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ΠΕΡΙΛΗΨΗ 

Το σύγχρονο δομημένο περιβάλλον στα αστικά κέντρα της Μεσογείου κυριαρχείται από 

κτίρια οπλισμένου σκυροδέματος (Ο.Σ.) είτε αποτελούμενα από μικτό σύστημα φερόντων 

στοιχείων, είτε αμιγώς πλαισιακού τύπου.  Περίπου το 70% έχει κτισθεί με τους προ του 

1985 Κανονισμούς, και σήμερα θεωρούνται περιορισμένης σεισμικής ικανότητας επειδή 

δεν ικανοποιούν τις σύγχρονες αντιλήψεις αντισεισμικού σχεδιασμού.  Εικάζεται ότι σε 

ενδεχόμενο ισχυρό σεισμό  πολλά από αυτά τα κτίρια είτε θα αναπτύξουν σημαντική βλάβη 

είτε και κατάρρευση, σε επανάληψη των τραγικών συμβάντων που έχουν παρατηρηθεί στο 

παρελθόν σε πολλά αστικά κέντρα της περιοχής με πολλά θύματα (π.χ. Πάρνηθα Αθήνα και 

Ιζμίτ της Τουρκίας το 1999, L’Aquila Ιταλίας το 2009, Αίγιο 1995).  Ήδη από το 1985 μετά 

την εισαγωγή των ικανοτικών ελέγχων στον αντισεισμικό σχεδιασμό το ποιοτικό χάσμα 

σχεδιασμού νέων κτιρίων από τα παλαιότερα συνεχώς διευρύνεται ανησυχητικά. Η 

αναγκαιότητα για σεισμική αποτίμηση και αποκατάσταση των υφιστάμενων κτιρίων που 

δεν πληρούν τις σύγχρονες προδιαγραφές υπογραμμίζεται με κάθε ευκαιρία στο δημόσιο 

διάλογο, αν και ακόμα αναζητούνται τα σχήματα που θα επιτρέψουν την διεκπεραίωση των 

ελέγχων για το σύνολο των παλαιών κτιρίων.  

Κομβικής σημασίας για την στατικότητα και την σεισμική επάρκεια του δομήματος 

έχουν τα υποστυλώματα του φέροντος οργανισμού σε κτίρια Ο.Σ. Αυτό επιβεβαιώνεται 

συχνά από την μορφολογία των καταρρεύσεων:  όταν αστοχούν τα κατακόρυφα στοιχεία ή 

οι συνδέσεις τους, οι βαριές πλάκες των οικοδομών συσσωρεύονται η μία πάνω στην άλλη 

(pancake collapse) παγιδεύοντας ενοίκους και αντικείμενα. Αναφερόμενοι στο στάδιο της 

επικείμενης κατάρρευσης πολλοί ερευνητές σήμερα επικεντρώνονται στην εκτίμηση της 

ικανότητας παραμόρφωσης των στοιχείων στο στάδιο απώλειας στήριξης των υπερκείμενων 

φορτίων.  

Προηγούμενες αναλυτικές διερευνήσεις καταρρεύσεων δείχνουν ότι συχνά, 

υποστυλώματα με ανεπάρκειες οπλισμών αστοχούν ψαθυρά είτε πριν διαρρεύσουν είτε 

αμέσως μετά την διαρροή και σε μικρά μεγέθη σχετικής στροφής χορδής.  Τα μηχανικά 

φαινόμενα και η έκβασή τους εξαρτώνται από μεγάλο αριθμό παραμέτρων σχεδιασμού και 

από το ιστορικό φόρτισης.  Στην προκείμενη διατριβή μελετάται η συμπεριφορά πλαισιακών 

στοιχείων Ο.Σ. υπό οριζόντια σεισμικά φορτία λαμβάνοντας υπόψη την ιεράρχηση των 

ενδεχόμενων μηχανισμών αστοχίας που μπορούν να ελέγξουν την φέρουσα ικανότητα.  Η 

μεθοδολογία που αναπτύχθηκε έχει διατυπωθεί ως πεπερασμένο στοιχείο ραβδωτού 

πλαισιακού τύπου και χρησιμοποιήθηκε για την βελτιωμένη συσχέτιση πλήθους 
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πειραματικών δεδομένων από την βιβλιογραφία.  Μέρος της μελέτης εφαρμογής του 

προσομοιώματος επικεντρώθηκε σε στοιχεία με παλαιού τύπου δομικά χαρακτηριστικά.  

Για την εκτίμηση των δεικτών παραμορφωσιμότητας και ικανότητας στροφής 

αναθεωρήθηκε ο ορισμός του μήκους πλαστικής άρθρωσης δομικών στοιχείων, 

λαμβάνοντας υπόψη την υπέρβαση σε όρους παραμορφώσεων του ορίου διαρροής στους 

κύριους οπλισμούς του στοιχείου. Διατυπώθηκε η διαφορική εξίσωση του μηχανισμού 

συνάφειας ράβδου – σκυροδέματος και επιλύθηκε μέσω επιβολής κατάλληλων συνοριακών 

συνθηκών, συνυπολογίζοντας την διείσδυση παραμορφώσεων στον οπλισμό πριν και μετά 

την σταθεροποίηση της καμπτικής ρηγμάτωσης.  Επιπρόσθετα αναπτύχθηκαν  αλγόριθμοι 

για την ανάλυση κρίσιμων διατμητικά υποστυλωμάτων οπλισμένου σκυροδέματος και στην 

συνέχεια ενσωματώθηκαν στο λογισμικό Φαέθων© (για λειτουργικό σύστημα Windows©) 

σε κώδικα προγραμματισμού C++.  

Για την μελέτη στοιχείων με ενισχύσεις, διατυπώθηκαν βελτιωμένοι καταστατικοί 

νόμοι για το σκυρόδεμα σε θλίψη με ιδιαίτερη έμφαση στην συμβολή της περίσφιγξης μέσω 

μανδυών ινοπλισμένων πολυμερών (ΙΟΠ). Τα εξαγόμενα προσομοιώματα ενσωματώθηκαν 

στο λογισμικό OpenSees και συσχετίσθηκαν επιτυχώς με πειραματικά δεδομένα από την 

βιβλιογραφία.  Η συμβολή της έρευνας επικεντρώνεται στην αναλυτική ερμηνεία της 

συμπεριφοράς στοιχείων Ο.Σ. υπό συνθήκες οριζόντιας φόρτισης, και στην διατύπωση 

αναλυτικών εργαλείων για την περαιτέρω διερεύνηση και κατανόηση των επιδράσεων των 

παραμέτρων σχεδιασμού και των χαρακτηριστικών της φόρτισης στην σεισμική 

συμπεριφορά τους. Επίσης εξήχθησαν σημαντικά πρακτικά συμπεράσματα για το μέγεθος 

της πλαστικής άρθρωσης που αποτελεί βασική παράμετρο πρόβλεψης της ικανότητας 

παραμόρφωσης στοιχείων, και η οποία μέχρι σήμερα αντιμετωπίζεται με βάση εμπειρικές 

εκτιμήσεις και ορισμούς.   
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ABSTRACT  

Existing reinforced concrete buildings constructed before the development of modern 

seismic design provisions represent one of the largest seismic safety concerns worldwide. 

Such buildings are vulnerable to significant damage and even collapse when subjected to 

strong ground shaking. Collapse of reinforced concrete buildings has resulted in many of the 

fatalities in past earthquakes. Since 1980 after the capacity design concept was introduced 

in the seismic design code provisions, the seismic safety gap between the newly designed 

seismic resistant buildings and those constructed before 1980 is widened causing worldwide 

concern. The crucial issue that was evident after the earthquakes in 1999 in Athens (Parnitha) 

and in Turkey (Kocaeli) and was underlined by the destructive earthquake of L’Aquila 

(2009) in Italy is the need to improve assessment and retrofit procedures for existing 

reinforced concrete buildings. 

Columns play a very important role in the structural performance. Therefore, it was 

essential to apply a suitable analytical tool to estimate their structural behavior considering 

all failure mechanisms such as axial, shear, and flexural failures. In the present thesis a fiber 

beam-column element accounting for shear effects and the effect of tension stiffening 

through reinforcement-to-concrete bond was developed, in order to provide an analytical 

test-bed for simulation and improved understanding of experimental cases where testing of 

reinforced concrete columns actually led to collapse.  Emphasis was particularly on lightly 

reinforced columns.  

For the definition of deformability of such columns, the definition of plastic hinge 

length was reassessed through consideration of yield penetration effects. The required 

confined zone in critical regions of columns and piers undergoing lateral sway during 

earthquakes is related to the plastic hinge length where inelastic deformation and damage 

develops. The exact definition of the plastic hinge length stumbles upon several 

uncertainties, the most critical being that the extent of the inelastic region evolves and 

spreads with the intensity of lateral displacements. Design codes quantify a reference value 

for the plastic hinge length, through calibrated empirical relationships that account primarily 

for the length of the shear span and the diameter of primary reinforcing bars. The latter term 

reflects the effects of bar yielding penetration in the support of columns. Here a consistent 

definition of plastic hinge length was pursued analytically with reference to the actual strain 

state of the reinforcement. Finally, the column’s structural behavior was assessed by 

considering all mechanisms of behavior involved, namely flexure with or without the 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



 ix 

presence of axial load, shear and anchorage. The peculiar characteristics of lightly reinforced 

concrete columns are the outcome of the shear – flexure interaction mechanism which was 

studied based on the Modified Compression Field Theory and the significant contribution of 

the tensile reinforcement pullout from its anchorage to the total column’s lateral drift. These 

features are embedded in the stand-alone Windows program named “Phaethon” -with user’s 

interface written in C++ programming language code- aiming to facilitate engineers in 

executing such analyses both for rectangular and circular substandard reinforced concrete 

columns.  

Confining wraps or jackets to rehabilitate and strengthen existing substandard RC 

columns such as those described in the present thesis has proven to be an efficient technique 

for seismic retrofit of structures. A new constitutive material law was developed and was 

added to the source code of OpenSees as a uniaxial material, i.e. the ‘FRPConfinedConcrete’ 

material. In order to evaluate the relevance and accuracy of the proposed material model, its 

performance was corroborated through simulation of a series of cyclic loading tests 

performed on jacketed columns with a rectangular cross section. 
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1  Introduction 

1.1 Background and Scope 

Existing reinforced concrete buildings constructed before the development of modern 

seismic design provisions represent one of the largest seismic safety concerns worldwide. 

Such buildings are vulnerable to significant damage and even collapse when subjected to 

strong ground shaking. The collapse of reinforced concrete buildings has been the cause of 

many of the fatalities in past earthquakes. Since the 1980’s, after the capacity design concept 

was introduced into the seismic design code provisions, the seismic safety gap between the 

newly designed seismic resistant buildings and those constructed before 1980 has widened, 

causing worldwide concern. The crucial issue that was evident after the earthquakes in 1999 

in Athens (Partnitha) and in Turkey (Kocaeli) and was underlined by the destructive 

earthquake of L’Aquila (2009) in Italy (an event which the author experienced as a resident 

of L’Aquila at the time) is the need to improve assessment and retrofit procedures for 

existing reinforced concrete buildings.  Note that intensive research and code development 

that has been going on the last twenty years focuses on this class of buildings, as their 

detailing is often found substandard with regards to what is considered today the accepted 

approach to earthquake resistant construction.   

Reinforced concrete (RC) columns play a very important role in structural 

performance as their collapse brings about non-proportional consequences for the structure 

as a whole.  Behavior of RC columns in combined axial load, shear and flexure has been 

studied for decades. In the case of flexural behavior, sectional analysis, or a fiber model in 

one-dimensional stress field may give acceptable estimations in terms of ultimate strength 

and yielding deformation. Performance of reinforced concrete columns dominated by shear 

or shear-flexure cannot be estimated from sectional analysis only, because the transfer of 

shear forces engages stress fields that run through the member to its supports.  An example 

to a member-approach for modelling the effects of shear is the so-called strut and tie 

mechanism of behavior in D-regions of beams and columns, where shear engages a 45o 

diagonal strut in the concrete member, extending diagonally over a distance at least equal to 

the member depth. Nevertheless, many code approaches attempt to treat the shear strength 

as a cross-sectional property (e.g. see ACI 318-14, 2014); strut and tie models and alternative 

shear design theories do exist (Model Code 2010, AASHTO Code 2013, Mörsh 1902, Ritter 
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1899) however their use is regulated and not transparent for many practitioners.  More 

developed approaches that rely on strut and tie models are the so-called variable angle strut 

and tie models.  One example is the case where the angle of inclination of the strut is not 

fixed at 45o but depends on the amount of transverse reinforcement.  This is reflected in the 

design method adopted by Eurocode 2 (2004), where the assumed strut angle measured with 

respect to the longitudinal axis of the member may range from 22.5o  to 45o, leading to the 

minimum and maximum amounts of transverse reinforcement respectively. The detailed 

method of AASHTO 2013 and Model Code 2010 is based on the Modified Compression 

Field Theory (MCFT) (Vecchio & Collins 1986), which, today, is considered the most 

developed complete theory for shear of reinforced concrete members.  With regards to its 

application in seismic assessment, there is a need to adapt the MCFT to the special 

characteristics of cyclic response; a limitation to this end is that most of the experimental 

work supporting its development has been conducted with monotonic loads (so there is little 

evidence as to the calibration of the model in the presence of the degrading mechanisms that 

develop due to cyclic displacement reversals); another limitation is the assumption of 

uniformly smearing the reinforcement, which is not appropriate in the case of older, sparsely 

reinforced construction.  A third limitation is that the development of the method does not 

acknowledge explicitly the contribution of a degraded bond-slip to the behavior of R.C. in 

shear. 

Despite its conceptual simplicity and computational versatility, the strut-and-tie 

approach prompted the effort for establishing a theoretical basis – resorting to first principles 

in order to illustrate the creation of a stress-field that resembles a compression strut with a 

parametric definition of the angle of inclination rather than postulating its value.  This has 

been the objective of much research already from the 1970’s.  The difficulty arose from the 

brittleness of concrete in tension which disrupts direct application of the basic continuum 

mechanics framework even in the context of a hyper-elastic formulation.  A first milestone 

formulation for studying complex stress states in a reinforced concrete elementary panel was 

proposed by Darwin and Pecknold (1974); the approach was formulated in plane stress on 

an elementary panel (i.e., neglecting the out-of-plane action in the panel) using an orthotropic 

model for concrete after cracking.  Concrete and steel were superimposed in the plane of the 

panel, considering compatibility of strains between the two materials whereas stress 

equilibrium at any cross section of the panel was obtained from the sum of the concrete and 

steel contributions.  Each such contribution was obtained from material constitutive 
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properties given the state of strain (state determination).  Steel elements were modelled using 

uniaxial stress-strain laws, whereas concrete was modelled as an orthotropic material after 

cracking represented by uniaxial material laws in the directions of principal stress and strain. 

(Therefore, stress and strain transformations were required to convert from global to local 

coordinates and vice-versa.)  A shear modulus was established from the requirements of 

symmetry of the material constitutive matrix in the principal directions (relating ν12 with 

ν21), whereas the approach taken for solution of the problem relied on a hypo-elastic 

formulation (Chen, 1982) 

The work of Darwin and Pecknold (1974) triggered many of the shear models that 

followed, and that were based on continuum mechanics principles.  An essential assumption 

was smearing of reinforcement amount, and the use of average strains away from the crack 

(see Collins (1978)).  Collins claimed that the approach taken was motivated by the already 

prominent theory of Diagonal Tension that had been developed in order to enable calculation 

of shear in thin plates such as occurring in steel beam webs.  In the theory of diagonal tension, 

a square steel panel subjected to in-plane shear distortion would develop strength in the 

direction of principal tension (i.e. along the stretched diagonal) whereas the principal 

compressive stress along the compressed diagonal was neglected (set to zero) on account for 

the tendency for out-of-plane buckling.  In this context the stress tensor for plane stress 

conditions was presented in terms of the Mohr circle; to account for the fact that compressive 

strength of thin plates was negligible due to buckling, the Mohr circle was drawn to go 

through zero (i.e., the least principal stress was set equal to zero), and extending in the 

direction of positive (tensile) stresses.  This enabled calculation of shear strength of the panel 

as a function of the material yielding strength in tension.  Collins adopted this idea by 

reversing the problem for concrete:  here the stretched diagonal (direction of principal 

tension) develops no strength (on account of cracking, so the maximum principal stress is 

set equal to zero) whereas the compressed diagonal would attain the uniaxial strength of 

concrete in compression.  Following this approach shear strength participation of concrete 

was related to the material’s crushing strength in compression.  This established the link of 

basic continuum mechanics to the concept of strut formation in the strut-and-tie approach.  

The Modified Compression Field Theory (MCFT) (Vecchio & Collins 1986) was developed 

as an amendment to the Compression Field Theory derived in 1978: first it was recognized 

that concrete that had already been cracked would crush at a lower stress than its uniaxial 

compressive strength, fc’.  This was introduced through an empirical coefficient that accounts 
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for the width of cracks referred to as a softening parameter.  The MCFT was calibrated using 

a large number of membrane element tests; equilibrium and compatibility were both 

expressed in terms of average stresses and strains across the element, and it was 

supplemented by local crack checks to ensure bar stresses do not exceed the yielding 

capacity.  Therefore, the MCFT recognizes that average reinforcement stresses vary from 

the crack location to the point away from cracks were strain compatibility between concrete 

and steel holds.  The difference is attributed to a notional post-cracking strength of concrete 

referred to as “tension softening” which a surrogate device to bond stress. The MCFT was 

later implemented in the finite element context as was originally established by Darwin and 

Pecknold (1974) and developed by Barzegar and Schnobrich (1986), but adopting a hyper-

elastic formulation for improved convergence [Vecchio 1988].  To address the need of 

prismatic members where, through the depth of a member cross section normal stresses and 

strains vary according with the requirements of flexural moment (e.g. plain sections remain 

plane), Vecchio and Collins (1988) introduced the MCFT in a layered model of analysis, 

known already in the literature as a fiber model (Zeris 1986).  The kinematic assumption of 

flexure and shear (expressed by sectional curvature and shear strain) was used to drive the 

algorithm whereas principal stress/strain orientations were calculated through the member 

depth at the various layers.  Nonlinear material constitutive laws (uniaxial stress and strain 

in the principal directions) were used for state determination and establishment of 

equilibrium of stress resultants.  In this approach, concrete fibers are treated as biaxially 

stressed elements in the cross section and analyzed for in-plane stresses based on MCFT. 

Later, this approach was improved for determination of shear stress distribution on the cross 

section and advanced formulations were implemented into Response 2000 (Bentz 2000), 

which is a nonlinear member analysis computer program. 

Recently, another aspect of column lateral load behavior that has raised the interest 

of researchers is consideration of the axial failure of columns that can lead to collapse of a 

building (Elwood and Moehle 2005). Before the introduction of special requirements in the 

1970s, reinforced concrete building frames constructed in zones of high seismicity had 

details and proportions similar to frames designed primarily for gravity loads. Columns 

generally were not designed to have strengths exceeding beam strengths, so column failure 

mechanisms may often prevail in buildings dating from that era, particularly in regions 

without infills (Asteris et al, 2011) (e.g. soft storeys, e.g. Imperial County Hospital, or in the 

case of columns framing windows – see Van Nuys Holiday Inn hotel, Fig. 1.1 (Gicev V., 
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Trifunac M.D., 2006)). Relatively wide spacing of transverse reinforcement was common, 

such that column failures may involve some form of shear or combined flexure – shear 

failure. As shear failure proceeds, degradation of the concrete core may lead to loss of axial 

load carrying capacity of the column. As the axial capacity diminishes, the gravity loads 

carried by the column must be transferred into neighboring elements. A rapid loss of axial 

capacity will result in the dynamic redistribution of internal actions within the building frame 

and may progressively lead to collapse.  

 

This kind of response has been witnessed repeatedly during past strong motion events 

throughout the world (Perachora Earthquake in Greece 1982, L’Aquila Earthquake in Italy 

2009).  In order to evaluate and assess the response of shear-dominated structural elements 

under lateral load action, a “member” model is needed, but geared towards the seismic 

response estimation, under combined flexure and fluctuating axial load effects.  In this 

direction, despite the many analytical models and theories advanced to interpret shear 

Figure 1.1: Post-earthquake view of damaged columns in Van Nuys Holiday Inn 7-storey 

Hotel in California (Gicev V., Trifunac M.D., 2006). 
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response, the problem of shear in reinforced concrete under lateral sway such as would occur 

during earthquakes is still understood imperfectly and a good deal of empiricism is vested 

in the design expressions for this problem.   

During earthquake excitation columns can experience a wide variety of loading 

histories, which may consist of a single large pulse or several smaller-amplitude cycles, 

occasionally leading to either shear failure or even collapse – i.e. a loss of gravity-load 

bearing capacity of the column. Previous research has demonstrated that the onset of this 

type of collapse cannot be quantified unilaterally by a single combination of shear force and 

axial load values, but rather, it is characterized by an interaction envelope that depends on 

the history of loading and the peak magnitude of deformation exertion attained by the column 

(max. drift demand).  In order to understand the effect of the loading history on the response 

of a column it is noted here that a particular characteristic of structural members undergoing 

lateral displacement reversals is the growth of their length due to the accumulation of 

permanent tensile strains in the longitudinal reinforcement crossing the diagonal shear 

cracks.  As the displacement reversals increase in amplitude, so do the crack widths:  this 

phenomenon is illustrated in the axial stress – strain diagram of reinforcement to the same 

level of stress after yielding.  (Permanent strains are biased in tension due to the shift of the 

neutral axis towards the compression side of the member cross section after cracking).  In 

this context axial load plays a significant role as it keeps cracks partly closed and therefore 

delays the process of ratcheting and elongation.  Figure 1.2 depicts an example of a column 

under cyclic displacement reversals elongating due to strain accumulation:  note that collapse 

is marked by the point where this elongation is reversed.   This point may be linked to a 

number of local material failures – such as crushing of the compression zone, buckling of 

the compression reinforcement, exceedance of the strain capacity of longitudinal 

reinforcement (Syntzirma et al. 2010).  Attainment of any of these conditions is entirely 

controlled by the amplitude of the imposed displacement cycles and the low cycle 

degradation and strain accumulation that occurs in the reinforcement and concrete under 

cycling (Syntzirma et al. 2010).  

Recent studies (Chapter 2) attribute particular influence to the final mode and 

characteristics of failure by the occurrence of fluctuating axial load about a mean value, in 

some occasions the load becoming actually tensile due to the overturning effects imparted 

by the earthquake. Furthermore, it has been demonstrated that an increase in the number of 

cycles past the yield displacement can result in a decrease in the drift capacity at shear failure. 
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Understanding these effects and developing mechanistic tools by which to identify the 

characteristics of failure at the loss of axial load bearing capacity and the implications of 

drift demand intensity on the mechanics of deformation capacity of columns is one of the 

objectives of this research.  

 

In the present thesis a fiber beam-column element accounting for shear effects and 

the effect of tension stiffening through reinforcement-to-concrete bond was developed, in 

order to provide an analytical test-bed for simulation and improved understanding of 

experimental cases where the testing of RC columns actually led to collapse. Emphasis is 

Figure 1.2: a) Axial stress vs. axial strain of tensile longitudinal reinforcement and axial length 

change of the first column in Table A.2. of Appendix over the plastic hinge length b) Experimental 

lateral response of the cantilever column under study. 

α) 

b) 
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particularly laid on lightly reinforced columns. The combined experimental/numerical 

results provided useful information for the definition of plastic hinge length in columns 

through consideration of yield penetration effects. The required confined zone in critical 

regions of columns and piers undergoing lateral sway during earthquakes is related to the 

plastic hinge length where inelastic deformation and damage develops. The exact definition 

of the plastic hinge length stumbles upon several uncertainties, the most critical being that 

the extent of the inelastic region evolves and spreads with the intensity of lateral 

displacements. Design codes quantify a reference value for the plastic hinge length, through 

calibrated empirical relationships that account primarily for the length of the shear span and 

the diameter of primary reinforcing bars. The latter term reflects the effects of bar yielding 

penetration in the support of columns. Here a consistent definition of plastic hinge length is 

pursued analytically with reference to the actual strain state of the reinforcement.  

In this direction, the definition of the deformability of RC columns was reassessed 

in the present thesis by proposing a new methodology for the determination of plastic hinge 

length through a consideration of yield penetration effects. Yield penetration occurs from 

the critical section towards both the shear span and the support of columns; physically it 

refers to the extent of the nonlinear region and determines the pull-out slip measured at the 

critical section. Contrary to the fixed design values adopted by codes of assessment, the yield 

penetration length is actually the only consistent definition of the notion of the plastic hinge 

length, whereas the latter determines the contribution of pullout rotation to column drift and 

column stiffness. In order to establish the plastic hinge length in a manner consistent to the 

above definition, this research pursued the explicit solution of the field equations of bond 

over the shear span of a column. Through this approach, the bar strain distributions and the 

extent of yield penetration from the yielding cross section towards the shear span were 

resolved and calculated analytically. By obtaining this solution, a consistent definition of 

plastic hinge length was established, by reference to the state of reinforcement strain 

(replacing the stress-based definition that was used previously in the literature). The true 

parametric sensitivities of this design variable for practical use in the seismic assessment of 

existing structures are illustrated. The numerical results show good agreement with the 

experimental evidence and are consistent with the experimental trends supported by test 

databases, confirming that the plastic hinge length is controlled by the residual bond that 

may be mobilized along the yielded reinforcement.  ΚO
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In addition, the developed fiber-element is incorporated in the stand-alone Windows 

program Phaethon with the user’s interface written in C++ programming language code. The 

latter offers the possibility to obtain the capacity curve for shear-critical reinforced concrete 

cantilever columns while taking into account the shear–flexure interaction mechanism, as 

well as an important contribution to the final column’s lateral displacement capacity owing 

to pull-out of the tensile longitudinal reinforcing bars of the column. This is available for 

both rectangular and circular reinforced concrete columns. Furthermore, the software 

resolves strain, slip and bond distributions along the anchorage length. Comparison with 

experimental results from the literature verifies the capability of this Windows software tool 

to assess the strength and deformation indices of shear-critical reinforced concrete columns. 

Moreover, the moment curvature as well as the shear force – shear strain analysis of the 

sections of these columns is also possible, all based on the Modified Compression Field 

Theory. The development of a new class fiber model that accounts for localized phenomena 

such as shear and reinforcement pull-out in a consistent iterative element formulation will 

help minimize the uncertainties that arise with the large collection of zero length nonlinear 

spring and fixed-length plastic hinge elements currently used in nonlinear bridge and 

building response simulations. 

Over the past three decades, fibre-reinforced polymer (FRP) composites have 

emerged as an attractive construction material for civil infrastructure, rehabilitation, and 

renewal. These advanced materials have been successfully used for the 

strengthening/rehabilitation of piers and columns in existing bridges and buildings. The use 

of FRP composites, analysis and design, and techniques for installation are continually being 

researched and it is anticipated that the use of these advanced materials will continue to grow 

to meet the demands of the structural retrofitting needs in the construction industry. Recent 

seismic events around the world continue to underline the importance of seismic retrofit and 

strengthening of existing concrete structures leading to the need for new, practical, occupant-

friendly and cost-effective remedial solutions. 

In this context, one of the major applications of Fiber Reinforced Polymers (FRPs) 

in construction is in the confinement of RC columns. The performance of FRP-confined 

concrete in circular columns has been extensively investigated in literature and the efficiency 

of the available models is nowadays considered to be satisfactory. However, the case of 

confinement of rectangular RC sections with FRPs is a more complex problem, the 

mechanism of which has not yet been adequately described. Therefore, an iterative analytical 
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model was derived to simulate the axial and lateral stress-strain response of axially loaded 

FRP-confined rectangular and square reinforced concrete columns. In FRP-confined square 

or rectangular sections, no unconfined concrete regions are observed, as assumed in many 

models. Areas where arching effect is assumed in the section are described as partially 

confined, so their contribution to the column’s total strength is limited by the limited 

kinematic restraint provided by the jacket against outwards expansion resulting from the 

longitudinal compressive forces supported.  Thus, two different regions with different 

confining stress-states are identified. The two regions are uniaxially and biaxially confined 

(biaxial and triaxial stress-state, respectively). The contribution of each region to the total 

section strength is modelled as a system of parallel springs, whose axial stresses are added 

based on the corresponding constitutive law under biaxial or triaxial stress state. The lateral 

behavior develops along the diagonals of the section and can be represented by a system of 

springs in series. It was shown that both sides’ lateral strains in the rectangular sections are 

equal, regardless of their aspect ratio. The reacting force of the confining device applied at 

the corners is shared among the two regions of different degree of confinement, based on the 

defined path of the confining forces and the geometry of the regions. The resulting lateral 

uniform pressures lead to the corresponding axial strength of the regions. The algorithm 

takes into account all parameters available to designers, such as corner rounding radius, 

stiffness of the FRP and concrete strength, while it can be easily understood and 

implemented. Results of the proposed modeling approach are found to correlate adequately 

to recent experimental data obtained from large-scale tests on FRP-confined rectangular RC 

columns. In addition, the performance of this material model was further investigated by its 

implementation in the simulation of a series of experimental tests of FRP-retrofitted square 

RC columns under cyclic lateral loading simulating earthquake loads and simultaneous 

constant axial compression. In particular, all specimens were modelled using nonlinear fiber 

elements, whereas the FRP-confined concrete was modelled using the developed material 

model. Comparison between the numerical and experimental hysteresis of the column is 

indicative of the effectiveness of the implemented modelling. Finally, this recently 

developed material model for FRP–confined concrete was implemented in OpenSees (2006) 

under the name ‘FRPConfinedConcrete’ with no tensile strength and degraded linear 

unloading/reloading stiffness in the case of cyclic loadings.  ΚO
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1.2 Organization of the thesis 

The thesis spans eight chapters organized as follows: Following the introduction of the thesis 

scope and objectives in Chapter 1, Chapter 2 presents a detailed literature review regarding 

the state of the art in the field of seismic assessment of RC columns. Chapter 3 presents the 

development of a fiber model for analysis of flexure-dominant members under cyclic load 

reversals: the performance of the model is correlated with the experimental results of a well-

known experimental database. Chapter 4 reviews the mechanical behavior of lightly 

reinforced concrete columns and identifies the types of experiments where the fiber-model 

analysis would fail to reproduce the observed behavior. One source of the error in estimating 

the deformational response of columns under lateral sway is the empirical, insensitive nature 

of the plastic hinge length used in calculations.  To address this limitation, Chapter 5 

develops a new fundamentally consistent definition of the plastic hinge length in columns 

though consideration of yield penetration effects. Chapter 6 presents the development of a 

force-based fiber beam-column element that accounts for shear and tension stiffening effects 

that was incorporated in the stand-alone program for Windows called Phaethon. Chapter 7 

presents new developments on FRP seismic retrofit of RC columns with confining wraps or 

jackets that has proven to be an effective technique for the seismic retrofit of structures. A 

new constitutive model for FRP – confined concrete is included in this Chapter. Important 

findings of the work are summarized along with the conclusions in the 8-th chapter of the 

present volume.    
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2 Literature Review 

2.1  Introduction 

The procedure of estimating the strength, the deformation capacity and the expected mode 

of failure in primary members of a RC frame structure, that is, the complete process of 

seismic assessment, has been recently supported by background documents in both Europe 

and the U.S. (KAN.EPE. 2014, EN 1998-3 2005, ASCE/SEI-41 2007, and 2017), and most 

recently by the Revised Draft (for 2020) of the Model Code by the fib).  Currently, a new 

revised version of EN 1998-3 is also being drafted, to be released in the near future (2020), 

condensing the advancements that have occurred in the field over the last 20 years.  In all 

cases, the core of the assessment process comprises a complex system of evaluation of 

demands and capacities; demands are associated with the performance point determined for 

the design earthquake.  Capacities are linked to different levels of performance.  They are 

often expressed in terms of deformation capacity at specific conditions of damage of the 

constituent materials (e.g. cracking, repairable damage, or near collapse) and are commonly 

referred to as “acceptance criteria”.  However, the various steps of this process are not vested 

with a uniform level of confidence as compared with the experimental results. Strength 

values can be estimated with sufficient accuracy only if the modes of failure involved are 

ductile. The level of accuracy is reduced when considering brittle mechanisms of resistance, 

and the associated deformation capacities, which are used as a basis for comparison with 

deformation demands to assess the level of performance (i.e. the damage), generally do not 

correlate well with proposed Code estimations, even after the many years of development 

that have gone into this topic of research.   

From evidence collected in past building and bridge collapses it was observed that in 

many cases columns failed in a brittle manner prior to flexural yielding due to insufficient 

transverse reinforcement over lap-splices or as would be needed to resist shear (for example 

see 1999 Parnitha Earthquake in Athens and the Izmit-Kocaeli Earthquake in Turkey in the 

same year, the 2010 earthquake in L’Aquila, among other notable events) (Pardalopoulos et 

al. 2011). Due to the implications on public safety, this is considered a critical matter in the 

process of assessment: ductility in the member behavior may only be secured if the response 

is dominated by flexural yielding, (thus, it ought to precede shear failure).  Even when 

flexural yielding may be supported it is also important to dependably estimate the ductility 
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level beyond which shear strength may be assumed to have degraded below the flexural 

strength, leading to a secondary post-yielding failure that limits the available deformation 

capacity (Fig. 2.1). 

Stiffness properties and inelastic earthquake response of frame members are usually 

studied based on a statically-determinate structure comprising a cantilever reinforced 

concrete column under combined axial and lateral loading. Given the material properties (be 

they nominal, assumed or experimentally measured), geometry, the loading conditions and 

loading history, it is theoretically possible to analyze the cantilever so as to study the 

interactions between various aspects of its response such as flexure, shear and reinforcement 

development capacity (Syntzirma and Pantazopoulou 2007). In recent years lab experiments 

are conducted on full-height, fixed-ended column specimens.  Lateral sway in this case 

causes double curvature with an inflection point at mid-height. This setup is preferred over 

the cantilever arrangement, since it is possible to achieve the interaction of the two end 

moments and to obtain realistic curvature distributions, reinforcement detailing at midspan 

may be representative of actual conditions (as compared to its being attached to loading 

fixtures), whereas they are more versatile in dynamic tests (as it is possible to mount masses 

on top of the restraining beam at the upper end of the column, thus simulating more 

realistically the actual circumstances in the field).  

Figure 2.1: (a) Typical test setup of double curvature column (from Henkaus et al. 2013).  (b) Capacity 

curve due to flexural or shear mechanism.  Onset of shear failure is denoted with the yellow point. 

Moreover, in the case of lightly reinforced concrete columns which are representative 

of older construction, major inclined shear cracks have been seen to occur in the column 

region at mid-height (near the point of column inflection), a crack pattern that cannot be 
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reproduced with the cantilever specimen since its tip is free to rotate (as it is only restrained 

in translation) and sustains no damage in that region. In addition, the elongation due to 

damage of the double curvature member is more representative of a typical building column 

under lateral sway simulating earthquake action. The assessment performance objectives in 

such experiments can be categorized and documented by obtaining the full inelastic response 

until the collapse of the RC column.  

 

According to Eurocode 8, Part 3 (EN 1998-3, 2005), the fundamental performance 

criteria related to the state of the structural damage are defined through three Limit states 

that span the range of the member resistance curve (Fig. 2.2.a), and are defined according to 

the severity of damage that they represent as follows: “Damage Limitation (DL)”, 

“Significant Damage (SD)”, and “Near Collapse (NC)”. The target displacement of the 
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Figure 2.2: Evidence of the intensity of damage of bridge columns: (a.1) Member resistance curve and 

definition of limit states according with EN 1998-3 (2005). (a.2) Shear cracking at mid-height of column 

restrained at both ends. (b.1) Damage Limitation Limit State (b.2) Significant Damage Limit State (b.3) Near 

Collapse Limit State. 
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column based on the earthquake load defines which of these Limit States are reached. In the 

following figure (Fig 2.2.b) the performance objectives for these Limit States are 

documented in practical terms. 

The objective of this chapter is to critically review and identify, through a thorough 

evaluation of the published experimental evidence, the critical issues affecting the resistance 

curve of columns during earthquake action (strength and deformation capacity) and the 

limiting brittle modes of failure. This is important since the column resistance curve 

eventually controls the overall resistance of the structure in a relatively straightforward 

manner (Fotopoulou et al., 2011) whereas a sudden loss of column strength to overbearing 

loads may lead to collapse and human loss. In the context of a displacement-based evaluation 

framework, not only the relevant shear strength is important, but also the corresponding 

column displacement capacity. In this regard, recent experimental evidence will be reviewed 

along with recently developed analytical models and the relevant state of the art of code 

assessment procedures.  

2.2 Past Experimental Studies on Shear Dominated RC Columns 

The behaviour of shear-critical reinforced concrete columns has been the subject of extensive 

study and research in recent years as this seems to remain a challenging concrete mechanics 

problem (Chapters 1 and 2). Shear dominant behaviour is reported in columns with a low 

aspect ratio (Arakawa et al. 1982, 1989, Calderone et al. 2000), but also in lightly reinforced 

columns containing low ratios of transverse reinforcement (Ngoc Tran and Li, 2013, 

Syntzirma and Pantazopoulou 2007). Section geometry (e.g. rectangular or circular sections) 

is one of the parameters that differentiates the available test results (Berry and Eberhard, 

2004); cyclic pseudo-static, hybrid pseudo-dynamic and dynamic tests have all been used as 

alternatives to understand column behavior. Some experimental studies are dedicated to the 

influence of axial load fluctuation on the response of the column (Benzoni et al. 1996, Kim 

et al. 2011).   Fluctuation occurs about the static axial load value of the overbearing loads, 

and in the experimental context it is intended to model the effect on its magnitude impacted 

by the overturning action of lateral loads during the seismic event.  In actual field conditions 

the amplitude of the fluctuation is most significant in columns located at a distance from the 

center of mass of the building, i.e., on the perimeter of the structure.  

The same effect is seen in bridge piers belonging to multiple-column bents where it 

may be easily demonstrated that the axial load fluctuation is proportional to the horizontal 
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(seismic) forces. Columns are also subjected to the vertical components of ground motion, 

which is not correlated concurrently with the horizontal loading. Past earthquake records 

have shown that in some cases, vertical ground motions cannot be ignored, particularly for 

near-fault situations (Kim et al. 2011). For example, the lateral displacement ductility of a 

column, designed based on constant axial load with a relatively low axial load ratio, can 

become unsatisfactory when the actual axial load due to the overturning effects (or where 

the vertical ground motion has a significant contribution) exceeds the “balanced” axial load 

limit (i.e., about 40% of the column crushing load, Park and Paulay 1975). The problem 

becomes even more significant when shear design is considered. The increase of axial load 

from the design level (which typically is in the order of 5% to 10% of the crushing load) to 

the level of the balanced value generally increases the column flexural capacity causing a 

commensurate increase in the design shear demand (based on capacity design principles). 

On the other hand, a change in the axial load value from compression to tension may 

compromise significantly the column shear strength (Kim et al. 2011). 

 

2.2.1 A review of some influential Cyclic Tests on Columns 

From among the multitude of published tests on cyclically loaded columns under lateral 

displacement reversals (see also Chapter 3), a number of tests have received greater attention 

as the specimen responses recorded were used as points of reference in calibrating the design 

expressions for shear published in the literature. On account of the weighty contribution of 

these experimental studies to the formation of the current assessment framework, these 

studies are reviewed separately in the present section. 

Ang, Priestley and Paulay (1989) performed experimental tests to study the seismic 

shear strength of circular columns. A series of twenty-five 400 mm-diameter columns, 

considered to be approximately one-third scale models of typical bridge columns, were 

constructed and tested under cyclic lateral displacement reversals, as part of a major 

investigation into the strength and ductility of bridge pier columns. Variables in the test 

program included axial load level, longitudinal reinforcement ratio, transverse reinforcement 

ratio and aspect ratio. The column units were tested as simple vertical cantilevers. Results 

indicated that the shear strength was dependent on the axial load level, the column aspect 

ratio, the amount of transverse spiral reinforcement and the flexural ductility displacement 

factor. At low flexural ductilities, the additive principle for shear strength (i.e. Vn=VC+VW), 

based on a concrete contribution plus a 45-deg truss mechanism involving the spiral 
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reinforcement and diagonal concrete compression struts associated with the axial load 

action, described the behavior quite well. But at flexural displacement ductilities greater than 

two (µΔ≥2), the tests demonstrated a gradual reduction of lateral load strength with 

increasing ductility demand, whereas the inclination of the diagonal compression struts of 

the truss mechanism relative to the longitudinal axis decreased. Here it is worth noting that 

significant rotations occurred at the base of these specimens artificially distorting the data in 

the direction of more excessive strength loss due to P-Δ effects (Ioannou and Pantazopoulou, 

2016).  

Wong, Paulay and Priestley (1993) conducted a series of biaxial tests that included 

16 circular (400 mm-diameter) reinforced concrete cantilever columns with an aspect ratio 

of two and different spiral reinforcement contents in order to investigate the sensitivity of 

the strength and stiffness of shear-resisting mechanisms to various displacement pattern and 

axial compression load intensities. Elastic shear deformations in squat circular columns with 

small or no axial compression load were found to be significant. It was concluded that shear 

deformation ought to be included explicitly in the estimation of initial stiffness of a column, 

so that a reliable relation between the ductility demand and the corresponding drift could be 

established. A general observation was that in comparison with uniaxial displacement paths, 

biaxial displacements led to more severe degradation of stiffness and strength, and thereby, 

increased energy dissipation. However, the reduction of initial shear strength and ductility 

capacity of squat columns (recall that the aspect ratio of the tested columns was equal to 2), 

subjected to biaxial displacement history was not very significant. The value of the 

dependable displacement ductility level attained during biaxial displacements was, on 

average, less (i.e. a value difference of 1) than that obtained in identical units subjected to 

uniaxial loading history. Initial shear strength of units with brittle shear failure was reduced 

by about 5 to 10 percent, depending on the axial load level when biaxial rather than uniaxial 

loading was considered. Finally, one more important finding was that the shear carried by 

spirals was underestimated when using a 45-deg potential failure plane; the observed major 

diagonal cracks developed in squat columns at much lower angles with respect to the 

longitudinal axis of the member. 

Lynn et al. (1996) constructed and tested 8 full-scale square section (457 mm) 

columns that had widely-spaced perimeter hoops with 90-degree bends with or without 

intermediate S-hooks and with longitudinal reinforcement with or without short lap-splices. 

The columns had an aspect ratio of 3 and were loaded with constant axial load at low and 
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intermediate levels, and were subjected to lateral deformation cycles until the column was 

incapable of supporting a lateral or vertical load. Failure modes included localized crushing 

of concrete, reinforcement buckling, lap-splice and flexural bond splitting, shear and axial 

load collapse (Dhakal and Maekawa, 2002). Loss of gravity load capacity occurred at, or 

after significant loss of lateral force resistance. Where response was governed by shear, 

gravity load failure occurred soon after loss of lateral force resistance. Where response was 

initially governed by lap-splice deterioration and gravity loads were relatively low, gravity 

load resistance was maintained until eventual shear failure occurred. Where response was 

predominantly flexural, gravity load capacity was maintained to relatively large 

displacements.  

As earthquakes and laboratory experience show that columns with inadequate 

transverse reinforcement are vulnerable to damage including shear and axial load failure, 

another study in this direction was conducted by Sezen and Moehle (2006). The latter 

included four full-scale square section (457 mm) columns with an aspect ratio equal to 3 and 

light transverse reinforcement that were tested quasi statically under unidirectional lateral 

loads with either constant or varying axial loads. Test results showed that responses of 

columns with nominally identical properties varied considerably depending on the 

magnitude and history of axial and lateral loads applied. For the column with a light axial 

load and reversed cyclic lateral loads (applied through a displacement history), apparent 

strength degradation triggered shear failure after the flexural strength was reached. Axial 

load failure did not occur until displacements had increased substantially beyond this point. 

The column with high axial load sustained brittle shear compression failure and lost axial 

load capacity immediately after shear failure, pointing out the necessity of seismic 

evaluations to distinguish between columns on the basis of axial load level. The column 

tested under varying axial load showed different behavior in tension and compression, with 

failure occurring under compressive loading.  

The experiments by Pantazopoulou and Syntzirma (2010) on columns having 

different details were designed to encourage a specific hierarchy of modes of failure by 

adjusting the spacing of stirrups and the length of lap splices of longitudinal reinforcement 

in the critical region.  The most interesting finding from that experimental study was that the 

deformation capacity is controlled by the dominant mode (the weakest mechanism) and may 

be estimated mostly by the deformation capacity of the specific failure mechanism; this ΚO
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became later the basis for the rapid assessment procedure for identifying column strength 

(Pardalopoulos et al. 2011, Ioannou et al. 2018).  

2.2.2 A review of relevant Pseudodynamic Tests 

It was stated earlier that when submitted to lateral sway due to earthquake ground shaking, 

columns in RC structures carry axial forces owing to dead and live loads and a combined 

variable axial force, flexural moment and shear. The variable axial loads lead to 

simultaneous changes in the balance between the column strain capacity and demand at 

critical areas to an extent that eludes adequate estimation as it depends on load history.  

Recently, code models use strain limits to identify critical performance states (e.g. AASHTO 

LRFD 2013; CHBDC 2015; see Qi and Alam, 2018).  

To consider the time varying effects of the ground motion on the combined actions, 

simulated dynamic loads were applied using a hybrid simulation of the earthquake effects 

on structural subassemblies wherein the column specimen is assumed to belong. Kim et al. 

(2011) used hybrid simulation, where an experimental pier specimen was tested 

simultaneously and interactively with an analytical bridge model which was simulated 

computationally; at each step of the dynamic test the forces applied on the specimen were 

calculated by solving the dynamic equation of motion for the structure where the stiffness 

contribution of the modelled column in the global structural stiffness was estimated from the 

measured resistance in the previous step. Additionally, two cyclic static tests with constant 

axial tension and compression were performed to study the effect of the axial load level on 

the bridge piers. It was found that by including vertical ground motion the axial force 

fluctuation on the test specimen increased by 100%, resulting at times in a net axial tension 

that was not observed under horizontal motion alone. This high axial force variation led to a 

fluctuation of lateral stiffness and a more severe outcome of cracking and damage. Τhe 

confining spiral strains were significantly affected: whereas the maximum spiral strain of 

the specimen subjected to horizontal ground motion occurred at 20% of the pier height, in 

the case of an identical specimen subjected to combined horizontal and vertical excitations 

it occurred at 55% of the pier height. Thus, it was estimated that the spiral strain increased 

by 200% when vertical ground motion was included. Therefore, in this example, the 

deterioration of shear capacity due to vertical ground motion was experimentally 

demonstrated. Also, whereas the test specimen that was subjected to constant axial 

compression experienced brittle shear failure including rupture of the spiral reinforcement, 

the companion specimen that was subjected to moderate tension showed ductile behavior. 
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Comparing the strength at the first peak of displacement, it was found that the lateral load 

strength of a specimen with constant axial tension increased marginally with increasing 

displacement (probably engaging the strain hardening response of the reinforcement); the 

response of the specimen with axial compression showed significant strength degradation. 

Hence, considering observations from the two tests described above, it was clearly shown 

that different axial load levels influence the pier behavior significantly and can ultimately 

dictate the failure mode. 

2.2.3 Shake Table Tests conducted on Columns 

Shake table tests were conducted (Elwood 2002) to study the process of dynamic shear and 

axial load failures in reinforced concrete columns when an alternative load path is provided 

for load redistribution. The test specimens were composed of three columns fixed at their 

bases and interconnected by a beam at the upper level. The central square section column 

had a wide spacing of transverse reinforcement rendering it vulnerable to shear failure and 

subsequent axial load failure during testing. As the central column failed, the shear and axial 

loads were redistributed to the adjacent ductile circular columns. Two test specimens were 

constructed and tested. The first specimen supported a mass that produced column axial load 

stresses roughly equivalent to those expected for a seven-story building. In the second 

specimen hydraulic jacks were added to increase the axial load carried by the central column, 

thereby amplifying the demands for redistribution of the axial load when the central column 

began to fail. Both specimens were subjected to one horizontal component of a scaled ground 

motion recorded during the 1985 earthquake in Chile. A comparison of the results from the 

two specimens indicates that the behavior of the frame is dependent on the initial axial stress 

on the center column. The specimen with a lower axial load failed in shear- but maintained 

most of its initial axial load. For the specimen with a higher axial load, shear failure of the 

center column occurred at lower drifts and at an earlier stage in the ground motion record, 

and this event was followed by axial failure of the central column. Displacement data from 

immediately after the onset of axial failure suggest that there are two mechanisms by which 

the center column shortens during axial failure: first, by large pulses that cause a sudden 

increase in vertical displacement after a critical drift is attained; and second, by smaller 

oscillations that appear to ‘grind down’ the shear-failure plane. Dynamic amplification of 

axial loads transferred from the center column to the outside columns was observed during 

axial failure of the center column. 
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An additional study by Ghannoum and Moehle (2012) includes earthquake 

simulation tests of a one-third-scale, three-storey, three-bay, planar reinforced concrete 

frame which was conducted to gain insight into the dynamic collapse of older-type 

construction. Collapse of the frame was the result of shear and axial failures of columns with 

widely spaced transverse reinforcement. The frame geometry enabled the observation of the 

complex interactions among the failing columns and the surrounding frame. The tests 

showed that the failure type and rate depended on the axial load level, stiffness of the 

surrounding framing, and intensity and duration of shaking. Column shear and axial 

behavior, including strength degradation, was affected by both large lateral deformation 

excursions and cycling at lower deformations. Low-cycle fatigue caused column collapse at 

significantly lower drifts than anticipated. It was concluded that current models and 

standards for estimating the shear and axial failure of columns do not account for low-cycle 

fatigue and can be unconservative, particularly for columns subjected to long-duration 

seismic motions. Moreover, models for shear strength degradation of reinforced concrete 

columns should account for both deformation and cyclically-driven damage (Syntzirma et 

al. 2010). Finally, it was seen that structural framing surrounding the failing columns enabled 

vertical and lateral force redistribution that delayed or slowed down progressive structural 

collapse.  

2.3 Code Criteria for Shear Strength Assessment of RC Columns 

Behavior of reinforced concrete columns under lateral sway has been studied extensively 

through experiments simulating earthquake action by applying relative lateral displacement 

at the ends of the member (see also Chapter 3). The relative magnitude of shear strength and 

flexural force demand determines the intensity and type of anticipated failure.  This in turn 

controls the accuracy of the estimation of the mechanistic models used to assess the lateral 

load resistance and deformation capacity of the member. In the case of behavior dominated 

by flexure, sectional analysis, or a fiber model considering normal stresses provides 

acceptable estimations in terms of ultimate strength and yielding deformation. Performance 

of reinforced concrete columns dominated by shear or shear-flexure cannot be estimated by 

applying only sectional analysis because shear behavior concerns the overall member and 

not a single cross section. In these cases it is necessary to couple a shear strength model with 

the flexural model – and by considering independently the degradation of each with 

increasing deformation, to determine the prevailing mechanism that controls the mode of 
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failure of the member at the reference performance limit. Several code assessment 

procedures define the shear strength and its rate of degradation with increasing displacement 

ductility by evaluating the concrete contribution and the transverse steel reinforcement 

contribution to shear strength. Actually the existing code methodologies are differentiated 

regarding the concrete contribution term whereas the truss analogy for steel contribution is 

adopted almost universally in all proposals with a minor point of discussion being the angle 

of inclination of the primary shear crack of the column that activates the steel stirrups 

contribution (Fig. 2.3). The various aspects of the code assessment of shear strength will be 

covered in the following sections. 

It is generally acknowledged that shear failure of RC structures signifies rapid 

strength degradation and significant loss of energy dissipation capacity. Reconnaissance 

reports from past strong earthquakes highlight the susceptibility of RC column webs to 

diagonal tension cracking that frequently leads to a brittle shear failure. Shear strength 

degradation ensues after the opening of the diagonal cracks which eliminate the mechanism 

of force transfer via aggregate interlock. To avoid shear failure, shear strength should exceed 

the demand corresponding to attainment of flexural strength by a safety margin.  

 

Figure 2.3: (a) Angle of inclination of the primary sliding shear crack.  (b) Field evidence of shear failure 

For the mechanics of shear in reinforced concrete, most issues relating to physical 

interpretation are still fraught with considerable debate. For example, consensus is lacking 

as to the physical significance of the concrete contribution term and to mathematical 

description of tension-based sources of shear-strength and their relationship to strain 

intensity and cyclic displacement history. According to EN 1998-3 (2005), the part of the 

cyclic shear resistance that depends on concrete and transverse steel contribution (excluding 

the part owing to axial load contribution), VR, decreases with the plastic part of ductility 
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demand, expressed in terms of ductility ratio of the transverse deflection of the shear span 

(Fig 2.4) or of the chord rotation (Fig. 2.4) at member end: 𝜇𝛥
𝑝𝑙 = 𝜇𝛥 − 1. For this purpose 

𝜇𝛥
𝑝𝑙 may be calculated as the ratio of the plastic part of the chord rotation, θp, normalized to 

the chord rotation at yielding, 𝜃𝑦.  

 

 

Figure 2.4: Definition of chord rotation of a cantilever reinforced concrete column (top) modeling the 

shear span of an actual column (bottom). 

Thus, EN 1998-3 (2005) defines shear strength accounting for the above reduction 

as follows: 

  𝑉𝑅 = [(ℎ − 𝑥) 2𝐿𝑠⁄ ] ∙ min(𝑁; 0.55𝐴𝑐𝑓𝑐) + [1 − 0.05𝑚𝑖𝑛(5; 𝜇𝛥
𝑝𝑙)] ∙

     {0.16𝑚𝑎𝑥(0.5; 100𝜌𝑡𝑜𝑡)[1 − 0.16𝑚𝑖𝑛(5; 𝐿𝑉 ℎ⁄ )]√𝑓𝑐𝐴𝑐 + 𝑉𝑤}             (2.1) 

 

where 𝒉: is the depth of the cross-section (equal to the diameter D for circular sections); 𝒙: 

is the compressive zone depth; 𝑵: is the compressive axial force (positive, taken as being 

zero for tension); 𝑳𝒔 = 𝑀 𝑉⁄  is the shear span of the member; 𝑨𝒄: is the cross-sectional area, 

taken as being equal to 𝒃𝒘𝒅 for a cross-section with a rectangular web of width (thickness) 

𝒃𝒘 and structural depth 𝒅 or to 𝝅𝑫𝒄
𝟐 𝟒⁄  (where 𝑫𝒄 is the diameter of the concrete core to 

the inside of the hoops) for circular sections; 𝒇𝒄: is the concrete compressive strength, and 

𝝆𝒕𝒐𝒕: is the total longitudinal reinforcement ratio.  Term 𝑽𝒘 is the contribution of transverse 

reinforcement to shear resistance, taken as equal to 

𝑉𝑤 =
𝜋

2

𝐴𝑠𝑤

𝑆
𝑓𝑦𝑤(𝐷 − 2𝑐)                                                  (2.2a) 

Where, 𝒇𝒚𝒘 is the yield stress of the transverse reinforcement, Asw the area of the spiral wire, 

c the concrete cover, and S is the spiral step (spacing between successive turns of a spiral).  

Similarly, for rectangular cross-sections with a web having width 𝑏𝑤: 

𝜃𝑦 = 𝛥𝑦 𝐿𝑠⁄  

𝜃𝑡𝑜𝑡 = 𝛥𝑡𝑜𝑡 𝐿𝑠⁄  

𝜃𝑝 = 𝜃𝑡𝑜𝑡 − 𝜃𝑦 

𝜃𝑝 = 𝛥𝑝 𝐿𝑠⁄  

 

Ls 

  θtot 

Δtot 
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𝑉𝑤 = 𝜌𝑤𝑏𝑤𝑧𝑓𝑦𝑤                                                      (2.2a) 

 

where 𝝆𝒘 is the transverse reinforcement ratio, 𝒛 is height of the equivalent truss (internal 

lever arm between longitudinal tension and compression resultants, i.e., d-d’ in beams and 

columns) (Fig 2.5).   

 Consider a typical column with a 350 mm circular section (fc
’= 30 MPa) with Ls= 

1.5 m  (i.e., a clear height of 3.0m), clear concrete cover 20mm, reinforced with 14Φ12 

longitudinal bars and Φ10/10 spiral reinforcement (fy=fyw=500MPa) and axial load ratio of 

0.2. The axial load, concrete, and transverse steel contribution to shear strength calculated 

from Eq. 2.1 are, 49 kN, 34 kN and 191 kN.  The reduction factor for µΔ=3 (i.e, µΔP=2), is 

0.9. Therefore, the reduced contribution of concrete and transverse reinforcement is 203 KN.  

The variation of shear strength with spacing for the example under consideration leads to the 

following graph (Fig. 2.7a).  Clearly, there is an inconsistency in the continuity of the above 

expression of Vw, in that even when the spiral step exceeds the diameter of the confined core 

a nonzero strength is dependent-upon to be contributed by the spiral.  This shortcoming is 

even more transparent in the case of rectangular columns where the transverse steel 

contribution refers to the total stirrup forces that arise when a 45o diagonal sliding plane 

intersects stirrups along the members’ critical region.  To illustrate this point, consider a 

column with the same material properties as the one discussed in the preceding and same 

shear span length Ls. In the present example, the column has a 457 mm square cross section, 

reinforced with 8Φ20 longitudinal bars and a Φ10/20 transverse perimeter stirrup.  For the 

same axial load ratio the axial load contribution to shear strength is 145 kN, whereas the 

concrete and transverse steel contribution are 104 and 147 kN respectively (253 kN). The 

latter will be reduced to the value of 227 kN for displacement ductility equal to 3. The 

variation of shear strength with spacing for this example under consideration leads to graph 

plotted in Fig. 2.7b. 
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Figure 2.5: Definition of terms for calculating the transverse reinforcement ratio (S: stirrup spacing)    

Ιt is evident that for spacing greater than the effective depth of the section—which 

for the 45o degree truss analogy would mean that the shear crack doesn’t intersect any 

stirrup—Eq. 2.2a simply leads to a lower value of steel contribution to shear strength. This 

is actually inconsistent – the value ought to be zero in this case; with reference to Fig.  2.7 

Pantazopoulou and Syntzirma (2010) have suggested that the term be substituted by: 

       𝑉𝑤 = ∑ 𝐴𝑠𝑤𝑖 ∙ 𝑓𝑠𝑖  ;    where,   𝑛𝑖 = <
𝑑
𝑠⁄ >  (𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)𝑛𝑖

      (2.2b) 

Βased on Fig. 2.7, the steel contribution component should be based on the requirement that 

at least one stirrup layer must be intersected by the diagonal cracking plane; otherwise the 

steel contribution term ought to be taken as equal to zero.    

 

 

 

 

 

 

To find VW, identify first the location where the 

least number of stirrup legs is intersected by 

the diagonal sliding plane. 

Figure 2.6: The number of stirrups intersecting the sliding plane could be zero (Syntzirma and 

Pantazopoulou 2010))    
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Figure 2.7: (a) Effect of spiral spacing on transverse steel contribution of a circular section in shear 

strength (b) Effect of stirrup spacing on transverse steel contribution of a square column section 
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In concrete columns with shear span ratio of 𝐿𝑠 ℎ⁄  less or equal to 2, the shear 

strength, 𝑉𝑅 cannot exceed the value corresponding to failure by web crushing along the 

diagonal of the column after flexural yielding, 𝑉𝑅,𝑚𝑎𝑥, which under cyclic loading may be 

calculated from the expression: 

 

𝑉𝑅,𝑚𝑎𝑥 = (4 7⁄ )[1 − 0.02𝑚𝑖𝑛(5; 𝜇𝛥
𝑝𝑙)][1 + 1.35(𝑁 𝐴𝑐𝑓𝑐⁄ )][1 + 0.45(100𝜌𝑡𝑜𝑡)] ∙

√𝑚𝑖𝑛(40; 𝑓𝑐)𝑏𝑤𝑧 ∙ 𝑠𝑖𝑛2𝛿                                                                                                (2.4) 

 

where 𝜹 is the angle between the diagonal strut that is defined by the centroids of the 

compression zones at the column ends, and the axis of the column (tan 𝛿 = ℎ 2𝐿𝑠⁄ ). By 

implementing this equation to the example of the cases described above but with a change 

on the shear span so that the column be compliant to the shear span ratio limit of Eq. 2.4, the 

following results are obtained (𝐿𝑠=700mm). It can be seen that for the circular column case 

shear strength is close to web crushing along the diagonal.  

 

 

Figure 2.8: Shear Strength and its contributions for a typical reinforced concrete column.   

ASCE/SEI 41 (2017) is the latest in a series of documents developed after the FEMA 

initiatives in the 1990s and 2000s towards the development of a consistent assessment 

framework for existing structures. The FEMA/ATC documents form the first integrated 

reference for performance-based engineering, whereby deformation and force demands for 

different seismic hazards are compared against the capacities at various performance limits 

(i.e. states of damage). At the outset of this momentous project by FEMA, available data on 

the performance of existing components were rather limited and therefore reliability 
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concepts were not applied evenly towards the establishment of performance criteria.  The 

issue of dependably estimating the shear strength of a RC element appears to be rather 

complicated as it presumes the full understanding of the several interacting behavior 

mechanisms under reversed cyclic loading, whereas it is strongly affected by the imposed 

loading history, the dimensions of the element (e.g. the aspect ratio), the concrete strength, 

the longitudinal reinforcement ratio but mostly the ratio and the detailing of the transverse 

reinforcement. So far it has not been possible to theoretically describe the strength of the 

shear mechanism from first principles of mechanics without the use of calibrated empirical 

constants. Therefore, the shear strength estimates obtained from calibrated design 

expressions necessarily rely on the pool of experimental data used for correlation of the 

empirical expressions, as well as on the preconceived notions of the individual researchers 

as to the role each variable has in the mechanics of shear.  

The following expression for estimation of the shear strength of tied rectangular-

section reinforced concrete columns is proposed by the Code for seismic rehabilitation of 

existing buildings of the American Society of Civil Engineers ASCE/SEI 41 (2007): 

 

𝑉𝑅 = 𝑉𝑐 + 𝑉𝑤 = 𝑘(𝜇𝛥) [(0.5√𝑓𝑐 (𝐿𝑠 𝑑⁄ )⁄ )√1 + 𝑁 (0.5𝐴𝑔√𝑓𝑐)⁄ ] 0.8𝐴𝑔 + 𝑘(𝜇𝛥) ∙

[𝐴𝑠𝑤𝑓𝑦𝑤𝑑 𝑆⁄ ]                                                                                                                 (2.5) 

 

where 𝑽𝒄 is the concrete contribution in shear resistance; 𝑽𝒘 is the contribution of transverse 

reinforcement; 𝑑 is the effective depth; 𝑳𝒔 is the shear span of the column; 𝑵 is the axial 

force (compression positive, taken zero for tension); 𝑨𝒈 is the gross cross-sectional area of 

the column; 𝑨𝒔𝒘 is the cross-sectional area of one layer of stirrup reinforcement parallel to 

the shear action; and 𝑺 is the centerline spacing of stirrups along the length of the member. 

If S is equal to or greater than half of the effective depth of the column then the contribution 

of steel reinforcement 𝑉𝑤 in shear strength is reduced to 50% of its estimated value from the 

above equation. If S is equal to or greater than the effective depth of the column then zero 

shear strength contribution from steel reinforcement 𝑉𝑤 is considered; 𝒇𝒄 is the concrete 

compressive strength; 𝒌(𝝁𝜟) is the shear strength reduction coefficient that depends on 

ductility demand. If ductility demand is less than or equal to 2 then the factor is set to equal 

to 1 (i.e. no strength reduction). If the ductility is greater than 6, then the reduction factor is ΚO
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equal to 0.6. For ductility between 2 and 6 the reduction factor is linearly interpolated 

between the proposed values.  

The Vc estimate given by Eq. 2.5 for the example of the rectangular column presented 

in this Section is: Vc,ASCE = 233 kN, while EN 1998-3 (2005) resulted in Vc,EC8-3= 104 kN 

which, when combined with the axial load component (145.2 kN) leads to a total of 229.2 

kN, which is comparable to the result of Eq.2.5. For the case of the circular column results 

to Vc,ASCE = 81 kN whereas Vc,EC8-3=80 kN (49 kN from the axial load contribution and 31 

kN concrete web contribution) – values calibrated well with each other.  The effect of the 

stirrups’ spacing to the steel contribution to shear strength is depicted in the following figures 

for ASCE/SEI-41 (2017) and it is compared with the results of EN 1998-3 (2005) 

(abbreviated as EC8-III).  

Despite the convergence of the calibrated expressions of the two code approaches, 

the preceding comparisons highlight some of the uncertainties underlying the shear problem. 

For one, the concrete contribution term is taken—in both code documents—to be 

independent of the amount of transverse reinforcement, an omission that goes to the root of 

the truss-analogy model as originally introduced by Ritter and Moersch: there, the concrete 

contribution component was thought to be a minor correction to the main component that 

was owing to transverse reinforcement (the truss posts) so as to improve correlation with the 

tests – it was never meant to be a component of commensurate importance and magnitude 

to that of transverse reinforcement. Another source of uncertainty lies in the treatment of the 

axial load: in the EN 1998-3 (2005) approach, the axial load contribution is dealt with as a 

separate term, whereas in the ASCE/SEI 41 (2007) approach it is treated as an offset to the 

tensile strength of concrete in the member web. This difference causes a departure in the Vc 

values near the upper limit in the axial load ratio (ν=N/Agfc) as depicted in Fig. 2.11. 

 

 

Figure 2.9: Effect of stirrup spacing on steel contribution of a rectangular section’s shear strength.   
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Figure 2.10: Effect of spiral step on steel contribution to shear strength of a circular section.   

 

Figure 2.11: Shear strength vs. displacement ductility for the column with rectangular section.    

 
Figure 2.12: Shear strength vs. displacement ductility for the column with circular section.    ΚO
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Contrary to the shear strength assessment models of EN 1998-3 (2005) and 

ASCE/SEI 41 (2007), the shear model of fib Model Code (2010) is a design model which 

was not calibrated to specifically address members under seismic loads. The fib-MC2010 

design section on shear provides the option of four different levels of model complexity 

depending on the level of detail needed at the time of calculation (intended to address the 

needs for preliminary design, for detailed design and for assessment). The four models are 

referred to here on as levels of approximation (LA) and are identified by Latin numbers. 

Thus, for members with shear reinforcement the LA-III model provides the point of 

reference since the higher the detail of the model, the greater the design effort required. This 

is also the case for shear strength assessment of members with low volume of shear 

reinforcement (Sigrist et al. 2013).  

For members with shear reinforcement the fib Model Code 2010 shear provisions are 

based on a general stress field approach (Muttoni A. et al. 1997, Sigrist V. 2011), combined 

with Simplified Modified Compression Field Theory (SMCFT, Vecchio and Collins 1986, 

Bentz et al. 2006). As in all preceding code formulations the shear resistance 𝑉𝑅 is 

determined by the sum of a concrete contribution and web steel contribution term: 

𝑉𝑅 = 𝑉𝑐 + 𝑉𝑤                                                               (2.6) 

  For structural assessment, the strain dependence of the shear resistance may be taken 

into account by estimating the strain value 휀𝑥 at the mid-depth of the effective shear section 

as depicted in (Fig. 2.13(a), fib Model Code 2010; Fig. 2.13(b) illustrates the mechanics of 

formation of longitudinal tensile strains as a result of shear in cracked reinforced concrete). 

Other deformation parameters could be selected but this value has a clear physical meaning 

as it represents the average longitudinal strain in the web and can be found from the sectional 

forces. For a conventional reinforced concrete member, the effective shear depth 𝑧 is 

assumed to be 0.9𝑑. The tension chord force can be found from moment equilibrium in the 

section (Fig. 2.13) and the tension chord strain is determined accordingly from the tension 

chord force: 

𝑇 = 2 ∙ 𝐸𝑠 ∙ 휀𝑥 ∙ 𝐴𝑠 =
𝑀

𝑧
+
𝑉

2
cot 𝑎 + 𝑁 (

1

2
±
∆𝑒

𝑧
)                            (2.7) 

where 𝑴 is the resisted moment, 𝑽 is the applied shear force, 𝑵 is the axial force, ∆𝒆 is the 

eccentricity of the beam axis with respect to its mid-depth, 𝑬𝒔 is the modulus of elasticity of 

longitudinal steel reinforcement and 𝑨𝒔 is the area of tensile longitudinal reinforcement.  
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Figure 2.13: (a) Equilibrium at cross-section and corresponding approximation of strain profiles for end 

support region.  (b) Cracked reinforced concrete:  longitudinal tension is required to maintain 

equilibrium with the diagonal compressive struts (blue color) 

For the sake of simplicity, and to avoid iteration (since the definition of the 

compressive stress field inclination angle 𝑎 requires 휀𝑥) for calculating the strain 휀𝑥, the 

second item in Eq. 2.7 is approximated as (𝑉 2⁄ ) cot 𝑎 ≈ 𝑉 (a compressive stress field 

inclination angle 𝑎 close to 27o is assumed) (Fig. 2.13). With the conservative assumption 

that the compression chord strain is zero, it may be shown that the mid-depth strain may be 

taken as half the tension chord strain (Fig.2.13). The resistance attributed to concrete is: 

 

𝑉𝑐 = 𝑘𝑣√𝑓𝑐𝑏𝑤𝑧    (𝑓𝑐 𝑖𝑛 𝑀𝑃𝑎)                                            (2.8) 

 

where 𝒌𝒗 is a factor accounting for strain gradient effect and member size (Eq. 2.9), 𝒇𝒄 is 

the concrete strength and 𝒃𝒘 is the web-width.  The 𝑘𝑣 value, accounting for the demand in 

the concrete contribution term, is defined by: 

 

𝑘𝑣 =
0.4

1+1500𝜀𝑥
(1 −

𝑉𝐸𝑑

𝑉𝑅𝑑,𝑚𝑎𝑥(𝑎𝑚𝑖𝑛)
)                                       (2.9) 

where 𝑽𝑬𝒅 is the shear force demand at the control section.  

The concrete contribution equation (Eq. 2.8) is limited to normal or moderately high 

concrete strengths up to fc= 65MPa (the value √𝑓𝑐 is limited to a maximum of 8 MPa); for 

higher strengths the equation may be deemed unconservative on account of the smoother 

crack faces where cracks pass through, rather than around, aggregate particles, resulting in 

larger variability in the shear resistance of members. For members with shear reinforcement, 

the shear resistance is the sum of the resistances provided by concrete (as per Eq. 2.8) and 

the contribution of stirrups: 

𝐹𝑐 

𝑇 

𝑉 

𝑀 

    𝑁 

휀𝑥 

𝑎 

∆𝑒 

𝑑 

𝑧
2⁄  

z 

0.5T 

0.5T 

V 
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𝑉𝑤 =
𝛢𝑠𝑤

𝑆
𝑧𝑓𝑦𝑤 cot 𝑎                                         (2.10) 

where 𝜜𝒔𝒘 is the cross-sectional area of one layer of shear reinforcement, 𝒇𝒚𝒘 is the yield 

strength of shear reinforcement and 𝒂 is the inclination of the compressive stress field 

relative to the longitudinal axis of the member (i.e., the angle of shear sliding cracks).  

Shear strength is limited by the crushing of concrete along the inclined struts 

according with: 

𝑉𝑅,𝑚𝑎𝑥 = 𝑘𝑐𝑓𝑐𝑏𝑤𝑧 sin 𝛼 cos 𝑎                               (2.11) 

 

The strength reduction factor 𝑘𝑐 = 𝑘𝜀𝜂𝑓𝑐 accounts for the effect of compression 

softening due to transverse tensile strain through factor 𝑘𝜀:  

 

𝑘𝜀 =
1

1.2+55𝜀1
≤ 0.65                                   (2.12) 

and for the increasing brittleness of high strength concrete through factor ηfc which reduces 

the effective shear strength for 𝑓𝑐 > 30 MPa:  

 

𝜂𝑓𝑐 = (
30

𝑓𝑐
)
1 3⁄

≤ 1.0    (𝑓𝑐 𝑖𝑛 𝑀𝑃𝑎)                                   (2.13) 

 

The principal tensile strain that causes the compression softening effect in kε above, 

휀1 = 휀𝑥 + (휀𝑥 − 휀2) cot
2 𝑎, is defined by a Mohr’s circle of strain (Fig. 2.14); as an adequate 

approximation, the (negative) principal strain −휀2 may be taken as the concrete peak 

strain 휀𝑐0 = 0.002 and εx from Eq. 2.7. Finally, the stress field or strut inclination (Fig. 2.14), 

relative to the longitudinal axis of the member, is limited to: 

 

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 45
𝑜                                                    (2.14) 

𝑎𝑚𝑖𝑛 = 20
𝑜 + 10000휀𝑥                                             (2.15) 
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Figure 2.14: Strut inclination in a column and Mohr circle of strains.  

 

A comparison of the assessment procedure described above based on the design 

model of fib Model Code 2010 with the assessment models of the previously presented Code 

requirements stated in this Section is illustrated in Figs. 2.16 and 2.17. The columns under 

study have similar properties with the already described example columns. It may be 

observed that the general method of the fib Model Code 2010 gives a more conservative 

estimation of the concrete contribution to shear strength.  

Similar to the fib Model Code (2010), the design model of ACI-318-14 (2014)  

considers a concrete and a steel contribution to the shear strength of beam-columns: 

 

 𝑉𝑅 = 𝑉𝑐 + 𝑉𝑤                                                     (2.16) 

The concrete term, 𝑉𝑐 is taken as the shear force causing inclined cracking in the 

member, obtained by setting the maximum sectional shear stress equal to the principal tensile 

stress of concrete; after cracking, 𝑉𝑐 is kept the same, but its presence is attributed to 

aggregate interlock, dowel action and the shear term transmitted across the concrete 

compression zone. As in all other codes, the shear strength is based on an average shear 

stress acting over the effective cross section 𝑏𝑤𝑑 (𝑏𝑤 = web width or diameter of circular 

section, 𝑑 = effective depth of cross section).  

For non-prestressed members with axial compression, 𝑉𝑐 is calculated from: 

𝑉𝑐 = 0.17 (1 +
𝑁𝑢

14𝐴𝑔
) 𝜆√𝑓𝑐𝑏𝑤𝑑                                (2.17) 

where 𝑵𝒖 is the axial force normal to cross section- to be taken as positive for compression, 

(Newton), 𝑨𝒈 is the gross area of concrete section, in 𝑚𝑚2, 𝒇𝒄 is the specified compressive 

α 
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strength of concrete (MPa), and 𝝀 is a modification factor to account for the reduced 

mechanical properties of lightweight concrete relative to normal weight concrete of the same 

compressive strength.  For non-prestressed members with significant axial tension, 𝑉𝑐 is 

calculated from: 

𝑉𝑐 = 0.17 (1 +
0.29∙𝑁𝑢

𝐴𝑔
) 𝜆√𝑓𝑐𝑏𝑤𝑑 ≥ 0                         (2.18) 

Required shear reinforcement is obtained from a modified truss analogy, wherein the 

force in the truss posts (vertical ties, Fig. 2.15) is resisted by the shear reinforcement. 

However, considerable research on both non-prestressed and prestressed members has 

indicated that shear reinforcement needs to be designed to resist the shear demand exceeding 

the force that causes inclined cracking, assuming the diagonal struts in the truss panels to be 

inclined at 45 degrees (Fig. 2.15).  

From equilibrium it may be easily shown that 𝑉𝑤 supported by web reinforcement is: 

𝑉𝑤 =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑆
                                          (2.19) 

where 𝑺 is the longitudinal spacing of transverse reinforcement (or the spiral pitch of tied 

columns with spiral transverse steel), mm; 𝑨𝒗 is the cross sectional area of shear 

reinforcement parallel to the shear force within a single stirrup pattern, 𝑚𝑚2, and 𝒇𝒚𝒕 is the 

specified yield strength of transverse reinforcement, MPa. Observe the similarity with the 

EN 1998-3 (2005) equation for the Vw term.  In the ACI & ASCE approaches, for circular 

ties or spirals, 𝑨𝒗 is two times the area of the spiral bar or wire. For calculation of 𝑽𝒄 and 

𝑽𝒘 in solid circular sections, 𝑑 is approximated by 0.8 times the diameter and 𝒃𝒘 is taken as 

the diameter. 

 

Figure 2.15: Original 45o Truss Model underlying the ACI (2014) requirements.   
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Figure 2.16: Comparison of shear strength assessment models for the square column example under 

study.   

 

Figure 2.17: Comparison of shear strength assessment models for the circular column example under 

study.  

Figures 2.16 and 2.17 compare the values obtained from the shear strength models 

of the various code provisions including ACI 318-14 (2014) for the example columns 

considered. Note that ACI 318-14 (2014) gives a higher shear strength estimation for 

concrete contribution with respect to the other code models but it is closely calibrated to both 

EN 1998-3 (2005) and ASCE/SEI-41 (2007).  

Finally, it should be mentioned that the Hellenic Code for Seismic Assessment 

(KAN.EPE. 2014) containing the necessary provisions for structural assessment and 

interventions for reinforced concrete buildings adopts the EC8-III procedures (EN 1998-3, 

2005), already introduced in the preceding. 

 

Comparison of Shear Strength Assessment Estimates for the Square Column Example 
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2.4 Milestones in the Development of Models for Shear Strength 

Assessment of RC Columns 

Reviewed Code provisions were developed and based on past research which was motivated 

by the extensive damages observed in modern engineered construction in the earthquakes 

that occurred worldwide after 1990. In particular, defining the degradation of shear strength 

due to increasing inelastic deformations has been the objective of several models (Aschheim 

and Moehle 1992, Priestley et al. 1994, Sezen and Moehle 2004) that were developed within 

the ATC/FEMA 273 (1997) and FEMA 356 (2000) initiatives in response to the catastrophic 

failures observed in California bridges and hospitals after the Loma Prieta (1989) and 

Northridge (1994) earthquake.  

The study by Aschheim and Moehle (1992) was the first to propose a degrading 

pattern for the shear strength envelope of columns and beams on account of the accumulated 

effects of damage due to inelastic deformation.  They proposed a degradation coefficient as 

a function of displacement ductility demand, µΔ, after calibrating an empirical relationship 

with a database of laboratory data from cantilever bridge column tests. The data indicated 

that the rate of degradation also depended on the amount of available transverse 

reinforcement and axial load. By adhering to the general practice of estimating shear strength 

as the summation of strength contributions from transverse reinforcement and concrete, 

(where VW is obtained from Eq. 2.19) it was proposed that VC be estimated from: 

          𝑉𝑐 = 0.3 (𝑘 +
𝑁

14𝐴𝑔
)√𝑓𝑐0.8𝐴𝑔                                    (2.20) 

where 0 ≤ 𝑘 =
4−𝜇𝛥

3
≤ 1                                     (2.21) 

Thus, this model associates the entire amount of strength degradation with 

deterioration of the concrete contribution term (through factor k). This model was intended 

to evaluate the shear strength in plastic hinge zones and was later adopted in FEMA 273 

(1997).  The approach by Priestley et al. (1994) further de-aggregates the shear strength of 

columns under cyclic lateral loads as comprising three distinct contributions – that of the 

concrete web, 𝑉𝑐, the truss mechanism (or transverse reinforcement), 𝑉𝑤, and an arch 

mechanism component, 𝑉𝑁, associated with the horizontal component of a diagonal strut 

(this develops through the member in order to transfer the axial load N to the base), as 

follows: 

                                                          𝑉𝑅 = 𝑉𝑐 + 𝑉𝑤 + 𝑉𝑁                                          (2.22) 

The concrete component 𝑉𝑐 is given by: 
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𝑉𝑐 = 𝑘√𝑓𝑐′𝐴𝑒                                       (2.23) 

where 𝐴𝑒 = 0.80𝐴𝑔 and the parameter 𝑘 depends on the member displacement ductility 

level as defined in the following equations: 

𝐹𝑜𝑟 𝜇𝛥 ≤ 2 ,   𝑘 = 0.29 

𝐹𝑜𝑟 2 < 𝜇𝛥 < 4 ,   𝑘 = −0.095𝜇𝛥 + 0.48 

𝐹𝑜𝑟 𝜇𝛥 ≥ 4 , 𝑘 = 0.1                                     (2.24) 

The contribution of transverse reinforcement to shear strength is based on a truss 

mechanism using a 30-degree angle between the diagonal compression struts and the column 

longitudinal axis. For rectangular cross-section columns, the truss mechanism component, 

𝑉𝑤, is estimated from: 

𝑉𝑤 =
𝐴𝑠𝑤𝑓𝑦𝑤(𝑑−𝑑

′)

𝑆
𝑐𝑜𝑡30𝑜                                            (2.25) 

where 𝑑 − 𝑑′ is the internal lever arm of the idealized truss. For circular cross-section 

columns, the truss mechanism component, 𝑉𝑤, is defined from: 

𝑉𝑤 =
𝜋

2

𝐴𝑠𝑤𝑓𝑦𝑤𝐷
′

𝑆
𝑐𝑜𝑡30𝑜                                              (2.26) 

where 𝐷′ is the distance measured parallel to the applied shear between centers of the 

perimeter hoop or spiral. 

The arch component refers to the horizontal component of the inclined axial strut 

carrying the axial load to the support. In this model this term is given by 

𝑉𝑁 = 𝑁 𝑡𝑎𝑛𝛼 =  
𝑑−𝑥

2𝐿𝑠
𝑁                                            (2.27) 

where 𝛼 is the inclination of the diagonal compression strut with respect to the longitudinal 

axis of the column and 𝑥 is the depth of the compression zone, whereas 𝑑 is the effective 

depth of the section.  It should be noted that the depth, 𝑥, depends on both the axial load and 

aspect ratio (i.e. the amount of curvature required to develop a certain displacement 

ductility). Thus, with an increasing aspect ratio the axial load contribution to shear strength 

decreases. Similarly, a higher depth of compression zone (for higher axial load) affects the 

value of 𝑉𝑁, showing a subtle increase for higher compressive N. The effect of the axial 

tensile load on the shear strength is not defined in the model.  

Sezen and Moehle (2004) updated the earlier model of Aschheim and Moehle (1992) 

also relating column shear strength to the displacement ductility demand; the novelty here is 

that the strength degradation factor 𝑘 was taken to operate on both concrete and steel 

contributions (Fig. 2-18): 
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𝑉𝑛 = 𝑘(𝑉𝑐 + 𝑉𝑠) = 𝑘 (
0.5√𝑓𝑐

′

𝐿𝑠 𝑑⁄ √1 +
𝑁

0.5√𝑓𝑐
′𝐴𝑔

)0.8𝐴𝑔 + 𝑘
𝐴𝑠𝑤𝑓𝑦𝑤𝑑

𝑆
                   (2.28) 

This model was later adopted in the ASCE/SEI 41 (2017) assessment provisions. The 

reasoning in applying a reduction to both terms is that the concrete component is expected 

to diminish owing to increased cracking and degradation of the aggregate interlocking 

mechanism, whereas the steel component is assumed to degrade due to a reduction in the 

bond stress capacity required for an effective truss mechanism. 

 

Figure 2.18: Variation of degradation coefficient k with displacement ductility.  Note however that k 

does not operate on all terms in the same manner in the different models, so the relationship between 

alternative proposals is not transparent.  

 

Figure 2.19: Comparison of shear strength assessment models for the square column example. 
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Figure 2.20: Comparison of shear strength assessment models for the circular column example. 

Mechanistic Definition of the VC term 

The comparison of the models included in this Section for the example columns 

under study of this Chapter is illustrated in Figs. 2.19 and 2.20. Differences in the estimation 

of the transverse reinforcement contribution to shear strength between the 30-degree truss 

model (Priestley et al 1994) and the 45-degree truss model adopted by Aschheim and Moehle 

(1992), Sezen and Moehle (2004) underscore the degree of approximation of the existing 

approaches. For the same stirrup arrangement, the 30-degree truss model gives a higher steel 

contribution to shear strength.  

(a) The MCFT theory 

An alternative framework suitable for interpretation of strength degradation with 

increasing deformation demand is that of the Modified Compression Field Theory (MCFT) 

(Vecchio and Collins, 1986).  The model is derived from first principles (employs a smeared, 

continuum mechanics approach to establish equilibrium and compatibility) and uses 

experimentally verified stress-strain relationships for the behavior of cracked concrete. A 

fundamental relationship in the MCFT relates the shear stress on a cracked surface due to 

aggregate interlock to the crack’s width, the maximum aggregate size and the concrete 

strength. The aggregate effect was first codified when a general method for shear design was 

derived based on the MCFT and implemented in the AASHTO-LRFD bridge design 

guidelines (2013). In 1994 the general method of shear design was implemented in the CSA 

concrete design code for buildings in Canada. An updated and simplified version of the 

general method has been developed (Bentz et al., 2006) and implemented in the 2004 CSA 

Design Code. The new general method, referred to as the Simplified Modified Compression 
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Field Theory (SMCFT) has been found by some to be simpler than the original general 

method with, in many cases, improved predictive capabilities (Sherwood et al., 2006). 

According to SMCFT simple expressions have been developed for β (a parameter 

that models the ability of cracked concrete to transfer shear), the crack angle a, and the 

normal average strain in the web’s longitudinal centroidal axis 휀𝑥, thereby eliminating the 

need to iterate in order to solve for these values. The following general relationship is used 

to determine the shear resistance of a concrete section: 

𝑉𝑅 = 𝑉𝑐 + 𝑉𝑤 = 𝛽√𝑓𝑐𝑏𝑤𝑑𝑣 +
𝐴𝑣𝑓𝑦

𝑆
𝑑𝑣 cot 𝑎                             (2.29) 

Term 𝛽 in Eq. 2.29 is a function of 1) the longitudinal strain at the mid-depth of the 

web 휀𝑥, 2) the crack spacing at the mid-depth of the web and 3) the maximum coarse 

aggregate size, 𝑎𝑔. It is calculated using an expression that consists of a strain effect term 

and a size effect term: 

𝛽 = (strain softening term) ∙ (size effect term) =
0.40

(1+1500𝜀𝑥)
∙

1300

(1000+𝑠𝑧𝑒)
   (2.30) 

The longitudinal strain at the mid-depth of a beam web is conservatively assumed to 

be equal to one-half of the strain in the longitudinal tensile reinforcing steel as is adopted in 

the fib Model Code 2010 previously presented (see Fig. 2.13(b)). For sections that are not 

prestressed, 휀𝑥 is calculated according to Eq. 2.31 which is practically the same as Eq. 2.7 

(here, 𝑀 is the resisted moment, 𝑉 is the applied shear force, 𝑁 is the normal force [positive 

if it is tensile], 𝐸𝑠 the modulus of steel, and 𝐴𝑠 is the area of tension reinforcement): 

휀𝑥 =
𝑀 𝑑𝑣⁄ +𝑉+0.5𝑁

2𝐸𝑠𝐴𝑠
                                                    (2.31) 

The effect of the crack spacing at the beam mid-depth is accounted for by the use of 

a crack spacing parameter 𝑠𝑧. This crack spacing parameter is equal to the smaller of either 

the flexural lever arm (𝑑𝑣 = 0.9𝑑 or 0.72ℎ, whichever is smaller) or the maximum distance 

between layers of longitudinal crack control steel distributed along the height of the web. 

The term 𝑠𝑧𝑒 is referred to as an “equivalent crack spacing factor” and has been 

developed to model the effects of different maximum aggregate sizes on the shear strength 

of concrete sections by modifying the crack spacing parameter. For concrete sections with 

less than the minimum quantity of transverse reinforcement and constructed with a 

maximum aggregate size of 20mm, 𝑠𝑧𝑒 is taken as equal to 𝑠𝑧. For concrete with a maximum 

aggregate size other than 20mm, 𝑠𝑧𝑒 is calculated as follows: 

𝑠𝑧𝑒 =
35𝑠𝑧

15+𝑎𝑔
≥ 0.85𝑠𝑧                                                     (2.32) 
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To account for aggregate fracture at high concrete strengths, an effective maximum 

aggregate size is calculated by linearly reducing 𝑎𝑔 to zero as the compressive concrete 

strength 𝑓𝑐 increases from 60 to 70 MPa. Term 𝑎𝑔is taken equal to zero for higher concrete 

strengths on account of the observation that cracks go through the aggregates in higher 

strength concretes (i.e., for 𝑓𝑐>70 MPa). The square root of the concrete strength is limited 

to a maximum of 8 MPa as in the fib Model Code 2010 previously reviewed. The angle of 

inclination of the cracks at the beam mid-depth, α, is calculated by the following equation: 

𝑎 = (29𝑜 + 7000휀𝑥)(0.88 + 𝑠𝑧𝑒 2500⁄ ) ≤ 75𝑜                       (2.33) 

For the example columns of this Chapter, Eq. 2.33 results in 𝑎 = 43𝑜 for the square 

column and 𝑎 = 41𝑜 for the circular column.   

(b) Compressive Zone Definition of VC 

A campaign to re-evaluate the shear strength models for the VC term was conducted 

by Tureyen and Frosch in 2003. As part of this effort, a new model was developed, taking 

the compressive zone part of the cross section (i.e. the part above the neutral axis) as the 

primary contributor to shear strength. As shown in Fig. 2.21, the model considers that 

whereas shear can be transferred over the entire effective depth d between cracks, at the 

location of a crack, shear stress can only be transferred through the uncracked concrete above 

the neutral axis. The shear stress distributions shown in Figure 2.21 (a) are theoretical; 

however, these can be simplified by considering average stress distributions as shown in 

Figure 2.21 (b). 

   

Figure 2.21: Theoretical (a) and Average (b) Shear Stress Distribution. 

Using this model and considering the average shear stress distribution at a crack, a 

simplified expression for concrete contribution to shear strength was developed: 

𝑉𝑐 =
2

5
√𝑓𝑐𝑏𝑤𝑥 ≈ 0.4√𝑓𝑐𝑏𝑤𝑥                                     (2.34) 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



42 

 

where 𝒙 is the depth of compression zone (mm) (or distance of the neutral axis from the 

compression face of the cracked, transformed cross section of the member). An advantage 

of this approach is that the effect of axial load is implicitly accounted for in the value of x. 

Mechanics-based definitions of shear-strength models such as those presented in the 

preceding are useful in estimating the available strength of members in conventional 

strength-based design and assessment. However, for seismic assessment, the strength-based 

approaches overlook a significant aspect that is essential in the performance context (i.e. 

when the focus is on the intensity of damage sustained in order for the strength to be 

developed) – namely, the deformation capacity of the member and the mode of failure 

associated with the exhaustion of the shear strength terms, and the margin of safety required 

between this, brittle occurrence and the more ductile mechanisms of behavior before safety 

may be compromised. The above-mentioned limitation motivated the effort for the 

development of displacement-based models in order to obtain a dependable estimation of 

the drift capacity of flexure-shear critical columns, i.e., columns that become critical in shear 

immediately after flexural yielding for a known axial load magnitude and member aspect 

ratio (Ls/h).  

 

Figure 2.22: Definition of Deformation Limits at Shear and Axial Failure of a Reinforced Concrete 

Column.  

The occurrence of a steep shear crack in a reinforced concrete column signifies the 

process of strength degradation that eventually leads to shear failure (see Fig. 2.3). If the 

reinforcement anchorages are sufficient, then, beyond this point the steep shear crack 

V 

Δ 

VR 

Δs Δa 
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developed on the column leads to progressive sliding between the crack surfaces, permanent 

distortion of the web with simultaneous buckling of longitudinal reinforcement and 

fracturing of transverse reinforcing bars crossing the sliding plane; this type of failure 

eliminates the ability of the column to carry the overbearing loads and is therefore considered 

an axial failure. These two stages are distinct and not interchangeable; for the sake of clarity 

the two points of failure are marked on the notional element backbone curve in Fig 2.22. 

The model developed by Pujol et al. (1999) related the magnitude of drift at shear 

failure with the aspect ratio of the column ( Ls/d, where Ls is the column shear-span and d is 

the section depth from the center of tension reinforcement to the extreme compression fiber 

of the column), the shear reinforcement ratio 𝜌𝑤 (yield stress of 𝑓𝑦𝑤), and with the column 

shear stress 𝜏 at shear failure (defined as the shear force at shear failure divided by the web 

area, 𝑏𝑤𝑑). Based only on a statistical evaluation of the results of an experimental database 

that comprised 15 series of tests containing 94 specimens, and in an effort to establish a 

conservative estimate of the drift ratio at shear failure, Pujol et al. (1999) recommended the 

following relationship (𝐿 = clear height of column): 

100
𝛥𝑠

𝐿
=
𝜌𝑤𝑓𝑦𝑤

𝜏
∙
𝐿𝑠

𝑑
≤ {
𝐿𝑠 𝑑⁄
4

                                          (2.35) 

All the column specimens considered in the study were subjected to nominal shear 

stresses that may be assumed to be high enough so as to produce inclined shear cracking 

(shear stresses that exceed the tensile strength of the concrete). Failure was due to 

disintegration of the concrete core caused by sliding along inclined cracks and crushing of 

the concrete under compression. The ranges of the parameters for the employed experimental 

data leading to Eq. 2.35 were:  

𝑓𝑐: 21-86 MPa; 

𝜌𝑠 (Longitudinal reinforcement ratio): 0.5-5.1%; 

𝜌𝑤𝑓𝑦𝑤: 0-8 Mpa ; 

 𝜈 = 𝑁 (𝑓𝑐𝐴𝑔)⁄ : 0-0.2 ; 

 𝐿𝑠 𝑑⁄ : 1.3-5; 

𝜏/√𝑓𝑐: > 0.17. 

Figure 2.23 depicts the results from Pujol et al. (1999) model applied on an 

independent database of column tests assembled by Sezen and Moehle (2002); the database 

consists of 50 flexure-shear-critical columns representative of columns from older reinforced 

concrete buildings. The test columns were selected from the literature for specimens tested 
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under unidirectional cyclic lateral load with low transverse reinforcement ratios 

(𝜌𝑤 ≤ 0.007), yielding of longitudinal reinforcement prior to loss of lateral load capacity, 

and shear distress observed at failure suggesting that loss in lateral load capacity was due to 

degradation of the shear-transfer mechanism. In testing Eqn. 2.35 against the database, 

Elwood (2003) observed that the proposed expression for drift at shear failure is not 

conservative for six of the columns in the employed database. Three of those columns were 

subjected to axial loads in excess of the axial loads considered when developing the model. 

Although conservative with respect to the other specimens, there is nevertheless still 

significant discrepancy between calculated and measured drift values. 

 

Figure 2.23: Comparison of calculated and measured drifts for Pujol et al. 1999 (Elwood 2003). 

Elwood and Moehle (2005) proposed an empirical model that relates the shear 

demand to the drift at shear failure (𝛥𝑠 𝐿⁄ ) based on the transverse reinforcement ratio 𝜌𝑤, 

shear stress ratio (𝜏 √𝑓𝑐⁄ ), and axial load ratio (𝜈 = 𝑁 𝐴𝑔𝑓𝑐⁄ ).  The point of shear failure in 

the developed model was determined by the intersection of shear-drift curve for the column 

and the limit surface defined by a postulated drift capacity model (the limit surface is the 

outcome of Equation 2-36 for different pairs of shear force (and the corresponding shear 

stress) and the resulting displacement 𝛥𝑠 plotted along with the element resistance curve- 

Figure 2.24). The proposed equation is:  

  
𝛥𝑠

𝐿
= 3%+ 4𝜌𝑤 − 0.002 ·

𝜏

√𝑓𝑐
′
− 0.025 · 𝜈 ≥ 1%                                 (2.36)  

For the example of the square column under study in this Chapter with S=200 mm 

Eqn. 2.35 results in a 1.7% relative drift ratio (RDR) at shear failure whereas Eqn. 2.36 
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estimates 2.4 % RDR for the same event (depicted in Fig. 2.25 by the red and the blue dots, 

respectively). Therefore, the drift model by Pujol et al. (1999) is more conservative.  

To date, a limited number of models (Elwood and Moehle 2005, Ngoc-Tran and Li 

2013) have been developed to estimate the axial-drift failure of non-ductile columns. The 

model by Elwood and Moehle (2005) was developed considering the free body diagram of 

a column failed in the shear (Fig. 2.3); here the only possible resistance is provided through 

shear friction along the sliding interface – collapse is imminent. Figure 2.26 depicts the free-

body diagram of the upper portion of a column under shear and axial load at imminent axial 

load failure. The lower boundary of the free-body diagram delineates the inclined plane of 

sliding failure where shear friction demand exceeds the shear-friction resistance along the 

crack.  

 

Figure 2.24: Shear failure by the drift capacity model of Elwood and Moehle (2005) 

 

Figure 2.25: Comparison of calculated drift ratio at shear failure using Eq. 2.36 with database by 

Elwood. (Elwood 2003 – Dashed lines are +/- one standard deviation from the mean.)   

Limit surface defined by drift capacity 

model (Elwood & Moehle, 2005) 
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Simplifications were made where terms were fraught with significant uncertainty 

(e.g. dowel forces from the transverse reinforcement crossing the inclined crack were 

neglected; their effect is considered to be part of the shear-friction force developing along 

the cracked plane.  Similarly, the dowel action of longitudinal bars was neglected as in older 

structures spacing and diameter of transverse reinforcement are not sufficient to provide 

noticeable resistance to lateral dislocation of the longitudinal reinforcement (see Fig. 2.3)).  

Based on the observations of failed columns at that stage it is seen that upon axial crushing 

the longitudinal reinforcement has buckled, and therefore its axial force capacity was 

assumed equal to zero. Last, at incipient axial failure any source of shear resistance except 

the frictional action is assumed to have diminished to zero and may therefore be neglected.  

Equilibrium of forces for the free body diagram shown in Fig. 2.26 results in the following: 

              ∑𝐹𝑥 = 0 →  𝑃 sin 𝑎′ + 𝑉 =  𝑉𝑠𝑓 cos 𝑎′ + 
𝐴𝑠𝑤𝑓𝑦𝑤𝑑𝑐

𝑆
tan 𝑎′ + 𝑛𝑏𝑎𝑟𝑠𝑉𝑑              (2.37) 

                              ∑𝐹𝑦 = 0 →  𝑁 =  𝑃 cos 𝑎′ +  𝑉𝑠𝑓 sin 𝑎′ + 𝑛𝑏𝑎𝑟𝑠𝑃𝑠                    (2.38) 

Equation 2-37 after consideration of the simplifications made in the preceding is written: 

                                    𝑃 sin 𝑎′ =  𝑉𝑠𝑓 cos 𝑎′ + 
𝐴𝑠𝑤𝑓𝑦𝑤𝑑𝑐

𝑆
tan 𝑎′                                 (2.39) 

From Eqns. 2-38 and 2-39 and assuming a frictional relationship between 𝑃 and 𝑉𝑠𝑓, 

an expression is obtained that relates axial load, N, transverse reinforcement, Asw, stirrup 

spacing S, and drift ratio at axial load collapse:  

  (
𝛥𝑎

𝐿
)
𝑎𝑥𝑖𝑎𝑙

= 4% ·
1+(tan65𝑜)2

[tan65𝑜+𝑁∙(
𝑠

𝐴𝑠𝑤∙𝑓𝑦𝑤∙𝑑𝑐∙ tan 65
𝑜)]

                             (2.40) 

where 𝑑𝑐 = 𝑑 − 𝑑′ is the depth of the column core between the centerlines of the ties. Based 

on experimental observation it was estimated that the angle of the sliding plane is about 25o 

from vertical (65o with respect to the transverse direction).  Similar to the shear-failure model 

described in the previous section, the axial drift model defines a limit surface at which axial 

failure is expected to occur (Fig. 2.27). For the square column under study in this Chapter 

and for a 200 mm stirrup spacing, the drift ratio at axial load failure or collapse was estimated 

at 3.9%. 

Ngoc-Tran and Li (2013) presented analytical and experimental investigations carried 

out on RC columns with light transverse reinforcement. A semi-empirical model was 

developed to estimate the ultimate displacement (displacement at axial failure) of RC 

columns with light transverse reinforcement subjected to simulated seismic loading. The 

following basic assumptions were employed in deriving the model: 
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• The applied axial load at the point of axial failure is transferred through the shear 

failure plane. 

• The angle of the shear failure plane of 60o as defined by Priestley et al. 1994 was 

adopted. (30o angle between the diagonal compression struts and the column 

longitudinal axis as stated already in the description of Priestley et al. (1994) shear 

strength model). 

• The shear demand on the columns was considered to be negligible and therefore 

ignored at the point of axial failure. 

• Once the shear strength had initiated its degradation - corresponding to a 

displacement ductility of 2 for unidirectional lateral loading – then it was assumed 

that any additional deformation of the columns was owing to sliding between 

cracking surfaces as shown in Fig. 2.28. 

 

Figure 2.26: Free-body diagram of upper end of column (Elwood and Moehle 2005). 

At the point of axial failure as shown in Fig. 2.28, the external and internal works 𝑊𝑒𝑥𝑡, 𝑊𝑖𝑛𝑡, 

developed by the column were calculated according to the following: 

𝑊𝑒𝑥𝑡 = 𝑁 × 𝛥𝑎𝑣
∗                                                (2.41) 
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𝑊𝑖𝑛𝑡 = 𝑊𝑐 +𝑊𝑠𝑣 +𝑊𝑠𝑙                                       (2.42) 

𝑊𝑐, 𝑊𝑠𝑣, and 𝑊𝑠𝑙 are the internal works done by deformation of concrete, transverse 

reinforcement and longitudinal reinforcement, respectively. As illustrated in Fig. 2.28, 𝛥𝑎𝑣
∗  

is the vertical displacement due to sliding between cracking surfaces at the point of axial 

failure. Equating the external and the internal work leads to the following equation: 

𝑁 = 𝑃𝑠𝑙 + 𝑃𝑠𝑡 + 𝑃𝑐                                          (2.43) 

 

Figure 2.27: Axial Failure defined by the drift-capacity model of Elwood and Moehle 2005. 

where 𝑃𝑠𝑙, 𝑃𝑠𝑡, 𝑃𝑐 are the axial forces resisted by longitudinal reinforcement, transverse 

reinforcement, and concrete at imminent axial failure, respectively. Axial strength of 

longitudinal reinforcing bars at axial failure normalized by their nominal yield strength 

defines the yield strength ratio, 𝜂𝑠𝑙, as follows: 

 

𝜂𝑠𝑙 = (𝑁 − 𝑃𝑠𝑡 − 𝑃𝑐) (𝜌𝑙𝑏𝑤ℎ𝑓𝑦𝑙)⁄                                  (2.44) 

𝑃𝑠𝑡 = (𝑑𝑐𝑓𝑦𝑤𝐴𝑠𝑤) 𝑆⁄                                        (2.45) 

𝑃𝑐 = 𝑉𝑐 cot 𝑎′                                              (2.46) 

 

where 𝑑𝑐 is the depth of the core (centerline to centerline of ties) 𝜌𝑙 is the total longitudinal 

reinforcement ratio; 𝑏𝑤 and ℎ are the width and the height of the column’s cross section 

respectively; 𝑓𝑦𝑙 the yield strength of the longitudinal reinforcement. 𝑉𝑐 is defined by Eq. 

2.23. With reference to Fig. 2.28 the damaged length 𝐿𝑑 is given by: 

𝐿𝑑 = ℎ tan𝛼′                                               (2.47) 

The ratio of horizontal displacement due to sliding between cracking surfaces at axial 

failure divided by the damaged length has the physical significance of a drift ratio, associated 

here with axial collapse. This term, 𝛿𝑎
∗ , is given as: 

   Δa 
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𝛿𝑎
∗ = [(𝛥𝛼 − 2𝛥𝑦)⏟      

𝛥𝛼
∗

(ℎ tan𝛼′)⁄ ] × 100%                         (2.48) 

In the above, the yield displacement 𝛥𝑦 is defined as the displacement associated 

with the secant to yield line in the force-displacement resistance curve of the member.  

The equations derived above are calibrated using an assembled database comprising 

47 RC columns tested to the point of axial failure. These columns encompass a wide range 

of cross-sectional sizes, material properties, and column axial loads. They were subjected to 

a combination of an axial load and unidirectional cyclic loadings to simulate earthquake 

actions. Based on the employed database, an empirical equation was developed so as to relate 

the ratio of- the axial strength of longitudinal reinforcing bars to the yield strength of the 

longitudinal reinforcing bars- to the ratio of - the horizontal displacement due to the sliding 

between cracking surfaces to the damaged length - as follows:  

 

𝜂𝑠𝑙 = 1 (0.2046 × 𝛿𝑎
∗ + 1)⁄                                 (2.49) 

A series of experiments was conducted on five RC columns with light transverse 

reinforcement to validate the applicability and accuracy of the developed model [Ngoc-Tran 

and Li (2013)]. These tests were not included in the experimental database from which the 

developed semi-empirical model was derived. It is concluded from the study that the mean 

ratios of the experimental to estimated ultimate displacements and the corresponding 

coefficients of variation were 1.077 and 0.194, respectively. A comparison of the results 

obtained from the proposed equation by Ngoc Tran and Li (2013) with the model by Elwood 

and Moehle (2005) is depicted in Fig. 2.29. When applying Eqn. 2.48 to the example square 

column under study in this Chapter with 200 mm stirrup spacing, the estimated drift at axial 

failure is 2.8 %.  This value is much more conservative as compared to the result by Elwood 

and Moehle (2005) (3.9%; note the red and blue dots in the Figure 2.29, respectively). 
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Figure 2.28: Assumed failure plane at the point of axial failure (Ngoc-Tran and Li, 2013). 

 

Figure 2.29: Comparisons between experimental and analytical ultimate displacements at axial failure 

of various equations.  
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3 Performance of the existing models applied to the RC 

columns of PEER Structural Performance database 

3.1  Introduction  

The mode of failure of structural members such as reinforced concrete columns depends on 

several factors, such as their geometric characteristics, the longitudinal reinforcement, the 

efficiency of confinement through the transverse reinforcement and the loading history. 

Their behavior throughout the loading range is controlled by competing mechanisms of 

resistance such as flexure, shear, buckling of longitudinal bars when they are subjected to 

compressive loads, and in the case of lap splices, the lap-splice mechanism of bar 

reinforcement development. Very often a combination of such mechanisms characterizes the 

macroscopic behavior of the column, especially in cases of cyclic load reversals. Various 

predictive models have been developed in the past to determine both the strength as well as 

the deformation capacity of the columns, the uncertainty being at least one order of 

magnitude greater in terms of deformation capacity rather than strength, as evidenced by 

comparisons with test results. 

In this Chapter, some of the models described analytically in Chapter 2 are tested for 

their performance against a widely used experimental database (2003, 

https://nisee.berkeley.edu/spd/) originally assembled by Berry and Eberhard (2004). Known 

as the PEER Structural Performance Database, it assembles the results of over 400 cyclic, 

lateral-load tests of reinforced concrete columns. The database describes tests of spiral or 

circular hoop-confined columns, rectangular tied columns, and columns with or without lap 

splices of longitudinal reinforcement at the critical sections. For each test, where the 

information is available, the database provides the column geometry, column material 

properties, column reinforcing details, test configuration (including P-Delta configuration), 

axial load, digital lateral force displacement history at the top of the column, and top 

displacement that preceded various damage observations.  

First, the parametric dimensions of the employed database are explored and a 

sensitivity analysis is conducted in order to highlight the statistical content and parameter 

trends with regards to basic indices that define the column behavior. Subsequently, flexure-

dominant columns having either a circular or a rectangular cross section are studied so as to 

attempt to reproduce (and therefore fully comprehend) their hysteretic lateral experimental 
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response. Shear critical columns are studied as a separate group - in terms of strength and 

deformation capacity. Some of the models presented in Chapter 2 for shear strength are 

tested against this group of experimental data. Lastly an experimental database for cyclic 

tests of reinforced concrete columns under variable axial load is assembled for the needs of 

the present study, and are used to corroborate the models outlined in Chapter 2 with regards 

primarily to deformation capacity as the axial load varies from compressive to tensile 

(modeling the overturning effects of the earthquake on perimeter frame columns in 

structures).  

3.2 Parametric Sensitivity of PEER Structural Performance 

Database 

The statistical profile of the data available in the PEER structural performance database 

(https://nisee.berkeley.edu/spd/) is outlined here. Distributions of key column properties 

(depth, aspect ratio, axial load ratio, longitudinal reinforcement ratio and transverse 

reinforcement ratio) provide the overall scope and limitations of the experimental 

investigations, and the degree of overlap and knowledge gaps between the available studies. 

The value of such collected databases is in crossing the boundaries of the individual 

experimental studies that have been conducted before, which, owing to the difficulty due to 

the size and expense of specimens, never include more than a handful of tests, always much 

smaller in number than the number of independent parameters and rarely if ever presented 

in replicas of two or three. In the context of understanding the scope of the database, principal 

indices of deformability (i.e. displacement ductility) are presented in correlation with key 

design parameters (concrete strength, axial load ratio, aspect ratio, maximum shear force and 

transverse reinforcement ratio).  

 

3.2.1 Characteristics of Available Data 

Table 3.1 provides the mean values (Mean), Standard deviation (std) and Coefficient of 

variation (CoV) of key column properties for 306 rectangular-reinforced columns and 177 

spiral-reinforced columns. Statistics are provided for the column depth, aspect ratio, axial-

load ratio, longitudinal reinforcement ratio (ρl) and transverse reinforcement ratio (ρs). 
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Table 3.1: Column Property Statistics 

 Rectangular-Reinforced (306 tests) Spirally-Reinforced (177 tests) 

Column 

Property 
Mean Std CoV Mean Std CoV 

Depth (mm) 323.43 116.5 0.36 420.97 202.11 0.48 

Aspect Ratio 3.44 1.44 0.42 3.31 1.96 0.59 

Axial-Load 

Ratio 
0.27 0.19 0.73 0.14 0.14 1.04 

ρl (%) 2.45 1.00 0.41 2.62 1.02 0.39 

ρs (%) 1.34 1.07 0.80 0..93 0.74 0.80 

 

The distributions of column depth used by researchers are illustrated in Figs. 3.1 and 

3.2. Evidently, the rectangular-reinforced data is approximately normally distributed about 

a mean value of 300 mm. On the other hand, the spiral column reinforcement data does not 

follow a normal distribution. Figure 3.2 depicts a box plot (BP) for each of the two groups 

of specimens. (A box plot describes the five-number summary of a distribution that consists 

of the smallest (Minimum) observation, the first quartile (Q1), the median (Q2), the third 

quartile (Q3), and the largest (Maximum) observation written in the order of lowest to 

largest. The central box spans the quartiles. A line within the box marks the median. Lines 

extending above and below the box mark the smallest and the largest observations (i.e. the 

range). Outlying samples may be additionally plotted outside the range. 

 

Figure 3.1: Distribution of column depth.  
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Figure 3.2: Box plot of column depth. 

The database distributions regarding column specimen aspect ratio are illustrated in 

Fig. 3.3 & 3.4. The rectangular-reinforced data is approximately normally distributed about 

its mean value with a skew towards the lower aspect ratios. The spiral reinforced data is also 

weighted towards the lower aspect ratios. Figure 3.4 depicts the box plot for the two groups 

of specimens. It should be noted that the length for the determination of the aspect ratio of 

each column is the equivalent cantilever column length. 

 

Figure 3.3: Distribution of column aspect ratio. 
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Figure 3.4: Box plot of column aspect ratio. 

The distributions of the axial-load ratio values used in the tests are illustrated in Figs. 

3.5 and 3.6. The spirally-reinforced column data is approximately normally distributed about 

the mean value with a skew towards the lower axial load ratios – thus, failure data in this 

group are most likely dominated by ductile flexural failures with little evidence of other limit 

states. The rectangular section reinforced column data is also a distribution weighted towards 

the lower axial-load ratios. Figure 3.6 depicts the box plot for the two groups of specimens. 

 

Figure 3.5: Distribution of axial-load ratio. 
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Figure 3.6: Box Plot of axial-load ratio. 

Figures 3.7 and 3.8 plot the distributions of the total longitudinal-reinforcement ratio, 

ρl and the corresponding box plot.  The group of rectangular section columns form an 

approximately normal distribution about the mean with a skew towards lower reinforcement 

ratios. Again, the spirally-reinforced column data is not distributed normally, underscoring 

the limitations of the database in the cases of brittle performance. Considering the low axial 

load ratio, it is concluded that the effective tension reinforcement ratio is less than ρl.   

 

Figure 3.7: Distribution of longitudinal-reinforcement ratio. 
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Figure 3.8: Box plot of longitudinal-reinforcement ratio. 

Distributions of transverse reinforcement ratio are presented in Figs. 3.9 and 3.10. 

Both the rectangular-reinforced and spirally-reinforced columns have distributions weighted 

towards the lower transverse reinforcement ratios and cannot be assigned a specific 

distribution type. The sample is therefore populated primarily by lightly reinforced 

specimens.    

 

Figure 3.9: Distribution of transverse-reinforcement ratio. 
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Figure 3.10: Box plot of transverse-reinforcement ratio. 

3.2.2 Principal Indices of Deformability 

One important goal in the seismic structural assessment procedures is the reliable estimation 

of the available capacity of structural members for inelastic deformation, as well as their 

available ductility. Ductility drives assessment since its magnitude underlies the general 

design philosophy (i.e., through the q--T relationships it controls the magnitude of strength 

reduction from the elastic demands that may be tolerated before failure) and, in current code 

practice (EN 1998-1 2004 and AASHTO LRFD 2004, 2013, FEMA 440 2005), its 

magnitude is reflected on the specific reinforcing requirements of members and structures.  

In this section the displacement ductility value clouds—as defined from the reported 

experimental responses—are correlated against important design parameters and plotted in 

graphs to illustrate the parametric dependencies of this variable.  

For example, considering the concrete strength, the following points are made: (a) 

Higher strength materials are marked by lower ultimate strain, (b) strain can be enhanced 

through confinement, (c) a higher concrete strength results in a lower compression zone both 

at yielding and at failure. In general, it can be said that higher concrete strength causes a 

reduction in ductility. This finding is confirmed by both groups of rectangular-tied columns 

and by the spiral-reinforced columns as can be seen in Figs. 3.11, 3.12. For the spirally-

reinforced columns it is more clearly evident that the ductility is increased for specimens 

with lower concrete strengths. 

During the flexural analysis of a section both at yielding and at failure the presence 

of a compressive axial load increases the depth of the compressive zone as compared to an 
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identical section without axial force. Based on the above remark the presence of the 

compressive axial load reduces the curvature ductility of a section.  The experimental data 

confirm this tendency with brittleness being more evident in the cases where the axial load 

ratios exceeded the point of balanced failure (see Figs. 3.13 and 3.14.)  

 

Figure 3.11: Effect of concrete strength on displacement ductility for the rectangular-reinforced columns 

of the database.  

 

Figure 3.12: Effect of concrete strength on displacement ductility for the spirally - reinforced columns.  
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Figure 3.13: Effect of axial load ratio on displacement ductility for the rectangular section columns. 

 

Figure 3.14: Effect of axial load ratio on displacement ductility for the spirally-reinforced columns. 

Shear-span to depth ratio, known as aspect ratio, a=Ls/h, has a determining influence 

on the characteristics of shear behavior. In a column of small shear-span-to-depth ratio, shear 

deformation may become appreciable compared with the flexural deformation. A dominant 

shear response causes a more pronounced pinching in the force-deformation (hysteresis) 

curve, and a faster degradation of the hysteresis energy dissipation capacity. Interestingly, 

the experimental data show that the ductility ratio increases with a decreasing aspect ratio 

(Figs. 3.15, 3.16); this perplexing result is attributed to the fact that the yield displacement 

increases at a quadratic rate with shear span length Ls, whereas the ultimate displacement is 

linear with Ls – and thus the ductility estimate is inversely proportional to Ls/h or a. The 
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following expressions relate the flexural component of column response with aspect ratio, 

illustrating the source of the observations interpreting the experimental trend: 

-Yield Curvature: 𝜑𝑦 = 2.1 ⋅
𝜀𝑠𝑦

ℎ
                                                                            (3.1) 

-Yield Displacement:      𝛥𝑦 =
1

3
⋅ 𝜑𝑦 ⋅ 𝐿𝑠

2 ≈
2

3
⋅ 휀𝑠𝑦 ⋅

𝐿𝑠

ℎ
⋅ 𝐿𝑠 =

2

3
⋅ 휀𝑠𝑦 ⋅ 𝑎 ⋅ 𝐿𝑠               (3.2) 

-Ultimate Displacement:    𝛥𝑢 ≈ 𝛥𝑦 + 𝜑𝑝𝑙 ⋅ ℓ𝑝𝑙 ⋅ 𝐿𝑠 = 𝛥𝑦 +
𝜀𝑝𝑙
2ℎ

3

⋅ ℓ𝑝𝑙 ⋅ 𝐿𝑠 = 

= 𝛥𝑦 + 1.5휀𝑝𝑙 ⋅ ℓ𝑝𝑙 ⋅ a                                  (3.3) 

 -Displacement Ductility:                           𝜇𝛥 ≈ 1 + 2.3(𝜇𝜀 − 1) ⋅
ℓ𝑝𝑙

𝐿𝑠
                        (3.4) 

where ℓpl is the plastic hinge length (approximated as 0.5h in practical calculations), εpl the 

nonlinear (past yielding) part of the tension reinforcement total strain, and ε the required 

bar strain ductility.  

 

Figure 3.15: Effect of aspect ratio on displacement ductility for the rectangular - section columns. 
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Figure 3.16: Effect of aspect ratio on displacement ductility for the spirally - reinforced columns. 

Figures 3.17 and 3.18 depict the relationship between the maximum shear stress 

(maximum experimental shear force divided by the gross area of the column) normalized by 

the square root of concrete strength of each column and the associated displacement ductility. 

Columns with a higher ductility also supported a higher shear force, as both parameters are 

correlated to the same variable, i.e., the quality and quantity of detailing.  The observation is 

also consistent with the trends of Figs. 3.15, 3.16, which illustrate that displacement ductility 

is inversely proportional to aspect ratio, which in turn, for a given member flexural 

resistance, is inversely proportional to shear demand (since VEd=MEd/(h·a)). 

The database trends are also examined with reference to lateral confinement – which 

is generally acknowledged to enhance the deformation capacity of the column. The 

arrangement of confining reinforcement is important in this regard; a column with closely 

spaced stirrups and well-distributed longitudinal reinforcement shows very little strength 

decay even when being subjected to very high axial forces with magnitudes exceeding the 

limit of balanced failure. The plotted trends confirm this general expectation: the 

displacement ductility increases with the transverse reinforcement ratio as shown in Figs. 

3.19 and 3.20. 
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Figure 3.17: Maximum shear stress vs. displacement ductility for the rectangular - section columns. 

 

 

Figure 3.18:  Maximum shear stress vs. displacement ductility for the spirally reinforced columns. 
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Figure 3.19:  Effect of transverse reinforcement ratio on displacement ductility for the rectangular- 

section columns. 

 

 

Figure 3.20:  Effect of transverse reinforcement ratio on displacement ductility for the spirally - 

reinforced columns. 

3.3 Analytical (F.E.) Simulation of RC Columns failed in Flexure 

In the experimental database report of Berry and Eberhard (2004), the nominal column 

failure mode was classified as (a) flexure-critical, (b) flexure-shear-critical, or (c) shear-

critical, according to the following criteria:  
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-If no shear damage was reported by the experimentalist the column was classified as 

flexure-critical.  

-If shear damage (diagonal cracks) was reported, the absolute maximum effective force 

(𝐹𝑒𝑓𝑓: absolute maximum measured force in the experimental column response) was 

compared with the calculated “ideal” force corresponding to a maximum axial compressive 

strain in the concrete cover set equal to 0.004, which corresponds to spalling of unconfined 

concrete (𝐹0.004). The failure displacement ductility at an effective force equal to 80% of 

maximum,  𝜇𝑓𝑎𝑖𝑙 , was determined from the experimental envelope. If the maximum 

effective force 𝐹𝑒𝑓𝑓 < 0.95 ∙ 𝐹0.004 or if the failure displacement ductility was less than or 

equal to 2 ( 𝜇𝑓𝑎𝑖𝑙 ≤ 2), the column was classified as shear-critical. Otherwise, the column 

was classified as flexure-shear-critical. In the present section, only columns failed in flexure 

(i.e. classified as flexure-critical) will be examined through simulation. These are divided 

into two sub-groups according to cross-sectional shape (rectangular and circular section 

columns.) 

3.3.1 A Force-Based Fiber Element incorporating Euler-Bernoulli Beam Theory 

In order to conduct the analysis of those specimens in the experimental database that 

demonstrated a flexurally dominant response a computer code was developed and 

implemented in the MatLab toolbox FEDEAS lab ‘Finite Elements for Design Evaluation 

and Analysis of Structures’ (Filippou and Constantinides, 2004). The computational model 

uses the Euler-Bernoulli beam theory (Timoshenko,1953), which considers flexural 

deformations only. In Chapter 6 of this thesis the computational model is expanded further 

and implemented in a standalone Windows program written in C++ programming language, 

implementing the “Exact” beam theory that considers both flexural and shear deformations.  

To account for material nonlinearity that occurs in the plastic hinge regions the formulation 

calculates the flexibility matrix of the member by using a fiber-type analysis and employing 

uniaxial hysteretic nonlinear material stress-strain relations for confined and unconfined 

concrete and reinforcement (Scott et al. 1982, Mander et al. 1988, Menegotto and Pinto, 

1973).  The stress-strain relations are endowed with mathematical expressions for the 

envelope, for the hysteresis loops and for the transition from the envelope to the 

unloading/reloading branches (Karsan and Jirsa (1969). Work-equivalent flexibility terms 

are obtained by conducting numerical integration at pertinent sampling points along the 

length (Gauss-Lobatto integration, Gil et al, 2007); the member deformational stiffness is 
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obtained by inversion of the flexibility matrix; the mathematical formulation is summarized 

in the following section.   

3.3.2 Euler-Bernoulli Beam Theory 

 

Figure 3.21: Deformation of Euler-Bernoulli beam. 

The fundamental assumption of the Euler Bernoulli beam theory is that plane sections remain 

plane and normal to the longitudinal axis of the beam (Fig. 3.21). The cross section (ab) is 

normal to the longitudinal axis of the undeformed beam. In the deformed configuration the 

deformed cross section (a’b’) is plane and normal to the longitudinal axis of the deformed 

beam axis. This implies that the displacements at a point in a longitudinal fiber of the beam 

located a distance y from the longitudinal axis are: 

𝑢 = 𝑢0 − 𝑦 ∙
𝑑𝑣𝑜

𝑑𝑥
                                                      (3.5) 

𝑣 = 𝑣𝑜                                                          (3.6) 

The corresponding sectional deformations are (longitudinal and shear distortion): 

휀 =
𝑑𝑢

𝑑𝑥
=
𝑑𝑢𝑜

𝑑𝑥
− 𝑦

𝑑2𝑣𝑜

𝑑𝑥2
= 휀𝑜 − 𝑦 ∙ 𝜑                                   (3.7) 

𝛾 =
𝑑𝑢

𝑑𝑦
+
𝑑𝑣

𝑑𝑥
= −

𝑑𝑣𝑜

𝑑𝑥
+
𝑑𝑣𝑜

𝑑𝑥
= 0                                 (3.8) 

Where, the reference axial strain (at y=0) and the corresponding sectional curvature are given 

by: 

휀𝑜 =
𝑑𝑢𝑜

𝑑𝑥
 𝑎𝑛𝑑 𝜑 =  

𝑑2𝑣𝑜

𝑑𝑥2
                                        (3.9) 
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Figure 3.22: Beam segment of infinitesimal length, dx. 

Based on Figure 3.22 the differential equation that governs the Euler- Bernoulli beam 

involves 4th order derivatives of the elastic vertical displacement of the deformed member: 

Differential equation:                  
𝑑2

𝑑𝑥2
(𝐸𝐼(𝑥)

𝑑2𝑣𝑜

𝑑𝑥2
) = 𝑤𝑦(𝑥)                                     (3.10) 

Where, wy(x) is the load function acting on the beam in the y direction (normal to the 

longitudinal beam axis) and vo the transverse deflection (see Fig. 3.23).  

 

Figure 3.23: Bernoulli- Euler beam with flexural deformations only.  Boundary conditions for a linear 

elastic cantilever with point load at the tip.  

3.3.3 Fiber Sectional Model  

The strains at a fiber/layer point of the beam cross section (2-D case) are related to the section 

deformations as follows (Spacone et al, 1996)): 

휀𝑥(𝑥) =  휀0 − 𝑦𝜀 ∙ 𝜑(𝑥)                                           (3.11) ΚO
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where ε0 is the axial deformation at the center of the coordinate system of the section (center 

of mass) and yε is also defined with respect to the same point of reference. Parameter φ(x) is 

the curvature of the cross-section. Therefore, the strains at a material point m of the section 

can be expressed in matrix form as follows: 

휀(𝑥, 𝑦𝜀) = {휀𝑥} = [1 −𝑦𝜀] ∙ {
휀0
𝜑} = 𝐵𝑠(𝑦𝜀) ∙ 𝑒(𝑥)              (3.12) 

𝐵𝑠(𝑦𝜀) = [1 −𝑦𝜀]                                  (3.13) 

The internal forces at a section level are given by: 

𝑁 = ∫𝜎𝑥𝑑𝐴 = 𝐴𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒                            (3.14) 

𝑀 = −∫𝑦𝜀𝜎𝑥𝑑𝐴 = 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡                    (3.15) 

The section work-equivalent forces can be written in a matrix format as follows: 

𝑓𝑠(𝑥) = ∫𝐵𝑠
𝑇(𝑦𝜀) ∙ 𝜎(𝑥, 𝑦𝜀)𝑑𝐴                      (3.16) 

where:  

𝑓𝑠(𝑥) = {
𝑁
𝑀
}, 𝐵𝑠(𝑦𝜀) = [1 −𝑦𝜀],   𝜎(𝑥, 𝑦𝜀) = {𝜎𝑥}       (3.17) 

Taking into account the section discretization into fibers/layers, the total forces on 

the beam section are obtained by summation of the contributions of each i-th fiber/layer: 

𝑁 = ∑ 𝜎𝑥
𝑖𝐴𝑖

𝑛.𝑙𝑎𝑦𝑒𝑟
𝑖=1   , 𝑀 = −∑ 𝜎𝑥

𝑖𝑦𝜀
𝑖𝐴𝑖

𝑛.𝑙𝑎𝑦𝑒𝑟
𝑖=1                          (3.18) 

where Ai is the area of the i-th fiber/layer. 

Therefore, section forces are determined from the known sectional deformations. If 

section forces are known, then the associated sectional deformations need be evaluated 

through iterative calculations till convergence (this means that iteration is done on the value 

of the deformation while the force is kept at the given value within a tolerance).  The tangent 

section stiffness matrix ks is defined as the derivative of the section force vector fs with 

respect to the section deformation vector e, where the explicit reference to x is dropped for 

brevity of notation: 

𝑘𝑠 = [

𝜕𝑓𝑠1

𝜕𝑒1

𝜕𝑓𝑠1

𝜕𝑒2
𝜕𝑓𝑠2

𝜕𝑒1

𝜕𝑓𝑠2

𝜕𝑒2

]                                              (3.19) 

𝑘𝑠 =
𝜕𝑓𝑠

𝜕𝑒
= ∫𝐵𝑠

𝑇(𝑦𝜀) ∙
𝑑𝜎(𝑥,𝑦)

𝜕𝜀(𝑥,𝑦)
∙
𝜕𝜀(𝑥,𝑦)

𝜕𝑒
𝑑𝐴 = ∫𝐵𝑠

𝑇(𝑦𝜀) ∙
𝑑𝜎(𝑥,𝑦)

𝑑𝜀(𝑥,𝑦)
𝐵𝑠(𝑦𝜀)𝑑𝐴        (3.20) 
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𝜎(𝑥, 𝑦𝜀) = {𝜎𝑥}        휀(𝑥, 𝑦𝜀) = {휀𝑥}                                (3.21) 

𝑑𝜎(𝑥,𝑦)

𝑑𝜀(𝑥,𝑦)
= [𝐸𝑚]                                               (3.22) 

where Em is the tangent modulus of the stress – strain relations at a point m of the section.  

By establishing (through equilibrium) interpolation functions for the member forces along 

the element and the fiber section scheme provided above, the element state determination, 

leading to calculation of element nodal forces and displacements along with its tangent 

stiffness at each analysis step, is defined. Since in structural engineering applications the 

maximum response values usually arise at the ends of the integration interval, for example 

bending moments and corresponding curvatures in a structural member, the Gauss-Lobatto 

quadrature integration scheme is usually applied for the element state determination (Fig. 

3.24).  

 

Figure 3.24: Force-based fiber element incorporating Euler-Bernoulli Beam theory. 

3.3.4 Force-based vs. Displacement-based Fiber Beam Element  

Figure 3.25a, b illustrates one of the main differences between the displacement-based and 

the force-based formulation by comparing schematically the response of cantilever models 

D1 and F1 (one displacement-based element vs. one force-based element). The bending 

moment and curvature profiles are shown for the cantilever after the plastic hinge has 

formed. The plastic curvature is labeled φp. Figure 3.25a shows the response of a single two-

node displacement-based element. The formulation enforces linear curvature (Hermite shape 

functions). This linear curvature profile prevents the element from reproducing a nonlinear 

jump from elastic to plastic curvature. Because equilibrium is satisfied in a weak sense and 

not pointwise, the moment diagram, shown with a dashed line deviates from the expected 

Gauss-

Lobatto 

Integration 

Scheme 
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linear profile. On the other hand, Figure 3.25b shows the response of the force-based frame 

element. For concentrated load at the cantilever tip, the linear shape function for the bending 

moment distribution strictly satisfies equilibrium. Thus, the formulation enforces a linear 

bending moment diagram leaving the element free to deform without constraint. After the 

plastic moment capacity is reached, the base integration point experiences plastic curvature 

with the remaining integration points remaining elastic.  

 

Figure 3.25: a) Single Displacement-Based Fiber Element b) Single Force-based Fiber Element 

incorporating Euler-Bernoulli Beam theory. 

3.3.5 Circular-Reinforced Columns Failed in Flexure 

Columns with a circular cross section that, upon lateral displacement reversals exhibited 

flexural failure are listed in Table A.1 in the Appendix of this Chapter. The hysteretic 

responses of several specimens from this group are analyzed in the present section using 

finite element cyclic static analysis.  

The objective in conducting this analysis is to evaluate the available theories 

regarding their success and limitations in reproducing the experimental responses of those 

column specimens that did not experience failures beyond the scope of the models (as would 

be for example the case of shear failure). Numerical simulations were conducted using a 

nonlinear fiber beam-column element that considers the spread of plasticity. In this type of 

analysis the longitudinal beam element uses a force-type formulation with linear moment 

distribution to derive a flexibility matrix for the element with progressing nonlinearity (step 

by step); the strain-displacement relationships are therefore defined implicitly after inversion 

of the flexibility matrix to obtain the stiffness. Assuming strain compatibility between 

materials comprising the member, the formulation samples sectional response at selected 

integration points along the length. At the sectional level the Bernoulli hypothesis (plane 

D1 
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sections remaining plane and normal to the axis of the member) is used to relate strains in 

the different fibers to the sectional curvature and longitudinal axis normal strain. Nonlinear 

uniaxial material laws are used to relate normal stress with normal strain in the fibers, thereby 

neglecting the effect of shear in modifying the principal orientations through the height of 

the cross section. Typical discretization of a column section is shown in Fig. 3.21. Sectional 

stress resultants (Moment and Axial load) are obtained from the equilibrium of the 

contributions of fiber stress resultants [FEDEAS Lab (2004)]. 

 

Figure 3.26: a) Numerical model for Spiral-Reinforced Columns failed in flexure b) Section 

discretization in fibers/layers.   

For example, for the column with ID#43 in Table A.1 (axial load ratio ν=0.19), as it 

is depicted also in Fig. 3.26, a single beam-column element is assigned to the entire length 

of the cantilever column and five Gauss-Lobatto integration points [FEDEAS Lab (2004)] 

were defined along the element. Uniaxial material stress-strain laws for the concrete and 

steel fibers are depicted in Fig. 3.27(a) (Scott et al. 1982) for concrete and in Fig. 3.27(b) for 

steel (Menegotto and Pinto, 1973). The effect of confinement on the confined concrete core 

was modelled using pertinently modified properties for the uniaxial stress-strain law of 

concrete in compression (Scott et al.,1982, Mander et al., 1988). No P-Δ effect was 

considered in this simulation. The calculated lateral Force – lateral Displacement response 

of the numerical simulation of the column is plotted for comparison with the experimental 

results in Fig. 3.28. The good correlation up to a drift of 3.75% underscores the fact that 
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flexural behavior is controlled by steel inelasticity which is stable and may be reproduced 

without the consideration of other secondary effects or the interaction of flexural with shear 

response. However, correlation deteriorates significantly beyond that point, on account of 

the fact that second order effects have been neglected and there is no accounting for the 

ensuing degradation and progressive collapse. 

 

Figure 3.27: (a) Scott et al. (1982) constitutive law assigned to the concrete fibers. (b) Menegotto and 

Pinto constitutive law assigned to the longitudinal steel fibers. 

Another example (column ID#45) from Table A.1 in the Appendix of this Chapter is 

shown here: the approach used for simulation is identical to that of the previous example, 

the only difference being in the use of a more complex stress-strain model for the confined 

core (Mander et al. 1988; here the strain capacity of the confined core is related to the strain 

energy that may be absorbed by the stirrups before fracture), as depicted in Fig. 3.29. Figure 

3.30 compares the calculated and experimental lateral force vs. lateral displacement 

hysteresis – again the correlation is satisfactory up to a drift of 2.5%, however, the model 

cannot reproduce the loss of lateral load bearing capacity near the end of the test; note that 

this column was identical to the previous one but carried twice the amount of axial load. 

Therefore, second order effects would cause an apparent loss of 22.6 kN for an increment of 

lateral displacement from 20mm to 30mm (and 67.8 kN total reduction of the yield lateral 
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force due to P-Δ effect at the displacement level considered); the additional loss which 

occurs in repeated cycles at the same displacement excursion is owing to material 

degradation.  

 

Figure 3.28: Comparison between numerical and experimental response of circular column (ID#43) 

(specimen case obtained from the Berry and Eberhard Database 2004 and was analyzed herein).   

 

Figure 3.29: Mander et al. (1988) stress-strain model assigned to the confined concrete fibers. 
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Figure 3.30: Comparison between numerical and experimental response of circular column (ID#45) 

obtained from the Berry and Eberhard Database (2004). 

Several other examples are presented in Figures A.1 – A.26 in the Appendix to the 

present Chapter. Correlation in flexure dominant cases follows the general pattern discussed 

in the preceding case studies. It is noteworthy that some cases demonstrated significant 

pinching, which was not reproduced by the purely flexural nonlinear model; such examples 

are specimens with ID#47, ID#53, ID#55, ID#56, ID#57, ID#58, ID#59, ID#60, ID#116, 

ID#120, ID#141, ID#142 and ID#157. In the case of these specimens, which had a low 

volumetric ratio of transverse reinforcement (0.6%) and early yielding with strain 

penetration along the anchorage, the observed pinching was owing to reinforcement pull-out 

and shear deformation in the plastic hinge region, both phenomena neglected in the 

numerical model used here.  The aspect of yield penetration and lumped rotation occurring 

at the support of the column is addressed in Chapter 5 of the thesis.   

3.3.6 Rectangular-Reinforced Columns Failed in Flexure 

The group of rectangular-reinforced specimens is summarized in Table A.2 in the Appendix 

of this Chapter; again, only specimens that reportedly failed in flexure are considered in this 

section, to test the performance of formulations that only consider normal stress response at 
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The force-based nonlinear fiber beam-column element which considers the spread of 

plasticity available in FEDEAS Lab (2004) was used in this Section’s numerical simulations. 

As previously, a single frame element is considered using flexibility formulation with 

assumed linear variations of moments along the length; sampling of sectional response is 

done at five Gauss-Lobatto integration points along the member length. The typical 

discretization of rectangular column sections is shown in Fig. 3.31. 

 

Figure 3.31: a) Numerical model for Rectangular RC Columns failed in flexure b) Section discretization 

in fibers/layers.  

For the first column (No. 1 in the Database) of Table A.2 (with a square cross section 

and an axial load ratio of 0.26), as shown in Fig. 3.32, a unique fiber element is assigned to 

the entire height of the cantilever column and five Gauss-Lobatto integration points were 

defined along the element. Uniaxial concrete stress strain response was modeled using the 

relationship by Mander et al. (1988, Fig. 3.29). The different confinement effect of the 

unconfined concrete cover and the confined concrete core was not considered in the 

discretization of the section (Fig. 3.31). The stress-strain response of longitudinal 

reinforcement was modeled by the model of Menegotto and Pinto (1973, Fig. 3.22b). Again, 

the P-Delta effect was not accounted for in the simulation. The comparison of the lateral 

Force – lateral Displacement response of the numerical simulation of the column with the 

experimental results can be seen in Fig. 3.27. As was seen in the case of circular section 

columns, while the axial load ratio is kept low, a good agreement between numerical and 
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experimental results is found up to drift levels of 2.5% (where the strength loss owing to P-

Δ is only 45kN i.e., about 7% of the column strength).  

 

Figure 3.32: Comparison between numerical and experimental response of rectangular column (ID#1) 

of Berry and Eberhard Database (2004). 

 

Figure 3.33: Comparison between numerical and experimental response of rectangular column (ID#2) 

of Berry and Eberhard Database (2004). 

The performance of the same numerical model applied to the second column example 

listed in Table A.2 – (again having an axial load ratio of ν=0.22) is compared to the 

experimental force - displacement response curve in Fig. 3.33. Response is adequately well 

modeled, reproducing faithfully the loss of cover (spalling) at a drift of 1.2%; therefore, it 
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may be concluded that the efficacy of distributed plasticity beam column models based on 

the force formulation successfully estimates the flexural behavior also in the case of 

reinforced concrete columns with rectangular sections.  

Several other examples are presented in Figures A-27 – A.76 in the Appendix to the 

present Chapter. Correlation in flexure dominant cases follows the general pattern discussed 

in the previous two examples. Correlation deteriorates beyond drift levels in the range of 3% 

or more, when the column carries a significant axial load ratio. It is noteworthy that some 

cases demonstrated significant pinching, which was not reproduced by the purely flexural 

nonlinear model; such examples are specimens with ID#32, ID#105 and ID#106. Again, as 

was seen in some circular section columns of the preceding section, specimens with a low 

transverse reinforcement ratio and strain penetration along the anchorage developed 

pinching in the experimental response due to reinforcement pullout and shear deformation 

in the plastic hinge region. This aspect is addressed separately in Chapter 5. Finally, in one 

case (ID#91) the experimental response was not symmetrical in the two directions of loading 

due to buckling of compressive reinforcement. 

3.4 Analytical (F.E.) Simulation of RC Columns Failed in Shear 

Performance of the shear critical columns (flexure-shear or shear failure) of the experimental 

database in terms of strength and deformation capacity is also examined so as to test again 

the performance of the analytical procedure described in the preceding sections. Again, the 

columns are divided into two groups according to cross sectional shape.  

3.4.1 RC Columns with Rectangular Cross-Section Failed in Shear 

Columns with a rectangular cross section that developed shear failure are summarized in 

Table A.3 of the Appendix of this Chapter. Figure 3.34 plots the shear strength degradation 

models adopted by EN 1998-3 (2005) and ASCE-SEI 41 (2007) (also see Chapter 2) in order 

to describe the envelope of the resistance curves of reinforced concrete columns as a function 

of displacement ductility; this is used as the basic criterion in order to detect shear failure 

before or after flexural yielding (point of intersection with flexural capacity curve). 

Therefore, it is necessary to define the flexural capacity curve based on classic flexural 

analysis and to also combine it with the reduction of the shear strength curve postulated by 

the codes, in order for the strength and deformation of the reinforced concrete column at 

shear failure to be defined. This procedure is followed in the present Section in order to 
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analyze the shear critical columns of the experimental database under study and to examine 

how successful the code provisions are in predicting the strength and deformation of columns 

failing in shear before or after flexural yielding. In addition, the models by Elwood (2003) 

introduced also in Chapter 2 that define the drift capacity of shear-critical columns at shear 

failure and at loss of axial load carrying capacity are included in the calibration study. The 

force-based nonlinear fiber beam-column element which considers the spread of plasticity 

available in the FEDEAS Lab (2004), was used also in this section’s numerical simulations 

for the definition of flexural capacity curve. The modelling procedure was the same as that 

used in earlier paragraphs for columns with rectangular cross sections.  

Figure 3.35 compares the analytical and experimental response of the rectangular 

column –ID#28 (Table A.3). Clearly, correlation is poor even with regards to the initial 

stiffness defined by flexural analysis. This is owing to the fact that the contributions to 

deformation resulting from reinforcement pullout and shear deformation have been 

neglected. It can be observed that only the degrading shear strength model of ASCE-SEI 41 

(2007) intersects the flexural capacity curve and therefore (correctly) identifies the triggering 

of shear strength failure after flexural yielding as a result of shear strength degradation. 

However, the displacement when this event takes place occurs earlier than the actual onset 

of strength degradation as observed in the experimental response. The proposal of Elwood 

(in parentheses next to the drift ratios the corresponding displacements are given for the 

column under study based on its shear span) overestimates the actual drifts associated with 

shear and axial failures as observed in the experimental results.  

In the next column example (Fig. 3.36) the code provisions fail to detect shear failure 

despite the fact that, based on the experimental report, shear failure was observed.  Again, 

the drift models by Elwood (2003) overestimate the displacements at which shear and axial 

failure occurred. The force-based fiber element used for the flexural analysis reproduces the 

peak strength well but it fails to converge after that point, and cannot detect the strength 

degradation owing to shear failure. As mentioned before, the initial stiffness of the numerical 

model is overestimated as compared with the experiment. Several other examples are 

presented in Figures A.77 – A.100 in the Appendix to the present Chapter. Correlation in 

shear dominant cases follows the general pattern discussed in the previous two examples. 
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Figure 3.34: Shear strength degradation model adopted by current codes of assessment. 

 

Figure 3.35: Comparison between numerical and experimental response of rectangular column (ID#28) 

of Berry and Eberhard Database (2004). 
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Figure 3.36: Comparison between numerical and experimental response of rectangular column (ID#29) 

of Berry and Eberhard Database (2004). 

3.4.2 RC Columns with Circular Cross-Section Failed in Shear 

Spiral-reinforced specimens with a circular cross section that failed in shear are presented in 

Table A.4 of the Appendix of this Chapter. Monotonic analysis is conducted following the 

same procedure as described in the circular section Column (second case) of the previous 

Section.  

As previously stated (Fig. 3.34), the shear strength degradation models such as those 

adopted by EN 1998-3 (2005) and ASCE-SEI 41 (2007) (Chapter 2), are used to determine 

the deformation limit at shear failure from intersection with the flexural force – displacement 

envelope. The flexural capacity curve is based on classic flexural analysis. After the 

application of this procedure to specimen #14 in the experimental database, the following 

response envelope is determined (plotted in Fig. 3.37 against the experimental result).  

Both the shear strength degradation models shown in Fig. 3.37 detected shear failure 

after yielding at a displacement much lower than the corresponding experimental one. The 

strength at shear failure was better assessed by the model of EN 1998-3 (2005) compared to 

the alternative of ASCE-SEI 41 (2007). The drift model at shear failure by Elwood (2003) 

performed very well as compared to the experimental shear failure limit; however, drift at 

axial failure was overestimated (83mm as compared to 30mm). The same comments are 

valid for the column in Fig. 3.38. 
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In the comparison showcased by Fig. 3.39, only the shear capacity curve by ASCE-

SEI 41 intersects the flexural force-displacement envelope, thereby detecting shear failure 

after flexural yielding. The strength at shear failure was well predicted by the latter model 

but the corresponding displacement was much lower than in the experimental response. The 

drift model at shear failure by Elwood (2003) performed well compared to the experimental 

response but overestimated the drift at the loss of axial strength.  

 

Figure 3.37: Comparison between numerical and experimental response of circular column (ID#14) of 

Berry and Eberhard Database (2004). 

Several other examples are presented in Figures A.101 – A.118 in the Appendix to 

the present Chapter. Correlation in shear dominant cases follows the general pattern 

discussed in the previous three examples. 

 

Figure 3.38: Comparison between numerical and experimental response of circular column (ID#16) of 

Berry and Eberhard Database (2004). 
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Figure 3.39: Comparison between numerical and experimental response of circular column (ID#15) of 

Berry and Eberhard Database (2004). 
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Owing to the overturning moment, columns in multiple-column bents experience variable 

axial forces corresponding to the direction of, and typically being proportional to the 

horizontal forces. Columns are also subjected to the vertical components of ground motion, 

which is not correlated concurrently with the horizontal loading. Past earthquake records 

have shown that in some cases, vertical ground motions cannot be ignored, particularly for 

near-fault situations. For example, the lateral displacement ductility in a column, designed 
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unsatisfactory when the actual axial load due to the overturning effects or the vertical ground 

motion exceeds the value that corresponds to balanced failure. The problem becomes even 

more significant when shear design is considered. The increase of axial load from the design 

level (typical values of axial load ratio can be as low as 0.1 particularly in bridge piers) to 

the level of the balanced axial load results in the increase of column flexural capacity, thus 

increasing shear demand. On the other hand, changes of axial load from compression to 

tension can result in a significant decrease in column shear strength. 

In Table A.5 of the Appendix of this Chapter, an experimental database of reinforced 
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assessed using monotonic static analysis. Analytical procedures are identical to those used 

in the previous section. For the sake of comparison with the numerical models and code 

specifications of the previous section, only pairs of specimens of the above experimental 

database tested under constant compressive or tensile axial load will be considered in the 

following correlation with the experimental results. In this way, the effect of the load on a 

column’s shear strength will be demonstrated along with the effectiveness of code standards 

to assess this influence.  

The first columns under study are the specimens ICC and ICT by Elnashai et al. 

(2011). Two columns with identical properties reported in Table A.5 are tested under cyclic 

lateral loading and constant compressive axial load (ICC) or constant tensile axial load 

(ICT). In the comparison of Fig. 3.40 with the experimental response it is observed that the 

shear strength degradation model of ASCE-SEI 41 (2007) detects shear failure after yielding 

of the studied column while in the EN 1998-3 (2005) shear capacity curve it does not. The 

estimated point of the detected shear failure corresponds well to the specimen strength, but 

in terms of displacement the shear failure is identified to occur much earlier as compared to 

the experimental response. The drift models by Elwood (2003) defined well the displacement 

at shear failure, but again, the axial failure drift was overestimated.  

 

Figure 3.40: Comparison between numerical and experimental response of circular column (ICC) by 

Elnashai (2011).  
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Figure 3.41: Comparison between numerical and experimental response of circular column (ICT) by 

Elnashai (2011). 

For the case of the same specimen under constant tensile load (Fig. 3.41) it is noted 

that the degradation model of EN 1998-3 (2005) for shear strength reproduced the 

experimental response satisfactorily since it did not detect shear failure for the specimen 

which, during the tests reportedly failed in flexure. Finally, since no shear failure occurred, 

the drift models by Elwood (2003) were not relevant in the tensile-axial load case either.  

The next column examples for investigation of the effect of variable axial load on 

shear strength are specimens CS1 and CS2 by Priestley et al. (1996) which were tested under 

cyclic lateral loading and constant compressive and tensile axial load respectively. From the 

comparison in Fig. 3.42 it can be observed that only the shear strength degradation model 

by ASCE-SEI 41 detects shear failure for the column under study, but at a somewhat lower 

strength and displacement capacity as compared to the experimental response. In addition, 

the drift model of Elwood at shear failure overestimates the corresponding displacement, 

while the drift model at axial failure underestimates the displacement where the loss of axial 

bearing capacity is observed.  

Finally, the comparison of the same specimen by Priestley et al. (1996) under tensile 

axial load is depicted in Fig. 3.43. The degraded shear capacity models of the design codes 

(both) detect the shear failure of the column, but at lower strength and displacement 

compared to the experimental results. The drift model at shear failure by Elwood (2003) 

estimates the displacement at the onset of shear failure with good accuracy, however, the 

drift model at axial failure overestimates the experimental column response.  
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Figure 3.42: Comparison between numerical and experimental response of circular column (CS1) by 

Priestley (1996). 

 

Figure 3.43: Comparison between numerical and experimental response of circular column (CS2) by 

Priestley (1996). 
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stiffness; the shape of the hysteresis loops; the detrimental effects of axial load at large 

displacement limits; and the magnitude of deformation (drift ratio) associated with milestone 

events in the response curve of the column member, are open issues that need to be settled 

before the performance-based assessment framework may be considered complete and 

dependable. Some of these issues (improved response estimation of the behavior of columns 

that are susceptible to shear failure after flexural yielding; better procedures to estimate shear 

strength and the pattern of degradation thereof, with increasing displacement ductility; the 

need to account for reinforcement pullout and its effects on stiffness; the detrimental effects 

of axial load at large displacement limits; and the magnitude of deformation (drift ratio) 

associated with milestone events in the response curve of the column member)  are addressed 

in the following Chapters of the present thesis.    
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4 Mechanical Behavior of Lightly Reinforced Concrete 

Columns  

4.1 Introduction 

This chapter deals with reinforced concrete columns that do not conform to modern 

standards for earthquake resistant detailing. Existing concrete structures constructed before 

the development of modern seismic design provisions represent one of the largest seismic 

safety concerns worldwide. Such structures are vulnerable to significant damage and even 

collapse when subjected to strong ground shaking. Collapse of concrete structures has 

resulted in many of the fatalities in past earthquakes, leading to several efforts in recent years 

to improve assessment and retrofit procedures for existing structures. In these structures, 

columns are important structural elements that support the weight of a structure and resist 

earthquake story shear. Such columns often comprise materials of substandard quality. In 

the present thesis, columns that do not meet modern requirements for reinforcement detailing 

are referred to as “old-type” or non-conforming members (NC).  

a)

 

b)

 

c)

 

Figure 4.1: Brittle failure of old-type building columns. a) Thin and widely spaced plain bars as lateral 

reinforcement b) Spacing of the large diameter lateral reinforcement almost as wide as the width of the 

column c) Shear failure by opening of ties at a 90o bend.  

Depending on the global characteristics of the structural system and the imposed 

local deformation demand, poorly detailed elements may become the critical components 

during seismic excitation, as they generally possess inadequate resistance to reversed cyclic 

loading (Fig. 4.2).  Experience from past earthquakes has repeatedly shown that when 

subjected to cyclic inelastic deformation reversals, old-type columns undergo fast 
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deterioration and degradation of strength, failing in a brittle fashion with fatal consequences 

for the integrity of the structure as a whole (Fig. 4.2) (fib bulletin 24 2003).  

 

Figure 4.2: Effect of lateral reinforcement on shear strength (Tsukamoto, Kuramoto and Minami et al. 

1989)   

 A special category of columns are those in bridge piers, whether these are arranged 

in single-column or multiple-column bents.  Bridges differ in terms of dynamic response 

from buildings in that sectional sizes are much larger, normalized axial loads lower, and 

comprise various types of superstructures, substructures, and foundations with complex 

geometries and dynamic response characteristics; the modern concept is for strong-girder / 

weak-column capacity design which is the exact reverse from that prevailing in buildings. 

Furthermore, the degree of static indeterminacy is generally much lower in bridges than in 

buildings. Hence failure of a column can lead to collapse of the total bridge system.  

The destructive damage in the 1995 Kobe Earthquake revealed the fact that there are 

a number of highway bridges that are vulnerable to strong ground motion. Major reasons of 
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the damage in that event were the tendency for shear failure of RC columns that were 

designed and constructed in accordance with the pre-1980 Design Specifications. The 

premature shear failure occurred near the end of lap-splices above the base.  The practice of 

termination of longitudinal bars with insufficient development length resulted in the major 

damage at various sites.  Apparently, the allowable shear stress design practice had 

overestimated the concrete capacity to shear, and the design development length of 

longitudinal bars at the cut-off point was insufficient in the pre-1980 Design Specifications 

(Fig 4.3).  But the more critical occurrence, seen time and again in reconnaissance reports 

was the poor detailing of transverse reinforcement, marked by excessively small tie bar 

diameters, lack of tie support at the corners against dislocation and bending, and sparse 

arrangement without intermediate tie legs (i.e. use of conventional perimeter ties only) which 

could not provide any countable confinement of the encased concrete for the size of cross 

sections encountered in bridges, nor could they prevent lateral buckling of compression 

reinforcement. 

a) 

 

b) 

 

Figure 4.3: a) Collapse of Fukae Viaduct 1995 Kobe Earthquake b) Premature shear failure of reinforced 

Concrete bridge pier, Fukae Viaduct.   

4.2 Typical characteristics of older type construction 

Structural deficiencies encountered in older type reinforced concrete construction may be 

classified in three major groups owing to systematic oversights/flaws in design, detailing, 

structural system form, and construction.  For example, design deficiencies include: 

• Inadequate provisioning of lateral-load resisting members (e.g., lack of shear walls 

or special moment-resisting frames); ΚO
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• Lack of redundancy (alternative load paths) in the structural system (i.e. system 

structural collapse is triggered in the event of damage occurring in few members); 

• Irregularities in plan or elevation (e.g. L or T-shaped plan, or vertical setbacks); 

• Presence of short columns, which usually fail in specific patterns that involve shear-

type dislocation which is catastrophic; 

• Strong- beam weak-column joints, that is, cases where the beams are stronger than 

the columns they connect to (in buildings).  

Key detailing deficiencies include: 

• Inadequate transverse reinforcing bars (Fig. 4.1). 

• Short overlap lengths at spliced joints (Fig. 4.3). 

• Large amounts of longitudinal reinforcement (over-reinforced sections)  

Adverse conditions such as those listed above may be further aggravated by construction 

deficiencies, such as low-quality workmanship, use of inferior materials and deviations from 

structural drawings and specifications during the construction phase. Additional 

deterioration is owing also to ageing, the accumulated effects of corrosion or other damage 

caused by the long-term exposure of the structure to natural phenomena (e.g. scouring at 

bridge piers).  

4.2.1 Material characteristics 

The correspondence between older and newer codes regarding the concrete strength values 

is depicted in Table 4.1 where the characteristic compressive strengths 𝑓𝑐𝑘 are reported with 

their nowadays definition (cylindrical specimen, characteristic strength with a 95% 

probability of exceedance by a random sample) adjusted to correspond to other specimen 

shapes and practices such as those used in preceding codes (mean strength value obtained 

from 200mm cubic specimens was the standard practice until 1991 in Greece).  It is shown 

in the table that the testing time of 28 days from casting has not changed ever since it was 

first introduced in the German codes in 1907; however the test was conducted on cubic 

specimens until 1991, when the American standard of the cylindrical specimen was adopted 

throughout Europe, according to the prevailing tendency for harmonization of international 

practices (particularly through the Eurocodes).  Under the same objective falls also the 

change in nomenclature (Concrete in lieu of Beton) and in the measuring units (from kg/cm2 

to N/mm2 (MPa)).  
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Steel reinforcement varies in terms of quality (strength and ductility) and surface 

characteristics (smooth bars or G class in DIN488, and ribbed bars or class R in DIN488). 

Under normal circumstances properties of steel reinforcement present much less variability 

than concrete.  In very old construction even bars of non-rectangular cross sections may be 

found. According to the Greek code of 1954 (Table 4.2) the qualities of reinforcing steel (I, 

III, IV) had allowable stresses 1400 to 2400 kg/cm2.  These values resulted approximately 

from the yielding limit after division by a safety factor ranging between 1.5 and 1.75. The 

reduced values of the allowable stresses for reinforcing steel accounted for the expected 

construction uncertainties. The modulus of elasticity was taken constant and equal to 2.1x106 

kg/cm2 for all steel qualities. After 1991 the reinforcing steel is characterized by its yield 

strength value (MPa). The modulus of elasticity is taken constant, equal to Es = 2.0x105 

N/mm2. 

 

Table 4.1: Categories and Strengths of Concrete in 20th century (Karaveziroglou 2009) 

1) Cubic specimen with the age of 28 days  2) Length of the edge of the cubic specimen (mm)  3) 

Mean value of  3 specimens [kg/cm2]  4) Characteristic strength of cylinder fck [N/mm2]  5) C30/37 

after 2010 and increase of the qualities to C90/105 

 Period W28 
1) Nominal value of compressive strength of concrete 

1 
1907-

16 

300 2) W28 W28 W28 W28  

  M 3) 100 150 180 230 

  fck
 4) 5 6 7 8 

2 
1916-

25 

200 2) W28 W28 W28  

  M 3) 150 180 245 

  fck
 4) 7 8 9 

3 
1925-

32 

200 2) Wb28  Wb28 Wb28  

  M 3) 100 130 180 

  fck
 4) 6 8 11 

4 
1932-

43 

200 2) Wb28 Wb28 Wb28  

  M 3) 120 160 210 

  fck
 4) 8 10 12 

5 200 2) B B B B B B B 
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1954-

91 

  M 3) 80 120 160 225 300 450 600  

  fck
 4)  8 10 16 20 28 35 

6 
1991-

present 

150 2) C C C C C C C C C 

  5% 3) 10 15 20 25 30 35 5) 45 50 55 

  fck
 4) 8 12 16 20 25 30 35 40 45 

 

Table 4.2: Steel qualities according to the Greek code 1954 (Karaveziroglou 2009) 

Category 
Yielding Limit 

Min fy [MPa] 

Tensile Strength 

ft [MPa] 

Allowable stress 

fal [Kg/cm2] 

I 220 340-500 1200-1400 

IIIa 
420 (d≤18mm) 

400 (d>18mm) 
500 (min) 2000-2400 

IIIb 
420 (d≤18mm) 

400 (d>18mm) 
500 (min) 2000-2400 

IV 500 - 2000-2400 

 

Figure 4.4: Stress – Strain diagrams of older reinforcing steel (Karaveziroglou 2009). ΚO
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4.2.2 Older – type detailing 

In the presence of confinement in an RC member, many of the imperfections of the materials 

described above can be overcome.  The essential difference in design philosophy between 

nowadays and 40 years ago lies in the importance of transverse reinforcement as a means of 

confinement. In the older codes the use of stirrups was recommended for: a) the support of 

the longitudinal reinforcement against buckling, b) partial contribution to shear strength, c) 

torsion. The German DIN 1045/1972 reflects the point of view in Europe, for that period: 

The approach taken was to place reinforcement so that ties may intersect all possible cracks 

– so as to restrain the crack width.  Based on this point of view the designer was expected to 

bend the primary reinforcing bars in strategic locations in the vicinity of minimum moment 

so as to enhance the shear strength of the prismatic elements.   

This practice was widespread in Europe and North America. Note for example the 

emphasis on the most advantageous placement of primary reinforcement in the case of corner 

connections so as to improve the flexural mechanism and the anchorage of longitudinal 

reinforcement in the joints but without any reference to regulations regarding the use of 

stirrups.  

 

 

Figure 4.5: Characteristic example of reinforcement detailing in “old-type” elements. (fib Bulletin No. 

24 2003)  ΚO
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4.3 Deformation Capacity of Lightly Reinforced Concrete (RC) 

Columns 

Figure 4.6 depicts the typical brittle hysteretic response of a lightly reinforced concrete 

column. The hysteretic loops of the column show the degradation of stiffness and load 

carrying capacity during repeated cycles due to cracking of concrete and yielding of the 

reinforcing bars. Pinching is a dominant characteristic of the response. The occurrence of a 

wide and steep shear crack resulted in a reduction in the shear-resisting capacity of the 

column. Near axial failure, a steep shear crack developed in the column, which led to sliding 

between the crack surfaces followed by buckling of longitudinal bars and fracturing of 

transverse bars along the shear crack (Ngoc Tran & Li 2013). 

             

Figure 4.6: Hysteretic characteristics and failure mode of a lightly reinforced concrete column. (Ngoc 

Tran & Li 2013)  

Results of previous studies (Fenwick and Davidson 1995, Lee and Watanabe 2003, 

Matthews et al. 2004, Peng et al. 2011) indicate that the concrete shear resistance of RC 

columns decreases with increasing longitudinal strains. This increase in longitudinal strains 

after the onset of flexural yielding widens the diagonal cracks, which leads to sliding of the 

crack surfaces; overall, an increase in the principal tensile strain occurs. As a result, the 

effective concrete compressive strength is reduced and the member possibly fails in shear. 

Longitudinal strains and axial elongations substantially increase during reversed cyclic 

loading (Fig. 4.7). The residual strains in the reinforcements accumulate in each cycle; 

hence, beam elongation increases during load reversals. Furthermore, dislocations in the 

local geometry occur preventing the cracks from closing completely. Elongation and 
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longitudinal strains in the plastic hinge region not only influence the concrete resistance in 

shear but also the inelastic deformation, respectively, and hence, the rotation capacity up to 

flexural failure. (Fig 4.7) (Syntzirma et al. 2010, Mehrabani and Sigrist 2015). 

The total lateral response of a lightly reinforced concrete column is usually modeled 

by representing flexural action, reinforcement slip and shear deformation response as springs 

in series, where the force in each spring is the same and the total deformation is the sum of 

individual spring deformations. In the established modelling methods, flexural deformations 

are evaluated by the nonlinear beam-column element. Zero-length elements located at the 

top and bottom of the column are attached to the nonlinear beam-column element. The zero-

length elements are defined by three uncoupled material models describing: (1) the moment-

rotation relationship representing reinforcement slip response (rotational spring); (2) the 

shear-horizontal displacement relationship representing the shear force-displacement 

response (shear spring) and (3) the axial load-vertical displacement relationship (axial 

spring). (Shoraka and Elwood 2013). 

A critical step in the direction of determining the deformation response is to identify 

the weak link of behavior, where localization is expected to occur (minimum lateral strength 

based on the various mechanisms of resistance).  In this approach, it is postulated that 

deformation components are additive only if the hysteretic response is controlled by flexure, 

demonstrating stable loops. In all other cases, the deformation component associated with 

the controlling mode of failure dominates the overall deformability of the member 

(Syntzirma and Pantazopoulou 2007). 

In order to demonstrate the above statement, the modelling technique of Fig. 4.8 was 

applied to an example reinforced concrete column fully fixed at both ends with properties 

similar to the rectangular column of the experimental campaign of Elwood and Moehle 

(2008) in the software OpenSees (OpenSees 2.5). The Base Shear vs. Lateral Drift response 

of the column along with the shear failure (initiation of degrading slope) and the axial failure 

(end of the response) is depicted in Fig. 4.9.  
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Figure 4.7: Average axial strains versus deflection of a RC column failing in shear after flexural yielding 

(Mehrabani and Sigrist 2015). 

 

 

 

 

Figure 4.8: Shear, axial and rotational spring in series model with the nonlinear beam-column element 

(shear and axial springs are set where axial and shear failures are expected to occur).  

 

P V 

P 
V 

L 

Zero Length Element 

Reinforcement Slip Spring 

Shear Response Spring 

Axial Response Spring 

Reinforcement Slip Spring 

 

Nonlinear Beam-Column Element 

Zero Length Element 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



97 

 

 

Figure 4.9: Base Shear vs. Lateral drift of a RC square column simulating shear and axial failures.  

 

4.3.1 Local to Global Transformation of Stress and Deformation Resultants 

Capacity prioritizing in order to identify the weakest link of member behavior is a 

prerequisite for determination of the tendency for localization of material deformation.  

Failure may occur as a consequence of exhaustion of some material strength or deformation 

capacity; each such event may have implications that could be catastrophic for the stability 

of the member, or alternatively, it could simply lead to redistribution of internal forces.  For 

example, an event in member response curve could be exhaustion of the cracking strain on 

the tension face, and later-on the delamination strain on the compression face in the concrete 

cover, exhaustion of the compressive strain capacity of the encased core concrete, yielding 

or fracturing in transverse reinforcement, exceedance of the buckling limit in the longitudinal 

compression reinforcement, and tensile yielding or fracturing in the longitudinal tension 

reinforcement. These events occur in different locations of the cross-section or of the 

member (Fig. 4.10). A Reinforced Concrete (RC) section under combined flexure and axial 

load is usually analyzed using the following simplifying assumptions (Fig 4.10): 1) A plane 

section before bending remains plane and normal to the longitudinal member axis after 

bending, 2) The stress-strain relation (constitutive model) of materials is known, and the 

state of stress is simplified to only consider normal stresses and strains, 3) External forces 

are in equilibrium with the internal stress resultants. The first assumption, known as the 

Bernoulli hypothesis, simplifies the analysis and gives linear distribution of longitudinal 

strain across the section with null strain at the neutral axis. The location of the neutral axis 
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of the section is determined by the equilibrium of axial forces acting on the section.  

 

 

 

 

 

 

Figure 4.10: Reinforced concrete section under bending.   

Prioritizing  the sequence of occurrence of above described events is done on the 

basis of member shear forces, as this is a common attribute to all mechanisms of resistance: 

in this manner, a local event that occurs at the material level, is reflected in the global scale 

by the acting member shear force, V. Possible material failure problems that would limit the 

strength of a column are:    

1) Cover delamination: It occurs at a compressive concrete strain equal to the ultimate 

compressive strain of unconfined concrete (0.004) (Fig. 4.10). Cover spalling 

appears at a displacement less than or near the yield displacement (Fig 4.11).  

 

Figure 4.11: Concrete Cover Spalling of a Reinforced Concrete Column.  

2) Attainment of the ultimate compressive strain of confined concrete core (Figs. 4.10, 

4.12). In this case concrete crushes in compression and it is a flexural mode of failure. 

Flexural compression failure is followed potentially by the loss of gravity load 

carrying capacity.  
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3) Splitting of the cover concrete along the weak plane formed by the lapped bars 

resulting in a loss of bond. In case of cyclic loading conditions, the contribution of 

concrete confinement to lap splice strength is insignificant. 

4) Bar strain exceeds the strain development capacity of the reinforcement which is  the 

minimum of the tensile strain that can be sustained by the lap splice or anchorage at 

the critical section or the fracture strain of the bar.  

 

Figure 4.12: Flexural Compression Failure of a Reinforced Concrete Column  

5) The compressive longitudinal reinforcement enters the instability conditions which 

result to buckling of the longitudinal bars. The occurrence of buckling is affected by 

the presence (spacing) of transverse reinforcement and the diameter of the bars. In 

lightly reinforced concrete columns the unsupported length of longitudinal 

reinforcement is high and equal to the spacing of the stirrups. Buckling results to 

spalling of concrete cover (Fig 4.13).  

6) Occurrence of web diagonal tension cracking: The tensile stresses carried by the 

concrete before onset of significant shear cracking should be resisted by shear 

reinforcement once shear cracks open. If this doesn’t happen diagonal tension failure 

occurs (exhaustion of concrete contribution to shear 𝑉𝑐 ) (Fig. 4.1 a).  

7) Onset of stirrup yielding: According to Mörsch truss analogy stirrup yielding refers 

to the steel contribution in shear strength of the column, estimated as the yielding 

forces of those stirrups which are crossing the diagonal shear crack. 

8) Occurrence of large postyielding strains in the stirrups which signals high shear strain 

in the column and it can be tracked along the descending branch of the member 

response curve –associated with the degraded shear strength of the member. 

Conversion from the material scale to the stress resultant of the column follows from 

equilibrium of forces and moments (Eq. 4.1).  Normal strains over the cross section are 
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assumed to follow a plane sections profile, where, for states of stress past flexural yielding, 

the normalized neutral axis depth 𝜉, is assumed to remain approximately constant 

(alternatively its value may be obtained from interpolation depending on the value of the 

gravity axial load, Ng, acting on the cross section, which is taken here as a reference, average 

value).  Thus, for criteria 1) – 5) above, which refer to the occurrence of a milestone event 

in some component of normal strain, the corresponding shear force of the cantilever (half 

the column’s length is 𝐿𝑠)  is obtained from (𝑀 = Moment at column end, 𝑑 = the effective 

depth of the column, ℎ = height of the section of the column, ; 𝐴𝑠1= area of tensile 

reinforcement): 

 

 

Figure 4.13: Buckling of compressive longitudinal reinforcement.   

𝑉 = 𝑀 𝐿𝑠
⁄ = [𝑓𝑠1𝐴𝑠1𝑑(1 − 0.4𝜉) + 𝑁𝑔(0.5ℎ − 0.4𝜉𝑑)] 𝐿𝑠⁄                      (4.1)       

In the above, fs,1 is the axial stress in the steel tension reinforcement, obtained from 

the stress-strain diagram of the reinforcement, given the corresponding axial strain.  This is 

the tension bar strain associated with each of the milestone events listed in 1) to 5) above. 

For criteria 6)-8) the stress resultant is given by the shear strength of the column.  

Values obtained for the milestone events listed above limit the strength of some of 

the mechanisms of resistance in series, namely Flexural (𝑉𝑢,𝑓𝑙.), Shear (𝑉𝑢,𝑠ℎ.), 

Anchorage/Lap Splice (𝑉𝑢,𝑠𝑙.), or Compression Bar Stability (𝑉𝑢,𝑏𝑢𝑐𝑘𝑙.).  Therefore, for any 

drift level, the above terms are organized in a hierarchy, with the term with the lower 

strength, 𝑉𝑓𝑎𝑖𝑙, controlling the mode of damage and possibly, failure of the member:  

𝑉𝑓𝑎𝑖𝑙 = 𝑚𝑖𝑛{𝑉𝑢,𝑓𝑙.𝑉𝑢,𝑠ℎ., 𝑉𝑢,𝑠𝑙., 𝑉𝑢,𝑏𝑢𝑐𝑘𝑙.}                               (4.2)       
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4.3.2 Strain – Displacement Transformations  

Geometric relations are required to identify the magnitude of column drift or tip 

displacement of the model cantilever (strain resultants), for each of the milestone events 

listed in the preceding section.  The mechanisms of deformation participating to total drift 

are flexural drift due to curvature along the member, rigid body rotation owing to 

reinforcement pullout from the support anchorage or lap splice, and shear distortion which 

results in lateral offset of the member (Fig 4.14).    

 

 

 

 

 

 

Figure 4.14: Lateral deformation components contributing to member drift.  

Special considerations are as follows: 

(a) Strain resultants due to flexural curvature:   

The moment curvature relation of a cross section provides the basis of understanding the 

nonlinear behaviour of reinforced concrete columns such as cracking, crushing and spalling 

of concrete, and yielding and buckling of longitudinal reinforcement. The typical flexural 

deformation characteristics are shown in Fig. 4.15.  

In the loading branch of the member while it is in pristine condition, flexural cracking 

near the critical section of maximum moment reduces the initial elastic stiffness. The 

specimen continues to soften with loading after cracking due to the spreading of cracking 

along the specimen length, crack opening associated with tension softening of concrete and 

bond-slip of the reinforcement between cracks. Yielding of tensile reinforcement causes an 

abrupt and sharp reduction in stiffness. Even after the flexural yielding, the resistance 

continues to increase due to the shift of neutral axis and later due to strain hardening of 

reinforcement. Spalling of the concrete in compression has a negative effect on the 

resistance. Upon unloading after post-yielding, the unloading stiffness is generally high, but 

gradually softens at lower loading level. A significant residual deformation exists even after 
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the removal of loads caused by permanent strain in longitudinal reinforcement and residual 

bar slip. Cracks remain open at the removal of loads due to the residual bar slip. The overall 

unloading stiffness degrades with increasing plastic deformation amplitudes. Reloading 

stiffness immediately after load reversal is generally low until opened cracks close; the 

compression by bending moment must be resisted by the compressive reinforcement. The 

reloading stiffness gradually recovers with the closing of cracks. Although the first post-

elastic excursion may be considered as first loading in the reloading direction, the softening 

is more gradual than in the initial yielding direction partly attributable to the Bauschinger 

effect of the steel. The resistance at the previous maximum displacement reaches the level 

of the previous maximum resistance. When the reloading branch reaches the previous 

maximum response point, further loading proceeds along the continuation of the first loading 

branch. Flexural failure of columns due to cyclic loading is gradual, controlled by 

progressive deterioration in the compressive zone such as spalling of concrete followed by 

local buckling of the longitudinal reinforcement. The reinforcement sometimes fractures in 

tension in the subsequent half cycle after compression bucking. Clear definition of failure is 

difficult in flexure-dominated members unless tensile fracture of longitudinal reinforcement 

is observed. Therefore, failure is often defined in the experiment as a point where the 

resistance cannot be recovered to a level exceeding 80 percent of the maximum resistance. 

It should be noted that this definition of failure point is affected by the loading history. 

 

Figure 4.15: Flexural deformation characteristics (Celebi and Penzien 1973).    

 The flexural force-displacement response of a cantilever reinforced concrete column 

(statically equivalent to the half-length of a fixed ended column under horizontal force) can 

be derived analytically from the moment curvature response based on the “plastic hinge” 
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concept which is defined as the length over a seismically swaying column, where flexural 

moments exceed the yielding capacity.  This length, measured from the critical section 

towards the shear span, signifies the region where intense inelasticity occurs during the 

earthquake. However, this transformation doesn’t represent the flexural deformation in a 

strict sense because a plane section does not remain plane in a region where an extensive 

shear deformation occurs as it occurs for example, in lightly reinforced concrete columns.  

Based on Fig. 4.16 the transformation of moment curvature diagram of the critical 

section of a bridge pier to a force displacement curve for a cantilever of identical cross 

section and half its free length can be applied. Part of the plastic hinge length is attributed to 

the yield penetration of the reinforcement into the anchorage (See also Chapter 5). The 

following equations are useful for the determination of yielding 𝛥𝑦  and ultimate 

displacement 𝛥𝑢 of the column (𝐿𝑦𝑝 = length of yield penetration): 

𝛥𝑦 = 𝜑𝑦 ∙ (𝐻 + 𝐿𝑦𝑝)
2
3⁄ , 

𝛥𝑝 = 𝜑𝑝 ∙ 𝐿𝑝 ∙ (𝐻 − 𝐿𝑝 2⁄ )
2
≈ 𝜑𝑝 ∙ 𝐿𝑝 ∙ 𝐻 

𝜑𝑝 = 𝜑𝑢 − 𝜑𝑦 ,   𝛥𝑢 = 𝛥𝑦 + 𝛥𝑝                                      (4.3)     

    

 

 

 

 

 

 

 

Figure 4.16: Moment, Curvature and Displacement Distribution of a cantilever bridge pier.  

The most recent versions of the relevant assessment standards (e.g. Eurocode-8 Part 

III, draft of the 2020 edition) completely bypass the notion of a plastic hinge length by 

providing direct expressions for estimation of plastic rotation (tip displacement divided with 

the length of the column) without need for integration of inelastic curvatures. 
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(b) Strain resultants owing to bar pullout / slip 

When a reinforced concrete column is subjected to bending moment, strain accumulates 

in the anchorage length of the tensile reinforcing bars: a phenomenon known as strain 

penetration. This causes the bars to extend or slip relative to the anchoring concrete at 

column fixed end(s) (see Chapter 5). The extension is commonly known as reinforcement 

slip and leads to rigid-body rotation of the column (Fig. 4.14). This results in an additional 

lateral displacement component.  The general shape of the moment-bar slip rotation curve is 

demonstrating a pronounced pinching of a hysteresis loop (Fig 4.17). Flexural deformations 

determined from conventional fiber section analysis (Chapter 6) do not account for lateral 

deformations caused by reinforcement slip at column ends. Therefore, these deformations 

along with the displacement/rotation due to slippage of the reinforcing bar anchored in the 

shear span of a reinforced concrete column must be calculated separately and added to the 

other deformation components due to flexure and shear to calculate the total lateral 

displacement. This procedure is described extensively in Chapter 5.  

 

Figure 4.17: Rotation due to bar slip (Bertero and Popov 1977).   

 

(c) Distortion resultants  

Shear distortion is elastic prior to web cracking, obtained from the nominal code value for 

concrete contribution, divided by the member’s shear stiffness (Eurocode 8, Paulay and 

Priestley 1992):  (Basic mechanics – strength of materials:  γ=V/GA; where G=E/2/(1+ν), 
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Αsh = 5/6A, ν=0.2) 

𝛾𝑒 = 𝑉𝑐 [0.4 ∙ 𝐸𝑐 ∙ 0.8𝐴𝑔]⁄                                            (4.4) 

After web cracking, shear distortion is set equal to stirrup strain, st.  From the Mörsch 

truss geometry it may be shown that the shear strain =st = (V-Vc,cr)/[EsAst,i], where the 

numerator in this calculation represents the total force carried by the stirrups crossing a 

diagonal crack, and the denominator represents the extensional stiffness of the stirrups. Here, 

Vc,cr is the total shear force carried by the cracked concrete web: 

 𝐹𝑜𝑟 
𝑁

𝑓𝑐𝐴𝑔
≥ (𝜌𝑠1 − 𝜌𝑠2) ∙

𝑓𝑦

𝑓𝑐
=> 𝑉𝑐,𝑐𝑟 = 0.5√𝑓𝑐 [

𝑑

𝐿𝑠
∙ √1 +

𝑁

0.5√𝑓𝑐𝐴𝑔
] ∙ 𝐴𝑔      (4.5) 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑉𝑐,𝑐𝑟 = 0 

Eq. (4.5) has been derived from equilibrium of forces on the cross section: a concrete 

contribution is assumed to exist if there is a nonzero compressive force in the concrete (i.e. 

once the cracks have been closed).  With particular reference to columns with distributed 

reinforcement on all sides of the cross section, it is necessary to establish the neutral axis 

location prior to estimating the effective tension and compression reinforcement ratios, s1, 

s2, to be used with the inequality of Eq. (4.5).   

The contribution of web reinforcement to shear strength should be calculated from 

the sum of forces developed in all stirrup legs crossing the critical shear crack, while also 

considering the limited development capacity of inadequately anchored stirrups: 

=
i

i,ststw fAV  S)dd(fA 2sst,yst −  (here an angle of inclination 45o of the critical shear 

crack is assumed).   

Thus, for old-type construction it is necessary that stirrups be accounted for discretely 

and not smeared through the d/S term, as it is essential that the least number of stirrups 

crossing a crack plane need be determined, rather than an average value.  If it is possible to 

determine a shear crack path along the member that does not interrupt any stirrup legs at all, 

then the Vw term is zero (Syntzirma 2010), whereas Eurocode 8 (2005) would yield a nonzero 

value even for excessively large stirrup spacing, S.   This point was also illustrated through 

practical examples in Chapter 2.   

Degradation of shear strength occurs after web cracking, as the value of the stirrup 

strain, st, increases. The principal tensile concrete strain, c1≈√2st/2 occurs in directions 
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orthogonal to the concrete struts of the Mörsch truss causing the “so-called” compression 

softening of the struts according with the Modified Compression Field Theory. The 

compression softening coefficient is, =1/(0.8+0.27c1/co) – this is responsible for the 

degradation of the nominal shear strength, expressed empirically through  the degradation 

coefficient of shear strength that depends on ductility k() (Martin-Perez and 

Pantazopoulou 2001).   

Specimen No 1 Specimen No 3 

 

 

Figure 4.18: Truss geometry for typical lightly reinforced concrete columns (Experiments by Matamoros 

and Woods 2010). 

An unresolved issue in calculations is the angle of inclination of the critical shear 

crack : a variety of tests (Fig. 4.18) demonstrate that the aspect ratio and the axial load ratio 

both affect the concrete and steel contributions in shear strength; whereas this effect is 

considered in all alternatives for the concrete contribution term, it is generally neglected both 

by the Code Models and by Mechanistic expressions for the steel contribution term, which 

is generally obtained from a 45o crack assumption. The value of the angle θ forming between 

the primary diagonal crack at tension failure with the longitudinal axis of the member, 

departs from the 45o postulate.  Actually, this particular variable has a critical influence on 

the determined strength since the inclination of the major sliding plane (i.e. the angle θ) 

determines the number of stirrup layers mobilized in shear.  

141 mm 
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(d) Bar buckling considerations:   

Bar buckling threatens members that do not fail prematurely, but experience 

extensive flexural yielding. The theoretical value of total column’s rotation that is related to 

bar buckling can be expressed in terms of critical strain as follows: 

𝜃𝑏𝑢𝑐𝑘,𝑢 = 𝜃𝑠𝑐,𝑢
𝑓

+ 𝜃𝑠𝑐,𝑢
𝑠 = −[휀𝑐𝑐,𝑢 (𝑐𝑢 − 𝑑′)⁄ ] ∙ 𝐿𝑝 +

1

3
𝜑𝑦 ∙ (𝐿𝑠 − 𝐿𝑝) + 𝜃𝑠𝑐,𝑢

𝑠      (4.6) 

where εcc,u is the concrete strain at the level of compressive reinforcement when it reaches 

the critical strain of buckling εsc,u and 𝜃𝑠𝑐,𝑢
𝑠  is the contribution to pull-out of the tensile 

reinforcement when the bar enters the critical instability conditions (Figs. 4.10, 4.14, 4.16). 

Here, for the definition of curvature the compressive strain of concrete and corresponding 

depth of the compression zone are used, instead of the tensile bar strain and the depth of the 

tension zone, since the bar strains are affected by slippage and the assumption of plane 

sections is not valid anymore. 

The loading history is a crucial factor for the definition of ductility of rotation or 

displacement which is related to bar buckling initiation.  Due to load reversal the bar reaches 

instability conditions under a compression stress but with significant residual tensile strain. 

The critical total strain ductility at buckling, is defined from the longitudinal  reinforcing 

bar’s critical buckling load (solution of the steel bar’s stability differential equation) and can 

be obtained from pertinent interaction diagrams that depend on the bar’s unsupported length  

to bar diameter ratio and the peak inelastic tension strain (envelope), attained by the 

reinforcement during previous displacement reversals. Therefore, under cyclic excitation, 

bar buckling will take place with the bar under compressive stress but with a high amount of 

residual tensile axial strain. This residual strain of the buckled bar is increasing (i.e. more 

tensile) as is increasing the value of maximum tensile strain that has been reached in the 

previous cycles.  

4.4 Demonstration of Failure Prioritizing through an Example  

A reinforced concrete column with rectangular cross section is under consideration in this 

example as depicted in Fig. 4.19. The column’s axial load ratio is 0.2 and the material 

properties is C20 for concrete and S500 for steel longitudinal and transverse reinforcement. 

The concrete cover is 20 mm and the clear height of the column is 2.7m. The prioritizing of 

failures and the different deformation mechanisms that contribute to the final response are 

going to be demonstrated for two steps of relative lateral displacement. One is equal to 0.6% 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



108 

 

and the other to 1.5% of the clear height accordingly. The goal is to determine the curvature 

in the critical section of the column along with the axial deformation of the longitudinal 

reinforcement.    

For the first step of targeted displacement, the contribution deformation mechanisms 

are those of flexure, shear and that of the lap-splice: 

Δ𝑢 = 𝛥𝑢
𝑓𝑙
+ 𝛥𝑢

𝑠ℎ + 𝛥𝑢
𝑙𝑎𝑝 = 0.006 ∙ 2700 = 16.2 𝑚𝑚 

Now the yielding displacement of the column is defined taking into account that is fully 

fixed at both ends:  

Δ𝑦 = 2 ∙ 𝛥𝑦
𝑓𝑙
+ 2 ∙ 𝛥𝑦

𝑠ℎ + 2 ∙ 𝛥𝑦
𝑙𝑎𝑝

 

The yielding displacement due to flexure is: 

𝛥𝑦
𝑓𝑙
=
1

3
∙ 𝜑𝑦 ∙ 𝐿𝑠

2 =
1

3
∙
휀𝑠𝑦

𝑑 − 𝜉𝑑
𝐿𝑠
2 =

1

3
∙

500 200000⁄

(450 − 20) − 0.25 ∙ (450 − 20)
∙ (
2700

2
)
2

 

𝛥𝑦
𝑓𝑙
=
1

3
∙
0.0025

322.5
∙ 13502 = 4.71 𝑚𝑚 

The yielding displacement due to shear is: 

𝛥𝑦
𝑠ℎ =

𝑉𝑐
𝐺 ∙ 𝐴𝑣

∙ 𝐿𝑠 =
𝑉𝑐

0.4 ∙ 𝐸𝑐 ∙ 0.8 ∙ 𝐴𝑔
∙ 𝐿𝑠 

The axial load of the column is: 

𝑁 = 𝑣 ∙ 𝐴𝑔 ∙ 𝑓𝑐 = 0.2 ∙ 350 ∙ 450 ∙ 20 = 630000 𝑁 

The concrete contribution in shear strength is: 

𝑉𝑐 = [
0.5 ∙ √𝑓𝑐
𝐿𝑠 𝑑⁄

∙ √1 +
𝑁

0.5 ∙ 𝐴𝑔 ∙ √𝑓𝑐
] ∙ 0.8 ∙ 𝐴𝑔 

𝑉𝑐 = [
0.5 ∙ √20

1350 430⁄
∙ √1 +

630000

0.5 ∙ 450 ∙ 350 ∙ √20
] ∙ 0.8 ∙ 450 ∙ 350 = 149866 𝑁 

So, the yielding displacement of the column considering the shear mechanism is: 

𝛥𝑦
𝑠ℎ =

149866

0.4 ∙ (5700 ∙ √20) ∙ 0.8 ∙ 450 ∙ 350
∙ 1350 = 0.16 𝑚𝑚 ΚO
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Figure 4.19: a) Example reinforced concrete column under consideration and b) column’s rectangular 

cross section.  

The contribution of lap splice in the total yielding displacement is (fib Bulletin No. 24 2003):  

𝛥𝑦
𝑙𝑎𝑝 =

𝜑𝑦 ∙ 𝐷𝑏

8
∙
𝑓𝑦

𝑓𝑏,𝑦
∙ 𝐿𝑠 =

0.00000775 ∙ 18

8
∙

500

2 ∙ 1.8 ∙ 1 ∙ √
20
20

∙ 1350 = 3.27 𝑚𝑚 

Therefore, the total yielding displacement of the column is: 

Δ𝑦 = 2 ∙ 𝛥𝑦
𝑓𝑙
+ 2 ∙ 𝛥𝑦

𝑠ℎ + 2 ∙ 𝛥𝑦
𝑙𝑎𝑝 = 2 ∙ 4.71 + 2 ∙ 0.16 + 2 ∙ 3.27 = 16.28 𝑚𝑚 

From the calculation of the yielding displacement it may be seen that the applied 

displacement in the first step of loading is equal to the yielding limit. Therefore, the curvature 

of critical section of the column is equal to the yielding curvature and the axial deformation 

of the longitudinal reinforcement is equal to the yielding strain of steel reinforcement:  

𝜑 = 𝜑𝑦 = 0.00000775 𝑚𝑚
−1 

휀𝑠𝑦 = 0.0025 

For the second step of loading, the applied displacement is: 

Δ𝑢 = 𝛥𝑢
𝑓𝑙
+ 𝛥𝑢

𝑠ℎ + 𝛥𝑢
𝑙𝑎𝑝 = 0.015 ∙ 2700 = 40.5 𝑚𝑚 

a) 

b) 
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This displacement is much larger than the yielding displacement, corresponding to a 

displacement ductility of: 

𝜇𝛥 =
𝛥𝑢
𝛥𝑦
=
40.5

16.28
= 2.5 

𝜇𝛥 = 2.5 

An evaluation of the occurrence of brittle failures follows. The shear strength is (Chapter 2): 

𝑉𝑠ℎ𝑒𝑎𝑟 = 𝑉𝑐 + 𝑉𝑤 

The concrete contribution to shear strength according to the ASCE/SEI 41 (2007) is: 

                        𝑉𝑐 = 𝑘(𝜇𝛥) ∙ [
0.5∙√𝑓𝑐

𝐿𝑠 𝑑⁄
∙ √1 +

𝑁

0.5∙𝐴𝑔∙√𝑓𝑐
] ∙ 0.8 ∙ 𝐴𝑔 

𝑉𝑐 = (−0.1 ∙ 2.5 + 1.2) ∙ 149866 = 142372.7 𝛮 

The steel contribution to shear strength according with the same code is: 

𝑉𝑤 = 𝑘(𝜇𝛥) ∙ [
𝐴𝑠𝑤 ∙ 𝑓𝑦ℎ ∙ 𝑑

𝑠
] = 205334,5 𝛮 

𝑉𝑠ℎ𝑒𝑎𝑟 = 𝑉𝑐 + 𝑉𝑤 = 142372.7 + 205334,5 = 347707.2 𝑁 

However, as the column has a lap splice at the base, the above calculations should be 

considered provisional, since the strength of the column owing to the lap splice mechanism 

could prevail as the dominant mode of failure, thereby precluding the development of the 

post-yielding strength of the examined column.  Therefore, according with Syntzirma and 

Pantazopoulou 2007, fib Bulletin No. 24 2003, the column shear that can be sustained at the 

attainment of the lap strength is defined from equilibrium according with:  

𝑉𝑙𝑎𝑝 =
𝑚𝑖𝑛{𝐹;𝑁𝑏 ∙ 𝐴𝑏 ∙ 𝑓𝑦} ∙ 𝑑 ∙ (1 − 0.4 ∙ 𝜉) + 𝑁 ∙ (0.5 ∙ ℎ − 0.4 ∙ 𝜉 ∙ 𝑑)

𝐿𝑠
 

The minimum steel force developed over the lap-spliced zone tensile reinforcement is owing 

to frictional action (Pardalopoulos et al. 2011):  

𝐹 = 𝜇𝑓𝑟 ∙ 𝐿𝑙𝑎𝑝 ∙ (
𝐴𝑡𝑟
𝑠
∙ 𝑓𝑠𝑡) = 1.5 ∙ 15 ∙ 18 ∙ (

2 ∙
𝜋 ∙ 82

4
100

∙ 500) = 203575.2 𝑁 

𝑁𝑏 ∙ 𝐴𝑏 ∙ 𝑓𝑦 = 2 ∙
𝜋 ∙ 182

4
∙ 500 = 254469 𝑁 
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Therefore: 

𝑉𝑙𝑎𝑝 =
203575.2 ∙ 430 ∙ (1 − 0.4 ∙ 0.25) + 630000 ∙ (0.5 ∙ 450 − 0.4 ∙ 0.25 ∙ 430)

1350
= 

𝑽𝒍𝒂𝒑 = 𝟏𝟒𝟑𝟐𝟗𝟏. 𝟓𝟔 𝑵 

The yielding flexural strength is:  

V𝑦
𝑓𝑙
=
𝑀𝑦
𝑓𝑙

𝐿𝑠
=
𝐴𝑠1 ∙ 𝑓𝑦 ∙ 0.85 ∙ 𝑑 + 𝑁 ∙ (0.5 ∙ ℎ − 0.4 ∙ 𝜉 ∙ 𝑑)

𝐿𝑠
 

V𝑦
𝑓𝑙
=
2 ∙
𝜋 ∙ 182

4 ∙ 500 ∙ 0.85 ∙ 430 + 630000 ∙ (0.5 ∙ 450 − 0.4 ∙ 0.25 ∙ 430)

1350
= 

V𝑦
𝑓𝑙
= 153828.5  

Therefore, according to failure prioritizing the weakest link among the competing response 

mechanisms is actually the lap-splice development of the reinforcement.  This finding 

suggests that the column failure will take place prior to yielding of longitudinal 

reinforcement due to failure in the lap splice.  

The corresponding flexural moment at the critical section at the instant of estimated lap-

splice failure is: 

𝑀𝑙𝑎𝑝 = 143291.56 ∙ 1350 = 193443602 𝑁𝑚𝑚  

The column’s effective yielding stiffness is:  

𝐸𝐼𝑦 =
V𝑦
𝑓𝑙
∙ 𝐿𝑠

𝜑𝑦
=
207668421

0.00000775 
= 26795925329787.4 𝑁𝑚𝑚2 

Therefore, the curvature of the critical section and the strain of the longitudinal 

reinforcement for this point are:  

𝜑 =
𝑀𝑙𝑎𝑝

𝐸𝐼𝑦
=

193443602

26795925329787.4
= 0.0000072 𝑚𝑚−1 

𝜑 =
휀𝑠

𝑑 − 𝜉𝑑
=> 휀𝑠 = 0.0000072 ∙ (430 − 0.25 ∙ 430) = 0.0023 

Finally, the column’s stiffness is: 

𝑘 =
12 ∙ 𝐸𝐼𝑦

ℎ3
=
12 ∙ 26795925329787.4

27003
= 16336.49 𝑁/𝑚𝑚 
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and the corresponding displacement at lap-splice failure is:  

𝛥𝑓𝑎𝑖𝑙 =
𝑉𝑙𝑎𝑝

𝑘
=
143291.56

16336.49
= 8.77𝑚𝑚 

This displacement magnitude is less than half the estimated nominal yield displacement of 

the examined column.  

4.5 Summary 

The above example illustrates the complexity of the problem when considering substandard 

construction where basic detailing provisions (e.g. adequate development capacity of lap 

splices) cannot be guaranteed.  Considering a column line, several modes of failure may 

occur, each one of them being associated with a different type of material failure; to enable 

prioritizing of these mechanisms so as to identify the one that controls (i.e. the one with the 

lowest strength), all mechanisms of resistance are expressed by the shear force in the column, 

at the instant of the material failure that characterizes each specific mechanism.  For 

example, the column shear force that can be sustained at lap-splice failure is obtained from 

the moment developed in the lap zone, divided by the shear span (approximately half the 

column height).  The flexural moment is obtained from the developed reinforcement force 

times the internal lever arm.  The developed force is a function of the friction that can occur 

at the interface between the lapped bars, and the normal pressure exerted by the stirrup 

confinement in the lap zone.  Similar procedures are established for all possible alternative 

mechanisms of resistance.  Equation 4.2 illustrates the competition between alternative 

mechanisms to predominate the response of a column.   

 Calculation of the deformation capacity associated with the prevailing mechanism 

requires identification of the prevalent failure mode as pre-requisite. Deformation 

contributions are clearly not additive in this situation as is generally expected from classical 

mechanics.   In order to find the limiting drift at failure, the effect of loading history, the 

fraction of drift ratio that is owing to pullout of longitudinal reinforcement from either its 

anchorage or shear span, and to shear deformations in the plastic hinge regions would need 

to be clearly defined.  This task is the objective of the following two chapters.  
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5 Rotation Capacity due to Strain Penetration along 

Reinforcing Bars  

5.1 Introduction 

The deformation capacity of frame elements comprises contributions of flexural, shear and 

reinforcement pullout components. The estimation of the available deformation capacity of 

a column is linked to the length of plastic hinges. Following an implicit assumption that all 

terms are additive, the flexural component of lateral displacement is obtained from the sum 

of an elastic component, owing to the flexural deformation occurring along the length of the 

member, and a plastic component that is practically owing to the inelastic rotation that occurs 

in the small region near the face of the support where moments may exceed the yielding 

limit. When comparing these deformation estimates with the experimental evidence from 

predominantly flexural components, it is found that there is a great disparity between 

measured and estimated deformation capacities characterized by notable scatter (Syntzirma 

et al. 2010, Inel et al. 2004).  Several attempts to identify the source of inaccuracy have 

motivated the progress made in that field, not the least the empirical expressions for 

deformation capacity which are included in EN 1998-3, 2005 that completely bypass the 

requirement of calculating the plastic hinge length. Another approach, initiated by Priestley 

et al. (1996) and then followed by several other researchers, and the approach to 

deformability by EN 1998-1, 2004 estimates the plastic hinge length including the length of 

yield penetration inside the anchorage (see, for example, the detailed analysis in the book by 

Priestley Seible and Calvi [1996], and of the fib Bulletin No.24 [2003]).  

In new structural design with EN 1998-1 2004, the plastic hinge length is also used 

in reinforced concrete (RC) seismic detailing in order to determine the region where 

additional confinement requirements apply, this is apart from its use in seismic assessment 

to estimate the flexural deformation capacity. Due to its importance in these applications as 

the key to understanding deformability of members, the plastic hinge has been the subject of 

many experimental and analytical studies and the expressions derived have been quantified 

and calibrated against several hundreds of tests on isolated column specimens (Chapter 3). 

Still, the disconnect between observation and theory persists, and is considered a major 

roadblock in establishing the performance criteria for many special categories of members 

(e.g. walls, columns carrying a high axial load, very slender columns, etc.).   
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In the typical test, a cantilever column fixed at the base and carrying a constant axial 

load is driven to a protocol of reversed cyclic lateral load displacement history at the top 

(Chapter 3). Deformation capacity of such members is usually described by the chord 

rotation that may be sustained by the member prior to loss of its lateral load strength.  Apart 

from the rotation due to flexural curvature that occurs along the length of the member, 

lumped rotation at the critical section resulting from inelastic strain penetration into the 

support (e.g. footing) as well as inside the shear span adds up in the reported drift ratios at 

different levels of performance. This share of deformation is attributed to reinforcement 

pullout due to the incompatible length change between the bar and the surrounding concrete. 

In columns that do not fail by web crushing, pullout rotation increases gradually with 

imposed drift, claiming a predominant share of the members’ deformation capacity near the 

ultimate limit state. Column deformation capacity at yielding and ultimate may be computed 

using a variety of models (Pantazopoulou 2003, Inel et. al. 2004, Pantazopoulou et. al. 2010, 

ASCE/SEI 41 2007, EN 1998-3 2005, Panagiotakos et. al. 2001, Biskinis et. al.  2013). A 

stick model is a common point of reference to this purpose: The length of the cantilever Ls 

corresponds to the shear span of an actual frame member under lateral sway; the aspect ratio 

of the member Ls/h quantifies the intensity of shear force demand in the member. Inelastic 

activity is assumed to occur within an equivalent “plastic hinge length”, ℓpl, whereas the 

segment of the member outside ℓpl is assumed to behave elastically.  

Displacements are calculated from flexural curvatures assuming the curvature 

distributions of Figs. 5.1(a-b), which correspond to development of yielding and post-

yielding flexural strengths at the support. The plastic rotation θpl 
f developing in the hinge 

due to flexure is θpl 
f=(u -y) ℓpl;  similarly, the plastic rotation owing to bar pullout from 

the support is θpl 
slip = θu

slip - θy
slip (Fig. 5.1c);  the total plastic rotation is θpl = θpl 

f+θpl 
slip.  

The corresponding terms are (Fig. 5.1d):  

minb,bur,
max
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2                          (5.1) 

where xc is the depth of compression zone at the critical cross section (here it is assumed to 

remain constant after yielding) and Lb the total available anchorage length, whereas Lb,min is 

the minimum required anchorage length to yield a typical bar (diameter: Db), at a yield stress 
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fy, considering a uniform bond stress equal to the bond strength of fb
max.  Rotation of the 

critical cross section occurs about the centroid of the compression zone (located at a distance 

0.4xc from the extreme compressed fiber based on the equivalent uniform stress block 

(Whitney 1937). Parameters sy and su are values of reinforcement pullout slip from the 

support anchorage at yielding and ultimate. Term ℓr,u represents the maximum sustainable 

penetration of yielding into the anchorage; the maximum reinforcement strain, εu, that can 

be supported by the reinforcement at critical cross section may be estimated assuming that 

at the extreme, when the anchorage attains its ultimate development capacity the strain 

distribution along the anchored length is bilinear: u= y +4(Lb-Lb,min)fb
res/(DbEsh), where Esh 

is the hardening modulus of steel. The corresponding maximum and yield flexural curvatures 

are defined as:  u=εu /(d-xc) and y=εy /(d-xc), whereas the total plastic rotation capacity that 

may be sustained by the member may be estimated through reverse engineering as (Moehle 

1992): 
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                   (5.2a) 

where in Eq. (5.2a) index (i) denotes pullout from support and (ii) flexure in the shear span. 

Introducing the concept of the plastic hinge length ℓpl the plastic rotation capacity is written 

as:  

 sur,plplplplyupl Lα5.0;)φ(φθ +==−                                            (5.2b) 

In Eq. (5.2b) α is the strain-hardening ratio of the reinforcement. Empirical equations for the 

plastic hinge which have prevailed in design Codes (EN 1998-1 2004, EN 1998-3 2005) and 

in research (Pantazopoulou 2003,  Priestley et. al. 1984, Priestley et. al. 1987,  Priestley et. 

al. 1996,  Lehman et. al. 1996, Bae, S. et. al. 2008) have the form of Eq. (5.2b):   

ybspl fD022.0L08.0 +=     ;    
'

cybspl f/fD0.24h0.170.1L ++=             (5.3a) 

with h being the column sectional depth.  (For example, 0.08 and 0.1 are common values for 

the strain hardening ratio α of common reinforcement, whereas the term proportional to the 

bar diameter Db, which represents the strain penetration length within the anchorage, is 

intended for well-designed anchorages that can easily support strain penetration lengths of 

10 ~20·Db).  The required confined length ℓc is obtained from the basic value of ℓpl by adding 
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terms to account for the tension shift in the shear span of a member and the increased 

demands for confinement under high axial loads (Watson et. al. 1994), (c in Eq. (5.3b) is a 

strength –reduction factor):  

g
'
cc

c
plc

Af

Ν
2.81

h
     ;0.5h


+=+=



                                    (5.3b)   

Bae and Bayrak (2008) proposed an alternative expression of ℓpl, derived from correlation 

with column experiments under various axial load levels, recognizing explicitly the 

important variables that control ℓpl:  
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                        (5.3c)

 

where h is the column depth, Ν is the applied axial load, Νo =0.85fc
’(Ag-As,tot)+fyAs,tot, (fc

’ is 

the concrete compressive strength), As is the area of tension reinforcement, As,tot is the total 

reinforcement area, and Ag the gross area of concrete section.   

A significant limitation of the theoretical definition of ℓpl, as given by Eq. (5.2a), is 

that it breaks down if the moment-curvature response of the member is elastic – perfectly 

plastic (a=0), leading to a rather small plastic hinge length. This is counter-intuitive when 

considering that a necessary accessory to rebar yielding is the localized loss of bond. Thus 

point-yielding of column reinforcement with no penetration to adjacent areas is physically 

impossible.  In practical applications, to resolve the indeterminacy caused in Eq. (5.2a) due 

to elastoplasticity (i.e., My=Mu), ℓpl is taken as 0.5h, or Eq. (5.3a) is used directly without 

reference to the underlying physical model. The apparent inconsistency inherent in the 

theoretical definition of ℓpl is partly responsible for the poor correlation of the estimated 

deformation capacity of flexure-dominated columns with results from experimental 

databases (Syntzirma et. al. 2007, 2010).  An alternative is to explicitly solve for the plastic 

hinge length by establishing and solving the field equations of bond along the principal 

reinforcement (in the shear span) of the deformed member under lateral sway, with particular 

emphasis on the part of the reinforcement that is strained beyond the limit of yielding into 

the hardening range.  This modelling approach is pursued in the present chapter.  A 

unidirectional model of bond is considered as a basis for the evaluation of the longitudinal 

strain distribution of the primary reinforcement of the column.  
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The processes of sequential crack formation due to tension stiffening, and the 

subsequent crack opening are explicitly considered.  In the analysis, large localized slip 

magnitudes lead to bond degradation that is accompanied by spread of inelastic strains both 

in the shear span and in the anchorage. Strain distributions in the span and in the bar 

anchorage are evaluated using a step by step calculation algorithm; controlling variable is 

the tension strain magnitude at the critical cross section (support of the cantilever). Through 

this process disturbed regions are identified in the shear span, where bar strains are controlled 

by bond development rather than the “plane-sections” assumption. Using this approach, the 

parametric sensitivities of the plastic hinge length are illustrated and compared with the other 
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Figure 5.1: Distributions of curvature along the column shear span a) at yielding moment My and b) at 

flexural strength Mu attained at fixed support (Mu>My). c) Drift components from curvature along 

shear span, and from anchorage slip. d) Bar state of stress (& strain) and bond (& slip) along shear 

span and anchorage.   

u 

[ ] 

y 

(b) 

ℓpl 

 

V 

 
slip

 

 
f
 

 
f
  

slip
 (c) V 

θ
slip

 

d-xc  

f
o
 

f
y
 

ℓ
pl 

: plastic hinge length 

ℓ
r,u

: length of yield penetration 

into support 

ℓ
pl

 

f
y
 ℓ

r,u
 


u
 


y
 

L
b

,m
in

 

L
b
 

(d) 

f b

m
a
x
 

f b

re
s  su 

sy 


y
 

θ
slip

 


y
 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



118 

 

alternatives summarized in the preceding obtained from experimental calibration. 

Application of the analytical procedure for estimating the plastic hinge length is 

demonstrated through comparison with column specimens tested under axial load and 

reversed cyclic lateral drift histories reported in the literature. 

5.2 Governing Equations of Bond – Slip Behavior in Concrete 

The basic equations that describe force transfer lengthwise from a bar to the surrounding 

concrete cover through bond are derived from force equilibrium established on an 

elementary bar segment of length dx (Tassios et. al. 1981, Filippou et.al. 1983):   

( ) bb fDdf/dx −= /4                                                   (5.4a) 

where f is the axial stress of the bar; Db is the bar diameter; fb is the local bond stress.  

Furthermore, compatibility between the relative translation of the bar with respect to the 

surrounding concrete, (s=slip), the axial bar strain ε, and concrete strain εc over dx requires 

that (Tassios et. al. 1981, Filippou et. al. 1983):   

( )  −−= cds/dx                                                     (5.4b)

 

For normal concrete, term εc is neglected as its tensile value cannot exceed the 

cracking limit (c,cr0.00015) which is well below the other terms of Eq. (5.4b).  Bond stress 

and slip, and bar stress and strain are related through the material constitutive relationships, 

fb = fb(s) and f=f(). Solution of Eqs. (5.4) is possible though exact integration, resulting in 

closed-form solutions for the state of stress and strain along the anchorage, through pertinent 

selection of simple models for the material laws (e.g. piecewise linear relations). This 

approach has a clear advantage over the numerical solution alternative in that it enables 

transparent insight into the role of the various design parameters on the behavior of bar 

Figure 5.2:  (a) Assumed stress-strain law of steel reinforcing bar; (b) Assumed local and 

average bond slip law.    
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anchorages and/or lap splices.  

Here the reinforcing bar stress-strain relationship is considered elastoplastic with 

hardening (representing conventional steel reinforcement, Fig. 5.2a). Without loss of 

generality, and to facilitate derivation of closed-form solutions, a linear elastic, perfectly 

plastic local bond-slip relationship with residual bond is assumed (Fig. 5.2b).  The plateau 

in the local bond-slip law implies sustained bond strength. This feature is not always 

manifested in the test data; to be measured it requires redundancy in the anchorage (i.e., 

availability of longer anchorages to enable force redistribution towards the healthy part of 

the anchorage before failure). In the assumed law the end of the plateau is marked by abrupt 

loss of bond strength to the residual value fb
res. (Note that fb

res is taken nonzero only in the 

case of ribbed steel bars, but not for smooth steel bars.)  The last branch represents the 

residual friction between the concrete cover and the steel bar after failure of the rib 

interlocking mechanism (Fig. 5.2b). 

Strain penetration occurs in the bars beyond the critical section due to the degradation 

of bond beyond slip limit s2, that marks the end of the plateau in the local bond-slip law.  

This stage may be attained in different ways along a bar: (a) for yielding to occur, i.e. 

constant bar stress (=fy, df/dx=0) for a range of values of bar strain >y, bond should be 

eliminated (fb
res = 0); if fb

res is nonzero, then a yielded bar will demonstrate a commensurate 

amount of strain hardening.  (b) If the bar is elastic (e.g. FRP bar), then for large strain levels 

bar slip values are increased to levels beyond s2 (Fig. 5.2b): this is marked by debonding and 

cover splitting of the loaded end of anchorage thereby limiting the development capacity of 

the reinforcement.   

Strain penetration of yielding over a bar anchorage has received some attention, 

especially with regards to its contribution to rotation capacity of structural members 

(Bonacci et. al. 1994, Bigaj 1999, Tastani et. al. 2013). But the implications resulting from 

spreading of inelastic strains in the shear span of a structural member on the development 

capacity of reinforcement and on member behavior have not yet been described with 

reference to the mechanics of bond.   

Consider a reinforcing bar that spans the deformable length of a structural column, 

anchored in its footing.  An important difference may be traced in the state of stress occurring 

in the two regions along the bar: within the anchorage stress is controlled by the mechanics 

of bond, as described by the field equations (Eqs. 5.4).  On the other hand, within the shear 
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span, it is the prevailing notion that bar stress is controlled by flexural theory; i.e. the 

requirement of plane sections remaining plane at any cross section relates bar strains to 

flexural moment and axial load through cross sectional equilibrium. This however can be 

incompatible with the requirements of Equations (5.4).  The concept of tension stiffening is 

used in order to settle this potential conflict between the two antagonistic mechanisms for 

control of reinforcement strains: a certain nontrivial length ℓDο is needed, measured from the 

face of the crack toward the uncracked part of the member until bar strain compatibility with 

the surrounding concrete cover may be claimed. Thus, the field equations of bond control 

the segment ℓDο, whereas the classical theory of bending controls the remaining length. The 

region over the shear span of a flexural member where bar stresses are controlled by the 

mechanics of bond (Eqs. 5.4) rather than the mechanics of flexure, is referred to hereon as a 

“disturbed” region, thereby assigning to this length an alternative interpretation from that 

used to explain shear dominated response in frame members (MacGregor et. al. 2005).  At 

the same time this alternative significance of the disturbed region underscores the interaction 

between bond and shear strength (Martin-Pérez et. al. 2001). Clearly, as crack propagates 

the disturbed zone extends and may spread over the entire length of the member. 

5.3 Bond-Slip Distribution along the Anchorage 

5.3.1 Bond-Slip Distribution along the Anchorage of a Linear Elastic Bar 

Solution of Eq. 5.4 for elastic bars in the anchorage is given in this section; this is valid for 

the ascending branch of the stress-strain law of steel reinforcing bars, i.e. 휀 ≤ 휀𝑦. In the case 

of Fig. 5.3 (a) for the elastic part of the bond slip (i.e., when  𝑠 ≤ 𝑠1 , bond is linearly related 

to slip according with: 𝑓𝑏 = (𝑓𝑏
𝑚𝑎𝑥 𝑠1⁄ ) ∙ 𝑠.  By substitution in Eqn. (5.4) the differential 

equation may be solved in closed form.  Thus, bar normal strain, slip, and bond stress 

distributions over the available length of the anchorage [ 0 ≤ 𝑥 ≤ 𝐿𝑏] are given by the 

following equations (Tastani and Pantazopoulou 2013): 
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                          (5.6) 

𝑓𝑏(𝑥) = (𝑓𝑏
𝑚𝑎𝑥 𝑠1⁄ ) ∙ 𝑠(𝑥) ≤ 𝑓𝑏

𝑚𝑎𝑥                              (5.7) 
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where the characteristic property ω is given by : 𝜔 = [4𝑓𝑏
𝑚𝑎𝑥 (𝐸𝑠 ∙ 𝐷𝑏 ∙ 𝑠1)⁄ ]0.5. The 

variable 휀𝑜 is the bar axial strain at the loaded end of the anchorage, and 𝐸𝑠 is the modulus 

of elasticity of the bar in the longitudinal direction. By substituting 𝑥 = 𝐿𝑏 in Eq. 5.6, a 

nonzero slip value is obtained at the free end of the anchorage {𝑖. 𝑒, 𝑠𝑓 =

2휀𝑜𝑒
−𝜔𝐿𝑏 [𝜔(1 − 𝑒−2𝜔𝐿𝑏)] ≠ 0⁄ } even under very small loads. This finding is consistent 

with the experimental observations (see for example Tastani 2005).   

 The bar axial strain at the loaded end, 휀𝑜 = 휀𝑒𝑙
𝑖 , is the limit value beyond which the 

bond mechanism enters the state of plastification (i.e. yielding of bond) over a length 𝑙𝑝 

which grows with increasing bar strain at the loaded end, while the bar remains elastic. 

Therefore the variable 휀𝑒𝑙
𝑖  is directly related to the slip magnitude 𝑠1 in Fig. 5.2 and may be 

calculated by Eq. 5.6 after substitution of 𝑠(𝑥 = 0) = 𝑠1 as follows: 

휀𝑒𝑙
𝑖 = 𝑠1𝜔

1−𝑒−2𝜔𝐿𝑏

1+𝑒−2𝜔𝐿𝑏
                                                (5.8) 

 

 

 

 

 

  

 

 

  

 

 

 

Figure 5.3: (a) Elastic bar response while bond-slip law remains elastic ; (b) Elastic bar response with 

bond plastification ; (c) plastic (yielded) bar response with bond plastification. 

 In case the available bond length is sufficient or if transverse confinement acts 

normal to the contact surface thereby generating secondary strength reserves for the bond 

εo 

Lb 

x 

𝜺𝒐 ≤ 𝜺𝒔𝒚 

𝒔𝒐 ≤ 𝒔𝟏 

𝒇𝒃 ≤ 𝒇𝒃
𝒎𝒂𝒙 

𝒇𝒃
𝒆  

𝒔𝒇 

(a) 

𝜺𝒆𝒍
𝒊𝒊  

𝒇𝒃
𝒆  

𝒔𝒇 

𝒇𝒃
𝒎𝒂𝒙 

𝜺𝒐 ≤ 𝜺𝒔𝒚 

𝒔𝒐 ≤ 𝒔𝟐 

lp 

εo 

Lb 

x 
(b) 

𝒔𝟏 

𝒇𝒃
𝒆  

𝒇𝒃
𝒎𝒂𝒙 

𝒇𝒃
𝒓𝒆𝒔 

𝜺𝒐 ≥ 𝜺𝒚 𝜺𝒆𝒍
𝒊𝒊𝒊 𝜺𝒔𝒚 

𝒔𝟏 
𝒔𝟐 𝒔𝟑 

𝒔𝒇 

lp lr 

εo 

Lb 

x 
(c) 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



122 

 

mechanism, then the bar may sustain a strain value higher than 휀𝑒𝑙
𝑖  [Fig. 5.3 (b)]. In that case, 

the maximum bond stress may reach the characteristic strength value  𝑓𝑏
𝑚𝑎𝑥, over a length 

of bond plastification 𝑙𝑝. The complete solution of Eq. 5.4 over 𝐿𝑏 (starting from the loaded 

end and proceeding toward the end of the anchorage) comprises two segments as follows.  

(a) Distributions of bar strain, slip and bond stress over the length 𝑙𝑝 (for 0 ≤ 𝑥 ≤ 𝑙𝑝) are 

obtained considering that fb(s)=fb
max = constant (thus the bar stress and strain varies as a 

linear function of distance over the segment lp where bond is plastified: 

x
DE

f
x

bs

b
o 


−=

max4
)(                                                     (5.9) 

𝑠(𝑥) = 𝑠1 + 0.5(𝑙𝑝 − 𝑥)[휀(𝑥) + 휀𝑒𝑙
𝑖𝑖 ]                                      (5.10) 

𝑓𝑏(𝑥) = 𝑓𝑏
𝑚𝑎𝑥                                                      (5.11) 

where, 휀𝑒𝑙
𝑖𝑖  is the attenuated value of the bar strain as compared with the 휀𝑜 value which 

occurs at the loaded end.  Note that  휀𝑒𝑙
𝑖𝑖  now occurs at the end of the bond plastification 

region, 𝑙𝑝: 
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                                             (5.12) 

 For the distributions of bar strain, slip and bond stress over the remaining anchorage 

length (which is still in the elastic range), 𝐿𝑏 − 𝑙𝑝 (for 𝑙𝑝 ≤ 𝑥 ≤ 𝐿𝑏), these are obtained from 

the elastic solution Eq. 5.5-5.7 : 

휀(𝑥) =
𝜀𝑒𝑙
𝑖𝑖

1−𝑒−2𝜔(𝐿𝑏−𝑙𝑝)
(𝑒−𝜔(𝑥−𝑙𝑝) − 𝑒𝜔(𝑥−𝑙𝑝)−2𝜔(𝐿𝑏−𝑙𝑝))                (5.13) 

𝑠(𝑥) =
𝜀𝑒𝑙
𝑖𝑖

𝜔(1−𝑒−2𝜔(𝐿𝑏−𝑙𝑝))
(𝑒−𝜔(𝑥−𝑙𝑝) + 𝑒𝜔(𝑥−𝑙𝑝)−2𝜔(𝐿𝑏−𝑙𝑝))            (5.14) 

𝑓𝑏(𝑥) = (𝑓𝑏
𝑚𝑎𝑥 𝑠1⁄ ) ∙ 𝑠(𝑥) ≤ 𝑓𝑏

𝑚𝑎𝑥                          (5.15) 

The length of plastification 𝑙𝑝, is estimated if continuity of strain and slip are enforced at 𝑥 =

𝑙𝑝. 

5.3.2 Bond-Slip Distribution along the Anchorage of an Elastoplastic Bar 

Solution of Eq. 5.4 for an elastoplastic steel bar is explored only after yielding, because the 

preceding section fully describes the bar’s elastic behavior. The bar strain at the onset of 
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yielding is denoted by 휀𝑠𝑦 whereas  𝐸𝑠ℎ is the strain hardening modulus of the stress-strain 

relationship in the postyielding regime.  

The last case examined in the present model is depicted in Fig. 5.3c and it concerns 

yield penetration (spread of strains beyond yielding) in the steel bar inside the anchorage 

with simultaneous plastification of bond.  The length of yield penetration is denoted by 𝑙𝑟.  

In the segment (0, 𝑙𝑟), the bond stress is equal to 𝑓𝑏
𝑟𝑒𝑠. Also, the distribution of strains is 

linear, ranging from 휀(𝑥 = 0) = 휀𝑜 at the loaded end, to the value 휀(𝑥 = 𝑙𝑟) = 휀𝑠𝑦 at the 

end of the yielded region (Fig. 5.3c). Slip at each point is obtained from integration of strains 

from the point considered to the unloaded end of the anchorage.  

The strain, slip, and bond stress expressions governing this problem in the three 

distinct regions are given as follows. Over the debonded length 𝑙𝑟 (for 0 ≤ 𝑥 ≤ 𝑙𝑟) (Eq. 5.16 

is obtained from Eq. 5.4 for a constant bond stress 𝑓𝑏
𝑟𝑒𝑠): 

     x
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f
x

bsh

res

b
o

4
)( −=                                                (5.16) 

𝑠(𝑥) = 𝑠2 + 0.5(𝑙𝑟 − 𝑥)[휀(𝑥) + 휀𝑦]                               (5.17) 

𝑓𝑏(𝑥) = 𝑓𝑏
𝑟𝑒𝑠                                                 (5.18) 

Over the length 𝑙𝑝 where bond has exceeded the plasticity limit (for 𝑙𝑟 ≤ 𝑥 ≤ 𝑙𝑟 + 𝑙𝑝 ): 
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x −−=                                              (5.19) 

𝑠(𝑥) = 𝑠1 + 0.5(𝑙𝑟 + 𝑙𝑝 − 𝑥)[휀(𝑥) + 휀𝑒𝑙
𝑖𝑖𝑖]                               (5.20) 

𝑓𝑏(𝑥) = 𝑓𝑏
𝑚𝑎𝑥                                                 (5.21) 

Over the remaining bonded length 𝐿𝑏 − 𝑙𝑟 − 𝑙𝑝  (for 𝑙𝑟 + 𝑙𝑝 ≤ 𝑥 ≤ 𝐿𝑏 ): 

휀(𝑥) =
𝜀𝑒𝑙
𝑖𝑖𝑖

1−𝑒−2𝜔(𝐿𝑏−𝑙𝑝−𝑙𝑟)
(𝑒−𝜔(𝑥−𝑙𝑝−𝑙𝑟) − 𝑒𝜔(𝑥−𝑙𝑝−𝑙𝑟)−2𝜔(𝐿𝑏−𝑙𝑝−𝑙𝑟))                (5.22) 

𝑠(𝑥) =
𝜀𝑒𝑙
𝑖𝑖𝑖

𝜔(1−𝑒−2𝜔(𝐿𝑏−𝑙𝑝−𝑙𝑟))
(𝑒−𝜔(𝑥−𝑙𝑝−𝑙𝑟) + 𝑒𝜔(𝑥−𝑙𝑝−𝑙𝑟)−2𝜔(𝐿𝑏−𝑙𝑝−𝑙𝑟))                 (5.23) 

where, according with the linear ascending branch of the bond-slip law, it is: 

𝑓𝑏(𝑥) = (𝑓𝑏
𝑚𝑎𝑥 𝑠1⁄ ) ∙ 𝑠(𝑥) ≤ 𝑓𝑏

𝑚𝑎𝑥                          (5.24) ΚO
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In Equation (5.22) term 휀𝑒𝑙
𝑖𝑖𝑖 is the strain at  𝑥 = 𝑙𝑟 + 𝑙𝑝, i.e., the point of transition from 

elastic to plastic bond stress (Fig. 5.3c ) and it is calculated from Equation 5.19.  

Thus, yield penetration occurs over the segment 𝑙𝑟 of the anchorage where strain 

exceeds 휀𝑠𝑦; this phenomenon is accompanied by a sudden increase of slip (Eq. 5.17) with a 

commensurate reduction of bond strength to 𝑓𝑏
𝑟𝑒𝑠 over the yielded bar length.  

5.4 Disturbed Region on Shear Span of a Flexural Member  

It was mentioned earlier that spread of inelastic strains occurs on both sides of a critical 

section (e.g. at the base of a column).  The process of inelastic strain penetration in the 

anchorage of a reinforcing bar has been demonstrated in the previous section. This section 

is dedicated to solving the same problem in the other side of the critical section, that is, over 

the disturbed region along the shear span of a column.  Here the problem is different from 

that of the anchorage in the type of boundary conditions that may be enforced for the 

governing differential equation, Eqs. (5.4).  The bond-slip law has the same multilinear 

envelope as in the case of an anchorage, however the bond strength value, fb
max, is a function 

of the available transverse reinforcement.     

5.4.1 Evaluation of Disturbed Length on Crack Initiation 

For the stage prior to the occurrence of cracking along the length of the flexural member, the 

bar strain is estimated from the flexural analysis of the uncracked column cross section (i.e. 

from the moment-curvature analysis, Fig. 5.4a):  

gr
na,sfl y)x()x( =           (5.25a) 

This is expressed explicitly as:  

bcovcg
gc

cg
gc

fl 0.5DC
2

h
y;

AE

N
y

IE

M(x)
ε −−=−


=    ;    

g

g
cg

gr
na,s

A

I

M

N
yy −=    (5.25b) 

where M(x), N (+ for compression) and φ(x) are the flexural moment, axial load and flexural 

curvature acting on the member section at distance x from the support, Ec is the elastic 

modulus of concrete, Ig and Ag are the moment of inertia and the uncracked cross section 

area, h is the section height and Ccov is the clear cover (Fig. 5.4a).  Parameters yc,g and ys,na
gr 

are the distances of the centroid of tension reinforcement to the centroid of the uncracked 

cross-section and to the neutral axis location, respectively (Fig. 5.4a). The distance to the 
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neutral axis changes significantly from the initial linear elastic state gr
na,sy , to the cracked state 

of a cross section, cr
na,sy .  Generally, the position of the neutral axis may be estimated from 

equilibrium requirements, both in the uncracked cross sections as well as at the crack 

locations assuming “plane sections remain plane”. From the flexural analysis perspective, 

when the flexural moment M(x) exceeds the cracking moment, Mcr, even by a small amount, 

then the member may be considered cracked in the neighborhood of x.  Although a large 

region may satisfy this definition, however, cracks occur at discrete locations xcr,i. Thus, if 

an analysis of the cracked cross section is available, the tension reinforcement strains ε(xcr,i) 

that occur in the crack locations may be calculated from:            

( ) ( ) cr

nas,icr,icr, yxxε =                                                 (5.26)  

In the segment between successive cracks where moment exceeds the cracking value, 

bar strains cannot be estimated from flexural analysis as prescribed by Eq. (5.26). Owing to 

reinforcement slip, the degree of strain compatibility between steel and concrete in these 

Figure 5.4: Definition of terms: a) Cross sectional flexural analysis. b) Bar strain distribution along 

the shear span Ls: stage prior to cracking (red); response into the disturbed region ℓD1 (blue).  c) 

Moment - bar strain diagram.   

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



126 

 

locations is not well understood, as would be required by the “plane-sections remain plane” 

assumption, nor can the concrete be considered inert as would happen in a fully cracked 

tension zone.  Because it takes some distance from a crack location before the reinforcement 

may fully engage its concrete cover in tension again so as to satisfy the conditions of strain 

compatibility, Eq. (5.26) is invalid even in the region immediately adjacent to the last 

flexural crack in the shear span, although the flexural moment is below the cracking limit in 

that region.  Bar strain over cracked segments of the member may be estimated from solution 

of Eq. (5.4). To address all the possible exceptions to the validity of the flexural requirement 

stated by Eqs. (5.25,5.26), here the term “undisturbed” is used as a qualifier to “un-cracked” 

in order to refer to sections that also satisfy “the plane sections remaining plane” 

compatibility requirement.  As a corollary, where strains are obtained from solution of the 

bond equation, the region is “disturbed”.   

The flexural moment at a distance x from the face of the support is estimated with 

reference to the flexural moment at the support, Mo (εo is the bar tension strain, at x=0, Fig. 

5.4b):  

 𝛭(𝑥) = 𝛭0 ∙ (1 − 𝑥 𝐿𝑠⁄ )                                            (5.27) 

As the sequence of crack formation is critical for the occurrence of disturbed regions 

and for the problem of strain penetration that will be subsequently addressed, in the present 

discussion the static problem represented by Eq. (5.27) will be solved for a gradually 

increasing value of the support moment, Mo. It is assumed that the characteristic flexural 

resistance curve (moment-curvature) of any cross section along the shear span (i.e. the 

moment – curvature and moment – bar strain diagram) is available from classical flexural 

analysis (plane-sections) for the entire range of response.    

For a member with continuous primary reinforcement over the shear span, Ls, the 

moment distribution that follows Eq. (5.27) will cause first cracking at the face of the support 

(xcr,1=0, Fig. 5.4b). Upon cracking of the tension zone the bar strain experiences a significant 

jump to maintain equilibrium (Fig. 5.4c).  For example, if the cracked section stiffness is 

about 1/3 of the uncracked value, the bar strain at the critical section is expected to increase 

threefold by the mere occurrence of the crack even though the moment change from the 

uncracked to the cracked stage may be imperceptible. Thus suddenly the whole region 

adjacent to the cracked location becomes “disturbed”.  Over the length of the disturbed 

region, ℓD1 (Fig. 5.4b) the reinforcement strain is described by the solution of the bond 
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equation (Tastani et. al. 2013) i.e.:   

휀(𝑥) = 𝐶1 ∙ 𝑒
−𝜔𝑥 +  𝐶2 ∙ 𝑒

𝜔𝑥 ,  where,  𝜔 = [4𝑓𝑏
𝑚𝑎𝑥 (𝐸𝑠 ∙ 𝐷𝑏 ∙ 𝑠1)⁄ ]0.5        (5.28) 

The solution of Eq. (5.28) is valid provided bond is in the elastic range (ascending 

branch in the bond slip law, Fig. 5.2b).  Before the creation of a second crack, the following 

conditions characterize the end of the disturbed region at x= ℓD1: 

a) the slope of the bar strain distribution, ψ=dε(x)/dx, obtained from differentiation of Eq. 

(5.28), matches that of the strain diagram as would be obtained from Eq. (5.25b): 

𝜓 = 𝑑휀(𝑥) 𝑑𝑥⁄ = 𝜔 ∙ (−𝐶1 ∙ 𝑒
−𝜔ℓ𝐷1 +  𝐶2 ∙ 𝑒

𝜔ℓ𝐷1) = − [(𝑀0 ∙ 𝑦𝑐𝑔) 𝐸𝑐𝐼𝑔⁄⏟          
𝜀𝑒𝑙
𝑜

] ∙ 1 𝐿𝑠⁄         (5.29a)  

b) the bar strain ε(ℓD1) satisfies both Equations (5.25b), and (5.28):  

휀(ℓ𝐷1) = 𝐶1 ∙ 𝑒
−𝜔ℓ𝐷1 +  𝐶2 ∙ 𝑒

𝜔ℓ𝐷1 = 휀𝑒𝑙
𝑜 ∙ (1 − ℓ𝐷1 𝐿𝑠⁄ ) − 𝑁 (𝐸𝑐 ∙ 𝐴𝑔)⁄            (5.29b) 

Given the axial load N and the bar strain at the support ε(x=0)=εo the corresponding 

moment Mo is obtained from the moment-curvature analysis of the cracked section.  A 

boundary condition of Eq. (5.28) is: 

휀(0) = 𝐶1 +  𝐶2 = 휀𝜊                                                    (5.29c) 

Unknowns of the system of Eqs. (5.29) are, the disturbed length ℓD1 (Fig. 5.4b), and 

the coefficients C1 and C2.  In an algorithm developed to solve Eqs. (5.29) numerically, the 

controlling parameter is εo; required input includes the axial load, N, shear span Ls, the bond-

slip characteristic property  (Eq. 5.28), and the member material and cross-sectional 

properties.  Coefficients C1, C2 are obtained from (5.29b) and (5.29c): 

𝐶1,2 = 0.5 ∙ 𝑒
𝛽∙𝜔ℓ𝐷1 [휀𝑒𝑙

𝜊 ∙ (1 −
ℓ𝐷1
𝐿𝑠
+

𝛽

𝜔𝐿𝑠
) − 𝑁 (𝐸𝑐 ∙ 𝐴𝑔)⁄ ] 

where =1 for C1, and = -1 for C2                                           (5.30) 

The value of ℓD1  is determined by solving Eq. (5.29a) after substitution of C1, C2.  

5.4.2 Formation of Additional Flexural Cracks in the Shear Span 

Increasing the reinforcement strain value at the critical section, εo, corresponds to a higher 

flexural moment Mo at the support.  Based on Eq. (5.27), the flexural moments exceed the 

cracking moment up to a distance xcr from the support: ( )ocrscr /MM1Lx −= .  But the 

position of the next crack is not necessarily at xcr; rather, it is controlled by tension stiffening 
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of the reinforcement.    

(a) To determine if the next crack forms within ℓD1, (Fig. 5.4b) the force transferred through 

bond to the concrete cover (i.e. EsAs1[εo-ε(x)]) is compared with the tensile resistance of 

the effective area of concrete cover engaged in tension (i.e. fctAc.eff, EN 1992-1-1 2004) 

[(𝐸𝑠 ∙ 𝐴𝑠1) (𝑓𝑐𝑡 ∙ 𝐴𝑐.𝑒𝑓𝑓)⁄ ] ∙ [휀𝑜 − 휀(𝑥)] ≥ 1,   𝐴𝑐.𝑒𝑓𝑓 = 𝑏 ∙ (2𝐶𝑐𝑜𝑣 +𝐷𝑏) − 𝐴𝑠1       (5.31) 

where, As1 is the area of the tensile reinforcement, Ac.eff  is the area of concrete effectively 

engaged in tension (shaded area around As1 in Fig. 5.4a), fct is the tensile concrete 

strength, and b is the width of the section of the column (Fig. 5.4a).  The lowest value of 

x=xcr,2 < ℓD1 that satisfies Eq. (5.31) determines the location of the next crack; otherwise 

no further cracking is possible within ℓD1 as long as the reinforcement remains elastic.    

(b) Alternatively, the next possible crack location, xcr,2 ≥ ℓD1 in the undisturbed region (Fig. 

5.4b) is also evaluated from Eq. (5.25b) (here, εc.cr  is the cracking concrete strain):     

    

휀(𝑥) = 휀𝑒𝑙
𝜊 (1 − 𝑥 𝐿𝑠⁄ ) − 𝑁 (𝐸𝑐 ∙ 𝐴𝑔)⁄ = 휀𝑐.𝑐𝑟 ⇒ 𝑥𝑐𝑟,2 = 𝐿𝑠 ∙ [1 − 휀𝑐.𝑐𝑟 휀𝑒𝑙

𝜊 −𝑁/(𝐸𝑐𝐴𝑔⁄ 휀𝑒𝑙
𝜊 )]             

(5.32) 

Slip in the disturbed region is obtained from integration of bar strains (from x=0 to 

x= ℓD1).  

𝑠(𝑥) =
1

𝜔
(𝐶1 ∙ 𝑒

−𝜔𝑥 −  𝐶2 ∙ 𝑒
𝜔𝑥) + 𝐶                                (5.33) 

The constant of integration, C is obtained from the requirement of compatibility of 

strains in the concrete and reinforcement at the end of the disturbed zone, x=ℓD1 where the 

local slip is zero (s(ℓD1)=0). After localization of the second crack at xcr,2, the next step of the 

solution is the determination of the new disturbed region ℓD2  (along with the updated values 

of the constants C1, C2). This initiates from the crack location xcr,2 and extends towards the 

span until the requirements of slope coincidence and continuity are reached, at coordinate 

xcr,2  + ℓD2 in Eqns. (5.29a-b) (Fig. 5.5a).  In using the closed form expression of Eq. (5.28), 

the value of x is substituted by the value x-xcr,2; this solution is valid for x   [xcr,2 , xcr,2+ℓD2]). 

The bar strain εcr,2 at the location of the second crack (Fig. 5.5a) is the outcome of the flexural 

analysis of the cracked section and corresponds to the moment at that location according to 

Eq. (5.27) for x=xcr,2.  In the search of the new disturbed region, an additional requirement 

is that slip at the location xcr,2 should not exceed the limit s1 in Eq. (5.33) (where x is 

substituted by x-xcr,2),securing that bond is still elastic inside ℓD2 (Fig. 5.5a). 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



129 

 

This process is repeated following the gradual increase in the value of bar strain εo at 

the support, until no additional primary cracks can be identified. This point corresponds to 

stabilization of cracking, and it generally occurs at a strain value in the critical section that 

is less than the strain at yielding, o
stbl<y.  From this stage and until failure of the structural 

member, for the sake of simplicity of the mathematical problem, the so called total disturbed 

region ℓDο  is defined as the total distance measured from the support to the end of the 

disturbed region of the last (and remotest) crack that was formed prior to stabilization, ℓD,n 

(Fig. 5.5b). Since bond development controls the total disturbed region, from that point 

onwards the field equations (Eq. (5.4)) are solved in ℓDο ignoring the presence of intermediate 

discrete cracks or the flexural moment requirements, since the “plane sections” assumption 

is not valid anywhere over this entire region; upon further increase of the bar strain at the 

support, the ℓDo length may increase further as the disturbed zone penetrates towards the tip 

of the cantilever column.  

Following cracking stabilization and beyond yielding of the steel bar (εο>εy), the 

yielded segment of the disturbed region undergoes simultaneous degradation of bond.  Thus, 

of the total length ℓDο, there is a segment lr where yielding penetrates and spreads with 

increasing value of εο (Fig. 5.5b). Owing to bar yielding, bar strains increase over lr without 

a commensurate increase of stress: this means that bond must have degraded to zero as a 

consequence of Eq. (5.4a), since df/dx=0 and thus fb=0.  This segment may be considered 

debonded.  Even if the yield-plateau is neglected, and the bar stress-strain diagram is 

considered bilinear with some hardening (Fig. 5.2a), it is clear that the small hardening slope 

may only be supported by the residual bond strength – in other words in order for a bar to 

yield, it must have slipped beyond the limit s2 in the bond - slip law (Fig. 5.2b). Limit s2 is 

not an intrinsic property of the bar–concrete interface as it is generally assumed by Design 

Codes (fib Model Code 2010), but rather, it depends on the available bonded length (Tastani 

et. al. 2013).   

Solution for the distributions of strain, slip and the state of bond over the disturbed 

region ℓDο of the shear span of a column under lateral sway follows that obtained when 

considering yield penetration in a bar anchorage (Section 5.3).  Here, the disturbed region 

ℓDο comprises the sequence of the following segments (Fig. 5.5b): the yield penetration 

length lr (immediately adjacent to the support), the bond plastification length lp (i.e. the 

length where the bar is elastic but bond is constant and equal to the value at the plateau of 

the bond slip law fb
max); Bar axial stress and bond stress are elastic in the tail length of the 
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disturbed region. The solution of the bond equations for the different segments is given 

below:     

For  0 ≤ 𝑥 ≤ 𝑙𝑟:                   휀(𝑥) = 휀𝜊 −
4𝑓𝑏

𝑟𝑒𝑠

𝐸𝑠ℎ𝐷𝑏
𝑥         ;       𝑓𝑏(𝑥) = 𝑓𝑏

𝑟𝑒𝑠                           (5.34a) 

𝑠(𝑥) = 𝑠2 + 0.5(𝑙𝑟 − 𝑥)[휀(𝑥) + 휀𝑦 ]   →   x=0:    so=s2+0.5·lr(εο+εy)            (5.34b) 

For  𝑙𝑟 ≤ 𝑥 ≤ 𝑙𝑟 + 𝑙𝑝:       휀(𝑥) = 휀𝑦 −
4𝑓𝑏

𝑚𝑎𝑥

𝐸𝑠𝐷𝑏
(𝑥 − 𝑙𝑟)       ;     𝑓𝑏(𝑥) = 𝑓𝑏

𝑚𝑎𝑥                      (5.35a) 

𝑠(𝑥) = 𝑠1 + 0.5(𝑙𝑟 + 𝑙𝑝 − 𝑥)[휀(𝑥) + 휀𝑒𝑙
3 ]    →   x=lr:  s2=s1+0.5·lp·(εy+εel

3)          (5.35b) 

휀𝑒𝑙
3 = 휀𝑦 −

4𝑓𝑏
𝑚𝑎𝑥

𝐸𝑠𝐷𝑏
𝑙𝑝                                                   (5.35c) 

For  𝑙𝑟 + 𝑙𝑝 ≤ 𝑥 ≤ ℓ𝐷𝑜:    

  휀(𝑥) = 𝐶1𝑡 ∙ 𝑒
−𝜔(𝑥−𝑙𝑝−𝑙𝑟) + 𝐶2𝑡 ∙ 𝑒

𝜔(𝑥−𝑙𝑝−𝑙𝑟)       𝑓𝑏(𝑥) =
𝑓𝑏
𝑚𝑎𝑥

𝑠1
∙ 𝑠(𝑥)                  (5.36a) 

                                 𝑠(𝑥) =
1

𝜔
(𝐶1𝑡 ∙ 𝑒

−𝜔(𝑥−𝑙𝑝−𝑙𝑟) − 𝐶2𝑡 ∙ 𝑒
𝜔(𝑥−𝑙𝑝−𝑙𝑟)) + 𝐶𝑡                            (5.36b) 

 

Unknowns ℓDo, C1t, C2t and the constant of integration Ct are obtained from boundary 

conditions at x = ℓDo (namely slope and strain continuity and slip compatibility - zero relative 

displacement) between strain distributions obtained from the bond development equation 

and from flexural analysis.  Therefore reinforcement slip is:  at x=lr+lp, s(x)=s1; at x = ℓDo , 
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Figure 5.5: a) Disturbed region ℓD2 after formation of the 2nd crack.  b) Total disturbed region 

ℓDo after stabilization of cracking. Plastic hinge in (b): includes yield penetration length lr.  

Strain 

distribution 

Bond 

distribution 

Slip 

distribution 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



131 

 

s(ℓDo)=0 (i.e., no slip).  The following system of boundary conditions is therefore 

established: 

 a) Slope continuity of the strain distributions at x = ℓDo: 

𝜔 ∙ (−𝐶1𝑡 ∙ 𝑒
−𝜔(ℓ𝐷𝑜−𝑙𝑟−𝑙𝑝) +  𝐶2𝑡 ∙ 𝑒

𝜔(ℓ𝐷𝑜−𝑙𝑟−𝑙𝑝)) = − [(𝑀0 ∙ 𝑦𝑐𝑔) 𝐸𝑐𝐼𝑔⁄⏟          
𝜀𝑒𝑙
𝑜

] ∙ 1 𝐿𝑠⁄   (5.37a) 

 b) Continuity of strains at x = ℓDo: 

휀(ℓ𝐷𝑜) = 𝐶1𝑡 ∙ 𝑒
−𝜔(ℓ𝐷𝑜−𝑙𝑟−𝑙𝑝) +  𝐶2𝑡 ∙ 𝑒

𝜔(ℓ𝐷𝑜−𝑙𝑟−𝑙𝑝) = 휀𝑒𝑙
𝑜 ∙ (1 − ℓ𝐷𝑜 𝐿𝑠⁄ ) − 𝑁 (𝐸𝑐 ∙ 𝐴𝑔)⁄      (5.37b) 

c) Continuity of slip at x=lr+lp: 

𝑠 ∙ (𝑙𝑟 + 𝑙𝑝) =
1

𝜔
(𝐶1𝑡 − 𝐶2𝑡) + 𝐶𝑡 = 𝑠1                              (5.37c)     

               

d) Continuity of strain at x=lr+lp: 

  휀(𝑙𝑟 + 𝑙𝑝) = 𝐶1𝑡 + 𝐶2𝑡 = 휀𝑒𝑙
3                                       (5.37d) 

The length of yield penetration lr (Eq. 5.38) may be estimated considering the continuity of 

strain at x=lr  (in Eq. (5.34a)). 

       
res

b

bsh
yor

f

DE
l

4
)( −=                                                (5.38) 

Equation (5.38) for the yield penetration length (which defines the plastic hinge) has 

two interesting implications:  first, it is a strain-based criterion for the spread of yielding in 

the shear span, as opposed to the stress-based definition given by Eqn. (5.2b); there the 

coefficient a refers to the flexural overstrength normalized by the yielding moment. A second 

more subtle point is the observation that the plastic hinge length is influenced by several 

parameters indirectly, through the determining effect that these have on fb
res. For example 

the presence of axial load on a member that undergoes cyclic displacement reversals 

weakens the cover over a larger portion of the shear span length leading to cover 

delamination due to excessive compressive strains; upon reversal of load, the crushed cover 

cannot support significant bond action for the reinforcement when it is stressed in tension, 

leading to a reduced value of fb
res, which in turn causes increased penetration depth for 

columns carrying a higher axial load; this is consistent with experimental reports (Watson 

et. al. 1994, Bae et. al. 2008). ΚO
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5.4.3 Proposed Algorithm 

The following algorithm (Fig. 5.6) is established in order to define the locations of 

primary cracks and bar strain, slip and bond distribution along the shear span Ls of a laterally 

loaded reinforced concrete column as well as the yield penetration length:       

Initial Data:  Using standard section analysis obtain M- and M-ε diagrams (or better a 

unified diagram M- -ε) given N for the typical section of the reinforced concrete column 

studied. 

1st Step: Select value of bar strain, εo
(1)=εo, after crack formation at the support (Eqs. 

5.25,5.27). 

2nd Step: Find the corresponding moment, Mo at the support, from moment-bar strain 

diagram.  Solve for the length of the disturbed region ℓD1 emanating from the first crack 

(Eqs. 5.27-5.30).  

3rd Step: Increase strain at critical section to εo
(2) = εo

(1) +εo.  Find the location xcr,2 of the 

second crack. Check if second crack will occur: (a) inside ℓD1 according to Eq. (5.31), or (b) 

in the undisturbed region Ls- ℓD1, according to Eq. (5.32). 

4th Step: (a) If next crack forms within ℓD1, repeat Step 3 for εo
(3) = εo

(2) +εo.  (b) Otherwise, 

find the new distrurbed region ℓD2 that extends beyond xcr,2.   

5th  Step:  Find total disturbed length,  ℓDo=xcr,2+ ℓD2 

6th  Step: Solve for ε(x), s(x), f(x), fb(x) for xcr,2≤x≤ℓDo from Eqs. (5.28, 5.29, 5.30, 5.33) (Fig. 

5.5a).  In this phase of the solution and up to stabilization of cracking elastic bond is assumed 

in ℓD2 (Fig. 5.5a). Thus the distributions can be described by the Eqs. (5.36) after substituting 

lr=0 and lp=0.  For Ls-ℓDo<x<Ls, (elastic column) Eqs. (5.25,5.27) are used.  

7th Step: Repeat steps 2 to 6 for εo
(i) = εo

(i-1) +εo until stabilization of cracking (i.e., no more 

primary cracks can develop:  
)i(

o
stbl
o  = ). Final length of disturbed zone is obtained from 

the nth increment using this procedure: ℓDo=xcr,n+ ℓD,n. 

8th Step:  Increase εo
(i) = εo

(i-1) +εo > stbl
o .  Solve for one continuous disturbed region ℓDo 

 xcr,n+ ℓD,n allowing for bond plastification and debonding as well as bar yielding (anchorage 

solution) up to either (a) εo exhausting the ultimate strain of the M-ε diagram, or (b) ℓDo 

exceeding the available development length of the bar in the shear span, taken here as 

(Ls+hhook), where hhook refers to the bent length of a hooked anchorage (according with fib 
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Model Code (2010) the contribution of a hook to the strength of an anchored bar is 50Abfb
max, 

which corresponds to an additional anchored length, Lb=hhook=12.5Db). If (b) controls, 

continue beyond that point for higher strains using the anchorage solution presented in 

Section 5.3 for the entire length ℓDo. 

9th Step: The last converged value of lr in the shear span (Fig. 5.5b) is added to the 

corresponding yield penetration length into the anchorage (Section 5.3) resulting in the 

definition of the total plastic hinge length ℓpl. 

5.5 Numerical Examples 

In the context of the present chapter, the length of plastic hinge is by definition the length of 

yield penetration (thus ℓpl=lr), occurring from the critical section towards both the shear span 

and the anchorage; physically it refers to the extent of the region where nonlinear reinforcing 

strains occur, and it may be used to calculate the inelastic rotation capacity of the column.  

The solution algorithm developed is applied in this section in order to establish the 

parametric sensitivities of the estimated plastic hinge to the important design parameters. It 

is also used to correlate the behaviour of the plastic hinge spread in three published column 

tests that were conducted to illustrate the effect of axial load on the length of the plastic hinge 

region (Saatcioglu et.al. 1989, Bae et.al. 2008). 

The three column experiments studied in the chapter are specimens U3 (Saatcioglu 

et.al. 1989), S17-3UT and S24-4UT (Bae et.al. 2008). Column specimens were tested as 

cantilevers, simulating half a clear column length under lateral sway such as would occur 

during an earthquake with cross section detailing as shown in Fig. 5.7a.  Column U3 is 

analysed in detail and results are summarized in Table 5.1, whereas results of S17-3UT and 

S24-4UT are directly included in Table 5.1 for easy correlation.  

5.5.1 Column U3 (Saatcioglu et.al. 1989) 

The specimen had a 350 mm square cross section reinforced with eight evenly distributed 

longitudinal reinforcing bars of Db=25mm and stirrups of Db,st=10mm spaced at 75mm o.c. 

(on centers) and clear cover Ccov=32.5mm (i.e., d=350-45=305mm), see Fig. 5.7a.  Concrete 

strength was fc
’=34.8MPa. Longitudinal steel yielding strength was 430MPa with a 5% 

hardening.  Stirrup yield strength was 470MPa.   
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Figure 5.6: a Flow-chart of the established algorithm for the definition of the bond state in the disturbed region 

of the shear span as well as of the plastic hinge length.  

 

 

The last converged value of lr in the shear span 

(Fig. 4b) + yield penetration length into the 

anchorage = total plastic hinge length ℓpl. 

 

Increase εo
(i) = εo

(i-1) +εo > 
stbl
o .  Solve for one 

continuous disturbed region ℓDo  xcr,n+ ℓDn  up to either (a) 

εo ultimate strain of the M-ε diagram, or (b) ℓDo exceeding 

the available development length of the bar in the shear 

span. 

 

 

 

Increase strain εo
(2) = εo

(1) +εo.  

Check location xcr,2 (Eqs. 5.32). 

Section analysis to obtain M- 

and M-ε diagrams. 

 

Bar Strain, εo
(1)=εo, after crack 

formation at the support (Eqs. 

5.25,5.27). 

 

Calculation of moment Mo and 

length of the disturbed region ℓD1 

(Eqs. 5.27-5.30). 

Crack within ℓD1, repeat previous 

Step for εo
(3) = εo

(2) +εo. 

Otherwise, new distrurbed 

region ℓD2. 

Find total disturbed length, 

ℓDo=xcr,2+ ℓD2. 

 

 

Solve for ε(x), s(x), f(x), fb(x) for xcr,2≤x≤ℓDo 

from Eqs. (5.28, 5.29, 5.30, 5.33).  Define 

distributions by the Eqs. (5.36) after 

substituting lr=0 and lp=0.  For Ls-

ℓDo<x<Ls, (elastic column) Eqs. (5.25,5.27) 

are used. 

 

Repeat steps for εo
(i) = εo

(i-1) 

+εo until stabilization of 

cracking 

(
)i(

o
stbl
o  = ). Final 

length of disturbed zone for 

nth increment: ℓDo=xcr,n+ 

ℓDn. 
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Table 5.1: Summary of the analyzed experiments (units: mm, MPa) 

 

 
 Experimental details Analysis 

Test 

ID 

ν=N/ 

(fc
’bd) 

Column geometry Reinforcement Anchorage Shear span Column deformation at ultimate 

U3 

0.16 

fc
’=34.8 

Square section 

h=350, 

Ccov=32.5 

d=305, 

Sh. span,  

Ls=1000 

Long: 8 evenly 

distributed bars, 

Db=25,  fy=430 

Esh=5%Es 

Trans: 10@75 

fy,st=470 

 

fb
max=1.25√fc

’=7.40s1 

=0.2 

Lb =812 

su
anch(x=0)=2.33 

lr,u =313 

fb
max =7.2, fb

res= 1.44, s1=0.2 

ℓDo
max=Ls+12.5Db=1313 

lr =319 

u=0.0095, u=4.7x10-5 

xc= 103, su
span(x=0)=2.36 

Total  ℓpl : 

 ℓpl =lr,u + lr =632mm=1.8h 

DR=450mm=1.3h  

θu
slip=0.018 

u f= y 
f +pl 

f=0.015 

u=0.033 / u
exp=0.027 

S17-

3UT 

0.5 

fc
’=43.4 

Square section 

h=440, 

Ccov=27 

d=405, 

Shear span,  

Ls=3049 

Long: 12 evenly 

distributed bars, 

Db=15.9,  fy=496 

Esh=5%Es 

Trans: 9.5@86 

fy,st=496 

 

fb
max=1.25√fc

’=8.23s1 

=0.2 

Lb =890 

su
anch(x=0)=1.50 

lr,u =177 

max
cov/w,bf =11.49MPa  

max
cov/wo,bf =5.40MPa 

fb
res=20% fb

max=1.1MPa, s1=0.2 

ℓDo
max=Ls+12.5Db=3248 

lr =271 

u=0.01, u=5.9x10-5 

xc= 236, su
span(x=0)=2.30 

Total  ℓpl : 

ℓpl =lr,u + lr =448mm=h 

DR=450mm=h 

θu
slip=0.012 

u f=0.029 

u=0.041 / u
exp=0.032 
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S24-

4UT 

0.2 

fc
’=36.5 

Square section 

h=610, 

Ccov=49 

d=550, 

Shear span,  

Ls=3049 

Long: 12 evenly 

distributed bars, 

Db=22.2, fy=400, 

Esh=1%Es 

Trans: 9.5@152 

fy,st=455 

 

fb
max=1.25√fc

’=7.55s1 

=0.2 

Lb =890 

su
anch(x=0)=0.98 

lr,u =80 

max
cov/w,bf =8.85MPa  

max
cov/wo,bf

=2.0MPa 

fb
res=20% fb

max=0.4 MPa, s1=0.2 

ℓDo
max=Ls+12.5Db=3327 

lr =301 

u=0.013, u=3.9x10-5 

xc= 217, su
span(x=0)=3.52 

Total  ℓpl : 

ℓpl =lr,u + lr =380mm=0.6h 

DR=350mm=0.57h 

θu
slip=0.01 

u f=0.017 

u=0.027 / u
exp=0.033 

Note: Test U3 by Saatcioglu et.al. 1989 and tests S17-3UT, S24-4UT by Bae et. al. 2008;   DR= Damaged Region 
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Column shear span was Ls=1.0m and the axial load ratio [ν=N/(fc
’bd)] was 0.16. 

Figure 5.7b plots the unified M-- relationship obtained for this axial load using fiber 

section analysis with the modified Kent & Park model for confined concrete (Scott et. al. 

1982); a Hognestad-type parabola was used to model the compression stress-strain 

response of unconfined concrete (Hognestad 1951). A bilinear stress-strain curve with 

5% hardening was used to model longitudinal reinforcement (Fig. 5.2a). Bond strength 

was taken equal to fb
max=1.25√fc

’
 (7.4MPa) for the anchorage (anchorage with hook with 

equivalent straight length of Lb=800mm, fib Model Code 2010).For the shear span the 

bond strength is calculated using a frictional model (Tastani et.al. 2010) that accounts for 

separate contributions of the cover concrete and stirrups according to: 

Figure 5.7:   Specimens U3, S17-3UT and S24-4UT a) cross section details, b) moment - curvature 

- tensile bar strain diagrams. 
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0.33f2C

πD

2μ
f

b

sty,st
ctcov

b

frmax
b                                      (5.39) 

where Nb is the number of tension bars (or pairs of tension spliced bars if 

reinforcement is spliced) laterally restrained by the transverse pressure exerted in the 

form of confinement by the stirrups, Ccov is the clear concrete cover, Ast is the area of 

stirrup legs enclosing the Nb  bars (i.e., the total area of legs crossing the splitting plane), 

s is the stirrup spacing along the member length, μfr is coefficient of friction, fct is the 

concrete tensile strength and fy,st is the yielding strength of stirrups. Therefore the 

maximum bond strength for the shear span is 7.2MPa when considering the contribution 

of the cover, which drops to 2.75MPa after cover delamination (for the present example: 

μfr =1, fct = 0.33√fc
’, Nb = 3).  Due to the reversed cyclic nature of the displacement history, 

cover on the tension reinforcement is assumed to have delaminated or split if during the 

opposite direction of loading the compressive strain has attained the limit value of 0.003; 

this is used also in all other examples considered herein. The residual bond strength fb
res 

is defined as 20% of the maximum bond strength and parameter s1 = 0.2mm; s2 mainly 

depends on the anchorage length which is equal to the shear span if the latter is 

transmitted to total disturbed region. For the present problem, s2 is found equal to 0.5mm 

at the ultimate state of reinforcement (see Fig. 5.8b).  After evaluation of the process of 

crack formation according with the proposed algorithm, the resulting distribution of 

strains is illustrated in Fig. 5.8. Note that stabilization of cracking occurred before 

yielding of the tensile bars (just after formation of the 4th crack). Ultimate strain 

corresponded to a disturbed region extending over the entire length of the column shear 

span including an equivalent additional length equal to 12.5Db (313 mm) –thus 

ℓDo
max=Ls+12.5Db– in order to account for the end detail of reinforcement at the tip of 

the column being welded on a steel plate (this additional length is the anchorage length 

equivalent of a T-headed anchorage according to fib Model Code 2010 – here this is a 

conservative estimate).  The red dashed curve in Fig. 5.8d plots the bar strain distribution 

that results from plane sections analysis; there is marked deviation from the distribution 

controlled by the bond action in the most stressed part of the shear span.  

From Fig. 5.8 it is seen that the yield penetration length over the shear span at the 

last step of the calculation was 319mm (0.91h or 0.32Ls) whereas the corresponding 

pullout slip was su
span(x=0)=2.36mm. When including the yield penetration in the footing 
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as is intended in the formal definition of ℓpl (Eq. 5.2b) - the total plastic hinge length is 

632mm.  (Note that the yield penetration length inside the footing is 313mm or 0.029Dbfy 

and the corresponding slip is su
anch(x=0)=2.33mm.) Figure 5.9a compares this value with 

the empirical estimates of Eqs. (5.3a); the easy estimate of 0.5d is also noted.  Also 

included is the result of the classical definition of plastic hinge length (1-My/Mu)Ls.  

 

Figure 5.8: Column U3 (a), (b) (c) tensile bar strain distributions along the anchorage (blue curves) 

and the shear span (cyan-red-green curves). Location of estimated successive cracks is indicated until 

crack stabilization.  d) Strain state of reinforcement at ultimate, where ℓpl is calculated.  

For comparison it is noted (red dashed line in Fig. 5.8a) that cover delamination 

extended over 520mm measured from the face of the support, according with the 

experimental report of specimen U3 (Saatcioglu et.al. 1989).  Figure 5.9b presents the 

slip distribution lengthwise the bar reinforcement, from where values at critical section 

are used next for the calculation of drift components. The rotation components  slip and 

 f occurring at the critical section of the specimen at yielding and in the ultimate limit 

state are estimated according with Eqs. (5.1) and (5.2) by also adding the contribution 

from the anchorage (Section 5.3); here the theoretical ultimate point corresponds to the 

attainment of the maximum supportable disturbed length, ℓDo
max=Ls+12.5Db=1313mm as 

described in the preceding.  Thus, Eq. (5.1) is modified as follows: 
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𝜃𝑦
𝑠𝑙𝑖𝑝

=
𝑠𝑦
𝑠𝑝𝑎𝑛

𝑑−0.4𝑥𝑐⏟  
𝑠ℎ𝑒𝑎𝑟 𝑠𝑝𝑎𝑛

|𝑥 = 0 +
𝑠𝑦
𝑎𝑛𝑐ℎ

𝑑−0.4𝑥𝑐⏟  
𝑎𝑛𝑐ℎ𝑜𝑟𝑎𝑔𝑒

|𝑥 = 0; 𝜃𝑢
𝑠𝑙𝑖𝑝

=
𝑠𝑢
𝑠𝑝𝑎𝑛

𝑑−0.4𝑥𝑐⏟  
𝑠ℎ𝑒𝑎𝑟 𝑠𝑝𝑎𝑛

|𝑥 = 0 +
𝑠𝑢
𝑎𝑛𝑐ℎ

𝑑−0.4𝑥𝑐⏟  
𝑎𝑛𝑐ℎ𝑜𝑟𝑎𝑔𝑒

|𝑥 = 0       (5.40) 

 

The values sy(x=0) and su(x=0) are the contributions to slip at the base of the 

column resulting from pullout from the anchorage as well as from the shear span.  For 

the analytical estimations of specimen U3, the compression zone depth was (Fig. 5.7b, 

u=0.0095 and u=4.7x10-5mm-1) xc= 103mm (i.e., d-0.4xc=ή 305-41=264mm) and from 

Eq. (5.40) the drift capacity owing to pullout slip was estimated as: 

θu
slip=2.36⁄264+2.33⁄264=0.018rad. Using ℓr=319mm, the ultimate rotation of the column 

due to flexure was: u
f=y

f+pl
f where y

f=y
Ls/3(see also 

Eq.(5.2b)):θu
f=1/3∙0.000013∙1000+(0.000047-0.000013)∙319=0.015rad. Term u

slip 

accounts for 55% of the total rotation capacity of the RC column 

(0.018+0.015=0.033rad). The experimental reported tip displacement at maximum 

moment (268kNm) was 35mm corresponding to a rotation of 0.035rad.  

5.5.2  Column S17-3UT (Bae et.al. 2008) 

The geometry of the column is summarized in Table 5.1 and depicted in Fig. 5.7a. Τhe 

main bars were welded on a steel plate for the application of the load at the tip of the 

column.  This was taken into account in the analysis by including a length of 12.5Db 

(=199mm) as effective extension of the available development length in the shear span. 

Figure 5.7b depicts the results of the moment – curvature - strain analysis.  It is evident 

that cover spalling occurs relatively early at a stage corresponding to bar yielding.  For 

the shear span the maximum and the post-cover delamination values for bond strength 

were estimated from Eq. (5.39) as max
cov/w,bf =11.49MPa and max

cov/wo,bf =5.40MPa (indices 

w/cov and wo/cov correspond to the inclusion or not of the cover contribution). The 

process of detecting the crack formation and the corresponding strain distribution for the 

column are presented in Fig. 5.10. Stabilization of cracking occurred before yielding of 

the tensile bars. Moreover, after spalling of concrete cover, the contribution of the latter 

to bond strength was neglected (thus fb
max= max

cov/wo,bf =5.40MPa). 

As is evident from Fig. 5.10d the maximum sustained yield penetration length 

based on the proposed procedure is 271mm (0.66h or 0.09Ls) in the shear span and inside 

the footing it is 177mm (or 0.022Dbfy). Reported damage extended over a distance of 
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450mm from the base of the column (see experimental reference, red dashed line in Fig. 

5.9a). Figure 5.9a presents the correlation of the analytical estimation with the empirical 

results and Fig. 5.9b the analytically estimated slip distribution lengthwise along the bar 

reinforcement at ultimate strain.   

The rotation of the column at ultimate moment due to slippage u
slip (Eqs. (5.40 

a,b)) is θu
slip=2.30⁄311+1.5⁄311=0.012rad whereas the ultimate rotation of the column due 

to flexure (using ℓr= 271mm) is: θu
flex=1/3∙0.000017∙3049+(0.000059-0.000017) 

∙271=0.029 rad. Thus the total drift is estimated as 0.041rad. The experimental curvature 

corresponding to 20% drop in lateral load capacity (this point was defined on the lateral 

load lateral displacement envelope after correction for the P- effects), was 7x10-5mm-1 

(at the 6th level of cycling) and the associated drift was 0.032rad.  

5.5.3 Column S24-4UT (Bae et.al. 2008) 

Table 5.1 and Fig. 5.7a depict the geometric characteristics of the column specimen. As 

in the previous example, the effective development length of the longitudinal bars in the 

shear span was extended by 12.5Db (= 278mm) to account for welding of main 

reinforcement on a steel plate attached to the point load setup. Figure 5.7b plots the 

calculated moment – curvature - strain diagram, indicating also the onset of cover 

delamination (beyond that point bond strength is reduced due to elimination of the cover 

contribution in Eq. 5.39).  For the shear span fb
max was max

cov/w,bf =8.85MPa and max
cov/wo,bf = 

2.0MPa (with and without the cover contribution). The process of crack formation and 

the resulting bar strain distributions as calculated using the proposed algorithm are shown 

in Fig. 5.11.   

From Fig. 5.11 it is shown that yield penetration length at maximum strain value 

u =0.013 is lr=301mm (=0.5h or 0.1Ls) in the shear span. Adding the length of yield 

penetration in the footing (i.e. 80mm or 0.01Dbfy) the plastic hinge length is estimated at 

380mm. Figure 5.9a presents the correlation of the analytical estimation with the 

empirical results and the reported damage into the shear span, extending up to a distance 

of 350mm. Figure 5.9b shows the estimated slip distribution lengthwise the bar 

reinforcement at ultimate strain.   ΚO
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(a) 

(b) 

Figure 5.9: For specimens U3, S17-3UT and S24-4UT a) analytical calculation of the plastic hinge length ℓpl (purple bar) and its correlation with the design 

equations and b) slip distributions along the bar length at ultimate strain (where ℓpl is calculated). 
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Figure 5.10: Column S17-3UT: (a), (b) (c) tensile bar strain distributions along the anchorage (blue) and 

shear span (cyan-red-green curves).  Location of estimated successive cracks is indicated until crack 

stabilization. d) Strain state of reinforcement at ultimate, where ℓpl is calculated. 

 

Figure 5.11: Column S24-4UT: (a), (b) (c) tensile bar strain distributions in the anchorage (blue) and the 

shear span (cyan-red-green curves).  Location of estimated successive cracks is indicated until crack 

stabilization. d) Strain state of reinforcement at ultimate, where ℓpl is calculated. 

Column rotation capacity at the ultimate moment was estimated as follows: from slip, 

θu
slip=3.52⁄463+ 0.98⁄463=0.01rad and due to flexure θu

flex=1/3 0.000007∙3049+(0.000039-

-1000 0 1000 2000 3000 4000
-5

0

5

10
x 10

-4

Anchorage (-), Shear Span (+) (mm)

T
e
n
s
ile

 B
a
r 

S
tr

a
in

Second Crack Bar Strain Distribution

-1000 0 1000 2000 3000 4000
-5

0

5

10

15
x 10

-4

Anchorage (-), Shear Span (+) (mm)

T
e
n
s
ile

 B
a
r 

S
tr

a
in

Third Crack Bar Strain Distribution

-1000 0 1000 2000 3000 4000
-1

0

1

2

3
x 10

-3

Anchorage (-), Shear Span (+) (mm)

T
e
n
s
ile

 B
a
r 

S
tr

a
in

Fourth Crack Bar Strain Distribution

-1000 0 1000 2000 3000 4000
-5

0

5

10
x 10

-3

Anchorage (-), Shear Span (+) (mm)

T
e
n
s
ile

 B
a
r 

S
tr

a
in

Bar Strain Distribution at Ultimate Moment

4th Crack Location = 320

εο

εο

2nd Crack Location = 146

εο εο

Length of 
Spalling of Concrete Cover = 350

lpl = 177(-) + 271(+) = 448

Stabilization
of Cracking

3rd Crack Location = 213

a) b)

c) d)

-1000 0 1000 2000 3000 4000
-2

0

2

4

6

8
x 10

-4

Anchorage (-), Shear Span (+) (mm)

T
e

n
s
ile

 B
a

r 
S

tr
a

in

Second Crack Bar Strain Distribution

-1000 0 1000 2000 3000 4000
-5

0

5

10

15
x 10

-4

Anchorage (-), Shear Span (+) (mm)

T
e

n
s
ile

 B
a

r 
S

tr
a

in

Third Crack Bar Strain Distribution

-1000 0 1000 2000 3000 4000
-5

0

5

10

15

20
x 10

-4

Anchorage (-), Shear Span (+) (mm)

T
e

n
s
ile

 B
a

r 
S

tr
a

in

Fourth Crack Bar Strain Distribution

-1000 0 1000 2000 3000 4000
-5

0

5

10

15
x 10

-3

Anchorage (-), Shear Span (+) (mm)

T
e

n
s
ile

 B
a

r 
S

tr
a

in

Bar Strain Distribution at Ultimate Moment

2nd Crack Location x=165

εo

4th Crack Location x=295

Stabilization
of Cracking

εo

lpl = 80(-) + 301(+) = 381

3rd Crack Location x=238
εo

εo
Length of 

Spalling of Concrete Cover = 167

a) b)

c) d)

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



144 

 

0.000007)∙301=0.017rad (in total 0.027rad). The experimental reported drift ratio at to 20% 

net loss of lateral load strength was 0.033rad (after correction of the result for the P- effect); 

therefore the experimental total rotation of 0.033rad was approximated adequately by the 

estimated analytical value of 0.027. 

5.6 Parametric Investigation 

The parametric sensitivity of the proposed solution for the plastic hinge length is investigated 

in this section considering as a point of reference specimen U3 examined in the preceding 

section. Parameters considered, reference values, and ranges of parameters thereof are listed 

in Table 5.2; in each case one parameter is varied at a time keeping the reference values for 

all other variables (so the possible interaction effects between variables have not been 

considered in conducting the sensitivity analysis).  Consistent with the original definition of 

the plastic hinge length (Eq. 5.2b) the strain hardening ratio of the reinforcement Esh 

effectively increases the plastic hinge length (Table 5.2). Similarly, a reduction of the 

residual bond strength fb
res leads to further increase of the plastic hinge length (Table 5.2). It 

should be noted that the yield penetration length in the anchorage is included in the plastic 

hinge length.  

The location of the cracks is affected by variable ω that defines the elastic bond 

according to Eq. (5.28). Decreasing the slip limit s1 and increasing the value of average bond 

strength fb
max both led to consolidation of the cracks closer to the critical section at the base 

of the column (before stabilization of cracking), as evident in Table 5.2. In all analytical 

cases presented in Table 5.2 the first crack appears always at the base of the column (x1,cr=0), 

whereas in some of the experiments severe cracking occurred about 50mm above the footing 

owing to the restraint provided by the footing, particularly when the drift history was applied 

by means of rotating that block while keeping the tip of the cantilever specimen stationary 

(e.g. Bae et. al. 2008).   

In the previous section three specimens with different aspect ratios (Ls/d) and axial 

load ratios [ν=N/(fcbd)] have been considered. The corresponding values for (Ls/d) and ν 

were, (3, 0.16), (7, 0.5), and (5, 0.2) respectively. Based on Bae et. al. 2008 the two 

parameters have a simultaneous effect on the extent of ℓpl , and a degree of interaction (i.e., 

the effect of Ls/d is pronounced only in the presence of high axial load ratio) (Tables 5.2,5.3).  

To illustrate the sensitivity of the proposed approach in reproducing the experimental trend, 
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a second reference point is introduced in the parametric study, namely the case of specimen 

U3 but with an axial load ratio of ν=0.5 (Table 5.3). 

Figure 5.12a displays the influence of the variables on the normalized plastic hinge 

length (ℓpl/h, vertical axis) of the reference specimen, and on the associated development 

capacity of the reinforcement (in terms of tensile strain, εs, in the horizontal axis) of the 

critical cross section. Each curve in this diagram is read as follows: 

• Reducing the bond strength fb
max (with associated fb

res=20%fb
max) gradually 

from 7 to 3MPa (red arrow next to the brown curve pointing down) results in the increase 

of the plastic hinge length attained at a lower bar strain capacity.    

• Increasing the normalized axial load v (red arrow next to blue curve pointing 

up) lowers the strain capacity and the associated plastic hinge length. 

• Reducing the hardening modulus Esh (red arrow next to green curve pointing 

down) decreases the plastic hinge length (as it is implied by Eq. (5.38)) and increases the 

strain.  

• Reducing the bar size Db (red arrow next to grey curve pointing down) 

decreases the hinge length (as it is also implied by Eq. (5.38)) and increases the strain.  

The hinge length is relatively insensitive to Ls/h at low axial loads, i.e., at v=0.15 all 

points coincide with the reference point (intersection of all curves; i.e. for Ls/h= 2, 3 and 4, 

the ℓpl/h is 1.8 and the associated strain is 0.017). 

Table 5.2: Parametric Investigation – Properties similar to specimen U3 (units: mm, MPa) 

Parameter 

ν=N/(fc
’bd)  

=0.15 =0.3 =0.5 

Plastic Hinge Length 1.8h 1.3h 0.9h 

Parameter fb
max = 3 fb

max = 5 fb
max = 7 

Plastic Hinge Length 3.1h 2.2h 1.8h 

Parameter fb
res = 1 fb

res = 2 fb
res = 3 

Plastic Hinge Length 2.2h 1.6h 1.3h 

Parameter Esh=1%Es Esh=2.5%Es Esh=5%Es 

Plastic Hinge Length 0.4h 0.9h 1.8h 
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Parameter Ls=2h Ls=3h Ls=4h 

Plastic Hinge Length 1.8h 1.8h 1.8h 

Parameter Db=18 

Plastic Hinge Length 1.4h 

 

 

Table 5.3: Parametric Investigation – Axial load ratio equal to 0.5 (units: mm, MPa) 

Ideal reference case:  ν=N/(fc
’bd) = 0.5; all other characteristics are those of U3 

Parameter fb
max = 3 fb

max = 5 fb
max = 7 

Plastic Hinge Length 1.6h 1.1h 0.9h 

Parameter fb
res = 1 fb

res = 2 fb
res = 3 

Plastic Hinge Length 1.1h 0.8h 0.7h 

Parameter Esh=1%Es Esh=2.5%Es Esh=5%Es 

Plastic Hinge Length 0.1h 0.4h 0.9h 

Parameter Ls=2h Ls=3h Ls=4h 

Plastic Hinge Length 0.9h 0.9h 0.9h 

Parameter Db=18 

Plastic Hinge Length 0.7h 

 

The presence of axial load on a member undergoing cyclic displacement reversals 

weakens the cover over a larger portion of the shear span length speeding up cover 

delamination due to excessive compressive strains. Upon reversal of load, the crushed cover 

cannot support significant bond action for the reinforcement when the latter is stressed in 

tension, leading to a reduced value of fb
max (it is sustained only by the stirrups) and to demise 

of fb
res (less than half of the bar perimeter is in contact with concrete with implications on 

residual friction). These in turn cause increased penetration depth for columns carrying a 

higher axial load. Fig. 5.12b depicts the effect of the studied variables on the plastic hinge 

length under higher axial load (v=0.5); in the reference case term fb
max was reduced from 
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7.2MPa to 2.75 after cover loss. The following may conclude: 

• Reducing bond strength fb
max from 7 to 3MPa (brown curve in Fig. 5.12b) 

results in increased plastic hinge length, attained at a higher bar strain.   

• Reducing the residual bond strength fb
res (orange curve in Fig. 5.12b) 

increases the hinge length and lowers the associated strain capacity. 

• Lower hardening modulus Esh (green curve in Fig. 5.12b) results in lower 

hinge length and strain.   

• Reduced bar size Db (grey curve in Fig. 5.12b) lowers the hinge length and 

the strain capacity.  

 

 

The mechanism by which the axial load ratio affects the damaged region is by 

accelerating and spreading delamination of the cover in the compression zone of the laterally 

swaying column.  This was already evident in the M-ϕ- relationships of Fig. 5.7. To study 

this parametric trend consider the cross section of Fig. 5.13a.  Cover delamination is assumed 

to occur when the compressive strain at the level of compression reinforcement reaches the 

limit of 0.004 (term =xc/d is the normalized compression zone and  '=d2/d defines the 

position of the compression reinforcement as per the extreme fiber). In this case, from cross 

section analysis, the strain of the tensile reinforcement o is given by Eq. (5.41). 

 

Figure 5.12: Sensitivity analysis of the normalized plastic hinge length ℓpl/h versus the associated 

reinforcement maximum tensile strain εs for a) low and b) high axial load. 

a) b) 
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Figure 5.13: a) Strain state of cross section at cover crushing. b) The influence of axial load on 

compression zone based on data from [16]. c) A unified diagram v – lr/d - o for the influence of axial 

load, residual bond strength and tensile bar strain on yield penetration length into shear span.  

  

For the needs of the parametric investigation the relationship between ν and o is 

established using experimental evidence: the column test series conducted by Watson et. al. 

1994 included specimens with various axial load ratios ranging from ν=0.1 to 0.6.  Based on 

the reported test results, the relation between axial load v and normalized compression zone 

depth  is estimated as, =0.25v+0.07 (Fig. 5.13b). Thus, given the applied axial load v, the 
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normalized compression zone depth of the cross section is estimated, ξ (from Fig. 5.13a); then, 

the corresponding strain in the tension reinforcement at the critical section, o, is obtained 

from Eq. (5.41).   

This is substituted in Eq. (5.38) to define the yield penetration length into the shear 

span, using different intensities of average residual bond strength depending on the magnitude 

of axial load (lower residual bond strength for higher axial load to reflect the effect of 

delaminated cover over a broader region).  This procedure is visualized in the combined 

diagram of Figure 5.13c, where curves of v - o (grey curve) and lr/d - o (black curves, where 

the thicker the curve the higher the fb
res is) are simultaneously plotted (note: the horizontal 

grey dashed line drawn at the upper part of Fig. 5.13c defines the available column aspect 

ratio, Ls/d which serves as the ultimate limit for possible penetration). This diagram may be 

used to illustrate two aspects of the parametric sensitivity of the problem: a) the increase of 

axial load for example from 0.2 to 0.4 (following the red arrow) results in reduction of the 

strain capacity of the cross section (from 0.05 to 0.027) along with diminishing of the fb
res 

(crossing from the thicker to the thinner curve, i.e. from 4 to near 1MPa) as well as an increase 

of the extent of the plastic hinge length in the shear span (i.e. from 1.1 to 2.3d, where d is the 

effective depth of the cross section, see the red dashed horizontal lines). b) the unified diagram 

v - lr/d - o can be used in design: given the axial load and the aspect ratio of the member, the 

strain capacity of the cross section and the corresponding plastic hinge length are uniquely 

defined, leading to proper assessment of the members’ available deformation capacity.  The 

extent and intensity of damage may be effectively reduced through confinement as a higher 

value of the residual bond strength may be supported (see the black dashed paths in Fig. 

5.13c).  
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6 PHAETHON: FEM Simulation of Shear on RC Columns 

6.1 Introduction 

The correlation of experimental responses and results obtained from the inelastic flexural 

analysis of column elements with a dominant shear component had already highlighted the 

limitations of the underlying assumptions of the later approach, when used beyond their 

scope of application. Shear is a persistent problem in analysis and assessment because by the 

mere rotation of the principal directions away from the parallel and normal to a cross section, 

complicates convergence to solutions that satisfy equilibrium, particularly in the inelastic 

range. The debate on acceptable methods for calculation of shear strength still persists in the 

literature as illustrated in Chapter 2; issues such as the effective area participating in shear 

action and the size effect remain open [Tureyen and Frosch 2003]. On the other hand, it 

appears that shear strength, although estimated as a cross sectional property, really depends 

on the overall member response.   

Even the most advanced stage of development on seismic design and assessment to 

date requires some kind of nonlinear analysis - either static or dynamic. Such investigations 

are mostly carried out using frame elements with different levels of approximation. Two 

main approaches are mostly used, classified as lumped-plasticity and distributed-inelasticity 

models. The limitation of lumped plasticity elements is that inelastic deformations take place 

at predetermined locations in the ends of the element. Another, in many respects more serious 

limitation, is the fact that lumped plasticity elements require calibration of their parameters 

against the response of an actual or ideal frame element under idealized loading conditions. 

This is necessary, because the response of concentrated plasticity elements derives from the 

moment–rotation relation of their components. In an actual frame element, the end moment–

rotation relation results from the integration of the section response (see for example Chapter 

3). This can be achieved directly with elements of distributed inelasticity (Filippou and 

Fenves 2004, Mergos and Kappos, 2008). For the latter approach, the so-called fiber beam 

elements (Fig. 6.1) provide results that seem to be particularly appropriate for studying the 

behavior of reinforced concrete (RC) structures under reversed cyclic loads: moment-axial 

force (M-N) coupling is readily taken into account, as well as the interaction between 

concrete and steel in the section. Whereas a few fiber beam-column elements have been 

developed with good capability of reproducing axial force and flexure effects, on the other 
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hand, the coupling between the effects of normal and shear forces is not straightforward and 

hence only a few modelling strategies have accounted for, and were fully implemented up 

till now (Ceresa et al., 2007). 

A common framework, appropriate for the analysis of beam-column elements, is the 

Euler-Bernoulli approach. The fundamental kinematic assumption is that cross-sections 

remain plain and normal to the deformed longitudinal axis. The engineering beam theory 

reproduces the response of a beam under combined axial force and bending moments, while 

shear forces are recovered from a static equilibrium; the effects of shear on beam’s 

deformation are neglected. Where the effects of tangential stresses are important for the 

element deformation (i.e. in a beam-columns joint or in the column/wall plastic hinge 

length), more refined theories like the Timoshenko beam theory may be used for modeling 

the member deformation response. 

In the development of a nonlinear frame element, two main approaches have been 

used, namely the displacement-based (stiffness) approach and the force-based (flexibility) 

approach (see Chapter 3).  The flexibility-based frame element gives the exact solutions for 

non-linear analysis of frame structures using force interpolation functions that strictly satisfy 

element equilibrium, and impose the compatibility conditions. Accordingly, this approach 

allows the overcoming of some limitations of the stiffness approach. In particular, the 

nonlinear analysis becomes independent of the displacement approximation, it requires 

fewer elements for the representation of the non-linear behaviour and, above all, in the case 

of a Timoshenko element or exact-beam theory-element, it avoids the well-known shear-

locking problem (a sharp increase in the element stiffness which results in far fewer 

deformations for the element than expected) (Hughes, 2000).  

A pre-requisite for incorporating the Timoshenko beam theory (i.e. accounting for 

shear) into the fiber approach that was detailed in Chapter 3, is the use of pertinent 

constitutive relationships. This includes fiber beam-column elements using smeared 

cracking models. According to this approach, cracked concrete is simulated as a continuous 

medium with anisotropic characteristics. In general, these models are referred to as “smeared 

cracking approaches” since cracking is modelled as a distributed effect with directionality. 

These approaches are particularly suitable for sectional analysis. 
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Figure 6.1: Fiber Element Scheme – definitions.  

6.2 RC Sectional Model Based on Modified Compression Field 

Theory (MCFT) 

Since the end of 1970s, a considerable amount of experimental and analytical research has 

been conducted with the aim of developing analytical procedures capable of estimating the 

load-deformation response of reinforced concrete elements loaded in shear (Ceresa et al., 

2008). At the University of Toronto, Collins developed a procedure called the compression 

field theory (CFT) in 1978 (Collins, 1978). In 1981, a competition was held to predict the 

load-deformation response of four reinforced concrete panels tested at the University of 

Toronto (Collins et al., 1985), where leading researchers from around the world entered 

predictions based on various constitutive approaches. The results indicated that the most 

highly developed level in analytical modelling at the time was far from satisfactory. 

Generally, the models were not able to adequately estimate the ultimate strength, the failure 

mode or the load-deformation response of the panels. Most of the entrants used constitutive 

theories developed from tests conducted on plain concrete specimens; these do not account 

effectively for the modification of the properties of concrete after cracking, that is owing to 

the interaction between the concrete and steel that governs the response of reinforced 

concrete structures. In an effort to determine more realistic relationships for cracked 

reinforced concrete, Vecchio and Collins (1982) tested a series of RC panels. From these 

tests, the modified compression field theory (MCFT) (Vecchio & Collins, 1986) was 
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calibrated by including stress-strain relationships for cracked reinforced concrete under 

plane stress conditions. 

An RC element is homogenized and is treated as anisotropic elastic material shown 

in Fig.6.2. Consider an elementary panel under constant plane stress, of uniform thickness, 

containing a rectangular grid of well distributed reinforcement. Loads acting on the 

element’s edge planes are assumed to consist of uniform membrane stresses, i.e., axial 

stresses nx, ny and uniform shear stresses τxy. The deformed shape is defined by the strain 

tensor for plane stresses: 

[

휀𝑥 𝛾𝑥𝑦 2⁄ 0

𝛾𝑥𝑦 2⁄ 휀𝑦 0

0 0 휀𝑧

]                                                                (6.1) 

 

 

Figure 6.2: a) RC smeared-cracking membrane element, b) average strains (Cθ: spacing of cracks 

inclined at θ) c) average stresses and d) local stresses 

The MCFT utilizes the following assumptions: 

• The reinforcement is averaged or smeared throughout the element, i.e. the 

theory applies only to adequately-detailed members. 

• The stresses applied to the element are uniform along edges.  

• The total stress state is a function of the total strain state.  

• The reinforcement is perfectly bonded to concrete, so that relative 

displacement due to bond slip between reinforcement and concrete is ignored. 

• The shear stress in reinforcement is neglected.  

• The principal stresses and principal strain axes are coincident; as a 

consequence, no deviation between the two is allowed. 

• The constitutive relationships for concrete and reinforcement are 

independent. 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



154 

 

• The cracks are smeared and allowed to rotate. 

The theory comprises three sets of relationships: compatibility relationships between 

average strains of concrete and reinforcement, equilibrium relationships between externally 

applied loads and average stresses in the concrete and reinforcement; and uniaxial stress-

strain relationships for cracked concrete along the principal directions and for reinforcement. 

The constitutive relationships for cracked concrete result from tests of reinforced concrete 

panels using a purpose-built Panel Element Tester at the University of Toronto. As such, the 

formulation of the MCFT calibrated with the specific tests conducted in the panel tester, 

incorporates realistic constitutive models for concrete based on experimentally observed 

phenomena. While cracks are smeared and the relationships are formulated in terms of 

average stresses and strains, a critical aspect of the MCFT is the consideration of the local 

strain and stress conditions at cracks (Fig.6.2d). 

6.2.1 Constitutive Model based on MCFT for a Fiber RC Beam 

In order to determine the normal and the shear stresses for the i-th fiber/layer (σx
i, τxy

i) of a 

fiber section of a RC beam (Vecchio & Collins, 1988), a bi-axial fiber constitutive model is 

developed according to the Modified Compression Field Theory (MCFT).  The steps and 

mathematical expressions used to calculate the terms entering equilibrium, compatibility and 

stress-strain relationships are listed in Table 6.1. For the cross-sectional state-determination 

the following assumptions were made:  

- The longitudinal εx and shear γxy strains are known for each fiber, according to the plane-

sections assumption and to a parabolic shear strain distribution along the height of the 

section with the maximum value γxy.max located on the neutral axis yna (Eq. 6.2, two half-

parabolas with the same maximum are met at the point of neutral axis with different 

starting point, extreme tensile and extreme compressive fiber respectively). 

𝛾𝑥𝑦(𝑦) =  𝛾𝑥𝑦.𝑚𝑎𝑥 ∙ [2 (
𝑦

𝑦𝑛𝑎
) − (

𝑦

𝑦𝑛𝑎
)
2

]                               (6.2) 

- The transversal concrete stress fcy was determined for each fiber from equilibrium 

conditions (zero normal stress ny was assumed).  

- The logical flow chart of the iterative procedure used is illustrated in Fig. 6.3. The 

parameter sought is the angle of principal directions assuming coincident principal axes 

for concrete principal stress and strain.  In order to accelerate the convergence of the 

algorithm to the right value of the angle θ, the initial guess value of the procedure for the 
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angle of inclination of principal stresses/strains (angle of principal axis 2 with respect to 

x-axis) is determined according to the following equation:  

𝜃(𝑦) =  
𝜋

4
∙ (

𝑦

𝑦𝑐𝑧
)
3

,   0 < 𝑦 ≤ 𝑦𝑐𝑧

𝜃(𝑦) =
𝜋

4
+ 

𝜋

4
∙ [2 (

𝑦−𝑦𝑐𝑧

𝑦𝑡𝑧
) − (

𝑦−𝑦𝑐𝑧

𝑦𝑡𝑧
)
2

],   𝑦𝑐𝑧 < 𝑦 ≤ 𝑑
          (6.3) 

where y is the location of the concrete layer/fiber (y : zero reference is the extreme 

compressive fiber, Fig.6.1), ycz is the depth of the compression zone, ytz is the depth of the 

tension zone and d is the total depth of the section (i.e., ycz+ytz=d, Fig. 6.1).  

Figure 6.4 depicts the angle shape function along the height of the section according 

to the above equation (d =457 mm, ycz = 280 mm similar to Specimen 1 [Sezen & Moehle, 

2006]). The solution to the iterative procedure is reached by applying the Regula Falsi root 

finding a numerical solution (Chabert, 1999). 

 

Table 6.1: Equations embodied in the iterative procedure (Vecchio & Collins, 1988).   

휀𝑥 = 휀𝑐𝑥 , 휀1 = 휀𝑥 +
𝛾𝑥𝑦∙tan(

π
2⁄ −𝜃)

2
 , 휀𝑦 = 휀1 −

𝛾𝑥𝑦

2∙∙tan(π 2⁄ −𝜃)
 , 휀2 = 휀𝑥 + 휀𝑦 − 휀1 

𝑓𝑐1 = 𝐸𝑐 ∙ 휀1 for 0 < 휀1 ≤ 휀𝑐𝑟 , 𝑓𝑐1 =
𝑓𝑐𝑟

1+√200𝜀1
 for 휀𝑐𝑟 < 휀1 ≤ 휀𝑦𝑥 ,  

𝑓𝑐2 = 𝑓𝑐2𝑚𝑎𝑥 ∙ [2 (
𝜀2

𝜀𝑐
′) − (

𝜀2

𝜀𝑐
′)
2

] , 
𝑓𝑐2𝑚𝑎𝑥

𝑓𝑐
′ =

1

0.8−0.34𝜀1 𝜀𝑐
′⁄
≤ 1.0, 𝑓𝑠𝑦 = 𝐸𝑠𝑦휀𝑦 ≤ 𝑓𝑦𝑦 

𝑓𝑐𝑦 = −𝜌𝑦 ∙ 𝑓𝑠𝑦, 𝜏𝑥𝑦 =
𝑓𝑐𝑦−𝑓𝑐2

tan(π 2⁄ −𝜃)
, 𝑓𝑐𝑥 = 𝑓𝑐1 − 𝜏𝑥𝑦 ∙ tan(

π
2⁄ −𝜃) , 𝐺𝑠𝑒𝑐 =

𝜏𝑥𝑦

𝛾𝑥𝑦
,  

𝐸𝑠𝑒𝑐 =
𝑓𝑐𝑥

𝜀𝑥
, 

𝑡ℎ𝑒𝑡𝑎(휀𝑐𝑥, 𝛾𝑥𝑦) = tan
−1 𝑓𝑐1−𝑓𝑐𝑦

𝜏𝑥𝑦
  

𝑓𝑐
′= Concrete Cylinder Compressive Strength (MPa),  

휀𝑐
′= Strain at Concrete Cylinder Compressive Strength, 

 𝐸𝑐= Concrete Elastic Modulus (MPa), 

 𝑓𝑐𝑟= Tensile Concrete Strength (MPa), 

휀𝑐𝑟= Cracking Strain at attainment of Tensile Concrete Strength,  
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휀𝑦𝑥= Yielding Strain of Longitudinal Reinforcement, 

 𝐸𝑠𝑦=Elastic Modulus of Stirrups (MPa),  

𝑓𝑦𝑦= Yielding Strength of Stirrups (MPa), 

 𝜌𝑦= Stirrup Reinforcement Ratio. 

 

 

Figure 6.3: Flow Chart of the iterative procedure for each fiber/layer of the section according to MCFT. 

 

Figure 6.4: Shape function for angle theta (θ) of inclination of principal stresses/strains. 
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6.2.2 Sectional Model 

Figure 6.5 depicts a beam element with its degrees of freedom and its displacement/forces 

in global, local and basic systems of reference. The term “basic” is derived from the system 

of reference where the rigid body motion of the beam is extracted. Considering now the 

virtual work principle for the beam element of Fig. 6.5, the Eq. 6.4 can be derived. The 

external work is done by the end forces (p) on the corresponding displacements (u), whereas 

the internal work is done by the basic forces (q) on the corresponding deformations (v). 

𝛿𝑢𝑇𝑝 = 𝛿𝑣𝑇𝑞                                                        (6.4) 

The internal work of Eq. 5-4 can be derived from the integral of the stress product 

with the corresponding virtual strains over the element volume V. In many applications of 

nonlinear structural analysis, the internal work is limited to the internal work of normal stress 

σx and shear stress τ, on the axial strain εx and shear strain γ respectively (Filippou and Fenves 

2004): 

𝛿𝑣𝑇𝑞 = ∫𝛿휀𝑇𝜎 𝑑𝑉 = ∫(𝛿휀𝑥 𝜎𝑥 + 𝛿𝛾 𝜏)𝑑𝑉                           (6.5) 

  

 

Figure 6.5: Beam a) displacements and b) forces in global, local and basic reference systems.  

The strain and stress are functions of the position along the element longitudinal axis 

x and the position within the cross section specified in local coordinates y (with respect to 

the height) and z (with respect to the width).  Equation 6.5 can be rewritten by substituting 

the integral over the element volume by integration over the sectional area A at a location x 

followed by integration over the element length: 

𝛿𝑣𝑇𝑞 = ∫(𝛿휀𝑥 𝜎𝑥 + 𝛿𝛾 𝜏)𝑑𝑉 = ∫[∫(𝛿휀𝑥 𝜎𝑥 + 𝛿𝛾 𝜏 )𝑑𝐴] 𝑑𝑥        (6.6) 
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The strains at a fiber/layer point of the beam cross section (2d case) are related to the 

sectional deformations as follows (Ceresa et al., 2008):  

휀𝑥(𝑥) =  휀0 − 𝑦𝜀 ∙ 𝜑(𝑥)                                           (6.7) 

𝛾𝑥𝑦(𝑥) = 𝛾𝑥𝑦.𝑚𝑎𝑥                                              (6.8) 

 

where ε0 is the axial deformation at the center of the coordinate system of the section (center 

of mass) and yε is measured also with reference to this center, φ(x) is the curvature of the 

cross-section and γxy.max is the maximum value of shear strain located on the neutral axis. 

Therefore, the strains at a material point m of the section can be expressed in matrix form as 

follows: 

휀(𝑥, 𝑦𝜀) = {
휀𝑥
𝛾𝑥𝑦
} = [

1 −𝑦𝜀 0
0 0 1

] ∙ {

휀0
𝜑

𝛾𝑥𝑦.𝑚𝑎𝑥
} = 𝐵𝑠(𝑦𝜀) ∙ 𝑒(𝑥)              (6.9) 

𝐵𝑠(𝑦𝜀) = [
1 −𝑦𝜀 0
0 0 1

]                                    (6.10) 

The internal resultant forces at the control section are given by: 

𝐴𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒:    𝑁 =  ∫ 𝜎𝑥𝑑𝐴                            (6.11) 

𝑆ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒:   𝑉 =  ∫ 𝜏𝑥𝑦𝑑𝐴                            (6.12) 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡:  𝑀 =  −∫ 𝑦𝜀𝜎𝑥𝑑𝐴                    (6.13) 

These can be written in matrix form as follows: 

𝑓𝑠(𝑥) = ∫𝐵𝑠
𝑇(𝑦𝜀) ∙ 𝜎(𝑥, 𝑦𝜀)𝑑𝐴                      (6.14) 

where:  

𝑓𝑠(𝑥) = {
𝑁
𝑀
𝑉
},  𝐵𝑠(𝑦𝜀) = [

1 −𝑦𝜀 0
0 0 1

],   𝜎(𝑥, 𝑦𝜀) = {
𝜎𝑥
𝜏𝑥𝑦
}        (6.15) 

Taking into account the section discretization into fibers/layers, the total forces on 

the beam section are easily computed through the summation of the individual fiber 

contributions: 

𝑁 = ∑ 𝜎𝑥
𝑖𝐴𝑖

𝑛.𝑙𝑎𝑦𝑒𝑟
𝑖=1   ,    𝑉 = ∑ 𝜏𝑥𝑦

𝑖 𝐴𝑖    ,    𝑀 = −∑ 𝜎𝑥
𝑖𝑦𝜀

𝑖𝐴𝑖
𝑛.𝑙𝑎𝑦𝑒𝑟
𝑖=1

𝑛.𝑙𝑎𝑦𝑒𝑟
𝑖=1         (6.16) ΚO
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where Ai is the area of the i-th fiber/layer.  Normal and shear stress for the i-th fiber/layer 

(σx
i, τxy

i) are obtained from the respective strains using a bi-axial fiber constitutive model 

according to the MCFT (Fig. 6.3, 𝜎𝑥
𝑖 = 𝑓𝑐𝑥

𝑖 ).  In the employed procedure, the section forces 

are determined based on known sectional deformations; thus, as in the case of the model 

presented in Chapter 3, for known forces, the iterations are conducted over the values of the 

deformations within a predefined acceptable tolerance for the force magnitudes.  

The procedure for calculating the tangent section stiffness matrix ks is obtained from 

differentiation of the section force vector fs with respect to the section deformation vector e 

as described also in Chapter 3: 

𝑘𝑠 =

[
 
 
 
 
𝜕𝑓𝑠1

𝜕𝑒1

𝜕𝑓𝑠1

𝜕𝑒2

𝜕𝑓𝑠1

𝜕𝑒3
𝜕𝑓𝑠2

𝜕𝑒1

𝜕𝑓𝑠2

𝜕𝑒2

𝜕𝑓𝑠2

𝜕𝑒3
𝜕𝑓𝑠3

𝜕𝑒1

𝜕𝑓𝑠3

𝜕𝑒2

𝜕𝑓𝑠3

𝜕𝑒3 ]
 
 
 
 

                                              (6.17) 

𝑘𝑠 =
𝜕𝑓𝑠

𝜕𝑒
= ∫𝐵𝑠

𝑇(𝑦𝜀) ∙
𝑑𝜎(𝑥,𝑦)

𝜕𝜀(𝑥,𝑦)
∙
𝜕𝜀(𝑥,𝑦)

𝜕𝑒
𝑑𝐴 = ∫𝐵𝑠

𝑇(𝑦𝜀) ∙
𝑑𝜎(𝑥,𝑦)

𝑑𝜀(𝑥,𝑦)
𝐵𝑠(𝑦𝜀)𝑑𝐴        (6.18) 

𝜎(𝑥, 𝑦𝜀) = {
𝜎𝑥
𝜏𝑥𝑦
}  휀(𝑥, 𝑦𝜀) = {

휀𝑥
𝛾𝑥𝑦
}                                (6.19) 

𝑑𝜎(𝑥,𝑦)

𝑑𝜀(𝑥,𝑦)
= [
𝐸𝑚 0
0 𝐺𝑚

]                                     (6.20) 

where Em and Gm are the tangent moduli of the stress – strain relations at a point m of the 

section approximated here by Esec and Gsec (Table 6.1, Fig. 6.3).  

6.3 Embedded Algorithms in Phaethon Software 

The simple cantilever column is considered under various load combinations (axial load, 

moment and shear); this represents the shear-span of an actual column under lateral sway, 

extending from the support to the point of inflection (i.e. position of zero moment).  Although 

from a statics perspective this is a very simple case, its numerical simulation with all 

interacting deformation mechanisms is still yet a very challenging task to accomplish. 

Towards this need and for the case of shear-critical cantilever reinforced concrete columns 

a computer program was developed to be used as a tool for the study of the mechanics of the 

nonlinear program (software “Phaethon”). In the following section the algorithms embodied 

in this Windows application are presented.  
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6.3.1 Moment – Curvature Algorithm 

Through the cross-sectional analysis, the unknown moment M (and the associated 

axial deformation ε0) are determined for given number of curvature φ increments, and the 

unknown shear force V for simultaneous shear strain γ increments, with or without the 

presence of constant axial load N. The system of equations for section equilibrium is 

established as follows:  

                              

 

The explicit coupling of the resisting forces is noted. With N, φ and γ given, the first 

equation is used to solve for ε0; then this value is substituted along with the given values for 

φ and γ into the second and third equations, in order to determine M and V. The resisting 

axial force in the first Eq. 5-21 is expanded with Taylor series and the higher than linear 

terms are truncated: 

        

where the second subscript 0 denotes the initial seed value for the solution. Given the 

axial force N, the curvature increment Δφ and the shear strain increment Δγ, the above 

equation can be solved for Δε0:  

       

 

For each step, the numerical solution is distinguished in two main phases: the 

incrementation phase, which consists of the application of the curvature and shear strain 

increment, and the convergence phase, where iterations are done to satisfy equilibrium under 

fixed axial force, curvature and shear strain. The axial force is applied in an initial step under 

zero curvature and zero shear strain. Therefore, the following algorithm is applied in 

Phaethon for this task:  

Given section geometry and material properties, a value for the axial force N, 

curvature increment Δφ and shear strain increment Δγ (e is the section’s strain vector and fs 

is the resisting section force vector- see previous Section). 
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Incrementation Phase:  for k = 1..m 

1. Initial guess the solution at k-1 with    

2. Determine and  according to previous Section  

3. Determine  

and where 

 ,  and  

4. Update solution  

Convergence Phase:  Iteration for i = 1..n and constant k (skip superscript) 

1. Determine and  

2. Determine  and where   

3. Update solution  

The algorithm returns back to Step 1 of the Convergence Phase, until the error norm 

satisfies the specified tolerance. Upon convergence, the final state is updated thus 

determining the bending moment and shear force.  At that stage the algorithm returns to 

Incrementation Phase at Step 1. 

6.3.2 Pushover Algorithm 

For the calculation of the lateral load resistance curve of a column shear span under lateral 

sway, pushover analysis is conducted:  Considering a cantilever shear-critical RC column in 

Phaethon, the sectional model (either rectangular or circular) established in the previous 

Section is employed along with the anchorage model in the footing outlined in Chapter 5. 

An increasing lateral point load at the tip of the cantilever is applied (Fig. 5-6) and a unique 

fiber element is assigned to the entire height of the cantilever column with the number of 
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Gauss-Lobatto integration points selected by the user. The user also selects the analysis step 

of lateral load V to be applied in the Pushover analysis, and the total number of steps until 

maximum load is attained. (Note that the Modified Compression Field Theory in the fiber 

approach as described by Bentz (2000) cannot reproduce the descending branch of shear-

critical columns which is why a load-control procedure was selected to be embedded in 

Phaethon). The maximum load in Phaethon is the load of the last step of convergence of the 

algorithm in incremental form. It should be highlighted that in reality the shear-critical 

column’s ascending response is followed by a descending branch of progressive failure; 

however, the proposed algorithm is limited by strength attainment.  After peak load, the 

descending branch of the capacity curve is defined as the line connecting the maximum load 

point with the point at axial failure; this is quantified in terms of the drift estimate by Elwood 

and Moehle (2005) and 20% of the attained maximum load as residual load at axial failure. 

For each point load at the tip of the cantilever (Fig. 6.6) the corresponding shear force 

at the assigned column’s sections (integration points) is equal to that load (constant shear 

diagram). The flexural moment at the base of the column, M0, as well as the moment 

distribution, are both obtained from the lateral load value (constant shear force).  The 

concentric axial load (tensile or compressive) applied at the tip of the cantilever is also 

constant throughout the pushover analysis and along the length of the cantilever and 

therefore each column’s section has an axial force value equal to the one applied at the tip. 

Following this procedure, the vector fs which is the vector of resisting section forces (see 

previous Section) should converge to the above defined section forces based on the moment, 

shear and axial load diagram of the cantilever column under constant axial load and gradually 

increasing lateral tip point loading.  

The following algorithm is applied in Phaethon to achieve this convergence: 

Given the externally applied section forces s, i.e. an axial force N, a bending moment 

M and a shear force V, the equilibrium equation between applied and resisting section forces 

is set up: 

                                                (6.25) 

The Newton-Raphson algorithm for the solution of the system of three nonlinear 

equations is: 

1. Given the nonlinear equations su(e) = 0 and a guess of the solution e0. 

0)()( =−= efses su
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2. For i = 0…n determine function value su(ei) and derivatives ks(ei) (see previous 

Section). 

3. Determine correction to previous solution estimate,  Δei = su(ei)/ks 

4. Update the solution estimate:   ei+1 = ei+ Δei  

Return to Step 2 until the error norm is smaller than specified tolerance. On convergence 

determine the resisting forces for the final deformations.  

It should be highlighted that for the cases of “pure compression” or “pure tension” 

with the angle of inclination of principal stresses/strains (angle of principal axis 2 with 

respect to x-axis) being zero or π/2 respectively then no iteration is required, but the fiber 

state determination is defined from the normal strains, after referring directly to the uniaxial 

stress strain laws of the materials (previous Section, Table 6.1) without calculating any 

rotation for the principal axes. 

After convergence of the section forces is achieved along the length of the cantilever 

column to the correct values based on the corresponding forces’ diagrams along the element 

due to the applied tip horizontal and axial load, the axial deformation, curvature and shear 

strain is determined for each section. Integrating the curvatures (Fig. 6.6) along the shear 

span of the cantilever column leads to the rotation of the cantilever column due to flexure, 

which can be easily transformed to lateral displacement due to flexure Δo 
f by multiplying 

with the length of the shear span. Integration of the shear strains (Fig. 6.6) by sampling a 

few sections (positions defined according with Gauss-Lobatto) along the length of the 

cantilever column (integration points) leads to the lateral displacement Δo
sh due to the shear 

distortion mechanism of the cantilever column. Finally, the rotation and the displacement 

Δo
sl due to pull-out of the tensile reinforcement (Fig. 6.6) is determined based on the closed-

form solution of the governing equation of bond (Tastani and Pantazopoulou (2013)) 

described also in Chapter 5. All the above simultaneous contributions (flexure, shear and 

anchorage) are added together to define the total lateral displacement (i.e., Δo = Δo
f + Δo

sh + 

Δo
sl) of the cantilever column at each lateral load step and to obtain the capacity curve of the 

column until maximum lateral load (Fig. 6.6). 
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Figure 6.6:. Pushover Analysis in Phaethon. 

 

6.4 Correlation with Experimental Results 

This section presents the correlation of the shear-flexure capacity curves obtained from the 

pushover analysis conducted using Phaethon with the experimental response curves of a 

number of shear-critical RC columns selected from literature. In the correlation are also 

included curves obtained from flexural fiber beam/column-based toolbox FEDEAS Lab (see 

also Chapter 3, Filippou et al, 2004) and from MCFT-based software and dual-section 

analysis Response 2000 (Bentz, 2000). 

The shear capacity degradation curve of RC columns as a function of displacement 

ductility is approached by EN 1998-3 (2005) and ASCE-SEI 41 (2007) (see also Chapter 2 

and Chapter 3) and can be used as the basic criterion in order to detect shear failure before 

or after flexural yielding depending on the point of intersection with flexural capacity curve 

(Fig. 6.7). To this end, it is necessary to define the flexural capacity curve based on classic 

flexural analysis and combine it with the shear capacity curve in order to define the strength 

and deformation of the RC column at shear failure. This procedure is adopted in this section 

in order to initially detect whether the columns under study will fail in shear before or after 

flexural yielding and therefore to judge whether the “Phaethon” tool is suitable.  
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Figure 6.7: Shear strength degradation model adopted by current codes of assessment. 

6.4.1 Rectangular Shear-Critical Columns 

The first selected rectangular column for comparison is Specimen 1, from the experimental 

campaign of Sezen and Moehle (2006) that failed in shear after flexural yielding. Its 

properties are reported in Table 6.2. Figure 6.8 compares the experimental response (in red) 

with the analytical flexural capacity curve (in blue) and the shear capacity obtained by EN 

1998-3 (in green) and by ASCE-SEI 41 (in black) (here the yielding displacement in both 

shear-strength degradation models is defined by the flexural analysis based on the applied 

fiber element included in FEDEAS Lab; it can be read from the end of the initial plateau of 

EN 1998-3 model). The ASCE-SEI 41 estimates a very conservative shear strength value as 

compared to the yielding strength of this specimen which would be interpreted as premature 

brittle failure; EN 1998-3 detects the column’s shear failure after yielding in terms of 

strength but at lower displacement compared to the experimental result (i.e. it overestimates 

the secant to yield stiffness).  
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Table 6.2: Details of RC columns failed in shear (units: mm, MPa, kN). 
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Figure 6.8: Detection of shear-critical rectangular reinforced concrete columns. 

As can be seen in Fig. 6.9 the comparison of the capacity curve defined by Phaethon 

for Specimen 1 (that failed in shear after flexural yielding) until the maximum load, is close 

to the experimental response but also close to the capacity curves by the other already 

mentioned software. The deviation of stiffness close to peak load from Phaethon is improved 

when the displacement component due to pull-out of the tensile reinforcement incorporates 

the contribution of reinforcement slip from shear span Ls is added (Megalooikonomou et al., 

2018, Chapter 5).  Figures 6.10 and 6.11 depict the displacement contributions in each 

pushover analysis step from the various interacting mechanisms as they are defined by 

Phaethon and they are compared also those measured during the experiment. It is seen that 
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at the onset of yielding (10 mm total lateral displacement reported by Phaethon) Phaethon 

gives correctly 62% contribution from flexural deformation, 35% from pull-out and almost 

3% from the shear mechanism (which, in this case, is underestimated). 

In Fig. 6.8, the degrading shear capacity curve of Eurocode 8 Part 3 (EN 1998-3) 

doesn’t intersect with the flexural capacity curve for the second selected specimen by Lynn 

et al. (1996). This takes place only with the model of ASCE-SEI 41 almost at the point of 

yielding at a lower strength and displacement compared to the experimental response.  

 

Figure 6.9: Comparison of the capacity curves provided by Phaethon and other software with the 

experimental responses. 
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Figure 6.10: Displacement Contributions from various deformation 
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Figure 6.11: Displacement contributions from various deformation mechanisms included in Phaethon 

(left) for rectangular column compared to the experiment (right) (Sezen and Moehle [2006]).  

The second selected rectangular column for comparison is (Spec. 3CMH18) from the 

experimental campaign of Lynn et al. (1996) that failed in shear before flexural yielding. Its 

properties are presented in Table 6.2. As can be seen in Fig. 6.9 the comparison until the 

maximum load is close to the experimental response but also close to the capacity curves by 

the other already mentioned software. Here, Response 2000 underestimates the specimen’s 

strength and doesn’t provide the descending branch of the capacity curve due to shear failure 

before flexural yielding, while FEDEAS Lab overestimates the response after maximum 

load is attained since it doesn’t consider any shear-flexure interaction mechanism. Phaethon 

estimates satisfactorily the maximum load as well as the descending branch of the response 

in this case too. However, in all analytical capacity curves the experimental initial stiffness 

is overestimated. The axial failure (i.e. collapse as defined by Phaethon) is also reached at a 

lower displacement compared to the experiment. Finally, Fig. 6.10 depicts the contributions 

of the various mechanisms of resistance to displacement in each pushover analysis step from 

the various interacting mechanisms as they are defined by Phaethon. As it can be seen, they 

are simultaneously increasing with the applied lateral load.  
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6.4.2 Circular Shear-Critical Columns 

The third selected column for comparison is the circular Specimen 19 from the experimental 

campaign of Ang et al. (1989) that failed in shear before flexural yielding. Its properties are 

presented in Table 5-2. In Figure 5-12, it can be observed that it is a shear-critical column 

since both the shear strength degradation models detect shear failure (albeit wrongly, after 

flexural yielding) at a displacement lower than the corresponding experimental one. The 

strength at shear failure is better predicted by the model of Eurocode 8 part 3 (EN 1998-3) 

compared to the alternative of ASCE-SEI 41.  

As it can be seen in Figure 6.9 the comparison of the Phaethon response until the 

maximum load is close to the capacity curves by the other aforementioned software. 

However, the initial stiffness predicted by Phaethon is higher compared to the experiment 

although identical to what the other software tools define. Phaethon reproduces well also the 

maximum load but not the corresponding displacement. The descending branch as defined 

by Phaethon follows the experimental strength degradation. A closer estimate is obtained for 

the shear strength by Phaethon as compared to Response 2000. Finally, Fig. 6.10 depicts the 

contributions to displacement in each pushover analysis step, from the various interacting 

mechanisms as they are defined by Phaethon. As can be observed from the figure, 

deformation components are increasing with the applied lateral load, and here, owing to the 

aspect ratio of the circular column, (short column), the contribution of shear deformation is 

significant.  

The fourth selected column for comparison is the circular Specimen 20 from the 

experimental campaign of Ang et al. in 1989 that failed in shear after flexural yielding. Its 

properties are presented in Table 6.2. In Figure 6.12, it can be observed that it is a shear-

critical column since both the shear strength degradation models detect shear failure after 

yielding at a displacement lower than the corresponding experimental one. The strength at 

shear failure is better predicted by the model of Eurocode 8 part 3 compared to the alternative 

of ASCE-SEI 41.  

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



172 

 

 

Figure 6.12: Detection of shear-critical circular reinforced concrete columns. 

As may be seen in Figure 6.9 the comparison of the Phaethon response until the 

maximum load is close to the capacity curves by Response 2000; shear strength estimation 

is better approximated by Phaethon.  However, the initial stiffness predicted by Phaethon is 

higher compared to the experiment although identical to what the other software tools define. 

Phaethon also captures well the maximum load but not the corresponding displacement. The 

descending branch as defined by Phaethon follows the experimental strength degradation. 

The axial failure (i.e. collapse as defined by Phaethon) is reached at a lower displacement 

compared to the experiment. Finally, Figure 6.10 depicts the displacement contributions in 
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each pushover analysis step from the various interacting mechanisms as they are defined by 

Phaethon. As may be noticed by the values of shear strain contribution, convergence of the 

algorithm at higher displacement levels was rather slow and sometimes erratic.  Values were 

filtered by a tolerance criterion in order to maintain stability and convergence of the analysis.  

6.5 Parametric Investigation 

The parametric sensitivity of the developed software on the produced capacity curve is 

investigated in this section, considering as a point of reference Specimen 1 by Sezen and 

Moehle (2006), examined in the preceding section. Parameters considered are the 

discretization sensitivity of the force-based fiber element of the cantilever column and the 

effect of axial load, stirrup spacing and shear span length on the produced pushover curve; 

in each case one parameter at a time is varied, while keeping the reference values for all 

other variables (so the possible interaction effects between variables have not been 

considered in conducting the sensitivity analysis).  

In Figure 6.13 the effect on the pushover curve of different number of Gauss-Lobatto 

integration points [Ele(Number)IP] can be observed along the element, as well as the number 

of integration points/layers of the Midpoint integration rule along the section 

[Sec(Number)L]. As expected, by increasing the number of Midpoint layers and Gauss-

Lobatto integration points the capacity curve stabilizes, converging to the final result. 

Deviation from the final result is evident only where fewer integration points both at the 

section level, and along the element length have been used.  

As may be observed in Figure 6.14, by increasing the compressive axial load (here it 

is given in normalized form) the shear strength of the column under study is correctly 

increasing and the deformability of the column is decreasing reaching lower displacements 

at maximum load (shear failure) and at point of axial failure (collapse). The effect of stirrup 

spacing for a given shear-critical column on the stiffness of the resistance curve produced 

by Phaethon was negligible but the displacement at axial failure (collapse) was decreasing 

as the spacing of stirrups was increased. Reducing the shear span of the cantilever column 

(Figure 6.15) correctly reproduces a more shear-dominant and less deformable reinforced 

concrete column both at maximum load (shear failure) but also at the point of axial failure 

(collapse). ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



174 

 

 

Figure 6.13: Discretization sensitivity along fiber section and element of the capacity curve provided by 

Phaethon.  

 

Figure 6.14: Effect of axial load on capacity curve provided by Phaethon. 
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Figure 6.15: Effect of shear span on capacity curve provided by Phaethon. 

The Phaethon software installation file may be downloaded freely from the following 

web address: http://bigeconomy.gr/en/phaethon-en/. 
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7 Analytical Stress-Strain Model for FRP-Confined 

Rectangular RC Columns 

7.1 Introduction 

It was discussed in Chapter 5 that the rotation or drift capacity of a laterally swaying column 

is quantified by the rotation of the deformed member from its chord in the displaced position.  

Several different sources of local deformation contribute to the member rotation from its 

chord, such as, flexural curvature and shear distortion occurring along the shear span, as well 

as rotation at the support due to reinforcement pullout from the anchorage and crack opening.  

In swaying columns, the most significant crack often occurs at the column base, where the 

moment is maximum (Saatcioglu and Ozcebe, 1989, Priestley et al. 1996, Syntzirma et al. 

2010). The crack width at that location is a result of bilateral reinforcement slip, both from 

the column and from the foundation (Chapter 5). The critical flexural crack facilitates 

rotation of the column about the cross-section's neutral axis. The cracked cross section, 

which acts as a pole, experiences a local increase of compression strains on account of the 

fact that the solid compression zone cannot penetrate into the solid footing. Therefore, the 

required slip has to be accommodated by shortening of the column in the compression zone 

region. This corresponds to a local compression strain increase, which accelerates spalling 

of the unconfined cover (Syntzirma et al. 2010). Based on the experimental evidence from 

wall testing, it appears that this type of slip-flexure interaction inevitably leads to cover 

spalling within the range of relatively small ductility demands.  In order to prevent this 

premature failure FRP confining jackets has been recommended as a remedy solution. 

Confining wraps or jackets to rehabilitate and strengthen existing substandard RC 

columns such as those described in the present thesis has proven to be an efficient technique 

for seismic retrofit of structures. The existing literature has an abundance of research works 

on modelling of circular reinforced concrete columns confined with FRP wraps. The 

compressive behaviour of concrete cylinders externally confined with FRP under axial loads 

has been extensively studied nowadays. Numerous stress-strain models have been 

established during the last three decades. Some of these studies (Vitzileou et al., 2008; 

Rousakis et al., 2012; Jiang and Wu, 2012; Ozbakkaloglu et al., 2013; Rousakis and 

Tourtouras, 2015; Hany et al., 2016; Ozbakkaloglu et al., 2016;  Farahmandpour et al., 2017) 

concentrated on modelling the conditions during failure of FRP-confined concrete, including 
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the ultimate compressive strength and the corresponding ultimate axial strain. Other studies 

simulate and describe the overall behaviour of the stress-strain curve of FRP-Confined 

concrete under compression (Hosotani et al. 1997; Samaan et. al., 1998; Spoelstra and 

Monti, 1999; Lam and Teng, 2003; Yu et al., 2010a; Yu et al., 2010b; Wang et al., 2011; 

Ozbakkaloglu et al., 2013; Eid and Paultre, 2017; Fahmy et al., 2017; Ismail et al., 2017). 

The available stress-strain models in literature have been grouped into two categories by 

Lam and Teng (2003): (a) design-oriented models and (b) analysis-oriented models. Design-

oriented models provide the stress-strain behaviour using closed-form equations, while 

analysis-oriented models achieve that by an incremental numerical procedure. Such an 

analysis-oriented model for FRP-confined circular RC columns can be found in 

Megalooikonomou et al. (2012) and Papavasileiou and Megalooikonomou, (2015). The 

advantage of analysis-oriented models over design-oriented models is their computing 

versatility. Moreover, they can be easily integrated to a structural analysis software such as 

Phaethon, where they can be incorporated in the fiber analysis of complete structural 

components. To the author’s knowledge, such an analysis-oriented model for rectangular 

FRP-confined columns is not yet available. The proposed model was developed with the 

intention to be integrated in existing structural software such as OpenSees (2006). 

Furthermore, the approach of this model is unique. While other available models intend to 

capture the stress-strain behaviour of FRP-confined concrete, the proposed model intends to 

simulate effectively the axial and lateral strain and, consequently, simulate the stress-strain 

behaviour. The confining stress occurs as a reaction to the developed strain. This way, in 

addition to simulating the stress-strain behaviour, the proposed model also yields the lateral 

dilation, which is not explicitly calculated in available models. 

Literature on the modelling of rectangular section FRP-confined RC columns is more 

limited. While existing studies (Teng et al., 2002; Lam and Teng, 2003; Teng and Lam, 

2004; Piscesa et al., 2018) have verified that FRP confinement can substantially enhance 

both the compressive strength, ductility and energy dissipation of confined concrete in 

circular-section RC columns, the same method has been found to be much less effective for 

rectangular RC columns (Mirmiran et al., 1998; Rochette and Labossiere, 2000; Lam and 

Teng, 2003; Megalooikonomou, 2007; Karabinis et al., 2008; De Luca et al. 2011). Corner 

rounding is recommended overall to enhance the confinement effectiveness in a rectangular 

RC column and to reduce the detrimental effect of sharp corners on the performance of FRP 

jackets which causes their rupture in relatively low strain (Lam and Teng, 2003). 
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The main difference between the two RC column section cases is that in circular 

sections the confinement is uniform, while the same does not apply on rectangular sections 

(Mander et al. 1988). In the later, concrete is non-uniformly confined, so the effectiveness 

of the confinement is substantially reduced. 

As illustrated in Fig. 7.1, the imposed axial load on a circular section causes radial 

dilation (i.e. uniform strain) on the confining elements so the pressure applied by the jacket 

to the concrete as a reaction to its dilation is uniform as well. Hence, the stress-state 

developed in a circular section is uniform. In rectangular sections the confining element 

develops a concentration of stresses at the corners, where FRP develops its peak stress. 

Along the sides, its confining effectiveness is reduced as it does not have enough stiffness 

to fully restrain the dilation of the concrete column. Thus, a non-uniform confining stress-

state is developed in the concrete section.  

Previous modelling approaches concentrated mainly on dividing the rectangular 

section in a confined and an unconfined area (Fig. 7.1), based on the concept of possible 

arching effect (e.g. EN1998-3, Fig. A1). Then, the confined area is considered to be in a state 

of uniform biaxial confinement, as in the circular cross sections, thus allowing the use of 

formulas defined for circular FRP-confined elements. The unconfined part is considered to 

be unaffected. 

 

Figure 7.1: Confining mechanisms for circular and rectangular sections. 

Considering all the above remarks, an iterative procedure was developed in this 

research study based on the results of a 3D FEM analysis performed by the author which 

indicates that the arching effect is not an accurate representation of the actual state of stress 

in the FRP-confined column cross-section. The unconfined areas shown in Fig. 7.1 are 

indeed partially confined and they contribute to the overall capacity of the section until they 

reach their maximum strength which is significantly reduced compared to that of the 
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confined areas. The analytical procedure employs a system of ‘generalized’ springs, well-

known stress-strain laws and a failure criterion to model the resultant response of the FRP-

confined rectangular cross section columns under axial load. 

7.2 Numerical Analysis (Finite Element Model) 

Figure 7.2 depicts the cross-section of an experimentally tested FRP-confined square 

concrete specimen under concentric load and the final concrete state along with the effective 

concrete core after FRP failure at the corner at the end of the experiment (Campione and 

Miraglia, 2003). Uneven damage can be observed throughout the section. Two different 

regions can be identified having different confining stress states. To determine the confining 

stresses and define the confined and unconfined regions in a rectangular section, a 3D Finite 

Element Model was developed in SAP 2000 (CSI, 2016). The model consists of a square 

concrete section 200x200 mm (Fig. 7.2) with rounded corners. Solid elements are used to 

model concrete in the section. The FRP wrap is modelled using shell elements applied on 

the solid elements in the perimeter. A typical slice with thickness 10mm was simulated. The 

CFRP wrap was modeled using an orthotropic material model with Young’s modulus 

3.61·105MPa. The confined concrete was modeled with a ‘concrete’ material with fck = 

17MPa. The applied axial displacement on the FEM model was increased until the lateral 

strain at the slice was equal to the maximum lateral strain at a cylindrical specimen, when it 

reaches the maximum strength. The maximum axial displacement was defined so that the 

lateral strain developed in the slice is equal to that an unconfined cylindrical specimen at the 

ultimate stress. The FEM results were plotted in three-dimensional graphs (Fig. 7.3) to allow 

further study of the stress field. Verification of the results yielded by the FEM model against 

experimental results is available in Teng et al. (2015). 

Graphs in Fig. 7.3 depict various stress fields in a quadrant of this square section. 

Stresses near the rounded corner are not shown since they represent local stress state. In 

Fig.7.3a and 7.3b, the normal stresses parallel to the diagonals (SD1 and SD2) are presented, 

while in Figs. 7.3c and 7.3d normal stresses parallel to the section’s sides (SO1 and SO2) 

are shown. Stresses parallel to the diagonal of the rounded corner, are increased near the 

corner, but moving inwards to the centre of the section they reduce significantly 

(Megalooikonomou, 2007; Nistico and Monti, 2014).  Figure 7.3 also illustrates that the 

stresses perpendicular to the rounder corner, the diagonal direction and close to the sides 

have much lower values compared to those parallel to rounded corner diagonal, while 
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towards the centre they both become almost equal. This confirms that close to the centre the 

confinement stress state is similar to the axisymmetric states of stress seen in circular 

sections. It is apparent from the plots of the stress field parallel to the orthogonal directions 

(Fig.7.3c & 7.3d) that some confining stresses are present along the side, while in the central 

part of the perpendicular side they are close to zero, as the confining device has minimal 

flexural stiffness. 

 

  

(a) (b) 

Figure 7.2: Cross-section of a short square column: (a) experiment (Campione and Miraglia, 2003), (b) 

FEM model. 

Based on the aforementioned, the following main remarks can be made: 

• No unconfined concrete regions are observed, as assumed in many models. The parts near 

the edges are confined due to forces coming from the corners and moving parallel to the 

edges. 

• The confining forces near the perimeter have strong directionality (uniaxial confinement). 

On the contrary, near the centre the state seems to be more uniform (axisymmetric 

confinement). 

Accepting some tolerance, the regions where a biaxial and a uniaxial confinement 

exist can thoroughly be defined based on the ratio of the principal stresses of the two 

perpendicular directions in the joints of the FEM. Regarding the stress output in SAP 2000 

(CSI, 2016), it is noted that the direction of the middle principal stress (Smid) is 

perpendicular to the maximum (Smax) and minimum (Smin) principal directions. 
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Figure 7.3: Confining stresses in a quartile of a square section 200×200mm: along diagonal (a,b) and 

orthogonal (c,d) direction. The round corner stresses are not included.  

 

  

(a) (b) 

Figure 7.4: Uniaxially and biaxially confined regions: (a) different thicknesses of FRP jacket, (b) 

different radii of rounded corner. 

For a specific tolerance (i.e. the ratio of the confining stresses (Smax/Smid) is less than 

15%), the width of the biaxial stress state region is independent of the stiffness of the FRP 
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(Fig. 7.4). The radius of the rounded corner affects more the diagonal dimension of this 

region, while parallel to the sides the width remains the same (Fig. 7.4). Unlike reinforced 

concrete, where the spacing of stirrups allows for such regions to develop, not only on the 

concrete cover but also between two consecutive stirrups, FRP-confined members are totally 

inside the FRP wrap. Due to the FRP’s non-infinite stiffness, the FRP wrap can deform 

laterally to the cross-section. A finite slice of the FRP wrap performs as a cantilever beam 

with its ends at the rounded corners of the concrete section. The larger the deformation might 

get (i.e. a weaker FRP slice), the smaller the stress applied by the FRP on the confined 

concrete core is. No matter how small it might get, there is always stress applied on the 

concrete, so it does not perform as unconfined-concrete. The model considers the 

confinement pressure to be the same around the column. Hence, the smaller the side which 

this pressure is distributed on, the more effective the confinement provided. This leads to the 

conclusion that, unlike unconfined concrete, in FRP-confined concrete the part of the section 

that is under biaxial confinement is not proportional to the relevant side, but proportional to 

the opposite side. This assumption is confirmed in previous works (Karam and Tabbara, 

2005; Megalooikonomou, 2007). Based on these remarks, the width of the uniaxially 

confined region can be calculated using Eq. 7.1, where a and b are the width and the depth 

of a rectangular section accordingly (Fig.7.8a). The dimensions of the regions are then 

directly related and determined according to this width (Fig.7.10). 

ℎ1 = 𝑎 8⁄      𝑎𝑛𝑑     ℎ2 = 𝑏 8⁄                                       (Eq. 7.1) 

The equations used in the proposed model was initially developed based on results 

yielded by modelling square FRP-confined concrete columns. Having assessed its 

effectiveness in modelling square columns, its applicability on rectangular columns was also 

assessed against experimental results and found to be adequate for a simplified analytical 

model. 

7.3 Simplified Mechanical Model 

A simplified mechanical model which describes the stress-strain behaviour of a rectangular 

concrete cross-section under concentric load is formulated. A series of ‘generalized’ springs 

(Fig. 7.5) is used to describe the confinement mechanism. Compressed concrete expands 

laterally according to its confinement state. Such expansion activates the passive confining 

elements. The confining forces are applied to the section corners and transferred along the 

diagonal. In the proposed model, the contribution of the stirrups is considered to be minimal 
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and is not taken into account. This refers to cases of old construction where stirrup spacing 

is adequately large to minimize the confinement contribution. 

 

Figure 7.5: FRP-confined rectangular concrete section modelling using ‘generalized’ springs.  

Fig. 7.5 shows the springs used to model the axial and the lateral behavior of the 

section. Axially, the springs receive the same displacements and their cumulative strength is 

the summation of the strength of the individual springs (parallel system). Laterally, the 

springs receive the same force and their displacements are additive (series system). 

The ‘generalized’ springs illustrated in Fig. 7.5 use the constitutive law for concrete 

proposed by Pantazopoulou and Mills (1995). The model which relates the volumetric strain 

to the axial strain is shown in Fig. 7.6 (right). In the same figure (left), the corresponding 

axial stress vs. axial strain is also demonstrated. It is evident that adequate confinement 

increases the ductility of the RC member which develops considerably larger strain until its 

stiffness and strength are particularly reduced leading to loss of stability. This is shown in 

the relationship between volumetric strain εv and axial strain εc plotted in Fig.7. 6. 

The initial slope of the curve (Eq. 7.2, for 휀𝑐 ≤ 휀𝑙
𝑙𝑖𝑚) is characteristic of a perfectly 

elastic condition. Both curves (for confined and unconfined concrete) deviate from this 

idealised situation. However, confined concrete develops large volumetric strain reaching 

much higher axial strain magnitudes than unconfined concrete. Experimentally, in 

conditions of high confining stress, it has been observed that the εV vs. εc curve might even 

remain at negative values of εV throughout the test. 

Uniaxial 
Confinement

Biaxial 
Confinement

Lateral Behaviour

(Quartile of a rectangular section)

Axial Behaviour
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(a) (b) 

Figure 7.6: Constitutive law for confined concrete (Pantazopoulou and Mills, 1995): (a) stress-strain 

relationship, (b) volumetric strain- axial strain relationship. 

Prior to evident surface cracking, the εV – εc relationship is practically linear, with 

the lateral strain εl being equal to v·εc (v is typically within the range of 0.15 - 0.25). Beyond 

the limit axial strain (εc = εc,lim) that corresponds to lateral strains εl exceeding the tensile 

cracking of concrete εcr, the relationship between εV and εc shows substantial deviation from 

the idealized linear response and appears to be well approximated by a parabolic expression. 

For confined concrete under uniaxial load, the model is: 

                                  휀𝑉 = (1 − 2𝜈) ∙ 휀𝑐   for   휀𝑐 ≤ 휀𝑙
𝑙𝑖𝑚 = −휀𝑐𝑟/𝜈          

휀𝑉 = (1 − 2𝜈) ∙ 𝑎𝜀 ∙ 휀𝑐𝑜 [
𝜀𝐶

𝛼𝜀∙𝜀𝑐0
− 𝑏𝜀 ∙ (

𝜀𝑐−𝜀𝑙
𝑙𝑖𝑚

𝛼𝜀∙𝜀𝑐0−𝜀𝑙
𝑙𝑖𝑚)

𝑐𝜀

] for   휀𝑐 > 휀𝑙
𝑙𝑖𝑚             (7.2) 

The product of αε·εco is the compressive axial strain at zero volumetric strain. For 

standard concrete strength, it is typically observed at axial strain from 2‰ to 3.5‰, i.e. at 

80% to 100% the strain at peak stress εco. Coefficient bε denotes the degree of passive 

confinement of concrete. For unconfined concrete loaded uniaxially, bε is assigned a value 

of 1, while smaller values are used as passive confining pressure increases. Coefficients αε 

and cε increase for higher strength concrete. Higher values of αε are used for higher nominal 

strength, up to 1, whereas the post peak response becomes more brittle (cε tends towards or 

exceeds 3). The same behaviour (linear and parabolic part) has also been observed in the 

relationship between volumetric strain and axial stress (Fig.7.7). 
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Figure 7.7: Volumetric strain vs. axial stresses (Chaallal et al., 2000). 

To comply with the mechanical model of the ‘generalized’ springs and the regions 

with varying confinement, this model has been modified to correlate volumetric strain εV to 

axial stress σc according to Eq. 7.3 (axial stress in MPa). Initially, change of volume occurs 

due to elastic contraction and nonlinear compaction (Tastani et al 2013) and is practically 

linear up to the point of critical stress ασ·fco (unconfined concrete strength, usually ασ is taken 

as 0.7). For this axial stress level the Poisson’s ratio ν remains within the range of 0.15 - 0.25 

(here, the initial Young’s modulus of concrete is determined as well). At this point, volume 

change is reversed resulting in volumetric expansion called (near-strength or at-peak-

strength) dilatancy. A point can be defined where the compression rate of the specimen is 

exactly equal to the expansion rate, thus resulting in zero volumetric strain. This point is 

considered to appear when the ultimate strength of the uniaxially confined region is reached 

(biaxial stress state, bσ = 1.2). After the deterioration of this region, the expansion rate 

increases faster than the compression rate (second order parabola, cσ = 2) due to reduced 

effective confinement. The expansion becomes unstable during the crushing phase beyond 

the ultimate strength. 

Based on Fig. 8a, using the value of the volumetric strain εV, both area strain (εA) and 

side strains (εa and εb) can be calculated as shown in Eqs. 7.3 to 7.7 (compressive axial strains 

are taken as negative). ΚO
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휀𝑉 = −(1 − 3𝜈) ∙ 10
−4 ∙ 𝜎𝑐   for    𝑓𝑐 ≤ 𝑎𝜎 ∙ 𝑓𝑐0 

휀𝑉 = −(1 − 3𝜈) ∙ 10
−4 ∙ 𝑏𝜎 ∙ 𝑓𝑐0 ∙ [(

𝜎𝑐

𝑏𝜎∙𝑓𝑐0
) − (

𝜎𝑐−𝑎𝜎∙𝑓𝑐0

𝑏𝜎∙𝑓𝑐0−𝑎𝜎∙𝑓𝑐0
)
𝑐𝜎
] for    𝑓𝑐 > 𝑎𝜎 ∙ 𝑓𝑐0 

(Eq. 7.3) 

휀𝐴 = 휀𝑉 − 휀𝑐  (Eq. 7.4) 

휀𝐴 =
𝛥𝐴

𝐴
=
(𝑎+𝛥𝑎)∙(𝑏+𝛥𝑏)−𝑎∙𝑏

𝑎∙𝑏
=
(𝑎+𝜀𝑎∙𝑎)∙(𝑏+𝜀𝑏∙𝑏)−𝑎∙𝑏

𝑎∙𝑏
= (1 + 휀𝑎) ∙ (1 + 휀𝑏) − 1  (Eq. 7.5) 

𝜀𝑎

𝜀𝑏
=
𝛥𝑎

𝑎
∙
𝑏

𝛥𝑏
=
𝛥𝑑∙𝑐𝑜𝑠𝜃∙𝑏

𝛥𝑑∙𝑠𝑖𝑛𝜃∙𝑎
= 1⇒휀𝑠𝑖𝑑𝑒 = 휀𝑎 = 휀𝑏  (Eq. 7.6) 

휀𝐴 = (1 + 휀𝑠𝑖𝑑𝑒)
2 − 1⇒ 휀𝑠𝑖𝑑𝑒 = √휀𝐴 + 1 − 1  (Eq. 7.7) 

  

 

 

(a) (b) 

Figure 7.8: (a) Deformed shape of a rectangular section based only on the diagonal lateral deformation, 

(b) Diagonal force applied to the lateral springs from the corner. 

Considering the commonly applied assumption that no friction is developing 

between the FRP jacket and the concrete surface, the elongation strain of the sides can be 

assumed equal to the jacket strain. Therefore, the diagonal force of the jacket applied 

laterally from the corners to the springs in series can be determined by projection (Fig. 8b): 

𝐹𝑑𝑖𝑎𝑔 = √2 ∙ 𝐸𝑖 ∙ 휀𝑠𝑖𝑑𝑒 ∙ 𝑡𝑗 ∙ 𝑘𝑒 (Eq. 7.8) 

The coefficient ke is a confinement efficiency factor by Karam and Tabbara (2005) 

which takes into account the increasing confinement effectiveness as the corner radius 

increases and is reduced when the ratio of the larger side to the smaller side of the cross 

section is increased. Figure 9 shows the considerations made for the definition of this factor. ΚO
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Figure 7.9: Mechanical behaviour for determining the confinement effectiveness factor (Karam and 

Tabara, 2005). 

In Fig. 7.9 (left), a confining FRP wrap is shown acting on a generic rectangular 

section with long side a, a short side b and radius of the rounded corner R. Concrete is 

assumed to be subjected to average (uniform) confining stresses at its middle sections with 

fa acting along the long side and fb acting along the short side as illustrated in Fig. 7.9. The 

relationship between the fa, fb and the jacket tensile stress fj is determined statically (t is the 

thickness of the FRP wrap). 

In Fig. 7.9 (right), the FRP wrap is considered to act as a cable around the corner 

similar to a pulley. Assuming no friction between the FRP jacket and the concrete surface, 

the relationship between fj and the confining stress at the corner fr is also defined statically: 

𝑡 ∙ 𝑓𝑗 =
𝑎

2
∙ 𝑓𝑎 =

𝑏

2
∙ 𝑓𝑏 (Eq. 7.9) 

𝑡 ∙ 𝑓𝑗 = 𝑅 ∙ 𝑓𝑟 (Eq.7.10) 

Combining Eq. (7.9) and (7.10), the following equation is obtained: 

𝑎

2
∙ 𝑓𝑎 = 𝑅 ∙ 𝑓𝑟 ⇒

𝑓𝑟
𝑓𝑎
=
𝑎

2𝑅
 (Eq. 7.11) 

Hence, the sharper the corner radius is, the higher the confining stress at the corner 

with respect to the average confining stress inside the cross section. This is supported by 

finite element analysis results presented by Parvin and Wang (2001) and experimental 

findings by Parvin and Wang (2002), and Chaallal et al. (2003). 

Based on the preceding findings, the ratio of the average confinement stress over the 

maximum confinement stress attained in the cross section can be considered to represent a 
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geometric confinement effectiveness factor (ke). In a rectangular section, the maximum 

confinement stress (fr) develops at the corners where stress concentration occurs on the 

jacket due to dilation of concrete. The average confinement stress is the average of the 

individual stresses fa and fb which act at the centre of the section. The confinement 

effectiveness factor (ke) can be calculated from: 

𝑘𝑒 =
𝑓𝑎 + 𝑓𝑏
2 ∙ 𝑓𝑟

=
𝑅

𝑎
∙ (1 +

𝑎

𝑏
) (Eqn. 7.12) 

In a circular cross section, this factor is equal to 1, while for a square cross section, 

it is: ke = 2R/a. For an elongated rectangular cross section with semi-circular ends b ≫ a and 

2R = a, the factor ke tends asymptotically to 0.5, which corresponds to confinement in a 

single direction in the cross-sectional plane. After the determination of the diagonal force 

applied to the lateral springs in series from the corners, the lateral pressures for each region 

may also be calculated, as follows (Fig. 10). 

The springs are in series so they develop the same force. For the biaxial stress state 

region, the force starts from the corners and moves parallel to the sides. Therefore, the 

confining pressure (assumed uniform) can be determined by the following equation: 

ℎ = √ℎ1
2 + ℎ2

2
 (Eq. 7.13) 

𝜎𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑏𝑖𝑎𝑥𝑖𝑎𝑙 = 𝐹𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙/ℎ (Eq. 7.14) 

  

Figure 7.10: Confining pressures in the different regions. 
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The stress-strain model proposed by Popovics (1973) modified by Mander et al. 

(1988) is used to describe the behaviour of the triaxial stress state region. Based on the lateral 

pressures calculated according to the Fig. 10 the corresponding axial stress can be 

determined by the use of a stress-strain model corresponding to the confinement stress state 

of this region. The equation of the model by Mander et al. (1988) for the maximum axial 

stress σcc is not used in this case as it describes the performance of uniform biaxial confining 

pressure. For the region in triaxial stress state, the uniform confining pressures on the sides 

of the section can be determined based on the geometry of the region (Fig.7.10) as follows: 

 

To comply with the above modelling of the triaxial stress-state region where the 

confining pressures are different in the two lateral directions (only in the case of a square 

section they are the same), a failure criterion where all the lateral confining stress state cases 

are considered is applied. Specifically, the failure surface by Ottosen (1977) is used (Fig. 

11). The latter failure criterion corresponds to a smooth convex failure surface with curved 

peaks. This surface expands in the negative direction of the hydrostatic axis, while its 

projection to the deviatoric plane (perpendicular to the hydrostatic axis) changes from nearly 

triangular tending towards a circular shape as the hydrostatic pressure increases. The 

behaviour of concrete can be modelled using octahedral normal (hydrostatic) and shear 

(deviatoric) stresses σο and τo. Any point in the stress space is described by the coordinates 

(ξ, ρ, θ), in which ξ is the projection in the hydrostatic axis (σ1 = σ2 = σ3) and (ρ, θ) are the 

polar coordinates in the deviatory plane. 

 

Figure 7.11: Ultimate strength surface by Ottosen (1977). 

𝜎𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙,1 =
𝐹𝑑𝑖𝑎𝑔

(0.5∙𝑎−ℎ1)
   and  𝜎𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙,2 =

𝐹𝑑𝑖𝑎𝑔

(0.5∙𝑏−ℎ2)
 (Eqn. 7.15) 
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The following equations describe the failure surface. Having the lateral confining 

pressures of this region, the value of maximum axial stress σcc,triaxial can be reached through 

iteration. 

𝐴 ∙
𝐽2𝜎

𝑓𝑐𝑜
2 + 𝜆 ∙

√𝐽2𝜎

𝑓𝑐𝑜
+ 𝐵 ∙

𝐼1𝜎

𝑓𝑐𝑜
− 1 ≥ 0  (Eqn. 7.16) 

where: 

𝐼1𝜎 = 𝜎1 + 𝜎2 + 𝜎3  (Eqn. 7.17) 

𝜎1 = −𝜎𝑐𝑐,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙, 𝜎2 = −𝜎𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙,1,         𝜎3 =

−𝜎𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙,2 
(Eqn. 7.18) 

𝜎0 =
1

3
∙ 𝐼1𝜎   (Eqn. 7.19) 

𝐽2𝜎 =
(𝜎1−𝜎0)

2+(𝜎2−𝜎0)
2+(𝜎3−𝜎0)

2

2
  (Eqn. 7.20) 

𝐽3𝜎 =
(𝜎1−𝜎0)

3+(𝜎2−𝜎0)
3+(𝜎3−𝜎0)

3

3
  (Eqn. 7.21) 

𝜆 = 𝐾1 ∙ 𝑐𝑜𝑠 [
1

3
∙ 𝑐𝑜𝑠−1(𝐾2 ∙ 𝑐𝑜𝑠3𝜃)]    for  cos3θ ≥ 0 

𝜆 = 𝐾1 ∙ 𝑐𝑜𝑠 [
𝜋

3
−
1

3
∙ 𝑐𝑜𝑠−1(−𝐾2 ∙ 𝑐𝑜𝑠3𝜃)]    for  cos3θ < 0 

(Eqn. 7.22) 

cos3𝜃 =
3√3

2
∙
𝐽3𝜎

𝐽2𝜎
3/2  (Eq. 7.23) 

The remaining parameters of the model are calibrated by the values proposed in the original 

work of Ottosen (1977) for different ratios of tensile concrete strength over compressive 

concrete strength (ko = fto /fco) given in Table 7.1. 

 

Table 7.1: Proposed values for the parameters of the failure criterion by Ottosen (1977). 

ko A B K1 K2 

0.08 1.8076 4.0962 14.4863 0.9914 

0.1 1.2759 3.1962 11.7365 0.9801 

0.12 0.9218 2.5969 9.9110 0.9647 

 

Based on the σcc,triaxial determined above, the stress-strain law by Mander et al. (1988) 

is applied. The following equations describe the model’s behaviour: 
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𝜎𝑐,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙 =
𝜎𝑐𝑐,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙∙𝑥∙𝑟

𝑟−1+𝑥𝑟
  (Eq. 7.24) 

𝑟 =
𝛦𝑐

𝛦𝑐−𝛦𝑠𝑒𝑐
  (Eq. 7.25) 

휀𝑐𝑐 = 휀𝑐𝑜 ∙ [1 + 5 ∙ (
𝜎𝑐𝑐,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙

𝑓𝑐0
− 1)]  (Richart et al., 1928) (Eq. 7.26) 

𝛦𝑠𝑒𝑐 =
𝜎𝑐𝑐,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙

𝜀𝑐𝑐
    and     𝑥 =

𝜀𝑐

𝜀𝑐𝑐
 (Eq. 7.27) 

The model for concrete under biaxial stress-state by Liu et al. (1972) is used for the biaxial 

stress state region as follows: 

𝜎𝑐,𝑏𝑖𝑎𝑥𝑖𝑎𝑙 =
𝜀𝑐∙𝛦𝑐

(1−𝑣∙𝑎1)∙[1+(
𝛦𝑐

𝑓𝑐𝑝∙(1−𝑣∙𝑎1)
−

2

𝜀𝑐𝑝+0.005
)𝜀𝑐+(

𝜀𝑐
𝜀𝑐𝑝+0.005

)
2

]

  
(Eq. 7.28) 

where: 

𝑎1 =
𝜎𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑏𝑖𝑎𝑥𝑖𝑎𝑙

𝜎𝑐,𝑏𝑖𝑎𝑥𝑖𝑎𝑙
  (Eq. 7.29) 

𝑓𝑐𝑝 = (1 +
𝑎1

1.2−𝑎1
) 𝑓𝑐0   for   𝑎1 < 0.2 (Eq. 7.30) 

𝑓𝑐𝑝 = 1.2𝑓𝑐0   for   0.2 ≤ 𝑎1 ≤ 1 

Note: For a1 > 1, σc,biaxial is constant, equal to 1.2∙fc0. 

(Eq. 7.31) 

휀𝑐𝑝,1 = 0.0025    for     𝑎1 ≤ 1 (Eq. 7.32) 

Based on the areas of the different regions the total averaged axial stress of the cross section 

can be obtained: 

𝐴𝑏𝑖𝑎𝑥𝑖𝑎𝑙 = (0.5𝑏) ∙ ℎ1 + (0.5𝑎) ∙ ℎ2 − ℎ1 ∙ ℎ2  (Eqn. 7.33) 

𝐴𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙 = (0.5𝑏 − ℎ2) ∙ (0.5𝑎 − ℎ1)  (Eqn. 7.34) 

𝐴𝑡𝑜𝑡𝑎𝑙 = 𝑎 ∙ 𝑏  (Eqn. 7.35) 

𝜎𝑐,𝑡𝑜𝑡𝑎𝑙 =
4∙𝐴𝑏𝑖𝑎𝑥𝑖𝑎𝑙

𝐴𝑡𝑜𝑡𝑎𝑙
∙ 𝜎𝑐,𝑏𝑖𝑎𝑥𝑖𝑎𝑙 +

4∙𝐴𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙

𝐴𝑡𝑜𝑡𝑎𝑙
∙ 𝜎𝑐,𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙  (Eqn. 7.36) 

The proposed model (Fig. 7.12) is implemented through an iterative procedure where 

an assumed value of axial stress corresponding to an imposed axial strain is brought to 

convergence. After convergence of the assumed axial stress calculated with the above 

considerations, the resulting elongation strain through the iterative procedure should be 

compared to the ultimate rupture strain of the jacketing. It has been observed from 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



192 

 

experimental results that the average failure strains of the FRP wraps are of the order of 50-

80% of the failure strain of the tensile coupons made from the same material and tested 

before the application of the material. This actual value of factor kr (ranging between 50-

80%) depends on the type of FRP used (Lam and Teng, 2003). 

7.4 Verification of the Analytical Model by Experimental Results 

The proposed algorithm’s efficiency is assessed by its performance in correlating 

experimental results obtained in large scale tests conducted on rectangular-section, FRP-

confined RC columns (Zeng et al., 2018).  The reference experimental study presents results 

from monotonic tests conducted on nine columns having a cross-section of 435mm in depth 

and 290mm in width, including eight FRP-confined RC columns and one RC column 

without FRP jacketing as the control specimen, tested under axial compression. The 

experimental program examined the sectional corner radius and the FRP jacket thickness as 

the key test variables. The proposed algorithm was assessed against three of these specimens, 

i.e. the specimens with corner radii 25mm or 45mm and specimens having either one or two 

layers of Carbon Fiber Reinforced Polymer (CFRP) wrap.  

The corner radius of 65mm was not considered in the assessment, since in buildings 

designed using obsolete design codes the concrete cover thickness is typically small. Hence, 

a cover of at least 65mm which would allow the formation of the round corners in such a 

column is highly unlikely to be found. Also, Zeng et al. (2018) assessed the effectiveness of 

material models available in literature against the experimental results. The proposed model 

does not take into account the contribution of the stirrups, as their spacing is considered to 

be adequately large to minimize their confinement effect. This is in accordance with the 

results presented by Zeng et al. (2018), where the contribution of the reinforcement is also 

not taken into account due to the large stirrup spacing. Figure 7.13 shows the correlation of 

the proposed material model with these experimental results and overall the numerical 

response can be characterized as satisfactory. The observed deviation can be justified due to 

the complexity and large variability of the problem under study. It should be noted that for 

this comparison the iterative procedure was terminated for FRP rupture strain equal to 50% 

of that of the experimentally tested tensile FRP coupons (Zeng et al., 2018).  

A further evaluation of the model’s performance under cyclic lateral loading which 

simulates earthquake loads and simultaneous constant axial compression was also 

performed. This was achieved by comparison against the experimental tests of FRP-
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retrofitted square RC columns performed by Memon and Sheikh, 2005. This experimental 

study evaluates the effectiveness of Glass Fiber Reinforced Polymer (GFRP) wraps in 

strengthening deficient and repairing damaged square RC columns. Each of the eight 

specimens tested, representing columns of buildings and bridges constructed before 1971, 

consisted of a 305×305×1473mm column connected to a 508×762×813mm stub. Specimens 

were tested under constant axial compression and cyclic lateral displacement excursions 

simulating earthquake loads. 

 

Figure 7.12: Correlation of the proposed material model with experimental results of large-scale CFRP-

confined rectangular RC columns under axial compression by Zeng et al. (2018). 
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Figure 7.13: Proposed iterative procedure. 
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The modelling of these FRP-confined square RC columns has been performed using 

OpenSees (2006). The developed constitutive material law was added to the source code of 

OpenSees as a uniaxial material, i.e. the ‘FRPConfinedConcrete’ material. The experimental 

moment-curvature responses within the plastic hinge regions are reported along with the 

numerical results in Fig. 7.14. The simulation of the cantilever columns has been applied 

using a unique fiber beam-column element (Spacone et al., 1996) with force formulation for 

the entire column, in which the FRP-confined concrete was modelled using the proposed 

material model with degraded linear unloading/reloading stiffness according to the work of 

Karsan and Jirsa (1969) and no tensile strength. The constitutive model by Menegotto and 

Pinto (1973) is used to model the longitudinal steel behaviour. The moment-curvature 

response of the most critical fiber section of the applied nonlinear fiber element was then 

reported. It can be seen in Fig. 7.14 that the agreement is close to the experimental one, with 

some deviation concentrated on the parts of reloading after reversal of the imposed 

displacement. This difference in response in terms of modelling can be explained based on 

the way the cracks on the concrete surface are described in the level of the material model. 

Because the crack is described as a two-event phenomenon (open or closed cracks), when 

the longitudinal steel reinforcement is in compression and the crack is closing, the concrete 

contributes to the total strength of the column, creating this deviation in the response. In 

reality, this case may not occur when lateral dislocation may cause imperfect crack closure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



196 

 

 

 

 

  

  

 

 

Figure 7.14: Correlation of the proposed material model with experimental results of large-scale GFRP-

confined square RC columns under cyclic excitation by Memon and Sheikh (2005) (x-axis: Curvature 

x10-6 (rad/mm), y-axis: Moment (kNm). 
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7.5 Summary 

The column fiber-based element developed in Chapters 3, 5, and 6 in order to model the 

flexural, shear and pullout slip behavior in the critical zones of columns under lateral sway 

used the established confinement models to characterize the uniaxial stress of concrete in 

compression.  The work was extended further in the present chapter to also address 

unconventional confinement development effected by FRP jacketing; the emphasis was 

placed on rectangular cross sections where variable confinement occurs in the long and short 

directions of the member cross section.  The model was developed from first principles as 

an extension of a previously developed analytical model for circular columns, after 

consideration of the variable kinematic restraint to dilation exerted by the confining jacket 

in subsections of the rectangular section each being affected differently by the jacket 

confinement depending on the proximity to the corners.  The approach developed was 

calibrated against experimental evidence and a primary finding is that the entire wrapped 

column cross section is confined, contrary to the established practice that considers an 

arching action to occur in the intermediate zones of the perimeter of the cross section that 

effectively reduces confinement performance.  
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8 CONCLUSIONS 

8.1 Summary and Conclusions of the Research 

The review of the state of the art regarding interpretation and consistent modeling of 

reinforced concrete column under lateral loads leaves a lot to be desired: improved response 

estimation of the behavior of columns that are susceptible to shear failure after flexural 

yielding; better procedures to estimate shear strength, and the pattern of degradation thereof 

with increasing displacement ductility; the need to account for reinforcement pullout and its 

effects on stiffness and deformation capacity; the shape of the hysteresis loops; the 

detrimental effects of axial load at large displacement limits; the drift capacity of structural 

elements and the magnitude of deformation (drift ratio) associated with milestone events in 

the response curve of the column member are open issues that need to be settled before the 

performance-based assessment framework may be considered complete and dependable.  

In this direction, the definition of the deformability of RC columns was reassessed 

in the present thesis by proposing a new methodology for the determination of plastic hinge 

length through a consideration of yield penetration effects. It is noted that the plastic hinge 

is an essential device in mechanics of concrete under seismic action, and is critical in the 

estimation of drift capacity at the design ultimate limit states.  The term strain penetration 

refers to development of bar strains that do not obey flexural analysis and the plane sections 

assumption, and it occurs as a result of bond degradation along the length of the 

reinforcement. Yield penetration is the type of bar strain development that spreads beyond 

the length where bar yield stress would be predicted to occur from flexural theory.  

It was found that yield penetration occurs from the critical section towards both the 

shear span and the support of columns. The extent of the nonlinear region of the bar is 

governed by the observation that since bond stress fb is the slope of the bar stress distribution 

fs, thus, where a bar is at the yield plateau no bonding with the surrounding concrete can 

occur. Thus, yield penetration is synonymous with increased bar pull-out slip contribution 

to the column lateral drift ratio.  Contrary to the fixed design values adopted by codes of 

assessment, the yield penetration length is actually the only consistent definition of the 

notion of the plastic hinge length, whereas the latter determines in the practical concrete 

mechanics, the contribution of pullout rotation to column drift and column stiffness. In order 

to establish the plastic hinge length in a manner consistent to the above definition, this study 
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pursued the explicit solution of the field equations of bond over the shear span of a column. 

Through this approach, the bar strain distributions and the extent of yield penetration from 

the yielding cross section towards the shear span were resolved and calculated analytically. 

By obtaining this solution, a consistent definition of plastic hinge length was established, by 

reference to the state of reinforcement strain (replacing the stress-based definition used 

previously). The true parametric sensitivities of this design variable for practical use in the 

seismic assessment of existing structures were illustrated. The numerical result showed good 

agreement with the experimental evidence and were consistent with the experimental trends 

supported by test databases, confirming that the plastic hinge length is controlled by the 

residual bond that may be mobilized along the yielded reinforcement.  It was found that at 

advanced levels of lateral drift the column reinforcement is partially debonded and governed 

by the solution of the bond equation, thereby behaving as an anchorage over the shear span.  

Contribution to drift ratio resulting from the strain-definition of the plastic hinge 

continuously grows with lateral imposed displacement, causing a commensurate reduction 

of the relative participation of the flexural drift component and causing the yielded region to 

behave as a pivot.  This interaction between flexural and pullout response is responsible for 

the cover delamination often observed at the toe of structural columns under lateral sway.  

In addition, a force-based fiber beam-column element accounting for shear effects 

and the effect of tension stiffening was developed, in order to provide an analytical test-bed 

for simulation and improved understanding of experimental cases where testing of reinforced 

concrete columns actually led to collapse. The developed fiber-element is incorporated in 

the stand-alone Windows program Phaethon with the user’s interface written in C++ 

programming language code. The latter offers the possibility to obtain the resistance curve 

for shear-critical reinforced concrete cantilever columns while taking into consideration the 

shear–flexure interaction mechanism.  The procedure also incorporated in the drift capacity 

estimation of a column; the rotation due to pull-out occurring in the critical section of the 

column.  The software resolves strain, slip and bond distributions along the anchorage length. 

Comparison with experimental results from the literature verifies the capability of this 

Windows software tool to assess the strength and deformation indices of shear-critical 

reinforced concrete columns. Moreover, the moment curvature as well as the shear force – 

shear strain analysis of the sections of these columns are also possible, all based on the 

Modified Compression Field Theory.  The fiber modelling approach was used to calibrate 

several column specimens tested under lateral loading and included in an international 
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database of tests that is curated by the Pacific Earthquake Engineering Research Center.  The 

columns analyzed include all specimens that demonstrated a flexural type response under 

cyclic displacement reversals (see Chapter 3 and Appendix), as well as columns undergoing 

shear failure after yielding of primary reinforcement (Chapter 3, and Chapter 6).  The effect 

of fluctuating axial load was also studied as a means of explaining different modes of failure 

observed in otherwise identical specimens; in the same context the effect of loading history 

was illustrated to affect the accumulation of member growth due to inelastic strains and the 

ensuing fulfillment of axial load collapse conditions.  

The concept of prioritizing the hierarchy of failure was used in order to decipher the 

limiting drift capacity and ensuing mode of failure of non-conforming columns with older-

type detailing.  Alternative modes of failure were considered in order to identify the weakest 

link of member behavior (from among flexural yielding/concrete crushing due to excessive 

flexural strains, web cracking/stirrup yielding due to shear failure, exhaustion of 

reinforcement strain development capacity in poorly confined anchorages and lap splices).  

Once the weakest mechanism of resistance was identified in old columns, the drift capacity 

was associated with the development of that particular mechanism, by scaling down the 

contribution of the other forms of behavior according with the maximum attainable column 

shear resulting from the prevailing mode of failure.  In this manner situations where no 

plastic rotation capacity could be supported if the member fails prior to flexural yielding 

were identified, leading to reduced drift ratios as compared to the assessment codes 

estimations.  

Finally, an iterative approach was proposed to model both the axial and lateral stress-

strain response of axially loaded FRP-confined rectangular and square reinforced concrete 

columns. In FRP-confined square or rectangular sections, no unconfined concrete regions 

are observed, as assumed in many models. These sectors along the sides between adjacent 

corners are confined from forces coming from the corners and extending parallel to the 

jacketed sides. Therefore, the areas where arching effect was assumed previously, are found 

to be in fact partially confined. Thus, two different regions with different stress-states were 

identified, being uniaxially and biaxially confined. The contribution of each region to the 

total section strength was modelled as a system of parallel springs, whose axial stresses were 

taken as additive based on the corresponding constitutive laws for the respective stress states.  

Similarly, the lateral expansive behavior that occurs along the diagonals of the confined 

section was represented by a system of springs in series. It was shown that the lateral strains 
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on both sides of the rectangular sections are equal, regardless of their aspect ratio. The 

resulting lateral uniform pressures led to the corresponding axial strength of the partially 

confined regions. The algorithm takes into account all parameters available to designers, 

such as corner rounding radius, stiffness of the FRP and concrete strength, while it can be 

easily understood and implemented.  Results were found to correlate adequately to recent 

experimental data obtained from large-scale tests on FRP-confined rectangular RC columns. 

Finally, the performance of this material model was further investigated by its 

implementation to the simulation of a series of experimental tests of FRP-retrofitted square 

RC columns under cyclic lateral loading simulating earthquake loads and simultaneous 

constant axial compression.  Nonlinear fiber element models such as those developed in 

Chapter 3 and enhanced with the confinement model were  implemented in OpenSees 

(‘FRPConfinedConcrete’) with tensile strength cutoff for the concrete and degraded linear 

unloading/reloading stiffness in the case of cyclic loadings. The model was found very 

effective in the modelling of square-section FRP-confined columns under lateral loads.  

When used in the modelling of rectangular sections the effectiveness of the model was 

reduced for large aspect ratio of section sides particularly at larger deformations.  

8.2 Thesis Contributions 

In the course of the thesis a number of findings and innovative concepts were 

developed.  These are considered the important contributions of the work:  

• A novel definition was established for the plastic hinge length in flexure-shear 

members and a methodology was developed for its calculation.  The new practical 

expression for the plastic hinge length proposed refers to the post-yielding strain 

development capacity of the reinforcement, departing from the established approach 

that defines the plastic hinge length with reference to reinforcement yield stress. 

• A novel closed form solution of bond equations governing the behavior of 

reinforcement in the shear span of a swaying column was developed considering 

nonlinearity in the bond-slip law and reinforcement yielding.  Tension stiffening 

effects interfering with the solution of the bond-equation were mathematically 

described and considered in the solution.  

• A Windows-based software was developed for fiber-based, distributed nonlinearity 

analysis of prismatic frame elements undergoing lateral sway such as would occur 
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during an earthquake.  The program solves the column state of stress under full cyclic 

load reversals for flexure dominated response conditions.  

• The formulation was extended to fiber-type analysis with distributed nonlinearity 

also considering the exact Timoshenko beam theory whereby shear deformations are 

explicitly considered in the state determination.  Moment, shear and axial load 

interaction were considered in calculating the resistance curve for a number of 

different column cases that underwent flexure shear or purely shear dominated mode 

of failure, and the distinct contributions of the many contributing sources of column 

deformation (curvature, shear angle, axial elongation, pullout rotation) were 

illustrated through the developed algorithm.   

• The MCFT theory was coupled with a simplifying assumption for the orientation of 

the principal angles in order to enable fast convergence in the formulation. 

• The problem of assessment of older columns with substandard reinforcing details 

was studied in light of the capacity prioritizing theory which is actually a reverse 

implementation of capacity design as used in new structures.  Through this concept 

the weakest link of member behavior can be identified. An important finding is that 

drift capacity of such columns cannot be obtained unconditionally by the 

contributions of yield and plastic rotation capacities as would be estimated from code 

expressions, but rather it is dominated by the controlling mode of failure, requiring a 

case by case examination of the relative strength magnitudes of all the governing 

response mechanisms. 

• A mechanistic model was developed to evaluate the confining effects of FRP 

jacketing used as a means of retrofitting old columns with a rectangular cross section, 

in terms of confined concrete stress-strain response.  The model illustrated that the 

arching action effect which is widely accepted in the literature oversimplifies the true 

nature of the state of confinement in the encased member.  Confining forces near the 

perimeter were found to have strong directionality effects.  A novel constitutive 

approach that accounts for the kinematics of the restrained region was developed and 

implemented along with the fiber model described in Chapter 3 in OpenSees and is 

available for public use through this widely accepted simulation platform.   

• All developed methodologies correlate adequately to experimental findings.  

A new practical expression for the plastic hinge length was derived from first 

principles. According to this the plastic hinge is dependent on the magnitudes of strain that 
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exceed yielding over the shear span, which is controlled by the residual frictional bond that 

can be supported over the yielded portion of the bar including the spread of yield penetration.  

The expression was validated through comparison of its estimations with the available 

experimental evidence, the empirical formulae for the plastic hinge length and by exploring 

its parametric sensitivity to the important design variables.   This expression is appropriate 

for practical implementation to design and it is proposed that it be considered as a critical 

variable both for seismic design and practical assessment guidelines that could be 

incorporated in future versions of design and assessment Codes like Eurocodes, particularly 

with regards to the estimation of deformation capacity of structural members. 

8.3 Future Research Priority 

The Performance-Based Earthquake Engineering main objective is to define an “acceptable” 

probability of collapse. Collapse shall be quantified as realistically as possible, using non-

linear dynamic analysis which incorporates several suites of ground motions. A 

comprehensive set of guidelines will form the starting point for addressing the complexity 

inherent in nonlinear softening response under large displacements and deformations and 

will contribute to the acceptance of nonlinear response studies in professional practice. The 

deployment of a new class of column models that account for localized phenomena such as 

shear and reinforcement pull-out in a consistent iterative element formulation will help 

minimize the non-convergence issues that arise with the large collection of zero length 

nonlinear spring and plastic hinge elements currently in use in nonlinear column response 

simulations. One main future goal based on the present research is to enhance further the 

developed force-based fiber model using a secant type history-tracking algorithm so as to 

facilitate convergence and eliminate numerical instabilities associated with tangent stiffness 

approaches.  This would also enable further dissemination of the Timoshenko-beam based 

fiber element in the OpenSees platform.  Another important step would be the development 

of simple proposals for error-proof estimation of deformation capacities of existing columns 

according to the procedures developed in this study, to be proposed as alternatives to the 

current code approaches that are rather complex and difficult to use in practice.     
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ANNEXES 

 

APPENDIX A  

This is an Appendix for Chapter 3. 
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Table A.1: Reinforced Concrete Columns with a circular cross section, that failed in flexure. 
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43 907 400 20 800 38 20 16 423 577 3.2 60 10 300 1.42 

45 1813 400 20 800 37 20 16 475 625 3.2 60 10 300 1.42 

46 145 307 36 1910 38.8 12 12 240 - 1.83 75 6 240 0.63 

47 254 307 36 1910 36.2 12 12 240 - 1.83 75 6 240 0.63 

50 151 152 10.2 1140 34.5 8 12.7 448 - 5.57 22 3.7 620 1.45 

51 151 152 10.2 570 34.5 8 12.7 448 - 5.57 22 3.7 620 1.45 

52 220 152 10.2 570 34.5 8 12.7 448 - 5.57 22 3.7 620 1.45 

53 4450 1520 58.7 9140 35.8 25 43 475 - 1.99 89 15.9 493 0.63 

54 4450 1520 60.3 4570 34.3 25 43 475 - 1.99 54 19.1 435 1.49 

55 120 250 9.9 750 24.1 25 7 446 - 1.98 9 3.1 441 1.41 

56 239 250 9.9 750 23.1 25 7 446 - 1.98 9 3.1 441 1.41 
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57 120 250 9.7 1500 25.4 25 7 446 - 1.98 14 2.7 476 0.68 

58 120 250 9.9 750 24.4 25 7 446 - 1.98 9 3.1 441 1.41 

59 239 250 9.9 750 24.3 25 7 446 - 1.98 9 3.1 441 1.41 

60 120 250 9.7 1500 23.3 25 7 446 - 1.98 14 2.7 476 0.68 

93 200 305 14.5 1372 29 21 9.5 448 690 2.04 19 4 434 0.94 

94 200 305 14.5 1372 29 21 9.5 448 690 2.04 19 4 434 0.94 

95 222 305 14.5 1372 35.5 21 9.5 448 690 2.04 19 4 434 0.94 

96 222 305 14.5 1372 35.5 21 9.5 448 690 2.04 19 4 434 0.94 

97 222 305 14.5 1372 35.5 21 9.5 448 690 2.04 19 4 434 0.94 

98 222 305 14.5 1372 32.8 21 9.5 448 690 2.04 19 4 434 0.94 

99 222 305 14.5 1372 32.8 21 9.5 448 690 2.04 19 4 434 0.94 

100 222 305 14.5 1372 32.5 21 9.5 448 690 2.04 19 4 434 0.94 

101 200 305 14.5 1372 27 21 9.5 448 690 2.04 19 4 434 0.94 

102 200 305 14.5 1372 27 21 9.5 448 690 2.04 19 4 434 0.94 

103 200 305 14.5 1372 27 21 9.5 448 690 2.04 19 4 434 0.94 

106 1780 610 27.76 3660 41.1 20 22.23 455 746 2.66 57 9.5 414 0.89 

107 1928 457 24.76 910 38.3 20 15.875 427.5 - 2.41 60 9.5 430.2 1.14 
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109 970 457 24.76 910 39.4 20 15.875 427.5 - 2.41 60 9.5 430.2 1.14 

112 1914 457 26.35 910 35 30 19.05 486.2 - 5.21 40 12.7 434.4 3.04 

113 1780 457 30.16 3656 36.6 30 15.875 477 - 3.62 76 9.5 445 0.92 

114 1780 457 30.16 3656 40 30 15.875 477 - 3.62 51 6.4 437 0.6 

115 1780 457 30.16 3656 38.6 30 15.875 477 - 3.62 76 9.5 445 0.92 

116 654 609.6 22.23 2438.4 31 22 15.875 461.965 630 1.49 31.75 6.4 606.76 0.7 

117 654 609.6 22.23 4876.8 31 22 15.875 461.965 630 1.49 31.75 6.4 606.76 0.7 

118 654 609.6 22.23 6096 31 22 15.875 461.965 630 1.49 31.75 6.4 606.76 0.7 

119 654 609.6 22.23 2438.4 31 11 15.875 461.965 630 0.75 31.75 6.4 606.76 0.7 

120 654 609.6 22.23 2438.4 31 44 15.875 461.965 630 2.98 31.75 6.4 606.76 0.7 

121 912 609.6 28.58 1828.8 34.5 28 19.05 441.28 602 2.73 25.4 6.4 606.76 0.89 

122 912 609.6 28.58 4876.8 34.5 28 19.05 441.28 602 2.73 25.4 6.4 606.76 0.89 

123 912 609.6 28.58 6096 34.5 28 19.05 441.28 602 2.73 25.4 6.4 606.76 0.89 

125 400 600 30.16 1800 34.6 14 22.225 448 739 1.92 97 9.5 431 0.54 

126 400 600 30.16 1800 33 14 22.225 461 775 1.92 64 9.5 434 0.81 

127 1000 250 13.75 1645 65 8 16 419 - 3.28 50 7.5 1000 1.54 

128 1000 250 15.65 1645 65 8 16 419 - 3.28 50 11.3 420 3.49 
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130 1850 250 14 1645 90 8 16 419 - 3.28 50 8 580 1.75 

131 1850 250 15.65 1645 90 8 16 419 - 3.28 100 11.3 420 1.74 

132 925 250 13.75 1645 90 8 16 419 - 3.28 50 7.5 1000 1.54 

133 1850 250 13.75 1645 90 8 16 419 - 3.28 50 7.5 1000 1.54 

141 1308 609.6 22.23 2438.4 37.2 22 15.875 462 - 1.49 31.75 6.4 606.76 0.7 

142 654 609.6 22.23 2438.4 37.2 22 15.875 462 - 1.49 63.5 6.4 606.76 0.35 

143 1779 609.6 20 3657 32.6 26 19.05 315.1 497.8 2.54 127 6.4 351.6 0.17 

157 0 406.4 14.96 1854.2 36.5 12 12.7 458.5 646 1.17 31.75 4.5 691.5 0.53 

158 0 406.4 14.96 1854.2 36.5 12 12.7 458.5 646 1.17 31.75 4.5 691.5 0.53 
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Comparison of Calculated with Experimental Results for Circular Section Columns 

Dominated by Flexural Response, listed in Table A.1.    

 

Figure A.1: Comparison between numerical and experimental responses of circular columns 

(ID#46&47) of the database. 

 

Figure A.2: Comparison between numerical and experimental responses of circular columns 

(ID#50&51) of the database. 

 

Figure A.3: Comparison between numerical and experimental responses of circular columns 

(ID#52&53) of the database. 

Concrete Model: Mander et al, 1988 

Concrete Model: Scott et al, 1982 

Concrete Model: Scott et al, 1982 
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Figure A.4: Comparison between numerical and experimental responses of circular columns 

(ID#54&55) of the database. 

 

Figure A.5: Comparison between numerical and experimental responses of circular columns 

(ID#56&57) of the database. 

 

Figure A.6: Comparison between numerical and experimental responses of circular columns 

(ID#58&59) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



230 

 

 

Figure A.7: Comparison between numerical and experimental responses of circular columns 

(ID#60&93) of the database. 

 

Figure A.8: Comparison between numerical and experimental responses of circular columns 

(ID#94&95) of the database. 

 

Figure A.9: Comparison between numerical and experimental responses of circular columns 

(ID#96&97) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.10: Comparison between numerical and experimental responses of circular columns 

(ID#98&99) of the database. 

 

Figure A.11: Comparison between numerical and experimental responses of circular columns 

(ID#100&101) of the database. 

 

Figure A.12: Comparison between numerical and experimental responses of circular columns 

(ID#102&103) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.13: Comparison between numerical and experimental responses of circular columns 

(ID#106&107) of the database. 

 

Figure A.14: Comparison between numerical and experimental responses of circular columns 

(ID#109&112) of the database. 

 

Figure A.15: Comparison between numerical and experimental responses of circular columns 

(ID#113&114) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.16: Comparison between numerical and experimental responses of circular columns 

(ID#115&116) of the database. 

 

Figure A.17: Comparison between numerical and experimental responses of circular columns 

(ID#117&118) of the database. 

 

Figure A.18: Comparison between numerical and experimental responses of circular columns 

(ID#119&120) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.19: Comparison between numerical and experimental responses of circular columns 

(ID#121&122) of the database. 

 

Figure A.20: Comparison between numerical and experimental responses of circular columns 

(ID#123&125) of the database. 

 

Figure A.21: Comparison between numerical and experimental responses of circular columns 

(ID#126&127) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.22: Comparison between numerical and experimental responses of circular columns 

(ID#128&130) of the database. 

 

Figure A.23: Comparison between numerical and experimental responses of circular columns 

(ID#131&132) of the database. 

 

Figure A.24: Comparison between numerical and experimental responses of circular columns 

(ID#133&141) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.25: Comparison between numerical and experimental responses of circular columns 

(ID#142&143) of the database. 

 

Figure A.26: Comparison between numerical and experimental responses of circular columns 

(ID#157&158) of the database. 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Table A.2: Reinforced Concrete Columns with a rectangular cross section, that failed in flexure 
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1 1815 550-550 40 1200 23.1 12 24 375 635.6 0.0179 80 10 297 0.015 

2 2680 550-550 38 1200 41.4 12 24 375 635.6 0.0179 75 12 316 0.023 

3 2719 550-550 40 1200 21.4 12 24 375 635.6 0.0179 75 10 297 0.02 

4 4265 550-550 38 1200 23.5 12 24 375 635.6 0.0179 62 12 294 0.035 

5 1435 400-400 24.5 1600 23.6 12 16 427 670 0.0151 100 12 320 0.028 

6 840 400-400 22.5 1600 25 12 16 427 670 0.0151 90 10 280 0.022 

7 744 400-400 13 1600 46.5 12 16 446 702 0.0151 85 7 364 0.0086 

8 2112 400-400 13 1600 44 12 16 446 702 0.0151 78 8 360 0.0122 

9 2112 400-400 13 1600 44 12 16 446 702 0.0151 91 7 364 0.008 

10 1920 400-400 13 1600 40 12 16 446 702 0.0151 94 6 255 0.0057 

11 1010 400-400 13 1600 28.3 12 16 440 674 0.0151 117 10 466 0.0156 

12 2502 400-400 13 1600 40.1 12 16 440 674 0.0151 92 10 466 0.0199 
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13 3280 400-400 13 1600 41 12 16 474 633.3 0.0151 81 8 372 0.0066 

14 3200 400-400 13 1600 40 12 16 474 633.3 0.0151 96 6 388 0.0032 

15 4704 400-400 13 1600 42 12 16 474 633.3 0.0151 96 12 308 0.0126 

16 4368 400-400 13 1600 39 12 16 474 633.3 0.0151 77 8 372 0.007 

17 4480 400-400 13 1600 40 12 16 474 633.3 0.0151 52 12 308 0.0233 

18 819 400-400 40 1600 25.6 8 20 474 721 0.0157 80 12 333 0.0255 

19 819 400-400 40 1600 25.6 8 20 474 721 0.0157 80 12 333 0.0255 

20 819 400-400 40 1600 25.6 8 20 474 721 0.0157 80 12 333 0.0255 

21 819 400-400 40 1600 25.6 8 20 474 721 0.0157 80 12 333 0.0255 

22 968 550-550 40 1650 32 12 20 511 675 0.0125 110 12 325 0.017 

23 968 550-550 40 1650 32 12 20 511 675 0.0125 110 12 325 0.017 

24 2913 550-550 40 1650 32.1 12 20 511 675 0.0125 90 12 325 0.0208 

25 2913 550-550 40 1650 32.1 12 20 511 675 0.0125 90 12 325 0.0208 

26 646 400-600 24 1784 26.9 10 24 432 - 0.0188 80 12 305 0.0217 

27 429 250-250 - 375 20.6 6 9.5 392.8 - 0.0068 32 5.5 323 0.0118 

30 127 400-400 31.5 1600 24.8 8 19 362 - 0.0142 100 9 325 0.0032 
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31 127 400-400 31.5 1600 24.8 8 19 362 - 0.0142 100 9 325 0.0032 

32 127 400-400 31.5 1600 24.8 8 19 362 - 0.0142 100 9 325 0.0032 

43 432 160-160 12.5 320 21.1 8 10 341 448 0.0222 40 5 559 0.0073 

48 184 250-250 35 750 27.9 8 12.7 374 494 0.0162 50 5.5 506 0.0038 

49 184 250-250 35 750 27.9 8 12.7 374 494 0.0162 50 5.5 506 0.0038 

50 184 250-250 35 750 27.9 8 12.7 374 494 0.0162 50 5.5 506 0.0038 

51 184 250-250 35 750 24.8 8 12.7 374 494 0.0162 50 5.5 352 0.0038 

52 184 250-250 35 750 27.9 8 12.7 374 494 0.0162 50 5.5 506 0.0038 

53 184 250-250 35 750 27.9 8 12.7 374 494 0.0162 50 5.5 506 0.0038 

56 1371 200-200 9 500 85.7 12 12.7 399.6 - 0.038 35 6 328.4 0.0161 

57 1371 200-200 9 500 85.7 12 12.7 399.6 - 0.038 35 6 792.3 0.0161 

58 2156 200-200 9 500 85.7 12 12.7 399.6 - 0.038 35 6 328.4 0.0161 

59 2156 200-200 9 500 85.7 12 12.7 399.6 - 0.038 35 6 792.3 0.0161 

60 1176 200-200 9 500 115.8 12 12.7 399.6 - 0.038 35 6 328.4 0.0161 

61 1176 200-200 9 500 115.8 12 12.7 399.6 - 0.038 35 6 792.3 0.0161 

62 1959 200-200 9 500 115.8 12 12.7 399.6 - 0.038 35 6 328.4 0.0161 

63 1959 200-200 9 500 115.8 12 12.7 399.6 - 0.038 35 6 792.3 0.0161 

 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



240 

 

66 2176 250-250 23.5 500 99.5 12 12.7 379 571 0.0243 60 5 774 0.005 

67 2176 250-250 23.5 500 99.5 12 12.7 379 571 0.0243 40 5 774 0.0075 

68 2176 250-250 23.5 500 99.5 12 12.7 379 571 0.0243 60 5.5 344 0.0061 

69 2176 250-250 23.5 500 99.5 12 12.7 379 571 0.0243 60 5 1126 0.005 

70 2176 250-250 23.5 500 99.5 12 12.7 379 571 0.0243 30 5 774 0.005 

71 2176 250-250 23.5 500 99.5 12 12.7 379 571 0.0243 60 7 857 0.005 

72 2176 250-250 30.5 500 99.5 4 19 339 512 0.0181 30 5 774 0.005 

88 267 305-305 32 1676 29.1 4 22 367 578 0.0163 76 9.5 363 0.0154 

89 267 305-305 32 1676 30.7 4 22 367 578 0.0163 127 9.5 363 0.0093 

90 267 305-305 32 1676 29.2 4 22 367 578 0.0163 76 9.5 363 0.0154 

91 267 305-305 32 1676 27.6 4 22 429 657 0.0163 127 9.5 363 0.0093 

92 534 305-305 32 1676 29.4 4 22 429 657 0.0163 76 9.5 392 0.0154 

93 534 305-305 32 1676 31.8 4 22 429 657 0.0163 127 9.5 392 0.0093 

94 801 305-305 32 1676 33.3 4 22 363 563 0.0163 76 9.5 392 0.0154 

95 801 305-305 32 1676 32.4 4 22 363 563 0.0163 127 9.5 392 0.0093 

96 801 305-305 32 1676 31 4 22 363 563 0.0163 76 9.5 373 0.0154 

97 801 305-305 32 1676 31.8 4 22 363 563 0.0163 127 9.5 373 0.0093 
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102 1690 457-457 38.1 1372 39.3 8 25.4 439 736 0.0194 102 12.7 454 0.0219 

103 2580 457-457 41.3 1372 39.8 8 25.4 439 736 0.0194 102 9.5 616 0.0126 

105 600 350-350 22.5 1000 34.8 8 25 430 - 0.0321 75 10 470 0.0169 

106 600 350-350 22.5 1000 32 8 25 438 - 0.0321 50 10 470 0.0254 

107 600 350-350 26 1000 37.3 8 25 437 - 0.0321 65 6.4 425 0.0195 

108 600 350-350 26 1000 39 8 25 437 - 0.0321 65 6.4 425 0.0195 

109 1500 250-250 30 1140 80 12 10 531 641 0.0151 150 8 531 0.0122 

110 1500 250-250 30 1140 80 12 10 531 641 0.0151 150 8 531 0.0122 

111 1000 250-250 30 1140 80 12 10 531 641 0.0151 150 8 531 0.0122 

112 1000 250-250 30 1140 80 12 10 531 641 0.0151 150 8 531 0.0122 

113 1000 250-250 30 1140 80 12 10 531 641 0.0151 100 8 531 0.0183 

114 1500 250-250 30 1140 80 12 10 531 641 0.0151 100 8 531 0.0183 

115 1500 250-250 30 1140 80 12 10 531 641 0.0151 100 8 531 0.0183 

116 1000 250-250 30 1140 80 12 10 531 641 0.0151 100 8 531 0.0183 

117 1000 250-250 30 1140 80 12 10 531 641 0.0151 50 8 531 0.0366 

118 1500 250-250 30 1140 80 12 10 531 641 0.0151 50 8 531 0.0366 

119 1000 250-250 30 1140 80 12 10 531 641 0.0151 50 8 531 0.0366 
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120 1500 250-250 30 1140 80 12 10 531 641 0.0151 50 8 531 0.0366 

121 1000 250-250 30 1140 80 12 20 430 - 0.0603 150 8 430 0.0122 

122 1500 250-250 30 1140 80 12 20 579 677 0.0603 150 8 579 0.0122 

123 1500 250-250 30 1140 80 12 20 579 677 0.0603 150 8 579 0.0122 

124 1000 250-250 30 1140 80 12 20 579 677 0.0603 150 8 579 0.0122 

125 1000 250-250 30 1140 80 12 20 579 677 0.0603 100 8 579 0.0183 

126 1000 250-250 30 1140 80 12 20 579 677 0.0603 100 8 579 0.0183 

127 1500 250-250 30 1140 80 12 20 579 677 0.0603 100 8 579 0.0183 

128 1500 250-250 30 1140 80 12 20 579 677 0.0603 100 8 579 0.0183 

129 1000 250-250 30 1140 80 12 20 430 - 0.0603 50 8 430 0.0366 

130 1000 250-250 30 1140 80 12 20 430 - 0.0603 50 8 430 0.0366 

131 1500 250-250 30 1140 80 12 20 430 - 0.0603 50 8 430 0.0366 

132 1500 250-250 30 1140 80 12 20 430 - 0.0603 50 8 430 0.0366 

133 615 380-610 28 2335 27.2 18 19.1 448 731 0.0222 110 6 428 0.0037 

134 1505 380-610 28 2335 27.2 18 19.1 448 731 0.0222 110 6 428 0.0037 

135 601 380-610 25 2335 28.1 18 19.1 448 731 0.0222 83 6 428 0.0048 

136 1514 380-610 25 2335 28.1 18 19.1 448 731 0.0222 83 6 428 0.0048 
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145 489 254-254 13 508 76 8 19.1 510 - 0.0355 51 9.5 510 0.0367 

146 979 254-254 13 508 76 8 19.1 510 - 0.0355 51 9.5 510 0.0367 

147 534 254-254 13 508 86 8 15.9 510 - 0.0246 51 9.5 510 0.0367 

148 1068 254-254 13 508 86 8 15.9 510 - 0.0246 51 9.5 510 0.0367 

156 1076 280-280 25.4 2134 40.6 4 15.875 407 659 0.0101 228.6 6.35 351 - 

157 3354 305-305 11 1842 72.1 8 19.54 454 700 0.0258 95 15.98 463 0.0315 
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Figure A.27: Comparison between numerical and experimental responses of rectangular columns 

(ID#3&4) of the database. 

 

Figure A.28: Comparison between numerical and experimental responses of rectangular columns 

(ID#5&6) of the database. 

 

Figure A.29: Comparison between numerical and experimental responses of rectangular columns 

(ID#7&8) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.30: Comparison between numerical and experimental responses of rectangular columns 

(ID#9&10) of the database. 

 

Figure A.31: Comparison between numerical and experimental responses of rectangular columns 

(ID#11&12) of the database. 

 

Figure A.32: Comparison between numerical and experimental responses of rectangular columns 

(ID#13&14) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.33: Comparison between numerical and experimental responses of rectangular columns 

(ID#15&16) of the database. 

 

Figure A.34: Comparison between numerical and experimental responses of rectangular columns 

(ID#17&18) of the database. 

 

Figure A.35: Comparison between numerical and experimental responses of rectangular columns 

(ID#19&20) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.36: Comparison between numerical and experimental responses of rectangular columns 

(ID#21&22) of the database. 

 

Figure A.37: Comparison between numerical and experimental responses of rectangular columns 

(ID#23&24) of the database. 

 

Figure A.38: Comparison between numerical and experimental responses of rectangular columns 

(ID#25&26) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.39: Comparison between numerical and experimental responses of rectangular columns 

(ID#27&30) of the database. 

 

Figure A.40: Comparison between numerical and experimental responses of rectangular columns 

(ID#31&32) of the database. 

 

Figure A.41: Comparison between numerical and experimental responses of rectangular columns 

(ID#43&48) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.42: Comparison between numerical and experimental responses of rectangular columns 

(ID#49&50) of the database. 

 

Figure A.43: Comparison between numerical and experimental responses of rectangular columns 

(ID#51&52) of the database. 

 

Figure A.44: Comparison between numerical and experimental responses of rectangular columns 

(ID#53&56) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.45: Comparison between numerical and experimental responses of rectangular columns 

(ID#57&58) of the database. 

 

Figure A.46: Comparison between numerical and experimental responses of rectangular columns 

(ID#59&60) of the database. 

 

Figure A.47: Comparison between numerical and experimental responses of rectangular columns 

(ID#61&62) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.48: Comparison between numerical and experimental responses of rectangular columns 

(ID#63&66) of the database. 

 

Figure A.49: Comparison between numerical and experimental responses of rectangular columns 

(ID#67&68) of the database. 

 

Figure A.50: Comparison between numerical and experimental responses of rectangular columns 

(ID#69&70) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.51: Comparison between numerical and experimental responses of rectangular columns 

(ID#71&72) of the database. 

 

Figure A.52: Comparison between numerical and experimental responses of rectangular columns 

(ID#88&89) of the database. 

 

Figure A.53: Comparison between numerical and experimental responses of rectangular columns 

(ID#90&91) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.54: Comparison between numerical and experimental responses of rectangular columns 

(ID#92&93) of the database. 

 

Figure A.55: Comparison between numerical and experimental responses of rectangular columns 

(ID#94&95) of the database. 

 

Figure A.56: Comparison between numerical and experimental responses of rectangular columns 

(ID#96&97) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.57: Comparison between numerical and experimental responses of rectangular columns 

(ID#102&103) of the database. 

 

Figure A.58: Comparison between numerical and experimental responses of rectangular columns 

(ID#105&106) of the database. 

 

Figure A.59: Comparison between numerical and experimental responses of rectangular columns 

(ID#107&108) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.60: Comparison between numerical and experimental responses of rectangular columns 

(ID#109&110) of the database. 

 

Figure A.61: Comparison between numerical and experimental responses of rectangular columns 

(ID#111&112) of the database. 

 

Figure A.62: Comparison between numerical and experimental responses of rectangular columns 

(ID#113&114) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.63: Comparison between numerical and experimental responses of rectangular columns 

(ID#115&116) of the database. 

 

Figure A.64: Comparison between numerical and experimental responses of rectangular columns 

(ID#117&118) of the database. 

 

Figure A.65: Comparison between numerical and experimental responses of rectangular columns 

(ID#119&120) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.66: Comparison between numerical and experimental responses of rectangular columns 

(ID#121&122) of the database. 

 

Figure A.67: Comparison between numerical and experimental responses of rectangular columns 

(ID#123&124) of the database. 

 

Figure A.68: Comparison between numerical and experimental responses of rectangular columns 

(ID#125&126) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.69: Comparison between numerical and experimental responses of rectangular columns 

(ID#127&128) of the database. 

 

Figure A.70: Comparison between numerical and experimental responses of rectangular columns 

(ID#129&130) of the database. 

 

Figure A.71: Comparison between numerical and experimental responses of rectangular columns 

(ID#131&132) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.72: Comparison between numerical and experimental responses of rectangular columns 

(ID#133&134) of the database. 

 

Figure A.73: Comparison between numerical and experimental responses of rectangular columns 

(ID#135&136) of the database. 

 

Figure A.74: Comparison between numerical and experimental responses of rectangular columns 

(ID#145&146) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.75: Comparison between numerical and experimental responses of rectangular columns 

(ID#147&148) of the database. 

 

Figure A.76: Comparison between numerical and experimental responses of rectangular columns 

(ID#156&157) of the database. 
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Table A.3: Reinforced Concrete Columns with a rectangular cross section, that failed in shear. 
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28 147 200-200 12 300 21.6 4 12.7 371 541 0.0127 35 5.5 344 0.0081 

29 294 200-200 12 300 21 4 12.7 371 541 0.0127 20 5.5 344 0.0139 

33 183 200-200 11 400 32 4 16 369 - 0.0201 50 5.5 316 0.0057 

34 183 200-200 12.5 400 29.9 8 13 370 - 0.0265 50 5.5 316 0.0057 

38 392 400-500 37 825 27.1 14 22 318 - 0.0266 100 9 336 0.0036 

39 406 160-160 12.5 160 19.8 8 10 341 448 0.0222 40 5 559 0.0073 

41 406 160-160 12.5 160 19.8 8 10 341 448 0.0222 40 5 559 0.0175 

42 432 160-160 12.5 320 21.1 8 10 341 448 0.0222 40 5 559 0.0073 

44 486 160-160 12.5 320 21.1 8 10 341 448 0.0222 40 5 559 0.0175 

45 517 160-160 12.5 480 28.8 8 10 341 448 0.0222 40 5 559 0.0073 

47 517 160-160 12.5 480 28.8 8 10 341 448 0.0222 40 5 559 0.0175 

 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



262 

 

54 190 180-180 10 225 31.8 8 12.7 340 - 0.0313 64.3 4 249 0.0021 

55 476 180-180 10 225 33 8 12.7 340 - 0.0313 64.3 4 249 0.0021 

64 265 200-200 19 300 25.8 12 9.5 361 533 0.0213 70 6 426 0.0091 

65 636 200-200 19 300 25.8 12 9.5 361 533 0.0213 70 6 426 0.0091 

73 2632 278-278 28 323 46.3 16 13 441 - 0.0275 52 6 414 0.0089 

74 189 152-304 35 876 34.7 4 19 496 835 0.0245 127 6.3 345 0.0033 

76 178 152-304 35 876 26.1 4 19 496 835 0.0245 89 6.3 345 0.0048 

78 178 152-304 35 876 33.6 4 19 496 835 0.0245 127 6.3 345 0.0033 

80 111 152-304 35 876 33.6 4 19 496 835 0.0245 127 6.3 345 0.0033 

82 178 152-304 35 876 33.4 4 19 496 835 0.0245 64 6.3 345 0.0067 

84 178 152-304 32 876 33.5 4 19 496 835 0.0245 64 9.5 317 0.0147 

86 178 152-304 32 876 33.5 4 19 496 835 0.0245 102 9.5 317 0.0092 

98 534 230-410 25 455 34.9 10 19 441 745 0.0301 89 6 414 0.0028 

99 534 410-230 25 455 34.9 10 19 441 745 0.0301 89 6 414 0.0031 

100 1068 230-410 25 455 42 10 19 441 745 0.0301 89 6 414 0.0028 

101 288 305-305 25 457 29.9 8 19 462 772 0.0244 210 6 414 0.0026 
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137 503 457-457 38.1 1473 26.9 8 31.75 330.96 496 0.0303 457.2 9.525 399.91 - 

138 503 457-457 38.1 1473 33.1 8 25.4 330.96 496 0.0194 457.2 9.525 399.91 - 

139 1512 457-457 38.1 1473 25.5 8 25.4 330.96 496 0.0194 457.2 9.525 399.91 - 

140 1512 457-457 38.1 1473 27.6 8 31.75 330.96 496 0.0303 457.2 9.525 399.91 - 

141 1512 457-457 38.1 1473 27.6 8 31.75 330.96 496 0.0303 304.8 9.525 399.91 - 

142 503 457-457 38.1 1473 26.9 8 31.75 330.96 496 0.0303 457.2 9.525 399.91 - 

143 503 457-457 38.1 1473 33.1 8 25.4 330.96 496 0.0194 457.2 9.525 399.91 - 

144 1512 457-457 38.1 1473 25.5 8 31.75 330.96 496 0.0303 304.8 9.525 399.91 - 

149 534 254-254 13 508 86 8 15.9 510 - 0.0246 51 6.4 449 0.0163 

150 1068 254-254 13 508 86 8 15.9 510 - 0.0246 51 6.4 449 0.0163 

199 0 914-457 38 1219 21.9 16 25 434 690 0.0188 406.4 9.53 400 - 

200 0 457-914 38 1219 16 16 25 434 690 0.0188 406.4 9.53 400 - 

212 667 457-457 65.13 1473 21.1 8 28.651 434.37 645 0.0247 304.8 9.525 476 0.0025 

213 2669 457-457 65.13 1473 21.1 8 28.651 434.37 645 0.0247 304.8 9.525 476 0.0025 

214 667 457-457 65.13 1473 21.8 8 28.651 434.37 645 0.0247 304.8 9.525 476 0.0025 
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276 507 406-610 22.23 1220 37.9 22 19.05 324 - 0.0253 127 6.35 358.5 - 

277 507 406-610 22.23 1220 34.5 22 19.05 469 - 0.0253 127 6.35 324 - 

278 507 406-610 22.23 915 32.4 22 19.05 469 - 0.0253 127 6.35 324 - 

279 0 305-305 25.4 457.5 34.5 8 19.05 374  0.0245 65.3 6.35 455 - 

280 534 305-305 25.4 457.5 30.7 8 19.05 455  0.0245 65.3 6.35 455 - 

281 0 152-305 35 876 32 4 19 496 835 0.0245 127 6.3 345 0.0033 

283 0 152-305 35 876 25.9 4 19 496 835 0.0245 89 6.3 345 0.0048 
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Figure A.77: Comparison between numerical and experimental responses of rectangular columns 

(ID#33&34) of the database. 

 

Figure A.78: Comparison between numerical and experimental responses of rectangular columns 

(ID#38&39) of the database. 

 

Figure A.79: Comparison between numerical and experimental responses of rectangular columns 

(ID#41&42) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.80: Comparison between numerical and experimental responses of rectangular columns 

(ID#44&45) of the database. 

 

Figure A.81: Comparison between numerical and experimental responses of rectangular columns 

(ID#47&54) of the database. 

 

Figure A.82: Comparison between numerical and experimental responses of rectangular columns 

(ID#55&64) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.83: Comparison between numerical and experimental responses of rectangular columns 

(ID#65&73) of the database. 

 

Figure A.84: Comparison between numerical and experimental responses of rectangular columns 

(ID#74&76) of the database. 

 

Figure A.85: Comparison between numerical and experimental responses of rectangular columns 

(ID#78&80) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.86: Comparison between numerical and experimental responses of rectangular columns 

(ID#82&84) of the database. 

 

Figure A.87: Comparison between numerical and experimental responses of rectangular columns 

(ID#86&98) of the database. 

 

Figure A.88: Comparison between numerical and experimental responses of rectangular columns 

(ID#99&100) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.89: Comparison between numerical and experimental responses of rectangular columns 

(ID#101&137) of the database. 

 

Figure A.90: Comparison between numerical and experimental responses of rectangular columns 

(ID#138&139) of the database. 

 

Figure A.91: Comparison between numerical and experimental responses of rectangular columns 

(ID#140&141) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.92: Comparison between numerical and experimental responses of rectangular columns 

(ID#142&143) of the database. 

 

Figure A.93.: Comparison between numerical and experimental responses of rectangular columns 

(ID#144&149) of the database. 

 

Figure A.94: Comparison between numerical and experimental responses of rectangular columns 

(ID#150&199) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.95: Comparison between numerical and experimental responses of rectangular columns 

(ID#200&212) of the database. 

 

Figure A.96: Comparison between numerical and experimental responses of rectangular columns 

(ID#213&214) of the database. 

 

Figure A.97: Comparison between numerical and experimental responses of rectangular columns 

(ID#276&277) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.98: Comparison between numerical and experimental responses of rectangular columns 

(ID#278&279) of the database. 

 

Figure A.99: Comparison between numerical and experimental responses of rectangular columns 

(ID#280&281) of the database. 

 

Figure A.100.: Comparison between numerical and experimental response of rectangular column 

(ID#283) of the database.

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Table A.4: Reinforced Concrete Columns with a circular cross section, that failed in shear. 
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(%
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14 0 400 18 800 37.5 20 16 436 674 3.2 60 6 328 0.51 

15 0 400 18 800 37.2 20 16 296 457 3.2 60 6 328 0.51 

16 0 400 18 1000 36 20 16 436 674 3.2 60 6 328 0.51 

17 0 400 20 800 30.6 20 16 436 674 3.2 165 10 316 0.51 

18 0 400 18 800 31.1 20 16 436 674 3.2 40 6 328 0.76 

19 0 400 18 600 30.1 20 16 436 674 3.2 60 6 328 0.51 

20 0 400 18 800 29.5 20 16 448 693 3.2 80 6 372 0.38 

21 721 400 18 800 28.7 20 16 448 693 3.2 30 6 372 1.02 

23 784 400 21 800 31.2 20 16 448 693 3.2 120 12 332 1.02 

24 751 400 18 800 29.9 20 16 448 693 3.2 60 6 372 0.51 

25 359 400 18 600 28.6 20 16 436 674 3.2 30 6 328 1.02 
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26 455 400 18 800 36.2 20 16 436 679 3.2 30 6 326 1.02 

27 0 400 18 800 33.7 9 24 424 671 3.24 60 6 326 0.51 

28 0 400 18 800 34.8 12 16 436 679 1.92 60 6 326 0.51 

29 420 400 18 800 33.4 20 16 436 679 3.2 60 6 326 0.51 

30 431 400 18 1000 34.3 20 16 436 679 3.2 60 6 326 0.51 

31 440 400 18 600 35 20 16 436 674 3.2 60 6 326 0.51 

32 432 400 18 600 34.4 20 16 436 679 3.2 80 6 326 0.38 

33 807 400 18 700 36.7 20 16 482 758 3.2 80 6 326 0.38 

34 0 400 18 800 33.2 20 16 436 679 3.2 80 6 326 0.38 

35 0 400 20 800 30.9 20 16 436 679 3.2 220 10 310 0.39 

36 0 400 21 800 32.3 20 16 436 679 3.2 160 12 332 0.76 

37 0 400 20 800 33.1 20 16 436 679 3.2 110 10 310 0.77 

44 1813 400 18 800 37 20 16 475 625 3.2 65 6 340 0.47 

48 145 307 36 900 35.9 12 12 240 - 1.83 75 6 240 0.63 

49 254 307 36 895 34.4 12 12 240 - 1.83 75 6 240 0.63 

104 503 610 15.88 914.5 30 12 12.7 462 - 0.52 76.2 6.4 361 0.28 
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105 503 610 15.88 914.5 30 24 12.7 462 - 1.04 127 6.4 361 0.17 

108 -634 457 24.76 910 39.2 20 15.875 427.5 - 2.41 60 9.5 430.2 1.14 

110 850 457 26.35 910 35 30 19.05 468.2 - 5.21 45 12.7 434.4 2.7 

111 -490 457 24.76 910 35.2 20 15.875 507.5 - 2.41 80 9.5 448.2 0.85 

159 0 406.4 10.44 1047.8 34.7 14 12.7 458.5 646 1.37 171.45 4.5 691.5 0.1 

161 0 406.4 10.44 1047.8 35.4 12 12.7 458.5 646 1.17 63.5 4.5 691.5 0.26 

163 18.8 609.6 18.63 1219.2 29..8 20 15.875 454 729.6 1.36 101.6 4.9 200 0.13 

164 18.8 609.6 18.63 1219.2 26.8 20 15.875 454 729.6 1.36 101.6 4.9 200 0.13 

165 18.8 609.6 18.63 1219.2 31.2 20 15.875 437.6 688 1.36 101.6 4.9 200 0.13 

166 356 1828.8 57.15 3658 29.6 24 43 508 797 1.33 304.8 12.7 298 0.1 

168 0 564 24 1000 39.8 40 13 324.5 - - 250 9 259.6 0.1 
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Figure A.101: Comparison between numerical and experimental responses of circular columns 

(ID#17&18) of the database. 

 

Figure A.102: Comparison between numerical and experimental responses of circular columns 

(ID#19&20) of the database. 

 

Figure A.103: Comparison between numerical and experimental responses of circular columns 

(ID#21&23) of the database. 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.104: Comparison between numerical and experimental responses of circular columns 

(ID#24&25) of the database. 

 

Figure A.105: Comparison between numerical and experimental responses of circular columns 

(ID#26&27) of the database. 

 

Figure A.106: Comparison between numerical and experimental responses of circular columns 

(ID#28&29) of the database. 

 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.107: Comparison between numerical and experimental responses of circular columns 

(ID#30&31) of the database. 

 

Figure A.108: Comparison between numerical and experimental responses of circular columns 

(ID#32&33) of the database. 

 

Figure A.109: Comparison between numerical and experimental responses of circular columns 

(ID#34&35) of the database. 

 

 

Concrete Model: Mander et al, 1988 
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Figure A.110: Comparison between numerical and experimental responses of circular columns 

(ID#36&37) of the database. 

 

Figure A.111: Comparison between numerical and experimental responses of circular columns 

(ID#44&48) of the database. 

 

Figure A.112: Comparison between numerical and experimental responses of circular columns 

(ID#49&104) of the database. 

 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



280 

 

 

Figure A.113: Comparison between numerical and experimental responses of circular columns 

(ID#105&108) of the database. 

 

Figure A.114: Comparison between numerical and experimental responses of circular columns 

(ID#110&111) of the database. 

 

Figure A.115: Comparison between numerical and experimental responses of circular columns 

(ID#159&161) of the database. 

 

 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 
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Figure A.116: Comparison between numerical and experimental responses of circular columns 

(ID#163&164) of the database. 

 

Figure A.117: Comparison between numerical and experimental responses of circular columns 

(ID#165&166) of the database. 

 

Figure A.118: Comparison between numerical and experimental response of circular column (ID#168) 

of the database.

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

Concrete Model: Mander et al, 1988 

ΚO
NSTANTIN

OS G
. M

EGALO
OIKONOMOU



282 

 

Table A.5: Reinforced Concrete Columns under variable axial load (Tensile Axial Load is negative). 

S
p

ec
im

en
 I

D
 

R
es

ea
rc

h
er

 

D
ia

m
et

er
 o

r 
W

id
th

 -
 D

ep
th

 

(m
m

) 

C
o

v
er

 t
o

 C
tr

. 
o

f 
L

o
n

g
. 

B
ar

 

(m
m

) 

S
h

ea
r 

S
p

an
 (

m
m

) 

C
o

n
cr

et
e 

S
tr

en
g

th
 (

M
P

a)
 

N
u

m
b

er
 o

f 
L

o
n

g
it

u
d

in
al

 B
ar

s 

D
ia

m
et

er
 o

f 
L

o
n

g
. 

B
ar

s 
(m

m
) 

Y
ie

ld
in

g
 S

tr
en

g
th

 o
f 

L
o
n

g
. 

B
ar

s 
(M

P
a)

 

H
o

o
p

 S
p

ac
in

g
 (

m
m

) 

D
ia

m
et

er
 o

f 
H

o
o
p

 (
m

m
) 

Y
ie

ld
in

g
 S

tr
en

g
th

 S
p

ir
al

 (
M

P
a)

 

M
o

d
e 

o
f 

fa
il

u
re

 

M
ax

 A
x

ia
l 

L
o

ad
 (

+
/-

 L
at

. 

L
o

ad
in

g
) 

(K
N

) 

A
x

ia
l 

L
o

ad
 C

as
e 

Specime

n No. 2 
Y.Xiao 406.4 13 1575 49.3 12 12.5 489.5 32 4.52 468.8 Flexure 

-70.45 tan(47.32o) 

Lateral Force 81.52 

Specime

n 3 

J.P. 

Moehle 
457-457 41.3 1473 20.9 8 28.7 438 305 9.5 476 

Shear - 

Flexure 

-250 1110 + 4.67V 

2670 1110-5.83V 

Specime

n ICC 

A.S. 

Elnashai 
609.6 25.4 

1295.

5 
43.4 16 25.4 427.5 63.5 9.5 517.1 

Shear - 

Flexure 
1112 Constant 

Specime

n ICT 

A.S. 

Elnashai 
609.6 25.4 

1295.

5 
43.4 16 25.4 427.5 63.5 9.5 517.1 Flexure -222 Constant 

VCL1L 
A.S 

Elnashai 
60.96 2.54 

121.9

2 
31.5 20 2.087 434 8.787 0.884 310 

Shear - 

Flexure 

21.24 Variable Axial 

Load 1.57 
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VCL1P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

25.93 Variable Axial 

Load 
6.12 

VCL1U A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Flexure 

16.55 Variable Axial 

Load 
6.1 

VTL1L A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

1.66 Variable Axial 

Load 
24.18 

VTL1P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

3.24 Variable Axial 

Load 
24.45 

VTL1U A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

5.31 Variable Axial 

Load 
18.85 

VCS1P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

20.59 Variable Axial 

Load 
0.648 

VCS4P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

20.59 Variable Axial 

Load 
20.58 

VCS8P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

13.53 Variable Axial 

Load 
20.69 
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VCL4P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

15.87 Variable Axial 

Load 
24.82 

VCL8P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

15.8 Variable Axial 

Load 
27.58 

VTS1P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Flexure 

1.95 Variable Axial 

Load 
20.59 

VTS4P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

17.23 Variable Axial 

Load 
20.77 

VTS8P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Axial 

20.59 Variable Axial 

Load 
20.59 

VTL4P A.S 

Elnashai 

60.96 2.54 121.9

2 

31.5 20 2.087 434 8.787 0.884 310 Shear - 

Flexure 

19.03 Variable Axial 

Load 
16.27 

CS1 M.J.N. 

Priestley 

460 15.24 915 29.3 20 15.87 462 95.3 6.35 369 Shear - 

Flexure 

1690 Constant 

CS2 M.J.N. 

Priestley 

460 15.24 915 35.8 20 15.87 462 95.3 6.35 369 Shear - 

Flexure 

-512 Constant 
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CS3 M.J.N. 

Priestley 

460 15.24 915 37 20 15.87 462 95.3 6.35 369 Shear - 

Flexure 

1690 589+2.25V 

-512 589-3.39V 

CS4 M.J.N. 

Priestley 

460 15.24 915 32.3 30 19.05 534 95.3 6.35 369 Bond 

Failure 

1690 589+2.25V 

-512 589-3.39V 
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