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ABSTRACT

Functional data analysis is a fast-growing research area in statistics that deals with
statistical analysis of infinite-dimensional (functional) data. It is therefore important
to extend the theory and methods used for finite-dimensional to the setting of infinite-
dimensional data. This dissertation applies bootstrap methods to functional data that
are assumed to be weakly dependent in a broad sense and it is based on two main

pillars.

The first pillar of this dissertation addresses the consistency of the moving block and
of the tapered block bootstrap applied to functional time series. More precisely, central
limit theorems for the moving block bootstrap and for the tapered block bootstrap for
the sample mean are proved. It is also shown, that these block resampling procedures
provide consistent estimators of the covariance operator of the sample mean function
and therefore of the spectral density operator of the underlying functional process at
frequency zero. A central limit theorem for the moving block bootstrap applied to the

lag h sample covariance operator is also proved.

The second pillar deals with the application of bootstrap-based methodologies for
testing hypotheses about the equality of certain characteristics of the distributions
between several independent, populations in functional time series context. More pre-
cisely, algorithms based on both the moving block and the tapered block bootstrap
procedures for the important problem of testing the equality of the mean functions
of several populations are developed. A moving block bootstrap based procedure for
testing the equality of the covariance operator between several independent functional
populations is also considered. The basic idea behind these testing methodologies is to
bootstrap the observed functional time series in such a way that the obtained functional
pseudo-observations satisfy the null hypothesis of interest. Therefore, the suggested
block bootstrap-based testing methodologies are applicable to a broad range of possible

test statistics.
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Validity of the proposed bootstrap methods in approximating the distribution of
some fully functional test statistics under the null is established. In addition, the finite
sample behaviour of the bootstrap procedures proposed is investigated by means of
simulations. Simulations are also conducted to gauge the size and power properties of
the suggested block bootstrap-based testing methodologies. Applications to real-life

data sets are also examined.
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[IEPIAHYH

H avdiuom cuveptnolom®y DE0OUEVGY EVOL EVOC TUYEMS AVATTUCOOUEVOS TOUENS EQEUVIC
NG OTUTIOTXAC TOU OO OAELTOL UE TN OTUTIOTIXY AVEAUGT] amElpodldo TaTwy (cUVoETY-
otoxv) dedouévewy. Enouévemc, elvon onuovtixd va enextodel n Yewpla xou ot pédodol
TOU YENOWOTOOLYTOL YL TN OTATIOTIXY| AVIAUGCY| TEMEQUOUEVNS OLAOTAOTG OEDOUEVLV
XU OTNY TEPIMTWOT TV dedouévwy drelpng owdotaone. H Swter auty| eqopudler ti
ued6doug bootstrap o cuvapTnoluxd dedopéva ta omolo utovEtoupe 6T ebvar acVevng

/ /7 / /7 /. 4 14
eCopTnuéva pe o evpeta évvota xou Poactleton o€ 800 XVELOUS TUAWMVECS.

O mpwTog MuAGVAS aUTAS TNE OLaTE3Ng aoyohelton Ue Tn cuvénela Tou moving block
xou Ttou tapered block bootstrap 6tav ot pédodol autol epapudélovion oE CUVIETNOL-
axég ypovooelpée. 1o ouyxexpuuéva, otny dlaTeBr auTr, ATodEVOOVTUL XEVTEXY Opl-
oaxd Vewpruato yla To moving block xou o tapered block bootstrap mou agopolv
ToV Oetypotixd ueco 6po. Emiong, amodevieton 6Tl awteg oL dladixactieg avaderyUoTto-
Anbiog o€y ouy GUVETEIC EXTWUATREIES TOU TEAEGTT) GUVOLIXOUAVOTG TNS UECTIC CLVEETNONG
TOU OelyUaToq, doar xou TN QPUCUATIXC TUXVOTNTAS TNG UTO eCETACT, GUVARTNOLOXS Ot
adixacioc, oe undevixr cuyvotnta. Enilong, amodeuxvieton €va xevtpixd oplaxd Vehpnua
vt To moving block bootstrap mou agopd Tov derypatind teEAecT| cUVBLIXOUAVOTS OE h

YPOVIXES UG TEPNOELS.

O Beltepoc TUAGVOC aoyOAElTaL PE TNV EQuEUOYY| uedodoroyLwy, Tou BaciCovton o
ued680uc bootstrap, yia Tov éAeyyo LTOUEGEWY OYETIXG UE TNV LOOTNTA OPLOUEVLV Y AP0
ATNELOTIXMY TOV XATAVOUMY oVEEIRTNTOY TANUUOUMY, YENOWOTOLOVTAS CUVIRTNOLIXES
YEOVOOEIRES. Luyxexpléva, tpoteivovton alyodprduol tou Pasilovia T660 610 moving
block 660 xaw 670 tapered block bootstrap yia o onuavtixd nedéBinue Tou GTATIOTIXOU
eAEYYOL TNG LIOOTNTAS TWV UECWY CUVAPTHCEWY TOAGY AVEEHOTNTWY GUVAQTNOLOXOY TAT-
Yuouwyv. Ilpoteivetar, eniong, wa dwadixactia tou Bacileton oo moving block bootstrap
YLt TOV EAEYYO TNG LOOTNTOG TOU TEAEGTY) GUVOLIUUOVOTG UETAED BLapoomy aveldpTnTwy

ouvapTnotaxwy TANYuoudy. H Bactnr 1oéa TV TEOTEWVOUEVGY BLABIXAUCLOY YL TOV GTUTL-
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oTWO EAeY Y0 UTOVECEWY, Eivol oL TEYVIXES avadELyaTOANlag Vol QopuocToOY PE TETOLo
TEOTO, €101 WOTE oL dnuoupYnieices (euBo-TUPATNENCELL Vo IXUVOTIOLOUY T1 UNOEVIXY)
unoveot) Tou EheYyou. Autd €yel W AMOTEAECUA Ol TROTEVOUEVOL alYopLiuoL Tou Pooi-
Covtan otic pedodoug block bootstrap va eivor eqopudolueg oe €va eupl @douo mdavev

ENEY Y OCUVOPTACEWY.

‘Ocov agopd Tic TEOTEWOUEVES HEYOBOUC, OTOBELXVIETOL 1) EYXUROTNTO TOUS TPOCEY-
YiCoviag TNV XATOUVOUT PERIXWY EAEYYOOUVORTACENY XATw omd TN Undévixrn umdveo.
Emnpbéoleta, digpeuvdton UECW TEOCOUOLWOEWY, 1| ATOTEASCUATIXOTNTU TV TEOTEWO-
HEVGY BLIBLXACLODY, OTAY EQUPUOCTOVY OE €va Tenepacuévo delyua. Tpocououwwoelg diedd-
yovton eniong yio vor eheyyVel To eninedo oNUAVTIXOTNTOC ot 1) LoYUC TWV TROTEWO-
HEVOY YEV0BOAOYLHOY G TATIO TiX0V eAEYY 0L oL ottoleg Bacilovta o€ bootstrap diadixaotiec.
Téhog, eletdletan 1 OMOTEAEOUATIXOTNTA TOV TEOTEVOUEVWY OLIBLXAGIOY G TATIO TIXO0

EAEYYOU UUE TNV EQUOUOYT) TOUG OF TEOYHATIXG OEDOUEVAL.
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INTRODUCTION

In statistical analysis, conclusions are commonly derived based on information ob-
tained from a random sample of observations. In an increasing number of fields, we
study phenomena that are continuous in time or space and therefore observations can
be considered as curves or images. These observations are viewed as functions in appro-
priate spaces, since an observed intensity is available at each point on a line segment,
a portion of a plane or a volume. Such observed curves or images are called ‘func-
tional data’ and the statistical methods used for analysing this kind of data are called
‘functional data analysis’ (FDA). FDA dealing with independent and identically dis-
tributed (i.i.d.) random variables has received considerable attention in the statistical
literature during the last decades. However the i.i.d. assumption suffers in many cases,
especially when the data are obtained sequentially over time, where there is a natural
dependency in the functional sample. Such temporally dependent functional data are

called ‘functional time series’.

In functional time series analysis the aim is to infer properties of the functional
stochastic process based on an observed stretch Xi, Xs,..., X, i.e., on a functional
time series. In this context, usually the distribution or parameters related to the
distribution of some statistics of interest based on X1, X,, ..., X,, needs to be estimated.
Since in a functional set-up such quantities typically depend in a complicated way on
difficult to estimate infinite-dimensional characteristics of the underlying stochastic
process X, their calculation is difficult in practice. As a result, in functional time
series analysis, resampling methods and, in particular, bootstrap methodologies are

very useful.
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This work falls into this sub-field of functional data analysis that is, we focus on
functional time series, stemming for a stochastic process X = (Xj, t € Z) of Hilbert
space-valued random variables which is LP-m-approximable, a dependence assumption
which is satisfied by large classes of commonly used functional time series models; see,
e.g., Hormann and Kokoszka (2010). This dissertation contributes to the current state
of the art by establishing the validity of block bootstrap procedures in the functional

time series context.

1.1 THESIS OBJECTIVES

The contribution of this dissertation to the FDA is twofold. First, we prove consis-
tency of the moving block bootstrap (MBB) and of the tapered block bootstrap (TBB)
for the sample mean function in the case of weakly dependent (LP-m-approximable),
Hilbert space-valued random variables. Furthermore, we show that these bootstrap
methods provide consistent estimators of the covariance operator of the mean func-
tion estimator, that is of the spectral density operator of the underlying functional
stochastic process at frequency zero. We also prove a CLT for the MBB applied to
approximate the distribution of the sample covariance operator. Second, we propose
general bootstrap-based testing procedures for the important problem of comparing the
mean functions or the covariance operators between several populations and which are
applicable to a wide range of test statistics of interest. The basic idea of the suggested
procedures is to generate the functional pseudo observations in such a way that the null
hypothesis of interest is satisfied. For each hypothesis testing theoretical justification
for approximating the null distribution of certain fully functional test statistics are
given. Furthermore, simulations are carried out for each case to investigate the finite

sample performance of the proposed algorithms.

1.2 DISSERTATION OUTLINE

The objectives previously described are unfold in this thesis in the form of five chap-
ters. After this introductory chapter, Chapter 2 provides some concepts, tools and
notations which are central in Functional Data Analysis. The chapter begins with a
brief introduction to the data that motivate this research and its representation using

basis functions. Then, an introduction to the theory of operators in Hilbert spaces is
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given. After that, by focusing to the Hilbert space of square integrable functions, some
notations and properties of operators, is given. Later on, this chapter focuses on the
properties of random samples in the space of square integrable functions and it gives
the extension of the summary statistics to the functional framework. Moreover, the
LP-m-approximability, which is the weak dependence structure of the stochastic pro-
cess considered in this dissertation, is presented. Finally, some basic definitions and
results for the asymptotic behavior of the stochastic process considered are given.

In Chapter 3 a central limit theorem for the moving block bootstrap and for the
tapered block bootstrap is proved. Also it is shown that these block bootstrap proce-
dures provide consistent estimators of the spectral density operator of the underlying
stochastic process at frequency zero. We conclude the chapter by addressing the im-
portant problem of comparing the mean functions between independent k-populations.
Block bootstrap based procedures for testing the equality of mean functions between
several independent functional time series are proposed. For these algorithms the gener-
ated pseudo observations satisfy the null hypothesis of interest therefore, the suggested
methods can be applied to a broad range of test statistics of interest. Theoretical
results that justify the validity of the suggested bootstrap-based procedures applied
to test statistics considered in the literature are established. In Section 3.4, the finite
sample performance of the MBB, of the TBB and of the stationary bootstrap (SB) is
investigated by estimating the standard deviation function of the normalized sample
mean function. Then, simulations are carried out to examine the finite sample size and
power performance of the suggested tapered block bootstrap-based testing procedures.
An application to a real-life data set is also discussed. Finally, auxiliary results and
proofs of the main results are presented concluding this chapter.

Chapter 4 is devoted to the important problem of testing the equality of the lag-
zero autocovariance operators of several independent functional time series. Firstly, the
asymptotic validity of the MBB procedure applied to estimate the distribution of the
lag-h sample autocovariance operator, for any (fixed) lag h, h € Z is established. Then,
a moving block bootstrap algorithm is proposed for testing the hypothesis of interest,
which is based on bootstrapping the time series of tensor products, and generates
pseudo random elements that satisfy the null hypothesis of interest. The finite sample
size and power performance of the suggested moving block bootstrap-based testing
procedure is illustrated through simulations and an application to a real-life data set is

discussed. This chapter ends with some auxiliary results and the presentation of proofs
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of the main result obtained.
Finally, Chapter 5 provides some concluding remarks summarizing the contributions

of this thesis and discussing some future developments.
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NOTATION AND SETUP

Statistics is concerned with the analysis of data obtained from observations of random
variables. The data that motivate this dissertation are observed in the form of curves,
i.e. each observation is a real-valued function of the form X;(7), 7 € [a,b]. More pre-
cisely we consider observations stemming from a stochastic process X = (X;;t € Z)
of Hilbert space-valued random variables which satisfies certain stationarity and de-
pendence properties. We suppose that the random variables X; are random functions
Xi(w,7), 7 € T,w € Q,t € Z, defined on a probability space (2, A, P) and take
values in the separable Hilbert-space of squared-integrable R-valued functions on Z,
denoted by L*(Z). In this section, the notation used in the dissertation and the nec-
essary background for supporting the main contributions of this thesis are introduced.
More precisely, in Section 2.1 a brief introduction to Functional Time Series is given.
Section 2.2 introduces some fundamental concepts of the theory of operators. Sec-
tion 2.3 focuses on the space L*(Z) of square integrable functions and describes some
fundamental concepts. In Section 2.4 some basic properties of random samples in the
space L*(Z) and some useful results are given. The notion of weak dependence used in
this dissertation is presented in Section 2.5. In Section 2.6, some basic definitions and
results regarding the asymptotic theory of infinite dimensional spaces are given. We
conclude this section, by giving some basic results regarding asymptotic behavior of the
sample mean function and covariance operator of the functional time series considered

in this dissertation.
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2.1 FUNCTIONAL TIME SERIES

Statistics is a branch of mathematics dealing with the collection, organization, anal-
ysis, interpretation, and presentation of observations taken on a sample with the aim
of making inferences about the general population from which the sample is drawn.
These data could appear in various forms. For instance, consider a data set obtained
by recording the electricity consumption in a 15 minutes interval for 10 days, i.e., we
have 96 electricity consumption measurements for each day. We may assume that the
data set consists of 960 observations where z; represents the ¢-th observation and it
is a scalar quantity. Alternatively, z; could be a vector of length 96 representing the
observations corresponding to the ¢-th day. An alternative approach is to represent ob-
servations of electricity consumption as functions, i.e., X;(u) is a function representing
the electricity consumption of the entire ¢-th day. For the latter case, to convert the
discrete trajectories into functions we interpolate the data using a basis of L?(Z), where
T represents a 24-hour interval. For this conversion, by letting X;(u;) be the j-th mea-
surement of electricity consumption on day ¢, each vector (X;(uq), X;(u2), ..., X¢(uog))

is approximated by an expansion of the form

K
Xi(uy) =Y condn(uy)
k=1

where ¢y, k = 1,2, ... are basis functions in L*(Z), for example the Fourier basis or the
B-spline basis functions. Since, the basis functions are defined on the whole 24-hour

interval we might express the functional data X;(u) as

K
Xi(u) = > crpdr(u).
k=1

In such cases the obtained set of functions {X;, ¢ = 1,2,...,n} is called a functional

time series.

Figure 2.1 illustrates the functional data approach stated above where the dotted
vertical lines separate days. To convert the discrete data in functional form the Fourier
basis with 49 basis functions has been used. As it can be seen, the curves X;(u) are
obtained by splitting a continuous time record into daily curves.

Figure 2.2 demonstrates the dependence between the random elements X; and X

BLock BooTSTRAP METHODS FOR FUNCTIONAL TIME SERIES 6
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Figure 2.1: Electricity consumption in Cyprus from 1/1/2009 00:00 to 10/1/2009 23:45,
recorded every fifteen minutes. The vertical lines separate days and ¢-th day’s graph
represents the observation x;(u).

for s # t by showing the estimation of the correlation coefficient between the random
variables X;(u) and Xy, (u) for different values of u and lag h = 1,2. As evident the

curves X;(u) are dependent.
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Figure 2.2: Estimated correlation values between the curves X;(u;) and X4y (u;) for
j=1,2,...,96 for lag h =1 (left) and h = 2 (right)

In the above example, each function was created from the same number of observations
which were equally spaced. However, functional data can also arise in other cases. For
example, when measurements on human subjects are made, it is often difficult to ensure
that they are made at the same time in the life of the subject and there may be different
numbers of measurements for different subjects. A typical example are height curves
i.e. Xi(u) is the height of subject ¢ at time u after birth. (see, e.g., Tuddenham and
Snyder, (1954).)
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2.2 CoMPACT OPERATORS IN HILBERT SPACES

Operators are the basic mathematical tool to deal with functional data. In this section
we will focus on compact operators and a brief description of their main theoretical

properties is given.

We consider a separable Hilbert space H with inner product (-,-) which generates the
norm || -||. A continuous and bounded linear operator ¥ : H — H is said to be compact
if there exist two orthonormal bases {e;,;i = 1,2,...} and {¢,i =1,2,...} of H and a

real sequence {\;,7 = 1,2, ...} converging to zero as i — 0o, such that

oo
U(z) = Nz, e)e;, © € H.
i=1
Note that, the \; may be assumed positive because one can replace e; by —e;. The above
representation is called the singular value decomposition of ¥. An operator having
the above singular value decomposition is said to be a Hilbert-Schmidt operator if
S A? < co. We denote by £ the space of Hilbert-Schmidt operators. For two

Hilbert-Schmidt operators ¥; and ¥y, we denote by

oo

(U1, Wa) s = Y (Wi(es), Ua(es)
i=1

the inner product which generates the Hilbert-Schmidt norm || W13, = > oo, [[P1 (e
Here {e;,i = 1,2,...} is an arbitrary orthonormal basis of H. Note that the value of
(U, Us) ps is independent of the choice of the basis and that ||U[|7,¢ = > oo A7 We
also define the tensor product ¥; ® ¥, : L — L between the operators ¥; and ¥y by
Uy @ Wo(:) = (¥y,-)ysPs. Note that ¥y ® W, is an operator acting on the space of
Hilbert-Schmidt operators.

Another important family of operators is the trace-class operators. A compact operator
U is said to be nuclear or trace-class if >~ A\; < co. In this case, the trace of ¥, is

given by

[e.e]

tr(0) =Y (U(er), e:)

i=1
where the sum converges absolutely and is independent of the choice of the orthonormal

basis. It can be shown that if U is trace-class tr(¥) = > 2 ;.
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2.3 THE HILBERT SPACE L*(Z)

In the following, we focus on the separable Hilbert space L*(Z), that is, the set of all
measurable real-valued functions f defined on Z satisfying fI f?(u) du < co. The space

L*(Z) is a separable Hilbert space with the inner product

<ﬁm—éﬂmmww

which generates the norm || f||* = (f, f). Notice that if f,g € L*(Z) the equality f = ¢
means ||f — g|| = 0 whereas f # g that ||f — g|]| > 0.
Let {e;,7 = 1,2,...} be an orthonormal basis of L?(Z). Then every f € L*(Z) can be

written as

f= Z(f? ei)e;.

Therefore,

(fr9) =Y (f.ed(g.e)

=1

and Parseval’s equality
o0

117 =D (f.e)

i=1
follow. We define the tensor product f ® g : L*(Z) — L*(Z) between f and g by
fog()=(f")g

From now on, and without loss of generality, we assume that interval Z is normalized to
be a unit interval, i.e, Z = [0, 1] and, for simplicity, integral signs without the limits of

integration imply integration over the interval Z. We finally write L? instead of L*(Z).

An important class of operators in L? are the integral operators defined by:

wuwnz/%wwnme

where ¢ (u, v) is called the kernel of the operator W. Such operators are Hilbert-Schmidt
if and only if [[4?(u,v) dudv < co. The integral operator W is said to be symmetric
if ¥(u,v) = ¥(v,u) and positive-definite if for all square-integrable functions f(u),
[ (u,v)f(u)f(v) dudv > 0. In this case ¢)(u,v) has the representation

W(u,v) = Z)\iei(u)ei(v) (2.3.1)
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where {e;,i = 1,2,...} is an orthonormal basis of L? consisting of eigenfunctions of ¥
such that the corresponding sequence of eigenvalues {\;,i = 1,2,...} is nonnegative,
i.e., U(e;) = \ie;. Representation 2.3.1 is known as Mercer’s theorem and if the kernel
1 is continuous the convergence is absolute and with respect to the L? norm. From
Mercer’s theorem it follows directly that [t(u,u)du =" \;.

If ¥; and Wy are Hilbert-Schmidt integral operator with kernels ¢ (u,v) and ¥s(u, v),
respectively, then (W1, Wo) s = [[ 1 (u, v)ih2(u, v) dudv and || ¥[34 = [[ ¢3(u, v) dudv.

2.4 RANDOM VARIABLE IN L*(Z)

The stationarity of a stochastic process X = { X, t € Z} is an indispensable property

in the functional time series analysis.

Definition 2.4.1. A stochastic process X = {X;, t € Z}, is called strictly stationary
if, for all finite sets of indices ) C Z, the joint distribution of (X4, ¢ € Q), does not

depend on t € Z.

The samples X1, X», ..., X,, of curves that we consider in this dissertation and intro-
duced in Section 2.1 are viewed as the outcomes of a strictly stationary stochastic
process X = {X;, t € Z}, where the random variables X; take values in L? and are

dependent, in a broad sense which is made precise in Section 2.5.

If X, is integrable, i.e., E[|[X;|| = E [ X?(u)du < oo, there is a unique function
p € L*(Z) such that E(X,y) = (u,y), for all y € L*(Z). The function p is called the
expectation function of X;, EX; € L*(Z) and is independent of ¢ by the stationarity of
X. If in addition E||X;||* < oo, then the covariance operator of X at lag h € Z exists
and is defined by

Crh=E(X; — 1) @ (Xegn — p)

which is independent of ¢ by the stationarity of X. By the definition of the covariance

operator Cp, it follows that Cj, is an integral operator with real valued kernel

cn(u,v) = E[(Xe(u) = p(u))(Xin(v) = p(v))]-

ICals = / / 2 (u, v) dudo.

BLock BooTSTRAP METHODS FOR FUNCTIONAL TIME SERIES 10
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As it can be seen, each value of ¢, (u, v) measures the joint variability of the functional

variables X; and X, ; at points u and v respectively. If

Z [Chll s < o0, (2.4.1)

heZ

the series Y, ., cn(u, v)e™, w € [—m, ] where ¢ denotes the imaginary unit, converges,

and the operator F, whose kernel is

fo(u,v) = (27r)_1 Zch(u,v)e’ihw

heZ

is called the spectral density operator of X at frequency w and is defined by

Fo=(2m)" ZChe_ihw,

heZ

see Panaretos and Tavakoli (2013). We then have C, = [T F, e dw.

Having an observed stretch Xy, Xy, ..., X,,, the mean function p is estimated by the

sample mean, X,, which is given by

The operator Cj, is commonly estimated by the corresponding sample autocovariance

operator, which is given by

(
n~! Z;:lh(Xt - Yn) ® (Xppn — Xp), if0<h<n,
Ch=Sn 'S MX, - X))@ (X, —X,), if —n<h<0,

t=1

0, otherwise,

\

and the covariance kernel ¢;,(u, v) estimated by its sample counterpart

nt I (Xo(u) = X)) (Xean(v) = Xn(0), H0<h <n,

an(uv) = § 07 SN (X n(u) = X () (Xo(v) = Xa(v)), i —n < h <0,

0, otherwise.

\

We conclude this section, by illustrating the notions introduced above using a real
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Figure 2.3: Electricity consumption curves (left) and their mean function estimation
(right)

life example. The data set considered consists of 15-minutes measurements of the elec-
tricity consumption in Cyprus in Summer 2010, i.e., from 1 June 2010 through 31
August 2010. We use the R software with 49 Fourier basis functions to transform the
raw discrete data to functional data as explained in Section 2.1. The resulting func-
tional time series and the estimation of the mean function are displayed in Figure 2.3.

Whereas Figure 2.4 illustrates the estimation of the covariance kernel at lag zero.

2.5 LP-m-APPROXIMABLE

For the purpose of this dissertation, and in order to describe the dependence structure
of the stochastic process X, we use the notion of LP-m-approximability; see Hormann
and Kokoszka (2010). A stochastic process X = {X;, ¢ € Z} with X; taking values in

L?, is called LP-m-approximable if the following conditions are satisfied:

(i) X; admits the representation
Xt = f((sh 5t—1a 5t—27 .. ) (251)
for some measurable function f : S® — L? where {d;, t € Z} is a sequence of

i.i.d. elements in a measurable space S.

(i) E||Xo||” < co and
> (B Xy — Xyl )P < 00, (2.5.2)

m>1

BLock BooTSTRAP METHODS FOR FUNCTIONAL TIME SERIES 12
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Figure 2.4: Estimated covariance kernel at lag zero of the electricity consumption data

where X, = f(0, 0115+« Ot—mt1, 5§t 4 (5” 15 --) and for each ¢ and k, (5%)

is an independent copy of d;.

The intuition behind the above definition is that the function f in (2.5.1) should be
such that the effect of the innovations d; far back in the past becomes negligible, that
is, these innovations can be replaced by other, independent, innovations.

By (2.5.1) the stochastic process X = (X;;t € Z) is strictly stationary. LP-m-
approximability implies that for each m > 1, the sequences (X;,,;t € Z) are strictly
stationary and m-dependent, and X;,, and X; have the same distribution. Further-
more, from the above definition it is easily seen that E|| X, — X;||P = E|| Xo.m — Xol[”
and E|| X; n,||P = E|| X;||P = E|| Xo||” for p € N and for all ¢ € Z.

Kokoszka and Reimherr (2013) proved, that, L*-m-approximability of X implies
that the tensor product {X; ® X, t € Z} is L*-m-approximable with X;,, ® X;,, be
the m-dependent approximation of X; ® X;.

Furthermore, Hormann et al. (2015) proved that if X is L?-m-approximable then
(2.4.1) holds and the spectral density operator F,, w € [—, 7] is trace-class.

For the stochastic process X considered in this dissertation, we somehow strengthen

condition (2.5.2) to the following condition.
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Assumption 1. X is LP-m-approximable and satisfies

lim m (|| X, — X, ") = 0.
m—0o0

2.6 CENTRAL LIMIT THEOREM AND RELATED RESULTS

When dealing with random variables, a pivotal concept in asymptotic derivation are
Gaussian processes. In the finite dimensional case, a Gaussian distribution describes
the distribution of random variables which are scalars or vectors (for multivariate
distributions) and is fully defined by its mean value or its mean vector and its covariance
value or its covariance matrix. Whereas, in the infinite dimensional case, a Gaussian
process, defines a distribution over infinite dimensional variables, e.g., functions or

operators, and it is fully specified by a mean and a covariance function.

Definition 2.6.1. An H-valued random element Z is Gaussian on H if for all h € ‘H

the real random variable (Z, h) has a Gaussian distribution on R.

One of the central topics in asymptotic theory is that of the weak convergence. To

define this convergence in L? we will need the following definitions

Definition 2.6.2. Suppose (X,;n € N) and X are random elements in L? with dis-

tributions Py, and Px respectively. We say that Py, converges weakly to Py if
E[f(Xn)] = E[f(X)] asn— o0

for every bounded and continuous real function f on L?.

Definition 2.6.3. Suppose (X,;;n € N) and X are random elements in L?. We say that
(X,) converges in distribution to X, if the distribution Py, of X,,, converges weakly

to the distribution Py of X as n — oo. We denote this by X, = X.

In infinite dimensional spaces, to prove weak convergence of a random sequence, a

useful property is that of tightness.

Definition 2.6.4. A sequence of random variables (X,,;n € N) in L? is said to be tight

if for every € > 0 there exist a compact set K. C L? such that for all n € N :

P(X,eK.)>1—¢
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The following result, which is stated as Proposition 7.4.2 of Laha and Rohatgi (1979),
gives a convenient criterion for weak convergence and tell us why tightness is an im-

portant property.

Theorem 2.6.1. Let (X,;;n € N) be a stochastic process and X be a random element

of L?. Then X,, = X as n — oo if and only if
(a) (Xn,y) = (X,y)  Vyel?
(b) the sequence (X,;n € N) is tight.

Note that Condition (a) of the above theorem, is the weak convergence of real-valued
random variables and can be proved by applying an appropriate central limit theo-
rem. Concerning Condition (b) the following results give some sufficient conditions for

tightness.

Lemma 2.6.1. Let {W,,;, 1 <t < n,1 < n < oo} be a double array of random
elements of a Hilbert space H , strictly stationary for each n and with EW, = 0 and
EHWthQ < Q0. [f

2
lim E

n—o0

Z Wn,t

t=1

then the sequence {W,;,1 <t < n} is tight.

exists and is finite

The above lemma, is given in Remark 3.3 of Chen and White (1998). Another
useful result for proving tightness, which is derived from Theorem 1.13 of Prokhorov

(1956) is the following.

Theorem 2.6.2. A zero mean sequence {W,;, 1 <t < n,1 < n < oo} of square
integrable elements on L? is tight if there exists a complete orthonormal system {e;, j >

1} in L? such that
2

I E =
(S )| <o

A useful criterion for proving the above condition is given in Lemma 14 of Cerovecki

and Hormanm (2017) and is stated below.

Lemma 2.6.2. Consider sequences (p?,j > 1), n > 0 satisfying the following proper-

ties:

1. p} >0 for all j,n,

BLock BooTSTRAP METHODS FOR FUNCTIONAL TIME SERIES 15



2. limy, o0 P} = p?,

8. Y5 p)=p <00,

4 limy, e Zj; i =D,

5. 25 p) <oo foralln>1.

Then

li P =0
Jim sup ),

>k
We conclude this section with two central limit theorems for LP-m-approximable stochas-
tic processes. The first theorem concerns the sample mean and is stated as Theorem 1
of of Horvéth et al. (2013), whereas the second concerns the covariance operator at

lag 0 and is stated as Theorem 3 of Kokoszka and Reimherr (2013).

Theorem 2.6.3. Suppose (Xy;t € Z) satisfies Assumption 1 with p = 2. Then

VX, —p) = Zy

where Z,, is a zero mean Gaussian process in L* with covariance operator C' with kernel

c(u,v) =E(Z,(u)Z,(v)) gwen for any u,v € [0,1]* by

c(u, v) = E[(Xo(u) — pu(u))(Xo(v) — u(v))]
+ ) El(Xo(w) = p(w)(Xi(v) = p(v))]

i>1

+ 37 El(Xo(v) — p(0))(Xi(u) — ().

i>1

Theorem 2.6.4. Suppose (Xt € 7Z) is an L*-m-approxzimable stochastic process in

L2. Then
Vn(Co — Co) = Ze,

where Z¢, is a zero mean Gaussian Hilbert-Schmidt operator with covariance operator

'=E[(Xo—p) @ (Xo—p) —Co) @ ((Xo — p) ® (Xo — ) — Co)]

+2) E[((Xo — 1) @ (Xo — 1) — Co) @ ((X; — p) ® (X — ) — Cp))-
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MOVING BLOCK AND TAPERED BLOCK
BOOTSTRAP FOR FUNCTIONAL TIME
SERIES WITH AN APPLICATION TO THE
K-SAMPLE MEAN PROBLEM

ABSTRACT

We consider infinite-dimensional Hilbert space-valued random variables that are as-
sumed to be weakly dependent in a broad sense. We prove a central limit theorem
for the moving block bootstrap and for the tapered block bootstrap, and show that
these block bootstrap procedures also provide consistent estimators of the long run
covariance operator. Furthermore, we consider block bootstrap-based procedures for
fully functional testing of the equality of mean functions between several independent
functional time series. We establish validity of the block bootstrap methods in approx-
imating the distribution of the statistic of interest under the null and show consistency
of the block bootstrap-based tests under the alternative. The finite sample behaviour
of the procedures is investigated by means of simulations. An application to a real-life

data set is also discussed.
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3.1 INTRODUCTION

In statistical analysis, conclusions are commonly derived based on information obtained
from a random sample of observations. In an increasing number of fields, these obser-
vations are curves or images which are viewed as functions in appropriate spaces, since
an observed intensity is available at each point on a line segment, a portion of a plane
or a volume. Such observed curves or images are called ‘functional data’; see, e.g.,
Ramsay and Dalzell (1991), who also introduced the term ‘functional data analysis’
(FDA) which refers to statistical methods used for analysing this kind of data.

In this paper we focus on functional time series, that is we consider observations
stemming from a stochastic process X = (X, t € Z) of Hilbert space-valued ran-
dom variables which satisfies certain stationarity and weak dependence properties.
Our goal is to infer properties of the stochastic process based on an observed stretch
X1, Xo,...,X,, ie., on a functional time series. In this context, we commonly need
to calculate the distribution, or parameters related to the distribution, of some statis-
tics of interest based on Xi, X5, ..., X,. Since in a functional set-up such quantities
typically depend in a complicated way on infinite-dimensional characteristics of the
underlying stochastic process X, their calculation is difficult in practice. As a result,
resampling methods and, in particular, bootstrap methodologies are very useful.

For the case of independent and identically distributed (i.i.d.) Banach space-valued
random variables, Giné and Zinn (1990) proved the consistency of the standard i.i.d.
bootstrap for the sample mean. For functional time series, Politis and Romano (1994)
established validity of the stationary bootstrap for the sample mean and for (bounded)
Hilbert space-valued random variables satisfying certain mixing conditions. A func-
tional sieve bootstrap procedure for functional time series has been proposed by Pa-
paroditis (2017). Consistency of the non-overlapping block bootstrap for the sample
mean and for near epoch dependent Hilbert space-valued random variables has been
established by Dehling et al. (2015). However, up to date, consistency results are
not available for the moving block bootstrap (MBB) or its improved versions, like the
tapered block bootstrap (TBB), for functional time series. Notice that the MBB for
real-valued time series was introduced by Kiinsch (1989) and Liu and Singh (1992).
The basic idea is to resample blocks of the time series and to joint them together in
the order selected in order to form a new set of pseudo observations. This resampling

scheme retains the dependence structure of the time series within each block and can
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be, therefore, used to approximate the distribution of a wide range of statistics. The
TBB for real-valued time series was introduced by Paparoditis and Politis (2001). It
uses a taper window to downweight the observations at the beginning and at the end

of each resampled block and improves the bias properties of the MBB.

The aim of this paper is twofold. First, we prove consistency of the MBB and of
the TBB for the sample mean function in the case of weakly dependent Hilbert space-
valued random variables. Furthermore, we show that these bootstrap methods provide
consistent estimators of the covariance operator of the sample mean function estimator
and therefore of the spectral density operator of the underlying stochastic process
at frequency zero. We derive our theoretical results under quite general dependence
assumptions on X, i.e., under L%-m-approximability assumptions, which are satisfied
by a large class of commonly used functional time series models; see, e.g., Hormann
and Kokoszka (2010). Second, we apply the above mentioned bootstrap procedures to
the problem of fully functional testing of the equality of the mean functions between a
number of independent functional time series. Testing the equality of mean functions
for i.i.d. functional data has been extensively discussed in the literature; see, e.g.,
Benko et al. (2009), Hérvath and Kokoszka (2012, Chapter 5), Zhang (2013) and
Staicu et al. (2015). Bootstrap alternatives over asymptotic approximations have been
proposed in the same context by Benko et al. (2009), Zhang et al. (2010) and, more
recently, by Paparoditis and Sapatinas (2016). Testing equality of mean functions for
dependent functional data has also attracted some interest in the literature. Horvath et
al. (2013) developed an asymptotic procedure for testing equality of two mean functions
for functional time series. Since the limiting null distribution of a fully functional, L*-
type test statistic, depends on difficult to estimate process characteristics, tests are
considered which are based on a finite number of projections. A projection-based
test has also been considered by Horvath and Rice (2015). Although such tests lead
to manageable limiting distributions, they have non-trivial power only for deviations
from the null which are not orthogonal to the subspace generated by the particular
projections considered.

In this paper, we show that the MBB and TBB procedures can be successfully
applied to approximate the distribution under the null of such fully functional test
statistics. This is achieved by designing the suggested block bootstrap procedures

in such a way that the generated pseudo-observations satisfy the null hypothesis of
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interest. Notice that such block bootstrap-based testing methodologies are applicable
to a broad range of possible test statistics. As an example, we prove validity for the
L2-type test statistic recently proposed by Horvath et al. (2013).

The paper is organised as follows. In Section 3.2, the basic assumptions on the
underlying stochastic process X are stated and the MBB and TBB procedures for
weakly dependent, Hilbert space-valued random variables, are described. Asymptotic
validity of the block bootstrap procedures for estimating the distribution of the sample
mean function is established and consistency of the long run covariance operator, i.e.,
of the spectral density operator of the underlying stochastic process at frequency zero,
is proven. Section 3.3 is devoted to the problem of testing equality of mean functions
for several independent functional time series. Theoretical justifications of an appro-
priately modified version of the MBB and of the TBB procedure for approximating the
null distribution of a fully functional test statistic is given and consistency under the
alternative is shown. Numerical simulations and a real-life data example are presented
and discussed in Section 4. Auxiliary results and proofs of the main results are deferred

to Section 5.

3.2 BLOCK BOOTSTRAP PROCEDURES FOR FUNCTIONAL

TIME SERIES

3.2.1 PRELIMINARIES AND ASSUMPTIONS

We consider a strictly stationary stochastic process X = {X;, t € Z}, where the
random variables X; are random functions X;(w,7), 7 € Z, w € Q, t € Z, defined on a
probability space (2, A, P) and take values in the separable Hilbert-space of squared-
integrable R-valued functions on Z, denoted by L?*(Z). The expectation function of
X;, EX; € L*(Z), is independent of ¢, and it is denoted by u. Throughout Section
3.2, we assume for simplicity that p = 0. We define (f,g) = [, f(7)g(r)dr, || f||* =
(f, ) and the tensor product between f and g by f ® g(-) = (f,-)g. For two Hilbert-
Schmidt operators ¥y and Wy, we denote by (U1, Uo)pys = D> = (Uy(e;), ¥a(e;)) the
inner product which generates the Hilbert-Schmidt norm [[¥q||gs = Y ooy W1 (e)||?,
for {e;;i = 1,2,...} an orthonormal basis of L?(Z). Without loss of generality, we

assume that Z = [0, 1] (the unit interval) and, for simplicity, integral signs without the
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limits of integration imply integration over the interval Z. We finally write L? instead
of L*(Z).

To describe the dependent structure of the stochastic process X, we use the notion
of LP-m-approximability; see Hormann and Kokoszka (2010). A stochastic process
X = {X;,t € Z} with X, taking values in L?, is called L*-m-approximable if the

following conditions are satisfied:

(i) X; admits the representation

Xt - f(5t, 5t—17 5t—27 .. ) (321)

for some measurable function f : S® — L? where {0;, t € Z} is a sequence of

ii.d. elements in L2.

(ii) E||X,||* < oo and

> VEIX, = Xomll? < o0, (3.2.2)

m>1

where X, = f(04,00-1, -+, Or—mi1, 5;31_),”, 5§sz_1, ...) and, for each t and k, (5%)

is an independent copy of 9.

The intuition behind the above definition is that the function f in (3.2.1) should be
such that the effect of the innovations d; far back in the past becomes negligible, that
is, these innovations can be replaced by other, independent, innovations. We somehow

strengthen (3.2.2) to the following assumption.

Assumption 2. X is L?-m-approximable and satisfies

lim 1 /BJ|X, — X, |2 = 0.

m—00

Notice that the above assumption is satisfied by many linear and non-linear functional
time series models cconsidered in the literature; see, e.g., Hormann and Kokoszka

(2010).

3.2.2 THE MoVING BLOCK BOOTSTRAP

The main idea of the MBB is to split the data into overlapping blocks of length b and to
obtain the bootstrapped pseudo-time series by joining together the k independently and

randomly selected blocks of observations in the order selected. Here, k is a positive
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integer satisfying b(k — 1) < n and bk > n. For simplicity of notation, we assume
throughout the paper that n = kb. Since the dependence of the original time series
is maintained within each block, it is expected that for weakly dependent time series,
this bootstrap procedure will, asymptotically, correctly imitate the entire dependence
structure of the underlying stochastic process if the block length b increases to infinity,
at some appropriate rate, as the sample size n increases to infinity. Adapting this
resampling idea to a functional time series X,, = {X;, t = 1,2,...,n} stemming from
a strictly stationary stochastic process X = {X;,t € Z} with X, taking values in L?
and E(X;) = 0, leads to the following MBB algorithm.

Step 1 : Let b=10(n),1 < b < n, be an integer. Denote by B, = { Xy, Xy11,. .., Xitp-1}
the block of length b starting from observation X,;, t = 1,2,..., N, where N =

n — b+ 1 is the number of such blocks available.

Step 2 : Define i.i.d. integer-valued random variables I, Is, ..., I; having a discrete
uniform distribution assigning the probability 1/N to each element of the set
{1,2,...,N}.

Step 3 : Let Bf = B, i=1,2,...,k, and denote by {Xé—1)b+1= Xii1ypyar - - , X5} the
elements of B. Join the k blocks in the order B, Bj, ..., B} together to obtain a

new set of functional pseudo observations of length n denoted by X7, X5, ..., X.

The above bootstrap algorithm can be potentially applied to approximate the dis-
tribution of some statistic T,, = T(Xi, Xy,...,X,) of interest. For instance, let
T, = X, be the sample mean function of the observed stretch Xi, Xs,...,X,, ie.,
X, =n7 'Y | X;. We are interested in estimating the distribution of v/nX,. For
this, the bootstrap random variable \/n(X, — E*(X,)) is used, where X, is the mean
function of the functional pseudo observations X7, X3, ..., X* ie., X, =n""! S Xy
and E*(X ) is the (conditional on the observations X,,) expected value of X . Straight-

forward calculations yield

n b—1
* (K 1
E(X,) = ij - ;a —t/0)(X; + Xot1)

It is known that, under a variety of dependence assumptions on the underlying mean
zero stochastic process X, it holds true that /n.X, LT asn — oo, where I' denotes a

Gaussian process with mean zero and long run covariance operator 27.F,. Furthermore,
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InE(X, ® X,,) — 2nF||us — 0 as n — oo. Here, F, = (2m) 7' 3, ., Che ™ w € R,
is the so-called spectral density operator of X and C', denotes the lag h autocovariance
operator of X, defined by Cy(-) = E(X}, ) X¢yn for any h € Z; see Panaretos and
Tavakoli (2013a,b).

The following theorem establishes validity of the MBB procedure for approximating
the distribution of \/nX, and for providing a consistent estimator of the long run

covariance operator 2mF.

Theorem 3.2.1. Suppose that the mean zero stochastic process X = (Xy,t € Z) satis-
fies Assumption 2 and let X7, X5,..., X be a stretch of pseudo observations generated
by the MBB procedure. Assume that the block size b = b(n) satisfies b='+bn~1/2 = o(1)

as n — 0o. Then, as n — o0,
(i) d(L(Vn (X, —E (X)) | Xn), L(vVnX,)) =0, in probability,

where d is any metric metrizing weak convergence on L* and L(Z) denotes the law of

the random element Z. Furthermore,

(ii) [nE* (X, —E* (X))@ (X, ~E* (X)) ~nE(X,&X) lus = op(L), in probability.

3.2.3 THE TAPERED BLOCK BOOTSTRAP

The TBB procedure is a modification of the block bootstrap procedure considered
in Section 3.2.2 which is obtained by introducing a tapering of the random elements
X;. The tapering function down-weights the endpoints of each block B;, towards zero,
i.e., towards the mean function of X;. The pseudo observations are then obtained by
choosing, with replacement, k appropriately scaled and tapered blocks of length b of
centered observations and joining them together.

More precisely, the TBB procedure applied to the functional time series Y, =
{V;, t =1,2,...,n} stemming from a strictly stationary, L?-valued, stochastic process

Y = (V;,t € Z), can be described as follows. Let Xj, Xs,..., X, be the centered
observations, i.e., X; =Y, —Y,, t =1,2,...,n, where Y, = n~! >, Y. Furthermore,
let b = b(n), 1 < b < n, be an integer and let w,(-), n = 1,2,..., be a sequence of

so-called data-tapering windows which satisfy the following assumption:

BLock BooTSTRAP METHODS FOR FUNCTIONAL TIME SERIES 23



Assumption 3. wy(7) € [0,1] and w,(7) =0 for 7 ¢ {1,2,...,n}. Furthermore,

wn(T) = w (T — 0'5) , (3.2.3)

n

where the function w : R — [0, 1] fulfills the conditions: (i) w(7) € [0, 1] for all 7 € R
with w(7) = 0if 7 ¢ [0, 1]; (¢¢) w(r) > 0 for all 7 in a neighbourhood of 1/2; (iii) w(r)

is symmetric around 7 = 0.5; and (iv) w(7) is nondecreasing for all 7 € [0, 1/2].

Let

_ pl/2 pl/2 bl/2
B; = {wb(l)—Xi, wy(2) —— X1, - - - ,wb(b)—Xi+b—1} )

[[ws |2 [l [l

be a block of length b starting from X;, t = 1,2,..., N, where each centered obser-
vation is multiplied by w,(-) and scaled by b'/2/|ws||2, where [jwy|? = Z?Zl wi (1)
and [Jwylly = Zi’:l wy(t). Let I, I, ..., Ix be iid. integers selected from a dis-
crete uniform distribution which assigns probability 1/N to each element of the set
{1,2,...,N}. Let Bf = Eli, i = 1,2,...,k, and denote the i-th block selected by
{ X e X(1ypr2r - -» X} Join these blocks together in the order By, B3, ..., B}
to form the set of TBB pseudo observations X7, X3, ..., X,

Notice that the “inflation” factor b'/2/|lw,||2 is necessary to compensate for the
decrease of the variance of the X’s effected by the shrinking caused by the window wy;
see, also, Paparoditis and Politis (2001). Furthermore, the TBB procedure uses the
centered time series X1, Xs, ..., X,, instead of the original time series Y7, Y5,...,Y,, in
order to shrink the end points of the blocks towards zero.

To estimate the distribution of \/nY,, by means of the TBB procedure, the boot-
strap random variable /n(X, —E*(X)) is used, where X, =n~' 3.7 | X; and E*(X)
is the (conditional on the observations Y,,) expected value of X, . Straightforward cal-

culations yield

N lwyll2 | 4= -
b— b
B i 1_ Zt:b—j—l-l wy(t) X0 i
]

The following theorem establishes validity of the TBB procedure for approximating

the distribution of \/nY, and for providing a consistent estimator of the long run
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covariance operator 2mFy.

Theorem 3.2.2. Suppose that the mean zero stochastic process Y satisfies Assump-
tion 2 and let w,(-), n = 1,2,..., be a sequence of data-tapering windows satisfying
Assumption 3. Furthermore, let X[, t = 1,2,...,n, be a stretch of pseudo observa-
tions generated by the TBB procedure. Assume that the block size b = b(n) satisfies

b=' +bn~Y2 =0(1) asn — oo. Then, as n — 0o,
(i) ALV (X, =B (X)) | Yn), L(/nY,)) =0, in probability,
where d is any metric metrizing weak convergence on L?, and
(i) |[nE(X, —E* (X)X, —E4(X,))—nE(Y,, @Y ) ||lus = op(1), in probability.

Remark 3.2.1. The asymptotic validity of the MBB and TBB procedures established
in Theorem 3.2.1 and Theorem 3.2.2, respectively, can be extended to cover also the
case where maps ¢ : L?> — D of the sample means X,, (in the MBB case) and Y, (in
the TBB case) are considered, when D is a normed space. For instance, such a result
follows as an application of a version of the delta-method appropriate for the bootstrap
and for maps ¢ which are Hadamard differentiable at 0 tangentially to a subspace Dy
of D (see Theorem 3.9.11 of van der Vaart and Wellner (1996)). Extensions of such
results to almost surely convergence and for other types of differentiable maps, like
for instance Fréchet differentiable functionals (see Theorem 3.9.15 of van de Vaart
and Wellner (1996)) or quasi-Hadamard differentiable functionals (see Theorem 3.1 of
Beutner and Zahe (2016)), are more involved since they depend on the particular map

¢ and the verification of some technical conditions.

3.3 BOOTSTRAP-BASED TESTING OF THE EQUALITY OF

MEAN FUNCTIONS

Among different applications, the MBB and TBB procedures can be also used to per-
form a test of the equality of mean functions between several independent samples
of a functional time series. In this case, both block bootstrap procedures have to be
implemented in such a way that the pseudo observations X7, X, ..., X generated,

satisfy the null hypothesis of interest.
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3.3.1 THE SET-UP

Consider K independent functional time series Xy = {X;4, 0 = 1,2..., K, t =

1,2,...,n;}, each one of which satisfies
Xig =i+, t=1,2,....ny, (3.3.1)

where, for each i € {1,2,..., K}, {€;+,t € Z} is a L*-m-approximable functional pro-
cess and n; denotes the length of the ¢-th time series. Let M = Zfil n; be the total
number of observations and note that p;(7), 7 € Z, is the mean function of the i-th

functional time series, i = 1,2, ..., K. The null hypothesis of interest is then,
Hy:py=po=... = pug
and the alternative hypothesis
Hy:3k,me {1,2,..., K} with k # m such that g # .

Notice that the above equality is in L2, i.e., yp = p, means that ||, — pxl| = 0
whereas g # f that ||, — ugl| > 0.

3.3.2 BLOCK BOOTSTRAP-BASED TESTING

The aim is to generate a set of functional pseudo observations Xy, = X[, ¢ =
L,2...,K, t =1,2,...,n;, using either the MBB procedure or the TBB procedure
in such a way that Hj is satisfied. These bootstrap pseudo-time series can then be
used to estimate the distribution of some test statistic T, of interest which is applied
to test Hy. Toward this, the distribution of 77, is used as an estimator of the distribu-
tion of T, where T}, is the same statistical functional as T, but calculated using the
bootstrap functional pseudo-time series X3,.

To implement the MBB procedure for testing the null hypothesis of interest, assume,
without loss of generality, that the test statistic Ty, rejects the null hypothesis when
Tar > dpra, where, for o € (0,1), dpr denotes the upper a-percentage point of the

distribution of T, under Hy. The MBB-based testing procedure goes then as follows:

Step 1 : Calculate the sample mean functions in each population and the pooled mean
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function, i.e., calculate X;,. = (1/n;) Yo Xy, for i =1,2... K, and Xy =
(1/M)SK S°% . X;,,, and obtain the residual functions in each population, i.e.,

calculate &;; = X;;, — X ,,, fort =1,2,...,n;;1=1,2... K.

Step2 : For i = 1,2,..., K, let b; = b;(n) € {1,2,...,n — 1} be the block size
for the i-th functional time series and divide {&;;, ¢ = 1,2,...,n;} into N; =
n; — b; + 1 overlapping blocks of length b;, say, B;i,B;a,...,B;n,. Calculate
the sample mean of the {-th observations of the blocks B; 1, B o, ..., B;n;, i.e.,

gi’g = (1/Nz) Zi\il éi,g—i-t—la fOI‘ 5 = 1, 27 e ,bi.

Step 8 : For simplicity assume that n; = k;b; and fori = 1,2,..., K, let ¢, 3, ..., q;, be
i.i.d. integers selected from a discrete probability distribution which assigns the
probability 1/N; to each element of the set {1,2,..., N;}. Generate bootstrap

t=12...n,1=12... K, a X, =

functional pseudo observations X/,

Y *
Xwm + €jy, where

62§+(S*1)bi = éi,qg—i—f—l — gi’g, S = 1, 2, N, 3 7ki7 f = 1, 2, ey bz (332)

Step 4 : Let T}, be the same statistic as Ty, but calculated using the bootstrap func-
tional pseudo-time series X, ¢ = 1,2,...,n;, @ = 1,2,..., K. Denote by D}, r
the distribution of T}, given Xpp. For o € (0, 1), reject the null hypothesis Hy if
Ty > djy,, where dj, , denotes the upper a-percentage point of the distribution

of Ty, i.e., P(Ty, > dy, ) = a.
Note that the distribution D}, can be evaluated by Monte-Carlo.

To motivate the centering used in Step 3, denote, for ¢« = 1,2,..., K, by e}, t =
1,2,...,n;, the pseudo observations generated by applying the MBB procedure, de-
scribed in Section 3.2.2, directly to the residuals time series &;4, t = 1,2,...,n;. Note
that the e} ,’s differ from the ¢7,’s used in (3.3.2) by the fact that the later are obtained
after centering. The sample mean g;¢, 7 = 1,2,..., K, £ = 1,2,...,b;, calculated in
Step 2, is the (conditional on Xyp) expected value of the pseudo observations e}, t =
1,2,...,n; where t = £ (mod b;). Furthermore, for i = 1,2,..., K, we generate the
gres, t=1,2,...,n;, by subtracting g, ¢ from €} 4., § =1,2,...,0, s =1,2,.. . k;. This
is done in order for the (conditional on Xyp) expected value of €7, to be zero. In this way,

the generated set of pseudo time series X/, t =1,2,...,n;,1=1,2,..., K, satisfy the
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null hypothesis Hy. In particular, given Xpr = {X;,, i1 =1,2... K, t =1,2,...,n;},

we have

N
*( Yk - 1 .. 3
E*( iaf+(5_1)bi) =Xy + N, E [Eitre—1 — Cig]l = X,
b=l

fori=1,2...,K,(=1,2,...,band s = 1,2,...,k;. That is, conditional on Xys, the
mean function of each functional pseudo-time series X/, X7, ..., X[ ;i =1,2... K,
is identical in each population and equal to the pooled sample mean function X ;.
An algorithm based on the TBB procedure for testing the same pair of hypotheses
can also be implemented by modifying appropriate the MBB-based testing algorithm.

In particular, we replace Step 2 and Step 3 of this algorithm by the following steps:

Step 2 : For i =1,2,..., K, let b; = b;(n) € {1,2,...,n — 1} be the block size for the
i-th functional time series and N; = n; — b; + 1. Let also {&,t =1,2,...,n;}
be the centered values of {&;;,t = 1,2,...,n;}, L.e., & = &4 — &;, where §; =
(1/n;) >0 it Also, let wy,(+), n; = 1,2,..., be a sequence of data-tapering
windows satisfying Assumption 3. Now, for t =1,2,..., N;, let

_ pL/2 p/? /2
B, = {wbi(l)z—gi,ta wbi(2>l—”éi,t+la oo, wp, (b )Z—gi,t—i-bi—l} ;

||wbi 2 ' ||wbz||2

2= Zbi ) w,i_ (). Here, éi,t denotes the tapered block

i=

i=1,2,..., K, where ||w,

of €’s of length b; starting from ¢€;,. Furthermore, for « = 1,2, ..., K, calculate

the sample mean of the £th observations of the blocks éi,l, E@Q, ..., Bin,, le,

1 b/
o= —> wy ()& ey, E=1,2,.. b
i Nz p bZ(f)Hwbi 2€7§+t 1 5

Step3: For i = 1,2,... K, let ¢{,q3,...,q;, be iid. integers selected from a dis-
crete probability distribution which assigns the probability 1/N; to each t €
{1,2,...,N;}. Fori =1,2,... K, t = 1,2,...,n; generate bootstrap functional
pseudo-observations X;ft, according to X;ft =X+ e;-ft, where

bi/?

—gi,k};—l-ﬁ—l — EL& S = 1, 2, e ki: f = 1, 2, e ,bi.

€Z§+(sfl)bi = wb(g) Hwb' )

As in the case of the MBB-based testing, the generation of e;ft, t=1,2,...,n, 1 =

1,2,..., K, ensures that the functional pseudo-time series X;rt, t=1,2,....,n5, 1 =
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1,2,..., K, satisfy Hy, that is, given Xy = { X, i =1,2..., K, t =1,2,...,n;}, we
have that ET(X/",) = X .

3.3.3 BOOTSTRAP VALIDITY

Notice that, since the proposed block bootstrap-based methodologies are not designed
having any particular test statistic in mind, they can be potentially applied to a wide
range of test statistics. To prove validity of the proposed block bootstrap-based testing
procedures, however, a particular test statistic has to be considered. For instance,
one such test statistic is the fully functional test statistic proposed by Horvath et
al. (2013) for the case of K = 2 populations. Let X,;, i = 1,2,¢t = 1,2,...,n,,
be two independent samples of curves, satisfying model (3.3.1). For ¢ € {1,2} and for
(u,v) € [0, 1%, denote by ¢;(u, v) the kernels of the long run covariance operators 27r.7-'(§i),
given by ¢;(u,v) = Eleio(u)eio(v)] + 3,51 Eleio(wei;(0)] + 3,5, Eleio(v)i;(u)]. The
test statistic considered in Horvdth et al. (2013), evaluates then the L?-distance of the

two sample mean functions X;,,. = n; ' Yot Xig, 0 = 1,2, and it is given by

UM = (71,711 <T> - 72#& (T))2 dTv

where M = njy+nsy. Horvath et al. (2013) proved that if min{n;,ns} — co and ny /M —
0 € (0,1) then, under Hy, Uy converges weakly to [ I'*(7)dr, where {I'(7) : 7 € Z} is
a Gaussian process satisfying E(I'(7)) = 0 and E(I'(w)['(v)) = (1—0) ¢y (u, v) +0co(u, v).
Notice that calculation of critical values of the above test requires estimation of the
distribution of [I'?(7)dr which is a difficult task.

Although the test statistic Uy, is quite appealing because it is fully functional, its
limiting distribution is difficult to implement which demonstrates the importance of the
bootstrap. To investigate the consistency properties of the bootstrap, we first establish
a general result which allows for the consideration of different test statistics that can

be expressed as functionals of the basic deviation process

{ n1ng (X1 (7) = K (7)), 7 € I}. (3.3.3)

Theorem 3.3.1. Let Assumption 2 be satisfied. Assume that min{n;,ns} — o0,

ni/M — 0 € (0,1) and that, for i € {1,2}, the block size b; = b;(n) fulfills

byt + bin; 12— o(1), as n; — 0o. Then, conditional on Xy, as n; — oo,
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(i) %(7* - 7;”2) = I, in probability,

1,n1

and, if additionally Assumption 3 is satisfied,

(i1) njl\;Q (yfnl - 7;&) = I', in probability.

Here, = denotes weak convergence in L*.

By Theorem 3.3.1 and the continuous mapping theorem, the suggested block bootstrap-
based testing procedures can be successfully applied to consistently estimate the dis-
tribution of any test statistic of interest which is a continuous function of the basic
deviation process (3.3.3). We elaborate on some examples. Below, Py, (Z < -) denotes

the distribution function of the random variable Z when H, is true.

Consider for instance the test statistic Uys. Let

nina —* —*

Ui =2 [ (%], (1) = Ky (1) dr
and
U]\j} = ]1\42 (Xl,n1 <T> - X2,n2 (T))2 dT?

— , = 1 ,
where X, = (1/n;) > 1", X}, and X:rn_ ==Y " X/, i=1,2 We then have the
2o ) 1o nl )

following result.

Corollary 3.3.1. Let the assumptions of Theorem 3.3.1 be satisfied. Then,
(i) sup,ep|P(Us; < @ | Xpp) — Puy(Unr < )| = 0, in probability, and
(i) sup,er|P(Uy; < 2| Xm) — P (U < )| = 0, in probability.

Remark 3.3.1. If the following type of one-sided tests Hy : uy = us versus Hy : py >
po or Hj @y < pg is of interest (where py = po (resp pg > o or g < piz) means

p1(7) = pa(7) (resp pa(7) > po(7) or pi(7) < pe(7)) for all 7 € Z), then the following

e = /2 [ (R - Kol e

can be used. In this case, Hy is rejected if ﬁM > c,ivaa or ﬁM < JM7Q, respectively, with

test statistic

JM@ the upper a-percentage point of the distribution of Uy under Hy. Consistent es-
timators of this distribution can be also obtained using the block bootstrap procedures

discussed. In particular, the following results can be established:
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(i) supx€R|P((~]]’\} <z |Xm)— Py,(Uy < z)| = 0, in probability, and

(ii) SupxeR|P(Uj\§[ <z |Xm)— Py, (Uy < m)’ — 0, in probability,

nn *
Ui = [ [ (X0 - s r) dr
~ ning [+ -+
O = [ [ (XL, (0) = X ) dr

To elaborate, notice that using Theorem 1 of Horvath et al. (2013), we get, as ny,ny —

where

and

oo, that

(\/Ln_l Z(XLJ — Ml)v \/%_2 Z(XQ’j — N2)> = (Fh F2>7

j=1 j=1
where I'; and T'y are two independent Gaussian random elements in L? with mean zero
and covariance operators C7 and Cy with kernels ¢; (-, -) and ¢y(, +), respectively. Under

Hy, and for i = p1 = po the common mean of the two populations, we have

n1n2 < X< [ T2 ~ [ni 1 - ~
n nQ - - s E Xot — )
M ( 17 1(7—) 2 \/— lu) M \/n—2 t:1( 2yt /“’L)

which implies, for n;,n, — oo and ny /M — 6, that Uy, KA J T(7)dr, where T'(1) =
V1 =0T (1) — VO (7), 7 € Z. Now, working along the same lines as in the proof of

Theorem 3.3.1, it can be easily shown that (7]’(4 and (7;} converges weakly to the same

limit [ T'(7)dr

Another interesting class of test statistics for which Theorem 3.3.1 allows for a
successful application of the suggested block bootstrap-based testing procedures, is the
class of so-called projection-based tests. To elaborate, let {¢1, ¢2,...,¢,} be a set of
p orthonormal functions in Ls. A common choice is to let ¢, be the orthonormalized
eigenfunctions corresponding to the p largest eigenvalues of the covariance operator of
the stochastic process {I'(7) = v/1 — 0I'y(7) — VOT4(7), T € T}, which are assumed to
be distinct and strictly positive. A test statistic S, »s can then be considered which is

defined as

n1n2

p,M -

p

J— ~\2
§ Xl,n1 - XQ,n27g0k> 9
k=1

and where @, are estimators of ¢; see for instance Horvéth et al. (2013) where

studentized versions of (X ,, — Xa..,, Px) have also been used.
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The following result establishes consistency of the suggested block bootstrap meth-

ods also for this class of test statistics.

Corollary 3.3.2. Let the assumptions of Theorem 3.3.1 be satisfied and assume that
the p largest eigenvalues of the covariance operator of the stochastic process {I'(T) =
V1 =00 (1)—V0T(1), T € T} are distinct and positive. Let pr, k =1,2,...,p, be the
orthonormalized eigenfunctions corresponding to these eigenvalues and let oy, and Py, be
estimators of @y satisfying maxi<g<, ||@Pr — Crexl| 20 and maxi <x<p || Ok — Cepkl| Lo,

where ¢, = sign((@k, k) and ¢ = sz’gn((@k, k). Then,
(i) sup,ep|P(S;y < @ | X)) — Puy(Spr < @)| = 0, in probability, and

(11) supx€R|P(S;M < x| Xm) = Puy(Spr < )| = 0, in probability,

where S 1 = (nang /M) S0 (X, = Xy, @1)? and STy, = (nang/M) Z:1<7;n1 -
_+ —~
X27n27 (10k>2

Remark 3.3.2. In Corollary 3.3.2, we allow for ¢, to be a different estimator of ¢y
than @, where the later is used in the test statistic S, . For instance, @5 could be
the same estimator as @) but based on the the bootstrap pseudo observations X,
1=1,2,...,kand t =1,2,..., n,, respectively, X;ft, 1=1,2,...,kand t =1,2,...,n,.
This will allow for the bootstrap statistics S}, respectively S; 1> to also imitate the
effect of the estimation error of the unknown eigenfunctions ¢, on the distribution

ofS,, ar. Clearly, a simple and computationally easier alternative will be to set @, = @y

Remark 3.3.3. If the alternative hypothesis H; is true, then under the same assump-
tions as in Theorem 4 of Horvath et al. (2013), we get that Uy, L . Furthermore,
under the same assumptions as in Theorem 6 of Horvéth et al. (2013), we get that

M X 50 and S 5 provided that (i — pa, ¢r) # 0 for at least one 1 < k < p.
Corollary 3.3.1 and Corollary 3.3.2 (together with Slutsky’s theorem) imply then, re-
spectively, the consistency of the test Uy, using the bootstrap critical values obtained
from the distributions of U}, and Uj,, and of the test S, y; using the bootstrap critical

values obtained from the distributions of Sy ,, and S .
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3.4 NUMERICAL EXAMPLES

We generated functional time series stemming from a first order functional autoregres-

sive model (FAR(1))

ei(u) = /@D(u,v)et_l(v) dv + By(u), wue€|0,1], (3.4.1)

(see also Horvéath et al. (2013)), and from a first order functional moving average

model (FMA(1)),
(1) = / O, 0)Boy(v) dv + Bu(u), w € [0,1]. (3.4.2)

For both models, the kernel function (-, ) is defined by

e_(u2+v2)/2

= e (u,v) € [0,1)% (3.4.3)

(u, v)

and the B;’s are i.i.d. Brownian bridges. All curves were approximated using 7" = 21
equidistant points 7y, 7o, ..., 7o in the unit interval Z and transformed into functional
objects using the Fourier basis with 21 basis functions.

Implementation of the MBB and TBB procedures require the selection of the block
size b. As it has been shown in Theorem 3.2.1 and Theorem 3.2.2, nE*[(yz —E* (72)) ®
(X, —E*(X))] is a consistent estimator of 27 F,, with kernel

1
CN(U7 U) = N ;XZ (U)X1<U>
b-1 h 1 n—h
+ Z:; (1 — Z) N2 [Xi(U)Xi-&-h('U) + Xpn (W) X (0)| + 0,(1),
in the MBB case, and
1 n b—1 W 1 n—h
en(u,v) = = D Yi(w)Yi(v) + b Vi) Yy (v) + Yien () Yi(v)] + 0,(1),
NS 2 wEN 2

in the TBB case, with W), = Zf;il wy(i)wy(i +h), h=0,1,...,b—1. Now, ¢y and ¢y
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can be considered as lag-window estimators of the kernel

c(u,v) = > E[Xo(u) Xi(v)],

using the Bartlett window with “truncation lag” b in the MBB case and using the same
“truncation lag” with the window function W = W}, /||wy||, in the TBB case. The above
observations suggest that the problem of choosing the block size b can be considered as a
problem of choosing the truncation lag of a lag window estimator of the function c¢(u, v).
Choice of the truncation lag in the functional context has been recently discussed in
Horvath et al. (2016) and Rice and Shang (2016). Although different procedures to
select the “truncation lag” have been proposed in the aforementioned papers, we found
the simple rule of setting b; = [nll / 3-‘, where [z] is the least integer greater than or
equal to z, quite effective in our numerical examples. In the following, we denote by
b* this choice of b, which is used together with some other values of b;.

For the TBB procedure, the following window has been used

;

7/0.43 if 7 € [0,0.43]

w(r) =11 if 7€ [0.43,1 — 0.43]

(1—17)/0.43 if 7€ [1—0.43,1].

\

A simulation study has been first conducted in order to investigate the finite sample
performance of the MBB and TBB procedures. For this, the problem of estimating
the standard deviation function of the normalized sample mean /nX,(7), the limit
of which is o(7) = +/c(7,7) for different values of 7 € [0,1] has been considered.In
the following, we denote by &(7) this estimator. The results obtained using both
block bootstrap procedures have also been compared with those using the stationary
bootstrap (SB). Realizations of length n = 100 and n = 500 from the functional time
series models (3.4.1) and (3.4.2) have been used. The results obtained are presented
and discussed in Section 3.4.1. Furthermore, Table 3.2 presents results comparing the
performance of projections-based tests when asymptotic and bootstrap approximations

are used to obtain the critical values of the tests.
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3.4.1 ESTIMATING THE STANDARD DEVIATION OF THE MEAN FUNC-

TION ESTIMATOR

Realizations of length n = 100 and n = 500 from the functional time series models 3.3.1
with errors following either the FAR(1) model (3.4.1) or the FMA(1) model (3.4.2) have
been generated and the standard deviation of the normalized sample mean /nX,,(7) =
(1/4/n) "7, X;(7) has been estimated, over a set of 7 € Z, using the MBB, the TBB
and the SB procedures. The exact standard deviation has been estimated using 100, 000
replications of the models considered. R = 1000 replications of each data generating
process have been used where, for each replication, B = 1000 bootstrap pseudo-time
series have been generated in order to evaluate the bootstrap estimators.

Since the results of both block bootstrap methods are, for small sample sizes, sen-
sitive with respect to the choice of the block size b, we first present some simulations
results which demonstrate the capabilities of these block bootstrap methods for func-
tional time series. For this, we present, in some sense, the less biased results that can
been obtained using the three different block bootstrap methods. That is, we present
the results obtained when the block size b used has been selected as the one which
minimizes the absolute averaged relative bias 7! ZiTzl ‘a;b(n) Jo(T;) — 1‘ for j =1,2.
Here, o7 ,(7) and o3 ,(7) denote the MBB and TBB estimators of o(7), respectively,
using the block size b. The same criterion has been used to choose the “best” proba-
bility p of the geometric distribution involved in the SB procedure i.e., the one which
leads to the smallest overall in the sense described above. For the FAR(1) model and
for n = 100, the block sizes selected using the described procedure were b = 5, b = 8
and p = 0.25 for the MBB, the TBB and the SB procedure, respectively. For n = 500,
the corresponding values were b = 10, b = 18 and p = 0.1. For the FMA(1) model, for
n = 100 and n = 500, we obtained the parameters: b = 4 and b = 14 for the MBB,
b =6 and b = 10 for the TBB, and p = 0.5 and p = 0.125 for the SB, respectively.
The block bootstrap estimates of o(7) obtained using these block sizes for the FAR(1)
model are presented in Figure 3.1 and for the FMA(1) model in Figure 3.2.

As it is seen from these figures, the TBB estimates perform best with the MBB
estimates being better than the SB estimates. For both sample sizes considered, the
block bootstrap estimators perform better in the case of the FMA(1) model than in the
case of the FAR(1) model while for the FMA(1) model, the TBB estimates are quite

good even for n = 100 observations. The results using all three bootstrap methods are
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Figure 3.1: Comparison of different bootstrap estimates of the standard deviation o(7;)
of the normalized sample mean /nX,,(7;) for FAR(1) time series and for a set of values
7; € [0,1]. The first figure refers to n = 100 and the second to n = 500. The estimated
exact standard deviation is denoted by e while the mean estimates of the standard
deviation of the TBB are denoted by “¢”, of the MBB by “A”, and of the SB by “+”.
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Figure 3.2: Comparison of different bootstrap estimates of the standard deviation o(7;)
of the normalized sample mean /nX,,(7;) for FMA(1) time series and for a set of values
7; € [0,1]. The first figure refers to n = 100 and the second to n = 500. The estimated
exact standard deviation is denoted by e while the mean estimates of the standard
deviation of the TBB are denoted by “¢”, of the MBB by “A”, and of the SB by “+”.
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Figure 3.3: TBB estimates of the standard deviation o(7;) of the normalized sample
mean /nX ,(7;) for the FAR(1) time series and for a set of values 7; € [0, 1] using the
“best” block size and the block size b* = [n!'/3]. The first figure refers to n = 100 and
the second to n = 500. The estimated exact standard deviation is denoted by e while
the TBB estimates using the “best” block size are denoted by “o” and using the block
size b* are denoted by “+7.

better for the larger sample size of n = 500 curves.

To demonstrate the performance of the suggested simpler rule b* = (nl/ 3} to choose
the block size b, the TBB estimates using this block size are compared with the esti-
mates obtained using the block size leading to the less biased estimates, as described
above. Comparisons for the FAR(1) and for the FMA(1) model are shown in Figure 3.3
and Figure 3.4 respectively.

As these figures demonstrate, for both sample sizes and for both models considered,
the TBB estimates using the block size b* perform well, being quite close to the TBB

estimates using the “best” block size in the sense described above.

3.4.2 TESTING EQUALITY OF MEAN FUNCTIONS

We investigate the size and power performance of the tests considered in Section 3.3.3.
As can be seen in Section 3.4.1, the TBB estimators perform best in our simulations.
For this reason, we concentrate in this section, on tests based on TBB critical values
only. Two sample sizes n1 = ny = 100 and n; = ny = 200 as well as a range of
block sizes b = by = b, are considered. The tests have been applied using three
nominal levels, i.e., « = 0.01, o = 0.05 and a = 0.1. All bootstrap calculations
are based on B = 1000 bootstrap replicates and R = 1000 model repetitions. To

examine the empirical size and power behavior of the TBB-based test, the curves in
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Figure 3.4: TBB estimates of the standard deviation o(7;) of the normalized sample
mean \/nX ,(7;) for the FMA(1) time series and for a set of values 7; € [0, 1] using the
“best” block size and the block size b* = [n!'/3]. The first figure refers to n = 100 and
the second to n = 500. The estimated exact standard deviation is denoted by e while
the TBB estimates using the “best” block size are denoted by “o” and using the block
size b* by “+7.

the two samples were generated according to model (3.3.1) and with the errors ¢;,
following model (3.4.1), for ¢« € {1,2}, with mean functions given by u(t) = 0 and
po(t) = ~vt(1 — t) for the first and for the second population, respectively; see also
Horvéth et al. (2013). The results obtained are shown in Table 3.1 for a range of
values of . Notice that v = 0 corresponds to the null hypothesis.

As it is evident from this table, the TBB-based test statistic U, has a good size
behavior even in the case of n;y = ny = 100 observations while for ny = ny = 200
observations the sizes of the TBB-based test are quite close to the nominal sizes for a
range of block length values. It seems that the choice of the block size has a moderate
effect on the power of the test. Furthermore, the power of the TBB-based test increases
as the deviations from the null become larger (i.e., larger values of v) and/or as the
sample size increases. Finally, using the suggested simple method to choose the block

size b, the corresponding test has good size and power behavior in all cases.

3.4.3 TBB-BASED TEST VERSUS PROJECTION-BASED TESTS

We compare the performance of the TBB-based test with the projection-based tests
UY,, and Ug?m proposed in Horvéath et al. (2013) (see (3.11) and (3.12) in their
paper). We adopted their simulation set up and generated two samples according

to the functional time series model 3.3.1 with the errors ¢;; following the FAR(1)
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n1:n2:100 n1:n2:200
vy | b a=001 a=005 a=0.1 b a=001 a=005 a=0.1

0|4 0.026 0.077 0.142 6 0.013 0.057 0.113

6 0.015 0.061 0.112 8 0.010 0.052 0.115

8 0.015 0.071 0.128 10 0.013 0.066 0.106

b* 0.027 0.074 0.143 b* 0.013 0.057 0.113

02| 4 0.048 0.135 0.206 6 0.058 0.160 0.237
6 0.045 0.126 0.206 8 0.065 0.158 0.253

8 0.034 0.118 0.185 10 0.070 0.162 0.247

b* 0.042 0.116 0.178 b* 0.058 0.160 0.237

051 4 0.225 0.418 0.544 6 0.408 0.615 0.715
6 0.200 0.374 0.499 8 0.411 0.632 0.759

8 0.184 0.356 0.490 10 0.425 0.645 0.749

b* 0.218 0.424 0.532 b* 0.408 0.615 0.715

0.8 4 0.584 0.772 0.853 6 0.864 0.966 0.980
6 0.543 0.763 0.841 8 0.865 0.948 0.975

8 0.529 0.739 0.831 10 0.843 0.948 0.976

b* 0.557 0.752 0.825 b* 0.864 0.966 0.980

1 |4 0.779 0.898 0.945 6 0.972 0.995 0.998

6 0.746 0.891 0.941 8 0.975 0.994 0.999

8 0.755 0.898 0.943 10 0.969 0.994 0.998

b* 0.769 0.901 0.945 b* 0.972 0.995 0.998

Table 3.1: Empirical size and power of the test based on TBB critical values and

FAR(1) errors.

model 3.4.1 with kernel 3.4.3, for ¢ € {1,2}, with mean functions given by u;(t) = 0
and po(t) = ~vt(1 — t) for the first and for the second population, respectively. All
curves were approximated using T = 49 equidistant points 7y, 7, ..., T4 in the unit
interval Z and transformed into functional objects using the Fourier basis with 49 basis
functions.

We considered sample sizes n; = 100 and ny = 200 and block sizes b = b; =
6 and 8 (for ny = 100) and b = by = 6 and 10 (for ny = 200). The tests have
been applied using three nominal levels, i.e., & = 0.01, « = 0.05 and o = 0.1. All
bootstrap calculations were based on B = 1000 bootstrap replicates and R = 1000
model repetitions. The results obtained are shown in Table 3.2 for a range of values
of v. Notice that v = 0 corresponds to the null hypothesis. The empirical rejection
frequencies of the projection-based tests Ur(ﬁ?m and Ug?nz are those reported in Table

2 of Horvéth et al. (2013).
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a=0.01 a=0.05 a=0.10

y Uiy Uiy, TBB U, US, TBB  USh, Uh, TBB
0.0 0.018 0.019 0.017 0.066 0.072 0.070 0.122 0.135 0.128
0.016 0.070 0.122
0.2 0.051 0.033 0.058 0.136  0.116  0.149 0.216  0.187 0.235
0.046 0.142 0.236
0.4 0.194 0.123 0.150 0.359 0.265 0.322 0.467 0.363 0.431
0.178 0.364 0.476
0.6 0.421 0.296 0.405 0.622 0.518 0.633 0.731 0.625 0.737
0.425 0.649 0.738
0.8 0.686 0.538 0.684 0.857 0.746 0.847 0.915 0.831 0.920
0.674 0.849 0.910
1.0 0.874 0.787 0.870 0.959 0.908 0.952 0.981 0.945 0.977
0.881 0.959 0.987
1.2 0.976 0.937 0.964 0.995 0.981 0.990 0.998 0.992 0.995
0.973 0.994 0.997

Table 3.2: Empirical rejection frequencies of the projection-based tests U,(LBW and U,(L?m
are the results reported in Table 2 of Horvéth et al. (2013). For the TBB-base test,
the first line corresponds to the choices b = 6 and b = 8 and the second line to the
choices b = 6 and b = 10 of the block size for sample sizes n; = 100 and ny = 200,
respectively.

As can be seen from Table 3.2, the TBB-based test performs well retaining the
nominal sizes and having a power which increases as the deviation from Hj increases,
as described by the parameter . Compared to the projection-based test Ug?m, the
TBB-based test performs better while its empirical size and power is similar to that of
the projection-based test U&?m. Notice, however, that the TBB-based test is consistent
against any alternative for which ||; — pz|| > 0 which is not the case with the U,

(and Ué?)m) test if such alternatives are orthogonal to the projection space.

3.4.4 A REAL-LIFE DATA EXAMPLE

We apply the TBB-based testing procedure to a data set consisting of the summer tem-
perature measurements recorded in Nicosia, Cyprus, for the years 2005 and 2009. Our
aim is to test whether there is a significant increase in the mean summer temperatures
in 2009. The data consists of two samples of curves {X;(7),i =1,2,t =1,2,...,92},
where, X;; represents the temperature of day ¢ of the summer 2005 for « = 1 and of
the summer 2009 for ¢ = 2. More precisely, X;; represents the temperature of the 1st
of June and Xj g, the temperature of the 31st of August. The temperature recordings

have been taken in 15 minutes intervals, i.e., there are 96 temperature measurements
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Figure 3.5: Temperature curves: summer 2005 (left panel) and summer 2009 (right
panel).

for each day. These measurements have been transformed into functional objects using
the Fourier basis with 21 basis functions. All curves are rescaled in order to be defined
in the interval Z. Figure 3.5 shows the temperatures curves of the summer of 2005 and
of 2009.

Since we are interested in checking whether there is an increase in the summer
temperature in the year 2009 compared to 2005, the hypothesis of interest is Hj :
p1(7) = pa(1) versus Hy : py(7) < pa(7), for all 7 € Z. The p-values of the TBB-based
test using the test statistic Uy are: 0.001 (for b = 4), 0.003 (for b = 6), 0.004 (for b = 8)
and 0.002 (for b = b*). These p-values have been obtained using B = 1000 bootstrap
replicates. As it is evident from these results, the p-values of the test statistic Uy are

quite small leading to the rejection of Hy for all commonly used a-levels.

3.5 APPENDIX : PROOFS

To prove Theorem 3.2.1 and Theorem 3.2.2, we first establish Lemma 3.5.1 and Lemma
3.5.2. Note also that, throughout the proofs, we use the fact that, by stationarity,
E|| Xim — Xi|| = E|| Xom — Xo|| and E|| X, .|| = E||X;|| = E|| Xo|| for all i € Z.

Lemma 3.5.1. Let g, be a non-negative, continuous and bounded function defined on
R, satisfying g»(0) = 1, go(u) = go(—u), gp(uv) < 1 for all u, gy(u) = 0, if |u| > ¢, for
some ¢ > 0. Suppose that (X;,t € Z) satisfies Assumption 2 and b = b(n) is a sequence
of integers such that b= +bn"'/? = o(1) as n — co. Assume further that, for any fived
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u, gp(u) = 1 as n — oo. Then, as n — oo,

2_: ab(h)An = Z E((Xo, X3)),

where Ay, = %Z;:llh‘(Xi,XiHhQ for —=b+1<h<b-1.

Proof. First, note by the independence of X, and X;;, that > .o, [E(Xo, X;)| =
Sy [B(Xo, X — X0 < 3272 (B[ Xo||?)2(E|| Xo — Xo,[|?)*/2, which implies by (3.2.2)
that >°° _ |E(Xo, X;)| < oo. Since n™! 377 (X;, X;) — E(Xo, Xo) = 0,(1) as n — oo,

it suffices to show that, as n — oo,

b—1 n—h
1
Zgb(h) Z X27Xz+h ZE Xo, Xi) = Op(l). (351)
h=1 N i>1
Let
1 n—~h
- ZEKXO’ XZ>]7 C;; - ZEKXO,ma Xz,m>] and ,3/}(:”) - ﬁ Z<Xi,ma Xi-‘rh,m)'
1>1 1>1 =1
Since
b1 b—1
ZQ (WAn —ct | < lef — et |+ Zgb(h)A,(Lm) ch
h=1 h=1
b—1 b—1
1w =D e (35.2)
h=1 h=1

assertion (3.5.1) is proved by showing that there exists my € N such that all three
terms on the right hand side of (3.5.2) can be made arbitrarily small in probability as
n — oo for all m > myg.

For the first term, we use the bound

2 El(Xom: Xim) = (X0, X0)]| <1 E[(Xom, Xiim) = (X0, Xi)]
+ f: E[<X0,m7Xi,m> - <X0,Xi>] , (353)

and handle the first term on the right hand side of (3.5.3) using (Xom, Xim) —
(Xo, Xi) = (Xom — Xo, Xim) + (Xo, Xim — X;). Cauchy-Schwarz’s inequality and As-
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sumption 2 yields that for every ¢; > 0, dm; € N such that

m

ZE [<X0,maXi,m> <X0,X

i=1

1/2
<23 (Bl Xo - XolE|X )"

=1

2(E)[ Xol[%)2 (m [EJ[ Xom — Xol?] ") < &

for all m > m;y. For the second term of the right hand side of (3.5.3), we get, using
<X0,Xi> = <Xi’i,X0> + <X0, Xl - Xm'>, the fact that X() and Xi,i as well as X(]’m and
X;.m are independent for ¢ > m + 1 and Lemma 2.1 of Horvath & Kokoszka (2012),

that, for any e; > 0, there exists my € N such that

> E[(Xom, Xim) — <X0,Xi>]‘
1=m-+1
< Z E [(Xi:, Xo)l| + Z E [{Xo, Xi — Xi4)]
i=m-+1 i=m-+1
< N (EIXIPEIX - Xi)?)
1=m-+1
= (EIX))" Y (ElXo — Xoall?)* < e
i=m-+1

for all m > mgy because of (3.2.2). For the second term of (3.5.2), first note that, for ev-

ery fixed m > 1 and for any fixed h, we have that | (m) — E[(Xo.m, Xnm)]| = 0p(1). Fur-

thermore, since { X, ,,, n € Z} is an m-dependent sequence, ¢;f, = > E[(Xo 1, Xim)].
Hence, the second term of the right hand side of (3.5.2) is 0,(1), if we show that

‘Zh m—+1 g(h ,Sm)‘ = 0,(1). We have

E

b—1 2
> gb<h>fv,5m>]

h=m+1

n—hi n—ho

b—
Z Z Z Z 9o(h1) g (ha) E(( X, 1m0, Xiyhom) (Xigm Xigthom))-

hi=m+1 ho=m+1 i1=1 is=1

Since the sequence {X;,, i € Z} is m-dependent, X;,, and X; ., are independent
for h > m + 1, that is, using Lemma 2.1 of Horvath & Kokoszka (2012) we have
that E(X; , Xitnhm) = 0 for the same h. Hence, the number of non-vanishing terms
E[(Xi, ms Xiythym) (Xip.ms Xigtho m)] in the last equation above is of order O(nb) and,

consequently, E [z A} ),y}(lm) = O(b/n) = o(1) from which the desired conver-
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gence follows by Markov’s inequality. For the third term in (3.5.2), we show that, for

m Z my,
b—1
lim sup P ( Zg (h) (fyh - ”y,(lm)> > 6) =0, (3.5.4)
n—o00 he1

for all 6 > 0. From this, it suffices to show that, for m > my,

b—1

E| D" g(h) (i — 4| = ol1). (3.5.5)
h=1
Now, by the definitions of 4; and ’y,(lm), we have
) (3 =)
Th 7h
1 m n—h
<E - Zgb(h) Z (X, Xign) — <Xi,m7Xi+h,m>)‘
h=1 i=1
1 b—1 n—h
+E[= > g (X5 Xin) — <Xi,m,xi+h,m>)| : (3.5.6)
h=m+1 i=1

For the first term of the right hand side of the above inequality, we use (X;, X;1n) —
(Xim, Xivnm) = (Xi = Xim, Xign) + (Xizn — Xighm, Xim), and we get, by to get, by
Cauchy-Schwarz’s inequality and simple algebra, that,

m n—h

%Zgb(h) Z((XiaXi+h> = (Xim, X”h»m))‘

h=1 =1

E

< m{(E[| Xo — XomlPEll Xo[*)!/* + (E Xo — Xoml’Ell Xom|*)"/?].

Assumption 2 implies then that, for every ez > 0, there exists ms € N such that, for
every m > mg, the last quantity above is bounded by €3. For the second term on the

right hand side of (3.5.6), we use the bound

1 b—1 n—nh 1 b—1 n—h
E|— (Xi, Xin)| +E |~ > gb(h)Z<Xi,m,Xi+h,m) . (35.7)
h=m+1 i=1 h=m+1 =1

Note that the second summand of (3.5.7) is o(1), while for the first term we use

(Xi, Xitn) = (X, Xignn) + (X, Xign, — Xisnp) to get the bound

b—1 n—h b—1 n—h
1 1
E|— E E (Xi, X; E|— E (Xi, X; X; 3.5.8
n h:m+1 =1 " h ! n h=m-+ =1 " " h> ( )
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For the last term of expression (3.5.8), we get, using (3.2.2), that for every e¢; > 0,

there exists my € N such that

b—1 n—h b—1
1
= Y ENX Xion — Xigna)l <) E[(Xo, Xp — X))l
n h=m+1 i=1 h=m-+1
< (BN Xl Y (B Xo — Xoul*)'? < e
h=m+1

for all m > my. Consider next the first term of (3.5.8). Because (X;, X;inpn) =

(Xi — Xin, Xignn) + (Xin, Xivnn), we get for this term the bound

b—1 n—h b—1 n—h

1 1
E ﬁ Z gb(h) Z<XZ — Xi,h> Xi+h,h> + ]E E Z gb(h) Z<Xi’h’ Xi+h,h> . (359)
h=m+1 =1 h=m+1 =1
The first term above is bounded by
1 b—1 n—h oo
Bl 37 a) Do (X = Xiw Xoonn)| < EIXoD)Y2 Y (EIXo = Xoul?)2
h=m+1 i=1 h=m+1

Thus, and by (3.2.2), for every €5 > 0, there exists ms € N such that, for every m > ms,
this term is bounded by e5. For the last term of (3.5.9), note that {(X; s, Xiinn), ¢ €
Z} is an 2h-dependent stationary process, and since X; and X; ) are independent,
e, E(X;, Xipnp) = 0 for all i € Z, {(Xin, Xisnn), ¢ € Z} is then a mean zero 2h-
dependent stationary process which implies that n=/23"" (X;p, X;onn) = Op(1).
Using Portmanteau’s theorem, and since the function f(x) = |z| is Lipschitz, we get

that E [n=23"" (X n, Xivnn)| = O(1). Therefore,

b—1 n—h b—1 n
1 1 1
E|- h Xin, Xi < — E|— Xin Xi
"h§m+1gb( );_1( s Xithh) \/ﬁhEm—i—l Tn ;_1( s Xt )

= 0(b/v/n) = o(1),

which concludes the proof of the lemma by choosing mg = max{m;y, ms, mg, my, ms}.

Lemma 3.5.2. Suppose that (Y;,t € Z) satisfies Assumption 2 and that b= b(n) is a
sequence of integers satisfying b= +bn~Y2 = o(1) as n — oo. Let wy,(-), i =1,2,...,

be a sequence of data-tappering windows satisfying Assumption 3. Then, as n — oo,
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()

W
Z < h|2) E[<%7 Yha Z E }/07 Ylﬂy>] f07" every y € L27

sy \Mwslz it

(ii)
/ {E,(u,v) — c(u,v)}2dudv = op(1),

where c(u,v) = >.° _ E[Yo(u)Yi(v)], Wy = Zf ?wb( Ywp(t + h), h =10,1,...,0—1

and
Cul,v) = = 3 YVi)Yi(w) + 3 mm = > Vi()Yiea(v) + Yipn()Yi(v))

Proof. Consider (i). Note first that, using Lemma 2.1 of Hérmann and Kokoszka
(2010), the sequence {(Y;,y), i =1,2,...} is L*m-approximable, since

Z (E|<Yz - }/;7m7y>’2)1/2 < HyH Z (]EHY YzmH )1/2

m>1 m>1
Therefore, by Lemma 4.1 of Hormann and Kokoszka (2010), we get that
> E(Yo, y) (Y, y)| < oo. (3.5.10)

Also, note that if w;(¢) is of the form (3.2.3), then

Wh

—_— 1
bw * w(h/b) o

where Wy, = 320wy ()wy(i + h), h = 0,1,...,b — 1, and w * w denotes is the self-
convolution of w. Therefore, since |Jwy||3 = Wy, we get, for any fixed h, as n — oo,

W, Wh, bw * w(0) bw * w(h/b)
lwpl|2  bw *w(h/b) W, bw * w(0)

— 1. (3.5.11)
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Furthermore, by Cauchy-Schwarz’s inequality, it is easily seen that

b—h

b
Zwb( i)wy(i + h) SZ

=1

ie.,

Wi < ||lwpl|3 for h=1,2,...,b—1. (3.5.12)

To complete the proof of (), it suffices to prove that S-0—% (W, /||ws|I2)E(Yo, ) (Ya, y) —
Y ore E(Yo, y)(Ya, y). For this, and for b large enough, we use the bound

o

-1

W B (Yo, 0) (Vi 9) ZEYO, (Vo)

2 Tul?
h=1 wbHQ i=1
b—1 W
+1 > WE%’ (Vi y) Z E(Yo, ) (Y, y)
h=m+1 W2 i=m+1
ZE Yo, y){(Y:, y) (3.5.13)

Because of (3.5.11) and (3.5.10), the first and the last term are o(1). Concerning the

second term, we show that there exists my € N such that

b—1 b—1

Z B (Yo, ) (Viey) — Y E(Yo, y)(Yiy)

=0
oy el i=m+1

lim sup
n—oo

for m = my. By using Assumption 2, expression (3.5.12), the facts that W), > 0 and
that (Yp,y) and (Y;,,y) are independent for i > m + 1, we get that, for every ¢ > 0,

dm; € N such that, for every m > mq,

b—1 Wi
h%l (m B 1) E<<Y0’y><yh=y>)

< Y EXLy) (Vi)

1=m+1

= Y B, y)(Yi — Yiaw)|

i=m-+1
< lyl® @Yol S EIY - Yial?)* <, (35.14)
i=m-+1

BLock BooTSTRAP METHODS FOR FUNCTIONAL TIME SERIES 48



because of expression 3.2.2

Consider next assertion (i¢). Notice first that,

/I { ZYt JYi(v) - ElYo(u >Yo<v>1}2:op<1>.

Hence, and since the summands of Y;(u)Y; 1, (v) and Y, (v)Y;(u) can be handled sim-

ilarly, it suffices to show that
VI )
// {Z ||wa] n ZYt u)Yeen(v ZEYO } = op(1). (3.5.15)
2

t>1

By expressions (3.5.11) and (3.5.12), the proof of (3.5.15) is analogous to the proof
of (A.2) of Horvéth et al. (2013). This completes the proof of the lemma.
Proof of Theorem 3.2.1. By the triangle inequality and Theorem 1 of Horvath et

al. (2013), the assertion (i) of the theorem is established if we show that, as n — oo,
Vn(X, —E*(X,)) =T, in probability, (3.5.16)

where I' is a Gaussian process in L? with mean 0 and covariance operator C' with kernel

c(u,v) = E(I'(u)T'(v)) given for any u,v € [0,1]* by

c(u,v) = B[Xo(u)Xo(v)] + Y E[Xo(u)X;(v)] + > E[Xo(v)X;(u)].

i>1 i>1

Using the notation S* = /n(X, —E*(X,)), it follows from Proposition 7.4.2 of Laha
and Rohatgi (1979) that, to prove (3.5.16), it suffices to prove that,

(L1) (S*,y) 5 N(0,0%(y)) for every y € L2 where o2(y) = (C(y),y), and that
(L2) the sequence {S},n € N} is tight.

Consider (L1). To establish the desired weak convergence, we prove that, as n — oo,

Var* ((S%, ) & o2(y) (3.5.17)
and that
(nd) 4 g ), (3.5.18)

Var®((5;,))
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Consider (3.5.17) and notice that

where Uf = b~/ 2(X(* o1 T X(l Dopo Tt X5),i=1,2,... k. Due to the block

bootstrap resampling scheme, the random variables U, i = 1,2, ...,k are i.i.d. Thus,
using (S*,y) = k=228 [Wr —E*(W;)], where W = (UZ,y), i = 1,2,. .., k, we have

Var® ((Sy,y)) = E"(W})* — (E*(W7))*. (3.5.19)

Let ,u* = ]E*(Wl*) and Uz = bil/z(Xi + Xi+17-" +Xi+b—1), 1= 1,2,...7N. We then
have that

ZIS

[Z X,y) 2(1——) >?/>+<an+1,9>]]- (3.5.20)

J=1

Therefore, E(u*) = 0. Using

5 (1 L _') (1 _ g) (X9 + (X )X 9) + (X )

we get,

E(u*)* = % > ) ENX u)(X;, )] + O /n) = O(b/n), (3.5.21)

i=1 j=1

where the last equality follows since, by Kronecker’s lemma,

%Z S E(X L ) (X)) = > (1 - %) E[{Xo, y) (X, y)]

i=1 j=1 |hl<n

—>// c(u, v)y(u)y(v)dudv (3.5.22)

as n — o0o. Since E*(u*) = 0, (3.5.21) implies that u* = Op(b/+y/n).
Consider next the first term of the right hand side of expression (3.5.19). For this
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term, we have

EY(Wy)? = X > (Ui y)? (3.5.23)

(X, ) (X ) + (X1, Y Xnmsr1, )]

1
1 b—t .
1 g+t
3 T (1 L) (0 X + X))
A+ (Xt Y (X, 1) + (X jrt, W) (X1, )

Thus,

B0V = 1 (%) (Xow)

* ; (1 y %) %;K)@y) (Xisn, y) + (X, W) (X5, 1)]

+Op(b/n) + Op(b?/n),

from which we get

Var*(W7) = // en (u, v)y(u)y(v)dudv + O, (6% /n), (3.5.24)
where
1 n
en(u,v) = N 4 X (u) X;(v)
+ ; (1 - %) % i; [X1<U)Xi+h(v) + Xi+h(U)X¢(U)]. (3.5.25)

By the ergodic theorem and equation (A.2) of Horvath et al. (2013), choosing the
kernel K in their notation to be the kernel K(z) = (1 — |z|)1_1,1(x), where 1 4(x)
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denotes the indicator function of A, it follows that

//[cn(u, v) — c(u,v)]*dudv = op(1) (3.5.26)

as n — oo, where c(u,v) => > E[Xo(u)X;(v)] and ¢,(u,v) = (N/n)en(u,v). Using

1=—00

Cauchy-Schwarz’s inequality, we get that, as n — oo,

‘//(C”(“’ v) — c(u,v))y(u)y(v)dudv

< (/[ tentuwo) = ctuyaua) 1l = on )

//cnuv dudv%// c(u, v)y(u)y(v)dudo.

Since N/n — 1 as n — oo, we finally get from (3.5.24) that,

That is,

Var*(S», y) = Var*(Wy) —> // c(u, v)y(u)y(v)dudv = o*(y). (3.5.27)

Consider next (3.5.18). Observe that W* = (Uf,y), i = 1,2,..., k are i.i.d. random

(2

variables and, therefore, it suffices to show that Lindeberg’s condition

nh_}n;) = XE]E — WL(W) — p*| >er;)] =0, foreverye >0, (3.5.28)
is fulfilled, where T, Zt | Var* (W) = kVar*(Wy) and p* = E*(W;). To estab-

lish (3.5.28), and because of (3.5.27), it suffices to show that, for any § > 0 and as

n — oo,

( ZE* Wy (W — pt| > emp)] > 5) — 0. (3.5.29)

Towards this, notice first that, for any two random variables X and Y and any n > 0,

it yields that

E[|X +Y]P1(|X + Y| > )]

<4 [EIXPL(X] > n/2) + EYPL(Y] > n/2)] ; (3.5.30)
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see Lahiri (2003), p. 56. We then get by Markov’s inequality that

k
P (% ZE* [(Wt* — LW — ] > 57—1?)] > 5)

t=1

< OTE{ET (W) — )2 AW — | > er)]}

N
1 * * *
S — P - ] > >]

= 07'E [(Wh — p*)*L(|Wh — p*| > e7y)]
< 457 [EWPL(WA| > ert/2) + B (3.5.31)

where W; = (U;,y), i = 1,2,..., N. Furthermore, we have

E(W2) = E[{U, )2 = 3 ( |Z|)E[<Xo, (X, y) %// e(, 0y () (v)dudo,
|h|<b
as n — 0o. Therefore, by the dominated convergence theorem, lim,, ., EWZ1(|W;| >
ety /2) = 0, Hence, using expression (3.5.21), we conclude that (3.5.31) converges to 0
as n — 00.

To establish (L2), it suffices, by Theorem 1.13 of Prokhorov (1956) and Theorems
5.1 and 5.2 of Billingsley (1999), to prove that limy, o sup,>; >~ E[(S, e;)[* =
where {e;, 7 > 1} is a complete orthonormal basis of L?. Using E*|(Sk e;)]* =
Var*((Uf, e;)) and Lemma 14 of Cerovecki and Hérmanm (2017), (L2) is satisfied if

the following five conditions are fulfilled.
(a) Var"((U7,e;)) =0 Vj,n
(b) lim,,_, Var*((Uf,e;)) = X;, in probability;
() 2251 %) < oo
(d) limye0 D255, Var*((Uy,e;)) = 30,5, Xj,  in probability;
(e) D5 Var*({Uy, e;)) is bounded for all n > 1, in probability.

Note that, by letting y = e; in expression (3.5.27), property (b) follows with ¥, =
[ e(u, v)ej(u)e;(v)dudv. To prove (c), notice that, by Proposition 6 of Hormanm et
al. (2015), and since the stochastic process {X;,t € Z} is L?*-m-approximable, the
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covariance operator C' with kernel ¢(-, ) is trace-class. Therefore,

ZE—Z// c(u, v)e;(u)e;(v)dudv = "X < oo, (3.5.32)

>1 i>1 §>1

where );, 7 > 1 are the eigenvalues of C.

To establish (d), we get, using (3.5.20), that

Var*((U7, ¢;))

b— n—h
h\ 1
=N Z Xi, Xi) (1 < g) N Z[<XiaXi+h> + (Xitn, Xi)]
i=1

b—1 b—t
1 t+j
N Z Z ( ) <XJ'7 Xj+t> + <Xn—j+1—t7 Xn—j+l>

+ (X, Xj) + (Xomjr1s Xn—jr1-1)]-

Hence,
00 1 N
S S Wien)
j=1"" i=1
1 n
::}QT§£:<AQa)Q>
i=1
b—1 h 1 n—nh
+ (1 N E) N (X3, Xisn) + (Xion, Xi)] + Op(b%/n). (3.5.34)
h=1 =1

BLock BooTSTRAP METHODS FOR FUNCTIONAL TIME SERIES 54



Then, by letting g,(h) = (1 - @) in Lemma 3.5.1, we get that, as n — oo,

0o N [e's)
1 P
> ~ D (Uies)* = > E((Xo, Xi)). (3.5.35)
j=1"" i=1 i=—00
For the second term of equation (3.5.33), we show that,

(%

Jj=1

n b—1

Z<Xi’ e;) — Z (1 - lé) (X1, e5) + (Xn—ig, y>]]) =op(1), (3.5.36)

i=1 =1

as n — 0o. Using (z,y) = >_,5,(x,€;)(y, ¢;), we have

Z [Z(Xu €j) — i (1 - %) ((Xi,e5) + (Xn—l+1a€j>)}
=2 D (X X)-2) 3 (1 - f,) (X6, X0) + (X3, Xt

| T

+ (X, Xp—i1) + (Xo—iv1, Xni41)]

n n

= ZZ<X“XZ> + Op(nb) + Op(bQ)

i=1 [=1

Now note that, by the continuous mapping theorem and using Theorem 1 of Horvath

et al. (2013), we get

n n

1

20 (X X = (VK VKL ) = 0,(0). (3.5.37)
Therefore,
% DD (X0, Xi) + Op(nb) + Op(1?)| = Op(¥*/n) = 0,(1),

which establishes (3.5.36). Hence, from (3.5.33), (3.5.35) and (3.5.36), we conclude
that
> Var'((Uy,e;)) = Y E((Xo,X;)), in probability. (3.5.38)

j>1 i=—00
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Therefore, and by (3.5.32), property (d) is proved if we show that,

d N = i E((Xo, X;)). (3.5.39)

j>1 i=—00

Using Mercer’s theorem, we have

Z/\_/ uudu—/z [Xo(u)X;(v)]du

j>1 1=—00

Z /XO ) du = Z E(X,, X (3.5.40)

i=—00 i=—00

Notice that the above interchange of summation and integration is justified since, using

Assumption 2, and the fact that X, and X;; are independent for ¢ > 1, we get

1/2 1/2
< E|| Xo|| + 2 (E[| Xo?) /Z E[| X, — Xo,]2)"* <

i=1
To prove (e), notice first that, by (3.5.33),

oo

> Vart((Use;)) Z 1/N) Z (U;, e;)|?
Jj=1 i=1

and, therefore, using (3.5.34), for any given n > 1, 3°°2 Var*((Uy, ¢;)) is bounded
in probability. Furthermore, by (3.5.38), the sequence {7, Var*((U{,e;)), n > 1}
converges in probability as n — co.

Consider next assertion (i) of the theorem. By the triangle inequality, it suffices
to prove that as n — oo, ||nE*(X, — E*(X,)) ® (X, — E*(X,)) — 2nF|lus = op(1).
Now, recall that U}, + =1,2,...,n, are i.i.d., and note that

nE (X, — E* (X)) o(X, — E(X,))(y)(v)

~ [ B (Ui - B @)U ) - E 0 0)]ywd,
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ie, nE*(X, —E*(X,))® (X, —E*(X,)) is an integral operator with kernel

d(u,v) = E*[U7 (U7 (v)] = E*(U7 (u))E" (U (v))- (3.5.41)

— %;XZ(U)XZ(U) + ; (1 — %) % 3 (X5 (u) Xion(v) + Xipn(u) X;(v)]
b—1
— 3 (17 3) X 0) + X s ()Xo 0]
- Z Z (1= 55) BO@Xa0) + Koot s ) Xomgi1a(0)
+ X (W) X;(v) + Xojirr (u) Xomjr - (v)] (3.5.42)
and
E*(Uf(u)) = % Lz:; Xi(u) — ; (1 — ]E) (X, (uw) + Xpjra(u) | - (3.5.43)

Therefore, d(u,v) = cy(u,v) + R(u,v), where R(u,v) is defined as the difference of
d(u,v) given in (3.5.41) and cy(u,v) given in (3.5.25). Now, notice that 27Fy(y)(v) =
I3 E[Xo(w) Xa(v)]y(u)du, ie., 2nF, is an integral operator with kernel ¢(u,v) =
Y ore JE[Xo(u) Xy (v)]. Hence,

InE*(X,, — E*(X,) @ (X, — E*(X,)) — 2nFol%s

// u, ) — c{u, v)|2dudy
/ / lex(u,v) — e(u, v)]2dudv + 2 / / (R(u, v)2dudv.

Using (3.5.26) it suffices to prove that [[[R(u,v)]*dudv = 0,(1). To prove this, recall
the inequality (325, a;)> < LY.~ | a2, where L is a positive integer, and notice that,
using (3.5.37),
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Nzsz/x“ X, du—ZZ/ dv

i1=11iz=1 ji=1jo=1
2
( ZZ i X ) = Op(b*/N?) = 0,(1). (3.5.44)
i1=110=1
Furthermore,
b—1 bt 2
+t
//[ ZZ <1—]—) j(u)Xj+t(v)] dudv
t=1 j=1
b—1 bt
// > X (u)X7,,(v)dudv = Op(b*/N?) = 0,(1), (3.5.45)
t=1 j=1

where all other terms appearing in R(u,v) are handled similarly. This completes the
proof of the theorem.

Proof of Theorem 3.2.2. Let S* = \/n(X, —E*(X,)) and, as in Theorem 3.2.1, we
have that S = k=238 [UF — E*(U})], where U = b~ UQ(XE“Z pi1 T Xt
X;),i=1,2,...,k, are iid. random variables, (S*,y) = k=238 | [Wr — E*(W})]
with W = (U*,y), 1 =1,2,... k, and p* = E*(W]). Let C be the covariance operator

with kernel

c(u,v) = E[Y, O]+ Y ENo(u)Yi(v)] + Y ENo(v)Ya(w)], v € [0,1]%,

h>1 h>1

N =n-0b+1 |wlh = X0, wy(t) and [Jwy]|} = S20_, wi(t). Finally, let X; =
Y;—Y,, i=1,2,...,n, and

UZ' = (wb(l)Xz + wb(2)Xz-+1, .ot wb(b)XHb_l) N 1= 1, 2, ceey N.

It suffices to prove that
(L1) (S*,y) 5 N(0,0%(y)) for every y € L2, where o2(y) = (C(y),y), and that
(L2) the sequence {S},n € N} is tight.

To prove (L1), we establish that, as n — oo,

Var* ((S*, ) & o2(y) (3.5.46)
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and that

Ond) 4 g 1), (3.5.47)
Var*((S;, y))
To see (3.5.46), note first that
k
Var* (S5, y)) = k=1 Y Var* (W) — E*(W})) = Var* (W)
and that
1o 1 & i
Var* (W7 — (Ui, y) — —
1 & : i
e ||wb||2z“”’ A >]
Ien 1 < i
[N Z HwbHQ Zwb<8)<}/;+sl7y>] (3548)
=1 s=1
We next show that
lon 1 o b
— Yies1,y) = O,(—=). 3.5.49
N;”wb|’2;wb(8)< +s—1 y) p( n) ( )
Toward this, note that
0 PR S
AT Wy( s i+s—1»
N - sl 2 b +s—1, Y
b—1
L [Jwy[[y 2 a1 Wi(s)
- (Yiy) — 1— == (Y, 9)
N [[wp ]2 2 ; [[wy |1 !
b—1 b
o Wl
_ 1— 2eiziyr (1) Yo jr, W) (3.5.50)
el
and that
E 1% ! Xb: (5)(Vira )| = 0 (3.5.51)
— wy(8)(Yigs_1, = 5.
N ‘- [wsll2 2 b +s—1,Y
Furthermore, using the decomposition
S -3 (12 )
— 1 — |U,)b||]_ 7
1= 1=
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) b1 (1 - Dbt wb@)) (Yo jt1, y>]

[l

+ ; jzi (1 - %) (1 — %) (Yo, y) (Y}, y)
PS5 (- Bn) (- B o i
() S
- 2;:; : <1 - J@:ﬁi(s)> (Vi y)(Y;,y)
—2 Z (1 - Zij@:ﬁf"b(t) ) (Y, y) (Yeji1, ), (3.5.52)

we get, by equation (3.5.50), the fact that ||wy|s = O(bY?), |lwpl|; = O(b) and the

same arguments as those used to obtain equation (3.5.21), that

Zuwb\bz w” >] —NLﬁTﬂLj,ZZZE Yi,y) (Y, 9)] + O /m)

i=1 j=1

= O(b/n) + O(b*/n) = O(b*/n). (3.5.53)

From (3.5.51) and (3.5.53), assertion (3.5.49) follows. Consider next the first term of
the right hand side of equation (3.5.48). For this, we have

1 & i
Ngluwmzwb ey >]

b—1 n—h
% {lewbn Vi)Y ) + > W D [V ) Yin ) + (Vi 1) (Vi 0)]
b—1
) (uwbnz 3 i) 05 0
b—1 b
-y (HwbH%— 3 w£<t>) (Vaosr ) (Yarst19)
- (Wh — > wy(t)w(t + h)) [(Ye, ) (Yian, ) + (Yian, 9)(Yi, 9)]
h=1 =1 t=1
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T
L
7
>

_ (Wh - i wy(t)wy(t + h)) [(Yoiv1, ) Yoiv1-n,¥)

1 =1 t=b—i—h+1

i

+ (Yoivr-n, ¥) (Yooir1, v) };

from which it follows that

N

2

1
Z[nwbmz“’b -1y >]
NZ Y, 9)(Yi, y) +Z\|wb\

(Y, ) Yien, ) + Yien, 0) (Y, )]

d\gh

1<
N

o

Op(b/n) + Oy(b*/n).

Hence, using expressions (3.5.48) and (3.5.49), we get,

Var*(W7) // (u, v)y(w)y(v)dudv + O,(b*/n), (3.5.54)
where
3 1 < Wi 1=
En(u,v) = = Y Yiw)Yi(v) + > T BN > Vi) Yign (v) + Yien (u)Yi(v)]. (3.5.55)

Using Lemma 3.5.2 (ii) and Cauchy-Schwarz’s inequality, we conclude that, as n — oo,

‘// (Ea(u, v) = (s, v))y(w)y(v)dud

< (/ (& (1, v) —c(u,v)}Qdudv> 1/2||y||2 —op(1).  (3.5.56)

where é,(u,v) = (N/n)éy(u,v). Thus,

[ et otsteians 5 [ [ oywytodus

and, using equation (3.5.54),

Var*(S*, ) N// w, v)y(u)y(v)dudv + O, (b /n)
K // c(u, v)y(u)y(v)dudv = o*(y), (3.5.57)
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as n — 0o0. To prove (3.5.47), as stated in the proof of Theorem 3.2.1, we must establish
Lindeberg’s condition.

For this, let W; = (U;,y), i = 1,2,...,n, and note that, by (3.5.48), we have
| XN

przﬂw>%z'lzmw&ww

Iwb > Tl 2
1L 1
? ) ~ Y. s—1,
mmzw Yoot 8) = 7 2 T 2 40 Fiver0)
=W -5 Z Wi =Wy, (3.5.58)

with an obvious notation for W, and % . Hence, using (3.5.30) and Markov’s inequality,

we have, for any > 0 and for any £ > 0, that

( ZE* Wy (W) — \>8Tk)] >(5>
< OTEA{ES [(Wy — @) L(W; — p'| > er)] }
= 0B [(W) = g AW = iy | > e7)]
<407 [EW)PL(WY | > ey /2) + E(uy)* 1|y | > €74 /2)]

<A [EWY)PL(IWY| > e /2) + E(uy)?] - (3.5.59)

Wi

w3

E(W))? KR // c(u,v)y(u)y(v)dudo,

and, by the dominated convergence theorem, that lim,, ., E(W}Y )?1(|W}| > e7}/2) =

Since E(WY)? = = jh<b (| ) E[(Yo,y){(Yn,y)], we get, by Lemma 3.5.2 (i),

0. Using this result and expression (3.5.53), it follows that the bound in (3.5.59) con-
verges to 0 as n — oo, which establishes Lindeberg’s condition.

Consider now (L2). For this, it suffices to verify that conditions (a)-(e) of the proof
of Theorem 3.2.1 are satisfied. Note that, by letting y = e; in expression (3.5.57),
property (b) follows with X; = [[ ¢(u,v)e;(u)e;(v)dudv. To prove (c), note that, by
Proposition 6 of Hormann et al. (2015), since the stochastic process {Y;,t € Z} is L*-

m-approximable, the covariance operator C' with kernel c(-, -) is trace-class. Therefore,
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Yoo T = 2oy Jf clu,v)ej(u)ej(v)dudv = 370, A < oo, where Aj, j > 1 are the

ecigenvalues of the covariance operator C'. To establish (d), let first

1 .
UZ}/ = m (wb(]‘)}/; + 'l,Ub(2)K+1, . + 'l,Ub(b))/;H,b,l) y 1= 1, 2, e ,N.

Then, using equation (3.5.48), we have

Var*((U7,e;)) = (3.5.60)

Z< ¢) —[%i

=1 =1

ZIH

From expressions (3.5.50) and (3.5.52), we get,

2

> [%wa o)

>1 i=1

1 |[wy|[3 —~
R Hoc R
b2 | 5>1 =1 t=1

i>1 i=1 t=1 |wb||1 [|ws |1

S
. (1 P Z?:b—j+1 wy(1)

[l

DY (1 “‘”) (1 h Zec ubla) wb(s)) Ve Vo)

> <Yn_i+1, €j> <Yn—s+17 €j>

_zzfg(l_M>

[l

b
. (1 _ Zt:Thj}:ﬁl b(t)) <Yn—z‘+1,€j><Y;,6j>
B QZZZ ( Zt’;};ﬁ( )> (Y, e;) (Y5, €5)
-2 Zzi (1 B Zt?(;):‘ilw“t)) <Y;’€j><ynfs+1, €j>] . (3.5.61)

Hence, and because (z,y) = 3,5, (z,¢;)(y, &),

1L

DI ES ST
j>1 i=1
1w} |~

= — Y. Y,

N2 HwbH% ZZ< i Vi)

i=1 t=1
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55 () o
( (1 B D imbji1 wb<t>> (Yo sor, Y sst)

<1 B Z?:bfzﬁrl wb(t)> Yo se1, V)

L 2 &
— Y;,Y,) + Op(b?
N?Hwbuagz 0+ Op(*/n)

= 0,(b*/n) = 0,(1). (3.5.62)

Consider now, the first term of the right hand side of expression (3.5.60). By Parseval’s
identity,

S WY e

§>1 i=1
1 N
=y 210
1 y b—1 —h
=N {Zuwbu (V2 Y0+ 3 Wi ) [V Yin) + (Vi Vi)
h=1 =1
b—1
(‘wb’b Zwb ) (Y5, Ys)
s=1
b—1

M

<HwbH2 w?(t)) (Yo—st1, Yo_st1)
t=b—s-+1

b—

(S
|
= =
>

¥
M

T."S
> =

<Wh — Z wy(t)wy(t + h)) (Yi, Yien) + (Yien, Yi)]

t=1

T“ >
I
==

- (Wh - i wy(t)wy(t + h)) [(YVa—is1, Yoit1-n)

1 t=b—i—h+1

>
Il
—

7

+ (Yo—it1-h, Yn—i+1>]}'
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1ML

%[mmwwmmwwwm<%w

Wi

and because N/n — 1 as n — oo and taking g,(h) = in Lemma 3.5.1, in

conjunction with expressions (3.5.11) and (3.5.12), we get, as n — oo, that

S W e B ST B, V)

§>1 i=1 i=—00

Thus, using (3.5.60) and (3.5.62), we conclude that

S Vart (U7 e;) = > E((Y0, Vi) (3.5.64)
j>1 i=—o0
and, using » 77 E((Yp,Yi)) = >_,5, Aj, property (d) is established. Finally, (e) is
proved using the same arguments as in the corresponding case in Theorem 3.2.1, and
taking into account expressions (3.5.60), (3.5.63) and (3.5.64).
Consider next assertion (i7) of the theorem. It suffices to prove that, as n — oo,
InE*(X, — E*(X,)) ® (X, — E*(X,)) — 2xFo||lus = op(1). Notice that nE*(X, —
E*(X,)) ® (X, —E*(X,)) is an integral operator with kernel

d(u,v) = E*[Uf (u) = E*(U5 (w))][U} (v) — E*(Uf (v))]
1 y 1<y
:NZUi (W)U —<NZUJ )

j=

—_

=1 n b—1 n—nh
:%@MbHWWMM@+ZWQIWMMwHMMWM
2 | =1 h=1 =l
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S (- 3 wﬂw>x%ﬁmwx%ﬁmm
—Eii:O%—§2m®m6+m>MWﬂﬂmﬁ+mMMK@]
— Y ._ <Wh_ i wb(t)wb(t—i—h)) Yo it (w)Yn—iy1-n(v)

+ Yoit1-n(0)Yooipa ()] }

N (o S w® ) (e 3y
+;;xt |Wh><1 HWM)EUEU

b—1 b—1 b
2 e e -

‘ZZ< sﬁ%&
‘ (1 A E?:bfzﬁrl wy(t)

) Yoir1(w)Y;(v) 4 Yoip1(v)Yj(w)]

ol
—4}:@—4ﬁﬁ@>mwnm+nwmw
N 4G_Eﬁ£ﬁ“vwwmﬁmmwijmw}

Therefore, d(u,v) = éx(u,v) + R(u,v) where éy(u,v) is defined in (3.5.55) and R(u,v)

is the remainder term, and

InE* (X, — E*(X,))®(X,, — E*(X7,)) — 27 50|l

<2 / / [en (u, v) — c(u, v)|2dudv + 2 / / (R (u,v))]2dudv.

Using similar arguments as those used in the proof of assertion (iz) of Theorem 3.2.1,

it follows that [[[R(u,v))]*dudv = 0,(1), from which assertion (ii) follows because of
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(3.5.56).

Proof of Theorem 3.3.1. Consider assertion (i). For i = 1,2, let {ej,, j =
1,2,...,n;} be the pseudo-observations generated by implementing the MBB proce-
dure at {g;;, j = 1,2,...,n;}. Using Theorem 3.2.1, it follows that, conditionally on

X, for i = 1,2, and as nq,ny — 00,

1

2

Z e;; —E*(e;;)) = Ty, in probability,

where I'; is a Gaussian random element with mean zero and covariance operator C;
with kernel ¢;(+,-). Now, recall from Step 3 of the MBB-based testing algorithm that,
for i = 1,2, the pseudo-observations €j,, 4(7), § = 1,2,...,b,s =0,1,...,¢;, 7 € T,
are generated by first applying the MBB procedure to €;¢14(7), £ = 1,2,...,b, 5 =
0,1,...,¢;, 7 € T and then ;¢(7) is subtracted. Note further that ¢, ;(17) = &; ;(7) +
X, — pi(7). Thus, €l eran(T) =€ e ap(T) TEie(T) + X 0, (7) — pi(7) and, using expres-
sion (3.3.2), we get

1 &
e —E*(el))) (X7, —E (X})) = (X
T 2ol ) = 3 =l

Therefore, and conditionally on Xy, as nq, no — 00,

1 « -, 1 & — . o
( N > (X1 — X, NG > (XX M>> = (T',T2), in probability,
j=1 j=1

where I'; and I'y are two independent Gaussian random elements with mean zero and

covariance operator C and Cy with kernel ¢ (-, ) and co(-, -), respectively. Since

NiNg —x* % T 1 L nq
X - X =4/~ - X — /= (X5, — X
M ( 1,n1 2,n2) M\/n—ljz:;( M \/—Z 2,5 M)

and because ny /M — 60, we get that, as ny,ny — oo,

/n]1\212 (7’{7n1 _ 7;712) = I', in probability,

where I' = /1 — 6T, — /AT'5. The proof of assertion (ii) follows along the same lines

using Theorem 3.2.2. This completes the proof of the theorem.
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TESTING EQUALITY OF
AUTOCOVARIANCE OPERATORS FOR
FUNCTIONAL TIME SERIES

ABSTRACT

We consider strictly stationary stochastic processes of Hilbert space-valued random
variables and focus on tests of the equality of the lag-zero autocovariance operators
of several independent functional time series. A moving block bootstrap-based test-
ing procedure is proposed which generates pseudo random elements that satisfy the
null hypothesis of interest. It is based on directly bootstrapping the time series of
tensor products which overcomes some common difficulties associated with applica-
tions of the bootstrap to related testing problems. The suggested methodology can
be potentially applied to a broad range of test statistics of the hypotheses of inter-
est. As an example, we establish validity for approximating the distribution under the
null of a fully functional test statistic based on the Hilbert-Schmidt distance of the
corresponding sample lag-zero autocovariance operators, and show consistency under
the alternative. As a prerequisite, we prove a central limit theorem for the moving
block bootstrap procedure applied to the sample autocovariance operator which is of
interest on its own. The finite sample size and power performance of the suggested
moving block bootstrap-based testing procedure is illustrated through simulations and

an application to a real-life data set is discussed.
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4.1 INTRODUCTION

Functional data analysis deals with random variables which are curves or images and
can be expressed as functions in appropriate spaces. In this paper, we consider func-
tional time series X,, = { X1, Xo, ..., X,,} steming from a (strictly stationary) stochastic
process X = (X, t € Z) of Hilbert space-valued random functions X,(7), 7 € Z, which
are assumed to be L*m-approximable, a dependence assumption which is satisfied
by large classes of commonly used functional time series models; see, e.g., Hormann
and Kokoszka (2010). We would like to infer properties of a group of K independent
functional processes based on observed stretches from each group. In particular, we
focus on the problem of testing whether the lag-zero autocovariance operators of the
K processes are equal and consider fully functional test statistics which evaluate the
difference between the corresponding sample lag-zero autocovariance operators using

appropriate distance measures.

As it is common in the statistical analysis of functional data, the limiting distri-
bution of such statistics depends, in a complicate way, on difficult to estimate charac-
teristics of the underlying functional stochastic processes like, for instance, its entire
fourth order temporal dependence structure. Therefore, and in order to implement
the testing approach proposed, we apply a moving block bootstrap (MBB) procedure
which is used to estimate the distribution of the test statistic of interest under the null.
Notice that for testing problems related to the equality of second order characteristics
of several independent groups, in the finite or infinite dimensional setting, applications
of the bootstrap to approximate the distribution of a test statistic of interest are com-
monly based on the generation of pseudo random observations obtained by resampling
from the pooled (mixed) sample consisting of all available observations. Such imple-
mentations lead to the problem that the generated pseudo observations have not only
identical second order characteristics but also identical distributions. This affects the
power and the consistency properties of the bootstrap in that it restricts its validity
to specific situations only; see Lele and Carlstein (1990) for an overview for the case
of independent and identically distributed (i.i.d.) real-valued random variables and

Remark 4.3.2 in Section 3 below for more details in the functional setting.

To overcome such problems, we use a different approach which is based on the

observation that the lag-zero autocovariance operator Cy = E(X; — p) @ (X; — p) is the
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expected value of the tensor product process {V; = (X; — pu) ® (Xy — ), t € Z}, where
i = EX,; denotes the expectation of X;. Therefore, the testing problem of interest
can also be viewed as testing for the equality of expected values (mean functions)
of the associated processes of tensor products. The suggested MBB procedure works
by first generating functional pseudo random elements via resampling from the time
series of tensor products of the same group and then adjusting the mean function of the
generated pseudo random elements in each group so that the null hypothesis of interest
is satisfied. We stress here the fact that the proposed method is not designed having
any particular test statistic in mind and it is, therefore, potentially applicable to a wide
range of test statistics. As an example, we establish validity of the proposed MBB-based
testing procedure in estimating the distribution of a particular fully functional test
statistic under the null, which is based on the Hilbert-Schmidt norm between the sample
lag-zero autocovariance operators, and show its consistency under the alternative. As
a prerequisite, we prove a central limit theorem for the MBB procedure applied to the
sample version of the autocovariance operator Cp, = E(X; — ) @ (Xipn — 1), h € Z, of
an L*m-approximable stochastic process, which is of interest on its own. Our results
imply that the suggested MBB-based testing procedure is not restricted to the case of
testing for equality of the lag-zero autocovariance operator only but it can be adapted
to tests dealing with the equality of any (finite number of) autocovariance operators

Cy, for lags h different from zero.

Asymptotic and bootstrap based inference procedures for covariance operators for
two or more populations of i.i.d. functional data have been extensively discussed in
the literature; see, e.g., Panaretos et al. (2010), Fremdt et al. (2013) for tests based
on finite-dimensional projections, Pigoli et al. (2014) for permutation tests based
on distance measures and Paparoditis and Sapatinas (2016) for fully functional tests.
Notice that testing for the equality of the lag-zero autocovariance operators is an im-
portant problem also for functional time series since the associated covariance kernel
co(u,v) = Cov(X¢(u), X¢(v)) of the lag-zero autocovariance operator Cy describes, for
(u,v) € T x Z, the entire covariance structure of the random function X;. Despite its
importance, this testing problem has been considered, to the best of our knowledge,
only recently by Zhang and Shao (2015). To tackle the aforementioned problems as-
sociated with the implementability of limiting distributions, Zhang and Shao (2015)

considered tests based on projections on finite dimensional spaces of the differences of
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the estimated lag-zero autocovariance operators. Notice that similar directional tests
have been previously considered for i.i.d. functional data; see Panaretos et. al. (2010)
and Fremdt et al. (2013). Although projection-based tests have the advantage that
they lead to manageable limiting distributions, and can be powerful when the devia-
tions from the null are captured by the finite-dimensional space projected, such tests
have no power for alternatives which are orthogonal to the projection space. Moreover,
and apart from being free from the choice of tuning parameters and consistent for a
broader class of alternatives, fully functional tests also allow for an interpretation of

the test results; we refer to Section 4.4 for an example.

The paper is organised as follows. In Section 4.2, the basic assumptions on the
underlying stochastic process X are stated and the asymptotic validity of the MBB
procedure applied to estimate the distribution of the sample autocovariance operator
is established. In Section 4.3, the proposed MBB-based procedure for testing equality
of the lag-zero autocovariance operators for several independent functional time series
is introduced. Theoretical justifications for approximating the null distribution of a
particular fully functional test statistic are given and consistency under the alternative
is obtained. Numerical simulations are presented in Section 4.4 in which the finite
sample behaviour of the proposed MBB-based testing methodology is investigated. A
real-life data example is also discussed in this section. Auxiliary results and proofs of

the main results are deferred to Section 4.5.

4.2 BOOTSTRAPPING THE AUTOCOVARIANCE OPERATOR

4.2.1 PRELIMINARIES AND ASSUMPTIONS

We consider a (strictly stationary) stochastic process X = {X;, t € Z}, where the
random variables X; are random functions X;(w,7), 7 € Z, w € Q, t € Z, defined
on a probability space (£2, A, P) and take values in the separable Hilbert space of
squared-integrable R-valued functions on Z, denoted by L?*(Z). The expectation func-
tion of X;, EX; € L*(Z), is independent of ¢, and it is denoted by u. We define
(f.9) = [; f(r)g(r)dr, |[fII? = (f.f) and the tensor product between f and g by
f®g(-) = (f,-)g. For two Hilbert-Schmidt operators ¥; and W,, we denote by
(U1, Wo)rs = > oo (¥1(ei), Uale;)) the inner product which generates the Hilbert-

Schmidt norm ||U4]|%,¢ = > ooy |Wi(e:)|?, where {e;,i = 1,2,...} is any orthonormal
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basis of L*(Z). If ¥; and ¥, are Hilbert-Schmidt integral operators with kernels v (u, v)
and 1 (u, v), respectively, then (U1, Wo) yg = [ [ 11 (u, v)tha(u, v)dudv. We also define
the tensor product between the operators ¥; and W, analogous to the tensor product
of two functions, i.e., U1 @Wsy(-) = (Vy, ) gsWVs. Note that U3 ® U, is an operator acting
on the space of Hilbert-Schmidt operators. Without loss of generality, we assume that
Z = [0,1] (the unit interval) and, for simplicity, integral signs without the limits of
integration imply integration over the interval Z. We finally write L? instead of L*(Z),
for simplicity.

To describe more precisely the dependence structure of the stochastic process X,
we use the notion of LP-m-approximability; see Hormann and Kokoszka (2010). A
stochastic process X = {X;,t € Z} with X; taking values in L?, is called L*-m-

approximable if the following conditions are satisfied:

(i) X; admits the representation
Xt - f((st, 5t_1, 5t—27 .. ) (421)

for some measurable function f : S® — L? where {d;, t € Z} is a sequence of

i.i.d. elements in L2.

(i) E||Xo||* < oo and
ST (EIX — Xewml ) < o0, (4.2.2)

m>1
t,t—m>

where X, = f(6¢, 611, - -+, Ot—mt1, sim 5t(T_)m_1, ...) and, for each ¢ and k, 5%)

is an independent copy of ¢;.

The rational behind this concept of weak dependence is that the function f in (4.2.1)
is such that the effect of the innovations §; far back in the past becomes negligible,
that is, these innovations can be replaced by other, independent, innovations. For the
stochastic process X considered in this paper, we somehow strengthen (4.2.2) to the

following assumption.

Assumption 4. X is L*-m-approximable and satisfies

lim m (E||X, — X;..|*)"* =0,
m—oQ
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Since E||X¢||* < oo, the autocovariance operator at lag h € Z exists and is defined by
Ch = E[(Xy — 1) @ (Xen — p)].

Having an observed stretch Xy, Xs, ..., X, the operator C; is commonly estimated by

the corresponding sample autocovariance operator, which is given by

n! Z?:_{l(Xt - yn) & (Xt+h - yn), if 0 < h<n,

Ch=Sn 'S MX ) — X)) ® (X, — X,), if —n<h<0,

t=1

0, otherwise,
\

where X,, = (1/n) Y., X; is the sample mean function. The limiting distribution of
NZD (@ — Ch) can be derived using the same arguments to those applied in Kokoszka
and Reimherr (2013) to investigate the limiting distribution of \/ﬁ(é\g — Cp). More
precisely, it can be shown that, for any (fixed) lag h, h € Z, under L*-approximability
conditions, \/n (CAh - Ch) = Z,, where Z;, is a Gaussian Hilbert-Schmidt operator with

covariance operator 'y, given by

[e.9]

Trn= Y El((X1— ) ® (Xitn = 1) = Cn) @ (Xiws = 1) @ (Xasnrs — 1) = C);

S=—00

see also Mas (2002) for a related result if X is a Hilbertian linear processes.

4.2.2 A BooTSTRAP CL'T FOR THE EMPIRICAL AUTOCOVARIANCE

OPERATOR

In this section, we formulate and prove consistency of the MBB for estimating the
distribution of \/n (é\h — Ch) for any (fixed) lag h, h € Z, in the case of weakly depen-
dent Hilbert space-valued random variables satisfying the L*-approximability condition
stated in Assumption 4. The MBB procedure was originally proposed for real-valued
time series by Kiinsch (1989) and Liu and Singh (1992). Adopted to the functional
set-up, this resampling procedure first divides the functional time series at hand into
the collection of all possible overlapping blocks of functions of length . That is, the
first block consists of the functional observations 1 to b, the second block consists of
the functional observations 2 to b+ 1, and so on. Then, a bootstrap sample is obtained

by independent sampling, with replacement, from these blocks of functions and join-
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ing the blocks together in the order selected to form a new set of functional pseudo
observations.

However, to deal with the problem of estimating the distribution of the sample
autocovariance operator CAh, we modify the above basic idea and apply the MBB directly
to the set of random elements Y,,_; = {)A)t,h, t=1,2,...,n— h}, where )A)t,h = (X, —
X,) ® (Xy4n — X,). As mentioned in the Introduction, this has certain advantages in
the testing context which will be discussed in the next section. The MBB procedure

applied to generate the pseudo random elements Yy, V5, ..., ;4 is described by

the following steps.

Step 1 : Let b=b(n),1 < b < n—h, be an integer and denote by By, the block of length
b starting from the tensor operator JA/t,i.e., B, = {ﬁt,h, j)\tﬂyh, . ,j/\Hb,Lh}, where

t=1,2,...,Nand N =n—h—0b+1 is the total number of such blocks available.

Step 2 : Let k be a positive integer satisfying b(k — 1) < n — h and bk > n — h
and define k i.i.d. integer-valued random variables Iy, Is, ..., I} selected from a

discrete uniform distribution which assigns probability 1/N to each element of

the set {1,2,..., N}.

Step 3 : Let Bf = By,, i =1,2,...,k, and denote by {y(*l.fl)b%h, Vityprop -  Vinnt
the elements of B;. Join the k blocks in the order B, Bj,..., B} together to
obtain a new set of functional pseudo observations. The MBB generated sample

of pseudo random elements consists then of the set Vi, V5, .-, Yy _pp-

Note that if we are interested in the distribution of the sample autocovariance operator
5h for some (fixed) lag h, —n < h < 0, then the above algorithm can be applied to
the time series of operators Y, ., = {ﬁt,h, t = h+1,h+2,...,n}, where )A/th =
(Xioh — X))@ (X, — X)), t=h+1,h+2,...,n, with minor changes. Hence, below,
we only focus on the case of 0 < h < n.

Given a stretch Vi, V5, ..., Vi, of pseudo random elements generated by the

above MBB procedure, a bootstrap estimator of the autocovariance operator is given

by the sample mean

N 1n h
=2 Yin

t=1

%

The proposal is then to estimate the distribution of \/ﬁ(é\h — Cp,) by the distribution
of the bootstrap analogue \/ﬁ(CA,i'; — E* (é\;:)), where E* (CA}’;) is (conditionally on X,,)
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the expected value of (/Z\; Assuming, for simplicity, that n — h = kb, straightforward

calculations yield

E*(Cy) = [Z Yin — S <1 B _) i+ Y- ]Hh)] ' (4.2.3)

=1 j=1

The following theorem establishes validity of the MBB procedure suggested for
approximating the distribution of \/n(Cj — Cp).

Theorem 4.2.1. Suppose that the stochastic process X satisfies Assumption 4. For
0<h<mn,let VipVsp, - Vn_np be a stretch of functional pseudo random elements
generated as in Steps 1-8 of the MBB procedure and assume that the block size b = b(n)

satisfies ™' + bn~1/3 = o(1) as n — oco. Then, as n — oo,

d(L(Vn(Cr = E*(C)) | Xa), LVA(Cr —Ch))) — 0, in probability,

where d is any metric metrizing weak convergence on the space of Hilbert-Schmidt

operators acting on L* and L(X) denotes the law of the random element X.

4.3 TESTING EQUALITY OF LAG-ZERO AUTOCOVARIANCE

OPERATORS

In this section, we consider the problem of testing the equality of the lag-zero auto-
covariance operators for a finite number of functional time series and use a modified
version of the proposed MBB procedure. This modification leads to a MBB-based
testing procedure which generates functional pseudo observations that satisfy the null
hypothesis that all lag-zero autocovariance operators are equal. Since this procedure is
designed without having any particular statistic in mind, it can potentially be applied
to a broad range of possible test statistics which are appropriate for the particular
testing problem considered.

To make things specific, consider K independent, L*-m-approximable functional
time series, denoted in the following by Xx py = {X;4, i =1,2... K, t =1,2,...,n;},
where n; denotes the length of the i-th time series. Let C;o, ¢ = 1,2..., K, be the
lag-zero autocovariance operator of the i-th functional time series, i.e., C;o = E[(X;; —

i) @ (X — )], where p; = EX; ;. Also, denote by M = Zfil n; the total number of
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observations. The null hypothesis of interest is then
Hy:Co=0Co0=...=Ckgp (4.3.1)
and the alternative hypothesis is
Hy:3k,me{1,2,..., K} with k # m such that Cy # Cy, 0.

By considering the operator processes {Vi; = (Xit — pi) @ (Xip — p),t € Z}, i =
1,2..., K, and denoting by pY = EY;, the expectation of };,, the null hypothesis of

interest can be equivalently written as
Hy:pd =pwd =...=pp (4.3.2)
and the alternative hypothesis as
Hy:3k,me{1,2,..., K} with k # m such that ;1 # .

Consequently, the aim of the bootstrap is to generate a set of K pseudo random ele-
ments Y, = {V, i =1,2...,K, t =1,2,...,n;} which satisfy the null hypothesis
(4.3.2), that is, the expectations £*();) should be identical for all i = 1,2,... K.

This leads to the MBB-based testing procedure described in the next section.

4.3.1 THE MBB-BASED TESTING PROCEDURE

Suppose that, in order to test the null hypothesis (4.3.2), we use a real-valued test
statistic Ty, where, for simplicity, we assume that large values of T}, argue against
the null hypothesis. Since we focus on the tensor operators V;;, t = 1,2,...,n;, t =
1,2..., K, it is natural to assume that the test statistic T, is based on the tensor
product of the centered observed functions, that is on :)A}i,t = (Xis — le) ® (Xit —
Xin),i=12...,K,t=1,2,...,n; where X,,,. is the sample mean function of the
i-th population, i.e, X;,, = (1/n;) S_1%, Xis. Suppose next, without loss of generality,
that the null hypothesis (4.3.2) is rejected if Thy > dpr, where, for a € (0,1), dpq
denotes the upper a-percentage point of the distribution of T}, under Hy. We propose
to approximate the distribution of T); under Hy by the distribution of the bootstrap
quantity 7, where the latter is obtained through the following steps.
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Step 1 : Calculate the pooled mean

Step 2 : Fori=1,2,...,K,let b =b;(n) € {1,2,...,n— 1} be the block size used for
the i-th functional time series and let N; = n; — b; + 1. Calculate

N;+&—
1 +£—1

yl,fzﬁl ; yi,ta£:1727"'7bi

Step 8 : For simplicity assume that n; = k;b; and for i = 1,2,..., K, let ¢}, ¢5,...,q},
be i.i.d. integers selected from a discrete probability distribution which assigns
the probability 1/N; to each element of the set {1,2,..., N;}. Generate bootstrap

functional pseudo observations V;,, t =1,2,...,n;, 1 =1,2,... K, as

y;jt =YV + ji\z*t — j)vi@ & =10b; if t mod b; = 0 and £ =t mod b; otherwise,

A~

where y;&(sfl)bi = )A}i,q;-+§,1, s=1,2...,k and £ =1,2,...,0b;

Step 4 : Let T}, be the same statistic as T, but calculated using, instead of the JAJM’S
the bootstrap pseudo random elements V', t = 1,2,...,n;, © = 1,2,... K.
Given Xk s, denote by D}, the distribution of Ty;. Then for a € (0,1), the

null hypothesis Hy is rejected if
Ty > d?%,a?

where dj; , denotes the upper a-percentage point of the distribution of 77, i.e.,

P(Ty, > dy ) = .
Notice that the distribution D}, 7 is unknown but it can be evaluated by Monte-Carlo.

Before establishing validity of the described MBB procedure some remarks are in
order. Observe that the mean in,g calculated in Step 2, is the (conditional on X ar)
expected value of )A)Zqi v for £ = b; if t mod b; = 0 and £ =t mod b; otherwise. This

motivates the definition

y;:t:yM—i_j)\Zt_yi,{yt:1727"'7ni77;:1727"'7-[{7
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used in Step 3 of the MBB algorithm. This definition ensures that the generated
pseudo random elements Y}, t = 1,2,...,n;, 7 =1,2,..., K, satisfy the null hypoth-
esis (4.3.2). In fact, it is easily seen that the pseudo random elements )}, have (con-
ditional on Xy »s) an expected value which is equal to Vs, that is E*(y;jt) =Y, for
allt=1,....n;andi=1,... K.

4.3.2 VALIDITY OF THE MBB-BASED TESTING PROCEDURE

Although the proposed MBB-based testing procedure is not designed having any spe-
cific test statistic in mind, establishing its validity requires the consideration of a spe-
cific class of statistics. In the following, and for simplicity, we focus on the case of two
independent population, i.e., K = 2. In this case, a natural approach to test equality
of the lag-zero autocovariance operators is to consider a fully functional test statistic
which evaluates the difference between the empirical lag-zero autocovariance operators,

for instance, to use the test statistic

ning

M

ning

TM = %{S = 7”?1@1 - y?,?m”%—[b’?

ICr0 — Cal

where Y; ., = (1/n;) o J7i7t, it =1,2, and M = n;+ny. The following lemma delivers
the asymptotic distribution of Ty, under H.

Lemma 4.3.1. Let Hy hold true, Assumption 4 be satisfied and assume that, as

min{ny,ny} — oo, ny/M — 0 € (0,1). Then,
d 2
T = 1 Zollas

where Zy = /1 —02Z;y — \/52270 and Z;9,1 = 1,2, are two independent mean zero

Gaussian Hilbert-Schmidt operators with covariance operators I'; o, © = 1,2, given by
Lio = E[(Xi1 — 1) @ (Xip — ps) — Cio) @ (X — i) @ (Xin — ps) — Ci)]
+2) E[(Xia — ) ® (Xin — 1) = Cig) ® (Xis — ) ® (Xis — i) — Cip)]-
s=2
As it is seen from the above lemma, the limiting distribution of T); depends on the
difficulty to estimate covariance operators I'; o, ¢ = 1, 2, which describe the entire fourth

order structure of the underlying functional processes X;, making the implementation

of this asymptotic result for calculating critical values of the T}, test a difficult task.
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Theorem 4.3.1 below shows that the MMB-based testing procedure estimates consis-
tently the limiting distribution ||Zo]|%¢ of the Ty, test and consequently that it can be

applied to estimate the critical values of interest.

For this, we apply the MBB-based testing procedure introduced in Section 4.3.1 to
generate {J;,,t =1,2,....n;}, 7 € {1,2}, and use the bootstrap pseudo statistic

ning

M

%k ok
T;\} = ||y1,n1 - y2,n2||?-15‘7

where ?jn = (1/n:) 322, Vi, i = 1,2. We then have the following result.

Theorem 4.3.1. Let Assumption 4 be satisfied and assume that min{ni,ns} — o0,
ni/M — 0 € (0,1). Also, for i € {1,2}, let the block size b; = b;(n) satisfies b;' +

bini_l/g =o0(1), as n; — oo. Then,

sup}P(Tj} < | Xgum) — Puo(Tu < x)| = 0, in probability,
z€eR

where Py, (X < -) denotes the distribution function of the random variable X when H

1S true.

Remark 4.3.1. If H; is true, that is if ||C1,0 —Copol|us = [|EV1t —EXat|lms > 0, then it
is easily seen that T, — oo under the conditions on n; and ns stated in Lemma 4.3.1.
This, together with Theorem 4.3.1 and Slutsky’s theorem, imply consistency of the
T test based on bootstrap critical values obtained using the distribution of T3, i.e.,

the power of the test approaches unity, as nq,no, — co.

Remark 4.3.2. The advantage of our approach to translate the testing problem con-
sidered to a testing problem of equality of mean functions and to apply the bootstrap
to the time series of tensor operators V;;, t =1,2,...,n;, 1 = 1,..., K, is manifested
in the generality under which validity of the MBB-based testing procedure is estab-
lished in Theorem 4.3.1. To elaborate, a MBB approach which would select blocks
from the pooled (mixed) set of functional time series in order to generate bootstrap
pseudo elements which satisfy the null hypothesis, will lead to the generation of K new
functional pseudo time series, which asymptotically will imitate correctly the pooled
second and the fourth order moment structure of the underlying functional processes.

As a consequence, the limiting distribution of T, as stated in Lemma 4.3.1 and that of
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the corresponding MBB analogue will coincide only if I'; = I's. This obviously restricts
the class of processes for which the MBB procedure is consistent. In the more simple
i.i.d. case, a similar limitation exists by the condition B; = By imposed in Theorem
1 of Paparoditis and Sapatinas (2016). Notice that this limitation can be resolved
by applying also in the i.i.d. case the basic bootstrap idea proposed in this paper.
That is, to first translate the testing problem to one of testing equality of means of
samples consisting of the i.i.d. tensor operators and then to apply an appropriate i.i.d.

bootstrap procedure.

4.4 NUMERICAL RESULTS

In this section, we investigate via simulations the size and power behavior of the MBB-
based testing procedure applied to testing the equality of lag zero autocovariance op-

erators and we illustrate its applicability by considering a real life data set.

4.4.1 SIMULATIONS

In the simulation experiment, two groups of functional time series are generated from

the functional autoregressive (FAR) model

Xi(u) = /@b(u, 0) Xi—1(v) dv + 0 Xy o(u) + Bi(u), (4.4.1)
or from the functional moving average (FMA) model,

Xi(u) = /¢(u, 0)By_1(v) dv + 0 By_o(u) + Bi(u). (4.4.2)

The kernel function (-, ) in the above models is equal and it is given by

o (W2 +02)/2

4 / e At

while the By(-)’s are generated as i.i.d. Brownian bridges. All curves were approximated

?ﬁ(% U) = ) (uav> € [Oa 1]27

using 1" = 21 equidistant points 7y, 7o, ..., 7o in the unit interval Z and transformed
into functional objects using the Fourier basis with 21 basis functions. Functional time
series of length ny = ny = 200 are then generated and testing the null hypothesis

Hy : C19 = Cqy is considered using the T} test investigated Section 3.2. All bootstrap
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calculations are based on B = 1000 bootstrap replicates, R = 1000 model repetitions
have been considered and a range of different block sizes have been used. Since n; = no
we set for simplicity b = by = bs.

The Ty, test has been applied using three standard nominal levels o = 0.01, 0.05
and 0.10. Notice that 6 = 0 corresponds to the null hypothesis while to investigate the
power behavior of the test we set = 0 for the first functional time series and allow for
d € {0.2,0.5,0.8} for the second and for each of the two different models considered.
The results obtained for different values of the block size b using the FAR model (4.4.1)
as well as the FMA model (4.4.2) are shown in Table 4.1. As it is seen from this table,
the MBB based testing procedure retains the nominal level with good size results,
especially for b = 6 and for both dependence structures considered. Furthermore, the
power of the T); test increases as the deviation from the null increases and reaches

high values for the large values of the deviation parameter ¢ considered.

Block Size, b=
) Q@ 2 4 6 8 10
FAR (1) 0 0.01] 0.011 0.022 0.014 0.021 0.018
0.05 | 0.050 0.062 0.063 0.083 0.076
0.10 | 0.108 0.123 0.108 0.132 0.125
0.2 0.01 | 0.025 0.018 0.020 0.025 0.026
0.05 | 0.089 0.093 0.085 0.081 0.089
0.10 | 0.151 0.171 0.150 0.156 0.151
0.5 0.01| 0593 0.495 0.411 0.381 0.375
0.05| 0.776 0.731 0.698 0.676 0.672
0.10 | 0.839 0.813 0.794 0.788 0.791
0.8 0.01 | 1.000 1.000 1.000 0.997 0.989
0.05 | 1.000 1.000 1.000 1.000 1.000
0.10 | 1.000 1.000 1.000 1.000 1.000
FMA (1) 0 0.01| 0.012 0.013 0.014 0.013 0.015
0.05 | 0.065 0.073 0.060 0.054 0.071
0.10 | 0.121 0.108 0.118 0.116 0.127
0.2 0.01| 0.015 0.022 0.019 0.024 0.016
0.05 | 0.055 0.076 0.065 0.079 0.062
0.10 | 0.1114 0.130 0.119 0.123 0.122
0.5 0.01| 0.148 0.125 0.143 0.121 0.131
0.05 | 0.339 0.239 0.330 0.292 0.289
0.10 | 0.479 0.421 0.468 0.412 0418
0.8 0.01| 0.074 0.695 0.689 0.693 0.681
0.05 | 0.920 0.889 0.899 0.887 0.900
0.10 | 0.957 0.944 0.941 0.949 0.957

Table 4.1: Empirical size and power of the T); test using bootstrap critical values.
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Figure 4.1: Estimated lag-zero autocovariance kernels of the temperature curves: Sum-
mer 2007 (left panel) and Summer 2009 (right panel).

4.4.2 A REAL-LIFE DATA EXAMPLE

In this section, the bootstrap based T); test testing is applied to a real-life data
set which consists of daily temperatures recorded in 15 minutes intervals in Nicosia,
Cyprus, i.e., there are 96 temperature measurements for each day. Sample A and
Sample B consist of the daily temperatures recorded in Summer 2007 (01/06/2007-
31/08/2007) and Summer 2009 (01/06/2009-31/08/2009) respectively. The measure-
ments have been transformed into functional objects using the Fourier basis with
21 basis functions. All curves are rescaled in order to be defined in the interval
Z = [0,1]. Figure 4.1 shows the estimated lag-zero autocovariance kernels ¢;(u,v) =
ny ST (X (0) — X () (Xt (v) — X4(v), (u,v) € T x T, associated with the lag-zero
autocovariance operators for the temperature curves of the summer 2007 (i = 1) and of
the summer 2009 (i = 2). We are interested in testing whether the covariance structure
of the daily temperature curves of the two summer periods is the same. The p-values
of the MBB-based T}, test using B = 1000 bootstrap replicates and for a selection of
different block sizes b = b; = by, are 0.016 (b = 3), 0.015 (b = 4), 0.033 (b = 5) and
0.030 (b =6). As it is evident from these results, the p-values of the MBB-based test
are quite small and lead to a rejection of Hy, for instance at the commonly used 5%
level.

To see were the differences between the temperatures in the two summer peri-
ods come from and to better interpret the test results, Figure 4.2 presents a contour

|> for different values of

plot of the estimated squared differences |c;(u,v) — Ca(u,v)
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(u,v) in the plane [0,1]?. Note that the Hilbert-Schmidt distance |\€1,0 — 62,0“ HS
appearing in the test statistic T, can be approximated by the discretized quantity

\/L—2 SE Zle |c1(us, v;) — C2(u;, v5)|?, where L = 96 is the number of equidistant

time points in the interval [0, 1] used and at which the temperature measurements are
recorded. Large values of [¢;(u;, vj) — G (ui, v;)|* (L.e., dark gray regions in Figure 4.2)
contribute strongly to the value of the test statistic Tj; and pinpoint to regions where
large differences between the corresponding lag-zero autocovariance operators occur.
Taking into account the symmetry of the covariance kernel ¢(-,-), Figure 4.2 is very
informative. It shows that the main differences between the two covariance operators
are concentrated between the time regions 3.00am to 6.00am and 3.00pm to 8.00pm
of the daily temperature curves, with the strongest contributions to the test statistic
being due to the largest differences recorded around 4.00 to 4.30 in the morning and

6.30 to 7.30 in the evening.
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Figure 4.2: Contour plot of the estimated differences [¢; (u;, v;) — Ca(wi, v;)|* for (i,7) €
{1,2,...,96}.
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4.5 APPENDIX : PROOFS

In the following we assume, without loss of generality, that ¢ = 0 and we consider the
case h = 0 only. Furthermore, we let /50 =n 1Y X ® Xy, Z = Xy @ Xy — Co,
2= X, 0 X, = Co, 7 = Xo @ X0y Zom = Xom & Xom — Co, ZF = Xr @ X7 and
Zr =X 0 X; — a). Also, we denote by Z;(u,v) the kernel of the integral operator Z;,
ie., Zi(u,v) = X¢(u) Xi(v) —co(u,v), where co(u, v) = E[X:(u) X¢(v)], and by Z; m(u,v)
the kernel of the integral operator Z, ,,, i.e., Zy (4, v) = Xppm(u)Xim(v) — colu, v).
We first fix some notation and present two basic lemmas which will be used in the
proofs. Towards this note first that we repeatedly use the fact that, by stationarity,
El[Xem — Xel|P = E|[ Xom — Xol|” and E[| X, |7 = E[Xi|[" = E||Xo||” for p € N and
for all t € Z. Also note that Kokoszka and Reimherr (2013) proved that the L-m-
approximability of X implies that the tensor product process {X; ® X;, t € Z} is

L?-m-approximable.

For X, ,, ® X;,, the m-dependent approximation of X; ® X;, we, therefore, have

[e.e]

1/2
> (EHXt Xy — Xyn ® Xt,mugs) < 00. (4.5.1)

m=1

Furthermore, since || Xo®X¢||zs = || Xol||| X¢|| for all ¢ € Z, and using Cauchy-Schwarz’s

inequality, we get, for all t € Z,

E|IX; @ X; — Xim @ Xemlfis
< 2E||X; ® (X¢ — Xon) lzrs + 2E[(Xy — Xpm) @ Xemllirs
< AEX P (ENX — Xemll)' 2.

Therefore, by Assumption 4, we get, for all t € Z,

lim m (B X, @ X; = Xpm ® Xilhs)

m— 00

< 2B XY lim m(E| X, — Xy )t =0 (4.5.2)
and by the same arguments,

IE[Xo © Xi]llns = [E[Xo @ (Xy = Xi0)]|lms
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1/2

< (B Xo[I?) " (Bl Xo — Xoa?)

1/4

1/2
< (E1Xol*)"* (BllXo — Xol*)
Therefore, the L*-m-approximability assumption implies that

D IEXo ® Xi|lus < oo

teZ

To prove Theorem 4.2.1, we establish below Lemma 4.5.1 and Lemma 4.5.2.

Lemma 4.5.1. Let g,(-) be a non-negative, continuous and bounded function defined
on R, satisfying gy(0) = 1, go(u) = go(—u), go(u) < 1 for all u, gy(u) =0, if |u| > ¢,
for some ¢ > 0. Assume that for any fized u, gy(u) — 1 as n — oo. Suppose that the
process X satisfies Assumption 4 and that b = b(n) is a sequence of integers such that

b=' +bn~3 = 0(1) as n — oo. Then, asn — 00,

b—1 0o
> oal= D ElZeZ]|  =o,1),
s=—b+1 S=—00 HS

where T, = %Z:;S 2y @ Zpps for 0 < s < b—1 and Ty = %Z?;T Zyy @ Zy for
-b+1<s<0.

Proof. We proceed in two steps. First, we proof that, as n — oo,

i (s = D ElZ®Z]|| = o0,(1), (4.5.3)
s=—b+1 t=—o00 HS

where fs =n! Zz:ls Zy @ Lyig for 0 < s <b—1 and fs =n! Z?LS Zy_s @ Zy for

—b+ 1 < s < 0. Then, we prove that, as n — oo,

b—1

Z 9v(s) <fs - fs)

s=—b+1

= 0,(1). (4.5.4)

HS

Consider (4.5.3). Since ||[n™' Y"1 | Z:®Z,—E[Zy® Zy||| us = 0p(1) as n — oo, it suffices

to show that, as n — oo,

i:gb(s)fs - ZE[ZO ® Z|| = o,(1). (4.5.5)

t>1

HS

Let ¢t = 30, E[Zo®Z), ¢t = S0 ElZon®Zyn] and T = 07V S0 Z, 0@ Zy
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Then,

b—1

Z gb(s)fs —

s=1

HS
b—1

> g — e,

s=1

b—1 ~ b—1 ~
D a9 =Y gn(s)T™
s=1 s=1

< llem — cllas +

HS

N (4.5.6)

HS

Assertion (4.5.5) is proved by showing that there exists my € N such that all three
terms on the right hand side of (4.5.6) can be made arbitrarily small, in probability,
as n — oo for m = my.

For the first term of the right hand side of the above inequality, we use the bound

Y E(Zom® Zm— 20 Z)|| +|| Y ElZo® Z) (4.5.7)
t=1 HS t=m+1 HS
and the decomposition
ZO,m X Zt,m - ZO X Zt — (ZO,m - ZO) X Zt,m + ZO X (Zt,m - Zt)
By Cauchy-Schwarz’s inequality, we get, for the first term of (4.5.7), that
> E(Zom — Z0) @ Zuml||  +||D_E[Zo® (Ziwm — Z0)]
t=1 HS t=1 HS
- 1/2

<2 (EZol%s)"* S (Bl Zow — Zolids)

t=1

— 2 (B Zo||%s) "> m (B)| Zom — Zoll%s) ™

Therefore, by Assumption 4, we get that, for every ¢; > 0, there exists m; € N such
that the last quantity above is less than €; for every m > m;. Consider the second term
of the right hand side of (4.5.7). Since Z, and Z;; are independent for ¢ > m + 1 and

E[Zy] = 0, we get, using Cauchy-Schwarz’s inequality,

SN ElZezl| < (ElZlis)" Y. (ElZo— Zoslis)"
t=m+1 HS t=m-+1

Using (4.5.1), it follows that, for every e > 0, there exists my € N such that the above
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quantity is less than ey for every m > mso.
For the second term of the bound in (4.5.6), note that, for every m > 1, we have

that for any fixed s, as n — oo,

Hence, the aforementioned term of interest is 0,(1), if we show that, as n — oo,

P _R[Z,, ZmH — o (1).
(") ElZ0,0® Zunl|, = o)

3 = 0,(1). (4.5.8)

By the definition of fgm), we have that

b—1 2 b—1 b—1
23 | —m( Y a0 Y e )
s=m-+1 HS s1=m+1 so=m+1 HS

b—1 b—1 n—syn—so

1
= ﬁ Z Z Z Z gb(sl)gb(SQ)E<Zt1,m ® Zt1+s1,m7 Ztg,m ® Zt2+52,m>HS‘

s1=m+1 so=m+1 t1=1 to=1

Since the sequence {Z; ,,,, t € Z} is m-dependent, Z;,, and Z; ., are independent for
s > m + 1 and, therefore, E[Z; ,, ® Z;15,m] = 0 for s > m + 1. Hence, the number of
terms E(Zy, m @ Zty4s1.ms Ztom @ Ziy+sym)ms 10 the last equation above which do not

vanish is of order O(nb) and, consequently, as n — oo,

b—1
E| Y g™ =0 (%) = o(1), (4.5.9)
s=m+1 HS

from which (4.5.8) follows by Markov’s inequality.
For the third term in (4.5.6) we show that, for m = my and for any 6 > 0,

> 0o (1, 1)

lim sup P (

n—oo

> 6) = 0. (4.5.10)
HS

Using Markov’s inequality, expression (4.5.10) follows if we show that, for m = m,, as

n — oo,

= o(1). (4.5.11)
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Now, by the definitions of T, and T, we have

b—1
E| > guls) (T - T4
s=1 HS
1 m n—s
<E|- Z gv(s) Z (2t ® Zivs — Zian ® Ztsm)
n s=1 t=1 HS
1 b—1 n—s
+E(= Y 0()D (Ze® Zivs — Zian ® Ziysm) (4.5.12)
n s=m+1 t=1 HS

Using Cauchy-Schwarz’s inequality and the decomposition
Zt ® ZtJrs - Zt,m & ZtJrs,m = (Zt - Zt,m) & ZtJrs + Zt,m & (ZtJrs N Zt+s,m)7

we get, for the first term of the right hand side of (4.5.12), the bound

m n—s
1

o Z Z(EH(Zt — Zim) @ Zis|liws + Bl Zem @ (Ziws — Zigsim) | 15)
s=1 t=1

n—s

1 m
< =3 Y (BIZ — ZunlisEl| Zusllrs)

s=1 t=1
+ (EHZHS - Zt+5,mH?{SEHZtMH%{S)l/Q

< ml(El| Zo — ZoullirsEl Zollr5)' " + (Ell Zo — ZoullizsEll Zoaml7rs) ).

By Assumption 4, it follows that, for every e3 > 0, there exists ms € Z such that, for
every m > mg, this quantity is less than e3. For the second term on the right hand side

of (4.5.12), we use the bound

b—1 n—s

% Z 9u(5) Z Zim @ Zitsm

s=m-+1 t=1

b—1 n

% Z () i Zi @ Ly
t=1

s=m+1

E +E

HS

. (4.5.13)
HS

Expression (4.5.9) implies that the second summand of (4.5.13) is o(1). For the first

term of (4.5.13), we use the decomposition

i Q@ Zs =21 @ Ziyss + 2t @ (Zivs — Ziys.s),s

and get the bound

b—1 n—s
1
E|- E 96(5)5 2t Q Ligs,s
n s=m+1 t=1 HS
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b—1 n—s
1
+E| - Z gb(S) Z Zt & (Zt+s - Zt—i—s,s) (4514)
" s=m+1 t=1 HS
For the last term of expression (4.5.14), we have the bound
1 b—1 n-—s ; b—1 )
1/2 1/2
w2 DENZ® (v~ Zusns)ls < (BN Zollis)™ 30 (EIlZo— Zoallhs) "
s=m+1 t=1 s=m+1

Therefore, since {Z;, t € Z} is L*-m-approximable, with Z;,, be the m-dependent
approximation of Z, it follows that for every e4 > 0, there exists m4 € N such that,
for every m > my, this term is less than ¢;. Consider next the first term of (4.5.14).

We have

b—1 n—s b—1 n—s
1 1
El= > o) Zi®@Zinas|| < D E|=D 28 Zipus
n s=m+1 t=1 HS s=m+1 n t=1 HS
b—1 n—s 2 1/2
<) NE(=D 209 Zisss . (4.5.15)
s=m-+1 t=1 HS

Since Zp and Z, ¢ are independent, || Zy ® Zi||us = || Zol|ms||Zt|| ns and
E<ZO & Zs,sa Zt X Zt+s,s>HS = ]E<Z07 Zt>H5<Zs,s> Zt+s,s>HS =0

for |t| > s. Using Cauchy-Schwarz’s inequality, we get

2

1 <= n—s
E Z Zt X Zt-‘,—s,s S 7’L2 Z IE1:(<Z0 ® Zs,sa Zt X Zt-l—s,s)HS)
t=1 HS [t|<n—s

E

1< 1<
<= D EBZ0® Zes Ze® Ziss)us| < — 3 BN Zo® Zosllnsl Ze @ Zigasllas

t=—s t=—s
S

1O 1
= > ElZo® Zolis— Y (ElZollis)’

<
t=—s t=—s
1 < 1S
< - (BIXo® Xollizs)” < — 7 (ElIXollis)”.
t=—s t=—s

Therefore, by (4.5.15), the first term of (4.5.14) is Op(b%/?/n'/?). The proof is then

concluded by choosing my = max{my, mg, msz, my}.

Consider (4.5.4). First note that using Theorem 3 of Kokoszka and Reimherr (2013),
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we get, as n — 00,

= [[(Co — Co) ® (Co — Co)||us
HS

= Hlvat -c = 0rt1/m)

1 & L
H—Z[Zt ® Zy — Zy @ Zj]

n
t=1

Therefore, it suffices to show that

Z gb % Z Zt ® Zt+s Zt ® Zt+s]

= 0,(1).

Again, by Theorem 3 of Kokoszka and Reimherr (2013), we get that, as n — oo,

n—s

Z 2t @ Ziys — Zt X Zt+s]

t=1

HS

Z X; ® X;) @ (Co = Co) + (Co — Co) @ (Xiys @ Xiys)
t=1

+@®%—&®®

HS
n—s

b—1
< Z Z (X: ® Xy) HHSH\/_(CO —Co)llms
s=1 =1

n—s

i Z %W(éo o)l S0 (e ® X

t=1

IZ ZHCOHHSH\/—(Co—Co)|HS
IZ ZHCOHHSH\F(co—co)||HS—Op<b/f>_op( ).

This completes the proof of the lemma.

Lemma 4.5.2. Let g,(-) be a non-negative, continuous and bounded function satisfying
the conditions of Lemma 4.5.1. Suppose that X satisfies Assumption 4 and thatb = b(n)

is a sequence of integers such that b=' 4+ bn~'2 = o(1) as n — co. Then, asn — 0o,

b 1

Z//Ztuth+||uvdudv—>Z //Zouv s(u, v)dudv.

s—fb+1 §=—00
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Proof. Since Y .° _E [[ Zy(u,v)Z;(u,v)dudv converges and is finite, and since

%g;//(Zt(u,v))2dudv L E//(Zo(u,v))Qdudv

as n — 00, it suffices to prove that

i:gb(s)%j: / / Zy(u,v) Zys (u, v)dudv = iﬂz / / Zo(u,0) Zy(u, v)dudv. (4.5.16)

Since

b—1 n—s 0
1
Z_;gb(‘S)ﬁ Z_;// Zi(u,v) Zyys(u, v)dudv — ;E// Zo(u,v) Z(u, v)dudv
ZE// Zom (U, V) Zy m (w, v)dudv — ZE// Zo(u, v) Zy(u, v)dudv
t=1 t=1
b—1 1 n—s
Zgb(s)ﬁ Z// Zyn (U, V) Zyt g m(u, v)dudv
s=1 t=1
- ZE// 20 m (U, 0) Zy y (w, v)dudw
t=1
b—1 1 n—s
Zgb(s)ﬁ Z// Zi(u,v) Zyys(u, v)dudv
s=1 t=1
b—1 1 n—s
_ Zgb(s)ﬁ Z // Zym (U, 0) Zpy g n(u, v)dudo
s=1 t=1

<

_|_

+

. (45.17)

assertion (4.5.16) is proved by showing that there exists my € N such that all three
terms on the right hand side of (4.5.17) can be made arbitrarily small in probability
as n — oo for m = my.

For the first term, we use the bound

g (E // Zo,m (U, v) Zm (u, v)dudv —E// Zo(u,v)Zt(u,U)dudv)
i E// Zo(u, v) Zy(u, v)dudv

t=m+1

+ : (4.5.18)

By Cauchy-Schwarz’s inequality and the decomposition

Zom (U, 0) Zy g (w,v) — Zo(w, v) Zy(u,v) = [Zom(u,v) — Zo(u, v)| Zsm(u,v)

+ Zo(u, v) [ Zem(u,v) — Zi(u, v)],
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we get that the first term of (4.5.18) is bounded by

//[Zo,m(u, v) — Zo(u, )| Zy m(u, v)dudo

// Zo(u, ) [ Zem(u,v) — Zy(u, v)|dudv

{[ [ ot - 2 ] ”2[ [[ st zdudv] }
[]E / / Zom (1, 0) — Zo(u, v) dudv] [ / / Zo (1,0 2dudv1 R

[E / / (X (1) Xom(0) — Xo(u) Xo(v)] dudv}

IN
)

A
NNgE EF%S || Ms

[ / (X (1) Xom(v) — c<u,v)]2dudvr/2

m 1/2
=2Z[EHXOm@XOm—Xo@XoHHS] [EHXOm@XOm Clls]

t=1

1/2 1/2
_ [EHXO ® X — Cuifs} (m [EHXOM ® Xom — Xo ® XOH%IS] ) .

Using (4.5.2), and since { X;® X, t € Z} is L*>-m-approximable, it follows that for every
€1 > 0 there exists m; € N such that the above term is less than ¢; for every m > m;.
Consider the second term of (4.5.18). Since Zy(u,v) and Z;;(u,v) are independent for

t > m + 1, using Cauchy-Schwarz’s inequality, we get

Z //Zouthuvdudv

Z // Zo(, 0)[Ze(u,v) — Zyg(u, v)]dudo

< 5 [ fftmraa]” [ iz - o]
1/2

4 [E / (X (1) Xo(v) —c(u,v)Pdudv]

X Z { / X, (u) X (v Xt,t(u)Xt,t(v)qudv} v

t=m+1

1/2

= (B0 o~ U] 3 [E1Xom X~ X0 oll]
t=m+1

From (4.5.1), it follows that for every e; > 0, there exists ms € N such that the above

quantity is less than ey for every m > ms.

Consider next the second term of the the right-hand side of the inequality (4.5.17).

BLock BooTSTRAP METHODS FOR FUNCTIONAL TIME SERIES 92



Note that for every m > 1, we have that, for any fixed s, as n — o0,

1 n—s
—Z// Zyn (U, 0) Zyt g (w, v)dud — IE// Zom (U, V) Zs m(u, v)dudv| = 0,(1).
n
=1
Therefore, the aforementioned term is o,(1) if we show that
b—1 1 n—s
PIRZCIDY [ Zum (.00 Zes (. 000| = o). (45.19)

For this, notice first that

E

b—1 b—1

= Z Z 9o(51)90(s2)

si=m+1 so=m+1

b—1 n—s 2
1
Z gb(s)ﬁZ// Ztym(u,v)ZHS,m(u,v)dud]
s=m-+1 t=1
1
)

n—s1 n—si

XZZE

t1=1 to=1

// Ztl,m<u1> 'Ul)ZtlJrsl,m(ula Ul)dmd?h
X // Ztg,m(u2,1}2)Zt2+52,m(U2,Uz)dUQdUQ .

Since the sequence {Z; ,,(u,v), t € Z} is m-dependent, Z; ,,(u,v) and Ziysm(u,v) are

independent for s > m + 1, therefore using E(Zy (u,v)) = 0 we get that,

E// Zyn (U, V) Zygsm (u, v)dudv = 0.

Hence, the number of terms

]E |:// Ztl,m(uhUl)Ztl-i-sl,m(ul)vl)duldvl X // Ztg,m(u27v2)Zt2+82,m(u27UQ)dUQdUQ

in the last equation above which do not vanish is of order O(nb) and, consequently, as

n — oo,

b—1 2

1 n—s
Z gb(s)ﬁZ// Zt (U, V) Zy g5 m (u, v)dud
+1 t=1

S=m

E

from which (4.5.19) follows by Markov’s inequality.
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For the third term in (4.5.17), we show that, for m = my,

lim sup P (

n—oo

Z// Zi(u,v) Zys(u, v)dudv
1
_ Z gb(s)ﬁ Z // g (U, V) Zyp g m (u, v)dudv
s=1 t=1

> 5) =0, (4.5.21)

for any § > 0. By Markov’s inequality, expression (4.5.21) follows if we show that, for

m = my,

b—1 n—s
1
E E gb(s)ﬁ g //Zt(u,v)ZtH(u,v)dudv
s=1 t=1

— Z (U, 0) Zp g5 m (u, v)dudv

= o(1). (4.5.22)

For the above quantity we have the bound

E i gb(s)% nz / / 41, 0) Zos o1, 0) — Zo (11, 0) Zos s (11, 0) dudv
Z//ZMUZHSM)

— Zyn (U, V) Zyys.m(u, v)dudv|.

+E

s= m+1

(4.5.23)

For the first term of the right hand side of the above inequality, using the decomposition

Zi (s 0) Ziges (U, 0) = Zpmn (U 0) Zgsm (U, )

— [Zt(u7 U) - Zt,m(“a U)]Zt+s(u7 U) + [Zt+s(u7 U) - ZtJrS,m(u? U)]Zt,m(ua U)
we get the bound,
m 1 n—s
Z = ZE// [Zi(u,v) — Zy (0, 0)] Zigs(u, v)| dudv
s=1 n t=1
+ E/ [ Ziss(w, v) = Zigsm(w,0)] Zem (u, v)| dudo. (4.5.24)

Using Cauchy-Schwarz’s inequality, we have

IE// [Z:(u,v) — Zt (1, v)] Zpin (w, v)| dudv
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<E [//Ztuv Ztm(u,v)] dudv] {//Ztﬁ.uv dudv] .
[//Ztuv Zy (1, v)] dudv] [//ZHSUU dudv] .

1/2
{]EHXt X — Xy @ Xt,m||HS} [E||Xt+h ® Xiys — co||3{5] . (4.5.25)
Using the same arguments, we get

E [ [ 11Zu1s(0:0) = Zuvaon,0) Zum )| du

1/2 1/2
< |:EHXt+S ® Xiys — Xigsm ® Xt+s,m||%]5:| [EHXt ® X — C”?{S}

Therefore, (4.5.24) is bounded by
2(E[| Xo ® Xo — Coll7s)"? [m(E[ Xo ® Xo — Xom @ XomlFs)"?] -

Hence, by (4.5.2), it follows that, for every e3 > 0, there exists mg € Z such that, for

every m > mg, this quantity is bounded by 3. For the second term on the right hand
side of (4.5.23), we use the bound

b—1 n—s
1
E s)— g //Zt(u,v)ZHs(u,v)dudU
n
5= t=1
b—1 1 n—s
+E 2 S)ﬁ tg_l //Zt,m(u, V) Zts.m(u, v)dudo| . (4.5.26)

Expression (4.5.20) implies that the second summand of (4.5.26) is o(1), while for the

first term of (4.5.26) we use the decomposition

Zt(ua U)Zt+s(u7 U) - Zt<u’ U)Zt—i-s,s(u’ U) + Zt(u7 U) [Zt+s (Ua U) - Zt+s,s(ua U)]

to get the bound

b—1
E

1 n—s
S)EZ// Zi(uy ) Zyys.s(u, v)dudv
t=1
b1

Bl Y gb(s)%z / / 41, 0) [ Zos s (1, 0) — Zosos(u, v)]dudo| . (4.5.27)
s=m+1 t=1
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Using same arguments as those applied in (4.5.25), we get the bound

E [ [ 12:00)Z00.0,0) = Zura(u )] dudo
1/2 1/2
< []E||Xt+s ® Xigps — Xigss @ Xt+s,s||12ﬂlsi| {EHXt ® X — COH%{5:|

Hence, for the last term of expression (4.5.27), we have

b—1 n—s
1
E Z gb(s)EZ// Zi(u,v)[ Zigs(u,v) — Ziys s(u,v)]dudv
s=m-+1 t=1
1/2 o 1/2
< |[Ele Xo-Gllis| 3 |BIX® X0 - o8 Xols|
s=m+1

Therefore, using (4.5.1), we get that for every e4 > 0, there exists my € N such that,
for every m > my, this term is bounded by ¢;. Consider next the first term of (4.5.27).

Using the decomposition

Zi(u,0) Zyys s(u,v) = [Zi(u,v) = Zy s (U, V)| Zigs s(w, v) + Zy s (0, 0) Zyps s (1, v),

we get the bound

b—1 n—s
1
= Z gb(S)_ Z//[Zt(u,l)) - Zt,s(“,U)]Zt_t,_s,s(u,v)d’ddv
s=m+1 2 t=1
b—1 1 n—s
+E _Zﬂgb@)ﬁ;// Zys(u,0) Zpgs s(u, v)dudo| . (4.5.28)

For the first term of this bound, and by Cauchy-Schwarz’s inequality, we get the bound

b—1

Z gb(s)%i//[zt(uav) — Zy 5(u,0)]| Zps s 5 (u, v)dudv

sS=m

E

1/2 1/2
< {EHX:: ® Xt — Xem ® Xt,m”%{s} |:E||Xt+8 ® Xigs — CO||§{S:|

Hence, by (4.5.1), it follows that, for every e5 > 0, there exists mg € Z such that,
for every m > mg, this quantity is bounded by e5. Consider the last term of the
expression given in (4.5.28) and note that { [[ Z;s(u,v)Zyss(u,v)dudv, t € Z} is a

2s-dependent sequence. Also note that since Z; s(u,v) and Z44(u,v) are independent
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E [[ Z; s(u,v) Zyss,s(u,v)dudv = 0. Therefore, as n — oo,

n~4/? Z// Zy s(U,0) Zyys s(u, v)dudv = Op(1).
t=1

Hence, using Portmanteau’s theorem, and since f(x) = |z| is a Lipschitz function, we

get that, as n — oo,

— 0(1).

Z// Zy s(u,0) Zyys(u, v)dudv| =
—1

Therefore, as n — oo,

b 1
E

s=m 1 Z//Zts U, V) Zys,s (u, v)dudo
a \/_ Z E \/_Z//Ztsu 0) Zigs o (11, v)dudv| =

s=m+1

The proof of the lemma is concluded by choosing my = max{my, ma, mg, mg, ms}.

= O(b/v/n) = o(1).

Proof of Theorem 4.2.1. By the triangle inequality and Theorem 3 of Kokoszka

and Reimherr (2013), the assertion of the theorem is established if we show that, as

n — oo,

V(G —E*(G5)) = 2o,

(4.5.29)

in probability, where Z; is a mean zero Gaussian Hilbert-Schmidt operator with co-

variance operator given by

To=E[Z® Zi]+2Y E[Z & Z).

s=2

Using Theorem 1 of Horvath et al. (2013), we get

S5

V(€ —E*(C5))

3 [X: ® X7 — E*(X! ® X2) — X @ (X7 — E*(X2))

t=1

§\~

— (X —E (X)) ® X,

n

> 127 —E(Z))] + Op(1/vn).

t=1

5=
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Also note that

1 . * * * d * * *
% Z[Zt -E (Zt )] = Z (Z(t—l)b+z' —-E (Z(t—l)b+i))>
t=1 i=1

Il
Sl= 5=
M-I~
R

“
I
—

with an obvious notation for }//\'t*, t=1,2,..., k. Recall that due to the block bootstrap
resampling scheme, the random variables ?t*, t =1,2,...,k, are i.i.d. Therefore to

prove (4.5.29), it suffices by Lemma 5 of Kokoszka and Reimherr (2013), to prove that,

1 ~
(i) <ﬁ Zle Y, y> N N(0,0%(y)) for every Hilbert-Schmidt operator y acting
HS

on L?,

and that
2
(il) lim,, o E exists and is finite.

1w o
—> . .Y
\/Ethl t s

To establish assertion (i), we first prove that, as n — oo,

Var® <<%Zz*,y>Hs> R o*(y). (4.5.30)

1< ’
< <Z:—E*<Z:>>,y> ] . (4.5.31)
<¢EZ y

LetN:n—b+1,i:b71/2(2t+2/t+1+...+Zt+b_1)7t:1,2,...,Nandi*:
el Zi, 1y t=1,2,... k. Since n/N — 1 as n — oo, in the following we will

occasionally replace 1/N by 1/n. Notice that,

Z<Z,y>Hs - Z (1 - b) (o + i y>Hs1]

- iG] [Z (1-3) Ksbus + (o z+1,y>Hs]] s
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Therefore,

<1 - l‘)) (Zi,y) s + (Zn- l+1vy>HS]] ] 2

[\

+ % [; (1 — 5) (Zi,y) s + (Zn-ita, y>HS]]
+2 % [; (1 — 5) [(Zz,y>HS + <Zn i+1, Y) HS| ]

= ' Y
b t=1 HS

2

b
1 o
<\/5t1 HS

Let }/}t = b71/2(/Z\t + Z\t-f—l + Ce + Z\t+b_1), t = 1,2, ey N Since,

1 - 1 &
=D 2 Z—Z Yi.y)
<\/5t:1 >Hs NS
Z<2t>y>Hs<Z,y>Hs

=1

1 . n—i
1\ 1 ~ ~ ~ ~
+ - <1 v l_)) N E :[(Ztuy>HS<Zt+iuy>HS+ <Zt+i7y>HS<Zt7y>HS]

t=1

2
E*

7vo=l=
o~

-
Il

(=

~ ~ ~ ~

L— -\ Zi,v)us{Zi,y)us + (Zn—is1:Y) s (Zn—i+1,Y) s

—
S TESH
\—/

==

nghing

b—t o
7+ - = ~ ~
Z (1 - > (Zj, v)as(Zjtis ) s + (Zn—jr1-is Y rs{Zn—j+1,Y) s

Jj=1

ZIH

~ ~ A~

+(Zjri» ) us(Zj, y) s + <Zn it Y S (Znjr1—is Y us),

we get, using (4.5.33),

+ Op(b*/n?). (4.5.33)
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==

b— . n—i
2\ 1 ~ ~ ~ N
1—- | — Z, A i Zz Z7
+ 1< b)NE (Z:® Ziyi,y @ Y)us + (Ziwi @ Zy,y @ Y) s

t=1

+ O0p(b/n). (4.5.34)

Let gy(i) = (1 — %) in Lemma 4.5.1, and use the triangular inequality to get

n b—1 o n—i
1 = > (3 1 <~ [ A~ A~
~ Z E[Zo ®Zt],y®y>
t=—00 HS
1 n b—1 i 1 n—i
t=1 i=1 t=1
- Y EZ®z)| x|yoy
t==00 HS HS
= 0,(1).

Therefore, and using (Zy ® Z;, y @ y)us = (Zo,y) us{Zo, y) s, we get from (4.5.34), as

n — 0o,

S|

k 00
1 ~
Var® << ZY;y> ) £><Z E[Zo®Zt],y®y>
k t=1 HS t=—00 HS

=T,y ®y)us = o>(y). (4.5.35)

We next establish the asymptotic normality stated in (i). Since (?t*,y) s, t =

1,2,...,k are i.i.d. real valued random variables, we show that Lindeberg’s condition
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is satisfied, i.e., for every € > 0, as n — oo,

ZE[ (T v)ms — B2 (T, ) ms))”
< LY, yhms — B (Y, p)us)| > e7) | = 0,(1), (4.5.36)

where 1 4(x) denotes the indicator function of the set A and

2= ZVar Y ) ms) = kVar (Y, ) us). (4.5.37)

To establish (4.5.36), and because of (4.5.35) and (4.5.37), it suffices to show that, for

any 6 > 0, as n — o0,

(%Z [ 07 y)ns — B (57, ) us)?
< LY yyms — E* (Y7, y)ms)| > >] > 5) —0. (4538

Towards this, notice first that, for any two random variables X and Y and any n > 0,

E[|X +Y]P1(|X + Y| > 1)

< 4[EIXPL(X] > n/2) + EIYPL(Y] > n/2)] (4.5.39)

see Lahiri (2003), p. 56. Since the random variables (Y;*, y)ys are i.i.d., we get using

expression (4.5.32) and Markov’s inequality that, as n — oo,

( ZE*{ (Y7 v s — B (Y7, y)ns))?
< (Y, y)ms — B (Y, y)us)| > >] > 6)

C ) us) "L ) s — B (T y)us)| > em)| |

S (1) (s + 2 m,ym]] )
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bz_i (1 Z) (Zi,y)us + (Zn- z+lay>HS]] > 571:)] }
§ <1 - 5) (Zisy)us + (Zn-in, y>HS]] > 2

=1
> €T]:> ]

Z (1-2) (Zapus + o y>Hs1]
BT s L (P )s| > <72

( Z( ) (Zi)us + G, y>Hs]>2
( (%Z (1-3) KBshas + Zocso y>Hs1>

<46~

> 67';/2)]

< 457 B(Vs, 1)) 1 (Vr ) sl > e72/2) + O /). (4.5.40)

By Lemma 4 of Kokoszka and Reimherr (2013) it follows that

> E(Zo y)us(Zs v) s

S=—00

converges absolutely. By Kronecker’s lemma, we then get, as n — oo,

B((Fr. o)) = 3 3 Y EUZoy)us(Zisvhus)

- Z L= %) E[(Zo,y) s{Zs, yyus] + O(b/n'?)
|s|<b
— Z E[(Zo, y) ns{Zs, y) us]
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Therefore, by the dominated convergence theorem,
E[(Y1, 1) 5s)L([(Y1, y) ns| > e77/2) = o(1) (4.5.41)

and, therefore, assertion (i) is proved.

To establish assertion (ii), notice first that

= B Y7 [Is-
HS

Furthermore, since

i’z} §(1 - 5) Zi + Z_ ,H]]

i Vb Z (1-1) 2+ Zacsnd

N
=1
we get
R 1 R \/B b—1 . 2
BT s =B | 2 2+ 3D (1) (Bt Zocend
t=1 =1 HS
N b—1 . 2
1 s Vb
:Nz T+ <1_g) Zi + Zn—i]

t=1 =1 HS

Since, VAN 3071 < %) [Z; 4+ Zp_i21] = Op(b3/2/n), it suffices to prove that the
limit N
.1 >
Jim 3= ¥ (45.42)
exists and it is finite. Let Y; = b=Y2(Z, +--- + Z1p—1), t = 1,2,... N, and note that
NS NYillZe = N2V 1Y; + Vb(Co — Co)l%g. By Theorem 3 of Kokoszka and
Reimherr (2013), in order to prove (4.5.42), it suffices to show that

N
. 1
lim ; 1Yills (4.5.43)
exists and it is finite. We have that

N b—1 . n—i
1 1
— 1Y:|13 = Zm Zi)us + 1—— )= (%, ZeviVus + (Zitis Zt)ms)
N £ )W

t=1
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b—1
1
Z < — —) Zt, Zt>HS + <Xn t+17XTL t+1>]HS
b—

1 ! t+j
(1 N —j) (Zj, Zjst) ns + (Zn—jr1-t, Zn—j+1) BS
=1

H.
Il
—

<.

+ <Zj+t, Z]>HS + <Zn—j+17 Zn—j+1—t>HS]

n b—1 .
1 1\ 1
> Zas Y (1 - 5) S U s + {Zuvis L))

t=1

+Op(b?/n)
b—1 i\ 1 n—|i|
= i:Zb:—H (1 — [—)) ﬁ ; // Zt(u7U)Zt+\i|(uvv)dUdv
+ Op(b*/n). (4.5.44)

Hence, by letting g(s) = (1 — |s|/b) in Lemma 4.5.2, we get that the last term above

converges to >_oo K [[ Zy(u,v)Zs(u,v)dudv, from which we conclude that, as n —

S§=—00

o0,

B Y35 — Z //Zouv s(u, v)dudv,

S=—00

in probability. O]

Proof of Lemma 4.3.1. Using Theorem 3 of Kokoszka and Reimherr (2013) it follows
that there exist two independent, mean zero, Gaussian Hilbert-Schmidt operators Z;

and Z,( with covariance operators I'y o and I'yy respectively, such that

(VAo = Cro)s V(G — Ca) )

converges weakly to (2, Z20). Since

N9 -~ ~ nq

17 Cro = Cao) = | |37V (Cro = Co) — [ 35 vm2(Can — Co).

where C is the (under Hy) common lag-zero covariance operator of the two populations,

we get that, for ny,ny — oo and n; /M — 0,
d 2
Tr = |20l s

where Z() =V 1-— ‘921’0 — \/52270. ]
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Proof of Theorem 4.3.1. Using the triangle inequality and the fact that \/ﬁ(@-,g —
Cio) = Zio, @ = 1,2, it suffices to prove that T}j; converges weakly to || Zy|%g, where
Zyo=V1-0Zy— \/52270. This is proved along the same lines as Lemma 4.3.1 using of

Theorem 4.2.1 and the independence of the pseudo-random elements yim and i;m

]
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CONCLUSION AND FURTHER WORK

“The outcome of any serious research can only be to make two

questions grow where only one grew before.”

— Thorstein Veblen

This thesis lies in the intersection of Functional Time Series analysis and Bootstrap
Methods. As stated in the Introduction, our main concerns are to establish validity
of the moving block and tapered block bootstrap for depended functional data and
to propose general, bootstrap based procedures, to address the important topic of
testing the equality of mean functions or the equality of covariance operators between
k-populations. For the purpose of our research we focus on observations stemming
for a stationary stochastic process X = (X;, t € Z) of Hilbert space-valued random
variables which is LP-m-approximable, a dependence assumption which is satisfied by
large classes of commonly used functional time series models.

More specifically, and as far as the first aim of this thesis is concerned, our con-
tribution is to prove a central limit theorem for the moving block bootstrap and for
the tapered block bootstrap applied to the sample mean function. We also show that
these block bootstrap procedures provide consistent estimation of the so called log run
covariance operator of i.e., of the spectral density operator of the underlying functional
process at frequency zero. We also prove a central limit theorem for the moving block
bootstrap procedure applied to the sample covariance operator.

Regarding the second aim of this thesis, we proposed moving block and tapered
block bootstrap procedures for testing the equality of mean functions and a moving

block bootstrap procedure for testing the equality of covariance operators, between sev-
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eral independent functional time series. In each case the bootstrap pseudo-observations
were generated in a way that the null hypothesis of interest is satisfied. Therefore, the
proposed testing methodologies are applicable to a broad range of possible test statis-
tics. We have focused in this thesis on testing approaches based on fully functional
test statistics. For the proposed testing algorithms theoretical justifications for approx-
imating the null distribution of the test statistics considered are given. Furthermore,
simulation results are presented which investigate the finite sample behaviour of the
proposed block bootstrap-based testing methodologies under the null and under the
alternative.

There are a number of questions for further research that arose during the present
study.

Firstly, our testing procedures focus on k-independent populations. Future research
could examine if the results obtained in this thesis can be extended to the case where
the populations are dependent. This requires the adaption of the block bootstrap
procedures to capture the dependent structure between the populations and the proof
of the corresponding central limit theorems.

Another interesting question from this work is the development of a bootstrap
based procedure which will allow inference for the spectral density operators itself. An
important problem in this context is that of testing the equality of the spectral density
operators of k£ independent, or dependent, functional time series.

As proved by Paparoditis and Politis (2001) in the case where the random variables
are finite-dimensional, the TBB gives a better estimation for the standard deviation of
the normalised sample mean compared to the MBB since in the TBB case, the order of
the bias of the estimator is O(1/b*) while in the MBB case, the order of the bias of the
estimator is O(1/b), where b is the block length in the block bootstrap procedures. As
revealed from the simulations of Section 3.4.1 the tapered block bootstrap procedure,
also gives a better estimation for the standard deviation of the normalised sample mean
function in the case of functional data. It would be important to have a theoretical
justification of this improved behavior of the TBB for functional time series.

In this context the development of a tapered block bootstrap based procedure for
testing the equality of the lag-zero autocovariance operators for a given number of
functional time series would be an interesting extension of the current work.

Further, as obtained from the simulations carried out for this thesis, the perfor-

mance of all block bootstrap procedures considered essentially depends on the choice
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of block size b. A challenging research topic would be to propose methods for selecting

this bootstrap parameter which derives ‘good’ results or even ‘optimal’ in some sense.
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