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Abstract

Functional data analysis is a fast-growing research area in statistics that deals with

statistical analysis of infinite-dimensional (functional) data. It is therefore important

to extend the theory and methods used for finite-dimensional to the setting of infinite-

dimensional data. This dissertation applies bootstrap methods to functional data that

are assumed to be weakly dependent in a broad sense and it is based on two main

pillars.

The first pillar of this dissertation addresses the consistency of the moving block and

of the tapered block bootstrap applied to functional time series. More precisely, central

limit theorems for the moving block bootstrap and for the tapered block bootstrap for

the sample mean are proved. It is also shown, that these block resampling procedures

provide consistent estimators of the covariance operator of the sample mean function

and therefore of the spectral density operator of the underlying functional process at

frequency zero. A central limit theorem for the moving block bootstrap applied to the

lag h sample covariance operator is also proved.

The second pillar deals with the application of bootstrap-based methodologies for

testing hypotheses about the equality of certain characteristics of the distributions

between several independent, populations in functional time series context. More pre-

cisely, algorithms based on both the moving block and the tapered block bootstrap

procedures for the important problem of testing the equality of the mean functions

of several populations are developed. A moving block bootstrap based procedure for

testing the equality of the covariance operator between several independent functional

populations is also considered. The basic idea behind these testing methodologies is to

bootstrap the observed functional time series in such a way that the obtained functional

pseudo-observations satisfy the null hypothesis of interest. Therefore, the suggested

block bootstrap-based testing methodologies are applicable to a broad range of possible

test statistics.
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Validity of the proposed bootstrap methods in approximating the distribution of

some fully functional test statistics under the null is established. In addition, the finite

sample behaviour of the bootstrap procedures proposed is investigated by means of

simulations. Simulations are also conducted to gauge the size and power properties of

the suggested block bootstrap-based testing methodologies. Applications to real-life

data sets are also examined.
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Περιληψη

Η ανάλυση συναρτησιακών δεδομένων είναι ένας ταχέως αναπτυσσόμενος τομέας έρευνας

της στατιστικής που ασχολείται με τη στατιστική ανάλυση απειροδιάστατων (συναρτη-

σιακών) δεδομένων. Επομένως, είναι σημαντικό να επεκταθεί η θεωρία και οι μέθοδοι

που χρησιμοποιούνται για τη στατιστική ανάλυση πεπερασμένης διάστασης δεδομένων

και στην περίπτωση των δεδομένων άπειρης διάστασης. Η διατριβή αυτή εφαρμόζει τις

μεθόδους bootstrap σε συναρτησιακά δεδομένα τα οποία υποθέτουμε ότι είναι ασθενώς

εξαρτημένα με μια ευρεία έννοια και βασίζεται σε δύο κύριους πυλώνες.

Ο πρώτος πυλώνας αυτής της διατριβής ασχολείται με τη συνέπεια του moving block

και του tapered block bootstrap όταν οι μέθοδοι αυτοί εφαρμόζονται σε συναρτησι-

ακές χρονοσειρές. Πιο συγκεκριμένα, στην διατριβή αυτή, αποδεικνύονται κεντρικά ορι-

ακά θεωρήματα για το moving block και το tapered block bootstrap που αφορούν

τον δειγματικό μέσο όρο. Επίσης, αποδεικνύεται ότι αυτές οι διαδικασίες αναδειγματο-

ληψίας παρέχουν συνεπείς εκτιμήτριες του τελεστή συνδιακύμανσης της μέσης συνάρτησης

του δείγματος, άρα και της φασματικής πυκνότητας της υπό εξέταση συναρτησιακής δι-

αδικασίας, σε μηδενική συχνότητα. Επίσης, αποδεικνύεται ένα κεντρικό οριακό θεώρημα

για το moving block bootstrap που αφορά τον δειγματικό τελεστή συνδιακύµανσης σε h

χρονικές υστερήσεις.

Ο δεύτερος πυλώνας ασχολείται με την εφαρμογή μεθοδολογιών, που βασίζονται σε

μεθόδους bootstrap, για τον έλεγχο υποθέσεων σχετικά με την ισότητα ορισμένων χαρα-

κτηριστικών των κατανομών ανεξάρτητων πληθυσμών, χρησιμοποιώντας συναρτησιακές

χρονοσειρές. Συγκεκριμένα, προτείνονται αλγόριθμοι που βασίζονται τόσο στο moving

block όσο και στο tapered block bootstrap για το σημαντικό πρόβλημα του στατιστικού

ελέγχου της ισότητας των μέσων συναρτήσεων πολλών ανεξάρτητων συναρτησιακών πλη-

θυσμών. Προτείνεται, επίσης, μια διαδικασία που βασίζεται στο moving block bootstrap

για τον έλεγχο της ισότητας του τελεστή συνδιακύμανσης μεταξύ διαφόρων ανεξάρτητων

συναρτησιακών πληθυσμών. Η βασική ιδέα των προτεινόμενων διαδικασιών για τον στατι-
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στικό έλεγχο υποθέσεων, είναι οι τεχνικές αναδειγματοληψίας να εφαρμοστούν με τέτοιο

τρόπο, έτσι ώστε οι δημιουργηθείσες ψευδο-παρατηρήσεις να ικανοποιούν τη μηδενική

υπόθεση του έλεγχου. Αυτό έχει ως αποτέλεσμα οι προτεινόμενοι αλγόριθμοι που βασί-

ζονται στις μεθόδους block bootstrap να είναι εφαρμόσιμες σε ένα ευρύ φάσμα πιθανών

ελεγχοσυναρτήσεων.

΄Οσον αφορά τις προτεινόμενες μεθόδους, αποδεικνύεται η εγκυρότητα τους προσεγ-

γίζοντας την κατανομή μερικών ελεγχοσυναρτήσεων κάτω από τη μηδένικη υπόθεση.

Επιπρόσθετα, διερευνάται μέσω προσομοιώσεων, η αποτελεσματικότητα των προτεινό-

μενων διαδικασιών, όταν εφαρμοστούν σε ένα πεπερασμένο δείγμα. Προσομοιώσεις διεξά-

γονται επίσης για να ελεγχθεί το επίπεδο σημαντικότητας και η ισχύς των προτεινό-

μενων μεθοδολογιών στατιστικού ελέγχου οι οποίες βασίζονται σε bootstrap διαδικασίες.

Τέλος, εξετάζεται η αποτελεσματικότητα των προτεινόμενων διαδικασιών στατιστικού

έλεγχου με την εφαρμογή τους σε πραγματικά δεδομένα.
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(i, j) ∈ {1, 2, . . . , 96}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Block Bootstrap Methods For Functional Time Series xii

PILA
VAKIS D

IM
ITRIO

S



List of Tables

3.1 Empirical size and power of the test based on TBB critical values and

FAR(1) errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Empirical rejection frequencies of the projection-based tests U
(1)
n1,n2 and

U
(2)
n1,n2 are the results reported in Table 2 of Horváth et al. (2013). For
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1
Introduction

In statistical analysis, conclusions are commonly derived based on information ob-

tained from a random sample of observations. In an increasing number of fields, we

study phenomena that are continuous in time or space and therefore observations can

be considered as curves or images. These observations are viewed as functions in appro-

priate spaces, since an observed intensity is available at each point on a line segment,

a portion of a plane or a volume. Such observed curves or images are called ‘func-

tional data’ and the statistical methods used for analysing this kind of data are called

‘functional data analysis’ (FDA). FDA dealing with independent and identically dis-

tributed (i.i.d.) random variables has received considerable attention in the statistical

literature during the last decades. However the i.i.d. assumption suffers in many cases,

especially when the data are obtained sequentially over time, where there is a natural

dependency in the functional sample. Such temporally dependent functional data are

called ‘functional time series’.

In functional time series analysis the aim is to infer properties of the functional

stochastic process based on an observed stretch X1, X2, . . . , Xn, i.e., on a functional

time series. In this context, usually the distribution or parameters related to the

distribution of some statistics of interest based onX1, X2, . . . , Xn needs to be estimated.

Since in a functional set-up such quantities typically depend in a complicated way on

difficult to estimate infinite-dimensional characteristics of the underlying stochastic

process X, their calculation is difficult in practice. As a result, in functional time

series analysis, resampling methods and, in particular, bootstrap methodologies are

very useful.
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This work falls into this sub-field of functional data analysis that is, we focus on

functional time series, stemming for a stochastic process X = (Xt, t ∈ Z) of Hilbert

space-valued random variables which is Lp-m-approximable, a dependence assumption

which is satisfied by large classes of commonly used functional time series models; see,

e.g., Hörmann and Kokoszka (2010). This dissertation contributes to the current state

of the art by establishing the validity of block bootstrap procedures in the functional

time series context.

1.1 Thesis objectives

The contribution of this dissertation to the FDA is twofold. First, we prove consis-

tency of the moving block bootstrap (MBB) and of the tapered block bootstrap (TBB)

for the sample mean function in the case of weakly dependent (Lp-m-approximable),

Hilbert space-valued random variables. Furthermore, we show that these bootstrap

methods provide consistent estimators of the covariance operator of the mean func-

tion estimator, that is of the spectral density operator of the underlying functional

stochastic process at frequency zero. We also prove a CLT for the MBB applied to

approximate the distribution of the sample covariance operator. Second, we propose

general bootstrap-based testing procedures for the important problem of comparing the

mean functions or the covariance operators between several populations and which are

applicable to a wide range of test statistics of interest. The basic idea of the suggested

procedures is to generate the functional pseudo observations in such a way that the null

hypothesis of interest is satisfied. For each hypothesis testing theoretical justification

for approximating the null distribution of certain fully functional test statistics are

given. Furthermore, simulations are carried out for each case to investigate the finite

sample performance of the proposed algorithms.

1.2 Dissertation outline

The objectives previously described are unfold in this thesis in the form of five chap-

ters. After this introductory chapter, Chapter 2 provides some concepts, tools and

notations which are central in Functional Data Analysis. The chapter begins with a

brief introduction to the data that motivate this research and its representation using

basis functions. Then, an introduction to the theory of operators in Hilbert spaces is
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given. After that, by focusing to the Hilbert space of square integrable functions, some

notations and properties of operators, is given. Later on, this chapter focuses on the

properties of random samples in the space of square integrable functions and it gives

the extension of the summary statistics to the functional framework. Moreover, the

Lp-m-approximability, which is the weak dependence structure of the stochastic pro-

cess considered in this dissertation, is presented. Finally, some basic definitions and

results for the asymptotic behavior of the stochastic process considered are given.

In Chapter 3 a central limit theorem for the moving block bootstrap and for the

tapered block bootstrap is proved. Also it is shown that these block bootstrap proce-

dures provide consistent estimators of the spectral density operator of the underlying

stochastic process at frequency zero. We conclude the chapter by addressing the im-

portant problem of comparing the mean functions between independent k-populations.

Block bootstrap based procedures for testing the equality of mean functions between

several independent functional time series are proposed. For these algorithms the gener-

ated pseudo observations satisfy the null hypothesis of interest therefore, the suggested

methods can be applied to a broad range of test statistics of interest. Theoretical

results that justify the validity of the suggested bootstrap-based procedures applied

to test statistics considered in the literature are established. In Section 3.4, the finite

sample performance of the MBB, of the TBB and of the stationary bootstrap (SB) is

investigated by estimating the standard deviation function of the normalized sample

mean function. Then, simulations are carried out to examine the finite sample size and

power performance of the suggested tapered block bootstrap-based testing procedures.

An application to a real-life data set is also discussed. Finally, auxiliary results and

proofs of the main results are presented concluding this chapter.

Chapter 4 is devoted to the important problem of testing the equality of the lag-

zero autocovariance operators of several independent functional time series. Firstly, the

asymptotic validity of the MBB procedure applied to estimate the distribution of the

lag-h sample autocovariance operator, for any (fixed) lag h, h ∈ Z is established. Then,

a moving block bootstrap algorithm is proposed for testing the hypothesis of interest,

which is based on bootstrapping the time series of tensor products, and generates

pseudo random elements that satisfy the null hypothesis of interest. The finite sample

size and power performance of the suggested moving block bootstrap-based testing

procedure is illustrated through simulations and an application to a real-life data set is

discussed. This chapter ends with some auxiliary results and the presentation of proofs
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of the main result obtained.

Finally, Chapter 5 provides some concluding remarks summarizing the contributions

of this thesis and discussing some future developments.
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2
Notation and Setup

Statistics is concerned with the analysis of data obtained from observations of random

variables. The data that motivate this dissertation are observed in the form of curves,

i.e. each observation is a real-valued function of the form Xt(τ), τ ∈ [a, b]. More pre-

cisely we consider observations stemming from a stochastic process X = (Xt; t ∈ Z)

of Hilbert space-valued random variables which satisfies certain stationarity and de-

pendence properties. We suppose that the random variables Xt are random functions

Xt(ω, τ), τ ∈ I, ω ∈ Ω, t ∈ Z, defined on a probability space (Ω, A, P ) and take

values in the separable Hilbert-space of squared-integrable R-valued functions on I,

denoted by L2(I). In this section, the notation used in the dissertation and the nec-

essary background for supporting the main contributions of this thesis are introduced.

More precisely, in Section 2.1 a brief introduction to Functional Time Series is given.

Section 2.2 introduces some fundamental concepts of the theory of operators. Sec-

tion 2.3 focuses on the space L2(I) of square integrable functions and describes some

fundamental concepts. In Section 2.4 some basic properties of random samples in the

space L2(I) and some useful results are given. The notion of weak dependence used in

this dissertation is presented in Section 2.5. In Section 2.6, some basic definitions and

results regarding the asymptotic theory of infinite dimensional spaces are given. We

conclude this section, by giving some basic results regarding asymptotic behavior of the

sample mean function and covariance operator of the functional time series considered

in this dissertation.
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2.1 Functional Time Series

Statistics is a branch of mathematics dealing with the collection, organization, anal-

ysis, interpretation, and presentation of observations taken on a sample with the aim

of making inferences about the general population from which the sample is drawn.

These data could appear in various forms. For instance, consider a data set obtained

by recording the electricity consumption in a 15 minutes interval for 10 days, i.e., we

have 96 electricity consumption measurements for each day. We may assume that the

data set consists of 960 observations where xt represents the t-th observation and it

is a scalar quantity. Alternatively, xt could be a vector of length 96 representing the

observations corresponding to the t-th day. An alternative approach is to represent ob-

servations of electricity consumption as functions, i.e., Xt(u) is a function representing

the electricity consumption of the entire t-th day. For the latter case, to convert the

discrete trajectories into functions we interpolate the data using a basis of L2(I), where

I represents a 24-hour interval. For this conversion, by letting Xt(uj) be the j-th mea-

surement of electricity consumption on day t, each vector (Xt(u1), Xt(u2), . . . , Xt(u96))

is approximated by an expansion of the form

Xt(uj) ≈
K∑
k=1

ct,kφk(uj)

where φk, k = 1, 2, . . . are basis functions in L2(I), for example the Fourier basis or the

B-spline basis functions. Since, the basis functions are defined on the whole 24-hour

interval we might express the functional data Xt(u) as

Xt(u) ≈
K∑
k=1

ct,kφk(u).

In such cases the obtained set of functions {Xt, t = 1, 2, . . . , n} is called a functional

time series.

Figure 2.1 illustrates the functional data approach stated above where the dotted

vertical lines separate days. To convert the discrete data in functional form the Fourier

basis with 49 basis functions has been used. As it can be seen, the curves Xt(u) are

obtained by splitting a continuous time record into daily curves.

Figure 2.2 demonstrates the dependence between the random elements Xt and Xs
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Figure 2.1: Electricity consumption in Cyprus from 1/1/2009 00:00 to 10/1/2009 23:45,
recorded every fifteen minutes. The vertical lines separate days and t-th day’s graph
represents the observation xt(u).

for s 6= t by showing the estimation of the correlation coefficient between the random

variables Xt(u) and Xt+h(u) for different values of u and lag h = 1, 2. As evident the

curves Xt(u) are dependent.
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Figure 2.2: Estimated correlation values between the curves Xt(uj) and Xt+h(uj) for
j = 1, 2, . . . , 96 for lag h = 1 (left) and h = 2 (right)

In the above example, each function was created from the same number of observations

which were equally spaced. However, functional data can also arise in other cases. For

example, when measurements on human subjects are made, it is often difficult to ensure

that they are made at the same time in the life of the subject and there may be different

numbers of measurements for different subjects. A typical example are height curves

i.e. Xt(u) is the height of subject t at time u after birth. (see, e.g., Tuddenham and

Snyder, (1954).)
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2.2 Compact Operators in Hilbert spaces

Operators are the basic mathematical tool to deal with functional data. In this section

we will focus on compact operators and a brief description of their main theoretical

properties is given.

We consider a separable Hilbert space H with inner product 〈·, ·〉 which generates the

norm ‖·‖. A continuous and bounded linear operator Ψ : H → H is said to be compact

if there exist two orthonormal bases {ei, i = 1, 2, . . .} and {εi, i = 1, 2, . . .} of H and a

real sequence {λi, i = 1, 2, . . .} converging to zero as i→∞, such that

Ψ(x) =
∞∑
i=1

λi〈x, εi〉ei, x ∈ H.

Note that, the λi may be assumed positive because one can replace ei by −ei. The above

representation is called the singular value decomposition of Ψ. An operator having

the above singular value decomposition is said to be a Hilbert-Schmidt operator if∑∞
i=1 λ

2
i < ∞. We denote by L the space of Hilbert-Schmidt operators. For two

Hilbert-Schmidt operators Ψ1 and Ψ2, we denote by

〈Ψ1,Ψ2〉HS =
∞∑
i=1

〈Ψ1(ei),Ψ2(ei)〉

the inner product which generates the Hilbert-Schmidt norm ‖Ψ1‖2HS =
∑∞

i=1 ‖Ψ1(ei)‖2.

Here {ei, i = 1, 2, . . .} is an arbitrary orthonormal basis of H. Note that the value of

〈Ψ1,Ψ2〉HS is independent of the choice of the basis and that ‖Ψ‖2HS =
∑∞

i=1 λ
2
i . We

also define the tensor product Ψ1 ⊗ Ψ2 : L → L between the operators Ψ1 and Ψ2 by

Ψ1 ⊗ Ψ2(·) = 〈Ψ1, ·〉HSΨ2. Note that Ψ1 ⊗ Ψ2 is an operator acting on the space of

Hilbert-Schmidt operators.

Another important family of operators is the trace-class operators. A compact operator

Ψ is said to be nuclear or trace-class if
∑∞

i=1 λi < ∞. In this case, the trace of Ψ, is

given by

tr(Ψ) =
∞∑
i=1

〈Ψ(ei), ei〉

where the sum converges absolutely and is independent of the choice of the orthonormal

basis. It can be shown that if Ψ is trace-class tr(Ψ) =
∑∞

i=1 λi.

Block Bootstrap Methods For Functional Time Series 8

PILA
VAKIS D

IM
ITRIO

S



2.3 The Hilbert space L2(I)

In the following, we focus on the separable Hilbert space L2(I), that is, the set of all

measurable real–valued functions f defined on I satisfying
∫
I f

2(u) du <∞. The space

L2(I) is a separable Hilbert space with the inner product

〈f, g〉 =

∫
I
f(u)g(u) du

which generates the norm ‖f‖2 = 〈f, f〉. Notice that if f, g ∈ L2(I) the equality f = g

means ‖f − g‖ = 0 whereas f 6= g that ‖f − g‖ > 0.

Let {ei, i = 1, 2, . . .} be an orthonormal basis of L2(I). Then every f ∈ L2(I) can be

written as

f =
∞∑
i=1

〈f, ei〉ei.

Therefore,

〈f, g〉 =
∞∑
i=1

〈f, ei〉〈g, ei〉

and Parseval’s equality

‖f‖2 =
∞∑
i=1

〈f, ei〉2

follow. We define the tensor product f ⊗ g : L2(I) → L2(I) between f and g by

f ⊗ g(·) = 〈f, ·〉g.

From now on, and without loss of generality, we assume that interval I is normalized to

be a unit interval, i.e, I = [0, 1] and, for simplicity, integral signs without the limits of

integration imply integration over the interval I. We finally write L2 instead of L2(I).

An important class of operators in L2 are the integral operators defined by:

Ψ(x(u)) =

∫
ψ(u, v)x(v) dv

where ψ(u, v) is called the kernel of the operator Ψ. Such operators are Hilbert-Schmidt

if and only if
∫∫

ψ2(u, v) dudv < ∞. The integral operator Ψ is said to be symmetric

if ψ(u, v) = ψ(v, u) and positive-definite if for all square-integrable functions f(u),∫∫
ψ(u, v)f(u)f(v) dudv ≥ 0. In this case ψ(u, v) has the representation

ψ(u, v) =
∞∑
i=1

λiei(u)ei(v) (2.3.1)
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where {ei, i = 1, 2, . . .} is an orthonormal basis of L2 consisting of eigenfunctions of Ψ

such that the corresponding sequence of eigenvalues {λi, i = 1, 2, . . .} is nonnegative,

i.e., Ψ(ei) = λiei. Representation 2.3.1 is known as Mercer’s theorem and if the kernel

ψ is continuous the convergence is absolute and with respect to the L2 norm. From

Mercer’s theorem it follows directly that
∫
ψ(u, u) du =

∑∞
i=1 λi.

If Ψ1 and Ψ2 are Hilbert-Schmidt integral operator with kernels ψ1(u, v) and ψ2(u, v),

respectively, then 〈Ψ1,Ψ2〉HS =
∫∫

ψ1(u, v)ψ2(u, v) dudv and ‖Ψ1‖2HS =
∫∫

ψ2
1(u, v) dudv.

2.4 random variable in L2(I)

The stationarity of a stochastic process X = {Xt, t ∈ Z} is an indispensable property

in the functional time series analysis.

Definition 2.4.1. A stochastic process X = {Xt, t ∈ Z}, is called strictly stationary

if, for all finite sets of indices Q ⊆ Z, the joint distribution of (Xt+q, q ∈ Q), does not

depend on t ∈ Z.

The samples X1, X2, . . . , Xn of curves that we consider in this dissertation and intro-

duced in Section 2.1 are viewed as the outcomes of a strictly stationary stochastic

process X = {Xt, t ∈ Z}, where the random variables Xt take values in L2 and are

dependent, in a broad sense which is made precise in Section 2.5.

If Xt is integrable, i.e., E‖Xt‖ = E
∫
X2
t (u) du < ∞, there is a unique function

µ ∈ L2(I) such that E〈X, y〉 = 〈µ, y〉, for all y ∈ L2(I). The function µ is called the

expectation function of Xt, EXt ∈ L2(I) and is independent of t by the stationarity of

X. If in addition E‖Xt‖2 < ∞, then the covariance operator of X at lag h ∈ Z exists

and is defined by

Ch = E(Xt − µ)⊗ (Xt+h − µ)

which is independent of t by the stationarity of X. By the definition of the covariance

operator Ch, it follows that Ch is an integral operator with real valued kernel

ch(u, v) = E[(Xt(u)− µ(u))(Xt+h(v)− µ(v))].

Therefore,

‖Ch‖2HS =

∫∫
c2h(u, v) dudv.
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As it can be seen, each value of ch(u, v) measures the joint variability of the functional

variables Xt and Xt+h at points u and v respectively. If

∑
h∈Z

‖Ch‖HS <∞, (2.4.1)

the series
∑

h∈Z ch(u, v)eihω, ω ∈ [−π, π] where i denotes the imaginary unit, converges,

and the operator Fω whose kernel is

fω(u, v) = (2π)−1
∑
h∈Z

ch(u, v)e−ihω

is called the spectral density operator of X at frequency ω and is defined by

Fω = (2π)−1
∑
h∈Z

Che−ihω,

see Panaretos and Tavakoli (2013). We then have Ch =
∫ π
−π Fωe

ihω dω.

Having an observed stretch X1, X2, . . . , Xn, the mean function µ is estimated by the

sample mean, Xn, which is given by

Xn =
1

n

n∑
i=1

Xi.

The operator Ch is commonly estimated by the corresponding sample autocovariance

operator, which is given by

Ĉh =


n−1

∑n−h
t=1 (Xt −Xn)⊗ (Xt+h −Xn), if 0 ≤ h < n,

n−1
∑n+h

t=1 (Xt−h −Xn)⊗ (Xt −Xn), if − n < h < 0,

0, otherwise,

and the covariance kernel ch(u, v) estimated by its sample counterpart

ĉh(u, v) =


n−1

∑n−h
t=1 (Xt(u)−Xn(u))(Xt+h(v)−Xn(v)), if 0 ≤ h < n,

n−1
∑n+h

t=1 (Xt−h(u)−Xn(u))(Xt(v)−Xn(v)), if − n < h < 0,

0, otherwise.

We conclude this section, by illustrating the notions introduced above using a real
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Figure 2.3: Electricity consumption curves (left) and their mean function estimation
(right)

life example. The data set considered consists of 15-minutes measurements of the elec-

tricity consumption in Cyprus in Summer 2010, i.e., from 1 June 2010 through 31

August 2010. We use the R software with 49 Fourier basis functions to transform the

raw discrete data to functional data as explained in Section 2.1. The resulting func-

tional time series and the estimation of the mean function are displayed in Figure 2.3.

Whereas Figure 2.4 illustrates the estimation of the covariance kernel at lag zero.

2.5 Lp-m-approximable

For the purpose of this dissertation, and in order to describe the dependence structure

of the stochastic process X, we use the notion of Lp-m-approximability; see Hörmann

and Kokoszka (2010). A stochastic process X = {Xt, t ∈ Z} with Xt taking values in

L2, is called Lp-m-approximable if the following conditions are satisfied:

(i) Xt admits the representation

Xt = f(δt, δt−1, δt−2, . . .) (2.5.1)

for some measurable function f : S∞ → L2, where {δt, t ∈ Z} is a sequence of

i.i.d. elements in a measurable space S.

(ii) E‖X0‖p <∞ and ∑
m≥1

(E‖Xt −Xt,m‖p)1/p <∞, (2.5.2)
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Figure 2.4: Estimated covariance kernel at lag zero of the electricity consumption data

where Xt,m = f(δt, δt−1, . . . , δt−m+1, δ
(m)
t,t−m, δ

(m)
t,t−m−1, . . .) and for each t and k, δ

(m)
t,k

is an independent copy of δt.

The intuition behind the above definition is that the function f in (2.5.1) should be

such that the effect of the innovations δi far back in the past becomes negligible, that

is, these innovations can be replaced by other, independent, innovations.

By (2.5.1) the stochastic process X = (Xt; t ∈ Z) is strictly stationary. Lp-m-

approximability implies that for each m ≥ 1, the sequences (Xt,m; t ∈ Z) are strictly

stationary and m-dependent, and Xt,m and Xt have the same distribution. Further-

more, from the above definition it is easily seen that E‖Xt,m −Xt‖p = E‖X0,m −X0‖p

and E‖Xt,m‖p = E‖Xt‖p = E‖X0‖p for p ∈ N and for all t ∈ Z.

Kokoszka and Reimherr (2013) proved, that, L4-m-approximability of X implies

that the tensor product {Xt ⊗Xt, t ∈ Z} is L2-m-approximable with Xt,m ⊗Xt,m be

the m-dependent approximation of Xt ⊗Xt.

Furthermore, Hörmann et al. (2015) proved that if X is L2-m-approximable then

(2.4.1) holds and the spectral density operator Fω, ω ∈ [−π, π] is trace-class.

For the stochastic process X considered in this dissertation, we somehow strengthen

condition (2.5.2) to the following condition.
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Assumption 1. X is Lp-m-approximable and satisfies

lim
m→∞

m (E‖Xt −Xt,m‖p)1/p = 0.

2.6 Central Limit Theorem and Related Results

When dealing with random variables, a pivotal concept in asymptotic derivation are

Gaussian processes. In the finite dimensional case, a Gaussian distribution describes

the distribution of random variables which are scalars or vectors (for multivariate

distributions) and is fully defined by its mean value or its mean vector and its covariance

value or its covariance matrix. Whereas, in the infinite dimensional case, a Gaussian

process, defines a distribution over infinite dimensional variables, e.g., functions or

operators, and it is fully specified by a mean and a covariance function.

Definition 2.6.1. An H-valued random element Z is Gaussian on H if for all h ∈ H

the real random variable 〈Z, h〉 has a Gaussian distribution on R.

One of the central topics in asymptotic theory is that of the weak convergence. To

define this convergence in L2 we will need the following definitions

Definition 2.6.2. Suppose (Xn;n ∈ N) and X are random elements in L2 with dis-

tributions PXn and PX respectively. We say that PXn converges weakly to PX if

E[f(Xn)]→ E[f(X)] as n→∞

for every bounded and continuous real function f on L2.

Definition 2.6.3. Suppose (Xn;n ∈ N) and X are random elements in L2. We say that

(Xn) converges in distribution to X, if the distribution PXn of Xn, converges weakly

to the distribution PX of X as n→∞. We denote this by Xn ⇒ X.

In infinite dimensional spaces, to prove weak convergence of a random sequence, a

useful property is that of tightness.

Definition 2.6.4. A sequence of random variables (Xn;n ∈ N) in L2 is said to be tight

if for every ε > 0 there exist a compact set Kε ⊂ L2 such that for all n ∈ N :

P (Xn ∈ Kε) > 1− ε.
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The following result, which is stated as Proposition 7.4.2 of Laha and Rohatgi (1979),

gives a convenient criterion for weak convergence and tell us why tightness is an im-

portant property.

Theorem 2.6.1. Let (Xn;n ∈ N) be a stochastic process and X be a random element

of L2. Then Xn ⇒ X as n→∞ if and only if

(a) 〈Xn, y〉 ⇒ 〈X, y〉 ∀ y ∈ L2,

(b) the sequence (Xn;n ∈ N) is tight.

Note that Condition (a) of the above theorem, is the weak convergence of real-valued

random variables and can be proved by applying an appropriate central limit theo-

rem. Concerning Condition (b) the following results give some sufficient conditions for

tightness.

Lemma 2.6.1. Let {Wn,t, 1 ≤ t ≤ n, 1 ≤ n < ∞} be a double array of random

elements of a Hilbert space H , strictly stationary for each n and with EWn,t = 0 and

E‖Wn,t‖2 <∞. If

lim
n→∞

E

∥∥∥∥∥
n∑
t=1

Wn,t

∥∥∥∥∥
2

exists and is finite

then the sequence {Wn,t, 1 ≤ t ≤ n} is tight.

The above lemma, is given in Remark 3.3 of Chen and White (1998). Another

useful result for proving tightness, which is derived from Theorem 1.13 of Prokhorov

(1956) is the following.

Theorem 2.6.2. A zero mean sequence {Wn,t, 1 ≤ t ≤ n, 1 ≤ n < ∞} of square

integrable elements on L2 is tight if there exists a complete orthonormal system {ej, j ≥

1} in L2 such that

lim
k→∞

sup
n≥1

∞∑
j=k

E

∣∣∣∣∣
〈

n∑
i=1

Wn,t, ej

〉∣∣∣∣∣
2

= 0

A useful criterion for proving the above condition is given in Lemma 14 of Cerovecki

and Hörmanm (2017) and is stated below.

Lemma 2.6.2. Consider sequences (pnj , j ≥ 1), n ≥ 0 satisfying the following proper-

ties:

1. pnj ≥ 0 for all j, n,
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2. limn→∞ p
n
j = p0j ,

3.
∑n

j=1 p
0
j = p <∞,

4. limn→∞
∑∞

j=1 p
n
j = p,

5.
∑n

j=1 p
n
j <∞ for all n ≥ 1.

Then

lim
k→∞

sup
n

∑
j>k

pnj = 0

We conclude this section with two central limit theorems for Lp-m-approximable stochas-

tic processes. The first theorem concerns the sample mean and is stated as Theorem 1

of of Horváth et al. (2013), whereas the second concerns the covariance operator at

lag 0 and is stated as Theorem 3 of Kokoszka and Reimherr (2013).

Theorem 2.6.3. Suppose (Xt; t ∈ Z) satisfies Assumption 1 with p = 2. Then

√
n(Xn − µ)⇒ Zµ

where Zµ is a zero mean Gaussian process in L2 with covariance operator C with kernel

c(u, v) = E(Zµ(u)Zµ(v)) given for any u, v ∈ [0, 1]2 by

c(u, v) = E[(X0(u)− µ(u))(X0(v)− µ(v))]

+
∑
i≥1

E[(X0(u)− µ(u))(Xi(v)− µ(v))]

+
∑
i≥1

E[(X0(v)− µ(v))(Xi(u)− µ(u))].

Theorem 2.6.4. Suppose (Xt; t ∈ Z) is an L4-m-approximable stochastic process in

L2. Then
√
n(Ĉ0 − C0)⇒ ZC0

where ZC0 is a zero mean Gaussian Hilbert-Schmidt operator with covariance operator

Γ = E[((X0 − µ)⊗ (X0 − µ)− C0)⊗ ((X0 − µ)⊗ (X0 − µ)− C0)]

+ 2
∞∑
t=1

E[((X0 − µ)⊗ (X0 − µ)− C0)⊗ ((Xt − µ)⊗ (Xt − µ)− C0)].
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3
Moving Block and Tapered Block

Bootstrap for Functional Time

Series with an Application to the

K-Sample Mean Problem

Abstract

We consider infinite-dimensional Hilbert space-valued random variables that are as-

sumed to be weakly dependent in a broad sense. We prove a central limit theorem

for the moving block bootstrap and for the tapered block bootstrap, and show that

these block bootstrap procedures also provide consistent estimators of the long run

covariance operator. Furthermore, we consider block bootstrap-based procedures for

fully functional testing of the equality of mean functions between several independent

functional time series. We establish validity of the block bootstrap methods in approx-

imating the distribution of the statistic of interest under the null and show consistency

of the block bootstrap-based tests under the alternative. The finite sample behaviour

of the procedures is investigated by means of simulations. An application to a real-life

data set is also discussed.
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3.1 Introduction

In statistical analysis, conclusions are commonly derived based on information obtained

from a random sample of observations. In an increasing number of fields, these obser-

vations are curves or images which are viewed as functions in appropriate spaces, since

an observed intensity is available at each point on a line segment, a portion of a plane

or a volume. Such observed curves or images are called ‘functional data’; see, e.g.,

Ramsay and Dalzell (1991), who also introduced the term ‘functional data analysis’

(FDA) which refers to statistical methods used for analysing this kind of data.

In this paper we focus on functional time series, that is we consider observations

stemming from a stochastic process X = (Xt, t ∈ Z) of Hilbert space-valued ran-

dom variables which satisfies certain stationarity and weak dependence properties.

Our goal is to infer properties of the stochastic process based on an observed stretch

X1, X2, . . . , Xn, i.e., on a functional time series. In this context, we commonly need

to calculate the distribution, or parameters related to the distribution, of some statis-

tics of interest based on X1, X2, . . . , Xn. Since in a functional set-up such quantities

typically depend in a complicated way on infinite-dimensional characteristics of the

underlying stochastic process X, their calculation is difficult in practice. As a result,

resampling methods and, in particular, bootstrap methodologies are very useful.

For the case of independent and identically distributed (i.i.d.) Banach space-valued

random variables, Giné and Zinn (1990) proved the consistency of the standard i.i.d.

bootstrap for the sample mean. For functional time series, Politis and Romano (1994)

established validity of the stationary bootstrap for the sample mean and for (bounded)

Hilbert space-valued random variables satisfying certain mixing conditions. A func-

tional sieve bootstrap procedure for functional time series has been proposed by Pa-

paroditis (2017). Consistency of the non-overlapping block bootstrap for the sample

mean and for near epoch dependent Hilbert space-valued random variables has been

established by Dehling et al. (2015). However, up to date, consistency results are

not available for the moving block bootstrap (MBB) or its improved versions, like the

tapered block bootstrap (TBB), for functional time series. Notice that the MBB for

real-valued time series was introduced by Künsch (1989) and Liu and Singh (1992).

The basic idea is to resample blocks of the time series and to joint them together in

the order selected in order to form a new set of pseudo observations. This resampling

scheme retains the dependence structure of the time series within each block and can
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be, therefore, used to approximate the distribution of a wide range of statistics. The

TBB for real-valued time series was introduced by Paparoditis and Politis (2001). It

uses a taper window to downweight the observations at the beginning and at the end

of each resampled block and improves the bias properties of the MBB.

The aim of this paper is twofold. First, we prove consistency of the MBB and of

the TBB for the sample mean function in the case of weakly dependent Hilbert space-

valued random variables. Furthermore, we show that these bootstrap methods provide

consistent estimators of the covariance operator of the sample mean function estimator

and therefore of the spectral density operator of the underlying stochastic process

at frequency zero. We derive our theoretical results under quite general dependence

assumptions on X, i.e., under L2-m-approximability assumptions, which are satisfied

by a large class of commonly used functional time series models; see, e.g., Hörmann

and Kokoszka (2010). Second, we apply the above mentioned bootstrap procedures to

the problem of fully functional testing of the equality of the mean functions between a

number of independent functional time series. Testing the equality of mean functions

for i.i.d. functional data has been extensively discussed in the literature; see, e.g.,

Benko et al. (2009), Hórvath and Kokoszka (2012, Chapter 5), Zhang (2013) and

Staicu et al. (2015). Bootstrap alternatives over asymptotic approximations have been

proposed in the same context by Benko et al. (2009), Zhang et al. (2010) and, more

recently, by Paparoditis and Sapatinas (2016). Testing equality of mean functions for

dependent functional data has also attracted some interest in the literature. Horváth et

al. (2013) developed an asymptotic procedure for testing equality of two mean functions

for functional time series. Since the limiting null distribution of a fully functional, L2-

type test statistic, depends on difficult to estimate process characteristics, tests are

considered which are based on a finite number of projections. A projection-based

test has also been considered by Horváth and Rice (2015). Although such tests lead

to manageable limiting distributions, they have non-trivial power only for deviations

from the null which are not orthogonal to the subspace generated by the particular

projections considered.

In this paper, we show that the MBB and TBB procedures can be successfully

applied to approximate the distribution under the null of such fully functional test

statistics. This is achieved by designing the suggested block bootstrap procedures

in such a way that the generated pseudo-observations satisfy the null hypothesis of
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interest. Notice that such block bootstrap-based testing methodologies are applicable

to a broad range of possible test statistics. As an example, we prove validity for the

L2-type test statistic recently proposed by Horváth et al. (2013).

The paper is organised as follows. In Section 3.2, the basic assumptions on the

underlying stochastic process X are stated and the MBB and TBB procedures for

weakly dependent, Hilbert space-valued random variables, are described. Asymptotic

validity of the block bootstrap procedures for estimating the distribution of the sample

mean function is established and consistency of the long run covariance operator, i.e.,

of the spectral density operator of the underlying stochastic process at frequency zero,

is proven. Section 3.3 is devoted to the problem of testing equality of mean functions

for several independent functional time series. Theoretical justifications of an appro-

priately modified version of the MBB and of the TBB procedure for approximating the

null distribution of a fully functional test statistic is given and consistency under the

alternative is shown. Numerical simulations and a real-life data example are presented

and discussed in Section 4. Auxiliary results and proofs of the main results are deferred

to Section 5.

3.2 Block Bootstrap Procedures for Functional

Time Series

3.2.1 Preliminaries and Assumptions

We consider a strictly stationary stochastic process X = {Xt, t ∈ Z}, where the

random variables Xt are random functions Xt(ω, τ), τ ∈ I, ω ∈ Ω, t ∈ Z, defined on a

probability space (Ω, A, P ) and take values in the separable Hilbert-space of squared-

integrable R-valued functions on I, denoted by L2(I). The expectation function of

Xt, EXt ∈ L2(I), is independent of t, and it is denoted by µ. Throughout Section

3.2, we assume for simplicity that µ = 0. We define 〈f, g〉 =
∫
I f(τ)g(τ)dτ, ‖f‖2 =

〈f, f〉 and the tensor product between f and g by f ⊗ g(·) = 〈f, ·〉g. For two Hilbert-

Schmidt operators Ψ1 and Ψ2, we denote by 〈Ψ1,Ψ2〉HS =
∑∞

i=1〈Ψ1(ei),Ψ2(ei)〉 the

inner product which generates the Hilbert-Schmidt norm ‖Ψ1‖HS =
∑∞

i=1 ‖Ψ1(ei)‖2,

for {ei, i = 1, 2, . . .} an orthonormal basis of L2(I). Without loss of generality, we

assume that I = [0, 1] (the unit interval) and, for simplicity, integral signs without the
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limits of integration imply integration over the interval I. We finally write L2 instead

of L2(I).

To describe the dependent structure of the stochastic process X, we use the notion

of Lp-m-approximability; see Hörmann and Kokoszka (2010). A stochastic process

X = {Xt, t ∈ Z} with Xt taking values in L2, is called L2-m-approximable if the

following conditions are satisfied:

(i) Xt admits the representation

Xt = f(δt, δt−1, δt−2, . . .) (3.2.1)

for some measurable function f : S∞ → L2, where {δt, t ∈ Z} is a sequence of

i.i.d. elements in L2.

(ii) E‖X0‖2 <∞ and ∑
m≥1

√
E‖Xt −Xt,m‖2 <∞, (3.2.2)

where Xt,m = f(δt, δt−1, . . . , δt−m+1, δ
(m)
t,t−m, δ

(m)
t,t−m−1, . . .) and, for each t and k, δ

(m)
t,k

is an independent copy of δt.

The intuition behind the above definition is that the function f in (3.2.1) should be

such that the effect of the innovations δi far back in the past becomes negligible, that

is, these innovations can be replaced by other, independent, innovations. We somehow

strengthen (3.2.2) to the following assumption.

Assumption 2. X is L2-m-approximable and satisfies

lim
m→∞

m
√

E‖Xt −Xt,m‖2 = 0.

Notice that the above assumption is satisfied by many linear and non-linear functional

time series models cconsidered in the literature; see, e.g., Hörmann and Kokoszka

(2010).

3.2.2 The Moving Block Bootstrap

The main idea of the MBB is to split the data into overlapping blocks of length b and to

obtain the bootstrapped pseudo-time series by joining together the k independently and

randomly selected blocks of observations in the order selected. Here, k is a positive
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integer satisfying b(k − 1) < n and bk ≥ n. For simplicity of notation, we assume

throughout the paper that n = kb. Since the dependence of the original time series

is maintained within each block, it is expected that for weakly dependent time series,

this bootstrap procedure will, asymptotically, correctly imitate the entire dependence

structure of the underlying stochastic process if the block length b increases to infinity,

at some appropriate rate, as the sample size n increases to infinity. Adapting this

resampling idea to a functional time series Xn = {Xt, t = 1, 2, . . . , n} stemming from

a strictly stationary stochastic process X = {Xt, t ∈ Z} with Xt taking values in L2

and E(Xt) = 0, leads to the following MBB algorithm.

Step 1 : Let b = b(n), 1 ≤ b < n, be an integer. Denote by Bt = {Xt, Xt+1, . . . , Xt+b−1}

the block of length b starting from observation Xt, t = 1, 2, . . . , N, where N =

n− b+ 1 is the number of such blocks available.

Step 2 : Define i.i.d. integer-valued random variables I1, I2, . . . , Ik having a discrete

uniform distribution assigning the probability 1/N to each element of the set

{1, 2, . . . , N}.

Step 3 : Let B∗i = BIi , i = 1, 2, . . . , k, and denote by {X∗(i−1)b+1, X
∗
(i−1)b+2, . . . , X

∗
ib} the

elements of B∗i . Join the k blocks in the order B∗1 , B
∗
2 , . . . , B

∗
k together to obtain a

new set of functional pseudo observations of length n denoted by X∗1 , X
∗
2 , . . . , X

∗
n.

The above bootstrap algorithm can be potentially applied to approximate the dis-

tribution of some statistic Tn = T (X1, X2, . . . , Xn) of interest. For instance, let

Tn = Xn be the sample mean function of the observed stretch X1, X2, . . . , Xn, i.e.,

Xn = n−1
∑n

t=1Xt. We are interested in estimating the distribution of
√
nXn. For

this, the bootstrap random variable
√
n(X

∗
n − E∗(X∗n)) is used, where X

∗
n is the mean

function of the functional pseudo observations X∗1 , X
∗
2 , . . . , X

∗
n, i.e., X

∗
n = n−1

∑n
t=1X

∗
t

and E∗(X∗n) is the (conditional on the observations Xn) expected value of X
∗
n. Straight-

forward calculations yield

E∗(X∗n) =
1

N

[
n∑
t=1

Xt −
b−1∑
t=1

(1− t/b)(Xt +Xn−t+1)

]
.

It is known that, under a variety of dependence assumptions on the underlying mean

zero stochastic process X, it holds true that
√
nXn

d→ Γ as n→∞, where Γ denotes a

Gaussian process with mean zero and long run covariance operator 2πF0. Furthermore,
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‖nE(Xn ⊗Xn)− 2πF0‖HS → 0 as n → ∞. Here, Fω = (2π)−1
∑

h∈ZChe
−ihω, ω ∈ R,

is the so-called spectral density operator of X and Ch denotes the lag h autocovariance

operator of X, defined by Ch(·) = E〈Xt, ·〉Xt+h for any h ∈ Z; see Panaretos and

Tavakoli (2013a,b).

The following theorem establishes validity of the MBB procedure for approximating

the distribution of
√
nXn and for providing a consistent estimator of the long run

covariance operator 2πF0.

Theorem 3.2.1. Suppose that the mean zero stochastic process X = (Xt, t ∈ Z) satis-

fies Assumption 2 and let X∗1 , X
∗
2 , . . . , X

∗
n be a stretch of pseudo observations generated

by the MBB procedure. Assume that the block size b = b(n) satisfies b−1+bn−1/2 = o(1)

as n→∞. Then, as n→∞,

(i) d(L(
√
n (X

∗
n − E∗(X∗n)) | Xn), L(

√
nXn))→ 0, in probability,

where d is any metric metrizing weak convergence on L2 and L(Z) denotes the law of

the random element Z. Furthermore,

(ii) ‖nE∗(X∗n−E∗(X
∗
n))⊗(X

∗
n−E∗(X

∗
n))−nE(Xn⊗Xn)‖HS = oP (1), in probability.

3.2.3 The Tapered Block Bootstrap

The TBB procedure is a modification of the block bootstrap procedure considered

in Section 3.2.2 which is obtained by introducing a tapering of the random elements

Xt. The tapering function down-weights the endpoints of each block Bi, towards zero,

i.e., towards the mean function of Xt. The pseudo observations are then obtained by

choosing, with replacement, k appropriately scaled and tapered blocks of length b of

centered observations and joining them together.

More precisely, the TBB procedure applied to the functional time series Yn =

{Yt, t = 1, 2, . . . , n} stemming from a strictly stationary, L2-valued, stochastic process

Y = (Yt, t ∈ Z), can be described as follows. Let X1, X2, . . . , Xn be the centered

observations, i.e., Xt = Yt−Y n, t = 1, 2, . . . , n, where Y n = n−1
∑n

t=1 Yt. Furthermore,

let b = b(n), 1 ≤ b < n, be an integer and let wn(·), n = 1, 2, . . ., be a sequence of

so-called data-tapering windows which satisfy the following assumption:
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Assumption 3. wn(τ) ∈ [0, 1] and wn(τ) = 0 for τ /∈ {1, 2, . . . , n}. Furthermore,

wn(τ) = w

(
τ − 0.5

n

)
, (3.2.3)

where the function w : R→ [0, 1] fulfills the conditions: (i) w(τ) ∈ [0, 1] for all τ ∈ R

with w(τ) = 0 if τ /∈ [0, 1]; (ii) w(τ) > 0 for all τ in a neighbourhood of 1/2; (iii) w(τ)

is symmetric around τ = 0.5; and (iv) w(τ) is nondecreasing for all τ ∈ [0, 1/2].

Let

B̃i =

{
wb(1)

b1/2

‖wb‖2
Xi, wb(2)

b1/2

‖wb‖2
Xi+1, . . . , wb(b)

b1/2

‖wb‖2
Xi+b−1

}
,

be a block of length b starting from Xt, t = 1, 2, . . . , N, where each centered obser-

vation is multiplied by wb(·) and scaled by b1/2/‖wb‖2, where ‖wb‖22 =
∑b

i=1w
2
b (i)

and ‖wb‖1 =
∑b

i=1wb(t). Let I1, I2, . . . , Ik be i.i.d. integers selected from a dis-

crete uniform distribution which assigns probability 1/N to each element of the set

{1, 2, . . . , N}. Let B∗i = B̃Ii , i = 1, 2, . . . , k, and denote the i-th block selected by

{X∗(i−1)b+1, X
∗
(i−1)b+2, . . . , X

∗
ib}. Join these blocks together in the order B∗1 , B

∗
2 , . . . , B

∗
k

to form the set of TBB pseudo observations X∗1 , X
∗
2 , . . . , X

∗
n.

Notice that the “inflation” factor b1/2/‖wb‖2 is necessary to compensate for the

decrease of the variance of the X∗i ’s effected by the shrinking caused by the window wb;

see, also, Paparoditis and Politis (2001). Furthermore, the TBB procedure uses the

centered time series X1, X2, . . . , Xn instead of the original time series Y1, Y2, . . . , Yn, in

order to shrink the end points of the blocks towards zero.

To estimate the distribution of
√
nY n by means of the TBB procedure, the boot-

strap random variable
√
n(X

∗
n−E∗(X

∗
n)) is used, where X

∗
n = n−1

∑n
t=1X

∗
t and E∗(X∗n)

is the (conditional on the observations Yn) expected value of X
∗
n. Straightforward cal-

culations yield

E∗(X∗n) =
1

N

‖wb‖1
‖wb‖2

[
n∑
t=1

Xt −
b−1∑
t=1

(
1−

∑t
s=1wb(s)

‖wb‖1

)
Xt

−
b−1∑
j=1

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
Xn−j+1

]
.

The following theorem establishes validity of the TBB procedure for approximating

the distribution of
√
nY n and for providing a consistent estimator of the long run
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covariance operator 2πF0.

Theorem 3.2.2. Suppose that the mean zero stochastic process Y satisfies Assump-

tion 2 and let wn(·), n = 1, 2, . . . , be a sequence of data-tapering windows satisfying

Assumption 3. Furthermore, let X∗t , t = 1, 2, . . . , n, be a stretch of pseudo observa-

tions generated by the TBB procedure. Assume that the block size b = b(n) satisfies

b−1 + bn−1/2 = o(1) as n→∞. Then, as n→∞,

(i) d(L(
√
n (X

∗
n − E∗(X∗n)) | Yn), L(

√
nY n))→ 0, in probability,

where d is any metric metrizing weak convergence on L2, and

(ii) ‖nE∗(X∗n−E∗(X
∗
n))⊗(X

∗
n−E∗(X

∗
n))−nE(Y n⊗Y n)‖HS = oP (1), in probability.

Remark 3.2.1. The asymptotic validity of the MBB and TBB procedures established

in Theorem 3.2.1 and Theorem 3.2.2, respectively, can be extended to cover also the

case where maps φ : L2 → D of the sample means Xn (in the MBB case) and Y n (in

the TBB case) are considered, when D is a normed space. For instance, such a result

follows as an application of a version of the delta-method appropriate for the bootstrap

and for maps φ which are Hadamard differentiable at 0 tangentially to a subspace D0

of D (see Theorem 3.9.11 of van der Vaart and Wellner (1996)). Extensions of such

results to almost surely convergence and for other types of differentiable maps, like

for instance Fréchet differentiable functionals (see Theorem 3.9.15 of van de Vaart

and Wellner (1996)) or quasi-Hadamard differentiable functionals (see Theorem 3.1 of

Beutner and Zähe (2016)), are more involved since they depend on the particular map

φ and the verification of some technical conditions.

3.3 Bootstrap-Based Testing of the Equality of

Mean Functions

Among different applications, the MBB and TBB procedures can be also used to per-

form a test of the equality of mean functions between several independent samples

of a functional time series. In this case, both block bootstrap procedures have to be

implemented in such a way that the pseudo observations X∗1 , X
∗
2 , . . . , X

∗
n generated,

satisfy the null hypothesis of interest.
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3.3.1 The set-up

Consider K independent functional time series XM = {Xi,t, i = 1, 2 . . . , K, t =

1, 2, . . . , ni}, each one of which satisfies

Xi,t = µi + εi,t, t = 1, 2, . . . , ni, (3.3.1)

where, for each i ∈ {1, 2, . . . , K}, {εi,t, t ∈ Z} is a L2-m-approximable functional pro-

cess and ni denotes the length of the i-th time series. Let M =
∑K

i=1 ni be the total

number of observations and note that µi(τ), τ ∈ I, is the mean function of the i-th

functional time series, i = 1, 2, . . . , K. The null hypothesis of interest is then,

H0 : µ1 = µ2 = . . . = µK

and the alternative hypothesis

H1 : ∃ k,m ∈ {1, 2, . . . , K} with k 6= m such that µk 6= µm.

Notice that the above equality is in L2, i.e., µk = µm means that ‖µm − µk‖ = 0

whereas µk 6= µm that ‖µm − µk‖ > 0.

3.3.2 Block Bootstrap-based testing

The aim is to generate a set of functional pseudo observations X∗
M = X∗i,t, i =

1, 2 . . . , K, t = 1, 2, . . . , ni, using either the MBB procedure or the TBB procedure

in such a way that H0 is satisfied. These bootstrap pseudo-time series can then be

used to estimate the distribution of some test statistic TM of interest which is applied

to test H0. Toward this, the distribution of T ∗M is used as an estimator of the distribu-

tion of TM , where T ∗M is the same statistical functional as TM but calculated using the

bootstrap functional pseudo-time series X∗
M.

To implement the MBB procedure for testing the null hypothesis of interest, assume,

without loss of generality, that the test statistic TM rejects the null hypothesis when

TM > dM,α, where, for α ∈ (0, 1), dM,α denotes the upper α-percentage point of the

distribution of TM under H0. The MBB-based testing procedure goes then as follows:

Step 1 : Calculate the sample mean functions in each population and the pooled mean
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function, i.e., calculate X i,ni
= (1/ni)

∑ni

t=1Xi,t, for i = 1, 2 . . . , K, and XM =

(1/M)
∑K

i=1

∑ni

t=1Xi,t, and obtain the residual functions in each population, i.e.,

calculate ε̂i,t = Xi,t −X i,ni
, for t = 1, 2, . . . , ni; i = 1, 2 . . . , K.

Step 2 : For i = 1, 2, . . . , K, let bi = bi(n) ∈ {1, 2, . . . , n − 1} be the block size

for the i-th functional time series and divide {ε̂i,t, t = 1, 2, . . . , ni} into Ni =

ni − bi + 1 overlapping blocks of length bi, say, Bi,1, Bi,2, . . . , Bi,Ni
. Calculate

the sample mean of the ξ-th observations of the blocks Bi,1, Bi,2, . . . , Bi,Ni
, i.e.,

εi,ξ = (1/Ni)
∑Ni

t=1 ε̂i,ξ+t−1, for ξ = 1, 2, . . . , bi.

Step 3 : For simplicity assume that ni = kibi and for i = 1, 2, . . . , K, let qi1, q
i
2, . . . , q

i
ki

be

i.i.d. integers selected from a discrete probability distribution which assigns the

probability 1/Ni to each element of the set {1, 2, . . . , Ni}. Generate bootstrap

functional pseudo observations X∗i,t, t = 1, 2, . . . , ni, i = 1, 2, . . . , K, as X∗i,t =

XM + ε∗i,t, where

ε∗i,ξ+(s−1)bi = ε̂i,qis+ξ−1 − εi,ξ, s = 1, 2, . . . , ki, ξ = 1, 2, . . . , bi. (3.3.2)

Step 4 : Let T ∗M be the same statistic as TM but calculated using the bootstrap func-

tional pseudo-time series X∗i,t, t = 1, 2, . . . , ni, i = 1, 2, . . . , K. Denote by D∗M,T

the distribution of T ∗M given XM. For α ∈ (0, 1), reject the null hypothesis H0 if

TM > d∗M,α, where d∗M,α denotes the upper α-percentage point of the distribution

of T ∗M , i.e., P(T ∗M > d∗M,α) = α.

Note that the distribution D∗M,T can be evaluated by Monte-Carlo.

To motivate the centering used in Step 3, denote, for i = 1, 2, . . . , K, by e∗i,t, t =

1, 2, . . . , ni, the pseudo observations generated by applying the MBB procedure, de-

scribed in Section 3.2.2, directly to the residuals time series ε̂i,t, t = 1, 2, . . . , ni. Note

that the e∗i,t’s differ from the ε∗i,t’s used in (3.3.2) by the fact that the later are obtained

after centering. The sample mean εi,ξ, i = 1, 2, . . . , K, ξ = 1, 2, . . . , bi, calculated in

Step 2, is the (conditional on XM) expected value of the pseudo observations e∗i,t, t =

1, 2, . . . , ni, where t = ξ (mod bi). Furthermore, for i = 1, 2, . . . , K, we generate the

ε∗i,t’s, t = 1, 2, . . . , ni, by subtracting εi,ξ from e∗i,sb+ξ, ξ = 1, 2, . . . , b, s = 1, 2, . . . ki. This

is done in order for the (conditional on XM) expected value of ε∗i,t to be zero. In this way,

the generated set of pseudo time series X∗i,t, t = 1, 2, . . . , ni, i = 1, 2, . . . , K, satisfy the
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null hypothesis H0. In particular, given XM = {Xi,t, i = 1, 2 . . . , K, t = 1, 2, . . . , ni},

we have

E∗(X∗i,ξ+(s−1)bi) = XM +
1

Ni

Ni∑
t=1

[ε̂i,t+ξ−1 − εi,ξ] = XM ,

for i = 1, 2 . . . , K, ξ = 1, 2, . . . , b and s = 1, 2, . . . , ki. That is, conditional on XM, the

mean function of each functional pseudo-time series X∗i,1, X
∗
i,2, . . . , X

∗
i,n, i = 1, 2 . . . , K,

is identical in each population and equal to the pooled sample mean function XM .

An algorithm based on the TBB procedure for testing the same pair of hypotheses

can also be implemented by modifying appropriate the MBB-based testing algorithm.

In particular, we replace Step 2 and Step 3 of this algorithm by the following steps:

Step 2 : For i = 1, 2, . . . , K, let bi = bi(n) ∈ {1, 2, . . . , n − 1} be the block size for the

i-th functional time series and Ni = ni − bi + 1. Let also {ε̂i,t, t = 1, 2, . . . , ni}

be the centered values of {ε̂i,t, t = 1, 2, . . . , ni}, i.e., ε̂i,t = ε̂i,t − εi, where εi =

(1/ni)
∑ni

t=1 ε̂i,t. Also, let wni
(·), ni = 1, 2, . . . , be a sequence of data-tapering

windows satisfying Assumption 3. Now, for t = 1, 2, . . . , Ni, let

B̃i,t =

{
wbi(1)

b
1/2
i

‖wbi‖2
ε̂i,t, wbi(2)

b
1/2
i

‖wbi‖2
ε̂i,t+1, . . . , wbi(bi)

b
1/2
i

‖wbi‖2
ε̂i,t+bi−1

}
,

i = 1, 2, . . . , K, where ‖wbi‖22 =
∑bi

i=1w
2
bi

(i). Here, B̃i,t denotes the tapered block

of ε̂i,t’s of length bi starting from ε̂i,t. Furthermore, for i = 1, 2, . . . , K, calculate

the sample mean of the ξth observations of the blocks B̃i,1, B̃i,2, . . . , B̃i,Ni
, i.e.,

ε̄i,ξ =
1

Ni

Ni∑
t=1

wbi(ξ)
b
1/2
i

‖wbi‖2
ε̂i,ξ+t−1, ξ = 1, 2, . . . , bi.

Step 3 : For i = 1, 2, . . . , K, let qi1, q
i
2, . . . , q

i
ki

be i.i.d. integers selected from a dis-

crete probability distribution which assigns the probability 1/Ni to each t ∈

{1, 2, . . . , Ni}. For i = 1, 2, . . . , K, t = 1, 2, . . . , ni generate bootstrap functional

pseudo-observations X+
i,t, according to X+

i,t = XM + ε+i,t, where

ε+i,ξ+(s−1)bi = wb(ξ)
b
1/2
i

‖wbi‖2
ε̂i,kis+ξ−1 − ε̄i,ξ, s = 1, 2, . . . , ki, ξ = 1, 2, . . . , bi.

As in the case of the MBB-based testing, the generation of ε+i,t, t = 1, 2, . . . , ni, i =

1, 2, . . . , K, ensures that the functional pseudo-time series X+
i,t, t = 1, 2, . . . , ni, i =
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1, 2, . . . , K, satisfy H0, that is, given XM = {Xi,t, i = 1, 2 . . . , K, t = 1, 2, . . . , ni}, we

have that E+(X+
i,t) = XM .

3.3.3 Bootstrap Validity

Notice that, since the proposed block bootstrap-based methodologies are not designed

having any particular test statistic in mind, they can be potentially applied to a wide

range of test statistics. To prove validity of the proposed block bootstrap-based testing

procedures, however, a particular test statistic has to be considered. For instance,

one such test statistic is the fully functional test statistic proposed by Horváth et

al. (2013) for the case of K = 2 populations. Let Xi,t, i = 1, 2, t = 1, 2, . . . , ni,

be two independent samples of curves, satisfying model (3.3.1). For i ∈ {1, 2} and for

(u, v) ∈ [0, 1]2, denote by ci(u, v) the kernels of the long run covariance operators 2πF (i)
0 ,

given by ci(u, v) = E[εi,0(u)εi,0(v)] +
∑

j≥1 E[εi,0(u)εi,j(v)] +
∑

j≥1 E[εi,0(v)εi,j(u)]. The

test statistic considered in Horváth et al. (2013), evaluates then the L2-distance of the

two sample mean functions X i,ni
= n−1i

∑ni

t=1Xi,t, i = 1, 2, and it is given by

UM =
n1n2

M

∫
(X1,n1(τ)−X2,n2(τ))2 dτ,

whereM = n1+n2. Horváth et al. (2013) proved that if min{n1, n2} → ∞ and n1/M →

θ ∈ (0, 1) then, under H0, UM converges weakly to
∫

Γ2(τ) dτ , where {Γ(τ) : τ ∈ I} is

a Gaussian process satisfying E(Γ(τ)) = 0 and E(Γ(u)Γ(v)) = (1−θ)c1(u, v)+θc2(u, v).

Notice that calculation of critical values of the above test requires estimation of the

distribution of
∫

Γ2(τ) dτ which is a difficult task.

Although the test statistic UM is quite appealing because it is fully functional, its

limiting distribution is difficult to implement which demonstrates the importance of the

bootstrap. To investigate the consistency properties of the bootstrap, we first establish

a general result which allows for the consideration of different test statistics that can

be expressed as functionals of the basic deviation process

{√n1n2

M

(
X1,n1(τ)−X2,n2(τ)

)
, τ ∈ I

}
. (3.3.3)

Theorem 3.3.1. Let Assumption 2 be satisfied. Assume that min{n1, n2} → ∞,

n1/M → θ ∈ (0, 1) and that, for i ∈ {1, 2}, the block size bi = bi(n) fulfills

b−1i + bin
−1/2
i = o(1), as ni →∞. Then, conditional on XM, as ni →∞,
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(i)

√
n1n2

M

(
X
∗
1,n1
−X∗2,n2

)
⇒ Γ, in probability,

and, if additionally Assumption 3 is satisfied,

(ii)

√
n1n2

M

(
X

+

1,n1
−X+

2,n2

)
⇒ Γ, in probability.

Here, ⇒ denotes weak convergence in L2.

By Theorem 3.3.1 and the continuous mapping theorem, the suggested block bootstrap-

based testing procedures can be successfully applied to consistently estimate the dis-

tribution of any test statistic of interest which is a continuous function of the basic

deviation process (3.3.3). We elaborate on some examples. Below, PH0(Z ≤ ·) denotes

the distribution function of the random variable Z when H0 is true.

Consider for instance the test statistic UM . Let

U∗M =
n1n2

M

∫
(X
∗
1,n1

(τ)−X∗2,n2
(τ))2 dτ

and

U+
M =

n1n2

M

∫
(X

+

1,n1
(τ)−X+

2,n2
(τ))2 dτ,

where X
∗
i,ni

= (1/ni)
∑ni

t=1X
∗
i,t and X

+

i,ni
=

1

ni

∑ni

t=1X
+
i,t, i = 1, 2. We then have the

following result.

Corollary 3.3.1. Let the assumptions of Theorem 3.3.1 be satisfied. Then,

(i) supx∈R
∣∣P (U∗M ≤ x | XM)− PH0(UM ≤ x)

∣∣→ 0, in probability, and

(ii) supx∈R
∣∣P (U+

M ≤ x | XM)− PH0(UM ≤ x)
∣∣→ 0, in probability.

Remark 3.3.1. If the following type of one-sided tests H0 : µ1 = µ2 versus H1 : µ1 >

µ2 or H ′1 : µ1 < µ2 is of interest (where µ1 = µ2 (resp µ1 > µ2 or µ1 < µ2) means

µ1(τ) = µ2(τ) (resp µ1(τ) > µ2(τ) or µ1(τ) < µ2(τ)) for all τ ∈ I), then the following

test statistic

ŨM =

√
n1n2

M

∫
(X1,n1(τ)−X2,n2(τ)) dτ

can be used. In this case, H0 is rejected if ŨM > d̃M,α or ŨM < d̃M,α, respectively, with

d̃M,α the upper α-percentage point of the distribution of ŨM under H0. Consistent es-

timators of this distribution can be also obtained using the block bootstrap procedures

discussed. In particular, the following results can be established:
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(i) supx∈R
∣∣P (Ũ∗M ≤ x | XM)− PH0(ŨM ≤ x)

∣∣→ 0, in probability, and

(ii) supx∈R
∣∣P (Ũ+

M ≤ x | XM)− PH0(ŨM ≤ x)
∣∣→ 0, in probability,

where

Ũ∗M =

√
n1n2

M

∫
(X
∗
1,n1

(τ)−X∗2,n2
(τ)) dτ

and

Ũ+
M =

√
n1n2

M

∫
(X

+

1,n1
(τ)−X+

2,n2
(τ)) dτ.

To elaborate, notice that using Theorem 1 of Horváth et al. (2013), we get, as n1, n2 →

∞, that (
1
√
n1

n1∑
j=1

(X1,j − µ1),
1
√
n2

n2∑
j=1

(X2,j − µ2)

)
⇒ (Γ1,Γ2),

where Γ1 and Γ2 are two independent Gaussian random elements in L2 with mean zero

and covariance operators C1 and C2 with kernels c1(·, ·) and c2(·, ·), respectively. Under

H0, and for µ̃ = µ1 = µ2 the common mean of the two populations, we have

√
n1n2

M
(X1,n1(τ)−X2,n2(τ)) =

√
n2

M

1
√
n1

n1∑
t=1

(X1,t − µ̃)−
√
n1

M

1
√
n2

n2∑
t=1

(X2,t − µ̃),

which implies, for n1, n2 → ∞ and n1/M → θ, that ŨM
d→
∫

Γ(τ) dτ, where Γ(τ) =
√

1− θΓ1(τ) −
√
θΓ2(τ), τ ∈ I. Now, working along the same lines as in the proof of

Theorem 3.3.1, it can be easily shown that Ũ∗M and Ũ+
M converges weakly to the same

limit
∫

Γ(τ) dτ.

Another interesting class of test statistics for which Theorem 3.3.1 allows for a

successful application of the suggested block bootstrap-based testing procedures, is the

class of so-called projection-based tests. To elaborate, let {ϕ1, ϕ2, . . . , ϕp} be a set of

p orthonormal functions in L2. A common choice is to let ϕj be the orthonormalized

eigenfunctions corresponding to the p largest eigenvalues of the covariance operator of

the stochastic process {Γ(τ) =
√

1− θΓ1(τ)−
√
θΓ2(τ), τ ∈ I}, which are assumed to

be distinct and strictly positive. A test statistic Sp,M can then be considered which is

defined as

Sp,M =
n1n2

M

p∑
k=1

〈X1,n1 −X2,n2 , ϕ̂k〉2,

and where ϕ̂k are estimators of ϕk; see for instance Horváth et al. (2013) where

studentized versions of 〈X1,n1 −X2,n2 , ϕ̂k〉 have also been used.
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The following result establishes consistency of the suggested block bootstrap meth-

ods also for this class of test statistics.

Corollary 3.3.2. Let the assumptions of Theorem 3.3.1 be satisfied and assume that

the p largest eigenvalues of the covariance operator of the stochastic process {Γ(τ) =
√

1− θΓ1(τ)−
√
θΓ2(τ), τ ∈ I} are distinct and positive. Let ϕk, k = 1, 2, . . . , p, be the

orthonormalized eigenfunctions corresponding to these eigenvalues and let ϕ̃k and ϕ̂k be

estimators of ϕk satisfying max1≤k≤p ‖ϕ̃k− c̃kϕk‖
P→ 0 and max1≤k≤p ‖ϕ̂k− ĉkϕk‖

P→ 0,

where c̃k = sign
(
〈ϕ̃k, ϕk〉) and ĉk = sign

(
〈ϕ̂k, ϕk〉). Then,

(i) supx∈R
∣∣P (S∗p,M ≤ x | XM)− PH0(Sp,M ≤ x)

∣∣→ 0, in probability, and

(ii) supx∈R
∣∣P (S+

p,M ≤ x | XM)− PH0(Sp,M ≤ x)
∣∣→ 0, in probability,

where S∗p,M = (n1n2/M)
∑p

k=1〈X
∗
1,n1
−X∗2,n2

, ϕ̃k〉2 and S+
p,M = (n1n2/M)

∑p
k=1〈X

+

1,n1
−

X
+

2,n2
, ϕ̃k〉2.

Remark 3.3.2. In Corollary 3.3.2, we allow for ϕ̃k to be a different estimator of ϕk

than ϕ̂k, where the later is used in the test statistic Sp,M . For instance, ϕ̃k could be

the same estimator as ϕ̂k but based on the the bootstrap pseudo observations X∗i,t,

i = 1, 2, . . . , k and t = 1, 2, . . . , ni, respectively, X+
i,t, i = 1, 2, . . . , k and t = 1, 2, . . . , ni.

This will allow for the bootstrap statistics S∗p,M , respectively S+
p,M , to also imitate the

effect of the estimation error of the unknown eigenfunctions ϕk on the distribution

ofSp,M . Clearly, a simple and computationally easier alternative will be to set ϕ̃k = ϕ̂k.

Remark 3.3.3. If the alternative hypothesis H1 is true, then under the same assump-

tions as in Theorem 4 of Horváth et al. (2013), we get that UM
P→ ∞. Furthermore,

under the same assumptions as in Theorem 6 of Horváth et al. (2013), we get that

S∗p,M
P→∞ and S+

p,M

P→∞ provided that 〈µ1 − µ2, ϕk〉 6= 0 for at least one 1 ≤ k ≤ p.

Corollary 3.3.1 and Corollary 3.3.2 (together with Slutsky’s theorem) imply then, re-

spectively, the consistency of the test UM using the bootstrap critical values obtained

from the distributions of U∗M and U+
M , and of the test Sp,M using the bootstrap critical

values obtained from the distributions of S∗p,M and S+
pM

.
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3.4 Numerical Examples

We generated functional time series stemming from a first order functional autoregres-

sive model (FAR(1))

εt(u) =

∫
ψ(u, v)εt−1(v) dv +Bt(u), u ∈ [0, 1], (3.4.1)

(see also Horváth et al. (2013)), and from a first order functional moving average

model (FMA(1)),

εt(u) =

∫
ψ(u, v)Bt−1(v) dv +Bt(u), u ∈ [0, 1]. (3.4.2)

For both models, the kernel function ψ(·, ·) is defined by

ψ(u, v) =
e−(u

2+v2)/2

4
∫

e−t2dt
, (u, v) ∈ [0, 1]2, (3.4.3)

and the Bt’s are i.i.d. Brownian bridges. All curves were approximated using T = 21

equidistant points τ1, τ2, . . . , τ21 in the unit interval I and transformed into functional

objects using the Fourier basis with 21 basis functions.

Implementation of the MBB and TBB procedures require the selection of the block

size b. As it has been shown in Theorem 3.2.1 and Theorem 3.2.2, nE∗[(X∗n−E∗(X
∗
n))⊗

(X
∗
n − E∗(X∗n))] is a consistent estimator of 2πF0, with kernel

cN(u, v) =
1

N

n∑
i=1

Xi(u)Xi(v)

+
b−1∑
h=1

(
1− h

b

)
1

N

n−h∑
i=1

[
Xi(u)Xi+h(v) +Xi+h(u)Xi(v)

]
+ op(1),

in the MBB case, and

c̃N(u, v) =
1

N

n∑
i=1

Yi(u)Yi(v) +
b−1∑
h=1

Wh

‖wb‖22
1

N

n−h∑
i=1

[Yi(u)Yi+h(v) + Yi+h(u)Yi(v)] + op(1),

in the TBB case, with Wh =
∑b−h

i=1 wb(i)wb(i+ h), h = 0, 1, . . . , b− 1. Now, cN and c̃N
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can be considered as lag-window estimators of the kernel

c(u, v) =
∞∑

i=−∞

E[X0(u)Xi(v)],

using the Bartlett window with “truncation lag” b in the MBB case and using the same

“truncation lag” with the window function W =Wh/‖wb‖, in the TBB case. The above

observations suggest that the problem of choosing the block size b can be considered as a

problem of choosing the truncation lag of a lag window estimator of the function c(u, v).

Choice of the truncation lag in the functional context has been recently discussed in

Horváth et al. (2016) and Rice and Shang (2016). Although different procedures to

select the “truncation lag” have been proposed in the aforementioned papers, we found

the simple rule of setting bi =
⌈
n
1/3
i

⌉
, where dxe is the least integer greater than or

equal to x, quite effective in our numerical examples. In the following, we denote by

b∗ this choice of b, which is used together with some other values of bi.

For the TBB procedure, the following window has been used

w(τ) =


τ/0.43 if τ ∈ [0, 0.43]

1 if τ ∈ [0.43, 1− 0.43]

(1− τ)/0.43 if τ ∈ [1− 0.43, 1].

A simulation study has been first conducted in order to investigate the finite sample

performance of the MBB and TBB procedures. For this, the problem of estimating

the standard deviation function of the normalized sample mean
√
nXn(τ), the limit

of which is σ(τ) =
√
c(τ, τ) for different values of τ ∈ [0, 1] has been considered.In

the following, we denote by σ̂(τ) this estimator. The results obtained using both

block bootstrap procedures have also been compared with those using the stationary

bootstrap (SB). Realizations of length n = 100 and n = 500 from the functional time

series models (3.4.1) and (3.4.2) have been used. The results obtained are presented

and discussed in Section 3.4.1. Furthermore, Table 3.2 presents results comparing the

performance of projections-based tests when asymptotic and bootstrap approximations

are used to obtain the critical values of the tests.
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3.4.1 Estimating the standard deviation of the mean func-

tion estimator

Realizations of length n = 100 and n = 500 from the functional time series models 3.3.1

with errors following either the FAR(1) model (3.4.1) or the FMA(1) model (3.4.2) have

been generated and the standard deviation of the normalized sample mean
√
nXn(τ) =

(1/
√
n)
∑n

i=1Xi(τ) has been estimated, over a set of τ ∈ I, using the MBB, the TBB

and the SB procedures. The exact standard deviation has been estimated using 100, 000

replications of the models considered. R = 1000 replications of each data generating

process have been used where, for each replication, B = 1000 bootstrap pseudo-time

series have been generated in order to evaluate the bootstrap estimators.

Since the results of both block bootstrap methods are, for small sample sizes, sen-

sitive with respect to the choice of the block size b, we first present some simulations

results which demonstrate the capabilities of these block bootstrap methods for func-

tional time series. For this, we present, in some sense, the less biased results that can

been obtained using the three different block bootstrap methods. That is, we present

the results obtained when the block size b used has been selected as the one which

minimizes the absolute averaged relative bias T−1
∑T

i=1

∣∣σ∗j,b(τi)/σ̂(τi)− 1
∣∣ for j = 1, 2.

Here, σ∗1,b(τ) and σ∗2,b(τ) denote the MBB and TBB estimators of σ(τ), respectively,

using the block size b. The same criterion has been used to choose the “best” proba-

bility p of the geometric distribution involved in the SB procedure i.e., the one which

leads to the smallest overall in the sense described above. For the FAR(1) model and

for n = 100, the block sizes selected using the described procedure were b = 5, b = 8

and p = 0.25 for the MBB, the TBB and the SB procedure, respectively. For n = 500,

the corresponding values were b = 10, b = 18 and p = 0.1. For the FMA(1) model, for

n = 100 and n = 500, we obtained the parameters: b = 4 and b = 14 for the MBB,

b = 6 and b = 10 for the TBB, and p = 0.5 and p = 0.125 for the SB, respectively.

The block bootstrap estimates of σ(τ) obtained using these block sizes for the FAR(1)

model are presented in Figure 3.1 and for the FMA(1) model in Figure 3.2.

As it is seen from these figures, the TBB estimates perform best with the MBB

estimates being better than the SB estimates. For both sample sizes considered, the

block bootstrap estimators perform better in the case of the FMA(1) model than in the

case of the FAR(1) model while for the FMA(1) model, the TBB estimates are quite

good even for n = 100 observations. The results using all three bootstrap methods are
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Figure 3.1: Comparison of different bootstrap estimates of the standard deviation σ(τi)
of the normalized sample mean

√
nXn(τj) for FAR(1) time series and for a set of values

τj ∈ [0, 1]. The first figure refers to n = 100 and the second to n = 500. The estimated
exact standard deviation is denoted by • while the mean estimates of the standard
deviation of the TBB are denoted by “�”, of the MBB by “4”, and of the SB by “+”.
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Figure 3.2: Comparison of different bootstrap estimates of the standard deviation σ(τi)
of the normalized sample mean

√
nXn(τj) for FMA(1) time series and for a set of values

τj ∈ [0, 1]. The first figure refers to n = 100 and the second to n = 500. The estimated
exact standard deviation is denoted by • while the mean estimates of the standard
deviation of the TBB are denoted by “�”, of the MBB by “4”, and of the SB by “+”.
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Figure 3.3: TBB estimates of the standard deviation σ(τi) of the normalized sample
mean

√
nXn(τj) for the FAR(1) time series and for a set of values τj ∈ [0, 1] using the

“best” block size and the block size b∗ = dn1/3e. The first figure refers to n = 100 and
the second to n = 500. The estimated exact standard deviation is denoted by • while
the TBB estimates using the “best” block size are denoted by “◦” and using the block
size b∗ are denoted by “+”.

better for the larger sample size of n = 500 curves.

To demonstrate the performance of the suggested simpler rule b∗ =
⌈
n1/3

⌉
to choose

the block size b, the TBB estimates using this block size are compared with the esti-

mates obtained using the block size leading to the less biased estimates, as described

above. Comparisons for the FAR(1) and for the FMA(1) model are shown in Figure 3.3

and Figure 3.4 respectively.

As these figures demonstrate, for both sample sizes and for both models considered,

the TBB estimates using the block size b∗ perform well, being quite close to the TBB

estimates using the “best” block size in the sense described above.

3.4.2 Testing equality of mean functions

We investigate the size and power performance of the tests considered in Section 3.3.3.

As can be seen in Section 3.4.1, the TBB estimators perform best in our simulations.

For this reason, we concentrate in this section, on tests based on TBB critical values

only. Two sample sizes n1 = n2 = 100 and n1 = n2 = 200 as well as a range of

block sizes b = b1 = b2, are considered. The tests have been applied using three

nominal levels, i.e., α = 0.01, α = 0.05 and α = 0.1. All bootstrap calculations

are based on B = 1000 bootstrap replicates and R = 1000 model repetitions. To

examine the empirical size and power behavior of the TBB-based test, the curves in
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Figure 3.4: TBB estimates of the standard deviation σ(τi) of the normalized sample
mean

√
nXn(τj) for the FMA(1) time series and for a set of values τj ∈ [0, 1] using the

“best” block size and the block size b∗ = dn1/3e. The first figure refers to n = 100 and
the second to n = 500. The estimated exact standard deviation is denoted by • while
the TBB estimates using the “best” block size are denoted by “◦” and using the block
size b∗ by “+”.

the two samples were generated according to model (3.3.1) and with the errors εi,t

following model (3.4.1), for i ∈ {1, 2}, with mean functions given by µ1(t) = 0 and

µ2(t) = γt(1 − t) for the first and for the second population, respectively; see also

Horváth et al. (2013). The results obtained are shown in Table 3.1 for a range of

values of γ. Notice that γ = 0 corresponds to the null hypothesis.

As it is evident from this table, the TBB-based test statistic U+
M has a good size

behavior even in the case of n1 = n2 = 100 observations while for n1 = n2 = 200

observations the sizes of the TBB-based test are quite close to the nominal sizes for a

range of block length values. It seems that the choice of the block size has a moderate

effect on the power of the test. Furthermore, the power of the TBB-based test increases

as the deviations from the null become larger (i.e., larger values of γ) and/or as the

sample size increases. Finally, using the suggested simple method to choose the block

size b, the corresponding test has good size and power behavior in all cases.

3.4.3 TBB-based Test versus Projection-based Tests

We compare the performance of the TBB-based test with the projection-based tests

U
(1)
n1,n2 and U

(2)
n1,n2 proposed in Horváth et al. (2013) (see (3.11) and (3.12) in their

paper). We adopted their simulation set up and generated two samples according

to the functional time series model 3.3.1 with the errors εi,t following the FAR(1)
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n1 = n2 = 100 n1 = n2 = 200
γ b α = 0.01 α = 0.05 α = 0.1 b α = 0.01 α = 0.05 α = 0.1
0 4 0.026 0.077 0.142 6 0.013 0.057 0.113

6 0.015 0.061 0.112 8 0.010 0.052 0.115
8 0.015 0.071 0.128 10 0.013 0.066 0.106
b∗ 0.027 0.074 0.143 b∗ 0.013 0.057 0.113

0.2 4 0.048 0.135 0.206 6 0.058 0.160 0.237
6 0.045 0.126 0.206 8 0.065 0.158 0.253
8 0.034 0.118 0.185 10 0.070 0.162 0.247
b∗ 0.042 0.116 0.178 b∗ 0.058 0.160 0.237

0.5 4 0.225 0.418 0.544 6 0.408 0.615 0.715
6 0.200 0.374 0.499 8 0.411 0.632 0.759
8 0.184 0.356 0.490 10 0.425 0.645 0.749
b∗ 0.218 0.424 0.532 b∗ 0.408 0.615 0.715

0.8 4 0.584 0.772 0.853 6 0.864 0.966 0.980
6 0.543 0.763 0.841 8 0.865 0.948 0.975
8 0.529 0.739 0.831 10 0.843 0.948 0.976
b∗ 0.557 0.752 0.825 b∗ 0.864 0.966 0.980

1 4 0.779 0.898 0.945 6 0.972 0.995 0.998
6 0.746 0.891 0.941 8 0.975 0.994 0.999
8 0.755 0.898 0.943 10 0.969 0.994 0.998
b∗ 0.769 0.901 0.945 b∗ 0.972 0.995 0.998

Table 3.1: Empirical size and power of the test based on TBB critical values and
FAR(1) errors.

model 3.4.1 with kernel 3.4.3, for i ∈ {1, 2}, with mean functions given by µ1(t) = 0

and µ2(t) = γt(1 − t) for the first and for the second population, respectively. All

curves were approximated using T = 49 equidistant points τ1, τ2, . . . , τ49 in the unit

interval I and transformed into functional objects using the Fourier basis with 49 basis

functions.

We considered sample sizes n1 = 100 and n2 = 200 and block sizes b = b1 =

6 and 8 (for n1 = 100) and b = b2 = 6 and 10 (for n2 = 200). The tests have

been applied using three nominal levels, i.e., α = 0.01, α = 0.05 and α = 0.1. All

bootstrap calculations were based on B = 1000 bootstrap replicates and R = 1000

model repetitions. The results obtained are shown in Table 3.2 for a range of values

of γ. Notice that γ = 0 corresponds to the null hypothesis. The empirical rejection

frequencies of the projection-based tests U
(1)
n1,n2 and U

(2)
n1,n2 are those reported in Table

2 of Horváth et al. (2013).
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α = 0.01 α = 0.05 α = 0.10

γ U
(1)
n1,n2 U

(2)
n1,n2 TBB U

(1)
n1,n2 U

(2)
n1,n2 TBB U

(1)
n1,n2 U

(2)
n1,n2 TBB

0.0 0.018 0.019 0.017 0.066 0.072 0.070 0.122 0.135 0.128
0.016 0.070 0.122

0.2 0.051 0.033 0.058 0.136 0.116 0.149 0.216 0.187 0.235
0.046 0.142 0.236

0.4 0.194 0.123 0.150 0.359 0.265 0.322 0.467 0.363 0.431
0.178 0.364 0.476

0.6 0.421 0.296 0.405 0.622 0.518 0.633 0.731 0.625 0.737
0.425 0.649 0.738

0.8 0.686 0.538 0.684 0.857 0.746 0.847 0.915 0.831 0.920
0.674 0.849 0.910

1.0 0.874 0.787 0.870 0.959 0.908 0.952 0.981 0.945 0.977
0.881 0.959 0.987

1.2 0.976 0.937 0.964 0.995 0.981 0.990 0.998 0.992 0.995
0.973 0.994 0.997

Table 3.2: Empirical rejection frequencies of the projection-based tests U
(1)
n1,n2 and U

(2)
n1,n2

are the results reported in Table 2 of Horváth et al. (2013). For the TBB-base test,
the first line corresponds to the choices b = 6 and b = 8 and the second line to the
choices b = 6 and b = 10 of the block size for sample sizes n1 = 100 and n2 = 200,
respectively.

As can be seen from Table 3.2, the TBB-based test performs well retaining the

nominal sizes and having a power which increases as the deviation from H0 increases,

as described by the parameter γ. Compared to the projection-based test U
(2)
n1,n2 , the

TBB-based test performs better while its empirical size and power is similar to that of

the projection-based test U
(1)
n1,n2 . Notice, however, that the TBB-based test is consistent

against any alternative for which ‖µ1 − µ2‖ > 0 which is not the case with the U
(1)
n1,n2

(and U
(2)
n1,n2) test if such alternatives are orthogonal to the projection space.

3.4.4 A real-life data example

We apply the TBB-based testing procedure to a data set consisting of the summer tem-

perature measurements recorded in Nicosia, Cyprus, for the years 2005 and 2009. Our

aim is to test whether there is a significant increase in the mean summer temperatures

in 2009. The data consists of two samples of curves {Xi,t(τ), i = 1, 2, t = 1, 2, . . . , 92},

where, Xi,t represents the temperature of day t of the summer 2005 for i = 1 and of

the summer 2009 for i = 2. More precisely, Xi,1 represents the temperature of the 1st

of June and Xi,92 the temperature of the 31st of August. The temperature recordings

have been taken in 15 minutes intervals, i.e., there are 96 temperature measurements
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Figure 3.5: Temperature curves: summer 2005 (left panel) and summer 2009 (right
panel).

for each day. These measurements have been transformed into functional objects using

the Fourier basis with 21 basis functions. All curves are rescaled in order to be defined

in the interval I. Figure 3.5 shows the temperatures curves of the summer of 2005 and

of 2009.

Since we are interested in checking whether there is an increase in the summer

temperature in the year 2009 compared to 2005, the hypothesis of interest is H0 :

µ1(τ) = µ2(τ) versus H1 : µ1(τ) < µ2(τ), for all τ ∈ I. The p-values of the TBB-based

test using the test statistic ŨM are: 0.001 (for b = 4), 0.003 (for b = 6), 0.004 (for b = 8)

and 0.002 (for b = b∗). These p-values have been obtained using B = 1000 bootstrap

replicates. As it is evident from these results, the p-values of the test statistic ŨM are

quite small leading to the rejection of H0 for all commonly used α-levels.

3.5 Appendix : Proofs

To prove Theorem 3.2.1 and Theorem 3.2.2, we first establish Lemma 3.5.1 and Lemma

3.5.2. Note also that, throughout the proofs, we use the fact that, by stationarity,

E‖Xi,m −Xi‖ = E‖X0,m −X0‖ and E‖Xi,m‖ = E‖Xi‖ = E‖X0‖ for all i ∈ Z.

Lemma 3.5.1. Let gb be a non-negative, continuous and bounded function defined on

R, satisfying gb(0) = 1, gb(u) = gb(−u), gb(u) ≤ 1 for all u, gb(u) = 0, if |u| > c, for

some c > 0. Suppose that (Xt, t ∈ Z) satisfies Assumption 2 and b = b(n) is a sequence

of integers such that b−1 + bn−1/2 = o(1) as n→∞. Assume further that, for any fixed
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u, gb(u)→ 1 as n→∞. Then, as n→∞,

b−1∑
h=−b+1

gb(h)γ̂h
P→

∞∑
i=−∞

E(〈X0, Xi〉),

where γ̂h = 1
n

∑n−|h|
i=1 〈Xi, Xi+|h|〉 for −b+ 1 ≤ h ≤ b− 1.

Proof. First, note by the independence of X0 and Xi,i, that
∑∞

i=1 |E〈X0, Xi〉| =∑∞
i=1 |E〈X0, Xi−Xi,i〉| ≤

∑∞
i=1(E‖X0‖2)1/2(E‖X0−X0,i‖2)1/2, which implies by (3.2.2)

that
∑∞

i=−∞ |E〈X0, Xi〉| <∞. Since n−1
∑n

i=1〈Xi, Xi〉 −E〈X0, X0〉 = op(1) as n→∞,

it suffices to show that, as n→∞,

b−1∑
h=1

gb(h)
1

n

n−h∑
i=1

〈Xi, Xi+h〉 −
∑
i≥1

E〈X0, Xi〉 = oP (1). (3.5.1)

Let

c+∞ =
∑
i≥1

E[〈X0, Xi〉], c+m =
∑
i≥1

E[〈X0,m, Xi,m〉] and γ̂
(m)
h =

1

n

n−h∑
i=1

〈Xi,m, Xi+h,m〉.

Since ∣∣∣∣∣
b−1∑
h=1

gb(h)γ̂h − c+∞

∣∣∣∣∣ ≤ |c+m − c+∞|+
∣∣∣∣∣
b−1∑
h=1

gb(h)γ̂
(m)
h − c+m

∣∣∣∣∣
+

∣∣∣∣∣
b−1∑
h=1

gb(h)γ̂h −
b−1∑
h=1

gb(h)γ̂
(m)
h

∣∣∣∣∣ , (3.5.2)

assertion (3.5.1) is proved by showing that there exists m0 ∈ N such that all three

terms on the right hand side of (3.5.2) can be made arbitrarily small in probability as

n→∞ for all m ≥ m0.

For the first term, we use the bound∣∣∣∣∣∑
i≥1

E [〈X0,m, Xi,m〉 − 〈X0, Xi〉]

∣∣∣∣∣ ≤
∣∣∣∣∣
m∑
i=1

E [〈X0,m, Xi,m〉 − 〈X0, Xi〉]

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

i=m+1

E [〈X0,m, Xi,m〉 − 〈X0, Xi〉]

∣∣∣∣∣ , (3.5.3)

and handle the first term on the right hand side of (3.5.3) using 〈X0,m, Xi,m〉 −

〈X0, Xi〉 = 〈X0,m −X0, Xi,m〉+ 〈X0, Xi,m −Xi〉. Cauchy-Schwarz’s inequality and As-
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sumption 2 yields that for every ε1 > 0, ∃m1 ∈ N such that∣∣∣∣∣
m∑
i=1

E [〈X0,m, Xi,m〉 − 〈X0, Xi〉]

∣∣∣∣∣ ≤ 2
m∑
i=1

(
E‖X0,m −X0‖2E‖X0‖2

)1/2
≤ 2(E‖X0‖2)1/2

(
m
[
E‖X0,m −X0‖2

]1/2)
< ε1

for all m ≥ m1. For the second term of the right hand side of (3.5.3), we get, using

〈X0, Xi〉 = 〈Xi,i, X0〉 + 〈X0, Xi −Xi,i〉, the fact that X0 and Xi,i as well as X0,m and

Xi,m are independent for i ≥ m + 1 and Lemma 2.1 of Horváth & Kokoszka (2012),

that, for any ε2 > 0, there exists m2 ∈ N such that∣∣∣∣∣
∞∑

i=m+1

E [〈X0,m, Xi,m〉 − 〈X0, Xi〉]

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

i=m+1

E [〈Xi,i, X0〉]

∣∣∣∣∣+

∣∣∣∣∣
∞∑

i=m+1

E [〈X0, Xi −Xi,i〉]

∣∣∣∣∣
≤

∞∑
i=m+1

(
E‖X0‖2E‖Xi −Xi,i‖2

)1/2
=
(
E‖X0‖2

)1/2 ∞∑
i=m+1

(
E‖X0 −X0,i‖2

)1/2
< ε2

for all m ≥ m2 because of (3.2.2). For the second term of (3.5.2), first note that, for ev-

ery fixed m ≥ 1 and for any fixed h, we have that
∣∣∣γ̂(m)
h − E[〈X0,m, Xh,m〉]

∣∣∣ = op(1). Fur-

thermore, since {Xn,m, n ∈ Z} is anm-dependent sequence, c+m =
∑m

i=1 E[〈X0,m, Xi,m〉].

Hence, the second term of the right hand side of (3.5.2) is op(1), if we show that∣∣∣∑b−1
h=m+1 gb(h)γ̂

(m)
h

∣∣∣ = op(1). We have

E

[
b−1∑

h=m+1

gb(h)γ̂
(m)
h

]2

= n−2
b−1∑

h1=m+1

b−1∑
h2=m+1

n−h1∑
i1=1

n−h2∑
i2=1

gb(h1)gb(h2)E(〈Xi1,m, Xi1+h1,m〉〈Xi2,m, Xi2+h2,m〉).

Since the sequence {Xi,m, i ∈ Z} is m-dependent, Xi,m and Xi+h,m are independent

for h ≥ m + 1, that is, using Lemma 2.1 of Horváth & Kokoszka (2012) we have

that E〈Xi,m, Xi+h,m〉 = 0 for the same h. Hence, the number of non-vanishing terms

E[〈Xi1,m, Xi1+h1,m〉〈Xi2,m, Xi2+h2,m〉] in the last equation above is of order O(nb) and,

consequently, E
[∑b−1

h=m+1 gb(h)γ̂
(m)
h

]2
= O(b/n) = o(1) from which the desired conver-
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gence follows by Markov’s inequality. For the third term in (3.5.2), we show that, for

m ≥ m0,

lim sup
n→∞

P

(∣∣∣∣∣
b−1∑
h=1

gb(h)
(
γ̂h − γ̂(m)

h

)∣∣∣∣∣ > δ

)
= 0, (3.5.4)

for all δ > 0. From this, it suffices to show that, for m ≥ m0,

E

∣∣∣∣∣
b−1∑
h=1

gb(h)(γ̂h − γ̂(m)
h )

∣∣∣∣∣ = o(1). (3.5.5)

Now, by the definitions of γ̂h and γ̂
(m)
h , we have

E

∣∣∣∣∣
b−1∑
h=1

gb(h)
(
γ̂h − γ̂(m)

h

)∣∣∣∣∣
≤ E

∣∣∣∣∣ 1n
m∑
h=1

gb(h)
n−h∑
i=1

(〈Xi, Xi+h〉 − 〈Xi,m, Xi+h,m〉)

∣∣∣∣∣
+ E

∣∣∣∣∣ 1n
b−1∑

h=m+1

gb(h)
n−h∑
i=1

(〈Xi, Xi+h〉 − 〈Xi,m, Xi+h,m〉)

∣∣∣∣∣ . (3.5.6)

For the first term of the right hand side of the above inequality, we use 〈Xi, Xi+h〉 −

〈Xi,m, Xi+h,m〉 = 〈Xi −Xi,m, Xi+h〉+ 〈Xi+h −Xi+h,m, Xi,m〉, and we get, by to get, by

Cauchy-Schwarz’s inequality and simple algebra, that,

E

∣∣∣∣∣ 1n
m∑
h=1

gb(h)
n−h∑
i=1

(〈Xi, Xi+h〉 − 〈Xi,m, Xi+h,m〉)

∣∣∣∣∣
≤ m[(E‖X0 −X0,m‖2E‖X0‖2)1/2 + (E‖X0 −X0,m‖2E‖X0,m‖2)1/2].

Assumption 2 implies then that, for every ε3 > 0, there exists m3 ∈ N such that, for

every m ≥ m3, the last quantity above is bounded by ε3. For the second term on the

right hand side of (3.5.6), we use the bound

E

∣∣∣∣∣ 1n
b−1∑

h=m+1

gb(h)
n−h∑
i=1

〈Xi, Xi+h〉

∣∣∣∣∣+ E

∣∣∣∣∣ 1n
b−1∑

h=m+1

gb(h)
n−h∑
i=1

〈Xi,m, Xi+h,m〉

∣∣∣∣∣ . (3.5.7)

Note that the second summand of (3.5.7) is o(1), while for the first term we use

〈Xi, Xi+h〉 = 〈Xi, Xi+h,h〉+ 〈Xi, Xi+h −Xi+h,h〉 to get the bound

E

∣∣∣∣∣ 1n
b−1∑

h=m+1

gb(h)
n−h∑
i=1

〈Xi, Xi+h,h〉

∣∣∣∣∣+ E

∣∣∣∣∣ 1n
b−1∑

h=m+1

gb(h)
n−h∑
i=1

〈Xi, Xi+h −Xi+h,h〉

∣∣∣∣∣ . (3.5.8)
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For the last term of expression (3.5.8), we get, using (3.2.2), that for every ε4 > 0,

there exists m4 ∈ N such that

1

n

b−1∑
h=m+1

n−h∑
i=1

E |〈Xi, Xi+h −Xi+h,h〉| ≤
b−1∑

h=m+1

E |〈X0, Xh −Xh,h〉|

≤ (E‖X0‖2)1/2
∞∑

h=m+1

(E‖X0 −X0,h‖2)1/2 < ε4

for all m ≥ m4. Consider next the first term of (3.5.8). Because 〈Xi, Xi+h,h〉 =

〈Xi −Xi,h, Xi+h,h〉+ 〈Xi,h, Xi+h,h〉, we get for this term the bound

E

∣∣∣∣∣ 1n
b−1∑

h=m+1

gb(h)
n−h∑
i=1

〈Xi −Xi,h, Xi+h,h〉

∣∣∣∣∣+ E

∣∣∣∣∣ 1n
b−1∑

h=m+1

gb(h)
n−h∑
i=1

〈Xi,h, Xi+h,h〉

∣∣∣∣∣ . (3.5.9)

The first term above is bounded by

E

∣∣∣∣∣ 1n
b−1∑

h=m+1

gb(h)
n−h∑
i=1

〈Xi −Xi,h, Xi+h,h〉

∣∣∣∣∣ ≤ (E‖X0‖2)1/2
∞∑

h=m+1

(E‖X0 −X0,h‖2)1/2.

Thus, and by (3.2.2), for every ε5 > 0, there exists m5 ∈ N such that, for every m ≥ m5,

this term is bounded by ε5. For the last term of (3.5.9), note that {〈Xi,h, Xi+h,h〉, i ∈

Z} is an 2h-dependent stationary process, and since Xi and Xi+h,h are independent,

i.e., E〈Xi, Xi+h,h〉 = 0 for all i ∈ Z, {〈Xi,h, Xi+h,h〉, i ∈ Z} is then a mean zero 2h-

dependent stationary process which implies that n−1/2
∑n

i=1〈Xi,h, Xi+h,h〉 = OP (1).

Using Portmanteau’s theorem, and since the function f(x) = |x| is Lipschitz, we get

that E
∣∣n−1/2∑n

i=1〈Xi,h, Xi+h,h〉
∣∣ = O(1). Therefore,

E

∣∣∣∣∣ 1n
b−1∑

h=m+1

gb(h)
n−h∑
i=1

〈Xi,h, Xi+h,h〉

∣∣∣∣∣ ≤ 1√
n

b−1∑
h=m+1

E

∣∣∣∣∣ 1√
n

n∑
i=1

〈Xi,h, Xi+h,h〉

∣∣∣∣∣
= O(b/

√
n) = o(1),

which concludes the proof of the lemma by choosing m0 = max{m1,m2,m3,m4,m5}.

Lemma 3.5.2. Suppose that (Yt, t ∈ Z) satisfies Assumption 2 and that b = b(n) is a

sequence of integers satisfying b−1 + bn−1/2 = o(1) as n → ∞. Let wn(·), i = 1, 2, . . . ,

be a sequence of data-tappering windows satisfying Assumption 3. Then, as n→∞,
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(i)

∑
|h|<b

(
W|h|
‖wb‖22

)
E[〈Y0, y〉〈Yh, y〉]→

∞∑
i=−∞

E[〈Y0, y〉〈Yi, y〉] for every y ∈ L2,

(ii) ∫∫
{c̃n(u, v)− c(u, v)}2dudv = oP (1),

where c(u, v) =
∑∞

i=−∞ E[Y0(u)Yi(v)], Wh =
∑b−h

i=1 wb(i)wb(i + h), h = 0, 1, . . . , b − 1

and

c̃n(u, v) =
1

n

n∑
i=1

Yi(u)Yi(v) +
b−1∑
h=1

Wh

‖wb‖22
1

n

n−h∑
i=1

[Yi(u)Yi+h(v) + Yi+h(u)Yi(v)].

Proof. Consider (i). Note first that, using Lemma 2.1 of Hörmann and Kokoszka

(2010), the sequence {〈Yi, y〉, i = 1, 2, . . .} is L2-m-approximable, since

∑
m≥1

(
E|〈Yi − Yi,m, y〉|2

)1/2 ≤ ‖y‖∑
m≥1

(
E‖Yi − Yi,m‖2

)1/2
<∞.

Therefore, by Lemma 4.1 of Hörmann and Kokoszka (2010), we get that

∞∑
i=−∞

|E〈Y0, y〉〈Yi, y〉| <∞. (3.5.10)

Also, note that if wb(i) is of the form (3.2.3), then

Wh

bw ∗ w(h/b)
→ 1,

where Wh =
∑b−h

i=1 w1(i)wb(i + h), h = 0, 1, . . . , b − 1, and w ∗ w denotes is the self-

convolution of w. Therefore, since ‖wb‖22 =W0, we get, for any fixed h, as n→∞,

Wh

‖wb‖22
=

Wh

bw ∗ w(h/b)

bw ∗ w(0)

W0

bw ∗ w(h/b)

bw ∗ w(0)
→ 1. (3.5.11)
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Furthermore, by Cauchy-Schwarz’s inequality, it is easily seen that

b−h∑
i=1

wb(i)wb(i+ h) ≤
b∑
i=1

w2
b (i),

i.e.,

Wh ≤ ‖wb‖22 for h = 1, 2, . . . , b− 1. (3.5.12)

To complete the proof of (i), it suffices to prove that
∑b−1

h=1(Wh/‖wb‖22)E〈Y0, y〉〈Yh, y〉 →∑∞
h=1 E〈Y0, y〉〈Yh, y〉. For this, and for b large enough, we use the bound

∣∣∣∣∣
b−1∑
h=1

Wh

‖wb‖22
E〈Y0, y〉〈Yh, y〉 −

∞∑
i=1

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣
≤

∣∣∣∣∣
m∑
h=1

Wh

‖wb‖22
E〈Y0, y〉〈Yh, y〉 −

m∑
i=1

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣
+

∣∣∣∣∣
b−1∑

h=m+1

Wh

‖wb‖22
E〈Y0, y〉〈Yh, y〉 −

b−1∑
i=m+1

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
i=b

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣ . (3.5.13)

Because of (3.5.11) and (3.5.10), the first and the last term are o(1). Concerning the

second term, we show that there exists m0 ∈ N such that

lim sup
n→∞

∣∣∣∣∣
b−1∑

h=m+1

Wh

‖wb‖22
E〈Y0, y〉〈Yh, y〉 −

b−1∑
i=m+1

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣ = 0

for m = m0. By using Assumption 2, expression (3.5.12), the facts that Wh ≥ 0 and

that 〈Y0, y〉 and 〈Yi,i, y〉 are independent for i ≥ m + 1, we get that, for every ε > 0,

∃m1 ∈ N such that, for every m ≥ m1,∣∣∣∣∣
b−1∑

h=m+1

(
Wh

‖wb‖22
− 1

)
E(〈Y0, y〉〈Yh, y〉)

∣∣∣∣∣
≤

∞∑
i=m+1

|E〈Y0, y〉〈Yi, y〉|

=
∞∑

i=m+1

|E〈Y0, y〉〈Yi − Yi,i, y〉|

≤ ‖y‖2
(
E‖Y0‖2

)1/2 ∞∑
i=m+1

(
E‖Yi − Yi,i‖2

)1/2
< ε, (3.5.14)
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because of expression 3.2.2

Consider next assertion (ii). Notice first that,

∫∫ {
1

n

n∑
t=1

Yt(u)Yt(v)− E[Y0(u)Y0(v)]

}2

= oP (1).

Hence, and since the summands of Yi(u)Yi+h(v) and Yi+h(v)Yi(u) can be handled sim-

ilarly, it suffices to show that

∫∫ { b−1∑
h=1

Wh

‖wb‖22
1

n

n−h∑
t=1

Yt(u)Yt+h(v)−
∑
t≥1

E[Y0(u)Yt(v)]

}2

= oP (1). (3.5.15)

By expressions (3.5.11) and (3.5.12), the proof of (3.5.15) is analogous to the proof

of (A.2) of Horváth et al. (2013). This completes the proof of the lemma.

Proof of Theorem 3.2.1. By the triangle inequality and Theorem 1 of Horváth et

al. (2013), the assertion (i) of the theorem is established if we show that, as n→∞,

√
n(X

∗
n − E∗(X∗n))⇒ Γ, in probability, (3.5.16)

where Γ is a Gaussian process in L2 with mean 0 and covariance operator C with kernel

c(u, v) = E(Γ(u)Γ(v)) given for any u, v ∈ [0, 1]2 by

c(u, v) = E[X0(u)X0(v)] +
∑
i≥1

E[X0(u)Xi(v)] +
∑
i≥1

E[X0(v)Xi(u)].

Using the notation S∗n =
√
n(X

∗
n − E∗(X∗n)), it follows from Proposition 7.4.2 of Laha

and Rohatgi (1979) that, to prove (3.5.16), it suffices to prove that,

(L1) 〈S∗n, y〉
d→ N(0, σ2(y)) for every y ∈ L2 where σ2(y) = 〈C(y), y〉, and that

(L2) the sequence {S∗n, n ∈ N} is tight.

Consider (L1). To establish the desired weak convergence, we prove that, as n→∞,

Var∗ (〈S∗n, y〉)
P→ σ2(y) (3.5.17)

and that
〈S∗n, y〉√

Var∗(〈S∗n, y〉)
d→ N(0, 1). (3.5.18)
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Consider (3.5.17) and notice that

S∗n =
1√
k

k∑
i=1

[U∗i − E∗(U∗i )] ,

where U∗i = b−1/2(X∗(i−1)b+1 + X∗(i−1)b+2 + . . . + X∗ib), i = 1, 2, . . . , k. Due to the block

bootstrap resampling scheme, the random variables U∗i , i = 1, 2, . . . , k are i.i.d. Thus,

using 〈S∗n, y〉 = k−1/2
∑k

i=1[W
∗
i −E∗(W ∗

i )], where W ∗
i = 〈U∗i , y〉, i = 1, 2, . . . , k, we have

Var∗ (〈S∗n, y〉) = E∗(W ∗
1 )2 − (E∗(W ∗

1 ))2. (3.5.19)

Let µ∗ = E∗(W ∗
1 ) and Ui = b−1/2(Xi + Xi+1, . . . + Xi+b−1), i = 1, 2, . . . , N. We then

have that

µ∗ =

√
b

N

[
n∑
i=1

〈Xi, y〉 −
b−1∑
j=1

(
1− j

b

)
[〈Xj, y〉+ 〈Xn−j+1, y〉]

]
. (3.5.20)

Therefore, E(µ∗) = 0. Using

[
n∑
i=1

〈Xi, y〉 −
b−1∑
j=1

(
1− j

b

)
(〈Xj, y〉+ 〈Xn−j+1, y〉)

]2

=
n∑
i=1

n∑
j=1

〈Xi, y〉〈Xj, y〉 − 2
n∑
i=1

b−1∑
j=1

(
1− j

b

)
〈Xi, y〉[〈Xj, y〉+ 〈Xn−j+1, y〉]

+
b−1∑
i=1

b−1∑
j=1

(
1− i

b

)(
1− j

b

)
[〈Xi, y〉+ 〈Xn−i+1, y〉][〈Xj, y〉+ 〈Xn−j+1, y〉]

we get,

E(µ∗)2 =
b

N2

n∑
i=1

n∑
j=1

E[〈Xi, y〉〈Xj, y〉] +O(b2/n) = O(b2/n), (3.5.21)

where the last equality follows since, by Kronecker’s lemma,

1

n

n∑
i=1

n∑
j=1

E[〈Xi, y〉〈Xj, y〉] =
∑
|h|<n

(
1− |h|

n

)
E[〈X0, y〉〈Xh, y〉]

→
∫∫

c(u, v)y(u)y(v)dudv (3.5.22)

as n→∞. Since E∗(µ∗) = 0, (3.5.21) implies that µ∗ = OP (b/
√
n).

Consider next the first term of the right hand side of expression (3.5.19). For this
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term, we have

E∗(W ∗
1 )2 =

1

N

N∑
i=1

〈Ui, y〉2 (3.5.23)

=
1

N

n∑
i=1

〈Xi, y〉〈Xi, y〉

+
b−1∑
h=1

(
1− h

b

)
1

N

n−h∑
i=1

[〈Xi, y〉〈Xi+h, y〉+ 〈Xi+h, y〉〈Xi, y〉]

− 1

N

b−1∑
s=1

(
1− s

b

)
[〈Xs, y〉〈Xs, y〉+ 〈Xn−s+1, y〉〈Xn−s+1, y〉]

− 1

N

b−1∑
t=1

b−t∑
j=1

(
1− j + t

b

)
[〈Xj, y〉〈Xj+t, y〉+ 〈Xn−j+1−t, y〉〈Xn−j+1, y〉

+ 〈Xj+t, y〉〈Xj, y〉+ 〈Xn−j+1, y〉〈Xn−j+1−t, y〉].

Thus,

E∗(W ∗
1 )2 =

1

N

n∑
i=1

〈Xi, y〉〈Xi, y〉

+
b−1∑
h=1

(
1− h

b

)
1

N

n−h∑
i=1

[〈Xi, y〉〈Xi+h, y〉+ 〈Xi+h, y〉〈Xi, y〉]

+OP (b/n) +OP (b2/n),

from which we get

Var∗(W ∗
1 ) =

∫∫
cN(u, v)y(u)y(v)dudv +Op(b

2/n), (3.5.24)

where

cN(u, v) =
1

N

n∑
i=1

Xi(u)Xi(v)

+
b−1∑
h=1

(
1− h

b

)
1

N

n−h∑
i=1

[
Xi(u)Xi+h(v) +Xi+h(u)Xi(v)

]
. (3.5.25)

By the ergodic theorem and equation (A.2) of Horváth et al. (2013), choosing the

kernel K in their notation to be the kernel K(x) = (1 − |x|)1[−1,1](x), where 1A(x)
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denotes the indicator function of A, it follows that

∫∫
[cn(u, v)− c(u, v)]2dudv = oP (1) (3.5.26)

as n→∞, where c(u, v) =
∑∞

i=−∞ E[X0(u)Xi(v)] and cn(u, v) = (N/n)cN(u, v). Using

Cauchy-Schwarz’s inequality, we get that, as n→∞,∣∣∣∣∫∫ (cn(u, v)− c(u, v))y(u)y(v)dudv

∣∣∣∣
≤
(∫∫

{cn(u, v)− c(u, v)}2dudv

)1/2

‖y‖2 = oP (1).

That is, ∫∫
cn(u, v)y(u)y(v)dudv

P→
∫∫

c(u, v)y(u)y(v)dudv.

Since N/n→ 1 as n→∞, we finally get from (3.5.24) that,

Var∗〈S∗n, y〉 = Var∗(W ∗
1 )

P→
∫∫

c(u, v)y(u)y(v)dudv = σ2(y). (3.5.27)

Consider next (3.5.18). Observe that W ∗
i = 〈U∗i , y〉, i = 1, 2, . . . , k are i.i.d. random

variables and, therefore, it suffices to show that Lindeberg’s condition

lim
n→∞

1

τ ∗2k

k∑
t=1

E∗
[
(W ∗

t − µ∗)21(|W ∗
t − µ∗| > ετ ∗k )

]
= 0, for every ε > 0, (3.5.28)

is fulfilled, where τ ∗2k =
∑k

t=1 Var∗(W ∗
t ) = kVar∗(W ∗

1 ) and µ∗ = E∗(W ∗
i ). To estab-

lish (3.5.28), and because of (3.5.27), it suffices to show that, for any δ > 0 and as

n→∞,

P

(
1

k

k∑
t=1

E∗
[
(W ∗

t − µ∗)21(|W ∗
t − µ∗| > ετ ∗k )

]
> δ

)
→ 0. (3.5.29)

Towards this, notice first that, for any two random variables X and Y and any η > 0,

it yields that

E[|X + Y |21(|X + Y | > η)]

≤ 4
[
E|X|21(|X| > η/2) + E|Y |21(|Y | > η/2)

]
; (3.5.30)
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see Lahiri (2003), p. 56. We then get by Markov’s inequality that

P

(
1

k

k∑
t=1

E∗
[
(W ∗

t − µ∗)21(|W ∗
t − µ∗| > ετ ∗k )

]
> δ

)
≤ δ−1E

{
E∗
[
(W ∗

1 − µ∗)21(|W ∗
1 − µ∗| > ετ ∗k )

]}
= δ−1E

[
1

N

N∑
i=1

(Wi − µ∗)21(|Wi − µ∗| > ετ ∗k )

]
= δ−1E

[
(W1 − µ∗)21(|W1 − µ∗| > ετ ∗k )

]
≤ 4δ−1

[
EW 2

11(|W1| > ετ ∗k/2) + E(µ∗)2
]
, (3.5.31)

where Wi = 〈Ui, y〉, i = 1, 2, . . . , N. Furthermore, we have

E(W 2
1 ) = E|〈U1, y〉|2 =

∑
|h|<b

(
1− |h|

b

)
E[〈X0, y〉〈Xh, y〉]→

∫∫
c(u, v)y(u)y(v)dudv,

as n→∞. Therefore, by the dominated convergence theorem, limn→∞ EW 2
11(|W1| >

ετ ∗k/2) = 0, Hence, using expression (3.5.21), we conclude that (3.5.31) converges to 0

as n→∞.

To establish (L2), it suffices, by Theorem 1.13 of Prokhorov (1956) and Theorems

5.1 and 5.2 of Billingsley (1999), to prove that limk→∞ supn≥1
∑∞

j=k E|〈S∗n, ej〉|2 = 0,

where {ej, j ≥ 1} is a complete orthonormal basis of L2. Using E∗|〈S∗n, ej〉|2 =

Var∗(〈U∗1 , ej〉) and Lemma 14 of Cerovecki and Hörmanm (2017), (L2) is satisfied if

the following five conditions are fulfilled.

(a) Var∗(〈U∗1 , ej〉) ≥ 0 ∀j, n;

(b) limn→∞Var∗(〈U∗1 , ej〉) = Σj, in probability;

(c)
∑

j≥1 Σj <∞;

(d) limn→∞
∑

j≥1 Var∗(〈U∗1 , ej〉) =
∑

j≥1 Σj, in probability;

(e)
∑

j≥1 Var∗(〈U∗1 , ej〉) is bounded for all n ≥ 1, in probability.

Note that, by letting y = ej in expression (3.5.27), property (b) follows with Σj =∫∫
c(u, v)ej(u)ej(v)dudv. To prove (c), notice that, by Proposition 6 of Hörmanm et

al. (2015), and since the stochastic process {Xt, t ∈ Z} is L2-m-approximable, the
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covariance operator C with kernel c(·, ·) is trace-class. Therefore,

∑
j≥1

Σj =
∑
j≥1

∫∫
c(u, v)ej(u)ej(v)dudv =

∑
j≥1

λj <∞, (3.5.32)

where λj, j ≥ 1 are the eigenvalues of C.

To establish (d), we get, using (3.5.20), that

Var∗(〈U∗1 , ej〉)

=
1

N

N∑
i=1

〈Ui, ej〉2

−

(√
b

N

[
n∑
i=1

〈Xi, ej〉 −
b−1∑
l=1

(
1− l

b

)
[〈Xl, ej〉+ 〈Xn−l+1, ej〉]

])2

. (3.5.33)

By Parseval’s identity, we have,

∞∑
j=1

1

N

N∑
i=1

|〈Ui, ej〉|2 =
1

N

N∑
i=1

‖Ui‖2

=
1

N

n∑
i=1

〈Xi, Xi〉+
b−1∑
h=1

(
1− h

b

)
1

N

n−h∑
i=1

[〈Xi, Xi+h〉+ 〈Xi+h, Xi〉]

− 1

N

b−1∑
s=1

(
1− s

b

)
[〈Xs, Xs〉+ 〈Xn−s+1, Xn−s+1〉]

− 1

N

b−1∑
t=1

b−t∑
j=1

(
1− t+ j

b

)
[〈Xj, Xj+t〉+ 〈Xn−j+1−t, Xn−j+1〉

+ 〈Xj+t, Xj〉+ 〈Xn−j+1, Xn−j+1−t〉].

Hence,

∞∑
j=1

1

N

N∑
i=1

|〈Ui, ej〉|2

=
1

N

n∑
i=1

〈Xi, Xi〉

+
b−1∑
h=1

(
1− h

b

)
1

N

n−h∑
i=1

[〈Xi, Xi+h〉+ 〈Xi+h, Xi〉] +OP (b2/n). (3.5.34)
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Then, by letting gb(h) =
(

1− |h|
b

)
in Lemma 3.5.1, we get that, as n→∞,

∞∑
j=1

1

N

N∑
i=1

〈Ui, ej〉2
P→

∞∑
i=−∞

E(〈X0, Xi〉). (3.5.35)

For the second term of equation (3.5.33), we show that,

∑
j≥1

(√
b

N

[
n∑
i=1

〈Xi, ej〉 −
b−1∑
l=1

(
1− l

b

)
[〈Xl, ej〉+ 〈Xn−l+1, y〉]

])2

= oP (1), (3.5.36)

as n→∞. Using 〈x, y〉 =
∑

j≥1〈x, ej〉〈y, ej〉, we have

∑
j≥1

[
n∑
i=1

〈Xi, ej〉 −
b−1∑
l=1

(
1− l

b

)
(〈Xl, ej〉+ 〈Xn−l+1, ej〉)

]2

=
n∑
i=1

n∑
l=1

〈Xi, Xl〉 − 2
n∑
i=1

b−1∑
l=1

(
1− l

b

)
[〈Xi, Xl〉+ 〈Xi, Xn−l+1〉]

+
b−1∑
i=1

b−1∑
l=1

(
1− i

b

)(
1− l

b

)
[〈Xi, Xl〉+ 〈Xn−i+1, Xl〉

+ 〈Xi, Xn−l+1〉+ 〈Xn−i+1, Xn−l+1〉]

=
n∑
i=1

n∑
l=1

〈Xi, Xl〉+OP (nb) +OP (b2).

Now note that, by the continuous mapping theorem and using Theorem 1 of Horváth

et al. (2013), we get

1

n

n∑
i=1

n∑
l=1

〈Xi, Xl〉 = 〈
√
nXn,

√
nXn, 〉 = Op(1). (3.5.37)

Therefore,

b

N2

[
n∑
i=1

n∑
l=1

〈Xi, Xl〉+OP (nb) +OP (b2)

]
= OP (b2/n) = op(1),

which establishes (3.5.36). Hence, from (3.5.33), (3.5.35) and (3.5.36), we conclude

that ∑
j≥1

Var∗(〈U∗1 , ej〉)→
∞∑

i=−∞

E(〈X0, Xi〉), in probability. (3.5.38)
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Therefore, and by (3.5.32), property (d) is proved if we show that,

∑
j≥1

λj =
∞∑

i=−∞

E(〈X0, Xi〉). (3.5.39)

Using Mercer’s theorem, we have

∑
j≥1

λj =

∫
c(u, u)du =

∫ ∞∑
i=−∞

E[X0(u)Xi(u)]du

=
∞∑

i=−∞

E
∫

[X0(u)Xi(u)]du =
∞∑

i=−∞

E〈X0, Xi〉. (3.5.40)

Notice that the above interchange of summation and integration is justified since, using

Assumption 2, and the fact that X0 and Xi,i are independent for i ≥ 1, we get

∞∑
i=−∞

∫
|E[X0(u)Xi(u)]| du

=

∫
|E[X0(u)X0(u)]| du+ 2

∞∑
i=1

∫
|E{X0(u)[Xi(u)−Xi,i(u)]}| du

≤
∫

E(X0(u))2du+ 2
∞∑
i=1

{∫
E[X0(u)]2du

}1/2{∫
E[Xi(u)−Xi,i(u)]2du

}1/2

≤ E‖X0‖2 + 2
(
E‖X0‖2

)1/2 ∞∑
i=1

(
E‖X0 −X0,i‖2

)1/2
<∞.

To prove (e), notice first that, by (3.5.33),

∞∑
j=1

Var∗(〈U∗1 , ej〉) ≤
∞∑
j=1

(1/N)
N∑
i=1

|〈Ui, ej〉|2

and, therefore, using (3.5.34), for any given n ≥ 1,
∑∞

j=1 Var∗(〈U∗1 , ej〉) is bounded

in probability. Furthermore, by (3.5.38), the sequence {
∑∞

j=1 Var∗(〈U∗1 , ej〉), n ≥ 1}

converges in probability as n→∞.

Consider next assertion (ii) of the theorem. By the triangle inequality, it suffices

to prove that as n → ∞, ‖nE∗(X∗n − E∗(X∗n)) ⊗ (X
∗
n − E∗(X∗n)) − 2πF0‖HS = oP (1).

Now, recall that U∗i , i = 1, 2, . . . , n, are i.i.d., and note that

nE∗(X∗n − E∗(X∗n))⊗(X
∗
n − E∗(X∗n))(y)(v)

=

∫
E∗
[
[U∗1 (u)− E∗(U∗1 (u))][U∗1 (v)− E∗(U∗1 (v))]

]
y(u)du,
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i.e., nE∗(X∗n − E∗(X∗n))⊗ (X
∗
n − E∗(X∗n)) is an integral operator with kernel

d(u, v) = E∗[U∗1 (u)U∗1 (v)]− E∗(U∗1 (u))E∗(U∗1 (v)). (3.5.41)

Now,

E∗[U∗1 (u)U∗1 (v)]

=
1

N

n∑
i=1

Xi(u)Xi(v) +
b−1∑
h=1

(
1− h

b

)
1

N

n−h∑
i=1

[Xi(u)Xi+h(v) +Xi+h(u)Xi(v)]

− 1

N

b−1∑
s=1

(
1− s

b

)
[Xs(u)Xs(v) +Xn−s+1(u)Xn−s+1(v)]

− 1

N

b−1∑
t=1

b−t∑
j=1

(
1− j + t

b

)
[Xj(u)Xj+t(v) +Xn−j+1−t(u)Xn−j+1−t(v)

+Xj+t(u)Xj(v) +Xn−j+1(u)Xn−j+1−t(v)] (3.5.42)

and

E∗(U∗1 (u)) =

√
b

N

[
n∑
i=1

Xi(u)−
b−1∑
j=1

(
1− j

b

)
(Xj(u) +Xn−j+1(u))

]
. (3.5.43)

Therefore, d(u, v) = cN(u, v) + R(u, v), where R(u, v) is defined as the difference of

d(u, v) given in (3.5.41) and cN(u, v) given in (3.5.25). Now, notice that 2πF0(y)(v) =∫ ∑∞
h=−∞ E[X0(u)Xh(v)]y(u)du, i.e., 2πF0 is an integral operator with kernel c(u, v) =∑∞

h=−∞ E[X0(u)Xh(v)]. Hence,

‖nE∗(X∗n − E∗(X∗n))⊗ (X
∗
n − E∗(X∗n))− 2πF0‖2HS

=

∫∫
[d(u, v)− c(u, v)]2dudv

≤ 2

∫∫
[cN(u, v)− c(u, v)]2dudv + 2

∫∫
[R(u, v)]2dudv.

Using (3.5.26) it suffices to prove that
∫∫

[R(u, v)]2dudv = op(1). To prove this, recall

the inequality (
∑L

i=1 ai)
2 ≤ L

∑L
i=1 a

2
i , where L is a positive integer, and notice that,

using (3.5.37),

b2

N4

∫∫ ( n∑
i=1

n∑
j=1

Xi(u)Xj(v)

)2

dudv

Block Bootstrap Methods For Functional Time Series 57

PILA
VAKIS D

IM
ITRIO

S



=
b2

N2

1

N

n∑
i1=1

n∑
i2=1

∫
Xi1(u)Xi2(u)du

1

N

n∑
j1=1

n∑
j2=1

∫
Xj1(v)Xj2(v)dv

=
b2

N2

(
1

N

n∑
i1=1

n∑
i2=1

〈Xi1 , Xi2〉

)2

= OP (b2/N2) = op(1). (3.5.44)

Furthermore,

∫∫ [
1

N

b−1∑
t=1

b−t∑
j=1

(
1− j + t

b

)
Xj(u)Xj+t(v)

]2
dudv

≤ 1

N2
b2
∫∫ b−1∑

t=1

b−t∑
j=1

X2
j (u)X2

j+t(v)dudv = OP (b4/N2) = op(1), (3.5.45)

where all other terms appearing in R(u, v) are handled similarly. This completes the

proof of the theorem.

Proof of Theorem 3.2.2. Let S∗n =
√
n(X

∗
n−E∗(X∗n)) and, as in Theorem 3.2.1, we

have that S∗n = k−1/2
∑k

i=1 [U∗i − E∗(U∗i )], where U∗i = b−1/2(X∗(i−1)b+1+X∗(i−1)b+2+. . .+

X∗ib), i = 1, 2, . . . , k, are i.i.d. random variables, 〈S∗n, y〉 = k−1/2
∑k

i=1 [W ∗
i − E∗(W ∗

i )]

with W ∗
i = 〈U∗i , y〉, i = 1, 2, . . . , k, and µ∗ = E∗(W ∗

1 ). Let C be the covariance operator

with kernel

c(u, v) = E[Y0(u)Y0(v)] +
∑
h≥1

E[Y0(u)Yh(v)] +
∑
h≥1

E[Y0(v)Yh(u)], u, v ∈ [0, 1]2,

N = n − b + 1, ‖wb‖1 =
∑b

i=1wb(t) and ‖wb‖22 =
∑b

t=1w
2
b (t). Finally, let Xi =

Yi − Y n, i = 1, 2, . . . , n, and

Ui =
1

‖wb‖2
(wb(1)Xi + wb(2)Xi+1, . . .+ wb(b)Xi+b−1) , i = 1, 2, . . . , N.

It suffices to prove that

(L1) 〈S∗n, y〉
d→ N(0, σ2(y)) for every y ∈ L2, where σ2(y) = 〈C(y), y〉, and that

(L2) the sequence {S∗n, n ∈ N} is tight.

To prove (L1), we establish that, as n→∞,

Var∗ (〈S∗n, y〉)
P→ σ2(y) (3.5.46)
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and that
〈S∗n, y〉√

Var∗(〈S∗n, y〉)
d→ N(0, 1). (3.5.47)

To see (3.5.46), note first that

Var∗ (〈S∗n, y〉) = k−1
k∑
i=1

Var∗(W ∗
i − E∗(W ∗

i )) = Var∗(W ∗
1 )

and that

Var∗(W ∗
1 ) =

1

N

N∑
i=1

[
〈Ui, y〉 −

1

N

N∑
j=1

〈Uj, y〉

]2

=
1

N

N∑
i=1

[
1

‖wb‖2

b∑
t=1

wb(t)〈Yi+t−1, y〉

]2

−

[
1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yj+s−1, y〉

]2
. (3.5.48)

We next show that

1

N

N∑
i=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yi+s−1, y〉 = Op(
b√
n

). (3.5.49)

Toward this, note that

1

N

N∑
i=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yi+s−1, y〉

=
1

N

‖wb‖1
‖wb‖2

[
n∑
i=1

〈Yi, y〉 −
b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yj, y〉

−
b−1∑
j=1

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−j+1, y〉

]
, (3.5.50)

and that

E

[
1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yi+s−1, y〉

]
= 0. (3.5.51)

Furthermore, using the decomposition

[
n∑
i=1

〈Yi, y〉 −
b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yj, y〉
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−
b−1∑
j=1

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−j+1, y〉

]2

=
n∑
i=1

n∑
j=1

〈Yi, y〉〈Yj, y〉

+
b−1∑
i=1

b−1∑
j=1

(
1−

∑i
t=1wb(t)

‖wb‖1

)(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yi, y〉〈Yj, y〉

+
b−1∑
i=1

b−1∑
j=1

(
1−

∑b
s=b−i+1wb(s)

‖wb‖1

)(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−i+1, y〉〈Yn−j+1, y〉

− 2
b−1∑
i=1

b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)
〈Yn−i+1, y〉〈Yj, y〉

− 2
n∑
i=1

b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yi, y〉〈Yj, y〉

− 2
n∑
i=1

b−1∑
j=1

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yi, y〉〈Yn−j+1, y〉, (3.5.52)

we get, by equation (3.5.50), the fact that ‖wb‖2 = O(b1/2), ‖wb‖1 = O(b) and the

same arguments as those used to obtain equation (3.5.21), that

E

[
1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yi+s−1, y〉

]2
=
‖wb‖21

N2‖wb‖22

n∑
i=1

n∑
j=1

E[〈Yi, y〉〈Yj, y〉] +O(b2/n)

= O(b/n) +O(b2/n) = O(b2/n). (3.5.53)

From (3.5.51) and (3.5.53), assertion (3.5.49) follows. Consider next the first term of

the right hand side of equation (3.5.48). For this, we have

1

N

N∑
i=1

[
1

‖wb‖2

b∑
t=1

wb(t)〈Yi+t−1, y〉

]2

=
1

N

1

‖wb‖22

{
n∑
i=1

‖wb‖22〈Yi, y〉〈Yi, y〉+
b−1∑
h=1

Wh

n−h∑
i=1

[〈Yi, y〉〈Yi+h, y〉+ 〈Yi+h, y〉〈Yi, y〉]

−
b−1∑
s=1

(
‖wb‖22 −

s∑
t=1

w2
b (t)

)
〈Ys, y〉〈Ys, y〉

−
b−1∑
s=1

(
‖wb‖22 −

b∑
t=b−s+1

w2
b (t)

)
〈Yn−s+1, y〉〈Yn−s+1, y〉

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

i∑
t=1

wb(t)wb(t+ h)

)
[〈Yi, y〉〈Yi+h, y〉+ 〈Yi+h, y〉〈Yi, y〉]
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−
b−1∑
h=1

b−h∑
i=1

(
Wh −

b−h∑
t=b−i−h+1

wb(t)wb(t+ h)

)
[〈Yn−i+1, y〉〈Yn−i+1−h, y〉

+ 〈Yn−i+1−h, y〉〈Yn−i+1, y〉]

}
,

from which it follows that

1

N

N∑
i=1

[
1

‖wb‖2

b∑
t=1

wb(t)〈Yi+t−1, y〉

]2

=
1

N

n∑
i=1

〈Yi, y〉〈Yi, y〉+
b−1∑
h=1

Wh

‖wb‖22
1

N

n−h∑
i=1

[〈Yi, y〉〈Yi+h, y〉+ 〈Yi+h, y〉〈Yi, y〉]

+Op(b/n) +Op(b
2/n).

Hence, using expressions (3.5.48) and (3.5.49), we get,

Var∗(W ∗
1 ) =

∫∫
c̃N(u, v)y(u)y(v)dudv +Op(b

2/n), (3.5.54)

where

c̃N(u, v) =
1

N

n∑
i=1

Yi(u)Yi(v) +
b−1∑
h=1

Wh

‖wb‖22
1

N

n−h∑
i=1

[Yi(u)Yi+h(v) + Yi+h(u)Yi(v)]. (3.5.55)

Using Lemma 3.5.2 (ii) and Cauchy-Schwarz’s inequality, we conclude that, as n→∞,∣∣∣∣∫∫ (c̃n(u, v)− c(u, v))y(u)y(v)dudv

∣∣∣∣
≤
(∫∫

{c̃n(u, v)− c(u, v)}2dudv

)1/2

‖y‖2 = oP (1). (3.5.56)

where c̃n(u, v) = (N/n)c̃N(u, v). Thus,

∫∫
c̃n(u, v)y(u)y(v)dudv

P→
∫∫

c(u, v)y(u)y(v)dudv

and, using equation (3.5.54),

Var∗〈S∗n, y〉 =
n

N

∫∫
cn(u, v)y(u)y(v)dudv +Op(b

2/n)

P→
∫∫

c(u, v)y(u)y(v)dudv = σ2(y), (3.5.57)
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as n→∞. To prove (3.5.47), as stated in the proof of Theorem 3.2.1, we must establish

Lindeberg’s condition.

For this, let Wi = 〈Ui, y〉, i = 1, 2, . . . , n, and note that, by (3.5.48), we have

Wi − µ∗ = 〈Ui, y〉 −
1

N

N∑
j=1

〈Uj, y〉

=
1

‖wb‖2

b∑
t=1

wb(t)〈Xi+t−1, y〉 −
1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Xj+s−1, y〉

=
1

‖wb‖2

b∑
t=1

wb(t)〈Yi+t−1, y〉 −
1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yj+s−1, y〉

= W Y
i −

1

N

N∑
j=1

W Y
j = W Y

i − µ∗Y , (3.5.58)

with an obvious notation forW Y
i and µ∗Y .Hence, using (3.5.30) and Markov’s inequality,

we have, for any δ > 0 and for any ε > 0, that

P

(
1

k

k∑
t=1

E∗
[
(W ∗

t − µ∗)21(|W ∗
t − µ∗| > ετ ∗k )

]
> δ

)
≤ δ−1E

{
E∗
[
(W ∗

1 − µ∗)21(|W ∗
1 − µ∗| > ετ ∗k )

]}
= δ−1E

[
(W Y

1 − µ∗Y )21(|W Y
1 − µ∗Y | > ετ ∗k )

]
≤ 4δ−1

[
E(W Y

1 )21(|W Y
1 | > ετ ∗k/2) + E(µ∗Y )21(|µ∗Y | > ετ ∗k/2)

]
≤ 4δ−1

[
E(W Y

1 )21(|W Y
1 | > ετ ∗k/2) + E(µ∗Y )2

]
. (3.5.59)

Since E(W Y
1 )2 =

∑
|h|<b

(
W|h|
‖wb‖22

)
E[〈Y0, y〉〈Yh, y〉], we get, by Lemma 3.5.2 (i),

E(W Y
1 )2

P→
∫∫

c(u, v)y(u)y(v)dudv,

and, by the dominated convergence theorem, that limn→∞ E(W Y
1 )21(|W Y

1 | > ετ ∗k/2) =

0. Using this result and expression (3.5.53), it follows that the bound in (3.5.59) con-

verges to 0 as n→∞, which establishes Lindeberg’s condition.

Consider now (L2). For this, it suffices to verify that conditions (a)-(e) of the proof

of Theorem 3.2.1 are satisfied. Note that, by letting y = ej in expression (3.5.57),

property (b) follows with Σj =
∫∫

c(u, v)ej(u)ej(v)dudv. To prove (c), note that, by

Proposition 6 of Hörmann et al. (2015), since the stochastic process {Yt, t ∈ Z} is L2-

m-approximable, the covariance operator C with kernel c(·, ·) is trace-class. Therefore,
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∑
j≥1 Σj =

∑
j≥1
∫∫

c(u, v)ej(u)ej(v)dudv =
∑

j≥1 λj < ∞, where λj, j ≥ 1 are the

eigenvalues of the covariance operator C. To establish (d), let first

UY
i =

1

‖wb‖2
(wb(1)Yi + wb(2)Yi+1, . . .+ wb(b)Yi+b−1) , i = 1, 2, . . . , N.

Then, using equation (3.5.48), we have

Var∗(〈U∗1 , ej〉) =
1

N

N∑
i=1

〈UY
i , ej〉2 −

[
1

N

N∑
i=1

〈UY
i , ej〉

]2
. (3.5.60)

From expressions (3.5.50) and (3.5.52), we get,

∑
j≥1

[
1

N

N∑
i=1

〈UY
i , ej〉

]2

=
1

N2

‖wb‖21
‖wb‖22

[∑
j≥1

n∑
i=1

n∑
t=1

〈Yi, ej〉〈Yt, ej〉

+
∑
j≥1

b−1∑
i=1

b−1∑
t=1

(
1−

∑i
s=1wb(s)

‖wb‖1

)(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yi, ej〉〈Ys, ej〉

+
∑
j≥1

b−1∑
i=1

b−1∑
s=1

(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)

·

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−i+1, ej〉〈Yn−s+1, ej〉

− 2
∑
j≥1

b−1∑
i=1

b−1∑
s=1

(
1−

∑j
t=1wb(t)

‖wb‖1

)

·

(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)
〈Yn−i+1, ej〉〈Ys, ej〉

− 2
∑
j≥1

n∑
i=1

b−1∑
s=1

(
1−

∑j
t=1wb(t)

‖wb‖1

)
〈Yi, ej〉〈Ys, ej〉

− 2
∑
j≥1

n∑
i=1

b−1∑
s=1

(
1−

∑b
t=b−s+1wb(t)

‖wb‖1

)
〈Yi, ej〉〈Yn−s+1, ej〉

]
. (3.5.61)

Hence, and because 〈x, y〉 =
∑

j≥1〈x, ej〉〈y, ej〉,

∑
j≥1

[
1

N

N∑
i=1

〈UY
i , ej〉

]2

=
1

N2

‖wb‖21
‖wb‖22

{
n∑
i=1

n∑
t=1

〈Yi, Yt〉
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+
b−1∑
i=1

b−1∑
t=1

(
1−

∑i
s=1wb(s)

‖wb‖1

)(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yi, Ys〉

+
b−1∑
i=1

b−1∑
s=1

(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−i+1, Yn−s+1〉

− 2
b−1∑
i=1

b−1∑
s=1

(
1−

∑j
t=1wb(t)

‖wb‖1

)(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)
〈Yn−i+1, Ys〉

− 2
n∑
i=1

b−1∑
s=1

(
1−

∑j
t=1wb(t)

‖wb‖1

)
〈Yi, Ys〉

−2
n∑
i=1

b−1∑
s=1

(
1−

∑b
t=b−s+1wb(t)

‖wb‖1

)
〈Yi, Yn−s+1〉

}
.

Therefore, by using (3.5.37), we get

∑
j≥1

[
1

N

N∑
i=1

〈UY
i , ej〉

]2
=

1

N2

‖wb‖21
‖wb‖22

n∑
i=1

n∑
t=1

〈Yi, Yt〉+OP (b2/n)

= Op(b
2/n) = op(1). (3.5.62)

Consider now, the first term of the right hand side of expression (3.5.60). By Parseval’s

identity,

∑
j≥1

1

N

N∑
i=1

〈UY
i , ej〉2

=
1

N

N∑
i=1

‖UY
i ‖2

=
1

N

1

‖wb‖22

{
n∑
i=1

‖wb‖22〈Yi, Yi〉+
b−1∑
h=1

Wh

n−h∑
i=1

[〈Yi, Yi+h〉+ 〈Yi+h, Yi〉]

−
b−1∑
s=1

(
‖wb‖22 −

s∑
t=1

w2
b (t)

)
〈Ys, Ys〉

−
b−1∑
s=1

(
‖wb‖22 −

b∑
t=b−s+1

w2
b (t)

)
〈Yn−s+1, Yn−s+1〉

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

i∑
t=1

wb(t)wb(t+ h)

)
[〈Yi, Yi+h〉+ 〈Yi+h, Yi〉]

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

b−h∑
t=b−i−h+1

wb(t)wb(t+ h)

)
[〈Yn−i+1, Yn−i+1−h〉

+ 〈Yn−i+1−h, Yn−i+1〉]

}
.
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Hence,

∑
j≥1

1

N

N∑
i=1

〈UY
i , ej〉2 =

1

N

n∑
i=1

〈Yi, Yi〉

+
b−1∑
h=1

Wh

‖wb‖22
1

N

n−h∑
i=1

[〈Yi, Yi+h〉+ 〈Yi+h, Yi〉] +OP (b2/n), (3.5.63)

and because N/n → 1 as n → ∞ and taking gb(h) =
W|h|
W0

in Lemma 3.5.1, in

conjunction with expressions (3.5.11) and (3.5.12), we get, as n→∞, that

∑
j≥1

1

N

N∑
i=1

〈UY
i , ej〉2

P→
∞∑

i=−∞

E(〈Y0, Yi〉).

Thus, using (3.5.60) and (3.5.62), we conclude that

∑
j≥1

Var∗(〈U∗1 , ej〉)
P→

∞∑
i=−∞

E(〈Y0, Yi〉) (3.5.64)

and, using
∑∞

i=−∞ E(〈Y0, Yi〉) =
∑

j≥1 λj, property (d) is established. Finally, (e) is

proved using the same arguments as in the corresponding case in Theorem 3.2.1, and

taking into account expressions (3.5.60), (3.5.63) and (3.5.64).

Consider next assertion (ii) of the theorem. It suffices to prove that, as n → ∞,

‖nE∗(X∗n − E∗(X∗n)) ⊗ (X
∗
n − E∗(X∗n)) − 2πF0‖HS = oP (1). Notice that nE∗(X∗n −

E∗(X∗n))⊗ (X
∗
n − E∗(X∗n)) is an integral operator with kernel

d̃(u, v) = E∗[U∗1 (u)− E∗(U∗1 (u))][U∗1 (v)− E∗(U∗1 (v))]

=
1

N

N∑
i=1

UY
i (u)UY

i (v)−

(
1

N

N∑
j=1

UY
j (u)

)(
1

N

N∑
j=1

UY
j (v)

)
. (3.5.65)

Now,

1

N

N∑
i=1

UY
i (u)UY

i (v)

=
1

N

1

‖wb‖22

{
n∑
i=1

‖wb‖22Yi(u)Yi(v) +
b−1∑
h=1

Wh

n−h∑
i=1

[Yi(u)Yi+h(v) + Yi+h(u)Yi(v)]

−
b−1∑
s=1

(
‖wb‖22 −

s∑
t=1

w2
b (t)

)
Ys(u)Ys(v)

Block Bootstrap Methods For Functional Time Series 65

PILA
VAKIS D

IM
ITRIO

S



−
b−1∑
s=1

(
‖wb‖22 −

b∑
t=b−s+1

w2
b (t)

)
Yn−s+1(u)Yn−s+1(v)

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

i∑
t=1

wb(t)wb(t+ h)

)
[Yi(u)Yi+h(v) + Yi+h(u)Yi(v)]

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

b−h∑
t=b−i−h+1

wb(t)wb(t+ h)

)
[Yn−i+1(u)Yn−i+1−h(v)

+ Yn−i+1−h(v)Yn−i+1(u)]

}

and

1

N

N∑
i=1

UY
i (u)

1

N

N∑
j=1

UY
j (v)

=
1

N2

‖wb‖21
‖wb‖22

{
n∑
i=1

n∑
j=1

Yi(u)Yj(v)

+
b−1∑
i=1

b−1∑
j=1

(
1−

∑i
t=1wb(t)

‖wb‖1

)(
1−

∑j
s=1wb(s)

‖wb‖1

)
Yi(u)Yj(v)

+
b−1∑
i=1

b−1∑
j=1

(
1−

∑b
s=b−i+1wb(s)

‖wb‖1

)(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
Yn−i+1(u)Yn−j+1(v)

−
b−1∑
i=1

b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)

·

(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)
[Yn−i+1(u)Yj(v) + Yn−i+1(v)Yj(u)]

−
n∑
i=1

b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)
[Yi(u)Yj(v) + Yj(u)Yi(v)]

−
n∑
i=1

b−1∑
j=1

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
[Yi(u)Yn−j+1(v) + Yi(v)Yn−j+1(u)]

}
.

Therefore, d̃(u, v) = c̃N(u, v) + R̃(u, v) where c̃N(u, v) is defined in (3.5.55) and R̃(u, v)

is the remainder term, and

‖nE∗(X∗n − E∗(X∗n))⊗(X
∗
n − E∗(X∗n))− 2πF0‖2HS

≤ 2

∫∫
[c̃N(u, v)− c(u, v)]2dudv + 2

∫∫
[R̃N(u, v))]2dudv.

Using similar arguments as those used in the proof of assertion (ii) of Theorem 3.2.1,

it follows that
∫∫

[R̃(u, v))]2dudv = op(1), from which assertion (ii) follows because of
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(3.5.56).

Proof of Theorem 3.3.1. Consider assertion (i). For i = 1, 2, let {e∗i,j, j =

1, 2, . . . , ni} be the pseudo-observations generated by implementing the MBB proce-

dure at {εi,j, j = 1, 2, . . . , ni}. Using Theorem 3.2.1, it follows that, conditionally on

XM, for i = 1, 2, and as n1, n2 →∞,

1
√
ni

ni∑
j=1

(e∗i,j − E∗(e∗i,j))⇒ Γi, in probability,

where Γi is a Gaussian random element with mean zero and covariance operator Ci

with kernel ci(·, ·). Now, recall from Step 3 of the MBB-based testing algorithm that,

for i = 1, 2, the pseudo-observations ε∗i,ξ+sb(τ), ξ = 1, 2, . . . , b, s = 0, 1, . . . , qi, τ ∈ I,

are generated by first applying the MBB procedure to ε̂i,ξ+sb(τ), ξ = 1, 2, . . . , b, s =

0, 1, . . . , qi, τ ∈ I and then εi,ξ(τ) is subtracted. Note further that εi,j(τ) = ε̂i,j(τ) +

X i,ni
−µi(τ). Thus, e∗i,ξ+sb(τ) = ε∗i,ξ+sb(τ) + εi,ξ(τ) +X i,ni

(τ)−µi(τ) and, using expres-

sion (3.3.2), we get

1
√
ni

ni∑
j=1

(e∗i,j − E∗(e∗i,j)) =
1
√
ni

ni∑
j=1

(X∗i,j − E∗(X∗i,j)) =
1
√
ni

ni∑
j=1

(X∗i,j −XM).

Therefore, and conditionally on XM, as n1, n2 →∞,(
1
√
n1

n1∑
j=1

(X∗1,j −XM),
1
√
n2

n2∑
j=1

(X∗2,j −XM)

)
⇒ (Γ1,Γ2), in probability,

where Γ1 and Γ2 are two independent Gaussian random elements with mean zero and

covariance operator C1 and C2 with kernel c1(·, ·) and c2(·, ·), respectively. Since

√
n1n2

M
(X
∗
1,n1
−X∗2,n2

) =

√
n2

M

1
√
n1

n1∑
j=1

(X∗1,j −XM)−
√
n1

M

1
√
n2

n2∑
j=1

(X∗2,j −XM),

and because n1/M → θ, we get that, as n1, n2 →∞,√
n1n2

M
(X
∗
1,n1
−X∗2,n2

)⇒ Γ, in probability,

where Γ =
√

1− θΓ1 −
√
θΓ2. The proof of assertion (ii) follows along the same lines

using Theorem 3.2.2. This completes the proof of the theorem.
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4
Testing equality of

autocovariance operators for

functional time series

Abstract

We consider strictly stationary stochastic processes of Hilbert space-valued random

variables and focus on tests of the equality of the lag-zero autocovariance operators

of several independent functional time series. A moving block bootstrap-based test-

ing procedure is proposed which generates pseudo random elements that satisfy the

null hypothesis of interest. It is based on directly bootstrapping the time series of

tensor products which overcomes some common difficulties associated with applica-

tions of the bootstrap to related testing problems. The suggested methodology can

be potentially applied to a broad range of test statistics of the hypotheses of inter-

est. As an example, we establish validity for approximating the distribution under the

null of a fully functional test statistic based on the Hilbert-Schmidt distance of the

corresponding sample lag-zero autocovariance operators, and show consistency under

the alternative. As a prerequisite, we prove a central limit theorem for the moving

block bootstrap procedure applied to the sample autocovariance operator which is of

interest on its own. The finite sample size and power performance of the suggested

moving block bootstrap-based testing procedure is illustrated through simulations and

an application to a real-life data set is discussed.
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4.1 Introduction

Functional data analysis deals with random variables which are curves or images and

can be expressed as functions in appropriate spaces. In this paper, we consider func-

tional time seriesXn = {X1, X2, . . . , Xn} steming from a (strictly stationary) stochastic

process X = (Xt, t ∈ Z) of Hilbert space-valued random functions Xt(τ), τ ∈ I, which

are assumed to be L4-m-approximable, a dependence assumption which is satisfied

by large classes of commonly used functional time series models; see, e.g., Hörmann

and Kokoszka (2010). We would like to infer properties of a group of K independent

functional processes based on observed stretches from each group. In particular, we

focus on the problem of testing whether the lag-zero autocovariance operators of the

K processes are equal and consider fully functional test statistics which evaluate the

difference between the corresponding sample lag-zero autocovariance operators using

appropriate distance measures.

As it is common in the statistical analysis of functional data, the limiting distri-

bution of such statistics depends, in a complicate way, on difficult to estimate charac-

teristics of the underlying functional stochastic processes like, for instance, its entire

fourth order temporal dependence structure. Therefore, and in order to implement

the testing approach proposed, we apply a moving block bootstrap (MBB) procedure

which is used to estimate the distribution of the test statistic of interest under the null.

Notice that for testing problems related to the equality of second order characteristics

of several independent groups, in the finite or infinite dimensional setting, applications

of the bootstrap to approximate the distribution of a test statistic of interest are com-

monly based on the generation of pseudo random observations obtained by resampling

from the pooled (mixed) sample consisting of all available observations. Such imple-

mentations lead to the problem that the generated pseudo observations have not only

identical second order characteristics but also identical distributions. This affects the

power and the consistency properties of the bootstrap in that it restricts its validity

to specific situations only; see Lele and Carlstein (1990) for an overview for the case

of independent and identically distributed (i.i.d.) real-valued random variables and

Remark 4.3.2 in Section 3 below for more details in the functional setting.

To overcome such problems, we use a different approach which is based on the

observation that the lag-zero autocovariance operator C0 = E(Xt−µ)⊗ (Xt−µ) is the
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expected value of the tensor product process {Yt = (Xt−µ)⊗ (Xt−µ), t ∈ Z}, where

µ = EXt denotes the expectation of Xt. Therefore, the testing problem of interest

can also be viewed as testing for the equality of expected values (mean functions)

of the associated processes of tensor products. The suggested MBB procedure works

by first generating functional pseudo random elements via resampling from the time

series of tensor products of the same group and then adjusting the mean function of the

generated pseudo random elements in each group so that the null hypothesis of interest

is satisfied. We stress here the fact that the proposed method is not designed having

any particular test statistic in mind and it is, therefore, potentially applicable to a wide

range of test statistics. As an example, we establish validity of the proposed MBB-based

testing procedure in estimating the distribution of a particular fully functional test

statistic under the null, which is based on the Hilbert-Schmidt norm between the sample

lag-zero autocovariance operators, and show its consistency under the alternative. As

a prerequisite, we prove a central limit theorem for the MBB procedure applied to the

sample version of the autocovariance operator Ch = E(Xt − µ)⊗ (Xt+h − µ), h ∈ Z, of

an L4-m-approximable stochastic process, which is of interest on its own. Our results

imply that the suggested MBB-based testing procedure is not restricted to the case of

testing for equality of the lag-zero autocovariance operator only but it can be adapted

to tests dealing with the equality of any (finite number of) autocovariance operators

Ch for lags h different from zero.

Asymptotic and bootstrap based inference procedures for covariance operators for

two or more populations of i.i.d. functional data have been extensively discussed in

the literature; see, e.g., Panaretos et al. (2010), Fremdt et al. (2013) for tests based

on finite-dimensional projections, Pigoli et al. (2014) for permutation tests based

on distance measures and Paparoditis and Sapatinas (2016) for fully functional tests.

Notice that testing for the equality of the lag-zero autocovariance operators is an im-

portant problem also for functional time series since the associated covariance kernel

c0(u, v) = Cov(Xt(u), Xt(v)) of the lag-zero autocovariance operator C0 describes, for

(u, v) ∈ I × I, the entire covariance structure of the random function Xt. Despite its

importance, this testing problem has been considered, to the best of our knowledge,

only recently by Zhang and Shao (2015). To tackle the aforementioned problems as-

sociated with the implementability of limiting distributions, Zhang and Shao (2015)

considered tests based on projections on finite dimensional spaces of the differences of
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the estimated lag-zero autocovariance operators. Notice that similar directional tests

have been previously considered for i.i.d. functional data; see Panaretos et. al. (2010)

and Fremdt et al. (2013). Although projection-based tests have the advantage that

they lead to manageable limiting distributions, and can be powerful when the devia-

tions from the null are captured by the finite-dimensional space projected, such tests

have no power for alternatives which are orthogonal to the projection space. Moreover,

and apart from being free from the choice of tuning parameters and consistent for a

broader class of alternatives, fully functional tests also allow for an interpretation of

the test results; we refer to Section 4.4 for an example.

The paper is organised as follows. In Section 4.2, the basic assumptions on the

underlying stochastic process X are stated and the asymptotic validity of the MBB

procedure applied to estimate the distribution of the sample autocovariance operator

is established. In Section 4.3, the proposed MBB-based procedure for testing equality

of the lag-zero autocovariance operators for several independent functional time series

is introduced. Theoretical justifications for approximating the null distribution of a

particular fully functional test statistic are given and consistency under the alternative

is obtained. Numerical simulations are presented in Section 4.4 in which the finite

sample behaviour of the proposed MBB-based testing methodology is investigated. A

real-life data example is also discussed in this section. Auxiliary results and proofs of

the main results are deferred to Section 4.5.

4.2 Bootstrapping the autocovariance operator

4.2.1 Preliminaries and Assumptions

We consider a (strictly stationary) stochastic process X = {Xt, t ∈ Z}, where the

random variables Xt are random functions Xt(ω, τ), τ ∈ I, ω ∈ Ω, t ∈ Z, defined

on a probability space (Ω, A, P ) and take values in the separable Hilbert space of

squared-integrable R-valued functions on I, denoted by L2(I). The expectation func-

tion of Xt, EXt ∈ L2(I), is independent of t, and it is denoted by µ. We define

〈f, g〉 =
∫
I f(τ)g(τ)dτ, ‖f‖2 = 〈f, f〉 and the tensor product between f and g by

f ⊗ g(·) = 〈f, ·〉g. For two Hilbert-Schmidt operators Ψ1 and Ψ2, we denote by

〈Ψ1,Ψ2〉HS =
∑∞

i=1〈Ψ1(ei),Ψ2(ei)〉 the inner product which generates the Hilbert-

Schmidt norm ‖Ψ1‖2HS =
∑∞

i=1 ‖Ψ1(ei)‖2, where {ei, i = 1, 2, . . .} is any orthonormal
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basis of L2(I). If Ψ1 and Ψ2 are Hilbert-Schmidt integral operators with kernels ψ1(u, v)

and ψ2(u, v), respectively, then 〈Ψ1,Ψ2〉HS =
∫
I

∫
I ψ1(u, v)ψ2(u, v)dudv. We also define

the tensor product between the operators Ψ1 and Ψ2 analogous to the tensor product

of two functions, i.e., Ψ1⊗Ψ2(·) = 〈Ψ1, ·〉HSΨ2. Note that Ψ1⊗Ψ2 is an operator acting

on the space of Hilbert-Schmidt operators. Without loss of generality, we assume that

I = [0, 1] (the unit interval) and, for simplicity, integral signs without the limits of

integration imply integration over the interval I. We finally write L2 instead of L2(I),

for simplicity.

To describe more precisely the dependence structure of the stochastic process X,

we use the notion of Lp-m-approximability; see Hörmann and Kokoszka (2010). A

stochastic process X = {Xt, t ∈ Z} with Xt taking values in L2, is called L4-m-

approximable if the following conditions are satisfied:

(i) Xt admits the representation

Xt = f(δt, δt−1, δt−2, . . .) (4.2.1)

for some measurable function f : S∞ → L2, where {δt, t ∈ Z} is a sequence of

i.i.d. elements in L2.

(ii) E‖X0‖4 <∞ and ∑
m≥1

(
E‖Xt −Xt,m‖4

)1/4
<∞, (4.2.2)

where Xt,m = f(δt, δt−1, . . . , δt−m+1, δ
(m)
t,t−m, δ

(m)
t,t−m−1, . . .) and, for each t and k, δ

(m)
t,k

is an independent copy of δt.

The rational behind this concept of weak dependence is that the function f in (4.2.1)

is such that the effect of the innovations δi far back in the past becomes negligible,

that is, these innovations can be replaced by other, independent, innovations. For the

stochastic process X considered in this paper, we somehow strengthen (4.2.2) to the

following assumption.

Assumption 4. X is L4-m-approximable and satisfies

lim
m→∞

m
(
E‖Xt −Xt,m‖4

)1/4
= 0.
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Since E‖Xt‖2 <∞, the autocovariance operator at lag h ∈ Z exists and is defined by

Ch = E[(Xt − µ)⊗ (Xt+h − µ)].

Having an observed stretch X1, X2, . . . , Xn, the operator Ch is commonly estimated by

the corresponding sample autocovariance operator, which is given by

Ĉh =


n−1

∑n−h
t=1 (Xt −Xn)⊗ (Xt+h −Xn), if 0 ≤ h < n,

n−1
∑n+h

t=1 (Xt−h −Xn)⊗ (Xt −Xn), if − n < h < 0,

0, otherwise,

where Xn = (1/n)
∑n

t=1Xt is the sample mean function. The limiting distribution of
√
n
(
Ĉh − Ch

)
can be derived using the same arguments to those applied in Kokoszka

and Reimherr (2013) to investigate the limiting distribution of
√
n
(
Ĉ0 − C0

)
. More

precisely, it can be shown that, for any (fixed) lag h, h ∈ Z, under L4-approximability

conditions,
√
n
(
Ĉh−Ch

)
⇒ Zh, where Zh is a Gaussian Hilbert-Schmidt operator with

covariance operator Γh given by

Γh =
∞∑

s=−∞

E[((X1 − µ)⊗ (X1+h − µ)− Ch)⊗ ((X1+s − µ)⊗ (X1+h+s − µ)− Ch)];

see also Mas (2002) for a related result if X is a Hilbertian linear processes.

4.2.2 A Bootstrap CLT for the empirical autocovariance

operator

In this section, we formulate and prove consistency of the MBB for estimating the

distribution of
√
n
(
Ĉh − Ch

)
for any (fixed) lag h, h ∈ Z, in the case of weakly depen-

dent Hilbert space-valued random variables satisfying the L4-approximability condition

stated in Assumption 4. The MBB procedure was originally proposed for real-valued

time series by Künsch (1989) and Liu and Singh (1992). Adopted to the functional

set-up, this resampling procedure first divides the functional time series at hand into

the collection of all possible overlapping blocks of functions of length b. That is, the

first block consists of the functional observations 1 to b, the second block consists of

the functional observations 2 to b+1, and so on. Then, a bootstrap sample is obtained

by independent sampling, with replacement, from these blocks of functions and join-
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ing the blocks together in the order selected to form a new set of functional pseudo

observations.

However, to deal with the problem of estimating the distribution of the sample

autocovariance operator Ĉh, we modify the above basic idea and apply the MBB directly

to the set of random elements Yn−h = {Ŷt,h, t = 1, 2, . . . , n − h}, where Ŷt,h = (Xt −

Xn)⊗ (Xt+h −Xn). As mentioned in the Introduction, this has certain advantages in

the testing context which will be discussed in the next section. The MBB procedure

applied to generate the pseudo random elements Y∗1,h,Y∗2,h, . . . ,Y∗n−h,h is described by

the following steps.

Step 1 : Let b = b(n), 1 ≤ b < n−h, be an integer and denote by Bt, the block of length

b starting from the tensor operator Ŷt,i.e., Bt = {Ŷt,h, Ŷt+1,h, . . . , Ŷt+b−1,h}, where

t = 1, 2, . . . , N and N = n−h−b+1 is the total number of such blocks available.

Step 2 : Let k be a positive integer satisfying b(k − 1) < n − h and bk ≥ n − h

and define k i.i.d. integer-valued random variables I1, I2, . . . , Ik selected from a

discrete uniform distribution which assigns probability 1/N to each element of

the set {1, 2, . . . , N}.

Step 3 : Let B∗i = BIi , i = 1, 2, . . . , k, and denote by {Y∗(i−1)b+1,h,Y∗(i−1)b+2,h, . . . ,Y∗ib,h}

the elements of B∗i . Join the k blocks in the order B∗1 , B
∗
2 , . . . , B

∗
k together to

obtain a new set of functional pseudo observations. The MBB generated sample

of pseudo random elements consists then of the set Y∗1,h,Y∗2,h, . . . ,Y∗n−h,h.

Note that if we are interested in the distribution of the sample autocovariance operator

Ĉh for some (fixed) lag h, −n < h < 0, then the above algorithm can be applied to

the time series of operators Yn+h = {Ŷt,h, t = h + 1, h + 2, . . . , n}, where Ŷt,h =

(Xt−h −Xn)⊗ (Xt −Xn), t = h+ 1, h+ 2, . . . , n, with minor changes. Hence, below,

we only focus on the case of 0 ≤ h < n.

Given a stretch Y∗1,h,Y∗2,h, . . . ,Y∗n−h,h of pseudo random elements generated by the

above MBB procedure, a bootstrap estimator of the autocovariance operator is given

by the sample mean

Ĉ∗h =
1

n

n−h∑
t=1

Y∗t,h.

The proposal is then to estimate the distribution of
√
n(Ĉh − Ch) by the distribution

of the bootstrap analogue
√
n(Ĉ∗h − E∗(Ĉ∗h)), where E∗(Ĉ∗h) is (conditionally on Xn)
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the expected value of Ĉ∗h. Assuming, for simplicity, that n − h = kb, straightforward

calculations yield

E∗(Ĉ∗h) =
1

N

n− h
n

[
n−h∑
t=1

Ŷt,h −
b−1∑
j=1

(
1− j

b

)
(Ŷj,h + Ŷn−h−j+1,h)

]
. (4.2.3)

The following theorem establishes validity of the MBB procedure suggested for

approximating the distribution of
√
n(Ĉh − Ch).

Theorem 4.2.1. Suppose that the stochastic process X satisfies Assumption 4. For

0 ≤ h < n, let Y∗1,h,Y∗2,h, . . . ,Y∗n−h,h be a stretch of functional pseudo random elements

generated as in Steps 1-3 of the MBB procedure and assume that the block size b = b(n)

satisfies b−1 + bn−1/3 = o(1) as n→∞. Then, as n→∞,

d(L(
√
n(Ĉ∗h − E∗(Ĉ∗h)) | Xn), L(

√
n(Ĉh − Ch)))→ 0, in probability,

where d is any metric metrizing weak convergence on the space of Hilbert-Schmidt

operators acting on L2 and L(X) denotes the law of the random element X.

4.3 Testing equality of lag-zero autocovariance

operators

In this section, we consider the problem of testing the equality of the lag-zero auto-

covariance operators for a finite number of functional time series and use a modified

version of the proposed MBB procedure. This modification leads to a MBB-based

testing procedure which generates functional pseudo observations that satisfy the null

hypothesis that all lag-zero autocovariance operators are equal. Since this procedure is

designed without having any particular statistic in mind, it can potentially be applied

to a broad range of possible test statistics which are appropriate for the particular

testing problem considered.

To make things specific, consider K independent, L4-m-approximable functional

time series, denoted in the following by XK,M = {Xi,t, i = 1, 2 . . . , K, t = 1, 2, . . . , ni},

where ni denotes the length of the i-th time series. Let Ci,0, i = 1, 2 . . . , K, be the

lag-zero autocovariance operator of the i-th functional time series, i.e., Ci,0 = E[(Xi,t−

µi)⊗ (Xi,t−µi)], where µi = EXi,t. Also, denote by M =
∑K

i=1 ni the total number of
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observations. The null hypothesis of interest is then

H0 : C1,0 = C2,0 = . . . = CK,0 (4.3.1)

and the alternative hypothesis is

H1 : ∃ k,m ∈ {1, 2, . . . , K} with k 6= m such that Ck,0 6= Cm,0.

By considering the operator processes {Yi,t = (Xi,t − µi) ⊗ (Xi,t − µi), t ∈ Z}, i =

1, 2 . . . , K, and denoting by µYi = EYi,t the expectation of Yi,t, the null hypothesis of

interest can be equivalently written as

H0 : µY1 = µY2 = . . . = µYK (4.3.2)

and the alternative hypothesis as

H1 : ∃ k,m ∈ {1, 2, . . . , K} with k 6= m such that µYk 6= µYm.

Consequently, the aim of the bootstrap is to generate a set of K pseudo random ele-

ments Y∗K,M = {Y∗i,t, i = 1, 2 . . . , K, t = 1, 2, . . . , ni} which satisfy the null hypothesis

(4.3.2), that is, the expectations E∗(Y∗i,t) should be identical for all i = 1, 2, . . . , K.

This leads to the MBB-based testing procedure described in the next section.

4.3.1 The MBB-based Testing Procedure

Suppose that, in order to test the null hypothesis (4.3.2), we use a real-valued test

statistic TM , where, for simplicity, we assume that large values of TM argue against

the null hypothesis. Since we focus on the tensor operators Yi,t, t = 1, 2, . . . , ni, i =

1, 2 . . . , K, it is natural to assume that the test statistic TM is based on the tensor

product of the centered observed functions, that is on Ŷi,t = (Xi,t − X i,ni
) ⊗ (Xi,t −

X i,ni
), i = 1, 2 . . . , K, t = 1, 2, . . . , ni, where X i,ni

is the sample mean function of the

i-th population, i.e, X i,ni
= (1/ni)

∑ni

t=1Xi,t. Suppose next, without loss of generality,

that the null hypothesis (4.3.2) is rejected if TM > dM,α, where, for α ∈ (0, 1), dM,α

denotes the upper α-percentage point of the distribution of TM under H0. We propose

to approximate the distribution of TM under H0 by the distribution of the bootstrap

quantity T ∗M , where the latter is obtained through the following steps.
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Step 1 : Calculate the pooled mean

YM =
1

M

K∑
i=1

ni∑
t=1

Ŷi,t.

Step 2 : For i = 1, 2, . . . , K, let bi = bi(n) ∈ {1, 2, . . . , n− 1} be the block size used for

the i-th functional time series and let Ni = ni − bi + 1. Calculate

Ỹi,ξ =
1

Ni

Ni+ξ−1∑
t=ξ

Ŷi,t, ξ = 1, 2, . . . , bi

Step 3 : For simplicity assume that ni = kibi and for i = 1, 2, . . . , K, let qi1, q
i
2, . . . , q

i
ki

be i.i.d. integers selected from a discrete probability distribution which assigns

the probability 1/Ni to each element of the set {1, 2, . . . , Ni}. Generate bootstrap

functional pseudo observations Y∗i,t, t = 1, 2, . . . , ni, i = 1, 2, . . . , K, as

Y∗i,t = YM + Ŷ∗i,t − Ỹi,ξ, ξ = bi if t mod bi = 0 and ξ = t mod bi otherwise,

where Ŷ∗i,ξ+(s−1)bi = Ŷi,qis+ξ−1, s = 1, 2 . . . , ki and ξ = 1, 2, . . . , bi

Step 4 : Let T ∗M be the same statistic as TM but calculated using, instead of the Ŷi,t’s

the bootstrap pseudo random elements Y∗i,t, t = 1, 2, . . . , ni, i = 1, 2, . . . , K.

Given XK,M , denote by D∗M,T the distribution of T ∗M . Then for α ∈ (0, 1), the

null hypothesis H0 is rejected if

TM > d∗M,α,

where d∗M,α denotes the upper α-percentage point of the distribution of T ∗M , i.e.,

P(T ∗M > d∗M,α) = α.

Notice that the distribution D∗M,T is unknown but it can be evaluated by Monte-Carlo.

Before establishing validity of the described MBB procedure some remarks are in

order. Observe that the mean Ỹi,ξ calculated in Step 2, is the (conditional on XK,M)

expected value of Ŷ∗i,qis+ξ−1 for ξ = bi if t mod bi = 0 and ξ = t mod bi otherwise. This

motivates the definition

Y∗i,t = YM + Ŷ∗i,t − Ỹi,ξ, t = 1, 2, . . . , ni, i = 1, 2, . . . , K,
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used in Step 3 of the MBB algorithm. This definition ensures that the generated

pseudo random elements Y∗i,t, t = 1, 2, . . . , ni, i = 1, 2, . . . , K, satisfy the null hypoth-

esis (4.3.2). In fact, it is easily seen that the pseudo random elements Y∗i,t have (con-

ditional on XK,M) an expected value which is equal to YM , that is E∗(Y∗i,t) = YM for

all t = 1, . . . , ni and i = 1, . . . , K.

4.3.2 Validity of the MBB-based Testing Procedure

Although the proposed MBB-based testing procedure is not designed having any spe-

cific test statistic in mind, establishing its validity requires the consideration of a spe-

cific class of statistics. In the following, and for simplicity, we focus on the case of two

independent population, i.e., K = 2. In this case, a natural approach to test equality

of the lag-zero autocovariance operators is to consider a fully functional test statistic

which evaluates the difference between the empirical lag-zero autocovariance operators,

for instance, to use the test statistic

TM =
n1n2

M
‖Ĉ1,0 − Ĉ2,0‖2HS =

n1n2

M
‖Y1,n1 − Y2,n2‖2HS,

where Y i,ni
= (1/ni)

∑ni

t=1 Ŷi,t, i = 1, 2, and M = n1+n2. The following lemma delivers

the asymptotic distribution of TM under H0.

Lemma 4.3.1. Let H0 hold true, Assumption 4 be satisfied and assume that, as

min{n1, n2} → ∞, n1/M → θ ∈ (0, 1). Then,

TM
d→ ‖Z0‖2HS

where Z0 =
√

1− θZ1,0 −
√
θZ2,0 and Zi,0, i = 1, 2, are two independent mean zero

Gaussian Hilbert-Schmidt operators with covariance operators Γi,0, i = 1, 2, given by

Γi,0 = E[((Xi,1 − µi)⊗ (Xi,1 − µi)− Ci,0)⊗ ((Xi,1 − µi)⊗ (Xi,1 − µi)− Ci,0)]

+ 2
∞∑
s=2

E[((Xi,1 − µi)⊗ (Xi,1 − µi)− Ci,0)⊗ ((Xi,s − µi)⊗ (Xi,s − µi)− Ci,0)].

As it is seen from the above lemma, the limiting distribution of TM depends on the

difficulty to estimate covariance operators Γi,0, i = 1, 2, which describe the entire fourth

order structure of the underlying functional processes Xi, making the implementation

of this asymptotic result for calculating critical values of the TM test a difficult task.
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Theorem 4.3.1 below shows that the MMB-based testing procedure estimates consis-

tently the limiting distribution ‖Z0‖2HS of the TM test and consequently that it can be

applied to estimate the critical values of interest.

For this, we apply the MBB-based testing procedure introduced in Section 4.3.1 to

generate {Y∗i,t, t = 1, 2, . . . .ni}, i ∈ {1, 2}, and use the bootstrap pseudo statistic

T ∗M =
n1n2

M
‖Y∗1,n1

− Y∗2,n2
‖2HS,

where Y∗i,ni
= (1/ni)

∑ni

t=1 Y∗i,t, i = 1, 2. We then have the following result.

Theorem 4.3.1. Let Assumption 4 be satisfied and assume that min{n1, n2} → ∞,

n1/M → θ ∈ (0, 1). Also, for i ∈ {1, 2}, let the block size bi = bi(n) satisfies b−1i +

bin
−1/3
i = o(1), as ni →∞. Then,

sup
x∈R

∣∣P (T ∗M ≤ x | XK,M)− PH0(TM ≤ x)
∣∣→ 0, in probability,

where PH0(X ≤ ·) denotes the distribution function of the random variable X when H0

is true.

Remark 4.3.1. If H1 is true, that is if ‖C1,0−C2,0‖HS = ‖EY1,t−EY2,t‖HS > 0, then it

is easily seen that TM →∞ under the conditions on n1 and n2 stated in Lemma 4.3.1.

This, together with Theorem 4.3.1 and Slutsky’s theorem, imply consistency of the

TM test based on bootstrap critical values obtained using the distribution of T ∗M , i.e.,

the power of the test approaches unity, as n1, n2 →∞.

Remark 4.3.2. The advantage of our approach to translate the testing problem con-

sidered to a testing problem of equality of mean functions and to apply the bootstrap

to the time series of tensor operators Yi,t, t = 1, 2, . . . , ni, i = 1, . . . , K, is manifested

in the generality under which validity of the MBB-based testing procedure is estab-

lished in Theorem 4.3.1. To elaborate, a MBB approach which would select blocks

from the pooled (mixed) set of functional time series in order to generate bootstrap

pseudo elements which satisfy the null hypothesis, will lead to the generation of K new

functional pseudo time series, which asymptotically will imitate correctly the pooled

second and the fourth order moment structure of the underlying functional processes.

As a consequence, the limiting distribution of TM as stated in Lemma 4.3.1 and that of
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the corresponding MBB analogue will coincide only if Γ1 = Γ2. This obviously restricts

the class of processes for which the MBB procedure is consistent. In the more simple

i.i.d. case, a similar limitation exists by the condition B1 = B2 imposed in Theorem

1 of Paparoditis and Sapatinas (2016). Notice that this limitation can be resolved

by applying also in the i.i.d. case the basic bootstrap idea proposed in this paper.

That is, to first translate the testing problem to one of testing equality of means of

samples consisting of the i.i.d. tensor operators and then to apply an appropriate i.i.d.

bootstrap procedure.

4.4 Numerical Results

In this section, we investigate via simulations the size and power behavior of the MBB-

based testing procedure applied to testing the equality of lag zero autocovariance op-

erators and we illustrate its applicability by considering a real life data set.

4.4.1 Simulations

In the simulation experiment, two groups of functional time series are generated from

the functional autoregressive (FAR) model

Xt(u) =

∫
ψ(u, v)Xt−1(v) dv + δXt−2(u) +Bt(u), (4.4.1)

or from the functional moving average (FMA) model,

Xt(u) =

∫
ψ(u, v)Bt−1(v) dv + δBt−2(u) +Bt(u). (4.4.2)

The kernel function ψ(·, ·) in the above models is equal and it is given by

ψ(u, v) =
e−(u

2+v2)/2

4

∫
e−t

2

dt
, (u, v) ∈ [0, 1]2,

while theBt(·)’s are generated as i.i.d. Brownian bridges. All curves were approximated

using T = 21 equidistant points τ1, τ2, . . . , τ21 in the unit interval I and transformed

into functional objects using the Fourier basis with 21 basis functions. Functional time

series of length n1 = n2 = 200 are then generated and testing the null hypothesis

H0 : C1,0 = C2,0 is considered using the TM test investigated Section 3.2. All bootstrap
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calculations are based on B = 1000 bootstrap replicates, R = 1000 model repetitions

have been considered and a range of different block sizes have been used. Since n1 = n2

we set for simplicity b = b1 = b2.

The TM test has been applied using three standard nominal levels α = 0.01, 0.05

and 0.10. Notice that δ = 0 corresponds to the null hypothesis while to investigate the

power behavior of the test we set δ = 0 for the first functional time series and allow for

δ ∈ {0.2, 0.5, 0.8} for the second and for each of the two different models considered.

The results obtained for different values of the block size b using the FAR model (4.4.1)

as well as the FMA model (4.4.2) are shown in Table 4.1. As it is seen from this table,

the MBB based testing procedure retains the nominal level with good size results,

especially for b = 6 and for both dependence structures considered. Furthermore, the

power of the TM test increases as the deviation from the null increases and reaches

high values for the large values of the deviation parameter δ considered.

Block Size, b=
δ α 2 4 6 8 10

FAR (1) 0 0.01 0.011 0.022 0.014 0.021 0.018
0.05 0.050 0.062 0.063 0.083 0.076
0.10 0.108 0.123 0.108 0.132 0.125

0.2 0.01 0.025 0.018 0.020 0.025 0.026
0.05 0.089 0.093 0.085 0.081 0.089
0.10 0.151 0.171 0.150 0.156 0.151

0.5 0.01 0.593 0.495 0.411 0.381 0.375
0.05 0.776 0.731 0.698 0.676 0.672
0.10 0.839 0.813 0.794 0.788 0.791

0.8 0.01 1.000 1.000 1.000 0.997 0.989
0.05 1.000 1.000 1.000 1.000 1.000
0.10 1.000 1.000 1.000 1.000 1.000

FMA (1) 0 0.01 0.012 0.013 0.014 0.013 0.015
0.05 0.065 0.073 0.060 0.054 0.071
0.10 0.121 0.108 0.118 0.116 0.127

0.2 0.01 0.015 0.022 0.019 0.024 0.016
0.05 0.055 0.076 0.065 0.079 0.062
0.10 0.1114 0.130 0.119 0.123 0.122

0.5 0.01 0.148 0.125 0.143 0.121 0.131
0.05 0.339 0.239 0.330 0.292 0.289
0.10 0.479 0.421 0.468 0.412 0.418

0.8 0.01 0.074 0.695 0.689 0.693 0.681
0.05 0.920 0.889 0.899 0.887 0.900
0.10 0.957 0.944 0.941 0.949 0.957

Table 4.1: Empirical size and power of the TM test using bootstrap critical values.
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Figure 4.1: Estimated lag-zero autocovariance kernels of the temperature curves: Sum-
mer 2007 (left panel) and Summer 2009 (right panel).

4.4.2 A Real-Life Data Example

In this section, the bootstrap based TM test testing is applied to a real-life data

set which consists of daily temperatures recorded in 15 minutes intervals in Nicosia,

Cyprus, i.e., there are 96 temperature measurements for each day. Sample A and

Sample B consist of the daily temperatures recorded in Summer 2007 (01/06/2007-

31/08/2007) and Summer 2009 (01/06/2009-31/08/2009) respectively. The measure-

ments have been transformed into functional objects using the Fourier basis with

21 basis functions. All curves are rescaled in order to be defined in the interval

I = [0, 1]. Figure 4.1 shows the estimated lag-zero autocovariance kernels ĉi(u, v) =

n−1i
∑ni

t=1(Xi,t(u)−X i(u))(Xi,t(v)−X i(v)), (u, v) ∈ I×I, associated with the lag-zero

autocovariance operators for the temperature curves of the summer 2007 (i = 1) and of

the summer 2009 (i = 2). We are interested in testing whether the covariance structure

of the daily temperature curves of the two summer periods is the same. The p-values

of the MBB-based TM test using B = 1000 bootstrap replicates and for a selection of

different block sizes b = b1 = b2, are 0.016 (b = 3), 0.015 (b = 4), 0.033 (b = 5) and

0.030 (b = 6). As it is evident from these results, the p-values of the MBB-based test

are quite small and lead to a rejection of H0, for instance at the commonly used 5%

level.

To see were the differences between the temperatures in the two summer peri-

ods come from and to better interpret the test results, Figure 4.2 presents a contour

plot of the estimated squared differences |ĉ1(u, v) − ĉ2(u, v)|2 for different values of
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(u, v) in the plane [0, 1]2. Note that the Hilbert-Schmidt distance ‖Ĉ1,0 − Ĉ2,0‖HS
appearing in the test statistic TM can be approximated by the discretized quantity√
L−2

∑L
i=1

∑L
j=1 |ĉ1(ui, vj)− ĉ2(ui, vj)|2, where L = 96 is the number of equidistant

time points in the interval [0, 1] used and at which the temperature measurements are

recorded. Large values of |ĉ1(ui, vj)− ĉ2(ui, vj)|2 (i.e., dark gray regions in Figure 4.2)

contribute strongly to the value of the test statistic TM and pinpoint to regions where

large differences between the corresponding lag-zero autocovariance operators occur.

Taking into account the symmetry of the covariance kernel c(·, ·), Figure 4.2 is very

informative. It shows that the main differences between the two covariance operators

are concentrated between the time regions 3.00am to 6.00am and 3.00pm to 8.00pm

of the daily temperature curves, with the strongest contributions to the test statistic

being due to the largest differences recorded around 4.00 to 4.30 in the morning and

6.30 to 7.30 in the evening.
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Figure 4.2: Contour plot of the estimated differences |ĉ1(ui, vj)− ĉ2(ui, vj)|2 for (i, j) ∈
{1, 2, . . . , 96}.
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4.5 Appendix : Proofs

In the following we assume, without loss of generality, that µ = 0 and we consider the

case h = 0 only. Furthermore, we let
̂̃C0 = n−1

∑n
t=1Xt ⊗ Xt, Zt = Xt ⊗ Xt − C0,

Ẑt = Xt ⊗ Xt −
̂̃C0, Z̃t = Xt ⊗ Xt, Zt,m = Xt,m ⊗ Xt,m − C0, Z∗t = X∗t ⊗ X∗t and

Ẑ∗t = X∗t ⊗X∗t −
̂̃C0. Also, we denote by Zt(u, v) the kernel of the integral operator Zt,

i.e., Zt(u, v) = Xt(u)Xt(v)−c0(u, v), where c0(u, v) = E[Xt(u)Xt(v)], and by Zt,m(u, v)

the kernel of the integral operator Zt,m, i.e., Zt,m(u, v) = Xt,m(u)Xt,m(v)− c0(u, v).

We first fix some notation and present two basic lemmas which will be used in the

proofs. Towards this note first that we repeatedly use the fact that, by stationarity,

E‖Xt,m − Xt‖p = E‖X0,m − X0‖p and E‖Xt,m‖p = E‖Xt‖p = E‖X0‖p for p ∈ N and

for all t ∈ Z. Also note that Kokoszka and Reimherr (2013) proved that the L4-m-

approximability of X implies that the tensor product process {Xt ⊗ Xt, t ∈ Z} is

L2-m-approximable.

For Xt,m ⊗Xt,m the m-dependent approximation of Xt ⊗Xt, we, therefore, have

∞∑
m=1

(
E‖Xt ⊗Xt −Xt,m ⊗Xt,m‖2HS

)1/2

<∞. (4.5.1)

Furthermore, since ‖X0⊗Xt‖HS = ‖X0‖‖Xt‖ for all t ∈ Z, and using Cauchy-Schwarz’s

inequality, we get, for all t ∈ Z,

E‖Xt ⊗Xt −Xt,m ⊗Xt,m‖2HS

≤ 2E‖Xt ⊗ (Xt −Xt,m)‖2HS + 2E‖(Xt −Xt,m)⊗Xt,m‖2HS

≤ 4(E‖Xt‖4)1/2(E‖Xt −Xt,m‖4)1/2.

Therefore, by Assumption 4, we get, for all t ∈ Z,

lim
m→∞

m
(
E‖Xt ⊗Xt −Xt,m ⊗Xt,m‖2HS

)1/2
≤ 2(E‖Xt‖4)1/4 lim

m→∞
m(E‖Xt −Xt,m‖4)1/4 = 0 (4.5.2)

and by the same arguments,

‖E[X0 ⊗Xt]‖HS = ‖E[X0 ⊗ (Xt −Xt,t)]‖HS
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≤
(
E‖X0‖2

)1/2 (E‖X0 −X0,t‖2
)1/2

≤
(
E‖X0‖2

)1/2 (E‖X0 −X0,t‖4
)1/4

.

Therefore, the L4-m-approximability assumption implies that

∑
t∈Z

‖E[X0 ⊗Xt]‖HS <∞.

To prove Theorem 4.2.1, we establish below Lemma 4.5.1 and Lemma 4.5.2.

Lemma 4.5.1. Let gb(·) be a non-negative, continuous and bounded function defined

on R, satisfying gb(0) = 1, gb(u) = gb(−u), gb(u) ≤ 1 for all u, gb(u) = 0, if |u| > c,

for some c > 0. Assume that for any fixed u, gb(u) → 1 as n → ∞. Suppose that the

process X satisfies Assumption 4 and that b = b(n) is a sequence of integers such that

b−1 + bn−1/3 = o(1) as n→∞. Then, as n→∞,

∥∥∥∥∥
b−1∑

s=−b+1

gb(s)Γ̂s −
∞∑

s=−∞

E[Z0 ⊗ Zs]

∥∥∥∥∥
HS

= op(1),

where Γ̂s = 1
n

∑n−s
t=1 Ẑt ⊗ Ẑt+s for 0 ≤ s ≤ b − 1 and Γ̂s = 1

n

∑n+s
t=1 Ẑt−s ⊗ Ẑt for

−b+ 1 ≤ s < 0.

Proof. We proceed in two steps. First, we proof that, as n→∞,∥∥∥∥∥
b−1∑

s=−b+1

gb(s)Γ̃s −
∞∑

t=−∞

E[Z0 ⊗ Zt]

∥∥∥∥∥
HS

= op(1), (4.5.3)

where Γ̃s = n−1
∑n−s

t=1 Zt ⊗ Zt+s for 0 ≤ s ≤ b − 1 and Γ̃s = n−1
∑n+s

t=1 Zt−s ⊗ Zt for

−b+ 1 ≤ s < 0. Then, we prove that, as n→∞,∥∥∥∥∥
b−1∑

s=−b+1

gb(s)
(

Γ̃s − Γ̂s

)∥∥∥∥∥
HS

= op(1). (4.5.4)

Consider (4.5.3). Since ‖n−1
∑n

t=1 Zt⊗Zt−E[Z0⊗Z0]‖HS = op(1) as n→∞, it suffices

to show that, as n→∞,∥∥∥∥∥
b−1∑
s=1

gb(s)Γ̃s −
∑
t≥1

E[Z0 ⊗ Zt]

∥∥∥∥∥
HS

= op(1). (4.5.5)

Let c+∞ =
∑

t≥1 E[Z0⊗Zt], c+m =
∑m

t=1 E[Z0,m⊗Zt,m] and Γ̃
(m)
s = n−1

∑n−s
t=1 Zt,m⊗Zt+s,m.
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Then, ∥∥∥∥∥
b−1∑
s=1

gb(s)Γ̃s − c+∞

∥∥∥∥∥
HS

≤ ‖c+m − c+∞‖HS +

∥∥∥∥∥
b−1∑
s=1

gb(s)Γ̃
(m)
s − c+m

∥∥∥∥∥
HS

+

∥∥∥∥∥
b−1∑
s=1

gb(s)Γ̃s −
b−1∑
s=1

gb(s)Γ̃
(m)
s

∥∥∥∥∥
HS

. (4.5.6)

Assertion (4.5.5) is proved by showing that there exists m0 ∈ N such that all three

terms on the right hand side of (4.5.6) can be made arbitrarily small, in probability,

as n→∞ for m = m0.

For the first term of the right hand side of the above inequality, we use the bound∥∥∥∥∥
m∑
t=1

E [Z0,m ⊗ Zt,m − Z0 ⊗ Zt]

∥∥∥∥∥
HS

+

∥∥∥∥∥
∞∑

t=m+1

E [Z0 ⊗ Zt]

∥∥∥∥∥
HS

(4.5.7)

and the decomposition

Z0,m ⊗ Zt,m − Z0 ⊗ Zt = (Z0,m − Z0)⊗ Zt,m + Z0 ⊗ (Zt,m − Zt).

By Cauchy-Schwarz’s inequality, we get, for the first term of (4.5.7), that∥∥∥∥∥
m∑
t=1

E [(Z0,m − Z0)⊗ Zt,m]

∥∥∥∥∥
HS

+

∥∥∥∥∥
m∑
t=1

E [Z0 ⊗ (Zt,m − Zt)]

∥∥∥∥∥
HS

≤ 2
(
E‖Z0‖2HS

)1/2 m∑
t=1

(
E‖Z0,m − Z0‖2HS

)1/2
= 2

(
E‖Z0‖2HS

)1/2
m
(
E‖Z0,m − Z0‖2HS

)1/2
.

Therefore, by Assumption 4, we get that, for every ε1 > 0, there exists m1 ∈ N such

that the last quantity above is less than ε1 for every m ≥ m1. Consider the second term

of the right hand side of (4.5.7). Since Z0 and Zt,t are independent for t ≥ m+ 1 and

E[Z0] = 0, we get, using Cauchy-Schwarz’s inequality,∥∥∥∥∥
∞∑

t=m+1

E [Z0 ⊗ Zt]

∥∥∥∥∥
HS

≤
(
E‖Z0‖2HS

)1/2 ∞∑
t=m+1

(
E‖Z0 − Z0,t‖2HS

)1/2
.

Using (4.5.1), it follows that, for every ε2 > 0, there exists m2 ∈ N such that the above
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quantity is less than ε2 for every m ≥ m2.

For the second term of the bound in (4.5.6), note that, for every m ≥ 1, we have

that for any fixed s, as n→∞,

∥∥∥Γ̃(m)
s − E[Z0,m ⊗ Zs,m]

∥∥∥
HS

= op(1).

Hence, the aforementioned term of interest is op(1), if we show that, as n→∞,

∥∥∥∥∥
b−1∑

s=m+1

gb(s)Γ̃
(m)
s

∥∥∥∥∥
HS

= op(1). (4.5.8)

By the definition of Γ̃
(m)
s , we have that

E

∥∥∥∥∥
b−1∑

s=m+1

gb(s)Γ̃
(m)
s

∥∥∥∥∥
2

HS

= E

〈
b−1∑

s1=m+1

gb(s1)Γ̃
(m)
s1
,

b−1∑
s2=m+1

gb(s2)Γ̃
(m)
s2

〉
HS

=
1

n2

b−1∑
s1=m+1

b−1∑
s2=m+1

n−s1∑
t1=1

n−s2∑
t2=1

gb(s1)gb(s2)E〈Zt1,m ⊗ Zt1+s1,m, Zt2,m ⊗ Zt2+s2,m〉HS.

Since the sequence {Zt,m, t ∈ Z} is m-dependent, Zt,m and Zt+s,m are independent for

s ≥ m + 1 and, therefore, E[Zt,m ⊗ Zt+s,m] = 0 for s ≥ m + 1. Hence, the number of

terms E〈Zt1,m ⊗ Zt1+s1,m, Zt2,m ⊗ Zt2+s2,m〉HS in the last equation above which do not

vanish is of order O(nb) and, consequently, as n→∞,

E

∥∥∥∥∥
b−1∑

s=m+1

gb(s)Γ̃
(m)
s

∥∥∥∥∥
2

HS

= O

(
b

n

)
= o(1), (4.5.9)

from which (4.5.8) follows by Markov’s inequality.

For the third term in (4.5.6) we show that, for m = m0 and for any δ > 0,

lim sup
n→∞

P

(∥∥∥∥∥
b−1∑
s=1

gb(s)
(

Γ̃s − Γ̃(m)
s

)∥∥∥∥∥
HS

> δ

)
= 0. (4.5.10)

Using Markov’s inequality, expression (4.5.10) follows if we show that, for m = m0, as

n→∞,

E

∥∥∥∥∥
b−1∑
s=1

gb(s)(Γ̃s − Γ̃(m)
s )

∥∥∥∥∥
HS

= o(1). (4.5.11)
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Now, by the definitions of Γ̃h and Γ̃
(m)
s , we have

E

∥∥∥∥∥
b−1∑
s=1

gb(s)
(

Γ̃s − Γ̃(m)
s

)∥∥∥∥∥
HS

≤ E

∥∥∥∥∥ 1

n

m∑
s=1

gb(s)
n−s∑
t=1

(Zt ⊗ Zt+s − Zt,m ⊗ Zt+s,m)

∥∥∥∥∥
HS

+ E

∥∥∥∥∥ 1

n

b−1∑
s=m+1

gb(s)
n−s∑
t=1

(Zt ⊗ Zt+s − Zt,m ⊗ Zt+s,m)

∥∥∥∥∥
HS

. (4.5.12)

Using Cauchy-Schwarz’s inequality and the decomposition

Zt ⊗ Zt+s − Zt,m ⊗ Zt+s,m = (Zt − Zt,m)⊗ Zt+s + Zt,m ⊗ (Zt+s − Zt+s,m),

we get, for the first term of the right hand side of (4.5.12), the bound

1

n

m∑
s=1

n−s∑
t=1

(E‖(Zt − Zt,m)⊗ Zt+s‖HS + E‖Zt,m ⊗ (Zt+s − Zt+s,m)‖HS)

≤ 1

n

m∑
s=1

n−s∑
t=1

(E‖Zt − Zt,m‖2HSE‖Zt+s‖2HS)1/2

+ (E‖Zt+s − Zt+s,m‖2HSE‖Zt,m‖2HS)1/2

≤ m[(E‖Z0 − Z0,m‖2HSE‖Z0‖2HS)1/2 + (E‖Z0 − Z0,m‖2HSE‖Z0,m‖2HS)1/2].

By Assumption 4, it follows that, for every ε3 > 0, there exists m3 ∈ Z such that, for

every m ≥ m3, this quantity is less than ε3. For the second term on the right hand side

of (4.5.12), we use the bound

E

∥∥∥∥∥ 1

n

b−1∑
s=m+1

gb(s)
n−s∑
t=1

Zt ⊗ Zt+s

∥∥∥∥∥
HS

+ E

∥∥∥∥∥ 1

n

b−1∑
s=m+1

gb(s)
n−s∑
t=1

Zt,m ⊗ Zt+s,m

∥∥∥∥∥
HS

. (4.5.13)

Expression (4.5.9) implies that the second summand of (4.5.13) is o(1). For the first

term of (4.5.13), we use the decomposition

Zt ⊗ Zt+s = Zt ⊗ Zt+s,s + Zt ⊗ (Zt+s − Zt+s,s),

and get the bound

E

∥∥∥∥∥ 1

n

b−1∑
s=m+1

gb(s)
n−s∑
t=1

Zt ⊗ Zt+s,s

∥∥∥∥∥
HS
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+ E

∥∥∥∥∥ 1

n

b−1∑
s=m+1

gb(s)
n−s∑
t=1

Zt ⊗ (Zt+s − Zt+s,s)

∥∥∥∥∥
HS

. (4.5.14)

For the last term of expression (4.5.14), we have the bound

1

n

b−1∑
s=m+1

n−s∑
t=1

E ‖Zt ⊗ (Zt+s − Zt+s,s)‖HS ≤
(
E‖Z0‖2HS

)1/2 b−1∑
s=m+1

(
E‖Z0 − Z0,s‖2HS

)1/2
.

Therefore, since {Zt, t ∈ Z} is L2-m-approximable, with Z0,m be the m-dependent

approximation of Z0, it follows that for every ε4 > 0, there exists m4 ∈ N such that,

for every m ≥ m4, this term is less than ε4. Consider next the first term of (4.5.14).

We have

E

∥∥∥∥∥ 1

n

b−1∑
s=m+1

gb(s)
n−s∑
t=1

Zt ⊗ Zt+s,s

∥∥∥∥∥
HS

≤
b−1∑

s=m+1

E

∥∥∥∥∥ 1

n

n−s∑
t=1

Zt ⊗ Zt+s,s

∥∥∥∥∥
HS

≤
b−1∑

s=m+1

E

∥∥∥∥∥ 1

n

n−s∑
t=1

Zt ⊗ Zt+s,s

∥∥∥∥∥
2

HS

1/2

. (4.5.15)

Since Z0 and Zs,s are independent, ‖Z0 ⊗ Zt‖HS = ‖Z0‖HS‖Zt‖HS and

E〈Z0 ⊗ Zs,s, Zt ⊗ Zt+s,s〉HS = E〈Z0, Zt〉HS〈Zs,s, Zt+s,s〉HS = 0

for |t| > s. Using Cauchy-Schwarz’s inequality, we get

E

∥∥∥∥∥ 1

n

n−s∑
t=1

Zt ⊗ Zt+s,s

∥∥∥∥∥
2

HS

≤ n− s
n2

∑
|t|<n−s

E(〈Z0 ⊗ Zs,s, Zt ⊗ Zt+s,s〉HS)

≤ 1

n

s∑
t=−s

|E〈Z0 ⊗ Zs,s, Zt ⊗ Zt+s,s〉HS| ≤
1

n

s∑
t=−s

E‖Z0 ⊗ Zs,s‖HS‖Zt ⊗ Zt+s,s‖HS

≤ 1

n

s∑
t=−s

E‖Z0 ⊗ Zs,s‖2HS
1

n

s∑
t=−s

(
E‖Z0‖2HS

)2
≤ 1

n

s∑
t=−s

(
E‖X0 ⊗X0‖2HS

)2 ≤ 1

n

s∑
t=−s

(
E‖X0‖4HS

)2
.

Therefore, by (4.5.15), the first term of (4.5.14) is OP (b3/2/n1/2). The proof is then

concluded by choosing m0 = max{m1,m2,m3,m4}.

Consider (4.5.4). First note that using Theorem 3 of Kokoszka and Reimherr (2013),
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we get, as n→∞,∥∥∥∥∥ 1

n

n∑
t=1

[Zt ⊗ Zt − Ẑt ⊗ Ẑt]

∥∥∥∥∥
HS

= ‖( ˆ̃C0 − C0)⊗ ( ˆ̃C0 − C0)‖HS

=
1

n

∥∥∥√n( ˆ̃C0 − C0)
∥∥∥2
HS

= OP (1/n).

Therefore, it suffices to show that∥∥∥∥∥
b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

[Zt ⊗ Zt+s − Ẑt ⊗ Ẑt+s]

∥∥∥∥∥
HS

= op(1).

Again, by Theorem 3 of Kokoszka and Reimherr (2013), we get that, as n→∞,

∥∥∥∥∥
b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

[Zt ⊗ Zt+s − Ẑt ⊗ Ẑt+s]

∥∥∥∥∥
HS

=

∥∥∥∥∥
b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

[(Xt ⊗Xt)⊗ ( ˆ̃C0 − C0) + ( ˆ̃C0 − C0)⊗ (Xt+s ⊗Xt+s)

+ C0 ⊗ C0 − ˆ̃C0 ⊗ ˆ̃C0]

∥∥∥∥∥
HS

≤
b−1∑
s=1

1√
n
‖ 1

n

n−s∑
t=1

(Xt ⊗Xt)‖HS‖
√
n( ˆ̃C0 − C0)‖HS

+
b−1∑
s=1

1√
n
‖
√
n( ˆ̃C0 − C0)‖HS‖

1

n

n−s∑
t=1

(Xt+s ⊗Xt+s)‖

+
1√
n

b−1∑
s=1

1

n

n−s∑
t=1

‖C0‖HS‖
√
n(C0 − ˆ̃C0)|HS

+
1√
n

b−1∑
s=1

1

n

n−s∑
t=1

‖ ˆ̃C0‖HS‖
√
n(C0 − ˆ̃C0)‖HS = OP (b/

√
n) = op(1).

This completes the proof of the lemma.

Lemma 4.5.2. Let gb(·) be a non-negative, continuous and bounded function satisfying

the conditions of Lemma 4.5.1. Suppose that X satisfies Assumption 4 and that b = b(n)

is a sequence of integers such that b−1 + bn−1/2 = o(1) as n→∞. Then, as n→∞,

b−1∑
s=−b+1

gb(s)
1

n

n−|s|∑
t=1

∫∫
Zt(u, v)Zt+|s|(u, v)dudv

P→
∞∑

s=−∞

E
∫∫

Z0(u, v)Zs(u, v)dudv.
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Proof. Since
∑∞

t=−∞ E
∫∫

Z0(u, v)Zt(u, v)dudv converges and is finite, and since

1

n

n∑
t=1

∫∫
(Zt(u, v))2dudv

P→ E
∫∫

(Z0(u, v))2dudv

as n→∞, it suffices to prove that

b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)Zt+s(u, v)dudv

P→
∞∑
t=1

E
∫∫

Z0(u, v)Zt(u, v)dudv. (4.5.16)

Since∣∣∣∣∣
b−1∑
s=1

gb(s)
1

n

n−s∑
i=1

∫∫
Zt(u, v)Zt+s(u, v)dudv −

∞∑
t=1

E
∫∫

Z0(u, v)Zt(u, v)dudv

∣∣∣∣∣
≤

∣∣∣∣∣
m∑
t=1

E
∫∫

Z0,m(u, v)Zt,m(u, v)dudv −
∞∑
t=1

E
∫∫

Z0(u, v)Zt(u, v)dudv

∣∣∣∣∣
+

∣∣∣∣∣
b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt,m(u, v)Zt+s,m(u, v)dudv

−
m∑
t=1

E
∫∫

Z0,m(u, v)Zt,m(u, v)dudv

∣∣∣∣∣
+

∣∣∣∣∣
b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)Zt+s(u, v)dudv

−
b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt,m(u, v)Zt+s,m(u, v)dudv

∣∣∣∣∣, (4.5.17)

assertion (4.5.16) is proved by showing that there exists m0 ∈ N such that all three

terms on the right hand side of (4.5.17) can be made arbitrarily small in probability

as n→∞ for m = m0.

For the first term, we use the bound∣∣∣∣∣
m∑
t=1

(
E
∫∫

Z0,m(u, v)Zt,m(u, v)dudv − E
∫∫

Z0(u, v)Zt(u, v)dudv

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

t=m+1

E
∫∫

Z0(u, v)Zt(u, v)dudv

∣∣∣∣∣ . (4.5.18)

By Cauchy-Schwarz’s inequality and the decomposition

Z0,m(u, v)Zt,m(u, v)− Z0(u, v)Zt(u, v) = [Z0,m(u, v)− Z0(u, v)]Zt,m(u, v)

+ Z0(u, v)[Zt,m(u, v)− Zt(u, v)],
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we get that the first term of (4.5.18) is bounded by∣∣∣∣∣
m∑
t=1

E
∫∫

[Z0,m(u, v)− Z0(u, v)]Zt,m(u, v)dudv

∣∣∣∣∣
+

∣∣∣∣∣
m∑
t=1

E
∫∫

Z0(u, v)[Zt,m(u, v)− Zt(u, v)]dudv

∣∣∣∣∣
≤ 2

m∑
t=1

E

{[∫∫
[Z0,m(u, v)− Z0(u, v)]2dudv

]1/2[ ∫∫
[Zt,m(u, v)]2dudv

]1/2}

≤ 2
m∑
t=1

[
E
∫∫

[Z0,m(u, v)− Z0(u, v)]2dudv

]1/2[
E
∫∫

[Zt,m(u, v)]2dudv

]1/2
≤ 2

m∑
t=1

[
E
∫∫

[X0,m(u)X0,m(v)−X0(u)X0(v)]2dudv

]1/2
×
[
E
∫∫

[X0,m(u)X0,m(v)− c(u, v)]2dudv

]1/2
= 2

m∑
t=1

[
E‖X0,m ⊗X0,m −X0 ⊗X0‖2HS

]1/2[
E‖X0,m ⊗X0,m − C‖2HS

]1/2
=

[
E‖X0 ⊗X0 − C‖2HS

]1/2(
m

[
E‖X0,m ⊗X0,m −X0 ⊗X0‖2HS

]1/2)
.

Using (4.5.2), and since {Xt⊗Xt, t ∈ Z} is L2-m-approximable, it follows that for every

ε1 > 0 there exists m1 ∈ N such that the above term is less than ε1 for every m ≥ m1.

Consider the second term of (4.5.18). Since Z0(u, v) and Zt,t(u, v) are independent for

t ≥ m+ 1, using Cauchy-Schwarz’s inequality, we get∣∣∣∣∣
∞∑

t=m+1

E
∫∫

Z0(u, v)Zt(u, v)dudv

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

t=m+1

E
∫∫

Z0(u, v)[Zt(u, v)− Zt,t(u, v)]dudv

∣∣∣∣∣
≤

∞∑
t=m+1

[
E
∫∫

[Z0(u, v)]2dudv

]1/2 [
E
∫∫

[Zt(u, v)− Zt,t(u, v)]2dudv2
]1/2

=

[
E
∫∫

[X0(u)X0(v)− c(u, v)]2dudv

]1/2
×

∞∑
t=m+1

[
E
∫∫

[Xt(u)Xt(v)−Xt,t(u)Xt,t(v)]2dudv

]1/2
=

[
E‖X0,m ⊗X0,m − C‖2HS

]1/2 ∞∑
t=m+1

[
E‖X0,m ⊗X0,m −X0 ⊗X0‖2HS

]1/2
.

From (4.5.1), it follows that for every ε2 > 0, there exists m2 ∈ N such that the above

quantity is less than ε2 for every m ≥ m2.

Consider next the second term of the the right-hand side of the inequality (4.5.17).
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Note that for every m ≥ 1, we have that, for any fixed s, as n→∞,∣∣∣∣∣ 1n
n−s∑
t=1

∫∫
Zt,m(u, v)Zt+s,m(u, v)dud− E

∫∫
Z0,m(u, v)Zs,m(u, v)dudv

∣∣∣∣∣ = op(1).

Therefore, the aforementioned term is op(1) if we show that

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt,m(u, v)Zt+s,m(u, v)dud

∣∣∣∣∣ = op(1). (4.5.19)

For this, notice first that

E

[
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt,m(u, v)Zt+s,m(u, v)dud

]2

=
1

n2

b−1∑
s1=m+1

b−1∑
s2=m+1

gb(s1)gb(s2)

×
n−s1∑
t1=1

n−s1∑
t2=1

E

[∫∫
Zt1,m(u1, v1)Zt1+s1,m(u1, v1)du1dv1

×
∫∫

Zt2,m(u2, v2)Zt2+s2,m(u2, v2)du2dv2

]
.

Since the sequence {Zt,m(u, v), t ∈ Z} is m-dependent, Zt,m(u, v) and Zt+s,m(u, v) are

independent for s ≥ m+ 1, therefore using E(Z0,m(u, v)) = 0 we get that,

E
∫∫

Zt,m(u, v)Zt+s,m(u, v)dudv = 0.

Hence, the number of terms

E
[∫∫

Zt1,m(u1, v1)Zt1+s1,m(u1, v1)du1dv1 ×
∫∫

Zt2,m(u2, v2)Zt2+s2,m(u2, v2)du2dv2

]

in the last equation above which do not vanish is of order O(nb) and, consequently, as

n→∞,

E

[
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt,m(u, v)Zt+s,m(u, v)dud

]2
= O

(
b

n

)
= o(1), (4.5.20)

from which (4.5.19) follows by Markov’s inequality.
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For the third term in (4.5.17), we show that, for m = m0,

lim sup
n→∞

P

(∣∣∣∣∣
b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)Zt+s(u, v)dudv

−
b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt,m(u, v)Zt+s,m(u, v)dudv

∣∣∣∣∣ > δ

)
= 0, (4.5.21)

for any δ > 0. By Markov’s inequality, expression (4.5.21) follows if we show that, for

m = m0,

E

∣∣∣∣∣
b−1∑
s=1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)Zt+s(u, v)dudv

− Zt,m(u, v)Zt+s,m(u, v)dudv

∣∣∣∣∣ = o(1). (4.5.22)

For the above quantity we have the bound

E

∣∣∣∣∣
m∑
s=1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)Zt+s(u, v)− Zt,m(u, v)Zt+s,m(u, v)dudv

∣∣∣∣∣
+ E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)Zt+s(u, v)

− Zt,m(u, v)Zt+s,m(u, v)dudv

∣∣∣∣∣. (4.5.23)

For the first term of the right hand side of the above inequality, using the decomposition

Zt(u, v)Zt+s(u, v)− Zt,m(u, v)Zt+s,m(u, v)

= [Zt(u, v)− Zt,m(u, v)]Zt+s(u, v) + [Zt+s(u, v)− Zt+s,m(u, v)]Zt,m(u, v)

we get the bound,

m∑
s=1

1

n

n−s∑
t=1

E
∫∫
|[Zt(u, v)− Zt,m(u, v)]Zt+s(u, v)| dudv

+ E
∫∫
|[Zt+s(u, v)− Zt+s,m(u, v)]Zt,m(u, v)| dudv. (4.5.24)

Using Cauchy-Schwarz’s inequality, we have

E
∫∫
|[Zt(u, v)− Zt,m(u, v)]Zt+h(u, v)| dudv
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≤ E
[ ∫∫

[Zt(u, v)− Zt,m(u, v)]2dudv

]1/2[ ∫∫
[Zt+s(u, v)]2dudv

]1/2
≤
[
E
∫∫

[Zt(u, v)− Zt,m(u, v)]2dudv

]1/2[
E
∫∫

[Zt+s(u, v)]2dudv

]1/2
=

[
E‖Xt ⊗Xt −Xt,m ⊗Xt,m‖2HS

]1/2[
E‖Xt+h ⊗Xt+s − C0‖2HS

]1/2
. (4.5.25)

Using the same arguments, we get

E
∫∫
|[Zt+s(u, v)− Zt+s,m(u, v)]Zt,m(u, v)| dudv

≤
[
E‖Xt+s ⊗Xt+s −Xt+s,m ⊗Xt+s,m‖2HS

]1/2[
E‖Xt ⊗Xt − C‖2HS

]1/2
.

Therefore, (4.5.24) is bounded by

2(E‖X0 ⊗X0 − C0‖2HS)1/2
[
m(E‖X0 ⊗X0 −X0,m ⊗X0,m‖2HS)1/2

]
.

Hence, by (4.5.2), it follows that, for every ε3 > 0, there exists m3 ∈ Z such that, for

every m ≥ m3, this quantity is bounded by ε3. For the second term on the right hand

side of (4.5.23), we use the bound

E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)Zt+s(u, v)dudv

∣∣∣∣∣
+ E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt,m(u, v)Zt+s,m(u, v)dudv

∣∣∣∣∣ . (4.5.26)

Expression (4.5.20) implies that the second summand of (4.5.26) is o(1), while for the

first term of (4.5.26) we use the decomposition

Zt(u, v)Zt+s(u, v) = Zt(u, v)Zt+s,s(u, v) + Zt(u, v)[Zt+s(u, v)− Zt+s,s(u, v)]

to get the bound

E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)Zt+s,s(u, v)dudv

∣∣∣∣∣
+ E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)[Zt+s(u, v)− Zt+s,s(u, v)]dudv

∣∣∣∣∣ . (4.5.27)
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Using same arguments as those applied in (4.5.25), we get the bound

E
∫∫
|Zt(u, v)[Zt+s(u, v)− Zt+s,s(u, v)]| dudv

≤
[
E‖Xt+s ⊗Xt+s −Xt+s,s ⊗Xt+s,s‖2HS

]1/2[
E‖Xt ⊗Xt − C0‖2HS

]1/2
.

Hence, for the last term of expression (4.5.27), we have

E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt(u, v)[Zt+s(u, v)− Zt+s,s(u, v)]dudv

∣∣∣∣∣
≤
[
E‖X0 ⊗X0 − C0‖2HS

]1/2 ∞∑
s=m+1

[
E‖X0 ⊗X0 −X0,s ⊗X0,s‖2HS

]1/2
.

Therefore, using (4.5.1), we get that for every ε4 > 0, there exists m4 ∈ N such that,

for every m ≥ m4, this term is bounded by ε4. Consider next the first term of (4.5.27).

Using the decomposition

Zt(u, v)Zt+s,s(u, v) = [Zt(u, v)− Zt,s(u, v)]Zt+s,s(u, v) + Zt,s(u, v)Zt+s,s(u, v),

we get the bound

E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
[Zt(u, v)− Zt,s(u, v)]Zt+s,s(u, v)dudv

∣∣∣∣∣
+ E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt,s(u, v)Zt+s,s(u, v)dudv

∣∣∣∣∣ . (4.5.28)

For the first term of this bound, and by Cauchy-Schwarz’s inequality, we get the bound

E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
[Zt(u, v)− Zt,s(u, v)]Zt+s,s(u, v)dudv

∣∣∣∣∣
≤
[
E‖Xt ⊗Xt −Xt,m ⊗Xt,m‖2HS

]1/2[
E‖Xt+s ⊗Xt+s − C0‖2HS

]1/2
.

Hence, by (4.5.1), it follows that, for every ε5 > 0, there exists m3 ∈ Z such that,

for every m ≥ m3, this quantity is bounded by ε5. Consider the last term of the

expression given in (4.5.28) and note that {
∫∫

Zt,s(u, v)Zt+s,s(u, v)dudv, t ∈ Z} is a

2s-dependent sequence. Also note that since Zt,s(u, v) and Zt+s(u, v) are independent
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E
∫∫

Zt,s(u, v)Zt+s,s(u, v)dudv = 0. Therefore, as n→∞,

n−1/2
n∑
t=1

∫∫
Zt,s(u, v)Zt+s,s(u, v)dudv = OP (1).

Hence, using Portmanteau’s theorem, and since f(x) = |x| is a Lipschitz function, we

get that, as n→∞,

E

∣∣∣∣∣ 1√
n

n∑
t=1

∫∫
Zt,s(u, v)Zt+s(u, v)dudv

∣∣∣∣∣ = O(1).

Therefore, as n→∞,

E

∣∣∣∣∣
b−1∑

s=m+1

gb(s)
1

n

n−s∑
t=1

∫∫
Zt,s(u, v)Zt+s,s(u, v)dudv

∣∣∣∣∣
≤ 1√

n

b−1∑
s=m+1

E

∣∣∣∣∣ 1√
n

n−s∑
t=1

∫∫
Zt,s(u, v)Zt+s,s(u, v)dudv

∣∣∣∣∣ = O(b/
√
n) = o(1).

The proof of the lemma is concluded by choosing m0 = max{m1,m2,m3,m4,m5}.

Proof of Theorem 4.2.1. By the triangle inequality and Theorem 3 of Kokoszka

and Reimherr (2013), the assertion of the theorem is established if we show that, as

n→∞,
√
n(Ĉ∗0 − E∗(Ĉ∗0))⇒ Z0, (4.5.29)

in probability, where Z0 is a mean zero Gaussian Hilbert-Schmidt operator with co-

variance operator given by

Γ0 = E[Z1 ⊗ Z1] + 2
∞∑
s=2

E[Z1 ⊗ Zs].

Using Theorem 1 of Horváth et al. (2013), we get

√
n(Ĉ∗0 − E∗(Ĉ∗0))

=
1√
n

n∑
t=1

[
X∗t ⊗X∗t − E∗(X∗t ⊗X∗t )−Xn ⊗ (X∗t − E∗(X∗t ))

− (X∗t − E∗(X∗t ))⊗Xn

]
=

1√
n

n∑
t=1

[Z∗t − E∗(Z∗t )] +OP (1/
√
n).
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Also note that

1√
n

n∑
t=1

[Z∗t − E∗(Z∗t )] =
1√
k

k∑
t=1

(
1√
b

b∑
i=1

(
Z∗(t−1)b+i − E∗(Z∗(t−1)b+i)

))

=
1√
k

k∑
t=1

Ŷ ∗t ,

with an obvious notation for Ŷ ∗t , t = 1, 2, . . . , k. Recall that due to the block bootstrap

resampling scheme, the random variables Ŷ ∗t , t = 1, 2, . . . , k, are i.i.d. Therefore to

prove (4.5.29), it suffices by Lemma 5 of Kokoszka and Reimherr (2013), to prove that,

(i)

〈
1√
k

∑k
t=1 Ŷ

∗
t , y

〉
HS

d→ N(0, σ2(y)) for every Hilbert-Schmidt operator y acting

on L2,

and that

(ii) limn→∞ E∗
∥∥∥∥ 1√

k

∑k
t=1 Ŷ

∗
t

∥∥∥∥2
HS

exists and is finite.

To establish assertion (i), we first prove that, as n→∞,

Var∗

(〈
1√
k

k∑
t=1

Ŷ ∗t , y

〉
HS

)
P→ σ2(y). (4.5.30)

Consider (4.5.30) and notice that

Var∗

(〈
1√
k

k∑
t=1

Ŷ ∗t , y

〉
HS

)
= Var∗

(
〈Ŷ ∗1 , y〉HS

)

= E∗
[〈

1√
b

b∑
t=1

(Z∗t − E∗(Z∗t )), y

〉
HS

]2
. (4.5.31)

Let N = n − b + 1, Ỹt = b−1/2(Z̃t + Z̃t+1 + . . . + Z̃t+b−1), t = 1, 2, . . . , N and Ỹ ∗t =

b−1/2
∑b

i=1 Z
∗
(t−1)b+i, t = 1, 2, . . . , k. Since n/N → 1 as n→∞, in the following we will

occasionally replace 1/N by 1/n. Notice that,

E∗
(〈

1√
b

b∑
t=1

Z∗t , y

〉
HS

)
= E∗(Ỹ ∗1 ) =

1

N

N∑
t=1

〈Ỹt, y〉HS

=

√
b

N

[
n∑
t=1

〈Z̃t, y〉HS −
b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

]

= 〈
√
b ˆ̃Cn, y〉 −

√
b

N

[
b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

]
. (4.5.32)
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Therefore,

Var∗

(〈
1√
k

k∑
t=1

Ŷ ∗t , y

〉
HS

)

= E∗
[〈

1√
b

b∑
t=1

Ẑ∗t , y

〉
HS

+

√
b

N

[
b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

]]2

= E∗
[〈

1√
b

b∑
t=1

Ẑ∗t , y

〉
HS

]2

+

[√
b

N

[
b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

]]2

+ 2

[√
b

N

[
b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

]]

× E∗
[〈

1√
b

b∑
t=1

Ẑ∗t , y

〉
HS

]

= E∗
[〈

1√
b

b∑
t=1

Ẑ∗t , y

〉
HS

]2
+OP (b3/n2). (4.5.33)

Let Ŷt = b−1/2(Ẑt + Ẑt+1 + . . .+ Ẑt+b−1), t = 1, 2, . . . , N. Since,

E∗
[〈

1√
b

b∑
t=1

Ẑ∗t , y

〉
HS

]2
=

1

N

N∑
t=1

〈Ŷt, y〉2HS

=
1

N

n∑
t=1

〈Ẑt, y〉HS〈Ẑt, y〉HS

+
b−1∑
i=1

(
1− i

b

)
1

N

n−i∑
t=1

[〈Ẑt, y〉HS〈Ẑt+i, y〉HS + 〈Ẑt+i, y〉HS〈Ẑt, y〉HS]

− 1

N

b−1∑
i=1

(
1− i

b

)
[〈Ẑi, y〉HS〈Ẑi, y〉HS + 〈Ẑn−i+1, y〉HS〈Ẑn−i+1, y〉]HS

− 1

N

b−1∑
i=1

b−t∑
j=1

(
1− j + i

b

)
[〈Ẑj, y〉HS〈Ẑj+i, y〉HS + 〈Ẑn−j+1−i, y〉HS〈Ẑn−j+1, y〉HS

+ 〈Ẑj+i, y〉HS〈Ẑj, y〉HS + 〈Ẑn−j+1, y〉HS〈Ẑn−j+1−i, y〉HS],

we get, using (4.5.33),

Var∗

(〈
1√
k

k∑
t=1

Ŷ ∗t , y

〉
HS

)

=
1

N

n∑
t=1

〈Ẑt, y〉HS〈Ẑt, y〉HS
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+
b−1∑
i=1

(
1− i

b

)
1

N

n−i∑
t=1

[〈Ẑt, y〉HS〈Ẑt+i, y〉HS + 〈Ẑt+i, y〉HS〈Ẑt, y〉HS]

+OP (b/n) +OP (b2/n) +OP (b3/n2).

Therefore,

Var∗

(〈
1√
k

k∑
t=1

Ŷ ∗t , y

〉
HS

)

=
1

N

n∑
t=1

〈Ẑt ⊗ Ẑt, y ⊗ y〉HS

+
b−1∑
i=1

(
1− i

b

)
1

N

n−i∑
t=1

[〈Ẑt ⊗ Ẑt+i, y ⊗ y〉HS + 〈Ẑt+i ⊗ Ẑt, y ⊗ y〉HS]

+OP (b2/n). (4.5.34)

Let gb(i) =
(

1− |i|
b

)
in Lemma 4.5.1, and use the triangular inequality to get

∣∣∣∣∣
〈

1

N

n∑
t=1

Ẑt ⊗ Ẑt +
b−1∑
i=1

(
1− i

b

)
1

N

n−i∑
t=1

[Ẑt ⊗ Ẑt+i + Ẑt+i ⊗ Ẑt]

−
∞∑

t=−∞

E[Z0 ⊗ Zt], y ⊗ y

〉
HS

∣∣∣∣∣
≤

∥∥∥∥∥ 1

N

n∑
t=1

Ẑt ⊗ Ẑt +
b−1∑
i=1

(
1− i

b

)
1

N

n−i∑
t=1

[Ẑt ⊗ Ẑt+i + Ẑt+i ⊗ Ẑt]

−
∞∑

t=−∞

E[Z0 ⊗ Zt]

∥∥∥∥∥
HS

×

∥∥∥∥∥y ⊗ y
∥∥∥∥∥
HS

= op(1).

Therefore, and using 〈Z0 ⊗Zt, y⊗ y〉HS = 〈Z0, y〉HS〈Z0, y〉HS, we get from (4.5.34), as

n→∞,

Var∗

(〈
1√
k

k∑
t=1

Ŷ ∗t , y

〉
HS

)
P→

〈
∞∑

t=−∞

E[Z0 ⊗ Zt], y ⊗ y

〉
HS

= 〈Γ, y ⊗ y〉HS = σ2(y). (4.5.35)

We next establish the asymptotic normality stated in (i). Since 〈Ŷ ∗t , y〉HS, t =

1, 2, . . . , k are i.i.d. real valued random variables, we show that Lindeberg’s condition
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is satisfied, i.e., for every ε > 0, as n→∞,

1

τ ∗2k

k∑
t=1

E∗
[(
〈Ŷ ∗t , y〉HS − E∗(〈Ŷ ∗t , y〉HS)

)2
× 1

(
|〈Ŷ ∗t , y〉HS − E∗(〈Ŷ ∗t , y〉HS)| > ετ ∗k

)]
= op(1), (4.5.36)

where 1A(x) denotes the indicator function of the set A and

τ ∗2k =
k∑
t=1

Var∗(〈Ŷ ∗t , y〉HS) = kVar∗(〈Ŷ ∗1 , y〉HS). (4.5.37)

To establish (4.5.36), and because of (4.5.35) and (4.5.37), it suffices to show that, for

any δ > 0, as n→∞,

P

(
1

k

k∑
t=1

E∗
[
(〈Ŷ ∗t , y〉HS − E∗(〈Ŷ ∗t , y〉HS))2

× 1(|〈Ŷ ∗t , y〉HS − E∗(〈Ŷ ∗t , y〉HS)| > ετ ∗k )

]
> δ

)
→ 0. (4.5.38)

Towards this, notice first that, for any two random variables X and Y and any η > 0,

E[|X + Y |21(|X + Y | > η)]

≤ 4
[
E|X|21(|X| > η/2) + E|Y |21(|Y | > η/2)

]
; (4.5.39)

see Lahiri (2003), p. 56. Since the random variables 〈Ŷ ∗t , y〉HS are i.i.d., we get using

expression (4.5.32) and Markov’s inequality that, as n→∞,

P

(
1

k

k∑
t=1

E∗
[
(〈Ŷ ∗t , y〉HS − E∗(〈Ŷ ∗t , y〉HS))2

× 1(|〈Ŷ ∗t , y〉HS − E∗(〈Ŷ ∗t , y〉HS)| > ετ ∗k )

]
> δ

)
≤ δ−1E

{
E∗
[
(〈Ŷ ∗1 , y〉HS − E∗(〈Ŷ ∗1 , y〉HS))21(|〈Ŷ ∗1 , y〉HS − E∗(〈Ŷ ∗1 , y〉HS)| > ετ ∗k )

]}
= δ−1E

{
E∗
[(〈

1√
b

b∑
t=1

Ẑ∗t , y

〉
HS

+

√
b

N

[
b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

])2
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× 1

(∣∣∣∣∣
〈

1√
b

b∑
t=1

Ẑ∗t , y

〉
HS

+

√
b

N

[
b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

] ∣∣∣∣∣ > ετ ∗k

)]}

= δ−1E

[
1

N

N∑
t=1

(
〈Ŷt, y〉HS +

√
b

N

[
b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

])2

× 1

(∣∣∣∣∣〈Ŷt, y〉HS +

√
b

N

[
b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

]∣∣∣∣∣ > ετ ∗k

)]

≤ 4δ−1

[
E(〈Ŷ1, y〉2HS)1(|〈Ŷ1, y〉HS| > ετ ∗k/2)

+ E

(√
b

N

b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

)2

× 1(

∣∣∣∣∣
(√

b

N

b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

)∣∣∣∣∣ > ετ ∗k/2)

]

≤ 4δ−1

[
E(〈Ŷ1, y〉2HS)1(|〈Ŷ1, y〉HS| > ετ ∗k/2)

+ E

(√
b

N

b−1∑
i=1

(
1− i

b

)
[〈Z̃i, y〉HS + 〈Z̃n−i+1, y〉HS]

)2 ]
≤ 4δ−1E(〈Ŷ1, y〉2HS)1(|〈Ŷ1, y〉HS| > ετ ∗k/2) +O(b3/n2). (4.5.40)

By Lemma 4 of Kokoszka and Reimherr (2013) it follows that

∞∑
s=−∞

E〈Z0, y〉HS〈Zs, y〉HS

converges absolutely. By Kronecker’s lemma, we then get, as n→∞,

E(〈Ŷ1, y〉2HS) =
1

b

b∑
i=1

b∑
j=1

E[〈Ẑi, y〉HS〈Ẑj, y〉HS]

=
∑
|s|<b

(
1− |s|

b

)
E[〈Ẑ0, y〉HS〈Ẑs, y〉HS]

=
∑
|s|<b

(
1− |s|

b

)
E[〈Z0, y〉HS〈Zs, y〉HS] +O(b/n1/2)

→
∞∑

s=−∞

E[〈Z0, y〉HS〈Zs, y〉HS].
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Therefore, by the dominated convergence theorem,

E[〈Ŷ1, y〉2HS)1(|〈Ŷ1, y〉HS| > ετ ∗k/2) = o(1) (4.5.41)

and, therefore, assertion (i) is proved.

To establish assertion (ii), notice first that

E∗
∥∥∥∥∥ 1√

k

k∑
t=1

Ŷ ∗t

∥∥∥∥∥
2

HS

= E∗‖Ŷ ∗1 ‖2HS.

Furthermore, since

E∗
(

1√
b

b∑
t=1

Z∗t

)
=

1

N

N∑
t=1

Ỹt =

√
b

N

[
n∑
t=1

Z̃t −
b−1∑
i=1

(
1− i

b

)
[Z̃i + Z̃n−i+1]

]

=
√
b
̂̃
Cn −

√
b

N

b−1∑
i=1

(
1− i

b

)
[Z̃i + Z̃n−i+1],

we get

E∗‖Ŷ ∗1 ‖2HS = E∗
∥∥∥∥∥ 1√

b

b∑
t=1

Ẑ∗t +

√
b

N

b−1∑
i=1

(
1− i

b

)
[Z̃i + Z̃n−i+1]

∥∥∥∥∥
2

HS

=
1

N

N∑
t=1

∥∥∥∥∥Ŷt +

√
b

N

b−1∑
i=1

(
1− i

b

)
[Z̃i + Z̃n−i+1]

∥∥∥∥∥
2

HS

.

Since,
√
bN−1

∑b−1
i=1

(
1− i

b

)
[Z̃i + Z̃n−i+1] = OP (b3/2/n), it suffices to prove that the

limit

lim
n→∞

1

N

N∑
t=1

‖Ŷt‖2HS (4.5.42)

exists and it is finite. Let Yt = b−1/2(Zt + · · · + Zt+b−1), t = 1, 2, . . . N, and note that

N−1
∑N

t=1 ‖Ŷt‖2HS = N−1
∑N

t=1 ‖Yt +
√
b(C0 −

̂̃C0)‖2HS. By Theorem 3 of Kokoszka and

Reimherr (2013), in order to prove (4.5.42), it suffices to show that

lim
n→∞

1

N

N∑
t=1

‖Yt‖2HS (4.5.43)

exists and it is finite. We have that

1

N

N∑
t=1

‖Yt‖2HS =
1

N
〈Zt, Zt〉HS +

b−1∑
i=1

(
1− i

b

)
1

N

n−i∑
t=1

[〈Zt, Zt+i〉HS + 〈Zt+i, Zt〉HS]
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− 1

N

b−1∑
t=1

(
1− t

b

)
[〈Zt, Zt〉HS + 〈Xn−t+1, Xn−t+1〉]HS

− 1

N

b−1∑
t=1

b−t∑
j=1

(
1− t+ j

b

)
[〈Zj, Zj+t〉HS + 〈Zn−j+1−t, Zn−j+1〉HS

+ 〈Zj+t, Zj〉HS + 〈Zn−j+1, Zn−j+1−t〉HS]

=
1

N

n∑
t=1

〈Zt, Zt〉HS +
b−1∑
i=1

(
1− i

b

)
1

N

n−i∑
t=1

[〈Zt, Zt+i〉HS + 〈Zt+i, Zt〉HS]

+OP (b2/n)

=
b−1∑

i=−b+1

(
1− i

b

)
1

n

n−|i|∑
t=1

∫∫
Zt(u, v)Zt+|i|(u, v)dudv

+OP (b2/n). (4.5.44)

Hence, by letting gb(s) = (1− |s|/b) in Lemma 4.5.2, we get that the last term above

converges to
∑∞

s=−∞ E
∫∫

Z0(u, v)Zs(u, v)dudv, from which we conclude that, as n →

∞,

E∗‖Y ∗1 ‖2HS →
∞∑

s=−∞

E
∫∫

Z0(u, v)Zs(u, v)dudv,

in probability.

Proof of Lemma 4.3.1. Using Theorem 3 of Kokoszka and Reimherr (2013) it follows

that there exist two independent, mean zero, Gaussian Hilbert-Schmidt operators Z1,0

and Z2,0 with covariance operators Γ1,0 and Γ2,0 respectively, such that

(√
n1(Ĉ1,0 − C1,0),

√
n2(Ĉ2,0 − C2,0)

)
converges weakly to (Z1,0,Z2,0). Since

√
n1n2

M
(Ĉ1,0 − Ĉ2,0) =

√
n2

M

√
n1(Ĉ1,0 − C̃0)−

√
n1

M

√
n2(Ĉ2,0 − C̃0),

where C̃0 is the (under H0) common lag-zero covariance operator of the two populations,

we get that, for n1, n2 →∞ and n1/M → θ,

TM
d→ ‖Z0‖2HS,

where Z0 =
√

1− θZ1,0 −
√
θZ2,0.
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Proof of Theorem 4.3.1. Using the triangle inequality and the fact that
√
n(Ĉi,0 −

Ci,0) ⇒ Zi,0, i = 1, 2, it suffices to prove that T ∗M converges weakly to ‖Z0‖2HS, where

Z0 =
√

1− θZ1,0−
√
θZ2,0. This is proved along the same lines as Lemma 4.3.1 using of

Theorem 4.2.1 and the independence of the pseudo-random elements Y∗1,n1
and Y∗2,n2

.
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5
Conclusion And Further Work

“The outcome of any serious research can only be to make two

questions grow where only one grew before.”

– Thorstein Veblen

This thesis lies in the intersection of Functional Time Series analysis and Bootstrap

Methods. As stated in the Introduction, our main concerns are to establish validity

of the moving block and tapered block bootstrap for depended functional data and

to propose general, bootstrap based procedures, to address the important topic of

testing the equality of mean functions or the equality of covariance operators between

k-populations. For the purpose of our research we focus on observations stemming

for a stationary stochastic process X = (Xt, t ∈ Z) of Hilbert space-valued random

variables which is Lp-m-approximable, a dependence assumption which is satisfied by

large classes of commonly used functional time series models.

More specifically, and as far as the first aim of this thesis is concerned, our con-

tribution is to prove a central limit theorem for the moving block bootstrap and for

the tapered block bootstrap applied to the sample mean function. We also show that

these block bootstrap procedures provide consistent estimation of the so called log run

covariance operator of i.e., of the spectral density operator of the underlying functional

process at frequency zero. We also prove a central limit theorem for the moving block

bootstrap procedure applied to the sample covariance operator.

Regarding the second aim of this thesis, we proposed moving block and tapered

block bootstrap procedures for testing the equality of mean functions and a moving

block bootstrap procedure for testing the equality of covariance operators, between sev-
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eral independent functional time series. In each case the bootstrap pseudo-observations

were generated in a way that the null hypothesis of interest is satisfied. Therefore, the

proposed testing methodologies are applicable to a broad range of possible test statis-

tics. We have focused in this thesis on testing approaches based on fully functional

test statistics. For the proposed testing algorithms theoretical justifications for approx-

imating the null distribution of the test statistics considered are given. Furthermore,

simulation results are presented which investigate the finite sample behaviour of the

proposed block bootstrap-based testing methodologies under the null and under the

alternative.

There are a number of questions for further research that arose during the present

study.

Firstly, our testing procedures focus on k-independent populations. Future research

could examine if the results obtained in this thesis can be extended to the case where

the populations are dependent. This requires the adaption of the block bootstrap

procedures to capture the dependent structure between the populations and the proof

of the corresponding central limit theorems.

Another interesting question from this work is the development of a bootstrap

based procedure which will allow inference for the spectral density operators itself. An

important problem in this context is that of testing the equality of the spectral density

operators of k independent, or dependent, functional time series.

As proved by Paparoditis and Politis (2001) in the case where the random variables

are finite-dimensional, the TBB gives a better estimation for the standard deviation of

the normalised sample mean compared to the MBB since in the TBB case, the order of

the bias of the estimator is O(1/b2) while in the MBB case, the order of the bias of the

estimator is O(1/b), where b is the block length in the block bootstrap procedures. As

revealed from the simulations of Section 3.4.1 the tapered block bootstrap procedure,

also gives a better estimation for the standard deviation of the normalised sample mean

function in the case of functional data. It would be important to have a theoretical

justification of this improved behavior of the TBB for functional time series.

In this context the development of a tapered block bootstrap based procedure for

testing the equality of the lag-zero autocovariance operators for a given number of

functional time series would be an interesting extension of the current work.

Further, as obtained from the simulations carried out for this thesis, the perfor-

mance of all block bootstrap procedures considered essentially depends on the choice
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of block size b. A challenging research topic would be to propose methods for selecting

this bootstrap parameter which derives ‘good’ results or even ‘optimal’ in some sense.
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[7] Fremdt, S., Steinebach, J.G., Horváth, L. and Kokoszka, P. (2013). Testing the

equality of covariance operators in functional samples. Scandinavian Journal of

Statistics, Vol. 40, 138–152.
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