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ITEPIAHYH

To ocbyypovo dounpévo mepBdirov ota acTikd KEvpa TS Mecsoyeiov kvuplapyeitor amd
Ktiplo omAiopévon okvpodépatog (0.X.) gite amotelodueva omd KT 6VOTHUA PEPOVTOV
otolyelov, gite apymg mAaiclokol tomov. Ilepimov to 70% £xet kTioBel pe Tovg PO TOL
1985 Kavoviopovg, kot ofuepa Bempovviol TePopiopévng CEIGUIKNG IKOVOTNTOG EMELN
OEV 1IKOVOTOL0VV TIG GUYYPOVEG OVTIMYELS OVTICEICUIKOD oyedtaouol. Ewdleton 611 o¢
EVOEYOUEVO 10YVPO GEIGUO TOAAG aTd aVTA Ta KTipla it B avamTuEovy onuavTikny PAGEN
€lte KOl KaTdppevor, 6€ EMOVAANYT TOV TPOYIKOV GUUPBAVTOV oV £xovv mapatnpnel oto
TapeLOOV o TOAAG 0oTIKG KEVTPO TNG TEPLOYNG UE TOAAA BVpata (1.y. [TapvnOa ABMva Kot
ICuit ¢ Tovpkiag to 1999, L’Aquila Itaiiog to 2009, Aiyo 1995). 'Hon amd to 1985 petd
TNV EIG0YOYN TOV IKAVOTIKOV EAEYYMOV GTOV OVIIGEIGUIKO GYXESOGUO TO TOLOTIKO YAGLLO
oYEOGHOY VE®MV KTIPIOV amd To TOAMOTEPO GLVEYMSG OlEVPVOVETOL avnovyntikd. H
aVOYKOOTNTO Y10, GEICUIKT] OTOTIUNGT] KOl OTOKATACTOCT TV VPICTAUEV®OV KTIPIWV TOL
dgv TANPOHV TG cOYYpOovES TPodtaypais vroypappiletar pe Kabe evkarpio 6To dNUOGLO
SlgAoyo, av Kot akopo avalnTobvTal To GYNUATO TOL Ba EMTPEYOVV TV JEKTEPOLMOT] TOV

EAEYY®V Y10 TO GHVOLO TMOV TOANIDV KTIPI®V.

Koppkng onpoaciog yio tnv oTotikotTnTo Kot TNV GEIGUIKT] ETAPKELD TOV OOLLLOTOG
£€YOVV TOL VTOGTLAMUATO TOL PEPOVTOG opyaviopoL o€ ktipto O.Z. Avtd emPePardveton
GLYVA OO TNV LOPPOAOYIO TV KATOPPEVGEWV: OTOV ALGTOYOVV TO, KOTAKOPLPO, GTOLXEIN 1)
01 GLVOEGELS TOVG, Ol Baplég TAAKES TV OIKOSOUMY GLGCOPEVOVTOL 1) L TAVE® GTNV GAAN
(pancake collapse) maydebovtag evoikovg kot avtikeipeva. AvapepOpuevol 6To 6Tédlo TG
EMKEILEVNC KATAPPELOTG TOAAOL EPEVYNTEC CNUEPO EMKEVIPDOVOVTOL GTNV EKTIUNGN TNG
KOVOTNTOG TOPAUOPPMONG TOV CTOLYEIMV GTO GTAN0 UTDOAELNS GTNPIENG TOV VITEPKEILEVOV

QOpTiOV.

[Tponyovpeveg avolvTiKEG OlEPEVVNCELS KATOPPEVCEWMY Oeiyvouv OTL cvyvd,
VTOGTUAMUOTO HE OVETAPKEIEG OMAICU®MV aoTOYoVV Yabupd eite mpv dlappedcovy egite
OUECMG PETA TNV SLOPPOT| KOl O LUKPE HeyEdn oyxeTikng otpoeng xopons. To unyovikd
eoawvopeva kot 1 Ekpact tovg eaptdvtot omd PHeYEAo aplipd TapaUETpOV oYESIOGLOD Kol
a7td TO 16TOPIKO POPTIONG. TNV TPOKEIUEVT O1OTPIPY| LEAETATAL 1) CUUTEPIPOPE TAUUGLOKDV
otoyeiov O.Z. vd oploviia celopkd @optio. Aapupdvovtog vTdyn TV 1EpApYNon TOV
EVOEYOUEVAOV UNYAVICUADV 0GTOYI0G TOL UTOpoLV va eAEYEoLY TV pépovoa tkavotnta. H
pebodoroyion mov oavamtdydnke €xel datvmwbel ®g memepacuévo otolxeio poaPowTov

TAOLGLOKOD TOTOV Kot ypnolwomomdnke vy v Peitiopévn ovoyétion mAndovg
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TEPOUATIKOV dedopuévov amd Vv PipAoypaeic. MéEpog ™ HEAETNG EQOPUOYNG TOV

TPOCOLOIMHOTOC ETIKEVIPOONKE G€ oTOYElD HE TOAOD TOTTOL SOUIKE YOPOKTNPIOTIKAL.

Mo v ektipnon TV JEIKTOV TOPAUOPPOGCIUOTNTAS Kol IKAVOTNTOS GTPOPNG
avafewpnOnke o0 0pPIGUOG TOL UNKOVG TAOCTIKNG GpBpwone SoUk®dv  oTowyEimV,
AopBavovtag voyn v VIEPPACT GE OPOVS TAPULOPPDOGEMY TOV 0Piov dLOPPONE GTOVG
KOPLOVG OTAIGHOVG TOL oTolyeiov. Atoturdbnke 1 dwoupopikn €€l0®ON TOL PUNYOVICHOD
ouvaeelog paPdov — GKLPOSENNTOC Kot EMAVONKE HECH EMPOANG KATAAANA®Y GLVOPLOKADY
oLVONKOV, GLVVTTOAOYILOVTOG TNV OIEICOVOT TAPALUOPPMDCEDY GTOV OTAICUO TPV KO UETA
Vv otafeponoinon g Kaumtikng pnypdroons. EmmpodcOeta avantdybnkav oiyopiBuot
Y10 TV 0VAAVGT KPISIU®V SIATUNTIKG VTTOGTUAMUATOV OTAGUEVOD GKVPOSELNTOC KOl TNV
oLVEYELD EVOOUTOONKAY 6T0 Aoyiopikd PatdmvO (yia Asttovpyikd cvotnuo WindowsO)

o€ KOO Tpoypappaticpod C++.

Mo v perétn otoyeiov pe evioydoels, datvmmOnKay PEATIONEVOL KATAOTOTIKOL
VOLOL Y10 TO GKVPOdEpa og OAYN pe Waitepn Eppacn otnv GLUPBOAN TN TEPICPLYENG LECH
pavdvav vorhopévev toivpepav (I0I1). Ta e&aydpevo TPOCOUOOUATO EVOOUATOOM KOV
610 Aoyopkd OpenSees Kot cuoyeticinkay ETTLYMG PE TEPOUATIKO SEOOUEVO AT TNV
BProypapic. H cvpPoir] g €peuvag EMKEVIPOVETOL GTNV OVOAVLTIKY €pUNVEiR TG
ocoumeppopds ototyeiowv O.X. vd ocvvinkeg opllovTog POPTIONS, KOL GTNV OlOTLITMON
AVOAVTIK®OV EPYOAEIMV Y10l TV TEPALTEP® OLEPEVVNON KOl KATOVONGT TOV ETWOPACEDV TOV
TOPOUETPOV  GYEOIGUOD KOL TOV YOUPOKTNPIOTIKOV TNG QOPTIONG OTNV  CEIGLIKN
coumeprpopd Tovg. Emiong e&nybnoov onpoaviikd mpoktikd copmepdopata yo to péyedog
™G mMAOGTIKNG ApBpmwong mov omoterel Pacikn mapdpeTpo TPOPAEYNS NG KOVOTNTOG
TOPOUOPPOONG oTOLEI®V, Kot 1 omoia pExpt onpepa avipnetomiletal pe PAon eUmelpikes

EKTIUNGELS KOl OPLGLOVG.
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ABSTRACT

Existing reinforced concrete buildings constructed before the development of modern
seismic design provisions represent one of the largest seismic safety concerns worldwide.
Such buildings are vulnerable to significant damage and even collapse when subjected to
strong ground shaking. Collapse of reinforced concrete buildings has resulted in many of the
fatalities in past earthquakes. Since 1980 after the capacity design concept was introduced
in the seismic design code provisions, the seismic safety gap between the newly designed
seismic resistant buildings and those constructed before 1980 is widened causing worldwide
concern. The crucial issue that was evident after the earthquakes in 1999 in Athens (Parnitha)
and in Turkey (Kocaeli) and was underlined by the destructive earthquake of L’Aquila
(2009) in ltaly is the need to improve assessment and retrofit procedures for existing

reinforced concrete buildings.

Columns play a very important role in the structural performance. Therefore, it was
essential to apply a suitable analytical tool to estimate their structural behavior considering
all failure mechanisms such as axial, shear, and flexural failures. In the present thesis a fiber
beam-column element accounting for shear effects and the effect of tension stiffening
through reinforcement-to-concrete bond was developed, in order to provide an analytical
test-bed for simulation and improved understanding of experimental cases where testing of
reinforced concrete columns actually led to collapse. Emphasis was particularly on lightly

reinforced columns.

For the definition of deformability of such columns, the definition of plastic hinge
length was reassessed through consideration of yield penetration effects. The required
confined zone in critical regions of columns and piers undergoing lateral sway during
earthquakes is related to the plastic hinge length where inelastic deformation and damage
develops. The exact definition of the plastic hinge length stumbles upon several
uncertainties, the most critical being that the extent of the inelastic region evolves and
spreads with the intensity of lateral displacements. Design codes quantify a reference value
for the plastic hinge length, through calibrated empirical relationships that account primarily
for the length of the shear span and the diameter of primary reinforcing bars. The latter term
reflects the effects of bar yielding penetration in the support of columns. Here a consistent
definition of plastic hinge length was pursued analytically with reference to the actual strain
state of the reinforcement. Finally, the column’s structural behavior was assessed by

considering all mechanisms of behavior involved, namely flexure with or without the
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presence of axial load, shear and anchorage. The peculiar characteristics of lightly reinforced
concrete columns are the outcome of the shear — flexure interaction mechanism which was
studied based on the Modified Compression Field Theory and the significant contribution of
the tensile reinforcement pullout from its anchorage to the total column’s lateral drift. These
features are embedded in the stand-alone Windows program named “Phaethon” -with user’s
interface written in C++ programming language code- aiming to facilitate engineers in
executing such analyses both for rectangular and circular substandard reinforced concrete

columns.

Confining wraps or jackets to rehabilitate and strengthen existing substandard RC
columns such as those described in the present thesis has proven to be an efficient technique
for seismic retrofit of structures. A new constitutive material law was developed and was
added to the source code of OpenSees as a uniaxial material, i.e. the ‘FRPConfinedConcrete’
material. In order to evaluate the relevance and accuracy of the proposed material model, its
performance was corroborated through simulation of a series of cyclic loading tests

performed on jacketed columns with a rectangular cross section.
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1 Introduction

1.1 Background and Scope

Existing reinforced concrete buildings constructed before the development of modern
seismic design provisions represent one of the largest seismic safety concerns worldwide.
Such buildings are vulnerable to significant damage and even collapse when subjected to
strong ground shaking. The collapse of reinforced concrete buildings has been the cause of
many of the fatalities in past earthquakes. Since the 1980’s, after the capacity design concept
was introduced into the seismic design code provisions, the seismic safety gap between the
newly designed seismic resistant buildings and those constructed before 1980 has widened,
causing worldwide concern. The crucial issue that was evident after the earthquakes in 1999
in Athens (Partnitha) and in Turkey (Kocaeli) and was underlined by the destructive
earthquake of L’ Aquila (2009) in Italy (an event which the author experienced as a resident
of L’Aquila at the time) is the need to improve assessment and retrofit procedures for
existing reinforced concrete buildings. Note that intensive research and code development
that has been going on the last twenty years focuses on this class of buildings, as their
detailing is often found substandard with regards to what is considered today the accepted

approach to earthquake resistant construction.

Reinforced concrete (RC) columns play a very important role in structural
performance as their collapse brings about non-proportional consequences for the structure
as a whole. Behavior of RC columns in combined axial load, shear and flexure has been
studied for decades. In the case of flexural behavior, sectional analysis, or a fiber model in
one-dimensional stress field may give acceptable estimations in terms of ultimate strength
and yielding deformation. Performance of reinforced concrete columns dominated by shear
or shear-flexure cannot be estimated from sectional analysis only, because the transfer of
shear forces engages stress fields that run through the member to its supports. An example
to a member-approach for modelling the effects of shear is the so-called strut and tie
mechanism of behavior in D-regions of beams and columns, where shear engages a 45°
diagonal strut in the concrete member, extending diagonally over a distance at least equal to
the member depth. Nevertheless, many code approaches attempt to treat the shear strength
as a cross-sectional property (e.g. see ACI 318-14, 2014); strut and tie models and alternative
shear design theories do exist (Model Code 2010, AASHTO Code 2013, Moérsh 1902, Ritter
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1899) however their use is regulated and not transparent for many practitioners. More
developed approaches that rely on strut and tie models are the so-called variable angle strut
and tie models. One example is the case where the angle of inclination of the strut is not
fixed at 45° but depends on the amount of transverse reinforcement. This is reflected in the
design method adopted by Eurocode 2 (2004), where the assumed strut angle measured with
respect to the longitudinal axis of the member may range from 22.5° to 45°, leading to the
minimum and maximum amounts of transverse reinforcement respectively. The detailed
method of AASHTO 2013 and Model Code 2010 is based on the Modified Compression
Field Theory (MCFT) (Vecchio & Collins 1986), which, today, is considered the most
developed complete theory for shear of reinforced concrete members. With regards to its
application in seismic assessment, there is a need to adapt the MCFT to the special
characteristics of cyclic response; a limitation to this end is that most of the experimental
work supporting its development has been conducted with monotonic loads (so there is little
evidence as to the calibration of the model in the presence of the degrading mechanisms that
develop due to cyclic displacement reversals); another limitation is the assumption of
uniformly smearing the reinforcement, which is not appropriate in the case of older, sparsely
reinforced construction. A third limitation is that the development of the method does not
acknowledge explicitly the contribution of a degraded bond-slip to the behavior of R.C. in
shear.

Despite its conceptual simplicity and computational versatility, the strut-and-tie
approach prompted the effort for establishing a theoretical basis — resorting to first principles
in order to illustrate the creation of a stress-field that resembles a compression strut with a
parametric definition of the angle of inclination rather than postulating its value. This has
been the objective of much research already from the 1970’s. The difficulty arose from the
brittleness of concrete in tension which disrupts direct application of the basic continuum
mechanics framework even in the context of a hyper-elastic formulation. A first milestone
formulation for studying complex stress states in a reinforced concrete elementary panel was
proposed by Darwin and Pecknold (1974); the approach was formulated in plane stress on
an elementary panel (i.e., neglecting the out-of-plane action in the panel) using an orthotropic
model for concrete after cracking. Concrete and steel were superimposed in the plane of the
panel, considering compatibility of strains between the two materials whereas stress
equilibrium at any cross section of the panel was obtained from the sum of the concrete and

steel contributions. Each such contribution was obtained from material constitutive



properties given the state of strain (state determination). Steel elements were modelled using
uniaxial stress-strain laws, whereas concrete was modelled as an orthotropic material after
cracking represented by uniaxial material laws in the directions of principal stress and strain.
(Therefore, stress and strain transformations were required to convert from global to local
coordinates and vice-versa.) A shear modulus was established from the requirements of
symmetry of the material constitutive matrix in the principal directions (relating vi2 with
v21), Whereas the approach taken for solution of the problem relied on a hypo-elastic
formulation (Chen, 1982)

The work of Darwin and Pecknold (1974) triggered many of the shear models that
followed, and that were based on continuum mechanics principles. An essential assumption
was smearing of reinforcement amount, and the use of average strains away from the crack
(see Collins (1978)). Collins claimed that the approach taken was motivated by the already
prominent theory of Diagonal Tension that had been developed in order to enable calculation
of shear in thin plates such as occurring in steel beam webs. In the theory of diagonal tension,
a square steel panel subjected to in-plane shear distortion would develop strength in the
direction of principal tension (i.e. along the stretched diagonal) whereas the principal
compressive stress along the compressed diagonal was neglected (set to zero) on account for
the tendency for out-of-plane buckling. In this context the stress tensor for plane stress
conditions was presented in terms of the Mohr circle; to account for the fact that compressive
strength of thin plates was negligible due to buckling, the Mohr circle was drawn to go
through zero (i.e., the least principal stress was set equal to zero), and extending in the
direction of positive (tensile) stresses. This enabled calculation of shear strength of the panel
as a function of the material yielding strength in tension. Collins adopted this idea by
reversing the problem for concrete: here the stretched diagonal (direction of principal
tension) develops no strength (on account of cracking, so the maximum principal stress is
set equal to zero) whereas the compressed diagonal would attain the uniaxial strength of
concrete in compression. Following this approach shear strength participation of concrete
was related to the material’s crushing strength in compression. This established the link of
basic continuum mechanics to the concept of strut formation in the strut-and-tie approach.
The Modified Compression Field Theory (MCFT) (Vecchio & Collins 1986) was developed
as an amendment to the Compression Field Theory derived in 1978: first it was recognized
that concrete that had already been cracked would crush at a lower stress than its uniaxial
compressive strength, fc". This was introduced through an empirical coefficient that accounts



for the width of cracks referred to as a softening parameter. The MCFT was calibrated using
a large number of membrane element tests; equilibrium and compatibility were both
expressed in terms of average stresses and strains across the element, and it was
supplemented by local crack checks to ensure bar stresses do not exceed the yielding
capacity. Therefore, the MCFT recognizes that average reinforcement stresses vary from
the crack location to the point away from cracks were strain compatibility between concrete
and steel holds. The difference is attributed to a notional post-cracking strength of concrete
referred to as “tension softening” which a surrogate device to bond stress. The MCFT was
later implemented in the finite element context as was originally established by Darwin and
Pecknold (1974) and developed by Barzegar and Schnobrich (1986), but adopting a hyper-
elastic formulation for improved convergence [Vecchio 1988]. To address the need of
prismatic members where, through the depth of a member cross section normal stresses and
strains vary according with the requirements of flexural moment (e.g. plain sections remain
plane), Vecchio and Collins (1988) introduced the MCFT in a layered model of analysis,
known already in the literature as a fiber model (Zeris 1986). The kinematic assumption of
flexure and shear (expressed by sectional curvature and shear strain) was used to drive the
algorithm whereas principal stress/strain orientations were calculated through the member
depth at the various layers. Nonlinear material constitutive laws (uniaxial stress and strain
in the principal directions) were used for state determination and establishment of
equilibrium of stress resultants. In this approach, concrete fibers are treated as biaxially
stressed elements in the cross section and analyzed for in-plane stresses based on MCFT.
Later, this approach was improved for determination of shear stress distribution on the cross
section and advanced formulations were implemented into Response 2000 (Bentz 2000),

which is a nonlinear member analysis computer program.

Recently, another aspect of column lateral load behavior that has raised the interest
of researchers is consideration of the axial failure of columns that can lead to collapse of a
building (Elwood and Moehle 2005). Before the introduction of special requirements in the
1970s, reinforced concrete building frames constructed in zones of high seismicity had
details and proportions similar to frames designed primarily for gravity loads. Columns
generally were not designed to have strengths exceeding beam strengths, so column failure
mechanisms may often prevail in buildings dating from that era, particularly in regions
without infills (Asteris et al, 2011) (e.g. soft storeys, e.g. Imperial County Hospital, or in the
case of columns framing windows — see Van Nuys Holiday Inn hotel, Fig. 1.1 (Gicev V.,



Trifunac M.D., 2006)). Relatively wide spacing of transverse reinforcement was common,
such that column failures may involve some form of shear or combined flexure — shear
failure. As shear failure proceeds, degradation of the concrete core may lead to loss of axial
load carrying capacity of the column. As the axial capacity diminishes, the gravity loads
carried by the column must be transferred into neighboring elements. A rapid loss of axial
capacity will result in the dynamic redistribution of internal actions within the building frame

and may progressively lead to collapse.
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Figure 1.1: Post-earthquake view of damaged columns in Van Nuys Holiday Inn 7-storey
Hotel in California (Gicev V., Trifunac M.D., 2006).

This kind of response has been witnessed repeatedly during past strong motion events
throughout the world (Perachora Earthquake in Greece 1982, L’Aquila Earthquake in Italy
2009). In order to evaluate and assess the response of shear-dominated structural elements
under lateral load action, a “member” model is needed, but geared towards the seismic
response estimation, under combined flexure and fluctuating axial load effects. In this
direction, despite the many analytical models and theories advanced to interpret shear
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response, the problem of shear in reinforced concrete under lateral sway such as would occur
during earthquakes is still understood imperfectly and a good deal of empiricism is vested
in the design expressions for this problem.

During earthquake excitation columns can experience a wide variety of loading
histories, which may consist of a single large pulse or several smaller-amplitude cycles,
occasionally leading to either shear failure or even collapse — i.e. a loss of gravity-load
bearing capacity of the column. Previous research has demonstrated that the onset of this
type of collapse cannot be quantified unilaterally by a single combination of shear force and
axial load values, but rather, it is characterized by an interaction envelope that depends on
the history of loading and the peak magnitude of deformation exertion attained by the column
(max. drift demand). In order to understand the effect of the loading history on the response
of a column it is noted here that a particular characteristic of structural members undergoing
lateral displacement reversals is the growth of their length due to the accumulation of
permanent tensile strains in the longitudinal reinforcement crossing the diagonal shear
cracks. As the displacement reversals increase in amplitude, so do the crack widths: this
phenomenon is illustrated in the axial stress — strain diagram of reinforcement to the same
level of stress after yielding. (Permanent strains are biased in tension due to the shift of the
neutral axis towards the compression side of the member cross section after cracking). In
this context axial load plays a significant role as it keeps cracks partly closed and therefore
delays the process of ratcheting and elongation. Figure 1.2 depicts an example of a column
under cyclic displacement reversals elongating due to strain accumulation: note that collapse
is marked by the point where this elongation is reversed. This point may be linked to a
number of local material failures — such as crushing of the compression zone, buckling of
the compression reinforcement, exceedance of the strain capacity of longitudinal
reinforcement (Syntzirma et al. 2010). Attainment of any of these conditions is entirely
controlled by the amplitude of the imposed displacement cycles and the low cycle
degradation and strain accumulation that occurs in the reinforcement and concrete under

cycling (Syntzirma et al. 2010).

Recent studies (Chapter 2) attribute particular influence to the final mode and
characteristics of failure by the occurrence of fluctuating axial load about a mean value, in
some occasions the load becoming actually tensile due to the overturning effects imparted
by the earthquake. Furthermore, it has been demonstrated that an increase in the number of
cycles past the yield displacement can result in a decrease in the drift capacity at shear failure.
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Understanding these effects and developing mechanistic tools by which to identify the
characteristics of failure at the loss of axial load bearing capacity and the implications of
drift demand intensity on the mechanics of deformation capacity of columns is one of the

objectives of this research.
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Figure 1.2: a) Axial stress vs. axial strain of tensile longitudinal reinforcement and axial length
change of the first column in Table A.2. of Appendix over the plastic hinge length b) Experimental

lateral response of the cantilever column under study.

In the present thesis a fiber beam-column element accounting for shear effects and
the effect of tension stiffening through reinforcement-to-concrete bond was developed, in
order to provide an analytical test-bed for simulation and improved understanding of

experimental cases where the testing of RC columns actually led to collapse. Emphasis is
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particularly laid on lightly reinforced columns. The combined experimental/numerical
results provided useful information for the definition of plastic hinge length in columns
through consideration of yield penetration effects. The required confined zone in critical
regions of columns and piers undergoing lateral sway during earthquakes is related to the
plastic hinge length where inelastic deformation and damage develops. The exact definition
of the plastic hinge length stumbles upon several uncertainties, the most critical being that
the extent of the inelastic region evolves and spreads with the intensity of lateral
displacements. Design codes quantify a reference value for the plastic hinge length, through
calibrated empirical relationships that account primarily for the length of the shear span and
the diameter of primary reinforcing bars. The latter term reflects the effects of bar yielding
penetration in the support of columns. Here a consistent definition of plastic hinge length is

pursued analytically with reference to the actual strain state of the reinforcement.

In this direction, the definition of the deformability of RC columns was reassessed
in the present thesis by proposing a new methodology for the determination of plastic hinge
length through a consideration of yield penetration effects. Yield penetration occurs from
the critical section towards both the shear span and the support of columns; physically it
refers to the extent of the nonlinear region and determines the pull-out slip measured at the
critical section. Contrary to the fixed design values adopted by codes of assessment, the yield
penetration length is actually the only consistent definition of the notion of the plastic hinge
length, whereas the latter determines the contribution of pullout rotation to column drift and
column stiffness. In order to establish the plastic hinge length in a manner consistent to the
above definition, this research pursued the explicit solution of the field equations of bond
over the shear span of a column. Through this approach, the bar strain distributions and the
extent of yield penetration from the yielding cross section towards the shear span were
resolved and calculated analytically. By obtaining this solution, a consistent definition of
plastic hinge length was established, by reference to the state of reinforcement strain
(replacing the stress-based definition that was used previously in the literature). The true
parametric sensitivities of this design variable for practical use in the seismic assessment of
existing structures are illustrated. The numerical results show good agreement with the
experimental evidence and are consistent with the experimental trends supported by test
databases, confirming that the plastic hinge length is controlled by the residual bond that

may be mobilized along the yielded reinforcement.



In addition, the developed fiber-element is incorporated in the stand-alone Windows
program Phaethon with the user’s interface written in C++ programming language code. The
latter offers the possibility to obtain the capacity curve for shear-critical reinforced concrete
cantilever columns while taking into account the shear—flexure interaction mechanism, as
well as an important contribution to the final column’s lateral displacement capacity owing
to pull-out of the tensile longitudinal reinforcing bars of the column. This is available for
both rectangular and circular reinforced concrete columns. Furthermore, the software
resolves strain, slip and bond distributions along the anchorage length. Comparison with
experimental results from the literature verifies the capability of this Windows software tool
to assess the strength and deformation indices of shear-critical reinforced concrete columns.
Moreover, the moment curvature as well as the shear force — shear strain analysis of the
sections of these columns is also possible, all based on the Modified Compression Field
Theory. The development of a new class fiber model that accounts for localized phenomena
such as shear and reinforcement pull-out in a consistent iterative element formulation will
help minimize the uncertainties that arise with the large collection of zero length nonlinear
spring and fixed-length plastic hinge elements currently used in nonlinear bridge and
building response simulations.

Over the past three decades, fibre-reinforced polymer (FRP) composites have
emerged as an attractive construction material for civil infrastructure, rehabilitation, and
renewal. These advanced materials have been successfully used for the
strengthening/rehabilitation of piers and columns in existing bridges and buildings. The use
of FRP composites, analysis and design, and techniques for installation are continually being
researched and it is anticipated that the use of these advanced materials will continue to grow
to meet the demands of the structural retrofitting needs in the construction industry. Recent
seismic events around the world continue to underline the importance of seismic retrofit and
strengthening of existing concrete structures leading to the need for new, practical, occupant-
friendly and cost-effective remedial solutions.

In this context, one of the major applications of Fiber Reinforced Polymers (FRPS)
in construction is in the confinement of RC columns. The performance of FRP-confined
concrete in circular columns has been extensively investigated in literature and the efficiency
of the available models is nowadays considered to be satisfactory. However, the case of
confinement of rectangular RC sections with FRPs is a more complex problem, the

mechanism of which has not yet been adequately described. Therefore, an iterative analytical



model was derived to simulate the axial and lateral stress-strain response of axially loaded
FRP-confined rectangular and square reinforced concrete columns. In FRP-confined square
or rectangular sections, no unconfined concrete regions are observed, as assumed in many
models. Areas where arching effect is assumed in the section are described as partially
confined, so their contribution to the column’s total strength is limited by the limited
kinematic restraint provided by the jacket against outwards expansion resulting from the
longitudinal compressive forces supported. Thus, two different regions with different
confining stress-states are identified. The two regions are uniaxially and biaxially confined
(biaxial and triaxial stress-state, respectively). The contribution of each region to the total
section strength is modelled as a system of parallel springs, whose axial stresses are added
based on the corresponding constitutive law under biaxial or triaxial stress state. The lateral
behavior develops along the diagonals of the section and can be represented by a system of
springs in series. It was shown that both sides’ lateral strains in the rectangular sections are
equal, regardless of their aspect ratio. The reacting force of the confining device applied at
the corners is shared among the two regions of different degree of confinement, based on the
defined path of the confining forces and the geometry of the regions. The resulting lateral
uniform pressures lead to the corresponding axial strength of the regions. The algorithm
takes into account all parameters available to designers, such as corner rounding radius,
stiffness of the FRP and concrete strength, while it can be easily understood and
implemented. Results of the proposed modeling approach are found to correlate adequately
to recent experimental data obtained from large-scale tests on FRP-confined rectangular RC
columns. In addition, the performance of this material model was further investigated by its
implementation in the simulation of a series of experimental tests of FRP-retrofitted square
RC columns under cyclic lateral loading simulating earthquake loads and simultaneous
constant axial compression. In particular, all specimens were modelled using nonlinear fiber
elements, whereas the FRP-confined concrete was modelled using the developed material
model. Comparison between the numerical and experimental hysteresis of the column is
indicative of the effectiveness of the implemented modelling. Finally, this recently
developed material model for FRP—confined concrete was implemented in OpenSees (2006)
under the name ‘FRPConfinedConcrete’ with no tensile strength and degraded linear
unloading/reloading stiffness in the case of cyclic loadings.
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1.2 Organization of the thesis

The thesis spans eight chapters organized as follows: Following the introduction of the thesis
scope and objectives in Chapter 1, Chapter 2 presents a detailed literature review regarding
the state of the art in the field of seismic assessment of RC columns. Chapter 3 presents the
development of a fiber model for analysis of flexure-dominant members under cyclic load
reversals: the performance of the model is correlated with the experimental results of a well-
known experimental database. Chapter 4 reviews the mechanical behavior of lightly
reinforced concrete columns and identifies the types of experiments where the fiber-model
analysis would fail to reproduce the observed behavior. One source of the error in estimating
the deformational response of columns under lateral sway is the empirical, insensitive nature
of the plastic hinge length used in calculations. To address this limitation, Chapter 5
develops a new fundamentally consistent definition of the plastic hinge length in columns
though consideration of yield penetration effects. Chapter 6 presents the development of a
force-based fiber beam-column element that accounts for shear and tension stiffening effects
that was incorporated in the stand-alone program for Windows called Phaethon. Chapter 7
presents new developments on FRP seismic retrofit of RC columns with confining wraps or
jackets that has proven to be an effective technique for the seismic retrofit of structures. A
new constitutive model for FRP — confined concrete is included in this Chapter. Important
findings of the work are summarized along with the conclusions in the 8-th chapter of the

present volume.
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2 Literature Review

2.1 Introduction

The procedure of estimating the strength, the deformation capacity and the expected mode
of failure in primary members of a RC frame structure, that is, the complete process of
seismic assessment, has been recently supported by background documents in both Europe
and the U.S. (KAN.EPE. 2014, EN 1998-3 2005, ASCE/SEI-41 2007, and 2017), and most
recently by the Revised Draft (for 2020) of the Model Code by the fib). Currently, a new
revised version of EN 1998-3 is also being drafted, to be released in the near future (2020),
condensing the advancements that have occurred in the field over the last 20 years. In all
cases, the core of the assessment process comprises a complex system of evaluation of
demands and capacities; demands are associated with the performance point determined for
the design earthquake. Capacities are linked to different levels of performance. They are
often expressed in terms of deformation capacity at specific conditions of damage of the
constituent materials (e.g. cracking, repairable damage, or near collapse) and are commonly
referred to as “acceptance criteria”. However, the various steps of this process are not vested
with a uniform level of confidence as compared with the experimental results. Strength
values can be estimated with sufficient accuracy only if the modes of failure involved are
ductile. The level of accuracy is reduced when considering brittle mechanisms of resistance,
and the associated deformation capacities, which are used as a basis for comparison with
deformation demands to assess the level of performance (i.e. the damage), generally do not
correlate well with proposed Code estimations, even after the many years of development

that have gone into this topic of research.

From evidence collected in past building and bridge collapses it was observed that in
many cases columns failed in a brittle manner prior to flexural yielding due to insufficient
transverse reinforcement over lap-splices or as would be needed to resist shear (for example
see 1999 Parnitha Earthquake in Athens and the Izmit-Kocaeli Earthquake in Turkey in the
same year, the 2010 earthquake in L’ Aquila, among other notable events) (Pardalopoulos et
al. 2011). Due to the implications on public safety, this is considered a critical matter in the
process of assessment: ductility in the member behavior may only be secured if the response
is dominated by flexural yielding, (thus, it ought to precede shear failure). Even when

flexural yielding may be supported it is also important to dependably estimate the ductility
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level beyond which shear strength may be assumed to have degraded below the flexural
strength, leading to a secondary post-yielding failure that limits the available deformation
capacity (Fig. 2.1).

Stiffness properties and inelastic earthquake response of frame members are usually
studied based on a statically-determinate structure comprising a cantilever reinforced
concrete column under combined axial and lateral loading. Given the material properties (be
they nominal, assumed or experimentally measured), geometry, the loading conditions and
loading history, it is theoretically possible to analyze the cantilever so as to study the
interactions between various aspects of its response such as flexure, shear and reinforcement
development capacity (Syntzirma and Pantazopoulou 2007). In recent years lab experiments
are conducted on full-height, fixed-ended column specimens. Lateral sway in this case
causes double curvature with an inflection point at mid-height. This setup is preferred over
the cantilever arrangement, since it is possible to achieve the interaction of the two end
moments and to obtain realistic curvature distributions, reinforcement detailing at midspan
may be representative of actual conditions (as compared to its being attached to loading
fixtures), whereas they are more versatile in dynamic tests (as it is possible to mount masses
on top of the restraining beam at the upper end of the column, thus simulating more

realistically the actual circumstances in the field).
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Figure 2.1: (a) Typical test setup of double curvature column (from Henkaus et al. 2013). (b) Capacity

curve due to flexural or shear mechanism. Onset of shear failure is denoted with the yellow point.

Moreover, in the case of lightly reinforced concrete columns which are representative
of older construction, major inclined shear cracks have been seen to occur in the column

region at mid-height (near the point of column inflection), a crack pattern that cannot be
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reproduced with the cantilever specimen since its tip is free to rotate (as it is only restrained
in translation) and sustains no damage in that region. In addition, the elongation due to
damage of the double curvature member is more representative of a typical building column
under lateral sway simulating earthquake action. The assessment performance objectives in
such experiments can be categorized and documented by obtaining the full inelastic response

until the collapse of the RC column.

Figure 2.2: Evidence of the intensity of damage of bridge columns: (a.1) Member resistance curve and
definition of limit states according with EN 1998-3 (2005). (a.2) Shear cracking at mid-height of column
restrained at both ends. (b.1) Damage Limitation Limit State (b.2) Significant Damage Limit State (b.3) Near
Collapse Limit State.

According to Eurocode 8, Part 3 (EN 1998-3, 2005), the fundamental performance
criteria related to the state of the structural damage are defined through three Limit states
that span the range of the member resistance curve (Fig. 2.2.a), and are defined according to
the severity of damage that they represent as follows: “Damage Limitation (DL)”,

“Significant Damage (SD)”, and “Near Collapse (NC)”. The target displacement of the
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column based on the earthquake load defines which of these Limit States are reached. In the
following figure (Fig 2.2.b) the performance objectives for these Limit States are
documented in practical terms.

The objective of this chapter is to critically review and identify, through a thorough
evaluation of the published experimental evidence, the critical issues affecting the resistance
curve of columns during earthquake action (strength and deformation capacity) and the
limiting brittle modes of failure. This is important since the column resistance curve
eventually controls the overall resistance of the structure in a relatively straightforward
manner (Fotopoulou et al., 2011) whereas a sudden loss of column strength to overbearing
loads may lead to collapse and human loss. In the context of a displacement-based evaluation
framework, not only the relevant shear strength is important, but also the corresponding
column displacement capacity. In this regard, recent experimental evidence will be reviewed
along with recently developed analytical models and the relevant state of the art of code

assessment pI’OCEdUI’ES.
2.2 Past Experimental Studies on Shear Dominated RC Columns

The behaviour of shear-critical reinforced concrete columns has been the subject of extensive
study and research in recent years as this seems to remain a challenging concrete mechanics
problem (Chapters 1 and 2). Shear dominant behaviour is reported in columns with a low
aspect ratio (Arakawa et al. 1982, 1989, Calderone et al. 2000), but also in lightly reinforced
columns containing low ratios of transverse reinforcement (Ngoc Tran and Li, 2013,
Syntzirma and Pantazopoulou 2007). Section geometry (e.g. rectangular or circular sections)
is one of the parameters that differentiates the available test results (Berry and Eberhard,
2004); cyclic pseudo-static, hybrid pseudo-dynamic and dynamic tests have all been used as
alternatives to understand column behavior. Some experimental studies are dedicated to the
influence of axial load fluctuation on the response of the column (Benzoni et al. 1996, Kim
et al. 2011). Fluctuation occurs about the static axial load value of the overbearing loads,
and in the experimental context it is intended to model the effect on its magnitude impacted
by the overturning action of lateral loads during the seismic event. In actual field conditions
the amplitude of the fluctuation is most significant in columns located at a distance from the
center of mass of the building, i.e., on the perimeter of the structure.

The same effect is seen in bridge piers belonging to multiple-column bents where it
may be easily demonstrated that the axial load fluctuation is proportional to the horizontal
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(seismic) forces. Columns are also subjected to the vertical components of ground motion,
which is not correlated concurrently with the horizontal loading. Past earthquake records
have shown that in some cases, vertical ground motions cannot be ignored, particularly for
near-fault situations (Kim et al. 2011). For example, the lateral displacement ductility of a
column, designed based on constant axial load with a relatively low axial load ratio, can
become unsatisfactory when the actual axial load due to the overturning effects (or where
the vertical ground motion has a significant contribution) exceeds the “balanced” axial load
limit (i.e., about 40% of the column crushing load, Park and Paulay 1975). The problem
becomes even more significant when shear design is considered. The increase of axial load
from the design level (which typically is in the order of 5% to 10% of the crushing load) to
the level of the balanced value generally increases the column flexural capacity causing a
commensurate increase in the design shear demand (based on capacity design principles).
On the other hand, a change in the axial load value from compression to tension may

compromise significantly the column shear strength (Kim et al. 2011).

2.2.1 A review of some influential Cyclic Tests on Columns

From among the multitude of published tests on cyclically loaded columns under lateral
displacement reversals (see also Chapter 3), a number of tests have received greater attention
as the specimen responses recorded were used as points of reference in calibrating the design
expressions for shear published in the literature. On account of the weighty contribution of
these experimental studies to the formation of the current assessment framework, these
studies are reviewed separately in the present section.

Ang, Priestley and Paulay (1989) performed experimental tests to study the seismic
shear strength of circular columns. A series of twenty-five 400 mm-diameter columns,
considered to be approximately one-third scale models of typical bridge columns, were
constructed and tested under cyclic lateral displacement reversals, as part of a major
investigation into the strength and ductility of bridge pier columns. Variables in the test
program included axial load level, longitudinal reinforcement ratio, transverse reinforcement
ratio and aspect ratio. The column units were tested as simple vertical cantilevers. Results
indicated that the shear strength was dependent on the axial load level, the column aspect
ratio, the amount of transverse spiral reinforcement and the flexural ductility displacement
factor. At low flexural ductilities, the additive principle for shear strength (i.e. Vai=Vc+Vw),
based on a concrete contribution plus a 45-deg truss mechanism involving the spiral
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reinforcement and diagonal concrete compression struts associated with the axial load
action, described the behavior quite well. But at flexural displacement ductilities greater than
two (us>2), the tests demonstrated a gradual reduction of lateral load strength with
increasing ductility demand, whereas the inclination of the diagonal compression struts of
the truss mechanism relative to the longitudinal axis decreased. Here it is worth noting that
significant rotations occurred at the base of these specimens artificially distorting the data in
the direction of more excessive strength loss due to P-A effects (loannou and Pantazopoulou,
2016).

Wong, Paulay and Priestley (1993) conducted a series of biaxial tests that included
16 circular (400 mm-diameter) reinforced concrete cantilever columns with an aspect ratio
of two and different spiral reinforcement contents in order to investigate the sensitivity of
the strength and stiffness of shear-resisting mechanisms to various displacement pattern and
axial compression load intensities. Elastic shear deformations in squat circular columns with
small or no axial compression load were found to be significant. It was concluded that shear
deformation ought to be included explicitly in the estimation of initial stiffness of a column,
so that a reliable relation between the ductility demand and the corresponding drift could be
established. A general observation was that in comparison with uniaxial displacement paths,
biaxial displacements led to more severe degradation of stiffness and strength, and thereby,
increased energy dissipation. However, the reduction of initial shear strength and ductility
capacity of squat columns (recall that the aspect ratio of the tested columns was equal to 2),
subjected to biaxial displacement history was not very significant. The value of the
dependable displacement ductility level attained during biaxial displacements was, on
average, less (i.e. a value difference of 1) than that obtained in identical units subjected to
uniaxial loading history. Initial shear strength of units with brittle shear failure was reduced
by about 5 to 10 percent, depending on the axial load level when biaxial rather than uniaxial
loading was considered. Finally, one more important finding was that the shear carried by
spirals was underestimated when using a 45-deg potential failure plane; the observed major
diagonal cracks developed in squat columns at much lower angles with respect to the
longitudinal axis of the member.

Lynn et al. (1996) constructed and tested 8 full-scale square section (457 mm)
columns that had widely-spaced perimeter hoops with 90-degree bends with or without
intermediate S-hooks and with longitudinal reinforcement with or without short lap-splices.
The columns had an aspect ratio of 3 and were loaded with constant axial load at low and
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intermediate levels, and were subjected to lateral deformation cycles until the column was
incapable of supporting a lateral or vertical load. Failure modes included localized crushing
of concrete, reinforcement buckling, lap-splice and flexural bond splitting, shear and axial
load collapse (Dhakal and Maekawa, 2002). Loss of gravity load capacity occurred at, or
after significant loss of lateral force resistance. Where response was governed by shear,
gravity load failure occurred soon after loss of lateral force resistance. Where response was
initially governed by lap-splice deterioration and gravity loads were relatively low, gravity
load resistance was maintained until eventual shear failure occurred. Where response was
predominantly flexural, gravity load capacity was maintained to relatively large
displacements.

As earthquakes and laboratory experience show that columns with inadequate
transverse reinforcement are vulnerable to damage including shear and axial load failure,
another study in this direction was conducted by Sezen and Moehle (2006). The latter
included four full-scale square section (457 mm) columns with an aspect ratio equal to 3 and
light transverse reinforcement that were tested quasi statically under unidirectional lateral
loads with either constant or varying axial loads. Test results showed that responses of
columns with nominally identical properties varied considerably depending on the
magnitude and history of axial and lateral loads applied. For the column with a light axial
load and reversed cyclic lateral loads (applied through a displacement history), apparent
strength degradation triggered shear failure after the flexural strength was reached. Axial
load failure did not occur until displacements had increased substantially beyond this point.
The column with high axial load sustained brittle shear compression failure and lost axial
load capacity immediately after shear failure, pointing out the necessity of seismic
evaluations to distinguish between columns on the basis of axial load level. The column
tested under varying axial load showed different behavior in tension and compression, with
failure occurring under compressive loading.

The experiments by Pantazopoulou and Syntzirma (2010) on columns having
different details were designed to encourage a specific hierarchy of modes of failure by
adjusting the spacing of stirrups and the length of lap splices of longitudinal reinforcement
in the critical region. The most interesting finding from that experimental study was that the
deformation capacity is controlled by the dominant mode (the weakest mechanism) and may

be estimated mostly by the deformation capacity of the specific failure mechanism; this

18



became later the basis for the rapid assessment procedure for identifying column strength

(Pardalopoulos et al. 2011, loannou et al. 2018).
2.2.2 A review of relevant Pseudodynamic Tests

It was stated earlier that when submitted to lateral sway due to earthquake ground shaking,
columns in RC structures carry axial forces owing to dead and live loads and a combined
variable axial force, flexural moment and shear. The variable axial loads lead to
simultaneous changes in the balance between the column strain capacity and demand at
critical areas to an extent that eludes adequate estimation as it depends on load history.
Recently, code models use strain limits to identify critical performance states (e.g. AASHTO
LRFD 2013; CHBDC 2015; see Qi and Alam, 2018).

To consider the time varying effects of the ground motion on the combined actions,
simulated dynamic loads were applied using a hybrid simulation of the earthquake effects
on structural subassemblies wherein the column specimen is assumed to belong. Kim et al.
(2011) used hybrid simulation, where an experimental pier specimen was tested
simultaneously and interactively with an analytical bridge model which was simulated
computationally; at each step of the dynamic test the forces applied on the specimen were
calculated by solving the dynamic equation of motion for the structure where the stiffness
contribution of the modelled column in the global structural stiffness was estimated from the
measured resistance in the previous step. Additionally, two cyclic static tests with constant
axial tension and compression were performed to study the effect of the axial load level on
the bridge piers. It was found that by including vertical ground motion the axial force
fluctuation on the test specimen increased by 100%, resulting at times in a net axial tension
that was not observed under horizontal motion alone. This high axial force variation led to a
fluctuation of lateral stiffness and a more severe outcome of cracking and damage. The
confining spiral strains were significantly affected: whereas the maximum spiral strain of
the specimen subjected to horizontal ground motion occurred at 20% of the pier height, in
the case of an identical specimen subjected to combined horizontal and vertical excitations
it occurred at 55% of the pier height. Thus, it was estimated that the spiral strain increased
by 200% when vertical ground motion was included. Therefore, in this example, the
deterioration of shear capacity due to vertical ground motion was experimentally
demonstrated. Also, whereas the test specimen that was subjected to constant axial
compression experienced brittle shear failure including rupture of the spiral reinforcement,

the companion specimen that was subjected to moderate tension showed ductile behavior.
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Comparing the strength at the first peak of displacement, it was found that the lateral load
strength of a specimen with constant axial tension increased marginally with increasing
displacement (probably engaging the strain hardening response of the reinforcement); the
response of the specimen with axial compression showed significant strength degradation.
Hence, considering observations from the two tests described above, it was clearly shown
that different axial load levels influence the pier behavior significantly and can ultimately
dictate the failure mode.

2.2.3 Shake Table Tests conducted on Columns

Shake table tests were conducted (Elwood 2002) to study the process of dynamic shear and
axial load failures in reinforced concrete columns when an alternative load path is provided
for load redistribution. The test specimens were composed of three columns fixed at their
bases and interconnected by a beam at the upper level. The central square section column
had a wide spacing of transverse reinforcement rendering it vulnerable to shear failure and
subsequent axial load failure during testing. As the central column failed, the shear and axial
loads were redistributed to the adjacent ductile circular columns. Two test specimens were
constructed and tested. The first specimen supported a mass that produced column axial load
stresses roughly equivalent to those expected for a seven-story building. In the second
specimen hydraulic jacks were added to increase the axial load carried by the central column,
thereby amplifying the demands for redistribution of the axial load when the central column
began to fail. Both specimens were subjected to one horizontal component of a scaled ground
motion recorded during the 1985 earthquake in Chile. A comparison of the results from the
two specimens indicates that the behavior of the frame is dependent on the initial axial stress
on the center column. The specimen with a lower axial load failed in shear- but maintained
most of its initial axial load. For the specimen with a higher axial load, shear failure of the
center column occurred at lower drifts and at an earlier stage in the ground motion record,
and this event was followed by axial failure of the central column. Displacement data from
immediately after the onset of axial failure suggest that there are two mechanisms by which
the center column shortens during axial failure: first, by large pulses that cause a sudden
increase in vertical displacement after a critical drift is attained; and second, by smaller
oscillations that appear to ‘grind down’ the shear-failure plane. Dynamic amplification of
axial loads transferred from the center column to the outside columns was observed during

axial failure of the center column.
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An additional study by Ghannoum and Moehle (2012) includes earthquake
simulation tests of a one-third-scale, three-storey, three-bay, planar reinforced concrete
frame which was conducted to gain insight into the dynamic collapse of older-type
construction. Collapse of the frame was the result of shear and axial failures of columns with
widely spaced transverse reinforcement. The frame geometry enabled the observation of the
complex interactions among the failing columns and the surrounding frame. The tests
showed that the failure type and rate depended on the axial load level, stiffness of the
surrounding framing, and intensity and duration of shaking. Column shear and axial
behavior, including strength degradation, was affected by both large lateral deformation
excursions and cycling at lower deformations. Low-cycle fatigue caused column collapse at
significantly lower drifts than anticipated. It was concluded that current models and
standards for estimating the shear and axial failure of columns do not account for low-cycle
fatigue and can be unconservative, particularly for columns subjected to long-duration
seismic motions. Moreover, models for shear strength degradation of reinforced concrete
columns should account for both deformation and cyclically-driven damage (Syntzirma et
al. 2010). Finally, it was seen that structural framing surrounding the failing columns enabled
vertical and lateral force redistribution that delayed or slowed down progressive structural

collapse.
2.3 Code Criteria for Shear Strength Assessment of RC Columns

Behavior of reinforced concrete columns under lateral sway has been studied extensively
through experiments simulating earthquake action by applying relative lateral displacement
at the ends of the member (see also Chapter 3). The relative magnitude of shear strength and
flexural force demand determines the intensity and type of anticipated failure. This in turn
controls the accuracy of the estimation of the mechanistic models used to assess the lateral
load resistance and deformation capacity of the member. In the case of behavior dominated
by flexure, sectional analysis, or a fiber model considering normal stresses provides
acceptable estimations in terms of ultimate strength and yielding deformation. Performance
of reinforced concrete columns dominated by shear or shear-flexure cannot be estimated by
applying only sectional analysis because shear behavior concerns the overall member and
not a single cross section. In these cases it is necessary to couple a shear strength model with
the flexural model — and by considering independently the degradation of each with

increasing deformation, to determine the prevailing mechanism that controls the mode of
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failure of the member at the reference performance limit. Several code assessment
procedures define the shear strength and its rate of degradation with increasing displacement
ductility by evaluating the concrete contribution and the transverse steel reinforcement
contribution to shear strength. Actually the existing code methodologies are differentiated
regarding the concrete contribution term whereas the truss analogy for steel contribution is
adopted almost universally in all proposals with a minor point of discussion being the angle
of inclination of the primary shear crack of the column that activates the steel stirrups
contribution (Fig. 2.3). The various aspects of the code assessment of shear strength will be
covered in the following sections.

It is generally acknowledged that shear failure of RC structures signifies rapid
strength degradation and significant loss of energy dissipation capacity. Reconnaissance
reports from past strong earthquakes highlight the susceptibility of RC column webs to
diagonal tension cracking that frequently leads to a brittle shear failure. Shear strength
degradation ensues after the opening of the diagonal cracks which eliminate the mechanism
of force transfer via aggregate interlock. To avoid shear failure, shear strength should exceed

the demand corresponding to attainment of flexural strength by a safety margin.

Figure 2.3: (a) Angle of inclination of the primary sliding shear crack. (b) Field evidence of shear failure

For the mechanics of shear in reinforced concrete, most issues relating to physical
interpretation are still fraught with considerable debate. For example, consensus is lacking
as to the physical significance of the concrete contribution term and to mathematical
description of tension-based sources of shear-strength and their relationship to strain
intensity and cyclic displacement history. According to EN 1998-3 (2005), the part of the
cyclic shear resistance that depends on concrete and transverse steel contribution (excluding

the part owing to axial load contribution), Vg, decreases with the plastic part of ductility
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demand, expressed in terms of ductility ratio of the transverse deflection of the shear span
(Fig 2.4) or of the chord rotation (Fig. 2.4) at member end: u,P' = u, — 1. For this purpose
u,Pt may be calculated as the ratio of the plastic part of the chord rotation, &, normalized to

the chord rotation at yielding, 8,,.

0, =4,/Lg

Otor = Atot/Ls

Hp = Oror — Hy Ls

0, =4,/Ls

Figure 2.4: Definition of chord rotation of a cantilever reinforced concrete column (top) modeling the

shear span of an actual column (bottom).

Thus, EN 1998-3 (2005) defines shear strength accounting for the above reduction

as follows:
Vg = [(h—x)/2Lg] - min(N; 0.554.f;.) + [1 — 0.05min(5; u,PH)] -
{0.16max(0.5; 100p0,)[1 — 0.16min(5; Ly /R foAc + Vi) (2.1)

where h: is the depth of the cross-section (equal to the diameter D for circular sections); x:
is the compressive zone depth; N: is the compressive axial force (positive, taken as being
zero for tension); Ly = M /V is the shear span of the member; A_: is the cross-sectional area,
taken as being equal to b,,d for a cross-section with a rectangular web of width (thickness)
b,, and structural depth d or to wD_.2/4 (where D, is the diameter of the concrete core to
the inside of the hoops) for circular sections; f.: is the concrete compressive strength, and
Peot: 1S the total longitudinal reinforcement ratio. Term V, is the contribution of transverse

reinforcement to shear resistance, taken as equal to

ASW
Vo = 572 fyw(D = 2) (2.2a)
Where, f,,, is the yield stress of the transverse reinforcement, Asw the area of the spiral wire,

c the concrete cover, and S is the spiral step (spacing between successive turns of a spiral).

Similarly, for rectangular cross-sections with a web having width b,
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Vw = pwbwzfyw (2.2a)

where p,, is the transverse reinforcement ratio, z is height of the equivalent truss (internal
lever arm between longitudinal tension and compression resultants, i.e., d-d’ in beams and
columns) (Fig 2.5).

Consider a typical column with a 350 mm circular section (f; = 30 MPa) with Ls=
1.5 m (i.e., a clear height of 3.0m), clear concrete cover 20mm, reinforced with 14®12
longitudinal bars and ®10/10 spiral reinforcement (fy=f,w=500MPa) and axial load ratio of
0.2. The axial load, concrete, and transverse steel contribution to shear strength calculated
from Eq. 2.1 are, 49 kN, 34 kKN and 191 kN. The reduction factor for ua=3 (i.e, uap=2), is
0.9. Therefore, the reduced contribution of concrete and transverse reinforcement is 203 KN.
The variation of shear strength with spacing for the example under consideration leads to the
following graph (Fig. 2.7a). Clearly, there is an inconsistency in the continuity of the above
expression of Vy, in that even when the spiral step exceeds the diameter of the confined core
a nonzero strength is dependent-upon to be contributed by the spiral. This shortcoming is
even more transparent in the case of rectangular columns where the transverse steel
contribution refers to the total stirrup forces that arise when a 45° diagonal sliding plane
intersects stirrups along the members’ critical region. To illustrate this point, consider a
column with the same material properties as the one discussed in the preceding and same
shear span length Ls. In the present example, the column has a 457 mm square cross section,
reinforced with 8020 longitudinal bars and a ®10/20 transverse perimeter stirrup. For the
same axial load ratio the axial load contribution to shear strength is 145 kN, whereas the
concrete and transverse steel contribution are 104 and 147 kN respectively (253 kN). The
latter will be reduced to the value of 227 kN for displacement ductility equal to 3. The
variation of shear strength with spacing for this example under consideration leads to graph
plotted in Fig. 2.7b.
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Figure 2.5: Definition of terms for calculating the transverse reinforcement ratio (S: stirrup spacing)

It is evident that for spacing greater than the effective depth of the section—which
for the 45° degree truss analogy would mean that the shear crack doesn’t intersect any
stirrup—Eq. 2.2a simply leads to a lower value of steel contribution to shear strength. This
is actually inconsistent — the value ought to be zero in this case; with reference to Fig. 2.7
Pantazopoulou and Syntzirma (2010) have suggested that the term be substituted by:

Viw = 2n; Aswi " fsi; where, n; =< d/s > (greatest integer function) (2.2b)
Based on Fig. 2.7, the steel contribution component should be based on the requirement that

at least one stirrup layer must be intersected by the diagonal cracking plane; otherwise the

steel contribution term ought to be taken as equal to zero.

T —- To find Vi, identify first the location where the
e least number of stirrup legs is intersected by
al | / ______ A .. _Lthe diagonal sliding plane.
L
AL

kl*_sﬁk Ci

Figure 2.6: The number of stirrups intersecting the sliding plane could be zero (Syntzirma and
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Figure 2.7: (a) Effect of spiral spacing on transverse steel contribution of a circular section in shear

strength (b) Effect of stirrup spacing on transverse steel contribution of a square column section
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In concrete columns with shear span ratio of Li/h less or equal to 2, the shear
strength, V; cannot exceed the value corresponding to failure by web crushing along the
diagonal of the column after flexural yielding, Vg 4y, Which under cyclic loading may be

calculated from the expression:

Vemax = (4/7)[1 = 0.02min(5; usPH][1 + 1.35(N /A f)][1 + 0.45(100p,0,)] -

Jmin(40; f.)b,,z - sin28 (2.4)

where & is the angle between the diagonal strut that is defined by the centroids of the
compression zones at the column ends, and the axis of the column (tand = h/2L;). By
implementing this equation to the example of the cases described above but with a change
on the shear span so that the column be compliant to the shear span ratio limit of Eq. 2.4, the
following results are obtained (Lg=700mm). It can be seen that for the circular column case

shear strength is close to web crushing along the diagonal.

700
600 -
500 +
400 -

300 - M Circular Column

200 - M Sguare Column

Shear Stength (kM)

100 +

Figure 2.8: Shear Strength and its contributions for a typical reinforced concrete column.
ASCE/SEI 41 (2017) is the latest in a series of documents developed after the FEMA

initiatives in the 1990s and 2000s towards the development of a consistent assessment
framework for existing structures. The FEMA/ATC documents form the first integrated
reference for performance-based engineering, whereby deformation and force demands for
different seismic hazards are compared against the capacities at various performance limits
(i.e. states of damage). At the outset of this momentous project by FEMA, available data on

the performance of existing components were rather limited and therefore reliability
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concepts were not applied evenly towards the establishment of performance criteria. The
issue of dependably estimating the shear strength of a RC element appears to be rather
complicated as it presumes the full understanding of the several interacting behavior
mechanisms under reversed cyclic loading, whereas it is strongly affected by the imposed
loading history, the dimensions of the element (e.g. the aspect ratio), the concrete strength,
the longitudinal reinforcement ratio but mostly the ratio and the detailing of the transverse
reinforcement. So far it has not been possible to theoretically describe the strength of the
shear mechanism from first principles of mechanics without the use of calibrated empirical
constants. Therefore, the shear strength estimates obtained from calibrated design
expressions necessarily rely on the pool of experimental data used for correlation of the
empirical expressions, as well as on the preconceived notions of the individual researchers
as to the role each variable has in the mechanics of shear.

The following expression for estimation of the shear strength of tied rectangular-
section reinforced concrete columns is proposed by the Code for seismic rehabilitation of
existing buildings of the American Society of Civil Engineers ASCE/SEI 41 (2007):

Ve =V + Vi = k(ua) I(O.S\/ﬁ/(Ls/d))\/l + N/(0.54,4/1.)[0.84, + k(ua) -

[Aswfywd/s] (2.5)

where V. is the concrete contribution in shear resistance; V,, is the contribution of transverse
reinforcement; d is the effective depth; Ly is the shear span of the column; N is the axial
force (compression positive, taken zero for tension); A, is the gross cross-sectional area of
the column; Ay, is the cross-sectional area of one layer of stirrup reinforcement parallel to
the shear action; and S is the centerline spacing of stirrups along the length of the member.
If S is equal to or greater than half of the effective depth of the column then the contribution
of steel reinforcement 1}, in shear strength is reduced to 50% of its estimated value from the
above equation. If S is equal to or greater than the effective depth of the column then zero
shear strength contribution from steel reinforcement V,, is considered; f. is the concrete
compressive strength; k(u,) is the shear strength reduction coefficient that depends on
ductility demand. If ductility demand is less than or equal to 2 then the factor is set to equal

to 1 (i.e. no strength reduction). If the ductility is greater than 6, then the reduction factor is
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equal to 0.6. For ductility between 2 and 6 the reduction factor is linearly interpolated
between the proposed values.

The V. estimate given by Eq. 2.5 for the example of the rectangular column presented
in this Section is: Vc,asce = 233 kN, while EN 1998-3 (2005) resulted in Vc¢,ecs-3= 104 kN
which, when combined with the axial load component (145.2 kN) leads to a total of 229.2
kN, which is comparable to the result of Eq.2.5. For the case of the circular column results
to V¢,asce = 81 KN whereas V¢,ecs-3=80 kN (49 kN from the axial load contribution and 31
kKN concrete web contribution) — values calibrated well with each other. The effect of the
stirrups’ spacing to the steel contribution to shear strength is depicted in the following figures
for ASCE/SEI-41 (2017) and it is compared with the results of EN 1998-3 (2005)
(abbreviated as EC8-I1I).

Despite the convergence of the calibrated expressions of the two code approaches,
the preceding comparisons highlight some of the uncertainties underlying the shear problem.
For one, the concrete contribution term is taken—in both code documents—to be
independent of the amount of transverse reinforcement, an omission that goes to the root of
the truss-analogy model as originally introduced by Ritter and Moersch: there, the concrete
contribution component was thought to be a minor correction to the main component that
was owing to transverse reinforcement (the truss posts) so as to improve correlation with the
tests — it was never meant to be a component of commensurate importance and magnitude
to that of transverse reinforcement. Another source of uncertainty lies in the treatment of the
axial load: in the EN 1998-3 (2005) approach, the axial load contribution is dealt with as a
separate term, whereas in the ASCE/SEI 41 (2007) approach it is treated as an offset to the
tensile strength of concrete in the member web. This difference causes a departure in the V¢

values near the upper limit in the axial load ratio (v=N/Agfc) as depicted in Fig. 2.11.
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Figure 2.9: Effect of stirrup spacing on steel contribution of a rectangular section’s shear strength.
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Figure 2.10: Effect of spiral step on steel contribution to shear strength of a circular section.
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Figure 2.11: Shear strength vs. displacement ductility for the column with rectangular section.
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Figure 2.12: Shear strength vs. displacement ductility for the column with circular section.



Contrary to the shear strength assessment models of EN 1998-3 (2005) and
ASCE/SEI 41 (2007), the shear model of fib Model Code (2010) is a design model which
was not calibrated to specifically address members under seismic loads. The fib-MC2010
design section on shear provides the option of four different levels of model complexity
depending on the level of detail needed at the time of calculation (intended to address the
needs for preliminary design, for detailed design and for assessment). The four models are
referred to here on as levels of approximation (LA) and are identified by Latin numbers.
Thus, for members with shear reinforcement the LA-II1 model provides the point of
reference since the higher the detail of the model, the greater the design effort required. This
is also the case for shear strength assessment of members with low volume of shear
reinforcement (Sigrist et al. 2013).

For members with shear reinforcement the fib Model Code 2010 shear provisions are
based on a general stress field approach (Muttoni A. et al. 1997, Sigrist V. 2011), combined
with Simplified Modified Compression Field Theory (SMCFT, Vecchio and Collins 1986,
Bentz et al. 2006). As in all preceding code formulations the shear resistance Vg is
determined by the sum of a concrete contribution and web steel contribution term:

Ve =V.+V, (2.6)

For structural assessment, the strain dependence of the shear resistance may be taken
into account by estimating the strain value &, at the mid-depth of the effective shear section
as depicted in (Fig. 2.13(a), fib Model Code 2010; Fig. 2.13(b) illustrates the mechanics of
formation of longitudinal tensile strains as a result of shear in cracked reinforced concrete).
Other deformation parameters could be selected but this value has a clear physical meaning
as it represents the average longitudinal strain in the web and can be found from the sectional
forces. For a conventional reinforced concrete member, the effective shear depth z is
assumed to be 0.9d. The tension chord force can be found from moment equilibrium in the
section (Fig. 2.13) and the tension chord strain is determined accordingly from the tension

chord force:

M %4 1 Ae
T=2E-&-A;==+2cota+N(3+5) 2.7)
where M is the resisted moment, V is the applied shear force, N is the axial force, Ae is the
eccentricity of the beam axis with respect to its mid-depth, E is the modulus of elasticity of

longitudinal steel reinforcement and A; is the area of tensile longitudinal reinforcement.
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Figure 2.13: (a) Equilibrium at cross-section and corresponding approximation of strain profiles for end
support region. (b) Cracked reinforced concrete: longitudinal tension is required to maintain
equilibrium with the diagonal compressive struts (blue color)

For the sake of simplicity, and to avoid iteration (since the definition of the
compressive stress field inclination angle a requires &,) for calculating the strain &,, the
second item in Eq. 2.7 is approximated as (VV/2) cota =~ V (a compressive stress field
inclination angle a close to 27° is assumed) (Fig. 2.13). With the conservative assumption
that the compression chord strain is zero, it may be shown that the mid-depth strain may be

taken as half the tension chord strain (Fig.2.13). The resistance attributed to concrete is:

V. = kpJfobyz (f. in MPQ) (2.8)

where k,, is a factor accounting for strain gradient effect and member size (Eq. 2.9), f, is

the concrete strength and b,, is the web-width. The k,, value, accounting for the demand in

the concrete contribution term, is defined by:

k, = —% (1— VEa ) 2.9)

Y 1415008, Vrdmax(@min)
where Vg4 is the shear force demand at the control section.

The concrete contribution equation (Eq. 2.8) is limited to normal or moderately high
concrete strengths up to f.= 65MPa (the value \/ﬁ is limited to a maximum of 8 MPa); for
higher strengths the equation may be deemed unconservative on account of the smoother
crack faces where cracks pass through, rather than around, aggregate particles, resulting in
larger variability in the shear resistance of members. For members with shear reinforcement,
the shear resistance is the sum of the resistances provided by concrete (as per Eq. 2.8) and
the contribution of stirrups:
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Aow fyw cota (2.10)

VW:S

where Ay, is the cross-sectional area of one layer of shear reinforcement, f,,, is the yield
strength of shear reinforcement and a is the inclination of the compressive stress field
relative to the longitudinal axis of the member (i.e., the angle of shear sliding cracks).

Shear strength is limited by the crushing of concrete along the inclined struts
according with:

Ve max = KcfebwZz sina cosa (2.11)

The strength reduction factor k. = k.ny. accounts for the effect of compression
softening due to transverse tensile strain through factor k,:
1

k. = < 0.65 (2.12)

€ 12455¢;

and for the increasing brittleness of high strength concrete through factor #s which reduces
the effective shear strength for f. > 30 MPa:

30\1/3
Npe = (f—) <1.0 (f. in MPa) (2.13)
The principal tensile strain that causes the compression softening effect in k. above,
g = &, + (&, — &) cot? a, is defined by a Mohr’s circle of strain (Fig. 2.14); as an adequate
approximation, the (negative) principal strain —e, may be taken as the concrete peak
strain .o = 0.002 and & from Eq. 2.7. Finally, the stress field or strut inclination (Fig. 2.14),

relative to the longitudinal axis of the member, is limited to:

Ain < a4 < 45° (2.14)
Amin = 20° + 10000, (2.15)
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Figure 2.14: Strut inclination in a column and Mohr circle of strains.

A comparison of the assessment procedure described above based on the design
model of fib Model Code 2010 with the assessment models of the previously presented Code
requirements stated in this Section is illustrated in Figs. 2.16 and 2.17. The columns under
study have similar properties with the already described example columns. It may be
observed that the general method of the fib Model Code 2010 gives a more conservative
estimation of the concrete contribution to shear strength.

Similar to the fib Model Code (2010), the design model of ACI-318-14 (2014)

considers a concrete and a steel contribution to the shear strength of beam-columns:

Ve =V, +V, (2.16)
The concrete term, V. is taken as the shear force causing inclined cracking in the
member, obtained by setting the maximum sectional shear stress equal to the principal tensile
stress of concrete; after cracking, V. is kept the same, but its presence is attributed to
aggregate interlock, dowel action and the shear term transmitted across the concrete
compression zone. As in all other codes, the shear strength is based on an average shear
stress acting over the effective cross section b,,d (b,, = web width or diameter of circular
section, d = effective depth of cross section).

For non-prestressed members with axial compression, V. is calculated from:

V., =0.17 (1 4 D )/1 f.b,d (2.17)
1444
where N, is the axial force normal to cross section- to be taken as positive for compression,

(Newton), A, is the gross area of concrete section, in mm?, f, is the specified compressive
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strength of concrete (MPa), and A is a modification factor to account for the reduced
mechanical properties of lightweight concrete relative to normal weight concrete of the same
compressive strength. For non-prestressed members with significant axial tension, V. is
calculated from:

0.29-Ny,
Ag

V. =0.17 (1 + )/1 fobyd =0 (2.18)

Required shear reinforcement is obtained from a modified truss analogy, wherein the
force in the truss posts (vertical ties, Fig. 2.15) is resisted by the shear reinforcement.
However, considerable research on both non-prestressed and prestressed members has
indicated that shear reinforcement needs to be designed to resist the shear demand exceeding
the force that causes inclined cracking, assuming the diagonal struts in the truss panels to be
inclined at 45 degrees (Fig. 2.15).

From equilibrium it may be easily shown that V,, supported by web reinforcement is:

G, =22 (2.19)

where S is the longitudinal spacing of transverse reinforcement (or the spiral pitch of tied
columns with spiral transverse steel), mm; A, is the cross sectional area of shear
reinforcement parallel to the shear force within a single stirrup pattern, mm?, and [ye is the
specified yield strength of transverse reinforcement, MPa. Observe the similarity with the
EN 1998-3 (2005) equation for the Vy term. In the ACI & ASCE approaches, for circular
ties or spirals, A4, is two times the area of the spiral bar or wire. For calculation of V. and
V,, insolid circular sections, d is approximated by 0.8 times the diameter and b,,, is taken as

the diameter.

7VRRRN

Figure 2.15: Original 45° Truss Model underlying the ACI (2014) requirements.
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Comparison of Shear Strength Assessment Estimates for the Square Column Example
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Figure 2.16: Comparison of shear strength assessment models for the square column example under
study.

Comparison of Shear Strenth Assessments for the
Circular Column Example
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Figure 2.17: Comparison of shear strength assessment models for the circular column example under
study.

Figures 2.16 and 2.17 compare the values obtained from the shear strength models
of the various code provisions including ACI 318-14 (2014) for the example columns
considered. Note that ACI 318-14 (2014) gives a higher shear strength estimation for
concrete contribution with respect to the other code models but it is closely calibrated to both
EN 1998-3 (2005) and ASCE/SEI-41 (2007).

Finally, it should be mentioned that the Hellenic Code for Seismic Assessment
(KAN.EPE. 2014) containing the necessary provisions for structural assessment and
interventions for reinforced concrete buildings adopts the EC8-111 procedures (EN 1998-3,
2005), already introduced in the preceding.
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2.4 Milestones in the Development of Models for Shear Strength

Assessment of RC Columns

Reviewed Code provisions were developed and based on past research which was motivated
by the extensive damages observed in modern engineered construction in the earthquakes
that occurred worldwide after 1990. In particular, defining the degradation of shear strength
due to increasing inelastic deformations has been the objective of several models (Aschheim
and Moehle 1992, Priestley et al. 1994, Sezen and Moehle 2004) that were developed within
the ATC/FEMA 273 (1997) and FEMA 356 (2000) initiatives in response to the catastrophic
failures observed in California bridges and hospitals after the Loma Prieta (1989) and
Northridge (1994) earthquake.

The study by Aschheim and Moehle (1992) was the first to propose a degrading
pattern for the shear strength envelope of columns and beams on account of the accumulated
effects of damage due to inelastic deformation. They proposed a degradation coefficient as
a function of displacement ductility demand, w4, after calibrating an empirical relationship
with a database of laboratory data from cantilever bridge column tests. The data indicated
that the rate of degradation also depended on the amount of available transverse
reinforcement and axial load. By adhering to the general practice of estimating shear strength
as the summation of strength contributions from transverse reinforcement and concrete,

(where Vi is obtained from Eq. 2.19) it was proposed that V¢ be estimated from:

N
V. =0.3 (k + E> £.0.84, (2.20)

where 0 <k == <1 (2.21)

Thus, this model associates the entire amount of strength degradation with
deterioration of the concrete contribution term (through factor k). This model was intended
to evaluate the shear strength in plastic hinge zones and was later adopted in FEMA 273
(1997). The approach by Priestley et al. (1994) further de-aggregates the shear strength of
columns under cyclic lateral loads as comprising three distinct contributions — that of the
concrete web, 1, the truss mechanism (or transverse reinforcement), V,,, and an arch
mechanism component, Vy, associated with the horizontal component of a diagonal strut
(this develops through the member in order to transfer the axial load N to the base), as
follows:

Ve =V.+V, +Vy (2.22)

The concrete component V. is given by:
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V. =kyf!A, (2.23)
where 4, = 0.804, and the parameter k depends on the member displacement ductility
level as defined in the following equations:

Foru, <2, k=0.29
For2<u,<4, k=-0.095u, + 0.48
Foruy, =>4, k=0.1 (2.24)
The contribution of transverse reinforcement to shear strength is based on a truss
mechanism using a 30-degree angle between the diagonal compression struts and the column
longitudinal axis. For rectangular cross-section columns, the truss mechanism component,
V,,, is estimated from:

W, = Aswfyw(d-d")

cot30° (2.25)
where d — d’ is the internal lever arm of the idealized truss. For circular cross-section

columns, the truss mechanism component, V,,, is defined from:

G, = 22l 61300 (2.26)

where D' is the distance measured parallel to the applied shear between centers of the
perimeter hoop or spiral.

The arch component refers to the horizontal component of the inclined axial strut
carrying the axial load to the support. In this model this term is given by

N (2.27)

N

d
Vy = N tana =

where « is the inclination of the diagonal compression strut with respect to the longitudinal
axis of the column and x is the depth of the compression zone, whereas d is the effective
depth of the section. It should be noted that the depth, x, depends on both the axial load and
aspect ratio (i.e. the amount of curvature required to develop a certain displacement
ductility). Thus, with an increasing aspect ratio the axial load contribution to shear strength
decreases. Similarly, a higher depth of compression zone (for higher axial load) affects the
value of V, showing a subtle increase for higher compressive N. The effect of the axial
tensile load on the shear strength is not defined in the model.

Sezen and Moehle (2004) updated the earlier model of Aschheim and Moehle (1992)
also relating column shear strength to the displacement ductility demand; the novelty here is
that the strength degradation factor k was taken to operate on both concrete and steel
contributions (Fig. 2-18):
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v, =k, +V) =k 0.84, + k22t (2.28)

This model was later adopted in the ASCE/SEI 41 (2017) assessment provisions. The
reasoning in applying a reduction to both terms is that the concrete component is expected
to diminish owing to increased cracking and degradation of the aggregate interlocking
mechanism, whereas the steel component is assumed to degrade due to a reduction in the
bond stress capacity required for an effective truss mechanism.

Proposals for the shear strength degradation factor
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0.60 ——Priestley et. al.
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Member Displacement Ductility

Figure 2.18: Variation of degradation coefficient k with displacement ductility. Note however that k
does not operate on all terms in the same manner in the different models, so the relationship between

alternative proposals is not transparent.

Comparison of Shear Strength Estimates - Squared Column Example
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Figure 2.19: Comparison of shear strength assessment models for the square column example.
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Comparison of Shear Strenth Assessments for the
Circular Column Example
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Figure 2.20: Comparison of shear strength assessment models for the circular column example.
Mechanistic Definition of the Vc term

The comparison of the models included in this Section for the example columns
under study of this Chapter is illustrated in Figs. 2.19 and 2.20. Differences in the estimation
of the transverse reinforcement contribution to shear strength between the 30-degree truss
model (Priestley et al 1994) and the 45-degree truss model adopted by Aschheim and Moehle
(1992), Sezen and Moehle (2004) underscore the degree of approximation of the existing
approaches. For the same stirrup arrangement, the 30-degree truss model gives a higher steel

contribution to shear strength.

(a) The MCFT theory

An alternative framework suitable for interpretation of strength degradation with
increasing deformation demand is that of the Modified Compression Field Theory (MCFT)
(Vecchio and Collins, 1986). The model is derived from first principles (employs a smeared,
continuum mechanics approach to establish equilibrium and compatibility) and uses
experimentally verified stress-strain relationships for the behavior of cracked concrete. A
fundamental relationship in the MCFT relates the shear stress on a cracked surface due to
aggregate interlock to the crack’s width, the maximum aggregate size and the concrete
strength. The aggregate effect was first codified when a general method for shear design was
derived based on the MCFT and implemented in the AASHTO-LRFD bridge design
guidelines (2013). In 1994 the general method of shear design was implemented in the CSA
concrete design code for buildings in Canada. An updated and simplified version of the
general method has been developed (Bentz et al., 2006) and implemented in the 2004 CSA

Design Code. The new general method, referred to as the Simplified Modified Compression
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Field Theory (SMCFT) has been found by some to be simpler than the original general
method with, in many cases, improved predictive capabilities (Sherwood et al., 2006).
According to SMCFT simple expressions have been developed for § (a parameter
that models the ability of cracked concrete to transfer shear), the crack angle a, and the
normal average strain in the web’s longitudinal centroidal axis €, thereby eliminating the
need to iterate in order to solve for these values. The following general relationship is used

to determine the shear resistance of a concrete section:

Ve=Vc+V, :B\/ﬁbwdv“l'

Term S in Eq. 2.29 is a function of 1) the longitudinal strain at the mid-depth of the

Ay

% d, cota (2.29)

web &,, 2) the crack spacing at the mid-depth of the web and 3) the maximum coarse
aggregate size, a,. It is calculated using an expression that consists of a strain effect term

and a size effect term:

. . . _ 040 1300
B = (strain softening term) - (size effect term) = 15005 (1000vs.]) (2.30)

The longitudinal strain at the mid-depth of a beam web is conservatively assumed to
be equal to one-half of the strain in the longitudinal tensile reinforcing steel as is adopted in
the fib Model Code 2010 previously presented (see Fig. 2.13(b)). For sections that are not
prestressed, &, is calculated according to Eqg. 2.31 which is practically the same as Eq. 2.7
(here, M is the resisted moment, V is the applied shear force, N is the normal force [positive

if it is tensile], E the modulus of steel, and A is the area of tension reinforcement):

e — M/dy,+V+0.5N
x 2E;Aq

(2.31)
The effect of the crack spacing at the beam mid-depth is accounted for by the use of
a crack spacing parameter s,. This crack spacing parameter is equal to the smaller of either
the flexural lever arm (d,, = 0.9d or 0.72h, whichever is smaller) or the maximum distance
between layers of longitudinal crack control steel distributed along the height of the web.
The term s,, is referred to as an “equivalent crack spacing factor” and has been
developed to model the effects of different maximum aggregate sizes on the shear strength
of concrete sections by modifying the crack spacing parameter. For concrete sections with
less than the minimum quantity of transverse reinforcement and constructed with a
maximum aggregate size of 20mm, s,,, is taken as equal to s,. For concrete with a maximum

aggregate size other than 20mm, s,,, is calculated as follows:

__ 355,
Sze =
15+ay

> 0.85s, (2.32)
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To account for aggregate fracture at high concrete strengths, an effective maximum
aggregate size is calculated by linearly reducing a, to zero as the compressive concrete
strength f. increases from 60 to 70 MPa. Term ais taken equal to zero for higher concrete
strengths on account of the observation that cracks go through the aggregates in higher
strength concretes (i.e., for f,.>70 MPa). The square root of the concrete strength is limited
to a maximum of 8 MPa as in the fib Model Code 2010 previously reviewed. The angle of
inclination of the cracks at the beam mid-depth, «, is calculated by the following equation:

a = (29° 4+ 7000¢,)(0.88 + s,,/2500) < 75° (2.33)

For the example columns of this Chapter, Eq. 2.33 results in a = 43° for the square

column and a = 41° for the circular column.

(b) Compressive Zone Definition of V¢

A campaign to re-evaluate the shear strength models for the V¢ term was conducted
by Tureyen and Frosch in 2003. As part of this effort, a new model was developed, taking
the compressive zone part of the cross section (i.e. the part above the neutral axis) as the
primary contributor to shear strength. As shown in Fig. 2.21, the model considers that
whereas shear can be transferred over the entire effective depth d between cracks, at the
location of a crack, shear stress can only be transferred through the uncracked concrete above
the neutral axis. The shear stress distributions shown in Figure 2.21 (a) are theoretical;
however, these can be simplified by considering average stress distributions as shown in
Figure 2.21 (b).

o) b)

Figure 2.21: Theoretical (a) and Average (b) Shear Stress Distribution.

Using this model and considering the average shear stress distribution at a crack, a

simplified expression for concrete contribution to shear strength was developed:

2
v, = E\/ﬁwa ~ 0.4/f.b,,x (2.34)
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where x is the depth of compression zone (mm) (or distance of the neutral axis from the
compression face of the cracked, transformed cross section of the member). An advantage
of this approach is that the effect of axial load is implicitly accounted for in the value of x.

Mechanics-based definitions of shear-strength models such as those presented in the
preceding are useful in estimating the available strength of members in conventional
strength-based design and assessment. However, for seismic assessment, the strength-based
approaches overlook a significant aspect that is essential in the performance context (i.e.
when the focus is on the intensity of damage sustained in order for the strength to be
developed) — namely, the deformation capacity of the member and the mode of failure
associated with the exhaustion of the shear strength terms, and the margin of safety required
between this, brittle occurrence and the more ductile mechanisms of behavior before safety
may be compromised. The above-mentioned limitation motivated the effort for the
development of displacement-based models in order to obtain a dependable estimation of
the drift capacity of flexure-shear critical columns, i.e., columns that become critical in shear
immediately after flexural yielding for a known axial load magnitude and member aspect
ratio (Ls/h).

Shear Failure

As Aa A

Figure 2.22: Definition of Deformation Limits at Shear and Axial Failure of a Reinforced Concrete

Column.

The occurrence of a steep shear crack in a reinforced concrete column signifies the
process of strength degradation that eventually leads to shear failure (see Fig. 2.3). If the

reinforcement anchorages are sufficient, then, beyond this point the steep shear crack
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developed on the column leads to progressive sliding between the crack surfaces, permanent
distortion of the web with simultaneous buckling of longitudinal reinforcement and
fracturing of transverse reinforcing bars crossing the sliding plane; this type of failure
eliminates the ability of the column to carry the overbearing loads and is therefore considered
an axial failure. These two stages are distinct and not interchangeable; for the sake of clarity
the two points of failure are marked on the notional element backbone curve in Fig 2.22.
The model developed by Pujol et al. (1999) related the magnitude of drift at shear
failure with the aspect ratio of the column ( Ls/d, where Ls is the column shear-span and d is
the section depth from the center of tension reinforcement to the extreme compression fiber
of the column), the shear reinforcement ratio p,, (yield stress of f,,,), and with the column
shear stress 7 at shear failure (defined as the shear force at shear failure divided by the web
area, b,,d). Based only on a statistical evaluation of the results of an experimental database
that comprised 15 series of tests containing 94 specimens, and in an effort to establish a
conservative estimate of the drift ratio at shear failure, Pujol et al. (1999) recommended the

following relationship (L = clear height of column):

1002 = 2l Ls {LSL{d (2.35)
All the column specimens considered in the study were subjected to nominal shear
stresses that may be assumed to be high enough so as to produce inclined shear cracking
(shear stresses that exceed the tensile strength of the concrete). Failure was due to
disintegration of the concrete core caused by sliding along inclined cracks and crushing of
the concrete under compression. The ranges of the parameters for the employed experimental
data leading to Eq. 2.35 were:
f-: 21-86 MPa;
ps (Longitudinal reinforcement ratio): 0.5-5.1%;
Pwfyw: 0-8 Mpa ;
v=N/(fA;):0-02;
L./d: 1.3-5;
t/f: > 0.17.
Figure 2.23 depicts the results from Pujol et al. (1999) model applied on an
independent database of column tests assembled by Sezen and Moehle (2002); the database
consists of 50 flexure-shear-critical columns representative of columns from older reinforced

concrete buildings. The test columns were selected from the literature for specimens tested
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under unidirectional cyclic lateral load with low transverse reinforcement ratios
(pw < 0.007), yielding of longitudinal reinforcement prior to loss of lateral load capacity,
and shear distress observed at failure suggesting that loss in lateral load capacity was due to
degradation of the shear-transfer mechanism. In testing Eqn. 2.35 against the database,
Elwood (2003) observed that the proposed expression for drift at shear failure is not
conservative for six of the columns in the employed database. Three of those columns were
subjected to axial loads in excess of the axial loads considered when developing the model.
Although conservative with respect to the other specimens, there is nevertheless still

significant discrepancy between calculated and measured drift values.
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Figure 2.23: Comparison of calculated and measured drifts for Pujol et al. 1999 (Elwood 2003).

Elwood and Moehle (2005) proposed an empirical model that relates the shear
demand to the drift at shear failure (45/L) based on the transverse reinforcement ratio p,,,
shear stress ratio (z/+/f;), and axial load ratio (v = N/A,f). The point of shear failure in
the developed model was determined by the intersection of shear-drift curve for the column
and the limit surface defined by a postulated drift capacity model (the limit surface is the
outcome of Equation 2-36 for different pairs of shear force (and the corresponding shear
stress) and the resulting displacement 4, plotted along with the element resistance curve-

Figure 2.24). The proposed equation is:
2 = 3% + 4p,, — 0.002 - —— 0.025 - v = 1% (2.36)

T
For the example of the square column under study in this Chapter with S=200 mm
Eqgn. 2.35 results in a 1.7% relative drift ratio (RDR) at shear failure whereas Eqn. 2.36
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estimates 2.4 % RDR for the same event (depicted in Fig. 2.25 by the red and the blue dots,
respectively). Therefore, the drift model by Pujol et al. (1999) is more conservative.

To date, a limited number of models (Elwood and Moehle 2005, Ngoc-Tran and Li
2013) have been developed to estimate the axial-drift failure of non-ductile columns. The
model by Elwood and Moehle (2005) was developed considering the free body diagram of
a column failed in the shear (Fig. 2.3); here the only possible resistance is provided through
shear friction along the sliding interface — collapse is imminent. Figure 2.26 depicts the free-
body diagram of the upper portion of a column under shear and axial load at imminent axial
load failure. The lower boundary of the free-body diagram delineates the inclined plane of
sliding failure where shear friction demand exceeds the shear-friction resistance along the
crack.

v 4 \\ Limit surface defined by drift capacity
model (Elwood & Moehle, 2005)

-

»
»
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Figure 2.24: Shear failure by the drift capacity model of Elwood and Moehle (2005)

0.06

0.05 |
5
m 0.04 ] o
. Qo v 0.0 = pw= 0.001 1
2] o i
™ 4 Q @ a® O 0.0011 = pw = 0.0020
o 009 ' & o A 00020 - 0.0040
2 A % A Oow :
@ va 4 £ ot & @ 00040 = pw = 0.0055
£ 0.02] o & B ' © 0.0055 = pw = 0.0070
= el

0.01f B @o

04

L8] 001" 002 003 004 005 006
drift ratio measured

Figure 2.25: Comparison of calculated drift ratio at shear failure using Eq. 2.36 with database by

Elwood. (Elwood 2003 — Dashed lines are +/- one standard deviation from the mean.)
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Simplifications were made where terms were fraught with significant uncertainty
(e.g. dowel forces from the transverse reinforcement crossing the inclined crack were
neglected; their effect is considered to be part of the shear-friction force developing along
the cracked plane. Similarly, the dowel action of longitudinal bars was neglected as in older
structures spacing and diameter of transverse reinforcement are not sufficient to provide
noticeable resistance to lateral dislocation of the longitudinal reinforcement (see Fig. 2.3)).
Based on the observations of failed columns at that stage it is seen that upon axial crushing
the longitudinal reinforcement has buckled, and therefore its axial force capacity was
assumed equal to zero. Last, at incipient axial failure any source of shear resistance except
the frictional action is assumed to have diminished to zero and may therefore be neglected.
Equilibrium of forces for the free body diagram shown in Fig. 2.26 results in the following:

YE =0- Psina’+V = Vsrcosa' + Mtan a’ + NparsVa (2.37)
XE,=0-> N = Pcosa + Vssina' + npgpsP (2.38)

Equation 2-37 after consideration of the simplifications made in the preceding is written:
Psina’ = Vscosa' + Mtan a’ (2.39)
From Eqgns. 2-38 and 2-39 and assuming a frictional relationship between P and Vs,

an expression is obtained that relates axial load, N, transverse reinforcement, Asw, Stirrup

spacing S, and drift ratio at axial load collapse:

02
(A_a) T 1+(tan 659) (2.40)
axial

) 04 N- s
[tan 659+N (Asw'fyw'dc' tan 650)]

where d. = d — d’ is the depth of the column core between the centerlines of the ties. Based

on experimental observation it was estimated that the angle of the sliding plane is about 25°
from vertical (65° with respect to the transverse direction). Similar to the shear-failure model
described in the previous section, the axial drift model defines a limit surface at which axial
failure is expected to occur (Fig. 2.27). For the square column under study in this Chapter
and for a 200 mm stirrup spacing, the drift ratio at axial load failure or collapse was estimated
at 3.9%.

Ngoc-Tran and Li (2013) presented analytical and experimental investigations carried
out on RC columns with light transverse reinforcement. A semi-empirical model was
developed to estimate the ultimate displacement (displacement at axial failure) of RC
columns with light transverse reinforcement subjected to simulated seismic loading. The

following basic assumptions were employed in deriving the model:
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e The applied axial load at the point of axial failure is transferred through the shear
failure plane.

e The angle of the shear failure plane of 60° as defined by Priestley et al. 1994 was
adopted. (30° angle between the diagonal compression struts and the column
longitudinal axis as stated already in the description of Priestley et al. (1994) shear
strength model).

e The shear demand on the columns was considered to be negligible and therefore
ignored at the point of axial failure.

e Once the shear strength had initiated its degradation - corresponding to a
displacement ductility of 2 for unidirectional lateral loading — then it was assumed
that any additional deformation of the columns was owing to sliding between

cracking surfaces as shown in Fig. 2.28.
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Figure 2.26: Free-body diagram of upper end of column (Elwood and Moehle 2005).

At the point of axial failure as shown in Fig. 2.28, the external and internal works W, Win:,
developed by the column were calculated according to the following:
Wexe = N X Ag, (2.41)
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Wine = We + We + Wy (2.42)

W,, Ws,, and Wy, are the internal works done by deformation of concrete, transverse

reinforcement and longitudinal reinforcement, respectively. As illustrated in Fig. 2.28, 47,

is the vertical displacement due to sliding between cracking surfaces at the point of axial
failure. Equating the external and the internal work leads to the following equation:

N =Py +P,+P, (2.43)

\

\ Axial Failure

Limit surface defined by drift
~ —/capacity model (Elwood &
Moehle, 2005).

S 4
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Figure 2.27: Axial Failure defined by the drift-capacity model of Elwood and Moehle 2005.

where P, Py, P, are the axial forces resisted by longitudinal reinforcement, transverse
reinforcement, and concrete at imminent axial failure, respectively. Axial strength of
longitudinal reinforcing bars at axial failure normalized by their nominal yield strength

defines the yield strength ratio, n;, as follows:

Ns1 = (N — Py — Pc)/(plbwhfyl) (2-44)
Py = (dcfywAsw)/S (2-45)
P, =V cota’ (2.46)

where d_ is the depth of the core (centerline to centerline of ties) p; is the total longitudinal

reinforcement ratio; b,, and h are the width and the height of the column’s cross section

respectively; f,; the yield strength of the longitudinal reinforcement. V. is defined by Eq.
2.23. With reference to Fig. 2.28 the damaged length L is given by:

Ly = htana' (2.47)

The ratio of horizontal displacement due to sliding between cracking surfaces at axial

failure divided by the damaged length has the physical significance of a drift ratio, associated

*

here with axial collapse. This term, &, , is given as:
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8s = (4, —24,)/(htana’) | x 100% (2.48)

Aq

In the above, the yield displacement 4,, is defined as the displacement associated
with the secant to yield line in the force-displacement resistance curve of the member.

The equations derived above are calibrated using an assembled database comprising
47 RC columns tested to the point of axial failure. These columns encompass a wide range
of cross-sectional sizes, material properties, and column axial loads. They were subjected to
a combination of an axial load and unidirectional cyclic loadings to simulate earthquake
actions. Based on the employed database, an empirical equation was developed so as to relate
the ratio of- the axial strength of longitudinal reinforcing bars to the yield strength of the
longitudinal reinforcing bars- to the ratio of - the horizontal displacement due to the sliding

between cracking surfaces to the damaged length - as follows:

ns = 1/(0.2046 x &% + 1) (2.49)

A series of experiments was conducted on five RC columns with light transverse
reinforcement to validate the applicability and accuracy of the developed model [Ngoc-Tran
and Li (2013)]. These tests were not included in the experimental database from which the
developed semi-empirical model was derived. It is concluded from the study that the mean
ratios of the experimental to estimated ultimate displacements and the corresponding
coefficients of variation were 1.077 and 0.194, respectively. A comparison of the results
obtained from the proposed equation by Ngoc Tran and Li (2013) with the model by Elwood
and Moehle (2005) is depicted in Fig. 2.29. When applying Eqn. 2.48 to the example square
column under study in this Chapter with 200 mm stirrup spacing, the estimated drift at axial
failure is 2.8 %. This value is much more conservative as compared to the result by Elwood
and Moehle (2005) (3.9%; note the red and blue dots in the Figure 2.29, respectively).
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of various equations.
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3 Performance of the existing models applied to the RC

columns of PEER Structural Performance database

3.1 Introduction

The mode of failure of structural members such as reinforced concrete columns depends on
several factors, such as their geometric characteristics, the longitudinal reinforcement, the
efficiency of confinement through the transverse reinforcement and the loading history.
Their behavior throughout the loading range is controlled by competing mechanisms of
resistance such as flexure, shear, buckling of longitudinal bars when they are subjected to
compressive loads, and in the case of lap splices, the lap-splice mechanism of bar
reinforcement development. VVery often a combination of such mechanisms characterizes the
macroscopic behavior of the column, especially in cases of cyclic load reversals. Various
predictive models have been developed in the past to determine both the strength as well as
the deformation capacity of the columns, the uncertainty being at least one order of
magnitude greater in terms of deformation capacity rather than strength, as evidenced by
comparisons with test results.

In this Chapter, some of the models described analytically in Chapter 2 are tested for
their performance against a widely used experimental database (2003,
https://nisee.berkeley.edu/spd/) originally assembled by Berry and Eberhard (2004). Known
as the PEER Structural Performance Database, it assembles the results of over 400 cyclic,
lateral-load tests of reinforced concrete columns. The database describes tests of spiral or
circular hoop-confined columns, rectangular tied columns, and columns with or without lap
splices of longitudinal reinforcement at the critical sections. For each test, where the
information is available, the database provides the column geometry, column material
properties, column reinforcing details, test configuration (including P-Delta configuration),
axial load, digital lateral force displacement history at the top of the column, and top
displacement that preceded various damage observations.

First, the parametric dimensions of the employed database are explored and a
sensitivity analysis is conducted in order to highlight the statistical content and parameter
trends with regards to basic indices that define the column behavior. Subsequently, flexure-
dominant columns having either a circular or a rectangular cross section are studied so as to

attempt to reproduce (and therefore fully comprehend) their hysteretic lateral experimental
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response. Shear critical columns are studied as a separate group - in terms of strength and
deformation capacity. Some of the models presented in Chapter 2 for shear strength are
tested against this group of experimental data. Lastly an experimental database for cyclic
tests of reinforced concrete columns under variable axial load is assembled for the needs of
the present study, and are used to corroborate the models outlined in Chapter 2 with regards
primarily to deformation capacity as the axial load varies from compressive to tensile
(modeling the overturning effects of the earthquake on perimeter frame columns in

structures).

3.2 Parametric Sensitivity of PEER Structural Performance

Database

The statistical profile of the data available in the PEER structural performance database
(https://nisee.berkeley.edu/spd/) is outlined here. Distributions of key column properties
(depth, aspect ratio, axial load ratio, longitudinal reinforcement ratio and transverse
reinforcement ratio) provide the overall scope and limitations of the experimental
investigations, and the degree of overlap and knowledge gaps between the available studies.
The value of such collected databases is in crossing the boundaries of the individual
experimental studies that have been conducted before, which, owing to the difficulty due to
the size and expense of specimens, never include more than a handful of tests, always much
smaller in number than the number of independent parameters and rarely if ever presented
in replicas of two or three. In the context of understanding the scope of the database, principal
indices of deformability (i.e. displacement ductility) are presented in correlation with key
design parameters (concrete strength, axial load ratio, aspect ratio, maximum shear force and

transverse reinforcement ratio).

3.2.1 Characteristics of Available Data

Table 3.1 provides the mean values (Mean), Standard deviation (std) and Coefficient of
variation (CoV) of key column properties for 306 rectangular-reinforced columns and 177
spiral-reinforced columns. Statistics are provided for the column depth, aspect ratio, axial-

load ratio, longitudinal reinforcement ratio (1) and transverse reinforcement ratio (ps).
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Table 3.1: Column Property Statistics

Rectangular-Reinforced (306 tests) Spirally-Reinforced (177 tests)
Column
Mean Std CoV Mean Std CoV
Property
Depth (mm) | 323.43 116.5 0.36 420.97 202.11 0.48
Aspect Ratio 3.44 1.44 0.42 3.31 1.96 0.59
Axial-Load
. 0.27 0.19 0.73 0.14 0.14 1.04
Ratio
Pl (%) 2.45 1.00 0.41 2.62 1.02 0.39
Ps (%) 1.34 1.07 0.80 0..93 0.74 0.80

The distributions of column depth used by researchers are illustrated in Figs. 3.1 and
3.2. Evidently, the rectangular-reinforced data is approximately normally distributed about
a mean value of 300 mm. On the other hand, the spiral column reinforcement data does not
follow a normal distribution. Figure 3.2 depicts a box plot (BP) for each of the two groups
of specimens. (A box plot describes the five-number summary of a distribution that consists
of the smallest (Minimum) observation, the first quartile (Q1), the median (Q2), the third
quartile (Q3), and the largest (Maximum) observation written in the order of lowest to
largest. The central box spans the quartiles. A line within the box marks the median. Lines
extending above and below the box mark the smallest and the largest observations (i.e. the

range). Outlying samples may be additionally plotted outside the range.
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Figure 3.1: Distribution of column depth.
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Figure 3.2: Box plot of column depth.

The database distributions regarding column specimen aspect ratio are illustrated in
Fig. 3.3 & 3.4. The rectangular-reinforced data is approximately normally distributed about
its mean value with a skew towards the lower aspect ratios. The spiral reinforced data is also
weighted towards the lower aspect ratios. Figure 3.4 depicts the box plot for the two groups
of specimens. It should be noted that the length for the determination of the aspect ratio of

each column is the equivalent cantilever column length.
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Figure 3.3: Distribution of column aspect ratio.
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Figure 3.4: Box plot of column aspect ratio.

The distributions of the axial-load ratio values used in the tests are illustrated in Figs.
3.5and 3.6. The spirally-reinforced column data is approximately normally distributed about
the mean value with a skew towards the lower axial load ratios — thus, failure data in this
group are most likely dominated by ductile flexural failures with little evidence of other limit
states. The rectangular section reinforced column data is also a distribution weighted towards

the lower axial-load ratios. Figure 3.6 depicts the box plot for the two groups of specimens.
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Figure 3.5: Distribution of axial-load ratio.
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Figure 3.6: Box Plot of axial-load ratio.

Figures 3.7 and 3.8 plot the distributions of the total longitudinal-reinforcement ratio,
p1 and the corresponding box plot. The group of rectangular section columns form an
approximately normal distribution about the mean with a skew towards lower reinforcement
ratios. Again, the spirally-reinforced column data is not distributed normally, underscoring
the limitations of the database in the cases of brittle performance. Considering the low axial

load ratio, it is concluded that the effective tension reinforcement ratio is less than pi.
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Figure 3.7: Distribution of longitudinal-reinforcement ratio.
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Figure 3.8: Box plot of longitudinal-reinforcement ratio.

Distributions of transverse reinforcement ratio are presented in Figs. 3.9 and 3.10.
Both the rectangular-reinforced and spirally-reinforced columns have distributions weighted
towards the lower transverse reinforcement ratios and cannot be assigned a specific
distribution type. The sample is therefore populated primarily by lightly reinforced

specimens.
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Figure 3.9: Distribution of transverse-reinforcement ratio.
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3.2.2 Principal Indices of Deformability

One important goal in the seismic structural assessment procedures is the reliable estimation
of the available capacity of structural members for inelastic deformation, as well as their
available ductility. Ductility drives assessment since its magnitude underlies the general
design philosophy (i.e., through the g-u-T relationships it controls the magnitude of strength
reduction from the elastic demands that may be tolerated before failure) and, in current code
practice (EN 1998-1 2004 and AASHTO LRFD 2004, 2013, FEMA 440 2005), its

magnitude is reflected on the specific reinforcing requirements of members and structures.

In this section the displacement ductility value clouds—as defined from the reported
experimental responses—are correlated against important design parameters and plotted in

graphs to illustrate the parametric dependencies of this variable.

For example, considering the concrete strength, the following points are made: (a)
Higher strength materials are marked by lower ultimate strain, (b) strain can be enhanced
through confinement, (c) a higher concrete strength results in a lower compression zone both
at yielding and at failure. In general, it can be said that higher concrete strength causes a
reduction in ductility. This finding is confirmed by both groups of rectangular-tied columns
and by the spiral-reinforced columns as can be seen in Figs. 3.11, 3.12. For the spirally-
reinforced columns it is more clearly evident that the ductility is increased for specimens

with lower concrete strengths.

During the flexural analysis of a section both at yielding and at failure the presence

of a compressive axial load increases the depth of the compressive zone as compared to an
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identical section without axial force. Based on the above remark the presence of the
compressive axial load reduces the curvature ductility of a section. The experimental data
confirm this tendency with brittleness being more evident in the cases where the axial load

ratios exceeded the point of balanced failure (see Figs. 3.13 and 3.14.)
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Figure 3.11: Effect of concrete strength on displacement ductility for the rectangular-reinforced columns
of the database.
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Figure 3.12: Effect of concrete strength on displacement ductility for the spirally - reinforced columns.
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Figure 3.14: Effect of axial load ratio on displacement ductility for the spirally-reinforced columns.

Shear-span to depth ratio, known as aspect ratio, a=Ls/h, has a determining influence
on the characteristics of shear behavior. In a column of small shear-span-to-depth ratio, shear
deformation may become appreciable compared with the flexural deformation. A dominant
shear response causes a more pronounced pinching in the force-deformation (hysteresis)
curve, and a faster degradation of the hysteresis energy dissipation capacity. Interestingly,
the experimental data show that the ductility ratio increases with a decreasing aspect ratio
(Figs. 3.15, 3.16); this perplexing result is attributed to the fact that the yield displacement
increases at a quadratic rate with shear span length Ls, whereas the ultimate displacement is

linear with Ls — and thus the ductility estimate is inversely proportional to Ls/h or a. The
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following expressions relate the flexural component of column response with aspect ratio,

illustrating the source of the observations interpreting the experimental trend:

-Yield Curvature: ¢, = 2.1 ESTy (3.1)

Ls 2
Esy o Ls =3 gy a L (3.2)

-Yield Displacement: 4, = § L2 p

wIinN

-Ultimate Displacement: A, = 4y, + @y, - €y - Lg = 4y + % lpr - Ls =

3
= Ay + 1'5€pl . gpl - a (33)
-Displacement Ductility: Up =1+ 23— 1) % (3.4)

where £ is the plastic hinge length (approximated as 0.5h in practical calculations), ep the
nonlinear (past yielding) part of the tension reinforcement total strain, and . the required

bar strain ductility.
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Figure 3.15: Effect of aspect ratio on displacement ductility for the rectangular - section columns.
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Figure 3.16: Effect of aspect ratio on displacement ductility for the spirally - reinforced columns.

Figures 3.17 and 3.18 depict the relationship between the maximum shear stress
(maximum experimental shear force divided by the gross area of the column) normalized by
the square root of concrete strength of each column and the associated displacement ductility.
Columns with a higher ductility also supported a higher shear force, as both parameters are
correlated to the same variable, i.e., the quality and quantity of detailing. The observation is
also consistent with the trends of Figs. 3.15, 3.16, which illustrate that displacement ductility
is inversely proportional to aspect ratio, which in turn, for a given member flexural

resistance, is inversely proportional to shear demand (since Veq=Meg/(h-a)).

The database trends are also examined with reference to lateral confinement — which
is generally acknowledged to enhance the deformation capacity of the column. The
arrangement of confining reinforcement is important in this regard; a column with closely
spaced stirrups and well-distributed longitudinal reinforcement shows very little strength
decay even when being subjected to very high axial forces with magnitudes exceeding the
limit of balanced failure. The plotted trends confirm this general expectation: the
displacement ductility increases with the transverse reinforcement ratio as shown in Figs.
3.19 and 3.20.
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Figure 3.19: Effect of transverse reinforcement ratio on displacement ductility for the rectangular-
section columns.
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Figure 3.20: Effect of transverse reinforcement ratio on displacement ductility for the spirally -
reinforced columns.

3.3 Analytical (F.E.) Simulation of RC Columns failed in Flexure

In the experimental database report of Berry and Eberhard (2004), the nominal column
failure mode was classified as (a) flexure-critical, (b) flexure-shear-critical, or (c) shear-

critical, according to the following criteria:
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-If no shear damage was reported by the experimentalist the column was classified as

flexure-critical.

-If shear damage (diagonal cracks) was reported, the absolute maximum effective force
(Fepr: absolute maximum measured force in the experimental column response) was
compared with the calculated “ideal” force corresponding to a maximum axial compressive
strain in the concrete cover set equal to 0.004, which corresponds to spalling of unconfined
concrete (Fy04)- The failure displacement ductility at an effective force equal to 80% of
maximum, usq;;, Was determined from the experimental envelope. If the maximum
effective force F,rr < 0.95 - Fy g4 Or if the failure displacement ductility was less than or
equal to 2 (usqy < 2), the column was classified as shear-critical. Otherwise, the column
was classified as flexure-shear-critical. In the present section, only columns failed in flexure
(i.e. classified as flexure-critical) will be examined through simulation. These are divided
into two sub-groups according to cross-sectional shape (rectangular and circular section

columns.)
3.3.1 A Force-Based Fiber Element incorporating Euler-Bernoulli Beam Theory

In order to conduct the analysis of those specimens in the experimental database that
demonstrated a flexurally dominant response a computer code was developed and
implemented in the MatLab toolbox FEDEAS lab ‘Finite Elements for Design Evaluation
and Analysis of Structures’ (Filippou and Constantinides, 2004). The computational model
uses the Euler-Bernoulli beam theory (Timoshenko,1953), which considers flexural
deformations only. In Chapter 6 of this thesis the computational model is expanded further
and implemented in a standalone Windows program written in C++ programming language,

implementing the “Exact” beam theory that considers both flexural and shear deformations.

To account for material nonlinearity that occurs in the plastic hinge regions the formulation
calculates the flexibility matrix of the member by using a fiber-type analysis and employing
uniaxial hysteretic nonlinear material stress-strain relations for confined and unconfined
concrete and reinforcement (Scott et al. 1982, Mander et al. 1988, Menegotto and Pinto,
1973). The stress-strain relations are endowed with mathematical expressions for the
envelope, for the hysteresis loops and for the transition from the envelope to the
unloading/reloading branches (Karsan and Jirsa (1969). Work-equivalent flexibility terms
are obtained by conducting numerical integration at pertinent sampling points along the
length (Gauss-Lobatto integration, Gil et al, 2007); the member deformational stiffness is
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obtained by inversion of the flexibility matrix; the mathematical formulation is summarized

in the following section.

3.3.2 Euler-Bernoulli Beam Theory
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Figure 3.21: Deformation of Euler-Bernoulli beam.

The fundamental assumption of the Euler Bernoulli beam theory is that plane sections remain
plane and normal to the longitudinal axis of the beam (Fig. 3.21). The cross section (ab) is
normal to the longitudinal axis of the undeformed beam. In the deformed configuration the
deformed cross section (a’b’) is plane and normal to the longitudinal axis of the deformed
beam axis. This implies that the displacements at a point in a longitudinal fiber of the beam

located a distance y from the longitudinal axis are:
u=u0—y-% (3.5
v =1, (3.6)

The corresponding sectional deformations are (longitudinal and shear distortion):

_du _ du, d?v,

g_dxzdx—ywzgo—y-q) (37)
T L (3.8)
dy dx dx dx

Where, the reference axial strain (at y=0) and the corresponding sectional curvature are given
by:

du

2 and @ = Z (3.9)

&
o dx dx?
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Figure 3.22: Beam segment of infinitesimal length, dx.

Based on Figure 3.22 the differential equation that governs the Euler- Bernoulli beam

involves 4th order derivatives of the elastic vertical displacement of the deformed member:
. . L d? d*v, —
Differential equation: = (EI (x) W) = wy (x) (3.10)

Where, wy(x) is the load function acting on the beam in the y direction (normal to the

longitudinal beam axis) and v, the transverse deflection (see Fig. 3.23).

Pr
Flexural deformations only, &=
Bernoulli-Euler i.e., EI finite e
Beam: GA, = -
dx 2EI
G PL
v 3BT

Figure 3.23: Bernoulli- Euler beam with flexural deformations only. Boundary conditions for a linear

elastic cantilever with point load at the tip.
3.3.3 Fiber Sectional Model

The strains at a fiber/layer point of the beam cross section (2-D case) are related to the section

deformations as follows (Spacone et al, 1996)):

ex(x) = & = yeo(x) 3.11)
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where g is the axial deformation at the center of the coordinate system of the section (center
of mass) and y. is also defined with respect to the same point of reference. Parameter ¢(x) is
the curvature of the cross-section. Therefore, the strains at a material point m of the section

can be expressed in matrix form as follows:

ey ={ed =11 —vl {5} = B0 e (3.12)

Bs(y:) = [1 —el (3.13)

The internal forces at a section level are given by:
N = [o,dA = Axial force (3.14)
M = — [ y.0,dA = Bending Moment (3.15)

The section work-equivalent forces can be written in a matrix format as follows:

fs(x) = stT(ye) o (x,y.)dA (3.16)

where:

@0 ={T) B =11 -yl oty)={o} (17)

Taking into account the section discretization into fibers/layers, the total forces on

the beam section are obtained by summation of the contributions of each i-th fiber/layer:

N = SO Gl | M = - S gyl (318)

where Al is the area of the i-th fiber/layer.

Therefore, section forces are determined from the known sectional deformations. If
section forces are known, then the associated sectional deformations need be evaluated
through iterative calculations till convergence (this means that iteration is done on the value
of the deformation while the force is kept at the given value within a tolerance). The tangent
section stiffness matrix ks is defined as the derivative of the section force vector fs with
respect to the section deformation vector e, where the explicit reference to x is dropped for

brevity of notation:

0fsy 0S5y

_ 661 682
ks=|or o (3.19)

deq de,

0fs do(xy) de(xy) do(xy)
ks =52= [ B (ve) - az(;z) S22 dA = [ B () - d‘:(;‘;) Bi(y)dA  (3.20)
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o(xye) ={ox}  e(xye) ={&) (3.21)

do(x,y) _
EEZZ}S"'[E%"] (3.22)

where En is the tangent modulus of the stress — strain relations at a point m of the section.
By establishing (through equilibrium) interpolation functions for the member forces along
the element and the fiber section scheme provided above, the element state determination,
leading to calculation of element nodal forces and displacements along with its tangent
stiffness at each analysis step, is defined. Since in structural engineering applications the
maximum response values usually arise at the ends of the integration interval, for example
bending moments and corresponding curvatures in a structural member, the Gauss-Lobatto
quadrature integration scheme is usually applied for the element state determination (Fig.
3.24).

Vo l N & ’
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Lobatto
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’ ‘ Scheme
I N P I PR - p Sy .
r
v/ """ L J
Z M, =V, L N Fiber section |

Figure 3.24: Force-based fiber element incorporating Euler-Bernoulli Beam theory.

3.3.4 Force-based vs. Displacement-based Fiber Beam Element

Figure 3.253, b illustrates one of the main differences between the displacement-based and
the force-based formulation by comparing schematically the response of cantilever models
D: and F1 (one displacement-based element vs. one force-based element). The bending
moment and curvature profiles are shown for the cantilever after the plastic hinge has
formed. The plastic curvature is labeled ¢p. Figure 3.25a shows the response of a single two-
node displacement-based element. The formulation enforces linear curvature (Hermite shape
functions). This linear curvature profile prevents the element from reproducing a nonlinear
jump from elastic to plastic curvature. Because equilibrium is satisfied in a weak sense and

not pointwise, the moment diagram, shown with a dashed line deviates from the expected
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linear profile. On the other hand, Figure 3.25b shows the response of the force-based frame
element. For concentrated load at the cantilever tip, the linear shape function for the bending
moment distribution strictly satisfies equilibrium. Thus, the formulation enforces a linear
bending moment diagram leaving the element free to deform without constraint. After the
plastic moment capacity is reached, the base integration point experiences plastic curvature

with the remaining integration points remaining elastic.

D1

b)
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»

v

" Moment ®p Curvature ~ Moment ¥p Curvature

Figure 3.25: a) Single Displacement-Based Fiber Element b) Single Force-based Fiber Element

incorporating Euler-Bernoulli Beam theory.

3.3.5 Circular-Reinforced Columns Failed in Flexure

Columns with a circular cross section that, upon lateral displacement reversals exhibited
flexural failure are listed in Table A.1 in the Appendix of this Chapter. The hysteretic
responses of several specimens from this group are analyzed in the present section using

finite element cyclic static analysis.

The objective in conducting this analysis is to evaluate the available theories
regarding their success and limitations in reproducing the experimental responses of those
column specimens that did not experience failures beyond the scope of the models (as would
be for example the case of shear failure). Numerical simulations were conducted using a
nonlinear fiber beam-column element that considers the spread of plasticity. In this type of
analysis the longitudinal beam element uses a force-type formulation with linear moment
distribution to derive a flexibility matrix for the element with progressing nonlinearity (step
by step); the strain-displacement relationships are therefore defined implicitly after inversion
of the flexibility matrix to obtain the stiffness. Assuming strain compatibility between
materials comprising the member, the formulation samples sectional response at selected

integration points along the length. At the sectional level the Bernoulli hypothesis (plane
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sections remaining plane and normal to the axis of the member) is used to relate strains in
the different fibers to the sectional curvature and longitudinal axis normal strain. Nonlinear
uniaxial material laws are used to relate normal stress with normal strain in the fibers, thereby
neglecting the effect of shear in modifying the principal orientations through the height of
the cross section. Typical discretization of a column section is shown in Fig. 3.21. Sectional
stress resultants (Moment and Axial load) are obtained from the equilibrium of the
contributions of fiber stress resultants [FEDEAS Lab (2004)].

o) b)
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Lateral | I
| |
Load R = = \ Longitudinal
I I £ . = .
I I E‘ ‘E' Reinforcement
: ; Element S =" =
N ¢/
| |
| |
- d L -
r 7 I Core Concrete
|
- J

Figure 3.26: a) Numerical model for Spiral-Reinforced Columns failed in flexure b) Section
discretization in fibers/layers.

For example, for the column with ID#43 in Table A.1 (axial load ratio v=0.19), as it
is depicted also in Fig. 3.26, a single beam-column element is assigned to the entire length
of the cantilever column and five Gauss-Lobatto integration points [FEDEAS Lab (2004)]
were defined along the element. Uniaxial material stress-strain laws for the concrete and
steel fibers are depicted in Fig. 3.27(a) (Scott et al. 1982) for concrete and in Fig. 3.27(b) for
steel (Menegotto and Pinto, 1973). The effect of confinement on the confined concrete core
was modelled using pertinently modified properties for the uniaxial stress-strain law of
concrete in compression (Scott et al., 1982, Mander et al., 1988). No P-A effect was
considered in this simulation. The calculated lateral Force — lateral Displacement response
of the numerical simulation of the column is plotted for comparison with the experimental

results in Fig. 3.28. The good correlation up to a drift of 3.75% underscores the fact that
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flexural behavior is controlled by steel inelasticity which is stable and may be reproduced
without the consideration of other secondary effects or the interaction of flexural with shear
response. However, correlation deteriorates significantly beyond that point, on account of
the fact that second order effects have been neglected and there is no accounting for the

ensuing degradation and progressive collapse.
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Figure 3.27: (a) Scott et al. (1982) constitutive law assigned to the concrete fibers. (b) Menegotto and
Pinto constitutive law assigned to the longitudinal steel fibers.

Another example (column ID#45) from Table A.1 in the Appendix of this Chapter is
shown here: the approach used for simulation is identical to that of the previous example,
the only difference being in the use of a more complex stress-strain model for the confined
core (Mander et al. 1988; here the strain capacity of the confined core is related to the strain
energy that may be absorbed by the stirrups before fracture), as depicted in Fig. 3.29. Figure
3.30 compares the calculated and experimental lateral force vs. lateral displacement
hysteresis — again the correlation is satisfactory up to a drift of 2.5%, however, the model
cannot reproduce the loss of lateral load bearing capacity near the end of the test; note that
this column was identical to the previous one but carried twice the amount of axial load.
Therefore, second order effects would cause an apparent loss of 22.6 kN for an increment of
lateral displacement from 20mm to 30mm (and 67.8 kN total reduction of the yield lateral
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force due to P-A effect at the displacement level considered); the additional loss which

occurs in repeated cycles at the same displacement excursion is owing to material
degradation.

Force-Displacement for RC Column 43 of Berry and Eberhard Database
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Figure 3.28: Comparison between numerical and experimental response of circular column (1D#43)

(specimen case obtained from the Berry and Eberhard Database 2004 and was analyzed herein).
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Figure 3.29: Mander et al. (1988) stress-strain model assigned to the confined concrete fibers.
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Force-Displacement for RC Celumn 45 of Berry and Eberhard Database
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Figure 3.30: Comparison between numerical and experimental response of circular column (1D#45)
obtained from the Berry and Eberhard Database (2004).

Several other examples are presented in Figures A.1 — A.26 in the Appendix to the
present Chapter. Correlation in flexure dominant cases follows the general pattern discussed
in the preceding case studies. It is noteworthy that some cases demonstrated significant
pinching, which was not reproduced by the purely flexural nonlinear model; such examples
are specimens with ID#47, ID#53, ID#55, ID#56, ID#57, ID#58, ID#59, ID#60, 1D#116,
ID#120, ID#141, ID#142 and ID#157. In the case of these specimens, which had a low
volumetric ratio of transverse reinforcement (0.6%) and early yielding with strain
penetration along the anchorage, the observed pinching was owing to reinforcement pull-out
and shear deformation in the plastic hinge region, both phenomena neglected in the
numerical model used here. The aspect of yield penetration and lumped rotation occurring
at the support of the column is addressed in Chapter 5 of the thesis.

3.3.6 Rectangular-Reinforced Columns Failed in Flexure

The group of rectangular-reinforced specimens is summarized in Table A.2 in the Appendix
of this Chapter; again, only specimens that reportedly failed in flexure are considered in this
section, to test the performance of formulations that only consider normal stress response at

the sectional level.
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The force-based nonlinear fiber beam-column element which considers the spread of
plasticity available in FEDEAS Lab (2004) was used in this Section’s numerical simulations.
As previously, a single frame element is considered using flexibility formulation with
assumed linear variations of moments along the length; sampling of sectional response is
done at five Gauss-Lobatto integration points along the member length. The typical

discretization of rectangular column sections is shown in Fig. 3.31.
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Figure 3.31: a) Numerical model for Rectangular RC Columns failed in flexure b) Section discretization
in fibers/layers.

For the first column (No. 1 in the Database) of Table A.2 (with a square cross section
and an axial load ratio of 0.26), as shown in Fig. 3.32, a unique fiber element is assigned to
the entire height of the cantilever column and five Gauss-Lobatto integration points were
defined along the element. Uniaxial concrete stress strain response was modeled using the
relationship by Mander et al. (1988, Fig. 3.29). The different confinement effect of the
unconfined concrete cover and the confined concrete core was not considered in the
discretization of the section (Fig. 3.31). The stress-strain response of longitudinal
reinforcement was modeled by the model of Menegotto and Pinto (1973, Fig. 3.22b). Again,
the P-Delta effect was not accounted for in the simulation. The comparison of the lateral
Force — lateral Displacement response of the numerical simulation of the column with the
experimental results can be seen in Fig. 3.27. As was seen in the case of circular section
columns, while the axial load ratio is kept low, a good agreement between numerical and
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experimental results is found up to drift levels of 2.5% (where the strength loss owing to P-

A is only 45kN i.e., about 7% of the column strength).

Force-Displacement for RC Column 1 of Berry and Eberhard Database
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Figure 3.32: Comparison between numerical and experimental response of rectangular column (ID#1)
of Berry and Eberhard Database (2004).
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Figure 3.33: Comparison between numerical and experimental response of rectangular column (1D#2)
of Berry and Eberhard Database (2004).

The performance of the same numerical model applied to the second column example
listed in Table A.2 — (again having an axial load ratio of v=0.22) is compared to the
experimental force - displacement response curve in Fig. 3.33. Response is adequately well

modeled, reproducing faithfully the loss of cover (spalling) at a drift of 1.2%; therefore, it
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may be concluded that the efficacy of distributed plasticity beam column models based on
the force formulation successfully estimates the flexural behavior also in the case of

reinforced concrete columns with rectangular sections.

Several other examples are presented in Figures A-27 — A.76 in the Appendix to the
present Chapter. Correlation in flexure dominant cases follows the general pattern discussed
in the previous two examples. Correlation deteriorates beyond drift levels in the range of 3%
or more, when the column carries a significant axial load ratio. It is noteworthy that some
cases demonstrated significant pinching, which was not reproduced by the purely flexural
nonlinear model; such examples are specimens with ID#32, ID#105 and ID#106. Again, as
was seen in some circular section columns of the preceding section, specimens with a low
transverse reinforcement ratio and strain penetration along the anchorage developed
pinching in the experimental response due to reinforcement pullout and shear deformation
in the plastic hinge region. This aspect is addressed separately in Chapter 5. Finally, in one
case (ID#91) the experimental response was not symmetrical in the two directions of loading

due to buckling of compressive reinforcement.
3.4 Analytical (F.E.) Simulation of RC Columns Failed in Shear

Performance of the shear critical columns (flexure-shear or shear failure) of the experimental
database in terms of strength and deformation capacity is also examined so as to test again
the performance of the analytical procedure described in the preceding sections. Again, the

columns are divided into two groups according to cross sectional shape.
3.4.1 RC Columns with Rectangular Cross-Section Failed in Shear

Columns with a rectangular cross section that developed shear failure are summarized in
Table A.3 of the Appendix of this Chapter. Figure 3.34 plots the shear strength degradation
models adopted by EN 1998-3 (2005) and ASCE-SEI 41 (2007) (also see Chapter 2) in order
to describe the envelope of the resistance curves of reinforced concrete columns as a function
of displacement ductility; this is used as the basic criterion in order to detect shear failure
before or after flexural yielding (point of intersection with flexural capacity curve).
Therefore, it is necessary to define the flexural capacity curve based on classic flexural
analysis and to also combine it with the reduction of the shear strength curve postulated by
the codes, in order for the strength and deformation of the reinforced concrete column at

shear failure to be defined. This procedure is followed in the present Section in order to
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analyze the shear critical columns of the experimental database under study and to examine
how successful the code provisions are in predicting the strength and deformation of columns
failing in shear before or after flexural yielding. In addition, the models by Elwood (2003)
introduced also in Chapter 2 that define the drift capacity of shear-critical columns at shear
failure and at loss of axial load carrying capacity are included in the calibration study. The
force-based nonlinear fiber beam-column element which considers the spread of plasticity
available in the FEDEAS Lab (2004), was used also in this section’s numerical simulations
for the definition of flexural capacity curve. The modelling procedure was the same as that

used in earlier paragraphs for columns with rectangular cross sections.

Figure 3.35 compares the analytical and experimental response of the rectangular
column —ID#28 (Table A.3). Clearly, correlation is poor even with regards to the initial
stiffness defined by flexural analysis. This is owing to the fact that the contributions to
deformation resulting from reinforcement pullout and shear deformation have been
neglected. It can be observed that only the degrading shear strength model of ASCE-SEI 41
(2007) intersects the flexural capacity curve and therefore (correctly) identifies the triggering
of shear strength failure after flexural yielding as a result of shear strength degradation.
However, the displacement when this event takes place occurs earlier than the actual onset
of strength degradation as observed in the experimental response. The proposal of Elwood
(in parentheses next to the drift ratios the corresponding displacements are given for the
column under study based on its shear span) overestimates the actual drifts associated with

shear and axial failures as observed in the experimental results.

In the next column example (Fig. 3.36) the code provisions fail to detect shear failure
despite the fact that, based on the experimental report, shear failure was observed. Again,
the drift models by Elwood (2003) overestimate the displacements at which shear and axial
failure occurred. The force-based fiber element used for the flexural analysis reproduces the
peak strength well but it fails to converge after that point, and cannot detect the strength
degradation owing to shear failure. As mentioned before, the initial stiffness of the numerical
model is overestimated as compared with the experiment. Several other examples are
presented in Figures A.77 — A.100 in the Appendix to the present Chapter. Correlation in

shear dominant cases follows the general pattern discussed in the previous two examples.
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B: Shear failure after flexural yielding
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Figure 3.34: Shear strength degradation model adopted by current codes of assessment.
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200 ‘ ‘ ‘
== FE|exural Analysis (+)
150+ === Flexural Analysis (-) =\
---Experiment \\
100 Shear Strength EC8-11I (+) ——
= Shear Strength EC8-11I (-) T -:7’_,;: 7
< 50| —Shear Strength ASCE-SEI 41 (+) | f ;== 0t _ori¥—"""3 ___—_
8 — Shear Strength ASCE-SEI 41 (-) ——:;::;';5_:_’: :’—:—:',:'/ -
S 0 = I i
L
5
2 -50
n
— Drift at shear failure - Elwood: 3.3% (10 mm)
-100 \ Drift at axial failure - Elwood : 7.5% (23 mm)
-150 N—
-200
-8 -6 -4 -2 2 4 6 8

0
Displacement (mm)

Figure 3.35: Comparison between numerical and experimental response of rectangular column (1D#28)
of Berry and Eberhard Database (2004).
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Force-Displacement for RC Column 29 of Berry and Eberhard Database
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Figure 3.36: Comparison between numerical and experimental response of rectangular column (1D#29)
of Berry and Eberhard Database (2004).

3.4.2 RC Columns with Circular Cross-Section Failed in Shear

Spiral-reinforced specimens with a circular cross section that failed in shear are presented in
Table A.4 of the Appendix of this Chapter. Monotonic analysis is conducted following the
same procedure as described in the circular section Column (second case) of the previous

Section.

As previously stated (Fig. 3.34), the shear strength degradation models such as those
adopted by EN 1998-3 (2005) and ASCE-SEI 41 (2007) (Chapter 2), are used to determine
the deformation limit at shear failure from intersection with the flexural force — displacement
envelope. The flexural capacity curve is based on classic flexural analysis. After the
application of this procedure to specimen #14 in the experimental database, the following

response envelope is determined (plotted in Fig. 3.37 against the experimental result).

Both the shear strength degradation models shown in Fig. 3.37 detected shear failure
after yielding at a displacement much lower than the corresponding experimental one. The
strength at shear failure was better assessed by the model of EN 1998-3 (2005) compared to
the alternative of ASCE-SEI 41 (2007). The drift model at shear failure by Elwood (2003)
performed very well as compared to the experimental shear failure limit; however, drift at
axial failure was overestimated (83mm as compared to 30mm). The same comments are

valid for the column in Fig. 3.38.
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In the comparison showcased by Fig. 3.39, only the shear capacity curve by ASCE-
SEI 41 intersects the flexural force-displacement envelope, thereby detecting shear failure
after flexural yielding. The strength at shear failure was well predicted by the latter model
but the corresponding displacement was much lower than in the experimental response. The
drift model at shear failure by Elwood (2003) performed well compared to the experimental

response but overestimated the drift at the loss of axial strength.
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Figure 3.37: Comparison between numerical and experimental response of circular column (1D#14) of
Berry and Eberhard Database (2004).

Several other examples are presented in Figures A.101 — A.118 in the Appendix to
the present Chapter. Correlation in shear dominant cases follows the general pattern

discussed in the previous three examples.
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Figure 3.38: Comparison between numerical and experimental response of circular column (1D#16) of
Berry and Eberhard Database (2004).
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Force-Displacement for RC Column 15 of Berry and Eberhard Database
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Figure 3.39: Comparison between numerical and experimental response of circular column (1D#15) of
Berry and Eberhard Database (2004).

3.5 The Effect of VVariable Axial Load on RC Column Behavior

Owing to the overturning moment, columns in multiple-column bents experience variable
axial forces corresponding to the direction of, and typically being proportional to the
horizontal forces. Columns are also subjected to the vertical components of ground motion,
which is not correlated concurrently with the horizontal loading. Past earthquake records
have shown that in some cases, vertical ground motions cannot be ignored, particularly for
near-fault situations. For example, the lateral displacement ductility in a column, designed
based on a constant axial load, with a relatively low axial load ratio, can become
unsatisfactory when the actual axial load due to the overturning effects or the vertical ground
motion exceeds the value that corresponds to balanced failure. The problem becomes even
more significant when shear design is considered. The increase of axial load from the design
level (typical values of axial load ratio can be as low as 0.1 particularly in bridge piers) to
the level of the balanced axial load results in the increase of column flexural capacity, thus
increasing shear demand. On the other hand, changes of axial load from compression to

tension can result in a significant decrease in column shear strength.

In Table A.5 of the Appendix of this Chapter, an experimental database of reinforced
concrete columns under cyclic lateral loading and variable axial load has been assembled for

the needs of the investigation. For these cases, the experimental response envelope will be
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assessed using monotonic static analysis. Analytical procedures are identical to those used
in the previous section. For the sake of comparison with the numerical models and code
specifications of the previous section, only pairs of specimens of the above experimental
database tested under constant compressive or tensile axial load will be considered in the
following correlation with the experimental results. In this way, the effect of the load on a
column’s shear strength will be demonstrated along with the effectiveness of code standards

to assess this influence.

The first columns under study are the specimens ICC and ICT by Elnashai et al.
(2011). Two columns with identical properties reported in Table A.5 are tested under cyclic
lateral loading and constant compressive axial load (ICC) or constant tensile axial load
(ICT). In the comparison of Fig. 3.40 with the experimental response it is observed that the
shear strength degradation model of ASCE-SEI 41 (2007) detects shear failure after yielding
of the studied column while in the EN 1998-3 (2005) shear capacity curve it does not. The
estimated point of the detected shear failure corresponds well to the specimen strength, but
in terms of displacement the shear failure is identified to occur much earlier as compared to
the experimental response. The drift models by Elwood (2003) defined well the displacement

at shear failure, but again, the axial failure drift was overestimated.

Force-Displacement for RC Column ICC by Elnashai
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Figure 3.40: Comparison between numerical and experimental response of circular column (ICC) by
Elnashai (2011).
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Force-Displacement for RC Column ICT by Elnashai

1200
1000
800
= e
2 |\ | _cemtmm=zozaa 2 — -~
@ 600 L
g ya
5 400 /7
Q 4
R ’
n 4
200§ -
== Flexural Analysis
0 —-=-Experiment
Shear Strength EC8-11I Drift at shear failure - Elwood: 4.7% (61 mm)
— Shear Strength ASCE-SE| 41 Drift at axial failure - Elwood: 10.4% (135 mm)
-200 : ‘ : : ;
0 20 40 60 80 100 120

Displacement (mm)

Figure 3.41: Comparison between numerical and experimental response of circular column (ICT) by
Elnashai (2011).

For the case of the same specimen under constant tensile load (Fig. 3.41) it is noted
that the degradation model of EN 1998-3 (2005) for shear strength reproduced the
experimental response satisfactorily since it did not detect shear failure for the specimen
which, during the tests reportedly failed in flexure. Finally, since no shear failure occurred,
the drift models by Elwood (2003) were not relevant in the tensile-axial load case either.

The next column examples for investigation of the effect of variable axial load on
shear strength are specimens CS1 and CS2 by Priestley et al. (1996) which were tested under
cyclic lateral loading and constant compressive and tensile axial load respectively. From the
comparison in Fig. 3.42 it can be observed that only the shear strength degradation model
by ASCE-SEI 41 detects shear failure for the column under study, but at a somewhat lower
strength and displacement capacity as compared to the experimental response. In addition,
the drift model of Elwood at shear failure overestimates the corresponding displacement,
while the drift model at axial failure underestimates the displacement where the loss of axial

bearing capacity is observed.

Finally, the comparison of the same specimen by Priestley et al. (1996) under tensile
axial load is depicted in Fig. 3.43. The degraded shear capacity models of the design codes
(both) detect the shear failure of the column, but at lower strength and displacement
compared to the experimental results. The drift model at shear failure by Elwood (2003)
estimates the displacement at the onset of shear failure with good accuracy, however, the

drift model at axial failure overestimates the experimental column response.
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Force-Displacement for RC Column CS1 by Priestley
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Figure 3.42: Comparison between numerical and experimental response of circular column (CS1) by
Priestley (1996).

Force-Displacement for RC Column CS2 by Priestley
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Figure 3.43: Comparison between numerical and experimental response of circular column (CS2) by
Priestley (1996).

Clearly, based on the preceding analysis, the state of the art modeling of the lateral
load response of columns leaves a lot to be desired: improved response estimation of the
behavior of columns that are susceptible to shear failure after flexural yielding; better
procedures to estimate shear strength and the pattern of degradation thereof, with increasing

displacement ductility; the need to account for reinforcement pullout and its effects on
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stiffness; the shape of the hysteresis loops; the detrimental effects of axial load at large
displacement limits; and the magnitude of deformation (drift ratio) associated with milestone
events in the response curve of the column member, are open issues that need to be settled
before the performance-based assessment framework may be considered complete and
dependable. Some of these issues (improved response estimation of the behavior of columns
that are susceptible to shear failure after flexural yielding; better procedures to estimate shear
strength and the pattern of degradation thereof, with increasing displacement ductility; the
need to account for reinforcement pullout and its effects on stiffness; the detrimental effects
of axial load at large displacement limits; and the magnitude of deformation (drift ratio)
associated with milestone events in the response curve of the column member) are addressed

in the following Chapters of the present thesis.
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4 Mechanical Behavior of Lightly Reinforced Concrete

Columns

4.1 Introduction

This chapter deals with reinforced concrete columns that do not conform to modern
standards for earthquake resistant detailing. Existing concrete structures constructed before
the development of modern seismic design provisions represent one of the largest seismic
safety concerns worldwide. Such structures are vulnerable to significant damage and even
collapse when subjected to strong ground shaking. Collapse of concrete structures has
resulted in many of the fatalities in past earthquakes, leading to several efforts in recent years
to improve assessment and retrofit procedures for existing structures. In these structures,
columns are important structural elements that support the weight of a structure and resist
earthquake story shear. Such columns often comprise materials of substandard quality. In
the present thesis, columns that do not meet modern requirements for reinforcement detailing

are referred to as “old-type” or non-conforming members (NC).

b) c)

iy

Figure 4.1: Brittle failure of old-type building columns. a) Thin and widely spaced plain bars as lateral
reinforcement b) Spacing of the large diameter lateral reinforcement almost as wide as the width of the
column ¢) Shear failure by opening of ties at a 90° bend.

Depending on the global characteristics of the structural system and the imposed
local deformation demand, poorly detailed elements may become the critical components
during seismic excitation, as they generally possess inadequate resistance to reversed cyclic
loading (Fig. 4.2). Experience from past earthquakes has repeatedly shown that when
subjected to cyclic inelastic deformation reversals, old-type columns undergo fast
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deterioration and degradation of strength, failing in a brittle fashion with fatal consequences

for the integrity of the structure as a whole (Fig. 4.2) (fib bulletin 24 2003).
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Figure 4.2: Effect of lateral reinforcement on shear strength (Tsukamoto, Kuramoto and Minami et al.
1989)

A special category of columns are those in bridge piers, whether these are arranged
in single-column or multiple-column bents. Bridges differ in terms of dynamic response
from buildings in that sectional sizes are much larger, normalized axial loads lower, and
comprise various types of superstructures, substructures, and foundations with complex
geometries and dynamic response characteristics; the modern concept is for strong-girder /
weak-column capacity design which is the exact reverse from that prevailing in buildings.
Furthermore, the degree of static indeterminacy is generally much lower in bridges than in

buildings. Hence failure of a column can lead to collapse of the total bridge system.

The destructive damage in the 1995 Kobe Earthquake revealed the fact that there are
a number of highway bridges that are vulnerable to strong ground motion. Major reasons of
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the damage in that event were the tendency for shear failure of RC columns that were
designed and constructed in accordance with the pre-1980 Design Specifications. The
premature shear failure occurred near the end of lap-splices above the base. The practice of
termination of longitudinal bars with insufficient development length resulted in the major
damage at various sites. Apparently, the allowable shear stress design practice had
overestimated the concrete capacity to shear, and the design development length of
longitudinal bars at the cut-off point was insufficient in the pre-1980 Design Specifications
(Fig 4.3). But the more critical occurrence, seen time and again in reconnaissance reports
was the poor detailing of transverse reinforcement, marked by excessively small tie bar
diameters, lack of tie support at the corners against dislocation and bending, and sparse
arrangement without intermediate tie legs (i.e. use of conventional perimeter ties only) which
could not provide any countable confinement of the encased concrete for the size of cross
sections encountered in bridges, nor could they prevent lateral buckling of compression

reinforcement.

a) b)

Figure 4.3: a) Collapse of Fukae Viaduct 1995 Kobe Earthquake b) Premature shear failure of reinforced

Concrete bridge pier, Fukae Viaduct.
4.2 Typical characteristics of older type construction

Structural deficiencies encountered in older type reinforced concrete construction may be
classified in three major groups owing to systematic oversights/flaws in design, detailing,
structural system form, and construction. For example, design deficiencies include:

e Inadequate provisioning of lateral-load resisting members (e.g., lack of shear walls

or special moment-resisting frames);
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e Lack of redundancy (alternative load paths) in the structural system (i.e. system
structural collapse is triggered in the event of damage occurring in few members);

e lrregularities in plan or elevation (e.g. L or T-shaped plan, or vertical setbacks);

e Presence of short columns, which usually fail in specific patterns that involve shear-
type dislocation which is catastrophic;

e Strong- beam weak-column joints, that is, cases where the beams are stronger than

the columns they connect to (in buildings).
Key detailing deficiencies include:

e Inadequate transverse reinforcing bars (Fig. 4.1).
e Short overlap lengths at spliced joints (Fig. 4.3).

e Large amounts of longitudinal reinforcement (over-reinforced sections)

Adverse conditions such as those listed above may be further aggravated by construction
deficiencies, such as low-quality workmanship, use of inferior materials and deviations from
structural drawings and specifications during the construction phase. Additional
deterioration is owing also to ageing, the accumulated effects of corrosion or other damage
caused by the long-term exposure of the structure to natural phenomena (e.g. scouring at

bridge piers).
4.2.1 Material characteristics

The correspondence between older and newer codes regarding the concrete strength values
is depicted in Table 4.1 where the characteristic compressive strengths f,; are reported with
their nowadays definition (cylindrical specimen, characteristic strength with a 95%
probability of exceedance by a random sample) adjusted to correspond to other specimen
shapes and practices such as those used in preceding codes (mean strength value obtained
from 200mm cubic specimens was the standard practice until 1991 in Greece). It is shown
in the table that the testing time of 28 days from casting has not changed ever since it was
first introduced in the German codes in 1907; however the test was conducted on cubic
specimens until 1991, when the American standard of the cylindrical specimen was adopted
throughout Europe, according to the prevailing tendency for harmonization of international
practices (particularly through the Eurocodes). Under the same objective falls also the
change in nomenclature (Concrete in lieu of Beton) and in the measuring units (from kg/cm?
to N/mm? (MPa)).
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Steel reinforcement varies in terms of quality (strength and ductility) and surface
characteristics (smooth bars or G class in DIN488, and ribbed bars or class R in DIN488).
Under normal circumstances properties of steel reinforcement present much less variability
than concrete. In very old construction even bars of non-rectangular cross sections may be
found. According to the Greek code of 1954 (Table 4.2) the qualities of reinforcing steel (I,
11, 1V) had allowable stresses 1400 to 2400 kg/cm?. These values resulted approximately
from the yielding limit after division by a safety factor ranging between 1.5 and 1.75. The
reduced values of the allowable stresses for reinforcing steel accounted for the expected
construction uncertainties. The modulus of elasticity was taken constant and equal to 2.1x10°
kg/cm? for all steel qualities. After 1991 the reinforcing steel is characterized by its yield
strength value (MPa). The modulus of elasticity is taken constant, equal to Es = 2.0x10°

N/mm?2,

Table 4.1: Categories and Strengths of Concrete in 20%" century (Karaveziroglou 2009)

1) Cubic specimen with the age of 28 days 2) Length of the edge of the cubic specimen (mm) 3)
Mean value of 3 specimens [kg/cm?] 4) Characteristic strength of cylinder fa [N/mm?] 5) C30/37
after 2010 and increase of the qualities to C90/105
Period | Wy? Nominal value of compressive strength of concrete
3002 Wog Wasg Wag | Wasg
1907-
1 M3 100 150 180 | 230
16
fo ¥ 5 6 7 8
2002 W | W | W
1916-
2 M3 150 180 245
25
fo ¥ 7 8 9
2002 | Wi | Whog | Wigs
1925-
3 M3 100 130 180
32
foc ¥ 6 8 11
2002 | Wheos | Whog | Wi
1932-
4 M3 120 160 210
43
fo 8 10 12
5 2002 B B B B B B B
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3)
1054. | M 80 120 | 160 | 225 | 300 450 600
91 fo 8 10 16 20 28 35
1502 C C C C C C C C C
1991-
6 5% 3 10 15 20 25 30 359 45 50 55
present
fo 8 12 16 20 25 30 35 40 45

Table 4.2: Steel qualities according to the Greek code 1954 (Karaveziroglou 2009)

Yielding Limit Tensile Strength Allowable stress
Category

Min fy, [MPa] fi [MPa] fa [Kg/cm?]

I 220 340-500 1200-1400
420 (d<18mm)

Illa 500 (min) 2000-2400
400 (d>18mm)
420 (d<18mm)

b 500 (min) 2000-2400
400 (d>18mm)

v 500 - 2000-2400
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Figure 4.4: Stress — Strain diagrams of older reinforcing steel (Karaveziroglou 2009).
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4.2.2 Older - type detailing

In the presence of confinement in an RC member, many of the imperfections of the materials
described above can be overcome. The essential difference in design philosophy between
nowadays and 40 years ago lies in the importance of transverse reinforcement as a means of
confinement. In the older codes the use of stirrups was recommended for: a) the support of
the longitudinal reinforcement against buckling, b) partial contribution to shear strength, c)
torsion. The German DIN 1045/1972 reflects the point of view in Europe, for that period:
The approach taken was to place reinforcement so that ties may intersect all possible cracks
— S0 as to restrain the crack width. Based on this point of view the designer was expected to
bend the primary reinforcing bars in strategic locations in the vicinity of minimum moment

S0 as to enhance the shear strength of the prismatic elements.

This practice was widespread in Europe and North America. Note for example the
emphasis on the most advantageous placement of primary reinforcement in the case of corner
connections so as to improve the flexural mechanism and the anchorage of longitudinal
reinforcement in the joints but without any reference to regulations regarding the use of

stirrups.

Figure 4.5: Characteristic example of reinforcement detailing in “old-type” elements. (fib Bulletin No.
24 2003)
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4.3 Deformation Capacity of Lightly Reinforced Concrete (RC)

Columns

Figure 4.6 depicts the typical brittle hysteretic response of a lightly reinforced concrete
column. The hysteretic loops of the column show the degradation of stiffness and load
carrying capacity during repeated cycles due to cracking of concrete and yielding of the
reinforcing bars. Pinching is a dominant characteristic of the response. The occurrence of a
wide and steep shear crack resulted in a reduction in the shear-resisting capacity of the
column. Near axial failure, a steep shear crack developed in the column, which led to sliding
between the crack surfaces followed by buckling of longitudinal bars and fracturing of

transverse bars along the shear crack (Ngoc Tran & Li 2013).
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Figure 4.6: Hysteretic characteristics and failure mode of a lightly reinforced concrete column. (Ngoc
Tran & Li 2013)

Results of previous studies (Fenwick and Davidson 1995, Lee and Watanabe 2003,
Matthews et al. 2004, Peng et al. 2011) indicate that the concrete shear resistance of RC
columns decreases with increasing longitudinal strains. This increase in longitudinal strains
after the onset of flexural yielding widens the diagonal cracks, which leads to sliding of the
crack surfaces; overall, an increase in the principal tensile strain occurs. As a result, the
effective concrete compressive strength is reduced and the member possibly fails in shear.
Longitudinal strains and axial elongations substantially increase during reversed cyclic
loading (Fig. 4.7). The residual strains in the reinforcements accumulate in each cycle;
hence, beam elongation increases during load reversals. Furthermore, dislocations in the

local geometry occur preventing the cracks from closing completely. Elongation and
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longitudinal strains in the plastic hinge region not only influence the concrete resistance in
shear but also the inelastic deformation, respectively, and hence, the rotation capacity up to
flexural failure. (Fig 4.7) (Syntzirma et al. 2010, Mehrabani and Sigrist 2015).

The total lateral response of a lightly reinforced concrete column is usually modeled
by representing flexural action, reinforcement slip and shear deformation response as springs
in series, where the force in each spring is the same and the total deformation is the sum of
individual spring deformations. In the established modelling methods, flexural deformations
are evaluated by the nonlinear beam-column element. Zero-length elements located at the
top and bottom of the column are attached to the nonlinear beam-column element. The zero-
length elements are defined by three uncoupled material models describing: (1) the moment-
rotation relationship representing reinforcement slip response (rotational spring); (2) the
shear-horizontal displacement relationship representing the shear force-displacement
response (shear spring) and (3) the axial load-vertical displacement relationship (axial
spring). (Shoraka and Elwood 2013).

A critical step in the direction of determining the deformation response is to identify
the weak link of behavior, where localization is expected to occur (minimum lateral strength
based on the various mechanisms of resistance). In this approach, it is postulated that
deformation components are additive only if the hysteretic response is controlled by flexure,
demonstrating stable loops. In all other cases, the deformation component associated with
the controlling mode of failure dominates the overall deformability of the member

(Syntzirma and Pantazopoulou 2007).

In order to demonstrate the above statement, the modelling technique of Fig. 4.8 was
applied to an example reinforced concrete column fully fixed at both ends with properties
similar to the rectangular column of the experimental campaign of Elwood and Moehle
(2008) in the software OpenSees (OpenSees 2.5). The Base Shear vs. Lateral Drift response
of the column along with the shear failure (initiation of degrading slope) and the axial failure
(end of the response) is depicted in Fig. 4.9.
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Figure 4.7: Average axial strains versus deflection of a RC column failing in shear after flexural yielding

(Mehrabani and Sigrist 2015).
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Figure 4.8: Shear, axial and rotational spring in series
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Figure 4.9: Base Shear vs. Lateral drift of a RC square column simulating shear and axial failures.

4.3.1 Local to Global Transformation of Stress and Deformation Resultants

Capacity prioritizing in order to identify the weakest link of member behavior is a
prerequisite for determination of the tendency for localization of material deformation.
Failure may occur as a consequence of exhaustion of some material strength or deformation
capacity; each such event may have implications that could be catastrophic for the stability
of the member, or alternatively, it could simply lead to redistribution of internal forces. For
example, an event in member response curve could be exhaustion of the cracking strain on
the tension face, and later-on the delamination strain on the compression face in the concrete
cover, exhaustion of the compressive strain capacity of the encased core concrete, yielding
or fracturing in transverse reinforcement, exceedance of the buckling limit in the longitudinal
compression reinforcement, and tensile yielding or fracturing in the longitudinal tension
reinforcement. These events occur in different locations of the cross-section or of the
member (Fig. 4.10). A Reinforced Concrete (RC) section under combined flexure and axial
load is usually analyzed using the following simplifying assumptions (Fig 4.10): 1) A plane
section before bending remains plane and normal to the longitudinal member axis after
bending, 2) The stress-strain relation (constitutive model) of materials is known, and the
state of stress is simplified to only consider normal stresses and strains, 3) External forces
are in equilibrium with the internal stress resultants. The first assumption, known as the
Bernoulli hypothesis, simplifies the analysis and gives linear distribution of longitudinal

strain across the section with null strain at the neutral axis. The location of the neutral axis
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of the section is determined by the equilibrium of axial forces acting on the section.
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Figure 4.10: Reinforced concrete section under bending.

Prioritizing the sequence of occurrence of above described events is done on the
basis of member shear forces, as this is a common attribute to all mechanisms of resistance:
in this manner, a local event that occurs at the material level, is reflected in the global scale
by the acting member shear force, V. Possible material failure problems that would limit the

strength of a column are:

1) Cover delamination: It occurs at a compressive concrete strain equal to the ultimate
compressive strain of unconfined concrete (0.004) (Fig. 4.10). Cover spalling

appears at a displacement less than or near the yield displacement (Fig 4.11).

Figure 4.11: Concrete Cover Spalling of a Reinforced Concrete Column.

2) Attainment of the ultimate compressive strain of confined concrete core (Figs. 4.10,
4.12). In this case concrete crushes in compression and it is a flexural mode of failure.
Flexural compression failure is followed potentially by the loss of gravity load

carrying capacity.
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3) Splitting of the cover concrete along the weak plane formed by the lapped bars
resulting in a loss of bond. In case of cyclic loading conditions, the contribution of
concrete confinement to lap splice strength is insignificant.

4) Bar strain exceeds the strain development capacity of the reinforcement which is the
minimum of the tensile strain that can be sustained by the lap splice or anchorage at

the critical section or the fracture strain of the bar.

Figure 4.12: Flexural Compression Failure of a Reinforced Concrete Column

5) The compressive longitudinal reinforcement enters the instability conditions which
result to buckling of the longitudinal bars. The occurrence of buckling is affected by
the presence (spacing) of transverse reinforcement and the diameter of the bars. In
lightly reinforced concrete columns the unsupported length of longitudinal
reinforcement is high and equal to the spacing of the stirrups. Buckling results to
spalling of concrete cover (Fig 4.13).

6) Occurrence of web diagonal tension cracking: The tensile stresses carried by the
concrete before onset of significant shear cracking should be resisted by shear
reinforcement once shear cracks open. If this doesn’t happen diagonal tension failure
occurs (exhaustion of concrete contribution to shear V. ) (Fig. 4.1 a).

7) Onset of stirrup yielding: According to Morsch truss analogy stirrup yielding refers
to the steel contribution in shear strength of the column, estimated as the yielding
forces of those stirrups which are crossing the diagonal shear crack.

8) Occurrence of large postyielding strains in the stirrups which signals high shear strain
in the column and it can be tracked along the descending branch of the member

response curve —associated with the degraded shear strength of the member.

Conversion from the material scale to the stress resultant of the column follows from

equilibrium of forces and moments (Eqg. 4.1). Normal strains over the cross section are
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assumed to follow a plane sections profile, where, for states of stress past flexural yielding,
the normalized neutral axis depth &, is assumed to remain approximately constant
(alternatively its value may be obtained from interpolation depending on the value of the
gravity axial load, Ng, acting on the cross section, which is taken here as a reference, average
value). Thus, for criteria 1) — 5) above, which refer to the occurrence of a milestone event
in some component of normal strain, the corresponding shear force of the cantilever (half
the column’s length is L) is obtained from (M = Moment at column end, d = the effective
depth of the column, h = height of the section of the column, ; Ay;= area of tensile

reinforcement):

Figure 4.13: Buckling of compressive longitudinal reinforcement.

v=M /1, = [fsrAsd(1 = 0.48) + Ny (0.5h — 0.4¢d)] /L (4.1)

In the above, fs1 is the axial stress in the steel tension reinforcement, obtained from
the stress-strain diagram of the reinforcement, given the corresponding axial strain. This is
the tension bar strain associated with each of the milestone events listed in 1) to 5) above.

For criteria 6)-8) the stress resultant is given by the shear strength of the column.

Values obtained for the milestone events listed above limit the strength of some of
the mechanisms of resistance in series, namely Flexural (V,, ), Shear (Vsp),
Anchorage/Lap Splice (V,,;), or Compression Bar Stability (V, ,ycki.). Therefore, for any
drift level, the above terms are organized in a hierarchy, with the term with the lower

strength, V4, controlling the mode of damage and possibly, failure of the member:

Vfail = min{Vu,fl.Vu,sh.' Vu,sl.' Vu,buckl.} (4-2)
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4.3.2 Strain — Displacement Transformations

Geometric relations are required to identify the magnitude of column drift or tip
displacement of the model cantilever (strain resultants), for each of the milestone events
listed in the preceding section. The mechanisms of deformation participating to total drift
are flexural drift due to curvature along the member, rigid body rotation owing to
reinforcement pullout from the support anchorage or lap splice, and shear distortion which
results in lateral offset of the member (Fig 4.14).

M A M Asi A
/ . e flowre /7 \\ > e slip e shear
_|_ Osh
MR flexural MR bar slip shear

Figure 4.14: Lateral deforma