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Abstract

In this dissertation we attempt to solve the Email Classification problem with a
novel method using a second-order function with a Convolutional Neural Network
(CNN). As far as the literature is concerned, currently there is no other method that
uses Hessian Free Optimisation with CNN to solve the Email Classification problem.

We use CNN with Hessian Free Optimisation to distinguish between spam emails
and ham (legitimate) emails. Word Embedding is applied to the data to convert
them to a numerical form that the Neural Network model can understand. The
Word Embedding we use is the Wor2Vec, and we achieve very satisfactory results.
Furthermore, we use cross-validation to verify the model’s good accuracy. We split
the data five-fold, and used in total six different datasets.

We compare the model with other authors’ works and a classic Convolutional Neural
network with Gradient Descent (GD) which we also implement in this dissertation.
We measure the efficacy of each model by calculating the Accuracy, and Spam/Ham
Recall. The accuracy measurement was used just for the CNN with GD since the
aforementioned authors only provided Ham and Spam Recall measurements.

We use the entire dataset for training when we compare this model with other
authors’ work. We achieve accuracy of 99.199%, and 97.39%, 99.94% for Spam and
Ham Recall for the first dataset respectively. For the second dataset, we achieve
accuracy of 99.227% and 96.98% and 100%, Spam and Ham Recall. The accuracy
was 99.848% in the third dataset, and the Spam, Ham Recalls were 99.59% and
99.94%. The accuracy of the fourth dataset was 99.333%, with 99.58% for Spam
and 98.59% for Ham Recall. For the fifth dataset, accuracy was 99.061%, with
98.69% for Spam and a perfect score (100%) for Ham Recall. Finally in the sixth
dataset, the accuracy was 98.997%, with 98.93% Spam and 99.19% Ham Recall.
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Lastly, we performed cross-validation and the average validation accuracy for each
dataset was: Dataset 1 99.078%, Dataset 2 99.158%, Dataset 3 99.772%, Dataset 4
99.240%, Dataset 5 98.762% and Dataset 6 98.846%. The average Spam and Ham
Recall for each dataset was similar to the ones mentioned in the previous paragraph,
but we achieved two perfect scores in Ham Recall in the second and the fifth dataset.
All other Spam and Ham Recalls from our implementation were between 96.72% and
99.88%. We also applied cross-validation for CNN with Gradient Descent, but the
highest accuracy achieved was 76% in Dataset 4, and the lowest was in Dataset 5.
The first three datasets have 0% Spam Recall, and the last three datasets have 0%
Ham Recall.CNNs with Hessian Free Optimization do not just have better accuracy
and ham/spam recall in every dataset, but also the model converges faster than
the Gradient Descent model.We measure that with our best model; the HFO model
converges 2.5 times faster than the Gradient Descent using the same dataset.
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Chapter 1

Introduction

1.1 Emails Attack Identification Problem

Emails are among the most valuable and usable tools that people use to communi-
cate, and it is a cheap and fast way for many companies to do business. With the
current pandemic still ongoing, the importance of effective email communication is
perhaps greater than ever.

A malicious email can have a variety of purposes, as it is up to the attacker to
decide what they want to get from the target. Those emails may promote a fake
product with the intent to sell it to unsuspecting consumers, or a phishing email
trying to steal the user’s credentials. We expect that in 2021 there will be more
cyberattacks that use psychological tricks on a variety of subjects to leverage the
emotional fragility of users" [39]. Since the day the first email was sent, 48 years
ago, attackers have developed many methods to bypass the email server filters and
the standard email user.

In Figure 1.1 , we can see the chart from PhishLabs. In this chart, we have the
top phishing targets [20]. The top two targets with the most attacks are the Email
Online Service (EOS) and the Financial sector. The EOS sits at the top with more
than a fourth of the total cyberattacks.
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Figure 1.1: The industries targeted by phishing of 2018 phishing trends & intelli-
gence report [20].

This dissertation aims to prove that a Convolutional Neural Network (CNN) with a
second order optimization (Hessian-Free) can have comparable - perhaps even bet-
ter - results to a more traditional version of CNN that uses the first-order optimizer
(Gradient Descent) in a Natural Language processing problem as Email Classifi-
cation. We will compare those two models in terms of Accuracy, Spam and Ham
Recall, and Runtime. Furthermore, we will compare the CNN/HFO model with the
authors from where we used the relevant data. Meltis et al. [34] use a variety of
Naïve Bayes algorithms to solve the problem that we are trying to do in this disser-
tation. We wish to understand whether a more complex algorithm like CNN/HFO
can achieve even higher results than the already satisfactory results presented in the
original paper.

1.2 Email Threats Trends

1.2.1 Email Attacks with Covid-19

Microsoft examined how criminals behave during a current epidemic; they observed
how easily they can change their basic concept plan of attacking to something relative
to the current situation. In Figure 1.2, we can see how much attacks have increased
during the COVID-19 pandemic [6].
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Figure 1.2: Covid-19, 2020 themed attacks vs all malwares [6].

Microsoft has observed that COVID-19 themed attacks peaked worldwide in the
first two weeks of March in 2020 and after that, the number had decreased. That
is because during that period many nations began to take measures to reduce the
spread of the virus, and travel restrictions came into effect. We can deduce from
Figure 1.2 that attackers can easily change the theme of their emails based on the
situation. Such attacks started before March; between February 9 and 15 attackers
sent more than 500.000 emails per day. That number dramatically increased in
March, reaching 5.5 million emails with a COVID-19 theme per day. After March
7, the number of COVID-19 emails steadily decreased until it reached 500.000 per
day by May 31.

1.2.2 World’s Most Dangerous Malware (Emotet)

As mentioned by Europol, Emotet is the world’s most dangerous malware [9].
Emotet is nothing new, but it came to the forefront once again in July 2020. The
attacks harbouring this malware use the Threat hijacking technique. This technique
is very reliable since the email is sent from a trusted contact and thus "the context
of the existing discussion lowers the targeted recipients’ guard" [39]. With that in
mind, the unaware victim may fall into the attacker’s trap since it comes from a fa-
miliar email and the email provider may let this email pass since it is from a trusted
user.

The remaining dissertation is split into 4 Chapters, starting from Chapter 2. We
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elaborate in depth about different types of email attacks, and provide some Neural
Network background to understand Neural Networks in general and the algorithm
we used in this project. Continuing with Chapter 3, we discuss the data we use and
all the preprocessing that is necessary to have so that they are in an appropriate form
to feed them into the Neural Network. The fourth chapter compares our CNN/HFO
model with original paper work [34] and CNN/GD. In the last chapter we go over
conclusions drawn from this dissertation and suggest what work can be done in the
future.
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Chapter 2

Background and Literature
Review

2.1 E-mail Background

2.1.1 Email Threats

With the current email filters that many big email companies support, like Google
or Microsoft, attackers need to find a new way of sending malicious purpose emails.
For example, an email may not even arrive in the spam folder because of the sender
IP address. A kind new method that attackers use to bypass emails filters is called
“image manipulation.” Attackers are trying to hide malicious code behind an image,
and the reason for that is that emails servers need more time to scan images instead
of just text, and because of that, emails server may be scan only the text. Some
of the top email attacks are listed below. A single attack may have more than one
type of attacks.

• Malware

• Spamming

• Phishing

• Social Engineering

Malware

Malware is a piece of software written to damage a computer system or network
intentionally. A variety of different Malware exists, such as Trojan, Worms, Ran-
somware, Spy-wares [41] and based on the type of the attack and what the attacker
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wants to do different types of Malware can be used. Some common type of attacks is
volumetric, zero-day Malware and URL attacks. Firstly, the volumetric attack has
as a goal to spread to as many computers as possible. Malware tries to convert com-
puters to zombies and create a bot network where all zombie machines propagate
the Malware. In the second attack, zero-day, the attacker uses an undercover vul-
nerability of the system to execute his/shes malicious software. Lastly, with a URL
attack, the attackers try to navigate the user to an unsafe web page to download
malware.

Spamming

In 2021 most email providers like Google with Gmail will prevent spam mail from
reaching the user. They can either move them to the junk folder or prevent the
email from even come to the user account. A spam email does not necessarily mean
that the sender has a purpose of attacking, but it may be an advertising email that
promotes a product. On the other hand, we may have an advertise again about a
product, but this time the product does not exist. Those products can be either
cheaper than some official or promise things that other products cannot do.

Phishing

Phishing attacks are a subcategory of spam. When an attacker sends a phishing
email, this email is for sure an email to do some damage. The damages maybe not
be about the software of the user machine but are force to steal information from
the user such as bank accounts or emails and passwords to use them for the next
attacks or to steal money. Usually, phishing emails like spam emails are propagated
to millions of accounts, and they do not have a different structure from one user to
another.

We have another type of phishing attack, but instead of targeting large volumes of
emails, it focuses on a small group of people. Spear-Phishing attacks targets are, for
example, companies or organisations. Instead of sending them a generic email, they
construct an email in such a way as to look like a legitimate email. The attackers
scatter the internet to find information about their target group in order to create
a more realistic/sophisticated email [45].

Social Engineering

Social Engineering techniques are a part of every email attack. The attacker needs
to convince the user to either download malicious software or give some personal
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information.All of the attacks we mentioned above are required to trick the user in a
case of Social Engineering. One of the main themes an email may have is the theme
of fear. The attacker may send an email to a compromised account or a problem with
a bank account to make the victim make a rush move. As we already mentioned
above, attackers need to do some research to convince the victim. According to
Cybint, “98% of Cybersecurity breaches are caused by human error” [18]. It is clear
that even in 2021, humans can be manipulated to give access to attackers.

2.1.2 Structure of an E-mail

In order to visualize and understand in the following chapters how we convert data
into a comprehensible form via a machine learning model, we first need to discuss
the format of an e-mail. To get a clearer picture of said format, we look at the
following figure:

Figure 2.1: Format of an e-mail. We have the header and body of the e-mail. Both
parts have multiple subparts. [3]

When we extract an e-mail from an e-mail provider such as Google (Gmail) or
Microsoft (Outlook), the e-mail is usually in Multipurpose Internet Mail Extension
(MIME) format. The purpose of MIME is to enhance the e-mail message, and some
of the extra features are listed below:

• The ability to send rich information through the Internet.

– Add Audio, Video, Images, and Application Programs to the message.

• The ability to encode and attach binary (non-ASCII) content to messages.

• A framework for multipart mail messages that contain differing body parts.
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As we can clearly observe from Figure 2.1, the two main parts of a MIME format
are the Header and the Body. A body can have multiple sub-body parts, but they
are the same in terms of structure. On the other hand, the header of an e-email
includes a list of information, some of which is visible when sending or receiving an
e-mail, while some other is not.

The information elements visible to the user during e-mail construction that the
sender needs to fill are as follows:

• Received: Contains transit-related information of e-mail servers, IP addresses,
dates.

• From: Sender’s name; e-mail ID. “Name” e-mail@example.com.

• Recipient’s name: e-mail ID. “Name”e-mail@example.com.

• Subject: String identifies the theme of the message placed by the sender.

The last elements we can extract from the header of an e-mail are the Return
Path, Message-ID, X-Mailer, and the Content-type.

• Return-path encloses an optional address specification to use if an error is
encountered (bounce).

• Message-ID has a unique message identifier that is designed by the mail system.

• X-Mailer can tell us the mail software sender used to construct the e-mail.

– X-Mailer can be Mozilla Browser.

• Content-type refer as the name suggests, to the type of content.

– Content-type can be Text/Plain.

2.1.3 Email’s Related Work

There is already plentiful pre-existing work on email classification [48] [27] [22].A
variety of different methods has been used trying to achieve very good accuracy on
each model. Vinayakumar et al. [48] use a variety of Deep Learning Methods such
as Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Long-
Short-Term Memory and Multiplayer-Perceptron trying to identify an email either
as spam or legitimate. Kumar et al. [27] use 7 different classifiers for classifying email
as spam or legit. They compare those 7 classifiers in terms of accuracy and the one
that performed the best out of these was AdaBoost, an Ensemble Method that we
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are going to explain in the next section. The other 6 classifiers were: Random Forest,
Decision Trees, Bagging, K-Nearest Neighbor, Support Vector Machines, and Naïve
Bayes. Lastly, we also have a very interesting combination of Convolutional Neural
Networks and Recurrent Neural Networks [20]. In Figure 2.2, the architecture of
Recurrent Convolutional Neural Network is visualized [20].

Figure 2.2: Fang et al. retrieve the emails and separate the email in two parts,
Header and Body. They create the character and word vector and then proceed
with the char/word level of header and body that will put in their network for
training and testing. They use a Recurrent Convolutional Neural Network with
attention to select the information that is more critical. The final result is a model
that can do binary classification (Phishing/Legitimate Emails) [20].

The first part is the header of the email that has all the information about the
receiver. The second part is the actual body of the email.Fang et al. [20] retrieve both
in word-level and in char-level using Word2Vec, a two-layer neural network ”that
processes text by“vectorizing” words” [2]. Some other articles we mentioned above
[48] [27] focus only on word-level but here the char-level is investigated as well. That
is done in order to take writing errors e.g., spelling mistakes and lowercase/uppercase
letter writing into account. Such factors may constitute a sender’s style of writing
[20].After Fang et al. [20] retrieve Char and Word vectors they feed-in them in
the RCNN. Instead of using a simple Recurrent Neural Network they [20] used an
LTSM, which has been used by other researchers in the past [48]. This LSTM
is slightly different because they use a bi-directional LSTM. The choice of LSTM
is justified by the fact that an RNN cannot learn such ”long-term dependencies”
from the emails.Also, Fang et al. [20] mentioned in their paper that the ”recurrent
structure of RCNN can preserve longer contextual information” and we can have
less noise.Lastly, a technique called “attention mechanism” is used for selecting
the information that is more critical to achieving the current task, which is the
classification of the emails.

9

Kyp
ros

 Io
an

no
u



2.2 Origin of Artificial Neural Networks

Many ideas in human history emerged by finding inspiration in the nature of known
biological processes. This is precisely the case when it comes to creating an artificial
neural network by drawing inspiration from the human brain; we mimic human
brain behaviour in learning and passing information. However, an Artificial Neural
Network does not have as much complexity as a neural network in our brain. A
human brain has 1011 neurons that are connected to 104 other neurons each. Such
a complex architecture is impossible to replicate with current means due to the
limitation of the hardware. Figure 2.3 shows us the biological neural structure
having only the most essential part of a neuron to understand how we transitioned
from a biological neuron to an artificial one.

Figure 2.3: Biological representation of a neuron.

Dendrites receive an input signal from another neuron and transmit an electrical
stimulus to the soma.The soma is the part of the neuron where all input signals are
joined together and pass to the Axon Hillock. If the total strength of the signals
exceeds the threshold, then it will fire a signal that will pass on through the axon.
Lastly, a synapse is where two neurons are connected and pass information to each
other.
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2.3 Types of Artificial Neural Networks and Op-
timizers

2.3.1 McCulloch–Pitts (MCP)

In 1943, McCulloch and Pitts proposed the first Artificial Neuron. It is a straight-
forward model and consists of Xn as the number of inputs, Wn as the number of
weight, an activation function, and y as output. Figure 2.4 shows the architecture
of McCulloch and Pitts Neuron [33].

Figure 2.4: In this version, McCulloch and Pitts model has three inputs and is using
the Threshold Function to either fire 1 or 0. [12]

We have an equal number of weights and inputs where we perform a simple multi-
plication between each pair. Moreover, the McCulloch sums all the products coming
from the input/weights, and by using the Threshold Function(Equation 2.1 for the
summation), the model either fires 1 if the sum is above a threshold, or 0. The
McCulloch and Pitts model behaves similarly to the biological neuron we described
in Section 2.2 by combining all the inputs, and the model fires if the final output is
above a certain threshold.By adding bias, we bring the threshold to 0 (Figure 2.5),
and we calculate the output according to Equation 2.2.

y = f(
∑

j

Wi ∗Xj) (2.1)

f(x) =

 1, x > 0
0, otherwise

 (2.2)
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X(1) Inputs X(2) Inputs Output

0 0 0
0 1 0
1 0 0
1 1 1

Table 2.1: Truth table for AND

Figure 2.5: Threshold Function

m

y

1

Using McCulloch and Pitts, we can solve some 2D problems such as OR and AND
Gate. For example, in Table 2.1, we have the AND Gate truth table where the three
outputs are 0, and the last one is 1.
Looking at Figure 2.6, it is clear we can solve the AND Gate problem using only
one decision line. By extension, we can solve OR Gate with only one decision line
since the problem is similar to AND Gate.

Figure 2.6: And and OR Gate

(0,0)

(1,1)
(0,1)

(1,0) (0,0)

(1,1)
(0,1)

(1,0)
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For example, if we have two inputs X=[1,2] and weights W=[1,1] while the bias is
1.5, we can easily calculate the decision line following Equation 2.3 .

x2 =−( x1
w2

)∗x1 + (bias
w2

) (2.3)

In order to make the model adaptable, the weights need to change based on the de-
sired output. To make a better prediction, we move to Perceptron Networks and an
algorithm that can adjust the weights. Figure 2.7 illustrates the Perceptron Learn-
ing Algorithm [15]. Firstly, we randomly initialize weights and bias, then inputs and
output are presented where we calculate the actual output.We can decrease/increase
the weights based on some simple rules (see Fig 2.7), or leave them untouched. When
the desired output is one, we add to that output η times the corresponding input
for that weight. On the other hand, when the desired output is 0, we subtract to
that output η times the corresponding input for that weight.η is the learning rate,
by which we define how fast or slow weights change.

Figure 2.7: Perceptron Learning Algorithm

Using adaptive weights, we run into some problems we cannot solve, for example
XOR Gate. Figure 2.8 helps us visualize the problem, as we need two decision lines
in order to solve the problem.
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Figure 2.8: Xor Gate

(0,0)

(1,1)
(0,1)

(1,0)

In order to solve a more complex problem, the next step is to use a Multilayer
Perceptron network on which we shall elaborate in Section 2.3.2.

2.3.2 Multi-Layer Perceptron (MLP)

MLP is slightly different from the previous McCulloch and Pitts (MCP) model.
That is because, instead of having only one neuron, we have a connected network
of nodes (neurons). In the MCP model, we have a direct connection between inputs
and outputs. Another crucial difference when solving more complex problems is the
addition of an intermediate layer called "hidden layer". In Figure 2.9, the structure
of MLP is present with N number of Inputs and Hidden nodes, and two outputs.
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Figure 2.9: Multilayer Perceptron

The problem with standard perceptron is that it can solve only linear inseparable
problems. Using an MLP, one perceptron may detect a different pattern and draw
a different decision line than the other perceptron in the same network. By combin-
ing those decision lines, we may solve a problem such as XOR we described above.
Nevertheless, we need to change the Heaviside Step Activation Function for a vari-
ety of reasons. First of all, since we have an intermediate layer or sometimes two,
the hidden layer does not know the actual input. Second, since the Heaviside step
function behaves like an on-off switch, we are only able to get “0” or “1”. The rea-
son for behaving like an on-off switch is that is not differentiable. A derivative is a
measure of how rapidly a function is decreasing or increasing. Thus, we lose almost
all the information that we need in order to adjust the weights.Gladly, we have var-
ious arbitrary activation functions such as Sigmoid or Rectified Linear Unit (Relu)
functions used frequently in many problems. The list of all activation functions is
shown in Table 2.2.
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Table 2.2: List of the most popular activation functions. [29]

Using an MCP, we could only perform binary Classification, but with MLP, we
can solve Classification and Regression problems. Depending on the number of
hidden layers and nodes (neurons) for each layer, we determine the complexity of
the model. According to the Kolmogorov Theorem, three-layer perceptrons units can
form arbitrary complex shapes and can separate any classes. Figure 2.10 illustrates
the theorem starting with only a single perceptron with two inputs, then going up
to two hidden layers with the same number of inputs.
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Figure 2.10: Types of decision regions that can be formed by single and Multilayer
Perceptron with one or two hidden layers and two inputs [30].

We do not need massive changes compared to MCP when we want to calculate
the output, as it can be readily seen from Equation 2.4. There we have the inner
product of weights and inputs again, and the bias for each node. When the MLP
calculates the output, it goes inside the activation function where the final output
of that neuron is propagated to the next layer as input. This goes on until there are
no more layers.

y = f(wT ·x+ bias) (2.4)

2.3.3 Gradient Descent (GD)

After calculating the final output, it is necessary to understand how far we are from
the desired output. We can calculate this using the Mean Square Error (Equation
2.5). We subtract each pair of an actual output (ti) and predicted output (oi), and
we divide all of them by the number of the output neurons (n).

MSE = 1
n

(
n∑

i=1
ti−oi) (2.5)

Gradient Descent is one of the most popular algorithms for training a neural network.
In order to reduce the error function, we move each weight to the direction of the
steepest descent. Furthermore, we adjust weights based on the negative derivative
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of the error function pertaining to each weight (Equation 2.6).

∆wij =−η dEp

dwij
(2.6)

2.3.4 Backpropagation Algorithm (BP)

One main problem we face is that we need two variables to adjust the weights each
time; the actual and the predicted output. However, the only actual output we
get is from the final node. The backpropagation algorithm is proposed for solving
this problem, making the neural network hidden layers weights and input weights
as adjustable as the final weights. Figure 2.11 describes the algorithm starting with
the forward pass where we calculate the output for each node. We then proceed
with the Backward pass with two phases. We calculate the error for each node, and
then update the weights using ∆w (Equation 2.6).The next step is to calculate the
sum of the inner product for the hidden layers between the previously calculated
errors and their corresponding weights instead of subtracting between the target
and predicted output. Furthermore, after calculating all of the errors, we adjust
each weight starting from the weights connected with the input and continue until
we reach output weights. Lastly y is the actual output and d is the desired output.

Figure 2.11: Backpropagation Algorithm [44]

2.3.5 Recurrent Neural Networks (RNN)

We previously described the first generation of Artificial Neural Network [31]; we
continue with the second generation starting with the Recurrent Neural Network.
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An RNNs is helpful when the data at hand is in a specific order (sequential data).
Sometimes the order of the data is helpful; for example, the sequence of words in
a document is essential, or the stock price over time. Furthermore, we can use
RNN to solve temporal context problems since RNN utilises internal memory. The
next output mainly depends on the previous outputs and inputs. Jordan [24] and
Elman [19] Networks are two basic RNN using a slightly different backpropagation
algorithm called "Backpropagation Through Time Learning Algorithm" [50].

Figure 2.12: Jordan Architecture with two 3 inputs and three States Units that
propagate the previous output. [24]

Figure 2.13: Elman Architecture with an internal loop between input and hidden
layer. [19]
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Figure 2.12 and 2.13 illustrate Jordan and Elman architecture respectively.Both
models have an iterative stage.Beginning with Jordan, we have some extra inputs
called "State units". Those units have the previously predicted output as an input
and the value of 1 as weight. Since each time we feed the current output as new input,
we realise that the subsequent output is affected by the previous one.Therefore, we
have a loop between the input and hidden layers in the Elman structure instead of
the output layer. Having the loop between those layers implies that the output does
not depend on the previous output and can vary freely.

2.3.6 Convolutional Neural Networks (CNN)

The Convolutional Neural Network is the network we will use for this thesis and is
in the same generation as RNN. We use it in many different areas such as image
classification (in which performs very well), video recognition, medical analysis, and
Natural Language Processing(NLP), such as in the case of this thesis.

Multilayer Perceptron is used most of the time as a fully connected network, meaning
that we connect each node(neuron) for each layer with every node of the next layer.
Having a fully connected network may lead to overfitting which is expected and one
of the reasons is the complexity of the model. However, CNN takes advantage of
the hierarchical patterns in data and assembles patterns with high complexity with
the help of smaller/simpler patterns.

Architecture of Convolutional Neural Network

The architecture of CNN has three main parts: the convolutional layer, the pooling
layer, and a fully connected network for supervised learning. Figure 2.14 outlines
the architecture of a CNN model with a convolutional and pooling layer followed by
the same pair of layers. In a CNN, the input is a tensor with the shape of (number
of train inputs)×(input height)× (input width)× (input depth or channel).
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Figure 2.14: A Convolutional Neural Network where we have the input introduced.
We then extract features using convolution layer and we reduce the sizes by doing
subsampling. Lastly we use a full connected neural network for the classification [28].

When the input of a CNN is an image, the first shape of the tensor is the number of
images we feed the model with each time. Then we have image height and width,
and if the image is not grayscale, we will have a value of three for the input channel.
A grayscale has a value for one. The reason coloured images have the value of 3 is
due to RGB (Red-Green-Blue). We need three tables to represent all the colours of
the image.

Convolutional Layer

A convolutional layer has N number of filters(kernels), and each filter has a dimension
of k× k×m. The first two are dimensions of the image that are smaller than the
actual dimension. m as we have already mentioned is the number of channels;
we can either have the same as the original image or less (3 for RGB and 1 for
grayscale). When a convolutional layer convolves, the input is passed to the next
layer, which is another convolutional layer or a pooling layer after first passing
through the activation function (ReLu). The behaviour of the convolutional layer
is similar to the response of neurons in the visual cortex to a specific stimulus [23].
Each convolutional neuron proceeds with its input for its receptive field. However,
a fully connected neural network like an MLP receives inputs from all nodes of the
previous layer, whereas a convolutional layer receives from only a restricted area.
Usually this area is a square of dimensions 2 by 2 up to 5 by 5.
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Pooling

The next important layer after the convolutional layer we are going to talk about is
the pooling. The pooling layer (subsampling) is responsible for reducing the image’s
dimensions, free parameters of the network, and the network’s complexity. We have
various types of pooling, e.g. Max Pooling, Average, Min Pooling etc. By performing
subsampling, we reduce the dimensionality of the data and we create invariance to
small shifts. Figure 2.15 shows an example of Max and Average Pooling using a
kernel size of 2 by 2.

Figure 2.15: Max and Average Pooling.

2.3.7 Line Search

The Line Search strategy is one of the two basic iterative approaches to find the
minimum x∗ of an objective function f : Rn→ R. Moreover, line search finds first
the direction of descent along which the objective function f will be reduced, and
then computes a step size that determines how far x should move along that direction
(Equation 2.7 for Update rule) [7].

xk+1 = xk +akpk (2.7)
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Where:
ak : is the Step Size
pk : is the Descent Direction

2.3.8 Conjugate Gradient (CG)

Conjugate Gradient is a line search algorithm that tries to minimise the error in one
direction at a time. First it takes the direction of steepest descent and goes to the
minimum, whence it may need to re-evaluate the error and the gradient in order to
do that. Once it finds the minimum of the first direction, it goes to another direction.
However, instead of affecting the gradients of the previous directions, what it does
is to go in such a way that all the previous gradients are unaffected by the current
move. In an N-Dimension problem, the CG can converge to an optimal solution
in at most N steps [4]. Figure 2.16 shows an example of Conjugate Gradient(CG)
and Gradient Descent(GD). As we can see, CG needs only three steps in order to
converge, whereas GD needs more.

Figure 2.16: Gradient Descent (left) vs Conjugate Gradient (right) on a 2D problem.

2.3.9 Newton’s Method

We already mentioned Gradient Descent, where it is used for minimising the error
function. We keep moving in the direction of the negative derivative gradient until
we eventually reach the local minimum. We need to add a fixed step size from the
start, while we need to keep in mind that it is a first-order method. We assume that
a neural network model’s error surface looks and behaves like a plane by having a
first-order method, ignoring any curvatures the surface may have. Even if Gradient
Descent is a very popular optimiser, in practice it can be relatively slow. The Newton
Method [40] is a second-order algorithm we can use in order to solve that problem.
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If we want to find the minimum of a function f : R→ R, we first need to find
the zero of its derivative which then signifies that f(x) exhibits an extremum. We
approximate this using a Taylor expansion about some point xo (Equation 2.8).

f(xo +x)≈ f(xo) +f ′(xo)x+f ′′(xo)x
2

2 (2.8)

Moreover, we need to choose x since we want f(xo +x) to be the minimum. We
take the derivative of the expansion in regards to x and set it to zero, as seen in
Equation 2.9 .

d

dx
(f(xo) +f ′(xo)x+f ′′(xo)x

2

2 ) = f ′(xo) +f ′′(xo)x= 0 =⇒ x=− f
′(xo)

f ′′(x0) (2.9)

If we are trying to find the minimum in a nonlinear function f , we may not be able
to calculate the minimum from the start. In order to find it, we need to repeat the
process with an update rule (Equation 2.10 ).

xn+1 = xn−
f ′(xn)
f ′′(xn) = xn− (f ′′(xn))−1f ′(xn) (2.10)

What we described above refers to a one-dimensional function; let us generalise by
having a function f :Rn→R. Here, we replace the first derivative with the gradient
and the second derivative with the Hessian matrix (Equation 2.11,2.12 ).

f ′(x)→ Of(x) (2.11)

f ′′(x)→H(f)(x) (2.12)

We update the update rule as well to (Equation 2.13 ):

xn+1 = xn− (H(f)(xn))−1Of(xn) (2.13)

2.3.10 Hessian Free Optimization (HFO)

Even though the Newton method is an excellent method to minimise the error
function, we face some crucial problems when using it. The main problem is that
we need to calculate the inverse of the Hessian Matrix for every update we have
done (Equation 2.14: Hessian Matrix of the error with respect to their weights). The
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Hessian Free Optimisation is proposed in order to solve this expensive computational
problem [32].

H(e) =



∂2e
∂w2

1

∂2e
∂w1 ∂w2

. . . ∂2e
∂w1 ∂wn

∂2e
∂w2 ∂w1

∂2e
∂w2

2
. . . ∂2e

∂w2 ∂wn... ... . . . ...
∂2e

∂wn ∂w1
∂2e

∂wn ∂w1
. . . ∂2e

∂w2
n


(2.14)

Instead of calculating and inverting the Hessian (H) matrix as we would conven-
tionally need to do (Equation 2.13), we compute the inner product between H and
an arbitrary vector v (H · v). The curvature matrix or Hessian can be approxi-
mated in many different ways, and one way is to use Gaussian (G)-Newton Matrix.
Martens [32] has tested the Gaussian Newton matrix. In every test using either
G or H, the Gaussian consistently resulted in much better search directions even
where negative curvature was not present [32]. Another benefit of using the Gaus-
sian is that it is two times faster than the Hessian while only using half the memory.
Approximating the Hessian matrix instead of calculating and inverting it can help
Machine Learning models to perform faster and be more efficient than using the
original Newton Method. A detailed analysis of the HFO method is given by Char-
alambous [16].

2.3.11 Word Embedding

When dealing with a natural language problem (NLP), an important problem is
transforming characters and words into a form that a machine learning model is
able to understand. In the case of a photo, as we already mentioned in Section
2.3.6, we have the input in numerical value. There are various methods; some of
them make no assumptions regarding semantics and the similarity of words while
others do. One of the simplest methods is One-Hot Encoding, where we create
a vocabulary size vector with 0s and 1s. For every word, only the corresponding
column has the value of 1, and the others columns for the same words have 0. An
example of that method is in Table 2.3, where we have four columns, and only the
words corresponding to the cells of said words have the value of 1.

25

Kyp
ros

 Io
an

no
u



Table 2.3: One hot encoding where each word in its corresponding cell has a value
of 1.

car man plane child
car 1 0 0 0
man 0 1 0 0
plane 0 0 1 0
child 0 0 0 1

On the other hand, another method of representing the words and converting them
is using Word Embedding. We convert the words into real-value vectors, and we
encode the meaning of that words. Also, using word embedding similars, words
have similar representation. In this project, the main words embedding model we
are going to use is the Word2Vec that was created by a team of researchers in
Google led by Thomas Mikolov in 2013 [35] [36].As the name suggests, Word2Vec
converts a word into a vector, a list of numbers representing the word.Wor2Vec
model can capture both syntactic and semantic similarities between words. One
famous example of the vector from a trained Word2Vec is shown below, where the
vector of "king" minus the vector of "man" has the same meaning as the vector of
"queen" minus the vector of "woman".

V ector(”King”)−V ector(”Man”) = V ector(”Queen”)−V ector(”Woman”)

The model has two layers; the purpose of the model is to reconstruct the words’
linguistic context. It takes a large corpus of text as an input and has a vector space
with hundred of dimensions as output. Then each word is assigned to a unique
vector [8]. Word2Vec can generate a distributed representation of words using one
of the two model architectures: continuous Bag-of-Words (CBOW) or continuous
Skip-Gram. The model predicts the current word from a window of surrounding
context words in the continuous bag-of-words architecture. The order of the words
in the context has no bearing on the outcome (bag-of-words assumption). The
model predicts the surrounding window of context words in the continuous skip-gram
architecture based on the current word. Nearby context words are given more weight
in the skip-gram architecture compared to more distant context words. Figure 2.17
illustrates the architecture of the two models.
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Figure 2.17: The CBOW architecture predicts the current word based on the con-
text, and the Skip-gram predicts surrounding words given the current word [35]

.

Figure 2.18 shows an example of each model in order to better understand how
each model works. We start with the sentence “the quick brown fox jump over
the lazy dog”. In CBOW, given the words (“the quick brown box, “over the lazy
dog”), the model predicts the word in the red box (“jump”). However, Ski-gram
does the opposite of CBOW; given the word “jump” we predict the other words in
the sentence (“the quick brown box”, “over the lazy dog”).
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Figure 2.18: In CBOW, given the words (the quick brown box, over the lazy log),
we would want to predict jump. In Skipgram just the opposite given the word jump,
we would want to predict (the quick brown box, over the lazy log) [11].

How does each Model learn?

We begin with the CBOW model on the left side of Figure 2.19, and we use the
“Natural Language Processing” as an example to study how it is able to learn. We
use “Natural” and “Processing” as the context words and “Language” as the word
we want to predict.

Figure 2.19: Architectures for CBOW (Left) and Skip-gram (Right) [11].

As we already explained at the start of subsection 2.3.11, the input will be a one-
hot encoded vector of V terms (size of vocabulary/total number of unique words)
only a single one. For this problem/example, the vocabulary consists of 5 words
("Natural", "Language", "Processing", "is", "Great"). Then each vector for each word
will have a length of five, and for “Natural” it will be [1,0,0,0,0]. The next step is to
initialise an embedding vector (E) randomly. The size of E will be V ×D, where D
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is arbitrarily defined. This vector (E) will be the weight matrix for the input layer
where we will multiply the input one-hot encoded vector with E. The product will
give us the embedding vector for the context words (Natural and Processing) of size
1 D.

The model will average the embedding vector (E) of the context words in the hidden
layer and then will be multiplied by another vector called Context Vector (E′)
whose size is again D×V . The product of this multiplication will give as a vector of
dimensions 1×V which when inserted in the sigmoid function to get the final output.
The final output of the model will be compared with the one-hot encoded vector
of the word ”Language” [0,1,0,0,0], and the model will calculate the loss function.
This loss is backpropagated and the model is trained using Gradient Descent as we
described in Subsection 2.3.3

For the Skip-gram it is just the opposite. We have the one-hot encoded vector for the
middle word instead of the whole sentence multiplied with the weight/embedding
vector E. The product will be the output of the input layer and the input of the
hidden layer. Furthermore, we multiply with Context Vector E′ and then we passed
it through the sigmoid function to get the final output. We compare it with the
context words, and again, the loss is calculated and backpropagated.

Why Word2Vec?

Word2Vec is not the only embedding tool that exists; Chatzimiltis [17] already
uses a different data representation tool called Bert Embedding. More information
about Bert can be found in Chatzimiltis’s dissertation. In Tables 2.4 and 2.5, we
compare simple tokenisation/One-Hot Encoding, Word2Vec and Bert Embedding.
We have better results with Word2vec. Furthermore, we had some problems using
Bert embedding for our problem, as it needs a significant amount of time to load the
Bert file before we start doing the data representation and then train our model.

Table 2.4: Comparison Between Tokenization and do One-Hot Encoding, Word2Vec
Embedding and Bert Embedding for first Dataset.

CNN/HFO Epochs Accuracy Loss
Tokenisation/One-Hot Encoding 75 0.8862 0.208

Word2Vec Embedding 75 0.9453 0.100
Bert Word Embedding 75 0.7900 0.322

29

Kyp
ros

 Io
an

no
u



Table 2.5: Comparison Between Tokenization and do One-Hot Encoding, Word2Vec
Embedding and Bert Embedding for second Dataset.

CNN/HFO Epochs Accuracy Loss
Tokenisation/One-Hot Encoding 75 0.8625 0.228

Word2Vec Embedding 75 0.9313 0.143
Bert Word Embedding 75 0.8095 0.303

2.3.12 Subsampled Hessian Newton (SHN) Method

The main goal of this dissertation is the use of Hessian-Free Optimisation (HFO)
with a Convolutional Neural Network (CNN). HFO has addressed some problems
of the original method (Netwon) by approximating the Hessian matrix. Stochastic
Gradient Method (SGD) was and still is a very popular method, but as we describe
in Section 2.3.8, it is much faster for Conjugate Gradient to converge. We can use
SGD in various deep learning models, but up until 2020 we did not have any Netwon
method for Convolutional Neural Networks. In most of the literature [13] [21] [25]
[32] used a simpler model such as MLP with the Netwon method. The reason for
avoiding using a Convolutional Neural Network is because of the complexity of the
model. Combining CNN with the Netwon method we will involve a much more
complicated operation [49] than using a simpler model with Netwon as well.

As we mentioned, until very recently we did not have a way of implementing Netwon
and CNN. Wang et al. [49] introduced a new variation of Hessian-Free Optimisation
called "Subsamples Hessian Newton" (SHN). We are not the first to use this variation
of HFO with CNN to solve a problem. Leontiou [29] as well as Chatzimiltis [17],
and Pafitis [38] already used that method (Section 2.3.13) in order to predict protein
structures and classify Alzheimer MRI images.

The SHN algorithm is shown in Algorithm 1, where (36) is Equation 2.17, (35) is
Equation 2.16, and lastly, (37) is Equation 2.18 Due to the high complexity of the
algorithm, we refer the reader to the original paper of SHN in order to get a more
in-depth understanding of the algorithm.G is the Gauss-Newton approximation and
λ is a parameter decided by how good the function reduction is."Specifically, if θ
+ d is the next iterate after line search, we define ρ (Equation 2.15) as the ratio
between the actual function reduction and the predicted reduction. By using ρ,
the parameter λnext for the next iteration is decided by where (drop,boost) are
given constants. From Equation 2.18 we can clearly see that if the function value
reduction is not satisfactory, then λ is enlarged and the resulting direction is closer
to the negative gradient".
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ρ= f(θ+d)−f(θ)
Of(θ)Td+ 1

2(d)TGd
(2.15)

Algorithm 1: A subsampled Hessian Newton method for CNN. [49]
Given initial θ. Calculate f (θ);
while Of(θ) 6= 0 do

Choose a set S ⊂ {1, . . . , l};
Compute Of(θ) and the needed information for Gauss Newton
matrix-vector products;
Approximately solve the linear system in (36) by CG to obtain a
direction ddd;
α = 1
while True do

Compute f(θ+αddd);
if if (35) is satisfied then

break;
end
α← α/2;

end

Update λ based on (37);
θ← θ+αddd

end

f(θ+αddd)≤ f(θ) +ηαOf(θ)Tddd (2.16)

(G+λI)ddd=−Of(θ) (2.17)

λnext =


λ×drop ρ > ρupper

λ ρlower ≤ ρ≤ ρupper,

λ× boost otherwise

(2.18)

2.3.13 CNN With Hessian Free Optimisation Related Work

We are not the only ones that we are using Hessian Free Optimisation with Con-
volutional Neural Networks to solve problems. Three others University of Cyprus
students are already done some work in different problems to this thesis.Leontiou [29]
use CNN with HFO for Protein Structure Prediction.Proteins can be found in any
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living organism and each protein contains smaller units named: amino-acids. Fur-
thermore, proteins have different functionalities and what makes a protein different
from other proteins is the amino-acids sequence. Moreover, the interactions between
the amino acid’s of a protein force the protein to fold into a specific three-dimensional
structure. That structure determines the function of each protein [29].For analyzing
the structure of the proteins more efficiently proteins are separate into 4 different
categories: Primary, Secondary, Tertiary, and Quaternary structure.Leontiou [29]
mostly focus on secondary structure and using the amino acid sequence as in-
put.Chatzimiltis [17] also uses Convolutional Neural Networks with HFO as Leon-
tiou to predict the secondary structure o protein. However, instead of feeding the
model with raw inputs, it went a step further and used embedding as we do in the
dissertation.

Furthermore, we are not using the same embedding method as Chatzimiltis for
two reasons. The first reason is that Chatzimiltis uses the BERT model in order
to embed his data. BERT is a very popular word embedding method, but for our
problem did not perform well. We can see that in the 2.3.11 subsection of this thesis.
The second reason that Chatzimiltis did not use the worldwide BERT versions is
that ProBert can only be used for proteins. Therefore we cannot use it.

The last related work we are going to talk about is from Pafitis [38] where he
uses Convolutional Neural Networks with HFO for an image classification problem.
The problem was to classify MRI images from people with Alzheimer disease and
images of normal cognitive people.A normal cognitive person is a person with no
neurological or psychiatric problems whose cognitive abilities decline with normal
aging. The main focus of his dissertation was to automate the identification as to
which of these two categories an MRI image belongs to.

2.3.14 Ensemble Methods

An ensemble classifier consists of multiple weak models such as Decision Trees or
Random Forest with only one objective: to combine their results in order to solve
a problem [37]. In addition, an ensemble classifier can help to reduce variance and
help to avoid overfitting. There is a variety of different types of Ensemble Methods,
but here we shall restrict ourselves to just two of them.

• Bagging = Boostratp AGGregatING

• Boosting
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One of the differences between Bagging and Boosting is how we perform the random
sampling. Each algorithm has N number of learners (weak models). However, each
learner is not guaranteed to have the same data as the others in the same model. In
the case of Bagging, all of the data that have the same chance to occur to another
learner. With Boosting on the other hand, we add some weights and some data
will appear more frequently than others. Another difference between these two
algorithms is the way in which we train each model. Bagging trains the learners in a
parallel way, whereas Boosting does so sequentially. In the latter, we redistribute the
weights at each training step. The weights increase when we deal with incorrectly
classified data in order to focus on the more complex cases. Furthermore, since
we have a sequential model, each learner takes the previous learner success into
account. Lastly, Bagging results are obtained by taking the average of all learners
output (majority vote). In Boosting, we assign an additional set of weights, which
this time is for the learners and the data. We then take the weighted average of
their estimates.
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Chapter 3

Design and Implementation

3.1 Data

An essential part of every machine learning project is choosing the appropriate data
to train the model at hand. Since we are training a model in order to classify emails,
it is better to use real rather than constructed data. For that kind of problem, most
of the times it is very difficult to find legitimate emails from different people due
to privacy considerations. On the other hand, spam emails are much easier to find,
since they are generic emails that reach millions of email accounts. It is therefore
easy to set a “net” of email accounts and collect all the spam emails which the email
provider sends to the spam folder.

The data we are going to feed to our model comes from 3 different sources. All
of the ham (legit) emails are coming from the Enron Dataset. As we mentioned
in the previous paragraph, we need realistic legit emails, and an excellent source
is the Enron Dataset. Enron Corporation was an American energy, commodities,
and services company based in Houston, Texas [5]. It was founded in 1985 and
filed for bankruptcy in 2001 due to the infamous Enron Scandal where some of the
employees were sending fraudulent emails to other employees. In the aftermath of
an accounting fraud between the employees, the company shut down and emails
became available to the public.

Compared to the ham datasets, the spam dataset is a blend of 3 different sources:
Enron, SpamAssassin’s, and Honeypot Datasets. SpamAssassin is the #1 Open
Source anti-spam platform giving system administrators a filter to classify email
and block spam [1]. For this dissertation, we are going to use six different datasets
which we retrieve from an academic article [34]. In Table 3.1 we can see how many
emails are contained in each dataset.
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Table 3.1: The table of the six different datasets that we retrieved from the article:
[34].Each dataset is used separately and some datasets have common emails. Each
dataset has more than 5000 email either as Spam or Ham.
Dataset No: Number of emails Source

1
3673 Emails(Ham)
1500 Emails (Spam

Ham Emails ->Enron Dataset
Spam Emails ->Enron Dataset
Total ->5172

2
4361 Emails (Ham)
1496 Emails (Spam)

Ham Emails ->Enron Dataset
Spam Emails ->Spam Assassin+ Honeypot
Total ->5857

3
4012 Emails (Ham)
1500 Emails (Spam)

Ham Emails ->Enron Dataset
Spam Emails ->Enron Dataset
Total ->5512

4
1500 emails (Ham)
4500 emails (Spam)

Ham Emails ->Enron Dataset
Spam Emails ->Enron Dataset
Total ->6000

5
1500 Emails (Ham)
3675 Emails (Spam)

Ham Emails ->Enron Dataset
Spam Emails ->SpamAssassin + HoneyPot
Total ->5175

6
1500 Emails (Ham)
4500 Emails (Spam)

Ham Emails ->Enron Dataset
Spam Emails ->Enron Dataset
Total ->5512

We have six separate datasets that do not contain the same amount of emails. If we
see the total number of emails, the difference is not significant, but we have a big
disparity in spam and legit emails for each dataset. For the first three datasets, the
legit emails are two to three times the number of spam emails. For the last three
datasets, we have the opposite: the spam emails are two-three times the number of
legit emails. In Chapter 4, we will see along the results how the lower number of
spam or legit emails affects the model.

Lastly, the actual Enron Dataset has over 500,000 emails; neither we nor other
researchers use all of them. Most of them construct a dataset by combining the
Enron Dataset with other datasets [20] [14]. Metsis et al. [34] are not the only ones
that use SpamAssassin and Enron Dateset, many other academic papers also use
them to train their models [51] [20] [14]. Each dataset has 2 folders (Spam and
Ham) where each contains the emails in txt format. However, the txt files may
contain more than one email, and aside from the body, the file may also contain
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the recipient, carbon copy (cc) and the subject. Because we want to do a direct
comparison with work of Metsis et al. [34], we will train our model for each dataset
without combining them into a big dataset. The only thing we will change is the
algorithm.

3.2 Data Preprocessing

In order to prepare the data to be fed into the Convolutional Network, we need to
convert the text (emails) into numerical values, and not just that. As we mentioned
in Section 3.1, we keep each email in a different txt file. The first thing we need to
do is to load all of the emails in order to combine them and create a dataset. All of
the preprocessing we shall describe here and in the following sections can be found
in the Appendix. We apply the following six steps to convert the data to the most
appropriate form for the best possible results. The list of the steps is as follows:

• Load the data

• Add the class for each email

• Clean the data from nan(non-number) values and duplicates

• Remove Punctuation and Stop Words

• Tokenization

• Use Word Embedding tool to convert our data

Load Data

First, since the data was separated, we had to load and convert it into a type of file
which we can use and with which other scientists can experiment in the future. A
widespread type of that sort is the CSV. We then begin by loading the legit emails.
We use the Parser function, which is an adept function at separating emails parts.
Some parts of the email header mentioned in Section 2.1.2 remain in some of the
emails. The best option is to remove them since they cannot be used for all of the
data. That’s the reason we use the Parser function, as we can retrieve just the
body of the email fast and reliably. Before we save an email as a CSV file, we have
to check for any non-Latin characters. Figure 3.1 has an example of a non-Latin
character email that cannot be allowed into the network.

Figure 3.1: An email with non-Lating characters.
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Assign Class and Clean Data

When we load the data, we do not combine the legit and spam emails from the
start. The reason for that is that we do not assign the class for each email, hence
each category is in a different CSV file for the moment. In order for the model to
understand the class, we cannot assign a class to each dataset that is not numeric.
For example, Spam and Ham are good examples of distinguishing which email is
spam and not, but the model cannot understand characters. Furthermore, we assign
"1" as the class for the spam emails and the value of "0" for legit emails for each
dataset.

The next step is to check whether we have any duplicates emails or non value emails.
We do not want to let any duplicate since the model may behave better or worse
based on how it learns the data. If for example we let the duplicates and the model
behave well for those emails, we may have a model with better accuracy compared to
removing them, but that is not the actual accuracy of the model. The more emails
are correctly classified by the model, the better the accuracy will be. We increase
the model’s accuracy in this example by letting the model predict more than once
the same email, but that is wrong. The same is applied for having duplicate emails
which the model behaves badly when learning. Finally, we check for any emails that
do not have a body, since if they do not the specific column will be empty.

Remove Punctuation and Stop Words

Before splitting the emails into tokens, we first need to perform some additional
"cleaning". We will remove punctuation marks and stop words; The purpose of this
process is to get rid of unhelpful parts of the data that do not provide any extra
information that may help us classify the emails more accurately. A Stop Word
usually refers to the most common words in a language e.g. “the”,” is”, “and” etc.

Tokenization

The final thing we need to do before converting the emails into numeric vectors is
to tokenise them. By tokenise, we mean that we split the remaining words of each
email into tokens. We use a very popular function for that called "word_tokenize"
from the Natural Language Toolkit (NLTK) library.Just before the word_tokenize
function sends back the tokenised emails, we make sure to have each word written in
lowercase. That is done in order to handle two identical words the same way. Having
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one of them start with a capital letter or containing only capital letters makes the
model process it differently.

3.3 Word Embedding on Email Data

Gensim [43] is an open-source library for unsupervised topic modelling and natural
language processing that gives us the flexibility, to develop word embedding.We
already explained how Word2Vec works and how it can learn, but what we did not
explain is what tool we shall use to convert the emails into numerical values. Using
the Gensim library, we can either choose if we want to use the CBOW Model or
Skip-gram to train the embedding model, but the default model is CBOW. Gensim
also has a directory of pre-trained embeddings, trained on several documents like
Wikipedia pages, Twitter tweets, and Google news. For this dissertation, we will
be using a pre-trained embedding based on the Google News corpus (Can be found
here: https://github.com/mmihaltz/ word2vec-GoogleNews-vectors) word vectors
model (3 million 300 dimension English word vectors). We can replace each word
with the dense vector of 300 real values.

In order to come up with a feature descriptor for each email, we take the sum of
each word vector and have a representation based on Word2Vec embedding for the
whole email. Figure 3.2 illustrates this by showing a part of each word vector that
is summed up at the end as a whole sentence with real values. The results will be a
vector of the 300 elements (features) for each email, and in the end we end up with
a matrix of M ×300 where M is the number of emails we have in each dataset.

Figure 3.2: Converting each word into a vector with real values.

By converting each word into a vector of real values instead of just using the One-
Hot Encoding, we attain a similar representation between similar words. So a word
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that has a similar context with another will have a vector that will roughly point
towards the same direction. An example of that can be seen in Figure 3.3. We have
a 2-dimensional word embedding where “Sunday” has more similar values to other
weekdays. Another example is the word “sister”, with similar values to other family
words like "mother" and "father".

Figure 3.3: Similar representation between similar words.

3.4 Network Implementation

For this dissertation, we use a Convolutional Neural Network (CNN) with the Sub-
sampled Hessian Network (SHN) method, which was implemented first in Matlab
and then was converted to Python by Wang et al. [49]. The source for their code can
be found here: [https://github.com/ cjlin1/simpleNN]. For the present implementa-
tion, we use the version in Python since we are more familiar with this programming
language. The Python implementation uses Tensorflow [10]. Tensorflow is a machine
learning framework, and the whole process is somewhat different from the original
Matlab implementation.

One of the main problems of Newton is memory consumption due to the Hessian
matrix. In order to solve the memory problem of the Newton method, the SHN
technique uses a subset S of the train data to obtain the subsampled Gauss-Newton
matrix that does what we already described in Hessian Free Optimisation (HFO) it
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approximates the Hessian Matrix. As we increase the data, we increase the memory
that we need to use to calculate the Hessian, thus by approximating it we reduce
memory usage. Also, this technique reduces the execution time per iteration, but a
side-effect is that we have a slightly less accurate direction.

As we have already mentioned, the initial implementation by Wang et al. [49] was in
Matlab and because of that, the input dataset uses a Matlab format (.mat). After
the code is converted to Python, the same type of dataset is used. The input file
must contain a y variable (of size N ×1), which includes all the target class labels,
and a z variable (of size N ×M), which includes all the features.

Leontiou [29] created a script for his dissertation about Protein in order to convert
his data into .mat format. So, instead of changing the code of Leontiou in order to
convert the data into .mat format, we change the format the model is able to use.
Anyone could load a file from a CSV file as it is the most frequently used format for
a dataset, at least for the case of Python, and with a few lines of code and minor
changes the dataset is ready to be fed into the model.

Furthermore, the implementation was modified so that we can execute it in a Jupyter
Notebook Environment [26]. As mentioned in the previous paragraph, we need
minor changes for each type of 2D problem i.e. different dataset. The reason for
that is that we load the CSV file in a DataFrame which is a 2D labelled data
structure with columns and rows. The minor change we have for each new dataset
is specifying which column is the class. All the necessary scripts, programs, data
files and instructions were uploaded in that repository, which can be found here:
[https://gitlab.com/kypros_ioann/spam-filtering-with-cnn-hfo/-/tree/main/].

Lastly, we make a few modifications to the model’s architecture since the initial
version is not the best structure for the problem at hand. All the experiments that
we are going to present in the next chapter run on a local machine with the following
specifications:

• CPU: Intel Core i7 -7nd Generation

• 16 GB of Ram

• GPU: Nvidia GFORCE GTX 1070 Max-Q with 8GB

3.5 Metrics

Before we start talking about the results of this thesis implementation, it is vital
to mention what metrics did we use in order to compare our model (Convolutional
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Neural Network (CNN) with Hessian-Free Optimization (HFO)) with CNN with
Gradient Descent (GD) and also to the original techniques from where we got the
datasets.

The list of what we are going to compare using CNN/HFO and CNN/GD can be
seen below.

• Accuracy

• Runtime to train the model

• False Positives

First, we compare the accuracy and validation accuracy for each model of how many
emails have been classified correctly, either as spam or ham (legit). By validation
accuracy, we mean that we split the datasets into a two-piece before training our
model. We allocate 80% of the data for training and the other 20% in order to
calculate model accuracy in data it has never seen before. For the Runtime, we use
a library called "ipython-autotime" that can calculate the Runtime of each execution
we want. Furthermore, for False Positives, we use the library "sklearn" in order to
let us use Confusion Matrix [46] to calculate not only the False Positives, but also
True Positives, True Negatives, and False Negatives. Lastly, we mention that we are
also going to compare CNN/HFO with Metsis et al. work [34] where they use five
different types of Naïve Bayes. Metsis et al. [34] use the Recall [47] technique for
Spam and Ham emails separately which will be explained in the following subsection.

3.5.1 Training/Testing Set and Cross Validation

To evaluate each model’s accuracy for each dataset, we use Cross Validation (CV)
[42]. Cross-Validation is a technique where we split the dataset into x number of
pieces, and we use one of the pieces each time for validation in order to understand
how each model behaves with never-seen-before data. We can see in Figure 3.4 an
example of Cross-Validation that is similar to what we do in this thesis. The dataset
is split into five pieces with an equal number of data and we merge four of them each
time, creating a “new dataset”. The left one is used to validate the model. Each time
the validation piece is different, we re-run the model as many times as the number of
pieces. The CV may sound time-consuming, but with this technique we can better
evaluate the model and understand whether the high accuracy we get is the result of
luck or we are doing something right. We apply this technique for each dataset and
then calculate the average accuracy of each model as well as the average validation
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accuracy. To create those five pieces for the dataset, we use the sklearn library once
more and the function called "KFold". Because this technique is time-consuming
and every model is run on a private computer, it is tough to do Cross-Validation
with ten pieces. That is because the private computer is heavily burdened by all
the experiments we already did, since cross-validation is not the only experiment we
need. However, we also need to find the Hyperparameter for the model to achieve
the highest accuracy or the highest Recall. For more info on the Hyperparameters,
we shall elaborate on it further in Chapter 4. We use cross-validation to test the
Convolutional Neural Network (CNN) with Hessian-Free Optimisation and also the
CNN with Gradient Descent.

Figure 3.4: Cross Validation. We split our dataset into 5 pieces and each time we
use a different piece in order to validate our model accuracy.
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3.5.2 Confusion Matrix

A confusion matrix [46] is a two-dimensional table that we use to visualise the
performance of an algorithm. A confusion matrix is mainly used in supervised
learning, whereas for unsupervised learning we use a matching matrix. Figure 3.5
visualises how a confusion matrix looks like in a binary classification problem such
as the one pertaining to the current thesis. On the left side of the table is the actual
(real) values, and on the bottom the predicted values from the model. As we can see
from each cell, we have TP, TN, FP, FN, defined as follows for the current problem:

TP is the True Positive that indicates all the emails that are ham emails that are
predicted correctly. Then we have the FP, which is the False Positive, and those are
all the emails that are ham emails which are misclassified as spam emails. We have
the FN, the False Negative, with all the spam emails which the model misclassifies
as ham emails. Lastly we have the TN, the True Negative, with all the emails that
are correctly classified as spam.

We can compute the accuracy of this model using Confusion Matrix, but also the
Missclasification Rate in regards to how many emails in this problem are misclassi-
fied. Another rate we can compute is the Sensitivity (True Positive) rate or Recall,
as Meltis el al mention and proceed to do in their paper [34]. Moreover, another
rate is Specificity (True Negative Rate) which is the opposite version of Sensitivity.
Instead of calculating how many times the model classifies ham emails correctly, we
calculate how many times the model classifies spam emails correctly (Specificity).
We will show in the following section how each rate is computed.
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Figure 3.5: Confusion Matrix.

3.5.3 Rates computed by Confusion Matrix

To calculate our model’s accuracy, we use Equation 3.1, where we divide the True
Positives and True Negatives emails with the total number of emails.

Accuracy = (TP +TN)
TotalNumberofEmails

(3.1)

The next rate is the Misclassification Rate, as seen in Equation 3.2. We do the
opposite of the accuracy where we add all the misclassified (False Positives and
False Negatives) emails, and then divide them with the total number of emails:

MisclassificationRate= (FP +FN)
TotalNumberofEmails

(3.2)

For Recall or Sensitivity we use Equation 3.3 and we divide the False Positives with
the True Positives:

Sensitivity(Recall) = FP

TP
(3.3)
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Finally, we calculate the Specificity using Equation 3.4, by dividing the False Neg-
atives with True Negatives:

Specificity = FN

TN
(3.4)

It is necessary to mention that in Metsis’ work [34], Specificity and Sensitivity are
referred as Spam Recall and Ham Recall respectively. In the next chapter, the model
results shall be presented in detail. We will also compare it with Metsis’s work and
with Convolutional Neural Network with Gradient Descent.
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Chapter 4

Results and Discussion

4.1 Fine-tuning of Hyperparameters

One of the most important things we have to do after properly preprocessing the
data is choosing optimal parameters for the network. We perform many experiments
changing only one parameter at a time so that we determine whether that parameter
improves or worsens the accuracy of the model. For finding all the optimal hyperpa-
rameters, we experiment using fold four from the sixth dataset. The main reason for
experimenting with fold four is that it has the lowest accuracy of all the folds from
all datasets. In turn, the logic behind that decision is that if we can increase the
accuracy of the lowest fold, we may find the optimal parameters to further increase
the accuracy of other datasets.

The original number of iterations (epochs) we experiment with is 1000, the reasoning
being that we want to let the network stabilise before we stop it. The model’s
accuracy increases radically from the first 10 epochs that were not stable, meaning
that with each epoch the accuracy was slightly different from the previous iteration.
We already mentioned that Word2Vec is the tool that we are going to use for data
representation. Word2Vec extracts 300 values from each email, hence the input
dimensions of CNN will be 15×20×1.

The first parameter that we start experimenting with is the GNsize which is the
number of samples used in the subsampled Gauss-Newton matrix. We use five
different values starting from 50 ascending to 1024. We can see in Table 4.1 that
having GNsize equal to 512, we achieve the highest accuracy of them all. Here we
need to mention that we at first use the same Convolutional Neural Structure as
used by Wang et al. [49]. We have 2 Convolutional layers with 64 filters, and also 2
Pooling layers.
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Table 4.1: Sixth dataset accuracy when we change the GNsize for fold 4.

GNsize C BSize Epochs
Num
Conv

Num
Filters

Num
Pooling

Accuracy

50 0.5 32 1000 2 64 2 92.285%
100 0.5 32 1000 2 64 2 92.385%
200 0.5 32 1000 2 64 2 93.664%
512 0.5 32 1000 2 64 2 96.192%
1024 0.5 32 1000 2 64 2 95.491%

The next parameter that we choose is the regularisation parameter (C value), fol-
lowing the same process. We can see in Table 4.2 that we have the highest accuracy
when C is equal to 0.5. Lastly, we have to choose the batch size, but there is no
significant change, therefore we set it to 32.

Table 4.2: Sixth dataset accuracy when we change the C hyperparameter for fold 4.

GNsize C BSize Epochs
Num
Conv

Num
Filters

Num
Pooling

Accuracy

512 0.01 32 1000 2 64 2 92.185%
512 0.1 32 1000 2 64 2 93.192%
512 0.3 32 1000 2 64 2 94.293%
512 0.5 32 1000 2 64 2 96.444%
512 1 32 1000 2 64 2 95.921%

After we find the hyperparameter for the Subsampled Hessian Newton, the next
step is to alter the structure of the CNN. We choose three different tasks toperform
in order to conclude the most optimal parameter for this model.

• Number of Convolutional Layers

• Number of Filters

• Number of Pooling Layers

Convolutional Layers

We will only talk about the most important experiments, but for the sake of com-
pletion, most of the experiment tables can be found in the Appendix. As previously
said, we first test our model with 2 Convolutional layers and 2 Pooling layers. We
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proceed by choosing a different number of layers; if we look at Table 4.3 we can see
that aside from 2×2 (2-Conv and 2 Pooling), we additionally use 3×3 and 1×1. In
addition, we try to use only one convolutional layer without any pooling, as Chatz-
imiltis [17] uses in his thesis for a different problem, but that did not improve in
terms of accuracy. We observe that, as long as we increase the complexity of the
network by adding more layers, the model’s accuracy is decreased. Therefore we
choose to have a model with 1 Convolutional Layer and 1 Pooling Layer as a final
model.

Table 4.3: Sixth dataset accuracy using 3 different number of Convolutional and
Pooling Layers.

GNsize C BSize Epochs
Num
Conv

Num
Filters

Num
Pooling

Accuracy

512 0.5 32 1000 1 64 1 98.193%
512 0.5 32 1000 2 64 2 96.192%
512 0.5 32 1000 3 64 3 92.120%

Filters of the Convolutional Layer

The last hyperparameter which we will talk about is the number of filters that the
model will have for each convolutional layer. In Table 4.4 we use three different
numbers of filters that are mainly used, finding out that the model that achieves
the highest accuracy is the one using 128 filters. We conclude that this model has
the best result using only one convolutional layer from the previous section with 128
filters and one Pooling Layer.

Table 4.4: Sixth dataset accuracy using 3 different number of filters fo the Convo-
lutional Layer.

GNsize C BSize Epochs
Num
Conv

Num
Filters

Num
Pooling

Accuracy

512 0.5 32 1000 1 32 1 98.193%
512 0.5 32 1000 1 64 1 98.233%
512 0.5 32 1000 1 128 1 98.413%

Our Convolutional Neural Networks Architecture

Our Convolutional Neural Network has an input of 15x20x1. Then the dimensions
after passing through the first convolutional layer become 15x20x128 because we
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set the number of filters to 128. The next layer which is the pooling layer will
decrease the height and width dimension of the input, while keeping the features.
The dimensions of the pooling layer are 7x10x128. The architecture of the model
can be seen in Figure 4.1. Lastly, the output layer will either predict 1 for Spam
Emails or 0 for Ham Emails (we have a binary classification model). In the following
six sections, we will showcase the accuracy of each fold for each dataset, while we
will further show how well each model behaves for Spam and Ham (Legit) emails.

Figure 4.1: Our Convolutional Neural Networks Architecture.

4.2 Cross-Validation Results with First Dataset

We begin with the first dataset, where we have six columns starting with the model’s
accuracy. The second column corresponds to the validation accuracy which is the
model’s accuracy for data it has never seen before. After those two columns, we
have the Sensitivity (Ham Recall) and Specificity (Spam Recall) about which we
have already talked in the Metrics section. Because in Meltis et al. [34] they call
them Ham Recall and Spam Recall and we are eventually going to compare this
current model to their work, we adopt the same names to prevent any confusion.
Validation Recall refers to the data that the model has never seen before. The
remaining two columns are the data for which that the model was trained.

We can observe from Table 4.5 that we cannot significantly distinguish between ac-
curacy/validation accuracy and the recall/validation recall; all five-folds have almost
the same accuracy. We observe a very important thing though, as it can be seen
in the confusion matrix: we achieve 100% Ham Recall for three out of five folds on
data that has never been seen before. If we take the last row where we average each
metric, we realize that we have an almost perfect model that behaves very well with
the first dataset. The average accuracy of the model is 99%, and the average Recall
is almost 100%. We have good spam emails, but the model does not behave as
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perfectly as for the ham emails, albeit a 97% accuracy is still more than adequate.
We believe that having lower Recall for spam emails is due to having fewer spam
emails than ham emails (3673 Ham compared to 1500 Spam).

Table 4.5: Cross-Validation for the First Dataset. We measure the accuracy of the
model and also Spam and Ham Recall.

Dataset 1 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

Validation
Spam Recall

Validation
Ham Recall

Fold 1 99.073% 98.899% 96.87% 99.96% 96.44% 100%
Fold 2 99.149% 98.998% 97.22% 99.96% 97.41% 99.58%
Fold 3 99.149% 99.299% 97.24% 99.92% 97.64% 100%
Fold 4 99.174% 98.998% 97.33% 99.92% 96.97% 99.85%
Fold 5 99.123% 99.198% 97.10% 99.96% 97.19% 100%
Average 99.133% 99.078% 97.15% 99.99% 97.13% 99.88%

We will not show all the folds confusion matrices in any of the six experiment
sections. Instead we will show the best fold for each dataset as well as the worst
based on the False Positives. The rest can be seen in the Appendix.

We can see the confusion matrices for the best model in Figures 4.2 and 4.3, and
the “worst” model in Figures 4.4 and 4.5. Each fold has almost the same amount of
emails, but they do not have precisely the same number of spam and ham emails.
Note that by “worst” we do not mean that the model behaves badly, but that it has
a higher number of misclassified ham emails. The highest number of misclassified
ham emails is merely 3.

Figure 4.2: Dataset 1 Fold 5 Train Confusion Matrix.(Best Model)
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Figure 4.3: Dataset 1 Fold 5 Valid Confusion Matrix. (Best Model)

Figure 4.4: Dataset 1 Fold 2 Train Confusion Matrix. (Worst Model)
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Figure 4.5: Dataset 1 Fold 2 Valid Confusion Matrix. (Worst Model)

4.3 Cross-Validation Results with Second Dataset

For the second dataset, we apply the same architecture and use the same hyperpa-
rameters. We performed cross-validation again for the second dataset, and in Table
4.6, we have the Accuracy/Validation Accuracy of the model and Spam and Ham
Recall for both accuracies. The most important information that we can extract
from Table 4.6 is that this model classified all the Ham email correctly in every fold.
In addition, we score 99% accuracy/and validation accuracy for every fold except
from Fold2, where we are just 0.030% below 99%.

Table 4.6: Cross-Validation for the Second Dataset. We measure the accuracy of
the model and also Spam and Ham Recall.

Dataset 2 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

Validation
Spam Recall

Validation
Ham Recall

Fold 1 99.055% 99.399% 96.34% 100% 97.59% 100%
Fold 2 99.270% 98.970% 97.15% 100% 96.01% 100%
Fold 3 99.098% 99.056% 96.44% 100% 96.48% 100%
Fold 4 99.077% 99.141% 96.41% 100% 96.59% 100%
Fold 5 99.206% 99.227% 96.91% 100% 96.95% 100%
Average 99.141% 99.158% 96.65% 100% 96.72% 100%

Because every confusion matrix is precisely the same for the False Positive for
Dataset 2, we will show only the “worst” case where the model achieves 98.970%.
Figures 4.6 and 4.7 show the confusion matrices for Dataset 2, where we can see

52

Kyp
ros

 Io
an

no
u



0 False Positives(FP), and 34 and 12 misclassified Spam emails for Accuracy and
Validation Accuracy respectively. Once again, we have more ham emails than spam
emails (more than twice the amount).

Figure 4.6: Dataset 2 Fold 2 Train Confusion Matrix(Worst Model) where we have
0 False Positives and 34 False Negatives

Figure 4.7: Dataset 2 Fold 2 Validation Confusion Matrix(Worst Model) have we
scored 0 False Positives and 12 False Negatives.

4.4 Cross-Validation Results with Third Dataset

Table 4.7 shows the accuracy and Recall of the third dataset. One primary difference
we have from the other two datasets is that there is not much difference between
the Spam and Ham Recalls. In the previous two datasets, the Ham Recall was 2-3%
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higher than the Spam Recall most of the time. With the third dataset, we achieve
99% accuracy and validation accuracy for all the folds, and the difference between
spam and ham recall is for the most part less than 1%. With the exception of Fold
4 where the Validation Spam Recall is just 0.12 below the 99%, all the others have
Recall higher than 99%.

Table 4.7: Cross-Validation for the Third Dataset. We measure the accuracy of the
model and also Spam and Ham Recall.

Dataset 3 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

Validation
Spam Recall

Validation
Ham Recall

Fold 1 99.787% 99.905% 99.33% 99.96% 99.65% 100%
Fold 2 99.763% 99.905% 99.15% 100% 99.68% 100%
Fold 3 99.834% 99.621% 99.66% 99.90% 99.02% 99.86%
Fold 4 99.763% 99.620% 99.26% 99.96% 98.88% 99.87%
Fold 5 99.787% 99.810% 99.40% 99.93% 99.68% 99.86%
Average 99.787% 99.772% 99.36% 99.95% 99.38% 99.91%

Fold 4 had the lowest Validation Spam Recall (98.88%), but we will show in con-
fusion matrices of Fold 3 with higher misclassified ham emails as we already did
for the second dataset. Figure 4.8 shows the confusion matrix of the model where
the model misclassified 3 Ham and 4 Spam emails. Also, Figure 4.9 presents the
model’s confusion matrix for data which it had never seen before where the model
misclassified 1 Ham email and 3 Spam emails.

Figure 4.8: Dataset 3 Fold 3 Train Confusion Matrix(Worst Model) where we have
3 False Positives and 4 False Negatives.
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Figure 4.9: Dataset 3 Fold 3 Validation Confusion Matrix(Worst Model) where we
have 1 False Positives and 3 False Negatives.

4.5 Cross-Validation Results with Fourth Dataset

In the first three datasets, we had a higher Ham Recall than Spam recall in every
fold. For Dataset 4, we have the opposite as we clearly see that, aside from Fold 3
for which the validation Ham Recall is 100% , all the other folds have higher spam
than ham Recall. The results (Table 4.8) in this dataset are as good as the previous
three datasets. However, we may have just a bit lower Ham Recall than Spam due to
the number of spam emails being three times larger than that of ham emails (1500
Ham compared to 4500 Spam emails).

Table 4.8: Cross-Validation for the Fourth Dataset. We measure the accuracy of
the model and also Spam and Ham Recall.

Dataset 4 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

Validation
Spam Recall

Validation
Ham Recall

Fold 1 99.251% 99.316% 99.51% 98.49% 99.53% 98.68%
Fold 2 99.337% 98.973% 99.54% 98.72% 99.41% 97.79%
Fold 3 99.102% 99.829% 99.45% 98.11% 99.77% 100%
Fold 4 99.230% 98.888% 99.54% 98.32% 99.42% 97.37%
Fold 5 99.380% 99.230% 99.62% 98.67% 99.54% 98.28%
Average 99.26% 99.24% 99.532% 98.65% 99.53% 98.42%

Dataset 4 has the most misclassified Ham emails.In Figures 4.10 and 4.11, we present
the confusion matrix for the lowest fold, while Figures 4.12 and 4.13 show the best
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fold for this dataset, which is fold 3. Starting from the fold that scored the lowest,
we had 20 misclassified ham, and 16 misclassified spam emails for the model. When
we tested it to no-train data, we had eight misclassified Ham and 5 Spam emails.
On the other hand, the best fold (Fold 3) for dataset 4 has three more misclassified
Ham emails for train emails, but had 0 misclassified Ham emails when we test it
for new data. Fold three had a nearly perfect prediction with 99.829% accuracy for
new data, boasting just two wrongly classified spam emails.

Figure 4.10: Dataset 4 Fold 4 Train Confusion Matrix(Worst Model) where we have
20 False Positives and 16 False Negatives.

Figure 4.11: Dataset 4 Fold 4 Validation Confusion Matrix(Worst Model) where we
have 8 False Positives and 5 False Negatives.
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Figure 4.12: Dataset 4 Fold 3 Train Confusion Matrix(Best Model) where we have
23 False Positives and 19 False Negatives.

Figure 4.13: Dataset 4 Fold 3 Validation Confusion Matrix(Best Model) where we
have 0 False Positives and 2 False Negatives.

4.6 Cross-Validation Results with Fifth Dataset

In Dataset 5 we have once more achieved perfect prediction for all the ham emails.
The fold with the lowest accuracy and Spam Recall was fold 3 with an accuracy on
new data of 98.630%, additionally having the lowest Spam Recall at 97.89% . Table
4.9 shows all the results from all the folds for Dataset 5, whereas we only analyze
fold 3 in Figures 4.14 and 4.15. All the others confusion matrices, as mentioned
already, can be found in the Appendix. Finally, in dataset five we have yet again
more Spam than Ham emails (two times as many), however we have higher Ham
Recall than Spam Recall.
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Table 4.9: Cross-Validation for the Fifth Dataset. We measure the accuracy of the
model and also Spam and Ham Recall.

Dataset 5 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

Validation
Spam Recall

Validation
Ham Recall

Fold 1 98.875% 99.022% 98.42% 100% 98.67% 100%
Fold 2 98.997% 99.217% 98.69% 100% 98.90% 100%
Fold 3 98.484% 98.630% 97.89% 100% 98.06% 100%
Fold 4 98.973% 98.826% 98.56% 100% 98.37% 100%
Fold 5 98.851% 99.119% 98.40% 100% 98.89% 100%
Average 98.836% 98.762% 98.39% 100% 98.57% 100%

Figure 4.14: Dataset 5 Fold 3 Validation Confusion Matrix(Worst Model) where we
have 0 False Positives and 62 False Negatives.

Figure 4.15: Dataset 5 Fold 3 Train Confusion Matrix(Worst Model) where we have
0 False Positives and 14 False Negatives.
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4.7 Cross-Validation Results with Sixth Dataset

We proceed with the last dataset, with Table 4.10 listing all the results for each of
the five folds. We have more spam than ham emails (1500 Ham and 4500 Spam
emails) as per usual. Dataset 6 is the only one where we did not score 100% on any
of the folds for Spam Recall. In Figures 4.16 and 4.17, we can see the confusion
matrix of the dataset six with the lowest Ham Recall score, which is Fold 2.

Table 4.10: Cross-Validation for the Sixth Dataset. We measure the accuracy of the
model and also Spam and Ham Recall.

Dataset 6 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

Validation
Spam Recall

Validation
Ham Recall

Fold 1 98.475% 99.248% 98.19% 99.32% 99.20% 99.35%
Fold 2 98.976% 98.830% 98.94% 99.08% 98.67% 99.31%
Fold 3 98.663% 98.496% 98.38% 99.49% 98.10% 99.66%
Fold 4 99.081% 98.413% 98.94% 99.49% 98.34% 98.63%
Fold 5 98.580% 99.247% 98.41% 99.08% 99.22% 99.31%
Average 98.755% 98.846% 98.52% 99.09% 98.70% 99.25%

Figure 4.16: Dataset 6 Fold 2 Validation Confusion Matrix(Worst Model) where we
have 11 False Positives and 38 False Negatives.
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Figure 4.17: Dataset 6 Fold 2 Validation Confusion Matrix(Worst Model) where we
have 2 False Positives and 12 False Negatives.

4.8 Testing best model with the other 5 Datasets

Having produced very good results for each dataset and for each fold in the previous
sections, we decide to test the highest-performing model (model 3) with the other
5 datasets. What we do is to use said model that was trained with a fold from
Dataset 3, to test each fold from every other dataset. Then we calculate the average
validation accuracy for each dataset. In Table 4.11 we present the average accuracy
for each dataset using CNNs/HFO with Dataset 3.

Table 4.11: Average accuracy for all the dataset(Dataset 3 is used to train
CNNs/HFO).

Dataset
Average
Accurracy

First 61.75%
Second 45.65%
Fourth 86.71%
Fifth 84.34%
Sixth 95.60%

We can see that the first dataset has an average accuracy of 61.75%, while the second
dataset has the lowest accuracy of all the 5 five dataset (45.65%). For dataset 4
it increases, reaching an accuracy of 86.71%. The accuracy of the fifth dataset is
slightly lower than the fourth dataset (84.34%). With the last dataset we have an
accuracy of 95.60% which is was the highest out of all of the 5 datasets tested.
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Just as we mentioned above, the second dataset had the lowest accuracy out of all
the datasets using the dataset 3 model. Taking a look at Table 3.1, Dataset 2 used
Enron emails for Ham emails and Honeypot and Spam Assassins emails for Spam
emails. We have the same thing in Dataset 5, the only difference being that we
have twice as many spam emails compared to ham emails. Dataset 2 exhibits the
opposite by having 2.5 times more ham emails than spam emails. We speculate that
the model may have underperformed because the ham emails of Dataset 2 are not so
similar to the ones we used to train our model. The same thing applies to Dataset
1 for which we had the second lowest accuracy. Metsis et al. [34] used emails from
a variety of Enron Company employees, hence we believe that the spam emails will
have more similarities between them as opposed to Ham emails. That is because
spam emails are not tailored specifically for each person or target a specific group
of people, thus they will be very similar with others. By contrast, ham emails differ
based on the writing style and specific subject pertaining to the sender and recipient
in each case. If the lower accuracy stems from that, then it is an indication that the
model used does not generalize as well as we initially thought.

4.9 Comparison Between Gradient Descent and
Hessian Free Optimisation

In this section, we are going to compare our Convolutional Neural Network (CNN)
with Hessian Free Optimization (HFO) model with the CNN with Gradient Descent
(GD) model. The difference between the comparison that we are going to do for the
last section of Chapter 4 is that we run this model rather than compare our results
based on others researchers work as we do with original paper data [34].

For CNN/GDwill also did Cross-Validation. Table 4.12 shows the average Accu-
racyand Ham/Spam Recall for CNN/GD, and Table 4.13 is for CNN with Hessian
Free Optimisation. The CNN with Gradient Descent is not able to classify most of
the emails correctly. It is essential to mention that the average accuracy here is the
accuracy of each model based on data that has never been seen before. We already
show how our model behaves, and we are not going to show them again. Here we
simplify the tables by showing only the accuracy and the spam and ham Recall.

Looking at the last two columns from Table 4.12, it is obvious that CNN/GD clas-
sifies all emails either as spam or ham. After checking the number of ham and spam
emails we have in each dataset, we conclude that the model classified all of their
emails as spam when the dataset has more spam emails than ham. The same is
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applied when we have more ham emails than spam.

Table 4.12: Average Accuracy and Spam/Ham Recall from Cross-Validation for
CNN/Gradient Descent Model

Dataset
Average

Accuracy Spam Recall Ham Recall

Dataset 1 71.44% 0% 100%
Dataset 2 74.57% 0% 100%
Dataset 3 72.51% 0% 100%
Dataset 4 76.13% 100% 0%
Dataset 5 71.14% 100% 0%
Dataset 6 75.25% 100% 0%

Table 4.13: Average Accuracy and Spam/Ham Recall from Cross-Validation for
CNN/Hessian Free Optimization Model

Dataset
Average

Accuracy Spam Recall Ham Recall

Dataset 1 99.078% 97.13% 99.88%
Dataset 2 99.141% 96.72% 100%
Dataset 3 99.772% 99.38% 99.918%
Dataset 4 99.24% 99.534% 98.424%
Dataset 5 98.762% 98.57% 100%
Dataset 6 98.846% 98.70% 99.25%

On the other hand, our model behaves very well and is able to achieve 99% from
the first 50-70 epochs. Overall, if we let our model run for 1000 epoch, the Gradient
model is faster than our HFO model, around 25 minutes, but we do not want a
model that cannot learn even if it is faster than ours.

Before we proceed with the comparison between the CNNs/HFO and the original
paper’s models, it is important to mention that our model converges faster than the
Convolutional Neural Networks with Gradient Descent (GD). We can see that in
Figure 4.18, where HFO model needs at most 50 epochs to converge whereas GD
needs almost 2 and a half times more than that.For Figure 4.18 we use one of the
folds from dataset 3 to train HFO and GD models.Since the model was using second
order optimizer, we knew from the start that it would probably converge faster than
a first order optimizer, and with Figure 4.18 we prove this point in section 2.3.8.This
deserves further investigation.
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Figure 4.18: CNNs with Hessian Free Optimization converges 2.5 times faster than
the CNNs with Gradient Descent.

4.10 Comparison Between Original Dataset Work
and CNN With Hessian Free Optimisation

Finally, we are going to compare our model with Meltis et al. [34] work. Since the
authors did not split their dataset to see how each model behaves in new data, the
Spam and Ham Recall we show here is based on the whole dataset. We use all the
data from each dataset to train our model. Table 4.14 shows the Spam and Ham
Recall for all of the 5 different types of Naives Bayes and Algorithm and the Recall
for our CNN/HFO model. Our model has higher Spam and Ham Recall from any
of Meltis Naïve Bayes algorithms.

Table 4.14: Dataset 1 Spam and Ham Recall from original paper and our model
Dataset 1 Spam Recall Ham Recall

FB 90.50% 97.64%
MV Gauss 93.08% 94.83%
MN TF 95.66% 94.00%
MV Bern. 97.08% 93.19%
MN Bool. 96.00% 95.25%
CNNs/HFO 97.39% 99.94%

We continue with the second dataset in Table 4.15, and again, our model has higher

63

Kyp
ros

 Io
an

no
u



Spam and Ham Recall from any of the 5 Naïve Algorithms. Also, it achieved 100%
for Ham emails which is the main focus of this dissertation.

Table 4.15: Dataset 2 Spam and Ham Recall from original paper and our model
Dataset 2 Spam Recall Ham Recall

FB 93.63% 98.83%
MV Gauss 95.80% 96.97%
MN TF 96.81% 96.78%
MV Bern. 91.05% 97.22%
MN Bool. 96.68% 97.83%
CNNs/HFO 96.98% 100%

The third dataset it shows in Table 4.16 and has almost have a perfect score for
Ham and Spam Recall. Again our model outbid the other algorithms.

Table 4.16: Dataset 3 Spam and Ham Recall from original paper and our model
Dataset 3 Spam Recall Ham Recall

FB 96.94% 95.36%
MV Gauss 97.55% 88.81%
MN TF 95.04% 98.83%
MV Bern. 97.42% 75.41%
MN Bool. 96.94% 98.88%
CNNs/HFO 99.59% 99.94%

For Dataset four(Table 4.17), the spam recall is higher than every naïve Bayes
algorithm. Even though the ham recall from our model is not higher, we have
to consider that our model in total is better if we took MV Gauss or MN. Bool
algorithms that they have higher Ham Recall than our model have spam Recall
lower than us. For the first, the difference is 19%, and it is almost 2% for the
second.
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Table 4.17: Dataset 4 Spam and Ham Recall from original paper and our model
Dataset 4 Spam Recall Ham Recall

FB 95.78% 96.61%
MV Gauss 80.14% 99.39%
MN TF 97.79% 98.30%
MV Bern. 97.70% 95.86%
MN Bool. 97.79% 99.05%
CNNs/HFO 99.58% 98.59%

For dataset five (Table 4.18), we have the opposite where our model has the highest
Ham Recall but no the higher spam Recal but again in total, our model Recall is
better than any of the other models.

Table 4.18: Dataset 5 Spam and Ham Recall from original paper and our model
Dataset 5 Spam Recall Ham Recall

FB 99.56% 90.76%
MV Gauss 95.42% 97.28%
MN TF 99.42% 95.65%
MV Bern. 97.95% 90.08%
MN Bool. 99.69% 95.65%
CNNs/HFO 98.69% 100%

Dataset 6 (Table 4.19) is the last, and we achieve higher Ham Recall than any of the
five other algorithms but our Spam Recall is not the highest in general. However,
our model in total is better than any of the other models.

Table 4.19: Dataset 6 Spam and Ham Recall from original paper and our model
Dataset 6 Spam Recall Ham Recall

FB 99.55% 89.97%
MV Gauss 91.95% 95.87%
MN TF 98.08% 95.12%
MV Bern. 97.92% 82.52%
MN Bool. 98.10% 96.88%
CNNs/HFO 98.93% 99.19%
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The primary purpose of this dissertation was to prove that a second-order algorithm
such as Hessian Free Optimization (HFO) can achieve very good results when we
combine it with a Convolutional Neural Network (CNN). We also seek to understand
if a CNN/HFO model can achieve better results than a classic CNN with Gradient
Descent in a Natural Language Problem as Email Classification. Lastly, since we had
the results from the original paper that provided us with the data, we also compared
our model with the six different Naïve Bayes algorithms used in said paper [34].

The current model was measured in Accuracy and Ham and Spam Recall to be
compared with Meltis et al. [34] and with a Convolutional Neural Network with
Gradient Descent. We tested the model in six different datasets, and in order to
compare it with the six different Naïve Bayes algorithms that the original paper
used, we used the entire Dataset each time to train it.

For the first Dataset, we achieve Accuracy of 99.199% and Spam and Ham Recall
97.39% and 99.94%, respectively. Our model has higher Spam and Ham Recall than
any Meltis et al. [34] Naïve Bayes algorithms with higher MN. Bool with 96% and
95.25%. For the second email, we achieve an accuracy of 99.227% and 96.98% and
100% Spam and Ham Recall. Again their best model was MN. Bool with 96.68%
and 97.83% Ham and Spam Recall. With Dataset 3, we achieve a nearly perfect
score with an accuracy of 99.848% and with 99.59% and 99.94% Ham and Spam
Recall. Again we have the same algorithm as the best model from their work with
96.94% and 98.88% for Spam and Ham Recall.

This model did not outperform every Naïve Bayes algorithm in every Ham and
Spam Recall with the last three dataset models. However, comparing which model
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achieves the most correctly classified emails each time, our model surpasses that of
the original paper. We start with the fourth Dataset, where we achieve accuracy of
99.333% and 99.58% and 98.59% Ham and Spam Recall. MN. Bool is once again
their highest-performing model with 97.79% Spam and 99.05% Ham Recall. We
proceed with the fifth Dataset, where we achieve accuracy of 99.061% and 98.69%
Spam and a perfect score(100%) for Ham Recall. MN. Bool persists as the best
model of Meltis et al. with 99.69% Spam and 95.65% Ham Recall. With the
last model, we have the lowest accuracy of all other datasets, but it still produces
commendable results. We achieved an accuracy of 98.997% and 98.93% Spam, and
99.19% Ham Recall. Their best model did not change, with 98.10% for Spam and
96.88% for Ham Recall.

In addition to comparing the model of this project with the model in the original
paper, we also did cross-validation five-folds for our model with the Convolutional
neural network (CNN) that uses Gradient Descent (GD). CNN with GD could not
identify spam and ham emails correctly, yet our model achieves impressive results
in every fold for every Dataset. The average accuracy we achieve with the classic
CNN was 71.44% up to 76.13%, while with the other model the average accuracy
ranged from 98.762% to 99.742%. We achieve similar Accuracy, and Spam and Ham
Recall both when we split the dataset, and when we use the entire dataset to train
the model. On the other hand, CNN with GD had 0% Spam Recall for the first
three datasets, and 0 Ham Recall the last three datasets. Overall, the Convolutional
Neural Network with Hessian Free Optimisation has achieved excellent results and
performed well in every comparison we made. Lastly, we need to mention that
since we used a second order optimizer we with the CNNs, we expected the model
would converge faster compared to CNNs with Gradient Descent. CNNs with HFO
converge 2.5 times faster than the one with Gradient Descent which we have shown
in section 4.8 when by training both models for 200 epochs.
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5.2 Future Work

We experiment with a small group of datasets, around 5000 emails per dataset.
Meltis et al. who use the original dataset, also achieve very good results comparable
to our algorithm. Using such simple algorithms we may have very good performance
on a small dataset, but those algorithms will probably fail in a high volume of data,
and a deep Neural Network can be endured and cope in such a high volume of data.

An attacker can very quickly change how they construct the email in order trick
the email provider’s filter and the user. An obvious example of that is the current
pandemic where the attackers quickly adapted the emails’ theme to deceive users.
The email theme is not the only thing an attacker can change; it could also be where
they hide the malware or the link to navigate the user to a malicious site.

Since it is effortless for an attacker to change tactics to achieve their goal, we believe
that a Deep Neural Network such as CNN can be used to adapt to those changes
and correctly predict other emails that have never been seen before. With the
conclusion of this dissertation, the next step is to find and train the outlined model
with a high volume of data with various emails to test when it can adapt and learn.
It is not easy to find legit emails since most people and companies do not disclose
their personal emails with the public.Furthermore, it is important to note that our
data is outdated, since it is from 2006. As we already mentioned, the attackers’
tactics change often and with ease, so we need to find newer datasets compared to
those used in this dissertation, or possibly combine “old-fashioned” tactics with new
ones.

Another thing we could do is to test how the model reacts in a real scenario situation.
After we train the model with a high volume of data, we can use either Microsoft
Email Provider (Microsoft Outlook) or Google’s (Gmail) API to filter emails using
our model. That way we may see whether it performs as well as an already tried-
and-tested filter by Microsoft and Google, or whether it achieves different results.

Having shown that our model converges really fast, it is natural that such a model
could been used in the business industry. It is well-behaved and learns quite fast,
hence a company can use such a model in order to create a personal email filter for
all customers.

Another thing to mention is that we do not need to only use this model for the spam
classification problem, but for a variety of different Natural Language Processing
problems as well. The reasoning behind this is that all the preprocessing steps we
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undertook for our spam classification problem can also be applied for other text
processing problems. An example of that is Sentiment Analysis for determining
whether the sentiment towards any topic or products etc. is positive, negative or
neutral, based on the text corpus. Sentiment analysis may also be used for predicting
elections based on social media activity. By analyzing tweets from Twitter where
millions of people express their thoughts, we are able to make predictions on the
performance for each candidate.

As a conclusion, our model can be used for document processing. Documents contain
valuable information and using a machine learning model such as the one presented
in this thesis instead of doing it manually, we are able to reduce the time needed
to read and extract that information from the documents. Plus, it is less prone to
human error and costs less to automate this process.
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Appendix A - Source Code

CNN With Hessian-Free Optimization Source Code

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import os

import matplotlib.pyplot as plt

import seaborn as sns

import math

import pdb

import tensorflow.compat.v1 as tf

tf.disable_v2_behavior()

from gensim.models import Word2Vec, KeyedVectors

from email.parser import Parser

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

from string import punctuation

from tqdm.notebook import tqdm

from sklearn.multioutput import MultiOutputClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_auc_score

from statistics import mean

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score, roc_auc_score

from tensorflow.python.client import device_lib

import numpy as np

import tensorflow.compat.v1.keras as keras

from keras.regularizers import l2

%load_ext autotime

#Load Test and Validation Dataset

fold = pd.read_csv(’Fold4_6.csv’)

test_fold=pd.read_csv(’Valid4_6.csv’)
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#Separate class from features

train_labels=fold.Class

train_texts=fold.drop([’Class’], axis=1)

test_labels=test_fold.Class

test_texts=test_fold.drop([’Class’], axis=1)

#Convert all of them into numpy type

train_labels=train_labels.to_numpy()

test_labels=test_labels.to_numpy()

train_texts=train_texts.to_numpy()

test_texts=test_texts.to_numpy()

#FOR using the whole MELTIS DATASET

# train_texts=pd.concat([fold, test_fold], ignore_index=True)

# train_labels=train_texts.Class

# train_texts=train_texts.drop([’Class’], axis=1)

# train_texts=train_texts.to_numpy()

# train_labels=train_labels.to_numpy()

def acc_loss(data,labels):

args = parse_args()

sess_config = tf.compat.v1.ConfigProto()

sess_config.gpu_options.allow_growth = True

with tf.compat.v1.Session(config=sess_config) as sess:

graph_address = args.model_file + ’.meta’

imported_graph =

tf.compat.v1.train.import_meta_graph(graph_address)

imported_graph.restore(sess, args.model_file)

mean_param = [v for v in tf.compat.v1.global_variables() if

’mean_tr:0’ in v.name][0]

label_enum_var = [v for v in tf.compat.v1.global_variables() if

’label_enum:0’ in v.name][0]

sess.run(tf.compat.v1.variables_initializer([mean_param,

label_enum_var]))

mean_tr = sess.run(mean_param)

label_enum = sess.run(label_enum_var)
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test_batch, num_cls, _ = read_data(train_texts,train_labels,

dim=args.dim, label_enum=label_enum)

test_batch[0], _ = normalize_and_reshape(test_batch[0],

dim=args.dim, mean_tr=mean_tr)

x = tf.compat.v1.get_default_graph().get_tensor_by_name

(’main_params/input_of_net:0’)

y = tf.compat.v1.get_default_graph().get_tensor_by_name

(’main_params/labels:0’)

outputs =

tf.compat.v1.get_default_graph().get_tensor_by_name(’output_of_net:0’)

if args.loss == ’MSELoss’:

loss = tf.reduce_sum(input_tensor=tf.pow(outputs-y, 2))

else:

loss =

tf.reduce_sum(input_tensor=tf.nn.softmax_cross_entropy_with_logits

(logits=outputs, labels=tf.stop_gradient(y)))

network = (x, y, loss, outputs)

avg_loss, acc, results = predict(sess, network, test_batch,

args.bsize)

# convert results back to the original labels

inverse_map = dict(zip(np.arange(num_cls), label_enum))

results = np.expand_dims(results, axis=1)

results = np.apply_along_axis(lambda x: inverse_map[x[0]],

axis=1, arr=results)

print(’In test phase, average loss: {:.3f} | accuracy:

{:.3f}%’.format(avg_loss, acc*100))

return results

def confusion_matrix(actual_labels,results):

fig = plt.figure(figsize=(10,4))

heatmap = sns.heatmap(data =

pd.DataFrame(confusion_matrix(actual_labels, results)), annot =

True, fmt = "d", cmap=sns.color_palette("Reds", 50))
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heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(),

rotation=0, ha=’right’, fontsize=14)

heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(),

rotation=45, ha=’right’, fontsize=14)

plt.ylabel(’Ground Truth’)

plt.xlabel(’Prediction’)

plt.show()

# CNN_4layers is the main CNN structure for this experiments.

def CNN_4layers(input_shape, output_shape):

layers = [

keras.layers.Conv2D(128, [5, 5],kernel_regularizer=l2(0.03),

padding=’same’, activation=tf.nn.relu6,

input_shape=input_shape),

keras.layers.MaxPool2D([2, 2], strides=2),

# keras.layers.Conv2D(64, [5, 5],kernel_regularizer=l2(0.03),

padding=’same’, activation=tf.nn.relu),

# keras.layers.MaxPool2D([2, 2], strides=2),

# keras.layers.Conv2D(32, [5, 5],kernel_regularizer=l2(0.03),

padding=’same’, activation=tf.nn.relu),

# keras.layers.MaxPool2D([2, 2], strides=2),

keras.layers.Dropout(0.5),

keras.layers.Flatten(),

keras.layers.Dense(output_shape),

]

return keras.models.Sequential(layers)

def CNN_7layers(input_shape, output_shape):

layers = [

keras.layers.Conv2D(32, [5, 5], padding=’same’,

activation=tf.nn.relu, input_shape=input_shape),

keras.layers.Conv2D(32, [3, 3], padding=’same’,

activation=tf.nn.relu),

keras.layers.MaxPool2D([2, 2], strides=2),

keras.layers.Conv2D(64, [3, 3], padding=’same’,

activation=tf.nn.relu),
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keras.layers.Conv2D(64, [3, 3], padding=’same’,

activation=tf.nn.relu),

keras.layers.MaxPool2D([2, 2], strides=2),

keras.layers.Conv2D(64, [3, 3], padding=’same’,

activation=tf.nn.relu),

keras.layers.Conv2D(128, [3, 3], padding=’same’,

activation=tf.nn.relu),

keras.layers.MaxPool2D([2, 2], strides=2),

keras.layers.Flatten(),

keras.layers.Dense(output_shape),

]

return keras.models.Sequential(layers)

def CNN_model(net, input_shape, output_shape):

return globals()[net](input_shape, output_shape)

def CNN(net, num_cls, dim):

_NUM_CLASSES = num_cls

_IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim

with tf.name_scope(’main_params’):

x = tf.placeholder(tf.float32, shape=[None, _IMAGE_HEIGHT,

_IMAGE_WIDTH, _IMAGE_CHANNELS], name=’input_of_net’)

y = tf.placeholder(tf.float32, shape=[None, _NUM_CLASSES],

name=’labels’)

outputs = CNN_model(net, dim, num_cls)(x)

outputs = tf.identity(outputs, name=’output_of_net’)

return (x, y, outputs)

import pdb

import time

import os

import math

def Rop(f, weights, v):

"""Implementation of R operator

Args:

f: any function of weights
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weights: list of tensors.

v: vector for right multiplication

Returns:

Jv: Jaccobian vector product, length same as

the number of output of f

"""

if type(f) == list:

u = [tf.zeros_like(ff) for ff in f]

else:

u = tf.zeros_like(f) # dummy variable

g = tf.gradients(ys=f, xs=weights, grad_ys=u)

return tf.gradients(ys=g, xs=u, grad_ys=v)

def Gauss_Newton_vec(outputs, loss, weights, v):

"""Implements Gauss-Newton vector product.

Args:

loss: Loss function.

outputs: outputs of the last layer (pre-softmax).

weights: Weights, list of tensors.

v: vector to be multiplied with Gauss Newton matrix

Returns:

J’BJv: Guass-Newton vector product.

"""

# Validate the input

if type(weights) == list:

if len(v) != len(weights):

raise ValueError("weights and v must have the same length.")

grads_outputs = tf.gradients(ys=loss, xs=outputs)

BJv = Rop(grads_outputs, weights, v)

JBJv = tf.gradients(ys=outputs, xs=weights, grad_ys=BJv)

return JBJv

class newton_cg(object):

def __init__(self, config, sess, outputs, loss):

"""

initialize operations and vairables that will be used in newton

args:

sess: tensorflow session
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outputs: output of the neural network (pre-softmax layer)

loss: function to calculate loss

"""

super(newton_cg, self).__init__()

self.sess = sess

self.config = config

self.outputs = outputs

self.loss = loss

self.param = tf.compat.v1.trainable_variables()

self.CGiter = 0

FLOAT = tf.float32

model_weight = self.vectorize(self.param)

# initial variable used in CG

zeros = tf.zeros(model_weight.get_shape(), dtype=FLOAT)

self.r = tf.Variable(zeros, dtype=FLOAT, trainable=False)

self.v = tf.Variable(zeros, dtype=FLOAT, trainable=False)

self.s = tf.Variable(zeros, dtype=FLOAT, trainable=False)

self.g = tf.Variable(zeros, dtype=FLOAT, trainable=False)

# initial Gv, f for method minibatch

self.Gv = tf.Variable(zeros, dtype=FLOAT, trainable=False)

self.f = tf.Variable(0., dtype=FLOAT, trainable=False)

# rTr, cgtol and beta to be used in CG

self.rTr = tf.Variable(0., dtype=FLOAT, trainable=False)

self.cgtol = tf.Variable(0., dtype=FLOAT, trainable=False)

self.beta = tf.Variable(0., dtype=FLOAT, trainable=False)

# placeholder alpha, old_alpha and lambda

self.alpha = tf.compat.v1.placeholder(FLOAT, shape=[])

self.old_alpha = tf.compat.v1.placeholder(FLOAT, shape=[])

self._lambda = tf.compat.v1.placeholder(FLOAT, shape=[])

self.num_grad_segment =

math.ceil(self.config.num_data/self.config.bsize)

self.num_Gv_segment =

math.ceil(self.config.GNsize/self.config.bsize)

cal_loss, cal_lossgrad, cal_lossGv, \
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add_reg_avg_loss, add_reg_avg_grad, add_reg_avg_Gv, \

zero_loss, zero_grad, zero_Gv = self._ops_in_minibatch()

# initial operations that will be used in minibatch and newton

self.cal_loss = cal_loss

self.cal_lossgrad = cal_lossgrad

self.cal_lossGv = cal_lossGv

self.add_reg_avg_loss = add_reg_avg_loss

self.add_reg_avg_grad = add_reg_avg_grad

self.add_reg_avg_Gv = add_reg_avg_Gv

self.zero_loss = zero_loss

self.zero_grad = zero_grad

self.zero_Gv = zero_Gv

self.CG, self.update_v = self._CG()

self.init_cg_vars = self._init_cg_vars()

self.update_gs = tf.tensordot(self.s, self.g, axes=1)

self.update_sGs = 0.5*tf.tensordot(self.s,

-self.g-self.r-self._lambda*self.s, axes=1)

self.update_model = self._update_model()

self.gnorm = self.calc_norm(self.g)

def vectorize(self, tensors):

if isinstance(tensors, list) or isinstance(tensors, tuple):

vector = [tf.reshape(tensor, [-1]) for tensor in tensors]

return tf.concat(vector, 0)

else:

return tensors

def inverse_vectorize(self, vector, param):

if isinstance(vector, list):

return vector

else:

tensors = []

offset = 0

num_total_param = np.sum([np.prod(p.shape.as_list()) for p in

param])

for p in param:
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numel = np.prod(p.shape.as_list())

tensors.append(tf.reshape(vector[offset: offset+numel],

p.shape))

offset += numel

assert offset == num_total_param

return tensors

def calc_norm(self, v):

# default: frobenius norm

if isinstance(v, list):

norm = 0.

for p in v:

norm = norm + tf.norm(tensor=p)**2

return norm**0.5

else:

return tf.norm(tensor=v)

def _ops_in_minibatch(self):

"""

Define operations that will be used in method minibatch

Vectorization is already a deep copy operation.

Before using newton method, loss needs to be summed over training

samples

to make results consistent.

"""

def cal_loss():

return tf.compat.v1.assign(self.f, self.f + self.loss)

def cal_lossgrad():

update_f = tf.compat.v1.assign(self.f, self.f + self.loss)

grad = tf.gradients(ys=self.loss, xs=self.param)

grad = self.vectorize(grad)

update_grad = tf.compat.v1.assign(self.g, self.g + grad)

return tf.group(*[update_f, update_grad])

def cal_lossGv():
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v = self.inverse_vectorize(self.v, self.param)

Gv = Gauss_Newton_vec(self.outputs, self.loss, self.param, v)

Gv = self.vectorize(Gv)

return tf.compat.v1.assign(self.Gv, self.Gv + Gv)

# add regularization term to loss, gradient and Gv and further

average over batches

def add_reg_avg_loss():

model_weight = self.vectorize(self.param)

reg = (self.calc_norm(model_weight))**2

reg = 1.0/(2*self.config.C) * reg

return tf.compat.v1.assign(self.f, reg +

self.f/self.config.num_data)

def add_reg_avg_lossgrad():

model_weight = self.vectorize(self.param)

reg_grad = model_weight/self.config.C

return tf.compat.v1.assign(self.g, reg_grad +

self.g/self.config.num_data)

def add_reg_avg_lossGv():

return tf.compat.v1.assign(self.Gv, (self._lambda +

1/self.config.C)*self.v

+ self.Gv/self.config.GNsize)

# zero out loss, grad and Gv

def zero_loss():

return tf.compat.v1.assign(self.f, tf.zeros_like(self.f))

def zero_grad():

return tf.compat.v1.assign(self.g, tf.zeros_like(self.g))

def zero_Gv():

return tf.compat.v1.assign(self.Gv, tf.zeros_like(self.Gv))

return (cal_loss(), cal_lossgrad(), cal_lossGv(),

add_reg_avg_loss(), add_reg_avg_lossgrad(),

add_reg_avg_lossGv(),

zero_loss(), zero_grad(), zero_Gv())

def minibatch(self, data_batch, place_holder_x, place_holder_y, mode):

"""

A-10

Kyp
ros

 Io
an

no
u



A function to evaluate either function value, global gradient or

sub-sampled Gv

"""

if mode not in (’funonly’, ’fungrad’, ’Gv’):

raise ValueError(’Unknown mode other than funonly & fungrad &

Gv!’)

inputs, labels = data_batch

num_data = labels.shape[0]

num_segment = math.ceil(num_data/self.config.bsize)

x, y = place_holder_x, place_holder_y

# before estimation starts, need to zero out f, grad and Gv

according to the mode

if mode == ’funonly’:

assert num_data == self.config.num_data

assert num_segment == self.num_grad_segment

self.sess.run(self.zero_loss)

elif mode == ’fungrad’:

assert num_data == self.config.num_data

assert num_segment == self.num_grad_segment

self.sess.run([self.zero_loss, self.zero_grad])

else:

assert num_data == self.config.GNsize

assert num_segment == self.num_Gv_segment

self.sess.run(self.zero_Gv)

for i in range(num_segment):

load_time = time.time()

idx = np.arange(i * self.config.bsize, min((i+1) *

self.config.bsize, num_data))

batch_input = inputs[idx]

batch_labels = labels[idx]

batch_input = np.ascontiguousarray(batch_input)

batch_labels = np.ascontiguousarray(batch_labels)

self.config.elapsed_time += time.time() - load_time
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if mode == ’funonly’:

self.sess.run(self.cal_loss, feed_dict={

x: batch_input,

y: batch_labels,})

elif mode == ’fungrad’:

self.sess.run(self.cal_lossgrad, feed_dict={

x: batch_input,

y: batch_labels,})

else:

self.sess.run(self.cal_lossGv, feed_dict={

x: batch_input,

y: batch_labels})

# average over batches

if mode == ’funonly’:

self.sess.run(self.add_reg_avg_loss)

elif mode == ’fungrad’:

self.sess.run([self.add_reg_avg_loss, self.add_reg_avg_grad])

else:

self.sess.run(self.add_reg_avg_Gv,

feed_dict={self._lambda: self.config._lambda})

def _update_model(self):

update_model_ops = []

x = self.inverse_vectorize(self.s, self.param)

for i, p in enumerate(self.param):

op = tf.compat.v1.assign(p, p + (self.alpha-self.old_alpha) *

x[i])

update_model_ops.append(op)

return tf.group(*update_model_ops)

def _init_cg_vars(self):

init_ops = []
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init_r = tf.compat.v1.assign(self.r, -self.g)

init_v = tf.compat.v1.assign(self.v, -self.g)

init_s = tf.compat.v1.assign(self.s, tf.zeros_like(self.g))

gnorm = self.calc_norm(self.g)

init_rTr = tf.compat.v1.assign(self.rTr, gnorm**2)

init_cgtol = tf.compat.v1.assign(self.cgtol, self.config.xi*gnorm)

init_ops = [init_r, init_v, init_s, init_rTr, init_cgtol]

return tf.group(*init_ops)

def _CG(self):

"""

CG:

define operations that will be used in method newton

Same as the previous loss calculation,

Gv has been summed over batches when samples were fed into Neural

Network.

"""

def CG_ops():

vGv = tf.tensordot(self.v, self.Gv, axes=1)

alpha = self.rTr / vGv

with tf.control_dependencies([alpha]):

update_s = tf.compat.v1.assign(self.s, self.s + alpha *

self.v, name=’update_s_ops’)

update_r = tf.compat.v1.assign(self.r, self.r - alpha *

self.Gv, name=’update_r_ops’)

with tf.control_dependencies([update_s, update_r]):

rnewTrnew = self.calc_norm(update_r)**2

update_beta = tf.compat.v1.assign(self.beta, rnewTrnew /

self.rTr)

with tf.control_dependencies([update_beta]):

update_rTr = tf.compat.v1.assign(self.rTr, rnewTrnew,

name=’update_rTr_ops’)
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return tf.group(*[update_s, update_beta, update_rTr])

def update_v():

return tf.compat.v1.assign(self.v, self.r + self.beta*self.v,

name=’update_v’)

return (CG_ops(), update_v())

def newton(self, full_batch, val_batch, saver, network,

test_network=None):

"""

Conduct newton steps for training

args:

full_batch & val_batch: provide training set and validation set.

The function will

save the best model evaluted on validation set for future

prediction.

network: a tuple contains (x, y, loss, outputs).

test_network: a tuple similar to argument network. If you use

layers which behave differently

in test phase such as batchnorm, a separate test_network is

needed.

return:

None

"""

# check whether data is valid

full_inputs, full_labels = full_batch

assert full_inputs.shape[0] == full_labels.shape[0]

if full_inputs.shape[0] != self.config.num_data:

raise ValueError(’The number of full batch inputs does not agree

with the config argument.\

This is important because global loss is averaged

over those inputs’)

x, y, _, outputs = network

tf.compat.v1.summary.scalar(’loss’, self.f)

merged = tf.compat.v1.summary.merge_all()
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train_writer = tf.compat.v1.summary.FileWriter(’./summary/train’,

self.sess.graph)

print(self.config.args)

if not self.config.screen_log_only:

log_file = open(self.config.log_file, ’w’)

print(self.config.args, file=log_file)

self.minibatch(full_batch, x, y, mode=’fungrad’)

f = self.sess.run(self.f)

output_str = ’initial f: {:.3f}’.format(f)

print(output_str)

if not self.config.screen_log_only:

print(output_str, file=log_file)

best_acc = 0.0

total_running_time = 0.0

self.config.elapsed_time = 0.0

total_CG = 0

for k in range(self.config.iter_max):

# randomly select the batch for Gv estimation

idx = np.random.choice(np.arange(0, full_labels.shape[0]),

size=self.config.GNsize, replace=False)

mini_inputs = full_inputs[idx]

mini_labels = full_labels[idx]

start = time.time()

self.sess.run(self.init_cg_vars)

cgtol = self.sess.run(self.cgtol)

avg_cg_time = 0.0

for CGiter in range(1, self.config.CGmax+1):

cg_time = time.time()

self.minibatch((mini_inputs, mini_labels), x, y, mode=’Gv’)
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avg_cg_time += time.time() - cg_time

self.sess.run(self.CG)

rnewTrnew = self.sess.run(self.rTr)

if rnewTrnew**0.5 <= cgtol or CGiter == self.config.CGmax:

break

self.sess.run(self.update_v)

print(’Avg time per Gv iteration: {:.5f}

s\r\n’.format(avg_cg_time/CGiter))

gs, sGs = self.sess.run([self.update_gs, self.update_sGs],

feed_dict={

self._lambda: self.config._lambda

})

# line_search

f_old = f

alpha = 1

while True:

old_alpha = 0 if alpha == 1 else alpha/0.5

self.sess.run(self.update_model, feed_dict={

self.alpha:alpha, self.old_alpha:old_alpha

})

prered = alpha*gs + (alpha**2)*sGs

self.minibatch(full_batch, x, y, mode=’funonly’)

f = self.sess.run(self.f)

actred = f - f_old

if actred <= self.config.eta*alpha*gs:

break
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alpha *= 0.5

# update lambda

ratio = actred / prered

if ratio < 0.25:

self.config._lambda *= self.config.boost

elif ratio >= 0.75:

self.config._lambda *= self.config.drop

self.minibatch(full_batch, x, y, mode=’fungrad’)

f = self.sess.run(self.f)

gnorm = self.sess.run(self.gnorm)

summary = self.sess.run(merged)

train_writer.add_summary(summary, k)

# exclude data loading time for fair comparison

end = time.time()

end = end - self.config.elapsed_time

total_running_time += end-start

self.config.elapsed_time = 0.0

total_CG += CGiter

output_str = ’{}-iter f: {:.3f} |g|: {:.5f} alpha: {:.3e} ratio:

{:.3f} lambda: {:.5f} #CG: {} actred: {:.5f} prered: {:.5f}

time: {:.3f}’.\

format(k, f, gnorm, alpha, actred/prered,

self.config._lambda, CGiter, actred, prered,

end-start)

print(output_str)

if not self.config.screen_log_only:

print(output_str, file=log_file)

if val_batch is not None:

# Evaluate the performance after every Newton Step

if test_network == None:
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val_loss, val_acc, _ = predict(

self.sess,

network=(x, y, self.loss, outputs),

test_batch=val_batch,

bsize=self.config.bsize,

)

else:

# A separat test network part has not been done...

val_loss, val_acc, _ = predict(

self.sess,

network=test_network,

test_batch=val_batch,

bsize=self.config.bsize

)

output_str = ’\r\n {}-iter val_acc: {:.3f}% val_loss

{:.3f}\r\n’.\

format(k, val_acc*100, val_loss)

print(output_str)

if not self.config.screen_log_only:

print(output_str, file=log_file)

if val_acc > best_acc:

best_acc = val_acc

checkpoint_path = self.config.model_file

save_path = saver.save(self.sess, checkpoint_path)

print(’Best model saved in {}\r\n’.format(save_path))

if val_batch is None:

checkpoint_path = self.config.model_file

save_path = saver.save(self.sess, checkpoint_path)

print(’Model at the last iteration saved in

{}\r\n’.format(save_path))

output_str = ’total_#CG {} | total running time

{:.3f}s’.format(total_CG, total_running_time)

else:

output_str = ’Final acc: {:.3f}% | best acc {:.3f}% | total_#CG

{} | total running time {:.3f}s’.\

format(val_acc*100, best_acc*100, total_CG,

total_running_time)
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print(output_str)

if not self.config.screen_log_only:

print(output_str, file=log_file)

log_file.close()

import scipy.io as sio

import os

class ConfigClass(object):

def __init__(self, args, num_data, num_cls):

super(ConfigClass, self).__init__()

self.args = args

self.iter_max = args.iter_max

# Different notations of regularization term:

# In SGD, weight decay:

# weight_decay <- lr/(C*num_of_training_samples)

# In Newton method:

# C <- C * num_of_training_samples

self.seed = args.seed

if self.seed is None:

print(’You choose not to specify a random seed.’+\

’A different result is produced after each run.’)

elif isinstance(self.seed, int) and self.seed >= 0:

print(’You specify random seed {}.’.format(self.seed))

else:

raise ValueError(’Only accept None type or nonnegative integers

for’+\

’ random seed argument!’)

self.train_set = args.train_set

self.val_set = args.val_set

self.num_cls = num_cls

self.dim = args.dim

self.num_data = num_data

self.GNsize = min(args.GNsize, self.num_data)
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self.C = args.C * self.num_data

self.net = args.net

self.xi = 0.1

self.CGmax = args.CGmax

self._lambda = args._lambda

self.drop = args.drop

self.boost = args.boost

self.eta = args.eta

self.lr = args.lr

self.lr_decay = args.lr_decay

self.bsize = args.bsize

if args.momentum < 0:

raise ValueError(’Momentum needs to be larger than 0!’)

self.momentum = args.momentum

self.loss = args.loss

if self.loss not in (’MSELoss’, ’CrossEntropy’):

raise ValueError(’Unrecognized loss type!’)

self.optim = args.optim

if self.optim not in (’SGD’, ’NewtonCG’, ’Adam’):

raise ValueError(’Only support SGD, Adam & NewtonCG optimizer!’)

self.log_file = args.log_file

self.model_file = args.model_file

self.screen_log_only = args.screen_log_only

if self.screen_log_only:

print(’You choose not to store running log. Only store model to

{}’.format(self.log_file))

else:

print(’Saving log to: {}’.format(self.log_file))

dir_name, _ = os.path.split(self.log_file)

if not os.path.isdir(dir_name):

os.makedirs(dir_name, exist_ok=True)

dir_name, _ = os.path.split(self.model_file)

if not os.path.isdir(dir_name):

os.makedirs(dir_name, exist_ok=True)
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self.elapsed_time = 0.0

def read_data(enron_data,data_class, dim, label_enum=None):

"""

args:

filename: the path where .mat files are stored

label_enum (default None): the list that stores the original

labels.

If label_enum is None, the function will generate a new list

which stores the

original labels in a sequence, and map original labels to [0, 1,

... number_of_classes-1].

If label_enum is a list, the function will use it to convert

original labels to [0, 1,..., number_of_classes-1].

"""

# mat_contents = sio.loadmat(filename)

images, labels = enron_data,data_class

images=np.array(enron_data)

labels=list(map(lambda el:[el], data_class))

labels=np.array(labels)

labels = labels.reshape(-1)

images = images.reshape(images.shape[0], -1)

_IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim

zero_to_append = np.zeros((images.shape[0],

_IMAGE_CHANNELS*_IMAGE_HEIGHT*_IMAGE_WIDTH-np.prod(images.shape[1:])))

images = np.append(images, zero_to_append, axis=1)

# check data validity

if label_enum is None:

label_enum, labels = np.unique(labels, return_inverse=True)

num_cls = labels.max()+1

if len(label_enum) != num_cls:

raise ValueError(’The number of classes is not equal to the

number of\
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labels in dataset. Please verify them.’)

else:

num_cls = len(label_enum)

forward_map = dict(zip(label_enum, np.arange(num_cls)))

labels = np.expand_dims(labels, axis=1)

labels = np.apply_along_axis(lambda x:forward_map[x[0]], axis=1,

arr=labels)

# convert groundtruth to one-hot encoding

labels = np.eye(num_cls)[labels]

labels = labels.astype(’float32’)

return [images, labels], num_cls, label_enum

def normalize_and_reshape(images, dim, mean_tr=None):

_IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim

images_shape = [images.shape[0], _IMAGE_CHANNELS, _IMAGE_HEIGHT,

_IMAGE_WIDTH]

# images normalization and zero centering

images = images.reshape(images_shape[0], -1)

images = images/255.0

if mean_tr is None:

print(’No mean of data provided! Normalize images by their own

mean.’)

# if no mean_tr is provided, we calculate it according to the

current data

mean_tr = images.mean(axis=0)

else:

print(’Normalize images according to the provided mean.’)

if np.prod(mean_tr.shape) != np.prod(dim):

raise ValueError(’Dimension of provided mean does not agree with

the data! Please verify them!’)

images = images - mean_tr

images = images.reshape(images_shape)

# Tensorflow accepts data shape: B x H x W x C
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images = np.transpose(images, (0, 2, 3, 1))

return images, mean_tr

def predict(sess, network, test_batch, bsize):

x, y, loss, outputs = network

test_inputs, test_labels = test_batch

batch_size = bsize

num_data = test_labels.shape[0]

num_batches = math.ceil(num_data/batch_size)

results = np.zeros(shape=num_data, dtype=int)

infer_loss = 0.0

for i in range(num_batches):

batch_idx = np.arange(i*batch_size, min((i+1)*batch_size,

num_data))

# batch_idx = np.arange(i*batch_size, min((i+1)*batch_size, 1459))

batch_input = test_inputs[batch_idx]

batch_labels = test_labels[batch_idx]

net_outputs, _loss = sess.run(

[outputs, loss], feed_dict={x: batch_input, y: batch_labels}

)

# print(net_outputs)

results[batch_idx] = np.argmax(net_outputs, axis=1)

# note that _loss was summed over batches

infer_loss = infer_loss + _loss

acc = (np.argmax(test_labels, axis=1) == results).mean()

avg_loss = infer_loss/num_data

return avg_loss, acc, results

# By setting HFO=True we use HFO. If we set it to False then we use SGD

HFO=True

if HFO==True:
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train_args = ("--optim NewtonCG --GNsize 512 --C 0.5 --net

CNN_4layers --bsize 16 --iter_max 1000 " +

"--train_set ./" + "TRAIN_FILE" + " --val_set ./" +

"VALID_FILE" + " --dim " +

str(15) + " " + str(20)+" "+"1" ).split()

else:

train_args = ("--optim SGD --lr 0.5 --net CNN_4layers --bsize 16

--epoch_max 1000 " +

"--train_set ./" + ’TRAIN_FILE’ + " --val_set ./" +

’VALID_FILE’ + " --dim " +

str(15) + " " + str(20) + " 1").split()

import pdb

# tf.compat.v1.disable_eager_execution()

import argparse

def parse_args():

parser = argparse.ArgumentParser(description=’Newton method on DNN’)

parser.add_argument(’--C’, dest=’C’,

help=’regularization term, or so-called weight decay

where’+\

’weight_decay = lr/(C*num_of_samples) in this

implementation’ ,

default=0.01, type=float)

# Newton method arguments

parser.add_argument(’--GNsize’, dest=’GNsize’,

help=’number of samples for estimating Gauss-Newton

matrix’,

default=4096, type=int)

parser.add_argument(’--iter_max’, dest=’iter_max’,

help=’the maximal number of Newton iterations’,

default=100, type=int)

parser.add_argument(’--xi’, dest=’xi’,

help=’the tolerance in the relative stopping condition

for CG’,

default=0.1, type=float)

parser.add_argument(’--drop’, dest=’drop’,
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help=’the drop constants for the LM method’,

default=2/3, type=float)

parser.add_argument(’--boost’, dest=’boost’,

help=’the boost constants for the LM method’,

default=3/2, type=float)

parser.add_argument(’--eta’, dest=’eta’,

help=’the parameter for the line search stopping

condition’,

default=0.0001, type=float)

parser.add_argument(’--CGmax’, dest=’CGmax’,

help=’the maximal number of CG iterations’,

default=250, type=int)

parser.add_argument(’--lambda’, dest=’_lambda’,

help=’the initial lambda for the LM method’,

default=1, type=float)

# SGD arguments

parser.add_argument(’--epoch_max’, dest=’epoch’,

help=’number of training epoch’,

default=500, type=int)

parser.add_argument(’--lr’, dest=’lr’,

help=’learning rate’,

default=0.01, type=float)

parser.add_argument(’--decay’, dest=’lr_decay’,

help=’learning rate decay over each mini-batch update’,

default=0, type=float)

parser.add_argument(’--momentum’, dest=’momentum’,

help=’momentum of learning’,

default=0, type=float)

# Model training arguments

parser.add_argument(’--bsize’, dest=’bsize’,

help=’batch size to evaluate stochastic gradient, Gv,

etc. Since the sampled data \

for computing Gauss-Newton matrix and etc. might not fit

into memeory \

for one time, we will split the data into several

segements and average\

over them.’,

default=1024, type=int)
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parser.add_argument(’--net’, dest=’net’,

help=’classifier type’,

default=’CNN_4layers’, type=str)

parser.add_argument(’--train_set’, dest=’train_set’,

help=’provide the directory of .mat file for training’,

default=’data/mnist-demo.mat’, type=str)

parser.add_argument(’--val_set’, dest=’val_set’,

help=’provide the directory of .mat file for validation’,

default=None, type=str)

parser.add_argument(’--model’, dest=’model_file’,

help=’model saving address’,

default=’./saved_model/model.ckpt’, type=str)

parser.add_argument(’--log’, dest=’log_file’,

help=’log saving directory’,

default=’./running_log/logger.log’, type=str)

parser.add_argument(’--screen_log_only’, dest=’screen_log_only’,

help=’screen printing running log instead of storing it’,

action=’store_true’)

parser.add_argument(’--optim’, ’-optim’,

help=’which optimizer to use: SGD, Adam or NewtonCG’,

default=’NewtonCG’, type=str)

parser.add_argument(’--loss’, dest=’loss’,

help=’which loss function to use: MSELoss or

CrossEntropy’,

default=’MSELoss’, type=str)

parser.add_argument(’--dim’, dest=’dim’, nargs=’+’, help=’input

dimension of data,’+\

’shape must be: height width num_channels’,

default=[32, 32, 3], type=int)

parser.add_argument(’--seed’, dest=’seed’, help=’a nonnegative

integer for reproducibility’,

default=0, type=int)

args = parser.parse_args(args=train_args)

return args

args = parse_args()

def init_model(param):

init_ops = []

for p in param:
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if ’kernel’ in p.name:

weight = np.random.standard_normal(p.shape)* np.sqrt(2.0 /

((np.prod(p.get_shape().as_list()[:-1]))))

opt = tf.compat.v1.assign(p, weight)

elif ’bias’ in p.name:

zeros = np.zeros(p.shape)

opt = tf.compat.v1.assign(p, zeros)

init_ops.append(opt)

return tf.group(*init_ops)

def gradient_trainer(config, sess, network, full_batch, val_batch,

saver, test_network):

x, y, loss, outputs, = network

global_step = tf.Variable(initial_value=0, trainable=False,

name=’global_step’)

learning_rate = tf.compat.v1.placeholder(tf.float32, shape=[],

name=’learning_rate’)

# Probably not a good way to add regularization.

# Just to confirm the implementation is the same as MATLAB.

reg = 0.0

param = tf.compat.v1.trainable_variables()

for p in param:

reg = reg + tf.reduce_sum(input_tensor=tf.pow(p,2))

reg_const = 1/(2*config.C)

batch_size = tf.compat.v1.cast(tf.shape(x)[0], tf.float32)

loss_with_reg = reg_const*reg + loss/batch_size

if config.optim == ’SGD’:

optimizer = tf.compat.v1.train.MomentumOptimizer(

learning_rate=learning_rate,

momentum=config.momentum).minimize(

loss_with_reg,

global_step=global_step)

elif config.optim == ’Adam’:

optimizer =

tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate,

beta1=0.9,

beta2=0.999,
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epsilon=1e-08).minimize(

loss_with_reg,

global_step=global_step)

train_inputs, train_labels = full_batch

num_data = train_labels.shape[0]

num_iters = math.ceil(num_data/config.bsize)

if not config.screen_log_only:

log_file = open(config.log_file, ’w’)

print(config.args, file=log_file)

sess.run(tf.compat.v1.global_variables_initializer())

print(’-------------- initializing network by methods in He et al.

(2015) --------------’)

param = tf.compat.v1.trainable_variables()

sess.run(init_model(param))

total_running_time = 0.0

best_acc = 0.0

lr = config.lr

for epoch in range(0, args.epoch):

cumulative_loss = 0.0

cumulative_size = 0

start = time.time()

for i in range(num_iters):

load_time = time.time()

# randomly select the batch

idx = np.random.choice(np.arange(0, num_data),

size=config.bsize, replace=False)

batch_input = train_inputs[idx]

batch_labels = train_labels[idx]

batch_input = np.ascontiguousarray(batch_input)
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batch_labels = np.ascontiguousarray(batch_labels)

config.elapsed_time += time.time() - load_time

step, _, batch_loss= sess.run(

[global_step, optimizer, loss_with_reg],

feed_dict = {x: batch_input, y: batch_labels, learning_rate:

lr}

)

# print initial loss

if epoch == 0 and i == 0:

output_str = ’initial f (loss with reg of 1st batch):

{:.3f}’.format(batch_loss)

print(output_str)

if not config.screen_log_only:

print(output_str, file=log_file)

cumulative_loss = cumulative_loss + batch_loss *

batch_input.shape[0]

cumulative_size = cumulative_size + batch_input.shape[0]

# print log every 10% of the iterations

if i % math.ceil(num_iters/10) == 0:

end = time.time()

output_str = ’Epoch {}: {}/{} | loss with reg {:.4f} | lr

{:.6} | elapsed time {:.3f}’\

.format(epoch, i, num_iters, batch_loss , lr, end-start)

print(output_str)

if not config.screen_log_only:

print(output_str, file=log_file)

# adjust learning rate for SGD by inverse time decay

if args.optim != ’Adam’:

lr = config.lr/(1 + args.lr_decay*step)

# exclude data loading time for fair comparison

epoch_end = time.time() - config.elapsed_time

total_running_time += epoch_end - start

config.elapsed_time = 0.0

if val_batch is None:
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output_str = ’In epoch {} train loss with reg: {:.3f} | epoch

time {:.3f}’\

.format(epoch, cumulative_loss / cumulative_size,

epoch_end-start)

else:

if test_network == None:

val_loss, val_acc, _ = predict(

sess,

network=(x, y, loss_with_reg*batch_size, outputs),

test_batch=val_batch,

bsize=config.bsize

)

else:

# A separat test network part have been done...

val_loss, val_acc, _ = predict(

sess,

network=test_network,

test_batch=val_batch,

bsize=config.bsize

)

output_str = ’In epoch {} train loss with reg: {:.3f} | val loss

with reg: {:.3f} | val accuracy: {:.3f}% | epoch time

{:.3f}’\

.format(epoch, cumulative_loss / cumulative_size, val_loss,

val_acc*100, epoch_end-start)

if val_acc > best_acc:

best_acc = val_acc

checkpoint_path = config.model_file

save_path = saver.save(sess, checkpoint_path)

print(’Saved best model in {}’.format(save_path))

print(output_str)

if not config.screen_log_only:

print(output_str, file=log_file)

if val_batch is None:

checkpoint_path = config.model_file

save_path = saver.save(sess, checkpoint_path)
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print(’Model at the last iteration saved in

{}\r\n’.format(save_path))

output_str = ’total running time

{:.3f}s’.format(total_running_time)

else:

output_str = ’Final acc: {:.3f}% | best acc {:.3f}% | total

running time {:.3f}s’\

.format(val_acc*100, best_acc*100, total_running_time)

print(output_str)

if not config.screen_log_only:

print(output_str, file=log_file)

log_file.close()

def newton_trainer(config, sess, network, full_batch, val_batch, saver,

test_network):

_, _, loss, outputs = network

newton_solver = newton_cg(config, sess, outputs, loss)

sess.run(tf.compat.v1.global_variables_initializer())

print(’-------------- initializing network by methods in He et al.

(2015) --------------’)

param = tf.compat.v1.trainable_variables()

sess.run(init_model(param))

newton_solver.newton(full_batch, val_batch, saver, network,

test_network)

def main():

full_batch, num_cls, label_enum = read_data(train_texts,train_labels,

dim=args.dim)

if args.val_set is None:

print(’No validation set is provided. Will output model at the

last iteration.’)

val_batch = None

else:

val_batch, _, _ = read_data(train_texts,train_labels,

dim=args.dim, label_enum=label_enum)
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# val_batch, _, _ = read_data(test_texts,test_labels,

dim=args.dim, label_enum=label_enum)

num_data = full_batch[0].shape[0]

config = ConfigClass(args, num_data, num_cls)

if isinstance(config.seed, int):

tf.compat.v1.random.set_random_seed(config.seed)

np.random.seed(config.seed)

if config.net in (’CNN_4layers’, ’CNN_7layers’, ’VGG11’, ’VGG13’,

’VGG16’,’VGG19’):

x, y, outputs = CNN(config.net, num_cls, config.dim)

test_network = None

else:

raise ValueError(’Unrecognized training model’)

if config.loss == ’MSELoss’:

loss = tf.reduce_sum(input_tensor=tf.pow(outputs-y, 2))

else:

loss =

tf.reduce_sum(input_tensor=tf.nn.softmax_cross_entropy_with_logits

(logits=outputs, labels=y))

network = (x, y, loss, outputs)

sess_config = tf.compat.v1.ConfigProto()

sess_config.gpu_options.allow_growth = True

with tf.compat.v1.Session(config=sess_config) as sess:

full_batch[0], mean_tr = normalize_and_reshape(full_batch[0],

dim=config.dim, mean_tr=None)

if val_batch is not None:

val_batch[0], _ = normalize_and_reshape(val_batch[0],

dim=config.dim, mean_tr=mean_tr)

param = tf.compat.v1.trainable_variables()
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mean_param = tf.compat.v1.get_variable(name=’mean_tr’,

initializer=mean_tr, trainable=False,

validate_shape=True, use_resource=False)

label_enum_var=tf.compat.v1.get_variable(name=’label_enum’,

initializer=label_enum, trainable=False,

validate_shape=True, use_resource=False)

saver = tf.compat.v1.train.Saver(var_list=param+[mean_param])

if config.optim in (’SGD’, ’Adam’):

gradient_trainer(

config, sess, network, full_batch, val_batch, saver,

test_network)

elif config.optim == ’NewtonCG’:

newton_trainer(

config, sess, network, full_batch, val_batch, saver,

test_network=test_network)

main()

pred_args = ("--bsize 32 --valid_set ./" + "VALID_FILE" + " --train_set

./" + "TRAIN_FILE" +

" --model ./saved_model/model.ckpt --dim " +

str(15) + " " + str(20) + " 1").split()

#Train Model

train_results=acc_loss(train_text,train_labels)

#Shows Confusion Matrix for train data

confusion_matrix(train_labels,train_results)

#Test Model

test_results=acc_loss(test_texts,test_labels)

#Shows Confusion Matrix for test data

confusion_matrix(test_labels,test_results)
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Create Folds for Cross-Validation Source Code

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import os

import math

import pdb

from gensim.models import Word2Vec, KeyedVectors

from email.parser import Parser

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

from string import punctuation

from tqdm.notebook import tqdm

from sklearn.model_selection import train_test_split

from statistics import mean

from gensim.models import KeyedVectors

from sklearn.model_selection import KFold, StratifiedKFold,

cross_val_score

from sklearn import linear_model, tree, ensemble\

%load_ext autotime

ham_src=r’.\Enron Dataset\enron6\enron6\ham’

spam_src=r’.\Enron Dataset\enron6\enron6\spam’

#Load every ham email on ham list

def data_preprocessing(src):

clean_list=[]

directory=src

for filename in os.listdir(directory):

try:

with open(os.path.join(directory, filename), "r") as f:

data = f.read()

email = Parser().parsestr(data)

clean_list.append(email.as_string())

except:

print("Unclear File",filename)

continue

return clean_list

#Remove stopwords and puncutation. Also tokenize each email.
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def preprocess_corpus(texts):

#importing stop words like in, the, of so that these can be removed

from texts

#as these words dont help in determining the classes(Whether a

sentence is toxic or not)

mystopwords = set(stopwords.words("english"))

def remove_stops_digits(tokens):

#Nested function that lowercases, removes stopwords and digits

from a list of tokens

return [token.lower() for token in tokens if token not in

mystopwords and not token.isdigit()

and token not in punctuation]

#This return statement below uses the above function and tokenizes

output further.

return [remove_stops_digits(word_tokenize(text)) for text in

tqdm(texts)]

#Function that takes in the input text dataset in form of list of lists

where each sentence is a list of words all the sentences are

#inside a list

def embedding_feats(list_of_lists, DIMENSION, w2v_model):

zeros_vector = np.zeros(DIMENSION)

feats = []

missing = set()

missing_sentences = set()

#Traverse over each sentence

for tokens in tqdm(list_of_lists):

# Initially assign zeroes as the embedding vector for the

sentence

feat_for_this = zeros_vector

#Count the number of words in the embedding for this sentence

count_for_this = 0

#Traverse over each word of a sentence

for token in tokens:

#Check if the word is in the embedding vector

if token in w2v_model:

#Add the vector of the word to vector for the sentence

feat_for_this += w2v_model[token]

count_for_this +=1
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#Else assign the missing word to missing set just to have a

look at it

else:

missing.add(token)

#If no words are found in the embedding for the sentence

if count_for_this == 0:

#Assign all zeroes vector for that sentence

feats.append(feat_for_this)

#Assign the missing sentence to missing_sentences just to

have a look at it

missing_sentences.add(’ ’.join(tokens))

#Else take average of the values of the embedding for each word

to get the embedding of the sentence

else:

feats.append(feat_for_this/count_for_this)

return feats, missing, missing_sentences

#Call data_preprocessing function to load the ham and spam emails

ham_list=data_preprocessing(ham_src)

spam_list=data_preprocessing(spam_src)

#Remove emails with less than 5 words

ham_list=[x for x in ham_list if len(x) >= 5]

spam_list=[x for x in spam_list if len(x) >= 5]

#assign the class to each dataframe (HAM->0 Spam->1)

df_ham = pd.DataFrame({"Mails":ham_list})

df_ham[’Class’]=0

df_spam = pd.DataFrame({"Mails":spam_list})

df_spam[’Class’]=1

#Drop nan values and duplicates

df_ham=df_ham.dropna()

df_spam=df_spam.dropna()

df_ham=df_ham.drop_duplicates()

df_spam=df_spam.drop_duplicates()

#Combine datasets

data_set=pd.concat([df_ham, df_spam], ignore_index=True)

#set which column is the class and which are the features

train_texts = list(data_set["Mails"].values)

train_labels=data_set[’Class’].values

#save data in CSV format

data_set.to_csv("Enron6_0.csv",index=False)
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filename=’Enron6_0.csv’

data_set = pd.read_csv(filename)

train_texts = list(data_set["Mails"].values)

train_labels=data_set[’Class’].values

train_texts_processed = preprocess_corpus(train_texts)

#load pretrain wor2vec model from GoogleNews

w2v_google_news =

KeyedVectors.load_word2vec_format(’\GoogleNews-vectors-negative300.bin’,

binary=True)

#Remove the subject and cc and also delete emails tha have less than 2

words

stopwords = [’subject’, ’cc’]

results=[]

for x in train_texts_processed:

resultwords = [word for word in x if word.lower() not in stopwords]

results.append(resultwords)

results_new=[]

for x in results:

resultwords = [word for word in x if len(word)>1]

results_new.append(resultwords)

train_vectors, missing, missing_sentences = embedding_feats(results_new,

300, w2v_google_news)

#split dataset into train and test data (80% train and 20% testing)

train_data, val_data, train_cats, val_cats =

train_test_split(train_vectors, train_labels,test_size=0.20)

f = pd.DataFrame(train_data)

df2=pd.DataFrame(val_data)

data_set=pd.concat([df, df2], ignore_index=True)

classes=np.concatenate((train_cats, val_cats))

data_set[’Class’]=classes

y = data_set.Class # Target variable

X = data_set.copy()

# Lets split the data into 5 folds.

# We will use this ’kf’(KFold splitting stratergy) object as input to

cross_val_score() method

kf =KFold(n_splits=5)
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cnt = 1

# split() method generate indices to split data into training and test

set.

for train_index, test_index in kf.split(X, y):

print(f’Fold:{cnt}, Train set: {len(train_index)}, Test

set:{len(test_index)}’)

p=data_set.iloc[train_index]

p.to_csv(f’Fold{cnt}_6.csv’.format(),index=False)

p=data_set.iloc[test_index]

p.to_csv(f’Valid{cnt}_6.csv’.format(),index=False)

cnt += 1
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CNN with Gradient Descent Source Code

# Importing libraries

import tensorflow as tf

import keras

from keras.datasets import imdb

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.layers.embeddings import Embedding

from keras.preprocessing import sequence

from keras.optimizers import Adam

from keras.optimizers import SGD

import pandas as pd

import numpy as np

from keras.regularizers import l2

from statistics import mean

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score, roc_auc_score

%load_ext autotime

#load train and testing dataset

fold = pd.read_csv(r’.\Validation Fold\D1Folds\Fold5_1.csv’)

test_fold=pd.read_csv(r’.\Validation Fold\D1Folds\Valid5_1.csv’)

#Split each dataset to feature columns and class

train_labels=fold.Class

train_texts=fold.drop([’Class’], axis=1)

test_labels=test_fold.Class

test_texts=test_fold.drop([’Class’], axis=1)

#convert them in numpy format

train_labels=train_labels.to_numpy()

test_labels=test_labels.to_numpy()

train_texts=train_texts.to_numpy()
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test_texts=test_texts.to_numpy()

# Convert each dataset in order to feed them to CNN

def preprocess_cnn(data,labels_class):

#features

features = data.reshape(data.shape[0], -1)

_IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = 15,20,1

zero_to_append = np.zeros((features.shape[0],_IMAGE_CHANNELS*

_IMAGE_HEIGHT*_IMAGE_WIDTH-np.prod(features.shape[1:])))

features = np.append(features, zero_to_append, axis=1)

_IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = 15,20,1

images_shape = [features.shape[0], _IMAGE_CHANNELS, _IMAGE_HEIGHT,

_IMAGE_WIDTH]

# images normalization and zero centering

features = features.reshape(images_shape[0], -1)

features = features/255.0

mean_tr = features.mean(axis=0)

features = features - mean_tr

features = features.reshape(images_shape)

# Tensorflow accepts data shape: B x H x W x C

features = np.transpose(features, (0, 2, 3, 1))

#LABELS

data_class=list(map(lambda el:[el], labels_class))

data_class=np.array(labels_class)

data_class = labels_class.reshape(-1)

#TRAIN DATA

label_enum, labels = np.unique(data_class, return_inverse=True)

num_cls = data_class.max()+1

forward_map = dict(zip(label_enum, np.arange(2)))

data_class = np.expand_dims(data_class, axis=1)

data_class = np.apply_along_axis(lambda x:forward_map[x[0]], axis=1,

arr=data_class)

#convert groundtruth to one-hot encoding

# data_class = np.eye(2)[data_class]

data_class = data_class.astype(’float32’)

return features,data_class
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train_data,class_data=preprocess_cnn(train_texts,train_labels)

test_data,class_test=preprocess_cnn(test_texts,test_labels)

cnn_model = Sequential([

keras.layers.Conv2D(128, [5, 5],kernel_regularizer=l2(0.03),

padding=’same’, activation=tf.nn.relu6, input_shape=[15,20,1]),

keras.layers.MaxPool2D([2, 2], strides=2),

keras.layers.Dropout(0.5),

keras.layers.Flatten(),

keras.layers.Dense(2,activation=’softmax’)])

cnn_model.summary()

cnn_model.compile(loss =’sparse_categorical_crossentropy’,

optimizer=SGD(lr=0.5),metrics =[’accuracy’])

model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(

filepath=r’.\Validation Fold’,

save_weights_only=True,

monitor=’val_accuracy’,

mode=’max’,

save_best_only=True)

history = cnn_model.fit(

train_data,

class_data,

batch_size=32,

epochs=1000,

verbose=1,

validation_data=(test_data,class_test),

callbacks=[model_checkpoint_callback]

)

#Confusion Matrix for train data

train_predict = cnn_model.predict_classes(train_data)

fig = plt.figure(figsize=(10,4))

heatmap = sns.heatmap(data = pd.DataFrame(confusion_matrix(class_data,

train_predict)), annot = True, fmt = "d",

cmap=sns.color_palette("Reds", 50))
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heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0,

ha=’right’, fontsize=14)

heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(),

rotation=45, ha=’right’, fontsize=14)

plt.ylabel(’Ground Truth’)

plt.xlabel(’Prediction’)

plt.show()
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Appendix B - Confusion Matrices

In this section we present all confusion matrices used while training our model. The
first subsection will show all of the matrices used when feeding the entire dataset
to the model. The second subsection will present all confusion matrices which were
omitted from Chapter 4 for the sake of brevity. Finally, we will show confusion
matrices from training and testing the Convolutional Neural Network, as well as the
accuracy and Spam/Ham Recall for every fold for the classic CNN.

Confusion Matrices for the Whole Dataset

Figure 5.1: Confusion Matrix for the first dataset.

Figure 5.2: Confusion Matrix for the second dataset.
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Figure 5.3: Confusion Matrix for the third dataset.

Figure 5.4: Confusion Matrix for the fourth dataset.

Figure 5.5: Confusion Matrix for the fifth dataset.
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Figure 5.6: Confusion Matrix for the sixth dataset.

Remaining Confusion Matrices from Cross-Validation

First Dataset

Figure 5.7: Dataset 1 Fold 1 Train Confusion Matrix
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Figure 5.8: Dataset 1 Fold 1 Validation Confusion Matrix

Figure 5.9: Dataset 1 Fold 3 Train Confusion Matrix

Figure 5.10: Dataset 1 Fold 3 Validation Confusion Matrix
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Figure 5.11: Dataset 1 Fold 4 Train Confusion Matrix

Figure 5.12: Dataset 1 Fold 4 Validation Confusion Matrix

Second Dataset

Figure 5.13: Dataset 2 Fold 1 Train Confusion Matrix
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Figure 5.14: Dataset 2 Fold 1 Validation Confusion Matrix

Figure 5.15: Dataset 2 Fold 3 Train Confusion Matrix

Figure 5.16: Dataset 2 Fold 3 Validation Confusion Matrix
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Figure 5.17: Dataset 2 Fold 4 Train Confusion Matrix

Figure 5.18: Dataset 2 Fold 4 Validation Confusion Matrix

Figure 5.19: Dataset 2 Fold 5 Train Confusion Matrix
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Figure 5.20: Dataset 2 Fold 5 Validation Confusion Matrix

Third Dataset

Figure 5.21: Dataset 3 Fold 1 Train Confusion Matrix

Figure 5.22: Dataset 3 Fold 1 Validation Confusion Matrix
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Figure 5.23: Dataset 3 Fold 2 Train Confusion Matrix

Figure 5.24: Dataset 3 Fold 2 Validation Confusion Matrix

Figure 5.25: Dataset 3 Fold 4 Train Confusion Matrix
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Figure 5.26: Dataset 3 Fold 4 Validation Confusion Matrix

Figure 5.27: Dataset 3 Fold 5 Train Confusion Matrix

Figure 5.28: Dataset 3 Fold 5 Validation Confusion Matrix
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Fourth Dataset

Figure 5.29: Dataset 4 Fold 1 Train Confusion Matrix

Figure 5.30: Dataset 4 Fold 1 Validation Confusion Matrix

Figure 5.31: Dataset 4 Fold 2 Train Confusion Matrix
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Figure 5.32: Dataset 4 Fold 2 Validation Confusion Matrix

Figure 5.33: Dataset 4 Fold 5 Train Confusion Matrix

Figure 5.34: Dataset 4 Fold 5 Validation Confusion Matrix
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Fifth Dataset

Figure 5.35: Dataset 5 Fold 1 Train Confusion Matrix

Figure 5.36: Dataset 5 Fold 1 Validation Confusion Matrix

Figure 5.37: Dataset 5 Fold 2 Train Confusion Matrix
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Figure 5.38: Dataset 5 Fold 2 Validation Confusion Matrix

Figure 5.39: Dataset 5 Fold 4 Train Confusion Matrix

Figure 5.40: Dataset 5 Fold 4 Validation Confusion Matrix
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Figure 5.41: Dataset 5 Fold 5 Train Confusion Matrix

Figure 5.42: Dataset 5 Fold 5 Validation Confusion Matrix

Sixth Dataset

Figure 5.43: Dataset 6 Fold 1 Train Confusion Matrix
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Figure 5.44: Dataset 6 Fold 1 Validation Confusion Matrix

Figure 5.45: Dataset 6 Fold 3 Train Confusion Matrix

Figure 5.46: Dataset 6 Fold 3 Validation Confusion Matrix
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Figure 5.47: Dataset 6 Fold 4 Train Confusion Matrix

Figure 5.48: Dataset 6 Fold 4 Validation Confusion Matrix

Figure 5.49: Dataset 6 Fold 5 Train Confusion Matrix
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Figure 5.50: Dataset 6 Fold 5 Validation Confusion Matrix

Confusion Matrices from when we use CNN with
Gradient Descent

Dataset1 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

V Spam
Recall

V Ham
Recall

Fold 1 0.7117 0.6907 0 100 0 100
Fold 2 0.7022 0.7285 0 100 0 100
Fold 3 0.7087 0.7024 0 100 0 100
Fold 4 0.7090 0.7014 0 100 0 100
Fold 5 0.7057 0.7144 0 100 0 100

Table 5.1: Metrics for all the folds for the first dataset

Figure 5.51: Confusion Matrix from when we train our model for the first dataset.
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Figure 5.52: Confusion Matrix from when we test our model for the first dataset.

Dataset2 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

V Spam
Recall

V Ham
Recall

Fold 1 0.7415 0.7502 0 100 0 100
Fold 2 0.7437 0.7416 0 100 0 100
Fold 3 0.7462 0.7885 0 100 0 100
Fold 4 0.7401 0.7474 0 100 0 100
Fold 5 0.7409 0.7457 0 100 0 100

Table 5.2: Metrics for all the folds for the second dataset

Figure 5.53: Confusion Matrix from when we train our model for the second dataset.
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Figure 5.54: Confusion Matrix from when we test our model for the second dataset.

Dataset3 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

V Spam
Recall

V Ham
Recall

Fold 1 0.7134 0.7251 0 100 0 100
Fold 2 0.7150 0.7014 0 100 0 100
Fold 3 0.7155 0.7090 0 100 0 100
Fold 4 0.7035 0.7438 0 100 0 100
Fold 5 0.7160 0.6992 0 100 0 100

Table 5.3: Metrics for all the folds for the third dataset

Figure 5.55: Confusion Matrix from when we train our model for the third dataset.
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Figure 5.56: Confusion Matrix from when we test our model for the third dataset.

Dataset4 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

V Spam
Recall

V Ham
Recall

Fold 1 0.7412 0.7391 100 0 100 0
Fold 2 0.7474 0.7280 100 0 100 0
Fold 3 0.7391 0.7613 100 0 100 0
Fold 4 0.6163 0.7391 100 0 100 0
Fold 5 0.6223 0.7502 100 0 100 0

Table 5.4: Metrics for all the folds for the fourth dataset

Figure 5.57: Confusion Matrix from when we train our model for the fourth dataset.
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Figure 5.58: Confusion Matrix from when we test our model for the fourth dataset.

Dataset5 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

V Spam
Recall

V Ham
Recall

Fold 1 0.7109 0.7370 100 0 100 0
Fold 2 0.7205 0.7123 100 0 100 0
Fold 3 0.7212 0.7094 100 0 100 0
Fold 4 0.7606 0.8542 100 0 100 0
Fold 5 0.7207 0.7114 100 0 100 0

Table 5.5: Metrics for all the folds for the fifth dataset

Figure 5.59: Confusion Matrix from when we train our model for the fifth dataset.
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Figure 5.60: Confusion Matrix from when we test our model for the fifth dataset.

Dataset6 Accuracy
Validation
Accuracy

Spam
Recall

Ham
Recall

V Spam
Recall

V Ham
Recall

Fold 1 0.7539 0.7402 100 0 100 0
Fold 2 0.7502 0.7552 100 0 100 0
Fold 3 0.7493 0.7432 100 0 100 0
Fold 4 0.7542 0.7593 100 0 100 0
Fold 5 0.7498 07532 100 0 100 0

Table 5.6: Metrics for all the folds for the sixth dataset

Figure 5.61: Confusion Matrix from when we train our model for the sixth dataset.

B-23

Kyp
ros

 Io
an

no
u



Figure 5.62: Confusion Matrix from when we test our model for the sixth dataset.
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