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Abstract

The COVID-19 pandemic had a tremendous socio-economic effect throughout the
world. Governments around the world aimed to mitigate its rapid spread and limit
the number of diseases by implementing intervention policies, such as social distanc-
ing, closing schools, encouraging working from home and imposing lock-downs. Such
strict government measures, although limiting the disease spread, cause significant
socio-economic costs. The development of vaccines during the pandemic offered an
additional tool to mitigate its impact by offering immunity to the population. How-
ever, it was seen that the immunity for vaccinated and recovered population was
temporal and had a declining effect with time.

Considering the above, this thesis aims to study the progression of the pandemic
and propose suitable intervention and vaccination strategies. In addition, it aims
to study the impact of the declining immunity in the population. In particular, we
consider a compartment LI-SIDAREV model, with Susceptible (S), Infected Unde-
tected (I), Infected Detected (D), Acutely symptomatic (A), Recovered (R), Extinct
(E), and vaccinated (V) states. The LI-SIDAREV model is modified to enable the
transition of the population from the vaccinated and recovered states towards the
susceptible state, in order to model the declining effect of immunity.

An optimal control problem is formulated that aims to obtain the government
intervention and vaccination strategies that optimize the trade-off between the socio-
economic costs from imposing such policies and the number of deceases. The optimal
strategies were obtained by applying Pontryagin’s minimum principal in the consid-
ered problem.

A large number of case studies has been considered to investigate the effect of
the costs associated with the deceased and acutely symptomatic population on the
optimal government strategies. Moreover, the effect of the declining immunity for
the vaccinated and the recovered population is studied over different time periods
(one and three years respectively). Our results demonstrate that the effect of the
declining immunity is significant in terms of the number of diseases and required
intervention strategies. In addition, when a larger time duration was considered,
the optimal intervention strategies demonstrated a fluctuating behaviour similar to
what observed in practice. Furthermore, the increased time duration resulted in
increased deceases and cost associated with intervention measures but a decreased
optimal vaccination rate.

We envision that our results will find practical applications in designing effective
and efficient intervention strategies and motivate further research on the topic.
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Chapter 1

Introduction

1.1 Motivation

The COVID 19 pandemic is an ongoing global concern which Was first reported
in Wuhan, China, at the beginning of December 2019 [2]. On March 11 2020, the
World Health Organization (WHO) declared the state of the disease as a pandemic
resulting from SARS-COV2 infection [3]. The outbreak of COVID 19 has resulted in
multiple infections and deaths along with socio-economic devastating consequences.
At the time of writing (27/05/2022), there have been more than 6 million deaths, and
more than 500 million confirmed cases, worldwide[4]. To restrict the spread of such
diseases, there are several mitigating measures that can be implemented. Indeed,
governments across the world have implemented numerous non-pharmaceutical in-
terventions such as lock-downs, self-isolation, banning of public events, and social
distancing. While such interventions may limit the spread of a globally affecting
disease, they lead to numerous significant economic effects.

To overcome the pandemic and its effects, vaccines were created by pharmaceu-
tical companies. The first authorized vaccines were approved from authorization
bodies in early December 2020. After the first vaccinations took place, the research
community further examined the immunity period of the vaccines, which is an im-
portant parameter for the evolution of the pandemic.

Governments have implemented strategies in order to mitigate the effects of
the pandemic and reduce the spread of the virus itself. The implementation of
such strategies has been found to be costly and to have a negative impact on the
economy. Therefore, it would be beneficial for governments and the wider economic
environment to implement optimal control strategies in order to achieve the highest
possible efficiency with the lowest associated cost.

1.2 Objectives

The problem identified and which needs to be addressed is the way of reducing the
total cost resulting from the pandemic. The total cost consists of four (4) costs, as
explained below. The first one is the socio-economic cost resulting from government
measures, such as the financial cost created by the imposition of lock-downs since
people are not able to go to work, stores are closing, and companies go bankrupt.

1
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CHAPTER 1. INTRODUCTION 2

There is also a social cost since people cannot move around in public spaces and
have limited options for entertainment and socialization. Another part of the total
cost is the cost associated with the acutely symptomatic. This occurs due to the
cost of hospitalisation and health care that these people need. Additionally, part of
the total cost is the cost of vaccination which consists of the cost associated with
the supply, preservation and storage of the vaccines, and the cost of vaccinating the
population. Finally, part of the total cost is the cost associated with the extinct
population, which includes the reduction of the government’s tax income as the
deceased population will not contribute the expected taxes.

For minimising the total cost, a trade-off between the aforementioned costs,
socioeconomic cost, cost associated with the threatened and deceased population and
vaccination cost, needs to be implemented. More specifically, Pontryagin’s minimum
principle is used, and the Hamiltonian function is derived. Multiple simulations have
been generated, using combinations of the costs mentioned above, to examine the
effect of each cost on the optimal control solution in order to minimize the total
cost.

1.3 Contribution

The objective is to find the optimal strategy among the measures implemented by
the government in combination with the vaccination strategy with the lowest possi-
ble total cost. This is why the Limited Immunity-SIDAREV model is implemented.
This model considers the availability of vaccines as well as the fact that the im-
munity offered by the vaccine is limited. In addition, the immunity acquired from
contracting a given disease is also temporary. Furthermore, the limited immunity
offered by the vaccinations and the contraction of a decease is not a factor consid-
ered with the other models that were investigated. Additionally, using tools from
optimal control theory, the government interventions and vaccination policy can be
controlled. This is achieved by using two (2) control inputs, the strictness of the
measures and the vaccination rate. By exporting the optimal control solution for
both vaccination policies and restrictive measures, the objective of this research is
achieved.

1.4 Research report outline

Chapter 2 includes the literature review on modelling, optimal control, and the pa-
rameters used for this research. After that, the methodology used in this research
is presented in chapter 3. Afterwards, Chapter 4 describes an analysis of the model
LI-SIDAREV. Subsequently, Chapter 5 includes the formulation of the optimal con-
trol problem. The experiments performed and their respective results are presented
in Chapter 6. Chapter 7 provides the conclusions of the research and how it can be
further expanded. Finally, Chapter 8 includes the MATLAB code.Cha
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Chapter 2

Literature review

In this chapter, a literature review of the mathematical modelling and optimal con-
trol is presented. Alongside, published studies are examined in order to export the
parameters used while modelling a disease outbreak.

2.1 Modeling

Through mathematical models, researchers can study the dynamics of the transmis-
sion of infectious diseases. Understanding these dynamics can help develop effective
strategies to control the spread of these infections. Mathematical models based on
dynamic equations can be found effective for analyzing the dynamics of epidemics,
however, they are less considered compared to standard statistical methods.

Various theories have been presented in order to predict the spread of the
COVID-19 virus in the population. The spread of the disease and its various stages
can be predicted by dividing the population into several sub-populations, so called
compartments[5]. Some of the compartments of an infectious disease commonly
used by other studies are ’susceptible’, ’infected’, and ’recovered’[6]. For instance,
the former refers to an individual who is not immune to the disease but can still be
infected with it. Infected describes the individuals that are infected with the decease
and are able to transmit it to others. Recovered describes the individual who has
become immune to the disease and cannot be re-contaminated. Existing models
are further expanded by adding compartments such as Exposed’ (E), ’Diagnosed’
(D), ’Ailing’ (A), ‘Recognized’ (R), ’Threatened’ (T), ‘Extinct’ (E) and ‘Vaccinated’
(V)[7].

The models are based on flow patterns between different compartments and are
used to represent the dynamics of an infectious disease. A set of differential equations
known as the disease dynamics is used to determine the transfer rate between these
compartments.

2.2 Optimal control theory

The concept of optimal control theory has been successfully used in developing ef-
fective strategies to control the spread of infectious diseases. It involves the consid-

3
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CHAPTER 2. LITERATURE REVIEW 4

eration of various factors, such as intervention strategies that affect the transmission
of the disease. In the past, extensive research has been conducted on the various
factors that affect the spread of the COVID-19 pandemic. One of the main findings
of [1] was the development of an optimal control strategy that involves optimizing
the trade-off between the number of deceased population and socio-economic costs.
However Kasis et. al. has not captured Vaccinated compartment in his model since
authorised vaccines were not available at the time.

Furthermore, Kasis et. al. used a control input u to minimize the infection
rate β. The study reached to conclusions on what policies could be implemented
to control the spread of the disease and the time that a certain policy needs to be
implemented or ceased.

A later study [8] based on Kasis et. al. proposed three control inputs u1, u2, u3
to reduce the infection rate β, testing rate ν, and vaccination rate ψ. The results of
the study revealed that the strategies could help minimize the socioeconomic cost
and the cost associated with the threatened and diseased population.

In addition, the results of the study [9] indicate that the use of preventive mea-
sures such as vaccinations and public health education could reduce the number of
deaths caused by the COVID-19 pandemic.

2.3 Parameters

The various factors that affect the spread of the disease are also taken into account
when developing effective control strategies. These include the healthcare capacity
of the population, social distancing, lock-downs, and testing rates. For example, if

the hospital capacity is exceeded, an acutely sick individual will not have the chance
to be hospitalised, resulting in death. This is deduced from the study of [10] who
compared the fatality rate of two regions in Italy (Lombardy and Veneto). They
concluded that the fatality rate in Lombardy would be about five-fold due to the
presence of more than 80% healthcare capacity compared to up to 40% healthcare
capacity in Veneto. Moreover, the low testing rate could also contribute to the
spread of the disease since undetected infected asymptomatic individuals will still
contribute to the spread of the pandemic. This could affect the overall decease
rate of the pandemic [8]. Furthermore, the basic reproduction number is defined
as the average number of secondary cases that one primary case will generate in a
given population, where nobody is either immune or vaccinated. It depends on the
probability of infecting a susceptible individual during one contact, the duration of
the infectious period and the number of new susceptible individuals contacted per
unit of time. The basic reproduction is assumed to be 3.27 [11] [12].

The duration of immunity for vaccinated and recovered individuals are factors
affecting the pandemic. Various researches [13], [14] have shown that the effective-
ness of the vaccines after a period of 20 weeks has dropped to 40% of its initial
effects. In addition, the COVID-19 immunity period for the recovered population
lasts for up to 13 months [15].
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Chapter 3

Methodology

Description of the background of mathematical modelling, of the optimal control
and epidemics is presented in this chapter.

3.1 Epidemiological models

Mathematical models are used for the simulation of a disease outbreak of an epi-
demic. By categorizing a population into smaller groups (compartments), the rep-
resentation of several disease outbreak stages can be achieved. The most common
compartments used to categorize the population are Susceptible, Exposed, Infected
and Recovered. Susceptible (S) are the individuals that are vulnerable to the dis-
ease due to the absence of immunization, despite the fact that they are not currently
infected. Exposed (E) are the individuals that are currently infected, although they
are not yet able to transfer the disease to one another. The third compartment, In-
fected (I), as the name recalls, are the individuals who are currently infected and able
to spread the disease. The last category mentioned above, Recovered (R), are the
individuals who got infected and are now cured, developing immunization against
the disease and therefore cannot infect or get infected by others. Rate of transmis-
sion between different compartments and the connection among them establishes
the dynamics of the disease.

After the research conducted for the purpose of this project, it was identified
that SIR model has been widely used as the base model for the development of
more complex epidemiological models. The SIR stands for the three compartments
Susceptible (S), Infected (I) and Recovered (R) described above. Figure 3.1 shows
a schematic representation of the SIR. Progress of the pandemic can be analysed by
the following disease dynamics representation:

ṡ = −βis,
i̇ = βis− γi,

ṙ = −γi. (3.1a)

where s(t), i(t), and r(t) are the number of individuals in the compartments and
s(t) + i(t) + r(t) = N , with the total population N constant.

5
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CHAPTER 3. METHODOLOGY 6

Figure 3.1: Schematic representation of the SIR compartment model.

Figure 3.2 presents the behavior of the compartments of the model [16]. It can be
observed that at time zero of the pandemic, the vast majority of the population are
susceptible to the disease and only a small portion of the population are infectious.
As time passes, more individuals are infected and can transmit the disease resulting
in an increasing trend of the Recovered population and the sudden decrease of the
Susceptible population. When the infected population reaches its maximum, the
slopes of the other two compartments are also at maximum. After about 150 days
the value of Infected individuals tents to zero. Despite the fact that a small fraction
of susceptible population remains, a balance has been reached since there are only a
few individuals who can transfer the disease to susceptible individuals, causing the
disease to die out.

Figure 3.2: SIR model dynamics.
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CHAPTER 3. METHODOLOGY 7

Adding one more compartment to the SIR model, Exposed (E), the SEIR model
is created. The population now consists of the sub-population groups Susceptible
(S), Exposed (E), Infected (I) and Recovered (R).A schematic representation of the
SEIR is shown in the figure 3.3. The disease dynamics explaining the progress of
the pandemic are:

ṡ = −βis (3.2a)

ė = βis− σe (3.2b)

i̇ = σe− γi (3.2c)

ṙ = γi (3.2d)

Figure 3.3: Schematic representation of the SEIR compartment model.

The behavior of the variables of SEIR model is shown in figure 3.4. Exposed (E)
state follows similar pattern as the infected state and therefore similar results are
extracted from the two models.
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CHAPTER 3. METHODOLOGY 8

Figure 3.4: SEIR model dynamics.
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CHAPTER 3. METHODOLOGY 9

The last compartment model that will be discussed is the SIDARE model. This
consists of six categories which are: ’Susceptible’ (S), ’Infected’ (I), ’Detected’ (D),
’Acutely Symptomatic’ (A), ’Recovered’ (R) and ’Extinct’ (E). This model’s dynam-
ics, consists of seven differential equations, describing the evolution of the population
in each stage over time. These are the following:

ṡ = −βsi, (3.3a)

i̇ = βsi− γii− νi− ξii, (3.3b)

ḋ = νi− γdd− ξdd, (3.3c)

ȧ = ξii+ ξdd− γaa− µa, (3.3d)

ṙ = γii+ γdd+ γaa, (3.3e)

ė = µa. (3.3f)

Figure 3.5: SIDARE model dynamics.

3.2 Optimal control in epidemiology

3.2.1 Formulating the optimal control problem

The formulation of an optimal control problem is vital for the creation of an optimal
control strategy. For the creation of the optimal control problem, it is essential for
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CHAPTER 3. METHODOLOGY 10

the objective function to be optimised. The objective function is to reduce the
sum of the costs of the state variables x(t) (e.g. deceased and infected population)
and the costs resulting from the control variables u(t) and therefore it needs to be
minimum. It can be described as:

J(u) =

∫ T

0

xTQxdt+

∫ T

0

uTRudt+ E(x(T )). (3.4)

Moreover, the matrices Q is the cost associated with control inputs and R are the
costs associated with the states. A term E(x(T )) must be added to the objective
function, because the evaluation of the costs must consider the ending time of the
pandemic. A common time interval [0, T ] is from the beginning of the pandemic
until the vaccination deployment.This is due to the fact that it is believed that when
vaccinations are available, the population builds immunity against the disease, and
it is assumed that control strategies are no longer needed. Quadratic terms are
often present in the objective function since usually the costs are non-linear or the
differential equations obtained from this optimal control problem have a known
solution.

J(û) = minu∈UJ(u), (3.5)

on the set U = u ∈ L∞(0,∞) : 0 ≤ u(·) ≤ umax, where umax ≤ 1 and L∞ ,
is the vector space of essentially bounded measurable functions [17].The solution of
equation (3.5) can be found by formulating the optimal control problem that consists
of the objective function subject to the model dynamics and initial conditions.

3.2.2 Solving the optimal control problem

The optimal control u(t) can be derived by using Pontryagin’s maximum principle.
Pontryagin’s maximum principle is a tool that creates a system of ODE’s in terms
of state and adjoint variables (with initial and boundary conditions, respectively)
which are satisfied at the optimum. The optimal control can be denoted as u∗(t)
and state and adjoint variables evaluated at the optimum can be denoted as x∗(t)
and λ∗(t), respectively.

It should be mentioned that the names and symbols vary in the literature when
describing Pontryagin’s maximum principle. For instance, both c(t) and u(t) de-
scribe optimal control. Moreover, co-state variable is the same as the adjoint system.
In addition, by multiplying the objective function by -1 the Pontryagin’s maximum
principle becomes Pontryagin’s minimum principle.

Moreover, the Hamiltonian function should be exported. The Hamiltonian func-
tion connects the objective function to the state equations using Lagrange multipliers
λ(t). Hamiltonian function H, in the general form, is described as:

H(t, x, λ, u) = f(t, x, u) + λg(t, x, u), (3.6)

where the adjoint variable is expressed as λ, the optimal control as u and the state
variable as x[18]. The term f(t, x, u) represents the integrand of the objective func-
tion, and the term λg(t, x, u) represent the adjoint variable times the right-hand side
of the differential equations of the state variable.
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CHAPTER 3. METHODOLOGY 11

In order to solve the optimal control problem, the first-order optimality condition
must be used. This can be derived by applying Pontryagin’s maximum principle,
which is as follows [8]:

Theorem 1. For the optimality of control u∗(t) and corresponding state trajec-
tory x∗(t) with t ∈ [0, T ], it is necessary that there exist a piecewise differentiable
adjoint function λ(t), such that

ẋ(t) =
∂H

∂λ
(x(t), u(t), λ(t)), (3.7)

λ̇ =
∂H

∂x
(x(t), u(t), λ(t)), (3.8)

so that

H(x∗(t), u∗(t), λ∗(t)) ≤ H(x∗(t), u∗(t), λ∗(t)), u ∈ U, (3.9)

and the corresponding boundary conditions hold

x(0) = x0, (3.10)

λ(T ) = E(x(T )). (3.11)

Equation (3.8) is called the adjoint equation and equation (3.11) is called the
transversallity condition. From equation (3.9) the optimality equation can be de-
rived, i.e.

∂H

∂u
(x(t), u(t), λ(t)) = 0, (3.12)

(3.13)

where umin ≤ u(t) ≤ umax. The proof can be found in the [19]. Furthermore, for
the minimization of the control problem the following equation at u∗ must hold:

∂2H

∂u2
≥ 0. (3.14)

3.2.3 Forward-backward sweep method

The forward-backward sweep method is a procedure that explains how Pontryagin’s
principle is applied in order to solve an optimal control problem. Figure 3.6 reveals
the steps involved in implementing this method.

In 2007, Workman and Lenhart [19]explained how the forward-backward sweep
method can be used to solve a control problem. The first step involves entering the
model parameters. After that, an initial guess is made based on the control input
u(uold). Usually, the initial guess of uold = 0 is enough to solve the problem. The
state equations must be solved forward in time and the adjoint equations λ̇ must
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CHAPTER 3. METHODOLOGY 12

be solved backward in time. After that, the optimally equation for the variables x
and λ is calculated and gives a new optimal control unew. The primary guess uold
and the computed unew must be updated with an updated policy to obtain control
input uupdate. A frequently used policy is to determine the average value of the two
u′s. An additional update policy is to add a certain weight to one of the u′s.

unew ∗ (1− ci) + uold ∗ ci, (3.15)

where 0 < c < 1 and i is the present iteration. When the variables of the cur-
rent iteration compared to the previous iteration are inside a fixed tolerance, the
convergence must be achieved, i.e.

||uupdate − uold||
||uupdate||

≤ δ, (3.16)

(3.17)

where δ is the accepted tolerance. In the case where the outcome is not within the
accepted limit, the updated u(uupdate) must replace the old u(uold), and the forward-
backward sweep method must be used again. In the case where the outcome is
within the accepted limit, the method stops. These are the final values and the
optimal control has been determined. Moreover, when variables x and λ converge,
the method stops as well.
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CHAPTER 3. METHODOLOGY 13

Figure 3.6: Block diagram Forward-Backward sweep method.
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Chapter 4

The LI-SIDAREV Model

This chapter describes the epidemiological compartment model that is used for this
research. The Limited Immunity SIDAREV model is a variation of SIDARE model
used in the research of Kasis et al.[1]. In the proposed model an extra state for
the vaccinated population, a feedback rate from recovered state to susceptible and
vaccinated to susceptible are added. Therefore this model is called LI-SIDAREV.

4.1 Compartment model description

The LI-SIDAREV model consists of seven compartments to categorize the popula-
tion: ’Susceptible’ (S), ’Infected Undetected’ (I), ’Infected Detected’ (D), ’Acutely
symptomatic’ (A), ’Recovered’ (R), ’Extinct’ (E) and ’Vaccinated’ (V). A schematic
representation of the LI-SIDAREV model is shown.

Figure 4.1: Schematic representation of the LI-SIDAREV compartment model

14
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CHAPTER 4. THE LI-SIDAREV MODEL 15

As shown in the schematic, there are parameters between different states. A
certain value can be given to the parameters that indicate the transfer rate between
the states. Setting values for certain parameters to zero, we exclude states. For
example, by setting ζ = 0 no transfer will occur to the Vaccinated state. Further-
more, by setting the parameter ψ = 0 and ψ̂ = 0 the vaccinated and recovered
population will never be susceptible again and remained vaccinated and recovered.
Implementing the above modification will result to the SIDARE model.

4.2 System dynamics

The dynamical behavior of a disease outbreak can be mathematically described with
a set of differential equations which can be described as follows:

ṡ = −βsi+ ψv + ψ̂r − ζs, (4.1a)

i̇ = βsi− γii− νi− ξii, (4.1b)

ḋ = νi− γdd− ξdd, (4.1c)

ȧ = ξii+ ξdd− γaa− µ̄a, (4.1d)

ṙ = γii+ γdd+ γaa− ψ̂r, (4.1e)

ė = µ̄a, (4.1f)

v̇ = ζs− ψv, (4.1g)

s(0) = s0, i(0) = i0, d(0) = d0, a(0) = a0, r(0) = r0, e(0) = e0, v(0) = v0. (4.1h)

where s, i, d, a, r, e, v ∈ [0, 1] are the states of the system describing the portions
of susceptible, infected - undetected, infected - detected, threatened, recovered and
deceased population respectively. Moreover, s0, i0, d0, a0, r0, e0, v0 ∈ [0, 1] denote
the initial values for s, i, d, a, r, e respectively. The model parameters are briefly
summarized below:

• β : infection rate for susceptible individuals.

• γi, γd, γa : recovery rates for infected undetected, infected detected and threat-
ened individuals.

• ν : rate of detection of infected individuals, associated with the adopted level
of testing.

• ξi, ξd : rates at which infected undetected and infected detected individuals
become acutely symptomatic.
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CHAPTER 4. THE LI-SIDAREV MODEL 16

• µ : rate at which acutely symptomatic individuals decease.

• ζ : rate of vaccination of susceptible individuals.

• ψ : rate at which vaccinated individuals become susceptible.

• ψ̂ : rate at which recovered individuals become susceptible.

Note that all model parameters are assumed non-negative and constant.The LI-
SIDAREV uses the same assumptions as the SIDARE model as described in the
research of Kasis et al. [1]. Also, there is an additional assumption regarding the
vaccinated individuals. For clarity, the assumptions are listed below.

• Actively recovered individuals are immune to the disease for limited period.

• Actively vaccinated individuals are immune to the disease for limited period.

• The considered population is constant. Meaning that births and deaths not
attributed to the particular disease outbreak are not considered.

• The concerned population (or area) is isolated, and imported cases are not
included.

• Infected individuals that are detected are assumed to be quarantined, i.e. they
do not contribute to new infections.

• Infected individuals become acutely symptomatic before they decease.

• Acutely symptomatic individuals require hospitalization since they are consid-
ered threatened for decease.

• Only susceptible individuals are vaccinated.

• The population is willing to vaccinate.
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Chapter 5

Optimal control design for
LI-SIDAREV model

This chapter describes the optimal control design for the LI-SIDAREV model. First,
it is explained which control actions are applied to the current model and how the
dynamic system should be adapted. Then the optimal control problem for the model
is explained, after which, Pontryagin’s maximum principle is applied.

5.1 Control design

The control inputs u and ζ have been added to the LI-SIDAREV model, and their
functions are explained in the following sections. A schematic representation of
LI-SIDAREV is shown in figure 5.1 with the controllers incorporated.

5.1.1 Intensity of measures for controlling the rate of infec-
tion

The first controller applied to the model is control input u. Control input u indicates
the strength of government interventions. Since the government applied measures
to contain the spread of the disease, the term (1-u) will become smaller than 1,
affecting the infection rate β to be reduced. If control input u = 0 (no government
intervention) the infection rate β will not be affected.

u ∈ U = [0, ū] and ū ≤ 1 is a positive constant that denotes the maximum value
that the intervention policy u can take. The purpose of government interventions
is to decrease the spread rate of the disease so the control input u can only take
positive values. Higher values of u indicate stricter intervention policies.

5.1.2 Vaccination strategy for controlling the vaccination
rate

The second controller applied to the model is control input ζ. Control input ζ
indicates the strength of vaccination policy. ζ ∈ Z = [0, ζ̄] and ζ̄ ≤ 1 is also a positive
constant that denotes the maximum number of vaccinations that a government can
afford per day. Control input ζ shows us the vaccination rate. Higher values of ζ

17
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CHAPTER 5. OPTIMAL CONTROL DESIGN FOR LI-SIDAREV MODEL 18

means that more individuals are getting vaccinated per day, and lower values of ζ
means less individuals are getting vaccinated per day.

The dynamics of the LI-SIDAREV model, including the controllers, can be de-
scribed as follows:

ṡ = −βs(1− u)i+ ψv + ψ̂r − ζs, (5.1.a)

i̇ = βs(1− u)i− γii− νi− ξii, (5.1.b)

ḋ = νi− γdd− ξdd, (5.1.c)

ȧ = ξii+ ξdd− γaa− µ̄a, (5.1.d)

ṙ = γii+ γdd+ γaa− ψ̂r, (5.1.e)

ė = µa, (5.1.f)

v̇ = ζs− ψv, (5.1.g)

s(0) = s0, i(0) = i0, d(0) = d0, a(0) = a0, r(0) = r0, e(0) = e0, v(0) = v0, (5.1.h)

s+ i+ d+ a+ r + e+ v = 1. (5.1.i)
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CHAPTER 5. OPTIMAL CONTROL DESIGN FOR LI-SIDAREV MODEL 19

Figure 5.1: Schematic representation of the SIDAREV model with controllers

5.1.3 Dynamics of controlled LI-SIDAREV model

5.2 Optimal control problem

A well-designed government strategy should minimize the number of fatalities while
at the same time, ensuring that the costs associated with implementing the inter-
vention and vaccination policies are minimized. The optimal control problem is a
function that aims to minimize the cost associated with extinct population, cost of
acutely symptomatic individuals, cost of vaccinations and the socio-economic cost
resulting from intervention strategies. The function is defined over a time period of
[0, T] and is the summation of four terms:

C =

∫ T

0

1

2
u(t)2 dt+Θa

∫ T

0

1

2
a(t)2 dt+Θee(T ) + Θζ

∫
1

2
ζ(t)2 dt. (5.2)

Control input u, which states the strictness of the government policy that will
be applied, is the first term of the function above and is associated with the cost of
the side effects on the economy and the society in general.

When an individual needs to be hospitalised there is a socio-economic cost to
the government. This cost is described by the second term of the optimization
function which refers to acutely symptomatic individuals. Furthermore the positive
weight factor Θa indicates the weight that is given on the cost associated with the
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CHAPTER 5. OPTIMAL CONTROL DESIGN FOR LI-SIDAREV MODEL 20

threatened population. Higher values of the parameter Θa means that people who
are acutely symptomatic are important to be saved.

Fatalities are shown in the optimization function through the third term. This
term is ensuring that the deceased individuals can be reduced to a minimum at
time T. Weight factor Θe in the term describes the importance of the cost of total
fatalities. Θe acts like Θa above. By increasing Θe the government policy aims to
minimize the number of fatalities and acutely symptomatic individuals, which means
that the value of u will approach û at all times. On the other hand, by decreasing the
value of Θe close to zero, the economic and social cost of the intervention strategy
will be minimized which subsequently results to u approaching 0 for all values of T .

Control input ζ, which indicates the amount of vaccinations that will be per-
formed, is the last term of the cost function and is associated with the cost of
vaccinations Θζ . Θζ parameter varies the importance of vaccination cost as Θa, Θe.

The three cost-weight factors Θa, Θe, Θζ are unknown. The aim of this project is
to identify the effect that those parameters will have on the optimal solution of the
problem. Further explanation and values for these factors are provided in Chapter
6. A quadratic cost is considered, therefore, the Optimal Control Problem is the
minimization of the cost function explained as:

min
(u∈U,ζ∈Z)

J(a, e, u, ζ) =

∫ T

0

1

2
u2(t) dt+Θa

∫ T

0

1

2
a2(t) dt+Θe(T ) + Θζ

∫
1

2
ζ2(t) dt

(5.3)
subject to (5.1).

5.3 Applying Pontryagin’s minimum principle

Pontryagin’s maximum principle is presented in this section. Initially, the Hamil-
tonian function is derived. After that, the adjoint system is created. At last, the
solution to the optimal control problem is provided.

The Hamiltonian function can be described as follows:

H(x, u, ζ, λ) =
1

2
u2 +

1

2
Θαa

2 +
1

2
Θζζ

2 + λT (f0(x) + f1(x)u+ f2(x)ζ) (5.4)

where λ ∈ R7 is called the co-state of the system and f0(x), f1(x), f2(x) follow from
equation 5.1, are given by:

f0(x) =



−βsi+ ψv + ψ̂r
+βsi− γii− νi− ξii

νi− γdd− ξdd
ξii+ ξdd− γaa− µ̄a

γii+ γdd+ γaa− ψ̂r
µ̄a
−ψv


, f1(x) =



βsi
−βsi
0
0
0
0
0


, f2(x) =



−s
0
0
0
0
0
s


, (5.5)Cha
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CHAPTER 5. OPTIMAL CONTROL DESIGN FOR LI-SIDAREV MODEL 21

To create the adjoint system,

λ̇T = −∂H
∂x

(x(t), u(t), ζ(t), λ(t)) (5.6)

the Hamiltonian function must be differentiated with respect to the adjoint variables
λj , j ∈ 1, 2, ..., 7.

λ̇T = −[Θaa+ λT [∇f0(x) + u∇f1(x) + ζ∇f2(x)]]. (5.7)

This results in:

λ̇1 = λ1(ζ + βi− βiu)− λ2(βi− βiu)− λ7ζ, (5.8a)

λ̇2 = λ1(βs− βsu) + λ2(γi + ξi + ν − βs+ βsu)− λ3ν − λ4ξi − λ5γi, (5.8b)

λ̇3 = λ3(γd + ξd)− λ4ξd − λ5γd, (5.8c)

λ̇4 = λ4(γa + µ̄)− λ5γa − λ6µ̄− αΘa, (5.8d)

λ̇5 = −λ1ψ̂ + λ5ψ̂, (5.8e)

λ̇6 = 0, (5.8f)

λ̇7 = −λ1ψ + λ7ψ. (5.8g)

By taking the multiplication of adjoint variables λj , j ∈ 1, 2, ..., 7. with the relative
co-state of the system, f1(x) or f2(x) optimal controls can be determined:

û = [−λTf1(x)]U = min[max(βis(λ2 − λ1), 0), ū], (5.9)

ζ̂ = [−λTf1(x)]ζ = min[max(s(λ1 − λ7)/Θζ , 0), ζ̄]. (5.10)
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Chapter 6

Results and discussion

6.1 Parametrization of the model

The various models that have been used to study the evolution of COVID-19 include
the LI-SIDAREV model. This section discusses the various assumptions that have
been made regarding the model’s parameters.

The initial conditions of the model are presented in Table 6.1. The LI-SIDAREV
model indicates that during the early stages of the pandemic, a small number of
people are infected and to be more specific 0.001% of the population. Thus the
susceptible population is 1 - 0.00001. It also assumes that there are no cases of people
who have been infected but have recovered, and no vaccinated people. Moreover,
it is assumed that there are no cases of acutely symptomatic, infected-detected and
dead.

The basic reproduction number is an important factor that is used in studies on
the progression of the pandemic. It is calculated by taking into account the number
of people who were infected by the average person when the following conditions are
applied. There is no immunization from either vaccination or recovered individuals
and also there are no intervention policies against the spread of the disease. Infection
rate can be calculated by using the formula R̄0 = βs0/(γi + ξi + ν) . The basic
reproduction value is assumed to be 3.27. Assuming that at the beginning of the
pandemic t = 0, the detection rate is zero, the rate of infection is 0.251.

The recovery rate for mild cases is typically two weeks. Based on the WHO’s

State variable Symbol Initial value

s0 s̄ 1-0.00001
i0 ī 0.00001
d0 d̄ 0
a0 ā 0
r0 r̄ 0
e0 ē 0
v0 v̄ 0

Table 6.1: Initial conditions LI-SIDAREV model

22
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CHAPTER 6. RESULTS AND DISCUSSION 23

Symbol Value Justification

β 2/3 [11]
γi, γd 1/14 [4]
γa 1/12.4 [21]
ξd, ξi 0.0053 [12]
µ 0.0085 [12]
ψr 1/140 [14], [13]

ψ̂r 1/395 [15]

Table 6.2: Overview parameters for LI-SIDAREV model

2020 guidance, it is assumed that the recovery rate for mild COVID-19-detected
individuals is typically two weeks. Therefore, infected-detected (γd) and infected-
undetected(γi) value are 1/14, which means that an individual needs 14 days to
recover from the infection [20]. The recovery rate for individuals infected with
acutely symptoms from COVID-19 is calculated by taking into account the length of
time they spent in the hospital. According to Wang et al., an average hospitalization
usually takes around 12.4 days. Thus the recovery rate for acutely symptomatic (γa)
is assumed to be 1/12.4[21].

Studies [12] have shown that the rates at which COVID-19-detected individuals
and those who were not vaccinated develop symptoms that require hospitalization
are similar. These studies were performed on the severity of the disease and on the
hospitalization rates in different age groups. Hence, the value of infected undetected
(ξi) and infected detected (ξd) requires hospitalization is 0.0053.

The mortality rate of COVID-19 has been estimated to be around 1% [22]. In
a study conducted in 2022 [1], researchers used mortality rate of 0.0085 and for
convenience this study has chosen the same mortality rate (µ).

Various studies show that the vaccine effectiveness against COVID - 19 is waning
after 20 weeks and the protection after recovery lasts up to 13 months. Therefore,
the value of a vaccinated individual becoming susceptible (ψ) is selected to be 1/140
(after 140 days of the vaccination) and for a recovered individual becoming suscep-
tible (ψ̂) is chosen to be 1/395 (after 13 months of recovered).

The value of ū is used to determine the maximum allowed value for the input u
and was selected to be 0.8. While the value ζ̄ is used to determine the maximum
allowed value for the input u and was selected to be 0.005. The testing rate, on the
other hand, is used to be 0.05 which reflects the slow testing rate. This was found
by taking the average used for fast and no testing. The simulation of the COVID-19
pandemic is carried out using the following parameters and with time frame [0, T ].
The value of T is chosen to be 365 and 1095 that indicates 1 and 3 years respectively.
The parameters are summarized in Table 6.3.Cha
ral

am
po

s C
ha

ral
am

po
us



CHAPTER 6. RESULTS AND DISCUSSION 24

6.2 Experiments design

The goal of this thesis is to analyze the effects of the immunity period on the optimal
control solution. In order to reach a solution that is both feasible and cost-effective,
various scenarios have been created.

The cost-coefficient parameters are Θa, Θζ and Θe. The values used in this func-
tion are selected to investigate the various cases related to each of the parameters.

Cost of death (Θe):
The cost coefficients of the deceased population have been considered in order

to arrive at a range of values that are appropriate for each case.
Θe ∈ [0, 3000, 6000, 9000, 12× 103, 15× 103, 20× 103]

Costs for acutely symptomatic (Θa):
For Θa parameter, 2 values were selected which are associated with no and

medium emphasis on acutely symptomatic individuals and are 0 and 50 × 103 re-
spectively.

Costs for vaccinations (Θζ):
As with cost of vaccinations, a medium cost emphasis is selected which is Θζ =

5× 103].

Experiment Immunity period Considered period Cost of acutely symptomatic

1.1 Infinite 1 year 50× 103

1.2 Regular 1 year 50× 103

1.3 Low 1 year 50× 103

2.1 Regular 3 years 50× 103

2.2 Regular 3 years 0

Table 6.3: Experiments and the associate variables

6.3 Results from experiments

This section shows the results from the experiments that implemented. Each one
of the four subsections that are following is for different values of ψ and ψ̂ and 2
different values of T . The aforesaid values are for endless immune period (ψ = 0
and ψ̂ = 0) with T = 365, medium immune period (ψ = 1/140 and ψ̂ = 1/395)
with T = 365, low immune period (ψ = 1/140 and ψ̂ = 1/395) with T = 365 and
medium immune period (ψ = 1/140 and ψ̂ = 1/395) with T = 1095.

6.3.1 Experiment 1 - Impact of immunity period

In this section the impact of immunity period will be observed. Different values of
immunity period such as infinite period, regular period and low period.
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CHAPTER 6. RESULTS AND DISCUSSION 25

Experiment 1.1 - Infinite immunity period

For this experiment the cost-coefficient values are: Θa = 5000 and Thetaζ = 5000.
The immune period of vaccinations and recovered equals to zero.

The figures below shown the following. The least strict measures are observed
when Θe = 0. The initial density of measures value is between 0.1-0.15 and is
following a decreasing trend during the first 70 days. It then starts increasing up
until day 150 reaching a maximum to a value close to the initial. Then the intensity
of measures start to fall again up until they reach 0 at the end of an annual period.
For any other values of Θe the trend is always decreasing reaching zero at the end
of the 365 days period.

For all the possible values of Θe, except zero, it is observed that the maximum
rate of vaccination is followed during the first days of the pandemic following a
decreasing trend, reaching zero rate of vaccination at the final stage. in case of
Θe=0 the initial rate of vaccination is lower than the maximum although it follows
the same pattern as in the case of the others.

(a) Intensity of measures (b) Rate of vaccination

Figure 6.1: Experiment 1.1 - Intervention and vaccination strategies for infinite
immunity period, 1 year considered period, medium vaccination and acutely symp-
tomatic cost

When Θe= 0 the percentage of population infected reaches maximum at around
day 150, which is also the maximum value of infected people shown in the graph.
After that it starts decreasing although it is not reaching zero. The same trend is
followed by the other values of Θe, although as Θe is increasing, the maximum value
reached and the final value of infected people is decreasing.

An increasing trend is observed regarding the fatalities and recovered individuals
having 0 figures for the first 50 days. As Θe is increasing, the maximum Percentage
of extinct and recovered population is decreasing.

Similar trend is observed regarding vaccinated population when different Θe are
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CHAPTER 6. RESULTS AND DISCUSSION 26

applied. The maximum percentage of vaccinated individuals increases with Θe.
What is shown in the first experiment is that a high number of vaccinations is
implemented with vaccinated population percentage peak at 50%. That resulting
to low number of infected population and intensity of measures. In addition the
fatalities and recovered is also low.

(a) Recovered (b) Vaccinated

(c) Infected (d) Deceased

Figure 6.2: Experiment 1.1 - States for infinite immunity period, 1 year considered
period, medium vaccination and acutely symptomatic cost

Experiment 1.2 - Regular immunity period

For this experiment the cost-coefficient values are: Θa = 5000 and Θζ = 5000. The

immune period of vaccinations and recovered are ψ = 1/140 and ψ̂ = 1/395.

From the following figure is observed that with ψ = 1/140 the values of intensity
of measures are increasing as well. When Θe =0 the initial value of intensity of
measures is closer to 1.5. The value is decreasing for the first 70 days and then
start increasing to 0.25 as maximum until around day 150. For the next 150 days
it follows a falling trend although a rapid fall is observed after day 300 reaching 0
at the end of the annual period. For Θe= 3000 the curve has a negative gradient
during the initial 150 days, then having a zero to positive gradient up until day
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CHAPTER 6. RESULTS AND DISCUSSION 27

270,starting to fall for the next 50 days, following a rapid fall until day 365. The
other values of Θe show similar trends with an increasing negative gradients and a
rapid fall after day 300.

For all the possible values of Θe, except zero, it is observed a decreasing trend,
reaching zero rate of vaccination at the final stage. In case of Θe=0 the initial rate
of vaccination is lower than the maximum and is initially increasing until 100 days.
From that point Θe=0 it follows the same pattern as in the case of the others.

(a) Intensity of measures (b) Rate of vaccination

Figure 6.3: Experiment 1.2 - Intervention and vaccination strategies for regular
immunity period, 1 year considered period, medium vaccination and acutely symp-
tomatic cost

As it is with ψ = 0 in case of Θe= 0 the percentage of population infected
reaches maximum at around day 150, which is also the maximum value of infected
people shown in the graph. After that it starts decreasing until reaching 300 days.
Afterwords it is starting increasing once more until at the end of time.The trend
for the rest of Θe values it increasing until 320 days followed by a rabbit increasing
until the end of time as in the case of Θe = 0.

Regarding the fatalities and recovered individuals it is observed the same trend
as in case of ψ = 0. The maximum for this case is about two times higher for both
extinct and recovered population for Θe = 0.

Similar trend is observed regarding vaccinated population when different Θe are
applied. The maximum percentage of vaccinated individuals increases with Θe. At
approximately 160 days it reaching maximum and is followed by a falling trend in
contrast of case ψ = 0 which is stable.

What is concluded in this experiment is that with the existence of ψ and ψ̂, with
value 1/140 and 1/395 respectively, the vaccination rate is lowered compare to ex-
periment 1.1 resulting to lower actively vaccinated population. The highest actively
vaccinated population is 27%. Furthermore, the infected population is increased
compared to experiment 1.1 resulting to the increase of recovered population. The

Cha
ral

am
po

s C
ha

ral
am

po
us



CHAPTER 6. RESULTS AND DISCUSSION 28

insensitive of measures is shown a significant rise. Also the extinct population is
twice higher.

(a) Recovered (b) Vaccinated

(c) Infected (d) Deceased

Figure 6.4: Experiment 1.2 - States for regular immunity period, 1 year considered
period, medium vaccination and acutely symptomatic cost

6.3.2 Experiment 1.3 - Low immunity period

For this experiment the cost-coefficient values are: Θa = 5000 and Θζ = 5000. The

immune period of vaccinations and recovered are ψ = 2/140 and ψ̂ = 2/395

For this experiment the trends are all similar to the trends of the previews
experiment. The difference is at the maximums. In this experiment the intensity of
measures is stricter. Vaccination rate, actively vaccinated and recovered are lower.
Regarding the infected populations is higher compared to experiment 1.2. Moreover,
the extincted population percentage is similar to the experiment above.Cha
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(a) Intensity of measures (b) Rate of vaccination

Figure 6.5: Experiment 1.3 - Intervention and vaccination strategies for low immu-
nity period, 1 year considered period, medium vaccination and acutely symptomatic
cost

(a) Recovered (b) Vaccinated

(c) Infected (d) Deceased

Figure 6.6: Experiment 1.3 - States for low immunity period, 1 year considered
period, medium vaccination and acutely symptomatic cost
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6.3.3 Experiment 2

The consider period is examined in this section. The period values are 1 and 3 years.

Experiment 2.1

In this experiment Θa = 50000. What we can observed from the below figures is
the following.

Increasing time T to 1095 days, which means 3 years, the intensity of measures
for higher values of Θe it is not observed any significant difference regarding the
strictness of measures. On the other hand for values of Θe = 0, 3000, 6000 it can
be observed a fluctuation of intensity of measures. The same trend is shown for the
three values with different maximum for each Θe. For the first 200 days Θe = 0 has
the highest maximum between the three lowest Θe and about 1000 days Θe = 6000
is reaching the highest maximum.

For values of Θe ≥ 9000 it is observed that the maximum rate of vaccination
is followed during the first days of the pandemic following a decreasing trend until
250 days.Afterword a stability is shown for the next 600 days and is followed by
a negative gradient reaching zero rate of vaccination at the final stage. In case of
Θe ≤ 6000 the initial rate of vaccination is lower than the maximum. A fluctuation
is also noticeable and a maximum is reached at day 100. It is then followed by a
decreasing pattern reaching day 400. Moreover a positive gradient is noticed until
day 900 and start to fall again up until they reach 0 at the end of the 3 years period.

(a) Intensity of measures (b) Rate of vaccination

Figure 6.7: Experiment 2.1 - Intervention and vaccination strategies for regular
immunity period, 3 year considered period, medium vaccination and acutely symp-
tomatic cost

When Θe ≥ 9000 the percentage of population infected is almost zero until the
final stage which a rabbit increase is observed. In case of the rest values of Θe a
maximum at 200 days is noticed with the highest infected population percentage for
Θe = 0 which is 1.4%. A negative gradient pattern is shown after 200 days and it
last for 700 days. At the final stage a skyrocket increasing trend is observed similar
to all values of Θe.
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An increasing trend is observed regarding the fatalities and recovered individuals
having 0 figures for the first 50 days. As Θe is increasing, the maximum Percentage
of extinct and recovered population is decreasing. The percentage of recovered popu-
lation is shown a decreasing between 600, 700 and 800 days for Θe = 6000, 3000and0
respectively.

Regarding vaccinated population different pattern is noticed between Θe ≥ 9000
and Θe ≤ 6000. In case of Θe ≥ 9000 the trend is similar to vaccinated population
of ψ = 1 for 1 year period with a relative constant trend between 200 and 800 days.
For the rest of Θe values a fluctuation is observed with maximum turning points at
200 and 950 days.

What is observed in this experiment is that there is a fluctuating trend for
the vaccination rate, actively vaccinated population, intensity of measures and the
recovered in case of Θe ≤ 6000. This is the effect of the 3 years period combined
with ψ and ψ̂ values. The intensity of measures has lower average value compared
to 1 year period. At the period of 200 days the percentage of extinct population is
higher in that case.

(a) Recovered (b) Vaccinated

(c) Infected (d) Deceased

Figure 6.8: Experiment 2.1 - States for regular immunity period, 3 year considered
period, medium vaccination and acutely symptomatic cost
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Experiment 2.2

In these experiment Θa = 0. What we can observed from the below figures is the
following.

With Θe= 0 the intensity of measures stays to zero.Increasing Θe to 3000 an
initial value of intensity of measures of 0.05 is observed. for the first 100 days the
measures stay almost constant, following a rapid fall to 0 for around 20 days. An
increase of the measures with a decreasing positive gradient follows up until day 570
leading to a fall to 0 little before day 600. 0 measures are applied until day 670
which then there is another increase with decreasing negative gradient until around
day 1000 reaching the highest value of intensity of measures with Θe=3000 . Then
a fall to 0 is observed until the end of the three years period.

For values of Θe ≥ 12000 it is observed identical trend to above experiment. In
case of 0 < Θe ≤ 9000 the initial rate of vaccination is lower than the maximum.
A fluctuation is also noticeable and Θe = 3000 has 2 minimum turning points, at
150 and 550 days, in contrast to other 2 Θe with 1 minimum turning point. At the
final stage the trend for Θe > 0 start to fall up until they reach 0 at the end of the
3 years period. For the case of Θe = 0 it is constant at zero.

(a) Intensity of measures (b) Rate of vaccination

Figure 6.9: Experiment 2.2 - Intervention strategies and vaccination strategies for
regular immunity period, 3 year considered period, medium vaccination cost and
none cost associated with acutely symptomatic population

When Θe ≥ 12000 there is a constant trend with minimal value percentage of
infected population. On the other side when Θe ≤ 9000 a fluctuating pattern is
observed. For Θe = 0 3 maximum turning points are showing at 100, 580 and 950
days with the global maximum at day 100 with 16% infected population. In case
of Θe = 3000 2 maximum turning points are showing at 100 and 650 days with the
maximum at day 100 with 12% infected population. For the rest values of Θe 1
maximum turning point is noticed at around day 150 and 200.

A step trend is observed when Θe ≤ 9000 regarding the fatalities. 1 step is shown
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in case of Θe ∈ [6000, 9000] and 2 steps in case of Θe ∈ [0, 3000]. highest percentage
of deceased population is noticed at Θe = 0 and is 1.2%. For Θe ≥ 12000 is constant
at minimal value.

Recovered population is starting increasing at the first 50 days. For Θe = 0
reaching maximum of 70% at about 170 days. Then for Θe ≤ 9000 a negative
gradient is shown and for Θe ∈ [6000, 9000] last to the final stage. In case of
Θe ∈ [0, 3000] the negative gradient last until about 300 days. Afterword a second
maximum turning point is observed at 650 days and the case of Θe = 3000 staring
to falling. Θe = 0 case is reached to a third and final maximum turning point at
1050 days.

Regarding the vaccinated population the pattern for Θe ≥ 12000 is identical
to the experiment 2.1. In case of Θe ∈ [6000, 9000] is following a similar trend to
experiment 2.1 also but with lower values. The case of Θe = 3000 is the only case
that is observed 3 maximum turning points. A constant zero is noticed for Θe = 0.

In this experiment can noticed that by not assigned a cost to acutely symptomatic
individuals has significant impact on the intensity of measures and vaccinations
again for the case of Θe ≤ 9000. The intensity of measures and vaccinations means
are lower compared to experiment 2.1. Infections is also greater resulting to more
recovered population.
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(a) Recovered (b) Vaccinated

(c) Infected (d) Deceased

Figure 6.10: Experiment 2.2 States for regular immunity period, 3 year considered
period, medium vaccination cost and none cost associated with acutely symptomatic
population

6.4 Implications

For the first experiment, the impact of the immunity period of vaccinated and recov-
ered population for different costs of death is examined. It is proven that with the
increasing immunity period the deceased population is decreasing and vice versa. In
table 6.4, when the cost of death is zero, it is observed that with a regular immunity
period the deceased population is doubled compared to infinite immunity period.
Even a slight interest by the government, which is reflected on the cost of death
value, will result in a dramatic decrease in the deceased population for all the values
of immunity period. In the case of a high immunity period, a slight reduction of
deceased population is noticed compared to regular immunity period.

The table above demonstrates how cost of death Θe and immunity period ψ and
ψ̂ affect extinct population when the three different cases are examined. Increasing
the cost of death causes a decrease in extinct population percentages. There is a
large decrease of percentage of extinctions comparing when Θe=0 and Θe =3000 in
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Percentage of extinct population
Cost of death Experiment 1.1 Experiment 1.2 Experiment 1.3

0 0.08% 0.16% 0.14%
3× 103 0.03% 0.04% 0.03%
6× 103 0.02% 0.02% 0.02%
9× 103 0.01% 0.02% 0.02%
12× 103 0.01% 0.01% 0.01%
15× 103 0.01% 0.01% 0.01%
20× 103 0.01% 0.01% 0.01%

Table 6.4: Impact of cost of death Θe and immunity period ψ, ψ̂ on extinct popula-
tion when Infinite Immunity (Experiment 1.1), Regular Immunity (1.2) and Lower
Immunity (1.3) cases are considered.

contrast to when Θe goes from the value of 3000 to the value of 6000, or generally
any other increment.

Average rate of vaccinations
Cost of death Experiment 1.1 Experiment 1.2 Experiment 1.3

0 0.15% 0.24% 0.21%
3× 103 0.17% 0.26% 0.21%
6× 103 0.18% 0.26% 0.21%
9× 103 0.18% 0.26% 0.21%
12× 103 0.18% 0.26% 0.21%
15× 103 0.18% 0.26% 0.21%
20× 103 0.18% 0.26% 0.21%

Table 6.5: Impact of cost of death Θe and immunity period ψ, ψ̂ on average vacci-
nations rate when Infinite Immunity (Experiment 1.1), Regular Immunity (1.2) and
Lower Immunity (1.3) cases are considered.

Total cost of government’s interventions
Cost of death Experiment 1.1 Experiment 1.2 Experiment 1.3

0 1.22 6.53 15.85
3× 103 1.68 10.17 19.09
6× 103 2.07 10.93 19.80
9× 103 2.34 11.39 20.30
12× 103 2.55 11.73 20.70
15× 103 2.72 12.00 21.03
20× 103 2.94 12.36 21.47

Table 6.6: Impact of cost of death Θe and immunity period ψ, ψ̂ on total cost
of government’s intervention strategies when Infinite Immunity (Experiment 1.1),
Regular Immunity (1.2) and Lower Immunity (1.3) cases are considered.

The total cost of intervention strategies is increasing as the cost of death is
increasing. Also an increase in the total cost of intervention strategies is observed
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as the period of immunity is falling. Furthermore, the rate of increase of the cost of
intervention strategies is falling as the cost of death is increasing.

Percentage of extinct population
Cost of death Experiment 2.1 Experiment 1.2

0 0.67% 0.16%
3× 103 0.48% 0.04%
6× 103 0.27% 0.02%
9× 103 0.04% 0.02%
12× 103 0.02% 0.01%
15× 103 0.01 % 0.01%
20× 103 0.01 % 0.01%

Table 6.7: Impact of cost of death Θe and considered period T on extinct population

On the above table, the comparison of different considered period T against the
cost of death on the percentage of extinct population is examined. On experiment
2.1 T=3 and on experiment 1.2 T=1. As expected, it is observed that the percentage
of extinct population is significantly larger when the time period of the pandemic is
larger although the numbers are not proportional. For example, with cost of death
0, the extinct population numbers are increased by a number of four between the
two experiments. When the cost of death is 3000, the increase is twelve times bigger.

Average rate of vaccinations
Cost of death Experiment 2.1 Experiment 1.2

0 0.17% 0.24%
3× 103 0.22% 0.26%
6× 103 0.27% 0.26%
9× 103 0.32% 0.26%
12× 103 0.32% 0.26%
15× 103 0.32% 0.26%
20× 103 0.32% 0.26%

Table 6.8: Impact of cost of death Θe and considered period T on average vaccina-
tions rate

A comparison of the two different T s mentioned above was performed. With
cost of death values up to 3000, it is observed that there is a decrease of the average
vaccination rates from T=1 to T=3. However, when the value of cost of death
increases, the average vaccination rate becomes larger for T=3 compared to T=1.
Also, there is a greater increase of the average vaccination rates as cost of death
is increasing for T= 3 compared to T= 1 values and thus the above statement is
proven correct.Cha
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Total cost of government’s interventions
Cost of death Experiment 2.1 Experiment 1.2

0 5.93 6.53
3× 103 10.51 10.17
6× 103 18.51 10.93
9× 103 32.24 11.39
12× 103 34.00 11.73
15× 103 34.45 12.00
20× 103 34.95 12.36

Table 6.9: Impact of cost of death Θe and considered period T on total cost of
government’s intervention strategies

The above table describes how the cost of death and the considered period impact
the total cost of the government’s intervention strategies. The general trend for the
above relationship is an increase of the cost of government’s intervention strategies
when the considered time period is increased. The only exemption to the trend is
for the first case, Θe=0 where there is a reduction of the cost of the government’s
intervention strategies when the considered period is increased.
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Chapter 7

Conclusions and future work

7.1 Summary

For the past two and a half years, humanity has faced an unprecedented and ex-
tremely difficult situation. COVID-19 has rapidly spread inter alia, due to glob-
alization, from a huge number of individuals travelling around the globe and due
to the lack of knowledge and information about the new virus. The above have
turned the situation into a pandemic. Governments had to make rapid and critical
decisions, with no background knowledge, regarding the economy, health and social
status of their country. Many different strategies were applied all over the globe,
with no certain estimation of their outcomes. Decisions ranged from shutting down
the economy in order to save people from the disease while letting the economy and
social life collapse, to taking minimal measures while letting the number of infected
and deceased people to increase rapidly.

The epidemiological models which are able to present the dynamic evolution of
the pandemic is an important tool which assists governments in taking the best
decision possible. The minimization of the impact of the disease can be achieved by
applying the most effective policies. Current epidemic models do not take into ac-
count that recovered and vaccinated people can become susceptible after a period of
time. This has motivated the development of the LI-SIDAREV model (Susceptible,
Infected undetected, infected Detected, Acutely symptomatic, Recovered, Extinct,
Vaccinated). The LI-SIDAREV model has then been adapted by adding two control
parameters to control the cost of governments intervention to mitigate the spread
and the rate of vaccination. The issue that this thesis aimed to address, keeping
in mind the minimization of the costs, was to select the optimal strategy regarding
vaccination and intervention policies that must be followed. Inspired from previ-
ous studies, the formulation of an optimization problem was performed in order
to investigate the minimization of costs for implementing governmental measures
and vaccination policies. We aimed to optimize the trade off between the economic
impact of measures and the number of fatalities by implementing the best possible
strategy. The considered cost to be minimized comprised of the cost associated with
socio-economic cost, the cost of vaccination and acutely symptomatic and extinct
population costs. Tools from optimal control theory were used to solve this highly
challenging problem. In particular, Pontryagin’s minimum principle was applied to
obtain the optimal intervention and vaccination strategies.

38
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Once the optimal control strategies were derived, multiple scenarios were cre-
ated, using a wide range of weight factors associated with the above mentioned
costs. Various simulations have been performed based on the different costs for
acutely symptomatic, and deceased individuals. In addition, different values for the
immunity of the vaccinated and recovered population were also considered.

The main results of this thesis demonstrate that as the immunity period in-
creases, the deceased population decreases, as well as the average rate of vaccination
and the cost associated with government intervention strategies. For a medium cost
of death, the cost of government intervention strategies when infinite and low im-
munity are considered increases by almost ten times. The average vaccination rate,
when a medium cost of death is considered, increases from 0.18% to 0.26% when
infinite and regular immunity rates are considered. However, when regular to lower
immunity are compared, the amount of decrease is reduced from 0.26% to 0.24%.
When the cost of death is zero and infinite to regular immunity cases are considered,
the amount of deceased population increases from 0.08% to 0.16%.

When the considered period increases from one to three years, the deceased
population and the average rate of vaccinations increase. Furthermore, on average
rate of vaccination,for cost of death lower than 6000 is decreasing and for higher
cost of death it is increasing and the cost associated with government intervention
strategies follows the same pattern as with the average rate of vaccinations.

By finishing this thesis, we hope to aid government decision making in order to
implement improved intervention and vaccination strategies.

7.2 Future work

With the constant detection of new COVID-19 variants and other information re-
garding already detected variants, data gathering and the associated studies need to
address this potential new information. One fact that can be added to the model is
the infection of vaccinated individuals and the effectiveness of vaccines[23]. Vacci-
nated individuals also contribute to the spread of the disease and this is an interesting
topic for future work.

One of the assumptions made for this thesis is the maximum vaccination rate
per day. The maximum percentage of vaccinations is assumed to be equal to 0.5%
in one day. The study of the impact of different maximum vaccination rates per day
is also an interesting topic to be examined.

Furthermore, the willingness of individuals to be vaccinated is another assump-
tion that is sustained in this thesis. It is assumed that all individuals are willing to
be vaccinated. Due to the fact that a fraction of the population is not willing to
be vaccinated and therefore choose not to, different vaccination strategies might be
taken by governments.

Moreover, this thesis considers all individuals equally and does not take into
consideration the differences between gender and age groups in the population. This
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can impact the mortality rate as the older population has a greater possibility to die
compared to younger population[24]. Furthermore, mortality rate for men seems to
be greater than women [25]. Additionally, the immunity period between age groups
may differ. [26].

In addition, the weather conditions is another factor that can be interesting to
study. The disease infection rate can be higher in winter were the weather conditions
are ideal for a virus to spread rather than in summer period[27].

These are a few examples of differently considered values for the models param-
eters that can be taken into account for future work. COVID-19 is still evolving
and new data is collected on a daily basis, making it extremely difficult to identify
and assess all the possible scenarios. For the above reason, assumptions had to be
made, and possible future work was considered and proposed in order to enhance
these findings. We hope that, as a result, the findings of this thesis will be used in
order to assist in future studies.
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Chapter 8

MATLAB code

Script to simulate a number of cases on the controlled LI-SIDAREV model.

1 clear all;
2 clc;
3

4 v val = 0.05; %Testing rate values − values of v
5 Q val = [0;50000]; %Costs associated with acutely symptomatic ...

population
6 thetaz val = [50;5000]; %Costs associated with vaccines
7 %Costs associated with diseased population
8 C dth = [0; 3000; 6000; 9000; 12000; 15000; 20000];
9 N = length(C dth); %number of iterations

10

11 %Data (Italy)
12 Rho = 3.27; %based on 'Monitoring transmissibility and mortality'
13 gamma i = 1/14; % Recovery rate from infected undetected
14 gamma d = 1/14; % Recovery rate from infected detected
15 gamma a = 1/12.39; %Recovery rate from hospitalized
16 H in = 0.06925; %percentage of hospitalized − range between 5% ...

and 12%
17 a d = 0.0066/H in; %so the infection mortality rate is 0.66%
18 mu = a d/(1−a d)*gamma a; %Transition rate from acutely ...

symptomatic to deceased
19 psi = 1/140; %Susceptible rate from vaccinated
20 psi hat = 1/395; %Susceptible rate from recovered
21 zmaxn = 0.005;
22 psin = 1;
23 dt = 1; %time increments
24

25 for q = 1:2 %associated with three different cost weights for ...
the acutely symptomatic population

26 for f=1:1 %Different testing rate policies
27 for j = 1:2 %Different cost weights for vaccination
28

29 ksi i = H in/(1−H in)*gamma i; %Transition rate from ...
infected undetected to acutely symptomatic

30 ksi d = H in/(1−H in)*gamma d; %Transition rate from ...
infected detected to acutely symptomatic

31 beta = Rho*(gamma i + ksi i); %Definition of R0 in ...
SIDARE, proven in our paper

32

33 Q = diag([0;0;0;Q val(q,1);0;0;0]); %Cost associated ...

41
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with states
34

35 v set = v val(1,1); %Adopted testing rate
36

37 %***theta z = 1 or 500 or 5000 or 500000***
38 theta z = thetaz val(j,1);
39

40 %Different cases of cost weights associated with ...
deceased

41 %population−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 parfor i=1 + (j−1)*N:N + (j−1)*N
43 [x{i}, u(i,:), zeta(i,:),C(:,i), C1(:,i), ...

C2(:,i), C3(:,i), C4(:,i)] = ...
Sim simple(dt,beta, gamma i, gamma d, ...
gamma a, ksi i, ksi d, mu, C dth(i − ...
(j−1)*N,1), Q, v set, psi, psi hat, theta z);

44 end
45 end
46

47 %Workspace is saved in a local folder
48 FileName = ['Q ' num2str(Q(4,4)) ' ThZ ' ...

num2str(theta z) ' Zmax ' num2str(zmaxn) ' Psi ' ...
num2str(psin) '.mat'];

49 save(FileName)
50

51 end
52 end

Function that takes as inputs a set of model parameters associated with the con-
trolled LI-SIDAREV model and gives the optimal continuous strategy u, optimal
vaccination strategy zeta, the resulting state trajectories x, and cost C. Costs C1
is associated with interventions strategies cost, C2 is associated the acutely symp-
tomatic population, C3 is associated the number of deaths,and C4 with vaccinations.

1 %Function that takes as inputs a set of model paramters ...
associated with the

2 %controlled SIDARE model and gives the optimal continuous ...
strategy u,

3 %the resulting state trajectories x, and cost C. Costs C1, C2 ...
and C3 are

4 %associated with the strategy, the acutely symptomatic ...
population and the

5 %number of deaths ...
respectively.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 function [x, u, zeta, C, C1, C2, C3, C4] = Sim simple(dt, beta, ...
gamma i, gamma d, gamma a, ksi i, ksi d, mu, C dth, Q, ...
v set, psi, psi hat, theta z)

7

8 T days = 365 * 3; %Number of days
9

10 R = 1; %Cost associated with government strategy (used as basis)
11 z max = 0.005;
12

13 %Initial conditions
14 r = 0.00001;
15 x(1,1) = 1 − r; %S
16 x(2,1) = r; %I
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17 x(3,1) = 0; %D
18 x(4,1) = 0; %A
19 x(5,1) = 0; %R
20 x(6,1) = 0; %E
21 x(7,1) = 0; %V
22

23 %Data (Italy)
24 T = T days/dt;
25 l(1:length(x(:,1)),T) = 0; %Lambda boundary conditions
26 l((length(x(:,1)) − 1),T) = C dth; %Cost attributed to number of ...

deaths
27 mu h = 5*mu; %infection decease rate when hospital capacity is ...

exceeded
28 u max = 0.8; %maximum value for u
29

30 u(1:T,1) = 0.4; %Initialisation of u
31 v(1:T,1) = v set; %Constant value of testing rate,
32 zeta(1:T,1) = 0.1; %Initialisation of z
33

34 %Initialization of states and costs
35 for k=2:T
36 x(:,k) = epidem(dt, x(:,k−1), beta(1,1), u(k−1,1), v(k−1,1), ...

zeta(k−1,1), gamma i, gamma d, gamma a, ksi i, ksi d, mu, ...
psi, psi hat);

37 end
38

39 for k=T−1:−1:1
40 [l(:,k), dl(:,k)] = pontr(dt, l(:,k+1), x(:,k+1), u(k+1,1), ...

v(k+1,1), zeta(k+1,1), beta(1,1), gamma i, gamma d, gamma a, ...
ksi i, ksi d, mu, Q, psi, psi hat);

41 end
42

43

44 %Cost function − aggregate and ...
components−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 C1(1,1) = 0.5*dt*(R(1,1)*u.'*u); %cost associated with ...
government strategy u

46 C2(1,1) = 0.5*dt*(Q(4,4)*(x(4,:)*x(4,:).')); %cost associated ...
with the acutely symptomatic population

47 C3(1,1) = x((length(x(:,1)) − 1),T)*C dth; %cost associated with ...
number of deaths

48 C4(1,1) = 0.5*dt*(zeta.'*zeta)*theta z; ...
%cost associated with vaccination

49 C(1,1) = C1(1,1)+C2(1,1)+C3(1,1)+C4(1,1); ...
%Total Cost

50

51 N iter = 100000 / 5; %number of iterations for the convergence ...
of the algorithm

52

53 for j=1:N iter
54

55 %Calculation of the new value for u
56 u0 = u;
57 zeta0 = zeta;
58 for k=1:T
59 u1(k,1) = ...

min(max(inv(R(1,1))*beta(1,1)*x(1,k)*x(2,k)*(l(2,k) ...
− l(1,k)),0),u max);
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60 zeta1(k,1) = min(max((x(1,k) * (l(1,k) − l(7,k)))/ ...
theta z, 0),z max);

61 end
62

63 a = 0.9995; %coefficient used to update the current u
64 u = a*u0 + (1−a)*u1; %new strategy u
65 zeta = a*zeta0 + (1−a)*zeta1; %new strategy z
66

67 %Update the SIDARE model trajectory based on current u
68 for k=2:T
69 %Controlled SIDARE epidemic model
70 x(:,k) = epidem(dt, x(:,k−1), beta(1,1), u(k−1,1), ...

v(k−1,1), zeta(k−1,1), gamma i, gamma d, gamma a, ...
ksi i, ksi d, mu, psi, psi hat);

71 end
72

73 %Update the costate variables
74 for k=T−1:−1:1
75 %Pontryagin equations
76 [l(:,k), dl(:,k)] = pontr(dt, l(:,k+1), x(:,k+1), ...

u(k+1,1), v(k+1,1), zeta(k+1,1), beta(1,1), gamma i, ...
gamma d, gamma a, ksi i, ksi d,mu, Q, psi, psi hat);

77 end
78

79 %C(j,1) = 0.5*dt*(R(1,1)*u.'*u + Q(4,4)*(x(4,:)*x(4,:).')) ...
+ x((length(x(:,1)) −1),T)*C dth; %total cost

80 C1(j,1) = 0.5*dt*(R(1,1)*u.'*u); %cost associated with ...
government strategy u

81 C2(j,1) = 0.5*dt*(Q(4,4)*(x(4,:)*x(4,:).')); %cost ...
associated with the acutely symptomatic population

82 C3(j,1) = x((length(x(:,1)) −1),T)*C dth; %cost associated ...
with number of deaths

83 C4(j,1) = 0.5*dt*(zeta.'*zeta)*theta z; ...
%cost associated with ...

vaccination
84 C (j,1) = C1(j,1) + C2(j,1) + C3(j,1) + C4(j,1); ...

%Total Cost
85 end

The function describing the dynamics of the controlled LI-SIDAREV model.

1 %function describing the dynamics of the controlled SIDARE model
2 function [y,dy] = epidem(dt, x, beta, u, v, zeta, gamma i, ...

gamma d, gamma a, ksi i, ksi d, mu, psi, psi hat)
3

4 %Controlled SIDARE model
5 dy(1,1) = −beta*(1 − u)*x(1,1)*x(2,1) + psi*x(7,1) + ...

psi hat*x(5,1) − zeta*x(1,1); %Susceptible State
6 dy(2,1) = beta*(1 − u)*x(1,1)*x(2,1) − gamma i*x(2,1) − ...

ksi i*x(2,1) − v*x(2,1); %Infected undetected State
7 dy(3,1) = v*x(2,1) − gamma d*x(3,1) − ksi d*x(3,1); ...

%Detected infected State
8 dy(4,1) = ksi i*x(2,1) + ksi d*x(3,1) − gamma a*x(4,1) − ...

mu*x(4,1); %Acutely symptomatic State
9 dy(5,1) = gamma i*x(2,1) + gamma d*x(3,1) + gamma a*x(4,1) ...

− psi hat*x(5,1); %Recovered State
10 dy(6,1) = mu*x(4,1); %Extinct (Deceased) State
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11 dy(7,1) = zeta*x(1,1) − psi*x(7,1); %Vaccinated State
12 y = x + dt*dy; %State update

The function of costate variables update based on Pontryagin’s minimum principle.

1 %function of co−state variables update based on Pontryagin's ...
minimum principle

2

3 function [y,dy] = pontr(dt, l, x, u, v, zeta, beta, gamma i, ...
gamma d, gamma a, ksi i, ksi d,mu, Q, psi, psi hat)

4

5 %Equations based on Pontryagin's minimum principle
6

7 dy = −[beta*x(2,1)*(l(2,1) − l(1,1))*(1−u) + zeta*(l(7,1) − ...
l(1,1));

8 beta*x(1,1)*(l(2,1) − l(1,1))*(1−u) + v*(l(3,1)−l(2,1)) + ...
gamma i*(l(5,1) − l(2,1)) + ksi i*(l(4,1) − l(2,1));

9 gamma d*(l(5,1) − l(3,1)) + ksi d*(l(4,1) − l(3,1));
10 Q(4,4)*x(4,1) + gamma a*(l(5,1) − l(4,1)) + mu*(l(6,1) − ...

l(4,1));
11 psi hat*(l(1,1) − l(5,1));
12 0;
13 psi*(l(1,1) − l(7,1))];
14 y = l − dy*dt; %backwards in time, since boundary condition ...

for costate variables is at t = T
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