
Department of Electrical and Computer Engineering

Parallel Fault Simulation and Test Generation Automation
Processes for Chip Multiprocessors

Stavros Hadjitheophanous

A Dissertation Submitted to the University of Cyprus in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy

July, 2018

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

© Stavros Hadjitheophanous, 2018

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

VALIDATION PAGE

Stavros Hadjitheophanous

Parallel Fault Simulation and Test Generation Automation Processes for Chip

Multiprocessors

The present Doctorate Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy in the Department of Electrical and Computer Engi-

neering, and was approved on July 20, 2018 by the members of the Examination Committee.

Committee Chair
Dr. Chrysostomos Nicopoulos

Research Supervisor
Dr. Maria K. Michael

Committee Member
Dr. Theocharis Theocharides

Committee Member
Dr. Xrysovalantis Kavousianos

Committee Member
Dr. Stelios N. Neophytou

iii

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

iv

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original

work of my own, unless otherwise mentioned through references, notes, or any other state-

ments.

v

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

vi

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Περίληψη

Ζούμε στη εποχή των αρχιτεκτονικών πολλαπλών πυρήνων όπου προϊόντα καθημερινής χρή-

σης όπως τα έξυπνα τηλέφωνα, wearable’s, τάμπλετς ακόμα και αυτοκίνητα εμπεριέχουν

ολοκληρωμένα κυκλώματα πολλαπλών πυρήνων. Ο αριθμός των ενσωματωμένων πυρήνων

ποικίλει από μερικές δεκάδες σε συσκευές χαμηλών προδιαγραφών σε μερικές εκατοντά-

δες στους υπερυπολογιστές. Η διαχρονική σμίκρυνση της τεχνολογίας και οι προβλέψεις για

ακόμα περεταίρω αύξηση στον αριθμό των πυρήνων ανα τσιπ έχουν θέσει του πολυπύρηνους

επεξεργαστές στο επικέντρο του ενδιαφέροντος από διάφορα ερευνητικά προγράματα.

Οι πολύ-επεξεργαστές έχουν την δυνατότητα να εκτελούν πολλαπλές εντολές παράλληλα

σε διαφορετικούς πυρήνες μειώνοντας σημαντικά τον συνολικό χρόνο εκτέλεσης του προ-

γράμματος. Επιπρόσθετα, προσφέρουν μεγάλη επεξεργαστική δύναμη, γρήγορη και ομοιό-

μορφη πρόσβαση ενσωματωμένης μνήμης και έξυπνους μηχανισμούς ενδο-επικοινωνίας με-

ταξύ των πυρήνων και αποφυγής συγκρούσεων στην κοινή μνήμη (sharedmemory coherency)

καθιστώντας τους ιδανικούς για πολλές εφαρμογές όπως εφαρμογές επεξεργασίας ψηφιακού

σήματος, ενσωματωμένων συστημάτων, δικτύων, μονάδων επεξεργασίας γραφικών (GPUs)

και πολλά αλλά.

Θεμελιώδης και επεξεργαστικά δύσκολα προβλήματα αυτόματου έλεγχου όπως το πρό-

βλημα της προσομοίωσης σφαλμάτων (fault simulation) και παραγωγής διανυσμάτων δο-

κιμής (test generation) μπορούν να εκμεταλλευτούν τις τελευταίες εξελίξεις στο τομέα των

πολυπύρηνων επεξεργαστών για να προσφέρουν πιο αποτελεσματικές λύσεις. Η δομή των

αλγορίθμων αλλά και η στοχευμένη εκτέλεση των προγραμμάτων μπορούν να επηρεάσουν

σημαντικά τη απόδοση των πολυεπεξεργαστών. Σύμφωνα με τον νόμο του Amdahl η επιτά-

χυνση που επιτυγχάνετε μέσω του παραλληλισμού είναι άμεσα συνδεδεμένη με το ποσοστό

του κώδικα που μπορεί να παραλληλοποιηθεί.

Για την παραλληλοποιήση βασικών προβλήματων αυτόματου ελέγχου οι μηχανικοί έχουν

την τάση να βασίζονται σε εκλεπτυσμένους μεταγλωττιστές και αυτόματα εργαλεία παραλ-

ληλοποίησης κώδικα τα οποία δεν εκμεταλλεύονται πλήρως τους επεξεργαστικούς πόρους

vii

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

της εκάστοτε αρχιτεκτονικής. Τα συγκεκριμένα προβλήματα λόγω την αυξημένης τους πο-

λυπλοκότητας και της δυναμικής τους φύσης είναι πολύ δύσκολο να προβλεφθεί η ροή εκτέ-

λεσης τους και ως αποτέλεσμα οι μεταγλωττιστές και τα αυτόματα εργαλεία παραλληλο-

ποίησης του κώδικα δεν μπορούν να δουλέψουν αποδοτικά και συχνά καταλήγουν σε μη-

βέλτιστες λύσεις.

Οι ευκαιρίες που προσφέρονται από την εξέλιξη των πολυπύρηνων επεξεργαστών δη-

μιουργούν μεγαλύτερες προκλήσεις για την παραλληλοποίηση δύσκολων προβλημάτων αυ-

τόματου έλεγχου. Διάφοροι παραδοσιακοί αλγόριθμοι θα πρέπει να ξανασχεδιαστούν λαμ-

βάνοντας υπόψη όλα τα πλεονεκτήματα και μειονεκτήματα που προσφέρονται από τη ανά-

πτυξη των πολυπύρηνων επεξεργαστών. Αυτή η διατριβή μελετά την επίδραση που έχει ο

διαχωρισμός του φόρτου εργασίας κατά την παραλληλοποίηση δύσκολων προβλημάτων αυ-

τόματου ελέγχου ο οποίος μπορεί να έχει σημαντική επιρροή στην αποδοτικότητα αλλά και

στην ποιότοιτα των αποτελεσμάτων τους. Επιπρόσθετα αναλύονται διάφορες μεθόδοι πα-

ραλληλοποίησης οι οποίες στοχεύουν να βελτιώσουν σημαντικά την απόδοση των προβλη-

μάτων προσομοίωσης σφαλμάτων (fault simulation) και παραγωγής διανυσμάτων δοκιμής

(test generation), βασισμένοι στις πολυπύρηνες ομογενείς αρχιτεκτονικές κοινής μνήμης. Οι

προτεινόμενες μέθοδοι είναι ικανές να διατηρούν την επεκτασιμότητα τους καθώς αυξάνετε

ο αριθμός των επεξεργαστών που χρησιμοποιούνται καθώς επίσης να διατηρούν και την καλή

ποιότητα των αποτελεσμάτων. Επίσης, η διατριβή προτείνει μια τροποποιημένη παράλληλη

μέθοδο την παραγωγή διανυσμάτων δοκιμής για το πρόβλημα των πολλαπλών ανιχνεύσεων

(n-detect) test set. Τα αποτελέσματα των πειραμάτων επιβεβαιώνουν τις μεγάλες δυνατότη-

τες των προτεινόμενων λύσεων.

Επιπρόσθετα, η παρούσα διατριβή μελετά αλγόριθμους για την βελτίωση της αξιοπιστίας

σε μικρό-επεξεργαστές πολλαπλών πυρήνων (CMP). Η παρατεταμένη καταπόνηση ενός συ-

γκεκριμένου μέρους των επεξεργαστών πολλαπλών πυρήνων συνδέεται με τη αυξανόμενη

ευαισθησία στην φθορά. Ενώ μια αποτυχία σε ένα τμήμα του τσιπ μπορεί να μην είναι απα-

ραιτήτως καταστροφική για ολόκληρο το σύστημα, εντούτοις, ακόμη και μια απλή φθορά

σε ένα κρίσιμο μονοπάτι για παράδειγμα σε συστήματα δίκτυων σε τσιπ (NoC) ή σε ένα

από τους επεξεργαστές πυρήνα μπορεί να θέσει εκτός λειτουργιάς ολόκληρο το CMP. Διά-

φορα διανύσματα δοκιμής μπορούν να δημιουργηθούν κατά την διάρκεια του σχεδιασμού

του CMP και μπορούν να εφαρμοστούν κατά τη διάρκεια αδράνειας της λειτουργιάς του για

να βοηθήσουν στην παράταση της διάρκειας ζωής του. Στην παρούσα διατριβή παρουσιάζε-

ται μια νέα τεχνική παραγωγής διανυσμάτων δοκιμής (exercise vectors) βασισμένη κυρίως

σε τεχνικές αυτόματης παραγωγής διανυσμάτων δοκιμής (ATPG) η οποία μπορεί να παράξει

viii

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

ένα μικρό αριθμό διανυσμάτων που βοηθούν στην βελτίωση της αξιοπιστίας των CMP.

ix

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

x

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Abstract

Electronic devices are experiencing the era of multi-core architectures where even everyday

life products like smartphones, wearables, tablets or even cars, houses many processors in a

single chip. The number of processing units called cores are increasing from tens for low-

end devices to hundreds in supercomputers. Technology shrinking, as well as the industry

trends and the market size forecasts, suggest that those numbers will continue to grow. Multi-

cores processors have the ability to run multiple instructions on different processing units

at the same time and as a result to speed-up the overall execution time. Also, they offer

a huge amount of processing power, fast and uniform on-chip memory, advance inter-core

communication methods and shared memory coherency that can be utilized by a variety of

application domains such as general-purpose computers, digital signal processing, embedded

systems, networks and GPUs.

Computationally intensive fundamental test automation problems such as fault simula-

tion and test generation can benefit from those developments. However, the performance

gained by the use of multi-cores is wildly depended on the software algorithms used and the

corresponding implementation. Based on Amdahl’s law the limitation on the speed-up gain

is strongly related to the percentage of the software that can concurrently run on multiple

processing units. Engineers opt to rely on automatic parallelization tools consisting of so-

phisticated schedulers and compilers for the parallelization of the test automation problems

which can limit the efficiency of the parallelized processes. Due to the complexity and the

dynamic nature of those processes general purpose automatic parallelization tools cannot pre-

dict a priori the execution flow of the test automation algorithms, thus they can lead to local

optimal solutions.

All those new potentials open up a significant research topic focusing around paralleliza-

tion of fundamental test automation processes, where traditional algorithms are re-visited

taking into account all the new challenges. The present thesis investigates the impact of

partitioning in parallel test automation processes which can significantly enhance the perfor-

xi

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

mance of fault simulation and test generation processes by utilizing parallelization concepts

for shared memory on-chip homogeneous architectures. The developed methods are able

to maintain the scalability of the algorithms as the number of processing cores utilized is

increased and at the same time avoid the test inflation problem. The parallel test pattern

generation methodology is also extended to generate multiple-detect (n-detect) test sets. Ex-

perimental results validate the great potentials from the parallelization of the test automation

processes.

Moreover, the thesis investigates algorithms for the improvement of the reliability in

chip-multiprocessors (CMPs). Prolonged operational stress of a specific part of the logic

is linked with increased susceptibility to wearout and failures. While a failure in a part of

the chip might not be necessarily catastrophic for the whole system, even a single failure in a

critical component like the inter-processor Network-on-Chip (NoC) fabric or core processor

can cause a severe problem in CMP. Exercise vectors can be generated in the design phase,

stored and utilized by CMP during idle times to prolong its lifetime. The thesis presents

a novel vector generation technique based on ATPG techniques that generates a compact

number of vectors that can improve the CMPs reliability.

xii

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Acknowledgments

Probably the hardest part of the thesis because it brings so many thoughts, feelings, memories

about the whole journey. A journey that definitely taught me a lot and hopefully it will

continue to do it in the upcoming journeys. Anything that I would write for my advisors Dr.

Maria Michael and Dr. Stelios Neophytou will not be enough to express my gratitude, so I

will only write a huge thank you!, for everything!.

Also, I would like to acknowledge University of Cyprus and ’KIOS Research and Innovation

Center of Excellence’ for providing an ideal environment for my studies. A special thanks

to my colleagues for their inspiration and support all this time. I will not name each one

of them since the contribution from everyone either small or big was important for me and

deeply appreciated.

Last but not least, I would like to thank my friends and family, for believing in me and with

their endless encouragement I was able to reach to the point of defending my Ph.D. Mary and

Sofocle hope that I will be able to offer everything you did and doing for me and Nicolas, to

my children someday. Zoe this is for you, for all the patience you had all this time and for

making our life more beautiful, let’s enjoy it. Thank you.

xiii

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

xiv

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Publications

Thesis Journal Articles

1. S.Hadjitheophanous, S. N.Neophytou andM.K.Michael, “Exploiting Shared-Memory

to Steer Scalability of Fault Simulation using Multicore Systems”, accepted for pub-

lication, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), pp.1-14, July 2018, doi:10.1109/TCAD.2018.2855131.

2. H. Kim, S. B. Boga, A. Vitkovskiy, S. Hadjitheophanous, P. V. Gratz, V. Soteriou and

M. K. Michael, “Use it or Lose it: Proactive, Deterministic Longevity in Future Chip

Multiprocessors”, in ACM Transactions on Design Automation of Electronic Systems

(TODAES), vol.20, no.4, pp.1-26, Sept. 2015, doi:10.1145/2770873.

Thesis Conference Papers

1. P. M. Reddy, S. Hadjitheophanous, V.Soteriou, P. V. Gratz and M. K. Michael, “Min-

imal Exercise Vector Generation for Reliability Improvement”, in IEEE On-Line Test-

ing and Robust System Design (IOLTS), pp. 113-119, July 2017,

doi:10.1109/IOLTS.2017.8046205.

2. S. Hadjitheophanous, S. N. Neophytou and M. K. Michael, “Scalable Parallel Fault

Simulation for Shared-Memory Multiprocessor Systems”, in IEEE VLSI Test Sympo-

sium (VTS), pp.1-6, April 2016, doi:10.1109/VTS.2016.7477313.

3. S. Hadjitheophanous, S. N. Neophytou and M. K. Michael, “Utilizing Shared Mem-

ory Multi-cores to Speed-up the ATPG process”, in IEEE European Test Symposium

(ETS), pp.1-6, May 2016, doi:10.1109/ETS.2016.7519328.

4. S. N. Neophytou, S. Hadjitheophanous and M. K. Michael, “On the Impact of Fault

List Partitioning in Parallel Implementations for Dynamic Test Compaction Consid-

ering Multicore Systems”, in IEEE International Design & Test Symposium (IDT),

pp.1-6, Dec. 2013, doi:10.1109/IDT.2013.6727082.

xv

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

5. I. Voyiatzis, S. N. Neophytou, M. K.Michael, S. Hadjitheophanous, C. Sgouropoulou

and C. Efstathiou, “Test set embedding into accumulator-generated sequences targeting

hard-to-detect faults”, in IEEE International Design & Test Symposium (IDT), pp.1-2,

Dec. 2013, doi:10.1109/IDT.2013.6727147.

Thesis Unpublished Journal Articles

1. S. Hadjitheophanous, S. N. Neophytou and M. K. Michael, “Maintaining Scalability

of Test Generation in Multi-core Shared Memory Systems”, in IEEE Transactions on

Very Large Scale Integration Systems (TVLSI), pp.1-12, submitted in July 2018.

2. P. M. Reddy, S. Hadjitheophanous, V.Soteriou, P. V. Gratz and M. K. Michael, “Ex-

ploiting Minimal Exercise Vector Generation Methods for Enhancing Reliability of

Multiprocessors”, in IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems (TCAD), pp.1-10, to be submitted, 2018.

Other Related Publications

1. T. Charalambous, E. Klerides, W.Wiesemann, A. Vassiliou, S. Hadjitheophanous and

K. M. Deliparaschos, “On the Minimum Latency Transmission Scheduling in Wire-

less Networks with Power Control under SINR Constraints”, in IEEE Transactions on

Emerging Telecommunications Technologies (ETT), vol.26, no.3, pp.367-379, March

2015, doi:https://doi.org/10.1002/ett.2616.

2. C. Ttofis, S. Hadjitheophanous, A. S. Georghiades and T. Theocharides, “Edge-

Directed Hardware Architecture for Real-Time Disparity Map Computation”, in IEEE

Transactions onComputers (TC), vol.62, no.4, pp.690-704, Jan. 2012, doi:10.1109/TC.2012.32.

3. S. Hadjitheophanous, C. Ttofis, A.S. Georghiades and T. Theocharides, “Towards

Hardware Stereoscopic 3D Reconstruction: A Real-Time FPGA Computation of the

Disparity Map”, in Design Automation and Test in Europe (DATE), pp.1743-1748,

March 2010, doi:978-3-9810801-6-2.

xvi

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Objectives . 2

1.3 Thesis Contributions . 3

1.4 Thesis Outline . 4

2 Background Knowledge and State-of-the-Art Overview 7

2.1 Underline Architecture of CMPs . 7

2.2 Parallel Fault Simulation . 9

2.2.1 Solutions for Distributed Architectures 10

2.2.2 Solutions for Vector Processors 10

2.2.3 Solutions for GPUs . 11

2.2.4 Solutions for General-Purpose Shared-memory On-chip Multipro-

cessors . 11

2.3 Parallel Test Pattern Generation . 12

2.3.1 Parallel GPUs Approaches . 14

2.3.2 Test Compaction Approaches . 14

2.3.3 Parallel n-detect Test Generation 15

2.4 Aging Mitigation in Multi-Core Designs 15

2.4.1 Chip-Microprocessor Reliability 16

2.4.2 Architectural-Level Techniques 17

2.4.3 Aging in NoC Domain . 17

3 Impact of Partitioning in Parallel Fault Simulation and Test Generation 19

3.1 Preliminaries . 19

3.2 Partitioning impact in Parallel Fault Simulation 20

3.3 Partitioning impact in Parallel Test Generation 22

xvii

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

3.3.1 Fault List Partitioning for Dynamic Test Set Compaction 24

3.3.2 Experimental Results . 27

3.4 Challenges and Findings . 29

3.5 Chapter Summary . 30

4 Parallel Fault Simulation for Shared-Memory On-chip Multiprocessor Archi-

tectures 31

4.1 Preliminaries and Basic Concepts . 31

4.1.1 Fault Models . 32

4.1.2 Logic and Fault Simulation . 32

4.1.3 Motivation and Considerations for Parallelization 34

4.2 Exploiting Shared-Memory to Steer Scalability of Fault Simulation using

Multicore Systems . 39

4.2.1 Parallel 3-phase Methodology . 39

4.2.2 Parallelization Optimizations . 50

4.2.3 Experimental Results . 54

4.3 Chapter Summary . 60

5 Parallel Test Pattern Generation for Shared-Memory On-chip Multiprocessor

Architectures 61

5.1 Preliminaries - Basic Concepts . 61

5.2 Motivation and Considerations for Parallelization 62

5.2.1 Test inflation problem . 63

5.3 Utilizing Shared Memory Multi-cores to Speed-up the ATPG process . . . 63

5.3.1 High-Level Parallel ATPG Framework 64

5.3.2 Parallelization Methodology And Optimizations 65

5.3.3 Experimental Results . 70

5.4 Chapter Summary . 74

6 Parallel n-Detect Test Pattern Generation on Shared-memoryMulti-core Archi-

tectures 75

6.1 n-detect Parallelization Methodology . 75

6.1.1 Multiple Test Seed Generation . 79

6.1.2 Clustered Dynamic Seed Merging 82

6.1.3 Parallelization Optimizations . 84

xviii

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

6.1.4 Experimental Results . 85

6.2 Chapter Summary . 86

7 Exercise Vectors Generation for Reliability Enhancement in Multiprocessors 89

7.1 Preliminaries - Basic concepts . 90

7.2 Use It Or Lose It: Proactive, Deterministic Longevity in Future Chip Multi-

processors . 92

7.2.1 Lifetime-Extending Router Microarchitecture 93

7.2.2 ATPG Preliminaries for Vector Generation 94

7.2.3 Optimization of Hardware Overhead via Compaction of Exercise Data 95

7.2.4 Vectors Generation Results and Underlying Exercise Logic 98

7.2.5 Evaluation . 99

7.2.6 Experimental Results . 99

7.3 PRITEXT: A Novel Minimal Exercise Vector Generation Technique for Re-

liability Improvement . 101

7.3.1 Related Background on NBTI and IVC 102

7.3.2 PRITEXT Microarchitecture and Vector Set Overhead Reduction . 103

7.3.3 Exercise Vector Generation Technique 109

7.3.4 Experimental Evaluation and Results 110

7.4 Chapter Summary . 113

8 Conclusions and Future Work 117

8.1 Future Work . 118

xix

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Main Notations
ATPG: Automatic Test Pattern Generation

s-a-0/sa0: line stuck-at-0

s-a-1/sa1: line stuck-at-1

FFR: Fan-out-Free Regions

PPSFP: Parallel Pattern Single Fault Propagation

SIMD: Single Instruction Multiple Data

T : Test set

F: Fault List

m: Number of available processing cores

w: Processor word size

|T|: Test set size

|F|: Number of faults in fault list

HCI: Hot-Carrier Injection

BTI: Bias Temperature Instability

NBTI: Negative Bias Temperature Instability

CUT : Circuit-Under-Test

GPU : Graphic Processing Units

CMPs: Chip Multi-Processors

NoC: Network-on-Chip

CMOS: Complementary Metal-Oxide-Semiconductor

NP: Non-deterministic Polynomial-time

VLSI: Very Large Scale Integration

DFS: Depth First Search

MUX : Multiplexer

DAG: Directed Acyclic Graph

TG: Test Generation

I/O: Input or Output

EDA: Electronic Design Automation

xx

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

List of Figures

1.1 Thesis Overview . 5

2.1 Uni-processor architecture. 7

2.2 On-Chip multiprocessor architecture. 8

2.3 Memory coherence problem in multi-processors. 9

3.1 Fault simulation example: (a) Serial fault simulation with fault dropping, (b)

Straightforward parallelization 4 cores. 21

3.2 Fault list partitioning methods under investigation 25

3.3 General parallel compaction framework 26

3.4 Exploration of various partitionings and their affect in test set size and speed-up 27

4.1 Impact of fault dropping in different approaches (a) serial fault simulation,

(b) static fault partitioning parallelization, (c) static test partitioning paral-

lelization, (d) hybrid test and fault partitioning parallelization (snapshot, not

shown complete here). 36

4.2 Flowchart of the proposed parallel fault simulation method. 40

4.3 Three phase methodology example: (a), Static test partitioning and initial

fault list assignment, (b) phase 1, (c) phase 2, and (d) phase 3. 43

4.4 Execution example of the proposed methodology. (a) Independent Phase,

(b) Dynamic Collaborative Phase - 1st iteration, (c) Dynamic Collaborative

Phase - 2nd iteration. 45

4.5 Construction of the Tests and Faults Map (TFM) example: Core 1 updates

TFM with t2 during the Dynamic Collaborative Phase andCore 2 utilize TFM

information during the Workload Balancing Phase 51

4.6 Scalability of the proposed fault simulation method using a randomly gener-

ated test set. 54

xxi

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

4.7 Fault simulation scalability as reported in [1] using a randomly generated test

set. 55

4.8 Impact of Workload Balancing Phase example. Cores shown in x-axis and

CPU-time(s) in y-axis. 58

5.1 High level flow of the main Test Generation (TG) processes. 65

5.2 Test Epoch flowchart: A test epoch targeting hard-to-detect faults (Epoch I).

Same steps are repeated in Epoch II, with input fault list FR and resulting test

set TR. 66

5.3 Merging process flowchart: dynamic test merging and restricted TG pro-

cesses per core. 67

5.4 Test generation method: speed-up comparison with [2] and [3] for an 8-core

set-up. 73

6.1 High level flowchart: A test epoch targeting hard-to-detect faults (Epoch I).

Same steps are repeated in Epoch II, with input fault list FR and resulting test

set TR. 76

6.2 n-detect dynamic merging execution example. 78

6.3 Decision changes for multiple test seed generation circuit example. 80

6.4 Fault activation decision tree for fx Sa0 in Fig.6.3. 80

6.5 n-detect test seed generation example. n=5, number of PIs=8 81

6.6 Cluster-based dynamic merging example. 83

6.7 Scalability of the proposed parallel n-detect test generation with respect to a

serial execution, for n=5. 85

6.8 5-detect test set size (|T|) increase % compared to serial execution of the

proposed method. 87

7.1 A 64-core CMP interconnected with an 8×8 2D mesh NoC. Components

marked with a black × illustrate wearout failure. The failure scenarios are

as follows: (1) failure of cores; (2) peripheral device disconnected from the

system due to link failure; (3) network segmentation resulting in a discon-

nected sub-network; (4) individual link failure 91

xxii

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

7.2 (a) Activation and propagation cones for fault location f ; input signals B, C

(A,B,C,D) determine activation (propagation), (b) test generation for f stuck-

at-0; B=1 and C=1 activate the fault and D=1 propagates its effect to O2;

possible test vectors ABCD=X111 ={0111, 1111}, (c) let f be a critical net;

exercising f=1 requires activation of f stuck-at-0 with B=1 and C=1. 94

7.3 Critical Path Logic with proposed exercise logic. Additional exercise logic

is darkened. 95

7.4 ROM size: (a) Possible ROM size 3x10 with 10 possible MUX locations, (b)

necessary ROM size 3x4 with 4 + 4 MUX locations 96

7.5 Critical path logic with proposed exercised logic (shown in bold), after vector

generation. 98

7.6 Duty cycles of critical path nodes with 2% incoming flit rate, sorted from

highest to lowest. 100

7.7 Normalized lifetime of the network using the proposed technique under re-

alistic workload. 101

7.8 Critical path combinational logic cone extraction with proposed PRITEXT

exercise logic. Additional exercise logic is shown in a darker shade. 104

7.9 Test generation example for robust and non-robust tests. 108

7.10 Coverage of unique critical nets per vector. 113

7.11 Duty cycle distribution under PRITEXT. 114

7.12 Lifetime Improvement with PRITEXT . 114

xxiii

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

xxiv

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

List of Tables

4.1 Notations used in Chapter 4 . 33

4.2 Addressing the identified parallelization challenges in the proposed method 41

4.3 Obtained speed-up and CPU time using 24 cores for 10000 random test patterns. 55

4.4 Obtained speed-up and CPU time using 24-cores for deterministic test sets. 57

5.1 Speed-up and Test set Increase Results for the proposed method using 8, 12,

16, 20, 30 and 40 cores. 71

5.2 Speed-up, Test Set Size and Memory Increase Comparison with the works

in [4], [5] and [3]. 73

7.1 Necessary sensitization conditions on off-input nets for robust and non-robust

test generation. 107

xxv

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

xxvi

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Chapter 1

Introduction

1.1 Motivation

Technology shrinking in the integrated circuit manufacturing process allowed the implemen-

tation of multiple processing units (cores) on a single chip as well as large amounts of on-

chip memory. These developments offer extensive processing power that can be used in

various computationally intensive problems including popular electronic design automation

processes. The distributed fashion of this processing power guides towards the development

of parallel methodologies that scale well as the number of cores per chip are expected to in-

crease beyond two dozens to hundreds. Multi-core architectures can significantly accelerate

the performance of well-established design and test automation processes, yet parallelization

is not straight forward and can certainly affect the quality of the obtained results. Decom-

position, parallel execution and re-composition of the problem must be mindful in favor of

parallelism without compromising the quality of the results with respect the existing non-

parallel solutions.

Sophisticated compilers offers a lot of parallelization capabilities (like dynamic schedul-

ing of tasks) and test automation engineers may opt to rely on automatic parallelization of

fundamental test automation methodologies. However, due to the complexity and the nature

of the problems, the efficiency of the obtained solutions cannot be guaranteed. Compilation

and scheduling can have a great impact on how the problem is partitioned and processed by

the individual cores which can affect the efficiency and the quality of the parallel solutions.

Traditionally, parallel solutions involves three phases: (i) a decomposition step, (ii) paral-

lel execution, and (iii) a re-composition step to construct the overall solution. Due to the

dynamic nature of the problems each one of the steps has its own challenges. Except from

1

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

the obvious additional work needed for issuing, partition and re-composition of the parallel

threads there are many other challenges during the parallel execution phase such as shared

memory access, communication, synchronization and race conditions among the processing

units.

Before the multi-core era parallel test automation attempts mainly focused in one of the

two different approaches: (i) bit level parallelism of different components and (ii) distri-

bution of components among multiple processing units, not physically at the same chip (in

most cases not even at the same machine). The latter approach suffered from prohibitive

communication overhead and therefore the corresponding algorithms were design to avoid

communication. On the other hand, bit-level parallelism was constrained by the machine’s

word size. All those factors must be taken into account for a scalable parallel solution and

this thesis summarizes the key ideas proposed and ongoing research towards that direction.

The knowledge gained from the exploration of parallel test automation algorithms for

CMPs is utilized in another research area, investigating CMPs reliability. Unfortunately,

deep sub-micronCMOSprocess technology ismarred by increasing susceptibility towearout.

Prolonged operational stress gives rise to accelerated wearout and failures, due to several

physical failure mechanisms, including Hot Carrier Injection (HCI) and Negative Bias Tem-

perature Instability (NBTI). Each failure mechanism correlates with different usage-based

stresses, all of which can eventually generate permanent faults. While some of the faults may

not necessarily be catastrophic for the system and could only affect a part of CMP, a single

fault in a critical component could render the entire chip useless. Such examples include a

failure in CMP’s core processor or inter-processor NoC which could lead to protocol-level

deadlocks, or even partition away vital components such as the memory controller or other

critical I/O. A wearout-decelerating scheme involves the utilization of deterministically gen-

erated exercise vectors which can activate the wearout-sensitive components during CMPs

idle periods.

1.2 Thesis Objectives

The main objectives of this thesis are to:

• Investigate parallel fault simulation for shared memory on-chip homogeneous CMPs,

that is able of maintaining its scalability as the number of processing cores utilized

increases.

2

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

• Explore parallel test pattern generation for sharedmemory on-chip homogeneous CMPs,

that takes advantage of low cost shared memory communication scheme and targets to

minimize the test inflation problem by explicitly avoiding duplicate work.

• Extent the parallel test pattern generationmethod to efficiently generatemultiple-detect

(n-detect) test sets.

• Investigate reliability techniques where deterministically generated exercise vectors

can be utilized to prolong CMPs lifetime.

1.3 Thesis Contributions

The contributions of this thesis are:

• Impact of Input Partitioning in Fundamental Parallel Test Automation Processes:

Investigate the impact of partitioning regarding the efficiency and the quality of the par-

allel solutions for fundamental test automation processes. More precisely the impact of

fault partitioning and test partitioning are examined for fault simulation and test com-

paction problems with respect to the overall execution time as well as the compaction

efficiency. Experimental results demonstrate the importance of partitioning in both the

scalability and test inflation of the parallel solutions.

• Parallel Fault Simulation:

Parallel fault simulation methodology in explored for shared-memory multi-core sys-

tems, which optimizes along three parallelization dimensions by taking advantage of

high degrees of freedom allowed in the basic/core process. Fault dropping is explored

across the cores by explicitly avoiding concurrent simulation of the same fault in more

than one core. Guided fault partitioning, efficient workload balancing and utilization of

shared resources ensures minimal idle time until the completion of the entire process.

The speed-up achieved is comparable to state-of-the-art works and most importantly,

scalable, ensuring further performance improvement as the number of processing cores

will increase beyond few decades.

• Test Generation Parallelization:

Parallel test generation method for shared-memory on-chip multi-core environments

is investigated geared towards high speed-up and test inflation containment. The par-

allel method is generic and can be applied to previously proposed (not parallel) tech-

3

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

niques. The low cost of communication via the shared memory, inherent in the un-

derlying architecture is utilized to coordinate the main steps of the ATPG in order to

avoid redundant work and dynamically allocate the workload. At the same time, mem-

ory contention caused by multiple cores (threads) accessing shared data is minimized.

The obtained experimental results demonstrate the effectiveness of parallel approach

in speeding-up the ATPG process and provide comparisons with relevant recent works.

Moreover, the parallel method is extended to generate multiple-detect (n-detect) test

sets with even better results.

• Compact Exercise Vector Generation for Improved Reliability:

The thesis presents an investigation for a proactive technique, designed to decelerate

the effects of aging in the critical components of CMPs such as core processors or NoC.

Compact deterministically generated (based on ATPG techniques) exercise vectors are

utilized by CMPs during idle times for aging mitigation. Experimental results for NoC

and a complex superscalar processor using real benchmarks indicate that reliability can

be significantly improved with a small and compact number of exercise vectors.

1.4 Thesis Outline

The outline of this thesis is illustrated in Fig. 1.1. Chapter 2 presents a review of state-of-the-

art works for the topics under investigation of this thesis. Chapter 3 investigates the impact

of partitioning on fault simulation and test pattern generation parallelization problems and

presents findings that guide the work presented in Chapters 4 and 5. Chapters 4 and 5 high-

light in details the exploredmethods and present relevant experimentation for fault simulation

and test generation problem, respectively. Chapter 6 incorporates findings from Chapters 4

and 5 to extent the method of 5 to a parallel multiple-detect (n-detect) test pattern generation

method. Chapter 7 presents a compact exercise vector generation technique targeting relia-

bility improvement. Parallelizing this process is not the target in the thesis. Instead, the goal

is to improve the reliability of the underlying architecture, which is on-chip shared memory

Chip Multiprocessors. Finally, Chapter 8 presents the concluding remarks and future work.

4

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

State-of-the-art Overview - Related Work

(Chapter 2)

Parallel Fault
Simulation
(Chapter 4)

Parallel Test
Generation
(Chapter 5)

Extension of the Parallel Test
Generation Method for Multiple-

Detect (n-detect) Test Sets
(Chapter 6)

Multi-Core Architecture

Partitioning Impact in Parallel Fault
Simulation and Test Generation

Implementations
(Chapter 3)

Exercise Vector
Generation for

Reliability Enhancing in
Chip-Multiprocessors

(Chapter 7)

Figure 1.1: Thesis Overview

5

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

6

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Chapter 2

Background Knowledge and

State-of-the-Art Overview

Over the last several years, o variety of parallel attempts have been proposed investigating

traditional test automation problems like the ones examined in this thesis. This chapter sum-

marize related approaches and drafting the most common research directions for the parallel

fault simulation (Section 2.2) and parallel test generation (Section 2.3) problems. Also, sev-

eral techniques have been proposed targeting agingmitigation for multi-core designs. Section

2.4 summarize the main works focusing on reliability enhancement of the underline archi-

tecture (presented in Section 2.1) explored in this thesis.

2.1 Underline Architecture of CMPs

Chipmultiprocessors offer many opportunities yet there are also many challenges that need to

be taken under investigation. A multi-core multiprocessor implements multiprocessing in a

single physical chip where designers may couple cores in a multi-core chip tightly or loosely.

 CPU

Registers

L1

Cache

On-chip

RAM

Memory

Figure 2.1: Uni-processor architecture.

7

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

L2

Core

L1

L3

Core

L1

Core

L1

...

Figure 2.2: On-Chip multiprocessor architecture.

Cores may or may not share caches, and they may utilize message passing or shared-memory

inter-core communication techniques. There are several network topologies utilized to inter-

connect the cores such as the traditional bus, ring, two-dimensional mech or crossbar. Homo-

geneous multi-core systems consist of only identical cores while heterogeneous multi-core

architectures have cores that are not identical (such AMD accelerated processing units that

cores do not share even the same instruction set, ARM big. Little where the heterogeneous

cores share the same instruction set).

Chip Multiprocessors or CMPs consist nowadays the most popular way to build a high-

performancemicroprocessors for a variety of reasons. The trend of huge and complex unipro-

cessors has reach a limit for performance scalability mainly due to the limitation on super-

scalar instruction techniques. Technology shrinking lead to the compaction of enormous

number or transistors per chip resulting in prohibitive power dissipation, costly to design and

complex to debug processors. CMPs have recently become a better alternative where the

processor die consist of multiple, relatively simpler interconnected processor cores. From

the moment a core is designed it can be easily stamped down into more copies to fill the

chip area. Fig. 2.2 illustrates an high level example of a CMPs architecture. The low cost

inter-processor communication latency between the CMPs’ cores can be utilized by multiple

threads spreading across the cores to support the computation power needs of many applica-

tions [6].

Typical uniprocessors have the following structure (Fig. 2.1) consisting of the CPU, the

registers and the cache. Cache is fast small local memory that holds recently used data and

instructions. Typical system may be consist of multiple levels of cache. For the case of

multiple processors per chip cache coherence problem must be taken under consideration.

Memory coherence is a desirable condition where corresponding memory location locations

8

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

CPU A

Cache RAM

Memory

CPU B

Cache
On-chip

Figure 2.3: Memory coherence problem in multi-processors.

for each processor always contain the same data value in the cash. Without it the running

programs will be affected and the results will be wrong. Processors share variables and one

of them can write a value while a different processor may be reading the value (Fig. 2.3).

One way to alleviate the problem is using a so-called memory coherence protocol that is

responsible for notifying all the processors for changes on shared values, thereby ensuring

that all copies of the data remain consistent.

2.2 Parallel Fault Simulation

Fault simulation is a fundamental process in Test Automation area mainly targeting the cal-

culation of the fault coverage of a given test set. It can be used either as a standalone tool or

as part of algorithms developed for relevant problems such as: test generation, fault diagno-

sis, techniques for fault tolerant design ([7, 8]). As a result, any performance acceleration

of the fault simulation process will also contribute in the performance of many other tools.

The most popular techniques can be classify into four main categories based on the under-

line architecture used for the solution: distributed architectures, vector processors, GPUs and

general purpose multiprocessors.

9

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

2.2.1 Solutions for Distributed Architectures

Early fault simulation parallelization attempts (distributed solutions) mainly focus on work-

load partitioning assisted by message passing communication. The performance of those

approaches where limited by the high message delivery delays imposed by the distributed

inter-chip communication model [9–12]. As a result, communication was intentionally kept

minimal and, in essence, the cores where operating independently on a part of the entire prob-

lem solution space with communication occurring rarely or even just for the overall solution

composition. One of the first attempts was presented in [9] where a hardware accelerator

named MARS consisting of 15 processing elements was configured in a pipeline. The con-

current fault simulation algorithm proposed was requiring a large amount of memory, which

made it impractical to use for large designs. In [10] a dynamic, two-dimensional parallel

technique was proposed that extended bit-parallelism of faults to patterns, in order to address

large communication delays regarding the faults dropped. The goal was to utilize multiple

execution in different processing units by performing multiple fault propagation at the same

time. The work of [11] proposed two gate-parallel algorithms for the connection machine

that employed 16 processing elements and an elaborated routing network where a message

could be sent in 12 routing steps. [12] proposed a fault-disjoint partitioning of the workload

in multiple processors (up to 32) based on a static analysis of the distribution of activity in

fault simulation. This method performed independent pattern simulations without requiring

any communication between processors. The performance of all of the above approaches was

limited by the high message delivery delays imposed by the distributed inter-chip commu-

nication model. As a result, communication was intentionally kept minimal and, in essence,

the processing elements were operating independently on a part of the entire problem solu-

tion space with communication occurring rarely or even at the end of processing just for the

composition of the complete solution.

2.2.2 Solutions for Vector Processors

Solutions designed for vector processors [11–15] as well as solutions designed for distributed

architectures exploit parallelism across three different dimensions: data, algorithmic and

structural. Initial parallelization attempts relied on static partitioning of the fault list and/or

the test set to compensate for the high communication cost [16, 17].

10

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

2.2.3 Solutions for GPUs

The development of multi/many core architectures, necessitate the revisiting of the most ef-

fective (yet computationally intensive) techniques in order to be adjusted to these new archi-

tectures. Recently, Graphic Processing Units (GPUs) have been exploited [18–24], where

the existence of many-cores on GPUs is utilized to create multiple threads in a single in-

struction multiple data (SIMD) fashion with substantial speed-ups. The work of [19] pre-

sented an event-driven logic simulator accelerated by a GPU. When considering gate level

netlists, this method achieved an average 3× speedup over traditional serial simulators. [20]
proposed an algorithm to map many of the optimizations of serial techniques for fault sim-

ulation to the SIMD paradigm achieving a speed-up of 16× with respect to the best serial

approaches. [18, 24] proposed timing-aware fault simulation of small delay faults using a

data-parallel approach on a GPU with 2880 processing units. The evaluation of the meth-

ods was carried out using 10.240 random input stimuli and showed significant improvement

in run-time. The authors of [23] exploited GPU’s parallel capabilities in order to calculate

the n-detect fault coverage of a given test with a single traversal of the circuit’s netlist. The

reported results on a GPU with 128 stream processors showed time reduction by a factor

of 25× when compared to a commercial tool. In [22] a fault simulation process is used to

accelerate the calculation of the fault table which tabulates all fault detections by each test

pattern considered. The algorithm matches pattern parallel simulation with the SIMD-based

architecture of a GPU achieving 15× speed-up over the execution of a state-of-the-art serial
tool. [21] proposed a method to exploit parallelism in 3 different dimensions i.e., algorithm,

model and data. At the same time, it minimized communication between the host processor

and the GPU by utilizing the individual’s device memory as much as possible.

2.2.4 Solutions for General-Purpose Shared-memory On-chip Multi-

processors

On the other hand, recent general-purpose shared-memory on-chip multiprocessors offer a

fast, asynchronous and high capacity memory, in contrast to the SIMD paradigm of GPUs,

which can leverage the inter-core communication overhead. A small number of such ap-

proaches have been proposed for the highly related problem of test pattern generation [3,25,

26].

For the specific problem of the parallelization of fault simulation, only the recent work

of [1] considers general-purpose shared-memory multiprocessors (as we do in this work).

11

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

For the specific problem of the parallelization of fault simulation, only the recent work of [1]

considers general-purpose shared-memory multiprocessors (as we do in this work). The pro-

posed technique exploits parallelism both using multiple pattern reasoning and compiled

computing model distribution. Moreover, it focuses on utilizing powerful techniques for

critical path tracing [27] to accelerate fault propagation. However, because the core process

of [1] is highly optimized, the exploitation of parallelization techniques is limited. For this

reason and in contrast to the methods we propose in this thesis([28,29]), [1] fails to maintain

speed-up gains when the number of processing cores utilized increases. Parallel Pattern Sin-

gle Fault Propagation (PPSFP) is a popular concept for fault simulation. Exact critical path

tracing in multi-core environments has been widely used in combinational and full scan-path

circuits for fault simulation. Many researches incorporated PPSFP with sophisticated tech-

niques such as critical path tracing [27,30], dominator concepts [30,31] and stem region [32]

with the goal to speed-up the fault simulation procedure. Critical path tracing methods avoid

fault simulation for faults within Fan-out-Free Regions (FFR) [27,30]. [33] proposed a mod-

ified critical path tracing technique the excludes fault simulation for fanout stems and used

various rules to check exactness of critical path tracing beyond the FFRs in linear time. How-

ever, the rule based consent cannot be used for concurrent simulation of multiple patterns.

Works [34, 35] provide extensions on the work of [33] going beyond the FFRs regions and

using stuck-at faults respectively.

Multi-core architectures offer room for improvement for most of the established serial

designs and test automation methodologies; however, this improvement depends on the un-

derlining architecture (number of cores and memory availability) as well as on the ability of

the proposed approach to scale with respect to the underlining architecture.

2.3 Parallel Test Pattern Generation

Automatic Test Pattern Generation (ATPG), a well-known NP-hard problem, becomes more

demanding as devices under test are becoming larger and more complicated and as emerging

defects require new fault models of higher complexity. While previously proposed proce-

dures are very effective, see the recent works in [36–38], among many others, they are inher-

ently non-parallel and thus, cannot rely on automatic parallelization using sophisticated com-

pilers. Proper problem decomposition, workload distribution and final test set re-composition

are essential to guarantee the quality of the results while maintaining fault coverage. Since,

typically, each core does not consider the entire search space, parallel approaches tend to

12

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

choose local optimal solutions resulting in test set increase [39], known as the test inflation

problem.

Parallel ATPG has been studied before the on-chip multicore era, by either applying bit

level parallelism or distributing ATPG components among multiple processing units, not

physically on the same chip [39, 40]. These approaches were designed to avoid/minimize

communication overhead and were constrained by the machine’s word size. In current on

chip multicore architectures with shared memory, on-chip communication is much faster,

significantly reducing the cost of inter-core communication. Furthermore, high level of mem-

ory coherency is guaranteed and the number of available cores keeps increasing. These new

developments and trends motivate towards the investigation of parallel ATPG approaches

capable of achieving speed-up scalability as the number of on-chip cores increases, while

overcoming new challenges such as shared memory contention, as well as efficient workload

distribution parallel threads.

Recent works onATPGparallelization for on-chipmulti-core environments exploit a vari-

ety and, often mixture, of parallelism dimensions such as fault parallelism, structural (circuit)

parallelism, and algorithmic (including search-space) parallelism. Moreover, the goal of uti-

lizing parallelism often varies. For example, [25] exploits algorithmic parallelism via SAT

solver parallelism for maximizing fault coverage with limited speed-up with respect to the

corresponding serial process. Similarly, [41] applies bit-level parallelism to generate multiple

test patterns concurrently that meet different quality metrics to achieve higher physical-aware

n-detect coverage. Static fault parallelism is explicitly considered in [42] using amaster-slave

architecture to reduce inter-process communication which achieves sub-linear speedup up to

8 cores but suffers from increased test set sizes (test inflation).

Parallelization speed-up rates and test set inflation are investigated in the recent work

of [2] which also considers a shared memory architecture model. Shared memory is utilized

as an extremely low latency communication mean with high capacity to leverage synchro-

nization and communication of the process. The work in [4] proposes a low communication

circular pipeline parallel ATPG procedure which emulates the deterministic execution of a

serial ATPG in order to be able to reproduce the same test set every time the parallel algorithm

is executed. This leads to limitations in speedup scalability. The series of works in [3, 5, 43]

target both parallelization speedup and test inflation minimization strategies, incorporated

in state-of-the-art commercial tools. In particular, [5] achieves high speed-up by applying

dynamic fault partitioning and depth-first-search based compaction in a shared memory ar-

chitecture. [43] extends [5] to be used in distributed multi-core hybrid architectures, while [3]

13

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

incorporates a copy-on write technique for private data protection in order to reduce mem-

ory locking when the same part of the memory is used concurrently by more than one cores.

Similarly to the above approaches, the exploration of the present thesis targets to achieving

high degree of speed-up, as the number of available cores increases, and at the same time

limiting test set inflation.

2.3.1 Parallel GPUs Approaches

Some parallel approaches have also been proposed targeting GPUs based architectures. In

contrast to the fault simulation problem where the GPU model can be very effective due to

its concurrent nature which can directly adopt the single instruction multiple data (SIMD)

approach of GPUs [21, 24], GPU-based ATPG has received limited attention [44, 45]. This

is mainly attributed to the architecture’s memory limitation which leads to unacceptable test

set size increase.

2.3.2 Test Compaction Approaches

Two main approaches for test compaction are followed: (i) static compaction which corre-

sponds to the approach where compaction is applied on top of ATPG, while, (ii) on dynamic

compaction compaction is applied together with ATPG. For static compaction (i) previously

proposed methods follow three main directions, i.e., pattern merging, bit fixing and pattern

reordering. Techniques proposed in [46], [47] rely on merging compatible test patterns by

utilizing don’t care values. Patterns are considered compatible if they do not have conflict-

ing bit values for the same input. Merging does not necessarily referred to combining two

patterns into one, but can also be extended to combining three patterns into two. [48] tries to

combine bit fixing/alternate with fault simulation and fault dropping in order to catch faults

not considered when generating the specific pattern. The target is to eliminate patterns that

after fault dropping do not detect faults anymore. Test compaction in the popular ATPG

work [49] uses reverse order fault simulation to eliminate tests that do not really contribute

to fault coverage.

On the contrary, in dynamic techniques (ii) the compaction is either done as part of the

ATPG process [50–52] or starting from a given test set and using an ATPG procedure [47,53].

The works in the former approach invoke different heuristics during test generation in order

to meet a pre-computed test set size that is close to the theoretical lower bound that can be

estimated solving the problem of maximum independent fault set [54]. The latter approach

14

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

iterates among the elements of the given test set and performs systematic pattern replacement

(usingATPG)with others that detect at least the same faults and either detect some extra faults

or have more don’t cares. This replacement together with fault dropping and pattern merging

result in small test set sizes.

2.3.3 Parallel n-detect Test Generation

Extending a test generation method to complex (e.g., defect-aware) fault models can affect

the scalability of the methodology as the fault list partitioning will not result in mutually

exclusive sub-lists. Another approach to ensure high defect coverage in the manufacturing

processes is to generate tests based on simple fault models where each fault is targeted more

than one times. Such test sets are known as n-detect test sets (each fault targeted n times)

and have been experimentally shown to improve the defect coverage at the expense of an

increase test set size [55–60]. Many of these works conclude that the multiple-detections for

the same fault should not be generated in an unconstrained manner [55, 57–59]; rather they

should have significant difference among them in order to provide high defect coverage.

The work of [60] proposed a method to generated compact stuck-at test sets that offer high

defect coverage using on a new output deviation-based metric. The work of [61] provided a

theoretical evidence that the size of an n-detect test is lower bounded by n times the lower

bound of a single-detect test set. Many works have been proposed [62–64] to compact a

given n-detect test set to meet the lower bound described in [61] since the vast majority of

n-detect test generation methods have been shown to produce much larger test sets.

2.4 Aging Mitigation in Multi-Core Designs

Moore’s Law scaling is continuing to yield even higher transistor density with each succeed-

ing process generation, leading to today’smulti-core ChipMulti-Processors (CMPs)with tens

or even hundreds of interconnected cores or tiles. Unfortunately, deep sub-micron CMOS

process technology is marred by increasing susceptibility to wearout. Prolonged operational

stress on today’s multi-core CMPs gives rise to accelerated wearout and failure, due to several

physical failure mechanisms, such as HCI and NBTI. NBTI and HCI are dominant wearout

effects and have thus been more intensively studied [65]. Unfortunately, the vast majority

of the reported models lack important details, such as values for various constants, measure-

ment conditions, detailed explanation of parameters, etc. Thus, it becomes fairly challenging

15

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

to employ the existing frameworks, in the context of microarchitecture, to perform meaning-

ful aging effect calculations.

Various techniques have been proposed to mitigate the aging effect in processor core ar-

chitectures. Among those proposed mechanisms, [66] analyzed the effects of BTI on the

clock distribution network with clock gating features in a microprocessor, and then proposed

two BTI-Gater cells, to balance delay degradation on the gated clock branch. This technique

requires a software sleep scheduling wrapper that works in conjunction with the BTI-gater

cells to reduce aging. [67] proposed the Internal Node Control (INC) scheme to reduce the

impact of static NBTI on circuits with frequently idle functional units such as adders, sub-

tractors and shifters. INC placements allow outputs of an INC-modified gate to be forced to

specific values during sleep mode e.g. exercise various paths to combat NBTI. Those works

inspire the investigation of the present thesis targeting to suggest a way to generate exercise

vectors and periodically insert them to balance the duty cycle of an NoC router which is a

critical component to CMPs.

2.4.1 Chip-Microprocessor Reliability

.

Aging effects are studied under stress conditions to derive relevant micro-architectural

models, with the latter being more realistic for high-frequency long-term CMOS operation

[65,68]. Some representative NBTI alleviation techniques from the microprocessors related

with the work presented in the present thesis (Section 7.3) include, [69]. [69] introduces the

NBTI-aware processor architecture called Penelope and proposed a number of techniques

to combat NBTI in various components, including a mechanism that writes special values

in memory cells in order to keep the duty cycle at an ideal 50%. [70] suggested the Colt

duty cycle equalizer which balances the duty cycle by alternating true and one’s complement

data representations, while [71] proposed to generate idle periods for BTI recovery by power

gating most of the components in a single core processor system. Next, [72] reduced aging in

micro-processor pipelines, by replacing the traditional design-time time-balancing pipeline

scheme with MTTF-balanced pipelines, also at design-time. The same authors proposed a

technique to alleviate NBTI [73] where instructions are classified based upon their execution

criticality, directing each into a specialized functional unit, so as to balance the duty cycle in

each functional unit by leveraging one at the expense of the other, while on the middleware

level, the same method leverages specialized NOP instructions to achieve maximum NBTI

16

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

relaxation in processors [74].

2.4.2 Architectural-Level Techniques

Further works focus upon architectural-level reliability models. Research in [75] proposed

such a model of a processor core, which considers a set of failure mechanisms, assuming uni-

form failure rates across specific components, however restricting the accuracy of the model

when extended to the entire chip. [76] further develop this concept and introduce effective

defect density and effective stress condition coefficients that weigh the failure impact across

the chip area and run-time respectively. Last, [77] propose an NBTI mitigation method by

rejuvenating the logic along NBTI-critical paths that are first identified hierarchically. Using

SPICE simulations a detailed model for computing NBTI-induced delays is first captured

at the gate level, and fed as input to an evolutionary algorithm to extract critical circuit us-

age patterns and thereafter create periodic rejuvenating stimuli. However, the effectiveness

of the bit patterns in the generated vectors in mitigating NBTI was not evaluated while no

discussion of the periodicity of their application was presented. Contrary to their efforts in

optimizing the convergence of the evolutionary algorithm, we have proposed deterministic

vector generation algorithm through principles of path delay test model and presented opti-

mization techniques to reduce the hardware overhead. [78] proposed and evaluated the vector

exercising technique, considered in this thesis, for NoC router. However, its vector gener-

ation algorithm is limited to stuck-at fault activation concepts only, leading to larger vector

sets and considerably higher hardware overheads for general designs.

2.4.3 Aging in NoC Domain

Aging has been also examined in theNoC domain. [79] propose routing algorithms tomitigate

multiple aging mechanisms. They also point out that NBTI plays a major role in NoC router

aging, and their routing techniques balance the traffic load across the network to level-out

the aging rates among the routers. The approach is reasonable, in that they force the network

traffic to detour through routers of low utilization which, on the contrary, accelerates NBTI-

caused aging. However, they use these routing techniques for the opposite effect; the routing

algorithms are actually designed to reduce the workload onto the routers which exhibit high

utilization, which as we show here are not actually the routers likely to exhibit the most stress-

related aging. [80] propose a similar technique to the one investigate by this thesis 7, in that it

inserts special values to idle arbiters to mitigate NBTI. However, they propose this technique

17

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

to make arbiters less frequently utilized so as to give these routers a chance to recover from

the effects of NBTI, which is actually not necessary applicable to frequently utilized circuits.

In these previous NoC-oriented studies, it is assumed that the NBTI stress time is pro-

portional to the router utilization, however, on the contrary, in the thesis 7.2 we prove that

this is not the actual case. Through detailed, gate-level analysis, not found in earlier works,

this thesis demonstrates that the duty cycle becomes more skewed when the NoC router is

actually under-utilized and not when it is highly- or over-utilized (Chapter 7).

18

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Chapter 3

Impact of Partitioning in Parallel Fault

Simulation and Test Generation

This chapter outlines concepts and motivation for the efficient decomposition of fundamen-

tal test automation problems such as Fault Simulation and Test Pattern Generation in order

to explore the parallelism without compromising the quality of the results with respect the

existing non-parallel solutions. Section 3.2 highlights the important role of partitioning in

parallel fault simulation problem, while 3.3 summarize the important role of partitioning in

parallel test generation problem. A general parallel test set compaction framework (Section

3.3.1) developed to investigate the impact of various fault partitioning techniques. Results

clearly highlight the importance of partitioning for the scalability efficiency and the quality

of the results for the problems under consideration.

3.1 Preliminaries

The developments of the past decade in multi-core architectures together with the technol-

ogy shrinking allowed the realization of (even low-end) computing systems with multiple

processing units with sharing memory, at different levels and with different schemes. In or-

der to fully exploit the parallelism offered by these systems, the software model used should

bemodified to fit the new structures. On the other hand, special purpose applications that con-

sider difficult problems such as those examined in EDA are constrained by the per-processor

speed improvement freeze. The latter makes the transition towards parallel approaches for

these problems a necessity. The rapid evolution of multi-processor systems will soon allow

the realization of architectures with more than twenty cores (known as many-cores), available

19

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

first for scientific applications. Since most EDA problems are NP-hard and the existing so-

lutions involve processing-demanding heuristics, many-core architectures give rise to a very

promising potential.

Test automation engineers may count on automatic parallelization of traditional method-

ologies using modern compiling approaches together with dynamic scheduling of tasks [81],

[82]. However, this does not guarantee the higher efficiency of the obtained parallel proce-

dure mainly because of the generic nature of the compiling tools. Compilation and schedul-

ing can have a great impact on how the problem is partitioned and passed to the individual

processing units. For example, for the ATPG problem the selection of the circuit’s netlist

partitioning technique may give high variations in test generation time depending on the dis-

tribution of easy-to-detect or redundant faults among processing units. The quality of the

obtained result can be also affected since the algorithmic approaches tend to choose a local

optimal when they don’t consider the entire netlist [39, 40, 83]. In any case, custom paral-

lelization and/or from scratch development of a parallel solution can benefit even more from

automatic parallelization tools run on top of them.

Several researchers have examined parallel solutions for test automation problems, with

the higher attention given in fault simulation and ATPG [5, 40, 41, 83]. The older tech-

niques [40, 83] do not consider shared memory, rather distributed memory with the pro-

cessing units not physically being on the same chip. While inter-processor communication

is the main bottleneck for these systems, there are a number of issues regarding the problem

decomposition and recomposition that remain equally important to shared memory architec-

tures. Even for distributed structures like these, interesting solutions have been proposed for

the techniques’ main steps such as fault list partitioning, circuit partitioning, search space par-

titioning as well as final solution composition. Newer techniques considering shared memory

architectures [5,41] have mainly utilized the inter-core communication reduced cost on their

benefit in order to archive dynamic load balancing among cores and/or broadcast indetermi-

nate results achieving reduced overall processing time and avoiding getting trapped at local

optima.

3.2 Partitioning impact in Parallel Fault Simulation

Multiprocessing architectures can accelerate the performance of fault simulation process.

The accelerating factor depends on the scale of the underlying architecture (i.e. the number

of processing elements) and, perhaps more importantly, on the scalability of the implemented

20

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 3.1: Fault simulation example: (a) Serial fault simulation with fault dropping, (b) Straightforward par-

allelization 4 cores.

parallel algorithm(s) with respect to the architecture. Among the most important factors is

the partitioning of the fault list.

Fig. 3.1 is used to highlight the main challenges for fault simulation parallelization. The

Fig. 3.1(a) shows the faults detected after the first four tests (t1-t4) are simulated in a serial

fashion. Patterned cells indicate no need for simulating the corresponding combination, due

to fault dropping (e.g., f4 is detected by t1 and not considered by any other test thereafter).

Again, this process characteristic can affect parallel execution since two different tests may

simulate the same fault(s) at the same time in two different cores. When both tests detect the

common fault(s), neither of them can take advantage of fault dropping as the two processing

cores operate independently. Fig. 3.1(b) shows how the serial case of Fig. 3.1(a) could be

executed on a 4-core system after a straightforward parallelization where each core considers

a different test. Cells with a red x show combinations examined in the parallel but not in the

serial execution. In such cases, achieving the potential 4× speed-up is not possible as the

total workload in the parallel execution is higher than the one of the serial case. One way to

minimize this extra workload is to rely on the shared memory for communicating as fast as

possible the detection of a fault so that it is dropped from further consideration. However, this

can potentially increase the execution time due to the memory coherence mechanism. When

two or more cores access the shared fault list to mark the same fault(s) (or faults within the

same memory block) memory blocks should be moved from local caches to main memory

and vice-versa to keep local cache copies consistent with the content of main memory. In

addition, it can create race conditions requiring memory locks to synchronize the shared

recourses. For example, in Fig. 3.1(b), marking fault f7 during the concurrent execution

gives rise to such undesired situation. If all three cores simulating t1, t2, and t4 attempt to

mark f7 at the same time, delays are introduced due tomemory locks. Furthermore, if multiple

21

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

cores mark f7 within a short interval, delays are introduced in order to keep local cache copies

consistent in all cores. This issue intensifies in approaches where the basic process considers

concurrently a group of faults, such as in the case of bit-parallel simulation. This situation

cannot be completely prevented but it should be minimized in order to achieve maximal

speed-up. Hence, the same fault should not be concurrently considered in more than one

core, even for different tests.

The above guidelines correspond to the two dimensions of parallelism: (i) fault list parti-

tioning and, (ii) test set partitioning. In both cases partitioning comprises the decomposition

step responsible of distributing workload among the cores. For the case in (i), cores consider

the global test set T and can potentially simulate concurrently the same test but for different

faults in F. This requires multiple simulations of the fault-free values for the same test, adding

overhead to the approach. Partitioning the test set instead, as in case (ii), allows for a global

fault list F in the shared memory where the main overhead is to preserve its coherence. In

this case, there is no guaranty that two different tests in two different cores cannot simulate

the same fault. While approach (i) adds prohibitive overhead to the process, approach (ii)

adds only a small overhead allowing for exploiting more speed-up. More discussion and

all relevant experimentation for the parallelization dimensions and how they affect the fault

simulation parallelization efficiency are presented Chapter 4.

3.3 Partitioning impact in Parallel Test Generation

In this chapter we investigate the impact of fault list partitioning on test set compaction for

multi-core architectures [84]. Specifically, a highly efficient non-parallel test set compaction

algorithm is executed on sub-sets of the examined circuit’s fault list running on different

on-chip processing cores simultaneously. The experimentation is exploring two different

parameters of the problem: i) the fault list partitioning approach and ii) the number of the

fault sub-lists allowed. The obtained results show smaller compaction of the considered test

sets as the number of sub-lists (each corresponding to a processing core) is increased. At the

same time, the processing time is significantly reduced suggesting a close to linear (to the

number of cores used) improvement. For comparison purposes, we also present results (i.e.,

final test set sizes and CPU time required) for a non-partitioned approach that each different

core considers the entire fault list. For this case, the compaction results are closer to the serial

execution while the CPU times are not as good as the partitioning approach.

Test compaction

22

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Test set compaction is proven to beNP-hard [54] and is a significant component of the vast

majority of ATPGmethodologies targeting one of the most important problems of EDA [85].

The problem examined in this thesis and publish in [84] is that of obtaining reduced size

test set given a desired fault coverage, under a specific fault model for the circuit-under-test

(CUT). Since test compaction is a well studied problem we here give an abstracted definition

of the problem in tight relation with the ATPG problem to help understand previous works

as well as better define the problem considered in this thesis.

Definition 1: Given a circuit C, a fault list F (under a specific fault model M) and a desired

fault coverage fc(≤ 1), an ATPG process D gives a set of input patterns T called test set.

When the patterns of T are applied to C they give different than the expected output value(s)

in the presence of a single one of at least fc·|F| faults as defined in fault modelM.
Definition 2: Given a circuitC, a fault list F, a desired fault coverage fc and an ATPG process

D that gives test set T, a compaction process Z applied in conjunction with D gives a test set

T’ with at least fc fault coverage and with |T’| < |T|. While according to this definition a

compaction process suffices to result in barely smaller size test set, practically the size of T’

should be considerably smaller in order to make sense to develop and apply such a process.

While all these techniques are highly efficient they can benefit from parallel execution.

However, converting them to parallel implementations is not a trivial process and has to be

done based on each algorithm’s characteristics via for example search space or algorithm par-

titioning. The focus of this thesis is more generic and can be applied to previously proposed

(not parallel) test compaction methods. The idea is to partition the fault list based on the

available processing units and measure the effect of this partitioning both in the execution

time as well as the compaction quality. For this, we consider the modified version of the

problem below:

Definition 3. Given a CUTC, a fault list F, an ATPG processD and a compaction process

Z that given a test set T with fc fault coverage and a set of processing units U, divide F in

|U| sub-lists F1, F2,...F|U| such that upon application of D and Z on each Fi test sets Ti are

obtained with
∪

Ti having fc fault coverage and
∑ |Ti| = |T|.

While the desired solution to the problem utilizes the multiple processing units, the main

ATPG and compaction processes D and Z remain unchanged. The compaction method Z is

just applied to a restricted sized input. Since the new definition does not rely on the nature

of D and Z the problem is generic focusing only on the fault list division and its solution

can be used to convert compaction algorithms to parallel. The selection of the fault list di-

vision technique can affect both the efficiency of the solution as well as the quality of the

23

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

compaction achieved. For example, if fault list is partitioned into |U| sub-lists and algorithms
are applied in different processing units for each sub-list, we expect to get execution time |U|
times smaller than that of the single processing unit case. However, the compaction quality

would be naturally compromised since the compaction process does not consider the com-

plete fault list, as it does at the single unit case, leading to local optimal solutions where
∑

|Ti| = |T|.

3.3.1 Fault List Partitioning for Dynamic Test Set Compaction

We evaluate the impact of fault list division as a plug-and-play procedure in the process of

converting a serial algorithm into a parallel one. For this we have used the efficient dynamic

compaction method of [86] on top of two simple, yet extreme division approaches; the first

one partitions the fault list into a number of sub-lists equal to the number of available process-

ing units (cores); the second one considers the entire fault list (kept in the shared memory)

in all cores. This section describes these two fault list overlap extremes (former approach

has no overlap, latter has 100% overlap). For the partitioning approach different techniques

are described. The second part of this section gives a brief description of the compaction

algorithm used and a detailed explanation of the parallel scheme used for the study.

Fault List Division

The full overlap approach of fault division is straight-forward: all cores see the entire fault list

(as does the non-parallel algorithm). Yet appropriate shared memory locking should be used

in order to avoid consideration of the same fault from different cores. Since the compaction

method of [18] is dynamic, considering the same fault by multiple cores will give higher final

test set size. The worse case scenario where all cores considers all faults at the same time

in the list is obviously meaningless to examine as it is identical to have the same execution

multiple times. Thus, the fault list is centrally maintained and cores obtain faults to consider

in a first-come-first-serve fashion, marking them appropriately in order to be dropped from

further consideration.

For the non-overlap division, three different partitioning techniques are under investiga-

tion for fault distribution across the cores (n) considered processing units. Fig. 3.2 describes

the three fault list partitioning techniques planned, i.e., i) in order (topological) partitioning,

ii) modulus-n partitioning and iii) random partitioning. In all three cases the n faults in F are

considered in a topological circuit order (upper part of Fig. 3.2). When considering in order

24

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 3.2: Fault list partitioning methods under investigation

partitioning, the topological order is followed for the partitioning. Specifically, fault sub-list

F1 holds the first |F|/n faults found in topological order, F2 the next |F|/n faults, and so on
(left column of Fig. 3.2). In modulus-n order the faults are partitioned in a modulus fashion,

using the topological order. Hence, fault list F1 gets the first fault f1, F2 gets f2 and so on

with Fn getting fault fn. The next fault (fn+1) is included to F1, fn+2 to F2 and so on (center

column of Fig. 3.2). In random order, faults are randomly selected to be included to each

sub-list each of which contains (as in the previous two cases) |F|/n faults (right column of
Fig. 3.2). Each one of these fault sub-lists is then assigned to a processing unit for executing

the test set compaction process.

General Parallel Compaction Framework

The general parallel test set compaction framework developed to investigate the various fault

partitioning techniques, utilizes the dynamic test set compaction process proposed in [86] on

the individual fault sublist proposed above. This process has been shown to be very suc-

cessful for generating compact test sets with low number of specified bits, in a non-parallel

framework. Recall, that the objective is to keep the original test compaction process intact

in order to measure the effect of fault list division. The compaction process of [86] targets

a set of faults at a time with the explicit purpose of reducing as much as possible the initial

test set, without any loss in fault coverage. In essence, the test set compaction finds pairwise

fault compatibilities, in an iterative manner, so as to find a minimum number of compatible

sets of faults. Each such set is used to generate a test that detects all its contained faults. In

this context two or more faults are considered compatible if and only if they can be tested by

25

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 3.3: General parallel compaction framework

a common test.

The general parallel framework proposed for the investigation of the various partitioning

techniques is detailed in Fig. 3.3. First the fault division procedure is invoked to produce

p different fault sub-lists, where p is the number of available processing units (cores). The

fault lists are saved in set collection S(F). Lines 04 to 08 applies the serial test compaction

algorithm (line 07) on top a trivial ATPG process (line 06) for each list in S(F) in a different

core, in parallel. The ATPG process of line 06 corresponds to a simple test-per-fault test

generation in order to minimize its effect to the overall process and focus on the test set

compaction process. At this point, note that the dynamic compaction inherently preserves

the fault coverage. We avoid to include a constraint on the fault coverage in order to keep the

framework simple. The test-per-fault procedure implies a 100% fault coverage. The resulted

test set Ti’ from each core is saved in set collection S(T) kept in shared memory. Lines 10 to

12 take the union of all test sets in S(T) in order to provide a test set of 100% fault coverage

on F (duplicates are eliminated). Recall that according to Definition 3 a valid solution of

the defined problem will give a T with size equal to the size of the test obtained when the

same serial process is applied on F. Obviously, we expect the fault list partitioning to give an

increased sized T.

The Dynamic Compaction Framework (Fig. 3.3) can be easily adjusted to accommodate

the parallel execution of the majority of static or dynamic test set compaction procedures.

Moreover, the framework allows for the unbiased evaluation of the proposed fault partitioning

26

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 3.4: Exploration of various partitionings and their affect in test set size and speed-up

techniques, as it does not utilize any knowledge on the internal structure or the characteristics

of the considered compaction algorithm.

3.3.2 Experimental Results

The proposed algorithm has been implemented using C++ language and run on a 12-core

1,798 GHz AMD Opteron 6166 HE, running Linux with 32GBs of RAM. The test gener-

ation and test compaction processes used are from an in house BDD-based tool described

in [86]. The parallelization framework proposed in Section III was implemented using the

OpenMP parallel programming model. We experimented with all ISCAS’85 and ISCAS’89

benchmarks circuits, since BDD order files are available only for these circuits. Fig. 3.4

illustrates results for the three partitioning methods described in Fig. 3.2 for 9 representative

circuits for different number of cores, namely 2, 4, 8 and 12. The bars report test sets sizes ob-

tained for the three different partitioning methods as shown in the legend below and recorded

in the left axis of each chart. As expected, partitioning the fault list has a considerable im-

pact on the quality of the compaction giving larger test sets. This is attributed to the fault

sub-list considered by each core that tends to lead the algorithm to local optimal solutions.

In some cases the impact is much larger than expected resulting in unacceptable test set sizes

(see c3540 and c5315 for example). Out of the three partitioning techniques considered, the

27

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

one putting the neighboring faults in the same sub-list (in-order partitioning) always gives

smaller test sets. The random partitioning is the one that gives more diverse results in terms

of test set sizes. The colored lines in Fig. 3.4 present the corresponding speedup with respect

to the non-parallel execution of the algorithm (right axis of each chart). At this point, note

that in order to minimize the impact of the parallelization overhead code and obtain compa-

rable results, the non-parallel execution of the algorithm refers to executing the algorithm in

Fig. 3.3 with p = 1, i.e., one available processing unit and not the actual non-parallel execu-

tion. The main observation related to our motivation is the fact that indeed the increase in the

number of processing units gives higher speedups (smaller execution times), yet the speedup

in most cases is smaller that the number of cores. The main reason for this is that dividing

the fault list into sub-list of equal size does not ensure equal load for each core. Changing

the partitioning method can slightly affect the speedup, yet in none of the cases examined

the speedup follows the increase in the number of cores. Close monitoring of the execution

shows that the deviation of CPU times among cores can be large. A possible solution to this

would be a dynamic fault partitioning approach where the fault list is partitioned during the

evolution of the algorithm, balancing the load of each processing unit.

Table I reports the obtained results for the three partitioning techniques as well as for the

non-partitioning parallel execution based on the framework described in Fig. 3.3. After the

circuit’s name and the size of the entire fault list we show results for the 1-core execution of

the algorithm, i.e., the test set size and the CPU requirements. Since this is a comparative

study, we use this as a reference for the fault division approaches examined. Next, we present

results for the parallel executions using the framework of Fig. 3.3 with 12 processing units

under the different fault division approaches. Thus, the faults are divided in 12 sub-lists and

assigned to the available cores. We show results for the size of the obtained test sets (|T|), its
relative size with respect to the 1-core execution (inc) as well as the corresponding speedup

28

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

achieved (spdup). Columns 5-7 report the results for the in-order topological partitioning,

columns 8-10 for the random partitioning and columns 11-13 for the modulus-p partitioning.

The last three columns report the same results for the non-partitioning case. The results

confirm that partitioning the fault list using the topological order gives the smaller test set

sizes among the three partitioning techniques. At the same time it also favors execution time

as it achieves the highest speedup with respect to the non-parallel execution for the majority

of the considered circuits. While the speedup is considerable for all three cases, the quality of

the compaction is greatly impacted and this cannot be reversed by using an appropriate fault

list partitioning technique. On the other hand, the case where the entire fault list is considered

by all cores (no partitioning) gives test set sizes very close to the nonparallel execution of the

algorithm; however the speedup is small (2.3× on average although 12 cores were used) and
is only attributed to the inter-core communication for avoiding considering a fault multiple

times. In summary, examining these two extreme cases for fault division (full and no overlap

between the sub-lists) gives good results in either the test set size or the execution time, but

not both. Since these two outputs are shown to scale well (see also Fig. 3.4) a meaningful

approach is to explore hybrid approaches before looking into from-scratch development of

parallel techniques.

3.4 Challenges and Findings

The importance of efficient decomposition on parallelization of fundamental test automation

problems is evaluated and important findings are taken under consideration for the research

topics of this thesis. Particularly, for fault simulation problem partitioning of faults or tests

to the available cores can significantly affect the speed-up scalability. Fig. 3.1 b) highlights

the redundant work of a straightforward parallel solution compared to a typical non-parallel

fault simulation. Moreover, for the case where faults are distributed to the available cores the

parallel algorithms needs to take measures to avoid concurrent simulations of the same test

for different faults. Otherwise the potential benefit from fault dropping is lost.

For the parallel test generation problem various fault-list division approaches and a non-

partition approach where investigated. The three fault-list partitionings investigated (In-

order, Modulus-p and Random order) indicated a slightly performance gain from the In-order

(topological sort) partitioning mainly due the utilization of structural similarities among the

faults. A comparison among the fault list partitioning approach and the approach where the

fault list is shared among the available cores showed that partitioning could offer good speed-

29

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

up results, while shared fault-list offers negligible test inflation. Since both approaches fail

to offer significant speed-up gain without compromising the quality of the results a hybrid

approach needs to be considered. consideration.

3.5 Chapter Summary

This Chapter presents the main challenges of partitioning in parallel fault simulation problem

(3.2). Moreover, a general parallel framework (Section 3.3.1) for evaluating the fault list

division for parallel execution of test set compaction algorithm is presented. Two different

fault division approaches covering the two extremes was investigated. One, fully partitions

the fault list while, the other considers the entire list. Both approaches fail to benefit from

the speedup without compromising the quality of the compaction achieved.

30

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Chapter 4

Parallel Fault Simulation for

Shared-Memory On-chip Multiprocessor

Architectures

This chapter outlines basic concepts and terminology (4.1) for the fault simulation problem.

Section 4.2 presents in details the parallel fault simulation methodology explored in this

thesis, along with the experimental results. Results indicate the significance of the proposed

parallelization attempt on modern On-chip Multiprocessor architectures.

4.1 Preliminaries and Basic Concepts

A brief overview of the basic concepts, notations and terminology are presented in the section

that would be useful for the reader in the following sections.

Definition 4.1.1. Defect: A defect is the unintended difference between the implemented

hardware and its intended design. Defects can occur either during manufacture or during

the use of devices.

Definition 4.1.2. Error: is an effect of a defect. Usually is a wrong output signal produced by

a defective system. Nano-scale circuit manufacturing processes with the nowadays high per-

formance requirements may involve different types of variations (small deviations in physical

shape of gates or interconnections) [87]. These deviations can cause many types of faults.

Definition 4.1.3. Fault: is a representation of a defect and are represented by fault models.

31

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

4.1.1 Fault Models

Defects can be numerous on nowadays circuits and often not able to be analyzed, so mod-

els are used to represent a fault that is likely to occur in a circuit. Fault models are used for

simulation, thus expensive hardware circuit manufacturing is avoided. Fault tests are derived

based on fault models and are used to identify those faults. Also, test generation tools can

have limited number of modeled faults (targets) for testing, while, fault simulation tools are

used to evaluate the effectiveness of the tests generated (fault coverage). There are different

type of faults like single/multiple stuck-at faults, CMOS stuck-open, bridging faults, struc-

tural faults, segment-delay fault, transition faults among others. Many fault models exists in

the literature. Stuck-at fault is the most popular among them where stuck-at fault is modeled

by assigning a fixed (0 or 1) value to a signal line in the circuit. A signal line is an input or

an output of a logic gate or a flip-flop. The single stuck-at faults model consist of two faults

per line, stuck-at-1 (commonly written as s-a-1 or sal) and stuck-at-0 (commonly written as

s-a-0 or sa0). A line with a sa0 fault will always will have logic value ‘0’ irrespective of

the normal line value. In general, several stuck-at faults can be simultaneously present in the

circuit. A circuit with k lines can have 3k-1 possible stuck line combinations. This is because

each line can be in one of the three states: sa0, sa1, or fault-free. More details regarding the

fault models can be found on [88].

4.1.2 Logic and Fault Simulation

In the test automation area logic simulation serves two purposes. It can either be used to verify

the correctness of design according to specifications (true-value simulation), or can be used

to evaluate tests (simulation in the presence of faults). True-value simulator computes the

response for a given input assuming that no faults exist in the design (specification). Given

that the responses are known if any errors are identified then the design needs to be changed

until the responses will match the specifications. On the other hand, fault simulation is a

fundamental process in EDA which can be either used to determine the coverage of a given

set of (test) vectors for a given list of faults, either as part of algorithms developed for other

processing demanding methodologies targeting relevant problems such as: test generation,

fault diagnosis, techniques for fault tolerant design [7, 85, 89]. Fault coverage is defined as

the ratio of the number of detected faults compared to the total number of faults in the fault

list.

Initially, all vectors are simulated in true-value simulation mode and stored for a typical

32

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Table 4.1: Notations used in Chapter 4

C: Netlist of the circuit

UF: Undetected Faults

RT : Remaining (non-released) Tests

Fw: List with w faults selected for simulation

Tw: Group of w tests

Ti: Test set partition assigned to core i

Fi: Fault list partition assigned to core i

Qi: Local (in core) queue for core i

Fdi: Local (in core) list for core i holding detected faults

di: Locally detected faults

TFM :
Shared tests and faults map, consisting of tests and

corresponding non-simulated faults

serial fault simulator in its simplest form. Then, faults are iteratively introduced in the circuit

(by modifying the circuit’s description). Vectors are then simulated and the output values are

dynamically compared with the stored true-value responses and if the comparison indicates a

difference then this is also an indication that a fault is detected. A complete fault simulation

methodology considers, in the worst case, each fault in a given fault list F for every vector

in the given test set T and, hence, the well-known worst case complexity of a serial method

isO(m∙(k+1).k), where m is the number of tests in T, k is the number of faults in F, and k is

the number of nodes in a circuit’s netlist.

Bit-parallelism

model of parallelization can speed-up the fault simulation time by w times, where w corre-

sponds to the machine’s word size, using bit-parallelism of logical operations. This allows

simultaneous simulation of w faults or tests. Due to its widespread usage there exists many

more intelligent forms of fault simulators based on reasoning such as the deductive [90],

concurrent [91] and differential fault simulators [92]. Those simulators allow to collect all

detectable faults by a single run of the given test pattern, however, they cannot produce rea-

soning for many test patterns in parallel.

33

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

4.1.3 Motivation and Considerations for Parallelization

Fault simulation is the problem of identifying the percentage ofmodeled faults detected, when

applying a given set of test patterns at the inputs of an integrated circuit. This percentage is

known as the fault coverage of the circuit under test considering a fault list (F) generated for

a specific fault model. The set of input patterns to be tested, known as the test set (T) can

be generated using a deterministic or a random test generation process [7]. In this thesis we

consider the problem of parallelizing the fault simulation under a shared-memory multi-core

system so that the obtained parallelization speedup, when compared to a serial version of

fault simulation, is maximized.

In general, parallelization methods follow a three step approach where the given problem

is (i) appropriately partitioned (problem decomposition), (ii) in parallel solved for each parti-

tion (parallel execution) and (iii) reassembled to form a final solution (solution re-composition).

Apart from the inherent overhead incurred in issuing and, synchronizing multiple threads,

decomposition/re-composition steps involve other challenges such as communication over-

head, conflicting data in shared-memory and race conditions between processing units. All

those challenges must be taken into account from the proposed parallel solution.

Parallelization of the fault simulation process is not a straightforward task as it relies,

among others, on appropriate bookkeeping to avoid duplication of work as well as well-

scheduled utilization of the available cores. Automatic parallelization tools and sophisticated

compilers cannot provide the desirable speed-up since the problem is not inherently paral-

lelizable. As it is presented in Chapter 3 for computational intensive tasks the problem parti-

tioning is of significant importance. One approach is to rely on standard parallelization tools

that partition the problem under consideration following generic partitioning rules. However,

this results in local optimal solutions due to the limited consideration of the problem’s entire

solution space. This can severely affect the effectiveness of the proposed solution, especially

for architectures with a large number of processing cores. Thus, the methodology proposed

here explicitly addresses problem decomposition as well as the final result assembly. At the

same time, it proposes solutions for two critical processes used to resolve the challenges in

partitioning the problem, i.e., fault dropping and workload balancing. The following section

discusses attributes of these challenges and their effect on the efficiency of the entire parallel

fault simulation process.

Efficient fault dropping: Fault dropping can considerably affect the efficiency of a fault

simulation method. For a complete fault simulation method each test from a given test set

34

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

(T) must be simulated for every fault in the considered fault list (F). Hence, the well-known

worst case complexity of a serial method is O(|T|·(|F|+1)·m), where m is the number of nodes

in the netlist, implying a circuit traversal for each fault-test combination. Detected faults are

discarded (dropped) from F and are not taken into further consideration by any of the sub-

sequent tests and, as a result, the actual runtime is improved considerably below this bound.

However, for parallel fault simulation solutions the effectiveness of the fault dropping is not

effortlessly maintained. Inefficient parallel solutions can result in two or more tests that are

simulated for the same fault more than once, increasing in this way the overall workload.

Moreover, as opposed to serial solutions, where detected faults are immediate dropped from

further consideration, fault dropping in parallel solutions might also be delayed (memory

locking, coherency) or tests/faults could be reassigned among cores, destructing the book-

keeping. When two (or more tests) detect the same fault(s), then, the potential benefit from

fault dropping is small. In this sense simulating the same fault in parallel should be avoided

at the extend possible.

Effective partitioning: The well known three step parallelization approach consisting of

(i) problem partitioning, (ii) parallel solution for each partition and (iii) reassembled to form a

final solution in not straightforward to be followed for fault simulation as discussed in Section

3.2. Appropriate bookkeeping for decomposition and re-composition steps along with well-

scheduled utilization of available cores and shared memory during parallel execution are

very important for the efficiency of the parallel method. Problem decomposition, either by

partitioning of faults or by partitioning of tests (or both faults and tests), and distribution

among available cores are very popular parallelization methods [39, 40]. Even though static

partitioning can contribute in speed-up gain, it is not adequate to provide a scalable solution

because of the overhead imposed by the constraint that no test should be simulated for the

same fault more than once.

We explain this with the illustration of Fig.4.1. The fault simulation search space is rep-

resented as a table, where rows correspond to tests to be simulated and columns to the faults

considered. Fig.4.1(a) shows how it is explored by a typical serial fault simulation proce-

dure that simulates tests one by one for all faults in a predefined order (i.e., t1, t2,..., t9). A

complete fault simulation should examine all cells in the table. An x mark indicates that the

corresponding test detects the corresponding fault (e.g. t1 detects f2 and f6); any additional

simulations (and possible detections) of an already detected fault is considered as redundant

work for traditional fault simulation process e.g., where only the calculation of fault coverage

is required. Hence, a fault detected by a test is dropped from further consideration (shaded

35

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

(a) (b)

(c) (d)

 Core 1 Core 2 Core 3

C
o

re
 1

C
o

re
 2

C

o
re

 3

C
o

re
 1

Core 1

C
o

re
 2

C

o
re

 3

Core 2 Core 3

Figure 4.1: Impact of fault dropping in different approaches (a) serial fault simulation, (b) static fault partitioning

parallelization, (c) static test partitioning parallelization, (d) hybrid test and fault partitioning parallelization

(snapshot, not shown complete here).

cells). For the example in Fig.4.1(a) 43 out of 81 cells are not examined, because of fault

dropping.

Fig.4.1(b)-(d) illustrate various partitioning options for parallel fault simulation. In Fig.4.1(b)

the faults are distributed across the available cores (fault partitioning) and simulated for all the

tests. Thus, each core (represented with different color) simulates all the tests for a fraction

of all faults (|F|/m). While this approach is complete and the total number of cells examined

is the same as in Fig.4.1(a), it is not scalable as expected. Since the percentage of dropped

faults is different for the different cores, some cores terminate faster than others. For exam-

ple, Core 1 becomes idle after 11 simulations in total (non-shaded cells), Core 2 after 12 and

Core 3 after 15 simulations. Hence, the total execution time is limited by the slowest core

(lowest percentage of dropped faults) as the idle cores’ processing power is not utilized. In

the example of Fig.4.1(a) the total execution time is 38 time units (white cells), assuming a

36

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

uniform 1 time unit execution for each test-fault pair examined. A scalable parallelization

with 3 cores should provide 3× speed-up i.e., 12.67 time units. Instead, the approach of

Fig.4.1(b) is executed in 15 time units (waiting for Core 3 to finish execution) resulting in

only 2.53× speedup.
A second partitioning option is when the tests are equally distributed to the available

cores while all faults are considered by all cores (test partitioning) as shown in Fig.4.1(c).

This way, each core has to simulate only a fraction of the available tests (|T|/m), for all faults
in F. The non-shaded cells in Fig.4.1(c) but shaded in Fig.4.1(a) indicate unnecessary simu-

lations (22 cells) while a red × indicates additional fault detection (not present in the serial
approach). These additional detections occur since multiple tests are concurrently simulated

for the same faults (e.g. f6 is detected by t1, t4 and t9 in all 3 cores). The total number of

simulations is 60 instead of 38 in Fig.4.1(a), affecting significantly the expected speed-up.

For this example, the execution time is 21 time units (execution time of Cores 1 and 2) re-

sulting in a 1.81× speed-up instead of the 3× expected. Even for the case where each core
broadcasts the identified detections (i.e., perform fault dropping across cores via the shared

memory), experimentation showed considerable overhead due to undesired situations such

as inconsistent race conditions, memory locks, and synchronization.

A hybrid approach combining the two approaches to explicitly avoid potentially unnec-

essary work is shown in Fig.4.1(d). Each core is assigned a subset of the fault list of size

(|F|/m) and a subset of the test patterns of size (|T|/m) (test and fault partitioning) at one
time. This process is iterated until the entire search space is examined. The faults detected at

each core are dropped at the end of each iteration. This hybrid partitioning allows for fault

dropping to be communicated more frequently and for better workload balancing. For these

reasons it has been adopted in the proposed method. More details are provided in Section

4.2.

Superfluous work avoidance: The efficiency of parallel solutions is very sensitive to

the uncertainty introduced by fault dropping, shared memory access time, race conditions,

synchronization and the shared memory coherence mechanism. Parallel methodologies in-

herently suffer from increased total workload with respect to serial approaches. The limited

view of the entire problem in each core can result in processing that is not necessary because

concurrent processing nullifies its contribution to the final solution. Detecting a fault once

is sufficient for the problem under consideration and any further consideration of detected

faults in any core is considered unnecessary processing. In this work, simulating a fault

concurrently in two or more cores for different tests is referred to as superfluous workload.

37

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

For example, in the serial approach of Fig.4.1(a) the shaded cells denote workload that does

not require to be executed due to fault dropping. For the parallel approach of Fig. 4.1(c),

where the same fault is considered in more than one cores at the same time, many of these

superfluous simulations are executed, increasing the overall executed workload. Superflu-

ous workload is the main reason why test partitioning has a larger impact on the speed-up

than fault partitioning. The proposed work incorporates a number of techniques to minimize

superfluous workload.

Shared memory utilization: Parallel approaches relying on shared memory are by na-

ture highly dependent on the memory structure. Memory can be effectively used as the main

intercommunication mean between processing cores, hence any inefficient usage or inap-

propriate architecture can severely affect the methodology’s performance. Fault simulation

is not an exception, since each core must communicate its detections as soon as possible

to allow for effective fault dropping. Shared memory access requires memory locking and

synchronization in order to avoid race conditions and ensure the memory coherency. The

idle processing times imposed by memory locking and synchronization introduce delays,

which can increase the overall runtime. This is the case, for example, when the number of

faults dropped at one time is large (i.e., high fault dropping rate). Communicating dropped

faults very frequently (e.g. on every detection) can increase the memory accesses and the

corresponding idle time considerably. This increase has even larger impact on memory hi-

erarchies that combine shared (main memory) and local memories (on-core caches), like the

one considered here, where a large number of writes from local to shared memory (and vice

versa) are performed. In this work we consider systems with multiple identical cores (homo-

geneous), each of which posses at least one level of private cache and at least one level of

shared memory.

To address this issue, the parallel fault simulation method under investigation proceeds

in three phases each utilizing the shared memory structure in a different way. Firstly, the

faults are partitioned into fault sub-lists and each core simulates its own partition of tests in-

dependently for its private sub-list. Faults dropped need only to be communicated at the end

of this phase, resulting in a single shared memory locking that limits core idle time. After

a high percentage of (easy-to-detect) faults is dropped, this mutually exclusive approach is

not effective any more. Static partitioning of the remaining hard-to-detect faults results in

simulation times that are highly different among cores. This can lead to unbalanced work-

load which in turn results to underutilization of several cores that may become idle. Thus,

a dynamic approach follows in which a small number of faults are dynamically distributed

38

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

to each core at a time. These faults are simulated in parallel by each core (via a bit-parallel

simulation process) and the shared fault list is updated immediately upon simulation. This

second phase does not explicitly avoid race conditions as the first one. However, it takes

advantage of the different execution times among cores to ensure they access the memory in

distinct times; yet its dynamic nature does not result in idle cores, unless all the tests assigned

to a core have been examined. A last phase is invoked to utilize the idle cores’ processing

power which may result to more frequent race conditions (both for faults and tests). To mini-

mize these as much as possible this third phase makes usage of a special data structure called

Test and Fault Map (TFM) where a record is maintained for each test that contains all the

undetected faults not yet simulated for this test. Each record can be accessed separately i.e.,

without the need of locking the entire map.

4.2 Exploiting Shared-Memory to Steer Scalability of Fault

Simulation using Multicore Systems

The proposed parallel fault simulation method takes into account all challenges discussed

in Section 4.1.3. This section describes in detail the parallel fault simulation method under

investigation and presents optimizations incorporated to provide a scalable and well balanced

parallel solution (4.2.2). Necessary notation is given in Table 4.1.

4.2.1 Parallel 3-phase Methodology

The proposed method consists of three phases, each one utilizing the available cores and the

shared memory in a different manner (Fig.4.2). Initially, a pre-processing step is invoked to

favor assigning at the same core, faults with higher likelihood of being detected by the same

test. This step is based on constructing fault sublists by a DFS traversal of the circuit’s netlist.

The traversal begins at a fault site and groups of faults discovered until a branch is reached.

Beginning from the branch a new group is formed following the same approach. When a

primary output is reached the current group is also completed and a new traversal begins

from a new fault site. This process terminates when each fault is contained in a group. After

fault grouping a bin-packing heuristic is followed in order to create equal sized sub-lists to

be allocated to cores. Larger groups are put first in bins while smaller groups are used to fill

the bins up to size |F|/m, where |F| is the total number of faults andm the number of available

processing cores.

39

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Generate fault list F

under fault model M

Circuit

netlist C

Report Fault

Coverage

Pre-processing step

Partition faults into n fault

sub-lists Fi of size |F |/n

simulate tests in Tn

for fault sublist Fn

Core n

simulate a test for its

non-simulated faults

simulate a test for its

non-simulated faults

Idle Core 1 Idle Core m

simulate tests in Tn

for w faults in F

Core n

D
y
n

a
m

ic

C
o
ll
a
b

o
ra

ti
v
e

P
h

a
se

. . .

. . .

TFM=Ø
?

S
h
a
re

d
 fa

u
lt list F

(u
n
d
e
te

cte
d
 fa

u
lts)

S
h
a
re

d
 te

sts a
n
d

fa
u
lts m

a
p
 T

F
M

YES NO

Test Set T

 Partition T into

n test partitions

Ti of size |T |/n

. . .

simulate tests inT1

for fault sublist F1

Core 1

update

update

simulate tests in T1

for w faults in F

Core 1

W
o

rk
lo

a
d

B
a
la

n
c
in

g

P
h

a
s
e

In
d

e
p

e
n

d
e
n

t

P
h

a
se

Figure 4.2: Flowchart of the proposed parallel fault simulation method.

This sorted-fault partitioning is used to evenly distribute workload among cores and, at the

same time, provides a better starting point for the first phase of the method than a non-sorted

approach. The latter has been confirmed by extensive experimentation, the corresponding

setup of which has been presented in Section 3.3 and [84] together with relevant results. [84]

also describes alternative sorted-fault partitioning approaches such as Breadth-First-Search-

based, Reverse Order and Random Selection. The proposed pre-processing approach was

selected due to its simplicity and its minimal impact on the total runtime. Keeping its runtime

small is highly important for this step as it is the only part of the proposed method that does

not run in parallel (its output is an input to problem decomposition). Experimentation has

shown that alternative partitioning approaches can affect the overall speedup by 4-5% i.e.,

reduce it by ∼1×.

After the initial pre-processing step, three parallel (Independent, Dynamic Collaborative

and Workload balancing) phases take place (Fig.4.2). Initially, at the Independent Phase,

40

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Table 4.2: Addressing the identified parallelization challenges in the proposed method

Parallelization
Challenge

Independent
Phase

Dynamic
Collaborative

Phase

Workload
Balancing Phase

Efficient
Fault Dropping

Mutually exclusive fault
sub-lists per core. Faults are
immediately dropped from
local sub-list. The global
fault list is updated once at

the end of the phase.

Global fault list is updated immediately after
detection. Dropped faults are not further

considered.

Effective
Partitioning

DFS-based sorting of faults
(pre-processing). Fault

expected to be detected by
the same test(s) are placed

on the same sub-list.

DFS-based sorting of faults (pre-processing).
Fault expected to be detected by the same

test(s) are simulated together in a bit-parallel
fashion.

Superfluous
Work Avoidance

Faults and Tests are
partitioned into mutually
exclusive sub-lists. No two
cores simulate the same

fault even for different tests.

Faults are marked in
the global sublist. No
fault is simulated at
different cores at the

same time.

Superfluous work
avoidance not
targeted.

Shared
Memory
Utilization

Sub-lists are kept in core’s
private cache. Shared

memory is only updated at
the end of the phase.

A group of faults are simulated together. They
are implicitly transfered in the simulating

core’s private cache.

tests and faults are equally and statically partitioned among the available cores following a

superfluous workload avoidance approach and targeting large number of (mostly easy-to-

detect) faults. In this phase cores are working on mutually exclusive search space, as seen in

Fig.4.1(d), and are expected to have similar runtime since they are assigned an equal work-

load. A high percentage of easy-to-detect faults are efficiently dropped per core while, the

shared fault list is only updated at the end of the phase avoiding excessive shared memory

access for fault dropping, due to the large number of faults being dropped. Despite the ob-

vious benefit of the workload distribution and redundant work avoidance, static partitioning

may still result in imbalanced executions among the various cores due to the possibility of

different fault dropping ratios among the cores. Hence the proposed methodology goes be-

yond this static approach, by supplementing it with two dynamic phases that are triggered

using specific metrics.

In the Dynamic Collaborative Phase that follows, each core simulates the same tests as

in the previous phase. The remaining faults are dynamically allocated to all available cores

requiring appropriate bookkeeping in order to simulate every test for all undetected faults

and also avoid concurrent simulation of the same fault. Faults that are under processing are

marked and revisited later exploring the high-speed shared memory for inter-core communi-

41

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

cation in order to avoid superfluous work. The finalWorkload Balancing Phase redistributes

the remaining workload across cores by moving tests from busy cores to others that have al-

ready finished processing their initially assigned tests (idle cores). Appropriate bookkeeping

using a Test and Fault Map guarantees that a test is simulated for each fault at most once. The

following subsections describe in detail each one of these phases while Table 4.2 summarizes

how each one of the parallelization challenges presented in Section 4.1.3 is addressed in each

phase.

Three phase methodology example

The proposed method highlighted on Fig. 4.2 is presented in the following section with an

example. During phase 1, the existence of easy-to-detect faults allows for considerable fault

dropping within each individual fault group of |F|/n faults. The pre-processing partitioning

step is illustrated in Fig. 4.3(a). T is also partitioned in groups of |T|/n tests, and allocated

to the core of the same color which in turn considers only the faults of the same color. The

resulting parallelization setup and execution for phase 1 is illustrated in Fig. 4.3(b). The

simulation follows a standard event-driven approach based on DFS traversals of C. Each

traversal considers sub-groups of faults, within its group (|F|/n faults), in a fault bit-parallel

fashion with size equal to the machine word length w. Hence, w faults are sent for simulation

at a time. The process is further enhanced by a test bit-parallel technique to calculate the fault-

free values of w tests concurrently. The first phase terminates when every core simulates all

of its |T|/n tests for all |F|/n faults considered or already detected by a test in its group. This

Algorithm 1 Independent Phase
Inputs: Test set partition Ti, fault list partition Fi
Outputs: Updated shared fault list F

01. For all tests ∈ Ti
02. Tw = select w tests ∈ Ti
03. bit-parallel-simulation(Tw, fault-free)
04. Fdi = ∅
05. For each test tk ∈ Ti
06. Fw = select w faults ∈ Fi
07. Fdet = bit-parallel-simulation(tk, Fw)
08. Fi = Fi \ Fw
09. Fdi = Fdi

∪
Fdet

10. if (|Fdet|
|Fi| < DropRate)

11. break;
12. lock-shared(F)
13. F = F \ Fdi
14. unlock-shared(F)
15. return

42

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 4.3: Three phase methodology example: (a), Static test partitioning and initial fault list assignment, (b)

phase 1, (c) phase 2, and (d) phase 3.

latter case is indicated by the gray entries in the fault list in Fig. 4.3(b). The faults detected at

each core are dropped from the global fault list only at the end of phase 1 to avoid unnecessary

writes to the shared memory. Since there is no overlap between the faults considered by each

core, this write-back scheme is very efficient.

In phase 2 each core can potentially examine all undetected faults not considered by the

core during phase 1. Let us denote this list of faults by UF1. Faults in UF1 are allocated to

each core, in groups of w faults, in an iterative dynamic fashion so that no fault is simulated

concurrently by multiple cores. During phase 2, global fault dropping is enabled for each

simulation step by all cores. Hence,UF1′ indicates the dynamically updated list of undetected

faults considered by each core during phase 2 (as shown in Fig. 2). Appropriate bookkeeping

ensures that no test is simulated twice for the same fault. In each iteration, the process for

each core traverses UF1′ starting from the first undetected fault not already allocated to some

other core, and selects the nextw faults to simulate. This iterative phase 2 is illustrated in Fig.

4.3(c), where a core considers faults of the same color as itself. For example, during iteration

1, the blue core considers the blue faults in Fig. 4.3(c), which start at the next undetected fault

after the blue faults of Fig. 4.3(b). The traversal of UF1′ is done in a circular manner. For

example, during iteration 1 the green core considers the first group of faults in the list since in

43

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

phase 1 it considered the last group of faults. This iterative process ensures that a core does

not consider a fault it has already considered in a previous iteration or in phase 1. A core

process in phase 2 terminates when all allocated tests are simulated for all undetected faults.

This phase is sensitive to the uncertainty introduced by fault dropping and may experience

imbalanced workload distribution. This case is illustrated in iteration k in Fig. 4.3(c).

A third phase (phase 3) is employed to alleviate this situation and to ensure that the overall

workload, among all three phases, is balanced. Specifically, workload from cores still busy

in phase 2 is re-distributed to idle cores. In the example of Fig. 4.3(d), only the yellow and

blue cores are still busy during phase 2. The red and green cores, which are idle, trigger phase

3 during which workload from the yellow core is redistributed to the two idle cores, along

with undetected faults (UF2 in Fig. 2) not yet simulated by the yellow core. Redistribution

of workload continues until all tests are simulated for all faults or 100% fault coverage is

reached. More details for each phase are presented in the following subsections.

(1) Independent Phase

|T|/m tests and |F|/m faults are statically assigned at each core. The first |T|/m tests from

T are assigned to Core 1 (T1), the following |T|/m to Core 2 (T2) and so on. In the same

rationale, |F|/m faults are assigned to each core (F1 to Core 1, F2 to Core 2, etc). Fig.4.1(d)

shows this initial allocation resulting in equal initial workload among cores. Detected faults

are stored in local (per core) fault lists (Fdi), avoiding shared memory contention which can

be caused when the global fault list F in the shared memory is updated very frequently by

many cores. This is often the case in this phase where a large number of easy-to-detect faults

are detected. Hence, each core is independently working on faults from its local fault list (Fi)

avoiding communication and time consuming synchronization with other cores. When each

core terminates the shared memory is updated by dropping all detected faults from the global

fault list F.

44

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

t 1
3

t 1
4

t 1
5

t 1
6

t 1
7

t 1
8

t 1
9

t 2
0

t 2
1

t 2
2

t 2
3

t 2
4

t 7

t 8

t 9

t 1
0

t 1
1

t 1
2

(c
)

f 1

f 2

f 3

f 4

f 5

f 6

f 7

f 8

f 9

f 1
0

f 1

1

f 1

2

f 1

3

f 1
4

f 1

5

f 1

6

f 1
7

f 1

8

f 1

9

f 2

0

f 2
1

f 2
2

f 2

3
 f

2
4

f 2

5
 f

2
6

f 2
7

f 2
8

f 2

9

f 3

0

f 3

1

f 3

2

f 3

3

f 3

4

f 3

5

f 3

6

f 3
7

f 3

8

f 3

9

f 4

0

f 4
1

f 4

2

f 4

3

f 4
4

f 4

5

f 4

6

f 4

7
 f

4
8

t 1

t 2

t 3

t 4

t 5

t 6

f 4

5

f 4
4

f 4
2

Q

2

C
o
re

 1

C
o
re

 2

C
o
re

 4

C
o
re

 3

t 1
9

t 2
0

t 2
1

t 2
2

t 2
3

t 2
4

t 1

t 2

t 3

t 4

t 5

t 6

t 1
3

t 1
4

t 1
5

t 1
6

t 1
7

t 1
8

t 7

t 8

t 9

t 1
0

t 1
1

t 1
2

F

f 1

f 2

f 3

f 4

f 5

f 6

f 7

f 8

f 9

f 1
0

f 1

1

f 1

2

f 1

3

f 1
4

f 1

5

f 1

6

f 1

7

f 1

8

f 1

9

f 2

0

f 2

1

f 2

2

f 2

3
 f

2
4

f 2

5

f 2

6

f 2

7

f 2

8

f 2

9

f 3

0

f 3

1

f 3

2

f 3

3

f 3

4

f 3

5

f 3

6

f 3

7

f 3

8

f 3

9

f 4

0

f 4

1

f 4

2

f 4

3

f 4

4

f 4
5

f 4
6

f 4

7

f 4

8

(b
)

C
o
re

 1

C
o
re

 2

C
o
re

 4

C
o
re

 3

C
o

re
 2

f 2

5

f 2

6

f 2

7

f 2

8

f 2

9

f 3

0

f 3

1

f 3

2

f 3

3

f 3

4

f 3

5

f 3

6

t 1
3

x

x

t 1
4

x

x

t 1
5

x

x

t 1
6

x

x

t 1
7

t 1
8

f 3

7

f 3

8

f 3

9

f 4

0

f 4

1

f 4

2

f 4

3

f 4

4

f 4

5

f 4

6

f 4

7

f 4

8

t 1
9

x

x

t 2
0

x

x

t 2
1

x

t 2
2

t 2
3

t 2
4

C
o
re

 4

f 1

3

f 1

4

f 1

5

f 1

6

f 1

7

f 1

8

f 1

9

f 2

0

f 2

1

f 2

2

f 2

3
 f

2
4

t 7

x

t 8

x

t 9

x

t 1
0

x

t 1
1

t 1
2

x

F
1

F
2

F
3

F
4

f 1

f 2

f 3

f 4

f 5

f 6

f 7

f 8

f 9

f 1

0

f 1

1

f 1

2

t 1

x

x

t 2

x

t 3

t 4

x

t 5

t 6

C
o
re

 1

C
o
re

 2

C
o
re

 3

(a
)

F

Fi
gu
re
4.
4:
Ex
ec
ut
io
n
ex
am

pl
e
of
th
e
pr
op
os
ed

m
et
ho
do
lo
gy
.(
a)
In
de
pe
nd
en
tP
ha
se
,(
b)
D
yn
am

ic
Co

lla
bo
ra
tiv
e
Ph
as
e
-1

st
ite
ra
tio
n,
(c
)D

yn
am

ic
Co

lla
bo
ra
tiv
e
Ph
as
e
-2

nd
ite
ra
tio
n.

45

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Algorithm 1 shows the basic steps of the proposed approach executed at each core i. The

main goal of this Independent Phase is to detect quickly the vast majority of the easy-to-detect

faults. For this we introduce the fault dropping rate as the lower acceptable bound of fault

detections per test. This rate is monitored and a low value is an indication that the majority

of the easy-to-detect faults have been detected, and hence, this phase should be terminated.

More details on this can be found in Section 4.2.2.

Initially, all tests allocated to core i are simulated to provide the fault-free responses (lines

01-03). This is done in a bit-parallel manner with w tests simulated at the same time; w

is the data word size of the processor. Each one of the w bits is assigned a signal value

corresponding to a different test starting from the primary inputs. The simulation traverses

the circuit by applying bitwise logic operations at each line indicated by the respective logic

gate. Interested readers are refereed to [7] for further details on bit-parallel (fault) simulation.

Next, each test in Ti is simulated for all faults assigned to the core (Fi) in groups of w, again

in a bit-parallel fashion (lines 05-07). The faults detected from this simulation (Fdet) are

removed from Fi (line 08) and accumulated in the local list of detected faults (Fdi) (line 09).

This iterative approach terminates when any of the termination conditions occurs: (i) all tests

have been considered for simulation (line 05), or (ii) the fault dropping rate is lower than a

predefined threshold, referred to as DropRate (lines 10-11). Finally, all accumulated faults

detected are dropped from further consideration from the shared fault list F (line 13). This

updating requires locking of the shared memory to ensure coherency (lines 12 and 14).

Fig.4.4 illustrates the execution of the proposed method using an example, assuming a

system with 4 cores (m=4) and with w=3, |F|=48 faults, and |T|=24 tests. Hence, faults and
tests are equally distributed to the available cores, i.e, |Fi|=12 faults and |Ti|=6 tests as il-
lustrated in Fig.4.4(a). Detected faults are dropped locally per core and only at the end of

the Independent Phase are dropped from the global shared fault list F (gray shaded cells of

Fig.4.4(b)) to avoid excessive shared memory reads/writes. This write-back scheme is pos-

sible since each core has its own search space and, thus, broadcasting detections earlier is

meaningless. When the first core finishes processing with its tests or the fault dropping rate

for a test is too low (here DropRate=1), the Independent Phase terminates. In this example

Core 2 finishes processing for tests t7-t12 (indicated in green) while Core 1 has one (t6), Core

2 has two (t17 and t18) and Core 4 has three (t22, t23, and t24) tests that are not fully simulated

yet. These tests will be considered in the two subsequent phases.

46

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

(2) Dynamic Collaborative Phase

During this phase, the same |Ti| tests that are statically allocated to core i during the Inde-

pendent Phase are considered for simulation. However, faults are distributed per core in a

dynamic manner by examining the global shared list of undetected faults F. The main prin-

ciples used during this phase are (i) each core is allocated w faults from F at a time, and (ii)

no two cores simulate the same fault, even for different tests, in order to avoid superfluous

work. The latter condition requires global bookkeeping to mark a fault as “under process-

ing” when allocated to a core and not allow for other cores to claim it. This bookkeeping is

realized using local queues per core (Qi). For some test t j a core goes through F in a circular

modulus manner searching for w undetected faults that are not under processing by any other

Algorithm 2 Dynamic Collaborative Phase
Inputs: Test set partition Ti, shared fault list F
Outputs: Test and Fault Map TFM

01. For each test t j ∈ Ti
02. if t j not examined in previous phase
03. TFM(t j) ← F
04. else
05. TFM(t j) ← F \ F j
06. For each test t j ∈ Ti
07. For each fault fk ∈ F
08. if fk is under processing
09. add-queue (Qi, fk)
10. else
11. add-list (Fw, fk)
12. mark faults of Fw as under processing in F
13. if (|Fw| = w)
14. Fdi = bit-parallel-simulation(t j, Fw)
15. lock-shared(F)
16. F = F \ Fdi
17. unmark faults in Fw \ Fdi from F
18. unlock-shared(F)
19. Fw=∅
20. while (|Qi| ≥ w) do
21. fk = next fault in Qi
22. if fk ∈ F AND not under processing
23. add-list(Fw, fk)
24. remove-queue (Qi, fk)
25. if (|Fw| = w)
26. repeat steps 13-19
27. if (Qi = 0)
28. T = T - t j
29. else
30. TFM(t j) ← Qi
31. Qi = ∅
32. return

47

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

core. Undetected faults that are currently under processing by other cores are stored in Qi

in order to be considered later by core i, only if this is necessary. Hence, after a fault in Qi

has been processed by some core j and still remains undetected, then core i will process it.

Alternatively, if the fault is detected by some core j then it is dropped from the global fault

list F. This procedure continues until all tests in Ti are simulated for all undetected faults in F

by repeatedly revisiting Qi until its size becomes smaller than w. This termination condition

has been set to allow core i to continue with its other tests for which many faults remain to

be simulated.

Algorithm 2 presents the pseudo-code of the Dynamic Collaborative Phase. The proce-

dure begins by initiating a Test and Fault Map (TFM) which serves as input to the following

phase. TFM maintains a record per test that keeps all the faults that have not been simulated

by the test. Each core creates the records for the tests allocated to it (i.e., those in Ti), after

the end of the Independent Phase by inserting all faults in F in the test’s record TFM(t j) (lines

02-03). If a test has been processed in the Independent Phase, all the simulated faults (i.e.,

those in Fi) are excluded from TFM(t j) (lines 04-05). Then, each test in Ti is simulated for

all faults in F, in groups of w and TFM is updated accordingly. Faults are placed in the local

list Fw to be simulated and marked as “under processing” (lines 10-12). Faults marked as

under processing by other cores are placed in local fault-skip queue Qi for later consideration

(lines 08-09). The outcome of the simulation (stored in Fdi) (line 14) is used to update the

shared fault list F (lines 15-18). This process is repeated until all faults in F have been either

simulated or queued. Faults in Qi are then revisited for simulation (if not already dropped

from F by some other core) in lines 20-26. If the fault-skip queue has size smaller than w

then its contained faults are not simulated and saved in TFM (line 30). If Qi becomes empty

then the test has been simulated for all faults and, thus, can be removed from any further

consideration (lines 27-28).

Fig.3(b) and (c) show an execution example for this phase. Let’s concentrate on Core

2 (pink core). T2 remains the same as in the Independent Phase (Fig.4.4(a)), hence, T2 =

{t7, t8, t9, t10, t11, t12}. Starting at the fault immediately following the last fault simulated by
Core 2 in the Independent Phase, i.e., fault f25, Core 2 looks for w non-detected faults from

F which are not under processing. Dropped faults are shown in gray shaded cells in F. These

actually no longer exist in F; they are shown here for completeness. Under processing fault

cells in F are shown in colors green, pink, blue and yellow, indicating the core that process

them, i.e., Core 1, Core 2, Core 3 and Core 4, respectively. For this example, let w=3.

Therefore, during the first iteration of the Dynamic Collaborative Phase, Core 2 acquires 3

48

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

faults and Fw = { f25, f26, f29}. Each core traverses F in a circular modulus order. For Core 2

this order is f25, f26,..., f48, f1,..., f12. For Core 3, the order is f37, f38,..., f48, f1,..., f24.

During the 2nd iteration (shown in Fig.4.4(c)), Core 2 simulates faults in Fw = { f32, f40,

f47}. Faults f38 and f39 were detected byCore 3 during its 1st iteration and, hence, are not con-

sidered by Core 2. Faults f42, f44 and f45 are under processing by Core 3 (blue in Fig.4.4(c))

and as a result they are placed in fault-skip queue Q2. Faults collected in Q2 are considered

after Core 2 terminates the circular traversal of F. Additional details on the implementation

as well as the fault space completeness using this technique is given in Section 4.2.2.

Algorithm 3 Workload Balancing Phase
Inputs: Shared Fault and Test Map TFM,
Shared fault list F, Shared test set T
Outputs: Fault Coverage

01. if core i is idle do
02. For each not idle core j
03. if ∃ tk ∈ T j ∩ TFM
04. remove-list (T j, tk)
05. add-list (Ti, tk)
06. Fnsim← TFM(tk)
07. add-list (Fi, Fnsim)
08. Fw = Select w faults from Fi
09. Fdi= bit-parallel-simulation(tk, Fw)
10. lock-shared(F)
11. F = F \ Fdi
12. unlock-shared(F)
13. Fw = ∅
14. if (Fi = ∅)
15. T = T-tk
16. return

(3) Workload Balancing Phase

In this phase the restriction that each test is allocated to a specific core is relaxed. Target-

ing full utilization of the available processing power, tests from busy cores are moved to

idle cores together with corresponding faults not yet simulated. For this purpose, the TFM

constructed in a distributive manner by all cores during the previous phase and stored in the

shared memory is utilized. Avoidance of superfluous work is not explicitly enforced since

in this stage only very few faults remain undetected. The main purpose here is to conclude

as fast as possible if these faults are not detected by the given test set or they have (possibly)

only one detection that has not been examined yet. Covering all possible combinations will

provide the actual fault coverage of the test set under evaluation.

49

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Algorithm 3 summarizes the basic steps of the Workload Balancing Phase. The process

is activated when the workload assigned to a core in the Dynamic Collaborative Phase has

been executed (line 01), e.g. all tests in its test list (Ti) have been retired. The procedure

acquires tests from busy cores by searching TFM (lines 02-03). The test selected (tk) is

removed from the test list T j of the busy core (line 04) and added to the test list Ti of the idle

core (line 05). Then, all the faults not yet simulated for the acquired test and not dropped by

other tests during the previous two phases are allocated to the idle core (lines 06-07). This

information is obtained from the globally maintained TFM that keeps a record for the faults

not yet simulated per test (see Section 4.2.2). The acquired test is simulated for the remaining

faults and the shared fault list is updated with the new detections (line 08-12). A test is retired

when it has been simulated for all undetected faults (lines 14-15) and the phase terminates

when the entire workload is examined (all cores become idle).

4.2.2 Parallelization Optimizations

This subsection provides details on three optimizations incorporated in the methodology pre-

sented in Section 4.2 that play important role in achieving high scalability, beyond the generic

techniques used to ensure efficient utilization of the shared memory.

50

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

f 2

5

f 1
8

f 4
7

f 4
5

f 4
7

f 4
5

f 2
5

f 1
8

1

C
o
re

 1

f 2

5

f 4
5

f 2

5

f 1
8

f 4
7

f 4
5

f 4
2

f 3
6

f 2
5

f 1
8

S
k

ip
 Q

u
e

u
e

 Q
1

f 2

5

f 1
8

f 1
4

f 4

2

f 3
6

f 2
9

f 2
5

f 1
8

f 1
4

f 4

7

f 4
5

f 4
2

f 3
6

f 2
9

f 2
5

f 1
8

f 1
4

3 2 4 5

S
h
a
re

d
 F

a
u
lt

Li
st

 F
 C

ir
cu

la
r

T
ra

ve
rs

a
l

1 3 2 4
S
ki

p
 Q

u
e
u
e

T
ra

ve
rs

a
l

f 2

5

f 1
8

f 4
7

f 4
5

f 4
7

f 4
5

f 2
5

f 1
8

f 1

f 2

f 3

f 4

f 5

f 6

f 7

f 8

f 9

f 1
0
 f

1
1
 f

1
2
 f

1
3
 f

1
4
 f

1
5
 f

1
6
 f

1
7
 f

1
8
 f

1
9
 f

2
0
 f

2
1
 f

2
2
 f

2
3
 f

2
4
 f

2
5
 f

2
6
 f

2
7
 f

2
8
 f

2
9
 f

3
0
 f

3
1
 f

3
2
 f

3
3
 f

3
4
 f

3
5
 f

3
6
 f

3
7
 f

3
8
 f

3
9
 f

4
0
 f

4
1
 f

4
2
 f

4
3
 f

4
4
 f

4
5
 f

4
6
 f

4
7
 f

4
8

t 1

t 2

t 3

t 4

t 5

t 6

t 7

t 8

t 9

t 1
0

t 1
1

t 1
2

f 1
8

f 2
5

f 4
5

f 2
5

T
e

s
ts

 a
n

d
 F

a
u

lt
s

M
a

p
 T

F
M

f 4
7

it
e

ra
ti

o
n

S

k
ip

 Q
u

e
u

e
 Q

2

it
e

ra
ti

o
n

Id
le

 C
o
re

co
p
y

t 2
 l
is

t
fr

o
m

 T
F
M

S
ki

p
 Q

u
e
u
e
 T

ra
ve

rs
a
l

a
ll

si
m

u
la

ti
o
n
s

fo
r

t 2

d
o
n
e

O
p

e
ra

ti
o

n

O
p

e
ra

ti
o

n

S
H

A
R

E
D

 M
E

M
O

R
Y

C
o
re

 2

f 2
1

f 1
6

f 2
6

f 3
0

f 2
6

f 2
5

f 1
6

f 6

f 2
1

F
a

u
lt

 L
is

t
F

Fi
gu
re
4.
5:
Co

ns
tru
ct
io
n
of
th
eT

es
ts
an
d
Fa
ul
ts
M
ap

(T
FM

)e
xa
m
pl
e:
C
or
e1

up
da
te
sT
FM

w
ith

t 2
du
rin
g
th
eD

yn
am

ic
Co

lla
bo
ra
tiv
eP

ha
se
an
d
C
or
e2

ut
ili
ze
TF
M

in
fo
rm
at
io
n
du
rin
g

th
e
W
or
kl
oa
d
Ba
la
nc
in
g
Ph
as
e

51

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Fault dropping rate monitoring

As discussed in Section 4.2, the main target of the Independent Phase is to cover easy-to-

detect faults as early as possible, in order to reduce the overall workload. To achieve this with

high utilization of the available processing power, faults and tests are equally distributed to

cores in a mutually exclusive manner. As discussed in Section 4.1.3 the difference in the

fault dropping rate between cores can lead to idle cores and, hence, to underutilization of

the available processing power. The fault dropping rate is defined as the number of dropped

faults over the number of simulated faults per test, averaged over all tests examined by same

core i at a particular point in time. When this ratio drops significantly, this is an indication

that the majority of easy-to-detect faults has been detected by some test and that the static dis-

tribution of workload followed in the Independent Phase will eventually introduce idle cores.

To avoid this, each core monitors the fault dropping rate and when significantly reduced, the

Independent Phase is terminated in order to allow for the redistribution of the faults among

the cores in a dynamic fashion.

In order to find a suitable value for this rate (threshold) we have examined how the speed-

up is affected by the following 4 parameters: |F|, |T|, |Fi| and |Ti|. Hence, we run the method
using for the threshold weighted values of each one of them varying from 1

m up to m, where

m is the number of the cores considered. These experiments have shown that the speed-up

is affected by the changes of |Fi| in a directly proportional manner and by the changes in |Ti|
and |T| in an inversely proportional manner. The changes in the weight of |F| do not affect the
obtained speed-up. Next, we combined the values found for the three former parameters and

performed a similar exploration. As a result, we have set the fault dropping rate threshold to

|Fi|/(|Ti| · |F| · 2), which simplifies to 1
2·|T| when |Fi| = |F|

m , |Ti| = |T|
m . Hence, the threshold for

the fault dropping rate is inversely proportional to the test set size.

Fault-skip queues

While in the Independent Phase the mutually exclusive nature of the partitioning guarantees

that no superfluous work will be executed, this is not the case for Dynamic Collaborative

Phase. Although tests are not shared among cores and, thus, no two cores can simulate ex-

actly the same fault-test combination, superfluous work occurs when two (or more) tests are

simulated for the same fault in two (or more) cores in parallel (explained in Section 4.1.3).

In order to avoid this problem, faults under processing are marked and not considered by

other cores. Any fault found to be under processing during the Dynamic Collaborative Phase

52

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

is inserted in a fault-skip queue maintained per core (Qi) in order to be considered after the

traversal of the shared fault list F for a test. Faults remaining in the fault-skip queue after

this phase terminates are stored along with the corresponding test in TFM. Fig.4.5 presents a

example of the usage of the fault-skip queues. Let Core 1 be in the Dynamic Collaborative

Phase. Core 1 simulates t2 for all the faults not simulated during the Independent Phase, by

traversing F. Faults indicated in pink are not simulated by t2 since they have been marked by

some other core(s) as under processing and, hence, placed inQ1. Specifically, f25, f18, f14 are

inserted in Q1 during iteration 1, f29, f36, f42 during iteration 2 and f45, f47 during iteration 3.

In iteration 4, after Core 1 performed a full traversal of F, t2 is simulated for faults f14, f29

which are removed from Q1. Faults f18, f25 are still under processing and, hence, skipped

simulation and inserted back in Q1. After the end of iteration 5, not enough faults (fewer

than w, here 2) can be found to be simulated for t2. Faults remaining in Q1 are saved in the

shared TFM (right part of Fig. 4.5) indicated in blue color. This way Core 1 can proceed

with its other tests for which many faults remain to be simulated. The skipped simulations

of t2 (for faults f25, f18, f45, and f47) will be considered in the Workload Balancing Phase. In

Fig. 4.5, Core 2 enters the Workload Balancing Phase after it becomes idle, acquiring these

faults from the record corresponding to test t2 in TFM and simulates them for t2 without

performing any further condition checks.

Shared Tests and Faults Map (TFM)

A shared Tests and Faults Map (TFM) is employed for the appropriate bookkeeping during

the simulation evolution to ensure that all test-fault combinations are considered. It consists

of lists of faults, one for each test, that keep the faults not yet simulated by the test. For

example, in Fig.4.5, t8 has been simulated for all faults except f16, f21, and f26. TFM is

initiated after the termination of the Independent Phase by recording all non-retired tests

together with their corresponding faults not yet simulated. During the Dynamic Collaborative

Phase each list is updated when the corresponding test is considered for simulation. As shown

in the previous subsection, this updating is in practice carried out by replacing a test’s list in

TFM with the fault-skip queue formed at the core executing the test’s simulations. For the

example of t2, simulated in Core 1 in Fig.4.5, the fault-skip queue saved in TFM is shown in

blue. Shaded tests in TFM (Fig.4.5) indicate tests for which all the simulations have finished,

while tests without a specific list (e.g., t3) indicate tests which are currently under processing

by some core in the Dynamic Collaborative Phase. A core becoming idle because all its tests

53

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

c1908

c2670

c3540

c5315

c6288

c7552

ISCAS 85

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

s13207

s15850

s35932

s38417

s38584

ISCAS 89

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

b14_C

b15_C

b17_C

b18_C

b19_C

ITC 99

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

ac97_ctrl

tv80

usb_funct

systemcaes

mem_ctrl

ethernet

S
p
e
e
d
-u

p

#cores

IWLS

#cores

S
p
e
e
d
-u

p

#cores

S
p
e
e
d
-u

p

#cores

S
p
e
e
d
-u

p

#cores

Figure 4.6: Scalability of the proposed fault simulation method using a randomly generated test set.

have been simulated for all faults (Core 2 in Fig.4.5) enters the Workload Balancing Phase

simulating tests that were originally assigned to other cores by considering the corresponding

lists from TFM. For this example, Core 2 simulates t2 (initially assigned to Core 1) and in

this manner workload is reallocated from Core 1 to Core 2.

4.2.3 Experimental Results

The method was implemented in C++ language with OpenMP parallelization framework and

run on a 20-core 2.5GHz Intel Xeon CPU E52670v2 Linuxmachine with 98GBs of RAM and

hyperthreading enabled (2 threads per core, 40 logical cores). The basis for the simulation is

an in-house event driven DFS-based fault simulation tool. The larger full-scan version of the

circuits in IWLS’05 benchmarks suite under the stuck-at fault model are considered during

simulations. Even though stuck-at fault model is used, any linear fault model can be applied

to the proposed parallelization method.

Table 4.3 presents the speed-up obtained using 24-logical cores, over a serial fault simula-

tion process (single core run), for a workload of 10000 random tests. 24 logical cores are used

instead of the 40 available to allow fair comparison with the work of [1]. For the same reason,

the speed-upmetric is used as it normalizes the comparison between different approaches that

consider similar architectures but with no identical characteristics such as memory size and

54

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

#cores #cores #cores

S
p
e
e
d
-u

p

S
p
e
e
d
-u

p

S
p
e
e
d
-u

p

Figure 4.7: Fault simulation scalability as reported in [1] using a randomly generated test set.

Table 4.3: Obtained speed-up and CPU time using 24 cores for 10000 random test patterns.

Single Dimension Scalability Scalability (proposed)

Circuit # Nodes # Faults Fault parallelism Test parallelism w/o optim. w/ optim. incr. (%) Scalability [1] CPU time (s)

c1908 5800 2056 1.14 10.57 16.6 19.32 11.33 1.35 <0.01

c2670 7766 2854 2.14 14.56 16.91 20.78 16.13 2.24 <0.01

c3540 10724 3742 1.01 11.36 16.87 19.1 9.29 3.07 <0.01

c5315 16258 5956 2.36 14.69 17.11 20.42 13.79 2.39 0.01

c6288 12578 6016 3.55 13.3 19.18 20.95 7.38 1.47 0.01

c7552 22686 8080 1.12 13.39 20.4 21.98 6.58 0.67 0.03

s13207.1 13207 10456 1.22 14.59 15.21 20.69 22.83 0.46 0.09

s15850.1 15850 12150 1.61 15.27 17.9 20.84 12.25 1.39 0.06

tv80 24357 21961 1.29 18.03 20.16 21.86 7.08 0.92 1.34

b15 20186 23111 1.93 15.3 22.41 23.04 2.63 2.35 0.11

b14 21680 23512 1.16 14.8 21.71 23.01 5.42 1.3 0.07

systemcaes 30015 26172 2.28 16.69 22.18 22.8 2.58 3.17 1.36

mem_ctrl 37904 27198 2.08 15.59 22.43 23.13 2.92 4.28 9.92

s38417 38417 32151 1.04 18.16 20.34 22.52 9.08 6.18 0.56

s35932 35932 34598 1.23 18.84 20.19 22.2 8.38 9.42 0.67

s38584.1 38584 36759 2.05 17.88 21.38 22.31 3.88 10.2 0.81

ac97_ctrl 39485 38961 2.34 18.11 21.62 21.9 1.17 n/a 3.48

usb_funct 40479 41249 2.75 16.71 19.96 22.32 9.84 n/a 4.76

b17_1 61044 75758 1.97 18.17 22.01 23.16 4.79 n/a 1.72

ethernet 223959 216925 3.04 16.92 21.8 22.76 4.00 n/a 7.21

b18_1 179967 223022 3.39 14.42 21.86 22.49 2.63 n/a 5.68

b19_1 479800 531381 2.65 17.33 23.29 23.58 1.21 n/a 9.53

Average 1.97 15.67 20.1 21.87 7.38 3.18

system CPU clock frequency. Column 1 lists the circuit name followed by the number of

circuit lines (column 2) and number of stuck-at-faults (column 3) in the collapsed fault list

considered for each circuit. Columns 4 and 5 report the speed-up achieved when only one

dimension of parallelism is applied; column 4 reports the speed-up achieved when only fault

list partitioning is applied (fault parallelism), while column 5 reports the achieved speed-up

when only test set partitioning is applied (test parallelism). In fault parallelism the test set is

shared among the cores, while faults are evenly distributed to the available cores. This option

suffers from considerable overhead due to high idle core times resulted from imbalanced fault

dropping among cores and overhead for re-calculation of test fault free responses. In the test

parallelism approach the fault list is shared among the cores. While this approach has less

55

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

overhead it still produces some superfluous work when two (or more) tests are concurrently

simulated at different cores for the same fault.

Column 6 reports the speed-up achieved by the proposed method without the optimiza-

tions presented in Section 4.2, i.e., the usage of TFM, the fault-skip queues and fault drop-

ping rate monitoring are disabled (reported in [28]). Disabling the fault dropping monitoring

heuristic extends the Independent Phase beyond the point where it effectively identifies easy-

to-detect faults. Column 7 reports the speed-up achieved when all optimizations are enabled,

which on average offer an additional speed-up of ∼2×. This improvement is significant since
there is a theoretical upper limit to the possible speed-up, imposed by the number of avail-

able processing cores (24 in this case). Hence, the impact of the proposed optimizations is

more obvious when the obtained speed-up by the method is significantly lower than 24×.
For example, consider circuit s13207.1. The speed-up without the optimizations is 15.21×,
much lower than the theoretical possible 24×. By enabling the optimizations, the speed-up
is increased to 20.69×, (22.83% improvement). Obviously, proportional improvement is not

possible when the speed-up achieved by the method (without the optimizations) is close to

24×, for example in the case of circuit b19_1 where only 1.21% improvement is possible

beyond the 23.29× achieved. We report the additional speed-up obtained by the proposed

optimizations as a percentage of the maximum theoretical speed-up (24×) for each circuit
in column 8. Column 10 lists the overall CPU time of the proposed approach in seconds

(including the optimizations heuristics) which is not greater than a few seconds for the larger

circuits.

The main observations here are: (i) Test parallelism is more effective in maintaining high

speed-up, yet the combination of the two as it is proposed for the Independent Phase provides

considerably improved speed-ups. (ii) The proposed optimizations are necessary to provide

a speed-up boost closer to the optimal (24×) and in no case their inclusion has a negative
impact to the speed-up of the methodology (i.e. the overhead is less than the gain). (iii)

The obtained speed-up implies that the proposed method will continue to provide scalable

speed-ups as the number of cores increases in systems having similar architectures to the one

considered here.

Compared to the most recent and related work of [1] reported in column 9 of Table 4.3),

the proposed work achieves considerably higher speed-up efficiency on all circuits and espe-

cially on larger circuits where the additional workload allows more room for parallelization

efficiency. For example, for the larger circuits reported in [1] systemcaes and mem_ctrl the

referred speed-up is 3.17× and 4.28×, whereas in the proposed approach it is 22.8× and

56

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Table 4.4: Obtained speed-up and CPU time using 24-cores for deterministic test sets.

Workload Scalability

Circuit # Nodes # Faults # Tests (#test x #faults) Standard order Reverse order Random order

c1908 5800 2056 112 11924800 6.4 6.58 6.75

c2670 7766 2854 67 22164164 7.42 6.18 7.65

c3540 10724 3742 107 40129208 11.36 10.36 11.06

c5315 16258 5956 67 96832648 11.16 10.72 10.98

c6288 12578 6016 27 75669248 6.32 6.67 5.5

c7552 22686 8080 102 183302880 12.27 11.33 10.05

s13207.1 13207 10456 260 138092392 11.58 11.03 10.75

s15850.1 15850 12150 126 192577500 12.41 11.54 11.85

tv80 24357 21961 555 534904077 18.76 17.79 17.39

b15 20186 23111 467 466518646 20.36 19.7 18.02

b14 21680 23512 757 509740160 20.1 18.35 18.56

systemcaes 30015 26172 152 785552580 18.51 17.89 17.06

mem_ctrl 37904 27198 491 1030912992 20.98 19.59 18.12

s38417 38417 32151 118 1235144967 16.36 15.08 14.58

s35932 35932 34598 21 1243175336 9.13 8.34 8.09

s38584.1 38584 36759 133 1418309256 17.67 17.09 16.51

ac97_ctrl 39485 38961 63 1538375085 14.81 14.33 13.32

usb_funct 40479 41249 122 1669718271 17.78 18.84 18.21

b17_1 61044 75758 1135 4624571352 20.42 20.01 19.09

ethernet 223959 216925 1792 48582306075 20.68 19.4 19.95

b18_1 179967 223022 1087 40136600274 20.13 19.87 18.32

b19_1 479800 531381 3291 254956603800 21.98 21.78 21.63

Average 15.30 14.66 14.25

23.13×, respectively.

A comprehensive picture of the superiority of the proposed method in terms of scalability

is illustrated in Fig. 4.6 and 4.7. Scalability is reported (y-axis) for different number of cores

(x-axis). Fig. 4.6 shows the results obtained for 10000 random patterns simulated by the

proposed method, while Fig. 4.7 the results for 10000 random patterns as reported in [1]. For

all the cases examined, the proposed methodology continues to scale with the same rate for

a larger number of cores, where the method of [1] exhibits significant speed-up saturation.

This observation implies that the scalability of the proposed method will continue with a

similar rate as the number of cores is increased. This is partially supported by the design of

the proposed methodology where a simple basic simulation process was used in each core

which, in turn, provides high level of freedom during parallelization. This is in a different

direction from the relevant work of [1] where the basic process is aggressively optimized

limiting the exploitation of parallelization techniques.

Table 4.4 presents the speed-up obtained by the proposed approach (including the opti-

57

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

Ethernet

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

b17_1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

c6288

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

b19_1

0

1

2

3

4

5

6

7

8
1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

Ethernet

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

b17_1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

c6288

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

b19_1

Figure 4.8: Impact of Workload Balancing Phase example. Cores shown in x-axis and CPU-time(s) in y-axis.

mizations), using again 24-logical cores, when a deterministic test set is simulated in different

orders. Columns 1-3 list the circuit name, the number of nodes and the number of faults in

the circuit, respectively. Column 4 reports the size of the test set considered and column 5

provides an indication of the maximum amount of workload to be carried out by the simula-

tion process, by multiplying the number of faults with the number of tests considered. The

latter is by no means an accurate measure, as it only partially takes into account the com-

plexity of the circuit; yet, cases with larger workload (as defined here) provide more solid

58

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

conclusion for the evaluation of the proposed methodology as they represent more realistic

examples. Columns 6-8 show the speed-up achieved following three different orders of the

test sets which are then distributed to the cores as described in Section 4.2. In Column 6, the

order by which the test generator tool has produced the test set is followed while in column

7 the reverse order is used. In column 8 a random test order is used. By comparing the three

techniques we conclude that the test order is of little or no importance to the scalability of the

approach. This is in contrast to many existing serial fault simulation approaches where the

test simulation order can affect significantly the fault dropping rate and, hence, the overall

CPU time. In the proposed parallel approach however, test order does not seem to factor

in, mainly due to the proposed fault dropping monitoring and dynamic workload balancing

techniques. Observe that higher speed-ups are achieved for larger workloads because these

cases take full benefit from the efficient utilization of the processing power.

The final part of our experimentation evaluates the impact of workload balancing in the

proposed methodology. As discussed in Sections 4.1.3 and 4.2.2, workload balancing is

crucial in achieving high and scalable speed-ups. Fig. 4.8 shows how workload is distributed

among the processing cores for four indicative benchmarks. Similar behavior was observed

in all the benchmarks considered. The y-axis shows overall CPU time and the x-axis shows

the different cores. In the plots on the left side, the Workload Balancing Phase has been

disabled, while in the plots on the right side it was enabled. Blue bars show the execution

time of the Independent Phase, red bars correspond to the Dynamic Collaborative Phase and

green bars to the Workload Distribution Phase.

During the first phase cores are independently working on their private partitions detect-

ing a large percentage of easy-to-detect faults. Very often the Dynamic Collaborative Phase

(red bars) is the most time consuming phase since the remaining (not easy-to-detect) faults

are systematically targeted in a dynamic manner. Redundant faults play an important role in

the CPU time of the entire simulation process since they need to be simulated for all tests.

When noWorkload Balancing Phase is applied then a large number of cores remain idle while

other cores have a large amount of workload left. The horizontal lines in the plots indicate

when the first core terminates when no load balancing is applied. For example for circuit

b17 core 18 remains idle for 28.5% of the execution time; yet when the Workload Balancing

Phase is enabled the maximum idle time is only 0.5% of the execution time. Dynamically

redistributing the workload as proposed alleviates this problem and results in smaller overall

CPU times for the entire process.

59

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

4.3 Chapter Summary

Basic concepts and terminology for fault simulation problem along with the related paral-

lelization attempts have been presented in the chapter. At first, the necessary preliminaries,

terminology and basic concepts for fault simulation problem are presented. The important

role of fault models, the difference among logic and fault simulation and its important role

in test automation process are analyzed.

Despite the high speed-up achieved by some of the works in the literature there is still

opportunities for further enhancements regarding the speed-up and for the quality of the re-

sults for CMPs architectures. This section summarizes the considerations for parallelization

specifically for fault simulation problem and presents in details a new method for on-chip

CMPs capable of maintaining its scalability as the number of processing cores utilized in-

creases. The method utilizes a simple, non-optimized single thread simulation process which

allows high degrees of freedom to be exploited. The experimental results show that the pro-

posed approach achieves high speed-up rates which, in contrast to comparable state-of the-art

methods, increase monotonically with the number of cores demonstrating a highly scalable

solution.

60

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Chapter 5

Parallel Test Pattern Generation for

Shared-Memory On-chip Multiprocessor

Architectures

This chapter outlines basic concepts for test generation problem and proposes a parallel

framework for it. Section 5.3 presents in details the parallel test pattern generation method-

ology under investigation along with extensive experimentation. Results indicate the signif-

icance of the proposed parallelization attempt on modern on-chip CMPs architectures.

5.1 Preliminaries - Basic Concepts

Test Generation

Test Generation (TG) is the process of generating vectors called patterns to test a cir-

cuit [85]. Typical ATPG algorithms inject a fault into a circuit, activate and justify a fault,

and then, use various mechanisms to propagate its effect to an output. The fault is detected

when the output signal changes from the expected fault-free value. ATPG algorithms need

data structures that are used to describe the search space for test patterns (e.g. binary search

trees, binary decision diagrams [93]). ATPG algorithms also need to be complete covering

the case where the algorithmmust be able to search the entire binary decision tree if necessary

in order to generate a test-pattern. [94] analyzed the computational complexity of an ATPG

and found that it is an NP-Complete (O(k3)), where k corresponds to the number of circuit

nodes). Several combinational ATPG algorithms have been proposed over the years start-

ing with Roth’s D-Algorithm (D-Algorithm) who defined the basic calculus for many others

61

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

more sophisticated ones [95]. Later, PODEM algorithm introduced the notion of backtrace

and used path propagation constraints efficiently with the goal to limit the ATPG algorithms

search space [96]. Next, FAN algorithm introduced which efficiently constrains the backtrace

for further speed-up increase and introduction of headlines for limiting search space [97].

Automatic Test Pattern generation

The task of an ATPG process is to identify/generate an assignment at the inputs of the

circuit (i.e. a test pattern), such that the circuit response given a fault f is different from the

reference response if the fault f is present. More formally, a test (or test pattern) t for a fault

f in a circuit C is the solution to the following equation: C(t) , Cf (t), where C(t) represents

the logic function of the fault-free circuit and Cf (t) the logic function of the faulty one. An

ATPG flow aims at generating a test for each fault in the fault list and combines them to a test

set. In addition to the detection of the fault, such test sets often have secondary objectives

and properties. For instance, technical requirements and limitations of the test infrastructure

of the target circuit have to be considered. Additionally, the number of test patterns in a test

set highly influences the test application time (i.e. the time an Automatic Test Equipment

(ATE) needs, to apply the test set to an individual circuit), which directly influences test

economics. Depending on the outcome of the ATPG, a fault f is classified as follows. If a

test t for a fault f exists, the fault is called testable and additionally called detected if t is also

part of the final test set. Whereas if the ATPG process could show that no such test exists f

is said to be redundant or untestable. ATPG is a well-known NP-hard problem and becomes

more demanding as devices under test are becoming larger, more complicated due to the new

emerging defects that require new fault models of higher complexity.

5.2 Motivation and Considerations for Parallelization

In on-chip multi-core architectures with shared memory, on-chip communication is not a

limitation any more and the cost of inter-core communication is reduced significantly. Fur-

thermore, the tends on current on-chip multi-core architectures is that the level of memory

coherency is guaranteed and the number of available cores keeps increasing. These new

developments and trends motivate towards the investigation of parallel ATPG approaches

capable of achieving speed-up scalability as the number of on-chip cores increases, while

overcoming new challenges such as shared memory contention, as well as efficient workload

distribution parallel threads.

A common parallelization procedure consists of three steps: (i) decomposition (domain

62

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

or functional), (ii) parallel execution, and (iii) final result assembly. Step (ii) can result in

significant compromise of the quality of the obtained results and, at the same time, not of-

fer the expected speed-up. An efficient parallel algorithm should effectively overcome chal-

lenges such asmemory contention and imbalancedworkload distribution. Any parallel ATPG

method has to appropriately designs all three steps to ensure that these challenges are treated

efficiently.

5.2.1 Test inflation problem

Proper problem decomposition, workload distribution and final test set recomposition are

essential to guarantee the quality of the results while maintaining fault coverage. Since typi-

cally each core does not consider the entire search space, parallel approaches tend to choose

local optimal solutions resulting in test set increase [2, 40], known as the test inflation prob-

lem. An analysis presented in [98], states that an increase (15.9%) in test patterns can cause

an 100% increase in test cost per unit at the worst-case scenario without including the ad-

ditional test time and the financial loss due to delayed time to market. Hence, test inflation

is an important problem for a parallel ATPG solution which can limit the practicality of the

proposed solutions.

5.3 Utilizing Shared Memory Multi-cores to Speed-up the

ATPG process

In [26] it is presented a parallel ATPG methodology for shared-memory systems geared to-

wards high speed-up and test inflation containment. The methodology takes advantage of

fast and low cost shared memory communication inherent in the underlying architecture in

order to coordinate the main steps of the ATPG to avoid redundant work and dynamically al-

locate the workload while minimizing memory contention caused by multiple cores (threads)

when accessing shared data. A test generation flow is proposed in which hard-to-detect faults

are targeted first, followed by a parallel fault simulation-based merging process to maximize

fault coverage. This process employs a series of newly proposed parallelization heuristics

to explicitly avoid simultaneous consideration of the same faults by two or more cores, in

order to minimize extra work and thread idle time. Any remaining undetected faults are

targeted during a following phase, in a similar manner. The obtained experimental results

demonstrate the effectiveness of the proposed approach in speeding-up the ATPG process

63

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

and provide comparisons with relevant recent work.

5.3.1 High-Level Parallel ATPG Framework

The proposed ATPG method appropriately designs all three steps presented in 5.2 to en-

sure that these challenges are treated efficiently. Specifically, two conceptual approaches

are adopted: (i) problem partitioning to avoid executing the same work concurrently in dif-

ferent cores and (ii) fine-grained granularity of each step to provide dynamic distribution

of work. Various parallel optimization heuristics based on these concepts are discussed in

Section 5.3.2. The test generation flow of the proposed ATPG Framework is based on the

rationale of these two concepts.

The proposed methodology relies on an initial test-per-fault step, for a limited number

of faults, to obtain an initial seed test set over which the algorithm evolves. This, combined

with the many degrees of freedom allowed in a test seed by our single fault ATPG process,

provides the desired granularity that allowsmutually exclusive distribution of work in the dif-

ferent cores. Such distribution benefits the exploration of different parallelization directions,

including dynamic partitioning and adaptive decision making for test merging. However,

an approach with high granularity may perform large amount of unnecessary work when not

taking advantage of fault dropping. Fault dropping plays a critical role in test generation any-

way, as it can significantly affect test set size. In parallel test generation, inefficient dropping

of faults can also restrict speed-up, regardless from the fact that the main process for identi-

fying faults to be dropped (fault simulation) can be implemented very efficiently in parallel

environments [21,24]. A fair trade-off between high granularity and fault dropping consider-

ation is to develop a methodology based on distinct test epochs, one targeting hard-to-detect

faults and a following one targeting the remaining undetected faults.

Fig.5.1 presents the high level description of the proposed methodology. Firstly, the cir-

cuit netlist is analyzed to obtain a collapsed fault list F for the underlying fault model M .

Consequently, the fault list is sorted in a depth-first-search (DFS) order (based on their lo-

cation in the netlist) in an attempt to implicitly group faults with structural similarities in F.

This fault locality property of the input fault list benefits fault dropping after F is partitioned

to the available cores. The next step identifies hard-to-detect faults to be targeted by the

first test epoch (Epoch I) of the methodology. We use random test pattern generation, which

is a simple, quick and acceptable way to classify faults; however, other more sophisticated

methods can be incorporated. Hard-to-detect faults are identified using a multiple detection

64

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 5.1: High level flow of the main Test Generation (TG) processes.

approach where 10% (set by experimental exploration) of the faults in F with the fewer de-

tections are considered as hard and used as the input fault list of test Epoch I (FH). Epoch I

performs explicit test generation for each fault in FH while also considering faults in F−FH

during fault simulation to identify faults detected coincidentally (FC). A merging process to

reduce the number of tests obtained follows, and the final output is a set of test patterns TH

detecting all faults in FH ∪ FC. A second test epoch (Epoch II), similar to the first one, is

invoked to target the remaining faults, i.e. FR = F – (FH∪ FC) producing a set of tests TR

such that T = TH ∪ TR detects all faults in F.

5.3.2 Parallelization Methodology And Optimizations

Section 5.3.2 describes the major steps undertaken during a test epoch, discussing dynamic

fault partitioning and core synchronization, while this Section 5.3.2 describes a number of

optimizations proposed to overcome parallelization issues.

Test-Epoch Parallelization

Fig. 5.2 presents a flowchart illustrating the basic steps of the parallel Test Generation (TG)

methodology followed during a test epoch, namely seed-based TG and dynamic test merging

and restricted TG. An epoch explicitly targets on a fault-by-fault basis, only a small subset of

the fault list F (FH for Epoch I and FRfor Epoch II). Note that FC= F – (FH∪ FR) typically

constitutes the overwhelming majority of the faults which are easily detectable in an implicit

manner (i.e., via fault simulation). The faults in a fault list are sorted based on structural

65

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 5.2: Test Epoch flowchart: A test epoch targeting hard-to-detect faults (Epoch I). Same steps are repeated

in Epoch II, with input fault list FR and resulting test set TR.

similarities of fault locations (netlist), in order to increase the probability of proximate faults

to be detected by the same test.

During the first step (seed-based TG in Fig. 5.2), each available core performs test seed

generation (TG with maximal don’t care bits) for the next undetected fault fi in the list using

a PODEM-based process optimized to identify tests with a large number of unspecified bits.

The order of the selection of the next fault(s) is not important here, as the partitioning is

designed to work in an independent manner and produce standalone results. The system

shared memory holds the updated fault list (indicating faults not yet targeted) and, therefore,

duplication of work is avoided as each core works on a distinct fault. For each test seed

ti generated during this step parallel fault simulation is performed and all faults detected

(including those in F -FH) are stored in a list di. Faults in di are not immediately dropped

as this information is used during the following step. Also, the input necessary assignments

(NA) of ti are stored, along with di, to be exploited in the next step. This first step terminates

when all faults inFH have been targeted, constituting a synchronization barrier in the process.

TPF contains the test seeds andDPF contains the corresponding fault simulation results which

are both kept in the shared memory.

66

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 5.3: Merging process flowchart: dynamic test merging and restricted TG processes per core.

Upon completion of the first step, the next step is invoked (dynamic test merging & re-

stricted TG in Fig. 5.2) in order to merge compatible tests and reduce the size of TPF. Each

core selects its primary test target ti from TPF to be the test seed with the larger detection list

di(test with the highest number of coincidental detections) and immediately marks it so that

other cores cannot select it. Tests are selected in an iterative manner until no further merging

is possible. A detailed description of this selection is given in Section 5.3.2 under detection-

based test selection. This merging step is dynamic due to the efficient communication of the

merged tests through the shared memory. Thus, in each iteration, the number of candidate

tests for merging is reduced at a fast rate.

Fig. 5.3 shows the merging process undertaken by each core while the shared memory

accommodates information about faults detected and tests discarded. The faults detected by

the primary test ti (kept in di) are immediate dropped from further consideration. Then, pair-

wise compatibilities of the primary test ti with each remaining test t j of TPF are calculated

and ranked based on increasing Hamming distance. The test pair (ti, t j) with the smallest

Hamming distance is thereafter selected to be merged. Upon merging, ti is updated and t j is

discarded from TPF.Also, all faults in the corresponding list d j are dropped from the shared

fault list. When no further merging is possible, restricted TG for ti is performed based on the

necessary assignments (NAs) on primary inputs collected during the first step. NAs are used

as hard constraints for test generation, yet only for faults corresponding to tests not already

marked and having identical NAs as ti. This iterative step terminates when no more tests with

identical NAs exist that could lead to further test discarding. As a final step, the remaining

67

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

unspecified bits of ti are assigned specified values and the test is fault simulated to identify

any further coincidental detection of faults. All the tests obtained by the process of Fig. 5.3

are appended at the output of the corresponding test epoch, i.e., TH for Epoch I and TR for

Epoch II.

Optimizations

Detection-Based Primary Test Selection

In the merging step of Dynamic Test merging and Restricted TG process 5.3, test selec-

tion is very important for the efficient evolution of merging since it sets the constraints and

outcomes of consequent merging iterations, and fault simulation. Practice in ATPG suggests

that early fault dropping plays a more important role than having fewer constraints (more un-

specified bits) in the test seed. For this reason, the primary test ti during dynamic merging is

selected based on its number of detected faults in di. Recall that the fault simulation process

performed at the end of the first step of the test epoch (Fig.5.1) does not drop faults; instead,

it is used for providing a more precise metric for this selection during the second step. Tests

to be merged (with the primary test) are then selected based on their Hamming distance to

the primary test. The Hamming distance based merging produces merged tests with a smaller

number of specified bits and, hence, fewer constraints in the following iterations of the merg-

ing process. In the (often common) case where more than one tests have the same Hamming

distance to the primary test, their fault detection metric is used to decide which test will be

merged. This optimization greatly assists in dynamic workload balancing and minimization

of unnecessary work since high amount of early fault dropping reduces the faults for which

explicit test generation is needed.

Balanced Workload Distribution

Distribution of workload to the available cores can significantly impact the speed-up of

a parallel methodology. Test generation and fault simulation processes have unpredictable

execution times due to the nature of the problems and fault dropping. Core idle time is mini-

mized by dynamically selecting: (i) the next fault to be targeted in seed-based test generation

in each epoch (Fig.5.1), (ii) the next test to be used as primary in test merging (Fig.5.1), and

(iii) the tests to be merged with the primary test seed (Fig. 5.3). Since, data is stored in

shared memory (fault list and test seeds), and thus, is easily accessible by all cores, provides

a punctual way of determining how the workload will be selected at each step and by each

optimization mechanism of the approach.

68

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Scalable Parallel Fault Simulation

Fault simulation is used in many cases in the proposed methodology and, thus, its per-

formance significantly affects the overall performance. Specifically, fault simulation is used

two times is each Epoch:

(i) To find the number of detected faults per test seed without fault dropping. This infor-

mation is given as input to the merging procedure in order to avoid repeated simulations after

each merging.

(ii) At the end of the merging step in order to detect as many coincidental faults as pos-

sible and, hence, minimize the test set size.

In case (i) the fault simulation is performed after test seeds have been generated for all faults.

Since generation in the various cores is executed independently (only for the faults assigned),

the cores finishes this step in different times, resulting in idle cores. These cores can be uti-

lized for fault simulation in a parallel fashion. The challenge here is that the number of idle

cores is changing (increasing) as more cores finish and, hence, the simulation should utilize

them as well. To take full advantage of this situation (no core remain idle) we have fully

incorporated for this case the highly scalable parallel fault simulation of [28]. This fault sim-

ulator has been shown to provide linear speedup as the number of cores increases and can

be dynamically adjusted to the number of available cores. In case (ii) the fault simulation

should proceed within one core since, after the merging step, the final test should be simu-

lated to identify co-incidental fault detections (see Fig. 5.1).Recall, that in this step the test

seeds are dynamically acquired by cores from the shared fault list and merged with other seed

until no more merging is possible. Hence, fault simulation cannot run in parallel to get max-

imum benefit. Nevertheless, the fault simulations exploits bit-parallel simulation principles

presented in [28] where many faults (equal to the machine word size w) are simulated with

a single circuit traversal.This results in a considerable speedup of this step by a factor very

close to w.

Test Set Private Consideration

The search for the best candidate tests to be merged (either the primary or the ones to

follow) involves high interaction of each core with the sharedmemory. Specifically, selecting

the primary test, as well as computing the pair-wise compatibilities with the remaining tests

in TPF,inherently involves memory contention since all cores are searching TPF.This issue

is addressed by dynamically partitioning TPF in m private subsets (m being the number of

available cores), one for each core. Each core can only select tests from its own private subset

of TPF (and the correspondingDPF) which can be safely moved to its own private cache. This

69

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

implicitly minimizes concurrent memory access requests from different cores that can result in

inefficient memory utilization due to memory contention. Moreover, it implicitly minimizes

duplication of work as each core considers a distinct part inTPF. When a core finishes with the

merging process within its private part of TPF, it is allowed to work on the entire set in order

to ensure workload balancing by avoiding idle periods in cores. At this point, concurrent

memory accesses can occur, however, their impact is minimal as the bulk of the merging

process has already occurred during the private consideration, and, hence, the size of TPF is

by this point significantly reduced.

Test Provisional Marking

During compatibility merging, the list Pi which holds pair-wise compatibilities between

tests, requires updating after each merging. This updating is highly demanding in processing

resources as it is of cubic complexity in the worst case. To avoid this issue the proposed

methodology calculates and ranks compatibilities only once for each test ti. If a test t j is

selected to be merged with ti, it is provisionally marked in TPF so that it is not merged in

another core, explicitly avoiding imposing unnecessary constraints in another thread that

performs merging. If compatibility between ti and a test t j in Pi is invalidated by a previous

merging, merging between ti and t j is not completed and the provisional marking is cleared.

Otherwise, provisional marking indicates permanent discarding of t j from TPF.

5.3.3 Experimental Results

The proposed method implemented using C++ language and run on a 20 cores Intel Xeon

CPUE5-2670v2with 98GBs of RAM, running Linux. OpenMPparallel programming frame-

work was used for parallelization. We present results for the larger full-scan versions of the

circuits in the IWLS’05 benchmarks suite. The method can be applied to any linear fault

model; here we present results for the stuck-at fault model.

70

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

T a
bl
e
5.
1:
Sp
ee
d-
up

an
d
Te
st
se
tI
nc
re
as
e
Re
su
lts

fo
rt
he

pr
op
os
ed

m
et
ho
d
us
in
g
8,
12
,1
6,
20
,3
0
an
d
40

co
re
s.

Se
ri
al

8
co
re
s

12
co
re
s

16
co
re
s

20
co
re
s

30
co
re
s

40
co
re
s

C
ir
cu
it

#
PI
s

#
N
od
es

#
Fa

ul
ts

A
bo
rt
ed

|T
|

|T
| i
nc
r.
(%

)
Sp

ee
d-
up

(x
)

|T
| i
nc
r.
(%

)
Sp

ee
d-
up

(x
)

|T
| i
nc
r.
(%

)
Sp

ee
d-
up

(x
)

|T
| i
nc
r.
(%

)
Sp

ee
d-
up

(x
)

|T
| i
nc
r.
(%

)
Sp

ee
d-
up

(x
)

|T
| i
nc
r.
(%

)
Sp

ee
d-
up

(x
)

c1
35
5

41
13
55

14
10

0
84

0
5.
61

1.
19

7.
43

1.
19

9.
21

1.
19

10
.3
8

1.
79

14
.9
1

0.
0

20
.3
0

c1
90
8

33
19
08

20
56

0
1 1
1

7.
21

4.
18

2.
70

5.
85

6.
31

5.
02

2.
70

7.
00

2.
99

9.
67

1.
80

12
.0
9

c2
67
0

23
3

26
70

29
54

0
66

1.
52

9.
65

-3
.0
3

13
.1
7

-1
.5
2

15
.2
7

1.
52

18
.4
0

2.
27

22
.9
5

3.
03

28
.1
2

c3
54
0

50
35
40

37
42

0
10
3

1.
94

8.
24

9.
71

8.
87

2.
91

10
.5
6

2.
91

11
.7
4

2.
89

14
.7
8

2.
91

22
.5
4

c5
31
5

17
8

53
15

60
16

0
66

6.
06

8.
85

9.
09

11
.3
5

12
.1
2

14
.7
9

15
.1
5

15
.0
2

18
.5
5

18
.2
9

21
.2
1

22
.5
4

c6
28
8

32
62
88

77
44

0
26

7.
69

6.
58

15
.3
9

7.
87

11
.5
4

9.
32

11
.5
4

11
.5
7

11
.5
4

18
.2
6

11
.5
4

24
.9
0

c7
55
2

20
7

75
52

80
80

0
10
1

4.
95

6.
48

2.
97

9.
52

5.
94

12
.2
5

5.
94

15
.1
4

11
.5
4

18
.2
6

9.
90

28
.6
4

s9
23
4.
1

24
7

92
34

67
81

0
14
1

7.
09

4.
91

14
.1
8

7.
48

12
.0
6

9.
22

15
.6
0

1 1
.6
7

17
.4
4

15
.1
8

18
.4
4

18
.5
6

s1
32
07

70
0

13
20
7

10
45
6

0
25
5

4.
31

5.
92

6.
67

9.
01

7.
06

10
.7
2

7.
45

13
.5
4

8.
43

17
.7
8

9.
02

21
.0
9

s1
58
50
.1

61
1

15
85
0

12
15

0
12
5

8.
00

4.
97

10
.4
0

8.
29

12
.8

9.
77

14
.4
0

1 1
.4
4

17
.0
9

18
.2
2

18
.4
0

23
.7
0

s3
84
17

16
64

38
41
7

32
32
0

0
1 1
7

1.
71

7.
61

4.
27

10
.3
8

7.
69

14
.0
9

9.
40

16
.5
0

12
.6
9

20
.6
1

15
.3
8

24
.0
6

s3
85
84
.1

14
64

38
58
4

38
35
8

0
13
1

3.
05

6.
93

6.
11

10
.0
7

7.
63

13
.9
9

9.
16

16
.9
7

12
.0
1

21
.3
5

13
.7
4

26
.3
2

s3
59
32

17
63

35
93
2

39
09
4

0
20

5.
00

6.
22

15
.0
0

9.
37

20
.0
0

11
.0
0

25
.0
0

11
.6
9

25
12
.7
8

25
.0
0

14
.4
2

b1
4

27
7

21
68
0

23
71
6

0
75
1

1.
33

7.
34

1.
20

11
.2
0

0.
80

14
.7
1

1.
07

17
.5
0

0.
91

24
.1
4

0.
67

30
.7
1

b1
5

48
5

20
18
6

23
49
8

19
2

46
1

0
7.
86

0.
87

11
.4
0

0.
87

14
.9
3

1.
30

19
.2
0

2.
23

23
.8
9

2.
17

28
.6
4

b1
7

14
49

61
04
4

75
49
8

0
82
6

0.
36

7.
32

0.
85

11
.3
3

1.
57

15
.0
4

2.
78

18
.5
4

4.
72

24
.0
4

4.
96

30
.6
3

b1
8

33
07

17
99
67

22
33
52

8
10
30

0.
78

7.
52

1.
46

10
.5
7

2.
04

13
.9
2

2.
33

15
.3
4

3.
99

22
.5
3

4.
17

29
.2
2

b1
9

66
66

47
98
00

53
41
44

99
1

32
45

0.
80

7.
16

6.
01

10
.0
5

5.
76

12
.1
8

6.
29

14
.0
3

6.
7

19
.6
9

6.
72

24
.6
9

b2
0

52
2

31
25
8

34
52
8

0
51
9

2.
70

7.
78

3.
28

11
.7
5

2.
31

15
.0
4

5.
97

17
.9
1

7.
64

25
.3
9

8.
67

31
.9
9

b2
1

52
2

31
15
7

34
33
1

0
56
1

2.
67

7.
66

1.
78

11
.4
5

3.
03

14
.7
6

1.
43

19
.4
8

1.
94

25
.2

1.
78

31
.2
3

b2
2

73
5

39
38
5

48
81
2

0
56
1

-1
.0
7

7.
58

1.
42
6

11
.5
9

0.
36

14
.3
4

3.
21

17
.9
9

3.
22

25
.9
2

4.
99

34
.5
6

ac
97
_c
tr
l

22
83

39
48
5

39
22
6

0
62

3.
23

5.
98

6.
45

7.
67

11
.2
9

10
.2
6

12
.9
0

11
.9
8

17
.3
9

16
.6
4

19
.3
5

21
.0
3

uc
b_
fu
nc
t

18
74

40
47
9

42
21
4

0
11
3

7.
96

6.
18

13
.2
7

9.
18

14
.1
6

11
.1
2

15
.0
4

14
.4
6

18
.0
6

18
.9
8

18
.5
8

22
.9
8

tv
80

37
3

24
35
7

24
81
0

0
55
4

0.
61

8.
08

0.
61

1 1
.7
1

0.
20

15
.1
9

1.
01

17
.0
6

0.
82

22
.3
1

1.
44

26
.7
7

sy
st
em

ca
es

93
0

30
01
5

29
25
6

0
14
3

0.
70

6.
77

6.
29

9.
06

5.
59

12
.4
3

8.
39

13
.9
9

10
.1
7

18
.4
1

10
.4
9

22
.7
3

m
em

_c
tr
l

11
98

37
90
4

39
88
2

0
48
5

1.
86

6.
91

3.
09

10
.5
2

0.
82

13
.9
1

2.
89

17
.2
5

4.
18

24
.8
7

6.
80

32
.4
0

et
he
rn
et

10
64
0

22
39
59

22
16
28

5
14
21

1.
27

7.
05

1.
97

9.
70

2.
18

12
.5
0

3.
03

14
.3
3

4.
33

22
.0
1

4.
64

28
.9
1

Av
er
ag
e

3.
03

6.
94

5.
30

9.
85

5.
80

12
.4
3

7.
02

14
.8
2

8.
43

19
.9
6

9.
10

25
.1
6

Av
er
ag
e
M
em

or
y
In
cr
ea
se
(x
)

2.
11

2.
59

3.
02

3.
27

3.
59

3.
77

71

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Table 5.1 presents the obtained speedup and test set sizes (as increase %) of the proposed

parallel ATPG method compared to a serial version of the algorithm. The speed-up measure

allows for the evaluation of the scalability of the approach under different execution set-ups,

as well as for a fair comparison with other works considering the same architecture but with

different characteristics such as CPU clock and total memory. Results from experimental

set-ups with 8, 12, 16, 20, 30 and 40 cores are reported. After the circuit name and the

number of inputs (Col. 1-2), the size of the circuit and number of faults in the collapsed fault

list (Col. 3-4) are presented. Col. 5-6 report the number of aborted faults (indicating the

achieved fault coverage) and the test set size obtained by a serial version of the proposed

methodology, respectively. The number of aborted faults in the multi-core execution set-ups

is always smaller than the one reported in Col. 5 (hence, fault coverage is at least as high) and

is not reported here due to space limitations. Col. 7, 9, 11, 13, 15 and 17 list the test set size

increase as a percentage of the one obtained by the serial execution and Col. 8, 10, 12, 14,

16 and 18 report the speed-up achieved, when 8, 12, 16, 20, 30 and 40 cores are employed.

The obtained results demonstrate almost linear speed-up increase while at the same time

the test set size increase is very limited for most of the circuits. In the worst case test set

increase is no more than ∼15% whereas in the average case it is only 7.02%, for 20 cores.

Circuit s35932 is an exception (with 25% increase) due to the very small test set size of the

serial version with 20 tests, which becomes 25 tests for 20 cores. The proposed method also

exhibits small memory increase, an objective often targeted by parallel methods. The last

row of Table I summarizes the average memory increase factor among all circuits. For the

8-cores run, the required memory is only 2.11× more than the serial version, while the 16

cores runs increase the memory by 3.02× on the average. These numbers indicate that the

memory increase does not grow proportionally with the number of cores; rather, it grows with

a decreasing rate as the number of cores increase. This is attributed to the dynamic manner in

which the proposed algorithm performs fault dropping, alleviating the following steps from

unnecessary calculations.

The proposed methodology is compared with the most relevant and recent parallel ap-

proaches considering the shared-memorymulti-core architecturemodel, such as [2–5]. Where

available, results are compared directly for the common benchmarks. Moreover, results on

additional benchmarks for each technique are listed and average trends for each methodology

are analyzed. For the proposed methodology, the larger (in terms of # Nodes) circuits (b18,

b19 and ethernet) are listed, on top of the common ones. The number of execution cores

in each case was determined by the results reported in these works. Col. 2-7 of Table 5.2

72

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Table 5.2: Speed-up, Test Set Size and Memory Increase Comparison with the works in [4], [5] and [3].

Comparison with [4] - 12 cores Comparison with [5] and [3] - 16 cores

Speed-up (x) Test set increase (%) MemoryIncrease (x) Speed-up(x) Test set increase(%) MemoryIncrease (x)

Circuit [10] prop. [10] prop. [10] prop. [11] [13] prop. [11] [13] prop. [11] [13] prop.

D1 8.20 - -1.50 - - - - - - - - - - - -

D2 7.70 - 19.00 - - - - - - - - - - - -

D3 7.50 - 16.00 - - - - - - - - - - - -

D4 7.30 - 1.40 - - - - - - - - - - - -

D5 - - - - - - 7.38 9.99 - 10.64 0.41 - 4.33 3.02 -

D6 - - - - - - 9.37 10.00 - 2.54 12.17 - 4.89 3.22 -

D7 - - - - - - 8.88 9.28 - 1.37 2.14 - 3.94 2.78 -

s38417 7.50 9.99 40.00 4.27 - 2.18 - - 14.09 - - 7.69 - - 2.98

s38584.1 7.30 9.89 12.00 6.11 - 2.03 - - 13.99 - - 7.63 - - 2.35

s35932 7.40 8.64 10.00 15.00 - 2.75 - - 9.34 - - 20.00 - - 3.15

b15 7.80 11.40 18.00 0.87 - 2.92 - - 14.93 - - 0.87 - - 3.01

b17 8.30 11.33 5.00 0.85 - 3.09 - - 15.04 - - 1.57 - - 3.27

b18 - 10.57 - 1.46 - 3.80 - - 13.92 - - 2.04 - - 4.09

b19 - 10.05 - 6.01 - 3.11 - - 12.18 - - 5.76 - - 3.78

ethernet - 9.70 - 1.97 - 3.59 - - 12.50 - - 2.18 - - 4.19

Average 7.67 10.20 13.32 4.58 - 2.93 8.54 9.76 13.25 4.85 4.91 5.97 4.39 3.01 3.35

Figure 5.4: Test generation method: speed-up comparison with [2] and [3] for an 8-core set-up.

provides a comparison with [4] for the set-up of 12 cores. Similarly, Col. 8-16 of Table Table

5.2 compare the proposed methodology with the approaches of [5] and [3], for the 16-cores

setup reported in these works. A “–” indicates not available results for the corresponding

work. Average trends are reported in the last row of Table 5.2.

An 8-core system is considered in [2] and compared with an implementation of [3]. Fig.

5.4 compares the speed-up of the proposed methodology with that of [2] and [3], as reported

in [2]. The proposed methodology achieves on average ∼7x speed-up, outperforming both
existing methods for the 4 common circuits. This is achieved mainly due to the optimiza-

tions (discussed in Section 5.3.2), which minimize redundant work by immediate updating

73

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

of the fault status. Comparison regarding the test set size reduction is not possible with [2]

as absolute values for test set sizes as well as corresponding fault coverage are not reported.

5.4 Chapter Summary

This chapter presents the basic concepts for ATPG problem along various optimizations for

parallelization. A parallel test pattern methodology for shared memory multi-core environ-

ments in detail described along with a number of newly proposed heuristics that attempt to

avoid assigning the same portion of the workload to multiple cores, while the distribution

of work in the available resources targets to minimize core idle time. Experimental results

demonstrate high speed-up rates that keep increasing as the number of the available cores

increases. At the same time, test set size increase is limited and comparable to other state-of-

the-art parallel approaches.

74

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Chapter 6

Parallel n-Detect Test Pattern Generation

on Shared-memory Multi-core

Architectures

This chapter presents an extension of the method highlighted in Chapter 5 exploring a parallel

multiple-detect (n-detect) test pattern generation problem. It has been shown that emerging

defects and various faults can be detected by a set of test vectors that obtain high stuck-at

fault coverage, particularly multiple detect (n-detect stuck-at fault) test vectors. This chapter

investigates a parallel n-detect methodology that utilizes on-chip CMPs for extending an ef-

ficient parallel test generation for a more computational intensive problem. Results maintain

all the good properties of single detect test generation (scalability and test inflation) in a more

beneficial extent.

6.1 n-detect Parallelization Methodology

The method (illustrated with a flow chart in Fig.6.1) follows a similar pathway like the pro-

cess presented in Section 5.3. Fig.6.1 presents the high level description of the n-detect

methodology. The framework with the two Epochs is used in order to detect and drop the

majority of the (easy to detect) faults and focus the available resources on the hard-to-detect

faults. The basic steps of the the test Epoch are illustrated in Fig.6.1 named seed-based TG

and dynamic test merging. An epoch explicitly targets on a fault-by-fault basis, only a small

subset of the fault list F (FH for Epoch I and FRfor Epoch II). Note that FC= F – (FH∪ FR)

typically constitutes the overwhelming majority of the faults which are easily detectable in

75

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

S
e
e
d

-b
a

se
d

T
e
st

 G
e
n

e
ra

ti
o

n
 … ti=ATPG(fi)

C
o

re
 1

Targeted Fault
List FH F

f∈FH

not marked
?

Yes

No

C
o

re
 m

Fault List F

Circuit

Netlist C

TPF={t1,t2,…,t|FH|} DPF={d1,d2,…,d|FH|}

Test set

TH

 Undetected

Faults FR

… Dynamic test

seed merging(tj) C
o

re
 1

Dynamic test

seed merging(tk-1)
C

o
re

 m
-1

D
y
n

a
m

ic

M
e
r
g
in

g

C
o

re
 1

di=fsim(ti)

P
a
r
a
ll

e
l

fa
u

lt

S
im

u
la

ti
o
n

C
o

re
 m

dk=fsim(tk) …

Dynamic test seed

merging(tk) C
o

re
 m

tk=ATPG(fk)

Figure 6.1: High level flowchart: A test epoch targeting hard-to-detect faults (Epoch I). Same steps are repeated

in Epoch II, with input fault list FR and resulting test set TR.

an implicit manner (i.e., via fault simulation). The faults in a fault list are sorted based on

structural similarities of fault locations (netlist), in order to increase the probability of proxi-

mate faults to be detected by the same test. More details for the framework are presented in

Section 5.3.1.

Algorithm 4 outlines the merging process undertaken by each core while the shared mem-

ory accommodates information about faults detected and test seeds discarded. The input to

this merging process is the test seed generated in the previous step (TPF) and their correspond-

ing faults detected (DPF) as well as the fault list FH. This process is similar for the 2 Epochs

of the methodology hence, without loss of generality, here we describe the method for Epoch

I. Each core considers seeds in a specific range of the test seed set TPF in order avoid utilizing

the same seed for merging in more than one cores. Core k (out of the m available) considers

only |TPF|
m seeds for primary selection in the range k× |TPF|

m , . . . , (k+1)× |TPF|
m −1, denoted here as

TPF(k : k + 1). Once a seed ti in this range is selected (line 02) as a primary seed to be merged

all the detected faults are immediately dropped from the globally maintained fault list FH (line

03) and the seed is removed from the given seed test TPF (line 04). Then, the hamming dis-

tance between each of the remaining seeds in the considered range (i.e., TPF(k : k + 1)) and

ti is calculated and saved in list Pi (lines 06-07). Observe that, in subsequent iterations, this

76

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

range changes only for the secondary seeds (line 05) so that all seeds in TPF are considered

to be merged with the primary ti. Then, the seed with the minimum hamming distance is se-

lected (line 08) and merged (line 11) with ti. The merged seed is removed from TPF (line 12)

and its detected faults are dropped from further consideration (line 13). When no more seeds

in the range can be merged with ti, the algorithm continues to the next range of |TPF|
m seeds

(lines 09-10). Lines 14 to 24 are invoked when all the secondary seeds are considered and,

hence no more merging is possible, in order to identified detections of faults not in FH (i.e.,

in F − FH). Lines 14 to 24 are skipped in Epoch II since all the remaining faults are placed

in the given sublist FR. First, a bit still with unspecified value in ti is randomly selected (line

14), fixed to 0 (line 15) and simulated for faults not in FH (line 16). In lines 17 and 18 bit

fixing and fault simulation is repeated for value 1. Based on which bit fixing detects more

faults, ti is updated accordingly (lines 19-20 for 0, lines 22-23 for 1) and a list of faults FC

accumulates all the coincidentally detected faults (line 21 for 0 and 24 for 1). All these faults

Algorithm 4 Dynamic Merging for Core k
Inputs: Test seeds T PF, faults detected per seed DPF, shared fault list F,
fault sublist FH
Output: Test set Tk

PF

01. Tk
PF = ∅

02. For each seed ti∈ T PF(k:k+1) : di = max{DPF(k:k+1)}
03. FH = FH\di
04. T PF = T PF - ti
05. For h = k,k+1,…,m-1,0,1,…,k-1
06. For each t j , ti ∈ T PF(h:h+1)
07. Pi ← hamming(ti,t j)
08. For each t j , ti ∈ T PF(h:h+1) : (ti,t j)=min{Pi}
09. If (min{Pi} = ∞)
10. break;
11. ti ← merge(ti,t j)
12. T PF = T PF- t j
13. FH = FH\d j
14. For each unspecified bit bzof ti
15. t0i = ti : bz = 0
16. di

0 = fault_sim(t0i ,F-FH)
17. t1i = ti : bz = 1
18. di

1 = fault_sim(t1i ,F-FH)
19. If (di

0,∅ AND |di
0| ≥ |di

1|)
20. ti = ti

0

21. FC = FC ∪ di
0

22. If (di
1,∅ AND |di

0| < |di
1|)

23. ti = ti
1

24. FC = FC ∪ di
1

25. Tk
PF = Tk

PF+ti
26. F = F\FC

77

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

will be dropped from the global fault list F at the end of this process (line 26). Finally, the

obtained test ti is inserted in a test set for core k (line 25) that contains tests to be placed in

the output test set of the Epoch i.e., TH =
∪

k=0:m−1 Tk
PF.

Dynamic merging based on pair-wise hamming distance

ti TPF di

1st iteration 2nd iteration

TK
PF Pi TPF Pi TPF

t1 XX1X001XXX 6
Hamming Distance

-
Hamming Distance

- -

t2 1X0XXX1X0X 2 1X0XXX1X0X 1X0XXX1X0X 1X0XXX1X0X

t3 XXXX0X1X0X 11 t1 t2 t3 t4 t5 t6 t7

3 3 - 4 ∞ 5 5

merge(t3, t1) =
XX1X001X0X

t1 t2 t3 t4 t5 t6 t7

- ∞ - 6 ∞ ∞ 7

merge(t3, t4) =
001X001X00 001X001X00

t4 00XX0X1XX0 10 00XX0X1XX0 - -

t5 1XX11X010X 3 1XX11X010X 1XX11X010X 1XX11X010X

t6 0X1X01XXXX 9 0X1X01XXXX 0X1X01XXXX 0X1X01XXXX

t7 11XXXXX10X 4 11XXXXX10X 11XXXXX10X 11XXXXX10X

 Bit-wise hamming distance calculation and merging rules

 ith bit of hamming
distance

ith bit of
merge(ti,tj)

 ith bit of hamming
distance

ith bit of
merge(ti,tj) ti tj ti tj

0 0 +0 0 1 X +1 1

0 1 +∞ conflict X 0 +1 0

0 X +1 0 X 1 +1 1

1 0 +∞ conflict X X +0 X

1 1 +0 1

Figure 6.2: n-detect dynamic merging execution example.

Fig. 6.2 presents the dynamic test merging procedure with an example. First t3 is selected

since it detects the most faults (11) among the other seeds in TPF (left top table in Fig. 6.2).

Next, the hamming distances between t3 and all other seeds in TPF are calculated as the sum

of the bit-wise distances per bit pair indicated in Column 3 of the bottom tables. For example,

the hamming distance between t3 and t5 is 1 + 0 + 0 + 1 +∞ + 0 +∞ + 1 + 0 + 0 = ∞
indicated that no merging between them is possible. The hamming distances between t3 and

all other seeds in TPF are saved in Pi (shown under Pi column of 1st iteration in top table).

These values indicate that the best seed to be merged with t3 is either t1 or t2 with the former

selected. Merging of t3 and t1 is shown in the TPF column under 1st iteration (changed bits are

shown in red) and is realized following the rules listed in Column 4 of bottom tables. During

the 2nd iteration the hamming distances are recalculated in Pi. Observe that t2 and t6 are now

incompatible with t3 after its mergingwith t1. Seed t4 is selected to bemergedwith the current

seed. The resulting seed has no compatibility with the remaining seeds and hence, no further

merging is possible. During Epoch I, bit fixing together with fault simulation follows the

process shown here to detect coincidental faults. When all unspecified bits have been fixed

and fault simulated, the test is advanced to the output test set Tk
PF and all the corresponding

78

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

faults detected are dropped from the global fault list.

The main challenge of this extension is to ensure the n-detect property. The challenge

applies both to seed generation and seed merging processes. Test seed generation should

guarantee the generation of n different seeds per fault in the given fault list (FH in Epoch I

and FR in Epoch II). Furthermore, in order to ensure high quality of the resulting test set, test

seeds should have significant difference since this was shown to detect more defects [99].

In addition, the merging process should be constrained in order to guarantee that the seeds

generated for the same fault are not merged in the same final test, and, hence, reduce the

number of detections for that fault. In Subsection 6.1.1 we propose a method that generates

n different tests for the same fault with significance difference can be generated with little

impact on the speedup. Subsection 6.1.2 describes a technique for partitioning test seeds to

be merged that ensures the n-detect property and maintains speedup increase as the number

of cores increases. All steps of the 2-epochs methodology highlighted in Section 5.3.2 not

explicitly described here remain exactly the same.

6.1.1 Multiple Test Seed Generation

The proposed seed generation procedure, extends the PODEM-based tests generation algo-

rithm mentioned in III.A to produce multiple (n) test seeds per considered fault. The exten-

sion rolls back in the decision tree of the algorithm altering taken decisions for the activation

of the fault and its propagation to an observable point. After their generation the multiple

seeds for each fault are verified to be or enforce to become incompatible. In summary the

procedure for each considered fault consists of three steps:

i. Generate one test seed using a PODEM-based process (as in single detect).

ii. Roll back on the decision tree, altering decisions to produce more (different) seeds.

iii. Discard any seed compatible with other seeds.

iv. If necessary fix unspecified bits to obtain n different test seeds.

Hence, following the test generation of the first test seed for a fault (same as in themethod-

ology presented in Fig. 6.1) in step (i), the process looks back at the various decisions made

during this initial seed generation (step (ii)). A decision here refers to alternative circuit path

segments that the algorithm selects in order to generate the seeds. For example, in the circuit

of Fig.6.3 test generation takes place for fault fx sa0. In order to enforce value 1 to fx (ac-

tivate fault)we need at least a 1 at any of the OR gate inputs (i.e, a, b, c). When generating

the first seed, the algorithm assigns value 1 at input c. Then, it proceeds to justify this value

79

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

a

b

c X
fx

i1

i2

i3

i4

i5

i6

i7

i8

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(3,2)

Sa0

(3,2)

(3,2)

(4,3)

(4,3)

(4,6)

(2,5)

(2,4)

(9,5)

Figure 6.3: Decision changes for multiple test seed generation circuit example.

fx X
 Sa0

i6=0
i7=0

 b=1
i1=1
i2=0
i3=0

a=1

i8=1

c=1

i6=1 i7=1

i4=1

i5=1

Figure 6.4: Fault activation decision tree for fx Sa0 in Fig.6.3.

with a backward traversal on the circuit. For the second seed, the algorithm takes the alter-

native decision of assigning 1 at line a removing the initial constraint of assigning 1 to c. The

justification of this new decision can produce a different test seed than the first one. Similar

decisions take place for the propagation of the fault effect to a primary output. The closer the

decision to be altered is to the fault site, the higher the difference will be between the seeds.

In step (ii) a decision tree is progressively constructed to record all the taken decisions and

their alternatives. Fig. 6.4 shows the decision tree for the activation of the sa0 fault at line

fx. The different paths of the tree indicate the different possible combinations of decisions

that exist.

In step (iii) each generated seed is checked for compatibility with previously generated

seeds (compatible seeds have no conflicting bits). For each pair of compatible seeds only one

is kept, that with the fewer number of specified bits. Discarding compatible seeds ensures

the n-detect property of the final test set throughout the following merging process of the

80

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

 steps (i), (ii) and (iii) step (iv)
seed

 decisions

taken

implications

ti

 #
Sp bits

ti'

Sp bits

ti'

Sp bits

ti'

1 c=1, i6=1 i8=1 XXXXX1X1 2 XXXXX101 3 XXX1X101 4 XXX1X101

2 a=1 i1=1, i2=0, i3=0 100XXXXX - - - - -

2 b=1, i4=1 i6=0, i7=0 XXX1X00X 3 XXX1X00X 3 XXX1X00X 3 XXX1X000

3 c=1, i7=1 i8=1 XXXXXX11 - - - - -

3 b=1, i5=1 i6=0, i7=0 XXXX100X - - - - -

3 none none - - XXXXX111 3 XXX1X111 4 XXX1X111

4 none none - - - - XXX0X101 4 XXX0X101

5 none none - - - - - - XXX1X001

Figure 6.5: n-detect test seed generation example. n=5, number of PIs=8

methodology. Specifically, it prevents the generation of the same final test two or more times

for the same fault as this will result in the reduction of the number of detections for that fault

below n. Starting with n incompatible seeds for each fault ensures that merging of seeds

will produce at least n different tests per fault. Keeping the seed with the largest number of

unspecified bits provides more room for merging.

Step (iv) is invoked only when all the decision combinations for a fault (both for the

fault activation and propagation) have been exhausted and only fewer than n seeds have been

generated. In this step, the seeds with the fewer specified bits are modified by specifying bits

to conflicting values, to derive two ormore incompatible seeds. The output of this process is n

different sets of seeds TPF1 ,TPF2 , ...TPFn each containing one seed generated per fault together

with the corresponding number of faults detected by each seed saved in DPF1 ,DPF2 , ...DPFn

(Fig. 6.6).

We explain this modified seed generation with a comprehensive example summarized in

Fig. 6.5. Consider again the circuit of Fig.6.3 and assume seed generation for fault fx stuck-

at-0. The values inside brackets denote the controllability values for 0 and 1, respectively

[85]. The generation algorithm selects the line with the smaller controllability metric for

logic value 1 i.e., line c to get value 1. In order to justify c = 1, the algorithm performs

another decision i.e., i6 = 1 and directly implies that i8 = 1 (direct implications for each

decision is shown dashed outlined next to its node). The seed XXXXX1X1 is generated by

taking the leftmost path of the tree in Fig. 6.4 (step (i)). This step is shown in row 1 of

Fig. 6.5. Next the decision closest to the fault is altered and the input with the next smaller

controllability is selected, i.e., a = 1. This decision’s direct implications (i1 = 1, i2 = i3 = 0)

generates seed 100XXXXX (step (ii)) which, however, is discarded since it is compatible with

the initial one (step (iii)) shown in row 2 of Fig. 6.5. In the same way the next decision is

taken and a new seed XXX1X001 (seed #2) is generated which is not discarded as it contains

a conflicting bit 6th with seed #1 (row 3 in Fig. 6.5). The process goes on until n different

81

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

tests are generated or until all decision combinations have been examined. For the specific

example and for n = 5, steps (i) - (iii) have produced only 2 different seeds and, hence, step

(iv) is necessary. After selecting the seed with the fewer specified bits, seed #1 is replaced by

two other seeds one setting its 7th bit (chosen randomly) to value 1 and one setting the same

bit to value 0 (column 5 in Fig. 6.5). This process is repeated two more times to generate two

more tests (columns 7 and 9 in Fig. 6.5) i.e., until 5 different seeds are generated. Step (iv)

guarantees to produce distinguished seeds,since from previous steps no compatible seeds are

allowed to reach step (iv) and the bit fixing process ensures conflicting bits in the obtained

seeds. Each of this bit will be placed in a different seed set TPFi .

Although the proposed multiple-seed generation process has a number of additional con-

straints and discards a significant number of seeds, it is necessary to maintain the n-detect

property. Moreover, it drastically simplifies the following merging process, since it will

consider much fewer constraints among seeds. The procedure is also efficient since the n

different seeds are generated in an incremental test generation process which is much faster

that n independent seed generations. This is the reason why the multiple seeds generation for

the same fault is not chosen to be executed in parallel in the proposed method.

6.1.2 Clustered Dynamic Seed Merging

When n seeds are generated per modeled fault, the methodology proceeds to the dynamic

merging (as in Fig. 6.1). The main challenge in this step in order to ensure the n-detect

property is to prevent merging for generating two identical tests explicitly targeting the same

fault. This undesired situation occurs when either:

• different seeds for the same fault are merged independently with other faults’ seeds,

incidentally resulting at the same test, or

• different seeds for the same fault are merged together.

However, both these cases are implicitly prevented because seed generation ensures that the

seeds generated for the same fault have at least on conflicting bit which each other. Thus, the

only remaining issue is to ensure that the merging will not affect the speed-up scalability of

the methodology. Leaving the merging process identical to the one presented in Algorithm

4, results in significant reduction in the obtained speed-up by 10% 25%. These observations

have been made by employing corresponding experimentation which are not presented here

due to space limitations.

82

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Tomitigate the speed-up reduction, the parallel framework has been extended to a cluster-

based approach where the available cores are partitioned into n clusters. Cluster i explicitly

targets dynamic merging for a subset of seeds (i.e., TPFi) obtained from the seed generation of

Subsection 6.1.1 (Fig. 6.6). Inside each cluster the dynamic merging procedure is identical to

that described with Algorithm 4; yet the number of calculations is significantly smaller than

the non-clustered merging as there are fewer seeds to pairwise compare with. While each

cluster operates on its own TPFi , fault dropping is performed via the global fault list located

in the shared memory. Hence, any fault detection due to seed merging or identified during

the subsequent fault simulation (lines 13, 21 & 24 of Algorithm 4) updates the global fault

list, reducing the number of desired detections by 1 per obtained test. When this number

becomes 0 the corresponding fault is completely dropped from further consideration. This

n-detect aware global fault dropping makes sure that merging will not continue to consider

seeds corresponding to dropped faults.

The clustered-based dynamic merging produces n independent test sets with 100% cov-

erage of the given faults. These n sets are combined into a unified test set by eliminating

duplicate tests to provide the final n-detect test set as shown in Fig. 6.6. This elimination

does not affect the n-detect property of the obtained set since by construction the methodol-

ogy prevents the generation of the same test two or more times explicitly targeting the same

fault. In other words, if two tests are identical (each coming from a separate cluster) they

have been generated by merging seeds corresponding to different faults. This is implied by

n-detect test

seeds TPF 1 & DPF

1

Cluster 1

n-detect test

seeds TPF 2 & DPF

2

n-detect test

seeds TPF n & DPF

n

…

Cluster 2

Cluster n

Undetected

Faults FR

test merging

(tj_1)

C
o
re

 c
1

1

… test merging

(tk_1)

C
o

re
 c

1
m

/n

test merging

(tj_2)

C
o
re

 c
2

1

… test merging

(tk_2)

C
o

re
 c

2
m

/n

test merging
(tj_n)

C
o
re

 c
n

1

… test merging

(tk_n)

C
o

re
 c

n
m

/n

…

n-detect test

set TH

Cluster-based

Dynamic Merging

 delete

duplicates

multiple test seed generation

TPF

ss

Figure 6.6: Cluster-based dynamic merging example.

83

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

the constraint imposed during seed generation that all seeds for the same fault must contain

at least one conflicting bit and, hence, cannot be part of the same final test.

6.1.3 Parallelization Optimizations

Scalable Parallel Fault Simulation. Fault simulation is used in many cases in the proposed

methodology and, thus, its performance significantly affects the overall performance. Specif-

ically, fault simulation is used two times is each Epoch:

(i) To find the number of detected faults per test seed without fault dropping. This infor-

mation is given as input to the merging procedure in order to avoid repeated simulations after

each merging.

(ii) At the end of the merging step in order to detect as many coincidental faults as pos-

sible and, hence, minimize the test set size.

In case (i) the fault simulation is performed after test seeds have been generated for all faults.

Since generation in the various cores is executed independently (only for the faults assigned),

the cores finishes this step in different times, resulting in idle cores. These cores can be uti-

lized for fault simulation in a parallel fashion. The challenge here is that the number of idle

cores is changing (increasing) as more cores finish and, hence, the simulation should utilize

them as well. To take full advantage of this situation (no core remain idle) we have fully

incorporated for this case the highly scalable parallel fault simulation of [28]. This fault sim-

ulator has been shown to provide linear speedup as the number of cores increases and can

be dynamically adjusted to the number of available cores. In case (ii) the fault simulation

should proceed within one core since, after the merging step, the final test should be simu-

lated to identify co-incidental fault detections (see Fig. 6.1).Recall, that in this step the test

seeds are dynamically acquired by cores from the shared fault list and merged with other seed

until no more merging is possible. Hence, fault simulation cannot run in parallel to get max-

imum benefit. Nevertheless, the fault simulations exploits bit-parallel simulation principles

presented in [28] where many faults (equal to the machine word size w) are simulated with

a single circuit traversal.This results in a considerable speedup of this step by a factor very

close to w.

SharedMemory Access Avoidance. Access to the shared-memory must be efficient and

well targeted in order to avoid memory contentions. The proposed method access the share

resources thoughtfully using the following ways: (i) During Seed-based Test Generation and

fault simulation phases shared-memory access is avoided since cores work independent in a

84

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 6.7: Scalability of the proposed parallel n-detect test generation with respect to a serial execution, for

n=5.

test seed basis. However, during Dynamic merging phase share memory access can affect

the efficiency and the quality of the test generation method. Appropriate bookkeeping with

shared fault list F ensures that no test is simulated twice for the same fault and that faults will

be dropped only after they are detected n-times. (ii) Due the the dynamic nature of proposed

method the best candidate test seeds (small number of sp. bits or high number of detected

faults) would be attractive by many cores. During merging phase cores are initially working

independently on their own private space for seeds assigned to them (TPF) and updating of

the shared memory is only done at the end before they visit the remaining test seeds in a

circular array manner (Test Set Private Consideration). (iii) During Dynamic merging phase

pair-wise compatibilities between tests seeds are calculated once per test seed for TPF (stored

at Pi). Access to shared memory is not necessary since all TPF belong to the private space

of the cores and only after they finished processing on Pi and only few non-dropped tests

remaining shared memory is utilized.

6.1.4 Experimental Results

A comprehensive picture of the linear performance of the proposed n-detect test generation

extension for n=5 is presented in Fig. 6.7 and Fig. 6.8. The scalability of the technique is

illustrated in Fig. 6.7 compared to a serial execution of the algorithm. The achieved speed-

85

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

up is reported in y-axis for different number of cores utilized (shown in x-axis). For all

circuits examined, the proposed methodology scales linearly as the number of cores used for

its computation increases. Moreover, observe that for larger circuits the obtained speed-up

is higher due to the increased workload that allows smaller percentage of core idle times.

As with the single-detect case the results imply that the scalability of the proposed method

will continue scale well as the number of cores is increased. In fact, while the speed-up

trends are similar to that of the single-detect in absolute values, the speed-up is higher in

n-detect and in some cases close to the theoretical maximum (number of utilized cores). For

example, two of the largest circuits considered b18 and ethernet achieve ∼19x speed-up for
20 cores, ∼28x speed-up for 30 cores and ∼39x speed-up when 40 cores are utilized. The
corresponding numbers for single-detect are ∼15x, ∼22x and ∼29x. This is mainly attributed
to the cluster-based approach that dramatically reduces the number of necessary condition

checks during merging. The checks are restricted only inside the cluster where the seed

to be merged was assigned. This possibility cannot be exploited in a serial approach in a

straightforward manner, without significant effect either at the performance or the final test

set size.

Similarly to the results presented in Subsection 5.3.3 the parallelization procedure affects

the final test set size. Moreover, for the n-detect approach, due to the clustered-based merg-

ing, the solution is obtained from a reduced search space. Hence, it is expected, in many

cases, to provide a sub-optimal solution that returns test detecting fewer faults. When fewer

faults are detected per test, it is inevitable that the final test set will be larger (test set infla-

tion). Fig. 6.8 shows the test set size increase as the number of cores used is increased for

the examined benchmark circuits. The increase is reported as a percentage of the test set size

obtained by a serial execution of the same algorithm. Unexpectedly, the test inflation for the

n-detect method is not significant. In particular, for the 5-detect test generation the test infla-

tion is 5% for 20 cores, 7.5% for 30 cores, and 9.5% for 40 cores whereas the corresponding

numbers for the single-detect case are 7%, 8.5% and 9%.

6.2 Chapter Summary

This Chapter presents an extension of the parallel test generationmethod presented in Chapter

5 to generate multiple-detect (n-detect) test sets. n-detect test sets are proven to provide

higher defect coverage. The target for the method is to avoid assigning the same workload

to multiple cores, while the distribution of work in the available resources aims to minimize

86

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 6.8: 5-detect test set size (|T|) increase % compared to serial execution of the proposed method.

the core idle time. A new technique for the efficient generation of test seeds followed by

a clustered-based dynamic merging procedure have been presented. Experimental results

demonstrate high speed-up rates that keep increasing as the number of the available cores

increases. Test set size increase is limited and comparable to other state-of-the-art parallel

approaches.

87

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

88

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Chapter 7

Exercise Vectors Generation for

Reliability Enhancement in

Multiprocessors

This chapter explores reliability techniques using ATPG concepts to deterministically gen-

erate exercise vectors which can be utilized to prolong CMPs lifetime. The Chapter begins

with an outline of the basic transistor-level models for physical failure mechanisms, Hot-

Carrier Injection (HCI)- and Negative Bias Temperature Instability (NBTI). Particularly Sec-

tion 7.2 investigates the NoC-based ChipMulti-Processors where a single failure on the inter-

processor NoC could be catastrophic for the system. The goal is to investigate a wearout-

decelerating scheme in which routers can have their wearout-sensitive components exercised

(using a deterministically generated vectors). As an enhancement of the NoC work, a novel,

non-invasive micro-architectural Proactive Reliability Improvement though EXercise Tech-

nique, called PRITEXT, is proposed with the goal to improve the lifetime of a CMOS design

under NBTI stress using exercise vectors (7.3). PRITEXT leverages path delay test prin-

ciples to drive near-ideal vectors while simultaneously providing a deterministic algorithm

to generate exercise vectors under circumstances where such tests do not exist. The effi-

ciency of the technique is evaluated with a superscalar processor on realistic benchmarks.

The work summarized in this chapter is in collaboration with the Texas A&MUniversity and

Cyprus University of Technology (CUT). Particularly, Texas A&M and CUT were respon-

sible for modeling of the failure mechanisms and the identification of the wareout-sensitive

components and evaluation while, the work presented in the thesis was mainly focused on

the definition and the implementation of the exercise vector generation algorithms.

89

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

7.1 Preliminaries - Basic concepts

Moore’s Law scaling is continuing to yield to even higher transistor density with each suc-

ceeding process generation, leading to today’s multi-core CMPs with tens or even hundreds

of interconnected cores or tiles. Unfortunately, deep sub-micron CMOS process technol-

ogy is marred by increasing susceptibility to wearout. Prolonged operational stress gives

rise to accelerated wearout and failure, due to several physical failure mechanisms, including

HCI and NBTI. Failure mechanisms correlate with various usage-based stresses which can

eventually generate permanent faults. While the wearout of an individual core in many-core

CMPs may not necessarily be catastrophic for the system, a single fault in the inter-processor

Network-on-Chip (NoC) [100] fabric could render the entire chip useless, as it could lead to

protocol-level deadlocks, or even partition away vital components such as the memory con-

troller or other critical I/O. In this thesis, we present the critical path models for HCI- and

NBTI-induced wear develop and applied onto the interconnect micro-architecture.

The two dominant CMOS transistor physical failure mechanisms are HCI and NBTI

[101]. Under both failure mechanisms charge becomes trapped in or near the gate oxide

resulting in a slow increase of the transistor threshold voltage (Vth). This in turn causes the

delay in transistor state switching to expand. In traditional synchronous circuit CMOS de-

signs, the clock frequency of a given design is determined by the circuit path which exhibits

the longest latency between its end latches, within a given system design. This critical path

comprises a chain of connected gates between latches. As HCI- and NBTI-induced aging

progresses, it gradually extends the delay of each gate found in this chain, slowing down the

entire critical path. In modern CMOS designs, due to this age-induced slow-down, and other

causes, such as process variation [102], designs are given timing guard-bands so as to guar-

antee their intended functionality for a certain duration of time [103]. Once the aggregate

increase in delay along a timing-critical path exceeds this guard-band, due to the aggregation

of increasing delays occurring in individual gates along this path, the functionality of the sys-

tem is no longer assured. The moment at which this timing violation first occurs determines

the system’s useful life span. Of course, HCI and NBTI impact all transistors in the design

(not only those in the critical path), however, those on the critical path are more likely to

exceed the guard-band causing a critical failure.

Fig. 7.1 illustrates a CMP exposed to wearout failures in various of its components. As

literature indicates, individual core wearout and failure need not to be catastrophic to the

functionality of many-core CMPs due to the inherent core redundancy that a CMP implies.

90

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 7.1: A 64-core CMP interconnected with an 8×8 2D mesh NoC. Components marked with a black

× illustrate wearout failure. The failure scenarios are as follows: (1) failure of cores; (2) peripheral device

disconnected from the system due to link failure; (3) network segmentation resulting in a disconnected sub-

network; (4) individual link failure

With increasing numbers of cores, a proportionally smaller portion of the overall system’s

required throughput is dependent upon each individual core. The component failure scenario

(1) of Fig. 7.1 shows this case. Failure caused by wearout of some cores need not result in

full-system failure. Instead the system could suffer some performance loss while preserving

correct functionality, assuming core-level error detection and appropriate system support is

available [68, 104–108]. For the NoC interconnecting the cores, however, the assumption

of redundancy based wear resilience breaks down, (c.f., component failure scenarios (2), (3)

and (4) of Fig. 7.1). Scenario (2) illustrates the case where a wearout-induced link failure

precludes access to a key I/O peripheral, while in scenario (3) link and router wearout has

partitioned away a large fraction of the network, making those cores and I/O components

inaccessible from the rest of the system. In both cases, wearout is catastrophic, in that the

system will likely be rendered unusable due to these failures, unlike the core wearout in

scenario (1) discussed earlier. Even scenario (4), in which a single link is broken due to wear-

induced failure, might lead to a communication protocol-induced deadlock(s), or subnetwork

91

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

isolation, if the network is not provisioned to address wear induced failures.

Various fault-tolerant routing algorithms have been proposed and fault insensitive router

and link designs in an attempt to manage faults as they occur [79, 109, 110], however, net-

work isolation and key resource partitioning cannot be fully resolved using only such reactive

techniques. Ideally, one would prefer to develop proactive mechanisms to extend the healthy

status of the system without failure, rather than react to the faults once they occur. Such

proactive mechanisms could be coupled to the reactive mechanisms, in the hope that the

latter would be required less frequently as faults in the system would occur less frequently.

7.2 Use It Or Lose It: Proactive, Deterministic Longevity

in Future Chip Multiprocessors

For an NoC-based CMP the aging process is highly depended on the incoming rate along the

critical path. Usually, the gate delay increases and the timing constraints are violated along

the critical path first. A low incoming rate causes a biased duty cycle in the wires along the

critical paths. These biases accelerate NBTI, thus the router requires an increased incoming

rate to improve its longevity. However, increasing the incoming rate artificially yields other

problems such as increased power consumption and acceleration of the HCI effect. The duty

cycle must therefore be improved without increasing the activity factor significantly. We note

that, although duty cycle and activity factor are related, it is possible to reduce duty cycle

of a node substantially without increasing the activity factor substantially, by infrequently

changing the value of that node. Hencewewill investigate for amethod to exercise the critical

path, which improves the duty cycle while minimally disturbing activity factor, improving

NBTI without substantially impacting HCI.

The requirements for the mechanism under investigation are:

(1) to improve the duty cycle by allowing the circuits to operate at a greater portion of

their time in the ”1” state, without affecting the actual data values being transferred,

(2) to not change the state of the router,

(3) to not worsen the critical path timing, and

(4) to not significantly increase the activity factor.

The overall goal is to identify an algorithm that can generate vectors that can exercise

the critical path. Then, the generated exercise vectors can be used for balancing the duty

cycle of the nets on the critical paths. Vectors are deterministically generated in a process

92

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

that resembles to an ATPG process. However, the problem examined in this thesis resembles

to an easier, restricted version of the ATPG problem. The process of exercising the value ’1’

at some critical net f corresponds to activating the stuck-at-0 fault at f. No propagation is

necessary in this case, hence, it suffices to justify the activation value in order to generate the

necessary exercise vector. More details for can be found on [78].

7.2.1 Lifetime-Extending Router Microarchitecture

Aging process is strongly related with incoming rate-dependent along the critical path. The

gate delay increases and the timing constraints are violated along the critical path first. A low

incoming rate causes a biased duty cycle in the wires along the critical paths, because those

paths deal with allocation corner-cases which are rare unless the load is very high. These

biases accelerate NBTI, thus the router requires an increased incoming rate to improve its

longevity. However, increasing the incoming rate artificially yields other problems such as

increased power consumption and acceleration of the HCI effect. The duty cycle must there-

fore be improved without increasing the activity factor significantly. We note that, although

duty cycle and activity factor are related, it is possible to reduce duty cycle of a node substan-

tially without increasing the activity factor substantially, by infrequently changing the value

of that node. Hence we propose a method to exercise the critical path, which improves the

duty cycle while minimally disturbing activity factor, improving NBTI without substantially

impacting HCI.

The netlist which represents the combinatorial logic in a pipeline stage can be represented

as a Directed Acyclic Graph (DAG) with a set of primary inputs and a set of primary outputs.

All vertices of the graph comprise the gate instances, while the graph edges represent the

connections between the gates. A timing arc on this DAG can be defined as a path from any

of the primary inputs to any of the primary outputs. By starting at the end-point of a timing

arc and building the logic cone backwards till a set of primary inputs are reached (basically

a graph traversal using Breadth First Search or Depth First Search), all the logic gates which

affect that particular path can be extracted. We have constructed such a connectivity graph for

our netlist, obtained after synthesis of our baseline router. The critical path logic is extracted

by constructing the logic cone for each of the timing paths which have slack of less than 10%.

93

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 7.2: (a) Activation and propagation cones for fault location f ; input signals B, C (A,B,C,D) determine

activation (propagation), (b) test generation for f stuck-at-0; B=1 andC=1 activate the fault andD=1 propagates

its effect to O2; possible test vectors ABCD=X111 ={0111, 1111}, (c) let f be a critical net; exercising f=1

requires activation of f stuck-at-0 with B=1 and C=1.

7.2.2 ATPG Preliminaries for Vector Generation

Exercise data is injected during the exercise mode of the router for the purpose of balancing

the duty cycle of the nets on the critical paths. In order to optimize this process we consider

deterministic generation of the data to be injected. This particular problem resembles the

ATPG process, a well-known NP-complete problem [111] used for manufacturing tests for

integrated circuits [112]. The ATPG process involves the generation of a set of vectors, called

tests, which are applied to eachmanufactured circuit in order to detect possible defects. ATPG

is typically performed at the gate-level, using predefined fault models such as the established

stuck-at-fault model in which each signal may be stuck to either the logic “1” or the logic

“0” value.

The basic ATPG procedure followed in generating a test vector for stuck-at fault tests

comprises two phases: the fault activation phase and the fault propagation phase. During

fault activation the fault location (signal) is activated by injecting the opposite of the fault

value. The part of the netlist driving the fault location is referred to as the activation cone. The

fault propagation phase involves the propagation of the fault effect to some observable output

signal. The part of the circuit driven by the fault location is referred to as the propagation

cone and it contains all the possible propagation paths from the fault location to the output

signals. Fig. 7.2 illustrate the activation and propagation cones for the fault location f in the

given netlist.

During ATPG, a signal justification procedure is performed during each of the two phases.

Justification during fault activation determines values on the input signals to allow for the

activation of the fault, whereas justification during fault propagation determines the values

of remaining input signals to allow for fault propagation via some propagation path. Fig. 7.2

illustrates one such scenario which sets B=1 andC=1 during the activation phase for the fault

f stuck-at-0, and D=1 in order to propagate the fault to the output signal O2. It is noted that

94

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 7.3: Critical Path Logic with proposed exercise logic. Additional exercise logic is darkened.

signal A is not set and assumes the don’t care value (X) which implies that it can be set to any

of the two logic values. In this example, if a stuck-at-0 fault exists at f, the value at the output

O2 is ‘1’, otherwise it is ‘0’ (the composite value v f f /v f stands for fault-free value v f f and

faulty value v f at f). We note that typically the fault propagation phase in ATPG is harder

than the activation phase as it involves the selection of propagation paths and constrained

justification based on the results of the activation phase. Nevertheless, both processes are

NP-complete due to the justification process which is, in the worst case, exponential to the

number of input signals.

The problem examined in this work resembles an easier, restricted version of the ATPG

problem discussed above. The process of exercising the value ’1’ at some critical net f corre-

sponds to activating the stuck-at-0 fault at f. No propagation is necessary in this case, hence,

it suffices to justify the activation value in order to generate the necessary exercise vector.

For example, it suffices to set B=1 and C=1 in Fig. 7.2c) in order to exercise signal f (which

could belong to the critical netlist). The generated vector in this case is ABCD= {X11X}.

7.2.3 Optimization of Hardware Overhead via Compaction of Exercise

Data

Moreover, the generated exercise vectors need to be stored in order to be utilized during

NoC idle periods. A considerable part of the hardware overhead of the exercise logic given

in Fig. 7.3 consists of the ROM which stores the exercise vectors as well as the various

95

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 7.4: ROM size: (a) Possible ROM size 3x10 with 10 possible MUX locations, (b) necessary ROM size

3x4 with 4 + 4 MUX locations

multiplexers (MUXes) inserted to allow for the ROM vectors to be exercised. Both the size

of the ROM and the number of new MUXes is data-dependent on both dimensions of the

exercised data matrix. To better understand this issue consider the example in Fig. 7.4 which

shows 3 exercise vectors. The row dimension of thematrix depends on the number of exercise

vectors, 3 for this example. Hence, the generation procedure should attempt to minimize the

number of exercised vectors by generating vectors that exercise a large number of critical

nets. The ATPG tool will be based on an efficient test vector compaction algorithm in order

to satisfy the goals [112].

The column dimension contains the exercise data feeding each new MUX (up to 10 in

this example). A straight forward implementation requires a ROM of size 3×10 and 10 new
MUXes for this example. However, we observe that each MUX’s data can fall in one of three

categories. In the first category all data have the don’t care value (columns 3 and 10 in Fig.

7.4). These columns can be removed from the ROM. Furthermore, no MUX is necessary for

these signals. In the second categorywe have columns that can assumes either the constant ’0’

or constant ’1’ value (columns 2, 4, 7, 8). These columns can also be removed from the ROM

but still require a corresponding MUX set to the constant value. In the third category both a

MUX and a ROM column are needed as the value of the MUX data varies among different

vectors (columns 1, 5, 6, 9 in Fig. 7.4a). We define all MUXes in the first category asMUXX,

those in the second category as MUX0 + MUX1 and, finally, those in the last category as

MUXROM. Using the above analysis the final ROM size in this example is (3 × 4). The

number of necessary MUXes is the number of signals driven by a ROM column plus the

number of columns with constant values computed by MUXROM + MUX1 + MUX0, which

is 4+3+1=8 (MUXROM=l1, l5, l6, l9, MUX1=l2, l4, l7, MUX0=l8, MUXX=l3, l10). Clearly the

existence of don’t care bits (X) in the vector set enables ROMcompaction towards the column

dimension as well as reduction of the necessary new MUXes. Hence, the vector generation

procedure should aim towards a compacted vector set to exercise the critical nets which, (a)

has a small number of vectors and, (b) has a large number of don’t care bits in each vectors.

96

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Such an approach is described in the next paragraphs.

Algorithm 5 Deterministic vector generation algorithm.
Procedure Exercise Vector Generation ()
Inputs: Baseline router netlist R, critical nets list N , duty cycle per critical net D
Outputs: Set of exercise vectors V , list of exercised critical nets Ne

01: Sort the elements of the critical nets list N based on D
02: Ne = NULL; // list of exercised critical nets
03: Nred = NULL; // list of redundant critical nets
04: j=1; // exercise vector index
05: while (N , ∅)
06: v j = X ; // initialize v j with all unassigned values (don’t cares)
07: ∀ critical net ni ∈ N // for each net not exercised yet
08: v j’= justify (R, ni, v j); // justify additional values of v j in order to exercise ni
09: if (v j’ != NULL)
10: add ni in Ne and delete ni from N
11: simulate v j’ on R
12: ∀ nk ∈ N // for each net not exercised yet
13: if (nk == 1)
14: add nk in Ne and delete nk from N
15: v j = v j’; // update current vector
16: else
17: add ni to Nred and delete ni from N
18: add v j in V
19: j++;
20: return V , Ne;

The target for the vector generation algorithm (briefly outlined in the following paragraph

and 5) is to generate a small number of vectors, each with a large number of unspecified bits,

which exercise all nets on the critical path logic. The input to the algorithm is the critical path

logic of the router and the list of critical nets N with corresponding duty cycles D. Priority

is given to nets with high duty cycle, even though all nets are considered. The output of the

algorithm will be a set of vectors V and a list of critical nets exercised. Starting with a vector

with all unassigned values (v j = X) the proposed algorithm iteratively attempts to exercise

as many critical nets as possible by justifying values on the current vector v j. After each

successful justification the vector (v j) is simulated to check for the existence of additional

critical net activations that can also be exercised by v j, which are then deleted from N. When

no more nets can be exercised, the generated vector v j is added to the final vector set V and

the procedure is repeated again with a completely new vector (with all unassigned inputs)

until all the critical nets are exercised (N is empty) or are classified as redundant. Redundant

nets are the nets that cannot be exercised under any input assignment and identification of

those nets can indicate a possible problem in the synthesis of the router. We did not have

97

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 7.5: Critical path logic with proposed exercised logic (shown in bold), after vector generation.

any redundant nets in the extracted critical path logic circuit, but the proposed algorithm also

covers this case for completeness purposes.

The algorithm (5) has two goals. Firstly, to generates a small number of vectors. This can

be achieved by forcing each vector to exercise as many critical nets as possible by explicitly

targeting them and, furthermore simulating the vector values for any other critical nets that

may be exercised without explicitly being targeted during each iteration (lines 7-17). The

second goal is to have a large number of unspecified bits in the generated vectors in order to

optimizing the hardware overhead via compaction of exercise data. This might be achieved

by using a variant of a powerful ATPG justification procedure [86]. The necessary justifica-

tion procedure (line 08) will be iteratively executed and only the necessary vector bits will be

specified during each iteration. In this manner, the generated vector should contains a large

number of don’t care bits.

7.2.4 Vectors Generation Results and Underlying Exercise Logic

Fig. 7.5 shows the additional exercise mode logic added to the extracted critical path logic

of the baseline router. The extracted critical path logic circuit consists of 1,435 inputs, 357

outputs connected to flip-flops inside VCs, and 14,653 internal nodes. From the extracted

circuit, the critical path logic consists of 732 critical nets which need to be exercised. Us-

ing the deterministic vector generation algorithm (Fig. 5), eight vectors are generated which

exercise all of the 732 critical nets at least one time (some of them are exercised more than

once). After the generation of the vectors, we follow a similar procedure with the one dis-

cussed in Section 7.2.3 in order to optimize the hardware overhead (ROM size and number of

98

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

MUXes). From 1,435 inputs which correspond to possible MUX locations, 730 have don’t

care values (MUXX) and can be removed from the ROM, while 38 can be set to constant value

’0’ (MUX0) and 487 can be set to constant value ’1’ (MUX1). Therefore, the necessary ROM

size is (8 × 180) (= 1, 435 − 730 − 38 − 487) with 705 (= 180 + 38 + 487) MUXes (525 of

the MUXes are having a constant value on their input pin) shown in Fig. 7.5.

7.2.5 Evaluation

Experimental Setup

The baseline router, adapted from RTL code made publicly available by Becker [113], con-

tains three pipeline stages. It is synthesized using Synopsys Design Compiler mapped to a

45 nm technology library at 1 GHz. The critical paths were extracted using Synopsys Design

Vision. All paths with ≤ 10% slack were retained and analyzed. The wire activity along the

paths are extracted with Synopsys VCS and analyzed offline. The power consumption is also

evaluated using PrimeTime.

The router is evaluated under both synthetic and realistic workloads. The realistic work-

loads are captured as traces from gem5 [114] emulating a 64-core system executing multi-

threaded programs from the PARSEC v2.1 suite [115]. We compute incoming rate of each

router in 8 × 8 mesh network’s individually under X-Y DOR routing. The per-router min,

max and average incoming rates for each application were calculated. These rates are then

applied to the synthesized router to extract the activity of its wires. For both synthetic and

realistic workloads, we execute the post-synthesis models of both the baseline and proposed

routers, for 100,000 cycles, to measure the wire activity.

7.2.6 Experimental Results

Random versus deterministic vector generation

Aging due to NBTI depends on the duty cycles of nodes along the critical paths. We studied

the impact of randomly generated vector sets to exercise the critical path nodes. Here we

used a set 16 of 1,435-bit random vectors to drive the exercise logic. Sixteen vectors were

used as more random vectors did not appear to provide any further reduction in duty cycle.

Fig. 7.6 shows the duty cycles of the nodes on critical paths under different scenarios. Here,

all simulations are performed under synthetic traffic of 0.02 flits/cycle. As Fig. 7.6a) shows,

the duty cycles for baseline router are biased towards either “1” or “0.” The nodes with duty

99

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

57
7

60
1

62
5

64
9

67
3

69
7

72
1

(a) Original

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

57
7

60
1

62
5

64
9

67
3

69
7

72
1

(b) With random vector generation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

57
7

60
1

62
5

64
9

67
3

69
7

72
1

(c) With deterministic vector generation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

57
7

60
1

62
5

64
9

67
3

69
7

72
1

(d) With deterministic vector generation (Exercise mode always

on)

Figure 7.6: Duty cycles of critical path nodes with 2% incoming flit rate, sorted from highest to lowest.

cycle close to 1 significantly affect the aging due toNBTI. Fig. 7.6b) shows that using random

vectors to exercise the critical paths produces improvement, but there are still a number of

nodes with duty cycle of ∼ 1. We note that here, we must have an exercise vector which is

of the same bit width as the number of inputs to the critical path logic (1,435 bits), hence

requiring 1,435 random bits per vector in the ROM.

As Fig. 7.6d) shows, the duty cycles improve greatly when the vectors used during ex-

ercise mode are generated using the deterministic method described in Section 7.2.3. After

optimization, just 8 vectors, each 180-bits wide are enough to exercise all the nodes at least

once. The ROM size of 8×180will also bemuch smaller when compared to that of 16×1, 435
for randomly generated vectors. When the exercise mode is always on, the maximum duty

cycle that a node can have is 0.875 (7/8) which confirms that all the nodes are exercised at

least by one of the generated vectors. In Fig. 7.6c, when synthetic traffic of 0.02 flits/cycle is

added to the generated vectors, none of the nodes have a duty cycle of 1, though the results

are smoothed somewhat from Fig. 7.6d).

Lifetime under PARSEC workloads

Fig. 7.7 depicts the normalized lifetime of the network using the proposed technique under

PARSEC workloads. The lifetime of the network is estimated by computing the acceleration

100

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

1

10

100

1000

10000

100000

No
rm

al
ize

d
Lif

et
im

e
(lo

gs
ca

le
) Generated Vectors Random vectors

Figure 7.7: Normalized lifetime of the network using the proposed technique under realistic workload.

factor of the router with the minimum incoming rate in the network, as it is the most suscepti-

ble to aging effects. The reference system is the baseline router receiving the same incoming

rate.

Deterministic vector generation achieves an average of ∼2300× reduction in wear rate

(bars marked “AVG”) as compared to that of random vector generation which only gives

∼28× improvement. As expected, the proposed technique performs better when incoming

rate is low. An analysis presented in [78] showed that “ferret” and “x264” are the applications

with the two lowest incoming rates in the PARSEC suite. Even when the average incoming

rate is as high as 0.05 flits per cycle (canneal), deterministic vector generation still achieves

the normalized lifetime of 800× due to the extreme spread in per-router incoming rates from
minimal to maximum seen in that application. The random vector generation does give a little

improvement in lifetime but it is no where close to what we can achieve with deterministic

vector generation. The bars designated as “ALL” denote a case in which the system executes

each of the applications sequentially one at a time. In this case, the improvement becomes

∼ 4000×. We found that the execution times of “ferret” and “x264” are the longest among

the applications, and hence the incoming rate for “ALL” is dominated by those applications.

7.3 PRITEXT: A Novel Minimal Exercise Vector Genera-

tion Technique for Reliability Improvement

This section presents a Proactive Reliability Improvement though EXercise Technique, called

PRITEXT, a novel technique which generates a minimal set of deterministic exercise vectors

101

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

based on test generation techniques which inherently near optimizes the bit patterns across

each of the generated vectors; the end target being to exercise the critical paths of a device

when dormant so as to achieve near-ideal NBTI stress reduction. Modern processors can be

inactive for some periods mainly waiting for events such as input/output or off-chip memory

access etc. Those periods can be leverage by PRITEXT to enable the exercise mode on the

idle processor for NBTI reduction. The method explores the design space of the generated

vectors and results indicate that PRITEXT leads to significant lifetime improvement. In ad-

dition, in an attempt to reduce hardware overheads even further, in this section it is presented

a heuristic to further reduce the number of exercise vectors with minimum loss in lifetime

improvement.

7.3.1 Related Background on NBTI and IVC

NBTI affects the gate of a PMOS transistor (NMOS transistors exhibit a similar, but lesser,

effect, i.e., PBTI) when reverse biased, i.e., pulled to logic “0” (Vgs = -Vdd), by a corre-

sponding internal net, and under continuous stress [116]. This activity leads to generation

of interface traps due to disassociation of Si-H bonds in the Si/SiO2 interface, leading to an

increase in the transistor’s threshold voltage (Vth) and a simultaneous reduction in the drive

current due to charge carrier mobility degradation (stress phase). A continuous increase in

Vth leads to accelerated transistor aging leading to a steady decrease in its switching speed.

Hence NBTI does not cause actual PMOS transistor failure, but decelerates its switching.

NBTI has an interesting recovery phenomenon when the PMOS transistor’s gate is not

reverse biased (Vgs = 0); most of the Hydrogen atoms diffuse back and bond with Silicon

leading toVth [116] readjustment (recovery phase). However, Vth is only partially recovered,

depending on the ratio of the stress mode versus the recovery mode, where the net increase

in operating threshold voltage due to dynamic NBTI stress is sensitive to the fraction of the

time the transistor is under negative bias; this is defined as the duty cycle β. Hence, to further

reduce NBTI effects, as self-recovery is obviously not sufficient, the transistor duty cycle

should be ideally balanced at 50%.

Input Vector Control

Any internal net of a combinational circuit, which drives the gate of a PMOS transistor,

can be deliberately switched to logic “1” by applying a relevant input vector. This logic

state-controlling technique, termed Input Vector Control (IVC) [74], is used to activate (i.e.,

102

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

pull-up) the internal nets so as to eliminate the negative bias of the PMOS transistors during

standby mode or during device inactivity. Hence, by balancing the ratio of stress time to the

total operational time (equivalent to β = 50%), NBTI degradation can be greatly alleviated.

Balancing the duty cycle (β) of an internal net using IVC forms the basis of the technique in

building PRITEXT microarchitecture. We note that a single input vector cannot guarantee

the activation of all the internal nets on a single timing path. Hence, the aim with PRITEXT

is to derive a set of deterministic input vectors so as to achieve balanced duty cycles across all

the internal critical nets. Pulling up critical internal nets (i.e., recovery phase) during standby

time using IVC forms the so called “exercise technique” [78], while the set of derived input

vectors are dubbed “exercise vectors”.

Application of the Generated Exercise Vectors

The focus of the present Chapter is mainly on modeling of the failure mechanisms and identi-

fication of the wareour-sensitive components. Moreover, the focus is to define and implement

efficient vector generation algorithms based on test automation techniques targeting CMPs

architectures. Application of the generated exercise vectors in not the main focus however,

the two problems under consideration (NoC and a superscalar processor) allow enough room

for vector application. After extensive experimentation with PARSEC and x264 benchmarks

under realistic workloads generated with gem5 simulator (more details can be found at [78])

it is identified that the average incoming rate for an NoC is low and causes NBTI-induced

aging.

Idle times for processors are also frequent due to the fact that for a high percentage of time

they are waiting for events such as off-chip memory access or input/output. This provides

opportunities to enable inject the generated vectors for reliability improvement. Based on

statistics and a related work for a single core processor system ([71]) it is found out that

processors are active and idle in a ratio 1:1 providing enough room for the application of the

exercise vectors.

7.3.2 PRITEXTMicroarchitecture andVector SetOverheadReduction

PRITEXT: Proactive Reliability Improvement though EXercise Technique

In an attempt to exercise all the critical nets such that their β can be balanced at an ideal 50%,

it is vital to capture the activation cone of all the critical nets which begins at the fan-in of

the critical path as shown conceptually in Fig. 7.8. With the relevant circuit netlist in hand,

103

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

ROM with
Exercise
Vectors

Input
D

Flip‐Flops

Output
D

Flip‐Flops

1

0

Exercise mode

Extracted Critical Path Logic Cone

P

P

QP

Figure 7.8: Critical path combinational logic cone extraction with proposed PRITEXT exercise logic. Addi-

tional exercise logic is shown in a darker shade.

deterministic vectors that exercise all these critical nets are fist generated and then applied.

This two-step process defines PRITEXT technique, with the exercise vector generation al-

gorithm described in Section 7.3.2. As seen in Fig. 7.8, PRITEXT is backed by additional

hardware which augments the base critical path logic. A Read-Only Memory (ROM) block

and multiple lightweight multiplexers (MUXes) store and apply the generated exercise vec-

tors to the critical circuit path respectively. Note that each row in the ROM corresponds to a

unique vector. The exercise vectors are applied non-invasively to the extracted critical path

logic cone when the system’s exercise mode signal is enabled in standby phase, hence not

affecting the architectural state of the system; this is ensured by disabling the output flip-

flops during exercise mode. The exercise vectors are applied rotatively with a pre-defined

periodicity in terms of 100s of cycles (typically 1024) so as to account for the entire critical

path tree.

Overhead Reduction of Exercise Vector Set

Exercise vectors generated for NBTI rejuvenation, where their aggregation comprises a vec-

tor set, may overload an underlying architecture with considerable CMOS area and power

consumption overheads if not optimized. The hardware overhead of a vector set is propor-

tional to the product of the length (i.e., number of vectors) times the width (i.e., size of indi-

vidual vector) of the vector set.

Reducing the number of exercise vectors (length) offers a number of benefits. First, ROM

real-estate occupancy on-chip is reduced (Fig. 7.8), while non-zero dynamic power dissipated

as a consequence of critical path nets switching is also kept to minimum when being applied

104

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

during exercise. Last, the periodicity of exercise application can be enhanced, directly leading

to improved circuit rejuvenation during system standby. The latter is especially critical as no

single exercise vector can activate all critical nets within a logic cone at once; instead a series

of vectors are applied periodically to cover all exercise cases so that the critical circuit cone

is rejuvenated holistically. Intuitively, keeping the number of vectors to a minimum value

helps in providing a higher fraction of exercise (standby) period for each internal net, thereby

achieving a balance of duty cycles across all the critical nets.

On top of length optimization, reducing the size (bit-width) of each individual vector

(termed vector compaction) is crucial as it directly leads to a reduced width of vector set; this

has a positive net effect requiring a smaller ROM to house it, and less MUXes to propagate

it to the critical logic cone. In lieu of these benefits, various heuristics are developed for

maximizing the NBTI rejuvenation impact.

2-Dimensional Vector Set Optimization Heuristics

Length optimization: Each gate lying on a critical path does not influence the total switching

delay degradation equally due to presence of the βi
(1−βi)

factor. This factor can be considered

as the contribution of the internal gate (net) towards the total switching delay degradation

along the timing path. This inspired us to develop a heuristic such that the vectors which

exercise these low criticality nets can be removed from the vector set, to significantly reduce

hardware overhead while incurring minor loss in lifetime improvement.

Width optimization: In the general case, a new MUX is needed for each input bit of the

exercise vector to enable its injection into the combinational logic cone. However, some in-

puts always have “don’t care” values on all generated vectors. This can occur when powerful

vector generation methods are employed to derive vectors with minimally specified bits. As

a result, the corresponding ROM columns can be removed and there is no need for a MUX

since the values of those inputs do not affect the state of the circuit. Moreover, other inputs

may always assert either the “0” or “1” logic value in all the exercise vectors. In such cases,

the corresponding ROM columns can also be removed, but a MUX per such input is still

required and is set to the corresponding constant value (either “0” or “1”).

Deterministic vector generation derived from testing techniques

As discussed in the previous section, vectors are injected during the exercise mode of the

circuit in order to balance the duty cycle of the critical nets, which are nets on critical paths

105

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

with high duty cycle (= βi
(1−βi)

). The injected vectors are generated offline using a deterministic

vector generation algorithm, optimized for the specific problem at hand. In themanufacturing

test domain, vector generation is an NP-complete process and its goal is to generate test

vectors capable of detecting defects in manufactured circuits. Fault models are used to model

the possible defects.

Vector generation based on stuck-at fault modeling

Under the well-known stuck-at fault model, the ATPG process comprises the fault activation

and the fault propagation phases. Fault activation requires the injection of the opposite to

the fault value at the fault location by justifying the inputs of the circuit. Fault propagation

extends the input justification process in order to propagate the fault effect to an observable

output.

Critical net activation can be seen as a restricted version of the ATPG problem (since only

fault activation is required but not propagation), where critical nets comprise the faults that

need to be activated at the stuck-at-0 value. Stuck-at-0 activation includes the justification

of the logic value “1” at the net by setting the necessary values at the inputs of the circuit

which comprise the generated vector. The goal is to generate as few vectors as possible,

collectively capable to exercise all critical nets. In the best case, a single vector may exist

capable of activating all stuck-at-0 faults on the targeted critical nets. Often, as this is a

very strict condition to satisfy, several vectors are needed where each one activates multiple

critical nets.

Vector generation based on path delay fault modeling

Consider a set of critical nets, all laying on some circuit path, for which no single vector can

activate all nets based on the stuck-at fault model discussed above. Then, the problem of

finding the minimum number of vectors to exercise all these critical nets can be reduced to

the problem of finding a robust test for a path delay fault on the particular path. In general,

a delay fault is assumed to cause a defect in the manufactured circuit when the cumulative

delay of a combinational logic path exceeds the clock period. The path delay fault model is the

most accurate among delay fault models [117], as it can model both lumped and accumulated

delays along paths. Under the path delay fault model every fault is represented as a sequence

of falling (1→0) or rising (0→1) transitions along a path. The transition initiated at an input

is propagated through the path to an output. A path delay test consists of a pair of vectors

106

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

(v1, v2), where v1 initializes the path and v2 launches and propagates the transition through

the path to an observable output.

Path delay tests can by categorized as robust or non-robust. A robust test guarantees the

detection of the path delay fault in consideration irrespective of the delays on other off-path

nets, as it does not allow any hazards to propagate along the path. In this manner, any possible

masking due to different timing arrival of transitions is avoided. Hence, a robust test (v1, v2)

guarantees to exercise all critical nets on a path at the logic “1” value for 50% of the time

needed to apply vectors v1 and v2. It is often the case that a robust test does not exist. This

is mainly attributed to the complex structure of circuits with multiple re-convergent physical

paths. In such cases, a relaxed test can be generated (called non-robust test) which allows the

propagation of static or dynamic hazards on some of the nets. In the domain of manufacturing

test this translates to the possibility of additional circuit delays masking the transition and,

hence, invalidating the test. In the context of the work in this thesis, any critical nets asserting

transitions with hazards cannot always be considered as exercised. The solution in this case

is to isolate such nets and re-target them in the vector generation process (via different paths)

so as to exercise them with additional vectors.

Non-Robust (v1, v2) Robust Test (v1, v2)
Gate Type Rising or Falling Transition on

On-Path Net
Rising Transi-
tion on On-Path
Net

Falling Transi-
tion on On-Path
Net

AND / NAND (x, 1) (x, 1) (1, 1)
OR / NOR (x, 0) (0, 0) (x, 0)

Table 7.1: Necessary sensitization conditions on off-input nets for robust and non-robust test generation.

Table 7.1 summarizes the sensitization conditions on a path’s off-inputs for robust and

non-robust path delay fault tests. Off-inputs are nets which are inputs to gates on the path

but are not nets of the path themselves. For the relaxed non-robust tests, it suffices for v2

to settle the off-inputs to a steady non-controlling value (“0” for OR/NOR gates and “1” for

AND/NAND gates) and allow any value for v1 (x). For a robust test, if the on-path net settles

to a controlling value (“1” for OR/NOR gates and “0” for AND/NAND gates) then the off-

input nets must assert a stable non-controlling value during both v1 and v2; otherwise, the

same conditions as with a non-robust test hold. The reader is referred to [117] for a complete

discussion on path delay fault test generation.

Fig. 7.9 illustrates a short example of how path delay fault tests can be utilized to exercise

critical nets. The first objective is to find a robust test for a path which covers all the critical

nets (for simplicity, at this point let us assume that one such physical path exists; this condition

107

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Figure 7.9: Test generation example for robust and non-robust tests.

will be relaxed later in subsection 7.3.3). The targeted path is highlighted in red color and

starts from input b, passes through gates 1, 2, 4, and ends at output f. We assume, without

any loss of generality, that all nets in the path are critical. As a robust test (v1, v2) guarantees

the propagation of a transition from an input net to an output net through the targeted path,

the activation of all critical on-path nets during either the first vector v1 or the second vector

v2 is also guaranteed.

Test generation begins by asserting a transition at the origin of the path (let this be a rising

transition here) and propagates it to the path output based on the types of the gates on the path

(see Fig. 7.9.a). This phase is followed by an attempt to justify all off-path nets for all gates

on the path to the necessary values, as shown in Fig. 7.9.b. For a robust test, input c is set

to a stable 0 value (0, 0), and input a is set to (x, 1), according to the sensitization rules for

robust tests given in Table 7.1. However, this does not allow for the off-path input of gate 4

to be set to (0, 0), thus, a robust test is not possible for the particular path and transition type

at the origin. A similar issue is created if a falling transition is selected at the path origin. The

solution in this case, shown in Fig. 7.9.c, is a non-robust test where the necessary condition for

input c and a is (x, 0) and (x, 1), respectively. Moreover, the propagated falling transition at

the output of gate 3 can be justified by (x, 0)which is a valid off-input sensitization condition

for gate 4. The generated pair of vectors, as shown in Fig. 7.9.d, is (v1, v2) = (x0x, 110).

In this case, as net f will either assume a static-1 hazard value or a stable 1 value, it will be

exercised. A reverse situation (static-0 hazard or stable 0 value) would require that net f is

re-targeted by a different vector to ensure that it will be exercised as desired.

108

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

7.3.3 Exercise Vector Generation Technique

Activation of critical nets on a single physical path

Assume a circuit netlist C and a set of critical nets Nc. The critical nets are derived based

on the NBTI stress model discussed in section 7.3.1 (additional details are also provided in

section 7.3.4 where the complete evaluation framework is discussed). Algorithm 6 outlines

the major steps in the proposed exercise vector generation methodology. The primary goal

is to derive a small number of vectors (V) capable of activating all nets in Nc. A secondary

goal is the optimization of each generated vector in terms of unspecified bits as this allows

for further compaction of the vector set to be exercised in both dimensions of the vector

set (number and size of vectors), by applying the heuristics discussed in section 7.3. This

latter goal is achieved by the powerful test generation routines utilized for this work and their

particular details are beyond the scope of this thesis.

Algorithm 6 begins by targeting the activation of all critical nets with a single vector

based on the relaxed stuck-at model (step 01). If one such vector exists then V will contain

a single vector; otherwise, more than 1 vectors are required to exercise all nets in Nc and the

approach considers the path delay fault model by first finding a physical path pwhich contains

all critical nets in Nc (step 06). It is assumed at this point that such a path p always exists,

however, this condition can be removed as discussed in the next subsection. Consequently,

a robust test is targeted for p (step 07). If such a test exists, then the approach guarantees

to return a set of 2 vectors in V = (v1, v2) able to activate all nets in Nc. As discussed in

the previous subsection, for cases where a robust pair of vectors (test) does not exists the

conditions of test generation are relaxed to derive a non-robust pair of vectors (step 12). It is

assumed that a non-robust test can always be found for path p. Otherwise, p cannot be singly

sensitized which means that it cannot affect the timing of the circuit unless delays on other

nets, not on p, exist in the circuit. However, as all critical nets are on p this situation cannot

occur.

Under the non-robust criterion, some nets of p may assert values with hazards (either

static or dynamic) and, therefore, may not be able to guarantee the activation of a critical net.

In steps 14-16, the list of critical nets is updated to only contain such problematic nets and

the entire approach is repeated but only for these nets. The algorithm terminates when no

more critical nets exist in Nc.

109

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Algorithm 6 Proposed exercise vectors generation technique
Inputs: Circuit netlist C, list of critical nets Nc
Outputs: Set of exercise vectors V

01. v = generate_stuck_at_activation_vector(C, Nc)
02. if (v , ∅)
03. add v to V
04. return
05. else
06. p = identify_physical_path(C, Nc)
07. (v1, v2) = generate_robust_test(C, p)
08. if ((v1, v2) , ∅)
09. add (v1, v2) to V
10. return
11. else
12. (v1, v2) = generate_non-robust_test(C, p)
13. add (v1, v2) to V
14. ∀ net n ∈ Nc
15. if value of n under (v1, v2) , hazard
16. Nc = Nc - n
17. if (Nc == ∅)
18. return
19. else
20. goto step 01

Extending to the general case

The proposed exercise vector generation technique can be extended to the general case where

critical nets are dispersed over multiple paths in the circuit and do not lay on a single physical

path. A heuristic procedure can be used to find the minimum number of paths that can cover

all critical nets and then utilize the proposed vector generation procedure to generate vectors

for each path. Such a heuristic can be implemented using known graph-theoretic approaches,

where the circuit logic is represented as a Directed Acyclic Graph (DAG), such as a modified

version of the problem of determining a minimum number of edge-disjoint paths to cover

edges in a DAG. In depth-details are abstracted at this point due to space limitations.

7.3.4 Experimental Evaluation and Results

Evaluation Framework

We model the combinational part of any design as a DAG which makes the technique trans-

parent to the microarchitecure of a device. As a proof of concept for evaluating the efficacy

of PRITEXT, we have used the synthesizable Verilog RTL model of a superscalar proces-

sor core available from FabScalar [118] open source toolset. For the purposes of this work,

110

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

we consider a core with a frontend width (Fetch, Decode, Rename, Dispatch, Issue, Rename

Register, Execute, Writeback) of 4, Load/Store Queue of size 32 and 128-entry Re-Order

Buffer. More details regarding the evaluation framework used are out of the scope of this

thesis and can be found in [119].

NBTI Critical Timing Paths

NBTI degradation is not uniform across all the paths in a device because of different timing

delays and duty cycles along the gates. In short, workload stresses each net and path differ-

ently leading to highly skewed duty cycles across some of the timing paths. Hence only the

paths which do not have enough slack to overcome the degraded switching delay are highly

prone to timing failures due to NBTI stress. All the paths having less than 10% slack are

considered to be NBTI critical. We synthesized the processor core for a clock frequency of

500 MHz using Synopsys Design Compiler with a 45 nm TSMC standard cell library.

Workload Characterization of Critical Paths

Since NBTI is highly sensitive to duty cycle of transistors that lie along a timing path, we

performed gate level simulations of the synthesized netlist using six workloads (bzip2, gap,

gzip, mcf, vortex and parser) from the SPEC CPU2000 benchmark suite to obtain their

duty cycles. Using the waveform dumps, we calculated the duty cycle of all the internal nets

of critical timing paths. More details can be found in [119].

Modern processors are often quiescent for a major fraction during their operation while

waiting for events such as input/output access, or off-chip DRAM access to complete. This

provides opportunities to enable the exercise mode to combat NBTI effects whenever the

processor is idle. Based on the real-time statistics collected for various processors in several

server clusters, we have considered a conservative ratio of 1:1 for active to standby proces-

sor state durations in the experimental evaluation. A higher standby time triggers improved

opportunities to balance duty cycles along critical logic path since each exercise vector has

higher fraction of operational time.

Deterministic Algorithm for Vector Generation

The extracted combinational logic cone of the critical nets in the Load/Store unit of the ex-

perimental platform [118] consists of 1,426 primary inputs, 15,194 internal nodes, and 63

unique critical nets which all lay on a single path. Using Algorithm 6 we have obtained 9

111

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

exercise vectors (designated by V1-V9 with each vector having 1,426 bits) which together

guarantee to cumulatively exercise all of the 63 critical nets at least once during application

of the exercise phase. Fig. 7.10 illustrates the coverage achieved by each of the 9 vectors in

terms of new critical nets in the Load/Store unit path. Vector V1 exercises 35 unique critical

nets while vector V2 exercises 12 additional nets, and 34 critical nets in total. Vectors V1,

V2, V3 and V4 collectively exercises 50 (35+9+2+4) out of the total 63 critical nets, cov-

ering approximately 80% of them. This observance, together with the heuristic described in

section 7.3.2 motivated us to compute lifetime improvement under two distinct vector sets:

a complete set comprising all 9 vectors (dubbed “Set9”), and a second set consisting only of

the first 4 vectors (dubbed “Set4”). Both of these vector sets are considerably smaller than

the set derived from the algorithm in [78] which gives a set of 14 (10) exercise vectors for

100% (80%) coverage of the critical nets for this design.

In order to minimize the hardware overheads in PRITEXT technique, we performed vec-

tor compaction to minimize the newly introduced MUXes and on-chip ROM that stores the

generated vectors. The storage capacity of this ROM equals to the product of the vector count

and the width of each exercise vector, which in turn corresponds to the 1,426 primary inputs

of the extracted logic. Out of 1,426 possible MUX locations corresponding to the inputs un-

der vector set Set4, 1,224 of those contain “don’t care” logical values spreading across the

4 generated vectors. This high number of unspecified bit values is attributed to the ability

of the proposed vector generation technique to produce vectors that exercise a large number

of critical nets per vector, while bit-setting only necessary inputs at a time. Moreover, 81 of

the inputs always remain at logic value ’0,’ while 83 inputs always remain at logic value ’1’

in each vector. Hence, the final ROM width is only 38 (1426-1224-81-83) bits, leading to a

total ROM size of 4× 38 bits (i.e., 4 vectors affect 38 inputs). Only 202 (38+81+83) MUXes

are necessary, with 164 (81+83) of them presenting a constant value as input during exercise

mode. A similar analysis for Set9 leads to a ROM size of 9 × 53 bits, totaling 357 MUXes

(53+171+133 bits). Hence, the width optimization heuristic achieves ROM size and MUX

overhead reduction of 97.3% (96.3%) and 86.8% (74.9%) for Set4 (Set9), respectively, com-

pared to the initial unoptimized vector set with a ROM size of 9×1426 bits and 1426MUXes.

The overall hardware overhead due to PRITEXT technique for Set9 was well within 0.5% of

the total area of the reference processor.

112

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

V1 V2 V3 V4 V5 V6 V7 V8 V9
0

10

20

30

Cr
iti
ca
ln
et
se
xe
rc
ise
d

Figure 7.10: Coverage of unique critical nets per vector.

Balanced Duty Cycles

Fig. 7.11 illustrates the duty cycle distribution of critical nets when the PRITEXT technique is

applied to the superscalar processor under consideration. The fraction of critical nets having

skewed duty cycles (i.e., within bin 0.9) has dropped from 38% to 13% on average, as com-

pared to the reference system with no lifetime extending support, highlighting PRITEXT’s

efficacy.

Lifetime Improvement

Fig. 7.12 gives lifetime improvements using PRITEXT and the two generated vector sets.

Set4 achieves nearly the same improvement as in Set9, yet it demands smaller hardware over-

heads. This trade-off between the size of the vector set (leading to repercussions such as hard-

ware overhead, dynamic power consumption) and lifetime improvement can be leveraged by

designers to trade-off design constraints. The lifetime improvement technique explored in

this work achieves an average of 4.99× lifetime improvement over a reference system using

deterministic vectors, while a maximum improvement of 13.91× is observed for the highly
memory intensive mcf workload.

7.4 Chapter Summary

This Chapter explores proactive reliability techniques designed to decelerate the effects of ag-

ing in the critical components like core processors or NoC of CMPs. Section 7.2 investigates

critical path models for NBTI-induced wear due to the stresses cause by realist workloads and

113

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5 · 10−2

0.1

0.15

0.2

0.25

duty cycle (β) bins

Fr
ac
tio
n
of
cr
iti
ca
lp
at
h
ne
ts

bzip2 gap gzip mcf parser vortex

Figure 7.11: Duty cycle distribution under PRITEXT.

bzip2 gap gzip mcf parser vortex AVG

5

10

15

benchmarks

A
cc
el
er
at
io
n
Fa
ct
or

Set4 Set9

Figure 7.12: Lifetime Improvement with PRITEXT

114

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

applied them into an NoC interconnect microarchitecture. Section 7.3 leverages path delay

test principles to derive near-ideal vectors while simultaneously providing a deterministic al-

gorithm to generate exercise vectors under circumstances where such tests do not exist. The

efficiency of this technique is evaluated on a reference superscalar processor with propitious

lifetime improvement results and negligible hardware overheads.

115

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

116

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

Chapter 8

Conclusions and Future Work

The present thesis explores the new potentials from multi-core era and the new opportunities

created for fundamental test automation processes. Due to their computationally intensive

nature they can significantly benefit from those developments. However, those opportunities

cannot be effortlessly achieved because the performance gain by the use of multi-cores is

strongly depended on the software algorithms used and the corresponding implementations.

Due to their complexity and unpredicted dynamic execution test automation algorithms can-

not rely on automatic parallelization tools because those tools can lead to local optimal solu-

tions compromising the quality of results.

A detailed analysis for the impact of partitioning in parallel fault simulation and test gen-

eration processes is presented. Fault and test partitioning affect both the scalability and test

inflation of the parallel solutions, thus, simple static partitioning is not recommended for a

scalable and well balance parallel solution. Moreover, the thesis explores parallel fault simu-

lation and parallel test generation for shared memory on-chip multiprocessors homogeneous

architectures. Both parallel, techniques are able to maintain their scalability as the number of

processing cores utilized increases and target to avoid workload duplication and test inflation

problems.

In addition, the parallel test pattern generation methodology is appropriately extended to

generate high quality multiple-detect (n-detect) test sets. Such test sets, known as n-detect

test sets (each fault targeted n times), have been experimentally shown to improve the defect

coverage at the expense of an increased test set size. Appropriate experimentation using

the investigated parallel n-detect test generation method shows that test sets retain all good

properties of a parallel test generation methodology in a more beneficial extent.

Lastly, the thesis investigates reliability techniques where deterministically generated ex-

117

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

ercise vectors are utilized to prolong CMPs lifetime. It is shown that exercise vectors gener-

ated in design phase, stored and utilized by CMP during idle times can significantly prolong

its lifetime. A novel vector generation technique based on ATPG compaction concepts is ex-

plored to generate compact vector sets that significantly improve the lifetime of an inter-core

NoC router and a superscalar processor.

8.1 Future Work

There are several directions to be investigated for future work. First, the investigation find-

ings of the parallel fault simulation and test generation methods can be applied into different

non-enumerative fault models such as path delay and bridging. The scalability, the efficient

workload balancing and utilization of shared resources are only some of the optimization di-

rections of the explored test automation processes which can be utilized targeting different

fault models. Another directions can be the better identification of a-priori compatibilities be-

tween faults (know as pseudo-compatibility). Grouping identified compatible faults together

can support higher fault dropping and a better guidance of the parallel solutions. Other di-

rections involve investigation of various high performance computing infrastructures other

than on-chip homogeneous CMPs like architectures that support dynamic frequency scal-

ing, MPSoCs, super computers farms and hybrid cloud solutions. Will be very interesting to

investigate non-homogeneous architectures and adjust the proposed methodologies accord-

ingly.

A popular research topic is the acceleration of functional simulation for processor based

designs. Functional simulation is performed after the test bench and design code is created

and is an iterative process which may require multiple simulations to achieve the desired end

functionality of the design. Since verification of designs is taking an increasing proportion

of the design and test cycle of a processor (or embedded processor) functional simulation

typically is a time-consuming task. Would be very interesting to investigate the performance

of the parallelization concepts proposed in the thesis at functional simulation domain.

Simulation of system-level description languages is another area where the methodolo-

gies proposed in this thesis can be utilized to speed-up the execution time. Modern system

platforms often consist of multiple processing elements including general purpose CPUs, dig-

ital signal processors, dedicated hardware accelerators and many more. The complexity and

challenges to design and validate those systems are increasing rapidly. Parallel fault simula-

tion concepts can be utilized for better design some of the existing parallel solutions, which

118

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

are mostly based on thread-level parallelism. Similar parallelization concepts are applied

also in this area since shared memory is the main communication and synchronization mean.

Besides the research directions already explored there are various others research areas

where concepts and findings of this thesis can be utilized such as design for testability, pro-

grammable build-in self-test, embedded systems, algorithms for autonomous vehicles, hard-

ware security and trusted integrated circuit designs etc.

119

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

120

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

References

[1] M. Gorev, R. Ubar, and S. Devadze, “Fault simulation with parallel exact critical path
tracing in multiple core environment,” in Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 2015. IEEE, 2015, pp. 1180–1185.

[2] J. C. Ku, R. H. Huang, L. Y. Lin, and C. H. Wen, “Suppressing test inflation in shared-
memory parallel automatic test pattern generation,” inDesign Automation Conference
(ASP-DAC), 2014 19th Asia and South Pacific. IEEE, 2014, pp. 664–669.

[3] X. Cai, P. Wohl, and D. Martin, “Fault sharing in a copy-on-write based atpg system,”
in Test Conference (ITC), 2014 IEEE International. IEEE, 2014, pp. 1–8.

[4] K.-W. Yeh, J.-L. Huang, H.-J. Chao, and L.-T. Wang, “A circular pipeline processing
based deterministic parallel test pattern generator,” in Test Conference (ITC), 2013
IEEE International. IEEE, 2013, pp. 1–8.

[5] X. Cai, P. Wohl, J. A. Waicukauski, and P. Notiyath, “Highly efficient parallel atpg
based on shared memory,” in Test Conference (ITC), 2010 IEEE International. IEEE,
2010, pp. 1–7.

[6] K. Olukotun, L. Hammond, and J. Laudon, “Chip multiprocessor architecture: tech-
niques to improve throughput and latency,” Synthesis Lectures on Computer Architec-
ture, vol. 2, no. 1, pp. 1–145, 2007.

[7] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI test principles and architectures: design for
testability. Academic Press, 2006.

[8] P. Banerjee, Parallel algorithms for VLSI computer-aided design. Prentice-Hall, Inc.,
1994.

[9] P. Agrawal, V. D. Agrawal, K.-T. Cheng, and R. Tutundjian, “Fault simulation in a
pipelined multiprocessor system,” in Test Conference, 1989. Proceedings. Meeting
the Tests of Time., International. IEEE, 1989, pp. 727–734.

[10] N. Ishiura, M. Ito, and S. Yajima, “Dynamic two-dimensional parallel simulation tech-
nique for high-speed fault simulation on a vector processor,” IEEE transactions on
computer-aided design of integrated circuits and systems, vol. 9, no. 8, pp. 868–875,
1990.

[11] V. Narayanan and V. Pitchumani, “Fault simulation on massively parallel simd ma-
chines algorithms, implementations and results,” Journal of Electronic Testing, vol. 3,
no. 1, pp. 79–92, 1992.

[12] M. B. Amin and B. Vinnakota, “Data parallel fault simulation,” IEEE Transactions on
Very Large Scale Integration (VLSI) systems, vol. 7, no. 2, pp. 183–190, 1999.

121

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

[13] T. Nagumo, M. Nagai, T. Nishida, M. Miyoshi, and S. Miyamoto, “Vfsim: Vector-
ized fault simulator using a reduction technique excluding temporarily unobservable
faults,” in Proceedings of the 31st annual Design Automation Conference. ACM,
1994, pp. 510–515.

[14] H. K. Lee and D. S. Ha, “Hope: An efficient parallel fault simulator for synchronous
sequential circuits,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 15, no. 9, pp. 1048–1058, 1996.

[15] Y. Ali, Y. Yamato, T. Yoneda, K. Hatayama, and M. Inoue, “Parallel path delay fault
simulation for multi/many-core processors with simd units,” in Test Symposium (ATS),
2014 IEEE 23rd Asian. IEEE, 2014, pp. 292–297.

[16] P. A. Duba, R. K. Roy, J. A. Abraham, and W. A. Rogers, “Fault simulation in a
distributed environment,” in Proceedings of the 25th ACM/IEEE Design Automation
Conference. IEEE Computer Society Press, 1988, pp. 686–691.

[17] S. Parkes, P. Banerjee, and J. Patel, “A parallel algorithm for fault simulation based on
proofs,” in Computer Design: VLSI in Computers and Processors, 1995. ICCD’95.
Proceedings., 1995 IEEE International Conference on. IEEE, 1995, pp. 616–621.

[18] E. Schneider, M. A. Kochte, S. Holst, X.Wen, andH.-J.Wunderlich, “Gpu-accelerated
simulation of small delay faults,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 5, pp. 829–841, 2017.

[19] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level simulation with
gp-gpus,” in Proceedings of the 46th Annual Design Automation Conference. ACM,
2009, pp. 557–562.

[20] M. A. Kochte, M. Schaal, H.-J. Wunderlich, and C. G. Zoellin, “Efficient fault simu-
lation on many-core processors,” in Proceedings of the 47th Design Automation Con-
ference. ACM, 2010, pp. 380–385.

[21] M. Li and M. S. Hsiao, “3-d parallel fault simulation with gpgpu,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 10, pp.
1545–1555, 2011.

[22] K. Gulati and S. P. Khatri, “Fault table computation on gpus,” Journal of Electronic
Testing, vol. 26, no. 2, pp. 195–209, 2010.

[23] H. Li, D. Xu, Y. Han, K.-T. Cheng, and X. Li, “ngfsim: A gpu-based fault simula-
tor for 1-to-n detection and its applications,” in Test Conference (ITC), 2010 IEEE
International. IEEE, 2010, pp. 1–10.

[24] E. Schneider, S. Holst, M. A. Kochte, X.Wen, andH.-J.Wunderlich, “Gpu-accelerated
small delay fault simulation,” in Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition. EDA Consortium, 2015, pp. 1174–1179.

[25] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. M. Reddy, and B. Becker, “Thread-
parallel integrated test pattern generator utilizing satisfiability analysis,” International
Journal of Parallel Programming, vol. 38, no. 3, pp. 185–202, 2010.

[26] S. Hadjitheophanous, S. N. Neophytou, andM. K. Michael, “Utilizing shared memory
multi-cores to speed-up the atpg process,” in Test Symposium (ETS), 2016 21th IEEE
European. IEEE, 2016, pp. 1–6.

122

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

[27] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path tracing-an alternative to
fault simulation,” in Proceedings of the 20th Design Automation Conference. IEEE
Press, 1983, pp. 214–220.

[28] S. Hadjitheophanous, S. N. Neophytou, and M. K. Michael, “Scalable parallel fault
simulation for shared-memory multiprocessor systems,” in VLSI Test Symposium
(VTS), 2016 IEEE 34th. IEEE, 2016, pp. 1–6.

[29] S. Hadjitheophanous, S. Neophytou, and M. K. Michael, “Exploiting shared-memory
to steer scalability of fault simulation usingmulticore systemst,” IEEE Transactions on
Computer-AidedDesign of Integrated Circuits and Systems (accepted for publication),
2018.

[30] K. J. Antreich and M. H. Schulz, “Accelerated fault simulation and fault grading in
combinational circuits,” IEEE transactions on computer-aided design of integrated
circuits and systems, vol. 6, no. 5, pp. 704–712, 1987.

[31] D. Harel, R. Sheng, and J. Udell, “Efficient single fault propagation in combinational
circuits,” Communications of the ACM, vol. 29, no. 4, pp. 300–311, 1986.

[32] F. Maamari and J. Rajski, “A method of fault simulation based on stem regions,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9,
no. 2, pp. 212–220, 1990.

[33] L. Wu and D. Walker, “A fast algorithm for critical path tracing in vlsi digital cir-
cuits,” in Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th IEEE
International Symposium on. IEEE, 2005, pp. 178–186.

[34] R. Ubar, S. Devadze, J. Raik, and A. Jutman, “Ultra fast parallel fault analysis on
structurally synthesized bdds,” in Test Symposium, 2007. ETS’07. 12th IEEE Euro-
pean. IEEE, 2007, pp. 131–136.

[35] R. Ubar, S. Devadze, J. Raik, J. Jutman, and Jutman, “Parallel x-fault simulation with
critical path tracing technique,” in Proceedings of the Conference on Design, Automa-
tion and Test in Europe. European Design and Automation Association, 2010, pp.
879–884.

[36] K. Scheibler, D. Erb, and B. Becker, “Improving test pattern generation in presence
of unknown values beyond restricted symbolic logic,” in Test Symposium (ETS), 2015
20th IEEE European. IEEE, 2015, pp. 1–6.

[37] S. Eggersglub, K. Schmitz, R. Krenz-Baath, and R. Drechsler, “Optimization-based
multiple target test generation for highly compacted test sets,” in Test Symposium
(ETS), 2014 19th IEEE European. IEEE, 2014, pp. 1–6.

[38] I. Pomeranz, “Generation of compact multi-cycle diagnostic test sets,” in Test Sympo-
sium (ETS), 2013 18th IEEE European. IEEE, 2013, pp. 1–1.

[39] S. Patil and P. Banerjee, “Fault partitioning issues in an integrated parallel test gener-
ation/fault simulation environment,” in Test Conference, 1989. Proceedings. Meeting
the Tests of Time., International. IEEE, 1989, pp. 718–726.

[40] J. M. Wolf, L. M. Kaufman, R. H. Klenke, J. H. Aylor, and R. Waxman, “An analysis
of fault partitioned parallel test generation,” IEEE transactions on computer-aided
design of integrated circuits and systems, vol. 15, no. 5, pp. 517–534, 1996.

123

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

[41] K.-Y. Liao, C.-Y. Chang, and J. C.-M. Li, “A parallel test pattern generation algorithm
to meet multiple quality objectives,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 30, no. 11, pp. 1767–1772, 2011.

[42] K.-W. Yeh, M.-F. Wu, and J.-L. Huang, “A low communication overhead and load
balanced parallel atpg with improved static fault partition method,” in International
Conference on Algorithms and Architectures for Parallel Processing. Springer, 2009,
pp. 362–371.

[43] X. Cai and P. Wohl, “A distributed-multicore hybrid atpg system,” in Test Conference
(ITC), 2013 IEEE International. IEEE, 2013, pp. 1–7.

[44] K.-Y. Liao, S.-C. Hsu, and J. C.-M. Li, “Gpu-based n-detect transition fault atpg,” in
Proceedings of the 50th Annual Design Automation Conference. ACM, 2013, p. 28.

[45] K.-Y. Liao, P.-J. Chen, A.-F. Lin, J. C.-M. Li, M. S. Hsiao, and L.-T. Wang, “Gpu-
based timing-aware test generation for small delay defects,” in Test Symposium (ETS),
2014 19th IEEE European. IEEE, 2014, pp. 1–2.

[46] S. Neophytou and M. K. Michael, “Two new methods for accurate test set relaxation
via test set replacement,” in Quality Electronic Design, 2008. ISQED 2008. 9th Inter-
national Symposium on. IEEE, 2008, pp. 827–831.

[47] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-effective generation
of minimal test sets for stuck-at faults in combinational logic circuits,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 12,
pp. 1496–1504, 1995.

[48] J.-S. Chang and C.-S. Lin, “Test set compaction for combinational circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14,
no. 11, pp. 1370–1378, 1995.

[49] M. H. Schulz, E. Trischler, and T. M. Sarfert, “Socrates: A highly efficient automatic
test pattern generation system,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 7, no. 1, pp. 126–137, 1988.

[50] Y. Matsunaga, “A test pattern compaction method using sat-based fault grouping,”
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Com-
puter Sciences, vol. 99, no. 12, pp. 2302–2309, 2016.

[51] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for combinational cir-
cuits,” in Proceedings of the 1998 IEEE/ACM international conference on Computer-
aided design. ACM, 1998, pp. 283–289.

[52] S. Remersaro, J. Rajski, S. M. Reddy, and I. Pomeranz, “A scalable method for the
generation of small test sets,” in Design, Automation & Test in Europe Conference &
Exhibition, 2009. DATE’09. IEEE, 2009, pp. 1136–1141.

[53] Z. Wang and D. Walker, “Dynamic compaction for high quality delay test,” in VLSI
Test Symposium, 2008. VTS 2008. 26th IEEE. IEEE, 2008, pp. 243–248.

[54] B. Krishnamurthy and S. B. Akers, “On the complexity of estimating the size of a test
set,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 750–753, 1984.

124

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

[55] B. Benware, C. Schuermyer, S. Ranganathan, R. Madge, P. Krishnamurthy, N. Tama-
rapalli, K.-H. Tsai, and J. Rajski, “Impact of multiple-detect test patterns on product
quality,” in null. Citeseer, 2003, p. 1031.

[56] E. J. McCluskey and C.-W. Tseng, “Stuck-fault tests vs. actual defects,” in Test Con-
ference, 2000. Proceedings. International. IEEE, 2000, pp. 336–342.

[57] I. Pomeranz and S. M. Reddy, “Forming n-detection test sets without test generation,”
ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 12,
no. 2, p. 18, 2007.

[58] S. Venkataraman, S. Sivaraj, E. Amyeen, S. Lee, A. Ojha, and R. Guo, “An experi-
mental study of n-detect scan atpg patterns on a processor,” in VLSI Test Symposium,
2004. Proceedings. 22nd IEEE. IEEE, 2004, pp. 23–28.

[59] C.-W. Tseng and E. J. McCluskey, “Multiple-output propagation transition fault test,”
in Test Conference, 2001. Proceedings. International. IEEE, 2001, pp. 358–366.

[60] X. Kavousianos and K. Chakrabarty, “Generation of compact test sets with high de-
fect coverage,” in Proceedings of the Conference on Design, Automation and Test in
Europe. European Design and Automation Association, 2009, pp. 1130–1135.

[61] J. Geuzebroek, E. J. Marinissen, A. Majhi, A. Glowatz, and F. Hapke, “Embedded
multi-detect atpg and its effect on the detection of unmodeled defects,” in Test Con-
ference, 2007. ITC 2007. IEEE International. IEEE, 2007, pp. 1–10.

[62] S. Biswas, P. Srikanth, R. Jha, S. Mukhopadhyay, A. Patra, and D. Sarkar, “On-line
testing of digital circuits for n-detect and bridging fault models,” in Test Symposium,
2005. Proceedings. 14th Asian. IEEE, 2005, pp. 88–93.

[63] B. Vaidya and M. B. Tahoori, “Delay test generation with all reachable output propa-
gation and multiple excitations,” inDefect and Fault Tolerance in VLSI Systems, 2005.
DFT 2005. 20th IEEE International Symposium on. IEEE, 2005, pp. 380–388.

[64] K. R. Kantipudi and V. D. Agrawal, “On the size and generation of minimal n-
detection tests,” in VLSI Design, 2006. Held jointly with 5th International Conference
on Embedded Systems and Design., 19th International Conference on. IEEE, 2006,
pp. 6–pp.

[65] F. Oboril andM. B. Tahoori, “Extratime: Modeling and analysis of wearout due to tran-
sistor aging at microarchitecture-level,” in Dependable Systems and Networks (DSN),
2012 42nd Annual IEEE/IFIP International Conference on. IEEE, 2012, pp. 1–12.

[66] L. Lai, V. Chandra, R. Aitken, and P. Gupta, “Bti-gater: An aging-resilient clock gat-
ing methodology,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 4, no. 2, pp. 180–189, 2014.

[67] D. R. Bild, R. P. Dick, and G. E. Bok, “Static nbti reduction using internal node
control,” ACM Transactions on Design Automation of Electronic Systems (TODAES),
vol. 17, no. 4, p. 45, 2012.

[68] U. R. Karpuzcu, B. Greskamp, and J. Torrellas, “The bubblewrap many-core: pop-
ping cores for sequential acceleration,” inMicroarchitecture, 2009. MICRO-42. 42nd
Annual IEEE/ACM International Symposium on. IEEE, 2009, pp. 447–458.

125

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

[69] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The nbti-aware processor,” in Mi-
croarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM International Sympo-
sium on. IEEE, 2007, pp. 85–96.

[70] E. Gunadi, A. A. Sinkar, N. S. Kim, andM. H. Lipasti, “Combating aging with the colt
duty cycle equalizer,” in Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM
International Symposium on. IEEE, 2010, pp. 103–114.

[71] S. Gupta and S. S. Sapatnekar, “Employing circadian rhythms to enhance power and
reliability,” ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 18, no. 3, p. 38, 2013.

[72] F. Oboril and M. B. Tahoori, “Aging-aware design of microprocessor instruction
pipelines,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 5, pp. 704–716, 2014.

[73] F. Oboril, F. Firouzi, S. Kiamehr, and M. Tahoori, “Reducing nbti-induced processor
wearout by exploiting the timing slack of instructions,” in Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis. ACM, 2012, pp. 443–452.

[74] F. Firouzi, S. Kiamehr, and M. B. Tahoori, “Nbti mitigation by optimized nop assign-
ment and insertion,” inDesign, Automation & Test in Europe Conference & Exhibition
(DATE), 2012. IEEE, 2012, pp. 218–223.

[75] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for lifetime reliability-
aware microprocessors,” in ACM SIGARCH Computer Architecture News, vol. 32,
no. 2. IEEE Computer Society, 2004, p. 276.

[76] J. Shin, V. Zyuban, Z. Hu, J. A. Rivers, and P. Bose, “A framework for architecture-
level lifetime reliability modeling,” in Dependable Systems and Networks, 2007.
DSN’07. 37th Annual IEEE/IFIP International Conference on. IEEE, 2007, pp. 534–
543.

[77] M. Jenihhin, G. Squillero, T. S. Copetti, V. Tihhomirov, S. Kostin, M. Gaudesi, F. Var-
gas, J. Raik, M. S. Reorda, L. B. Poehls et al., “Identification and rejuvenation of nbti-
critical logic paths in nanoscale circuits,” Journal of Electronic Testing, vol. 32, no. 3,
pp. 273–289, 2016.

[78] H. Kim, S. B. K. Boga, A. Vitkovskiy, S. Hadjitheophanous, P. V. Gratz, V. Sote-
riou, and M. K. Michael, “Use it or lose it: Proactive, deterministic longevity in future
chip multiprocessors,” ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), vol. 20, no. 4, p. 65, 2015.

[79] K. Bhardwaj, K. Chakraborty, and S. Roy, “An milp-based aging-aware routing al-
gorithm for nocs,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2012. IEEE, 2012, pp. 326–331.

[80] X. Fu, T. Li, and J. A. Fortes, “Architecting reliable multi-core network-on-chip for
small scale processing technology,” inDependable Systems andNetworks (DSN), 2010
IEEE/IFIP International Conference on. IEEE, 2010, pp. 111–120.

[81] D. I. August, “Parallelizing sequential code,” IEEE Micro, vol. 32, no. 4, pp. 6–7,
2012.

126

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

[82] A. Darte, Y. Robert, and F. Vivien, Scheduling and automatic Parallelization.
Springer Science & Business Media, 2012.

[83] C. Gil, J. Ortega, J. L. Bernier, and M. D. Gil, “Parallel test pattern generation using
circuit partitioning in a shared-memory multiprocessor,” in International Workshop on
Applied Parallel Computing. Springer, 1998, pp. 167–171.

[84] S. Neophytou, S. Hadjitheophanous, and M. K. Michael, “On the impact of fault list
partitioning in parallel implementations for dynamic test compaction considering mul-
ticore systems,” inDesign and Test Symposium (IDT), 2013 8th International. IEEE,
2013, pp. 1–6.

[85] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital, memory and
mixed-signal VLSI circuits. Springer Science & Business Media, 2004, vol. 17.

[86] S. N. Neophytou and M. K. Michael, “Test set generation with a large number of un-
specified bits using static and dynamic techniques,” IEEE Transactions on Computers,
vol. 59, no. 3, pp. 301–316, 2010.

[87] S. R. Nassif, “Modeling and analysis of manufacturing variations,” in Custom Inte-
grated Circuits, 2001, IEEE Conference on. IEEE, 2001, pp. 223–228.

[88] H.-J. Wunderlich,Models in Hardware Testing: Lecture Notes of the Forum in Honor
of Christian Landrault. Springer Science & Business Media, 2009, vol. 43.

[89] Z. Navabi, “Digital system test and testable design,” E-ISBN, pp. 97 814 419–
97 875 485, 2011.

[90] D. B. Armstrong, “A deductive method for simulating faults in logic circuits,” IEEE
Transactions on Computers, vol. 100, no. 5, pp. 464–471, 1972.

[91] E. G. Ulrich and T. Baker, “The concurrent simulation of nearly identical digital net-
works,” in Papers on Twenty-five years of electronic design automation. ACM, 1988,
pp. 318–323.

[92] W.-T. Cheng andM.-L. Yu, “Differential fault simulation-a fast method using minimal
memory,” in Design Automation, 1989. 26th Conference on. IEEE, 1989, pp. 424–
428.

[93] C.-Y. Lee, “Representation of switching circuits by binary-decision programs,” Bell
Labs Technical Journal, vol. 38, no. 4, pp. 985–999, 1959.

[94] O. H. Ibarra and S. K. Sahni, “Polynomially complete fault detection problems,” IEEE
Transactions on Computers, vol. 100, no. 3, pp. 242–249, 1975.

[95] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,” IBM journal of
Research and Development, vol. 10, no. 4, pp. 278–291, 1966.

[96] P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic
circuits,” IEEE transactions on Computers, no. 3, pp. 215–222, 1981.

[97] H. Fujiwara, “Fan: A fanout-oriented test pattern generation algorithm,” in IEEE In-
ternational Symposium on Circuits and Systems, 1985, pp. 671–674.

[98] I. Dear, C. Dislis, A. P. Ambler, and J. Dick, “Economic effects in design and test,”
IEEE Design & Test of Computers, vol. 8, no. 4, pp. 64–77, 1991.

127

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

[99] S. N. Neophytou and M. K. Michael, “Test pattern generation of relaxed n-detect test
sets,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,
no. 3, pp. 410–423, 2012.

[100] W. J. Dally and B. Towles, “Route packets, not wires: On-chip interconnection net-
works,” in Design Automation Conference, 2001. Proceedings. IEEE, 2001, pp.
684–689.

[101] S. Nassif, K. Bernstein, D. J. Frank, A. Gattiker, W. Haensch, B. L. Ji, E. Nowak,
D. Pearson, and N. J. Rohrer, “High performance cmos variability in the 65nm regime
and beyond,” in Electron Devices Meeting, 2007. IEDM 2007. IEEE International.
IEEE, 2007, pp. 569–571.

[102] K. J. Kuhn, “Reducing variation in advanced logic technologies: Approaches to pro-
cess and design for manufacturability of nanoscale cmos,” in Electron Devices Meet-
ing, 2007. IEDM 2007. IEEE International. IEEE, 2007, pp. 471–474.

[103] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra, “Circuit failure prediction and its
application to transistor aging,” in VLSI Test Symposium, 2007. 25th IEEE. IEEE,
2007, pp. 277–286.

[104] J. Blome, S. Feng, S. Gupta, and S. Mahlke, “Self-calibrating online wearout detec-
tion,” in Proceedings of the 40th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. IEEE Computer Society, 2007, pp. 109–122.

[105] J. C. Smolens, B. T. Gold, J. C. Hoe, B. Falsafi, and K. Mai, “Detecting emerging
wearout faults,” in Proc. of Workshop on SELSE, 2007.

[106] M. D. Powell, A. Biswas, S. Gupta, and S. S.Mukherjee, “Architectural core salvaging
in a multi-core processor for hard-error tolerance,” in ACM SIGARCH Computer Ar-
chitecture News, vol. 37, no. 3. ACM, 2009, pp. 93–104.

[107] X. Li, J. Qin, and J. B. Bernstein, “Compact modeling of mosfet wearout mechanisms
for circuit-reliability simulation,” IEEE Transactions on Device and Materials Relia-
bility, vol. 8, no. 1, pp. 98–121, 2008.

[108] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, “Daemonguard: O/s-assisted
selective software-based self-testing for multi-core systems,” in Defect and Fault Tol-
erance in VLSI and Nanotechnology Systems (DFT), 2013 IEEE International Sympo-
sium on. IEEE, 2013, pp. 45–51.

[109] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm for a fault-
tolerant 2d-mesh network-on-chip,” in Proceedings of the 45th annual Design Au-
tomation Conference. ACM, 2008, pp. 441–446.

[110] T. Schonwald, J. Zimmermann, O. Bringmann, and W. Rosenstiel, “Fully adaptive
fault-tolerant routing algorithm for network-on-chip architectures,” in Digital System
Design Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Confer-
ence on. IEEE, 2007, pp. 527–534.

[111] M.Abramovici, M.A. Breuer, andA.D. Friedman,Digital systems testing and testable
design. Computer science press New York, 1990, vol. 2.

[112] M. Bushnell and V. D. Agrawal, “Essentials of electronic testing for digital, memory
and mixed-signal vlsi circuits,” vol. 17. Springer, 2000.

128

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

[113] D. U. Becker, “Efficient microarchitecture for network-on-chip routers,” Ph.D. disser-
tation, Stanford University, 2012.

[114] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, 2011.

[115] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: characteriza-
tion and architectural implications,” in the 17th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2008, pp. 72–81.

[116] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predictive modeling
of the nbti effect for reliable design,” in Custom Integrated Circuits Conference, 2006.
CICC’06. IEEE. IEEE, 2006, pp. 189–192.

[117] A. Krstic and K.-T. T. Cheng, Delay fault testing for VLSI circuits. Springer Science
& Business Media, 2012, vol. 14.

[118] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi, B. H. Dwiel,
S. Navada, H. H. Najaf-abadi, and E. Rotenberg, “Fabscalar: composing synthesiz-
able rtl designs of arbitrary cores within a canonical superscalar template,” in ACM
SIGARCH Computer Architecture News, vol. 39, no. 3. ACM, 2011, pp. 11–22.

[119] P. M. Reddy, S. Hadjitheophanous, V. Soteriou, P. V. Gratz, and M. K. Michael, “Min-
imal exercise vector generation for reliability improvement,” in On-Line Testing and
Robust System Design (IOLTS), 2017 IEEE 23rd International Symposium on. IEEE,
2017, pp. 113–119.

129

Stav
ros

 H
ad

jith
eo

ph
an

ou
s

