
UNIVERSITY OF CYPRUS

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Average Consensus Enhancements for

Distributed Stopping and Privacy Enforcement

NIKOLAS E. MANITARA

A Dissertation Submitted to the University of Cyprus in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy

May 2019NIKOLA
S E. M

ANITARA

http://www.ucy.ac.cy/en/
https://scholar.google.com/citations?user=DGh25F0AAAAJ&hl=en&authuser=1

VALIDATION PAGE

Doctoral Candidate: Nikolas E. Manitara

Doctoral Thesis Title: Average Consensus Enhancements for Distributed

Stopping and Privacy Enforcement

The present Doctoral Dissertation was submitted in partial fulfillment of the require-

ments for the Degree of Doctor of Philosophy at the Department of Electrical and

Computer Engineering and was approved on the 18th of April, 2019 by the members

of the Examination Committee.

Examination Committee:

Research Supervisor:

(Dr. Christoforos N. Hadjicostis, Professor)

Committee Member:

(Dr. Charalambos D. Charalambous, Professor)

Committee Member:

(Dr. Ioannis Krikidis, Associate Professor)

Committee Member:

(Dr. Themistoklis Charalambous, Assistant Professor)

Committee Member:

(Dr. Savvas G. Loizou, Assistant Professor)

NIKOLA
S E. M

ANITARA

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy of the University of Cyprus. It is a product of

original work of my own, unless otherwise mentioned through references, notes, or any

other statements.

..[Full Name of Doctoral Candidate]

..[Signature]

NIKOLA
S E. M

ANITARA

List of Publications

Refereed Journals

J1 Manitara, N. E., and Hadjicostis, C. N. (2016). Distributed stopping for average

consensus in undirected graphs via event-triggered strategies. Automatica, 70,

121-127.

J2 Manitara, N. E., and Hadjicostis, C. N. (2018). Distributed stopping for average

consensus in digraphs. IEEE Transactions on Control of Network Systems, 5,

957-967.

Refereed Conferences

C1 Manitara, N. E., and Hadjicostis, C. N. (2013, July). Privacy-preserving asymp-

totic average consensus. In European Control Conference (ECC 2013), pp. 760-

765.

C2 Manitara, N. E., and Hadjicostis, C. N. (2013, October). Distributed stopping in

average consensus via event-triggered strategies. In 51st Annual Allerton Confer-

ence on Communication, Control, and Computing (Allerton 2013), pp. 1336-1343.

C3 Manitara, N. E., and Hadjicostis, C. N. (2014, May). Distributed stopping for

average consensus in directed graphs via a randomized event-triggered strategy. In

6th International Symposium on Communications, Control and Signal Processing

(ISCCSP 2014), pp. 483-486.

C4 Manitara, N. E., and Hadjicostis, C. N. (2014, July). Distributed stopping for

average consensus in directed graphs via randomized event-triggered strategies.

In Proceedings of 7th Cyprus Workshop on Signal Processing and Informatics

(abstract only).

C5 Manitara, N. E., and Hadjicostis, C. N. (2014, September). Distributed stopping

for average consensus using double linear iterative strategies. In 52nd Annual

NIKOLA
S E. M

ANITARA

iv

Allerton Conference on Communication, Control, and Computing (Allerton 2014),

pp. 739-746.

NIKOLA
S E. M

ANITARA

ABSTRACT

In this thesis, we study important extensions to the problem of distributed average

consensus in multi-agent systems. Distributed average consensus is a problem where

each node (agent) has some initial value and the nodes need to compute, in a distributed

manner and subject to communication restrictions among the nodes, the average of their

values.

The thesis develops and analyzes distributed algorithms that enable the nodes (while

calculating the average of these initial values) to also determine when to stop (because

approximate average consensus has been reached) and ensure that their privacy is pre-

served (in the sense that the initial value of a node is not fully exposed to other nodes).

We focus on providing these enhancements to linear iterative strategies, in which each

node updates its value as a weighted linear combination of its own previous value and

the values of its neighbors.

We first develop and analyze a distributed privacy-preserving average consensus algo-

rithm that enables all of the components of a distributed system, each with some initial

value, to asymptotically reach average consensus on their initial values, without having

to reveal the specific value they contribute to the average calculation. Specifically, we

consider a set of components (nodes) that interact via directional communication links

(edges) that form a generally directed communication topology (digraph). The proposed

protocol can be followed by each node that does not want to reveal its initial value and,

under certain conditions on the communication topology, all nodes can calculate the

average of their initial values while maintaining privacy (i.e., without exposing the ini-

tial values they contribute to the average). We assume that malicious-curious nodes

try to identify the initial values of other nodes but do not interfere in the computation

in any other way. Accepting a worst case scenario that malicious-curious nodes know

the predefined linear strategy and topology of the network (but not the actual values

used by the nodes that want to preserve their privacy), we analyze their ability to infer

the initial values of other nodes (which may or may not follow the privacy-preserving

protocol). Apart from obtaining topological conditions that guarantee that the initial

values of certain nodes are not exposed, we also study the ability of the malicious-curious

NIKOLA
S E. M

ANITARA

vi

nodes to estimate the initial values of other nodes and examine conditions that affect

privacy preservation.

We also consider how iterative strategies for asymptotic average consensus in undirected

and directed graphs (digraphs) can be adapted so that the nodes can determine, in a

distributed fashion, a stopping criterion that allows them to terminate the execution

of the iteration when approximate average consensus has been reached. The nodes are

said to have reached approximate average consensus when each of them has a value that

is close (in a way that we precisely define) to the desirable average. The absence of

bidirectional communication links makes this task particularly challenging in a digraph

(for a pair of nodes, only one of them may be aware of a discrepancy and may have

no direct way of informing the other). The proposed algorithms can be used to cap

the number of transmissions that are required in order to reach (approximate) average

consensus.

NIKOLA
S E. M

ANITARA

Acknowledgements

Completion of this doctoral dissertation was possible with the support of several people.

I would like to express my sincere gratitude to all of them. First of all, I am indebted,

to my advisor Prof. Christoforos N. Hadjicostis for his patience, motivation, immense

knowledge, and the consistent encouragement I received throughout the research work.

This feat was possible only because of the unconditional support provided by my advisor.

Prof. Christoforos N. Hadjicostis, a person with an amicable and positive disposition,

always made himself available to clarify my doubts despite his busy schedule and I

consider it, a great opportunity to do my doctoral programme under his guidance and

to learn from his research expertise. Thank you Sir, for all your help and support.

Besides my advisor, I would like to thank my thesis committee: Prof. Charalambos D.

Charalambous, Dr. Ioannis Krikidis, Dr. Themistoklis Charalambous and Dr. Savvas

G. Loizou, for their insightful comments and encouragement.

I am also grateful to the administrative staff at the department of Electrical and Com-

puter Engineering, Skevi Ioannou and Vasiliki Mousikou-Dimitriou, for their precious

help and encouragement.

My colleagues, Dr. Apostolos Rikos, Dr. Christoforos Keroglou, Dr. Kourtellaris Chris-

tos, Dr. Tziortzis Ioannis, have all extended their support in a very special way, and I

have gained a lot from them, through our personal and scholarly interactions, and their

suggestions at various points of my research programme. I also acknowledge my old pals

back at the University of Manchester for their well wishes.

Last but not least, I would like to thank my beloved family. Words cannot express how

grateful I am for all the sacrifices you have made on my behalf, and for supporting me

spiritually throughout my Ph.D. studies and, in general, in my life.

NIKOLA
S E. M

ANITARA

This thesis

is dedicated to the memory of my beloved mother

Kyriakis Elia (1955 - 2010)

for her advice, her patience

and her faith

NIKOLA
S E. M

ANITARA

Contents

Validation Page i

Declaration of Doctoral Candidate ii

List of Publications iii

Abstract in English v

Acknowledgements vii

List of Figures xi

List of Tables xiii

1 INTRODUCTION 1

1.1 Notation . 3

1.2 Graph-Theoretic Terminology . 3

1.3 Distributed System Model . 5

1.4 Average Consensus and Linear Iterative Strategies 5

1.4.1 Linear Iterative Strategy for Average Consensus 6

1.4.2 Average Consensus via Ratio Consensus 8

1.5 Min/Max Consensus . 11

1.6 Background on Linear System Theory and Observability Analysis 12

1.7 Contributions of Thesis . 13

1.8 Thesis Organization . 14

2 PRIVACY PRESERVING ASYMPTOTIC AVERAGE CONSENSUS 15

2.1 Previous Work on Privacy-Preserving Average Consensus 16

2.2 Problem Statement . 17

2.3 Proposed Strategy and Main Results . 18

2.3.1 Analysis of Inference Capability of Malicious-Curious Nodes 20

2.3.2 Topological Condition for Privacy Preservation 22

ix

NIKOLA
S E. M

ANITARA

Contents x

2.3.3 Analysis of Ability of Malicious-Curious Node to Estimate Initial
Values . 25

2.4 Example . 27

2.5 Computational Studies . 31

2.5.1 Computational Study A . 31

2.5.2 Computational Study B . 34

3 DISTRIBUTED STOPPING FOR AVERAGE CONSENSUS IN UNDI-
RECTED GRAPHS 38

3.1 Previous Work on Distributed Stopping Average Consensus in Undirected
Graphs . 39

3.2 Problem Statement and Related Concepts 40

3.3 Proposed Strategies and Main Results . 42

3.4 Examples and Simulation Studies . 48

3.4.1 Small Graph . 48

3.4.2 Random Graphs . 51

3.4.3 Graph Connectivity . 54

4 DISTRIBUTED STOPPING FOR AVERAGE CONSENSUS IN DI-
GRAPHS 56

4.1 Previous Work on Distributed Stopping for Average Consensus in Digraphs 57

4.2 Problem Statement and Related Concepts 58

4.3 Proposed Strategy and Main Results . 60

4.3.1 Randomized Event-Triggered Strategy 63

4.3.2 Deterministic Event-Triggered Strategy 68

4.4 Examples and Simulation Studies . 72

4.5 Discussion . 79

5 SUMMARY AND FUTURE DIRECTIONS 80

5.1 Summary . 80

5.2 Future Directions . 81

Bibliography 83

NIKOLA
S E. M

ANITARA

List of Figures

1.1 Example of a digraph. 4

2.1 Example of the key connectivity that guarantees privacy preservation for
average consensus: the black node is the malicious set of nodes V1, the
grey nodes are the nodes following the protocol V2, and the white nodes
are the nodes following the predefined strategy for reaching average con-
sensus (V3 and V4). 23

2.2 The black node is the malicious node, the grey nodes are the nodes fol-
lowing the proposed protocol, and the white nodes are the nodes that do
not follow the protocol. 28

2.3 The simplest form of the key connectivity requirement for privacy pre-
serving average consensus: the red node is the malicious node, the grey
node is the node following the protocol, and the black node is the node
following the predefined strategy for reaching average consensus. 30

2.4 Values of the Covariance values for each node for the network in Figure 2.2
from time-step Lmax + 1 up to time-step Lmax + 14. 34

2.5 The black node is the malicious-curious node and the remaining nodes
in the network are just following the linear iteration for reaching average
consensus. 35

3.1 Digraph with initial error bound for each node and total network error
bound. 41

3.2 Example of an undirected graph. 48

3.3 Evolution of node values for the undirected graph in Fig. 3.2, with ε =
0.0001. 49

3.4 Evolution of node values for the undirected graph in Fig. 3.2, with param-
eter ε = 0.0001 for the Y&S Algorithm in [1] and parameter ε = 0.0001/D
for Algorithm 1. 50

3.5 Evolution of node values for the undirected graph in Fig. 3.2 using equal
weights for Algorithm 1. 51

3.6 Average number of transmissions for Algorithm 1 and the Y&S Algorithm,
for 100 random graphs with different instances of initial conditions, for
each different log(ε) point. 53

3.7 Average, maximum and minimum number of transmissions for Algo-
rithm 1, Algorithm 2 and Y&S Algorithm. 54

4.1 Digraph with four nodes and diameter D = 3. 62

4.2 Event-triggerings (transmissions) of node 2 and node 4 when using Algo-
rithm 4, utilizing only Event-Triggered Rule 1. 63

xi

NIKOLA
S E. M

ANITARA

List of Figures xii

4.3 Values of state variables yi[k] and zi[k] (i = 1(sky blue), 2(red), 3(green), 4(blue))
when using Algorithm 4, utilizing only Event-Triggered Rule 1. 64

4.4 Evolution of node values for Y & S Algorithm, Algorithm 4 and Algo-
rithm 5, with ε = 0.0001. 64

4.5 Digraph discussed in Remark 2. 69

4.6 Markov chain describing the probabilities with which different subsets
of transmitting nodes may cause subsequent transmissions (dotted lines
indicate transmissions to the absorbing state �). 69

4.7 Time steps showing the triggering of nodes due to Event-Triggered Rule 2b. 71

4.8 Ring digraph with eight nodes and diameter D = 7, using initial values
x[0] = [0.3, 0.3, 0.3, 1, 1, 1, 1, 0.3]T . 74

4.9 Evolution of node values for the ring digraph of Fig. 4.8, with ε = 0.0001
for the Y&S Algorithm, and ε = 0.0001/D for Algorithms 4 and Algo-
rithm 5. 75

4.10 Ring digraph with fourteen nodes and diameter D = 13, using initial val-
ues x[0] = [0.0001,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.0001,0.0001,0.0001,0.0001,
0.0001, 0.0001]T . 76

4.11 Evolution of node values for Algorithm 4 and Algorithm 5, with ε = 0.0001. 78

NIKOLA
S E. M

ANITARA

List of Tables

3.1 Required number of time steps and transmissions for Algorithm 1 and the
Y&S Algorithm in [1] for the undirected graph in Fig. 3.2, with ε = 0.0001. 49

3.2 Required number of time steps and transmissions for the undirected graph
in Fig. 3.2, with parameter ε = 0.0001 for the Y&S Algorithm in [1] and
parameter ε = 0.0001/D for Algorithm 1. 50

3.3 Simulation results for the undirected graph in Fig. 3.2, with parameter
ε = 0.0001 for Y&S Algorithm and ε′ = 0.0001/D for Algorithm 1 and
Algorithm 2. 52

3.4 Minimum, maximum, and average numbers of required time steps and
transmissions in simulations for 100 random undirected graphs (with 100
nodes), with parameter ε = 0.0001. 52

3.5 Minimum, maximum, and average numbers of required time steps and
transmissions in simulations for 100 random undirected graphs (with 100
nodes), with parameter ε = 0.0001 for the Y&S Algorithm and parameter
ε = 0.0001/D for Algorithm 1. 53

4.1 Required number of time steps and transmissions for the ring digraph of
eight nodes in Fig. 4.8, with ε = 0.0001 for the Y&S Algorithm in [1],
and ε = 0.0001/D for Algorithms 4 and 5. 74

4.2 Required number of time steps and transmitted values for Algorithm 4,
for different values of probability p. 75

4.3 Required number of time steps for Algorithm 5, for different combinations
of values for c and b. 77

4.4 Required number of time steps and transmissions for Algorithms 4 and
Algorithm 5, with ε = 0.0001/D. 78

4.5 Comparison of the three main finite-time average consensus algorithms:
(1) refers to [2], (2) refers to Algorithm 3, and (3) refers to Algorithm 4
and Algorithm 5. 79

xiii

NIKOLA
S E. M

ANITARA

Chapter 1

INTRODUCTION

The successful operation of distributed systems lies at the core of the latest technological

achievements in the era of the so called smart and cyberphysical systems. It has long

been recognized that distributed (or decentralized) systems have specific characteristics

that are extremely desirable, such as concurrency, resource sharing, openness, fault tol-

erance, transparency, and more importantly simplicity of implementation. For the above

mentioned reasons, distributed systems are increasingly utilized in many applications.

High traffic services, large networks, and the Internet itself are examples of distributed

systems in which concurrent tasks are broken down and solved, by a multitude of com-

ponents, using simple distributed algorithms.

A distributed system consists of a collection of autonomous components (in our case

nodes), whose actions and reactions involve the passing of messages that they can re-

ceive/transmit at any time instant. The nodes in the network interact with their neigh-

boring nodes in order to coordinate their activities and to share the resources of the

network. For a network to be functionally efficient and reliable for the purpose that

is designed, specific protocols and algorithms must be followed by all the nodes in the

network. Probably the simplest and most well known example of a distributed system is

the collection of Web servers or more precisely, servers implementing the HTTP protocol

that jointly provide the distributed database of hypertext and multimedia documents

that we know as the World-Wide Web. Other examples include the computers of a

local network that provide a uniform view of a distributed file system and the collection

of computers on the Internet that implement the Domain Name Service (DNS). The

importance of a distributed system lies in the fact that a large number of applications

are employed many of which are life and mission critical, ranging from coordinating

teams of autonomous vehicles for search and rescue operations, to transmitting patient

diagnostic data in hospitals using multi-hop wireless networks.

To facilitate the above mentioned characteristics and applications, distributed algorithms

are designed to run on hardware consisting of many interconnected processors. Pieces of

1

NIKOLA
S E. M

ANITARA

Introduction 2

a distributed algorithm run concurrently and independently, each with limited amount

of information, jointly leading to the successful operation of the overall application.

In this thesis we study the following challenges pertaining to the problem of computing

the average value of the network in a distributed manner (i.e., assuming each node has

some initial value and the objective is to calculate the average of these values).

• The first challenge has to do with privacy enforcement, which has been widely

studied and applied in many fields. Data protection still posses serious challenges

in distributed systems due to the way information is transmitted and shared in

modern networks. The need to release aggregated data (so that the nodes can

compute the average of their values) without leaking individual’s information about

each participant’s value has led to the study of privacy preservation techniques,

which has been gaining attention in recent years. The major challenge is to create

an algorithm that will enable the nodes to preserve the privacy of the initial value

they contribute in the consensus calculation of the network. Beyond that, we also

describe and analyze the ability of the malicious-curious nodes to estimate the

initial values of other nodes.

• The second challenge studied in this thesis is related to the need to reduce the

transmissions hence power consumption, and at the same time reduce the com-

plexity needed for reaching agreement on the average value of the network. In

particular, when nodes possess certain computational/memory resources, several

alternative distributed strategies have been proposed for (exact) average consen-

sus in finite time (see [3–5] and references therein). In this thesis we consider

how the nodes can reach approximate average consensus in finite time while em-

ploying appropriately modified versions of simple linear iterative strategies (thus,

maintaining advantages in terms of simplicity and reliance to minimal local infor-

mation). The topic investigates the subject of distributed stopping, i.e., how the

nodes can determine when to terminate the execution of the algorithm based on

locally available information. This question has received limited attention thus

far in the literature, with the notable exception of the works in [1, 6], which we

discuss in detail later in Chapter 3 and Chapter 4.

In order to present the results of our work, we will first need to introduce some ter-

minology and background theory, discuss the distributed system model, and provide a

mathematical description of the linear iterative scheme that will be used in subsequent

chapters.NIKOLA
S E. M

ANITARA

Introduction 3

1.1 Notation

In our work, we use ei,l to denote the column vector of length l with a “1” in its i−th

position and zeros elsewhere. The symbol 1l represents the column vector of length l that

has all entries equal to “1”, and the symbol IN denotes the N×N identity matrix. When

the size of the vector or matrix is apparent, we will sometimes drop the corresponding

subscript and denote it simply as ei,1 or I. We will say that an eigenvalue of a matrix

P is simple to indicate that it is algebraically simple. The notation PT indicates that

transpose of matrix P. We will denote the rank of matrix P by rank (P), and we will

denote the range of matrix P by range (P). The notation diag (·) indicates a square

matrix with quantities inside the brackets on the diagonal, and zeros elsewhere. The

expected value of a random parameter P is denoted as E[P], and the probability of an

event A is denoted by Pr[A]. The cardinality of a set S will be denoted by |S|. For two

sets S1 and S2, the notation S1 \ S2 denotes all elements in S1 that are not in the set

S2. We also denote an arbitrary field by F, and use the symbol Fq to denote the finite

field of order q.

1.2 Graph-Theoretic Terminology

A graph is an ordered pair G={X, E} where X={1, 2, ..., n} (or X={x1, x2, ..., xn}) is the

set of vertices or components, and E ⊆ X ×X is the set of directed edges (an example

of a digraph can be seen in Figure 1.1). In particular, edge (i, j) ∈ E if node j can send

information to node i. The nodes that can transmit information to node i are said to

be the in-neighbors of node i and are represented by the set N−i = {j | (i, j) ∈ E};
the number of in-neighbors of node i is called the in-degree of node i and is denoted

by D−i =|N−i |. Similarly, the nodes that receive information from node i are called its

out-neighbors and are captured by the set N+
i = {l | (l, i) ∈ E}; the number of out-

neighbors of node i is called the out-degree of node i and is denoted by D+
i =|N+

i |. By

convention we do not allow self loops, i.e., (i, i) /∈ E for all i ∈ X (though obviously node

i can “receive” its own value). A graph G={X,E} is said to be undirected if {(i, j) ∈ E
⇔ (j, i) ∈ E }. In such case, N−i = N+

i and D−i = D+
i , and we refer to the neighbors

Ni = N−i = N+
i and degree Di = D−i = D+

i of node i.

A path of length t from node j to node i, j 6= i, is a sequence of nodes j = i0, i1, ...,

it−1, it = i, such that (il, il−1) ∈ E for all l = 1, 2, ..., t. The minimum distance from

node j to node i, j 6= i, is the length of the shortest path from node j to node i; it is

denoted by dmin(i, j) and it is taken to be infinite if there is no path from node j to

node i. The graph is strongly connected if there exists a path (of finite length) from

each node j to each other node i. By convention, dmin(i, i) = 0 for all i ∈ X. The

diameter D of graph G={X, E} is the longest shortest path between any two nodes, i.e.,

NIKOLA
S E. M

ANITARA

Introduction 4

1

2

3

4

6

5

X1

X2

X3

X4

X5

X6

Figure 1.1: Example of a digraph.

D = maxi,j∈X,i6=j dmin(i, j). A graph is said to be strongly connected if there is a path

from vertex i to j for every i, j ∈ X. We will call a graph disconnected if there exists at

least one pair of vertices i, j ∈ X such that there is no path from i to j.

A vertex cut in a graph is a subset S ⊂ X such that removing the vertices in S (and the

associated edges) from the graph causes the graph to be disconnected. More specifically,

an ij-cut in a graph is a subset Sij ⊂ X such that the removal of the vertices in Sij (and

the associated edges) from the graph causes that graph to have no paths from vertex

j to vertex i. We will denote the smallest size of an ij-cut by kij . If (j, i) ∈ E (i.e.,

node j is a neighbor of node i), we will take kij to be infinite (since removing other

vertices will not remove the direct path between j and i). Note that if minj kij is finite,

then the in-degree of node i must be at least minj kij (since otherwise, removing all

neighbors of node i would disconnect the graph, thereby producing an ij-cut of size less

than minj kij). The connectivity of the graph is defined as mini,jkij . A graph is said

to be k−connected if every vertex cut has cardinality at least k.

Lemma 1.1 (Fan Lemma) Let i be a vertex in a graph G, and let c be a nonnegative

integer such that kij≥ c for all j ∈ X. Let R ⊂ X be any subset of the vertices with

|R| = c. Then there exists a set of c internally vertex disjoint paths from R to i, where

the only common vertex of each of these paths is i.

Since all internally vertex disjoint paths have to pass through different neighbors of i,

the Fan Lemma implies that there will be a c−linking from R to Ni ∪ {i}. Note that

some of the paths in this linking might have zero length (i.e., if i or some of its neighbors

are in R).
NIKOLA

S E. M
ANITARA

Introduction 5

1.3 Distributed System Model

In distributed systems, we can model the network topology as a directed graph (digraph)

G={X, E} where X={1, 2, ..., n} is the set of components in the system, and E ⊆ X×X
is the set of directed edges (an example of a digraph can be seen in Figure 1.1).

We focus on components that interact via directional links that form a directed (or

asymmetric) graph (digraph) that is strongly connected. Our model deals with net-

works where information is transmitted via a broadcast model, i.e., each node sends to

all of its out-neighbors the same value, as would be the case in wireless networks. (Note

that each node receives generally different values from its in-neighbors.) We assume

that, communication links are perfectly reliable, i.e., message exchanges between nodes

do not exhibit delays or packet drops, and are received uncorrupted. We also assume

that messages are long enough to be able to represent the real value(s) that are being

transmitted/received with sufficient accuracy (we ignore quantization effects that arise

due to the fact that messages are digitized). Moreover, the nodes are assumed to have

sufficient memory and computational capability in order to store and perform simple

mathematical computations (e.g., additions, multiplications, max/min operations, com-

parisons of real numbers, etc.) during the iteration. We also assume that the nodes are

synchronized at the granularity of an iteration. An additional assumption that we made

for some of the material we develop for distributed averaging in directed graphs is that

each node i is aware of its out-degree D+
i .

1.4 Average Consensus and Linear Iterative Strategies

In distributed systems and networks, it is often necessary for all or some of the nodes

to calculate a function of certain parameters that we refer to as initial values. When

all nodes calculate the average of these initial values, they are said to reach average

consensus. Average consensus (more generally consensus) has received a lot of attention

from the control community due to its usage in various emerging applications, includ-

ing multi-agent systems [7], and wireless smart meters [8]. Over the last few decades,

a variety of algorithms for calculating different functions of these initial values have

been proposed by the control [9–11], communication [12], and computer science [13, 14]

communities.

One popular approach to consensus (to some value, not necessarily the average) is based

on a linear iterative strategy, where each node in the network repeatedly updates its

value to be a weighted sum of its own previous value and the previous values of its

neighbors. The weights of the linear iteration can be chosen so that all the nodes in the

network asymptotically reach agreement to the same value. In particular, earlier work

has shown that, if the network topology satisfies certain conditions, the weights for the

NIKOLA
S E. M

ANITARA

Introduction 6

linear iteration can be chosen such that all nodes in the network converge asymptotically

to the same value (which, under some additional requirements on the weights, can be

the average of their initial values [15, 16]). Another popular approach to the calculation

of the average value of the network is based on ratio-consensus [8, 17, 18] (see also [19]

for an enhanced version of this approach that is robust to packet drops and unknown

network parameters). Ratio consensus (or push sum) simultaneously runs two linear

iterations (of the form described above), and allows each node to asymptotically obtain

the average as the ratio of the two state variables it maintains (corresponding to the two

concurrent iterations).

1.4.1 Linear Iterative Strategy for Average Consensus

In average consensus problems the objective is the calculation of the average of the

initial values of the nodes in the network. Assume that each node i in the network has

some initial value xi[0] = Vi and, at each time-step k, each node updates its value as

a weighted sum of its own value and the values of its in-neighbors (e.g., following the

method in [16]). Specifically, at each time-step k, each node updates its value as

xi[k + 1] = piixi[k] +
∑
j∈N−i

pijxj [k] , (1.1)

where pij form a set of (fixed) weights. The values for all the nodes at time-step k

can be aggregated into the value vector x[k] = [x1[k], x2[k], ..., xn[k]]T (where T denotes

matrix/vector transposition) and the update strategy for the entire network can be

written compactly as

x[k + 1] =


p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn


︸ ︷︷ ︸

P

x[k], (1.2)

for k ∈ N, where pij = 0 if j /∈ N−i ∪ {i}.

Definition 1.1. (Asymptotic Consensus) The system is said to reach asymptotic con-

sensus if limk→∞ xi[k] = f(x1[0], x2[0], ..., xn[0]) for each i, where f : Rn → R.

When f(x1[0], x2[0], ..., xn[0]) = cTx[0] for some column vector c, the following result

from [15] characterizes the conditions under which iteration (1.2) achieves asymptotic

consensus.

NIKOLA
S E. M

ANITARA

Introduction 7

Theorem 1.2. [15] Iteration (1.2) reaches asymptotic consensus on the linear functional

cTx[0] (under the technical condition that c is normalized so that cT1 = 1 where 1 =

[1, 1, ..., 1]T is the all ones column vector) if and only if the weight matrix P satisfies the

conditions below:

1. P has a simple eigenvalue at 1, with left eigenvector cT and right eigenvector 1;

2. All other eigenvalues of P have magnitude strictly less than 1.

In particular, if c = 1
n1, then average consensus is reached. Also note that if the pij are

restricted to be nonnegative, then the above conditions for asymptotic average consensus

are equivalent to P being a primitive doubly stochastic matrix. In an undirected graph,

the nodes can easily obtain, in a distributed manner, weights pij so that matrix P = [pij]

is primitive doubly stochastic, as long as the given graph is connected.

For example, assuming the nodes know the total number of nodes n or an upper bound

n′ ≥ n, each node i can choose fixed (nonnegative) weights on its links so that
∑

l pli =∑
j pij = 1, ∀i, by setting

pij =


1
n′ , if (i, j) ∈ E ,

0 , if (i, j) /∈ E , j 6= i,

1− Di
n′ , if j = i,

(1.3)

where Di = D+
i = D−i . It is easy to check that, as long as the undirected graph is

connected, this choice results in a primitive doubly stochastic (and symmetric) weight

matrix P .

Another simple choice that results in a primitive doubly stochastic (and symmetric)

weight matrix P in connected undirected graphs are the Metropolis weights (see, for

example, [20]) where

pij =


1

1+max(Di,Dj) , if (i, j) ∈ E ,

0 , if (i, j) /∈ E , i 6= j,

1−
∑

j,j 6=i pij , if j = i .

In both of the above cases, the resulting matrix P is doubly stochastic, primitive and

symmetric (as long as the underlying graph G is connected). The rate of convergence to

the average consensus is related to λ2(P), the eigenvalue of the doubly stochastic matrix

P that has the second largest magnitude. Larger diagonal entries typically lead to an

increase in the magnitude of λ2, resulting to a slower convergence to the average value

of the network. For example, a larger value of n′ when choosing equal weights leads to

a slower convergence rate, this is the main reason the Metropolis weights generally lead

to faster convergence compared to the choice of equal weights.

NIKOLA
S E. M

ANITARA

Introduction 8

Time varying versions of (1.2) of the form x[k + 1] = P [k]x[k] where P [k] = [pij [k]] for

a set of doubly stochastic matrices (induced by time-varying weights pij [k]) have also

been studied in [7] and have been shown to lead, under certain conditions1, to average

consensus.

Algorithm 1 Distributed Average Consensus (Single Linear Iteration)

Input: A strongly connected graph G = {X,E} with n = |X| nodes

Output:x̄ =

∑
xl∈X

Vl

n
Initialization: Each node i sets its initial value as xi[0] = Vi
Iteration: For k = 0, 1, 2, ..., each node xi ∈ X does the following:

Broadcast: xi[k]
Receive: xj [k] from all j ∈ Ni
Update: xi[k + 1] = pii[k]xi[k] +

∑
j∈Ni

pijxj [k]
End

Both of the above choices work in undirected graphs, but fail in the case of digraphs

because a given node i may not necessarily have D+
i = D−i , and it is not as straightfor-

ward for nodes to determine appropriate weights so that
∑

l pli =
∑

j pij = 1,∀i. An

iterative algorithm that asymptotically obtains a doubly stochastic matrix in directed

graphs can be found in [21].

1.4.2 Average Consensus via Ratio Consensus

Another approach for calculating the average of the initial values of the nodes in the

network is the ratio consensus algorithm [8] which allows each node to asymptotically ob-

tain the exact average of the initial values as the ratio of two state variables it maintains

and iteratively updates. More specifically, each node i maintains two state variables

yi[k] and zi[k], and updates them, at iteration k, as follows:

yi[k + 1] =
∑

j∈N−i ∪{i}

yj [k]

(1 +D+
j)
, k ≥ 0, (1.4)

zi[k + 1] =
∑

j∈N−i ∪{i}

zj [k]

(1 +D+
j)
, k ≥ 0, (1.5)

where yi[0] = Vi, and zi[0] = 1, for i ∈ X. The protocol assumes that each node j is

aware of its out-degree D+
j . [Note that it makes sense for transmitting node j to simply

send the values yj [k] := yj [k]/(1+D+
j), zj [k] := zj [k]/(1+D+

j) to all of its out-neighbors,

and for receiving node i to simply add up the weighted values it receives from all of its

in-neighbors.]

At each time step k, each node i calculates the ratio ri[k] ≡ yi[k]/zi[k]; under the as-

sumption that the digraph describing the exchange of information is strongly connected,

1For example, one such condition is the existence of a finite window K such that the products
P [mK + K − 1] . . . P [mK + 1] P [mK], for all m, form a primitive doubly stochastic matrix.

NIKOLA
S E. M

ANITARA

Introduction 9

it can be shown that ri[k] asymptotically converges to the average of the initial values.

Specifically, with the chosen initial conditions, we have that

lim
k→∞

ri[k] =

∑
l yl[0]∑
l zl[0]

=

∑
l Vl
n

, ∀i ∈ X . (1.6)

To see that the above holds, one can write the iterations in (1.4)–(1.5) more compactly

in the form y[k+ 1] = Py[k] and z[k+ 1] = Pz[k], where y[k] (z[k]) is an n-dimensional

column vector containing the yi[k] (zi[k]) values for each node, and P is a primitive n×n
column stochastic matrix with weights P (i, j) = 1

1+D+
j

if i ∈ N+
j ∪ {j} (zero otherwise).

Thus, we have limk→∞ P
k = v1T where v and 1T are, respectively, the right and left2

eigenvectors of P that correspond to its unique eigenvalue at 1. Thus, the ratio in (1.6)

will satisfy

lim
k→∞

ri[k] =
vi(1

T y[0])

vi(1T z[0])
=

∑
l yl[0]∑
l zl[0]

=

∑
l Vl
n

, ∀i ∈ X ,

where vi is the ith entry of the right eigenvector v (notice that v is strictly positive).

The above discussion should make it clear that ratio consensus works with any primitive

column stochastic matrix P (whose 0/1 structure –excluding the diagonal elements–

reflects the given communication topology). In fact, ratio consensus iterations can also

take the time-varying form

y[k + 1] = P [k]y[k], k ≥ 0, (1.7)

z[k + 1] = P [k]z[k], k ≥ 0, (1.8)

where P [k] are column stochastic n×n matrices that vary at each time step. Subject to

some joint connectivity conditions on the graphs that correspond to the zero/one struc-

ture of the matrices P [k], convergence in (1.6) still holds though the proof is significantly

more complex [17–19, 22, 23].

The ratio consensus approach is applicable to asymmetric topologies, at least as long

as each node is aware of its out-degree. Most other linear iterative approaches require

bidirectional communication links with symmetric weights or unidirectional links with

weights that form a doubly stochastic matrix; however, obtaining such a doubly stochas-

tic matrix with distributed algorithms in a digraph setting is not straightforward [21].

Notice also that if the weight matrix P in ratio consensus is doubly stochastic, the sec-

ond iteration becomes unnecessary, whereas the first iteration reduces to the standard

single linear iterative scheme with weights that form a doubly stochastic matrix.

Consider the case when P [k] is a sequence of matrices that satisfies the following condi-

tions:

2If the graph is strongly connected, matrix P will be a primitive column stochastic matrix, and will
have a single eigenvalue at 1 (with all other eigenvalues having magnitude smaller than one) and a
strictly positive right eigenvector v and left eigenvector 1T corresponding to this eigenvalue at 1.

NIKOLA
S E. M

ANITARA

Introduction 10

Algorithm 2 Distributed Average via Average Ratio Consensus

Input: A strongly connected graph G = {X,E} with n = |X| nodes and m = |E| edges
(no self-edges). Each node xi ∈ X has an initial value Vi and knows its out-degree D+

j .

Output:x̄ =

∑
xl∈X

Vl

n
Initialization: Each node xi ∈ X sets its initial value as yi[0] = Vi and zi[0] = 1
Iteration: For k = 0, 1, 2, ..., each node xi ∈ X does the following:

Broadcast: yi[k]

1+D+
i

and zi[k]

1+D+
i

to its out-neighbor xl ∈ N+
i

Receive:
yj [k]

1+D+
j

and
zj [k]

1+D+
j

from each in-neighbor xj ∈ N−i
Update: yi[k + 1] = 1

1+D+
i

yi[k] +
∑

xj∈N−i
yj [k]

(1+D+
j)

,

zi[k + 1] = 1
1+D+

i

zi[k] +
∑

xj∈N−i
zj [k]

(1+D+
j)

End

• At iteration k, the weight matrix P [k] is a row stochastic matrix whose nonzero

entries are bounded away from zero (i.e., they are lower bounded by some positive

constant).

• There exists a finite window K such that the matrix products P [mK + K −
1] . . . P [mK + 1]P [mK],m = 0, 1, 2, . . . , form primitive stochastic matrices.

Note here that the product of row stochastic matrices is necessarily a row stochastic

matrix, thus the requirement is that the matrix product is a primitive matrix. The

following theorem by Wolfowitz was originally stated for row stochastic matrices in [22],

but it is adapted here for collum stochastic matrices. Let us first establish some notation.

Definition 1.1: A column stochastic matrix Pc is called SIA (stochastic indecomposable

and aperiodic) if Q = limk→∞ P
k
c exists and has identical columns.

Definition 1.2: Given a column stochastic matrix Pc let,

δ(Pc) = max
j

max
i1,i2
|Pc(j, i1)− Pc(j, i2)|. (1.9)

Thus, δ(Pc) measures how different the columns of Pc are; in particular, δ(Pc) = 0 if

and only if Pc has identical columns.

Theorem 1.3. (Wolfowitz)Let P1, P2, . . . , Pm be n×n column stochastic matrices such

that any finite product of them is SIA. For any ε > 0, there exists an integer v(ε)

such that for t ≥ v(ε) any product Bt = PitPit−1 . . . Pi1Pi0, where ik ∈ {1, 2, . . . ,m} for

k = 0, 1, 2, . . . , t, satisfies

δ(Bt) < ε. (1.10)

In other words for sufficiently large t, any product of t matrices from the collection

{P1, P2 . . . , Pm} (repetitions allowed) will result in a product Bt with columns that

NIKOLA
S E. M

ANITARA

Introduction 11

approximately the same. Note that the above theorem does not imply that Bt necessarily

converges.

According to the above mentioned conditions (more details can be found in [24]), it

follows from Wolfowitz’s Theorem 1.3, that for large enough windows of t, Bt = P [t]P [t−
1] . . . P [0] tends to a rank one matrix of the form wt1

T
n , where wt is a nonnegative column

vector, normalized so that its entries sum to unity.

1.5 Min/Max Consensus

Assume that each node i in the network has some initial value xi[0] = Vi. The distributed

Min/Max algorithm allows the nodes to calculate the minimum (or maximum) of these

initial values in at most n − 1 steps. In the Min/Max consensus algorithm each node,

updates its value at iteration k, k = 0, 1, 2, . . . , n− 2, as

xi[k + 1] = (min/max)xj∈N−i ∪{i}
{xj [k]}. (1.11)

From the above execution it can be shown that if the conditions in Section 1.3 are

satisfied then each node to i obtains a value xi[n− 1] that satisfies the following

xi[n− 1] = (min/max)l{xl[0]} = (min/max)l{Vl},∀xi ∈ X . (1.12)

Min/Max consensus is a prototypical example of a finite time algorithm since it completes

in a finite number of steps. The pseudocode for the for Min/Max consensus algorithm

is shown in Algorithm 3.

Algorithm 3 Min/Max Consensus

Input: A strongly connected graph G = {X,E} with n = |X| nodes and m = |E| edges
(no self-edges). Each node xi ∈ X has an initial value Vi.
Output:(min/max)xj∈XVj
Initialization: Each node xi ∈ X sets its initial value as xi[0] = Vi
Iteration: For k = 0, 1, 2, ..., (n− 1) each node xi ∈ X does the following:

Step 1: It transmits xi[k] to each out-neighbor xl ∈ N+
i

Step 2: It receives xj [k] from each in-neighbor xj ∈ N−i
Step 3: It updates its own variable as

xi[k + 1] = (min/max)xj∈N−i ∪{i}
{xj [k]}

End

NIKOLA
S E. M

ANITARA

Introduction 12

1.6 Background on Linear System Theory and Observabil-

ity Analysis

The control theoretic perspective that we adopt in this thesis will allow us to introduce

and use certain fundamental properties of linear systems in order to present the observ-

ability properties, from the perspective of a certain node or nodes, of the linear iterative

schemes. In this section, we will review some of the important background material that

we will be using in the following chapters. Consider a linear system of the following

form

x[k + 1] = Ax[k] +Bu[k], (1.13)

y[k] = Cx[k] +Du[k], (1.14)

with state vector x ∈ FN , input u ∈ Fm and output y ∈ Fp, with p ≥ m (for some field

F). The matrices A,B,C and D are matrices (of appropriate size) with entries from the

filed F. The output of the system over L + 1 time-steps (for some nonnegative integer

L) is given by



y[0]

y[1]

y[2]
...

y[L− 1]

y[L]


︸ ︷︷ ︸

y[0:L]

=



C

CA

CA2

...

CAL−1

CAL


︸ ︷︷ ︸

OL

x[0] +



D 0 . . . 0 0

CB D . . . 0 0

CAB CB . . . 0 0
...

...
. . .

...
...

CAL−1B CAL−2B . . . D 0

CALB CAL−1B . . . CB D


︸ ︷︷ ︸

ML



u[0]

u[1]

u[2]
...

u[L− 1]

u[L]


︸ ︷︷ ︸

u[0:L]

.(1.15)

When L = N − 1, the OL matrix in the above expression is termed observability ma-

trix for the pair (A,C), and the matrix ML is termed invertibility matrix for the pair

(A,B,C,D). Based on (1.15), we can ask certain type of questions such as:

• If the initial state of the system is not known, but the inputs are completely known,

what can one infer about the initial state by examining only the outputs in (1.14).

• When the initial state and the inputs are not known, what can one infer about

these quantities based on the above equation.

Actually, in the next chapter we focus on these questions (from the perspective of

malicious-curious nodes) and give answers on how good their estimates of the initial

state can be and how the quality of estimation gets affected by the connectivity of

NIKOLA
S E. M

ANITARA

Introduction 13

the network and other protocol parameters. More details about observability of linear

systems can be found in [25].

1.7 Contributions of Thesis

The main contribution of this thesis is the development of distributed algorithms and

protocols that enable the nodes to (i) preserve their privacy while reaching agreement

on the average value of the network and (ii) determine in a distributed manner, when

to stop (after a finite number of steps of an asymptotic consensus computation). Our

analysis produces the following key results.

• We propose a novel algorithm which enables all of the components of a distributed

system, each with some initial value, to asymptotically reach average consensus

on their initial values, without having to reveal the specific value they contribute

to the average calculation. The proposed algorithm can be followed by each node

that does not want to reveal its initial value and, under certain conditions on the

information exchange that we characterize precisely, all nodes can calculate the

average of their initial values while maintaining privacy (i.e., the initial values

contributed to the average by the nodes that follow the protocol are not exposed

to malicious nodes). We assume that malicious nodes try to identify the initial

values of other nodes but do not interfere in the computation in any other way;

malicious nodes are assumed to know the predefined strategy and topology of the

network (but not the actual values used by the nodes that want to preserve their

privacy).

• Within the above context, we also investigate the ability of the malicious-curious

nodes to estimate the initial values of the nodes that follow the proposed privacy

preserving protocol, and we provide computational studies to analyze the quality

of the estimate obtained by the malicious-curious nodes.

• We consider how iterative strategies for asymptotic average consensus in undirected

and directed graphs (digraphs) can be adapted so that the nodes can determine,

in a distributed fashion, a stopping criterion that allows them to terminate the

execution of the iteration when approximate average consensus has been reached.

The nodes are said to have reached approximate average consensus when each of

them has a value that is close (in a way that we precisely define) to the desirable

average.

• We separately investigate iterative strategies for asymptotic average consensus in

a digraph, since the absence of bidirectional communication links makes this task

particularly challenging, due to the presence of asymmetric information (for a pair

NIKOLA
S E. M

ANITARA

Introduction 14

of nodes, only one of them may be aware of a discrepancy and may have no direct

way of informing the other).

• The proposed algorithms can be used to cap the number of transmissions that are

required in order to reach (approximate) average consensus, and we provide sim-

ulation studies that analyze performance with respect to this metric, and provide

comparisons against existing work.

1.8 Thesis Organization

This thesis is organized as follows. Chapter 1 has provided some important background

on graph theory and has described linear iterative methods for asymptotically reaching

agreement on the average value of the network. We next introduce in Chapter 2 our pro-

posed privacy preserving average consensus strategy and analysis of the capability of the

malicious-curious nodes to estimate the initial values of the nodes that follow the pro-

posed privacy preserving protocol. In Chapter 3 we present distributed algorithms that

accomplish the calculation of approximate average consensus in finite time in undirected

graphs. In Chapter 4 we present two algorithms, one randomized and one deterministic,

that enable the nodes in a directed graph to identify (only by passing messages) when

approximate average consensus has been reached. Finally, in Chapter 5 we conclude this

thesis with a brief summary and remarks about future work and extensions.

NIKOLA
S E. M

ANITARA

Chapter 2

PRIVACY PRESERVING

ASYMPTOTIC AVERAGE

CONSENSUS

With increasing dependence on technology, it has become vital to secure every aspect

of data exchanged/stored in various kinds of networks. As the number of smart systems

and networks grows, data privacy has emerged as one of the most challenging research

topics under investigation. Data privacy relates to how information or data should

be handled based on its relative importance. Taking into account that data breaches

occur when an outside entity can penetrate databases or channels and access sensitive

information, data privacy is not only important but necessary.

This chapter addresses the topic of privacy-preserving asymptotic average consensus in a

distributed network. We develop and analyze a distributed algorithm that enables all of

the nodes to calculate the exact average of their initial values, without loss of privacy and

despite the presence of possibly multiple malicious nodes. Malicious nodes are assumed

to have full knowledge of the protocol and are allowed to collaborate arbitrarily among

themselves, but do not interfere in the computation of the average value of the network

in any other way (this is why we also refer to them as “malicious-curious” nodes).

Our approach does not depend on any cryptographic algorithm, but operates by allow-

ing the nodes to introduce pseudo-random offsets (unknown to the malicious nodes).

Specifically, the proposed protocol is a variation of the standard protocol [16] that is

used in the absence of privacy requirements and that allows the nodes to asymptotically

obtain the average of their initial values by following a linear iteration with weights that

form a doubly stochastic matrix. The main change is that, at each time-step, each node

following the protocol adds an arbitrary offset value to the result of its iteration, in an

effort to avoid revealing its own initial value as well as the initial values of other nodes.

What is important is for each node to ensure that the total (accumulated sum of) offsets

15

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 16

that it adds cancel themselves out in the end.

We establish that, under certain conditions on the communication topology, this protocol

allows the nodes to calculate the (exact) average of their initial values in a privacy-

preserving manner, despite the presence of malicious agents. For example, we establish

that even when a node following the protocol is directly connected to the malicious

nodes, but has at least one neighbor that is not directly connected to malicious nodes

and whose path(s) to the malicious nodes is (are) through at least one node following

the protocol, then privacy is ensured for both nodes (the one following the protocol

and this neighbor of it), in the sense that their individual initial values are not revealed

to the malicious nodes. Note that, it might still be possible for the malicious nodes

to determine the sum of the initial values of nodes that follow the privacy-preserving

protocol (but not their individual values).

We also show that, even if there is (are) path(s) to malicious nodes that are not through

nodes following the protocol, the nodes following the protocol will still remain protected

(i.e., their initial values will not be exposed to the malicious nodes) at least under certain

conditions on the communication topology. Apart from obtaining topological conditions

that guarantee that the initial values of certain nodes are not exposed, we also study the

ability of the malicious-curious nodes to estimate the initial values of other nodes and

examine conditions that affect privacy preservation. We include a numerical example and

simulations that illustrate the features of the proposed algorithm, and also the ability

of the malicious-curious nodes to estimate the initial values of the nodes following the

proposed protocol.

This chapter is organized as follows. In Section 2.1 we present previous work on privacy-

preserving average consensus schemes. In Section 2.2 we introduce the problem state-

ment of the chapter. In Section 2.3 we introduce our proposed privacy-preserving average

consensus strategy, and the main results of the chapter. In Section 2.4 we provide exam-

ples and in Section 2.5 we conclude with results and observations from a computational

study.

2.1 Previous Work on Privacy-Preserving Average Con-

sensus

Privacy-preserving average consensus in the presence of malicious agents in the network

has received extensive attention thus far. In this section we briefly describe some of this

earlier work that is related to the developments in this chapter.

The authors of [26] proposed a transformation method using random offset values in a

cooperative wireless network. Specifically, each node i that wishes to protect its privacy

adds a random offset value ui to its initial value Vi. This ensures that its initial value

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 17

will not be revealed to malicious (curious) nodes that might be observing the exchange

of values in the network. The idea is based upon the observation that, when an infinite

number of nodes employ the protocol, their offsets will have a zero net effect on the

average, allowing the nodes to converge to the true average value of the network, at

least with high probability. Specifically, each node i sets xi[0]=xi
′= Vi+ui where ui,

i = 1, 2, ..., N, are i.i.d. random variables with zero mean and finite variance var(Ui).

Then, following the protocol for asymptotic average consensus, the nodes converge to

1

N

N∑
i=1

x′i =
1

N

N∑
i=1

Vi︸ ︷︷ ︸
x

+
1

N

N∑
i=1

ui︸ ︷︷ ︸
U

, (2.1)

where x is the desirable average of the original initial values and U is a random variable

that captures the net effect of the offsets. Since, the ui are i.i.d. with mean E[Ui] = 0

and variance var(Ui), we have that U is zero mean and has variance var(U) = 1
N var(Ui).

Specifically, as N →∞ we have var(U)→ 0. This means that

lim
N→∞

1

N

N∑
i=1

x′i = lim
N→∞

[
1

N

N∑
i=1

Vi +
1

N

N∑
i=1

ui

]
= x+ 0 = x, (2.2)

where the equality is in the mean square sense.

For a large number of nodes (N → ∞), this method can give results very close to the

true average of the network; however, as the number of nodes decreases, the accuracy

of this method (in terms of convergence to the exact average value of the network) also

decreases, due to the fact that the offset U from the true average is a random variable

(with zero mean but) with some finite variance.

Another popular approach for privacy preservation can be found in [27], which proposed

a strategy in which the nodes asymptotically subtract their initial offset values added

to the network, and characterizes the mean square convergence rate and the covariance

matrix of the maximum likelihood estimate on the initial state. More recent approaches

that try to preserve privacy via homomorphic encryption have also been proposed in [28,

29]; a key limitation of these latter methods is the reliance on the existence of a node

that is universally trusted.

2.2 Problem Statement

Consider a set of components (nodes) that interact via directional links (edges) in a

way that forms a directed communication topology (digraph). All nodes follow the

single linear iterative strategy as in (1.1), with a doubly stochastic weight matrix W

that allows them to reach agreement to the average of their initial values (note that the

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 18

weight matrix was denoted by P in (1.1)). Some nodes are malicious-curious and try

to identify the initial values of all or some of the nodes in the network. There exists a

set of nodes that would like to preserve their privacy by not revealing to other nodes

their initial values. We allow some nodes not to follow the privacy preserving protocol

in order to investigate the worst-case scenario that this protocol can handle. We also

assume that the malicious-curious nodes have full knowledge of the proposed protocol

and are allowed to collaborate arbitrarily among themselves (exchanging information as

necessary), but do not interfere in the computation of the average value in any other

way. Malicious-curious nodes also know

i) The topology of the network (which is assumed to be time-invariant) and nodes

that are trying to preserve their privacy.

ii) The observability matrix Oi,L+1 (defined later) for any L and any node i that is

malicious-curious (this would be the case, for example, if the weight matrix W is

known to the malicious nodes).

We prove that under the above assumptions, malicious-curious nodes are not able to

estimate the exact initial value of the nodes that follow the proposed protocol, at least

under certain conditions on the network topology and the sets of malicious-curious nodes

and nodes that follow the privacy preserving protocol. Even when malicious-curious

nodes cannot determine the initial values of other nodes exactly, they can always try

to form educated estimates of these initial values. For this reason, we also analyze how

well malicious-curious nodes can estimate the initial values of the nodes following the

proposed protocol based on the information they observe, using minimum mean square

linear estimation.

2.3 Proposed Strategy and Main Results

The objective of the proposed strategy is to calculate the average of the initial values

of the nodes in the network, while at the same time preserving the privacy of the nodes

that opt to utilize the protocol. The scheme that we study in this work makes use

of linear iterations as in (1.1) where the weights wij form a doubly stochastic matrix

W = [wij] (thus, the nodes asymptotically reach consensus to the average of their initial

values). The main difference is that node i following the protocol sets its initial value

to x′i[0] = xi[0] + ui (where xi[0] = Vi and ui is some random offset), and subsequently

updates its value as

x′i[k + 1] = wiix
′
i[k] +

∑
j∈N−i

wijx
′
j [k] + ui[k], k = 0, 1, ..., (2.3)

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 19

where ui[k] is a pseudo-random value chosen by node i at time-step k. The constraint

is that ui[k] = 0 for k > Li (for some Li known only to node i) and

ui[Li] = −
Li−1∑
k=0

ui[k]− ui. (2.4)

At time-step Li, node xi effectively cancels the pseudo-random values it has added during

the information exchange in the network up to that point.

Protocol Description: Nodes following the protocol run the linear iteration in (2.3) in

order to reach asymptotic average consensus. Specifically, node i follows (2.3) with

x′i[0] = Vi + ui and

i) Chooses a pseudo random offset ui[k], k = 0, 1, ..., Li−1 for some randomly chosen

integer Li.

ii) Sets

ui[Li] = −
Li−1∑
k=0

ui[k]− ui. (2.5)

iii) Sets ui[k] = 0 for k ≥ Li + 1.

Note that Li is a random integer number of steps known only to node i. The remaining

nodes follow the iteration in (2.3) with zero offsets. Specifically, node i not following

the protocol sets ui = 0 and ui[k] = 0 for k = 1, 2, ..., which is the standard protocol

for reaching average consensus. The pseudo code for the proposed protocol is provided

below.

Note that the weight matrix W is assumed primitive doubly stochastic. There are many

ways to choose such weights, even in a distributed manner [30] and [31]. For symmetric

communication topologies, this choice of weights can be relatively simple (a couple of

different ways to assign weights were described in Chapter 1).

Lemma 2.1: Following the iteration in (2.3) and in combination with the constraint in

(2.4), the network will reach asymptotic average consensus, as long as the weight matrix

W is primitive doubly stochastic.

Proof. It is not hard to see that, if we let Lmax = maxi{Li}, then

N∑
i=1

x′i[Lmax + 1] =
N∑
i=1

xi[0];NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 20

Algorithm 1: Privacy-Preserving Protocol

Input:A strongly connected graph G = {X,E} with n = |X| nodes, with node i having
initial value Vi. A set of weights W = [wij] that forms a doubly stochastic matrix is
given.

Output:x̄ =

∑
xl∈X

Vl

n
Initialization

i) Each node i sets xi[0] = Vi and sets its initial value x′i[0] = xi[0] + ui (where ui is
some random offset).

ii) Each node i that follows the protocol chooses an integer Li > 0 (otherwise Li =
−1).

iii) Sets ui,total = ui.

iv) Transmits x′i[0] to its out-neighbors.

For k = 0, 1, 2, ..., each node i ∈ X receives x′j [k] from its in-neighbors and does the
following:

• if k < Li then:

x′i[k + 1] = wii[k]x′i[k] +
∑

j∈N−i
wijx

′
j [k] + ui[k]

ui,total = ui,total + ui[k]

• if k = Li then:

x′i[k + 1] = wii[k]x′i[k] +
∑

j∈N−i
wijx

′
j [k]− ui,total

• if k > Li then:

x′i[k + 1] = wii[k]x′i[k] +
∑

j∈N−i
wijx

′
j [k]

End

then, using

x′i[k + 1] = wiix
′
i[k] +

∑
j∈N−i

wijx
′
j [k], k = Lmax + 1, Lmax + 2, ...,

we obtain the average value of the network:

lim
k→∞

x′i[k] =
1

N

N∑
i=1

x′i[Lmax + 1] =
1

N

N∑
i=1

xi[0] = x .

This concludes the proof of the lemma.

2.3.1 Analysis of Inference Capability of Malicious-Curious Nodes

Let P = {i1, i2, ..., ip} denote the set of nodes following the protocol during a run of the

linear iteration. The linear iteration in (2.3) can be expressed as

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 21

x′[k + 1] = Wx′[k] + [ei1,N ei2,N ... eip,N]︸ ︷︷ ︸
Bp


ui1 [k]

ui2 [k]
...

uip [k]


︸ ︷︷ ︸

up[k]

,

where ei,N = [0 0 ... 1 ... 0]T is an N -dimensional column vector with a single nonzero

entry of value 1 at location i. In this iteration, nodes that follow the protocol set

x′j [0] = xj [0] + uj = Vj + uj , j ∈ P , whereas nodes that do not follow the protocol set

x′j [0] = xj [0] = Vj , j /∈ P .

From the perspective of node i, the values seen (by node i) at each time step of the

linear iteration can be expressed as

yi[k] = Cix
′[k], (2.6)

where Ci is an (D−i +1)×N matrix with a single 1 in each row denoting the positions

of the state vector x′[k] that are available to node i (these positions correspond to the

nodes that are in-neighbors of node i as well as node i itself). The vector yi[k] denotes

the set of values seen by node i during time-step k of the linear iteration [32], [33], [34].

Without loss of generality, we will assume that there is a single malicious node since

we can always choose Ci so as to include all the values seen by malicious nodes (which

would essentially allow malicious nodes to collaborate arbitrarily among themselves).We

also make the worst-case assumption that malicious nodes know the topology and the

predefined strategy of the network, hence the set P and matrix B (as well as matrix

W).

The set of values seen by node i during the first L time-steps of the linear iteration

(assuming that L < Lmin := minj∈P Lj) is given by [33]

yi[0 : L− 1] = Oi,L−1x
′[0] +Mp

i,L−1up[0 : (L− 1)], (2.7)

= Oi,L−1x[0] +Oi,L−1Bpu+Mp
i,L−1up[0 : (L− 1)], (2.8)

where yi[0 : L−1] = [yTi [0] yTi [1] ... yTi [L−1]]T , u = [ui1 ui2 ... uip]T , and up[0 : (L−1)] =

[uTp [0] uTp [1] ... uTp [L−1]]T . The matrices Oi,L−1 and Mp
i,L−1 can be expressed recursively

as

Oi,L−1 =

[
Ci

Oi,L−2W

]
, Mp

i,L−1 =

[
0 0

Oi,L−2Bp Mp
i,L−2

]
,

where Oi,0 = Ci and Mp
i,0 is the empty matrix [33].

For L ≥ Lmin, the above equations need to be modified a bit (see also the discussions

in Chapter 1) because some nodes introduce offsets that are linear combinations of the

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 22

random noise they already injected in the iteration (specifically, node j ∈ P introduces an

offset of −uj−
∑Lj−1

t=0 uj [t] at iteration Lj) or simply stop introducing offsets (specifically,

node j ∈ P introduces an offset of zero for iteration Lj + 1, Lj + 2, and so forth).

Nevertheless, the relationship between the values seen by the malicious-curious nodes

and the values that are unknown to it (namely, x[0], u, and up[0 : L]) remains similar

to the above. In particular, for any iteration L, L > Lmax := maxj∈P Lj , we have

yi[0 : L− 1] = Õi,L−1x[0] + M̃p
i,L−1

[
u

up[0 : (L− 1)],

]
︸ ︷︷ ︸

Up

, (2.9)

where some of the entries in vector Up are identically zero and Õi,L−1 and M̃i,L−1 are

appropriately defined matrices.

The above matrices describe the ability of the malicious node i to identify the initial

values x[0] of the nodes (as well as the inputs Up injected by the nodes following the

protocol, if necessary). Note that we make the worst-case assumption that the malicious

node i knows exactly which nodes follow the protocol and the weights used in iteration

(2.3).

2.3.2 Topological Condition for Privacy Preservation

We first examine the question of whether the malicious-curious nodes can determine

exactly the initial values of other nodes. More specifically, we establish topological

conditions that ensure privacy for the nodes following the proposed protocol despite the

presence of malicious agents in the network.

Theorem 2.1. Consider a fixed network with N nodes described by a digraph G =

{X,E}. Consider the iteration in (2.3) with weights that form a primitive doubly

stochastic weight matrix W . Assume that a set of nodes P follow the predefined privacy-

preserving strategy in (2.3) with random offsets chosen as in (2.4). Malicious node i will

not be able to identify the initial value of xj [0] ∈ P , as long as j has at least one other

node l connected to it for which all paths from l to the malicious node i are through a

node j′ following the protocol (i.e., j′ ∈ P).

Specifically, if the condition in Theorem (2.3.2) is satisfied, the network will reach average

consensus (this follows from Lemma 2.1) and the privacy of the initial values of the nodes

following the protocol will be preserved during the linear iteration process.

Proof. Let X1[k], X2[k], X3[k], X4[k] denote the vectors of values of nodes in sets V1

(Malicious), V2 (Protocol), V3 and V4 (following the predefined linear strategy for reach-

ing average consensus). Note that sets V1, V2, V3, V4 are mutually exclusive and their

union comprises X, i.e.,Vi ∩ Vj = ø for i, j ∈ {1, 2, 3, 4}, and V1 ∪ V2 ∪ V3 ∪ V4 = X.

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 23

N
P

M

P

P

NP

NP

Set 1 Set 2 Set 4

Set 3

Figure 2.1: Example of the key connectivity that guarantees privacy preservation for
average consensus: the black node is the malicious set of nodes V1, the grey nodes are
the nodes following the protocol V2, and the white nodes are the nodes following the

predefined strategy for reaching average consensus (V3 and V4).

Using the simple network in Figure 2.1, we show that set V1 (malicious node) is unable

to identify the initial values of sets V2 and V3 in the network when nodes in set V2 follow

the proposed protocol. To see this, we write the weight matrix as

W =


W11 W12 0 W14

W21 W22 W23 W24

0 W32 W33 0

W41 W42 0 W44

 ,
where Wij , i, j ∈ {1, 2, 3, 4} are block matrices of appropriate sizes (note that according

to the conditions in Theorem 1.2, we have W13 = 0 and W43 = 0, and the matrix W is

doubly stochastic). The matrix C1 in (2.7) is given as

C1 =


I 0 0 0

0 I 0 0

0 0 0 I

 ≡

C1,1

C1,2

C1,4

 ,
where C1,1=[I 0 0 0], C1,2 = [0 I 0 0] and C1,4 = [0 0 0 I] (and I are identity matrices

of appropriate dimensions). Note that the above C1 makes a worst case assumption in

terms of the malicious nodes being able to directly observe all nodes in set V2 and all

nodes in set V4. From the definition of matrix Bp = [ei1,N ei2,N ... eip,N], we can write

Bp2 = [0 I 0 0]T where matrix I is of dimension |P | × |P |.
Using the recursive definition of Oi,L+1, and the fact that

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 24

C1


0

0

I

0

 = 0,

we obtain,

O1,L+1


0

0

I

0

 =

[
C1

O1,LW

]
0

0

I

0

 =

[
0

O1,L

]
W


0

0

I

0


=

[
0

O1,L

]
(Bp2W23 +Bp3W33),

where Bp3 = [0 0 I 0]T .

Using the above observation, the values seen by the malicious set of nodes V1 over L+ 2

time steps, given by y1[0 : L + 1] = O1,L+1x
′[0] + Mp

1,L+1up[0 : L], can then be written

as (see Lemma 2 of [35])

y1[0 : L+ 1] = O1,L+1


X1[0]

X ′2[0]

0

X4[0]

+

M2
1,L+1




W23

W23W33

...

W23W
L
33

X3[0] +


u2[0]

u2[1]
...

u2[L]


︸ ︷︷ ︸

e2[0:L]


︸ ︷︷ ︸

α1

.

If we let

α = y1[0 : L+ 1]−O1,L+1


X1[0]

X ′2[0]

0

X4[0]

 (2.10)

(note that α is known to the set of V1 malicious-curious nodes), then we can write

α = M2
1,L+1α1. (2.11)

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 25

From the above, it can be seen that even if the malicious nodes in set V1 know (or can

determine) X4[0], which is the assumption we make when we assume that α is known to

the malicious nodes, they will not be able to identify the initial values of sets V2 and V3

due to the unknowns X3[0] and e2[0 : L]. The reason is that multiple pairs e2[0 : L] and

X3[0] result in the same α1. From (2.10), it can be seen that the pseudo-random values

(protocol) of set V2 successfully protect set V3 from revealing its true initial values to

malicious nodes, as long as the key connectivity of Theorem 2.3.2 is satisfied. At the

same time, this protects nodes in V2 since multiple e2[0 : L] are possible, even though

the malicious nodes know X ′2[0], they cannot determine X2[0] = X ′2[0]−
∑L

k=0 e2[k].

2.3.3 Analysis of Ability of Malicious-Curious Node to Estimate Initial

Values

We now analyze the ability of the malicious-curious node(s) to estimate the values of the

nodes that follow the proposed privacy-preserving algorithm, even when they cannot de-

termine the values exactly. For the initial value estimation analysis from the perspective

of the malicious-curious nodes we use linear estimation theory, because it is streamlined

and straightforward to assess. This analysis is useful when the conditions of the pre-

vious section are satisfied meaning that the malicious-curious nodes cannot determine

exactly the initial value of other nodes following the protocol, in which case it is useful

to determine how well they can estimate them. In order for the malicious-curious nodes

to obtain the best estimate for the initial value of the other nodes, they must be able to

identify three important time steps in the process of the average calculation. We make

the worst case assumption that the malicious-curious nodes have access to the following

information.

• The average x of the initial values (this will be known eventually to all nodes,

including the malicious-curious nodes).

• The time steps where the nodes that follow the protocol cancel out the value of

the added noise in the network (denoted earlier by Lj for node j ∈ P) .

• The distribution of the initial values and the distribution of the noise added by

the nodes that follow the proposed protocol (however, the malicious-curious node

does not know the exact values used by the various nodes).

We consider a fixed network with N nodes described by a digraph G = {X,E}. The

nodes execute iteration (2.3) with weights that form a primitive doubly stochastic weight

matrixW . Assume again that the set of nodes P follow the predefined privacy-preserving

strategy in (2.3) with random offsets chosen as in (2.4). Malicious node i is interested

in collecting data in order to perform initial state estimation for the nodes that follow

the proposed protocol.

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 26

One important piece of information for the malicious-curious nodes is the average value

of the network that becomes known eventually, i.e.,

x =
1

n
[1 1 1 . . . 1]x[0]. (2.12)

Malicious-curious nodes also know the network connectivity and the nodes that follow

the proposed protocol, so they can construct the following piece of information.

As mentioned earlier, if we let P = {i1, i2, i3, . . . , ip} denote the set of nodes that are

following the proposed privacy preserving protocol during a run of the linear iteration,

the linear iteration can be modeled as

x′[k + 1] = Wx′[k] + [ei1,N ei2,N ... eip,N]︸ ︷︷ ︸
Bp


ui1 [k]

ui2 [k]
...

uip [k]


︸ ︷︷ ︸

up[k]

,

where ei,N = [0 0 ... 1 ... 0]T is an N -dimensional column vector with a single nonzero

entry of value 1 at location i. What is observed at node i is

yi[k] = Cix[k], (2.13)

where Ci is (D−i +1)×N matrix with a single 1 in each row denoting the positions of the

state vector x′[k] that are available to node i (these positions correspond to the nodes

that are in-neighbors of node i as well as node i itself). Without loss of generality we

will assume that there is a single malicious node since we can always choose Ci so as to

include all the values seen by malicious nodes (which would essentially allow malicious

nodes to collaborate arbitrarily among themselves).

For simplicity of presentation, assume that for all j ∈ P , we have Lj = Lmax. The set

of all values seen by malicious-curious node xi during the first L time-steps of the linear

iteration (for any nonnegative integer L, L > Lmax) can be expressed as (see earlier

discussion)

yi[0 : L− 1] = Õi,L−1x[0] + M̃p
i,L−1

[
u

up[0 : (Lmax − 1)]

]
︸ ︷︷ ︸

U

, (2.14)

where Õi,L−1 and M̃p
i,L−1 are appropriately defined matrices, x[0] is the random vector

of initial values, and U is an (1 + Lmax)|P | random vector (containing the variables uj ,

uj [0], ..., uj [Lmax − 1], for each j ∈ P).

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 27

The matrices Õi,L−1 and M̃p
i,L−1 characterize the ability of the malicious-curious node

to perform initial value estimation. Recall that if we have a vector of measurements y

that is related to some vector quantity x via an equation of the form

y = Ax+Bu ,

where u is a noise vector, then linear estimation theory says that the linear minimum

mean square error estimate for x based on y is given by

x̂LMMSE(y) = E[X] + cov(X,Y) cov−1(Y, Y) (y − E[Y]) .

Assuming the statistics of x and u are known, then all of the above quantities can be

calculated and x̂LMMSE(y) can be obtained easily. Note that the corresponding mean

square error is given by

MSE = cov(X)− cov(X,Y) cov−1(Y, Y) cov(Y,X) .

Clearly, assuming the malicious-curious nodes knows the distributions of x[0], u, and

up[0 : (Lmax− 1)], and that it can obtain the matrices Õi,L−1 it can M̃p
i,L−1 in (2.14), it

can use the above formulas to obtain estimates for initial values of other nodes. This is

the approach we follow in the next section to run our simulations.

We will see in the computational study section that different connectivity choices, dif-

ferent numbers of time steps (for canceling the added noise in the network), and other

parameters have implications in terms of the quality of the state estimate from the per-

spective of the malicious-curious node; however, one of the most important factors in

ensuring the privacy of the nodes is the topology of the network.

2.4 Example

The network in Fig. 2.2 shows a communication topology that violates the condition

of Theorem 2 for both nodes 2 and 5, which are assumed to follow the protocol. We

argue that malicious node 1 is unable to identify the initial values of the other nodes

in the network of Fig. 2.2 when node 2 and node 5 are following the privacy-preserving

protocol. Note that, even when the condition of (2.3.2) is not satisfied it might be

possible for the nodes following the protocol to remain protected (in the sense that their

initial values will not be revealed to the malicious nodes).

The weight matrix can be written asNIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 28

 M1

 P2 NP3

 P5 NP4

Figure 2.2: The black node is the malicious node, the grey nodes are the nodes
following the proposed protocol, and the white nodes are the nodes that do not follow

the protocol.

W =



w11 w12 w13 0 0

w21 w22 0 w24 0

w31 0 w33 w34 w35

0 w42 w43 w44 0

0 0 w53 0 w55


for some nonnegative weights that form a primitive doubly stochastic matrix. The

matrix C1 in (2.7) is given by

C1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 =


C1,1

C1,2

C1,3

 ,
where C1,1 = [1 0 0 0 0], C1,2 = [0 1 0 0 0], and C1,3 = [0 0 1 0 0].

Using the recursive definition of Oi,L+1 we obtain

O1,L+1



0

0

0

1

1


=

[
C1

O1,LW

]


0

0

0

1

1


=

[
0

O1,L

]
W



0

0

0

1

1


.

The values seen by the malicious node 1 over L+ 2 time steps are given byNIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 29

y1[0 : L+ 1] = O1,L+1



x1[0]

x′2[0]

x3[0]

0

0


+M3

1,L+1


w34

w34w44

...

w34w
L
44

x4[0]

︸ ︷︷ ︸
α1

+M2
1,L+1




w24

w24w44

...

w24w
L
44

x4[0] +


u2[0]

u2[1]
...

u2[L]




︸ ︷︷ ︸

α2

+M3
1,L+1




w35

w35w55

...

w35w
L
55

x′5[0] +


u5[0]

u5[1]
...

u5[L]




︸ ︷︷ ︸

α3

If we let

α = y1[0 : L+ 1]−O1,L+1



x1[0]

x′2[0]

x3[0]

0

0


(2.15)

(note that α is known to the malicious node), then we have

α = α1 + α2 + α3. (2.16)

Consider two different scenarios:

i) x4[0] = µ2, x
′
5[0] = µ4 and u2 = 0, u5 = 0.

ii) x4[0] = µ1, x
′
5[0] = µ3 and u2[k] = [w24w

k
44](µ2 − µ1), u5[k] = [w35w

k
55](µ4 − µ3) +

[w34w
k
44](µ2 − µ1).

In particular, in the second scenario, nodes x2 and x5 are following the protocol and

apply the error sequence u2[k] = [w24w
k
44](µ2 − µ1) and u5[k] = [w35w

k
55](µ4 − µ3) +

[w34w
k
44](µ2 − µ1), k ∈ N. It is not hard to verify that, the values y1[k], k ∈ N, seen by

the malicious node x1, are exactly the same for each of the two above scenarios. This

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 30

M1 P2 NP3

Figure 2.3: The simplest form of the key connectivity requirement for privacy pre-
serving average consensus: the red node is the malicious node, the grey node is the
node following the protocol, and the black node is the node following the predefined

strategy for reaching average consensus.

makes it impossible for node x1 to obtain the initial values of the nodes following the

protocol, hence, the nodes preserve their privacy.

Remark 2 : Consider the set-up in Fig. 2.3 which satisfies Theorem 2.3.2. Using the

results of Lemma 2.1, we know that the error added by node 2 after Lmax + 1 time steps

will be zero and as k → ∞ the network will reach average consensus. This means that

the malicious node eventually knows

lim
k→∞

x1[k] =
1

3

3∑
i=1

[
x1[Lmax + 1] + x′2[Lmax + 1] + x3[Lmax + 1]

]

=
1

3

3∑
i=1

[
x1[0] + x2[0] + x3[0]

]
.

Since malicious node x1 knows its own initial value x1[0] and the average value of the

network, we see that the malicious node will eventually know the sum x2[0] + x3[0].

More generally, the malicious node might be able to eventually determine the sum of

the initial values of a subset of the nodes (but not their individual initial values).

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 31

2.5 Computational Studies

2.5.1 Computational Study A

Computational studies were carried out in order to compare and calculate the accuracy

of the estimates of the malicious-curious nodes when using linear estimation theory. In

the previous section we established conditions that ensure that malicious-curious nodes

are unable to identify the exact initial values of the nodes that follow the proposed

protocol. However, they can attempt to estimate the initial values based on the values

they observe and the statistics of the initial values and the noise. For simplicity, we

consider the network studied in Section 2.4 (shown in Fig. 2.2), where nodes have initial

values that are i.i.d. random variables chosen to be uniform in the interval [−0.5,+0.5],

and randomly chosen added noise at each time step chosen (from the nodes that fol-

lows the proposed protocol) to be i.i.d random variables with uniform distribution in

[−0.5,+0.5], independent between different nodes and time steps, and independent from

the initial values. The malicious-curious node 1 records the transmitted (x′1) values, and

the received values (x′2 and x′3) at each time step, and after the network reaches average

consensus, malicious-curious node 1 performs state estimation analysis with all stored

data and known statistics.

In this part we consider three different scenarios. For each scenario, we assume different

input data (information) available to the to the malicious-curious node.

Scenario 1

Let us first assume that the malicious-curious node i knows only the distribution of the

initial values. More specially, the initial values are i.i.d. random variables, uniform in the

interval [−0.5,+0.5]. In the absence of any measured data (e.g., the average value and

the received values from neighboring nodes) the malicious-curious node will implement

a blind estimation of the values of other nodes. In other words, the estimate of xj will

be the mean of the value (as determined by the prior distribution of the initial values

for each node). In such a case, the estimate will be

x̂j,LMMSE = 0

for all other nodes j, j 6= i (i.e., the mean of the prior distribution) and the mean square

error will be the variance of the distribution of xj

MSE1 =

∫ +0.5

−0.5
x2dx =

1

3
x3

∣∣∣∣+0.5

−0.5

(2.17)

=
1

3
2(

1

8
) =

1

12
. (2.18)

Scenario 2

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 32

In this scenario, we assume that the malicious node also takes into account the average

x (which it will discover in the end). In other words, the malicious-curious node i

knows the distribution of the initial values, as well as the average value of the network

(x = 1
n

∑N
l=1 xl[0]). It can now obtain a better estimate since more information is

available. If we let y = x− 1
N xi (y is known to node i since it knows its own initial value

xi), then one can easily calculate

x̂j,LMMSE = y

for all other nodes j, j 6= i, the j mean square error in this case is

MSE2 = σ2
xj − cov(xjy) cov(yy)−1 cov(yx), (2.19)

where cov(xjy) =
(

1
N−1

)
1
12 and cov(yy) =

(
1

N−1

)
1
12 , so what we get

MSE2 =
1

12
−
(

1

N − 1

)
1

12
(2.20)

=

(
N − 2

N − 1

)
1

12
. (2.21)

For example, when N = 6, we get MSE2 = 0.0667 whereas for N = 5 (as in the case of

the network in Fig. 2.2) we get MSE2 = 0.0625. From what we can see from the above

analysis, the MSE is smaller from the MSE in Scenario 1, and this is due to the fact

that the average value is now known to the malicious-curious node, and this provides

additional information. This reduction, however, becomes smaller as N increases.

Scenario 3

In this scenario, the malicious-curious node (node 1 in Fig. 2.2) has all the available

information that it can have, including all the values that become available to it during

the execution of the iteration (see the y-values in (2.14)). We perform a computational

study to examine and compare the quality of linear estimation that the malicious curious

node can obtain regarding the initial values of other nodes, including nodes that follow

the proposed protocol and nodes that do not.

More specifically, the malicious-curious node uses its knowledge about (i) the distribution

of the initial values and the noise that is added by nodes following the protocol, (ii)

knowledge of the topology, the weight matrix, and Lmax (which is assumed to be the

same for all nodes following the protocol), (iii) the average x of the initial values, and

(iv) the y-values it observes. Its objective is to estimate the values of nodes 2, 3, 4, andNIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 33

5, i.e., estimate

x̂LMMSE(y) =


x̂2,LMMSE(y)

x̂3,LMMSE(y)

x̂4,LMMSE(y)

x̂5,LMMSE(y)

 .

The mean square error in this case is given by MSE3 and can be calculated using the

formulas given earlier. The diagonal entries of the covariance matrix capture the variance

associated with the estimates of the initial values of nodes 2, 3, 4, and 5. We consider

various scenarios, for different number of iterations following Lmax. In Fig. 2.4 we plot

the calculated covariances from time-step Lmax + 1 up to time-step Lmax + 14 when the

nodes reach consensus to the average of the network. (For the computations, we used

the regularization technique in order to assure that our matrices will be invertible so we

can easily perform all the calculations of the estimated initial values using the standard

formulas and without any pre-processing to estimate linear dependencies of the various

matrices).

Cov =


+0.0075 +0.0000 −0.0147 +0.0074

+0.0000 +0.0000 −0.0000 −0.0000

−0.0147 +0.0000 +0.0301 −0.0148

+0.0074 −0.0000 −0.0148 +0.0076


Now let us investigate the scenario where node 4 also adds some noise and follows the

proposed protocol. What can be seen when the matrices bellow are compared with

previous results is that the nodes are now more safe since there is a small increase in

the covariance value of each node, and also node 4 is now more protected and this is due

to the fact that more noise is added to the system in the beginning (which increases the

uncertainty at the malicious-curious node). In both cases, however, the value of node 3

can be calculated exactly by the malicious-curious node, which was expected.

Cov =


0.0108 −0.0000 −0.0215 +0.0107

+0.0000 +0.0000 +0.0000 −0.0000

−0.0215 −0.0000 +0.0430 −0.0215

+0.0107 −0.0000 −0.0215 +0.0108


We assume that node 2, node 5 and node 3 are now following the proposed protocol. It

can be seen from the following result that node 3 is now protected and also there is a

small increase in the covariance value of all the nodes resulting in increasing (in a more

uniform way) the uncertainty at the malicious-curious node.

Cov =


+0.0089 +0.0036 −0.0177 +0.0053

+0.0036 +0.0284 −0.0072 −0.0248

−0.0177 −0.0072 +0.0355 −0.0106

+0.0053 −0.0248 −0.0106 +0.0301


NIKOLA

S E. M
ANITARA

Privacy Preserving Asymptotic average Consensus 34

Node 5

Node 3
Node 4

Node 2

Iterations

C
ov

ar
ia

nc
es

Figure 2.4: Values of the Covariance values for each node for the network in Figure 2.2
from time-step Lmax + 1 up to time-step Lmax + 14.

Let us assume that we have zero nodes in the network following the proposed protocol

for preserving their privacy. In such case, the malicious-curious nodes will be able to

identify the exact initial values of all the nodes in the network, and this can be easily

seen from the resulting covariance matrix below since we have zero covariance for all the

nodes in the network (which that means that the malicious-curious node will perfectly

estimate the initial value that each node contributed in the average calculation of the

network).

Cov =


0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000


.

2.5.2 Computational Study B

In this section, we present computational study results for the network in Fig. 2.5 . In

this study we make the assumption that zero nodes in the network follow the proposed

protocol, we will show throughout the results that, although the nodes are not following

the proposed protocol, some nodes will remain protected due to the connectivity of

the network. The resulting covariance matrix indicates that two nodes of the network,

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 35

NP3

NP5

NP4

NP2 M1

Figure 2.5: The black node is the malicious-curious node and the remaining nodes in
the network are just following the linear iteration for reaching average consensus.

node 3 and node 4 are protected. Actually malicious-curious node 1 is able to know

(identify) the sum of the values of these two nodes (node 3 and node 4) but not the

initial value that each node contributed to the average calculation of the network. The

covariance matrix is given bellow

Cov =


+0.0000 −0.0000 −0.0000 +0.0000

−0.0000 +0.0411 −0.0411 −0.0000

−0.000 −0.0411 −0.0411 −0.0000

+0.0000 −0.0000 −0.0000 +0.0000

 .
In this part of the computational study we assume that node 3 and node 4 are following

the proposed protocol in the network; from what we can see below, there is no significant

change in the protection of the nodes. Again, we can see that the covariances of nodes

3 and 4 are approximately equal to the 1
2σ

2
x = 1

20.083 = 0.416 which is actually what

we were expecting, since the malicious-curious node is able to know the average value of

the network and any other available information. The main reason that the malicious-

curious node calculates this result is the following. In the first iteration (k = 1), the

malicious-curious node receives the value of node 2, at the next iteration (k = 2),

the malicious-curious node receives the first accumulated sum of values of node 3 and

node 4, and at time-step k = 3, it receives the value of node 5 since in the previous two

iterations it received the values of all the other nodes (this process of data reception is

followed until average consensus is reached). So due to the connectivity and the way the

malicious-curious node receives the values, it can identify some node values, but when

two or more nodes share a single path at the same time-step, towards the malicious-

curious node, the nodes that share the same path at the same time-step (k) will remain

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 36

protected even when the proposed protocol for privacy preservation is not followed. The

covariance matrix is given below

Cov =


+0.0000 −0.0000 −0.0000 +0.0000

−0.0000 +0.0421 −0.0421 −0.0000

−0.000 −0.0421 −0.0421 −0.0000

+0.0000 −0.0000 −0.0000 +0.0000

 .
We assume now that node 3, node 4 and node 5 follow the proposed protocol in the

network. It can be seen from the calculated results that the covariance matrix below is

as expected, since now node 5 is also protected and the covariances of the other two nodes

are increased compared with their previous values. The main reason that this happens

is that, by following the proposed protocol, node 5 adds more noise in the network and

this results in the increase of the uncertainty in the calculation of the initial values of

node 3 and node 4, and at the same time protects the initial value of node 5.

Cov =


+0.0000 −0.0000 −0.0000 +0.0000

−0.0000 +0.518 −0.0518 −0.0202

−0.000 −0.0316 −0.0518 −0.0202

+0.0000 −0.0202 −0.0202 +0.0404


In all the above calculations, we make use of a fixed number of Lmax time steps where

nodes that followed the proposed protocol were adding noise in the system. Now we

will use different windows of Lmax time-steps to compare the difference in the covariance

matrices that we can have. Consider the network given in Fig. 2.2 where node 2 and

node 5 are following the proposed protocol for privacy preserving average consensus.

Below, we present three calculated covariance matrices using different values of time-

steps such as Lmax = 10, Lmax = 30 and Lmax = 100.

Cov[Lmax = 10] =


+0.0105 −0.0000 −0.0210 +0.0105

−0.0000 +0.0000 −0.0000 −0.0000

−0.00210 −0.0000 +0.0420 −0.0210

+0.0105 −0.0000 −0.0210 +0.0105



Cov[Lmax = 30] =


+0.0105 −0.0000 −0.0210 +0.0105

−0.0000 +0.0000 −0.0000 −0.0000

−0.00210 −0.0000 +0.0422 −0.0211

+0.0105 −0.0000 −0.0211 +0.0106



Cov[Lmax = 100] =


+0.0105 −0.0000 −0.0212 +0.0105

−0.0000 +0.0000 −0.0000 −0.0000

−0.00210 −0.0000 +0.0424 −0.0212

+0.0106 −0.0000 −0.0212 +0.0106


It can be seen from the results that by varying Lmax the covariance matrix values remain

stable without any significant change in the values, hence we can say that by adding

NIKOLA
S E. M

ANITARA

Privacy Preserving Asymptotic average Consensus 37

noise for Lmax > 100 nothing changes in terms of providing additional protection to the

nodes that follow the proposed protocol.

NIKOLA
S E. M

ANITARA

Chapter 3

DISTRIBUTED STOPPING

FOR AVERAGE CONSENSUS

IN UNDIRECTED GRAPHS

One of the main advantages of the popular approaches for consensus and average con-

sensus discussed in Chapter 1 is the fact that using simple local rules they are able to

calculate important quantities like the average. The main problem in the applicability

of these techniques, however, is the fact that convergence to the average is asymptotic.

Typically, this is handled by a priori determining a number of finite steps that allows

the nodes to have values sufficiently close to the average, but to do that they require

some knowledge of the network and the convergence rate of the iteration. The approach

discussed in this chapter is an alternative that does not require such knowledge and still

allows the nodes to reach approximate convergence to the average. In this chapter we

consider how the nodes can reach approximate average consensus in finite time. Perhaps

more importantly, this chapter investigates the topic of distributed stopping, i.e., how

the nodes can determine when to terminate their transmissions based on locally avail-

able information. This question has received limited attention thus far in the control

literature, with the notable exception of [1, 6], which we discuss in detail later in the

chapter.

In this chapter, we consider distributed systems with communication topologies that are

described by undirected graphs, and develop two algorithms, referred to as Algorithm 1

and Algorithm 2, that are event-triggered variations of the two basic linear iterative

strategies described in Chapter 1. We establish that all executions of Algorithm 1 and

Algorithm 2 stop in finite time, and we prove that, when all nodes eventually stop

transmitting, the absolute differences between the final values of the nodes and the

exact average of the initial values is smaller than an error bound, whose value depends

on a parameter ε and the diameter D of the underlying undirected graph.

38

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 39

The key observation in the proposed algorithms is that each node makes a decision

whether to update and/or transmit its value, based on the difference between its cal-

culated value and the values it receives from its neighbors. More specifically, a node

obtains the pairwise absolute differences between its own value and the values of each of

its neighbors, and takes different actions (such as stop communicating with a particular

neighbor or stop communicating altogether) depending on whether these differences are

smaller than the parameter ε. Note that, during the execution of either algorithm, a

link or a node that becomes inactive at a particular time step may be triggered to be-

come active at a later time step if the node value and/or the value of at least one of its

neighbors change in a way that makes their absolute difference larger than ε. In both

algorithms, the iterative process ends when all nodes cease transmitting their values, in

which case they can be shown to have reached approximate average consensus.

This chapter is organized as follows. In Section 3.1 we present previous work on dis-

tributed stopping for average consensus in undirected graphs. In Section 3.2 we introduce

the problem statement and related concepts of the chapter. In Section 3.3 we introduce

our proposed strategy and main results of the chapter. In the last Section 3.4 we provide

examples and simulation studies.

3.1 Previous Work on Distributed Stopping Average Con-

sensus in Undirected Graphs

Distributed stopping algorithms for average consensus problems have received limited

attention. The authors of [1] proposed a method (referred to here as the Y&S Algorithm)

which runs three iterations in parallel in order to identify, in a distributed manner, the

time step at which approximate average consensus has been reached. Specifically, each

node runs the average consensus algorithm as in (1.2) (with a doubly stochastic matrix

P), while also running (in parallel) a max-consensus and a min-consensus iteration:

Mi[k + 1] = max
j∈N−i ∪{i}

{Mj [k]} (max-consensus)

mi[k + 1] = min
j∈N−i ∪{i}

{mj [k]} (min-consensus)

The max-consensus and the min-consensus iterations are re-initialized every D steps,

where D is the diameter of the graph which is assumed known. When the max-consensus

and min-consensus iterations are re-initialized, they use the current values of the itera-

tion in (1.2) more specifically, at iteration lD (for some nonnegative integer l) the max-

consensus and min-consensus algorithms are initialized with values Mi[lD] = mi[lD] =

xi[lD]. At iteration (l + 1)D each node obtains Mi[(l + 1)D] = maxj{xj [lD]} and

mi[(l+1)D] = minj{xj [lD]}. When the difference between these two values satisfies the

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 40

criterion below, then node i stops iterating. When the criterion is not satisfied, node i

continues iterating until

|Mi[(l + 1)D]−mi[(l + 1)D]| ≤ ε, (3.1)

where parameter ε is a given small real number. Note that all nodes will simultaneously

stop iterating, at which point |maxj{xj [lD]}−minj{xj [lD]}| ≤ ε, and also |xi[lD]−x̄| ≤
ε for all i ∈ X [1].

The main difference from what we propose in this work is that the strategy in [1] has

the nodes execute (1.2) with fixed weights and imposes an additional mechanism to

determine when all nodes have values that are sufficiently close (and also sufficiently

close to the average). Instead, the algorithms we propose consider time-varying versions

of the iteration in (1.2) or the iterations in (1.7)–(1.8), eliminate the need for max/min

consensus iterations, and allow different nodes to stop at different time steps (in fact, a

node that has stopped transmitting may later resume transmitting). What is perhaps

more important is that the proposed approach avoids the overhead associated with

the max- and min-consensus iterations. It is also worth pointing out that, though the

approach in [1] also works for directed graphs, the availability of a set of weights that

form a doubly stochastic matrix is not as immediate in that case (see, for example, the

discussions in [21]).

In the event-based control literature, researchers have also considered distributed al-

gorithms for average consensus. In particular, when we translate to discrete-time the

approach in [6] (it was developed for continuous-time systems), we obtain an event-

triggering scheme in which (unlike our approach) each node uses a fixed set of weights

in its updates, but makes sure that it uses its last transmitted value (as opposed to its

actual — internal — value, which may be different). Such a scheme indeed leads to

node values that are within ε of the average in finite time, but the nodes never stop

computing (in other words, internal node values keep changing indefinitely).

3.2 Problem Statement and Related Concepts

All of this section assumes the following setting.

Setting: Consider a network described by a digraphG = {X,E}, whereX = {1, 2, ..., n}
and E ⊆ X × X − {(i, i) | i ∈ X}. Each node i has some initial value xi[0] = Vi and

updates its value following a distributed iterative algorithm for f steps.

In terms of the definition below we are interested in reaching ε-approximate average con-

sensus and also in identifying (in a distributed manner) when such approximate average

consensus has been reached.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 41

3

() (3)Error Bound D       

() (3)Error Bound D       

1x 2x 3x 4x
1

fx 
2

fx  3

fx 

1

fx  2

fx  3

fx 

4

fx 

4

fx 

Figure 3.1: Digraph with initial error bound for each node and total network error
bound.

Definition 3.1. (ε-Approximate Average Consensus) At the end of the iterative process

in the above setting, the nodes have reached ε-approximate average consensus if the value

xi[f] of each node i ∈ X satisfies |xi[f] − x̄| ≤ ε , ∀i ∈ X, where x̄ = 1
n

∑n
l=1 Vl is the

average of the initial values.

Definition 3.2. (ε-Approximate Local Consensus and ε-Approximate Global Consen-

sus) At the end of the iterative process in the above setting, the nodes reach ε-approximate

local consensus if for all nodes i ∈ X, we have |xi[f] − xj [f]| ≤ ε,∀j ∈ N−i .The nodes

reach ε-approximate global consensus if |xi[f]− xj [f]| ≤ ε, ∀i, j ∈ X .

Proposition 3.3. If at the end of the iterative process in the above setting the nodes

have reached ε-approximate local consensus, then the nodes have also reached (Dε)-

approximate global consensus, where D is the diameter of graph G.

Proof. Let |xi[f] − xj [f]| ≤ ε for all i, and all j ∈ N−i (local consensus). For any

i, j ∈ X, i 6= j, consider the minimum length path (of length t) that connects them (i.e.,

(i1, i0), (i2, i1), ..., (it, it−1) ∈ E and no such path involving t− 1 or less edges exists). It

follows from the definition of the graph diameter that t ≤ D. The difference xj [f]−xi[f]

can be written as

xj [f]− xi[f] = (xit [f]− xit−1 [f]) + (xit−1 [f]− xit−2 [f])

+ . . .+ (xi1 [f]− xi0 [f])

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 42

and, using the triangle inequality, we have

|xi[f]− xj [f]| ≤
t∑
l=1

|xil [f]− xil−1
[f]| ≤ t× ε ≤ Dε .

This completes the proof of the proposition.

Proposition 3.4. Suppose that, at the end of the iterative process in the above setting,

the following are true:

(1) The nodes reach ε-approximate global consensus;

(2) The average x̄ = 1
n

∑n
l=1 Vl satisfies xmin[f] ≤ x̄ ≤ xmax[f] where xmin[f] ≡

minj{xj [f]} and xmax[f] ≡ maxj{xj [f]}.
Then, the nodes also reach ε-approximate average consensus.

Proof. Consider two nodes i, j ∈ X, j 6= i, and assume without loss of generality that

xi[f] ≥ xj [f]. Then we have |xi[f]−xj [f]| = xi[f]−xj [f] ≤ xmax[f]−xmin[f] ≤ ε. Since

xmin ≤ x ≤ xmax we have that |xi[f]− x| ≤ ε.
This completes the proof of the proposition.

3.3 Proposed Strategies and Main Results

Overview of Algorithm 1: In order to enable the nodes to identify the correct time step

to stop transmitting their values, the weights pij are allowed to be time-varying and the

iteration in (1.2) becomes

xi[k + 1] = pii[k]xi[k] +
∑
j∈Ni

pij [k]xj [k] , (3.2)

where pij [k] form a set of time-varying weights. If we aggregate the values for all the

nodes at time-step k into the value vector x[k] = [x1[k], x2[k], ..., xn[k]]T , the update

strategy for the entire network can be written compactly as

x[k + 1] = P [k]x[k] , (3.3)

where the matrix P [k] will be chosen to be doubly stochastic (and symmetric) and the

weights will satisfy pij [k] = 0 if (i, j) /∈ E[k], with E[k] ⊆ E being the subset of active

edges. In order to determine the set of active edges E[k] at each time step, each node

i compares its value against the value of each of its neighbors j ∈ Ni: if the absolute

difference |xi[k] − xj [k]| > ε, then the edge that connects the two nodes is utilized;

otherwise, the edge is ignored. In other words, we take

E[k] = {(i, j) ∈ E | |xi[k]− xj [k]| > ε} . (3.4)

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 43

Given the above choice of E[k], we have a sequence of undirected graphs G[k] =

{X,E[k]} (since (3.4) is symmetric).

Given an undirected graph G[k] = {X,E[k]}, we consider three different ways of having

the nodes distributively assign the time-varying weights pij [k] such that the resulting

matrix P [k] = [pij [k]] is doubly stochastic and symmetric (but not necessarily primitive).

(1) Equal weights: Assuming the nodes know the total number of nodes n or an upper

bound n′ ≥ n, each node i chooses (nonnegative) weights on active links as

p
(eq)
ij [k] =


1
n′ , if (i, j) ∈ E[k] ,

0 , if (i, j) /∈ E[k], i 6= j,

1− Di[k]
n′ , if j = i,

(3.5)

where Di[k] = D+
i [k] = D−i [k] is the degree of node i in graph G[k]. We let Peq[k] =

[p
(eq)
ij [k]].

(2) Metropolis weights: Another simple choice are the Metropolis weights (see, for ex-

ample, [20]) where

p
(M)
ij [k] =


1

1+max(Di,Dj) , if (i, j) ∈ E[k],

0 , if (i, j) /∈ E[k], i 6= j,

1−
∑

j,j 6=i p
(M)
ij [k] , if j = i ,

(3.6)

where Di is the degree of node i in graph G. We let PM [k] = [p
(M)
ij [k]].

(3) Time-Varying Metropolis Weights with Low Self-Weight: A variation of Metropolis

weights that results in a doubly stochastic (and symmetric but not necessarily primitive)

weight matrix is provided by

p
(tM)
ij [k] =


1

C+max(Di[k],Dj [k]) , if (i, j) ∈ E[k],

0 , if (i, j) /∈ E[k], i 6= j,

1−
∑

j,j 6=i p
(tM)
ij [k] , if j = i ,

(3.7)

where C > 0 is a small nonzero constant and Di[k] is the degree of node i in graph G[k].

We let PtM [k] = [p
(tM)
ij [k]].

Algorithm 1 essentially involves variations of the execution of (3.3) with weight matrices

P [k] given by one of the three choices above (Peq[kl], PM [k], or PtM [k]), where edges

E[k] are determined by (3.4). A formal description of Algorithm 1 (for the case when

P [k[= Peq[k]) is provided below. We will see in the simulations section that different

weight choices have implications in terms of the steps and transmissions needed until

the nodes stop transmitting and reach approximate average consensus.

Remark 3.5. Suppose that for node i, we have |xi[k]− xj [k]| ≤ ε for all j ∈ Ni; then all

edges to/from node i become inactive, which implies that the value xi[k] will not change.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 44

Algorithm 1 Distributed Stopping for Average Consensus (Single Iteration)

Input: Each node i sets xi[0] = Vi, pii[−1] = 0 and does the following:
For k ≥ 0, for each node i,
Broadcast: xi[k] (unless pii[k − 1] = 1)
Receive: xj [k] ∀ j ∈ Ni
(if no value is received, set xj [k] = xj [k − 1])
Compute:
For j ∈ Ni
check(i, j) = |xi[k]− xj [k]|
if check(i, j) > ε then
pij [k] = 1

n (active link)
else pij [k] = 0 (inactive link)
End
Set: pii[k] = 1−

∑
j∈Ni

pij [k]
Update: xi[k + 1] = pii[k]xi[k] +

∑
j∈Ni

pij [k]xj [k]
End

Effectively, node i can stop transmitting its value (at least until one of its edges becomes

active again). In the simulations in Section 3.4 we compare performance among different

stopping algorithms by counting the total number of broadcasts (until the distributed

stopping scheme reaches approximate average consensus).

Theorem 3.6. Consider a network described by a connected undirected graph G =

{X,E}, and the time-varying iteration in (3.3) with weight matrices P [k] obtained ac-

cording to one of the constructions in (3.5)–(3.7) applied to the graph G[k] = {X,E[k]}
with edges E[k] given by (3.4). Following Algorithm 1, the nodes reach (Dε)-approximate

average consensus after a finite number of iterations.

Proof. We first establish that the nodes will stop after a finite number of iterations f .

The proof is by contradiction: suppose that the iteration runs forever; this means that at

each iteration k at least two neighboring nodes are active. Let A = {(i1, j1), (i2, j2), . . . ,

(iκ, jκ)} ⊆ E be the non-empty set of edges that are active infinitely often. Also, let `

be the latest iteration at which an edge in the set E −A is active (note that ` is finite).

We have that E[k] ⊆ A for k > ` (i.e., after time step ` the active edges belong in the

set A).

Since each E[k] results in an undirected graph G[k] = {X,E[k]}, the graph {X,A}
is also an undirected graph and can be partitioned into connected components [36].

Suppose that there are q such components, namely G1 = {X1, A1}, G2 = {X2, A2}, ...,

Gq = {Xq, Aq}, where X1, X2, ..., Xq form a partition of X, and where A1, A2, ..., Aq

form a partition of A. Moreover, for k > `, each matrix P [k] is a doubly stochastic

matrix (not necessarily primitive because the graph G[k] may be disconnected). Under

proper permutation of the nodes, P [k] can be put in block-diagonal form (each block

corresponding to one of the connected components in graph {X,A}). In other words,

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 45

P [k] = diag(P1[k], ..., Pq[k]) where the q blocks may differ in size, but their dimension

remains identical at each time step k, k > `.

Without loss of generality, let us focus at the first block. The node values at iteration

k′ > ` in this first connected component of graph G, captured by vector x(1)[k′], are given

by x(1)[k′] = P1[k′−1]...P1[`+ 2]P1[`+ 1]x(1)[`] ,where x(1)[`] are the values of the nodes

in this component at iteration `. Since edges in this connected component are activated

infinitely often, we can choose k′ large enough so that for any finite integerM , we can find

M consecutive finite windows of length at most K (for some large enough integer K) such

that the products P1[mK+`+K] . . . P1[mK+`+2]P1[mK+`+1], m = 0, 1, 2, ...,M , form

primitive doubly stochastic matrices. One way to realize this is to choose K large enough

so that the union graphs Gm = {X1,∪mK+`+K
k=mK+`+1E1[k]} (where E1[k] ⊆ A1 is the subset

of edges in E[k] that belong in A1) for m = 0, 1, 2, ...,M satisfy ∪mK+`+K
k=mK+`+1E1[k] = A1

(since edges in A1 are active infinitely often, we can always choose K large enough). This

would imply that the corresponding union graphs Gm are (strongly) connected. Under

such conditions, for large enough k′, we have P1[k′−1]...P1[`+2]P1[`+1]→ 1
|X1|11T ,i.e.,

the product of matrices converges (as k′ goes to infinity) to the rank one matrix with

constant entries equal to 1/|X1| (e.g., see [37] for doubly stochastic matrices or [22] for

the more general case of column stochastic matrices). It follows that the values of the

nodes in X1 asymptotically reach the same value (which is actually the average of their

values at iteration ` since x(1)[k′] → (1Tx(1)[`]/|X1|)1). This implies that the edges in

the connected component would cease to be active after a finite number of iterations,

which is a contradiction.

Clearly, when the nodes stop at some iteration f , we have ε-approximate local consensus

(otherwise, at least one edge will be active). By Proposition 3.3, we also have (Dε)-

approximate global consensus. Moreover, we clearly have

xmin[f] ≤ 1

n

n∑
l=1

xl[f] ≤ xmax[f]

and, since each matrix P [k] = [pij [k]] is column stochastic (in fact, the matrices P [k] are

all doubly stochastic), we also have
∑n

l=1 xl[k+ 1] =
∑n

l=1 xl[k], and thus 1
n

∑n
l=1 xl[k+

1] = 1
n

∑n
l=1 xl[k] = 1

n

∑n
l=1 Vl = x̄ for all k. Thus, we establish that xmin[f] ≤ x̄ ≤

xmax[f] and, applying Proposition 3.4, we conclude that the nodes have reached (Dε)-

approximate average consensus.

Overview of Algorithm 2: Algorithm 2 is a time-varying version of the ratio consensus

algorithm in Eqs. (1.7)–(1.8). As in the case of Algorithm 1, each edge (i, j) ∈ E becomes

inactive when the two nodes associated with it are in approximate agreement in terms of

their ratios (i.e., |ri[k]−rj [k]| ≤ ε where ri[k] = yi[k]/zi[k]). Thus, the set of active edges

at iteration k forms an undirected (but not necessarily connected) graph and weights are

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 46

chosen to form a column stochastic matrix Pc[k] (the construction of Pc[k] is described

in detail next). Algorithm 2 essentially implements time-varying iterations of the form

y[k + 1] = Pc[k]y[k] and z[k + 1] = Pc[k]z[k].

The set of active edges at time step k resembles the set of active edges in Algorithm 1:

E[k] = {(i, j) ∈ E | |ri[k] − rj [k]| > ε} and is, of course, symmetric at any given time

step. Given E[k], the weight matrix Pc[k] is a column stochastic matrix Pc[k] = [p
(c)
ij [k]]

(not necessarily symmetric and not necessarily primitive) where

p
(c)
ij [k] =

{
1

1+Di[k] , if (i, j) ∈ E[k], or i = j,

0 , if (i, j) /∈ E[k] ,
(3.8)

where Di[k] is the degree of node i in graph G[k] = {X,E[k]}. Each diagonal entry pii[k]

is chosen so that the resulting matrix P [k] is column stochastic.

Algorithm 2 is described in detail below. Since nodes may seize transmission, deter-

mining whether an edge should be active or not needs to be made against the ratio of

the last transmitted values of each node. In Algorithm 2, lastseenratioi(j) captures

the ratio rj [k] = yj [k]/zj [k] of the values of node j, last seen at node i; moreover,

node i also updates its own lastseenratioi(i) each time it transmits its values so that

lastseenratioj(i) = lastseenratioi(i) for all j ∈ Ni.

Algorithm 2 Distributed Stopping for Average Consensus (Double Iteration)

Input: Each node i sets yi[0] = Vi, zi[0] = 1, lastseenratioi(j) = ∞ for j ∈ Ni,
Ni[0] = Ni, and pli[0] = 1/(1 + |Ni[0]|) ∀l ∈ Ni[0] ∪ {i}
For k ≥ 0, for each node i,
Broadcast: ȳi[k] = pli[k]yi[k], z̄i[k] = pli[k]zi[k]
to all l ∈ Ni, and update
lastseenratioi(i) = ȳi[k]

z̄i[k]

(do not broadcast or update
lastseenratioi(i) if pli[k] = 0, ∀l ∈ Ni)
Receive: ȳj [k] and z̄j [k] from all j ∈ Ni[k]

and update lastseenratioi(j) = rj [k] =
ȳj [k]
z̄j [k]

(if no value is received from j ∈ Ni,
lastseenratioi(j) remains unchanged)
Compute:
yi[k + 1] = pii[k]yi[k] +

∑
j∈Ni[k] ȳj [k]

zi[k + 1] = pii[k]zi[k] +
∑

j∈Ni[k] z̄j [k]
Determine Neighbors:
Set Ni[k + 1] = {l ∈ Ni | |lastseenratioi(l)− lastseenratioi(i)| > ε}
Set weights pli[k + 1] = 1/(1 + |Ni[k + 1]|), ∀l ∈ Ni[k + 1] ∪ {i}
End

Theorem 3.7. Consider a fixed network described by a connected undirected graph G =

{X,E}. Nodes following Algorithm 2 reach (Dε)-approximate average consensus (where

D is the diameter of the graph) after a finite time of steps f . The final values that the

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 47

nodes obtain satisfy ∣∣∣∣yi[f]]

zi[f]
− x̄
∣∣∣∣ ≤ Dε . (3.9)

Proof: We first establish, by contradiction, that the nodes will stop after a finite number

of iterations f . If the iteration runs forever, we can use an argument as in the proof of

Theorem 3.6 to establish that there is a set of edges A ⊆ E that are active infinitely

often such that the graph {X,A} is undirected (but not necessarily connected). Letting

` be the latest iteration at which an edge in the set E − A is active and re-ordering

the nodes, we know that for k > ` we can write Pc[k] as a block diagonal matrix

Pc[k] = diag(P1[k], ..., Pq[k]) where the q blocks may differ in size, but their dimension

remains identical at each time step k. Moreover, each block Pi[k], i = 1, 2, ..., q, is

a column stochastic matrix (unlike Theorem 3.6, matrices Pi[k] in this case are not

necessarily doubly stochastic).

Focusing without loss on generality on the first block, the node values at iteration k′ > `

in this first connected component of graph {X,A}, captured by vectors y1[k′] and z1[k′],

are given by

y(1)[k′] = P1[k′ − 1]...P1[`+ 2]P1[`+ 1]y(1)[`] ,

z(1)[k′] = P1[k′ − 1]...P1[`+ 2]P1[`+ 1]z(1)[`] ,

where y(1)[`] and z(1)[`] are the values of the nodes in this component at iteration `.

Since edges in this connected component are activated infinitely often, we can choose

k′ large enough so that, for any desirable integer M > 0, we can find consecutive finite

windows of length at most K (for some large enough integer K) such that the products

P1[mK + ` + K] . . . P1[mK + ` + 2]P1[mK + ` + 1], m = 0, 1, 2, ...,M , form primitive

column stochastic matrices (see also the proof of Theorem 3.6). Under such conditions,

for large enough k′, we have [22] P1[k′−1]...P1[`+2]P1[`+1]→ 1
|X1|ck′1

T ,where ck′ is a

strictly positive column vector (normalized so that its entries sum to |X1|). Notice that

in this case there is no convergence of the matrix product (since the column vector ck′

changes with k′); however, as M grows, the product of matrices (increasingly) takes the

form of a strictly positive rank one matrix. It follows that the ratio at each node in the

connected component asymptotically becomes equal to (
∑

i∈X1
yi[`])/(

∑
i∈X1

zi[`]), i.e.,

the edges in the connected component would cease to be active after a finite number of

iterations, which is a contradiction.

Clearly, when the nodes stop at iteration f , we have ε-approximate local consensus, and

(due to Proposition 2) (Dε)-approximate global consensus. Moreover, we have

rmin[f] ≤
∑n

l=1 yl[f]∑n
l=1 zl[f]

≤ rmax[f] (3.10)

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 48

1

2 4 5 7

8

9

10 11

12 X12

X11 X1

X2

X3

X4

X10

X9

X8

X7

X7

X6

Figure 3.2: Example of an undirected graph.

(where rmin[f] = mini

{
yi[f]
zi[f]

}
and rmax[f] = maxi

{
yi[f]
zi[f]]

}
). To see this, note that

ri[f]zi[f] = yi[f], i.e.,
∑n

l=1 rl[f]zl[f] =
∑n

l=1 yl[f]. Since zi[f] ≥ 0 for all i, we have

rmin[f]

n∑
l=1

zl[f] ≤
n∑
l=1

yl[f] , rmax[f]

n∑
l=1

zl[f] ≥
n∑
l=1

yl[f]

and, dividing by
∑n

l=1 zl[f] > 0, we obtain (3.10). Since the weights at each iteration

k form column stochastic matrices, we have
∑n

l=1 yl[f] =
∑n

l=1 yl[0] and
∑n

l=1 zl[f] =∑n
l=1 zl[0]. We conclude that rmin[f] ≤ x̄ = 1

n

∑n
l=1 Vl ≤ rmax[f] , i.e., the nodes have

reached (Dε)-approximate average consensus.
√

3.4 Examples and Simulation Studies

3.4.1 Small Graph

We first compare the proposed algorithm (Algorithm 1) against the Y&S algorithm

in [1], by carrying out simulations on an undirected graph of twelve nodes with di-

ameter D = 7, as shown in Fig. 3.2. We use the following initial values x[0] =

[a, a, a, a, b, b, b, b, b, b, a, a]T , where a = 0.001 and b = 100. Using ε = 0.0001, Fig. 3.5

shows, for each algorithm, the evolution of the node values until termination, and Ta-

ble 3.1 shows the required number of steps and number of transmissions.

As expected, both algorithms reach approximate average consensus in a finite number of

iterations. The two algorithms require about the same number of steps to terminate, but

Algorithm 1 requires significantly less transmissions. Note that the way we calculate the

number of transmissions is according to the number of values that are required for each

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 49

Simulation Results for Graph in Fig. 3.2

Algorithm Last Time-Step No. of Transmissions

Y & S 1059 38376

Algorithm 1 948 11096

Table 3.1: Required number of time steps and transmissions for Algorithm 1 and the
Y&S Algorithm in [1] for the undirected graph in Fig. 3.2, with ε = 0.0001.

0 200 400 600 800 1000 1200
0

50

100

Time step k (iteration)

N
o
d
e
 v

a
lu

e
s

V. Yadav and M. Salapaka Algorithm

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

Time step k (iteration)

N
o
d
e
 v

a
lu

e
s

Algorithm 1

Figure 3.3: Evolution of node values for the undirected graph in Fig. 3.2, with ε =
0.0001.

algorithm: for Algorithm 1 a single transmission is required by each active1 node at each

time-step (in order to send its value), whereas for the Y&S algorithm proposed in [1],

three transmissions are needed from each node (the iteration value xi[k], the maximum

yi[k], and the minimum zi[k]).

For a fairer comparison of the two algorithms, simulations were carried with different

values of ε among the two algorithms, since following the Y&S algorithm in [1] nodes

reach ε-approximate average consensus whereas following Algorithm 1 nodes reach (D×
ε)-approximate average consensus. The evolutions of the node values for each algorithm

are shown in Fig. 3.4 and the required number of steps and transmissions in Table 3.2.

1Recall that a node becomes inactive if all links to its neighbors are inactive.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 50

0 200 400 600 800 1000 1200
0

50

100

Time step k (iteration)

N
o
d
e
 v

a
lu

e
s

V. Yadav and M. Salapaka Algorithm

0 200 400 600 800 1000 1200
0

50

100

Time step k (iteration)

N
o
d
e
 v

a
lu

e
s

Algorithm 1

Figure 3.4: Evolution of node values for the undirected graph in Fig. 3.2, with pa-
rameter ε = 0.0001 for the Y&S Algorithm in [1] and parameter ε = 0.0001/D for

Algorithm 1.

Simulation Results for Graph in Fig. 3.2

Algorithm Last Time-Step No. of Transmissions

Y & S 1059 38376

Algorithm 1 1095 12860

Table 3.2: Required number of time steps and transmissions for the undirected graph
in Fig. 3.2, with parameter ε = 0.0001 for the Y&S Algorithm in [1] and parameter

ε = 0.0001/D for Algorithm 1.

Comparing the results in Table 3.1 and in Table 3.2, we see that in both cases the

number of transmissions that are required for reaching approximate average consensus

is significantly smaller with the proposed Algorithm 1 than with the Y&S algorithm in

[1].

Finally we illustrate the proposed Algorithms 1 and 2 against the Y&S Algorithm in [1],

by carrying out simulations on the undirected graph of twelve nodes and diameter D = 7

shown in Fig. 3.2. We take x[0] = [a, a, a, a, b, b, b, b, b, b, a, a]T with a = 0 and b = 0.1.

For fair comparison of the three algorithms, simulations were carried with different values

of ε among the three algorithms. Specifically, we use ε = 0.0001 for the Y&S Algorithm

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 51

0 100 200 300 400 500 600
0

0.05

0.1

Time step k (iteration)

N
o
d
e
 v

a
lu

e
s

V. Yadav and M. Salapaka Algorithm

0 100 200 300 400 500 600
0

0.05

0.1

Time step k (iteration)

N
o
d
e
 v

a
lu

e
s

Algorithm 1 (equal weights)

0 20 40 60 80 100 120 140
0

0.05

0.1

Time step k (iterations)

N
o
d
e
 v

a
lu

e
s
 (

ra
ti
o
)

Algorithm 2

Figure 3.5: Evolution of node values for the undirected graph in Fig. 3.2 using equal
weights for Algorithm 1.

in [1] and ε′ = ε/D for the proposed algorithms (so that approximate convergence to the

average is of the same order for all algorithms). Fig. 3.5 shows the evolution of the nodes

values using the three algorithms. Comparing the results in Table 3.3, we see that in

both cases the number of transmitted values that are required for reaching approximate

average consensus is significantly smaller (in terms of the last time step and the total

transmitted values) for the proposed algorithms compared to the Y&S algorithm in [1].

In particular, time-varying Metropolis weights with low self-weight (C = 0.02), result

in significant reduction in the number of time steps and transmitted values that are

required to reach approximate average consensus.

3.4.2 Random Graphs

In this part we present results based on randomly generated undirected graphs with 100

nodes and probability of connection equal to 0.3 (i.e., for each pair of nodes i, j ∈ X,

i 6= j, both edges (i, j), (j, i) ∈ E with probability equal to 0.3). Nodes have initial values

randomly chosen to be uniform in the interval [0, 1], independently between each other.

We consider 100 random graphs (with different instances of random initial conditions for

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 52

Simulation Results for Graph in Fig. 3.2

Algorithm Last Time Transmissions

Y&S Algorithm 534 19476

Algorithm 1(Equal) 573 6596

Algorithm 1(Metropolis) 299 3357

Algorithm 1(Low-self) 145 1620

Algorithm 2 134 3084

Table 3.3: Simulation results for the undirected graph in Fig. 3.2, with parameter
ε = 0.0001 for Y&S Algorithm and ε′ = 0.0001/D for Algorithm 1 and Algorithm 2.

Simulation Results

Algorithm Min. Trans Max. Trans Aver. Trans

Y & S 14040 18000 11700

Algorithm 1 3616 4717 4108

Algorithm Min. Steps Max. Steps Aver. Steps

Y & S 37 58 45

Algorithm 1 49 81 60

Table 3.4: Minimum, maximum, and average numbers of required time steps and
transmissions in simulations for 100 random undirected graphs (with 100 nodes), with

parameter ε = 0.0001.

each graph) and run both algorithms; we record the maximum, minimum, and average

number of required steps and transmissions for reaching approximate average consensus

in Table 3.4. Similarly, in Table 3.5 we present simulation results of 100 random undi-

rected graphs (with 100 nodes), using parameter ε = 0.0001 for the Y&S algorithm in

[1] and parameter ε = 0.0001/D (where D is the diameter of the graph under consider-

ation) for Algorithm 1. As observed previously, Algorithm 1 requires significantly less

transmissions for reaching ε-approximate average consensus than the Y&S algorithm in

[1] (the number of steps to termination is larger for Algorithm 1, the advantage in the

number of transmissions is created due to the need to run the max- and min-consensus

iterations in [1]).

Moreover, simulations were carried out for comparing the number of transmissions

against the value of parameter ε. It can be seen from Fig. 3.6 that the number of

steps to terminate for both algorithms has a linear dependency on the logarithm of

parameter ε. In particular, as the value of ε becomes smaller (in the simulations ε

varies from 10−1 to 10−8), the number of transmissions required for both algorithms to

terminate increases monotonically.

From the simulation results, we see that the proposed algorithm (Algorithm 1) requires

significantly less transmissions than the Y&S Algorithm, mainly because it is able to

converge around the same number of steps but does not require to continuously run the

max- and min-consensus iterations.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 53

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0

0.5

1

1.5

2

2.5

3
x 10

4

log(ε)

T
ra

n
s
m

is
s
io

n
s

V. Yadav and M. Salapaka Algorithm Vs Algorithm 1

Average of Ref. [10]

Average of Algorithm 1

Average of Y & S
Average of Algorithm 1

Figure 3.6: Average number of transmissions for Algorithm 1 and the Y&S Algorithm,
for 100 random graphs with different instances of initial conditions, for each different

log(ε) point.

Simulation Results

Algorithm Min. Trans Max. Trans Aver. Trans

Y & S 11700 18000 13833

Algorithm 1 3889 5706 4474

Algorithm Min. Steps Max. Steps Aver. Steps

Y & S 38 57 44

Algorithm 1 53 88 62

Table 3.5: Minimum, maximum, and average numbers of required time steps and
transmissions in simulations for 100 random undirected graphs (with 100 nodes), with
parameter ε = 0.0001 for the Y&S Algorithm and parameter ε = 0.0001/D for Algo-

rithm 1.NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 54

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Connectivity

T
ra

n
s
m

is
s
io

n
s

Average-Min-Max Number of Transmissions

Average of Ref. [14]

Min of Ref. [14]

Max of Ref. [14]

Average of Algorithm 1

Min of Algorithm 1

Max of Algorithm 1

Average of Algorithm 2

Min of Algorithm 2

Max of Algorithm 2

Average of Y&S Algorithm
Min of Y&S Algorithm
Max of Y&S Algorithm

Average of Algorithm 1
Min of Algorithm 1
Max of Algorithm 1

Average of Algorithm 2
Min of Algorithm 2
Max of Algorithm 2

Figure 3.7: Average, maximum and minimum number of transmissions for Algo-
rithm 1, Algorithm 2 and Y&S Algorithm.

3.4.3 Graph Connectivity

Finally, we present results based on the connectivity of the network, based on randomly

generated undirected graphs with 100 nodes and probability of connection from 0.2 to 0.9

(i.e., for each pair of nodes i, j ∈ X, i 6= j, both edges (i, j), (j, i) ∈ E with probability

equal to 0.2 < pr < 0.9). Nodes have initial values randomly chosen to be uniform in

the interval [0, 1], independently between each other. We consider 100 random graphs

(with different instances of random initial conditions for each graph) and run both

algorithms; we record the maximum, minimum, and average number of required steps

and transmissions for reaching approximate average consensus in as shown in 3.7.

What it can be seen easily from Fig. 3.7 is that the less connected a network is, the

more transmissions it requires for the nodes to reach agreement on the average value

of the network. It is also observable from the plot that the Y&S Algorithm it requires

more transmissions to converge to the mean value of the network, and mainly this is due

to the fact that for every time step it requires three different values to be transmitted,

instead in our case we only need 1 transmission for the single iterative scheme and 2

transmission for the double iterative scheme (ratio consensus). Although Algorithm 2

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Undirected Graphs via Event-Triggered
Strategies 55

requires 2 transmissions at each time step we can see that convergence is faster than

Algorithm 1, and this is due to the convergence rate that ratio consensus can give against

single iterative scheme.

NIKOLA
S E. M

ANITARA

Chapter 4

DISTRIBUTED STOPPING

FOR AVERAGE CONSENSUS

IN DIGRAPHS

In this chapter we consider how the nodes can reach approximate average consensus in

finite time while employing appropriately modified versions of the ratio consensus algo-

rithm (thus, maintaining its advantages in terms of simplicity and reliance to minimal

local information). Perhaps more importantly, the chapter investigates the topic of dis-

tributed stopping, i.e., how the nodes can determine when to terminate the execution

of the algorithm based on locally available information.

Chapter 3 has studied this problem in a setting where the communication topology

is described by an undirected graph; as we will argue in this chapter, the problem

becomes significantly more challenging in the case of communication topologies that are

described by directed graphs (digraphs), which is the focus of this chapter. We propose

two event-triggered iterative strategies, one randomized and one deterministic, both of

which depend on a parameter ε (small real number) that bounds, at the termination of

the iterative process, the closeness of the final value of each node to the true average of

their initial values. For the proposed event-triggered strategies, we prove that,

• All nodes eventually stop transmitting.

• The absolute difference of the final value of each node from the true average of the

initial values is smaller than an error bound whose value depends on the parameter

ε and the diameterD of the graph (in the case of the proposed randomized strategy,

the above occurs with probability one).

The end results are randomized/deterministic protocols that not only avoid running the

consensus algorithm indefinitely, but also allow each node to cease transmitting when its

value is within a small distance from the values of its in-neighbors (e.g., in order to save

56

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 57

energy). In this way, the protocol allows each node to reduce the total number of values

transmitted in the network before the nodes reach approximate agreement to the average

of their initial values; specifically, nodes that are in agreement with their in-neighbors

may choose not to update and/or transmit their value to their out-neighbors

The key observation in the proposed algorithm is that each node makes a decision regard-

ing whether to transmit its value or not, primarily based on the difference between its

calculated value and the values it receives from its in-neighbors. More specifically, each

node calculates the pairwise absolute differences between its own value and the values

of each of its in-neighbors, and takes action (such as stop communicating) depending on

whether these differences are smaller than the parameter ε. In the probabilistic protocol,

for example, a node that has stopped transmitting its value, may be triggered to start

transmitting again with a given probability p if it receives a value from one or more of

its neighbors. A node also resumes transmission if there are significant changes in the

values received from its in-neighbors or in its own value since its last transmission. The

iterative process ends when all nodes cease to transmit their values, in which case they

can be shown to have reached approximate average consensus. It is worth pointing out

that there are two proposed protocols, one randomized and one deterministic.

This chapter is organized as follows. In Section 4.1 we present previous work on dis-

tributed stopping for average consensus in directed graphs. In Section 4.2 we introduce

the problem statement and related concepts of the chapter. In Section 4.3 we introduce

our proposed strategy and main results of the chapter. In Section 4.4 we provide exam-

ples and simulation analysis. Finally in Section 4.5 we provide some discussion about

our proposed algorithms against other algorithms and we compare their capabilities.

4.1 Previous Work on Distributed Stopping for Average

Consensus in Digraphs

The method in [1] was described in Chapter 3 and can be applied to a given digraph, if

the nodes have set of weights that forms a primitive doubly stochastic matrix P . The

availability of such weights, however, is not immediate in directed graphs. The authors

of [38] proposed a method which runs three double linear iterations in parallel (ratio

consensus) in order to identify, in a distributed manner, the time step at which approx-

imate average consensus is reached. The method is applicable to strongly connected

digraphs, as long as the set of weights pij forms a primitive column stochastic matrix

Pc . The main idea of the work in [38], is that iterations can be used to check when

the ratios of the nodes are sufficiently close using the min- and max-consensus iterations

to allow nodes to determine the timestep when their ratios are within ε of each other.

More specifically, each node i runs the ratio consensus iteration as in (1.6), in order

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 58

to allow the nodes to determine when the ratios ri for all nodes are close to average

value of the network. Each node maintains two additional state variables, mi[k] and

Mi[k], which are updated using min- and max-consensus respectively. These two state

variables are compared every D iterations to check whether |Mi[k] −mi[k]| < ε; if this

condition holds node i stops iterating, otherwise values mi[k] and Mi[k] are initialized

to ri[k] = yi[k]/zi[k]. Note that all the nodes will simultaneously stop iterating since

they will simultaneously learn that they have reached approximate agreement(which is

easily shown in [38] to be close to the average value of the initial values). Effectively,

the max- and min-consensus iterations implement an oracle that tells the nodes to stop

when their values are within ε of each other (the only difference is that the oracle might

be delayed by at most 2D steps). Also note that, in order to implement the oracle, one

needs extra values to be transmitted (to run the max/min-consensus algorithms). The

pseudocode of this algorithm can be found below named as Algorithm 3.

Algorithm 3 Distributed Stopping for Average Consensus (Ratio)

Input: Each node i ∈ E has initial value Vi and knows its out-degree D+
i . Initial values

for the two iterations are set to yi[0] = Vi and zi[0] = 1.

Set: Mi[0] = +∞, mi[0] = −∞, ui[0] = 0, ri = yi[0]
zi[0]

Set: pli = 1
1+D+

i

, ∀vl ∈ N+
i ∪ {vi} (zero otherwise)

For k ≥ 0, for each node i, do
while ui[k] = 0 do

if k mod D = 0 and k 6= 0 then
if |Mi −mi| < ε then

set ui[k] = 1
end if

set Mi[k] = mi[k] = ri[k] = yi[k]
zi[k]

end if
Broadcast to all: vl ∈ N+

i , pli[k]yi[k], pli[k]zi[k], Mi[k], mi[k]
Receive from all: vj ∈ N−i pij [k]yj [k], pij [k]zj [k], Mj [k], mj [k]
Compute:
yi[k]←

∑
vj∈N−i ∪{vi}

pij [k]yj [k]

zi[k]←
∑

vj∈N−i ∪{vi}
pij [k]zj [k]

Mi[k]← maxvj∈N−i ∪{vi}
Mj [k]

mi[k]← maxvj∈N−i ∪{vi}
mj [k]

end while
End

4.2 Problem Statement and Related Concepts

We are interested in protocols that allow the nodes to reach approximate agreement to

the average value of the network (i.e., agreement to the average within an error bound).

At the same time, the nodes need to identify, in a distributed manner (only by passing

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 59

messages), when to stop transmitting their values (perhaps not all of them simulta-

neously) so that, at the termination of the iterative process, nodes reach approximate

agreement on the average of their initial values. The absence of bidirectional communi-

cation links in a digraph makes this task particularly challenging since the decision must

be taken according to the received values from the in-neighbors of each node, whereas

new values are transmitted to the out-neighbors of each node. The specific setting we

consider is described below.

All of this section assumes the following setting.

Setting: Consider a network described by a strongly connected digraph G = {X,E},
where X = {1, 2, ..., n} is the set of components in the system and E ⊆ X × X −
{(i, i) | i ∈ X} is the set of directed edges. Each node i has some initial value Vi

and follows a distributed iterative algorithm for f steps during which it maintains and

updates, at each iteration step k, a variable ri[k] (and perhaps other variables). With

respect to the Definition 3.1 (see Chapter 3), we are interested in devising a distributed

algorithm that allows the nodes to reach ε-approximate average consensus and also to

identify (in a distributed manner) when such approximate average consensus has been

reached.

Definition 4.1. (ε-Approximate Local/Global Consensus and ε-Approximate Average

Consensus [39]) Under the setting described above, we say that at the end of the iterative

process

1. The nodes have reached ε-approximate local consensus if the final value of ri[f] of

each node i ∈ X satisfies |ri[f]− rj [f]| ≤ ε , ∀j ∈ N−i .

2. The nodes have reached ε-approximate global consensus if the final values of the nodes

satisfy |ri[f]− rj [f]| ≤ ε , ∀i, j ∈ X.

3. The nodes have reached ε-approximate average consensus if the final values of the

nodes satisfy |ri[f] − v̄| ≤ ε , ∀i ∈ X, where v̄ = 1
n

∑n
l=1 Vl is the average of the initial

values.

It can be shown, using similar techniques as the ones used in Chapter 3 that if, at the end

of the iterative process, the nodes have reached ε-approximate local consensus, then the

nodes have also reached (εD)-approximate global consensus, where D is the diameter

of graph G. Note that if each node i ∈ X uses a different εi, then one can show, using

steps similar to the ones in the proof of the above proposition, that the nodes reach

(D ×maxi∈X{εi})-approximate average consensus.

Proof. Let |ri[f]−rj [f]| ≤ ε for all i, and all j ∈ N−i (local consensus). For any i, j ∈ X,

i 6= j, let i = i0 7→ i1 7→ . . . 7→ it = j be the minimum length path (of length t) that

connects them (i.e., (i1, i0), (i2, i1), ..., (it, it−1) ∈ E and no such path involving t− 1 or

less edges exists). It follows from the definition of the graph diameter that t ≤ D.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 60

The difference rj [f]− ri[f] can be written as the telescopic sum

rj [f]− ri[f] = rit [f]− rit−1 [f] + rit−1 [f]− rit−2 [f] + ...

...+ ri1 [f]− ri0 [f] .

Using the triangle inequality, we have

|ri[f]− rj [f]| ≤
t∑
l=1

|ril [f]− ril−1
[f]| ≤ t× ε ≤ D × ε .

This completes the proof of the proposition.

4.3 Proposed Strategy and Main Results

Consider the setting in Section 4.2. We propose two schemes, one randomized and

one deterministic, which make use of a time-varying version of the double linear itera-

tive scheme in (1.4)–(1.5). In both proposed schemes (referred to as Algorithm 4 and

Algorithm 5), in order to enable the nodes to identify the correct time step to stop trans-

mitting their values, the weights pij are allowed to be time-varying. At each time step k,

the nodes determine a subset of “active” edges E[k] ⊆ E that forms a directed (but not

necessarily strongly connected) graph G[k] = {X,E[k]}; then, the weights are chosen

in order to ensure that weight matrix P [k] = [pij [k]] that describes the set of weights

at iteration k is column stochastic (but not necessarily primitive, that will depend on

whether the graph G[k] is strongly connected or not).

Using the ideas from Chapter 3, one is tempted to run an event-triggered version of

the ratio consensus algorithm described in Chapter 1. The key constraint, however, is

that in a digraph setting nodes do not have bidirectional capability; thus, the decision

of node i to transmit has to rely solely on the values of its in-neighbors N−i , whereas

the values that are transmitted will be received by its out-neighbors N+
i . In fact, node i

will have to transmit to all of its out-neighbors in N+
i because its out-neighboring nodes

cannot easily determine (via value comparisons or other means) whether certain links

are inactive or not, i.e., whether a value is intended for them or not. Note that, just like

regular ratio consensus in (1.4)–(1.5), each node i needs to be aware of its out-degree

D+
i .

Following the above line of thought, one possible strategy would be the following: in

order to determine the active edges at each time step k, each node i compares its

ratio ri[k] against the ratio rj [k] of each in-neighbor j ∈ N−i ; if the absolute difference

|ri[k] − rj [k]| > ε for at least one j ∈ N−i , node i transmits its values to all of its

out-neighbors; if the absolute differences |ri[k] − rj [k]| ≤ ε, ∀j ∈ N−i , node i does not

transmit its values. Since some of the in-neighbors of node i might seize transmission

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 61

at some time step, the above rule needs to be implemented by comparing the last seen

ratios of each neighbor (i.e., the ratios they had the last time they transmitted values).

Note that the last seen value of node j will be the same from the perspective of all of its

out-neighbors; thus, we use lastseenj [k] to denote the last transmitted ratio of node j by

time step k (in reality, lastseenj is not a global variable but rather a local variable that

is identical to all out-neighbors of node j). Using this notation, Event-Triggered Rule 1

becomes as described below. [Note that node i also checks the value |ri[k]− lastseeni[k]|
because its own ratio might change while it is not transmitting (due to the fact that it

might be receiving values).]

Event-Triggered Rule 1: In order to determine whether to transmit or not at each time

step k, each node i compares its ratio ri[k] against lastseenj [k] for each in-neighbor (and

itself) j ∈ N−i ∪ {i}; if the absolute difference |ri[k]− lastseenj [k]| > ε for at least one

j ∈ N−i ∪ {i}, node i transmits its values (yi[k] and zi[k]) to all of its out-neighbors;

otherwise, node i does not transmit its values.

The above described rule naturally leads to the (time-varying) event-driven version of

the iterations in (1.4)–(1.5) described in Algorithm 4 (ignore the text between the dotted

horizontal lines for now). The algorithm is written from the perspective of node i. Note

that flagi is a binary variable used by node i to determine if it should be transmitting

or non-transmitting at the next iteration. Also N−i [k] is the set of in-neighbors of node

i that are transmitting at time step k, i.e., N−i [k] ⊆ N−i and is known to node i based

on the transmissions that it receives at time step k.

The following example illustrates that Event-Triggered Rule 1 on its own is insufficient,

at least for certain types of digraphs and certain sets of initial values.

Example 4.1. Consider a ring digraph with four nodes and diameter D = 3 as shown in

Fig. 4.1 (where X = {1, 2, 3, 4} and E = {(2, 1), (3, 2), (4, 3), (1, 4)}). Suppose that we

execute an event-driven version of the ratio consensus algorithm where Event-Triggered

Rule 1 is used as described in Algorithm 4 (excluding the code between the two dotted

horizontal lines). Assume that a transmitting (active) node uses equal weights on its

outgoing edges (including its self-weight). Depending on which of the four nodes are

transmitting (due to the fact that their ratios disagree with the ratio of at least one of

their in-neighbors), we have 24 different possible weight matrices. For example, if nodes

2 and 4 are transmitting at iteration k, the matrix P [k] takes the form

P [k] =


1 0 0 0.5

0 0.5 0 0

0 0.5 1 0

0 0 0 0.5

 . (4.1)NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 62

2 0.6x 

1 2

3 4

X1 X2

X4 X3

Figure 4.1: Digraph with four nodes and diameter D = 3.

Assume initial conditions y[0] = [0.1, 0.3, 0.3, 0.1]T and z[0] = [1, 1, 1, 1]T , ε =

0.0001, and consider the use of Event-Triggered Rule 1. It can easily be seen that the

absolute ratio of differences |r2[0] − r1[0]| = 0.2 and |r4[0] − r3[0]| = 0.2, which implies

that nodes 2 and 4 become transmitting at the first iteration as shown in Fig. 4.2;

however, nodes 1 and 3 will be non-transmitting.

If we follow through the execution of the protocol at subsequent iterations, we see that

nodes 2 and 4 will be always transmitting, and nodes 1 and 3 will be always non-

transmitting (inactive). As a result, the state variables of nodes 2 and 4 eventually

satisfy limk→∞ yl[k] = 0 and limk→∞ zl[k] = 0 for l = 2, 4. This can also be seen in the

plots of Fig. 4.3 that simulate the execution of Algorithm 2 (using only Event-Triggered

Rule 1). The key problem is that nodes 2 and 4 are aware of the discrepancies, but

nodes 1 and 3 are not; thus, the former nodes keep sending values whereas the latter

nodes keep receiving.

To overcome the problem exhibited in the above example, we propose below two al-

ternatives for an additional Event-Triggered Rule 2 that will be used to complement

Event-Triggered Rule 1. The first alternative is a randomized strategy (called Event-

Triggered Rule 2a) and the second strategy is a deterministic one (called Event-Triggered

Rule 2b). We will establish that when either of these rules is used in combination with

Event-Triggered Rule 1, the nodes (in any given strongly connected digraph, under any

initial conditions) will be able to reach average consensus and identify (in a distributed

manner) when to terminate their operation (as shown in Fig. 4.4), once they have

reached ε-approximate average consensus. In the case of the randomized strategy, the

above occurs with probability one.

A full description of Event-Triggered Rule 2a (randomized) and Event-Triggered Rule 2b

(deterministic) can be found below.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 63

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Time step k (iteration)

E
v
e
n
t

o
f

a
g
e
n
t

i

Event Triggering

E
ve

nt
 o

f A
ge

nt
 (

i)

 Event-triggering (transmissions)

Figure 4.2: Event-triggerings (transmissions) of node 2 and node 4 when using Algo-
rithm 4, utilizing only Event-Triggered Rule 1.

4.3.1 Randomized Event-Triggered Strategy

Event-Triggered Rule 2a: At each time step k, even if all values seen at node i satisfy

|ri[k] − lastseenj [k]| ≤ ε for all j ∈ N−i ∪ {i}, if node i receives a value from at least

one in-neighbor, then node i becomes transmitting with some probability pi (where

0 < pi < 1), independently from triggerings from other nodes (including previous own

triggerings).

A formal description of Algorithm 4 (which incorporates both Event-Triggered Rules 1

and 2a) can be found below.

Theorem 4.2. Consider the problem setting in Section 4.2. Each node i has some

initial value Vi and runs Algorithm 4. Then, with probability one, all nodes become

non-transmitting after a finite number of steps f , at which point the ratios satisfy

|ri[f]− v̄| ≤ 2εD, ∀i ∈ X ,

where v̄ = 1
n

∑n
l=1 Vl and D is the diameter of graph G.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 64

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

Time step k (iteration)

S
ta

te
 V

a
ri
a
b
le

s
 (

z
)

Event-Trigger Rule 1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

Time step k (iteration)

S
ta

te
 V

a
ri
a
b
le

s
 (

y
)

Event-Trigger Rule 1

Figure 4.3: Values of state variables yi[k] and zi[k] (i = 1(sky
blue), 2(red), 3(green), 4(blue)) when using Algorithm 4, utilizing only Event-Triggered

Rule 1.

Figure 4.4: Evolution of node values for Y & S Algorithm, Algorithm 4 and Algo-
rithm 5, with ε = 0.0001.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 65

Algorithm 4: Distributed Stopping for Average Consensus in Digraphs Using Ran-
domized Event-Triggered Strategy

Input: Each node i initializes yi[0] = Vi and zi[0] = 1, sets pli[0] = 1/(1 + D+
i),

∀l ∈ N+
i ∪ {i} and lastseenj [−1] =∞, ∀j ∈ N−i ∪ {i}, and does the following:

For k ≥ 0, for each node i,
Set: lastseenj [k] = lastseenj [k − 1], ∀j ∈ N−i ∪ {i}
Broadcast:
If Pii[k] 6= 1

Send ȳi[k] = pli[k]yi[k] and z̄i[k] = pli[k]zi[k] to all l ∈ N+
i

lastseeni[k]= ȳi[k]
z̄i[k] = yi[k]

zi[k]
End
Receive: ȳj [k] and z̄j [k] from all j ∈ N−i [k]
(N−i [k] is the set of transmitting (active) in-neighbors of node i at time step k)
Update Received Values ∀j ∈ N−i [k], rj [k] = ȳj [k]/z̄j [k], lastseenj [k] = rj [k]
Compute:
yi[k + 1] = pii[k]yi[k] +

∑
j∈N−i [k] ȳj [k]

zi[k + 1] = pii[k]zi[k] +
∑

j∈N−i [k] z̄j [k]

ri[k + 1] = yi[k + 1]/zi[k + 1]
flagi = 0
Forj ∈ N−i ∪ {i} :

check(i, j) = |ri[k]− lastseenj [k]|
If check(i, j) ≥ ε then

flagi = 1
End

End
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
If N−i [k] 6= ∅ then

Ifrand() < pi then
flagi = 1

End
End
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ifflagi = 0 then

Pii[k] = 1(non− transmittingnode)
Pli[k] = 0, ∀l ∈ N+

i

else
Pii[k] = 1/(1 +D+

i) (transmitting node)
Pli[k] = 1/(1 +D+

i), ∀l ∈ N+
i

End
EndNIKOLA

S E. M
ANITARA

Distributed Stopping for Average Consensus in Digraphs 66

Remark 4.3. Theorem 1 states that nodes following Algorithm 4 reach (2D×ε)−approximate

average consensus in finite time and the final weight matrix is an identity matrix (all

nodes in the network are absorbing nodes).

Proof. We first establish, by contradiction, that the nodes will reach (2ε)-approximate

local consensus after a finite number of iterations f . Suppose that the iteration runs

forever; this means that at each iteration k at least one node is transmitting. This

implies that at least one node (say node i) is transmitting infinitely often. This means

that all of node i’s neighbors are also transmitting infinitely often (because each j ∈ N+
i

receives packages from node i infinitely often, and pj > 0). Therefore, since the graph is

strongly connected, we conclude that all nodes are transmitting infinitely often. Thus,

we are running ratio consensus with time-varying column stochastic matrices P [k] as in

(1.7)–(1.8), where yi[0] = Vi, zi[0] = 1, for all i ∈ X, and at each iteration the column

stochastic matrix P [k] is determined by the nodes that are transmitting at time step k.

One sufficient condition for convergence of the ratio ri[k] = yi[k]/zi[k] to the same value

is the existence of a finite window K such that the matrix products

Pm ≡ P [mK +K − 1] . . . P [mK + 1]P [mK], m = 0, 1, 2, ...,

form primitive column stochastic matrices [22]. In turn, a sufficient condition for that

would be for the union graphs {X,∪mK+K−1
k=mK E[k]}, m = 0, 1, 2, ..., to be strongly con-

nected (where {X,E[k]} is the graph that corresponds to the zero/one structure of

matrix P [k]). Clearly, since the nodes are transmitting infinitely often, we can find a

finite window of length l, such that the products of l matrices satisfy

P [l]P [l − 1] . . . P [1]P [0] ≈ C1l
T ,

where Cl is a strictly positive column vector (that may be changing with l), 1T is the all

ones row vector, and the approximation can be made arbitrarily tight by increasing l.

In other words, P [l]P [l − 1]...P [0] asymptotically becomes a matrix with columns that

are approximately the same. It follows that the nodes asymptotically reach the same

ratio, because y[l] ≈ Cl(1T y[0]) and z[l] ≈ Cl(1T z[0]), so that

ri[l] =
yi[l]

zi[l]
→
∑
yi[0]∑
zi[0]

= x̄, ∀i ∈ X .

Clearly, we can choose a large enough l, so that, for each node i, we have |ri[l]− x̄| < ε
2

and (since each node transmits infinitely often) |lastseeni[l] − v̄| < ε
2 . The above two

inequalities would imply that, for each node i, we have |ri[l] − lastseenj [l]| < ε for all

nodes i and j (in particular, for all j ∈ N−i).

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 67

Effectively, the above discussion establishes that the nodes will eventually reach ε-

approximate local consensus on their ratios.

When the above holds (i.e., when we have |ri[l]− lastseenj [l]| < ε for all nodes i and all

j ∈ N−i), we see that in Algorithm 4, each node i can only become transmitting with

probability pi (0 < pi < 1), as long as it receives at least one packet. However, since

pi is strictly less than unity, we know that with probability 1 the nodes will eventually

stop transmitting1. Since nodes will stop transmitting with probability one, we have

reached a contradiction and we know that there exists a finite time f when all nodes

stop transmitting.

When all nodes stop transmitting, the following hold true for any node i and node

j ∈ N−i : |ri[f]−lastseenj [f]| ≤ ε and |rj [f]−lastseenj [f]| ≤ ε, where the first inequality

is guaranteed by the checks performed by node i and the second inequality is guaranteed

by the checks performed by node j. Combining the above, we get |ri[f]−rj [f]| ≤ 2ε, and

using the fact that ε-approximate local consensus implies (Dε)-global consensus [39], we

obtain that, at time step f , the absolute value of the difference between the ratios of

any two nodes (separated by a distance of at most D) is bounded by 2εD.

Next we establish that, at time step f , the nodes have also reached (2εD)-approximate

average consensus. Let rmin[f] = mini∈X ri[f] and rmax[f] = maxi∈X ri[f]; we have

rmax[f] − rmin[f] ≤ 2εD. Since ri[f] = yi[f]/zi[f], we have rmin[f] ≤ ri[f] ≤ rmax[f] or

rmin[f]zi[f] ≤ yi[f] ≤ rmax[f]zi[f] for all i ∈ X. Summing all n of the latter inequalities,

we obtain

rmin[f]

n∑
i=1

zi[f] ≤
∑

yi[f] ≤ rmax[f]

n∑
i=1

zi[f],

which implies (since
∑n

i=1 zi[f] = n) that nrmin[f] ≤
∑
yi[f] ≤ nrmax[f], or

rmin[f] ≤ x̄ ≤ rmax[f] . (4.2)

It is easy to see that, at time step f (when the nodes stop transmitting), the nodes have

reached (2εD)-approximate average consensus.

Remark 4.4. The conclusion that |ri[f] − x̄| ≤ 2εD, ∀i ∈ X in Theorem 4.2 follows

from the fact that at time step f the following will necessarily hold: (i) the nodes are

guaranteed to have reached (2ε)-approximate local consensus and (ii) the diameter of

the graph is D (thus, (2ε)-approximate local consensus implies (2Dε)-approximate global

consensus). It is possible that both of the above could be improved, e.g., by studying

the worst case ordering with which nodes might stop transmitting or by looking at the

1The simplest way to see this intuitively is to realize that there is a nonzero probability of at least
(1 − p1)(1 − p2)...(1 − pn) with which all nodes decide not to transmit, at which point they will all
stop transmitting. In fact, the number of time steps needed for all nodes to stop transmitting can be
described via an absorbing Markov chain (an example is discussed later).

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 68

longest simple cycle in the given digraph (for example, in a directed ring of n nodes,

the longest simple cycle has length n − 1 and leads to a bound of 2εdn−1
2 e, which is

approximately εD instead of 2εD).

Remark 4.5. Note that during the execution of Algorithm 4, once the nodes reach ap-

proximate local consensus, they do not stop immediately. To obtain an understanding of

how quickly nodes stop transmitting altogether, we can analyze the rate at which an ap-

propriately constructed Markov chain reaches its only absorbing state. This rate depends

on the probabilities {pi | i ∈ V } but also on the digraph structure. As an example, con-

sider the digraph shown in Fig. 4.5, and assume that all nodes are using Event-Triggered

Rule 2a, and get activated with the same probability pi = p when they receive at least one

value from a neighboring node. The finite state Markov chain in Fig. 4.6 describes the

behavior of the randomized protocol once the nodes have reached ε-approximate local

consensus on their ratios, assumming the last node that transmitted a value is node 4.

Each state has as a label a subset of {1, 2, 3, 4}, capturing which nodes in the graph

are transmitting. For example, if node 4 is transmitting, then nodes 1 and 2 receive this

value and may decide to also transmit (independently with probability p). Thus, from

the state labeled {4} we reach state {1} with probability p(1− p), state {2} with prob-

ability p(1− p), state {1, 2} with probability p2, and state � with probability (1− p)2.

Notice that the Markov chain in Fig. 4.6 has a single absorbing state � which is reached

with probability one. This will be the case in general, since from any other state there

will always be a nonzero probability of reaching state �. In fact, the Markov chain can

also be used to determine the rate with which the absorbing state is reached; this rate

is directly related to the expected time it will take for the nodes to stop transmitting

once they reach approximate average consensus.

4.3.2 Deterministic Event-Triggered Strategy

The idea in Algorithm 5, is for a node that receives bi transmissions (from at least one

in-neighbor) to eventually react (by transmitting for the next ci consecutive time steps).

Here bi and ci are positive integers that are used to ensure that situations like the ones

appearing in Example 4.1 are avoided. Node i maintains two counters, a counter-to-start

CStarti that counts up to value bi, and a counter-to-stop CStopi that counts down to

zero starting from ci. Event-Triggered Rule 2b takes the form below.

At each time step k, node i compares its value against all the values of its in-neighbors

j ∈ N−i . When all received values satisfy

|ri[k]− lastseenj [k]| ≤ ε, ∀j ∈ N−i ∪ {i},

counter CStarti increases by one each time node i receives values from at least one of

its in-neighbors (in case the above condition is not satisfied, then CStarti gets reset

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 69

1 2

3

4

Figure 4.5: Digraph discussed in Remark 2.

{4} {1,2} 0 {3} {1} {2} 2p

 
2

1 p

2(1)p

1 p 1 p 1 p(1)p p

(1)p p

p p

p(1)p p

1

Figure 4.6: Markov chain describing the probabilities with which different subsets of
transmitting nodes may cause subsequent transmissions (dotted lines indicate trans-

missions to the absorbing state �).

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 70

to zero again and node i transmits). When counter CStarti becomes equal to a fixed

positive number bi, then node i becomes transmitting for the next ci time steps (where

ci is a positive constant). In summary we have the following event-triggered rule.

Event-Triggered Rule 2b: At each time step k, even if all values seen at node i satisfy

|ri[k]−lastseenj [k]| ≤ ε for all j ∈ N−i ∪{i}, if node i receives a value from at least one in-

neighbor, then node i increases its counter CStarti by one (in case |ri[k]−lastseenj [k]| >
ε is not satisfied for at least one j ∈ N−i ∪ {i}, then CStarti gets reset to zero). When

counter CStarti becomes equal to a fixed positive number bi, then node i becomes

transmitting for the next ci time steps.

Theorem 4.6. Consider the problem statement at the end of Section 4.2. Each node i

has some initial value Vi and runs Algorithm 5. If the following (sufficient) condition

holds

D+
i ci < bi,∀i ∈ X , (4.3)

all nodes will stop transmitting in finite time. Furthermore, when the nodes stop trans-

mitting, they can be shown to have reached (2εD)-approximate average consensus, i.e.,

their ratios satisfy |ri[f]− v̄| ≤ 2εD, for all i ∈ X, where v̄ = 1
n

∑n
l=1 Vl.

Proof. The first part of the proof is similar to the one in the proof of Theorem 4.2 for

Algorithm 5. In other words, we can use a contradiction argument to establish that the

nodes will reach (2ε)-approximate local consensus (and thus (2εD)-approximate global

consensus and (2εD)-approximate average consensus) after a finite number of iterations,

say k0. The key observation is that if a node is transmitting infinitely often then all

nodes will also be transmitting infinitely often, because of the use of counters and the

fact that the digraph is strongly connected.

Suppose that the nodes do not stop transmitting after they reach (2ε)-approximate local

consensus on their ratios. As argued above, this means that all nodes are transmitting

infinitely often. Let time step k1
i denote the first time (after k0 steps) when the counter

of node i takes the value bi, causing node i to start transmitting for the next ci iterations

(note that these times are not the same for all nodes). Similarly, let k2
i be the next time

step at which the counter of node i reaches the value bi, and so forth. In Fig. 4.7 we

use K1 = [k1
1 k

1
2 ... k

1
n]T , K2 = [k2

1 k
2
2 ... k

2
n]T , and so forth, to denote the time indices of

firings at different nodes.

The total number of packets that are sent on outgoing links of the nodes that have

triggered between K1 and K2 is bounded from above by
∑

iD
+
i ci (since node i transmits

to all of its out-neighbors for ci consecutive time steps). Moreover, in order to have the

next triggerings at the time instances captured by vector K2 we need at least
∑

i bi

triggerings (each node i needs to receive at least bi packets on its incoming links).

However, the condition in (4.3) implies that
∑

iD
+
i ci <

∑
i bi. Thus, we have reached

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 71

 K0 K1 K2 K3 Kf

+ + + + + + + + + + +
 + + + +
 + + + +
 + + + + + +
 + + + + +
 + + + + +
 + + + +
 + + + + + +
 + +
 + + + + + + + +
 + + + + + + + + + + +
 + + + +
 + + + + + + + +
 + + + +
 + + + +

 + + + + + + + + +

 + + + + + + + + + + + + + + + + +
 + + + +
 Approximate Consensus Terminate

1
2
3
4
.
.
.
.
.
.
.
.
.
.
.
.
.
n-2
n-1
n

Nodes

Figure 4.7: Time steps showing the triggering of nodes due to Event-Triggered
Rule 2b.

a contradiction, and we conclude that there will be a time step f , after which all nodes

seize transmitting.

In conclusion, if the condition in (4.3) is satisfied, then we are guaranteed that the

nodes will stop transmitting after a finite number of iterations f ; furthermore, following

identical steps as in the proof of Theorem 4.2, we can show that at this point the nodes

have reached (2ε)-approximate local consensus, (2εD)-approximate global consensus,

and (2εD)-approximate average consensus.

Remark 4.7. Since we have a time-varying linear iteration in both Algorithms 4 and 5,

the question of bounding the number of steps the algorithms require to complete is

not an easy one. In ratio consensus, rates of convergence can be obtained by finding

finite windows over which the switching matrices are such that the underlying union

graph is strongly connected, and then studying the rates of contraction of appropriate

coefficients of ergodicity [19, 22]. However, in our case, we have neither convergence nor

switching strategies that guarantee the existence of the above types of finite windows.

In fact, the switching strategy in the case of Algorithm 5 is entirely deterministic given

the initial conditions and it is possible that it would never lead to windows with such

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 72

properties. Nevertheless, as mentioned earlier for the case of Algorithm 4, one can

focus on characterizing the number of iterations that are needed after the nodes have

reached approximate average consensus. When nodes execute Algorithm 5 and reach

approximate average consensus, they will require at most n × cmax × bmax additional

iterations (where cmax = max{ci} and bmax = max{bi}) before they stop transmitting.

To see this, refer to Fig. 4.7 and realize that at the time approximate average consensus

is reached, the total number of subsequent transmissions in the next cmax iterations (by

all nodes) is bounded by n × cmax (i.e., when each node i is in a situation where it

transmits ci consecutive times); then, after at most bmax iterations we are guaranteed

that the number of transmissions (in the next cmax iterations) goes down by at least one

due to the fact that the condition in (4.3) holds.

Remark 4.8. As mentioned earlier, during the execution of Algorithm 4 and Algorithm 5,

it is possible for some nodes in the network to stop transmitting and later restart trans-

mitting. This process (of ceasing to transmit and then restarting transmissions) may

be repeated until all nodes in the network cease to transmit, in which case the weight

matrix P [f] becomes the identity matrix. When this happens, it can be shown that the

network has reached approximate agreement on the average of the initial values of the

nodes.

4.4 Examples and Simulation Studies

Small Graph

We compare the proposed probabilistic and deterministic algorithms (Algorithm 4 and

Algorithm 5) against the Y&S algorithm in [1], by carrying out simulations on a ring

digraph as in Fig. 4.8 with eight nodes and diameter D = 7, using initial values x[0] =

[0.3, 0.3, 0.3, 1, 1, 1, 1, 0.3]T . Fig. 4.9 shows, for each algorithm, the evolution of the node

values until termination. [We use different ε values for the algorithms to ensure that

the resulting approximation of the average in all three cases is of the same quality.]

As expected, both Algorithms 4 and 5 reach approximate average consensus in a finite

number of iterations. As pointed out earlier, the approach in [1] needs to have access to

a set of weights that forms a primitive doubly stochastic matrix.

Among the three algorithms, the Y&S algorithm in [1] requires the least number of

iterations to complete, whereas Algorithms 4 and 5 require more number of iterations;

however, Algorithms 4 and 5 require significantly less transmissions (see Table 4.1). Note

that the way we calculate the number of transmissions is according to the number of

values that are required for each algorithm: for Algorithm 4 and Algorithm 5 two trans-

missions are required by each transmitting node at each time-step (in order to send the

iteration values yi[k] and zi[k]), whereas for the Y&S algorithm, three transmissions are

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 73

Algorithm 5: Distributed Stopping for Average Consensus in Digraphs Using the
Deterministic Event-Triggered Strategy (Rule 2b)

Input: Each node i initializes yi[0] = Vi and zi[0] = 1, and sets pli[0] = 1/(1 + D+
i),

∀l ∈ N+
i ∪{i}, and lastseenj [−1] =∞, ∀j ∈ N−i ∪{i}. Each node selects bi and ci such

that bi > D+
i ci, sets CStopi = 0, CStarti = 0, and does the following:

For k ≥ 0, for each node i,
Set: lastseenj [k] = lastseenj [k − 1], ∀j ∈ N−i ∪ {i}
Broadcast:
If Pii[k] 6= 1

Send ȳi[k] = pli[k]yi[k] and z̄i[k] = pli[k]zi[k] to all l ∈ N+
i

lastseeni[k]= ȳi[k]
z̄i[k] = yi[k]

zi[k]
End
Receive: ȳj [k] and z̄j [k] from all j ∈ N−i [k]
(N−i [k] is the set of transmitting (active) in-neighbors of node i at time step k)
Update Received Ratios: ∀j ∈ N−i [k], rj [k] = ȳj [k]/z̄j [k], lastseenj [k] = rj [k]
Compute:
yi[k + 1] = pii[k]yi[k] +

∑
j∈N−i [k] ȳj [k]

zi[k + 1] = pii[k]zi[k] +
∑

j∈N−i [k] z̄j [k]

ri[k + 1] = yi[k + 1]/zi[k + 1]
flagi = 0
Forj ∈ N−i ∪ {i} :

check(i, j) = |ri[k]− lastseenj [k]|
If check(i, j) ≥ ε then

flagi = 1, CStarti = 0, CStopi = 0
End

End
If N−i [k] 6= ∅ and flagi = 0 then
CStarti = CStarti + 1

End
If CStart > bi then
flagi = 1, CStarti = 0, CStopi = ci

End
If 0 < CStopi < ci then
flagi = 1, CStarti = 0, CStopi = CStopi − 1

End
Ifflagi = 0 then

Pii[k] = 1 (non-transmitting node)
Pli[k] = 0, ∀l ∈ N+

i

else
Pii[k] = 1/(1 +D+

i) (transmitting node)
Pli[k] = 1/(1 +D+

i), ∀l ∈ N+
i

End
EndNIKOLA

S E. M
ANITARA

Distributed Stopping for Average Consensus in Digraphs 74

 X1

 X8

 X7

 X6

 X5

 X4

 X3

 X2

Figure 4.8: Ring digraph with eight nodes and diameter D = 7, using initial values
x[0] = [0.3, 0.3, 0.3, 1, 1, 1, 1, 0.3]T .

Simulation results for ring digraph of eight nodes
Algorithm Last Time-Step No. of Transmissions

Y&S Algorithm 118 3000
Algorithm 4 123 1830
Algorithm 5 146 2201

Table 4.1: Required number of time steps and transmissions for the ring digraph of
eight nodes in Fig. 4.8, with ε = 0.0001 for the Y&S Algorithm in [1], and ε = 0.0001/D

for Algorithms 4 and 5.

needed from each node (the iteration value xi[k], the maximum yi[k], and the minimum

zi[k]).

Role of Probability p in Algorithm 4

We consider a ring digraph consisting of fourteen nodes as in Fig 4.10, with diameter

D = 13, and use x[0] = [a, b, b, b, b, b, b, b, b, b, b, a, a, a]T with a = 0.0001

and b = 0.2 as initial values. Table 4.2 shows the results of running Algorithm 1 with

identical values of pi for all nodes (captured by parameter p).

The main message taken from the above simulations is that it appears that the bigger

the probability p in Event-Triggered Rule 2a is, the higher the number of time steps

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 75

Figure 4.9: Evolution of node values for the ring digraph of Fig. 4.8, with ε = 0.0001
for the Y&S Algorithm, and ε = 0.0001/D for Algorithms 4 and Algorithm 5.

Simulation results on the role of probability p
Probability Last Time-Step No. of Transmissions
p=0.95 4675 31186
p=0.90 1347 17574
p=0.85 1097 15570
p=0.80 1062 15096
p=0.75 719 12872
p=0.70 533 11624
p=0.65 485 10836
p=0.60 449 10806
p=0.55 436 10466
p=0.50 422 10106

Table 4.2: Required number of time steps and transmitted values for Algorithm 4,
for different values of probability p.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 76

 X1

 X1

 X2

 X3

 X4

 X5

 X6

 X11

 X13

 X14

 X12

 X10

 X9 X7
 X8

Figure 4.10: Ring digraph with fourteen nodes and diameter D = 13, us-
ing initial values x[0] = [0.0001,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.0001,0.0001,0.0001,0.0001,

0.0001, 0.0001]T .

that are required to terminate (and the higher the number of transmissions needed in

order to reach approximate average consensus). The way p affects the number of time

steps after the nodes reach approximate average consensus is straightforward: the larger

p is, the larger the probability that a node transmits following a transmission by an

in-neighbor and the longer it will take for nodes to stop after they reach approximate

average consensus (also refer to Remark 2). However, p might also affect the speed with

which nodes reach approximate average consensus (for instance, in the ring network of

Example 1, a larger p will cause the nodes that are not aware of the discrepancy to

transmit more frequently, thus, aiding convergence). We have experimentally observed

that, in order to achieve the best performance in terms of the number of time-steps and

the number of transmitted values, the in-degree D−i for each node i should be taken into

account in order to choose the appropriate value of probability pi (a bigger in-degree

D−i for node i suggests that a smaller probability pi is desirable), but this also depends

on the initial values of the nodes and also on the way that the network is connected.

Role of ci and bi in Algorithm 5

We present simulation results for different combinations of ci and bi choices, in order

to better understand their role on the execution time and the number of transmitted

values in Algorithm 5. In the simulations, we make use of the ring digraph introduced

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 77

b
1 2 3 4 5

1 NS 7742 14363 66403 26240
2 NS NS 7674 8658 16178
3 NS NS NS 6980 6404
4 NS NS NS 1623 9875

c

5 NS NS NS NS NS

Table 4.3: Required number of time steps for Algorithm 5, for different combinations
of values for c and b.

in the previous section, consisting of fourteen nodes (D = 13), using the same initial

values as before (x[0] = [a, b, b, b, b, b, b, b, b, b, b, a, a, a]T with a = 0.0001 and

b = 0.2) and ε = 0.0001. For simplicity, we assume that ci and bi are the same for all

fourteen nodes, and denote them by c and b respectively. This means that the sufficient

condition in (4.3) becomes c < b (because D+
i = 1 for each node i).

Table 4.3 shows, for different combinations of c and b, the number of steps needed for all

nodes to stop (“NS” means that the algorithm did not stop within the maximal number

of iterations we run it for). As expected, when the condition in (4.3) is satisfied (i.e.,

c < b) the nodes stop in finite time. It is also clear from the table that even when the

condition in (4.3) is not satisfied, the nodes may still stop in finite time (for example,

when c = b = 4, the nodes stop at time step 1623).

What is perhaps more interesting in the simulation results, is that when the values of c

and b are close, the nodes are able to start the iterative process earlier but more time

steps are required at the end of the process to terminate. Moreover, one can also see

that when the values of c and b are not close enough, more time steps are required; this

may be due to the fact that at the beginning more transmissions are required for the

nodes to start the process of activating the neighboring nodes although their values are

within the value of ε.

Random Graph

In this subsection we present results based on a randomly generated digraph with 100

nodes with edge density equal to 0.2, i.e., for each pair of nodes i, j ∈ X, i 6= j, edge

(i, j) ∈ E (i.e., the edge is incorporated in the graph) with probability equal to 0.2,

independently between different edges. Nodes have initial values randomly chosen to

be uniform in the interval [0, 1], independently between each other. Both algorithms

require the same number of time-steps and transmissions (11 and 2020 respectively) for

reaching approximate average consensus in finite time. Due to the fact that the digraph

is generated randomly, obtaining a doubly stochastic matrix is not straightforward, so

simulations were only carried out with the two proposed protocols that use a column

stochastic matrix.

NIKOLA
S E. M

ANITARA

Distributed Stopping for Average Consensus in Digraphs 78

Simulation Results for a Randomly generated Graph of 100 nodes

Algorithm Last Time-Step No. of Transmissions

Algorithm 4 10 2020

Algorithm 5 10 2020

Table 4.4: Required number of time steps and transmissions for Algorithms 4 and
Algorithm 5, with ε = 0.0001/D.

Figure 4.11: Evolution of node values for Algorithm 4 and Algorithm 5, with ε =
0.0001.NIKOLA

S E. M
ANITARA

Distributed Stopping for Average Consensus in Digraphs 79

Comparison of three different approaches on finite-time consensus

Average consensus Exact Approximate Approximate
Policy finite-time (1) finite-time (2) event-triggered (3)

Magnitude of error 0 ε 2εD

global parameters None Graph Diameter None

Handles No Yes Yes
state uncertainties

Handle delays If upper If upper -
bound is known bound is known

Table 4.5: Comparison of the three main finite-time average consensus algorithms: (1)
refers to [2], (2) refers to Algorithm 3, and (3) refers to Algorithm 4 and Algorithm 5.

Before closing, we point out that on a random digraph with random initial conditions,

both algorithms typically require exactly the same number of time steps to terminate

(and the same number of transmitted values). The main reason is that, in both proposed

algorithms, the second rule (2a or 2b) is not activated. However, one should keep in

mind that there are also special cases where Event-Triggered Rule 2a or 2b become

necessary.

4.5 Discussion

In this part of the chapter we present the two mentioned approaches proposed in the

literature review of this topic against our own work presented in this chapter. In 4.5 we

can clearly see that the proposed method by [2] converges to the exact average value

of the network, it does not need to know any global parameters, but it cannot handle

the case for which the state has uncertainties (either due to communication with limited

capacity or noisy measurements). The method proposed in [38], can handle easily delays

since if an upper bound is known (in the simplest case, a node can update its value with a

delay equal to the maximum and the approach follows nominal one), but what it requires

is knowledge on the graph Diameter (or an upper bound). Our own proposed schemes,

the event-triggered mechanisms has an error that depends on the network diameter and

it is unknown whether it works under delays.

NIKOLA
S E. M

ANITARA

Chapter 5

SUMMARY AND FUTURE

DIRECTIONS

5.1 Summary

In this thesis, we have examined the use of linear iterative strategies for distributed

average consensus. In such strategies, each node updates its value based on its own

previous value and the values of its neighbors. We presented how networks employing

these strategies can be modeled as linear dynamical systems, and developed a control

theoretic framework to analyze the capabilities and the features of these strategies. More

specifically, we presented the following key results of this thesis.

• We considered the problem of privacy preserving asymptotic average consensus in

the presence of malicious agents. We proposed a protocol that can be followed by

nodes that desire to maintain their privacy (i.e., avoid exposing their own initial

value) and we showed that privacy can be guaranteed when the proposed protocol

is used in networks whose topology satisfies certain conditions. In particular, we

showed that the malicious nodes are not able to identify the initial values of the

nodes following the protocol, as long as the nodes following the protocol have

a neighbor that is not directly connected to any of the malicious nodes and all

independent paths (if any) to a malicious node are through a node following the

protocol. Specifically, if this condition is satisfied, the network will reach average

consensus and the initial values of the nodes following the protocol will not be

revealed. This condition on the communication topology of the system is sufficient

but not necessary.

• We also investigate the ability of the malicious-curious nodes to estimate the initial

values of the nodes following the proposed protocol and we showed simulation

results that malicious-curious nodes are not able to estimate the exact initial values

of the nodes that follow the proposed privacy preserving strategy.

80

NIKOLA
S E. M

ANITARA

Conclusions and Future Directions 81

• We considered the problem of distributed stopping for obtaining ε-approximate

average consensus in undirected graphs. We show that (Dε)-approximate average

consensus is guaranteed when the proposed event-triggered algorithms are followed

(where D is the diameter of a given undirected graph). In particular, we showed

that by exchanging only local information, the nodes can individually identify

when to stop iterating and (if necessary) when to start transmitting again. The

results in the chapter are supported through simulation examples.

• We considered the problem of distributed stopping for obtaining ε-approximate

average consensus in digraphs. The main challenge in digraphs is the fact that

a node that sees a discrepancy with the value of one of its in-neighbors cannot

directly inform that in-neighbor, but has to do it indirectly via its out-neighbors.

We have shown that (2εD)-approximate average consensus is guaranteed when

one of the proposed event-triggered algorithms is followed (where D is the diame-

ter of the given digraph). In particular, we showed that by exchanging only local

information, the nodes can individually identify when to stop iterating and (if nec-

essary) when to start transmitting again. The results in the chapter are supported

through simulation examples.

5.2 Future Directions

It is likely that our control-theoretic framework for linear iterative strategies can be

extended and generalized to yield greater insights into the capabilities of such strategies.

Some topics that deserve further investigation are described below.

• We assumed in our setup in Chapter 2 that malicious-curious nodes have full

knowledge of the proposed protocol and are allowed to collaborate arbitrarily

among themselves (exchanging information as necessary), but do not interfere in

the computation of the average value in any other way. However, malicious nodes

may not simply be curious but may also attempt to interfere with the computation

of the average value of the network. This is an interesting challenge to consider in

the future.

• In our study for privacy preserving average consensus we had each node run the

linear iteration algorithm as in (1.1). We can propose a protocol that will be a

variation of the standard gossip based protocol and can be used in the absence

of privacy requirements. This protocol will allow the nodes to asymptotically

obtain the average of their initial values by following a gossip-based linear iteration.

Obtaining such a variation of a gossip-based algorithm can create a time-varying

condition (on the time that nodes following the proposed protocol cancel out the

random offset values that it has added to the network) that will ensure privacy

NIKOLA
S E. M

ANITARA

Conclusions and Future Directions 82

for the nodes following the protocol despite the presence of malicious agents in the

network.

• In the area of finite time approximate average consensus, we will focus on bounding

the number of iterations needed to reach approximate average consensus in terms

of parameters of interest (e.g., by using the fact that nodes that interact have

ratios that differ in absolute difference by at least ε) and on tightening some of

the bounds obtained in this thesis. Moreover we will investigate how the proposed

protocols can be modified in such a way in order to be able to reach to the exact

average value of the network in a finite time.

• Another interesting topic for future investigation will be the modification of the

proposed algorithms in Chapters 2-4, in order to enable the nodes to preserve the

privacy of their initial value, and at the same time reach agreement on the exact

average value of the network in a finite time.

NIKOLA
S E. M

ANITARA

Bibliography

[1] V. Yadav and M. V. Salapaka, “Distributed protocol for determining when aver-

aging consensus is reached,” in Proceedings of 45th Annual Allerton Conference on

Communication, Control, and Computing, 2007, pp. 715–720.

[2] T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis, and M. Johansson,

“Distributed finite-time average consensus in digraphs in the presence of time de-

lays,” IEEE Transactions on Control of Network Systems, vol. 2, no. 4, pp. 370–381,

2015.

[3] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus in graphs

with time-invariant topologies,” in Proceedings of the American Control Conference

(ACC), July 2007, pp. 711–716.

[4] Y. Yuan, G.-B. Stan, M. Barahona, L. Shi, and J. Gonçalves, “Decentralised

minimum-time consensus,” Automatica, vol. 49, no. 5, pp. 1227–1235, May 2013.

[5] T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis, and M. Johansson,

“Distributed finite-time average consensus in digraphs in the presence of time de-

lays,” IEEE Transactions on Control of Network Systems, vol. 2, no. 4, pp. 370–381,

2015.

[6] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based broadcast-

ing for multi-agent average consensus,” Automatica, vol. 49, no. 1, pp. 245–252,

2013.

[7] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-

agent coordination,” in Proceedings of American Control Conference (ACC), 2005,

pp. 1859–1864.

[8] A. D. Domı́nguez-Garćıa and C. N. Hadjicostis, “Coordination and control of dis-

tributed energy resources for provision of ancillary services,” in Proceedings of

First IEEE International Conference on Smart Grid Communications (SmartGrid-

Comm), 2010, pp. 537–542.

83

NIKOLA
S E. M

ANITARA

Bibliography 84

[9] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked

multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, January

2007.

[10] J. Cortés, “Distributed algorithms for reaching consensus on general functions,”

Automatica, vol. 44, pp. 726–737, March 2008.

[11] J. N. Tsitsiklis, “Problems in decentralized decision making and computation.”

DTIC Document, Tech. Rep., 1984.

[12] R. Koetter and M. Médard, “An algebraic approach to network coding,”

IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782–795, 2003.

[13] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.

[14] J. Hromkovič, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger, Dissemination of In-

formation in Communication Networks: Broadcasting, Gossiping, Leader Election,

and Fault-Tolerance. Springer Science & Business Media, 2005.

[15] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems and

Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[16] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation and consensus

using linear iterative strategies,” IEEE Journal on Selected Areas in Communica-

tions, vol. 26, no. 4, pp. 650–660, 2008.

[17] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate in-

formation,” in Proceedings of the 44th Annual IEEE Symposium on Foundations of

Computer Science, 2003, pp. 482–491.

[18] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted gossip:

Distributed averaging using non-doubly stochastic matrices,” in Proceedings of the

IEEE International Symposium on Information Theory (ISIT), 2010, pp. 1753–

1757.

[19] C. N. Hadjicostis, N. H. Vaidya, and A. D. Domı́nguez-Garćıa, “Robust distributed

average consensus via exchange of running sums,” IEEE Transactions on Automatic

Control, vol. 61, no. 6, pp. 1492–1507, 2016.

[20] L. Xiao, S. Boyd, and S. Lall, “A space-time diffusion scheme for peer-to-peer

least-squares estimation,” in Proceedings of the Fifth International Conference on

Information Processing in Sensor Networks (IPSN), 2006, pp. 168–176.

[21] A. D. Domı́nguez-Garćıa and C. N. Hadjicostis, “Distributed matrix scaling and

application to average consensus in directed graphs,” IEEE Transactions on Auto-

matic Control, vol. 58, no. 3, pp. 667–681, 2013.

NIKOLA
S E. M

ANITARA

Bibliography 85

[22] J. Wolfowitz, “Products of indecomposable, aperiodic, stochastic matrices,” Pro-

ceedings of the American Mathematical Society, vol. 14, no. 5, pp. 733–737, 1963.

[23] C. N. Hadjicostis and T. Charalambous, “Average consensus in the presence of

delays in directed graph topologies,” IEEE Transactions on Automatic Control,

vol. 59, no. 3, pp. 763–768, March 2014.

[24] C. N. Hadjicostis, A. D. Domı́nguez-Garćıa, T. Charalambous et al., “Distributed

averaging and balancing in network systems: with applications to coordination and

control,” Foundations and Trends R© in Systems and Control, vol. 5, no. 2-3, pp.

99–292, 2018.

[25] C.-T. Chen, Linear System Theorey and Design. New York, NY: Holt, Rinehart

and Winston, 1984.

[26] M. Kefayati, M. S. Talebi, B. H. Khalaj, and H. R. Rabiee, “Secure consensus

averaging in sensor networks using random offsets,” in IEEE International Confer-

ence on Telecommunications and Malaysia International Conference on Communi-

cations, 2007, pp. 556–560.

[27] Y. Mo and R. M. Murray, “Privacy preserving average consensus,” IEEE Transac-

tions on Automatic Control, vol. 62, no. 2, pp. 753–765, 2017.

[28] N. M. Freris and P. Patrinos, “Distributed computing over encrypted data,” in Pro-

ceedings 54th Annual Allerton Conference on Communication, Control, and Com-

puting (Allerton), 2016. IEEE, 2016, pp. 1116–1122.

[29] C. N. Hadjicostis, “Privary preserving distributed average consensus via homomor-

phic encryption,” in Proceedings 2018 IEEE Conference on Decision and Control

(CDC). IEEE, 2018, pp. 1258–1263.

[30] B. Gharesifard and J. Cortes, “Distributed strategies for generating weight-balanced

and doubly stochastic digraphs,,” in European Journal of Control, 2012. IEEE,

2012, pp. 539–537.

[31] A. D. Domı́nguez-Garćıa and C. N. Hadjicostis, “Distributed computing over en-

crypted data,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 667–

681, 2013.

[32] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via linear

iterations in the presence of malicious agents-part i: Attacking the network,” in

Proc. American Control Conf., 2008. IEEE, 2008, pp. 1350–1355.
NIKOLA

S E. M
ANITARA

Bibliography 86

[33] ——, “Distributed function calculation via linear iterative strategies in the presence

of malicious agents,” IEEE Transactions on Automatic Control, vol. 56, no. 7, pp.

1495–1508, 2011.

[34] ——, “Distributed function calculation via linear iterations in the presence of ma-

licious agents-part ii: Overcoming malicious behavior,” in Proc. American Control

Conf., 2008. IEEE, 2008, pp. 1356–1361.

[35] L. Xiao and S. Boyd, “Distributed average consensus with time-varying metropolis

weights,” in Proc. of the International Conference on Information Processing in

Sensor Networks. IEEE, 2005, pp. 63–70.

[36] D. B. West, Introduction to Graph Theory. Pearson, 2001.

[37] D. B. Kingston and R. W. Beard, “Discrete-time average-consensus under switching

network topologies,” in Proceedings of American Control Conference (ACC), 2006,

pp. 3551–3556.

[38] S. T. Cady, A. D. Domı́nguez-Garćıa, and C. N. Hadjicostis, “Finite-time approxi-

mate consensus and its application to distributed frequency regulation in islanded

ac microgrids,” in 2015 48th Hawaii International Conference on System Sciences.

IEEE, 2015, pp. 2664–2670.

[39] N. E. Manitara and C. N. Hadjicostis, “Distributed stopping for average consensus

in undirected graphs via event-triggered strategies,” Automatica, vol. 70, pp. 121–

127, August 2016.

NIKOLA
S E. M

ANITARA

	Validation Page
	Declaration of Doctoral Candidate
	List of Publications
	Abstract in English
	Acknowledgements
	List of Figures
	List of Tables
	1 INTRODUCTION
	1.1 Notation
	1.2 Graph-Theoretic Terminology
	1.3 Distributed System Model
	1.4 Average Consensus and Linear Iterative Strategies
	1.4.1 Linear Iterative Strategy for Average Consensus
	1.4.2 Average Consensus via Ratio Consensus

	1.5 Min/Max Consensus
	1.6 Background on Linear System Theory and Observability Analysis
	1.7 Contributions of Thesis
	1.8 Thesis Organization

	2 PRIVACY PRESERVING ASYMPTOTIC AVERAGE CONSENSUS
	2.1 Previous Work on Privacy-Preserving Average Consensus
	2.2 Problem Statement
	2.3 Proposed Strategy and Main Results
	2.3.1 Analysis of Inference Capability of Malicious-Curious Nodes
	2.3.2 Topological Condition for Privacy Preservation
	2.3.3 Analysis of Ability of Malicious-Curious Node to Estimate Initial Values

	2.4 Example
	2.5 Computational Studies
	2.5.1 Computational Study A
	2.5.2 Computational Study B

	3 DISTRIBUTED STOPPING FOR AVERAGE CONSENSUS IN UNDIRECTED GRAPHS
	3.1 Previous Work on Distributed Stopping Average Consensus in Undirected Graphs
	3.2 Problem Statement and Related Concepts
	3.3 Proposed Strategies and Main Results
	3.4 Examples and Simulation Studies
	3.4.1 Small Graph
	3.4.2 Random Graphs
	3.4.3 Graph Connectivity

	4 DISTRIBUTED STOPPING FOR AVERAGE CONSENSUS IN DIGRAPHS
	4.1 Previous Work on Distributed Stopping for Average Consensus in Digraphs
	4.2 Problem Statement and Related Concepts
	4.3 Proposed Strategy and Main Results
	4.3.1 Randomized Event-Triggered Strategy
	4.3.2 Deterministic Event-Triggered Strategy

	4.4 Examples and Simulation Studies
	4.5 Discussion

	5 SUMMARY AND FUTURE DIRECTIONS
	5.1 Summary
	5.2 Future Directions

	Bibliography

