

DEPARTMENT OF COMPUTER SCIENCE

Total Cost of Ownership Optimization for Edge and

Cloud Data-Centers

Panagiota Nikolaou

A Dissertation Submitted to the University of Cyprus in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

December 2019

Pan
ag

iot
a N

iko
lao

u

i

©Panagiota Nikolaou, 2019

Pan
ag

iot
a N

iko
lao

u

ii

VALIDATION PAGE

Doctoral Candidate: Panagiota Nikolaou

Doctoral Thesis Title: Total Cost of Ownership Optimization for Edge and Cloud

Data-Centers

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy at the Department of Computer Science and was

approved on December 6, 2019 by the members of the Examination Committee.

Examination Committee:

Research Supervisor:___

 Yiannakis Sazeides

Committee Member:___

 George Pallis

Committee Member: ___

 Marios D. Dikaiakos

Committee Member: ___

 Ramon Canal

Committee Member: ___

 Theocharis Theocharides

Pan
ag

iot
a N

iko
lao

u

iii

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original

work of my own, unless otherwise mentioned through references, notes, or any other

statements.

Panagiota Nikolaou

……………………

Pan
ag

iot
a N

iko
lao

u

iv

To the new member of our family,

 Ioanna

Pan
ag

iot
a N

iko
lao

u

v

Acknowledgements

Firstly, I would like to thank and express my sincere gratitude to my advisor, Professor

Yiannakis Sazeides for the opportunity to work under his supervision and the continuous

support of my Ph.D study, for his patience and motivation. His guidance helped me

throughout my Ph.D. Also, the motivation that he has given me, made the work more

challenging and helped me to become a better researcher.

I would like to thank, also Professor Chrysostomos Nikopoulos for his participation in this

work and the great collaboration that we had all of these years.

During my Ph.D, I have spent two months at the IROC technologies for a short term scientific

mission. I would like to thank Andrian Evans and Dan Alexandrescu, for this great

opportunity and for hosting me at their group in 2015.

Many thanks to all my colleagues of the xi lab. Especially, thanks to Antreas Prodromou,

Andreas Panteli, Panagiotis Englezakis, Zacharias Hatzilambrou, George Klokkaris, Lorena

Ndreu and Marios Kleanthous for the endless discussions, for the sleepless nights we were

working together before deadlines, and for all the fun we have had throughout these years.

I would like also to thank my family and friends for supporting me spiritually throughout

this thesis and my life in general. Special thanks, to my mother Giannoulla, my father Nikolas

and my brother Paraskevas, for their support, advice and their unconditional love all of these

years. I feel very fortunate to have them in my life. Especially, I would like to thank my

husband, Marios for the understanding and withstanding. Without him the entire process

would have been non-achievable and intolerable. A huge thank to all my friends, especially

to Anna, Maria and Margarita for being there for me, whenever needed and for whatever

needed.

Finally, I would like to take the opportunity to acknowledge the support that I have received

from the following EU co-funded projects: Eurocloud FP7 (2010-2013), HARPA FP7 (2013-

2016) and UNISERVER H2020 (2016-2019).

“Build up your weaknesses until they become your strong points”, Knute Rockne

Pan
ag

iot
a N

iko
lao

u

vi

Περίληψη

Ο αριθμός των ευφυών συσκευών που συνδέονται με το Διαδίκτυο αυξάνεται καθημερινά

και σύντομα θα είναι της τάξης των δεκάδων δισεκατομμυρίων, αποτελώντας το Διαδίκτυο

των πραγμάτων (IoT). Κάθε μία από αυτές τις συσκευές στέλνει δεδομένα στο Διαδίκτυο τα

οποία σύντομα αναμένεται να φτάσουν τα δεκάδες exabytes. Αυτή η ταχεία αύξηση

δεδομένων θα ασκήσει πρωτοφανή πίεση στην τρέχουσα υποδομή του Διαδικτύου και στα

κεντρικά κέντρα δεδομένων (Cloud). Η αντιμετώπιση αυτής της επικείμενης πλημμύρας

δεδομένων απαιτεί τόσο την ενίσχυση των δυνατοτήτων επεξεργασίας των τρεχόντων

εξυπηρετητών όσο και την επανεξέταση του τρόπου επικοινωνίας και επεξεργασίας

δεδομένων στο Διαδίκτυο. Για το σκοπό αυτό, τα τελευταία χρόνια, τα κέντρα δεδομένων

έχουν αυξηθεί σε αριθμό, μέγεθος και χρήση. Μεγάλες μονάδες κέντρων δεδομένων που

αποτελούνται από χιλιάδες έως δεκάδες χιλιάδες εξυπηρετητές χρησιμοποιούνται για την

παροχή υπηρεσιών, όπως ηλεκτρονικού ταχυδρομείου (email), αναζήτηση ιστού, κοινωνική

δικτύωση, χάρτες κ.λπ., σε δισεκατομμύρια χρήστες. Επιπλέον, τα τελευταία χρόνια έχει

προκύψει η παροχή των υπηρεσιών Cloud στο Edge, πιο κοντά στους χρήστες. Μια

σημαντική επίπτωση αυτών των εξελίξεων είναι η αύξηση της κατανάλωσης κόστους και

ενέργειας των κέντρων δεδομένων και συνεπώς υπάρχει αυξανόμενη ανάγκη για

αποτελεσματικές μεθοδολογίες και τεχνικές για τη βελτίωση του σχεδιασμού του κέντρου

δεδομένων για την αποτελεσματικότερη χρήση του.

 Ο κύριος στόχος αυτής της εργασίας είναι να ελαχιστοποιήσει το συνολικό κόστος

ιδιοκτησίας (TCO) ενός κέντρου δεδομένων, ενώ παράλληλα να ικανοποιήσει τη ποιότητα

εξυπηρέτησης διαφόρων εφαρμογών που εκτελούνται σε κάποιο κέντρο δεδομένων. Αυτό

απαιτεί την ανάπτυξη μοντέλων που επιτρέπουν την εξερεύνηση του σχεδιασμού ενός

κέντρου δεδομένων. Συγκεκριμένα, πρώτα προσδιορίζονται τα μετρικά που απαιτούνται για

να εξεταστεί το ενδεχόμενο ελαχιστοποίησης του TCO. Αυτή η ανάλυση τονίζει την

Pan
ag

iot
a N

iko
lao

u

vii

σημαντικότητα του TCO ως μετρικό βελτιστοποίησης και προσδιορίζει επίσης τις κύριες

παραμέτρους που το επηρεάζουν. Στην συνέχεια, αξιολογούμε τα πιθανά TCO κέρδη στο

Edge σε σύγκριση με το Cloud, καθώς και ένα ποιο αποδοτικό σε ενέργεια Edge που

χρησιμοποιεί λειτουργίες σε χαμηλότερες τάσης (voltage). Έπειτα, προτείνουμε και

αναλύουμε τις επιπτώσεις στο TCO, μιας δυναμικής τεχνικής που παρακολουθεί τα μετρικά

απόδοσης και καθορίζει πότε πρέπει να λειτουργήσει μια κεντρική μονάδα δεδομένων σε

κανονική ή χαμηλότερη τάση. Τέλος, αναλύουμε τις συνέπειες των λαθών των κύριων

μνήμων (DRAM) και των τεχνικών προστασίας τους στο TCO και προσδιορίζουμε την

κατάλληλη τεχνική προστασίας που παρέχει την μεγαλύτερη εξοικονόμηση TCO χωρίς να

διακυβεύεται η διαθεσιμότητα του συστήματος.

Pan
ag

iot
a N

iko
lao

u

viii

Abstract

The number of intelligent Internet-connected devices is growing rapidly and will soon be in

the order of tens of billions, forming the Internet of Things (IoT). Each of these devices is

pushing data to the Internet that are soon expected to reach tens of exabytes. It is expected

that such data growth will put an unprecedented pressure on the current Internet

infrastructure and the centralized (Cloud) Datacenters (DCs). In order to successfully deal

with this imminent data flood, it is imperative to enhance the processing capabilities of the

current servers. Redesigning data communication and processing across the Internet is

equally important. In light of this, DCs have increased in numbers, size and utilization. Large

DCs that consist of thousands to tens of thousands of servers are used to deliver services,

such as e-mail, web search, social networking, maps etc., to billions of users. Additionally,

a new paradigm has emerged which makes Cloud services available at the Edge. One key

ramification of these developments is an increase in the cost and energy consumption of both

Cloud and Edge DCs.

 The aim of this thesis is to minimize the total cost of ownership (TCO) of a DC while

meeting the quality of service of different workloads running in the DC. This requires the

development of innovative methods and models that enable the exploration of the design

space of a DC. First, a method that detects the existence of high correlations among several

application parameters such as performance, power, reliability with the cost (TCO) is

evaluated. This, in fact, leads to the determination of the parameters that experience high

correlation with the TCO and the further exploration of them throughout this thesis. Then,

there is an evaluation of the possible TCO gains of an Edge deployment compared to Cloud

as well as an Edge deployment that employs under-volting operations. Furthermore, there is

a proposal and analysis of the TCO implications of a dynamic technique that monitors

performance counters and determines when to operate a CPU in nominal or undervolted

Pan
ag

iot
a N

iko
lao

u

ix

settings. Finally, we present an analysis of the implications of DRAM failures and DRAM

protection techniques on the TCO. This determines the appropriate protection technique that

provides the most TCO savings without compromising the availability of the system.

Pan
ag

iot
a N

iko
lao

u

x

Thesis Contributions

This thesis has contributed to the following journal articles, conference and workshop papers,

book chapters and tools:

Conference papers:

1. Panagiota Nikolaou, Yiannakis Sazeides, “Identification of an entire workload’s CPU-

Vmin from the n-first seconds of its execution based on performance counters”, ISPASS

2020.

2. Georgios Karakonstantis, Konstantinos Tovletoglou, Lev Mukhanov, Hans Vandierendonck,

Dimitrios Nikolopoulos, Peter Lawthers, Panos Koutsovasilis, Manolis Maroudas, Christos

D. Antonopoulos, Christos Kalogirou, Nikolaos Bellas, Spyros Lalis, Srikumar Venugopal,

Arnau Prat-Perez, Alejandro Lampropulos, Marios Kleanthous, Andreas Diavastos,

Zacharias Hadjilambrou, Panagiota Nikolaou, Yanos Sazeides, Pedro Trancoso, George

Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidimitriou, Dimitris Gizopoulos and

Shidhartha Das: “An Energy-Efficient and Error-Resilient Server Ecosystem Exceeding

Conservative Scaling Limits”, DATE 2018.

3. Nikolaos Zompakis, Michail Noltsis, Lorena Ndreu, Zacharias Hadjilambrou, Panayiotis

Englezakis, Panagiota Nikolaou, Antoni Portero, Simone Libutti, Giuseppe

Massari, Federico Sassi, Alessandro Bacchini, Chrysostomos Nicopoulos, Yiannakis

Sazeides, Radim Vavrík, Martin Golasowski, Jiri Sevcík, Vít Vondrák, Francky

Catthoor, William Fornaciari, Dimitrios Soudris:

“HARPA: Tackling physically induced performance variability”.DATE 2017: 97-102.

4. Panagiota Nikolaou, Yiannakis Sazeides, Lorena Ndreu, Marios Kleanthous:“Modeling the

implications of DRAM failures and protection techniques on datacenter

TCO”, MICRO 2015: 572-584.

Journal articles:

5. Panagiota Nikolaou, Yiannakis Sazeides, Alejandro Lampropoulos, Denis Guilhot, Andrea

Bartoli, George Papadimitriou, Athanasios Chatzidimitriou, Dimitris Gizopoulos,

Konstantinos Tovletoglou, Lev Mukhanov, and Georgios Karakonstantis, “On the

Evaluation of the Total-Cost-of-Ownership Trade-offs in Edge vs Cloud deployments: A

Wireless-Denial-of-Service Case Study” IEEE Transactions on Sustainable Computing

Pan
ag

iot
a N

iko
lao

u

http://dblp.uni-trier.de/pers/hd/z/Zompakis:Nikolaos
http://dblp.uni-trier.de/pers/hd/n/Noltsis:Michail
http://dblp.uni-trier.de/pers/hd/n/Ndreu:Lorena
http://dblp.uni-trier.de/pers/hd/h/Hadjilambrou:Zacharias
http://dblp.uni-trier.de/pers/hd/e/Englezakis:Panayiotis
http://dblp.uni-trier.de/pers/hd/e/Englezakis:Panayiotis
http://dblp.uni-trier.de/pers/hd/p/Portero:Antoni
http://dblp.uni-trier.de/pers/hd/l/Libutti:Simone
http://dblp.uni-trier.de/pers/hd/m/Massari:Giuseppe
http://dblp.uni-trier.de/pers/hd/m/Massari:Giuseppe
http://dblp.uni-trier.de/pers/hd/s/Sassi:Federico
http://dblp.uni-trier.de/pers/hd/b/Bacchini:Alessandro
http://dblp.uni-trier.de/pers/hd/n/Nicopoulos:Chrysostomos
http://dblp.uni-trier.de/pers/hd/s/Sazeides:Yiannakis
http://dblp.uni-trier.de/pers/hd/s/Sazeides:Yiannakis
http://dblp.uni-trier.de/pers/hd/v/Vavr=iacute=k:Radim
http://dblp.uni-trier.de/pers/hd/g/Golasowski:Martin
http://dblp.uni-trier.de/pers/hd/s/Sevc=iacute=k:Jiri
http://dblp.uni-trier.de/pers/hd/v/Vondr=aacute=k:V=iacute=t
http://dblp.uni-trier.de/pers/hd/c/Catthoor:Francky
http://dblp.uni-trier.de/pers/hd/c/Catthoor:Francky
http://dblp.uni-trier.de/pers/hd/f/Fornaciari:William
http://dblp.uni-trier.de/pers/hd/s/Soudris:Dimitrios
http://dblp.uni-trier.de/db/conf/date/date2017.html#ZompakisNNHENPL17
http://dblp.uni-trier.de/pers/hd/s/Sazeides:Yiannakis
http://dblp.uni-trier.de/pers/hd/n/Ndreu:Lorena
http://dblp.uni-trier.de/pers/hd/k/Kleanthous:Marios
http://dblp.uni-trier.de/db/conf/micro/micro2015.html#NikolaouSNK15

xi

(TSUSC) Special Issue on Sustainability of Fog/Edge Computing Systems, 2019, January

2019.

6. Marios Kleanthous, Yiannakis Sazeides, Emre Özer, Chrysostomos Nicopoulos, Panagiota

Nikolaou, Zacharias Hadjilambrou: “Toward Multi-Layer Holistic Evaluation of System

Designs”.Computer Architecture Letters 15(1): 58-61 (2016).

Workshop papers

7. Panagiota Nikolaou, Yiannakis Sazeides, Antoni Portero, Radim Vavrík, Vít Vondrák: “A

Methodology for Oracle Selection of Monitors and Knobs for Configuring an HPC System

running a Flood Management Application”. HIP3ES2017 workshop, CoRR abs/1702.07748

Workshop (2017).

8. K. Tovletoglou, C. Chalios, G. Karakonstantis, L. Mukhanov, H. Vandierendonck, D. S.

Nikolopoulos, P. Koutsovasilis, M. Maroudas, C. Antonopoulos, C. Kalogirou, N. Bellas, S.

Lalis, M. M. Rafique, S. Venugopal, A. Prat-Perez, A. Diavastos, Z. Hadjilambrou, P.

Nikolaou, Y. Sazeides, P. Trancoso, G. Papadimitriou, M. Kaliorakis, A.Chatzidimitriou,

and D. Gizopoulos, “An Energy-Efficient and Error-Resilient Server Ecosystem Exceeding

Conservative Scaling Limits”, Energy-efficient Servers for Cloud and Edge Computing

Workshop (ENeSCE) co-located with HiPEAC, Stockholm, Sweden, January 2017.

9. Panagiota Nikolaou, Yiannakis Sazeides, Marios Kleanthous , Lorena Ndreu , "The

Implications of Different DRAM Protection Techniques on Datacenter TCO", SELSE 2015.

Book chapters:

10. Panagiota Nikolaou, Zacharias Hadjilambrou, Panayiotis Englezakis, Lorena Ndreu,

Chrysostomos Nicopoulos, Yiannakis Sazeides, Antoni Portero, Radim Vavrik, and Vit

Vondrak:” Evaluating System-Level Monitors and Knobs on Real Hardware”, Book Chapter

in "Harnessing Performance Variability in Embedded and High-performance Many/Multi-

core Platforms" by Springer International Publishing AG, part of Springer Nature 2019.

11. Nikolaos Zompakis, Michail Noltsis, Panagiota Nikolaou, Panayiotis Englezakis, Zacharias

Hadjilambrou, Lorena Ndreu, Giuseppe Massari, Simone Libutti, Antoni Portero, Federico

Sassi, Alessandro Bacchini, Chrysostomos Nicopoulos, Yiannakis Sazeides, Radim Vavrik,

Martin Golasowski, Jiri Sevcik, Stepan Kuchar, Vit Vondrak, Fritsch Agnes, Hans Cappelle,

Francky Catthoor, William Fornaciari, and Dimitrios Soudris: “The HARPA Approach to

Pan
ag

iot
a N

iko
lao

u

http://dblp.uni-trier.de/pers/hd/k/Kleanthous:Marios
http://dblp.uni-trier.de/pers/hd/s/Sazeides:Yiannakis
http://dblp.uni-trier.de/pers/hd/=/=Ouml=zer:Emre
http://dblp.uni-trier.de/pers/hd/n/Nicopoulos:Chrysostomos
http://dblp.uni-trier.de/pers/hd/h/Hadjilambrou:Zacharias
http://dblp.uni-trier.de/db/journals/cal/cal15.html#KleanthousSONNH16
http://dblp.uni-trier.de/pers/hd/s/Sazeides:Yiannakis
http://dblp.uni-trier.de/pers/hd/p/Portero:Antoni
http://dblp.uni-trier.de/pers/hd/v/Vavr=iacute=k:Radim
http://dblp.uni-trier.de/pers/hd/v/Vondr=aacute=k:V=iacute=t
http://dblp.uni-trier.de/db/journals/corr/corr1702.html#NikolaouSPVV17

xii

Ensure Dependable Performance”, Book Chapter in "Harnessing Performance Variability in

Embedded and High-performance Many/Multi-core Platforms" by Springer International

Publishing AG, part of Springer Nature 2019.

Public Tools:

12. AMPRA: Analyzer of TCO Implications of Memory Failures and Memory Protection

http://www2.cs.ucy.ac.cy/carch/xi/ampra tco.php

Pan
ag

iot
a N

iko
lao

u

xiii

Contents

List of Figures ... xvi

List of Tables ... xviii

Table of Acronyms ...xix

1 Introduction ... 1

1.1 Thesis Motivation .. 1

1.2 Thesis Scope and Contributions .. 3

1.3 Thesis Organization .. 4

2 Background ... 6

2.1 Key Monitoring Parameters .. 6

2.2 The Internet of Things and Cloud Computing .. 7

2.3 Edge Computing ... 8

2.4 Reliability Challenges ... 11

2.5 Power Challenges ... 13

2.6 Total Cost of Ownership Fundamentals... 14

3 Identification of Key Subset Parameters Required to Evaluate and Optimize TCO .. 16

3.1 Experimental Setup-Application ... 17
3.1.1 Application Requirements .. 19
3.1.2 Availability and QoS Requirements .. 19
3.1.3 Accuracy on Monte Carlo Iterations .. 20

3.2 Available Monitors and Knobs in Real Systems ... 21

3.3 Experimental Framework and Correlation Analysis ... 22
3.3.1 Experimental Framework ... 22
3.3.2 Identification of the Key Subset of Parameters ... 23

3.4 Results ... 24
3.4.1 Correlation Between Monitors, Knobs and Cost .. 24
3.4.2 Validation of the Selected Monitors and Knobs ... 26

4 Investigation of the TCO Benefits of Running IoT Applications at the Edge vs. the
Cloud .. 27

4.1 Background and Challenges .. 29
4.1.1 Wireless Denial of Service Application ... 29
4.1.2 WDoS Application Requirements ... 30

4.2 System Architecture ... 32

4.3 Characterization Framework .. 34

4.4 Experimental Setup .. 36
4.4.1 Cloud and Edge Architecture.. 36
4.4.2 TCO Input Parameters .. 36
4.4.3 Micro-Server Architecture .. 37

4.5 Characterization Results ... 38

4.6 TCO Analysis .. 39
4.6.1 Selection of the Number of Instances in Edge and Cloud Deployments 39
4.6.2 Edge Versus Cloud TCO .. 40

Pan
ag

iot
a N

iko
lao

u

xiv

4.6.3 TCO and Area Coverage Results for Efficient Edge and Normal Edge Deployments 41

5 Identification of an Entire Workload’s CPU-Vmin and investigation of the Trade-Offs
Between Reliability Implications and Power in the TCO. ... 44

5.1 Background .. 45

5.2 Experimental Setup .. 46
5.2.1 Platform.. 46
5.2.2 Workloads .. 47
5.2.3 Vmin Characterization .. 47

5.3 Performance Counters Selection Methodology ... 49

5.4 Workload’s CPU-Vmin Identification Method .. 51
5.4.1 Performance Counter’s Signature Semantics ... 52
5.4.2 Workload CPU-Vmin Identification Method .. 54

5.5 Experimental Methodology .. 55

5.6 Results ... 56
5.6.1 Accuracy ... 56
5.6.2 Time Sensitivity Analysis .. 58
5.6.3 Power Evaluation Results ... 59
5.6.4 TCO Evaluation Results ... 60

5.7 Applicability of the Key Findings ... 62

6 Analysis of the Implications of DRAM Failures and DRAM Protection Techniques on
the TCO ... 63

6.1 Background on Memory Reliability ... 65
6.1.1 Memory Errors (Types and Metrics) .. 65
6.1.2 DRAM Error Protection .. 65
6.1.3 Datacenter’s Reliability and Availability ... 67
6.1.4 Online, Offline Services and Co-location .. 67
6.1.5 Total Cost of Ownership (TCO) ... 68

6.2 AMPRA Framework .. 69
6.2.1 Performance Model ... 69
6.2.2 Energy Model ... 71
6.2.3 Thermal Model ... 72
6.2.4 DRAM FIT Model and Modeling DRAM Grades .. 72
6.2.5 DRAM SDC Derating Model .. 76
6.2.6 Availability/MTTF Model .. 76
6.2.7 DIMM Cost Model .. 79
6.2.8 TCO Model.. 79

6.3 Experimental Methodology and Models Assumptions ... 80

6.4 Results ... 83
6.4.1 Implications of DRAM Capacity on TCO ... 83
6.4.2 DRAM Grades and TCO .. 84
6.4.3 ChipkillDC and ChipkillSC Performance, Energy and TCO for Online and Offline Jobs 86
6.4.4 Implications of NDEs on the System Reliability.. 89
6.4.5 TCO Sensitivity Analysis .. 90

6.5 AMPRA Model Validation and Insights .. 91

7 Conclusions and Future work .. 92

7.1 Conclusions .. 92

7.2 Lessons Learnt ... 94

7.3 Future Work .. 94

Pan
ag

iot
a N

iko
lao

u

xv

Bibliography ... 96

Pan
ag

iot
a N

iko
lao

u

xvi

List of Figures

Figure 1: Internet-Connected Devices ... 8

Figure 2: IoT System Architecture including Edge and central Cloud deployments 10

Figure 3: Faulty nodes with cache and memory errors as a fraction of time 12

Figure 4: TCO Framework Overview [80]. ... 15

Figure 5: Floreon+ normal operation ... 18

Figure 6: Floreon+ operation with faults ... 19

Figure 7: Correlation analysis, showing the correlation coefficient between Monitors and

TCO .. 25

Figure 8: Correlation analysis, showing the correlation coefficient between Monitors and

Knobs ... 25

Figure 9: Improvement among the default configuration, correlation analysis predicted

configuration and the best configuration ... 26

Figure 10: End-to-End Latency for running the application in Edge and Cloud deployments

 .. 27

Figure 11: Architecture of DoS Jammer Detector Application including Edge and Cloud

Deployments .. 30

Figure 12: Architecture of Edge servers in different locations .. 33

Figure 13: Characterization framework layout .. 35

Figure 14: QoS results for different number of instances of the WDoS application running in

the Cloud (a) and in the Edge (b) ... 40

Figure 15: TCO results for Edge and Cloud deployments ... 41

Figure 16: Efficient Edge over Normal Edge results in (a) TCO over Area Coverage, (b)

Area Coverage, (c) Total Cost of Ownership, (d) Total Number of Servers that are placed in

the deployments, (e) Total Power Consumption, and (f) Total Number of Instances per server

 .. 42

Figure 17: Correlation Analysis between different Combinations of the Selected

Performance Counters and CPU-Vmin .. 50

Figure 18: Identification Method Example for a) V-low workload and b) V-high workload

 .. 52

Pan
ag

iot
a N

iko
lao

u

file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328190
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328191
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328192
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328193
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328194
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328195
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328196
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328196
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328197
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328197
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328198
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328198
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328199
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328199
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328200
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328200
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328201
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328202
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328203
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328203
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328204
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328205
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328205
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328205
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328205
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328206
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328206
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328207
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328207

xvii

Figure 19: Signature’s clusters for V-low and V-high benchmarks 53

Figure 20: CPU-Vmin identification framework with the input parameters and output

decisions ... 55

Figure 21: Identification Framework Accuracy results ... 57

Figure 22: Signature’s clusters for V-low, V-high and false positive benchmarks 58

Figure 23: Identification Time Distribution of the first V-high signature appearance in the

501 V-high benchmarks ... 59

Figure 24: Power savings results for all the experiments compared to the baseline that

operates at 940mV and at 980mV. ... 60

Figure 25: TCO evaluation and Availability results for different detection times 61

Figure 26: TCO evaluation while ensuring 99% availability .. 61

Figure 27: AMPRA Framework Parameters, Components and Information Flow 70

Figure 28: TCO results for different DIMMs slots .. 84

Figure 29: TCO results for different DRAM grades .. 85

Figure 30: DRAM cost in ($) for different fault rates (DRAM grades) 86

Figure 31: Performance overhead of ChipkillDC compared to ChipkillSC for different co-

running configurations (a) performance in terms of Average Search Time and (b)

performance measured in terms of 99% tail latency .. 87

Figure 32: TCO results for collocated services considering Average Search Time and

Average Power consumption ... 88

Figure 33: Design space exploration of NDEs that lead to SDCs for each protection technique

+ system utilization .. 90

Figure 34: TCO sensitivity analysis of 2 Web Search + 2 Memory Intensive Services 91

Pan
ag

iot
a N

iko
lao

u

file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328208
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328209
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328209
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328210
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328211
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328212
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328212
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328213
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328213
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328214
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328215
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328216
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328217
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328218
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328219
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328220
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328220
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328220
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328221
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328221
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328222
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328222
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328223

xviii

List of Tables

Table 1: Floreon+ Requirements.. 20

Table 2: Monitors and Knobs list ... 21

Table 3: Server Configuration.. 22

Table 4: Values of Knobs... 23

Table 5: WDOS Jammer Detection Application’s Requirements 32

Table 6: Edge and Cloud Configurations ... 37

Table 7: Nominal and Efficient Operating Settings ... 38

Table 8: Characterization results running WDoS application with Normal Setting and

Efficient Settings .. 39

Table 9: Benchmarks with their CPU-Vmin and Execution Time 48

Table 10: Performance Counters in X-Gene2 .. 49

Table 11: FIT rates of transient (Tr.) and permanent (Pr.), CE, DUE and NDE errors for each

protection technique FIT/device .. 75

Table 12: MTTR for various repair actions due to different types of failures 77

Table 13: Server and main memory configuration .. 81

Table 14: Server configuration and parameters ... 82

Table 15: Datacenter Configuration ... 83

Pan
ag

iot
a N

iko
lao

u

file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328224
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328225
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328226
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328227
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328228
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328229
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328230
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328231
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328231
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328232
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328233
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328234
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328234
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328235
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328236
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328237
file://///Users/panagiota/Dropbox/phd/phd/final/report/finalFiles/PhDReportv11.docx%23_Toc37328238

xix

Table of Acronyms

Term Definition
TCO Total Cost of Ownership

DC Datacenter

IoT Internet of Things

QoS Quality of Service

MTTF Mean Time to Failure

MTBF Mean Time Between Failures

MTTR Mean Time to Repair

FIT Failures in Time

SDC Silent Data Corruption

IPC Instructions Per Cycle

MD Micro-Datacenters

VM Virtual Machine

SoC System on Chip

Floreon+ FLOod REcognition On the Net

RR Rainfall-Runoff

HD Hydrodynamic

SMT Multi-Threading

DVFS Dynamic Voltage and Frequency Scaling

ECC Error Correction Code

HPC High Performance Computing

CAPEX Capital expenses

OPEX Operational expenses

MPKI Misses per kilo Instructions

WDoS Wireless Denial-of-Service

CE Correctable Errors

DUE Detectable Uncorrectable Errors

NDE Non-Detectable Errors

SECDED Single Error Correction-Double Error Detection

Chipkill Single-Chip error correction and Double-Chip error detection

Pan
ag

iot
a N

iko
lao

u

1

Chapter 1

1 Introduction

1.1 Thesis Motivation

Total Cost of Ownership (TCO) evaluation is significant for making Datacenter (DC) design

and operational decisions that minimize cost. However, it is not easy to estimate TCO

because it does not only account for direct costs such as server’s cost but also for indirect

costs, such as power, performance and reliability [1]. Thus, tools for evaluating TCO are

useful to assess the benefits and drawbacks of Datacenter design choices.

Companies like Azure and Amazon, provide such TCO Tools [2][3]. Particularly, these tools

make comparisons between on-premises infrastructure and hosts running services in their

facilities. Their goal is to assist the service providers to choose between running in the Cloud

or build their own DC. However, such tools do not consider application parameters such as

performance, power, software architecture and quality of service requirements. Moreover,

prior research proposed TCO tools to guide Datacenter designs

[80][100][101][102][103][104][63]. However, all these tools do not allow the exploration of

design parameters, such as memory design protection choices, performance and power

optimization techniques, mean time to failure (MTTF) and mean time to repair for all the

server components. Moreover, it remains unclear to decide whether these parameters should

be included in the TCO or not. To establish if there are possible connections between these

parameters and TCO, we primarily focus on the detection of high correlations among several

parameters with the cost (TCO). Once this is done, the selection of parameters with high

correlation with TCO can be achieved which will be addressed in detail throughout the thesis.

The power efficiency is an important parameter for both Edge and Cloud deployments, that

this thesis closely investigates. Edge computing is a recently introduced approach that has

the potential to ensure the sustainability and scaling of the Internet during the upcoming

Internet of Things (IoT) era [6]. A number of studies, develop schemes that manage the data

processing of IoT applications across distributed DCs [7][8][9]. In these studies, data are

transferred from IoT sensors to local micro-DCs for pre-processing and selection of the data

to forward to a centralized DC. Typically, these applications consist of sensors that collect

Pan
ag

iot
a N

iko
lao

u

2

and send data to a processing device. Their main quality of service (QoS) requirement is the

response-time and, therefore, are suited for both Cloud and Edge deployments. However,

servers which have been used to run these applications can only process- within a required

detection time window- data from a limited number of sensors. In fact, these servers are also

oversubscribed to process data from many sensors which are likely to suffer from QoS

violations. Moreover, each sensor covers a fixed area and Edge deployments have limited

power budget for servers per installation. This results in having an Edge installation that may

be able to support a limited number of sensors and cover a limited area. At this point, this

serves to highlight a key challenge for the successful realization of Edge computing: the

sensor’s area coverage. Evidently, one of the most critical challenges for the successful Edge

deployment is the efficient use of the limited power of an Edge installation. Exceeding the

power cap of the facility is unacceptable as it triggers a disruption of power. To avoid such

overloads, both Edge and Cloud deployments rely on power capping schemes that enforce

power budgets of individual servers [10][11] or over ensembles [12][13]. In this regard, the

use of more power efficient servers, facilitates the increase of area coverage. Thus, it is

desirable for processors to operate with low voltage and/or frequency to reduce power.

Through this work, we will propose an evaluation methodology to consider various metrics

such as cost, QoS, area-coverage and power efficiency, using energy efficient and high-

performance devices.

Of course, it has to be considered that operating at lower voltage can lead to voltage

emergencies which can cause timing violations and/or memory bit flips [14][15][16]. This is

unacceptable in many situations because it may lead to silent data corruption (SDC) errors,

or even application or system crashes [17][18]. Assuming checkpoint-based recovery [19]

during the crash, the system will be unavailable until the rollback from the latest checkpoint

[19]. A number of research findings aim to prevent crashes by using performance counters

to predict voltage emergencies during the execution of a workload [20][21][173][22][23].

However, these works cannot predict upfront if an application can operate at lower voltage

and, thus can suffer from a large number of crashes. Hence, this work investigates the TCO

benefits of a workload’s voltage operation identification method during the first n-seconds

of its execution.

The method employed by DC servers to protect their memory from errors is of paramount

importance of today's DC with TCO implications. For instance, an attempt to lower costs by

removing protection from DRAM in Google servers, running Web search application,

resulted in a subset of queries returning random documents due to a memory error that could

not even be detected [4]. Consequently, DC servers employ a combination of hardware and

Pan
ag

iot
a N

iko
lao

u

3

software techniques to accomplish the desired level of availability without compromising

QoS [5]. This thesis also aims to explore advanced memory error protection schemes,

consider the implications of multi-bit errors, account for the performance, power and

temperature implications, consider the ramifications of collocated services and account for

failing module replacements and maintenance policies. Through this in-depth analysis, the

identification of the best DRAM protection technique for each application and for collocated

applications, in terms of TCO, is accomplished.

1.2 Thesis Scope and Contributions

The major goal of this thesis is to optimize the TCO of a DC while meeting the QoS criteria

of different applications running in the DC. This requires the investigation of a number of

key parameters that affect TCO, the evaluation of DCs design decision and the development

of efficient prediction methodologies that prevent the unavailability occurred by operations

at lower voltage.

Towards the State-of-the-Art, the contributions of this thesis are firstly to identify the key

subset of parameters required to evaluate and optimize TCO. Particular emphasis is given on

the selected monitors and knobs to use to configure a computing system running an

application while satisfying the application’s requirements, not violating any system

constraints and at the same time optimize TCO. We then, use these monitors and knobs

throughout this thesis to present TCO optimizations.

Secondly, we evaluate the possible gains of an Edge deployment compared to a Cloud one,

using a TCO model. Moreover, we evaluate the TCO gains of Energy efficient Edge micro-

servers, that operate in lower voltage compared to Edge micro-servers operating at nominal

margins.

Furthermore, we develop a practical CPU-Vmin identification method that uses training data

based on performance counters taken on the first n-seconds of execution from a set of

benchmarks. The method is tested on a different set of benchmarks to classify workloads into

V-low and V-high after the same first n-seconds of their execution. V-low workloads are the

workloads that can operate at the lowest CPU-Vmin observed during the training phase, while

the V-high are the workloads that require a CPU-Vmin higher than the V-low to operate

correctly. We then, evaluate the CPU-Vmin identification method based on real hardware

measurements and we show that, for the specific multicore CPU, we use, it can provide safe-

voltage, 99.4% of the time, reduce power on average by 7.1% as compared to operation with

nominal supply voltage, and provide significant TCO savings.

Pan
ag

iot
a N

iko
lao

u

4

Finally, we investigate the implications of DRAM errors and DRAM protection techniques

in the TCO. We propose, for the first time, a framework, called AMPRA, for modeling the

implications of DRAM failures and DRAM error protection techniques on the TCO of a

datacenter. The framework captures the effects and interactions of several key parameters

including: the choice of DRAM protection technique (e.g. single vs dual channel Chipkill),

device width (x4 or x8), memory size, power, failures in time (FITs) for various failure

modes, the performance, power and temperature overheads of a protection technique for a

given service and mixes of collocated services. We then, underline the usefulness of the

proposed framework by demonstrating it through several case studies that identify the best

DRAM protection technique in each case, in terms of TCO. AMPRA framework is an online

publicly available tool.

1.3 Thesis Organization

The organization of the rest of the thesis is as follows:

Chapter 2: describes background information related to different market segments and their

key requirements, edge and cloud computing, reliability aspects, while highlighting DRAM

reliability, power challenges and total cost of ownership fundamentals. Specialized

background and related work that refers specifically to each Chapter is presented in the

dedicated Chapters, respectively.

Chapter 3: identifies the key subset of parameters required to evaluate and optimize cost.

Particular focus is given on the selected monitors and knobs, derived applying a heuristic

correlation analysis.

Chapter 4: introduces an end-to-end TCO model that investigates the benefits of running an

application, at the Edge vs. the Cloud. Focus is given to show that by providing extended

voltage operating points at the Edge, TCO can be beneficial.

Chapter 5: determines a methodology to select the appropriate performances counters that

reveal safe CPU-Vmin for an application in order to predict and prevent voltage emergencies

that arise by operating below the nominal supply voltage for power savings. Afterwards, an

investigation of the trade-offs between voltage emergencies implications and power gains in

the TCO is conducted.

Chapter 6: introduces the AMPRA framework developed to investigate the implications of

DRAM errors and DRAM protection techniques in the TCO. Particular focus is given in the

evaluation of this framework.

Pan
ag

iot
a N

iko
lao

u

5

Chapter 7: concludes the thesis and outlines future work as a direct result of the thesis

contributions.

Pan
ag

iot
a N

iko
lao

u

6

Chapter 2

2 Background

The effectiveness of technology evolution in terms of power, performance and reliability

depends on the application characteristics and the various market segments. Market segments

are categorized in: mobile devices, desktop computing, servers, warehouse-scale computers

and embedded computers [24]. Mobile devices usually run Web-Based and media-oriented

applications. The basic requirements of such applications are power -due to the battery of

the device- and cost.

Desktop Computers, are used for a great variety of applications in both Edge and Cloud

deployments. Due to the high demand of this market segment, desktop computers try to

optimize performance and cost, as well. On the other hand, servers are used to provide more

reliable and efficient services. Due to the high computational power, servers can be used for

bank account applications, web pages etc. This kind of services have various requirements

in terms of performance (throughput, response time etc.), availability of the service, security

and cost.

Warehouse-scale computers [4] are collections of desktop or servers connected with local

area networks to act as a single larger computer. Warehouse-scale computers usually consist

of tens of thousands of servers. This kind of market segment supports applications like,

search, social networking, video sharing, online shopping etc. So, performance, cost, power

and availability are very critical for this kind of applications.

Finally, embedded devices are used for everyday machines such as washing machines. The

main concerns for this market segment are power, cost and availability.

2.1 Key Monitoring Parameters

The previous characterization of market segments with their different applications and

requirements, brings the need of the appropriate metrics and tools to monitor the status of

application requirements running on different multicore systems.

 The performance metrics that usually used to determine how well a processor performs with

a specific running application are: instructions per cycle (IPC), number of cache

Pan
ag

iot
a N

iko
lao

u

7

misses/number of instructions, program runtime, and transactions per minute. Additionally,

QoS is another metric that is used to show the degree to which an activity satisfies the

customer, in terms of response time.

Power consumption can by categorized into leakage and dynamic power. Both power

consumptions can be estimated with models such as Cacti [25] for caches and Micron power

calculator spreadsheet for DRAMs [26]. There are also some monitoring tools that are used

in real hardware to track dynamic power consumption of the running application [27][28].

The availability of the system is the probability of a system operating correctly at a given

time. This metric is appropriate for many computing and cloud applications and is correlated

with the reliability of the service and the individual components. It is very important to keep

the availability of the system in high levels.

Finally, cost is very critical for all the market segments, emphasizing large scale computers

due to the large number of servers and the higher costs consumed in these markets. TCO

includes all the aforementioned parameters (power, performance, availability) and many

others. Due to the criticality of this metric, several works include TCO in their analysis

[29][30].

In this thesis, we tackle the modeling of power, performance, availability in the TCO and we

provide optimizations for each parameter.

2.2 The Internet of Things and Cloud Computing

We are currently witnessing the incremental development of the IoT era. IoT refers to the

networked interconnection of everyday objects denoted as “things”, that are used to achieve

certain design goals [31]. These devices are mainly embedded systems that communicate

with other devices by sending data through the Internet [31]. The number of Internet-

connected devices is growing daily and will soon be in the order of tens of billions. Figure 1

depicts the increase of these Internet-connected devices throughout the last few years. In

order to process the data that are sent to the Internet, large DCs have increased in number

and size in all over the world. These DCs differ from the traditional hosting facilities because

they consist of large-scale servers in the “cloud” with well-connected processing and storage

resources, commonly referred as cloud computing [4].

Pan
ag

iot
a N

iko
lao

u

8

However, the rise of cloud computing, where most compute power is located in the

datacenter, comes with a number of challenges and opportunities. One of the key challenges

is the communication that causes huge network traffic. In addition to this, there are some

other challenges such as security [34]. Thus, it is essential to design a new architecture by

considering many parameters such as reliability, scalability and QoS.

2.3 Edge Computing

 The need for fast response times in various IoT applications necessitates deployments with

tight QoS timing requirements. Many applications cannot tolerate latencies that exceed one

or two hundred of milliseconds [135][136]. Even though Cloud Computing is centralized

and requires minimal management effort or service provider’s interaction, it hardly meets

the QoS and response time requirements for IoT applications, due to the network latency

between the sensors and a remote datacenter. On the other hand, deployments closer to the

data, facilitate meeting QoS requirements by avoiding network latency [137][138]. This

distributed deployment near the sources of data at many sites is referred as Edge (or Fog)

computing [6]. Edge Computing is not meant to replace traditional Cloud architectures, but

Cloud and Edge can work in unison to reduce the total end-to-end response time. Edge is

well suited for IoT applications, where sensors collect data and send them to Edge sites for

processing, thus avoiding high network latencies compared to a centralized datacenter. The

Edge deployment acts as a filter that reduces the network bandwidth pressure to the Cloud

[140].

Figure 1: Internet-Connected Devices

Pan
ag

iot
a N

iko
lao

u

9

According to the application scenario and the processing power of the different devices, edge

computing can be based either on a two-tier [32] or on a three-tier computational model [33].

In both models the last tier corresponds to the Cloud computing resources. Moreover, the

first tier includes the IoT embedded devices such as drones, sensors, devices and appliances

in smart homes [32][33]. These devices need to be self-configured, self-maintained, self-

repaired and make independent decisions. The main difference between the two models is

that in the two-tier model, the IoT embedded devices have the computational power to

process their monitored data. After processing, the data are sent to the last-tier (Cloud) to

complete the processing of more complex tasks, if needed. On the other hand, on the three-

tier model, the embedded devices are used only for monitoring the data. Then the data are

sent to the middle-tier for processing. This tier includes different technologies such as mobile

devices, normal servers or gateways and cloudlets/micro-datacenters.

Mobile devices technology: this technology includes laptops, tables and smartwatches that

are located in the same facility with the IoT devices. This technology leverages idle

computational power and storage space of the mobile devices to perform necessary

computations [35][36][39].

Normal servers or gateways technology: analogous to mobile devices technology, this

technology includes common servers that can be hosted in an Edge facility such as typical

house buildings and provide computational power to the monitored data [39]. In contrast to

the mobile devices, this technology provides more computational power and is dedicated and

fully utilized only for the processing of the IoT monitored data.

Cloudlets or Micro-datacenters (MD) technology: in this technology each Edge

deployment site can contain one or even numerous servers, called, cloudlets/MD.

Cloudlets/MD are intermediate layers that are located between the cloud and the IoT

embedded devices. The only difference between the two is that in the cloudlet technology

the software is provided by a cloudlet provider, in contrast to the MD that the users are

responsible for the software. Due to the fact that cloudlets/(MD) are small clouds they can

be referred as “datacenters in a box” [36][37][38][39]. The users can rent virtual machines

(VMs) on the nearest cloudlet/MD to process their jobs [37][39][139]. The cloudlet/MD is a

self-contained, secure computing environment that includes all necessary computation,

storage, and networking equipment to run customer applications or applications provided by

a cloudlet provider. They usually have power budget in a range of 1–100KW to meet the

application demands.

Pan
ag

iot
a N

iko
lao

u

10

There are also other models, called hierarchical, that consist of more than three tiers [8]. The

theoretical comparison between flat typical models with the hierarchical shows that the

second one is more beneficial in terms of latency [8].

Apart from the need to reduce the latency to satisfy an application’s QoS time requirement,

the communication of the data to the Cloud can lead to serious security and privacy issues,

which in some cases is unacceptable to the end users [141]. Furthermore, energy efficiency

and cost reduction are some other benefits of the edge technologies [39].

Figure 2, shows an IoT system architecture that includes both Edge and Cloud deployments.

The Edge servers are placed near the data and are responsible for data collecting from various

IoT devices, data processing and transferring a concise report to the Cloud.

Despite the substantial advantages, Edge Computing has some limitations. A major one, is

that Edge sites/facilities are power constrained [7]. Thus, the number of servers per site needs

to fit the power budget that is provided by an electricity provider and is not already allocated

for other uses. Edge facilities can be ordinary buildings with several other electrical

appliances in use. Certainly, an electricity provider can increase the power budget at a facility

but this comes with an extra cost. Consequently, Edge servers that are more power efficient

may hold the key for successful Edge deployment since they will allow more servers per site

and processing of data from more sensors without the extra costs to the electricity providers.

 Several prior works, consider the Edge-Cloud trade-offs to decide where to place highly

constrained applications and satisfy their requirements without compromising power and

Figure 2: IoT System Architecture including Edge and central Cloud deployments

Pan
ag

iot
a N

iko
lao

u

11

availability [7][8][9][141][143][144][145][146][147]. It is also worth highlighting that

existing studies of Edge deployments relied on measurements obtained from either too

simple devices (e.g. raspberry-pi) or too powerful ones (e.g. classical high-end servers)

which do not strike a fair balance between energy and performance that is essential in Edge

installations [142][9].

Chapter 4 discusses and analyzes the trade-offs of running in the Edge or the Cloud

deployments. For the Edge computational technology, the work in Chapter 4 assumes normal

servers located in the same facility with the data.

2.4 Reliability Challenges

The integration of billions of transistors on a single die increases the complexity of the

System on Chip (SoC). To this end more cores can be implemented on a single die. So even

if the failure rate decreases per transistor, the number of transistors scales in a higher rate

than the miniaturization. Along with this trend, the devices are becoming more sensitive to

errors [40], and more powerful fault-tolerant techniques are needed. On the other hand,

increasing reliability may sacrifice performance, power or cost.

Memory Reliability Challenges

A lot of studies indicate the importance of DRAM protection by presenting field large scale

analysis [41][42]. Figure 3 shows an analysis that we did in a supercomputer with 209 nodes

highlighting the importance of DRAM and cache errors. This study was based on one-year

results. Figure 3 shows the faulty nodes that experience L2 cache and DRAM errors as a

fraction of time. The Figure shows that L2 cache errors are distributed across several nodes

and different time periods whereas DRAM errors are not. An important observation is that

the total number of L2 cache errors is much lower than DRAM errors (1077 L2 cache errors,

1043041 DRAM errors). This observation motivates the investigation of more powerful

protection techniques for DRAM memories. Typically, a DRAM uses a capacitor and a

transistor to store a bit of data. Since the capacitor discharges very often, a refresh operation

is needed to not lose the stored data [43][44]. High densities can be reached because only

one transistor and one capacitor are needed to store a single bit. A DRAM is organized on a

number of DIMMS, where each DIMM consists of a number of ranks. A single rank consists

of multiple DRAM devices (or DRAM chips) where all or a subset of them operate together

to provide 64 bits.

Pan
ag

iot
a N

iko
lao

u

12

Each device can provide 4, 8 or 16 bits (referred as x4, x8 or x16, devices respectively). For

example, a 64 bit can be produced using 16 x4 DRAM devices or by using 8 x8 devices.

Each DRAM device contains 8 memory arrays called banks and a multiplexer to choose 8

bits. The banks are organized into rows and columns with each cell holding one bit of data.

Due to their similarity, main memory uses the same conventional protection mechanisms as

caches. For example, data redundancy is used both for caches and main memory arrays. More

specifically, ECC codes, Hamming [45] or Hsiao [46] can be used to detect double bit errors

and to correct single bit errors in main memory. In addition, Single-Chip error correction and

Double-Chip error detection or Chipkill [47], is commonly used for DRAM protection in

high availability servers and large-scale systems, because it has the ability to correct all the

errors that appear in a DRAM device and to detect errors in two DRAM devices. Chipkill

relies on symbol-based coding to perform error detection and correction. In a symbol-based

code, each codeword is composed of multiple symbols, with each representing a group of

bits.

Memory reliability has been the subject of many research studies. The problem is becoming

more prominent as even though the transistors scale down, the transistor count in processor

still increases. Consequently, this mismatch leads to an increase in the probability of failure

per component. Also, the increase of the number of memory components per processor, as

long as the thermal and power headroom, increases further the probability of failure and

consequently the actual failure rate. Even thought, probability of failure, per processor, is

still in lower levels, future is coming with more challenges.

Figure 3: Faulty nodes with cache and memory errors as a fraction of time

Time in Compute Timestamp

Pan
ag

iot
a N

iko
lao

u

13

Moreover, reliability is closely intertwined with power and performance. For example,

several proposed techniques provide high reliability by sacrificing performance or/and

power. On the other hand, techniques that are not so reliable, may not hurt performance

or/and power in such scale.

Chapter 6 analyzes the implications of memory errors and memory protection techniques for

different applications.

2.5 Power Challenges

Another important aspect that we tackle in this thesis is the power consumption. It is one of

the main parameters that affects TCO. TCO is defined by the amount of power that a server

consumes and the additional power required to run the server, which includes power

conversion and cooling.

Power is strictly correlated with performance (higher performance leads to more power

consumption). Basically, device dynamic power depends on the capacitance of the device,

voltage, activity and frequency as shown in the following equation:

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 = 𝐶 ∗ 𝑉2 ∗ 𝐹 ∗ 𝐴

where C is the Capacitance, V is the supply Voltage, A is the Activity and F is the clock

frequency. On the other hand, leakage power comes from the sub-threshold leakage and gate

leakage. Subthreshold leakage happens when the gate of the transistor is off but it shows

non-zero amount of current even for voltages lower than the threshold voltage (Vth) [43].

As long as the number of transistors and the transistor’s frequency increase there is more

power demand for both leakage and dynamic power.

The power efficiency of an application depends on both software and hardware components.

There are various technologies that are used from the development of a new hardware to the

use, to reduce power consumption and consequently TCO. In this thesis we are evaluating

existing hardware with several well-known techniques, that reduce power consumption.

One technique that aims to provide relief from stringent power constraints is under-volting:

operate a CPU at a lower than nominal voltage [164][169][170]. However, a naive approach

where a CPU is always undervolted, makes the CPU more susceptible to variations, such as

voltage fluctuations or voltage emergencies, which can cause timing violations or bit flips

[14][15][16] which in turn may lead to SDC errors, or even application or system crashes

[17][18].

Pan
ag

iot
a N

iko
lao

u

14

Another technique to avoid power overloads in various deployments is power capping that

enforce power budgets of individual servers [10][11] or over ensembles [12][13].

Chapter 5 proposes a new detection approach for identifying CPU under-volting settings to

prevent system from crashes and SDC errors.

2.6 Total Cost of Ownership Fundamentals

The TCO is determined by its capital and operational expenses and is influenced by the

following five main parameters:

• Infrastructure Cost: the cost of acquisition of a DC building (real estate and

development), power distribution and the cooling equipment acquisition cost.

• Server Cost.

• Networking Equipment Cost.

• Operating Expenses: the cost of electricity for servers, networking equipment and

cooling.

• Maintenance and Staff Expenses: the cost for repairs and the personnel salaries.

DC infrastructure, server and networking equipment costs represent the capital expenses,

whereas the DC operating and maintenance costs represent the operational expenses.

The TCO is determined by the sum of capital and operational expenses. Capital expenses

(CAPEX) include the cost of acquisition of a building, the power capex costs with the

electricity payment, the cooling equipment acquisition cost, the cost of acquiring the servers

including all their components and networking equipment costs. On the other hand,

operational expenses (OPEX) include operation power and maintenance costs.

 The TCO of a deployment consisting of N servers is determined as the sum of Capex Cost

(𝐶𝐶𝑎𝑝𝑒𝑥𝑖
) and Opex Cost (𝐶𝑂𝑝𝑒𝑥𝑖

) of all the servers (i) as follows [80]:

𝑇𝐶𝑂 = ∑[𝐶𝐶𝑎𝑝𝑒𝑥𝑖
+ 𝐶𝑂𝑝𝑒𝑥𝑖

]

𝑁

𝑖

An overview of the simple TCO framework is shown in Figure 4. For each different server

configuration type (compute nodes, database nodes, storage nodes), the estimation starts with

spares estimation that determines (i) the number of hot spares required to mitigate

performance variability and ensure meeting performance requirement for the peak workload,

and (ii) the number of cold spares needed due to server failures. The number of active servers,

the initial number of servers estimated assuming no variability plus the hot spares, will

determine the costs for datacenter infrastructure, server acquisition, networking equipment,

Pan
ag

iot
a N

iko
lao

u

15

and power. The cold spares are used to determine the maintenance cost. These costs are then

summed together to produce the contribution to the TCO of a given server type. The global

TCO is the sum of the contribution from all server types (shown in the above equation). Prior

works proposed to guide the Datacenter design, accounting TCO as the key parameter

[80][100][101][102][103][104][63]. We choose TCO presented in [80] as the tool that we

will extend in this thesis. This is a holistic TCO tool consisting of main parameters such as

performance and power and, thus, provides more accurate TCO results than all the other

available tools. In particular, throughout this thesis, we will investigate parameters that are

correlated with the TCO and used to provide optimizations by extending the TCO tool in

[80]. To accomplish this, we use a methodology based on correlation analysis that determines

the parameters required to minimize TCO. Furthermore, to provide TCO optimizations we

will develop several frameworks. The application architecture is also important and should

be investigated in all the evaluations. For each of the works we will explore different

applications that are related on each of the thesis objectives. Particularly we will use a high

performance computing (HPC) application (FLOREON+ [48]), an IoT application (Wireless

denial-of-service attack’s detection application [49]), a Cloud application (Web Search

[50][51]) and a lot of batch applications (Data Analytics [50][51], SPEC 2006 [52], SPEC

2017 [53], PARSEC [180] and NAS [54]). It is important to highlight that each of the

frameworks that we propose is orthogonal to any other application.

Figure 4: TCO Framework Overview [80].

Pan
ag

iot
a N

iko
lao

u

16

Chapter 3

3 Identification of Key Subset Parameters Required to Evaluate

and Optimize TCO

Various infrastructures run a diverse set of applications with different QoS requirements [5].

These requirements come in various forms, such as operational power, performance, energy,

cost and availability. Naturally, computing systems need to be configured in a way to satisfy

those application requirements [55]. To configure a system, all the different system hardware

and software knobs, such as frequency, are set at specific settings, with many remaining at a

default setting, and then, while the application runs, various monitors, such as execution

time, are observed to determine whether the different requirements are satisfied.

Unsurprisingly, the configuration space is extremely large and such configuration search

efforts are in practice adhoc and non-optimal.

One way to reduce the configuration search dimensionality and complexity, is to reduce the

requirements, monitors and knobs that need to be satisfied, observed and explored,

respectively. Reduction of a problem’s dimensionality is not a new problem for computing

system analysis [56][57][58][59]. Such reduction, typically, relies on some form of statistical

correlation, for example, principal component analysis [60][61].

In this Chapter we identify the minimum set of monitors and knobs to use for configuring a

computing system that runs a specific application while satisfying the application

requirements and provide cost optimizations. To accomplish this, we use a well-known

correlation methodology that relies on data obtained from a detailed exploration of a

configuration space.

Specifically, for this investigation we consider data obtained using eleven system monitors

when exploring many settings for six knobs.

Pan
ag

iot
a N

iko
lao

u

17

3.1 Experimental Setup-Application

We use Floreon+ application (FLOod REcognition On the Net) [48], with high QoS

requirements. Floreon+ is an online system for monitoring, modeling, prediction and support

disaster flood management [62]. The system focuses on acquiring and analyzing relevant

data in near-real time. The data are used to provide short-term flood prediction by running

hydrologic simulations.

The main processes of Floreon+ application are organized as follows:

1. Get information about actual river and reservoir situation.

2. Rainfall-Runoff (RR) modeling: simulation of surface runoff.

3. Hydrodynamic (HD) modeling: flood lake simulations, flood maps, simulations of

water elevation and water velocity, a real-time hydrological model for flood

prediction, water quality analysis, etc.

4. Erosion modeling: simulation of water erosion.

5. Collection and archiving of flood data that can be used to estimate the magnitude of

a flood based on historical evidence.

In this Chapter we are investigating the uncertainty of the RR modeling which is the most

computationally intensive part [48][62].

The application framework for the uncertainty of RR model provides an environment for

running multiple simulations every repetition, when new data arrives on a system. The

uncertainty contains information about how accurate is the solution that RR model provides.

RR model is a dynamic mathematical model, which transforms rainfall to flow at the

catchment outlet.

The uncertainty is computed as Monte Carlo samples. The Monte Carlo method gives a

straightforward way of massive parallelism by increasing the number of random values

working concurrently to obtain numerical results. Previous experiments [62] exhibit a good

scalability of the Monte Carlo method in an HPC cluster with 64 nodes of each containing

16 cores. Figure 5 shows the normal operation of Floreon+. As Figure 5 shows, a batch of

Monte Carlo iterations is running in a number of nodes (Server 1- Server n) in such a way

that application’s QoS requirements are satisfied. Each interval indicates the execution of a

different simulation. For example, the 1st interval refers to the 1st simulation. After the

execution of all the Monte Carlo iterations, the results send to a master server for processing.

The total simulation time includes the execution time of Monte Carlo iterations and the time

needed to process the results. When a simulation ends, the servers remain idle for a set of a

period. The duration of this period is determined by the availability of the new batch of data.

Pan
ag

iot
a N

iko
lao

u

18

Under normal operation (fault-free) the simulation always finishes within the time constraint.

However, there are some cases where a fault on a component can delay the execution of the

simulation, as shown in Figure 6.

These cases can be categorized in the following:

1. Delay the execution of the simulation but still the simulation finishes within the time

constraint. The availability of the system does not decrease.

2. Delay the execution and violate the timing constraint with the same number of

servers. Thus, the results of this simulation are useless and the availability of the

system decreases.

3. Delay the execution and violate the timing constraint with less servers. In this case

the faulty server needs to be taken offline until it is repaired or replaced. In this case

the results are lost and the availability decreases.

Figure 6 illustrates the last case where the server needs to be taken offline until it is repaired

or replaced. As shown in the figure, the number of servers in the 3rd interval is decreased and

the job is assigned to the remaining servers until the faulty server is repaired or replaced.

Figure 5: Floreon+ normal operation

Pan
ag

iot
a N

iko
lao

u

19

3.1.1 Application Requirements

Floreon+ has two running operation modes, the standard operation mode and the emergency

operation mode. Both have different requirements. Standard operation mode is the default

operation of the system. In this operation the weather is favorable and the flood warning level

is below of the critical threshold.

On the other hand, on the emergency operation mode the water in the rivers rises due to

continuous rain or free-flowing streams that are created due to heavy rainfall on small areas.

During this operation mode much more accurate and frequent simulation computations are

needed and the results should be provided as soon as possible. In this work we focus on the

emergency operation which has tighter timing requirements and consequently we will

highlight better the correlation.

3.1.2 Availability and QoS Requirements

The reliability and availability target of Floreon+ running on emergency operation is

accomplished through a combination of hardware/software mechanisms and policies. This

also aims at satisfying the QoS requirements even in the presence of errors and offline

servers. These mechanisms typically rely on hardware and software monitors and knobs.

Figure 6: Floreon+ operation with faults

Pan
ag

iot
a N

iko
lao

u

20

In general, when a server fails and if its repair time is expected to be long, the system software

migrates the failed job to another server. The failure of the server is detected by a hardware

or software monitor. The migration is possible because for QoS and availability reasons.

Usually, computing systems are over-provisioned with spares for dealing with errors and

offline servers. Server over-provisioning is determined by the availability of a system. The

less available system, the more servers needed [63].

Because of its significance, emergency operation requires responsiveness in 10 minutes for

each simulation. Also, it must provide high levels of availability, two nines (0.99), which

may require over-provisioning with extra servers to deal with various hardware failures.

Floreon+ and other offline services can run together (collocated) to improve utilization

[64][65]. Specifically, when Floreon+ satisfies the QoS requirements without using all the

available cores in a server, the remaining cores can run other services. This must be done

without affecting the QoS of Floreon+ and violating its requirements. Since we are going to

explore the emergency operation, Floreon+ is running in isolation, utilizing all the available

resources without any other service concurrently running on the same server.

3.1.3 Accuracy on Monte Carlo Iterations

It is of utmost importance that the results are as precise as they can. The precision of the

simulated results is based on the number of Monte Carlo iterations [66]. It has been shown

in [66] that the number of iterations has to be in the order of 10 4 to 10 5 to obtain a satisfying

precision. In this work, we assume 20000 Monte Carlo iterations that has to be computed

before the deadline (i.e. ten minutes, since new input data arrives from weather stations) as

the baseline configuration.

Table 1 summarizes the specific values for the requirements of the Floreon+ application.

Table 1: Floreon+ Requirements

Performance Simulation  10 minutes

Accuracy  104 MC iterations

Availability  0.99

Power  81 Watts

Energy  48600 Joules

Pan
ag

iot
a N

iko
lao

u

21

3.2 Available Monitors and Knobs in Real Systems

A large number of monitors and knobs exist in real systems. Monitors enable the observation

of physical, micro-architectural, and operating system phenomena that can assess the status

of a system as well as the progress towards completing a task. On the other hand, knobs

enable the proactive or reactive control of various phenomena.

Monitors and knobs in real systems can be categorized into the following categories

depending on what metric they influence: performance, power, temperature and reliability.

Table 2 shows the monitors and knobs that are going to be explored in this work. This subset

is by no means comprehensive and future work should consider a larger set.

Monitors that are going to be investigated are: execution time, Instructions per Cycle (IPC),

Misses per kilo Instructions (MPKI), DRAM, CPU and peak power and CPU temperature.

Also, Mean Time Between Failures (MTBF) per server and for the whole system is used

through analytical models and Failures in Time (FIT) rates [41]. Finally, CAPEX and OPEX

expenses are going to be estimated based on publicly available info, e.g. list prices, and

runtime measurements. CAPEX expenses include infrastructure, server and networking

equipment costs, whereas OPEX expenses include power and maintenance costs.

Table 2, also shows the different knobs that we are going to experiment with. As the table

shows, we use Simultaneous Multi-Threading (SMT) [67], Dynamic Voltage and Frequency

Scaling (DVFS) [68], data prefetchers [69] and Intel’s Turbo Mode [70]. Also, this work

provides results with and without redundant cores. Redundant cores are used to improve the

reliability of the system by migrating the running thread of a faulty core to a spare [71]. For

the redundancy scenario it is assumed that half of the cores remain idle to provide higher

availability. On the other hand, in the scenario without redundancy all the available physical

Table 2: Monitors and Knobs list

Monitors Knobs

Execution Time

Instructions per Cycle (IPC)

DRAM Power

CPU Power

Peak Power

CPU Temperature

Misses per Kilo Instructions (MPKI)

Server MTBF

System MTBF

Capex Expenses

Opex Expenses

DVFS

SMT

DRAM Protection

Turbo Mode

Prefetchers

Redundancy

Pan
ag

iot
a N

iko
lao

u

22

resources are utilized. Furthermore, this study explores the implication of using two different

DRAM Protection Techniques (No Protection or ChipkillDC).

DRAM is protected from errors by using extra devices per DIMM to store Error Correction

Code (ECC) bits. Modern processors usually support Chipkill with 16 ECC bits to protect

128 data bits that are interleaved across two DIMMs placed in two channels [72][73][74].

This is referred as ChipkillDC or Lockstep where it can correct all the errors in a single

device and detects all the errors in two devices [72]. Chipkill can waste bandwidth, hurt

performance and increase energy consumption [75][76][77]. On the other hand, No

Protection does not provide any protection on DRAM.

3.3 Experimental Framework and Correlation Analysis

3.3.1 Experimental Framework

For evaluation, we use a cluster with dual socket Intel Xeon E5-2640 v3 system

configuration, as shown in Table 3.

We run each experiment 5 times, and each time we monitored all the monitors presented in

Table 2. The results presented are calculated by removing minimum and maximum values

and calculating the average.

To change the knobs, prefetchers and DRAM protection techniques we access BIOS, through

a BIOS Serial Command Console interface (CLI) [78].

Our evaluation used Floreon+, an HPC application with a dataset of 44KB. This is a

representative dataset size for the application purposes, that is used in reality, because it uses

five days observations to provide predictions for the next two days.

All the power numbers are collected using the Likwid-powermeter [28] which allows

monitoring the power consumption of CPU and DRAM at any given time. The results are

used to calculate total power and peak power numbers.

Table 3: Server Configuration

Number of CPUs

CPU

Number of cores per CPU

Number of threads per core

2

Intel Xeon E5-2640 v3

8

2

Channels per CPU

DIMMs/channel

DIMM capacity

4

2

16GB

Pan
ag

iot
a N

iko
lao

u

23

To track CPU temperature, we use lm-sensors [79]. To estimate Server MTBF and System

MTBF monitoring values, as well as, availability values we use different analytical models

based on binomial probabilities.

Also, to estimate CAPEX, OPEX expenses as well as total cost we use COST-ET and

AMPRA tools proposed in [80][63].

For a baseline configuration, we select the one that is currently used to run this application

and includes the following values for each parameter: SMT: OFF, Frequency: 2.6 GHz,

DRAM Protection: No Protection, Turbo Mode: Enable, Redundancy: 0 (No), Prefetchers:

ON.

The data used for correlation analysis are obtained by exploring the 128 combinations of

knobs presented in Table 4. For each configuration combination the eleven monitor values

are recorded.

3.3.2 Identification of the Key Subset of Parameters

The analysis to reduce the number of monitors and knobs that are correlated with the TCO

is described below. The data that drive this analysis are obtained as described in the previous

Section. The correlation analysis is done using the R statistical language [81].

The methodology used, is as follows:

1. For a given monitor, we compute the correlation coefficient (using Pearson

correlation analysis) with all the other monitors. For each pair (xi ,xj) of monitors i

and j, where ij, that exhibit significant correlation coefficient (above a 90%

threshold, the specific threshold is picked from empirical analysis), we check which

of the two monitors can be removed. The monitor that shows smaller correlation

coefficient with all the other monitors is removed from the list. This process is iterated

over all remaining monitors.

Table 4: Values of Knobs

Knobs Value

DVFS 1.2, 1.7, 2.2, 2.6 (GHz)

SMT Disable, Enable

DRAM Protection No Protection, ChipkillDC

Turbo Mode Disable, Enable

Prefetchers Disable, Enable

Redundancy Disable, Enable

Pan
ag

iot
a N

iko
lao

u

24

2. Furthermore, we compute the correlation coefficient between the TCO and all

remaining monitors and select the monitors with the highest correlation above a 70%

threshold.

3. For all the remaining monitors and all the available knobs, we compute the

correlation coefficient between them and knobs that have a correlation coefficient

above a 40% threshold (the specific threshold is picked from empirical analysis) are

kept.

This analysis aims to reduce the number of configurations that need to be explored to

determine the configuration that provides the highest satisfaction of the TCO according to

the ranking described above. Specifically, the analysis returns a subset of the monitors and

knobs. All possible configuration combinations are then evaluated for the selected knobs.

For the knobs that are not selected we used the baseline configuration values. Afterwards,

the selected configurations are sorted according to the selected monitor(s) value(s) (if there

is more than one monitor, equal weighting is used to combine them). The top ranked

configuration using the selected knobs and monitors is then compared with the configuration

that considers all. Their difference is measured as the maximum negative percentage

difference for any of the requirements (if it is 0 for all it means it matches the best possible

configuration).

3.4 Results

3.4.1 Correlation Between Monitors, Knobs and Cost

Our analysis reveals that OPEX cost is strictly correlated with CPU power and thus we

removed OPEX from the list of monitors and the presented results.

Figure 7 shows the results of correlation analysis between TCO and the explored monitors.

X-axis presents the list of monitors except OPEX, whereas the y-axis presents the correlation

coefficient between monitors and cost (TCO). The correlation coefficient ranges from -1 to

+1. A value closer to +1 means that this monitor has almost a linear relation with the TCO.

A value closer to -1 means that this monitor has an inverse relation with the TCO. A value

closer to 0 means that there is no correlation between the monitor and TCO.

As we can see from Figure 7, TCO can be monitored by Execution Time, Server MTBF,

CPU Power and Capex cost, because they experience correlation above 0.7. The most

correlated monitor is the CAPEX cost. CAPEX cost consists mainly of the number of servers

Pan
ag

iot
a N

iko
lao

u

25

that are needed for a datacenter. These servers can be the initial servers, hot spares and cold

spares.

Finally, Figure 8 shows, the correlation between knobs and monitors. X-axis presents the

remaining list of knobs for each monitor, whereas the y-axis presents the correlation

coefficient between knobs and monitors. As we can see from the Figure, DVFS, SMT,

DRAM Protection and Redundancy are the selected knobs. On the other hand, Turbo Mode

and Data prefetching can be reduced from the search space.

Figure 7: Correlation analysis, showing the correlation coefficient between

Monitors and TCO

Figure 8: Correlation analysis, showing the correlation coefficient between

Monitors and Knobs

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency SMT Redundancy

CAPEX

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency SMT Redundancy

Execution.Time

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency SMT Redundancy

CPU.Power

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency SMT Redundancy

CAPEX

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency SMT Redundancy

Execution.Time

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency SMT Redundancy

CPU.Power

Server. MTBF

DRAM Protection
Pan

ag
iot

a N
iko

lao
u

26

3.4.2 Validation of the Selected Monitors and Knobs

Figure 9 validates the selected monitors and knobs by evaluating the best configuration that

includes all the monitors and knobs with the subset of monitors and knobs revealed from the

correlation analysis.

This graph, shows the normalized with the default configuration (the initial configuration of

the system) TCO improvement between the best configuration and the selected monitors and

knobs revealed from the correlation analysis. As can be seen from Figure 9, TCO can be

improved by changing the system configuration, by 2.4x tines compared to the default

configuration. Moreover, the Figure shows that the results based on the correlation analysis

are very close to the results with the best configuration. The error among the two is around

3%. This indicates that the selected monitors and knobs are the appropriate for TCO

estimations and optimizations. All the selected monitors and knobs are used for further

exploration in the following Chapters.

Figure 9: Improvement among the default configuration, correlation analysis

predicted configuration and the best configuration

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

4,5%

5,0%

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9

2
2,1
2,2
2,3
2,4
2,5

Best Configuration Correlation analysis

P
e

rc
e

n
ta

ge
 o

f
Er

ro
r

Im
p

ro
ve

m
e

n
t

o
ve

r
th

e
 d

ef
au

lt

co
n

fi
gu

ra
ti

o
n

Cost Error

Pan
ag

iot
a N

iko
lao

u

27

Chapter 4

4 Investigation of the TCO Benefits of Running IoT

Applications at the Edge vs. the Cloud

 Edge/Fog computing is a recently introduced approach that has the potential to ensure the

sustainability and scaling of the Internet in the IoT era. This paradigm advocates for the

execution of services closer to the sources of data [6][132], aiming this way to reduce

application latency between the end user and the datacenter and at the same time relaxes the

pressure on network bandwidth. Figure 10, shows the cumulative distribution of the end-to-

end latency when a specific application runs in Edge and Cloud deployments.

The end-to-end latency includes the network and compute time of the application (details

about the methodology used to obtain these results are given in Section 4.4). Figure 10

reveals considerable difference between the End-to-End latency for the Cloud and Edge

deployments. As can be seen, this difference may be as large as 100 milliseconds. For a high

QoS response time constraint application this extra 100 milliseconds latency may render

infeasible to run the application on the Cloud or in the best case requires an expensive Cloud

deployment to ensure fast processing latency.

Figure 10: End-to-End Latency for running the application in Edge and Cloud

deployments

 Pan
ag

iot
a N

iko
lao

u

28

 Recent studies develop schemes that manage the data processing of IoT applications across

distributed datacenters [7][8][9]. In these studies, data are transferred from IoT sensors to

local micro-datacenters for pre-processing and selection which of the data to forward to a

centralized datacenter. Examples of IoT applications with a tight response time and QoS

constraints include face recognition [146][147], traffic counting and video processing

applications [168], as well as, applications for detecting jamming attacks of wireless

networks [133] [160]. All these applications consist of sensors that collect and send data to

a processing device. Their main QoS requirement is the response-time and, therefore, are

naturally suited for Edge deployments. However, servers used to run these applications can

only process, within a required detection time window, data from a limited number of

sensors, or put in another way, servers oversubscribed to process data from many sensors

will suffer from QoS violations. Moreover, each sensor covers a fixed area and Edge

deployments have limited power budget for servers per installation. Consequently, an Edge

installation may be able to support a limited number of sensors and cover a limited area. This

highlights a key challenge for the successful realization of Edge computing: the area covered

by the sensors. Evidently, the most critical challenge for the successful Edge deployment is

the efficient use of the limited power of an Edge installation. Exceeding the power cap of the

facility is unacceptable as there will be a disruption of power. To avoid such overloads, both

Edge and Cloud deployments rely on power capping schemes that enforce power budgets of

individual servers [10] [11] or over ensembles [12][13]. In this regard, the use of more power

efficient servers, facilitates the increase of area coverage without exceeding the Edge’s or

Cloud’s power budget.

In this Chapter, we characterize an IoT application with tight response time QoS

requirements using a state-of the art 64-bit ARMv8 based micro-server. Such a server is an

excellent representative of the high-performance devices based on energy efficient-

embedded devices that are required to support Cloud services at the Edge without complex

cooling and power supply infrastructures. We evaluate the trade-offs among the area

coverage, power efficiency and QoS when running the applications in an Edge vs a Cloud

environment. To accomplish this, we rely on a new metric: the Total Cost of Ownership

(TCO) over area coverage.

 To the best of our knowledge, this is the first work that provides a holistic evaluation that

considers different metrics, such as TCO, QoS, area-coverage and power efficiency, using

an energy efficient and high-performance device.

Pan
ag

iot
a N

iko
lao

u

29

4.1 Background and Challenges

4.1.1 Wireless Denial of Service Application

The application that we evaluate is a Wireless Denial of Service (WDoS) attack’s detection

application [49]. Current wireless networks are vulnerable to attacks by devices readily

available in the market [134]. Such devices can essentially jam a wireless network and thus

disrupt any running application. The WDoS application processes data, sent by sensors that

continuously scan the wireless spectrum and, with the assistance of signal processing

algorithms and filters, detects jamming attacks. WDoS prevention applications can detect

jamming attacks and increase the availability of secure and resilient wireless networks used

to connect the IoT devices at the Edge.

Wireless networking plays an important role in achieving ubiquitous computing where

network devices are embedded in environments that provide continuous connectivity and

services, thus improving human’s quality of life.

 However, due to the exposed nature of wireless links, current wireless networks can easily

be attacked by jamming technology. Jammer detectors are commercially available as

countermeasures against jamming systems [148][149][150][151][152][153][154] [155][156]

[157][158][159][160][161][49]. In this work, we evaluate one of these WDoS solutions [49].

 WDoS is a standalone solution that monitors the entire wireless spectrum using various

sensors to detect anomalies derived from a Denial of Service attack which renders all the

wireless devices useless. This solution does not need to be integrated internally in the

wireless network, and offers a wide and easy-to-deploy solution for the most heterogeneous

and challenging critical infrastructure wireless environments. To that end, the WDoS firstly

performs a detailed analysis of the radio frequency spectrum, and then processes the acquired

data to identify potential anomalies, giving rise to alarms and warning messages.

 The WDoS solution uses several sensors with antennas connected to a Software Defined

Radio (SDR) module which digitalizes the radio spectrum to a binary stream and transmits

this to a processing board. The board processes in real time the incoming data while applying

different filters and algorithms to match the signals found to four types of well-known

jamming signals: Pulsed Jammer, Wide Band Jammer, Continuous Wave Jammer and LFM

Chirp Jammer. When the WDoS application detects an attack, this incident is communicated

by the processing board to the monitoring server that runs on a separate machine. Finally, a

Pan
ag

iot
a N

iko
lao

u

30

visualization tool visualizes all the attacks reported to the monitoring server in real time. The

main architecture of the solution is shown in Figure 11.

Powerful Edge servers would allow the processing board to be simple and low cost, as it can

concentrate the processing of high amounts of radio frequency spectrum data at the Edge.

With powerful Edge servers, more than one instances of the processing application can be

executed on the processing board (Edge server) by connecting various sensors on it and

reducing the number of processing boards. The jammer detection results can be transmitted

to the Cloud for storage, visualization, and post-processing.

4.1.2 WDoS Application Requirements

 The WDoS application has several requirements in terms of availability, timing QoS, data

transition ratio and sensor’s area coverage.

4.1.2.1 Availability Requirements

 Availability greatly depends on the type of installation in which the solution is deployed.

Some of the most demanding installations require 99% availability of the attack detection

service, i.e. the service should be available in 99% of the total service time. For some

installations, such as smart construction service monitoring deployments, the availability is

not so critical because of a low level of criticality of a service or a small amount of data

transferred for the processing, which could be a few bytes per hour or even less. Availability

of 50% or less should be optimal for shopping malls or train stations, where the wireless

network is used by users for non-critical purposes, such as recreational activities.

 In this work, we consider the high availability requirement of 99% to evaluate a highly

constraint deployment of the application.

Figure 11: Architecture of DoS Jammer Detector Application including Edge and

Cloud Deployments

Pan
ag

iot
a N

iko
lao

u

31

4.1.2.2 Quality of Service (End-to-End Latency) Requirements

 We measure the WDoS latency as the time it takes to detect an attack. This time is a function

of the width of the band that is analyzed. The QoS for the detection time is 400 milliseconds

for the 90% of the decisions (if it is jammer detection or not) on a 5 MHz band. This is the

end-to-end time that includes both the transmission time of the data to the processing board,

as well as, the compute time for processing the data. Thus, QoS is determined by the sum of

the processing time and the data transmission time over the network. Overall, a high-

performance computing server may help to reduce the detection latency but this comes at a

cost of increased energy consumption.

4.1.2.3 Data Transmission Rate

 The highest data rates exist between the SDR module and the Processing Board. In this case,

the maximum rate is 305 Mbps (5 Msps) and the lower rate is 30.5 Mbps (0.5 Msps). Higher

data rates enable better detection accuracy, however lower rates can be also useful. The data

transmission rate between the processing board and the monitoring server is much lower, as

the processing board transfers only about detected attacks, i.e. the type of a jammer attack,

frequency, jammer power and a timestamp. This will result in about 100 bytes of payload

per packet and a minimum of 40 packets per second (one packet per decision per algorithm).

 To assess the benefits of Cloud deployment, we use the lowest data transmission rate,

imposing an assumption that there is no any bandwidth degradation.

4.1.2.4 Sensor’s Area Coverage

Each sensor that monitors the wireless band of 2.4GHz covers an area of approximately 25

square meters. Thus, in real deployments, several sensors should be used together to cover a

large area, such as a shopping center floor or an airport security screening area. For such

areas, multiple instances of the WDoS application should be run on the same processing

board. However, this might stress the hardware and increase the processing time, as well as

power consumption. Power consumption is directly related to the number of hosted servers

and running workloads. The peak power consumption became an increasingly important

hardware feature in many facilities, since it cannot exceed the power budget provided by the

electricity suppliers. This implies that the number of sensors and processing boards that can

be installed in a facility depends on the available power budget at a given site. At the same

time, a low power budget may not allow to use as many sensors as required to cover a specific

area. As a result, the 100% area coverage may not be achieved for some deployments.

Pan
ag

iot
a N

iko
lao

u

32

 All the described requirements that used for this analysis are summarized in Table 5.

4.2 System Architecture

 To estimate the TCO and area coverage of a specific deployment we use the architecture

described in Figure 12. The figure shows that the electricity provider delivers a specific

power budget to each site. The figure shows five facilities with different power budgets. Let

us assume that three of them (facilities 1, 3, 4) use basic Edge servers for processing the data,

whereas facility 2 sends and processes the data in the Cloud and facility 5 uses more power

efficient Edge servers to process the data. Figure 12 also shows three bars next to each facility

that represent the power budget for each facility (red bar), the cost that depends on the servers

that can be operated within the specific power budget (green bar) and the area coverage of

the sensors for the specific location which depends on the sensors that can be processed by

each server (blue bar). For simplicity, we assume facilities with 100m2 area. Consequently,

to ensure a 100% area coverage for this application, four sensors per facility are required

(one per 25 m2 as described in the application requirements). The figure shows that the more

the area coverage is achieved, the more power budget is available, more servers are

accommodated and the higher the cost. On the other hand, even though facility 2 provides

full area coverage, it needs less power budget because it transfers and processes the data only

on the Cloud. However, this option may not meet the QoS time requirement. Finally, facility

5 is shown to have full coverage with the same power budget as facility 4, that only achieves

three quarters of the area coverage. This is made possible from the use of more power

efficient servers that allow more servers to be operated within the same power budget.

Table 5: WDOS Jammer Detection Application’s Requirements

Requirement Description

Availability 99%

QoS (End to End Latency) 90th percentile of the decisions

need to be under 400ms

Desired Area Coverage 100%

Pan
ag

iot
a N

iko
lao

u

33

The following equation shows how the area coverage is determined:

𝐴𝑟𝑒𝑎 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠

This equation shows that area coverage is correlated with the number of sensors

(EstimatedSensors) that can be placed in a facility and the required number of sensors

(RequiredSensors) that are needed to cover 100% of the specific area which is equal to: (total

facility area)/(area covered per sensor). To determine the EstimatedSensors number we use

the following equation:

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠 = 𝑀𝐴𝑋𝑖
𝑚𝑎𝑥𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ⌊

𝑃𝑜𝑤𝑒𝑟𝐵𝑢𝑑𝑔𝑒𝑡

(𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑜𝑤𝑒𝑟𝑖 ∗ 𝑃𝑈𝐸)
∗ 𝑖⌋

The actual number of sensors that can be deployed is estimated by considering the number

of instances per server (number of sensors that data are getting processed on a server). The

power of each server configuration that runs specific number of instances is multiplied by

the power usage effectiveness (PUE) and then divided by the PowerBudget that corresponds

to the power available at a given facility. PUE is a ratio that describes how efficiently a

computer DC uses energy. Then, the result is multiplied by the number of instances, i. The

Figure 12: Architecture of Edge servers in different locations

Electricity Provider

Facility 4

Sensor for Detecting

Wireless Jamming Attacks

Edge Server

Facility 1

Facility 2

…

Facility 3

1
0
0
m

2

1
0

0
m

2

1
0
0
m

2

1
0
0
m

2

Facility 5

1
0
0
m

2

A
re

a
 C

o
v
e
ra

g
e

C
o

s
t

P
o

w
e
r

B
u

d
g

e
t

Power Efficient

Edge Server

Internet

A
re

a
 C

o
v
e
ra

g
e

C
o

s
t

P
o

w
e
r

B
u

d
g

e
t

A
re

a
 C

o
v
e
ra

g
e

C
o

s
t

P
o

w
e
r

B
u

d
g

e
t

A
re

a
 C

o
v
e
ra

g
e

C
o

s
t

P
o

w
e
r

B
u

d
g

e
t

A
re

a
 C

o
v
e
ra

g
e

C
o

s
t

P
o

w
e
r

B
u

d
g

e
t

Pan
ag

iot
a N

iko
lao

u

34

total number of servers that are needed to host the specific number of instances is then

obtained from:

𝑁 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠

𝑖

The number of servers, N, and power per server is fed to the TCO model to determine the

TCO of the deployment.

 The metric that we optimize in this work is the TCO over Area coverage which captures

both metrics of interest, as follows:

OptimizationMetric =
𝑇𝐶𝑂

𝐴𝑟𝑒𝑎 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒

4.3 Characterization Framework

 To improve energy efficiency of a micro-server, we need to investigate the operation limits

of voltage and memory refresh rates. Exposing the safe voltage margins of an application is

a time-consuming and difficult process due to several abnormal behaviors that can exist

[163][164][165][166]. To this end, we developed an automated characterization framework,

which is outlined in Figure 13, (1) to identify the target system’s limits when it operates at

scaled voltage, frequency conditions and DRAM refresh rates, and (2) to record/log the

effects of a program’s execution under these conditions. The automated framework (outlined

in Figure 13) is easily configurable by the user and can be embedded to any Linux-based

system, with similar voltage and frequency regulation capabilities. The characterization

framework [163][164] consists of three phases (Initialization, Execution, Parsing). During

the initialization phase, a user can declare a benchmark list with corresponding input datasets

to run in any desirable characterization setup. The characterization setup includes the voltage

and frequency (V/F) values on which the experiment will take place and the cores where the

benchmark will be run. To reduce the DRAM power, we adopt the framework to characterize

DRAM reliability operating under different refresh rates and the supply voltage. Particularly,

we use this framework to identify the optimal DRAM refresh rate and voltage which does

not trigger uncorrectable errors or system crashes. The execution phase consists of multiple

runs of the same benchmark, each one representing the execution of the benchmark in a pre-

defined characterization setup. The set of all the characterization runs running the same

Pan
ag

iot
a N

iko
lao

u

35

benchmark with different setups represents a campaign. In the parsing phase of our

framework, all log files that are stored during the execution phase are parsed in order to

provide a fine-grained classification of the effects observed for each characterization run.

We have also extended the error reporting capabilities of existing mechanisms (i.e. ECC in

caches and DRAMs) with system configuration values, sensor readings and performance

counters for identifying correctable (CE) and uncorrectable errors (UE). In addition, to

account for any undetected error and essentially detect any SDC that could go undetected by

ECC, we compare the output of each execution with a golden reference.

 The framework provides the following features; it:

• compares the outcome of the program with the correct output of the program when

the system operates in nominal conditions to record SDCs,

• monitors the exposed corrected and uncorrected errors from the hardware platform’s

error reporting mechanisms

• recognizes when the system is unresponsive to restore it automatically,

• monitors system failures (crash reports, kernel hangs, etc.),

• determines the safe, unsafe and non-operating voltage regions for each application

for all frequencies, and

• performs massive repeated executions of the same configuration.

Figure 13: Characterization framework layout

Initialization

Execution

Benchmark

Results

Voltage

Reduction

Configuration

Reset Switch

Power Switch

Watchdog

monitor

Execution Loop

Result

Parsing Final CSV

Results

Raw data

Cloud

In
itia

liz
a
tio

n

P
h

a
s
e

E
x
e
c
u

tio
n

P
h

a
s
e

P
a

rs
in

g

P
h

a
s
e

Serial

Network

Pan
ag

iot
a N

iko
lao

u

36

4.4 Experimental Setup

4.4.1 Cloud and Edge Architecture

 To evaluate Cloud and Edge deployments we use real network traces from both Amazon

servers and local servers, respectively. Specifically, for the Cloud evaluation we profile

network latency by pinging for one week an Amazon server located in London [167]. London

is chosen because, after profiling several sites, it has the lowest network latency. So, it would

be obviously a better choice in the Cloud setup. On the other hand, for the Edge evaluation,

we profiled for one week the network latency of a server hosted in the same building.

 For the compute time, in this analysis we measure the time spend in the ARM processors by

emulating the processing board of WDoS application, as shown in Figure 11, because this is

the most critical processing component of the application. For the Cloud versus Edge

evaluation we considered that the same type of processing board is used either in the Cloud

or in the Edge, in order to make them comparable. To estimate the total QoS, we convolute

the distributions of network latency results for one week and the compute time results of the

processing board.

 Several sensors can be attached to each of the processing boards. For this analysis we assume

that up to 8 sensors can be attached, equal to the number of cores in the Processing Board’s

CPU. Each sensor corresponds to one application instance. So, the processing board can

collocate a maximum of eight instances. Attaching more sensors per server was not feasible

due to the excessively high compute time that leads to QoS violations.

4.4.2 TCO Input Parameters

 The main TCO input parameters used in this analysis are shown in Table 6. We consider

8000 sensors, in total, that cover an area of 200,000 m2. This is representative of a large

public building. In the Edge deployment we assume that the micro-servers are distributed in

100 different locations within the building, with 80 sensors located nearby location. On the

other hand, for the Cloud deployment all servers are assumed to be placed in one location.

For the centralized Cloud, cooling cost, cost of electricity, network cost and the maintenance

personnel salary per rack are higher than the Edge configuration. The cooling cost of the

Cloud deployment is expected to be much higher than the cooling cost of the Edge

deployment as a centralized large datacenter requires much more sophisticated and expensive

cooling infrastructure. Regarding electricity costs, the more devices that the centralized

Pan
ag

iot
a N

iko
lao

u

37

Cloud hosts, the higher power budget is needed and the higher costs are paid to the electricity

provider, as this large absolute peak power is reflected in the cost of the electricity. Also,

network per rack cost is related to the servers that are placed per rack. For Cloud

configuration we assumed racks of 42 servers, whereas for Edge deployments we assumed

at most racks with 10 servers, due to the power constrained Edge facilities. In addition, Cloud

Power Usage Effectiveness (PUE), is significantly more that the Edge configuration, since

cooling is a power-hungry system and uses a non-negligible fraction of the datacenters

power. Finally, for Mean Time to Repair (MTTR) of a faulty component we assume that an

Edge faulty component can be replaced within 24 hours whereas in a Cloud configuration,

the faulty component can be replaced within 1 hour. This difference is primarily justified by

considering the geographical distribution of Edge facilities. The MTTR difference is also

reflected in the maintenance personnel salary per rack.

4.4.3 Micro-Server Architecture

 The server that we use to characterize the WDoS application on, is a state-of-the-art 64-bit

ARM based Server-on-Chip, is Applied Micro's (now Ampere Computing) X-Gene 2. X-

Gene 2 platform provides knobs for under-volting the various components that are explored.

The micro-server consists of eight 64-bit ARMv8-compliant cores running at 2.4 GHz,

Table 6: Edge and Cloud Configurations

Cloud

Configuration

Edge

Configuration

Total Number of Sensors 8000

Number of Locations 1 100

Cost of Cooling 3.5 $/kwh 0.019 $/kwh

Cost of electricity 0.08$/kwh 0.07671$/kwh

Network per rack [63] 5000$ 1190$

Maintenance salary

per rack
208$ 8.68$

Power Usage Effectiveness (PUE) [162] 1.3 1.1

Mean time to replace a faulty component 1 h 24 h

 Pan
ag

iot
a N

iko
lao

u

38

grouped in 4 Processor Modules (PMD), which have a separate 32 KB LI instruction cache

and 32 KB L1 data cache for each core and a 256 KB unified L2 cache for each PMD. There

is also an 8 MB L3 cache which is shared across the whole chip (all 8 cores). There are 4

available memory channels with DDR3 memories.

 The X-Gene 2 provides access to a separate Scalable Lightweight Intelligent Management

Processor (SLIMpro), a special management core, which is used to boot the system and

provide access to on-board monitors for measuring the temperature and power of the SOC

and DRAM. The SLIMpro, also reports to the Linux kernel all errors corrected or detected

by the provided error-correcting codes (ECC) and the parity. Finally, SLIMpro has

configuration parameters of the Memory Controller Units (MCUs), such as refresh period

(TREFP). The server runs a fully-fledged OS based on CentOS 7 with the default Linux

kernel 4.3.0 for ARMv8 and supports 4KB and 64KB pages.

 After characterizing it we choose the voltage levels that do not affect the availability of the

system, called safe margins. These margins are used to evaluate the efficient Edge

deployment.

4.5 Characterization Results

 The WDoS application running on the Processing Board and its dependencies have been

ported and tested on the X-Gene 2 host platform by using the characterization framework.

The generated results need to be deterministic and repeatable. This is mandatory because in

order to detect SDCs among different runs, the output needs to be compared and verified.

For this purpose, data sets obtained from recording real life jammer signals, were used as

inputs for the application tests. We run the application with various numbers of instances to

obtain the trends of the effectiveness. The characterization process reveals the lowest

operating limits that achieve the highest power savings without compromising the

availability of the system as shown in Table 7.

Table 7: Nominal and Efficient Operating Settings

Nominal Settings Efficient Settings

PM D Voltage 980 920

SoC Voltage 950 870

DRAM Voltage 1500 1428

DRAM Refresh

Rate in ms
78 2783

Pan
ag

iot
a N

iko
lao

u

39

Table 8, shows the characterization results running with the nominal and the most energy

efficient settings.

As can be seen from Table 8, the peak and average power can be decreased by 8 and 5 watts,

respectively. This reduction corresponds to around 9% savings of the processor power.

Moreover, temperature can be decreased by about 3 degrees Celsius and thus, help reduce

the need for cooling and can help lifetime reliability.

 The findings of the characterization in this Section are used as inputs for the TCO analysis.

4.6 TCO Analysis

 This Section reports the TCO analysis of the Edge compared to the Cloud deployment and

examines the benefit from more energy efficient micro-servers in the Edge.

4.6.1 Selection of the Number of Instances in Edge and Cloud Deployments

 We first evaluate the end-to-end latency of Cloud and Edge deployments in order to select

the appropriate number of instances to run in the processing board and at the same time not

violate the QoS constraints of the application.

 Figure 14(a) and Figure 14(b) show the cumulative distribution of the Cloud and Edge End-

to-End latency for different number of instances, respectively.

Table 8: Characterization results running WDoS application with Normal Setting

and Efficient Settings

Running Dos Application with Normal Settings Running Dos Application with Efficient Settings

Idle
1

Instance
2

Instances
4

Instances
8

Instances
Idle

1
Instance

2
Instances

4
Instances

8
Instances

Peak Server
Power

67.91 72.81 80.66 88.26
Peak Server

Power
63.53 67.64 74.11 80.86

Avg. Server
Power

57.43 64.70 69.18 75.79 80.77
Avg. Server

Power
54.19 61.21 64.90 70.77 75.17

Avg. PMD
Temperature

43.38 59.96 62.15 65.36 69.01
Avg. PMD

Temperature
42.98 57.71 58.77 60.81 64.68

Avg. SoC
Temperature

44.61 59.41 60.49 62.18 65.17
Avg. SoC

Temperature
44.05 58.65 59.29 60.19 62.97

Avg. DRAM
Temperature

47.58 62.45 63.06 64.05 66.82
Avg. DRAM
Temperature

47.71 62.51 62.91 63.61 66.17

Pan
ag

iot
a N

iko
lao

u

40

As the Figure 14(a) shows running 8 instances per server, at the Cloud, is not feasible because

this configuration violates the QoS requirement of 400ms for the 90th percentile of the

decisions. So, the preferable configuration is the one that uses 4 instances per processing

board that corresponds to 4 sensors per board. On the other hand, the QoS results of Edge

deployment show that the processing board can simultaneously run 8 instances without

violating the QoS requirements of the application. This happens due to the lower network

latency of the Edge deployment.

For the rest of the results we use maximum 4 instances per processing board for the Cloud

deployment and maximum 8 instances per processing board for the Edge deployment, as

well. This requires the use of 2000 servers for the centralized Cloud deployment and 1000

servers for the distributed Edge deployment, in total. In addition, for each Edge locations,

there is a placement of 10 servers per location that we assume can operate within the available

power at each facility.

4.6.2 Edge Versus Cloud TCO

 Figure 15, illustrates the normalized TCO breakdown results with Edge Deployment, for

both the Edge and the Cloud. As the Figure shows, the Cloud TCO is 2.13 times higher than

the Edge TCO. This corresponds to 80996 dollars more in the Cloud than the Edge facility

per month. Particularly, the all the Edge deployments, needed in this analysis spend around

71800 dollars, whereas Cloud spends 152796 dollars per month.

Figure 14: QoS results for different number of instances of the WDoS application

running in the Cloud (a) and in the Edge (b)

Pan
ag

iot
a N

iko
lao

u

41

This happens, as the breakdown shows, due to the double number of servers that are needed

for hosting the total number of sensors to cover the specific area. The obvious difference in

the server cost explains the large TCO difference. Also, as Figure 15 shows, the Cloud

deployment consumes exactly 2.5 times more power than the Edge deployment. So, except

of the double server number, Cloud consumes more power due to the cooling power

consumption and the PUE. Additionally, maintenance cost is also around 3.25 times higher

in the Cloud than in the Edge deployment. This is due to the lower replacement frequency of

the faulty components in the Edge (MTTR). Measuring the availability, we observed that the

Cloud can provide four nines of availability (0.9999), whereas, Edge provides only two nines

of availability (0.99), which still does not violate the availability requirement of the

application.

 This analysis highlights that WDoS application can be deployed more efficiently in the Edge

than in the Cloud.

4.6.3 TCO and Area Coverage Results for Efficient Edge and Normal Edge
Deployments

 Figure 16, illustrates an investigation as a function of per Edge site power budgets in Watts

(x-axis) and the area in square meters (m2) that needs to be covered by jamming detector

sensors (y-axes).

Figure 15: TCO results for Edge and Cloud deployments

0.10 0.15

0.63

1.140.08

0.20

0.03

0.14

0.16

0.52

0

0.5

1

1.5

2

2.5

Edge Cloud

N
o

rm
al

iz
e

d
 T

C
O

 B
re

ak
d

o
w

n
 w

it
h

 E
d

ge

Infastructure Cost Server Cost Power Cost

Network Cosst Maintenance Cost

Pan
ag

iot
a N

iko
lao

u

42

All the presented graphs in Figure 16 show the ratio of Efficient Edge (Edge servers that

operate with energy-efficient settings) over Normal Edge (Edge servers that operate with

nominal settings). The arrows next to each graph show which direction represents

improvement. Also, we use numbered labels for better explanation of the trends in five cases.

In all graphs of Figure 16 the labels represent the same case. The first result, in Figure 16(a),

shows the metric that we optimize, the TCO over Area coverage. The 3D representation

shows that the TCO over the area coverage exposes a sharp increase of the Efficient Edge

over the Normal Edge server by reaching the 100% around 73 Watts power budgets for all

the cases with label 1.

For this case the normal Edge setup cannot even host one server because the individual server

consumes more power than the provided power budget. As the power budget increases, the

benefit of the Efficient Edge remains for several power budgets by approaching 60% (label

2), 40% (label 3) and 20% (label 4). After the 400-Watt power budget, the TCO over area

coverage has very small difference, around 2% (label 5). The trends in the graph show peaks

and valleys due to the discrete power that is needed to fit an extra server, i.e. when power

allows the Efficient and Normal Edge to have the same servers the benefits drop (label 5)

Figure 16: Efficient Edge over Normal Edge results in (a) TCO over Area Coverage,

(b) Area Coverage, (c) Total Cost of Ownership, (d) Total Number of Servers that are

placed in the deployments, (e) Total Power Consumption, and (f) Total Number of

Instances per server

Pan
ag

iot
a N

iko
lao

u

43

and otherwise are high (labels 1, 2, 3, 4). The relative benefits drop as we increase power

budget since with higher budget more serves are used and the relative impact of an extra

server decreases. But power is a tight resource on the Edge. These benefits shown in Figure

16(a) will be more pronounced with more efficient power servers. The trends observed in

Figure 16(a) can be better understood by examining the rest of the graphs in Figure 16. Figure

16(b) shows the area coverage and clearly shows that Efficient Edge can provide always

better area coverage and, in some cases, considerably more. These cases correspond to the

peak values of Figure 16(a) (labels 1, 2, 3, 4). Also, Figure 16(c), shows the TCO of the

(energy-)Efficient Edge over the Normal Edge. This graph shows some points that the

Efficient Edge has higher TCO than Normal Edge (for example labels 1, 3). This can be

explained by observing the corresponding labels in Figure 16(d) that present the number of

servers that can be placed in the deployment. As seen there is a peak on the Figure 16(d)

showing that the Efficient Edge uses double number of servers (labels 1, 3). This costs in

TCO but provides better area coverage (Figure 16(b), labels 1, 3). On the other hand, these

extra servers increase the total power consumption of the deployment, as shown in Figure

8(e) (labels 1, 3). Except these peak numbers in increased power consumption the rest

situations of Efficient Edge provide around 9% power savings as compared to the Normal

Edge (label 5). The last Figure 16(f), shows the total number of instances placed per server.

The number of instances that the Efficient Edge can place in a server is significantly more

than the Normal Edge, especially in the peak points of Figure 16(a) (labels 1, 2, 3, 4). Note

that the number of servers and the number of instances trends directly correlate with the area

coverage trend, in Figure 16(c). This analysis underlines the significance from operating

more energy-efficiently on the edge and provides motivation for exploring additional means

to increase efficiency on the Edge.

The experimental results, presented in this work, clearly indicate the importance of having

power efficiency in the Edge. This observation comes from the analysis of the TCO over

area coverage optimization metric that is limited from the power budgeted Edge facility.

As far as we know, this is the first time that all these parameters are explored and analyzed

together for evaluation of an IoT application, for both Edge and Cloud deployments.

TCO/Area coverage is a useful metric for IoT evaluation and we strongly advocate its use

for future IoT application evaluations.

Pan
ag

iot
a N

iko
lao

u

44

Chapter 5

5 Identification of an Entire Workload’s CPU-Vmin and

investigation of the Trade-Offs Between Reliability

Implications and Power in the TCO.

The end of Dennard Scaling has elevated power into a prime constraint for the CPU design

across all market segments. The nominal operating voltage supply of a modern CPU includes

worst-case voltage margins [14][23] that ensures correct functionality in the presence of

corner-case dynamic and static variations but this limits power efficiency. One method that

aims to provide relief from stringent power constraints is under-volting: operate a CPU at a

lower than nominal voltage [164][169][170].

A naive approach where a CPU is always undervolted, makes the CPU more susceptible to

variations, such as voltage fluctuations or voltage emergencies, which can cause timing

violations or bit flips [14] [15] [16] which in turn may lead to silent data corruption (SDC)

errors, or even application or system crashes [17][18]. More practical uses of CPU under-

volting rely on the characterization and monitoring of a specific CPU chip to identify when

to under-volt it and by how-much. A number of works perform an off-line characterization

to find the lowest safe voltage (CPU-Vmin) that a CPU can operate correctly for any

workload [164][172]. Normal benchmarks or viruses [171], are characterized to identify a

common safe CPU-Vmin for a given scenario (e.g. number and location of cores used).

Thereafter, in the field when a characterized execution scenario is used, the CPU-Vmin

determined during characterization is employed irrespective of the workload executed. This

software-based approach relies on a detailed and lengthy characterization process [164][171]

and it is vulnerable to failures when a non-characterized workload with higher CPU-Vmin

gets executed.

A more application-aware under-volting approach is to monitor on-the-fly an application’s

microarchitectural behavior and predict whether a voltage emergency is imminent and adjust

the CPU supply voltage accordingly [23][173][22][174]. A system in the field normally

operates under-volted while monitoring events identified with off-line analysis, when a

voltage emergency is observed, it is recorded in terms of a signature that encodes the values

Pan
ag

iot
a N

iko
lao

u

45

of the different monitored events. The saved signatures are used subsequently to prevent

similar problems in the future. This approach has more potential than the application-

agnostic under-volting tactic, but in previous work it is mainly evaluated with simulation and

requires hardware support for fine-grain, cycle scale, event monitor/recording, as well as,

checkpoint/rollback or restart techniques to recover from emergencies

[22][23][174][176][19].

Another undervolting approach uses an off-line characterization to correlate correctable

cache errors and supply voltage to drive an online under-volting governor that decides the

supply voltage based on the correctable cache error-rate [170]. This approach is not

applicable to platforms where SDC or detectable uncorrectable errors (DUE) occur before

correctable cache errors are observed [164].

This Chapter presents, for the first time, as far as we know, that with the monitoring of

selected performance counters, determined using an off-line analysis of other workloads, a

workload can reveal its safe CPU-Vmin during the first-n seconds of its execution. Upon a

workload’s CPU-Vmin identification, the execution can continue at the selected CPU-Vmin

for the rest of its execution without experiencing any instability or failures. This workload

aware approach is software-based and does not require any hardware support

5.1 Background

A variety of prior works has been focused on the characterization of CPU-Vmin for different

workloads [164] [172] [184]. These works provide characterizations for pessimistic voltage

guard bands for core-to-core and chip-to-chip variations for online workload-agnostic

executions. All these works use an offline characterization and an online workload-agnostic,

CPU-Vmin prediction based on core allocation. Moreover, George et al. [184] shows that

multicore and multithreaded workloads operate at similar CPU-Vmin.

On the other hand, there is a number of works that are workload aware. All these works use

microarchitectural events to predict voltage emergencies during the execution of a workload

[22][23][173][174]. Gupta et al. [173] shows a correlation of voltage noise with some of the

architectural events such as cache misses, TLB misses and long-latency stalls and proposes

compiler-based optimizations to reduce these events and thus to prevent from voltage

emergencies. Another work of Gupta et al. [174] proposes to avoid voltage emergencies by

adding some pseudo-nops and prefetching. Reddi et al. in [23] and [22] use

microarchitectural events such as pipeline stalls and L2 misses to predict voltage

emergencies for single core CPUs. However, all these works are based on simulations and

Pan
ag

iot
a N

iko
lao

u

46

not on real hardware. Thus, the granularity of the voltage emergency detection is in terms of

cycles. This work shows that by taking specific counters into account, we can identify the

workloads CPU-Vmin in the first n-seconds of a workload’s execution. As far as we know,

there is no other work that shows that the first n-seconds can identify the CPU-Vmin for the

rest of a workload’s execution.

5.2 Experimental Setup

To achieve the identification of a workload’s CPU-Vmin, we firstly provide characterization

of different multi-program and multi-threaded workloads using real hardware. The

characterization classifies workload into two categories, V-low and V-high. V-low workloads

are the workloads that can operate at the lowest CPU-Vmin observed during the

characterization, while the V-high are the workloads that require a CPU-Vmin higher than the

V-low to operate correctly.

5.2.1 Platform

This study is performed using an X-Gene2 server. The X-Gene2 server’s CPU consists of

eight 64-bit ARMv8-compliant cores running at 2.4 GHz, grouped in 4 Processor Modules

(PMD) [178]. Each PMD contains two high-performance X-Gene2 cores, each of which has

its own 32 KB L1 I-cache, 32 KB L1 D-cache, and Floating-Point Unit (FPU). The pair of X-

Gene2 cores in a PMD shares a 256 KB L2 cache unit which interfaces to Central Switch

(CSW) interconnect. All four PMDs share an L3 cache (8 MB), which is also attached to the

CSW.

 The X-Gene2 provides access to a separate Scalable Lightweight Intelligent Management

Processor (SLIMpro), a special management core, which is used to boot the system and

provide access to on-board monitors for measuring the temperature and power of the SoC and

DRAM. The server runs a fully-fledged OS based on CentOS 7 with the default Linux kernel

4.3.0 for ARMv8.

X-Gene2 consists of three independent voltage domains, the PMD, SoC and DRAM domains

and provides knobs for under-volting each of the three domains, independently. PMD domain

contains the cores, the L1 instruction and data caches and the L2 cache. The SoC domain

contains the L3 cache, the DRAM controllers, the central switch and the I/O bridge. Finally,

the DRAM domain contains all the DIMMS.

Pan
ag

iot
a N

iko
lao

u

47

In this work we study only under-volting operation of the PMD domain that contains the eight

cores of the CPU. The nominal voltage setting for the PMD is at 980mV. The nominal settings

for the other domains are 950mV for the SoC and 1500mV for the DRAM, which for this

analysis remain constant.

5.2.2 Workloads

The benchmarks used for this analysis are collected from 4 different benchmark suites.

Particularly, we use 17 benchmarks from SPEC CPU2006 Suite [177], 14 benchmarks from

SPEC CPU2017 Suite [179], 6 benchmarks from PARSEC Parallel Benchmark Suite v3.0

[180] and 8 benchmarks from NAS Parallel Benchmark Suite v3.31 (NBP) [54]. SPEC

CPU2006 and SPEC CPU2017 are single-thread benchmarks, while NAS and PARSEC are

multi-thread benchmarks. We executed all the 45 benchmarks using always all 8 cores, fully

utilized. Thus, for the single-thread benchmarks we run 8 instances of the same benchmark in

the X-Gene2. In this case each instance is pinged in a single core. For the multi-thread

benchmarks we set them to run using 8 threads on the X-Gene2 machine.

5.2.3 Vmin Characterization

To investigate the CPU-Vmin of the PMD domain of X-Gene2 we followed an automated

characterization process. The characterization process [164][181] consists of three phases

(Initialization, Execution, Parsing). During the initialization phase, the benchmark list is

determined, as described in Section 5.2.2.

The execution phase consists of multiple test of the same benchmark at incrementally lower

voltage. Particularly, we perform each benchmark test 10 times where each test includes

multiple runs of a benchmark, each with lower voltage at steps of 10mV.

Finally, during the parsing phase, we determine the CPU-Vmin voltage: the minimum voltage

observed without any crash in all the tests of a specific benchmark. Note that we also check

for any undetected error essentially for silent data corruption (SDC) errors, by comparing the

output of each execution with a golden reference which is derived from running at nominal

settings. The safe CPU-Vmin for each benchmark, is the minimum voltage that does not

experience any crash, SDC errors or other unexpected behavior in all the 10 tests.

Pan
ag

iot
a N

iko
lao

u

48

Table 9 shows the CPU-Vmin characterization results for all the 45 benchmarks on the X-

Gene2 platform. The results are grouped into four categories according to the observed CPU-

Vmin of each benchmark. As shown in Table 9, 24 benchmarks can operate at 900mV, 9

benchmarks at 910mV, 9 benchmarks at 920mV and 3 benchmarks at 930mV.

From the data we observe that both single-threaded and multi-threaded benchmarks appear

in all the four categories and all benchmarks can operate at least 50mV lower than the

nominal voltage. Another key observation is that, a significant number of benchmarks

operates at 900mV (more than half of the benchmarks, 24/45). For simplicity reasons in this

study we classify the benchmarks only into two categories, the V-low (top-half) and V-high

(bottom-half) categories as can be seen in Table 9.

V-low category consists of the benchmarks that operate at 900mV and V-high category

consists of the benchmarks that operate at all the other voltages which are higher than

900mV. In particular, V-high includes all the benchmarks that operate at 910mV, 920mV

and 930mV. Our study can be extended to consider more than two categories, but we leave

that for future work.

Table 9: Benchmarks with their CPU-Vmin and Execution Time

Pan
ag

iot
a N

iko
lao

u

49

Table 9 also lists the execution time of each benchmark. The execution time of the single-

thread benchmarks is on average around 1000 seconds, whereas for multi-thread benchmarks

is on average around 150 seconds.

5.3 Performance Counters Selection Methodology

 A large number of performance counters exists in X-Gene2 and it is critical to choose the

ones that have the highest correlation with the CPU-Vmin. We first explore the 21

performance counters of X-Gene2 listed in Table 10. We collected statistics for all the

performance counters at one-second granularity. We then labelled each benchmark’s

performance counter measurements with its CPU-Vmin and performed a Pearson-Correlation

for each performance counter and the CPU-Vmin across all benchmarks. This produces a

correlation coefficient per performance-counter between -1 to1. Performance-counters that

have a correlation-coefficient above a threshold (absolute value 0.7) are selected. Guided by

these results we selected the following five performance counters as the most useful for CPU-

Vmin correlation: syscalls, L2 prefetching, exception taken, L1 ITLB misses and BTB

mispredictions (colored with blue in Table 10). The combination of these performance

Table 10: Performance Counters in X-Gene2

 Performance Counters
1 Utilization

2 Instructions

3 Cycles

4 L2 accesses

5 L2 misses

6 L3 misses

7 branch misses

8 Syscalls

9 L2 prefetch

10 Exception taken

11 L1 misses

12 L1 TLB misses

13 Decode starved

14 op dispatch stalled cycle

15 BTB misprediction

16 Branch speculative executed - Indirect branch

17 Branch speculative executed - Immediate branch

18 L1 data TLB refill - Write

19 Operation speculatively executed - Integer data processing

20 Operation speculatively executed - Advanced SIMD

21 Operation speculatively executed - FP

Pan
ag

iot
a N

iko
lao

u

50

counters is selected because it exhibited the highest correlation with increasing CPU-Vmin as

compared to any other combination based on a subset of these counters. More specifically,

Figure 17, shows the Pearson-Correlation coefficient between CPU-Vmin and each of the 31

possible combinations that use one or more of the five performance counters. The figure

clearly shows the synergy from combining more counters together and that the combination

that uses all five performance counters provides the highest correlation with CPU-Vmin.

Moreover, we also observed (not shown in the results) that adding any one of the other

performance counters, listed in Table 10, does not lead to a higher correlation coefficient.

Thus, we need to consider all the five counters in combination. Additionally, we noticed that

four of the counters - syscalls, exceptions taken, L1 TLB misses and BTB mispredictions -

exhibit a positive correlation, whereas L2 prefetching exhibits a negative correlation.

This means that when the number of syscalls, exceptions taken, L1 TLB misses and BTB

mispredictions is high but the number of L2 prefetches is low, then the voltage is virtually

always V-high as well

Related work [23][173][22][174] has concluded that a combination of microarchitectural

events, corresponding to the abovementioned counters, in a short time span (few cycles)

often leads to a voltage emergency. However, these earlier works do not show any correlation

with L2 prefetching. We hypothesize that this is due to the use of simulation for their

evaluation and not real hardware measurements, as we do in this work. In particular, we

believe that the correlation to low L2 prefetching captures low L1 cache misses, high IPC

Figure 17: Correlation Analysis between different Combinations of the Selected

Performance Counters and CPU-Vmin

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5
0,55

0,6
0,65

0,7
0,75

0,8
0,85

0,9
0,95

1

1
5 9

1
2

1
0 8

1
2

_1
5

9
_1

0

9
_1

2

8
_1

5

1
0

_1
5

9
_1

5

8
_9

8
_1

2

1
0

_1
2

8
_1

0

8
_1

2
_

1
5

8
_9

_
1

5

8
_9

_
1

2

9
_1

0
_

1
5

9
_1

0
_

1
2

9
_1

2
_

1
5

1
0

_1
2

_
1

5

8
_9

_
1

0

8
_1

0
_

1
5

8
_1

0
_

1
2

8
_9

_
1

2
_1

5

9
_1

0
_

1
2

_1
5

8
_1

0
_

1
2

_1
5

8
_9

_
1

0
_1

2

8
_9

_
1

0
_1

5

8
_9

_
1

0
_1

2
_1

5

A
b

so
lu

te
 C

o
rr

el
at

io
n

 C
o

ef
fi

ci
en

t

Combinations of selected performance counters (labeled as in TABLE 10) Pan
ag

iot
a N

iko
lao

u

51

and high-power consumption that causes a drop in supply voltage. It is during such time

when all the other events (syscalls, exception taken, L1 TLB misses and BTB mispredictions)

occur that cause a voltage droop that is combined with the voltage drop and leads to a voltage

emergency to happen. Voltage-droops are caused by a sudden change in the activity of the

circuits powered by a voltage domain [175]. In summary, the correlation analysis suggests

that a method that aims to classify the CPU-Vmin of a workload into V-low or V-high, for

the platform we are using (X-Gene2), it needs to consider together the combination of all five

selected performance counters. This combination of the five selected counters is termed as

signature to the rest of this Chapter.

5.4 Workload’s CPU-Vmin Identification Method

Figure 18 illustrates with the help of an example the high-level functionality and objective of

the proposed CPU-Vmin identification method. Particularly, this methodology aims to detect,

after the first n-seconds of a workload’s execution, its CPU-Vmin. Figure 18.a shows the

behavior with a workload predicted to have V-low CPU-Vmin. When its execution starts, the

voltage is set to a safe setting (V-high) and the signatures (selected five performance counters)

are collected per second until the execution time reaches a threshold. At that point, the

workload’s signatures are compared with the signatures derived from an offline

characterization/training of other V-low workloads. When each of the collected signatures, of

the currently running workload, matches with a signature in the training set, the workload is

identified as V-low and thus the voltage is reduced to 900mV. On the other hand, a workload

that produces, before its execution reaches the time threshold, a signature not found in the

training set of signatures, is identified as V-high (Figure 18.b)), and the execution continues

at 940mV. The choice of 940mV as safe voltage, is based on the highest voltage that we

observe (930mV,Table 9) for V-high benchmarks that gets increased by a 10mV margin to

ensure the safe operation for all the benchmarks that are used in this work. An alternative, for

a higher safety or due to limited analysis of V-high workloads, is to use the nominal voltage

for the first (identification) phase of the execution of all workloads as well as for the remaining

execution for the workloads classified as V-high. Operation with nominal voltage avoids

unexpected events, such as SDC or crashes, and, consequently, avoids the risk to need

recovery for workloads classified as V-high.

Pan
ag

iot
a N

iko
lao

u

52

As this is a predictive method, there is a possibility that the classification into a V-low or V-

high workload to be incorrect. Specifically, when a V-low workload is identified as V-high

or a V-high workload as V-low. Definitely, the second case is the one that needs to be avoided

because it can lead to SDC errors and application or system crashes. In contrast, the

ramification of a wrong identification of a V-low workload as V-high is lower power savings.

5.4.1 Performance Counter’s Signature Semantics

Variability in the values of the monitored performance counters results in generating a large

number of unique signatures during training which makes the classification of the CPU-Vmin

more expensive and complex. The value variability, also, renders the proposed method

ineffective, as small differences between two signatures will result in classifying a V-low

benchmark as V-high (false-positive) and, thus, reduce the potential power savings.

We address the issues of value variability and large number of signatures by applying

clustering to the monitored values. In particular, instead of using in a signature the original

performance counter value, we use its corresponding integer logarithmic value (the logarithm

of a value without any decimal digits). The Log function is often used in various clustering or

outlier detection problems [182][183]. To this end, we explore logarithms with different bases

(log2 through log10) to find the most effective clustering function that filters out redundant

information. Our evaluation revealed that log2 is an appropriate clustering function that helps

distinguish efficiently V-low from V-high signatures. Figure 19 helps visualize the

effectiveness of the proposed clustering function. It shows a two-dimensional projection of

Figure 18: Identification Method Example for a) V-low workload and b) V-high

workload

Time

Operation a t low CPU-Vmin (900mV)

Operation at high CPU-Vmin (940mV)

Ti
m

e
th

re
sh

o
ld

Time

Ti
m

e
th

re
sh

o
ld

a) V-low workload b) V-high workload

t0 t1 t3 t4 t5 t0 t1 t3 t4 t5

Signature
Collection

Operation at 940mV Operation at 940mV

Offline
Characterization

No V-high
Signatures
detected

Signature
Collection

V-high
Signatures
detected

Pan
ag

iot
a N

iko
lao

u

53

our five-dimensional signatures based on R-tool’s fviz_cluster projection [81]. Each data

point is a two-dimensional representation of a signature with five values each of which has

been transformed with our clustering function. This projection aims to retain in the two-

dimensional space the distance between signatures in the five-dimensional space, i.e. points

that are close/far in the original multi-dimensional space are also close/far in the two-

dimensional space. With blue color, we represent the signatures of V-low workloads and with

red color the signatures of V-high workloads. The figure also draws a blue area that encloses

all V-low signatures and a red-area that encloses all V-high signatures. As Figure 19 shows,

V-high and V-low areas have considerable overlap (we cannot differentiate a V-high signature

in this overlapped region). However, at the top-right, the V-high area is separate from the V-

low area. This area contains signatures found in V-high workloads that are distinct from V-

low signatures. We examined these V-high signatures and found them to have, as compared

to signatures in the V-low area, higher number for syscalls, exceptions taken, L1 TLB misses

and BTB mispredictions and lower number of L2 prefetches. This is in agreement with the

observations in Section 5.3 regarding which performance counters exhibit the strongest

correlation with the CPU-Vmin and the sign of their correlation coefficient.

Figure 19: Signature’s clusters for V-low and V-high benchmarks

Pan
ag

iot
a N

iko
lao

u

54

5.4.2 Workload CPU-Vmin Identification Method

In this Section, we present a detail overview of the proposed CPU-Vmin identification

method.

Figure 20 shows that the method consists of an offline and an online phase. During the offline

phase, we first determine the CPU-Vmin for each workload in a given set of training

workloads. This is accomplished using a CPU-Vmin characterization procedure as outlined

in Section 5.2.3. Then, for those workloads that have V-low CPU-Vmin, we collect their

performance counter signatures per second. Each signature contains the number of syscalls,

exceptions taken, L1 TLB misses, BTB mispredictions and L2 prefetches. Once the signatures

of all V-low workloads in the training set are collected, we apply to them the clustering

function to produce the final set of signatures (refer to as V-low signatures) that will be used

during the online phase to predict whether a workload’s CPU-Vmin is either V-high or V-

low.

During the online phase, an (unknown) workload starts executing using a safe CPU-Vmin and

its signatures are collected for the first-n seconds of its execution. After n seconds have

elapsed, the collected signatures are transformed with the same clustering function used

during the offline phase. The resulting signatures are checked against the V-low signatures

(those generated during the offline phase). If each signature, from the first-n seconds of the

execution of the unknown workload, matches with a V-low signature then the workload is

classified as V-low otherwise, i.e. at least one signature of the unknown workload is not found

in the V-low signatures, the workload is classified as V-high. If the classification is correct,

the operation is safe for both (V-high and V-low) workloads and power is reduced for the V-

low workloads. If the classification is incorrect, operation is safe but power is not saved for

V-low workloads that are classified as V-high. Finally, SDC and crashes may occur for

workloads that are V-high but classified as V-low. A central parameter of the method, and of

course of our evaluation, is the time threshold that is used to identify a workload’s CPU-

Vmin. Our method is based on the hypothesis that benchmarks reveal early during their

execution whether they are V-high or V-low. The longer the time threshold the more

signatures are produced and checked and, therefore, the less chance for false-negatives (a V-

high workload classified as V-low) but this comes at the expense of lower power savings

since the voltage of correctly classified V-low workloads gets lowered later during their

execution. Our evaluation investigates the interplay of the time-threshold used for

identification and false-negatives.

Pan
ag

iot
a N

iko
lao

u

55

5.5 Experimental Methodology

To evaluate the effectiveness of the CPU-Vmin identification method, we use the X-Gene2

platform and the 45 benchmark set listed in Table 9. SPECCPU2006 and SPECCPU2017

benchmarks include runs with multiple inputs. For tracking the five selected performance

counters, we use values obtained from the perf tool every second.

For collecting power measurements, we use power monitors that exist in the X-Gene2

platform. To assess the power savings of the CPU-Vmin identification method we compare

the power consumption of our method with the operation that is always at 940mV. The

940mV is derived from the offline characterization of the CPU-Vmin for all the 45

benchmarks. We also show the power savings obtained when compared to operation at

nominal voltage settings (980mV).

For a thorough evaluation of the identification method, we followed a cross-validation

evaluation approach. In particular, we perform multiple experiments where for each

experiment, two workloads, one V-low and one V-high, are removed from the benchmark set

and are used as the unknown workloads for testing. The remaining (23) V-low benchmarks

are used for training.

We assess the accuracy of the proposed CPU-Vmin identification method by comparing the

CPU-Vmin predicted for each workload during the testing phase with the actual CPU-Vmin

of each workload. Thus, a true-positive (TP) corresponds to the case where the testing phase

classifies a workload as V-low and it is actually V-low. True-negative (TN) represents the

case where the testing phase determines a workload as V-high and the workload it is indeed

Figure 20: CPU-Vmin identification framework with the input parameters and output

decisions

Training Workloads
V-low Performance

counter Values

Offline Phase

Online Phase

CPU-Vmin
Characterization

V-Low
workload

V-low Signatures

All n-first second
signatures match
V-low signatures

Execute unknown
workload

V-low V-high

Collect Performance
Counters per sec.

Apply Clustering

Apply Clustering

Time
threshold

Yes

Yes No

Pan
ag

iot
a N

iko
lao

u

56

V-high. A false-positive (FP) occurs when the workload is classified as V-high but the

workload is V-low. Although, false positives are undesirable, they are tolerable as they only

lead to less power savings without any crashes. Finally, a false-negative (FN) corresponds to

the case where a workload is classified as V-low in the testing phase but it is actually V-high.

Thus, the voltage is reduced to V-low after the first-n seconds and with high likelihood this

will lead to the application or system to crash.

We performed in total 504 different experiments (21 V-high x 24 V-low combinations). As a

result of our evaluation methodology, the tested V-low workload can be categorized only as

TP or FP and the tested V-high workload only as TN or FN. So, for each of the 504 total

experiments a pair of workloads are tested separately, the one is tested for TP/FP and the other

for TN/FN.

5.6 Results

5.6.1 Accuracy

We first evaluate the accuracy of the CPU-Vmin identification method. Figure 21 plots the

accuracy across the 504 different experiments when the time threshold is set at 20 seconds.

The Figure shows the breakdown of TP, FP, TN and FN for all the 504 experiments. The

results are summarized as 209/504 TP, 295/504 FP, 501/504 TN and 3/504 FN.

We observe that the method is quite accurate in classifying V-high workloads. Specifically,

only for three out of the 504 experiments (0.6%) the method failed to identify correctly a V-

high workload. For such cases, a fail-safe technique, such as checkpoint/rollback, is essential

for recovery. A crashed workload after recovery can resume execution at a safe voltage

(940mV or even at nominal).

It is useful to point out that for benchmarks with multiple inputs the identification method

determined the CPU-Vmin only during the first 20s of the execution with the first input (i.e.

in our experiments a benchmark with multiple inputs is classified only once). We have also

confirmed that the obtained results are insensitive to the order that a benchmark executes its

different inputs. It is also important to point out that many of the benchmarks used in this

analysis, consist of multiple phases, specifically, 37 out of 45 benchmarks. We determined

that a benchmark has multiple phases when at least one performance counter exhibited

considerable difference between the signatures collected over a workload’s entire execution.

Pan
ag

iot
a N

iko
lao

u

57

All the above provide a strong support for the key hypothesis: for the platform and

benchmarks used in this study, for a given workload execution, a safe CPU-Vmin can be

identified with very high accuracy during the first 20-seconds of its execution. As shown in

Table 9, for the benchmarks used in this study, the 20s correspond to at least to 1% of the total

execution time and this seems to be, in general, sufficiently long for a workload to reveal

whether or not it requires a V-high CPU-Vmin. Of course, it is important for the method to

not often classify V-low workloads as V-high and loose power saving opportunity. The results

show that the FP rate is 58% (295/504). Therefore, our method saves power 42% of the time

but misses on a considerable power reduction potential.

We checked the experiments that suffer a FP and we observed that they happen consistently

each time we test a V- low benchmark that comes from a specific subset of 14 benchmarks.

Consequently, each of these 14-benchmarks has at least one signature that does not belong to

any other (23) V-low benchmark. Thus, our method classifies these benches as V-high. We

have also checked if these distinct signatures overlap with the signatures of the V-high

workloads. We have found that at least one signature from these benches does not belong to

the signatures of the V-high workloads. This distinct behavior of the FP benchmarks can be

visualized in Figure 22. The figure uses the same two-dimensional projection of the five-

dimensional signatures of all workloads but with different color (green) for the signatures

from FP workloads. It is clearly visible that there are signatures of FP benches that are not

overlapped with either V-low or V-high workloads. This finding provides a motivation for

future work to reduce the FP rate.

Figure 21: Identification Framework Accuracy results

1

2

4

8

16

32

64

128

256

512

1024

TP FP TN FN

N
u

m
b

er
 o

f
Ex

p
er

im
e

n
ts

 in

lo
ga

ri
th

m
ic

 s
ca

le

Pan
ag

iot
a N

iko
lao

u

58

5.6.2 Time Sensitivity Analysis

One of the main objectives of the proposed method is to identify quickly the CPU-Vmin of a

workload. Thus, we perform an analysis of the sensitivity of the method to the time threshold

used to classify a workload.

Figure 23, shows the distribution of the identification time for all the 501 experiments that

classify correctly a V-high workload (TN). The figure shows only the appearance time of the

first V-high signature. As the figure reveals, for more than half of the experiments a V-high

workload is identifiable after the first second (268/501). For the other cases, the identification

happens few seconds later but no later than 20s. We note that by setting the time-threshold at

10 seconds, the TN accuracy of the method drops from 99.4% to 91%, at 5 seconds to 86%

and at 2 seconds to 53% (correspondingly the FN rate increases from 0.6% to 9%, 14% and

47%). We have examined threshold-times beyond the 20 seconds but we observe no change

in the TN/FN rate. Consequently, a time-threshold of 20 seconds for CPU-Vmin identification

appears the most appropriate for our setup and workloads.

Figure 22: Signature’s clusters for V-low, V-high and false positive benchmarks

V-high

V-low

False Positives

Pan
ag

iot
a N

iko
lao

u

59

For the majority of the workloads (27 of 45) the first 20 seconds of execution correspond to

less than 5% of their total execution time. The fraction of the execution that 20 seconds

correspond to for each workload is listed in Table 9. Although, identifying a workload earlier

enables higher power savings we need to keep the time threshold at 20 seconds to avoid

increasing FN rate and the occurrence of SDCs and crashes.

5.6.3 Power Evaluation Results

Figure 24 presents the power savings of the proposed method for each of the 504 experiments.

The experiments are sorted in increasing order of power savings that is obtained for the V-

low workload tested in each experiment. More than half of the experiments have no power

reduction since they are FP (V-low workload classified as V-high). For the other experiments

(TP), the benefit is close to 8% (15%) as compared to when operating with a supply voltage

of 940mV (nominal 980mV). Figure 24 also shows the average power savings which are 3.8%

compared to the operation at 940mV and 7.1% compared to the operation at 980mV.

Figure 23: Identification Time Distribution of the first V-high signature

appearance in the 501 V-high benchmarks

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
is

tr
ib

u
ti

o
n

Time in sec.

Pan
ag

iot
a N

iko
lao

u

60

5.6.4 TCO Evaluation Results

Next, we evaluate the TCO for various detection times shown in Section 5.6.2 (20sec.,

10sec., 5sec. and 2 sec.). To mitigate crashes, we assume a checkpoint/restart technique that

takes 5 minutes. Also, we assume that all the 504 experiments run in parallel, each in a

different server. Thus, our baseline is a DC with initial 504 servers. Figure 25, presents the

TCO results for the different detection times (20, 10, 5 and 2 seconds). Also, this Figure

depicts the availability values in percentage. The presented TCO is relative to the 20 second’s

results. From this Figure, we observe that TCO is better when the detection time is at 2

seconds. This happens because, even though the system provides lower availability, the

power gains are more than all the other three detection times. However, real systems need to

ensure specific levels of availability. The target availability in this case is 99%. Figure 26

depicts the same experiment maintaining availability always above 99%. Furthermore, each

detection time bar is labeled with the absolute TCO values in dollars. As the Figure shows,

20 seconds detection time is beneficial in TCO by providing almost double savings from all

the other three detection times. This is due to the number of servers that are needed to ensure

the required levels of availability and thus, cover for any performance loss due to the use of

checkpoint/restart technique. Specifically, for 20 seconds, only 505 servers (initial 504 plus

one for maintenance) are needed. On the other hand, we observed that by setting the detection

time at 10sec., 5sec. or 2sec. the servers are almost double from the number of the servers at

Figure 24: Power savings results for all the experiments compared to the baseline

that operates at 940mV and at 980mV.

7,1%

3,8%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 50 100 150 200 250 300 350 400 450 500 550

P
o

w
er

 S
av

in
gs

 in
 P

e
rc

e
n

ta
ge

Experiments

980mV 940mV

A
ve

ra
ge

Pan
ag

iot
a N

iko
lao

u

61

the 20 seconds. Based on the above, 20 seconds is the best choice for TCO. The trends are

similar for other typical availability targets (99.9% and 99.99%).

Furthermore, Figure 26 illustrates the total power consumption in watts for the whole DC.

As can be seen from the figure, when the detection time is at 20 seconds, the total power is

less than all the other detection times. This happens due to the fewer servers that are needed

in this case.

Figure 25: TCO evaluation and Availability results for different detection times

50%
52%
54%
56%
58%
60%
62%
64%
66%
68%
70%
72%
74%
76%
78%
80%
82%
84%
86%
88%
90%
92%
94%
96%
98%
100%

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

20 sec. 10 sec. 5 sec. 2 sec.

A
va

ila
b

ili
ty

R
e

la
ti

ve
 T

C
O

 w
it

h
 2

0
se

co
n

d
s

Detection Time

Figure 26: TCO evaluation while ensuring 99% availability

1000

11000

21000

31000

41000

51000

61000

71000

81000

91000

101000

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2

20 sec. 10 sec. 5 sec. 2 sec.

P
o

w
e

r
in

 w
at

ts

R
e

la
ti

ve
 T

C
O

 w
it

h
 2

0
se

co
n

d
s

2582 $

5103 $
4956 $

4706 $

Pan
ag

iot
a N

iko
lao

u

62

5.7 Applicability of the Key Findings

In this Section we discuss the potential uses of the findings of this work.

Our identification methodology is purely software-based. The implementation in our setup

requires only 21ms to classify a workload according to the 100 different performance-counter

values obtained during the first 20 seconds of the workload’s execution. The clustering

method has also minimal overhead (a logarithmic-function is applied to 100 values). Thus,

the identification method is suitable to drive a lightweight software-based Dynamic-Voltage-

Scaling (DVS) governor for under-volting a real system. The DVS governor will use our

method to predict if a workload is V-low or V-high and will adjust the supply voltage

accordingly. Beyond the two voltage levels we consider in this work, the DVS governor can

be extended to perform CPU-Vmin predictions for additional voltage levels but this will

require a more diverse and time-consuming offline CPU-Vmin characterization.

The governor can be used in systems that run various unknown batch jobs, that their execution

time is not limited to few seconds. Systems that run only specific applications, such as web

search and web serving, cannot benefit from the enhanced DVS governor because an

exhaustive offline CPU-Vmin characterization of such applications would be sufficient to

determine their CPU-Vmin and will also provide higher power savings.

We like to note that because the proposed methodology predicts a V-high for unknown

workloads it can be effective in avoiding a crash from a malicious attack that accomplishes to

execute a virus on a platform that causes large voltage droops such as a dI/dt virus [185]. We

expect that a virus generated using a stochastic procedure, as in [185], will not match the

signatures of the V-low workloads used for offline characterization. If such attacks are

expected it could be wise to use the nominal supply voltage for V-high to avoid any instability

or crashes due to a very powerful virus.

Pan
ag

iot
a N

iko
lao

u

63

Chapter 6

6 Analysis of the Implications of DRAM Failures and DRAM

Protection Techniques on the TCO

The pervasive economic value and societal dependence of services running in DC is made

possible by their high availability and integrity. Users have come to expect these services to

be virtually uninterruptible and provide correct functionality. Interestingly, the high

availability and integrity perceived by users is often provided from facilities that are built

using low availability commodity components [82]. This is made possible by the nature of

several popular services that mainly serve numerous independent requests that are mostly

read-only [4]. Furthermore, many online services require short latency and high throughput

which in turn necessitates partitioning and replication of their huge working sets. Ultimately,

this means that the failure of an individual DC server will typically have minimal, if any,

repercussions to the service availability.

This is in direct contrast with high performance computing centers that run parallel programs

with across thread data dependencies where a single server failure may result in a disruption

of the entire infrastructure [83]. This problem is particularly acute for the upcoming exascale

systems with a huge number of components that require extreme level of reliability from

individual components to prevent frequent entire system interruptions [84].

This is not to say, however, that DC servers do not need protection from faults. For instance,

an attempt to remove protection from DRAM in Google servers resulted in a subset of queries

returning random documents due to a memory error that could not even be detected[4].

Consequently, DC servers employ a combination of hardware and software techniques to

accomplish the desired level of availability without compromising quality of service [5].

This Chapter proposes a framework1 , called AMPRA, for analyzing the implications of

DRAM failures and DRAM protection techniques on the TCO of a DC. DRAM failures and

memory protection have received a lot of attention recently with several studies showing that

1 (Publicly Available- AMPRA: Analyzer of TCO Implications of Memory Failures and Memory Protection

http://www2.cs.ucy.ac.cy/carch/xi/ampra tco.php)

Pan
ag

iot
a N

iko
lao

u

64

DRAM is one of the main culprits for machine crashes and component replacements in

today’s DC and large supercomputers [42][85][86]. DRAM failure rate per server is a

growing problem because despite the decrease in the failure rate per bit, one order of

magnitude every 6 years, memory DIMM slots per server have been growing, to

accommodate larger workings sets, leading to an overall increase in the failure rate per server

[87][88][89].

To prevent systems from failing more frequently due to DRAM errors, data in memories are

stored as error-correction-codes (ECC) using extra memory chips. Moreover, memory

controllers are continuously upgraded to support stronger ECC capable of detecting and

correcting more faulty bits. Memory controllers found in processors today [73][74] support

various memory protection techniques that datacenter designers need to select from when

configuring their servers.

In this work we argue that it is not straightforward to decide which DRAM protection scheme

is best for a given DC setup. This challenge stems from the cost-benefit trade-off of each

protection scheme with each offering a distinct combination of reliability, power,

temperature, performance and server overprovisioning. Server overprovisioning is needed

to: (i) ensure peak throughput in the presence of errors since some servers may need to be

offline until they are repaired or replaced, and (ii) compensate for possible performance

degradation due to the protection scheme used. Furthermore, the specific cost-benefits may

vary depending on the service characteristics, such as memory intensity, sensitivity to

collocated services and the service overall DC utilization. These and other parameters, to be

identified later, are used as inputs to the framework we propose in this work to determine

what is the best–in terms of TCO–memory protection scheme for a given DC.

A recent paper [30] has investigated the benefits, for a DC running web services, from the

use of a hypothetical heterogeneous memory protection scheme that employs in the same

server fully tested DIMMs and less tested (less costly) DIMMs. The system minimizes

failures by mapping memory pages of an application to DIMMs according to their potential

to cause user visible data corruption. The main focus in [30] is the data corruption analysis

and not, as in our work, on a generic framework for assessing holistically the TCO

implications of memory faults and protection.

Pan
ag

iot
a N

iko
lao

u

65

6.1 Background on Memory Reliability

6.1.1 Memory Errors (Types and Metrics)

Memory errors can be categorized into transient and permanent errors, depending on their

duration. Transient errors can cause reading incorrect memory values, until the faulty

memory location is overwritten. Permanent errors can cause physical damage and the faulty

memory location can consistently return incorrect values [90]. Therefore, to detect and

correct errors, memories typically include reliability features such as ECC. Depending on

the ECC strength and the type of error, an error can be correctable (CE), detectable but

uncorrectable (DUE) and non-detectable (NDE) [91]. A CE error can be detected and

corrected by the ECC. A DUE error can be detected by the ECC but cannot be corrected.

There are many ways to recover from transient DUE errors such as to reboot the process or

the whole server. Permanent errors, on the other hand, can lead to repeated DUE or CE and

can be tracked by an error monitoring system that places the faulty server offline for further

diagnosis and possible replacement. An NDE error is not detected by the ECC. This error

may cause system crash, hang, SDC, or may be benign if the erroneous data does not affect

program output [30][92]. System crashes and hangs can be detected by system software or

server health monitors.

A variety of reliability metrics are used to express the occurrence of the various types of

errors and capture their implications. FIT rate metric represents the number of failures in 10

9 hours. The mean time to experience an error is referred to as MTTF. Another important

metric is the MTTR which can vary depending on the recovery technique. For example,

rebooting a whole server usually takes more time than restarting a process. Finally, a very

important metric is the availability. Availability is the probability of a system operating

correctly and is usually reported in number of nines. Availability is given by the well-known

equation:

𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =
𝑴𝑻𝑻𝑭

𝑴𝑻𝑻𝑭 + 𝑴𝑻𝑻𝑹

6.1.2 DRAM Error Protection

DRAM is protected from errors using extra devices per DIMM to store ECC codes.

Typically, codes today use 8/16 ECC bits to protect 64/128 data bits. For example, a DDR3

memory channel is 72 bits wide with each memory channel supporting one or more DIMMs.

Pan
ag

iot
a N

iko
lao

u

66

A single DIMM consists of multiple DRAM devices where all or a subset of them operate

together to provide 72 bits. Each device can provide 4, 8 or 16 bits (referred to as x4, x8 or

x16, devices respectively). For example, a 72-bit codeword can be produced using 18 x4

DRAM devices (16 devices for data and 2 for ECC) or by using 9, x8 devices (8 devices for

data and 1 for ECC). To produce a 144-bit codeword requires either two bursts from the same

channel or one burst across two channels. The encoding and decoding of ECC codes are

usually performed in the memory controller of a processor. A processor may support various

ECC options, with distinct code strength and overheads, one of which is selected at boot

time. Below, we describe three commonly used memory protection ECC codes that are

analyzed in this work.

Single Error Correction-Double Error Detection (SECDED) [45][46] corrects all single

bit errors and detects all two-bit errors using a 72 bit codeword (64 data bits and 8 ECC bits).

Many triple bit errors can be detected by SECDED code as DUE but some are miscorrected

and become NDEs. Also, most of the four-bit errors are detected as DUE but some of them

are NDEs. SECDED can be used for both x4 and x8 devices but the power consumed by x8

devices is lower because they can provide the same capacity with fewer devices [73][93].

Single-Chip error correction and Double-Chip error detection or Chipkill [47], is

commonly used for DRAM protection in high availability servers and large-scale systems

because it has the ability to correct all the errors that appear in a DRAM device and to detect

errors in two DRAM devices. Chipkill relies on symbol-based coding to perform error

detection and correction. In a symbol-based code, each codeword is composed of multiple

symbols, with each representing a group of bits. There are various flavors of Chipkill with

different strengths and overheads. Modern processors usually support Chipkill with 16 ECC

bits for 128 data bits that are interleaved across two DIMMs placed in two channels [72]

[73][74]. This Chipkill implementation corrects all the errors in a single device and detects

all the errors in two devices [72]. It uses standard DDR3 with burst length of 8, to read two

64B blocks per access one of which is wasted for systems with 64B cache block size.

Consequently, Chipkill can waste bandwidth, hurt performance and increase energy

consumption [75][76][77]. To limit reading one 64B block per memory access, burst-chop

is used to reduce the burst length from the usual eight down to four [76][94]. Although burst

chop can be used to save the energy of four bursts, the access time cannot be reduced and

the bandwidth is still wasted [75][76]. We refer to this dual channel Chipkill technique as

ChipkillDC.

Another Chipkill implementation, similar to ChipkillDC, uses only a single channel to

provide 16 ECC bits for 128 data bits [74]. This Chipkill implementation encodes and

Pan
ag

iot
a N

iko
lao

u

67

decodes a codeword every two bursts and it is able to correct all the errors in a single device

and detect 99.99999963% of the errors in two devices [72]. We refer to this single channel

Chipkill technique as ChipkillSC. The ChipkillDC per burst access is wider than ChipkillSC,

since it accesses twice the number of devices per burst (e.g. 36 vs 18 with x4 devices). This

enables slightly better reliability than ChipkillSC but consumes more power and wastes

bandwidth which can hurt performance. On the other hand, ChipkillSC can also degrade

performance because it needs to wait for two bursts to form a codeword. Both Chipkills

provide superior reliability as compared to SECDED but a x8 SECDED protected DRAM

can be more power efficient than a x4 Chipkill implementation. Evidently, each protection

scheme has its own pros and cons, motivating the development of a framework to analyze

and decide which DRAM protection scheme to use for a given setup.

6.1.3 Datacenter’s Reliability and Availability

The reliability and availability target of a service running on a DC is accomplished through

a combination of hardware and software mechanisms and policies. This also aims to ensure

satisfying the quality of service (QoS) requirements even in the presence of errors and

downed servers [4][5]. These mechanisms typically rely on hardware and software-based

detection and software-based error management.

Errors can be handled at the application and software level [95][96]. OS can deal with all the

uncorrectable memory errors detected by ECC or diagnosed after observing system

anomalies, such as machine crashes and hangs. One response to a diagnosed permanent

memory error is to replace the faulty DRAM component or even the whole server module.

Unfortunately, this is costly but, in some cases, inevitable. Another less costly recovery

action is to use page retirement. Page retirement removes a physical memory page that

experiences repeatedly errors [97], but may not be effective for coarse errors affecting many

pages. Process/server reboot, another recovery option, works well in the case of transient

uncorrectable errors.

6.1.4 Online, Offline Services and Co-location

Online services are interactive services that perform significant processing over big datasets

and are driven from a huge number of user requests. Because of their interactive nature, these

services require responsiveness in the order of hundreds of milliseconds and have high QoS

requirements [98]. A concrete example of an Online service is the Web Search [99].

Pan
ag

iot
a N

iko
lao

u

68

Web Search runs on thousands of servers to provide high throughput. Typically, the service

working set is replicated and partitioned across many servers to ensure low latency but also

to achieve high availability. For example, when a server fails, during its repair time the job

that runs on it can be restarted on another server with minimal repercussions on the QoS and

availability of the overall service. Web Search must provide high levels of availability, such

as four nines (0.9999), and is overprovisioned with extra servers to deal with various

hardware failures.

Offline services are non-interactive and do not have strict QoS constraints, e.g. response

latency. Examples of such services are: Data Analytics, file backup, image processing, video

compression, optimization search, and simulation cycles. Online and Offline services can be

run together (collocated) to improve server and DC utilization [64][65]. Specifically, when

an Online service cannot use all the available cores in a server concurrently, due to QoS

constraints, some or all of the remaining cores can run some Offline services. This must be

done without affecting the QoS of the interactive service. In this work we show that the

characteristics of collocated services can influence the choice of memory protection that is

best for TCO. In fact, the experimental data show that selecting the memory protection based

only on what is best for the Online service can be suboptimal for the overall DC TCO.

6.1.5 Total Cost of Ownership (TCO)

Several models have been proposed for guiding DC design TCO such as

[80][100][101][102][103][104]. These models either do not account for the effects of failures

or only treat them in a cursory manner.

A recent very relevant work [30], performs software fault injection campaigns in DRAM to

characterize the SDC rates of web services. While the SDC analysis in [30] is seminal, and

can be useful for one of the inputs of our framework, its TCO analysis, as well as that of

previous TCO efforts, lack the following capabilities provided in our work: explore advance

ECC schemes, consider the implications of multi-bit errors, account for the performance,

power and temperature implications, consider the ramifications of collocated services,

measure DC TCO operational and capital expenses (not only server cost) and account for

failing module replacements and maintenance policy. We investigate the significance of

analyzing these parameters later in this work. Additionally, this work provides a detailed

description of the framework to facilitate its adaptation and use, and it is capable to reveal

TCO optimization opportunities even for a DC in use today.

Pan
ag

iot
a N

iko
lao

u

69

6.2 AMPRA Framework

A framework for assessing the implications of DRAM errors and protection techniques on

the TCO of a DC has been developed. The proposed framework input parameters, processing

components and the flow of information are shown in Figure 27. As far as we know, this is

the first framework that attempts to combine all these variables together and eventually

produce the TCO of a DC. The framework consists of eight different models: Energy, DIMM

Cost, DRAM FIT, Availability/MTTF, SDC Derating, Performance, Thermal and TCO

model. The inputs of each model are shown inside dashed boxes, while the outputs are

presented with grey color. The final outputs of the framework, TCO and System Reliability

(MTTF SDC), are presented with dark red color. Next, we elaborate in more detail the inputs,

the flow through the framework and its intermediate and final outputs.

6.2.1 Performance Model

The performance model takes as inputs the server configuration, DRAM ECC technique and

the number of threads per server running Online and Offline services. The goal of this model

is to determine the performance of the Online and Offline services when running alone and

collocated. The performance model also facilitates the comparison between two DCs by

taking as input the server performance of a reference DC and producing the Performance

Degradation (PD) of another DC relative to the reference DC. PD is used subsequently, by

the TCO model, to determine the extra overhead, e.g. additional/fewer servers, needed by a

DC to match the performance of the reference DC. The difference in the DCs server

performance can be due to the choice of ECC technique or the services they run in this work.

The PD is used by the TCO model to estimate the extra servers are needed (called hot spares)

to compensate the performance degradation. For instance, if the expected performance is at

90% of the maximum and the workload requirements are 10000x throughput (e.g. 10000

cores running separate threads), then we will need (10000/0.9 - 10000) 1111 extra cores to

meet application’s requirements, which translates to extra server costs for acquisition,

maintenance, power consumption and space. PD takes values from 0 to 1, with 0 meaning

no degradation at all and 1 means no operation. The performance is thus given by 1 − PD.

It is critical to quantify the performance of different ECC techniques since ChipkillDC, the

technique with the strongest code, can incur up to 38% performance overhead compared to

SECDED for memory intensive workloads [105] due to its wasteful use of bandwidth.

Similar observations have been made in several other studies [76][77][105][106].

Pan
ag

iot
a N

iko
lao

u

70

Performance for a given ECC can be determined using simulations or real hardware.

Simulations are useful in the absence of hardware that supports the required ECC modes and

for exploring new ECC techniques. In this work we determine the ECC performance

implications with real hardware where services are deployed. Besides the protection

technique, performance can also be sensitive to the type of address interleaving used. State

of the art server processors, support various options of interleaving: Full interleaving,

Channel interleaving and No interleaving [78]. ChipkillDC always uses full interleaving,

because it splits a cache line across two DIMMs in different memory channels [107].

Although, the address interleaving option may matter for ChipkillSC and SECDED

performance, we only consider full interleaving in this work and leave the exploration of the

interleaving impact for future work.

Figure 27: AMPRA Framework Parameters, Components and Information Flow

DRAM FIT

Model

Availability

/MTTF

 Model

TCO

Model

DIMM

FITS_CE

Total extra

servers
Component

MTTF for

replacement

ECC

technique

System configuration

DIMM

FITS_DUE

HW and SW repair options

and their MTTR

DIMM

FITS_NDE

Fits per mode(transient,

permanent, physical

location)

#devices/DIMM

DC configuration

Device width/size

DRAM Grade

Factor

Model for proactive

replacement

Maintenance model for replacement

on faulty components

#DC servers
Energy Model

Server

Performance

Model

Server

Energy

DIMM

Cost Model

DIMM cost

Device size

DRAM frequency

Published

Data

ECC technique

#devices/DIMM

Device width

DRAM brand

DRAM technology

Server configuration

 (#cores,Interleaving

type, #channels,

DIMMs/channel)

Performance

Degradation

(PD)

#threads for Online

Service

#threads for Offline

Service

Published

Data

#threads for Online Service

#threads for Offline Service

DRAM SDC

Derating

Model

DIMM

Derated

FITS_NDE

Server Configuration

System

Reliability

(MTTF_SDC)

TCO

#threads for Online Service

#threads for Offline Service

Utilization Profile per day for

the online service

Thermal

 Model

Non DRAM component

Reference MTTF

#threads for Online Service

#threads for Offline Service

Component

Temperature

ECC technique

Server configuration

 (#cores, Interleaving type,

#channels, DIMMs/channel)

ECC technique

Server configuration

 (#cores,Interleaving type,

#channels, DIMMs/channel)

Reference ECC

technique

Component Reference

Temperature

Average Utilization

Published

Data

NDE Derating Factor

DIMM

FITS_SDC

Server configuration

 (#cores,Interleaving type,

#channels, DIMMs/channel)

Target Reliability

Pan
ag

iot
a N

iko
lao

u

71

Apart from the performance differences caused by the choice of the ECC technique,

performance of an Online service can be affected by the Offline service that it is collocated

with. In particular, if due to QoS constraints not all the cores of a server run Online services,

then Offline services can be run concurrently in the unused cores. Co-location can improve

a machine’s utilization, but this should come with a minimal impact on the QoS of the Online

services due to interference from shared resources [64]. Performance Degradation (PD) is

defined as follows:

𝑷𝑫 = 𝟏 −
𝑻𝒊𝒎𝒆𝑶𝒏𝒍𝒊𝒏𝒆𝑨

𝑻𝒊𝒎𝒆(𝑶𝒏𝒍𝒊𝒏𝒆+𝑶𝒇𝒇𝒍𝒊𝒏𝒆)𝑩

where TimeOnline A is the time to run the Online service on a server using ECC protection

technique A, and Time(Online+Offline)B is the time to run the Online service when collocated

with an Offline service on a machine with ECC protection technique B. The PD is used in

this work to evaluate the following three scenarios: (i) compare DCs running only the same

Online service (no co-location) but use different ECC techniques, (ii) compare DCs using

the same ECC technique (A=B) and running the same online service but with the one DC

running collocated jobs and the other not running them, and (iii) same as scenario (ii) but

with each DC using different ECC technique (AB).

The PD can be augmented to account also, for other performance metrics, such as the tail

response latencies (90th, 99th) for the Online service. More specifically, the framework can

be augmented to assess the profit depending on the response latency [108].

6.2.2 Energy Model

Besides their performance implications, ECC techniques and co-location can also cause an

increase in the energy consumption of a server. The Energy model is used to determine the

energy of a given server for two use cases: a high utilization scenario when the server is

running Online and Offline services together and a low utilization where the server is running

only the Offline service. For DCs with no collocated jobs (no offline jobs) the low utilization

case corresponds to the idle energy. The Energy of a server can be determined analytically,

using simulation or by using either hardware or software energy monitoring tools [27].

The per server energy is used by the TCO model to estimate the overall energy of a DC based

on a server utilization profile of a DC.

Pan
ag

iot
a N

iko
lao

u

72

6.2.3 Thermal Model

Component lifetime reliability has a strong temperature correlation. Moreover, temperature

in processors and DRAM depends on power density which itself depends on processor

performance and memory utilization. Therefore, we have developed a thermal model to

determine the temperature of different server components, such as CPU and DRAM, to

capture the interaction between lifetime reliability with the memory protection used by a

server and the mix of services it is running.

The temperature of a server component, can be determined by using analytical model

measurements, such as 3D-ICE [109], or real hardware measurements using thermal sensors

and hardware-specific software such as lmsensors [79]. We measure the temperature per

server component, for each specific ECC technique and use case. The component

temperature is then used by the Availability/MTTF model to evaluate the effects of

temperature on MTTF, component replacements and server overprovisioning.

6.2.4 DRAM FIT Model and Modeling DRAM Grades

The DRAM FIT model is used to produce the raw FIT rates for CE, DUE and NDE errors

per DIMM. The model inputs are: a specific ECC protection technique for a given DIMM

configuration (number of devices, their size and width), the fault rates per device for various

failure modes (row, column, bank, etc.), failure types (transient or permanent) and number

of faults (1, 2 etc.). The failure rates can be produced analytically using either projected rates

and failure distributions or rely on failure rates obtained in field studies of DRAM errors.

Analytical failure models have been developed, based on probabilities for spatial errors, and

failure rates from a large scale field study of DDR3 memory [41]. For SECDED the

probabilities are obtained for a given number of faulty bits whereas for both Chipkills they

are obtained for a given number of faulty symbols.

The developed analytical equations to calculate the different FIT rates for ChipkillDC and

ChipkilSC are shown below:

ChipkillDC equations

𝐶𝐸 = 𝑃𝑓𝑎𝑖𝑙1𝑑𝑒𝑣 ∑ 𝑃𝑥
 1(1 − 𝑃𝑥)𝑛−1

𝑥

1

𝐷𝑈𝐸 = 𝑃𝑓𝑎𝑖𝑙2𝑑𝑒𝑣 ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

 1(1 − 𝑃𝑥)𝑛−1 ∗ (
𝑛 − 1

1
) 𝑃𝑦

 1(1 − 𝑃𝑦)
𝑛−2

)
𝑥

1

𝑦

1

Pan
ag

iot
a N

iko
lao

u

73

𝑁𝐷𝐸 = 𝑃𝑓𝑎𝑖𝑙3𝑑𝑒𝑣 ∑ ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

 1(1 − 𝑃𝑥)𝑛−1 ∗ 𝐷𝐹𝑦 (
𝑛 − 1

1
) 𝑃𝑦

 1(1 − 𝑃𝑦)
𝑛−2𝑥

1

𝑦

1

𝑧

1

∗ (
𝑛 − 2

1
) 𝑃𝑧

 1(1 − 𝑃𝑧)𝑛−3)

+ 𝑃𝑓𝑎𝑖𝑙4𝑑𝑒𝑣 ∑ ∑ ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

 1(1 − 𝑃𝑥)𝑛−1
𝑥

1

𝑦

1

𝑧

1

𝑗

1

∗ 𝐷𝐹𝑦 (
𝑛 − 1

1
) 𝑃𝑦

 1(1 − 𝑃𝑦)
𝑛−2

∗ 𝐷𝐹𝑧 (
𝑛 − 2

1
) 𝑃𝑧

 1(1 − 𝑃𝑧)𝑛−3

∗ (
𝑛 − 3

1
) 𝑃𝑗

 1(1 − 𝑃𝑗)
𝑛−4

)

ChipkillSC equations

𝐶𝐸 = 𝑃𝑓𝑎𝑖𝑙1𝑑𝑒𝑣 ∑ 𝑃𝑥
 1(1 − 𝑃𝑥)𝑛−1

𝑥

1

𝐷𝑈𝐸 = (𝑃𝑓𝑎𝑖𝑙2𝑑𝑒𝑣 ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

 1(1 − 𝑃𝑥)𝑛−1 ∗ (
𝑛 − 1

1
) 𝑃𝑦

 1(1 − 𝑃𝑦)
𝑛−2

))
𝑥

1

𝑦

1

∗ ProbFail

𝑁𝐷𝐸 = (𝑃𝑓𝑎𝑖𝑙3𝑑𝑒𝑣 ∑ ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

 1(1 − 𝑃𝑥)𝑛−1 ∗ 𝐷𝐹𝑦 (
𝑛 − 1

1
) 𝑃𝑦

 1(1 − 𝑃𝑦)
𝑛−2𝑥

1

𝑦

1

𝑧

1

∗ (
𝑛 − 2

1
) 𝑃𝑧

 1(1 − 𝑃𝑧)𝑛−3)

+ 𝑃𝑓𝑎𝑖𝑙4𝑑𝑒𝑣 ∑ ∑ ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

 1(1 − 𝑃𝑥)𝑛−1
𝑥

1

𝑦

1

𝑧

1

𝑗

1

∗ 𝐷𝐹𝑦 (
𝑛 − 1

1
) 𝑃𝑦

 1(1 − 𝑃𝑦)
𝑛−2

∗ 𝐷𝐹𝑧 (
𝑛 − 2

1
) 𝑃𝑧

 1(1 − 𝑃𝑧)𝑛−3

∗ (
𝑛 − 3

1
) 𝑃𝑗

 1(1 − 𝑃𝑗)
𝑛−4

)) + (𝐷𝑈𝐸 ∗ (1 − 𝑃𝑟𝑜𝑏𝐹𝑎𝑖𝑙))

, where n is the number of devices, x,y,z,j, are the type of errors (single word, single bit,

single column etc.) where each of them can take all the 14 values from [41], P is the

probability of a device failure due to one of the 14 different types of errors, Pfailxdev is the

probability of an n-device DIMM to experience x device errors (eg. Pfail2dev =Probability of

a DIMM to experience 2 errors), DF is the derating factor and ProbFail is the probability

of the ChipkillSC to experience a failure. ChipkillSC implementation encodes and decodes

a codeword every two bursts and it is able to correct all the errors in a single device and

detect 99.99999963% of the errors in two devices. Thus, the ProbFail is equal to

0.9999999963.

Pan
ag

iot
a N

iko
lao

u

74

CE for both Chipkills can be estimated by summarizing all the combinations of the

probabilities for different fault types (such as single word, single bit etc.) and multiplying

these probabilities with the probability to have a single fault in one device. DUEs for

ChipkillDC can be estimated by summarizing all the combinations of the probabilities of

different fault types that happen in two devices in a single codeword. On the other hand, for

ChipkillSC DUEs are then multiplied with the ProbFail to not account for the faults that

cannot be detected in a single codeword.

To determine the probability of two faults occurring in the same codeword in both Chipkills,

we use a derating factor (DF) to derate each probability for each unique fault type

combination on two devices. For example, the DF for single column faults in a device is

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
. Finally, NDEs for ChipkillDC can be estimated by summarizing all the

combinations of probabilities for different fault types that happened in three and four

devices in a single codeword. For ChipkillSC, also, the additional number of DUEs that is

not included in the DUE equation is added to the estimation of NDEs (𝐷𝑈𝐸 ∗

(1 − 𝑃𝑟𝑜𝑏𝐹𝑎𝑖𝑙)). The probability of three or four faults happening in the same codeword

is determined by derating appropriately each unique fault type combination on three and

four devices. We also, derate each combination with an appropriate factor (DF) to account

for the likelihood of a fault combination happening in the same codeword. Each

combination contributes to a different repair action depending on whether it includes only

transient errors or it has at least one permanent error.

SECDED equations are based on an iterative process that goes through all the bits and

estimates the probability of having single bit, double bit, triple bit and quadruple bit errors.

 Each equation computes the probability for all device combinations that can produce a

given number of faults.

The various FIT rates, derived from the above analytical equations, for all the ECC schemes

considered in this work are shown in Table 11. Pan
ag

iot
a N

iko
lao

u

75

Each row of the table depicts the FIT rates for different protection schemes for Correctable

transient (FITS_CE-Tr.), Correctable permanent (FITS_CE-Pr.), Uncorrectable transient

(FITS_DUE-Tr.), Uncorrectable permanent (FITS_DUE-Pr.), Non-detectable transient

(FITS_NDE-Tr.) and Non-detectable permanent (FITS_NDE-Pr.) errors.

SECDED NDEs are divided further into two categories: Miscorrectable errors (FIT_MCE)

and Undetectable errors (FIT_UDE). For SECDED, the analytical equations consider up to

four faulty bits per codeword (since probabilities for more faulty bits are typically extremely

low). Therefore, miss-corrections, FIT_MCE, occur when three bits are flipped and the

syndrome value is valid. Assuming the SECDED code in [46], the probability to have miss-

correction due to triple bit errors is 56.28%. Undetected errors, FIT UDE, occur when four

bits are faulty and the syndrome value is zero. This probability equals to 0.8%. We consider

these two extra categories only for SECDED because for both Chipkill schemes the NDE

FIT rates are extremely small. Table 11 also, presents fault rates for SECDED with x8

devices assuming that they are two times bigger than x4 devices. Since [41] does not provide

raw fault rates for x8 devices we double the FIT rates of x4 devices. This effectively assumes

no fault overlapping (two different faults happening on the same bit(s)). This is a reasonable

assumption for the fault rates in this work since the probability of overlapped faults is

extremely low, 10−15. We optimistically assume that there are no multibit errors with more

than four bits with x8 devices.

DRAM Grades: One other FIT model parameter is the DRAM grade. The DRAM grade

attempts to capture the variation in DRAM quality [110] with lower grade DRAM

experiencing less failures. It is expected that lower grade DRAMs cost less[110][111][112],

thus presenting an opportunity for trading-off reliability for TCO reduction. The DRAM

grade is expressed as a numeric factor that is used to multiply the raw fault rates in [41] (i.e.

Table 11: FIT rates of transient (Tr.) and permanent (Pr.), CE, DUE and NDE

errors for each protection technique FIT/device

 Correctable

(FITS_CE)

Uncorrectable

(FITS_DUE)

NDE (FITS_NDE)

 Tr. Pr. Tr. Pr. Tr. Pr.

ChipkillDC

ChipkillSC

19.925

19.924

20.405

20.404

1.61*10-4

1.66*10-4

5.53*10-4

5.65*10-4

1.52*10-16

6.13*10-13

1.81*10-15

2.09*10-12

(FITS_

MCE)

(FITS_

UDE)

(FITS_

MCE)

(FITS_U

DE)

x4SECDED

x8SECDED

17.13

34.26

16.99

33.98

2.72

5.44

3.32

6.65

0.0639

0.1279

0.00537

0.0107

0.0841

0.168

0.0074

0.0148

Pan
ag

iot
a N

iko
lao

u

76

the larger the DRAM grade factor the higher the failure rates). The choice of range of factors

considered is hypothetical and aims to explore how big of an opportunity DRAM grades

present for TCO optimization.

6.2.5 DRAM SDC Derating Model

DRAM SDC Derating Model is used to estimate, for each ECC technique, the fraction of

NDE FITs per server that lead to SDC errors, i.e. affect the service output without been

detected. We refer to this fraction as FITS_SDC. This can be determined by either

characterizing a service using fault injections [30] or with analytical models that consider

the dynamic access patterns to different entries of various data structures of a service (hash

tables, lists etc.). In this work we simply examine the FITS_SDC trends for a range of

derating factor values to help determine the robustness against SDCs of the various ECC

techniques. The model accuracy can be improved by performing fault injection or analytical

modeling of specific services.

The FITS_SDC per server is used by the TCO model to estimate the MTTF_SDC for the

whole system (for all the servers), a metric of the service reliability. The NDE FITs that do

not cause SDCs (Derated FITS_NDE =FITS_NDE – FITS_SDC) are pessimistically

assumed to cause some visible user/system failure (i.e. none is benign) and are provided to

the Availability/ MTTF Model that estimates the total number of extra servers needed to

ensure peak throughput in the presence of these failures.

6.2.6 Availability/MTTF Model

The Availability model takes as inputs many parameters: the DRAM FIT rates for CE,

DUE and derated NDE for a given ECC scheme (provided by the FIT and SDC models), the

number of DIMMs/server, the initial number of DC servers, the actual temperature of each

component (provided by the Thermal model), the reference temperature and MTTF of each

component, the DC utilization, the policy for proactive replacement and the different

hardware and software repair techniques with their MTTR values (Table 12).

Pan
ag

iot
a N

iko
lao

u

77

We consider various repair techniques: ECC protection, page retirement, server reboot and

DIMM replacement. ECC can be used to repair transient correctable errors. Page retirement

can be used to repair permanent correctable errors. Server reboot can be used to repair

transient uncorrectable errors. Finally, DIMM replacement can be used to repair

uncorrectable permanent errors.

The Availability/MTTF model estimates the MTTF for a permanent failure for each server

component (CPUs, DRAM DIMMs, disks) using the Arrhenius equation [113] to compute

the MTTF acceleration factor (K) depending on the component actual temperature, provided

by the thermal model, and the component reference temperature and MTTF, obtained from

published data sheets. Note that the DRAM MTTF acceleration due to temperature is

performed only for permanent correctable and uncorrectable faults.

The final MTTF of each component is calculated based on the DC average utilization. For

example, for 20% average utilization the final MTTF is the weighted harmonic mean of the

MTTF with peak activity (Online and Offline co-running) for 20% of the time and the MTTF

with low activity (running only the Offline service) for the rest 80% of the time. The final

MTTF of each component is then used by the TCO model to determine the number and cost

of the extra DIMMs (NDIMM_rpl), CPUs (Ncpu_rpl), and Disks (Ndisk_rpl) needed for

replacement. The MTTFs are also used, together with the MTTRs, to determine the total

number of extra servers that are needed to ensure peak throughput in the presence of failures

and some server unavailability. Table 12 lists the duration for each repair technique (MTTR).

We assume that ECC correction has a negligible MTTR. We have checked a range of values

for reboot and page retirement and do not observe much sensitivity due to the rarity of these

events. It should be noted that the model is not specific to the techniques and the repair times

that are shown in Table 12, other repair schemes and MTTRs can be added to the model.

To compensate the performance loss due to the time required to repair faulty DIMMs, we

need to overprovision the DC with extra servers. The following equations are used to

Table 12: MTTR for various repair actions due to different types of failures

 Details Time

MTTRDIMM_rpl

MTTRpg_r

MTTRrbt

MTTRecc

Replace DIMM

Page retirement

Server reboot

ECC

1440 min

100 min

100 min

0 min

Pan
ag

iot
a N

iko
lao

u

78

calculate the extra servers to cover the performance loss due to: page retirement repairs

(Npg_r) and server reboot repairs (Nrbt). The Necc is zero because MTTRecc is negligible.

𝑁𝑝𝑔_𝑟 = (1 −

𝑀𝑇𝑇𝐹𝑝𝑟_𝐶𝐸

#𝐷𝐼𝑀𝑀𝑆
𝑀𝑇𝑇𝐹𝑝𝑟_𝐶𝐸

#𝐷𝐼𝑀𝑀𝑆 + 𝑀𝑇𝑇𝑅𝑝𝑔_𝑟

) ∗ (𝑁𝑠𝑟𝑣𝑚𝑜𝑑𝑢𝑙𝑒𝑠𝑟𝑒𝑞)

𝑁𝑟𝑏𝑡 = (1 −

𝑀𝑇𝑇𝐹𝑡𝑟_𝐷𝑈𝐸

#𝐷𝐼𝑀𝑀𝑆
𝑀𝑇𝑇𝐹𝑡𝑟_𝐷𝑈𝐸

#𝐷𝐼𝑀𝑀𝑆 + 𝑀𝑇𝑇𝑅𝑟𝑏𝑡

) ∗ (𝑁𝑠𝑟𝑣𝑚𝑜𝑑𝑢𝑙𝑒𝑠𝑟𝑒𝑞)

where the Nsrvmodulesreq is the initial number of server modules required for the peak workload

assuming no failures, and #DIMMS is the number of DIMM slots per server module. The

MTTFpr_CE for page retirement is given by
109

𝐹𝐼𝑇𝑆𝑝𝑟_𝐶𝐸 ∗ #𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑃𝑒𝑟𝐷𝐼𝑀𝑀
, where

#devicesperDIMM is the number of devices per DIMM and the MTTRtr_DUE for server reboot

is obtained using
109

𝐹𝐼𝑇𝑆𝑡𝑟_𝐷𝑈𝐸 ∗ #𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑃𝑒𝑟𝐷𝐼𝑀𝑀
.

We assume that page retirement and reboot events never happen together on the same node

because this occurs with very low probability for the rate of failures we considered. Finally,

the total number of extra servers Totalextra_servers needed to make up the performance loss due

to memory module repairs, is determined by:

𝑇𝑜𝑡𝑎𝑙𝑒𝑥𝑡𝑟𝑎_𝑠𝑒𝑟𝑣𝑒𝑟𝑠 = ⌈𝑁𝑝𝑔_𝑟 + 𝑁𝑟𝑏𝑡⌉

The MTTF of a DIMMreplacement due to uncorrectable permanent errors, MTTFpr_DUE, is

calculated using the following equation:

𝑀𝑇𝑇𝐹𝑝𝑟_𝐷𝑈𝐸 =
109

𝐹𝐼𝑇𝑆𝑝𝑟_𝐷𝑈𝐸 ∗ #𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑃𝑒𝑟𝐷𝐼𝑀𝑀

To limit the effects of uncorrectable errors we explore the benefit of employing proactively

replacement. In particular, when “proactive replacement on correctable errors” is used, the

DIMM replacement is applied on every permanent correctable error. As reported before, it

is difficult to predict from correctable errors the uncorrrectable error rate, but the proactive

replacement on every correctable error can help minimize the uncorrectable error rate by

Pan
ag

iot
a N

iko
lao

u

79

70% [42][86]. The MTTFpr_DUE+pr_CE for a DIMM replacement with proactive replacement is

given by:

𝑀𝑇𝑇𝐹𝑝𝑟𝐷𝑈𝐸+𝑝𝑟𝐶𝐸
=

109

(𝐹𝐼𝑇𝑆𝑝𝑟𝐷𝑈𝐸
+ 𝐹𝐼𝑇𝑆𝑝𝑟𝐶𝐸

∗ #𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑃𝑒𝑟𝐷𝐼𝑀𝑀

6.2.7 DIMM Cost Model

The DIMM cost is determined by six parameters: DRAM brand, DRAM technology, device

width (x4 or x8 devices), device size, the number of devices per DIMM and DRAM

frequency. The DIMM cost is estimated with the help of publicly available data and price

listings.

6.2.8 TCO Model

The last component of the framework is the TCO Model that is used to estimate the cost of

a DC. The model is based on the TCO tool by [80] extended to take as inputs the outputs

produced by the various models in our framework plus some other parameters, such as the

utilization profile per day for the online service, DIMM FITS SDC and the target reliability.

The performance degradation (PD) determines the number of extra spares to compensate the

performance loss due to ECC overheads or service co-location:

𝑵𝒉𝒐𝒕𝒔𝒑𝒂𝒓𝒆𝒔 =
𝑵𝒔𝒓𝒗𝒎𝒐𝒅𝒖𝒍𝒆𝒔𝒓𝒆𝒒+𝑻𝒐𝒕𝒂𝒍𝒆𝒙𝒕𝒓𝒂_𝒔𝒆𝒓𝒗𝒆𝒓𝒔

𝟏−𝑷𝑫
 – (𝑵𝒔𝒓𝒗𝒎𝒐𝒅𝒖𝒍𝒆𝒔𝒓𝒆𝒒 + 𝑻𝒐𝒕𝒂𝒍𝒆𝒙𝒕𝒓𝒂_𝒔𝒆𝒓𝒗𝒆𝒓𝒔)

where Nsrvmodulesreq is the number of server modules required for the peak workload without

failures, and Totalextra_servers is estimated by the Availability/MTTF model and accounts for

the number of extra servers needed to make up the performance loss due to the repair

techniques. In the case that PD is negative then Nhotspares returns a negative number. This

means performance improves relative to reference DC and fewer servers are required.

Consequently, the total number of servers in a DC becomes:

𝑵𝒉𝒐𝒕𝒔𝒑𝒂𝒓𝒆𝒔 = 𝑵𝒔𝒓𝒗𝒎𝒐𝒅𝒖𝒍𝒆𝒔𝒓𝒆𝒒 + 𝑻𝒐𝒕𝒂𝒍𝒆𝒙𝒕𝒓𝒂_𝒔𝒆𝒓𝒗𝒆𝒓𝒔 + 𝑵𝒉𝒐𝒕𝒔𝒑𝒂𝒓𝒆𝒔

The above is used as an input to the TCO model that repeats the TCO estimation until the

Nsvrmodules converges (empirically, at most three iterations are needed.). Replacement on an

Pan
ag

iot
a N

iko
lao

u

80

error can be performed at different granularities, e.g. faulty component or the whole server.

In our model, we apply component replacement. The number of spares needed for

replacement of faulty components are estimated for each component type (DIMM, disk and

CPU) as shown below:

𝑁𝐷𝐼𝑀𝑀_𝑟𝑝𝑙 =
𝑁𝑠𝑣𝑟𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ∗ #𝐷𝐼𝑀𝑀𝑆

𝑀𝑇𝑇𝐹𝑑𝑖𝑚𝑚 + 𝑀𝑇𝑇𝑅𝐷𝐼𝑀𝑀_𝑟𝑝𝑙

𝑁𝑑𝑖𝑠𝑘_𝑟𝑝𝑙 =
𝑁𝑠𝑣𝑟𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ∗ #𝐷𝐼𝑆𝐾𝑆

𝑀𝑇𝑇𝐹𝑑𝑖𝑠𝑘 + 𝑀𝑇𝑇𝑅𝑑𝑖𝑠𝑘_𝑟𝑝𝑙

𝑁𝑐𝑝𝑢_𝑟𝑝𝑙 =
𝑁𝑠𝑣𝑟𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ∗ #𝐶𝑃𝑈𝑆

𝑀𝑇𝑇𝐹𝑐𝑝𝑢 + 𝑀𝑇𝑇𝑅𝑐𝑝𝑢_𝑟𝑝𝑙

For this study the MTTF and MTTR values for the CPU and disk components are derived

from public data [115]. TheMTTFdimm is derived from the analysis provided in this work and

is equal to MTTFpr_DUE unless proactive replacement is employed in which case is given by

MTTFpr_DUE+pr_CE. One other input to the TCO model is the utilization profile per day for the

Online service. This parameter captures the dynamic load behavior of a DC running a

specific Online service. Different utilization profiling graphs are available from various

studies [4][121]. In our analysis, we use the utilization graph from [4]. Utilization affects the

DC energy and replacements and consequently the total TCO. Finally, the TCO model

checks whether the System Reliability (MTTF_SDC) satisfies a given target reliability. The

system MTTF_SDC, is given by:

𝑀𝑇𝑇𝐹𝑆𝐷𝐶 =
𝑀𝑇𝑇𝐹𝑆𝐷𝐶_𝑠𝑒𝑟𝑣𝑒𝑟

𝑁𝑠𝑟𝑣𝑚𝑜𝑑𝑢𝑙𝑒𝑠

where MTTFSDC_server is the total MTTF for SDC errors for a server component and it is

calculated based on the DIMM FITS_SDC and #DIMMS.

6.3 Experimental Methodology and Models Assumptions

Here, we describe some implementation details for each framework model as used in our

experiments.

FIT and Availability model: The input raw fault rates of the FIT model are based on the

normalized data reported in [41] converted to absolute rates, for each protection technique,

Pan
ag

iot
a N

iko
lao

u

81

using the equations in Section 6.2.4 and the single-bit probability projected in ITRS [122].

In our analysis, we considered 4GB rank with x4 DRAM devices and 2Gb per device, and

also x8 DRAM devices with 4Gb per device. To provide the FIT rates for larger x8 devices

we double the FIT rates of Table 11.

Performance model: To evaluate the performance overhead of ChipkillDC relative to

ChipkillSC, we use a dual socket Intel Xeon E5620 system with the configuration shown in

Table 13.

We experimented using a 2.4GHz processor frequency with disabled turbo mode. To

measure the performance degradation of ChipkillDC, the server memory system is set in

“Lockstep Mode”. This mode combines together two DIMMs from different channels to

form a 144 bit codeword [78][107][123][124]. To measure the performance degradation of

ChipkillSC, the server memory system is set in “Advance ECC Mode”. This mode uses a

single channel and combines two bursts to form 144-bit codeword. Both modes are set by

accessing the BIOS through a BIOS Serial Command Console interface (CLI) [78].

Our evaluation used Web Search, an Online benchmark from CloudSuite [50][51] and

different Offline benchmarks, a Data Analytics also from CloudSuite [50][51] and few others

from SPEC CPU2006 [52]. We considered four different types of Offline benchmarks

according to their memory behavior: Memory Intensive (MI), Mcf, Compute Intensive (CI),

Gcc, Streaming (STREAM), H264ref, from SPEC CPU 2006 and Data Analytics-Map

Reduce (MR), from CloudSuite, with two different model sizes (obtained from training with

500MB and 49000MB data).

To evaluate the performance overhead of Web Search benchmark, four blade servers are

used: one client server with multithreaded client process where each thread run on a single

core, one frontend server, one index server and one document server with a traffic of 100K

queries and a dataset size of 6GB. To increase the number of concurrent requests, we

Table 13: Server and main memory configuration

Number of CPUs

CPU

Number of cores per CPU

2

Intel Xeon E5620 2.4GHz

4

DRAM technology

Channels per CPU

DIMMS/channel

Ranks/DIMM

DRAM device

DIMM capacity

Turbo mode

Level of Interleaving

DDR3

2

1

2

x4

8GB

Disabled

Full interleaving

Pan
ag

iot
a N

iko
lao

u

82

increased the number of clients. One or two instances of each Offline service run

concurrently in the server that performs the index search. The performance degradation of

the Online service is measured by running it first in isolation and then co-running it in

combination with one or two instances of the same Offline service, for different ECC

schemes and number of threads.

We run each experiment 5 times and each time we collected the average search time and the

99th tail response latency of the Online service. The results presented are calculated by

removing the minimum and maximum values.

Energy and Thermal model: The energy numbers are collected using the HPiLO3 [27]

which allows to monitor the power consumption of a server at a given time. The results are

used to calculate the average power numbers used in the TCO tool. The HPiLO is also used

to measure the temperature of DRAM and Disk components. To track the CPU temperature,

we use lm-sensors [79]. We have validated the power and temperature measurements using

DRAM and CPU stress test programs [125]. The reference MTTF temperature numbers for

CPU and disk are 45 ◦ C and 35 ◦ C, respectively according to [126][127].

DIMM cost model: The parameters of the DRAM cost model for 8GB DIMMs are shown

in Table 14 and are obtained from public data [119][120].

TCO model: To estimate the Total Cost of Ownership (TCO) we extended the COST-ET

tool proposed in [80]. Our framework is implemented as a wrapper around this earlier tool.

For each experiment an initial population of 50000 server modules is used assuming an

average utilization of 31% [4]. TCO results are presented assuming servers running Web

Search only on two cores to meet a QoS constraint. Analysis for collocated services assumes

that the default configuration runs Online services on two cores and Offline services on the

remaining one or two cores (depending on the DC configuration). Our analysis evaluates

Table 14: Server configuration and parameters

Components Cost ($)

2 Processors

2 Disks

Other (Case, power supply & motherboard)

130 each [114]

60 each [115]

308

[116][117][118]

DRAM x4

DRAM x8

99.66 [119]

64.74 [120]

#active cores 2

Proactive replacement disabled

 Pan
ag

iot
a N

iko
lao

u

83

servers that have the same DRAM configuration for x4 and x8 DIMMs in terms of the

number of channels, DIMMs per channel, DIMM capacity (8GB) and ranks per DIMM, to

provide the same bandwidth for both configurations.

The costs, shown in Table 14, are derived from publicly available data

[115][116][117][118][128]. Finally, the various parameters for the datacenter configuration

shown in Table 15 are derived from [4][80][129].

For the baseline configuration, we select ChipkillSC memory protection technique, with

index servers running Web Search in two cores without co-location. The proactive

replacement on correctable errors is not employed unless specified otherwise.

6.4 Results

We investigate how the various proposed framework parameters affect the DC TCO and the

choice of the DRAM protection technique. We present different case studies to assess the

impact of (a) the number of DIMM slots, (b) DRAM grades (increasing fault rates), (c)

ChipkillDC and ChipkillSC Performance, Energy and TCO for an Online service running

alone and collocated with Offline services, (d) NDE errors on the System Correctness, and

(e) sensitivity of TCO to various parameters considered in this work.

6.4.1 Implications of DRAM Capacity on TCO

This case study investigates how the TCO of each protection technique is affected by the

number of DIMM slots (8GB per DIMM) per server. The results are shown in Figure 28.

Table 15: Datacenter Configuration

Cost of building 3000$/m2

Cost of cooling 12.5$/W

Cost of electricity 0.07$/W

Cooling area overhead 1.2

Network per rack 10K$-360W [117]

Maintenance salary per rack 200$ (monthly)

Datacenter depreciation 15 years

PUE 1.2

Server modules in Datacenter 50,000

Pan
ag

iot
a N

iko
lao

u

84

The x-axis presents different protection techniques according to the number of DIMMs per

server and the y-axis shows the TCO breakdown (infrastructure, network, maintenance,

power, DRAM and other server components cost such as disk, cpu, board etc.) per month in

dollars. As seen in Figure 28, with increasing number of DIMM slots per server, the DC cost

for all the protection techniques also increases. Also, it is observed that x8 SECDED offers

better TCO as compared to the other protection techniques. The x8 SECDED benefits grow

with increasing number of DIMM slots because of the lower cost and power of the x8

devices. On the other hand, as the number of DIMMs per server increases, x4 SECDED

becomes the technique with the highest cost due to its lower reliability. The results in Figure

28 clearly suggest that the most cost-effective protection technique, from the four

investigated in this case study, is x8 SECDED.

6.4.2 DRAM Grades and TCO

The server configuration selected for the following case studies has four DIMMs, one in each

channel, with a total of 32GB DRAM per server node. As mentioned earlier, it is interesting

to investigate the trade-offs of several grades of DRAM quality where better quality has

higher cost and more reliable parts. Our analysis assumes a large range of DRAM grades for

Figure 28: TCO results for different DIMMs slots

Pan
ag

iot
a N

iko
lao

u

85

better exploration of the opportunities from having DRAM products with varying cost-

quality. Figure 29 shows the normalized TCO results for 20 different grades (baseline DRAM

is denoted by GradeA).

For now, we consider DIMM cost to be the same for all the grades (we examine the cost

issue later). All grades are correlated to GradeA by some factor (e.g. x2 is derived

multiplying the fault rates of GradeA by two). The various curves correspond to different

protection techniques and are normalized to the TCO of a DC using ChipkillDC with GradeA

fault rates. Also, for both SECDED schemes we present results when the proactive

replacement option is used whenever there is a correctable error.

As shown in Figure 29, the TCO of ChipkillDC and ChipkillSC are significantly less

sensitive to increasing failure rates as compared to x4SECDED and x8SECDED.

Figure 29 also shows that the cost of the proactive replacement strategy is much higher than

the savings it offers from reducing uncorrectable errors. Thus, there seems to be no

opportunity to reduce the TCO by using the proactive replacement we evaluated.

Next, we explore the trade-off between DRAM cost and reliability. The results presented in

Figure 30 shows what the DIMM cost for each protection technique should be to maintain

the TCO of GradeA in all the other grades.

Figure 29: TCO results for different DRAM grades

Pan
ag

iot
a N

iko
lao

u

86

Figure 30 effectively shows the opportunity to reduce the TCO for each protection technique,

for all the grades, in the cases where the DIMM cost is below the corresponding curve for

each protection technique. Choosing a DIMM cost below each curve leads to lower TCO

than GradeA. For both SECDED schemes, a significant reduction of the DIMM cost is

required to maintain the TCO of GradeA (for x4SECDED 70$ less per DIMM for a x256

grade). On the other hand, the results reveal that ChipkillDC (ChipkillSC) with a x4096

(x1024) grade can achieve the TCO cost of GradeA, with only 1$ cost reduction per DIMM.

6.4.3 ChipkillDC and ChipkillSC Performance, Energy and TCO for Online and
Offline Jobs

To compare the performance of ChipkillDC and ChipkillSC, we run Online and Offline

services in isolation and collocated on a server using both memory protection schemes. In

Figure 31 we present the performance in terms of the Average Search Time (ms) and the

99th percentile Tail Latency (ms) of Web Search (WS) while running it alone and co-running

it with different types of Offline services, on the same server.

Figure 30: DRAM cost in ($) for different fault rates (DRAM grades)

Pan
ag

iot
a N

iko
lao

u

87

The results are presented for different workload combinations. Specifically, two threads of

Web search are running (two index servers) on two cores for all the configurations (recall

that only two cores are used to meet the QoS constraint) while one or two instances of the

same Offline service are co-running with Web Search. Each combination contains in total

three or four threads, where each one is running on a separate core.

As we can observe from Figure 31.(a) and Figure 31.(b), when Web Search (WS) is co-

running with Offline services, the Average Search Time and tail latency increase for both

protection techniques as compared to Web Search running alone.

In Figure 31.(a) we observe that in most cases when not all cores are used, the performance

is higher with ChipkillDC, the more bandwidth demanding protection technique, than

ChipkillSC. We attribute this to the low memory pressure of Web Search and the ability of

ChipkillDC to receive a codeword after a single burst which can enable faster forwarding of

first word from memory. This reasoning appears consistent with the observation, in Figure

31.(a), that ChipkillDC is always worse when all cores are used (cases where 2 instances of

Web Search run with 2 offline services) and the demand for memory bandwidth is higher.

Figure 31: Performance overhead of ChipkillDC compared to ChipkillSC for different

co-running configurations (a) performance in terms of Average Search Time and (b)

performance measured in terms of 99% tail latency

Pan
ag

iot
a N

iko
lao

u

88

Another important observation is that the trends presented in Figure 31.(a) are not the same

with the trends in Figure 31.(b). For example, the average search time for ChipkillDC when

co-running Web Search with two Memory Intensive services (seventh pair of bars in Figure

31.(a)) is higher than the average search time of ChipkillSC. On the other hand, ChipkillSC

has higher 99th percentile tail response latency (seventh pair of bars in Figure 31.(b)) from

ChipkillDC while using the same configuration (currently the TCO considers PD due to

Average Search time. The framework can be extended to consider also the tail response

latency in the TCO model and other performance metrics, as well).

Figure 32 presents the TCO of ChipkillDC and ChipkillSC (bars) when running two Web

Search services (WS) on two cores per server and co-running with one or two instances of

the Offline services.

The results presented are normalized to the TCO of ChipkillDC when running Web Search

service alone. An important observation from Figure 32 is that when two Web Search

services are co-running with an Offline service, there is an increase in the TCO for both

ChipkillDC and ChipkillSC compared to the TCO of Web Search running alone. This

increase is due to the performance degradation and energy overheads, caused from the co-

location of Web Search with Offline service. The power consumption for each protection

technique is presented in Figure 32 with a secondary axis (lines). To have more accurate

TCO results, we considered both performance and power parameters in the TCO.

Considering only one of the two parameters can lead to inaccurate TCO results.

Figure 32: TCO results for collocated services considering Average Search Time and

Average Power consumption

Pan
ag

iot
a N

iko
lao

u

89

As seen in Figure 31(a), the performance degradation of Web Search when co-run with two

instances of Map Reduce with 500MB dataset size (MR500) is larger for ChipkillDC. For

the same scenario in Figure 32, the average power trends are reversed with ChipkillDC

consuming less power than ChipkillSC. Considering both parameters in the TCO, Figure 32,

shows that ChipkillDC has lower TCO than ChipkillSC.

6.4.4 Implications of NDEs on the System Reliability

Next, we analyze the system MTTF for SDC errors. As mentioned earlier, NDE errors can

cause Silent Data Corruption (SDC). Determining the actual fraction of NDEs that lead to

SDCs is a challenging problem [130]. A recent work, reports less than thousand SDCs from

billions of queries performing fault injection in DRAM while running a Web Search

application [30]. Figure 33 shows the effects of SDC errors in the system’s MTTF SDC. We

analyze the implications in the System MTTF SDC for a hypothetical range of SDC derating

factors that derate the initial NDE rates, varying from 0 to 1. The x-axis represents the

derating factor rates (NDE rates that cause SDCs), whereas the y-axis represents the system

MTTF for SDC errors. The graph shows a number of curves each representing a different

error protection scheme. The target reliability for SDC in this experiment is set to 3 years.

The results show that for ChipkillDC and ChipkillSC with SDC Derating factor=0.001 the

system MTTF_SDC is 1016 and 1013 years respectively. For the largest derating factor, 1,

the system MTTF_SDC if 1014 and 1010 years, respectively. However, with x8 and x4

SECDED, the system MTTF_SDC is many orders of magnitude lower as compared to

Chipkill schemes, and with increasing derating factor it even becomes lower than the three-

year MTTF target. Figure 33 also shows how the low average system utilization (31%)

increases the MTTF SDC of all protection technique. Lower server utilization can provide

higher reliability because it is more likely for errors to occur in idle DC resources. The above

analysis indicates that the two Chipkill schemes provide much better resiliency against SDC

errors which is important to consider when choosing DC DRAM memory protection.

 Pan
ag

iot
a N

iko
lao

u

90

6.4.5 TCO Sensitivity Analysis

Figure 34 shows a sensitivity analysis that aims to highlight the significance of considering

some of the basic framework parameters when making TCO trade-offs related to memory

protection in a DC. All the TCO numbers are presented in terms of dollars.

The first two bars show the total TCO for ChipkillSC and ChipkillDC when co-running 2

Web Search with 2 instances of the Memory Intensive (MCF) service and the framework

includes all the parameters examined in this work. As the figure depicts the TCO savings

that can be derived by including all the parameters are around 80000 dollars by selecting

ChipkillSC. The second and third group of results present how TCO is affected by ignoring

temperature and utilization. In these cases, we can observe a TCO increase for both

protection techniques. Furthermore, the results show that ignoring co-location can have a

large impact on TCO (lower TCO) and changes the result for which of the two protection

techniques is better. Finally, excluding all the other parameters (performance, DRAM

reliability and the contribution of operational costs to the TCO) reveals even larger sensitivity

with both schemes seemingly having the same TCO.

Figure 33: Design space exploration of NDEs that lead to SDCs for each protection

technique + system utilization

Pan
ag

iot
a N

iko
lao

u

91

6.5 AMPRA Model Validation and Insights

Overall, the findings of this analysis calls for manufacturers, vendor designers, datacenter

owners and researchers to select/design memory protection schemes that maximize the TCO

using the AMPRA proposed framework. The framework can also be useful to estimate the

premium that compute as a service provider need to charge for running offline services to

make up for the increase in TCO due to co-location. Another framework use is to enable

processor designers to quantify the TCO benefits of new ECC options. Finally, this work

offers a common framework for future research in this area that can be easily extended to

explore new trade-offs. Moreover, datacenter designers can exploit these findings if they

have the option to select lower cost and less reliable DRAM components. On the other side,

a processor designer may benefit by performing a “what if” analysis to determine the

potential TCO benefits of a new ECC code before embarking on building it.

AMPRA framework is useful for identifying key parameters that need to be considered when

exploring different trade-offs. In the absence of such framework, some of these parameters

may be overlooked. To validate AMPRA model we validate each individual model and

components. Specifically, we validate power and temperature numbers using publicly

available data, performance degradation running the applications on real hardware and we

compare all the FIT rates with previous published papers.

Figure 34: TCO sensitivity analysis of 2 Web Search + 2 Memory Intensive

Services

Pan
ag

iot
a N

iko
lao

u

92

Chapter 7

7 Conclusions and Future work

7.1 Conclusions

During the last few years, DCs have spread across the globe and they have increased in

numbers, size and utilization. Large DCs that consist of thousands to tens of thousands of

servers are used to deliver services, such as e-mail, web search, social networking, maps and

face recognition, to billions of users. Additionally, a new paradigm has emerged that

promotes the offering of services at the Edge, closer to users. One key challenge of these

innovations is to limit their cost and energy consumption and, consequently, there is a

growing need for efficient methodologies and techniques to optimize DC’s design cost.

This work investigates a number of key parameters that affect TCO by evaluating DCs design

decisions.

In this thesis we firstly, select the monitors and knobs to use to configure a computing system

running an application while satisfying the application’s requirements and not violating any

system constraints. The selection relies on a heuristic correlation analysis between monitors

and knobs to determine the minimum subset of monitors to observe and knobs to explore to

determine the optimal system configuration for the application in order to provide

optimization for the TCO of a system. At the end of this analysis, we reduce an 11-

dimensional space to a 4-dimensional space for monitors and a 6-dimensional space to a 4-

dimensional space for knobs. As presented in the thesis, TCO is mainly correlated with

reliability, power and performance aspects. To optimize TCO, we provide different TCO

evaluations that tackle all these aspects.

Secondly, we investigate the benefits of running an emerging security focused IoT

application, (jamming detection), at the Edge vs. the Cloud by developing an end-to-end

TCO model, which considers the application’s requirements as well as the Edge’s

constraints. For the first time, we build such a model based on realistic performance and

energy-efficiency measurements obtained from commodity 64-bit ARM based micro-servers

that are excellent candidates for supporting Cloud services at the Edge. Such servers

Pan
ag

iot
a N

iko
lao

u

93

represent the type of devices that can provide the right balance between power and

performance, without requiring any complicate cooling and power supply infrastructure,

which will not be available at the de-centralized deployments. Aiming at improving the

energy efficiency, we exploit the pessimistic design margins adopted conventionally in such

devices and investigate their operation under lower than nominal supply voltage and memory

refresh-rate. Our results show that the jamming detection application deployed at an Edge

environment is superior to a Cloud based solution by up to 2.13 times in terms of TCO.

Moreover, when servers operate below nominal conditions, we can achieve up to 9% power

savings which enables in several situations 100% gains in the TCO/area-coverage metric, i.e

double area can be served with the same TCO.

 Moreover, we present a comprehensive correlation analysis of an application’s CPU-Vmin

with hardware’s performance counters on a real multicore system. The analysis reveals that

a subset of the performance counters- the same ones across different workloads- have a

strong correlation with a workload’s CPU-Vmin. Moreover, the results show that the CPU-

Vmin is accurately identifiable by monitoring a workload’s performance-counters during the

n-first seconds of its execution. Our findings serve as the basis of a software-based CPU-

Vmin identification method that monitors an application for the first n-seconds and then sets

the CPU supply voltage to a specific value for the rest of the execution. Our evaluation shows

that the CPU-Vmin workload identification method provides a safe CPU-Vmin, 99.4% of

the times, reduces power on average by 7.1% and provides substantial TCO savings when n-

first equals to 20 seconds.

Finally, we propose for the first time, the AMPRA framework for modeling the implications

of DRAM failures and DRAM error protection techniques on the TCO of a datacenter. The

framework captures the effects and interactions of several key parameters including: the

choice of DRAM protection technique (e.g. single vs dual channel Chipkill), device width

(x4 or x8), memory size, power, FITs for various failure modes, the performance, power and

temperature overheads of a protection technique for a given service and mixes of collocated

services. The usefulness of the proposed framework is demonstrated through several case

studies that identify the best DRAM protection technique in each case, in terms of TCO.

Interestingly, our analysis reveals that among the three DRAM protection techniques

considered, there is no one that is always superior to all the others. Moreover, each technique

is better than the others for some cases. This underlines the importance and the need of the

proposed framework for making optimal memory protection datacenter design decisions. As

part of this work, we analyze and report the performance and power with single channel and

dual channel Chipkill on real hardware when running a web search benchmark alone and

Pan
ag

iot
a N

iko
lao

u

94

collocated with benchmarks of varying memory intensity. This analysis reveals that the

choice of memory protection can have serious performance and TCO ramifications

depending on the memory characteristics of collocated services. Other analysis reveals that,

for the datacenter and services assumed in this study, when using Chipkill protection it can

be beneficial for TCO to use DRAM with 100x the failure rate of a baseline DRAM as long

as the cost per DIMM is at least a dollar less compared to the baseline.

7.2 Lessons Learnt

This Section recapitulates the thesis impact and at the same time it serves as a springboard

to future research and development- based on the insights gained during the thesis process.

Each of the contributions of this thesis has had a significant impact on both industry and

research community. Particularly, AMPRA tool2 has been placed online (more than 1000

downloads by now) and organizations expressed interest in this tool and had the opportunity

to use it in their analyses.

Moreover, during my two months internship at IROC technologies, I encapsulated AMPRA

tool on the development of a reliability-based architect tool. This tool uses AMPRA to

estimate the TCO of a new developed system, including reliability analysis of all the

components which are part of this system.

The findings of this thesis pave the way of new future directions. However, some of these

directions have negative preliminary results. The dynamic reconfiguration of the system

according to the TCO savings is one of them. Specifically, this idea has been based on the

dynamic change of different system knobs such as memory protection, memory interleaving

and turbo mode, according to the application needs in order to optimize the TCO.

Nevertheless, this idea was not as successful as it had been initially expected since the default

settings for the specific applications served as the best choice in terms of TCO.

7.3 Future Work

In spite of the technical contributions of the current text, it is clear that improvements and

optimizations can improve the technology of the concepts discussed herein. We propose

future work items, corresponding to each technical Chapter of the current text:

2 (Publicly Available- AMPRA: Analyzer of TCO Implications of Memory Failures and Memory Protection

http://www2.cs.ucy.ac.cy/carch/xi/ampra tco.php)

Pan
ag

iot
a N

iko
lao

u

95

Chapter 3: A possible direction to this work is to explore other configurations, monitors and

knobs and investigate the generality of the observations to other platforms and applications.

Chapter 4: This work provides a clear motivation for even more power-efficient solutions

at the Edge and the use of such evaluation metrics. An important future direction is the

inclusion of the sensors in the evaluation in order to include the aspect of battery life and

many other parameters consisting the embedded systems. Moreover, distributed Cloud is

widely used by many clients. However, these clients are kept agnostic of the location that

they run their application and the security issues that may face. The cautious choice of the

location dependent on the TCO will be very beneficial. Another important future direction

would be to extend the research of this work by studying more applications.

Chapter 5: The identification method highlights the need of the development of a software

DVS governor that predicts the workloads CPU-Vmin from the first n-seconds. Another

important direction for future work is the further reduction of false positives without

increasing false negatives and thus improve power savings. Furthermore, the methodology

can be used to predict viruses such as the di/dt virus in platforms that do not have droop

counters visibility such as X-Gene2 platform. Finally, future work should investigate the

generality of the observations made on X-Gene 2 for other platforms.

Chapter 6: TCO evaluation of DRAM protections is another domain that invites meaningful

future contributions. One possible direction is to explore the TCO of other components (e.g.

SSDs), study the cost-benefits of new ECC schemes and other DRAM technologies.

Pan
ag

iot
a N

iko
lao

u

96

Bibliography

[1] Tim Reeve and Barb Everdene, “Applying Total Cost of Ownership to Sustainability

Purchasing”, Workbook (Version 1.0) on Sustainability Purchasing Network

[2] Amazon Web Services, “AWS Total Cost of Ownership (TCO) Calculator”, 2019

[3] Microsoft Azure, “Total Cost of Ownership (TCO) Calculator”, 2019

[4] L. A. Barroso, J. Clidaras, and U. Holzle, “The datacenter as a computer: An

introduction to the design of warehouse-scale machines,” Synthesis lectures on

Computer Architecture, pp. 1–154, 2013.

[5] E. Brewer, “Lessons from giant-scale services,” Internet Computing, pp. 46–55,

2001.

[6] Bonomi, Flavio, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. "Fog computing

and its role in the internet of things." In Proceedings of the first edition of the MCC

workshop on Mobile Cloud computing, pp. 13-16. ACM, 2012

[7] Shekhar, Shashank, Ajay Dev Chhokra, Anirban Bhattacharjee, Guillaume Aupy,

and Aniruddha Gokhale. "INDICES: exploiting Edge resources for performance-

aware Cloud-hosted services." In Fog and Edge Computing (ICFEC), 2017 IEEE

1st International Conference on, pp. 75- 80. IEEE, 2017.

[8] Tong, Liang, Yong Li, and Wei Gao. "A hierarchical Edge Cloud architecture for

mobile computing." INFOCOM 2016, The 35th Annual IEEE International

Conference on Computer Communications, IEEE. IEEE, 2016.

[9] El-Sayed, Hesham, Sharmi Sankar, Mukesh Prasad, Deepak Puthal, Akshansh

Gupta, Manoranjan Mohanty, and ChinTeng Lin. "Edge of things: the big picture on

the integration of Edge, IoT and the Cloud in a distributed computing environment."

IEEE Access 6 (2018): 1706-1717.

[10] C. Lefurgy, X. Wang, and M. Ware, “Power capping: A prelude to power shifting,”

Cluster Computing, vol. 11, no. 2, 2008.

[11] Luiz Andre Barroso and Urs Holzle, The Datacenter as a Computer. Morgan

Claypool, 2009.

[12] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble level power

management for dense blade servers,” in Proceedings of the 33rd Annual

International Symposium on Computer Architecture (ISCA), pp. 66-77, 2006.

Pan
ag

iot
a N

iko
lao

u

97

[13] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller, “SHIP: Scalable hierarchical

power control for large-scale data centers”, in Proceedings of the 18th International

Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 91-

100, 2009.

[14] R. Joseph, D. Brooks, and M. Martonosi. “Control techniques to eliminate voltage

emergencies in high performance processors”. In Proc. International Symposium on

High-Performance Computer Architecture, pp.79-90, 2003

[15] Bertran, Ramon, Alper Buyuktosunoglu, Pradip Bose, Timothy J. Slegel, Gerard

Salem, Sean Carey, Richard F. Rizzolo, and Thomas Strach. "Voltage noise in multi-

core processors: Empirical characterization and optimization opportunities." In

Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International

Symposium on, pp. 368-380. IEEE, 2014.

[16] Reddi, Vijay Janapa, Svilen Kanev, Wonyoung Kim, Simone Campanoni, Michael

D. Smith, Gu-Yeon Wei, and David Brooks. "Voltage noise in production

processors." IEEE micro 31, no. 1 (2011): 20-28.

[17] Kim, Youngtaek, Lizy Kurian John, Sanjay Pant, Srilatha Manne, Michael Schulte,

William Lloyd Bircher, and Madhu Saravana Sibi Govindan. "AUDIT: Stress

testing the automatic way." In Microarchitecture (MICRO), 2012 45th Annual

IEEE/ACM International Symposium on, pp. 212-223. IEEE, 2012.

[18] Whatmough, Paul N., Shidhartha Das, Zacharias Hadjilambrou, and David M. Bull.

"Power Integrity Analysis of a 28 nm Dual-Core ARM Cortex-A57 Cluster Using

an All-Digital Power Delivery Monitor." IEEE Journal of Solid-State Circuits 52,

no. 6 (2017): 1643-1654.

[19] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. M. Brooks. DeCoR: A

Delayed Commit and Rollback Mechanism for Handling Inductive Noise in

Processors. In HPCA ’08, 2008.

[20] Abbas, Muhamed Fauzi Bin, et al. "Hardware performance counters based runtime

anomaly detection using SVM." 2017 TRON Symposium (TRONSHOW). IEEE,

2017.

[21] Eyerman, Stijn, et al. "A performance counter architecture for computing accurate

CPI components." ACM SIGOPS Operating Systems Review 40.5 (2006): 175-184.

Pan
ag

iot
a N

iko
lao

u

98

[22] Reddi, Vijay Janapa, et al. " Voltage emergency prediction: Using signatures to

reduce operating margins." 2009 IEEE 15th International Symposium on High

Performance Computer Architecture. IEEE, 2009.

[23] Reddi, Vijay Janapa, et al. "Voltage noise: Why it’s bad, and what to do about it." 5th

IEEE Workshop on Silicon Errors in Logic-System Effects (SELSE), Palo Alto, CA.

2009.

[24] Hennessy, John L. Hennessy and Patterson, David A. Computer Architecture,

Fourth Edition: “A Quantitative Approach”. Morgan Kaufmann. San Francisco, CA,

USA : Publishers Inc., 2006.

[25] Naveen Muralimanohar, Rajeev Balasubramonian, Norman P. Jouppi . “CACTI 6.0:

A Tool to Model Large Caches”. s.l. : HP, 2009.

[26] Micron. [Online] http://www.micron.com/products/support/power-calc.

[27] HP. HP iLO 3 User Guide. [Online] 2014. http://h20628.www2.hp.com/kmext/

kmcsdirect/emr_na- c02774507- 6.pdf.

[28] Intel. “likwid-powermeter: Tool for accessing RAPL counters on Intel processor.”

[Online] https://github.com/RRZE-HPC/ likwid/wiki/Likwid-Powermeter.

[29] B. Grot et al. “Optimizing Data-Center TCO with Scale-Out Processors”. 2008.

IEEE Micro

[30] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu, B.

Khessib, K. Vaid, and O. Mutlu “Characterizing application memory error

vulnerability to optimize datacenter cost via heterogeneous-reliability memory”,

44th Annual International Conference on Dependable Systems and Networks, pp.

467-478, 2014.

[31] Xia, Feng, Laurence T. Yang, Lizhe Wang, and Alexey Vinel. "Internet of

things." International Journal of Communication Systems 25, no. 9 (2012).

[32] Cisco Data in Motion (DMo) technology allows data management and analysis of

large volumes of data coming through IoT at the edge

[33] W. Shi, G. Pallis and Z. Xu, "Edge Computing [Scanning the Issue]," in Proceedings

of the IEEE, vol. 107, no. 8, pp. 1474-1481, Aug. 2019.

[34] Tan, Lu, and Neng Wang. "Future internet: The internet of things." In 2010 3rd

international conference on advanced computer theory and engineering (ICACTE),

vol. 5, pp. V5-376. IEEE, 2010.

Pan
ag

iot
a N

iko
lao

u

http://www.micron.com/products/support/power-calc
http://h20628.www2.hp.com/kmext/

99

[35] Mao, Yuyi, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B. Letaief. "A

survey on mobile edge computing: The communication perspective." IEEE

Communications Surveys & Tutorials 19, no. 4 (2017): 2322-2358.

[36] Stojmenovic, Ivan. "Fog computing: A cloud to the ground support for smart things

and machine-to-machine networks." In 2014 Australasian Telecommunication

Networks and Applications Conference (ATNAC), pp. 117-122. IEEE, 2014.

[37] Bahtovski, Aleksandar, and Marjan Gusev. "Cloudlet Challenges." Procedia

Engineering 69 (2014): 704-711.

[38] Satyanarayanan, M, Bahl P., Caceres R., and Davies N. "The case for vm-based

cloudlets in mobile computing." IEEE Pervasive Computing 8, no. 4 (2009): 14-23.

[39] Bilal, Kashif, Osman Khalid, Aiman Erbad, and Samee U. Khan. "Potentials, trends,

and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data

centers." Computer Networks 130 (2018): 94-120.

[40] R.C.Baumann “Soft errors in advanced semiconductor devices-part1”: The three

radiation sources.. Mar.2001. IEEE Transaction on Device and Materials Reliability.

[41] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi, “Feng

shui of supercomputer memory: Positional effects in dram and sram faults”. 2013.

International Conference on High Performance Computing, Networking, Storage

and Analysis. pp. 22:1–22:11.

[42] V. Sridharan and D. Liberty, “A study of dram failures in the field.” 2012.

International Conference on High Performance Computing, Networking, Storage

and Analysis. pp. 76:1– 76:11.

[43] Stefanos Kaxiras and Margaret Martonosi. “Computer Architecture Techniques for

Power-Efficiency “(1st ed.). s.l. : Morgan and Claypool , 2008.

[44] Jacob, Bruce, Ng, Spencer and Wang, David. “Memory Systems: Cache, Dram,

Disk”.Morgan Kaufmann. San Francisco, CA, USA : Inc, 2007.

[45] R. W. Hamming, “Error detecting and error correcting codes”. 1950. Bell System

Technical Journal. pp. 147–160.

[46] M. Y. Hsiao, “A class of optimal minimum odd-weight-column sec-ded codes”.

1970. BM J. Res. Dev. pp. 395–401.

[47] Timothy J Dell, “A white paper on the benefits of chipkill-correct ecc for pc server

main memory”.1997. IBM Microelectronics Division. pp. 1-23

Pan
ag

iot
a N

iko
lao

u

100

[48] A. Portero, S. Kuchaˇr, R. Vavˇr´ık, M. Golasowski, and V. Vondr´a. “System and

application scenarios for disaster management processes, the rainfall-runoff model

case study”. In IFIP International Conference on Computer Information Systems

and Industrial Management, pages 315–326. Springer, 2014.

[49] WorldSensing, https://www.worldsensing.com

[50] “Cloudsuite web search site,” http://parsa.epfl.ch/cloudsuite/search.html.

[51] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C.

Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: A study

of emerging scale-out workloads on modern hardware,” in Seventeenth International

Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 37–48, 2012.

[52] “Standard performance evaluation corporation. spec cpu 2006,” 2006.

http://www.spec.org/cpu2006/.

[53] “Standard performance evaluation corporation. spec cpu 2017,” 2017.

https://www.spec.org/cpu2017/.

[54] NAS Parallel Benchmarks Suite, v3.3.1.

https://www.nas.nasa.gov/publications/npb.html#url

[55] A. Iordache, E. Buyukkaya, and G. Pierre. “Heterogeneous resource selection for

arbitrary hpc applications in the cloud”, in IFIP International Conference on

Distributed Applications and Interoperable Systems, pages 108–123. Springer,

2015.

[56] K. Hoste and L. Eeckhout. “Comparing benchmarks using key microarchitecture-

independent characteristics”. In 2006 IEEE International Symposium on Workload

Characterization, pages 83–92. IEEE, 2006.

[57] K. Hoste and L. Eeckhout. “Microarchitecture-independent workload

characterization”. IEEE Micro, 27(3):63–72, 2007.

[58] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and K. De Bosschere.

“Performance prediction based on inherent program similarity”, In Proceedings of

the 15th international conference on Parallel architectures and compilation

techniques, pages 114–122. ACM, 2006.

[59] M. Annavaram, R. Rakvic, M. Polito, J.-Y. Bouguet, R. A. Hankins, and B. Davies.

“The fuzzy correlation between code and performance predictability”, In

Pan
ag

iot
a N

iko
lao

u

https://www.worldsensing.com/
http://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
https://www.nas.nasa.gov/publications/npb.html#url

101

Proceedings of the 37th annual IEEE/ACM International Symposium on

Microarchitecture, pages 93–104. IEEE Computer Society, 2004.

[60] H. Abdi and L. J. Williams. “Principal component analysis. Wiley Interdisciplinary

Reviews: Computational Statistics,” 2(4):433–459, 2010.

[61] I. Jolliffe. “Principal component analysis”. Wiley Online Library, 2002.

[62] S. Kuchar, M. Golasowski, R. Vavrik, M. Podhoranyi, B. Sir, and J. Martinovic.

“Using high performance computing for online flood monitoring and prediction”.

International Journal of Environmental, Ecological, Geological and Geophysical

Engineering, 9(5):267–272, 2015.

[63] P. Nikolaou, Y. Sazeides, L. Ndreu, and M. Kleanthous. “Modeling the implications

of dram failures and protection techniques on datacenter tco”. In Proceedings of the

48th International Symposium on Microarchitecture, MICRO-48, pages 572–584,

New York, NY, USA, 2015. ACM.

[64] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. “Bubble-up: Increasing

utilization in modern warehouse scale computers via sensible co-locations”. In 44th

Annual International Symposium on Microarchitecture, pages 248–259, 2011.

[65] H. Yang, A. Breslow, J. Mars, and L. Tang. “Bubble-flux: Precise online qos

management for increased utilization in warehouse scale computers”. In 40th

Annual International Symposium on Computer Architecture, pages 607–618, 2013.

[66] A. Portero, R. Vavrik, S. Kuchar, M. Golasowski, V. Vondrak, S. Libutti, G.

Massari, W. Fornaciari, and I. e Bioengegneria. “Flood prediction model simulation

with heterogeneous trade-offs in high performance computing framework”. In 29th

EUROPEAN Conference on Modelling and Simulation ECMS, 2015.

[67] D. M. Tullsen, S. J. Eggers, and H. M. Levy. “Simultaneous multithreading:

Maximizing on-chip parallelism”. SIGARCH Comput. Archit. News, 23(2):392–

403, May 1995.

[68] M. Weiser, B. Welch, A. Demers, and S. Shenker. “Scheduling for reduced cpu

energy”. In Proceedings of the 1st USENIX Conference on Operating Systems

Design and Implementation, OSDI ’94, Berkeley, CA, USA, 1994. USENIX

Association.

[69] J. M. Tendler, J. S. Dodson, J. Fields, H. Le, and B. Sinharoy. “Power4 system

microarchitecture”. IBM Journal of Research and Development, 46(1):5–25, 2002.

Pan
ag

iot
a N

iko
lao

u

102

[70] Intel. “Intel Turbo Boost Technology in Intel Core microarchitecture (Nehalem)

based processors”. White paper. Technical report, November 2008.

[71] L. Huang and Q. Xu. “Characterizing the lifetime reliability of manycore processors

with core-level redundancy”. In 2010 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 680–685. IEEE, 2010.

[72] “BIOS and Kernel Developers Guide (BKDG) for AMD Family 10h”. April 2010.

[73] S. Ankireddi and T. Chen. “Configuring and using DDR3 memory with HP ProLiant

Gen8 Servers”, Best Practice Guidelines for ProLiant servers with Intel Xeon

processors. February 2014.

[74] “BIOS and Kernel Developers Guide (BKDG) for AMD Family 15h”. February

2014.

[75] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber. “Future

scaling of processor-memory interfaces”. In Conference on High Performance

Computing Networking, Storage and Analysis, pages 42:1–42:12, 2009.

[76] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar. “Low-power, low-storage-

overhead chipkill correct via multi-line error correction”. In International

Conference on High Performance Computing, Networking, Storage and Analysis,

pages 24:1–24:12, 2013.

[77] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and N. P. Jouppi.

“Lot-ECC: Localized and tiered reliability mechanisms for commodity memory

systems”. In 39th Annual International Symposium on Computer Architecture,

pages 285–296, 2012.

[78] Hp rom-based setup utility user guide. February HP TR, 2014.

[79] lm-sensors. http://www.lm-sensors.org/wiki/man/sensors-detect.

[80] D. Hardy, M. Kleanthous, I. Sideris, A. Saidi, E. Ozer, and Y. Sazeides. “An

analytical framework for estimating tco and exploring data center design space”. In

International Symposium on Performance Analysis of Systems and Software, pages

54–63, 2013.

[81] R. C. Team et al. “R: A language and environment for statistical computing”. 2013.

[82] J. Hamilton, “Architecture for modular data centers,” arXiv preprint cs/0612110,

2006.

Pan
ag

iot
a N

iko
lao

u

http://www.lm-sensors.org/wiki/man/sensors-detect

103

[83] B. Schroeder and G. A. Gibson, “Understanding failures in petascale computers,”

Journal of Physics: Conference Series, 2007, Vol. 78, No 1, p.012022.

[84] J. Daly, B. Harrod, T. Hoang, L. Nowell, B. Adolf, S. Borkar, N. DeBardeleben, M.

Heroux, D. Rogers, R. R. ANL, et al., “Inter-Agency Workshop on HPC Resilience

at Extreme Scale,” 2012.

[85] B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance

computing systems,” Transactions on Dependable and Secure Computing, pp. 337–

350, 2010.

[86] B. Schroeder, E. Pinheiro, and D. Weber, “Dram errors in the wild: a large-scale

field study,” SIGMETRICS, pp. 193–204, June 2009.

[87] L. Borucki, G. Schindlbeck, and C. Slayman, “Comparison of accelerated dram soft

error rates measured at component and system level,” in International Reliability

Physics Symposium, pp. 482–487, April 2008.

[88] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. Wenisch,

“Disaggregated memory for expansion and sharing in blade servers,” in 36th Annual

International Symposium on Computer Architecture, pp. 267–278, 2009.

[89] G. Daniel Bowers, “Server trends,” TR, 2012.

[90] C. Constantinescu, “Impact of deep submicron technology on dependability of vlsi

circuits,” in International Conference on Dependable Systems and Networks, pp.

205–209, 2002.

[91] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt, “Techniques to reduce the soft

error rate of a high-performance microprocessor,” in 31st Annual International

Symposium on Computer Architecture, pp. 264–275, June 2004.

[92] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A systematic

methodology to compute the architectural vulnerability factors for a high-

performance microprocessor,” in 36th Annual International Symposium on

Microarchitecture, 2003.

[93] S. Ankireddi and T. Chen, “Challenges in thermal management of memory

modules,” Electronics Cooling, February 2008.

[94] “Micron,2gb: x4, x8, x16 ddr3 sdram,”

Datasheed:https://www.micron.com/products/datasheets.

Pan
ag

iot
a N

iko
lao

u

104

[95] “Intel, Xeon Processor E7 Family:Reliability, Availability,and Serviceability,

Advanced data integrity and resiliency support for mission-critical deployments,”

June 2006.

[96] A. Kleen, “mcelog: memory error handling in user space, linux,” TR, 2010.

[97] D. Tang, P. Carruthers, Z. Totari, and M. Shapiro, “Assessment of the effect of

memory page retirement on system ras against hardware faults,” in International

Conference on Dependable Systems and Networks, pp. 365–370, 2006.

[98] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch, “Power

management of online data-intensive services,” in 38th Annual International

Symposium on Computer Architecture, pp. 319–330, 2011.

[99] L. A. Barroso, J. Dean, and U. H¨olzle, “Web search for a planet: The google cluster

architecture,” IEEE Micro, pp. 22–28, Mar. 2003.

[100] C. Patel and A. Shah, “Cost model for planning, development and operation of a

data center,” HP TR, 2005.

[101] J. Karidis, J. E. Moreira, and J. Moreno, “True value: assessing and optimizing the

cost of computing at the data center level,” in 6th ACM Conference on Computing

Frontiers, pp. 185–192, 2009.

[102] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling ”cool”:

temperature-aware workload placement in data centers,” in Annual Conference on

USENIX, pp. 5–5, 2005.

[103] J. Koomey, K. Brill, P. Turner, J. Stanley, and B. Taylor, “A simple model for

determining true total cost of ownership for data centers,” White Paper, Uptime

Institute, 2007.

[104] K. V. Vishwanath, A. Greenberg, and D. A. Reed, “Modular data centers: how to

design them?,” in 1st Workshop on Large-Scale System and Application

Performance, pp. 3–10, 2009.

[105] S. Li, K. Chen, M.-Y. Hsieh, N. Muralimanohar, C. D. Kersey, J. B. Brockman, A.

F. Rodrigues, and N. P. Jouppi, “System implications of memory reliability in

exascale computing,” in International Conference for High Performance

Computing, Networking, Storage and Analysis, pp. 46:1–46:12, 2011.

Pan
ag

iot
a N

iko
lao

u

105

[106] D. H. Yoon and M. Erez, “Virtualized and flexible ecc for main memory,” in 15th

Edition of Architectural Support for Programming Languages and Operating

Systems, pp. 397–408, 2010.

[107] “Memory technology evolution: an overview of system memory technologies,”

December HP, TR, 2010.

[108] M. Guevara, B. Lubin, and B. C. Lee, “Market mechanisms for managing

datacenters with heterogeneous microarchitectures,” ACM Trans. Comput. Syst.,

pp. 3:1–3:31, Feb. 2014.

[109] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza, “3d-ice:

Fast compact transient thermal modeling for 3d ics with inter-tier liquid cooling,” in

International Conference on Computer-Aided Design, pp. 463–470, Nov 2010.

[110] I. Cecil Ho, CST, “Innovative testing puts fallout dram back into systems,” January

2003. Simmtester.com.

[111] “Memory Test Background,” 2000. http://tinyurl.com/m7c3wf7.

[112] Z. Al-Ars, “Dram fault analysis and test generation,” Ph.D. dissertation, Delft,

2005.

[113] “Arrhenius equation,” https://en.wikipedia.org/wiki/Arrhenius_equation.

[114] “Intel Xeon Processor E5620-cost,”

http://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+ E5620+%40+2.40GHz.

[115] “Desktop Drive 500GB-cost and power,” http://www.ebuyer.com/394432-wd-

500gb-blackdesktop-drive-wd5003azex.

[116] “Intel Server Motherboard cost,”

http://www.cpusolutions.com/store/pc/IntelS1200V3RPS-Server-Motherboard-

Intel-C222-ChipsetSocket/-H3-LGA-1150-p3673.htm#.U4OhLHZqOPM.

[117] “Intel cpu configuration,” http://www.rect.coretoeurope.com/rack-server/1u-intel-

server/2428-short1u-intel-single-cpu-rack-server.html.

[118] “Server case and power supply,” http://www.newegg.com/

Product/Product.aspx?Item=N82E16811108235.

[119] “Kingston Technology ValueRAM 8GB-x4 1600MHz DDR3-cost,”

http://www.amazon.com/KingstonTechnology-PC3-12800-KVR16LR11S4-

8HA/dp/B00BYO7CZM.

Pan
ag

iot
a N

iko
lao

u

http://tinyurl.com/m7c3wf7
https://en.wikipedia.org/wiki/Arrhenius_equation
http://www.ebuyer.com/394432-wd-500gb-blackdesktop-drive-wd5003azex
http://www.ebuyer.com/394432-wd-500gb-blackdesktop-drive-wd5003azex
http://www.cpusolutions.com/store/pc/IntelS1200V3RPS-Server-Motherboard-Intel-C222-ChipsetSocket/-H3-LGA-1150-p3673.htm#.U4OhLHZqOPM
http://www.cpusolutions.com/store/pc/IntelS1200V3RPS-Server-Motherboard-Intel-C222-ChipsetSocket/-H3-LGA-1150-p3673.htm#.U4OhLHZqOPM
http://www.rect.coretoeurope.com/rack-server/1u-intel-server/2428-short1u-intel-single-cpu-rack-server.html
http://www.rect.coretoeurope.com/rack-server/1u-intel-server/2428-short1u-intel-single-cpu-rack-server.html
http://www.amazon.com/KingstonTechnology-PC3-12800-KVR16LR11S4-8HA/dp/B00BYO7CZM
http://www.amazon.com/KingstonTechnology-PC3-12800-KVR16LR11S4-8HA/dp/B00BYO7CZM

106

[120] “Kingston ValueRam 8GB-x8 1600 MHz DDR3-cost,”

http://www.amazon.com/Kingston-TechnologyValidated-KVR16LR11D8-

8I/dp/B00JWFMBIS.

[121] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-aware cluster

management,” in 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 127–144, 2014.

[122] “The International Technology Roadmap for Semiconductors, ITRS, Tech. Rep.,”

2013. http://www.itrs.ne.

[123] “Hp advanced memory error detection technology,” July TR, 2011.

[124] “Hp proliant dl380 g7 server user guide, 2nd edition,” February 2011.

[125] “Prime95,” http://www.mersenne.org/download/.

[126] J. Srinivasan, S. V. Adve, P. Bose, S. V. A. P. Bose, and J. A. Rivers, “The case for

lifetime reliability-aware microprocessors,” in 31st International Symposium on

Computer Architecture, pp. 276–287, 2004.

[127] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P.

Franzon, W. Harrod, K. Hill, and J. Hiller, “Exascale computing study:

Technology challenges in achieving exascale systems,” TR, 2008.

[128] “Intel Xeon Processor E3-power,” http://www.servethehome.com/intel-xeon-e3-

1220-v3benchmark-review-haswell-xeon/.

[129] J. Hamilton, “Overall data center costs.”

http://perspectives.mvdirona.com/2010/09/18/ OverallDataCenterCosts.aspxn.

[130] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer: Exploiting

application-level fault equivalence to analyze application resiliency to transient

faults,” in Seventeenth International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 123–134, 2012.

[131] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,

2013–2018. [Online]. Available:

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-indexvni/white_paper_c11-520862.pdf

[132] Bonomi F. "Connected vehicles, the internet of things, and fog computing." The

Eighth ACM Int. Workshop on VehiculAr InterNETworking VANET, Las Vegas,

USA, 2011.

Pan
ag

iot
a N

iko
lao

u

http://www.amazon.com/Kingston-TechnologyValidated-KVR16LR11D8-8I/dp/B00JWFMBIS
http://www.amazon.com/Kingston-TechnologyValidated-KVR16LR11D8-8I/dp/B00JWFMBIS
http://www.itrs.ne/
http://www.mersenne.org/download/
http://www.servethehome.com/intel-xeon-e3-1220-v3benchmark-review-haswell-xeon/
http://www.servethehome.com/intel-xeon-e3-1220-v3benchmark-review-haswell-xeon/

107

[133] Roman, Rodrigo, Javier Lopez, and Masahiro Mambo. "Mobile edge computing,

fog et al.: A survey and analysis of security threats and challenges." Future

Generation Computer Systems 78 (2018): 680-698.

[134] FCC public notice 202/418-0500, January 27, 2015 Enforcement Advisory No.

2015-01

[135] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gaming in the Clouds:

Qoe and the users perspective,” Mathematical and Computer Modelling, vol. 57,

no. 11, pp. 2883–2894, 2013.

[136] R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guide to controlled

experiments on the web: listen to your customers not to the hippo,” in 13th ACM

SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2007, pp. 959–967.

[137] Y. A. Wang, C. Huang, J. Li, and K. W. Ross, “Estimating the performance of

hypothetical Cloud service deployments: A measurement-based approach,” in

INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 2372–2380.

[138] Luan, Tom H., Longxiang Gao, Zhi Li, Yang Xiang, Guiyi We, and Limin Sun.

"A view of fog computing from networking perspective." ArXivPrepr.

ArXiv160201509 (2016).

[139] V. Bahl, “Cloud 2020: Emergence of micro data centers (Cloudlets) for latency

sensitive computing (keynote),” Middleware 2015, 2015.

[140] Andrew Froehlich, “How Edge Computing Compares with Cloud Computing”,

Networking Computing Blog, 2018

[141] Chang, Yu-Shuo, and Shih-Hao Hung. "Developing Collaborative Applications

with Mobile Cloud-A Case Study of Speech Recognition." J. Internet Serv. Inf.

Secur. 1.1 (2011): 18-3

[142] Chang, Hyunseok, et al. "Bringing the cloud to the edge." Computer

Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on.

IEEE, 2014..

[143] Clinch, Sarah, Jan Harkes, Adrian Friday, Nigel Davies, and Mahadev

Satyanarayanan. "How close is close enough? Understanding the role of Cloudlets

in supporting display appropriation by mobile users." In Pervasive Computing and

Pan
ag

iot
a N

iko
lao

u

108

Communications (PerCom), 2012 IEEE International Conference on, pp. 122-127.

IEEE, 2012.

[144] Fesehaye, Debessay, Yunlong Gao, Klara Nahrstedt, and Guijun Wang. "Impact

of Cloudlets on interactive mobile Cloud applications." In Enterprise Distributed

Object Computing Conference (EDOC), 2012 IEEE 16th International, pp. 123-

132. IEEE, 2012.

[145] Shekhar, Shashank, and Aniruddha Gokhale. "Dynamic resource management

across Cloud-Edge resources for performance-sensitive applications."

In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, pp. 707-710. IEEE Press, 2017.

[146] Powers, Nathaniel, Alexander Alling, Kiara Osolinsky, Tolga Soyata, Meng Zhu,

Haoliang Wang, He Ba, Wendi Heinzelman, Jiye Shi, and Minseok Kwon. "The

Cloudlet accelerator: Bringing mobile-Cloud face recognition into real-time."

In Globecom Workshops (GC Wkshps), 2015 IEEE, pp. 1-7. IEEE, 2015.

[147] Soyata, Tolga, Rajani Muraleedharan, Colin Funai, Minseok Kwon, and Wendi

Heinzelman. "Cloud-vision: Real-time face recognition using a mobile-Cloudlet-

Cloud acceleration architecture." In Computers and communications (ISCC), 2012

IEEE symposium on, pp. 000059-000066. IEEE, 2012.

[148] http://road.cc/content/news/76427-thousands-using-gps-jammers-disguise-over-

long-hours-or-stolen-cars

[149] https://www.cnet.com/news/truck-driver-has-gps-jammer-accidentally-jams-

newark-airport/

[150] https://www.pdaelectronics.com/index.php

[151] http://www.suresafe.com.tw/Signal-Jammer-Detector.html

[152] https://simplisafe.com/home-3

[153] https://www.forbes.com/sites/marcwebertobias/2015/01/29/this-popular-wireless-

alarm-system-can-be-hacked-with-a-magnet-and-scotch-tape/#6b466ec450de

[154] http://www.chronos.co.uk/en/news-and-pr/news-page/1216-chronos-enables-

exelis-to-develop-new-capability-in-gps-interference-detection-and-geolocation

[155] http://www.chronos.co.uk/files/pdfs/pres/2010/GPSJamming/Generic_Briefing_

Presentation.pdf

Pan
ag

iot
a N

iko
lao

u

http://road.cc/content/news/76427-thousands-using-gps-jammers-disguise-over-long-hours-or-stolen-cars
http://road.cc/content/news/76427-thousands-using-gps-jammers-disguise-over-long-hours-or-stolen-cars
https://www.cnet.com/news/truck-driver-has-gps-jammer-accidentally-jams-newark-airport/
https://www.cnet.com/news/truck-driver-has-gps-jammer-accidentally-jams-newark-airport/
https://www.pdaelectronics.com/index.php
http://www.suresafe.com.tw/Signal-Jammer-Detector.html
https://simplisafe.com/home-3
https://www.forbes.com/sites/marcwebertobias/2015/01/29/this-popular-wireless-alarm-system-can-be-hacked-with-a-magnet-and-scotch-tape/#6b466ec450de
https://www.forbes.com/sites/marcwebertobias/2015/01/29/this-popular-wireless-alarm-system-can-be-hacked-with-a-magnet-and-scotch-tape/#6b466ec450de
http://www.chronos.co.uk/en/news-and-pr/news-page/1216-chronos-enables-exelis-to-develop-new-capability-in-gps-interference-detection-and-geolocation
http://www.chronos.co.uk/en/news-and-pr/news-page/1216-chronos-enables-exelis-to-develop-new-capability-in-gps-interference-detection-and-geolocation
http://www.chronos.co.uk/files/pdfs/pres/2010/GPSJamming/Generic_Briefing_Presentation.pdf
http://www.chronos.co.uk/files/pdfs/pres/2010/GPSJamming/Generic_Briefing_Presentation.pdf

109

[156] https://www.gps.gov/cgsic/meetings/2014/curry.pdf

[157] http://www.sekotech.com/gsm-3g-4g-jammer-detector/st-171-gsm-3g-4g-gps-

jammer-detector.html

[158] http://www.pki-electronic.com/products/jamming-systems/jammer-detector/

[159] https://play.google.com/store/apps/details?id=com.microcadsystems.serge.jamme

rdetector&hl=en

[160] Pelechrinis, Konstantinos, Marios Iliofotou, and Srikanth V. Krishnamurthy.

"Denial of service attacks in wireless networks: The case of jammers." IEEE

Communications surveys & tutorials 13.2 (2011): 245-257.

[161] Xu, Wenyuan, et al. "The feasibility of launching and detecting jamming attacks

in wireless networks." Proceedings of the 6th ACM international symposium on

Mobile ad hoc networking and computing. ACM, 2005.

[162] “Intel cpu configuration,” http://www.rect.coreto- europe.com/rack- server/1u-

intel- server/2428- short- 1u- intel- single- cpu- rack- server.html.

[163] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos, G. Favor, K.

Sankaran and S. Das, “A System-Level Voltage/Frequency Scaling

Characterization Framework for Multicore CPUs”, IEEE Silicon Errors in Logic –

System Effects (SELSE 2017), Boston, MA, USA, March 2017.

[164] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos, P. Lawthers,

and S. Das, “Harnessing Voltage Margins for Energy Efficiency in Multicore

CPUs”, IEEE/ACM International Symposium on Microarchitecture (MICRO

2017), Cambridge, MA, USA, October 2017.

[165] G. Karakonstantis, K. Tovletoglou, L. Mukhanov, H. Vandierendonck, D. S.

Nikolopoulos, P. Lawthers, P. Koutsovasilis, M. Maroudas, C. D. Antonopoulos,

C. Kalogirou, N. Bellas, S. Lalis, S. Venugopal, A. Prat-Perez, A. Lampropulos,

M. Kleanthous, A. Diavastos, Z. Hadjilambrou, P. Nikolaou, Y. Sazeides, P.

Trancoso, G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos,

and S. Das, “An Energy-Efficient and Error-Resilient Server Ecosystem Exceeding

Conservative Scaling Limits”, ACM/IEEE Design, Automation, and Test in

Europe (DATE 2018), Dresden, Germany, March 2018.

[166] K. Tovletoglou, L. Mukhanov, G. Karakonstantis, A. Chatzidimitriou, G.

Papadimitriou, M. Kaliorakis, D. Gizopoulos, Z. Hadjilambrou, Y. Sazeides, A.

Pan
ag

iot
a N

iko
lao

u

https://www.gps.gov/cgsic/meetings/2014/curry.pdf
http://www.sekotech.com/gsm-3g-4g-jammer-detector/st-171-gsm-3g-4g-gps-jammer-detector.html
http://www.sekotech.com/gsm-3g-4g-jammer-detector/st-171-gsm-3g-4g-gps-jammer-detector.html
http://www.pki-electronic.com/products/jamming-systems/jammer-detector/
https://play.google.com/store/apps/details?id=com.microcadsystems.serge.jammerdetector&hl=en
https://play.google.com/store/apps/details?id=com.microcadsystems.serge.jammerdetector&hl=en

110

Lampropulos, S. Das, P. Vo, “Measuring and Exploiting Guardbands of Server-

Grade ARMv8 CPU Cores and DRAMs”, IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN 2018), Luxembourg, June 2018.

[167] Amazon, “Amazon Web Services, EC2 Reachability Test”, http://ec2-

reachability.amazonaws.com

[168] Ballas, Camille, et al. "Performance of video processing at the edge for crowd-

monitoring applications." (2018).

[169] Ernst, Dan, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham,

Conrad Ziesler et al. "Razor: A low-power pipeline based on circuit-level timing

speculation." In Proceedings of the 36th annual IEEE/ACM International

Symposium on Microarchitecture, p. 7. IEEE Computer Society, 2003.

[170] Bacha, Anys, and Radu Teodorescu. "Dynamic reduction of voltage margins by

leveraging on-chip ECC in Itanium II processors." In ACM SIGARCH Computer

Architecture News, vol. 41, no. 3, pp. 297-307. ACM, 2013.

[171] Papadimitriou, George, Athanasios Chatzidimitriou, Manolis Kaliorakis, Yannos

Vastakis, and Dimitris Gizopoulos. "Micro-viruses for fast system-level voltage

margins characterization in multicore CPUs." In 2018 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 54-

63. IEEE, 2018.

[172] Papadimitriou, George, Manolis Kaliorakis, Athanasios Chatzidimitriou,

Charalampos Magdalinos, and Dimitris Gizopoulos. "Voltage margins

identification on commercial x86-64 multicore microprocessors." In 2017 IEEE

23rd International Symposium on On-Line Testing and Robust System Design

(IOLTS), pp. 51-56. IEEE, 2017.

[173] Gupta, Meeta Sharma, et al. "Towards a software approach to mitigate voltage

emergencies." Proceedings of the 2007 international symposium on Low power

electronics and design. ACM, 2007.

[174] Gupta, Meeta S., et al. "An event-guided approach to reducing voltage noise in

processors." 2009 Design, Automation & Test in Europe Conference & Exhibition.

IEEE, 2009.

Pan
ag

iot
a N

iko
lao

u

http://ec2-reachability.amazonaws.com/
http://ec2-reachability.amazonaws.com/

111

[175] Reddi, Vijay Janapa, and Meeta Sharma Gupta. "Resilient architecture design for

voltage variation." Synthesis Lectures on Computer Architecture 8, no. 2, 2013: 1-

138.

[176] Pan, Songjun, Yu Hu, Xing Hu, and Xiaowei Li. "A cost-effective substantial-

impact-filter based method to tolerate voltage emergencies." In 2011 Design,

Automation & Test in Europe, pp. 1-6. IEEE, 2011.

[177] John L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput.

Archit. News, vol. 34, pp. 1–17, Sept. 2006.

[178] Singh G., Favor G. and Yeung A., "AppliedMicro X-Gene2," 2014 IEEE Hot

Chips 26 Symposium (HCS), Cupertino, CA, 2014, pp. 1-24.

[179] SPEC CPU2017 home page: www.spec.org/cpu2017

[180] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:

Characterization and architectural implications,” in Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’08, (New York, NY, USA), pp. 72–81, ACM, 2008.

[181] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos, G. Favor, K.

Sankaran and S. Das, “A SystemLevel Voltage/Frequency Scaling

Characterization Framework for Multicore CPUs”, IEEE Silicon Errors in Logic –

System Effects (SELSE 2017), Boston, MA, USA, March 2017.

[182] Changyong, F. E. N. G., W. A. N. G. Hongyue, L. U. Naiji, C. H. E. N. Tian, H.

E. Hua, and L. U. Ying. "Log-transformation and its implications for data

analysis." Shanghai archives of psychiatry 26, no. 2 (2014): 105.

[183] Yang, Ruipeng, Dan Qu, Yekui Qian, Yusheng Dai, and Shaowei Zhu. "An online

log template extraction method based on hierarchical clustering." EURASIP

Journal on Wireless Communications and Networking 2019, no. 1 (2019): 135.

[184] Papadimitriou George, Athanasios Chatzidimitriou, and Dimitris Gizopoulos.

"Adaptive Voltage/Frequency Scaling and Core Allocation for Balanced Energy

and Performance on Multicore CPUs." In 2019 IEEE International Symposium on

High Performance Computer Architecture (HPCA), pp. 133-146. IEEE, 2019.

[185] Hadjilambrou, Zacharias, Shidhartha Das, Paul N. Whatmough, David Bull, and

Yiannakis Sazeides. "GeST: An Automatic Framework for Generating CPU

Pan
ag

iot
a N

iko
lao

u

112

Stress-Tests." In 2019 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pp. 1-10. IEEE, 2019.

Pan
ag

iot
a N

iko
lao

u

