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ΠΕΡΙΛΗΨΗ 

Τα μητρώα Προέλευσης-Προορισμού (ΠΠ) αποτελούν ένα αναντικατάστατο μέσο 

αναπαράστασης της ζήτησης για μετακινήσεις, ικανό να αποτυπώσει με συνεκτικό και 

αποτελεσματικό τρόπο τον συνολικό όγκο μετακινήσεων τόσο στον χώρο όσο και στον 

χρόνο. Πλήθος οργανισμών, διαχειριστών, μελετητών, και ερευνητών έχουν παραδοσιακά 

αφιερώσει σημαντικούς πόρους για την ανάπτυξη και την συντήρηση μητρώων ΠΠ για την 

τεκμηρίωση αποφάσεων σχετικών με τον αστικό σχεδιασμό, την διαχείριση της ζήτησης για 

μετακινήσεις, την αξιολόγηση πολιτικών, και τελικά τον προγραμματισμό επενδύσεων στην 

συγκοινωνιακή υποδομή. Πιο πρόσφατα, τα μητρώα ΠΠ έχουν χρησιμοποιηθεί ως ένα 

ασφαλές από πλευράς ιδιωτικότητας μέσο αναπαράστασης της μετακινησιακής 

συμπεριφοράς (travel behaviour) χρηστών που φέρουν συσκευές εντοπισμού θέσης (π.χ. 

κινητά τηλέφωνα, GPS, κτλ.). Εντούτοις, ο αθροιστικός χαρακτήρας των μητρώων ΠΠ τους 

στερεί την ικανότητα να αποτυπώσουν σημαντικές διαστάσεις της μετακίνησης όπως η 

αλληλουχία και η αλληλεξάρτηση μεταξύ ταξιδιών. Απότοκο αυτής της αδυναμίας είναι η 

περιορισμένη αξία της απευθείας χρήσης τους για μελέτες συμπεριφοράς μετακίνησης, 

ειδικότερα όταν αυτές αφορούν στο ατομικό επίπεδο. 

Η παρούσα Διδακτορική Διατριβή προτείνει ένα νέο μεθοδολογικό πλαίσιο για την 

εξαγωγή εξατομικευμένης μετακινησιακής πληροφορίας (disaggregate mobility 

information) από μητρώα ΠΠ. Ειδικότερα, μητρώα ΠΠ διατεταγμένα κατά χρονική περίοδο 

(time-period) και κατηγοριοποιημένα ανά σκοπό μετακίνησης (trip-purpose) μετατρέπονται 

σε αλυσίδες μετακινήσεων (trip-chains) ή προγράμματα δραστηριοτήτων (activity 

schedules) που ανασυνθέτουν τα μοτίβα ζήτησης όπως περιγράφονται στα αρχικά μητρώα 

ΠΠ. Το προτεινόμενο μεθοδολογικό πλαίσιο αναπτύσσεται σε τέσσερα σκέλη (modules) 

συνδυάζοντας στοιχεία της θεωρίας γράφων καθώς και της μαθηματικής βελτιστοποίησης 

συνδυαστικού μαθηματικού προγραμματισμού σε μεγάλη κλίμακα. 

Το πρώτο σκέλος μετατρέπει την χωρο-χρονική πληροφορία των εισαχθέντων 

μητρών ΠΠ σε έναν υβριδικό δυναμικό γράφο (hTVG) ώστε να επιτευχθεί η αποδοτική 

εφαρμογή αλγορίθμων θεωρίας γράφων σε δυναμικά συστήματα. Ειδικότερα, η μετατροπή 

των μητρώων ΠΠ σε hTVG επιτρέπει την αναπαράσταση των Αλυσίδων με Βάση την Οικία 

(ΑΒΟ) ως διαδρομές (paths) μέσα στον γράφο. Το δεύτερο σκέλος αναλαμβάνει την 

απαρίθμηση όλων των πιθανών ΑΒΟ (αναφέρονται ως υποψήφιες ΑΒΟ) που μπορούν να 

δημιουργηθούν στον υπό μελέτη γράφο. Το τρίτο σκέλος, αξιοποιεί την πληροφορία του 

σκοπού μετακίνησης ώστε να μετατρέψει τις ΑΒΟ σε Προγράμματα Δραστηριοτήτων (ΠΔ) 

και τελικώς να παράξει το σύνολο των υποψήφιων ΠΔ. Το τέταρτο και τελευταίο σκέλος 

αναζητεί τον βέλτιστο συνδυασμό  μεταξύ των υποψήφιων ΠΔ ο οποίος αναπαράγει την 
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ζήτηση για μετακινήσεις όπως αυτή αποτυπώνεται στα εισαχθέντα μητρώα ΠΠ. Ο στόχος 

της βελτιστοποίησης είναι η μεγιστοποίηση της χρήσης των μετακινήσεων που 

εμπεριέχονται στα μητρώα ΠΠ τηρώντας παράλληλα περιορισμούς που προέρχονται από 

διαθέσιμα δεδομένα βαθμονόμησης (calibration data) όπως το προφίλ αναχωρήσεων των 

ΑΒΟ, η ημερήσια κατανομή των δραστηριοτήτων στα ΠΔ, ή άλλη διαθέσιμη πληροφορία. 

Η εφαρμογή της παραπάνω μεθοδολογίας σε ρεαλιστικές περιπτώσεις απαιτεί την 

ανάπτυξη κατάλληλων τεχνικών που να επιτρέπουν την επεκτασιμότητα (scalability) της. 

Στα πλαίσια αυτής της Διατριβής, η επεκτασιμότητα επετεύχθη μέσω της απλοποίησης του 

hTVG γράφου καθώς και μέσω της απαλοιφής υποψήφιων ΑΒΟ και ΠΔ με χαμηλή 

πιθανότητα παρατήρησης (π.χ. ΑΒΟ με δυσανάλογο χρόνο μετακίνησης). 

Η εγκυρότητα της μεθοδολογίας δοκιμάστηκε σε ένα πλήρως ελεγχόμενο δειγματικό 

χώρο. Συγκεκριμένα, 25,000 παρατηρημένα ΠΔ συναθροίστηκαν για την δημιουργία 28 

παρατηρημένων πινάκων ΠΠ που περιέχουν 53,104 μετακινήσεις, κατηγοριοποιημένες με 

βάση τον σκοπό και την χρονική περίοδο έναρξης της μετακίνησης. Η εφαρμογή της 

μεθοδολογίας μετέτρεψε τους παρατηρημένους πίνακες ΠΠ σε ένα σύνολο 24,818 

μοντελοποιημένων ΠΔ τα οποία αναπαράστησαν τα αντίστοιχα παρατηρημένα ΠΔ με 

ακρίβεια άνω του 90% και τα οποία απαιτούν για την ολοκλήρωσή τους το 99% της ζήτησης 

για μετακίνηση όπως αυτή αποτυπώνεται στους παρατηρημένους πίνακες ΠΠ. Η 

επεκτασιμότητα της μεθοδολογίας επικυρώθηκε μέσω ενός παρόμοιου με το προηγούμενο 

αλλά σημαντικώς μεγαλύτερης έκτασης πειράματος. Συγκεκριμένα, 28 παρατηρημένοι 

πίνακες ΠΠ αποτελούμενοι από 268,315 μετακινήσεις/ταξίδια που απαιτούνται για την 

ολοκλήρωση 125,000 παρατηρημένων ΑΒΟ καθώς και δεδομένα βαθμονόμησης (κατανομή 

συνολικού χρόνου μετακίνησης και προφίλ αναχωρήσεων για τις παρατηρημένες ΑΒΟ) 

αποτέλεσαν τα δεδομένα εισόδου για την εφαρμογή της μεθοδολογίας σε ευρεία κλίμακα. 

Οι παραχθείσες μοντελοποιημένες ΑΔΟ αναγνώρισαν το 90% των παρατηρούμενων πινάκων 

ΠΠ χωρίς να διαφέρουν σημαντικά (±2.0% σφάλμα) από τα δεδομένα βαθμονόμησης. 

Σημειώνεται ότι ειδικά για την επίλυση του δειγματικού χώρου μεγάλη κλίμακας, 

αναπτύχθηκε νέος αλγόριθμος στοχαστικής βελτιστοποίησης, ο οποίος επεκτείνει τον 

ευρέως διαδεδομένο αλγόριθμο Προσομοιωμένης Ανόπτησης (Simulated Annealing) 

εισάγοντας επιπλέον μηχανισμό που εξασφαλίζει την τήρηση στοχαστικών περιορισμών 

πολλαπλών διαστάσεων. Ο προτεινόμενος αλγόριθμος, απεδείχθη ικανός να αντιμετωπίσει 

προβλήματα βελτιστοποίησης εξαιρετικά μεγάλων διαστάσεων καθώς και προβλήματα 

στοχαστικής σύνθεσης που δεν είναι δυνατόν να αντιμετωπισθούν από αναλυτικές ρουτίνες 

εμπορικών επιλυτών (commercial solvers). 
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Εν κατακλείδι, το προτεινόμενο μεθοδολογικό πλαίσιο συνεισφέρει ένα 

αποτελεσματικό αναλυτικό πλαίσιο για την μετατροπή αθροιστικών πινάκων ΠΠ σε 

εξατομικευμένη πληροφορία κινητικότητας υπό την μορφή αλληλουχιών ταξιδιών ή 

προγραμμάτων δραστηριοτήτων. Η συνεισφορά της Διατριβής είναι σημαντική τόσο σε 

θεωρητικό όσο και σε πρακτικό επίπεδο καθώς επιτρέπει την χρήση των ευρέως 

διαδεδομένων πινάκων ΠΠ για την μελέτη της μεταφορικής συμπεριφοράς σε ατομικό 

επίπεδο κάτι το οποίο μέχρι πρότινος δεν είχε παρουσιαστεί ούτε στη σχετική βιβλιογραφία 

ούτε στην πρακτική. Επιπροσθέτως, η προτεινόμενη μεθοδολογία διευκολύνει την 

δημιουργία δεδομένων εισόδου κατάλληλα για χρησιμοποίηση σε εξατομικευμένα και 

οδηγούμενα από δεδομένα μοντέλα (disaggregate and data-driven) ικανά να αντιμετωπίσουν 

μελλοντικά προβλήματα στο πεδίο της ανάλυσης της ζήτησης για κινητικότητα. 

 

Λέξεις κλειδιά: Πίνακες Προέλευσης-Προορισμού, εξατομίκευση πληροφορίας, θεωρία 

γράφων, συνδυαστική βελτιστοποίηση μεγάλης κλίμακας, κινητικότητα  
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ABSTRACT 

Origin-Destination (OD) matrices constitute an irreplaceable component of transport 

planning and modelling to represent effectively and concisely the volume of movements 

both in space and time. Countless Transport Authorities, operators, practitioners, and 

researchers have over the years allocated significant resources for the development and 

maintenance of ODs to support a plethora of decisions regarding urban planning, transport 

policing, and infrastructure investments. More recently, ODs have been also utilised by 

urban sensing data providers as an effective means for the representation of peoples’ 

mobility traces while ensuring the intractability of the tracked users. Nonetheless, the 

aggregate nature of ODs deprives them from the ability to express significant dimensions of 

travel behaviour such as trip-chaining and trip-interdependency. Consequently, ODs do not 

prove particularly suitable for the analysis of mobility and travel behaviour, especially at the 

person-level. 

The currently presented Ph.D. Thesis proposes a novel methodological framework 

for the preparation of disaggregate mobility information from aggregate ODs. In particular, 

the methodology allows the conversion of multi-period, trip-purpose segmented ODs into 

sets of travel demand equivalent, home-based trip-chains (i.e. tours) and the corresponding 

activity schedules. The framework combines advanced graph-theory with large scale 

integer/combinatorial optimisation concepts and is executed in a modular fashion including 

four steps. 

At first, the spatiotemporal information present in the input ODs is used to create a 

hybrid Time Varying Graph (hTVG) supporting the application of graph-theory-based 

methodologies for the study of dynamic systems. Converting ODs to a graph enables the 

expression of tours as paths originating and ending at the same vertex (home location). The 

second step entails the application of a suitably modified algorithm for the enumeration of 

all the plausible tours within the hTVG. The third step exploits the trip-purpose information 

in the ODs to convert the identified tours into activity schedules whose complete set is 

referred to as the candidate activity schedules. In the final step, an advanced combinatorial 

optimization procedure attempts to identify compositions of the candidate activity schedules 

which replicate the travel demand patterns expressed in the input ODs. The objective of the 

optimization process is the minimisation of unused trips from the input ODs while respecting 

constraints imposed by any available calibration information (e.g. departure time profile of 

tours, diurnal distribution of activities in activity schedules, etc.). 
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Despite the sound theoretical foundation, the combinatorial nature of the formulation 

and the potentially excessive number of plausible tours in large-scale graphs can jeopardise 

the applicability of the framework on realistic, large-scale cases. However, scalability was 

ensured through the development of suitable methodologies aiming at the simplification of 

the graph’s structure and as well as at the elimination of unrealistic candidate tours/activity 

schedules (e.g. activity schedules with disproportional total travel time). 

The ability of the proposed methodology to reveal hidden disaggregate travel demand 

patterns within aggregate ODs was established based on a fully controlled experiment. In 

particular, a set of 25,000 observed activity schedules was used to form 28 multi-period and 

purpose-dependent observed ODs which included 53,104 trips in total. Trips within the 

observed ODs were utilised by 99% to form modelled activity schedules which replicated 

their observed counterparts with 90% accuracy. Furthermore, the scalability of the 

framework was verified by a similar to the previous but considerably larger experiment. In 

detail, 28 observed ODs (268,315 trips) deriving from the aggregation of 125,000 observed 

tours and relevant calibration data (i.e. distribution of total travel time and departure profile 

of the observed tours) were provided as input to the methodology. The resulting modelled 

tours incorporated 90% of the observed travel demand without deviating considerably (±2.0 

error) from the calibration information. 

It should be also stated that the solution of the large-scale experiment required the 

development of a new optimisation algorithm which extends the widely used Simulated 

Annealing algorithm with a mechanism ensuring the adherence to multi-dimensional 

stochastic constraints. The suggested Adaptive Sampling Simulated Annealing (ASSA) 

achieved the efficient addressing of excessively large combinatorial optimisation problem, 

not easily solvable by state-of-the-art commercial optimisation solvers.  

In conclusion, the suggested framework provides an effective approach for the 

conversion of aggregate OD matrices into disaggregate mobility traces (i.e. trip-chains, 

tours, and activity schedules). The contribution in the field of transport modelling and travel 

behaviour analysis can prove substantial because the widely available ODs can be now 

utilised for the studying of mobility in a disaggregate and considerably more informative 

manner. Finally, the proposed methodological framework can support the transition to the 

new disaggregate and data-driven modelling era by allowing the exploitation of ODs to 

produce input suitable for the emerging disaggregate modelling paradigms. 

 

Keywords: Origin-Destination matrices, data disaggregation, graph-theory, large-scale 

combinatorial optimisation, mobility  

The
oc

ha
ris

 Ball
is



 

viii 

 

ACKNOWLEDGMENTS 

The conception as well as the conduction of this Ph. D. Thesis would have never 

been achieved without the continuous guidance and support from my supervisor Prof. 

Loukas Dimitriou. His ideas and recommendations proved invaluable for the shaping and 

the completion of the Thesis. 

I would also like to sincerely thank the colleagues I had the chance to work with 

during the duration of this study. Their views and suggestions helped me greatly to re-

evaluate many of my decisions. In addition, it would be unfair to forket expressing my 

gratitude to all those friends who supported this pursuit.  

Finally, a special mention is devoted to my Family for their unwavering and constant 

support. This Ph. D. Thesis is dedicated to them.  

The
oc

ha
ris

 Ball
is



 

ix 

 

TABLE OF CONTENTS 

 

Chapter 1 Introduction ...................................................................................................... 1 

1.1 Motivation ............................................................................................................... 2 

1.2 Objectives ................................................................................................................ 3 

1.3 Approach ................................................................................................................. 4 

1.4 Outline ..................................................................................................................... 7 

Chapter 2 Literature Review ............................................................................................ 8 

2.1 Modelling Mobility ................................................................................................. 9 

2.1.1 Changing Travel Behaviour ....................................................................................... 9 

2.1.2 Evolving Transport Landscape................................................................................... 9 

2.2 Mobility Modelling Approaches ........................................................................... 11 

2.2.1 Aggregate Approaches ............................................................................................. 11 

2.2.2 Disaggregate Approaches ......................................................................................... 12 

2.3 Mobility Modelling Data Requirements ............................................................... 13 

2.3.1 Population Synthesis ................................................................................................ 13 

2.3.2 Activity Scheduling .................................................................................................. 13 

2.3.2.1 Survey Data .......................................................................................................... 14 

2.3.2.2 Urban Sensing Data .............................................................................................. 16 

2.4 Origin-Destination Matrices (ODs)....................................................................... 20 

2.4.1 Development ............................................................................................................ 20 

2.4.2 Usage ........................................................................................................................ 21 

2.4.3 Trip-chaining ............................................................................................................ 22 

2.4.4 Disaggregation ......................................................................................................... 23 

2.5 Research Needs ..................................................................................................... 24 

Chapter 3 Methodology .................................................................................................. 26 

3.1 Overview ............................................................................................................... 27 

3.2 Graph-generation Module ..................................................................................... 28 

3.2.1 Multi-period OD Matrices to hybrid Time Varying Graph (hTVG) ........................ 28 

3.2.2 Advantages of hybrid Time Varying Graphs (hTVGs) ............................................ 30 

3.3 Identification Module ............................................................................................ 33 

3.3.1 Expressing tours as graph paths ............................................................................... 33 

The
oc

ha
ris

 Ball
is



 

x 

 

3.3.2 Identification of all possible paths ........................................................................... 34 

3.4 Activity-scheduling Module .................................................................................. 34 

3.4.1 Trip-purpose Information in ODs ............................................................................ 34 

3.4.2 Tours to Activity Sequences .................................................................................... 35 

3.4.3 Activity Sequences to Activity Schedules ............................................................... 37 

3.5 Optimisation Module ............................................................................................ 38 

3.5.1 Exact Mathematical Programming Formulation ...................................................... 39 

3.5.1.1 Formulation .......................................................................................................... 39 

3.5.2 Metaheuristics Formulation ..................................................................................... 41 

3.5.2.1 Formulation .......................................................................................................... 41 

Chapter 4 Scalability ...................................................................................................... 43 

4.1 Introduction ........................................................................................................... 44 

4.1.1 Combinatorial Explosion ......................................................................................... 44 

4.1.2 Effect of the OD’s Resolution .................................................................................. 45 

4.2 Simplification Modules ......................................................................................... 46 

4.2.1 Search Space Reduction ........................................................................................... 46 

4.2.2 Graph-filtering Module ............................................................................................ 48 

4.2.3 Candidates-filtering Module .................................................................................... 50 

4.2.3.1 Cost thresholds..................................................................................................... 50 

4.2.3.2 Likelihood ............................................................................................................. 53 

Chapter 5 Large-Scale Optimisation .............................................................................. 54 

5.1 Nomenclature ........................................................................................................ 55 

5.2 Introduction ........................................................................................................... 55 

5.3 Large-scale optimisation approaches .................................................................... 57 

5.3.1 Exact algorithms....................................................................................................... 57 

5.3.2 Metaheuristics .......................................................................................................... 57 

5.4 Adaptive Sampling Simulated Annealing (ASSA) ............................................... 58 

5.4.1 Background on Simulated Annealing ...................................................................... 58 

5.4.2 The Adaptive Sampling Mechanism ........................................................................ 60 

Chapter 6 Proof of Concept ............................................................................................ 64 

6.1 Model Execution and Experimental Setup ............................................................ 65 

6.1.1 Input Dataset ............................................................................................................ 65 

6.1.1.1 The Zoning System ............................................................................................... 65 

6.1.1.2 Observed Activity Schedules ................................................................................ 66 

The
oc

ha
ris

 Ball
is



 

xi 

 

6.1.1.3 The Calibration Distribution ................................................................................. 67 

6.1.1.4 Observed ODs ....................................................................................................... 68 

6.1.2 Configuration ........................................................................................................... 70 

6.1.3 Results ...................................................................................................................... 71 

6.2 Evaluation ............................................................................................................. 72 

6.2.1 Aggregate-level ........................................................................................................ 72 

6.2.1.1 Comparison of ODs .............................................................................................. 72 

6.2.1.2 Comparison of high-level distributions ................................................................ 75 

6.2.2 Disaggregate-level .................................................................................................... 76 

6.2.2.1 Comparative dimensions...................................................................................... 76 

6.2.2.2 Daily activity schedules ........................................................................................ 77 

6.2.2.3 Activity participation profiles ............................................................................... 82 

6.2.2.4 Departure time profiles ........................................................................................ 83 

6.2.2.5 Duration of activities ............................................................................................ 84 

6.3 Travel behaviour analysis ..................................................................................... 85 

6.3.1 Activity Participation ............................................................................................... 86 

6.3.2 Activity Duration ..................................................................................................... 88 

6.3.3 Geospatial Analysis .................................................................................................. 91 

6.4 Effect of the Zoning System’s Resolution ............................................................ 93 

6.4.1 Processing Time ....................................................................................................... 94 

6.4.2 Comparison of ODs .................................................................................................. 95 

6.4.3 Fidelity of the Modelled Activity Schedules ............................................................ 96 

6.5 Discussion of the Results ...................................................................................... 98 

Chapter 7 Large-scale Implementation ........................................................................ 100 

7.1 Introduction ......................................................................................................... 101 

7.2 Preliminary Analysis ........................................................................................... 101 

7.2.1 Parametrisation for Search Space Reduction ......................................................... 101 

7.2.1.1 Cost thresholds................................................................................................... 105 

7.2.1.2 Effects of network simplification ....................................................................... 106 

7.2.2 Parametrisation for Large-scale Optimisation ........................................................ 113 

7.3 Model Testing ..................................................................................................... 114 

7.3.1 Input Data ............................................................................................................... 115 

7.3.1.1 Observed tours ................................................................................................... 115 

7.3.1.2 Calibration distribution ...................................................................................... 115 

7.3.1.3 Observed OD matrices ....................................................................................... 115 

The
oc

ha
ris

 Ball
is



 

xii 

 

7.3.2 Configuration ......................................................................................................... 115 

7.3.3 Results .................................................................................................................... 116 

7.4 Evaluation ........................................................................................................... 118 

7.4.1 Comparison of ODs ................................................................................................ 118 

7.4.2 Adherence to the Calibration Information ............................................................. 119 

7.4.3 Efficiency and Processing Time Requirements ..................................................... 122 

7.5 Assessment of the ASSA Algorithm ................................................................... 123 

7.5.1 Preliminary Evaluation ........................................................................................... 123 

7.5.2 Convergence and Efficiency .................................................................................. 125 

7.5.3 Adherence to the Calibration Information ............................................................. 127 

7.5.4 Adaptive Sampling ................................................................................................. 131 

7.6 Discussion of the Results .................................................................................... 133 

Chapter 8 Conclusions and Future Research ................................................................ 135 

8.1 Conclusions ......................................................................................................... 136 

8.2 Contribution ........................................................................................................ 138 

8.3 Future Research ................................................................................................... 140 

Bibliography ...................................................................................................................... 142 

Appendix A References by Chapter ............................................................................. 159 

A.1 References from Chapter 3 .................................................................................. 159 

A.2 References from Chapter 4 .................................................................................. 161 

A.3 References from Chapter 7 .................................................................................. 162 

Appendix B Developed code ........................................................................................ 166 

B.1.1 Identification of all paths under threshold constraints ........................................... 166 

B.1.2 Conversion of ODs to a hybrid Time Varying Graph (hTVG) .............................. 168 

B.1.3 Identification of candidate tours within hTVGs ..................................................... 170 

B.1.4 Simplification of hTVG based on centrality measures .......................................... 172 

B.1.5 Optimisation module .............................................................................................. 174 

B.1.6 Main program (od2trs) ........................................................................................... 177 

 

  

The
oc

ha
ris

 Ball
is



 

xiii 

 

LIST OF FIGURES 

Figure 1.1 Flowchart of the suggested methodological framework. .................................... 6 

Figure 3.1 Flowchart depicting the suggested methodology. ............................................. 28 

Figure 3.2 Conversion of (a) a single layer graph (b) to a hTVG. ...................................... 30 

Figure 3.3 Formation of a chronologically consistent tour in a hTVG. .............................. 31 

Figure 3.4 Identification of a tour in a hTVG network. ...................................................... 33 

Figure 3.5 Presentation of the valid time-period combinations for the identification of all 

the chronologically ordered tours. ....................................................................................... 34 

Figure 3.6 Chaining of individual OD trips eliminates the ambiguity regarding activity 

sequencing. (a) Unchained trips (b) Chained trips. ............................................................. 36 

Figure 3.7 Visual representation of a typical activity schedule. ......................................... 38 

Figure 4.1 Representation of the same OD matrix using a high-resolution (left) and low-

resolution (right) network. ................................................................................................... 45 

Figure 4.2 Progressive reduction of the initial search space 𝑆𝑆𝐶 to the reduced 𝑆𝑆𝑅........ 47 

Figure 4.3 Identification of all tours originating from zone Z which a maximum number of 

allowed legs set to (a) eight and (b) three. ........................................................................... 52 

Figure 6.1 The modelled  area of Bristol, UK and the corresponding LSOA-based zoning 

system consisting of 470 zones. ........................................................................................... 66 

Figure 6.2 The distribution of the observed tours in terms of total travel time and time 

periods of departure (150 largest out of 386 groups). .......................................................... 68 

Figure 6.3 The hybrid Time Varying Graph (hTVG) resulting from the aggregation of the 

observed tours into OD matrices. The right-hand side presents the distribution of nodes and 

edges across the available time periods. .............................................................................. 69 

Figure 6.4 Number of originating trips by zone for the proof of concept scenario. ........... 70 

Figure 6.5 Number of tours crossing through each zone for the validation scenario. ........ 72 

Figure 6.6 Comparison between the number of person trips in the observed and the modelled 

ODs. ..................................................................................................................................... 73 

Figure 6.7 Comparison between the cells of the Observed and the Modelled ODs ........... 74 

Figure 6.8 The multi-period ODs; darker tones indicate trips departing later in the day. .. 75 

Figure 6.9 Individual colour-coded activity schedules. ...................................................... 75 

Figure 6.10 Comparison of the 30 distribution groups with the largest share between the 

observed and the modelled activity schedules. .................................................................... 76 

Figure 6.11 Scatter matrix analysis for the observed and the modelled activity schedules.

 ............................................................................................................................................. 78 

The
oc

ha
ris

 Ball
is



 

xiv 

 

Figure 6.12 Examination of the comparative dimensions on the accuracy of the suggested 

methodology ........................................................................................................................ 79 

Figure 6.13 Percentage of unmatched activity schedules for the departure time periods 

sequence comparative dimension. ....................................................................................... 80 

Figure 6.14 Percentage of unmatched activity schedules for the location sequence 

comparative dimension. ....................................................................................................... 80 

Figure 6.15 Percentage of unmatched activity schedules for the activity type sequence 

comparative dimension. ....................................................................................................... 81 

Figure 6.16 Presentation of the unmatched activity schedules between the observed and the 

modelled ones. ..................................................................................................................... 81 

Figure 6.17 Distribution of participation in different activities throughout the day ........... 82 

Figure 6.18 Percentage difference between the observed and the modelled participation for 

different activities throughout the day. ................................................................................ 83 

Figure 6.19 Departure profiles for the available activity types. ......................................... 84 

Figure 6.20 Duration profiles for the available activity types. ........................................... 85 

Figure 6.21 Profile of activity participation for the studied urban area. ............................. 86 

Figure 6.22 Profile of activity participation for a set of sampled zones. ............................ 87 

Figure 6.23 Daily distribution of activity-participation for 25 randomly selected zones. .. 88 

Figure 6.24 Presentation of the average remaining duration of participation in activities by 

time of arrival and activity type. .......................................................................................... 89 

Figure 6.25 Comparison between the average and the total remaining duration of 

participation in activities by time of arrival and activity type. ............................................ 91 

Figure 6.26 Progression of participation in ‘Work’ type activities during a day; Darker tones 

indicate higher participation. ............................................................................................... 92 

Figure 6.27 Presentation of the modelled area (Bristol, UK) and the high-resolution (LSOA) 

and the low-resolution (MSOA) zoning systems. ................................................................ 94 

Figure 6.28 Comparison of OD matrix resemblance (Observed vs Modelled) for the high- 

and the low-resolution zoning systems. ............................................................................... 96 

Figure 6.29 Comparison of the 30 distribution groups with the largest share between the 

observed and the modelled activity schedules (low-resolution scenario). ........................... 97 

Figure 6.30 Comparison between the identified tours in terms of zone sequencing, profile 

of departures and activity sequencing. ................................................................................. 98 

Figure 7.1 Distribution of the frequency of observed tours by total travel time. ............. 102 

Figure 7.2 Percentage of included travel demand in relation to the percentage of the included 

tour-types. .......................................................................................................................... 103 

The
oc

ha
ris

 Ball
is



 

xv 

 

Figure 7.3 Number of identified tours in the optimal 𝑆𝑆𝑂 and the unconstrained (𝑆𝑆𝐶) 

search spaces. ..................................................................................................................... 104 

Figure 7.4 Processing time requirements and accuracy by maximum cost thresholds. .... 106 

Figure 7.5 Number of eliminated nodes by method and level of simplification. ............. 107 

Figure 7.6 Distribution of eliminated nodes by level of simplification and time period. . 108 

Figure 7.7 Density of simplification across the seven available time periods by level and 

method of simplification. ................................................................................................... 109 

Figure 7.8 Processing time requirements by level and method of network simplification.

 ........................................................................................................................................... 110 

Figure 7.9 Total number of identified tours by level and method of network simplification.

 ........................................................................................................................................... 111 

Figure 7.10 Accuracy by level and method of network simplification. ............................ 112 

Figure 7.11 Convergence of ASSA algorithm by number of simulation steps, replacement 

factor and elapsed steps. .................................................................................................... 113 

Figure 7.12 Convergence of ASSA algorithm by number of simulation steps, replacement 

factor and elapsed processing time. ................................................................................... 114 

Figure 7.13 (a) Spatial distribution of candidate tours per zone of origin and (b) the 

respective histogram. ......................................................................................................... 117 

Figure 7.14 Observed tours over the candidate ones (Observed tours coloured in blue). 118 

Figure 7.15 Scatter plot analysis between the observed and the modelled tour-types. .... 120 

Figure 7.16 Comparison between the SA, ASSA, and the calibration distribution for the 50 

most frequent tour-types. ................................................................................................... 121 

Figure 7.17 Number of tours traversing through each zone (observed vs ASSA derived 

solution) ............................................................................................................................. 122 

Figure 7.18 Evaluation between the branch-and-bound (B&B), SA and ASSA optimisation 

algorithms in terms of processing time and accuracy. ....................................................... 124 

Figure 7.19 Magnification of the convergence area between the B&B, SA, and ASSA 

optimisation algorithms. .................................................................................................... 125 

Figure 7.20 Evaluation of the SA and ASSA algorithms for the preliminary analysis 

(iterations vs accuracy). ..................................................................................................... 125 

Figure 7.21 Evaluation of the SA and ASSA algorithms for the large-scale scenario 

(processing time vs accuracy). ........................................................................................... 126 

Figure 7.22 Evaluation of the SA and ASSA algorithms for the large-scale scenario 

(iterations vs accuracy). ..................................................................................................... 126 

Figure 7.23 Comparison between the resulting and the calibration distribution. ............. 128 

The
oc

ha
ris

 Ball
is



 

xvi 

 

Figure 7.24 Magnification of the high-density area (0-2500 trips). ................................. 128 

Figure 7.25 Comparison between the SA and ASSA resulting distributions and the 

calibrating one. ................................................................................................................... 129 

Figure 7.26 Comparison between the SA and ASSA resulting distributions and the 

calibrating one for the 20 most frequent tour-types. .......................................................... 130 

Figure 7.27 Comparison between the SA and ASSA resulting distributions and the 

calibrating one for the 20 least frequent tour-types. .......................................................... 130 

Figure 7.28 Number of tours in the solution during the optimisation process ................. 131 

Figure 7.29 Evolution of calibration fitting during the simulated annealing process. The 

bottom row presents in more detail the shaded area of the top row. ................................. 132 

Figure 7.30 Progressive comparison of the modelled and the observed distributions during 

the optimisation process (20 most frequent tour-types). .................................................... 133 

Figure A.1 Visual representation of the suggested methodology. .................................... 159 

Figure A.2 Visual examples of tours originating from a single zone ............................... 161 

  

The
oc

ha
ris

 Ball
is



 

xvii 

 

LIST OF TABLES 

Table 3.1 Identification of activity sequences from trip-purpose sequences. ...................... 37 

Table 3.2 Definition of an example activity schedule as sequences of various types. ........ 38 

Table 3.3 Nomenclature for exact mathematical optimisation methods ............................. 39 

Table 3.4 Nomenclature for metaheuristic-based optimisation methods ............................ 41 

Table 4.1 Effect of network density on tours’ identification process .................................. 46 

Table 4.2 Required processing time for two total travel time thresholds. ........................... 52 

Table 6.1 Definition of available time periods for trips’ departures. .................................. 67 

Table 6.2 Sample from the observed activity schedules ...................................................... 67 

Table 6.3 Summary of observed ODs (proof of concept scenario). .................................... 69 

Table 6.4 Absolute and percentage difference between the observed and modelled ODs. 

Values in parentheses represent the percentage difference. ................................................ 73 

Table 6.5 Summary of zoning-systems used for the synthesis of the observed tours. ........ 93 

Table 6.6 Processing time requirements per scenario .......................................................... 95 

Table 6.7 Absolute trips difference between the observed and modelled ODs (low-resolution 

scenario). .............................................................................................................................. 95 

Table 7.1 Summary of sensitivity analysis scenarios ........................................................ 105 

Table 7.2 Summary of observed ODs (large-scale scenario). ........................................... 115 

Table 7.3 Parametrisation of the large-scale scenario. ...................................................... 116 

Table 7.4 Absolute difference between the observed and modelled ODs for the  large-scale 

scenario. ............................................................................................................................. 119 

Table 7.5 Percentage difference between the observed and modelled ODs for the large-scale 

scenario. ............................................................................................................................. 119 

Table 7.6 Results of linear regression for the SA and ASSA algorithms. ......................... 129 

Table A.1 Example of input Origin-Destination matrix .................................................... 160 

Table A.2 Example of methodology’s output .................................................................... 160 

Table A.3 Example of input Origin-Destination matrix .................................................... 161 

Table A.4 Presentation of activity sequence classification. ............................................... 162 

Table A.5 Presentation of time period sequence classification. ........................................ 163 

  

The
oc

ha
ris

 Ball
is



 

xviii 

 

LIST OF ABBREVIATIONS 

ACO Ant Colony Optimisation 

ASA Adaptive Simulated Annealing 

ASSA Adaptive Sampling Simulated Annealing 

CDR Call Detail Record 

CPU Central Processing Unit 

DNA Deoxyribonucleic acid 

EPR Exploration and Preferential Return 

EV Eigenvector centrality 

FH From Home 

GB Great Britain 

GIS Geographical Information Systems 

GPS Global Positioning System 

HB Home-Based 

HBO Home-Based-Other 

HBW Home-Based-Work 

HMM Hidden Markov Model 

hTVG hybrid Time Varying Graph 

ID Identity 

IO-HMM Input-Output Hidden Markov Model 

IP Inter Peak 

IPF Iterative Proportional Fitting 

IPU Iterative Proportional Update 

LSOA Lower Super Output Areas 

LSTM Long Short-Term Memory 

ML Machine Learning 

MND Mobile Network Data 

MSOA Middle Super Output Areas 

NHB Non-Home-Based 

NHBO Non-Home-Based Other 

NHBW Non-Home-Based Work 

NMS New Mobility Services 

NTS National Travel Survey 

OD Origin-Destination (matrix) 

The
oc

ha
ris

 Ball
is



 

xix 

 

OP Off Peak 

PISAA Parallel and Interacting Stochastic Approximation Annealing 

PR PageRank centrality 

RAM Random Access Memory 

RWB Random Walk Betweenness centrality 

SA Simulated Annealing 

SAA Stochastic Approximation Monte Carlo 

SAM Sequential Alignment Method 

SC Subgraph centrality 

TH To Home 

TSP Travelling Salesman Problem 

TVG Time Varying Graph 

UK United Kingdom 

USA United States of America 

The
oc

ha
ris

 Ball
is



 

1 

 

 

 

 

 

Chapter 1  

Introduction 

 

The Chapter introduces the reader into the study by presenting the motivation behind its 

conduction. Additionally, the Chapter defines the objectives of the Thesis and clearly 

outlines the followed approach to accomplish them.  
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1.1 Motivation 

The instrumental role of transportation planning for the ensuring of progress and economic 

growth has been well understood in modern societies. Until the past four decades, the 

primary focus of transportation planning was the provision of the required infrastructure to 

meet long-term transport demand. However, due to increased capital costs and 

environmental concerns, the focus of transport planning is gradually shifting towards the 

optimisation of transport and travel demand management with the aim to influence the travel 

behaviour of individuals for the effective control of aggregate travel demand. Nonetheless, 

efficient transport management policies require the in-depth understanding of travel 

behaviour at person-level because the reaction of different persons to the same travel demand 

management policy can vary considerably. As a result, the core of travel demand research is 

increasingly moving from aggregate, long-term predictions to the estimation of immediate 

travel behaviour reactions at the disaggregate-level. This trend has been also bolstered by 

recent technological advances (e.g. wireless connectivity, smartphones, autonomous 

vehicles, etc.) which have enabled the effective coordination between travel demand and 

transportation supply, unlocking a plethora of new mobility solutions. These emerging 

solutions are expected to drastically affect the way people perceive mobility, something that 

can result in further pressures on the already stressed transport system. The mitigation 

against future mobility challenges requires that transport authorities and operators will have 

at their disposal appropriate modelling tools to accurately assess the effects of travel 

behaviour change on the transport landscape. 

Transport modelling has traditionally aided the understanding and the estimation of travel 

behaviour for individuals, groups, and the masses. Nonetheless, the rapidly changing 

transport environment requires for even more sophisticated transport modelling approaches. 

Disaggregate modelling paradigms such as agent- and activity-based microsimulation are 

promoted as the most suitable methods to address the future challenges of transport. These 

approaches can explicitly model the complex interactions between agents in dynamic 

environments (e.g. transport system) and allow for the emergence of complicated behaviours 

which could have not manifested in aggregate modelling paradigms. Despite their 

advantages, the wider adoption of disaggregate models has been considerably hindered by 

the scarcity of detailed mobility data at the disaggregate-level. However, the emergence of 

various urban sensing data sources such as GPS traces and Call Detail Records (CDRs) has 

started countering data scarcity issues related to the modelling of personal mobility. 

Nonetheless, well-justified privacy concerns have raised the need for cautious treatment of 
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such sensitive information. One of the most common approaches to ensure the intractability 

of the tracked users is the aggregation of data. In the context of mobility, the movements of 

individuals with similar origin and destination are often aggregated and presented in the so-

called Origin-Destination (OD) matrices. 

The use of ODs as an anonymization means represents only a fraction of their actual use. 

OD matrices have traditionally constituted a fundamental element/‘devise’ of transport 

modelling, allowing the concise and accurate representation of various dimensions of travel 

demand (e.g. trip purpose, time period of departure, etc.) other than the origin and destination 

of trips. Their concise and straightforward form has facilitated the transferability of 

information and has established them as the main data exchange format within the transport 

community. On the other hand, ODs have not been widely utilised for the study of personal 

mobility because their aggregate nature deprives them from the ability to directly represent 

complex travel behaviours such as trip-chaining and group travel. From that aspect, the 

development of a methodology able to enhance ODs by disaggregating them into personal 

mobility traces is significant. 

1.2 Objectives 

OD matrices constitute an irreplaceable component of transport planning and modelling. 

Countless transport authorities, operators, practitioners, and researchers have over the years 

allocated significant resources for the development and maintenance of ODs to support a 

plethora of decisions related to urban planning, policy evaluation and transport infrastructure 

investment. More recently, ODs have been also extensively utilised by urban sensing data 

providers as an efficient and privacy safe means for the presentation of peoples’ traces.   

Despite the wide range of applications concerning ODs, little effort has been devoted to their 

disaggregation and the exploitation of the rich information laying within in OD records. The 

present Ph.D. research aims to enhance ODs by suggesting a methodological framework that 

enables the disaggregation of ODs to individual mobility traces and unveil a significant 

amount of additional travel-related information not directly provided in typical ODs. In 

particular, the Ph. D. Thesis emphasises on the evaluation of the potential to: 

• Use of ODs for the studying of travel behaviour and mobility at the person-level. 

Reasons of anonymity dictate that the individual traces of users must be aggregated 

before being presented to ensure privacy and intractability. Given the increasing 

concerns regarding data privacy as well as the rapid introduction of relevant 

legislations (GDPR, APPI, OAIC etc.) the chances of obtaining, even for pure 
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academic purposes, disaggregate mobility information are constantly thinning. 

Therefore, a methodology allowing the privacy-safe study of mobility using 

aggregate ODs can prove of significant importance. 

• Use of ODs to produce highly detailed input for disaggregate transport models. 

Methodologies utilising ODs for the synthesis of disaggregate mobility traces can 

significantly increase their value and further justify past and future investments. 

1.3 Approach 

The current Ph.D. Thesis proposes a novel methodological framework for the synthesis of 

disaggregate mobility traces from aggregate ODs. More precisely, the methodology delves 

in the synthesis of personal activity schedules from the individual trips contained within 

multi-period and trip-purpose segmented ODs. 

The framework is founded upon the observation that the vast majority of people begin and 

end their daily activity schedules at their home (or residing location), after the completion 

of a series of home-based trip-chains (i.e. tours). Assuming that accurate ODs containing all 

the individual trips required for the completion of the previously mentioned tours suggests 

that there must exist at least one combination of the captured trips which recreates the tours. 

Additionally, in the case where the inputted ODs contain trip-purpose information, it is 

reasonable to claim that such information can be utilised for the inference of the executed 

activities and consequently enable the conversion of tours to the more informative form of 

activity schedules. 

The methodology is developed upon advanced graph-theoretical and integer/combinatorial 

mathematical optimisation concepts and is completed in a modular fashion: 

1. The Graph-generation module utilises the spatiotemporal information present in the 

input ODs to create a suitable graph supporting the application of graph-theory-based 

methodologies. In particular, the methodology introduces the hybrid Time Varying 

Graph (hTVG) which enables the presentation of mobility patterns captured by 

multiple time-dependent ODs in a concise and integrated manner. This is achieved 

by firstly expressing the individual multi-period ODs as discrete graphs and 

subsequently layering and connecting them in a chronologically ordered fashion. 

2. The Identification module capitalises on the conversion of the inputted ODs to a 

hybrid Time Varying graph (hTVG) to express tours as paths originating and ending 

at the same vertex (home location). A suitably modified algorithm is assigned with 

the enumeration of all the plausible tours within the hTVG. In detail, the algorithm 
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is sequentially applied on each vertex with the aim to enumerate all the paths 

originating from and ending at it. The completion of the enumeration results in the 

creation of the candidate tours set. 

3. The Activity-scheduling module exploits the trip-purpose information in the ODs to 

convert the candidate tours into candidate activity schedules. The conversion can 

take place because trip-purpose segmented ODs contain information regarding the 

type of activity executed at the ends of each trip. Although, typical ODs do not 

contain information regarding the sequence under which activities take place, a 

suitable algorithm exploits the interdependency between the individual trips within 

a tour to convert the latter in the more informative form of activity schedules. 

4. Finally, the Optimisation module, deploys an advanced integer/combinatorial 

optimization procedure for the identification of compositions of candidate activity 

schedules and their volume which replicate the travel demand expressed in the input 

ODs. The objective of the optimization is to minimise the number of unused trips 

from the input while any available calibration data (e.g. departure time profile, 

diurnal distribution of activities, other survey-based data) can be enforced as 

constraints for the enhancement of the realness of the resulting activity schedules. 

Despite the sound theoretical foundation, the integer/combinatorial nature of the formulation 

and in particular the potentially excessive number of plausible tours in large-scale graphs, 

require appropriate techniques to ensure the scalability of the methodology. Two additional 

simplification modules were developed for the reduction of the problem’s dimensionality 

and the solution of the problem in reasonable time. 

i. The first simplification module (Graph-filtering module) achieves the reduction of 

the number of plausible tours in a hTVG via the simplification of the graph’s 

structure. A suitable simplification process removes vertices which present limited 

effect to the traversability of the graph as well as limited travel demand volume. 

ii. The second simplification module (Candidates-filtering module) evaluates all the 

candidate activity-schedules in terms of their likelihood of being observed in real-

world contexts and subsequently discards rare ones (e.g. activity schedules with 

excessive number of activities or with inordinate total travel time). 

Both simplification modules, although not mandatory to the methodology, can be applied 

individually or complimentary to allow the addressing of scenarios requiring the extraction 

of individual mobility traces from very large-scale ODs. The methodological framework 

developed for the purposes of this Ph. D. Thesis is illustrated in Figure 1.1. 
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Figure 1.1 Flowchart of the suggested methodological framework.  
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1.4 Outline 

The multidisciplinary methodological approach developed for the purposes of this Ph. D. 

Thesis is thoroughly presented in the following Chapters, structured as follows: 

Chapter 2 is devoted to the presentation of the relevant literature regarding the 

understanding of travel behaviour for the synthesis of disaggregate mobility information. In 

addition, Chapter 2 includes an elaborate presentation of the characteristics of the Origin-

Destination matrices which constitute the primary input of the proposed methodology. 

Chapter 3 hosts a detailed presentation of the four modules constituting the core of the 

methodology, namely the Graph-generation module, the Identification module, the Activity-

scheduling module, and the Optimisation module. 

Chapter 4 presents the suggested approach to address complexity issues involved in the 

problem and render it applicable for real-world cases. In particular, it presents two additional 

simplification modules which ensure the scalability of the methodology without jeopardising 

the quality of the solution. 

Chapter 5 provides details regarding the followed approach to enable the large-scale 

optimisation, required for the completion of the proposed methodological framework. In 

addition, the Chapter presents the Adaptive Sampling Simulated Annealing (ASSA) 

optimisation algorithm developed for the purposes of the study. 

Chapter 6 presents the proof of concept of the proposed methodology performed over a set 

of ODs deriving from a large number of observed activity schedules. Furthermore, in 

Chapter 6  the analysis goes into greater depth to evaluate the methodology from multiple 

perspectives as well as to showcase the additional travel behaviour insights which can be 

drawn when aggregate ODs are converted into individual activity schedules. 

Chapter 7 evaluates the scalability of the methodology through its application on a set of 

large-scale ODs deriving from hundreds of thousands of individual activity schedules. This 

Chapter also verifies the effectiveness of the ASSA algorithm for the addressing of 

integer/combinatorial problems of excessively large size. 

Chapter 8 summarises the findings of the thesis, highlights its contribution and suggests the 

areas for future research.  
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Chapter 2  

Literature Review 

 

Chapter 2 is devoted to the presentation of the relevant literature regarding the 

understanding of travel behaviour for the synthesis of disaggregate mobility information. In 

addition, the Chapter includes an elaborate presentation of the characteristics of the Origin-

Destination matrices which constitute the primary input of the proposed methodology.  
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2.1 Modelling Mobility 

2.1.1 Changing Travel Behaviour 

Transport modelling has traditionally faced significant challenges to accurately estimate and 

predict mobility. This can be attributed to a plethora of reasons, such as the questionable 

modelling paradigms, reliance on cross-sectional data, inadequate sampling, and coarse 

zoning systems among many others (Hartgen, 2013). The modelling of mobility is founded 

upon the understanding of the driving forces behind travel behaviour. For decades, a plethora 

of travel behaviour studies have aimed at the provision of both long- and short-term guidance 

for urban planning and transportation development (Wang et al., 2018). According to recent 

studies, travel behaviour is getting more and more difficult to predict (Pinho and Silva, 2015; 

Pawlak et al., 2019) with various reasons contributing to this, including the modern lifestyle 

(Ferreira et al., 2007; García-Jiménez et al., 2014), the increased demand for autonomy 

(Gardner and Abraham, 2007), flexible work arrangements (Brewer, 1998), the diverse 

travel patterns as well as the increasing availability of transportation alternatives for 

transport-deprived population groups (Steg, 2003; Hopkins et al., 2019). Another factor 

affecting travel behaviour stems from the widespread introduction of Intelligent 

Transportation Systems (ITS) which allow travellers to make better informed decisions 

regarding their journeys (Emmerink et al., 1994; Srinivasan and Mahmassani, 2000; 

Guilherme and Soares, 2013). Due to the availability and accuracy of real-time information, 

travellers now have the ability to optimise their journeys and optimally adjust their travel 

patterns, often leading to unexpected travel behaviours (Pel et al., 2012; Antoniou and 

Spyropoulou, 2014). Our inability to understand the motives behind the change of travel 

behaviour will most likely further complicate the efforts around mobility modelling 

(Wegener, 2013). 

2.1.2 Evolving Transport Landscape 

The current transportation trends indicate that mobility in the future will be considerably 

different. Advances in technology such as wireless connectivity and improvements in the 

sector of telematics, have enabled the better coordination between demand and supply 

provision. This fact has been translated into the introduction of flexible and on-demand 

mobility solutions, also known as New-Mobility-Services (NMS). NMS can be configured 

in multiple ways and allow people to access transport modes (e.g. car, bicycles, vans, etc.) 

for as long as they need them, reducing the nuisances attached to vehicle ownership (Franco 

et al., 2019). These new services blur the lines between private and public transport by 
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combining the flexibility of being able to access your own vehicle with the lower cost 

associated with mass transit options (Hall et al., 2018; Smith et al., 2018). Their most 

widespread examples are those of ride-hailing, ride/car/bike-sharing, and shuttle bus 

services. However, NMS are just part of the greater change that Mobility-as-a-Service 

(MaaS) is expected to bring. MaaS has the potential to merge multiple NMS in a 

complimentary fashion which can address transport needs more efficiently compared to the 

provision of transport services in isolation. As the name suggests, the MaaS vision expects 

mobility to be provided as service and that people will solely rely on mobility providers for 

their transport needs (Giesecke et al., 2016). As with most services, consumers will be 

presented with bundles of different options and will be able to choose the one which satisfies 

them the most. The customers will be primarily interested in fulfilling their need of reaching 

the destination under a set of personal criteria (e.g. time, cost, comfort, etc.) and will be 

probably indifferent to the transport modes involved to complete the journey as long as those 

criteria are met (Dacko and Spalteholz, 2014). Travellers in the MaaS era are likely to 

perceive travelling substantially differently than they do today (Durand and Harms, 2018). 

Contrary to the current situation where mobility options are generally limited, travellers of 

the future will be exposed to a larger variety of transportation alternatives (Kamargianni and 

Matyas, 2017). However, the radical change of the transport landscape is expected with the 

wide introduction of Autonomous and Connected Vehicles (CAVs) vehicles. CAVs will 

most likely redefine the rules of mobility and as a consequence tremendously influence the 

way people perceive travelling (Fagnant and Kockelman, 2014; Holmberg et al., 2016; 

Pavone, 2016). For instance, the flexibility and ease of use of autonomous vehicles could 

allow mobility deprived sections of the population (e.g. the elderly, children, etc.) to 

reconsider their mobility needs and increase their travel footprint (Harper et al., 2016). The 

constantly evolving transportation system in conjunction with the changing travel behaviour 

can put transport networks over their available capacity and render them unable to provide 

quality services.  

Based on the above, it becomes apparent that modelling paradigms aiming at the preparation 

against the forthcoming challenges and the assessment of possible mitigation strategies are 

of paramount importance (Goulias and Barbara, 2009). The next section delves in the 

presentation of the current state of the mobility modelling landscape as well as its future 

direction towards disaggregate approaches. 
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2.2 Mobility Modelling Approaches 

2.2.1 Aggregate Approaches 

The typical approach to model mobility encompasses the use of aggregate transport models. 

Traditional aggregate transport models (such as the widely used 4-step model) have proven 

invaluable tools towards the understanding of transportation trends and have tremendously 

supported crucial strategic decisions. However, the future mobility challenges are calling for 

the development of disaggregate modelling paradigms, better suited to capture individuals’ 

travel behaviour and complex multiagent systems (Goulias, 2009). This statement has been 

supported by many researchers who have emphasised the need of incorporating user-

centricity in the core of transport modelling for mitigation against future mobility challenges 

(Ben-Akiva et al., 2007; Hilgert et al., 2016). However, the introduction of user-centricity in 

typical aggregate (i.e. 4-step) transport models can prove troublesome since their aggregate 

nature hinders the representation of travel behaviour at person-level (Mladenovic and 

Trifunovic, 2014). Traditional aggregate transport models were not designed with the aim to 

model individual responses of travellers at the disaggregate level, therefore they are less 

capable of evaluating the travellers’ reaction to personalised transport services such as NMS 

(Pinjari and Bhat, 2011).  

Aggregate transport models typically apply analytical relationships, based on closed form 

mathematical equations to estimate total travel demand between pairs of zones (Ben-Akiva 

et al., 2007). Attempting to include the individual characteristics of each user to the 

modelling framework of 4-step models would require the impractical introduction of a 

unique user class for each traveller. On the other hand, disaggregate paradigms are 

considerably more capable of incorporating user-centricity into transport and travel 

behaviour modelling since different agents can be natively modelled. 

Apart from the negative implications of using typical aggregate models for the prediction of 

travel behaviour under the emerging flexible and on-demand transport services, difficulties 

also arise for the modelling of the operational side of transport (Horn, 2002; Segui-Gasco et 

al., 2019). The future of transport promises seamless journeys which can possibly require 

multiple complementing modes and cooperating transport operators (Kamargianni et al., 

2015; Smith et al., 2018). Such a complex system will not operate efficiently support from 

sophisticated modelling tools able to incorporate highly dynamic networks, inhomogeneous 

fleets, and continuously changing travel behaviours (Cich et al., 2017). In addition, these 

modelling tools should be also able to predict future conditions and suggest appropriate 
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mitigation strategies in case of emergencies or unforeseen events. From the transport supply 

perspective aggregate transport models are in a weak position (compared to disaggregate 

models) to effectively model the dynamic and multipart operations manifesting in the 

emerging transportation landscape (Cich et al., 2016). 

2.2.2 Disaggregate Approaches 

Disaggregate transport modelling approaches such as agent-based modelling, activity-based 

modelling, microsimulation, etc., have the potential to effectively and accurately simulate 

complex systems (Ben-Akiva et al., 2007) but only recently have started to gain momentum 

(Zhang and Levinson, 2004; Ronald et al., 2015; Djavadian and Chow, 2017). Under the 

disaggregate modelling context, interactions and interrelations between agents are modelled 

explicitly and dynamics emerge as the aggregation of all the decisions taken by autonomous 

agents (Bonabeau, 2002; Azevedo et al., 2016). This disaggregate representation allows the 

emergence of complex behaviours between agents which would have been difficult to be 

expressed in an aggregate modelling environment (Borshchev and Filippov, 2004). 

Despite the considerable potential of disaggregate models for the accurate simulation of 

complex dynamic environments, their requirement for fine-grained information has hindered 

their wider adoption (Molla et al., 2017; Bassolas et al., 2019). However, the introduction of 

a reasonable decision-making logic to the agents of a simulation requires a wide breadth of 

information (Angria S et al., 2018; Aziz et al., 2018). Since decisions depend on the 

characteristics of the agents as well as on their perception about the surrounding environment 

(Zhu et al., 2007), the representativeness and the accuracy of the decision-making process is 

dictated to a large extent by the quality and the volume of the available input data (Klügl, 

2010). The more detailed the characteristics of the simulated agents and environment, the 

more likely the disaggregate model to accurately replicate reality. Despite the recent increase 

in data availability, the acquisition of precise data describing all the above-mentioned 

aspects, especially at person-level, can still prove challenging (Wise et al., 2017). However, 

the transition to the Big-Data age promises the reduction of data scarcity issues (Katrakazas 

et al., 2019) mainly due the penetration of technology in people’s everyday life (Calabrese 

et al., 2013; Anda et al., 2016). In addition, since urban planners and policy makers have 

already highlighted the importance of information flow for future Smart Cities (Batty, 2013; 

Kitchin, 2014; Beckwith et al., 2019; Bouzidi et al., 2020), the amount of available mobility 

related information is expected to rise. The acquisition of rich data at large scale can aid the 

wider adoption of disaggregate transport models able to allow the transition to the new 

mobility era. 
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2.3 Mobility Modelling Data Requirements 

2.3.1 Population Synthesis 

The application of disaggregate transport models for the analysis of travel behaviour relies 

heavily on a wide range of data including the socio-demographic and the economic attributes 

of the simulated population as well as their detailed travel diaries. Since the acquisition of 

the complete socio-demographic profile for every person in the studied area can prove 

prohibitively expensive, if not impossible (E. Ramadan and P. Sisiopiku, 2019), the field of 

population synthesis provides an alternative for the creation of fully detailed disaggregate 

populations based on openly available sources (e.g. census, land-use data, anonymised travel 

diaries, etc.). The field has drawn considerable attention over the last 30 years and numerous 

methodologies have been already presented (Muller, 2010). The most frequently used 

approaches are based on the Iterative Proportional Fitting (IPF) method (Beckman et al., 

1996; Choupani and Mamdoohi, 2016) although other alternatives have been also evaluated. 

For example, Ye et al. (2009) proposed the Iterative Proportional Updating (IPU) method in 

order to counter the inefficiency of IPF’s algorithms to control for person-level attributes 

and joint distributions of personal characteristics. Additionally, combinatorial optimisation 

(Abraham et al., 2012) and Markov process-based approaches (Farooq et al., 2013; Saadi et 

al., 2016b) have also presented significant advantages. Population synthesisers are focusing 

on the assignment of socio-demographic attributes to each of the simulated persons and 

usually disregard the mobility behaviour of the population. A notable exception stands for 

the study of Saadi et al. (2016a) who combined a simulation-based synthesiser with a Hidden 

Markov model to assign activity schedules to the synthetic persons. Apart from the required 

population, access to mobility data (e.g. travel diaries, traces) is also essential for the 

development of advanced travel behavioural modelling frameworks (Rashidi et al., 2017) 

and as a consequence significant research has been devoted on the issue. 

2.3.2 Activity Scheduling  

Understanding mobility is a particularly active research topic which stretches among 

multiple disciplines (Bhat and Koppelman, 1999; Bowman and Ben-Akiva, 2000; Axhausen, 

2007; Gonzalez et al., 2008). Travel behaviour theory accepts that travelling is a derived 

need required for the completion of activities (Mokhtarian and Salomon, 2001; Donnelly, 

2010), therefore, mobility can be interpreted through the study of activity scheduling 

(Jovicic, 2001). The term ‘activity scheduling’ refers to the act of designing the schedule 

which will allow a person to complete all her/his required activities, usually within the course 
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of a day. This design corresponds to all the associated aspects such as the number of executed 

activities, their locations, durations, sequence, type, etc. 

With regards to disaggregate transport modelling, the main question to be answered is how 

can detailed activity schedules be accurately estimated for every person in the population 

under study. Before delving into the suggested approaches for the understanding of activity 

scheduling, it should be stated that although activity patterns may seem random and 

unpredictable, research suggests that activity scheduling can be predicted with accuracy 

(Gonzalez et al., 2008; Song et al., 2010; Schneider et al., 2013). Multiple approaches have 

been suggested, ranging from statistical methods to Markovian Chains, Principal Component 

Analysis, Machine Learning, Network Analysis and Sequence Alignment Methods. The 

selection between the available options is strongly influenced by the type and the availability 

of the input data. While the first suggested approaches relied on traditional travel surveys, 

more recent studies have taken advantage of new urban sensing technologies like Mobile 

Network Data (MND), GPS traces and smart-card data to name a few. The common factor 

between all the above-mentioned methodologies is their dependence on disaggregate data 

sources except few exceptions (Ballis et al., 2018; Huber and Lißner, 2019; Ballis and 

Dimitriou, 2020a, 2020b). The next section describes the so far suggested approaches for the 

production of disaggregate mobility data (e.g. trip-chains, activity schedules, etc.) depending 

on the type of the data input.  

2.3.2.1 Survey Data 

Prior to the emergence and the wide availability of urban sensing information, researchers 

had traditionally relied on travel surveys to conduct analysis regarding personal mobility 

(Calabrese et al., 2013; Yue et al., 2014). A non-exhaustive but representative collection of 

such examples is offered here. Bowman and Ben-Akiva (2000) utilised the Boston 1991 

survey to develop an econometric model to impute personal day activity schedules. 

Schoenfelder and Axhausen (2001) proposed the use of survival analysis theory for the 

identification of rhythmic patterns based on a long-term survey of 316 participants over a 

course of six years. In 2007, Lee et al. (2007) developed simultaneous, doubly-censored 

Tobit models to estimate the relationships between household type and structure, time 

allocation strategies, and trip-chaining patterns, using data from the 2000 Tucson Household 

Travel Survey. Nurul Habib (2011) developed a random utility maximisation framework for 

the modelling of dynamic weekend activity scheduling based on information available in the 

CHASE survey collected for the Toronto area in 2002. More recently, large scale travel 

surveys, requiring sophisticated analysis approaches, have also become available. For 
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example, Jiang et. al. (2012) applied Principal Component Analysis on a large travel survey 

including more than 30 thousand individuals to explore daily activity structures and cluster 

them based on socio-demographic information. According to their results, seven to eight 

groups are adequate for the representative classification of individual activity patterns. 

Similarly, a network-based approach to identify and categorise activity patterns of 

individuals was presented by Zhang and Thill (2017). In their research, Zhang and Thill 

provide a methodology for the clustering of travellers in ‘community structures’ where 

individuals in the same community tend to interact more intensively compared to agents 

belonging to different communities. The potential of their methodology to classify large 

datasets of space-time trajectories was evaluated using 9000 individual travel spanning 

across Carolina, USA. 

A widely examined stream of research aiming at the studying of activity scheduling is 

developed based on the Sequence Alignment Method (SAM). Although SAMs were 

originally developed to study DNA sequences,  they have been extensively utilised for the 

study of the sequential dependencies between daily activities (Wilson, 1998; Joh et al., 

2002). These approaches attempt to classify activity-chains (usually obtained from travel 

surveys) into clusters based on their sequencing characteristics and composition. Despite 

their wide spread, SAMs have been criticised for their inability to capture infrequent activity 

patterns (Liu et al., 2015; Saadi et al., 2016a). Nonetheless, improvements based on 

Markovian approaches have been suggested. For instance, Liu et al. (2015) used a profiling 

method called profile Hidden Markov Models (pHMM) to enable the capturing of the 

irregular activity patterns. Likewise, Saadi et al. (2016a) combined the pHMM method with 

a population synthesiser to develop a framework capable of assigning activity sequences to 

all the agents of a population. 

Activity scheduling has been also studied under the prism of hazard-based methodologies 

(Ettema et al., 1995; Bhat, 1996; Schoenfelder and Axhausen, 2001). Hazard-based 

methodologies appreciate that the duration between the duration of participation of an 

individual at the same activity (e.g. work, shopping, leisure, etc.) depends on the elapsed 

time since the last participation. As an example, in the work of Bhat et al. (2005), a 

sophisticated multivariate hazard model was developed and applied on a multi-week survey 

for the cities of Halle and Karlsruhe, Germany. The results indicated distinct weekly rhythms 

for individuals participating in social, recreational, and personal business activities. Manual 

surveys are still the most effective mean to acquire precise information regarding the travel 

behaviour of individuals. Nonetheless, extensive manual surveys are costly, require 
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significant time for preparation and are not easily updated. For that reason, researchers have 

started exploring the use of passively collected data for the studying of activity-scheduling. 

2.3.2.2 Urban Sensing Data 

Non-invasive, automated, continuous data collection technologies are increasingly used to 

complement manual survey techniques as well as to improve the statistical 

representativeness of traditional surveys (Cottrill et al., 2013). The significant role of these 

modern urban sensing data sources (e.g. Mobile Phone Data, GPS traces, transit smart-cards, 

etc.) in the study of travel behaviour has been explored by numerous researchers (Caceres et 

al., 2013; Calabrese et al., 2013; Yue et al., 2014; Çolak et al., 2015; Vlahogianni et al., 

2015; Bassolas et al., 2019). Based on the obtained literature, the synthesis of mobility 

information from urban sensing sources for the fuelling of advanced transport modelling, 

has been attempted by two main approaches. The first approach (analytical methods) 

suggests the analysis of disaggregate mobility data (e.g. travel diaries, GPS traces, etc.) for 

the creation of travel behaviour models, able to produce the required input for disaggregate 

transport models. The second approach (obfuscation methods) suggests the obfuscation of 

the raw personal mobility data so that the anonymity of the tracked user can be guaranteed 

and therefore the data can be directly used for modelling purposes. The next section delves 

in the presentation of the so far suggested methodologies in both fields. 

Analytical methods 

The availability of vast quantities of data obtained by urban sensing sources has ignited a 

significant amount of research with regards to travel behaviour. Amongst urban sensing data 

sources, the most widely used for the analysis, clustering and estimation of activity schedules 

are Mobile Network Data (MND), GPS traces, and smart-card transit data (Toole et al., 2015; 

Anda et al., 2016; Antoniou et al., 2019) with their potential having been evaluated in many 

studies. For example, Ebadi et al. (2017) constructed spatiotemporal ‘activity-mobility 

trajectories’ based on a small (37 smart-cards) but detailed smart-card dataset, obtained from 

students at the University of Buffalo. Their results presented a prediction accuracy between 

75 to 88%, showcasing that smart-card data can be utilised for the accurate estimation of 

activity recognition. a large sample of smart-card data obtained from the London’s public 

transport network was utilised by Goulet-Langois et al. (2016) for the identification of travel 

behaviour heterogeneity between public transport users. The researchers firstly inferred a 4-

week continuous activity sequence for each of the smart card holders and then clustered them 

into 11 distinct sequence structures.  Sociodemographic information of a small sub-sample 

allowed them to identify significant connections between the activity sequence structures 
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and the characteristics of individuals. Smart-card data have been also used as input for 

hidden Markov Chain models. For instance, Han and Sohn (2016), relied on smart-card data 

and land-use information for the transit network of Seoul to impute activity chains using a 

continuous hidden Markov model. The modelled results yielded plausible and intuitive 

activity patterns which were also consistent with observed activity patterns. 

Between the available urban sensing data, MND are gradually becoming the main source of 

travel behaviour information, mainly due to their relative low-cost, large sample size and 

extended spatial coverage (Pan et al., 2006; Chen et al., 2016; Ni et al., 2017). In particular, 

large volumes of Call Detail Records (CDRs) obtained from mobile phones are often used 

to construct individual daily itineraries and train travel activity models using weeks and 

months of data rather than several days’ worth (Widhalm et al., 2015). Despite their 

advantages, CDRs are not explicitly designed to fuel travel behaviour analyses, therefore 

they do not include significant travel behaviour dimensions such as the type of activity 

executed by the mobile phone users. For that reason, analysts have attempted to infer the 

type of the executed activity mostly through rule-based approaches (Chen et al., 2014). An 

attempt to improve the activity type estimation by combining Points of Interest (POIs) 

datasets with CDRs, is presented by Phithakkitnukoon et. al. (2010). In that research the 

probability to execute a certain type of activity was calculated based on the number and the 

type of POIs laying inside each of the modelled areas. A mechanistic approach to synthesise 

urban mobility profiles  through the exploitation of data generated by communication 

technologies (i.e. MND) is presented by Jiang et al. (2016). Jiang et al. utilised MND to 

model the location and the duration of primary (Home and Work) as well as secondary (e.g. 

Other) activities using a rank-based Exploration and Preferential Return (r-EPR) 

mechanism. Furthermore, the use of MND derived trip-chains as input for a microsimulation 

agent/activity-based model has been explored in Zilske and Nagel (2015). The researchers’ 

results indicate that MND combined with other sources of information such as traffic counts 

can provide valuable input to simulation models. On a similar stream, Liu et al (2014) 

explored and verified the potential of utilising MND to validate activity-based models. As a 

last example of MND-based studies, Eagle and Pentland (2009) relied on Principal 

Component Analysis to identify the behavioural structure of 100 users, carrying their mobile 

phones for 9 months. The main aim of their study was to identify a set of characteristic 

vectors (i.e. patterns), termed as ‘eigenbehaviors’, which can approximate the individual’s 

actual behaviour. According to their research, utilising just six eigenbehaviors can 
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approximate individual’s travel behaviour with 90% accuracy. For the interested reader, an 

exhaustive survey on the MND applications can be found in the study of Blondel (2015). 

The increasing availability of mobility related data has led researchers to the development 

of models able to identify patterns and connections between the system state variables (i.e. 

inputs and outputs) without explicit knowledge of the analysed system. These so-called 

Data-driven models promise to minimise uncertainty and improve accuracy by fusing and 

integrating multiple sources of (dynamic) data into the core of (transport) modelling (Jha, 

2015; Angria S et al., 2018; Antoniou et al., 2019). As an example, Liu et al. (2013) 

employed multiple Machine Learning (ML) algorithms on a dataset covering a year of MND 

for 80 users. The supervised ML algorithm was trained with the 2.3% of the locations in the 

dataset where the respective activities performed at these places were known. According to 

the researchers, the prediction accuracy of the model reached a remarkable 70% which was 

further increased to 77% after the application of a post processing algorithm. The use of ML 

algorithms for the identification of a Markov model’s parameters is presented by 

Allahviranloo and Recker (2013). They employed their methodology and showcased the 

supremacy of the ML-based methodologies against a standard multinomial logit model. A 

data-driven modelling framework for the estimation of human mobility trajectories has been 

presented by Pappalardo and Simini (2018) where observed MND data were utilised to 

construct individual diaries based on an Exploration and Preferential Return methodology. 

The comparison of their results against observed data showcased the capability of the 

methodology to accurately reproduce the statistical properties of the observed trajectories. 

Finally, a prominent methodology providing anonymised and fully detailed activity 

schedules from MND is presented by Lin et al. (2017). The authors first utilise an Input-

Output Hidden Markov Model (IO-HMM) to infer activity sequences and subsequently 

apply a Long Short Term Memory (LSTM) deep neural network for the assignment of exact 

locations to the previously identified activities. The framework presented reasonable 

performance when 465 thousand synthetic activity schedules were assigned in a multi-

modal, micro simulator model and the observed traffic and transit counts were compared 

against the corresponding modelled figures. A more direct approach for the obtainment of 

mobility data at large quantities compared to their extrapolation from samples is the 

anonymisation of mobility traces. 

Obfuscation methods  

The abundance of information in the Big-Data era, has the potential to alleviate data scarcity 

issues and to provide researchers with substantial quantities of information. Nonetheless, 
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privacy concerns will most likely still be present (Batty et al., 2012), therefore 

methodologies ensuring the anonymity and the quality of data are very important. 

Nowadays, multiple entities (e.g. Mobile Phone Carriers, transport providers, smartphone 

app developers, etc.) record large volumes of mobility traces at high resolution. Nonetheless 

such data can be very rarely provided as is without some form of anonymization process, 

since the mobility footprint of people can be particularly distinct (De Montjoye et al., 2013). 

Various methodologies have been suggested for the achievement of what is often referred as 

differential privacy. In a nutshell, differential privacy requires that the probability 

distribution on the published results of an analysis is “essentially the same,” independent of 

whether any individual opts in to, or opts out of, the data set (Dwork et al., 2010). Despite, 

the widespread research in relation to ensure differential privacy  as well as the obfuscation 

of mobility traces (You et al., 2007; Krumm, 2009; Suzuki et al., 2010; Kato et al., 2012; 

Shokri et al., 2012; Bindschaedler and Shokri, 2016), no standard procedure has been 

established so far. One of the most common approaches to guarantee intractability is the 

aggregation of mobility traces with similar characteristics (e.g. similar origin). For example, 

the study of Balzotti et al. (2018) conducted a travel behavioural analysis using only 

aggregated cellular network data (in the form of hourly counts of mobile phones in 

predefined zones) without subjecting the tracked users at risk. Another frequently deployed 

methodology for the construction of privacy-safe traces is based on generative models 

(Chow and Golle, 2009; Krumm, 2009; Kato et al., 2012; Shokri et al., 2012; Bindschaedler 

and Shokri, 2016). These models utilise observed traces to create realistic trajectories with 

similar semantics while at the same time ensure intractability through Location Privacy 

Protection Mechanisms (LPPMs). LPPMs rely on a wide range of techniques including data 

perturbation (Andrés et al., 2013), data encryption (Mascetti et al., 2011) and fake data 

generation (Pelekis et al., 2011). For example, Isaacman et al. (2012) introduced a 

probabilistic modelling framework (coined as WHERE) to produce synthetic Call Detail 

Records (CDRs) while Mir et al. (2013) enhanced the framework by adding a differential 

privacy mechanism (DP-WHERE) to guarantee privacy-preservation. The interested reader 

can find an extensive review of relevant data anonymisation techniques in (Primault et al., 

2019). 

Finally, it should be emphasised that despite the wide range of data anonymisation 

techniques which have been so far suggested, the standard approach for the presentation of 

MPD Data is through aggregate Origin-Destination (ODs) matrices (Caceres et al., 2007; 

Bonnel et al., 2015; Tolouei and Alvarez, 2015). ODs ensure anonymity through the 
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segmentation of the mobility traces into individual trips and the aggregation of these trips 

into groups with similar characteristics (e.g. trip-purpose, time period of departure, mode of 

transport, etc.). The previous sections presented various approaches enabling the production 

of disaggregate mobility input for advanced transport modelling. Contrary to the previously 

presented studies, the novel approach presented in this thesis depends solely on aggregated 

travel demand data (i.e. OD matrices and high-level distributions) instead of disaggregate 

information. The next section concludes the literature review by providing the necessary 

background regarding Origin-Destination matrices (ODs) which constitute the basic input 

for the methodological framework presented in this Thesis.  

2.4 Origin-Destination Matrices (ODs) 

2.4.1 Development 

Despite the advances in mobility tracking technology and the availability of relevant 

information in a plethora of data sources (e.g. Call Detail Records, GPS Traces, etc.), the 

most widely used mean to represent travel demand is still the standard form of Origin-

Destination matrices (ODs). ODs have traditionally constituted a fundamental element of 

transport modelling and it may not be an overstatement to claim that the majority of 

transportation related projects involves at some point their use (Montero et al., 2019). In 

their simplest form, ODs represent mobility as the total volume of movements between pairs 

of locations. In practise, the studied area is divided into multiple smaller areas which are 

usually referred as zones. The purpose of these zones is to aggregate areas with similar 

characteristics into larger spatial units and therefore divide the continuous space in discrete 

segments. Once the zoning system has been defined, the flows between zones can be 

expressed via a square matrix where rows and columns correspond to the available zones in 

the area. This straightforward structure has facilitated the transferability of results and has 

established ODs as the main travel demand data exchange format in the transport 

community. However, information regarding the volume of demand between locations is not 

adequate to allow for in-depth analysis and additional dimensions are required to achieve so. 

For that reason, ODs are often segregated by dimensions such as the purpose of the executed 

trips, the used transport mode, and the time period of departure, etc. in order to enable the 

obtainment of a more complete picture regarding the mobility motif within the studied area. 

The aggregate nature of ODs dictates that all flows within an OD are homogeneous, therefore 

each of the different dimensions must be expressed via a different OD (Donnelly, 2010). For 
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example, the morning-peak flows cannot be separated from the corresponding flows for the 

evening-peak if not presented in two separate ODs. 

Over the years, transport authorities and operators have allocated significant resources to the 

development and maintenance of OD matrices to support a plethora of decisions related to 

urban planning, policy evaluation and transport infrastructure investments (Peterson, 2007; 

Ickowicz and Sparks, 2015). However, the estimation of accurate OD matrices is an 

extremely challenging task since very often the data used for ODs estimation is limited. 

Since the recording of all the movements taking place in the studied area is infeasible, 

various methods have been suggested from the accurate estimation of ODs based on partial 

observations. The most common approach to derive ODs is through the combination of 

roadside interviews (RSIs) and the application of trip-end and gravity models (to extrapolate 

and infill unobserved movements), followed by matrix estimation methods for the 

incorporation of supplementary traffic counts (Iqbal et al., 2014). Various methodologies 

have been suggested including Bayesian methods (Maher, 1983; Li, 2005), Generalised 

Least Squares (Cascetta, 1984; Bell, 1991; Nie et al., 2005; Y. Wang et al., 2016), Maximum 

Likelihood (Spiess, 1987; Ickowicz and Sparks, 2015) and Entropy Maximisation (Van 

Zuylen and Willumsen, 1980). More recent approaches have relied on urban sensing data 

sources (Zhao et al., 2007) such as MND (Alexander et al., 2015; Bonnel et al., 2015; Horn 

et al., 2017; Tolouei et al., 2017), GPS traces (Parry and Hazelton, 2012; Ge and Fukuda, 

2016), smart-card data (Jun and Dongyuan, 2013)  as well as combinations between those 

(Toole et al., 2015). The study of Antoniou et. al. (2016) has proposed a common evaluation 

framework to enable the standardised comparison between different OD estimation 

methodologies. 

Despite the long history of OD matrix development, the research on the field is still 

particularly active and no sign indicates that it will be ceased in the (near) future. Therefore, 

methodologies aiming at the exploitation and the enhancement of ODs, such as the one 

presented in this Thesis, can be considered of significant value. 

2.4.2 Usage 

The previous section was devoted to the presentation of the importance of ODs and the 

various methodologies which have been suggested for their creation. Once an OD matrix has 

been built it can be utilised to inform a wide range of transportation modelling related tasks. 

From a transport planning perspective, an OD can provide useful insight regarding the 

attractiveness of certain areas or pinpoint pairs of location with significant demand for travel, 
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now or in the future. Additionally, ODs can help with the short-term management of the 

network (Zhou et al., 2003; Sundaram et al., 2011) or with long-term strategic decisions such 

as the planning of the public transport network (Borndörfer et al., 2005). One of the most 

common usages of ODs is traffic assignment (Antoniou et al., 1997; Peeta and 

Ziliaskopoulos, 2001; Maerivoet, Sven; De Moor, 2006; Balakrishna et al., 2007; Nagel and 

Flötteröd, 2009; Bekhor et al., 2011). Evidently, traffic assignment models (dynamic or 

static) cannot be executed if the origin and the destination of the inputted trips is not known, 

therefore OD matrices constitute an essential input for such purposes. Even though OD 

matrices are perfectly suitable for the aggregated representation of travel demand, their 

aggregate nature forbids them from representing the interdependency between trips often 

manifesting as trip-chains or tours (Pendyala and Goulias, 2002; Mcnally and Rindt, 2008). 

2.4.3 Trip-chaining 

The significance of trip-chaining for travel behaviour analysis has drawn considerable 

attention over the years (Thill and Thomas, 1987; Goulias and Kitamura, 1991; McGuckin 

and Murakami, 1999; Yue et al., 2014). Despite the incapability of OD matrices to represent 

trip-chaining and trip-interdependency phenomena, many researchers have suggested 

approaches to incorporate such elements into the OD estimation process. Some of these 

studies have focused on the exploitation of trip-chaining information obtained from 

automated data collection sources (e.g. smart-cards) in order to enhance the accuracy of the 

transit ODs estimation  (Wang et al., 2011; Jun and Dongyuan, 2013). A different stream of 

methodologies has expressed trip-chains as Markov chains with the purpose to convert data 

obtained from traffic flows to ODs (Morimura et al., 2013; Tesselkin and Khabarov, 2017). 

Additionally, efforts to incorporate trip-chaining information in an dynamic OD estimation 

framework have been also presented (Lindveld, 2003; Flötteröd et al., 2011). More recently, 

Cantelmo et al. (2019), suggested the use of an online dynamic OD estimation framework 

which combines a departure time choice model with a Kalman Filter to identify correlation 

between different OD pairs in space and time. 

Even if trip-chaining has been considered during the synthesis of ODs, their aggregate 

format deprives them from the ability to represent such information. The study of 

Abdelghany et al. (2007) exemplifies this limitation by executing a traffic assignment 

exercise using trip-chains and an equivalent  scenario where trips are assigned individually. 

According to their results, the total travel time for the case where trip-chaining was ignored 

increased by 20% compared to the opposite scenario. Transport modelling paradigms such 

as activity-based modelling attempt to counter this limitation by expressing travelling 
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behaviour as the series of interrelated trips (i.e. trip-chains) required to complete an activity 

schedule (Bhat et al., 2004; Pinjari and Bhat, 2011; Chu et al., 2012). Representing travel 

demand through trip-chains is more flexible and better suited for the purposes of 

disaggregate modelling but the expression of mobility through trip-chains can prove an 

expensive, tedious and complex task (Gu, 2004; Ben-Akiva et al., 2007). Therefore, the 

aggregation of trip-chains to form ODs which are more easily handleable and managed is a 

typical approach. 

The previous section showcased the importance of trip-chaining information as well as 

various methods for its incorporation in the OD estimation process. Nonetheless, to the best 

knowledge of the author, no study has attempted to convert aggregate ODs into trip-chains. 

2.4.4 Disaggregation 

Based on the previously presented literature review, it becomes evident that the study of 

activity scheduling and the preparation of disaggregate mobility data has been primarily 

based on the analysis and the exploitation of disaggregate inputs, however some exceptions 

do exist. As an example Balmer et al. (2006) suggested a framework capable of combining 

multiple sources of information, including OD matrices, to generate disaggregate travel 

demand data (in the form of trip-chains), for the purposes of a large scale microsimulation. 

That study was based on a mechanistic approach which iteratively subtracted trips from an 

OD to recreate activity schedules retrieved form a relevant survey. The main drawbacks of 

that methodology are the reliance on exogenous data for the formation of activity schedules 

and the rather simplistic mechanism for the utilisation of trips from the input ODs.  

The increasing requirements for high precision, disaggregate mobility information, in 

conjunction with the data-privacy regulations (e.g. General Data Protection Regulation, 

Japan's Act on Protection of Personal Information, etc.) which promote the aggregated 

publishing of information (e.g. ODs) has led researchers to experiment with data 

disaggregation methodologies. Recently, Huber and Lißner (2019) utilised aggregate cycling 

data obtained from the Strava app to synthesise disaggregate mobility data. Their approach 

applies a double-constrained routing algorithm on aggregate OD cycling demand to derive 

single bicycle routes. However, their model does not aim at the reproduction of the cycling 

travel demand through individual cycling traces but rather on the development of a bicycle 

route choice model based on the OD information. The possibility of  synthesising travel 

demand based on aggregated data from TSPs has been recently evaluated by Anda et al. 

(2020). Their Markovian-based approach allows the synthesis of realistic daily tours using 
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aggregate joint distributions (histograms) which can be provided by TSPs since they are 

considerably less likely to raise data-privacy concerns. All the different model architectures 

were evaluated over a large dataset of 1 million synthetic travellers and resulted in 

remarkably high accuracy (≥ 95%) in terms of replicating the observed travel patterns. A 

potential drawback of the methodology is the reliance on multiple and very detailed hourly 

distributions at zonal level (e.g. duration of stay time in a zone by hour, number of people 

transitioning to a previously unvisited zone by zone and departure hour, etc.).  

To the best knowledge of the author, except from the above-mentioned studies and the 

relevant work supporting this Ph. D. Thesis (Ballis et al., 2018; Ballis and Dimitriou, 2020c, 

2020a, 2020b), no other study has attempted the disaggregation of ODs for the synthesis of 

mobility data at person-level. However, the currently suggested methodological framework 

attempts to fill this gap and provide a comprehensive framework for the synthesis of highly 

detailed, disaggregate mobility information based on the widely available data source of OD 

matrices. 

2.5 Research Needs 

The previously presented literature review emphasised the need for disaggregate modelling 

approaches to efficiently address forthcoming mobility challenges. The so far suggested 

modelling paradigms rely on a wide range of very detailed mobility information, usually at 

person-level but such data are difficult to be acquired mainly due to reasons of anonymity 

and cost. On the other hand, aggregate data sources are usually more easily available but 

lack in terms of representativeness and detail, therefore they are less useful for the study of 

travel behaviour at person-level. According to the previously presented literature review, the 

potential of utilising aggregate mobility data sources, in particular ODs, has not been 

examined thoroughly enough up to now. Based on this observation, the following research 

needs have been identified: 

• The exploitation of the ubiquitous, aggregate OD matrices for the study of complex 

travel behaviour phenomena (e.g. trip-chaining, activity-scheduling), especially at 

person-level, has not been thoroughly investigated. 

• The potential of synthesising disaggregate mobility data from aggregate data sources 

should be further explored. 

• Not adequate research has been devoted on the development of a flexible 

methodological framework, able to disaggregate commercially available, aggregated 

mobility data in a privacy-safe fashion. 
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The currently presented Thesis attempts to fill the above-mentioned gaps by evaluating the 

potential of utilising aggregate data sources for the synthesis of representative mobility 

information at the person-level. Amongst the available aggregated data sources describing 

mobility, OD matrices are the most widely used, therefore the most promising candidate for 

this purpose. Their continuous development indicates that their usability and value will not 

diminish in the foreseeable future, hence the investment towards their enhancement is well 

justified. To achieve so, a novel methodology is proposed for the exploitation of the 

spatiotemporal as well as the trip-purpose information in typical ODs to synthesise highly 

detailed disaggregate mobility data. The detailed methodology to enable this conversion is 

meticulously presented in the next Chapter.  
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Chapter 3  

Methodology 

 

Chapter 3 hosts a detailed presentation of the four modules constituting the core of the 

methodology, namely the Graph-generation module, the Identification module, the Activity-

scheduling module, and finally the Optimisation module.  
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3.1 Overview 

In the current Thesis a novel methodological framework is proposed for the synthesis of 

disaggregate activity schedules based on multi-period, purpose-dependent OD matrices. The 

main principle supporting the proposed framework is the observation that the majority of the 

population in a region begins and ends their daily activity schedules at home or residing 

location (Bowman, 1998; Schneider et al., 2020). The methodology is based upon the 

assumption that if all the trips captured in multi-period ODs belong to tours, then there must 

exist a combination between the captured trips that recreates the ODs. This assumption holds 

particularly true in cases where the OD matrices have derived from observational data 

sources (e.g. mobile phone data, GPS, etc.). These ODs are usually built by tracking the 

movements of individual people for consecutive days or even months. Therefore, such ODs 

are indeed formed as the aggregation of the trips belonging to tours. However, even in cases 

where ODs have stemmed from modelling processes (e.g. typical 4-step models), and 

therefore flows are not entirely based on consistent observations, the fact that most trips 

within ODs should belong to tours, still holds true. The aim of the methodology is to 

reconstruct input ODs into the travel demand equivalent tours. Although, not a prerequisite 

for the application of the methodology, information regarding the purpose of each trip (i.e. 

trip-purpose) can be utilised to transform the tours into the more meaningful and contextual 

form of activity schedules. For the brevity of the presentation, the onwards sections assume 

the presence of trip-purpose information within the utilised ODs. 

The identification of activity schedules within multi-period, purpose-segmented ODs is 

accomplished in a modular fashion. Firstly, the graph generation module handles the 

conversion of the inputted ODs into a suitable graph. Secondly, the graph-theory-based 

identification module completes the identification of all the plausible tours within the graph. 

Thirdly, the activity scheduling module exploits the available trip-purpose information to 

convert tours into activity schedules. Finally, the optimisation module identifies the 

combination of tours whose enclosed trips recreate the inputted travel demand (i.e. input 

ODs). In case that calibration information regarding the expected schedules are known, the 

optimisation module attempts the identification of a solution adhering to the calibration data. 

In short, the methodology is accomplished as follows (also depicted in Figure 3.1): 

1) Conversion of multi-period, purpose segmented ODs into a graph (Graph-

generation module) 

2) Identification of all the plausible tours in the graph (Identification module) 
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3) Exploitation of trip purpose information to convert tours into activity schedules 

(Activity-Scheduling module) 

4) Identification of the activity schedules’ combination which maximises the 

utilisation of the inputted OD trips while respecting any available calibration 

information (Optimisation module) 

 

Figure 3.1 Flowchart depicting the suggested methodology. 

For the ease of understanding an example case presenting the expected input OD matrices 

along with the corresponding output can be found in Table A.1 and Table A.2 of the 

Appendix. The next sections thoroughly describe the modules required for the completion 

of the proposed methodology. 

3.2 Graph-generation Module 

3.2.1 Multi-period OD Matrices to hybrid Time Varying Graph (hTVG) 

The first step of the proposed methodology entails the conversion of multi-period, purpose 

segmented ODs into a suitable graph for the application of advanced graph theoretical 

algorithms. A typical representation of a graph can be accomplished by a tuple G = (V, E) 

where V  is the set of vertices (nodes) and E  the set of edges (links). This type of 

representation is very suitable to model situations where relationships between nodes are 

static. Representing travel demand using graphs is a well-documented approach (Wood et 

al., 2010). However, most studies either neglect the temporal dimension of demand (Phan et 

al., 2005) or utilise multiple but isolated networks for the representation of different demand 
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states (Von Landesberger et al., 2016). Nevertheless, travel demand unravels as a highly 

dynamic phenomenon and therefore it could be more appropriate to model and analyse it as 

such. In the past few years, intensive research has been allocated on methodologies capable 

of handling dynamic networks, also known as Time Varying Graphs (Wang et al., 2019). 

Following the definition given by Casteigts (2018) a Time Varying Graph (TVG) can be 

defined as a tuple G = (V, E, T, ρ, ζ) where V, E stand respectively for the nodes and the 

edges of the network and 𝑇 represents its lifetime (Time Domain). The dynamic nature of 

the network is handled by parameter 𝜌 which denotes the presence of each edge e ∈ E at a 

given time t ∈ T. Finally, ζ constitutes the latency (i.e. cost) to traverse each edge in 𝐸. 

Based on this, it becomes apparent that multi-period OD matrices can be expressed as TVGs 

where the zones, trips, time periods and travel-costs constitute the corresponding nodes, 

links, time domain and latency of the TVG. TVGs have already exhibited their useful 

properties in numerous studies (Cheng et al., 2003; Ferreira, 2004; Kostakos, 2009) but they 

can still can prove cumbersome to model and manipulate (Casteigts, 2018). On the other 

hand, standard static networks have been thoroughly studied for many decades and therefore 

very robust and efficient methodologies have been developed for their analysis. The 

suggested framework counters the complexity of TVG’s by adopting a hybrid solution 

referred as the hybrid TVG (hTVG). 

A hTVG combines the dynamic properties of TVGs with the simplicity of static graphs by 

expressing the temporal changes as a series of interconnected and chronologically arranged 

static graphs, also known as snapshots (Wehmuth et al., 2015) . The following section 

describes the proposed methodology to convert multi-period ODs into a hTVG. In this type 

of graph, each of the available multi-period ODs is expressed as a separate layer allowing 

the distinction of trip departures taking place at different time periods. Following this 

multilayer network format, the spatial characteristics across layers (i.e. the location of nodes 

on the XY plane) remain stable but the connections between nodes can vary, allowing the 

emergence of variant connectivity patterns across time. Nonetheless, without further 

modification, nodes on different layers are isolated and therefore no paths traversing across 

different time periods would be able to be formed. To address this issue, nodes representing 

the same spatial location in consecutive time periods are connected by a special type of links 

referred as temporal link (Lin et al., 2016). Temporal links do not represent a movement in 

space nor time but are solely used to enable the forward in time transition between 

consecutive layers. The above-mentioned conversion process is clearly illustrated in Figure 

3.2. In the single layer graph (Figure 3.2a), the spatiotemporal information is expressed on 
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one level. According to this layout, two nodes become connected once a trip takes place 

between them, regardless of its departure time. Nonetheless, the graph generation module 

disentangles the temporal information into multiple layers (Figure 3.2b) and allows for a 

more detailed representation of the system. The process is completed by the insertion of the 

temporal links which can be distinguished by the gold cones notating their direction. As it 

can be observed, the initially fully connected graph is converted to a more informative 

equivalent which better represents the temporal dimension of travel demand. 

 

Figure 3.2 Conversion of (a) a single layer graph (b) to a hTVG. 

The following section summarises the advantages accompanying hTVGs with regards to 

transport modelling as well as to the here presented methodological framework. 

3.2.2 Advantages of hybrid Time Varying Graphs (hTVGs) 

The previously presented graph formation exhibits some significant advantages. Firstly, 

hTVGs achieve the encoding of temporal elements directly into a static-like graph, suitable 

for the application of efficient graph-theory-based methodologies. The most beneficial effect 

is that in contrast to single layer graphs, hTVGs do not allow the formation of 

chronologically inconsistent paths. The reason is that the presence of the chronologically 

directed temporal links forbids the creation of unchronological paths. Secondly, the 

identification of closed paths connecting the same spatial location is more straightforward 

in the hTVG case. In graph-theory a cycle represents a closed path with the same origin and 

destination where no nodes other than the origin can be repeated more than once. Although 
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the cycles identification problem has been thoroughly studied for static graphs, this is not 

the case for TVGs (Kumar and Calders, 2018). The hTVG format, alleviates this issue by 

substituting cycles with simple paths connecting the same location in different time-periods. 

The former two advantages are illustrated in Figure 3.3 where a tour from begins from zone 

Z in the morning (AM) and finishes at night (OP). As it can be observed, according to the 

hTVG format, a tour can be straightforwardly expressed as a simple path. The figure also 

clearly illustrates the achieved chronological consistency due to directionality of temporal 

links (depicted with gold cones). Thirdly, hTVGs can represent more eloquently the 

temporal variability of networks in terms of travel times, cost, dynamic tolls, etc. 

Consequently, any analysis affected by the dynamic nature of the networks (e.g. shortest 

path identification) is considerably more accurate when executed in a hTVGs. 

 

Figure 3.3 Formation of a chronologically consistent tour in a hTVG. 

The transformation of the single layer network to a hTVG comes with an additional benefit 

specific to the suggested methodology. As it has been already discussed in one of the authors’ 

previous studies (Ballis and Dimitriou, 2019), one of the key factors affecting the 
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performance of the identification module is the spatiotemporal resolution of the provided 

network. Based on that study, high-resolution networks result in precise trajectories which 

can be more easily traced and identified. The quantification of the network resolution and 

the associated analytical complexity is expressed through the proxy of network density.. The 

higher the density of a network, the higher the number of potential paths and consequently 

the higher the required computation time to identify the full set of candidate tours. 

Nonetheless, hTVGs present lower density compared to their single-layer equivalents 

something that leads to reductions of the required processing time. In particular, the network 

density (ds) for a directed, single layer network is calculated as the fraction between the 

actual number of edges E in a graph of V vertices and the number of its plausible edges: 

ds =
E

V(V − 1)
 (Eq. 3.1) 

For the equivalent hTVG, the network density (dh) is calculated as: 

dh =
λE + k(V − 1)

kV(k(V − 1))
 (Eq. 3.2) 

where k stands for the number of time periods (layers) of the hTVG and λ (1 ≤ λ ≤ k) 

denotes the increase in the number of links due to the replication of links across multiple 

layers. Also, the k(V − 1) factor represents the maximum number of temporal links which 

are required to complete the conversion of a single layer graph to a hTVG. The density of 

an hTVG is maximised when all nodes are connected with their counterparts in the next layer 

(λ = k). 

Proposition 1. The density of realistic, single layer transport networks is greater than the 

density of the equivalent hTVG (i.e. dh ≤ ds) when k ≥ 1 +
V

E
. 

Proof. Substituting Eq. (1) and Eq. (2) in dm ≤ ds results to 
kE+k(V−1)

kV(k(V−1))
≤

E

V(V−1)
. For large 

networks it can be assumed that V − 1 ≈ V , therefore 
kE+kV

k2V2 ≤
E

V2  ⇒
E+V

k
≤

E

1
 . Finally, 

solving with respect to k leads to k ≥ 1 +
V

E
, which for realistic transport networks holds true 

since edges are usually at least one order of magnitude more than the nodes (Barabási, 2016). 

The reduction of density for TVGs has been also experimentally verified by Santoro et al. 

(2011) 
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3.3 Identification Module 

3.3.1 Expressing tours as graph paths 

The conversion of the input ODs to a hTVG allows the identification of all the plausible 

tours within the graph in an efficient and eloquent manner. As it has been already discussed, 

a tour is defined as a sequence of trips originating and ending at the same (home) location. 

According to the hTVG format, zones in different time periods are represented as separate 

entities (nodes), therefore tours can be expressed as simple graph paths (i.e. sequences of 

nodes with no repeats) connecting the same zone across different time periods (Figure 3.4). 

As a result, their identification can be achieved through standard and very efficient path 

identification algorithms (Sedgewick, 2001). An exception to this procedure is the case of 

tours starting and ending within the same time period. For these instances, the standard 

operation of cycles identification is employed (Johnson, 1975). 

 

Figure 3.4 Identification of a tour in a hTVG network. 
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3.3.2 Identification of all possible paths 

The retrieval of all the possible tours within a hTVG requires the execution of the path 

identification algorithm multiple times. In detail, for each zone in the ODs, the process is 

applied ∑ (t − 1)T  times, where T is the number of time periods in the input ODs. The 

origin-destination pairs required for the application of the path identification algorithm are 

formed by connecting each zone in the current time period with the corresponding ones in 

all the consecutive time periods. As stated above, an exception to this procedure is the case 

of tours starting and ending within the same time period where the standard operation of 

cycles identification is employed. A visual example is presented in Figure 3.5 where zone Z 

appears in four time periods. As it can be observed, the identification process must be 

executed ten times (six times as a simple path and four times as a cycle identification 

procedure) to identify all the chronologically ordered tours originating from zone Z. The full 

set of plausible tours is obtained by repeating the path identification process for all the zones 

in the input ODs across all the available time periods. 

 

Figure 3.5 Presentation of the valid time-period combinations for the identification of all 

the chronologically ordered tours. 

Once the process has been completed and all the tours within the hTVG have been identified, 

the methodology can continue with the conversion of tours to the more informative structure 

of activity schedules. However, this conversion is optional and can be omitted in the case 

where no trip-purpose information is available within the input ODs. In that scenario the 

inputted ODs are converted to tours instead of activity schedules. 

3.4 Activity-scheduling Module 

3.4.1 Trip-purpose Information in ODs 

The previously presented section described the required procedure to identify tours within 

multi-period OD matrices expressed as a hTVG. However, ODs often contain additional 

information regarding dimensions of travel such as trip-purpose, transport mode, user-group, 
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etc. For the purposes of the presented study, the focus has been placed on cases where trip-

purpose information in addition to departure time-period is also provided in the input ODs. 

These two travel behaviour dimensions are particularly important since they can be utilised 

to convert tours into detailed activity schedules. 

The segmentation of OD trips based on their trip-purpose is common practice since trip-

purpose is a primary driver of travel decision influencing multiple travel behaviour aspects 

such as destination choice, mode choice, the value of time, etc. The typical categorisation of 

trips with respect to trip-purpose usually refers to two discrete levels. The first level is with 

regards to the inclusion (or not) of the traveller’s home at either ends of the trip (Home-

Based/Non-Home-Based trips). The second level is related to the main purpose each trip is 

taking place for (work, education, shopping, employer’s business, etc.). Nonetheless, a 

serious limitation for most ODs is that they do not include information regarding the 

sequencing of activities at the ends of each trip (Ortúzar and Willumsen, 2011). For example, 

a Home-Based-Work trip can be used to either express the transition from home to work or 

vice versa. The methodology presented in the following paragraphs presents an approach to 

exploit trip-chaining behaviour for the inference of the type of activity at the ends of trips. 

3.4.2 Tours to Activity Sequences 

A basic assumption in travel behaviour theory reads that trips are regarded as the necessary 

mean to enable the transition from one activity to the next. Therefore, trip-purpose 

information can be utilised to infer the executed activities at the ends of trips and 

subsequently enable the conversion of tours into sequences of activities. Tours resulting from 

the so far presented process contain the required information to enable this conversion. The 

methodology exploits the fact that activities within a tour take place in a sequential and 

closed loop fashion, therefore the ambiguity regarding the sequence of the activities can be 

eliminated (Figure 3.6).  This is further elaborated through the following example. The
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Figure 3.6 Chaining of individual OD trips eliminates the ambiguity regarding activity 

sequencing. (a) Unchained trips (b) Chained trips. 

Assume a set of four different ODs used to segregate trips according to their trip-purpose, 

namely: 

• Home-Based (HB): The activity at one end of the journey is staying at home (Home) 

while at the other end is either: 

o Work (HBW)  

o any Other (HBO) 

• Non-Home-Based (NHB): None of the activities at either ends of the trip is Home.  

o if the activity at one end is Work then the trip is classified as (NHBW) while 

o for all Other cases as (NHBO). 

Consider also a 4-leg tour which contains two HB and two NHB trips. As described above, 

traditional ODs do not provide information regarding the sequence of 

activities at the ends of each trip. Nonetheless, combining the individual trips 

into tours, allows for the elimination of activity sequencing ambiguity. As 

noted in the first row of   

Table 3.1, a tour cannot consist of a HBW trip followed by a NHBO, then a NHBW and a 

final returning to home HBO trip because no valid combination of the enclosed activities 

can be formed. The initial HBW trip can only signify a transition from Home to Work and 

consequently the next trip should connect Work with the subsequent activity. However, a 

NHBO trip does not include the Work activity in its definition, hence this trip-purpose 

sequence is not valid. On the other hand, the rest of the presented trip-purpose sequences are 

valid and should not be eliminated. The application of this methodology to all the candidate 

tours results in a set of candidate activity sequences. 
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Table 3.1 Identification of activity sequences from trip-purpose sequences. 

Trip-purpose sequence Activity sequence * ** Valid 

[HBW, NHBO, NHBW, HBO] [(H | W), (O | O), (O | W), (O | H)] No 

[HBW, NHBW, NHBO, HBO] [(H | W), (W | O), (O | O), (O | H)] Yes 

[HBO, NHBO, NHBW, HBW] [(H | O), (O | O), (O | W), (W | H)] Yes 

* The pipe symbol (‘|’) denotes the ‘OR’ operator 

** H=Home, W=Work, O=Other 

The implications of this observation are significant since it enables the enrichment of typical 

ODs with information regarding the sequencing of activities for the captured trips. Once the 

methodology is completed, the individual trips utilised to synthesise tours can be enriched 

with information regarding the sequence of the activities they connect. 

3.4.3 Activity Sequences to Activity Schedules 

The activity sequences obtained from the previously presented methodology can be further 

enriched with information regarding the time of departure from each activity. Since the time 

period of departure for all the inputted trips is known, an estimation regarding the exact time 

of departure can be attempted. Evidently, the error of this estimation diminishes with the 

increase of the temporal resolution in the original ODs (i.e. the number of available time 

periods). The estimation of the exact departure time from each activity can be completed 

with simple (e.g. uniform distributions) or more refined approaches (e.g. travel survey 

based), depending on the required level of detail or information availability. This estimation 

can be further improved by considering the travel time required to reach the locations at the 

ends of each trip. Ultimately, the assignment of the exact time of departure for each trip, 

allows the conversion of results in fully detailed activity schedules. The implications are 

significant since the initially aggregate OD trips can be now expressed in a much more 

detailed, decomposed, informative and contextual manner. 

After the assignment of the exact departure time from each activity within the activity 

schedules, the latter can be fully defined as sequences of (a) visited locations, (b) departure 

times (or time periods) and (c) activities. An example of a typical activity sequence is 

depicted in Figure 3.7 where a traveller departs from Home in zone-Z at 07:45 (AM), 

executes consecutively two short activities of type Other in zone-A until 08:05 (AM) and in 

zone-B until  08:25 (AM) respectively and finally leaves Work from zone-C at 17:30 (PM) 

to return back Home in zone-Z. The traveller can be tracked both in space and time since the 
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vertical dimension (z-axis) is used to represent time duration. The example activity schedule 

is also presented in Table 3.2. 

Table 3.2 Definition of an example activity schedule as sequences of various types. 

Activity 

sequence* 
Locations Departure time-periods Departure times 

[H, O, O, W, H] [Z, A, B, C, Z] [AM, AM, AM, PM] [07:45, 08:05, 08:24, 17:32] 

* H=Home, W=Work, O=Other 

 

Figure 3.7 Visual representation of a typical activity schedule. 

3.5 Optimisation Module 

The identification of all the possible activity schedules within a hTVG deriving from a set 

of multi-period, purpose segmented ODs allows to proceed with the optimisation part of the 

methodology. The aim of the identification module is to identify the combination of activity 

schedules whose included trips recreate the input ODs as closely as possible. The following 

section presents two mathematical formulations resolving the combinatorial problem in 

hand. The first formulation (Exact mathematical programming formulation) describes the 

problem in mathematical programming terms, calling for the suitable analytical optimisation 

routine (e.g. branch-and-bound, cutting-plane, branch-and-cut, etc.) while the second 

formulation (Metaheuristics formulation)calls for metaheuristic optimisation approaches 

(e.g. Simulated Annealing, Genetic algorithms, etc.). Despite addressing the same problem, 

the two suggested formulations differ considerably. Firstly, the two approaches are supposed 

to address different in terms of scale instances of the problem. The first programming 

formulation, although more accurate, cannot deal with particularly large instances of the 
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problem where the metaheuristics formulation can prove as an effective approach for 

realistically sized cases. Secondly, the approaches also differ from a technical perspective. 

The exact mathematical programming alternative attempts the identification of the optimum 

frequency of use (utilisation) of each candidate schedule which recreates the input ODs, 

while the metaheuristics formulation iteratively builds a population of schedules to achieve 

the optimisation objective. Finally, an important differentiation concerns the way the two 

methods deal with the calibration information (if any is provided). The first formulation 

imposes the calibration as a hard constraint to the optimisation of the problem, while the 

second incorporates the calibration information during the space sampling procedure. The 

following section delves in the presentation of the two alternative formulations. 

3.5.1 Exact Mathematical Programming Formulation 

Table 3.3 Nomenclature for exact mathematical optimisation methods 

Variable Description 

𝐂 Candidate activity schedules (c ∈ C) 

𝐊 Available time periods (k ∈ K) 

𝐏𝐤 Zone-pairs in each 𝑘 (pk ∈ Pk ∀ k ∈ K)  

𝐓𝐩𝐤
 The number of trips between each pk, as recorded in the input ODs 

𝐈 Distribution groups (i ∈ I) 

𝐃𝐜
𝐩𝐤 Binary variable indicating whether pk is part of 𝑐 

𝐆𝐜
𝐢  Binary variable indicating whether 𝑐 belongs to i 

𝒃𝒄
𝒊  The probability of 𝑐 to belong in i 

𝛅𝐢 Maximum percentage error between the input and the modelled probability for each i 

𝑵𝒄 The frequency of usage for each 𝑐 

3.5.1.1 Formulation 

Let 𝐶 be the set of unique candidate activity schedules (c ∈ C). The aim of the optimisation 

problem is the identification of the frequency of use (Nc) for each 𝑐  which optimally 

reproduces the inputted ODs. In detail, the objective function described in Eq. 3.3 aims to 

minimize the absolute error between the total number of trips produced by the utilised 

number of schedules and the trips present in the input ODs by controlling the utilisation of 

each unique candidate activity schedule Nc∀ c ∈ C . Hard constraint Eq. 3.4 guarantees that 

the required trips to form the activity schedule s will not exceed the available trips in the 

inputted OD matrices. Additionally, constraint Eq. 3.5 assures that Nc  does not become 

negative. The objective function takes its minimum value of zero when the observed and the 

modelled ODs are identical. 
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Due to the combinatorial nature of the problem, it is possible that multiple global optima 

may exist (Redondo et al., 2011; Petit and Trapp, 2019) and consequently more than one 

combinations of activity schedules can lead to the same optimal objective function value. 

For this reason, a mechanism to calibrate the optimisation routine towards the identification 

of a closer to reality solution is required. If a (joint) distribution describing the characteristics 

of the expected activity schedules (e.g. total travel time, number of activities, modes of 

transport used, etc.) is available, then this calibrating distribution can be used to shape the 

output accordingly. To achieve so, each activity schedule within 𝐶  is assigned with the 

distribution group i  which belongs to. For instance, in the case where the distribution 

regarding the count of activities within schedules is known (i.e. share of activity schedules 

including  two activities, three activities, etc.), schedules are assigned the appropriate 

distribution group 𝑖  based on the number of the included activities. Such high-level 

information regarding the characteristics of the expected activity schedules can be retrieved 

from widely available sources such as travel surveys. The final constraint (Eq. 3.6) 

guarantees that the resulting combination of activity schedules will follow the calibrating 

distribution. This constraint can be relaxed by the introduction of the term δi which allows 

for tolerance between the observed and the modelled distribution shares. The optimisation 

problem is mathematically formulated as: 

𝑚𝑖𝑛 Z =  ∑ ( ∑ (|∑(NcDc
pk)

c∈C

− Tpk
|)

pk∈𝑃𝑘

)

k∈K

(Eq. 3.3) 

subject to: 

∑(NcDc
pk)

c∈C

−  Tpk
≤ 0  ∀ t ∈ T, pk ∈ P𝑘 (Eq 3.4) 

Nc ≥ 0  ∀ s ∈ S (Eq. 3.5) 

|𝑏𝑐
𝑖 −

NcG𝑐
i

∑ N𝑐c∈C
|   ≤ δi  ∀ c ∈ C, i ∈ I (Eq. 3.6) 
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3.5.2 Metaheuristics Formulation 

Table 3.4 Nomenclature for metaheuristic-based optimisation methods 

Variable Description 

𝑴𝑶 Observed OD matrix 

𝒊𝒋 Pair of locations 𝑖 and 𝑗 

𝒎𝒊𝒋
𝑶 Number of trips between 𝑖, 𝑗 in 𝑀𝑂 

𝑳 Connectivity matrix of 𝑀𝑂 

𝒊𝒋 Pair of locations 𝑖 and 𝑗 

𝒍𝒊𝒋 
Binary variable indicating the presence of a connection (i.e. trip) between 𝑖 and 𝑗 in 

𝑀𝑂 

𝑪 All possible tours in 𝑀𝑂 

𝒄 A tour (𝑐 = {𝑙𝑖𝑗, … , 𝑙𝑗𝑖}) (𝑐 ∈ 𝐶) 

𝑺 All possible combinations of tours (Domain of discourse) 

𝒔 One combination of tours (i.e. solution) (𝑠 ∈ 𝑆) 

𝑴𝒔 The modelled OD matrix resulting from the aggregation of trips in 𝑠 

𝒔∗ An optimum solution resulting in 𝑀𝑠 ≡ 𝑀𝑂  

𝑫 The calibration distribution 

𝑯 The modelled distribution (i.e. distribution of solution 𝑠𝑏) 

𝒅 A distribution group (𝑑 ∈ 𝐷, 𝐻) 

𝑫𝒅 The share of 𝑑 𝑖𝑛 𝐷 

𝑯𝒅 The share of 𝑑 𝑖𝑛 𝐻 

𝜹 Accepted tolerance between the shares of 𝐷𝑑and 𝐻𝑑 

3.5.2.1 Formulation 

Consider a square OD matrix 𝑀0  containing trips (𝑚𝑖𝑗
0 ) between the available pairs of 

locations 𝑖𝑗. Additionally, consider the binary connectivity matrix 𝐿 of  𝑀0 which includes 

information regarding the presence or not of a trip between the available pairs of locations 

𝑖𝑗  (𝑙𝑖𝑗 ∈ [0, 1]) . The connectivity matrix 𝐿  allows the synthesis of trip sequences 𝑐 =

{𝑙𝑖𝑗, … , 𝑙𝑗𝑖}  with the same origin and destination which are also known as tours. The 

application of the methodology requires firstly the identification of all the possible tours 

(𝑐 ∈ 𝐶) and subsequently the identification of tours’ combinations (𝑠 = {𝑐1, … , 𝑐𝑛}) which 

reproduce 𝑀0. The objective of the presented optimisation problem is the identification of a 

solution 𝑠∗ which minimises the difference between the number of trips present in 𝑀0 and 

the respective number in 𝑀𝑠 which is obtained from the aggregation of trips in s. Objective 

function (Eq. 3.7) must be minimised in accordance to an extensive array of 𝑘 constraints 

ensuring the formation of tours based on the availability of trips as described in 𝑀0. This is 

achieved by the iterative investigation of all tours in 𝑠 for the presence of 𝑙𝑖𝑗∀ 𝑖𝑗 in their 
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definition and the verification that the total number of occurrences of 𝑙𝑖𝑗∀ 𝑖𝑗 does not exceed 

the corresponding value 𝑚𝑖𝑗
0  (Eq. 3.8). It should be also noted that the number 𝑘 is equal to 

the number of non-empty cells in 𝑀0, therefore large-scale ODs can result in a substantial 

number of constraints. 

The combinatorial nature of the problem allows for multiple combinations of tours with the 

same, optimal objective value (Redondo et al., 2011; Petit and Trapp, 2019). The 

identification of solutions with realistic characteristics can be achieved with the insertion of 

multiple inequality constraints based on a (joint) distribution, referred as the calibration 

distribution and denoted by 𝐷 . The calibration distribution describes the expected 

characteristics of the tours in the optimal solution and can refer to various dimensions such 

the tours’ length (e.g. frequency of 2-leg, 3-leg, …, n-leg tours) or the sequence of transport 

modes used for their completion (e.g. car-car, car-bus-car, etc.). To enable so, a pre-

processing step completes the classification of all the possible tours (𝐶) to their respective 

distribution group 𝑑 ∈ 𝐷 . If the accepted level of diversion between the calibration 

distribution and the distribution of 𝑠 is denoted as 𝛿 then the set of constraints in (3) ensure 

the adherence of the solution to the calibration distribution. 

min
𝑠∈𝑆

∑ (𝑚𝑖𝑗
0 − ∑ ∑ 𝑙𝑢𝑣[𝑖𝑗 = 𝑢𝑣]

𝑙𝑢𝑣∈𝑐𝑐∈s

)

𝑖𝑗∈𝑀0

(Eq. 3.7)  

subject to: 

∑ ∑ 𝑙𝑢𝑣[𝑖𝑗 = 𝑢𝑣]

𝑙𝑢𝑣∈𝑐𝑐∈𝐶

≤ 𝑚𝑖𝑗 ∀ 𝑖𝑗 ∈ 𝑀0 (Eq. 3.8) 

|𝐷𝑑 − 𝐻𝑑|   ≤ 𝛿d  ∀ d ∈ D (Eq. 3.9) 

The previous section showcased two alternatives methods for the addressing of the studied 

combinatorial problem. Despite the straightforward and concise formulations, the 

combinatorial nature of the problem can raise the combinatorial explosion issue, preventing 

the application of the methodology on large-scale instances of the problem. The next Chapter 

presents a suitable methodology for the confinement of the problem’s domain and the 

achievement of the scalability of the methodology.  
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Chapter 4  

Scalability 

 

Chapter 4 presents the suggested approach to reduce the complexity of the problem and 

render it applicable for real-world cases. In particular, it presents two additional to the main 

methodology modules (simplification modules) which ensure the scalability of the 

methodology without jeopardising the solution’s quality. 
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4.1  Introduction 

4.1.1 Combinatorial Explosion 

The previous methodological sections presented the required steps to convert a set of multi-

period, purpose segmented ODs to the corresponding set of activity schedules which results 

in travel demand patterns equivalent to the ones observed in the inputted ODs. Despite the 

strong theoretical foundations, the methodology can face scalability issues due to the 

combinatorial nature of the formulation. 

The synthesis of complete structures from the combination of various building blocks 

constitutes a typical combinatorial problem. Problems of such nature typically suffer from 

what is referred as the combinatorial explosion issue (Schuster, 2000). Combinatorial 

explosion occurs due to the exponential increase of combinations resulting from the number 

of the available building blocks and/or the number of the ways they can be rearranged. The 

combinatorial explosion phenomenon is encountered in various fields and very often 

manifests in problems of graph-theoretical context (Michele Conforti, Gérard Cornuéjols, 

2014). An example drawn from material science is presented by Treacy et al. (2004). In that 

study, the researchers developed a methodology for the enumeration of all possible 4-

connected graphs within each space group type given the number of unique tetrahedral 

vertices. Not surprisingly, the authors state the combinatorial explosion issue and the 

limitations it posed to their study. Similarly, Edwards and Glass (2000) modelled a gene 

network with the aim to enumerate the distinct logical structures which exist in n-

dimensional gene networks. Due to the combinatorial explosion, they were only able to study 

4-dimensional networks but still managed to identify patterns of periodic behaviour. 

Based on the above, it becomes apparent that the enumeration of all the possibilities 

manifesting in combinatorial optimisation problems may prove particularly troublesome 

when the dimensions of the problem exceed some (limited) boundaries. In the context of the 

presented Thesis, the combinatorial explosion manifests in the number of possible 

tours/activity schedules deriving from ODs which can grow exponentially with the increase 

of the latter’s size. However, the appropriate simplification strategies (referred as the 

simplification modules) can considerably reduce complexity and render the problem solvable 

within reasonable time. 
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4.1.2 Effect of the OD’s Resolution 

The combinatorial explosion issue becomes more intense with the increase of the available 

combinations under which individual pieces can be rearranged to form a solution. In the 

context of the here presented Thesis, complexity is mainly affected by the resolution of the 

utilised ODs. In order to quantify the resolution of the ODs, the concept of network density 

(𝑔) is used as a proxy. In graph theory, network density, also known as gamma index 

(Rodrigue et al., 2017), is defined as the fraction between the actual connections in the 

network and the possible ones. The arithmetic value of network density typically ranges from 

0 to 1 but it can exceed unity for multigraphs. The formula to calculate network density for 

directed graphs is presented in Eq. 4.1 where 𝑒 is the number of edges and 𝑣 the number of 

vertices present in the network. 

𝑔 =  
𝑒

𝑣 (v − 1)
 (Eq. 4.1) 

A dense network allows the connection between multiple pairs of nodes, leading potentially 

to a significant increase in the number of plausible tours. As a result, this has a negative 

effect on the performance of the tours’ identification process. To illustrate the effect of 

spatial resolution to the methodology, two simplified networks, characterised by different 

resolutions (densities) along with their attributes are depicted in Figure 4.1 and Table 4.1. 

 

Figure 4.1 Representation of the same OD matrix using a high-resolution (left) and low-

resolution (right) network. 

For this example, a low-resolution network is created by aggregating the zones of a high-

resolution one. Although, the number of captured trips between these two cases remains the 
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same, the effect of the spatial tessellation in the low-resolution scenario is significant. The 

network densities for the high- and low-resolution networks are 30% and 50% respectively. 

The most notable effect is that the reduction of spatial resolution (i.e. increase in density) 

enables the formation of tours which were impossible in the high-resolution case. For 

instance, in Table 4.1 it can be observed that the number of tours originating from zone Z 

increases from two to three. For large-scale networks, the implications of using a low-

resolution zoning system can be even more significant, leading to a many-fold increase of 

the number of plausible tours. The effect of network density will be evaluated at a greater 

extent at the case study section (Section 6.4). 

Table 4.1 Effect of network density on tours’ identification process 

Network resolution Zones Links Density Tours 

High 5 6 30% [Z, A, Z], [Z, A, C, Z] 

Low 4 6 50% [Z, A, Z], [Z, A, C, Z], [Z, BD, C, Z] 

The next section presents the followed approach to enable the simplification and the 

reduction of the search space concerning the enumeration of tours/activity schedules within 

an OD derived graph. Reducing the available search space for any combinatorial 

optimisation problem through the elimination of infeasible solutions, corresponds to a 

reasonable first step (Hoffman, 2000). 

4.2 Simplification Modules 

4.2.1 Search Space Reduction 

The simplification approach aiming at the reduction of the problem’s complexity through 

the confinement of the available search space is accomplished via two additional 

simplification modules. The first module (Graph-filtering module) attempts the 

simplification of the graph’s structure for the reduction of the possible tours that can be 

formed within it. The second module (Candidates-filtering module) reduces the number of 

candidate activity schedules by excluding the unrealistic ones. The evaluation of the 

‘realness’ of activity schedules is achieved by comparing their characteristics (e.g. travel 

time distribution, departure times, combinations of used modes, etc.) against observed travel 

behaviour patterns (e.g. travel surveys).  

The conversion of an OD to a Time Varying Graph (𝐺) allows the identification of the 

candidate activity schedules set (𝐶 =  {𝑐1, 𝑐2, … , 𝑐𝑛} ), where vertices 𝑐𝑛  correspond to 

locations of non-empty OD elements 𝑇𝑖𝑗 ≠ 0 and as so each tour can be described as a 
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combination of edges. Once the candidates set has been established, an optimisation 

algorithm can be assigned with the identification of a combination amongst them which 

reproduces the travel demand as observed in the input ODs. The aim of the currently 

presented section is to examine the possibility of efficiently reducing the candidates set (𝐶) 

without excluding candidates required for the synthesis of the optimum solution. For the 

purposes of the currently presented research, the reduction of the available candidates in 𝐶 

(i.e. search space) takes place in multiple steps, depicted in Figure 4.2 and thoroughly 

described in the next paragraphs. 

 

Figure 4.2 Progressive reduction of the initial search space 𝑆𝑆𝐶 to the reduced 𝑆𝑆𝑅 . 

The initially unconstrained search space (𝑆𝑆
𝐶

) includes all the activity schedules able to be 

formed in the OD derived graph (𝐺). An initial step aiming at the reduction of the number 

of candidates in 𝐶 , is the selective removal of vertices via a network simplification 

procedure. This simplification process results in the search space referred to as 𝑆𝑆𝑆 . 

Furthermore, 𝑆𝑆𝑆  can be reduced to the 𝑆𝑆𝑇  search space by the introduction of cost 

thresholds related to the impendence of completing each activity schedule. This step imposes 

an upper bound to the search space by allowing only the identification of activity schedules 

completed under a predefined cost threshold. The third and final filtering mechanism 

exploits the likelihood of observing certain travel behaviour patterns in the real world and 

reduces the previous search space 𝑆𝑆𝑇  to the final and considerably more compact 𝑆𝑆𝐿  by 

eliminating unlikely activity schedules. The likelihood of observing an activity schedule is 

estimated based on available observational data (e.g. travel surveys). Since the above-

mentioned simplification steps can be executed independently and in isolation, it is useful to 
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distinguish 𝑆𝑆𝐿 from the search space resulting from the application of all the simplification 

processes. We refer to the final reduced search space as the reduced search space (𝑆𝑆
𝑅

). 

The outlined simplification methodology can substantially reduce the available search space. 

Apart from the decrease in the processing time requirements, the reduction of the number of 

candidates can also simplify the optimisation process required by the OD reverse-engineer 

problem. However, the reduction of the search space should be executed with caution since 

it can result to oversimplification and to the exclusion of great shares of candidates which 

are included in the optimal search space (𝑆𝑆
𝑂

). The term optimal search space refers to the 

search space containing only the absolutely required activity schedules to perfectly recreate 

the initial travel demand patterns (i.e. inputted ODs). Finally, it should be noted that the 

currently presented study assumes the completion of the reduction steps in the presented 

order and the direct correspondence between 𝑆𝑆𝐿 and 𝑆𝑆𝑅. The following sections elaborate 

on the suggested search space simplification mechanisms. 

4.2.2 Graph-filtering Module 

The first simplification mechanism, referred as the Graph-filtering Module, developed for 

the reduction of the number of candidates (𝐶), entails the simplification of the graph on 

which the identification algorithm will be applied. This simplification step leads to a 

confined search space denoted as 𝑆𝑆𝑆. Network simplification is a very active research field 

and numerous methodologies have been proposed (Zhou et al., 2010; Willenborg, 2019). A 

common approach stands for the ‘pruning’ of the least ‘important’ vertices or edges with the 

ranking of importance (Oldham et al., 2019) being achieved through various measures of 

centrality (Gómez et al., 2013; Marsden, 2015). Depending on the centrality measure, the 

type of the network (e.g. directed/undirected, weighted/unweighted) and its characteristics 

(size, density, scale, etc.), the ranking between nodes may differ considerably. The selection 

of the most appropriate simplification method depends on the specifics of each application 

with some centrality measures proving more suitable than others (Gómez et al., 2013). For 

the purposes of the presented study, the simplification process aims at retaining the 

variability of paths within the graph and at the minimisation of travel demand exclusion due 

to the elimination of vertices. For that reason, centrality measures which consider the 

directionality of edges are considered more suitable for the purposes of the methodology. 

The evaluation of the most suitable centrality measure for network simplification in this 

context included four different centrality measures, namely the: 
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a) EV: The Eigenvector centrality (Bonacich, 1972) for a vertex 𝑣  is based on the 

centrality of its neighbours and is calculated as the 𝑣𝑡ℎ  element of the vector 𝑥 

defined by the equation 𝐴𝑥 = 𝜆𝑥 where 𝛢 is the adjacency matrix of the graph 𝐺 

with eigenvalue 𝜆. Eigenvector centrality can be calculated for directed and weighted 

graphs. This centrality measure was selected for evaluation due to its simplicity and 

the fact that the weights and the directions of edges influence the centrality ranking 

of each node. 

b) PR: PageRank (Page et al., 1998; Langville and Meyer, 2005) is a centrality measure 

developed by Google to rank the importance of websites (i.e. vertices) in the web. 

The importance of vertices is measured based on the number of links (i.e. edges) 

which point to websites while considering the importance of the websites themselves. 

PageRank centrality can be calculated for directed and weighted graphs constituting 

it very suitable for the purposes of the suggested methodology. 

c) RWB: Random-Walk Betweenness centrality (Newman, 2005) estimates the number 

of random walks which traverse through each vertex and eliminates the assumption 

of other centrality measures (e.g. shortest-path betweenness) that information is 

solely spread among shortest paths. Betweenness centrality is calculated for weighted 

but not directed graphs. This centrality measure was selected for evaluation due to 

the expected preservation of variability of paths after the simplification. 

d) SC: Subgraph centrality (Estrada and Rodríguez-Velázquez, 2005) of a vertex 𝑣 is 

defined as the sum of all length weighted cycles originating at 𝑣. Weights decrease 

with the increase of cycle length and each cycle is associated with a subgraph. 

Subgraph centrality is calculated for undirected and non-weighted graphs. This 

centrality measure was selected for evaluation due to the inclusion of closed walks 

(cycles) in its definition, closely resembling the given problem of tours’ enumeration 

within graphs. 

The previous section focused on the simplification of the graph’s structure for the reduction 

of the possible number of plausible tours/activity schedules within a graph. Nonetheless, this 

reduction can be also bolstered by the exploitation of observational data for the exclusion of 

rare tours/activity schedules. 
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4.2.3 Candidates-filtering Module 

Travel behaviour theory accepts that people make rational travel behaviour choices, usually 

constrained by some form of budget (Goodwin, 1981; Nurul Habib and Miller, 2008). In 

addition, recent studies have showcased high degree of spatial and temporal regularity of 

travel behaviour (Gonzalez et al., 2008; Schneider et al., 2013), therefore the likelihood of 

observing certain mobility patterns can be estimated with high certainty. The Candidates-

filtering module is capitalising on these two observations for the reduction of the problem’s 

search space through the exclusion of particularly costly or irregular travel patterns. 

4.2.3.1 Cost thresholds 

Travel behaviour is strongly affected by the cost of travelling, where the notion of ‘cost’ can 

refer to all dimensions impeding travel such as monetary cost, travel time, number of 

interchanges, mode availability, etc. As a consequence, the introduction of cost thresholds 

(e.g. the total number of legs in each path) during the enumeration of activity schedules 

within ODs (i.e. Identification module) can considerably reduce the size of the problem. For 

example, the number of possible paths between a pair of nodes in a fully connected graph is 

calculated by the factorial (𝑉 − 2)! . However, requesting the identification of paths 

consisting of up to three legs results in considerably less alternatives (∏ 𝑉𝑉−2
𝑉−3 ), leading to a 

significant reduction of the required processing time and the total number of resulting paths. 

In the context of the tours’ identification problem, cost thresholds can be retrieved from 

relevant travel behaviour analysis sources (e.g. travel surveys). Depending on the available 

information regarding the network (e.g. link travel times, link travel costs, public transport 

coverage, etc.), the path finding algorithm can be tailored to eliminate paths based on 

predefined upper cost limits (i.e. travel time, interchanges, etc.). As an example, activity 

schedules with excessively long travel times (e.g. exceeding 5 hours of commuting time) can 

be characterised as unrealistic and get excluded from the search space. The implications 

regarding the network simplification are significant since the initially unconstrained search 

space can be now bounded. The effects of imposing cost cut-offs to the candidates 

tours/activity schedules identification process are further elaborated and exemplified in 

Section 7.2.1.1. 

Despite the high-performance of algorithms suitable for the identification of paths within 

graphs, the required time to identify all possible paths between two nodes can grow 

prohibitively long (Sedgewick, 2001). More precisely, although a single path can be found 

in O(V + E) time, where V, E stand for the number of vertices and edges of the graph 
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respectively, the total number of paths may require significantly more time (O(V!)). The 

observation that the cost (disutility) of travel has a great impact on the shaping of the daily 

travel schedule of individuals (Goodwin, 1981; Recker, 2001) can be usefully exploited. For 

instance, the total travel time of a tour is usually subjected to time or budget constraints, 

therefore information regarding the users’ time-budget can be exploited to discard 

excessively ‘expensive’ tours. Moreover, results from travel behaviour analysis have 

verified that travellers tend to limit the number of trips they execute during a day (Han and 

Sohn, 2016; Department for Transport, 2017) and only a small percentage of people (around 

2.5%) completes more than five trips a day. The application of sensible travel behaviour-

based thresholds can reduce the processing time required to identify all tours within a graph 

without though discarding frequent travel behaviour patterns. Practically, the reduction of 

the search space is achieved by the introduction of maximum cost thresholds for various 

dimensions such as the number of legs in tours, the total travel time, the geodesic distance, 

the monetary budget, etc. The following figure (Figure 4.3) depicts the application of the 

tour’s identification module on the hybrid network which derived from the ODs presented 

in Table A.3 of the Appendix. The identification algorithm is executed with different 

thresholds regarding the maximum number of legs in the tours. In the first case (a) tours can 

reach lengths of up to eight legs (excluding the temporal links), while in the second case (b) 

the threshold is reduced to three legs. The reduction in the search space is significant since 

the initial 64 tours are reduced to just four. As it will be verified in a later section (Section 

7.2.1.1), the benefits of imposing such constraints on realistic transport networks can prove 

even more substantial. The programming implementation of the tours identification process 

with thresholds can be found in the relevant section of the Appendix (Section B.1.1). 
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Figure 4.3 Identification of all tours originating from zone Z which a maximum number of 

allowed legs set to (a) eight and (b) three. 

In order to highlight the positive effect of imposing cost thresholds on the required 

processing time, the computational burden for a hypothetical network of 3,000 vertices and 

35,000 edges is demonstrated in Table 4.2. As it can be observed, halving the total travel 

time threshold from four hours to two, reduces the required processing time by at least 96% 

regardless of the maximum number of allowed legs in tours. The implications are very 

important because the required processing time to identify all the possible paths between 

two nodes increases factorially with the maximum length of the path (O(V!)). Nonetheless, 

imposing thresholds can counter this increase and significantly confine the search space. 

Table 4.2 Required processing time for two total travel time thresholds. 

Max tour length 

(legs) 

Processing time 

(4 hours travel time 

threshold) 

Processing time 

(2 hours travel time 

threshold) 

Decrease % 

4 34.0s 1.1s 96 

5 67.7s 1.2s 98 
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4.2.3.2 Likelihood 

Apart from the reduction of the available search space through network simplification and 

the introduction of cost thresholds, the candidate tours set (𝐶) can be further reduced by the 

exclusion of unlikely tours or groups of those referred as tour-types. A tour-type is identified 

as a group of tours with similar characteristics (e.g. number of legs). Depending on the 

available dimensions in the input ODs, multiple tour-types can be created. For instance, if 

the ODs are segmented by transport mode, then various combinations of transport mode 

sequences can be formed (e.g. [car, car], [car, bus, bus, car], etc.). Based on the principle 

that some tour-types are significantly more frequent than others, the rare ones can be 

eliminated from the search space without impacting considerably the quality of the solution. 

However, the exclusion of even a small fraction of rare tour-types can drastically reduce the 

available search space due to the disproportionality between the share of unlikely tour-types 

in the optimum search space (𝑆𝑆𝑂) and their corresponding share in the unconstrained 

search space (𝑆𝑆𝐶). 

As it will be demonstrated in the application of the methodology in a large-scale 

implementation (Chapter 7), the application of the two previously presented simplification 

modules can render the problem of tours enumeration problem within large scale ODs 

solvable in reasonable time.  
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Chapter 5  

Large-Scale Optimisation 

 

 

Chapter 5 provides details regarding the followed approach to enable the large-scale 

optimisation required for the completion of the proposed methodological framework. In 

addition, the Chapter presents the Adaptive Sampling Simulated Annealing (ASSA) 

optimisation algorithm developed for the purposes of the Thesis. 
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5.1 Nomenclature 

Variable Description 

𝑀𝑂 Observed OD matrix 

𝑖𝑗 Pair of locations 𝑖 and 𝑗 

𝑚𝑖𝑗
𝑂  Number of trips between 𝑖, 𝑗 in 𝑀𝑂 

𝐿 Connectivity matrix of 𝑀𝑂 

𝑖𝑗 Pair of locations 𝑖 and 𝑗 

𝑙𝑖𝑗 
Binary variable indicating the presence of a connection (i.e. trip) 

between 𝑖 and 𝑗 in 𝑀𝑂 

𝐶 All possible tours in 𝑀𝑂 

𝑐 A tour (𝑐 = {𝑙𝑖𝑗, … , 𝑙𝑗𝑖}) (𝑐 ∈ 𝐶) 

𝑆 All possible combinations of tours (Domain of discourse) 

𝑠 One combination of tours (i.e. solution) (𝑠 ∈ 𝑆) 

𝑀𝑠 The modelled OD matrix resulting from the aggregation of trips in 𝑠 

𝑠∗ An optimum solution resulting in 𝑀𝑠 ≡ 𝑀𝑂  

𝑠𝑏 The modelled solution 

𝑠𝑛 A neighbour to 𝑠𝑏 solution 

𝐷 The calibration distribution 

𝐻 The modelled distribution (i.e. distribution of solution 𝑠𝑏) 

𝑑 A distribution group (𝑑 ∈ 𝐷, 𝐻) 

𝐷𝑑 The share of 𝑑 𝑖𝑛 𝐷 

𝐻𝑑 The share of 𝑑 𝑖𝑛 𝐻 

𝛿 Accepted tolerance between the shares of 𝐷𝑑and 𝐻𝑑 

𝐶𝑑 Tours of 𝐶 belonging to distribution group 𝑑 (𝑑 ∈ 𝐷) 

𝑉 Vector of probabilities to draw each tour in 𝐶 (𝑣𝑐 ∈ 𝑉) 

𝑅 Tours to be removed from 𝑠𝑏 to produce 𝑠𝑛 

𝐴 A sample of tours from 𝐶 based on 𝑉 

5.2 Introduction 

The appearance of performant and efficient computational means has enabled the 

optimisation of a plethora of complicated and often dynamic real-world tasks such as the 

finding of shortest closed paths, optimal scheduling, resource allocation, timetabling, 

genome sequencing, etc. In many cases the optimal addressing of the problem in hand 
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requires the identification of groups, orders, or assignments of a discrete finite set of objects 

which comply to some certain conditions or constraints. Combinations of these solution 

components form the potential solutions of a combinatorial problem. According to 

complexity theory, it is very hard to design exact algorithms to solve large scale NP-hard 

combinatorial optimisation problems in moderate computational effort (Tian et al., 1999). 

NP-hard problems include all the problems where although a solution can be verified in 

polynomial time, the searching through the solutions is much more complicated. Drawing 

from the transportation field, many combinatorial optimisation problems (e.g. vehicle 

routing, fleet management, toll pricing, dynamic traffic assignment, etc.) cannot be optimally 

solved in polynomial time with ‘naïve’ brute-force approaches (Vogiatzis and Pardalos, 

2013). One of the most prominent examples showcasing the issue is the benchmark 

Travelling Salesman Problem-TSP (MacGregor and Chu, 2011; Hoffman et al., 2013). The 

brute force evaluation of all the (𝑛 − 1)! paths becomes computationally expensive for 

networks containing more than a dozen of nodes. As a consequence, various optimisation 

approaches ranging from heuristics to integer linear programming have been suggested for 

the tackling of the TSP as well as similar combinatorial problems (Yanasse, 2013). 

As it has been discussed earlier (Section 4.1.1), the combinatorial optimisation problem of 

converting multi-period and purpose segmented ODs to activity schedules can quickly grow 

intractable and from that perspective it can be considered as NP-hard. In particular, the 

problem expands with the increase of the unique location pairs in the inputted ODs which 

results in the subsequent and very rapid increase of the number of candidate tours. In the 

extreme case of a fully connected OD, the number of possible tours can be calculated as 

∑ (𝑛
𝑝

)𝑛
𝑝=3

(𝑝−1)!

2
, where 𝑛 is the total number of zones (i.e. nodes) in the OD. Although, 

realistic ODs are not usually fully connected, they nonetheless include a high number of 

zones (e.g. more than 100) something that can result in a particularly large number of 

possible tours. Consequently, this large number of possible tours can significantly increase 

the time required for the identification of the optimal solution. As it becomes apparent, the 

solution of the problem demands for the deployment of a very efficient optimisation 

algorithm. 

For that reason, an appropriate optimisation methodology able to deal with particularly large 

search spaces is required. The following sections present some of the so far suggested 

approaches for large-scale optimisation as well as a novel combinatorial optimisation 

algorithm. The proposed Adaptive Sampling Simulated Annealing (ASSA) algorithm is able 

The
oc

ha
ris

 Ball
is



 

57 

 

to provide accurate estimates for remarkably large combinatorial problems by exploiting 

available information regarding the characteristics of the expected output. 

5.3 Large-scale optimisation approaches 

Despite the straightforward mathematical formulation of the conversion of ODs to activity 

schedules problem (Section 3.5), the size of the presented combinatorial problem can 

increase rapidly due to the combinatorial explosion issue. In more detail, the problem 

expands with the increase of the unique location pairs in the inputs ODs leading to a 

subsequent increase of the number of candidate tours. In particular, the number of candidates 

within OD matrices of realistic size can exceed millions. Despite the previously presented 

(Chapter 4) approaches for the confinement of the problem’s domain, the extensive bounds 

of the problem may still pose a significant burden on the optimisation module. The next 

section presents optimisation approaches which can be utilised to overcome this obstacle. 

5.3.1 Exact algorithms 

Combinatorial problems are very often tackled by integer programming methodologies. In 

particular, branch-and-bound, and cutting plane methods have dominated the field since their 

first appearance (Land and Doig, 1960; Johnson et al., 1984; Korte, 2001). These 

methodologies guarantee the retrieval of an optimum (exact) solution and have proven 

particularly efficient at addressing problems of considerable size in what is usually referred 

as polynomial time. Polynomial time algorithms are those algorithms whose computing time 

is bounded by a polynomial function of the problem’s instance size. However, polynomial 

time does not necessary resolve to practical time. Despite the arguably impressive 

capabilities of exact mathematical programming methodologies (e.g. branch-and-bound, 

branch-and-cut, etc.) and their accompanied implementations (Saltzman, 2002; Makhorin, 

2012; Gurobi, 2020; IBM, 2020), their efficiency can be drastically hindered by the size of 

the problem’s domain (Urbanucci, 2018). Nonetheless, exact mathematical programming is 

not the only available option for the solution of combinatorial problems neither the most 

effective approach for real-world problems. For these reasons, a variety of alternatives such 

as metaheuristics has been suggested.  

5.3.2 Metaheuristics 

Metaheuristics can prove particularly suitable for problems with excessively large universe 

of discourses as well as for cases where an approximate solution is more desirable global 

optimum. Notable examples of metaheuristics include Genetic Algorithms, Tabu Search, 
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Simulated Annealing, Variable Neighbourhood search, (adaptive) Large Neighbourhood 

search, and Ant Colony optimization (Antosiewicz et al., 2013; Sörensen, 2015). Although 

the algorithmic mechanics differ significantly between the above-mentioned variants, the 

majority replies on the gradual improvement of an initial approximation of the optimal 

solution. The here presented Thesis, focused on the Simulated Annealing (SA) metaheuristic 

for the addressing of the large-scale combinatorial problem of converting ODs to activity 

schedules. 

The next section presents the standard SA as well as a novel version of SA referred to as 

Adaptive Sampling Simulated Annealing (ASSA). ASSA improves the standard SA through 

an adaptive sampling mechanism exploiting high-level calibration information regarding the 

characteristics of the expected optimal solution. In addition, ASSA constitutes a novel 

optimisation algorithm in the sense that it suggests a new, generic methodology for the 

utilisation of calibration information for the increase of the accuracy as well as the 

performance of the optimisation method. 

5.4 Adaptive Sampling Simulated Annealing (ASSA) 

5.4.1 Background on Simulated Annealing 

Simulated Annealing (SA) is a stochastic approximation type of metaheuristic, able to cope 

with problems involving large, continuous or discrete, search spaces (Kirkpatrick et al., 

1983; Qin et al., 2012). The algorithm draws its analogy from the thermodynamic physical 

process of annealing where a solid is carefully heated and cooled until the desired (optimum) 

molecular structure is achieved. Utilizing this analogy to the virtual numerical world, the 

aim of the SA algorithm is the identification of the 𝑠∗ solution which minimises the value of 

objective function (𝑠∗ = arg min
∀𝜔∈𝛺

𝛦(𝑠)), often termed as ‘Energy’. The algorithm avoids 

getting trapped in local minima by accepting solutions (𝑠 ∈ 𝑆) worse than the current with a 

decreasing over time probability. The progressive decrease of this probability is often 

referred as the ‘cooling schedule’ and efforts to identify its optimum rate have drawn 

considerable attention (Nourani and Andresen, 1998; Karagiannis et al., 2017). The decision 

of accepting the transition from the currently best solution 𝑠𝑏 to a new solution 𝑠𝑛 is based 

on the difference of their energies 𝛥 =  𝐸(𝑠𝑏) − 𝐸(𝑠𝑛) and a decreasing parameter called 

temperature (𝑇). The transitioning probability is usually calculated following the Metropolis 

et. al (1953) criterion (Eq. 5.1), although alternatives do exist (Glauber, 1963). 
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𝑃(𝛥) = {
 1,         𝛥 > 0

 𝑒−𝛥
𝛵⁄ , 𝛥 ≤ 0

 (𝐸𝑞. 5.1) 

Under the SA context, the identification of the next solution 𝑠𝑛 is expected to be a neighbour 

of the current 𝑠𝑏, meaning that these two solutions should be similar. Typical methods to 

produce a neighbour solution include the swapping, replacement, deletion, addition or other 

similar operations on a relatively low number of elements in 𝑠𝑏 however, the ‘move’ from 

one solution to the next depends on each application. Only for some extensively studied 

problems such as the Travelling Salesman Problem (TSP), standard move functions have 

been established (e.g. 2-opt, 3-opt, etc.). The outline of SA algorithm is presented in 

Algorithm 5.1. 

Algorithm 5.1 Simulated Annealing with random sampling 

1 𝑻 ← 𝑻𝒎𝒂𝒙 # initialize temperature 

2 While 𝑻 ≥ 𝑻𝒎𝒊𝒏 

3     𝑠𝑛 ← DrawSample() # create a random solution 

4     𝜟 ← 𝑬(𝒔𝒃) − 𝑬(𝒔𝒏) 

5     If  𝜟 ≤ 𝟎 

6         𝑷(𝜟) ← 𝟏 

7    Else 

8         𝑷(𝜟) ←  𝒆−𝜟
𝜯⁄  

9     End if 

10     𝒓 ← 𝒓𝒂𝒏𝒅𝒐𝒎(𝟎, 𝟏) # draw random 

11     If  𝒓 > 𝑷(𝜟) 

12         𝒔𝒃 ← 𝒔𝒏 

13     End if 

14     𝑻 ← 𝑻 − 𝒇(𝑻) # decrease the temperature 

15 Repeat 

Despite their simplicity and wide use, SA-based optimisation methodologies have been 

characterised of slow convergence (Sadati et al., 2009). Although, the convergence of SA 

algorithms to a global minimum can be guaranteed with the adoption of a logarithmic 

cooling schedule 𝑂(
1

log(𝑡)
) (Geman and Geman, 1984; Haario and Saksman, 1991), this rate 

proves impractical for real applications. Consequently, a considerable part of the relevant 

literature has concentrated on the identification of more efficient cooling schedules as well 
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as more efficient sampling methodologies (Fox, 1993; Nourani and Andresen, 1998). One 

of the first improvements over the standard SA methodology was suggested by Ingber 

(1996). In that study the suggested Adaptive Simulated Annealing (ASA) method 

incorporated the process of ‘re-annealing’ to accelerate the annealing schedule and to permit 

the adaptation to changing sensitivities in the multi-dimensional parameter-space. Other 

researchers have studied the potential of combining SA with other simulation approaches to 

improve its performance. For instance a particle swarm algorithm is utilised to improve the 

generation of candidate solutions (Sadati et al., 2009). Similarly, Wang et al. (2016) employ 

an Ant Colony Optimisation (ACO) algorithm to guide the generation of candidate solutions 

towards neighbourhoods with lower energy and present promising performance in terms of 

convergence speed and solution accuracy. In a similar stream of research, Liang et al. (2014) 

suggested the combination of an SA algorithm with the Stochastic Approximation Monte 

Carlo algorithm (SAA) to accelerate the cooling schedule and subsequently showcase its 

superiority over the standard approach through a set of benchmark optimisation problems. 

The study of Karagiannis et al. (2017) further improved SAA by simulating a population of 

interacting Monte Carlo chains, enabling the better exploration of the sampling space. The 

results obtained from the Parallel and Interacting Stochastic Approximation Annealing 

(PISAA) method indicated improved performance of PISAA over SAA especially in high 

dimensional scenarios. The currently presented modification (ASSA) differs by suggesting 

the acceleration of convergence through the exploitation of calibration information for the 

efficient sampling of the search space. 

5.4.2 The Adaptive Sampling Mechanism 

In extension to most of the up to date presented SA methodologies, the current Thesis 

presents a novel approach for the exploitation of high-level calibrating information regarding 

the characteristics of the expected optimal solution (𝑠∗) or near optimal solutions. Since 

optimum solutions are expected to present the characteristics described by the calibration 

information, sampling from neighbourhoods with such characteristics can improve the 

efficiency of the algorithm. The calibration information is expected to be expressed in the 

form of a marginal distribution 𝐷 which is referred as the ‘calibration distribution’ since it 

is utilised to calibrate the characteristics of the identified solutions. An example of such a 

calibration distribution can be the frequency of tours in the optimum solution 𝑠∗ by length 

(e.g. frequency of 2-leg, 3-leg, …n-leg tours). The calibrating distribution 𝐻 is also used to 

classify all the available tours in 𝐶  in distinct distribution groups 𝐷 = {𝑑1, 𝑑2, … 𝑑𝑛} . 
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Finally, it should be noted that the share of each distribution group 𝑑 is denoted by 𝐻𝑑 ∀ 𝑑 ∈

𝐷. 

According to typical SA-class algorithms, solutions 𝑠 ∈ 𝑆 are continuously identified and 

evaluated until a predefined condition is met (e.g. the drop of the temperature parameter 

below a certain level). The identification of the next solution 𝑠𝑛 is usually expected to be a 

neighbour of the currently best 𝑠𝑏 , meaning that these two solutions should be similar. 

Typical methods to produce a neighbour solution include the swapping, replacement, 

deletion, addition or other similar operations on a relatively low number of elements in 𝑠𝑛 

however, the ‘move’ from one solution to the next depends on each application. Only for 

some extensively studied problems such as the Travelling Salesman Problem (TSP), 

standard move functions have been established (e.g. 2-opt, 3-opt, etc.).  

The here presented algorithm (ASSA) adopts an iterative approach for the identification of 

neighbour solutions. Τhe algorithm begins with an empty solution (𝑠0 = ∅) and gradually 

builds the next solutions through the iterative sampling and appending of tours. The move 

from solution 𝑠𝑐 to a new solution 𝑠𝑛 is completed as follows. Firstly, a relatively small set 

of tours (𝑅) is discarded from 𝑠𝑐. Then a sample 𝐴 of tours in C is drawn and appended to 

𝑠𝑐 with the aim to create a neighbour solution. Instead of relying on a random sampling 

process, the probability of drawing each tour 𝑐 ∈ 𝐶 is adjusted so that the identification of 

solutions adhering to 𝐷 is favoured. The iterative adjustment of the probability vector 𝑃 is 

required due to trip-availability constraints since not all the sampled tours can be included 

in the new solution 𝑠𝑛. In particular, each of the sampled tours is added to the new solution 

only if the availability of trips in 𝑀0 allows so (Eq. 5.2). 

(∑ ∑ 𝑙𝑖𝑗

𝑙𝑖𝑗∈𝑎

)

𝑎∈𝐴

+ 1 ≤ 𝑚𝑖𝑗
0 (Eq. 5.2) 

It can be proven that the retainment of the distribution of a population deriving from 

consecutive samples requires the appropriate adjustment of the sampling weights between 

consecutive draws. 

Proposition 1. Retaining the share 𝐷𝑑  in solution 𝑠𝑛  requires that the probability 𝑝𝑐𝑑
𝑛  to 

draw a tour of type 𝑑 should be calculated as 

𝑝𝑐𝑑
𝑛 =

𝐷𝑑 +
|𝑅𝑑| − |𝑠𝑑

𝑐|

∑ |𝑠𝑑
𝑛 |𝑑∈𝐷

 

|Cd|
 (𝐸𝑞. 5.3)
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where 𝑠𝑑
𝑐 , 𝑠𝑑

𝑛, 𝐴𝑑  and 𝑅𝑑  denote the subsets of 𝑠𝑐, 𝑠𝑛, 𝐴 and 𝑅 whose tours belong in the 

distribution group 𝑑. 

Proof. The preservation of distribution 𝐷  on solution 𝑠𝑛+1  requires that the symmetric 

difference between the excluded tours in 𝑅𝑑, the union of the newly sampled tours in 𝐴𝑑 and 

the existing ones in 𝑠𝑑
𝑛 , retains the share 𝐷𝑑 ((𝑠𝑛+1 ∆ 𝑅𝑑) ∪ 𝐴𝑑). 

|𝑠𝑑
𝑛| − |𝑅𝑑| +  |𝐴𝑑|

∑ |𝑠𝑑
𝑛+1 |𝑑∈𝐷

= 𝐷𝑑 ⇒  
|Ad|

∑ |𝑠𝑑
𝑛+1 |𝑑∈𝐷

= 𝐷𝑑 +
|Rd| − |𝑠𝑑

𝑛|

∑ |𝑠𝑑
𝑛+1 |𝑑∈𝐷

⇒ 𝐷𝑑
𝑛+1 = 𝐷𝑑 +

|Rd| − |𝑠𝑑
𝑛|

∑ |𝑠𝑑
𝑛+1 |𝑑∈𝐷

 (Eq. 5.4) 

The probability 𝐷𝑑
𝑛+1 must be distributed across all the tours in 𝐶𝑑, therefore the vector of 

probabilities 𝑃𝑛+1 for each tour in 𝐶 for iteration 𝑛 + 1 is calculated as: 

𝑝𝑐𝑑
𝑛+1 =

𝐷𝑑
𝑛+1

|Cd|
∀ 𝑐 ∈ Cd, ∀ 𝑑 ∈ 𝐷 ⇒  𝑃(𝑛+1) = {𝑝1, 𝑝2, . . 𝑝𝑐}  ∀ c ∈ C (Eq. 5.4) 

The pseudocode of the process is summarised in Algorithm 5.2. 

Algorithm 5.2 Adaptive Sampling Simulated Annealing (ASSA) 

1 𝑻 ← 𝑻𝒎𝒂𝒙 # initialise temperature 

2 𝑫𝒏 ← 𝑫 # initialise the sampling distribution 

3 While 𝑻 ≥ 𝑻𝒎𝒊𝒏 

4    𝑹 ← DiscardElements(𝒔𝒃) 

5    𝑷 ←UpdateProbabilityVector(𝑹, 𝒔𝒃) 

6    𝑠𝑛 ← DrawSample(𝑷) # create a new solution based on 𝑷 

7     𝜟 ← 𝑬(𝒔𝒄) − 𝑬(𝒔𝒏+𝟏) 

8     If  𝜟 ≤ 𝟎 

9         𝑷(𝜟) ← 𝟏 

10     Else 

11           𝑷(𝜟) ←  𝒆−𝜟
𝜯⁄  

12     End if 

13     𝒓 ← 𝒓𝒂𝒏𝒅𝒐𝒎(𝟎, 𝟏) # draw random 

14     If  𝒓 > 𝑷(𝜟) 

15         𝒔𝒃 ← 𝒔𝒏 

16     End if 

17     𝑻 ← 𝑻 − 𝒇(𝑻) # decrease the temperature 

18 Repeat 
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As it will be presented in the following validating scenario, adjusting the vector of 

probabilities during consecutive iterations as described in (Eq. 5.4) significantly improves 

the performance of the optimisation process. In addition, ASSA suggests an effective 

approach for the introduction of constraints to metaheuristic-based methods through the 

projection of the calibrating distribution 𝐷 on the output. 

The previous section described in detail simplification steps to allow the efficient application 

of the methodology on ODs of realistic size while the next section proves the potential of 

the methodology through a proof of concept application.  
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Chapter 6  

Proof of Concept 

 

Chapter 6 presents the proof of concept of the proposed methodology performed over a set 

of ODs deriving from a large number of observed activity schedules. Furthermore, the 

Chapter goes into great depth to evaluate the methodology from multiple perspectives as 

well as to showcase the additional travel behaviour insights which can be drawn when 

aggregate ODs are converted to individual activity schedules.  

The
oc

ha
ris

 Ball
is



 

65 

 

6.1 Model Execution and Experimental Setup 

The following section presents the required details for the evaluation of the proposed 

methodological framework and its constituents, for proof of concept purposes. The section 

begins with the description of the input, continues with the configuration of the models’ run, 

and concludes with the presentation of the results. 

6.1.1 Input Dataset 

The currently presented methodological framework is evaluated based on set of multi-period 

and purpose segmented ODs deriving from the aggregation of synthetic activity schedules 

which are referred to as the observed activity schedules. The observed activity schedules 

form the ground-truth based on which the while evaluation process was executed upon. The 

decision to synthesise the required ODs by aggregating activity schedules rather than 

utilising a pre-existing set of ODs aims at the enablement of the meticulous, one-to-one 

comparison between the observed and the resulting (modelled) activity schedules. In the 

opposite case where, pre-existing ODs had been used, the true potential of the methodology 

could have been underestimated due to inconsistencies of the input rather than inefficiencies 

of the methodology itself. 

6.1.1.1 The Zoning System 

The synthesis of the observed activity schedules entails the definition of a zoning system 

which will be used to express the sequence of zones visited by each of the schedules. As it 

has already been pointed out (Section 4.1.2), the utilised zoning system can significantly 

affect the complexity of the problem. To simplify the process, the required zoning system 

was developed based on UK standard census geographic boundaries. In particular, the 

locations of the activities taking place within the observed activity schedules were expressed 

in the standard ‘Lower Layer Super Output Areas’ (LSOAs) zoning system. As of 2011 UK 

and Wales are divided in 34,753 LSOAs with a minimum population of 1,000 and an average 

of 1,500. For the purposes of the current analysis, a zoning system consisting of 470 LSOAs 

covering the area of Bristol, UK was employed (Figure 6.1). 
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Figure 6.1 The modelled  area of Bristol, UK and the corresponding LSOA-based zoning 

system consisting of 470 zones. 

6.1.1.2 Observed Activity Schedules 

The reflection of realistic travel behaviour patterns on the observed activity schedules was 

ensured by the synthesis of the input from information available in the National Travel 

Survey (NTS) of UK concerning the wider area of Bristol (Department for Transport, 2017). 

In particular, information regarding the location, the duration and the type of activities 

included in the activity schedules of the surveyed participants were used for the synthesis of 

25,000 unique schedules. The synthesised activity schedules vary in all the available 

dimensions except from the total number of visited locations which were constrained up to 

a maximum of five. According to NTS, activity schedules visiting more than five locations 

are rare (0.5%), therefore such complex schedules were excluded from the analysis. 
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The result of this synthesis is an extensive list of individual schedules described by three 

tuples containing the locations, the departure times, and the activities executed at each of the 

visited location. The locations of the executed activities within a schedule were expressed as 

a sequence of LSOAs where the origin and the destination of the activity schedule 

correspond to the same zone. The exact departure time from each activity within a schedule 

were assigned and aggregated as presented in Table 6.1. Finally, the activity taking place 

prior to each departure was classified either as Home, Work or Other. Finally, examples of 

indicative activity schedules are presented in Table 6.2. 

Table 6.1 Definition of available time periods for trips’ departures. 

Time period Covered period 

OP1 00:00 – 07:00 

AM 07:00 – 10:00 

IP1 10:00 – 13:00 

IP2 13:00 – 16:00 

PM 16:00 – 19:00 

OP2 19:00 – 22:00 

OP3 22:00 – 23:59 

Table 6.2 Sample from the observed activity schedules 

Activity 

schedule 
Locations 

Departure 

time periods 
Departure from activity 

1 (E01014530, E01033079) (AM, PM) (Home, Work) 

2 (E01014797, E01014621, E01014403) (IP1, PM, OP2) (Home, Work, Other) 

The ‘to Home’ activity is omitted for brevity 

6.1.1.3 The Calibration Distribution 

The marginal distribution relating the total travel time of the observed activity schedules and 

the sequence of their departure time periods is presented in Figure 6.2. The distribution 

includes six travel time bins of 900 second durations (15 minutes) and combinations of seven 

time periods covering a whole day. The joint marginal distribution includes 386 unique 

distribution-groups. As an example, a “AM;PM & (900, 1800]” distribution-group includes 

all tours with their beginning leg taking place during the AM period and their second during 

the PM, while their total travel time ranges between 900 and 1800 seconds. This distribution 

is referred as the ‘calibration distribution’ since it was also used for calibration purposes at 

later stages of the application. 
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Figure 6.2 The distribution of the observed tours in terms of total travel time and time 

periods of departure (150 largest out of 386 groups). 

6.1.1.4 Observed ODs 

The previously described observed activity schedules are completed via a series of 

interdependent trips. Since the origin, the destination, the time-period of departure and the 

activity to be executed at the destination are known, the schedules can be converted to time-

period, purpose segmented OD matrices through the aggregation of the required trips to 

complete the schedules. The 28 resulting ODs cover an area of 470 LSOAs and segment 

53,104 trips across four trip purposes and seven time periods (Table 6.3). The application of 

the Graph generation module, converted the observed ODs into the presented hTVG (Figure 

6.3) consisting of 3,245 nodes and 42,171 links. For reasons of clarity the 2,818 temporal 

connectors, enabling the traversal between time periods are not depicted. As it can be 

noticed, the number of edges between the different layers of the multilayer network varies 

significantly. This is expected since travel demand in urban areas is not usually uniformly 

distributed across the day. On the other hand, the number of visited nodes remains generally 

stable, indicating that the spatial dimension of travel, at least for this scenario, does not vary 

significantly during the day. 
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Table 6.3 Summary of observed ODs (proof of concept scenario). 

Trip-purpose OP1 AM IP1 IP2 PM OP2 OP3 Total 

HBW 631 2,690 1,521 1,798 2,656 1,064 256 10,616 

HBO 2,329 9,895 5,367 6,665 9,703 3,760 963 38,682 

NHBW 7 149 265 282 284 59 4 1,050 

NHBO 6 359 657 830 774 122 8 2,756 

Total 2,973 13,093 7,810 9,575 13,417 5,005 1,231 53,104 

 

Figure 6.3 The hybrid Time Varying Graph (hTVG) resulting from the aggregation of the 

observed tours into OD matrices. The right-hand side presents the distribution of 

nodes and edges across the available time periods. 

The presentation of the observed travel demand patterns is also depicted in Figure 6.4 where 

the outline of the studied area (Bristol, UK) as well as the number of originating trips from 

each zone is presented. As it can be noted, the observed demand is spread throughout the 
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urban space (and the corresponding network) but some zones, particularly within the centre 

of Bristol, tend to produce more trips. 

 

Figure 6.4 Number of originating trips by zone for the proof of concept scenario. 

6.1.2 Configuration 

The previously presented ODs were inputted to the methodology with the aim to produce 

the travel demand equivalent set of activity schedules whose characteristics adhere to the 

calibration distribution. The following section provides the details relevant to the technical 

configuration required for the execution of the methodology. 

The size and the complexity of the proof of concept scenario did not demand for significant 

reduction of the available search space except for the restriction of identifying all the possible 

activity schedules with a total travel time less than 5,400 seconds. This threshold derived 

from the maximum duration of travelling time recorded in the observed activity schedules. 

No other simplification measure was applied to the identification module. 

The combinatorial optimisation process was expressed using the optimisation modelling 

framework Pyomo (Hart et al., 2017) and solved by the CPLEX optimiser (IBM, 2020). The 

relevant code is presented in the Appendix (Appendix B.1.5) The maximum processing time 

devoted to the optimisation module was set at five hours. Finally, the tolerance of the 
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distribution group shares between the observed and the modelled activity schedules was set 

at ± 1%. 

6.1.3 Results 

The application of the suggested methodology on the multi-period and purpose dependent 

observed ODs resulted in 460,831 candidate activity schedules, out of which 24,818 were 

used in the final solution. As it will be showcased in the following section, the modelled 

activity schedules represent the observed patterns vey accurately. In terms of performance, 

the whole process was executed in approximately 8 hours (27,482 sec) on an Intel® Xeon 

CPU powered computer with 32GB of available RAM. The identification module accrued 

roughly for 45% (≈3.5 hours) of the total processing time while the rest 55% (≈4.5 hours) 

was devoted to the optimisation module. The Graph-generation and the Activity-scheduling 

modules have an almost insignificant effect on the performance of the methodology since 

they require less than 1% of the total processing time. It should not be disregarded that 

problems of combinatorial nature like the one presented above can often prove particularly 

cumbersome even with state-of-the art methodologies and high-end industrial computing 

resources (Klotz and Newman, 2013). Therefore, the previously mentioned solving times 

can be considered satisfactory. Since the process is highly parallelisable, additional 

processing time reductions can occur if computational systems with more cores are to be 

utilised. 

A visual representation of the spatial density of the utilised activity schedules in presented 

in Figure 6.5. In particular, the figure presents the cumulative number of activity schedules 

traversing through each zone. As it can be observed, some zones (mainly around the centre 

of Bristol) attract significantly more visitors than the rest. Nonetheless, it can be observed 

that the whole area is traversed by a considerable number of tours. 
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Figure 6.5 Number of tours crossing through each zone for the validation scenario. 

6.2 Evaluation 

This section aims at the meticulous validation of the methodology both at the aggregate- as 

well as at the disaggregate-level. The aggregate-level assesses the ability of the methodology 

to identify a combination of activity schedules able to represent travel demand as captured 

in the inputted ODs while adhering to the available calibration information. The 

disaggregate-level of validation focuses on the assessment of the outputs’ realism and entails 

the one-to-one comparison between the observed activity schedules and the modelled ones. 

6.2.1 Aggregate-level 

6.2.1.1 Comparison of ODs 

The first level of the methodology’s assessment includes the comparison between the 

observed (input) ODs against the modelled. In brief, the 24,818 modelled activity schedules 

utilise more than 99.2% of the total trips from the observed ODs. To validate this, the 

comparison between the observed and the modelled ODs by time period of departure and 

trip-purpose is presented in Table 6.4. As it can be noticed, the differences between the 

compared ODs are minimal. Some few exceptions presenting large percentage differences 

are observed only for ODs with very low demand (e.g. NHBO-OP2). 
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Table 6.4 Absolute and percentage difference between the observed and modelled ODs. 

Values in parentheses represent the percentage difference. 

Purpose OP1 AM IP1 IP2 IP3 PM OP2 Total 

HBW 16 (0.7) 55 (0.6) 32 (0.6) 33 (0.5) 43 (0.4) 21 (0.6) 7 (0.7) 207 (0.5) 

HBO 2 (0.3) 13 (0.5) 12 (0.8) 12 (0.7) 11 (0.4) 3 (0.3) 2 (0.8) 55 (0.5) 

NHBW 0 (0.0) 5 (1.4) 14 (2.1) 15 (1.8) 18 (2.3) 1 (0.8) 0 (0.0) 53 (1.9) 

NHBO 1 (14.3) 2 (1.3) 9 (3.4) 9 (3.2) 7 (2.5) 2 (3.4) 1 (25.0) 31 (3.0) 

Total 19 (0.6) 75 (0.6) 67 (0.9) 69 (0.7) 79 (0.6) 27 (0.5) 10 (0.8) 346 (0.7) 

The accuracy of the methodology is also examined in the scatter diagram of Figure 6.6. The 

size of each point represents the number of trips between the available pairs of locations in 

the ODs. As it can be noticed, the number of missing trips (orange points) is significantly 

lower compared to the number of the observed trips. This can be further verified by the minor 

error terms visualised in the accompanying histograms presenting (in logarithmic scale) the 

total origins and destinations from and to zones. 

 

Figure 6.6 Comparison between the number of person trips in the observed and the 

modelled ODs. 

The accuracy of the methodology has been further assessed through a regression analysis 

comparing the values of the respective cells (29,476 in total) between the observed and 
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modelled ODs. As it can be noticed in Figure 6.7, the discrepancies between the OD cells of 

the target and the modelled ODs are minimal, the R2 value significantly high and the slope 

of the regression line very close to 1. 

 

Figure 6.7 Comparison between the cells of the Observed and the Modelled ODs 

Finally, the conversion of a multi-period ODs to individual activity schedules is visualised 

in the two following figures (Figure 6.8 and Figure 6.9). In particular,  Figure 6.8 depicts the 

observed ODs where colour shading and vertical positioning are used to differentiate trips 

departing at different time periods. Darker tones and higher elevated trips indicate departures 

later in the day. On the contrary, Figure 6.9 presents the completion of the identified 

modelled activity schedules with each schedule being represented by a different colour. As 

it can be observed, the majority of trips has been utilised to form activity schedules. More 

importantly, the initially unrelated trips are linked in continuous sequences able to present 

mobility in a considerably more contextual manner. The
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Figure 6.8 The multi-period ODs; darker tones indicate trips departing later in the day. 

 

Figure 6.9 Individual colour-coded activity schedules. 

6.2.1.2 Comparison of high-level distributions 

As it has been already discussed, the activity schedules’ combinations which optimally 

recreate the inputted travel demand may be of excessive number. In order to guide the 

optimiser towards a solution closer to reality, the distribution of activity schedules’ high-

level characteristics (i.e. calibration distribution) was enforced as a constraint. The bar chart 

depicted in Figure 6.10 validates the accuracy of the enforcement of the above-mentioned 

constraint. It can be noted that the discrepancies between the share of the observed and the 

modelled distribution groups are minimal. Moreover, since the absolute number of the 

observed activity schedules (25,000) is very close to the corresponding number of the 

modelled schedules (24,818), it can be deducted that the absolute number of activity 

schedules within each of the compared distribution groups is very similar.  
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The close resemblance between the two distributions was expected due to the formulation 

presented in Section 3.5.1. However, the visualisation of the comparison was executed solely 

to verify the proper implementation of the previously presented formulation. 

 

Figure 6.10 Comparison of the 30 distribution groups with the largest share between the 

observed and the modelled activity schedules. 

Based on the previous, it can be argued that the presented methodology can indeed create a 

set of activity schedules able to accurately represent the total travel demand as described in 

the observed ODs. Hence, the high-level accuracy of the methodology has been successfully 

evaluated. Nonetheless, the characteristics of the modelled activity schedules may differ 

significantly in the microscopic level. For that purpose, the next section focuses on the one-

to-one (i.e. disaggregate) comparison between the observed and the modelled activity 

schedules. 

6.2.2 Disaggregate-level 

The results presented in Section 6.1, validate the capability of the presented methodology to 

produce activity schedules able to retain the aggregate-level characteristics of the observed 

activity schedules and at the same time represent the total travel demand as described in the 

observed ODs. Nonetheless, the complete validation requires the comparison of the 

schedules at the disaggregate-level. 

6.2.2.1 Comparative dimensions 

As a first comment, the difference between the number of modelled activity schedules 

(24,818) and the observed ones (25,000) is particularly low (1.0%). Despite this low 
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difference, the output was also validated against the individual characteristics (comparative 

dimensions) of each schedule. The comparative dimensions which were evaluated 

correspond to the sequences of (a) the visited zones, (b) the departure time periods and (c) 

the activity type of each schedule. 

For reasons of visual clarity, the onwards analysis focuses on the four most common (out of 

24) activity type sequences and the ten most common (out of 256) departure time sequences 

while the rest of the sequences being classified as ‘Rest’. More information regarding this 

classification can be found in Table A.4 and Table A.5 of the Appendix. Additionally, the 

relevant Home, Work and Other activity types have been shortened to their initial (H, W, O). 

Finally, due to the high number of observed location sequences, the corresponding results 

are assigned a sequential numeric ID and are grouped in bins containing 2,000 location-

sequences each. 

6.2.2.2 Daily activity schedules 

The individualistic nature of the resulting activity schedules allowed for a very thorough 

comparative analysis between the observed and the modelled activity schedules. The scatter 

matrix presented in Figure 6.11, depicts the pairwise scatter plots for the main dimensions 

describing each schedule. The dimensions are namely, the number of intermediate trips 

(legs), the total travel time, the code of each activity sequence type (e.g. [Home, Work, 

Home], [Home, Work, Other, Home], etc.) and finally their frequency. Finally, each circle 

on the plot represents an individual activity schedule. As it can be observed the proposed 

methodology has managed to accurately replicate activity schedules in all the above-

mentioned dimensions. According to the scatter matrix, the modelled distributions are very 

similar to the observed ones and the variation of the observed patterns has been preserved to 

a great extent. 
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Figure 6.11 Scatter matrix analysis for the observed and the modelled activity schedules. 

To further support the validation process, the percentage of the unmatched observed activity 

schedules is presented in Figure 6.12. An observed activity schedule is considered as 

unmatched when it cannot be paired with an equivalent modelled schedule. Since, the 

matching process takes place without replacement, the same modelled schedule cannot be 

assigned to more than one from the respective observed schedules. Depending on the number 

of the simultaneously considered comparative dimensions, the percentage of the unmatched 

schedules varies significantly. As it can be noted, the main dimension contributing to the 

misalignment between the observed and the modelled schedules is the combination of the 

location and the time period sequences. When examined in isolation, these two sequences 

attribute for 2.1-2.4% of the discrepancy but their simultaneous examination results in a 

misalignment of 9.51%. Finally, the percentage of unmatched observed schedules when the 

comparative dimensions are altogether considered does not exceed 9.55%. This encouraging 
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result provides strong evidence regarding the capability of the methodology to reproduce 

realistic multidimensional activity schedules based on limited aggregate input (marginal 

distribution). 

 

Figure 6.12 Examination of the comparative dimensions on the accuracy of the suggested 

methodology 

The next section delves into the distribution of error (i.e. mismatch) among the comparative 

dimensions. Firstly, the distribution of error for each comparative dimension separately is 

depicted in Figure 6.13 to Figure 6.15. Blue bars represent the share of observed distribution 

groups while orange bars the percentage for unmatched schedules. As it can be noticed, the 

error term is distributed almost proportionally between the different groups across all the 

comparative dimensions. The low percentage error presented in Figure 6.13 can be attributed 

to the calibration distribution which controlled the number of schedules within each time-

period sequence group. Up to some extent, this also holds true for the low error term 

presented in the distribution of error within the location sequence groups (Figure 6.14) due 

to the constraints indirectly imposed by the availability of trips within the input ODs. 

Although, the exact number of schedules following each location sequence is not known, the 

provided information regarding the total travel time between locations improves the quality 

of the output. Interestingly though, the methodology has accomplished a particularly 

accurate solution even for the unconstrained dimension regarding the sequence of  activities 

(Figure 6.15). This is particularly important because the location and the activity type 

sequences have been endogenously estimated without relying on any calibration data. 
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Focusing on Figure 6.15 reveals that the error term is more notable for complex activity 

schedules (i.e. schedules including more than three activities) which are nonetheless 

infrequent and do not significantly affect the accuracy of the output. In cases where the 

activity type sequencing is an important factor of the analysis, the researcher should attempt 

to incorporate such information in the calibration distribution. 

 

Figure 6.13 Percentage of unmatched activity schedules for the departure time periods 

sequence comparative dimension. 

 

Figure 6.14 Percentage of unmatched activity schedules for the location sequence 

comparative dimension. 
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Figure 6.15 Percentage of unmatched activity schedules for the activity type sequence 

comparative dimension. 

Finally, the presentation of the unmatched activity schedules is visualised through the 

parallel categories diagram of Figure 6.16. In this diagram each individual activity schedule 

is presented as a string crossing through its defining characteristics. The activity schedules 

which were not perfectly matched are clearly depicted with orange colour. This visual 

representation emphatically showcases the high accuracy of the suggested methodology 

since only a relatively small percentage (9.53%) of the output does not fully comply with 

the considerably complex input. 

 
Figure 6.16 Presentation of the unmatched activity schedules between the observed and 

the modelled ones. 
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6.2.2.3 Activity participation profiles 

The combination of individual trips within ODs into tours and subsequently in activity 

schedules produces additional insight, useful for further descriptive behavioural analysis 

such as the participation of the population in different activities. Figure 6.17 depicts the 

distribution of activities taking place in the studied area over the course of a day while 

presents the percentage differences between the observed and the modelled activity 

schedules in terms of their activity participation profiles. As it can be noticed, the 

comparison between the corresponding distributions assures that the methodology can 

replicate the observed patterns with great fidelity since only low percentage errors (less than 

4%) can be noted between the observed and the modelled figures (Figure 6.18). 

 

Figure 6.17 Distribution of participation in different activities throughout the day 
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Figure 6.18 Percentage difference between the observed and the modelled participation for 

different activities throughout the day. 

6.2.2.4 Departure time profiles 

Another set of comparisons between the observed and the modelled activity schedules 

revolved around their departure time profiles. As it can be noticed in Figure 6.19, the 

proposed estimation framework has managed to replicate the trend of departures between 

the observed and the modelled schedules without significant discrepancies. Peaks and 

troughs arise almost at the same time, while the rates of departures are generally similar. 

Considering that the assignment of the exact departure time for each trip was based on a 

uniform distribution, it becomes apparent that the methodology can accurately estimate 

realistic activity schedules even with limited input. In the case where the duration of 

activities plays a crucial factor to the analysis, the researcher can incorporate relevant 

information as optimisation constraints. 
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Figure 6.19 Departure profiles for the available activity types. 

6.2.2.5 Duration of activities 

The final stream of comparative analysis emphasised on the duration of activities within the 

observed and the modelled schedules. Figure 6.20 depicts the distribution of the duration for 

the available activity types classified into bins of 1-hour duration. As it can be noticed, the 

percentage difference for most of the cases is below 0.5% with only a couple of exceptions 

related to short duration activities. As stated earlier, these discrepancies can be potentially 

eliminated by the application of a more refined departure time profiles. 
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Figure 6.20 Duration profiles for the available activity types. 

The previous section meticulously validated the ability of the methodology to produce 

activity schedules which closely resemble the observed travel behaviour patterns. The 

implications are considerable since it becomes evident that particularly detailed travel 

behaviour patterns can accurately emerge when aggregated data sources such as OD matrices 

and a high-level calibration distribution are smartly utilised. The next section elaborates on 

the travel behavioural information which can derive from the application of the 

methodology. 

6.3 Travel behaviour analysis 

The following section highlights the additional insight that can be drawn when aggregate 

ODs are converted to fully tractable activity schedules. Traditional ODs assume 

independency between trips therefore no assumption regarding the duration of stay between 

consecutive activities can be made. Nonetheless, the application of the suggested 

methodology allows the inference of travel patterns in great depth, something which is not 

possible solely on the direct analysis of aggregate OD matrices. 
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6.3.1 Activity Participation 

With respect to the profile of activity participation, the distribution of activities taking place 

during the day in the studied urban area as well as a sample of zones is presented in Figure 

6.21 and Figure 6.22. As it can be observed, the patterns and the mixture of activities vary 

considerably across zones. Some areas present a balanced composition of activities while 

others present a skewed profile towards working or recreational activities. On the other hand, 

the aggregate diagram for the whole of the studied area presents the arguably expected 

pattern, with most of the out-of-home activities taking place between 08:00 to 17:00. The 

comparison between the aggregate and the per-zone analysis, highlights the multiple activity 

profiles which can arise depending on the characteristics of each zone. 

 

Figure 6.21 Profile of activity participation for the studied urban area. The
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Figure 6.22 Profile of activity participation for a set of sampled zones. 

On a similar stream, Figure 6.23 presents the daily distribution of activities taking place at 

twenty-five, randomly sampled zones with an interval of 30 minutes. As it can be observed 

the activities’ patterns between zones are dynamic and can vary significantly during the day. 

As an example, some zones (e.g. Z0, Z235, Z372) can be classified as purely residential 

since they are mostly occupied by their residents regardless the time of day. On the contrary 

zones Z101, Z448 and Z456 are mainly visited for work purposes. Nonetheless, more diverse 

patterns can also arise like in zone Z4 which is primarily visited for recreational and 

secondarily for work related activities. Another observation is that the primary activity 

executed in a zone can change numerous times during the day. For instance, zone Z102, is 

mostly occupied by its residents in the early morning, then flooded with workers until the 

evening when it is visited for recreational activities before its residents return home later in 

the night. Such detailed information regarding the activity profile of different areas can prove 

particularly useful for policy-making and urban planning purposes. The
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Figure 6.23 Daily distribution of activity-participation for 25 randomly selected zones. 

6.3.2 Activity Duration 

Apart from the concentration of people participating in different activities, useful 

information can be deducted by the inclusion of the duration of the executed activities into 

the analysis. Prior to the interpretation of the relevant results, it must be reminded that all 

the studied activity schedules were completed within a single day, therefore a gradual 

decrease of the total and the average duration is expected. Figure 6.24 depicts the average 

remaining time for participation in the available activities. Studying each activity type 

separately leads to useful insights. For instance, the average duration of stay for activity type 

Home is long in the early morning hours as well as in the late evening when people are 

indeed likely to remain at their residencies for longer durations. Likewise, the methodology 

accurately captures the short-duration trips in the morning period (08:00 to 11:00) which can 

be attributed to short duration errands (e.g. taking children to school). On the other hand, the 

profile for the duration of stays for Work activities differs significantly. As expected, for 

average duration for most of the zones is close to 8 hours for arrivals to workplace between 

8:00 and 10:00. Moreover, early morning workers seem to spend considerably more time at 

their workplace compared to those who arrive later. Finally, with regards to the Other 

activity types, considerable spatiotemporal variation is observed. With the exception that 
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most zones become attractive for the participation in Other activity later in the day (gaps in 

the early hours), no other patter seems to emerge, since the average duration of stay 

fluctuates both across zones and time. This element emphasises the inhomogeneous patterns 

observed for the activities classified as Other. 

 

Figure 6.24 Presentation of the average remaining duration of participation in activities by 

time of arrival and activity type. 

Apart from the concentration of people participating in different activities, useful 

information can be deducted by the inclusion of the duration of the executed activities into 

the analysis. Figure 6.25 presents the average as well as the total remaining duration of 

participation depending on the time of arrival and the type of activity. Prior to the 

interpretation of the relevant results, it must be reminded that all the studied activity 

schedules were completed within a single day, therefore a gradual decrease of the average 
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duration is expected. The left-hand side of the figure (Figure 6.25a) depicts the average 

remaining time to participate in the available activities. Studying each activity type 

separately leads to additional useful information. For instance, the average duration of stay 

for activity of type Home is long in the early morning hours and in the late evening when 

people are indeed not likely to leave their residencies in short time. Likewise, the 

methodology is able to capture the short-term returns of people to their homes in the morning 

period (08:00 to 11:00) which can be attributed to purposes such as taking kids to school or 

taking care of errands prior to leaving for work. On the other hand, the profile for the duration 

of stays for Work activities differs significantly. As expected, for average duration for most 

of the zones is close to 8 hours for arrivals between 8:00 and 10:00. Nonetheless, for specific 

zones, people arriving to their workplaces in the early morning hours tend to spend 

considerably more time that what it would be expected (e.g. 8-10 hours). The disaggregate 

analysis allows for the identification and a potential closer investigation for such cases. 

Finally, with regards to the rest of the activity types, considerable spatial and temporal 

variation is observed. With the exception that most zones become attractive for the 

participation in Other activity later in the day (gaps in the early hours), no other apparent 

pattern seems to emerge, since the average duration of stay fluctuates both across zones as 

well as through time. This element emphasises the inhomogeneous patterns of the activities 

classified as Other. 

The right-hand side of Figure 6.25 focuses on the total remaining duration and allows the 

comparative analysis between the sampled zones. As is becomes evident, the attractiveness 

of certain zones for different activities is considerably greater compared to the rest. As an 

example, zones Z101 and Z102 concentrate a significantly larger portion of the Work and 

Other activities while Z4 is an attractive destination only for activities classified as Other. 
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Figure 6.25 Comparison between the average and the total remaining duration of 

participation in activities by time of arrival and activity type. 

6.3.3 Geospatial Analysis 

The last set of travel behaviour analysis attempts to include the geospatial factor in the 

process. Figure 6.26 depicts the spatial distribution of people being at their workplace in the 

The
oc

ha
ris

 Ball
is



 

92 

 

wider area of Bristol, UK, at different times of the day. As a first comment, it is obvious that 

the centre of Bristol is more attractive as a workplace compared to the rest of the area, 

regardless of the time of the day. Nonetheless, other areas in the outskirts seem to also attract 

a considerable share of the working population, although this share fluctuates within the day. 

As the day progresses, the participation in work related activities diminishes but not at the 

same rate for all zones, since some retain high numbers of workers even in the late evening. 

Including the geospatial dimension enables the identification of hotspots for different 

activities both in space and time and therefore allows for the evaluation of sophisticated 

policy scenarios. 

 

Figure 6.26 Progression of participation in ‘Work’ type activities during a day; Darker 

tones indicate higher participation. 

The previously presented analysis does not aim to perform exhaustive explanatory analysis 

on the observed travel behaviour patterns for the studied area but rather to highlight the 

degree and the detail of the information that can be extracted from aggregate OD data. The 

direct analysis of ODs could have by no means provided enough information to complete a 

meticulous study of travel behaviour and urban dynamics. In contrary, the application of the 

The
oc

ha
ris

 Ball
is



 

93 

 

suggested methodology allowed for an in-depth analysis able to unveil and properly capture 

the dynamic nature of urban environments. 

6.4 Effect of the Zoning System’s Resolution 

The previously presented methodological Section 4.1.2 highlighted the effect that the zoning 

system of the input ODs, can have on the accuracy and the efficiency of the suggested 

methodology. The next section completes the quantification of this effect by re-running the 

process on the same set of observed activity schedules but now expressed in a coarser zoning 

system. The aggregation of the previously utilised zoning system of LSOAs to larger groups 

results in a coarser census geographic boundary referred as ‘Middle Layer Super Output 

Areas’ (MSOAs). Each MSOA contains a mean population of around 7,200 people. Since 

MSOAs emerge as pure aggregation of LSOAs therefore a direct mapping between them 

does exist. Aggregating the initial 470 LSOA zones to the corresponding MSOAs, resulted 

in a low-resolution zoning system of 140 zones (Figure 6.27). The conversion from the high- 

to the low-resolution zoning system led to a 70% reduction in the number of zones with a 

subsequent eightfold increase of the network density (Table 6.5). 

Table 6.5 Summary of zoning-systems used for the synthesis of the observed tours. 

Spatial Resolution Based on Zones Network density (%) 

High LSOAs 470 0.44 

Low MSOAs 140 3.52 
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Figure 6.27 Presentation of the modelled area (Bristol, UK) and the high-resolution (LSOA) 

and the low-resolution (MSOA) zoning systems. 

6.4.1 Processing Time 

Table 6.6 presents the processing time requirements of the methodology by zoning system 

and processing module. All scenarios were completed on Intel® Xeon CPU powered 

computer with 32GB of available RAM. As it can be noticed, the use of low spatial resolution 

leads to considerably higher identification processing time requirements (nine-fold 

increase). On the other hand, the increase of the required optimisation processing time does 

not exceed 60%. This comparison highlights the influence of the zoning-system’s resolution 

on the processing time requirements of the suggested methodology. Fine-grained zoning 

systems prove more suitable for the purposes of the suggested methodology and should be 

preferred if given the option. However, the methodology proves applicable even for coarse 

zoning systems since the overall processing time for the low-resolution scenario is still 

reasonable (less than 2 days) and comparable to other transport modelling tasks of similar 

scale (e.g. microsimulation traffic assignment). It should not be disregarded that problems 
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of combinatorial nature like the one presented above can often prove particularly 

cumbersome to solve even with state-of-the art methodologies and high-end computing 

resources (Klotz and Newman, 2013). Therefore, the previously mentioned solving times 

can be considered satisfactory while additional processing time reduction can occur if 

computational systems with multiple threads are utilised. 

Table 6.6 Processing time requirements per scenario 

Spatial Resolution 
Identification module 

(sec) 

Optimisation module 

(sec) 

Total processing time 

(sec) 

High 12,028 15,454 27,482 

Low 105,530 44,000 149,530 

6.4.2 Comparison of ODs 

The increased processing time for the low-resolution scenario does not affect the accuracy 

of the output in terms of the resemblance between the modelled and the observed ODs. For 

the low-resolution scenario, the total trip difference was calculated at 0.9%. The breakdown 

of the missing trips is presented in Table 6.7. Results showcase the capability of the 

methodology to identify accurate solutions even with coarser zoning systems. 

Table 6.7 Absolute trips difference between the observed and modelled ODs (low-

resolution scenario). 

Purpose OP1 AM IP1 IP2 IP3 PM OP2 Total 

HBW 3 13 12 11 3 21 0 63 

HBO 25 104 54 70 38 100 3 394 

NHBW 0 1 0 0 0 0 0 1 

NHBO 0 0 0 0 0 0 0 0 

Total 28 118 66 81 41 121 3 458 

The minor effect of the zoning system on the OD matrix estimation accuracy of the 

methodology is also presented in Figure 6.28. The similar characteristics (particularly high 

R2 values and slope very close to 1) between the scatter graphs of the low- and the high-

resolution scenarios indicate the minor effect that the zoning system imposes on the quality 

of the solution, in terms of OD replication. 
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Figure 6.28 Comparison of OD matrix resemblance (Observed vs Modelled) for the high- 

and the low-resolution zoning systems.  

6.4.3 Fidelity of the Modelled Activity Schedules 

The previous section verified the minor effect of the spatial resolution on the replication of 

the modelled and the observed ODs. However, the decrease of the zoning system’s resolution 

is considerably more significant with regards to the resemblance between the observed and 

the modelled activity schedules. Despite the similarity of their high-level characteristics 

(Figure 6.29), the one-to-one comparison between the activity schedules unveils a less 

accurate matching. 
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Figure 6.29 Comparison of the 30 distribution groups with the largest share between the 

observed and the modelled activity schedules (low-resolution scenario). 

In detail, Figure 6.30 depicts the comparison of the modelled and the observed activity 

schedules for the high- and the low-resolution scenarios. The scatter diagrams compare the 

schedules in terms of (a) the zone sequences, (b) the departure profiles, (c) the activities 

sequence and (d) the travel time group each schedule belongs into. For example, a point on 

the scatter plot can represent the schedule visiting zones E01014370 and E01014377, 

departing in the AM and the PM time periods, going from Home to Work and with a total 

travel time between 1800 and 2700 seconds. As it can be observed, the correlation between 

the modelled and the observed schedules is particularly high in the case of the high-

resolution scenario. On the other hand, the correlation is significantly lower for the low-

resolution case. This is due to the higher number of candidate activity schedules and the 

considerably increased number of solutions recreating the observed ODs. However, the 

results can be still considered encouraging since, even for the low-resolution scenario, the 

methodology has managed to accurately reproduce the calibration distribution, as well as to 

perfectly replicate a large proportion of the observed activity schedules. 
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Figure 6.30 Comparison between the identified tours in terms of zone sequencing, profile 

of departures and activity sequencing. 

6.5 Discussion of the Results 

The previous sections evaluated the potential of the suggested methodological framework 

through a suitable proof of concept application. The evaluation began with the description 

of the utilised dataset and continued with the meticulous validation of the methodology on 

multiple levels. In particular, the evaluation took place both at the aggregate as well as at the 

disaggregate level. The aggregate-level assessed the ability of the methodology to identify a 

combination of activity schedules able to represent travel demand as captured in the inputted 

ODs. The disaggregate-level focused on the assessment of the outputs’ realism and entailed 

the one-to-one comparison between the observed activity schedules and the modelled ones. 

Finally, the effect of the resolution of the utilised zoning system was also quantified. 

The previously presented results verify the suggestion that multi-period, purpose-dependent 

ODs can be indeed transformed into individual activity schedules, suitable for in-depth travel 

behaviour analysis. A set of 25,000 thousand observed activity schedules were aggregated 

into the corresponding set of ODs describing the travel demand required for the completion 

of the schedules. Inputted with these ODs and a calibration distribution regarding the total 

duration and the departure profile of the observed schedules, the methodology managed to 

reverse-engineer the ODs into a set of modelled activity schedules, very similar to the 

observed ones. In particular, the methodology utilised 99% of the inputted travel demand for 

the synthesis of a set of modelled activity schedules where almost 9 out of 10 modelled 
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activity schedules were identical to the observed ones. It should be also stated that the 

methodology proved particularly efficient since it was completed in short time 

(approximately three hours) using a standard computing system. The evaluation process also 

stressed the effect of the utilised zoning system’s resolution on the quality of the output. 

Results obtained from a case where a coarse zoning system was used resulted in highly 

accurate travel demand patterns (1% difference between observed and modelled ODs) but 

less accurate replication of the individual observed schedules (R2
 = 0.62). In addition, the 

utilisation of a coarse zoning system resulted in significantly higher processing time 

requirements (ten-fold increase). Finally, the travel behaviour analysis conducted for the 

purposes of the evaluation process, highlighted the additional value obtained from the 

disaggregation of ODs to individual activity schedules. As presented in the previous section, 

the disaggregation of ODs can lead to significant insight regarding travel behaviour. The 

rich travel behaviour information contained within ODs would have remained unobserved 

without the application of the suggested methodology.  
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Chapter 7  

Large-scale 

Implementation 

 

Chapter 7 evaluates the scalability of the methodology through its application on a set of 

large-scale ODs deriving from hundreds of thousands of individual activity schedules. This 

Chapter also verifies the effectiveness of the ASSA algorithm for addressing combinatorial 

problems of excessively large size. 
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7.1 Introduction 

The earlier presented analysis for the proof of concept application verified the potential of 

the methodology for the conversion of multi-period, purpose segmented ODs to individual 

activity schedules. Although, the size of the proof of concept case was considerable, many 

realistic ODs are of larger size. The current Chapter evaluates the scalability of the 

methodology over significantly larger input. To distinguish the results obtained from the 

proof of concept scenario and the currently presented one, the latter is referred as the large-

scale scenario. For reasons of brevity, the large-scale scenario focuses on the identification 

of tours within OD matrices instead of activity schedules since the scalability of the 

methodology is hindered by the identification and the optimisation modules and not by the 

activity-scheduling module which enables the conversion of tours to activity schedules. 

Finally, the large combinatorial optimisation problem used to assess the scalability of the 

methodology was also used for the evaluation of the ASSA algorithm. 

7.2 Preliminary Analysis 

Prior to the application of the methodology on the full population of tours (large-scale 

scenario), the input dataset used for the evaluation of the proof of concept application 

(Section 6.1.1) was also utilised for the conduction of a preliminary analysis. This 

preliminary analysis allowed for better-informed decisions regarding the selection of the 

required parameters for the execution of the methodology on a large scale. 

In particular, the preliminary analysis allowed for the identification of the: 

• most suitable parameters regarding the simplification process (i.e. search space 

reduction), as presented in Section 4.2. 

• most suitable values of the optimisation-related parameters. 

7.2.1 Parametrisation for Search Space Reduction 

The following section presents the benefits as well as the implications arising from the search 

space reduction process which was described in the methodological Section 4.2. In more 

detail, the parameters to be defined after this sensitivity analysis are the: 

• maximum total travel time of the modelled tours 

• level of network simplification 

• centrality measure to be used for network simplification 

• level of the observed tour-types exclusion 
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The first parameter is expressed in total seconds of travel time and is based on the expected 

share of excluded observed tours due to the introduction of the corresponding cost threshold. 

This share can be estimated based on the available calibration distribution. In detail, two 

thresholds set at 5,400 and 4,500 seconds ensured that the percentage of excluded tours will 

not exceed 1% and 5% respectively. Additionally, the upper total travel time threshold was 

set at 9,900 seconds (2.75 hours) which is the maximum duration of all tours observed in the 

optimum search space (𝑆𝑆𝑂). The above-mentioned are summarised in Figure 7.1. 

 

Figure 7.1 Distribution of the frequency of observed tours by total travel time. 

The second parameter required by the search space reduction process is expressed based on 

the expected volume of excluded trips due to this filtering step. Since each node is connected 

to edges, weighted by the number of traversing trips, the exclusion of trips can be directly 

translated to the corresponding reduction of travel demand in the network. Based on this, 

nodes are iteratively excluded until a predefined travel demand threshold (i.e. number of 

trips originating from/ending to them) is met. For the purposes of the presented analysis, the 

four available levels of network simplification were defined at 0%, 5%, 10% and 20% of the 

excluded travel demand.  

The third evaluation parameter corresponds to the identification of the most suitable 

centrality measure to be utilised for the simplification of the network. The evaluation is 

taking place among the centrality measures presented in Section 4.2.2 (i.e. Eigenvector, 

PageRank, Random-Walk-Betweenness and Subgraph-Centrality). The final parameter 

refers to the level of exclusion for tours belonging in unlikely tour-types. Since the optimal 
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search space (𝑆𝑆𝑂)  is not a priori known, the likelihood of tour-types can be instead 

estimated based on observational data sources (e.g. travel surveys). For example, data 

obtained from the National Travel Survey (NTS) of UK (Department for Transport, 2017) 

indicate that tours beginning and ending during 00:00 and 07:00 constitute only the 0.13% 

between all the observed tours. Therefore, tours belonging in that tour-type could be 

potentially excluded from the solution without significant impact. Similarly, to the rest of 

the parameters, the tour-type likelihood one is also expressed via the expected losses in travel 

demand. 

As it can be observed in Figure 7.2, the contribution of different observed tour-types to the 

total travel demand varies significantly. In this example, a tour-type is defined by its duration 

and the sequence of departure time periods. Despite the variability of the tour-type 

combinations, some prove to be significantly more frequent. In detail, the most frequent 10% 

of tour-types present in the observed dataset includes roughly 80% of the travel demand 

while the 25% and the 40% of tour-types describe the 90% and the 95% of the demand 

respectively. The remaining 60% explains only 5% of the demand, signifying that a large 

number of tour-types are considerably less likely to belong in the optimal search space 

(𝑆𝑆𝑂). Based on the previous, the levels of the excluded tour-types were defined at 0%, 5%, 

10% and 20% of the excluded travel demand. 

 

Figure 7.2 Percentage of included travel demand in relation to the percentage of the 

included tour-types. 
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The reduction of the search space based on the exclusion of unlikely tour-types can be 

considerable. This is due the disproportionality between the observability of a tour-type in 

real world and its identifiability in a graph. Figure 7.3 presents the share of the 25 most 

frequent departure time period sequences according to the calibration distribution. Each 

departure time period sequence is named after the time periods under which trips take place 

during the tour. As an example, “AM;PM”, represents all the two-leg tour-types with the 

first departure in AM peak and second in the PM peak. As it can be observed, the 

observability (𝑆𝑆𝑂) and the identifiability (𝑆𝑆𝐶) of tour-types can differ significantly. As 

tours become more complex (e.g. include more departures) the available trips’ combinations 

of that type increase exponentially while many of them become less likely to be observed in 

the optimal search space. Therefore, eliminating such disproportionate tour-types can lead 

to a drastic reduction of the search space without affecting considerably the quality of the 

final output. The evaluated levels of the excluded tour-types were defined at 0%, 5%, 10% 

and 20% of the excluded demand. 

 

Figure 7.3 Number of identified tours in the optimal (𝑆𝑆𝑂) and the unconstrained (𝑆𝑆𝐶) 

search spaces. 

To sum up, the parameters defining the exploration space are concisely presented in 

Table 7.1. Competing all the parameter combinations, resulted in an extensive array of 192 

different configuration scenarios, allowing the meticulous sensitivity analysis of the 

parameters’ effect on the solution. 
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Table 7.1 Summary of sensitivity analysis scenarios 

Parameter Search Space Unit 

Max total travel time [0%, 1%, 5%] % of excluded observed tours 

Level of network 

simplification 
[0%, 5%, 10%, 20%] % of excluded travel demand 

Level of excluded 

tour-groups 
[0%, 5%, 10%, 20%] % of excluded travel demand 

Method of network 

simplification 

[Eigenvector (EV), PageRank (PR), 

Random walk betweenness (RWB), 

Subgraph Centrality (SC)] 

Centrality measure type 

As it has been already mentioned, the sensitivity analysis allowed the evaluation of multiple 

sets of configuration parameters and facilitated the selection of the most appropriate values 

for the application of the methodology on the large-scale scenario. The following section 

presents the results of this sensitivity analysis. 

7.2.1.1 Cost thresholds 

A key decision affecting the bounds of the studied problem’s search space is the maximum 

cost of tours to be identified. The selection of an appropriate threshold excluding high cost 

tours can drastically reduce the search space as well as the processing time requirements. 

Figure 7.4 presents the effect of three different travel time (i.e. cost) thresholds on the quality 

of the solution as well as the corresponding processing times. As it can be observed, the 

benefits of increasing the maximum allowed tour travel time are disproportionate to the 

requirements in processing time. Improving the percentage of unmatched tours from 4.5% 

to 1.5% requires 23% more time (4348s vs. 5366s) while a further reduction to 0% requires 

47% more time compared to the 4500s threshold. Although, the here presented low running 

times (≈4,000s-6,000s), allow the completion of all cost related scenarios within reasonable 

time, this may not hold true for larger cases. Larger scenarios may require the 

implementation of a cost threshold lower than the maximum observed cost to be solved in 

reasonable time. However, the selection of the most appropriate cost threshold may vary 

across different applications, thus the experimentation with smaller instances of the problem 

are recommended prior to the application on the full problem. Based on the results obtained 

from this preliminary analysis, the maximum travel time for the large-scale scenario was set 

at 5400s (1% of excluded demand) in order to reduce the required processing time without 

considerably damaging the quality of the output. 
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Figure 7.4 Processing time requirements and accuracy by maximum cost thresholds. 

7.2.1.2 Effects of network simplification 

As it has been already discussed, the reduction of the search space can be further bolstered 

by the process of network simplification. The following section delves in the presentation of 

the network simplification process as well as the potential caveats that may arise. The first 

presented metric concerns the number of eliminated nodes by simplification method and by 

level of simplification. As it can be seen in Figure 7.7, the number of eliminated nodes varies 

significantly across the evaluated methods, with Eigenvector (EV) and Subgraph-Centrality 

(SC) methods removing between 5% and 15% more nodes compared to the alternatives. On 

the contrary, the Random-Walk-Betweenness (RWB) method has systematically removed 

considerably less nodes (≈5%-15%) than the rest of the approaches. It should be also 

reminded, that since the simplification level is based on a maximum percentage of discarded 

demand, the comparison of the alternative methods across the same simplification level 

results to the same level of demand exclusion. 
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Figure 7.5 Number of eliminated nodes by method and level of simplification. 

In addition to the previous results, Figure 7.6 presents the temporal distribution of (a) the 

eliminated nodes and (b) the corresponding reduction in travel demand. As it can be seen, 

nodes at the edges of the studied horizon (i.e. OP1 and OP3), are considerably more likely 

for elimination regardless of the simplification method and despite a few exceptions the trend 

is generally uniform. This can be explained by the low travel demand during the early 

morning (OP1) and the late night (OP3) periods as well as by the attribute of the evaluated 

centrality measures to prioritise the elimination of nodes with low demand. 
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Figure 7.6 Distribution of eliminated nodes by level of simplification and time period. 

The information presented in Figure 7.7, completes the analysis of the network 

simplification process by depicting its spatiotemporal dimension. At this stage it should be 

reminded that according to the hTVG representation, each zone is represented by 𝑡 

individual nodes, where 𝑡  stands for the number of available time periods (Figure 7.7). 

Therefore, each zone can be eliminated up to 𝑡 times depending on the level and the method 

of simplification. The location of the nodes in the figure corresponds to the 𝑋  and 𝑌 

coordinates of the zone’s centroid while the colour tone represents the frequency of 

elimination across the time periods. As it can be noted, the patterns of simplification vary 

considerably between the available simplification methodologies. In accordance to the 

results presented in Figure 7.5, the EV method results in a more intense but uniformly 

distributed simplification across zones. On the other hand, PR, RWB and SC methods tend 

to eliminate less nodes while concentrating the simplification among fewer. 

(a) (b) 
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Figure 7.7 Density of simplification across the seven available time periods by level and 

method of simplification. 

The previously presented results, although informative, they are not adequate to justify the 

most appropriate centrality measure for network simplification. The complete assessment 

requires the comparison of the simplification methods in relation to their effect on the 

expected accuracy of the methodology as well as their respective processing time and the 

memory size requirements. The relevant analysis begins with the reporting of the required 

processing time and the number of identified tours as a proxy for the memory requirements 

of each method. Although, the following results are presented in absolute figures, it is most 

useful to interpret them in a relative manner since both the processing time and the memory 

requirements depend on the utilised computing system. Figure 7.8 showcases the reduction 

of the required processing time incurred by the introduction of network simplification. For 

example, the EV method can progressively drop the processing time requirements from 
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roughly 600s to 400s when the level of simplification increases from 0% to 20% (tour-type 

exclusion at 0%). However, the process of calculating the centrality for each node requires 

time and that may counterbalance any subsequent benefits (e.g. RWB). Finally, the 

resemblance between the graphs highlights the negligible processing time impact of the 

search space reduction due to the likelihood filtering mechanism (Section 4.2.3.2). 

 

Figure 7.8 Processing time requirements by level and method of network simplification. 

Despite the insignificant processing time of the tour-types exclusion mechanism, the 

corresponding implications regarding the memory requirements are considerable. As 

depicted in Figure 7.9 the exclusion of tours based on their likelihood can drastically 

constrain the number of identified tours. For example, while the initial figure of identified 

tours for the unconstrained scenario exceeds 250 thousand, the corresponding figure for the 

20% level of exclusion barely reaches 50 thousand (80% reduction). Furthermore, Figure 
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7.8 supports the argument that the size of the search space is affected significantly more from 

the included tour-types rather than the level of network simplification. For instance, the 

increase of the network simplification level from 0% to 20% when no likelihood filter is 

applied (tour-types exclusion at 0%) drops the number of identified tours from 250 thousand 

to roughly 170 thousand (≈32% reduction), a figure significantly lower than the 

corresponding one for the reverse scenario (i.e. tour-types exclusion at 20% and network 

simplification level at 0%). 

 

Figure 7.9 Total number of identified tours by level and method of network simplification. 

The final and arguably most crucial metric related to the evaluation of the configuration 

parameters is the accuracy of the solution. More precisely, the accuracy is measured by the 

percentage of tours in 𝑆𝑆𝑂 (optimal search space) which were matched with a tour in the 𝑆𝑆𝑅 

(reduced search space). The achieved level of accuracy for the combinations between the 

The
oc

ha
ris

 Ball
is



 

112 

 

levels of tour-type exclusion as well as the level and the method of simplification is presented 

in Figure 7.10. As it can be observed, the differences between the suggested simplification 

methods are subtle, with no method exhibiting considerable advantages in terms of accuracy. 

The key outcome of from this figure is the adverse effect of the increase of network’s 

simplification level on the quality of the solution. For instance, retaining all tour-types (i.e. 

excluded tour-types: 0%) while applying the simplification of the network at 20% level, 

results in 40% of unmatched tours in 𝑆𝑆𝑂 . On the contrary, excluding 20% of the least 

frequent tour-types while retaining the integrity of the network (excluded edges: 0%) results 

in 19% of unmatched tours. This observation emphasises the abundance of non-required 

tours in the unconstrained search space (𝑆𝑆𝐶). However, network simplification can result 

in significant reductions of the required processing time, therefore the acceptance of a 

simplification level other than 0% may become unavoidable for larger scenarios. Even in 

cases where tours can be identified in reasonable time for low levels of network 

simplification, the possibly immense number of resulting tours may require the application 

of tour-type likelihood-based filters. Based on the results obtained for this preliminary 

analysis, a selection of 5% for both levels of network and tour-type exclusion can yield 

adequately accurate results (≈83% accuracy) while retaining the processing time and the 

memory requirements within reasonable levels. 

 

Figure 7.10 Accuracy by level and method of network simplification. 
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The next section delves with the identification of the most suitable parameters concerning 

the optimisation part of the methodology. 

7.2.2 Parametrisation for Large-scale Optimisation 

The following analysis attempts the identification of the most suitable parameters for the 

application of the Adaptive Sampling Simulated Annealing (ASSA) optimisation algorithm. 

The two parameters which were explored were (a) the optimum replacement factor to enable 

the transition from a solution to the next as well as (b) the most suitable number of iterations 

to achieve convergence. In detail, the ASSA algorithm was evaluated for three different 

replacement factors (i.e. 1%, 2% and 5%) as well as for 100 steps and 500 steps, respectively. 

Based on the information retrieved from Figure 7.11, two hundred fifty steps proved 

adequate to allow the convergence of the ASSA algorithm regardless of the replacement 

factor. Moreover, smaller replacement factors (e.g. 1%) seem to be more appropriate for the 

purposes of the methodology. As an example, for the 500 steps case, the 1% replacement 

factor achieved more accurate results in less time compared to both the 2.5% and 5% cases 

(Figure 7.12). Therefore, the large-scale scenario was decided to be executed for 250 steps 

and with the replacement factor set at 1%. 

 

Figure 7.11 Convergence of ASSA algorithm by number of simulation steps, replacement 

factor and elapsed steps. 
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Figure 7.12 Convergence of ASSA algorithm by number of simulation steps, replacement 

factor and elapsed processing time. 

The two previous sections delved in the identification of the most suitable parameters which 

allow the completion of the enumeration of tours within an hTVG in reasonable time, 

without significantly diminishing the accuracy of the output. The analysis showed that 

indeed the suggested simplification methodology can drastically reduce the problem domain 

without seriously damaging the quality of the output. However, the selection of the most 

appropriate simplification parameters depends highly on the characteristics of the input, 

therefore a preliminary analysis similar to the one presented above is strongly suggested for 

cases of large-scale input. Finally, it should be stated that a summary of the parameters 

deriving from the preliminary analysis can be found in Section 7.3.2 where the complete 

configuration of the large-scale scenario is presented. 

7.3 Model Testing 

The following section presents the required details for the application of the methodology 

on the large-scale case. The section begins with the presentation of the input, continues with 

the parameters’ configuration, and concludes with the presentation of the results. 
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7.3.1 Input Data 

The evaluation of the methodology’s scalability was conducted based on input similar to the 

one described in Section 6.1.1 but of considerably larger size. 

7.3.1.1 Observed tours  

The same methodology used to build the input for the proof of concept case was used to 

synthesise 125,000 activity schedules (instead of 25,000) which once aggregated resulted in 

a set of fully realistic, multi period and purpose segmented ODs, suitable for the evaluation 

of the methodology at large scale. 

7.3.1.2 Calibration distribution 

The observed tours for the full scale-scenario were synthesised based on the distribution 

presented in Section 6.1.1.3. This distribution was also used to calibrate the solution deriving 

from the optimisation module; therefore, it is referred as the ‘calibration distribution’. 

7.3.1.3 Observed OD matrices 

The aggregation of the enclosed trips within the 125,000 observed tours resulted in 28 ODs, 

segmenting 268,315 trips across four trip purposes and seven time periods (Table 7.2). The 

resulting observed OD were subsequently inputted to the methodology for the identification 

of the individual tours recreating the observed travel demand patterns. 

Table 7.2 Summary of observed ODs (large-scale scenario). 

Trip-purpose OP1 AM IP1 IP2 PM OP2 OP3 Total 

HBW 3,065 13,850 7,924 9,130 13,184 5,189 1,133 53,475 

HBO 11,323 50,132 27,016 33,718 49,215 19,165 4,726 195,295 

NHBW 30 713 1,392 1,567 1,504 302 9 5,517 

NHBO 76 1,764 3,311 4,002 3,986 675 34 13,848 

Total 66,459 39,643 48,417 25,331 14,494 5,902 67,889 268,135 

7.3.2 Configuration 

The above-described observed ODs and calibration distribution were provided as input for 

the synthesis of the travel demand equivalent tours whose characteristics adhere as much as 

possible to the provided distribution. In contrast to the proof of concept case, the completion 

of the methodology required the introduction of constraints enabling the reduction of the 

problem’s size to handleable limits. The selection of the appropriate constraining parameters 
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(Table 7.3) achieved the completion of the application in reasonable time without inflicting 

significant discount on the accuracy of the output. 

Table 7.3 Parametrisation of the large-scale scenario. 

Identification module 

Parameter Value Description 

Max tour length 4 Maximum length of tours in the observed dataset 

Max total travel time 5400s Maximum travel time for the identified tours 

Level of network 

simplification 
5% Percentage of excluded travel demand 

Level of excluded 

tour-types 
5% Percentage of excluded travel demand 

Method of network 

simplification 

PageRank 

(PR) 
Centrality measure 

Optimisation module 

Parameter Value Description 

Steps 250 Number of iterations 

Max solution size 125,000 The maximum number of tours in the solution 

Replication factor 1% The number of replaced tours per iteration as 

percentage of the maximum solution size 

Max temperature 5,000 Maximum temperature (calculated as: Max solution 

size * Replication factor * Max tour length) 

Min temperature 10 Minimum temperature 

Finally, the enforcement of the observed tours high-level characteristics to the output were 

achieved through the provision of the calibration distribution presented earlier (Section 

7.3.1.2) as input to the ASSA optimisation algorithm. 

7.3.3 Results 

The application of the suggested methodology to the previously presented input produced a 

particularly large number of candidate tours (22 million) able to be formed in the hTVG 

deriving from the observed ODs. Among these 22 million candidates, the optimisation 

algorithm managed to identify a combination of realistic candidate tours which utilises 

almost 90% of the observed travel demand. In terms of performance, the overall processing 

time required for the conversion of 28 multi-period, purpose segmented ODs reached 43 

hours with the majority of the processing time being allocated to the identification module 

(40 hours). 

In the examined large-scale scenario, the modelled area consists of 470 different zones with 

an average number of 46,800 originating tours per zone, therefore it becomes apparent that 
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the total number of candidate tours can grow very rapidly. As previously mentioned, the 

total number of returned tours exceeds 22 million with the majority of zones producing up 

to half a million candidate tours, although some few exceptions produce significantly more 

(e.g. 3-4 million). The zones producing significantly more tours than the rest were identified 

as the centre of the city as well as areas of particular interest such as university campuses.  

The above mentioned are depicted in Figure 7.13 where the spatial distribution of candidate 

tours as well as the corresponding histogram are presented. In addition, Figure 7.14 depicts 

the observed tours over all the possible ones which could have originated from a single zone, 

based on the available trips in the observed ODs. The figure emphasises the complexity of 

the studied combinatorial problem by depicting the disproportionality between the number 

of candidate tours and the number of the observed ones. 

 

Figure 7.13 (a) Spatial distribution of candidate tours per zone of origin and (b) the 

respective histogram. 

(a) (b) 
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Figure 7.14 Observed tours over the candidate ones (Observed tours coloured in blue). 

The next section delves in the evaluation of the suggested methodology for the conversion 

of ODs to individual tours. Additionally, the application of the ASSA algorithm to the large-

scale scenario allowed the meticulous evaluation of the newly suggested approach on a 

particularly complex and large combinatorial problem. The superiority of ASSA is verified 

through the comparison of the former with the standard Simulated Annealing (SA) approach. 

7.4 Evaluation 

The next section has a twofold role. Firstly, it is used to verify the scalability of the proposed 

methodological framework. Secondly, the large-scale combinatorial problem of converting 

ODs to tours is also utilised to assess the performance and the efficiency of the ASSA 

algorithm. The evaluation of the ASSA algorithm has been strengthened by comparing it 

against the widely used standard SA algorithm. 

7.4.1 Comparison of ODs 

The results regarding accuracy and convergence of the large-scale scenario agree with the 

corresponding ones for the proof of concept case. In detail, the methodology has managed 

to identify a reasonably accurate solution (14.1% error), closely replicating the observed 

ODs (Table 7.4 and Table 7.5). The most notable discrepancies between the observed and 

the modelled ODs are presented for the low-demand ODs. It should be also reminded that 

according to the previously presented preliminary analysis, the maximum accuracy of the 
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methodology under the current levels of simplification (Section 7.3.2) is estimated at around 

15%. Therefore, the methodology has produced a solution very close to the optimum. 

Table 7.4 Absolute difference between the observed and modelled ODs for the  

large-scale scenario. 

Purpose OP1 AM IP1 IP2 IP3 PM OP2 Total 

HBW 1,034 1,738 708 888 703 1,672 454 7,197 

HBO 3,661 5,435 2,370 3,312 2,549 5,986 1,996 25,309 

NHBW 30 219 403 402 146 488 9 1,697 

NHBO 76 485 815 878 309 1,052 34 3,649 

Total 4,801 7,877 4,296 5,480 3,707 9,198 2,493 37,852 

Table 7.5 Percentage difference between the observed and modelled ODs for the large-

scale scenario. 

Purpose OP1 AM IP1 IP2 IP3 PM OP2 Total 

HBW 33.7% 12.5% 8.9% 9.7% 13.5% 12.7% 40.1% 13.5% 

HBO 32.3% 10.8% 8.8% 9.8% 13.3% 12.2% 42.2% 13.0% 

NHBW 100.0% 30.7% 29.0% 25.7% 48.3% 32.4% 100.0% 30.8% 

NHBO 100.0% 27.5% 24.6% 21.9% 45.8% 26.4% 100.0% 26.4% 

Total 33.1% 11.9% 10.8% 11.3% 14.6% 13.5% 42.2% 14.1% 

7.4.2 Adherence to the Calibration Information 

The first part of the assessment concluded that the majority of trips in the large-scale input 

ODs were successfully incorporated into tours in reasonable time. Nonetheless, the quality 

of these schedules from a travel behaviour point of view must be also verified. In contrast to 

the proof of concept application, the large-scale implementation required the application of 

a heuristic optimisation algorithm for the optimisation part of the methodology. The 

metaheuristics formulation (Section 3.5.2) does not allow the enforcement of the available 

calibration information as strict constraints. However, the developed ASSA algorithm, if 

provided with a calibration distribution, it favours the identification of solutions with 

distributions similar to the calibration one. The efficiency of ASSA on projecting the 

calibration data on the modelled solution is evaluated in the following section. 

The scatter plot analysis presented in Figure 7.15 verifies that the application of the ASSA 

algorithm produced a solution aligning closely to the available calibration data. Each point 

in the figure represents the frequency of tours belonging to the 386 available tour-types. As 

it can be observed the R2
 value is very close to 1 (0.997) while the same applies for slope of 
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the regression fit (1.08), therefore it can be evidently claimed that the frequencies of tour-

types between the observed and the modelled tours are very similar. 

 

Figure 7.15 Scatter plot analysis between the observed and the modelled tour-types. 

The evaluation continues with the comparison between the observed and the modelled 

distributions for the 50 most frequent tour-types which accrue for 75% of the total travel 

demand (Figure 7.16). As it can be seen, the coincidence between the observed and the 

modelled solutions is generally well respected, but the ASSA algorithm results in a 

significantly closer resemblance compared to the standard SA algorithm (especially for the 

two most frequent tour-types). The ability of the methodology to project the calibration 

distribution on the result is further evaluated in a following section (Section 7.5.3). The
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Figure 7.16 Comparison between the SA, ASSA, and the calibration distribution for the 50 

most frequent tour-types. 

The evaluation of the quality of the modelled solution is finally verified from a spatial 

perspective. Figure 7.17 depicts the number of modelled (ASSA solution) and observed tours 

traversing through each of the zones in the covered area. As it can be noted, the discrepancy 

is distributed in accordance to the volume of tours through each zone and no systematic bias 

is evident. 
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Figure 7.17 Number of tours traversing through each zone (observed vs ASSA derived 

solution) 

Based on the previous results it can be claimed that the methodology can indeed produce 

accurate results, even for an excessively large-scale scenario as the evaluated one. However, 

the methodology should be also assessed in terms of the efficiency and the processing time 

requirements for its completion. 

7.4.3 Efficiency and Processing Time Requirements 

Due to the combinatorial nature of the studied problem, the processing time required for the 

application of the suggested methodology increases with the increase of the problem’s size. 

Although, the effect is insignificant for the Graph-generation and the Activity-scheduling 

modules (additional processing time in the order of tens of seconds), the Identification 

module as well as the Optimisation module require considerably more time in comparison 

to the proof of concept application.  

Five-folding the size of the problem (from 25,000 initial tours to 125,000) increased the 

required processing time for the identification of candidate tours from 3 to 40 hours using 

an Intel® Xeon CPU powered computer with 32GB of available RAM. Although not 

prohibiting for real-world applications, stricter simplification parameters can reduce the 
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above-mentioned processing time, at the expense though of accuracy (Section 7.2.1.2). In 

addition, it should be also reminded that the identification module has been designed in a 

fully parallelisable manner, therefore computing systems with multiple processing cores can 

significantly boost performance. 

The considerable increase of the candidate tours (compared to the proof of concept case) 

inevitably complicated the optimisation process. Attempts to apply exact mathematical 

programming approaches (e.g. branch-and-bound) were proven unsuccessful since the 

problem was overly large to be instantiated using the available computational system, despite 

its relatively high-end specifications. However, the previously presented ASSA algorithm 

(Section 5.4.2) proved very efficient at addressing the problem using only a fraction of the 

available computing resources. In detail, the optimisation routine converged to an adequately 

accurate result in around three hours, setting the total required time for the completion of the 

overall methodology at approximately 43 hours. 

In summary, the overall processing time required for the conversion of 28 multi-period, 

purpose segmented ODs of 260 thousand trips reached 43 hours with most of the processing 

time being allocated to the identification module (40 hours). 

7.5 Assessment of the ASSA Algorithm 

As it has been already mentioned, the large-scale scenario was also used to verify the 

superiority of ASSA over the standard SA approach. The next section completes this 

evaluation by comparing the results of the Identification module when the ASSA and the 

standards SA algorithms are implemented. 

7.5.1 Preliminary Evaluation 

The developed for the purposes of this Ph.D. Thesis ASSA optimisation algorithm is mainly 

directed for addressing large-scale combinatorial optimisation problems. Therefore, the 

evaluation of ASSA was assessed over a large-scale scenario. For the completeness of the 

presentation, the evaluation of ASSA on a small-scale scenario, able to be also addressed by 

standard analytical optimisation approaches (e.g. branch-and-bound) is also included. In 

particular, ASSA was firstly evaluated for the proof of concept application presented in 

Chapter 6. The novel algorithm was evaluated against the standard SA as well as against the 

widely applied branch-and-bound implementation of CPLEX by IBM (IBM, 2020). As it 

can be observed in Figure 7.18, branch-and-bound outperforms the SA-based alternatives, 

especially in terms of the accuracy of the produced solution. The branch-and-bound (B&B) 
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alternative achieves a near optimum solution (error < 1%) in practically the same time 

required for SA and ASSA to converge. However, it should be reminded that despite the 

accuracy of exact optimisation methods, such as B&B, their applicability and efficiency can 

be significantly deteriorated in cases of particularly large combinatorial problems. 

Therefore, metaheuristics can provide an alternative for large scale cases. With regards to 

the SA-based algorithms, ASSA proves superior to the standard version of SA since it has 

managed to achieve a significantly more accurate solution (4.8% error vs. 9.2%). Not 

surprisingly, the ASSA algorithm requires more processing time (≈ +25%) to complete the 

same number of iterations (i.e. steps) compared to the standard SA, due to the extra 

calculations executed by the adaptive sampling mechanism. However, the increased 

processing time is counterbalanced by faster convergence, resulting to more accurate 

solutions in fewer iterations (Figure 7.19) 

 

Figure 7.18 Evaluation between the branch-and-bound (B&B), SA and ASSA optimisation 

algorithms in terms of processing time and accuracy. The
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Figure 7.19 Magnification of the convergence area between the B&B, SA, and ASSA 

optimisation algorithms. 

 

Figure 7.20 Evaluation of the SA and ASSA algorithms for the preliminary analysis 

(iterations vs accuracy). 

7.5.2 Convergence and Efficiency 

The following section provides evidence regarding the efficiency of the suggested ASSA 

algorithm for the addressing of excessively large combinatorial problems. In detail, ASSA 

produced a solution with 14.1% error in 40 thousand seconds (≈ 11 hours) but similarly 

accurate solutions (e.g. 15% error) can be obtained much faster (e.g. under 4 hours). This 

indicates that ASSA (as many other metaheuristics) can quickly reach a good approximate 
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solution but faces difficulties in fine-tuning the quality of the solution even with increasing 

processing time. As it can be observed in Figure 7.21 and Figure 7.22, ASSA clearly 

outperforms standard SA both in terms of accuracy and efficiency. The ASSA algorithm 

converges significantly faster than the alternative SA algorithm while at the same time 

produces a considerably more accurate solution (≈14% accuracy vs ≈21%). 

 

Figure 7.21 Evaluation of the SA and ASSA algorithms for the large-scale scenario 

(processing time vs accuracy). 

 

Figure 7.22 Evaluation of the SA and ASSA algorithms for the large-scale scenario 

(iterations vs accuracy). 
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The previous section verified the superiority of ASSA over standard SA in terms of accuracy 

and efficiency. The next section emphasises on the additional accuracy benefits obtained by 

the application of ASSA instead of SA under the presence of calibration information. 

7.5.3 Adherence to the Calibration Information 

As it has been already mentioned in Section 3.5, the utilised metaheuristic approach for the 

solution of the combinatorial problem in hand, does not strictly enforce the calibration 

distribution on the output but instead utilises the distribution to appropriately guide the 

optimisation process. Therefore, the accuracy of enforcing the calibrating distribution onto 

the identified solution using the ASSA algorithm must be thoroughly evaluated. In order to 

emphasise the benefits obtained from the application of the Adaptive Sampling mechanism 

described in Section 5.4.2, the optimisation results obtained from the standard Simulated 

Annealing (SA) method are also presented. In particular, Figure 7.23 presents the scatter plot 

comparison between the frequency of the observed and the modelled tour-types for the SA 

and ASSA algorithms, respectively. The depicted scatter plots (Figure 7.23) as well as the 

accompanying linear regression summaries (Table 7.6) showcase the ability of the 

methodology to effectively project the calibration distribution onto the output. As it can be 

noted, the ASSA algorithm accurately achieves the alignment between the resulting 

distribution of tour-types and the calibrating one. In contrast to the standard SA, the ASSA 

algorithm enhances significantly the matching for the low-frequency tour-types (Figure 

7.24) which are underrepresented in the SA solution. 
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Figure 7.23 Comparison between the resulting and the calibration distribution. 

 

Figure 7.24 Magnification of the high-density area (0-2500 trips).  
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Table 7.6 Results of linear regression for the SA and ASSA algorithms. 

Algorithm Equation R2 

SA y = 1.33x - 18.07 0.983 

ASSA y = 1.08x - 12.74 0.997 

The comparison between the expected and the resulting distributions for the SA and ASSA 

algorithms is also verified in Figure 7.25. As it can be observed, ASSA has considerably 

outperformed SA, especially at the edges of the distribution (presented in more detail in 

Figure 7.26 and Figure 7.27). Contrary to ASSA, the standard SA algorithm has produced a 

solution which underrepresents frequent tour-types and overrepresents rare ones (SA 

frequencies are larger than the observed at the tail of the distribution). 

 

Figure 7.25 Comparison between the SA and ASSA resulting distributions and the 

calibrating one. 
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Figure 7.26 Comparison between the SA and ASSA resulting distributions and the 

calibrating one for the 20 most frequent tour-types. 

 

Figure 7.27 Comparison between the SA and ASSA resulting distributions and the 

calibrating one for the 20 least frequent tour-types. 
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7.5.4 Adaptive Sampling 

As it has been already mentioned, the ASSA algorithm builds progressively a solution based 

on the difference between the current distribution of the solution’s characteristics and the 

targeted one (i.e. calibration distribution). The continuous improvement of the solution is 

supported by the adaptive sampling mechanism which favours the introduction to the current 

solution of tours which will reduce the difference between the desired and the modelled 

output. The next section presents the benefits obtained from the adaptive sampling 

mechanism in contrast to the random sampling process taking place during the standard SA. 

The first metric utilised to evaluate the adaptive sampling mechanism is the number of tours 

present in the solution during the optimisation process. The benchmark for this comparison 

is set at 25 thousand tours which coincides with the number of the observed tours. Figure 

7.28 presents the progression of solution’s size for the SA and ASSA algorithms, 

respectively. It can be noted that although neither algorithm manages to include the exact 

number of observed tours, however the ASSA alternative produces a significantly more 

populated and constantly improving solution. More precisely, ASSA results in a solution 

including almost 110 thousand tours compared to the 125 thousand required for the optimal 

solution (88% accuracy). It should be also noted that for the case of ASSA, the passage of 

iterations results in improved solutions and avoids getting trapped in local minima as in the 

case of SA. 

 

Figure 7.28 Number of tours in the solution during the optimisation process 

125,000 observed tours 
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Additionally, the evolution of the progression of the calibration fitting during the simulated 

annealing process (SA and ASSA) is presented in Figure 7.29. As it can be noted, the passage 

of iterations improves the fitting for both the SA and the ASSA algorithms, however ASSA 

achieves significantly greater accuracy in fewer steps. The bottom row presents in more 

detail the shaded area of the top row. 

 

Figure 7.29 Evolution of calibration fitting during the simulated annealing process. The 

bottom row presents in more detail the shaded area of the top row. 

Finally, Figure 7.30 presents in more detail the evolution of the calibration fitting for the 20 

most frequent tour-types. As it can be observed, the ASSA algorithm builds solutions 

adhering to the calibration since a very early step. Although subtle, the improvement of the 

calibration fitting between the initial iteration (step=0) and the final one (step=250) is still 

notable. For example, the difference between the observed and the modelled tour-types T33 

and T57 diminishes considerably with the passage of optimisation steps. 
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Figure 7.30 Progressive comparison of the modelled and the observed distributions during 

the optimisation process (20 most frequent tour-types). 

The previous section verified the potential of the ASSA algorithm as a very efficient 

metaheuristic able to address problems of excessively large scale such as the one presented 

for the purposes of this thesis. In addition, it emphasized the benefits of utilizing an adaptive 

sampling mechanism during the optimization process. 

7.6 Discussion of the Results 

The previously presented evaluation process verified the scalability of the methodology as 

well as the applicability of the suggested ASSA algorithm for the tackling of large-scale 

combinatorial problems such as the conversion of ODs into individual tours. ASSA enabled 

the production of an accurate solution (85.9% accuracy), closely adhering to the provided 

calibration distribution without requiring prohibitively long processing time for its 

completion. In detail the overall processing time required for the conversion of 28 multi-

period, purpose segmented ODs of 260 thousand trips reached 43 hours with most of the 

processing time being allocated to the identification module (40 hours). Therefore, it can be 

strongly suggested that large-scale OD matrices can efficiently and accurately be converted 
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to person-tours that can enable the in-depth study of travel behaviour at person-level. The 

implications are significant since this is one of the few examples allowing the preparation of 

disaggregate mobility information from widely available, aggregate data sources in the form 

of ODs.  
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Chapter 8  

Conclusions and 

Future Research 

 

Chapter 8 concludes the thesis, highlights its contribution, and suggests directions for future 

research.  
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8.1 Conclusions 

The future of mobility promises environmentally friendly, integrated, and personalised travel 

on demand. The realisation of this prospect requires the development of advanced transport 

models and simulation tools able to accurately estimate travel behaviour at the person-level. 

However, the development of such models requires rich mobility information at person-level 

which is not always easily available. The transition to the Big-Data age accompanied by a 

plethora of technological advances in the field of urban sensing has started alleviating the 

scarcity of information regarding travel behaviour. For example, Mobile Phones and GPS 

tracking devices can provide vast quantities of very precise information regarding the travel 

behaviour of their holders. However, justified concerns regarding the privacy of users, 

demand for the anonymization of such data. A typical form of anonymization refers to the 

representation of travel behaviour information via aggregated Origin-Destination (OD) 

matrices. Apart from their use as data anonymisation device, ODs have traditionally 

constituted the most widespread mean of presenting travel demand patterns. ODs have over 

the years proven as a very efficient format to represent various dimensions of mobility (e.g. 

trip-purpose, time of departure, transport mode, etc.) but their aggregate nature prevents 

them from the study of travel behaviour at person-level. Although, ODs are perfectly suitable 

for the representation of total travel demand flows between pairs of locations, they are 

incapable of retaining significant travel behaviour information at the disaggregate-level such 

as trip-chaining and trip interdependency. 

The previously presented Ph.D. Thesis proposed a novel modular methodological 

framework able to fully exploit the aggregated mobility information within ODs for the 

synthesis of completely tractable travel behaviour information at the disaggregate-level. In 

particular, the Thesis presented an efficient methodology for the conversion of multi-period 

and purpose dependent ODs firstly into sequences of trips originating and ending at a home 

location (i.e. tours) and subsequently into activity schedules. The completion of the proposed 

methodological framework required for interdisciplinary treatment. Elements from travel 

demand modelling, travel behaviour theory, graph-theory, combinatorial optimisation, and 

Big-Data analytics were forged into a cohesive framework able to address the problem of 

large-scale ODs’ disaggregation to tours and activity schedules. During the development of 

the framework, various hindrances required attention while a plethora of interesting 

observations were also recorded. The conclusions drawn and the main contributions of the 

present Ph.D. research are summarised as follows: 
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1. Multi-period and purpose segmented ODs can be indeed used for the study of 

travel behaviour at the person-level. Despite their aggregate nature, ODs contain 

all the necessary information to reconstruct disaggregate travel demand patterns such 

as trip-chains, tours, and activity schedules. Restructuring them appropriately 

enables the unveiling of hidden information which can be exploited for the analysis 

of mobility at the disaggregate-level. 

2. ODs can be utilised as input data sources for disaggregate transport modelling. 

The application of the suggested methodology allows for the synthesis of 

disaggregate information from aggregate ODs which are considerably easier to 

acquire compared to individual mobility traces. 

3. Conversion of multi-period ODs to a single Time Varying Graph (TVG) proves 

as a very eloquent form for the representation of mobility, particularly suitable 

for the identification of continuous and interdependent travel behaviour 

manifestations such as trip-chains and tours. 

4. The spatiotemporal resolution of the inputted ODs is the most crucial factor 

regarding the performance of the suggested methodology. In particular, the 

higher the resolution the more efficient the methodology. 

5. The developed integer/combinatorial optimisation routines require significant 

attention for efficient implementation, especially for large-scale applications. In 

particular, the number of all the plausible sequences of trips originating and ending 

at home (i.e. tours) that can be formed from the individual trips contained in ODs 

can quickly grow to intractable levels. Nonetheless, observations regarding travel 

behaviour can drastically reduce the total number of the identifiable tours/activity 

schedules to handleable levels. 

6. The complexity of enumerating all the plausible tours within a hTVG can be 

significantly reduced by the application of network simplification techniques. In 

detail, this research verified that various centrality measures can be effectively 

utilised for the simplification of a graph without inflicting considerable damage on 

traversability. A meticulous validation on the aspect concluded that PageRank 

centrality measure as the most suitable approach to simplify the structure of a graph 

while minimising the impact on traversability. 

7. Integer programming is the most accurate method for the identification of 

optimum combinations of tours/activity schedules which reproduce the travel 

demand patterns as captured in the inputted ODs. However, expressing the 

optimisation problem as an integer exact mathematical programming problem can 
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result in excessive computational requirements. On the other hand, metaheuristic 

methods can prove as effective alternatives. 

8. Metaheuristic methods can be greatly benefited by the incorporation of problem 

specific information. The study showcased the benefits in accuracy and processing 

time arising from exploitation of information regarding the expected output (i.e. 

calibration data). 

9. Anonymization of mobility related information through their representation in 

aggregate ODs is not guaranteeing the privacy of the tracked users. The results 

obtained in the proof of concept application indicate that ODs can be very accurately 

reversed-engineered under the condition that the spatiotemporal resolution of the 

ODs is relatively (but not unrealistically) high. 

8.2 Contribution 

The completion of the previously presented Ph.D. Thesis resulted in a plethora of notable 

contributions summarised as follows: 

1. The Ph. D. Thesis proposes a novel framework for the exploitation of aggregate 

ODs to synthesise disaggregate mobility and travel behaviour information. The 

verification of the methodology’s potential opens new paths with regards to the 

analysis of personal travel behaviour based solely on aggregate data. As identified 

from the relevant literature review, apart from very few exceptions, the relevant 

methodologies have been entirely based on disaggregate input (e.g. travel diaries, 

GPS traces, personal smart-card data, etc.). Therefore, the presented proof regarding 

the potential of utilising aggregate data for the studying of personal travel behaviour 

can spark attention to a relatively unexplored research field. 

2. Preparation of relevant input for advanced disaggregate transport models 

based on widely available aggregate OD matrices. The limited input requirements 

as well as the generality and the flexibility of the framework allow the synthesis of 

disaggregate mobility information based on a very wide range of ODs. Utilising ODs 

for the synthesis of suitable input for disaggregate transport models (e.g. agent-based, 

activity-based, microsimulation, etc.) can drastically increase their wider adoption.  

3. The introduction and the evaluation of the hybrid Time Varying Graph (hTVG) 

for transport related problems. The completion of the presented framework 

required the expression of travel demand in a consistent and chronologically ordered 

fashion allowing the identification of continuous travel behaviour manifestations 
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(e.g. trip-chains, tours, etc.). Expressing travel demand through hTVG proved as the 

most suitable approach for the purposes of the framework. The here proposed hTVG 

format combines the advantages of static graphs with the dynamic nature of TVGs 

and allows the representation of dynamic phenomena using the extensively studied 

static graph format. This enables the application of standard, efficient and scalable 

graph-theory-based methodologies (originally developed for static graphs) for the 

analysis of highly dynamic systems. The use of a hTVG for the completion of this 

Thesis validated and supported the use of TVGs for transportation related problems, 

a possibility that has not been extensively evaluated. 

4. Proposition of a methodological framework achieving the reduction of the 

tours’ enumeration problem within an OD matrix. The requirement of scalability 

led to the development of sophisticated procedures able to simplify the studied, 

excessively large combinatorial problem. In particular, a suitable process for the 

simplification of the tours enumeration problem within a graph was developed and 

evaluated (Ballis and Dimitriou, 2020d). Although, the simplification procedure was 

specifically developed for the purposes of identifying all the possible tours within a 

graph, the process can be straightforwardly applied for the confinement of any 

enumeration process concerning a graph. 

5. Development of the Adaptive Sampling Simulated Annealing (ASSA) 

algorithm. ASSA (Ballis and Dimitriou, 2020e) suggests a novel method for the 

solution of large-scale combinatorial problems when the solution is expected to 

adhere to certain characteristics expressed through a calibration distribution. Finally, 

the excessive scale of the studied combinatorial problem demanded for efficient 

combinatorial optimisation techniques. ASSA exploits any available calibration 

information in the form of a (joint) distribution for the guidance of the optimisation 

routine to neighbourhoods with solutions which adhere to the calibration data. 

Despite, being developed for the purposes of the niche studied problem, ASSA 

proves as a highly generalisable technique since it requires only a marginal 

distribution for its deployment. 

6. Proposition of a methodology to validate the consistency of OD matrices. 

Enhancing the quality of existing ODs is particularly important to transport 

authorities and planners which have traditionally relied on ODs for the evaluation of 

a variety of policy scenarios (e.g. urban traffic optimisation, pedestrianisation 

schemes, regeneration of areas, etc.). Poor performance at decomposing existing 
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ODs to individual tours/activity schedules can signify inconsistencies related to 

travel behaviour (i.e. incomplete trip-chains, tours, etc.). 

7. Suggestion of a methodology enabling the anonymisation of trip-chains/activity 

schedules deriving from urban sensing data sources (mobile phones, GPS traces, 

etc.). Despite the expected abundance of data in the Big-Data era, it is very likely 

that reasons of anonymity as well as practicality may require the aggregation of such 

data for their efficient and privacy-safe handling. Towards this direction, 

methodologies able to exploit vast quantities of aggregated data for the understanding 

of disaggregate behaviours can prove of considerable contribution. In addition, 

aggregating mobility traces to create ODs and subsequently desegregating them 

following the presented methodological framework, could introduce randomness in 

the dataset without affecting the observed travel demand patterns. 

8.3 Future Research 

The methodological framework developed for the purposes of this Ph. D. Thesis proposed a 

novel methodology aiming at the unveiling of disaggregate mobility patterns within 

aggregate ODs. Although, the Thesis went into great depth with regards to the evaluation of 

the methodology from multiple perspectives, many aspects remain untouched or require 

further study. 

The suggestions regarding the direction of the future study on the topic are summarised as 

follows: 

1. Further experimentation with large-scale ODs to identify scalability 

inefficiencies and plausible approaches to counter them. One of the key areas 

requiring further study is the application of the methodology on cases where the ODs 

are not as consistent as the ones utilised for evaluation. The application of the 

methodology on existing ODs can pinpoint possible inefficiencies that require 

attention. Similarly, further evaluation based on more ODs, varying in size and 

resolution, can provide further insight regarding the applicability of the methodology 

on a broader range of cases. 

2. Combination of the methodology with a population synthesis component. The 

possibility to assign sociodemographic characteristics to the produced tour and 

activity schedules can significantly increase their explanatory value. 

3. Incorporation of multimodality in the methodological framework. Although, the 

methodology is already capable of synthesising tours and activity schedules 
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completed with multiple transport modes, the graph component of the analysis 

(hTVG) could be enhanced in order to prevent the formation of transport-mode 

inconsistent tours. 

4. Incorporation of the network loading step into the methodological framework. 

The combinatorial nature of the problem allows for the appearance of multiple 

optimum solutions. Although, the presence of calibration information can 

significantly aid the identification of a tours/activity schedules which resembles 

reality, further effort should be devoted on the assurance of the solution’s 

representativeness. A possible improvement entails the incorporation of the network 

loading element into the procedure. More specifically, the framework can be 

extended by utilising the traffic conditions arising from the identified solutions to 

evaluate the realness of the output. 

5. Exploration of the possibility to express tours within ODs through a Markovian 

process. The main element limiting the scalability of the presented framework is the 

time-consuming process of enumerating the possible tours in the OD derived graph. 

An alternative approach suggests the identification of tours through a Markovian 

process where the hTVG representation of travel demand can be utilised for the 

estimation of the Markovian transition probabilities required to form trip-chains and 

tours. 

6. Evaluation of alternative optimisation techniques other than the suggested 

ASSA algorithm. The optimisation module could be replaced by appropriate 

alternatives (e.g. Genetic algorithms, Tabu Search, etc.) which could potentially 

prove more efficient at addressing the excessively large combinatorial presented 

problem. 

7. Exploration of the possibility to utilise the framework as a privacy guaranteeing 

mechanism for ODs deriving from urban sensing data sources. As stated earlier, 

mobility data providers are usually unable to provide the individual traces of their 

users, however, they often accept to present them in the aggregate form of ODs. 

Incorporating additional privacy checks could convert the methodology to a 

mechanism guaranteeing the intractability of personal mobility information within 

ODs.  
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Appendix A  

References by Chapter 

A.1 References from Chapter 3 

The next section contains the references of the Thesis’ manuscript for Chapter 3. 

 

Figure A.1 Visual representation of the suggested methodology. 
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Table A.1 Example of input Origin-Destination matrix 

Origin Zone Destination Zone Purpose Time period Trips 

Z A HB AM 3 

Z A HB IP 1 

Z A HB OP 2 

Z A NHB IP 5 

A B HB IP 2 

A B NHB AM 3 

A B NHB PM 5 

A C NHB AM 2 

A C NHB PM 1 

B A HB AM 2 

B C HB PM 5 

B D NHB AM 3 

B D NHB IP 2 

C D HB AM 5 

C D NHB IP 2 

C Z HB OP 1 

D B HB PM 2 

D Z HB PM 3 

D Z NHB IP 5 

D Z NHB PM 2 

Purpose:  Home-Based (HB), Non-Home-Based (NHB) 

Direction: From Home (FH), To Home (TH), Not Applicable (N/A)  

Time period: Morning Peak (AM), Inter-Peak (IP), Evening Peak (PM), Off-Peak (OP) 

Purpose:  Home-Based (HB), Non-Home-Based (NHB) 

Table A.2 Example of methodology’s output 
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1 4 A;B;D;Z HB;NHB;NHB;HB H;O;O;H IP;IP;PM;OP 11:54;12:10;16:09;22:07 

2 4 A;B;D;Z HB;NHB;NHB;HB H;O;O;H IP;IP;PM;OP 11:51;12:35;16:57;22:37 

3 4 B;A;C;D HB;NHB;NHB;HB H;O;O;H AM;AM;IP;PM 08:20;08:42;10:18;17:14 

4 4 B;A;C;D HB;NHB;NHB;HB H;O;O;H AM;AM;IP;PM 08:46;08:22;10:38;17:22 

5 5 C;D;Z;A;B HB;NHB;NHB;NHB;HB H;O;O;O;H AM;IP;IP;PM;PM 09:58;10:09;11:04;18:23;8:56 

6 5 C;D;Z;A;B HB;NHB;NHB;NHB;HB H;O;O;O;H AM;IP;IP;PM;PM 08:32;11:34;12:08;19:13;20:15 

7 5 C;D;Z;A;B HB;NHB;NHB;NHB;HB H;O;O;O;H AM;IP;IP;PM;PM 07:58;10:09;11:09;18:29;18:16 

8 5 C;D;Z;A;B HB;NHB;NHB;NHB;HB H;O;O;O;H AM;IP;IP;PM;PM 08:22;10:19;11:41;19:45;19:51 

9 5 C;D;Z;A;B HB;NHB;NHB;NHB;HB H;O;O;O;H AM;IP;IP;PM;PM 09:58;10:09;11:45;18:53;19:56 

10 4 Z;A;B;D HB;NHB;NHB;HB H;O;O;H AM;AM;AM;PM 08:19;09:04;09:29;18:31 

11 4 Z;A;B;D HB;NHB;NHB;HB H;O;O;H AM;AM;AM;PM 08:56;10:07;11:11;18:51 

12 4 Z;A;B;D HB;NHB;NHB;HB H;O;O;H AM;AM;AM;PM 08:29;09:54;10:19;19:31 

13 3 Z;A;C HB;NHB;HB H;O;H IP;PM;OP 08:55;12:45;18:42;23:21 

Purpose:  Home-Based (HB), Non-Home-Based (NHB) 

Activities: Home (H), Other (O) 

Time period: Morning Peak (AM), Inter-Peak (IP), Evening Peak (PM), Off-Peak (OP) The
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Figure A.2 Visual examples of tours originating from a single zone 

A.2 References from Chapter 4 

The next section contains the references of the Thesis’ manuscript from Chapter 4. 

Table A.3 Example of input Origin-Destination matrix 

Origin Zone Destination Zone Purpose Time period Trips 

Z A HB AM 3 

Z A HB IP 1 

Z A HB OP 2 

Z A NHB IP 5 

A B HB IP 2 

A B NHB AM 3 

A B NHB PM 5 

A C NHB AM 2 

A C NHB PM 1 

B A HB AM 2 

B C HB PM 5 

B D NHB AM 3 

B D NHB IP 2 

C D HB AM 5 

C D NHB IP 2 

C Z HB OP 1 

D B HB PM 2 

D Z HB PM 3 

D Z NHB IP 5 

D Z NHB PM 2 

Purpose:  Home-Based (HB), Non-Home-Based (NHB) 

Direction: From Home (FH), To Home (TH), Not Applicable (N/A)  

Time period: Morning Peak (AM), Inter-Peak (IP), Evening Peak (PM), Off-Peak (OP) 

Purpose:  Home-Based (HB), Non-Home-Based (NHB) 
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A.3 References from Chapter 7 

The next section contains the references of the Thesis’ manuscript for Chapter 7 

Table A.4 Presentation of activity sequence classification. 

Original activity 

sequence 
Analysis group Frequency Percentage 

H;W;H H;W;H 16534 67.078% 

H;O;H H;O;H 4883 19.810% 

H;W;W;H H;W;W;H 2012 8.163% 

H;O;W;H H;O;W;H 441 1.789% 

H;W;W;W;H Rest 282 1.144% 

H;W;O;H Rest 271 1.099% 

H;W;O;W;H Rest 75 0.304% 

H;W;W;W;W;H Rest 33 0.134% 

H;O;W;W;H Rest 28 0.114% 

H;O;W;O;H Rest 23 0.093% 

H;O;O;H Rest 19 0.077% 

H;W;O;W;W;H Rest 8 0.032% 

H;O;W;W;W;H Rest 7 0.028% 

H;W;O;W;O;H Rest 7 0.028% 

H;W;W;O;H Rest 7 0.028% 

H;W;W;O;W;H Rest 5 0.020% 

H;O;W;O;W;H Rest 4 0.016% 

H;W;O;W;O;W;H Rest 3 0.012% 

H;W;W;W;W;W;H Rest 3 0.012% 

H;O;W;O;W;W;H Rest 1 0.004% 

H;W;O;O;W;H Rest 1 0.004% 

H;W;W;W;W;W;O;H Rest 1 0.004% 

H;W;W;W;W;W;W;H Rest 1 0.004% 
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Table A.5 Presentation of 

time period sequence 

classification. 
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AM;PM AM;PM 5551 

AM;IP2 AM;IP2 1921 

IP1;IP2 IP1;IP2 1647 

IP2;PM IP2;PM 1105 

AM;IP1 AM;IP1 1102 

OP1;PM OP1;PM 1016 

AM;IP3 AM;IP3 998 

IP1;PM IP1;PM 951 

IP1;IP1 IP1;IP1 931 

IP2;IP2 IP2;IP2 917 

PM;IP3 PM;IP3 787 

OP1;IP2 OP1;IP2 632 

PM;PM PM;PM 613 

IP3;IP3 IP3;IP3 464 

AM;AM Rest 414 

IP1;IP3 Rest 385 

IP2;IP3 Rest 378 

AM;PM;IP3 Rest 272 

PM;OP2 Rest 268 

IP3;OP2 Rest 266 

OP1;IP3 Rest 248 

AM;IP2;PM Rest 234 

AM;PM;PM Rest 207 

OP1;OP1 Rest 189 

AM;IP1;IP2 Rest 186 

AM;IP1;PM Rest 175 

IP2;OP2 Rest 162 

AM;OP2 Rest 156 

AM;AM;PM Rest 134 

OP1;IP1 Rest 128 

IP1;IP2;PM Rest 123 

IP1;OP2 Rest 108 

OP1;AM Rest 80 

IP1;IP1;IP2 Rest 77 

AM;IP2;IP2 Rest 69 

AM;PM;OP2 Rest 63 

OP1;IP2;PM Rest 62 

AM;IP2;IP3 Rest 61 

OP1;AM;PM Rest 61 

IP1;IP2;IP2 Rest 61 

IP1;PM;IP3 Rest 57 

AM;IP1;IP1 Rest 54 

OP1;PM;IP3 Rest 47 

AM;AM;IP2 Rest 47 

IP1;IP2;IP3 Rest 44 

OP1;PM;PM Rest 40 

IP2;PM;IP3 Rest 37 

OP1;AM;IP2 Rest 35 

IP1;IP1;PM Rest 35 

AM;AM;IP1 Rest 33 

AM;IP1;IP2;PM Rest 32 

IP2;IP2;PM Rest 31 

IP2;PM;PM Rest 29 

AM;IP1;IP3 Rest 28 

IP1;PM;PM Rest 25 

PM;IP3;OP2 Rest 23 

OP1;IP1;IP2 Rest 23 

AM;IP1;IP2;IP2 Rest 23 

PM;IP3;IP3 Rest 22 

OP1;IP1;PM Rest 19 

PM;PM;IP3 Rest 19 

AM;AM;IP3 Rest 19 

AM;IP3;OP2 Rest 18 

OP1;AM;IP1 Rest 18 

AM;IP3;IP3 Rest 17 

AM;IP2;IP2;PM Rest 17 

AM;AM;IP1;IP2 Rest 15 

OP1;IP2;IP3 Rest 15 

AM;IP1;IP1;IP2 Rest 15 

OP1;IP2;IP2 Rest 14 

AM;IP2;PM;IP3 Rest 14 

AM;PM;PM;IP3 Rest 14 

IP1;IP2;OP2 Rest 14 

AM;AM;IP2;PM Rest 14 

IP1;IP1;IP1 Rest 13 

AM;IP2;PM;PM Rest 13 

AM;PM;IP3;OP2 Rest 12 

IP1;IP3;OP2 Rest 12 

IP2;IP2;IP3 Rest 12 

IP1;IP2;IP2;PM Rest 12 

IP2;IP2;IP2 Rest 11 

IP1;PM;OP2 Rest 11 

IP1;IP1;IP3 Rest 11 

AM;AM;PM;IP3 Rest 10 

OP1;PM;OP2 Rest 10 

IP1;IP1;IP2;PM Rest 10 

IP2;IP3;IP3 Rest 10 

AM;IP2;OP2 Rest 10 

OP1;IP3;IP3 Rest 9 

AM;AM;IP1;PM Rest 8 

OP1;IP1;IP1 Rest 8 

AM;IP1;IP1;PM Rest 8 

AM;AM;PM;PM Rest 8 

OP1;AM;IP3 Rest 8 

PM;PM;PM Rest 7 

IP2;IP3;OP2 Rest 7 

IP1;IP2;PM;PM Rest 7 

AM;IP1;PM;IP3 Rest 7 

OP1;AM;IP2;PM Rest 7 

IP1;IP1;IP2;IP2 Rest 7 

AM;IP1;PM;PM Rest 6 

AM;PM;IP3;IP3 Rest 6 

IP1;IP2;PM;IP3 Rest 6 

OP1;AM;IP1;IP2 Rest 6 

IP1;IP3;IP3 Rest 6 

AM;IP1;IP1;IP2;IP2 Rest 5 

AM;AM;OP2 Rest 5 

OP1;OP1;IP2 Rest 5 

AM;AM;IP2;IP2 Rest 4 

IP1;IP1;PM;IP3 Rest 4 

AM;IP1;IP2;IP3 Rest 4 

AM;AM;IP1;IP2;PM Rest 4 

OP1;PM;PM;IP3 Rest 4 

IP3;OP2;OP2 Rest 4 

OP1;AM;AM Rest 4 

OP1;IP1;IP2;IP2 Rest 4 

OP1;IP1;IP2;IP3 Rest 4 

AM;IP2;IP2;IP3 Rest 4 

OP1;IP2;IP2;PM Rest 4 

AM;IP2;PM;OP2 Rest 3 

AM;PM;PM;PM Rest 3 

AM;IP3;IP3;OP2 Rest 3 

AM;IP1;IP2;IP2;PM Rest 3 

AM;IP1;PM;PM;IP3 Rest 3 

AM;IP1;IP1;IP1 Rest 3 

OP1;AM;PM;PM Rest 3 

OP1;AM;AM;PM Rest 3 

OP1;AM;IP1;IP2;PM Rest 3 

OP1;AM;IP1;PM Rest 3 
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OP1;AM;PM;IP3 Rest 3 

IP1;IP1;OP2 Rest 3 

OP1;AM;AM;IP1 Rest 3 

OP1;IP1;OP2 Rest 3 

OP1;IP2;OP2 Rest 3 

OP1;IP3;OP2 Rest 3 

IP1;IP2;IP2;IP3 Rest 3 

IP2;IP2;OP2 Rest 3 

IP2;IP2;PM;IP3 Rest 3 

AM;AM;IP2;PM;PM Rest 2 

AM;AM;IP1;IP1;IP2 Rest 2 

IP1;IP2;PM;OP2 Rest 2 

IP2;PM;IP3;IP3 Rest 2 

IP2;IP2;IP3;OP2 Rest 2 

IP2;IP2;IP2;PM;IP3 Rest 2 

IP1;PM;PM;IP3 Rest 2 

IP1;IP2;IP3;IP3 Rest 2 

IP1;IP1;IP1;IP2 Rest 2 

IP2;OP2;OP2 Rest 2 

IP2;PM;IP3;OP2 Rest 2 

AM;OP2;OP2 Rest 2 

IP3;IP3;OP2 Rest 2 

OP1;OP1;PM Rest 2 

PM;OP2;OP2 Rest 2 

OP1;IP2;PM;OP2 Rest 2 

OP1;IP1;IP2;PM Rest 2 

OP1;AM;OP2 Rest 2 

OP1;AM;IP2;IP2 Rest 2 

AM;PM;PM;OP2 Rest 2 

OP1;PM;IP3;IP3 Rest 2 

AM;IP1;IP1;IP2;PM Rest 2 

AM;IP2;IP2;IP2 Rest 2 

AM;IP1;IP2;OP2 Rest 2 

AM;IP1;IP1;IP3 Rest 2 

AM;IP1;PM;OP2 Rest 2 

AM;IP1;IP2;PM;IP3 Rest 2 

AM;IP1;IP2;PM;PM;I

P3 
Rest 2 

PM;PM;IP3;OP2 Rest 1 

PM;PM;OP2 Rest 1 

OP1;PM;PM;OP2 Rest 1 

AM;IP1;IP1;IP1;IP2 Rest 1 

OP1;IP2;IP3;OP2 Rest 1 

OP1;PM;PM;IP3;IP3 Rest 1 

AM;IP3;IP3;IP3 Rest 1 

AM;PM;PM;PM;IP3 Rest 1 

IP1;IP1;IP1;OP2 Rest 1 

IP1;IP1;IP1;PM Rest 1 

IP1;IP1;IP2;IP2;PM Rest 1 

IP1;IP1;IP2;IP2;PM;I

P3 
Rest 1 

IP1;IP1;IP2;IP2;PM;P

M 
Rest 1 

IP1;IP1;IP2;IP3 Rest 1 

IP1;IP1;IP2;PM;PM Rest 1 

IP1;IP1;PM;OP2 Rest 1 

IP1;IP1;PM;PM Rest 1 

IP1;IP1;PM;PM;OP2 Rest 1 

IP1;IP2;IP2;IP2 Rest 1 

IP1;IP2;IP2;OP2 Rest 1 

IP1;IP2;IP2;PM;IP3 Rest 1 

IP1;IP2;IP2;PM;PM Rest 1 

IP1;IP2;IP2;PM;PM;P

M 
Rest 1 

IP1;IP2;IP3;OP2 Rest 1 

AM;IP2;PM;PM;IP3 Rest 1 

OP1;OP1;OP1;AM;IP

1 
Rest 1 

AM;IP2;IP3;IP3 Rest 1 

AM;AM;PM;OP2 Rest 1 

AM;AM;PM;IP3;IP3 Rest 1 

AM;IP1;IP1;IP2;IP3 Rest 1 

AM;IP1;IP1;PM;PM Rest 1 

AM;IP1;IP2;IP3;IP3 Rest 1 

AM;AM;IP2;IP3 Rest 1 

AM;AM;IP2;IP2;PM Rest 1 

AM;IP1;IP2;PM;OP2 Rest 1 

AM;IP1;IP2;PM;PM Rest 1 

AM;AM;IP1;IP3 Rest 1 

AM;AM;IP1;IP2;IP2 Rest 1 

AM;IP1;IP3;OP2 Rest 1 

AM;AM;IP1;IP1;OP2 Rest 1 

AM;AM;IP1;IP1;IP2;

IP2;IP2 
Rest 1 

AM;IP1;OP2;OP2 Rest 1 

AM;AM;AM;PM Rest 1 

AM;AM;AM;IP2 Rest 1 

AM;AM;AM;IP1 Rest 1 

AM;IP1;PM;PM;IP3;

OP2 
Rest 1 

AM;IP2;IP2;IP2;PM Rest 1 

AM;IP2;IP2;IP3;IP3 Rest 1 

AM;IP2;IP2;OP2 Rest 1 

AM;IP2;IP2;PM;OP2 Rest 1 

IP1;IP2;PM;IP3;OP2 Rest 1 

IP1;IP2;PM;PM;IP3 Rest 1 

IP1;PM;IP3;IP3 Rest 1 

OP1;AM;IP2;IP3 Rest 1 

OP1;AM;IP2;PM;IP3 Rest 1 

OP1;AM;IP2;PM;OP

2 
Rest 1 

OP1;AM;IP3;IP3 Rest 1 

OP1;AM;PM;OP2 Rest 1 

OP1;IP1;IP1;IP2 Rest 1 

OP1;IP1;IP1;IP2;PM Rest 1 

OP1;IP1;IP1;PM Rest 1 

OP1;IP1;IP2;OP2 Rest 1 

OP1;IP1;IP2;PM;PM Rest 1 

OP1;IP1;IP3 Rest 1 

OP1;IP1;PM;IP3 Rest 1 

OP1;IP2;IP2;IP3 Rest 1 

AM;IP1;IP1;IP1;IP2;

PM;PM 
Rest 1 

OP1;IP2;PM;IP3 Rest 1 

OP1;IP2;PM;PM Rest 1 

OP1;OP1;AM Rest 1 

OP1;OP1;AM;AM;O

P2;OP2 
Rest 1 

OP1;OP1;IP2;PM Rest 1 

OP1;OP1;OP1 Rest 1 

OP1;AM;IP1;IP1;IP3 Rest 1 

OP1;AM;IP1;IP1;IP2 Rest 1 

IP2;PM;PM;IP3 Rest 1 

IP1;PM;PM;OP2 Rest 1 

IP2;IP2;IP2;PM Rest 1 

IP2;IP2;PM;OP2 Rest 1 

IP2;IP2;PM;PM Rest 1 

IP2;IP3;IP3;OP2 Rest 1 

OP1;AM;AM;IP2;PM Rest 1 

IP2;PM;PM;PM;IP3 Rest 1 

IP3;IP3;IP3 Rest 1 

OP1;AM;AM;IP1;IP1 Rest 1 

OP1;AM;AM;IP1;IP2 Rest 1 

OP1;AM;AM;IP1;IP3 Rest 1 

OP1;AM;AM;IP1;PM Rest 1 

OP1;AM;AM;IP2 Rest 1 

IP1;IP1;IP2;IP2;IP2 Rest 1 
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Appendix B  

Developed code 

The completion of the presented Ph. D. required the development of a significant amount of 

code implemented in the Python programming language. The methodological framework is 

fully automated and parametrizable from a simple configuration file. The codebase of the 

framework exceeds 2,000 lines (including comments). The following section presents the most 

crucial segments of the code enabling the execution of the previously presented methodology. 

B.1.1 Identification of all paths under threshold constraints 

The efficient search of the all the available paths between two nodes in a graph was completed 

with a modified version of the algorithm presented by Johnson (1975). In particular, the 

Johnson’s algorithm was modified to limit the search space by excluding areas of the graph 

were user-defined maximum costs have been exceeded. The below presented modified code, 

extends the widely used python programming library networkX (Hagberg et al., 2008). In 

addition, the modification can be retrieved from the GitHub repository at the web address: 

https://github.com/harisbal/networkx/blob/cutoffs/networkx/algorithms/simple_paths.py 
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B.1.2 Conversion of ODs to a hybrid Time Varying Graph (hTVG) 
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B.1.3 Identification of candidate tours within hTVGs 
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B.1.4 Simplification of hTVG based on centrality measures 
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B.1.5 Optimisation module 
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B.1.6 Main program (od2trs) 
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