-free

operation.

• The mathematical formulation of the non-linear non-convex joint route guid-

ance and demand management multi-regional MPC scheme. A solution to the

problem is provided by an approximate MILP formulation that is derived also

in Chapter 7. Towards the global optimality of the proposed non-linear MPC

scheme, a novel Linear Programming (LP) MPC formulation is derived that

yields tight lower bounds to the optimal solution. A second LP formulation is

presented in Chapter 7 aiming to provide an upper bound solution which is also

a feasible but sub-optimal solution to the original non-linear MPC scheme, that

is achieved by restricting the density of each region within the non-congested

regime. Also, a path-based joint route guidance and demand management

scheme is introduced in Chapter 8; providing similar LP relaxations as those

made for the multi-regional MPC framework.

• An Infinitesimal Perturbation Analysis (IPA) is performed in Chapter 9 to iden-

tify the sensitivity estimates of the performance measure of the instantaneous

throughput (i.e., number of vehicles that exit a region) of a transportation re-

gion with respect to the critical density. The proposed IPA estimator is applied

over the actual system to estimate its critical density value.
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1.4 Thesis outline

This thesis consists of ten chapters out of which Chapters 3 - 9 describe the technical

contributions. The remainder of this thesis is structured as follows.

Chapter 2 discusses the relevant literature work and elaborates on the contribu-

tions of this thesis compared to the state-of-the-art.

Chapter 3 introduces the route-reservation architecture for achieving congestion-

free routing in the context of Intelligent Transportation Systems. In this chapter,

the EDAT problem is mathematically formulated in both continuous and discrete

time domains, while according to a rigorous complexity analysis it is shown that

the EDAT problem is NP-complete in most cases. Furthermore, in this chapter

an optimization problem referred to as the Traffic Load Balancing Problem is also

formulated. Several solutions for both formulations with complementary objective

functions are proposed. Detailed simulation results across a particular region of the

San Francisco area, demonstrate the great benefits that can be realized by applying

the proposed solutions.

Chapters 4, 5 and 6 introduce several extensions and variations of the RRA ar-

chitecture. More specifically, Chapter 4 enhances the route reservation architecture

by considering the modeling uncertainties of road segments travel times through

a time-varying regression method, enabling real-time accurate, travel-time predic-

tions which leads to the minimization of reservations errors. Chapter 5 suggests an

aggregation of the route reservation architecture scheme where a heterogeneous ur-

ban area is partitioned into multiple homogeneous regions. The proposed approach

creates an overlay graph which is used by the reservation architecture to control the

traffic flow within each region. Chapter 6 addresses the problem of scheduling vehi-

cle departures from their origin in order to arrive at their destination on times taking

into consideration the route reservation architecture. The mathematical formula-

tion of the proposed problem is presented, and an efficient algorithmic solution is

derived. Microscopic simulation results demonstrate the substantial improvements

obtained by applying the proposed approach in realistic scenarios.

Chapter 7 introduces a MPC framework that combines the multi-regional route

guidance with a novel demand management method. A formulation of the related

non-linear non-convex MPC problem is presented while a Mixed Integer Linear
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Programming solution and a Linear Programming solution that approximates the

original non-linear problem are developed. By allowing each region to operate in

the free-flow regime (in a similar manner with the route reservation architecture)

this thesis proposes a second linear formulation that offers a feasible upper bound

solution to the original non-linear MPC problem. In a similar way, Chapter 8 in-

troduces a path-based formulation of the above multi-regional MPC problem which

provides similar MPC formulations as the multi-regional approach but in a different

modeling framework. Extensive simulation results demonstrate that the linear MPC

approaches (multi-regional and path-based level) execute in real-time and yield

near-optimal results even under heavy traffic scenarios.

In Chapter 9, a stochastic Fluid Modeling framework is adopted to estimate the

critical density value of a homogeneous region, where the route-reservation scheme

is employed to control the traffic within the related region. The estimation of the

critical density value, is based on an Infinitesimal Perturbation Analysis scheme,

which can be employed in an online fashion to capture the dynamic changes in the

critical density value.

Finally, Chapter 10 summarizes the main contributions of this thesis and con-

cludes with an outline of directions for future work.
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Chapter 2

Literature Review

2.1 Gating, Perimeter Control and Ramp Metering

Currently, the gating and perimeter control methods constitute the state-of-the-art

solutions for addressing the traffic congestion problem [23, 24]. Gating control aims

to regulate the amount of traffic that resides inside a homogeneous [25] region. This

is done by allowing external traffic to enter if the critical density of the region’s MFD

has not been reached [26, 27], and this can be achieved, for example, by using street

closures or by controlling the traffic lights phases. Fig. 2.1 provides an illustrative

example where traffic lights installed at the boundaries of a protected region are used

to control the external flows entering the region. To avoid the extensive amount of

data that is required for the characterization of each regions’ MFD, recent works

attempt to use a reduced MFD constructed using real-time measurements [28].

Similarly, the two-level perimeter-and-boundary control is applied in multi-

region networks to regulate the traffic exchange between regions and the outside

world [23], [24]. At the first level, an urban area is clustered into inter-connected

homogeneous regions that maintain modeling accuracy at the macroscopic level. At

the second-level, similar to gating, vehicles are allowed to enter in the region only

if the critical density has not been reached [29]. By discriminating between different

areas of the network based on their homogeneity, more accurate decisions can be

made. Furthermore, decision making using feedback control at the macroscopic

level is simpler to implement and computationally efficient, since it does not require

extensive traffic information (e.g., the per-link densities, speeds, and flows) [24], [29].
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Protected Region 

Figure 2.1: Example of gating control schemes.

Other recent efforts that formulate hierarchical perimeter control problems for multi-

region urban areas also use the MFD dynamics, making easier the employment of

efficient Model Predictive Control (MPC) frameworks [30,31]. These methods yield

better performance compared to feedback control because they are more robust to

traffic demand and modeling uncertainties.

Similarly with perimeter and gating control, ramp metering is also an admis-

sion control approach that aims to improve freeway efficiency by regulating the

inflow from on-ramps to the freeway mainstream [32, 33]. Ramp metering is a traf-

fic responsive strategy that considers real-time measurements to coordinate ramp

metering actions to control either a single on-ramp [33] (i.e., uncoordinated ap-

proach) or more consecutive on-ramps (i.e., coordinated approach) [34]. The work

in [35] presents an efficient real case implementation of a ramp metering scheme that

controls six consecutive inbound on-ramps on the Monash Freeway in Melbourne,

Australia achieving significant reductions of travel times and congestion levels.

The major drawback of admission techniques is that, if gated links do not have

sufficient space for queuing, queues due to gating may obstruct the upstream

network destinations. In this way, the benefits of these control policies are re-

duced [36,37]. To anticipated this issue, the work in [36] proposed a balanced queue

strategy that reduced remarkably the length of the observed queues by balancing

the flow proportionally to the saturation flow of each gated segment. Additionally,
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the work in [36] analyzes the queuing behavior at the gated segments indicating

that the queue length may not necessarily increase compared to when no perimeter

control is applied. By the same token, the work in [38] proposes a hierarchical control

scheme that combines perimeter control (at a higher level) with a lower-level control

scheme that is applied at intersections to improve the system’s performance when

spill-back phenomena occur. Likewise, a ramp metering approach suggested in [35]

utilizes a threshold method that can potentially avoid the creation of long queues

in on-ramps. Despite that efforts, queues can be generated within a region (called

as “artificial inter-regional queues”) which can contribute to unwanted delays. Re-

cent work presented in [37] utilizes an on-line adaptive optimization scheme that

promises a better congestion distribution as it tries to anticipate the inter-regional

queuing problem by considering how generated queues affect the vehicular move-

ments.

The proposed route-reservation architecture does not distinguish endogenous

and exogenous flows and applies a more targeted control over all vehicles prevent-

ing the formation of long queues and excessive delays. Furthermore, the afore-

mentioned approaches do not have a reliable mechanism for predicting the future

state of the network, which is something achieved through the proposed reservation

architecture.

2.2 Routing techniques based on travel time prediction

Recent developments in Intelligent Transportation Systems provide a plethora of

complementary solutions to minimize travel times by guiding drivers via the shortest-

travel-time paths [39]. Initial attempts towards this direction are the Dynamic Traffic

Assignment (DTA) and the Route Guidance schemes that have attracted a lot of atten-

tion to accomplish real-time dynamic traffic management, aiming to improve either

User Equilibrium or System Optimum under time-varying demand conditions [8,9].

Hence, route guidance and Dynamic Traffic Assignment (DTA) constitute the pri-

mary routing advisory schemes that seek to reroute traffic flows towards alternative

routes aiming to reduce traffic imbalance across the road network. However, the

appeal of route guidance methods is strengthened by the recent advancements in in-
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Figure 2.2: Example of Route Guidance schemes. In the depicted figure vehicles are equipped

with onboard unit that informed drivers about their shortest time route.

formation and communication capabilities of onboard units which are now capable

of providing real-time traffic state information to drivers and recommend alternative

routes to follow. An example of such a scheme is depicted in Fig. 2.2.

Other routing efforts investigated in the literature consider how departure time

choices can affect the network operation and the possibility to alleviate congestion

[40, 41]. The state-of-the-art routing method in this domain is the Decreasing Order

of Time (DOT) algorithm [42], which efficiently finds the time-dependent shortest

path (using travel-time) within a user-chosen time window. Similarly, the work

in [43] that is based on Bellman’s principle [44], calculates the shortest paths from

all nodes to a given destination in a network with time-dependent generalized link

costs.

Even though the above approaches are of particular interest to ITS applications,

most of them do not consider the unpredictability of driver behavior that is observed,

especially in the congested regime [10]. In their majority, scheduling decisions

are made through shortest-travel-time paths according to these state estimates but

neglect the adverse effects that may occur when the selected road segments become

congested [45]. Hence, these algorithms do not consider the changes in the traffic

state when scheduling decisions are made, and thus, there is no guarantee that the

traffic state will not experience congestion. Along these lines, the work presented

in [46] indicates that route travel times are affected by the segment’s traversal time
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and the delays observed at the intersections (expressed as travel time penalties). An

additional disadvantage of using traffic state estimation in routing is that estimation

is required for all road segments, which is usually not the case as state estimation is

only available for the main road segments.

However, when there is an inconsistency between the observed travel times and

travel time predictions, then the performance achieved by routing methods dimin-

ishes [47]. Clearly, the issue mentioned above can impact other state-dependent

schemes and thus, a large volume of work has focused on achieving accuracy in

travel time predictions; using analytical or statistical methods [48]. Both meth-

ods can be employed to predict travel times in a deterministic or stochastic man-

ner [41, 49], always using data obtained through various traffic surveillance sensors

(e.g., loop detectors, mobile detectors, radars, and cameras [50]). With respect to the

analytical methods, Kalman filter algorithms constitute the primary state estimation

method where recent observations that become available are used to update the state

variables continuously. Unfortunately, the Kalman filter cannot be utilized in our

approach as there is no simple and accurate model that can be applied alongside

route reservations [51].

To address the above shortcomings this Ph.D. thesis proposes a prediction-based

approach. First, it should be noted here that the proposed solution differs from

the current state-of-the-art methods on time-depended routing, as it does not only

change each road segment’s costs according to the segment’s density but also re-

strict the segments inflow. Besides, the key advantage of the proposed demand

management methods is that the network’s density is sustained below its critical

value, ensuring a congestion-free operation. By doing this, travel times can be min-

imized while an accurate and straightforward travel time prediction method can be

employed to predict travel times.

2.3 Routing methods based on the Macroscopic Funda-

mental Diagram

Similar with perimeter control approaches, the regional-level route guidance frame-

works partitioned the network into smaller homogeneous [25] regions within which
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vehicles are responsible for following a regional-level path to better spread the traffic

load across a larger area of the network [38, 52]. Furthermore, the work in [53] in-

vestigates the properties of a dynamic regional-level traffic assignment method with

departure time choices. More specifically, a state-depend optimal control problem

is formulated aiming to minimize the total travel time under the constraints of a fix

traffic volume that should be served within a pre-specified period; demonstrating

that the mismatch of improper flow propagations can be avoided by considering

the time lag between traffic inflow and system response. Along the same lines, an

aggregated and approximate dynamic traffic assignment model is introduced in [54]

that incorporates the MFD dynamics to establish regional routing under stochastic

user equilibrium conditions.

The majority of regional-level route guidance frameworks are centralized, and

they are implemented at the macroscopic level without considering the detailed

lower-level traffic dynamics. Thereby, the MFD is used, as it can offer low complexity

modeling of large urban networks. In this direction, a route choice strategy was

developed in [55] to alleviate congestion in urban areas, by considering the effect

of aggregated regional and partially known sub-regional dynamics. Also, the latter

work investigates the impact of drivers behavior on the MFD model, demonstrating

its superiority compared with route guidance schemes that do not consider the

drivers’ behavior. Apart from this, the use of advanced variational methods can

successfully estimate MFDs resulting from different driver route choices, as indicated

in [56]. In line with the aforementioned works, the study in [57] demonstrated that

the shape of the MFD and the size of the hysteresis loop could be affected by the

redistribution of traffic achieved through online travel information. Hence, despite

their high efficiency, macroscopic route guidance schemes have been challenged

about their real-case implementation because of their aggregate control decisions.

To address this issue the work in [58] implements a hierarchical MFD based route

guidance framework that can translate the aggregate regional-level control actuation

into lower-level traffic decisions.

Another crucial issue of MFD-base route guidance schemes is that their majority

assumes that all paths passing through a region have equal trip lengths [59], an

assumption which is not always valid. This issue has been addressed in [54] where
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a dynamic assignment method is derived that considers different trip lengths. An

extension of the latter work is presented in [59] where trip length distributions are

explicitly estimated to calibrate the MFD model.

Regrettably, these solutions are not able to cope well with heavy congestion levels;

usually, such approaches aim to control restricted areas (e.g., the city center), so that

performance improvements occur only for scenarios with relatively light traffic. This

is due to the fact that in high demand, a load balancing method can only delay the

emergence of congestion but not prevent it. The latter can only be achieved by

sustaining the total number of vehicles in all regions below their critical density [16].

Recent attempts trying only to control the total number of vehicles result in travel

time imbalances since traffic is not evenly distributed across the regions [58, 60].

2.4 Model Predictive Control methods for transporta-

tion systems

Model predictive control (MPC) approaches are increasingly being employed to

control traffic congestion, with the MFD serving as the prediction model. MPC can

optimize the current states while its ability to consider future implications through

the region’s MFD model [61]. Model predictive control (MPC) has been employed

as the primary control mechanism for route guidance problems due to its ability to

optimize the current control actions by considering future state estimates [61]. The

works in [62] and [30] initially used a non-linear MPC framework to control a free-

way system and a two-region urban network, respectively while the work in [63] use

an MPC framework to coordinated the ramp metering actions in a freeway network.

A hybrid MPC scheme is presented in [64] for an urban region, equipped with the

time switching plans together with perimeter control where, the non-linear MPC

problem is approximated to a MILP, showing the importance of the approximate

model regarding the required computation times for real-case implementation. Fur-

thermore, the work in [65] and [66] utilized an Extended Kalman Filter framework

to provide real-time traffic state estimates to the MPC, a step that transforms the

non-linear problem into a linear-parameter-varying model. Additionally, the work

presented in [67] applies a gradient-based optimization approach to sub-optimally
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solve the non-linear MPC problem that aims to balance the trade-off between the

level of congestion and the reduction of emissions.

In this direction, this thesis proposes an MPC framework to jointly solve the

region-level route guidance and demand management problem in order to find

the best alternative routing strategies which minimize the cumulative total time

of all vehicles, where the total time of each vehicle accounts for both the waiting

time outside the network and vehicles travel time. However, demand management

tackles congestion by sustaining the region’s density below the critical values and

in doing so minimize the observed travel times. The formulated non-linear MPC

problem is approximated into a Linear Program (LP) formulation. The resulting

LP formulation can be solved using standard LP solvers very fast, as the derived

solution does not depend on the initialization of the solver, which is the case for

non-linear solvers.

2.5 Tolling systems and Demand Management schemes

Congestion pricing (CP) has been a recurrent measure in trying to alleviate conges-

tion [68], where charges are applied to regulate the entering rate of vehicles in a

controlled area of interest. Another approach is road pricing; an economic policy

that controls road usage while constituting a credible long-term option for maintain-

ing the road infrastructure [6] (an example depicted in Fig.2.3). Other methods force

drivers to pay a cost proportional to the road infrastructure they are using in such

a way that may help to alleviate traffic congestion while aim to reduce their impact

on environmental pollution [69]. Even though pricing schemes have long been ap-

preciated due to their efficient properties (demand management), their acceptability

constitute a significant issue [70]. However, congestion pricing has found successful

applications in many places around the globe. For instance, the City of London uses

automatic vehicle license plate recognition to impose a charge on the driving vehicle

within the charging zone between 07:00 and 18:00, Monday to Friday.

The work in [71] proposed a credit-based congestion pricing scheme where road

tolls based on the negative externalities associated with driving under congested

conditions (a revenue-neutral policy) within which the generated fees are returned
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3

Figure 2.3: Example of tolling/pricing scheme in freeways.

to all licensed drivers uniformly. Under this setting, the frequent long-distance peak-

period drivers subsidize average drivers, in effect paying them to stay off congested

roads. The work in [72] proposes a new tax rule where not all links of a congested

transportation network should be tolled to enhance its practical applicability. For

instance, the work in [73] combines traffic assignment with congestion toll, aiming

to reduce the size of the tolled area.

As traffic demand increases in road networks, demand management strategies

are employed to meet the increased traffic demand with the best cost-effective and

efficient manner [69]. Initial attempts on travel demand management schemes tried

to motivate the drivers of single-occupant vehicle to use alternative modes of trans-

port. Over time, demand management literature shifted to infrastructure based

approaches where for example availability restrictions were imposted on the road

network or distance-based pricing schemes are investigated [3]. A real-case applica-

tion of a demand management scheme is the High-Occupancy Vehicle (HOV) Lanes

in which some lanes of the road infrastructure are restricted to be used by vehicles

with more than two passengers including buses and carpools. These restrictions
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may be imposed on a full-time basis or only during the peak hours always pre-

serving travel time reductions for their users as compared to the general purpose

lanes [74]. Unfortunately, the number of people who are willing to use HOV lanes

is limited as the benefits of HOV lanes are significant only in the case that HOV

lanes are well-utilized while at the same time all the general purposes lanes are over

saturated [74].

The literature also reports incentive reward programs to encourage travelers to

try alternative transportation choices such as ride sharing or alternative means (i.e.,

public transports, cycles, etc.) [3]. Similarly, a large number of recent studies are

investigating the concept of shared vehicles where users can access them at any time

applying charges based on their travel time, or distance traveled [75]. Nevertheless,

shared vehicles are established as a more flexible option for travelers that primarily

rely on public transport avoiding the necessity to bear the costs of vehicle ownership

while diminishing pollutant emissions and the need for parking areas [76].

Demand management schemes are not limited to influencing traveling modes but

also to promote alternative routes to follow and even to suggest late trip departure

times (distributing demand in space and time) [3]. Besides, the congestion levels

during peak hours can successfully be determined based on traveler departure times,

and thus departure-time demand strategies aim to regulate drivers departure time

choices [77, 78]. Similarly, route guidance schemes can be combined with departure

time strategies pursuing alternate routes when their usual route is expected to be

congested [3, 13].

Despite the substantial efficiency of toiling and demand management methods,

they are only part of a larger set of approaches to curb congestion [69]. Interestingly,

the work in [79] presents a survey on how real-time travel information can alter a

traveler’s initial decision on the choice of mode, travel route and departure time in

the cities of Pittsburgh and Philadelphia (USA). The Survey indicates that 68% of

travelers in Pittsburgh and 86% of users in Philadelphia changed their original travel

route, while 47% of users in Pittsburgh and 66% of users in Philadelphia changed

their initial departure time. On the other hand, the effect on mode choice was less

noticeable, with 6% of travelers in Pittsburgh and 2% in Philadelphia changed their

mode of transport [79]. Considering these insights, this thesis also investigates
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how route reservations and route guidance schemes can jointly be looked at with

demand management and traffic management in a way that the network operation

is sustained at its maximum (social/system optimum) while at the same time travel

times are minimized.

2.6 Infrastructure reservation based approaches

Time-slot reservations are not new in the literature. The proposed route-reservation

method has been conceived based on time-slot reservation models used to solve

the ground holding problem for Air Traffic Management and Control Systems

(ATM/ATC) since airport utilization increases while runway capacity remains con-

stant [80]. Specifically, to increase their runway capacity, airport ground control

allocates specific time slots for each airplane that requests take-off or landing. Time

slots are shared among arrival and departure flights, and planes are instructed to

follow their schedules without any delays or deviations. In doing so, the airport

efficiency is significantly improved, as shown in [81] and [82].

This concept is also introduced in road transportation networks, with the initial

work in that direction appearing in [83] within which trip reservations are proposed

to relieve the holiday congestion problem on a rural motorway similar to the train

seat reservations. More specifically, [83] studied how the trip reservations can be

affected from adjustable departure times by quantitatively evaluating reservations

with a stated-preference survey. Along the same lines, the work in [84] conceptually

proposed a highway booking system that operates alongside other driver informa-

tion systems. In [84] for each time period each road segment has an available capacity

where the number of available seats in each vehicle is considered within the prob-

lem’s capacity constraints. Both works mentioned above [83, 84] indicate that the

trip reservations are promising as they can significantly improve the transportation

systems efficiency.

Trip booking methods also are investigated in [85] where an infrastructure man-

ager uses a slot allocation algorithm to manage the demand (departure time alloca-

tion) for pre-specified routes. Similarly, a congestion pricing alternative is proposed

in [86] where a reservation system is developed to control the capacity of vehicles
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that enter a protected region; by managing the vehicles’ flows passing through a

cordon.

The idea of trip reservations on highways is also investigated in recent literature,

as shown in [87], [88] confirming that the efficiency of a reservation system can

overpass the existing traffic management methods. Extensions of the last two works

are presented in [89] and [90] where reservations are used only by users that are

willing to pay in order to access a high priority lane providing a better quality

of service and travel time guarantees. Also, in the latter work, an auction-based

reservation is proposed to reduce the inefficiencies due to user heterogeneity.

A major contribution of this thesis is that it explicitly uses a reservation system

and formulates and solves an optimization problem that allows vehicles to arrive at

their destination avoiding road segments that are expected to be at their capacity.

2.7 On Time Arrival approaches

Several approaches have already been proposed to address the on-time arrival prob-

lem by determining each vehicle’s departure time and the associated route aiming

to either maximize the vehicle’s on-time arrival probability or to minimize the ex-

pected traversal time [91, 92]. The majority of the literature considers link-level dy-

namics, assuming that each link’s travel time distribution is known [93]. However,

as mentioned above, this approach is not easy to be implemented, especially during

congested conditions since travel time distributions can hardly be predicted [16].

There is also a great interest in practical aspects of stochastic routing that aim

at finding the least expected travel time paths or the most reliable paths, where the

travel-time on each road segment is a random variable with an associated probability

distribution [91,92]. The objective of the most reliable path problem is to reduce the

risk of arriving late rather than to minimize the expected travel time [94]. For

instance, some travelers tend to sacrifice travel-time to take a more reliable route

when hard deadlines are considered. The primary issue with these approaches is that

routing, and scheduling decisions determine the traversal path without considering

the adverse effects of congestion and the changes in traffic state due to unreliable

estimates of the travel times [45].
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The stochastic on-time arrival problem is formulated as a stochastic dynamic

programming problem [95] and solved by determining the optimal path at each node

based on the travel-time realized on that node [93]. Nonetheless, these approaches

are computationally expensive, making them non-practical for real applications since

all the detailed link-level dynamics should be taken into consideration for all routing

decisions. Such guarantees can be only provided through the use of the reservation

architecture as proposed by this thesis as the unique solution to the problem is to

prevent congestion altogether by restricting the number of vehicles in the network

below its critical density [16]. This thesis derives an extension of the proposed route

reservation architecture in which the departure times of each vehicle is controlled

(i.e., apply demand management) in an effort to sustain travel times around those

achieved assuming free-flow speed conditions while ensuring the on-time arrival at

the destination [96, 97].

2.8 Infinitesimal Perturbation Analysis methods

Stochastic fluid models (SFMs) have been developed and used for control and op-

timization of dynamic networks even though modelling accuracy might sometimes

be less than ideal. The SFM modeling enables the abstraction of the system to a fluid

queue and derives gradient estimators for the performance measures of interest (e.g.,

queue throughput and packet delay) with respect to an assigned control parameter

(e.g., buffer maximum content). Then, Infinitesimal Perturbation Analysis (IPA) is

employed in order to compute the gradient of a performance metric which in turn

can be used to optimize the selected control parameter (as depicted in Fig. 2.4). In

the works presented in [98, 99] SFM is proven as an efficient technique to identify

the optimal buffer size of a single queue system (i.e., single node SFM). The derived

IPA gradient estimators are proven to be unbiased and non-parametric and are able

to estimate the optimum value in an online fashion [100]. In addition to network op-

timization solutions, the IPA framework is also utilized for performance-regulation

purposes as introduced in [101].

Recent works in transportation networks employing the SFM framework and IPA

analysis, including [102, 103] trying to solve the traffic-light control problem for a
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Figure 2.4: Execution Procedure of Infinitesimal Perturbation Analysis scheme.

single intersection. A recent work presented in [104] extended the approaches above

to solve the related problem considering multiple intersections. In these works, the

on-line gradient estimators are used to iteratively adjust the optimum light cycle

length over a traffic congestion metric with respect to the controllable variables that

in turn define the green and red cycle phases. The work in [105] tries to control

the red/green phases over a signalizing intersection to regulate congestion under

a given reference level (queue length). The major advantage of these approaches

is that vehicles flow rates are measured only when specific events occur with the

gradient estimators obtained only by counting the traffic light switching plans.

Findings in [106] [25] suggest that various parameters such as the spatial distri-

bution of congestion in the network can potentially affect the MFD’s shape and its

scatter. Having said this, the controlled strategies that rely on pre-defined critical

density value may be inconsistent [22]. On this direction, the work in [22] proposes

a Kalman filter estimation scheme that utilizes real-time measurements of circulat-

ing flow and accumulation of vehicles to produce accurate estimates of the critical

density value showing that the developed estimation algorithm coupled with the

proposed adaptive perimeter flow control strategy may be valuable whenever the

MFD is not well-defined [106]. Inspired by works done by [98, 99], in this thesis a

region of the road network is modeled as a hybrid system using the SFM framework

and then an Infinitesimal Perturbation Analysis (IPA) is employed in order to com-

pute the gradient of a performance metric which in turn can be used to optimize

the estimated region’s critical density. The aim is to estimate that value in an online

fashion.
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Chapter 3

Route Reservation methods

3.1 Introduction

This chapter introduces a novel route-reservation architecture that utilizes the ob-

tained reservations in order to determine the best possible path subject to avoiding

road segments that are expected to be at their capacity (microscopic level). Road

segments become temporarily unavailable whenever reservations reach their critical

density and are reconsidered only when the allocated time has elapsed. In the pro-

posed architecture, a centralized Road Side Unit (RSU) is considered that assumes

responsibility of all route reservations. Therefore, when a vehicle is about to begin its

journey it sends out a reservation request to the RSU indicating its origin-destination

pair. Once the RSU receives a request, it needs to solve the routing problem with the

objective of determining the path that will allow the vehicle to reach its destination

at the earliest possible time while avoiding unavailable road segments. The RSU

could also delay the vehicle’s departure time if that action minimizes its destination

arrival time. However, by allowing waiting only at the origin means that the de-

layed vehicles do not occupy space in the transportation network; in this way, the

proposed architecture removes waiting in congested situations. Therefore, given the

past requests, the RSU has an estimate of the number of vehicles that are expected to

be in each road segment, during any interval from the current time into the future.

Based on these reservations, the RSU knows which road segments are expected to

be below their critical capacity and thus unavailable.

On those premises, two route reservation problems are proposed, which con-
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stitute the major contribution of this chapter. The first problem seeks to navigate

vehicles through non-congested road segments while each vehicle’s destination ar-

rival time is minimized, that has been shown to be an NP-complete problem. The

second problem seeks to navigate vehicles through congestion-free road segments

while minimizing the load variance of the overall traffic (Traffic Load Balancing

(TLB)). Waiting at the origin is considered for both of the above problems. Fur-

thermore, in this chapter, various solution approaches for the Earliest Destination

Arrival Time (EDAT) and TLB problems are conducted in both continuous and dis-

crete time domains with simulation results demonstrating the superior performance

compared with the state of the art algorithms.

The rest of this chapter is organized as follows. Section 3.2 introduces the route

reservation architecture and Sections 3.3 and 3.4 mathematically formulate the EDAT

problem providing also a detailed complexity analysis of it. Section 3.5 proposes

various solutions approaches of the EDAT problem with simulation results demon-

strating the benefits of each proposed solution. The TLB problem is mathematically

formulated in Section 3.6 where a solution of it is presented in Section 3.7. Extensive

simulation results that are also included in Section 3.7 demonstrate the benefits of

the proposed solution considering micro-simulations. Finally Section 3.8 concludes

this chapter.

3.2 Route Reservation Architecture

The proposed architecture is used to support efficient route reservations while pre-

venting congestion by ensuring that the traffic of each road segment is sustained up

to its critical density. The proposed architecture is depicted in Fig. 3.1, showing an

RSU that acts as a central controller responsible of navigating vehicles, monitoring

the utilization of each road segment and for reserving routes for arbitrary origin-

destination pairs. To do this, each road segment is associated with a time series

starting from the current time into the future. In this way, the RSU keeps an estimate

of the number of vehicles that are expected to traverse each road segment. Hence,

to ensure a congestion-free operation, the density of each road segment should be

maintained below the critical density and, in this thesis, this is enforced by limiting
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RSU

Figure 3.1: The Route-Reservation Architecture.

the reservation availability of each road segment.

As a vehicle plans to start its journey (or even earlier if “pre-bookings” will be

allowed), it sends a request to the RSU in order to obtain a path from its current

location (i.e., its origin) to the required destination. Given the current reservation

state, the RSU responds to the vehicle request, giving the starting time of the journey

and the route that the vehicle should follow (e.g., the red line as indicated in Fig. 3.1).

Thereafter, the vehicle is responsible for traveling along the allocated route within

the time constraints imposed without any deviations. At the same time, the RSU

updates the reservation state of each road segment at the time frame that the vehicle

is expected to traverse it; assuming that the vehicle will be traveling at a constant

speed (i.e., free-flow speed). Assuming that the region’s MFD [106] is available

and considering that each segment’s reservations will no surpass its critical density,

then one can use either the free-flow speed or the speed at capacity to also account

for some possible delays. If the MFD is not available, then the speed to be used

can be obtained from historical data or predicted values. At this point, it is worth

pointing out that it is unrealistic to expect that all vehicles will actually travel at the

same constant speed, thus in practice, it is expected that there will be significant

deviations. Despite these deviations, our simulation results indicate that the whole
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approach still works well and is robust with respect to such inaccuracies.

In this way, the RSU determines the best possible path for the vehicle such that

it will arrive at its destination at the earliest possible time while avoiding road

segments that are expected to surpass their critical density at the time when the

vehicle is expected to traverse them. Furthermore, the RSU may impose a waiting

period only at the origin if the destination arrival time is minimized by doing so. Note

that, reservation decisions are made by the route-reservation algorithms running at

the RSU and routes are communicated to requesting vehicles which are in turn

responsible to traverse them. In order to compute its response, the RSU formulates

and solves the routing problem as indicated in the subsequent sections.

3.3 Mathematical formulations

A homogeneous region is expressed as a directed graph G = (V,E) with verticesV,

NV = |V|, representing the road junctions and edges E, NE = |E|, representing the

road segments. Each road segment (i, j) ∈ E, {vi, v j} ∈ V is described by parameters

λi j, denoting the number of lanes and li j representing the segment’s length.

All traffic dynamics of each region are defined according to a well define MFD

[106] with parameters ρC, ρJ, uc and u f , representing the critical density correspond-

ing to the maximum flow, jam density, speed at capacity and free-flow speed, re-

spectively. The traffic dynamics of each road segment (i, j) ∈ E, {vi, v j} ∈ V are

described according to parameters ρJ
i j, ρ

C
ij and ρi j(t) indicating the jam density, the

critical density, and the instantaneous density at time t, respectively. Note that, the

critical density denotes the maximum density that a road segment can accommodate

in order to operate at u f , i.e., ρi j(t) ≤ ρC
ij and thus, to avoid the derivation of funda-

mental diagrams (FDs) for each road segment, in this thesis we approximate ρC
ij with

the quantity (ρC/ρJ)ρJ
i j, which is derived using MFD parameters and the geometry of

the road. In the free-flow regime i.e., ρi j(t) ≤ ρC
ij the speed ranges from the free-flow

speed to the speed-at-capacity; and hence congestion-free road segments are those

for which ρi j(t) ≤ ρC
ij with vehicles can be assumed to travel with speed-at-capacity

uc. The speed at capacity assumption is used instead of the free-flow speed so that

travel time estimates account for the possible delays due to driver imperfection and
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the delays observed across non-priority road junctions. Congestion-free routing can

be achieved if vehicles traverse the network only through road segments that are

expected to be below their critical density (i.e., admissible road segments). For this

reason, the RSU utilizes the admissibility states of each road segment and needs

to formulate and solve an optimization problem to determine the shortest path for

a vehicle such that the admissibility condition for each link is always satisfied. For

the formulations that follow the variables t0 and dvi are required which denote the

routing request time and the vehicle arrival time at road junction vi, respectively.

3.3.1 Discrete time formulation

The proposed reservation architecture requires the monitoring of the cumulative

number of the expected vehicle arrivals and departures at road segment (i, j) ∈ E

up to time t, αi, j(t) and βi, j(t), respectively. In addition, it requires to monitor the

accumulate number of vehicle reservation of road segments (i, j) (i.e., ni j(t) = αi, j(t)−

βi, j(t)) for time unit t. Hence, based on route reservations, the proposed reservation

scheme keeps track of the expected accumulated number of vehicles within each

road segment over time. Along the same lines the expected instantaneous density

of a road segment (i, j) ∈ E at time-slot t is expressed by the variable ρ̂i j(t) and

mathematically defined as:

ρ̂i j(t) = ni j(t)/(λi jli j). (3.1)

According to the reservation architecture a road segment (i, j) ∈ E is denoted as ad-

missible if a vehicle entering road junction vi at time unit t can traverse segment (i, j)

without making the expected accumulated density larger than the critical density

during any time-slot for which the vehicle will travel on the segment.

In discrete time formulation, the time is quantized into time-slots of duration

T so that the number of time-slots required to traverse road segment (i, j) ∈ E is

τ̄i j =
⌊
li j/u f/T

⌉
, where bze, is the nearest integer to z.

We denote the admissibility state of a road segment (i, j) ∈ E at time-slot t with the

variable xi j(t), and let a road segment be considered as admissible (i.e., xi j(t) = 1) if

a vehicle starting from road junction i at time-slot t can traverse road segment (i, j)

without making the accumulated reserved density larger than the critical density at

any point within the traversal time, and xi j(t) = 0 otherwise. Mathematically xi j(t) in
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discrete time can be defined as:

xi j(t) =

 1, if ρ̂i j(t) ≤ ρC
ij, ∀ τ = t, . . . , t + τ̄i j

0, otherwise (3.2)

Considering the above notation, the cost of traversing a road segment ci j(t) at

each discrete time-slot t can mathematically be expressed as follows:

ci j(t) =


τ̄i j, if xi j(t) = 1, i , O

τ̄i j + w, if xi j(t) = 0, i = O

∞, if xi j(t) = 0, i , O (3.3)

where, w denotes the number of time-slots that a vehicle may wait at the origin

such that the path found to traverse from origin (i.e., O) to destination (i.e., D) is

admissible.

3.3.2 Continuous time formulation

Similar to the discrete time formulation, let the variable ni j(t) defines the accumulated

number of reservations at time t while the traversal time for each road segment

(i, j) ∈ E be equal to τ̄i j = li j/u f . Thus, the state variable ni j(tl, tu) denotes the

accumulated number of reservations within (i, j) during time interval (tl, tu) where

tl and tu denote the lower and upper time bounds i.e., tl
≤ tu. Accordingly, a road

segment (i, j) is considered as admissible within time interval (tu, tl) if the expected

instantaneous density i.e.,

ρ̂i j(tu, tl) = ni j(tu, tl)/(λi jli j), (3.4)

during the time interval (tu, tl) is not larger than the segment’s critical density as,

ρ̂i j(tu, tl) ≤ ρC
ij. (3.5)

Hence, the RSU constructs the admissible sets Si j(tc) = {(tl
i j1, t

u
ij1), ..., (tl

i jKi j(tc), t
u
ijKi j(tc))},

of each road segment (i, j) ∈ E, which define the admissible time intervals (tl
i jk, t

u
ijk),

k ∈ Ki j(tc) = {1, ...,Ki j(tc)}, where Ki j(tc) denotes the number of admissible time

intervals of segment (i, j) at time tc. Note also that tl
i jk < tu

ijk < tl
i jk+1 where tl

i jk and

tu
ijk denote the lower and upper bounds of the k-th admissible time interval of link

(i, j) ∈ V, respectively. These time intervals are determined by the RSU, given the
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2 𝐾𝑖𝑗(0) = 1

𝑡𝑖𝑗1
𝑙 = 0 tu 𝑡𝑖𝑗1

𝑢 = 6 tu

2 1 2 𝐾𝑖𝑗 1.1 = 1

𝑡𝑖𝑗1
𝑙 = 0 tu 𝑡𝑖𝑗1

𝑢 = 6 tu

2 1 1 2 𝐾𝑖𝑗 2.8 = 2

𝑡𝑖𝑗1
𝑙 = 0 tu 𝑡𝑖𝑗2

𝑢 = 6 tu

2 1 1 1 𝐾𝑖𝑗 4 = 3

𝑡𝑖𝑗1
𝑙 = 0 tu 𝑡𝑖𝑗3

𝑢 = 6 tu

𝑡𝑖𝑗1
𝑢 = 2.8 tu 𝑡𝑖𝑗2

𝑙 = 3.1 tu

𝑡𝑖𝑗1
𝑢 = 2.8 tu 𝑡𝑖𝑗2

𝑙 = 3.1 tu 𝑡𝑖𝑗2
𝑢 = 4.0 tu 𝑡𝑖𝑗3

𝑙 = 4.8 tu

Figure 3.2: Example depicting the evolution of the admissible set of a particular road segment

with transit time 2 tu, following three vehicle requests at 1.1 tu, 2.8 tu and 4 tu; the black

regions denote non-admissibility.

past reservations and the path of a vehicle, under the assumption that the vehicle

will travel at a constant speed u f 1.

Fig. 3.2 depicts a toy example of how the admissible time intervals evolve in time

for link (i, j). It is assumed that the link can be traversed in 2 time units (tu), while its

critical density is equal to 2 vehicles for its entire length. Also, the considered time

horizon is assumed to be 6 tu. In the figure, the number in the shaded area represents

the remaining density of the link for each particular time interval. Observing, the

figure at t0 = 0 tu there are no vehicle requests for a paths, hence the link has a

single admissible interval such that tl
i j1 = 0 tu and tu

ij1 = 6 tu. Next, the first vehicle

is expected to arrive at t0 = 1.1 tu and hence the RSU makes a reservation from

t = 1.1 tu until t = 3.1 tu. After the first request, that link is admissible for the

same time duration (whole interval) as the link’s critical density is 2 vehicles. The

second vehicle is expected to arrive at t = 2.8 tu and reserves the link from t = 2.8 tu

until t = 4.8 tu. Both requests share the link during the interval 2.8 tu to 3.1 tu so

1As indicated in the simulation results, the approach achieves significant reduction in congestion

even if the vehicle deviates from the assumed speed u f .
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that the link becomes non-admissible for that period. This yields to two admissible

time intervals for the remaining time (i.e. from tl
i j1 = 0 tu to tu

ij1 = 2.8 tu and from

tl
i j2 = 3.1 tu to tu

ij2 = 6 tu). In the same way, a request by a third vehicle allows a

reservation within the interval t = 4 tu to t = 6 tu, yielding to three separate time

intervals.

The cost of traversing the road segment (i, j), ci j(t) in this continuous time ap-

proach is:

ci j(t) =


τ̄i j, if dvi + t ∈ Si j(t0), ∀ 0 ≤ t ≤ τ̄i j, i , O

τ̄i j + w, if t0 + w + t ∈ Si j(t0), ∀ 0 ≤ t ≤ τ̄i j, i = O

∞, otherwise, (3.6)

where, w denotes the time interval for which the vehicle will have to wait at its origin

before starting its trip (i = O).

3.3.3 Congestion free routing under admissibility states

Congestion-free routing is ensured whenever vehicles traverse the network with-

out violating the capacity constrains (i.e., vehicles traverse only admissible road

segments). The admissibility of road segments is an essential aspect of the route

reservation scheme as it allows vehicles to always traverse through non-congested

road segments at free-flow speed conditions, leading to a congestion-free routing.

Nonetheless, it introduces the additional challenge of dealing with non-admissible

road segments. To that end, in both continuous and discrete time formulations, vehi-

cles are allowed to traverse road segments only during times where the admissibility

is feasible since the RSU can only make any reservations along those times to enable

congestion-free routing.

Two alternative options arise in a case that the shortest path of vehicles includes

a non-admissible road segment. The first prompts vehicles to wait at their origin

until all road segments in the shortest path become admissible. The second chooses

an alternative path where all links are admissible. Combining both option may yield

to better a solution (e.g., wait for a short period of time at O and then follow an alter-

native route). This chapter investigates two problems to address route-reservation

under admissible or non-admissible road segments and where waiting is allowed at

the origin. The first problem, called the Earliest Destination Arrival Time (EDAT)
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problem, aims to find the path arriving at the destination at the earliest possible

time. The second problem, called Traffic Load Balancing (TLB), aims at finding a

path that provides a good trade-off between early destination arrival and traffic load

balancing which can create additional robustness to the proposed architecture. The

following Sections present a detail mathematical formulation of both the EDAT and

TLB problems, also providing their algorithmic solution.

3.4 The Earliest Destination Arrival Time (EDAT) prob-

lem

This section formulates and solves an optimization problem for determining the path

that will allow a vehicle to arrive at its destination at the earliest possible arrival time

while avoiding non-admissible links. This is referred to as the Earliest Destination

Arrival Time (EDAT) problem. The EDAT problem seeks to route vehicles only

through admissible road segments, and thus to reach their destination at the earliest

time while a detail complexity analysis of the problem indicates that the EDAT shows

to be NP-complete. Note that the EDAT problem is formulated and solved in both

discrete and continuous time domains.

3.4.1 Discrete time

Given an origin-destination (O − D) pair, the time-stamp t0 at which the routing

request is made, and the admissibility states xi j(t), (i, j) ∈ E, for each time-slot ∀t ≥ t0,

then the EDAT problem requests the earliest-arrival-time-at-destination (from O

to D). Let ph denote the h-th path from origin (O) to destination (D) denoted as

ph = (vh
0, v

h
1), (vh

1, v
h
2), (vh

2, v
h
3), · · · (vh

Lh−1, v
h
Lh

), where vh
j ∈ V is the j-th visited vertex in

the h-th path, with vh
0 = O, vh

Lh
= D, and Lh is the length of the path ph in terms of

the number of hops. Additionally, let w and dh
v j

denote the waiting time at the origin

and the earliest arrival time at junction v j (assuming the vehicle was delayed by w

at the origin), respectively. Then, the earliest arrival time to each vertex of the path
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can be expressed as:

dh
vh

0
=t0 w ≥ 0

dh
vh

1
=dh

vh
0
+ cvh

0,v
h
1
(dh

vh
0
)

...

dh
vh

Lh

=dh
vh

Lh−1
+ cvh

Lh−1,v
h
Lh

(dh
vh

Lh

) (3.7)

Hence, the EDAT problem can be expressed in compact form as:

(Πd) d∗D = min
w≥0, ph

dh
D (3.8)

s.t. Constraints (3.1) − (3.3) and (3.7) are satisfied.

A detailed complexity analysis of the problem follows while two solutions are

presented in Section 3.5.

Earliest Destination Arrival Time Problem complexity analysis

This section provides a rigorous complexity analysis of the resulting EDAT problem

in discrete time (i.e., Problem (Πd)) that aims to provide vehicles routes under the

proposed reservation protocol. This complexity analysis indicates that for some

instances, the Problem (Πd) reduces to an NP-complete problem.

At a first glance, the formulated EDAT problem looks similar to the well in-

vestigated time-dependent route planning problem [107]. Nevertheless, the EDAT

problem differs from the time-dependent route planning problem since EDAT in-

troduces road segments with infinite cost (non-admissible road segments) and also

allows for waiting intervals that may be observed at the originating junction.

For notation simplicity let the discrete time EDAT problem (i.e., Problem (Πd))

also be denoted as (Π). The complexity analysis of (Π) requires to examine the

complexity of two variations of the particular problem, that we denote as the (ΠAW)

and (ΠNW) problems. (ΠAW) has a similar objective function as (Π) but it allows

vehicles to wait at all road junctions until they become available. Clearly the solution

to this problem is not implementable since physically there is not space for vehicles

to park and wait until a road section becomes available, however, the solution to this
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problem can serve as a lower bound to the solution of (Π) while (as we will show) it

can be solved in polynomial time. The other related problem is the (ΠNW) that does

not allow for vehicle waiting neither at the origin nor at any other junction.

Starting from the (ΠAW) problem, the cost ci j(t) of traversing road segment (i, j)

can mathematically be expressed as:

ci j(t) =

 τ̄i j, if xi j(t) = 1

τ̄i j + wi j, if xi j(t) = 0 (3.9)

where, wi j denotes the number of time-slots that a vehicle may wait at i such that

the path, found to traverse from O to destination D, is admissible. Thus, (ΠAW) can

mathematically be expressed as:

(ΠAW) d∗DAW
= min

wi j≥0, ph
dh

D (3.10)

s.t. Constraints (3.1) − (3.2), (3.7) and (3.9) are satisfied.

The cost ci j(t) of traversing a road segment for problem (ΠNW) can mathematically

be stated as follows:

ci j(t) =

τ̄i j, if xi j(t) = 1

∞, if xi j(t) = 0
(3.11)

Hence, (ΠNW) can be mathematically stated as follows:

(ΠNW) d∗DNW
= min

ph
dh

D (3.12)

s.t. Constraints (3.1) − (3.2), (3.7) and (3.11) are satisfied.

The two aforementioned variants (ΠAW) and (ΠNW) are used to prove that the (Π)

problem can be categorized as an NP-complete problem. The NP-completeness of

(Π) is derived using the restriction method [108]. The restriction method requires to

prove that problem (Π) can be reduced to a special case of a known NP-complete

problem. Hence, the examined proof reduces the (Π) problem to the Number Parti-

tioning Problem (Π′) (described in [108]) which is defined as follows.

Number partitioning problem: Let the set A consist of n integer numbers A =

{a1, a2, ..., an}, a j ∈ Z+ and let an integer number b ∈ Z+. (Π′) requires to identify the
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c cq
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C Ci+2
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c
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Figure 3.3: Special case of G = (V,E) (with edge (q,D) attain to non admissible state).

subsetA′ whereA′ ⊆ A, such that the sum of the numbers inA′ is equal to a given

number b. Equivalently, this problem can be expressed using variables y j = {0, 1}

that indicate whether a j is inA′ (y j = 1) or not (y j = 0), as follows:

n∑
j=1

a jy j = b, where y j = {0, 1} (3.13)

Note that problem (Π′) is an NP-complete problem [108].

Lemma 1. (ΠNW) is an NP-complete problem in the case where at least one road segment

attains a non-admissible state.

Proof. To prove Lemma 1 we need to show that (ΠNW), can be reduced to a special

case of (Π′). For this purpose a special case of G = (V,E) is constructed as shown in

Fig. 3.3. As illustrated in Fig. 3.3, the traversal cost of each road segment is defined

by c and c j values which are predefined integer constants, i.e., c , c j and c j , ck.

Considering the structure of the graph, the cost to traverse the edge from node j to

node j + 1, (i.e., ĉ j, j+1) can mathematically be stated as:

ĉ j, j+1 =

 c + c j+1, if path passes from A j+1

c, otherwise (3.14)

Let (q,D) (indicated with red color) be the single edge on G = (V,E) that attains a

non-admissible state as follows:

xqD(t) =

 1, for t = cq + b

0, otherwise (3.15)

while all other edges always attain an admissible state. According to constraints

(3.11), (3.14) and (3.15) the traversal cost cqD(t) of (q,D) can be expressed as follows:

cqD(t) =

 τqD, for t = cq + b

∞, otherwise (3.16)

where, τqD = c as indicated in Fig. 3.3.
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According to the above setup, the only possible solution consists of a path from

O to D, (i.e., p) where, the arrival time at node q is exactly equal to cq + b. Therefore,

the arrival time at junction q must be:

dq = cq + b (3.17)

Let, p contain the subpath p′ from vertices O to q. There are in total 2q possible combi-

nations that can constitute subpath p′ and the total travel time of each combinations

(i.e., cOq) can be defined as follows:

cOq =

q∑
j=1

ĉ j−1, jy j =

q∑
j=1

c(1 − y j) +

q∑
j=1

(c + c j)y j = cq +

q∑
j=1

c jy j where, (3.18)

y j =

1, if path passes from A j

0, otherwise
(3.19)

Considering Eq. (3.14), cq time-slots can be provided from all of the 2q paths while the

remaining b time-slots must be identified by the summation of
∑q

j=1 c jy j. Therefore,

the solution returned according to the selected y j values, provides a solution to the

number partitioning problem since a subset of values (that sum up exactly to b) is

required to be selected from the range of c j, and this completes the proof. �

The second variant assumes that waiting intervals are allowed at all road junc-

tions. This assumption is not feasible along real transportation networks due to lack

of adequate buffering space where vehicles will wait. Nonetheless, this case can be

considered as a lower bound solution and is part of the subsequent proof of theorem

3.4.1 used to prove that the EDAT can be reduced to (Π′) as a special case.

Lemma 2. The problem (ΠAW), i.e., finding the earliest arrival time while waiting at every

junction is allowed, can be solved in polynomial time.

Proof. In the case when a vehicle can wait at all intersections, the problem becomes

significantly easier and can be solved to optimality using a simple modification

of the Dijkstra’s shortest path algorithm [109] which can converge in polynomial

time. Specifically for an arbitrary graph, at every step of the algorithm, given the

time of the earliest vehicle arrival at any node p (through the previous steps of the
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algorithm), if the next link (p, q) is unavailable until u time units later, its cost cp,q is

simply undated to cp,q + u, while if the vehicle’s earliest arrival at p is during a time

period when the link is available, then its cost is simply cp,q which corresponds to the

time needed to traverse the link. A detailed correctness proof can be shown using

the Dijkstra’s proof of correctness based on the contradiction method [44]. �

The third case completes the complexity analysis of the formulated EDAT(Π)

problem as a combination of the two previous cases of problems (ΠAW) and (ΠNW).

Theorem 3.4.1. The problem (Π), i.e., vehicles are only allowed to wait at the origin O, is

an NP-complete problem when more than one road-segments become non-admissible during

certain time-slots.

The proof of theorem 3.4.1 is divided into two special cases. This distinction is

required in order to find a special case in which (Π) can be stated as an NP-complete

problem. The first case illustrates the situation where (Π) can always be solved in

polynomial time and the second case covers the scenario where the problem (Π) can

be reduced to the Number Partitioning Problem.

Special Cases 1:

Considering Theorem 3.4.1 and assuming that only one road segment (which should

be a part of the path) has to attain a non-admissible reservation state, then (Π) can

be solved in polynomial time.

Proof. Consider the same example of lemma 1 (shown in Fig. 3.3) illustrating edge

(q,D) that attains a non-admissible reservation state. The solution requires a vehicle

to depart from node q exactly at time cq + b as indicated by equality constraint

(3.17). When only one road segment attains a non-admissible state, the problem can

be adequately expressed through Lemma 2, since (3.17) can be transformed to an

inequality constraint. As shown in Lemma 2, a solution can easily be found with

a feasible path from vertex O to q where dq 6 cq + b according to constraint. If the

solution results in arriving at q on an earlier time then the vehicle can wait for the

remaining time-slots to the originating junction to satisfy constraint (3.17). �
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Figure 3.4: Special case of G = (V,E) (with edges (i, i + 1) and (q,D) attain to non admissible

state).

Special Cases 2:

Considering Theorem 3.4.1 and assuming that more than one road segments attain

a non-admissible state during certain time-slots (which should be a part of the path)

then (Π) results to an NP-complete problem.

Proof. Consider the special case in G = (V,E) as shown in Fig. 3.4 where the cost to

traverse the link from node i to node i + 1, is based according to Eq. (3.14) (i.e, ĉi,i+1).

Fig. 3.4 indicates that, in total, two road segments attain a non-admissible state (i.e.,

edges (i, i + 1) and (q,D)) as follows:

xi,i+1(t) =

1, for t = ci + b1

0, otherwise
(3.20)

xqD(t) =

1, for t = cq + b1 + b2

0, otherwise
(3.21)

while all other links always attain an admissible state. According to constraints (3.3),

(3.20), (3.21), the traversal cost of both links can be expressed as follows:

cii+1(t) =

τii+1, for t = ci + b1

∞, otherwise
(3.22)

cqD(t) =

τqD, for t = cq + b1 + b2

∞, otherwise
(3.23)

where, τi,i+1 = c and τqd = c as indicated in Fig. 3.4.

According to Fig. 3.4, (Π) has a feasible solution only if an admissible O−D path

exists while the departure times at node i and q should be exactly at time-slots ci + b1
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and cq + b1 + b2, respectively. Following the analysis in the proof of Lemma 1, let p

contain sub-paths p′ and p′′ where, p′ is the sub-path from node O to i and p′′ is the

sub-path from node i + 1 to q. Similar to Lemma 1, the total travel time costs of both

sub-paths cp′(t) and cp′′(t) can be expressed as follows:

cOi =

i∑
j=1

c(1 − y j) +

i∑
j=1

(c + c j)y j = ci +

i∑
j=1

c jy j

ci+1,q =

q∑
j=i+1

c(1 − y j) +

q∑
j=i+1

(c + c j)y j = c(q − i) +

q∑
j=i+1

c jy j (3.24)

As indicated in Lemma 2, the first time constraint can be easily satisfied since there

are 2i possible paths from node O to i with di 6 ci + b1 since waiting can take place

at the originating junction in such a way as to achieve di = ci + b1. Nonetheless, the

second time constraint (i.e., dq = cq + b1 + b2) is addressed by Lemma 1. Thus, a

solution of sub-path p′′ can be reduce to a problem addressed by Lemma 1.

Same as before, considering Eq. (3.14), the amount of cq + b1 time-slots can be

provided from all of the 2q paths, while the remaining b2 time-slots must be identified

by the summation of Eq. (3.24) (e.g.,
∑q

j=i+1 c jy j). Therefore, to select y j values the

number partitioning problem needs to be solved; completing the NP-completeness

proof. �

3.4.2 Continuous time

Similar to the discrete time formulation, given an origin-destination (O−D) pair let ph

denote the h-th path from source O to destination D denoted as ph = (vh
0, v

h
1), (vh

1, v
h
2),

(vh
2, v

h
3), · · · , (vh

Lh−1, v
h
Lh

), where vh
j ∈ V is the j-th visited node in the h-th path, with

vh
0 = O and vh

Lk
= D. Then, the arrival time at each road junction v j of the path can be

expressed in continuous time as:

dh
vh

0
=t0, w ≥ 0

dh
vh

1
=dh

vh
0
+ cvh

0,v
h
1
(dh

vh
0
)

...

dh
vh

Lh

=dh
vh

Lh−1
+ cvh

Lh−1,v
h
Lh

(dh
vh

Lh

) (3.25)
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Given the vehicle routing request time t0 and the admissible setsSi j(t0),∀ (i, j) ∈ E,

then the EDAT problem can be expressed in compact form as:

(Πc) d∗D = min
w≥0, ph

dh
D (3.26)

s.t. Constraints (3.4) − (3.6) and (3.25) are satisfied.

The complexity analysis of Section 3.4 can also hold for Problem (Πc) as (Πd)

is a special case of (Πc). Nonetheless, an optimal solution to the continuous time

EDAT problem is mathematically derived and solved using a Mixed Integer Linear

Program (MILP) which can only solve small instances of the problem due to its NP-

completeness. In this manner, the following sections also provide various heuristic

solutions (for both continuous and discrete time formulations) that can converge in

a reasonable time.

3.5 Proposed solutions for EDAT

3.5.1 Discrete time solutions for EDAT

Many alternative algorithms are proposed for solving the formulated EDAT problem

(either in the discrete or continuous time). In the subsequent solutions, we assume

that as new journey requests are issued by soon-to-be-departing vehicles, decisions

should be made on which route to take and where should vehicles wait in order to

arrive at their destination on the earliest possible time. When decisions are made,

vehicles are responsible for following the assigned route within the scheduled time

constraints from the origin to the destination.

Time expansion approach

In this section we utilize the “time expansion” approach to demonstrate some of the

complexities associated with solving the (Πd) problem optimally. Fig. 3.5 shows

a simple graph G = (V,E) where road segments (A,B) and (B, F) attain two non-

admissible time-slots (from time intervals 1s-10s and 1s-3s, respectively). Notably,

time-dependent networks can easily be transformed to static networks using time-

expansion as discussed in [110] and allow the problem to be solved in the space
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Figure 3.5: G = (V,E).

1s-
10
s

1s-3s

A

B

C D

F
1

1

1

4

2 3

A

B

C D

F
1

1

4

2 3

A’

B’

C’ D’

F’1

1

4

2 3

A’’

B’’

C’’ D’’

F’’1

1

4

2 3

S

E

0

0

0

0

1

2

Figure 3.6: Time expanded G = (V,E).

dimension only. In this way, the problem is solved in two stages. In the first

stage, the graph is expanded to future time-steps considering incremental waiting

intervals at the originating junction. Thereafter, a static shortest path algorithm (e.g.

Dijkstra [109]) is used to provide a solution. Fig. 3.6 illustrates the time-expanded

graph for the network provided by Fig. 3.5. Fig. 3.5 illustrates the optimal solution

with a blue line and total cost of 4s while Fig. 3.6 shows the shortest path solution over

the time-expanded graph indicated with a red line and total cost of 5s. As Fig. 3.6

indicates, the shortest path algorithm (e.g., Dijkstra) miss the optimal solution since

the non-admissible time slots are not considered to the time-expanded graph. Note

that the earliest arrival time at each junction does not ensure the optimal choice

based on the label setting property discussed in [44]. The possibility of selecting a

junction a little bit later may reduce the destination arrival time since a currently
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non-admissible segment may become admissible in future time-slot. Therefore, all

possible arrival times must be examined at each intermediate junction in order to

ensure that an optimal solution is reached.

Route Reservation Algorithm (RRA)

A heuristic solution to the discrete time EDAT problem is derived through the

Route Reservation Algorithm (RRA) which also allows an initial wait at the origin.

The RRA algorithm employs the Dijkstra’s algorithm which is commonly used on

static (non-constrained) networks. The proof of correctness of Dijkstra’s algorithm

indicates two basic properties. The first one is that Dijkstra’s algorithm is a label-

setting algorithm since on each iteration a label (i.e., dv j) becomes the actual shortest

path from the origin to junction v j and the algorithm terminates when all nodes

are permanently labeled. Labeled nodes are those which an optimal path is found

and all the permanently labeled nodes are stored in a predecessor array [44]. The

second property is a result of the first property known as the relaxation technique2,

where in each iteration the cost of all non-labeled nodes is dvi = min(dvi , dv j + ci j(dv j)).

Therefore, using the label-setting property and the relaxation technique, Dijkstra’s

algorithm calculates the earliest-arrival-time from origin to each other road junction

vi. RRA adopts the above properties and returns a feasible solution to the EDAT

problem accounting also for possible waiting that can take place at the origin.

The RRA algorithm executes in two stages (the inner and outer loop). The inner

loop returns the earliest-destination-arrival-time path, from O to D, by allowing

vehicles to wait at any intermediate junction until the road segment’s state changes

from non-admissible to admissible (i.e., it solves the (ΠAW) problem). As shown by

Lemma 2, if waiting intervals are allowed to all intermediate road junctions (nodes)

a polynomial time optimal solution can be found. This relaxed solution, which is

not practically implementable, is a lower bound solution to the discrete time EDAT

problem.

Subsequently, the outer loop, checks if the solution computed by the inner loop

involves waiting intervals at any intermediate junction. If the resulting shortest

2The term “relaxation" is used in a way such that an upper bound solution is found by amending

the shortest path as explained in [44].
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Algorithm 1 Inner loop of the discrete time RRA (IL-RRA).

1: Input: G = (V,E), xi j(t), O −D, t0

2: Initialization

3: P[vi]← NULL ∀ vi ∈ V . Sets the predecessor matrix

4: Q← vi ∀ vi ∈ V . Sets all non-labeled junctions

5: dvi = ∞ ∀ vi ∈ V . Sets the arrival time at i

6: P[O]← 0 . Origin Predecessor

7: dO ← t0 . Arrival time at Origin

8: ε = 10−6 . Waiting Coefficient

9: wmin = ∞

10: End of Initialization

11: while Q , ∅ do

12: ∀ vi ∈ Q Extract vi with min(dvi)

13: Set vi as labeled . Since dvi = d∗vi

14: for ∀ (i, j) ∈ E do

15: if xi j(d∗vi
) == 1 then

16: wi j(d∗vi
) = 0

17: else

18: Calculate wi j(d∗vi
) . Required waiting-slots

19: ci j(d∗vi
) = τi j + wi j(d∗vi

) + ε . Update ci j(d∗vi
)

20: end if

21: if dv j > d∗vi
+ ci j(d∗vi

) then

22: dv j = d∗vi
+ ci j(d∗vi

); P[v j] = vi . Update dv j

23: if wi j(d∗vi
) < wmin then

24: wmin = wi j(d∗vi
) . Update wmin

25: end if

26: end if

27: end for

28: end while

29: return (wmin and path)
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path from the relaxed problem (inner loop) does not require any waiting at any

intermediate node, then the algorithm ends. The obtained solution is considered as

the shortest path that the vehicle should follow after waiting the accumulated waiting

interval at the origin. On the other hand, if the solution of the relaxed problem

involves waiting at one or more intermediate nodes, the outer stage transfers the

minimum waiting interval among all nodes to the origin and updates the vehicle’s

start time (i.e., t0 = t0 + wmin), where wmin = min(wi j(d∗vi
)), wi, j > 0 is the minimum

waiting at an intermediate node in the obtained relaxed solution. Given the updated

waiting time at the origin t0, the relaxed problem is solved again. This procedure

repeats until a path is found that does not include any links that are at their capacity

(given the estimated reservations) nor any waiting at any intermediate node.

The execution procedure of the inner loop is illustrated in Algorithm 1. Algo-

rithm 1 is similar to the Dijkstra’s algorithm but road segment costs are calculated

dynamically, since edges cannot be traversed if they are non-admissible. In that

case, vehicles are forced to wait at a starting junction (vi) of the road segment (i, j),

until their admissibility state changes, thus their cost is updated to also include that

waiting time.

The initialization of Algorithm 1 is identical to Dijkstra’s algorithm with the

predecessor matrix initiated as empty (line 3), all junctions initiated as non-labeled

(line 4), all variables initiated to have an infinite cost (line 5) and the arrival time at the

destination set to t0 (line 7). Thereafter, the inner loop is executed for all non-labeled

junctions and the one with the earliest arrival time is set as labeled (line 11 and 13).

Evidently, the first junctions that the algorithm sets in the route is the originating

node since all others have infinite cost while in subsequent iterations a new labeled

junction is set to be the one that has the earliest possible arrival time (d∗vi
) according

to the label-setting property. With every new set junction, a dynamic calculation

of the traversal cost from the new labeled junction to its neighbors is performed

(lines 15 to 28). This dynamic calculation is performed in those cases where segment

(i, j) is non-admissible at d∗vi
(line 15). The minimum number of time-slots that may

be required wi j(d∗vi
) can be calculated based on both the reservation status of the

concerned segment (i, j) and the arrival time at junction vi (line 18). In every other

case, when the segment attains admissible states, no waiting is necessary (line 16).
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Therefore, in every iteration the edge cost traversal function ci j(d∗vi
) is calculated

using only the constant travel time cost (free-flow conditions) and the waiting time

duration (i.e., ci j(d∗i ) = τi j + wi j(d∗vi
) + ε) (line 19). After all costs have been calculated,

a relaxations is performed (lines 20 to 23). If the traversal cost is lower than the

arrival time dv j then the arrival time at junction v j is relaxed to dv j (i.e., dv j = ci j(d∗vi
))

and junction vi is characterized by the predecessor of v j. By doing so, RRA updates

the earliest arrival time dvi to each non-labeled neighboring junction and stores the

minimum waiting interval among all junctions (wmin) (lines 22 and 23). The above

procedure repeats until all road junctions are characterized as labeled. Finally, the

inner loop returns to the outer loop the wmin and the identified path.

The outer loop determines if any waiting has been included in the path computed

by the inner loop (i.e. wmin , 0). The execution of the outer loop is illustrated in

Algorithm 2 where, as a first step the total delay that may be observed at the origin

(i.e., wtotal) is initiated to zero (line 2) and afterwards the inner loop is executed (line

3). Thereafter, wtotal is updated according to the returned wmin (line 5). Whenever

waiting is identified, the procedure repeats until no waiting is necessary within the

computed path (lines 5 to 9). Waiting is added to the origin (i.e., the entry point to

the region) and the start time is updated (i.e., t0 = t0 + wtotal) (line 7) before the inner

loop re-executes with the new starting time (line 8). With each inner loop execution,

the waiting intervals that are required are summed to wtotal = wtotal + wmin (line 9) and

repeats until no waiting is necessary.

Observations There are cases where two or more feasible solutions for the discrete

time EDAT problem may exists with equal cost. In those cases if one of the two does

not require any waiting while the other does, then the algorithm chooses the path

with no intermediate node waiting and discards the other one since the algorithm

terminates by the first iteration. In the case where both alternative paths experience

some waiting at intermediate nodes, then the inner loop should re-iterate at least one

more time to identify if the waiting interval can be allocated only at the originating

junction. To overcome the selection problem between the alternative solutions, a

constant ε = 10−6 is added in case where waiting is required at each particular road

segment. Thus, the coefficient ε is added to ci j(t) (i.e., ci j(d∗i ) = τi j + wi j(t) + ε, with
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Algorithm 2 Iterative Dijkstra Algorithm Discrete Time.

1: Input: G = (V,E), O −D, t0, wmin, P

2: wtotal = 0

3: Execute IL-RRA(G = (V,E), xi j(t), O −D, t0)

4: wtotal = wtotal + wmin

5: while wmin , 0 do

6: wmin = 0

7: t0 = t0 + wtotal

8: Execute IL-RRA(G = (V,E), xi j(t), O −D, t0)

9: wtotal = wtotal + wmin

10: end while

11: return (Path and wtotal)

t = d∗vi
) (line 18) whenever waiting at a junction is required. This additional cost

ensures that when equivalent paths exist, the algorithm will choose the one with the

least waiting.

As emphasized above, RRA is a heuristic solution that can be executed efficiently

in real time to provide either the optimal or a near optimal path. For example the

RRA algorithm will miss the optimal solution for the example illustrated in Fig.3.5.

As already mentioned, the optimal solution is indicated with a blue line and has

a total cost of 4s. The inner loop of RRA will first return as a solution the path

consisted from road segment (A,B), (B,F) with a waiting delay of 2s at junction B.

The returned solution is equivalent to the optimal one, however, the outer loop of

RRA requires to clarify if that waiting can be transferred to the origin. Hence, the

RRA inner loop re-executes with the new starting time and returns the path consisted

from road segment (A,C), (C,B), (B,F) as the final solution with total cost 6s.

The complexity of RRA is O(ME2V), where M < ∞ denotes the number of

iterations that the outer loop of RRA needs before converging to a solution. At

this point it is worth pointing out that the RRA algorithm will always terminate

in a finite number of iteration. Note that in any scenario, there is a finite number

of vehicles which means that there is a finite number of reservations which also

means that the intervals for which any link is non-admissible are also finite. Let Tmax
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denote the maximum time when a non-admissible interval for any link ends. For

any execution of the RRA Tmax is fixed, while the vehicle initial waiting time t0 is

monotonically increasing at discrete steps which are associated with the end of some

non-admissible interval. Clearly, a non-congested path will always be found when

t0 > Tmax, thus M < ∞.

The extensive simulation results that follow, demonstrate the superiority of the

RRA algorithm compared to the uncontrolled scenario as it can achieve substantial

improvements in terms of road utilization and travel times.

3.5.2 Performance evaluation

Setup

The road network under consideration is an 1.8 km2 unsignalized homogeneous

region of downtown San Francisco as illustrated in Fig. 3.7. The spatial compactness

and homogeneity of this area was initially investigated in [29] and [111], while a

similar region is used in [24]. The selected region consists of 99 road junctions and

208 single-lane road segments with lengths varying from 100 m to 400 m.

To simulate mobility along this region, SUMO micro-simulator [112] is employed

using Krauss’ car-following model [113]. Standard car-following parameters were

used, including: vehicle length of 5 m, maximum speed 15 m/s, acceleration 2.5

m/s2, deceleration 4.5m/s2, driver imperfection 5%, driver reaction time 0.5 s, and

minimum gap distance 2.5 m. The simulation time-step in SUMO was set to 0.1 s,

while the time step of the algorithm is set equal to T = 1 s.

Finally, vehicles follow strictly their reservation routes, but not their reservation

times. The reason is that in the conducted simulations, the route reservation scheme

makes all reservations and routing decisions based on computed travel times without

consideration of the actual network state at the time a vehicle request arrives. It is

important to note that in SUMO environment, even under free-flow conditions the

vehicle speeds vary significantly due to various random events that occur due to

acceleration and deceleration of vehicles, and queuing delays at intersections due

to the passing of higher priority vehicles; hence, travel times may vary from those

computed by the proposed algorithms due to various sources of uncertainty such as
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Figure 3.7: San Francisco road network under consideration.

driver imperfection and junction priorities.

MFD analysis

As a first step, the region’s MFD is analyzed in order to identify the parameters

to be used by the RRA, including uc and ρC
ij. To do so, a 6 hours scenario was

simulated within which for the first 4 hours the input flow was set to 2000 veh/h and

incrementally increased by 2000 veh/h for the next three hours while only exogenous3

flows entering the network. Thereafter, the input flow was set to 4000 veh/h and

2000 veh/h for the last two hours in order to discharge the network. For the results

presented hereafter, 10 Monte Carlo simulations were conducted within which the

O −D pairs and inter-arrival times were randomly generated.

Fig. 3.8 (a) depicts the Macroscopic Fundamental Diagram of the uncontrolled

scenario (US) (i.e., where vehicles select their path strictly based on shortest path)

which illustrates the total flow as a function of the total density of the network. In

the figure, each point corresponds to 1 min measurements. The calibrated model

shown by the solid yellow line is derived through the automated calibration method

proposed by [114] for the single-regime Van Aerde model [115]. As detailed in [114],

an initial set of free-flow-speed (u f ), speed-at-capacity (uc), capacity and jam density

3The flows that generated and destined outside the considered network as they are entering and

exiting from the sides.
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Figure 3.8: Region MFD of: (a) US; (b) RRA.

(ρJ) values are used together with an iterative procedure to update u f , uc and ρJ to

compute the best fit values of the varying parameters which minimize the sum of

squared orthogonal errors. From the figure, the following model parameters are

obtained: u f = 47 km/h, uc = 40.5 km/h and ρJ = 1050 veh.

Hence, the RRA algorithm was set to use ρC
ij = 40 veh/km/lane (i.e., around

40% of the regions total density) and travel time calculations are estimated using

uc = 40.5 km/h. We emphasize that even though for the purposes of computing

the reservations for each vehicle, the constant uc was used, the actual speed of each

vehicle is determined by the simulator based on the assumed model. Fig. 3.8 (b)

depicts the resulting MFD when the RRA algorithm is employed demonstrating

the absence of the congested regime. This is achieved by restricting the number of

vehicles allowed to simultaneously traverse the network.

To demonstrate the performance of RRA, the average volume of total network

flow, the average volume of total network density and average volume of network

speeds, obtained from each Monte Carlo realization of the aforementioned network

scenario, are depicted in Figs. 3.9, 3.10, and 3.11. For comparison, the performance

of US is also superimposed in these figures. Specifically, Fig. 3.9 illustrate the average

volume of the total network flow for both US and RRA, as a function of the simulation

over the Monte Carlo simulations. Similarly, Fig. 3.10 illustrates the average total

network density and Fig. 3.11 the average of the mean network speeds over the
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Monte Carlo simulations, for both US and RRA. Comparing these three figures, it

is evident that using RRA the density decreases (near 330 veh for RRA compared

to more than 500 veh for US as shown in Fig. 3.11) but the traveling speeds remain

high and thus the flow is similar to that of US. Additionally, as Fig. 3.11 illustrates

RRA always maintains traffic below critical capacity ρC (near 350 veh) even when

demand is high (i.e., simulation time 200-240 min). At the same time, RRA maintains

vehicles speeds near the speed-at-capacity at all times, as shown in Fig. 3.10.

To demonstrate the improvements obtained by RRA, Figs. 3.12 and 3.13 depict

the percentage of per road segment density in relation with ρC and the per road

segment speed as a function of the simulation time, respectively, for the case of US.

Similarly, Fig. 3.14 and Fig. 3.15 illustrate identical results for the case of RRA. As

Figs. 3.12, 3.13, 3.14 and 3.15 indicate, at low flow-demands the performance of

both US and RRA is similar while at high flow-demands RRA outperforms US by

avoiding congestion. Clearly, this is due to the fact that at low demands there are no

significant restriction in the admissibility of particular road segments and so both

approaches yield similar results; on the other hand, as demand increases, there is

limited admissibility on road segments and RRA ensures that vehicles wait at their

origins until an admissible path can be identified. As shown in Fig. 3.12, without

a control mechanism, a subset of the road segments exceed their critical density

and some of them get fully loaded especially in high densities (indicated with the

magenta color in the figure). For these road segments, speed drops to near zero (as

indicated with blue color in Fig. 3.13). On the contrary, with RRA road segment

densities are maintained below the critical capacity (as shown in Fig. 3.14), allowing

vehicles to maintain their speed near the free-flow speed. Hence, despite the increase

in demand, RRA can greatly improve the overall network utilization.

Results

The proposed route-reservation architecture, that uses the RRA algorithm, is com-

pared against US and with the state-of-the-art Decreasing Order of Time (DOT)

algorithm [42]. DOT finds the time-dependent shortest travel time path according

to a user-chosen time window for departure. As such, in this chapter the waiting

time at the origin for both RRA and DOT is not considered in the total travel-time
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Figure 3.9: Average network flow over time for US and RRA.
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Figure 3.10: Average network density over time for US and RRA.
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Figure 3.11: Average network speed over time for US and RRA.

for a fair comparison. For the same reason, the travel time estimates for the DOT

algorithm were done according to the route reservation requests and using identical

O −D pairs. Finally, the maximum allowed waiting interval for DOT was set up to

1 min (i.e., half the average trip length for the considered network).

It should be noted here that, in the proposed solution, new route reservations are
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Figure 3.12: Evolution of traffic density for

each road segment over time for US.
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Figure 3.13: Evolution of speed for each road

segment over time for US.
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Figure 3.14: Evolution of traffic density for

each road segment over time for RRA.
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Figure 3.15: Evolution of speed for each road

segment over time for RRA.

computed solely based on information from previous reservations made and not the

actual network state. Since a number of different factors can affect vehicle journeys

(including waiting at intersections and other vehicle interactions) the actual traversal

of the reserved road segments can occur at time periods not anticipated. Hence, all

vehicles follow their pre-computed reservation routes while actual travel times may

vary due to various sources of uncertainty. These uncertainty errors are thoroughly

examined in the sequel.

As before, 10 Monte Carlo simulations were executed with random O − D pairs

and with flow rates varying between 1000 − 8000 veh/h over a period of 2 hours.

Figs. 3.16, and 3.17 show the average vehicle travel time, and the average total
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Figure 3.16: Average vehicle travel time.
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Figure 3.17: Average total travel time.
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Figure 3.18: Number of vehicles with com-

pleted journeys.
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Figure 3.19: Number of loaded vehicles.

time including both the waiting at the origin and the travel time experienced across

the network, as a function of the different flow rates. Additionally, 3.18, and 3.19

illustrate the average number of vehicles that completed their journeys and the

number of vehicles entering the network within the simulation time, as a function

of the different flow rates. The scattered plots in Figs. 3.16, and 3.17 depict the mean

travel and total time of each realization, while the dashed lines represent the mean

travel time and the mean total time for all realizations, respectively.

Similarly, the dashed lines in Figs. 3.18 and 3.19 illustrate the average num-

ber of vehicles that have finished their journey within the simulation time and

the average number of vehicles entering the network, respectively. The scattered

plots represent the realizations obtained by each simulation run. Figs. 3.16, 3.17,
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veh/h.
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Figure 3.21: Travel time distribution of 8000

veh/h.

3.18, and 3.19 illustrate the overall network behavior considering different flow

rates. As indicated in Figs. 3.16, 3.18, and 3.19, for low flow rates (ranging from

1000 veh/h to 6000m veh/h), there is minimal congestion and thus both algorithms

have similar behavior to US. At higher flow rates, congestion emerges and RRA

is shown to greatly outperform DOT since the travel time remains short for RRA

and all vehicles arrive at their destination within the investigated simulation time.

Fig. 3.17 indicates that both RRA and DOT algorithms in low flow rates observe

minor waiting intervals at the origin. On the other hand, as congestion increases, the

mean origin waiting time for RRA increases while the mean origin waiting time for

DOT remains almost constant (around 5 s increase). Nonetheless, Fig. 3.17 indicates

that RRA outperforms both US and DOT; with waiting times observed at the origin

being only a small percentage to the waiting times caused due to congestion.

Figs. 3.20 and 3.21 illustrate the travel time distribution for all vehicles that

manage to reach their destination during the simulation time for flow rates of 7000

veh/h and 8000 veh/h. As illustrated, RRA greatly improved travel time compared

to DOT. As shown in Fig. 3.21, the mean travel time for RRA is 135.9 s, for DOT is

695 s and for US is 2163.5 s. The standard deviation for RRA is 64.8 s, for DOT is

1536.8 s and for US is 2774.1 s demonstrating that as congestion of the road segments

increases, RRA is more stable and accurate than DOT. Further, RRA is more resilient

to the increase in flow rate since travel times do not significantly deviate.
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Figure 3.22: Average travel time for RRA with

varying critical capacity values.
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Figure 3.23: Number of vehicles with com-

pleted journeys using RRA with varying crit-

ical capacity values.

The RRA performance for different values of ρC
ij is also examined. Figs. 3.22 and

3.23 show the average vehicle travel time and the average number of vehicles that

completed their journeys for the cases where ρC
ij = 0.4ρJ

i j, ρ
C−
i j = 0.3ρJ

i j, ρ
C+
i j = 0.5ρJ

i j

where ρC−
i j and ρC+

i j deviate by −25% and 25%, respectively from the selected critical

capacity value (i.e., ρC
ij). Both figures indicate that a 25% increase over the ρC

ij result

to a drop in algorithm performance since travel times increase and a lower number

of vehicles manages to complete their journeys. Interestingly, using lower capacities

the observed algorithm performance is similar to that of ρC
ij since no congestion

occurs and travel times are similar since segment densities do not exceed their

critical values.

Nevertheless, a lower ρC
ij value increases the waiting time at the origin. This

is illustrated in Fig. 3.24 which shows the waiting-time that vehicles need to wait

before departing for their journeys in the form of a box-plot4. This behavior is

expected since a decrease of the allowed capacity reduces the number of vehicles that

simultaneously traverse the network. Additionally, as illustrated in Fig. 3.24 a higher

ρC
ij value decrease the waiting time at the origin affecting the algorithm performance

4The bottom and top of each box indicate the first and third quartiles (25% and 75%) of a ranked

data set, while the horizontal line inside the box indicates the median value (second quartile). The

horizontal lines outside the box indicate the lowest/highest datum still within 1.5 inter-quartile range

of the lower/upper quartile.
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Figure 3.25: RRA origin waiting times.

as congestion occurs. Therefore, the late depart can affected the network behavior

as congestion is avoided.

Notably, as demand increases, a higher number of vehicles request to traverse the

network. Since the allowed density is restricted below the critical value, vehicles pre-

fer to wait at their origin until an admissible path is feasible. Fig. 3.25 demonstrates

that as flow rates increase, waiting time increases exponentially. However, this is

expected since in high-demand scenarios, significant waiting needs to be incurred

to maintain high network flows. Even so, the average waiting is within acceptable

levels (5 min) and therefore, a small departure delay could prove sufficient for the

overall network operation.

Moreover, Fig. 3.26 illustrates the mean distance traveled by all vehicles as a func-

tion of different flow rates in relation to the shortest distance path (computed using

Dijkstra’s algorithm). In fact, RRA paths appear to maintain constant travel times

(close to the shortest distance path) irrespective of the flow demand, as illustrated

in Fig. 3.26. Looking at the findings of both Figs. 3.26 and 3.25 whenever there are

non-admissible road segments, the RRA algorithm tends to postpone departures and

enable vehicles to traverse through shortest distance paths instead of taking longer

routes. This is also verified in Fig. 3.27, which illustrates the percentage of vehicles

that travel through paths other than the shortest distance path. The figure assumes

a flow rate of 8000 veh/h. As shown, the majority of vehicles (around 75%) were

guided through the shortest paths. All these findings indicate that whenever there
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changed.

are non-admissible road segments, the RRA algorithm prefers to instruct vehicles to

wait at their origin before departing, instead of scheduling vehicles through longer

distance paths. This indicates that through RRA longer paths are avoided so that

both travel time and cost are minimized.

3.5.3 Continuous time solutions for EDAT

For comparison purposes this section adopts the continuous time formulation pre-

sented in Section 3.3.2 to develop a Mixed Integer Linear Program (MILP) formula-

tion to solve the continuous time EDAT problem optimally. The developed MILP

formulation is used to investigate the quality of the solution achieved form the RRA

algorithm that heuristically solves the EDAT problem. For a fair comparison, a

continuous-time RRA algorithm (i.e., RRAC) is also being derived with simulation

results indicating that the RRAC algorithm provides fast and close-to-optimal re-

sults. Comparison of the continuous-time RRAC with the corresponding discrete

time RRA algorithm illustrate that the former is more accurate and faster especially

for high-demand traffic scenarios.

Mixed Integer Linear formulation of EDAT Problem

To optimally solve the EDAT problem, we develop a MILP formulation that selects

road segments, respecting the admissibility conditions, that route a vehicle between
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the origin O and the destination D to minimize the arrival time at D. To do so,

the optimal path from O to D is described through binary variables χi j, (i, j) ∈ E,

denoting whether a road segment (i, j) is part of the optimal path p∗ (χi j = 1) or

not (χi j = 0). In addition, the auxiliary binary variables ψi jk, (i, j) ∈ E, k ∈ Ki j(t0)

are introduced to indicate whether a road segment (i, j) satisfies the admissibility

condition at the kth time interval (ψi jk = 1) or not (ψi jk = 0).

The mathematical formulation for the EDAT problem can be expressed as follows:

(P1) min
χi j,ψi jk,di, ∀i, j,k

dD (3.27a)

s.t.
∑

(i, j)∈E

χi j −

∑
( j,i)∈E

χ ji =


1, if i = O,

−1, if i = D,

0, if i ∈ V \ {O,D},

(3.27b)

∑
k∈Ki j(t0)

ψi jk = χi j, (i, j) ∈ E, (3.27c)

di − d j + τ̂i j(t0) ≤M1(1 − χi j), (i, j) ∈ E, (3.27d)

di − d j + τ̂i j(t0) ≥M2(1 − χi j), (i, j) ∈ E, (3.27e)

di ≥ tl
i jkψi jk, (i, j) ∈ E, k ∈ Ki j(t0), (3.27f)

d j ≤ tu
ijk + M3(1 − ψi jk), (i, j) ∈ E, k ∈ Ki j(t0), (3.27g)

di ≥ t0, i ∈ V − {O}, di ≥ t0, i = O, (3.27h)

χi j ∈ {0, 1}, (i, j) ∈ E, (3.27i)

ψi jk ∈ {0, 1}, (i, j) ∈ E, k ∈ Ki j(t0). (3.27j)

where M1, M2 and M3 are appropriately selected constants. In the above formulation,

equality (3.27b) describes the flow constraints that ensure connectivity of the optimal

path from source to destination, while (3.27c) forbids the traversal of link (i, j) at any

time if χi, j = 0. Constraints (3.27d) and (3.27e) ensure the logical condition “if χi j = 1

then d j = di + τ̂i j(t0)” which describes the cost increase when traversing road link (i, j).

To examine the validity of the condition, notice that for χi j = 1 constraints (3.27d)

and (3.27e) enforce the equality d j = di + τ̂i j(t0). For χi j = 0, constraints (3.27d) and

(3.27e) should have no effect on the optimization problem; for this reason, constants

M1 and M2 are selected to provide tight upper and lower bounds on di − d j + τ̂i j(t0),

61

Cha
ral

am
bo

s M
en

ela
ou



respectively, such that the resulting inequalities are always true. Letting du denote an

upper bound to the solution of the EDAT problem (e.g., obtained through a heuristic

algorithm), such that −du
≤ di − d j ≤ du, yields the bounds M1 = du + max(i, j)∈E{τ̂i j(t0)}

and M2 = −du + min(i, j)∈E{τ̂i j(t0)}. In a similar fashion, we can deduce that constraints

(3.27f) and (3.27g) are equivalent to the logical condition “if ψi jk = 1 then tl
i jk ≤ di and

d j ≤ tu
ijk” indicating that when ψi jk = 1 then the admissibility condition needs to be

satisfied for link (i, j), and time interval k. Note that M3 needs to provide an upper

bound to d j, hence M3 = du. Constraints (3.27h)-(3.27j) simply denote the nature (e.g.

continuous, binary) and range of each set of variables. Note that the origin waiting

time (i.e., w), is implicitly imposed by letting dO ≥ t0, so that w = dO − t0.

Problem P1 is an MILP program that can be solved with standard optimization

solvers, yielding the optimal solution to the EDAT problem. Nonetheless, the mixed-

integer nature of the formulation implies that in certain cases the MILP solver may

need exponentially large time to complete. For this reason, we also develop a close-

to-optimal low-complexity heuristic in the next section.

Route Reservation Algorithm Continuous-Time (RRAC)

In this section a polynomial complexity, close-to-optimal algorithm is developed

that solves the EDAT problem in continuous-time. As emphasized above, RRAC is

a continuous-time adaptation of the discrete-time heuristic proposed in Section 3.5.1

in which route reservations are made for discrete time slots rather than continuous

time intervals. RRAC is also an iterative algorithm that solves a series of relaxed

problems that provide lower bounds on the optimal solution until it convergence to

a feasible solution of the original problem.

The m-th iteration of the RRAC algorithm solves a variation of the EDAT problem

with waiting allowed at all nodes while the waiting time at the origin is gradually

increased, hereafter referred to as Relaxed-EDAT. The Relaxed-EDAT can be optimally

solved using a customized version of Dijkstra’s algorithm; hence, it provides a

lower bound on the optimal solution of the EDAT problem for the specific value of

preliminary waiting at the origin, wp
m−1. The preliminary waiting is then updated to

wp
m = wp

m−1 + wT, where wT is the total waiting at all nodes from the solution of the

Relaxed-EDAT. RRAC terminates once the solution of the Relaxed-EDAT involves
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Algorithm 3 Iterative Dijkstra Algorithm Continuous Time (RRAC).

1: Input: G(V,E), Si j(t0), O, D, t0;

2: Initialization: m = 0; wp
0 = 0;

3: repeat

4: m← m + 1;

5: [wT,P]← relaxed-EDAT(G(V, E),

6: Si j(t0), O, D, t0, wp
m−1);

7: wp
m ← wp

m−1 + wT;

8: until {wT = 0}

9: Output: P and wp
m

no waiting. Note that the case of non-zero waiting only at the origin node is included

in the above termination condition, because in the next iteration no waiting will be

observed at all nodes. Once the algorithm terminates, the path found from the

solution of the Relaxed-EDAT, expressed through the predecessor list P of the best

solution found, is returned with total waiting at the source node equal to wp
m. RRAC

is presented in Algorithm 3.

The customized Dijkstra algorithm for solving the Relaxed-EDAT problem is

described in Algorithm 4. First, the algorithm initializes the arrival times dvi to

each junction to infinity except from the arrival time of the origin node which is set

equal to the request time plus the preliminary waiting incurred so far from previous

iterations of RRAC. Initially all junctions are non-labelled, and hence the set of non-

labelled nodes, Q, is set to V, while the predecessor list P is set to null (lines 2-3).

Then, an iterative procedure is followed until the travel times of all junctions are

finalized, i.e. all nodes are labelled. In each iteration, the junction vl that has the

earliest arrival time is labelled (i.e. its travel time is finalized) (line 5) and then it is

examined whether the travel time of vl’s neighbours can be improved (lines 6-12).

To do so, the smallest waiting time wl j is computed which is needed to go from

junction vl at time dvI to junction v j, based on the admissibility of the particular road

segment (line 7). If the examined labelled junction (vl) improves the arrival time at

its neighbour (v j) then the arrival time at v j, dv j is updated and vl is noted as the

predecessor of v j (lines 8-11). In this way, the algorithm calculates and updates the
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Algorithm 4 Inner loop of the continuous time RRAC (IL-RRAC).

1: Input: G(V,E), Si j(t0), O, D, t0, wp;

2: Initialization: dvi = ∞, vi ∈ V, dO ← t0 + wp, Q ← V,

3: P[vi]← NULL, vi ∈ V;

4: while Q , ∅ do

5: vl ← argminvi∈Q
{dvi};

6: Q ← Q − {vl};

7: for (l, j) ∈ E do

8: wl j ← minw≥0{dvl + t + w ∈ Sl j(t0), 0 ≤ t ≤ τ̄l j}

9: cl j(dvl)← τ̄l j + wl j;

10: if {dv j > dvl + cl j(dvl)} then

11: dv j ← dvI + cl j(dvl), P[v j] = vl;

12: end if

13: end for

14: end while

15: wT
← dD, vv ← D;

16: repeat

17: wT
← w − cP[vv],vv(dvP[vv]);

18: vv ← P[vv];

19: until {vv = O}

20: Output: wT, P.

earliest arrival times of non-labelled neighbour road junctions in each iteration. The

above procedure repeats until all road junctions are characterized as labelled. Finally,

the predecessor list which holds the best path from O to D is exploited to calculate

the total waiting time at all junctions, wT (lines 14-17). By allowing waiting at all

nodes, Algorithm4 returns a better solution than the proposed solution; nonetheless,

it is not applicable to real traffic networks since vehicles cannot stop and wait along

arbitrary road junctions.

The complexity of the algorithm is O(LE2/V), with L denoting the number of

reiterations of the Relaxed-EDAT problem that is required. The complexity of RRAC

(i.e., the proposed continuous-time variant) is improved to O(LE2/ log (V)) since
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Figure 3.28: Network Topology considered in performance evaluation.

the waiting intervals that may be required at any intermediate road junction can

be calculated more efficiently through continuous-time intervals. Additionally, the

adapted continuous-time domain solution offers more precise solutions (avoiding

quantization errors) in terms of route reservation. Specifically, more vehicles can

be scheduled within the same time period while a lower number of Relaxed-EDAT

iterations are required (since no time intervals are wasted due to quantization).

3.5.4 Performance Evaluation

Setup

In order to evaluate the performance of the developed algorithms, a Manhattan-style

network topology (see Fig. 3.28) is considered consisting of 36 two-way, single-lane

road segments and 28 junctions. The Manhattan-style network is selected due to

the complexity of the problem and the fact that MILP is able to derive fast solution

only in case of small scale networks. Traffic arrives in the network probabilistically,

according to Poisson distribution, while for each trip a random O−D pair is selected.

All vehicles are assumed to follow the route assigned to them by the RSU using the

route reservation scheme. A critical density of ρC
ij = 30veh/km/lane and a free-flow

speed of 15 m/s are used. Simulations are performed for varying total flow rates in

the range of 1000 to 8000 veh/h. Both RRAC and MILP are evaluated in identical

scenarios and reservations initial states for fair comparison. Additionally both are
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compared with the results obtained by the Route Reservation Algorithm Discrete-

Time (i.e., RRAD). Finally, the MILP formulation is constructed and solved using

the Gurobi mathematical programming solver [116], while RRAC and RRAD are

implemented in C++.

The performance evaluation is performed in both ideal and micro-simulation

environments. In ideal environment it is assumed that there is no uncertainty in the

MFD. It is further assumed that the speed under free-flow conditions is constant and

equal to the free-flow speed u f . This means that the topology can be modeled as a

graph with edge cost equal to the transit-time of the corresponding road segment

with free-flow speed so that the path travel time is equal to the sum of the free-flow

transit-times of all traversed links.

On the other hand, the micro-simulation environment aims to capture the stochas-

tic nature of traffic mobility within a realistic road network which results in un-

certainty in the MFD. In a realistic environment vehicles form queues and follow

each other, have acceleration and deceleration times, and experience delays at in-

tersections due to the passing of higher priority vehicles. To capture these effects,

the SUMO micro-simulator [112] is used, which employs the Krauss car following

model [113] for vehicle mobility. In our simulations the car-following model param-

eters are set as follows: vehicle length 5 m, maximum speed 15 m/s, acceleration

2.5 m/s2, deceleration 4.5 m/s2, and minimum gap distance of 2.5 m. To account for

stochastic effects, 10 Monte Carlo simulations are performed for each considered

scenario. In addition to comparing the performance of RRAC, RRAD and MILP,

comparisons are also conducted against the uncontrolled scenario (referred to as US

in the plots) where each vehicle travels from the origin to the destination along the

shortest path (based on the distance) and no waiting at the origin is used.

Results (ideal simulation environment)

Fig. 3.29 depicts the mean travel time that vehicles experience within the network for

different demand flow rates. Travel time is defined as the time lapse between origin

departure time and the destination arrival time. As anticipated, all algorithms expe-

rience approximate similar travel times in low demand flow rates (below 3000 veh/h)

as there is no congestion. As the flow rate increases, the MILP experience higher
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average travel times than the RRAC and RRAD approaches. In terms of path length,

MILP produces longer paths as the network travel time increases, while both the

RRAC and RRAD paths appear to maintain constant travel times irrespective of the

flow demand.

Figs. 3.30 and 3.31 show the origin waiting time and the total time (origin wait-

ing time plus travel time) that vehicles experience for different demand flow rates,

respectively. Despite the fact that the MILP approach schedules vehicles through

longer paths, the total time is lower compared to both the RRAC and RRAD algo-

rithms, because the former generates solutions with shortest origin waiting times.

More specifically, at low flow-rates (1000 - 5000 veh/h) the performance of all al-

gorithms is almost identical as there are no significant restrictions in terms of road

segment admissibility. However, at higher demands the MILP approach outper-

forms the RRAC and RRAD by up to 20% and 30%, respectively, as the admissibility

sets become more fragmented and require the examination of a large number of

time-interval combinations to find the best path. Fig. 3.30 also illustrates that as

the demand flow rate increases, the average waiting time increases exponentially

and becomes more than one order of magnitude larger than the mean travel time.

This figure also indicates that the origin waiting time for RRAD algorithm is up

to 10% larger compared to the RRAC, since RRAD may reserve more time-slots

than it actually needs due to inaccuracies in time discretization. Despite the large

origin waiting times, we demonstrate that under micro-simulation environment

all proposed algorithms lead to significantly better performance compared to the

uncontrolled scenario (US) which yields higher travel times due to congestion.

An interesting observation is that the MILP approach may impose virtual waiting

within the network by introducing cycles to the vehicle paths. Although such paths

do have smaller total times, this often leads to higher fuel consumption, which

may be undesirable. On the contrary, the RRAC and RRAD approaches introduce

all waiting at the origin, as they are based on Dijkstra’s algorithm which prohibits

cycles in the produced paths.

Fig. 3.32 examines the average execution time of all algorithms for different flow

rates. As expected, higher demand flow rates lead to longer execution times for

all algorithms because the admissibility sets become more fragmented. Clearly,
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Figure 3.29: Average vehicle travel time from origin to destination for varying demand flow

rate.
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Figure 3.30: Average origin waiting time of all vehicles for varying demand flow rate.

the RRAC and RRAD algorithms are significantly faster than the MILP approach,

outperforming the latter by around three orders of magnitude. Another interesting

observation regards the execution speed of the two Dijkstra-based algorithms, as no

algorithm is dominated by the other. In particular, RRAD appears faster than the

RRAC for low flow rates and slower than the RRAC for high flow rates. The increase

in the execution time of RRAD at higher flow rates is possibly due to decreased road

segment admissibility, as a result of unnecessary reservations in discrete time, which

leads to longer horizon problems to be solved. Since, the RRAC algorithm achieves

the lowest execution times with near-optimal performance it has also been selected

for performance evaluation in micro-simulations.
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Figure 3.31: Average total time (sum of travel time and origin waiting time) of all vehicles

for varying demand flow rate.
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Figure 3.32: Average execution time of different algorithms for varying demand flow rate.

Results (realistic simulation environment)

Figs. 3.33 and 3.34 illustrate respectively, the mean number of vehicles that reach

their destination and the average travel time as a function of the different flow rates.

Specifically, the dashed lines in Fig. 3.33 represent the average number of vehicles

that have finished their journey within the simulation time and the scattered plots

are the realizations obtained by each simulation run. Similarly, the dashed lines in

Fig. 3.34 represents the value of the average travel time for the different realizations

and the scattered plots represent the average travel time across all Monte Carlo

simulations.

As illustrated in Figs.3.33 and 3.34, at low demands (flow rate 1000− 5000) veh/h
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Figure 3.33: Average travel time (t→ s).
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Figure 3.34: Number of vehicles towards to the route end.

all approaches behave similarly in terms of the average number of vehicles that reach

their destination and the average travel time. At high demand, the MILP, RRAD

and RRAC algorithms outperform by several orders of magnitude the US approach

in terms of average travel time. In addition, both algorithms (RRAD and RRAC)

allow for the completion of almost all vehicle trips, whereas using the US approach

less than 50% of the vehicles arrive at their destination in high congestion scenarios.

Comparing the performance of the proposed algorithms, MILP and RRAD results

in 6% more vehicles with completed trips and 46% less travel time for the highest

congestion scenario compared to RRAC.

Fig. 3.35 illustrates the distribution of the percentage of vehicles that managed to

reach their destination as a function of travel time, when a flow rate of 8000 veh/h is

70

Cha
ral

am
bo

s M
en

ela
ou



Travel Time (sec)
1000 2000 3000 4000 5000 6000 7000 8000

Ve
hi

cl
es

 W
ith

 C
om

pl
et

ed
 

Jo
ur

ne
ys

 (
%

)
0

10
20
30
40
50
60
70
80
90

100

100 200 300 400 5000

10

20

30

40

50
RRAC
MILP
US
RRAD

Figure 3.35: Travel time distribution (8000veh/h).

used. From the figure, it is clear that the MILP, RRAC and RRAD approaches provide

more robust paths than US, as almost all trips finish within the 500 s, whereas US

has a significant portion of vehicles finishing above 1000 s.

Summarizing the results from the realistic environment, it is clear that using the

proposed strategy of not admitting vehicles that are in road segments that have

reached their critical density, yields significantly improved performance compared

to simply routing based on the short-path. In addition, the results indicate that

despite the fact that RRAC is a heuristic algorithm, is provides close-to-optimal and

fast results.

3.6 Traffic Load Balancing

According to the EDAT problem, vehicles are served in first come first served or-

der, causing the system to be susceptible to fairness issues as some vehicles may

be routed through longer routes instead of following the shortest ones or may be

forced to wait longer than others. To deal with this issue, a Traffic Load Balancing

(TLB) formulation is proposed that seeks to navigate vehicles through congestion-

free road segments while minimizing the variance of the overall traffic observed in

each road segment. Traffic load balancing can lead to better network performance

as it improves the homogeneity of the network, alleviating in this way various un-

wanted phenomena, such as grid-locks. Furthermore TLB, aims also to find a path

that provides a good trade-off between early destination arrival time (i.e., EDAT
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problem) and traffic load balancing. Although arriving at the destination at the ear-

liest possible time is highly desirable, balancing the traffic creates robustness against

travel time estimation inaccuracies due to acceleration/deceleration and queuing at

intersections. This section provides a detail mathematically formulation of the TLB

problem while two efficient algorithms are derived able to solve EDAT and TLB

problem in pseudo-polynomial time considering a discrete time domain.

3.6.1 Traffic Load Balancing (TLB) problem

Given an origin-destination (O−D) pair, the time-stamp t0 of the routing request, the

admissibility state xi j(t) of each road segment and the total number of reservations

of each road segment ni j(t), the TLB problem requests the path (from O to D) that

minimizes the variance of densities across the network. Let pk denote the k-th path

from source O to destination D defined in the same way with the EDAT problem. Let

also TH = a ·d∗D denote the time-horizon for the TLB problem, where d∗D is the solution

to problem of the EDAT problem (Eq. (3.8)) and a ≥ 1 is a constant that defines the

trade-off between achieving the earliest destination arrival for the particular vehicle

and load balancing the traffic. Based on the initial conditions of the network, we

define the mean µ0, second moment M0, and variance σ2
0 of the densities of the

network for the time-horizon considered as:

µ0 =
1

NS

∑
(i, j)∈E

TH∑
τ=t0

ni j(τ)
bi j

(3.28)

M0 =
1

NS

∑
(i, j)∈E

TH∑
τ=t0

(
ni j(τ)

bi j

)2

(3.29)

σ2
0 =

1
NS

∑
(i, j)∈E

TH∑
τ=t0

(
ni j(τ)

bi j
− µ0

)2

= M0 − µ
2
0 (3.30)

where bi j = li jλi j and NS = (TH − t0 + 1)NE.

When a vehicle with path pk and waiting time at the origin w enters the network,

the number of reservations ni j(t) at the corresponding road segments is increased

by one for the occupancy period of each segment. To obtain values for the mean

µk(t), the second moment Mk(t), and variance σ2
k(t) of path pk when the destination

is reached at time t, i.e. t = dk
D, we consider the amount of change occurring on
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(3.28)-(3.30); this is achieved by increasing the value of ni j(τ) by one for each road

segments included in path pk, yielding the following expressions:

µk(t) = µ0 +
1

NS

∑
(i, j)∈pk

dk
j∑

τ=dk
i +1

(
ni j(τ) + 1

bi j
−

ni j(τ)
bi j

)
= µ0 +

1
NS

∑
(i, j)∈pk

ci, j(dk
i )

bi j
(3.31)

Mk(t) = M0 +
1

NS

∑
(i, j)∈pk

dk
j∑

τ=dk
i +1

((ni j(τ) + 1
bi j

)2

−

(ni j(τ)
bi j

)2)
(3.32)

σ2
k(t) = Mk(t) − (µk(t))2 (3.33)

One important observation is that we can define the mean, second moment and

variance of the path pk up to node vk
l reached at time t, i.e. t = dk

vk
l
, denoted as µk,l(t),

Mk,l(t) and σk,l(t), respectively, based on the associated quantities µk,l−1, Mk,l−1 and

σ2
k,l−1 and the incurred increment due to the increase of ni j(τ). In particular, simple

mathematical calculations yield the expressions:

µk(vk
l , t) = µk(vk

l−1, d
k
vk

l−1
) + ∆µk(vk

l , t) = µk(vk
l−1, d

k
vk

l−1
) +

1
NS

cvk
l−1,v

k
l
(dk

vk
l−1

)

bvk
l−1,v

k
l

(3.34)

Mk(vk
l , t) = Mk(vk

l−1, d
k
vk

l−1
) + ∆Mk(vk

l , t)

= Mk(vk
l−1, d

k
vk

l−1
) +

1
NS

dk
vk

l∑
τ=dk

vk
l−1

+1

((nvk
l−1,v

k
l
(τ) + 1

bvk
l−1,v

k
l

)2

−

(nvk
l−1,v

k
l
(τ)

bvk
l−1,v

k
l

)2)
(3.35)

σ2
k(vk

l , t) = σ2
k(vk

l−1, d
k
vk

l−1
) + ∆Mk(vk

l , t) − 2µk(vk
l−1, d

k
vk

l−1
)∆µk(vk

l , t) − (∆µk(vk
l , t))

2 (3.36)

Based on the above discussion, the TLB problem can be defined as

(ΠTLB) min
w≥0, pk

σ2
k(D, dk

D) (3.37a)

s.t. Constraints (3.1) − (3.3) and (3.7) are satisfied.

TH/a ≤ dk
D ≤ TH. (3.37b)

Mathematical formulation (3.37) aims to minimize the spatiotemporal variance

of traffic densities in the network provided that the time required to reach the

destination is not higher than a percentage (a − 1)100%, with respect to the earliest

destination arrival time. In this context, other measures can also be considered
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such as the weighted sum between mean and variance [117], or some reliability

shortest path measure combined with variance, e.g., [118, 119]. Hence, the solution

of Mathematical formulation (3.37) requires to optimally solve the EDAT problem

(Problem (Πd)) presented in Section 3.4. In this direction, an optimal solution of the

Problem (Πd)derived in the section that follows.

3.7 Dynamic programming solutions for EDAT and TLB

3.7.1 EDAT problem discrete time optimal solution

To optimally solve the EDAT problem, a directed acyclic graph is build using a

space-time network. The space dimension contains indices of the road junctions

and the time dimension contains consecutive time slots. Each node replica in the

space-time network is identified by the index of the road junction and a specific time

slot. Edges on this network represent road segments and the length of each edge

reflects the time necessary to travel between adjacent junctions.

To construct a directed graph on this network, edges are assessed based on the

reachability of nodes from the origin, and their admissible capacity of edge (i, j),

using variables dvi(t) and xi j(t), respectively. Specifically, variable dvi(t) determines if

node vi of edge (i, j) is reachable; indicated when dvi(t) < ∞. Thereafter, edge (i, j)

is considered admissible when xi j(t) = 1. In the process, a topological ordering is

imposed for all nodes in the graph. Also, in this directed graph no direct cycles exist,

and thus it is easy to indicate reachability from the origin using merely dvi(t) < ∞.

In the case when both conditions are satisfied, edge (i, j) is added on the graph.

Specifically, if junction vi is reachable from the originating junction O and xi j(t) = 1,

then a directed edge from vi at time t to junction v j at time t + ci j(t) is added to the

graph. The whole process repeats until that time when D becomes reachable, i.e.

dD(t) < ∞ for any vi and t (edge (vi,D)). It should be noted here that since the earliest

destination arrival time route is required, the algorithm stops when D becomes

reachable and traces back the nodes in the space-time network that resulted to this

route. Algorithm 5 depicts the steps of the aforementioned algorithmic procedure

to compute the EDAT.
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Algorithm 5 EDAT algorithmic solution.

1: Input: G(V,E), ni j(t), O, D, t0, xi j(t);

2: Initialization:

3: t = t0 − 1;

4: dvi(t) = ∞∀t, vi ∈ V;

5: d∗D = ∞;

6: dO(t) = 0,∀t;

7: Algorithm Execution:

8: while t < d∗D do

9: for (i, j) ∈ E do

10: t = t + 1;

11: if (((vi == D) OR (v j == D)) AND (dD(t) < d∗D)) then

12: d∗D = dD(t);

13: else

14: if ((xi j(t) == 1) AND (dvi(t) < ∞)) then

15: dv j(t) = dvi(t) + (t + ci j(t));

16: previous[v j][(t + ci j(t))] = vi;

17: end if

18: end if

19: end for

20: end while

21: Trace back the optimal path p∗ starting from previous[D][d∗D];

22: Output: p∗ and d∗D;

Example 1

To better understand the EDAT algorithmic procedure consider the example illus-

trated in Fig. 3.36 where edge lengths reflect the traversal times for specific road

segments. In this example, t0 = 0 and the admissibility along different road seg-

ments is given as follows: xOC(2) = xBE(1) = xBE(2) = xCD(1) = xCD(2) = 0.

Fig. 3.37 shows the graph constructed by the EDAT algorithm. The space dimen-

sion of each node indicates the junction index while the time dimension indicates

the replica of the junction created over time. As before, the two variables assess the
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Figure 3.37: EDAT Algorithmic Solution.

reachability of nodes and the admissibility of edges in the graph. As illustrated in

the figure, the first column contains only edges emerging from the origin O since

all other junctions until time t = 0 are not reachable. Similarly, the second column

contains edges emerging from junctions O, B, and C since at t = 1 these nodes have

been reached from origin O.

The dashed-line edges represent road segments that can alternatively be selected

without affecting the cost of the solution. The algorithm selects the road segments

that were identified first and discard any subsequent arrivals to the specific node.

Following the same procedure at the fifth column, the destination is reached and the

algorithm terminates. Grid-shaded nodes shown in the graph depict those nodes

selected in the route (O→ B→ C→ D and w = 1, also denoted with the solid green

line).

The devised algorithm results to an optimal solution and executes in pseudo-

polynomial time in the discrete time case, due to NP-completeness of the EDAT

problem as well since the state space is not known until the algorithm converges

76

Cha
ral

am
bo

s M
en

ela
ou



with complexity O(d∗DNE). To see why an optimal solution is found, notice that the

minimum cost of state (vi, t) is equal to t if the state is reachable and ∞ otherwise.

Hence, a path achieving reachability of state (vi, t) provides the minimum cost to that

state and ensures reachability of all predecessor states forming the path. Therefore, if

state (D, t̄) is reachable though path p, then all states forming p are also reachable (with

minimum cost) and the optimal substructure property applies [44]. The reachability of

all states is examined for increasing t and thus the optimal solution is found at time

d∗D which is the earliest time at which D is reachable. Next a solution to TLB problem

is presented.

3.7.2 TLB algorithmic solution

Solving the TLB problem to optimality is a challenging task because variance does

not adhere to the optimal substructure property, i.e. an optimal solution cannot be

constructed efficiently from optimal solutions of its subproblems [44]. To see why

this is true, consider a road network consisting of two paths arriving at junction vi and

a road segment directly connecting junction vi to the destination D. Let the mean and

variance of the two paths p1 and p2 up to junction vi be given by µ1(vi, t), σ2
1(vi, t) and

µ2(vi, t), σ2
2(vi, t), respectively. Additionally, let σ2

1(vi, t) < σ2
2(vi, t) such that the optimal

path to vi is p1. If the optimal substructure property holds then the minimum variance

at the destination must utilize path p1. However, using Eq. (3.36), it can be easily

shown that the optimal path to the destination is through p2 whenµ2(vi, t) > µ1(vi, t)+

(σ2
2(vi, t) − σ2

1(vi, t))/(2∆µ(vi, t)), where ∆µ(vi, t) = ci,D(t)/(NSbvi,D) which confirms that

the optimal substructure property does not hold for TLB problem.

Based on the above discussion, a dynamic programming algorithm similar to

Algorithm 5 cannot be developed to optimally solve TLB. One approach to address

this issue is to consider dynamic programming with an additional dimension in

the state of the time-expanded graph associated with the origin waiting time so

that µk(vi, t) is constant at one particular state; however, this significantly increases

the complexity of the problem which is not desirable. An alternative approach

is to approximate the variance with a new metric that has good load balancing

performance and satisfies the optimal substructure property. Towards this direction

we consider the second moment of the network densities as the cost metric. This
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metric provides a good approximation of the variance when the length of the paths

reaching the destination are of approximately equal length.

The solution of the TLB problem is outlined in Algorithm 6. Similar to Algorithm

5, a directed acyclic time-expanded graph is constructed with states (vi, t) indicating

that junction vi is reached at time t and minimum cost of reaching the state equal to

M(vi, t) = minpk Mk(vi, t). The initialization of the algorithm is similar to Algorithm 5,

while the main body consists of two blocks. The first examines if the destination has

been reached with a better cost than M∗

D, in which case the destination cost is updated;

parameter dD maintains the time-slot with the best cost to the destination. The second

block computes the cost of reaching junction v j through vi based on Eq. (3.33) and

updates it when it is better than the current cost, if vi is reachable from the origin O

and (i, j) is admissible. To backtrack the best path to the destination, a predecessor

list is maintained through matrix previous, where expression previous[v j][t + τ̄i j] = vi

indicates that state (v j, t + τ̄i j) is reached through state (vi, t). The complexity of

TLB algorithm is equal to O(TH
∑

(i, j)∈E τ̄i j) due to the iteration over time and the

summation that appears in the computation of Mtemp. Note that other research

works have also used space-time graphs to solve vehicle routing problems e.g. [120].

Example 2

To illustrate the execution of Algorithm 6, let us revisit Example 1 aiming to solve the

TLB problem with a = 1.25. In this case, the constructed DAG corresponding to the

Algorithm 6 is shown in Fig. 3.38. The dashed green lines indicate edges from can-

didate paths that have not produced minimal cost, rather than alternative solutions.

Comparing Algorithms 5 and 6, the TLB-based algorithm examines solutions up to

TH = 5(= 4 × 1.25) rather than d∗D = 4. In addition, the optimal solution provided by

Algorithm 6 (illustrated by the red nodes) involves a different path and waiting time

compared to the EDAT solution (O → C → D and w = 3 versus O → B → C → D

and w = 1, also denoted with the solid green line).
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Algorithm 6 TLB Algorithmic Solution.

1: Input: G(V,E), ni j(t), O, D, t0, xi j(t), TH, bi j, NS, M0;

2: Initialization:

3: t = t0 − 1;

4: M(vi, t) = ∞, ∀t, vi ∈ V;

5: M(O, t) = M0, ∀t;

6: M∗

D = ∞;

7: Algorithm Execution:

8: for t = t0, t0 + 1, . . . ,TH do

9: for (i, j) ∈ E do

10: t = t + 1;

11: if ((vi == D) OR (v j == D) AND (M(D, t) < M∗

D) then

12: dD = t;

13: M∗

D = M(D, t);

14: end if

15: if ((xi j(t) == 1) AND (M(vi, t) < ∞)) then

16: Mtemp(v j, t + τ̄i j) = M(vi, t) + 1
NS

∑t+τ̄i j

t

((
ni j(t)+1

bvivj

)2

−

(
ni j(t)
bvivj

)2)
;

17: if (M(v j, t) > Mtemp(v j, t)) then

18: M(v j, t) = Mtemp(v j, t);

19: previous[v j][t + τ̄i j] = vi

20: end if

21: end if

22: end for

23: end for

24: Trace back the optimal path p∗ starting from previous[D][dD];

25: Output: p∗ and M∗

D;

3.7.3 Performance evaluation

Setup

The road network under consideration is identical with the network used in Section

3.5.2. The network is imported into the SUMO micro-simulator, where vehicle
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Figure 3.38: TLB Algorithmic Solution.

mobility and car-following model parameters are set as before in Section 3.5.2. Monte

Carlo simulations were constructed (10 realizations) whereas both algorithms (EDAT

and TLB) were compared against the uncontrolled scenario (US) experienced within

the network when no control mechanism is applied and each vehicle travels from

the origin to the destination along the shortest (in terms of distance) path. The

simulation time-step in SUMO was set to 0.1 s, while the time step of the algorithm

is set equal to T = 1 s. Finally, as presented in the simulation in Section 3.5.2 vehicles

follow strictly their reservation routes, but not their reservation times.

MFD analysis

By injecting flow into the region, identical MFD as depicted in Fig. 3.8 (a) can be

derived and accordingly the selected parameters for both algorithms are: u f = 47

km/h, uc = 40.5 km/h, ρJ = 1050 veh and ρC
ij = 40 veh/km/lane (i.e., around 40% of the

region’s total density). Figs. 3.39 (a) and (b) depict the resulting MFD when the TLB

and EDAT algorithms are employed respectively, demonstrating that congestion is

alleviated from both algorithms. Additionally, the total volume of flow, density

and speed are illustrated in Figs. 3.40, 3.41 and 3.42 as a function of the simulation

time, respectively. Comparing these three figures it is demonstrated that as both

algorithm operate the density decreases (near 330 veh for TLB and near 410 veh

for EDAT compared to more than 700 veh for US as shown in Fig. 3.40). Thus, the
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Figure 3.39: Region MFD using algorithm: (a) TLB; (b) EDAT.

link densities are always maintain below the critical capacity (near 350 veh) for both

algorithms even when traffic demand is high (e.g., for simulation time 200-240 min).

Observing Fig. 3.41 the traveling speed manages to remain high for both algorithms

and thus the flow is similar to that of US Fig. 3.42. Indicatively, Fig. 3.41 depicts that

in high demand periods TLB outperforms EDAT since the travelling speed is always

maintained near u f .

Results

For the results presented hereafter, ten Monte Carlo simulations were executed with

random O − D pairs and for flow rates varying between 1000 − 8000 veh/h over a

duration of two hours. Figs. 3.44 and 3.43(b) show the average number of vehicles

that reach their destination and the average vehicle travel time as a function of the

different flow rates, respectively. Specifically, the dashed lines in Fig. 3.44 represent

the average number of vehicles that have finished their journey within the simulation

time and the scattered plots are the realizations obtained by each simulation run.

Similarly, the dashed lines in Fig. 3.43 (b) represent the value of the average travel

time for the different realizations and the scattered plots represent the average travel

time across all Monte Carlo simulations.

As illustrated in Figs. 3.44 and 3.43(b), at low flow rates EDAT and US behave

similarly while TLB slightly lags in terms of the average number of vehicles that reach
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Figure 3.42: Total network flow over time.

their destination within the simulation time. On the other hand, TLB outperforms

EDAT and US in high flow rates, where a larger number of vehicles reach their
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Figure 3.43: (a) Number of vehicles towards to the route end; (b) Average travel time (t→ s).

destination and results in a more robust and shorter travel times. In either case, both

algorithms perform much better than US. Comparing EDAT against TLB it is clear

that better network utilization can be achieved in the case where EDAT is applied at

low flow rates while TLB employed at higher flow rates.

Figs. 3.44 illustrates the travel time distribution for all vehicles that managed to

reach their destination during the simulation time when a flow rate of 8000 veh/hour

is used. As clearly shown, EDAT and TLB greatly outperform US. In numbers,

the mean travel time for EDAT is 139.7 s, for TLB is 118.9 s and for US is 2160.8

s. The standard deviation for EDAT is 86.65, for TLB is 58.2 and for US is 2762

demonstrating that as congestion of the road segments increases, TLB is more stable

and accurate than the other two solutions. Additionally as shown in the figure, TLB

is highly resilient to the increase in flow rate since travel times do not significantly

deviate. Finally Fig. 3.44 clearly indicates that TLB achieves better travel times while

eliminating spillbacks.

3.8 Summary

This chapter proposes a new route-reservation architecture which aims to prevent

congestion by restricting the traffic density in different road segments within a ho-

mogeneous region. The key advantage of this architecture is that it considers both

the spatial and temporal density of regions, and it exploits more reliable future traffic
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Figure 3.44: Travel time distribution (8000veh/h).

estimates through reservations. For this scheme, the earliest destination arrival time

problem and the traffic load balancing problem are examined which have a com-

plementary nature as the earliest destination arrival time algorithm provides better

results for low congestion conditions and the traffic load balancing algorithm for

high congestion conditions. Both problems are solved by developing several algo-

rithms that can provide different solution qualities and execution times. Simulation

results demonstrate the superiority of the route reservation architecture compared to

the traditional traffic behavior (where no reservations are made), achieving substan-

tial improvements in terms of road utilization and travel times, especially during

high demand.
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Chapter 4

Improved Route Reservations with

Travel Time Prediction

4.1 Introduction

According to the proposed route-reservation architecture, the future state of each

road segment is estimated based on the received reservations and assuming that all

vehicles travel at a constant speed which is set equal with the free-flow speed (or

the speed at capacity). Despite the fact route reservation architecture can achieve

free-flow conditions for the entire road network, speed variations may be observed

due to various factors such as the stochastic nature of human driving which leads

to speed fluctuations between interacting vehicles, and the crossing of intersections

with same or different road segment priorities. Hence even within a homogeneous

region, the assumption of traveling in constant speed is not always valid which can

lead to wrong predictions of the time that a vehicle occupies a road segment which

in turn affects the accuracy of the overall reservation architecture. Therefore, the key

objective of this chapter is to investigate a better method for estimating the time that

vehicles take to traverse each road segment.

The remainder of the chapter is organized as follows. Section 4.2 extends the

proposed route reservation architecture presented in Chapter 3 by enabling it to

predict the transit-time of each road segment while Section 4.3 mathematically

describes the continuous-time EDAT problem that takes into consideration these

transit-time predictions. Section 4.4 proposes the Time-Varying Multiple Linear Re-
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gression (TVMLR) method, which makes the transit-time predictions. The required

modification of the considered continuous-time route reservation algorithm (RRAC)

is presented in Section 4.5 with simulation results in Section 4.6 indicating the bene-

fits that can be gained through the proposed prediction methods. Finally Section 4.7

summarizes this chapter.

4.2 Route Reservation Architecture extension

Within the context of connected vehicles, previous Chapter 3 proposes a route reser-

vation architecture that routes vehicles through non-congested road-segments. In

the proposed architecture, a road side unit (RSU) is responsible for computing ve-

hicles routes while it also ensures that each vehicle will arrive at its destination at

the earliest possible time. At the same time, the RSU also reserves each road seg-

ment at the time that the vehicle is expected to traverse them. Each road segment

transit-times are calculated assuming constant vehicles speed (typically the free-flow

speed). Nonetheless, considering constant speed is not always a valid assumption

in practice.

In this chapter, an extension of the route reservation architecture is proposed to

address the above shortcoming. To do so, instead of considering constant transit-

times, we investigate the use of predicted transit-times by introducing feedback to

the RSU capabilities. In this context, when a vehicle exits a road segment, it sends to

the RSU the time it took to traverse this particular road segment. The RSU utilizes this

information to make near-future predictions of the transit-times of all road segments

without requiring to know the average vehicle’s speeds in the network or any other

information about the network’s state. Therefore, as time goes by, it is expected that

the road segment transit estimates will be closer to the actual values and thus the

future state predictions will be more accurate, and therefore the reservations will be

more effective. Recent advances in connected and autonomous vehicle technologies

support the development of such a scheme.

According to the proposed extension, the transit-times of each road segment

can be interpreted as a time-series where samples are affected by the segment’s

instantaneous density. As the density of the segment increases the speed decreases
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Figure 4.1: Extended of the Route Reservations Architecture. When a vehicle traverse a road

segment sends to the RSU the time it took to traverse this particular road segment.

and hence, the transit-time increases, [121] exhibiting seasonal changes (depending

on density). Considering such behavior, a simple prediction method is proposed to

address the accuracy problem under route reservation architecture. The proposed

method based on the Time-Varying Multiple Linear Regression (TVMLR) technique

that uses several explanatory variables to predict the outcome of a response variable

as the segment’s transit-time depends on more than one factor. In this chapter,

one factor is the segment’s current density while the second factor is the density

of all adjacent segments that share the same exiting junction [122]. Hence, there is

seasonality on the transit-time response, meaning that there is a pattern of transit-

times that is related to these two dependent variables (factors).

4.3 Continuous time formulation modification

Considering the continuous time mathematical formulation presented in Section

3.3.2, transit-times predictions can be included by replacing the constant transit-

time assumption (i.e., τ̄i j = li j/u f ) with the variable τ̂i j(t) that denotes the travel

time prediction for each road segment (i, j), as predicted at time t. In this way, the

admissibility intervals of each road segment are based on the assigned vehicle path,
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the past reservations status and the predicted travel times for each road segment

(i.e., τ̂i j(t)). Hence, the cost of traversing each road segment (i.e., ci j(t) is replaced by

the variable ci j(dbvi
, t0), mathematically defined as follows:

ci j(dvi , t0) =



τ̂i j(t0), if di + t ∈ Si j(t0),∀ 0 ≤ t ≤ τ̂i j(t0), i , O

τ̂i j(t0) + w, if t0 + w + t ∈ Si j(t0),

∀ 0 ≤ t ≤ τ̂i j, i = O

∞, otherwise, (4.1)

where dvi denotes the arrival time at node vi, t0 the vehicle’s request time, O the

origin node, and w ∈ R the origin waiting time. Note that, in this case, the cost of

traversing each road segment is time varying and calculate at the reservation request

time. Furthermore, let the variables M(t) and N(t) denote the actual and estimated

(e.g., through reservations) instantaneous network density. Hence, the variable N(t)

defines the network’s accumulated number of reservations (i.e.,N(t) =
∑
∀(i, j)∈E ni j(t))

while similarly, M(t) mathematically is defined as (M(t) =
∑
∀(i, j)∈E ρi j(t) ∗ li j), at t.

Earliest destination arrival Time (EDAT) problem considering travel

time predictions

Given the vehicle routing request time (t0), the travel time prediction for each seg-

ment until t0 (i.e., τ̂i j(t0)), the origin-destination (O − D) pair and the admissible

sets Si j(t0), ∀ (i, j) ∈ E, the EDAT problem requests the earliest-arrival-time-at-

destination (from O to D) subject to avoiding links that are at their critical den-

sity. Let ph denote the h-th path from source O to destination D denoted as

ph = (vh
0, v

h
1), (vh

1, v
h
2), (vh

2, v
h
3), · · · (vh

Lh−1, v
h
Lh

), where vh
j ∈ V is the j-th visited node

in the h-th path, with vh
0 = O and vh

Lk
= D. Additionally, as before let dh

j denote

the arrival time at junction v j then, the arrival time to each node of the path can be

expressed as:

dh
vh

0
=t0,

dh
vh

1
=dh

vh
0
+ cvh

0,v
h
1
(dh

vh
0
, t0)

...

dh
vh

Lh

=dh
vh

Lh−1
+ cvh

Lh−1,v
h
Lh

(dh
vh

Lh

, t0) (4.2)
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with, w ≥ 0 see Equation (4.1). Accordingly, the EATD problem can be expressed in

compact form as:

(Πctc) d∗D = min
w≥0, ph

dh
D (4.3)

s.t. Constraints (3.4) − (3.5) and (4.1) − (4.2) are satisfied.

In the next section we develop a method for predicting the travel-time of road

segments.

4.4 Time-Varying Multiple Linear Regression (TVMLR)

method

This section describes the proposed Time-Varying Multiple Linear Regression pre-

dictor, that is utilized to predict the current transit-time of each road section for

improving the accuracy of the reservation scheme. Both predictors are based on

statistical techniques where the k-th observation (i.e., τ̂k
i j(t0))) is interpreted as a time-

series that utilizes the most recent transit-time observations in order to forecast the

near future transit-times.

Linear regression is a statistical technique that considers historical observations

to forecast near-future states. In this chapter, we employ a simple prediction method

based on the Multiple Linear Regression technique to predict the transit-times of

road segment using the most recent transit-time observations in each road segment.

Evidently, as the density of a particular road segment increases, the speed of vehicles

traversing the road segment decreases [121] which further results in increased travel

times. Nonetheless, other factors also affect travel times such as the network traffic

state, road junction priorities, the road geometry and the weather conditions. In

this chapter, in addition to the density of the traversed road segment we explicitly

consider the densities of neighboring segments (i.e., the road segments forming

the down-link intersection). Other factors affecting travel times are considered

implicitly by adopting a time-varying prediction approach that employs the most

“recent” collected observations to capture the short-term traffic dynamics achieving

more accurate predictions.
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The Time-Varying Multiple Linear Regression (TVMLR) prediction method uses

the H most recent measurements of the response variable, i.e., the transit-time of the

road segment of interest, and the predictor variables, i.e., the observed densities of the

road segment of interest and its neighbors, to construct the best linear relationship

between the two variable sets using the vector of regression coefficients.

To simplify notation, the TVMLR prediction method is described for a single

road segment, say (i, j). Let (i, j), i ∈ P j denote the segments whose down-link

intersection is j, and |P j| the number of such links. Let also yk and ŷk denote the

observed and predicted transit-time of the k-th vehicle traversing (p, j), respectively;

while y is the response variable of the TVMLR prediction method. Assuming that

the k-th measurement is collected at time tk, the number of vehicles in link (i, j) at

time tk is denoted by the variable mik = ρi j(tk) ∗ li j, i ∈ P j, i = 1, · · · , |P j|, value that

can also derived from the reports obtained from each vehicle. Inasmuch as, each

vehicle reports to the RSU whenever it exits a certain road segment, and considering

that, vehicles’ routes are known from the RSU, an accurate calculation of the number

of vehicles in each segment can be maintained by simply increasing/decreasing the

density value whenever a vehicle enters/exits a segment, i.e.,

mlk ←


ρi j(tk) ∗ li j + 1, if vehicle enters (i, j),

ρi j(tk) ∗ li j − 1, if vehicle exits (i, j),

ρi j(tk) ∗ li j, otherwise,

assuming that ρi j(0) = 0.

In this way one obtains the measurement vector yK
H = [yK, · · · , yK−H+1]>, and

density matrix MK
H = [mK, · · · ,mK−H+1]>, where K is the latest vehicle that traversed

link (p, j), and mK = [mlk, · · · ,m|P j|k]
>. Using this information, the TVMLR prediction

method builds a linear model of the form

yK
H = [1K−H,MK

H]β + ε (4.4)

where, 1K−H is a vector consisted of K − H ones, β = [β0, ..., β|P j|]
> is the regression

vector and ε are the residual terms of the model.

Because (4.4) is an over-determined linear system of equations, the TVMLR pre-

diction method finds the regression vector β̂ that minimizes the least square residual
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error by solving the optimization problem

min
β̂

K∑
k=K−H+1

ε2
k = (yK

H −MK
Hβ)T(yK

H −MK
Hβ) (4.5)

Whenever a new route reservation request arrives, the method identifies for each

road segment (i, j) ∈ E the best regression vector in the least square sense, β̂i j. Using

the resulting regression vectors one can obtain the predicted travel time of road

segment (p, j) for the K + 1-th vehicle traversing the segment, given by

τ̂pj =
[
1 m1K . . . m|P j|K

]
β̂pj. (4.6)

Note that, to estimate future travel times reservation counts can be potentially uti-

lized instead to using the number of current vehicles. Furthermore, the initial values

of the predicted road segment travel-times are set equal to those corresponding to

free-flow speed, i.e., (τ̂pj = lpj/u f ).

Next, we present how the low-complexity heuristic algorithm RRAC can be

modified to obtain a solution to the problem in real-time.

4.5 EDAT solution considering travel time predictions

EDAT solution can be provided by modifying the aforementioned Route Reservation

Algorithm (continuous time, RRAC) as introduced in Section 3.5.3 (Algorithms 3 and

4). RRAC is a heuristic algorithm that solves the EDAT problem over a sequence

of iterations by employing a variant of Dijkstra’s shortest path algorithm. In the

previous version of the algorithm, reservations are made assuming constant speed

equal with the free-flow speed. This assumption is removed in the proposed variant

as presented in Algorithm 7.

The algorithmic procedure is identical with the procedure presented in Section

3.5.3. In the same manner Algorithm 3 is the outer loop that is responsible to re-iterate

until a feasible solution is found. On the contrary the inner loop changes where at the

beginning of each iteration (as depicted in line (3) of the Algorithm 7) the regression

coefficients have to be derived. Furthermore, in lines (8-11) coefficients are used to

estimated the transit-times of each road segment (i.e., τ̂i j(t0)). Finally, the complexity

of algorithm remains the same and thus is equal with O(LE2/V), with L denoting the

number of reiterations of the Relaxed-EDAT problem that is required.
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Algorithm 7 Inner loop of the continuous time RRAC with travel time predictions

(IL-RRACP).
1: Input: G(V,E), Si j(t0), O, D, t0, wp;

2: Initialization: dvi = ∞, vi ∈ V, dO ← t0 + wp, Q ← V,

3: Calculate regression coefficients (i.e., βi j ∀ (i, j) ∈ E )

4: P[vi]← NULL, vi ∈ V;

5: while Q , ∅ do

6: vl ← argminvi∈Q
{dvi};

7: Q ← Q − {vl};

8: for (l, j) ∈ E do

9: wl j ← minw≥0{dvl + t + w ∈ Sl j(t0), 0 ≤ t ≤ τ̂i j(t0)}

10: cl j ← τ̂i j(t0) + wl j;

11: if {dv j > dvl + cl j} then

12: dv j ← dvl + cl j, P[v j] = vl;

13: end if

14: end for

15: end while

16: wT
← dD, vv ← D;

17: repeat

18: wT
← wT

− cP[vv],vv ;

19: vv ← P[vv];

20: until {vv = O}

21: Output: wT, P.
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4.6 Performance evaluation

4.6.1 Setup

Performance evaluation is performed in a micro-simulation environment to capture

the stochastic nature of traffic mobility within a real road network which results

in uncertainty in the MFD and thus predictions of road segment’s travel-times are

required to increase reservation accuracy. Micro-simulations are performed using

SUMO micro-simulation software [112] within which in total 10 Monte Carlo simu-

lations are conducted.

In SUMO the traffic mobility characteristics are determined by the Krauss car-

following model [113] with the selected parameters: vehicle length 5 m, maximum

speed 15 m/s, acceleration 2.5 m/s2, deceleration 4.5 m/s2, driver imperfection 5%,

driver reaction time 0.5 s, minimum gap distance 2.5 m, and simulation time-step

0.5 s. As before all vehicles assumed follow RSU’s instructions (route, origin waiting

time) without any deviation.

The network under consideration is the un-signalized homogeneous region of

down-town San Francisco depicted in Fig. 3.7 in which three approaches are exam-

ined:

1. RRAC: The heuristic approach proposed in Section 4.5 that is combined with

the TVMLR prediction method proposed in Section 4.4. The RRAC algorithm

without the TVMLR prediction method proposed in Section 3.5.3 (Algorithms

3 and 4). In this case, the RRAC algorithm to calculate each road segment

travel time assumes that all vehicles are traverse constantly with the free-flow

speed (i.e., u f ).

2. DOT: The Decreasing Order of Time (DOT) algorithm [42]. The DOT algorithm

seeks to find the time-dependent travel-time path that minimizes the user’s

arrival time at the destination within a user-specified departure time window.

3. US: The uncontrolled scenario where each vehicle travels along its shortest-

distance path without any waiting time at the origin.

Note that in case of the RRAC without predictions (as presented in Section 3.5.3) in

this simulation results denoted as RRACNP meaning RRACNP with no predictions.
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Furthermore, in the case of both RRAC and RRACNP, new route reservations are

computed using only information from previous reservations without any consid-

eration of the actual network state.

4.6.2 MFD Analysis

Considering that the proposed algorithm rely on critical density of the region of

interest, we first generate the MFD of the considered road network to identify the

region’s critical density and free-flow speed (ρC
ij and v f ) parameters. To do so, a

6 hours scenario was simulated within which for the first hour the input flow was

set to 2000 veh/h and incrementally increased by 2000 veh/h for the next three hours.

Thereafter, for the last two hours the input flow was set to 4000 veh/h and 2000 veh/h

in order to allow a network discharge. In the loading procedure, both endogenous

and exogenous flows are considered meaning that vehicles start and finish within

the imported area (i.e., endogenous) either can start and end their journey from/at

the region’s boundaries or, a combination of the two.

Fig. 4.2 shows the total network flow as a function of the network’s density (i.e.

the total number of vehicles within the region) for the US, which depicts the MFD

diagram of the region. In the figure, each point corresponds to the sliding mean

of 5 measurements that are calculated every 15 s. To calibrate the model, the Van-

Aerde automated calibration method proposed in [114] is employed. The procedure

produced the following calibrated parameters v f = 42.5 km/h, vc = 27.5 km/h and

ρJ = 675 vehicles, which correspond to the red line depicted in the figure. Having

obtained the calibrated model, one can analytically obtain the critical density which

in our case is equal to ρC
ij = 33 veh/km/lane (i.e., around 33% of the region’s jam

density); accordingly, the vehicle speed that will be used for the RRACNP is v f =

42.5 km/h. Note that, the shape and scatters of Fig. 4.2 differs form Fig. 3.8 (a) since

in that case the generate flows are both endogenous and exogenous.

Figs. 4.3 (a) and (b) compare the accuracy of reservations for the RRACNP and

RRAC algorithms over the 6-hour scenario. In particular, the figures depict the actual

and predicted instantaneous network density over time with red and green lines,

M(t) and N(t), respectively, while the blue dotted line represents the instantaneous

residual density, E(t) = |M(t) − N(t)|. During the first two hours of the considered
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Figure 4.2: Regional MFD for the uncontrolled scenario.

scenario, the predicted density, through reservations, closely follows the actual net-

work density, as the demand flow rate that enters the network is low. As the demand

increases over time, the network becomes more congested which results in a signif-

icant growth of the residual density when using the RRACNP; on the contrary, the

RRAC manages to maintain an excellent prediction of the network density over the

entire 6-hour scenario, due to the integration of the TVMLR prediction method.

Figs. 4.4 (a) and (b) depict the maximum instantaneous residual density of indi-

vidual road segments for the RRACNP and RRAC, respectively. From the figures it is

clear that more than one third of the network’s road segments (around 70 segments)

exhibit high maximum instantaneous residual density for the RRACNP (larger than

the 10 vehicles). On the contrary, when the RRAC approach is employed only six of

the segments exhibits high maximum instantaneous residual density at any simula-

tion step. Even for these six segments the value of the residual density is significantly

smaller compared to the road segments with high residual density in the RRACNP

approach.

4.6.3 Results

To further evaluate the efficiency of the TVMLR prediction method in terms of

network operation, the resulting MFD diagram of the RRACNP and RRAC methods

are demonstrated in Figs. 4.5 (a) and (b), respectively. The figures illustrate acceptable

performance, as both methods maintain the network operation within the non-
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Figure 4.3: Instantaneous network density over time for the (a) RRACNP and (b) RRAC.
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Figure 4.4: Maximum instantaneous residual density of individual road segments for the (a)

RRACNP and (b) RRAC.

congested region. Comparing both approaches, the RRACNP is slightly better than

the RRAC method as it can achieve 2% higher flow rate (7100 veh/h compared

to 6980 veh/h). This behavior is anticipated since the RRACNP approach makes

reservations that under-estimate the transit time of each road segment allowing a

little bit higher rate to pass through the network.

The four aforementioned methods are evaluated for various scenarios and vary-

ing demand flow rates (3000 − 8000 veh/h) over a 2 hours simulation period where

the demand is constant for the first hour and equal to zero for the second hour. For

a fair comparison, the origin waiting time for all approaches is not considered in the
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Figure 4.5: Regional MFD for the (a) RRACNP and (b) RRAC.
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Figure 4.6: (a) Travel time and (b) Number of vehicles with completed journeys for different

simulation scenarios with varying demand flow rate.

travel time and for DOT the maximum allowed origin waiting time is set to 1 minute

(i.e., half the average trip length for the considered network).

Figs 4.6 (a) and (b) depict the average travel time of all vehicles and the total

number of vehicles that have managed to finish their journey within the simulation

time, respectively. In the figures dashed lines indicate the average values over the

five simulations run, while the markers indicate each individual simulation run

value. From the figures it is clear that for low demand flow rates (under 6000 veh/h)
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Figure 4.7: Per vehicle travel time distribution for the highest demand flow rate (i.e. 8000

veh/h).

all approaches have similar behavior with the US because no congestion occurs in

the network. Nonetheless, under congested conditions (demand flow rates larger

or equal to 6000 veh/h) the behaviour of the different algorithms varies significantly.

With regards to travel time, Fig. 4.6 (a) indicates that both the RRACNP and RRAC

significantly outperform both DOT and US approaches. As congestion intensifies

the travel time of both DOT and US grows exponentially, while the travel time of

the RRACNP increases only for the highest demand scenario. Interestingly, the

RRAC exhibits constant travel time in all scenarios considered which indicates that

it is robust to different demand levels. With respect to the total number of vehicles

that have managed to finish their journey within the simulation time, Fig. 4.6 (b)

demonstrates that for all demands the RRACNP and RRAC manage to complete

all the assigned trips within the simulation time, while in the case of US and DOT,

vehicles experience major delays due to congestion and as a result a large percentage

of vehicles do not complete their journeys.

This observation is also supported from the distribution of the vehicle travel

times for the highest demand flow rate (8000 veh/h) shown in Fig. 4.7. As can be

seen, the RRAC manages to complete more vehicles than all the other algorithms for

all bins that correspond to travel times smaller than 125 s.

Figs 4.8 (a) and (b) compare the accuracy of reservations for the RRACNP and

RRAC algorithms over the 2 hours scenario. The figure supports the observations

made in Figs. 4.3, as the instantaneous residual network density over time grows sig-

nificantly for the RRACNP, while for the RRAC the instantaneous residual network
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Figure 4.8: Performance evaluation of the RRACNP (a) and RRAC (b), with respect to the

instantaneous network density over time, for the highest demand flow rate (i.e., 8000 veh/h).

density is very close to zero. The superior reservation accuracy of the RRAC over

RRACNP is also shown from Figs. 4.9 (a) and (c), as well as Figs 4.9 (b) and (d) which

depict the instantaneous residual density of individual links and the maximum resid-

ual density of individual links over time, respectively. More specifically, the average

residual density of the RRAC is approximately three times smaller compared to the

RRACNP (8 vehicles compared 25 vehicles per road segment, respectively). Figs 4.9

(b) and (d) further indicate that more than one third of network’s segments exhibit

high maximum residual density (more than 20 vehicles) when using the RRACNP,

while for the RRAC only two road segment exhibit this behaviour.

Figs 4.10 (a) and (b) illustrate the origin waiting time assigned to vehicles before

commencing their trip for the RRACNP and RRAC solutions in the form of a box-

plot. For both cases, as demand grows, the origin waiting time increases since more

vehicles request to enter the network, with the RRAC responding accordingly at

higher input rates as opposed to the RRACNP solution. More specifically, the origin

waiting time assigned by the RRAC is about 4 times higher than the RRACNP ap-

proach. Nonetheless, the average origin waiting is within acceptable levels (14 min

for the highest demand approach), while origin waiting times observed at the origin

do not impact travel times. This behavior is expected because the RRACNP allows

more vehicles to enter the network compared to the critical capacity (see Fig. 4.8 (a))

so that the origin waiting time of the vehicles is smaller.
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Figure 4.9: Performance evaluation of the RRACNP (a)-(b) and RRAC (c)-(d) with respect to

the residual density of individual road segments over time, and the maximum instantaneous

residual density of individual road segments, respectively, for the highest demand flow rate

(i.e., 8000 veh/h).

4.7 Summary

This chapter extends the route reservation architecture proposed to investigate the

EDAT problem in continuous time and develop prediction methods for more ac-

curate estimation of the time needed to traverse different road segments for better

route reservations. In this context, a time-varying multiple linear regression method

is developed that takes into account the densities of neighboring road segments

affecting the exit of a vehicle from a particular road segment. For the solution of

the EDAT problem in continuous time, a heuristic approach is also developed based
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Figure 4.10: Origin waiting time for the (a) RRACNP and (b) RRAC.

on a customized version of the RRAC algorithm that provides fast and close-to-

optimal solutions. Extensive performance evaluation confirms the usefulness of the

continuous-time approach to solving the EDAT problem as it leads to better results

compared to algorithms proposed previously.
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Chapter 5

Effective Multi-region Traffic Control

and Demand Management Using an

Overlay Route-Reservation Scheme

5.1 Introduction

According to the route reservation architecture (presented in Chapters 3 and 4),

vehicles are assigned to traverse the network only through non-congested paths. In

solving this problem, the earliest arrival time at the destination can be achieved while

network utilization remains within the congestion-free regime. In the proposed

architecture, it is assumed that there is a detailed reservation plan along the exact path

that all vehicles should follow from their origin to their destination. This approach

has two possible drawbacks. First, it requires a large amount of information to be

stored, fact that makes it difficult to scale. Second, a vehicle movement is affected by

the actions of other vehicles which introduces randomness, meaning that a vehicle

may not be able to follow precisely the plan assigned by the RSU.

To resolve these problems, this chapter proposes an aggregation scheme where

vehicles are forced to follow a regional-level path aiming to make the Route Reser-

vation architecture more scalable and efficient. Assuming that an urban area is

partitioned into several homogeneous1 regions in which an overlay graph is con-

1Homogeneous regions are those where their road segments exhibit similar traffic characteristics

such as small variance of link densities and traffic demand distribution; the existence of homogeneous
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structed to aggregate all road segments that are in each region. In this approach, a

vehicle is allowed to enter a region only in the case that a region will not exceed its

critical density during the interval that the vehicle will be expected to traverse it. In

this setup, a variation of the route reservation architecture is proposed. However,

the routing now is done based on the overlay network, that aggregates the actual

network.

The remaining of the chapter is organized as follows. Section 5.2 introduces

the system model of the proposed aggregated reservation architecture. Section

5.3 mathematically describes the proposed reservation scheme and formulates the

Earliest Destination Arrival Time (EDAT) problem over the overlay graph. Section

5.4 presents an algorithm for solving the EDAT problem and a variation that aims

to balance the utilization of the boundary nodes. Simulation results are included

in Section 5.5 that demonstrate the potential benefits that can be achieved from

applying the proposed approach. Finally, the chapter concludes with Section 5.6.

5.2 Overlay Route-Reservation Architecture

An overview of the proposed architecture is presented in Fig. 5.1. Schematic (a)

illustrates a heterogeneous urban area that consisted of 3 homogeneous regions (each

region is separated with the colored ellipsoid) whereas, each identified region has

a number of boundary nodes shared by adjacent regions2. In the sequel, schematic

(b) depicts the overlay graph formed by connecting all boundary nodes of the same

region together. In the example illustrated in the schematic (b) each boundary node

is represented by junctions (A, . . . ,H) with the coloring denoting the regions that

each one is a member of. For instance, junction D is shared among three neighboring

regions (region 1, 2 and 3). Note that, the overlay graph consists solely of boundary

nodes that are shared between at least two adjacent regions.

In the overlay graph (which can be created off-line), each boundary node is

connected to the other boundary nodes of the same region whenever a physical

path exists between them. For each of these links, the traveling time cost is set to

regions has been recently studied using empirical data by [19] and [25].
2In this chapter region clustering is based on [23]
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Figure 5.1: Proposed Architecture.

be the time required to traverse the shortest path in the underlying road network

considering free-flow conditions. Doing so enables accurate travel-time estimates

to be made on the expected time necessary to traverse a region from one boundary

node to another.

Given the origin-destination (O−D) pair requests, and the past path assignments,

an RSU keeps an estimate of the number of vehicles that are expected to traverse each

region at each time slot. When a vehicle is about to start its journey, it sends a request

to the RSU with its (O − D) pair and its preferred starting time. The RSU responds

with the actual starting time and the sequence of way-points that consist of the
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boundary nodes that the vehicle should follow along its journey. The RSU decisions

have as primary objective to minimize the vehicle’s arrival time to its destination

while ensures that all regions always remain below their critical capacity. Between

way-points, a vehicle is free to follow any desired route to reach the next boundary

node or its destination.

If during a time-slot an overlay link (which connects two boundary nodes) reaches

its critical density, then it becomes non-admissible and hence the RSU refrains from

using it in its route-reservation algorithm until the region is cleared. Additionally, the

RSU may impose a waiting period at the origin if the arrival time at the destination

will be minimized or when no feasible path exists (as required regions exceed their

critical density). Subsequently, the architecture computes a “high-level” path and

instructs the vehicle to navigate through specific regions while allowing to the vehicle

to navigate within each region freely. The provided route avoids regions that are at

their capacity, and the RSU may also instruct the vehicle to delay its departure until

a region is cleared.

5.3 EDAT problem formulation

Consider a network partitioned in r ∈ R = {1, . . . ,R} regions. Each in similar man-

ner with previous chapters each region exhibits specific MFD characteristics that

determine ρC
r , ρr

J, Lr, and uC
r , representing the critical density (corresponding to the

maximum flow), the jam density, the total region length and the speed-at-capacity.

Let parameter Nr(t) denote a region’s accumulated number of vehicles at time-slot t.

Denote the overlay graph G = (B,E) where B, is the set of boundary nodes and

E the set of all overlay links between boundary nodes of each region. Also when

vehicle h requests to determine its path, a “temporary” graph is formedGh = (Bh,Eh)

where Bh = B
⋃
{O,D}, i.e., it includes the boundary nodes together with the origin

and destination nodes of vehicle h and Eh includes all links of E plus the links that

connect the {O,D} nodes to B.

The traffic dynamics for each link (i, j) ∈ Ewhich is within region r is characterized

the link’s jam density ρJ
i j = ρJ

rli j where li, j is the length of link (i, j). Furthermore, we

defineρC
ij = (ρJ

r/ρ
C
r )ρJ

i j whereas, the parameterρi j(t) denotes the instantaneous density
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of link (i, j) at time-slot t and the parameter ρC
ij denotes the maximum allowable

density that link (i, j) is expected to accommodate in order to operate at the region’s

speed-at-capacity, uC
r , i.e., ρi j(t) ≤ ρC

ij. The traversal time for each link in the overlay

graph is denoted by the parameter τ̄i j i.e., τ̄i j =
⌊
li j/uC

r /T
⌉
, where bze, is the nearest

integer to z and T is the sampling interval. Since all regions are assumed to operate

at the free-flow regime we assume that the vehicle speed within a region is constant

and equal to uC
r .

As described above, the RSU keeps track of the cumulative number of arrivals

and departures for each region up to time-slot t, with parameters αr(t) and βr(t),

respectively. The actual number of reservations within each region is then Nr(t) =

αr(t) − βr(t). Similarly, the RSU keeps track of the accumulated number of vehicles

across each link of the overlay graph, ni j(t) = αri j(t) − βi j(t) for time-slot t.

The accumulated number of vehicles that pass through a specific boundary node

can be computed by

hvi(t) =

t∑
τ=t0

∑
j∈B, j,i

n ji(τ) (5.1)

Interestingly, the parameters Nr(t) and ni j(t) are used to track the admissibility of

each region and each link in the overlay graph respectively. A road segment (i, j) is

considered as admissible at time-slot t if the number of reservations at time-slot t is

not larger than the number of vehicles corresponding to the link’s critical density,

i.e. ni j(t0) ≤ ρC
ijli j while at same time Nr(t0) ≤ ρC

r Lr.

Formally, the admissibility of road segment (i, j) at time-slot t is denoted by pa-

rameter xi j(t) given as xi j(t) = 1 if a a link is admissible, and xi j(t) = 0 otherwise. That

is

xi j(t) =



1, if ni j(τ)/li j ≤ ρ
C
ij AND Nr(τ)/Lr ≤ ρ

C
r ,

∀ τ = t, . . . , t + τ̄i j, vi , O, v j , D

1, if Nr(τ)/Lr ≤ ρ
C
r ,

∀ τ = t, . . . , t + τ̄i j, vi = O OR v j = D

0, otherwise (5.2)

where the quantity ni j(τ)/li j and Nr(τ)/Lr denotes the estimated densities of link (i, j)

and region r at time τ according to the reservations estimates, respectively. Let t0
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and dvi denote the vehicle request time and the vehicle arrival time at node vi of link

(i, j), respectively. Considering the above notation, the traversing cost ci j(t) can be

expressed as follows:

ci j(t) =


τ̄i j, if xi j(t) = 1

∞, if xi j(t) = 0 and i , O

τ̄i j + w, if xi j(t) = 0 and i = O (5.3)

where, w denotes the number of time-slots that a vehicle may wait at the originating

junction O.

The resulting route-reservation problem that arises requires the computation

of a path using only admissible links and regions (of the overlay network), with

waiting allowed at the originating node if deemed beneficial. In this computation

two alternative options arise (as before in Chapter 3) when the shortest path from

origin to destination includes non-admissible links. The first forces vehicles to wait

at their origin until links become admissible. The second chooses an alternative

route (instead of the shortest-time path) consisting of admissible links. Note that in

some cases a combination of the two options may yield a better solution (i.e., wait

for a certain time at the origin and then take an alternative path).

Earliest Destination Arrival Time (EDAT) Problem

The EDAT problem, aims to schedule vehicles across congestion-free regions while

minimizing the expected arrival time to the destination. Given the overlay graph G

and the origin-destination (O − D) pair, the vehicle scheduling request time t0 and

the reservation states xi j(t), (i, j) ∈ E, ∀t ≥ t0, then the EDAT problem determines the

path that would allow the vehicle to arrive at its destination at the earliest possible

time avoiding non-admissible links ). Let pk denote the k-th overlay path from source

O to destination D denoted as pk = (vk
0, v

k
1), (vk

1, v
k
2), (vk

2, v
k
3), ....(vk

Lk−1, v
k
Lk

), where vk
j ∈ V

is the j-th visited boundary node in the k-th path, with vk
0 = O and vk

Lk
= D, and Lk is

the length of the overlay path pk. Additionally, let w and dvk
j
denote the waiting time

at the origin junction and the earliest arrival time at boundary node v j, respectively.

Then, the earliest arrival time to each node of the path can be expressed as:
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dk
vk

0
=t0,

dk
vk

1
=dk

vk
0
+ cvk

0,v
k
1
(dk

vk
0
)

...

dk
vk

Lk

=dk
vk

Lk−1
+ cvk

Lk−1,v
k
Lk

(dk
vk

Lk

) (5.4)

In compact form, the EDAT problem can be expressed as follows:

(Πog) d∗D = min
w, ph

dh
D (5.5)

s.t. Constraints (5.2) − (5.4) are satisfied

5.4 Solution approaches

A heuristic solution to the EDAT problem over the overlay network is derived

through a modification of the Route Reservation Algorithm (RRA) introduced in

Chapter 3 refereed as Reservation-Based Routing Algorithm (RBRA) algorithm. To

help the reader, a brief description of the RBRA algorithm is presented next. How-

ever, when the routing is done based on the overlay network, it is possible that two

links of the overlay network, though they appear disjoint (they start from the same

boundary node and connect two different boundary nodes), may share one or more

road segments of the actual network. Reason of this is that, these road segments

may be part of the shortest paths that lead to several other boundary nodes that

theirs shortest paths contained shared links. Under such scenarios, the reservation

scheme may allow the number of vehicles that will traverse the road segments that

are in multiple shortest paths to exceed their capacity which may cause congestion

phenomena to appear. To limit the probability of this happening, a balancing scheme

is also introduced that aims to balance the traffic between the boundary nodes. This

approach is referred to as Boundary nOde Load Balancing (BOLB). In this way, a

possible solution of BOLB algorithm may lead the vehicle to follow a slightly longer

path in order to distribute traffic more evenly across the network (social optimum).
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5.4.1 Reservation-Based Routing Algorithm (RBRA)

The RBRA employs the well known Dijkstra’s algorithm which uses the label setting-

property and the relaxation technique [44] to find the shortest path from the origin

to a destination. During the relaxation process of each iteration, the earliest-arrival-

time to each boundary junction is updated (i.e., dv j = min{dv j , dvi +ci j(t)}) and junction

v j is set as the shortest path from the origin to node v j.

RBRA solves the EDAT problem in two loops, the inner and outer loop. The

inner loop is responsible to identify the path that will enable each vehicle to arrive at

its destination at the earliest time, assuming that a vehicle is allowed to wait at any

intermediate node until a link’s state changes from non-admissible to admissible (see

Equation (5.2)). The RBRA initialization is identical to that of Dijkstra’s algorithm,

where the traversing cost of each link is dynamically calculated from every labeled

junction to its neighbors. In the case that a link is non-admissible, then a vehicle

is assumed to wait at node vi of link (i, j), until its admissibility state changes. The

minimum number of time-slots that may be required, denoted by variable wi j(t),

can be calculated based on both the reservation status of the concerned link (i, j)

and the earliest-arrival-time at junction vi (i.e., d∗vi
). Hence, each link traversal time

is calculated using the constant travel time cost and the estimated waiting time

duration if required (i.e., ci j(d∗vi
) = τ̄i j+wi j(t)). Hence, on every iteration the algorithm

identifies the new labeled junction which is set to be the one that has the minimum

earliest-arrival-time (d∗vi
) (label-setting property). Finally, the inner loop returns to

the outer loop the identified path and the minimum time (wmin = min(wi j(t))) that

the vehicle needs to wait at an intermediate junctions or 0 if it does not need to wait

at any intermediate node. In the outer loop, if wmin > 0, then the minimum waiting

across all intermediate nodes is transferred at the origin and the vehicle’s starting

time is updated accordingly (i.e., t0 = t0 + wmin) and the problem is resolved, or if

wmin = 0 the algorithm terminates.

5.4.2 Boundary nOde Load Balancing Algorithm (BOLB)

BOLB employs RBRA to compute the earliest-arrival-time path while tries balance

the utilization observed at each boundary node. To do so, the link cost includes both
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the travel time cost and the node utilization cost. Doing so, each link’s traversal cost

(5.3) is modified to also account the node’s utilization as follows:

ci j(d∗vi
) = (τ̄i j + wi j(t)) ×

hv j(t)

maxq∈B hvq(t)
(5.6)

where hvi(t) is given by (5.1). The normalized utilization expressed by the second

term in the latter cost function guides reservations through boundary nodes that are

not highly utilized, effectively increasing each boundary node utilization.

Both RBRA and BOLB have a complexity in the order of O(ME2V), where M < ∞

denotes the number of iterations that the outer loop of both algorithms requires to

converge. Note that both algorithms identify the starting time (demand manage-

ment) and the boundary nodes that vehicles should follow but not the exact road

segments to traverse. In this chapter, vehicles are free to follow their desired paths,

passing through the given boundary nodes.

5.5 Performance evaluation

5.5.1 Setup

The road network under consideration is a 2.5 square miles non-signalized area

of Downtown San Francisco, as illustrated in Fig. 5.2. A similar area has been

used in [24] which also provides a detailed breakdown of the homogeneous regions

that exist. Specifically, the selected area consists of 143 road junctions and 319

single-lane road segments with lengths varying from 100 m to 400 m. The SUMO

micro-simulator [112] has been used to create traffic across this area, considering

the Krauss’ car-following model [113] with model parameters set as follows: vehicle

length of 5 m, maximum speed 15 m/s, acceleration 2.5 m/s2, deceleration 4.5 m/s2,

driver imperfection 5%, driver reaction time 0.5 s, and minimum gap distance 2.5 m.

The simulation time step was set to 0.1 s, while the discretization of the algorithm’s

time-slots was set equal to T = 1 s. For the application of the proposed route-

reservation scheme, the area is partitioned into three homogeneous regions (R = 3)

(separated with different colors as depicted in Fig. 5.2).
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Figure 5.2: The simulated network (a segment of Downtown San Francisco).

5.5.2 MFD analysis

To derive and use the MFD of each region, simulations were performed for the

uncontrolled scenario (US) (i.e., where vehicles follow their desired shortest paths

without any waiting or re-routing). To do so, a 4 hours scenario was simulated within

which the input flow was initially set to 4000 veh/h and incrementally increased

by 2500 veh/h for the next three hours considering measurements every 5 minutes.

Also, for the results presented hereafter, ten Monte Carlo simulations were conducted

where vehicles arrive according to a Poisson process. Doing so, illustration in Fig. 5.3

(a), shows that in the US scenario, all three regions experience moderate scattering

along varying densities. Accordingly, each region’s MFD is calibrated through the

automated calibration method proposed by [114] for the single-regime Van Aerde

model [115] as indicated by the colored solid lines. From the calibrated model in the

figure, the each region’s model parameters are obtained as follows: 1) the speed-at-

capacity uC
1 = 36 km/h, uC

2 = 35.5 km/h, uC
3 = 37 km/h, 2) the per region jam density

as ρJ
1 = 740 veh, ρJ

1 = 880 veh and ρJ
1 = 960 veh and 3) the per region critical density

as ρC
1 = 85 veh, ρC

2 = 120 veh and, ρC
3 = 105 veh. Notably, for both RBRA and BOLB

algorithms the travel time calculations are estimated using the respective speed-at-

capacity uC
r value. Fig. 5.3 (b) depicts the resulting MFD when the BOLB algorithm

is employed demonstrating the absence of the congested regime. This is achieved as
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Figure 5.3: Each region’s MFD of the simulated topology: (a) Uncontrolled scenario; (b)

BOLB algorithm.

BOLB algorithm restricts the number of vehicles allowed to simultaneously traverse

the network.

5.5.3 Results

In the results that follow, the performance of both RBRA and BOLB algorithms is

compared with the uncontrolled scenario (US)3. It is emphasized that even though

route reservations are computed solely based on information from previous reser-

vations made, the result presented here reflect the actual paths of the vehicles which

may be different from what the reservation approach has predicted due to the ran-

domness and other uncertainties involved. Finally, similarly as before 10 Monte

Carlo simulations were contacted with random O − D pairs across the whole area

with flow rates varying between 2000 − 10000 veh/h over a period of 2 hours.

Fig. 5.4 and Fig. 5.5 show the average vehicle travel times and, the average number

of vehicles that completed their journeys as a function of the different flow rates.

The scattered plots in Fig. 5.4 illustrate the mean travel time of each realization,

while the dashed lines represent the mean travel time for all realizations. Similarly,

the dashed lines in Fig. 5.5 illustrate the average number of vehicles that managed to

3Methods like [52, 55, 60] can not be directly compared since they require other parameters e.g.,

split rates among the boundaries of the examined region which can arbitrarily affect the results.
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Figure 5.4: Average vehicle travel time from origin to destination for varying demand flow

rate.

complete their journey within the simulation time while, the scattered plots represent

the realizations obtained by each simulation run.

Fig. 5.4 and Fig. 5.5 depict the network performance according to different flow

rates. As demonstrated, in low flow rates (ranging from (2000 veh/h − 7000 veh/h),

no congestion is observed and both approaches behave similar to US. At higher flow

rates congestion begins to form, demonstrating the superior performance of BOLB

as it greatly outperforms RBRA and US by managing to maintain smaller travel

times, that are also mostly unaffected by the increasing demand. It is also important

to note that, at high flow rates RBRA behaves somewhat unpredictably due to over-

utilization of some boundaries nodes that may produced spill-backs and queues at

the perimeter of neighboring regions.

Fig. 5.6 illustrates the travel time distribution for all vehicles that manage to

reach their destination during the simulation time at flow rates of 10000 veh/h. As

depicted, both RBRA and BOLB greatly improved travel time compared to US.

Fig. 5.7 and Fig. 5.8 illustrate the variance of all boundary nodes and the evolution

of utilization of each boundary node for both RBRA and BOLB as a function of

consecutive vehicle requests. Fig. 5.7 depicts the variance of utilization between

all boundary nodes demonstrating that BOLB manages to maintain a significantly

lower variance compared to RBRA. The increased variance of RBRA is due to the

fact that particular boundary nodes may reside in locations that intersect a higher
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Figure 5.5: Number of vehicles with completed journeys for different simulation scenarios

with varying demand flow rate.

number of regions increasing their attractiveness. This is more clearly evident in

Fig. 5.8 where in the case of RBRA 4 nodes are significantly over-utilized compared

to the rest.

Fig. 5.9 (a) and Fig. 5.9 (b) depicts the admissibility state of each region as it evolves

over time for traffic flow of 10000 veh/h for BOLB and RBRA algorithms, respectively.

The non-admissible state is represented by the value 1 and the admissible state is

represented by the value 0. As shown in the figure, all regions frequently become

non-admissible due to the high traffic demand considered in this scenario. Also

compared to RBRA, BOLB manages to maximize the number of times each region

enters the non-admissible state mainly due to the fact that it strives to equalize the

utilization across all boundary nodes.

As indicated above the demand management is perform by restricting the al-

lowed number of vehicles that simultaneously traverse each region below region’s

critical density result in the overall network efficiency improvement. However, with

an increase of traffic demand the waiting time at the origin increases as well with this

behavior can be observed in Fig. 5.10 which shows the waiting-time that vehicles

require to wait before depart for their journeys for different flow rates (increasing

demand). Fig. 5.10 shows that as flow rate increases vehicles prefer to wait at their

origin until an admissible path becomes feasible for both algorithms. This behavior

is desirable since in high-demand scenarios, significant waiting needs to be incurred
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Figure 5.6: Per vehicle travel time distribution for the highest demand flow rate (i.e. 10000

veh/h).

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
0

1

2

3

4

5

6

7

8 104

BOLB
RBRA

Number Of vehicles Requests

V
ar

ia
nc

e 
of

 B
ou

nd
ar

y 
N

od
es

 
U

til
iz

at
io

n

Figure 5.7: Evolution of the variance of boundaries utilization.

to maintain high network flows and speeds. Even so, for both algorithms the average

waiting is within acceptable levels (10 minutes).

Finally, the sensitivity of the BOLB performance to the changes in drivers compli-

ance levels is examined in Fig. 5.11 in which the heaviest loaded demand scenario of

10000 veh/h is evaluated considering seven different drivers percentages of drivers’

compliance level (i.e., 70%, 75%, 80%, 85%, 90%, 95% and 100%). Note that in the

ideal scenario (i.e., the compliance rate is 100 %) all drivers will opt to follow the

waiting intervals and routes provided by the RSU. The figure depicts the boxplot

of travel times in which the solid red line representing the measured median while

the solid red dot represents the mean travel time of all vehicles in each considered
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Figure 5.9: Region admissibility over time for: (a) the BOLB algorithm and (b) the RBRA

algorithm.

simulation. As expected as the compliance level is reduced then the performance of

the BOLB method decreases. More specific with a decrease in compliance level the

scattering increases while the average experience travel time increases as well. Fur-

thermore, it’s evident that for compliance level higher than 80%, the BOLB method

slightly affected by drivers that did not opt to the RSU instructions. On the other

hand, at compliance level of 70%, BOLB behaves similarly with ordinary RRA (in

the sense of average travel time) with an increasing possibility of gridlock.
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Figure 5.10: Origin waiting time for the (a) the BOLB algorithm and (b) the RBRA algorithm.
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Figure 5.11: The sensitivity of RBRA performance to changes in the percentage of drivers’

compliance level considering the heaviest loaded demand scenario of 10000 veh/h.

5.6 Summary

This chapter proposes an aggregation of the route-reservation scheme that controls

vehicles route in a multi-region urban area. The advantage of this scheme is that

the resulting algorithm that utilizes an overlay graph to control the traffic ensures

effective, scalable, and congestion free routing solutions in large-scale multi-region

networks. Simulation results demonstrate the significant gains achieved by the

proposed route-reservation scheme compared to the uncontrolled traffic behavior

resulting in many-fold gains in serving traveling requests and reductions in travel

times, especially during high demand flows.
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Chapter 6

Scheduling Vehicles for On-Time

Arrival using Route-Reservations

6.1 Introduction

This chapter proposed an alternative route reservation architecture that aims to com-

pute the vehicles departure times and reserves their route to reach their destination

at the desired time. In this way, the objective of this chapter is to minimize the

difference between the desired and the actual destination arrival times. For this

problem, vehicles transmit to RSU their origin and destination pair and the desired

time that they require to arrive at the destination. The RSU determines each vehicle’s

departure time as well as the path to be followed while making the appropriate route

reservations on the selected path such that all scheduled vehicles avoid congested

road segments. Due to the reservations, the RSU can guarantee the on-time arrival

at the destination for each vehicle request. This can be done by coordinating the

departure times for each vehicle (i.e., apply demand management) which can sig-

nificantly improve the traffic flows and sustain travel times around those achieved

assuming free-flow speed conditions.

The remaining of the chapter is organized as follows. Section 6.2 mathematically

describes the proposed scheme and defines the on-time arrival problem (OTA).

Section 6.3 derives an algorithmic solution for the OTA problem which utilizes a

backward route-reservation scheme that schedules vehicles through road-segments

that are below their critical density. The performance of the proposed solution is
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investigated in Section 6.4, demonstrating the gains achieved for several different

metrics while also indicating that vehicles almost always arrive at their destination

on time. Concluding remarks are provided in Section 6.5.

6.2 Problem formulation

Similar to previous chapter an urban area is modeled as a graph G = (V,E) where

the sets V and E represent the road junctions (i.e., {vi, v j} ∈ V)) and the road-

segments (i.e., (i, j) ∈ E), respectively. Each road-segment (i, j) ∈ E is described

by the parameters λi j and li j (km), denoting the number of lanes and its length,

respectively. In addition, we assume that the road network under investigation

constitutes an urban area with a well defined MFD. Hence, the segment’s (i, j) ∈ E

traffic dynamics are characterized by the parameters ρC
ij and ρJ

i j, denoting the critical

and jam densities, respectively. Note that to obtain the critical density of the road-

segment (i, j) we use:

ρC
ij = (ρC/ρJ)ρJ

i j. (6.1)

Hence, the critical density of each segment is proportional to the region’s critical

density. Furthermore, let variable ρi j(t) veh/km denote the instantaneous density

of each road segment at each time-slot t ∈ T , where T defines the time horizon

of the problem. Considering Eq. (6.1) it is true that, for all ρi j(t) ≤ ρC
ij vehicles can

be assumed to travel with free-flow speed u f . On this premises, the number of

time-slots that a vehicle is require to traverse road segment (i, j) can be expressed as:

τ̄i j =
⌊
li j/u f/T

⌉
, (6.2)

where T is the sampling interval and bze denotes the nearest integer to z.

The proposed methods utilizes route reservation to keep track of the accumulated

number of vehicles reservations (i.e., ni j(t)) of each road-segment (i, j) for time-slot

t). As i previous chapters, a road-segment is assumed to be admissible at the discrete

time-slot t if a vehicle starting from road junction vi at time-slot t can traverse

road segment (i, j) without making the accumulated reserved density larger than

the critical density at any point within the transit time. Let variable xi j(t) denote
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the admissibility state taking the value xi j(t) = 1 if segment (i, j) ∈ E is admissible

and xi j(t) = 0, otherwise. Mathematically the admissibility state can be defined as

follows:

xi j(t) =

 1, if ni j(τ)/(λi jli j) ≤ ρC
ij, ∀ τ = t, . . . , t + τ̄i j

0, otherwise (6.3)

where the quantity ni j(τ)/(λi jli j) is the accumulated reserved density of road segment

(i, j) at time τ ∈ [t, . . . , t + τ̄i j]. Given the admissibility state, the cost of traversing a

road segment (i.e., ci j(t)) can be defined as follows:

ci j(t) =

 τ̄i j, if xi j(t) = 1

∞, if xi j(t) = 0 (6.4)

On-Time Arrival (OTA) problem:

Given the origin-destination pair of the m-th vehicle (i.e., Om−Dm, with Om,Dm ∈ V),

the desirable destination arrival time ddes
Dm

, and the reservation states xi j(k), (i, j) ∈ E,

∀k ∈ T , then, the OTA problem seeks to find the starting time s∗m and the path p∗m

that minimize the difference between ddes
Dm
− s∗m. In other words, OTA finds the latest

time that the m-th vehicle should start from its origin such that it will arrive at the

destination on or before the desired arrival time.

To complete the problem formulation, let ph, denoting the h-th path from source

Om to destination Dm, be defined as ph = (vh
0, v

h
1), (vh

1, v
h
2), (vh

2, v
h
3), . . . , (vk

Lh−1, v
h
Lh

), where

vh
j ∈ V is the j-th visited node in the h-th path, with vh

0 = Om, vh
Lh

= Dm, and Lh is the

length of ph. Additionally, let variable dh
v j

(s) be the arrival time at junction v j ∈ V if

a vehicle departs form its origin at s ∈ T . Then, the arrival time to each node of the

h-th path can be expressed as:

dh
vh

0
(s) =s,

dh
vh

1
(s) =dh

vh
0
(s) + cvh

0,v
h
1
(dh

vh
0
(s))

...

dh
vh

Lh

(s) =dh
vh

Lh−1
(s) + cvh

Lh−1,v
h
Lh

(dh
vh

Lh

(s)) (6.5)
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Thus, for the m-th scheduled vehicle, the central-controller has to compute s∗m

and p∗m that solve the problem (P1) below:

(P1) min
s,ph

JT = ddes
Dm
− dh

v0
(s) (6.6a)

s.t. Model Dynamics (6.1) − (6.5),

dh
Dm

(s) ≤ ddes
Dm
. (6.6b)

Constraint eq. (6.6b) is added to ensure that vehicle m will not arrive after the

desired time to the destination. Furthermore, the constraints in (6.1) - (6.5) define

the model dynamics which consider each road segment’s admissibility state.

Clearly, if at a given time there are no road segments that are at their capacity,

the path that the m-th vehicle should follow is the shortest path from Om to Dm and

it should start at time s∗m = ddes
Dm
− c∗m, where c∗m = l∗m/u f/T and l∗m is the length of the

shortest path. On the other hand, if there are links of the shortest path that are at

their capacity, then the vehicle may have two options, either depart much earlier

when all links of the shortest path are admissible (and arrive earlier and wait at the

destination) or start a little earlier and take a longer path and arrive at the destination

on time. Out of these possibilities, (P1) will select the one that will allow the vehicle

to depart as late as possible from the origin and still make it to the destination on

time.

6.3 On-Time Arrival problem algorithmic solution

A solution to the OTA problem is obtained, based on dynamic programming [44], by

constructing a time-space Graph (TSG). Algorithm 8 obtains an OTA solution taking

into account the m-th request (Om, Dm and ddes
Dm

), the current number of reservations

(i.e., ni j(t)), and the current admissibility state (i.e., xi j(t)) of each edge (i, j) ∈ E)

over the t ∈ T (Note, that the reservations and admissibility states can be easily

expressed in the form of 2-D matrices with the columns representing link indices

while the rows represent time indices). The constructed TSG is a directed acyclic

graph where the space dimension contains all the indices of the nodes in G(V,E)

and the time dimension includes consecutive time slots in descending order (starting

from the desired destination arrival time, ddes
Dm

and going backwards in time). In this
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way, each node in the space-time network represents the node where a vehicle

arrives at the specific time-slot t. Once we have all nodes we can construct the

TSG by inserting the edges that connect two nodes in reverse direction of the graph

G(V,E) and backwards in time on the TSG, with edges inserted only if there is a

physical connection between the two adjacent nodes on G, with its associated travel

time cost reflecting the node on TSG that the vehicle will arrive.

The edge insertion procedure is accomplished based on two states. The first is the

admissibility state, where an edge is considered as admissible if xi j(t) = 1 according

to Eq. (6.3). The second is the reachability state which defines if the newly inserted

edge of TSG is reachable from the destination or not, meaning that there is a path that

connects the destination node with the starting node of the related edge. Both states

can be determined simply using variable, dvi(t) vi ∈ V, which denotes the arrival

time at each node since the constructed graph does not contain a cycle. Therefore, in

case that dvi(t) = ∞ then the edge is both not reachable and not admissible, while in

the case that dvi(t) = k, the edge is both reachable and admissible. In case that both

conditions are satisfied, (line 13 of Algorithm 8), an edge (i, j) is added on TSG, (lines

14-15). The whole process repeats until the time-slot that Om becomes reachable, i.e.

dOm(k) < ∞ for any vi and t (edge (i,Om)), (lines 8-20). In that case, the algorithm

converges and returns the identified path by tracing back the nodes from Om to Dm

with the vehicle’s departure time be equal with s∗m = dOm(t), (line 11).

Therefore, the solution of Algorithm 8 provides the m-th vehicle’s departure

time (i.e., s∗m) and its route to follow (i.e., p∗m). This information is utilized to make

the appropriate route reservations on each road segment at the expected traversal

times. We emphasize that, to compute route reservations for each vehicle; we use

the constant parameter (i.e.,τ̄i j) which defines the number of time-slots that a vehicle

is required to traverse a road segment. Hence, by knowing the m-th vehicle path to

follow and its departure time the expected traversal time for each road-segment can

be calculated assuming each segment requires τ̄i j time slots to be traversed. Hence,

the reservation status is updated during the expected transit times. In the same

manner, from ni j(t) we also update the admissibility state of each road segment (i.e.,

(i, j) ∈ E).

Initially, ni j(t) = 0 and xi, j(t) = 1 for all (i, j) ∈ E and t ∈ T . Furthermore, it
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Algorithm 8 TSG Alogrithm

1: Input: G(V,E), ni j(t), Om, Dm, xi j(t), ddes
Dm

, ci j(t)∀ t ∈ T ;

2: Initialization:

3: k = ddes
Dm

;

4: dvi(k) = ∞, ∀ k ∈ T , vi ∈ V;

5: dDm(k) = k, ∀ k ∈ T

6: s∗m = −∞

7: Algorithm Execution:

8: while k > s∗m do

9: for (i, j) ∈ E do

10: if ((i == Om) OR ( j == Om)) AND (dOm(k) > s∗m) then

11: s∗m = dOm(k);

12: else

13: if (xi j(k) == 1) and (dvi(k) < ∞) then

14: dv j(k) = dvi(k) − ci j;

15: previous[v j][dv j(k)] = vi;

16: end if

17: end if

18: end for

19: k = k − 1;

20: end while

21: Trace back p∗m and previous[Om][s∗m];

22: Reservations-Admissibility status Update:

23: Update Reservations(p∗m, s∗m);

24: Update Admissibility(p∗m, s∗m);

25: Output: p∗m, s∗m;

is assumed that vehicle requests are collected over an interval and are sorted in

descending order based on the desired arrival time. Then, they are processed by

the TSG algorithm sequentially starting from the latest desired arrival time to the

earliest.

The algorithm 8 results in an optimal solution in the discretized space-time do-
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Figure 6.1: An example network of G(V,E).

main that it operates and executes in pseudo-polynomial time since the state space

for the m-th request to be solved is not known until the first time that the algorithm

visits the origin node in which dOm(t) < ∞, meaning that the algorithm converges

with complexity O((ddes
Dm
− s∗m)|E|). Note that, in this algorithm we have to find a

solution within a fixed interval ddes
Dm

Tsub where Tsub is the time a vehicle has submitted

its request. If no such solution is found the algorithm returns failure. The optimum

solution can be derived considering that each node in TSG is reachable only if the

reachability state of all predecessor nodes forming the minimum path from desti-

nation to that particular node starting form the destination at the corresponding

time. Hence, if a node is reachable through path p, then all nodes forming p are also

reachable (with the minimum cost) and the optimal substructure property applies [44].

The reachability of all states examined for decreasing t and thus the optimal solution

is found at time d∗Om
which in turn represent the latest time at which a vehicle should

start from Om to reach Dm on-time or on earlier time considering the admissibility

states of the edges in G(V,E).

Illustrative Example

To better understand the proposed procedure, consider the example illustrated in

Figure 6.1 (a) where edge lengths reflect the traversal times for specific road segment

while the critical density of all edges in the graph is equal with 1 veh/edge. In this

example, initially, no reservations are made and two vehicles request a path from A

to D desiring to arrive at D at time slots ddes
D1

= 9 and ddes
D2

= 10, respectively. These

requests are first sorted in descending order and thus the second request will be
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executed first by Algorithm 8.

Figure 6.2 (a) shows the TSG graph that is constructed by executing the first

sorted request. The space dimension of each node indicates the junction index while

the time dimension indicates the node created over time (with the time index starting

from ddes
D2

= 10). The reachability of each node is assess from variable dvi(t) where

for the case of D2 for all time-slots is reachable and thus dD2(t) < ∞∀ t ∈ T . As

illustrated in the figure, in the first column edges emerge only from the destination

node (e.g., D2) since all other nodes are not reachable at time-slot t = 10. Similarly,

in the second column edges emerge from nodes D2 and C since at time-slot t = 9

they have been reached from the destination (e.g., D2). Note that the black solid-line

edges are those that are added to construct the TSG which has a feasible path form

the destination to the specific node. As Fig. 6.2 (a) shows, at the fourth column is

the first time index that the origin is reached with the algorithm converging at this

time index. In that way, the grid-shaded nodes represent the nodes consisting of the

path p∗2 (i.e., A → E → D2, also denoted with the solid green line) where the latest

departure time is s∗2 = 7. Next, the algorithm updates the reservations based on

the obtained solution and the admissibility state of those edges changes as follows

xEA(7) = xDE(8) = xDE(9) = 0.

Subsequently, the algorithm re-executes the TSG procedure for the other request

(e.g., ddes
D1

= 9) where the associated TSG is depicted in Figure 6.2 (b). For that case,

the time index begins at the 9-th time-slot (according to vehicle’s request) while

due to reservations made from the first vehicle we can observe that the shortest

path is not a feasible solution due to the non-admissible states that emerge for some

particular time-slots. Hence, the first time that the originating junction is reached

at the 5-th time-slot (fifth column) where two alternative solutions exist (denoted

with green and red solid lines, respectively) and the algorithm selects as a solution

the p∗1 (i.e., A → B → C → D, green line) with the s∗1 = 5. Note that, both solutions

have equivalent objective value JT = 4 but, their length differs. More specifically,

if the vehicle follows the green path, then the duration of its travel time will be 4

time-slots and will arrive at the destination exactly on time. Otherwise, if vehicle

follows the red path, the duration of its travel time will be 3 time-slots and will arrive

at the destination 1 time-slot earlier, thus the vehicle will wait at the destination for 1
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Figure 6.2: The direct acyclic graph that generated from TSG procedure to solve (a) the first

vehicles request (b) the second vehicle request.

time-slot. In other words, if the second vehicle would like to arrive at the destination

at t = 9, it cannot leave from its origin at t = 6 because will produce congestion at

the edge (E,D) at the time-slot t = 8.

127

Cha
ral

am
bo

s M
en

ela
ou



6.4 Performance evaluation

6.4.1 Setup

To evaluate the performance of the proposed solution we consider an 1.8 km2 non-

signalized urban region of the downtown San Francisco, as illustrated in Fig. 3.7

(the same are used in Chapter 3, The network was imported in the SUMO micro-

simulator [112], and the Krauss car following model [113] was used. The car-

following model parameters are set as follows: vehicle length 5 m, maximum speed

15 m/s, acceleration 2.5 m/s2, deceleration 4.5 m/s2, and minimum-gap-distance 2.5 m

while no vehicle overtaking is allowed. The simulation time-step in SUMO was set to

0.1s while the time step of the algorithm was set equal to T = 1s with all simulations

were performed for 2 hours. The vehicle desired arrival times are requested only

during the first simulation hour in which requests are uniformly distributed during

6 time intervals. Specifically, all desired arrival times were distributed uniformly in

the time intervals of 8:00, 8:10,. . . ,9:00 am. Hence, the network is loaded only during

the first simulation hour while the second is used to empty the network and record

some measurements. A critical density of ρC
ij = 33 veh/km/lane and a free-flow speed

of u f = 10.0 m/s is used to calculate each segment’s travel time. Note, the ρC
ij and u f

values changes compared with values selected in Chapter 3 as the distribution of

requests times differs. Finally, a total of ten Monte Carlos simulations are constructed

(10 realizations) for varying flow rates from 1000 − 8000veh/h.

The proposed algorithm described in Section 6.3 is compared against the case

where no control mechanism is applied (i.e., uncontrolled scenario US) where vehi-

cles traverse from their origin to their destination along the shortest distance path.

The travel time for each path is calculated assuming free-flow speed conditions while

the departure time for each vehicle is assigned assuming that vehicles will take their

shortest time path plus a uniformly distributed time budget (between 0-3 min) that

is allocated to each vehicle to depart in advance to its shortest time path. Note that

within the simulated network, the average trip length is around 1.5 min. Also, for

the OTA results, it is assumed that all vehicles comply to the derived schedule. Fur-

thermore, note that all vehicles schedules are obtained based only on the reservation

estimates, rather than the actual state of each road segment, however, deviations
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Figure 6.3: Travel time for different simulation scenarios with varying demand flow rate.

between the reservations and actual state exists due to the underlying uncertainty

involved in the microscopic simulation. Finally, in the results presented hereafter

only vehicles that have completed their journeys during the 2-hour simulation time

are considered.

6.4.2 Results

Figs. 6.3, and 6.4 show the vehicle average travel time and the number of vehicles

that manage to reach their destination during the simulation time, respectively. The

scattered plots in Figs. 6.3 depict the mean travel time of each realization, while

the lines represent the mean travel time for all realizations. Similarly, the scattered

plots in Fig. 6.4 depicts the number of vehicles that manage to reach their destination

within the simulation time for each realization, while the lines represent the average

number of vehicles that completed their journey. As illustrated in Figures 6.3 and

6.4 (as expected), at low flow rates both OTA and US approaches perform equally

well. However, at higher flow rates it is evident that OTA outperforms US in terms

of travel times since OTA avoids congestion. Additionally, Fig. 6.4 shows that for

the case of OTA all vehicles manage to reach their destination, unlike the case of the

non-controlled case where a significant number of vehicles cannot manage to reach

their destination due to the formation of severe traffic congestion.

The scatterplot of Fig. 6.5 represents the number of vehicles that have reached

their destination after their desired arrival time for all realizations obtained by each
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Figure 6.4: Number of vehicles with completed journeys for different simulation scenarios

with varying demand flow rate.
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Figure 6.5: Number of late arrival vehicles.

Monte Carlo run. Similarly, the scatterplot in Fig. 6.6 shows the average time by

which vehicles exceeded their desired arrival time for each realization while the line

represents the mean value for all realizations. Both figures clearly show that the OTA

approach manages to schedule most of the vehicles on-time with those exceeding

their desired arrival time have negligible delays. Note that, those delays occur due

to the uncertainty in the micro-simulation environment. On the other hand, for the

non-controlled case, it is observed that at the highest flow-rates the congestion is

unavoidable with many vehicle arriving late while a large number of them cannot

reach the destination within the simulation period.

Fig. 6.7 illustrates the average waiting observed at the destination. In this figure,
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Figure 6.7: The waiting time at destination for all considered flow rates measured as the

difference between the derided and the actual arrival time.

we measure the time that vehicles arrive earlier than their desired arrival time. As

expected, with higher flow rates, the waiting time tends to be higher than with lower

flow rates, meaning that travelers arrive much earlier than their desired time. This

phenomenon occurs since an increase in demand results in more vehicles having

to traverse the network in the presence of non-admissible segments. Even so, the

vehicles arrive earlier than the desired time, while the waiting time at the destination

is sustained within acceptable levels (around 3 min on average for the case of the

highest flow rate scenario).
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6.5 Summary

This chapter proposes a route-reservation approach that aims to schedules vehicles

to arrive at their destination at their desired time while at the same time, traffic

congestion is eliminated by restricting the density of all road segments below their

critical value. In this framework, the on-time arrival (OTA) problem is examined

and solved by developing a dynamic programming algorithm that solves the OTA

problem in pseudo-polynomial time. Simulation results demonstrate that under

the proposed solution, the on-time arrival for all vehicle requests is guaranteed,

while also demonstrate the substantial improvements gained in terms of network

operation and the experienced travel times, especially during high flow rates.
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Chapter 7

Joint route guidance and demand

management for real-time control of

multi-regional networks

7.1 Introduction

In this thesis, demand management occurs by managing traffic inflow inside a region,

e.g., through the route reservation scheme. Against this background, this chapter

proposes a Model Predictive Control (MPC) framework that joints the multi-regional

route guidance scheme with a novel demand management method. Route guidance

is used to minimize network’s density imbalances, while demand management

is utilized to reduce the conditions that cause congestion. This can be achieved

by manipulating vehicle routes (i.e., using route guidance) and/or by instructing

a portion of the vehicles to wait at their origin before commencing their journey

(demand management).

On these premises, this chapter develops a regional-level (macroscopic) non-

linear non-convex formulation to solve the joint route guidance and demand man-

agement MPC problem. In general, this chapter proposes several formulations that

have been designed to provide accurate and efficient solutions to the original prob-

lem with varying properties in solution quality and execution time. One approach to

do so, is to involve the development of a Mixed Integer Linear Program (MILP) that

yields to tight lower bounds to the optimal solution. Nonetheless, the resulting MILP
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formulation is computationally hard to be implemented in practice under real-time

constraints due to the MILP complexity. In this direction, this chapter also proposes a

novel Linear Programming (LP) MPC formulation that also offers tight lower bounds

to the optimal solution. Bearing in mind that through demand management, each

region can be operated only with the free-flow regime of the macroscopic funda-

mental diagram a second LP formulation is derived which provides a feasible but a

sub-optimal solution to the original non-linear non-convex MPC problem. The key

benefit of both LP formulations is they can be solved accurately and fast with the

use of standard LP solvers.

The remainder of this chapter is organized as follows. Section 7.2 describes the

regional level system model and Section 7.3 derives the nonlinear MPC formulation

of the multi-region RGDM problem, while Sections 7.4 and 7.5 relaxes the problem

into a Mixed Integer Linear Program (MILP) and a Linear Program (LP), respectively.

Section 7.6 exploits demand management to allow regions to operate only within

the free-flow regime, which results in a linear MPC formulation. Section 7.7 presents

simulation results to illustrate how the linear MPC formulation produces competitive

results compared to other state-of-the-art solutions of higher complexity. Finally,

Section 7.8 concludes this chapter.

7.2 System model

7.2.1 Traffic Flow Model

An urban area is partitioned into R homogeneous regions [25], denoted by r ∈ R =

{1, . . . ,R}, with traffic dynamics for each region modelled according to the region’s

MFD as depicted in Fig 7.1 [123]. The traffic parameters of each region r are: the jam

density, ρJ
r, the capacity, qC

r = ρC
r u f

r , which denotes the maximum outflow of region r

(observed at the critical density ρC
r ), the free-flow speed u f

r , and the backward congestion

propagation speed wr = qC
r /(ρ

J
r − ρ

C
r ) [121]. Fig. 7.1 depicts the triangular flow-density

MFD diagram which is complemented by the fundamental relationship that the

intended outflow1 qr(ρr(k)) (veh/h) is equal to the product of density ρr(k) (veh/km)

1The word “intended” represents the total flow that region r is ready to transfer to its neighboring

regions and/or the outside world, if no flow/storage capacity restrictions where applicable from other
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Figure 7.1: A four region network where the outflow traffic dynamics are captured through

the regional triangular flow-density MFDs.

and speed ur(ρr(k)) (km/h) at each time-step k, i.e., qr(ρr(k)) = ρr(k)ur(ρr(k)). Note that

the variables of the intended outflow and speed are functions of density; henceforth,

we suppress the dependency onρr(k) for the sake of simplicity. According to the MFD

theory [123], the intended outflow of each region qr(k), r ∈ R, can be approximated

using the asymmetric unimodal curve of the triangular MFD [121], shown in Fig. 7.1,

which is defined as

qr(k) =


qC

r

ρC
r
ρr(k), if 0 ≤ ρr(k) ≤ ρC

r ,

wr(ρ
J
r − ρr(k)), otherwise. (7.1)

In this work, we assume that the distance travelled by a vehicle inside each region

is independent of the origin-destination pair and the drivers’ route choice (similar

to [64] and [124]) with the parameter Lr (km) denoting the total length of all roads in

regions.
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region r ∈ R.

Let sets O ⊆ R and D ⊆ R determine the regions considered as the origins and

destinations of flows, respectively. Let alsoJ−r ⊆ R be the set of neighboring regions

directly accessible from region r ∈ R (i.e., the immediately next region of r ∈ R) and

similarly let J+
r = J−r ∪ {r}, such that:

Jr =

 J
+
r , if r ∈ D

J
−

r , otherwise. (7.2)

The instantaneous external demand and admitted external demand, from region o ∈ O

to d ∈ D, during time-step k are denoted by dod(k) and d̃od(k), respectively. The

instantaneous external demand captures the number of new vehicles that request to

enter region o towards d. The admitted external demand indicates the number of

vehicles that actually enter region o towards d and is restricted by three factors:

1. The physical ability of the region to accommodate more vehicles.

2. The maximum possible demand that can physically enter region o ∈ O denoted

by DMAX
od .

3. Demand management which allows only a portion of the requested vehicles

to enter the network; the remaining vehicles wait at their origins (outside the

network) until they are admitted.

To keep track of the remaining flows to be served, Dod(k) represents the total external

demand at time-step k defined as follows:

Dod(k + 1) = Dod(k) − d̃od(k) + dod(k), Dod(0) = 0, (7.3)

for k = 1, 2, . . . . Furthermore, let the variable ρrd(k) denote the portion of ρr(k), r ∈ R,

that is destined to d ∈ D such that

ρr(k) =
∑
d∈D

ρrd(k). (7.4)

Accordingly, let variables qrd(k) and qrjd(k) denote the intended transfer flow from

region r ∈ R to destination region d ∈ D and the corresponding flow in region r ∈ R

destined to region d ∈ D that passes through neighbouring region j ∈ Jr, respectively,
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defined as

qrd(k) =
qr(k)
ρr(k)

ρrd(k) = ur(k)ρrd(k), (7.5)

qrd(k) =
∑
j∈Jr

qrjd(k), (7.6)

qr(k) =
∑
d∈D

qrd(k). (7.7)

Note that in the case that r = j = d, d ∈ D, then variable qddd(k) denotes the number

of vehicles that exit the network from their destination, termed exiting vehicles. Note

also that qdjd(k) = 0, j ∈ {Jr \ d}, and hence qdd = qddd.

The intended transfer flow between neighbouring regions r ∈ R and j ∈ J−r is

restricted by their inter-boundary capacity, Crj(ρ j(k)), which is the maximum flow

that can be exchanged between the two neighbouring regions, for a specific value of

ρ j(k). According to [124], Crj(ρ j(k)) can be defined as:

Crj(ρ j(k)) =


CMAX

rj , if ρ j(k) ≤ αρJ
j,

CMAX
rj

1 − α
(1 −

ρ j(k)

ρJ
j

), otherwise, (7.8)

where CMAX
rj is the maximum inter-boundary capacity and αρJ

j is the point where the

inter-boundary capacity starts to decrease with 0 < α < 1. Considering Eq. (7.8),

the value of qrjd(k) depends on the total number of vehicles in region r ∈ R, while

the transfer flow of neighbouring region j relies on its remaining storage capacity;

which also depends on the transfer flows from all other regions s ∈ {J j \ r}. Hence,

the actual transfer flow from r ∈ R to j ∈ Jr, denoted by variable q̃rjd(k), is defined as

q̃rjd(k) = min
(
qrjd(k),Crj(ρ j(k))

qrjd(k)∑
y∈D qrjy(k)

)
. (7.9)

The dynamics of the number of vehicles in region r ∈ R towards destination

d ∈ D, can be defined as

ρrd(k + 1) = ρrd(k) +
1
Lr

d̃rd(k) +
Ts

Lr

∑
j∈Jr

(q̃ jrd(k) − q̃rjd(k)), (7.10)

where, Ts denotes the simulation time-step that governs the evolution of the regional

dynamics as described in (7.10).
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7.3 Joint Route Guidance and Demand Management

Problem

In this section, we formulate the optimal joint route guidance and demand manage-

ment problem utilizing the MFD of each region alongside with the regional model

dynamics as described in Section 7.2.

7.3.1 Objective function

In order to define our objective function, let variables Sa(k) and Sb(k) be the cumulative

number of vehicles that request to enter the network and successfully arrive at their

destination, respectively, defined as

Sa(k + 1) = Sa(k) +
∑
o∈O

∑
d∈D

dod(k), Sa(0) = 0, (7.11)

Sb(k + 1) = Sb(k) + Ts

∑
d∈D

q̃ddd(k), Sb(0) = 0. (7.12)

for k = 1, 2, . . . . Summing over all time-steps, yields the Total Time Spent (TTS) in the

system of all vehicles JTTS (veh·h)

JTTS = Ts

∑
k

(Sa(k) − Sb(k)). (7.13)

Note that, the total time spent (TTS) is the sum of the Total Waiting Time (TWT) and

the Total Travel Time (TTT) of all vehicles (TTS=TTT+TWT). The TWT and TTT are

defined as the sum of the time that individual vehicles spent waiting at their origin

outside the network and travelling inside the network, respectively.

7.3.2 Problem Formulation

To formulate and solve our problem, a Model Predictive Control framework is

considered where the control time-step is set equal to the simulation time-step, such

that a distinct control action can be taken every Ts time units. We consider that the

control and prediction horizons are both equal to Np, while a new MPC problem is

solved every m time-steps. Hence, we solve the l-th MPC problem, l = 1, 2, . . . , for

the time horizonKl = {m(l− 1) + 1, . . . ,m(l− 1) + Np} and apply to the traffic network
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the control actions corresponding to time-steps {m(l − 1) + 1, ....,ml}. In our case,

the l-th MPC problem aims to select the best values for the indented transfer flows

qrjd(k) and admitted external flows d̃od(k) to minimize the total time spent over the

time horizonKl. The mathematical formulation of the l-th MPC problem is given in

(7.14).

(P1) min JMPC
TTS (l) = Ts

∑
k∈Kl

(Sa(k) − Sb(k)) (7.14a)

s.t. Traffic Dynamics (7.1) − (7.12),

d̃od(k) ≤ DMAX
od , k ∈ Kl, o ∈ O, d ∈ D, (7.14b)

d̃od(k) ≤ Dod(k), k ∈ Kl, o ∈ O, d ∈ D, (7.14c)

0 ≤ ρr(k) ≤ ρJ
r, k ∈ Kl, r ∈ R, (7.14d)

Variables: ρr(k), ρrd(k), d̃od(k), Drd(k), qr(k),

qrd(k), qrjd(k), q̃rjd(k), ur(k), Sa(k), Sb(k)

In problem P1, constraints (7.1) - (7.12) define the traffic dynamics modelled

according to the triangular MFD. The physical constraints of the external demand

inflows are ensured through (7.14b) and (7.14c), such that the external demand

inflow is always smaller than the maximum possible external inflow, DMAX
od , and the

total external demand, Dod(k). Constraint (7.14d) simply ensures that the density

of each region is within physical limits. The mathematical optimization problem

P1 is a nonconvex NonLinear Program (NLP) due to the presence of the non-affine

functions (7.1) and (7.8), and the product of variables in (7.5) and (7.9).

7.3.3 General MPC Framework

The block diagram in Fig. 7.2 describes the general operation of an arbitrary MPC

scheme for the solution of Problem P1. Every m time-steps the external demands

for the prediction horizon and the current state of the network are inputted into the

MPC controller which computes the best values for the control variables (admitted

demands and indented transfer flows) according to a specific MPC scheme for the

entire control horizon. Due to possible modelling approximation errors between

the considered MPC scheme and the physical plant, the indented transfer flows qrjd
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Figure 7.2: Block diagram describing the general operation of an arbitrary MPC scheme for

the solution of Problem P1.

are converted into split ratios arjd=qrjd/
∑

d∈D qrjd which denote the percentage of the

indented transfer flow to each of the destination regions. The values of the admitted

demands and split ratios for the first m time-steps are used as input to the physical

plant which updates the state of the traffic network for the next m time-steps using

the nonlinear multi-regional model dynamics given by Eqs. (7.1)-(7.10). Note that

the physical plant uses as indented transfer flows the values arjdqrd instead of the

values qrjd produced by the corresponding MPC scheme. In this way the initial state

of the next MPC iteration is computed and the procedure is repeated again until the

end of the simulation. In practice, the indented transfer flows/split ratios resulting

from the considered MPC scheme can be realized using local controllers located

at the boundary of each region through traffic signal control, as discussed in [60]

and [64].

7.4 MILP reformulation

In this section, the NLP Problem (7.14) shown in Section 7.3 is approximated with a

Mixed Integer Linear Program (MILP) that can be solved optimally using standard

mathematical programming solvers. To do this, we have to replace all the non-linear

constraints (e.g., (7.1), (7.5), (7.8) and (7.9)) with equivalent MILP constraints.

To do so, we first approximate the product of variables in constraint (7.5) with a
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Figure 7.3: The speed function ur(k) = qr(k)/ρr(k) that is produced when considering a

triangular MFD.

set of linear inequalities. This can be achieve by considering segments of the density

for the function ur(k), each of which is defined over a lower and upper bound of

speed. Hence, for each region we introduce a set of binary variables bh
r (k) = {0, 1},

h ∈ H = {1, . . . , |H|}, r ∈ R and k ∈ Kl which indicate whether ρr(k) ∈ [ρh−
r , ρ

h+
r ), where

ρh−
r and ρh+

r is the lower and upper bound of density segment h, as shown in Fig. 7.3.

Given that the MFD is composed of two regimes, the spacing is not uniform: b1
r (k)

indicates whether region r is in the free-flow so that ρ1−
r = 0 and ρ1+

r = ρC
r , while the

rest indicate the corresponding segment in the congested regime. In total, no more

than one set member may be non-zero and positive hence:∑
h∈H

bh
r (k) = 1, r ∈ R, k ∈ Kl (7.15)

Subsequently, we introduce a set of new continuous variables ρh
r (k) ∈ [0, ρJ

r] defined

over the constraints derived below:∑
h∈H

ρh
r (k) = ρr(k), r ∈ R, k ∈ Kl (7.16)

bh
r (k)ρh−

r ≤ ρ
h
r (k) ≤ bh

r (k)ρh+

r , h ∈ H , r ∈ R, k ∈ Kl (7.17)

For each time-step each region can only have one variable ρh
r (k) set to be non-zero

and equal to ρr(k).

Utilizing the above segments of density, we can obtain the lower and upper

bounds of the transfer flows (e.g., qh−
rd (k) and qh+

rd (k), h ∈ H , k ∈ Kl, r ∈ R, j ∈ Jr) as
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follows:

qh−
rd (k) = ρrd(k)ur(ρh+

r )bh
r (k), (7.18)

qh+

rd (k) = ρrd(k)ur(ρh−
r )bh

r (k), (7.19)

where ur(ρh+

r ) and ur(ρh−
r ) are the corresponding lower and upper bounds on the

speed for density segment h.

Fig. 7.3 depicts a toy example of how the transfer flows can be approximated, with

the following parameters: ρJ
r = 90, ρC

r = 30, qc
r = 1800 and |H| = 4. Hence, we can sep-

arate ur(k) in the following four density segments: [0, ρC
r ], (ρC

r , 50], (50, 70] and (70, 90].

For instance, at an arbitrary time-step k, ρr(k) = 40 veh/km with u f
r = 60 km/h and

ur(40) = 37.5 km/h. Then b2
r (k) = 1 and b1

r (k) = b3
r (k) = b4

r (k) = 0, withρ2
r (k) = ρr(k) = 40

veh/km and ρ1
r (k) = ρ3

r (k) = ρ4
r (k) = 0 with ur(ρ2+

r ) = 60 km/h and ur(ρ2−
r ) = 30 km/h.

In this regard, constraint (7.5) is approximated by constraints Eqs. (7.18) and (7.19)

which contain a product of a continuous and a binary variable. Considering that

the continuous variable (e.g., ρrd(k)ur(ρh+

r ) or ρrd(k)ur(ρh−
r )) is bounded below by zero

and above by CMAX
rj then, equality constraints (7.18) and (7.19) can be equivalently

transformed to a set of MILP inequalities using the big “M” notation [125] with

M = CMAX
rj . This can be done considering that the transfer flows are upper bounded

by the maximum inter-boundary capacity. In view of the above, these constraints

are equivalent to (7.20) and (7.21) that comprise of four MILP constraints as follows:

qh−
rd (k) ≤Mbh

r (k) (7.20a)

qh−
rd (k) ≤ ρrd(k)ur(ρh−

r ) (7.20b)

qh−
rd (k) ≥ 0 (7.20c)

qh−
rd (k) ≥ ρrd(k)ur(ρh−

r ) − (1 − bh
r (k))M. (7.20d)

qh+

rd (k) ≤Mbh
r (k) (7.21a)

qh+

rd (k) ≤ ρrd(k)ur(ρh+

r ) (7.21b)

qh+

rd (k) ≥ 0 (7.21c)

qh+

rd (k) ≥ ρrd(k)ur(ρh+

r ) − (1 − bh
r (k))M. (7.21d)
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Considering all the above, constraint (7.5) can be approximate with the following

lower and upper bounds on qrd(k):∑
h∈H

qh−
rd (k) ≤ qrd(k) ≤

∑
h∈H

qh+

rd (k) (7.22)

Subsequently, constraint eq. (7.1) can be transformed into a MILP equality con-

sidering the new variables b1
r (k) and ρh

r (k) as depicted in constraint eq (7.23).

qr(k) =
( qC

r

ρC
r

+ wr

)
ρ1

r (k) + wrρ
J
r(1 − b1

r (k)) − wrρr(k). (7.23)

Similar to [124] for the case of MILP formulation we omit the inter-boundary

capacity constraints (7.8) and (7.9) from the prediction model used in the developed

MPC optimization approach described in mathematical Program P1 , as the effect of

the critical capacity is significantly larger than that of the inter-boundary capacity.

Furthermore, the work presented in [124] has extensively studied the sensitivity

to changes of the inter-boundary capacity value, indicating that MPC schemes are

insensitive to the inter-boundary capacities.

Given that we only provide bounds for the flows that passes through neighboring

regions, in our model we add the following flow conservation equation within region

r ∈ R:

q̂r(k) =
∑
d∈D

qrd(k) (7.24)

By doing this, better approximation can be achieved to the final values of the flows

through the developed MILP formulation.

In summary, problem P1 can be transformed into an MILP by replacing Eqs. (7.1)

and (7.5) with Eqs. (7.15)-(7.17) and Eqs. (7.20)-(7.24) while omitting Eqs. (7.8) and

(7.9). yielding formulation (7.25).

min JMPC
TTS (l) = Ts

∑
k∈Kl

(Sa(k) − Sb(k)) (7.25)

s.t. Constraints: (7.2) − (7.4), (7.6) − (7.7), (7.10) − (7.12), (7.14b) − (7.14d),

(7.15) − (7.17) and (7.20) − (7.24).

Variables: ρr(k), ρrd(k), d̃od(k), Drd(k), qr(k), qrd(k), qrjd(k), q̃rjd(k), ur(k), Sa(k), Sb(k).

Baring in mind that the range of function ur(ρr) is the set of all values given by

ur(ρr) for all possible ρr(k) which are defined over the close set [0, ρJ
r] (i.e., ur(ρr) ∈
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Figure 7.4: The relaxed feasible domain of the speed Function.

X = {0, . . . ,u f
r }). Now by taking segments of density for the function ur(k), the

segments of the range of function ur(ρr) are part of the set (i.e., X〈 ⊆ X) of all

values given by ur(ρr) for all possible ρr(k) defined over the set ρr(k) ∈ [ρh−
r , ρ

h+
r )

(i.e., ur(ρr) ∈ X〈 = {ur(ρh+

r ), . . . ,ur(ρh−
r )}). Considering the relaxed constraint in (7.22),

the range of function ur(ρr) is the set defined within the plane for each considered

segment (blue shaded rectangles depicted in Fig. 7.4). In addition, let the optimum

solution of the program (P1) denoted as (P∗1) be the optimum solution of the MILP

reformulation (i.e., (P̂1) ) denoted as P̂∗1. Hence, any feasible solution to problem

(P1) is also a feasible solution to its corresponding relaxed MILP program (e.g., (P̂1))

thereby, P̂1 gives a lower bound of the (P1) program (i.e., P̂∗1 ≤ P̂1). Note that, for the

first segment, the speed for both cases is equal to u f
r and thus P∗1 = P̂∗1. Finally, it is

worth mentioning that with an increase of the number of segments |H| that we are

use to approximate ur(ρr), tighter bounds on the transfer flows are attained.

7.5 Linear relaxation

In this section, the NLP Problem P1 is relaxed to a linear programming formulation

that can easily be solved using standard mathematical optimization solvers. The

developed formulation relaxes all the nonconvex constraints with linear constraints

that lie in convex domains that are supersets of the corresponding nonconvex con-

straint domains. As a result, the obtained solution from this formulation yields lower
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Figure 7.5: The relaxed feasible domain of the triangular MFD.

bounds to the optimal objective value and hence, the particular linear relaxation can

be used to derive the optimality gap of any developed solution approach. Next, we

derive superset linear constraints for the four nonconvex constraints of Problem P1,

namely, (7.1), (7.5), (7.8) and (7.9).

First, let us consider the triangular MFD relationship between flow, speed and

density (7.1). It is true that this constraint can be equivalently written as

qr(k) = min
(

qC
r

ρC
r
ρr(k),wr(ρ

J
r − ρr(k))

)
. (7.26)

Constraint (7.26) can be relaxed by substituting the equality sign “=” with the in-

equality sign “≤” yielding

qr(k) ≤
qC

r

ρC
r
ρr(k), (7.27)

qr(k) ≤ wr(ρ
J
r − ρr(k)). (7.28)

Notice that constraints (7.27) and (7.28) produce a convex feasibility domain for

{qr(k), ρr(k)} (shown with the blue shaded area in Fig. 7.5) which is a superset of

the nonconvex feasibility domain produced by constraint (7.26) (shown with the red

solid line in Fig. 7.5).

Second, let us consider constraint (7.5) which involves the product of two vari-

ables. Since ur(k) ≤ u f
r for all densities ρr(k) the constraint (7.5) can be relaxed into

qrd(k) ≤ u f
rρrd(k). (7.29)
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which produces a convex feasibility domain for {qrd(k),ur(k), ρrd(k)} that is a superset

of the nonconvex feasibility domain of (7.5).

Finally, constraints (7.8) and (7.9) are handled together. Similar to (7.1), con-

straint (7.9) can be relaxed into the following two inequalities

q̃rjd(k) ≤ qrjd(k) (7.30)

q̃rjd(k) ≤ Crj(ρ j(k))
qrjd(k)∑

y∈D qrjy(k)
. (7.31)

Although constraint (7.30) is linear, constraint (7.31) is nonconvex and further relax-

ation is needed. Summing (7.31) over all q̃rjd(k) for d ∈ D yields∑
d∈D

q̃rjd(k) ≤ Crj(ρ j(k)), (7.32)

which is a relaxed version of (7.31) as individual constraints are always at least as

tight as the sum of the associated constraints. In constraint (7.32), Crj(ρ j(k)), defined

in Eq. (7.8), can be rewritten as

Crj(ρ j(k)) = min

CMAX
rj ,

CMAX
rj

1 − α
(1 −

ρ j(k)

ρJ
j

)

 ,
which has the same form with (7.1). Thus, Eq. (7.32) can further be relaxed into the

following two linear constraints∑
d∈D

q̃rjd(k) ≤ CMAX
rj , (7.33)

∑
d∈D

q̃rjd(k) ≤
CMAX

rj

1 − α
(1 −

ρ j(k)

ρJ
j

), (7.34)

for all k ∈ Kl, r ∈ R, j ∈ Jr. Therefore, eqs. (7.8) and (7.9) are relaxed into the linear

constraints (7.30), (7.33) and (7.34).

In summary, problem P1 can be transformed into an LP by replacing Eqs. (7.1),

(7.5), (7.8) and (7.9) with Eqs. (7.27)-(7.30) and (7.33)-(7.34), yielding formulation

(7.35).

min JMPC
TTS (l) = Ts

∑
k∈Kl

(Sa(k) − Sb(k)) (7.35)

s.t. Constraints: (7.2) − (7.4), (7.6) − (7.7), (7.10) − (7.12), (7.14b) − (7.14d),

(7.27) − (7.30) and (7.33) − (7.34).

Variables: ρr(k), ρrd(k), d̃od(k), Drd(k), qr(k), qrd(k), qrjd(k), q̃rjd(k), ur(k), Sa(k), Sb(k).
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The resulting LP relaxation, provides a lower bound to the optimal objective

value which can be used to assess the optimality gap of any solution approach

for Problem P1. Although, formulation (7.35) may lead to infeasible solutions due

to possible non-satisfaction of the relaxed constraints, a feasible solution can be

obtained through the procedure outlined in Section 7.3.3 for the use of the split

ratios instead of the indented transfer flows.

7.6 LP Feasible Solution to Problem

In this section, we develop an LP formulation that provides a feasible solution to

Problem P1. Towards this direction, we capitalize on the flexibility offered by demand

management to enforce operation of the traffic network in non-congested conditions

at all times. This can be achieved because demand management can control the

number of vehicles entering the network irrespective of the demand quantity and

profile.

Contrary to the previous section where the four nonconvex constraints were

relaxed, in this section these constraints are tightened to yield a feasible solution to

P1 which is achieved by enforcing free-flow conditions. Starting with constraint (7.1),

operation in the free-flow regime can be guaranteed if we consider the constraint

0 ≤ ρr(k) ≤ ρC
r , (7.36)

which ensures that the density of a region does not exceed its critical density. As a

result, (7.1), can be simplified to

qr(k) = (qC
r /ρ

C
r )ρr(k) = u f

rρr(k), (7.37)

which is denoted by the green dashed line in Fig. 7.5. Notice that the green dashed

line is a subset of the red solid line which indicates that a potential solution to the

problem will yield a feasible solution which, however, may not be optimal because

part of the feasibility domain in not used (the part of the red line in the congested

regime).

By not allowing any region of the network to enter the congested regime, implies

that the vehicles travel with free-flow speed in all regions, i.e., ur(k) = u f
r . As a result,
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constraint (7.5) is simplified to

qrd(k) = ρrd(k)u f
r . (7.38)

To linearise the third nonconvex constraint (7.8) while maintaining feasibility of

the solution, we enforce the inter-boundary capacity to always maintain its maxi-

mum value (i.e., CMAX
rj ∀ j ∈ Jr). To achieve this, we further tighten constraint (7.14d)

by replacing it with the constraint

0 ≤ ρr(k) ≤ min(ρC
r , αρ

J
r), (7.39)

i.e., the region’s density should never exceed the critical density and also the point

of density where its region’s inter-boundary capacity starts to decrease. As a result,

constraint (7.8) is simplified to

Crj(ρ j(k)) = CMAX
rj . (7.40)

Finally, given the already defined constraints, the nonconvex constraint (7.9) can

be simplified to

q̃rjd(k) = qrjd(k), (7.41)∑
d∈D

q̃rjd(k) ≤ CMAX
rj . (7.42)

In this manner, constraint (7.42) enforces demand management to admit lower

external demands in order to satisfy both (7.41) and (7.42). Taking all linearisations

into account yield the LP formulation (7.43).

min JMPC
TTS (l) = Ts

∑
k∈Kl

(Sa(k) − Sb(k)) (7.43)

s.t. Constraints: (7.2) − (7.4), (7.6) − (7.7), (7.10) − (7.12),

(7.14b) − (7.14c), and (7.37) − (7.42).

Variables: ρr(k), ρrd(k), d̃od(k), Drd(k), qr(k), qrd(k), qrjd(k), q̃rjd(k), ur(k), Sa(k), Sb(k).

Formulation (7.43) is a linear program that minimizes the total time spent in

the system under the enforcement of non-congested conditions. Its solution offers

a feasible solution to Problem (P1). The extensive simulation results that follow

indicate that the above formulation can lead to remarkable travel time reductions

since formulation (7.43) guarantees that the network will always operate below or

at its critical capacity.
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Figure 7.6: The simulated urban area consists of 16 regions, four origin regions (1, 4, 11 and

16) and four destination region (2, 8, 9 and 14).

7.7 Performance evaluation

7.7.1 Setup

For the evaluation of the proposed methodologies, a Manhattan-style network topol-

ogy, shown in Fig. 7.6, is considered as a case study network (i.e., the physical plant)

consisting of 16 regions. Region are assumed to have identical well-defined trian-

gular MFDs [123] with parameters: ρC
r = 30 veh/km, ρJ

r = 130 veh/km, Lr = 1 km,

u f
r = 60 km/h, qC

r = 1800 veh/h, CMAX
rj = 2000 veh/h and α = 0.25. The simulation

time-step is set equal to Ts = 60 s and the duration of the whole simulation exper-

iment is set to T = 120 min. For the considered MPC schemes we set m = 5 and

Np = 20 time-steps, while the corresponding optimization problems are solved using

the Gurobi mathematical programming solver [116].

All schemes are evaluated across three scenarios: (i) light with average demand

2700 veh/h and range [1500, 5800] veh/h, (ii) moderate with average demand 3600

veh/h and range [2000, 7800] veh/h and (iii) heavy with average demand 4000 veh/h

and range [2300, 8500] veh/h. The demand loading procedure lasts for one hour and

varies for different O-D pairs. For each scenario we consider four origin regions (1,

4, 11 and 16) and four destination regions (2, 8, 9 and 14). It is also assumed that the

compliance rate of drivers is equal to 100%.

In this setting the performance of the following solution approaches is examined:

• SP: In this scheme all vehicles follow the shortest distance path from their
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origin to their destination.

• RG: An ordinary route guidance MPC scheme with no demand management.

• LRDM: The linear relaxation MPC scheme of the joint demand management

and route guidance approach based on input obtained using formulation (7.35)

in conjunction with the general MPC procedure described in Section 7.3.3.

• NCDM: The non-congested feasible LP MPC scheme of the joint demand

management and route guidance approach based on input obtained using

formulation (7.43) in conjunction with the general MPC procedure described

in Section 7.3.3.

To formulate the ordinary route guidance scheme we have to replace the MILP

constraints (7.14b) and (7.14c) with the constraint:

d̃od(k) = min
( (ρJ

o − ρr(k))Lr

|D|
,Dod(k),DMAX

od

)
(7.44)

By doing this, the controller’s ability to regulate the external inflows is removed.

Hence, constraint (7.44) allows all of the requesting demands to enter unless they

are physically restricted by the flow/storage capacity of the region. Note that con-

straint (7.44) is also a non-linear function that needs to be relaxed to solve by the

standard solver. Nonetheless, the current state-of-the-art solvers (e.g., Gurobi [116])

can transform general type of constraints (e.g., min constraint) with built-in functions

that utilizes binary variables (MILP programs) as discussed in [126].

7.7.2 Results

Table 7.1 presents the performance of the different solution schemes in terms of the

Average Time Spent (ATS), Average Travel Time (ATT) and Average Waiting Time

(AWT) at the origin (waiting occurs outside the network) for three demand scenarios.

From the table, it is clear that the SP scheme yields poor results as it leads to very large

travel times even for the light demand scenario (82.72 min). On the contrary, the

other approaches yield optimal performance for the light demand scenario, as they

have the same performance with the Ideal Shortest Path (ISP) solution. Nonetheless,

as the demand increases the performance of the different schemes diversifies. For the
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Demand Level

Light Moderate Heavy

A
T

S

(m
in

)

SP 82.72 171.83 431.59

RG 3.84 4.61 8.11

LRDM 3.84 3.96 4.58

NCDM 3.84 3.96 4.09

ISP 3.84 3.82 3.81

A
T

T

(m
in

)

SP 54.74 95.1 159.1

RG 3.84 4.6 7.48

LRDM 3.84 3.82 3.81

NCDM 3.84 3.82 3.81

ISP 3.84 3.82 3.81

A
W

T

(m
in

)

SP 27.4 75.71 270.96

RG 0 0.01 0.63

LRDM 0 0.13 0.76

NCDM 0 0.13 0.28

ISP 0 0 0

Table 7.1: Performance evaluation of different solution approaches for three demand levels:

light, moderate and heavy. ISP indicates the ideal case where all vehicles follow their shortest

distance path with free-flow speed.

moderate demand scenario, notice that although the RG scheme has only 0.01 min of

average waiting time, compared to 0.13 min for the LRDM and NCDM schemes, its

average time spent is approximately 15% higher compared to the LRDM and NCDM

schemes. Note that although waiting at the origin is not explicitly imposed in the RG

scheme, waiting occurs implicitly for vehicles that want to enter a region that is full.

For the heavy demand scenario NCDM is the clear winner achieving roughly 10%

and 100% better performance compared to the LRDM and RG schemes. Another

important observation is that the two demand management schemes achieve this

excellent performance by imposing on average less than 20% waiting time at the
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origin compared to the travel time. Furthermore, it is interesting to observe that the

waiting time of the RG scheme due to congestion is almost identical to the enforced

waiting from the LRDM and NCDM schemes, despite having significantly worse

performance.

Fig. 7.7 depicts the space-time density diagram for the three demand scenarios.

The performance of the three schemes (RG, LRDM and NCDM) for the light demand

scenario is almost identical, while it is clear that the SP scheme suffers from severe

congestion. On the contrary, for the moderate and heavy demand levels, congestion

appears also for the RG scheme. These findings support the notion that the RG

scheme can delay the emergence of congestion but cannot eventually avoid it when

the demand keeps increasing. On the contrary, it is evident that both LRDM and

NCDM schemes can successfully optimize the network’s efficiency, as the density of

all regions is sustained below the critical density even for the heavy demand scenario.

Moreover, it can be observed that despite the fact that we selected only four distinct

origin - destination pairs, the optimization problem routes traffic through various

paths to utilize all available regions and hence maximize performance.

Figs. 7.8 illustrate the cumulative number of vehicles that request to enter the

network (i.e., GeneratedVehs) compared with the number of vehicles that have

completed their trip (i.e., ExitVehs) considering all methodologies (i.e., SP, RG, LRDM

and NCDM). Interestingly the three route guidance schemes outperform SP in all

considered scenarios. Indicatively, with SP more than the two thirds of the vehicles

were unable to arrive at their destination within the simulation time. Moreover,

during the light demand scenario the three route guidance methods performed

equally well as no congestion occurred, but in both moderate and heavy scenarios

the demand management schemes outperformed RG. Thus, it is clear that demand

management can offer significant reductions in travel times and can enhance the

overall network performance.

Similar results are obtained in Fig. 7.9 which illustrates the cumulative number

of instantaneous external demand (i.e. VehsRequests) compared to the admitted

external demand (i.e., VehsEnter). In all three scenarios, the demand management

schemes manage to serve the vehicular flows in higher rates than the no demand

management schemes. The reason is that, the no demand management schemes
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Figure 7.7: The instantaneous density of each region observed at each simulation step (Ts)

considering (a) light, (b) moderate and (c) heavy loaded demand scenarios.
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Figure 7.8: The cumulative summation of the vehicles number that request to enter the

network (Generated), that exit the network (Outflow) and their difference (residual) up

to each time slot (Ts), considering (a) light, (b) moderate and (c) heavy loaded demand

scenarios.

allow all requesting flows to enter unless the originating regions are full. On the

other hand, both demand management schemes allow vehicles to enter only in case

that regions to be traversed are below the critical density and by doing this, the
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Figure 7.9: The cumulative summation of vehicles number that request to enter the network

(Generated) and those that actually entered (granted) for each time-slot (Ts) considering (a)

light, (b) moderate and (c) heavy loaded demand scenarios.

outflow is maximized while travel time is minimized.

Fig. 7.10 examines the Total Time Spend in the network (TTS) for the moderate

Fig. 7.10 (a) and heavy Fig. 7.10 (b) demand scenarios. From this figure, its clear

that the route guidance schemes can improve the TTS metric compared to the levels

achieved by the SP scheme as vehicular flows can be re-routed through paths that
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Figure 7.10: TTS in network for (a) the moderate and (b) the heavy demand levels.
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Figure 7.11: The absolute value of the difference between the values of the selected control

inputs and their values at their first prediction for each region

minimize the overall time spend. The necessity for this is that, SP tries to develop

solutions close to the user optimum in which case congestion occurs and hence the

TTS metric is increased exponentially. Similar behavior can be observed from the
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Figure 7.12: The sensitivity of LRDM performance to changes in the percentage of drivers’

compliance level considering the heavy loaded demand scenario.
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Figure 7.13: The sensitivity of NCDM performance to changes in inter-boundary capacity

for the heavy loaded demand scenario.

RG scheme as it tries to force more drivers to use the physical shortest path how-

ever, comparing RG with SP it is true that RG can potentially delay the emerge of

congestion as it tries to distribute the load evidently through the network. On the

other hand, both demand management methodologies try to the optimize social

optimum which produces significant reductions in the TTS metric irrespective of the

considered demand level, always diminishing the possibility of congestion emer-
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gence. Comparing LRDM with NCDM in moderate demand level both demand

management strategies can offer similar results, but in heavy demand levels NCDM

can offer slightly better results in terms of TTS due to the fact that the LRDM method

approximates the optimum solution while the NCDM can offers the optimal solution

through a linear program. As shown in Fig. 7.10, (b) for the heaviest demand level

the average TTS for SP is 5.7756106 veh.s for RG is 1.6684106 veh.s, for LRDM is

8.5129105 veh.s, and for NCDM is 8.5112105 veh.s, this mean that the NCDM scheme

can reduce by 85% the TTS metric compared with the SP scheme. It is worth to

mentioning that for the case of SP scheme in both demand levels due to congestion

a significant large portion of vehicular flows can not manage to enter in the network

with the above results considering only flows that have managed to enter in the

network.

The importance of the selected prediction horizon (i.e., Np = 20) is illustrated in

Fig. 7.11 which shows the change in control inputs (i.e,. nrjd(k) and d̃od(k)∀ k = mNp)

comparing the first predictions with what is actually selected for control action at the

current time-step. In the figure, each boxplot determines the absolute value of the

difference between selected control inputs (i.e,. nrjd(k) and d̃od(k)∀k = mNp) and their

predictions made at time-step k = mNp − Np. The majority of regions have median

larger that 0.3, meaning that each applied control input changes on average up to

30% compared with the first predicted value.

The sensitivity of the LRDM performance to the changes in drivers compliance

levels is examined in Fig. 7.12 in which the heavy loaded demand scenario is evalu-

ated considering six different drivers percentages of drivers’ compliance level (i.e.,

70%, 75%, 80%, 85%, 90%, 95% and 100%). Note that in the ideal scenario (i.e., the

compliance rate is 100 %) all drivers will opt to follow the waiting intervals provided

by the LRDM scheme. Furthermore, the compliance rate is examined only for the

case of the LRDM scheme, as a potential 90% disobedience may lead to densities

higher than the region’s critical value. As expected as compliance levels are reduced

then the performance of the LRDM method decreases. Furthermore, it’s evident

that for compliance level higher than 75%, the LRDM method still outperforms the

ordinary route guidance method. On the other hand, in compliance level lower than

70%, LRDM behaves almost similarly with the ordinary route guidance method.
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Scenario Average Optimality Gap

Number Demand LRDM NCDM

1 2600 veh/h 0.0% 0.0%

2 2900 veh/h 0.0% 0.04%

3 3200 veh/h 0.0% 0.14%

4 3500 veh/h 0.0% 0.11%

5 3700 veh/h 0.0% 0.57%

6 4000 veh/h 0.0% 0.13%

7 5300 veh/h 0.0% 0.0059%

8 8000 veh/h 0.0005% 3.19%

Table 7.2: The optimality gap of NCDM and LRDM compared to a lower bound of the

optimal solution for different demand scenarios.

The sensitivity of the NCDM scheme to changes in the inter-boundary capacity

(i.e, CMAX
rj (ρ j(k)))) value is examined in Fig. 7.13 in which four different simulations

are conducted considering various values of CMAX
rj (ρ j(k))) (i.e., 500, 1000, 1400, and

1800 veh/h) for the heavy loaded demand scenario. Fig. 7.13 illustrates the space-time

diagram of the volume of density for the four different simulation runs. Looking

into the results presented in Fig. 7.13, it is clear that for inter-boundary capacity

rates higher than 1000 veh/h, the performance is almost identical with the highest

rate at 1800 veh/h. On the other hand, for the lowest rates of 500 veh/h, the NCDM

scheme is fairly insensitive to the value of inter-boundary capacity. Interestingly, as

boundary capacity gets lower the performance slightly decays as the loaded demand

served in a negligibly longer time.

7.7.3 Optimality Gap

To investigate the optimality of the LRDM and NCDM MPC schemes we have

evaluated their performance in comparison to a Lower Bound (LB) of the optimal

objective value that can be obtained using formulation (7.35) when the problem is

solved once for the entire time horizon, i.e., K = {1, . . . ,T + Np}. For the LRDM and

NCDM schemes we consider m = 5 and Np = 120 time-steps, similar to previous
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experiments. The optimality criterion of choice is the optimality gap defined as

Optimality Gap =
JAlg
TTS − JLB

TTS

JLB
TTS

× 100%

where JLB
TTS and JAlg

TTS, Alg = {LRDM,NCDM}, denote the TTS values, according to Eq.

(7.13), obtained from the LB solution and the solution from the LRDM and NCDM

schemes, respectively.

Table 7.2 illustrates the optimality gap of the NCDM and the LRDM MPC schemes

for eight demand scenarios of increasing average value for the same simulation

time-step and duration (i.e., Ts = 1 min and T = 120 min). From the results,

three important observations can be made. First, the NCDM scheme practically

provides optimal results in all considered scenarios. This is a very important result

which highlights the fact that a traffic network operating under congestion free

conditions will yield excellent results. Second, the obtained lower bounds are tight

as indicated by the fact that the optimality gap for the NCDM scheme is equal to

zero for all considered cases. Third, the LRDM scheme has excellent performance as

the optimality gap is less than 0.6% in almost all cases except from the scenario with

the largest demand. In fact it appears that for the LRDM scheme the performance

tends to reduce for increasing congestion.

7.8 Summary

This chapter extends the multi-regional route guidance scheme by jointly optimiz-

ing the route calculated with demand management. The proposed scheme seeks

solutions that schedule flows through shortest travel time paths while at the same

time preventing traffic congestion by imposing waiting at the origin nodes when this

action benefits the overall network’s operation. An MPC formulation is developed

which leads to a highly complex non-linear problem while a relaxed linear reformu-

lation is also derived that offers a lower bound solution to the original non-linear

problem.

This chapter extends the multi-regional route guidance scheme by jointly opti-

mizing the route calculated with demand management. The proposed scheme seeks

solutions that schedule flows through shortest travel time paths while at the same
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time preventing traffic congestion by imposing waiting at the origin nodes when this

action benefits the overall network’s operation. An MPC formulation is developed

which leads to a highly complex non-linear problem while a relaxed linear reformu-

lation is also derived that offers a lower bound solution to the original non-linear

problem.

Provided that by sustaining each region’s density below the critical value its

outflow is maximized, the proposed demand management methodology permits

us to transform the highly complex non-linear problem to a linear one, without

affecting the performance of the proposed scheme. Also, the latter approach can

offer a feasible solution to the original problem in real-time in contrasts with the

state-of-the-art NLP formulations. Extensive simulation results confirm that the

joint route guidance and demand management scheme can lead to substantially

better performance compared to the on-demand management option, verifying that

the linear case outperforms all other approaches.
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Chapter 8

Path-based joint demand management

and route guidance for multi-region

traffic networks

8.1 Introduction

The non-linear non-convex joint route guidance and demand management problem

formulated in Chapter 7 assumes that all paths pass through each region have a

constant length independently from their origin-destination pair. However, this as-

sumption is often violated in practice; thus, this chapter reformulates the problem

and explicitly define the paths followed for each origin-destination pair. In partic-

ular, the road network is partitioned into a number of regions with well-defined

Macroscopic Fundamental Diagrams (MFDs) [106] within which a set of predefined

paths exists. A path is an ordered sequence of region indices that guide vehicular

flows from their origin to their destination. For example, Fig. 8.1 depicts a 4-region

network with two origin-destination pairs (O1-D1 and O2-D2) served by five paths.

Given the demand profile of each origin-destination pair, the proposed scheme

regulates the inflow rate by which external demands enter the network and splits

the inflow among multiple predefined paths associated with each origin-destination

pair. The amount of flow allocated to a specific path aims to minimize the total travel

time of all vehicles, while the control of the rate by which external flows enter the

network (through demand management) aims to alleviate congestion by restricting a
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Figure 8.1: The proposed path-based framework.

portion of the inflows at their origins, before entering the network. The novelty of this

chapter lies both in modeling and solving the resulting problem under these control

measures. In this way, a non-linear and non-convex MPC is formulated to address

the path-based joint route guidance and demand management problem. Similarly,

as in Chapter 7, an LP formulation for the non-convex MPC problem is developed

by relaxing the non-convex constraints. The resulting formulation provides a lower

bound to the original problem, which helps in assessing the optimality gap of the

developed non-congested solution technique. However, by restricting the density of

each region within the non-congested regime, then a second LP formulation can be

developed to provide a feasible but sub-optimal solution to the original non-convex

problem.

The remaining of this chapter is organized as follows. Section 8.2 presents the

path-based regional level model. Section 8.3 derives the non-linear MPC formu-

lation of the problem, while Section 8.4 presents an LP relaxation to the original

problem that provides a lower bound to the optimal solution. Section 8.5 develops

the proposed solution approach to the original problem which constructs an LP

formulation of the original problem by restricting the density of each region to lie
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within the non-congested (free-flow) regime at all times. Subsequently, Section 8.6

presents a performance evaluation of the proposed solution approach and finally,

Section 8.7 concludes this chapter.

8.2 Traffic flow model

Let an urban area be partitioned into R homogeneous regions, denoted by r ∈ R =

{1, . . . ,R}. For instance, the network in Fig. 8.1 is partitioned into four regions. Fur-

thermore, we assumed that all traffic dynamics in each region are defined according

to a triangular NFD such that

qout
r (ρr(k)) =


qC

r

ρC
r
ρr(k), if 0 ≤ ρr(k) ≤ ρC

r

wr(ρ
J
r − ρr(k)), otherwise, (8.1)

where ρr(k) (veh/km) is the vehicle density of region r at time-step k and qout
r (ρr(k))

(veh/h) is the region’s intended outflow1. Furthermore, ρC
r and ρJ

r are the region’s

critical and jam densities respectively, while qC
r is the region’s maximum outflow

observed at the critical density. In addition, it is true that

qout
r (ρr(k)) = ρr(k)ur(k)

where ur(k) is the average speed in region r ∈ R. To complete the model, we assume,

the capacity qC
r = ρC

r u f
r where u f

r denotes the region’s free-flow speed and wr the

region’s backward congestion propagation speed such that wr = qC
r /(ρ

J
r − ρ

C
r ) [121].

Let sets O ⊆ R and D ⊆ R denote the regions considered as the origins and

destinations of flows, respectively. Also, let P denote the set of indices of all region-

level paths in the network. A path p ∈ P is defined by the set containing the

sequence of regions to be followed from the origin o ∈ O to the destination d ∈ D

of the particular path, i.e., Pp = (o, · · · , r, s, · · · , d); regions {r, s} ∈ R are intermediate

regions of path p such that s is the downstream region of r. The set Pr ⊆ P denotes

the subset of all paths that pass through region r ∈ R and the set Brs ⊆ P denotes

the subset of paths that pass through region r ∈ R and their immediate downstream

1By intended outflow we mean the region’s outflow, assuming that the downstream region(s) have

enough capacity to accommodate it.
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region is s ∈ R. Likewise, the set Pod ⊆ P, denotes the set of all paths that start from

o ∈ O and end at d ∈ D. The length of the section of path p that passes through

region r is denoted by Lpr; thus, the total length of paths that pass through region r

is given by Lr =
∑

p∈Pr
Lpr.

During every time step k, a flow (external demand) dod(k) (veh/h) requests to enter

the network at region o ∈ O with destination d ∈ D and d̃p(k) (veh/h) is admitted in

the origin region of path p ∈ Pod. If no demand management is applied, d̃p(k) will be

limited by the network’s physical constraints as:

1. The physical ability of the origin region to accommodate more vehicles.

2. The physical ability of each path in the particular region to accommodate more

vehicles.

3. The maximum possible demand that can physically enter path p denoted by

DMAX
p .

On the other hand, if demand management is applied, then d̃p(k) becomes a decision

variable and can take values lower than the network’s physical constraints to prevent

the occurrence of congestion.

Given an origin-destination pair, the remaining demand that still needs to enter

the network is given by

Dod(k + 1) = Dod(k) −
∑
p∈Pod

d̃p(k) + dod(k), (8.2)

for k = 0, 1, · · · , and with initial condition Dod(0) = 0.

The density of the section of path p in region r is denoted by ρpr(k) (veh/km),

p ∈ Pr such that the density of region r at time step k is given by

ρr(k) =

∑
p∈Pr

ρpr(k)Lpr∑
p∈Pr

Lpr
. (8.3)

Eq. (8.3) emanates from the fact that the density of the region of an NFD is equal to

the total number of vehicles divided by the total length of all roads in the region.

From the NFD of region r, given the density of r, we can obtain the intended

outflow of the region, qout
r (ρr(k)) and also the average speed ur(k) in region r. Using
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this information, and spreading the outflow proportionally among paths, we can

also obtain the per path outflow of each region,

qout
pr (k) =

ρpr(k)
ρr(k)

qout
r (ρr(k)) = ρpr(k) ur(k) (8.4)

From the per-path outflow of region r, we can obtain again the total intended outflow

of the region as:

qout
r (ρr(k)) =

∑
p∈Pr

qout
pr (k)Lpr∑

p∈Pr
Lpr

(8.5)

On a given path p passing from region r to s, the intended outflow is restricted

by the inter-boundary capacity, Crs(ρs(k)), that determines the maximum flow from

region r to downstream region s,

Crs(ρs(k)) =


CMAX

rs , if ρs(k) ≤ αρJ
s

CMAX
rs

1 − α
(1 −

ρs(k)

ρJ
s

), otherwise, (8.6)

where CMAX
rs is the maximum inter-boundary capacity and αρJ

s denotes the point

where the inter-boundary capacity starts to decrease with 0 < α < 1. The inter-

boundary capacity will be shared proportionally among all paths that pass from r to

s, denoted by Brs; thus, the actual transfer flow from r to s on path p is given by

q̃out
pr (k) = min

qout
pr (k),Crs(ρs(k))

qout
pr (k)∑

p∈Brs

qout
pr (k)

 . (8.7)

Considering all the above, the vehicle density of each path p ∈ Pr in region r is

given by

ρpr(k + 1) = ρpr(k) +
Ts

Lpr

(
q̃in

pr(k) − q̃out
pr (k)

)
, (8.8)

where Ts is the sampling time step and q̃in
pr(k) is the inflow in region r on path p

from the region immediately upstream from r (this can also be obtained from (8.7)

by appropriately adjusting the indices). If r is the originating node of path p, then

q̃in
pr(k) = d̃p(k) which is the new flow admitted into the network on path p during

time-step k.
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8.3 Path-based Joint Demand Management and Route

Guidance formulation

In this section, we present the formulation of the joint Route Guidance and De-

mand Management MPC scheme that takes into consideration all traffic dynamics

presented in the previous section.

Objective function

Let Sa(k) be the cumulative number of vehicles that request to enter the network,

Sa(k + 1) = Sa(k) + Ts

∑
o∈O

∑
d∈D

dod(k). (8.9)

Similarly, let Sb(k) be the cumulative number of vehicles that successfully arrive at

their destination

Sb(k + 1) = Sb(k) + Ts

∑
p∈P

q̃out
pd (k), (8.10)

where index d ∈ D denotes the destination region of path p and assuming that

the initial values are Sa(0) = 0 and Sb(0) = 0. Then, our objective function can

be defined as the Total Time Spent (TTS) in the system of all vehicles JTTS (veh·h)

JTTS = Ts
∑

k(Sa(k) − Sb(k)) (veh·h).

Note that, the total time spent (TTS) is the sum of the Total Waiting Time (TWT)

and the Total Travel Time (TTT) of all vehicles (TTS=TTT+TWT). The TWT and TTT

are defined as the sum of the time that individual vehicles spent waiting at their

origin outside the network and travelling inside the network, respectively.

To formulate the corresponding MPC problem we assume that a new problem

instance is solved every m time-steps. The control time-step (i.e., Nc) is set equal

to simulation step and the prediction horizon equal to mNp time-steps. Then, for

the l-th MPC problem solution l = 1, 2, . . . , we define the time horizon Kl = {m(l −

1) + 1, . . . ,m((l − 1) + Np)}. Hence, the l-th formulated problem chooses the per path

admitted external flows d̃p(k) that minimize the total time spent. The complete model
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is derived in problem (P2) below:

(P2) min JMPC
TTS (l) = Ts

∑
k∈Kl

(Sa(k) − Sb(k)) (8.11a)

s.t. Traffic Dynamics (8.1) − (8.10),

d̃p(k) ≤ DMAX
p , p ∈ P, k ∈ Kl, (8.11b)∑

p∈Pod

d̃p(k) ≤ Dod(k), k ∈ Kl, o ∈ O, d ∈ D, (8.11c)

0 ≤ ρr(k) ≤ ρJ
r, k ∈ Kl, r ∈ R, (8.11d)

Sa(0) = 0,Sb(0) = 0, (8.11e)

Variables: ρr(k), ρpr(k), d̃od(k), Drd(k), qout
r (k),

qout
pr (k), q̃out

pr (k), ur(k), Sa(k), Sb(k)

The constraints of (P2) are due to the traffic dynamics defined in Eq. (8.1)-(8.8)

while constraints (8.11b)-(8.11c) ensure that all admitted demands satisfy the phys-

ical capacity constraints of each region. Constraint (8.11d) maintains the density of

each region within its physical limits and constraint (8.11e) sets the initial conditions

of variables Sa(k) and Sb(k). Problem (P1) is a non-convex Non-Linear Program (NLP)

due to constraints (8.1), (8.4), (8.6) and (8.7) that is hard to solve to global optimality

by standard mathematical programming solvers. Hence, in the next section we in-

vestigate a linear relaxation of the problem that yields in high-quality lower bounds

to the optimal solution of Problem (P2).

8.4 Linear Relaxation to Problem (P2)

In this section, we present how the non-linear constraints of (P2) (8.1), (8.4), (8.6) and

(8.7) are relaxed to linear constraints.

Due to the triangular NFD form, the intended outflow of a region (8.1) can

equivalently be written as

qout
r (k) = min

{ qC
r

ρC
r
ρr(k),wr(ρ

J
r − ρr(k))

}
. (8.12)

Hence, the intended outflow can be relaxed by bounding qout
r (k) to be smaller than
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the two linear terms of the min operator in Eq. (8.12), i.e.,

qout
r (k) ≤

qC
r

ρC
r
ρr(k) (8.13)

qout
r (k) ≤ wr(ρ

J
r − ρr(k)). (8.14)

In this way, it is ensured that

qout
r (k) ≤ min

{ qC
r

ρC
r
ρr(k),wr(ρ

J
r − ρr(k))

}
.

Constraint (8.4) involves the product of two variables in (P1): ρpr(k) and ur(k).

To eliminate this product of variables, notice that the speed of all vehicles is always

below the free flow speed, i.e., ur(k) ≤ u f
r . Thus, (8.4) can be relaxed by

qout
pr (k) ≤ u f

rρpr(k), (8.15)

which is a linear equality constraint.

In a similar way, the constraint Eq. (8.7) can be written as:

q̃out
pr (k) ≤ qout

pr (k), (8.16)

q̃out
pr (k) ≤ Crs(ρs(k))

qout
pr (k)∑

p∈Brs

qout
pr (k)

, (8.17)

Taking the sum of q̃out
pr (k) over p ∈ Brs in eq. (8.17) yields∑

p∈Brs

q̃out
pr (k) ≤ Crs(ρs(k)), (8.18)

which can be further relaxed (using (8.6)) into∑
p∈Brs

q̃out
pr (k) ≤ CMAX

rs , (8.19)

∑
p∈Brs

q̃out
pr (k) ≤

CMAX
rs

1 − α
(1 −

ρs(k)

ρJ
s

) (8.20)

Constraints (8.16), (8.19) and (8.20) are used to relax the model constraints (8.6) and

(8.7).

The transformations presented above relax all the non-linear constraints of prob-

lem (P1) to linear ones, resulting in an LP formulation which can be solved very

efficiently. Hence, the Problem (P1) can be transformed into a relaxed LP problem
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by relaxing the non-linear constraints (8.1), (8.4), (8.6) and (8.7) with the constraints

(8.13)-(8.16) and (8.19)-(8.20). However, the relaxed constraints have a larger feasible

constraint set which implies that the solution of the associated LP formulation will

produce a lower bound to the optimal solution of (P2). Although a derived solution

from this problem may not be a feasible solution to (P2), it helps in assessing the

optimality gap of a feasible solution to problem (P2). Such a feasible solution is

derived in the next section.

8.5 Linear solution Approach to Problem (P2)

Due to the demand management, it is possible to impose tighter constraints on the

inflow to the network and as a result maintain all regions in the non-congested (free

flow) regime. Under such conditions, the network’s outflow is maximized [16] and

the solution of the relaxed problem becomes feasible. To guarantee operation in the

non-congestion region, constraint (8.11d) is replaced with the constraint 0 ≤ ρr(k) ≤

ρC
r , i.e., the region’s density should never exceed the critical density. As a result,

constraint (8.1) is simplified to

qout
r (k) =

qC
r

ρC
r
ρr(k) = u f

rρpr(k) (8.21)

Similarly, constraint (8.4) can be simplified to

qout
pr (k) = ρpr(k)

qC
r

ρC
r

= ρpr(k)u f
r (8.22)

Similarly, to guarantee a feasible solution, we should ensure that the inter-

boundary capacity constraint (8.6) performs at its maximum value (i.e., CMAX
rs ). To

achieve this, we further tighten constraint (8.11d) by replacing it with the constraint

0 ≤ ρr(k) ≤ min(ρC
r , αρ

J
r), i.e., the region’s density should never exceed the critical

density and also the point of density where its region’s inter-boundary capacity

starts to decrease. As a result, constraint (8.6) is simplified to

Crs(ρs(k)) = CMAX
rs (8.23)
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Therefore, the constraint (8.7) can be written as:

q̃out
pr (k) = qout

pr (k), (8.24)∑
p∈Brs

q̃out
pr (k) ≤ CMAX

rs (8.25)

Constraint (8.25) involves an inequality which seems that it may violate the feasi-

bility of the Problem (8.11). However, this is not the case as constraint (8.25) ensures

that the constraint (8.24) would be never violated. Furthermore, constraint (8.25)

enforces demand management to admit lower external demands in order to sat-

isfy both (8.24) and (8.25). Considering the above simplifications, the mathematical

formulation of the linear problem can be written as:

min JMPC
TTS (l) = Ts

∑
k∈Kl

(Sa(k) − Sb(k)) (8.26a)

s.t. Dynamics (8.2) − (8.3), (8.5), (8.8) − (8.10), (8.11b) − (8.11c)

(8.11e) and (8.21) − (8.25)

0 ≤ ρr(k) ≤ min(ρC
r , αρ

J
r), k ∈ Kl, r ∈ R, (8.26b)

Variables: ρr(k), ρrp(k), d̃od(k), Drd(k), qout
r (k),

qout
rp (k), q̃out

rp (k), ur(k), Sa(k), Sb(k)

Problem (P2) is a linear programming problem with the objective of minimizing

the total time spent considering the linear traffic dynamic constraints in (8.2)-(8.3),

(8.5), (8.8), (8.11e), (8.21)-(8.25), (8.26b), and the physical capacity limitations of each

path (8.11b)-(8.11c). An important property of Problem (8.26) is that despite the

simplifications that are made its solution is also a feasible solution to Problem (8.11).

Furthermore, the performance evaluation that follows demonstrates that the above

formulation can lead to significant travel time reductions since (P2) guarantees that

the network will always operate below or at its critical capacity.
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8.6 Performance evaluation

8.6.1 Setup

This section provides detailed simulation results that investigate the performance

of the proposed joint demand-management and route guidance scheme. For the

simulations, we consider the case study network as shown in Fig. 8.2), consists of 7

regions, with their traffic dynamics assumed to have identical triangular MFD [123]

with parameters: ρC
r = 30 veh/km, ρJ

r = 130 veh/km, v f
r = 60 km/h and qC

r = 1800

veh/h. In total 15 paths are used through all regions where at least two paths exist

that connect each origin (i.e., regions: 1, 2 and 6) to every destination (i.e., regions:

4, 5 and 7). In addition, α = 0.25 and CMAX
rs = 2000 veh/h. The prediction horizon

is selected as mNp = 30 while m = 2 for all particular MPC schemes while, the

simulation time-step is Ts = 60 s. In this setting, the performance of the following

MPC schemes is examined:

• RG The ordinary Route Guidance without demand management considering

the MILP formulation.

• LRDM The Linear Relaxation of the joint route guidance and Demand Man-

agement formulation as presented in Section 8.4.

• NCDM The non-congested joint route guidance Demand Management solu-

tion as presented in the Problem (8.26).

Note that, to implement the ordinary demand management method we have to

replace constraints (8.11b) and (8.11c) of the problem presented in Section 8.4 with

the constraint given by:

∑
p∈Pod

d̃p(k) = min
( ∑

p∈Pod

(ρJ
op − ρop(k))Lop

|D|
, Dod(k), DMAX

od

)
(8.27)

By incorporating Eq. (8.27), we remove the ability of the MPC to regulate the external

inflows, with all requesting demands allowed to enter unless they are physically

restricted by each region’s flow/storage capacity (jam density). Note that the above

constraint is also a non-linear function. Nonetheless, the problem is solved by

employing standard solvers (e.g., Gurobi [116]).
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Region 1

Region 3

Region 4

Region 7

Region 2

Region 6Region 5

Figure 8.2: Simulated urban area consisted of 7 regions (origin regions: 1, 2 and 6, destination

regions: 4, 5 and 7).

The results presented hereafter illustrates the traffic state measurements obtained

from a simulated environment in which the control inputs (i.e., d̃p(k)) of RG, LRDM,

and NCDM schemes are applied to the case study network. In the simulated envi-

ronment, the path-based regional model dynamics given by Eqs. (8.1)-(8.8) are used

to represented reality in which traffic states updated every Ts = 60 s. All formulated

MPC schemes constructed and solved using the Gurobi mathematical programming

solver [116], where the simulation environment developed in Matlab. Finally, the

drivers’ compliance rate equal to 100%, with all simulations performed for 2 hours

across 2 loading demand level scenarios (e.g., light and heavy).

8.6.2 Results

In the topmost part of Table 8.1 we depict the Average Time Spent (ATS) of all vehicles

in the system while the lower part of Table 8.1 illustrates the Average Waiting Time

(AWT) of vehicles before commencing their trips. Under light demand, LRDM and

NCDM perform equally well while both of them outperform the RG scheme in terms

of ATS. Observing the AWT for light demand scenario, it is obvious that RG incurs

no waiting at the origin while for the schemes that include demand management it

is clear that some of the vehicles are forced to wait at their origin to achieve lower

travel times. In the heavy demand scenario, the average time spent of the RG grows
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Demand Scenarios

Light Heavy

T
T

T

RG 6.86 255.51

LRDM 3.52 6.36

NCDM 3.51 6.32

A
W

T

RG 0 203.77

LRDM 0.13 2.97

NCDM 0.14 2.95

Table 8.1: Total Travel Time (TTT) and Average Waiting Time (AWT) for different demand

scenarios.

exponentially since higher demand causes congestion to emerge. Furthermore, it is

interesting to observe that the waiting time of the RG method is substantially higher

than the waiting enforced by the demand management methods due to congestion

that is caused by the high demand scenario.

Fig. 8.3 illustrates the space-time diagram of density for the two considered

scenarios. In the case of light demand Fig. 8.3 (a) the performance of all three

approaches is almost identical as light congestion occurs. On the other hand, in the

case of heavy demand scenario both demand management approaches outperform

the ordinary route guidance as both of them sustain each region’s density around

the critical points.

Figs. 8.4 illustrates the cumulative number of vehicles that request to enter the

network (generated) with the number of vehicles that have completed their trip (ex-

iting vehicles). As expected, in the light demand scenario all methods work equally

well; while the demand management methods achieve slightly better performance.

In heavy demand scenarios however, it is clear that both LRDM and NCDM greatly

outperform RG as vehicles can be served with higher speeds and implicitly offering

substantial travel time reductions.

Similar results are obtained in Fig. 8.5 which illustrates the cumulative number

of instantaneous external demand (i.e. VehsRequests) compared to the admitted

external demand (i.e., VehsEnter). For the light demand scenario (Fig. 8.5 (a)), the
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Figure 8.3: The instantaneous density of each region observed at each simulation step (Ts)

considering (a) light and (b) heavy loaded demand scenarios.

three approaches serve vehicle requests around the same time, with the RG scheme

admitting almost instantaneously all vehicles requests. For the heavy demand sce-

nario (Fig. 8.5 (b)), it is evident that demand management is able to server all vehicle

requests faster than RG. The reason is that, the no demand management schemes

allow all requesting flows to enter unless the originating paths are full, something

that produces heavy congestion and hence vehicles can not manage to enter the

network.

Fig. 8.6 depicts the Total Time Spent in the network (TTS) for both considered

scenarios. From both figures it is clear that the demand management approach

can improve the TTS metric compared to RG. The reason is that RG tries to select

paths that improve the user optimum in which case the possibility of congestion
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Figure 8.4: The cumulative number of the vehicles that request to enter the network (Gen-

erated), that exit the network (Outflow) and their difference (residual) up to each time slot

(Ts), considering (a) light and (b) heavy loaded demand scenarios.

to occur is high and thus the TTS metric increases exponentially. On the contrary,

when demand management is used, the aim is to improve the system’s optimum

and produce significant reductions in TTS as no congestion emerges. Comparing

LRDM with NCDM in heavy demand scenario, it is evident that NCDM can offer

better results in terms of TTS due to the fact that the LRDM solution may results in

control actions that maybe not be adequate in the physical model.

To further investigate the performance of LRDM and NCDM formulations we

evaluated their objective function under various demand scenarios in which the

prediction and control horizons are set to be mNp = 120 and m = 120, respectively.

For comparison purposes, we consider a total of six demand scenarios considering

the same simulation time-step and simulation duration (e.g., Ts = 60 min T = 120
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Figure 8.5: The cumulative sum of vehicles requesting to enter the network (Generated)

and those that actually entered (granted) for each time-slot (Ts) considering (a) light and (b)

heavy loaded demand scenarios.

min). Note that in this case, we compare the objective functions as obtained from

Gurobi and not from the simulated environment. Table 8.2 shows the percentage that

the objective functions (Total travel time) of RG and NCDM solutions result in higher

values compared to the objective function of the lower bound solution (i.e. LRDM

scheme). In table, we consider only solutions that were found in less than 48 hours

with, “NSF” meaning that feasible solution is not found within the 48 hours. First

it’s evident that for the case of the ordinary route guidance a feasible solution hardly

can be obtained due to the MILP constraint incorporated form Eq. (8.27) making

it impractical for real case scenarios while, on the contrary, both lower bound (i.e.,

LRDM) and NCDM solutions can converge very fast as they are linear programs.
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Figure 8.6: TTS in network for (a) the moderate and (b) the heavy demand levels.

Furthermore, Table 8.2 indicates that the objective function of NCDM formulation

is almost equal to the objective function obtained by the lower bound solution (i.e.,

LRDM) no matter the size of the demand that requests to enter the network. These

results offer a good indication that the proposed Linear Optimal formulation (as

presented in Section.8.5) can provide near-optimal feasible solutions.

8.7 Summary

This chapter extends the multi-regional to path-based route guidance scheme by

jointly optimizing the route calculated with demand management method that aims

to prevent traffic congestion. Under this model, the assumption of constant trip

lengths within each region is removed, making this approach more realistic and able
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Scenario Optimality Gap

Number NCDM RG

1 0.0463% 0.8%

2 0.0211% 6.09%

3 0.0526% 435.1684%

4 0.0857% NSF

5 0.0955% NSF

6 0.0587% NSF

Table 8.2: The optimality gap of NCDM and RG compared to a lower bound of the optimal

solution for different demand scenarios.

to handle realistic scenarios in real-time. Furthermore, the proposed demand man-

agement methodology defers vehicle departures to avoid congestion and improve

overall travel times.

Simulation results confirm the significant gains in travel times that can be achieved

through demand management compared to the ordinary route guidance methodol-

ogy. Besides, the linear relaxation can optimally make decisions at a fraction of the

time required by state-of-the-art NLP formulations.
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Chapter 9

Critical Density Estimation

9.1 Introduction

In this chapter, we relax the assumption on the requirement of knowing apriori the

critical density of a particular region of the road network. The aim is to estimate that

value in an online fashion by employing stochastic fluid modeling (SFM). Therefore,

this chapter, a single region of the road network is abstracted as a single queue, and

the gradient estimator obtained through Infinitesimal Perturbation Analysis (IPA)

is employed to estimate the critical density of the region (i.e., buffer content). This

value can then be used by the RRA algorithms to compute congestion-free routes

over O-D pairs in the specific region of the road network.

The remainder of this chapter is organized as follows: Section 9.2 presents the

system model and the basic flow control problem for the SFM setting of the route-

reservation architecture while the performance metrics of the related problem are

also mathematically formulated. Section 9.3 derives the IPA estimators for the

region’s throughput gradients based on the SFM setting. Section 9.4 includes sim-

ulation results demonstrating how the SFM-based gradient estimators can be used

for the on-line estimation of the critical capacity, showing an approximation method

which can be on-line applied to the actual system (not the SFM). Finally, Section 9.5

concludes this chapter and discusses future research directions motivated by this

chapter.

181

Cha
ral

am
bo

s M
en

ela
ou



9.2 System model and problem statement

9.2.1 Traffic flow model

Consider a homogeneous urban road region [25] defined as a graph G = (V,E) where

the setsV andE represent the road junctions (i.e., {vi, v j} ∈ V)) and the road-segments

(i.e., (i, j) ∈ E), respectively. Due to the homogeneity of the region, the Macroscopic

Fundamental Diagram [121] can describe the macroscopic traffic behaviour using

three fundamental parameters: speed, u(t) (km/h), flow q(t) (veh/h), and density ρ(t)

(veh/km). Fig. 7.1 depicts a typical flow-density relationship which is comprised

of two distinct regimes separated from the critical density, ρC: 1) the free-flow regime

where traffic flows at free-flow speed u f , and 2) the congested regime where traffic

experiences a speed reduction due to congestion. The flow-density diagram is

complemented by the fundamental relationship that the flow is equal to the product

of density and speed, i.e., q(t) = ρ(t)u(t). Using this information, one can define other

important parameters of the MFD depicted in Fig. 7.1 such as the capacity qC = ρCu f

which is the maximum possible flow of the region observed at the critical density,

the jam density, ρJ, and the backward congestion propagation speed w = qC/(ρJ−ρC) [121].

Notice that above the critical density ρC the outflow of the region decreases [16].

To maximize the flow through the region, current literature controls traffic to reg-

ulate the density of the network below or equal to ρC, assuming that the parameters

of the MFD are known. Such control mechanisms include perimeter control that

regulates exogenous traffic entering the network [5] and all exogenous and endoge-

nous traffic control by the aforementioned demand management schemes that are

presented in previous chapters.

In this chapter we consider the use of route-reservations to maintain the traffic

density of the region below ρC. Route-reservations are used to keep track of the

cumulative number of arrivals and departures within the region. Let variable r(t)

denote the accumulated number of vehicle reservations within the region, and L the

total length of all roads in the region. Then, the quantity n(t)/L approximates ρ(t)

at time t. Considering the MFD of Fig. 7.1 and the fact that the route-reservation

scheme operates within the free-flow regime, it is true that vehicles traverse the

entire region with a constant speed equal to u f . Hence, vehicle l entering the region
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𝜌𝐽

Figure 9.1: The corresponding Stochastic Fluid Model (SFM) of the considered network.

at time t remains within the region up to time t + tl where tl = Ll/u f denotes the

travel time and Ll the route length of vehicle l. Hence, the region is denoted as

admissible if a vehicle l entering at time t can traverse the region without making the

accumulated reserved density larger than the critical density for the entire traversing

period. Hence, the admissibility state x(t) can be defined as:

x(t) =

 1, if n(t + k)/L ≤ ρC, ∀ k ∈ [0, tl]

0, otherwise (9.1)

Therefore, under the route-reservation scheme vehicles are allowed to reserve routes

only during time periods where x(t) = 1 to ensure that the region never enters the

congested regime.

Contrary to previous literature assuming known MFD parameters, this chapter

aims to estimate the critical density by maximizing the outflow of the region. Next,

it is described how a Stochastic Fluid Model can be used to represent the traffic

network and formulate the investigated problem.

9.2.2 Stochastic fluid model representation

The traffic flow model under consideration can be represented as a Stochastic Fluid

Model (SFM) based on continuous fluid-flow dynamics characterized by a set of

stochastic processes defined on a common probability space (Ω,F ,P) [127, 128].

As shown in Fig. 9.1, the road network can be represented by a fluid-storage

queue with finite density (content) ρJ with a single-server to determine the traversal

time (service time) of vehicles within the region. The control parameter of interest is

θwhich denotes the maximum queue size allowed within the queue. Parameter θ is
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regulated using some control mechanism (in our case route reservations). Parameter

θ aims to estimate the critical density in order to maximize the outflow of the queue.

According to the MFD, for θ > ρC the region is over-utilized resulting in a reduction

of the outflow as the region experiences congestion. On the contrary, for values of

θ < ρC the region is underutilized, also resulting in a reduction of outflow. Hence,

the aim is to define a strategy that changes online the value of θ in order to operate

as close as possible to the critical density of the system that maximizes the outflow.

Let y(t, θ), A(t, θ) and B(t, y(t, θ)) denote the SFM state (queue content), arrival

rate1 (inflow) and departure rate (outflow) at time t, respectively.

The arrival rate of vehicles depends on θ and is given by

A(t, θ) =

 a(t), if n(t) < θ

0, if n(t) ≥ θ (9.2)

where, the variable a(t) denotes the vehicle arrival process which is a time-varying

and unknown function independent of θ. According to (9.2), when the number of

reservations reaches the parameter θ (which should approximate the critical density

of the region) the inflow is set to zero so that no more vehicles to enter, until n(t) < θ.

Here, it is assumed that the reservations are consistent with the actual state of the

region (y(t, θ) = n(t)). Although, this is not generally true due to the stochastic

nature of traffic, it is a reasonable assumption in light of the emergence of connected

and automated vehicles.

The departure rate B(t, y(t, θ)) depends on the MFD; when the density exceeds ρC

the function B(t, y(t, θ)) changes from a linear increasing function (free-flow regime)

to a linear decreasing function (congested regime). Hence, B(t, y(t, θ)) is defined as

B(t, y(t, θ)) =

 u f y(t, θ), if y(t, θ) < ρC

w(ρJ − y(t, θ)), if y(t, θ) ≥ ρC (9.3)

Notice from Eq. (9.3) that the departure rate is significantly affected by the instan-

taneous density in two ways: (a) when parameter θ overestimates ρC, undesirable

vehicle delays are produced that further exacerbate congestion conditions, and (b)

when θ underestimates ρC the region is underutilized leading to lower outflow rates.

1Consistent with the proposed architecture a central entity is responsible to schedule vehicles

according to the described route-reservation scheme. In this way, the arrival rate is controlled to

ensure that y(t, θ) ≤ θ.
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The queue content is determined by the following differential equation:

ẏ(t, θ) =


0, if y(t, θ) = 0 & A(t, θ) = 0,

0, if y(t, θ) = θ,

A(t, θ) − B(t, y(t, θ)), otherwise, (9.4)

with the initial condition that y(0) = y0, with y0 known. Here, it is assumed for

simplicity that y(0) = 0. Note that according to Eq. (9.4) whenever y(t, θ) > 0 a non-

zero flow rate should be observed. Moreover, for the case y(t, θ) = θ, it may be true

that A(t, θ) = B(t, y(t, θ)) , 0 such that ẏ(t, θ) = 0. In addition, we make the technical

assumption that a(t) ≥ −ε where ε is a small positive number. This assumption is

needed to make sure that the queue becomes empty at a finite time (and does not go

to zero asymptotically). For practical systems, this assumption does not have any

impact, since a(t) ≥ 0 and empty periods are always observed.

The above SFM setting can be viewed as a hybrid system, with the time-driven

dynamics described by Eq. (9.4) and with event-driven dynamics denoted by the

region’s full and empty periods. Hence, the region’s operation can be determined

with a Stochastic Hybrid Automaton (SHA) as depicted in Fig. 9.2 which consists of

three (3) modes. This model is similar to the one used in [99] (single buffer case),

but different as the inflow and outflow rates depend on the parameter θ. Let the

time interval [0,T]; the region operation can be determined by the set of events

E = {e1, e2, e3, e4} defined as:

e1 : y(t, θ) = θ, queue reaches capacity.

e2 : y(t, θ) = 0, queue becomes empty.

e3 : the sign of A(t, θ)−B(t, y(t, θ)) changes from positive to negative and queue

content ceases to be full.

e4 : the sign of A(t, θ) − B(t, y(t, θ)) changes from negative to positive and the

queue content ceases to be empty.

All events whose occurrence time depends on the parameter θ are called endoge-

nous events, while all other that are independent of the parameter θ are referred to

as exogenous events.
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1

2

3

Figure 9.2: The Stochastic Hybrid Automaton model.

9.2.3 Problem statement

As mentioned earlier, we seek to estimate the critical density which by definition, is

the density that maximizes the average outflow of the region W(t, θ) over the interval

[0,T], defined as follows:

WT(t, θ) =
1
T

∫ T

0
B(t, y(t, θ))dt (9.5)

Thus the critical density will be approximated by the control parameter θ that will

maximize the outflow following the solution of the optimization problem:

max
θ

J(t, θ) = E[WT(t, θ)] (9.6)

In the next section we employ the IPA method to determine the best value for the

control parameter θ∗ in an online fashion.

9.3 Infinitesimal Perturbation Analysis

Infinitesimal Perturbation Analysis review

Let vk(θ) denote the occurrence times of k-th event, then the time derivative of queue

content (i.e., y(t, θ)) and event occurrence times (i.e., vk(θ) ) with respect to θ can be

expressed as:
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y′(t, θ) =
dy(t, θ)

dθ
v′k(θ) =

dvk(θ)
dθ

(9.7)

Let k denote the k-th interval [vk, vk+1) ∈ T within which the dynamics of y(t, θ) are

fixed representing the right-hand-side expression of Eq. (9.4). If the SHA is in mode

2, then the queue content at time t ∀ t ∈ [vk, vk+1) is formulated as:

y(t, θ) = y(vk, θ) +

∫ t

vk

ẏ(τ, θ) dτ

= y(vk, θ) +

∫ t

vk

(A(τ, θ) − B(τ, y(t, θ))) dτ (9.8)

If the SHA is in modes 1 or 3, then

y(t, θ) = y(vk, θ) ∀t ∈ [vk, vk+1)

As above, taking the derivatives with respect to θ and let t = v+
k the boundary initial

condition can be obtained as:

y′(v+
k ) = y′(v−k ) + [ẏ(v−k , θ) − ẏ(v+

k , θ)]v′k (9.9)

Furthermore, taking the derivatives with respect to t in Eq. (9.4) for all t ∈ [vk, vk+1):

∂
∂t

y′(t, θ) =
∂ẏ(t, θ)
∂y

y′(t, θ) +
∂ẏ(t, θ)
∂θ

(9.10)

As mentioned earlier, the derivative with respect to θ of each event occurrence

time (i.e., v′k) depends on the type of event that occurs. Hence, a discrete time

transition that is independent from θ is an exogenous event with v′k = 0. Otherwise,

if event depends on the control parameter θ, a continuously differentiable function

gk : Rn
× Θ −→ R exist such that vk = min{t > vk−1 : gk(y(t, θ), θ) = 0} (this function

constitutes the guard function [128]). Now, taking the derivatives with respect of θ

we obtain

v′k(θ) = −
[∂gk

∂y
ẏ(v−k , θ)

]−1(∂gk

∂θ
+
∂gk

∂y
y′(v−k )

)
(9.11)

Proof of the above expressions (Eq. (9.9) - (9.11)) can be found in [128].

Infinitesimal Perturbation Analysis

Our solution approach is based on the aforementioned IPA analysis that is used to

estimate the gradient of our performance metric e.g., throughput Eq. (9.13) which
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𝑣𝑣2,0 𝑣𝑣2,1 𝑣𝑣2,2 𝑣𝑣2,3 𝑣𝑣2,4 𝑣𝑣2,5 𝑣𝑣2,6 𝑣𝑣2,𝑠𝑠𝑘𝑘
𝑣𝑣1,0 𝑣𝑣1,𝑠𝑠𝑘𝑘

𝜃𝜃

Figure 9.3: A typical sample path of the queue’s content.

in turn is employed within a stochastic approximation based algorithm in order to

converge towards to the maximum throughput. In this manner we are interested in

estimating the d
dθ J(t, θ) through an iterative scheme of the form

θk+1 = θk − hHk(θk, ω
SFM) (9.12)

where h is a constant value step-size and Hk(θk, ωSFM) is an estimate of d
dθ J(t, θ)

derived on-line and is based on information of its sample path as depicted in Fig. 9.3.

The related sample path consists of time intervals over which y(t, θ) > 0, called

Non-Empty Periods (NEPs), followed by intervals where y(t, θ) = 0, called Empty-

Periods (EPs). The k-th NEP period starts at vk,0 and ends at vk,sk where k = 1, 2, ...,NT

and |NT| denotes the number of NEPs in time-interval T. On that premise some of

NEPs may also contain some periods that the system is full at its capacity (FPs) that

attain during the interval [vk,2 j−1, vk,2 j] i.e., j = 1, . . . , sk−1
2 . Note that, the even index

(2 j) represents the ending time of each particular FP.

Even though the start of a Non-Empty Period looks like an endogenous event

(rates A(t, θ) and B(t, y(t, θ)) generally depend on θ, at the specific time, they are

independent of θ. This can be justified combining equations Eq. (9.3) and (9.4) as

the y(t, θ) = 0 only if A(t, θ) = B(t, y(t, θ)) = 0 and according Eq. (9.3) the queue

content switches to y(t, θ) > 0 only when the inflow changes from A(t, θ) = 0 to

A(t, θ) = a(t) > 0 which is independent of θ. Considering, the SHA in Fig. 9.2

the transition from mode 2 to 3 is the result of event e1 which is dependent on θ

(endogenous) while the opposite direction (modes 3 to 2) is due to an e3 event which

is independent from θ (exogenous). Considering that during mode 3 B(t, y(t, θ)) is

maintained constant and thus the e3 event occurs only with a decrease of the inflow
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rate A(t, θ) = a(t) which is independent from θ. The transition from 2 to 1 (e2) is

considered an endogenous event as its dependent on the queue content. Note that,

the times that endogenous events occur indicated with red dashed lines in Figure

9.3.

Using the above notation, the network’s outflow (see Eq. (9.5)) can be rewritten

as:

ΩT(t, θ) =
1
T

Nt∑
k=1

ωk =
1
T

Nt∑
k=1

∫ vk,sk

vk−1,sk

B(t, y(t, θ))dt (9.13)

where ωk is the outflow during the kth NEP. Taking derivatives with respect to θ

and observing that all EPs are independent from θ then the required IPA gradient

derivative d
dθΩT(t, θ) of the Eq. (9.5)

∂ΩT(t, θ)
∂θ

=
1
T

Nt∑
k=1

dωk

dθ
(9.14)

The IPA tries to evaluate these derivatives as a function of the observable sample path

quantities using similar framework establish in [99, 128]. In this way, the derivation

of the IPA derivatives requires some mild assumptions in order to guarantee the

existence of derivatives as follows:

1. A(t, θ) < ∞ and B(t, y(t, θ)) < ∞ for all t ∈ [0,T].

2. For all θ ∈ Θ, w.p.1, no two events occur at the same time.

Time derivatives

Taking all the possible transition events for a single NEP we have:

At event e2, a transition from mode 2 to 1 takes place. This is an endogenous

event with g2(y(t, θ), θ) = y(vsk , θ) = 0. Applying Eq. (9.11) we have

v′sk
=

−y′(v−sk
, θ)

A(v−sk
, θ) − B(v−sk

, θ)
(9.15)

In addition applying Eq. (9.9) we get

y′(v+
sk
, θ) = y′(v−sk

, θ) + [ẏ(v−sk
, θ)]v′sk

(9.16)

and combining the two equations above we have

y′(v+
sk
, θ) = 0 (9.17)
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The e1 event is an endogenous and thus, there exists a continuous differentiable

function denoted as g1(y(t, θ), θ) = y(v2 j−1, θ) − θ = 0 ∀ j = 1, . . . , sk−1
2 and applying

Eq. (9.11) we get

v′2 j−1 =
1 − y′(v−2 j−1, θ)

A(v−2 j−1, θ) − B(v−2 j−1, θ)
(9.18)

in the sequel combining Eq. (9.18) with Eq. (9.9) we have

y′(v+
2 j−1, θ) = y′(v−2 j−1, θ) + [ẏ(v−2 j−1, θ)]v′2 j−1 (9.19)

and combining the two equations above Eqs. (9.19)-(9.18) we get

y′(v+
2 j−1, θ) = 1 (9.20)

The e3 is an exogenous event with y′(v2 j, θ) = 0 ∀ j = 1, . . . , sk−1
2 .

Finally from Eqs. (9.17)-(9.20) it follows that y′(t, θ) always starts from 0 and at

every FP switches to 1 and always at the end of the NEP reset back again to 0 value.

Infinitesimal Perturbation Analysis for throughput

Lemma 3. Eq. (9.13) measures the total outflow as the summation of region’s NEPs starting

from the beginning of an EP until the beginning of the next EP. Therefore, considering that

the region’s outflow rate is determined by Eq. (9.3) then taking the derivatives with respect

to θ we get

dω
dθ

=
1
T

[ sk−1
2∑

j=1

C(v2 j−1 − v2 j)
]

(9.21)

where the parameter C is obtained from B(t, y(t, θ)) defined by Eq. (9.3) and thus

C =
∂
∂y

B(t, y(t, θ)) =

 u f , if y(t, θ) ≤ θ

−w, otherwise (9.22)

Proof. Considering that Eq. (9.13) can be re-stated as

ΩT(t, θ) =
1
T

Nt∑
k=1

[ ∫ vk,0

vk−1,sk

B(t, y(t, θ))dt +

∫ vk,sk

vk,0

B(t, y(t, θ))dt
]

(9.23)

then, taking the derivative with respect to θ we get

dωk

dθ
=

1
T

d
dθ

∫ vk,sk

vk,0

B(t, y(t, θ))dt (9.24)
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since, d
dθ

∫ vk,0

vk−1,sk
B(t, y(t, θ))dt is zero as B(t, y(t, θ)) = 0 during an EP. In the sequel,

considering the Leibniz rule the above derivative can be computed as

d
dθ

∫ vk,sk

vk,0

B(t, y(t, θ))dt = B(vk,sk)v
′

k,sk
+

∫ vk,sk

vk,0

[ ∂
∂y

B(t, y(t, θ))
∂y
∂θ

+
dB(t, y(t, θ))

dθ

]
dt

(9.25)

considering the Eq. (9.25) we can observe that the term dB(t,y(t,θ))
dθ = 0 as is not depen-

dent on θ while the term
∫ vk,sk

vk,0

∂y
∂θ can be computed as follows:

Considering a single NEP, the term
∫ vsk

v0

∂y
∂θdt can be expressed as

∫ vsk

v0

∂y
∂θ

dt =

∫ v1

v0

y′(t, θ)dt +

sk−1
2∑

j=1

∫ v2 j

v2 j−1

y′(t, θ)dt +

sk−3
2∑

j=1

∫ v2 j+1

v2 j

y′(t, θ)dt +

∫ vsk−1

vsk

y′(t, θ)dt

(9.26)

Taking one term at time then, during the all the FPs the queue content y(t, θ) = θ

and thus
sk−1

2∑
j=1

∫ v2 j

v2 j−1

y′(t, θ)dt =

sk−1
2∑

j=1

∫ v2 j

v2 j−1

1dt (9.27)

According to Eq. (9.25) and considering the interval in-between two consecutive FPs

the buffer content can be calculated as

y(t, v2 j+1) = y(v2 j, θ) +

∫ v2 j+1

v2 j

ẏ(τ, θ) (9.28)

for all j = 1, . . . , sk−3
2 . Then, taking the derivatives with respect to θ and considering

that y(t, v2 j+1) = y(v2 j, θ) = θ then we get that

v′2 j+1 ẏ(v2 j+1, θ) − v′2 j ẏ(v2 j, θ) +

∫ v2 j+1

v2 j

y′(τ, θ) = 0 (9.29)

for all j = 1, . . . , sk−3
2 . However, considering that ẏ(v2 j+1) = v′2 j = 0 then we have

sk−3
2∑

j=1

∫ v2 j+1

v2 j

y′(t, θ)dt = 0 (9.30)

In similar way, during the interval [v0, v1] we get∫ v1

v0

y′(t, θ)dt = 1 (9.31)
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while during the interval [vsk−1, vsk] we have

∫ vsk−1

vsk

y′(t, θ)dt = −1 (9.32)

Therefore, according to Eq. (9.25) the
∫ vsk

v0

∂y
∂θ has a unit value only during each FPs

while it first and last terms are cancel then its follows that

d
dθ

∫ vk,sk

vk,0

B(t, y(t, θ))dt = +

sk−1
2∑

j=0

∫ v2 j

v2 j−1

d
dy

B(t, y(t, θ))dt (9.33)

then combining Eqs. (9.24)-(9.33) then Eq. (9.21) follows.

�

9.4 Performance evaluation

9.4.1 Setup

The area under consideration is an 1 km2 homogeneous [25] region with the following

MFD parameters: ρC =300 veh/km, ρJ = 1000 veh/km and u f =15 m/s all defined

over the triangular macroscopic fundamental diagram as denoted by eq. (9.3) [121].

The actual system is simulated along side the route-reservation algorithm awhere

each vehicle arrives to the simulated region with a Poisson arrival process. The RRA

reschedules the vehicle departure times from their origin according to its objective

(that is, maintain each road-segment’s density below the critical density). Further-

more, the RRA determines each vehicle’s route such that congested links are avoided.

To achieve this, the RRA assumes that it knows every link’s critical capacity and can

determine the exact path of each vehicle assuming that it will traverse its path using

the free flow speed u f . In all earlier Chapters 3-8, the critical density was measured

(through extensive simulation) a priori and it was assumed known by the RRA. In

this Chapter, the RRA utilizes an estimate of the critical density θ, which is contin-

uously updated such that RRA is able to learn on-line the true value of the critical

density.
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Figure 9.4: Region’s outflow rate as a function of θ.(Brute-force method)

9.4.2 Results

For the assumed network, Fig. 9.4 depict the region’s outflow as a function of the crit-

ical density assumed by the RRA. This result is obtained by running long simulations

with varying θ within the range of [275, . . . , 325] in a brute-force manner. As ob-

served by the Fig. 9.4 the maximum outflow-rate is obtained when θ = 300veh/km

while, as expected, for all other values lower flow-rates are observed since using

these values imply that the region is under/over utilized.

The critical density estimated by the RRA is updated through the stochastic

approximation rule

θik+1 = θik − h
∂ΩT(t, θ)
∂θ

(9.34)

with h denoting the step size while ∂ΩT(t,θ)
∂θ denotes the sensitivity of the region’s

outflow with respect to the parameter θ as computed by the IPA (eq. (9.21)). At this

point it is worth pointing out that despite the fact that the IPA algorithm was derived

based on an SFM, the underlying system model used for the simulations is a more

realistic discrete event model.

As mentioned above, as the region’s density is maintained within the free-flow

regime, the outflow has different rate compared to that of the congested regime, fact

that can be justified by findings in Fig. 9.4. Therefore, the derived gradient estimator

of Eq. (9.21) requires the value of the parameter c (see eq. (9.22)) which is not know

since the true state of the network is also not known. In such manner, Eq. (9.22)
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Figure 9.5: IPA estimators starting from different initial values: (a) θ = 275veh/km (b)

θ = 300veh/km as a function of the number of NEP observed within the simulation time

(iterations).

approximates all the unknown parameters and the direction of our stochastic ap-

proximation algorithm. Notably, considering Eq. (9.22) the sign of parameter C is

highly correlated with the region’s state as is depends on whether the estimated pa-

rameter θ over/under estimates the actual ρC. Since the region’s true critical density

is not known, it is a challenge to determine the true state of the network.

To address this challenge, we utilize on-line measurements of the outflows of the

actual discrete event system. In this way, the parameter C is approximated with

the parameter Ĉ, by sampling the region’s outflow rate every time that the control

parameter θ updates. More specific, we compute the average change of the outflow

rate by taking real time measurements across the current and the previous state θ

updates (i.e., θk and θk−1) as follows

Ĉ =
q̄(θk) − q̄(θk−1)

∆L
(9.35)

with the parameter q̄(θ) denotes the real time measurement of region’s outflow as a

function of θ and the parameter ∆L = |θk − θk−1| denotes the difference of θ values

of the two measurements (this approximation is called as the “Euler’s” backward

derivative approximation method). In this manner, every time that we are going

to update the new θk+1 value we compare the previous measured outflow with the

current observation in order to drive the estimated Ĉ. Notably, to further improve
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Figure 9.6: IPA estimators starting from different initial values with a suddenly change of ρC

value: (a) and (b) with initial value starting from 275veh/km to 285veh/km and 315veh/km,

respectively while (c) and (d) with initial value starting from 325veh/km to 285veh/km and

315veh/km, respectively as a functions of the number of NEP observed within the simulation

time (iterations).

the approximation accuracy measurements are taken only during the FPs where the

outflow has its maximum possible rate according to the current θ value.

The obtained results of the on-line estimation of ∂ΩT(t,θ)
∂θ are depicted in the Fig. 9.5

which indicate how θ is updated assuming different initial values of θ. In this figure

with the green color scatters we denote the updates θk+1 observed on each NEP while

with the solid blue line represents the true value of ρC =300veh/km. According to

the figure, it is clear that for both of these cases the IPA estimates can be used to learn

the true critical density irrespective of the initial values. Note that, in the first case
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of Fig. 9.5(a) the initial value under-estimated while, in the second case Fig. 9.5(b)

over-estimate the true critical density.

Figs. 9.6 illustrates scenarios where the actual critical density starts with the

initial value of ρC =300veh/km while at some point during the simulation time ρC

suddenly changes due to external factors (e.g., weather conditions) either increases

or decreases. Likewise, in Fig. 9.5, with the green color scatters we denote the θk+1 as

they are updated on every NEP while with the solid blue line we depict the true value

of ρC. The first two figures Figs. 9.6 (a) and (b) start with a parameter θ that under-

estimates ρC and as time progresses it can efficiently approximates the initial critical

density value. Subsequently, when ρC suddenly changes, it automatically learns that

and quickly it converges to the new ρC. The same behavior is observed when the

critical density value increases or decreases Figs. 9.6 (a) and (b), respectively.

9.5 Summary

This chapter investigates a stochastic fluid model with switching dynamics that can

be utilized for the on-line estimation of the critical density of an urban area. The

approach utilizes a stochastic approximation based algorithm that seeks to learn

the region’s critical density. The stochastic approximation algorithm is driven by

sensitivity estimates that are obtained through IPA on stochastic fluid models. The

IPA estimate requires minimal information (e.g., timers and average speeds and

flow rates). An important challenge of the derived IPA estimator is that it requires

knowledge of the state of the network (free flow or congested), which is information

not directly observable; however, it is information that can be inferred from the

average speed. Hence, the major advantage of this approach in that is mainly the

simple implementation and its online execution.
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Chapter 10

Conclusions, implementation

challenges and future work

10.1 Conclusions

This Ph.D. thesis proposes the use of demand management in road traffic networks

via a novel route reservation architecture which aims to maximize the efficiency

of the urban transport systems while eliminate the emergence of traffic congestion

altogether. Demand management at a microscopic level is realised by reserving

individual vehicle routes while at a macroscopic level it is realised by managing

traffic inflow at a region level. Through the proposed route reservation architec-

ture, several approaches are investigated that either delay drivers’ departure times

or suggest routes to minimize travel times. In this thesis, the route reservation

problems that arise in both microscopic and macroscopic levels are modeled and

solved. Their performance evaluation confirms the usefulness of the proposed route

reservation architecture as it leads to substantial improvements in terms of network

operation and the overall travel time experienced as compared with the ordinary

route guidance frameworks.

The key advantage of the proposed demand management schemes is that the

density of vehicles in the system under investigation never exceed the road net-

work’s critical value which ensures that a congestion-free operation exhibiting the

social awareness of the proposed methodologies. Hence, the primary objective of

this thesis is to improve the system/social optimum by managing each driver (or a
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group of drivers) departure times. Other than that, the extensive simulations results

demonstrate that this socially-oriented behavior can further enhance the efficiency of

the current state-of-the-art traffic management schemes, e.g., route guidance, ensur-

ing their proper operation. The reason for this is that by delaying departure times,

vehicles will be kept outside the network and thus will not affect the network’s oper-

ation and will not interact with other vehicles which may produce unwanted delays.

Apart from this, by forcing drivers to wait at their origin, they will not be contributing

to congestion and wasting time in traffic jams. Furthermore, the proposed demand

management schemes may force drivers to take longer congestion-free paths if that

action minimizes the arrival time at the destination. Broadly speaking, these actions

seem to produce fairness issues to the proposed demand management schemes since

some of the drivers may have increased travel distances or may incur some waiting

at their origin. On the other hand however, during congestion, drivers would have

to wait for much longer in traffic jams. Hence, demand management actions can po-

tentially benefit the overall user base compared to those that are sacrificing some of

their time to alleviate congestion. Extensive simulation results validate the superior

performance of the proposed demand management approaches in terms of the total

travel time and the congestion caused. The benefits of the proposed methods are

not limited to travel time reductions but also can offer numerous improvements in

the terms of environmental impact and economic growth in future city operations.

Of course, these improvements can be achieved only when considering high

driver compliance. Interestingly, with connected autonomous vehicles the necessary

compliance can effortlessly be supported. Therefore, the proposed route reservation

architecture and the related demand management approaches can stand as an al-

ternative innovative solution to manage access to the road network by autonomous

connected vehicles based on route reservations.

More specifically, this thesis begins with the proposition that the proposed route

reservation architecture, aims to prevent congestion by restricting the traffic den-

sity in different road segments. Accordingly, the Earliest Destination Arrival Time

(EDAT) problem is formulated (considering both continuous and discrete time do-

mains), which is shown to be an NP-complete problem. In the sequel, this thesis

proposes the Route Reservation Algorithm that produces low-complexity, close-to-
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optimal solutions. Furthermore, the Reservation Algorithm is also customized to

adopt continuous time, whereas, the optimal solution to this problem is obtained

by constructing an appropriate MILP formulation. Importantly, the included sim-

ulation results provide evidence for the superior performance of both algorithms

compared to the traditional traffic behavior (where no route reservations are made),

achieving substantial improvements in terms of road utilization and the travel times

experienced by vehicles.

To resolve any fairness problems, this Ph.D. thesis specifically formulates the

Traffic Load Balancing problem, that aims to find a path that provides a good trade-

off between the destination arrival time and the number of reservations that are

made on each road segment. Importantly, the included results provide evidence

that the TLB formulation can offer a more robust and fair solution that seems to be

highly resilient on an increase of flow rates.

The proposed architecture assumes that each segment’s transit-time is calculated

assuming a constant speed, (i.e., the free-flow speed). However, this assumption

is quite restrictive. Unfortunately, inaccurate transit-time predictions may lead to

unstable solutions as long queues may be observed. Hence, the application of

reservations on bigger subareas rather than individual segments is prohibited as

reservation inaccuracies may lead to congestion. This Ph.D. thesis proposes a simple

predictor that estimates the transit-times of each road segment, aiming to improve

the route reservations accuracy. This predictor can result in complexity reductions

that can enable more scalable routing solutions. Extensive performance evaluation

confirms the usefulness of the predicted transit times that ensure proper utilization

of the infrastructure’s capacity leading to shorter trips. This thesis shows that a

performance trade-off exists between the two proposed prediction methods where

long waiting times at the origin can impact to more accurate reservations.

In this thesis an aggregated route-reservation scheme is also developed, which is

more scalable compared to the original route reservation architecture. The significant

advantage of this scheme is that it utilizes an overlay graph to control the traffic in

a large-scale multi-region network ensuring effective, scalable, and congestion free

routing solutions. Simulation results demonstrate the superiority of the proposed

aggregated scheme compared to the uncontrolled traffic behavior resulting in many-

199

Cha
ral

am
bo

s M
en

ela
ou



fold gains in serving traveling requests and reductions in travel times, especially

during high demand flows. Additionally, an investigation is performed on how

network operation is impacted if only a small percentage of the vehicles follows the

RSU’s schedules, demonstrating that the proposed approach is robust even if at least

80% of drives adhere to the RSU schedules (with similar gains achieved to the ideal

case of 100% driver adherence).

Another extension of the route reservation architecture is proposed that address

the problem of scheduling vehicle departures from their origin such that they will

arrive at their destination on the desired time. For this problem, vehicles transmit

to the RSU their origin and destination pair and their desire time to arrive at their

destination. In return, the RSU response to each vehicle its departure time as well

as the path to be followed while making the appropriate route reservations on the

selected path such that all scheduled vehicles avoid congested road segments. Due

to the reservations, the RSU can guarantee an on-time arrival at the destination for

each vehicle request. This thesis presents a mathematical formulation to model this

problem is provided while an efficient algorithmic solution is derived. Microscopic

simulation results demonstrate the proposed algorithm’s effectiveness in realistic

simulation scenarios.

Joint demand management and multi-regional route guidance is also investi-

gated with the aim to minimize the total travel time of vehicles in road networks

that are characterized by a well-defined MFD. To solve this joint problem, a mathe-

matical formulation is suggested that aims towards to minimize the total time that

vehicles spend in the network while maintaining non-congested conditions at all

times through demand management. A relaxed LP and MILP formulations of the

original non-convex, the non-linear problem is also proposed which provide tight

lower bound to the optimal solution. Besides, as the obtained solutions (from both

relaxed formulations) prefer to sustain the density of each region below the critical

density, this thesis further approximated the LP program by proposing another LP

that provides a feasible solution to the actual non-convex program. The proposed

LP constitutes the major contribution of this thesis as it can be solved in real time

in contrasts with the state-of-the-art NLP formulations. An essential assumption of

the multi-region MPC scheme is that all paths in each region have a constant length
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regardless form their origin-destination pairs. This assumption is often violated

in practice; thus, this thesis reformulates the problem to a path-based formulation

which enables the routing of vehicles through multiple paths. Similar LP algorithms

are extracted for the path-based formulation while, extensive simulation results

show the importance of demand management in minimizing the total travel time

and demonstrate the effectiveness of all proposed MPC approaches, as they can

provide fast and very close to optimal results for all various demand scenarios.

Finally, this Ph.D. thesis adobes the framework of the Stochastic Fluid Modeling

framework to model the critical density of a homogeneous region where the route-

reservation architecture is employed to control traffic demand and thus to achieve a

congestion-free operation. On that account, an Infinitesimal Perturbation Analysis

(IPA) is applied in an online fashion to capture the dynamic changes in the critical

density value as a consequence of different incidents.

Currently, demand management methods remain mostly unexplored, and hope-

fully, the recent advances in autonomous-connected vehicles capabilities push future

ITS solutions towards this promising direction that elaborates on intelligent demand

management schemes. As a conclusion, this Ph.D. thesis significantly contributes

towards this research direction with the proposed demand management schemes

achieving a better network utilization, travel times reduction, congestion-free opera-

tion and better energy savings making them the best proposition for the development

of future ITS solutions.

10.2 Implementation challenges

At the same time, the proposed demand management strategies (especially the route

reservation architecture) admittedly faces certain challenges need to be addressed

prior its real-life implementation as listed below.

Communication issues:

The real-life implementation of such approaches require the direct communication

between vehicles and the infrastructure, a fact that may lead to various communi-

cation and computation issues due to the size and the complexity of transportation
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networks. Given the recent developments in the information and communication

domain, the Internet of Things (IoT) technology and the proliferation of connected

vehicles, these challenges will most definitely be addressed in the near future.

Drivers adhering:

It is evident that within the proposed schemes, vehicles are driven by selfish drivers

that are only interested in optimizing their own travel time. Hence, several drivers

may not follow either the suggested departure time or suggested route (i.e., the non-

compliant drivers). This act can potentially reduce the performance of the proposed

schemes and inhibit their real-life implementation. Nonetheless, the impact and the

number of non-compliant drivers can be reduced by introducing innovative policies

that affect drivers route choices by providing incentives to compliant drivers.

One possible solution to the compliance issue involves the development of pric-

ing mechanisms that incentivize drivers to follow the suggested departure times and

routes. Such pricing mechanisms have been explored in recent literature, indicat-

ing that pricing policies can potentially influence drivers routing decisions aiming

to improve the social optimum [129]. In this fashion, a pricing mechanism can be

introduced to prompt drivers to participate in the demand management framework.

In doing so, the proposed schemes will be combined with a dynamic pricing mech-

anism that will aim at identifying the optimal tolling prices that would discourage

drivers from disregarding the controller schedules [130]. Thereby, non-compliant

drivers will pay a tolling fee for using the road network [131]. An alternative direc-

tion may include the utilization of a time-dependent pricing scheme (similarly with

the work in [132]). In this setting, tolling prices will be adjusted based on the levels

of congestion in combination with the adaptability of drivers to the route guidance

suggestions.

Another possible solution to anticipate this issue is to restrict some lanes for ex-

clusive use from drivers that adhere to demand management suggestions. Thereby,

a part of the network will be accessible only to compliant drivers with the non-

compliant ones restricted to use the non-prioritized busy lanes. Hence, drivers that

are willing to participate in the demand management schedules will be prioritized,

an act that can significantly benefit the social optimum. On the other hand, drivers
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that violate their scheduling will be charged with a penalty cost to avoid occasions

where non-compliant drivers use the prioritized lanes. Note that restrictions should

only be imposed during rush hours where demand surpasses the network’s available

capacity.

Furthermore, a supplementary solution to the compliance issue is to combine the

proposed demand management scheme with a perimeter control approach. This

combined scheme will be useful during peak periods where non-compliant drivers

can considerably affect the performance of the proposed schemes, as a perimeter

control mechanism may further mitigate their impact. Therefore, in case of con-

gestion, perimeter control could restrict the inflow demands at the periphery of the

affected regions, protecting compliant drivers from experiencing congestion.

Centralized implementation:

All the proposed schemes are implemented in a centralized manner a fact that in-

creases their computation complexity and reduces the reliability of the solution as

there is a single point of failure. Therefore, an interesting topic for investigation in

future work is how the proposed methodologies can be transformed to operate in a

distributed manner. A distributed framework will result in substantial complexity

reduction enabling scalable routing solutions that can handle large-scale networks.

Having a distributed scheme reduces the dimension of the considered optimization

problem as each region can be partitioned into a set of subregions of smaller dimen-

sion, each with its dedicated control unit that will manage traffic in a similar fashion

with the proposed demand management solutions. Nonetheless, such a distributed

scheme may result in suboptimal solutions as each control unit will operate under

partial information. In such a case, control units should cooperate and communicate

information between them to obtain information regarding the reservation status

of their nearby regions. Moreover, a load balancing framework could be applied

to balance the load of each subregion and to manage the load at the boundaries of

neighboring regions.
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Privacy:

Under the proposed architecture, drivers are asked to provide private and sensitive

information to the RSU, such as their origin-destination (OD) pair. A possible

solution to this problem is that the drivers can use an OD pair from a pre-specified

set of OD pairs such that users will not reveal their identity.

Fairness:

In this thesis, vehicles are served in first-come-first-served order, making the system

susceptible to fairness problems as some vehicles may be instructed to follow longer

routes instead of following the shortest ones, or some of them may be forced to wait

longer than others. A possible solution to this problem is to balance the number of

reservations across each road segment provided that the time required to reach the

destination is not higher than a percentage of the earliest destination arrival time.

Evidently, today’s communication technologies can effortlessly support such de-

mand management schemes. The proposed schemes can also bring significant added

value to the network upon the emergence of connected and automated vehicles

which can be fully compliant to any instruction provided.

10.3 Future Work

Exploring the route reservation architecture over the years has generated a plethora

of interesting research questions that still remain unaddressed.

A good starting point for further research is to investigate the use of the reser-

vation architecture in larger networks where vehicles will travel from one city to

another. In that case, a dedicated controller will be responsible for controlling vehic-

ular flows in each particular city. The problem that arises is that the arrival time at

the periphery of each visited city may be uncertain so that its controller may be un-

able to identify a congestion-free path. One way to tackle this issue is to employ the

Route Reservation Protocol (RSVP), designed to reserve resources across a computer

network for quality of service, that can be used to coordinate the communication

between the city controllers. This coordination aims to enable them to have access

to the reservations of their neighboring regions. In doing so, several controllers can
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exchange information among them, to ensure that vehicles will traverse through

each city only following congestion-free road segments. Hence, the drivers will be

informed about a multiregional path to follow while the RVSP protocol will identify

the expected traversal time in each city.

An alternative solution is to develop a hierarchical control framework in which

the optimization problem will be formulated and solved at two different control

layers, the upper, and the lower layer. The upper control layer will be responsible

for finding the departure time of each vehicle and the regional-path that the vehicle

will follow. The upper-layer controller aims to balance the traffic demand between

regions and avoid the occurrence of congestion in each region. The lower control

layer will operate at a regional level, where a dedicated regional controller will

manage all the traffic movements. This hierarchical framework can also be combined

with a perimeter control strategy aiming to regulate the inflow at the boundaries of

each distinct region. In doing so, we can ensure that a reservation will be assigned

to all vehicles at the times that they wait at the periphery of the controlled region.

As mention in the implementation challenges, the proposed methodologies in-

vestigate only the ideal case with all drivers adhere to the route guidance instruc-

tions. However, some drivers may prefer to follow their own routes and/or to start

their journey immediately, a fact that evidently can affect the performance of the

proposed scheme. Hence, future research should examine strategically how driver

compliance affects the performance of the proposed scheme and investigate new

designs that encourage drivers to use reservation architecture. Additionally, future

implementations should investigate scenarios where the considered network is uti-

lized by manual and autonomous vehicles, and examine how the route reservation

architecture’s performance can be affected by increasing or reducing the percent-

age of ordinary vehicles. In this setting, one could analyze the performance as a

percentage of ordinary vehicles and their effect on traffic state.

Another future direction is to investigate scenarios where instead of having an

explicit starting time for each vehicle to have a time range for its departure, a

feature that might be essential to increase the applicability of the proposed demand

management schemes. In such a case, robust formulations for the proposed demand

management schemes should be investigated that take into account the distribution
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of the driver choices according to the provided departure time range.

Future work will also investigate how vehicle-to-vehicle (V2V) communications

can help the proposed demand management schemes. Primarily V2V communi-

cations can be used as an advanced monitoring system that provides useful in-

formation regarding the state of the network. For instance, when the number of

non-compliant drivers is high, then the V2V communications can be employed to

detect and track the occurrence of congestion. In this case, V2V communications

can provide real-time state information, that in turn can be used to implement a

rescheduling mechanism that eliminates overcrowding conditions. Furthermore,

V2V communications can improve the accuracy of reservations by providing real-

time state information, which in turn can be used to detect any inaccuracies that

may arise. Eliminating predicted state and model uncertainty inaccuracies offer the

opportunity to re-optimize vehicle departure times and routes in real-time to obtain

better performance.

Besides, a limitation of the proposed route reservation architecture is that it

does not consider any incidents or any vehicle reservations cancellations. Therefore,

future formulations should allow the on-demand rescheduling of vehicles in order to

account for early or late departures and even anticipate any reservation cancellations.

Unfortunately, the rescheduling of vehicles may negatively affect compliant drivers

because either they will be routed through longer paths or they will be asked to

wait longer at their origins. This issue can be alleviated by providing rewards to

incentivize both compliant and non-compliant drivers remain compliant or become

compliant, respectively. Another issue that may arise and needs to be tackled in

future work is that V2V communications may expose vehicles to malicious cyber-

attacks that indent to affect the performance of the network.

Further studies should investigate the introduction of uncertainty into the gen-

erated demands and to further analyze if the LP MPC formulation can be affected

by uncertainties in demand or by measurement noise observed in the parameters

that estimate the actual density of each region. It will be important that future re-

search also investigates the use of a generalized-shape MFD in the proposed MPC

frameworks. In considering those limitations, future work can result in more robust

formulations that address robustness issues. Future work will also examine how the
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driver compliance rate can affect the performance of the proposed MPC formulations

and investigate new schemes that incentivize drivers to use demand management

towards optimal system performance.

Future work includes the proof of the unbiasedness of the derived IPA estimators

which constitute a more difficult task compared to earlier works in IPA due to

unobservant switching dynamics. Future avenues also include the introduction of

uncertainty to the route-reservation estimates, something that allows the formation

of a queue that is longer than the region’s actual critical density. This will constitute

a more realistic approach as in real application inaccuracies may be observed within

the reservation plan. Finally, future work should also examine how the perturbations

are propagated between neighboring regions.
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[87] P. Edara and D. Teodorović, “Model of an advance-booking system for high-
way trips,” Transportation Research Part C: Emerging Technologies, vol. 16, no. 1,
pp. 36–53, 2008.

[88] P. Su and B. B. Park, “Auction-based highway reservation system an agent-
based simulation study,” Transportation Research Part C: Emerging Technologies,
vol. 60, pp. 211–226, 2015.

[89] K. Liu, E. Chan, V. Lee, K. Kapitanova, and S. H. Son, “Design and evaluation
of token-based reservation for a roadway system,” Transportation Research Part
C: Emerging Technologies, vol. 26, pp. 184–202, 2013.

[90] W. Liu, H. Yang, and Y. Yin, “Efficiency of a highway use reservation system
for morning commute,” Transportation Research Part C: Emerging Technologies,
vol. 56, pp. 293–308, 2015.

[91] E. D. Miller-Hooks and H. S. Mahmassani, “Least expected time paths
in stochastic, time-varying transportation networks,” Transportation Science,
vol. 34, no. 2, pp. 198–215, 2000.

[92] Y. M. Nie and X. Wu, “Shortest path problem considering on-time arrival
probability,” Transportation Research Part B: Methodological, vol. 43, no. 6, pp.
597–613, 2009.

[93] S. Samaranayake, S. Blandin, and A. Bayen, “A tractable class of algorithms for
reliable routing in stochastic networks,” Procedia-Social and Behavioral Sciences,
vol. 17, pp. 341–363, 2011.

[94] L. Yang and X. Zhou, “Optimizing on-time arrival probability and percentile
travel time for elementary path finding in time-dependent transportation net-
works: Linear mixed integer programming reformulations,” Transportation
Research Part B: Methodological, vol. 96, pp. 68–91, 2017.

[95] H. Frank, “Shortest paths in probabilistic graphs,” Operations Research, vol. 17,
no. 4, pp. 583–599, 1969.

[96] C. F. Daganzo, “The uniqueness of a time-dependent equilibrium distribution
of arrivals at a single bottleneck,” Transportation science, vol. 19, no. 1, pp.
29–37, 1985.

[97] E. J. Gonzales and C. F. Daganzo, “The evening commute with cars and transit:
Duality results and user equilibrium for the combined morning and evening
peaks,” Procedia-Social and Behavioral Sciences, vol. 80, pp. 249–265, 2013.

[98] C. G. Panayiotou, “Infinitesimal perturbation analysis for a single stochastic
fluid model node with a class of feedback controlled traffic,” in American
Control Conference, 2004. Proceedings of the 2004, vol. 3. IEEE, 2004, pp. 2308–
2313.

[99] C. G. Cassandras, Y. Wardi, B. Melamed, G. Sun, and C. G. Panayiotou, “Pertur-
bation analysis for online control and optimization of stochastic fluid models,”
IEEE Transactions on Automatic Control, vol. 47, no. 8, pp. 1234–1248, 2002.

215

Cha
ral

am
bo

s M
en

ela
ou



[100] H. Yu and C. G. Cassandras, “Perturbation analysis for production control
and optimization of manufacturing systems,” Automatica, vol. 40, no. 6, pp.
945–956, 2004.

[101] Y. Wardi, C. Seatzu, X. Chen, and S. Yalamanchili, “Performance regulation
of event-driven dynamical systems using infinitesimal perturbation analysis,”
Nonlinear Analysis: Hybrid Systems, vol. 22, pp. 116–136, 2016.

[102] C. G. Panayiotou, W. C. Howell, and M. Fu, “Online traffic light control through
gradient estimation using stochastic fluid models,” In Proceedings of IFAC Vol-
umes, vol. 38, no. 1, pp. 90–95, 2005.

[103] R. Chen and C. G. Cassandras, “Stochastic flow models with delays and ap-
plications to multi-intersection traffic light control,” Systems and Control, 2017.

[104] Y. Geng and C. G. Cassandras, “Multi-intersection traffic light control with
blocking,” Discrete Event Dynamic Systems, vol. 25, no. 1-2, pp. 7–30, 2015.

[105] Y. Wardi and C. Seatzu, “Infinitesimal perturbation analysis of stochastic hy-
brid systems: Application to congestion management in traffic-light inter-
sections,” in Proceedings Decision and Control (CDC), 2014 IEEE 53rd Annual
Conference. IEEE, 2014, pp. 6752–6757.

[106] N. Geroliminis and J. Sun, “Properties of a well-defined macroscopic funda-
mental diagram for urban traffic,” Transportation Research Part B: Methodological,
vol. 45, no. 3, pp. 605–617, 2011.

[107] A. Orda and R. Rom, “Shortest-path and minimum-delay algorithms in net-
works with time-dependent edge-length,” Journal of the ACM (JACM), vol. 37,
no. 3, pp. 607–625, 1990.

[108] R. G. Michael and S. J. David, “Computers and intractability: a guide to the
theory of np-completeness,” WH Freeman & Co., San Francisco, 1979.

[109] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[110] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. Werneck, “Route planning in transportation networks,”
Microsoft Research Silicon Valley, Tech. Rep. MSR-TR-2014-4, 2015.

[111] M. Saeedmanesh and N. Geroliminis, “Clustering of heterogeneous networks
with directional flows based on ’snake’ similarities,” Transportation Research
Part B: Methodological, vol. 91, pp. 250–269, 2016.

[112] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo-simulation of
urban mobility-an overview,” in SIMUL 2011, The Third International Conference
on Advances in System Simulation, 2011, pp. 55–60.

[113] S. Krauss, P. Wagner, and C. Gawron, “Metastable states in a microscopic
model of traffic flow,” Physical Review E, vol. 55, no. 5, p. 5597, 1997.

[114] M. Van Aerde and H. Rakha, “Multivariate calibration of single regime speed-
flow-density relationships,” in Proceedings of the 6th 1995 Vehicle Navigation and
Information Systems Conference, vol. 334, 1995, p. 341.

216

Cha
ral

am
bo

s M
en

ela
ou



[115] M. V. Aerde, “Single regime speed-flow-density relationship for congested
and uncongested highways,” in Presented at the 74th TRB Annual Conference,
Washington, D.C. Paper No. 950802, 1995.

[116] Gurobi Optimization Inc., “Gurobi Optimizer Reference Manual,” 2016.

[117] A. Khani and S. D. Boyles, “An exact algorithm for the mean–standard de-
viation shortest path problem,” Transportation Research Part B: Methodological,
vol. 81, pp. 252–266, 2015.

[118] T. Xing and X. Zhou, “Reformulation and solution algorithms for absolute
and percentile robust shortest path problems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 14, no. 2, pp. 943–954, 2013.

[119] ——, “Finding the most reliable path with and without link travel time cor-
relation: A lagrangian substitution based approach,” Transportation Research
Part B: Methodological, vol. 45, no. 10, pp. 1660–1679, 2011.

[120] M. Mahmoudi and X. Zhou, “Finding optimal solutions for vehicle routing
problem with pickup and delivery services with time windows: A dynamic
programming approach based on state–space–time network representations,”
Transportation Research Part B: Methodological, vol. 89, pp. 19–42, 2016.

[121] L. Immers and S. Logghe, Traffic flow theory, Department of Civil engineering
Section Traffic and Infrastructure, Belgium, 05 2003, course H 111.

[122] A. Bryman and D. Cramer, Quantitative Data Analysis for Social Scientists. New
York, NY, 10001: Routledge, 1994.

[123] C. F. Daganzo, “The cell transmission model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory,” Transportation Re-
search Part B: Methodological, vol. 28, no. 4, pp. 269–287, 1994.

[124] I. I. Sirmatel and N. Geroliminis, “Economic model predictive control of large-
scale urban road networks via perimeter control and regional route guidance,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 4, pp. 1112–
1121, April 2018.

[125] A. Modeling, Integer Programming Tricks, 2012.

[126] F. X. O. Suite, MILP formulations and linearizations: A quick reference, 2009.

[127] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems.
Springer Science & Business Media, 2009.

[128] Y. Wardi, R. Adams, and B. Melamed, “A unified approach to infinitesimal
perturbation analysis in stochastic flow models: the single-stage case,” IEEE
Transactions on Automatic Control, vol. 55, no. 1, pp. 89–103, 2010.

[129] P. N. Brown and J. R. Marden, “Optimal mechanisms for robust coordination
in congestion games,” IEEE Transactions on Automatic Control, vol. 63, no. 8,
pp. 2437–2448, 2017.

[130] D. A. Hensher, “The valuation of commuter travel time savings for car drivers:
evaluating alternative model specifications,” Transportation, vol. 28, no. 2, pp.
101–118, 2001.

217

Cha
ral

am
bo

s M
en

ela
ou



[131] K. Yang, M. Menendez, and N. Zheng, “Heterogeneity aware urban traffic
control in a connected vehicle environment: A joint framework for conges-
tion pricing and perimeter control,” Transportation Research Part C: Emerging
Technologies, vol. 105, pp. 439–455, 2019.

[132] N. Zheng, G. Rérat, and N. Geroliminis, “Time-dependent area-based pricing
for multimodal systems with heterogeneous users in an agent-based envi-
ronment,” Transportation Research Part C: Emerging Technologies, vol. 62, pp.
133–148, 2016.

218

Cha
ral

am
bo

s M
en

ela
ou




