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Περίληψη 
 
Τα ιξωδοπλαστικά υλικά συµπεριφέρονται ως ρευστά ή ως στερεά αν η τάση είναι µικρότερη ή µεγαλύτερη 

από την τάση διαρροής (yield-stress), αντίστοιχα. Αυτή η διττή συµπεριφορά έχει ως αποτέλεσµα το ότι το 

πεδίο ροής χωρίζεται σε περιοχές διαρροής και µη διαρροής. Είναι, επίσης, γνωστό ότι τα ιξωδοπλαστικά 

υλικά τείνουν να ολισθαίνουν στα τοιχώµατα. Η παρούσα διατριβή έχει δύο κύριους στόχους. Ο πρώτος 

στόχος είναι η επίλυση της ροής Poiseuille ενός ρευστού Herschel-Bulkley µε διαφορετική ολίσθηση στα 

δύο τοιχώµατα και η επέκταση της έρευνας των Philippou et al. (2016), προκειµένου να διερευνηθεί η 

ανάπτυξη της ιξωδοπλαστικής ροής στην περίπτωση ενός αγωγού µε ολίσθηση µόνο στο ένα τοίχωµα. Ο 

δεύτερος κύριος στόχος, αφορά στην επέκταση της ‘λιπαντικής µεθόδου’ (lubrication method) των Fusi et al. 

(2015) και την επίλυση της ροής ενός ρευστού Herschel-Bulkley µε ρεολογικές παραµέτρους εξαρτώµενες 

από την πίεση, στην περίπτωση συµµετρικών ή µη συµµετρικών αγωγών.  

 Στο πρώτο µέρος της διατριβής, µελετούµε τη µόνιµη ροή ενός ρευστού Herschel-Bulkley υπό 

πίεση, υποθέτοντας ότι ισχύουν διαφορετικές εξισώσεις ολίσθησης στα δύο τοιχώµατα. Καθώς ο 

συντελεστής πίεσης αυξάνεται, παρατηρούνται τρεις διαφορετικές περιοχές ροής. Η επέκταση των 

διαφορετικών περιοχών ροής εξαρτάται από το πλάτος του αγωγού. Τα θεωρητικά αποτελέσµατα 

συµφωνούν µε πειραµατικά δεδοµένα για µαλακά υαλώδη εναιωρήµατα, τα οποία διεξήγαγαν οι Vayssade et 

al. (2014). Επιπλέον, µελετούµε τη ροή ενός ρευστού Herschel-Bulkley σε οριζόντιο αγωγό, υποθέτοντας ότι 

η ολίσθηση εµφανίζεται µόνο στο άνω τοίχωµα και χρησιµοποιώντας µια εξίσωση ολίσθησης εκθετικής 

µορφής. Παρουσιάζουµε τις µονοδιάστατες πλήρως ανεπτυγµένες λύσεις και προσδιορίζουµε τις 

διαφορετικές περιοχές ροής. Χρησιµοποιούµε τη Μέθοδο των Πεπερασµένων Στοιχείων και το µοντέλο 

Παπαναστασίου για εξοµάλυνση της καταστατικής εξίσωσης και επιλύουµε αριθµητικά τη δυσδιάστατη 

αναπτυξιακή ροή. ∆εδοµένου ότι ο κλασικός ορισµός του µήκους ανάπτυξης δεν είναι εφαρµόσιµος, 

λαµβάνεται υπόψην το ολικό µήκος ανάπτυξης (global development length) καθώς και το µήκος ανάπτυξης 

ως προς το άνω τοίχωµα (upper-wall development length). Οι συνδυασµένες επιδράσεις της ολίσθησης και 

του αριθµού Bingham διερευνώνται, επίσης.  

 Στο δεύτερο µέρος της διατριβής, επεκτείνουµε την προσέγγιση που προτείνεται από τους Fusi et al. 

(2015) για πλαστικά Bingham, προκειµένου να µοντελοποιήσουµε τη ροή λίπανσης ενός ρευστού Herschel-

Bulkley σε ένα συµµετρικό αγωγό διαφορετικού πλάτους, όπου τόσο ο δείκτης συνάφειας (consistency 

index) όσο και η τάση διαρροής (yield stress) εξαρτώνται από την πίεση. Επιλύοντας µια ολοκληρωτικό-

διαφορική εξίσωση, υπολογίζουµε αριθµητικά την πίεση και χρησιµοποιώντας τις αναλυτικές λύσεις, 

υπολογίζουµε τη θέση της επιφάνειας διαρροής και τις δύο συνιστώσες της ταχύτητας. ∆ίνουµε, επίσης, 

καποιες αναλυτικές λύσεις για αγωγούς σταθερού και γραµµικά-µεταβαλλόµενου πλάτους και υπολογίζουµε 

αριθµητικά τις λύσεις λίπανσης για άλλες γεωµετρίες. Τέλος, επιλύουµε τη ροή λίπανσης ενός ρευστού 

Herschel-Bulkley µε ρεολογικές παραµέτρους εξαρτώµενες από την πίεση σε έναν ασύµµετρο αγωγό, 

επεκτείνοντας την πιο πάνω προτεινόµενη µέθοδο.  
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Abstract 

 
Yield-stress or viscoplastic materials flow like a fluid only when the stress exceeds the yield stress. 

Otherwise, they beahave as a solid. As a result, the flow field is divided into unyielded and yielded regions. 

Viscoplastic materials are dispersed systems known to also exhibit wall slip. Two are the main objectives of 

this thesis. First, to solve the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip and 

extend the work of Philippou et al. (2016) in order to investigate the development of viscoplastic flow in the 

particular case of a channel with slip only along one wall. The second objective is the extension of the 

lubrication method of Fusi et al. (2015) in order to solve the flow of Herschel-Bulkley fluid with pressure-

dependent yield stress and consistency index, in the case of long symmetric or asymmetric channels with a 

general wall functions. 

 In the first part of the thesis, we consider the steady, pressure-driven flow of a Herschel-Bulkley 

fluid in microchannel, assuming that different power-law slip equations apply at the two walls, resulting to 

the asymmetry of the velocity profile. We observe that, as the pressure gradient is increased; three different 

flow regimes are derived. The extension of the different flow regimes depends on the channel gap. The 

theoretical results are in agreement with experimental data on soft glassy suspensions, which are obtained by 

Vayssade et al. (2014). Further, we study the flow development of a Herschel-Bulkley fluid in a horizontal 

channel, assuming that slip occurs only along the upper wall. A power-law equation is employed. We derive 

the one-dimensional fully-developed solutions and identify the different flow regimes. We use finite elements 

along with the Papanastasiou regularization for the Herschel-Bulkley constitutive equation and we solve the 

two-dimensional development flow, numerically. Since the classical definition of the development length is 

not applicable, we consider the global and upper-wall development lengths. The combined effects of slip and 

the Bingham number are also investigated.  

 In the second part of the thesis, we extend the approach proposed by Fusi et al. (2015) for a 

Bingham plastic, in order to model the lubrication flow of a Herschel-Bulkley fluid in a symmetric long 

channel of varying width, where both the consistency index and the yield stress are pressure-dependent. 

Solving an integro-differential equation, we calculate the pressure, numerically; and using analytical 

solutions, we compute the position of the yield surface and the two velocity components. We also derive 

some analytical solutions for channels of constant and linearly-varying widths and calculate the lubrication 

solutions for other geometries, numerically. Finally, we solve the lubrication flow of a Herschel-Bulkley 

fluid with pressure-dependent rheological parameters in a long asymmetric channel, extending the above 

proposed method. 
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Chapter 1 

Introduction

 

1.1 Yield-stress fluids

Newtonian fluids obey Newton

                                                                            

where τ is the stress tensor

                                                                         

is the rate-of-strain tensor, 

superscript T denotes the transpose. However, most common materials and materials of industrial 

importance are not Newtonian

fluids, i.e. in fluids described by a constitutive relation of the form

                                                                          

where the viscosity is not constant but varies with the magnitude of the rate

                                                             

where the symbol II stands for th

generalized-Newtonian constitutive equations are shown in Fig. 1.1. These are briefly discussed 

below. 

 

Figure 1.1:

 

 

Introduction 

luids 

Newton’s linear constitutive equation 

                                                                            
η=τ γɺ                                   

is the stress tensor, η is the constant shear viscosity,   

                                                                         ( )
T≡ ∇ + ∇γ u uɺ                                                       

strain tensor, u is the velocity vector, ∇u  is the velocity-

denotes the transpose. However, most common materials and materials of industrial 

importance are not Newtonian. In this particular thesis, we are interested in generalized

described by a constitutive relation of the form 

                                                                          
( )η γ=τ γɺ ɺ                                                          

where the viscosity is not constant but varies with the magnitude of the rate

                                                             

1 1
:

2 2
IIγ ≡ =
γ

γ γ
ɺ

ɺ ɺ ɺ                             

stands for the second invariant of a tensor (Mitsoulis, 2007). Representative 

Newtonian constitutive equations are shown in Fig. 1.1. These are briefly discussed 

Figure 1.1: The most common generalized Newtonian models.

1 

                                      (1.1) 

                                        (1.2) 

-gradient tensor and the 

denotes the transpose. However, most common materials and materials of industrial 

sis, we are interested in generalized-Newtonian 

                                                        (1.3) 

where the viscosity is not constant but varies with the magnitude of the rate-of-strain tensor 

                                              (1.4) 

e second invariant of a tensor (Mitsoulis, 2007). Representative 

Newtonian constitutive equations are shown in Fig. 1.1. These are briefly discussed 

 

The most common generalized Newtonian models. 
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The power-law model 

                                                                          
1nkγ −=τ γɺɺ                                                 (1.5) 

is the immediate generalization of the Newtonian model, where k is the consistency index and n is 

the power-law exponent. The power-law model is able to account for shear-thinning (n<1, in which 

case the viscosity decreases withγɺ ) and shear-thickening (n>1, in which case the viscosity 

increases withγɺ ) effects. The Newtonian fluid is recovered when n=1 (constant viscosity).  

In this thesis, we are interested in yield-stress or viscoplastic materials, which exhibit a 

yield stress,
 0
τ  , i.e. a critical stress value below which no deformation (i.e. flow) is allowed and 

so, the fluid behaves as a rigid body (Mitsoulis, 2007). The material flows like a fluid as soon as 

the yield stress is exceeded. As a result, the flow field is divided into unyielded (i.e. plug) and 

yielded regions. The simplest and most widely used viscoplastic model is the Bingham plastic 

model (Bingham, 1922)  

                                                       

0

0

0

,            

,

τ τ

τ
µ τ τ

γ

= ≤

= + >




 
   

γ 0

τ γ

ɺ

ɺ
ɺ

                                                      (1.6) 

where µ is the plastic viscosity, and τ is the magnitude of τ, 

                                                          

1 1
:  .

2 2
IIτ ≡ = τ τ
τ

                                                       (1.7) 

The Newtonian fluid is recovered by setting 
0

τ =0. The Herschel-Bulkley model is the 

immediate generalization of the Bingham model 

                                                    

0

n 10

0

,              

,k

τ τ

τ
γ τ τ

γ
−

= ≤

= + >




 
   

γ 0

τ γ

ɺ

ɺ ɺ
ɺ

                                               (1.8)  

The power-law fluid and the Bingham plastic are special cases of the Herschel-Bulkley fluid, 

recovered by setting 
0

0τ =
 
and n=1, respectively. Another well known viscoplastic model is 

the Casson fluid (Mitsoulis, 2007) 

                                                    

0

2

0

,                  

,

τ τ

τ
µ τ τ

γ

= ≤

= + >




 
 

  

γ 0

τ γ

ɺ

ɺ

ɺ

                                      (1.9) 

which is often used to describe the rheological behavior of blood.  

            Many materials exhibit viscoplastic behavior, such as certain polymer solutions, 

suspensions and slurries, emulsions, colloids, muds and clays, crystallizing lavas, heavy oils, 

cosmetic creams and hair gels, food stuff, such as liquid chocolate, pastes; paints, foam, biofluids, 

such as blood (Wang, 1998; Barnes, 1999). As a consequence, the theory of viscoplastic fluids has 
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applications in wide array of different fields, ranging from the oil, gas and chemical industries, to 

food processing, medical and geophysical fluid dynamics. 

The existence of yield stress has been the subject of a long debate. Barnes and Walters 

(1985) claimed that the yield stress is an idealization and all fluids will show Newtonian behavior 

at small stresses below the apparent yield stress. This assertion caused a flurry of discussion and 

publication regarding the meaning of the word ‘yield stress’. Hartnett and Hu (1989) concluded 

that ‘yield stress is an engineering reality’, where a year after, Astarita (1990) claimed that whether 

yield stress is or is not an engineering reality depends on the problem under consideration. Barnes 

(1999) stated that the concept of yield stress can be proved and, used correctly, once it is properly 

defined, delimited and circumscribed. According to Bonn et al. (2017), the existence of yield stress 

on an experimental base has been established, while Dinkgreve et al. (2017) claimed that the 

appearance of a Newtonian fluid regime at stresses below the yield value is an artifact.    

As already mentioned, a viscoplastic material flows like a fluid as soon as the yield stress 

is exceeded; otherwise it remains unyielded and behaves as a solid. As a result, the flow field is 

divided into unyielded ( )0τ τ≤
 
and yielded ( )0τ τ> regions. For example, in plane Poiseuille 

(i.e. pressure-driven) fully-developed flow of a Bingham plastic fluid the velocity is given by  

                               

( )

( ) ( )

20

0 0

0

2 2 0

0

, 0

,

1

2

1

2

x

y y

y y H

H y
y

u
p

H y H y
x

τ

µ

τ

µ µ

≤ ≤

=

≤ ≤

−

∂
− − − −
∂





     

                                (1.10) 

where
 

                                                          
( )

0

0
/

y
p x

τ
=

−∂ ∂                                                           
(1.11) 

is the yield point at which the shear rate vanishes,  

                                                               0x
du

dy
γ = =ɺ

                                                         
(1.12) 

H  is the width of the channel and ( )/ 0p x−∂ ∂ >  is the imposed pressure gradient. The 

geometry and some definitions for the particular flow are given in Fig. 1.2. It should be noted that 

flow occurs only when the pressure gradient exceeds the critical value  

                                                                    0

c
H

G
τ

=
                                                              

(1.13) 

In the unyielded part of the flow domain ( 00 y y≤ ≤ ), the material moves as a solid at a constant 

speed. 
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Figure 1.2: Plane Poiseuille flow of a Bingham plastic fluid. 

 

Similarly, in axisymmetric fully-developed Poiseuille flow of a Bingham plastic fluid, the velocity 

is given by   

                          

( )

( ) ( )

20

0 0

0

2 2 0

0

, 0

,

1

2

1

4

z

r r

r R

R r
r

u

R r R r r
p

z

τ

µ

τ

µ µ

≤ ≤

=

≤ ≤

−

− − −





∂  −  ∂  

                                        (1.14) 

where 
 

                                                          
( )

0

0

2

/
r

p z

τ
=

−∂ ∂                                                          
(1.15) 

is the yield point and R  is the radius of the tube (Fig. 1.3). 

 

 

 

Figure 1.3: Axisymmetric Poiseuille flow of a Bingham plastic fluid. 
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The critical pressure gradient for the initiation of flow is 
 

                                                         0
2

c
R

G
τ

=
                                                                      

(1.16) 

 

1.2 Wall slip 

The no-slip condition for viscous fluids dictates that at a solid boundary, the velocity of the fluid 

relative to that of the boundary is zero. In other words, the velocity of the fluid, 
F

u , immediately 

adjacent to a solid boundary, is identical to the velocity, 
S

u , of the boundary, i.e. =
F S

u u . 

However, as pointed out by Neto et al. (2005), the no-slip boundary condition remains an 

assumption not based on physical principles. Its physical origins are believed to be mainly the 

trapping of liquid in pockets and crevices present on the solid surface and the attractive forces 

between the molecules of the solid and those of the liquid (Neto et al., 2005). In the past few 

decades, the validity of the no-slip boundary condition has been questioned. In fact, a plethora of 

experimental observations provide strong evidence that not only complex but even Newtonian 

fluids exhibit slip (Neto et al., 2005).  

Wall slip is important in many industrial applications, such as the extrusion of complex 

fluids, ink jet processes, oil migration in porous media, and in microfluidics. In the presence of wall 

slip, 
F S

u u≠  and the difference 
S Fw u uu = − is known as the slip velocity.  

 

 

 

Figure 1.4: Slip velocity and slip length. 

 

Navier (1827) was the first to propose a slip model relating linearly the slip velocity, to the 

wall shear stress, 
w

τ . The particular model reads 

                                                                  
w wuτ β=

                                                          
(1.17) 

where β
 
is the slip coefficient. The latter coefficient incorporates the effects of temperature, the 

normal stress, the molecular parameters, and the properties of the fluid/wall interface (Denn, 2001; 

Hatzikiriakos, 2012). The no-slip and full-slip limiting cases are recovered when β →∞
 
and 

0β = , respectively. In Newtonian flow, the slip coefficient is related to the slip or extrapolation 

FLUID

WALL

y

x

b

wu
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length b, by means of / bβ η≡ , where η denotes the viscosity. Τhe extrapolation length b is 

defined as the distance from the wall at which the velocity of the fluid vanishes if this is linearly 

extrapolated, as illustrated in Fig. 1.4. (In the simple flow illustrated in the latter figure,

).
w yx w

τ τ=  As an example, in the case of plane fully-developed Poiseuille flow, the wall shear 

stress is given by  

                                                     w yx y H

dp

dx
Hττ

=
−= −  =  

                                                      
(1.18) 

Applying the Navier slip equation (1.17), one gets for the slip velocity 
 

                                                               
w

dp

dx

H
u

β
−=  

 
                                                              

(1.19) 

The above expression is valid even when the wall shear stress is below the yield stress or 

equivalently when the pressure gradient is below the critical value 0 /
c

G Hτ=
 

above which the 

material yields; below this critical value, the material moves as a solid (unyielded) with a uniform 

velocity ,

 
wu  i.e.

  

                                             
x w

H
u u constant

p

xβ
= = =

∂ − ∂                                                 
(1.20) 

Otherwise, the velocity profile is given by 

                               

2

0 0

2 2

0 0 0

( ) , 01
(y)

( ) ( ) ,2
x w

H y y ydp
u u

H y y y y y Hdxµ

− ≤ ≤
= + −

− − − ≤ ≤

 
 
   

                    (1.21) 

where the yield point is still given by Eq. (1.11). For the case of axisymmetric Poiseuille flow, the 

wall shear stress is given by  

                                                    
2

w rz r R

R dp

dz
ττ

=
= −

 = − 
                                                       

(1.22) 

Applying the Navier slip equation (1.17), gives
 

                                                              
2

w

R
u

dp

dzβ
=

 − 
                                                             

(1.23) 

The velocity is given by
  

                                              
2

z w

R
u u constant

dp

dzβ
= = =

 − 
                                               

(1.24) 

when the pressure gradient is below 02 /
c

G Rτ= ; otherwise, the velocity profile given by 

                             

2

0 0

2 2

0 0 0

( ) , 01
( )

( ) ( ) ,4
z w

R r r rdp
u r u

R r r r r r Rdzµ

− ≤ ≤
= + −

− − − ≤ ≤

 
 
   

                          (1.25) 

where the yield point is still given by Eq. (1.15). 

Based on the analysis of apparent slip flows of Herschel-Bulkley fluids in various 

geometries, Kalyon (2005) proposed a power-law slip equation 
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s

w wuτ β=
                                                                   

(1.26) 

where s is the power exponent. Setting s=1 in Eq. (1.26) leads to the classical Navier-slip condition 

(1.17). It should be noted that both equations are static. Dynamic slip models are discussed in 

Hatzikiriakos (2012).  

In the past thirty years, the power-law slip equation (1.26) has been widely used by several 

investigators working on various fluid systems. Particularly, Jiang et al. (1986) used Eq. (1.24) to 

describe the slip exhibited by gels used in hydraulic fracturing. A year earlier, Cohen and Metzner 

(1985) studied experimentally the occurrence of slip in aqueous and organic polymer solutions. A 

power-law relationship between the slip velocity and the wall shear stress was also predicted at 

constant temperature by theoretical model of Lau and Schowalter (1986), which was based on the 

concept of junctions at the wall/polymer interface and in the bulk of the polymer fluid. Equation 

(1.26) has also been employed for polyethylene melts (Hatzikiriakos and Dealy, 1992; Hay et al., 

2000) and highly-filled suspensions (Yilmazer and Kalyon, 1989). Yilmazer and Kalyon (1989) 

discussed the validity of Eq. (1.26) and reported values of β and s for certain systems. 

Experimental data on several fluid systems, such as colloidal suspensions (Ballesta et al., 

2012), pastes (Adams et al., 1997) and highly entangled polymers (Piau and El Kissi, 1994), 

indicate that slip occurs only when the stress exceeds a critical value τc that can be viewed as a 

‘wall shear’,  ‘interfacial’, or, simply, ‘slip’ yield stress. Hatzikiriakos and Dealy (1991) pointed 

out that slip model (1.26) fails to describe the slip velocity in the neighborhood of τc, which is 

critical in understanding polymer slip phenomena. Thus, they used the following two-branch 

equation 

                                                          

0,

,

w c

w s

w w c
u

τ τ
τ

β τ τ

≤
=



>
                                                           (1.27) 

Spikes and Granick (2003) reported that for water and tetradecane (which are Newtonian) the slip 

yield stress may become high for lyophilic wall surfaces and used the following slip equation: 

                                                       

,           0
w w c

w c w cw

u

uτ

τ τ

τ β τ τ

= ≤

= +




>
                                    (1.28) 

Also, the following general phenomenological slip equation 

                                                      

,           0
w w c

w c w c

s

w

u

uτ

τ τ

τ β τ τ

= ≤

= +




>
                                    (1.29) 

has been used by other researchers in the analysis of squeeze flow of generalized Newtonian fluids 

with apparent wall slip (Yilmazer and Kalyon, 1989; Estellé and Lanos, 2007). 

Viscoplastic materials, such as polymeric solutions, suspensions and gels, are dispersed 

systems known to exhibit wall slip, which arises due to the depletion of particles adjacent to the 

shearing surface (Yilmazer and Kalyon, 1989; Barnes, 1995; Meeker et al., 2004b; Ballesta et al., 

2012; Aktas et al., 2014; Cloitre and Bonnecaze, 2017). Denn (2001) also noted that wall slip in 

pasty materials appears within a range of small strains in contrast to the case of polymer melts 

PANDELIT
SA PANASETI 



8 

 

where slip is observed at large rates of strains. Bonn et al. (2017) stated that wall slip emerges from 

the combined effects of microstructure (rigid and soft particles), of the chemical nature of the wall 

and the geometry. Shewan et al. (2017) claimed that the occurrence of slip must be considered as 

an important and intrinsic feature of the flow and deformation behavior of complex materials. 

Cloitre and Bonnecaze (2017) pointed out that slip is generally essential within many natural 

systems and biological processes and emphasized the importance of wall slip in the transport of 

many complex suspensions, such as mineral and oil suspensions, paints, foods, pharmaceuticals, 

sewage treatment and soils. 

In conclusion, wall slip is an interesting, important and complicated phenomenon. Despite 

the large body of research regarding wall slip, there is no well-developed theory to predict or 

explain it, in general (Sochi, 2011). Particularly, it remains challenging to get microscopic insight 

into slip phenomena and understand their dependence on surface characteristic, flow rate and 

material properties (Cloitre and Bonnecaze, 2017). This is due to the diversity and complexity of 

the factors affecting it and also due to the fact that is difficult to observe and measure (Sochi, 

2011). 

 

1.3 Pressure-dependence of the viscosity 

The idea of a fluid with pressure-dependent viscosity was introduced by Stokes (Stokes, 1845). 

Much later, Barus (1893) proposed an exponential isothermal equation of state for the Newtonian 

viscosity of the form  

                                                    [ ]0 0( ) exp ( )p p pη η α= −                                                 (1.30) 

where p  is the pressure, 0η  is the viscosity at the reference pressure 0p , and α  is the viscosity-

growth or piezo-viscous coefficient, which is positive, 0α ≥ . Equation (1.30) indicates that the 

viscosity increases with the pressure difference from the reference pressure. As noted by Rajagopal 

(2006) the dependence of the viscosity on pressure for fluids like polymer melts and lubricants may 

be several orders of magnitude stronger than that of density, which justifies the study of 

incompressible flows with pressure-dependent viscosity. The pressure-dependence of the viscosity 

becomes important in processes involving high pressures, such as polymer processing, fluid film 

lubrication, microfluidics, and geophysics (see Kalogirou et al. (2011) and references therein). 

Goubert et al. (2001) reviewed measurement techniques for evaluating the pressure dependence of 

viscosity. The viscosity growth coefficient is typically 1-5 10
-8

 Pa
-1

 for polymer melts (Denn, 

2008), 1-2 10
-8

 Pa
-1

 for mineral oils (Venner and Lubrecht, 2000), and 2-5 10
-8

 Pa
-1

 for heavy 

petroleum fractions (Martín-Alfonso et al., 2007).  

Other equations describing the pressure-dependence of the viscosity have also been 

proposed. For more information, the reader is referred to the review paper of Málek and Rajagopal 

(2007). The linear equation  

                                                  [ ]0 0( ) 1 ( )p p pη η α= + −                                                     (1.31) 
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which has also been used by various investigators (Renardy, 2003; Kalogirou et al., 2011), is 

essentially the approximation of the Barus equation (1.30) at low pressures and/or for low values of 

the viscosity growth coefficient. A source of major concern with Eq. (1.31) is the fact that it does 

not guarantee positive definiteness of the viscosity which requires the pressure to remain positive 

(Suslov and Tran, 2008). This limitation is not encountered when using the Barus equation (1.30) 

or in flows where the pressure difference remains positive, e.g. in Poiseuille flows (Kalogirou et al., 

2011).  

The effect of pressure has also been studied in the case of non-Newtonian materials. For 

example, Laun propose the following Barus-type equation for the consistency index of LDPE melts 

(Laun, 2003) 

                                         [ ]0 0 0( , ) exp ( ) ( )k p T k p p T Tα γ= − − −                                    (1.32) 

where T  is the temperature, 0T  is the reference temperature, and 0γ ≥  is the temperature 

coefficient describing the reduction of the viscosity with temperature. Hermoso et al. (2014a) 

presented experimental viscosity data for shear thinning (non-viscoplastic) oil-based drilling fluids, 

which show that the viscosity follows a Sisko-Barus (i.e. with an exponential growth term) model 

in which the consistency and flow indices also vary linearly with pressure. The rheological 

behavior of drilling fluids is greatly affected by the temperature and pressure conditions and plays 

an important role in the bottom-hole pressure occurring in deep hot wells (Osisanya and Harris, 

2005). Ibeh (2007) reported viscometric data on various drilling fluids suggesting linear and 

exponential variations of the viscosity with pressure and temperature, respectively. He also pointed 

out that the effects of temperature on the viscosity prevail at higher pressures, while pressure 

effects become more pronounced at lower temperatures.  

The pressure-dependence of the yield stress is well established in the mechanics of solid 

and granular materials (see Ionescu et al. (2015) and references therein). The pressure- as well as 

the temperature-dependence of the rheological parameters has also been the subject of various 

experimental studies on other viscoplastic materials, especially in the oil and gas industry, e.g. in 

transport operations design (Darley and Gray, 1988) and in oil drilling, given the high pressures 

and temperatures encountered in the wells (Osisanya and Harris, 2005). 

Politte (1985) proposed a seven-parameter empirical expression for the plastic viscosity of 

certain drilling fluids as a function of both temperature and pressure. He reported that the yield 

stress is not a ‘strong’ function of pressure and becomes even ‘weaker’ as temperature increases. 

Houwen and Geehan (1986) proposed a simple four-parameter model to determine both the yield 

stress and the high-shear-rate viscosity of invert muds as a function of pressure and temperature. 

Hermoso et al. (2014b) investigated the combined effects of pressure and temperature on the 

rheological behavior of two oil-based drilling fluids and found that this is described fairly well with 

the Bingham-plastic or the Herschel-Bulkley models. In the range of their experimental conditions, 

the power-law exponent was practically unaffected and the yield stress decreased linearly with 
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temperature and increased linearly with pressure. A similar trend has also been observed in the 

experiments of Ibeh (Ibeh, 2007) on oil-based drilling fluids at ultra-high pressures and 

temperatures. Hermoso et al. (2014b) suggested that the increase of yield stress with pressure is 

associated with the compression effect of different resulting organoclay microstructures. In order to 

model the isothermal yield-stress behaviour of the two drilling fluids, they employed the following 

linear equation  

                                                     [ ]0 0( ) 1 ( )y p p pτ τ β= + −                                                    (1.33) 

where 
0τ  denotes the yield stress at a reference pressure 

0p  and β  is the yield-stress growth 

coefficient.
1
 Hermoso et al. (2014b) reported values of the dimensionless piezo-yield coefficient, 

0τβ τ β= , at different temperatures from 40 to 140 
o
C, in the range 1-132 10

-4
 Pa/bar. For the 

variation of the plastic viscosity, they employed a Barus-type (i.e. exponential) equation. The linear 

law (1.33) corresponds to the so-called Drucker-Prager plasticity (flow/no-flow) criterion in solid 

mechanics, which can be viewed as a simplification of the Mohr-Coulomb plasticity criterion, 

where 
0τ  is the cohesion and 

0 tan( )sτ β δ= , 
sδ  being the internal frictional angle (Ionescu et 

al., 2015). 

 

1.4 Lubrication approximation 

The lubrication approximation is a simplification that applies to flows between ‘nearly parallel’ 

surfaces. This approximation was first used by Reynolds in 1886 in a study of problems of 

lubrication (Denn, 1980; Denn 2008). Denn (1980) pointed out that the lubrication approximation 

is fundamental to the study of polymer processing, coating, calendering, and molding operations. 

Hence, this method is considered to be one of the most important methods allowing the derivation 

of approximate solution of the Navier-Stokes equations.  

As suggested by Langlois and Deville (2014), the lubrication theory is the hydrodynamical 

analog of the shell theory, capitalizing on the fact that the physical domain is thin in one direction 

compared with the others. In other words, lubrication theory describes the flow of the fluid in a 

geometry where one dimension (for example, the characteristic film thickness,
 

H ) is significantly 

smaller than the others (for example, the characteristic substrate length,
 

L ). Hence, assuming that 

the length L  of the channel is much greater than its greatest semi-width, i.e. 
[0, ]

max ( )
x L

L H h x
∈

≡≫ , 

the dimensionless parameter 

                                                                     1
H

L
ε ≡ ≪                                                   (1.34) 

is introduced, which is used for applying the classical lubrication approximation or thin-film 

approach (Frigaard and Ryan, 2004). The fact that the above ratio is small (that is, 1ε ≪ ) is the 

                                                      
1
Note that the symbol β has also been used to denote the slip coefficient in the previous section. We kept the same 

symbol to be consistent with the symbols employed in the literature. In any case, in the flows with pressure-dependent 

yield stress considered in this thesis, the material is assumed to stick at the wall (no slip).                                                                                 
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key requirement for lubrication theory (Papanastasiou et al., 2000). Hence, taking advantage of the 

disparity of the length scales, lubrication theory is based on the asymptotic procedure of reduction 

of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, 

evolution equation or to a set of equations (Oron et al., 1997).  

           Lubrication flows are most applicable to processing of materials in liquid form, such 

as metals, polymers, composites and others (Papanastasiou et al., 2000). As already 

mentioned, the lubrication equations can be derived by dimensionless analysis, and by 

order of magnitude comparisons with the full Navier-Stokes equations. In the case of two-

dimensional bidirectional, incompressible flow in the absence of gravity, where all changes 

occur in the xy − plane and there is no flow in the ‘neutral’ z − direction, the continuity 

equation and the two components of the momentum equation read as follows: 

                                                             0
yx

vv

x y

∂∂
+ =

∂ ∂
                                                       (1.35) 

                                
2 2

2 2

x x x x x
x y

v v v v vp
v v

t x y x x y
ρ η

  ∂ ∂ ∂ ∂ ∂∂
+ + = − + +  ∂ ∂ ∂ ∂ ∂ ∂   

                            (1.36)  

                                    
2 2

2 2

y y y y y

x y

v v v v vp
v v

t x y y x y
ρ η

 ∂ ∂ ∂ ∂ ∂  ∂
+ + = − + +    ∂ ∂ ∂ ∂ ∂ ∂   

                            (1.37) 

where ( ),xv x y
 
and ( ),yv x y

 
are the velocity components in the x −  and y − directions 

respectively, and ρ  is the mass density of the material. Equations (1.35) – (1.37) are made 

dimensionless using the following scalings  

                                       

* * * *

2
* * *

, y , , ,

, ,
yx

x y

x y tV H
x t h

L L L L

vv pL
v v p

V V V

ε ε
ε

ε η

= = = =

= = =

                                      (1.38) 

whereε  is of the same order as the channel slope (Papanastasiou et al., 2000). Upon substitution 

and suppressing asterisks hereafter, the momentum equations read (Panastasiou, 1989): 

                                                        0
yx

vv

x y

∂∂
+ =

∂ ∂
                                                         (1.39) 

                            
2 2

2 2

2 2

x x x x x
x y

v v v v vp
Re v v

t x y x x y
ε ε

 ∂ ∂ ∂ ∂ ∂∂
+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

                             (1.40)  

                                
2 2

4 4 2

2 2

y y y y y

x y

v v v v vp
Re v v

t x y y x y
ε ε ε

∂ ∂ ∂ ∂ ∂  ∂
+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

                         (1.41) 

where 

                                                              
VL

Re
ρ
η

≡                                                         (1.42) PANDELIT
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is the Reynolds number. The two velocity components and the pressure are expanded in terms of ε

as follows: 

                                                

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1 22

0 1 22

0 1 22

...

...

...

x x x x

y y y y

v v v v

v v v v

p p p p

ε ε

ε ε

ε ε

= + + +

= + + +

= + + +

                                                  (1.43) 

Substituting the above expressions into Eqs. (1.39) - (1.41), and collecting the terms of the same 

order, leads to a system of ODEs at each order. For example, substituting into the continuity 

equation (1.39), one gets 

                             

( ) ( ) ( ) ( ) ( ) ( )0 1 20 1 2

2 ... 0
y y yx x x

v v vv v v

x y x y x y
ε ε
   ∂ ∂ ∂∂ ∂ ∂

+ + + + + + =   
   ∂ ∂ ∂ ∂ ∂ ∂   

                      (1.44) 

Similarly, we follow the same process for the two components of the momentum equation. Hence, 

since all dimensionless derivative terms in the resulting equations are of comparable order, the 

resulting dimensionless lubrication equations, in the limit of  0ε ≈   or  0,Reε ≈  giving the zero-

order problem,
2
 are: 

                                                              
( ) ( )00

0
yx

vv

x y

∂∂
+ =

∂ ∂
                                                (1.45) 

                                                           
( ) ( )00 2

2
0xvp

x y

∂∂
− + =

∂ ∂
                                               (1.46)        

and 

                                                                        
( )0

0
p

y

∂
=

∂
                                                      (1.47) 

A consequence of the latter equation is that  

                                                                     ( ) ( ) ( )0 0
p p x=                                                   (1.48) 

After solving the zero-order problem along with the zero-order boundary conditions, one may 

consider the first-order problem where the zero-order solution is taken as known. 

In the last years, a number of studies concerned this large class of so-called lubrication 

problems, in which the thin-film asymptotic approximation can be used to analyze the flow in all, 

or at least part, of the flow domain (Leal, 1992). Fusi et al. (2015) presented a novel technique for 

modelling the lubrication flow of a Bingham plastic in a two-dimensional channel of non-uniform 

thickness. Under the lubrication approximation, the yield surface and the two velocity components 

are calculated from the pressure by means of closed form expressions, while the pressure satisfies 

an integro-differential equation. This was solved by Fusi et al. with an iterative procedure (Fusi et 

al., 2015).  

The lubrication paradox in Bingham plastic flows arises from the fact that the predicted 

plug is not a true unyielded region since the leading order velocity varies in the x − direction. Thus, 

                                                      
2
It is also known as the thin-gap approximation (Denn, 2008). 
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the position of the yield surface needs to be corrected by calculating higher-order solutions 

(Frigaard and Ryan, 2004; Putz et al., 2009).  

The advantage of the method of Fusi et al. (2015), is that the lubrication paradox is avoided 

and the correct shape of the yield surface which is opposite to that of the wall is approximated at 

zero order. With other approaches, the correct shape of the yield surface is obtained after 

calculating higher-order solutions (Frigaard and Ryan, 2004; Putz et al., 2009). Specifically, 

Frigaard and Ryan (2004) suggested the asymptotic technique that resolves the lubrication paradox 

and builds the consistent solution for thin layer problems. The same technique was also used by 

Balmforth and Craster (1999), a few years earlier. In their paper, Putz et al. (2009) completed the 

analysis of the flow of a Bingham fluid along a wavy-walled channel and they confirmed 

numerically the results of Frigaard and Ryan (2004). In asymptotic analyses where the pressure 

gradient is obtained from the constraint of a unit areal flux in the x − direction at leading order, the 

yield surface variation (at zero order) is similar to that of the wall, due to the scaling with the mean 

velocity. In a later stage, Muravleva (2016) applied the asymptotic technique, suggested earlier by 

Balmforth and Craster (1999), and Frigaard and Ryan (2004), in order to obtain a consistent thin-

layer solution for both planar and axisymmetric squeeze flows of a viscoplastic material. She 

obtained analytical expressions and numerical results that are in a very good agreement with the 

earlier works (Balmforth and Craster, 1999; Frigaard and Ryan, 2004).    

                                                                                                                                                                                                           

1.5  Objectives  

The objectives of this thesis are the following:  

1. To solve the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip, in 

order to determine the critical conditions for the transition to different flow regimes when the 

degree of confinement varies, in an attempt to interpret experimental data.  

2. To extend the work of Philippou et al. (2016) in order to investigate the development of 

viscoplastic flow in the particular case of a channel with slip only along one wall (asymmetric 

flow).  

3. To extend the lubrication method of Fusi et al. (2015) and derive an approximate semi-analytical 

solution of both planar and axisymmetric flow of a Herschel-Bulkley fluid with a general wall 

function and pressure-dependent yield stress and consistency index.  

4. To derive analytical lubrication solutions of a Herschel-Bulkley fluid with a general wall 

function and pressure-dependent yield stress and consistency index, in the case of a long 

asymmetric channel.  

 

1.6 Outline of the thesis  

In Chapter 2, the steady, pressure-driven flow of a Herschel-Bulkley fluid in a microchannel is 

considered assuming that different power-law slip equations apply at the two walls due to slip 
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heterogeneities, allowing the velocity profile to be asymmetric. We demonstrate that three different 

flow regimes are observed as the pressure gradient is increased. Below a first critical pressure 

gradient 1G , the fluid moves unyielded with a uniform velocity and thus the two slip 

velocities are equal. In an intermediate regime between 1G  and a second critical pressure 

gradient 2G , the fluid yields in a zone near the weak-slip wall and flows with uniform velocity 

near the stronger-slip wall. Beyond this regime, the fluid yields near both walls and the velocity is 

uniform only in the central unyielded core. It is demonstrated that the central unyielded region 

tends towards the midplane only if the power-law exponent is less than unity; otherwise, this region 

rends towards the weak-slip wall, and asymmetry is enhanced. The extension of the different flow 

regimes depends on the channel gap; in particular the intermediate asymmetric flow regime 

dominates when the gap becomes smaller than a characteristic length which incorporates the wall 

slip coefficients and the fluid properties. The theoretical results compare well with experimental 

data on soft glassy suspensions, obtained by Vayssade et al. (2014). These results open new routes 

in manipulating the flow of viscoplastic materials in applications where the flow behavior depends 

not only on the bulk rheology of the material but also on the wall properties. 

In Chapter 3, the flow development of a Herschel-Bulkley fluid in a horizontal channel is 

considered, assuming that slip occurs only along the upper wall due to slip heterogeneities. Hence, 

the velocity profile is allowed to be asymmetric as was the case with the experiments of Vayssade 

et al. (2014). A power-law slip equation is again employed. The one-dimensional fully-developed 

solutions are derived and the different flow regimes are identified. The two-dimensional 

development flow is solved numerically using finite elements along with the Papanastasiou 

regularization for the Herschel-Bulkley constitutive equation (Papanastasiou, 1987). Due to the 

asymmetry and the viscoplastic character of the flow, the classical definition of the development 

length is not applicable. The global and upper-wall development lengths are thus considered and 

the combined effects of slip and the Bingham number are investigated. It is demonstrated that the 

global development length increases with the Bingham number and that flow development is 

slower near the no-slip wall. The global development length increases with slip, exhibiting two 

plateaus and an intermediate rapid increase zone, and doubles in the limit of infinite slip.  

In Chapter 4, the lubrication flow of a Herschel-Bulkley fluid in a long symmetric channel 

of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. (2015) for a 

Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be 

pressure-dependent. Under the lubrication approximation the pressure at zero order depends only 

on x and the semi-width of the unyielded core is found to be given by ( ) (1 1/ ) ( )x n h x Cσ = − + + , 

where n is the power-law exponent and the constant C depends on the Bingham number 

and the consistency-index and yield-stress growth numbers. Hence, in a channel of 

constant width, the width of the unyielded core is also constant, despite the pressure 

dependence of the yield stress, and the pressure distribution is not affected by the yield-
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stress function. With the present model, the pressure is calculated numerically solving an 

integro-differential equation and then the position of the yield surface and the two velocity 

components are computed using analytical expressions. Some analytical solutions are also 

derived for channels of constant and linearly-varying widths. The lubrication solutions for 

other geometries are calculated numerically. The implications of the pressure-dependence of the 

material parameters and the limitations of the method are discussed.    

In Chapter 5, the lubrication flow of a Herschel-Bulkley fluid with pressure-dependent 

rheological parameters in a long asymmetric channel, the walls of which are described by two 

arbitrary functions,  is solved extending the method of Chapter 4. The asymmetric unyielded core 

is defined by two yield surfaces. An interesting feature of the asymmetric flow is that the 

unyielded zone moves not only in the main flow direction but also in the transverse 

direction. The two velocity components in both the yielded and unyielded regions are 

calculated by means of closed-form expressions in terms of the calculated pressure and the 

two yield surfaces. The method is applicable in a range of Bingham numbers where the 

unyielded core extends from the inlet to the outlet plane of the channel. Semi-analytical 

solutions are derived in the case of an asymmetric channel with 
1 0h =  and linearly varying 

2h . 

Finally, in Chapter 6, we give the concluding remarks and recommendations for future 

work. 
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Chapter 2 

Confined viscoplastic flows with 

heterogeneous wall slip 

 

In this chapter we revisit the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric 

wall slip, in order to determine the critical conditions for the transition to different flow regimes 

when the degree of confinement varies. We recover the experimental observations and provide 

quantitative criteria in order to get a particular flow regime and guidelines to predict confined flows 

of viscoplastic materials in the presence of strong surface heterogeneities.
3
 

 

2.1 Introduction 

Viscoplastic or yield-stress materials constitute a very interesting class which includes materials of 

industrial importance, such as polymeric solutions, suspensions and gels, but also biofluids like 

blood (Barnes, 1999). These materials behave as fluids if the stress exceeds the yield stress, 0τ , and 

as solids otherwise. Therefore, the constitutive equation of an ideal viscoplastic material consists of 

two branches. Let us denote the viscous stress tensor by τ and the rate of strain tensor by γɺ , the 

latter being defined by  

                         
( )

T≡∇ + ∇γ u uɺ      (2.1) 

where u is the velocity vector and the superscript T denotes the transpose. The magnitudes of γɺ and 

τ, denoted respectively by γɺ andτ, are defined by / 2IIγ ≡ γɺ
ɺ and / 2IIτ ≡ τ . As mentioned 

above, in those areas of the flow field where 0τ τ≤  the fluid is unyielded, i.e. there is no flow and

=γ 0ɺ ; otherwise the fluid is yielded and ≠γ 0ɺ . The Herschel-Bulkley constitutive equation is 

widely used to describe the shear rheology of many viscoplastic materials (Herschel and Bulkley, 

1926) 

                                                      
3
The material of this chapter appears in Panaseti et al. (2017).                                                                                     
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γ

ɺ

ɺ ɺ
ɺ

                                          (2.2) 

where k is the consistency index and n is the power-law exponent. For viscoplastic materials made 

of soft and deformable particles such as microgel particles or emulsion droplets, the power-law 

exponent n is close to 0.5 (Cloitre et al., 2003; Bécu et al., 2006; Ovarlez et al., 2008; Seth et al., 

2011). The consistency index k has been found to be proportional to the storage modulus of the 

suspensions (Seth et al., 2011). By setting n=1 and k=µ, where µ is the plastic viscosity, the 

Bingham-plastic constitutive equation is recovered (Bingham, 1922). By taking τ0=0, one gets the 

power-law model 

1nkγ −=τ γɺ ɺ  (2.3) 

 Viscoplastic materials are prone to slip when they are sheared near smooth surfaces 

(Barnes, 1995; Cloitre and Bonnecaze, 2017). As a consequence of the solid-liquid duality of yield 

stress materials, slip essentially occurs at low shear rates below or near the yield point in contrast to 

slip of polymer melts which takes place at large shear rates (Denn, 2001). This generic feature is 

shared by many particulate materials such as highly-filled suspensions (Yilmazer and Kalyon, 

1989; Kalyon, 2005), microgel suspensions (Meeker et al., 2004a; Meeker et al., 2004b; Aktas et 

al., 2014; Ortega-Avila et al., 2016), concentrated emulsions (Princen, 1985; Salmon et al., 2003; 

Seth et al., 2012), hard-sphere suspensions (Ballesta et al., 2008; 2012), and colloidal gels (Ballesta 

et al., 2013). At the microscopic scale, slip is due to the formation of a thin layer of liquid adjacent 

to the walls, which lubricates the contacts between the bulk suspension and the walls (Barnes, 

1995; Cloitre and Bonnecaze, 2017). At the macroscopic scale, slip can be characterized using a 

power-law slip equation, relating the wall shear stress, wτ , to the slip velocity, wu , defined as the 

relative velocity of the fluid with respect to that of the wall (Kalyon, 2005) 

      
= s

w wuτ β  
(2.4) 

where s is the slip exponent and β is the slip coefficient. The latter coefficient incorporates the 

effects of several material properties affecting slip, such as the solvent viscosity and the particle 

properties. The no-slip and full-slip limiting cases are recovered in the limits β → ∞ and 0β = , 

respectively. The classical Navier slip condition (Navier, 1827) is the special case of Eq. (2.4) for 

s=1 

   w wuτ β=
  

(2.5) 

in which case β is related to the slip or extrapolation length b, i.e. / bβ η≡ , where η is the fluid 

viscosity.  
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 The slip exponent s depends on the properties of the lubricated films at the material/wall 

interface. Two main lubrication mechanisms have been identified (Seth et al., 2008; 2012). In 

simple hydrodynamic lubrication (HL), the wall is wetted by a thin film of solvent, which has a 

constant thickness independent of the flow velocity. For a Newtonian solvent, s is equal to 1; for a 

non-Newtonian solvent with a power-law viscosity
1mkη γ −= ɺ , s is equal to 1/m (Kalyon, 2005). HL 

slip has been observed with highly-filled suspensions (Kalyon, 2005), soft particle suspensions 

with repulsive particle-wall interactions (Seth et al., 2008; 2012; Pérez-González et al., 2012), and 

hard-sphere glasses (Ballesta et al., 2008; 2012). In elastohydrodynamic lubrication (EHL), the 

lubricating film results from a coupling between flow in the lubricating film and particle 

deformation. EHL is relevant in jammed suspensions of soft particles in the presence of slightly 

attractive particle-wall interactions (Meeker et al., 2004a; 2004b; Seth et al., 2008; 2012). Below 

the yield stress, s is expected to be of the order of 2, which is observed in experiments (Meeker et 

al., 2004a; 2004b; Ortega-Avila et al., 2016; Ahonguio et al., 2016). Above the yield stress there 

exist no predictions and the situation is less clear. However experimental observations generally 

converge to the value s=1 (Aktas et al., 2014; Seth et al., 2012; Vayssade et al., 2014; Poumaere et 

al., 2014).  

 In real situations, complex fluids rarely flow in ideal geometries bounded by uniform 

surfaces but rather experience important slip heterogeneities induced by local variations of surface 

roughness and chemistry. In spite of its practical importance, this problem has retained little 

attention so far. Lauga and Stone (2003) analysed theoretically how surface heterogeneities, which 

were either transverse or parallel to the flow direction, affect the slip length of Newtonian fluids. In 

their study of the extrusion of viscoplastic suspensions in shallow channels, Lawal and Kalyon 

(1994) considered a Couette-Poiseuille model subject to different Navier-slip coefficients at the 

barrel and screw surfaces. The authors derived analytical solutions for the Couette-Poiseuille flow 

for the case where the imposed pressure gradient and the moving upper plate drive the flow in 

opposite directions. Different flow regimes were found depending on the velocity, both in 

magnitude and direction, of the upper wall. Recently Vayssade et al. (2014) imaged the motion of 

well-characterized soft glassy suspensions in microfluidic channels whose walls imposed different 

slip velocities. The rheology of the suspensions was well represented by a Herschel-Bulkley 

equation with n = ½ and the boundary slip conditions were of the Navier form, i.e. s = 1. It was 

found that, when the channel gap was large, the velocity profiles consisted of a central unyielded 

plug between two fluidized layers near the walls. When the gap was small, a remarkable behavior 

appeared: the fluidized layer adjacent to the wall with the highest slip velocity disappeared and the 

plug flow region extended down the wall.   

 These observations motivate the present work. We revisit the plane Poiseuille flow of a 

Herschel-Bulkley fluid with asymmetric wall slip, i.e. with different slip conditions at the two 

walls, in order to determine the critical conditions for the transition to different flow regimes when 

the degree of confinement varies. We successfully recover the experimental observations and 
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provide quantitative criteria to get a particular flow regime and guidelines to predict confined flows 

of viscoplastic materials in the presence of strong surface heterogeneities. The particular chapter is 

organized as follows. The governing equations and the general solution are presented in section 

2.2. Three different flow regimes are identified, which are defined by the two critical values of the 

imposed pressure gradient at which the fluid yields at each wall. In section 2.3 we provide the 

analytical solutions for the flow of a power-law fluid subject to asymmetric Navier slip, which are 

very useful in interpreting the behavior of Herschel-Bulkley fluids at high pressure gradients (the 

power-law fluid can be viewed as the limit of a Herschel-Bulkley fluid as the pressure gradient 

goes to infinity). Section 2.4 is concerned with the variation of the critical pressure gradients with 

the gap size and the construction of flow diagrams. In section 2.5, we make comparisons with the 

experimental data of Vayssade et al. (2014). 

 

 

Figure 2.1: Geometry and boundary conditions of the flow development of a Herschel-Bulkley fluid in a 

channel with different slip laws at the walls. 

 

2.2 General solutions for the asymmetric slip problem 

We consider the laminar, steady, unidirectional pressure-driven flow of a Herschel-Bulkley fluid in 

a horizontal channel of width H, as illustrated in Fig. 2.1. Heterogeneous wall slip is assumed to 

occur at the walls according to 

                                          
, 1, 2s

wi i wiu iτ β= =            
(2.6) 

where the lower and upper walls correspond to i =1 and 2, respectively. For the sake of simplicity, 

the slip exponents are considered to be the same at both walls. Since the flow is not symmetric, the 

origin is placed at the lower plate (Fig. 2.1).  

FLOW

x

y

H

1 1 1

s

w wuτ β=

2 2 2

s

w wuτ β=
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Without loss of generality, it is assumed that slip at the upper wall is stronger than at the 

lower wall, i.e. 1 2β β≥  and thus 2 1w wu u≥ . With the above assumptions, the x-momentum 

equation for any generalized Newtonian fluid is simplified to 

 

yx
G

y

τ∂
= −

∂  
 

(2.7) 

which yields  

                                                      1yx wGyτ τ= − +           
(2.8) 

where G is the imposed pressure gradient. The lower-wall shear stress, 1wτ , is a crucial parameter, 

in terms of which all other quantities of interest can be expressed. The upper-wall shear stress is 

given by  

 2 1w yx wy H
GHτ τ τ

=
= = −

                                         
(2.9) 

The two slip velocities 1wu  and 2wu  can be then calculated by means of Eq. (2.6).  

   

 

Figure 2.2: The three flow regimes encountered during viscoplastic Poiseuille flow with asymmetric slip. y1 

(and y2) are the yield points which separate the yielded region(s) from the plug region and 1wu and 2wu  are 

the slip velocities at the walls. It is assumed that slip is weaker at the lower plate (i.e. 1 2w wu u< ). 

 

For viscoplastic flow, we encounter the three regimes illustrated in Fig. 2.2 as the imposed pressure 

gradient is increased. In Regime I, the fluid simply slips and the velocity is constant (full-slip). This 

regime extends from zero up to the critical value G1 of the pressure gradient at which the fluid 

adjacent to the lower wall (where slip is weaker) yields. Regime II extends from G1 up to the 

critical value G2 of the pressure gradient at which the fluid adjacent to the upper wall (where slip is 

1G
G2G

I.  FULL SLIP II.  LOWER YIELDING III.  LOWER  & 

UPPER YIELDING 

0

1wu

2wu

1y

2wu

1wu

2wu

1wu

1y

2y
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stronger) also yields. Hence in Regime II only the lower layer of the fluid up to 1y y=  is yielded. 

In Regime III, i.e. for pressure gradients above G2, the fluid yields near both walls and the velocity 

profile is asymmetric with a plug core between the lower and the upper yield points, y1 and y2. It is 

clear that Regime I is not relevant in the special case where there is no slip along the lower wall (

1 0wu = ) and Regime II is observed only if the flow is asymmetric ( 1 2β β> ).  

 In the following analysis we introduce the dimensionless slip numbers 

/

/ 1

0

, 1, 2
s n

i s s n

i

k
B i

Hβ τ −
≡ =                      

(2.10) 

With this definition we have 1 2 2 1/ /B B β β=  so that B1 ≤B2 under our assumptions. Note that there 

is no slip at the wall when 0iB = .  

2.2.1 Regime I (0 ≤ G ≤ G1) 

In Regime I, the pressure gradient is not sufficient to cause yielding of the material. However, since 

slip occurs along both walls and the material is unyielded, the two slip velocities are equal,

1 2w wu u= , and the material moves with uniform velocity 

1/

1 2

( )

s

x

GH
u y

β β
 

=  +                                            

(2.11) 

The lower wall shear stress, given by 

 1
1

1 2

w

GHβ
τ

β β
=

+
                                               

(2.12) 

is greater than or equal to 2wτ  since 1 2β β≥ . The critical pressure gradient G1 which marks the 

transition between Regimes I and II is reached when the material adjacent to the lower wall yields 

( 1 0wτ τ= ) 

�� = �1 + ���	
 ��
                                                     
(2.13) 

G1 depends only on the yield stress and not on the exponent and consistency index. The maximum 

slip velocity is attained when G=G1 

 

1/ 1/

1 0

1 1

s s

w
xu

τ τ
β β

   
= =   
                                           

(2.14) 
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2.2.2 Regime II (G1 ≤ G ≤ G2) 

This flow regime exists only if the flow is asymmetric, i.e. if 1 2β β>  (or B1 <B2). In this case, the 

material yields only close to the lower wall, i.e. for 10 y y≤ ≤ , where 1y  is the yield point (Fig. 

2.2), and remains unyielded for 1y y H< ≤ , moving with uniform velocity equal to the upper slip 

velocity 2wu . The yield point 1y  is found from Eq. (2.8) by demanding that 
0yxτ τ= . Hence, 

 1 0
1

wy
G

τ τ−
=

                                               
(2.15) 

In the yielded region ( 10 y y≤ ≤ ), 

0 1

n

x
yx w

du
k Gy

dy
τ τ τ

 
= + = − + 

 
                              

(2.16) 

Integrating the above equation and demanding that 1(0)x wu u= and 1 2( ) ( )x x wu y u y u= = , one 

finds that  

 

1/
1/ 1 1/ 1

1 1 1 11/

1/
1/ 1

1 1 11/

( ) , 0
( 1)

( )

,
( 1)

n
n n

w n

x n
n

w n

nG
u y y y y y

n k
u y

nG
u y y y H

n k

+ +

+


 + − − ≤ ≤  +

= 
 + ≤ ≤ +            

(2.17) 

Requiring that 1 2( )x wu y u=  leads to the following equation for the lower wall shear stress 

 ( ) ( ) ( )
1/1/ 1 1/ 1/ 1/

1 0 1 1 2 1 0 0
1

sn s n s

w w w

n
B B GH GH

n
τ τ τ τ τ+ − − + − − =   +        

(2.18) 

The second critical pressure gradient G2 signals the yielding of the fluid at the upper wall and 

therefore it can be found by demanding that 2 0wτ τ= , which leads to 

   
( ) ( ) ( )

1/1/ 1 1/ 1/ 1/

0 2 0 1 0 02 0
1

sn s n sn
GH B B GH GH

n
τ τ τ τ+ − − − − − =   +      

(2.19) 

2.2.3 Regime III (G > G2) 

In this regime, there are two yielded regions adjacent to the two walls separated by an intermediate 

unyielded region ( 1 2y y y≤ ≤ ). The solution derived above for 10 y y≤ ≤  in Regime II still 

applies. The second yield point is given by 

 1 0

2

w
y

G

τ τ+
=

                                               
(2.20) 
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and the three-branch velocity profile reads 

1/
1/ 1 1/ 1

1 1 1 11/

1/
1/ 1

1 1 1 21/

1/
1/ 1 1/ 1

2 2 2 21/

( ) , 0
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( ) ,
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( ) ( ) ,
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u y u y y y y

n k
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u H y y y y y H
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+ +


 + − − ≤ ≤  +


= + ≤ ≤

+


 + − − − ≤ ≤  +      

(2.21) 

By demanding that 1 2( ) ( )x xu y u y= , one finds the following equation for the lower wall shear 

stress 

( ) ( ) ( ) ( )
1/1/ 1 1/ 1 1/ 1/ 1/

1 0 1 0 1 1 2 1 0 0
1

sn n s n s

w w w w

n
GH B B GH GH

n
τ τ τ τ τ τ τ+ + −  − − − − + − − =     +  

 
(2.22) 

 

2.3 Solutions for power-law fluids 

2.3.1 Non-dimensional equations 

In this section we solve the asymmetric slip equations for the special case of power-law fluids 

described by Eq. (2.3). Given that the power-law flow can be viewed as the limiting case of the 

Herschel-Bulkley flow at infinite pressure gradient, the results derived below will be useful in 

understanding the flow of Herschel-Bulkley fluids at high values of the pressure gradient. It is 

interesting to note that asymmetric flow profiles have also been observed with polymer solutions 

which are well represented by a power-law constitutive equation (Müller-Mohnssen et al., 2007). In 

the limit of a power-law fluid, the two yield points y1 and y2 collapse to the unique point My , where 

the velocity attains its maximum. The yield stress is zero and therefore there is no natural scale for 

stresses. The governing equations can be made dimensionless by scaling lengths by H, the pressure 

gradient by an arbitrary value, say Gs, so that * / sG G G≡ , stresses by GsH, and the velocity by 

1/ 1 1/ 1//n n n

sG H k
+ . The slip numbers are redefined as 

/

/ 1 / 1
, 1, 2

s n

i s n s s n

i s

k
B i

H Gβ + − −
≡ =                              

(2.23) 

The non dimensional velocity profiles are then given by 

                 ��∗ ��∗� = � ���∗ + ��∗�/�
��� ���∗� �⁄ �� − ���∗ − �∗�� �⁄ ��� 											0 ≤ �∗ ≤ ��∗

��#∗ + ��∗�/�
��� ��1 − ��∗�/�
 − ��∗ − ��∗ �� �⁄ ��� 										��∗ ≤ �∗ ≤ 1								$    

             (2.24) 
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The position of the maximum velocity 
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My  is independent of 
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Figure 2.3: Velocity profiles of various power

different slip laws (s, B1, B2), and different power

and the horizontal lines show the 

 

The position of the maximum velocity *

My  is a root of 

( ) (1/ 1 1/
*1/ 1/ *1/ 1 * 1/ *1/ 1/ *

1 21 1 0
n s

n s n s s s

M M M MG y y B y B y
+− + − − + − − =  

, the flow is symmetric and * 1 / 2My =  for any value of the pressure gradient 

is independent of 
*G and can be found by solving  

( ) (1/ 1 1/
*1/ 1 * 1/ *1/ 1/ *

1 21 1 0
1

n n
n n n n

M M M My y B y B y
++ − − + − − =  +

: Velocity profiles of various power-law fluids for different values of the pressure gradient, 

), and different power-law exponents (n). The circles show the maximum velocity 

and the horizontal lines show the asymptotic values
*

y∞ . 

24 

)1/ 1 1/
*1/ 1/ *1/ 1 * 1/ *1/ 1/ *1 1 0

n s

M M M MG y y B y B y− − + − − =
       

(2.25) 

for any value of the pressure gradient 
*G . When 

)1/ 1 1/
*1/ 1 * 1/ *1/ 1/ *1 1 0

n n

M M M My y B y B y− − + − − =
             

(2.26) 

 

law fluids for different values of the pressure gradient, 
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For the particular case of Newtonian flow with Navier slip, i.e. for  n=s=1, one finds 

 

* 2

1 2

1 2
, 1

2(1 )
M

B
y n s

B B

+
= = =

+ +
                                 

(2.27) 

When n s≠ , the position of the maximum changes as the pressure gradient is increased. If n<s, it 

is easily shown that *

My  decreases asymptotically to 1/2 starting from a finite value *

0y  

 
* *

* * * *2
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0
1 2

1
lim , lim ,

2
M M

G G

B
y y y y n s

B B
∞

→ →∞
≡ = ≡ = <

+
                  

(2.28) 

If n>s, the two limits are reversed. Hence, for Navier slip (s=1),  
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 
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(2.29) 

2.3.2 Discussion 

The evolution of the velocity profiles as the pressure gradient is increased is shown in Fig. 2.3. In 

the first two columns of Fig. 2.3, we consider a shear thickening fluid (n=4/3), a Newtonian fluid 

(n=1), and a shear thinning fluid (n = ½), following Navier-slip laws (s=1) with B2=2 and B1=0 and 

2, respectively. With shear-thinning fluids the velocity profiles tend to become more symmetric as 

the pressure gradient increases, whereas with shear-thickening fluids asymmetry is amplified. By 

comparing the first two columns of Fig. 2.3, we see that this effect becomes more pronounced 

when the fluid sticks at the lower wall (B1=0). The position of the maximum of the velocity profiles 

decreases from �%∗ to �∞∗ = 1/2 when the fluid is shear-thinning and increases from �%∗ = 1/2 to �∞∗ 

when the fluid is shear-thickening. Similar trends are shown in the third column of Fig. 2.3 where a 

power-law slip equation with s=1/2 is used. The second row of Fig. 2.3 shows that *

My is 

independent of the pressure gradient when n=s. Finally, in the third row of Fig. 2.3 we observe that 

when n s< the velocity profiles tend to become symmetric with *

My decreasing asymptotically to 

½ as the pressure gradient is increased.  

 

2.4 Solutions for Herschel-Bulkley fluids 

2.4.1 Non-dimensional equations  

The asymptotic results discussed above are useful in understanding the flow of Herschel-Bulkley 

fluids at high values of the pressure gradient. The velocity profiles are computed from the general 
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equations established in section 2.2. It is convenient to scale lengths by H, stresses by τ0, pressure 

gradient by Gs=τ0/H and velocity by us = 1/

0( / ) n
H kτ . The critical dimensionless pressure 

gradients *

1G  and *

2G are then given by 
 
 

* 1
1

2

1
B

G
B

≡ +
  

and   ( ) ( )1/ 1 1/
* 1/ 1/ * *

2 2 1 2 22 1 0
1

n s
s sn

G B B G G
n

+  − − − − =  +        
(2.30) 

The velocity profiles, the yield points and the wall stresses in each regime are provided below. 

Regime I 

1/
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 
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(2.31) 

*
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+
                                              

(2.32) 

Regime II 
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u y y y

n

+ +

+


 + − − ≤ ≤   += 

 + ≤ ≤
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(2.33) 

( ) ( ) ( )1/ 1 1/ 1/
* * 1/ * * *

1 1 1 2 11 0
1

n s s
s

w w w

n
B B G G

n
τ τ τ
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(2.34) 

*
* 1
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=

                                                
(2.35) 

Regime III 

*1/
* *1/ 1 * * 1/ 1 * *
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* * * *1/ 1 * * *
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n
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
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(2.36) 
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* 1
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(2.38) 

PANDELIT
SA PANASETI 



 

In the general case, the second critical pressure gradient 

terms of which the solution is expressed, can only be calculated numerically. In the case of Navier 

slip (s=1), these quantities can be calculated analytically for certain values of 

plastic flow (n=1) belongs to this category and the corresponding solutions are given in Appendix 

B.  

Figure 2.4: Velocity profiles of Herschel

case of Navier slip (s=1) with 

*

2 2.8685G =  and 
*

y∞ =

*

2 2.9349G =  and 
* 1 / 2y∞ =

gradients (G) are scaled by 

yield points. 

 

2.4.2 Velocity profiles   

Figure 2.4 shows velocity profiles for different values of the pressure gradient covering the three 

regimes, obtained for four different values of the exponent (

slip (s=1) with B1=1 and B

exponent n and that * *( )xu G B

tends to enhance the flow asymmetry, in the sense that both yield points move away from the 

In the general case, the second critical pressure gradient *

2G  and the lower wall shear stress 

terms of which the solution is expressed, can only be calculated numerically. In the case of Navier 

=1), these quantities can be calculated analytically for certain values of 

=1) belongs to this category and the corresponding solutions are given in Appendix 

Velocity profiles of Herschel-Bulkley fluids for different values of the pressure gradient in the 

=1) with B1=1 and B2=2: (a) n=4/3 with 
*

2 2.8943G = and 

5 / 8= ; (c) n=1/2 with 
*

2 2.9129G =  and 
*

y∞

1 / 2 . Note that 
*

1 1.5G =  in all cases. Lengths (y), velocities (

) are scaled by H, 
1/

0 0/ ( / ) n
u H kτ= and 0 /sG Hτ= , respectively. The

4 shows velocity profiles for different values of the pressure gradient covering the three 

regimes, obtained for four different values of the exponent (n=4/3, 1, 1/2 and 1/3) assuming Navi

B2=2. Recall that the velocity profiles in Regime 

* *

1 1( )u G B=  in all cases. Just as for the power-law fluids, shear thickening 

tends to enhance the flow asymmetry, in the sense that both yield points move away from the 

27 

and the lower wall shear stress *

1wτ , in 

terms of which the solution is expressed, can only be calculated numerically. In the case of Navier 

=1), these quantities can be calculated analytically for certain values of n. The Bingham 

=1) belongs to this category and the corresponding solutions are given in Appendix 

 

Bulkley fluids for different values of the pressure gradient in the 

and 
* 2 / 3y∞ = ; (b) n=1 with 

1 / 2= ; (d) n=1/3 with 

), velocities (ux) and pressure 

, respectively. The circles show the 

4 shows velocity profiles for different values of the pressure gradient covering the three 

=4/3, 1, 1/2 and 1/3) assuming Navier 

 I are independent of the 

law fluids, shear thickening 

tends to enhance the flow asymmetry, in the sense that both yield points move away from the 
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midplane towards the upper wall, while shear thinning tends to favor symmetry and extends 

Regime II. As expected, both yield points tend to converge to the asymptotic point 

Eq. (2.29), which corresponds to the power

n=4/3 converge to * 2 / 3y∞ =

n=1/2 and 1/3 converge to 

of *

1y  and *

2y  with the pressure gradient are not always monotonic. For example, 

monotonically increasing function of the pressure gradient only for large values of 

4c). When n=1/3 (Fig. 2.4d) 

wide range of the pressure gradient before starting increasing again to asymptotically reach the 

value * 1 / 2y∞ = . Similarly, when 

increasing asymptotically to the limiting value 

 

Figure 2.5: Wall shear stresses and slip velocities as functions of the pressure gradient when 

(a) B1=0.001 and  B2=0.002 (weak slip) in which case 

(strong slip) in which case G

of the pressure gradient. 

 

 

midplane towards the upper wall, while shear thinning tends to favor symmetry and extends 

I. As expected, both yield points tend to converge to the asymptotic point 

, which corresponds to the power-law solution. More specifically, the yield points for 

2 / 3  (Fig. 2.4a), those for n=1 to * 5 / 8y∞ =  (Fig. 

=1/2 and 1/3 converge to * 1 / 2y∞ =  (Figs. 2.4c and 4d). It is interesting to note that the variations 

with the pressure gradient are not always monotonic. For example, 

monotonically increasing function of the pressure gradient only for large values of 

4d) *

1y  initially increases attaining a maximum and then decreases over a 

wide range of the pressure gradient before starting increasing again to asymptotically reach the 

. Similarly, when n=4/3 (Fig. 2.4a), *

2y  decreases and reaches a minimum before 

increasing asymptotically to the limiting value * 2 / 3y∞ =  far from the midplane.  

Wall shear stresses and slip velocities as functions of the pressure gradient when 

=0.002 (weak slip) in which case 
*

1 1.5G =  and 
*

2 2.1752G =

*

1 1.5G =  and 
*

2 2.9129G = . The vertical lines indicate the two critical values 

28 

midplane towards the upper wall, while shear thinning tends to favor symmetry and extends 

I. As expected, both yield points tend to converge to the asymptotic point *
y∞  given by 

law solution. More specifically, the yield points for 

(Fig. 2.4b), while those for 

d). It is interesting to note that the variations 

with the pressure gradient are not always monotonic. For example, *

1y is a 

monotonically increasing function of the pressure gradient only for large values of n (Figs. 2.4a-

initially increases attaining a maximum and then decreases over a 

wide range of the pressure gradient before starting increasing again to asymptotically reach the 

decreases and reaches a minimum before 

far from the midplane.   

 

Wall shear stresses and slip velocities as functions of the pressure gradient when n=1/2 and  s=1: 

2.1752 ; (b) B1=1 and B2=2 

. The vertical lines indicate the two critical values PANDELIT
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2.4.3 Wall stress and slip velocity 

The effect of the pressure gradient on the wall shear stresses and the slip velocities is illustrated in 

Fig. 2.5. Here, based on the behavior of soft glassy suspensions (Vayssade et al., 2014), we 

consider a Herschel-Bulkley material with exponent n=1/2 and assume that Navier slip (s=1) 

occurs along both walls. The lower plate slip number takes two extreme values, i.e.  B1=0.001 and 

1, corresponding to weak and strong slip respectively; the ratio B1/B2 = 0.5 is fixed. From Eq. 

(2.30), we have ��∗ = 1.5 showing that Regime I is the same in all cases; �#∗  increases and Regime 

II expands as B1 is increased. In Fig. 2.5, we observe that the variations of the slip velocities with 

the pressure gradient are correlated with the variations of the wall shear stresses. For weak slip 

(Fig. 2.5a), the difference between )��∗  and )�#∗  increases in Regime I, decreases in Regime II, and 

finally vanishes in Regime III where eventually )��∗ = )�#∗ . The corresponding velocities ���∗  and ��#∗  increase as the pressure gradient is increased. These are equal in Regime I but in the other two 

regimes ��#∗  grows faster than ���∗   and thus the difference * *

2 1w wu u−  increases. Strong slip (Fig. 

2.5b) results in higher slip velocities as expected. Both )��∗  and )�#∗  increase but the rate of 

increase is slowly changing over the entire range of pressure gradient explored. For a given value 

of the slip ratio, the difference of the two slip velocities in Regimes II and III is much smaller and 

its rate of increase is much lower for strong slip than for weak slip.  

 

2.5 Confined flows with asymmetric slip 

2.5.1 General solution 

In this section we show that for a given viscoplastic material and fixed wall properties, the critical 

pressure gradients marking the onset of Regimes II and III, depend on the gap size H.  In order to 

analyze this dependence, we need to introduce new length, pressure-gradient and velocity scales 

1/
1 1/ 1/ 1/1/

0 2 0

1/ 1/ 1/ 1/

0 2 2

, , and

s
n s sn

s s sn s s n

k
G u

k

τ β τ
τ β β

+ −

−

 
= = =  

 
ℓ                 (2.39) 

The resulting dimensionless variables are denoted by a tilde (~). It is also important to note that the 

slip equation parameters β2 and s (along the upper wall) are hidden in the non-dimensional scales 

(2.39). In particular, the non dimensional gap / sH H≡ɶ ℓ  incorporates the effects of the slip 

coefficient at the upper wall and the fluid properties. From Eq. (2.13) we get the following 

dimensionless expression for the first critical pressure gradient 

 
1

1
G

H

κ+
=ɶ
ɶ

                                                 
(2.40) 

where 
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 2 1

1 2

B

B

β
κ

β
≡ =

                                               

(2.41) 

is the slip parameter ratio which varies from 0 (no slip along the lower wall) to 1 (same slip along 

the walls). Hence the curve representing 1Gɶ  versus Hɶ  lies between 1/ Hɶ and 2 / Hɶ . The second 

critical pressure gradient 2Gɶ is the root of the dimensionless version of Eq. (2.19) 

 1/ 1 1/ 1/1
( 2) 1 1 ( 1) 0n s sGH GH G

n
κ+    − − + − − =    

ɶ ɶ ɶɶ ɶ

                    

(2.42) 

The above equation is amenable to analytical solution only in some special cases. Two of them of 

practical interest in experiments are discussed below. 

2.5.2 Solution for no slip along the lower wall (κ=0)  

In this case, 
1 1 /G H=ɶ ɶ  and Eq. (2.42) is simplified to 

 1/ 1

2 2

1
( 2) 1nG H G

n

+  − = + 
 

ɶ ɶɶ

                                     

(2.43) 

For a Bingham fluid (n=1) one finds 

 ( )2 2

2 1
1 1 4G H

H H
= + + +ɶ ɶ
ɶ ɶ

                                    
(2.44) 

while for a Herschel-Bulkley fluid with n=1/2, 

 ( )1

2

2 1 1
1 cos cos 3

3
G H

H H

−  = +    
ɶ ɶ

ɶ ɶ
                           

(2.45) 

It is useful to note that if 
2G and Η are known from experiments and if the upper wall experiences 

Navier slip (s=1) then the slip coefficient can be calculated from the dimensional version of Eq. 

(2.43) 

 
( )

1/

2 1/ 11/

0 0

(1 1 / )

/ 2

n

nn

n k G

GH
β

τ τ +

+
=

−
                                     

(2.46) 

The first and second critical pressure gradients for n=1 and 1/2 are plotted as functions of Hɶ  in 

Fig. 2.6. These graphs can be viewed as flow diagrams giving the type of flow experienced by the 

fluid when the degree of confinement is varied. Regime I is situated below the curve 1 ( )G f H=ɶ ɶ , 

which is independent of exponent n. Regime II is the area between the curves of 1Gɶ and 2Gɶ . Figure 

2.6 highlights the importance of the characteristic length ℓs defined in (2.39).  
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Figure 2.6: Effect of the power-law exponent n on the second critical pressure gradient 2Gɶ
 
for 0κ =  (no-

slip at the lower wall) and s=1 (Navier-slip at the upper wall). The solid curve has been obtained with n=1 

(Bingham fluid) and the dashed one with n=1/2 (Herschel-Bulkley). The lower dotted line is the plot of 1Gɶ , 

which is independent of the value of exponent n. The region between the curves of 1Gɶ  and 2Gɶ  corresponds 

to Regime II, while the area below the curve of 1Gɶ  corresponds to Regime I (full-slip flow). 

 

When the gap H becomes lower than the characteristic length ℓs (*+ < 1�, Regime II dominates and 

Regime III is hardly attained except at very large pressure gradients. When Hɶ increases, the fluid 

is less confined and the extension of Regimes I and II is reduced. As expected, when the fluid is 

more shear-thinning, i.e. n is lower, the critical pressure gradient for yielding at the upper wall, 2Gɶ , 

is reduced and the extension of Regime II is reduced accordingly. At large values of Hɶ , 2Gɶ  

becomes independent of n. 

 

2.5.3 Solution for Navier slip along both walls (s = 1) 

In this case, Eq. (2.42) is simplified to 

 1/ 1 1
( 2) 1 1 ( 1) 0nGH GH G

n
κ+    − − + − − =    

ɶ ɶ ɶɶ ɶ
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Figure 2.7: Effect of the slip number ratio 1 2/B Bκ ≡  on the critical pressure gradients 1Gɶ  (dashed) and 

2Gɶ  (solid) and the different flow regimes for n=1/2 (Herschel-Bulkley flow). The area between 1Gɶ  and 

2Gɶ  corresponds to Regime II, while the area below the curve of 1Gɶ  corresponds to Regime I (full-slip flow). 

When κ=1 slip is symmetric and thus 1Gɶ  and 2Gɶ  coincide. 

 

For Bingham fluids (n = 1) one gets 

 2

2

1 1
2 1 (1 ) 4(1 )

2
G H

H H
κ κ κ

κ
  = + + + + + −  +  

ɶ ɶ
ɶ ɶ

                 

(2.48) 

For Herschel-Bulkley fluids with n=1/2 

 
2

1/3

2 2 1/3

2 1 (1 3 )H
G C

H H C

κ κ
κ

 − +
= + + − 

 

ɶ
ɶ

ɶ ɶ
                         

(2.49) 

where 

 { }2 2 2 2 2 2 31
6(1 ) 3 (3 1) 36(1 ) 4(9 1) 3(1 ) 2

2
C H H H Hκ κ κ κ κ κ κ κ = − + − + − + − − + −  

ɶ ɶ ɶ ɶ

                            
(2.50)  

Figure 2.7 shows flow diagrams for Herschel-Bulkley fluids with n=1/2 and different 

values of the slip parameter ratio κ. Again the results exemplify the importance of the characteristic 

length ℓS. Regime II has a significant extension when the gap H is comparable to or lower than ℓS. 
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It is shifted upwards when κ is reduced and reaches its maximum extension when κ=0. When κ=1, 

the critical pressure gradients 
1Gɶ  and 

2Gɶ  are equal to 2 / Hɶ  indicating that Regime II disappears 

and the flow shifts directly from pure slip to upper and lower yielded flows. 

 

2.6 Discussion 

In this section we relate our results with those of Vayssade et al. (2014) for the flow of Herschel-

Bulkley glassy suspensions in microchannels.   

2.6.1 Quantifying the asymmetry of the velocity profiles 

Definition of the asymmetry parameter 

Vayssade et al. (2014) solved the flow of Herschel-Bulkley fluid in microchannels by considering a 

frame of reference at the midplane of the channel, which translates at a mean velocity ���� +��#�/2 so that the two walls move with opposite velocities ±Us, where 

                                           -. = /0	1/0�#        (2.51)  

They also defined the dimensionless number 

2 = �# �3�
 + 3	
 − 1
                                                  (2.52) 

as a measure of the asymmetry in the positions of the yield points. Their analysis focused on the 

two slip velocities only and was independent of the slip laws at the two walls. However, it was 

restricted to the particular case n=1/2. In this section, we revisit the notion of the asymmetry 

parameter to compare our results to the experimental data, taking advantage of the general 

solutions derived in section 2.2. Generalizing the scaling forms proposed by Vayssade et al. (2014), 

we scale velocities by 4�� �⁄ *��� �⁄ /�4 + 1�5� �⁄ , distances by H, pressure gradients by 0 / Hτ  

and stresses by GH. In order to avoid confusion with our previous adimensionalization systems, the 

dimensionless variables in this section are denoted by bars. According to Eq. (2.21), the difference 

between the two slip velocities in Regime III can be written in dimensionless form as 

                                            
1/ 1 1/ 1

2 1 1 2(1 )n n

w wu u y y
+ +− = − −   

or 

 1/ 1 1/ 1

1 2

1
(1 )

2

n n

sU y y
+ + = − − 

                                   
(2.53) 

For n ≤1,we conveniently set n=1/m, where m is an integer, to get 

( )
1

1 1

1 2 1 2

1

1
1 (1 )

2

m
m k k

s

k

U y y y y
+

+ − −

=

= + − −∑
                            

(2.54) 
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Let us now assume that despite the fact that the slip velocities are not the same, the two 

yield points are almost symmetric about the midplane, i.e. 1 21y y≈ − . As already discussed, this 

assumption is not reasonable when n≥s in which case the two yield points tend to merge at 

1/ 2y∞ > , according to Eq. (2.29). It is valid when n<s and the two slip velocities are close to each 

other. Setting 2 11 y y− =  into Eq. (2.54) yields  

( )1/

1 1 21/ 1

1 1
1 1

2

n

s n
U y y y

n+

 = + + − 
                                

(2.55) 

For n<s and sufficiently high values of the pressure gradient, �6� can be approximated by   �6∞ ≈1/2 and by combining Eqs. (2.52) and (2.55) the asymmetry parameter takes the form 

 

1/
2

1 1/

n

s
S U

n
=

+                                               
(2.56) 

Asymptotic values of the asymmetry parameter 

The asymptotic value (2 1) / 2S y∞ ∞≡ −  of S as the pressure gradient goes to infinity is of interest. 

For example, when s = 1 one gets from Eq. (2.29) 

 

2 1

1 2

2 1

1 2

0, 1

1
, 1

2 2(1 )

, 1
2( )

n

B B
S y n

B B

B B
n

B B

∞ ∞


 <
 −

= − = =
+ +

 −
>

+                       

(2.57) 

For Bingham fluids (n = 1), the asymptotic value of 
sU  can be calculated from the slip velocities in 

the Newtonian case, which are known 

 

2 1

1 22(1 )
s

B B
U S

B B
∞ ∞

−
= =

+ +
                                      

(2.58) 

In the general case, when 1s ≠ , S∞ is calculated by means of  

 

1
(2 1)

2
MS y∞ = −

                                            
(2.59) 

where My  is the position of the maximum velocity in the flow of a power-law fluid, which can be 

found by solving Eq. (2.26). 
sU ∞ is then found by means of Eq. (2.56), which has been derived by 

assuming that 1/ 2y∞ ≈ . 
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2.6.2 Relevance of the asymmetry parameter 

The expression (2.57) for S∞ is valid for high values of the pressure gradient and n<s. Let us test it 

against the exact solutions found in the previous sections. We consider the case n=1/2 with Navier 

slip (s=1), which is representative of the experiments of Vayssade et al. (2014). Figure 2.8a shows 

results of S versus 
sU  obtained for different values of the slip number B2 and B1=1 over a wide 

range of pressure gradients above *

2G . It is important to note that for low values of the pressure 

gradient, S is actually double-valued when plotted against 
sU . As the pressure gradient is increased 

further both S and 
sU  are reduced and all the curves approach asymptotically the line 4 / 3sS U= . 

The asymmetry parameter S increases as B2 is increased (Fig. 2.8a) or as B1 is reduced (data not 

shown), because the asymmetry of the velocity profile is enhanced.  

The influence of the power-law exponent is illustrated in Fig. 2.8b, where results obtained 

for Navier slip, i.e. s = 1, with B1=1 and B2=2 and n=1, 1/2 and 1/4 are shown. A first observation 

is that in the Bingham-plastic case for which n = s, S is a decreasing function of 
sU  and there is no 

branch approaching asymptotically the line 
sS U=  predicted by Eq. (2.56).  

Actually, as the pressure gradient is increased, the calculated values of S and 
sU  converge 

to the point (
sU ∞ , S∞ ) instead of approaching asymptotically the line 

sS U= . This is due to the 

fact that the asymptotic forms derived for S are only valid for n<s.  For low values of the pressure 

gradient the variation of S is essentially the same for all values of the power-law exponent. When 

n<s the curves of S bend to approach asymptotically the lines predicted by Eq. (2.56). 

2.6.3 Comparison with experiments 

For the rest of this section we fix the values of all material parameters, again based on the 

experiments of Vayssade et al. (2014), n = ½, s =1, and 1 2/ 0.53B Bκ ≡ = , and vary the gap size, 

H, from 7 up to 100 µm.  

The first dimensionless slip number B1 is in the range from 0.15 (H = 100 µm) to 3 (H=7 

µm). The critical pressure gradients �̅� and �̅#  are equal to *

1G  and *

2G  given by Eq. (2.30). 

Hence, the first critical pressure gradient is *

1 1.53G = , independently of the gap size. The second 

critical pressure gradient *

2G  ranges from 2.6534 (H = 100 µm) to 2.8530 (H = 7 µm). Figure 2.9 

shows the velocity profiles corresponding to *
G =3, 4, 5, 6, and 8 for H=7, 20, 50, and 100 µm. To 

facilitate the comparison with the results of Vayssade et al. (2014), we plot the reduced velocity 

1x wu u− , where 1wu  is the smallest slip velocity, versus 
*

/ .y y y H= =
 
The two yield points in 

the velocity profiles are marked with red circles. Given that n<s, the yield points tend 

asymptotically to the center of the channel (�6∞ = 1/2) as the pressure gradient is increased.  
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Figure 2.8: (a) Effect of the slip parameters on the variation of the asymmetry parameter 

n=1/2; B1=1 is kept constant and the ratio 

the dashed line 4 / 3sS U=

s=1 (Navier slip) with B1=1 and 

and 1/4) approach asymptotically the corresponding dashed lines 

for n=s=1  converge to the point 

 

 

(a) Effect of the slip parameters on the variation of the asymmetry parameter 

=1 is kept constant and the ratio B1/ B2 is varied by varying B2. All curves approach asymptotically 

4 / 3  as the pressure gradient is increased. (b) Effect of the power

=1 and B2=2. As the pressure gradient is increased, the results for 

and 1/4) approach asymptotically the corresponding dashed lines 
1/2 / (1 1 / )n

sS U n= +

converge to the point ( , ) (1 / 8,1 / 8)s sU S∞ ∞ = .  
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(a) Effect of the slip parameters on the variation of the asymmetry parameter S with 
sU  when 

. All curves approach asymptotically 

as the pressure gradient is increased. (b) Effect of the power-law exponent for 

=2. As the pressure gradient is increased, the results for n<s (i.e. for n=1/2 

2 / (1 1 / )S U n= + , while the results 
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Figure 2.9: Velocity profiles for different channel gaps and various dimensionless pressure for 

Pa s
1/2

, τ0=11.2 Pa, β1= 10
5
 Pa m

(2014)) (a) H=7 µm with  

B2=1.4159, and 
*

2 2.8044G =

µm with B1=0.1501, B2=0.2832, and 

 

Given the experimental uncertainties discussed below, the agreement between the 

computed velocity profiles and the experimental ones is quite satisfactory. 

computed profile lay below the experiment

the consistency parameter (

gradient should fall into Regime III, the velocity profiles expected for low pressure gradient exhibi

the asymmetrical semi-plateau shape observed in experiments. Again, this can be associated with 

experimental uncertainties on the slip parameter, since it is delicate to control the preparation of the 

surfaces with a high accuracy. Moreover, the asymmetr

gradient and/or the gap size are increased. This unambiguously confirms that the observed velocity 

profiles result from confinement effects. 

Let us now turn our attention towards the asymmetry parameter. For 

derives the asymptotic limit valid for large pressure gradients:

(apart from a minor typo) derived by Vayssade et al. (2014). In Fig. 

Velocity profiles for different channel gaps and various dimensionless pressure for 

Pa m
-1

s, β2=0.53 10
5
 Pa m

-1
s, and s=1 (taken from the data of Vayssade

m with  B1=2.1441, B2=4.0455, and 
*

2 2.8530G = ; (b) H

2.8044 ; (c) H=50 µm with B1=0.3002, B2=0.5664, and G

=0.2832, and 
*

2 2.6534G = . 
*

1 1.53G = in all cases. 

Given the experimental uncertainties discussed below, the agreement between the 

computed velocity profiles and the experimental ones is quite satisfactory. 

computed profile lay below the experimental profiles but we noted that a moderate

the consistency parameter (≅ 10%) can explain the discrepancy. Although all values of the pressure 

gradient should fall into Regime III, the velocity profiles expected for low pressure gradient exhibi

plateau shape observed in experiments. Again, this can be associated with 

experimental uncertainties on the slip parameter, since it is delicate to control the preparation of the 

surfaces with a high accuracy. Moreover, the asymmetry significantly decreases when the pressure 

gradient and/or the gap size are increased. This unambiguously confirms that the observed velocity 

profiles result from confinement effects.  

Let us now turn our attention towards the asymmetry parameter. For 

derives the asymptotic limit valid for large pressure gradients: 4 / 3sS U= , which is the expression 

(apart from a minor typo) derived by Vayssade et al. (2014). In Fig. 2.10, the theoretical variations 

37 

 

Velocity profiles for different channel gaps and various dimensionless pressure for n=1/2, κ=4.1 

=1 (taken from the data of Vayssade et al., 

H=20 µm with B1=0.7504, 

*

2 2.7291G = ; (d) H=100 

Given the experimental uncertainties discussed below, the agreement between the 

computed velocity profiles and the experimental ones is quite satisfactory. Quantitatively the 

al profiles but we noted that a moderate uncertainty on 

10%) can explain the discrepancy. Although all values of the pressure 

gradient should fall into Regime III, the velocity profiles expected for low pressure gradient exhibit 

plateau shape observed in experiments. Again, this can be associated with 

experimental uncertainties on the slip parameter, since it is delicate to control the preparation of the 

y significantly decreases when the pressure 

gradient and/or the gap size are increased. This unambiguously confirms that the observed velocity 

Let us now turn our attention towards the asymmetry parameter. For n=1/2, one easily 

4 / 3 , which is the expression 

10, the theoretical variations 
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of the asymmetry parameter S with 
sU  are shown for the same gap sizes as in Fig. 2.9, together 

with the experimental data (which also include points obtained for H=75 and 80 µm). All the 

curves collapse into the asymptotic limit expected for large pressure gradients, in excellent 

agreement with the corresponding experimental data. When the gap size increases, the asymmetry 

parameter increases as B1 is reduced, and the asymmetry curves are shifted toward low values of Us 

when the pressure gradient is small. The full symbols in Fig. 2.10 represent values of the 

asymmetry parameter either in Regime II or in the lower part of Regime III. This choice is justified 

by the fact that experimentally it is difficult to attribute unambiguously a velocity profile to a 

particular flow regime. Indeed Regime II is quite narrow so that some velocity profiles that look 

like having a semi plateau shape may well belong to Regime III theoretically. In any case, the 

values of S in all these points are in the range from 0.1 to 0.5. This can be explained by noting that 

the experimental asymmetry parameter in Regime II has been calculated by setting 2 1y = , i.e. 

assuming that 1 / 2IIS y= . Given that 1y  also tends to unity as the pressure gradient is reduced 

from 
2G  to 

1G  (at which the velocity is plug) the theoretical limiting value of IIS  is 0.5 while the 

corresponding value of 
sU  vanishes, independently of the gap size. It should be pointed out, 

however, that the measured slip velocities (full symbols) in Fig. 2.10 are lower than their 

counterparts in the upper part of Regime III (open symbols), as it is easily deduced from Fig. 2.9, 

which implies that the relative error in 
sU  may be higher. 

 

Figure 2.10: Asymmetry parameter S versus slip parameter 
sU  for n=1/2, s=1 and H=7 µm (rightmost 

curve), 20 µm, 50 µm, and 100 µm (leftmost curve) compared with experimental data for H=7 µm (▲,∆), 20 

µm (♦,◊), 50 µm (□), 75 µm (▼,∇ ), 80 µm (►) and 100 µm (o). Solid symbols correspond to Regime II 

(semi-plateau velocity profiles) and open symbols to Regime III (asymmetric velocity profiles). 
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2.7 Conclusions 

We have analyzed the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip. 

Three different flow regimes have been identified by means of two critical pressure gradients G1 

and G2: (a) in Regime I ( 10 G G≤ ≤ ), the two slip velocities are the same and the velocity is 

uniform; (b) in Regime II ( 1 2G G G< ≤ ), the fluid yields in a zone near the weak-slip wall and 

flows with uniform velocity near the stronger-slip wall; and (c) in Regime III ( 2G G> ), the fluid 

yields near both walls and the velocity is uniform only in the central unyielded core. The 

asymptotic limit flow of the Herschel-Bulkley flow as the pressure gradient tends to infinity is 

simply the flow of a power-law fluid which was also analysed and shed light to the flow of interest. 

The theoretical results compare well with the experimental data of Vayssade et al. (2014) on soft 

glassy suspensions. One important finding concerns the asymmetry parameter S, defined in Eq. 

(2.52), which is multi-valued for low and moderate pressures (in Regime III) and thus should be 

used with caution in interpreting the experimental data.  

To close this discussion we would like to stress out that the phenomena analyzed in this 

chapter constitute a new and interesting situation of non local rheology where the flow behavior is 

controlled by the surface and not only by the bulk rheology of the material. By changing the 

topography and the particle-wall interactions it is thus possible to manipulate the flow and get 

different velocity profiles. This is particularly important in real situations, for instance during oil 

migration in porous media, where surface roughness and chemistry locally vary so that slip 

heterogeneities naturally exist. Many other relevant applications concern confined flows in 

microfluidic devices where surface effects dominate: dispensing nozzles of colloidal inks in 3D 

printing systems, inkjet printing, and extrusion of complex fluids. 

 

Appendix A -  General solution in Regime I 

In the general case with different slip exponents at the two walls 

 , 1, 2is

wi i wiu iτ β= =
                                         

(2.60) 

and the two slip velocities satisfy 

 1 2

1 1 2 2

s s

w wu u GHβ β+ =
                                         

(2.61) 

In Regime I, 1 2w w wu u u= =  and thus  

 1 2

1 2

s s

w wu u GHβ β+ =
                                         

(2.62) 
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After solving the above equation for wu  we can calculate the two wall shear stresses by means of 

Eq. (2.60). The first critical pressure gradient can be then found by setting the hydrophilic wall 

shear stress equal to the yield stress,  1 0wτ τ= .  

Independent experiments of Vayssade et al. (2014) on soft glassy suspensions showed that s1=1 and 

s2=1/2. From Eq. (2.62) we get  

 

2
2

2 1

2 2

1 2

4
1 1

4
w

GH
u

β β
β β

 
= + −  

                                    

(2.63) 

The first critical pressure gradient is given by 

1 0 2 0 1

1

2

/
1G

H

β τ β τ β
β

 
= +  

                    
(2.64) 

 

Appendix B – Bingham-plastic flow with Navier slip 

It is clear from Eq. (2.13) that the first critical pressure 1G  required for the material to yield at the 

lower wall is independent of the consistency index and the power-law exponent. In the case of 

Bingham plastic flow with Navier slip (n=s=1), Eq. (2.19) for the second critical pressure gradient 

(the pressure gradient at which the material adjacent to the upper wall yields) is simplified as 

follows 

 ( ) ( )2

0 1 2 0 1

1
2 0

2
GH B B B GH GHτ τ− − + − =  

                     
(2.65) 

and thus 2G  is given by 

 0
2

21 2
2 1 1 2

2 /

1 1 1 4( ) / ( )
2

H
G

B B
B B B B

τ
=

+  + ± + − +
                      

(2.66) 

The lower root is chosen if it is greater than 1G  and the higher one otherwise. 

The lower-wall shear stress in the three regimes is given by 

2
1

1 2

21 0 0
1 2 2 1 2 1 2 1 2

2 0
2

1 2 0

, 0

( ) 2 2( ) ,

1 2 2 /
,

2(1 2 / )

w

B
G G

B B

B B B B B B B G G G
GH GH GH

B GH
G G

B B GH

τ τ τ

τ
τ

 ≤ ≤ +



= + + + − + − − ≤ ≤

 + −

≤ + + −

(2.67) 
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The two slip velocities can be calculated by means of 

1
1

1

w
wu

τ
β

= and 1
2

2

w
w

GH
u

τ
β
−

=
                                 

(2.68) 

and the positions of the yield points by 

2 0
1 2 2 1 2 1 2 1 2

1 01

2 0 0
2

1 2 0

( ) 2 2( ) ,

1 2 2 /
,

2(1 2 / )

w

B B B B B B B G G G
y GH

H GH B GH
G G

B B GH GH

τ
τ τ

τ τ
τ


+ + − + − − ≤ ≤− 

= = 
+ − − ≤

 + + −

(2.69) 

and 

 1 0 2 0 02
2

1 2 0

1 2 2 /
,

2(1 2 / )

w B GHy
G G

H GH B B GH GH

τ τ τ τ
τ

+ + −
= = + ≤

+ + −
             

(2.70) 

Finally, the velocity in Regimes I-III is given respectively by 

 

1 2

( )I

x

GH
u y

β β
=

+
,                                                  (2.71) 

 

2 2

1 1 1 1

2

1 1 1

( ) , 0
2

( )

,
2

w

II

x

w

G
u y y y y y

u y
G

u y y y H

µ

µ

  + − − ≤ ≤ 
= 

 + ≤ ≤
                  

(2.72) 

and 

 

2 2

1 1 1 1

2

1 1 1 2

2 2

2 2 2 2

( ) , 0
2

( ) ,
2

( ) ( ) ,
2

w

III

x w

w

G
u y y y y y

G
u y u y y y y

G
u H y y y y y H

µ

µ

µ


 + − − ≤ ≤  




= + ≤ ≤



 + − − − ≤ ≤  
            

(2.73) 

The solution for the symmetric problem is obtained by setting 1 2β β= . The two critical pressure 

gradients are then equal, 1 2 02 /G G Hτ= = , so that the intermediate Regime II disappears. 

Moreover, 1 2 / 2w w GHτ τ= =  and the positions of the yield points in Regime III are given by 

 0 0
1 2,

2 2

H H
y y

G G

τ τ
= − = +

                                   
(2.74) 

Hence, / (2 )I

xu GH β=  while III

xu  is given by Eq. (2.73). 

PANDELIT
SA PANASETI 



42 

 

Chapter 3 

Viscoplastic flow development in a 

channel with slip along one wall 

 

In this chapter we investigate the case of viscoplastic flow in a channel with slip only along one 

wall. We also derive the analytical solutions corresponding to fully-developed flow for the case of 

a power-law slip equation and identify the various flow regimes. We further present the numerical 

method and discuss the numerical results
4
. 

 

3.1 Introduction 

Many materials of industrial interest, such as polymeric solutions, suspensions, and gels, are 

viscoplastic, i.e. they exhibit yield stress. These materials behave as fluids when the exerted stress 

exceeds the yield stress and as solids otherwise. A popular viscoplastic constitutive equation which 

also describes shear-thinning or shear thickening is the Herschel-Bulkley model, which involves 

three material parameters, i.e. the yield stress τ0, the consistency index k, and the power-law 

exponent, n (Mitsoulis, 2007). The tensorial form of this model is as follows 

0

10
0

,

,nk

τ τ

τ
γ τ τ

γ
−

= ≤


 
= + > 

 

γ 0

τ γ

ɺ

ɺ ɺ
ɺ

                                        

(3.1) 

where τ is the viscous stress tensor, ( )
T≡ ∇ + ∇γ u uɺ  is the rate of strain tensor, u is the velocity 

vector, ∇u  is the velocity gradient tensor, and the superscript T denotes its transpose. The 

magnitudes of γɺ and τ, denoted respectively by γɺ and τ, are defined by : / 2γ ≡ γ γɺ ɺ ɺ  and 

: / 2τ ≡ τ τ . The Herschel-Bulkley model is reduced to the power-law model when the yield 

stress is zero and to the Bingham-plastic model when n=1.  

In flows of ideal yield-stress fluids, the flow domain consists of the so-called unyielded (

0τ τ≤ ) and yielded regions ( 0τ τ> ) where the two branches of the constitutive equation apply. 

The former regions include zones where the material moves undeformed as a rigid body 

                                                      
4
The material of this chapter appears in Panaseti and Georgiou (2017).                                                                                     
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and dead zones where it is stagnant. Determining the interfaces between yielded and 

unyielded regions is a key computational challenge with viscoplastic fluid flows, especially in 

two- and three-dimensional flows (Balmforth et al., 2014). Two are the main approaches to tackle 

this problem: (a) Augmented Lagrangian Methods (ALMs); and (b) Regularization methods. ALMs 

are based on the variational formulation of the Navier-Stokes equations and employ optimization 

algorithms to determine the flow solution (Balmforth et al., 2014). They are exact in the sense that 

they respect the non-differentiable form of the constitutive equation. However, ALMs are generally 

slower and more difficult to implement than regularization methods (Balmforth et al., 2014). 

In regularization methods, the constitutive equation is modified by introducing an 

additional parameter in order to combine the two branches of Eq. (3.1) into one smooth  function, 

so that the resulting regularized equation applies everywhere in the flow field in both yielded 

and (practically) unyielded regions. The most popular regularization in the literature is that 

proposed by Papanastasiou (1987) for a Bingham plastic and subsequently by Ellwood et al. (1990) 

for a Herschel-Bulkley fluid 

 
( )0 1

1 exp
n

m
k

τ γ
γ

γ
−

 − −   = + 
  

τ γ
ɺ

ɺ ɺ
ɺ

                                   

(3.2) 

where m  is the stress growth exponent, which has dimensions of time. For sufficiently 

large values of ,m  the Papanastasiou model provides a satisfactory approximation of the 

Bingham-plastic model. The regularized approach is easier to implement than ALMs but 

eliminates the yield surfaces replacing unyielded regions with regions of very high 

viscosity. The interface of yielded /“unyielded” regions can approximately be tracked down a 

posteriori by using the von Mises criterion 0τ τ=  (Mitsoulis, 2007; Mitsoulis and Tsamopoulos, 

2017). The advantages and disadvantages of ALMs and regularization methods are 

discussed in the recent articles of Balmforth et al. (2014), and Saramito and Wachs (2017).  

Wall slip is important in many industrial applications, such as the extrusion of complex 

fluids, ink jet processes, oil migration in porous media, and in microfluidics. Viscoplastic materials 

are known to exhibit wall slip (Yilmazer and Kalyon, 1989; Ballesta et al., 2012; Cloitre and 

Bonnecaze, 2017). While wall slip with polymer melts is observed at large rates of strains, with 

pasty materials it appears within a range of rather small strains (Denn, 2001). Based on the analysis 

of apparent slip flows of Herschel-Bulkley fluids in various geometries, Kalyon (2005) proposed a 

power-law slip equation, relating the wall shear stress, τw, to the slip (or sliding) velocity, uw, 

defined as the relative velocity of the fluid with respect to that of the wall, 

 = u
s

w wτ β
                                                            

(3.3) 
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where s is the exponent, and β is the slip coefficient. The latter coefficient incorporates the effects 

of temperature, the normal stress, the molecular parameters, and the properties of the fluid/wall 

interface (Denn, 2001). The no-slip and full-slip limiting cases are recovered when β →∞
 
and 

0β = , respectively. Experimental values of the exponent s have been reviewed by Panaseti et al. 

(2017). The value s=1 has been reported in different experimental studies for stresses above the 

yield stress (see Panaseti et al., (2017) and references therein). Setting s=1 in Eq. (3.3) leads to the 

classical Navier-slip condition (Navier, 1827) 

 
w wuτ β=

                                                    
(3.4) 

in which case the slip coefficient is related to the slip length b, by means of / bβ µ≡ , where µ 

denotes the viscosity.  

The present work is motivated by the recent findings of Vayssade et al. (2014), who 

imaged the motion of well characterized softy glassy suspensions in microchannels whose walls 

impose different slip velocities. Their experiments showed that as the channel height decreases the 

flow ceases to be symmetric and slip heterogeneities effects become important. Interestingly, some 

of the experimental velocity profiles reported by Vayssade et al. are characterized by overshoots 

similar to those encountered in entry flows (Vayssade et al., 2014). We thus revisit here the 

classical flow development problem of a Bingham plastic in a horizontal channel assuming, 

however, that power-law slip occurs along the upper wall only. The one-dimensional fully-

developed flow with asymmetric slip along the two walls has been analyzed by Panaseti et al. 

(2017). The theoretical results compare well with the (fully-developed) experimental data of 

Vayssade et al. (2014). 

 

 

Figure 3.1: Different flow regimes in the case of one-dimensional plane viscoplastic Poiseuille flow when 

slip occurs only along the upper wall.  
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For the sake of simplicity, the special case where there is no slip along the lower wall is 

studied here. As illustrated in Fig. 3.1, three regimes are observed for the one-dimensional steady-

state Poiseuille flow, as the pressure gradient G is increased. Below a certain critical value G1 

(Regime I) the lower wall shear stress is below the yield stress and thus there is no flow. In Regime 

II above G1 and below a second critical pressure gradient G2, the fluid yields only near the lower 

plate and the fluid adjacent to the upper wall slides as an unyielded plug. Finally, above G2 at 

which the upper-wall shear stress also exceeds τ0 (Regime III), the fluid yields near both the walls 

and the velocity profile is asymmetric with a plug core. In the special case when there is no slip 

along the upper wall, the classical symmetric Poiseuille solution is recovered and Regime II is not 

relevant.  

The flow development problem is obviously two-dimensional: the fluid enters a tube or a 

channel at a uniform velocity and decelerates near the wall(s) and accelerates in the central region. 

In other words, the axial velocity tends from a flat profile at the inlet to the fully-developed profile 

downstream. The development length is usually defined as the length required for the maximum 

velocity to attain 99% of its fully-developed value scaled either by the pipe diameter or the channel 

width (Shah and London, 1978). This definition implies that the maximum velocity in the central 

acceleration region develops more slowly than its counterparts at any other vertical distance from 

the axis or plane of symmetry. This may not be the case in all geometries and for all fluids, 

especially viscoplastic ones which are characterized by a maximum flat velocity. It is also clear that 

such a definition is not applicable in the case of asymmetric Poiseuille flow which is of interest 

here. In a recent study of the effect of wall slip on the development of planar and axisymmetric 

Newtonian Poiseuille flows, Kountouriotis et al. (2016) pointed out that in addition to the standard 

definition of the development length, L, as the length required for the maximum velocity to attain 

99% of its fully-developed value, the wall development length Lw is also relevant in the presence of 

slip. This is defined as the length required for the slip velocity to decrease to 1.01% of its fully-

developed value. The numerical simulations of Kountouriotis et al. (2016) showed that both L and 

Lw increase with slip passing through a maximum and vanish at a critical value of the slip 

parameter corresponding to the full slip case. They also revealed that, in contrast to the 

axisymmetric flow, the planar flow develops more slowly at the wall than at the midplane, i.e. 

Lw>L. 

In a subsequent work, Philippou et al. (2016) studied numerically the development of 

Bingham plastic flow in tubes and channels using the Papanastasiou regularization and finite 

element simulations. They considered alternative definitions of the development length noting that 

this is a function of the transversal coordinate. Their results demonstrated that the classical 

development length, Lc, and the development length, L95, proposed by Ookawara et al. (2000) for 

Bingham flow are not good choices for measuring viscoplastic flow development (with or without 

slip). L95 is defined as the axial distance required for the velocity to reach 99% of the calculated 

maximum value at a radial location corresponding to 95% of the plug radius (Ookawara et al., 

PANDELIT
SA PANASETI 



46 

 

2000). To avoid the inconsistencies resulting from the use of Lc and L95, Philippou et al. (2016) 

employed the global development length which in the case of a channel of width H  is defined as 

follows  

 
0

max ( )g
y H

L L y
≤ ≤

≡                                                       (3.5) 

( )L y is the (smallest) length required for the two-dimensional axial velocity ( , )u x y  to become 

equal to 0.99 ( )u y  or 1.01 ( )u y  when ( ) mu y u> or ( ) mu y u< , respectively, where ( )u y  is the 

fully-developed velocity profile and 
mu  is the mean velocity.  

The present work can be viewed as an extension of Philippou et al. (2016), to the case of 

viscoplastic flow in a channel with slip only along one wall (asymmetric flow). The governing 

equations are presented in section 3.2, where the analytical solutions corresponding to fully-

developed flow for the case of a power-law slip equation are also derived and the various flow 

regimes are identified. In section 3.3, the numerical method is briefly presented and the numerical 

results are discussed. Finally, the conclusions are summarized in section 3.4.  

 

3.2 Governing equations 

The governing equations are de-dimensionalized scaling lengths by the gap height H of the 

channel, the velocity vector by the uniform inlet velocity U, and the pressure and the stress tensor 

components by 
n n

kU H . By denoting the de-dimensionalized variables with stars, the continuity 

and momentum equations for steady, incompressible flow with zero gravity can be written as 

follows 

 
* * 0∇ ⋅ =u                                                          (3.6) 

and 

 
* * * * * * *

Re p⋅∇ = −∇ +∇ ⋅u u τ
                                          

(3.7) 

where 

 

2 n n
U H

Re
k

ρ −

≡                                                      (3.8) 

is the Reynolds number, ρ being the constant mass density of the material. 

The Pananastasiou regularization (Papanastasiou, 1987) is employed here for the Herschel-

Bulkley model. The dimensionless form of the regularized constitutive equation may be written as 

follows 
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*
* * 1 *

*

1 exp( ) nM
Bn

γ
γ

γ
− − −

= + 
 

τ γ
ɺ

ɺ ɺ
ɺ

                                     

(3.9) 

where 

 0

n

n

H
Bn

kU

τ
≡

                                                       
(3.10) 

is the Bingham number and 

     

mU
M

H
≡                                                         (3.11) 

is the dimensionless growth exponent, which has to be sufficiently high so that the flow of the ideal 

discontinuous Herschel-Bulkley fluid is approximated satisfactorily (Papanastasiou, 1987; Ellwood 

et al., 1990; Mitsoulis and Tsamopoulos, 2017).  

 

Figure 3.2: Geometry and boundary conditions of the flow development of a Bingham plastic in a horizontal 

channel with slip along the upper wall. 

 

The geometry and the boundary conditions of the flow are illustrated in Fig. 3.2. At the 

inlet plane, the velocity component in the direction of the flow is uniform (
*

1xu = ) and the 

transversal one vanishes. At the lower wall, there is no slip and no penetration and thus both 

velocity components are zero. At the upper wall the vertical velocity is again zero and slip is 

assumed to occur following a power-law slip equation,  

 * *s

w wBuτ =
                                                 

(3.12) 

where 

n

n s

H
B

kU

β
−

≡                                                          (3.13) 
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is the (dimensionless) slip number. Note that B is the inverse of the slip number defined by Panaseti 

et al. (2017). Finally, the exit plane is taken sufficiently far downstream so that the flow can be 

assumed fully-developed.  

3.2.1. Fully-developed solutions 

The de-dimensionalization introduced above is based on the mean velocity, which implies that 

there is flow, i.e. Regime I of Fig. 3.1 is not relevant. The no-slip case, which corresponds to a 

symmetric velocity profile with respect to the mid-plane of the channel, is recovered for B →∞ . 

The two yield points, 
*

1y and 
*

2y , are thus symmetric, i.e. 
* *

2 11y y= − , and the flow is in Regime III 

(there is no Regime II). Keeping the Bingham number constant and decreasing the slip number, 

enhances slip at the upper wall and the velocity becomes asymmetric: the two yield points move 

towards the upper wall so that the width of the plug core (
* *

2 1y y− ) increases while its velocity is 

reduced. This trend continues up to a critical slip number, cB , at which the upper yield point 

reaches the wall (the dimensionless upper wall shear stress is equal to Bn) signaling the transition 

from Regime III to Regime II. Deriving the analytical solution is straightforward (Panaseti et al., 

2017). However, this is presented here for convenience and in order to account for the present 

scalings used and to identify the different flow regimes. The general dimensionless solution for 

cB B≤ < ∞ is given by 

 

1/ 1

1/ 1

* * * 1/ 1 * *

1 1 1
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* * * * *1
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III

n n

w

III

y y y y y
A

y
u y y y y

A

u y y y y y
A

+

+

+

+ +

  − − ≤ ≤  



= ≤ ≤



 + − − − ≤ ≤  
             

(3.14) 

where 

 
* *1/ 1 * 1/ 1

1 2

1
(1 )n n

w

III

u y y
A

+ + = − − 
                                      

(3.15) 

and 

 
*1/ 1 * * 1/ 2

1 1 21 (1 )
1 2 1 2

n n

III

n n
A y y y

n n

+ + = − − − + +                           

(3.16) 

The positions of the two yield points can be found by solving the following system of equations 

 
* * * * *

1 2 2 1(2 ) ( ) 0
s

wy y Bn y y Bu− − − − =                                  (3.17) 
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and 

 
* *

2 1(1 1 / ) ( ) 2 0
n n

IIIn y y Bn A+ − − =                                     (3.18) 

No-slip case 

In the no-slip case (
*

0wu = ), Eq. (3.15) yields 
* *

2 11y y= − , which indicates that the flow is 

symmetric with respect to the mid-plane of the channel. Substituting into Eq. (3.16) gives 

 
*1/ 1 *

1 1

2
1

1 2

n

III

n
A y y

n

+  = − +                                            

(3.19) 

and Eq. (3.18) becomes 

 
* * 1 *

1 1 1

2
(1 1/ ) (1 2 ) 2 1 0

1 2

n

n n n
n y Bn y y

n

+  + − − − = + 
                     (3.20) 

Critical value of the slip number  

The critical value cB  of the slip number can be found by setting 
*

2 1y = . Denoting the 

corresponding critical values of 
*

1y  and 
*

wu  by 
*

1cy and 
*

wcu , respectively, we get from Eq. (3.17) 

 
*s

c wcB u Bn=                                                        (3.21) 

which simply says that the (dimensionless) upper-wall shear stress is equal to Bn. The critical slip 

velocity is given by 

 
*

*

1

1

1
1 2

wc

c

u
n

y
n

=
−

+

                                                 (3.22) 

and, therefore, 

 
*

11
1 2

s

c c

n
B y Bn

n

 = − + 
                                            (3.23) 

Finally, from Eq. (3.18) one gets 

 
*

1(1 1 / ) (1 ) 2 0
n n

c IIIcn y Bn A+ − − =                                      (3.24) 

or 

* * 1 *

1 1(1 1 / ) (1 ) 2 / 0
n n n

c c wcn y Bn y u
++ − − =                                  (3.25) 
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which is used to calculate 
*

1cy . It should be noted that the value of 
*

1cy  is independent of the slip 

equation parameters. For example, in the Bingham plastic case (n=1), 
*

1cy  is a root of 

 
*3 *2 *

1 1 13 3 3 0c c cBn y Bn y y− − + =                                        (3.26) 

while the value of Bc can then be calculated from Eq. (3.23) for any value of s. 

Solution in Regime II 

If the slip number is reduced below Bc, the yield point keeps moving towards the upper wall and 

the width of the plug core is thus reduced while its velocity increases. Finally, in the limit 0B =  

(full slip), the velocity profile corresponds to the no-slip solution in a channel of double width 

(2H), i.e. to the no-slip solution corresponding to the modified Bingham number 

 0 (2 )
2

n
n

n

H
Bn Bn

kU

τ
′ = =                                             (3.27) 

Hence, when 0 cB B< ≤ , the flow corresponds to Regime II and the dimensionless velocity is 

given by 

 

1/ 1 1/ 1* * * 1/ 1 * * * *

1 1 1 1 1* *

* * *

1

( ) / 1 ,  0
1 2( )

,   1

n nn

x

w

n
y y y y y y y

nu y

u y y

+ ++    − − − ≤ ≤     +=   
 < ≤       

(3.28) 

where 

 
*

*

1

1

1
1 2

wu
n

y
n

=
−

+                                                   

(3.29) 

and
*

1y  is the root of 

 ( )* * * 1 *

1 1(1 1/ ) (1 ) / 0n s n n

w wn y Bn Bu y u++ − − + =                           (3.30) 

Substituting Eq. (3.21) into the above equation yields Eq. (3.25) for 
*

1cy . For n=1 (Bingham plastic) 

and s=1 (Navier slip) Eq. (3.30) is simplified to  

 
*3 *2 *

1 1 13( ) 6 6 0Bn y Bn B y y− + − + =                                    (3.31) 
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(a)  (b) 

           

(c)                                                                                  (d) 

Figure 3.3: Fully-developed velocity profiles for different values of the slip number in plane Poiseuille flow 

with no-slip along the lower wall and slip along the upper one: (a) Bn=0 (Newtonian flow) and s=1 (Navier 

slip); (b) Bn=0 (Newtonian flow) and s=1/2; (c) Bn=1, n=1 (Bingham flow) and s=1 (Navier slip); (d) Bn=1, 

n=1/2 (Herschel-Bulkley flow) and s=1 (Navier slip). 

 

 

Before discussing the Herschel-Bulkley solutions, it is instructive to consider the 

Newtonian case in which the velocity is a parabola. For any value of the slip exponent s, the 

velocity can be written in the form  

 
* * * * *6 2 3( 2)x w wu y u u y = − + −                                        (3.32) 

where the slip velocity 
*

wu  is a root of 

 ( )* * *2 3 2 s

w w wu u Bu− =                                               (3.33) 

For example, with s=1 (Navier slip) 

 
* 6

4
wu

B
=

+
                                                       (3.34) 
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and with s=1/2  

 
2

*

2

3 96
1 1

2 32
w

B
u

B

 
= − + −  

 
                                           (3.35) 

When B = ∞  (no slip with 
*

0wu =  ) and 0B =  (full slip with 
*

3 / 2wu = ) the standard no-slip 

Poiseuille solutions in channels of dimensionless widths 1 and 2, respectively, are recovered, i.e.  

 
* * * * * *3

6 (1 ) and (2 )
2

x xu y y u y y= − = −                               (3.36) 

Figures 3.3a and 3.3b show the velocity profiles for s=1 and s=1/2, respectively, with 

B = ∞ , 10, 1  and 0. It is easily verified that all curves intersect at the point (2/3,4/3), 

independently of the value of s. Figures 3.3c and 3.3d show similar velocity profiles for Herschel-

Bulkley fluids with Bn=1 and n=1 (Bingham plastic) and n=1/2 in the Navier-slip case (s=1). As 

the slip number is reduced the solution passes from Regime III (two yield points) to Regime II 

below the critical slip number, which is Bc=0.7800 for n=1 and 0.8610 for n=1/2.  

 

Figure 3.4: Flow regimes and representative velocity profiles in plane Bingham-plastic flow with no-slip 

along the lower wall and Navier slip (s=1) along the upper one. The velocity profiles have been obtained for 

Bn=1 and various slip numbers.  

 

No slip

B=5

B=0

B=Bc

*

1(1 / 3)c cB y Bn= −
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Figure 3.4 illustrates the two flow regimes on the (Bn,B) plane in the case of a Bingham 

plastic (n=1). These are separated by the curve 
*

1(1 / 3)c cB y Bn= − , which is slightly below the 

straight line B Bn= . Four representative velocity profiles, obtained taking Bn=1 and Navier slip 

(s=1), are also shown. Two of them are in Regime III. The first profile corresponds to no-slip at 

both walls ( B → ∞ ) and it is thus symmetric. As slip at the upper wall is enhanced (e.g. for B=5), 

symmetry is destroyed and the two yield points move upwards and the maximum velocity 

decreases. The upper yield point moves faster than the lower one reaching the wall when cB B=

=0.7800. The velocity profile for this critical case is also shown in Fig. 3.4. Below this number, i.e. 

in Regime II, the yield point continues moving upwards as slip is increased, but the maximum 

velocity is now increasing. In the limit of B=0 (full slip), the maximum velocity is lower than that 

for B →∞ , since it corresponds to the no-slip flow for a modified Bingham number equal to 

2 2nBn Bn Bn′ = = . 

 

3.3 Numerical results and discussion 

The system of the governing equations and the boundary conditions presented in section 3.2 was 

solved numerically using the finite element method (u-v-p formulation) with standard biquadratic 

basis functions for the two velocity components and bilinear ones for the pressure field. The 

Galerkin forms of the continuity and the momentum equations were used. The resulting nonlinear 

system of the discretized equations was solved with a Newton-Raphson iterative scheme with a 

convergence tolerance equal to 10
-4

. The inhouse finite-element code developed and tested in the 

past thirty years (most recently in Philippou et al. (2016)) was used. Results have been obtained for 

Bingham numbers ranging from 0 (Newtonian flow) to 10, for power-law exponents from 1 

(Bingham plastic) down to 1/2, for slip numbers from 0 (full-slip) to ∞ (no-slip), and for Reynolds 

numbers from 0 (creeping flow) to 10. Based on our previous studies (see Philippou et al. (2016)), 

the rather high value of M=100000 has been used in all viscoplastic simulations. For the low 

Reynolds number considered here, we took Lmesh=20 for 1Re ≤  and Lmesh=50 for 1 10.Re< ≤

Some convergence difficulties have been observed in the weak-slip regime (i.e. for finite high 

values of the slip number B) when the value of n was less than unity. These are due to the fact that 

the slip velocity is of the order of the convergence tolerance and to the increased nonlinearity of the 

problem. The convergence of the results has also been investigated using meshes of different 

refinement. The results presented here have been obtained with a non-uniform mesh consisting of 

368×80=29440 elements with 118657 velocity nodes (Lmesh=20). The total number of nodal 

unknowns with this mesh is 267203. This was graded with the element size increasing far from the 

walls and the inlet plane. The size of the smallest element at the corner of the inlet plane with the 

lower wall was 0.005. 
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Figure 3.5: Velocity contours in flow development of creeping (Re=0) planar Newtonian Poiseuille flow 

with no-slip along the lower wall and Navier slip (s=1) along the upper one for various slip numbers.  
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                                   (a)                                                                            (b) 

 

(c)                                                                              (d) 

 

                                 (e)                                                                                 (f) 

Figure 3.6: Development of the velocity in creeping (Re=0) planar Newtonian Poiseuille flow with no-

slip along the lower wall and Navier slip (s=1) along the upper one: (a) B=∞ (no-slip); (b) B=100; (c) 

B=10; (d) B=1; (e) B=0.1; (f) B=0.01. Profiles at x
*
=0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.8 and ∞ (fully-developed 

flow). 
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(a) (b) 

 

(c)                                                                            (d)                                                       

 

                                       (e)                                                                            (f)           

Figure 3.7: Development length functions in creeping (Re=0) planar Newtonian Poiseuille flow 

with no-slip along the lower wall and Navier slip (s=1) along the upper one for the slip numbers of 

Fig.3.6: (a) B=∞ (no slip); (b) B=10; (c) B=5; (d) B=2; (e) B=1; (f) B=0.01.  
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(a) (b) 

 

(c)                                                                                 (d) 

 
(e)                                                                                (f) 

 

Figure 3.8: Development length functions in creeping (Re=0) planar Newtonian Poiseuille flow 

with no-slip along the lower wall and power-law slip (s=1/2) along the upper one for the slip 

numbers of Fig.3.6: (a) B=∞ (no slip); (b) B=100; (c) B=10; (d) B=1; (e) B=0.1; (f) B=0.01.  
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(a) 

 
(b) 

 

 

Figure 3.9: Global (solid) and wall (dashed) development lengths in creeping (Re=0) planar 

Newtonian Poiseuille flow with no-slip along the lower wall and slip along the upper one versus 

the slip number B. (a) s=1 (Navier slip); (b) s=1/2.  
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3.3.1 Newtonian flow 

The Newtonian flow was investigated first. The effect of Navier slip (s=1) on the axial velocity 

contours in the case of creeping flow (Re=0) is illustrated in Fig. 3.5 for various values of the slip 

number ranging from B=∞ (no-slip) to B=0.01 (very strong slip). When B=∞ the velocity contours 

are symmetric about the midplane of the channel. As slip is introduced at the upper wall the flow 

becomes more and more asymmetric; in the limit of full slip (B=0) the flow corresponds to flow in 

a channel of double width with no slip at either wall and the upper wall serves simply as the 

symmetry plane of the latter flow. The flow development for the same slip numbers is also 

illustrated in Fig. 3.6, where the velocity profiles at different distances from the inlet are plotted. 

Note that while the velocity overshoot near the lower wall is unaffected, the one that is near the 

upper wall appears only when slip is rather weak (i.e. for B=∞ and 100). 

 

Figure 3.10: Global development lengths in creeping (Re=0) planar Newtonian Poiseuille flow with 

no-slip along the lower wall and slip along the upper one with s=1 (Navier slip) and s=1/2.  

 

In Fig. 3.7, the plots of the development length function L(y) for most of the slip numbers 

considered in Figs. 3.5 and 3.6 are shown. For high values of B there are two decelerating zones 

adjacent to the walls and one intermediate accelerating zone defined by the two points at which the 

fully-developed velocity is equal to the mean velocity and thus L(y) vanishes. Below a critical slip 

number (~2) slip is so strong that the fluid at the wall actually accelerates and thus the upper 

deceleration zone disappears. For B=∞ (no-slip at the upper wall), L(y) is of course symmetric. As 

already pointed out in Philippou et al. (2016), the global development length Lg does not occur in 

the accelerating zone at the plane of symmetry but in the two symmetric decelerating zones near 

the walls (Lg=0.6585, whereas the classical center-plane development length is Lc=0.6285). In the 

no-slip case the upper-wall development length, defined by (1)wL L≡ , is not relevant. As slip 
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along the upper wall is enhanced so does the asymmetry and the flow develops faster near the 

upper wall where slip occurs and near the lower wall more slowly so that the global development 

length increases (note that the y-axis is not the same). Hence, Lg occurs in the lower decelerating 

zone and Lw is much less than Lg. As B is reduced, Lg keeps increasing, while Lw is further reduced 

till the upper decelerating zone disappears, in which case the fluid at the upper wall actually 

accelerates and consequently there is only one decelerating region near the lower wall. Thus, below 

a certain slip number both Lg and Lw increase as B is reduced. The global development length 

increases asymptotically to twice its counterpart for the no-slip flow, i.e. Lg=1.3168. 

In order to investigate the effect of the slip exponent s, calculations similar to those of Figs. 

3.5-3.7 have been carried out taking s=1/2. It turns out that the velocity contours are not affected 

significantly, but, given that the fully-developed slip velocities for s=1/2 are lower, there are some 

noticeable differences between the velocity profiles, especially when slip is weak, i.e. for high or 

moderate values of the slip number. Interestingly, the slip exponent has a striking effect on the 

development length. (It should be noted that the dimensionless slip number depends on s.) As 

shown in Fig. 3.8, with s=1/2 the flow development for high values of B (weak slip) is slower in 

the zone near the upper wall rather than in the zone near the lower (no-slip) wall.  

The dependence of the two development lengths on the slip number B for s=1 and 1/2 is 

illustrated in Fig. 3.9. Lg increases with slip exhibiting two plateaus in the weak- and strong-slip 

limits and a sharp change in the range (0.5, 5) of the slip number. The wall development length Lw 

exhibits a sharp non-monotonic behavior in the latter range due to the suppression and the 

disappearance of the decelerating region near the upper wall and vanishes at the  critical slip 

number B=2 at which 
*

1wu = , independently of the slip exponent s (see Eq.(3.33)). With s=1, Lw is 

always less than Lg, while with s=1/2 the two lengths coincide when slip is weak. As pointed out in 

Kountouriotis et al. (2016), the wall development length can be defined only if the magnitude of 

the slip velocity exceeds a critical value. By demanding that 1% of the critical slip velocity must be 

equal to the tolerance used in the numerical simulations, then this critical slip velocity is equal to 

0.01. From Eq. (3.33), the corresponding critical value of the slip number is then

2

crit 5.96 10 .
s

B = ×
 
 We thus find that crit 596B =  for s=1 and  crit 59.6B =  for s=1/2. Therefore, 

the plots of Lw beyond these critical values in Fig. 3.9 (i.e. in the weak-slip regime) should be 

viewed with caution. Note also that the wiggle in the curve of Lg is simply due to the fact as slip is 

increased the flow development is initially slower in the upper deceleration zone which eventually 

disappears and thus the value of Lg is suddenly calculated in the lower deceleration zone. The 

global development lengths for s=1 and s=1/2 are compared in Fig. 3.10. As expected, the two 

lengths differ only for moderate values of the slip number and practically coincide in both the 

weak- and strong-slip regimes, where the effect of the slip exponent is insignificant. It should be 

noted that the development length corresponding to full slip (B=0) is twice the development length 
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for the no-slip case (infinite B), since it corresponds to the no-slip flow in a channel of a gap width 

equal to 2. 

 

 
Figure 3.11: Velocity contours in flow development of creeping (Re=0) planar Bingham-plastic (n=1) 

Poiseuille flow with no-slip along the lower wall and Navier slip (s=1) along the upper one for Bn=1 

and various slip numbers.  
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                               (a)                                                                               (b) 

 

                               (c)                                                                               (d) 

 

                               (e)                                                                               (f) 

Figure 3.12: Development of the velocity in creeping (Re=0) planar Bingham-plastic (n=1) Poiseuille 

flow with no-slip along the lower wall and Navier slip (s=1) along the upper one with Bn=1: (a) 

B=∞ (no-slip); (b) B=100; (c) B=10; (d) B=1; (e) B=0.1; (f) B=0.01. Profiles at x
*
=0, 0.02, 0.05, 0.1, 0.2, 0.4, 

0.6 and ∞ (fully-developed flow). 
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(a) (b) 

 

                               (c)                                                                               (d) 

 

                               (e)                                                                               (f) 

Figure 3.13: Development length functions in creeping (Re=0) planar Bingham-plastic (n=1) 

Poiseuille flow with no-slip along the lower wall and Navier slip (s=1) along the upper one for 

Bn=1 and the slip numbers of Fig 3.10: (a) B=∞ (no slip); (b) B=100; (c) B=10; (d) B=1; (e) B=0.1; 

(f) B=0.01.  
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                               (a)                                                                               (b) 

 

                               (c)                                                                               (d) 

Figure 3.14: Global (solid) and wall (dashed) development lengths in creeping (Re=0) planar 

Bingham-plastic Poiseuille flow with no-slip along the lower wall and Navier slip (s=1) along the 

upper one versus the slip number B: (a) Bn=0 (Newtonian); (b) Bn=1; (c) Bn=5; (d) Bn=10.  

 

3.3.2 Viscoplastic flow 

In this subsection, numerical results for Bingham plastics (n=1) and Herschel-Bulkley fluids 

(n=1/2) are discussed. We then considered the Bingham plastic case (n=1) with Bn=1 for Re=0 

(creeping flow). Figure 3.11 shows the axial velocity contours for various values of the slip number 

B. Figure 3.12 shows how the velocity component in the flow direction develops downstream 

attaining the fully-developed profile. When B=∞ (no slip), the velocity profiles are symmetric 

exhibiting a central unyielded region. As slip is increased, asymmetry is enhanced, the velocity 

overshoot near the upper wall is suppressed, and the unyielded region moves towards the upper 

wall and increases in size. If slip becomes even stronger then Regime II is eventually reached, i.e. 

the unyielded region reaches the upper wall.  The velocity overshoot near the no-slip wall persists 

in all cases, while its counterpart near the slip wall appears only when slip is weak (i.e. for high 

values of B). 
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The development length functions for various values of the slip number are shown in Fig. 

3.13. These plots may be more complicated than their Newtonian counterparts in Fig. 3.8 but the 

main features remain the same: (a) Lg occurs near the no-slip wall, i.e. the flow develops more 

slowly in the decelerating zone adjacent to the no-slip wall than in the accelerating zone; (b) The 

fluid adjacent to the upper wall decelerates only when slip is weak, i.e. above a critical slip number. 

Similar results have been obtained for higher values of the Bingham number. In Fig. 3.14, 

the global and wall development lengths for creeping flow (Re=0) and Bn=0 (Newtonian), 1, 5 and 

10 are plotted versus the slip number. We observe that Lg increases with slip and with the Bingham 

number, whereas Lw exhibits a non-monotonic behavior. When slip is strong, Lw decreases rapidly 

with Bn. For moderate slip numbers, however, the dependence of Lw on the Bingham number is 

variable. It is clear that using Lw may lead to erroneous results regarding flow development.  

 

Figure 3.15: Global development lengths in creeping (Re=0) planar Bingham-plastic Poiseuille 

flow with no-slip along the lower wall and Navier slip (s=1) along the upper one versus the slip 

number B for different Bingham numbers. 

 

The global development lengths for  Bn=0, 1, 5, and 10 are compared in Fig. 3.15. Based 

on Lg, flow development is slower as viscoplasticity and slip are increased. Again, the wiggles in 

the curves for Bn=5 and 10 indicate transition of Lg to a different deceleration or acceleration zone. 

As mentioned above, in Newtonian flow (Bn=0) the development length for full slip (B=0) is two 

times the development length for the no-slip case (infinite B), since it corresponds to the flow 

development in a channel with no slip and with a gap width equal to 2. This is not the case for 

Bingham flow; the development length in the full-slip case is two times the no-slip development 

length corresponding to 2Bn and not to Bn.  
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Figure 3.16: Global development lengths in creeping (Re=0) planar Herschel-Bulkley Poiseuille 

flow with no-slip along the lower wall and Navier slip (s=1) along the upper one versus the slip 

number B for Bn=1 and n=1 (Bingham plastic) and  n=1/2.  

 

 

Figure 3.17: Global development lengths in planar Herschel-Bulkley Poiseuille flow with no-slip 

along the lower wall and Navier slip (s=1) along the upper one versus the slip number B for 

different Reynolds numbers, Bn=1 and  n=1/2.  

 

PANDELIT
SA PANASETI 



67 

 

Simulations have also been carried out for Herschel-Bulkley flow with Bn=1, n=1/2 and 

s=1 (Navier slip). The global development lengths for n=1 and n=1/2 are compared in Fig. 3.16. As 

expected, shear thinning results in bigger development lengths. Finally, the effect of the Reynolds 

number is illustrated in Fig. 3.17, where the global development length for Bn=1 and Re=0, 1, and 

10 is plotted versus the slip number. For the moderate numbers employed here, the global 

development length increases with inertia. The relative increase of Lg is much higher when slip is 

weak, moderate in the strong-slip regime, and becomes smaller in the intermediate slip regime 

when the upper deceleration zone disappears. 

An interesting issue not addressed in the present work is the accurate determination of 

yielded and unyielded regions in viscoplastic flow development. Our calculations with 

“reasonable” meshes showed that this may not be possible for moderate or higher Bingham 

numbers.  

More acceptable results, in the sense that the entry unyielded region which moves 

horizontally as a solid body at unit velocity is separated from the unyielded region of the fully-

developed flow which moves at a higher velocity, may be obtained for rather low Bingham 

numbers. At higher Bingham numbers these two regions appear to merge, which is obviously 

inadmissible. Hence, the flow development problem is a challenging test for any numerical method 

proposed for solving viscoplastic flows. To our knowledge, only recently Dimakopoulos et al. 

(2018) made some preliminary calculations of yielded/unyielded regions in viscoplastic flow 

development and compared the predictions of the Augmented Lagrangian Method (ALM) and the 

regularization method. 

 

3.4 Conclusions 

The entry flow of a Herschel-Bulkley fluid in a horizontal channel with slip along the upper wall 

has been investigated numerically using finite elements and the Papanastasiou regularization for the 

constitutive equation. The different flow regimes for the one-dimensional fully-developed flow 

were identified and the corresponding solutions have been presented. The global development 

length is considered so that both the acceleration and deceleration zones are included.  

Representative numerical solutions for the two-dimensional flow development have been 

presented and the effects of the Bingham and slip numbers on the development of the velocity and 

on the development length have been discussed for various values of the power-law exponent of 

the slip equation. The global development length increases with the Bingham number and inertia 

and decreases with the power-law exponent. In general, the global development length increases 

with slip exhibiting two plateaus for low and strong slip and a sharp increase in the moderate slip 

regime.  
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Chapter 4 

Pressure-driven flow of a Herschel-

Bulkley fluid with pressure-dependent 

rheological parameters  

 

In this chapter we present the lubrication equations for the general case of a Herschel-Bulkley fluid 

with the consistency index and the yield stress being functions of pressure. We also derive 

analytical solutions for the case of a channel of constant width with special forms of the 

consistency-index and yield-stress pressure-dependence functions. We consider channels of 

linearly varying width and we derive semi-analytical solutions for the case of a Bingham plastic 

with both the yield stress and plastic viscosity varying linearly with pressure.
5
 

 

4.1 Introduction 

Yield-stress fluids, also known as viscoplastic fluids, are encountered in a variety of industrial 

applications, such as oil drilling and transport, fresh concrete manufacturing, waste management 

and food processing, and in many environmental, geological and biological processes (Barnes, 

1999; Balmforth et al., 2014). Viscoplastic materials are commonly assumed to behave as fluids 

only if the stress exceeds the yield stress 
*

yτ ; otherwise, they behave as solids. (It should be noted 

that throughout this chapter, symbols with stars denote dimensional quantities.) For an update on 

the ongoing debate about the concept of a yield-stress fluid and the definition of yield stress, the 

reader is referred to the recent reviews by Malkin et al. (2017) and by Dinkgreve et al. (2017). As 

noted by Coussot et al. (2017), most researchers now consider that the yield stress marks a limit 

between the existence of steady-state flows -above the yield stress- and the observation of 

continuously slowed down flows.  

The most popular constitutive equation describing viscoplastic behavior is the Bingham-

plastic equation (Bingham, 1922). This involves two material parameters, i.e. the yield stress and 

the plastic viscosity *µ , and has the following tensorial form 

                                                      
5
 The material of this chapter appears in Panaseti et al. (2018).                                                                                     
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* * *

*

* * * * *

*

,

2 ,

y

y

y

τ τ

τ
µ τ τ

γ

 = ≤


 
= + >   

 

D 0

τ D
ɺ

                                     (4.1) 

where *τ  is the viscous stress tensor,  

                                                              * * * * *1
( )

2

T ≡ ∇ + ∇ D v v                                        (4.2) 

is the rate of deformation tensor, *
v  is the velocity vector, and * *2

2trγ ≡ Dɺ  and 

* *2tr / 2τ ≡ τ   are the magnitudes of 2 *
D  and *τ , respectively. Setting 

* 0yτ = , the 

Bingham-plastic is reduced to the Newtonian constitutive equation and *µ  is simply the 

familiar Newtonian viscosity. A generalization of the Bingham-plastic equation is the 

Herschel-Bulkley model (Herschel and Bulkley, 1926), which involves three material 

parameters 

                                              

* * *

*

* * * 1 * * *

*

,

2 ,

y

y n

yk

τ τ

τ
γ τ τ

γ
−

 = ≤


 
= + >   

 

D 0

τ Dɺ
ɺ

                                              (4.3) 

where *k  is the consistency index and n is the flow index (power-law exponent). Setting the latter 

to unity yields the Bingham-plastic model. Setting 
* 0yτ =  results in the power-law model, which is 

able to account for shear-thinning (n<1) and shear-thickening (n>1) effects. Due to the two-branch 

nature of viscoplastic constitutive equations, the flow domain consists of yielded regions (viscous 

domain) where 
* *

yτ τ>  and unyielded regions (rigid domain) where 
* *

yτ τ≤ . The latter regions 

include stagnant zones where the velocity is zero and zones where the material moves as a solid 

body. The location of the interface between yielded and unyielded regions is not known a priori 

and causes severe difficulties in solving viscoplastic flows, especially in two and three dimensions 

(Mitsoulis and Tsamopoulos, 2017). 

In the last few years, a number of studies concerned numerical simulations of flows of 

viscoplastic materials with pressure-dependent material parameters. Staron et al. (2012) 

investigated numerically the discharge of a granular silo, which, for small and moderate outlets, is 

characterized by a constant discharge rate in contrast with the clepsydra for which the flow velocity 

depends on the height of the fluid left in the container. Implementing plastic rheology (i.e., ( )Iµ  

rheology), they were able to explain the so-called Beverloo scaling only by means of the pressure 

dependence of the yield stress. Ionescu et al. (2015) carried out finite-element simulations of the 

granular column collapse problem over inclined planes using the Bingham-plastic constitutive 

equation and assuming that the yield stress varies linearly with pressure. The plastic viscosity was 

taken either constant or variable depending on both the pressure and the rate of strain. Daviet and 

Bertails-Descourbes (2016) proposed a non-smooth complex optimization numerical framework 
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for the simulation of dense granular flows assuming that the material behaves as a Bingham plastic 

whose yield stress varies linearly with pressure while the plastic viscosity is constant. They pointed 

out that this assumption implies that grain-grain interactions mostly involve rigid-body contacts 

with Coulomb friction. Khouja et al. (2015) analyzed a regularized Bingham model with pressure-

dependent yield stress in the framework of stationary flows and investigated existence, uniqueness 

and regularity. They showed that the model can be solved and approximated as far as the frictional 

parameter is small enough. 

Recently, Fusi (2017) considered non-isothermal flows of a Bingham plastic with the 

plastic viscosity and the yield stress depending on both the temperature and pressure. More 

specifically, he used a perturbation approach to derive the Oberbeck-Boussinesq approximation for 

a Bingham fluid under the assumption that the Reynolds number is of order one and considered the 

cases where the Froude number is either small or of order one. Fusi used an exponential expression 

describing the dependence of the plastic viscosity on the pressure and the temperature and a linear 

one for the yield stress (such that both rheological parameters increase with pressure and decrease 

with temperature) (Fusi, 2017). 

The present work is motivated by the recent work of Fusi et al. (2015) who presented a 

novel technique for modelling the lubrication flow of a Bingham plastic in a two-dimensional 

channel of non-uniform thickness. Under the lubrication approximation, the yield surface and the 

two velocity components are calculated from the pressure by means of closed form expressions, 

while the pressure satisfies an integro-differential equation. This was solved by Fusi et al. with an 

iterative procedure (Fusi et al., 2015). Fusi et al. (2015) also considered briefly the case of 

pressure-dependent plastic viscosity and provided some approximations for the case of a slowly 

varying linear wall.  

The advantage of the method of Fusi et al. (2015), is that the lubrication paradox is avoided 

and the correct shape of the yield surface which is opposite to that of the wall is approximated at 

zero order. With other approaches, the correct shape of the yield surface is obtained after 

calculating higher-order solutions (Frigaard and Ryan, 2004; Putz et al., 2009). In asymptotic 

analyses where the pressure gradient is obtained from the constraint of a unit areal flux in the x-

direction at leading order, the yield surface variation (at zero order) is similar to that of the wall, 

due to the scaling with the mean velocity. The lubrication paradox arises from the fact that the 

predicted plug is not a true unyielded region since the leading order velocity varies in the x-

direction. Thus, the position of the yield surface needs to be corrected by calculating higher-order 

solutions (Frigaard and Ryan, 2004; Putz et al., 2009). 

Nevertheless, since the pressure is scaled with the pressure difference between and inlet 

and outlet planes of the channel and the stress components with the pressure difference times the 

(small) aspect ratio of the channel, a prerequisite of the model of Fusi et al. is that the unyielded 

region (plug) extends from the inlet to the outlet plane as well (Fusi et al., 2015). Therefore, the 

model cannot be applied when the plug is broken. Consequently, the results of Fusi et al. (2015) in 
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this latter case are not reliable. For example, the calculated transverse velocity contours cross the 

symmetry plane where this velocity component should vanish. 

The objectives of the present work are: (a) the extension of the method of Fusi et al. (2015) 

for solving the lubrication flow of a Herschel-Bulkley fluid with pressure-dependent consistency 

index and yield stress in a symmetric channel of non-constant width; (b) the derivation of analytical 

solutions for certain limiting cases, such as the flows in a channel of constant or linearly-varying 

width; and (c) the investigation of the advantages and the limitations of the method. 

Fusi et al. (2014) derived solutions of plane Poiseuille and Couette flows of a Bingham 

plastic and determined conditions for existence or non-existence of a rigid plug under the 

assumption that the velocity is one-dimensional while the pressure in the yielded region is two-

dimensional. They derived explicit solutions for the case where the yield stress follows the linear 

equation  

                                                 [ ]0 0( ) 1 ( )y p p pτ τ β= + −                                                       (4.4) 

where 
0τ  denotes the yield stress at a reference pressure 

0p  and β  is the yield-stress growth 

coefficient; and the plastic viscosity also varies linearly and vanishes at zero relative pressure, i.e.  

                                                    
* * * * *

0( ) ( )p p pµ α= −                                                     (4.5) 

where the constant 
*α  has time units. With the latter assumption, the derivation of an analytical 

solution becomes easier but the flows of a Bingham plastic with constant rheological parameters or 

with constant plastic viscosity are not special cases of the flow considered. This shortcoming was 

avoided by Damianou and Georgiou (2017) who analyzed the same flow using  

                                            
* * * * * *

0 0( ) 1 ( )p p pµ µ α = + −                                                 (4.6) 

instead. In the present work, with the use of the lubrication method of Fusi et al. (2015), the study 

of viscoplastic Poiseuille flows with a general wall function and pressure-dependent rheological 

parameters is possible. 

In section 4.2 the lubrication equations are presented for the general case of a Herschel-

Bulkley fluid with the consistency index and the yield stress being (general) functions of pressure. 

The zero-order solution is derived semi-analytically, in the sense that closed-form expressions are 

derived for the two velocity components in terms of the pressure, which is found by solving an 

integro-differential equation numerically. As mentioned above, the solutions hold as long as the 

unyielded core extends continuously from the inlet to the outlet plane. Compared to Fusi et al. 

(2015), the presentation of the method is considerably simpler despite considering a more general 

flow problem. In section 4.3, we derive analytical solutions for the case of a channel of constant 

width with special forms, i.e. linear and exponential, of the consistency-index and yield-stress 

pressure-dependence functions. The yield-stress growth parameter is allowed to be negative and the 
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applicability windows of the method in terms of the various parameters are determined. In section 

4.4, channels of linearly varying width (converging and diverging channels) are considered and 

semi-analytical solutions are derived for the case of a Bingham plastic with both the yield stress 

and the plastic viscosity varying linearly with pressure. The applicability and the limitations of the 

method are again discussed. In section 4.5, we present numerical results for more complex 

geometries. In contrast to the work of Fusi et al. (2015), the integro-differential equation for the 

pressure is solved directly (not iteratively) by means of a standard pseudo-spectral numerical 

method. Finally, in section 4.6, the conclusions are summarized. 

 

 

 

Figure 4.1: Geometry, some definitions and boundary conditions for the dimensional flow in a symmetric 

channel of length L
*
 and variable width * *2 ( )h x  with an unyielded core of width * *( )xσ . Due to 

symmetry, only half of the flow domain is shown. 

 

4.2 Derivation of the model 

We consider a Herschel-Bulkley fluid, i.e. a fluid obeying constitutive equation (4.3), where 

however the consistency index *k  and the yield stress 
*

yτ  are pressure dependent. For the sake of 

generality, we assume that  

                                               
* * * * * *

0 0( ) ( ( ))k p k f p pα= −                                                   (4.7) 

and 

                                               
* * * * * *

0 0( ) ( ( ))y p g p pτ τ β= −                                                    (4.8) 

where 
*

0k  is the consistency index at the reference pressure (assumed to be the same for the two 

material parameters)  and f  and g  are  appropriate increasing functions, such that 

(0) (0) 1f g= = .  

x*

y*

* * *( )y h x=

* * *( )y xσ=

*

inh
*

out
h

*

out
σ

*

inσ

* *

inp p= * *

outp p=

*L

Yielded region

Unyielded region
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Assume now the pressure-driven flow of an incompressible Herschel-Bulkley fluid in a 

symmetric long channel of length *L  and variable width * *2 ( )h x , as illustrated in Fig. 4.1, where 

only the upper part of the domain is shown, due to symmetry. A pressure *

inp  is applied at the inlet 

of the channel ( * 0x = ) while the pressure at the exit ( * *x L= ) is * *

out inp p< , i.e., the imposed 

pressure difference is * * *

in outp p p∆ = − . The main flow is in the *x  direction and the 

* velocityz −  component is zero. Hence, the velocity vector is of the form 

* * * * * * *( , ) ( , )x yv x y v x y= +v i j . In the flow of interest (Fig. 4.1), the yielded and the unyielded 

regions are separated by the interface 
* * *

( )y xσ=  for 
* *0 x L≤ ≤ , where 

* * * *
0 ( ) ( )x h xσ< < . Hence, the unyielded region extends from the inlet to the outlet plane, 

i.e. the plug is not broken. Moreover, if 
* * * *
( ) ( )x h xσ =  at any point *x , the unyielded 

region touches the wall and due to the no-slip boundary condition, there is no flow. Let 

also * *(0)inσ σ≡  and * * *( )out Lσ σ≡ . 

In the yielded region, the continuity equation and the x- and y-components of the 

momentum equation are simplified as follows: 

                                                            
**

* *
0

yx
vv

x y

∂∂
+ =

∂ ∂
                                                         (4.9) 

                                           
** * **

* * *

* * * * *

yxx x xx
x y

v v p
v v

x y x x y

ττ
ρ

∂ ∂ ∂ ∂∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

                                (4.10) 

                                 
* * * **

* * *

* * * * *

y y xy yy

x y

v v p
v v

x y y x y

τ τ
ρ

 ∂ ∂ ∂ ∂∂
+ = − + +  ∂ ∂ ∂ ∂ ∂ 

                                 (4.11) 

where *ρ  is the mass density. The non-zero components of the stress tensor in the yielded regime 

read:  

     

* * * * *
* * * * * * 10 0

0 0* *

** * * * *
* * * * * * 10 0

0 0* * *

** * * *
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−
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= + − 

∂ 

 ∂ − ∂
= + − +    ∂ ∂  

∂ −
= + − 

∂ 
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ɺ

ɺ
ɺ
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* * * * *, ( ) ( )x y h xσ






≤ ≤



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(4.12) 

where 

 

22 ** *
*

* * *
4

yx x
vv v

x y x
γ

 ∂ ∂ ∂
= + +    ∂ ∂ ∂   
ɺ                                    (4.13) 
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(note that the continuity equation has been used). Similarly, the magnitude of the stress tensor is 

given by 

  * *2 *2 *2 *21 1 1
tr

2 2 2
xx yy yxτ τ τ τ= = + +τ                                 (4.14) 

Without loss of generality, we assume here that the reference pressure that appears in Eqs. (4.7) 

and (4.8) is * *

0 outp p= . 

The unyielded core, defined by { }* * * * * * *( , ) : [0, ], [0, ]x y x L y σΩ = ∈ ∈ , moves in the x-

direction as a solid, i.e.  at constant velocity *

cv . Thus,  

 * * * * * *and 0 for 0 ( )x c yv v v y xσ= = ≤ ≤                          (4.15) 

For steady-state flow in the absence of body forces, the integral balance of linear momentum of the 

whole plug core yields the following equation (Fusi et al., 2015) 

 
*

* *

* * * * * * * * *

0
( ) 0

L

x xx yx in in out outy
p dx p p

σ
σ τ τ σ σ

=
 − − + + + − = ∫                   (4.16) 

where * * */x d dxσ σ≡ . Equation (4.16) simply implies that 
*

yxτ  acts on 
*

dx  and 
* *

xxp τ− +  acts on 

* * *

xdy dxσ= , where 
*

dx  and 
*

dy  define an infinitesimal element of the longitudinal side of the 

core. 

4.2.1 Non-dimensional formulation  

We assume that the length 
*L  of the channel is much greater than its greatest semi-width, i.e. 

*

* * * *

[0, ]
max ( )
x L

L H h x
∈

≡≫ , and introduce the dimensionless parameter 

 
*

*
1

H

L
ε ≡ ≪                                                  (4.17) 

which is used for applying the classical lubrication approximation or thin-film approach (Frigaard 

and Ryan, 2004). The problem is non-dimensionalised by scaling 
*

x  by 
*L , 

*
y , 

*
h , and 

*σ  by 

*H , 
* *

( )outp p−  by 
*

p∆ , 
*

xv  by 
* * * 1/

0( / )
n

H p kε∆ , 
*

yv  by 
* * * 1/

0( / )
n

H p kε ε∆ , and the stress 

components by 
*

pε ∆ . The dimensionless forms of the continuity equation and the two 

components of the momentum equation are as follows 

 0
yx

vv

x y

∂∂
+ =

∂ ∂
                                              (4.18) 

 2/ 1 yxn x x xx
x y

v v p
Re v v

x y x x y

ττ
ε ε− ∂ ∂ ∂ ∂∂

+ = − + + ∂ ∂ ∂ ∂ ∂ 
                      (4.19) 
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 2/ 1 2y y yx yyn

x y

v v p
Re v v

x y y x y

τ τ
ε ε ε+ ∂ ∂ ∂ ∂  ∂

+ = − + + ∂ ∂ ∂ ∂ ∂ 
                   (4.20) 

where Re is the Reynolds number defined by 

 
* *3 *2/ 1

*2/ *

0

n

n

H p
Re

k L

ρ −∆
≡                                           (4.21) 

Note that for n=1, the equations for the Bingham case are recovered, in agreement with the analysis 

of Fusi et al. (2015). For the stress components one gets 
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    (4.22) 

where 

 

22

2 24
yx x

vv v

x y x
γ ε ε

∂ ∂ ∂ = + +  ∂ ∂ ∂   
ɺ                                (4.23) 

In Eq. (4.22), there appear three dimensionless numbers, the Bingham number Bn and the 

consistency-index and yield-stress growth numbers a and β, which are defined by 

 
*

* * * *0

*
, ,Bn a p p

p

τ
α β β

ε
≡ ≡ ∆ ≡ ∆

∆
                             (4.24) 

It is clear that when 0β ≥  the dimensionless yield stress is reduced from ( )g Bnβ  at the inlet plane 

to Bn  at the exit plane. When 0β <  then the dimensionless yield stress increases from 

( )g Bnβ  to Bn . We thus have the constraint ( ) 0g β >  so that the unyielded core extends 

from the inlet to the outlet plane (otherwise the present model is not valid). 

Finally, the dimensionless form of Eq. (4.16) is  

 
1

0
( ) 0x xx yx iny

p dx
σ

σ ετ τ σ
=

 − − + + + = ∫                              (4.25) 

where the dimensionless pressure satisfies the following boundary conditions 

 (0, ) 1, (1, ) 0
in out

p pσ σ= =                                      (4.26) 
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4.2.2 The zero-order problem 

Following Fusi et al. (2015) we solve the zero-order problem. For the sake of simplicity, we will 

avoid introducing new symbols for the zero-order variables; hence, hereafter all variables are the 

zero-order ones. The continuity and momentum equations at zero order read as follows 

 0
yx

vv

x y

∂∂
+ =

∂ ∂
                                              (4.27) 

 0
yxp

x y

τ∂∂
− + =

∂ ∂
                                             (4.28) 

 0
p

y

∂
− =

∂
                                                  (4.29) 

From the last equation, it is deduced that ( )p p x= . At zero order 0xx yyτ τ= =  while  

 
1( )

( ) , ( ) ( )n x
yx

vBn g p
f p x y h x

y

β
τ α γ σ

γ
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= + ≤ ≤  ∂ 
ɺ

ɺ
                 (4.30) 

Working in the upper part of the channel we note that in the yielded region 

/ /x xv y v yγ = ∂ ∂ = −∂ ∂ɺ  and thus 

 ( ) ( ) , ( ) ( )

n

x
yx

v
Bn g p f p x y h x

y
τ β α σ

 ∂
= − − − ≤ ≤ ∂ 

                (4.31) 

Substituting the above expression into the x-momentum equation (4.28), integrating twice, and 

applying the boundary conditions / ( , ) ( , ) 0
x x

v y x v x hσ∂ ∂ = = , the following expression is obtained 

for xv  

 
1 1/

1 1/

( )
( , ) 1 , ( ) ( )

( )

n

x cn

y
v x y v x y h x

h

σ
σ

σ

+

+

 −
= − ≤ ≤ − 

                        (4.32) 

where 

 
1/ 1 1/

1/

( ) ( )

(1 1/ ) ( )

n n

x
c n

p h
v

n f p

σ
α

+− −
=

+
                                       (4.33) 

is the velocity of the unyielded core and /
x

p dp dx≡ . The fact that the RHS of the above equation 

is constant will be utilised below in order to derive the integro-differential equation governing the 

pressure.  

The transverse velocity component is found from the continuity equation (4.27). Given that 

( , ) 0yv x h = , we can write 
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h

x
y

y

v
v dy

x

∂
=

∂∫                                                (4.34) 

Substituting 
x

v  from Eq. (4.32) and carrying out the required differentiation and integration 

one gets       

   

1 1/ 2 1/

(1 1 / ) (2 1 / ) (1 1 / )( )
2 1 /

n n

c
y x x x x x

v y y
v n h n n h

n h h

σ σ
σ σ σ

σ σ

+ + − −   = + + − + − + −    + − −     
    (4.35)                                   

where /
x

h dh dx≡ . The satisfaction of condition ( , ) 0yv x σ =  requires that  

 (1 1 / ) 0
x x

n hσ + + =                                           (4.36) 

Equation (4.35) can then be simplified to 

 ( )
1 1/

2 1/

( )
(1 1 / )

( )

n

y c xn

y
v n v h y h

h

σ
σ

+

+

−
= + −

−
                               (4.37) 

From Eq. (4.36) it is deduced that the semi-width of the unyielded core is given by 

 ( ) (1 1/ ) ( )x n h x Cσ = − + +                                        (4.38) 

where C is an unknown constant to be determined. The above result generalizes the result of Fusi et 

al. (2015) for a Bingham plastic (n=1). Equation (4.38) implies that the width of the unyielded 

core increases when the wall function h(x) is decreasing and vice versa. The rate of change 

of σ is (1+1/n) times the rate of change of h and is independent of the other material and 

flow parameters, which affect only the constant C. Hence, decreasing the power-law 

exponent n in a converging channel causes the plug to expand faster, which is expected 

given that the velocity profile becomes flatter as shear thinning is enhanced. To determine 

the constant C, we return to the plug momentum balance equation (4.25), which at zero order 

becomes 

 
1

0
0x yx iny

p dx
σ

σ τ σ
=

 + + = ∫                                    (4.39) 

Since at the rigid core surface ( y σ=  ) the rate of strain vanishes, / 0xv y∂ ∂ = , Eq. (4.31) gives 

 ( )
yx y

Bn g p
σ

τ β
=

= −                                               (4.40) 

Therefore  

 [ ]
1

0
( ) 0x inp Bn g p dxσ β σ− + =∫                                  (4.41) 

Using integration by parts and Eq. (4.38) we find that 
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1 1 1 1

0 0 0 0
( ) (1 1 / ) ( ) (1 1 / )x in xC Bn g p dx n p h dx Bn g p dx n h ph dxβ β  = − + = + + +  ∫ ∫ ∫ ∫ (4.42) 

From Eq. (4.33) we observe that 

 1
( ) 0

( )

nxpd
h

dx f p
σ

α
+ 

− = 
 

                                     (4.43) 

which gives 

 
2( )

( 1)( ) 0
( )

x x
xx x x

f p p p
p n h

f p h

α α
σ

α σ
′

− + + − =
−

                        (4.44) 

By means of Eqs. (4.36) and (4.42) we get the following integro-differential equation for the 

pressure 

 
1 1

0 0

( 1)(2 1/ ) ( )
0

( )(2 1/ ) ( ) (1 1/ )

x x
xx x

x

n n h f p p
p p

f pn h Bn g p dx n p h dx

α α
αβ

 
′+ + + − =

 + − + +  ∫ ∫
   

(4.45) 

subject to the boundary conditions (0) 1p =  and (1) 0p = . An alternative form of Eq. (4.45) is  

 
1 1

0 0

( 1)(2 1/ ) ( )
0

( )(2 1/ ) (1 1/ ) ( ) (1 1/ )

x x
xx x

in x

n n h f p p
p p

f pn h n h Bn g p dx n ph dx

α α
αβ

 
′+ + + − =

 + − + − − +  ∫ ∫
 

(4.46) 

Once the pressure p(x) is known, the yield surface, the unyielded core velocity, and the two 

velocity components are readily calculated by means of Eqs. (4.38), (4.33), (4.32) and (4.37), 

respectively. For the volumetric flow rate (which is, of course, constant along the channel) we have 

 ( ) [ ]
0

2 2
2 (1 1/ )

2 1/ 2 1/

h
c c

c x

v v C
Q v dy v dy n h

n n

σ

σ
σ= + = + + =

+ +∫ ∫                (4.47) 

Equation (4.46) can be solved numerically, using, for example, finite element or pseudo-spectral 

methods. Analytical solutions are possible only for channels of constant or linearly-varying width 

when functions f and g are of simple form. These are presented and discussed in the next two 

sections. 

 

4.3 Flow in a channel of constant width 

In the case of a channel of constant width, h=1 and hx=0; thus, Eq. (4.46) is simplified to 

 2( )
0

( )
xx x

f p
p p

f p

α α
α
′

− =                                           (4.48) 
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which implies that the pressure distribution is independent of the yield-stress function and the 

power-law exponent. The former affects only the location of the yield point, which is constant 

along the channel, since Eqs. (4.38) and (4.42) give 

 
1

0
( )Bn g p dxσ β= ∫                                             (4.49) 

Moreover, the transverse velocity component vanishes, 0yv = , while ( ).
x x

v v y=  

 

Figure 4.2: Flow regimes as the Bingham number is increased in lubrication flow of a viscoplastic fluid in a 

channel of constant width. When 
c

Bn Bn<  an unyielded region of constant height is predicted even when 

the yield stress and the consistency index are pressure-dependent. Note that 
* *

0 / ( )Bn pτ ε≡ ∆ . 

 

It is clear that when σ=1, there is no flow, since the unyielded core touches the wall 

at which no-slip applies. There are thus two flow regimes depending on the value of the 

Bingham number, as illustrated in Fig. 4.2. The critical Bingham number at which there is 

no flow, 

 
1

0

1

( )
cBn

g p dxβ
=

∫
                                            (4.50) 

is obviously inversely proportional to the lowest dimensional pressure difference above which 

yielding occurs ( * *

0 / ( )c cp Bnτ ε∆ = ). 

From Eq. (4.48) we observe that  

 
( )

xp
K

f pα
= −                                               (4.51) 

where K is a constant that can be determined along with the pressure p upon integration and 

application of the two boundary conditions for p. It is easily found that  

BnBnc

(ii) No flow(i) Flow with a plug core

1

0
( )Bn g p dxσ β= ∫

0

1σ =
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1/ 1 1/

(1 )

(1 1/ )

n n

c

K
v

n

σ +−
=

+
                                           (4.52) 

and 

 
1 1/

1 1/

( )
( ) 1 , 1

(1 )

n

x cn

y
v y v y

σ
σ

σ

+

+

 −
= − ≤ ≤ − 

                              (4.53) 

 

Table 4.1: Expressions for the constant K, the pressure p(x) and the yield point σ for different functions 

describing the pressure-dependence of the consistency index (f(x)) and the yield stress (g(x)) in the case of a 

channel of constant width. These are independent of the power-law exponent n. 

( )f x  K  ( )p x  ( )g x  1

0
( )g p dx

Bn

σ
β= ∫  

 

 

1 

 

 

1 

 

 

1 x−  

1 1 

1 x+  
1

2

β
+  

xe  1e
β

β
−

 

 

 

1 x+  

 

 

ln(1 )α
α
+

 

 

 

11
(1 ) 1xα

α
− + −   

1 1 

1 x+  1 1
1

ln(1 )
β

α α
 

+ − + 
 

xe  1(1 )1
/

0

x

a ae e dx
β

αβ
−+− ∫  

 

 

 

xe  

 

 

1 e α

α

−−
 

 

 

( )
1 1

ln
1 e x eα αα − −− +

 

1 1 

1 x+  1 (1 )

(1 )

a

a

e

e

β α

α

−

−

 − + 
−

 

xe  
,

1

(1 )
,

( )(1 )

a

a

a

e

e

e

β

α
β α

α
β α

α β

−

−

−

=
−
−

≠
− −
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Table 4.1 tabulates expressions of K, p(x) and σ for the cases where f and g are linear 

and/or exponential. Note that these results are independent of the power-law exponent n, which 

affects only the velocity profile (4.53). 

Below we discuss the case where both the consistency index and the yield stress vary 

linearly with pressure, i.e. ( ) ( ) 1f x g x x= = + . From Table 4.1, we see that when 0α >   

 11
( ) (1 ) 1xp x

a
α − = + −                                          (4.54) 

and 

 1 1
1

ln( 1)
Bnσ β

α α

  
= + −  +  

                                  (4.55) 

Flow occurs provided that the Bingham number is lower than the critical value  

 1

1 1
1

ln( 1)

cBn

β
α α

≡
 

+ − + 

                                      (4.56) 

(Recall that the above number is inversely proportional to the lowest dimensional pressure 

difference above which yielding occurs.) Note that β may be negative in which case the yield stress 

is increasing downstream and thus 
c

Bn may be greater than unity. If 0β = , then 1
c

Bn =  and 

Bnσ = , i.e. σ  is independent of the consistency-index growth parameter α  (this is due to 

the fact that the pressure is scaled by the inlet pressure 
*

p∆ ). As discussed below, this is 

also the case when solving the standard Poiseuille flow problem without the lubrication 

approximation. The present lubrication model is valid provided that 0σ ≥ , i.e.  

 
ln( 1)

ln( 1)

α α
β

α α
+

≥
+ −

                                           (4.57) 

so that the plug is not broken. As already mentioned, β  may be negative and, more specifically, 

1β ≥ −  (so that the yield stress in the channel remains positive), which ensures that condition 

(4.57) is satisfied (the left hand side is always less than -2).  

For a Bingham plastic (n=1) the velocity is given by  

 

2

ln( 1)
(1 )(1 2 ), 1

2

ln( 1)
(1 ) , 0

2

x

y y y

v

y

α
σ σ

α
α

σ σ
α

+ − + − ≤ ≤
= 

+ − ≤ ≤


                        (4.58) 

where the effects of Bn and β are accounted for via the yield point σ.  

When the plastic viscosity is pressure-independent ( 0α = ), we find the standard linear 

pressure distribution for Poiseuille flow 
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 ( ) 1p x x= −                                                (4.59) 

where, however, the yield point depends on the yield-stress growth number  

 ( )1 / 2 Bnσ β= +                                              (4.60) 

For the velocity, we now have  

 

2

1
(1 )(1 2 ), 1

2

1
(1 ) , 0

2

x

y y y

v

y

σ σ

σ σ

 − + − ≤ ≤
= 

 − ≤ ≤


                               (4.61) 

and the critical Bingham number above which there is no flow is 

 
1

1 / 2
cBn

β
≡

+
                                               (4.62) 

(Recall that 1β ≥ − ).  

For the case of a Bingham plastic (n=1) with linearly-varying yield stress and 

plastic viscosity (g(x)=f(x)=1+x), the analytical Poiseuille flow solution can be obtained 

(Damianou and Georgiou, 2017)  

 

1

1

1

1

cosh ln(1 )( ) tanh ( )1
(1 ) 1 , 1

cosh tanh ( )
( , )

1
(1 ) 1 , 0

x

x

y Bn
y

Bn
p x y

y

ε α σ ε β
α σ

α ε β

α σ
α

−

−

−

−

   + − +   + − ≤ ≤
     = 


 + − ≤ <  

(4.63) 

As for the velocity, one finds 

 

1

2 1

1

2 1

cosh ln(1 )(1 ) tanh ( )1
ln (1 ), 1

ln(1 ) cosh ln(1 )( ) tanh ( )
( )

cosh ln(1 )(1 ) tanh ( )1
ln (1 ), 0

ln(1 ) cosh tanh ( )

x

Bn Bn
y y

y Bn
v y

Bn Bn
y

Bn

ε α σ ε β β
σ

αε α αε α σ ε β

ε α σ ε β β
σ σ

αε α αε β

−

−

−

−

  + − +  − − ≤ ≤
+  + − +  

= 
 + − +   − − ≤ < +      

 (4.64) 

where σ is given by Eq. (4.55), i.e. it is the same as that predicted by the lubrication 

approximation. The main difference between the above analytical solution from the 

lubrication one is that the pressure in the yielded domain is two dimensional. The pressure 

in the unyielded core is identical to the pressure predicted by the lubrication approximation for both 

yielded and unyielded regions. Setting 0Bnσ = =  yields the solution of a Newtonian fluid with a 

pressure-dependent viscosity (Kalogirou et al., 2011) and taking only the first term of the Taylor 

expansion of Eq. (4.64) in terms of ε  yields the lubrication solution (4.58). The effects of the 
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various parameters on the yield point σ, as discussed in Damianou and Georgiou (2017), 

apply here (see also a recent solution of the axisymmetric flow in Fusi and Rosso, 2018). 

With the lubrication assumption, the velocity profile is slightly overestimated and the 

relative differences are enhanced as α assumes rather high values (Damianou and 

Georgiou, 2017). 

 

4.4 Flow in a channel of linearly-varying width  

In this section, we consider a channel of linearly-varying width, such that 

 ( ) ( ) and ( )
in out in in x

h x h h h x h h x h x h= + − = + ∆ = ∆                    (4.65) 

From Eq. (4.38) we know that the yield surface also varies linearly 

  ( ) (1 1 / ) (1 1 / )
in

x n h x n h Cσ = − + ∆ − + +                              (4.66) 

where, by means of Eq. (4.42), the constant C is given by 

                    
1 1

0 0
( ) (1 1/ ) (1 1/ )inC Bn g p dx n h n h pdxβ= + + + + ∆∫ ∫                     (4.67) 

In this case, Eq. (4.46) can be written as follows 

 ( )1
0

( )

x
xx x

f p pn
p p

x A f p

α α
α

′ +
+ − = + 

                                (4.68) 

where 

 

1 1

0 0
( ) (1 1/ )

(2 1 / )

inh Bn g p dx n h p dx
A

n h

β− − + ∆
=

+ ∆
∫ ∫                           (4.69) 

Once A is calculated, the constant C is readily found by means of 

 (2 1 / )( )
in

C n h hA= + − ∆                                         (4.70) 

Combining Eqs. (4.66) and (4.70) one gets 

 ( ) (1 1 / ) (2 1 / )
in

x n h x h n hAσ = − + ∆ + − + ∆                            (4.71) 

In the general case, Eq. (4.68) is not amenable to analytical solution. We thus consider here the 

case of constant (pressure-independent) consistency index. Assuming that 0α = , Eq. (4.68) 

becomes 

 
1

0xx x

n
p p

x A

+
+ =

+
                                           (4.72) 
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The solution of the above equation with (0) 1p =  and (1) 0p =  is 

                                               

1
1

( )
(1 1/ ) 1

n

n

A

A x
p x

A

+  − + =
+ −

                                         (4.73) 

Substituting the pressure into Eq. (4.69) results in a non-linear algebraic equation which is solved 

in order to determine the unknown constant A.  

For the sake of simplicity, we consider here the case where ( ) 1g x x= +  (the yield stress 

varies linearly with the pressure). It is easily shown that Eq. (4.69) takes the form 

 [ ](1 1/ ) (2 1/ ) inBn n h I n hA h Bnβ + + ∆ + + ∆ = −                        (4.74) 

where 

 

[ ]
1

1

0

( 1) ln(1 1/ ) 1 , 1

( 1)(1 1/ )
, 1

( 1) (1 1/ ) 1

n

n

A A A n

I pdx A A A n
n

n A

−

 + + − =


≡ = + + − − ≠  − + − 

∫                        (4.75) 

In a linearly-converging channel with a slope 0h∆ < , the core thickness increases with a 

slope equal to (1 1/ )( )n h+ −∆ . The value of A can be found analytically only in the two extreme 

cases between which the lubrication model applies: (a) at the lowest value of Bn, 
1c

Bn , at which the 

unyielded domain varies from 0 to 1 (it is not broken); (b) at the lowest value of Bn, 2cBn , at 

which the flow comes to a stop. As illustrated in Fig. 4.3, for 2cBn Bn≥ there is no flow anyway, 

while for 1cBn Bn<  the plug is broken and the unyielded region is restricted only near the channel 

exit; the fluid near the inlet is fully yielded and thus the present lubrication model does not apply.  

 

Figure 4.3: Flow regimes for Herschel-Bulkley flow in the case of a linearly converging channel. The 

present lubrication analysis holds only in Regime II. 

 

BnBnc1 Bnc2

(iii) No flow(ii) Unyielded

region for any x

(i) Unyielded

region near 

the exit  

( ) (1 1/ )( )(1 )outx h n h xσ = − + −∆ −( ) (1 1/ )( )x n h xσ = + −∆

( ) (1 1/ )( ) (2 1/ )( )
in

x n h x h n h Aσ = + −∆ + + + −∆
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The first critical value 1cBn  below which the plug is broken corresponds to (0) 0σ = . Hence, Eq. 

(4.71) yields  

(2 1 / )( )

inh
A

n h
= −

+ −∆
 

and from Eq. (4.74) we find that 

                                                             
1

(1 1 / )( )

1
c

n h I
Bn

Iβ
+ −∆

=
+

                                            (4.76) 

The pressure is given by Eq. (4.73) and 

                                                            ( ) (1 1/ )( )x n h xσ = − + −∆                                            (4.77) 

 

 

Figure 4.4: Lower bounds of the yield-stress growth parameter for flow of a Herschel-Bulkley fluid with 

constant consistency index (α=0) and yield stress varying linearly with pressure in a converging channel with 

( ) 1h x h x= + ∆  for various values of the power-law exponent. As ( )h−∆  is increased from 0 (flat channel) 

to the critical value of 1/(2+1/n) (corresponding to no flow and indicated by the vertical line in each case), the 

lower admissible value of β is initially -1 and then increases rapidly to 0. 
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                    (a)                        (b) 

  

                                 (c)            (d) 

  

                                 (e)             (f) 

Figure 4.5: Critical Bingham numbers in the case of Hesrchel-Bulkley flow with n=0.5 in a linearly 

converging channel ( 1
in

h = ) with constant consistency index (α=0) and linearly varying yield stress: (a) 

0.01h∆ = − ; (b) 0.05h∆ = − ; (c) 0.1h∆ = − ; (d) 0.2h∆ = − ; (e) 0.24h∆ = − ; (f) 0.249h∆ = − . The 

shaded region is the applicability domain of the present method. As ( )h−∆  is increased from 0 (flat channel) 

to the critical value of 0.25 (no flow) the lower admissible value of β increases from -1 to 0.  
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                                   (a)            (b) 

  

                                  (c)                              (d) 

  

                                  (e)             (f) 

Figure 4.6: Critical Bingham numbers in the case of Bingham-plastic flow (n=1) in a linearly converging 

channel ( 1
in

h = ) with constant plastic viscosity (α=0) and linearly varying yield stress: (a) 0.01h∆ = − ; (b) 

0.1h∆ = − ; (c) 0.2h∆ = − ; (d) 0.3h∆ = − ; (e) 0.33h∆ = − ; (f) 0.332h∆ = − . The shaded region is the 

applicability domain of the present method. As ( )h−∆  is increased from 0 (flat channel) to the critical value 

of 1/3 (no flow) the lower admissible value of β increases from -1 to 0.  

 PANDELIT
SA PANASETI 



88 

 

  

                                (a)                                     (b) 

  

                                 (c)            (d) 

  

                                 (e)            (f) 

Figure 4.7: Critical Bingham numbers in the case of Hesrchel-Bulkley flow with n=1.5 in a linearly 

converging channel ( 1
in

h = ) with constant consistency index (α=0) and linearly varying yield stress: (a) 

0.01h∆ = − ; (b) 0.1h∆ = − ; (c) 0.2h∆ = − ; (d) 0.3h∆ = − ; (e) 0.37h∆ = − ; (f) 0.374h∆ = − . The 

shaded region is the applicability domain of the present method. As ( )h−∆  is increased from 0 (flat channel) 

to the critical value of 3/8 (no flow) the lower admissible value of β increases from -1 to 0.  
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In general, the second critical value 2cBn  is simply the one predicted by Eq. (4.62) for a flat 

channel of height equal to the minimum value of h(x): 

                                                                min
2

1 / 2
c

h
Bn

β
=

+
                                                    (4.78) 

where 
min

h  is the minimum channel height. Hence, for a converging channel 

                                                      
2

1 / 2 1 / 2

out in
c

h h h
Bn

β β
+ ∆

= =
+ +

                                              (4.79) 

At the critical value 2cBn  the flow stops since (1)
in out

h h hσ = + ∆ = . In this case, Eq. (4.71) 

gives 1A = −  and the yield surface is given by  

                                            
( ) (1 1 / )( ) (1 )

out
x h n h xσ = − + −∆ −                                       (4.80) 

 

 

Figure 4.8: Pressure distributions in the case of flow of a Bingham plastic (n=1)  with constant rheological 

parameters ( 0α β= = ) in a linearly converging channel with ( ) 1 0.2h x x= −  for various values of the 

Bingham number ranging from 
1

0.2594
c

Bn =  to 
2

0.8
c

Bn = . 
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(a)                                                                (b) 

 
Figure 4.9: Velocity contours in the case of flow of a Bingham plastic (n=1)  with constant rheological 

parameters (α=β=0) in a linearly converging channel with ( ) 1 0.2h x x= −  for 
1

0.2594
c

Bn Bn= = : (a) 

x
v ; (b) 

yv . The unyielded core is shaded and the contour values are equally spaced. 

 

 

 

(a)                                                                (b) 

 
Figure 4.10: Velocity contours in the case of flow of a Bingham plastic (n=1) with constant rheological 

parameters (α=β=0) in a linearly converging channel with ( ) 1 0.2h x x= −  for 
1 2

0.5
c c

Bn Bn Bn< = < : (a) 

x
v ; (b) 

yv . The unyielded core is shaded and the contour values are equally spaced. 
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Figure 4.11: Effect of the yield-stress growth parameter on the pressure distribution in the case of flow of a 

Bingham plastic (n=1) with constant plastic viscosity (α=0) in a linearly converging channel with 

( ) 1 0.2h x x= −  for 0.5Bn = ; the yield stress is assumed to vary linearly with pressure. 

 

In summary, the method is applicable only when 
1 2c c

Bn Bn Bn≤ ≤ . When 

1 2c c
Bn Bn Bn< < , the constant A can be found numerically as the root of Eq. (4.74) satisfying  

                                                         1
(2 1/ )( )

inh
A

n h
− < < −

+ −∆
                                           (4.81) 

It is obvious that for a given power-law exponent n, 
2c

Bn  can be defined only when 

(0) (2 1 / ) (1 1 / ) 0
out in

n h n hσ = + − + >  or 

                                                               
(1 1 / )

(2 1 / )
out in

n
h h

n

+
>

+
                                                  (4.82) 

Otherwise, the solution is actually in Regime I; thus, Regime II is not observed and the present 

analysis is not relevant. In other words, the three regimes of Fig. 4.3 are observed provided that 

condition (4.82) is satisfied. Likewise, for a given linearly converging channel, there is a critical 

value nc of the power-law exponent below which Regime II is not observed 

                                                                 
( )

c

out

h
n

h h

−∆
=

+ ∆
                                                      (4.83) 
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In the case of a flat channel ( h∆ =0), 1cBn  is zero, 2cBn  coincides with cBn , given 

by Eq. (4.62), and the admissible values of β are in [ 1, )− ∞ . In the case of a linearly-

varying channel ( 0h∆ ≠ ), the lower bound of β, denoted by βc, may increase and the 

applicability of the method is further reduced. This critical value is the maximum of -1 and 

the value of β at which 1 2c cBn Bn= . From Eqs. (4.79) and (4.76) we then find that 

 [ / ( ) 1] / 1 1/
max 1, 2

3 1/ 2 / ( )

in
c

in

h h I n

n h h
β

 −∆ − − −
= − 

+ − −∆ 
                         (4.84) 

Figure 4.4 shows the variation of βc with ( )h−∆  for n=0.5, 1, and 1.5; βc is initially -1 

and then at a critical value of (-∆h) starts increasing to become zero at the maximum 

admissible value of ( )h−∆ , which is determined from Eq. (4.82)  

 

max

( ) 1

2 1 /
in

h

h n

−∆
=

+
                                           (4.85) 

 (1/4, 1/3 and 3/8 for n=0.5, 1, and 1.5, respectively). 

Figures 4.5-4.7 illustrate the effect of the yield-stress-growth parameter β on the two 

critical Bingham numbers for different values of h∆  with 1
in

h = , and n=0.5 (shear-thinning), 1 

(Bingham plastic), and 1.5 (shear-thickening). The applicability domain of the method corresponds 

to the shaded regions between the curves of 1cBn  and 2cBn  (recall that below 1cBn  the plug is 

broken and above 2cBn  there is no flow). As ( h−∆ ) is increased, this regime is squeezed, 

with βc eventually moving to the right, 1cBn  increases rapidly, and 2cBn is reduced slightly 

both tending asymptotically to the curve  

 
1 1 /

(2 1/ )(1 / 2)
c

n
Bn

n β
+

=
+ +

                                       (4.86) 

reached when ( ) 1 / (2 1/ )h n−∆ = + , in which case there is no flow. Comparing Figs. 4.5-4.7 

we observe that the applicability of the method is increased with n.  

The analysis for a linearly-diverging channel ( 0h∆ > ) is analogous. The unyielded core 

now contracts linearly following Eq. (4.71). Below a critical Bingham number
1c

Bn , the unyielded 

core does not reach the exit plane and above a second critical number 
2c

Bn  the unyielded 

core touches the wall at the inlet plane and thus there is no flow. The analysis for the 

diverging channel holds provided that 

 
2 1/

1 1/
out in

n
h h

n

+
<

+
                                              (4.87) 
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Let us now consider the flow of a Bingham-plastic (n=1) with constant plastic viscosity 

(α=0) and constant yield stress (β=0) in a converging channel with ( ) 1 0.2h x x= − ( 0.2h∆ = − ), in 

which case 
2

0.8
c out

Bn h= = . From Eq. (4.76) we get 
1

0.2594
c

Bn ≃ . Figure 4.8 shows the 

pressure distributions for different values of the Bingham number in the range from 
1c

Bn  to 

2
.

c
Bn  Note that when 

2c
Bn Bn=  the pressure is equal to unity for 0 1x≤ < . The velocity 

contours for
1

0.2594
c

Bn Bn= = and 0.5Bn = are shown in Figs. 4.9 and 4.10, respectively.  

 

(a) 

 

(b) 

 

(c) 

Figure 4.12: Effect of the yield-stress growth parameter on the contours of 
x

v (left) and 
yv  (right) in the 

case of flow of a Bingham plastic (n=1) with constant plastic viscosity (α=0) in a converging channel with 

( ) 1 0.2h x x= −  for 0.5Bn = : (a) β=-0.5; (b) β=0; (c) β=0.5; the unyielded core is shaded and the 

contour values are equally spaced. The yield stress is assumed to vary linearly with pressure. 
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The effect of the yield-stress growth coefficient β on the pressure distribution and the 

velocity contours is illustrated in Figs. 4.11 and 4.12, respectively, which show results for Bn=0.5 

and β=-0.5, 0, and 0.5. The value of the Bingham number was chosen to lie between 
1c

Bn  and 

2c
Bn  for all the selected values of β (Fig. 4.11). As β is increased the dimensionless pressure 

increases while the pressure gradient becomes lower upstream and higher downstream. As 

shown in Fig. 4.12, the slope of the unyielded region remains the same but this grows bigger as β is 

increased, reaching the wall at the exit plane when β=βc (no flow). 

 

Figure 4.13: Effect of the power-law exponent on the pressure distribution in the case of flow of a Herschel-

Bulkley fluid with constant rheological parameters ( 0α β= = ) in a converging channel with 

( ) 1 0.2h x x= −  for 0.5Bn = . 

 

The effect of the power-law exponent in the same geometry ( ( ) 1 0.2h x x= − ) can be seen 

in Figs. 4.13 and 4.14, where we show results for n=1, 0.5, and 1.5 and constant rheological 

parameters (α=β=0). The pressure distribution may be only slightly affected, but the slope of the 

unyielded region increases as n is reduced. At the critical value nc=1/3 (Eq. (4.83)), σ(0)=0 and 

σ(1)=hout (thus, the second flow regime where the plug is unbroken is not observed). The 

material is so shear thinning that the plug hits the wall and no flow occurs. 
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(a) 

 

(b) 

 

(c) 

Figure 4.14: Effect of the power-law exponent on the contours of 
x

v (left) and 
yv  (right) in the case of 

flow of a Herschel-Bulkley fluid with constant rheological parameters ( 0α β= = ) in a converging channel 

with ( ) 1 0.2h x x= −  for 0.5Bn = : (a) n=0.5; (b) n=1; (c) n=1.5; The unyielded core is shaded and 

the contour values are equally spaced.  
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Figure 4.15: Effect of the plastic-viscosity growth parameter on the pressure distribution in the case of flow 

of a Bingham plastic (n=1) with constant yield stress (β=0) in a linearly converging channel with 

( ) 1 0.2h x x= −  for 0.5Bn = ; the plastic viscosity is assumed to vary linearly with pressure. 

 

We close this section with results for a Bingham-plastic (n=1) with constant yield stress 

(β=0) and with plastic viscosity varying linearly with pressure. Since it is not amenable to 

analytical solution, this flow is solved numerically using the method briefly described below. 

Figures 4.15 and 4.16 show results obtained again in a channel with ( ) 1 0.2h x x= −  
for Bn=0.5 

and α=0, 1, and 2.  As α is increased the dimensionless pressure decreases (see Fig. 4.15), but it 

should be kept in mind that the applied dimensional pressure driving the flow is increased. The 

velocity contours for the three values of α are given in Fig. 4.16. Note that the width of the 

unyielded region increases with α. 

 

4.5 Flow in a channel with a nonlinear wall function 

As already mentioned, the integro-differential Eq. (4.46) for the pressure distribution has been 

solved using a standard pseudo-spectral numerical method (Hesthaven et al., 2007). Chebyshev 

orthogonal polynomials are used to represent the unknown pressure. 
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(a) 

 

(b) 

 

(c) 

Figure 4.16: Effect of the plastic-viscosity growth parameter on the contours of 
x

v (left) and 
yv  (right) in 

the case of flow of a Bingham plastic (n=1) with constant yield stress (β=0) in a converging channel with 

( ) 1 0.2h x x= −  for 0.5Bn = : (a) α=0; (b) α=1; (c) α=2; the unyielded core is shaded and the 

contour values are equally spaced. The plastic viscosity is assumed to vary linearly with pressure. 
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For each parameter set, the number of spectral coefficients is adjusted so that a fully resolved 

pressure field is calculated; 12-18 spectral coefficients are usually required to achieve a decrease of 

the magnitude of the coefficients about seven to eight orders. To achieve maximum accuracy, all 

other quantities of interest are also calculated spectrally. Then, the yield surface, the unyielded core 

velocity, and then two velocity components are calculated using the analytical expressions derived 

in section 4.2.  

 

(a)                                                                (b) 

 
Figure 4.17: Velocity contours in the case of flow of a Bingham plastic (n=1) with constant rheological 

parameters ( 0α β= = ) in a wavy channel described by Eq. (4.88) for 0.4762, 0.1Bn δ= =  and 0.2θ = : 

(a) 
x

v ; (b) 
yv . The unyielded core is shaded and the contour values are equally spaced. 

 

We considered the wavy channel used by Fusi et al. (2015) and Frigaard and Ryan (2004) 

 
1

( ) 1 cos 2
2

h x xθ πδ
  = − −  

  
                                    (4.88) 

where δ>0 and 0 1θ≤ ≪ . Figure 4.17 shows the velocity contours for a Bingham plastic 

(n=1) with constant rheological parameters (α=β=0) obtained with the values chosen in 

Fusi et al. (2015): Bn=0.4762, δ=0.1 and 0.2θ = . In Fig. 4.18, we zoom in order to compare 

with the results of Fusi et al. (2015). Excellent agreement is observed regarding the shape 

of the plug region. In all our tests the contours of vx were similar to those reported by Fusi et 

al. (2015). This was not the case, however, with the vy contours. Since they intersect the 

yield surface, the vy contours of Fusi et al. (2015) are in error. 
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(a)                                                            (b) 
 

Figure 4.18: Zooms of the yielded region in the case of flow of a Bingham plastic (n=1) with constant 

rheological parameters ( 0α β= = ) in a wavy channel described by Eq. (4.88) for 0.4762, 0.1Bn δ= =  

and 0.2θ =  corresponding to Figs. 3 and 4 in Fusi et al. (2015): (a) 
x

v ; (b) 
yv .  The unyielded core 

is shaded and the contour values are equally spaced.  

 

 

Figure 4.19: Effect of the plastic-viscosity growth coefficient on the pressure distribution in the case of flow 

of a Bingham plastic (n=1) with constant yield stress (β=0) in a wavy channel described by Eq. (4.88) with 

Bn=0.5, δ=0.1 and 0.2θ = . The plastic viscosity varies linearly with pressure.  
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(a) 

 

(b) 

 

(c) 

Figure 4.20: Effect of the plastic-viscosity growth coefficient on the contours of 
x

v (left) and 
yv  (right) in 

the case of flow of a Bingham plastic (n=1) with constant yield stress (β=0) in a wavy channel described by 

Eq. (4.88) with Bn=0.5, δ=0.1, and 0.2θ = : (a) α=0; (b) α=1; (c) α=2; The unyielded core is shaded 

and the contour values are equally spaced. The plastic viscosity varies linearly with pressure. 

 

Figures 4.19 and 4.20 show respectively the pressure distributions and the velocity 

contours for the flows of a Bingham plastic (n=1) with constant yield stress (β=0) and plastic 

viscosity varying linearly with pressure when Bn=0.5 and α=0 (constant plastic viscosity), 1, and 2. 

As before, the dimensionless pressure decreases with α and the pressure gradient increases in 
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magnitude near the inlet and decreases near the exit (Fig. 4.19). However, as shown in Fig. 4.20, 

the elevation of the yield surface is essentially the same (in reality, this increases slightly) and so 

are the velocity contours.  

 

 

Figure 4.21: Effect of the yield-stress growth coefficient on the pressure distribution in the case of flow of a 

Bingham plastic (n=1) with constant plastic viscosity (α=0) in a wavy channel described by Eq. (4.88) with 

Bn=0.5, δ=0.1, 0.2θ = , and β=-0.2, 0 and 2 (the three curves essentially coincide). The yield stress 

varies linearly with pressure. 

 

The results when the yield stress varies linearly with pressure and the plastic viscosity is 

constant (α=0) seem to follow an opposite trend. Figure 4.21 shows that the dimensionless pressure 

distribution is insensitive to β, while the width of the unyielded region increases and the velocity 

contours in Fig. 4.22 are re-adjusted accordingly. A more careful look on the magnitude of the 

pressure gradient reveals that this is actually reduced near both the inlet and exit and increases in 

the middle of the channel as β is increased. 
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(a) 

 

(b) 

 

(c) 

Figure 4.22: Effect of the yield-stress growth coefficient on the contours of 
x

v (left) and 
yv  (right) in the 

case of flow of a Bingham plastic (n=1) with constant plastic viscosity (α=0) in a wavy channel described by 

Eq. (4.88) with Bn=0.5, δ=0.1, and 0.2θ = : (a) β=-0.2; (b) β=0; (c) β=0.2; The unyielded core is 

shaded and the contour values are equally spaced. The yield stress varies linearly with pressure. 
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4.6 Conclusions 

The flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters in a channel 

of varying width has been analyzed extending the lubrication approximation model of Fusi et al. 

(2015) for a Bingham plastic (n=1). The zero-order problem in terms of the channel aspect ratio 

leads to a simple ordinary integro-differential equation for the pressure p(x), which is solved using 

standard numerical methods (pseudo-spectral method in the present work). Once the pressure is 

obtained the yield surface and the two velocity components are easily calculated by means of 

closed-form expressions. Analytical solutions for the special cases of channels of constant and 

linearly varying regimes have also been obtained. 

The present results generalize those of Fusi et al. (2015) for a Bingham plastic with 

constant rheological parameters. The lubrication paradox is avoided and the correct shape of the 

yield surface is approximated satisfactorily at zero order. The model predicts that at zero order the 

yield surface variation is opposite to that of the wall multiplied by a factor depending only on the 

power-law exponent. The pressure dependence of the consistency index and the yield stress affects 

only the elevation and not the shape of the yield surface. With previous approaches, such a result is 

obtained only if higher-order solutions are calculated (Frigaard and Ryan, 2004).  

A limitation of the method is that it is valid, provided that the unyielded region extends 

continuously from the inlet to the outlet plane of the channel, i.e. when the plug is not broken. For 

example, Balmforth and Craster (1999) studied the broken-plug regime for the thin-film flow down 

an inclined plane by means of a consistent thin-layer theory for Bingham plastics. Frigaard and 

Ryan (2004) completed their analysis of viscoplastic flow in a channel of slowly-varying width by 

considering the structure of the flow after the plug was broken.  
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Chapter 5 

Lubrication solution of the flow of a 

Herschel-Bulkley fluid with pressure-

dependent rheological parameters in 

an asymmetric channel 

 

In this chapter we consider a Herschel-Bulkley fluid with the consistency index and the yield stress 

being functions of pressure. We also derive analytical lubrication solutions of the flow in the case 

of an asymmetric long channel. Further, we consider the cases where firstly, the lower plate is 

horizontal, then, where the variable width is symmetrical and finally, the case where the upper wall 

function, varies linearly. 

 

5.1 Introduction 

In a recent work (Panaseti et al., 2018), we have extended a lubrication approximation method 

proposed by Fusi et al. (2015) for solving pressure-driven flow of a Bingham-plastic in a 

symmetric channel, in order to solve the flow of a Herschel-Bulkley fluid with pressure-dependent 

consistency index *k  and yield stress 
*

yτ . Thus, we have employed the following constitutive 

equation  

                                       

* * *

*

* * * 1 * * *

*

,

2 ,

y

y n

yk

τ τ

τ
γ τ τ

γ
−

 = ≤


 
= + >   

 

D 0

τ Dɺ
ɺ

                                      (5.1) 

where *τ  is the viscous stress tensor,  

                                                             * * * * *1
( )

2

T ≡ ∇ + ∇ D v v                                                     (5.2) 

is the rate of deformation tensor, *
v  is the velocity vector, * *2

2trγ ≡ Dɺ  and * *2tr / 2τ ≡ τ   

are the magnitudes of *2D  and *τ , respectively, and n is the power-law exponent. It should 

be noted that throughout this paper, symbols with stars denote dimensional quantities. As 

PANDELIT
SA PANASETI 



105 

 

mentioned above, the consistency index and the yield stress are pressure dependent, such 

that 

                                                          
* * * * * *

0 0( ) ( ( ))k p k f p pα= −                                            (5.3) 

and 

                                                         
* * * * * *

0 0( ) ( ( ))y p g p pτ τ β= −                                            (5.4) 

where 
*

0k  is the consistency index and 
*

0τ  is the yield stress at the reference pressure 
*

0p  (assumed 

to be the same for both material parameters), and f  and g  are appropriate functions, such that 

(0) (0) 1f g= = . For example, ( )
x

f x e=  and ( ) 1f x x= +  describe respectively exponential 

and linear variations of the consistency index with pressure, the latter case corresponding to the 

Barus formula for the viscosity (Barus, 1893). Function f  is increasing while g  can be either 

decreasing or increasing. The pressure dependence of the yield stress and the viscosity is well 

established in the mechanics of granular materials (Ionescu et al., 2015) and in oil-drilling fluids 

(Hermoso et al., 2014b). The reader is referred to Panaseti et al. (2018) for a detailed literature 

review of experimental data on yield-stress materials with pressure-dependent rheological 

parameters. 

Fusi et al. (2015) presented a novel technique for modelling the lubrication flow of a 

Bingham plastic (with constant rheological parameters) in a two-dimensional channel of non-

uniform thickness. This is based on the application of Reynold’s transport theorem over the 

unyielded core. The advantage of the method is that it avoids the lubrication paradox and predicts 

at zero order the correct shape of the yield surface, whose behavior is opposite to that of the wall 

function, i.e. the width of the unyielded core increases when the channel width is reduced and vice 

versa. With other lubrication-approximation methods, the correct shape of the yield surface is 

obtained only at higher orders (Frigaard and Ryan, 2004; Putz et al., 2009). A limitation of the 

method of Fusi et al. (2015), however, is that it applies only when the unyielded region (plug) 

extends continuously from the inlet to the outlet plane, i.e. it is not applicable when the plug is 

broken.  

More recently, Panaseti et al. (2018) extended the method of Fusi et al. (2015) to solve the 

lubrication flow of a Herschel-Bulkley fluid with pressure-dependent consistency index and yield 

stress. For the case of a channel of constant width, they demonstrated that the width of the 

unyielded core is also constant, despite the pressure dependence of the yield stress, and that the 

pressure distribution is not affected by the yield-stress function. They also derived analytical 

solutions for certain choices of the functions f  and g  corresponding to linear or exponential 

pressure-dependence of the two rheological parameters. Subsequently, Housiadas et al. (2018) 

considered the axisymmetric flow following the approach proposed by Fusi and Farina (2018) and 

assuming that both the plastic viscosity and the yield stress vary linearly with the total pressure. 

They calculated the total pressure and the radius of the unyielded core solving numerically the 

PANDELIT
SA PANASETI 



106 

 

resulting nonlinear system of an ordinary differential equation and an algebraic one. Their 

calculations revealed that the variation of the radius of the central unyielded core depends on the 

relative values of 
*a  and 

*β . The latter contracts when 
* *β α< , expands when 

* *β α> , and 

remains cylindrical when 
* *β α= . More recently, Fusi (2018) revisited the symmetric planar flow 

problem assuming that the flow is driven by a prescribed inlet flux and not by a given pressure 

drop. In this case, the mathematical problem is much simpler reducing to a full nonlinear algebraic 

equation for the plug speed. 

The objectives of the present work are: (a) to apply the method of Fusi et al. (2015) in 

order to solve the lubrication flow of a Herschel-Bulkley fluid with pressure-dependent consistency 

index and yield stress in an asymmetric channel; and (b) to derive analytical solutions for certain 

limiting cases, such as the flow in an asymmetric channel of linearly-varying width.  

A prerequisite for the application of the method is the continuous extension of the 

unyielded core from the inlet to the outlet plane of the channel. The flow domain is thus divided 

into a lower and an upper yielded region and a central unyielded region defined by two unknown 

yield surfaces. The governing equations and the lubrication method are presented in section 5.2, 

where the zero-order solution is derived semi-analytically, in the sense that closed-form 

expressions are obtained for the positions of the upper and lower yield surfaces and for the two 

velocity components in terms of the pressure, which is found by solving a first-order integro-

differential equation numerically. In section 5.3, the equations for a symmetric channel are outlined 

and the analytical solutions for a flat channel are provided for different functions describing the 

pressure-dependence of the consistency index and the yield stress. In section 5.4, we derive 

analytical solutions for the case of an asymmetric channel with linearly changing width and for 

special forms of the functions describing the variation of the consistency index and the yield stress 

with pressure. The symmetric channel constitutes a special case of the derived solution. In section 

5.5, representative results demonstrating the effects of the Bingham number and the consistency-

index and yield-stress growth parameters are presented and discussed. Finally, in section 5.6 

concluding remarks are provided and some possibilities for further research are discussed.  

 

  

5.2 Analysis of lubrication flow 

Consider the pressure-driven flow of an incompressible Herschel-Bulkley fluid in an asymmetric 

long channel of length *L  and variable width * * * *

2 1( ) ( )h x h x− , where ( )*
1h x  and ( )*

2h x
 
are the 

lower and upper wall functions, respectively, as illustrated in Fig. 5.1.  
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Figure 5.1: Geometry and boundary conditions for the dimensional flow in an asymmetric channel of length 

L
*
 and variable width * * * *

2 1( ) ( )h x h x− . The unyielded core extends from the inlet to the outlet plane and is 

bounded by the two yield surfaces 
* *

1 ( )xσ  and 
* *

2 ( )xσ . 

 

A pressure *

inp  is applied at the inlet of the channel ( * 0x = ) while the pressure at the 

exit ( * *x L= ) is * *

out inp p< , i.e., the imposed pressure difference is * * * 0in outp p p∆ = − > , and 

thus the flow is from the left to the right. Without loss of generality, we assume here that *

outp  is 

the reference pressure that appears in Eqs. (5.3) and (5.4), i.e. * *

0outp p= . The main flow is in the 

*x  direction while the * velocityz −  component is zero. Hence, the velocity vector is of the form 

* * * * * * *( , ) ( , )x yv x y v x y= +v i j . Given the asymmetry of the flow (Fig. 5.1), the yielded and 

unyielded regions are separated by two asymmetric interfaces, i.e. 
* * *

1
( )y xσ=  and 

* * *

2
( )y xσ= for

* *
0 ,x L≤ ≤  where 

* * * * * * * *

1 1 2 2
0 ( ) ( ) ( ) ( ).h x x x h xσ σ≤ < < <  The unyielded 

region extends from the inlet to the outlet plane, i.e. the plug is not broken. Let also 

* *

1 1
(0)

in
σ σ≡ ,

* * *

1 1
( )

out
Lσ σ≡ ,

* *

2 2
(0)

in
σ σ≡  and

* * *

2 2
( ).

out
Lσ σ≡  

For convenience, we will work with the dimensionless equations. We assume that the 

length 
*L  of the channel is much greater than say the channel width or half-width at the inlet *H  

( * *L H≫ ), and use the aspect ratio 

                                                                   
*

*
1

H

L
ε ≡ ≪                                                    (5.5) 

to apply the classical lubrication approximation or thin-film approach (Frigaard and Ryan, 2004). 

The flow problem is non-dimensionalised by scaling 
*x  by 

*L , 
*

y , 
*

ih , and 
*

iσ  by 
*H , 

* *
( )outp p−  by 

*
p∆ , 

*

xv  by 
* * * 1/

0
( / )

n
H p kε∆ , 

*

yv  by 
* * * 1/

0
( / )

n
H p kε ε∆ , and the stress 
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components by 
*

pε ∆ . The dimensionless forms of the continuity equation and the two 

components of the momentum equation are as follows: 

                                                                      0
yx

vv

x y

∂∂
+ =

∂ ∂
                                                    (5.6) 

                                     2/ 1 yxn x x xx
x y

v v p
Re v v

x y x x y

ττ
ε ε− ∂ ∂ ∂ ∂∂

+ = − + + ∂ ∂ ∂ ∂ ∂ 
                               (5.7) 

                                  2/ 1 2y y yx yyn

x y

v v p
Re v v

x y y x y

τ τ
ε ε ε+ ∂ ∂ ∂ ∂  ∂

+ = − + + ∂ ∂ ∂ ∂ ∂ 
                            (5.8) 

where all variables are dimensionless (notice that there are no stars) and  Re is the Reynolds 

number defined by 

                                                             
* *3 *2/ 1

*2/ *

0

n

n

H p
Re

k L

ρ −∆
≡                                                  (5.9) 

*ρ  being the constant mass density of the material. The non-zero components of the stress tensor in 

the yielded regime { }1 1 2 2( , ) : [0,1], [ , ] [ , ]x y x y h hσ σ∈ ∈ ∪  read: 

 

                      

1

1 2

1 1 2 2

1

( )
2 ( )

( )
( ) , [ , ] [ , ]

( )
2 ( )

n x
xx

yn x
yx

yn

yy

vBn g p
f p

x

vvBn g p
f p y h h

y x

vBn g p
f p

y

β
τ ε α γ

γ

β
τ α γ ε σ σ

γ

β
τ ε α γ

γ

−

−

−

  ∂
= +   ∂  

∂   ∂ 
= + + ∈ ∪   ∂ ∂   

∂  = +  ∂   

ɺ
ɺ

ɺ
ɺ

ɺ
ɺ

           (5.10) 

where 

                                            

22

2 24
yx x

vv v

x y x
γ ε ε

∂ ∂ ∂ = + +  ∂ ∂ ∂   
ɺ                                       (5.11) 

In Eq. (5.10), there appear three dimensionless numbers, the Bingham number Bn and the 

consistency-index and yield-stress growth numbers a and β, which are defined by 

                                                
*

* * * *0

*
, ,Bn a p p

p

τ
α β β

ε
≡ ≡ ∆ ≡ ∆

∆
                                    (5.12) 

It is clear that when 0β ≥  the dimensionless yield stress is reduced from ( )g Bnβ  at the inlet plane 

to Bn  at the exit plane. When 0β < , then the dimensionless yield stress increases from 

( )g Bnβ  to Bn . We thus have the constraint ( ) 0g β >  so that the unyielded core extends 

from the inlet to the outlet plane (otherwise the present model is not applicable). 

The unyielded core, defined by { }1 2( , ) : [0,1], [ , ]x y x y σ σΩ = ∈ ∈ , moves as a solid, i.e.  at a 

constant velocity c c c

x yv v= +v i j . Thus,  

                                    
1 2and for ( ) ( )c c

x x y yv v v v x y xσ σ= = ≤ ≤                               (5.13) 
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Remark 1. The transverse velocity of the unyielded core becomes zero only in the symmetric case. 

For steady-state flow in the absence of body forces, the integral balance of linear 

momentum of the whole plug core yields the following equation (Fusi et al., 2015; Panaseti et 

al., 2018) 

     { } ( )
2 1

1

2 1 2 1
0

( ) ( ) 0x xx yx x xx yx in in iny y
p p dx p

σ σ
σ ετ τ σ ετ τ σ σ

= =
   − − + + − − − + + + − =   ∫        (5.14) 

where / , 1,2ix id dx iσ σ≡ = . Finally, the dimensionless pressure satisfies the following boundary 

conditions: 

                              
1 2 1 2

(0, ) (0, ) 1, (1, ) (1, ) 0
in in out out

p p p pσ σ σ σ= = = =                           (5.15) 

The zero-order problem 

As in our previous works (Panaseti et al., 2018; Housiadas et al., 2018), we solve the zero-order 

problem. For the sake of simplicity, we will avoid introducing new symbols for the zero-order 

variables. At zero order, the y-component of the momentum equation is simplified to / 0p y∂ ∂ =  

and thus ( )p p x= . The continuity and x-momentum equations at zero order then read as follows: 

                                                                         0
yx

vv

x y

∂∂
+ =

∂ ∂
                                               (5.16) 

                                                                    0
yxp

x y

τ∂∂
− + =

∂ ∂
                                               (5.17) 

Moreover, 0xx yyτ τ= = , while the shear stress component is given by 

                      [ ] [ ]1

1 1 2 2

( )
( ) , , ,n x

yx

vBn g p
f p y h h

y

β
τ α γ σ σ

γ
−  ∂

= + ∈ ∪  ∂ 
ɺ

ɺ
                  (5.18) 

In the lower yielded region / /x xv y v yγ = ∂ ∂ = ∂ ∂ɺ  and thus 

                                [ ]1 1( ) ( ) , ,

n

x
yx

v
Bn g p f p y h

y
τ β α σ

 ∂
= + ∈ ∂ 

                              (5.19) 

Substituting the above expression into the x-momentum equation (5.17), integrating twice, and 

applying the boundary conditions 
1 1

/ ( , ) ( , ) 0
x x

v y x v x hσ∂ ∂ = = , the following expression is 

obtained for xv : 

                                       [ ]
1 1/

1
1 11 1/

1 1

( y)
( , ) 1 , ,

( )

n
c

x xn
v x y v y h

h

σ
σ

σ

+

+

 −
= − ∈ − 

                                (5.20) 

where 

                                                       
( )1/ 1 1/

1 1

1/

( )

(1 1/ ) ( )

n n

xc

x n

p h
v

n f p

σ
α

+− −
=

+
                                                  (5.21) 

and /
x

p dp dx≡ . Similarly, in the upper yielded region where / /x xv y v yγ = ∂ ∂ = −∂ ∂ɺ  the shear 

stress is given by  
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                             [ ]2 2( ) ( ) , ,

n

x
yx

v
Bn g p f p y h

y
τ β α σ

 ∂
= − − − ∈ ∂ 

                          (5.22) 

Substituting in the momentum equation, integrating twice, and applying the boundary conditions 

2 2
/ ( , ) ( , ) 0

x x
v y x v x hσ∂ ∂ = = , one gets: 

                                      [ ]
1 1/

2
2 21 1/

2 2

(y )
( , ) 1 , ,

( )

n
c

x xn
v x y v y h

h

σ
σ

σ

+

+

 −
= − ∈ − 

                                (5.23) 

where 

                                                      
( )1/ 1 1/

2 2

1/

( )

(1 1/ ) ( )

n n

xc

x n

p h
v

n f p

σ
α

+− −
=

+
                                               (5.24) 

Since the core velocity is constant, the pressure satisfies the first-order ODEs defined by 

                           1 1

1 1 2 2( ) ( ) (1 1 / ) ( )
( ) ( )

n n n c nx x
x

p p
h h n v

f p f p
σ σ

α α
+ +− = − = − +                      (5.25) 

The pressure p  and the core velocity c

xv  can be determined upon integration and application of 

the two conditions for p ,  

                                                          (0) 1, (1) 0p p= =                                                   (5.26) 

The transverse velocity component in the lower and upper yielded regions is found by integrating 

the continuity equation (5.16) and applying the no-penetration boundary condition at the two walls, 

1 2( , ) ( , ) 0y yv x h v x h= = : 

                                               
[ ]

[ ]

1

2

1 1

2 2

, ,

, ,

y
x

y
h

h
x

y
y

v
v dy y h

x

v
v dy y h

x

σ

σ

∂ = − ∈ ∂


∂ = ∈
∂ 

∫

∫
                                            (5.27) 

Substituting 
x

v  from Eq. (5.20) into Eq. (5.27) and carrying out the required differentiation 

and integration one gets for the lower yielded region: 

 

1 1/ 2 1/

1 1
1 1 1 1 1

1 1 1 1

1 1

(1 1 / ) (2 1 / ) (1 1 / )( ) ,
2 1 /

[ , ]

n n
c

x
y x x x x x

v y y
v n h n n h

n h h

y h

σ σ
σ σ σ

σ σ

σ

+ +    − −
 = + + − + + + −   + − −     

∈

          

(5.28) 

where 
1 1

/
x

h dh dx≡ . The satisfaction of condition 
1( , ) c

y yv x vσ =  requires that  

                                                
1 1

(1 1 / ) (2 1/ )

c

y

x x c

x

v
n h n

v
σ + + = +                                           (5.29) 

Combining Eqs. (5.28) and (5.29) and simplifying leads to the following expression for the 

transverse velocity in the lower yielded region: 

 ( ) [ ]{ }
1 1/

1
1 1 1 1 1 1 12 1/

1 1

( )
(1 1/ ) (1 1/ )( ) , [ , ]

( )

n
c c c

y y x x yn

y
v v n y h h v h n y h v y h

h

σ
σ σ

σ

+

+

−
= + + − − − + + − ∈

−
  (5.30) 

Working similarly in the upper yielded region, one finds that 
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2 2

(1 1/ ) (2 1 / )

c

y

x x c

x

v
n h n

v
σ + + = +                                         (5.31) 

and 

( ) [ ]{ }
1 1/

2
2 2 2 2 2 2 22 1/

2 2

( )
(1 1/ ) (1 1/ )( ) , [ , ]

( )

n
c c c

y y x x yn

y
v v n h y h v h n h y v y h

h

σ
σ σ

σ

+

+

−
= + + − − − + + − ∈

−
  (5.32) 

where 
2 2

/
x

h dh dx≡ .  

We still need to find the equations corresponding to the unknown positions of the 

two yield surfaces. Since the unyielded core moves at constant velocity, 

1 2
( ) ( )

x x

c

xv y v y vσ σ= = = = . Equating Eqs. (5.21) and (5.24)  results in  

                                                              
1 2 1 2

h hσ σ+ = +                                                   (5.33) 

Remark 2. Since 
1 1 2 2

h hσ σ− = − , the widths of the lower and upper yielded regions are equal for 

any x.  

Combining now Eqs. (5.29) and (5.31) we get: 

                                                         ( )2 1 2 1

1
1x x x xh h

n
σ σ  − = − + − 

 
                                   (5.34) 

Integrating the above equation with respect to x, we get the following expression for the thickness 

of the unyielded core: 

                                              ( ) [ ]2 1 2 1

1
( ) 1 ( ) ( )x x C

n
h x h xσ σ− = − + + − 

 
                             (5.35) 

where C is an unknown constant to be determined. From the system of Eqs. (5.33) and (5.35) we 

find that 

                                                 
1 1 2

1
( )

2

1
( ) 1 ( )

2 2
x

n

C
h x h x

n
σ = −  + + − 

 
                                 (5.36) 

and 

                                              
2 1 2

1
( )

2

1
1 ( ) ( )

2 2
x

n

C
h x h x

n
σ = − + + 

 
                                    (5.37) 

Remark 3. The above results generalize those of Panaseti et al. (2018) for a symmetric channel, in 

which case 0
c

yv = . The width of the unyielded core increases if the width of the channel 

decreases and vice versa. The variation of the width of the unyielded core is enhanced by 

shear thinning and is independent of the other material and flow parameters, which affect 

only the constant C. As noted in Panaseti et al. (2018), reducing the power-law exponent n 

in a converging channel causes the plug to expand faster, which is expected, given that the 

velocity profile becomes flatter as shear thinning is enhanced.  

Remark 4. From Eqs. (5.33) and (5.34) one observes that  

                                                       
1 2 1

1 1
1

2 2
x x xh h

n n
σ  = + − 

 
                                             (5.38) 
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which upon substitution into Eq. (5.29) yields 

                                                               1 2

2

c

y x x

c

x

v h h

v

+
=                                                     (5.39) 

Given that the LHS is constant, the solution derived above is valid provided that 
1 2x x

h h+  is 

constant, or equivalently when the sum 
1 2

h h+  is a linear function of x . This condition is 

satisfied when the channel is symmetric as well as when both the wall functions are linear. 

In the general case, for a given lower wall function the upper wall function must be of the 

form  

                                                            
2 1 1
( ) ( )h x h x c x= − +                                                (5.40) 

where 
1

c  is any constant.  

Remark 5. If the width of the channel, 2 1( ) ( )h x h x− , is constant then the two walls are flat 

(and parallel) and the width 2 1( ) ( )x xσ σ−  of the unyielded core is also constant. 

Remark 6. It is easily shown that the constant C is related to the volumetric flow rate through the 

channel, for which we have: 

                    
2 1 2

1 1 2
2 1

( , ) ( , ) ( ) ( , )
h h

c

x x x x
h h

Q v x y dy v x y dy v v x y dy
σ

σ
σ σ= = + − +∫ ∫ ∫                 (5.41) 

Substituting the velocity from Eqs. (5.20) and (5.23) for the lower and upper yielded regions and 

taking into account that in the unyielded region the velocity is 
c

xv  we obtain 

                                           ( )2 1 2 1
(1 1/ )

2 1/

c

xQ h h
v

n
n

σ σ= − −+ +  +
                                  (5.42) 

The expression within the brackets is the constant C of Eq. (5.35). Thus, 

                                                            (2 1/ )
c

x

C
Q

n
v

= +                                                            (5.43) 

To determine the constant C, we return to the plug momentum balance equation (5.14), which at 

zero order becomes 

                { } ( )
2 1

1

2 1 2 1
0

( ) ( ) 0x yx x yx in in iny y
p p dx p

σ σ
σ τ σ τ σ σ

= =
   − − + − − − + + − =   ∫                (5.44) 

From Eqs. (5.19) and (5.22) we get  

                            
1 2

( ) and ( )
yx yxy y

Bn g p Bn g p
σ σ

τ β τ β
= =

= = −                              (5.45) 

Substituting into Eq. (5.44), using integration by parts, and applying the boundary conditions 

(5.26), we find that 

                                      ( ) ( )
1 1

2 1

0 0

2 0
x

p dx Bn g p dxσ σ β− + =∫ ∫                                           (5.46) 

Substituting Eq. (5.35) into Eq. (5.46) and integrating, one gets 

                                   ( )
1 1

2 1
0 0

2 ( ) (1 1/ ) xC Bn g p dx n p h h dxβ= − + −∫ ∫                                (5.47) 
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or 

                          ( )
1 1

2 1 2 1
0 0

2 ( ) (1 1 / ) in in x xBnC g p dx n h h p h h dxβ  = + + − + −  ∫ ∫                     (5.48) 

Substituting C  from Eq. (5.48) into Eq. (5.36) yields 

    ( )
1 1

1 1 2 2 1 2 1
0 0

1 1 1
( ) 1 (1 1/ )

2 2 2
in in x xBn g p dx h h n h h p h h dx

n n
σ β    = − − + + − + − + −     ∫ ∫       (5.49) 

Finally, combining the above equation with Eq. (5.25) we get the following integro-differential 

equation  

( )
1

1 1

2 1 2 1 2 1
0 0

1 1
( ) 1 ( ) (1 1 / ) ( )

2 2

n

x in in x x
Bnp g p dx h h n h h p h h dx K f p

n
β α

+
    − + + − − + − + − =       

∫ ∫  

                                                                                                                                (5.50) 

which is subject to conditions (5.26). Once the pressure is calculated, C , 
1
( )xσ , and 

2
( )xσ  are 

readily calculated from Eqs.(5.48), (5.36), and (5.37), respectively. The two velocity components 

can then be calculated by means of Eqs. (5.20) and (5.30) in the lower yielded region and Eqs. 

(5.23) and (5.32) in the upper yielded region. The two components of the velocity of the core are 

calculated by means of Eqs. (5.21) and (5.29). For the latter velocity component, we get: 

                                                    1 1(1 1/ )

(2 1/ )

c cx x
y x

n h
v v

n

σ + +
=

+
                                                 (5.51) 

The velocity distributions in the asymmetric channel are thus given by: 

                                 

1 1/

1
1 1

1 1

1 2

1 1/

2
2 2

2 2

1 , [ , )

( , ) 1, [ , ]

1 , ( , ]

n

c

x x

n

y
y h

h

v x y v y

y
y h

h

σ
σ

σ

σ σ

σ
σ

σ

+

+

  −
 − ∈ −  


= ∈


 − − ∈  − 

                                   (5.52) 

and 

( ) [ ]{ }

( ) [ ]{ }

1 1/

1
1 1 1 1 1 1 12 1/

1 1

1 2

1 1/

2
2 2 2 2 2 2 22 1/

2 2

( )
(1 1/ ) (1 1 / )( ) , [ , ]

( )

( , ) 0, [ , ]

( )
(1 1/ ) (1 1/ )( ) , [ , ]

( )

n
c c

x x yn

c

y y

n
c c

x x yn

y
n y h h v h n y h v y h

h

v x y v y

y
n h y h v h n h y v y h

h

σ
σ σ

σ

σ σ

σ
σ σ

σ

+

+

+

+

 −
+ − − − + + − ∈ −= + ∈

 − + − − − + + − ∈
−

 

                                                                                                                                (5.53) 

It should be pointed out that in order for the present model to be applied, 

1 2
,

c c
Bn Bn Bn≤ ≤  where 

1c
Bn

 
is the critical value of the Bingham number at which the plug 

is broken (
1 2

σ σ= ) and 
2c

Bn  is the critical Bingham below which flow occurs, i.e. the 

Bingham number at which the core touches the walls and the flow ceases. If the plug is 

broken, which implies that 
1 2σ σ σ= =  at some point 

cx , then 
1 2

2 h hσ = +  and therefore 

the plug breaks in the middle of the channel at 
cx x= . Equation (5.35) then gives: 
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                                                     [ ]2 1

1
1 ( ) ( )c c cC h x h x

n

 = + − 
 

                                            (5.54) 

Substituting the above equation into Eq. (5.48) yields the critical Bingham number below 

which the plug is broken:  

                          
( )

( )

1

2 1 2 1 2 1
0

1 1

0

1
1 ( ) ( )

2

c c in in x x

c

h x h x h h p h h dx
n

Bn
g p dxβ

   + − − + − −     =
∫

∫
                   (5.55) 

Now, if 1 1hσ =  at any point 
w

x ,  then 2 2( ) ( )w wx h xσ = , which implies that the two unyielded 

surfaces touch the two walls at the same distance 
w

x  downstream. In this case, there is 

obviously no flow and Eq. (5.35) gives: 

                                                       [ ]2 1

1
2 ( ) ( )w w wC h x h x

n

 = + − 
 

                                       (5.56) 

The second critical value 2cBn  above which there is no flow is the critical number at which 

there is no flow in a flat channel of width equal to the minimum width of the channel:  

                                                              
( )

( )
2 1 min

2 1

0
2

c

F

h h
Bn

g p dxβ

−
=

∫
                                            (5.57) 

where Fp  is the pressure corresponding to flow in the aforementioned flat channel. 

 

5.3 Flow in a symmetric channel 

The flow in a symmetric channel constitutes a special case of the flow problem analyzed in section 

5.2. Letting 

                                                              
1 2

( ) ( ) ( )h x h x h x= − =                                             (5.58) 

and 

                                                            
1 2

( ) ( ) ( )x x xσ σ σ= − =                                            (5.59) 

Eq. (5.35) is simplified as follows: 

                                                          ( ) 1
1 ( )

2
x

n

C
h xσ = − + + 

 
                                             (5.60) 

which also implies that  

                                                                (1 1 / ) 0
x x

n hσ + + =                                                (5.61) 

Hence, from Eq. (5.29) it is deduced that 0c

yv = , as expected by symmetry. From Eq. (5.48) 

one finds that  

                                        
1 1

0 0
( ) (1 1/ )

2
in xBn

C
g p dx n h ph dxβ  = + + +  ∫ ∫                            (5.62) 
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Finally, from Eq. (5.25) we observe that the pressure satisfies the simplified equation  

                                                          
1

(1 1/ ) ( )

( ) ( )

n c n

x x

n

p n v

f p hα σ +

+
= −

−
                                       (5.63) 

After calculating the pressure, the constant C  and the location of the yield surface ( )xσ  are 

computed via  Eqs. (5.62) and (5.60), respectively. The velocity above the symmetry plane is then 

given by  

                                                1 1/

1, [0, ]

( , )
1 , ( , ]

c n
x x

y

v x y v y
y h

h

σ

σ
σ

σ

+

∈


=  − − ∈  − 

                            (5.64) 

where 

                                                               
( )1/ 1 1/

1/

( )

(1 1/ ) ( )

n n

xc

x n

p h
v

n f p

σ
α

+− −
=

+
                                        (5.65) 

The expressions (5.55) and (5.57) for the two critical Bingham numbers are simplified as follows: 

                                                 

( )

1

0

1 1

0

1
1 ( )c in x

c

h x h ph dx
n

Bn
g p dxβ

   + − −     =
∫

∫
                               (5.66) 

and  

                                                                 

( )
min

2 1

0

c

F

h
Bn

g p dxβ
=

∫
                                           (5.67) 

Below we focus on the case of a flat channel with 1h =  and derive the complete analytical 

solutions for various combinations of the functions f  and g , which describe the dependence of k  

and 0τ  on pressure. As noted in Panaseti et al. (2018), the yield surface is flat despite the pressure 

dependence of the rheological parameters, given by 

                                                                   
1

0
( )Bn g p dxσ β= ∫                                              (5.68) 

The pressure satisfies the following first-order integro-differential equation 

                                                         
1

(1 1 / ) ( )

( ) ( )

n c n

x x

n

p n v
K

f p hα σ +

+
′= − = −

−
                               (5.69) 

where K ′  is an unknown constant. Solving the above equation and applying the boundary 

conditions (5.26) yields the pressure ( )p x  and the constant K ′ . Then σ  and the velocity 

( , )
x

v x y are computed by means of Eqs. (5.68) and (5.64), respectively, where 

                                                                   
1/ 1 1/(1 )

1 1/

n n
c

x

K
v

n

σ +′ −
=

+
                                         (5.70) 
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Table 5.1: Expressions for the pressure ( )p x , the constant K ′ , and the elevation of the yield surface σ  for 

different forms of the consistency-index growth function f  and the yield stress growth function f  in the 

case of a symmetric planar channel with constant width ( 1h = ). The velocity is calculated by means of Eq. 

(5.64). 

( ) 1f pα =  

( ) 1p x x= − ,    1K ′ =  

( ) 1g pβ =  Bnσ =  

 

( ) 1g p pβ β= +  1
2

Bn
β

σ  = + 
 

 

 

( )
p

g p e
ββ =  1e

Bn
β

σ
β
−

=  

( ) 1f p pα α= +  

11
( ) (1 ) 1xp x α

α
− = + −  ,   

ln(1 )
K

α
α
+

′ =  

( ) 1g pβ =  Bnσ =  

 

( ) 1g p pβ β= +  
1 1

1
ln(1 )

Bnσ β
α α

  
= − −  +  

 

( )
p

g p e
ββ =  No analytical solution 

( )
p

f p e
αα =  

1 1
( ) ln

(1 )
p x

e x eα αα − −
=

− +
,   

1 e
K

α

α

−−′ =  

( ) 1g pβ =  Bnσ =  

 

( ) 1g p pβ β= +  (1 )
1

( 1)

a

a

e
Bn

e

β α
σ

α
 + +

= − − 
 

 

( )
p

g p e
ββ =  

,
1

1
,

(1 / )(1 )

a

a

a
Bn

e

e
Bn

a e

β α

β α
σ

β α
β

−

−

−

 = −
=  − ≠

 − −

 

The analytical solutions for , {1,1 , }
x

f g x e∈ +  are tabulated in Table 5.1. It is readily observed 

that the pressure is independent of the yield-stress growth function, which affects only the semi-

width σ of the unyielded core. It turns out that, there is no analytical solution only when f  is 

linear and g  is exponential. From Eq. (5.68), it is deduced that for flow to occur, it must be 1σ < , 

and thus the critical number below which flow occurs is  

                                                                   
2 1

0

1

( )
cBn

g p dxβ
=

∫
                                         (5.71) 
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It is also evident from Eq. (5.66) that in the case of a flat channel the first critical Bingham 

number 
1c

Bn  is zero. 

 

5.4 Flow in a channel with linearly-varying upper wall 

In this section we consider the flow in a channel described by 

                                                                   
1 2

0, 1h h h x= = + ∆                                         (5.72) 

where h∆  is a constant. It is clear that the upper wall may be diverging ( 0h∆ > ), flat (

0h∆ = ), or converging ( 0h∆ < ). The positions of the two yield surfaces (Eqs. (5.36) and 

(5.37)) are then simplified as follows: 

                                                     
1

1
( )

2
1 (1 )

2
x

n

C
h xσ =  + + ∆ − 

 
                                       (5.73) 

and 

                                                        
2
( )

1
(1 )

2 2
x

C
h x

n
σ = − + ∆ +                                              (5.74) 

Therefore, 
1
( )xσ  is increasing while 

2
( )xσ  is decreasing downstream in a diverging channel and 

vice versa in a converging channel. As shown in section 5.3 and also in Panaseti et al. (2018), in 

the symmetric case of a horizontal channel with two parallel walls, the two yield surfaces are also 

horizontal.  

In order to simplify the resulting solution expressions for this particular flow, we introduce 

a constant A, replacing the constant C by means of  

                                  
1

1 (2 1/ )(1 )
2 1/

A
C

C n hA
h n

≡
 − ⇔ = + − ∆ ∆ + 

                            (5.75) 

Equation (5.48) for this particular geometry (as described by Eq. (5.72)) gives 

                           ( )1 1

0 0
2(2 1/ )(1 ) ( ) (1 1/ ) 1Bnn hA g p dx n h p dxβ+ − ∆ = + + + ∆∫ ∫                    (5.76) 

which can be written as follows: 

                                 [ ]
1

0
21 (2 1/ ) (1 1/ ) ( ) ( )Bnn A n I A h g p dxβ− + + + ∆ = ∫                               (5.77) 

where 

                                                           
1

0
( )I A p dx= ∫                                                             (5.78) 

The expressions (5.73) and (5.74) for the two yield surfaces now become: 

                                                  
1

1
( )

2
1 ( )x

n
h A xσ =  + ∆ + 

 
                                                       (5.79) 

and 

                                                
2
( ) 1

1
( )

2
x hA h A x

n
σ = − ∆ − ∆ +                                                   (5.80) 
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In this case, the ODE for the pressure (5.25) can be written as 

                                                        
1( ) ( )

x

n

p K

f p A xα +

′
= −

+
                                                    (5.81) 

where  

                                                       
( )

1 1

(1 1 / )

(1 1 / 2 ) ( )

n
n c

x

n n

n v
K

n h+ +

+
′ =

+ ∆
                                                (5.82) 

It is easily seen that once K ′  is calculated the velocity of the unyielded core in the x-

direction can be found: 

                                                 
[ ]1 1/ 1/
(1 1/ 2 )

1 1/

n n

c

x

n h K
v

n

+ ′+ ∆
=

+
                                             (5.83) 

In the general case, for given functions f  and g , the pressure ( )p x  and the 

constant K ′ can be found by integrating Eq. (5.81) and applying the boundary conditions 

(5.26). The constant A is computed numerically solving Eq. (5.77) where the integral of the 

RHS as well as I(A) are also computed numerically. Then 
1

σ  and 
2

σ  are computed by means 

of Eqs. (5.79) and (5.80), respectively. The component c

xv  is given by Eq. (5.83) whereas from 

Eq. (5.29) we get 

                        1 1(1 1/ ) (1 1/ 2 )

2 1 / 2 1 / 2

c c c c cx x
y x x y x

n h n h h
v v v v v

n n

σ + + + ∆ ∆
= = ⇒ =

+ +
                         (5.84) 

We observe that the ratio /c c

y xv v  depends only on h∆ , i.e. it is independent of the material 

parameters. Finally, the two velocity components in the two yielded regimes are calculated 

by means of Eqs. (5.52) and (5.53). 

Explicit expressions for the pressure ( )p x  and the constant K ′  can be derived when 

f  is linear or exponential. These expressions are tabulated in Table 5.2. It should be noted 

that the effects of the yield-stress growth parameter β  and the Bingham number Bn  are 

incorporated in the value of the constant A . The integral I(A) can be calculated analytically 

only for the case ( ) 1f pα = : 

                                          

[ ]
1

( 1) ln(1 1/ ) 1 ,
1

( ) ( 1)(1 1/ )
, 1

( 1) (1 1/ ) 1

n

n

A A A
n

I A A A A n
n

n A

−

 + + −
=

= + + − −
≠  − + − 

                               (5.85) 
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Table 5.2: Analytical solutions for the pressure ( )p x , the constant K ′ , and 
c

xv  for different forms of the 

consistency-index growth function f  in the case of a channel with linearly varying wall (

1 20, 1h h h x= = +∆ ). The constant A  is computed numerically solving Eq. (5.77). 

 

 

 

 

 

( ) 1f pα =  

1/ 1 / ( 1)n n

n
K

A A
′ =

− +
 

1
1

( )
(1 1/ ) 1

n

n

A

A x
p x

A

+  − + =
+ −

 

[ ]1 1/1/

1/

(1 1 / 2 )

(1 1 / ) 1 / 1 / ( 1)

nn

c

x n
n n

n n h
v

n A A

+
+ ∆

=
 + − + 

 

 

 

 

( ) 1f p pα α= +  

ln(1 ) /

1 / 1 / ( 1)n n

n
K

A A

α α+′ =
− +

 

{ }( 1) /( ) 1 / (1 1/ ) 11
( ) (1 ) 1

n n nA A x A
p x α

α

   + + − + −   = + −  

[ ] 1/1 1/
(1 1 / 2 ) ln(1 ) /

1 1 / 1 / 1 / ( 1)

nn

c

x n n

n h n
v

n A A

α α
+

+ ∆  +
=  + − + 

 

 

 

 

 

( )
p

f p e
αα =  

( )1 /

1/ 1 / ( 1)n n

n e
K

A A

α α−−
′ =

− +
 

( )1 1
( ) ln 1 1 1 / (1 1 / ) 1

n

nA
p x e A

A x

α

α
−

  +    = − − − − + −     +     

 

[ ] ( )
1/

1 1/
1 /(1 1/ 2 )

1 1/ 1/ 1 / ( 1)

n
n

c

x n n

n en h
v

n A A

α α+ − −+ ∆
 =

+ − +  

 

 

 

 

An analytical expression for Eq. (5.77) can be derived only in the case of linear g, i.e. 

( ) 1g p pβ β= + : 

                                   [ ] [ ]21 (2 1/ ) (1 1/ ) ( ) 1 ( )Bnn A n I A h I Aβ− + + + ∆ = +                         (5.86) 

 

As noted above the unyielded core expands downstream in the case of a converging channel and 

contracts in the diverging channel. As a result, the present lubrication method is applicable only in 

a range of h∆  values: 

                                                                
min max

( ) ( )h h h∆ < ∆ < ∆                                          (5.87) 
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The lower bound is the critical value at which no flow can occur in a converging channel: the 

expanding core touches the wall at the outlet and breaks at the inlet plane, i.e. 
1
(0) 1/ 2σ =  and 

1
(1) 0.σ =  From Eq. (5.79), we get 1A = −  and  

                                                                 
min

1
( )

1
1

2

h

n

∆ = −
+

                                            (5.88) 

The upper bound is the critical value at which the contracting unyielded core in an 

expanding channel breaks at the outlet plane while it touches the wall at the inlet plane, i.e. 

1
(0) 0σ =  and 

1
(1) (1 ) / 2.hσ = + ∆  In this case, Eq. (5.79) yields 0A =  and  

                                                                       
max

1
( )

1 1/
h

n
∆ =

+
                                            (5.89) 

In Bingham-plastic flow ( 1n = ), 2 / 3 1/ 2h− < ∆ < . 

Critical Bingham numbers 

In the case of a diverging channel ( 0h∆ > ), 
1
( )xσ  is increasing while 

2
( )xσ  is decreasing 

downstream. Therefore, the plug breaks at 1
c

x =  and (1 1 / )(1 )
c

C n h= + + ∆ , which gives 

                                                                
1 (1 1/ )

(2 1 / )
c

n h
A

n h

− + ∆
=

+ ∆
                                               (5.90) 

The first critical Bingham number is given by 

                                                          

( )
1 1

0

(1 1/ ) (1 )

2

c
c

n h I
Bn

g p dxβ

+ ∆ −
=

∫
                                         (5.91) 

where 

                                                          
1

0
( ) ( )c c cI I A p x dx≡ = ∫                                             (5.92) 

The flow stops when the two yield surfaces touch the wall at the inlet plane, 0
w

x = . In this case, 

2 1 /
w

C n= + , which gives 0
w

A = . For the second critical Bingham number we get: 

                                                          

( )
2 1

0

1

2
c

F

Bn
g p dxβ

=

∫
                                             (5.93) 

where 
F

p  is the pressure corresponding to a flat channel. It should be noted that the 

integrals ( )
1

0
Fg p dxβ∫  have been already calculated in Table 5.1, in order to derive the 

analytical expressions for the yield point σ . By means of Eq. (5.68), these can simply be 

deduced from Table 5.1 as the ratios / Bnσ . For example, when 1f g x= = + ,  

                                                   ( )
1

0

1 1
1

ln(1 )
Fg p dxβ β

α α
 

= − − + 
∫                                    (5.94) 
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2

1

1 1
2 1

ln(1 )

cBn

β
α α

=
  

− −  +  

                                      (5.95) 

Similarly, for a converging channel ( 0h∆ < ), 
1
( )xσ  is decreasing while 

2
( )xσ  is increasing and 

thus the plug breaks at 0
c

x = , 1 1 /
c

C n= +  and 

                                                                
2

(2 1 / )
cA

n h
=

+ ∆
                                                  (5.96) 

Hence 

                                                             

( )
1 1

0

(1 1/ )( )

2

c
c

n h I
Bn

g p dxβ

+ −∆
=

∫
                                            (5.97) 

The flow stops when the two yield surfaces touch the wall at the exit plane, 1
w

x = , which yields 

(2 1 / )(1 )
w

C n h= + + ∆  and 1
w

A = − . Finally, the second critical Bingham number is given by: 

                                                              

( )
2 1

0

1

2
c

F

h
Bn

g p dxβ

+ ∆
=

∫
                                         (5.98) 

 

5.5 Numerical results 

All the results of this section have been obtained solving numerically Eq. (5.50) by means of 

forward finite differences and considering only the Bingham-plastic case (n=1) with the rheological 

parameters depending linearly on pressure. The interval [0,1] has been partitioned using 1001 

nodes. In the case of a linearly varying channel, the numerical results compare well with the semi-

analytical solution derived in Section 5.4. It should be noted that the latter solution requires the 

numerical solution of Eq. (5.77) for the constant A , which is not a straightforward task. In the case 

of linear g, we experimented with an iterative calculation of this constant by means of 

                       

( ) ( )

( 1)
21 1 ( ) (1 1/ ) ( )

, 0,1,
2 1/

m m

m
Bn I A n I A h

A m
n

β
+

 + + − + ∆ = =
+

⋯                  (5.99) 

which is obtained by re-arranging Eq. (5.86). The numerical experiments showed that the above 

iterative method works very well except only when the Bingham number approaches 
2c

Bn . 

However, in these flows the numerical method also encounters difficulties due to the very 

high pressure gradients in the regions where the unyielded core approaches the wall. These 

are resolved by considering a finer partition of the flow domain.  
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Figure 5.2: Critical Bingham numbers for Bingham flow (n=1) in an asymmetric converging channel (

1 2
0, 1 , 0h h h h= = + ∆ ∆ < ) for 0α =  (pressure-independent plastic viscosity). 

 

 
Figure 5.3: Critical Bingham numbers for Bingham flow (n=1) in an asymmetric diverging channel 

(
1 2

0, 1 , 0h h h h= = + ∆ ∆ > ) for 0α =  (pressure-independent plastic viscosity).  

 

In Fig. 5.2 we plotted the critical Bingham numbers versus the yield-stress growth 

parameter β  for different values of h∆  in the case of flow of a Bingham fluid ( 1n = ) with 

pressure-independent plastic viscosity ( 0α = ) in a converging channel ( 0h∆ < ). It can be 

observed that the window of the method’s applicability becomes narrower as h∆  tends 
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towards the critical value of -2/3. This is also true for flow in a diverging channel, as 

illustrated in Fig. 5.3. However, 
2c

Bn  is independent of h∆ , as indicated also by Eq. 

(5.93). We can see in Figs. 5.2 and 5.3 that as h∆  goes to zero (flat channel) 
1c

Bn  tends to 

zero. 

 
Figure 5.4: Pressure distribution in Bingham flow (n=1) in an asymmetric linearly varying channel with 

pressure-independent rheological parameters ( 0α β= = ) and Bn=0.2 for different values of h∆ .  

 

Figure 5.4 shows the pressure distributions for 0.2Bn = , 0α β= = , and different values 

of h∆ . The pressure is linear in the case of a flat channel. In a converging channel, the pressure 

distribution is concave and the pressure gradient tends to zero at the inlet and to infinity at the 

outlet as h∆  approaches the critical value of -2/3 at which the unyielded core touches the wall at 

the outlet plane and the flow ceases.  In a diverging channel, the pressure distribution is convex and 

the pressure gradient tends to zero at the outlet and to infinity at the inlet as h∆  approaches the 

critical value of 1/2 at which the unyielded core touches the wall at the inlet plane and the flow 

ceases. The velocity contours for the three geometries considered in Fig. 5.4 are given in Fig. 5.5, 

where the shaded regions correspond to the unyielded core. In all the contour plots presented here, 

19 equidistant contour lines are drawn.  

As dictated by the analysis of the previous sections, the unyielded core in a flat channel is 

flat and converges in a diverging channel and vice versa. It should be noted that the horizontal 

velocity of the core is 0.0600, 0.045, and 0.030 for 0.2, 0h∆ =  and -0.2, respectively, whereas the 

corresponding values of the transverse velocity are 0.0060, 0, and -0.0030, as dictated by Eq. 

(5.84). The absence of transverse velocity contour lines above the unyielded core indicates that the 

variation of this component is small in this region.  
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(a) 

 
(b) 

 
(c) 

 

Figure 5.5: Effect of h∆  on the contours of the two velocity components ( xu  in the left and 
yu  in the right 

column) in a linearly varying channel  for 0.2Bn = , 1n = (Bingham plastic),  and 0α β= =  (constant 

plastic viscosity and yield stress): (a) 0.2h∆ =  (diverging channel); (b) 0h∆ =  (flat channel); (c) 

0.2h∆ = −  (converging channel). The unyielded region is shaded.  
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(a) 

 
(b) 

 
Figure 5.6: Inlet (a) and outlet (b) velocity profiles in the case of flow of a Bingham plastic (n=1) in linearly 

diverging channel with 0.2h∆ =  when 0.2Bn =  and 0α β= =  (constant plastic viscosity and yield 

stress). 

 

Indeed, the distributions of 
yu  are characterized by a global extremum in the aforementioned 

region which is slightly higher than the positive core velocity in the diverging channel (Fig. 5.6) 

and slightly lower than the negative core velocity in the converging channel (Fig. 5.7). Note that 

Figs. 5.6 and 5.7 show the profiles of the two velocity components at the inlet and the outlet planes. 

The effect of the Bingham number on the pressure distribution in the case of a converging 

channel with 0.2h∆ = −  is illustrated in Fig. 5.8. Again, the rheological parameters are assumed to 

be pressure independent ( 0α β= = ). As the Bingham number increases from 
1c

Bn Bn= =0.1118 

towards 
2

0.4
c

Bn =  the pressure gradient tends to zero near the inlet and to infinity near the exit.     

The velocity contours for 
1c

Bn Bn= , 0.25 and 0.35 are given in Fig. 5.9.  
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(a) 

 
(b) 

 
Figure 5.7: Inlet (a) and outlet (b) velocity profiles in the case of flow of a Bingham plastic (n=1) in linearly 

converging channel with 0.2h∆ = −  when 0.2Bn =  and 0α β= =  (constant plastic viscosity and yield 

stress). 

 

 
Figure 5.8: Pressure distribution in Bingham flow (n=1) in an asymmetric converging channel with 

0.2h∆ = −  for various Bingham numbers and 0α β= =  (pressure-independent rheological 

parameters).  
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(a) 

 
(b) 

 
(c) 

 

Figure 5.9: Effect of the Bingham number on the contours of the two velocity components ( xu  in the left 

and 
yu  in the right column) in a linearly channel for 0.2h∆ = − , 1n = (Bingham plastic), and 0α β= =  

(constant plastic viscosity and yield stress): (a) 1 0.1118cBn Bn= = ; (b) 0.25Bn = ; (c) 0.35Bn = . 

The unyielded region is shaded.  
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Figure 5.10: Pressure distribution in Bingham flow (n=1) in an asymmetric converging channel with 

0.2h∆ = − , for 0.25Bn = , constant yield stress ( 0β = ) and different values of α .  

 

The effect of the plastic-viscosity growth number α  for 0.25Bn =  and 0β =  on the 

pressure distribution is illustrated in Fig. 5.10. The values of α  were taken to be rather 

high in order to magnify the effect of the parameter. As α  increases, the pressure 

distribution tends to become linear while the unyielded core expands slightly, as can be 

observed in Fig. 5.11, where the velocity contours are also shown.  

The effect of the yield-stress growth number β  for 0.25Bn =  and 0α = is 

illustrated in Fig. 5.12. Again, rather high values of β  are used, in order to enhance the 

differences. The effect of β  is similar to that of the Bingham number, i.e. the pressure 

gradient increases very rapidly near the exit plane and the unyielded core expands to 

eventually touch the walls at the exit (Fig. 5.13). 

Results have also been obtained for geometries with non-linear wall functions. Figures 5.14 

and 5.15 show results obtained in a channel with the following wall functions: 

                            
1 2
( ) 0.02sin(2 ), ( ) 1 0.02sin(2 ) 0.2h x x h x x xπ π= = − −                      (5.100) 

These results have been obtained for 0.2Bn = , 0a =  and three values of the yield-stress 

growth coefficient, i.e. 0, 0.5, and 1β = . The pressure distributions are similar to those 

obtained for a linearly converging slide. However, the transverse velocity contours exhibit 

more interesting features. This is also the case with similar geometries, such as that with 

                           
1 2
( ) 0.1sin(2 ), ( ) 1 0.1sin(2 ) 0.2h x x h x x xπ π= = − −                           (5.101) 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.11: Effect of α  on the contours of the two velocity components ( xu  in the left and 
yu  in the right 

column) in a converging channel ( 0.2h∆ = − ) for 0.25Bn = , 1n = (Bingham plastic), 0β =  (constant 

yield stress): (a) 0α =  (constant plastic viscosity); (b) 1α = ; (c) 10α = . The unyielded region is 

shaded.  
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Figure 5.12: Pressure distribution in Bingham flow (n=1) in an asymmetric converging channel with 

0.2h∆ = − , for 0.25Bn = ,  constant plastic viscosity ( 0α = ) and different values of β .  

 

 

The results in Figs. 5.16 and 5.17 have been obtained for 0, 0.2, and 0.4β = . It can be 

observed in Fig. 5.17, where the unyielded core is shown together with the velocity 

contours, that the value of the Bingham number ( 0.2)Bn =  is close to 
1c

Bn  when 0β =  and 

gets closer to 
2c

Bn  when 0.4β = , which simply means that the range of Bingham numbers 

in which the method is applicable is reduced with the yield-stress growth parameter. 

Recall, however, that the values of β  have intentionally been chosen to be high in order to 

enhance the effects of this parameter. 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.13: Effect of β  on the contours of the two velocity components ( xu  in the left and 
yu  in the right 

column) in a converging channel ( 0.2h∆ = − ) for 0.25Bn = , 1n = (Bingham plastic), 0α =  (constant 

plastic viscosity): (a) 0β =  (constant yield stress); (b) 0.2β = ; (c) 0.5β = . The unyielded region is 

shaded.  
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Figure 5.14: Pressure distribution in Bingham flow (n=1) in an asymmetric converging channel described by 

Eq. (5.100) for 0.2Bn = ,  constant plastic viscosity ( 0α = ) and 0, 0.5β =  
and 1. 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.15: Effect of β  on the contours of the two velocity components ( xu  in the left and 
yu  in the right 

column) in an asymmetric channel described by Eq. (5.100) for 0.2Bn = , 1n = (Bingham plastic) and 

0α =  (constant plastic viscosity): (a) 0β =  (constant yield stress); (b) 0.5β = ; (c) 1β = . The 

unyielded region is shaded.  
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Figure 5.16: Pressure distribution in Bingham flow (n=1) in an asymmetric converging channel described by 

Eq. (5.101) for 0.2Bn = ,  constant plastic viscosity ( 0α = ) and 0, 0.2β =  and 0.4. 
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Figure 5.17: Effect of β  on the contours of the two velocity components ( xu  in the left and 
yu  in the right 

column) in an asymmetric channel described by Eq. (5.101) for 0.2Bn = , 1n = (Bingham plastic) and 

0α =  (constant plastic viscosity): (a) 0β =  (constant yield stress); (b) 0.2β = ; (c) 0.4β = . The 

unyielded region is shaded.  
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5.6 Conclusions 

We have extended the lubrication approximation method of Fusi et al. (2015) to analyze the flow of 

a Herschel-Bulkley fluid with pressure-dependent rheological parameters in a long, asymmetric 

channel described by two wall functions, under the assumption that the unyielded core extends 

from the inlet to the outlet plane of the channel. At zero order, the pressure obeys a first-

order integro-differential equation, which is numerically solved in the general case. Then 

the positions of the yield surfaces as well as the two velocity components are calculated via 

closed-form analytical expressions. The applicability of the method is restricted to 

channels where the sum 
1 2
( ) ( )h x h x+  is a linear function of x  and for Bingham numbers 

between the two critical values corresponding to the breaking of the plug region and to the 

complete cessation of the flow. 

Our analysis revealed that unlike the symmetric case, the transverse velocity of the 

unyielded core is nonzero. Moreover, the widths of the lower and upper yielded regions are equal 

for any x and increase with the width of the channel, which implies that the width of the 

unyielded core increases if the width of the channel decreases and vice versa. The variation 

of the width of the unyielded core is enhanced by shear thinning and is independent of the 

other material and flow parameters. 

Currently, we are exploring the possibility of applying the present model to non-inertial 

flows of single-phase yield-stress fluids along an asymmetric fracture (Roustaei et al., 2016) and to 

the upstream flow in sheet- or wire-coating (Denn, 2008). 
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Chapter 6 

Summary and recommendations for 

future work 

 

The main objectives of this thesis were the following: 

√ To solve the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip, 

in order to determine the critical conditions for the transition to different flow regimes when the 

degree of confinement varies, in an attempt to interpret experimental data. 

√ To review an extension of Philippou et al. (2016) to the case of viscoplastic flow and 

investigate the development of the flow in the particular case of a channel with slip only along one 

wall (asymmetric flow). 

√ To extend the lubrication method of Fusi et al. (2015) and derive an approximate semi-

analytical solution of both planar and axisymmetric flow of a Herschel-Bulkley fluid with a general 

wall function and pressure-dependent yield stress and consistency index. 

√ To derive analytical lubrication solutions of a Herschel-Bulkley fluid with a general wall 

function and pressure-dependent yield stress and consistency index, in the case of an asymmetric 

long channel. 

In Chapter 2, the steady, pressure-driven flow of a Herschel-Bulkley fluid in a 

microchannel was considered assuming that different power-law slip equations apply at the two 

walls due to slip heterogeneities, allowing the velocity profile to be asymmetric. Three different 

flow regimes were observed as the pressure gradient was increased. The extension of the different 

flow regimes depends on the channel gap; in particular the intermediate asymmetric flow regime 

dominates when the gap becomes smaller than a characteristic length which incorporates the wall 

slip coefficients and the fluid properties. The theoretical results compared well with available 

experimental data on soft glassy suspensions. These results open new routes in manipulating the 

flow of viscoplastic materials in applications where the flow behavior depends not only on the bulk 

rheology of the material but also on the wall properties. 
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In Chapter 3, the flow development of a Herschel-Bulkley fluid in a horizontal channel was 

subsequently considered assuming that slip occurs only on the upper wall due to slip 

heterogeneities. Hence, the velocity profile was allowed to be asymmetric as was the case in recent 

experiments on softy glassy suspensions (Vayssade et al., 2014). A power-law slip equation was 

employed, which generalizes the Navier-slip law. The one-dimensional fully-developed solutions 

were derived and the different flow regimes were identified. The two-dimensional development 

flow was solved numerically using finite elements along with the Papanastasiou regularization for 

the constitutive equation. Numerical results were presented for two values of the power-law 

exponent, i.e. n=1 (Bingham plastic) and n=1/2 (Herchel-Bulkley fluid). It was demonstrated that 

the global development length increases with the Bingham number and that flow development was 

slower near the no-slip wall. The global development length increases with slip exhibiting two 

plateaus and an intermediate rapid increase zone and doubles in the limit of infinite slip.  

Furthermore, in Chapter 4, the lubrication flow of a Herschel-Bulkley fluid in a symmetric 

long channel of varying width was modeled extending the approach proposed by Fusi et al. (2015) 

for a Bingham plastic. Moreover, both the consistency index and the yield stress were assumed to 

be pressure-dependent. With the present model, the pressure was calculated numerically 

solving an integro-differential equation and then the position of the yield surface and the 

two velocity components were computed using analytical expressions. Some analytical 

solutions were also derived for channels of constant and linearly-varying widths. The 

lubrication solutions for other geometries were calculated numerically. The implications of the 

pressure-dependence of the material parameters and the limitations of the method were discussed. 

In Chapter 5, our investigation was extended to an asymmetric channel. The lubrication 

flow of a Herschel-Bulkley fluid in a long asymmetric channel was solved extending the method of 

Fusi et al. (2015), which avoids the lubrication paradox approximating satisfactorily the correct 

shape of the yield surface at zero order. Both the consistency index and the yield stress were 

assumed to be pressure-dependent. An interesting feature of the asymmetric flow was that the 

unyielded zone moves not only in the main flow direction but also in the transverse 

direction. The two velocity components in both the yielded and unyielded regions were 

calculated by means of closed-form expressions in terms of the calculated pressure and the 

two yield surfaces.  

As a continuation of the particular thesis, new routes in manipulating the flow of 

viscoplastic materials in applications can be opened. In that case, the flow behavior depends not 

only on the bulk rheology of the material but also on the wall properties. Changing the particle-wall 

interactions and topography, the flow can be manipulated and different velocity profiles can be 

derived, something that is important in real situations (e.g. oil migration in porous media, inkjet 

printing). Additionally, an interesting issue that can be also studied is the accurate determination of 

yielded and unyielded regions in viscoplastic flow development. Furthermore, the method studied 

in Chapter 4 can be extended to the axisymmetric flow, which is more important in applications. 
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Even though Housiadas et al. (2018) considered the axisymmetric flow following the approach of 

Fusi and Farina (2018), they have not studied the case of converging or diverging tubes. Currently, 

we are exploring the possibility of applying the present model to non-inertial flows of single-phase 

yield-stress fluids along an asymmetric fracture (Roustaei et al., 2016) and to the upstream flow in 

sheet- or wire-coating (Denn, 2008). 
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