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Ieptinyn

Ta 1E®S0TAACTIKG VAKG CUUTEPLPEPOVTOL MG PEVCTA 1| WG GTEPEA OV 1) TAOT] €ival LIKPOTEPN 1| HEYOADTEPT
amd v téon dappong (yield-stress), avtiotoyo. Avth 1 ST GUUTEPIPOPE EYEL MG OMOTEAEG O TO OTL TO
nedio pong ympiletor oe meployég drappong Kot un dwappone. Eivar, emiong, yvwotd 6t ta iEmdomiactikd
VAKG Teivouv va olceBaivouv ota Toyydpata. H mapovoa dwatpiPr éxet dvo kbplovg o1oyovs. O mpdTog
010%0¢ givar 1 emihvon g porg Poiseuille evog pevotov Herschel-Bulkley pe dwapopetiky oiloOnon ota
Vo ToympoTo Kot m eméktacn e épsvvag Tov Philippou et al. (2016), mpoxeévou va depevvnbel n
avanTuén g 1E®IOTAACTIKNG poNg otV mEPINTOON €vOg aymyoL pe oAloOnon poévo oto éva tolympa. O
de0TEPOG KOPLOG 6TOY0G, 0POpA 0TV enékTacn TG ‘AMmavtikig pefoddov’ (lubrication method) twv Fusi et al.
(2015) ko v emihvomn g pong evog pevotod Herschel-Bulkley pe peoloyikéc mapapétpovg eEapTdUEVES
omd TNV TEST, OTNV TEPIMTMOOT] GUUUETPIKADV 1] 1] GUUUETPIKDV Oy OYDV.

210 TPpDOTO UEPOG TNG OlaTPIPNG, peAeTovpe T poviun pon evog pevotov Herschel-Bulkley vmod
mieon, vmobétoviag OTL oyvovv dapopetikés eElodoelg ohicbnong ota dvo Toydpoata. Kabog o
oLVTEAEOTNG Tieons aw&dvetal, mTapATNPOVVIOL TPELS OPOPETIKECG Teployxeés pons. H eméktaon tov
SPOPETIKMOV TEPOYDY pong eEaptdtor and t0 TAATOg Tov aywyol. Ta Bewpniikd amotedéopata
GULLOMVOVV LE TEWPILOTIKE dedopéva Yo LOANKAE VOAMON evarmprpata, to onoia dieEnyayay ot Vayssade et
al. (2014). EmmAéov, peketovpe m pon| evog pevatov Herschel-Bulkley og opiloviio aymyo, vmobétoviog 6Tt
N oAicOnomn eupavifetar pOVO GTO GVE TOIY®UE Kol XPNOLUOTOIOVTOG pio e&icmon oAicOnomng ekbetikng
popons. IMopovoidlovpe TG povodidotateg TANPOG aveRTUYUEVEG ADCES Kol Tpocdlopilovpe TG
Srapopetikég TEPLoYES pong. Xpnoipomotovpe ™ MéBodo tov [emepoucpévav Xtotyeiov kol T0 HOVTELO
IMoravactaciov yo eEopdivvon g Kataotatikng Elcmong kot emtdvovpe aplfuntikd mm dvsddctoTn
avantuélokn porn. Agdopévov 0Tt 0 KAAOWKOS OPIGHOG TOL UNAKOVG avATTLUENG dev gival €QOPLOGLLOG,
Aappéavetor vmoyMv T0 oAkd pnKog avamtuéng (global development length) kaBmg Kot To pPKog avantuéng
¢ mpog 1o v toiyopa (upper-wall development length). Ot cuvdvacpéveg emdpdoeic e oAlcOnong Kot
Tov opBpod Bingham diepguvdvrat, emiong.

Y10 dgbTEPO LUEPOG TNG SLOTPIPNG, EMEKTEIVOVLLE TNV TPOGEYYIoN TTOL TTpoteiveTal and Tovg Fusi et al.
(2015) ywo Thootikd Bingham, mpokeiévou vo LOoVTEAOTOGOVLE TN poT| Altavong evog pevotov Herschel-
Bulkley cg éva GUUUETPIKO ay@YO OLOPOPETIKOL TAGTOVS, OTOL TOCO O OgiKTNg CLVAEELNS (consistency
index) 660 kot M Tdom dappong (yield stress) eEaprdvton and v wieon. Emivovrog pa oAoKANpoTIKS-
Swpopikn eicmon, vmoroyifovpe apBuntikd v meon Kol YPNOUYLOTOUOVTOS TIS OVOAVLTIKES AVGCELS,
vroroyilovpe T Béom TG empdvelng dwappong katl Tig 600 CLVIGTMGEG TG TavTNTOC. Atvoupe, emiong,
KOTOLEG OVAALTIKEG AVGELS Y10 aymyoVS 6Tafepod Kot YpoptKd-peTaBaAlopevon TAATOVS Kot btoroyilovue
aplBunTIKd 115 Adoelg Aitovong yo dAleg yeopetpieg. Térog, emddovpe ™ pon Almavong gvog pevotol
Herschel-Bulkley pe peoloyucég mapopétpovg eoptdpeveg amd v mieon o€ €vav OGVUUETPO aymYO,

EMEKTEIVOVTOG TNV 1O TAV® TPOTEWVOHEVT HEBOO.
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Abstract

Yield-stress or viscoplastic materials flow like a fluid only when the stress exceeds the yield stress.
Otherwise, they beahave as a solid. As a result, the flow field is divided into unyielded and yielded regions.
Viscoplastic materials are dispersed systems known to also exhibit wall slip. Two are the main objectives of
this thesis. First, to solve the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip and
extend the work of Philippou et al. (2016) in order to investigate the development of viscoplastic flow in the
particular case of a channel with slip only along one wall. The second objective is the extension of the
lubrication method of Fusi et al. (2015) in order to solve the flow of Herschel-Bulkley fluid with pressure-
dependent yield stress and consistency index, in the case of long symmetric or asymmetric channels with a
general wall functions.

In the first part of the thesis, we consider the steady, pressure-driven flow of a Herschel-Bulkley
fluid in microchannel, assuming that different power-law slip equations apply at the two walls, resulting to
the asymmetry of the velocity profile. We observe that, as the pressure gradient is increased; three different
flow regimes are derived. The extension of the different flow regimes depends on the channel gap. The
theoretical results are in agreement with experimental data on soft glassy suspensions, which are obtained by
Vayssade et al. (2014). Further, we study the flow development of a Herschel-Bulkley fluid in a horizontal
channel, assuming that slip occurs only along the upper wall. A power-law equation is employed. We derive
the one-dimensional fully-developed solutions and identify the different flow regimes. We use finite elements
along with the Papanastasiou regularization for the Herschel-Bulkley constitutive equation and we solve the
two-dimensional development flow, numerically. Since the classical definition of the development length is
not applicable, we consider the global and upper-wall development lengths. The combined effects of slip and
the Bingham number are also investigated.

In the second part of the thesis, we extend the approach proposed by Fusi et al. (2015) for a
Bingham plastic, in order to model the lubrication flow of a Herschel-Bulkley fluid in a symmetric long
channel of varying width, where both the consistency index and the yield stress are pressure-dependent.
Solving an integro-differential equation, we calculate the pressure, numerically; and using analytical
solutions, we compute the position of the yield surface and the two velocity components. We also derive
some analytical solutions for channels of constant and linearly-varying widths and calculate the lubrication
solutions for other geometries, numerically. Finally, we solve the lubrication flow of a Herschel-Bulkley
fluid with pressure-dependent rheological parameters in a long asymmetric channel, extending the above

proposed method.
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Chapter 1

Introduction

1.1 Yield-stress fluids

Newtonian fluids obey Newton’s linear constitutive equation
=17 (1.1)
where 7 is the stress tensor, # is the constant shear viscosity,
¥ =Vu+(Vu)’ (1.2)
is the rate-of-strain tensor, u is the velocity vector, Vu is the velocity-gradient tensor and the
superscript T denotes the transpose. However, most common materials and materials of industrial
importance are not Newtonian. In this particular thesis, we are interested in generalized-Newtonian

fluids, i.e. in fluids described by a constitutive relation of the form

where the viscosity is not constant but varies with the magnitude of the rate-of-strain tensor

1 [
p= =1 = |—v:9 (1.4)
e\ =T

where the symbol II stands for the second invariant of a tensor (Mitsoulis, 2007). Representative
generalized-Newtonian constitutive equations are shown in Fig. 1.1. These are briefly discussed

below.

=0, T=rg
) oy a
y Bingham r | Ty i ]/ T,
Y
T v =10, =T,
Herschel-Bulkley '
(s oo
e
Tl] Newtonian t=7#7

Power-law t_ 7'

7

Figure 1.1: The most common generalized Newtonian models.



The power-law model

T=ky"y (1.5)
is the immediate generalization of the Newtonian model, where k is the consistency index and 7 is
the power-law exponent. The power-law model is able to account for shear-thinning (n<1, in which

case the viscosity decreases withy ) and shear-thickening (n>1, in which case the viscosity
increases with ) effects. The Newtonian fluid is recovered when n=1 (constant viscosity).
In this thesis, we are interested in yield-stress or viscoplastic materials, which exhibit a

yield stress, 7, , i.e. a critical stress value below which no deformation (i.e. flow) is allowed and

so, the fluid behaves as a rigid body (Mitsoulis, 2007). The material flows like a fluid as soon as
the yield stress is exceeded. As a result, the flow field is divided into unyielded (i.e. plug) and
yielded regions. The simplest and most widely used viscoplastic model is the Bingham plastic

model (Bingham, 1922)

v=0, <7,

(ro j (1.6)
T=|—+ul|y, 7>7,
4

where u is the plastic viscosity, and t is the magnitude of T,

\/lH =\/l‘r:‘r. (L.7)
2 7 2

The Newtonian fluid is recovered by setting 7,=0. The Herschel-Bulkley model is the

T

immediate generalization of the Bingham model

v=0, <7,

1.8
T:(T—?+k7“lj7, T>7, (1.8)
7

The power-law fluid and the Bingham plastic are special cases of the Herschel-Bulkley fluid,
recovered by setting 7, = 0 and n=1, respectively. Another well known viscoplastic model is

the Casson fluid (Mitsoulis, 2007)

v=0, <71,

: (1.9
T:[\/;+\/EJY, T>7,
Ve

which is often used to describe the rheological behavior of blood.

Many materials exhibit viscoplastic behavior, such as certain polymer solutions,
suspensions and slurries, emulsions, colloids, muds and clays, crystallizing lavas, heavy oils,
cosmetic creams and hair gels, food stuff, such as liquid chocolate, pastes; paints, foam, biofluids,

such as blood (Wang, 1998; Barnes, 1999). As a consequence, the theory of viscoplastic fluids has



applications in wide array of different fields, ranging from the oil, gas and chemical industries, to
food processing, medical and geophysical fluid dynamics.

The existence of yield stress has been the subject of a long debate. Barnes and Walters
(1985) claimed that the yield stress is an idealization and all fluids will show Newtonian behavior
at small stresses below the apparent yield stress. This assertion caused a flurry of discussion and
publication regarding the meaning of the word ‘yield stress’. Hartnett and Hu (1989) concluded
that ‘yield stress is an engineering reality’, where a year after, Astarita (1990) claimed that whether
yield stress is or is not an engineering reality depends on the problem under consideration. Barnes
(1999) stated that the concept of yield stress can be proved and, used correctly, once it is properly
defined, delimited and circumscribed. According to Bonn et al. (2017), the existence of yield stress
on an experimental base has been established, while Dinkgreve et al. (2017) claimed that the
appearance of a Newtonian fluid regime at stresses below the yield value is an artifact.

As already mentioned, a viscoplastic material flows like a fluid as soon as the yield stress

is exceeded; otherwise it remains unyielded and behaves as a solid. As a result, the flow field is

divided into unyielded (z’ < Z'O) and yielded (z’ > 7, ) regions. For example, in plane Poiseuille

(i.e. pressure-driven) fully-developed flow of a Bingham plastic fluid the velocity is given by

1t 2
5;;%01—%), 0<y<y,
u = 106 (1.10)
Y T
L) o) B,y zven
2u\  ox Y7,
where
z-0
=—23 (1.11)
Yo (—6p / 6x)
is the yield point at which the shear rate vanishes,
(R (1.12)
dy

H is the width of the channel and (—6p / 0x > O) is the imposed pressure gradient. The
geometry and some definitions for the particular flow are given in Fig. 1.2. It should be noted that
flow occurs only when the pressure gradient exceeds the critical value

Q=% (1.13)

In the unyielded part of the flow domain (0 < y <y, ), the material moves as a solid at a constant

speed.



X SYMMETRY AXIS

Figure 1.2: Plane Poiseuille flow of a Bingham plastic fluid.

Similarly, in axisymmetric fully-developed Poiseuille flow of a Bingham plastic fluid, the velocity

is given by
1
Z%(R_;B)z, 0<r<p
u=y, ’ 5 (1.14)
—|-Z (Rz—rz)——O(R—r), I <r<R
4u\ oz U
where
2
r = T (1.15)
(-op/ oz)

is the yield point and R is the radius of the tube (Fig. 1.3).

R

e e = = =l o - - —— - —

SYMMETRY AXIS V4

Figure 1.3: Axisymmetric Poiseuille flow of a Bingham plastic fluid.



The critical pressure gradient for the initiation of flow is

G %

] (1.16)
R

1.2 Wall slip

The no-slip condition for viscous fluids dictates that at a solid boundary, the velocity of the fluid

relative to that of the boundary is zero. In other words, the velocity of the fluid, u«, , immediately

adjacent to a solid boundary, is identical to the velocity, u_, of the boundary, ie. u, =u_.

However, as pointed out by Neto et al. (2005), the no-slip boundary condition remains an
assumption not based on physical principles. Its physical origins are believed to be mainly the
trapping of liquid in pockets and crevices present on the solid surface and the attractive forces
between the molecules of the solid and those of the liquid (Neto et al., 2005). In the past few
decades, the validity of the no-slip boundary condition has been questioned. In fact, a plethora of
experimental observations provide strong evidence that not only complex but even Newtonian
fluids exhibit slip (Neto et al., 2005).

Wall slip is important in many industrial applications, such as the extrusion of complex

fluids, ink jet processes, oil migration in porous media, and in microfluidics. In the presence of wall

slip, u, # u_ and the difference u,, = |u5 3 uF| is known as the slip velocity.

b WALL

Figure 1.4: Slip velocity and slip length.

Navier (1827) was the first to propose a slip model relating linearly the slip velocity, to the

wall shear stress, 7 . The particular model reads
T, =pu, (1.17)
where f is the slip coefficient. The latter coefficient incorporates the effects of temperature, the

normal stress, the molecular parameters, and the properties of the fluid/wall interface (Denn, 2001;

Hatzikiriakos, 2012). The no-slip and full-slip limiting cases are recovered when S — o and

P =0, respectively. In Newtonian flow, the slip coefficient is related to the slip or extrapolation

5



length b, by means of f=n/b, where 5 denotes the viscosity. The extrapolation length b is

defined as the distance from the wall at which the velocity of the fluid vanishes if this is linearly

extrapolated, as illustrated in Fig. 1.4. (In the simple flow illustrated in the latter figure,

T,= ‘Tyx ,)' As an example, in the case of plane fully-developed Poiseuille flow, the wall shear

stress is given by

dp
=— =H|-— 1.1
n=t ( dxj (1.18)
Applying the Navier slip equation (1.17), one gets for the slip velocity
H{( 4
MW:_(__”) (1.19)
L\ dx

The above expression is valid even when the wall shear stress is below the yield stress or
equivalently when the pressure gradient is below the critical value G, =7,/ H above which the
material yields; below this critical value, the material moves as a solid (unyielded) with a uniform

velocity , u,, i.e.

H( 0
U, =u,=— _ constant (1.20)
B\ Ox
Otherwise, the velocity profile is given by
1( dp)|H=-y), 0<y<y,
uy)=u, +—|-— , , (1.21)
2u\  dx [(H—yo) —(y—yo)], Y, <y<H

where the yield point is still given by Eq. (1.11). For the case of axisymmetric Poiseuille flow, the

wall shear stress is given by

R( dp
T,=-7,.| _ =—|—— (1.22)
=R ( dz j
Applying the Navier slip equation (1.17), gives
u, =£ —@ (1.23)
28\ dz
The velocity is given by
R d
u,=u,=— 4P constant (1.24)
2\ dz
when the pressure gradient is below G, =27,/ R ; otherwise, the velocity profile given by
1( dp\|R-1), o<r<r
u(r)=u +—| —— : : (1.25)
4\ dz ) |[(R=1) ~r=1)" ], r<r<R

where the yield point is still given by Eq. (1.15).
Based on the analysis of apparent slip flows of Herschel-Bulkley fluids in various

geometries, Kalyon (2005) proposed a power-law slip equation



T, =pu, (1.26)
where s is the power exponent. Setting s=1 in Eq. (1.26) leads to the classical Navier-slip condition
(1.17). It should be noted that both equations are static. Dynamic slip models are discussed in
Hatzikiriakos (2012).

In the past thirty years, the power-law slip equation (1.26) has been widely used by several
investigators working on various fluid systems. Particularly, Jiang et al. (1986) used Eq. (1.24) to
describe the slip exhibited by gels used in hydraulic fracturing. A year earlier, Cohen and Metzner
(1985) studied experimentally the occurrence of slip in aqueous and organic polymer solutions. A
power-law relationship between the slip velocity and the wall shear stress was also predicted at
constant temperature by theoretical model of Lau and Schowalter (1986), which was based on the
concept of junctions at the wall/polymer interface and in the bulk of the polymer fluid. Equation
(1.26) has also been employed for polyethylene melts (Hatzikiriakos and Dealy, 1992; Hay et al.,
2000) and highly-filled suspensions (Yilmazer and Kalyon, 1989). Yilmazer and Kalyon (1989)

discussed the validity of Eq. (1.26) and reported values of £ and s for certain systems.

Experimental data on several fluid systems, such as colloidal suspensions (Ballesta et al.,
2012), pastes (Adams et al., 1997) and highly entangled polymers (Piau and EI Kissi, 1994),
indicate that slip occurs only when the stress exceeds a critical value z. that can be viewed as a
‘wall shear’, ‘interfacial’, or, simply, ‘slip’ yield stress. Hatzikiriakos and Dealy (1991) pointed
out that slip model (1.26) fails to describe the slip velocity in the neighborhood of z., which is
critical in understanding polymer slip phenomena. Thus, they used the following two-branch
equation
0, r,<rt,
T, = {,Bui - 1.27)
Spikes and Granick (2003) reported that for water and tetradecane (which are Newtonian) the slip
yield stress may become high for lyophilic wall surfaces and used the following slip equation:

{u =0, T <71
w w c

(1.28)
t, =7, +pu, 1v,>T7,

Also, the following general phenomenological slip equation

u, =0, T, <7,
has been used by other researchers in the analysis of squeeze flow of generalized Newtonian fluids
with apparent wall slip (Yilmazer and Kalyon, 1989; Estellé and Lanos, 2007).

Viscoplastic materials, such as polymeric solutions, suspensions and gels, are dispersed
systems known to exhibit wall slip, which arises due to the depletion of particles adjacent to the
shearing surface (Yilmazer and Kalyon, 1989; Barnes, 1995; Meeker et al., 2004b; Ballesta et al.,
2012; Aktas et al., 2014; Cloitre and Bonnecaze, 2017). Denn (2001) also noted that wall slip in

pasty materials appears within a range of small strains in contrast to the case of polymer melts
7



where slip is observed at large rates of strains. Bonn et al. (2017) stated that wall slip emerges from
the combined effects of microstructure (rigid and soft particles), of the chemical nature of the wall
and the geometry. Shewan et al. (2017) claimed that the occurrence of slip must be considered as
an important and intrinsic feature of the flow and deformation behavior of complex materials.
Cloitre and Bonnecaze (2017) pointed out that slip is generally essential within many natural
systems and biological processes and emphasized the importance of wall slip in the transport of
many complex suspensions, such as mineral and oil suspensions, paints, foods, pharmaceuticals,
sewage treatment and soils.

In conclusion, wall slip is an interesting, important and complicated phenomenon. Despite
the large body of research regarding wall slip, there is no well-developed theory to predict or
explain it, in general (Sochi, 2011). Particularly, it remains challenging to get microscopic insight
into slip phenomena and understand their dependence on surface characteristic, flow rate and
material properties (Cloitre and Bonnecaze, 2017). This is due to the diversity and complexity of
the factors affecting it and also due to the fact that is difficult to observe and measure (Sochi,

2011).

1.3 Pressure-dependence of the viscosity

The idea of a fluid with pressure-dependent viscosity was introduced by Stokes (Stokes, 1845).
Much later, Barus (1893) proposed an exponential isothermal equation of state for the Newtonian

viscosity of the form
n(p)=nyexpla(p—py)] (1.30)
where p is the pressure, 77, is the viscosity at the reference pressure p,, and « is the viscosity-

growth or piezo-viscous coefficient, which is positive, a = 0. Equation (1.30) indicates that the
viscosity increases with the pressure difference from the reference pressure. As noted by Rajagopal
(2006) the dependence of the viscosity on pressure for fluids like polymer melts and lubricants may
be several orders of magnitude stronger than that of density, which justifies the study of
incompressible flows with pressure-dependent viscosity. The pressure-dependence of the viscosity
becomes important in processes involving high pressures, such as polymer processing, fluid film
lubrication, microfluidics, and geophysics (see Kalogirou et al. (2011) and references therein).
Goubert et al. (2001) reviewed measurement techniques for evaluating the pressure dependence of
viscosity. The viscosity growth coefficient is typically 1-5 10® Pa" for polymer melts (Denn,
2008), 1-2 10® Pa!' for mineral oils (Venner and Lubrecht, 2000), and 2-5 10® Pa! for heavy
petroleum fractions (Martin-Alfonso et al., 2007).

Other equations describing the pressure-dependence of the viscosity have also been
proposed. For more information, the reader is referred to the review paper of Malek and Rajagopal

(2007). The linear equation

n(p)=m,[1+a(p-p,] (1.31)
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which has also been used by various investigators (Renardy, 2003; Kalogirou et al., 2011), is
essentially the approximation of the Barus equation (1.30) at low pressures and/or for low values of
the viscosity growth coefficient. A source of major concern with Eq. (1.31) is the fact that it does
not guarantee positive definiteness of the viscosity which requires the pressure to remain positive
(Suslov and Tran, 2008). This limitation is not encountered when using the Barus equation (1.30)
or in flows where the pressure difference remains positive, e.g. in Poiseuille flows (Kalogirou et al.,
2011).

The effect of pressure has also been studied in the case of non-Newtonian materials. For
example, Laun propose the following Barus-type equation for the consistency index of LDPE melts

(Laun, 2003)
k(p,T) = kyexp[a(p—p)—y(T-T,)] (1.32)
where T is the temperature, 7, is the reference temperature, and y >0 is the temperature

coefficient describing the reduction of the viscosity with temperature. Hermoso et al. (2014a)
presented experimental viscosity data for shear thinning (non-viscoplastic) oil-based drilling fluids,
which show that the viscosity follows a Sisko-Barus (i.e. with an exponential growth term) model
in which the consistency and flow indices also vary linearly with pressure. The rheological
behavior of drilling fluids is greatly affected by the temperature and pressure conditions and plays
an important role in the bottom-hole pressure occurring in deep hot wells (Osisanya and Harris,
2005). Ibeh (2007) reported viscometric data on various drilling fluids suggesting linear and
exponential variations of the viscosity with pressure and temperature, respectively. He also pointed
out that the effects of temperature on the viscosity prevail at higher pressures, while pressure
effects become more pronounced at lower temperatures.

The pressure-dependence of the yield stress is well established in the mechanics of solid
and granular materials (see Ionescu et al. (2015) and references therein). The pressure- as well as
the temperature-dependence of the rheological parameters has also been the subject of various
experimental studies on other viscoplastic materials, especially in the oil and gas industry, e.g. in
transport operations design (Darley and Gray, 1988) and in oil drilling, given the high pressures
and temperatures encountered in the wells (Osisanya and Harris, 2005).

Politte (1985) proposed a seven-parameter empirical expression for the plastic viscosity of
certain drilling fluids as a function of both temperature and pressure. He reported that the yield
stress is not a ‘strong’ function of pressure and becomes even ‘weaker’ as temperature increases.
Houwen and Geehan (1986) proposed a simple four-parameter model to determine both the yield
stress and the high-shear-rate viscosity of invert muds as a function of pressure and temperature.
Hermoso et al. (2014b) investigated the combined effects of pressure and temperature on the
rheological behavior of two oil-based drilling fluids and found that this is described fairly well with
the Bingham-plastic or the Herschel-Bulkley models. In the range of their experimental conditions,

the power-law exponent was practically unaffected and the yield stress decreased linearly with
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temperature and increased linearly with pressure. A similar trend has also been observed in the
experiments of Ibeh (Ibeh, 2007) on oil-based drilling fluids at ultra-high pressures and
temperatures. Hermoso et al. (2014b) suggested that the increase of yield stress with pressure is
associated with the compression effect of different resulting organoclay microstructures. In order to
model the isothermal yield-stress behaviour of the two drilling fluids, they employed the following

linear equation
7,(p) =1, [1+ B(p—py)] (1.33)
where 7, denotes the yield stress at a reference pressure p, and £ is the yield-stress growth

coefficient.' Hermoso et al. (2014b) reported values of the dimensionless piezo-yield coefficient,

=7 f3, at different temperatures from 40 to 140 °C, in the range 1-132 10™ Pa/bar. For the
B.=7.p p g

variation of the plastic viscosity, they employed a Barus-type (i.e. exponential) equation. The linear
law (1.33) corresponds to the so-called Drucker-Prager plasticity (flow/no-flow) criterion in solid
mechanics, which can be viewed as a simplification of the Mohr-Coulomb plasticity criterion,

where 7, is the cohesion and 7, =tan(o,), &, being the internal frictional angle (Ionescu et

al., 2015).

1.4 Lubrication approximation

The lubrication approximation is a simplification that applies to flows between ‘nearly parallel’
surfaces. This approximation was first used by Reynolds in 1886 in a study of problems of
lubrication (Denn, 1980; Denn 2008). Denn (1980) pointed out that the lubrication approximation
is fundamental to the study of polymer processing, coating, calendering, and molding operations.
Hence, this method is considered to be one of the most important methods allowing the derivation
of approximate solution of the Navier-Stokes equations.

As suggested by Langlois and Deville (2014), the lubrication theory is the hydrodynamical
analog of the shell theory, capitalizing on the fact that the physical domain is thin in one direction
compared with the others. In other words, lubrication theory describes the flow of the fluid in a
geometry where one dimension (for example, the characteristic film thickness, H ) is significantly
smaller than the others (for example, the characteristic substrate length, L ). Hence, assuming that

the length L of the channel is much greater than its greatest semi-width, i.e. L> H = max h(x),
x€[0,L]

the dimensionless parameter
¢ s%«l (134)

is introduced, which is used for applying the classical lubrication approximation or thin-film

approach (Frigaard and Ryan, 2004). The fact that the above ratio is small (that is, £ < 1) is the

'Note that the symbol £ has also been used to denote the slip coefficient in the previous section. We kept the same

symbol to be consistent with the symbols employed in the literature. In any case, in the flows with pressure-dependent
yield stress considered in this thesis, the material is assumed to stick at the wall (no slip).
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key requirement for lubrication theory (Papanastasiou et al., 2000). Hence, taking advantage of the
disparity of the length scales, lubrication theory is based on the asymptotic procedure of reduction
of the full set of governing equations and boundary conditions to a simplified, highly nonlinear,
evolution equation or to a set of equations (Oron et al., 1997).

Lubrication flows are most applicable to processing of materials in liquid form, such
as metals, polymers, composites and others (Papanastasiou et al., 2000). As already
mentioned, the lubrication equations can be derived by dimensionless analysis, and by
order of magnitude comparisons with the full Navier-Stokes equations. In the case of two-
dimensional bidirectional, incompressible flow in the absence of gravity, where all changes

occur in the xy-plane and there is no flow in the ‘neutral’ z-direction, the continuity

equation and the two components of the momentum equation read as follows:

M (1.35)
ox Oy
2 2
Yo aV)‘+vxav)‘+v_av" :—a—p+77 6v;,+8v2x (1.36)
ot ox oy Ox ox* Oy
2 2
P 8vy+vxavy+‘)v% __%y v Vz"+a V;’ (1.37)
ot ox 7 Oy oy ox oy

where v, (x,y) and v (x,y) are the velocity components in the x— and y-—directions

respectively, and p is the mass density of the material. Equations (1.35) — (1.37) are made

dimensionless using the following scalings

O S A L A S
S . & pL
v)c:—’ v)‘:_’ p =

\%4 ev nv

where ¢ is of the same order as the channel slope (Papanastasiou et al., 2000). Upon substitution

and suppressing asterisks hereafter, the momentum equations read (Panastasiou, 1989):

LM (1.39)
ox Oy
2 2
eRe| Legy Moy, Po| 0P 20V, OV, (1.40)
o Ox oy ox ox oy
0 ov, o o’ v,
&'Re Vy+vx Vy+vvl =—6—p+g4 sz+g2 V; (1.41)
ot ox oy Oy Ox 0Oy
where
Re=PVL (1.42)
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is the Reynolds number. The two velocity components and the pressure are expanded in terms of &

as follows:

v, = ey g2y g

v, = vE, ) +gv§,1) +52v),2) F.. (1.43)
(0)

p=p " +epV +&2p? 4.

=

Substituting the above expressions into Eqgs. (1.39) - (1.41), and collecting the terms of the same
order, leads to a system of ODEs at each order. For example, substituting into the continuity

equation (1.39), one gets

© 50 o g @ 5
v My +r{avx FRCAC TN B3 ' SOl ) T (1.44)

ox Oy ox Oy ax Oy

Similarly, we follow the same process for the two components of the momentum equation. Hence,
since all dimensionless derivative terms in the resulting equations are of comparable order, the

resulting dimensionless lubrication equations, in the limit of £~0 or gRe~0, giving the zero-

order problem,2 are:

(0) (0)
v M (1.45)
ox oy
(0)  52,,(0)
o9 o (1.46)
Oox oy
and
(0)
61; _0 (1.47)
y

A consequence of the latter equation is that

p¥ = p (x) (1.48)
After solving the zero-order problem along with the zero-order boundary conditions, one may
consider the first-order problem where the zero-order solution is taken as known.

In the last years, a number of studies concerned this large class of so-called lubrication
problems, in which the thin-film asymptotic approximation can be used to analyze the flow in all,
or at least part, of the flow domain (Leal, 1992). Fusi et al. (2015) presented a novel technique for
modelling the lubrication flow of a Bingham plastic in a two-dimensional channel of non-uniform
thickness. Under the lubrication approximation, the yield surface and the two velocity components
are calculated from the pressure by means of closed form expressions, while the pressure satisfies
an integro-differential equation. This was solved by Fusi et al. with an iterative procedure (Fusi et
al., 2015).

The lubrication paradox in Bingham plastic flows arises from the fact that the predicted

plug is not a true unyielded region since the leading order velocity varies in the x — direction. Thus,

It is also known as the thin-gap approximation (Denn, 2008).
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the position of the yield surface needs to be corrected by calculating higher-order solutions
(Frigaard and Ryan, 2004; Putz et al., 2009).

The advantage of the method of Fusi et al. (2015), is that the lubrication paradox is avoided
and the correct shape of the yield surface which is opposite to that of the wall is approximated at
zero order. With other approaches, the correct shape of the yield surface is obtained after
calculating higher-order solutions (Frigaard and Ryan, 2004; Putz et al., 2009). Specifically,
Frigaard and Ryan (2004) suggested the asymptotic technique that resolves the lubrication paradox
and builds the consistent solution for thin layer problems. The same technique was also used by
Balmforth and Craster (1999), a few years earlier. In their paper, Putz et al. (2009) completed the
analysis of the flow of a Bingham fluid along a wavy-walled channel and they confirmed
numerically the results of Frigaard and Ryan (2004). In asymptotic analyses where the pressure
gradient is obtained from the constraint of a unit areal flux in the x— direction at leading order, the
yield surface variation (at zero order) is similar to that of the wall, due to the scaling with the mean
velocity. In a later stage, Muravleva (2016) applied the asymptotic technique, suggested earlier by
Balmforth and Craster (1999), and Frigaard and Ryan (2004), in order to obtain a consistent thin-
layer solution for both planar and axisymmetric squeeze flows of a viscoplastic material. She
obtained analytical expressions and numerical results that are in a very good agreement with the

earlier works (Balmforth and Craster, 1999; Frigaard and Ryan, 2004).

1.5 Objectives

The objectives of this thesis are the following:

1. To solve the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip, in
order to determine the critical conditions for the transition to different flow regimes when the
degree of confinement varies, in an attempt to interpret experimental data.

2. To extend the work of Philippou et al. (2016) in order to investigate the development of
viscoplastic flow in the particular case of a channel with slip only along one wall (asymmetric
flow).

3. To extend the lubrication method of Fusi et al. (2015) and derive an approximate semi-analytical
solution of both planar and axisymmetric flow of a Herschel-Bulkley fluid with a general wall
function and pressure-dependent yield stress and consistency index.

4. To derive analytical lubrication solutions of a Herschel-Bulkley fluid with a general wall
function and pressure-dependent yield stress and consistency index, in the case of a long

asymmetric channel.

1.6 Outline of the thesis

In Chapter 2, the steady, pressure-driven flow of a Herschel-Bulkley fluid in a microchannel is

considered assuming that different power-law slip equations apply at the two walls due to slip
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heterogeneities, allowing the velocity profile to be asymmetric. We demonstrate that three different

flow regimes are observed as the pressure gradient is increased. Below a first critical pressure

gradient G, the fluid moves unyielded with a uniform velocity and thus the two slip
velocities are equal. In an intermediate regime between G, and a second critical pressure

gradient G,, the fluid yields in a zone near the weak-slip wall and flows with uniform velocity

near the stronger-slip wall. Beyond this regime, the fluid yields near both walls and the velocity is
uniform only in the central unyielded core. It is demonstrated that the central unyielded region
tends towards the midplane only if the power-law exponent is less than unity; otherwise, this region
rends towards the weak-slip wall, and asymmetry is enhanced. The extension of the different flow
regimes depends on the channel gap; in particular the intermediate asymmetric flow regime
dominates when the gap becomes smaller than a characteristic length which incorporates the wall
slip coefficients and the fluid properties. The theoretical results compare well with experimental
data on soft glassy suspensions, obtained by Vayssade et al. (2014). These results open new routes
in manipulating the flow of viscoplastic materials in applications where the flow behavior depends
not only on the bulk rheology of the material but also on the wall properties.

In Chapter 3, the flow development of a Herschel-Bulkley fluid in a horizontal channel is
considered, assuming that slip occurs only along the upper wall due to slip heterogeneities. Hence,
the velocity profile is allowed to be asymmetric as was the case with the experiments of Vayssade
et al. (2014). A power-law slip equation is again employed. The one-dimensional fully-developed
solutions are derived and the different flow regimes are identified. The two-dimensional
development flow is solved numerically using finite elements along with the Papanastasiou
regularization for the Herschel-Bulkley constitutive equation (Papanastasiou, 1987). Due to the
asymmetry and the viscoplastic character of the flow, the classical definition of the development
length is not applicable. The global and upper-wall development lengths are thus considered and
the combined effects of slip and the Bingham number are investigated. It is demonstrated that the
global development length increases with the Bingham number and that flow development is
slower near the no-slip wall. The global development length increases with slip, exhibiting two
plateaus and an intermediate rapid increase zone, and doubles in the limit of infinite slip.

In Chapter 4, the lubrication flow of a Herschel-Bulkley fluid in a long symmetric channel
of varying width, 2A(x), is modeled extending the approach proposed by Fusi et al. (2015) for a
Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be
pressure-dependent. Under the lubrication approximation the pressure at zero order depends only

on x and the semi-width of the unyielded core is found to be given by o(x)=-(1+1/n)h(x)+C,

where n is the power-law exponent and the constant C depends on the Bingham number
and the consistency-index and yield-stress growth numbers. Hence, in a channel of
constant width, the width of the unyielded core is also constant, despite the pressure

dependence of the yield stress, and the pressure distribution is not affected by the yield-
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stress function. With the present model, the pressure is calculated numerically solving an
integro-differential equation and then the position of the yield surface and the two velocity
components are computed using analytical expressions. Some analytical solutions are also
derived for channels of constant and linearly-varying widths. The lubrication solutions for
other geometries are calculated numerically. The implications of the pressure-dependence of the
material parameters and the limitations of the method are discussed.

In Chapter 5, the lubrication flow of a Herschel-Bulkley fluid with pressure-dependent
rheological parameters in a long asymmetric channel, the walls of which are described by two
arbitrary functions, is solved extending the method of Chapter 4. The asymmetric unyielded core
is defined by two yield surfaces. An interesting feature of the asymmetric flow is that the
unyielded zone moves not only in the main flow direction but also in the transverse
direction. The two velocity components in both the yielded and unyielded regions are
calculated by means of closed-form expressions in terms of the calculated pressure and the
two yield surfaces. The method is applicable in a range of Bingham numbers where the
unyielded core extends from the inlet to the outlet plane of the channel. Semi-analytical

solutions are derived in the case of an asymmetric channel with 4 =0 and linearly varying

h, .
Finally, in Chapter 6, we give the concluding remarks and recommendations for future

work.
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Chapter 2

Confined viscoplastic flows with

heterogeneous wall slip

In this chapter we revisit the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric
wall slip, in order to determine the critical conditions for the transition to different flow regimes
when the degree of confinement varies. We recover the experimental observations and provide
quantitative criteria in order to get a particular flow regime and guidelines to predict confined flows

of viscoplastic materials in the presence of strong surface heterogeneities.’

2.1 Introduction

Viscoplastic or yield-stress materials constitute a very interesting class which includes materials of
industrial importance, such as polymeric solutions, suspensions and gels, but also biofluids like

blood (Barnes, 1999). These materials behave as fluids if the stress exceeds the yield stress, 7, , and

as solids otherwise. Therefore, the constitutive equation of an ideal viscoplastic material consists of

two branches. Let us denote the viscous stress tensor by T and the rate of strain tensor by 7y, the

latter being defined by
7=Vu+((Vu)" 2.1)
where u is the velocity vector and the superscript T denotes the transpose. The magnitudes of ¥ and

7, denoted respectively by y andz, are defined by y =./Il, /2 andz =,/Il, /2. As mentioned

above, in those areas of the flow field where 7 < 7, the fluid is unyielded, i.e. there is no flow and

vY =0 otherwise the fluid is yielded andy # 0. The Herschel-Bulkley constitutive equation is

widely used to describe the shear rheology of many viscoplastic materials (Herschel and Bulkley,

1926)

3The material of this chapter appears in Panaseti et al. (2017).
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v =0, T<71,

T:(T—_°+k7”lj?, T>7,

r 2.2)

where £ is the consistency index and 7 is the power-law exponent. For viscoplastic materials made
of soft and deformable particles such as microgel particles or emulsion droplets, the power-law
exponent 7 is close to 0.5 (Cloitre et al., 2003; Bécu et al., 2006; Ovarlez et al., 2008; Seth et al.,
2011). The consistency index k has been found to be proportional to the storage modulus of the
suspensions (Seth et al., 2011). By setting n=1 and k=u, where u is the plastic viscosity, the
Bingham-plastic constitutive equation is recovered (Bingham, 1922). By taking 7,=0, one gets the

power-law model
T=ky" 'y (2.3)

Viscoplastic materials are prone to slip when they are sheared near smooth surfaces
(Barnes, 1995; Cloitre and Bonnecaze, 2017). As a consequence of the solid-liquid duality of yield
stress materials, slip essentially occurs at low shear rates below or near the yield point in contrast to
slip of polymer melts which takes place at large shear rates (Denn, 2001). This generic feature is
shared by many particulate materials such as highly-filled suspensions (Yilmazer and Kalyon,
1989; Kalyon, 2005), microgel suspensions (Meeker et al., 2004a; Meeker et al., 2004b; Aktas et
al., 2014; Ortega-Avila et al., 2016), concentrated emulsions (Princen, 1985; Salmon et al., 2003;
Seth et al., 2012), hard-sphere suspensions (Ballesta et al., 2008; 2012), and colloidal gels (Ballesta
et al., 2013). At the microscopic scale, slip is due to the formation of a thin layer of liquid adjacent
to the walls, which lubricates the contacts between the bulk suspension and the walls (Barnes,

1995; Cloitre and Bonnecaze, 2017). At the macroscopic scale, slip can be characterized using a
power-law slip equation, relating the wall shear stress, 7, , to the slip velocity, u,,, defined as the

relative velocity of the fluid with respect to that of the wall (Kalyon, 2005)
T, =fu, 2.4)

where s is the slip exponent and f is the slip coefficient. The latter coefficient incorporates the
effects of several material properties affecting slip, such as the solvent viscosity and the particle

properties. The no-slip and full-slip limiting cases are recovered in the limits f —ooand =0,

respectively. The classical Navier slip condition (Navier, 1827) is the special case of Eq. (2.4) for

s=1
7, = pu, 2.5)
in which case £ is related to the slip or extrapolation length b, i.e. f=1n/b, where 7 is the fluid

viscosity.
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The slip exponent s depends on the properties of the lubricated films at the material/wall
interface. Two main lubrication mechanisms have been identified (Seth et al., 2008; 2012). In
simple hydrodynamic lubrication (HL), the wall is wetted by a thin film of solvent, which has a

constant thickness independent of the flow velocity. For a Newtonian solvent, s is equal to 1; for a
non-Newtonian solvent with a power-law viscosity 77 = k}?mfl , s is equal to 1/m (Kalyon, 2005). HL

slip has been observed with highly-filled suspensions (Kalyon, 2005), soft particle suspensions
with repulsive particle-wall interactions (Seth et al., 2008; 2012; Pérez-Gonzalez et al., 2012), and
hard-sphere glasses (Ballesta et al., 2008; 2012). In elastohydrodynamic lubrication (EHL), the
lubricating film results from a coupling between flow in the lubricating film and particle
deformation. EHL is relevant in jammed suspensions of soft particles in the presence of slightly
attractive particle-wall interactions (Meeker et al., 2004a; 2004b; Seth et al., 2008; 2012). Below
the yield stress, s is expected to be of the order of 2, which is observed in experiments (Meeker et
al., 2004a; 2004b; Ortega-Avila et al., 2016; Ahonguio et al., 2016). Above the yield stress there
exist no predictions and the situation is less clear. However experimental observations generally
converge to the value s=1 (Aktas et al., 2014; Seth et al., 2012; Vayssade et al., 2014; Poumaere et
al., 2014).

In real situations, complex fluids rarely flow in ideal geometries bounded by uniform
surfaces but rather experience important slip heterogeneities induced by local variations of surface
roughness and chemistry. In spite of its practical importance, this problem has retained little
attention so far. Lauga and Stone (2003) analysed theoretically how surface heterogeneities, which
were either transverse or parallel to the flow direction, affect the slip length of Newtonian fluids. In
their study of the extrusion of viscoplastic suspensions in shallow channels, Lawal and Kalyon
(1994) considered a Couette-Poiseuille model subject to different Navier-slip coefficients at the
barrel and screw surfaces. The authors derived analytical solutions for the Couette-Poiseuille flow
for the case where the imposed pressure gradient and the moving upper plate drive the flow in
opposite directions. Different flow regimes were found depending on the velocity, both in
magnitude and direction, of the upper wall. Recently Vayssade et al. (2014) imaged the motion of
well-characterized soft glassy suspensions in microfluidic channels whose walls imposed different
slip velocities. The rheology of the suspensions was well represented by a Herschel-Bulkley
equation with n = Y2 and the boundary slip conditions were of the Navier form, i.e. s = 1. It was
found that, when the channel gap was large, the velocity profiles consisted of a central unyielded
plug between two fluidized layers near the walls. When the gap was small, a remarkable behavior
appeared: the fluidized layer adjacent to the wall with the highest slip velocity disappeared and the
plug flow region extended down the wall.

These observations motivate the present work. We revisit the plane Poiseuille flow of a
Herschel-Bulkley fluid with asymmetric wall slip, i.e. with different slip conditions at the two
walls, in order to determine the critical conditions for the transition to different flow regimes when

the degree of confinement varies. We successfully recover the experimental observations and
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provide quantitative criteria to get a particular flow regime and guidelines to predict confined flows
of viscoplastic materials in the presence of strong surface heterogeneities. The particular chapter is
organized as follows. The governing equations and the general solution are presented in section
2.2. Three different flow regimes are identified, which are defined by the two critical values of the
imposed pressure gradient at which the fluid yields at each wall. In section 2.3 we provide the
analytical solutions for the flow of a power-law fluid subject to asymmetric Navier slip, which are
very useful in interpreting the behavior of Herschel-Bulkley fluids at high pressure gradients (the
power-law fluid can be viewed as the limit of a Herschel-Bulkley fluid as the pressure gradient
goes to infinity). Section 2.4 is concerned with the variation of the critical pressure gradients with
the gap size and the construction of flow diagrams. In section 2.5, we make comparisons with the

experimental data of Vayssade et al. (2014).

_ s
2-w2 - ﬂZuw2

FLOW

T, = By,

Figure 2.1: Geometry and boundary conditions of the flow development of a Herschel-Bulkley fluid in a

channel with different slip laws at the walls.

2.2 General solutions for the asymmetric slip problem

We consider the laminar, steady, unidirectional pressure-driven flow of a Herschel-Bulkley fluid in
a horizontal channel of width H, as illustrated in Fig. 2.1. Heterogeneous wall slip is assumed to

occur at the walls according to

T, =pu i=1,2 (2.6)

where the lower and upper walls correspond to i =1 and 2, respectively. For the sake of simplicity,
the slip exponents are considered to be the same at both walls. Since the flow is not symmetric, the

origin is placed at the lower plate (Fig. 2.1).
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Without loss of generality, it is assumed that slip at the upper wall is stronger than at the
lower wall, i.e. B 2/, and thus u,, >u, . With the above assumptions, the x-momentum

equation for any generalized Newtonian fluid is simplified to

2 =_G (2.7)
0y
which yields
T, = -Gy+r1,, (2.8)

where G is the imposed pressure gradient. The lower-wall shear stress, 7 ,, is a crucial parameter,

wl?
in terms of which all other quantities of interest can be expressed. The upper-wall shear stress is

given by

=GH -1, (2.9)

>

T ,= ‘T
w2 y=H

The two slip velocities u#,, and u , can be then calculated by means of Eq. (2.6).

I. FULLSLIP Il. LOWERYIELDING lll. LOWER &
UPPERYIELDING
uw2 MWZ uw2
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— ™ 5/
uwl uwl uwl
' >

0 G, G, G

Figure 2.2: The three flow regimes encountered during viscoplastic Poiseuille flow with asymmetric slip. y,

(and y;) are the yield points which separate the yielded region(s) from the plug region and #,, andu, , are

the slip velocities at the walls. It is assumed that slip is weaker at the lower plate (i.e. U, <U, , ).

For viscoplastic flow, we encounter the three regimes illustrated in Fig. 2.2 as the imposed pressure
gradient is increased. In Regime I, the fluid simply slips and the velocity is constant (full-slip). This
regime extends from zero up to the critical value G, of the pressure gradient at which the fluid
adjacent to the lower wall (where slip is weaker) yields. Regime II extends from G; up to the

critical value G, of the pressure gradient at which the fluid adjacent to the upper wall (where slip is
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stronger) also yields. Hence in Regime II only the lower layer of the fluid up to y =y, is yielded.

In Regime III, i.e. for pressure gradients above G, the fluid yields near both walls and the velocity
profile is asymmetric with a plug core between the lower and the upper yield points, y; and y,. It is

clear that Regime I is not relevant in the special case where there is no slip along the lower wall (
u,, =0) and Regime II is observed only if the flow is asymmetric ( 5, > f3,).

In the following analysis we introduce the dimensionless slip numbers

s/n
Blzﬁ, i:1’2 (2.10)
177,

With this definition we have B,/ B, = f3, / 3, so that B; <B, under our assumptions. Note that there

is no slip at the wall when B, =0.

2.2.1 Regime Il (0 £ G <L Gy)

In Regime I, the pressure gradient is not sufficient to cause yielding of the material. However, since

slip occurs along both walls and the material is unyielded, the two slip velocities are equal,

u,, =u,,,and the material moves with uniform velocity

GH 1/s
(y)= (2.11)
"N [ﬁ’ﬁrﬂzj

wl w2

The lower wall shear stress, given by

_ BGH

T, = (2.12)
LB+ B

is greater than or equal to 7, since S, = f3,. The critical pressure gradient G; which marks the
transition between Regimes I and II is reached when the material adjacent to the lower wall yields

(TW1 =T())
G =(1+2)2 (2.13)

G, depends only on the yield stress and not on the exponent and consistency index. The maximum

1/s 1/s
u, = (M] - (i] (2.14)
B B

slip velocity is attained when G=G,
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2.2.2 Regime Il (GG Gy)

This flow regime exists only if the flow is asymmetric, i.e. if 5, > [, (or B;<B,). In this case, the
material yields only close to the lower wall, i.e. for 0< y <y, where y, is the yield point (Fig.
2.2), and remains unyielded for y, < y < H, moving with uniform velocity equal to the upper slip

velocity u,, . The yield point y, is found from Eq. (2.8) by demanding that z = 7, . Hence,

T, -7,
y = G : 2.15)
In the yielded region (0<y < y,),
d n
Tyxzro-f—k( MXJ :—Gy+2-w1 (2.16)
dy

Integrating the above equation and demanding that u _(0)=u ,and u (y)=u_(y,)=u,,, one

finds that

nGl/” n+ n+
”w1+m[)’1” (-], 0<y<y,

u,(y)= (2.17)

nGl/n .
u, +———y'", <y<H
wl (l’l+1)k1/” yl yl y

Requiring that u (y,) =u,, leads to the following equation for the lower wall shear stress

ﬁ(rwl — T )UM + [( Bz, )US - [Bz (GH -z, )]m } 7,"""GH =0 (2.18)

The second critical pressure gradient G, signals the yielding of the fluid at the upper wall and

therefore it can be found by demanding that 7, = 7,,, which leads to

n

L (GH ~2r,) "' - (B.r)" -[B(GH-,)]" | "G =0 @19)

2.2.3 Regime I1II (G > G,)

In this regime, there are two yielded regions adjacent to the two walls separated by an intermediate
unyielded region (y, < y<y,). The solution derived above for 0<y <y, in Regime II still

applies. The second yield point is given by

T +7
y, =42 (2.20)
G
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and the three-branch velocity profile reads

nGl/” n+ n+
qu+(n+l)k”"[y1U =", O<y<y
nGl/n e
ux(y): uwl+( +l)kl/n 11/ l’ yISySyZ (221)
nGl/” n+ n+
w2 ( l)kl/n ( —)’2)1/ 1—()’—)’2)1/ 1i|’ )’233’31‘1

By demanding that u (y,) =u (y,), one finds the following equation for the lower wall shear
stress
Ll[(z_w[ _z, )l/n+1 _ (GH _r -1, )1/n+1j| + [( B1Twl )l/s _ [B2 (GH _ )]m } z-(l)/”fmGH -0
n—+
(2.22)

2.3 Solutions for power-law fluids

2.3.1 Non-dimensional equations

In this section we solve the asymmetric slip equations for the special case of power-law fluids
described by Eq. (2.3). Given that the power-law flow can be viewed as the limiting case of the
Herschel-Bulkley flow at infinite pressure gradient, the results derived below will be useful in
understanding the flow of Herschel-Bulkley fluids at high values of the pressure gradient. It is
interesting to note that asymmetric flow profiles have also been observed with polymer solutions

which are well represented by a power-law constitutive equation (Miiller-Mohnssen et al., 2007). In
the limit of a power-law fluid, the two yield points y; and y, collapse to the unique point y,, , where

the velocity attains its maximum. The yield stress is zero and therefore there is no natural scale for

stresses. The governing equations can be made dimensionless by scaling lengths by H, the pressure

gradient by an arbitrary value, say G, so that G' =G / G, , stresses by G,H, and the velocity by

G"H"™"" | k""" . The slip numbers are redefined as

s/n
Bi = ﬂHs/f-f—s—le/n—l ’ = 1’2 (223)

The non dimensional velocity profiles are then given by

* /n
Uy + 2 [y~ yOVml 0 <yt <y
uy(y*) = ) nGHUm i/ . /nit ) )
it S (1) ] sy

(2.24)
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The position of the maximum velocity y,, is a root of

n 1 n-l/s #1/n4 « \1/n+l s s s « \1/s
;:IG” ”[y;’l—@—)w) }+Byy;/—3y(1—yM) =0 (229

If B, = B, , the flow is symmetric and y,, =1/2 for any value of the pressure gradient G . When

n=s, y, isindependent of G and can be found by solving

n:l_ 1 [y;tll/n+l _(1_ y;:l )1/n+1}+ B]]/ny;:ll/n _ B;/Vl (1 _ y; )l/n _ O (2‘26)

Y SR /\

n=4/3 ' n=4/3 n=1
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Figure 2.3: Velocity profiles of various power-law fluids for different values of the pressure gradient,

different slip laws (s, By, B,), and different power-law exponents (n). The circles show the maximum velocity

and the horizontal lines show the asymptotic values y:O .
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For the particular case of Newtonian flow with Navier slip, i.e. for n=s=1, one finds

. 1+2B,

S et B (2.27)
Yu 2(1+ B, + B,)

n=s=1

When n # s, the position of the maximum changes as the pressure gradient is increased. If n<s, it

is easily shown that y, decreases asymptotically to 1/2 starting from a finite value y,

# B # # 1
Yo = i Ym B +B,’ Yo =G0 Ty ST g
If n>s, the two limits are reversed. Hence, for Navier slip (s=1),
B, 1
, n<l —
B, + B, > n<l
g 128 0 o) 1428 (2.29)
2(1+ B, + B,) 2(1+ B, +B,)
1 B
-, n>1 2, n>1
2 B +B,

2.3.2 Discussion

The evolution of the velocity profiles as the pressure gradient is increased is shown in Fig. 2.3. In
the first two columns of Fig. 2.3, we consider a shear thickening fluid (n=4/3), a Newtonian fluid
(n=1), and a shear thinning fluid (n = }2), following Navier-slip laws (s=1) with B,=2 and B,=0 and
2, respectively. With shear-thinning fluids the velocity profiles tend to become more symmetric as
the pressure gradient increases, whereas with shear-thickening fluids asymmetry is amplified. By
comparing the first two columns of Fig. 2.3, we see that this effect becomes more pronounced
when the fluid sticks at the lower wall (B,=0). The position of the maximum of the velocity profiles
decreases from yg to ys = 1/2 when the fluid is shear-thinning and increases from yg = 1/2 to y.,

when the fluid is shear-thickening. Similar trends are shown in the third column of Fig. 2.3 where a

power-law slip equation with s=1/2 is used. The second row of Fig. 2.3 shows that y:/] is

independent of the pressure gradient when n=s. Finally, in the third row of Fig. 2.3 we observe that

when 7 < s the velocity profiles tend to become symmetric with y:/] decreasing asymptotically to

14 as the pressure gradient is increased.

2.4 Solutions for Herschel-Bulkley fluids

2.4.1 Non-dimensional equations

The asymptotic results discussed above are useful in understanding the flow of Herschel-Bulkley

fluids at high values of the pressure gradient. The velocity profiles are computed from the general
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equations established in section 2.2. It is convenient to scale lengths by H, stresses by 7, pressure

gradient by Gy=1¢/H and velocity by u;= H (To/k)””. The critical dimensionless pressure

gradients G, and G, are then given by

, B n . 1/n+1 s ot s .
G, EHB_i and E(GZ—Z) —[Bz“ -B" (G, -1) }Gﬁo (2.30)

The velocity profiles, the yield points and the wall stresses in each regime are provided below.

Regime I
BB,G "
u(y)=|—==2 (2.31)
’ (31 +B, j
r =BG (2.32)
B, + B,
Regime 11
- onGM L w1+ * *
u,, |:1n - )”]7 0y <y
ui(y') = " (2.33)
«  nG #1/n+1 yi<y <1
wl n+1 1 2 1 =
" 1/n+1 « \I/s ' «  \U/s *
2 (e, -1)" +[(Blrwl) -B)*(G"-1.,) }G =0 (2.34)
n+1
W= (2.35)
Regime III
e nGMM w1/ * *
L [yl ~=y) ] 0<y <y
u,(y)= uw1+nnTyl R nw<y <y, (236
% l’lG*l/" * n+ * * n+ * *
Uy, + il I:(l_yz)l/ 1_()’ _yz)ll 1:|’ y, <y <1

n [(T;; —1)" (6" -7, - 1)“"“} [(Blf:;l | (e )‘“}G* ~0(237)

*

2 G ;
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In the general case, the second critical pressure gradient G, and the lower wall shear stress 7, , in

terms of which the solution is expressed, can only be calculated numerically. In the case of Navier
slip (s=1), these quantities can be calculated analytically for certain values of n. The Bingham

plastic flow (n=1) belongs to this category and the corresponding solutions are given in Appendix
B.
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Figure 2.4: Velocity profiles of Herschel-Bulkley fluids for different values of the pressure gradient in the

case of Navier slip (s=1) with B;=1 and B,=2: (a) n=4/3 with G; =2.8943 and y; =2/3; (b) n=1 with
G,=2.8685 and y, =5/8; (¢) n=1/2 with G, =2.9129 and y, =1/2; (d) n=1/3 with
G; =2.9349 and y; =1/2. Note that Gl* =1.5 in all cases. Lengths (y), velocities (u,) and pressure

gradients (G) are scaled by H, u, = H /(z,/k)""and G, =7,/ H , respectively. The circles show the

yield points.

2.4.2 Velocity profiles

Figure 2.4 shows velocity profiles for different values of the pressure gradient covering the three
regimes, obtained for four different values of the exponent (n=4/3, 1, 1/2 and 1/3) assuming Navier

slip (s=1) with B;=1 and B,=2. Recall that the velocity profiles in Regime I are independent of the

exponent n and that u;(G: ) = B, in all cases. Just as for the power-law fluids, shear thickening

tends to enhance the flow asymmetry, in the sense that both yield points move away from the
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midplane towards the upper wall, while shear thinning tends to favor symmetry and extends
Regime II. As expected, both yield points tend to converge to the asymptotic point y. given by
Eq. (2.29), which corresponds to the power-law solution. More specifically, the yield points for
n=4/3 converge to y. =2/3 (Fig. 2.4a), those for n=1to y, =5/8 (Fig. 2.4b), while those for

n=1/2 and 1/3 converge to y_ =1/2 (Figs. 2.4c and 4d). It is interesting to note that the variations

of yl* and y; with the pressure gradient are not always monotonic. For example, yl* is a

monotonically increasing function of the pressure gradient only for large values of n (Figs. 2.4a-

4c). When n=1/3 (Fig. 2.4d) y, initially increases attaining a maximum and then decreases over a

wide range of the pressure gradient before starting increasing again to asymptotically reach the

value y, =1/2. Similarly, when n=4/3 (Fig. 2.4a), y, decreases and reaches a minimum before

increasing asymptotically to the limiting value y. =2 /3 far from the midplane.
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Figure 2.5: Wall shear stresses and slip velocities as functions of the pressure gradient when n=1/2 and s=1:

(a) B;=0.001 and B,=0.002 (weak slip) in which case Gl* =1.5 and G; =2.1752; (b) B;=1 and B,=2

(strong slip) in which case Gl* =1.5 and G; =2.9129 . The vertical lines indicate the two critical values

of the pressure gradient.
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2.4.3 Wall stress and slip velocity

The effect of the pressure gradient on the wall shear stresses and the slip velocities is illustrated in
Fig. 2.5. Here, based on the behavior of soft glassy suspensions (Vayssade et al., 2014), we
consider a Herschel-Bulkley material with exponent n=1/2 and assume that Navier slip (s=1)
occurs along both walls. The lower plate slip number takes two extreme values, i.e. B,=0.001 and
1, corresponding to weak and strong slip respectively; the ratio B,/B, = 0.5 is fixed. From Eq.
(2.30), we have G; = 1.5 showing that Regime I is the same in all cases; G, increases and Regime
II expands as B; is increased. In Fig. 2.5, we observe that the variations of the slip velocities with
the pressure gradient are correlated with the variations of the wall shear stresses. For weak slip
(Fig. 2.5a), the difference between 7,,; and t,,, increases in Regime I, decreases in Regime II, and
finally vanishes in Regime III where eventually t,,; = 7,,. The corresponding velocities u,,; and

Uy, increase as the pressure gradient is increased. These are equal in Regime I but in the other two

regimes uy,, grows faster than uy,; and thus the difference u_, —u_,

increases. Strong slip (Fig.
2.5b) results in higher slip velocities as expected. Both t,,; and t,,, increase but the rate of
increase is slowly changing over the entire range of pressure gradient explored. For a given value
of the slip ratio, the difference of the two slip velocities in Regimes II and III is much smaller and

its rate of increase is much lower for strong slip than for weak slip.

2.5 Confined flows with asymmetric slip

2.5.1 General solution

In this section we show that for a given viscoplastic material and fixed wall properties, the critical
pressure gradients marking the onset of Regimes II and III, depend on the gap size H. In order to

analyze this dependence, we need to introduce new length, pressure-gradient and velocity scales

1/n 1+1/n-1/s pl/s
k T

1/s
(=—= _ G =2t and u_;[ij (2.39)

s _1n-ls plis ? s 1/n
To 2 k 2

The resulting dimensionless variables are denoted by a tilde (~). It is also important to note that the

slip equation parameters 5, and s (along the upper wall) are hidden in the non-dimensional scales

(2.39). In particular, the non dimensional gap H = H / ( . incorporates the effects of the slip

coefficient at the upper wall and the fluid properties. From Eq. (2.13) we get the following

dimensionless expression for the first critical pressure gradient

~  l+x

where
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A
I
AR

_5 (2.41)
B2

is the slip parameter ratio which varies from 0 (no slip along the lower wall) to 1 (same slip along

the walls). Hence the curve representing G1 versus H lies between 1/ H and 2/ H . The second
critical pressure gradient Gz is the root of the dimensionless version of Eq. (2.19)

(GH —2)""™! - (1 + l)@ -« (GH -1 ] G=0 (2.42)
n

The above equation is amenable to analytical solution only in some special cases. Two of them of

practical interest in experiments are discussed below.

2.5.2 Solution for no slip along the lower wall (¥=0)

In this case, G, =1/ H and Eq. (2.42) is simplified to

(G,H —2)""" = (1 + l) G, (2.43)
n
For a Bingham fluid (n=1) one finds
G, :%+%(1+\/1+4ﬁ) (2.44)

while for a Herschel-Bulkley fluid with n=1/2,

~ 2 1 1 =~
2 sl Leost (34 2.45
G, 7 {1+\/ﬁcos[3cos (3 H)}} (2.45)

It is useful to note that if G, and H are known from experiments and if the upper wall experiences

Navier slip (s=1) then the slip coefficient can be calculated from the dimensional version of Eq.

(2.43)

(1+1/n)k""G
ﬁQ = 1/n

(2.46)
Z'O (GH /’[O . 2)1/11+1

The first and second critical pressure gradients for n=1 and 1/2 are plotted as functions of H in

Fig. 2.6. These graphs can be viewed as flow diagrams giving the type of flow experienced by the
fluid when the degree of confinement is varied. Regime I is situated below the curve él =f (I:I ),
which is independent of exponent n. Regime II is the area between the curves of é1 and Gz- Figure

2.6 highlights the importance of the characteristic length ¢;defined in (2.39).
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Figure 2.6: Effect of the power-law exponent n on the second critical pressure gradient (N;Q for Kk =0 (no-
slip at the lower wall) and s=1 (Navier-slip at the upper wall). The solid curve has been obtained with n=1

(Bingham fluid) and the dashed one with n=1/2 (Herschel-Bulkley). The lower dotted line is the plot of G ,
which is independent of the value of exponent n. The region between the curves of Gl and (N;Q corresponds

to Regime II, while the area below the curve of Gl corresponds to Regime I (full-slip flow).

When the gap H becomes lower than the characteristic length ¢, (H < 1), Regime II dominates and

Regime III is hardly attained except at very large pressure gradients. When H increases, the fluid

is less confined and the extension of Regimes I and II is reduced. As expected, when the fluid is

more shear-thinning, i.e. n is lower, the critical pressure gradient for yielding at the upper wall, G,,

is reduced and the extension of Regime II is reduced accordingly. At large values of H ’Gz

becomes independent of 7.

2.5.3 Solution for Navier slip along both walls (s = 1)
In this case, Eq. (2.42) is simplified to

(GH —2)"" - (1 + l)p - x(GH - 1)] G=0 (2.47)
n
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Figure 2.7: Effect of the slip number ratio K = B, / B, on the critical pressure gradients él (dashed) and
(N;Q (solid) and the different flow regimes for n=1/2 (Herschel-Bulkley flow). The area between Gl and

G2 corresponds to Regime II, while the area below the curve of él corresponds to Regime I (full-slip flow).

When =1 slip is symmetric and thus G1 and éz coincide.

For Bingham fluids (n = 1) one gets

. 1 L 2 ~ ~
GZ—H+2K{2+I_~I|:1+K+\/(1+K) a4 K‘)H:|} (2.48)

For Herschel-Bulkley fluids with n=1/2

(2.49)

_ 7 2
G- 2. L[030A R
H H C

where

C= %[6(1—1()1:12 + {3K(3K—1) +36(1— k) A + 409K — A -3(1+ ) & } A- 2K3:|

(2.50)

Figure 2.7 shows flow diagrams for Herschel-Bulkley fluids with »=1/2 and different

values of the slip parameter ratio x. Again the results exemplify the importance of the characteristic

length /5. Regime II has a significant extension when the gap H is comparable to or lower than /.
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It is shifted upwards when « is reduced and reaches its maximum extension when x=0. When x=1,
the critical pressure gradients G~1 and G~2 are equal to 2/ H indicating that Regime II disappears

and the flow shifts directly from pure slip to upper and lower yielded flows.

2.6 Discussion

In this section we relate our results with those of Vayssade et al. (2014) for the flow of Herschel-

Bulkley glassy suspensions in microchannels.
2.6.1 Quantifying the asymmetry of the velocity profiles
Definition of the asymmetry parameter

Vayssade et al. (2014) solved the flow of Herschel-Bulkley fluid in microchannels by considering a
frame of reference at the midplane of the channel, which translates at a mean velocity (u,,; +

Uy2)/2 so that the two walls move with opposite velocities +Us, where

U, = ezt 2.51)

They also defined the dimensionless number

S=§(%+%—1) (2.52)

as a measure of the asymmetry in the positions of the yield points. Their analysis focused on the
two slip velocities only and was independent of the slip laws at the two walls. However, it was
restricted to the particular case n=1/2. In this section, we revisit the notion of the asymmetry
parameter to compare our results to the experimental data, taking advantage of the general
solutions derived in section 2.2. Generalizing the scaling forms proposed by Vayssade et al. (2014),

we scale velocities by nGY"H'*Y/"/(n + 1)k'/™, distances by H, pressure gradients by 7,/ H

and stresses by GH. In order to avoid confusion with our previous adimensionalization systems, the
dimensionless variables in this section are denoted by bars. According to Eq. (2.21), the difference

between the two slip velocities in Regime III can be written in dimensionless form as

m yll/n+1 (1 _ yz)l/nﬂ

w2

or

U = %[—1/%1 —(1- )1/n+1] (2.53)

s

For n <1,we conveniently set n=1/m, where m is an integer, to get

m+1

rr 1 — — m+
Usza(y1+y2 Zy A=) ! (2.54)
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Let us now assume that despite the fact that the slip velocities are not the same, the two

yield points are almost symmetric about the midplane, i.e. y, ®1—7,. As already discussed, this

assumption is not reasonable when n>s in which case the two yield points tend to merge at

vy, >1/2, according to Eq. (2.29). It is valid when n<s and the two slip velocities are close to each

other. Setting 1 -7y, =, into Eq. (2.54) yields
— 1 I\yn = —
U, :W(l—i_;j yll/ (y1 +y, —1) (2.55)

For n<s and sufficiently high values of the pressure gradient, ¥; can be approximated by ¥y, =

1/2 and by combining Egs. (2.52) and (2.55) the asymmetry parameter takes the form

1/n
27

_ ‘ 2.56
1+1/n ° (2:6)

Asymptotic values of the asymmetry parameter

The asymptotic value S, =(2y_ —1)/2 of S as the pressure gradient goes to infinity is of interest.

For example, when s = 1 one gets from Eq. (2.29)

0, n<l
Sw=?w—l= _B-8 , n=1 (2.57)
2 |2(1+B,+B,)
_B-B
2(B,+B,)’

For Bingham fluids (n = 1), the asymptotic value of U , can be calculated from the slip velocities in

the Newtonian case, which are known

g.-—2"b___g (2.58)
‘ 2(1+ B, + B,)
In the general case, when s # 1, S_ is calculated by means of
1
8. =52y =D (2.59)

where y,, is the position of the maximum velocity in the flow of a power-law fluid, which can be
found by solving Eq. (2.26). U ., 1s then found by means of Eq. (2.56), which has been derived by

assuming that y_~1/2.
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2.6.2 Relevance of the asymmetry parameter

The expression (2.57) for S,, is valid for high values of the pressure gradient and n<s. Let us test it
against the exact solutions found in the previous sections. We consider the case n=1/2 with Navier

slip (s=1), which is representative of the experiments of Vayssade et al. (2014). Figure 2.8a shows

results of S versus U , obtained for different values of the slip number B, and B;=1 over a wide
range of pressure gradients above G; . It is important to note that for low values of the pressure
gradient, S is actually double-valued when plotted against 17 .- As the pressure gradient is increased

further both S and U , are reduced and all the curves approach asymptotically the line § = AU /3.
The asymmetry parameter S increases as B, is increased (Fig. 2.8a) or as B, is reduced (data not
shown), because the asymmetry of the velocity profile is enhanced.

The influence of the power-law exponent is illustrated in Fig. 2.8b, where results obtained
for Navier slip, i.e. s = 1, with B;=1 and B,=2 and n=1, 1/2 and 1/4 are shown. A first observation

is that in the Bingham-plastic case for which n =, S is a decreasing function of U , and there is no

branch approaching asymptotically the line § = U . predicted by Eq. (2.56).

Actually, as the pressure gradient is increased, the calculated values of S and U . converge

to the point (U _, S, ) instead of approaching asymptotically the line S = 17 .- This is due to the

fact that the asymptotic forms derived for S are only valid for n<s. For low values of the pressure
gradient the variation of S is essentially the same for all values of the power-law exponent. When

n<s the curves of S bend to approach asymptotically the lines predicted by Eq. (2.56).
2.6.3 Comparison with experiments
For the rest of this section we fix the values of all material parameters, again based on the
experiments of Vayssade et al. (2014), n="2, s =1, and K = B,/ B, =0.53, and vary the gap size,
H, from 7 up to 100 pm.

The first dimensionless slip number B; is in the range from 0.15 (H =100 um) to 3 (H=7
um). The critical pressure gradients G; and G, are equal to G, and G, given by Eq. (2.30).
Hence, the first critical pressure gradient is G, =1.53, independently of the gap size. The second
critical pressure gradient G; ranges from 2.6534 (H =100 pm) to 2.8530 (H = 7 um). Figure 2.9
shows the velocity profiles corresponding to G =3, 4, 5, 6, and 8 for H=7, 20, 50, and 100 um. To
facilitate the comparison with the results of Vayssade et al. (2014), we plot the reduced velocity
where u , is the smallest slip velocity, versus y* =7y =y/ H. The two yield points in

u_—u

X wl?
the velocity profiles are marked with red circles. Given that n<s, the yield points tend

asymptotically to the center of the channel (y,, = 1/2) as the pressure gradient is increased.
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Figure 2.8: (a) Effect of the slip parameters on the variation of the asymmetry parameter S with 17 , When
n=1/2; B,=1 is kept constant and the ratio B,/ B, is varied by varying B,. All curves approach asymptotically
the dashed line S = 4U , /'3 as the pressure gradient is increased. (b) Effect of the power-law exponent for
s=1 (Navier slip) with B;=1 and B,=2. As the pressure gradient is increased, the results for n<s (i.e. for n=1/2

and 1/4) approach asymptotically the corresponding dashed lines S = 2""U ./ (1+1/n), while the results

for n=s=1 converge to the point (U

S.)=(1/8,1/8).
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Figure 2.9: Velocity profiles for different channel gaps and various dimensionless pressure for n=1/2, k=4.1

Pa sm, 70=11.2 Pa, f|= 10° Pa mls, £,=0.53 10° Pa m’ls, and s=1 (taken from the data of Vayssade et al.,
(2014)) (a) H=7 pm with B;=2.1441, B,=4.0455, and G; =2.8530; (b) H=20 um with B;=0.7504,

B,=1.4159, and G, = 2.8044 ; (c) H=50 pm with B,=0.3002, B,=0.5664, and G, = 2.7291; (d) H=100

um with B;=0.1501, B,=0.2832, and G, = 2.6534 . G, =1.53 in all cases.

Given the experimental uncertainties discussed below, the agreement between the
computed velocity profiles and the experimental ones is quite satisfactory. Quantitatively the
computed profile lay below the experimental profiles but we noted that a moderate uncertainty on
the consistency parameter (= 10%) can explain the discrepancy. Although all values of the pressure
gradient should fall into Regime III, the velocity profiles expected for low pressure gradient exhibit
the asymmetrical semi-plateau shape observed in experiments. Again, this can be associated with
experimental uncertainties on the slip parameter, since it is delicate to control the preparation of the
surfaces with a high accuracy. Moreover, the asymmetry significantly decreases when the pressure
gradient and/or the gap size are increased. This unambiguously confirms that the observed velocity

profiles result from confinement effects.
Let us now turn our attention towards the asymmetry parameter. For n=1/2, one easily
derives the asymptotic limit valid for large pressure gradients: § = 4U , /3, which is the expression

(apart from a minor typo) derived by Vayssade et al. (2014). In Fig. 2.10, the theoretical variations
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of the asymmetry parameter S with 17 . are shown for the same gap sizes as in Fig. 2.9, together

with the experimental data (which also include points obtained for H=75 and 80 pum). All the
curves collapse into the asymptotic limit expected for large pressure gradients, in excellent
agreement with the corresponding experimental data. When the gap size increases, the asymmetry
parameter increases as B is reduced, and the asymmetry curves are shifted toward low values of U;
when the pressure gradient is small. The full symbols in Fig. 2.10 represent values of the
asymmetry parameter either in Regime II or in the lower part of Regime III. This choice is justified
by the fact that experimentally it is difficult to attribute unambiguously a velocity profile to a
particular flow regime. Indeed Regime II is quite narrow so that some velocity profiles that look
like having a semi plateau shape may well belong to Regime III theoretically. In any case, the

values of § in all these points are in the range from 0.1 to 0.5. This can be explained by noting that

the experimental asymmetry parameter in Regime II has been calculated by setting y, =1, i.e.
assuming that S, =7, /2. Given that Y, also tends to unity as the pressure gradient is reduced
from C_}z to (_}1 (at which the velocity is plug) the theoretical limiting value of S, is 0.5 while the

corresponding value of U , vanishes, independently of the gap size. It should be pointed out,

however, that the measured slip velocities (full symbols) in Fig. 2.10 are lower than their
counterparts in the upper part of Regime III (open symbols), as it is easily deduced from Fig. 2.9,
which implies that the relative error in U , may be higher.

10° : :

10" : :

10 10 107

U 10"

s

Figure 2.10: Asymmetry parameter S versus slip parameter U , for n=1/2, s=1 and H=7 um (rightmost

curve), 20 pm, 50 pm, and 100 pm (leftmost curve) compared with experimental data for H=7 pm (A ,A), 20
um (4,9), 50 pm (), 75 um (V¥,V), 80 um (») and 100 pum (o). Solid symbols correspond to Regime II
(semi-plateau velocity profiles) and open symbols to Regime III (asymmetric velocity profiles).
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2.7 Conclusions

We have analyzed the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip.

Three different flow regimes have been identified by means of two critical pressure gradients G,

and G: (a) in Regime I (0 <G < G,), the two slip velocities are the same and the velocity is
uniform; (b) in Regime II (G, < G £ G, ), the fluid yields in a zone near the weak-slip wall and

flows with uniform velocity near the stronger-slip wall; and (¢) in Regime III (G > G, ), the fluid

yields near both walls and the velocity is uniform only in the central unyielded core. The
asymptotic limit flow of the Herschel-Bulkley flow as the pressure gradient tends to infinity is
simply the flow of a power-law fluid which was also analysed and shed light to the flow of interest.
The theoretical results compare well with the experimental data of Vayssade et al. (2014) on soft
glassy suspensions. One important finding concerns the asymmetry parameter S, defined in Eq.
(2.52), which is multi-valued for low and moderate pressures (in Regime III) and thus should be

used with caution in interpreting the experimental data.

To close this discussion we would like to stress out that the phenomena analyzed in this
chapter constitute a new and interesting situation of non local rheology where the flow behavior is
controlled by the surface and not only by the bulk rheology of the material. By changing the
topography and the particle-wall interactions it is thus possible to manipulate the flow and get
different velocity profiles. This is particularly important in real situations, for instance during oil
migration in porous media, where surface roughness and chemistry locally vary so that slip
heterogeneities naturally exist. Many other relevant applications concern confined flows in
microfluidic devices where surface effects dominate: dispensing nozzles of colloidal inks in 3D

printing systems, inkjet printing, and extrusion of complex fluids.

Appendix A - General solution in Regime I

In the general case with different slip exponents at the two walls

T =pPuy, =12 (2.60)
and the two slip velocities satisfy
poul + p,u’, =GH (2.61)
In Regime I, u , =u , =u, and thus
pou+p,u’ =GH (2.62)
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After solving the above equation for u,, we can calculate the two wall shear stresses by means of
Eq. (2.60). The first critical pressure gradient can be then found by setting the hydrophilic wall

shear stress equal to the yield stress, 7, =7,.

wl

Independent experiments of Vayssade et al. (2014) on soft glassy suspensions showed that s;=1 and

s,=1/2. From Eq. (2.62) we get
2 4BGH )
ﬂ_( /Hﬁl_z_lj .69
4P, s

The first critical pressure gradient is given by

G :(1+\/ﬁ170Jﬁ2\/70/ﬂ1 (2.64)

1 B, H

Appendix B — Bingham-plastic flow with Navier slip

It is clear from Eq. (2.13) that the first critical pressure G, required for the material to yield at the

lower wall is independent of the consistency index and the power-law exponent. In the case of
Bingham plastic flow with Navier slip (n=s=1), Eq. (2.19) for the second critical pressure gradient
(the pressure gradient at which the material adjacent to the upper wall yields) is simplified as

follows
%(GH—ZTO ) ~[(B,+B,)r,~ BGH |GH =0 (2.65)

and thus G, is given by

G, - 27,/ H (2.66)

1+B1+32 [1i\/1+4(B2—BI)/(Bl+Bz)2J

The lower root is chosen if it is greater than G, and the higher one otherwise.

The lower-wall shear stress in the three regimes is given by

B, 0<G<G,
B +B,
T, T 4
_GI;= —G;I +\/(BI+BZ)2+232—2(Bl+32)$—B1—B2, G, <G <G, (2.67)
1+2B,-27,/GH G <G
2(1+ B, + B, —27,/GH)’ 2T
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The two slip velocities can be calculated by means of

~ Tt andy, = GH T (2.68)

B, B,

u

wl

and the positions of the yield points by

\/(Bl +B,) +2B,—2(B, +192)(§—;I—B1 ~B,, G<G<G,

2 _Ta—To_ (2.69)
H GH 1+2B,-27,/GH 7, ’ G, <G
20+B,+B,-27r,/GH) GH
and
Yy _Twts _ 1+2B,-27,/GH L G <G (2.70)
H GH 20+ B, + B, -27t,/ GH) GH
Finally, the velocity in Regimes I-III is given respectively by
u, (y) = CRh (2.71)
B+ 5,
G
uw1+2_|:y12_()’1_y)2:|’ 0<sys<y
uil(y) _ H (2.72)
U, +— Yy, ZwW<y<H
2u
and
G
uwl+ﬂ':y12_(yl_y)2]’ 0<y£y1
ur G 2
e (Y) =9ty +5— 1, n<y<y, (273)
2u
G H-—v)Y =(v=1y,)> <v<H
uwz+2#[( »W--»)].  wm<ys

The solution for the symmetric problem is obtained by setting /3, = f3,. The two critical pressure
gradients are then equal, G, =G, =27,/ H, so that the intermediate Regime II disappears.

Moreover, 7,, =7,, = GH /2 and the positions of the yield points in Regime III are given by

_H &, | _H. %
NELTe TG

(2.74)

Hence, u! = GH /(28) while u!" is given by Eq. (2.73).
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Chapter 3

Viscoplastic flow development In a

channel with slip along one wall

In this chapter we investigate the case of viscoplastic flow in a channel with slip only along one
wall. We also derive the analytical solutions corresponding to fully-developed flow for the case of
a power-law slip equation and identify the various flow regimes. We further present the numerical

method and discuss the numerical results®.

3.1 Introduction

Many materials of industrial interest, such as polymeric solutions, suspensions, and gels, are
viscoplastic, i.e. they exhibit yield stress. These materials behave as fluids when the exerted stress
exceeds the yield stress and as solids otherwise. A popular viscoplastic constitutive equation which
also describes shear-thinning or shear thickening is the Herschel-Bulkley model, which involves
three material parameters, i.e. the yield stress 7y, the consistency index k, and the power-law

exponent, n (Mitsoulis, 2007). The tensorial form of this model is as follows

vy =0, 77,

. . 3.1
T=|2+ky" |y, 7>7,

Y
where T is the viscous stress tensor, ¥ =Vu+ (Vu)T is the rate of strain tensor, u is the velocity

vector, Vu is the velocity gradient tensor, and the superscript T denotes its transpose. The
magnitudes of 7yand T, denoted respectively by y and 7, are defined by ¥ E\/m and
T =+/T:T/2 . The Herschel-Bulkley model is reduced to the power-law model when the yield
stress is zero and to the Bingham-plastic model when n=1.

In flows of ideal yield-stress fluids, the flow domain consists of the so-called unyielded (
7 <7,) and yielded regions (7 > 7,) where the two branches of the constitutive equation apply.

The former regions include zones where the material moves undeformed as a rigid body

“The material of this chapter appears in Panaseti and Georgiou (2017).
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and dead zones where it is stagnant. Determining the interfaces between yielded and
unyielded regions is a key computational challenge with viscoplastic fluid flows, especially in
two- and three-dimensional flows (Balmforth et al., 2014). Two are the main approaches to tackle
this problem: (a) Augmented Lagrangian Methods (ALMs); and (b) Regularization methods. ALMs
are based on the variational formulation of the Navier-Stokes equations and employ optimization
algorithms to determine the flow solution (Balmforth et al., 2014). They are exact in the sense that
they respect the non-differentiable form of the constitutive equation. However, ALMs are generally

slower and more difficult to implement than regularization methods (Balmforth et al., 2014).

In regularization methods, the constitutive equation is modified by introducing an
additional parameter in order to combine the two branches of Eq. (3.1) into one smooth function,
so that the resulting regularized equation applies everywhere in the flow field in both yielded
and (practically) unyielded regions. The most popular regularization in the literature is that
proposed by Papanastasiou (1987) for a Bingham plastic and subsequently by Ellwood et al. (1990)
for a Herschel-Bulkley fluid

. {z‘o [1—eXP(—m77)] . ky.,ll}? (3.2)
7

where m is the stress growth exponent, which has dimensions of time. For sufficiently

large values of m, the Papanastasiou model provides a satisfactory approximation of the

Bingham-plastic model. The regularized approach is easier to implement than ALMs but
eliminates the yield surfaces replacing unyielded regions with regions of very high

viscosity. The interface of yielded /“unyielded” regions can approximately be tracked down a
posteriori by using the von Mises criterion 7 =7, (Mitsoulis, 2007; Mitsoulis and Tsamopoulos,

2017). The advantages and disadvantages of ALMs and regularization methods are

discussed in the recent articles of Balmforth et al. (2014), and Saramito and Wachs (2017).

Wall slip is important in many industrial applications, such as the extrusion of complex
fluids, ink jet processes, oil migration in porous media, and in microfluidics. Viscoplastic materials
are known to exhibit wall slip (Yilmazer and Kalyon, 1989; Ballesta et al., 2012; Cloitre and
Bonnecaze, 2017). While wall slip with polymer melts is observed at large rates of strains, with
pasty materials it appears within a range of rather small strains (Denn, 2001). Based on the analysis
of apparent slip flows of Herschel-Bulkley fluids in various geometries, Kalyon (2005) proposed a
power-law slip equation, relating the wall shear stress, 7, to the slip (or sliding) velocity, u,,

defined as the relative velocity of the fluid with respect to that of the wall,

T, =pu, (3.3)
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where s is the exponent, and f is the slip coefficient. The latter coefficient incorporates the effects
of temperature, the normal stress, the molecular parameters, and the properties of the fluid/wall

interface (Denn, 2001). The no-slip and full-slip limiting cases are recovered when S — oo and
S =0, respectively. Experimental values of the exponent s have been reviewed by Panaseti et al.

(2017). The value s=1 has been reported in different experimental studies for stresses above the
yield stress (see Panaseti et al., (2017) and references therein). Setting s=1 in Eq. (3.3) leads to the

classical Navier-slip condition (Navier, 1827)
T, =pu, (3.4)

in which case the slip coefficient is related to the slip length b, by means of = u/b, where u

denotes the viscosity.

The present work is motivated by the recent findings of Vayssade et al. (2014), who
imaged the motion of well characterized softy glassy suspensions in microchannels whose walls
impose different slip velocities. Their experiments showed that as the channel height decreases the
flow ceases to be symmetric and slip heterogeneities effects become important. Interestingly, some
of the experimental velocity profiles reported by Vayssade et al. are characterized by overshoots
similar to those encountered in entry flows (Vayssade et al., 2014). We thus revisit here the
classical flow development problem of a Bingham plastic in a horizontal channel assuming,
however, that power-law slip occurs along the upper wall only. The one-dimensional fully-
developed flow with asymmetric slip along the two walls has been analyzed by Panaseti et al.
(2017). The theoretical results compare well with the (fully-developed) experimental data of
Vayssade et al. (2014).
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Figure 3.1: Different flow regimes in the case of one-dimensional plane viscoplastic Poiseuille flow when

slip occurs only along the upper wall.
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For the sake of simplicity, the special case where there is no slip along the lower wall is
studied here. As illustrated in Fig. 3.1, three regimes are observed for the one-dimensional steady-
state Poiseuille flow, as the pressure gradient G is increased. Below a certain critical value G,
(Regime I) the lower wall shear stress is below the yield stress and thus there is no flow. In Regime
II above G, and below a second critical pressure gradient G,, the fluid yields only near the lower
plate and the fluid adjacent to the upper wall slides as an unyielded plug. Finally, above G, at
which the upper-wall shear stress also exceeds 7, (Regime III), the fluid yields near both the walls
and the velocity profile is asymmetric with a plug core. In the special case when there is no slip
along the upper wall, the classical symmetric Poiseuille solution is recovered and Regime II is not
relevant.

The flow development problem is obviously two-dimensional: the fluid enters a tube or a
channel at a uniform velocity and decelerates near the wall(s) and accelerates in the central region.
In other words, the axial velocity tends from a flat profile at the inlet to the fully-developed profile
downstream. The development length is usually defined as the length required for the maximum
velocity to attain 99% of its fully-developed value scaled either by the pipe diameter or the channel
width (Shah and London, 1978). This definition implies that the maximum velocity in the central
acceleration region develops more slowly than its counterparts at any other vertical distance from
the axis or plane of symmetry. This may not be the case in all geometries and for all fluids,
especially viscoplastic ones which are characterized by a maximum flat velocity. It is also clear that
such a definition is not applicable in the case of asymmetric Poiseuille flow which is of interest
here. In a recent study of the effect of wall slip on the development of planar and axisymmetric
Newtonian Poiseuille flows, Kountouriotis et al. (2016) pointed out that in addition to the standard
definition of the development length, L, as the length required for the maximum velocity to attain
99% of its fully-developed value, the wall development length L, is also relevant in the presence of
slip. This is defined as the length required for the slip velocity to decrease to 1.01% of its fully-
developed value. The numerical simulations of Kountouriotis et al. (2016) showed that both L and
L, increase with slip passing through a maximum and vanish at a critical value of the slip
parameter corresponding to the full slip case. They also revealed that, in contrast to the
axisymmetric flow, the planar flow develops more slowly at the wall than at the midplane, i.e.
L.>L.

In a subsequent work, Philippou et al. (2016) studied numerically the development of
Bingham plastic flow in tubes and channels using the Papanastasiou regularization and finite
element simulations. They considered alternative definitions of the development length noting that
this is a function of the transversal coordinate. Their results demonstrated that the classical
development length, L., and the development length, L¢s, proposed by Ookawara et al. (2000) for
Bingham flow are not good choices for measuring viscoplastic flow development (with or without
slip). Los is defined as the axial distance required for the velocity to reach 99% of the calculated

maximum value at a radial location corresponding to 95% of the plug radius (Ookawara et al.,
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2000). To avoid the inconsistencies resulting from the use of L. and Los, Philippou et al. (2016)
employed the global development length which in the case of a channel of width H is defined as

follows

L, =max L(y) 3.5)

0<y<H
L(y)is the (smallest) length required for the two-dimensional axial velocity u(x,y) to become

equal to 0.99u(y) or 1.01u(y) when u(y)>u, or u(y)<u,,, respectively, where u(y) is the

fully-developed velocity profile and u,, is the mean velocity.

The present work can be viewed as an extension of Philippou et al. (2016), to the case of
viscoplastic flow in a channel with slip only along one wall (asymmetric flow). The governing
equations are presented in section 3.2, where the analytical solutions corresponding to fully-
developed flow for the case of a power-law slip equation are also derived and the various flow
regimes are identified. In section 3.3, the numerical method is briefly presented and the numerical

results are discussed. Finally, the conclusions are summarized in section 3.4.

3.2 Governing equations
The governing equations are de-dimensionalized scaling lengths by the gap height H of the
channel, the velocity vector by the uniform inlet velocity U, and the pressure and the stress tensor

components by kU" / H" . By denoting the de-dimensionalized variables with stars, the continuity

and momentum equations for steady, incompressible flow with zero gravity can be written as

follows
Viu'=0 (3.6)
and
Reuw -Vu' =-V'p' +V .7 3.7)
where
2-n n
Re=£U 1M s

is the Reynolds number, p being the constant mass density of the material.

The Pananastasiou regularization (Papanastasiou, 1987) is employed here for the Herschel-
Bulkley model. The dimensionless form of the regularized constitutive equation may be written as

follows
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T = {Bn—l —expCMy ) 7*”‘1}7* 3.9)
y

where

Hn
Bn=20"_ (3.10)
kU"
is the Bingham number and
m="Y (3.11)
H

is the dimensionless growth exponent, which has to be sufficiently high so that the flow of the ideal
discontinuous Herschel-Bulkley fluid is approximated satisfactorily (Papanastasiou, 1987; Ellwood

et al., 1990; Mitsoulis and Tsamopoulos, 2017).

I/l\ri’
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Figure 3.2: Geometry and boundary conditions of the flow development of a Bingham plastic in a horizontal

channel with slip along the upper wall.

The geometry and the boundary conditions of the flow are illustrated in Fig. 3.2. At the
inlet plane, the velocity component in the direction of the flow is uniform (ui =1) and the
transversal one vanishes. At the lower wall, there is no slip and no penetration and thus both

velocity components are zero. At the upper wall the vertical velocity is again zero and slip is

assumed to occur following a power-law slip equation,

r, = Bu,’ (3.12)
where
= ﬂHﬁ (3.13)
kU™
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is the (dimensionless) slip number. Note that B is the inverse of the slip number defined by Panaseti
et al. (2017). Finally, the exit plane is taken sufficiently far downstream so that the flow can be

assumed fully-developed.
3.2.1. Fully-developed solutions

The de-dimensionalization introduced above is based on the mean velocity, which implies that
there is flow, i.e. Regime I of Fig. 3.1 is not relevant. The no-slip case, which corresponds to a
symmetric velocity profile with respect to the mid-plane of the channel, is recovered for B — .
The two yield points, yf and y2 , are thus symmetric, i.e. y2 =1- yf , and the flow is in Regime I1I
(there is no Regime II). Keeping the Bingham number constant and decreasing the slip number,
enhances slip at the upper wall and the velocity becomes asymmetric: the two yield points move

towards the upper wall so that the width of the plug core ( y2 - yl ) increases while its velocity is

reduced. This trend continues up to a critical slip number, B_, at which the upper yield point

reaches the wall (the dimensionless upper wall shear stress is equal to Bn) signaling the transition
from Regime III to Regime II. Deriving the analytical solution is straightforward (Panaseti et al.,
2017). However, this is presented here for convenience and in order to account for the present

scalings used and to identify the different flow regimes. The general dimensionless solution for

B < B <oois given by

1 sl/ntl * * n+ M *
_|:y1 _(yl_y)l/ 1]’ 0<y <y

AIII

w(y)=421—, <y <y (3.14)

AI[I

* 1 * n+ * * n * *
w, +—[ A=y = (" =) ], y<y <l

vl

where
* 1 *1/n+ *N/n+
uw:_[ylu 1_(1_y2)1/ 1:| (3.15)
AIII
and
Unt noo . n *Uns
Ay =" 1(1—1+2n ylj—HZn(l—yz)” ? (3.16)

The positions of the two yield points can be found by solving the following system of equations
(2= y, = y,)Bn—(y, - y))Bu,’ =0 (3.17)

48



and
(A+1/n)"(y,—y,)—2Bn A}, =0 (3.18)
No-slip case

In the no-slip case (uz_ =0), Eq. (3.15) yields y2 =1—yf, which indicates that the flow is

symmetric with respect to the mid-plane of the channel. Substituting into Eq. (3.16) gives

Ut 2n .
Ay :yll/ 1(1_1+2n ylj (3.19)
and Eq. (3.18) becomes
n * *n+1 2n * "
A+1/n)"(1-2y,)-2Bny, 1- y | =0 (3.20)
1+2n

Critical value of the slip number

The critical value B, of the slip number can be found by setting y2 =1. Denoting the

corresponding critical values of yf and uj; by yfc and uzc , respectively, we get from Eq. (3.17)

Bu.' =Bn (3.21)

c wce

which simply says that the (dimensionless) upper-wall shear stress is equal to Bn. The critical slip

velocity is given by

= . (3.22)
_ n #
14207
and, therefore,
B =(1-—" ) Ba (3.23)
‘ 1421 '
Finally, from Eq. (3.18) one gets
(1+1/n)"(1-y,)—-2BnA;, =0 (3.24)
or
A+1/n)"(1-y,.)=-2Bny,"" Ju" =0 (3.25)

49



which is used to calculate yfc. It should be noted that the value of yfc is independent of the slip

equation parameters. For example, in the Bingham plastic case (n=1), ny is a root of

Bny,’-3Bny’-3y,+3=0 (3.26)
while the value of B, can then be calculated from Eq. (3.23) for any value of s.

Solution in Regime I1

If the slip number is reduced below B, the yield point keeps moving towards the upper wall and
the width of the plug core is thus reduced while its velocity increases. Finally, in the limit B =0
(full slip), the velocity profile corresponds to the no-slip solution in a channel of double width

(2H), i.e. to the no-slip solution corresponding to the modified Bingham number

_7,(2H)"
kU"

Bn' =2"Bn (3.27)

Hence, when 0 < B< B,_, the flow corresponds to Regime II and the dimensionless velocity is

given by
S R GO el B (1— . yfj L 0<y <y
u(y)= 1+2n (3.28)
i, y <y <1
where
\ 1
U, =——"—— (3.29)
_ n *
1420
and J’j is the root of
(1+1/n)" (1= y) = (Bn+Buy’ )y fu =0 (3.30)

Substituting Eq. (3.21) into the above equation yields Eq. (3.25) for yfc. For n=1 (Bingham plastic)

and s=1 (Navier slip) Eq. (3.30) is simplified to

Bny’-3(Bn+B)y,’ -6y +6=0 (3.31)
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Figure 3.3: Fully-developed velocity profiles for different values of the slip number in plane Poiseuille flow
with no-slip along the lower wall and slip along the upper one: (a) Bn=0 (Newtonian flow) and s=1 (Navier
slip); (b) Bn=0 (Newtonian flow) and s=1/2; (c¢) Bn=1, n=1 (Bingham flow) and s=1 (Navier slip); (d) Bn=1,
n=1/2 (Herschel-Bulkley flow) and s=1 (Navier slip).

Before discussing the Herschel-Bulkley solutions, it is instructive to consider the
Newtonian case in which the velocity is a parabola. For any value of the slip exponent s, the

velocity can be written in the form
u, =y [ 6-2u;,+3(u, ~2)y" | (3.32)

where the slip velocity uz is a root of

2u,, (3-2u,, )= Bu,’ (3.33)
For example, with s=1 (Navier slip)
. 6
u, = (3.34)
B+4
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and with s=1/2

2

u@:E—B— 1+9—?—1 (3.35)
2 32 B

When B = (no slip with uj; =0 )and B=0 (full slip with uw =3/2) the standard no-slip

Poiseuille solutions in channels of dimensionless widths 1 and 2, respectively, are recovered, i.e.
u, =6y (I1-y) and uxzzy(Z—y) (3.36)

Figures 3.3a and 3.3b show the velocity profiles for s=1 and s=1/2, respectively, with
B=w, 10, 1 and 0. It is easily verified that all curves intersect at the point (2/3,4/3),
independently of the value of s. Figures 3.3c and 3.3d show similar velocity profiles for Herschel-
Bulkley fluids with Bn=1 and n=1 (Bingham plastic) and n=1/2 in the Navier-slip case (s=1). As
the slip number is reduced the solution passes from Regime III (two yield points) to Regime II

below the critical slip number, which is B;=0.7800 for n=1 and 0.8610 for n=1/2.
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Figure 3.4: Flow regimes and representative velocity profiles in plane Bingham-plastic flow with no-slip
along the lower wall and Navier slip (s=1) along the upper one. The velocity profiles have been obtained for

Bn=1 and various slip numbers.
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Figure 3.4 illustrates the two flow regimes on the (Bn,B) plane in the case of a Bingham

plastic (n=1). These are separated by the curve B, = (1- y; /3)Bn , which is slightly below the

straight line B = Bn . Four representative velocity profiles, obtained taking Bn=1 and Navier slip
(s=1), are also shown. Two of them are in Regime III. The first profile corresponds to no-slip at
both walls (B — o) and it is thus symmetric. As slip at the upper wall is enhanced (e.g. for B=5),

symmetry is destroyed and the two yield points move upwards and the maximum velocity
decreases. The upper yield point moves faster than the lower one reaching the wall when B = B,

=0.7800. The velocity profile for this critical case is also shown in Fig. 3.4. Below this number, i.e.
in Regime II, the yield point continues moving upwards as slip is increased, but the maximum
velocity is now increasing. In the limit of B=0 (full slip), the maximum velocity is lower than that

for B — oo, since it corresponds to the no-slip flow for a modified Bingham number equal to

Bn'=2"Bn=2Bn.

3.3 Numerical results and discussion

The system of the governing equations and the boundary conditions presented in section 3.2 was
solved numerically using the finite element method (u#-v-p formulation) with standard biquadratic
basis functions for the two velocity components and bilinear ones for the pressure field. The
Galerkin forms of the continuity and the momentum equations were used. The resulting nonlinear
system of the discretized equations was solved with a Newton-Raphson iterative scheme with a
convergence tolerance equal to 10™*. The inhouse finite-element code developed and tested in the
past thirty years (most recently in Philippou et al. (2016)) was used. Results have been obtained for
Bingham numbers ranging from O (Newtonian flow) to 10, for power-law exponents from 1
(Bingham plastic) down to 1/2, for slip numbers from 0 (full-slip) to o (no-slip), and for Reynolds
numbers from 0 (creeping flow) to 10. Based on our previous studies (see Philippou et al. (2016)),
the rather high value of M=100000 has been used in all viscoplastic simulations. For the low
Reynolds number considered here, we took L,,.=20 for Re<1 and L,,,=50 for 1< Re <10.
Some convergence difficulties have been observed in the weak-slip regime (i.e. for finite high
values of the slip number B) when the value of n was less than unity. These are due to the fact that
the slip velocity is of the order of the convergence tolerance and to the increased nonlinearity of the
problem. The convergence of the results has also been investigated using meshes of different
refinement. The results presented here have been obtained with a non-uniform mesh consisting of
368x80=29440 elements with 118657 velocity nodes (L,.;=20). The total number of nodal
unknowns with this mesh is 267203. This was graded with the element size increasing far from the
walls and the inlet plane. The size of the smallest element at the corner of the inlet plane with the

lower wall was 0.005.
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Figure 3.5: Velocity contours in flow development of creeping (Re=0) planar Newtonian Poiseuille flow

with no-slip along the lower wall and Navier slip (s=1) along the upper one for various slip numbers.
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Figure 3.6: Development of the velocity in creeping (Re=0) planar Newtonian Poiseuille flow with no-
slip along the lower wall and Navier slip (s=1) along the upper one: (a) B=w (no-slip); (b) B=100; (c)
B=10; (d) B=1; (e) B=0.1; (f) B=0.01. Profiles at x*=0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.8 and o« (fully-developed
flow).
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Figure 3.7: Development length functions in creeping (Re=0) planar Newtonian Poiseuille flow
with no-slip along the lower wall and Navier slip (s=1) along the upper one for the slip numbers of

Fig.3.6: (a) B=w (no slip); (b) B=10; (c¢) B=5; (d) B=2; (e) B=1; (f) B=0.01.
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Figure 3.8: Development length functions in creeping (Re=0) planar Newtonian Poiseuille flow
with no-slip along the lower wall and power-law slip (s=1/2) along the upper one for the slip

numbers of Fig.3.6: (a) B=x (no slip); (b) B=100; (c) B=10; (d) B=1; (e) B=0.1; (f) B=0.01.
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Figure 3.9: Global (solid) and wall (dashed) development lengths in creeping (Re=0) planar

Newtonian Poiseuille flow with no-slip along the lower wall and slip along the upper one versus

the slip number B. (a) s=1 (Navier slip); (b) s=1/2.
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3.3.1 Newtonian flow

The Newtonian flow was investigated first. The effect of Navier slip (s=1) on the axial velocity
contours in the case of creeping flow (Re=0) is illustrated in Fig. 3.5 for various values of the slip
number ranging from B=co (no-slip) to B=0.01 (very strong slip). When B=cc the velocity contours
are symmetric about the midplane of the channel. As slip is introduced at the upper wall the flow
becomes more and more asymmetric; in the limit of full slip (B=0) the flow corresponds to flow in
a channel of double width with no slip at either wall and the upper wall serves simply as the
symmetry plane of the latter flow. The flow development for the same slip numbers is also
illustrated in Fig. 3.6, where the velocity profiles at different distances from the inlet are plotted.
Note that while the velocity overshoot near the lower wall is unaffected, the one that is near the

upper wall appears only when slip is rather weak (i.e. for B=co and 100).
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Figure 3.10: Global development lengths in creeping (Re=0) planar Newtonian Poiseuille flow with

no-slip along the lower wall and slip along the upper one with s=1 (Navier slip) and s=1/2.

In Fig. 3.7, the plots of the development length function L(y) for most of the slip numbers
considered in Figs. 3.5 and 3.6 are shown. For high values of B there are two decelerating zones
adjacent to the walls and one intermediate accelerating zone defined by the two points at which the
fully-developed velocity is equal to the mean velocity and thus L(y) vanishes. Below a critical slip
number (~2) slip is so strong that the fluid at the wall actually accelerates and thus the upper
deceleration zone disappears. For B=oo (no-slip at the upper wall), L(y) is of course symmetric. As
already pointed out in Philippou et al. (2016), the global development length L, does not occur in
the accelerating zone at the plane of symmetry but in the two symmetric decelerating zones near

the walls (L,=0.6585, whereas the classical center-plane development length is L.=0.6285). In the

no-slip case the upper-wall development length, defined by L = L(1), is not relevant. As slip
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along the upper wall is enhanced so does the asymmetry and the flow develops faster near the
upper wall where slip occurs and near the lower wall more slowly so that the global development
length increases (note that the y-axis is not the same). Hence, L, occurs in the lower decelerating
zone and L, is much less than L,. As B is reduced, L, keeps increasing, while L,, is further reduced
till the upper decelerating zone disappears, in which case the fluid at the upper wall actually
accelerates and consequently there is only one decelerating region near the lower wall. Thus, below
a certain slip number both L, and L, increase as B is reduced. The global development length
increases asymptotically to twice its counterpart for the no-slip flow, i.e. L,=1.3168.

In order to investigate the effect of the slip exponent s, calculations similar to those of Figs.
3.5-3.7 have been carried out taking s=1/2. It turns out that the velocity contours are not affected
significantly, but, given that the fully-developed slip velocities for s=1/2 are lower, there are some
noticeable differences between the velocity profiles, especially when slip is weak, i.e. for high or
moderate values of the slip number. Interestingly, the slip exponent has a striking effect on the
development length. (It should be noted that the dimensionless slip number depends on s.) As
shown in Fig. 3.8, with s=1/2 the flow development for high values of B (weak slip) is slower in
the zone near the upper wall rather than in the zone near the lower (no-slip) wall.

The dependence of the two development lengths on the slip number B for s=1 and 1/2 is
illustrated in Fig. 3.9. L, increases with slip exhibiting two plateaus in the weak- and strong-slip
limits and a sharp change in the range (0.5, 5) of the slip number. The wall development length L,
exhibits a sharp non-monotonic behavior in the latter range due to the suppression and the

disappearance of the decelerating region near the upper wall and vanishes at the critical slip
number B=2 at which u; =1, independently of the slip exponent s (see Eq.(3.33)). With s=1, L is

always less than L,, while with s=1/2 the two lengths coincide when slip is weak. As pointed out in
Kountouriotis et al. (2016), the wall development length can be defined only if the magnitude of
the slip velocity exceeds a critical value. By demanding that 1% of the critical slip velocity must be
equal to the tolerance used in the numerical simulations, then this critical slip velocity is equal to

0.01. From Eq. (3.33), the corresponding critical value of the slip number is then

=596 for s=1 and B

crit

B =5.96x10*. We thus find that B

N it =59.6 for s=1/2. Therefore,
the plots of L, beyond these critical values in Fig. 3.9 (i.e. in the weak-slip regime) should be
viewed with caution. Note also that the wiggle in the curve of L, is simply due to the fact as slip is
increased the flow development is initially slower in the upper deceleration zone which eventually
disappears and thus the value of L, is suddenly calculated in the lower deceleration zone. The
global development lengths for s=1 and s=1/2 are compared in Fig. 3.10. As expected, the two
lengths differ only for moderate values of the slip number and practically coincide in both the

weak- and strong-slip regimes, where the effect of the slip exponent is insignificant. It should be

noted that the development length corresponding to full slip (B=0) is twice the development length
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for the no-slip case (infinite B), since it corresponds to the no-slip flow in a channel of a gap width

equal to 2.
il
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Figure 3.11: Velocity contours in flow development of creeping (Re=0) planar Bingham-plastic (n=1)
Poiseuille flow with no-slip along the lower wall and Navier slip (s=1) along the upper one for Bn=1

and various slip numbers.
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Figure 3.12: Development of the velocity in creeping (Re=0) planar Bingham-plastic (n=1) Poiseuille

flow with no-slip along the lower wall and Navier slip (s=1) along the upper one with Bn=1: (a)

B=w (no-slip); (b) B=100; (c) B=10; (d) B=1; (e) B=0.1; (f) B=0.01. Profiles at x'=0, 0.02, 0.05, 0.1, 0.2, 0.4,

0.6 and oo (fully-developed flow).
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Figure 3.13: Development length functions in creeping (Re=0) planar Bingham-plastic (n=1)

Poiseuille flow with no-slip along the lower wall and Navier slip (s=1) along the upper one for

Bn=1 and the slip numbers of Fig 3.10: (a) B=o (no slip); (b) B=100; (c) B=10; (d) B=1; (e) B=0.1;

(f) B=0.01.
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Figure 3.14: Global (solid) and wall (dashed) development lengths in creeping (Re=0) planar
Bingham-plastic Poiseuille flow with no-slip along the lower wall and Navier slip (s=1) along the

upper one versus the slip number B: (a) Bn=0 (Newtonian); (b) Bn=1; (c¢) Bn=5; (d) Bn=10.

3.3.2 Viscoplastic flow

In this subsection, numerical results for Bingham plastics (n=1) and Herschel-Bulkley fluids
(n=1/2) are discussed. We then considered the Bingham plastic case (n=1) with Bn=1 for Re=0
(creeping flow). Figure 3.11 shows the axial velocity contours for various values of the slip number
B. Figure 3.12 shows how the velocity component in the flow direction develops downstream
attaining the fully-developed profile. When B=oo (no slip), the velocity profiles are symmetric
exhibiting a central unyielded region. As slip is increased, asymmetry is enhanced, the velocity
overshoot near the upper wall is suppressed, and the unyielded region moves towards the upper
wall and increases in size. If slip becomes even stronger then Regime II is eventually reached, i.e.
the unyielded region reaches the upper wall. The velocity overshoot near the no-slip wall persists
in all cases, while its counterpart near the slip wall appears only when slip is weak (i.e. for high

values of B).
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The development length functions for various values of the slip number are shown in Fig.
3.13. These plots may be more complicated than their Newtonian counterparts in Fig. 3.8 but the
main features remain the same: (a) L, occurs near the no-slip wall, i.e. the flow develops more
slowly in the decelerating zone adjacent to the no-slip wall than in the accelerating zone; (b) The
fluid adjacent to the upper wall decelerates only when slip is weak, i.e. above a critical slip number.

Similar results have been obtained for higher values of the Bingham number. In Fig. 3.14,
the global and wall development lengths for creeping flow (Re=0) and Bn=0 (Newtonian), 1, 5 and
10 are plotted versus the slip number. We observe that L, increases with slip and with the Bingham
number, whereas L,, exhibits a non-monotonic behavior. When slip is strong, L,, decreases rapidly
with Bn. For moderate slip numbers, however, the dependence of L,, on the Bingham number is

variable. It is clear that using L,, may lead to erroneous results regarding flow development.
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Figure 3.15: Global development lengths in creeping (Re=0) planar Bingham-plastic Poiseuille
flow with no-slip along the lower wall and Navier slip (s=1) along the upper one versus the slip

number B for different Bingham numbers.

The global development lengths for Brn=0, 1, 5, and 10 are compared in Fig. 3.15. Based
on L,, flow development is slower as viscoplasticity and slip are increased. Again, the wiggles in
the curves for Bn=>5 and 10 indicate transition of L, to a different deceleration or acceleration zone.
As mentioned above, in Newtonian flow (Bn=0) the development length for full slip (B=0) is two
times the development length for the no-slip case (infinite B), since it corresponds to the flow
development in a channel with no slip and with a gap width equal to 2. This is not the case for
Bingham flow; the development length in the full-slip case is two times the no-slip development

length corresponding to 2Bn and not to Bn.
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Figure 3.16: Global development lengths in creeping (Re=0) planar Herschel-Bulkley Poiseuille
flow with no-slip along the lower wall and Navier slip (s=1) along the upper one versus the slip

number B for Bn=1 and n=1 (Bingham plastic) and n=1/2.

Figure 3.17: Global development lengths in planar Herschel-Bulkley Poiseuille flow with no-slip
along the lower wall and Navier slip (s=1) along the upper one versus the slip number B for

different Reynolds numbers, Bn=1 and n=1/2.
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Simulations have also been carried out for Herschel-Bulkley flow with Bn=1, n=1/2 and
s=1 (Navier slip). The global development lengths for n=1 and n=1/2 are compared in Fig. 3.16. As
expected, shear thinning results in bigger development lengths. Finally, the effect of the Reynolds
number is illustrated in Fig. 3.17, where the global development length for Bn=1 and Re=0, 1, and
10 is plotted versus the slip number. For the moderate numbers employed here, the global
development length increases with inertia. The relative increase of L, is much higher when slip is
weak, moderate in the strong-slip regime, and becomes smaller in the intermediate slip regime
when the upper deceleration zone disappears.

An interesting issue not addressed in the present work is the accurate determination of
yielded and unyielded regions in viscoplastic flow development. Our calculations with
“reasonable” meshes showed that this may not be possible for moderate or higher Bingham
numbers.

More acceptable results, in the sense that the entry unyielded region which moves
horizontally as a solid body at unit velocity is separated from the unyielded region of the fully-
developed flow which moves at a higher velocity, may be obtained for rather low Bingham
numbers. At higher Bingham numbers these two regions appear to merge, which is obviously
inadmissible. Hence, the flow development problem is a challenging test for any numerical method
proposed for solving viscoplastic flows. To our knowledge, only recently Dimakopoulos et al.
(2018) made some preliminary calculations of yielded/unyielded regions in viscoplastic flow
development and compared the predictions of the Augmented Lagrangian Method (ALM) and the

regularization method.

3.4 Conclusions

The entry flow of a Herschel-Bulkley fluid in a horizontal channel with slip along the upper wall
has been investigated numerically using finite elements and the Papanastasiou regularization for the
constitutive equation. The different flow regimes for the one-dimensional fully-developed flow
were identified and the corresponding solutions have been presented. The global development
length is considered so that both the acceleration and deceleration zones are included.
Representative numerical solutions for the two-dimensional flow development have been
presented and the effects of the Bingham and slip numbers on the development of the velocity and
on the development length have been discussed for various values of the power-law exponent of
the slip equation. The global development length increases with the Bingham number and inertia
and decreases with the power-law exponent. In general, the global development length increases
with slip exhibiting two plateaus for low and strong slip and a sharp increase in the moderate slip

regime.
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Chapter 4

Pressure-driven flow of a Herschel-
Bulkley fluid with pressure-dependent

rheological parameters

In this chapter we present the Iubrication equations for the general case of a Herschel-Bulkley fluid
with the consistency index and the yield stress being functions of pressure. We also derive
analytical solutions for the case of a channel of constant width with special forms of the
consistency-index and yield-stress pressure-dependence functions. We consider channels of
linearly varying width and we derive semi-analytical solutions for the case of a Bingham plastic

with both the yield stress and plastic viscosity varying linearly with pressure.’

4.1 Introduction

Yield-stress fluids, also known as viscoplastic fluids, are encountered in a variety of industrial
applications, such as oil drilling and transport, fresh concrete manufacturing, waste management
and food processing, and in many environmental, geological and biological processes (Barnes,

1999; Balmforth et al., 2014). Viscoplastic materials are commonly assumed to behave as fluids
only if the stress exceeds the yield stress T:; otherwise, they behave as solids. (It should be noted

that throughout this chapter, symbols with stars denote dimensional quantities.) For an update on
the ongoing debate about the concept of a yield-stress fluid and the definition of yield stress, the
reader is referred to the recent reviews by Malkin et al. (2017) and by Dinkgreve et al. (2017). As
noted by Coussot et al. (2017), most researchers now consider that the yield stress marks a limit
between the existence of steady-state flows -above the yield stress- and the observation of
continuously slowed down flows.

The most popular constitutive equation describing viscoplastic behavior is the Bingham-
plastic equation (Bingham, 1922). This involves two material parameters, i.e. the yield stress and

the plastic viscosity g, and has the following tensorial form

> The material of this chapter appears in Panaseti et al. (2018).
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4.1)

D = %[V*v* +(V'v)'] (4.2)

is the rate of deformation tensor, v is the velocity vector, and 7 =+2uD?  and
7 =+trt?/2 are the magnitudes of 2D and t°, respectively. Setting T:ZO, the

Bingham-plastic is reduced to the Newtonian constitutive equation and " is simply the

familiar Newtonian viscosity. A generalization of the Bingham-plastic equation is the
Herschel-Bulkley model (Herschel and Bulkley, 1926), which involves three material

parameters

D =0, T Sry

T, -y . (4.3)
T =2 2+ky" D, >,
7 >

where k" is the consistency index and n is the flow index (power-law exponent). Setting the latter
to unity yields the Bingham-plastic model. Setting T: =0 results in the power-law model, which is

able to account for shear-thinning (n<1) and shear-thickening (n>1) effects. Due to the two-branch

nature of viscoplastic constitutive equations, the flow domain consists of yielded regions (viscous
domain) where 7 > T; and unyielded regions (rigid domain) where T < r;. The latter regions

include stagnant zones where the velocity is zero and zones where the material moves as a solid
body. The location of the interface between yielded and unyielded regions is not known a priori
and causes severe difficulties in solving viscoplastic flows, especially in two and three dimensions
(Mitsoulis and Tsamopoulos, 2017).

In the last few years, a number of studies concerned numerical simulations of flows of
viscoplastic materials with pressure-dependent material parameters. Staron et al. (2012)
investigated numerically the discharge of a granular silo, which, for small and moderate outlets, is
characterized by a constant discharge rate in contrast with the clepsydra for which the flow velocity

depends on the height of the fluid left in the container. Implementing plastic rheology (i.e., (1)

rheology), they were able to explain the so-called Beverloo scaling only by means of the pressure
dependence of the yield stress. Ionescu et al. (2015) carried out finite-element simulations of the
granular column collapse problem over inclined planes using the Bingham-plastic constitutive
equation and assuming that the yield stress varies linearly with pressure. The plastic viscosity was
taken either constant or variable depending on both the pressure and the rate of strain. Daviet and

Bertails-Descourbes (2016) proposed a non-smooth complex optimization numerical framework
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for the simulation of dense granular flows assuming that the material behaves as a Bingham plastic
whose yield stress varies linearly with pressure while the plastic viscosity is constant. They pointed
out that this assumption implies that grain-grain interactions mostly involve rigid-body contacts
with Coulomb friction. Khouja et al. (2015) analyzed a regularized Bingham model with pressure-
dependent yield stress in the framework of stationary flows and investigated existence, uniqueness
and regularity. They showed that the model can be solved and approximated as far as the frictional
parameter is small enough.

Recently, Fusi (2017) considered non-isothermal flows of a Bingham plastic with the
plastic viscosity and the yield stress depending on both the temperature and pressure. More
specifically, he used a perturbation approach to derive the Oberbeck-Boussinesq approximation for
a Bingham fluid under the assumption that the Reynolds number is of order one and considered the
cases where the Froude number is either small or of order one. Fusi used an exponential expression
describing the dependence of the plastic viscosity on the pressure and the temperature and a linear
one for the yield stress (such that both rheological parameters increase with pressure and decrease
with temperature) (Fusi, 2017).

The present work is motivated by the recent work of Fusi et al. (2015) who presented a
novel technique for modelling the lubrication flow of a Bingham plastic in a two-dimensional
channel of non-uniform thickness. Under the lubrication approximation, the yield surface and the
two velocity components are calculated from the pressure by means of closed form expressions,
while the pressure satisfies an integro-differential equation. This was solved by Fusi et al. with an
iterative procedure (Fusi et al., 2015). Fusi et al. (2015) also considered briefly the case of
pressure-dependent plastic viscosity and provided some approximations for the case of a slowly
varying linear wall.

The advantage of the method of Fusi et al. (2015), is that the lubrication paradox is avoided
and the correct shape of the yield surface which is opposite to that of the wall is approximated at
zero order. With other approaches, the correct shape of the yield surface is obtained after
calculating higher-order solutions (Frigaard and Ryan, 2004; Putz et al., 2009). In asymptotic
analyses where the pressure gradient is obtained from the constraint of a unit areal flux in the x-
direction at leading order, the yield surface variation (at zero order) is similar to that of the wall,
due to the scaling with the mean velocity. The lubrication paradox arises from the fact that the
predicted plug is not a true unyielded region since the leading order velocity varies in the x-
direction. Thus, the position of the yield surface needs to be corrected by calculating higher-order
solutions (Frigaard and Ryan, 2004; Putz et al., 2009).

Nevertheless, since the pressure is scaled with the pressure difference between and inlet
and outlet planes of the channel and the stress components with the pressure difference times the
(small) aspect ratio of the channel, a prerequisite of the model of Fusi et al. is that the unyielded
region (plug) extends from the inlet to the outlet plane as well (Fusi et al., 2015). Therefore, the

model cannot be applied when the plug is broken. Consequently, the results of Fusi et al. (2015) in
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this latter case are not reliable. For example, the calculated transverse velocity contours cross the
symmetry plane where this velocity component should vanish.

The objectives of the present work are: (a) the extension of the method of Fusi et al. (2015)
for solving the lubrication flow of a Herschel-Bulkley fluid with pressure-dependent consistency
index and yield stress in a symmetric channel of non-constant width; (b) the derivation of analytical
solutions for certain limiting cases, such as the flows in a channel of constant or linearly-varying
width; and (c) the investigation of the advantages and the limitations of the method.

Fusi et al. (2014) derived solutions of plane Poiseuille and Couette flows of a Bingham
plastic and determined conditions for existence or non-existence of a rigid plug under the
assumption that the velocity is one-dimensional while the pressure in the yielded region is two-
dimensional. They derived explicit solutions for the case where the yield stress follows the linear

equation

7,(p) =1 [1+ B(p-p,)] (4.4)
where 7, denotes the yield stress at a reference pressure p, and £ is the yield-stress growth

coefficient; and the plastic viscosity also varies linearly and vanishes at zero relative pressure, i.e.

H(p)=a (p'=py) (4.5)

where the constant & has time units. With the latter assumption, the derivation of an analytical
solution becomes easier but the flows of a Bingham plastic with constant rheological parameters or
with constant plastic viscosity are not special cases of the flow considered. This shortcoming was

avoided by Damianou and Georgiou (2017) who analyzed the same flow using
1 (p) =1+’ (P = py) | (4.6)

instead. In the present work, with the use of the lubrication method of Fusi et al. (2015), the study
of viscoplastic Poiseuille flows with a general wall function and pressure-dependent rheological
parameters is possible.

In section 4.2 the lubrication equations are presented for the general case of a Herschel-
Bulkley fluid with the consistency index and the yield stress being (general) functions of pressure.
The zero-order solution is derived semi-analytically, in the sense that closed-form expressions are
derived for the two velocity components in terms of the pressure, which is found by solving an
integro-differential equation numerically. As mentioned above, the solutions hold as long as the
unyielded core extends continuously from the inlet to the outlet plane. Compared to Fusi et al.
(2015), the presentation of the method is considerably simpler despite considering a more general
flow problem. In section 4.3, we derive analytical solutions for the case of a channel of constant
width with special forms, i.e. linear and exponential, of the consistency-index and yield-stress

pressure-dependence functions. The yield-stress growth parameter is allowed to be negative and the
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applicability windows of the method in terms of the various parameters are determined. In section
4.4, channels of linearly varying width (converging and diverging channels) are considered and
semi-analytical solutions are derived for the case of a Bingham plastic with both the yield stress
and the plastic viscosity varying linearly with pressure. The applicability and the limitations of the
method are again discussed. In section 4.5, we present numerical results for more complex
geometries. In contrast to the work of Fusi et al. (2015), the integro-differential equation for the
pressure is solved directly (not iteratively) by means of a standard pseudo-spectral numerical

method. Finally, in section 4.6, the conclusions are summarized.

y =h'(x")

Yielded region

Figure 4.1: Geometry, some definitions and boundary conditions for the dimensional flow in a symmetric
channel of length L” and variable width 2A"(x") with an unyielded core of width &"(x"). Due to

symmetry, only half of the flow domain is shown.

4.2 Derivation of the model
We consider a Herschel-Bulkley fluid, i.e. a fluid obeying constitutive equation (4.3), where
however the consistency index k* and the yield stress T: are pressure dependent. For the sake of

generality, we assume that
k' (p)=ky fla (p = py)) 4.7)

and

7. (p) =1, 88 (P~ py)) (4.8)
where k0 is the consistency index at the reference pressure (assumed to be the same for the two
material parameters) and f and g are appropriate increasing functions, such that
f(0)=g0)=1.
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Assume now the pressure-driven flow of an incompressible Herschel-Bulkley fluid in a

symmetric long channel of length L and variable width 24"(x"), as illustrated in Fig. 4.1, where
only the upper part of the domain is shown, due to symmetry. A pressure p, is applied at the inlet
of the channel (x" =0) while the pressure at the exit (x' =L") is p, <p,, i.e., the imposed
pressure difference is Ap =p, —p. . The main flow is in the x  direction and the
z —velocity component is zero. Hence, the velocity vector is of the form

v =vi(x*,y*)i+v;(x*,y*)j. In the flow of interest (Fig. 4.1), the yielded and the unyielded
regions are separated by the interface y =o (x) for 0<x <L, where
0<o (x')<h (x). Hence, the unyielded region extends from the inlet to the outlet plane,

i.e. the plug is not broken. Moreover, if o (x' )=k (x') at any point x*, the unyielded
region touches the wall and due to the no-slip boundary condition, there is no flow. Let
also 0, =0 (0) and 0,, =0 (L).

In the yielded region, the continuity equation and the x- and y-components of the

momentum equation are simplified as follows:

v, Mg 4.9)
ox Oy
i y * . * * * a *
P v;a—v’ﬁv.a—vi S AL AT (4.10)
0 * Oy ox oOx Oy
P g v R LT @1
Yox oy dy. ox Oy

where p° is the mass density. The non-zero components of the stress tensor in the yielded regime
read:

5

ov

+ky fla'(p' = pZ))y’”"“} P

XX

;=2 {T;?g(ﬂ*(p* —n)
>

(4.12)

yx

. * * o x i . . n a * av* £, % * * o,k
T {Tog(ﬂ (pr Po))+k0f(a (P = p))y 1}( vi +—1J , o (x)<y <h(x)
v dy Ox

*

b a e e | OV
+kyfla(p —pNy" }g

Yy

. :z{régw*(p*—pé))
}}*

where

« \ 2 « =\ 2
. . .oy,
Y
X 'y X
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(note that the continuity equation has been used). Similarly, the magnitude of the stress tensor is

given by

o= \/% re’? = \/l p2p Ll (4.14)

Without loss of generality, we assume here that the reference pressure that appears in Eqgs. (4.7)

and (4.8)is p, = p, .-
The unyielded core, defined by Q" :{(x*,y*):x* e[0,L'], y" €]0, g*]}, moves in the x-
direction as a solid, i.e. at constant velocity v:. Thus,
v,=v, and v, =0 for 0<y <o (x) (4.15)

For steady-state flow in the absence of body forces, the integral balance of linear momentum of the

whole plug core yields the following equation (Fusi et al., 2015)

[ [~oicp ++e, ] dv' + Doy~ pluoi, =0 (4.16)

y
where o, =do’ /dx . Equation (4.16) simply implies that Z';x acts on dx and — P+ z'; acts on
dy = O':dx*, where dx and dy* define an infinitesimal element of the longitudinal side of the

core.

4.2.1 Non-dimensional formulation

We assume that the length L of the channel is much greater than its greatest semi-width, i.e.

L > H = max h'(x"), and introduce the dimensionless parameter
xe[0,L ]

*

e= (4.17)
I

which is used for applying the classical lubrication approximation or thin-film approach (Frigaard
and Ryan, 2004). The problem is non-dimensionalised by scaling x by L, y*, h',and o by
H, (p'=p.) by Ap", v. by H'(eAp"/ k)", v) by €H (eAp” /ky)"", and the stress
components by gAp*. The dimensionless forms of the continuity equation and the two

components of the momentum equation are as follows

e g (4.18)
ox Oy
or,
£ Re v, avx_'_vy% :—6_p+g%+j (4.19)
ox oy Ox Ox Oy
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gZ/nJrIRe[vX aVy + vv aavy ] — _a_p+ 52 aT,VX +e aTyy (4.20)
C oy

where Re is the Reynolds number defined by

*H*3A *2/n-1
o PH AP

o 4.21)
kOZ/nL

R

Note that for n=1, the equations for the Bingham case are recovered, in agreement with the analysis

of Fusi et al. (2015). For the stress components one gets

r,=2s {—B "8 fp) f(ap)Y”‘l}%
) 4 ox
.= {Bng—(ﬂp)Jr f(aP)J}"_l}[%ﬁL & %] , o(x)<y<h(x) (4.22)
’ v oy Ox
Ty = 28{Bng.(ﬁp) + f(ap) .nl:|%
4 Oy

where

2 2
0
j= |ag? ‘lj L Oy 2 (4.23)
ox oy ox
In Eq. (4.22), there appear three dimensionless numbers, the Bingham number Bn and the

consistency-index and yield-stress growth numbers a and £, which are defined by

.
T
Bn=—2

= -, a= a*Ap*, ﬁ = ﬂ*Ap* 4.24)
gAp

It is clear that when B >0 the dimensionless yield stress is reduced from g(#)Bn at the inlet plane
to Bn at the exit plane. When A <0 then the dimensionless yield stress increases from
g(B)Bn to Bn. We thus have the constraint g(f)>0 so that the unyielded core extends

from the inlet to the outlet plane (otherwise the present model is not valid).

Finally, the dimensionless form of Eq. (4.16) is

J‘;[—O'x(—p+grm)+ryx} . dx+o, =0 (4.25)

y
where the dimensionless pressure satisfies the following boundary conditions
p0,0,)=1, pd,0,,)=0 (4.26)

out
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4.2.2 The zero-order problem

Following Fusi et al. (2015) we solve the zero-order problem. For the sake of simplicity, we will
avoid introducing new symbols for the zero-order variables; hence, hereafter all variables are the

zero-order ones. The continuity and momentum equations at zero order read as follows

v L 4.27)
ox Oy
o Ot (4.28)
ox 0Oy
_% _y (4.29)
dy

From the last equation, it is deduced that p = p(x). At zero order 7 = Ty = 0 while

yx

Bn ) w1 | OV,

{Lﬂpﬁ(am }— o(x) < y < h(x) (4.30)
4 Ay

Working in the upper part of the channel we note that in the yielded region

7=|8vx/ 8y|=—6vx/ Oy and thus

ov

r,=—Bng(fp)—f (ap)(— ay*j , o(x)<y<h(x) (4.31)

Substituting the above expression into the x-momentum equation (4.28), integrating twice, and

applying the boundary conditions dv, /dy(x,o) = v (x,h) =0, the following expression is obtained

for v,
(y_U)IJrl/n 4 32
v.(x,y)= l—m v,, o(x)<y<h(x) (4.32)
where
1/n 1+1/n
v :(_px) (h—O') (433)

©(+1/n) f(ap)

is the velocity of the unyielded core and p_=dp/dx. The fact that the RHS of the above equation
is constant will be utilised below in order to derive the integro-differential equation governing the
pressure.

The transverse velocity component is found from the continuity equation (4.27). Given that
v, (x,h)=0, we can write
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b= Ve gy (4.34)

Ty ox

Substituting v_ from Eq. (4.32) and carrying out the required differentiation and integration

one gets
v y-o 1+1/n y-o 2+1/n
v, = 2+;/n o, +(1+1/n)h, —(2+1/n)[ﬁj o, —(1+1/n)(hx—ax)[ﬁj } (4.35)
where i = dh/dx . The satisfaction of condition v (x,o)=0 requires that
o +(1+1/n)h =0 (4.36)
Equation (4.35) can then be simplified to
el (y—O')Hl/" ., . 4.37)
v, =1+ /”)Wm( -y)h, :

From Eq. (4.36) it is deduced that the semi-width of the unyielded core is given by

o(x)=—(1+1/n)h(x)+C (4.38)

where C is an unknown constant to be determined. The above result generalizes the result of Fusi et
al. (2015) for a Bingham plastic (n=1). Equation (4.38) implies that the width of the unyielded
core increases when the wall function /(x) is decreasing and vice versa. The rate of change
of ¢ is (1+1/n) times the rate of change of 4 and is independent of the other material and
flow parameters, which affect only the constant C. Hence, decreasing the power-law
exponent n in a converging channel causes the plug to expand faster, which is expected
given that the velocity profile becomes flatter as shear thinning is enhanced. To determine
the constant C, we return to the plug momentum balance equation (4.25), which at zero order
becomes

ITpr + T)’Xl,:a dx+o, =0 (4.39)

0

Since at the rigid core surface (y = o ) the rate of strain vanishes, 0v_ /0y =0, Eq. (4.31) gives

=—Bng(Bp) (4.40)

o
Therefore
f;[(’xP‘Bng(ﬂP)]dHGm =0 (4.41)
Using integration by parts and Eq. (4.38) we find that
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C= ano'g(ﬁp)dx— a +1/n)j0' p.hdx = Bn.[(;g(ﬂp)dx+ (1+1/n)[hm +j0' ph. dx} (4.42)
From Eq. (4.33) we observe that

d { p, (h—o)"“}:o (4.43)
dx| f(ap)

which gives

' 2
o af'(ap)p; L P (n+1)h —0)=0 (4.44)
flap)  h-o

By means of Egs. (4.36) and (4.42) we get the following integro-differential equation for the

pressure

(n+1)(2+1/n)h, _af'(ap)p, p.=0 (4.45)

Pu™t 1 1
(2+1/n)h—13njO g(ﬂp)dx+(1+1/n)jo p.hdx  flap)

subject to the boundary conditions p(0)=1 and p(1)=0. An alternative form of Eq. (4.45) is

(i’l+1)(2‘1|‘1/7l)hx : _af'(ap)px px:O (446)
(2+1/n)h—(1+1/n)hin—anog(ﬂp)dx—(l+l/n)jophxdx flap)

p)L’C+

Once the pressure p(x) is known, the yield surface, the unyielded core velocity, and the two
velocity components are readily calculated by means of Egs. (4.38), (4.33), (4.32) and (4.37),

respectively. For the volumetric flow rate (which is, of course, constant along the channel) we have

2V, [o+1+1/n)h]= 2v.C
2+1/n 2+1/n

Q= 2(]: vay+ |’ vxdy) = (4.47)

Equation (4.46) can be solved numerically, using, for example, finite element or pseudo-spectral
methods. Analytical solutions are possible only for channels of constant or linearly-varying width
when functions f and g are of simple form. These are presented and discussed in the next two

sections.

4.3 Flow in a channel of constant width
In the case of a channel of constant width, 2=1 and h,=0; thus, Eq. (4.46) is simplified to

af'(ap) ,
PRt Ay | (4.48)
pX.\ f(ap) pX
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which implies that the pressure distribution is independent of the yield-stress function and the
power-law exponent. The former affects only the location of the yield point, which is constant

along the channel, since Eqgs. (4.38) and (4.42) give
1
o= ano g(Bp)dx (4.49)

Moreover, the transverse velocity component vanishes, v, = 0, while v_=v (y).

A .
0'=an.01g(,3p)dx o=1
(i) Flow with a plug core i (ii) No flow
' >
0 Bnc Bn

Figure 4.2: Flow regimes as the Bingham number is increased in lubrication flow of a viscoplastic fluid in a

channel of constant width. When Bn < Bn_ an unyielded region of constant height is predicted even when

the yield stress and the consistency index are pressure-dependent. Note that Bn = ‘L'; /(& Ap*) .

It is clear that when o=1, there is no flow, since the unyielded core touches the wall
at which no-slip applies. There are thus two flow regimes depending on the value of the
Bingham number, as illustrated in Fig. 4.2. The critical Bingham number at which there is
no flow,

Bn =— 1 (4.50)
[ g(Bpydx

is obviously inversely proportional to the lowest dimensional pressure difference above which
yielding occurs (Ap. =7,/ (¢Bn,)).
From Eq. (4.48) we observe that

P _ g (4.51)
flap)
where K is a constant that can be determined along with the pressure p upon integration and

application of the two boundary conditions for p. It is easily found that
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Kl/ﬂ 1_ 1+1/n
, - K"d-0o)

. (4.52)
‘ (1+1/n)
and
VX()’):[l—W}vC, oc<y<l (4.53)
(1_0_) +1/n

Table 4.1: Expressions for the constant K, the pressure p(x) and the yield point ¢ for different functions
describing the pressure-dependence of the consistency index (f{x)) and the yield stress (g(x)) in the case of a

channel of constant width. These are independent of the power-law exponent 7.

e K p) g s
E—fog(ﬂp)dx
1 1
1+x 1.2
1 1 1-x
e e’ -1
B
1 1
1+x 1 1
i @
+
I+x In(1+ ) l[(l+a)”—1} n(l+a) «
a a
x B vy
¢ e'ﬁ/“‘[;e“(l ) dx
1 1
I+x ﬁ[l—(1+a)e"“]
1-¢* lln; a(l-¢)
4 a a (l—e” x+e”
e R o
e _ B=a
|
_ph-a
Ui o N O
(a—-p)d-e*)
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Table 4.1 tabulates expressions of K, p(x) and ¢ for the cases where f and g are linear
and/or exponential. Note that these results are independent of the power-law exponent n, which
affects only the velocity profile (4.53).

Below we discuss the case where both the consistency index and the yield stress vary

linearly with pressure, i.e. f(x)= g(x)=1+x. From Table 4.1, we see that when « >0

1 -
p(x) :Z[(H ) 1] (4.54)

and

o= {1{;_% ,B}Bn (4.55)
In(a+1) «

Flow occurs provided that the Bingham number is lower than the critical value

Bn, = ! (4.56)
R
Inle+1) «o
(Recall that the above number is inversely proportional to the lowest dimensional pressure
difference above which yielding occurs.) Note that f may be negative in which case the yield stress
is increasing downstream and thus Bp may be greater than unity. If f=0, then Bn =1 and
o =Bn,i.e. o is independent of the consistency-index growth parameter « (this is due to

the fact that the pressure is scaled by the inlet pressure Ap* ). As discussed below, this is

also the case when solving the standard Poiseuille flow problem without the lubrication

approximation. The present lubrication model is valid provided that >0, i.e.

s olna+D) (4.57)
In(e+1)—«a

so that the plug is not broken. As already mentioned, f# may be negative and, more specifically,
B =-1 (so that the yield stress in the channel remains positive), which ensures that condition

(4.57) is satisfied (the left hand side is always less than -2).
For a Bingham plastic (n=1) the velocity is given by

In@*D - i+ y-20), o<y<i
_) 2a (4.58)

v =
M(l—o—)z, 0<y<o
2a
where the effects of Bn and f are accounted for via the yield point o.
When the plastic viscosity is pressure-independent (¢« =0), we find the standard linear

pressure distribution for Poiseuille flow
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p(x)=1-x (4.59)

where, however, the yield point depends on the yield-stress growth number

o*=(1+ﬂ/2) Bn (4.60)
For the velocity, we now have

l(1—y)(1+y—20'), o<y<l
v = 2 4.61)
%(1—0)2, 0<y<o

and the critical Bingham number above which there is no flow is

1

Bn, = (4.62)
1+ /2

(Recall that g >-1).

For the case of a Bingham plastic (n=1) with linearly-varying yield stress and
plastic viscosity (g(x)=f(x)=1+x), the analytical Poiseuille flow solution can be obtained
(Damianou and Georgiou, 2017)

p cosh[eln(1+ a)(y—-o)+tanh™ (anﬁ)]

1 .
—| (1 -1
I+ cosh[tanh’l(anﬁ)}

B

<1
p(x.y) = (463

é[(na)"*—l], 0<y<o

As for the velocity, one finds

1 | cosh[eln(l+a)(l—0)+tanh"(5Bn,B)} Bnp
ag’ In(l+a) ! cosh[sln(1+a)(y—0')+tanh"(an,6’)J - a

(I-y), o<y<l

¢ h[ In(1+a)(1-0c)+tanh ™' (¢B ﬂ)]
+ — +
1 | cosh| eln(l+ & o)+ tanh™ (¢Bn Bnf

2 n -1
as” In(l1+a) cosh[tanh (an,b’)] o

(I-0), 0<y<o

(4.64)

where ¢ is given by Eq. (4.55), i.e. it is the same as that predicted by the lubrication
approximation. The main difference between the above analytical solution from the
lubrication one is that the pressure in the yielded domain is two dimensional. The pressure
in the unyielded core is identical to the pressure predicted by the lubrication approximation for both
yielded and unyielded regions. Setting o = Bn=0 yields the solution of a Newtonian fluid with a
pressure-dependent viscosity (Kalogirou et al., 2011) and taking only the first term of the Taylor

expansion of Eq. (4.64) in terms of ¢ yields the lubrication solution (4.58). The effects of the
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various parameters on the yield point ¢, as discussed in Damianou and Georgiou (2017),

apply here (see also a recent solution of the axisymmetric flow in Fusi and Rosso, 2018).

With the lubrication assumption, the velocity profile is slightly overestimated and the

relative differences are enhanced as a assumes rather high values (Damianou and

Georgiou, 2017).

4.4 Flow in a channel of linearly-varying width
In this section, we consider a channel of linearly-varying width, such that

h(x)=h, +(h

out

—h,)x=h,+Ahx and h (x)=Ah
From Eq. (4.38) we know that the yield surface also varies linearly

o(x)=—-(1+1/n)Ahx-Q1+1/n)h, +C
where, by means of Eq. (4.42), the constant C is given by

C=Bn g(Bp)dx+(1+1/n)h

in
0

+(1+1/ AR pdx

In this case, Eq. (4.46) can be written as follows

»+[n+i__af%apna} o
Tl x+A flap) *

where

h, B g(Bp)dx—(1+1/mAh[ pds
A= 0 0
(2+1/n)Ah

Once A is calculated, the constant C is readily found by means of

C = (2+1/n)(h, — AhA)

Combining Eqgs. (4.66) and (4.70) one gets

o(x)=—(+1/n)Ahx+h, —(2+1/n)AhA

(4.65)

(4.66)

4.67)

(4.68)

(4.69)

(4.70)

4.71)

In the general case, Eq. (4.68) is not amenable to analytical solution. We thus consider here the

case of constant (pressure-independent) consistency index. Assuming that ¢ =0, Eq. (4.68)

becomes

4.72)
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The solution of the above equation with p(0)=1 and p(1)=0 is

(A+xljn !
)=/ 4.73
P) A+1/A)" -1 (*73)

Substituting the pressure into Eq. (4.69) results in a non-linear algebraic equation which is solved

in order to determine the unknown constant A.

For the sake of simplicity, we consider here the case where g(x)=1+x (the yield stress

varies linearly with the pressure). It is easily shown that Eq. (4.69) takes the form

[BBn+(1+1/n)Ah]I +(2+1/n)AhA = h, — Bn (4.74)

where

A[(A+DIn(1+1/A)-1], n=1
IE.[;pdxz ADA+1/ A~ A= (4.75)
(n=D[A+1/4)"-1]

In a linearly-converging channel with a slope Ak<0, the core thickness increases with a
slope equal to (1+1/n)(—Ah). The value of A can be found analytically only in the two extreme
cases between which the lubrication model applies: (a) at the lowest value of Bn, Bn_,, at which the
unyielded domain varies from 0 to 1 (it is not broken); (b) at the lowest value of Bn, Bn_,, at
which the flow comes to a stop. As illustrated in Fig. 4.3, for Bn = Bn_, there is no flow anyway,
while for Bn < Bn_, the plug is broken and the unyielded region is restricted only near the channel
exit; the fluid near the inlet is fully yielded and thus the present lubrication model does not apply.

[o(x) = (1+1/ n)(—Ah) x| o () = h,,, =+ 1/ m)(=AR)1- )|

! |a(x) =(1+1/n)(~Ah) x+h, + (2 +1/ n)(—Ah)A| !

(D [

(i) Unyielded ! (ii) Unyielded - (iii) No flow
region near ! region for any x !
the exit ' '
1 1 ~
BnCI BncZ Bn

Figure 4.3: Flow regimes for Herschel-Bulkley flow in the case of a linearly converging channel. The

present lubrication analysis holds only in Regime II.
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The first critical value Bn_ below which the plug is broken corresponds to & (0) = 0. Hence, Eq.

(4.71) yields

h

in

241/ n)(=Ah)

and from Eq. (4.74) we find that

_ (+1/n) (=M

Bncl
1+ p1

The pressure is given by Eq. (4.73) and

o(x)=—0+1/n)(—-Ah)x

0
ﬂc
02} |
0.4} |
n=0.5 1 1.5

06 |
08} |

o 0.1 0.2 0.3 0.4
. . 5 A"

(4.76)

4.77)

Figure 4.4: Lower bounds of the yield-stress growth parameter for flow of a Herschel-Bulkley fluid with

constant consistency index (a=0) and yield stress varying linearly with pressure in a converging channel with

h(x) =1+ Ah x for various values of the power-law exponent. As (—Ah) is increased from O (flat channel)

to the critical value of 1/(2+1/n) (corresponding to no flow and indicated by the vertical line in each case), the

lower admissible value of £ is initially -1 and then increases rapidly to 0.

85



10
Bn

10°f 8n,,
107
107
B"C'
-3| n i n
10 A 0 1 2
(a)
10°
Bn
10' 4
10° Bn,
-1
10 o
2|
10 1
-3
ek A 0 1 2
£
(c)

10

(e)

10
Bn
10 F I
i =
10 Bn,,
10"
Bn:(
107
-3| n i n
0, A 0 1
(b)
10°
Bn
10'}
10°} B,
107} Bn,
107}
-3
05 El 0 1
B
10°
Bn
10'
e \%Bn‘%
10" e
107
-3
05 El 0 1
B

Figure 4.5: Critical Bingham numbers in the case of Hesrchel-Bulkley flow with #=0.5 in a linearly

converging channel (A, =1) with constant consistency index (e=0) and linearly varying yield stress: (a)

Ah=-0.01; (b) Ah=-0.05; (¢) Ah=-0.1; (d) Ah=-0.2; () Ah=-0.24; (f) Ah=-0.249. The

shaded region is the applicability domain of the present method. As (—A#h) is increased from O (flat channel)

to the critical value of 0.25 (no flow) the lower admissible value of f increases from -1 to 0.
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Figure 4.6: Critical Bingham numbers in the case of Bingham-plastic flow (n=1) in a linearly converging

channel (A, =1) with constant plastic viscosity (a=0) and linearly varying yield stress: (a) Ah=-0.01; (b)

Ah=-0.1; (¢) Ah=-0.2; (d) Ah=-0.3; (e) Ah=-0.33; (f) Ah=-0.332. The shaded region is the

applicability domain of the present method. As (—Ah) is increased from O (flat channel) to the critical value

of 1/3 (no flow) the lower admissible value of f increases from -1 to 0.
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Figure 4.7: Critical Bingham numbers in the case of Hesrchel-Bulkley flow with #n=1.5 in a linearly

converging channel (f, =1) with constant consistency index (e=0) and linearly varying yield stress: (a)

Ah=-0.01; (b) Ah=-0.1; (c) Ah

0.2; (d) Ah=-0.3; (e) Ah=-0.37; (f) Ah=-0.374. The

shaded region is the applicability domain of the present method. As (—A#h) is increased from O (flat channel)

to the critical value of 3/8 (no flow) the lower admissible value of f§ increases from -1 to 0.
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In general, the second critical value Bn_, is simply the one predicted by Eq. (4.62) for a flat

channel of height equal to the minimum value of A(x):

L (4.78)

an‘2:
1+8/2

where h_ . is the minimum channel height. Hence, for a converging channel

out

h h +Ah
Bnl‘zz =
1+8/2 1+B/2

(4.79)

At the critical value Bn,, the flow stops since o(1)=h, + Ah=h, . In this case, Eq. (4.71)

gives A =-1 and the yield surface is given by

o(x)=h,—A+1/n)(=Ah)(1-x) (4.80)

Figure 4.8: Pressure distributions in the case of flow of a Bingham plastic (n=1) with constant rheological

parameters (¢ = £ =0) in a linearly converging channel with A(x) =1-0.2x for various values of the

Bingham number ranging from Bn_ =0.2594 to Bn,, =0.8.
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(a) (b)

Figure 4.9: Velocity contours in the case of flow of a Bingham plastic (n=1) with constant rheological

parameters (a=$=0) in a linearly converging channel with A(x)=1-0.2x for Bn=Bn, =0.2594: (a)

v,: (b) v . The unyielded core is shaded and the contour values are equally spaced.

(a) (b)

Figure 4.10: Velocity contours in the case of flow of a Bingham plastic (n=1) with constant rheological

parameters (¢=$=0) in a linearly converging channel with h(x)=1-0.2x for Bn, < Bn=0.5<Bn_,: (a)

v, ; (b) v, The unyielded core is shaded and the contour values are equally spaced.
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Figure 4.11: Effect of the yield-stress growth parameter on the pressure distribution in the case of flow of a
Bingham plastic (n=1) with constant plastic viscosity (a¢=0) in a linearly converging channel with

h(x)=1-0.2x for Bn=0.5; the yield stress is assumed to vary linearly with pressure.

In  summary, the method is applicable only when Bn, <Bn<Bn,. When
Bn, < Bn< Bn,, , the constant A can be found numerically as the root of Eq. (4.74) satistying

u A<—1 (4.81)

_—n <
(2 +1/n)(=Ah)

It is obvious that for a given power-law exponent n, Bn, can be defined only when

c(0)=Q2+1/n)h

out

-(1+1/n)h, >0 or

A+1/n) (4.82)
out (2+1/I’l) in

Otherwise, the solution is actually in Regime I; thus, Regime II is not observed and the present
analysis is not relevant. In other words, the three regimes of Fig. 4.3 are observed provided that
condition (4.82) is satisfied. Likewise, for a given linearly converging channel, there is a critical
value n. of the power-law exponent below which Regime II is not observed

)
‘ h,+Ah

out

(4.83)
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In the case of a flat channel (A2=0), Bn_ is zero, Bn_, coincides with Bn_, given

by Eq. (4.62), and the admissible values of £ are in [—1,00) . In the case of a linearly-

varying channel (Ah#0), the lower bound of f, denoted by f., may increase and the

applicability of the method is further reduced. This critical value is the maximum of -1 and

the value of f at which Bn_, = Bn_,. From Eqs. (4.79) and (4.76) we then find that

(4.84)

B :nmx{—l 2”%/(_Ah)—ﬂ/l—1—1/n}

3+1/n-2h, /(-Ah)
Figure 4.4 shows the variation of . with (-Ah) for n=0.5, 1, and 1.5; f. is initially -1

and then at a critical value of (-Ah) starts increasing to become zero at the maximum

admissible value of (—A#h), which is determined from Eq. (4.82)

cap| 1 (4.85)
h, | 2+l/n

(1/4, 1/3 and 3/8 for n=0.5, 1, and 1.5, respectively).

Figures 4.5-4.7 illustrate the effect of the yield-stress-growth parameter f on the two
critical Bingham numbers for different values of Ah with 4, =1, and n=0.5 (shear-thinning), 1
(Bingham plastic), and 1.5 (shear-thickening). The applicability domain of the method corresponds
to the shaded regions between the curves of Bn,, and Bn_, (recall that below Bn, the plug is

broken and above Bn_,, there is no flow). As (—Ah) is increased, this regime is squeezed,

with . eventually moving to the right, Bn_ increases rapidly, and Bn_, is reduced slightly

both tending asymptotically to the curve

Bn = —1*1/n (4.86)
T+ n+512)

reached when (—Ah)=1/(2+1/n), in which case there is no flow. Comparing Figs. 4.5-4.7

we observe that the applicability of the method is increased with n.

The analysis for a linearly-diverging channel (Ak>0) is analogous. The unyielded core
now contracts linearly following Eq. (4.71). Below a critical Bingham number Bn_,, the unyielded
core does not reach the exit plane and above a second critical number Bn_, the unyielded
core touches the wall at the inlet plane and thus there is no flow. The analysis for the

diverging channel holds provided that

2+1/n

_ (4.87)
out 1+ 1 / n m
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Let us now consider the flow of a Bingham-plastic (n=1) with constant plastic viscosity

(¢=0) and constant yield stress ($=0) in a converging channel with i(x)=1-0.2x(Ah=-0.2), in
which case Bn,=h,=0.8. From Eq. (4.76) we get Bn, =0.2594. Figure 4.8 shows the
pressure distributions for different values of the Bingham number in the range from Bn_ to
Bn,,. Note that when Bn=Bn, the pressure is equal to unity for 0<x<1. The velocity

contours for Bn = Bn,, = 0.2594 and Bn = 0.5 are shown in Figs. 4.9 and 4.10, respectively.

(b)

(c)

Figure 4.12: Effect of the yield-stress growth parameter on the contours of vy _(left) and v, (right) in the

case of flow of a Bingham plastic (n=1) with constant plastic viscosity (a=0) in a converging channel with
h(x)=1-0.2x for Bn=0.5: (a) p=-0.5; (b) p=0; (c) f=0.5; the unyielded core is shaded and the

contour values are equally spaced. The yield stress is assumed to vary linearly with pressure.
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The effect of the yield-stress growth coefficient f on the pressure distribution and the
velocity contours is illustrated in Figs. 4.11 and 4.12, respectively, which show results for Bn=0.5

and $=-0.5, 0, and 0.5. The value of the Bingham number was chosen to lie between Bn, and
Bn,, for all the selected values of f (Fig. 4.11). As f is increased the dimensionless pressure

increases while the pressure gradient becomes lower upstream and higher downstream. As
shown in Fig. 4.12, the slope of the unyielded region remains the same but this grows bigger as f is

increased, reaching the wall at the exit plane when =4, (no flow).

0.8f
0.7} 1.5
0.6f m=0.5
0.5r
0.4f
0.3F

0.2f

01

Figure 4.13: Effect of the power-law exponent on the pressure distribution in the case of flow of a Herschel-

Bulkley fluid with constant rheological parameters (o= =0) in a converging channel with

h(x)=1-0.2x for Bn=0.5.

The effect of the power-law exponent in the same geometry (/(x)=1-0.2x) can be seen

in Figs. 4.13 and 4.14, where we show results for n=1, 0.5, and 1.5 and constant rheological
parameters (a=f=0). The pressure distribution may be only slightly affected, but the slope of the
unyielded region increases as n is reduced. At the critical value n.=1/3 (Eq. (4.83)), ¢(0)=0 and
o(1)=hy, (thus, the second flow regime where the plug is unbroken is not observed). The

material is so shear thinning that the plug hits the wall and no flow occurs.
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(b)

(c)

Figure 4.14: Effect of the power-law exponent on the contours of v (left) and v, (right) in the case of
flow of a Herschel-Bulkley fluid with constant rheological parameters (a = £ =0) in a converging channel

with A(x)=1-0.2x for Bn=0.5: (a) n=0.5; (b) n=1; (c) n=1.5; The unyielded core is shaded and

the contour values are equally spaced.
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Figure 4.15: Effect of the plastic-viscosity growth parameter on the pressure distribution in the case of flow
of a Bingham plastic (n=1) with constant yield stress (f=0) in a linearly converging channel with

h(x)=1-0.2x for Bn=0.5; the plastic viscosity is assumed to vary linearly with pressure.

We close this section with results for a Bingham-plastic (n=1) with constant yield stress
(f=0) and with plastic viscosity varying linearly with pressure. Since it is not amenable to
analytical solution, this flow is solved numerically using the method briefly described below.
Figures 4.15 and 4.16 show results obtained again in a channel with A(x)=1-0.2x for Bn=0.5
and o=0, 1, and 2. As a is increased the dimensionless pressure decreases (see Fig. 4.15), but it
should be kept in mind that the applied dimensional pressure driving the flow is increased. The
velocity contours for the three values of a are given in Fig. 4.16. Note that the width of the

unyielded region increases with a.

4.5 Flow in a channel with a nonlinear wall function

As already mentioned, the integro-differential Eq. (4.46) for the pressure distribution has been
solved using a standard pseudo-spectral numerical method (Hesthaven et al., 2007). Chebyshev

orthogonal polynomials are used to represent the unknown pressure.
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(b)

(c)

Figure 4.16: Effect of the plastic-viscosity growth parameter on the contours of v (left) and v~ (right) in

the case of flow of a Bingham plastic (n=1) with constant yield stress (f=0) in a converging channel with
h(x)=1-0.2x for Bn=0.5: (a) a=0; (b) a=1; (c) a=2; the unyielded core is shaded and the

contour values are equally spaced. The plastic viscosity is assumed to vary linearly with pressure.
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For each parameter set, the number of spectral coefficients is adjusted so that a fully resolved
pressure field is calculated; 12-18 spectral coefficients are usually required to achieve a decrease of
the magnitude of the coefficients about seven to eight orders. To achieve maximum accuracy, all
other quantities of interest are also calculated spectrally. Then, the yield surface, the unyielded core
velocity, and then two velocity components are calculated using the analytical expressions derived

in section 4.2.

(a) (b)

Figure 4.17: Velocity contours in the case of flow of a Bingham plastic (n=1) with constant rheological

parameters (¢ = 8 = 0) in a wavy channel described by Eq. (4.88) for Bn=0.4762,6 =0.1 and §=0.2:

(a) v ; (b) v, The unyielded core is shaded and the contour values are equally spaced.

We considered the wavy channel used by Fusi et al. (2015) and Frigaard and Ryan (2004)

heo) :1—900{27r§(x—%ﬂ (4.88)

where 6>0 and 0< @« 1. Figure 4.17 shows the velocity contours for a Bingham plastic
(n=1) with constant rheological parameters (a=£=0) obtained with the values chosen in
Fusi et al. (2015): Bn=0.4762, 6=0.1 and #=0.2. In Fig. 4.18, we zoom in order to compare
with the results of Fusi et al. (2015). Excellent agreement is observed regarding the shape
of the plug region. In all our tests the contours of v, were similar to those reported by Fusi et
al. (2015). This was not the case, however, with the v, contours. Since they intersect the

yield surface, the vy contours of Fusi et al. (2015) are in error.
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(a) (b)

Figure 4.18: Zooms of the yielded region in the case of flow of a Bingham plastic (n=1) with constant

rheological parameters (¢ = f=0) in a wavy channel described by Eq. (4.88) for Bn=0.4762, =0.1
and € =0.2 corresponding to Figs. 3 and 4 in Fusi et al. (2015): (a) v_; (b) v, The unyielded core

is shaded and the contour values are equally spaced.
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Figure 4.19: Effect of the plastic-viscosity growth coefficient on the pressure distribution in the case of flow
of a Bingham plastic (n=1) with constant yield stress ($=0) in a wavy channel described by Eq. (4.88) with

Bn=0.5,0=0.1 and @ =0.2. The plastic viscosity varies linearly with pressure.
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(b)

(c)

Figure 4.20: Effect of the plastic-viscosity growth coefficient on the contours of v _(left) and v (right) in
the case of flow of a Bingham plastic (n=1) with constant yield stress (f=0) in a wavy channel described by
Eq. (4.88) with Bn=0.5, =0.1, and 8 =0.2: (a) a=0; (b) a=1; (c) a=2; The unyielded core is shaded

and the contour values are equally spaced. The plastic viscosity varies linearly with pressure.

Figures 4.19 and 4.20 show respectively the pressure distributions and the velocity
contours for the flows of a Bingham plastic (n=1) with constant yield stress (6=0) and plastic
viscosity varying linearly with pressure when Bn=0.5 and a=0 (constant plastic viscosity), 1, and 2.

As before, the dimensionless pressure decreases with a and the pressure gradient increases in
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magnitude near the inlet and decreases near the exit (Fig. 4.19). However, as shown in Fig. 4.20,
the elevation of the yield surface is essentially the same (in reality, this increases slightly) and so

are the velocity contours.
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Figure 4.21: Effect of the yield-stress growth coefficient on the pressure distribution in the case of flow of a
Bingham plastic (n=1) with constant plastic viscosity (a¢=0) in a wavy channel described by Eq. (4.88) with
Bn=0.5,0=0.1, 8 =0.2, and =-0.2, 0 and 2 (the three curves essentially coincide). The yield stress

varies linearly with pressure.

The results when the yield stress varies linearly with pressure and the plastic viscosity is
constant («=0) seem to follow an opposite trend. Figure 4.21 shows that the dimensionless pressure
distribution is insensitive to £, while the width of the unyielded region increases and the velocity
contours in Fig. 4.22 are re-adjusted accordingly. A more careful look on the magnitude of the
pressure gradient reveals that this is actually reduced near both the inlet and exit and increases in

the middle of the channel as f is increased.
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(b)

(c)

Figure 4.22: Effect of the yield-stress growth coefficient on the contours of v (left) and v (right) in the

case of flow of a Bingham plastic (n=1) with constant plastic viscosity (¢=0) in a wavy channel described by
Eq. (4.88) with Bn=0.5, 6=0.1, and 8 =0.2: (a) p=-0.2; (b) p=0; (c) f=0.2; The unyielded core is

shaded and the contour values are equally spaced. The yield stress varies linearly with pressure.
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4.6 Conclusions

The flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters in a channel
of varying width has been analyzed extending the lubrication approximation model of Fusi et al.
(2015) for a Bingham plastic (n=1). The zero-order problem in terms of the channel aspect ratio
leads to a simple ordinary integro-differential equation for the pressure p(x), which is solved using
standard numerical methods (pseudo-spectral method in the present work). Once the pressure is
obtained the yield surface and the two velocity components are easily calculated by means of
closed-form expressions. Analytical solutions for the special cases of channels of constant and
linearly varying regimes have also been obtained.

The present results generalize those of Fusi et al. (2015) for a Bingham plastic with
constant rheological parameters. The lubrication paradox is avoided and the correct shape of the
yield surface is approximated satisfactorily at zero order. The model predicts that at zero order the
yield surface variation is opposite to that of the wall multiplied by a factor depending only on the
power-law exponent. The pressure dependence of the consistency index and the yield stress affects
only the elevation and not the shape of the yield surface. With previous approaches, such a result is
obtained only if higher-order solutions are calculated (Frigaard and Ryan, 2004).

A limitation of the method is that it is valid, provided that the unyielded region extends
continuously from the inlet to the outlet plane of the channel, i.e. when the plug is not broken. For
example, Balmforth and Craster (1999) studied the broken-plug regime for the thin-film flow down
an inclined plane by means of a consistent thin-layer theory for Bingham plastics. Frigaard and
Ryan (2004) completed their analysis of viscoplastic flow in a channel of slowly-varying width by

considering the structure of the flow after the plug was broken.
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Chapter 5

Lubrication solution of the flow of a
Herschel-Bulkley fluid with pressure-
dependent rheological parameters in

an asymmetric channel

In this chapter we consider a Herschel-Bulkley fluid with the consistency index and the yield stress
being functions of pressure. We also derive analytical lubrication solutions of the flow in the case
of an asymmetric long channel. Further, we consider the cases where firstly, the lower plate is
horizontal, then, where the variable width is symmetrical and finally, the case where the upper wall

function, varies linearly.

5.1 Introduction

In a recent work (Panaseti et al., 2018), we have extended a lubrication approximation method
proposed by Fusi et al. (2015) for solving pressure-driven flow of a Bingham-plastic in a

symmetric channel, in order to solve the flow of a Herschel-Bulkley fluid with pressure-dependent

consistency index k° and yield stress T;. Thus, we have employed the following constitutive

equation
D =0, T <7,
=2 2+ky D, T >,
e
where t° is the viscous stress tensor,
D =—|VV +Vv) 5.2)
SAARIARE

is the rate of deformation tensor, v" is the velocity vector, 5" =+2uD? and ¢ =+/trt” /2

are the magnitudes of 2D" and t°, respectively, and n is the power-law exponent. It should

be noted that throughout this paper, symbols with stars denote dimensional quantities. As
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mentioned above, the consistency index and the yield stress are pressure dependent, such

that
k'(p )=k, fla (p" - py)) (5.3)

and
(P =17, 8 (P = py)) (5.4)
where £, is the consistency index and 7, is the yield stress at the reference pressure p; (assumed

to be the same for both material parameters), and f and g are appropriate functions, such that

f(0)=g(0)=1. For example, f(x)=¢e" and f(x)=1+x describe respectively exponential
and linear variations of the consistency index with pressure, the latter case corresponding to the

Barus formula for the viscosity (Barus, 1893). Function f is increasing while g can be either

decreasing or increasing. The pressure dependence of the yield stress and the viscosity is well
established in the mechanics of granular materials (Ionescu et al., 2015) and in oil-drilling fluids
(Hermoso et al., 2014b). The reader is referred to Panaseti et al. (2018) for a detailed literature
review of experimental data on yield-stress materials with pressure-dependent rheological
parameters.

Fusi et al. (2015) presented a novel technique for modelling the lubrication flow of a
Bingham plastic (with constant rheological parameters) in a two-dimensional channel of non-
uniform thickness. This is based on the application of Reynold’s transport theorem over the
unyielded core. The advantage of the method is that it avoids the lubrication paradox and predicts
at zero order the correct shape of the yield surface, whose behavior is opposite to that of the wall
function, i.e. the width of the unyielded core increases when the channel width is reduced and vice
versa. With other lubrication-approximation methods, the correct shape of the yield surface is
obtained only at higher orders (Frigaard and Ryan, 2004; Putz et al., 2009). A limitation of the
method of Fusi et al. (2015), however, is that it applies only when the unyielded region (plug)
extends continuously from the inlet to the outlet plane, i.e. it is not applicable when the plug is
broken.

More recently, Panaseti et al. (2018) extended the method of Fusi et al. (2015) to solve the
lubrication flow of a Herschel-Bulkley fluid with pressure-dependent consistency index and yield
stress. For the case of a channel of constant width, they demonstrated that the width of the
unyielded core is also constant, despite the pressure dependence of the yield stress, and that the
pressure distribution is not affected by the yield-stress function. They also derived analytical
solutions for certain choices of the functions f and g corresponding to linear or exponential
pressure-dependence of the two rheological parameters. Subsequently, Housiadas et al. (2018)
considered the axisymmetric flow following the approach proposed by Fusi and Farina (2018) and
assuming that both the plastic viscosity and the yield stress vary linearly with the total pressure.

They calculated the total pressure and the radius of the unyielded core solving numerically the
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resulting nonlinear system of an ordinary differential equation and an algebraic one. Their

calculations revealed that the variation of the radius of the central unyielded core depends on the

relative values of @ and S . The latter contracts when £ <a', expands when £ >a', and

remains cylindrical when £ =a . More recently, Fusi (2018) revisited the symmetric planar flow

problem assuming that the flow is driven by a prescribed inlet flux and not by a given pressure
drop. In this case, the mathematical problem is much simpler reducing to a full nonlinear algebraic
equation for the plug speed.

The objectives of the present work are: (a) to apply the method of Fusi et al. (2015) in
order to solve the lubrication flow of a Herschel-Bulkley fluid with pressure-dependent consistency
index and yield stress in an asymmetric channel; and (b) to derive analytical solutions for certain
limiting cases, such as the flow in an asymmetric channel of linearly-varying width.

A prerequisite for the application of the method is the continuous extension of the
unyielded core from the inlet to the outlet plane of the channel. The flow domain is thus divided
into a lower and an upper yielded region and a central unyielded region defined by two unknown
yield surfaces. The governing equations and the lubrication method are presented in section 5.2,
where the zero-order solution is derived semi-analytically, in the sense that closed-form
expressions are obtained for the positions of the upper and lower yield surfaces and for the two
velocity components in terms of the pressure, which is found by solving a first-order integro-
differential equation numerically. In section 5.3, the equations for a symmetric channel are outlined
and the analytical solutions for a flat channel are provided for different functions describing the
pressure-dependence of the consistency index and the yield stress. In section 5.4, we derive
analytical solutions for the case of an asymmetric channel with linearly changing width and for
special forms of the functions describing the variation of the consistency index and the yield stress
with pressure. The symmetric channel constitutes a special case of the derived solution. In section
5.5, representative results demonstrating the effects of the Bingham number and the consistency-
index and yield-stress growth parameters are presented and discussed. Finally, in section 5.6

concluding remarks are provided and some possibilities for further research are discussed.

5.2 Analysis of lubrication flow

Consider the pressure-driven flow of an incompressible Herschel-Bulkley fluid in an asymmetric

long channel of length L' and variable width h,(x)—h (x'), where  (x) and /(x) are the

lower and upper wall functions, respectively, as illustrated in Fig. 5.1.
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Figure 5.1: Geometry and boundary conditions for the dimensional flow in an asymmetric channel of length

L" and variable width /2, (x") =/ (x") . The unyielded core extends from the inlet to the outlet plane and is

bounded by the two yield surfaces 0'1* (x") and (7; (x).

A pressure p; is applied at the inlet of the channel (x" =0) while the pressure at the
exit (x' =L") is p, <p,, i.e., the imposed pressure difference is Ap" =p, —p >0, and
thus the flow is from the left to the right. Without loss of generality, we assume here that p  is
the reference pressure that appears in Egs. (5.3) and (5.4), i.e. pzm = p;. The main flow is in the
x~ direction while the z" —velocity component is zero. Hence, the velocity vector is of the form
V*=vi(x*,y*)i+v;(x*,y*)j. Given the asymmetry of the flow (Fig. 5.1), the yielded and
unyielded regions are separated by two asymmetric interfaces, i.e. y = O'I*(x*) and

y =0,(x)for0<x <L, where 0<h (x')<o,(x)<o,(x")<h(x"). The unyielded

region extends from the inlet to the outlet plane, i.e. the plug is not broken. Let also

* *

Glin = Gl (0) 1 Glout = Gl (L ) ’ GZin = 02 (O) and O-szt = 02 (L )

For convenience, we will work with the dimensionless equations. We assume that the
length L of the channel is much greater than say the channel width or half-width at the inlet H”

(L > H"), and use the aspect ratio

s

e= (5.5)
L

to apply the classical lubrication approximation or thin-film approach (Frigaard and Ryan, 2004).

The flow problem is non-dimensionalised by scaling x by L, y*, hj, and o*l.* by H,

(p'—p.) by Ap, v. by H'(sAp' k)", v; by ¢H (eAp” /ky)"", and the stress
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components by gAp*. The dimensionless forms of the continuity equation and the two

components of the momentum equation are as follows:

_)‘+_y:0 (56)
ox Oy
or,
£ Re v, avx_’_vvﬂ :_a_p_,_g%_,_i (5.7)
Tox T 0oy Ox Ox Oy
82/n+1R€ Vr%'i‘\/,% :_5_p+€2 az—)‘x +g% (58)
“ox 7 oy Oy Ox Oy

where all variables are dimensionless (notice that there are no stars) and Re is the Reynolds

number defined by

*rr3 A 2/n-l
Re=P L AP~ (5.9)
KL

o being the constant mass density of the material. The non-zero components of the stress tensor in

the yielded regime {(x, y):x€[0,1], y€[h,0,]U[0,,h,]1} read:

e ™ 28[&1g—.wp)+f<ap>y‘"'}%
X
Z'vX:|:Bng—.(ﬂp)+f(ap)]}"1j|[%+gz avy} , ye[hl’o'l]u[o.z’hz] (510)
) 4 Oy Ox
= 25[3'1g—.(ﬂm+ f(ap)y‘"*}%
, g ay

where

2 a . 2
= 452(%j N AL (5.11)
ox oy ox

In Eq. (5.10), there appear three dimensionless numbers, the Bingham number Bn and the

consistency-index and yield-stress growth numbers a and 8, which are defined by

Bi=—2" a=d'Ap, B=pAp (5.12)
EAp

It is clear that when £ >0 the dimensionless yield stress is reduced from g(/8)Bn at the inlet plane
to Bn at the exit plane. When £ <0, then the dimensionless yield stress increases from
g(B)Bn to Bn. We thus have the constraint g(f)>0 so that the unyielded core extends
from the inlet to the outlet plane (otherwise the present model is not applicable).

The unyielded core, defined by Q:{(x, y):x€[0,1], ye[al,az]}, moves as a solid, i.e. at a

constant velocity v =v{i+ v; j- Thus,

v,=v;, and v =v; for o,(x)<y<o,(x) (5.13)
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Remark 1. The transverse velocity of the unyielded core becomes zero only in the symmetric case.
For steady-state flow in the absence of body forces, the integral balance of linear
momentum of the whole plug core yields the following equation (Fusi et al., 2015; Panaseti et

al., 2018)

J(: {[—O'ZX(—p +er, )+ T»Jy:oz - I:—O'u (-p+er )+ T}J } dx+(0,,—0,,) Py =0 (5.14)

=0y
where o, =do,/dx, i=1,2. Finally, the dimensionless pressure satisfies the following boundary
conditions:

r0,0,,)=p0,0,,)=1, plo,)=plo,,)=0 (5.15)
The zero-order problem
As in our previous works (Panaseti et al., 2018; Housiadas et al., 2018), we solve the zero-order

problem. For the sake of simplicity, we will avoid introducing new symbols for the zero-order

variables. At zero order, the y-component of the momentum equation is simplified to dp/dy =0

and thus p = p(x). The continuity and x-momentum equations at zero order then read as follows:

M, (5.16)
ox Oy

o, 9% (5.17)
Oox Oy

Moreover, 7 = T, = 0, while the shear stress component is given by

:{Bng(ﬁp)
7

1 | OV,
»x +f(ap)7 1:|8_y, ye[hl’o-l]u[o-z’hz] (518)
In the lower yielded region ¥ = |avx / 8y| =0v,_/ 0y and thus

ov,
y

fyx=Bng(ﬂp)+f(ap)( j ye(h,o] (5.19)

Substituting the above expression into the x-momentum equation (5.17), integrating twice, and

applying the boundary conditions ov_/dy(x,0,)=v (x,h)=0, the following expression is

obtained for Vv, :

NS DA 5.20
vx(x7y) |:1 (O'l _hl)1+1//1:|vx’ ye[hT’O-l] ( )
where

vﬂ ~ (_px) n (O'l _hl)Hl/n (521)

C+1/m) [ @p)
and p_=dp/dx. Similarly, in the upper yielded region where y = |8vx / 8y| =—0v_ /0y the shear

stress is given by
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ov,
y

TyXZ—Bng(ﬂp)—f(ap)(— j , velo,.h] (5.22)

Substituting in the momentum equation, integrating twice, and applying the boundary conditions

ov, /oy(x,0,)=v (x,h)=0,one gets:

(y— )l+l/n .
v (x,y) = {k#} v, yeloyh] (5.23)
where
1/n 1+1/n
vc:(_px) (h’z_o-z) (524)

o +Un) " (ap)

Since the core velocity is constant, the pressure satisfies the first-order ODEs defined by

px _ n+l1 — px _ n+l - _ nyso.c\n 525
f(ap)(al h) —f(w)(h2 o,) (A+1/n)"(v%) (5.25)

The pressure p and the core velocity v, can be determined upon integration and application of
the two conditions for p,

pO)=1 p1H=0 (5.26)
The transverse velocity component in the lower and upper yielded regions is found by integrating

the continuity equation (5.16) and applying the no-penetration boundary condition at the two walls,

Vy(x’hl):Vy(X,hq):OZ

v Ox (5.27)

Substituting v_ from Eq. (5.20) into Eq. (5.27) and carrying out the required differentiation

and integration one gets for the lower yielded region:

c

1+1/n 241/n
_— %+(1+1/”)fhx—(2+1/n)(01—_;] 01x+(1+1/n)(6u—hx)[al_yJ }

Y 2+1/n o,—h o,—h
yelh,o,]
(5.28)
where f, = dh, / dx . The satisfaction of condition v (x,0,)=v{ requires that
o+ (+1/ )k, = Q2+1/n)~> (5.29)
%

Combining Egs. (5.28) and (5.29) and simplifying leads to the following expression for the

transverse velocity in the lower yielded region:

1+1/n
O, —

y y (Gl _hl)2+l/r1

Working similarly in the upper yielded region, one finds that

{A+1/m)(y=h) By ~[o, =k +A+1/m)(y=h)Vi}, yelh,o] (5.30)
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o, + 1+ 1/ m)hy, = (2+1/ ) (5.31)
v

X
and

1+1/n

vy=v;+%{(l+l/n)(@—y)hzxv;—[hz—0'2+(1+1/n)(h,2—y)]v;}, yelo,,h] (5.32)
o,

where h, =dh, /dx .

We still need to find the equations corresponding to the unknown positions of the

two yield surfaces. Since the wunyielded core moves at constant velocity,
v.(y=0,)=v (y=0,) =v,.Equating Egs. (5.21) and (5.24) results in

o, +0,=h+h, (5.33)
Remark 2. Since o, —h = h, —o,, the widths of the lower and upper yielded regions are equal for

any x.
Combining now Egs. (5.29) and (5.31) we get:

O-Zx - O-l)c = _(l_i_lj(hzx u hl:c) (534)
n

Integrating the above equation with respect to x, we get the following expression for the thickness

of the unyielded core:
o,(x)-o,(x)= —(1+1J[h2(x) -h((x)]+C (5.35)
n

where C is an unknown constant to be determined. From the system of Egs. (5.33) and (5.35) we

find that
1 1 C
Gl(x) __E}H(X)-F(I-FEJ}ZZ(X)_E (5.36)
and
1 1 C
_ _— _ = 37
o,(x) (1+ 2njhl()c) 2nh2(x>+ 5 (5.37)

Remark 3. The above results generalize those of Panaseti et al. (2018) for a symmetric channel, in

which case vi =0. The width of the unyielded core increases if the width of the channel

decreases and vice versa. The variation of the width of the unyielded core is enhanced by
shear thinning and is independent of the other material and flow parameters, which affect
only the constant C. As noted in Panaseti et al. (2018), reducing the power-law exponent n
in a converging channel causes the plug to expand faster, which is expected, given that the
velocity profile becomes flatter as shear thinning is enhanced.

Remark 4. From Egs. (5.33) and (5.34) one observes that

1 1
o, = [HEJ b=, (5.38)
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which upon substitution into Eq. (5.29) yields

O et (5.39)
'

[\

Given that the LHS is constant, the solution derived above is valid provided that i _+h, is
constant, or equivalently when the sum £ + 5, is a linear function of x. This condition is

satisfied when the channel is symmetric as well as when both the wall functions are linear.
In the general case, for a given lower wall function the upper wall function must be of the

form

hy(x) ==h(x)+¢x (5.40)
where ¢, is any constant.
Remark 5. If the width of the channel, h,(x)— /A (x), is constant then the two walls are flat
(and parallel) and the width o,(x)—0,(x) of the unyielded core is also constant.

Remark 6. It is easily shown that the constant C is related to the volumetric flow rate through the

channel, for which we have:
hy 91 A hy
0= L v.(x,y)dy= L v.(x,y)dy+(o,— o)V + L v.(x,y)dy (5.41)

Substituting the velocity from Egs. (5.20) and (5.23) for the lower and upper yielded regions and

taking into account that in the unyielded region the velocity is v{ we obtain

o,-o, +{1+1/n)(h, 5.42
0=riale o U lim (it —h)] (542
The expression within the brackets is the constant C of Eq. (5.35). Thus,
_ 0
C=2+1/n= (5.43)
v

X
To determine the constant C, we return to the plug momentum balance equation (5.14), which at

zero order becomes
j(){|: 0-2)5( p)+z-))c:| I:_O-lx(_p)—’—ry)c:L:o_l}dx+(o-2in _O-lin)pin :O (544)
From Eqgs. (5.19) and (5.22) we get

T =Bng(Bp) and 7,
01 y=0,

=—Bng(Bp) (5.45)

Mly=

Substituting into Eq. (5.44), using integration by parts, and applying the boundary conditions
(5.26), we find that

1
IO‘ -0, pdx+2BnIg ,b’p dx 0 (5.46)
0

Substituting Eq. (5.35) into Eq. (5.46) and integrating, one gets

C=2an01g(ﬂp)dx—(1+1/n)j;px(h2—@)dx (5.47)
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or
C =28af) g(ppyds+(1+11m) by, =, + [ (s, 1, ) | (5.48)

Substituting C from Eq. (5.48) into Eq. (5.36) yields
o, =—anlg(ﬂp)dx—ih1 +(1+ijh2 —l(1+1/n)[h[ —h, +J‘lp(h2 —hl)dx} (5.49)
0 2n 2n 2 m m 0 X X

Finally, combining the above equation with Eq. (5.25) we get the following integro-differential

equation

1 1 1 1 y
P, {—Bn‘[og(ﬂp)dx+(l+ﬂj(h? —@)—5(1+1/n)[h2m —hy,+ [, p (B, —hlx)dx}} =K f(ap)

(5.50)
which is subject to conditions (5.26). Once the pressure is calculated, C, o,(x), and o,(x) are

readily calculated from Eqs.(5.48), (5.36), and (5.37), respectively. The two velocity components
can then be calculated by means of Egs. (5.20) and (5.30) in the lower yielded region and Eqgs.
(5.23) and (5.32) in the upper yielded region. The two components of the velocity of the core are

calculated by means of Egs. (5.21) and (5.29). For the latter velocity component, we get:

yo 2 Gt mh, (5.51)
(2+1/n)

The velocity distributions in the asymmetric channel are thus given by:

1‘[%} . yelh.o)
v (x, y)=viq L, yelo,.o,] (5.52)
1+1/n
1{&] eton)
h,—o,
and
((00:1__—2:;2“/,!{(1+1/n)(y_hl)huv§—[o'l—hl+(1+1/n)(y—hl)]v;}’ velh, o]
1
vy(x,y)=v;+ 0, velon.o.]
(y- 0_2)l+1/n ) C
o M (B =) =[h =0+ A1 m =]V} yelonh]

(5.53)

It should be pointed out that in order for the present model to be applied,
Bn, < Bn<Bn_,, where Bn, is the critical value of the Bingham number at which the plug
is broken (o, =0,) and Bn, is the critical Bingham below which flow occurs, i.e. the
Bingham number at which the core touches the walls and the flow ceases. If the plug is
broken, which implies that o, =0, = o at some point x_, then 20 =h +h, and therefore

the plug breaks in the middle of the channel at x = x_. Equation (5.35) then gives:
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C. :(1+%j[h2(xc)—h1(xc)] (5.54)

Substituting the above equation into Eq. (5.48) yields the critical Bingham number below
which the plug is broken:
1 1
| ) =) =y = [ (s, )|

Bn,, = 1 (5.55)
2 & (ﬂp) dx

Now, if o, = at any point x , then o,(x,)=/h,(x,), which implies that the two unyielded
surfaces touch the two walls at the same distance x, downstream. In this case, there is

obviously no flow and Eq. (5.35) gives:

C,= (2 +lj [h,(x,)—h(x,)] (5.56)
n

The second critical value Bn_, above which there is no flow is the critical number at which

there is no flow in a flat channel of width equal to the minimum width of the channel:

Bn, = (lhz_—mm (5.57)
2_[0 8 (ﬂpF )dx

where p,. is the pressure corresponding to flow in the aforementioned flat channel.

5.3 Flow in a symmetric channel

The flow in a symmetric channel constitutes a special case of the flow problem analyzed in section

5.2. Letting

h(x) = —h,(x) = h,(x) (5.58)
and

o(x)=-0,(x)=0,(x) (5.59)
Eq. (5.35) is simplified as follows:

a(x)=_(1+l)h(x>+£ (5.60)
n 2

which also implies that

o +(1+1/n)h =0 (5.61)

Hence, from Eq. (5.29) it is deduced that v{ =0, as expected by symmetry. From Eq. (5.48)

one finds that

%zan(:g(ﬂp)dx-ir(l—irl/n)[hm+J‘Olphx dx} (5.62)
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Finally, from Eq. (5.25) we observe that the pressure satisfies the simplified equation

p, __(+1/m"(vp)" (5.63)
flap) (h—o)™"

After calculating the pressure, the constant C and the location of the yield surface o(x) are
computed via Egs. (5.62) and (5.60), respectively. The velocity above the symmetry plane is then
given by

1, yel0,0]
o 1+1/n (5.64)
—] s y € (0-7 h]
o

where

e (=p) (hmo)™ (5.65)
Y A+1/n) " (ap)

The expressions (5.55) and (5.57) for the two critical Bingham numbers are simplified as follows:

(1+’1J[h(xﬂ)— b, [ ph, dx}

Bn, = | (5.66)
[ 2(Bp)dx
and
Bn,, = IL (5.67)
Io 8 (IBPF )dx

Below we focus on the case of a flat channel with 4 =1 and derive the complete analytical
solutions for various combinations of the functions f and g, which describe the dependence of k
and 7, on pressure. As noted in Panaseti et al. (2018), the yield surface is flat despite the pressure

dependence of the rheological parameters, given by
1
o= anog(ﬂp)dx (5.68)
The pressure satisfies the following first-order integro-differential equation

P __(+1/m'0)" (5.69)
f(ap) (h—o)""

where K' is an unknown constant. Solving the above equation and applying the boundary

conditions (5.26) yields the pressure p(x) and the constant K'. Then o and the velocity

v (x,y) are computed by means of Egs. (5.68) and (5.64), respectively, where

. K!l/n (1 _ O_)Hl/ﬂ

: (5.70)
! 1+1/n
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Table 5.1: Expressions for the pressure p(x), the constant K, and the elevation of the yield surface & for
different forms of the consistency-index growth function f and the yield stress growth function f in the

case of a symmetric planar channel with constant width (/4 =1). The velocity is calculated by means of Eq.

(5.64).

flap)=1
px)=1-x, K'=1
g(Bp)=1 o =Bn

g(Bp)=1+pp a:(1+§j3n

b _
g(ﬂp):eﬂp O':e an

flap)=l+ap

In(1+ @)

1 1-x r_
p(x)z;[(l+a) -1], K'= 3

g(pp)=1 o = Bn

a In(l+a)

g(Bp)=1+pp a=[l—ﬂ{l—;HBn

g(Bp) =€’ No analytical solution

flap)=e”
1 1 1-¢*
:—l s K’:
p) an(l—e"“)x+e_“ a
g(fp)=1 o =Bn
gBp)=1+pp | o _||_Ata+eD) |
ale’ -1)
1 aia Bn, f=a
gppy=e” o= T
1-e
—Bn, f+a
(I-p/la)d-e)

The analytical solutions for f,g €{l,1+x,e"} are tabulated in Table 5.1. It is readily observed
that the pressure is independent of the yield-stress growth function, which affects only the semi-
width o of the unyielded core. It turns out that, there is no analytical solution only when f is
linear and g is exponential. From Eq. (5.68), it is deduced that for flow to occur, it must be o <1,

and thus the critical number below which flow occurs is

1

1 (5.71)
[ 8By

Bn,, =
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It is also evident from Eq. (5.66) that in the case of a flat channel the first critical Bingham

number Bn,, is zero.

5.4 Flow in a channel with linearly-varying upper wall

In this section we consider the flow in a channel described by

h=0, h=1+Ahx (5.72)
where Ah is a constant. It is clear that the upper wall may be diverging (Ah>0), flat (
Ah=0), or converging (Ah<0). The positions of the two yield surfaces (Eqs. (5.36) and
(5.37)) are then simplified as follows:

o,(x)= (1 +ij (1+Ahx) —g (5.73)
2n 2
and
1 C
=——({+Ah — 5.74
o,(x) 2n( +Ahx)+ > (5.74)

Therefore, o,(x) is increasing while o,(x) is decreasing downstream in a diverging channel and

vice versa in a converging channel. As shown in section 5.3 and also in Panaseti et al. (2018), in
the symmetric case of a horizontal channel with two parallel walls, the two yield surfaces are also
horizontal.

In order to simplify the resulting solution expressions for this particular flow, we introduce

a constant A, replacing the constant C by means of

| c
A= [1- o C=2+1/m)(1-AhA 575
Ah( 2+1/nj (2+1/nX ) ©73)

Equation (5.48) for this particular geometry (as described by Eq. (5.72)) gives

241/ n)(1= AhA) = 2an(:g(ﬁp) dx+(1+1/n)(1+Ahj;pdx) (5.76)

which can be written as follows:

1-[2+1/m)A+A+1/n)I(A)|Ah = 2an$ g(Bp)dx (5.77)
where
1A)=] pdx (5.78)
The expressions (5.73) and (5.74) for the two yield surfaces now become:
o,(x) :(1+ij Ah(A+x) (5.79)
2n
and
o,(x) =1—AhA—2iAh(A+x) (5.80)
n
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In this case, the ODE for the pressure (5.25) can be written as

p. ___ K (5.81)
flap) (A+x)"™

where

A+1/n)"(ve)

= (5.82)
(1 + 1 / Zn)rHl (Ah))Hl

It is easily seen that once K' is calculated the velocity of the unyielded core in the x-

direction can be found:

. [a+1/2mAR) " KM
V.=

* 1+1/n

]Hl/n

(5.83)

In the general case, for given functions f and g, the pressure p(x) and the

constant K'can be found by integrating Eq. (5.81) and applying the boundary conditions
(5.26). The constant A is computed numerically solving Eq. (5.77) where the integral of the

RHS as well as I(A) are also computed numerically. Then o, and o, are computed by means
of Egs. (5.79) and (5.80), respectively. The component v is given by Eq. (5.83) whereas from

Eq. (5.29) we get

e o, +A+1/mh, . (A+1/2n)Ah . . AR
_ 1x X _ —
V., = v, = V. = Vv, =—V,
? 2+1/n ’ 2+1/n )

(5.84)

We observe that the ratio v{/v; depends only on A#h, i.e. it is independent of the material

parameters. Finally, the two velocity components in the two yielded regimes are calculated
by means of Eqs. (5.52) and (5.53).

Explicit expressions for the pressure p(x) and the constant K' can be derived when
f is linear or exponential. These expressions are tabulated in Table 5.2. It should be noted
that the effects of the yield-stress growth parameter A and the Bingham number Bn are
incorporated in the value of the constant A. The integral I(A) can be calculated analytically

only for the case f(ap)=1:

A[(A+D)In(1+1/ A)-1],
n=1
I(A) =2 (A+DA+1/ A" —A-n X (5.85)
(n-D[A+1/A)~1] n
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Table 5.2: Analytical solutions for the pressure p(x), the constant K', and vfc for different forms of the

consistency-index growth function f in the case of a channel with linearly varying wall (

h =0, h,=1+Ahx). The constant A is computed numerically solving Eq. (5.77).

, n

1A 1/ (A+D)"

A+1Y
(A+xj !
=1 —\AvxY)
flap) p(x) G+l Ay 1
. n""[(+1/2m)AR] "
V.

A: 1/n
(1+1/n)[1/A"—1/(A+1)"]

K- nln(l+a)/a
1/A"=1/(A+1)"

flap)=1+ap p(x)=

l 1+ a)[(AJrl)n/(A+x)”—l}/[(1+1/A)”71J _1}
a

X

[a+1/20AR] ™" [ nin(+a)/a |
1+1/n 1/A"-1/(A+1)"

. n(l—e’“)/a
1A =1/ (A+D)"

flap)=e™ p(X)=—éln{1—(1—e‘“){(::+ljn—1}/[(1+1/A)”—1J}

+X

X

[a+1/2ma0]™" [ n(1-e*)/a |
+1/n | UA =1/ (A+1)"

An analytical expression for Eq. (5.77) can be derived only in the case of linear g, i.e.

g(Bp)=1+pp:

1-[@+1/ mA+A+1/ ) I(A)] Ak =2Bn[1+ BI(A)] (5.86)

As noted above the unyielded core expands downstream in the case of a converging channel and

contracts in the diverging channel. As a result, the present lubrication method is applicable only in

arange of Ahr values:

(Ah),, < Ah<(Ah),,, (5.87)
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The lower bound is the critical value at which no flow can occur in a converging channel: the

expanding core touches the wall at the outlet and breaks at the inlet plane, i.e. ¢,(0)=1/2 and

o,(1)=0. From Eq. (5.79), we get A=-1 and

Y (5.88)

1+i
2n

The upper bound is the critical value at which the contracting unyielded core in an
expanding channel breaks at the outlet plane while it touches the wall at the inlet plane, i.e.
0,(0)=0 and o,(1) = (1+Ah)/2. In this case, Eq. (5.79) yields A=0 and

1
1+1/n

(5.89)

(Ah)max =

In Bingham-plastic flow (n=1), -2/3<Ah<1/2.
Critical Bingham numbers
In the case of a diverging channel (Ah>0), o,(x) is increasing while o,(x) is decreasing

downstream. Therefore, the plug breaks at x, =1 and C, = (1+1/n)(1+ Ah) , which gives

“T (2+1/n)Ah

The first critical Bingham number is given by

Bn“:(1+1/n)Ah(1 1) (5.91)
I (Bp)dx
where
1. =1(A)= jol p.(x)dx (5.92)

The flow stops when the two yield surfaces touch the wall at the inlet plane, x, =0. In this case,

C,=2+1/n,which gives A =0. For the second critical Bingham number we get:

N S (5.93)
f (Bp;)d

where p, is the pressure corresponding to a flat channel. It should be noted that the

integrals Jolg(ﬂpF)dx have been already calculated in Table 5.1, in order to derive the

analytical expressions for the yield point o. By means of Eq. (5.68), these can simply be

deduced from Table 5.1 as the ratios ¢/ Bn. For example, when f=g=1+x,

X g(ﬂpF)dx=1—ﬂ[l—%} (5.94)

a In(l+a)

and therefore
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Bn., = 1 (5.95)

< 1 1
2{1_'B[a_ln(1+a)}}

Similarly, for a converging channel (Ah<0), o,(x) is decreasing while o,(x) is increasing and

thus the plug breaks at x, =0, C, =1+1/n and

2

A= (5.96)
(2+1/m)Ah

Hence

_ A+1/n)(-Ah)I, (5.97)

Bn ;
2 Og(ﬂp)dx

cl

The flow stops when the two yield surfaces touch the wall at the exit plane, x, =1, which yields

C,=(2+1/n)(1+Ah) and A =-1. Finally, the second critical Bingham number is given by:

Bn,=— AR (5.98)
Zjo 8 (IBPF )dx

5.5 Numerical results

All the results of this section have been obtained solving numerically Eq. (5.50) by means of
forward finite differences and considering only the Bingham-plastic case (n=1) with the rheological
parameters depending linearly on pressure. The interval [0,1] has been partitioned using 1001
nodes. In the case of a linearly varying channel, the numerical results compare well with the semi-
analytical solution derived in Section 5.4. It should be noted that the latter solution requires the
numerical solution of Eq. (5.77) for the constant A, which is not a straightforward task. In the case
of linear g, we experimented with an iterative calculation of this constant by means of

1+ 2Bn| 1+ BI(A™) |- (1+1/ m)I(A™ ) Ah

2+1/n

AU

, m=0,1-- (5.99)

which is obtained by re-arranging Eq. (5.86). The numerical experiments showed that the above

iterative method works very well except only when the Bingham number approaches Bn, .

However, in these flows the numerical method also encounters difficulties due to the very
high pressure gradients in the regions where the unyielded core approaches the wall. These

are resolved by considering a finer partition of the flow domain.
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Figure 5.2: Critical Bingham numbers for Bingham flow (n=1) in an asymmetric converging channel (

h =0, h,=14+Ah, Ah<0)for a =0 (pressure-independent plastic viscosity).
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Figure 5.3: Critical Bingham numbers for Bingham flow (n=1) in an asymmetric diverging channel

(h =0, h,=14+Ah, Ah>0)for a =0 (pressure-independent plastic viscosity).

In Fig. 5.2 we plotted the critical Bingham numbers versus the yield-stress growth

parameter S for different values of Ak in the case of flow of a Bingham fluid (n=1) with

pressure-independent plastic viscosity (o =0) in a converging channel (Ah<0). It can be

observed that the window of the method’s applicability becomes narrower as Ak tends
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towards the critical value of -2/3. This is also true for flow in a diverging channel, as

illustrated in Fig. 5.3. However, Bn, is independent of A#h, as indicated also by Eq.
(5.93). We can see in Figs. 5.2 and 5.3 that as Ah goes to zero (flat channel) Bn, tends to

Z€ro.

0 A L L 1
0 0.2 0.4 0.6 0.8 1

X

Figure 5.4: Pressure distribution in Bingham flow (n=1) in an asymmetric linearly varying channel with

pressure-independent rheological parameters (a = # = 0 ) and Bn=0.2 for different values of A#h.

Figure 5.4 shows the pressure distributions for Bn=0.2, a = =0, and different values

of Ah. The pressure is linear in the case of a flat channel. In a converging channel, the pressure
distribution is concave and the pressure gradient tends to zero at the inlet and to infinity at the
outlet as Ak approaches the critical value of -2/3 at which the unyielded core touches the wall at
the outlet plane and the flow ceases. In a diverging channel, the pressure distribution is convex and
the pressure gradient tends to zero at the outlet and to infinity at the inlet as Ak approaches the
critical value of 1/2 at which the unyielded core touches the wall at the inlet plane and the flow
ceases. The velocity contours for the three geometries considered in Fig. 5.4 are given in Fig. 5.5,
where the shaded regions correspond to the unyielded core. In all the contour plots presented here,

19 equidistant contour lines are drawn.

As dictated by the analysis of the previous sections, the unyielded core in a flat channel is
flat and converges in a diverging channel and vice versa. It should be noted that the horizontal

velocity of the core is 0.0600, 0.045, and 0.030 for AZ=0.2,0 and -0.2, respectively, whereas the

corresponding values of the transverse velocity are 0.0060, 0, and -0.0030, as dictated by Eq.
(5.84). The absence of transverse velocity contour lines above the unyielded core indicates that the

variation of this component is small in this region.
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(b)

(0

Figure 5.5: Effect of A/ on the contours of the two velocity components (U, in the left and u y in the right

column) in a linearly varying channel for Bn=0.2, n =1 (Bingham plastic), and @ = f# =0 (constant
plastic viscosity and yield stress): (a) Ah=0.2 (diverging channel); (b) Ah=0 (flat channel); (c)

Ah =—-0.2 (converging channel). The unyielded region is shaded.
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Figure 5.6: Inlet (a) and outlet (b) velocity profiles in the case of flow of a Bingham plastic (n=1) in linearly
diverging channel with AZ=0.2 when Bn=0.2 and & = # =0 (constant plastic viscosity and yield

stress).

Indeed, the distributions of » are characterized by a global extremum in the aforementioned

region which is slightly higher than the positive core velocity in the diverging channel (Fig. 5.6)
and slightly lower than the negative core velocity in the converging channel (Fig. 5.7). Note that
Figs. 5.6 and 5.7 show the profiles of the two velocity components at the inlet and the outlet planes.

The effect of the Bingham number on the pressure distribution in the case of a converging
channel with Ak =-0.2 is illustrated in Fig. 5.8. Again, the rheological parameters are assumed to

be pressure independent (¢ = #=0). As the Bingham number increases from Bn = Bn_ =0.1118
towards Bn_, =0.4 the pressure gradient tends to zero near the inlet and to infinity near the exit.

The velocity contours for Bn = Bn_,, 0.25 and 0.35 are given in Fig. 5.9.
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Figure 5.7: Inlet (a) and outlet (b) velocity profiles in the case of flow of a Bingham plastic (n=1) in linearly
converging channel with Al =—0.2 when Bn=0.2 and & = f# =0 (constant plastic viscosity and yield

stress).
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Figure 5.8: Pressure distribution in Bingham flow (n=1) in an asymmetric converging channel with

Ah=-0.2 for various Bingham numbers and « = =0 (pressure-independent rheological

parameters).
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(0

Figure 5.9: Effect of the Bingham number on the contours of the two velocity components (4, in the left

and u,, in the right column) in a linearly channel for Ah = —0.2, n =1 (Bingham plastic), and & = =0

(constant plastic viscosity and yield stress): (a) Bn=Bn, =0.1118; (b) Bn=0.25; (c) Bn=0.35.

The unyielded region is shaded.
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X

Figure 5.10: Pressure distribution in Bingham flow (rn=1) in an asymmetric converging channel with

Ah=-0.2, for Bn=0.25, constant yield stress ( 8 = 0 ) and different values of «.

The effect of the plastic-viscosity growth number « for Bn=0.25 and S =0 on the

pressure distribution is illustrated in Fig. 5.10. The values of a were taken to be rather
high in order to magnify the effect of the parameter. As « increases, the pressure
distribution tends to become linear while the unyielded core expands slightly, as can be
observed in Fig. 5.11, where the velocity contours are also shown.

The effect of the yield-stress growth number S for Bn=0.25 and a=01is
illustrated in Fig. 5.12. Again, rather high values of A are used, in order to enhance the
differences. The effect of A is similar to that of the Bingham number, i.e. the pressure
gradient increases very rapidly near the exit plane and the unyielded core expands to
eventually touch the walls at the exit (Fig. 5.13).

Results have also been obtained for geometries with non-linear wall functions. Figures 5.14
and 5.15 show results obtained in a channel with the following wall functions:

h(x)=0.02sin(27x), h,(x)=1-0.02sin(27x)—-0.2x (5.100)
These results have been obtained for Bn=0.2, a=0 and three values of the yield-stress
growth coefficient, i.e. #=0,0.5,and1. The pressure distributions are similar to those
obtained for a linearly converging slide. However, the transverse velocity contours exhibit
more interesting features. This is also the case with similar geometries, such as that with

h(x)=0.1sin(2zx), h,(x)=1-0.1sin(27x)—-0.2x (5.101)
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(b)

(V]

Figure 5.11: Effect of & on the contours of the two velocity components (%, in the left and u, in the right

column) in a converging channel (Al =—0.2) for Bn=0.25, n=1(Bingham plastic), /=0 (constant

yield stress): (a) a =0 (constant plastic viscosity); (b) & =1; (c) @ =10. The unyielded region is
shaded.
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X

Figure 5.12: Pressure distribution in Bingham flow (r#=1) in an asymmetric converging channel with

Ah=-0.2, for Bn=0.25, constant plastic viscosity (« = 0 ) and different values of 2.

The results in Figs. 5.16 and 5.17 have been obtained for £ =0,0.2,and 0.4 . It can be

observed in Fig. 5.17, where the unyielded core is shown together with the velocity

contours, that the value of the Bingham number (Bn=0.2) is close to Bn, when =0 and
gets closer to Bn, when £ =0.4, which simply means that the range of Bingham numbers

in which the method is applicable is reduced with the yield-stress growth parameter.

Recall, however, that the values of B have intentionally been chosen to be high in order to

enhance the effects of this parameter.
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(b)

(V]

Figure 5.13: Effect of /3 on the contours of the two velocity components (U, in the left and u, in the right

column) in a converging channel (Ah =—-0.2) for Bn=0.25, n =1 (Bingham plastic), & =0 (constant

plastic viscosity): (a) =0 (constant yield stress); (b) f=0.2; (c) f=0.5. The unyielded region is
shaded.
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Figure 5.14: Pressure distribution in Bingham flow (n=1) in an asymmetric converging channel described by

Eq. (5.100) for Bn=0.2, constant plastic viscosity (o =0)and g =0,0.5 and 1.
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Figure 5.15: Effect of £ on the contours of the two velocity components (%, in the left and u, in the right

column) in an asymmetric channel described by Eq. (5.100) for Bn=0.2, n =1 (Bingham plastic) and
o =0 (constant plastic viscosity): (a) =0 (constant yield stress); (b) F=0.5; (c) f=1. The

unyielded region is shaded.
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Figure 5.16: Pressure distribution in Bingham flow (n=1) in an asymmetric converging channel described by

Eq. (5.101) for Bn=0.2, constant plastic viscosity (¢ =0 ) and g =0, 0.2 and 0.4.
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Figure 5.17: Effect of £ on the contours of the two velocity components ( %, in the left and u, in the right

column) in an asymmetric channel described by Eq. (5.101) for Bn=0.2, n=1(Bingham plastic) and
o =0 (constant plastic viscosity): (a) =0 (constant yield stress); (b) f=0.2; (c) f=0.4. The

unyielded region is shaded.
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5.6 Conclusions

We have extended the lubrication approximation method of Fusi et al. (2015) to analyze the flow of
a Herschel-Bulkley fluid with pressure-dependent rheological parameters in a long, asymmetric
channel described by two wall functions, under the assumption that the unyielded core extends
from the inlet to the outlet plane of the channel. At zero order, the pressure obeys a first-
order integro-differential equation, which is numerically solved in the general case. Then
the positions of the yield surfaces as well as the two velocity components are calculated via
closed-form analytical expressions. The applicability of the method is restricted to

channels where the sum 7 (x)+h,(x) is a linear function of x and for Bingham numbers

between the two critical values corresponding to the breaking of the plug region and to the
complete cessation of the flow.

Our analysis revealed that unlike the symmetric case, the transverse velocity of the
unyielded core is nonzero. Moreover, the widths of the lower and upper yielded regions are equal
for any x and increase with the width of the channel, which implies that the width of the
unyielded core increases if the width of the channel decreases and vice versa. The variation
of the width of the unyielded core is enhanced by shear thinning and is independent of the
other material and flow parameters.

Currently, we are exploring the possibility of applying the present model to non-inertial
flows of single-phase yield-stress fluids along an asymmetric fracture (Roustaei et al., 2016) and to

the upstream flow in sheet- or wire-coating (Denn, 2008).
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Chapter 6

Summary and recommendations for

future work

The main objectives of this thesis were the following:

V To solve the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip,
in order to determine the critical conditions for the transition to different flow regimes when the
degree of confinement varies, in an attempt to interpret experimental data.

V To review an extension of Philippou et al. (2016) to the case of viscoplastic flow and
investigate the development of the flow in the particular case of a channel with slip only along one
wall (asymmetric flow).

V To extend the lubrication method of Fusi et al. (2015) and derive an approximate semi-
analytical solution of both planar and axisymmetric flow of a Herschel-Bulkley fluid with a general
wall function and pressure-dependent yield stress and consistency index.

V To derive analytical lubrication solutions of a Herschel-Bulkley fluid with a general wall
function and pressure-dependent yield stress and consistency index, in the case of an asymmetric

long channel.

In Chapter 2, the steady, pressure-driven flow of a Herschel-Bulkley fluid in a
microchannel was considered assuming that different power-law slip equations apply at the two
walls due to slip heterogeneities, allowing the velocity profile to be asymmetric. Three different
flow regimes were observed as the pressure gradient was increased. The extension of the different
flow regimes depends on the channel gap; in particular the intermediate asymmetric flow regime
dominates when the gap becomes smaller than a characteristic length which incorporates the wall
slip coefficients and the fluid properties. The theoretical results compared well with available
experimental data on soft glassy suspensions. These results open new routes in manipulating the
flow of viscoplastic materials in applications where the flow behavior depends not only on the bulk

rheology of the material but also on the wall properties.
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In Chapter 3, the flow development of a Herschel-Bulkley fluid in a horizontal channel was
subsequently considered assuming that slip occurs only on the upper wall due to slip
heterogeneities. Hence, the velocity profile was allowed to be asymmetric as was the case in recent
experiments on softy glassy suspensions (Vayssade et al., 2014). A power-law slip equation was
employed, which generalizes the Navier-slip law. The one-dimensional fully-developed solutions
were derived and the different flow regimes were identified. The two-dimensional development
flow was solved numerically using finite elements along with the Papanastasiou regularization for
the constitutive equation. Numerical results were presented for two values of the power-law
exponent, i.e. n=1 (Bingham plastic) and n=1/2 (Herchel-Bulkley fluid). It was demonstrated that
the global development length increases with the Bingham number and that flow development was
slower near the no-slip wall. The global development length increases with slip exhibiting two
plateaus and an intermediate rapid increase zone and doubles in the limit of infinite slip.

Furthermore, in Chapter 4, the lubrication flow of a Herschel-Bulkley fluid in a symmetric
long channel of varying width was modeled extending the approach proposed by Fusi et al. (2015)
for a Bingham plastic. Moreover, both the consistency index and the yield stress were assumed to
be pressure-dependent. With the present model, the pressure was calculated numerically
solving an integro-differential equation and then the position of the yield surface and the
two velocity components were computed using analytical expressions. Some analytical
solutions were also derived for channels of constant and linearly-varying widths. The
lubrication solutions for other geometries were calculated numerically. The implications of the
pressure-dependence of the material parameters and the limitations of the method were discussed.

In Chapter 5, our investigation was extended to an asymmetric channel. The lubrication
flow of a Herschel-Bulkley fluid in a long asymmetric channel was solved extending the method of
Fusi et al. (2015), which avoids the lubrication paradox approximating satisfactorily the correct
shape of the yield surface at zero order. Both the consistency index and the yield stress were
assumed to be pressure-dependent. An interesting feature of the asymmetric flow was that the
unyielded zone moves not only in the main flow direction but also in the transverse
direction. The two velocity components in both the yielded and unyielded regions were
calculated by means of closed-form expressions in terms of the calculated pressure and the
two yield surfaces.

As a continuation of the particular thesis, new routes in manipulating the flow of
viscoplastic materials in applications can be opened. In that case, the flow behavior depends not
only on the bulk rheology of the material but also on the wall properties. Changing the particle-wall
interactions and topography, the flow can be manipulated and different velocity profiles can be
derived, something that is important in real situations (e.g. oil migration in porous media, inkjet
printing). Additionally, an interesting issue that can be also studied is the accurate determination of
yielded and unyielded regions in viscoplastic flow development. Furthermore, the method studied

in Chapter 4 can be extended to the axisymmetric flow, which is more important in applications.
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Even though Housiadas et al. (2018) considered the axisymmetric flow following the approach of
Fusi and Farina (2018), they have not studied the case of converging or diverging tubes. Currently,
we are exploring the possibility of applying the present model to non-inertial flows of single-phase
yield-stress fluids along an asymmetric fracture (Roustaei et al., 2016) and to the upstream flow in

sheet- or wire-coating (Denn, 2008).
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