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Περίληψη 

 

Ο αριθμός των ευφυών συσκευών που συνδέονται με το Διαδίκτυο αυξάνεται καθημερινά 

και σύντομα θα είναι της τάξης των δεκάδων δισεκατομμυρίων, αποτελώντας το Διαδίκτυο 

των πραγμάτων (IoT). Κάθε μία από αυτές τις συσκευές στέλνει δεδομένα στο Διαδίκτυο τα 

οποία σύντομα αναμένεται να φτάσουν τα δεκάδες exabytes. Αυτή η ταχεία αύξηση 

δεδομένων θα ασκήσει πρωτοφανή πίεση στην τρέχουσα υποδομή του Διαδικτύου και στα 

κεντρικά κέντρα δεδομένων (Cloud). Η αντιμετώπιση αυτής της επικείμενης πλημμύρας 

δεδομένων απαιτεί τόσο την ενίσχυση των δυνατοτήτων επεξεργασίας των τρεχόντων 

εξυπηρετητών όσο και την επανεξέταση του τρόπου επικοινωνίας και επεξεργασίας 

δεδομένων στο Διαδίκτυο. Για το σκοπό αυτό, τα τελευταία χρόνια, τα κέντρα δεδομένων 

έχουν αυξηθεί σε αριθμό, μέγεθος και χρήση. Μεγάλες μονάδες κέντρων δεδομένων που 

αποτελούνται από χιλιάδες έως δεκάδες χιλιάδες εξυπηρετητές χρησιμοποιούνται για την 

παροχή υπηρεσιών, όπως ηλεκτρονικού ταχυδρομείου (email), αναζήτηση ιστού, κοινωνική 

δικτύωση, χάρτες κ.λπ., σε δισεκατομμύρια χρήστες. Επιπλέον, τα τελευταία χρόνια έχει 

προκύψει η παροχή των υπηρεσιών Cloud στο Edge, πιο κοντά στους χρήστες. Μια 

σημαντική επίπτωση αυτών των εξελίξεων είναι η αύξηση της κατανάλωσης κόστους και 

ενέργειας των κέντρων δεδομένων και συνεπώς υπάρχει αυξανόμενη ανάγκη για 

αποτελεσματικές μεθοδολογίες και τεχνικές για τη βελτίωση του σχεδιασμού του κέντρου 

δεδομένων για την αποτελεσματικότερη χρήση του. 

 Ο κύριος στόχος αυτής της εργασίας είναι να ελαχιστοποιήσει το συνολικό κόστος 

ιδιοκτησίας (TCO) ενός κέντρου δεδομένων, ενώ παράλληλα να ικανοποιήσει τη ποιότητα 

εξυπηρέτησης διαφόρων εφαρμογών που εκτελούνται σε κάποιο κέντρο δεδομένων. Αυτό 

απαιτεί την ανάπτυξη μοντέλων που επιτρέπουν την εξερεύνηση του σχεδιασμού ενός 

κέντρου δεδομένων. Συγκεκριμένα, πρώτα προσδιορίζονται τα μετρικά που απαιτούνται για 

να εξεταστεί το ενδεχόμενο ελαχιστοποίησης του TCO. Αυτή η ανάλυση τονίζει την 
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σημαντικότητα του TCO ως μετρικό βελτιστοποίησης και προσδιορίζει επίσης τις κύριες 

παραμέτρους που το επηρεάζουν. Στην συνέχεια, αξιολογούμε τα πιθανά TCO κέρδη στο 

Edge σε σύγκριση με το Cloud, καθώς και ένα ποιο αποδοτικό σε ενέργεια Edge που 

χρησιμοποιεί λειτουργίες σε χαμηλότερες τάσης (voltage). Έπειτα, προτείνουμε και 

αναλύουμε τις επιπτώσεις στο TCO, μιας δυναμικής τεχνικής που παρακολουθεί τα μετρικά 

απόδοσης και καθορίζει πότε πρέπει να λειτουργήσει μια κεντρική μονάδα δεδομένων σε 

κανονική  ή χαμηλότερη τάση. Τέλος, αναλύουμε τις συνέπειες των λαθών των κύριων 

μνήμων (DRAM) και των τεχνικών προστασίας τους στο TCO και προσδιορίζουμε την 

κατάλληλη τεχνική προστασίας που παρέχει την μεγαλύτερη εξοικονόμηση TCO χωρίς να 

διακυβεύεται η διαθεσιμότητα του συστήματος. 
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Abstract 

 

The number of intelligent Internet-connected devices is growing rapidly and will soon be in 

the order of tens of billions, forming the Internet of Things (IoT). Each of these devices is 

pushing data to the Internet that are soon expected to reach tens of exabytes. It is expected 

that such data growth will put an unprecedented pressure on the current Internet 

infrastructure and the centralized (Cloud) Datacenters (DCs). In order to successfully deal 

with this imminent data flood, it is imperative to enhance the processing capabilities of the 

current servers. Redesigning data communication and processing across the Internet is 

equally important. In light of this, DCs have increased in numbers, size and utilization. Large 

DCs that consist of thousands to tens of thousands of servers are used to deliver services, 

such as e-mail, web search, social networking, maps etc., to billions of users. Additionally, 

a new paradigm has emerged which makes Cloud services available at the Edge. One key 

ramification of these developments is an increase in the cost and energy consumption of both 

Cloud and Edge DCs.  

 The aim of this thesis is to minimize the total cost of ownership (TCO) of a DC while 

meeting the quality of service of different workloads running in the DC. This requires the 

development of innovative methods and models that enable the exploration of the design 

space of a DC. First, a method that detects the existence of high correlations among several 

application parameters such as performance, power, reliability with the cost (TCO) is 

evaluated. This, in fact, leads to the determination of the parameters that experience high 

correlation with the TCO and the further exploration of them throughout this thesis. Then, 

there is an evaluation of the possible TCO gains of an Edge deployment compared to Cloud 

as well as an Edge deployment that employs under-volting operations. Furthermore, there is 

a proposal and analysis of the TCO implications of a dynamic technique that monitors 

performance counters and determines when to operate a CPU in nominal or undervolted 
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settings. Finally, we present an analysis of the implications of DRAM failures and DRAM 

protection techniques on the TCO. This determines the appropriate protection technique that 

provides the most TCO savings without compromising the availability of the system.  
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Chapter 1 

 
1 Introduction 
 

1.1 Thesis Motivation 

 

Total Cost of Ownership (TCO) evaluation is significant for making Datacenter (DC) design 

and operational decisions that minimize cost. However, it is not easy to estimate TCO 

because it does not only account for direct costs such as server’s cost but also for indirect 

costs, such as power, performance and reliability [1]. Thus, tools for evaluating TCO are 

useful to assess the benefits and drawbacks of Datacenter design choices.  

Companies like Azure and Amazon, provide such TCO Tools [2][3]. Particularly, these tools 

make comparisons between on-premises infrastructure and hosts running services in their 

facilities. Their goal is to assist the service providers to choose between running in the Cloud 

or build their own DC. However, such tools do not consider application parameters such as 

performance, power, software architecture and quality of service requirements. Moreover, 

prior research proposed TCO tools to guide Datacenter designs 

[80][100][101][102][103][104][63]. However, all these tools do not allow the exploration of 

design parameters, such as memory design protection choices, performance and power 

optimization techniques, mean time to failure (MTTF) and mean time to repair for all the 

server components. Moreover, it remains unclear to decide whether these parameters should 

be included in the TCO or not. To establish if there are possible connections between these 

parameters and TCO, we primarily focus on the detection of high correlations among several 

parameters with the cost (TCO). Once this is done, the selection of parameters with high 

correlation with TCO can be achieved which will be addressed in detail throughout the thesis. 

The power efficiency is an important parameter for both Edge and Cloud deployments, that 

this thesis closely investigates. Edge computing is a recently introduced approach that has 

the potential to ensure the sustainability and scaling of the Internet during the upcoming 

Internet of Things (IoT) era [6]. A number of studies, develop schemes that manage the data 

processing of IoT applications across distributed DCs [7][8][9]. In these studies, data are 

transferred from IoT sensors to local micro-DCs for pre-processing and selection of the data 

to forward to a centralized DC. Typically, these applications consist of sensors that collect 
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and send data to a processing device. Their main quality of service (QoS) requirement is the 

response-time and, therefore, are suited for both Cloud and Edge deployments. However, 

servers which have been used to run these applications can only process- within a required 

detection time window- data from a limited number of sensors. In fact, these servers are also 

oversubscribed to process data from many sensors which are likely to suffer from QoS 

violations. Moreover, each sensor covers a fixed area and Edge deployments have limited 

power budget for servers per installation. This results in having an Edge installation that may 

be able to support a limited number of sensors and cover a limited area. At this point, this 

serves to highlight a key challenge for the successful realization of Edge computing: the 

sensor’s area coverage. Evidently, one of the most critical challenges for the successful Edge 

deployment is the efficient use of the limited power of an Edge installation. Exceeding the 

power cap of the facility is unacceptable as it triggers a disruption of power. To avoid such 

overloads, both Edge and Cloud deployments rely on power capping schemes that enforce 

power budgets of individual servers [10][11] or over ensembles [12][13]. In this regard, the 

use of more power efficient servers, facilitates the increase of area coverage. Thus, it is 

desirable for processors to operate with low voltage and/or frequency to reduce power. 

Through this work, we will propose an evaluation methodology to consider various metrics 

such as cost, QoS, area-coverage and power efficiency, using energy efficient and high-

performance devices.  

Of course, it has to be considered that operating at lower voltage can lead to voltage 

emergencies which can cause timing violations and/or memory bit flips [14][15][16]. This is 

unacceptable in many situations because it may lead to silent data corruption (SDC) errors, 

or even application or system crashes [17][18]. Assuming checkpoint-based recovery [19] 

during the crash, the system will be unavailable until the rollback from the latest checkpoint 

[19]. A number of research findings aim to prevent crashes by using performance counters 

to predict voltage emergencies during the execution of a workload [20][21][173][22][23]. 

However, these works cannot predict upfront if an application can operate at lower voltage 

and, thus can suffer from a large number of crashes. Hence, this work investigates the TCO 

benefits of a workload’s voltage operation identification method during the first n-seconds 

of its execution. 

The method employed by DC servers to protect their memory from errors is of paramount 

importance of today's DC with TCO implications. For instance, an attempt to lower costs by 

removing protection from DRAM in Google servers, running Web search application, 

resulted in a subset of queries returning random documents due to a memory error that could 

not even be detected [4]. Consequently, DC servers employ a combination of hardware and 
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software techniques to accomplish the desired level of availability without compromising 

QoS [5]. This thesis also aims to explore advanced memory error protection schemes, 

consider the implications of multi-bit errors, account for the performance, power and 

temperature implications, consider the ramifications of collocated services and account for 

failing module replacements and maintenance policies. Through this in-depth analysis, the 

identification of the best DRAM protection technique for each application and for collocated 

applications, in terms of TCO, is accomplished.  

 

1.2 Thesis Scope and Contributions  

 

The major goal of this thesis is to optimize the TCO of a DC while meeting the QoS criteria 

of different applications running in the DC. This requires the investigation of a number of 

key parameters that affect TCO, the evaluation of DCs design decision and the development 

of efficient prediction methodologies that prevent the unavailability occurred by operations 

at lower voltage.  

Towards the State-of-the-Art, the contributions of this thesis are firstly to identify the key 

subset of parameters required to evaluate and optimize TCO. Particular emphasis is given on 

the selected monitors and knobs to use to configure a computing system running an 

application while satisfying the application’s requirements, not violating any system 

constraints and at the same time optimize TCO. We then, use these monitors and knobs 

throughout this thesis to present TCO optimizations.  

Secondly, we evaluate the possible gains of an Edge deployment compared to a Cloud one, 

using a TCO model. Moreover, we evaluate the TCO gains of Energy efficient Edge micro-

servers, that operate in lower voltage compared to Edge micro-servers operating at nominal 

margins.  

Furthermore, we develop a practical CPU-Vmin identification method that uses training data 

based on performance counters taken on the first n-seconds of execution from a set of 

benchmarks. The method is tested on a different set of benchmarks to classify workloads into 

V-low and V-high after the same first n-seconds of their execution. V-low workloads are the 

workloads that can operate at the lowest CPU-Vmin observed during the training phase, while 

the V-high are the workloads that require a CPU-Vmin higher than the V-low to operate 

correctly. We then, evaluate the CPU-Vmin identification method based on real hardware 

measurements and we show that, for the specific multicore CPU, we use, it can provide safe-

voltage, 99.4% of the time, reduce power on average by 7.1% as compared to operation with 

nominal supply voltage, and provide significant TCO savings.  
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Finally, we investigate the implications of DRAM errors and DRAM protection techniques 

in the TCO. We propose, for the first time, a framework, called AMPRA, for modeling the 

implications of DRAM failures and DRAM error protection techniques on the TCO of a 

datacenter. The framework captures the effects and interactions of several key parameters 

including: the choice of DRAM protection technique (e.g. single vs dual channel Chipkill), 

device width (x4 or x8), memory size, power, failures in time (FITs) for various failure 

modes, the performance, power and temperature overheads of a protection technique for a 

given service and mixes of collocated services. We then, underline the usefulness of the 

proposed framework by demonstrating it through several case studies that identify the best 

DRAM protection technique in each case, in terms of TCO. AMPRA framework is an online 

publicly available tool. 

 

1.3 Thesis Organization 

 

The organization of the rest of the thesis is as follows: 

Chapter 2: describes background information related to different market segments and their 

key requirements, edge and cloud computing, reliability aspects, while highlighting DRAM 

reliability, power challenges and total cost of ownership fundamentals. Specialized 

background and related work that refers specifically to each Chapter is presented in the 

dedicated Chapters, respectively.  

Chapter 3: identifies the key subset of parameters required to evaluate and optimize cost. 

Particular focus is given on the selected monitors and knobs, derived applying a heuristic 

correlation analysis.  

Chapter 4: introduces an end-to-end TCO model that investigates the benefits of running an 

application, at the Edge vs. the Cloud. Focus is given to show that by providing extended 

voltage operating points at the Edge, TCO can be beneficial.  

Chapter 5: determines a methodology to select the appropriate performances counters that 

reveal safe CPU-Vmin for an application in order to predict and prevent voltage emergencies 

that arise by operating below the nominal supply voltage for power savings. Afterwards, an 

investigation of the trade-offs between voltage emergencies implications and power gains in 

the TCO is conducted. 

Chapter 6: introduces the AMPRA framework developed to investigate the implications of 

DRAM errors and DRAM protection techniques in the TCO. Particular focus is given in the 

evaluation of this framework. 
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Chapter 7: concludes the thesis and outlines future work as a direct result of the thesis 

contributions. 
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Chapter 2 

 
2 Background 
 

 

The effectiveness of technology evolution in terms of power, performance and reliability 

depends on the application characteristics and the various market segments. Market segments 

are categorized in: mobile devices, desktop computing, servers, warehouse-scale computers 

and embedded computers [24]. Mobile devices usually run Web-Based and media-oriented 

applications. The basic requirements of such applications are power -due to the battery of 

the device- and cost.  

Desktop Computers, are used for a great variety of applications in both Edge and Cloud 

deployments. Due to the high demand of this market segment, desktop computers try to 

optimize performance and cost, as well. On the other hand, servers are used to provide more 

reliable and efficient services. Due to the high computational power, servers can be used for 

bank account applications, web pages etc. This kind of services have various requirements 

in terms of performance (throughput, response time etc.), availability of the service, security 

and cost.  

Warehouse-scale computers [4] are collections of desktop or servers connected with local 

area networks to act as a single larger computer. Warehouse-scale computers usually consist 

of tens of thousands of servers. This kind of market segment supports applications like, 

search, social networking, video sharing, online shopping etc. So, performance, cost, power 

and availability are very critical for this kind of applications.  

Finally, embedded devices are used for everyday machines such as washing machines. The 

main concerns for this market segment are power, cost and availability. 

 

2.1 Key Monitoring Parameters 

 

The previous characterization of market segments with their different applications and 

requirements, brings the need of the appropriate metrics and tools to monitor the status of 

application requirements running on different multicore systems. 

 The performance metrics that usually used to determine how well a processor performs with 

a specific running application are: instructions per cycle (IPC), number of cache 
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misses/number of instructions, program runtime, and transactions per minute. Additionally, 

QoS is another metric that is used to show the degree to which an activity satisfies the 

customer, in terms of response time.  

Power consumption can by categorized into leakage and dynamic power. Both power 

consumptions can be estimated with models such as Cacti [25] for caches and Micron power 

calculator spreadsheet for DRAMs [26]. There are also some monitoring tools that are used 

in real hardware to track dynamic power consumption of the running application [27][28].  

The availability of the system is the probability of a system operating correctly at a given 

time. This metric is appropriate for many computing and cloud applications and is correlated 

with the reliability of the service and the individual components. It is very important to keep 

the availability of the system in high levels.  

Finally, cost is very critical for all the market segments, emphasizing large scale computers 

due to the large number of servers and the higher costs consumed in these markets. TCO 

includes all the aforementioned parameters (power, performance, availability) and many 

others. Due to the criticality of this metric, several works include TCO in their analysis 

[29][30]. 

In this thesis, we tackle the modeling of power, performance, availability in the TCO and we 

provide optimizations for each parameter.  

 

2.2 The Internet of Things and Cloud Computing 

 

We are currently witnessing the incremental development of the IoT era.  IoT refers to the 

networked interconnection of everyday objects denoted as “things”, that are used to achieve 

certain design goals [31]. These devices are mainly embedded systems that communicate 

with other devices by sending data through the Internet  [31]. The number of Internet-

connected devices is growing daily and will soon be in the order of tens of billions. Figure 1 

depicts the increase of these Internet-connected devices throughout the last few years. In 

order to process the data that are sent to the Internet, large DCs have increased in number 

and size in all over the world. These DCs differ from the traditional hosting facilities because 

they consist of large-scale servers in the “cloud” with well-connected processing and storage 

resources, commonly referred as cloud computing [4].  
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However, the rise of cloud computing, where most compute power is located in the 

datacenter, comes with a number of challenges and opportunities. One of the key challenges 

is the communication that causes huge network traffic. In addition to this, there are some 

other challenges such as security [34]. Thus, it is essential to design a new architecture by 

considering many parameters such as reliability, scalability and QoS.  

 

2.3 Edge Computing  

 

 The need for fast response times in various IoT applications necessitates deployments with 

tight QoS timing requirements. Many applications cannot tolerate latencies that exceed one 

or two hundred of milliseconds [135][136]. Even though Cloud Computing is centralized 

and requires minimal management effort or service provider’s interaction, it hardly meets 

the QoS and response time requirements for IoT applications, due to the network latency 

between the sensors and a remote datacenter. On the other hand, deployments closer to the 

data, facilitate meeting QoS requirements by avoiding network latency [137][138]. This 

distributed deployment near the sources of data at many sites is referred as Edge (or Fog) 

computing [6].  Edge Computing is not meant to replace traditional Cloud architectures, but 

Cloud and Edge can work in unison to reduce the total end-to-end response time. Edge is 

well suited for IoT applications, where sensors collect data and send them to Edge sites for 

processing, thus avoiding high network latencies compared to a centralized datacenter. The 

Edge deployment acts as a filter that reduces the network bandwidth pressure to the Cloud 

[140].  

 

Figure 1: Internet-Connected Devices 
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According to the application scenario and the processing power of the different devices, edge 

computing can be based either on a two-tier [32] or on a three-tier computational model [33]. 

In both models the last tier corresponds to the Cloud computing resources. Moreover, the 

first tier includes the IoT embedded devices such as drones, sensors, devices and appliances 

in smart homes [32][33]. These devices need to be self-configured, self-maintained, self-

repaired and make independent decisions. The main difference between the two models is 

that in the two-tier model, the IoT embedded devices have the computational power to 

process their monitored data. After processing, the data are sent to the last-tier (Cloud) to 

complete the processing of more complex tasks, if needed. On the other hand, on the three-

tier model, the embedded devices are used only for monitoring the data. Then the data are 

sent to the middle-tier for processing. This tier includes different technologies such as mobile 

devices, normal servers or gateways and cloudlets/micro-datacenters.  

Mobile devices technology: this technology includes laptops, tables and smartwatches that 

are located in the same facility with the IoT devices. This technology leverages idle 

computational power and storage space of the mobile devices to perform necessary 

computations [35][36][39].  

Normal servers or gateways technology: analogous to mobile devices technology, this 

technology includes common servers that can be hosted in an Edge facility such as typical 

house buildings and provide computational power to the monitored data [39]. In contrast to 

the mobile devices, this technology provides more computational power and is dedicated and 

fully utilized only for the processing of the IoT monitored data. 

Cloudlets or Micro-datacenters (MD) technology: in this technology each Edge 

deployment site can contain one or even numerous servers, called, cloudlets/MD.  

Cloudlets/MD are intermediate layers that are located between the cloud and the IoT 

embedded devices. The only difference between the two is that in the cloudlet technology 

the software is provided by a cloudlet provider, in contrast to the MD that the users are 

responsible for the software. Due to the fact that cloudlets/(MD) are small clouds they can 

be referred as “datacenters in a box” [36][37][38][39]. The users can rent virtual machines 

(VMs) on the nearest cloudlet/MD to process their jobs [37][39][139]. The cloudlet/MD is a 

self-contained, secure computing environment that includes all necessary computation, 

storage, and networking equipment to run customer applications or applications provided by 

a cloudlet provider. They usually have power budget in a range of 1–100KW to meet the 

application demands. 
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There are also other models, called hierarchical, that consist of more than three tiers [8]. The 

theoretical comparison between flat typical models with the hierarchical shows that the 

second one is more beneficial in terms of latency [8].  

Apart from the need to reduce the latency to satisfy an application’s QoS time requirement, 

the communication of the data to the Cloud can lead to serious security and privacy issues, 

which in some cases is unacceptable to the end users [141]. Furthermore, energy efficiency 

and cost reduction are some other benefits of the edge technologies [39]. 

Figure 2, shows an IoT system architecture that includes both Edge and Cloud deployments. 

The Edge servers are placed near the data and are responsible for data collecting from various 

IoT devices, data processing and transferring a concise report to the Cloud. 

 

Despite the substantial advantages, Edge Computing has some limitations. A major one, is 

that Edge sites/facilities are power constrained [7]. Thus, the number of servers per site needs 

to fit the power budget that is provided by an electricity provider and is not already allocated 

for other uses. Edge facilities can be ordinary buildings with several other electrical 

appliances in use. Certainly, an electricity provider can increase the power budget at a facility 

but this comes with an extra cost. Consequently, Edge servers that are more power efficient 

may hold the key for successful Edge deployment since they will allow more servers per site 

and processing of data from more sensors without the extra costs to the electricity providers.  

 Several prior works, consider the Edge-Cloud trade-offs to decide where to place highly 

constrained applications and satisfy their requirements without compromising power and 

 

Figure 2: IoT System Architecture including Edge and central Cloud deployments 
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availability [7][8][9][141][143][144][145][146][147]. It is also worth highlighting that 

existing studies of Edge deployments relied on measurements obtained from either too 

simple devices (e.g. raspberry-pi) or too powerful ones (e.g. classical high-end servers) 

which do not strike a fair balance between energy and performance that is essential in Edge 

installations [142][9].  

Chapter 4 discusses and analyzes the trade-offs of running in the Edge or the Cloud 

deployments. For the Edge computational technology, the work in Chapter 4 assumes normal 

servers located in the same facility with the data. 

 

2.4 Reliability Challenges 

 

The integration of billions of transistors on a single die increases the complexity of the 

System on Chip (SoC). To this end more cores can be implemented on a single die. So even 

if the failure rate decreases per transistor, the number of transistors scales in a higher rate 

than the miniaturization. Along with this trend, the devices are becoming more sensitive to 

errors [40], and more powerful fault-tolerant techniques are needed. On the other hand, 

increasing reliability may sacrifice performance, power or cost.  

 

Memory Reliability Challenges 

 

A lot of studies indicate the importance of DRAM protection by presenting field large scale 

analysis [41][42]. Figure 3 shows an analysis that we did in a supercomputer with 209 nodes 

highlighting the importance of DRAM and cache errors. This study was based on one-year 

results. Figure 3 shows the faulty nodes that experience L2 cache and DRAM errors as a 

fraction of time. The Figure shows that L2 cache errors are distributed across several nodes 

and different time periods whereas DRAM errors are not. An important observation is that 

the total number of L2 cache errors is much lower than DRAM errors (1077 L2 cache errors, 

1043041 DRAM errors). This observation motivates the investigation of more powerful 

protection techniques for DRAM memories. Typically, a DRAM uses a capacitor and a 

transistor to store a bit of data. Since the capacitor discharges very often, a refresh operation 

is needed to not lose the stored data [43][44]. High densities can be reached because only 

one transistor and one capacitor are needed to store a single bit. A DRAM is organized on a 

number of DIMMS, where each DIMM consists of a number of ranks. A single rank consists 

of multiple DRAM devices (or DRAM chips) where all or a subset of them operate together 

to provide 64 bits. 
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Each device can provide 4, 8 or 16 bits (referred as x4, x8 or x16, devices respectively). For 

example, a 64 bit can be produced using 16 x4 DRAM devices or by using 8 x8 devices. 

Each DRAM device contains 8 memory arrays called banks and a multiplexer to choose 8 

bits. The banks are organized into rows and columns with each cell holding one bit of data. 

Due to their similarity, main memory uses the same conventional protection mechanisms as 

caches. For example, data redundancy is used both for caches and main memory arrays. More 

specifically, ECC codes, Hamming [45] or Hsiao [46] can be used to detect double bit errors 

and to correct single bit errors in main memory. In addition, Single-Chip error correction and 

Double-Chip error detection or Chipkill [47], is commonly used for DRAM protection in 

high availability servers and large-scale systems, because it has the ability to correct all the 

errors that appear in a DRAM device and to detect errors in two DRAM devices. Chipkill 

relies on symbol-based coding to perform error detection and correction. In a symbol-based 

code, each codeword is composed of multiple symbols, with each representing a group of 

bits. 

Memory reliability has been the subject of many research studies. The problem is becoming 

more prominent as even though the transistors scale down, the transistor count in processor 

still increases. Consequently, this mismatch leads to an increase in the probability of failure 

per component. Also, the increase of the number of memory components per processor, as 

long as the thermal and power headroom, increases further the probability of failure and 

consequently the actual failure rate. Even thought, probability of failure, per processor, is 

still in lower levels, future is coming with more challenges.  

 

Figure 3: Faulty nodes with cache and memory errors as a fraction of time 

 

Time in Compute Timestamp
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Moreover, reliability is closely intertwined with power and performance. For example, 

several proposed techniques provide high reliability by sacrificing performance or/and 

power. On the other hand, techniques that are not so reliable, may not hurt performance 

or/and power in such scale. 

Chapter 6 analyzes the implications of memory errors and memory protection techniques for 

different applications. 

 

2.5 Power Challenges 

 

Another important aspect that we tackle in this thesis is the power consumption. It is one of 

the main parameters that affects TCO. TCO is defined by the amount of power that a server 

consumes and the additional power required to run the server, which includes power 

conversion and cooling. 

Power is strictly correlated with performance (higher performance leads to more power 

consumption). Basically, device dynamic power depends on the capacitance of the device, 

voltage, activity and frequency as shown in the following equation:  

 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 = 𝐶 ∗ 𝑉2 ∗ 𝐹 ∗ 𝐴 

 

where C is the Capacitance, V is the supply Voltage, A is the Activity and F is the clock 

frequency. On the other hand, leakage power comes from the sub-threshold leakage and gate 

leakage. Subthreshold leakage happens when the gate of the transistor is off but it shows 

non-zero amount of current even for voltages lower than the threshold voltage (Vth) [43]. 

As long as the number of transistors and the transistor’s frequency increase there is more 

power demand for both leakage and dynamic power. 

The power efficiency of an application depends on both software and hardware components. 

There are various technologies that are used from the development of a new hardware to the 

use, to reduce power consumption and consequently TCO. In this thesis we are evaluating 

existing hardware with several well-known techniques, that reduce power consumption.  

One technique that aims to provide relief from stringent power constraints is under-volting: 

operate a CPU at a lower than nominal voltage [164][169][170]. However, a naive approach 

where a CPU is always undervolted, makes the CPU more susceptible to variations, such as 

voltage fluctuations or voltage emergencies, which can cause timing violations or bit flips 

[14][15][16] which in turn may lead to SDC errors, or even application or system crashes 

[17][18].  

Pan
ag

iot
a N

iko
lao

u



 

 

 
14 

Another technique to avoid power overloads in various deployments is power capping that 

enforce power budgets of individual servers [10][11] or over ensembles [12][13]. 

Chapter  5 proposes a new detection approach for identifying CPU under-volting settings to 

prevent system from crashes and SDC errors. 

 

2.6 Total Cost of Ownership Fundamentals  

 

The TCO is determined by its capital and operational expenses and is influenced by the 

following five main parameters: 

• Infrastructure Cost: the cost of acquisition of a DC building (real estate and 

development), power distribution and the cooling equipment acquisition cost. 

• Server Cost. 

• Networking Equipment Cost. 

• Operating Expenses: the cost of electricity for servers, networking equipment and 

cooling. 

• Maintenance and Staff Expenses: the cost for repairs and the personnel salaries. 

DC infrastructure, server and networking equipment costs represent the capital expenses, 

whereas the DC operating and maintenance costs represent the operational expenses.  

The TCO is determined by the sum of capital and operational expenses. Capital expenses 

(CAPEX) include the cost of acquisition of a building, the power capex costs with the 

electricity payment, the cooling equipment acquisition cost, the cost of acquiring the servers 

including all their components and networking equipment costs. On the other hand, 

operational expenses (OPEX) include operation power and maintenance costs.   

 The TCO of a deployment consisting of N servers is determined as the sum of Capex Cost 

( 𝐶𝐶𝑎𝑝𝑒𝑥𝑖
 ) and Opex Cost  (𝐶𝑂𝑝𝑒𝑥𝑖

 ) of all the servers (i) as follows [80]: 

𝑇𝐶𝑂 = ∑[  𝐶𝐶𝑎𝑝𝑒𝑥𝑖
+ 𝐶𝑂𝑝𝑒𝑥𝑖

     ]

𝑁

𝑖

    

An overview of the simple TCO framework is shown in Figure 4. For each different server 

configuration type (compute nodes, database nodes, storage nodes), the estimation starts with 

spares estimation that determines (i) the number of hot spares required to mitigate 

performance variability and ensure meeting performance requirement for the peak workload, 

and (ii) the number of cold spares needed due to server failures. The number of active servers, 

the initial number of servers estimated assuming no variability plus the hot spares, will 

determine the costs for datacenter infrastructure, server acquisition, networking equipment, 
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and power. The cold spares are used to determine the maintenance cost. These costs are then 

summed together to produce the contribution to the TCO of a given server type. The global 

TCO is the sum of the contribution from all server types (shown in the above equation). Prior 

works proposed to guide the Datacenter design, accounting TCO as the key parameter 

[80][100][101][102][103][104][63]. We choose TCO presented in [80] as the tool that we 

will extend in this thesis. This is a holistic TCO tool consisting of main parameters such as 

performance and power and, thus, provides more accurate TCO results than all the other 

available tools. In particular, throughout this thesis, we will investigate parameters that are 

correlated with the TCO and used to provide optimizations by extending the TCO tool in 

[80]. To accomplish this, we use a methodology based on correlation analysis that determines 

the parameters required to minimize TCO. Furthermore, to provide TCO optimizations we 

will develop several frameworks. The application architecture is also important and should 

be investigated in all the evaluations. For each of the works we will explore different 

applications that are related on each of the thesis objectives. Particularly we will use a high 

performance computing (HPC) application (FLOREON+ [48]), an IoT application (Wireless 

denial-of-service attack’s detection application [49]), a Cloud application (Web Search 

[50][51]) and a lot of batch applications (Data Analytics [50][51], SPEC 2006 [52], SPEC 

2017 [53], PARSEC [180] and NAS [54]). It is important to highlight that each of the 

frameworks that we propose is orthogonal to any other application.  

 

 

 

Figure 4: TCO Framework Overview [80]. 
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Chapter 3 

 
 

3 Identification of Key Subset Parameters Required to Evaluate 

and Optimize TCO 
 

 

Various infrastructures run a diverse set of applications with different QoS requirements [5]. 

These requirements come in various forms, such as operational power, performance, energy, 

cost and availability. Naturally, computing systems need to be configured in a way to satisfy 

those application requirements [55]. To configure a system, all the different system hardware 

and software knobs, such as frequency, are set at specific settings, with many remaining at a 

default setting, and then, while the application runs, various monitors, such as execution 

time, are observed to determine whether the different requirements are satisfied. 

Unsurprisingly, the configuration space is extremely large and such configuration search 

efforts are in practice adhoc and non-optimal. 

One way to reduce the configuration search dimensionality and complexity, is to reduce the 

requirements, monitors and knobs that need to be satisfied, observed and explored, 

respectively. Reduction of a problem’s dimensionality is not a new problem for computing 

system analysis [56][57][58][59]. Such reduction, typically, relies on some form of statistical 

correlation, for example, principal component analysis [60][61]. 

In this Chapter we identify the minimum set of monitors and knobs to use for configuring a 

computing system that runs a specific application while satisfying the application 

requirements and provide cost optimizations. To accomplish this, we use a well-known 

correlation methodology that relies on data obtained from a detailed exploration of a 

configuration space.  

Specifically, for this investigation we consider data obtained using eleven system monitors 

when exploring many settings for six knobs.  
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3.1 Experimental Setup-Application  

 

We use Floreon+ application (FLOod REcognition On the Net) [48], with high QoS 

requirements. Floreon+ is an online system for monitoring, modeling, prediction and support 

disaster flood management [62]. The system focuses on acquiring and analyzing relevant 

data in near-real time. The data are used to provide short-term flood prediction by running 

hydrologic simulations. 

The main processes of Floreon+ application are organized as follows: 

1. Get information about actual river and reservoir situation. 

2. Rainfall-Runoff (RR) modeling: simulation of surface runoff. 

3. Hydrodynamic (HD) modeling: flood lake simulations, flood maps, simulations of 

water elevation and water velocity, a real-time hydrological model for flood 

prediction, water quality analysis, etc. 

4. Erosion modeling: simulation of water erosion. 

5. Collection and archiving of flood data that can be used to estimate the magnitude of 

a flood based on historical evidence. 

In this Chapter we are investigating the uncertainty of the RR modeling which is the most 

computationally intensive part [48][62].  

The application framework for the uncertainty of RR model provides an environment for 

running multiple simulations every repetition, when new data arrives on a system. The 

uncertainty contains information about how accurate is the solution that RR model provides. 

RR model is a dynamic mathematical model, which transforms rainfall to flow at the 

catchment outlet. 

The uncertainty is computed as Monte Carlo samples. The Monte Carlo method gives a 

straightforward way of massive parallelism by increasing the number of random values 

working concurrently to obtain numerical results. Previous experiments [62] exhibit a good 

scalability of the Monte Carlo method in an HPC cluster with 64 nodes of each containing 

16 cores. Figure 5 shows the normal operation of Floreon+. As Figure 5 shows, a batch of 

Monte Carlo iterations is running in a number of nodes (Server 1- Server n) in such a way 

that application’s QoS requirements are satisfied. Each interval indicates the execution of a 

different simulation. For example, the 1st interval refers to the 1st simulation. After the 

execution of all the Monte Carlo iterations, the results send to a master server for processing. 

The total simulation time includes the execution time of Monte Carlo iterations and the time 

needed to process the results. When a simulation ends, the servers remain idle for a set of a 

period. The duration of this period is determined by the availability of the new batch of data. 
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Under normal operation (fault-free) the simulation always finishes within the time constraint. 

However, there are some cases where a fault on a component can delay the execution of the 

simulation, as shown in Figure 6.  

 

These cases can be categorized in the following: 

1. Delay the execution of the simulation but still the simulation finishes within the time 

constraint. The availability of the system does not decrease. 

2. Delay the execution and violate the timing constraint with the same number of 

servers. Thus, the results of this simulation are useless and the availability of the 

system decreases. 

3. Delay the execution and violate the timing constraint with less servers. In this case 

the faulty server needs to be taken offline until it is repaired or replaced. In this case 

the results are lost and the availability decreases. 

Figure 6 illustrates the last case where the server needs to be taken offline until it is repaired 

or replaced. As shown in the figure, the number of servers in the 3rd interval is decreased and 

the job is assigned to the remaining servers until the faulty server is repaired or replaced. 

 

 

 

Figure 5: Floreon+ normal operation 
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3.1.1 Application Requirements 

 

Floreon+ has two running operation modes, the standard operation mode and the emergency 

operation mode. Both have different requirements. Standard operation mode is the default 

operation of the system. In this operation the weather is favorable and the flood warning level 

is below of the critical threshold. 

On the other hand, on the emergency operation mode the water in the rivers rises due to 

continuous rain or free-flowing streams that are created due to heavy rainfall on small areas. 

During this operation mode much more accurate and frequent simulation computations are 

needed and the results should be provided as soon as possible. In this work we focus on the 

emergency operation which has tighter timing requirements and consequently we will 

highlight better the correlation. 

 

3.1.2 Availability and QoS Requirements 

 

The reliability and availability target of Floreon+ running on emergency operation is 

accomplished through a combination of hardware/software mechanisms and policies. This 

also aims at satisfying the QoS requirements even in the presence of errors and offline 

servers. These mechanisms typically rely on hardware and software monitors and knobs. 

 

Figure 6: Floreon+ operation with faults 
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In general, when a server fails and if its repair time is expected to be long, the system software 

migrates the failed job to another server. The failure of the server is detected by a hardware 

or software monitor. The migration is possible because for QoS and availability reasons. 

Usually, computing systems are over-provisioned with spares for dealing with errors and 

offline servers. Server over-provisioning is determined by the availability of a system. The 

less available system, the more servers needed [63]. 

Because of its significance, emergency operation requires responsiveness in 10 minutes for 

each simulation. Also, it must provide high levels of availability, two nines (0.99), which 

may require over-provisioning with extra servers to deal with various hardware failures. 

Floreon+ and other offline services can run together (collocated) to improve utilization 

[64][65]. Specifically, when Floreon+ satisfies the QoS requirements without using all the 

available cores in a server, the remaining cores can run other services. This must be done 

without affecting the QoS of Floreon+ and violating its requirements. Since we are going to 

explore the emergency operation, Floreon+ is running in isolation, utilizing all the available 

resources without any other service concurrently running on the same server. 

 

3.1.3 Accuracy on Monte Carlo Iterations 

 

It is of utmost importance that the results are as precise as they can. The precision of the 

simulated results is based on the number of Monte Carlo iterations [66]. It has been shown 

in [66]  that the number of iterations has to be in the order of 10 4 to 10 5 to obtain a satisfying 

precision. In this work, we assume 20000 Monte Carlo iterations that has to be computed 

before the deadline (i.e. ten minutes, since new input data arrives from weather stations) as 

the baseline configuration. 

Table 1 summarizes the specific values for the requirements of the Floreon+ application.  

 

Table 1: Floreon+ Requirements 

Performance Simulation   10 minutes 

Accuracy  104 MC iterations 

Availability  0.99 

Power  81 Watts 

Energy  48600 Joules 
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3.2 Available Monitors and Knobs in Real Systems 

 

A large number of monitors and knobs exist in real systems. Monitors enable the observation 

of physical, micro-architectural, and operating system phenomena that can assess the status 

of a system as well as the progress towards completing a task. On the other hand, knobs 

enable the proactive or reactive control of various phenomena. 

Monitors and knobs in real systems can be categorized into the following categories 

depending on what metric they influence: performance, power, temperature and reliability. 

Table 2 shows the monitors and knobs that are going to be explored in this work. This subset 

is by no means comprehensive and future work should consider a larger set. 

 

Monitors that are going to be investigated are: execution time, Instructions per Cycle (IPC), 

Misses per kilo Instructions (MPKI), DRAM, CPU and peak power and CPU temperature. 

Also, Mean Time Between Failures (MTBF) per server and for the whole system is used 

through analytical models and Failures in Time (FIT) rates [41]. Finally, CAPEX and OPEX 

expenses are going to be estimated based on publicly available info, e.g. list prices, and 

runtime measurements. CAPEX expenses include infrastructure, server and networking 

equipment costs, whereas OPEX expenses include power and maintenance costs. 

Table 2, also shows the different knobs that we are going to experiment with. As the table 

shows, we use Simultaneous Multi-Threading (SMT) [67], Dynamic Voltage and Frequency 

Scaling (DVFS) [68], data prefetchers [69] and Intel’s Turbo Mode [70]. Also, this work 

provides results with and without redundant cores. Redundant cores are used to improve the 

reliability of the system by migrating the running thread of a faulty core to a spare [71]. For 

the redundancy scenario it is assumed that half of the cores remain idle to provide higher 

availability. On the other hand, in the scenario without redundancy all the available physical 

Table 2: Monitors and Knobs list 

Monitors Knobs 

Execution Time 

Instructions per Cycle (IPC) 

DRAM Power 

CPU Power 

Peak Power 

CPU Temperature 

Misses per Kilo Instructions (MPKI) 

Server MTBF 

System MTBF 

Capex Expenses 

Opex Expenses 

DVFS 

SMT 

DRAM Protection 

Turbo Mode 

Prefetchers 

Redundancy 
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resources are utilized. Furthermore, this study explores the implication of using two different 

DRAM Protection Techniques (No Protection or ChipkillDC). 

DRAM is protected from errors by using extra devices per DIMM to store Error Correction 

Code (ECC) bits. Modern processors usually support Chipkill with 16 ECC bits to protect 

128 data bits that are interleaved across two DIMMs placed in two channels [72][73][74]. 

This is referred as ChipkillDC or Lockstep where it can correct all the errors in a single 

device and detects all the errors in two devices [72]. Chipkill can waste bandwidth, hurt 

performance and increase energy consumption [75][76][77]. On the other hand, No 

Protection does not provide any protection on DRAM. 

 

3.3 Experimental Framework and Correlation Analysis 

 

3.3.1 Experimental Framework 

 

For evaluation, we use a cluster with dual socket Intel Xeon E5-2640 v3 system 

configuration, as shown in Table 3.  

 

We run each experiment 5 times, and each time we monitored all the monitors presented in 

Table 2. The results presented are calculated by removing minimum and maximum values 

and calculating the average. 

To change the knobs, prefetchers and DRAM protection techniques we access BIOS, through 

a BIOS Serial Command Console interface (CLI) [78]. 

Our evaluation used Floreon+, an HPC application with a dataset of 44KB. This is a 

representative dataset size for the application purposes, that is used in reality, because it uses 

five days observations to provide predictions for the next two days.  

All the power numbers are collected using the Likwid-powermeter [28] which allows 

monitoring the power consumption of CPU and DRAM at any given time. The results are 

used to calculate total power and peak power numbers. 

Table 3: Server Configuration 

Number of CPUs 

CPU 

Number of cores per CPU 

Number of threads per core 

2  

Intel Xeon E5-2640 v3 

8 

2 

Channels per CPU 

DIMMs/channel 

DIMM capacity 

4 

2 

16GB 
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To track CPU temperature, we use lm-sensors [79]. To estimate Server MTBF and System 

MTBF monitoring values, as well as, availability values we use different analytical models 

based on binomial probabilities. 

Also, to estimate CAPEX, OPEX expenses as well as total cost we use COST-ET and 

AMPRA tools proposed in [80][63]. 

For a baseline configuration, we select the one that is currently used to run this application 

and includes the following values for each parameter: SMT: OFF, Frequency: 2.6 GHz, 

DRAM Protection: No Protection, Turbo Mode: Enable, Redundancy: 0 (No), Prefetchers: 

ON. 

The data used for correlation analysis are obtained by exploring the 128 combinations of 

knobs presented in Table 4. For each configuration combination the eleven monitor values 

are recorded.  

 

 

3.3.2 Identification of the Key Subset of Parameters  

 

The analysis to reduce the number of monitors and knobs that are correlated with the TCO 

is described below. The data that drive this analysis are obtained as described in the previous 

Section. The correlation analysis is done using the R statistical language [81]. 

The methodology used, is as follows: 

1. For a given monitor, we compute the correlation coefficient (using Pearson 

correlation analysis) with all the other monitors. For each pair (xi ,xj) of monitors i 

and j, where ij, that exhibit significant correlation coefficient (above a 90% 

threshold, the specific threshold is picked from empirical analysis), we check which 

of the two monitors can be removed. The monitor that shows smaller correlation 

coefficient with all the other monitors is removed from the list. This process is iterated 

over all remaining monitors.  

Table 4: Values of Knobs 

Knobs Value 

DVFS 1.2, 1.7, 2.2, 2.6 (GHz) 

SMT Disable, Enable 

DRAM Protection No Protection, ChipkillDC 

Turbo Mode Disable, Enable 

Prefetchers Disable, Enable 

Redundancy Disable, Enable 
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2. Furthermore, we compute the correlation coefficient between the TCO and all 

remaining monitors and select the monitors with the highest correlation above a 70% 

threshold. 

3. For all the remaining monitors and all the available knobs, we compute the 

correlation coefficient between them and knobs that have a correlation coefficient 

above a 40% threshold (the specific threshold is picked from empirical analysis) are 

kept. 

This analysis aims to reduce the number of configurations that need to be explored to 

determine the configuration that provides the highest satisfaction of the TCO according to 

the ranking described above. Specifically, the analysis returns a subset of the monitors and 

knobs. All possible configuration combinations are then evaluated for the selected knobs. 

For the knobs that are not selected we used the baseline configuration values. Afterwards, 

the selected configurations are sorted according to the selected monitor(s) value(s) (if there 

is more than one monitor, equal weighting is used to combine them). The top ranked 

configuration using the selected knobs and monitors is then compared with the configuration 

that considers all. Their difference is measured as the maximum negative percentage 

difference for any of the requirements (if it is 0 for all it means it matches the best possible 

configuration). 

 

 

3.4 Results 

 

3.4.1 Correlation Between Monitors, Knobs and Cost 

 

Our analysis reveals that OPEX cost is strictly correlated with CPU power and thus we 

removed OPEX from the list of monitors and the presented results. 

Figure 7 shows the results of correlation analysis between TCO and the explored monitors. 

X-axis presents the list of monitors except OPEX, whereas the y-axis presents the correlation 

coefficient between monitors and cost (TCO). The correlation coefficient ranges from -1 to 

+1. A value closer to +1 means that this monitor has almost a linear relation with the TCO. 

A value closer to -1 means that this monitor has an inverse relation with the TCO. A value 

closer to 0 means that there is no correlation between the monitor and TCO.  

As we can see from Figure 7, TCO can be monitored by Execution Time, Server MTBF, 

CPU Power and Capex cost, because they experience correlation above 0.7. The most 

correlated monitor is the CAPEX cost. CAPEX cost consists mainly of the number of servers 
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that are needed for a datacenter. These servers can be the initial servers, hot spares and cold 

spares.

Finally, Figure 8 shows, the correlation between knobs and monitors. X-axis presents the 

remaining list of knobs for each monitor, whereas the y-axis presents the correlation 

coefficient between knobs and monitors. As we can see from the Figure, DVFS, SMT, 

DRAM Protection and Redundancy are the selected knobs. On the other hand, Turbo Mode 

and Data prefetching can be reduced from the search space.  

 

 

Figure 7: Correlation analysis, showing the correlation coefficient between 

Monitors and TCO 

 

 
 

Figure 8: Correlation analysis, showing the correlation coefficient between 

Monitors and Knobs 
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3.4.2 Validation of the Selected Monitors and Knobs 

 

Figure 9 validates the selected monitors and knobs by evaluating the best configuration that 

includes all the monitors and knobs with the subset of monitors and knobs revealed from the 

correlation analysis. 

This graph, shows the normalized with the default configuration (the initial configuration of 

the system) TCO improvement between the best configuration and the selected monitors and 

knobs revealed from the correlation analysis. As can be seen from Figure 9, TCO can be 

improved by changing the system configuration, by 2.4x tines compared to the default 

configuration. Moreover, the Figure shows that the results based on the correlation analysis 

are very close to the results with the best configuration. The error among the two is around 

3%. This indicates that the selected monitors and knobs are the appropriate for TCO 

estimations and optimizations. All the selected monitors and knobs are used for further 

exploration in the following Chapters. 

 

 

 

 

 

 

Figure 9: Improvement among the default configuration, correlation analysis 

predicted configuration and the best configuration 

 

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

4,5%

5,0%

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9

2
2,1
2,2
2,3
2,4
2,5

Best Configuration Correlation analysis

P
e

rc
e

n
ta

ge
 o

f 
Er

ro
r

Im
p

ro
ve

m
e

n
t 

o
ve

r 
th

e
 d

ef
au

lt
 

co
n

fi
gu

ra
ti

o
n

Cost Error

Pan
ag

iot
a N

iko
lao

u



 

 

 
27 

Chapter 4 

 
 

4 Investigation of the TCO Benefits of Running IoT 

Applications at the Edge vs. the Cloud 
 

 Edge/Fog computing is a recently introduced approach that has the potential to ensure the 

sustainability and scaling of the Internet in the IoT era. This paradigm advocates for the 

execution of services closer to the sources of data [6][132], aiming this way to reduce 

application latency between the end user and the datacenter and at the same time relaxes the 

pressure on network bandwidth. Figure 10, shows the cumulative distribution of the end-to-

end latency when a specific application runs in Edge and Cloud deployments.  

 

 

The end-to-end latency includes the network and compute time of the application (details 

about the methodology used to obtain these results are given in Section 4.4). Figure 10 

reveals considerable difference between the End-to-End latency for the Cloud and Edge 

deployments. As can be seen, this difference may be as large as 100 milliseconds. For a high 

QoS response time constraint application this extra 100 milliseconds latency may render 

infeasible to run the application on the Cloud or in the best case requires an expensive Cloud 

deployment to ensure fast processing latency. 

 

Figure 10: End-to-End Latency for running the application in Edge and Cloud 

deployments 
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 Recent studies develop schemes that manage the data processing of IoT applications across 

distributed datacenters [7][8][9]. In these studies, data are transferred from IoT sensors to 

local micro-datacenters for pre-processing and selection which of the data to forward to a 

centralized datacenter. Examples of IoT applications with a tight response time and QoS 

constraints include face recognition [146][147], traffic counting and video processing 

applications [168], as well as, applications for detecting jamming attacks of wireless 

networks [133] [160]. All these applications consist of sensors that collect and send data to 

a processing device. Their main QoS requirement is the response-time and, therefore, are 

naturally suited for Edge deployments. However, servers used to run these applications can 

only process, within a required detection time window, data from a limited number of 

sensors, or put in another way, servers oversubscribed to process data from many sensors 

will suffer from QoS violations. Moreover, each sensor covers a fixed area and Edge 

deployments have limited power budget for servers per installation. Consequently, an Edge 

installation may be able to support a limited number of sensors and cover a limited area. This 

highlights a key challenge for the successful realization of Edge computing: the area covered 

by the sensors. Evidently, the most critical challenge for the successful Edge deployment is 

the efficient use of the limited power of an Edge installation. Exceeding the power cap of the 

facility is unacceptable as there will be a disruption of power. To avoid such overloads, both 

Edge and Cloud deployments rely on power capping schemes that enforce power budgets of 

individual servers [10] [11] or over ensembles [12][13]. In this regard, the use of more power 

efficient servers, facilitates the increase of area coverage without exceeding the Edge’s or 

Cloud’s power budget.  

In this Chapter, we characterize an IoT application with tight response time QoS 

requirements using a state-of the art 64-bit ARMv8 based micro-server. Such a server is an 

excellent representative of the high-performance devices based on energy efficient-

embedded devices that are required to support Cloud services at the Edge without complex 

cooling and power supply infrastructures. We evaluate the trade-offs among the area 

coverage, power efficiency and QoS when running the applications in an Edge vs a Cloud 

environment. To accomplish this, we rely on a new metric: the Total Cost of Ownership 

(TCO) over area coverage.  

 To the best of our knowledge, this is the first work that provides a holistic evaluation that 

considers different metrics, such as TCO, QoS, area-coverage and power efficiency, using 

an energy efficient and high-performance device. 
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4.1 Background and Challenges 

 

 

4.1.1 Wireless Denial of Service Application 

  

The application that we evaluate is a Wireless Denial of Service (WDoS) attack’s detection 

application [49]. Current wireless networks are vulnerable to attacks by devices readily 

available in the market [134]. Such devices can essentially jam a wireless network and thus 

disrupt any running application. The WDoS application processes data, sent by sensors that 

continuously scan the wireless spectrum and, with the assistance of signal processing 

algorithms and filters, detects jamming attacks. WDoS prevention applications can detect 

jamming attacks and increase the availability of secure and resilient wireless networks used 

to connect the IoT devices at the Edge.  

Wireless networking plays an important role in achieving ubiquitous computing where 

network devices are embedded in environments that provide continuous connectivity and 

services, thus improving human’s quality of life.  

 However, due to the exposed nature of wireless links, current wireless networks can easily 

be attacked by jamming technology. Jammer detectors are commercially available as 

countermeasures against jamming systems [148][149][150][151][152][153][154] [155][156] 

[157][158][159][160][161][49]. In this work, we evaluate one of these WDoS solutions [49]. 

 WDoS is a standalone solution that monitors the entire wireless spectrum using various 

sensors to detect anomalies derived from a Denial of Service attack which renders all the 

wireless devices useless. This solution does not need to be integrated internally in the 

wireless network, and offers a wide and easy-to-deploy solution for the most heterogeneous 

and challenging critical infrastructure wireless environments. To that end, the WDoS firstly 

performs a detailed analysis of the radio frequency spectrum, and then processes the acquired 

data to identify potential anomalies, giving rise to alarms and warning messages.  

 The WDoS solution uses several sensors with antennas connected to a Software Defined 

Radio (SDR) module which digitalizes the radio spectrum to a binary stream and transmits 

this to a processing board. The board processes in real time the incoming data while applying 

different filters and algorithms to match the signals found to four types of well-known 

jamming signals: Pulsed Jammer, Wide Band Jammer, Continuous Wave Jammer and LFM 

Chirp Jammer. When the WDoS application detects an attack, this incident is communicated 

by the processing board to the monitoring server that runs on a separate machine. Finally, a 
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visualization tool visualizes all the attacks reported to the monitoring server in real time. The 

main architecture of the solution is shown in Figure 11.  

 

Powerful Edge servers would allow the processing board to be simple and low cost, as it can 

concentrate the processing of high amounts of radio frequency spectrum data at the Edge. 

With powerful Edge servers, more than one instances of the processing application can be 

executed on the processing board (Edge server) by connecting various sensors on it and 

reducing the number of processing boards. The jammer detection results can be transmitted 

to the Cloud for storage, visualization, and post-processing.  

 

4.1.2 WDoS Application Requirements 

 

 The WDoS application has several requirements in terms of availability, timing QoS, data 

transition ratio and sensor’s area coverage.  

 

4.1.2.1 Availability Requirements 

 

 Availability greatly depends on the type of installation in which the solution is deployed. 

Some of the most demanding installations require 99% availability of the attack detection 

service, i.e. the service should be available in 99% of the total service time. For some 

installations, such as smart construction service monitoring deployments, the availability is 

not so critical because of a low level of criticality of a service or a small amount of data 

transferred for the processing, which could be a few bytes per hour or even less. Availability 

of 50% or less should be optimal for shopping malls or train stations, where the wireless 

network is used by users for non-critical purposes, such as recreational activities.  

 In this work, we consider the high availability requirement of 99% to evaluate a highly 

constraint deployment of the application. 

 

 

 

 

Figure 11: Architecture of DoS Jammer Detector Application including Edge and 

Cloud Deployments 
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4.1.2.2 Quality of Service (End-to-End Latency) Requirements 

 

 We measure the WDoS latency as the time it takes to detect an attack. This time is a function 

of the width of the band that is analyzed. The QoS for the detection time is 400 milliseconds 

for the 90% of the decisions (if it is jammer detection or not) on a 5 MHz band. This is the 

end-to-end time that includes both the transmission time of the data to the processing board, 

as well as, the compute time for processing the data. Thus, QoS is determined by the sum of 

the processing time and the data transmission time over the network. Overall, a high-

performance computing server may help to reduce the detection latency but this comes at a 

cost of increased energy consumption.  

  

4.1.2.3 Data Transmission Rate 

 

 The highest data rates exist between the SDR module and the Processing Board. In this case, 

the maximum rate is 305 Mbps (5 Msps) and the lower rate is 30.5 Mbps (0.5 Msps). Higher 

data rates enable better detection accuracy, however lower rates can be also useful. The data 

transmission rate between the processing board and the monitoring server is much lower, as 

the processing board transfers only about detected attacks, i.e. the type of a jammer attack, 

frequency, jammer power and a timestamp. This will result in about 100 bytes of payload 

per packet and a minimum of 40 packets per second (one packet per decision per algorithm).  

 To assess the benefits of Cloud deployment, we use the lowest data transmission rate, 

imposing an assumption that there is no any bandwidth degradation. 

 

4.1.2.4 Sensor’s Area Coverage 

 

Each sensor that monitors the wireless band of 2.4GHz covers an area of approximately 25 

square meters. Thus, in real deployments, several sensors should be used together to cover a 

large area, such as a shopping center floor or an airport security screening area. For such 

areas, multiple instances of the WDoS application should be run on the same processing 

board. However, this might stress the hardware and increase the processing time, as well as 

power consumption. Power consumption is directly related to the number of hosted servers 

and running workloads. The peak power consumption became an increasingly important 

hardware feature in many facilities, since it cannot exceed the power budget provided by the 

electricity suppliers. This implies that the number of sensors and processing boards that can 

be installed in a facility depends on the available power budget at a given site. At the same 

time, a low power budget may not allow to use as many sensors as required to cover a specific 

area. As a result, the 100% area coverage may not be achieved for some deployments.  
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 All the described requirements that used for this analysis are summarized in Table 5.  

 

4.2 System Architecture  

 

 To estimate the TCO and area coverage of a specific deployment we use the architecture 

described in Figure 12. The figure shows that the electricity provider delivers a specific 

power budget to each site. The figure shows five facilities with different power budgets. Let 

us assume that three of them (facilities 1, 3, 4) use basic Edge servers for processing the data, 

whereas facility 2 sends and processes the data in the Cloud and facility 5 uses more power 

efficient Edge servers to process the data. Figure 12 also shows three bars next to each facility 

that represent the power budget for each facility (red bar), the cost that depends on the servers 

that can be operated within the specific power budget (green bar) and the area coverage of 

the sensors for the specific location which depends on the sensors that can be processed by 

each server (blue bar). For simplicity, we assume facilities with 100m2 area. Consequently, 

to ensure a 100% area coverage for this application, four sensors per facility are required 

(one per 25 m2 as described in the application requirements). The figure shows that the more 

the area coverage is achieved, the more power budget is available, more servers are 

accommodated and the higher the cost. On the other hand, even though facility 2 provides 

full area coverage, it needs less power budget because it transfers and processes the data only 

on the Cloud. However, this option may not meet the QoS time requirement. Finally, facility 

5 is shown to have full coverage with the same power budget as facility 4, that only achieves 

three quarters of the area coverage. This is made possible from the use of more power 

efficient servers that allow more servers to be operated within the same power budget. 

 

 

Table 5: WDOS Jammer Detection Application’s Requirements 

Requirement Description 

Availability 99% 

QoS (End to End Latency) 90th percentile of the decisions 

need to be under 400ms 

Desired Area Coverage  100% 
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The following equation shows how the area coverage is determined: 

 

𝐴𝑟𝑒𝑎 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠
     

 

This equation shows that area coverage is correlated with the number of sensors 

(EstimatedSensors) that can be placed in a facility and the required number of sensors 

(RequiredSensors) that are needed to cover 100% of the specific area which is equal to: (total 

facility area)/(area covered per sensor). To determine the EstimatedSensors number we use 

the following equation:   

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠 = 𝑀𝐴𝑋𝑖
𝑚𝑎𝑥𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ⌊

𝑃𝑜𝑤𝑒𝑟𝐵𝑢𝑑𝑔𝑒𝑡

(𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑜𝑤𝑒𝑟𝑖 ∗ 𝑃𝑈𝐸)
∗ 𝑖⌋  

 

The actual number of sensors that can be deployed is estimated by considering the number 

of instances per server (number of sensors that data are getting processed on a server). The 

power of each server configuration that runs specific number of instances is multiplied by 

the power usage effectiveness (PUE) and then divided by the PowerBudget that corresponds 

to the power available at a given facility. PUE is a ratio that describes how efficiently a 

computer DC uses energy. Then, the result is multiplied by the number of instances, i. The 

 

Figure 12: Architecture of Edge servers in different locations 
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total number of servers that are needed to host the specific number of instances is then 

obtained from: 

 

𝑁 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠

𝑖
    

 

The number of servers, N, and power per server is fed to the TCO model to determine the 

TCO of the deployment. 

 The metric that we optimize in this work is the TCO over Area coverage which captures 

both metrics of interest, as follows:  

 

OptimizationMetric =
𝑇𝐶𝑂

𝐴𝑟𝑒𝑎 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒
   

 

4.3 Characterization Framework 

 

 To improve energy efficiency of a micro-server, we need to investigate the operation limits 

of voltage and memory refresh rates. Exposing the safe voltage margins of an application is 

a time-consuming and difficult process due to several abnormal behaviors that can exist 

[163][164][165][166]. To this end, we developed an automated characterization framework, 

which is outlined in Figure 13, (1) to identify the target system’s limits when it operates at 

scaled voltage, frequency conditions and DRAM refresh rates, and (2) to record/log the 

effects of a program’s execution under these conditions. The automated framework (outlined 

in Figure 13) is easily configurable by the user and can be embedded to any Linux-based 

system, with similar voltage and frequency regulation capabilities.  The characterization 

framework [163][164] consists of three phases (Initialization, Execution, Parsing). During 

the initialization phase, a user can declare a benchmark list with corresponding input datasets 

to run in any desirable characterization setup. The characterization setup includes the voltage 

and frequency (V/F) values on which the experiment will take place and the cores where the 

benchmark will be run. To reduce the DRAM power, we adopt the framework to characterize 

DRAM reliability operating under different refresh rates and the supply voltage. Particularly, 

we use this framework to identify the optimal DRAM refresh rate and voltage which does 

not trigger uncorrectable errors or system crashes. The execution phase consists of multiple 

runs of the same benchmark, each one representing the execution of the benchmark in a pre-

defined characterization setup. The set of all the characterization runs running the same 
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benchmark with different setups represents a campaign. In the parsing phase of our 

framework, all log files that are stored during the execution phase are parsed in order to 

provide a fine-grained classification of the effects observed for each characterization run. 

 

 

We have also extended the error reporting capabilities of existing mechanisms (i.e. ECC in 

caches and DRAMs) with system configuration values, sensor readings and performance 

counters for identifying correctable (CE) and uncorrectable errors (UE). In addition, to 

account for any undetected error and essentially detect any SDC that could go undetected by 

ECC, we compare the output of each execution with a golden reference. 

 The framework provides the following features; it: 

• compares the outcome of the program with the correct output of the program when 

the system operates in nominal conditions to record SDCs, 

• monitors the exposed corrected and uncorrected errors from the hardware platform’s 

error reporting mechanisms  

• recognizes when the system is unresponsive to restore it automatically, 

• monitors system failures (crash reports, kernel hangs, etc.), 

• determines the safe, unsafe and non-operating voltage regions for each application 

for all frequencies, and 

• performs massive repeated executions of the same configuration. 

 

 

Figure 13: Characterization framework layout 
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4.4 Experimental Setup 

 

4.4.1 Cloud and Edge Architecture  

 

 To evaluate Cloud and Edge deployments we use real network traces from both Amazon 

servers and local servers, respectively. Specifically, for the Cloud evaluation we profile 

network latency by pinging for one week an Amazon server located in London [167]. London 

is chosen because, after profiling several sites, it has the lowest network latency. So, it would 

be obviously a better choice in the Cloud setup. On the other hand, for the Edge evaluation, 

we profiled for one week the network latency of a server hosted in the same building.  

 For the compute time, in this analysis we measure the time spend in the ARM processors by 

emulating the processing board of WDoS application, as shown in Figure 11, because this is 

the most critical processing component of the application. For the Cloud versus Edge 

evaluation we considered that the same type of processing board is used either in the Cloud 

or in the Edge, in order to make them comparable. To estimate the total QoS, we convolute 

the distributions of network latency results for one week and the compute time results of the 

processing board. 

 Several sensors can be attached to each of the processing boards. For this analysis we assume 

that up to 8 sensors can be attached, equal to the number of cores in the Processing Board’s 

CPU. Each sensor corresponds to one application instance. So, the processing board can 

collocate a maximum of eight instances. Attaching more sensors per server was not feasible 

due to the excessively high compute time that leads to QoS violations.  

 

4.4.2 TCO Input Parameters 

 

 The main TCO input parameters used in this analysis are shown in Table 6. We consider 

8000 sensors, in total, that cover an area of 200,000 m2. This is representative of a large 

public building. In the Edge deployment we assume that the micro-servers are distributed in 

100 different locations within the building, with 80 sensors located nearby location. On the 

other hand, for the Cloud deployment all servers are assumed to be placed in one location. 

For the centralized Cloud, cooling cost, cost of electricity, network cost and the maintenance 

personnel salary per rack are higher than the Edge configuration. The cooling cost of the 

Cloud deployment is expected to be much higher than the cooling cost of the Edge 

deployment as a centralized large datacenter requires much more sophisticated and expensive 

cooling infrastructure. Regarding electricity costs, the more devices that the centralized 
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Cloud hosts, the higher power budget is needed and the higher costs are paid to the electricity 

provider, as this large absolute peak power is reflected in the cost of the electricity. Also, 

network per rack cost is related to the servers that are placed per rack. For Cloud 

configuration we assumed racks of 42 servers, whereas for Edge deployments we assumed 

at most racks with 10 servers, due to the power constrained Edge facilities. In addition, Cloud 

Power Usage Effectiveness (PUE), is significantly more that the Edge configuration, since 

cooling is a power-hungry system and uses a non-negligible fraction of the datacenters 

power. Finally, for Mean Time to Repair (MTTR) of a faulty component we assume that an 

Edge faulty component can be replaced within 24 hours whereas in a Cloud configuration, 

the faulty component can be replaced within 1 hour. This difference is primarily justified by 

considering the geographical distribution of Edge facilities. The MTTR difference is also 

reflected in the maintenance personnel salary per rack. 

  

4.4.3 Micro-Server Architecture 

 

 The server that we use to characterize the WDoS application on, is a state-of-the-art 64-bit 

ARM based Server-on-Chip, is Applied Micro's (now Ampere Computing) X-Gene 2. X-

Gene 2 platform provides knobs for under-volting the various components that are explored. 

The micro-server consists of eight 64-bit ARMv8-compliant cores running at 2.4 GHz, 

Table 6: Edge and Cloud Configurations 

 
Cloud 

Configuration 

Edge 

Configuration 

Total Number of Sensors 8000 

Number of Locations 1 100 

Cost of Cooling  3.5 $/kwh 0.019 $/kwh 

Cost of electricity   0.08$/kwh 0.07671$/kwh 

Network per rack [63] 5000$ 1190$ 

Maintenance salary  

per rack  
208$ 8.68$ 

Power Usage Effectiveness (PUE) [162] 1.3 1.1 

Mean time to replace a faulty component  1 h 24 h 
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grouped in 4 Processor Modules (PMD), which have a separate 32 KB LI instruction cache 

and 32 KB L1 data cache for each core and a 256 KB unified L2 cache for each PMD. There 

is also an 8 MB L3 cache which is shared across the whole chip (all 8 cores). There are 4 

available memory channels with DDR3 memories. 

 The X-Gene 2 provides access to a separate Scalable Lightweight Intelligent Management 

Processor (SLIMpro), a special management core, which is used to boot the system and 

provide access to on-board monitors for measuring the temperature and power of the SOC 

and DRAM. The SLIMpro, also reports to the Linux kernel all errors corrected or detected 

by the provided error-correcting codes (ECC) and the parity. Finally, SLIMpro has 

configuration parameters of the Memory Controller Units (MCUs), such as refresh period 

(TREFP). The server runs a fully-fledged OS based on CentOS 7 with the default Linux 

kernel 4.3.0 for ARMv8 and supports 4KB and 64KB pages. 

 After characterizing it we choose the voltage levels that do not affect the availability of the 

system, called safe margins. These margins are used to evaluate the efficient Edge 

deployment.  

 

4.5 Characterization Results 

 

 The WDoS application running on the Processing Board and its dependencies have been 

ported and tested on the X-Gene 2 host platform by using the characterization framework. 

The generated results need to be deterministic and repeatable. This is mandatory because in 

order to detect SDCs among different runs, the output needs to be compared and verified. 

For this purpose, data sets obtained from recording real life jammer signals, were used as 

inputs for the application tests. We run the application with various numbers of instances to 

obtain the trends of the effectiveness. The characterization process reveals the lowest 

operating limits that achieve the highest power savings without compromising the 

availability of the system as shown in Table 7.  

 

Table 7: Nominal and Efficient Operating Settings 

 

Nominal Settings Efficient Settings

PM D Voltage 980 920

SoC Voltage 950 870

DRAM  Voltage 1500 1428

DRAM  Refresh 

Rate in ms
78 2783
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Table 8, shows the characterization results running with the nominal and the most energy 

efficient settings.  

 

As can be seen from Table 8, the peak and average power can be decreased by 8 and 5 watts, 

respectively. This reduction corresponds to around 9% savings of the processor power. 

Moreover, temperature can be decreased by about 3 degrees Celsius and thus, help reduce 

the need for cooling and can help lifetime reliability. 

 The findings of the characterization in this Section are used as inputs for the TCO analysis. 

 

4.6 TCO Analysis 

 

 This Section reports the TCO analysis of the Edge compared to the Cloud deployment and 

examines the benefit from more energy efficient micro-servers in the Edge.  

 

4.6.1 Selection of the Number of Instances in Edge and Cloud Deployments  

 

 We first evaluate the end-to-end latency of Cloud and Edge deployments in order to select 

the appropriate number of instances to run in the processing board and at the same time not 

violate the QoS constraints of the application. 

 Figure 14(a) and Figure 14(b) show the cumulative distribution of the Cloud and Edge End-

to-End latency for different number of instances, respectively.  

Table 8: Characterization results running WDoS application with Normal Setting 

and Efficient Settings 

 

Running Dos Application with Normal Settings Running Dos Application with Efficient Settings

Idle
1 

Instance 
2 

Instances
4 

Instances 
8 

Instances
Idle

1 
Instance 

2 
Instances

4 
Instances 

8 
Instances

Peak Server
Power 

67.91 72.81 80.66 88.26
Peak Server 

Power 
63.53 67.64 74.11 80.86

Avg. Server 
Power

57.43 64.70 69.18 75.79 80.77
Avg. Server 

Power 
54.19 61.21 64.90 70.77 75.17

Avg. PMD 
Temperature

43.38 59.96 62.15 65.36 69.01
Avg. PMD 

Temperature
42.98 57.71 58.77 60.81 64.68

Avg. SoC 
Temperature

44.61 59.41 60.49 62.18 65.17
Avg. SoC 

Temperature
44.05 58.65 59.29 60.19 62.97

Avg. DRAM 
Temperature

47.58 62.45 63.06 64.05 66.82
Avg. DRAM
Temperature

47.71 62.51 62.91 63.61 66.17
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As the Figure 14(a) shows running 8 instances per server, at the Cloud, is not feasible because 

this configuration violates the QoS requirement of 400ms for the 90th percentile of the 

decisions. So, the preferable configuration is the one that uses 4 instances per processing 

board that corresponds to 4 sensors per board. On the other hand, the QoS results of Edge 

deployment show that the processing board can simultaneously run 8 instances without 

violating the QoS requirements of the application. This happens due to the lower network 

latency of the Edge deployment. 

For the rest of the results we use maximum 4 instances per processing board for the Cloud 

deployment and maximum 8 instances per processing board for the Edge deployment, as 

well. This requires the use of 2000 servers for the centralized Cloud deployment and 1000 

servers for the distributed Edge deployment, in total. In addition, for each Edge locations, 

there is a placement of 10 servers per location that we assume can operate within the available 

power at each facility. 

 

4.6.2 Edge Versus Cloud TCO 

 

 Figure 15, illustrates the normalized TCO breakdown results with Edge Deployment, for 

both the Edge and the Cloud. As the Figure shows, the Cloud TCO is 2.13 times higher than 

the Edge TCO. This corresponds to 80996 dollars more in the Cloud than the Edge facility 

per month. Particularly, the all the Edge deployments, needed in this analysis spend around 

71800 dollars, whereas Cloud spends 152796 dollars per month.  

 

Figure 14: QoS results for different number of instances of the WDoS application 

running in the Cloud (a) and in the Edge (b) 
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This happens, as the breakdown shows, due to the double number of servers that are needed 

for hosting the total number of sensors to cover the specific area. The obvious difference in 

the server cost explains the large TCO difference. Also, as  Figure 15 shows, the Cloud 

deployment consumes exactly 2.5 times more power than the Edge deployment. So, except 

of the double server number, Cloud consumes more power due to the cooling power 

consumption and the PUE. Additionally, maintenance cost is also around 3.25 times higher 

in the Cloud than in the Edge deployment. This is due to the lower replacement frequency of 

the faulty components in the Edge (MTTR). Measuring the availability, we observed that the 

Cloud can provide four nines of availability (0.9999), whereas, Edge provides only two nines 

of availability (0.99), which still does not violate the availability requirement of the 

application.  

 This analysis highlights that WDoS application can be deployed more efficiently in the Edge 

than in the Cloud. 

 

4.6.3 TCO and Area Coverage Results for Efficient Edge and Normal Edge 
Deployments 

 

 Figure 16, illustrates an investigation as a function of per Edge site power budgets in Watts 

(x-axis) and the area in square meters (m2) that needs to be covered by jamming detector 

sensors (y-axes).  

 

Figure 15: TCO results for Edge and Cloud deployments 
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All the presented graphs in Figure 16 show the ratio of Efficient Edge (Edge servers that 

operate with energy-efficient settings) over Normal Edge (Edge servers that operate with 

nominal settings). The arrows next to each graph show which direction represents 

improvement. Also, we use numbered labels for better explanation of the trends in five cases. 

In all graphs of Figure 16 the labels represent the same case. The first result, in Figure 16(a), 

shows the metric that we optimize, the TCO over Area coverage. The 3D representation 

shows that the TCO over the area coverage exposes a sharp increase of the Efficient Edge 

over the Normal Edge server by reaching the 100% around 73 Watts power budgets for all 

the cases with label 1. 

For this case the normal Edge setup cannot even host one server because the individual server 

consumes more power than the provided power budget. As the power budget increases, the 

benefit of the Efficient Edge remains for several power budgets by approaching 60% (label 

2), 40% (label 3) and 20% (label 4). After the 400-Watt power budget, the TCO over area 

coverage has very small difference, around 2% (label 5). The trends in the graph show peaks 

and valleys due to the discrete power that is needed to fit an extra server, i.e. when power 

allows the Efficient and Normal Edge to have the same servers the benefits drop (label 5) 

 

Figure 16: Efficient Edge over Normal Edge results in (a) TCO over Area Coverage, 

(b) Area Coverage, (c) Total Cost of Ownership, (d) Total Number of Servers that are 

placed in the deployments, (e) Total Power Consumption, and (f) Total Number of 

Instances per server 

Pan
ag

iot
a N

iko
lao

u



 

 

 
43 

and otherwise are high (labels 1, 2, 3, 4). The relative benefits drop as we increase power 

budget since with higher budget more serves are used and the relative impact of an extra 

server decreases. But power is a tight resource on the Edge. These benefits shown in Figure 

16(a) will be more pronounced with more efficient power servers. The trends observed in 

Figure 16(a) can be better understood by examining the rest of the graphs in Figure 16. Figure 

16(b) shows the area coverage and clearly shows that Efficient Edge can provide always 

better area coverage and, in some cases, considerably more. These cases correspond to the 

peak values of Figure 16(a) (labels 1, 2, 3, 4). Also, Figure 16(c), shows the TCO of the 

(energy-)Efficient Edge over the Normal Edge. This graph shows some points that the 

Efficient Edge has higher TCO than Normal Edge (for example labels 1, 3). This can be 

explained by observing the corresponding labels in Figure 16(d) that present the number of 

servers that can be placed in the deployment. As seen there is a peak on the Figure 16(d) 

showing that the Efficient Edge uses double number of servers (labels 1, 3). This costs in 

TCO but provides better area coverage (Figure 16(b), labels 1, 3). On the other hand, these 

extra servers increase the total power consumption of the deployment, as shown in Figure 

8(e) (labels 1, 3). Except these peak numbers in increased power consumption the rest 

situations of Efficient Edge provide around 9% power savings as compared to the Normal 

Edge (label 5). The last Figure 16(f), shows the total number of instances placed per server. 

The number of instances that the Efficient Edge can place in a server is significantly more 

than the Normal Edge, especially in the peak points of Figure 16(a) (labels 1, 2, 3, 4). Note 

that the number of servers and the number of instances trends directly correlate with the area 

coverage trend, in Figure 16(c). This analysis underlines the significance from operating 

more energy-efficiently on the edge and provides motivation for exploring additional means 

to increase efficiency on the Edge. 

The experimental results, presented in this work, clearly indicate the importance of having 

power efficiency in the Edge. This observation comes from the analysis of the TCO over 

area coverage optimization metric that is limited from the power budgeted Edge facility.  

As far as we know, this is the first time that all these parameters are explored and analyzed 

together for evaluation of an IoT application, for both Edge and Cloud deployments. 

TCO/Area coverage is a useful metric for IoT evaluation and we strongly advocate its use 

for future IoT application evaluations.  
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Chapter 5 

 
 

5 Identification of an Entire Workload’s CPU-Vmin and 

investigation of the Trade-Offs Between Reliability 

Implications and Power in the TCO.  
 

 

The end of Dennard Scaling has elevated power into a prime constraint for the CPU design 

across all market segments. The nominal operating voltage supply of a modern CPU includes 

worst-case voltage margins [14][23] that ensures correct functionality in the presence of 

corner-case dynamic and static variations but this limits power efficiency. One method that 

aims to provide relief from stringent power constraints is under-volting: operate a CPU at a 

lower than nominal voltage [164][169][170]. 

A naive approach where a CPU is always undervolted, makes the CPU more susceptible to 

variations, such as voltage fluctuations or voltage emergencies, which can cause timing 

violations or bit flips [14] [15] [16] which in turn may lead to silent data corruption (SDC) 

errors, or even application or system crashes [17][18]. More practical uses of CPU under-

volting rely on the characterization and monitoring of a specific CPU chip to identify when 

to under-volt it and by how-much. A number of works perform an off-line characterization 

to find the lowest safe voltage (CPU-Vmin) that a CPU can operate correctly for any 

workload [164][172]. Normal benchmarks or viruses [171], are characterized to identify a 

common safe CPU-Vmin for a given scenario (e.g. number and location of cores used). 

Thereafter, in the field when a characterized execution scenario is used, the CPU-Vmin 

determined during characterization is employed irrespective of the workload executed. This 

software-based approach relies on a detailed and lengthy characterization process [164][171] 

and it is vulnerable to failures when a non-characterized workload with higher CPU-Vmin 

gets executed. 

A more application-aware under-volting approach is to monitor on-the-fly an application’s 

microarchitectural behavior and predict whether a voltage emergency is imminent and adjust 

the CPU supply voltage accordingly [23][173][22][174]. A system in the field normally 

operates under-volted while monitoring events identified with off-line analysis, when a 

voltage emergency is observed, it is recorded in terms of a signature that encodes the values 
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of the different monitored events. The saved signatures are used subsequently to prevent 

similar problems in the future. This approach has more potential than the application-

agnostic under-volting tactic, but in previous work it is mainly evaluated with simulation and 

requires hardware support for fine-grain, cycle scale, event monitor/recording, as well as, 

checkpoint/rollback or restart techniques to recover from emergencies 

[22][23][174][176][19]. 

Another undervolting approach uses an off-line characterization to correlate correctable 

cache errors and supply voltage to drive an online under-volting governor that decides the 

supply voltage based on the correctable cache error-rate [170]. This approach is not 

applicable to platforms where SDC or detectable uncorrectable errors (DUE) occur before 

correctable cache errors are observed [164]. 

This Chapter presents, for the first time, as far as we know, that with the monitoring of 

selected performance counters, determined using an off-line analysis of other workloads, a 

workload can reveal its safe CPU-Vmin during the first-n seconds of its execution. Upon a 

workload’s CPU-Vmin identification, the execution can continue at the selected CPU-Vmin 

for the rest of its execution without experiencing any instability or failures. This workload 

aware approach is software-based and does not require any hardware support 

 

5.1 Background 

 

A variety of prior works has been focused on the characterization of CPU-Vmin for different 

workloads [164] [172] [184]. These works provide characterizations for pessimistic voltage 

guard bands for core-to-core and chip-to-chip variations for online workload-agnostic 

executions. All these works use an offline characterization and an online workload-agnostic, 

CPU-Vmin prediction based on core allocation. Moreover, George et al. [184] shows that 

multicore and multithreaded workloads operate at similar CPU-Vmin.  

On the other hand, there is a number of works that are workload aware. All these works use 

microarchitectural events to predict voltage emergencies during the execution of a workload 

[22][23][173][174]. Gupta et al. [173] shows a correlation of voltage noise with some of the 

architectural events such as cache misses, TLB misses and long-latency stalls and proposes 

compiler-based optimizations to reduce these events and thus to prevent from voltage 

emergencies. Another work of Gupta et al. [174] proposes to avoid voltage emergencies by 

adding some pseudo-nops and prefetching. Reddi et al. in [23] and [22] use 

microarchitectural events such as pipeline stalls and L2 misses to predict voltage 

emergencies for single core CPUs. However, all these works are based on simulations and 
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not on real hardware. Thus, the granularity of the voltage emergency detection is in terms of 

cycles. This work shows that by taking specific counters into account, we can identify the 

workloads CPU-Vmin in the first n-seconds of a workload’s execution.  As far as we know, 

there is no other work that shows that the first n-seconds can identify the CPU-Vmin for the 

rest of a workload’s execution. 

 

5.2 Experimental Setup 

 

To achieve the identification of a workload’s CPU-Vmin, we firstly provide characterization 

of different multi-program and multi-threaded workloads using real hardware. The 

characterization classifies workload into two categories, V-low and V-high. V-low workloads 

are the workloads that can operate at the lowest CPU-Vmin observed during the 

characterization, while the V-high are the workloads that require a CPU-Vmin higher than the 

V-low to operate correctly. 

 

5.2.1 Platform 

 

This study is performed using an X-Gene2 server. The X-Gene2 server’s CPU consists of 

eight 64-bit ARMv8-compliant cores running at 2.4 GHz, grouped in 4 Processor Modules 

(PMD) [178]. Each PMD contains two high-performance X-Gene2 cores, each of which has 

its own 32 KB L1 I-cache, 32 KB L1 D-cache, and Floating-Point Unit (FPU). The pair of X-

Gene2 cores in a PMD shares a 256 KB L2 cache unit which interfaces to Central Switch 

(CSW) interconnect. All four PMDs share an L3 cache (8 MB), which is also attached to the 

CSW.  

 The X-Gene2 provides access to a separate Scalable Lightweight Intelligent Management 

Processor (SLIMpro), a special management core, which is used to boot the system and 

provide access to on-board monitors for measuring the temperature and power of the SoC and 

DRAM. The server runs a fully-fledged OS based on CentOS 7 with the default Linux kernel 

4.3.0 for ARMv8.  

X-Gene2 consists of three independent voltage domains, the PMD, SoC and DRAM domains 

and provides knobs for under-volting each of the three domains, independently. PMD domain 

contains the cores, the L1 instruction and data caches and the L2 cache. The SoC domain 

contains the L3 cache, the DRAM controllers, the central switch and the I/O bridge. Finally, 

the DRAM domain contains all the DIMMS. 
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In this work we study only under-volting operation of the PMD domain that contains the eight 

cores of the CPU. The nominal voltage setting for the PMD is at 980mV. The nominal settings 

for the other domains are 950mV for the SoC and 1500mV for the DRAM, which for this 

analysis remain constant. 

 

5.2.2 Workloads 

 

The benchmarks used for this analysis are collected from 4 different benchmark suites. 

Particularly, we use 17 benchmarks from SPEC CPU2006 Suite [177], 14 benchmarks from 

SPEC CPU2017 Suite [179], 6 benchmarks from PARSEC Parallel Benchmark Suite v3.0  

[180] and 8 benchmarks from NAS Parallel Benchmark Suite v3.31 (NBP) [54]. SPEC 

CPU2006 and SPEC CPU2017 are single-thread benchmarks, while NAS and PARSEC are 

multi-thread benchmarks. We executed all the 45 benchmarks using always all 8 cores, fully 

utilized. Thus, for the single-thread benchmarks we run 8 instances of the same benchmark in 

the X-Gene2. In this case each instance is pinged in a single core. For the multi-thread 

benchmarks we set them to run using 8 threads on the X-Gene2 machine.  

 

5.2.3 Vmin Characterization 

 

To investigate the CPU-Vmin of the PMD domain of X-Gene2 we followed an automated 

characterization process. The characterization process [164][181] consists of three phases 

(Initialization, Execution, Parsing). During the initialization phase, the benchmark list is 

determined, as described in Section 5.2.2.  

The execution phase consists of multiple test of the same benchmark at incrementally lower 

voltage. Particularly, we perform each benchmark test 10 times where each test includes 

multiple runs of a benchmark, each with lower voltage at steps of 10mV.  

Finally, during the parsing phase, we determine the CPU-Vmin voltage: the minimum voltage 

observed without any crash in all the tests of a specific benchmark. Note that we also check 

for any undetected error essentially for silent data corruption (SDC) errors, by comparing the 

output of each execution with a golden reference which is derived from running at nominal 

settings. The safe CPU-Vmin for each benchmark, is the minimum voltage that does not 

experience any crash, SDC errors or other unexpected behavior in all the 10 tests. 
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Table 9 shows the CPU-Vmin characterization results for all the 45 benchmarks on the X-

Gene2 platform. The results are grouped into four categories according to the observed CPU-

Vmin of each benchmark. As shown in Table 9, 24 benchmarks can operate at 900mV, 9 

benchmarks at 910mV, 9 benchmarks at 920mV and 3 benchmarks at 930mV. 

From the data we observe that both single-threaded and multi-threaded benchmarks appear 

in all the four categories and all benchmarks can operate at least 50mV lower than the 

nominal voltage. Another key observation is that, a significant number of benchmarks 

operates at 900mV (more than half of the benchmarks, 24/45). For simplicity reasons in this 

study we classify the benchmarks only into two categories, the V-low (top-half) and V-high 

(bottom-half) categories as can be seen in Table 9.  

V-low category consists of the benchmarks that operate at 900mV and V-high category 

consists of the benchmarks that operate at all the other voltages which are higher than 

900mV. In particular, V-high includes all the benchmarks that operate at 910mV, 920mV 

and 930mV. Our study can be extended to consider more than two categories, but we leave 

that for future work. 

Table 9:  Benchmarks with their CPU-Vmin and Execution Time 
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Table 9 also lists the execution time of each benchmark. The execution time of the single-

thread benchmarks is on average around 1000 seconds, whereas for multi-thread benchmarks 

is on average around 150 seconds.  

 

5.3 Performance Counters Selection Methodology 

 

 A large number of performance counters exists in X-Gene2 and it is critical to choose the 

ones that have the highest correlation with the CPU-Vmin. We first explore the 21 

performance counters of X-Gene2 listed in Table 10. We collected statistics for all the 

performance counters at one-second granularity. We then labelled each benchmark’s 

performance counter measurements with its CPU-Vmin and performed a Pearson-Correlation 

for each performance counter and the CPU-Vmin across all benchmarks. This produces a 

correlation coefficient per performance-counter between -1 to1. Performance-counters that 

have a correlation-coefficient above a threshold (absolute value 0.7) are selected. Guided by 

these results we selected the following five performance counters as the most useful for CPU-

Vmin correlation: syscalls, L2 prefetching, exception taken, L1 ITLB misses and BTB 

mispredictions (colored with blue in Table 10). The combination of these performance 

Table 10: Performance Counters in X-Gene2 

 Performance Counters 
1 Utilization 

2 Instructions 

3  Cycles 

4  L2 accesses 

5  L2 misses 

6  L3 misses 

7  branch misses 

8 Syscalls 

9 L2 prefetch 

10  Exception taken 

11  L1 misses 

12  L1 TLB misses 

13  Decode starved   

14 op dispatch stalled cycle 

15 BTB misprediction 

16 Branch speculative executed - Indirect branch 

17 Branch speculative executed - Immediate branch 

18 L1 data TLB refill - Write 

19 Operation speculatively executed - Integer data processing 

20 Operation speculatively executed - Advanced SIMD 

21 Operation speculatively executed - FP  
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counters is selected because it exhibited the highest correlation with increasing CPU-Vmin as 

compared to any other combination based on a subset of these counters. More specifically, 

Figure 17, shows the Pearson-Correlation coefficient between CPU-Vmin and each of the 31 

possible combinations that use one or more of the five performance counters.  The figure 

clearly shows the synergy from combining more counters together and that the combination 

that uses all five performance counters provides the highest correlation with CPU-Vmin.  

Moreover, we also observed (not shown in the results) that adding any one of the other 

performance counters, listed in Table 10, does not lead to a higher correlation coefficient. 

Thus, we need to consider all the five counters in combination. Additionally, we noticed that 

four of the counters - syscalls, exceptions taken, L1 TLB misses and BTB mispredictions - 

exhibit a positive correlation, whereas L2 prefetching exhibits a negative correlation.  

This means that when the number of syscalls, exceptions taken, L1 TLB misses and BTB 

mispredictions is high but the number of L2 prefetches is low, then the voltage is virtually 

always V-high as well

Related work [23][173][22][174] has concluded that a combination of microarchitectural 

events, corresponding to the abovementioned counters, in a short time span (few cycles) 

often leads to a voltage emergency. However, these earlier works do not show any correlation 

with L2 prefetching. We hypothesize that this is due to the use of simulation for their 

evaluation and not real hardware measurements, as we do in this work. In particular, we 

believe that the correlation to low L2 prefetching captures low L1 cache misses, high IPC 

 

Figure 17: Correlation Analysis between different Combinations of the Selected 

Performance Counters and CPU-Vmin 
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and high-power consumption that causes a drop in supply voltage. It is during such time 

when all the other events (syscalls, exception taken, L1 TLB misses and BTB mispredictions) 

occur that cause a voltage droop that is combined with the voltage drop and leads to a voltage 

emergency to happen. Voltage-droops are caused by a sudden change in the activity of the 

circuits powered by a voltage domain [175]. In summary, the correlation analysis suggests 

that a method that aims to classify the CPU-Vmin of a workload into V-low or V-high, for 

the platform we are using (X-Gene2), it needs to consider together the combination of all five 

selected performance counters. This combination of the five selected counters is termed as 

signature to the rest of this Chapter. 

 

5.4 Workload’s CPU-Vmin Identification Method 

 

Figure 18 illustrates with the help of an example the high-level functionality and objective of 

the proposed CPU-Vmin identification method. Particularly, this methodology aims to detect, 

after the first n-seconds of a workload’s execution, its CPU-Vmin. Figure 18.a shows the 

behavior with a workload predicted to have V-low CPU-Vmin. When its execution starts, the 

voltage is set to a safe setting (V-high) and the signatures (selected five performance counters) 

are collected per second until the execution time reaches a threshold. At that point, the 

workload’s signatures are compared with the signatures derived from an offline 

characterization/training of other V-low workloads. When each of the collected signatures, of 

the currently running workload, matches with a signature in the training set, the workload is 

identified as V-low and thus the voltage is reduced to 900mV. On the other hand, a workload 

that produces, before its execution reaches the time threshold, a signature not found in the 

training set of signatures, is identified as V-high (Figure 18.b)), and the execution continues 

at 940mV. The choice of 940mV as safe voltage, is based on the highest voltage that we 

observe (930mV,Table 9) for V-high benchmarks that gets increased by a 10mV margin to 

ensure the safe operation for all the benchmarks that are used in this work. An alternative, for 

a higher safety or due to limited analysis of V-high workloads, is to use the nominal voltage 

for the first (identification) phase of the execution of all workloads as well as for the remaining 

execution for the workloads classified as V-high. Operation with nominal voltage avoids 

unexpected events, such as SDC or crashes, and, consequently, avoids the risk to need 

recovery for workloads classified as V-high.  
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As this is a predictive method, there is a possibility that the classification into a V-low or V-

high workload to be incorrect. Specifically, when a V-low workload is identified as V-high 

or a V-high workload as V-low. Definitely, the second case is the one that needs to be avoided 

because it can lead to SDC errors and application or system crashes. In contrast, the 

ramification of a wrong identification of a V-low workload as V-high is lower power savings. 

 

5.4.1 Performance Counter’s Signature Semantics 

 

Variability in the values of the monitored performance counters results in generating a large 

number of unique signatures during training which makes the classification of the CPU-Vmin 

more expensive and complex. The value variability, also, renders the proposed method 

ineffective, as small differences between two signatures will result in classifying a V-low 

benchmark as V-high (false-positive) and, thus, reduce the potential power savings. 

We address the issues of value variability and large number of signatures by applying 

clustering to the monitored values. In particular, instead of using in a signature the original 

performance counter value, we use its corresponding integer logarithmic value (the logarithm 

of a value without any decimal digits). The Log function is often used in various clustering or 

outlier detection problems [182][183]. To this end, we explore logarithms with different bases 

(log2 through log10) to find the most effective clustering function that filters out redundant 

information. Our evaluation revealed that log2 is an appropriate clustering function that helps 

distinguish efficiently V-low from V-high signatures. Figure 19 helps visualize the 

effectiveness of the proposed clustering function. It shows a two-dimensional projection of 

 

Figure 18: Identification Method Example for a) V-low workload and b) V-high 

workload 
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our five-dimensional signatures based on R-tool’s fviz_cluster projection [81]. Each data 

point is a two-dimensional representation of a signature with five values each of which has 

been transformed with our clustering function. This projection aims to retain in the two-

dimensional space the distance between signatures in the five-dimensional space, i.e. points 

that are close/far in the original multi-dimensional space are also close/far in the two-

dimensional space.  With blue color, we represent the signatures of V-low workloads and with 

red color the signatures of V-high workloads. The figure also draws a blue area that encloses 

all V-low signatures and a red-area that encloses all V-high signatures. As Figure 19 shows, 

V-high and V-low areas have considerable overlap (we cannot differentiate a V-high signature 

in this overlapped region). However, at the top-right, the V-high area is separate from the V-

low area. This area contains signatures found in V-high workloads that are distinct from V-

low signatures. We examined these V-high signatures and found them to have, as compared 

to signatures in the V-low area, higher number for syscalls, exceptions taken, L1 TLB misses 

and BTB mispredictions and lower number of L2 prefetches. This is in agreement with the 

observations in Section 5.3 regarding which performance counters exhibit the strongest 

correlation with the CPU-Vmin and the sign of their correlation coefficient.  

 

 

 

 

 

Figure 19: Signature’s clusters for V-low and V-high benchmarks 
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5.4.2 Workload CPU-Vmin Identification Method 

 

In this Section, we present a detail overview of the proposed CPU-Vmin identification 

method.  

Figure 20 shows that the method consists of an offline and an online phase. During the offline 

phase, we first determine the CPU-Vmin for each workload in a given set of training 

workloads. This is accomplished using a CPU-Vmin characterization procedure as outlined 

in Section 5.2.3. Then, for those workloads that have V-low CPU-Vmin, we collect their 

performance counter signatures per second. Each signature contains the number of syscalls, 

exceptions taken, L1 TLB misses, BTB mispredictions and L2 prefetches. Once the signatures 

of all V-low workloads in the training set are collected, we apply to them the clustering 

function to produce the final set of signatures (refer to as V-low signatures) that will be used 

during the online phase to predict whether a workload’s CPU-Vmin is either V-high or V-

low. 

During the online phase, an (unknown) workload starts executing using a safe CPU-Vmin and 

its signatures are collected for the first-n seconds of its execution. After n seconds have 

elapsed, the collected signatures are transformed with the same clustering function used 

during the offline phase. The resulting signatures are checked against the V-low signatures 

(those generated during the offline phase). If each signature, from the first-n seconds of the 

execution of the unknown workload, matches with a V-low signature then the workload is 

classified as V-low otherwise, i.e. at least one signature of the unknown workload is not found 

in the V-low signatures, the workload is classified as V-high. If the classification is correct, 

the operation is safe for both (V-high and V-low) workloads and power is reduced for the V-

low workloads. If the classification is incorrect, operation is safe but power is not saved for 

V-low workloads that are classified as V-high. Finally, SDC and crashes may occur for 

workloads that are V-high but classified as V-low. A central parameter of the method, and of 

course of our evaluation, is the time threshold that is used to identify a workload’s CPU-

Vmin. Our method is based on the hypothesis that benchmarks reveal early during their 

execution whether they are V-high or V-low. The longer the time threshold the more 

signatures are produced and checked and, therefore, the less chance for false-negatives (a V-

high workload classified as V-low) but this comes at the expense of lower power savings 

since the voltage of correctly classified V-low workloads gets lowered later during their 

execution. Our evaluation investigates the interplay of the time-threshold used for 

identification and false-negatives. 
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5.5 Experimental Methodology 

 

To evaluate the effectiveness of the CPU-Vmin identification method, we use the X-Gene2 

platform and the 45 benchmark set listed in Table 9. SPECCPU2006 and SPECCPU2017 

benchmarks include runs with multiple inputs. For tracking the five selected performance 

counters, we use values obtained from the perf tool every second.  

For collecting power measurements, we use power monitors that exist in the X-Gene2 

platform. To assess the power savings of the CPU-Vmin identification method we compare 

the power consumption of our method with the operation that is always at 940mV. The 

940mV is derived from the offline characterization of the CPU-Vmin for all the 45 

benchmarks. We also show the power savings obtained when compared to operation at 

nominal voltage settings (980mV).   

For a thorough evaluation of the identification method, we followed a cross-validation 

evaluation approach. In particular, we perform multiple experiments where for each 

experiment, two workloads, one V-low and one V-high, are removed from the benchmark set 

and are used as the unknown workloads for testing. The remaining (23) V-low benchmarks 

are used for training.  

We assess the accuracy of the proposed CPU-Vmin identification method by comparing the 

CPU-Vmin predicted for each workload during the testing phase with the actual CPU-Vmin 

of each workload. Thus, a true-positive (TP) corresponds to the case where the testing phase 

classifies a workload as V-low and it is actually V-low. True-negative (TN) represents the 

case where the testing phase determines a workload as V-high and the workload it is indeed 

 

 

Figure 20: CPU-Vmin identification framework with the input parameters and output 

decisions 
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V-high. A false-positive (FP) occurs when the workload is classified as V-high but the 

workload is V-low. Although, false positives are undesirable, they are tolerable as they only 

lead to less power savings without any crashes. Finally, a false-negative (FN) corresponds to 

the case where a workload is classified as V-low in the testing phase but it is actually V-high. 

Thus, the voltage is reduced to V-low after the first-n seconds and with high likelihood this 

will lead to the application or system to crash. 

We performed in total 504 different experiments (21 V-high x 24 V-low combinations). As a 

result of our evaluation methodology, the tested V-low workload can be categorized only as 

TP or FP and the tested V-high workload only as TN or FN. So, for each of the 504 total 

experiments a pair of workloads are tested separately, the one is tested for TP/FP and the other 

for TN/FN. 

 

5.6 Results 

 

5.6.1 Accuracy 

 

We first evaluate the accuracy of the CPU-Vmin identification method. Figure 21 plots the 

accuracy across the 504 different experiments when the time threshold is set at 20 seconds. 

The Figure shows the breakdown of TP, FP, TN and FN for all the 504 experiments. The 

results are summarized as 209/504 TP, 295/504 FP, 501/504 TN and 3/504 FN.  

We observe that the method is quite accurate in classifying V-high workloads. Specifically, 

only for three out of the 504 experiments (0.6%) the method failed to identify correctly a V-

high workload. For such cases, a fail-safe technique, such as checkpoint/rollback, is essential 

for recovery. A crashed workload after recovery can resume execution at a safe voltage 

(940mV or even at nominal). 

It is useful to point out that for benchmarks with multiple inputs the identification method 

determined the CPU-Vmin only during the first 20s of the execution with the first input (i.e. 

in our experiments a benchmark with multiple inputs is classified only once). We have also 

confirmed that the obtained results are insensitive to the order that a benchmark executes its 

different inputs. It is also important to point out that many of the benchmarks used in this 

analysis, consist of multiple phases, specifically, 37 out of 45 benchmarks. We determined 

that a benchmark has multiple phases when at least one performance counter exhibited 

considerable difference between the signatures collected over a workload’s entire execution. 
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All the above provide a strong support for the key hypothesis: for the platform and 

benchmarks used in this study, for a given workload execution, a safe CPU-Vmin can be 

identified with very high accuracy during the first 20-seconds of its execution. As shown in 

Table 9, for the benchmarks used in this study, the 20s correspond to at least to 1% of the total 

execution time and this seems to be, in general, sufficiently long for a workload to reveal 

whether or not it requires a V-high CPU-Vmin. Of course, it is important for the method to 

not often classify V-low workloads as V-high and loose power saving opportunity. The results 

show that the FP rate is 58% (295/504). Therefore, our method saves power 42% of the time 

but misses on a considerable power reduction potential.  

We checked the experiments that suffer a FP and we observed that they happen consistently 

each time we test a V- low benchmark that comes from a specific subset of 14 benchmarks. 

Consequently, each of these 14-benchmarks has at least one signature that does not belong to 

any other (23) V-low benchmark. Thus, our method classifies these benches as V-high. We 

have also checked if these distinct signatures overlap with the signatures of the V-high 

workloads. We have found that at least one signature from these benches does not belong to 

the signatures of the V-high workloads. This distinct behavior of the FP benchmarks can be 

visualized in Figure 22. The figure uses the same two-dimensional projection of the five-

dimensional signatures of all workloads but with different color (green) for the signatures 

from FP workloads. It is clearly visible that there are signatures of FP benches that are not 

overlapped with either V-low or V-high workloads. This finding provides a motivation for 

future work to reduce the FP rate. 

 

Figure 21: Identification Framework Accuracy results 
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5.6.2 Time Sensitivity Analysis 

 

One of the main objectives of the proposed method is to identify quickly the CPU-Vmin of a 

workload. Thus, we perform an analysis of the sensitivity of the method to the time threshold 

used to classify a workload.  

Figure 23, shows the distribution of the identification time for all the 501 experiments that 

classify correctly a V-high workload (TN). The figure shows only the appearance time of the 

first V-high signature. As the figure reveals, for more than half of the experiments a V-high 

workload is identifiable after  the first second (268/501). For the other cases, the identification 

happens few seconds later but no later than 20s. We note that by setting the time-threshold at 

10 seconds, the TN accuracy of the method drops from 99.4% to 91%, at 5 seconds to 86% 

and at 2 seconds to 53% (correspondingly the FN rate increases from 0.6% to 9%, 14% and 

47%). We have examined threshold-times beyond the 20 seconds but we observe no change 

in the TN/FN rate. Consequently, a time-threshold of 20 seconds for CPU-Vmin identification 

appears the most appropriate for our setup and workloads.  

 

 

Figure 22: Signature’s clusters for V-low, V-high and false positive benchmarks 
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For the majority of the workloads (27 of 45) the first 20 seconds of execution correspond to 

less than 5% of their total execution time. The fraction of the execution that 20 seconds 

correspond to for each workload is listed in Table 9. Although, identifying a workload earlier 

enables higher power savings we need to keep the time threshold at 20 seconds to avoid 

increasing FN rate and the occurrence of SDCs and crashes.  

 

 

5.6.3 Power Evaluation Results 

 

Figure 24 presents the power savings of the proposed method for each of the 504 experiments. 

The experiments are sorted in increasing order of power savings that is obtained for the V-

low workload tested in each experiment. More than half of the experiments have no power 

reduction since they are FP (V-low workload classified as V-high). For the other experiments 

(TP), the benefit is close to 8% (15%) as compared to when operating with a supply voltage 

of 940mV (nominal 980mV). Figure 24 also shows the average power savings which are 3.8% 

compared to the operation at 940mV and 7.1% compared to the operation at 980mV.  

 

Figure 23: Identification Time Distribution of the first V-high signature 

appearance in the 501 V-high benchmarks 
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5.6.4 TCO Evaluation Results 
 

Next, we evaluate the TCO for various detection times shown in Section 5.6.2 (20sec., 

10sec., 5sec. and 2 sec.). To mitigate crashes, we assume a checkpoint/restart technique that 

takes 5 minutes. Also, we assume that all the 504 experiments run in parallel, each in a 

different server. Thus, our baseline is a DC with initial 504 servers. Figure 25, presents the 

TCO results for the different detection times (20, 10, 5 and 2 seconds). Also, this Figure 

depicts the availability values in percentage. The presented TCO is relative to the 20 second’s 

results. From this Figure, we observe that TCO is better when the detection time is at 2 

seconds. This happens because, even though the system provides lower availability, the 

power gains are more than all the other three detection times. However, real systems need to 

ensure specific levels of availability. The target availability in this case is 99%. Figure 26 

depicts the same experiment maintaining availability always above 99%. Furthermore, each 

detection time bar is labeled with the absolute TCO values in dollars. As the Figure shows, 

20 seconds detection time is beneficial in TCO by providing almost double savings from all 

the other three detection times. This is due to the number of servers that are needed to ensure 

the required levels of availability and thus, cover for any performance loss due to the use of 

checkpoint/restart technique. Specifically, for 20 seconds, only 505 servers (initial 504 plus 

one for maintenance) are needed. On the other hand, we observed that by setting the detection 

time at 10sec., 5sec. or 2sec. the servers are almost double from the number of the servers at 

 

Figure 24: Power savings results for all the experiments compared to the baseline 

that operates at 940mV and at 980mV. 

 

7,1%

3,8%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 50 100 150 200 250 300 350 400 450 500 550

P
o

w
er

 S
av

in
gs

 in
 P

e
rc

e
n

ta
ge

Experiments

980mV 940mV

A
ve

ra
ge

Pan
ag

iot
a N

iko
lao

u



 

 

 
61 

the 20 seconds. Based on the above, 20 seconds is the best choice for TCO. The trends are 

similar for other typical availability targets (99.9% and 99.99%). 

 

Furthermore, Figure 26 illustrates the total power consumption in watts for the whole DC. 

As can be seen from the figure, when the detection time is at 20 seconds, the total power is 

less than all the other detection times. This happens due to the fewer servers that are needed 

in this case.  

 

 

Figure 25: TCO evaluation and Availability results for different detection times 
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Figure 26: TCO evaluation while ensuring 99% availability 
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5.7 Applicability of the Key Findings 

 

In this Section we discuss the potential uses of the findings of this work.  

Our identification methodology is purely software-based. The implementation in our setup 

requires only 21ms to classify a workload according to the 100 different performance-counter 

values obtained during the first 20 seconds of the workload’s execution. The clustering 

method has also minimal overhead (a logarithmic-function is applied to 100 values). Thus, 

the identification method is suitable to drive a lightweight software-based Dynamic-Voltage-

Scaling (DVS) governor for under-volting a real system. The DVS governor will use our 

method to predict if a workload is V-low or V-high and will adjust the supply voltage 

accordingly. Beyond the two voltage levels we consider in this work, the DVS governor can 

be extended to perform CPU-Vmin predictions for additional voltage levels but this will 

require a more diverse and time-consuming offline CPU-Vmin characterization.  

The governor can be used in systems that run various unknown batch jobs, that their execution 

time is not limited to few seconds. Systems that run only specific applications, such as web 

search and web serving, cannot benefit from the enhanced DVS governor because an 

exhaustive offline CPU-Vmin characterization of such applications would be sufficient to 

determine their CPU-Vmin and will also provide higher power savings.  

We like to note that because the proposed methodology predicts a V-high for unknown 

workloads it can be effective in avoiding a crash from a malicious attack that accomplishes to 

execute a virus on a platform that causes large voltage droops such as a dI/dt virus [185]. We 

expect that a virus generated using a stochastic procedure, as in [185], will not match the 

signatures of the V-low workloads used for offline characterization. If such attacks are 

expected it could be wise to use the nominal supply voltage for V-high to avoid any instability 

or crashes due to a very powerful virus. 
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Chapter 6 

 
 

6 Analysis of the Implications of DRAM Failures and DRAM 

Protection Techniques on the TCO 
 

 

The pervasive economic value and societal dependence of services running in DC is made 

possible by their high availability and integrity. Users have come to expect these services to 

be virtually uninterruptible and provide correct functionality. Interestingly, the high 

availability and integrity perceived by users is often provided from facilities that are built 

using low availability commodity components [82]. This is made possible by the nature of 

several popular services that mainly serve numerous independent requests that are mostly 

read-only [4]. Furthermore, many online services require short latency and high throughput 

which in turn necessitates partitioning and replication of their huge working sets. Ultimately, 

this means that the failure of an individual DC server will typically have minimal, if any, 

repercussions to the service availability. 

This is in direct contrast with high performance computing centers that run parallel programs 

with across thread data dependencies where a single server failure may result in a disruption 

of the entire infrastructure [83]. This problem is particularly acute for the upcoming exascale 

systems with a huge number of components that require extreme level of reliability from 

individual components to prevent frequent entire system interruptions [84]. 

This is not to say, however, that DC servers do not need protection from faults. For instance, 

an attempt to remove protection from DRAM in Google servers resulted in a subset of queries 

returning random documents due to a memory error that could not even be detected[4]. 

Consequently, DC servers employ a combination of hardware and software techniques to 

accomplish the desired level of availability without compromising quality of service [5]. 

This Chapter proposes a framework1 , called AMPRA, for analyzing the implications of 

DRAM failures and DRAM protection techniques on the TCO of a DC. DRAM failures and 

memory protection have received a lot of attention recently with several studies showing that 

                                                 
1 (Publicly Available- AMPRA: Analyzer of TCO Implications of Memory Failures and Memory Protection 

http://www2.cs.ucy.ac.cy/carch/xi/ampra tco.php) 
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DRAM is one of the main culprits for machine crashes and component replacements in 

today’s DC and large supercomputers [42][85][86]. DRAM failure rate per server is a 

growing problem because despite the decrease in the failure rate per bit, one order of 

magnitude every 6 years, memory DIMM slots per server have been growing, to 

accommodate larger workings sets, leading to an overall increase in the failure rate per server 

[87][88][89]. 

To prevent systems from failing more frequently due to DRAM errors, data in memories are 

stored as error-correction-codes (ECC) using extra memory chips. Moreover, memory 

controllers are continuously upgraded to support stronger ECC capable of detecting and 

correcting more faulty bits. Memory controllers found in processors today [73][74] support 

various memory protection techniques that datacenter designers need to select from when 

configuring their servers. 

In this work we argue that it is not straightforward to decide which DRAM protection scheme 

is best for a given DC setup. This challenge stems from the cost-benefit trade-off of each 

protection scheme with each offering a distinct combination of reliability, power, 

temperature, performance and server overprovisioning. Server overprovisioning is needed 

to: (i) ensure peak throughput in the presence of errors since some servers may need to be 

offline until they are repaired or replaced, and (ii) compensate for possible performance 

degradation due to the protection scheme used. Furthermore, the specific cost-benefits may 

vary depending on the service characteristics, such as memory intensity, sensitivity to 

collocated services and the service overall DC utilization. These and other parameters, to be 

identified later, are used as inputs to the framework we propose in this work to determine 

what is the best–in terms of TCO–memory protection scheme for a given DC. 

A recent paper [30] has investigated the benefits, for a DC running web services, from the 

use of a hypothetical heterogeneous memory protection scheme that employs in the same 

server fully tested DIMMs and less tested (less costly) DIMMs. The system minimizes 

failures by mapping memory pages of an application to DIMMs according to their potential 

to cause user visible data corruption. The main focus in [30] is the data corruption analysis 

and not, as in our work, on a generic framework for assessing holistically the TCO 

implications of memory faults and protection. 
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6.1 Background on Memory Reliability 

 

6.1.1 Memory Errors (Types and Metrics) 

 

Memory errors can be categorized into transient and permanent errors, depending on their 

duration. Transient errors can cause reading incorrect memory values, until the faulty 

memory location is overwritten. Permanent errors can cause physical damage and the faulty 

memory location can consistently return incorrect values [90]. Therefore, to detect and 

correct errors, memories typically include reliability features such as ECC. Depending on 

the ECC strength and the type of error, an error can be correctable (CE), detectable but 

uncorrectable (DUE) and non-detectable (NDE) [91]. A CE error can be detected and 

corrected by the ECC. A DUE error can be detected by the ECC but cannot be corrected. 

There are many ways to recover from transient DUE errors such as to reboot the process or 

the whole server. Permanent errors, on the other hand, can lead to repeated DUE or CE and 

can be tracked by an error monitoring system that places the faulty server offline for further 

diagnosis and possible replacement. An NDE error is not detected by the ECC. This error 

may cause system crash, hang, SDC, or may be benign if the erroneous data does not affect 

program output [30][92]. System crashes and hangs can be detected by system software or 

server health monitors. 

A variety of reliability metrics are used to express the occurrence of the various types of 

errors and capture their implications. FIT rate metric represents the number of failures in 10 

9 hours. The mean time to experience an error is referred to as MTTF. Another important 

metric is the MTTR which can vary depending on the recovery technique. For example, 

rebooting a whole server usually takes more time than restarting a process. Finally, a very 

important metric is the availability. Availability is the probability of a system operating 

correctly and is usually reported in number of nines. Availability is given by the well-known 

equation:  

𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =  
𝑴𝑻𝑻𝑭

𝑴𝑻𝑻𝑭 + 𝑴𝑻𝑻𝑹
 

 

6.1.2 DRAM Error Protection 

 

DRAM is protected from errors using extra devices per DIMM to store ECC codes. 

Typically, codes today use 8/16 ECC bits to protect 64/128 data bits. For example, a DDR3 

memory channel is 72 bits wide with each memory channel supporting one or more DIMMs. 
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A single DIMM consists of multiple DRAM devices where all or a subset of them operate 

together to provide 72 bits. Each device can provide 4, 8 or 16 bits (referred to as x4, x8 or 

x16, devices respectively). For example, a 72-bit codeword can be produced using 18 x4 

DRAM devices (16 devices for data and 2 for ECC) or by using 9, x8 devices (8 devices for 

data and 1 for ECC). To produce a 144-bit codeword requires either two bursts from the same 

channel or one burst across two channels. The encoding and decoding of ECC codes are 

usually performed in the memory controller of a processor. A processor may support various 

ECC options, with distinct code strength and overheads, one of which is selected at boot 

time. Below, we describe three commonly used memory protection ECC codes that are 

analyzed in this work. 

Single Error Correction-Double Error Detection (SECDED) [45][46] corrects all single 

bit errors and detects all two-bit errors using a 72 bit codeword (64 data bits and 8 ECC bits). 

Many triple bit errors can be detected by SECDED code as DUE but some are miscorrected 

and become NDEs. Also, most of the four-bit errors are detected as DUE but some of them 

are NDEs. SECDED can be used for both x4 and x8 devices but the power consumed by x8 

devices is lower because they can provide the same capacity with fewer devices [73][93]. 

Single-Chip error correction and Double-Chip error detection or Chipkill [47], is 

commonly used for DRAM protection in high availability servers and large-scale systems 

because it has the ability to correct all the errors that appear in a DRAM device and to detect 

errors in two DRAM devices. Chipkill relies on symbol-based coding to perform error 

detection and correction. In a symbol-based code, each codeword is composed of multiple 

symbols, with each representing a group of bits. There are various flavors of Chipkill with 

different strengths and overheads. Modern processors usually support Chipkill with 16 ECC 

bits for 128 data bits that are interleaved across two DIMMs placed in two channels [72] 

[73][74]. This Chipkill implementation corrects all the errors in a single device and detects 

all the errors in two devices [72]. It uses standard DDR3 with burst length of 8, to read two 

64B blocks per access one of which is wasted for systems with 64B cache block size. 

Consequently, Chipkill can waste bandwidth, hurt performance and increase energy 

consumption [75][76][77]. To limit reading one 64B block per memory access, burst-chop 

is used to reduce the burst length from the usual eight down to four [76][94]. Although burst 

chop can be used to save the energy of four bursts, the access time cannot be reduced and 

the bandwidth is still wasted [75][76]. We refer to this dual channel Chipkill technique as 

ChipkillDC. 

Another Chipkill implementation, similar to ChipkillDC, uses only a single channel to 

provide 16 ECC bits for 128 data bits [74]. This Chipkill implementation encodes and 
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decodes a codeword every two bursts and it is able to correct all the errors in a single device 

and detect 99.99999963% of the errors in two devices [72]. We refer to this single channel 

Chipkill technique as ChipkillSC. The ChipkillDC per burst access is wider than ChipkillSC, 

since it accesses twice the number of devices per burst (e.g. 36 vs 18 with x4 devices). This 

enables slightly better reliability than ChipkillSC but consumes more power and wastes 

bandwidth which can hurt performance. On the other hand, ChipkillSC can also degrade 

performance because it needs to wait for two bursts to form a codeword. Both Chipkills 

provide superior reliability as compared to SECDED but a x8 SECDED protected DRAM 

can be more power efficient than a x4 Chipkill implementation. Evidently, each protection 

scheme has its own pros and cons, motivating the development of a framework to analyze 

and decide which DRAM protection scheme to use for a given setup.  

 

6.1.3 Datacenter’s Reliability and Availability 

 

The reliability and availability target of a service running on a DC is accomplished through 

a combination of hardware and software mechanisms and policies. This also aims to ensure 

satisfying the quality of service (QoS) requirements even in the presence of errors and 

downed servers [4][5]. These mechanisms typically rely on hardware and software-based 

detection and software-based error management. 

Errors can be handled at the application and software level [95][96]. OS can deal with all the 

uncorrectable memory errors detected by ECC or diagnosed after observing system 

anomalies, such as machine crashes and hangs. One response to a diagnosed permanent 

memory error is to replace the faulty DRAM component or even the whole server module. 

Unfortunately, this is costly but, in some cases, inevitable. Another less costly recovery 

action is to use page retirement. Page retirement removes a physical memory page that 

experiences repeatedly errors [97], but may not be effective for coarse errors affecting many 

pages. Process/server reboot, another recovery option, works well in the case of transient 

uncorrectable errors. 

 

6.1.4 Online, Offline Services and Co-location 

 

Online services are interactive services that perform significant processing over big datasets 

and are driven from a huge number of user requests. Because of their interactive nature, these 

services require responsiveness in the order of hundreds of milliseconds and have high QoS 

requirements [98]. A concrete example of an Online service is the Web Search [99]. 
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Web Search runs on thousands of servers to provide high throughput. Typically, the service 

working set is replicated and partitioned across many servers to ensure low latency but also 

to achieve high availability. For example, when a server fails, during its repair time the job 

that runs on it can be restarted on another server with minimal repercussions on the QoS and 

availability of the overall service. Web Search must provide high levels of availability, such 

as four nines (0.9999), and is overprovisioned with extra servers to deal with various 

hardware failures. 

Offline services are non-interactive and do not have strict QoS constraints, e.g. response 

latency. Examples of such services are: Data Analytics, file backup, image processing, video 

compression, optimization search, and simulation cycles. Online and Offline services can be 

run together (collocated) to improve server and DC utilization [64][65]. Specifically, when 

an Online service cannot use all the available cores in a server concurrently, due to QoS 

constraints, some or all of the remaining cores can run some Offline services. This must be 

done without affecting the QoS of the interactive service. In this work we show that the 

characteristics of collocated services can influence the choice of memory protection that is 

best for TCO. In fact, the experimental data show that selecting the memory protection based 

only on what is best for the Online service can be suboptimal for the overall DC TCO. 

 

6.1.5 Total Cost of Ownership (TCO) 

 

Several models have been proposed for guiding DC design TCO such as 

[80][100][101][102][103][104]. These models either do not account for the effects of failures 

or only treat them in a cursory manner. 

A recent very relevant work [30], performs software fault injection campaigns in DRAM to 

characterize the SDC rates of web services. While the SDC analysis in [30] is seminal, and 

can be useful for one of the inputs of our framework, its TCO analysis, as well as that of 

previous TCO efforts, lack the following capabilities provided in our work: explore advance 

ECC schemes, consider the implications of multi-bit errors, account for the performance, 

power and temperature implications, consider the ramifications of collocated services, 

measure DC TCO operational and capital expenses (not only server cost) and account for 

failing module replacements and maintenance policy. We investigate the significance of 

analyzing these parameters later in this work. Additionally, this work provides a detailed 

description of the framework to facilitate its adaptation and use, and it is capable to reveal 

TCO optimization opportunities even for a DC in use today. 
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6.2 AMPRA Framework 

 

A framework for assessing the implications of DRAM errors and protection techniques on 

the TCO of a DC has been developed. The proposed framework input parameters, processing 

components and the flow of information are shown in Figure 27. As far as we know, this is 

the first framework that attempts to combine all these variables together and eventually 

produce the TCO of a DC. The framework consists of eight different models: Energy, DIMM 

Cost, DRAM FIT, Availability/MTTF, SDC Derating, Performance, Thermal and TCO 

model. The inputs of each model are shown inside dashed boxes, while the outputs are 

presented with grey color. The final outputs of the framework, TCO and System Reliability 

(MTTF SDC), are presented with dark red color. Next, we elaborate in more detail the inputs, 

the flow through the framework and its intermediate and final outputs. 

 

6.2.1 Performance Model 

 

The performance model takes as inputs the server configuration, DRAM ECC technique and 

the number of threads per server running Online and Offline services. The goal of this model 

is to determine the performance of the Online and Offline services when running alone and 

collocated. The performance model also facilitates the comparison between two DCs by 

taking as input the server performance of a reference DC and producing the Performance 

Degradation (PD) of another DC relative to the reference DC. PD is used subsequently, by 

the TCO model, to determine the extra overhead, e.g. additional/fewer servers, needed by a 

DC to match the performance of the reference DC. The difference in the DCs server 

performance can be due to the choice of ECC technique or the services they run in this work. 

The PD is used by the TCO model to estimate the extra servers are needed (called hot spares) 

to compensate the performance degradation. For instance, if the expected performance is at 

90% of the maximum and the workload requirements are 10000x throughput (e.g. 10000 

cores running separate threads), then we will need (10000/0.9 - 10000) 1111 extra cores to 

meet application’s requirements, which translates to extra server costs for acquisition, 

maintenance, power consumption and space. PD takes values from 0 to 1, with 0 meaning 

no degradation at all and 1 means no operation. The performance is thus given by 1 − PD.  

It is critical to quantify the performance of different ECC techniques since ChipkillDC, the 

technique with the strongest code, can incur up to 38% performance overhead compared to 

SECDED for memory intensive workloads [105] due to its wasteful use of bandwidth. 

Similar observations have been made in several other studies [76][77][105][106]. 
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Performance for a given ECC can be determined using simulations or real hardware. 

Simulations are useful in the absence of hardware that supports the required ECC modes and 

for exploring new ECC techniques. In this work we determine the ECC performance 

implications with real hardware where services are deployed. Besides the protection 

technique, performance can also be sensitive to the type of address interleaving used. State 

of the art server processors, support various options of interleaving: Full interleaving, 

Channel interleaving and No interleaving [78]. ChipkillDC always uses full interleaving, 

because it splits a cache line across two DIMMs in different memory channels [107]. 

Although, the address interleaving option may matter for ChipkillSC and SECDED 

performance, we only consider full interleaving in this work and leave the exploration of the 

interleaving impact for future work. 

 

 

 

Figure 27: AMPRA Framework Parameters, Components and Information Flow 
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Apart from the performance differences caused by the choice of the ECC technique, 

performance of an Online service can be affected by the Offline service that it is collocated 

with. In particular, if due to QoS constraints not all the cores of a server run Online services, 

then Offline services can be run concurrently in the unused cores. Co-location can improve 

a machine’s utilization, but this should come with a minimal impact on the QoS of the Online 

services due to interference from shared resources [64]. Performance Degradation (PD) is 

defined as follows: 

 

𝑷𝑫 = 𝟏 −
𝑻𝒊𝒎𝒆𝑶𝒏𝒍𝒊𝒏𝒆𝑨

𝑻𝒊𝒎𝒆(𝑶𝒏𝒍𝒊𝒏𝒆+𝑶𝒇𝒇𝒍𝒊𝒏𝒆)𝑩
 

 

where TimeOnline A is the time to run the Online service on a server using ECC protection 

technique A, and Time(Online+Offline)B is the time to run the Online service when collocated 

with an Offline service on a machine with ECC protection technique B. The PD is used in 

this work to evaluate the following three scenarios: (i) compare DCs running only the same 

Online service (no co-location) but use different ECC techniques, (ii) compare DCs using 

the same ECC technique (A=B) and running the same online service but with the one DC 

running collocated jobs and the other not running them, and (iii) same as scenario (ii) but 

with each DC using different ECC technique (AB). 

The PD can be augmented to account also, for other performance metrics, such as the tail 

response latencies (90th, 99th) for the Online service. More specifically, the framework can 

be augmented to assess the profit depending on the response latency [108].  

 

6.2.2 Energy Model 

 

Besides their performance implications, ECC techniques and co-location can also cause an 

increase in the energy consumption of a server. The Energy model is used to determine the 

energy of a given server for two use cases: a high utilization scenario when the server is 

running Online and Offline services together and a low utilization where the server is running 

only the Offline service. For DCs with no collocated jobs (no offline jobs) the low utilization 

case corresponds to the idle energy. The Energy of a server can be determined analytically, 

using simulation or by using either hardware or software energy monitoring tools [27]. 

The per server energy is used by the TCO model to estimate the overall energy of a DC based 

on a server utilization profile of a DC. 
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6.2.3 Thermal Model 

 

Component lifetime reliability has a strong temperature correlation. Moreover, temperature 

in processors and DRAM depends on power density which itself depends on processor 

performance and memory utilization. Therefore, we have developed a thermal model to 

determine the temperature of different server components, such as CPU and DRAM, to 

capture the interaction between lifetime reliability with the memory protection used by a 

server and the mix of services it is running. 

The temperature of a server component, can be determined by using analytical model 

measurements, such as 3D-ICE [109], or real hardware measurements using thermal sensors 

and hardware-specific software such as lmsensors [79]. We measure the temperature per 

server component, for each specific ECC technique and use case. The component 

temperature is then used by the Availability/MTTF model to evaluate the effects of 

temperature on MTTF, component replacements and server overprovisioning. 

 

6.2.4 DRAM FIT Model and Modeling DRAM Grades 

 

The DRAM FIT model is used to produce the raw FIT rates for CE, DUE and NDE errors 

per DIMM. The model inputs are: a specific ECC protection technique for a given DIMM 

configuration (number of devices, their size and width), the fault rates per device for various 

failure modes (row, column, bank, etc.), failure types (transient or permanent) and number 

of faults (1, 2 etc.). The failure rates can be produced analytically using either projected rates 

and failure distributions or rely on failure rates obtained in field studies of DRAM errors. 

Analytical failure models have been developed, based on probabilities for spatial errors, and 

failure rates from a large scale field study of DDR3 memory [41]. For SECDED the 

probabilities are obtained for a given number of faulty bits whereas for both Chipkills they 

are obtained for a given number of faulty symbols.  

The developed analytical equations to calculate the different FIT rates for ChipkillDC and 

ChipkilSC are shown below: 

ChipkillDC equations 

𝐶𝐸 = 𝑃𝑓𝑎𝑖𝑙1𝑑𝑒𝑣 ∑ 𝑃𝑥
  1(1 − 𝑃𝑥)𝑛−1

𝑥

1
 

𝐷𝑈𝐸 = 𝑃𝑓𝑎𝑖𝑙2𝑑𝑒𝑣 ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

  1(1 − 𝑃𝑥)𝑛−1 ∗ (
𝑛 − 1

1
) 𝑃𝑦

  1(1 − 𝑃𝑦)
𝑛−2

)
𝑥

1

𝑦

1
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𝑁𝐷𝐸 = 𝑃𝑓𝑎𝑖𝑙3𝑑𝑒𝑣 ∑ ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

  1(1 − 𝑃𝑥)𝑛−1 ∗ 𝐷𝐹𝑦 (
𝑛 − 1

1
) 𝑃𝑦

  1(1 − 𝑃𝑦)
𝑛−2𝑥

1

𝑦

1

𝑧

1

∗  (
𝑛 − 2

1
) 𝑃𝑧

  1(1 − 𝑃𝑧)𝑛−3)

+ 𝑃𝑓𝑎𝑖𝑙4𝑑𝑒𝑣 ∑ ∑ ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

  1(1 − 𝑃𝑥)𝑛−1
𝑥

1

𝑦

1

𝑧

1

𝑗

1

∗ 𝐷𝐹𝑦 (
𝑛 − 1

1
) 𝑃𝑦

  1(1 − 𝑃𝑦)
𝑛−2

∗  𝐷𝐹𝑧 (
𝑛 − 2

1
) 𝑃𝑧

  1(1 − 𝑃𝑧)𝑛−3

∗ (
𝑛 − 3

1
) 𝑃𝑗

  1(1 − 𝑃𝑗)
𝑛−4

) 

 

 

ChipkillSC equations 

𝐶𝐸 = 𝑃𝑓𝑎𝑖𝑙1𝑑𝑒𝑣 ∑ 𝑃𝑥
  1(1 − 𝑃𝑥)𝑛−1

𝑥

1
 

𝐷𝑈𝐸 = (𝑃𝑓𝑎𝑖𝑙2𝑑𝑒𝑣 ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

  1(1 − 𝑃𝑥)𝑛−1 ∗ (
𝑛 − 1

1
) 𝑃𝑦

  1(1 − 𝑃𝑦)
𝑛−2

))
𝑥

1

𝑦

1

∗ ProbFail 

𝑁𝐷𝐸 = (𝑃𝑓𝑎𝑖𝑙3𝑑𝑒𝑣 ∑ ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

  1(1 − 𝑃𝑥)𝑛−1 ∗ 𝐷𝐹𝑦 (
𝑛 − 1

1
) 𝑃𝑦

  1(1 − 𝑃𝑦)
𝑛−2𝑥

1

𝑦

1

𝑧

1
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𝑛 − 2

1
) 𝑃𝑧

  1(1 − 𝑃𝑧)𝑛−3)

+ 𝑃𝑓𝑎𝑖𝑙4𝑑𝑒𝑣 ∑ ∑ ∑ ∑ (𝐷𝐹𝑥 (
𝑛

1
) 𝑃𝑥

  1(1 − 𝑃𝑥)𝑛−1
𝑥

1

𝑦

1

𝑧

1

𝑗

1

∗ 𝐷𝐹𝑦 (
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1
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∗ (
𝑛 − 3

1
) 𝑃𝑗

  1(1 − 𝑃𝑗)
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)) + (𝐷𝑈𝐸 ∗ (1 − 𝑃𝑟𝑜𝑏𝐹𝑎𝑖𝑙)) 

, where n is the number of devices, x,y,z,j, are the type of errors (single word, single bit, 

single column etc.) where each of them can take all the 14 values from [41], P is the 

probability of a device failure due to one of the 14 different types of errors, Pfailxdev is the 

probability of an n-device DIMM to experience x device errors (eg. Pfail2dev =Probability of 

a DIMM to experience 2 errors), DF is the derating factor and ProbFail is the probability 

of the ChipkillSC to experience a failure. ChipkillSC implementation encodes and decodes 

a codeword every two bursts and it is able to correct all the errors in a single device and 

detect 99.99999963% of the errors in two devices. Thus, the ProbFail is equal to 

0.9999999963.  
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CE for both Chipkills can be estimated by summarizing all the combinations of the 

probabilities for different fault types (such as single word, single bit etc.) and multiplying 

these probabilities with the probability to have a single fault in one device. DUEs for 

ChipkillDC can be estimated by summarizing all the combinations of the probabilities of 

different fault types that happen in two devices in a single codeword. On the other hand, for 

ChipkillSC DUEs are then multiplied with the ProbFail to not account for the faults that 

cannot be detected in a single codeword.  

To determine the probability of two faults occurring in the same codeword in both Chipkills, 

we use a derating factor (DF) to derate each probability for each unique fault type 

combination on two devices. For example, the DF for single column faults in a device is 

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
.  Finally, NDEs for ChipkillDC can be estimated by summarizing all the 

combinations of probabilities for different fault types that happened in three and four 

devices in a single codeword. For ChipkillSC, also, the additional number of DUEs that is 

not included in the DUE equation is added to the estimation of NDEs (𝐷𝑈𝐸 ∗

(1 − 𝑃𝑟𝑜𝑏𝐹𝑎𝑖𝑙)). The probability of three or four faults happening in the same codeword 

is determined by derating appropriately each unique fault type combination on three and 

four devices. We also, derate each combination with an appropriate factor (DF) to account 

for the likelihood of a fault combination happening in the same codeword. Each 

combination contributes to a different repair action depending on whether it includes only 

transient errors or it has at least one permanent error. 

SECDED equations are based on an iterative process that goes through all the bits and 

estimates the probability of having single bit, double bit, triple bit and quadruple bit errors.  

 Each equation computes the probability for all device combinations that can produce a 

given number of faults.  

The various FIT rates, derived from the above analytical equations, for all the ECC schemes 

considered in this work are shown in Table 11. Pan
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Each row of the table depicts the FIT rates for different protection schemes for Correctable 

transient (FITS_CE-Tr.), Correctable permanent (FITS_CE-Pr.), Uncorrectable transient 

(FITS_DUE-Tr.), Uncorrectable permanent (FITS_DUE-Pr.), Non-detectable transient 

(FITS_NDE-Tr.) and Non-detectable permanent (FITS_NDE-Pr.) errors. 

SECDED NDEs are divided further into two categories: Miscorrectable errors (FIT_MCE) 

and Undetectable errors (FIT_UDE). For SECDED, the analytical equations consider up to 

four faulty bits per codeword (since probabilities for more faulty bits are typically extremely 

low). Therefore, miss-corrections, FIT_MCE, occur when three bits are flipped and the 

syndrome value is valid.  Assuming the SECDED code in [46], the probability to have miss-

correction due to triple bit errors is 56.28%. Undetected errors, FIT UDE, occur when four 

bits are faulty and the syndrome value is zero. This probability equals to 0.8%. We consider 

these two extra categories only for SECDED because for both Chipkill schemes the NDE 

FIT rates are extremely small. Table 11 also, presents fault rates for SECDED with x8 

devices assuming that they are two times bigger than x4 devices. Since [41] does not provide 

raw fault rates for x8 devices we double the FIT rates of x4 devices. This effectively assumes 

no fault overlapping (two different faults happening on the same bit(s)). This is a reasonable 

assumption for the fault rates in this work since the probability of overlapped faults is 

extremely low, 10−15. We optimistically assume that there are no multibit errors with more 

than four bits with x8 devices.  

DRAM Grades:  One other FIT model parameter is the DRAM grade. The DRAM grade 

attempts to capture the variation in DRAM quality [110] with lower grade DRAM 

experiencing less failures. It is expected that lower grade DRAMs cost less[110][111][112], 

thus presenting an opportunity for trading-off reliability for TCO reduction. The DRAM 

grade is expressed as a numeric factor that is used to multiply the raw fault rates in [41] (i.e. 

Table 11: FIT rates of transient (Tr.) and permanent (Pr.), CE, DUE and NDE 

errors for each protection technique FIT/device 

 Correctable 

(FITS_CE) 

Uncorrectable 

(FITS_DUE) 

NDE (FITS_NDE) 

 Tr. Pr. Tr. Pr. Tr. Pr. 

ChipkillDC 

ChipkillSC 

19.925 

19.924 

20.405 

20.404 

1.61*10-4 

1.66*10-4 

5.53*10-4 

5.65*10-4 

 

1.52*10-16 

6.13*10-13 

1.81*10-15 

2.09*10-12 

(FITS_

MCE) 

(FITS_

UDE) 

(FITS_

MCE) 

(FITS_U

DE) 

x4SECDED 

x8SECDED 

17.13 

34.26 

16.99 

33.98 

2.72 

5.44 

3.32 

6.65 

0.0639 

0.1279 

0.00537 

0.0107 

0.0841 

0.168 

0.0074 

0.0148 
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the larger the DRAM grade factor the higher the failure rates). The choice of range of factors 

considered is hypothetical and aims to explore how big of an opportunity DRAM grades 

present for TCO optimization. 

 

6.2.5 DRAM SDC Derating Model 

 

DRAM SDC Derating Model is used to estimate, for each ECC technique, the fraction of 

NDE FITs per server that lead to SDC errors, i.e. affect the service output without been 

detected. We refer to this fraction as FITS_SDC. This can be determined by either 

characterizing a service using fault injections [30] or with analytical models that consider 

the dynamic access patterns to different entries of various data structures of a service (hash 

tables, lists etc.). In this work we simply examine the FITS_SDC trends for a range of 

derating factor values to help determine the robustness against SDCs of the various ECC 

techniques. The model accuracy can be improved by performing fault injection or analytical 

modeling of specific services. 

The FITS_SDC per server is used by the TCO model to estimate the MTTF_SDC for the 

whole system (for all the servers), a metric of the service reliability. The NDE FITs that do 

not cause SDCs (Derated FITS_NDE =FITS_NDE – FITS_SDC) are pessimistically 

assumed to cause some visible user/system failure (i.e. none is benign) and are provided to 

the Availability/ MTTF Model that estimates the total number of extra servers needed to 

ensure peak throughput in the presence of these failures. 

 

6.2.6 Availability/MTTF Model 

 

The Availability model takes as inputs many parameters: the DRAM FIT rates for CE, 

DUE and derated NDE for a given ECC scheme (provided by the FIT and SDC models), the 

number of DIMMs/server, the initial number of DC servers, the actual temperature of each 

component (provided by the Thermal model), the reference temperature and MTTF of each 

component, the DC utilization, the policy for proactive replacement and the different 

hardware and software repair techniques with their MTTR values (Table 12).  
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We consider various repair techniques: ECC protection, page retirement, server reboot and 

DIMM replacement. ECC can be used to repair transient correctable errors. Page retirement 

can be used to repair permanent correctable errors. Server reboot can be used to repair 

transient uncorrectable errors. Finally, DIMM replacement can be used to repair 

uncorrectable permanent errors. 

The Availability/MTTF model estimates the MTTF for a permanent failure for each server 

component (CPUs, DRAM DIMMs, disks) using the Arrhenius equation [113] to compute 

the MTTF acceleration factor (K) depending on the component actual temperature, provided 

by the thermal model, and the component reference temperature and MTTF, obtained from 

published data sheets. Note that the DRAM MTTF acceleration due to temperature is 

performed only for permanent correctable and uncorrectable faults. 

The final MTTF of each component is calculated based on the DC average utilization. For 

example, for 20% average utilization the final MTTF is the weighted harmonic mean of the 

MTTF with peak activity (Online and Offline co-running) for 20% of the time and the MTTF 

with low activity (running only the Offline service) for the rest 80% of the time. The final 

MTTF of each component is then used by the TCO model to determine the number and cost 

of the extra DIMMs (NDIMM_rpl), CPUs (Ncpu_rpl), and Disks (Ndisk_rpl) needed for 

replacement. The MTTFs are also used, together with the MTTRs, to determine the total 

number of extra servers that are needed to ensure peak throughput in the presence of failures 

and some server unavailability. Table 12 lists the duration for each repair technique (MTTR). 

We assume that ECC correction has a negligible MTTR. We have checked a range of values 

for reboot and page retirement and do not observe much sensitivity due to the rarity of these 

events. It should be noted that the model is not specific to the techniques and the repair times 

that are shown in Table 12, other repair schemes and MTTRs can be added to the model. 

To compensate the performance loss due to the time required to repair faulty DIMMs, we 

need to overprovision the DC with extra servers. The following equations are used to 

Table 12: MTTR for various repair actions due to different types of failures 

 Details Time 

MTTRDIMM_rpl 

MTTRpg_r 

MTTRrbt 

MTTRecc 

Replace DIMM 

Page retirement 

Server reboot 

ECC 

1440 min 

100 min 

100 min 

0 min 
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calculate the extra servers to cover the performance loss due to: page retirement repairs 

(Npg_r) and server reboot repairs (Nrbt). The Necc is zero because MTTRecc is negligible. 

 

𝑁𝑝𝑔_𝑟 = (1 −

𝑀𝑇𝑇𝐹𝑝𝑟_𝐶𝐸

#𝐷𝐼𝑀𝑀𝑆
𝑀𝑇𝑇𝐹𝑝𝑟_𝐶𝐸

#𝐷𝐼𝑀𝑀𝑆 + 𝑀𝑇𝑇𝑅𝑝𝑔_𝑟

) ∗ (𝑁𝑠𝑟𝑣𝑚𝑜𝑑𝑢𝑙𝑒𝑠𝑟𝑒𝑞) 

 

𝑁𝑟𝑏𝑡 = (1 −

𝑀𝑇𝑇𝐹𝑡𝑟_𝐷𝑈𝐸

#𝐷𝐼𝑀𝑀𝑆
𝑀𝑇𝑇𝐹𝑡𝑟_𝐷𝑈𝐸

#𝐷𝐼𝑀𝑀𝑆 + 𝑀𝑇𝑇𝑅𝑟𝑏𝑡

) ∗ (𝑁𝑠𝑟𝑣𝑚𝑜𝑑𝑢𝑙𝑒𝑠𝑟𝑒𝑞) 

 

where the Nsrvmodulesreq is the initial number of server modules required for the peak workload 

assuming no failures, and #DIMMS is the number of DIMM slots per server module. The 

MTTFpr_CE for page retirement is given by 
109

𝐹𝐼𝑇𝑆𝑝𝑟_𝐶𝐸 ∗ #𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑃𝑒𝑟𝐷𝐼𝑀𝑀
, where 

#devicesperDIMM is the number of devices per DIMM and the MTTRtr_DUE for server reboot 

is obtained using  
109

𝐹𝐼𝑇𝑆𝑡𝑟_𝐷𝑈𝐸 ∗ #𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑃𝑒𝑟𝐷𝐼𝑀𝑀
. 

We assume that page retirement and reboot events never happen together on the same node 

because this occurs with very low probability for the rate of failures we considered. Finally, 

the total number of extra servers Totalextra_servers needed to make up the performance loss due 

to memory module repairs, is determined by:  

 

𝑇𝑜𝑡𝑎𝑙𝑒𝑥𝑡𝑟𝑎_𝑠𝑒𝑟𝑣𝑒𝑟𝑠 = ⌈𝑁𝑝𝑔_𝑟 + 𝑁𝑟𝑏𝑡⌉ 

The MTTF of a DIMMreplacement due to uncorrectable permanent errors, MTTFpr_DUE, is 

calculated using the following equation: 

𝑀𝑇𝑇𝐹𝑝𝑟_𝐷𝑈𝐸 =  
109

𝐹𝐼𝑇𝑆𝑝𝑟_𝐷𝑈𝐸 ∗ #𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑃𝑒𝑟𝐷𝐼𝑀𝑀
 

To limit the effects of uncorrectable errors we explore the benefit of employing proactively 

replacement. In particular, when “proactive replacement on correctable errors” is used, the 

DIMM replacement is applied on every permanent correctable error. As reported before, it 

is difficult to predict from correctable errors the uncorrrectable error rate, but the proactive 

replacement on every correctable error can help minimize the uncorrectable error rate by 
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70% [42][86]. The MTTFpr_DUE+pr_CE for a DIMM replacement with proactive replacement is 

given by: 

𝑀𝑇𝑇𝐹𝑝𝑟𝐷𝑈𝐸+𝑝𝑟𝐶𝐸
=  

109

(𝐹𝐼𝑇𝑆𝑝𝑟𝐷𝑈𝐸
+ 𝐹𝐼𝑇𝑆𝑝𝑟𝐶𝐸

∗ #𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑃𝑒𝑟𝐷𝐼𝑀𝑀
 

 

6.2.7 DIMM Cost Model 

 

The DIMM cost is determined by six parameters: DRAM brand, DRAM technology, device 

width (x4 or x8 devices), device size, the number of devices per DIMM and DRAM 

frequency. The DIMM cost is estimated with the help of publicly available data and price 

listings. 

 

6.2.8 TCO Model 

 

The last component of the framework is the TCO Model that is used to estimate the cost of 

a DC. The model is based on the TCO tool by [80] extended to take as inputs the outputs 

produced by the various models in our framework plus some other parameters, such as the 

utilization profile per day for the online service, DIMM FITS SDC and the target reliability. 

The performance degradation (PD) determines the number of extra spares to compensate the 

performance loss due to ECC overheads or service co-location:  

 

𝑵𝒉𝒐𝒕𝒔𝒑𝒂𝒓𝒆𝒔 =
𝑵𝒔𝒓𝒗𝒎𝒐𝒅𝒖𝒍𝒆𝒔𝒓𝒆𝒒+𝑻𝒐𝒕𝒂𝒍𝒆𝒙𝒕𝒓𝒂_𝒔𝒆𝒓𝒗𝒆𝒓𝒔

𝟏−𝑷𝑫
 – (𝑵𝒔𝒓𝒗𝒎𝒐𝒅𝒖𝒍𝒆𝒔𝒓𝒆𝒒 + 𝑻𝒐𝒕𝒂𝒍𝒆𝒙𝒕𝒓𝒂_𝒔𝒆𝒓𝒗𝒆𝒓𝒔) 

 

where Nsrvmodulesreq is the number of server modules required for the peak workload without 

failures, and Totalextra_servers is estimated by the Availability/MTTF model and accounts for 

the number of extra servers needed to make up the performance loss due to the repair 

techniques. In the case that PD is negative then Nhotspares returns a negative number. This 

means performance improves relative to reference DC and fewer servers are required. 

Consequently, the total number of servers in a DC becomes:   

 

𝑵𝒉𝒐𝒕𝒔𝒑𝒂𝒓𝒆𝒔 = 𝑵𝒔𝒓𝒗𝒎𝒐𝒅𝒖𝒍𝒆𝒔𝒓𝒆𝒒 + 𝑻𝒐𝒕𝒂𝒍𝒆𝒙𝒕𝒓𝒂_𝒔𝒆𝒓𝒗𝒆𝒓𝒔 + 𝑵𝒉𝒐𝒕𝒔𝒑𝒂𝒓𝒆𝒔 

 

The above is used as an input to the TCO model that repeats the TCO estimation until the 

Nsvrmodules converges (empirically, at most three iterations are needed.). Replacement on an 
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error can be performed at different granularities, e.g. faulty component or the whole server. 

In our model, we apply component replacement. The number of spares needed for 

replacement of faulty components are estimated for each component type (DIMM, disk and 

CPU) as shown below: 

𝑁𝐷𝐼𝑀𝑀_𝑟𝑝𝑙 =
𝑁𝑠𝑣𝑟𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ∗ #𝐷𝐼𝑀𝑀𝑆

𝑀𝑇𝑇𝐹𝑑𝑖𝑚𝑚 + 𝑀𝑇𝑇𝑅𝐷𝐼𝑀𝑀_𝑟𝑝𝑙
 

 

𝑁𝑑𝑖𝑠𝑘_𝑟𝑝𝑙 =
𝑁𝑠𝑣𝑟𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ∗ #𝐷𝐼𝑆𝐾𝑆

𝑀𝑇𝑇𝐹𝑑𝑖𝑠𝑘 + 𝑀𝑇𝑇𝑅𝑑𝑖𝑠𝑘_𝑟𝑝𝑙
 

 

𝑁𝑐𝑝𝑢_𝑟𝑝𝑙 =
𝑁𝑠𝑣𝑟𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ∗ #𝐶𝑃𝑈𝑆

𝑀𝑇𝑇𝐹𝑐𝑝𝑢 + 𝑀𝑇𝑇𝑅𝑐𝑝𝑢_𝑟𝑝𝑙
 

For this study the MTTF and MTTR values for the CPU and disk components are derived 

from public data [115]. TheMTTFdimm is derived from the analysis provided in this work and 

is equal to MTTFpr_DUE unless proactive replacement is employed in which case is given by 

MTTFpr_DUE+pr_CE. One other input to the TCO model is the utilization profile per day for the 

Online service. This parameter captures the dynamic load behavior of a DC running a 

specific Online service. Different utilization profiling graphs are available from various 

studies [4][121]. In our analysis, we use the utilization graph from [4]. Utilization affects the 

DC energy and replacements and consequently the total TCO. Finally, the TCO model 

checks whether the System Reliability (MTTF_SDC) satisfies a given target reliability. The 

system MTTF_SDC, is given by: 

𝑀𝑇𝑇𝐹𝑆𝐷𝐶 =
𝑀𝑇𝑇𝐹𝑆𝐷𝐶_𝑠𝑒𝑟𝑣𝑒𝑟

𝑁𝑠𝑟𝑣𝑚𝑜𝑑𝑢𝑙𝑒𝑠
 

where MTTFSDC_server is the total MTTF for SDC errors for a server component and it is 

calculated based on the DIMM FITS_SDC and #DIMMS. 

 

 

6.3 Experimental Methodology and Models Assumptions 

 

Here, we describe some implementation details for each framework model as used in our 

experiments. 

FIT and Availability model: The input raw fault rates of the FIT model are based on the 

normalized data reported in [41] converted to absolute rates, for each protection technique, 
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using the equations in Section 6.2.4 and the single-bit probability projected in ITRS [122]. 

In our analysis, we considered 4GB rank with x4 DRAM devices and 2Gb per device, and 

also x8 DRAM devices with 4Gb per device. To provide the FIT rates for larger x8 devices 

we double the FIT rates of Table 11. 

Performance model: To evaluate the performance overhead of ChipkillDC relative to 

ChipkillSC, we use a dual socket Intel Xeon E5620 system with the configuration shown in 

Table 13.  

 

We experimented using a 2.4GHz processor frequency with disabled turbo mode. To 

measure the performance degradation of ChipkillDC, the server memory system is set in 

“Lockstep Mode”. This mode combines together two DIMMs from different channels to 

form a 144 bit codeword [78][107][123][124]. To measure the performance degradation of 

ChipkillSC, the server memory system is set in “Advance ECC Mode”. This mode uses a 

single channel and combines two bursts to form 144-bit codeword. Both modes are set by 

accessing the BIOS through a BIOS Serial Command Console interface (CLI) [78]. 

Our evaluation used Web Search, an Online benchmark from CloudSuite [50][51] and 

different Offline benchmarks, a Data Analytics also from CloudSuite [50][51] and few others 

from SPEC CPU2006 [52]. We considered four different types of Offline benchmarks 

according to their memory behavior: Memory Intensive (MI), Mcf, Compute Intensive (CI), 

Gcc, Streaming (STREAM), H264ref, from SPEC CPU 2006 and Data Analytics-Map 

Reduce (MR), from CloudSuite, with two different model sizes (obtained from training with 

500MB and 49000MB data). 

To evaluate the performance overhead of Web Search benchmark, four blade servers are 

used: one client server with multithreaded client process where each thread run on a single 

core, one frontend server, one index server and one document server with a traffic of 100K 

queries and a dataset size of 6GB. To increase the number of concurrent requests, we 

Table 13: Server and main memory configuration 

Number of CPUs 

CPU 

Number of cores per CPU 

2 

Intel Xeon E5620 2.4GHz 

4 

DRAM technology 

Channels per CPU 

DIMMS/channel 

Ranks/DIMM 

DRAM device 

DIMM capacity 

Turbo mode 

Level of Interleaving 

DDR3 

2 

1 

2 

x4 

8GB 

Disabled 

Full interleaving 
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increased the number of clients. One or two instances of each Offline service run 

concurrently in the server that performs the index search. The performance degradation of 

the Online service is measured by running it first in isolation and then co-running it in 

combination with one or two instances of the same Offline service, for different ECC 

schemes and number of threads. 

We run each experiment 5 times and each time we collected the average search time and the 

99th tail response latency of the Online service. The results presented are calculated by 

removing the minimum and maximum values. 

Energy and Thermal model: The energy numbers are collected using the HPiLO3 [27] 

which allows to monitor the power consumption of a server at a given time. The results are 

used to calculate the average power numbers used in the TCO tool. The HPiLO is also used 

to measure the temperature of DRAM and Disk components. To track the CPU temperature, 

we use lm-sensors [79]. We have validated the power and temperature measurements using 

DRAM and CPU stress test programs [125]. The reference MTTF temperature numbers for 

CPU and disk are 45 ◦ C and 35 ◦ C, respectively according to [126][127]. 

DIMM cost model: The parameters of the DRAM cost model for 8GB DIMMs are shown 

in Table 14 and are obtained from public data [119][120]. 

 

TCO model: To estimate the Total Cost of Ownership (TCO) we extended the COST-ET 

tool proposed in [80]. Our framework is implemented as a wrapper around this earlier tool. 

For each experiment an initial population of 50000 server modules is used assuming an 

average utilization of 31% [4]. TCO results are presented assuming servers running Web 

Search only on two cores to meet a QoS constraint. Analysis for collocated services assumes 

that the default configuration runs Online services on two cores and Offline services on the 

remaining one or two cores (depending on the DC configuration). Our analysis evaluates 

Table 14: Server configuration and parameters 

Components Cost ($) 

2 Processors 

2 Disks 

Other (Case, power supply & motherboard) 

130 each [114] 

60 each [115] 

308 

[116][117][118] 

DRAM x4 

DRAM x8 

99.66 [119] 

64.74 [120] 

#active cores 2 

Proactive replacement disabled 
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servers that have the same DRAM configuration for x4 and x8 DIMMs in terms of the 

number of channels, DIMMs per channel, DIMM capacity (8GB) and ranks per DIMM, to 

provide the same bandwidth for both configurations. 

The costs, shown in Table 14, are derived from publicly available data 

[115][116][117][118][128]. Finally, the various parameters for the datacenter configuration 

shown in Table 15 are derived from [4][80][129]. 

 

For the baseline configuration, we select ChipkillSC memory protection technique, with 

index servers running Web Search in two cores without co-location. The proactive 

replacement on correctable errors is not employed unless specified otherwise. 

 

6.4 Results 

 

We investigate how the various proposed framework parameters affect the DC TCO and the 

choice of the DRAM protection technique. We present different case studies to assess the 

impact of (a) the number of DIMM slots, (b) DRAM grades (increasing fault rates), (c) 

ChipkillDC and ChipkillSC Performance, Energy and TCO for an Online service running 

alone and collocated with Offline services, (d) NDE errors on the System Correctness, and 

(e) sensitivity of TCO to various parameters considered in this work. 

 

6.4.1 Implications of DRAM Capacity on TCO 

 

This case study investigates how the TCO of each protection technique is affected by the 

number of DIMM slots (8GB per DIMM) per server. The results are shown in Figure 28.  

Table 15: Datacenter Configuration 

Cost of building 3000$/m2 

Cost of cooling 12.5$/W 

Cost of electricity 0.07$/W 

Cooling area overhead 1.2 

Network per rack 10K$-360W [117] 

Maintenance salary per rack 200$ (monthly) 

Datacenter depreciation 15 years 

PUE 1.2 

Server modules in Datacenter 50,000 
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The x-axis presents different protection techniques according to the number of DIMMs per 

server and the y-axis shows the TCO breakdown (infrastructure, network, maintenance, 

power, DRAM and other server components cost such as disk, cpu, board etc.) per month in 

dollars. As seen in Figure 28, with increasing number of DIMM slots per server, the DC cost 

for all the protection techniques also increases. Also, it is observed that x8 SECDED offers 

better TCO as compared to the other protection techniques. The x8 SECDED benefits grow 

with increasing number of DIMM slots because of the lower cost and power of the x8 

devices. On the other hand, as the number of DIMMs per server increases, x4 SECDED 

becomes the technique with the highest cost due to its lower reliability. The results in Figure 

28 clearly suggest that the most cost-effective protection technique, from the four 

investigated in this case study, is x8 SECDED. 

 

6.4.2 DRAM Grades and TCO 

 

The server configuration selected for the following case studies has four DIMMs, one in each 

channel, with a total of 32GB DRAM per server node. As mentioned earlier, it is interesting 

to investigate the trade-offs of several grades of DRAM quality where better quality has 

higher cost and more reliable parts. Our analysis assumes a large range of DRAM grades for 

 

Figure 28: TCO results for different DIMMs slots 
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better exploration of the opportunities from having DRAM products with varying cost-

quality. Figure 29 shows the normalized TCO results for 20 different grades (baseline DRAM 

is denoted by GradeA).  

 

For now, we consider DIMM cost to be the same for all the grades (we examine the cost 

issue later). All grades are correlated to GradeA by some factor (e.g. x2 is derived 

multiplying the fault rates of GradeA by two). The various curves correspond to different 

protection techniques and are normalized to the TCO of a DC using ChipkillDC with GradeA 

fault rates. Also, for both SECDED schemes we present results when the proactive 

replacement option is used whenever there is a correctable error. 

As shown in Figure 29, the TCO of ChipkillDC and ChipkillSC are significantly less 

sensitive to increasing failure rates as compared to x4SECDED and x8SECDED. 

Figure 29 also shows that the cost of the proactive replacement strategy is much higher than 

the savings it offers from reducing uncorrectable errors. Thus, there seems to be no 

opportunity to reduce the TCO by using the proactive replacement we evaluated. 

Next, we explore the trade-off between DRAM cost and reliability. The results presented in 

Figure 30 shows what the DIMM cost for each protection technique should be to maintain 

the TCO of GradeA in all the other grades.  

 

Figure 29: TCO results for different DRAM grades 
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Figure 30 effectively shows the opportunity to reduce the TCO for each protection technique, 

for all the grades, in the cases where the DIMM cost is below the corresponding curve for 

each protection technique. Choosing a DIMM cost below each curve leads to lower TCO 

than GradeA. For both SECDED schemes, a significant reduction of the DIMM cost is 

required to maintain the TCO of GradeA (for x4SECDED 70$ less per DIMM for a x256 

grade). On the other hand, the results reveal that ChipkillDC (ChipkillSC) with a x4096 

(x1024) grade can achieve the TCO cost of GradeA, with only 1$ cost reduction per DIMM. 

 

6.4.3 ChipkillDC and ChipkillSC Performance, Energy and TCO for Online and 
Offline Jobs 

 

To compare the performance of ChipkillDC and ChipkillSC, we run Online and Offline 

services in isolation and collocated on a server using both memory protection schemes. In 

Figure 31 we present the performance in terms of the Average Search Time (ms) and the 

99th percentile Tail Latency (ms) of Web Search (WS) while running it alone and co-running 

it with different types of Offline services, on the same server. 

 

Figure 30: DRAM cost in ($) for different fault rates (DRAM grades) 
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The results are presented for different workload combinations. Specifically, two threads of 

Web search are running (two index servers) on two cores for all the configurations (recall 

that only two cores are used to meet the QoS constraint) while one or two instances of the 

same Offline service are co-running with Web Search. Each combination contains in total 

three or four threads, where each one is running on a separate core. 

As we can observe from Figure 31.(a) and Figure 31.(b), when Web Search (WS) is co-

running with Offline services, the Average Search Time and tail latency increase for both 

protection techniques as compared to Web Search running alone. 

In Figure 31.(a) we observe that in most cases when not all cores are used, the performance 

is higher with ChipkillDC, the more bandwidth demanding protection technique, than 

ChipkillSC. We attribute this to the low memory pressure of Web Search and the ability of 

ChipkillDC to receive a codeword after a single burst which can enable faster forwarding of 

first word from memory. This reasoning appears consistent with the observation, in Figure 

31.(a), that ChipkillDC is always worse when all cores are used (cases where 2 instances of 

Web Search run with 2 offline services) and the demand for memory bandwidth is higher. 

 

Figure 31: Performance overhead of ChipkillDC compared to ChipkillSC for different 

co-running configurations (a) performance in terms of Average Search Time and (b) 

performance measured in terms of 99% tail latency 
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Another important observation is that the trends presented in Figure 31.(a) are not the same 

with the trends in Figure 31.(b). For example, the average search time for ChipkillDC when 

co-running Web Search with two Memory Intensive services (seventh pair of bars in Figure 

31.(a)) is higher than the average search time of ChipkillSC. On the other hand, ChipkillSC 

has higher 99th percentile tail response latency (seventh pair of bars in Figure 31.(b)) from 

ChipkillDC while using the same configuration (currently the TCO considers PD due to 

Average Search time. The framework can be extended to consider also the tail response 

latency in the TCO model and other performance metrics, as well). 

Figure 32 presents the TCO of ChipkillDC and ChipkillSC (bars) when running two Web 

Search services (WS) on two cores per server and co-running with one or two instances of 

the Offline services.  

 

The results presented are normalized to the TCO of ChipkillDC when running Web Search 

service alone. An important observation from Figure 32 is that when two Web Search 

services are co-running with an Offline service, there is an increase in the TCO for both 

ChipkillDC and ChipkillSC compared to the TCO of Web Search running alone. This 

increase is due to the performance degradation and energy overheads, caused from the co-

location of Web Search with Offline service. The power consumption for each protection 

technique is presented in Figure 32 with a secondary axis (lines). To have more accurate 

TCO results, we considered both performance and power parameters in the TCO. 

Considering only one of the two parameters can lead to inaccurate TCO results. 

 

Figure 32: TCO results for collocated services considering Average Search Time and 

Average Power consumption 
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As seen in Figure 31(a), the performance degradation of Web Search when co-run with two 

instances of Map Reduce with 500MB dataset size (MR500) is larger for ChipkillDC. For 

the same scenario in Figure 32, the average power trends are reversed with ChipkillDC 

consuming less power than ChipkillSC. Considering both parameters in the TCO, Figure 32, 

shows that ChipkillDC has lower TCO than ChipkillSC. 

 

6.4.4 Implications of NDEs on the System Reliability 

 

Next, we analyze the system MTTF for SDC errors. As mentioned earlier, NDE errors can 

cause Silent Data Corruption (SDC). Determining the actual fraction of NDEs that lead to 

SDCs is a challenging problem [130]. A recent work, reports less than thousand SDCs from 

billions of queries performing fault injection in DRAM while running a Web Search 

application [30]. Figure 33 shows the effects of SDC errors in the system’s MTTF SDC. We 

analyze the implications in the System MTTF SDC for a hypothetical range of SDC derating 

factors that derate the initial NDE rates, varying from 0 to 1. The x-axis represents the 

derating factor rates (NDE rates that cause SDCs), whereas the y-axis represents the system 

MTTF for SDC errors. The graph shows a number of curves each representing a different 

error protection scheme. The target reliability for SDC in this experiment is set to 3 years. 

The results show that for ChipkillDC and ChipkillSC with SDC Derating factor=0.001 the 

system MTTF_SDC is 1016 and 1013 years respectively. For the largest derating factor, 1, 

the system MTTF_SDC if 1014 and 1010 years, respectively. However, with x8 and x4 

SECDED, the system MTTF_SDC is many orders of magnitude lower as compared to 

Chipkill schemes, and with increasing derating factor it even becomes lower than the three-

year MTTF target. Figure 33 also shows how the low average system utilization (31%) 

increases the MTTF SDC of all protection technique. Lower server utilization can provide 

higher reliability because it is more likely for errors to occur in idle DC resources. The above 

analysis indicates that the two Chipkill schemes provide much better resiliency against SDC 

errors which is important to consider when choosing DC DRAM memory protection. 
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6.4.5 TCO Sensitivity Analysis 

 

Figure 34 shows a sensitivity analysis that aims to highlight the significance of considering 

some of the basic framework parameters when making TCO trade-offs related to memory 

protection in a DC. All the TCO numbers are presented in terms of dollars. 

The first two bars show the total TCO for ChipkillSC and ChipkillDC when co-running 2 

Web Search with 2 instances of the Memory Intensive (MCF) service and the framework 

includes all the parameters examined in this work. As the figure depicts the TCO savings 

that can be derived by including all the parameters are around 80000 dollars by selecting 

ChipkillSC. The second and third group of results present how TCO is affected by ignoring 

temperature and utilization. In these cases, we can observe a TCO increase for both 

protection techniques. Furthermore, the results show that ignoring co-location can have a 

large impact on TCO (lower TCO) and changes the result for which of the two protection 

techniques is better. Finally, excluding all the other parameters (performance, DRAM 

reliability and the contribution of operational costs to the TCO) reveals even larger sensitivity 

with both schemes seemingly having the same TCO. 

 

Figure 33: Design space exploration of NDEs that lead to SDCs for each protection 

technique + system utilization 
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6.5 AMPRA Model Validation and Insights 

 

Overall, the findings of this analysis calls for manufacturers, vendor designers, datacenter 

owners and researchers to select/design memory protection schemes that maximize the TCO 

using the AMPRA proposed framework. The framework can also be useful to estimate the 

premium that compute as a service provider need to charge for running offline services to 

make up for the increase in TCO due to co-location. Another framework use is to enable 

processor designers to quantify the TCO benefits of new ECC options. Finally, this work 

offers a common framework for future research in this area that can be easily extended to 

explore new trade-offs. Moreover, datacenter designers can exploit these findings if they 

have the option to select lower cost and less reliable DRAM components. On the other side, 

a processor designer may benefit by performing a “what if” analysis to determine the 

potential TCO benefits of a new ECC code before embarking on building it. 

AMPRA framework is useful for identifying key parameters that need to be considered when 

exploring different trade-offs. In the absence of such framework, some of these parameters 

may be overlooked. To validate AMPRA model we validate each individual model and 

components. Specifically, we validate power and temperature numbers using publicly 

available data, performance degradation running the applications on real hardware and we 

compare all the FIT rates with previous published papers.  

 

 

Figure 34: TCO sensitivity analysis of 2 Web Search + 2 Memory Intensive 

Services 
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Chapter 7 

 
 

7 Conclusions and Future work 
 

7.1 Conclusions  

 

During the last few years, DCs have spread across the globe and they have increased in 

numbers, size and utilization. Large DCs that consist of thousands to tens of thousands of 

servers are used to deliver services, such as e-mail, web search, social networking, maps and 

face recognition, to billions of users. Additionally, a new paradigm has emerged that 

promotes the offering of services at the Edge, closer to users. One key challenge of these 

innovations is to limit their cost and energy consumption and, consequently, there is a 

growing need for efficient methodologies and techniques to optimize DC’s design cost.  

This work investigates a number of key parameters that affect TCO by evaluating DCs design 

decisions. 

In this thesis we firstly, select the monitors and knobs to use to configure a computing system 

running an application while satisfying the application’s requirements and not violating any 

system constraints. The selection relies on a heuristic correlation analysis between monitors 

and knobs to determine the minimum subset of monitors to observe and knobs to explore to 

determine the optimal system configuration for the application in order to provide 

optimization for the TCO of a system. At the end of this analysis, we reduce an 11-

dimensional space to a 4-dimensional space for monitors and a 6-dimensional space to a 4-

dimensional space for knobs. As presented in the thesis, TCO is mainly correlated with 

reliability, power and performance aspects. To optimize TCO, we provide different TCO 

evaluations that tackle all these aspects.  

Secondly, we investigate the benefits of running an emerging security focused IoT 

application, (jamming detection), at the Edge vs. the Cloud by developing an end-to-end 

TCO model, which considers the application’s requirements as well as the Edge’s 

constraints. For the first time, we build such a model based on realistic performance and 

energy-efficiency measurements obtained from commodity 64-bit ARM based micro-servers 

that are excellent candidates for supporting Cloud services at the Edge. Such servers 
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represent the type of devices that can provide the right balance between power and 

performance, without requiring any complicate cooling and power supply infrastructure, 

which will not be available at the de-centralized deployments. Aiming at improving the 

energy efficiency, we exploit the pessimistic design margins adopted conventionally in such 

devices and investigate their operation under lower than nominal supply voltage and memory 

refresh-rate. Our results show that the jamming detection application deployed at an Edge 

environment is superior to a Cloud based solution by up to 2.13 times in terms of TCO. 

Moreover, when servers operate below nominal conditions, we can achieve up to 9% power 

savings which enables in several situations 100% gains in the TCO/area-coverage metric, i.e 

double area can be served with the same TCO.  

 Moreover, we present a comprehensive correlation analysis of an application’s CPU-Vmin 

with hardware’s performance counters on a real multicore system. The analysis reveals that 

a subset of the performance counters- the same ones across different workloads- have a 

strong correlation with a workload’s CPU-Vmin. Moreover, the results show that the CPU-

Vmin is accurately identifiable by monitoring a workload’s performance-counters during the 

n-first seconds of its execution. Our findings serve as the basis of a software-based CPU-

Vmin identification method that monitors an application for the first n-seconds and then sets 

the CPU supply voltage to a specific value for the rest of the execution. Our evaluation shows 

that the CPU-Vmin workload identification method provides a safe CPU-Vmin, 99.4% of 

the times, reduces power on average by 7.1% and provides substantial TCO savings when n-

first equals to 20 seconds.  

Finally, we propose for the first time, the AMPRA framework for modeling the implications 

of DRAM failures and DRAM error protection techniques on the TCO of a datacenter. The 

framework captures the effects and interactions of several key parameters including: the 

choice of DRAM protection technique (e.g. single vs dual channel Chipkill), device width 

(x4 or x8), memory size, power, FITs for various failure modes, the performance, power and 

temperature overheads of a protection technique for a given service and mixes of collocated 

services. The usefulness of the proposed framework is demonstrated through several case 

studies that identify the best DRAM protection technique in each case, in terms of TCO. 

Interestingly, our analysis reveals that among the three DRAM protection techniques 

considered, there is no one that is always superior to all the others. Moreover, each technique 

is better than the others for some cases. This underlines the importance and the need of the 

proposed framework for making optimal memory protection datacenter design decisions. As 

part of this work, we analyze and report the performance and power with single channel and 

dual channel Chipkill on real hardware when running a web search benchmark alone and 
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collocated with benchmarks of varying memory intensity. This analysis reveals that the 

choice of memory protection can have serious performance and TCO ramifications 

depending on the memory characteristics of collocated services. Other analysis reveals that, 

for the datacenter and services assumed in this study, when using Chipkill protection it can 

be beneficial for TCO to use DRAM with 100x the failure rate of a baseline DRAM as long 

as the cost per DIMM is at least a dollar less compared to the baseline. 

 

7.2 Lessons Learnt  

 

This Section recapitulates the thesis impact and at the same time it serves as a springboard 

to future research and development- based on the insights gained during the thesis process.  

Each of the contributions of this thesis has had a significant impact on both industry and 

research community. Particularly, AMPRA tool2 has been placed online (more than 1000 

downloads by now) and organizations expressed interest in this tool and had the opportunity 

to use it in their analyses.  

Moreover, during my two months internship at IROC technologies, I encapsulated AMPRA 

tool on the development of a reliability-based architect tool. This tool uses AMPRA to 

estimate the TCO of a new developed system, including reliability analysis of all the 

components which are part of this system. 

The findings of this thesis pave the way of new future directions. However, some of these 

directions have negative preliminary results. The dynamic reconfiguration of the system 

according to the TCO savings is one of them. Specifically, this idea has been based on the 

dynamic change of different system knobs such as memory protection, memory interleaving 

and turbo mode, according to the application needs in order to optimize the TCO. 

Nevertheless, this idea was not as successful as it had been initially expected since the default 

settings for the specific applications served as the best choice in terms of TCO.  

 

7.3 Future Work  

 

In spite of the technical contributions of the current text, it is clear that improvements and 

optimizations can improve the technology of the concepts discussed herein. We propose 

future work items, corresponding to each technical Chapter of the current text: 

                                                 
2 (Publicly Available- AMPRA: Analyzer of TCO Implications of Memory Failures and Memory Protection 

http://www2.cs.ucy.ac.cy/carch/xi/ampra tco.php) 
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Chapter 3: A possible direction to this work is to explore other configurations, monitors and 

knobs and investigate the generality of the observations to other platforms and applications. 

Chapter 4: This work provides a clear motivation for even more power-efficient solutions 

at the Edge and the use of such evaluation metrics. An important future direction is the 

inclusion of the sensors in the evaluation in order to include the aspect of battery life and 

many other parameters consisting the embedded systems. Moreover, distributed Cloud is 

widely used by many clients. However, these clients are kept agnostic of the location that 

they run their application and the security issues that may face. The cautious choice of the 

location dependent on the TCO will be very beneficial. Another important future direction 

would be to extend the research of this work by studying more applications.  

Chapter 5: The identification method highlights the need of the development of a software 

DVS governor that predicts the workloads CPU-Vmin from the first n-seconds. Another 

important direction for future work is the further reduction of false positives without 

increasing false negatives and thus improve power savings. Furthermore, the methodology 

can be used to predict viruses such as the di/dt virus in platforms that do not have droop 

counters visibility such as X-Gene2 platform. Finally, future work should investigate the 

generality of the observations made on X-Gene 2 for other platforms. 

Chapter 6: TCO evaluation of DRAM protections is another domain that invites meaningful 

future contributions. One possible direction is to explore the TCO of other components (e.g. 

SSDs), study the cost-benefits of new ECC schemes and other DRAM technologies.  
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