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ITEPIAHYH

H mopovca Sdaxtopikny SatpiPn meptypaesl €pevva. GYETIKN UE HOPLOKE QOVOUEVOL
petapopdc niektpoviov (MHA) xou pe poprokég molvesrtovikée oepyoosiec O Paoikodg
o6TOY0C TNG €peuvag elval va O1EPEVLVNGEL HOPLIKOVG Unyavicpovg MHA Kot punyovicpovg
oybong omAng eErtovikng Katdotaong o€ tpumAég (XAKZET). Mépog g dtatpifng, oto medio
MG MOPLOKNAG MAEKTPOVIKNG KOl TOV HOPLOKOV cLVOEcewv, e&nyel T ovumeplpopd
PEVLLLOTOG-TAONG KOl PELLATOG-0EPUOKPACING GE TEPALATO HOPLOKOV cLVOEcEwV. Emiong
TPOTEIVEL TEPAUOTO HOPLOKDOV GLVOECEDV TOV EMIPEMOLV TV TOPATIPNCN TNG
aveotpoppévng mepoyng Marcus oe avtidpdoelg MHA, n omoia péypt ofuepa €xet
nwapotnpnOel pévo oe mepariov dtarvpatog. To dGAlo pépog g dratpiPng, mov oyetiletan
HE TNV TOALEELITOVIKN HOPLOKT] PLGIKT), SIEPEVVA SLOOIKOGIES GYAONG ATANG KATAGTAONG GE
popakd cvotiuata 80t (AO) — yépvpog (I'E) — oéxtn (AE). Avomtocost éva
NUVEALTIKO/VTOAOYIoTIKO TAaiGlo Yo TV avaivon oeoawvopéveov XAKET kot 10

YPNOUOTOEL V1oL VO EENYNOEL TPOCPATES TELPULOUTIKES TOPATNPTCELS.

Ot poprokég ovvoéselg elvar 10aviKEG Yo T otepebivnon unyovicpov MHA mov mailovv
oNUOVTIKO pOLo otn ynueia kot t Proroyia. Tleprypapovpe ) Bempntikny povielonoinon
tov pnyovicudv MHA oe vBpudikég etepocuvdecels petdilov — mpoteivng MHA —
petaiiov. Eotidlovpe og éva peydlo aplBud TEPOUOTIKOV OTOTEAECUATOV TOV UETPOVV
TN CLUTEPLPOPE PEVUATOG-TAOTG KOl PEVUATOG-Oeppokpaciog Twv cuvdoécewv. To vrd
perétn ocvotuata wepthappdvovy etepocuvoécels Alovpivinig  Holo-Az (m mpoteivn
TEPLEYEL ATOUO YOAKOV), Apo-Az (ywpig dtopo PHeTdALOL), OTtmG Kol Alovpivng pe vikélo,
N KoPaAto | yevddpyvpo. O o1dY0G TNG LOVIEAOTOINGNG EIVOL VO KATOVOT|COVE Ot TO
nepdpata Tog o unxavicpndés MHA gaptator and to €idog tov petdiiov. Aappdavovpe
VILOYN SLOPOPETIKA LOVTEAD LETAPOPAS (CVVEKTIKA KOl UN-GLVEKTIKA). AT 1) gpyacio £xel
dnuootevbei oto Journal of Physical Chemistry C (Valianti, S.; Cuevas, J. C.; Skourtis, S. S.
Charge-Transport Mechanisms in Azurin-Based Monolayer Junctions. J. Phys. Chem. C.
2019, 123 (10), 5907-5922).

To dAAo pépog g SwTpPng mov oyetileton pe pnyovicpove MHA mpoteiver pia
apyrtektovikny poplakng oovdoeons AO-I'E-AE mov Asttovpyel pHéG®m TOL UN-GLVEKTIKOD
pnyoviopod Beppikng petomdnong (MOM). Avtd 10 €id0¢ GUVOEGHOL EMITPEMEL TN
GLGYETION AVALESH GTNV £VTOOT PELLOTOG, TOV UETPIETOL GTO TEIPOALLO LOPLOKNG GVVIEST|G,
pe tov gvoopoplakod pvoud MHA a6 to 66t (AO) oto déktn (AE). IIpoteivovpe 6t avtdg

0 TOmog ovvoeoNg Hropel va ypnotpomombel yio TV TapaTHPNON TNS OVECTPOUUEVNS



neployne Marcus tov evdopoprakod pvOuod MHA. H mepoyr avty péypt onuepa €xet
nwapopnOel poévo oe avtdpdoesic MHA oe didAvpa. Xtnv mpotewvopevn ocbvdeon 1
TPOcPacn oTNV aveSTPAUUEVT TEPLOYN YiveTal peTafdAlovag Tn S10popd SLVOUIKOD KOTA
unkog g ovvoeons. H mpaypatomoinon evog 1€10100 TepApatog Bo eTETPENE OVCIACTIKEG
ovyKpicelg peta&d tov puouod avtidpaocng MHA og mepiBaAlov d1oAdHOTOS Kol TOV 1010V
pLOLOY 0T0 GTEYVO TTEPIPAAAOV TNG HOPLaKNG cVVOESNC. AVTH 1 EpYacio ONUOGIEDTNKE GTO
Journal of Physical Chemistry B (Valianti, S.; Skourtis, S. S. Observing Donor-to-Acceptor
Electron-Transfer Rates and the Marcus Inverted-Parabola in Molecular Junctions. J. Phys.
Chem. B 2019, 123 (45), 9641-9653).

To GAho medio TG epgLVNTIKNG LoV dpactnproTTas oyetiCeton pe owdikaciec TAKET oe
poprakd cvotnuata AO-I'E-AE. O kdprog 6tox0¢ eivan va katavoncovpe mog pia yéeupa-
7ov ovvdéel 1o AO pe 10 AE pmopet va ypnoyorom el yuo va eAéyEet to puOpd avtidpaong
SAKZT. Zmv avtidpaon n anin e€itovikn Katdotoon mov dnuovpysitar oto AO, péow
QOTOJEYEPONG, LETATPENETAL GE OVO TPUTAEC EEITOVIKEG KOTAGTAGELS, [0 EVIOTIGUEVT GTO
AO xor pio 610 AE. O éheyyxoc tov puBupod avtidpaong XAKET umopei va emttevydet
pvOuilovtag v niektpoviakn ovlevén TAKET 06tn-0éktn pécm g yépupags. o to
GKOTO OVTO OVOTTOGGOVUE £VOL NUOVOALTIKO / DTOAOYICTIKO TANIGLO OV EMTPEMEL TNV
avéivon avtdpdoswv TAKET o poplaxéc apyrrektovikég AO-T'E-AE. TIpoodiopilovpe
SPOPETIKES TTEPLOYEG PLCIKMV TTapapéTpmv ov kabopilovv 1n cvlevén. Meketovpe v
eEdpmon g ovlevéng amd TIC evépyeleg TV €EITOVIKOV KATOOTAGEDV KOAVOVTOG
VIOAOYIGHOVG Y10 dtapopeTikd cvotnuata AO-T'E-AE. Avth n nuovaivtikn pebodoroyia
umopel va ypnoonomBet yio vo Kafodnynoel VTOAOYICTIKEG KOl TEWPAUUOTIKEG UEAETEC
avtwpacewv XAKXET oe ocvotiuoto AO-I'E-AE. Ztn odwrpi] ypnowomoodpe ™
pebodoroyia ko yio vo ENYNGOVIE TO POIVOUEVO GLVIOVIGHOD YEQLPOG YOl OVTIOPAGELS
YAKXET, mov €xel mapoatnpnet o mpoceata mepapata. Ot mpoavapepOeiceg peuvNTIKES
peréteg €yxovv voPAndel wg apbpo oto Journal of Physical Chemistry Letters. e avti)
@aom to apbpo eivor vro eEgraon (Valianti, S.; Skourtis, S. S. The Role of Bridge-state
Intermediates in Singlet Fission for Donor-bridge-acceptor Systems: A Semi-analytical

Approach to Bridge-tuning of the Donor-acceptor Fission Coupling.).

To tehevtaio péPog g O1daKTOPIKNG dratpiPng TeptAapPavet Eva ApBpo avacKOTNGNG TOV
£ypoya GYETIKA LE TNV EMOPACN TV JOVNTIKOV HOPLOKAV KOTOUCTAGEMY OTIS HOPLOKES
avtidpaoeic MHA. To dpbpo dnuoocievtnke oto meprodikd Molecular Physics (Valianti, S.;
Skourtis, S. S. Vibrational control of molecular electron transfer reactions. Mol. Phys. 2019,
117 (19), 2618-2631).



ABSTRACT

This Ph.D. Thesis describes research work on molecular electron transfer (ET) and multi-
excitonic processes. The underlying objective of the research is to develop a physical
understanding of how to control ET and Singlet Fission (SF) in molecules. Part of the work,
on the field of molecular electronics, explains current-voltage and current-temperature
behavior in molecular-junction experiments, and proposes novel junction experiments for
observing the solution-phase Marcus inverted region in junction environments. The other
part, that relates to multi-excitonic molecular physics, investigates SF processes in molecular
donor (D) — bridge (B) — acceptor (A) systems through the development of a semi-analytical
| computational framework. It also uses this framework to explain experimental

observations.

Molecular junctions are ideal systems for the investigation of ET mechanisms that play an
important role in chemistry and biology. We describe theoretical modeling of ET in hybrid
metal — ET protein (e.g., Azurin (Az)) - metal heterojunctions, focusing on a large set of
experimental results that measure the current-voltage and current-temperature behavior of
the junctions. The systems under study include heterojunctions with Holo-Az (Cu-
substituted), Apo-Az (no metal), and Ni-, Co- and Zn-substituted Azurins. The goal of our
analysis is to understand from the experiments how the transport mechanism is determined
by the metal substitution. We consider different transport models (coherent and incoherent).
This work has been published in the Journal of Physical Chemistry C (Valianti, S.; Cuevas,
J. C.; Skourtis, S. S. Charge-Transport Mechanisms in Azurin-Based Monolayer Junctions.
J. Phys. Chem. C. 2019, 123 (10), 5907-5922).

The other work related to ET, proposes a D-B-A molecular junction architecture functioning
in the incoherent hopping regime, that is suited for establishing direct correlations between
the electrode-to-electrode current and the intra-molecular D-to-A ET rate. We suggest that
this type of junction may be used to observe the Marcus-inverted-parabola dependence of
the intra-molecular rate on energy gap. The Marcus inverted regime is thought to be only
observable in solution-phase ET. In the proposed junction the inverted regime is accessed
by varying the bias voltage. The realization of such an experiment would enable meaningful
comparisons between solution-phase ET rates and molecular-junction currents for the same
molecule. This work was published in the Journal of Physical Chemistry B (Valianti, S.;
Skourtis, S. S. Observing Donor-to-Acceptor Electron-Transfer Rates and the Marcus
Inverted-Parabola in Molecular Junctions. J. Phys. Chem. B 2019, 123 (45), 9641-9653).



The other field of my research activity is spin molecular physics and chemistry, in particular
photo-induced spin processes. My research focuses on the investigation of the Singlet
Fission (SF) process in molecular D-B-A systems. The main goal is to understand how a
bridge linker connecting D and A can tune the effective SF coupling that leads to D-A-
separated correlated triplet excitons. For this purpose, we develop a semi-analytical /
computational framework to explore structure-function relationships for SF in D-B-A
molecular architectures. We identify different bridge-mediation regimes for the effective SF
coupling in the coherent tunneling limit and derive the dominant fission pathways in each
regime. We describe the dependence of these regimes on D-B-A exciton state energetics and
on D-B (A-B) interactions. This semi-analytical approach can be used to guide
computational and experimental searches for D-B-A systems with tuned SF rates. We use
this approach to interpret the bridge-resonance effect of SF that has been observed in recent
experiments. This work has been submitted to the Journal of Physical Chemistry Letters and
is under review (Valianti, S.; Skourtis, S. S. The Role of Bridge-state Intermediates in Singlet
Fission for Donor-bridge-acceptor Systems: A Semi-analytical Approach to Bridge-tuning

of the Donor-acceptor Fission Coupling.).

The final part of the Thesis includes a review article | wrote on vibrational control of electron
transfer reactions that was published in Molecular Physics (Valianti, S.; Skourtis, S. S.
Vibrational control of molecular electron transfer reactions. Mol. Phys. 2019, 117 (19),
2618-2631).
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Figure 3.15 Theoretical J versus V of Cu-Az at T = 300 K using a range of energy levels,

gok+1 =0.1-0.5 eV (a) for the coherent resonant tunneling model (parameter values: ¢;,=0.03
eV (best-fit at low bias regime), a=0.75, T';=3.3 10° eV, I'; /I',=1000) and (b) for the
incoherent hopping model (parameter values: ¢;,=0.01 eV (best-fit at low bias regime),

3=0.2 eV, a=0.75, ' =1.0 10* eV, Ty /T, =1000).

Figure 3.16 Experimental In(J) versus voltage of Cu-Az at T = 300 K and theoretical fits
using the multi-channel hypothesis of eg. (3.8) using (a) the incoherent hopping mechanism

(coefficients derived from multiple regression analysis: P,=0.35, P,=0.50, P,=3.14, P,=4.68,
P.=13.01), (b) the coherent tunneling mechanism (coefficients of multiple regression

analysis: P,=0.06, P,=6.84, P,=7.77, P,=3.21, P.=7.68).

vii



Figure 3.17 Experimental In(l1) versus 1000/T of Cu-Az at +500 mV and +100 mV bias,
versus theoretical fits (eqs (3.1)-(3.4)) using the parameter values: 0a=0.470, £=0.80 eV,
I''=1.15 10° eV and I'r/T"'.=1000.

Figure 3.18 Experimental In(l) versus voltage of Cu-Az at (a) 275 K and (b) 25 K, versus
theoretical fits (egs (3.1)-(3.4)) using the parameter values: a=0.470, £=0.80 ¢V, I''=1.15
107 eV, and I'r/T"'t=1000.

Figure 3.19 (a) Experimental In(J) versus voltage of Apo-Az at T = 128 K and theoretical
fits using egs (3.1)-(3.4). Since for 100 < T <200 K, the current is temperature independent,
the fit does not change with temperature. (b) Experimental In(J) versus 1000/T of Apo-Az
as a function of temperature at V = 0.05 and 0.10 V, and theoretical fits using egs (3.1)-(3.4).
For both (a), (b) the parameter values in egs (1)-(4) are: a=0.50, £,=0.70 eV, I',=1.0 10eV,

/T =1,

Figure 3.20 (a) Experimental In(J) versus 1000/T of Apo-Az as a function of temperature at
V =-0.05 V versus theoretical fits (egs (3.9)-(3.10)). (b) Experimental In(J) versus voltage
of Apo-Az at T = 128 K (low temperature regime) and theoretical fits using egs (3.9)-(3.10).
(c) Experimental In(J) versus voltage of Apo-Az at T = 308 K (high temperature regime) and
theoretical fits using egs (3.9)-(3.10). For all graphs the parameter values are: A=1.1 eV,
0=0.50, £,=0.60 eV, I', =1.0 103V and ['x/T" =1.

Figure 3.21 Schematic representation of the hopping model where a molecular bridge with

N=3 incoherent sites coupled to the left (L) and right (R) electrodes.

Figure 3.22 (a) Experimental In(J) versus voltage of Apo-Az at T = 308 K and theoretical
fits (eqgs (3.11)-(3.14)). (b) Experimental In(J) versus 1000/T of Apo-Az at V = 0.50 V over
the entire temperature range and theoretical fits (using eqs (3.11)-(3.14) at high temperatures,
eqs (3.1)-(3.4) at low temperatures and eq. (3.15) for both temperature regimes). Model
parameter values of egs (3.11)-(3.14): N=3, 1=0.3 eV, a, =a,=-0.40, ¢,=0.40 eV, I'=3.30 10°
"eV, I';=3.30 10® eV and I'z/T",=100. Model parameter values of egs (3.1)-(3.4): «=0.50,
£,=0.70 eV, T'=1.0 103V and I'x/T =1. Parameter value of eq. (3.15) (red line): p=0.3.
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Figure 3.23 Experimental In(J) versus 1000/T of Ni-, Co- and Zn-Az at -50 mV bias and
theoretical best-fit using the off-resonant tunneling model (egs (3.1)-(3.4)) with the best fit
parameter values of ', =1.0 103 eV, I'+/T", =1, a=0.50 and ,=0.20, 0.22, 0.55 eV for Ni-, Co-

and Zn-Az heterojunctions respectively.

Figure 3.24 Experimental In(J) versus 1000/T of Zn-Az at V=-50 mV over the entire
temperature range and theoretical fits (using egs (3.11)-(3.14) at high temperatures, eqs
(3.1)-(3.4) at low temperatures and eq. (3.15) for both temperature regimes). Model
parameter values of egs (3.11)-(3.14): N=3, 1=0.3eV, o, =05=-0.40, £,=0.20 eV, I'=1.0 10*2
eV, I'/=3.30 10® eV and '/ |=1. Model parameter values of egs (3.1)-(3.4): a=0.50,
£,=0.55 eV, I, =1.0 10 eV and I'x/T, =1. Parameter value of eq. (3.15) (red line): p=0.3.

Figure 4.1 Schematic representation of a linear one-site hopping model with a single
hopping site (redox moiety M) connected to left (L) and right (R) electrodes, respectively.
The connection to the L electrode is through a molecular bridge that is assumed to act as a
high tunneling barrier for the transferring electrons. The M-to-electrode hopping rates are
given by Marcus theory rates for heterogeneous ET (egs (4.2) and (4.3)).

Figure 4.2 Schematic representation of the molecular levels in the junction setup of Fig. 4.1.
The diagram shows a positive bias situation, where the backward rates are much larger than
the forward rates. The bridge levels BL and Br shown to be of much higher energy than the
redox level M. M indirectly couples to the L and R electrodes through the bridge levels
(electronic couplings are represented by red dotted lines).

Figure 4.3 Left backward rate (IZL eg. (4.2)) versus the bias voltage V at T = 100-400 K.

The heterogeneous ET rates have a sigmoidal dependence on voltage, increasing in the
normal regime and saturating in the inverted regime. Parameter values: a = 0.65, 0 =0, 1 =
0.2 eV, c. = 0.15 x 102 eV¥2 ns? and cr/cL = 1000.

Figure 4.4 (a) Current | versus the bias voltage V at T = 300 K. Exact current expression

(eqg. (4.1) black dots) and approximate expressions for the positive bias voltage regime (
I (V) ~ek,_ red dots) and for the negative bias regime (1(V )~ —ek_ blue dots). (b) Current

I versus 1000/T at V = 0.05 V (black dots) indicates the normal Marcus regime, 0.2 V (red
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dots) indicates the activationless regime, 0.4 V (blue dots) indicates the inverted Marcus
regime. Parameter values: o = 0.65, eo0=0, 1 =0.2 eV, c. = 0.15 x 102 eV'¥2 ns’ and cr/cL =
1000.

Figure 4.5 Schematic representation of the linear redox junction model. Donor (Mr) and
acceptor (MR) redox groups are connected to left (L) and right (R) electrodes, respectively
via left (BL) and right (Br) bridges and also connected to each other by a middle bridge (Bwm).
All bridge units are tunneling barriers for the transferring electrons. The model assumes that
the ET mechanism between M. and Mr is incoherent hopping with forward and backward
intra-molecular ET rates given by eq. (4.6). ET between M. (MRr) and the L (R) electrode is
also incoherent hopping with forward and backward heterogeneous ET rates given by eqs
(4.2) and (4.3).

Figure 4.6 Schematic representation of the levels in the BLM_BmMRrBR junction of Fig. 4.5.
Electronic couplings between the levels are represented by red dotted lines. The diagram
shows a positive bias situation with the M. (Mr) DA energy gap written as a function of the
total bias across the junction. In our model this fraction is controlled by the parameters a_
and ar. The figure shows that the bridge levels act as deep tunneling barriers for the
transferring electron such that only M. and Mg change their oxidation state during transfer.

Positive bias leads to a positive L-to-R current (R-to-L electron flow).

Figure 4.7 Current | (eqgs (4.8) and (4.9)) versus the bias voltage V at T = 308 K for the
partially pinned system of Fig. 4.6. Parameter values: a. = ar = 0.33, 0= 0, AL =Ar=10.1
eV, cL = cr = 0.22 x 10 eV'¥2 nst and ¢ = 0.15 eV¥? nst. The current shows a gaussian

dependence on the voltage that reflects the energy gap dependence of the intra-molecular ET

rates k.

int

or k...

Figure 4.8 (a) Backward intra-molecular rate k.. versus the bias voltage V and Gibbs free

int
energy 4G at T = 308 K. (b) Current | versus the bias voltage V and Gibbs free energy 4G
at T = 308 K (covering the positive V region of Fig. 4.7). Exact current expression (eq. (4.9)

black dots) and approximate current expression (1(V )~ ek,

int

red dots). Parameter values for

both graphs: a. = ar=0.33, 50=0, AL =Ar=0.1€eV, c.=cr=0.22 x 10 eV?nst and ¢ =

0.15 V2 ns™. V™ =3AG e =3(4, + 4 )/e and o, = o, =3\2(A + 4 kT Je.

X



Figure 4.9 (a) Backward intra-molecular rate k.. versus the bias voltage V and Gibbs free

int
energy AG at T = 308 K. (b) Current | versus the bias voltage V and Gibbs free energy 4G

at T = 308 K. Exact current expression (eq. (4.9) black dots) and approximate current

expression (1(V)=~ eIZint red dots). Parameter values for both graphs: a. = or = 0.33, &0 =0,

J=Jr=02¢8V, c. = ckR= 015 x 10! eV nst! and ¢ = 0.38 eV¥? nsl

V™ =3AG fe=3( +4)/e and &, = o, =3J2(A + 4 )ksT /e.

Figure 4.10 Current | versus the bias voltage V at T =308 K for a junction with off-resonant
M. and Mg redox levels at zero bias. Parameter values for both graphs: oL = ar = 0.33, &0 =
0.1eV,,L=Jr=0.1¢V,cL=cr=0.22x10'eV¥2ns?tand c =0.15eV*?ns?. (a) Exact

current expression (eg. (4.9) black dots) and approximate current expressions for the positive

bias voltage regime (I(V) IZRTWIZ red dots) and for the negative bias regime (
int +
I(V)z—k(ak% blue dots). (b) Current | versus the bias voltage V at T = 308 K
+k, +

int

(covering the positive V region). Exact current expression (eg. (4.9) black dots) and rate-

limited approximate currentexpression(l( ) ek, red dots).

int

Figure 4.11 (a) Right backward injection rate IZR (black dots) and left forward injection rate

IZL (red dots) versus the bias voltage V at T = 308 K. (b) Current I versus the bias voltage V

at T = 308 K. Exact current expression (eq. (4.9) black dots) and approximate current

expressions for the positive bias voltage regime (1(V )~ & red dots) and for the
3k, + kR + kR
N . ek ki,
negative bias regime (1(V )~ W blue dots). Parameter values for both graphs:
+

int

a=ar=0.50,=0 L= rR=0.16eV,c.=cr=0.22x 10' eV'¥2 nstand ¢ = 0.15 eV*? ns
1

Figure 4.12 Current | versus the bias voltage V at T = 308 K for a junction with partially
pinned M and Mr. Parameter values: a. = or =0.33,60=0, AL =Ar=0.1eV,cL=cr=0.15

eV'¥2nstand c = 0.15 x 102 eV¥2 nst. The timescale of ET between the My and Mg sites is
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of the order of tens of psec. The ET timescale between the M; and the leads is of the order

of nsec.

Figure 4.13 (a) Current (eq. (4.9)) | versus the bias voltage V at T = 100-400 K. (b) The
natural logarithm of the current versus 1000/T at V = 0.2 V (black dots) indicates the
temperature dependence of the intra-molecular Marcus rate: 0.2 V (black dots) normal
Marcus regime (current behavior “A” of main text), 0.6 V (red dots) activationless regime
(current behavior “B” of main text), 1.0 V (blue dots) inverted regime (current behavior
“A”). Parameter values for both graphs: a. = ar = 0.33, 0= 0, AL.= AR =0.1 eV, CcL=Cr =
0.22 x 10* ev¥2 nst and ¢ = 0.15 eV¥2 ns’t. The current is limited by the intra-molecular
M_-to-Mr rate.

Figure 4.14 (a) Exact current | (eq. (4.9)) versus the bias voltage V at T = 100-400 K. (b)
The natural logarithm of the current versus 1000/T at V = 0.6 V (black dots) indicates the
temperature dependence of the intra-molecular Marcus rate: 0.6 V (black dots) normal
Marcus regime (current behavior “A”), 1.2 V (red dots) activationless regime (current
behavior “B”), 1.8 V (blue dots) inverted regime (current behavior “A”). Parameter values
for both graphs: oL = ar = 0.33, &0=0, AL =Ar=0.2 eV, cL= cr= 0.15 x 10* eV*2 ns* and

¢ = 0.38 eV¥2 ns. The current is limited by the intra-molecular M_-to-Mg rate.

Figure 4.15 Schematic representation of the levels in the BLM BmMRrBRr junction. The
diagram shows a positive bias situation with the My (MR) energy gap written as a function
of the total bias across the junction. The bridge levels act as deep tunneling barriers for the
transferring electron such that only M. and Mg change their oxidation state during transfer.
The MLand Mr redox energies are slightly higher than the Fermi levels of the leads at zero
bias such that the charge injection rates from the leads are activated and possibly current

limiting for a voltage bias range.

Figure 4.16 Current | versus the bias voltage V and the Gibbs free energy 4G at T = 308 K
for a junction with off-resonant redox levels at zero bias (Fig. 4.15). The energy gap is given

by AG(V)=eV/3. Parameter values: on = ar = 0.33, AL = Ar= 0.1 €V, cL = cr = 0.22 x 10"

eVY2 ns? (the timescale of ET between the M; and the leads is in the order of tens of psec),
¢ = 0.15 eV¥? ns! (the timescale of ET between the M. and Mg sites is in the order of nsec)
and &o = 0 (black dots), eo = 0.1 eV (red dots), eo = 0.2 eV (blue dots), eo = 0.25 eV (cyan
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dots, could correspond to Ferrocene M. and Mr redox groups with Au leads), eo = 0.3 eV
(magenta dots), and g0 = 0.35 eV (yellow dots, could correspond to Azurin Cu center redox
groups with Au leads). The low bias current decreases as the ¢ value increases (charge
injection becomes more activated), but the current has the expected intra-molecular-rate

energy gap behavior (inverted and normal).

Figure 4.17 Current | versus bias voltage V at T = 308 K (positive V region). Parameter
values: oL = ar=0.33,0=0.35eV, \L.=Ar=0.1€eV,cL = cr=0.22 x 10* eV pstand ¢ =

0.15 eV*¥2 ns?. Exact current expression (eq. (4.9) black line) and approximate current

expressions (1 (V) ~ _CKeKin pie dots, 1(V)=~ ek,

int

red dots).

Figure 4.18 Schematic representation of a tight-binding nearest-neighbor model of a

BLMLBMMRrBR junction. The B, Bm and Br linear bridges consist of ng , n; and n,_sites,

respectively. At zero bias the bridge site-energies are equal, of value g (measured with

respect to the Fermi level of the electrodes). The redox level M(r) energies are off-resonant
to the bridge energies and resonant to the electrodes. The nearest-neighbor electronic
couplings between bridge sites are denoted t (curved red lines). The nearest-neighbor

electronic couplings between My (ryand the bridge sites are denoted TL(R) and those between
the last (first) bridge site and the L (R) electrode, are denoted 'ITL(R) (red dotted lines). Dy,
, Dw, m, and Dy, . are the distances of the L-Mi, ML.-Mr and Mgr-R segments of the
junction. The diagram shows a symmetric junction with D, =Dy =Dy y -

D

tot —

Dy w, + Dy m, T Du, s is the total length of the junction. The distance between

nearest neighbor sites is a=D,, /(N +1).

Figure 4.19 (a) Bias-dependent Hy, , (V) (eq. (4.30)) versus the bias voltage V at T = 308
K for the positive bias region, (b) Bias-dependent broadening I, g, (V') versus bias voltage
V. (c) Current (eqs (4.2)-(4.11)) versus bias voltage V using H, , (V=0) and
[ (V =0) (red dots, as in Fig. 4.7), and using the H,, , (V) and ", (V) (black dots).
Parameter values for all graphs: n, =ng =n; =5, e =10.0eV, AL=4Ar=0.1eV,t=4.0
eV, TL=Tr=15x10"eVand T, =T, =1.0 x 10°%eV .
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Figure 5.1 Schematic illustration of the notation used to describe the many-electron basis
states relevant to the SF pathways. (a) Examples of singly-excited (LE and CT) and (b)
doubly-excited (LDE and CTDE) states using the minimum set of orbitals per fragment
(HOMO and LUMO). The kets denote Slater determinants with the spin distributions shown
in the diagrams. The actual basis states used in the calculations (Table 5.1 and Supplement
section 5.4.1), are spin-adapted (singlet) states that are linear combinations of Slater

determinants.

Figure 5.2 Schematic representation of type-I, type-II and type-III D-B regimes in the
independent-electron approximation. Virtual orbitals are shown in red and occupied orbitals

in blue. Since we only consider bridge-mediated tunneling case, y > X.

Figure 5.3 Reference D-B-A systems. (a) Pi-stacking pentacene trimer, (b) non-pi-stacking
pentacene trimer, (¢) pentacene-tetracene-pentacene trimer, (d) NC1 system. For (a)-(c) Rx-

a=~3.5A.

Figure 5.4 In|Vg| plot as a function of Y/X and z/X parameters for (a) pi-stacking

conformation shown in Fig. 5.3a, (b) the non-pi-stacking conformation shown in Fig. 5.3b,
(c) the pentacene-tetracene-pentacene molecular system of Fig. 5.3c and (d) the NCI1

molecular system of Fig. 5.3d. The dashed lines outline the three regimes defined in Fig. 5.2.

The black contour corresponds to a coupling [\/SF | =10"'eV , the blue to |VSF| =10"eV and
the magenta lines to |Vg-|=10"€V . The colormap scaling is the same for all plots. The

circles represent the Y/X, z/X and Vg values of the reference systems in Fig. 5.3. The

labels (1) to (iv) refer to the pathway structures discussed in the text.

Figure 5.5 Schematic representation of the energies and the couplings structure of the
intermediate states of Table 5.1, for (a) the type-1, (b) the type-II (or -III) energetic regime

and (c) the deep-tunneling case with Y/X >1.0. V,, (red arrows) denotes coupling
dominated by 2e matrix elements, V,, =<¥’n |\72e|91m>, and V,, (black arrows) denotes
coupling dominated by e matrix elements, V;, = (¥, | he |#,,) - The weaker matrix elements

are represented by dotted lines and E = ( E, +E; ) / 2. These dominant pathway structures

relate to symmetric D-B-A systems for which (D=A) and to non-polar solvents.
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Figure 5.6 Difference contour plots. (a) |In Vee |/ Vee || and (b) |In Vee |/ Vet || as a function of

Y/X and z/X . The dashed lines outline the three regimes defined in Fig. 5.2. The black

contour corresponds to a coupling ratio equal to 10 which roughly corresponds to a
difference of an order of magnitude (OM), the blue to 2 OM, magenta to 3 OM and red to 4
OM. The colormap scaling is the same for both plots.

Figure 6.1 Schematic representation of the branching diagram, Sy as a function of the
number of electrons, N. Circles represent the different states and the number in each circle

corresponds to the f (N, Sn) values.

Figure 8.1 A script file of GAMESS-US for calculating the various properties of a pentacene
trimer molecular system using FMO and SCF methods implementing RHF theories. The

dots in the scheme imply the remaining coordinates of the molecule.

Figure 8.2 A script file of GAMESS-US for calculating the various CISD properties of a
pentacene molecule using SCF methods implementing RHF theories. The dots in the scheme

imply the remaining coordinates of the molecule.

Figure 8.3 Code in python for calculating 1le integrals (“S”, “T” and “V” matrixes) in
pentacene molecule in the minimum basis set, “STO-3G”, by import pyquante2, an open-
source suite of programs for developing quantum chemistry methods and then introducing
various modules needed for the calculation (such as, “molecule”, “rhf”, “basisset”,

“onee_integrals” etc.).

Figure 8.4 Code in python for calculating various 2e integrals in a pentacene molecule in
the minimum basis set, “STO-3G”, by import pyquante2 and then introducing “ERI” and
“ERI_hgp” modules needed for the calculation. The dots in the scheme indicate the

remaining functions of the basis set stored in the "t" matrix.

Figure 8.5 MATLAB code for computing the D-B-A Hamiltonian and the SF effective

coupling for the non-pi-stacking molecular system described in Chapter 5.

Figure 8.6 Flowchart demonstrating the semi-analytical / computational framework

constructed for the implementation of the subject of Chapter 5.
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Figure A.1 Bridge-mediated donor-to-acceptor electron transfer (ET). The energy

difference between donor (D) and acceptor (A) electronic states, AE,,, is modulated by
vibrations (accepting modes) that bring D and A to resonance. In the diagram one accepting
mode R is assumed to modulate the D-state energy. When the B electronic state energy ( E¢

) is off-resonant to the donor and acceptor energies (E¢', ES ), the bridge acts as a tunnelling
barrier for the transferring electron. The bridge-mediated tunnelling matrix element between
D and A is denoted V . Bridge vibrations that modulate E{ cause fluctuations in V

(promoting modes). The diagram shows a single promoting mode Q. If E{ (Q) fluctuations

are large enough to bring the B state to D (A) resonance, ET may take place by a flickering

resonance or a hopping mechanism, rather than tunnelling.

Figure A.2 The dynamics of the accepting mode R in Fig. A.1 depend on the transferring

electron’s state. When the electron is initially localized at the donor (D) state, the accepting

mode R “sees” the potential energy surface ES° (R) (diabatic BO surface) with equilibrium

value R,. When the electron has transferred to the acceptor (A) state the dynamics of R is
governed by E°(R) with equilibrium value R,. With the electron initially at D, and
assuming that R is a classical vibration, the oscillations of R around R, lead to D-A energy

gap fluctuations AE,, (R). Whenever crosses R, , D an A states become resonant and ET

res ?

takes place with high probability due to the coupling V , with a probability equal to the
Landau-Zener probability PL? ,. In the nonadiabatic limit, the coupling is weak P,%, <1,
and many crossings of R are required to change electronic state from D to A (i.e., for ET

to take place). Thus, the diabatic BO surfaces (diagonal part of the Hamiltonian in eq. (A.1)),

give the correct electronic-state-dependent dynamics of R.

Figure A.3 In the adiabatic limit (strong D-A coupling V ) the dynamics of the promoting
mode R is best described by an adiabatic BO surface (lowest eigenstate of the Hamiltonian
ineg. (A.1)). Due to the large value of V , D and A states are quasi-resonant in a wider region

of R around R, . Assuming that R is a classical coordinate, D-to-A ET takes place with

near-unity probability every time R enters this quasi-resonance region, P5%, ~1. Thus, as

a function of R, the potential energy surface that determines the dynamics in the resonance
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region is due to the lowest adiabatic BO state which is a linear combination of diabatic D
and A BO states of Fig. A.2.

Figure A.4 Vibronic picture of the nonadiabatic ET rate for a quantum accepting mode. The

nad
D,np—>A,ny

average rate is a thermally weighted sum of vibronic rates k between initial

|D;ny)=|D)|n,) and final |A;n,)=|A)|n,) vibronic states. Each transition is induced by
the vibronic coupling V x(ny|n,). |ny) and |n,) denote harmonic oscillator eigenstates
of the ES°(R) and E,°(R), respectively. I', and I, are the vibrational relaxation rates

of the initial and final vibrational states (I'=I",_+1I", ). The quantum nonadiabatic regime
is valid when |V x(n, |n,)| <#I". In the quantum adiabatic regime, \ x(n, |n,)|=#I", and

coherent oscillations between quasi-resonant |D)|n) and | A)|n,) vibronic states may be

important. The ET transition is not fully described by simple rate equations.

Figure A.5 A D moiety connected via left (L) and right (R) B units to distinct A moieties.
Upon photo-excitation of D by UV, irreversible ET is initiated to AL and to Ar

simultaneously (with ET rates k, and k). The IR excitation of one B unit which trasiently

affects the corresponding ET rate, can irreversibly affect the the L to R reaction yield of the

competing ET reactions and thus tune the directionality of ET.

Figure A.6 UV (pump)-IR(pump)-Vis(probe) experiment on an anthracene/dimethylaniline
(DMA-GC-Anth) structure bridged by a guanosine-cytidine (GC) hydrogen-bonded pair.
Photoexcitation of anthracene by the UV pump induces an ET reaction from DMA to the
photo-excited anthracene on a timescale of tens of picoseconds. The experiment found that
the IR pulse exciting bridge hydrogen-bond vibrations causes the ET rate slowing about 67%
per excited molecule. A more recent experiment showed that the IR excitation accelerates

the recombination rate by 3.5-fold per molecule.

Figure A.7 (a) UV(pump)-IR(pump)-IR(probe) experiments on ET molecules with
phenothiazine (PTZ) donors, a naphthalene monoimide (NAP) acceptor, and a platinum(II)-
trans-acetylide bridge. A 400nm UV-pump prepares a DB'A" charge transfer (CT) state.
Following the UV excitation a DB*A to D*BA" ET reaction takes place on timescales of up

to tens of picoseconds. The IR excitation of the acetylide bridge -C=C- stretching modes can
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fully suppress this reaction. (b) Experiments with fac-[Re'(CO)3;(DCEB)(3-DMABN)]
(ReEBA) complexes where 3DMABN is 3-dimethylaminobenzonitrile and DCEB is 4,4'-
(dicarboxyethyl)-2,2-bipyridine. Photo-excitation by UV creates a triplet metal-to-ligand
charge transfer CMLCT) excited state where the electron is localized in 3-DMABN. This
state then converts to a triplet ligand-to-ligand charge transfer (*LLCT) state through a ~10
picosecond ET reaction from 3-DMABN to DCEB. The IR (pump) excitation which targets

the electron-acceptor (DCEB) ring-stretching modes accelerates the ET rate by ~28%.

Figure B.1 Basis States energies as a function of Y/X and z/X parameters for: (a) the pi-

stacking tri-pentacene conformation shown in Fig. 5.3a, (b) the non-pi-stacking tri-
pentacene conformation shown in Fig. 5.3b, (c) the pentacene-tetracene-pentacene

molecular system of Fig. 5.3¢, and (d) the NC1 molecular system of Fig. 5.3d.
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List of Tables

Table 3.1 Conversion of reduction potentials vs. SHE (mV) into electronic energies with

respect to vacuum (eV) for metals relevant to experiments I and Il and for some amino acids.

Table 3.2 Transport mechanisms for the Azurin heterojunctions in the different temperature

regimes. Tc~ 200K remains the same for all Azurin heterojunctions.

Table 5.1 Approximate excitation energies of the lowest-lying basis states of the D-B-A
system. 1% column: Names of the different groups of the most important singlet basis states
for the D-B-A system. CTP (CSP) denotes Correlated-Triplet-Pair (Correlated-Singlet-Pair).
2" column: Mathematical notation for the spin-adapted states in each group. 3™ column:
Approximate excitation energies of the lowest-lying states of the D-B-A system (derived
from the exact expressions in Table 5.4) as a function of the X, Y, Z parameters (see text
and Fig. 5.2) and 2e integrals. The first two groups refer to the initial and final CTP states,
denoted as (in) and (fi) respectively. In most remaining cases the grouping is according to

the B state, such as B", B~ and bridge excitonic (BE) state.

Table 5.2 The most important singly-excited spin-adapted (SA) singlet states used as a basis
to represent the D-B-A many-electron Hamiltonian. 1% column: Mathematical notation for
the spin-adapted many-electron basis states. 2™ column: Spin-spatial multi-electronic states

as linear combinations of singly-excited Slater determinants.

Table 5.3 Examples of doubly-excited spin-adapted (SA) states used as a basis to represent
the D-B-A Hamiltonian. 1% column: Mathematical notation for the spin-adapted many-
electron basis states. 2" column: Spin-spatial multi-electronic states as linear combinations
of doubly-excited Slater determinants (CTP: correlated Triplet-Pair; CSP: correlated

Singlet-Pair).

Table 5.4 Examples of analytical expressions for the basis-state energies (diagonal elements
of the many-electron Hamiltonian). 1% column: Mathematical notation of the spin-adapted
(SA) many-electron basis states. 2™ column: Names of the different groups of these states

for the D-B-A system. 3™ column: Exact expressions for the excitation energies of these

XiX



states for the D-B-A system as a function of ionization potentials, electron affinities, core

terms and two-electron integrals.

Table 5.5 Analytical expressions for Hamiltonian matrix elements between spin-adapted

states. 1*' column: Coupling Notation, V,, denotes coupling dominated by the le matrix
element (Fock matrix element), while V,, is a coupling dominated entirely by 2e matrix

elements. 2" column: notation of the states involved in the corresponding coupling. 3™
column: Exact expressions for the off-diagonal matrix elements as a function of Fock matrix

elements and 2e integrals ignoring overlap off-diagonal matrix elements.

Table 6.1 Spin eigenfunctions X (k) (k =1-5) as linear combinations of primitive spin

functions, & (i keeps track of the number of primitive functions from 0 to 20) multiplying

with the appropriate coefficients, c.

Table 6.2 Spin-spatial multi-electronic states written as linear combinations of singly- and
doubly-excited Slater determinants. 1% column: Names of the different groups of lowest-
lying singlet basis states for the D-B-A system. 2" column: Mathematical notation for the
spin-adapted basis states in each group. 3™ column: Spin-spatial multi-electronic states as
linear combinations of singly- and doubly-excited Slater determinants. In most cases the
grouping is according to the B state, such as B*, B~ and bridge excitonic (BE) state, while

the initial and final CTP states are denoted as (in) and (fi).

Table 7.1 Analytical exact expressions for basis-state energies. 1% column: Names of the
different groups of the basis states for the D-B-A system. 2" column: Mathematical notation
of the spin-adapted (SA) many-electron basis states. 3™ column: Exact expressions for the
excitation energies of these states of the D-B-A system as a function of ionization potentials,

electron affinities, core terms and two-electron integrals.

Table 7.2 Analytical exact coupling expressions. 1% column: Mathematical notation of the
Hamiltonian element. 2" column: Symbolism of the calculated coupling, defining the
diabatic states that it consists of. 3" column: Exact expressions for the off-diagonal matrix

elements as a function of Fock matrix elements, and two-electron integrals.
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CHAPTER 1

Introduction

Molecular electron transfer (ET) reactions are of great importance in chemistry, biology and
energy science. 1 Over the past decades, experimental, theoretical and computational
studies of ET molecules and ET proteins (ETpr’s) have shown that it is possible to tune
molecular ET rates and the overall charge flow in biological ET chains by chemical
modifications of the donor, acceptor and the bridge units or by modifying the solvent
environment. 2° Since there is extensive knowledge of how to tune solution-phase through-
protein ET mechanisms by chemical modifications, #° an attractive idea is to use ETpr’s as
the main current-carrying material in molecular electronics devices. Thus, an intensive area

of research is molecular electron transport (ETr) in molecular junctions. 136

Experimental studies by Prof. David Cahen's research team at the Weizmann Institute of
Science suggest that metal-containing ETpr’s, may be ideal tunable components in a
molecular electronics device. "® This research group measured the current-voltage and
current-temperature dependencies of Azurin monolayer heterojunctions as a function of
metal-type substitution in the Az active site. The experiments give a rich phenomenology of
current dependencies " for a variety of metal substituents. Using models for coherent and
incoherent charge transport, we interpret this phenomenology in terms of underlying
transport mechanisms that are specific to the different types of metal substituents (see
Chapter 3). °

How do solution-phase ET mechanisms in a donor-bridge-acceptor system correlate with
junction-phase ETr mechanisms for the same donor-bridge-acceptor system? To address this
question, we propose donor-bridge-acceptor architectures and junction experiments for
observing the Marcus Inverted regime (see Chapter 4). *° The Marcus inverted region is a
signature of solution-phase nonadiabatic ET and it has never been observed in a junction.
Our work derives the necessary conditions for observing the full inverted Marcus parabola
as a function of donor-acceptor driving force in the junction current. Metal donors and
acceptor moieties such as those encountered in biological ET chains are good candidates for

the proposed junction.



Singlet Fission (SF) is a spin-allowed process in which a photo-excited singlet state S, in a
molecular system is converted into two correlated triplet excited states 2xT, . ' SF offers

a promising way to overcome the Shockley-Queisser limit on the efficiency of single-
junction photovoltaics. > An extensive body of work has examined SF in different
materials !¢ due to its potential for photovoltaics applications. Part of my research work is
dedicated to developing analytical models and semi-analytical / computational frameworks
for exploring SF structure-function relationships in donor-bridge-acceptor molecular
architectures. In such systems the donor is photo-excited and one measures the rate for
creating donor and acceptor (separated) triplets as a function of bridge structure. The
proposed semi-analytical / computational framework is used to explain experimental
observations on the role of bridge linkers in SF donor-to-acceptor rates (see Chapters 5-8).
19-21 It is also used to characterized the different types of bridge-mediated SF pathways in

different classes of molecular systems.

Further, in Appendix A we present a comprehensive review article on vibrational effects in
molecular electron transfer reactions. 2? In the following, we give a brief introduction to the
theory of ET in molecular systems and of ETr in junctions, as a background for the third and

fourth chapters.

1.1 Electron Transfer in Molecules

This section is a brief overview of some of the basic concepts of molecular electron transfer
(ET) reactions. The ET process can be thought as a spontaneous transfer of electrons from
an initial state spatially localized in the electron donor part to a final state spatially localized
in the acceptor part of the molecular system. The dynamics of the electronic transition are
always accompanied by instantaneous nuclear rearrangement and by the interaction between
electronic and nuclear dynamics. Next, the theories of electron transfer rates will be
discussed, accompanied by presentations of the different regimes of electron transfer rates
using the Landau-Zener approach. Finally, we conclude with the classical Marcus ET theory

in the nonadiabatic regime introducing the well-known Marcus-rate expression.



1.1.1 The Born-Oppenheimer Approximation

Let us first consider a molecule composed of N electrons and N, nuclei atoms. The

C
Cartesian coordinates and momenta will be denoted as . and p, , for electrons and R , .

for the nuclei, respectively. The total Hamiltonian operator has the general form
|:|mol :-Ifel +-|5nuc +\7 ’ (11)

T™ s the nuclear kinetic energy, T is the electron kinetic energy, V is the potential

energy of the system. The kinetic equations of T and T™° are given by,

Aol N p2 . Ne pz
T9=) 5= T =) -, 1.2
|Z_;‘2meI nZ::‘ 2M, (12)

where, M_and m, are the mass of the n™ nucleus and electron, respectively.

The potential energy includes Coulomb repulsion interactions between electron-electron and

nuclear-nuclear, and Coulomb attractive interactions between electrons and nuclei

V-3 T o) V:%Z%i iZ_R VT ‘ZZ ‘r _R (13)
where, Z,, Z, are the atomic numbers of the m" and n™ nucleus.
Thus, the time-dependent Schrodinger equation for this system is,
Hm"'\?(r,ﬁ):g@(r,ﬁ), (1.4)

where, ¥ (r R) is the multi-particle wavefunction (system eigenstate), and F,R denote the

electronic and nuclear Cartesian coordinates, respectively. & denotes the total energy of the

system (eigenenergy).

Due to the large number of particles, the Schrodinger equation cannot be solved analytically
and approximations are required. Since nuclei are much heavier than electrons, they move
more slowly. 32 Hence, a good approximation, one can consider the electrons in a molecule

to be moving in the field of fixed nuclei. Within the approximation, the kinetic energy of the
nuclei, T™, can be neglected and the Coulomb repulsion interactions between the nuclei,

V™ can be consider to be constant. Any constant added to an operator only adds to the
operator eigenvalues and has no effect in the operator eigenfunctions. Thus, the remaining
terms in the molecular Hamiltonian, are the electronic Hamiltonian or Hamiltonian

describing the motion of N in the field of N__ point charges,

nuc
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ﬁel(r,ﬁ)zfel _'_\iel—nuc +\7‘2el (15)
The solution to a Schrodinger equation involving the electronic Hamiltonian,
HW (7,R)=£,%¢(T.R) (1.6)
Is the electronic wavefunction which describes the motion of the electrons and explicitly

depends on the electronic coordinates but depends parametrically on the nuclear coordinates.

In order to find the total energy of the system, it needs to add to the electronic energy, &,

and the constant nuclear repulsion,

Nnuc Nnuc 2
1 1 Z2,Z¢e

E=&,t—= — 7= = (1-7)
2 m#n n=1 47[50 Rm - Rn
This approximation, leads to the definition of the Born-Oppenheimer Hamiltonian,
H® (F,R)=H (F,R)+V ™™ (1.8)

The Born-Oppenheimer Hamiltonian H®° is comprised of the electronic Hamiltonian H®
and the nuclei repulsion interactions V™ ™. Like H®, so the H®® carry a parametric

dependence on the nuclear coordinates, R. Therefore, instead of solving the Schrodinger
equation for the total molecular Hamiltonian, one can solve the respective Schrodinger

equation within the Born-Oppenheimer approximation,
H®¥* (7,R)=E® (R) ¥ (F.R) (1.9)

where, ‘?Bo(fﬁ) and EBO(Fi) are the eigenstates and eigenenergies of the H®°,

respectively. E®° (ﬁ) defines a surface in the space of nuclear coordinates R, the potential

energy surface (PES) for the nuclear motions in a specific state.

1.1.2 Regimes of Electron Transfer - Landau-Zener Theory

In order to characterize Electron Transfer (ET) in a DA (Donor - Acceptor) complex, we
will use the widely used classical approach developed by Landau and Zener. 111233
Initially, Landau considered scattering between two atoms, while Zener focused on the

electronic states of a diatomic molecule. The advantage of the approach is that one can draw



an analytical formula for the electron transfer rate that applies to any value of the V,,

coupling ranging from adiabatic to nonadiabatic ET.

In order to front the ET reaction in a DA complex, according to Landau and Zener, must be
chosen a classic description for a single vibrational coordinate. To ensure the ET rate, we let
the vibrational coordinate begin moving to the donor potential energy surface (PES) away

from the crossing point R, to the acceptor potential energy surface. If the coordinate moves

res !

through the crossover regime, will be determined the probability with which the electron is
transferred to the acceptor’s level, as well as the probability of remaining at the donor’s level.
The vibrational Hamiltonian E, (R) (m=D,A) includes the dynamic energy of the D and
A, E;(R) and E,(R), respectively. Both depend on the vibrational coordinate R and may
in principle have an arbitrary shape. The crossing point R, between Eg (R) and EA(R)

plays an important role in the transport, so the two dynamic energies are extended around
R

res !

Em(R) = Eres - Fm(Rres)AR (110)
where,
__OEx(R)
I:m (Rres) - R ‘ R=Ries (111)

denotes the force with which the vibrational coordinate stabilizes at R, when the electron

is in m=D,A. Furthermore, AR=R-R,, and E =E, (R, )=E,(R.) (see Fig. 1.1

res !

below).



A
Potential £, (R)
Energy
E.(R)
: _ > R
AR = —xo Rn Rn’s Rj;ﬂlﬁ AR — +mo

Figure 1.1 The coupled dynamic energy of a DA complex Vs. the coordinate of the reaction.
According to Landau-Zener theory, dynamic energies are approached by straight lines

around the crossing point. Asymptotic regions AR — too are also indicated.

The time dependence of R (or AR) coordinate is unknown. Based on these approaches,

Hamiltonian becomes time-dependent,
H* =T +H (R, )+H®. (1.12)

The classic part T"° +H (Rres) is less interesting than the following. The time-dependent

piece is also written,

H®(®) = o (R(1))[D)(D[+E4 (R(1))| A){A[+Vou (| D)(Al+[ A)(D]) (1.13)
where, E; (R(t)), E,(R(t)) represents diabatic PES localized at D and A, respectively. At
a time window t . the reaction coordinate reaches the resonance region (R(t,es)z Rres)

during which the D and A electronic energies cross, such that E, = E; (R ) =E, (R ) -

The D to A transition probability for this crossing event can be estimated adopting the
Landau-Zener approach which assumes a linear time dependence of the reaction coordinate

around the resonance regime. We perform a Taylor expansion for both PES,



dE,

Em(R(t)):Eres{ =

drR
X —

}(t ~tes ) - (1.14)

RI'ES t t

res

The D to A Landau-Zener transfer probability is given by,
Poa =1—e><|0[—(27r)2 7} (1.15)
It depends on the so-called Massey parameter which is defined as,

Y =712 [ Tra (1.16)
and written as a ratio of two times, the Rabi time and the Landau Zener time. The Rabi time
IS Thui = h/[\/DA| and is a good estimate for the time required in a time-independent resonant
D-A system, i.e., when |E, —E,|<|V,,|, to induce a complete D to A transition (Pp, ~1).

Landau-Zener time 7, is the spent by the D and A energies in the resonance region in a

time-dependent D-A system and given by,

Vou|

.
t }{dED/dR—dEA/dR}

2 =‘{dR/dt (1.17)

Rres

In the adiabatic limit (y =7, /7z 1), the D and A energies remain in resonance for a
long time, 7, > 74, and induce a complete D to A transition. The probability of electron

transfer is 100% for each crossing (P, ~1). The respective adiabatic ET rate can be

- Eact / kBT

expressed as a standard Arrhenius K, ~ e ,Where E_ . isthe activation energy to reach

act
the resonance region.

In the nonadiabatic limit, the motion of the reaction coordinate in the resonance region
(|Ep —Ea| <|Voal) is so fast such that the D and A energies do not remain in resonance for
long time, 7., < gy, , in order to induce a complete D to A transition i.e., ¥ =7, /7p <1.

In the limit, then exponent can be expanded in a Taylor series such that the D to A transition

probability becomes promotional to the square of the electronic coupling,
P = (27)" y =|Vou|, 50 the corresponding nonadiabatic ET rate is proportional to [Vp,| .

It is obvious, that in the nonadiabatic limit the probability of ET for every crossing is small.



1.1.3 The Nonadiabatic Regime of Electron Transfer and Classical Marcus Theory

The definition of nonadiabatic electron transfer (ET) has already been introduced in the
previous section. In molecular ET reactions the observable quantity is often the D to AET
rate and the main model describing ET reactions is the classical Marcus-rate expression. -
4112421 «Classical” means that the vibrations of atoms that activate ET are described by
classical mechanics. The expression of the rate equation, should be given by a usual

Arrhenius form,
Kgr oc IVDA|2 g Fllol (1.18)

In the high temperature limit, the energy of a characteristic vibrational quantum 7z of the

reaction coordinate R is much smaller than the thermal energy k,T (kBT > ha)) In this

case the vibrational modes of the system can be described using classical physics.

Generally, a collective set of system motions, described by the reaction coordinate R,

modulates the energies of D and A electronic states. Then, thermal fluctuations of R, bring

the system to a D-A resonance conformation R, for which E, =E; (R, )=E,(R,;) and

thus should become ET. The ET from D to A only proceeds if the system is in the resonance

regime. In this case, the total energy needed for R to reach R should be E® >EJ" +E,_,

(see Fig. 1.2 below). For every time t ., R is reached, the D to A transfer probability will

res !

be given by the Landau-Zener transfer probability in the nonadiabatic limit,

tot 2 27[[\/DA|2
P, (E™)=(27) y =
(B%)= @)y h‘{dR/dth}{dED/dR—dEA/dR} (1.19)

Rres

and the respective ET rate will be given by,

kow (E*™) = 2Py (E®) 2= (1.20)

2

As known, for an ensemble of D-A molecules, the ET rate is given by a product of a

Boltzmann probability average over the D PES and K, , for every energy crossing,



Koa = ]E dEtOtkDA ( E™ ) Poote. ( E™ ) |
g E" ket (1.21)

T d Etote—E‘°‘/kBT

min
ED

This calculation leads to the Marcus-rate expression,

27 2
kDA:7|VDA| Prc (1.22)
where,
1
= ————=exp(—E,, /KT
Prc Ak p( /e ) (1.23)

is the classical Franck-Condon factor (or classical high-temperature Boltzmann probability)

for the activation step, 14112427 and

- (A +2)" (1.24)
CY)

Is the activation energy to reach the resonance conformation R .

|AE|= ‘E,T"‘ —EZ"™| is frequently called as the driving force of the ET reaction, A denotes the

reorganization energy given by, A=E,, (R,T(ig))— Eon) (Rg‘gg)), or 2=ma?(R,-R,)*/2.

The reorganization energy is defined as the energy required to reorganize the system to the

new equilibrium coordinate conformation.

All the parameters we introduced above are shown in the Fig. 1.2 below for the potential
energy of the ET system.



. A
Potential
Energy
Resonance
regime
ngiu_ ;
E;ni _ i
1 ; R
RM R R

ph R RY Reaction coordination

Figure 1.2. Potential energy surfaces of the ET system when the electron is at the D

electronic states (initial), E; and the A electronic states (final), E,.

Let us examine the ET rate in dependence on the driving force AE of the reaction at a given

value of V, and 4. The situation shown in Fig. 1.3a, called the normal regime of the ET.
Starting from this regime and increasing the AE, move R, to the left until the activation
energy E,, =0 for AE =4 (see Fig. 1.3b). This is an activationless regime. This ET regime
is observed in the experiment if the rate becomes temperature-independent. Further increase

in AE, implies increase in E_, . This is the so-called inverted regime.

act

@@ * A > AE
Potential
Energy

> R
» 4 Reaction coordination
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Figure 1.3 ET regimes, (a) normal regime (upper graph), (b) activationless regime (center

graph) and (c) inverted regime (lower graph).

1.2 Molecular Electronics

Molecular electronics is the field of science that investigates electronic circuits in which the
charge transfer (electrons or holes) takes place in part, through molecules. Obviously, some
of the characteristic dimensions of these molecular circuits are of the order of nanometers
(or even smaller) and, therefore, molecular electronics should be considered as a subfield of
nanosciences and nanotechnology in traditional disciplines such as physics, chemistry,
materials science, electrical engineering and biology. ¢ From the point of view of basic
science, molecular electronics offers the possibility of researching electronic and thermal
conductivity on the smallest scale imaginable, where physics is completely dominated by
the effects of quantum mechanics. Also, the small dimensions of molecular circuits along
with the variety of electrical, mechanical and optical properties of the molecules can lead to
countless new natural phenomena. Molecular junctions are also ideal systems where they

11



can be explored and at the same time shed light on fundamental electron transport

mechanisms that play a key role in both chemistry and biology.

1.2.1 Coherent Transfer via Molecular Junctions

The electrical conductivity in macroscopic metal wires is described by Ohm's law, which
states that the current 1| is proportional to the applied voltage V. The constant of
proportionality is simply the conductivity, G, which for a given sample increases linearly

with transverse region S and is inversely proportional to the length of L, i.e.,
G=0— (1.25)

where o is the conductivity of the sample. Conductivity will be a key quantity in our
analysis, for the transport properties of atomic and molecular nodes. However, concepts such
as Ohm's law do not apply on an individual scale. Atomic-sized conductors are a marginal
case of a mesoscopic system in which quantum coherence plays a central role in transport

properties.

In this chapter we will introduce the scattering (or Landauer) approach, 38 which is
currently the best theoretical formalism to describe coherent transport in nanowires. The
central idea of this approach is that if one can ignore inelastic interactions, a transport
problem can always be treated as a scattering problem. This, in practice means that transport
properties, such as electrical conductivity, are closely linked to the transmission probability

of an electron.

1.2.2 Introduction to the Landauer Approach

In a typical transfer experiment in a nanodevices, the sample is connected to macroscopic
electrodes from a set of conductors (or electrodes) that allow current to flow from the sample
and determine the voltage difference between the electrodes. The electrodes act as ideal
electron reservoirs in thermal equilibrium with well-defined temperature and chemical
potential. The basic idea of the scattering approach is to correlate transport properties with
transmission and reflection probabilities. In this one-electron approach, phase-coherence is
supposed to be maintained throughout the samples and non-elastic scattering limited to

electron reservoirs only. Instead of dealing with complex processes that take place inside the

12



reservoirs, one deals only with their description as a set of boundary conditions. Despite its

simplicity, this approach has been very successful in explaining many nanowire experiments.

Before dealing with the description of the general scattering formalism, it is useful to
understand the relationship between current | and the transmission probability T with a
simple argument. Consider a one-dimensional state, as illustrated in Fig. 1.4. Here, the
potential simulates the central part of an intersection, where electrons are scattered elastically
before reaching one of the electrodes. Assume that when the electrons are in the reservoirs,

they are in thermal equilibrium at the temperature of the corresponding electrode. Let us now
consider that a plane wave, (]/ Jf)eikx (incident reservoir scattering state) strikes the
potential barrier from the left (L represents the length of the system). This wave is partially
reflected with probability amplitude R and partially transmitted with probability T = |t|2.

We can now calculate the electric current density, J,, carried by an electron and described

by this wavefunction. It will be given by the following expression,

h

o, d¥ dv™ | e
I Z%{‘P (X)K—W(X)F}Ztu(kﬁ(k) (1.26)

where u(k)=7k/m is the group velocity.

T =

Figure 1.4 Scattering wavefunction (incident wave) colliding with a potential barrier. The

wave is partially reflected with probability R and partially transmitted with probability

T= |t|2 (where t is the width of the transmission probability). ©

In a solid-state device there are many electrons that contribute to the value of the current.
Therefore, we need to enter a sum with respect to all k. In addition, we must take into

account Pauli's principle, which in practice means that we must introduce a factor
13



f (k)(1-fq(k)), where f, o (k) is the Fermi function of the electron reservoir on the left,

L (right, R) of the potential barrier. These Fermi functions also take into account the fact

that the corresponding chemical potentials can be changed by an applied polarization

voltage, V . The factor f, (k)(l— f. (k)) ensures that only the initially occupied states on
the left and unoccupied states on the right contribute to the current flowing from left to right,

JL—)R '

Jr= Zu(k)T(k)f (k)A- fr (k) (1.27)

Now, we can convert the sum to an integral with the wusual substitution

WO % [ 90dk.. S0, e have,

Jir = j u(k)T (k) i (K)(L— T (K)) dk (1.28)

Then we can do the conversion from the variable k to the energy E, by entering the density

-1 21,2
of states, dk :(d—EJ = 4 ,since E = h . The current flowing from left to right, J, .
de  \dk h°k 2m
, takes the form,
I n= j T(E)f (E) (1- fo(E)) dE (1.29)

Now, the total current 1(V)=J,_,; —Jg ., can easily be expressed as,

I(\/):% iT(E)[fL(E)— fo (E)]dE (1.30)

This expression is the simplest version of the so-called Landauer formalism and shows the

close relation between current and the transmission probability. 36 At zero temperature,
TS (E) are step functions, equal to 1 below E. +eV/2 and E. —eV/2 respectively, and
0 above these energies. If we also assume that we have low voltages (linear region), this
expression (eq. 1.30) becomes | =GV , where the conductivity is G =(2¢°/h)T , and where

T is calculated in the Fermi energy. This expression proves that if the electron transmission

between the two electrodes is perfect, then the conductivity is given by the quantity
G, = 2¢*/h ~ (12.9kQ) "

14



1.2.3 Introduction to the Hopping Mechanism

One of the central topics of this chapter is the analysis of charge transfer in situations in
which phase coherence is completely lost within the molecular junction. This incoherent
limit describes the transition when the tunneling traversal time is significantly longer than
the time scale associated with the inelastic interactions. Obviously, this becomes more likely
as the length of the molecular junction increases. In the extreme case where the inelastic
scattering time is much shorter than the tunneling traversal time, the current is transferred
by electrons that successively hop from one part of the molecule (localized state) to another

in an incoherent way. This mechanism of transport is also referred to as hopping regime.
1,3,4,26,28-30

In long molecules, especially biological ones, there are additional issues that need to be
considered when exploring electronic transport through them. Thus, for example, the
environment (solvent, atmosphere, etc.) in which the experiments are performed plays a
decisive role. The hopping regime, however, is characterized by the following two

characteristics: the conductivity decreases inversely with the length of the molecular wire

_AE
and also depends exponentially on temperature as e Vet , Where AE is an activation energy

that depends on the system under study.

In the following, we will discuss a simple model that shows where these two characteristics
come from. The model for a metal-molecule-metal junction is schematically represented in
Fig. 1.5. Here, the molecular bridge has N parts (with localized states-levels and electronic

couplings between them). The hopping transfer mechanism is described by transfer rates k;

(from state j to state i). For the sake of simplicity, we assume that all states have the same

energy, which differs by AE from the Fermi energy (equilibrium energy) of the conductors.
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Figure 1.5 Schematic representation of the model described in the hopping mechanism via

a molecular junction. Here, each localized electron level j inthe j regime of the molecule
(straight lines) is connected to the nearest levels with a transfer rate k; ., (dashed arrow

lines). The metallic states of the electrodes are shown on the left and right and AE is the

activation energy. °

In this model the current between the states j and j+1 is determined by the rate k; ;,, and
the probabilities of finding the charge at the respective levels P, and P, ,,
L =e(Kp. P =K 1P (1.31)
The rates follow the following equations,
Pl = _(kO,l + k2,1) Pl + kl,o Po + k1,2P2
(1.32)

=—(k;_y; +Kj,1 )P +K; Ltk P

B J—1 J g+ 4

PN :_(kN—l,N +kN+l,N)PN +kN,N—lPN—1+kN,N+lPN+l

where F'>j means dP, /dt, R, = f_and R, = f;, f., are the Fermi functions that describe

L(R)
the electron occupations on the left and right electrodes. We are interested in cases of

stationary current where Pj =0. In this case, the previous kinetic equations are combined

into the following algebraic equations,

(ko,1 + k2,1)Pl > k1,0Po + kl,zpz

(k )P k kj,j+le+l (133)

J'*lJ J+11 j,J-1 11

(kN—l,N + |(N+1,N)|:)N = |(N,N—ll:)N—l + I(N,N+1|:)N-¢—l

As a further simplification, we assume that all internal rates in the bridge molecule are equal:

k; ;22 =K. In addition, the state of equilibrium leads to the following rates relations,
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1, a—(AE—eV)/kgT _
kl,O - |(Le ¢ 1 kO,l - kL

1.34
kN,N+l = kRe_AE/kBT’ kN+1,N = kg ( )

Solving the above equations, we end up with the steady state current,

@ AE /KT »
I =e eVt f —f_ |.
L7k, +1/ kg + (N —1)/k][ e (1.35)
Also, the corresponding linear conductivity can be expressed as,
X e—AE/kBT

(1.36)

G= .
keT [L/K +1/Kq+(N=1)/K]

Here, for the sake of simplicity, we have neglected the temperature dependence of the Fermi
functions of the conductors. From the previous equation one can observe the two
characteristics described at the beginning of this section. First, we observe that the
conductivity decreases inversely with respect to the number of states, N and therefore to
the length of the molecular bridge. This is nothing but Ohm's classical law, which is a
consequence of the loss of quantum coherence. Conductivity, on the other hand, depends
exponentially on temperature, T as in any thermal process. In this model, this process takes
place at the metal-molecule interfaces, but in general can occur at any point along the

junction (i.e., the rates k; ., =k).
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CHAPTER 2

Computational Methodologies

The aim of quantum-chemical computational methods is to determine the molecular
electronic and vibrational structure. The central approximation used in most methods is the
Born-Oppenheimer approximation mentioned in Chapter 1. Ab-initio quantum-chemical
methods solve numerically the molecular Schrédinger equation with inputs the values of the
fundamental constants, the atomic numbers of the atoms and their coordinates. The
computations of electronic and vibrational structure can be performed using a variety of
quantum chemistry computer programs. In this chapter we describe basic concepts
underlying quantum-chemical computational techniques that are used in this dissertation. |
mainly performed ab initio electronic structure calculations using the GAMESS-US and
PyQuante package programs. * These computational approaches were mostly used in the

studies of Singlet Fission described in Chapters 5-8.

2.1 Hartree-Fock Theory

In computational physics and chemistry, the Hartree—Fock (HF) method is an approximate
method for the determination of the wavefunction and the corresponding energy of
a quantum many-body system in a stationary state. >® The HF method often assumes that the
exact N— body wavefunction of the system can be approximated by a single Slater
determinant ° (in the case where the particles are fermions) or by a single permanent (in the
case of bosons) of N spin-orbitals. By invoking the variational method, one can derive a set
of N — coupled equations for the N spin orbitals. A solution of these equations yields the

HF wavefunction and energy of the system.

The HF method is the starting point for a plurality of electronic structure computational

approaches. The basic idea is to first model the ground state, ¥, and then any multi-
electronic state, as a single Slater determinant. Each of these determinants consist of products

of N spin orbitals, ;((Y() each a product of a spatial orbital, 1//(?), and a spin function
(spin up a(w) or spin down S(w)). Sometimes it is convenient to use a notation that

indicates a spin orbital by its spatial part, using a bar (1/7(?) = z//(F)ﬂ(w)) or a lack of a bar
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(v (F)=vw(F)a(w)) to describe the spin component. The HF N — electrons ground state

is the single determinant

Yy=——=— N (2.1)

The factor (N !)_% is a normalization factor. This Slater determinant has N electrons
occupying N spin orbitals (;{i K Xk ) without specifying which electron is in which

orbital. Slater determinants meet the requirement of the antisymmetric principle since,
interchanging the coordinates of any two electrons (corresponding to interchanging two rows
of the Slater determinant), changes the sign of the determinant. It would be useful for the
rest of the discussion to introduce a short notation for a normalized Slater determinant, which

includes the normalization constant,
&UozT()?l,)?Z,...,)?N):‘;(i;(j...;(k> (2.2)
choosing the electron labels to be in the order x;,X,,. .., Xy

Starting with the Born-Oppenheimer approximation, the molecular Hamiltonian, HE can
be written as the sum of the electronic Hamiltonian, H® and the repulsive Coulomb

interaction between nuclei, V ™¢™e
|:| BO _ |:| el +\7 fue-nue (23)
l_’iel =-|fel +V”el—nuc +\729. (24)

The first two terms in the electronic Hamiltonian constitute the one-electron operator, ht*
including the kinetic energy of the N electrons as well as the attractive interactions between

the N electrons and the N . nuclei. The last term constitutes the two-electron Coulombic

operator, V % describing the repulsive interactions between the electrons.

The essence of the HF method is that the Coulombic two-electron interactions, V> are
treated in an "average" way, so that each single electron is considered to be embedded in the
average electrostatic field of the nuclei and the remaining electrons. > The repulsive
Coulomb interactions between nuclei, V™™ are a constant for the computation of
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electronic structure (but become as dynamical variables for the computational of vibrational
structure in the Born-Oppenheimer approach operations). The variation principle (on which
the computational HF methodology is based) states that the best wavefunction of the form

in eqg. (2.1) is the one that gives the lowest possible energy,
E, = (%, |H"|%,) (2.5)
which is always greater or equal to the real the ground state energy of the Hamiltonian.

The spin orbitals are computed by minimizing E, with respect to variations in the orbitals.

This variational method leads to a self-consistent field equation, known as the Hartree-Fock
equation which determines the optimal spin orbitals, >°

f(%) 2 (%) =62 (%). (25)

& isthe energy of the y; spin orbital and f is an effective one-electron operator (called the

Fock operator). The Fock operator is defined as a sum of the core-Hamiltonian h** (one-

electron operator), the Coulomb J , and the exchange operator K .

f(%)=h(%)+ [ 3, (%)-Ky (%)]. (2.6)

b

where the sum is over all the occupied orbitals. The Coulomb operator jb acting on spin
orbital y, represents the average potential of an electron in spin orbital y; at position X, due

to the charge distribution from an electron in spin orbital y, ,

3o (%) 2(%) = ([ %, 2 (%) 62 (%)) 2 (%) (27)

In the same way, we define the exchange operator Kb derived from the antisymmetric

property of the determinantal wavefunction. This operator is defined as,

Ky (%) 7 (%, (Idxz X (%) 2 (X ))Zb(il)- (2.8)

For an electron in spin orbital y, the expectation values of the Coulomb and exchange

potentials jb and Kb are just the well-known Coulomb and exchange integrals, i.e.,

(i (%)}

Iy (%) 26 (%)) = [ dR 0%, 77 (%) 24 (%) 5" 2% ( )=[iijbb]  (2.9)
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Ky (%) (%)) = [d%, d%, 2 (%) 2 (%) 55" 25 (%) 2 (%) =[ib|bi | (2:10)

2.1.1 Closed-Shell Hartree-Fock: Restricted Spin Orbitals

The spin orbitals described in the previous section may be of two types: restricted spin
orbitals, which are constrained to have the same spatial function for spin functions a (spin

up) and g (spin down), and unrestricted spin orbitals, which have different spatial functions

for spin up and spin down. In this section we focus on procedures calculating closed-shell

restricted HF (RHF) wavefunctions. In other words, the RHF method assumes that each

spatial orbital y (F) is doubly occupied by electrons with opposite spins.

A restricted set of N spin orbitals y; (X) has the form °
(r
Zi(x):{‘”'( J2() i1 N2, (2.11)

and the closed-shell restricted ground state is
¥ = “//1al//1ﬁ- AL lr//N/Zﬁ> :"//1 Wi Wy U7N/2> : (2.12)

By converting the general HF equation (2.5) to a spatial orbital eigenvalue equation, we
obtain the Roothan equations. *® The HF equations for the individual spatial orbital

Wavefunctions are,
(0w (5)=cy;(R). (2.13)

The closed-shell Fock operator thus has the form,

N/2

f(5)=h" (1) + 2[23,(7) - K, (1)] (2.14)
b
where now the closed-shell Coulomb and exchange operators are defined by
3, (8)=[dny; (5)6w, (7 (2.15)

Ko (R)w; (1) =] [dr s (%), (5) |ws (%) (2.16)
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These equations are analogous to those for spin orbitals eqgs (2.5)-(2.8), except for the “2”

factor occurring with the Coulomb operator and the sum in eq. (2.14) which is over the N/2

occupied orbitals {y, (F)}.

The closed-shell HF energy for the closed-shell determinant ¥ (see eq. (2.12)) is
Eo™ =2 N+ 2D [200 — Ky (2.17)
o a b

where, h,, is the matrix element (, |0**|y,) and J,, (K, ) are the Coulomb (exchange)

integrals over the spatial molecular orbitals v, and y, .

2.1.2 The Roothan Equations

To solve the HF equation (2.13) one must introduce a set of K known spatial (atom-
centered) basis functions and express each unknown molecular orbital as a linear

combination of the basis functions,
K -
v, =>.Cp, i=12,...K, (2.18)
u=l

C,; are unknown coefficients and {(oﬂ} is a set of K atomic orbital basis functions.

Substituting eg. (2.18) into HF eq. (2.13) and multiplying by (oﬂ( ) one can arrive at two

matrices, the overlap matrix S and the Fock matrix F which are defined as,
S, =[5, (%) o, (F) (2.19)
c=Jdee, (5) f(R)e. (1) (2.20)
With these definitions of F and S the integrated HF equation can be written as,

Z v VJ _ngS/lVCVj’ J :1’2" ' "K (221)

These are the Roothan equations that can be written in matrix form as,

FC=SC¢ (2.22)
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where, C and F are KxK square matrices of the coefficients and the Fock elements

respectively. £ isa KxK' diagonal matrix of the orbital energies &;.

2.1.3 The Fock Matrix

The Fock matrix is the matrix representation of the Fock operator (see eq. (2.14)) in the {goﬂ}

basis,

A

=[di g, () f (R)e. (%)
N/2 (2.23)

- [, (6) (1) . (0)+ X[t o, (£) 23, () K, (8) o ().

The first term in this relation is defined as the core-Hamiltonian matrix and consists of one-

electron integrals (kinetic energy and nuclear attraction integrals) according to eq. (2.4),

He® = [di g, (5) h*() @, () =Tg +Va ™ (2.24)
To=[dtg, (5) T (%) 0. (F), (2.25)
V:‘I/—nuc :J'dr.i (DZ(E)\;eI—nuc(rl) , (Fl) (226)

Returning to eq. (2.23), we can express the Coulomb and exchange integrals according to
eqs (2.9) and (2.10) and then insert the linear expansion for the molecular orbitals (eq. (2.18))
to get,

N/2

=H" +2ZZCM)C | (uv]od)~(ud|ov)/2]. (2.27)

It contains a one-electron part A and a two-electron part which depends on the unknown

coefficients of the molecular orbitals and a set of two-electron integrals of the form
(uv|or)=[drdr, 0, (%), (}) 1 0. ()¢, (7). (2.28)

Because of the large number of the atomic orbitals {(/)ﬂ} that form a specific molecular

orbital, the evaluation and manipulation of such a two-electron integral is the major difficulty

ina HF calculation. For a set of K basis functions {(oﬂ} the number of two-electron integrals
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to evaluate is of the order of K*. Specialized quantum chemistry package programs contain

subroutines to calculate efficiently such integral.

With the background of the HF method, we are now able to describe the computational
procedure for obtaining RHF wavefunctions for molecules. The computational solution
procedure used is the well-known self-consistent-field (SCF) method that handles and solves

HF equations iteratively. According to this procedure, initially we have to choose a set of

spatial basis functions {(/)ﬂ} (usually atomic orbitals). Subsequently, we calculate all the
required molecular integrals, such as the overlap matrix elements S, , the one-electron core-
Hamiltonian elements H ;> and the two-electron integrals (,uv|o%). Then, using various

methods provided by respective program, we guess a set of trial expansion coefficients

{Cﬂj} and construct from them, and from the abovementioned integrals, the Fock and

overlap matrices to be diagonalized by solving the Roothan equations (see eq. (2.22)). The

diagonalization leads to a new set of expansion coefficients {CM.} and consequently a new
set of molecular orbitals {y/j} . With these new molecular orbitals, we calculate the updated

matrix elements, S ", H®* and (ﬂv|a/1), . The procedure is repeated iteratively until the

uv ! nv
ground state energy converges as a function of iteration, so self-consistency is reached (see
Chapter 8).

2.2 Configuration Interaction

The HF ground state wavefunction that we introduced above is an approximation and
definitely does not represent the exact wavefunction. The HF ground state energy E;
differ from the exact nonrelativistic energy of the system &,. The HF energy is an upper

bound to the exact energy, so the correction (or correlation) energy is negative,

E,.. =& —EM <0, (2.29)

corr

The Configuration Interaction (CI) method >4 is based on the variational method for
obtaining the correlation energy. In the ClI method the exact N — electron ground state
wavefunction may be expressed as a linear combination of N — electron trial determinants.

It is convenient to describe these other determinants by stating how they differ from the RHF
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N — electron ground state wavefunction ¥ (called as the “reference” state). If ¥ is

a reasonable approximation to exact electronic wavefunction @,, then we know from the

variation principle that a better approximation is

|@0>:C0‘T0RHF>+ZC? i> anb 5Wb> > Cik
i
a<b

y,abc
W) (2.30)

i<j<k
a<b<c

This is the form of the full CI wavefunction. ‘Ti‘”> denotes a singly-excited determinant in
which an electron, which occupied y, in the HF ground state, has been promoted to a virtual
spin orbital y, . In the same way, ‘?’if‘b> denotes a doubly-excited determinant in which two
electrons, that occupied y; and y; in the HF ground state, has been promoted to virtual spin
orbitals y, and g, , respectively. ‘5”;;“) denotes a triply-excited determinant in which three

electrons, that occupied y;, x; and y, inthe HF ground state, has been promoted to virtual

spin orbitals y,, y, and y., respectively. The c's are expansion coefficients and

restrictions on the summation indices (e.g., e <b,i< j ).

2.2.1 Configuration Interaction Singles

The Configuration Interaction Singles (CIS) method assumes that only single-excitations are
allowed. So, this method describes excitation energies for one-electron transitions (single
electron-hole excitations). >21° Therefore, we must limit the above linear combination (eg.

(2.30)) to a basis of singly-excited determinants, i.e., a CIS state is expressed as,

|¢o,cns> =G ‘EUORHF > + zcla

). (2.31)
The Hamiltonian matrix elements among CIS basis states are

<gyﬁ FQeI

yff’) Eg""8, 3,0 +0; Fup — 0, Fy +2(ic jb)—(ij]ab). (2.32)

ij “Yab

This Hamiltonian is diagonalized to obtain all CIS eigenstates and eigenenergies. ES™ is
the RHF ground state energy (see eq. (2.17)), F,, and F; are Fock matrix elements (see eq.

(2.20)), and the last two terms are two-electron integrals as described in eq. (2.28).
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Given the above matrix elements and assuming real CI coefficients, the CIS energy for the

CIS wavefunction @, is given by,

EClS—ERHF+ZZCC o+ CCF,,— > clciFy + Y ¢l [(Ia|jb) (|J|ab)]. (2.33)

iab ija ijjab

2.2.2 Configuration Interaction Singles and Doubles

The Configuration Interaction Singles Doubles (CISD) method is similar to CIS but it
includes both singly- and doubly-excited determinants. The CISD trial state is

|¢ocnso> ‘lPRHF> cha i> zcab
a<b

).
> (2.34)
The widely-employed CISD wavefunction includes only those N — electron basis functions
which represent single or double substitutions relative to the reference state and typically
accounts for about 95% of the correlation energy for small molecules near their equilibrium
geometries. The Hamiltonian matrix elements of CISD are more complex than eq. 2.32.

These matrix elements are described in detail in Chapter 7.
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CHAPTER 3

Charge-Transport Mechanisms in Azurin-Based
Monolayer Junctions

We study the transport mechanisms of different types of Azurin (Az) monolayer
heterojunctions with a variety of metal substituents. The systems include Holo-Az (Cu-
substituted), Apo-Az (no metal) and Ni-, Co- and Zn-substituted Azurins. Our theoretical
analysis is based on measurements of the voltage and temperature dependencies of the
current and attempts to reproduce both dependencies using a common mechanism and
corresponding set of parameters. Our results strongly suggest that for Holo-Az the transport
mechanism depends on the protein monolayer/heterojunction setup. In one type of
heterojunction, transport is dominated by resonant incoherent hopping through the Cu redox
site, whereas in the other it is mediated by off-resonant tunneling. For the unsubstituted
(Apo-Az) and other metal substituted Azurins the dominant transport mechanism at low
temperatures is off-resonant tunneling, with an average tunneling barrier that depends on the

type of metal dopant, and at the highest temperatures it is through-amino acid hopping.

Biomolecular electron-transfer (ET) reactions participate in many biological functions such
as biological energy conversion processes, biological signalling pathways and disease-repair
mechanisms. 2% Biomolecular ET reactions are often components of ET chains which are
hopping networks of donor-to-acceptor charge-transfer rates. * The electron/hole donor (D)
and acceptor (A) moieties in these chains are atom or molecule dopants embedded in protein
or DNA matrices which act as the bridge (B) connecting donors to acceptors. > Each D-to-
A hopping step of the network involves through-protein or through-DNA electron tunneling.
The D-to-A electronic couplings and D-to-A activation energies of each step determine the
magnitude of the corresponding D-to-A ET hopping rate (ket). **'* Biological ET chains

can operate over a variety of length scales (from nanometer to over micrometer distances).
8,9

Over the past decades, experimental, theoretical and computational studies of ET molecules
and ET proteins (ETpr’s) have shown that it is possible to tune molecular ET rates and the
charge flow in biological ET chains by chemical modifications of the donor, acceptor and
the bridge, by changing the locations of donor and acceptor, or by modifying the solvent

environment, 4711-18
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ETpr’s are also of interest in molecular electronics. 1°2?° Since there is extensive knowledge
of how to tune solution-phase through-protein ET mechanisms by chemical modifications,
711 an attractive idea is to use ETpr’s as the main current-carrying material in hybrid
electronic devices. Chemical modifications of the ETpr’s in the device may enable tuning

the through-protein current and thus the functionality of the device. 212

Solution-phase ET reactions mediated by blue Copper proteins, (containing a Cu ion as the
redox center), and in particular Azurin, have been studied thoroughly both experimentally
and computationally (e.g., ref. [7, 16, 17, 23, 24] and references therein). In addition to the
solution-phase ET studies, there are several experiments that measure transport (current)
through Azurin in different types of molecular junction setups, e.g., refs [25-28] for early

works.

This work focuses on two experiments, 2°%° that measure current-voltage and current-
temperature characteristics of Az monolayer heterojunctions. Ref. [29] (also denoted exp. I)
reported current measurements for heterojunctions comprised of oriented Az monolayers,
sandwiched between an Si-oxide substrate and a gold (Au) or mercury (Hg) macroscopic
LOFO (lift-off, float-on) contact 3! with an area of 0.2 mm?. In the present study, we focused
on the experiments conducted with the Au LOFO contact, for comparison purposes with the
results of ref. [30] (see below). The experiments in ref. [29] observed temperature-

independent transport across the Az monolayer (transport distance is about 3.5 nm) for a

wide range of temperatures (T = 100—400K) for Az molecules containing Cu (Holo-Az).

When the Cu atom is removed from Az (Apo-Az) the current (I) through the monolayers

is reduced by more than two orders of magnitude as compared to Holo-Az for T < 200K .
Also, for Apo-Az the current becomes temperature-dependent for T >200K. We

summarize the experimental results of exp. I in Fig. 3.1.
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Figure 3.1 (a) Experimental current density (current per unit area) versus temperature (In(J)
versus 1000/T) for Apo-Az at different bias voltages. (b) Experimental In(J) versus V for
Apo-Az at T = 128, 148, 168, 188 K. (c) Experimental In(J) versus 1000/T of Holo-Az at
different bias voltages. (d) Experimental In(J) versus V of Holo-Az junction at room

temperature (exp. 1). %

An interesting observation in ref. [29] is that substitutions of Apo-Az with metals other than
Cu, show temperature dependencies that are intermediate between Apo-Az and Holo-Az (see
Fig. 3.2 below).
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Figure 3.2 Experimental In(J) versus 1000/T of Holo-, Ni-, Co-, Zn- and Apo-Az junction
at -50 mV bias (exp. 1). ?°

Ref. [30] (also denoted exp. Il) reported experiments on oriented Holo-Az monolayers
sandwiched between soft Au microelectrodes using the “suspended-wire” technique. 3232
The currents measured in ref. [30] are temperature-independent 34 for a range of temperatures

from 25 to 275 K (see Fig. 3.3).
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Figure 3.3. Experimental current-voltage curves via Holo-Az: (a) | versus V (-1 <V <1),

with current plotted as log(l), at different temperatures. (b) Currentat 0.1 VV and 0.5V,

indicating the same temperature-independent behavior at different bias voltages (exp. 11). *°
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The abovementioned experiments involve different numbers of proteins in the monolayer (

N ~10" —-10° for ref. 29 and N ~50—-200 for ref. [30]). Further, in the first

contact contact

experiment, 2 the proteins in the monolayer are covalently bound to the P** Si/oxide Si
substrate via the exposed cysteine residue (Cys3 or Cys26) which binds to a (= 6 A) 3-
MPTMS linker molecule. The other side of the monolayer is physisorbed to the Au/Hg
LOFO. In the second experiment,  the proteins in the monolayer are covalently bound to
both Au substrates by an S-Au bond between the Au and one of the relatively exposed Az

cysteine thiolates.
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Figure 3.4 Comparison of current-voltage behaviors in experiments 1 2° and 11 . Each

current is normalized by its value at 1.0 V and the temperature is 200 K.

Figure 3.4 is an example of the normalized current, in linear scale, as a function of voltage
for the two experiments 2°2° (the normalization is with respect to the current value at 1.0 V).
Note that the normalized current in ref. [29] grows slowly around V =0, while in ref. [30]

it grows more rapidly and almost linearly. Comparing the two graphs (Fig. 3.4), the | =V's

have very different shapes, especially in the low voltage (V <0.5V) regime. Also, the

current per molecule, | =1, /N at a constant voltage value seems to be very different

contact »
in the two experiments. For example, for V =0.1V and using the abovementioned and
approximate  coverages, 1=6010"°-6010"A in ref. [29] and
| =1.5 107 —6.0 107 A in ref. [30]. This difference is probably due to the insulating layer
added by the SiOx and a linker in the setup of ref. [29], which lowers the current by some
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orders of magnitude, since 1 ~e™”®, where 3 is the tunneling decay parameter for Az at the

average injection energy and R is the molecular bridge’s length. ** Therefore, even though
the protein transport medium in both experiments is the same (Az monolayers), the transport

mechanisms in the two systems seem to be different.

In the present work, we will study the 1 =V and | —T behaviors reported in the experiments
using different phenomenological models which describe possible transport mechanisms
(see below). We will also attempt to explain the changes in current behavior seen when the
Cu ion is removed from Az (see Figs 3.1a, 3.1b). To our knowledge, there is still no
comprehensive theoretical modeling of both experiments. Our modeling results are relevant
to the analysis of the current behavior over a range of temperatures for any molecular-

heterojunction device.

3.1 Theoretical Methods

We will present and discuss results for current-voltage and current-temperature
measurements as reported in both experiments 2°2° using different basic models that relate
to different transport mechanisms. These include the one-site hopping model, 131420.3536 the
Landauer off-resonant tunneling and resonant tunneling models, 3141° multi-site extensions
of these models, the extended fully adiabatic Newns-Anderson model 3% and the two-step
ET model (2sETm). #**2 These models are motivated by the experiments 2% and are

described in full detail below.

For all models, in the schematic representation (Fig. 3.5), L(R) denote the left (right)

electrodes, where the protein Azurin and the binding ligands are placed between them. For
the experimental setup of ref. [29], R represents the LOFO (Au or Hg) and L represents the
substrate (Si / oxide Si). It is believed that on average, Cu is closer to the R electrode.
However, in our modeling we do not make any assumptions about orientation. For the

experiments of ref. [30], R and L represent Au electrodes.

35



Figure 3.5 Schematic representation of the layout used for the description of some
theoretical models to describe the experiments. M denotes metal dopant (e.g., Cu) and Hy,

Hr are the protein-mediated tunneling matrix elements between L and R electrodes.

For an Az monolayer of N molecules, the total current is approximated by

contact

I N I and below we describe several models for | . The experiments measure a

total — | Vcontact

current density J =1, /A, where A is the total contact area. It should be noted that the

effective number of contacts (molecules) in these experiments is to some extent an uncertain
variable due to the complexity of the heterojunctions. Also, the effective number of contacts
will depend on the extent of intermolecular interactions which is also unknown. %3 Thus, in

our fitting, we probe a range of N values and we place more importance on modeling

contact

the experimental temperature and voltage dependencies rather than absolute current values.

The first set of models used, describe coherent transport and are based on the Landauer

formalism. *141° The current per molecule is given by
1(V)=—e[dE %T(E,V) [f(E+ev/2)-f(E-ev/2)], (3.1)

where

4 T

T(E\V)= L _
[E—gO(V)] +[T +T%]

(3.2)

is the transmission probability, V is the voltage bias across the junction, —eV/2 =y, (the
Fermi energy of L electrode), +eV/2 =z (the fermi energy of R electrode) (see Fig. 3.6).

Here, &, (V) is a molecular level energy, which acts as a transmission channel,
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&V)=¢g,+(a-1/2)eV. (3.3)

The dependence of the level energy on bias enters via a parameter « . For example, if

a =0.5, the level energy is independent of voltage. For &, =0 and o =0, itis pinned to 4,

and for ¢, =0 and a =1, it is pinned to x,. Moreover, T' ., are the level broadenings

associated with the level couplings HL(R) to the L(R) leads (see Fig. 3.5),

FL(R) =7H f(R)pL(R) ' (3.4)

where p, g, are the electronic densities of states of the L(R) leads. These broadenings are
related to the Fermi Golden rule rates, y,,, for electron transfer from the level to the leads

Vi =(2/1)T (g, - The main parameters of this model are, &, (V) and T g, (see Fig. 3.6).

Fermi window

-

Figure 3.6 Schematic representation of the basic parameters used in the Landauer models
(&0 (V). FL(R))'

The Landauer model, summarized in egs (3.1)-(3.4), is used in two ways. Ref. [29] observed
that upon extraction of the Cu atom from Az (Holo—Apo), the current is reduced by two
orders of magnitude for a large range of temperatures (see Fig. 3.1). Thus, for Holo-Az, Cu

seems to provide the most important transmission channel. For this reason, when modeling

Holo-Az via egs (3.1) and (3.2), the level energy ¢, (V) will be interpreted as a Cu state

energy. HL(R) will be interpreted as the through-Az tunneling matrix elements between the
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Cu level and the L(R) electrodes. In this case, egs (3.1) and (3.2) describe an (off-) resonant

tunneling model (through Cu).

For the case of Apo-Az, the Az/ligand supra-molecule seems to be a deep tunneling barrier
for a wide range of temperatures (thus, the current reduction in Figs 3.1a, 3.1b). Since Apo-

Az contains many amino acids with several levels providing tunneling transmission

channels, &, (V) cannot be interpreted as a single Az protein (amino acids) electronic level.
Therefore, ineq. (3.3), &, (V) istaken to be an effective parameter that modulates the overall
tunneling barrier provided by the molecule. When &,(V) > My (r) the model describes an off-
resonant tunneling mechanism through the Az amino acids. When ¢,(V) = Hy () the model

describes a resonant tunneling mechanism through the Az amino acids. We will also consider
generalizations of the Landauer model which incorporate single and multiple fluctuating
resonances. These more general models may be collectively described as descriptions of
thermally modulated coherent tunneling. 44® They will be used to explore mostly the high

temperature regime of the Apo-Az experiments. 2°

Since for Holo-Az the Cu atom plays a central role for the transmission, we also need to
consider the possibility that Cu provides a fully incoherent transmission channel. The length
of the molecular bridge (30 A) gives us the right to consider the ET as a hopping process,
involving reversible transitions between the two oxidation states of bridge (oxidized and

reduced Cu’ s electronic states) (see Fig. 3.7) and the L(R) electrodes. Thus, an alternative

model used for Holo-Az is the one-site hopping model (incoherent model), where the
hopping site is a Cu level. For the case of the hopping model, Cu acts as a redox site with
reorganization energy A (see Fig. 3.7). This means that when the electron reaches the Cu
atom, it remains there for sufficient time to reorganize the Cu-Az ligands. The steady state

current per molecule is given by

ke (V) ke (V) =k (V) ks (V)
I(V):_ek:(v)+k[—(v)+k,{’(v)+k$_(v)’

(3.5)

where k., and k,,, are hopping rates to Cu from L(R) leads and from Cuto L(R) leads.

When the Az - electrodes couplings are weak, so that the time scale for ET is long relative
to that of thermal relaxation, each hopping step is associated with a rate obtained with the
framework of the Marcus heterogeneous ET theory, 1314:20.3536
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(V) =255 e (E - Wy (26(V) . ).

|ZR(v)=2F—hRjdEf (E = st )W, (& (V) 2t )
(3.6)
IZL(V)zz%jdE[l— f(E=pt) [Weea (80 (V) ).

Ke (v):z%jdlz[l— F(E—ttg) [Wieg (80 (V) 125

In the equations above, W, (50 V), IUL(R)) and W, (50 (V),yL(R)) are distribution functions

% for Cu oxidation and reduction respectively (see Fig. 3.7) and are given by

(A +E )20 (v))2

1 —
W, (50 V), luL(R)) = —47zikBT e 47kgT
3.7)

(“(ﬂL(R)‘fE)—% (v ))2

1
W, (50 (V ) MRy ) = W e 47ksT

The chemical potentials of the L(R) electrode are setto s =—eV/2 (uz =+eV/2).

The main parameters used in this model are: the Cu’s site energy, &,(V) , the reorganization
energy, A, for oxidation / reduction of Cu and I' ;, arising from the electrodes to Cu

tunneling couplings through Az amino acids (see Fig. 3.7).

electronic electronic
energy €nergy
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Figure 3.7 Reorganization energy, 4, distributions W and W, at equilibrium (left) and

red

after application of a cathodic overpotential.

We will also consider generalizations of the above incoherent hopping model, to multi-site
hopping through the Az monolayer. This generalization will be necessary for describing the
temperature dependence of Apo-Az in the T >200K region (see Fig. 3.1a and Fig. 3.8
below). In addition to the above simplest models that represent the extremes of coherent and
incoherent transport we have also tested models describing intermediate regimes and
containing relatively few parameters. These are the extended — fully adiabatic Newns-
Anderson model 30 and the two-step vibrationally coherent ET model (2sETm) 442 and

are described in the Supplement section.

3.2. Modeling of Holo-Az heterojunctions in experiments | and 11

3.2.1 Experiment on Si-oxide substrate — Az — Au LOFO heterojunctions (exp. I)

Figures 3.1a and 3.1c show the temperature dependence of In(J) (J =1, /A) for Apo-Az
(Fig. 3.1a) and Holo-Az (Fig. 3.1c) for a wide range of bias voltages. In the case of Apo-Az,
the current decreases with decreasing temperature for T > T, (TC = 200K) and then becomes
temperature-independent. T, remains the same for all voltages. Transport via Holo-Az is

orders of magnitude greater than Apo-Az (apart from the highest temperatures, when the

Holo- and Apo-Az currents are similar). Further, the Holo-Az current is temperature-

independent for all temperatures (T =100—400K ) and all voltages ()V|=0.05-1.0V).

Figure 3.8 is an example comparison of the Holo- and Apo-Az currents, as a function of

temperature, for a specific voltage value (V =+50mV ). This figure shows the switch at

T > 200K from temperature independence to temperature dependence (activated transport)
in the case of Apo-Az. The activation energy for thermally activated transport is
E, = 250—-255meV .
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Figure 3.8 Experimental In(J) versus 1000/T of Apo- and Holo-Az junction at +50 mV bias.
29

The large enhancement of the current due to the addition of Cu (Apo = Holo) observed in
ref. [29] (Fig. 3.8), indicates that Cu is the most important transmission channel for Holo-
Az. Thus, for Holo-Az, Cuis likely to act as a near-resonant/resonant tunneling or incoherent
hopping site. In the following, we attempt to fit the temperature and voltage dependencies
of the Holo-Az current using the simplest one-level coherent model (egs (3.1)-(3.4)) and the
one-level incoherent hopping model (egs (3.5)-(3.7)). The best-fit parameters for both
models are derived from the low bias regime for which we do not expect the electric field to

perturb the structures of the proteins in the monolayer.

Figures 3.9 and 3.10 show representative simultaneous fits of the temperature and voltage

dependencies of the current measured in ref. [29], using the coherent tunneling model, (eqs

(3.1)-(3.4)) with a common set of parameter values. Figure 3.9 shows In(J )—T fitting for
V =450,250mV and Fig. 3.10a shows In(J)-V fitting at T =300K . The common

parameter values derived from these fits are: &, =0.03eV , a=0.75, T, =3.310°eV and
I';/T', =10—-1000 (the Fermi level at zero bias is 0 eV). We find that there is no much
flexibility in the &, value which affects both the voltage and temperature dependence. There

is more flexibility in the I', ., values due to the uncertainty about the exact number of

proteins in the system, N . Thus, the best-fit of the coherent tunneling model predicts a

contact
very low tunneling barrier at zero bias, as expected by the large enhancement seen in the

current for Holo-Az as compared to Apo-Az.
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Figure 3.9 Experimental In(J) versus 1000/T of Cu-Az (Holo-Az) # for different bias
voltages versus theoretical predictions (egs (3.1)-(3.4)). (a) Bias voltages of -50 mV and -
250 mV, (b) bias voltages of +50 mV and +250 mV. Parameter values of eqs (3.1)-(3.4) for
all graphs: £,=0.03 eV, a=0.75, I', =3.3 10°eV, and I'x/I", =1000.
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Figure 3.10 (a) Experimental In(J) versus voltage of Cu-Az ?°at T = 300 K and theoretical

best-fit using the single-channel resonant-tunneling model (egs (3.1)-(3.4)) with the best fit
parameter values of £,=0.03 eV, 0=0.75, I', =3.3 10°eV and I'/I", =1000, as in Fig. 3.9. The

fit fails for bias voltages beyond 250 mV. This is because the current of a single resonant

tunneling channel will saturate at higher bias voltages. (b) Theoretical resonant tunneling J

versus voltage of Cu-Az at T = 300 K showing the saturation of the current at higher voltages

for the best fit parameters. Since the resonant tunneling current in this parameter regime is
larely temperature-independent for T = 100-400 K the shape of the J-V curve will not be

altered within the experimental temperature range.
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Figure 3.9 shows that the current can be near temperature independent for the resonant
tunneling regime. This is an expected feature of this regime, *° only if k,T <T'| +T;, & (V)
which turns out to be the case for the experimental temperature range and for the
abovementioned best fit parameters. Figure 3.10a shows that the resonant tunneling channel
that reproduces the low bias experimental results cannot reproduce the high bias current.
This feature is expected for a single-channel resonant tunneling current which tends to

saturate at high enough voltages.

Although it is tempting to adopt an off-resonant tunneling model (high &, in eq. (3.3)) which

is known to give temperature independence, ° such a model completely fails to predict the
low bias voltage profile of the experiments in ref. [29]. A representative example is shown

in Fig. 3.11, which shows a typical In(J)—V best-fit for an one-level coherent tunneling
model, where the level energy is high (&, =0.8eV), such that the current is temperature

independent at all voltages. Figure 3.11 clearly demonstrates that such a model can only

reproduce the experimental results at very low voltages.

-4 = exp. |
o Off-resonant tunneling model

-10

-12

144

In (J [A/lem?]) [T=300K]

-16

T T T T T
1.0 0.5 0.0 0.5 1.0
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Figure 3.11 Experimental In(J) versus voltage of Cu-Az ?° at T = 300 K and theoretical best-
fit using the off-resonant tunneling model (egs (3.1)-(3.4)) with the best fit parameter values
of £,=0.8 eV, a=0.5, I', =3.3 10 eV and I', /I", =1000.

Figures 3.12 and 3.13 are representative simultaneous fits of the temperature and voltage

dependencies of the current measured in ref. [29], using the incoherent one-site hopping
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model (egs (3.5)-(3.7)) with a common set of parameter values given by: 41=0.2eV,
a=0.75, &=0.01-0.03eV, I', =1.010°-1.010°eV and I',/T", =10-1000. Figure
3.12 shows In(J)-T fits for V =+50,250mV and Fig. 3.13a shows In(J)-V fitting at
T =300K . The range of values of our fit parameters, is due to the uncertainty about the
exact number of proteins in the system, N, - The one-site hopping model thus predicts a

near resonant Cu level at zero bias that enters the Fermi window at non-zero bias. It also
predicts a low reorganization energy for the Cu redox site which is consistent with inner
sphere redox reorganization energies in Azurin. #’ Both of these features are necessary to
give a near temperature-independent current at the various voltages (Fig. 3.12). *® The model

simultaneously reproduces the In(J)—V behavior for bias values up to +250mV (Fig.

3.13a). Beyond the +250mV bias the one-level hopping current saturates (Fig. 3.13b), as

expected.
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Figure 3.12 Experimental In(J) versus 1000/T of Cu-Az (Holo-Az) ?° for different bias
voltages versus theoretical best-fit using the one-site hopping model (egs (3.5)-(3.7)). (a)
Bias voltages of -50 mV and -250 mV, (b) bias voltages of +50 mV and +250 mV. The
parameter values of eqgs (3.5)-(3.7) for all graphs are: 4=0.2 eV, a4=0.75, £,=0.01 eV, I' =1.0

10" eV and T'/T", =1000.
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Figure 3.13 (a) Experimental In(J) versus voltage of Cu-Az ?° at T = 300K and theoretical
best-fit using the one-site hopping model (eqs (3.5)-(3.7)) (parameter values: A=0.2 eV,
0=0.75, £,=0.01 eV, T';=1.0 10* eV and T'x/T’,=1000). (b) Theoretical single-channel
resonant hopping J versus voltage of Cu-Az at T = 300 K for the same parameter values,
showing saturation behavior of the current. The behavior does not qualitatively change with
temperature as the model predicts temperature independent transport for T = 100-400 K (Fig.
3.12).

A comparison of the In(J)—V fits obtained using the coherent resonant tunneling (Fig.

3.10a) to the fits obtained from the resonant single-channel hopping model (Fig. 3.13a),
shows that the one-site hopping model gives a better fit for a wider range of bias voltages.
However, both models fail to reproduce the high bias currents since both predict current
saturation. We were also not able to reproduce the experimental results by global fitting
using more complex models such as Newns-Anderson 3740 or 2sETm #4142 (see Supplement

section for a description of these models).

The conclusion that a through-Cu resonant hopping model (with a low reorganization energy
of 0.1-0.2 eV) can reproduce the low-bias Holo-Az currents of ref. [29] is consistent with
previous modeling of EC-STM experiments on Holo-Az molecular junctions. ?® Further, the
reorganization energy values predicted by our fitting using the through-Cu hopping model
are consistent with ab-initio and molecular dynamics computations of inner-sphere
reorganization energies for the Cu ion in blue copper proteins 4"#8 (the systems we study
are not in agueous environment, so we expect the reorganization energy to be inner-sphere).

Recent experiments on small molecule systems *° clearly demonstrate transport via a
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hopping mechanism. A very recent experimental work on Azurin-based molecular junctions,
% showed that by weakening the coupling between the protein and the gold electrodes, the
amount of inelastic current increases. This trend clearly suggests that in experiments like
those of ref. [29], which involve linkers that weaken the Cu-electrode couplings, the current

may well proceed incoherently through the molecules.

The analysis in Figs 3.9 - 3.13 shows that the high-bias current observed in ref. [29] cannot

be due to a single resonant &, (V) transport channel. Since the current does not saturate,

additional resonant &, (V) channels in the protein monolayer must come into resonance at

higher voltages. * In the monolayer, different proteins are expected to have slightly different
orientations, conformations and local environments. Therefore, the Cu energy levels of the
different Holo-Az proteins at zero bias will have a range of values (which are expected to be
closer to the Fermi level as compared to the amino acids, see Table 3.1). Figure 3.14a

illustrates this idea, where &, , refers to the zero-bias Cu level energy of protein k in the

monolayer. Given the fact that we were able to fit the voltage dependence of the current for

the lower bias voltages with single channel (single &, value) models (Figs 3.9, 3.10 and
3.12, 3.13), a fraction of the energies {‘90,k} should be quasi-resonant with the Fermi level

at zero bias. However, since &, (V) =¢,, +(a—1/2)eV , for high-enough bias more Cu

levels in the monolayer ensemble will enter the Fermi window (Fig. 3.14b), providing the
monolayer with additional transport channels and avoiding a saturation of the monolayer
current at high voltages (Fig. 3.14b).

»
»

= Holo-Az monolayer Cu energy- Cu-energy levels shift into the Fermi

Q@ level disorder at zero bias window as a function of bias

> |
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Figure 3.14 Schematic representation of the Cu-level multi-channel hypothesis.
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To test in the simplest manner this multi-channel hypothesis for both, the resonant tunneling
and hopping mechanisms, we describe the monolayer (ensemble) current in terms of the

following formula,

It = J (50,1 (v ))+; RJ (go,k (v ))’ Eoka ~€0a - (3.8)

—_———
low bias channel

On the right-hand side of this equation the J ’s are current densities that are either computed
by egs (3.1)-(3.4) (coherent tunneling) or (3.5)-(3.7) (incoherent hopping). The subscript
“multi” means multi- &, (V) sum. The first J (&,,(V)) is computed using the zero-bias &,
value and the other parameter values that produce the low-bias fits in Figs 3.9, 3.10 (for the
coherent model) or Figs 3.12, 3.13 (for the incoherent model). The remaining J’s are

computed by using a range of higher zero bias level energies &;, ., =0.1-0.5eV with all
other parameters fixed to the values of the low bias channel. The prefactors B, are calculated
from fitting to the experimental In(J )—V for the whole range of experimental voltages
using multiple regression analysis. P, can be interpreted as the zero-bias ratio of population

of proteins in the ensemble with a given &, ., to the population of proteins with & .

Figure 3.15 below shows the individual J ’s in eq. (3.8) for the coherent (Fig. 3.15a) and the

incoherent hopping (Fig. 3.15b) models for a similar range of &, values. The bias saturation

behaviors of the current in the two mechanisms are very different. Figure 3.16 shows the

monolayer (ensemble) current obtaining from eq. (3.8) for both mechanisms using the

identical zero bias level energies, &,,.,. Figure 16a is a representative fit of the In(J)-V

dependence measured in ref. [29], using the incoherent multi-channel hopping model and
Fig. 3.16b shows the fit results using the coherent multi-channel tunneling model. The
hopping model of eq. (3.8) gives a much better fit for a wider range of bias voltages, up to

V =+0.75V , after which starts to saturate (to avoid saturation, more &, ., should be added).

On the other hand, the tunneling model of eq. (3.8) begins to saturate at much lower voltages
and also shows an asymmetry when reversing the voltage, not consistent with the
experimental results. Both models give approximate temperature independence of the multi-
channel current (similar to Figs 3.9 and 3.12). We conclude that the dominant mechanism
of Holo-Az transport in ref. [29], for the whole range of bias voltages probed in the

experiments, is resonant through-Cu hopping.
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Figure 3.15 Theoretical J versus V of Cu-Az at T = 300 K using a range of energy levels,

gok#1 =0.1-0.5 eV (a) for the coherent resonant tunneling model (parameter values: ¢;,=0.03
eV (best-fit at low bias regime), a=0.75, I',=3.3 10® eV, I'y /T /=1000) and (b) for the
incoherent hopping model (parameter values: ¢;,=0.01 eV (best-fit at low bias regime),

%=0.2 eV, a=0.75, I =1.0 10* eV, Ty /T, =1000).

(a) (b)
-4 m exp. | E -4 - = exp. | -
° JHopp.(eo,l)"'Z Py JHopp.(80,4) ° JTunn.(eo,l)"'Z Py J1unn.(Eg,)
g 1 < 61 1
o o
2 2
W -8 -8 -
= =
& o) & 1] -
£ 10 £ 10
< <
o
S 12 = 12 o § -
E [= (]
14 < 4 T 41 - p
n
[ ]
1.0 05 0.0 0.5 10 1.0 0.5 0.0 0.5 10
Voltage [V] Voltage [V]

Figure 3.16 Experimental In(J) versus voltage of Cu-Az ®at T = 300 K and theoretical fits
using the multi-channel hypothesis of eg. (3.8) using (a) the incoherent hopping mechanism

(coefficients derived from multiple regression analysis: P,=0.35, P,=0.50, P,=3.14, P,=4.68,
P.=13.01), (b) the coherent tunneling mechanism (coefficients of multiple regression

analysis: P,=0.06, P,=6.84, P,=7.77, P,=3.21, P.=7.68).
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3.2.2 Experiment on Au microelectrode — Az — Au microelectrode heterojunctions

(exp. 1)

Ref. [30] reported temperature-dependent current-voltage (1-V) measurements on

Au(substrate) — Holo Az — Au (nanowire) junctions with a small number of proteins
(nominally ~50). The currents were approximately temperature-independent (Figs 3.3a,

3.3b). The 1 =V curves are symmetric in contrast to the J —V curves in ref. [29].

We find that the | —V experimental results of ref. [30] can be reproduced by a single-

channel coherent tunneling model (egs (3.1)-(3.4)), where the level energy is off-resonant to

the Fermi level, &, at zero bias. Typical In(1)—T and In(1)—V experimental and modeling

plots are shown in Figs 3.17 and 3.18. The coherent tunneling model (egs (3.1)-(3.4))

parameter values that reproduce the experimental results are: & =0.470, &, =0.70-0.80eV

T, =1110°-2510%eV and I'y/I", =100—1000.

= exp. |1 [0.50V]

-184 « Off-resonant tunneling model [0.50V]
a exp. 11[0.10V]
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Figure 3.17 Experimental In(1) versus 1000/T of Cu-Az ** at +500 mV and +100 mV bias,
versus theoretical fits (eqs (3.1)-(3.4)) using the parameter values: 04=0.470, £=0.80 eV,
I''=1.15 10° eV and I'r/T"''=1000.
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Figure 3.18 Experimental In(l) versus voltage of Cu-Az ¥ at (a) 275 K and (b) 25 K, versus
theoretical fits (egs (3.1)-(3.4)) using the parameter values: a=0.470, £=0.80 ¢V, I''=1.15
10° eV, and I'r/I"L=1000.

In conclusion, the Holo-Az transport mechanisms differ in the two experiments 22 as

suggested by Fig. 3.4. For the Holo-Az heterojunction in ref. [29], the best low bias fits to
experiment are obtained by an one-channel resonant hopping model. To reproduce the high
bias currents multiple resonant Cu-hopping channels must be introduced. For ref. [30] a
single-channel off-resonant tunneling model adequately describes the experimental results.
These results are not that surprising given the structural differences between the
heterojunctions in the two experiments. In the experiment of ref. [30], the proteins in the
monolayer are covalently bound to both leads. In the experiment of ref. [29] the proteins in
the monolayer are only covalently bound via a linker molecule to the substrate and are
physisorbed to the Au LOFO. Thus, in the latter heterojunctions, there is much more disorder
and weaker coupling of the metal to the leads (as compared to ref. [30]), both due to the
physisorption and due to the linker molecule, which increases by approximately 6 A the

molecular bridge.

3.3 Modeling of Apo-Az heterojunction experiments (exp. 1)

The modeling of Apo-Az experiments 2° is more involved. This is because two behaviors of
the current as a function of temperature are observed. For T <200K the temperature

dependence of the current is largely flat and for T > 200K , the dependence is activated. It
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is notable that for the highest temperatures in the experiments (i.e. T =400K), the current

for Apo-Az approaches the current for Holo-Az.

3.3.1 Low Temperatures (T <T,)

We find that the experimental results for the Apo-Az heterojunction in the temperature-

independent regime (T < 200K) can only be described via egs (3.1)-(3.4) using an off-
resonant tunneling model. Example comparisons of experiment and theory are shown in Fig.
3.19. The parameter values employed for the fit are: o =0.50, &, =0.60-0.70eV ,
I, =1.010°-25 10°eV and I'y/T, =1. The off-resonant tunneling behavior may be

interpreted as a consequence of the fact that the proteins are missing the metal ion capable

to localize the charge (in a locally stable state).

(a) (b) .12 , ,

B[ a exp.l 1] | = exp.1[0.05V] ]
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Figure 3.19 (a) Experimental In(J) versus voltage of Apo-Az ?° at T = 128 K and theoretical
fits using egs (3.1)-(3.4). Since for 100 < T <200 K, the current is temperature independent,
the fit does not change with temperature. (b) Experimental In(J) versus 1000/T of Apo-Az
as a function of temperature at V = 0.05 and 0.10 V, and theoretical fits using egs (3.1)-(3.4).
For both (a), (b) the parameter values in egs (1)-(4) are: 0=0.50, £,=0.70 eV, I' =1.0 103eV,

/T =1.
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In contrast to the case of Holo-Az, where &, in egs (3.2), (3.3) was interpreted as a Cu-level
energy, in the case of Apo-Az &, should be interpreted as an average amino acid tunneling

barrier.

3.3.2 High Temperatures (T >T_)

In order to reproduce the experimental results for the Apo-Az heterojunctions (ref. [29], Figs

3.1a, 3.1b, 3.2) in the thermally activated transport regime (T >200K), we need a

mechanism that shows activated current behavior and produces Apo-Az current for the
highest temperatures that approach the Holo-Az currents (see Fig. 3.8). This last observation
implies that at the highest temperatures the protein (amino acids) provides channels
(resonances) that are either within the Fermi window or that can easily be accessed
thermally. These resonances will either be accessed by transferring charge coherently or

incoherently.

We find that the simple coherent transport model of egs (3.1)-(3.4) cannot reproduce both
the flat and the activated dependence of the Apo-Az current. The simplest generalization of
this coherent model which incorporates a fluctuating resonance is a thermally modulated

tunneling model. 44 In this model the level energy &, in egs (3.2)-(3.3) is a stochastic

variable with a Gaussian probability density,

1 ~(e0-5)° [25(T)?
&)=—F——¢ ,
where a(T): JAnKeT (A is an effective reorganization energy that characterizes the

dependence of &, level fluctuations as a function of temperature). The measured mean

current is an average over level fluctuations,
(1(V)) = [ de, p(&)1(V. &), (3.10)

where I(V,eo) is the current per molecule based on the Landauer Formalism (egs (3.1)—

(3.4)). This model can partially reproduce the temperature dependence of the current in the

thermally activated and the thermally-independent regions for 4, ~1.1eV and &, = 0.60eV
and only for low voltage values (V SO.250V) (see Fig. 3.20a). However, the parameters
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that give the temperature-dependence in Fig. 3.20a cannot reproduce the experimental
voltage dependence in the different temperature regimes (Figs 3.20b for T =128K and 3.20c
for T =308K).
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Figure 3.20 (a) Experimental In(J) versus 1000/T of Apo-Az ?° as a function of temperature
atV =-0.05 V versus theoretical fits (egs (3.9)-(3.10)). (b) Experimental In(J) versus voltage
of Apo-Az at T = 128 K (low temperature regime) and theoretical fits using egs (3.9)-(3.10).
(c) Experimental In(J) versus voltage of Apo-Az at T = 308 K (high temperature regime) and
theoretical fits using egs (3.9)-(3.10). For all graphs the parameter values are: A=1.1 eV,
0=0.50, £,=0.60 eV, I, =1.0 10 eV and I'x/T' =1.

As an alternative to the above model for the behavior of the Apo-Az currents at high T , we
have also tested a multi-site incoherent hopping model. To describe incoherent transport

through the amino acids we use a generalization of the one-site hopping model to N sites,
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where N is a parameter to be determined by fitting. This model 2 is schematically

represented in Fig. 3.21, where L(R) denote the left (right) electron reservoirs (electrodes)
and the B, correspond to the different incoherent sites each of which should be interpreted
as an electronic level of energy ¢ (V) , delocalized over one or more amino acids. The

different k. in this figure correspond to the different (forward and backward) electron

j

transfer rates between these levels.

IZ k N k2—>3 kR
- k" > Bl - 12 BZ - * B - » R
I(|_ k2<—l k3<—2 kR

Figure 3.21 Schematic representation of the hopping model where a molecular bridge with
N=3 incoherent sites coupled to the left (L) and right (R) electrodes.

To determine the steady state current in this model, we need to compute the stationary

occupations (F".(SS): 0) in the different sites (e.g., N =3 below) by solving the
corresponding kinetic equations:
_(EL + k1—>2) Pl(ss) + k2<—1P2(SS) + lzL PL(,S;) =0

k1—>2 Pl(SS) - (k2<—1 + k2—>3) Pz(SS) + k3<—2 P3(SS) =0 (3-11)
k2—>3 PZ(SS) - ( k3<—2 + izR ) PS(SS) + izR PL(,S;) =0

The steady state current per molecule (evaluated at the left interface) is simply given by:
(V) =—e(k RF -k R™). (3.12)

In order to specify the voltage dependence of the molecular levels (8i (V )) , we will assume
that a portion «_, of the bias voltage drops at the left and the right metal-molecule

interfaces, and a portion a,, drops along the molecule such that: a, +a,, +a; =1.

For simplicity, we will assume that all the forward rates are equal, k =k, . The same is

i—>i+l

true for the backward intra-molecular rates, k.

i—i-1

=Kk, . The rates are given by:
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k_%j K e—(gi(v)—gj(v)+ﬂ,~+ij)2/4kBT(A1-+lJ-) (3.13)

and they satisfy the detailed balance equation below:
kiai+1/kiei—1 :eiAGi_)M/kBT ' (314)

For the voltage-dependent rates involving charge transfer to the electrodes, we shall use the
typical expressions taken from heterogeneous electron transfer theory, 2 in egs (3.6)-(3.7).

For hopping rates from/to the L(R) electrode we use the molecular level coupled to the

L(R) electrode, &, (V).

The main parameters used in this model are: N (number of incoherent hopping sites), A
(reorganization energy), ¢ (the one-site energy of the molecular level at zero bias, assumed
to be equal for all of them), k (zero-bias intra-molecular transfer rate), o , (parameters
describing the voltage drop at the metal-molecule interfaces) and y, ) = (Z/h)FL(R) (golden
rule rates).

We find that to reproduce the activated behavior of the Apo-Az current for T > 200K we

need at least N =3 incoherent sites in the molecular bridge (amino acid centers). An

example comparison of experiment and N — site hopping theory is shown in Fig. 3.22.

Figure 3.22a compares the experimental In(J)—V curve (black square) to a theoretical fit

using the N =3 hopping-site model (red circle). Figure 3.22b compares the experimental

In(J )—T curve to a theoretical fit using the same model (magenta triangle). The hopping
model parameter values are: A=0.3eV (typical for amino acids %), a, =a, =-0.40,
g =0.40eV, ', =1.010°-3.3010°%V , I', /T, =100 and ’'=1.0 107 -3.30 10 "eV .
Since the N =3 hopping-site model is not relevant to the low temperature behavior, Fig.

3.22b also shows a theoretical fit of the low temperature regime using the off-resonant

tunneling model (egs (3.1)-(3.4)) (blue triangle).
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Figure 3.22 (a) Experimental In(J) versus voltage of Apo-Az % at T = 308 K and theoretical
fits (egs (3.11)-(3.14)). (b) Experimental In(J) versus 1000/T of Apo-Az at V = 0.50 V over
the entire temperature range and theoretical fits (using eqs (3.11)-(3.14) at high temperatures,
eqs (3.1)-(3.4) at low temperatures and eq. (3.15) for both temperature regimes). Model
parameter values of egs (3.11)-(3.14): N=3, 1=0.3 eV, a, =az=-0.40, £,=0.40 eV, I'=3.30 10°
"eV, I'=3.30 10® eV and I'z/T",=100. Model parameter values of egs (3.1)-(3.4): «=0.50,
£,=0.70 eV, I',=1.0 10 eV and I'x/T', =1. Parameter value of eq. (3.15) (red line): p=0.3.

The fitting results suggest that the Apo-Az current at low temperatures is mediated by
tunneling and at high temperatures by through-amino acid hopping. The simplest
interpretation of the above is that, the ensemble (monolayer) current density is described by

the following simple relationship
‘Jtotal = p‘J Hopp. (T ) + (1_ p)‘]Tunn. (T) (315)

where  J,0 (T) is the current density through the N =3 hopping sites at the high

temperature regime and J.,,, (T ) is the off-resonant tunneling current density. A good fit of

eq. (3.15) to the experimental temperature dependence for the whole range of temperatures

is also shown in Fig. 3.22b (red line).

If we consider that every protein in the ensemble may transport charge via two dominant

channels, hopping and tunneling, then the prefactor p could be interpreted as the probability
of hopping and 1-p as the probability of tunneling. However, this probabilistic

interpretation of the parameter may be an oversimplified picture given the approximate
nature of the models. Equation (3.15) could also be interpreted as a result emerging from a
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more complete, rigorous theory, which reduces to the two limiting cases (tunneling, hopping)

at different (low, high) temperatures.

3.4 Modeling heterojunction experiments of Zinc-, Cobalt- and Nickel-substituted

Azurins (exp. )

In addition to the Apo- and Holo-Az heterojunction experiments, ref. [29] reports the
temperature and voltage dependencies of the current for Zn-, Ni- and Co- substituted Azurin
heterojunctions. Figure 3.2 compares the current temperature dependencies of Apo-Az and

Holo-Az to those of Zn-, Co- and Ni-Az at a voltage of -50 mV. The current temperature

dependencies all exhibit a temperature independent region (T <TC) and temperature-

dependent (activated) region (T >T,). The shapes of the In(J) versus 1/T plots for Zn-,

Co- and Ni-Az are intermediates between those of Apo-Az and Holo-Az. The Zn-Az and
Apo-Az heterojunctions have similar current temperature dependencies and so do the Holo-
Az and Ni-Az heterojunctions. The Co-Az current temperature dependence is approximately

intermediate between the Apo-Az and Holo-Az extremes.

As the medium is changed from Apo-Az to Zn-, Co-, Ni- and Cu-substituted Az, the trend
in the temperature dependence of the current is a reduction of the total current enhancement

in the thermally-activated region, ie., a reduction of

AV =In(J,,)-IN(Ip ) = In(I (T, )= In(I (T,

i )) with a simultaneous increase of the
minimum current, In(J.;,)~In(J(T,,)). in the temperature-independent region. This

trend seems to be correlated with the reduction potentials Vs. SHE of the substituted metals
and of some common amino acids (Table 3.1). The last column in Table 3.1 converts the
reduction potentials Vs. SHE to an absolute energy scale (in eV) with respect to vacuum,
50,5458 to be compared to the Au fermi level of -5.1 eV. *° It is obvious from the table that

the barrier AG? for reduction of a metal or of an amino acid (AA) X from Au follows the
same  trend as A, ie, AGY <AG) <AGY <AG) <AG!,  and

act act act act act
A‘]Cu—Az <AJ Ni—Az <A Co-Az < A‘]Zn—Az <AJ Apo—Az*

57



_ Reduction Potential AGy, Reduction Potential AGy,
Reactions
Vs. SHE [mV] with respect to vaccum [eV]
Cu?*/Cu* (Azurin) 310 -4.75
Cu®*/Cu? 160 -4.6
Ni2*/Ni -257 -4.18
Co?*/Co =277 -4.16
Zn?*/Zn -760 -3.68
Amino acids [at pH=7]
Gly 1225 -3.215
Trp 1250 -3.19
Cys 1300 -3.14
Tyr 1350 -3.09

Table 3.1 Conversion of reduction potentials vs. SHE (mV) into electronic energies with

respect to vacuum (eV) for metals relevant to experiments I and Il and for some amino acids.
50,54-58

Therefore, we expect that in going from Zn to Ni the ensemble-averaged barrier for tunneling
through Az is progressively lowered if the metal participates in transport. Figure 3.23 shows

fits of the experimental results for the cases of Ni-, Co- and Zn-Az heterojunctions in the
temperature-independent regime (T <200K) using the tunneling model (egs (3.1)-(3.4))
with different values of ¢, that follow the trend of AG; in Table 3.1. An example

comparison of experiment and theory is shown in Fig. 3.23. The parameter values employed
for the fitare: T, =1.0 10°-25107%eV, I'; /T =1, «=0.50 and &, =0.2, 0.22, 0.55eV
for Ni-, Co- and Zn-Az heterojunctions respectively (egs (3.1)-(3.4)).
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Figure 3.23 Experimental In(J) versus 1000/T of Ni-, Co- and Zn-Az # at -50 mV bias and
theoretical best-fit using the off-resonant tunneling model (egs (3.1)-(3.4)) with the best fit
parameter values of ', =1.0 10 eV, I'+/T", =1, a=0.50 and ,=0.20, 0.22, 0.55 eV for Ni-, Co-

and Zn-Az heterojunctions respectively.

In the cases of Ni-Az and Co-Az heterojunctions, we can reproduce the experimental results

both in the temperature-independent (T <200K) and thermally activated regimes
(T >200K) using the Landauer model (egs (3.1)-(3.4)) with & =0.2eV (Ni) and

& =0.22eV (Co). In the case of the Zn-Az heterojunction the current-temperature

dependence resembles very much that of Apo-Az. This is reasonable since the reduction
potential of Zn (E° =-760mV Vs. SHE) > is relatively close to that amino acid redox
potentials (e.g. Tyr, Cys, Trp, Gly) (see Table 3.1). Therefore, Zn does not provide a much
better transport channel than the amino acids in Azurin, and to explain the temperature

behavior we can adopt the same modeling as in Apo-Az. Figure 3.23 shows that the Zn-Az
current in the temperature-independent region (T < 200K) is reproduced by a tunneling
model with ¢, =0.55eV , but this model cannot reproduce the current in the thermally
activated region (T > 200K) . For this region, we use the N — site hopping model, and as in
the Apo-Az case we can reproduce the current for N >3 (Fig. 3.24).

As in the case of Apo-Az, the hopping and tunneling currents can be combined to reproduce
the Zn-Az current in the whole temperature range via eg. (3.15). Figure 3.24 (red line) shows
the monolayer Zn-Az current computed from eq. (3.15) and compared to the experimental

results of ref. [29].
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Figure 3.24 Experimental In(J) versus 1000/T of Zn-Az ?° at V=-50 mV over the entire
temperature range and theoretical fits (using egs (3.11)-(3.14) at high temperatures, eqs
(3.1)-(3.4) at low temperatures and eq. (3.15) for both temperature regimes). Model
parameter values of egs (3.11)-(3.14): N=3, 1=0.3eV, 0, =a;=-0.40, £,=0.20 eV, I'=1.0 10*?
eV, I'/=3.30 10® eV and I'x/',=1. Model parameter values of egs (3.1)-(3.4): a=0.50,
£,=0.55 eV, I’ =1.0 10 eV and I'x/T, =1. Parameter value of eq. (3.15) (red line): p=0.3.

It should be noted that the temperature dependencies of the activated currents in Fig. 3.2 for
Ni-Az and Co-Az can also be reproduced by a through — amino acid hopping model, as is
the case of Apo- and Zn-Az. Given the fact that at the highest temperatures all currents in
Fig. 3.2 converge to similar values, the best interpretation of the activated region is that the

current is dominated by through amino acid hopping in all cases.

3.5 Conclusions

The present theoretical investigation is motivated by experiments 23 which measure the
current-voltage and current-temperature dependencies of ETpr Azurin monolayer
heterojunctions. The experiments in ref. [29] (exp. 1) involve Si-oxide substrate — Az — Au
or Hg LOFO heterojunctions and compare the voltage and temperature dependencies of
Holo-Az (with Cu as the redox site) and Apo-Az (with Cu removed). They also measure the
temperature dependencies of other metal-substituted Azurins (Ni, Co, and Zn). The
experiments in ref. [30] (exp. Il) involve Au microelectrode — Az — Au microelectrode
heterojunctions and measure the current-voltage and current-temperature dependencies of

Holo-Az. The experimental results are very interesting because they enable the analysis of
60



transport through the same protein monolayer medium as a function of the metal substitution,

temperature and voltage.

In both types of heterojunctions 2*3° the Holo-Az current is approximately temperature
independent but the bias voltage dependence of the Holo-Az current in ref. [29] differs
considerably from ref. [30]. Further, in contrast to the temperature-independent Holo-Az,

the Apo-Az current in ref. [29] shows activationless behavior at lower temperatures

(T <200K ) and activated behavior at higher temperatures (T > 200K ). The temperature

dependencies of the current for the other metal substituted Azurin monolayers interpolate
between the Holo-Az behavior and the Apo-Az behavior. In the temperature-independent
regime, the magnitude of the current is the highest for Holo-Az and the lowest for Apo-Az
with the other metal-substituted Azurins showing intermediate current values between the
two extremes (Cu-Az > Ni-Az > Co-Az > Zn-Az > Apo-Az). At the highest temperatures

the current magnitudes of all Azurin types are similar.

The richness of the above phenomenology offers an opportunity to explore transport
mechanisms through the Azurin monolayers and to gain insight into the competition between
metal- and amino acid-mediated transport in these systems. In our work we have attempted
to fit the experimental results using several standard models of coherent and incoherent
transport mechanisms. Importantly, for each mechanism we fit simultaneously both the
voltage and temperature dependencies of the logarithm of the current, using a common set
of parameters. This approach turns out to limit to a large extent both the type of transport
mechanism and its corresponding parameter set compatible with experiment. Our results do
not exclude the possibility that the systems studied may operate in more complex, in
intermediate regimes between the extremes of fully coherent and fully incoherent transport.
However, given the information we have about the systems, it is impossible to determine

more precisely those regimes. Our results are summarized in Table 3.2.

Holo-Az experiments Zn- and Apo-Az Ni- and Co-Az
29,30 experiments 2 experiments 2°
Temp. independent Temp. dependent current: Current temp. dependence is
current T>T, intermediate between the Holo-

and Apo-Az behaviors
Temp. independent current:

T<T,
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Exp. 1 % T<T, T<T,

through-Cu incoherent off-resonant tunneling near-resonant tunneling
resonant hopping
(high disorder)
T>T, T>T,

0 through-amino acid hopping | both near-resonant tunneling and
Exp. Il

off-resonant tunneling

through-amino acid hopping are

consistent with experiment

Table 3.2 Transport mechanisms for the Azurin heterojunctions 2% in the different

temperature regimes. T¢~ 200K remains the same for all Azurin heterojunctions.

We find that in the Holo-Az heterojunctions of ref. [29] transport is mediated by through-
Cu incoherent resonant hopping with the possibility of through-Cu coherent resonant
tunneling also contributing for low bias voltages. In contrast, for the Holo-Az
heterojunctions in ref. [30], transport is mediated by off-resonant tunneling. Our analysis
also shows that the Cu-level energies of the Holo-Az monolayers in ref. [29] are much more
disordered compared to the monolayers in ref. [30]. These results explain the large
differences in the low bias voltage dependencies of the current per Azurin molecule observed
in the two experiments (Fig. 3.4) and also are consistent with the structural differences
between the two types of heterojunctions. The proteins in ref. [29] are covalently bound via
a linker molecule to one lead and physisorbed to the other. The proteins in ref. [30] are
covalently bound by S-Au bonds to both leads. Thus, each Cu metal in the heterojunctions
of ref. [29] is on average much more weakly coupled to the leads as compared to ref. [30],

and the protein monolayer is much more disordered.

For the Apo-Az experiments, 2° we find that the removal of the Cu atom changes the
transport mechanism to through-amino acid off-resonant tunneling in the lower temperature
(temperature-independent) regime and to through-amino acid hopping in the higher
temperature, activated regime. For the other metal substituted Azurins (Zn, Ni, Co), the off-
resonant tunneling model reproduces the currents in the temperature-independent regime
with average tunneling barriers that follow the same magnitude trend as the redox potentials

of the metals, indicating that the metal type plays a role in influencing the average tunneling
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barrier in these systems. For the high-temperature, activated regime, through-amino acid
hopping can reproduce the current behavior for all three metal substitutions, although the
off-resonant tunneling model can also reproduce the activated region for Ni- and Co-
substituted Azurins. The best self-consistent interpretation of the currents’ temperature
dependence at the highest temperatures in Apo-, Zn- Co-, and Ni-Az monolayers is a

through-amino acid hopping mechanism.

The variability and mixing of transport mechanisms in the protein heterojunctions (see Table
3.2) is consistent with our current understanding of biomolecular ET. Even at the single
molecule level, protein structural fluctuations can lead to fluctuating molecular and metal
electronic-level energies and intra-level couplings, giving rise to a spread of ET rates and to
ET mechanism switches. 81618244660 At the monolayer level there is also additional static
disorder. Further, the dominance of the through-Cu hopping mechanism for the Holo-Az
heterojunctions with weak metal-lead couplings is not surprising given the recent theoretical
and experimental results on redox molecular junctions. #*%1%2 Qur results show that when
the redox hopping site is near-resonant to or within the Fermi window, and the reorganization
is small, (as is the case of the Cu level in the heterojunctions of ref. [29]), the hopping current
can be near temperature-independent for finite bias voltages. Therefore, a temperature-
independent current does not necessarily imply a coherent tunneling mechanism nor does it
exclude a hopping mechanism. This conclusion is consistent with other theoretical working

on hopping transport. %

3.6 Supplement

In addition to the models described in detail in the main text which were partially successful
in reproducing all of the experiments, we also tried to fit the experimental data using two
more-complex models that often appear in the literature. These models failed to reproduce
the experimental results of both experiments. %% For the sake of completeness, we describe
the models in the following. The first is the extended — fully adiabatic Newns-Anderson
model. 3% According to the Newns-Anderson model the current is modulated by a

collective coordinate Q (solvent or molecule coordinate). The instantaneous current 7 |

for a fixed value of Q is given by
- V)+eV \Y%
[ (V;77,Q)=%1“a (arctanw—arctan $j (3.16)
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where

4 1 1
I=I, +I,and —=—+—
AT and =t (3.17)

a L R

are the arithmetic and harmonic averages of the broadening functions I ®)" The energy

L
offset from the substrate’s Fermi energy at fixed molecular configuration Q, can be

expressed as

& (Q.n.V)=—-ein—esV +1(1-2Q), (3.18)
where A is the reorganization energy, & is a gating efficiency, 0<&£<1, 7 is the
overpotential, 77=Veq—% (Vg = (4 +42)/2e), and & is a voltage division factor
0<o<1l

The theoretical (total) current to be compared with the experimental current should be

computed as a temporal average within a time ~ Because 7 is long compared to

meas * meas

Tque INStead of temporal averaging, one can perform ensemble averaging

[ T(Vin.Q)P(QinV)dQ
<|”(v;77,Q)Q>Q = , (3.19)
[ P(Qin.Vv)dQ

—00

where P(Q;n,v) is the thermal weight and can be expressed as
P(Q;m;V)=exp[-U, /ksT] , where U, (Q;7;V) is the adiabatic Gibbs free energy. In

this model the site &,(Q,7,V) is interpreted as the redox Cu state energy which depends on

a molecular conformation Q.

The other model is a vibrationally coherent two-step ET model (2sETm). #42 The formula
which gives the current and describes molecular transport in the adiabatic limit and for V >0

is the following:
2AV

- (}t—efry—eév)z}rexp{

exp (3.20)

(/1+e§77—(1—5)ev)2]

1
47Kk, T 47Kk, T

where
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2

€
A=Wk L) (3.21)

ph

is a prefactor, kg, are the microscopic transmission rates, p, ., are the densities of states

and w,, is an average of the (solvent) phonon frequency.

The specific research work presented in this chapter has been published during the doctoral

program (see ref. [63]).
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CHAPTER 4

Observing Donor-to-Acceptor Electron-Transfer Rates
and the Marcus Inverted Parabola in Molecular
Junctions

A recurring theme in molecular electronics is the relationship between the intra-molecular
electron transfer rate in a donor-bridge-acceptor system and the conductance at low bias in
the corresponding electrode-bridge-electrode junction. The similarities between through-
bridge donor-to-acceptor electron tunneling and through-bridge electrode-to-electrode
Landauer transport led to the suggestion of an approximate linear relationship between the
rate and the conductance for any given bridge. A large body of work indicates that the two
quantities are not necessarily linearly related, showing different behaviors as a function of
temperature, voltage and bridge length. Apart from Landauer tunneling, incoherent hopping
can be an important mechanism in molecular junctions. We propose a donor-bridge-acceptor
molecular junction, functioning in the incoherent hopping regime, that is suited for
establishing direct correlations between the electrode-to-electrode current and the intra-
molecular donor-to-acceptor electron transfer rate. We suggest that this type of junction may
be used to observe the Marcus-inverted-parabola dependence of the intra-molecular rate on
energy gap by varying the bias voltage. The realization of such an experiment would enable
meaningful comparisons between solution-phase electron transfer rates and molecular-

junction currents for the same molecule.

A recurring theme in molecular electron transfer (ET) and transport (ETr) is understanding
the role of the molecular bridge in transferring electrons, whether in the context of a donor-
bridge-acceptor ET reaction or in the context of an electrode-bridge-electrode ETr
experiment. What features of the bridge’s structure tune the rate of an ET reaction and the
conductance of a molecular-junction ETr experiment? Is it possible to correlate a donor-to-
acceptor ET rate to the electrode-to-electrode conductance for the same molecular bridge?
These questions were posed in refs [1,2] where it was argued that an approximately linear
relationship between the ET rate and the low-bias Landauer conductance exists in the

simplest cases.

References [1,2] inspired theoretical and experimental studies that explored correlations

between ET rates and conductances. 3% The general conclusion is that the relationship
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between the two quantities is not linear. There are several differences between an intra-
molecular ET experiment and a molecular ETr experiment, even when comparing a donor-
bridge-acceptor system to an electrode-bridge-electrode junction comprised of the same
bridging molecule. For example, the molecular electron donor and acceptor states are
localized, with discrete energies, in contrast to the electrode-donor and electrode-acceptor
states which are more delocalized with a continuous or quasi-continuous energy spectrum.
The donor-bridge and acceptor-bridge energy gaps and couplings in the ET experiment will
generally differ from the electrode-bridge energy gaps and couplings in ETr. The solvent
environment, much “dryer” in a molecular junction as compared to solution-phase ET, is
also likely to influence the role of the bridge by perturbing the bridge’s conformation and its
electronic states, and by altering the time scale of dephasing and vibrational relaxation. The
electric field applied across a molecular junction induces additional types of perturbation to
the bridge which are absent in the (zero-field) molecular donor-bridge-acceptor experiment.
In addition to all of the above, differences in experimental probes (e.g., current versus time
resolved absorption measurements), and other experiment-specific differences such as
bridge-electrode contact disorder, are likely to make simple correlation between ET rates

and ETr conductances.

In spite of the above complications there are common bridge-dependence trends among ET
and ETr experiments. For example, saturated bridges are less conductive than unsaturated
ones and bridges that act as tunneling barriers show exponential dependence of the rate and
the conductance on bridge length. In both ET and ETr communities one talks about through-
bridge off-resonant tunneling, resonant-tunneling and hopping mechanisms, and there are
efforts to incorporate biological ET molecules (proteins and DNA) in molecular junctions or
self-assembled monolayer heterojunctions with the aim of using some of the molecular ET

properties to tune the corresponding currents in the junctions. 1

The most common ET mechanism in chemical and biological systems is incoherent hopping.
12-18 The hopping centers (sites) are redox moieties connected by molecular bridges that most
often act as tunneling barriers. The electron moves from the donor site (D) to the acceptor
site (A) via a through-bridge coherent tunneling step. The closest analogy in a junction is
through-bridge electrode-to-electrode coherent tunneling at low bias, described by the
Landauer theory. However, it is possible, in the regime of weak electrode-bridge coupling,
that a part of the molecular bridge between the electrodes acts as an incoherent site that
accepts (donates) a transferring electron. Simple rate models for such incoherent transport

mechanisms are abundant. 231921 For example, the introduction of a redox moiety inside the
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molecular bridge can create an additional incoherent channel that involves switching
between the redox moiety’s oxidation states. Indeed, recent theoretical work considered
junctions containing a redox moiety with multiple fast and slow channels. 222 Such
junctions (denoted “redox’’) have very rich voltammetric phenomenology such as negative
differential resistance and hysteresis because the switching charge state of the redox moiety
can gate the molecular electronic level energies. In general, there is strong experimental

evidence of incoherent hopping in junctions where a bridge contains a redox center. 2426

Motivated by these advances and by ref. [2] that compared the low-bias conductance to a D-
to-A ET rate, we propose a molecular junction setup containing two redox centers connected
to each other by a linear bridge and also to the electrodes by linear bridges. “Linear” is an
approximate term, e.g., a planar bridge with one dimension much larger than the other two
is also considered linear if the redox center/electrode is connected at the end of the larger
bridge dimension. The two redox centers of the junction may be chosen from solution-phase
ET systems for which they are the DA pair in bridge-mediated D-to-A ET reactions
operating in the limit of nonadiabatic Marcus theory. We discuss junction parameters that
enable the direct observation of a nonadiabatic bridge-mediated ET rate between these redox

centers by measuring the junction current under a bias voltage.

4.1 Theoretical methods

Prior to discussing the proposed junction setup, we review a simple (single-site) hopping
model that is often used to describe the incoherent hopping mechanism (Fig. 4.1). 1920252
A redox center (incoherent hopping site) is connected to a left (L) electrode and to a right
(R) electrode via bridges (linkers). The bridges are not necessarily of the same length and
both act as tunneling barriers for electron transfer between the hopping site and the electrodes
(Fig. 4.2). There is only one (hopping) channel that supports the current and it involves a
single electronic level of M.

Bridge Redox center
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Figure 4.1 Schematic representation of a linear one-site hopping model with a single
hopping site (redox moiety M) connected to left (L) and right (R) electrodes, respectively.
The connection to the L electrode is through a molecular bridge that is assumed to act as a
high tunneling barrier for the transferring electrons. The M-to-electrode hopping rates are

given by Marcus theory rates for heterogeneous ET (egs (4.2) and (4.3)).

In the fully incoherent limit (weak M-electrode coupling) the bias-voltage and temperature
dependence of the current can be interpreted in terms of a hopping model that involves
heterogeneous ET between the level of M and the right (R) or left (L) electrode. Figure 4.2
shows the energetics assuming a positive bias. The left and right bridge levels B (Br) are
shown to be of much higher energy than both M level energy and the L (R) Fermi levels.
This depiction implies that the bridge levels act as tunneling barriers, providing only virtual
intermediates for the transferring electrons. For example, assuming that the current is carried
by holes, the accessible charge states of the junction are LBLM*BrR and LBLMBRR (with
LBL*MBRgR and LB.MBRr"R energetically inaccessible).

B

R
B, k.
—= 7 N
7 N 7 N
4 \ 4 Kq /
W M
1 =—eV/2 4% Ke

ke

Uy =+eV/2

Figure 4.2 Schematic representation of the molecular levels in the junction setup of Fig. 4.1.
The diagram shows a positive bias situation, where the backward rates are much larger than
the forward rates. The bridge levels BL and Br shown to be of much higher energy than the
redox level M. M indirectly couples to the L and R electrodes through the bridge levels

(electronic couplings are represented by red dotted lines).

The steady-state current given the above assumptions is
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(VK (V) ke (V) ks (V)

1(V)=- , .
V)= )k (V) ke (V) ks (V) @1
where the rates are described by Marcus theory for heterogeneous ET, 19:21.22:27.28
— I
K (V)= 27LjdEf (E =2 )W, (E ey (V) 1),
- r
k (V)= 27LJ.dE[1— f(E— ) [Woea (Ev 8 (V) 22, (4.2)
and
, r
Ky (V)= 27RjdE[1— f(E—stg) Wiy (B (V). 122 )
(4.3)

ER(V)zzr—;jdEf (E =t )Wy (E. ey (V). 115)-

In the equations above, K(Ri) are reduction (oxidation) rates of M by the i electrode (i =

L, R). W,, (E,gM (V),yL(R)) and W, (E,gM (V),yL(R)) are distribution functions ' for the

oxidation and reduction of M, and are given by

(,1—(;;L(R)+E)+5M % ))2

1
W, (E, &y (v),yL(R))zWe et

(4.4)

(l+(,uL(R) +E)—5M (V ))2

1
W, (E. (V),yL(R)) = kg
B

u =—eVv/2 (,uR = +eV/2) are the chemical potentials of the L (R) electrode and ¢,, (V)

the redox-level energy, given by &, (V)=¢&,+(a—1/2)xeV, where &, is the zero-bias
energy of the M level and « determines the voltage dependence of the level, e.g., a value of

a=0.5 leads to g, (V) =¢&,, Whereas o >0.50 would give a voltage dependence of the M

level energy that is more pinned to the right electrode. A is the reorganization energy for

oxidation / reduction of the redox moiety, and T, ., are the level broadenings associated

with the bridge-mediated couplings HL(R) between M and the L (R) leads,

L) :”HE(R)IOL(R)’ (4.5)
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where p, ., are the electronic densities of states of the L (R) leads. H ., should be
interpreted as a through-bridge (BL(r)) tunneling matrix elements. In the following we denote

L(R)

1
o AT

can be approximated from voltammetric studies of nonadiabatic heterogeneous ET for a

the prefactors for the heterogeneous ET rates as Clir) = . These prefactors

variety of redox center-bridge-electrode systems. 2%

If H, is much weaker than H., we expect to encounter regimes for which the k_ (V)

(k. (V)) is current limiting, depending on the sign of the bias voltage (much smaller than
the Kq (V) (ks (V)). For example, in a situation when the k, (V) is current limiting, the
current in eq. (4.1) is directly proportional to k _(V), i.e., 1(V)~ek (V) for V>0 and

I (V)~-ek_(V) for V <0. In this situation, the voltage and temperature dependence of the

current reflects the voltage and temperature dependence of the heterogeneous ET rate. Figs

4.3 and 4.4 are examples of this situation for a system with &, (V)=+(0.15)xeV,

A=0.2eV and ¢, <<c,. Figure 4.3 is a plot of k, (V) as a function of voltage at different

temperatures. The behavior is typical of a heterogeneous ET rate which has a sigmoidal
dependence on overpotential, increasing in the normal region and saturating in the inverted
region (the former showing activated temperature dependence and the latter temperature
independence, see Fig. 4.4b). Figure 4.4a shows the exact and approximate (rate-limited)

current expression as a function of voltage, indicating that I (V)~ek (V) for V >0 and

I (V ) ~ —eIZL (V) for V < 0. Figure 4.4b shows the temperature dependence of the current at

three different voltages, corresponding to the normal (thermally activated), inverted and
activationless regimes of the heterogeneous ET rate in Fig. 4.3 and the approximate current.
The signatures of Marcus heterogeneous ET rates have recently been observed in ref. [24],
which probed the bias-voltage dependence of the current in a more complex (redox)

molecular junction, and in ref. [26].
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Figure 4.3 Left backward rate (IZL eq. (4.2)) versus the bias voltage V at T = 100-400 K.

The heterogeneous ET rates have a sigmoidal dependence on voltage, increasing in the
normal regime and saturating in the inverted regime. Parameter values: a = 0.65, 0 = 0, 1 =
0.2 eV, c. =0.15 x 10% eV-*2 ns? and cr/cL = 1000.
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Figure 4.4 (a) Current | versus the bias voltage V at T = 300 K. Exact current expression (eq

(4.1) black dots) and approximate expressions for the positive bias voltage regime (
I (V)~ek,_ red dots) and for the negative bias regime (1 (V )~ —ek,_ blue dots). (b) Current
I versus 1000/T at VV = 0.05 V (black dots) indicates the normal Marcus regime, 0.2 V (red
dots) indicates the activationless regime, 0.4 V (blue dots) indicates the inverted Marcus
regime. Parameter values: a = 0.65, so=0, A = 0.2 eV, c. = 0.15 x 10? VY2 ns’t and crlcL =

1000.
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In contrast to the Marcus heterogeneous ET rate between a redox center and an electrode
(egs (4.2)-(4.5)) the intra-molecular Marcus ET rate between two redox centers (D and A)
in a DBA system shows an inverted-parabola behavior (for the natural logarithm of the rate)
as a function of DA energy gap. 31*? As the energy gap is changed from positive to negative
values, the rate increases (in the normal activated region) reaches a maximum (in the
activationless region) and then decreases again (in the inverted activated region). We
propose a molecular junction setup suited to observe directly an intra-molecular ground-state
D-to-A ET rate in the current measurement. The ultimate proof of success for the junction
experiment would be to demonstrate that the natural logarithm of the current under bias
shows the inverted-parabola behavior of the rate’s energy gap dependence. We discuss
conditions under which this observation would be possible.

The simplest setup (model) is a linear junction with two groups M. and Mr that act as
incoherent D and A hopping sites, and that are connected by a central molecular bridge (Bwm).
Bwm acts as a tunneling barrier for electron transfer between M. and Mr (Fig. 4.5). The M.
group is also connected to a left electrode (L) via a bridge BL and the Mr group to a right
electrode (R) via a bridge Br (both acting as tunneling barriers). Applying a bias voltage V
across the junction induces a current that involves electron tunneling between M. and Mr.
The rate of M_-MRr electron transfer is nonadiabatic, described by Marcus theory. Due to the
quasi-linearity of the junction there are no other parallel transport channels that avoid M-
Mg electron transfer. Under what conditions is the current proportional to bridge-mediated
M_-to-Mr ET rates (backward or forward), similar to the intra-molecular D-to-A ET rates
that would be observed in a solution-phase ground-state ET experiment of the DBA system

where M and Mg act as D and A?

A critical condition is that M. and Mr redox levels be weakly coupled to each other by the
bridge, such that ET between M and Mr within the junction is the slowest rate process (thus

current limiting). Using the notation of Figure 5, the My -to-Mg ET rates, k.. and k., 3" are
given by,
(AG(V )+ (4, +45))
C — 2_” 1 2 e_ 4(A +7g ksT
o far (A Akt
(4.6)

(AG(V)~(4 +7a))°
= _27T 1 2 T a(A g )keT

it = 5]
" far (A A kT
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Hy, w, 1S the bridge-mediated ML-Mr tunneling matrix elementand 4, , 4 are the M, Mr
reorganization energies, respectively. AG =g, (V)-s, (V) is the energy gap for bias

voltage V, where &, (V), &, (V) are the redox energies of M. and M.

The forward and backward rates for ET between M. (MRr) and the L (R) electrode are
described using nonadiabatic Marcus theory for heterogeneous ET where k (V) and k_(V)
are given by eq. (4.2) with M replaced by Mc and k. (V) and k. (V) are given by eq. (4.3)

with M replaced by Mr. The underlying assumption for using eqs (4.2) and (4.3) is that the

Mc-L and Mr-R electronic couplings and widths (H,,  and T, ) are relatively weak.

Thus, the My and Mg redox levels are localized on the redox units as would be the case for

the solution-phase system.

Middle bridge
(tunneling barrier for intra-molecular ET)

LR eE

IZL — <+ k. — IZR

K —> K. K, \

Figure 4.5 Schematic representation of the linear redox junction model. Donor (M) and

=~

v

acceptor (MR) redox groups are connected to left (L) and right (R) electrodes, respectively
via left (BL) and right (Br) bridges and also connected to each other by a middle bridge (Bwm).
All bridge units are tunneling barriers for the transferring electrons. The model assumes that
the ET mechanism between M. and Mr is incoherent hopping with forward and backward
intra-molecular ET rates given by eq. (4.6). ET between M. (MRg) and the L (R) electrode is
also incoherent hopping with forward and backward heterogeneous ET rates given by eqs
(4.2) and (4.3).

To calculate the steady state current in this model, we use the method in refs [33-35]. We

obtain the stationary occupations P for each site i (i = M., Mg, L/R) by solving the

following kinetic equations with P =0:
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—(k, +Kip ) P+ ki P +k R =0

int

kint PhSlSLS) - ( kint

+Ky )R +kPS =0 4.7)
P +Py + R =1

The steady state current (evaluated for the left interface) is:
1(V)=—¢(k P -k P), (4.8)

leading to the following exact expression for the steady state current (see Supplement

section):
I(V):—e _ _ _ kkLiEmthk_j(LkintakRk __ 4 - A (4-9)
kintkL + kintkL + intkL + kinth + kLkR + I(inth + |nth + kL R + kLkR
To describe the bias-voltage dependence of the redox-level energies (¢; (V) , 1= My, MR),

we assume that a fraction o (aR) of the bias voltage drops at the left (right) electrode-
molecule interface, and a fraction ¢,, drops along the molecular bridge between the M. and
Mg redox groups (e, +ay, +az =1). In terms of these parameters, the bias-voltage

dependence of the M. and Mr redox-level energies are described by

e, (V) =6y o+(a -12)eV, (4.10)
and

ew, (V) =gy, o—(az —12)eV, (4.11)

where &, (i = M, Mg) are the zero-bias redox energies of M. and M. Therefore, the M-

Mg energy gap that determines the intra-molecular ET rates (eq. (4.6)) is given by
AG(V)=g, (V)-&y (V)= (gMR’O _SML,o)_(O‘L +ay—1)eV . (4.12)

This equation expresses the energy gap as a function of the Fermi window of the junction,

as shown in Fig. 4.6 for a positive bias voltage and for ¢, ;=& ,.

80



R
BJ’M / N
/ A / K, A V/2
B / \ 7 ke | 1 =+e
b N My e
/ \ I(int C
. / K,
o VMY T gl

K
u=-2 —

Figure 4.6 Schematic representation of the levels in the BLM BmMRgBR junction of Figure
4.5. Electronic couplings between the levels are represented by red dotted lines. The diagram
shows a positive bias situation with the M (Mr) DA energy gap written as a function of the
total bias across the junction. In our model this fraction is controlled by the parameters oL
and or. The figure shows that the bridge levels act as deep tunneling barriers for the
transferring electron such that only M. and Mg change their oxidation state during transfer.
Positive bias leads to a positive L-to-R current (R-to-L electron flow).

The model assumes that the junction only accesses states with one extra electron (or hole)
on the bridge (as implied by the constraint in the third line of eq. (4.7)). Further it assumes
that the extra charge is either localized on ML and/or Mr units but not on the bridge units B;
whose levels act as high energy virtual intermediates. Thus, the junction M_-to-Mr ET step
is analogous to a M-to-Mr charge shift process in solution phase. In summary, apart from

the bias voltage and temperature, the main parameters of the model are: 4 and &,

1
(reorganization energies and redox energies of redox groups i = M, Mr ), ¢; (electrode-to-

M. (MR) voltage-drop fraction), Ci(r) (prefactors for the ET rates from the levels to the leads,

related to the level broadenings) and c¢ (prefactor for the intra-molecular ET rates,
2z 1 2

S S .

In the following we give examples of different regimes that could be observable in the

c

proposed junction (Figs 4.5 and 4.6) under the abovementioned conditions. We consider the

simplest junction setup, a symmetric system of identical ML and Mgr groups (
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Ev 0 =Em,0 =& In egs (4.10) and (4.11)) connected by a symmetric bridge and having

identical L and R leads and M_-L and Mgr-R couplings. The model’s ET parameters are given

values that are typical of molecular and electrochemical nonadiabatic ET.

4.2 Results and Discussion

In all of the examples of the figures that follow, the energy, coupling and reorganization
energy values are such that the intra-molecular and heterogeneous ET rates are nonadiabatic
(see the discussion in section 4.4.3 of the Supplement). Further, all of the ET rates can be
described by thermal-equilibrium theories because they are slower than typical vibrational

relaxation times.

In order to explore the behavior of the current in the proposed quasi-linear symmetric
junction, it is necessary to model the voltage profile across the junction, i.e., to justify values

for o, and a ineq. (4.12). We first consider the model of a linear voltage drop across the
junction. Denoting the L-M., Mi-Mr and Mgr-R distances as D, , Dy , and D, .
respectively, a linear voltage profile leads to o D,, /D, and o =D, ,, /D, , where

Dot =D, + Dy, m, +Du, s is the total length of the junction. For example, for a

ot —
symmetric junction with D, , =Dy, ~Dy v ., a =a;~1/3. For a linear voltage
profile with o, =, =1/3, the energy gap between M. and Mr redox levels (free energy
for the intra-molecular ET reaction) is |AG (V)| =|eV|/3 (eq. (4.12)), lower than A across

the junction (see Fig. 4.6).

For a meaningful comparison to solution-phase M_-Mr ET rates, the in-junction redox levels
of M and Mg should not be hybridized with the electrodes even if the redox-level energies

are close to the Fermi levels, i.e., T . << 4. /4. To this end, the B. and Br bridges

(R)
connecting the redox groups to the electrodes should be high tunneling barriers for ET
between the electrodes and the redox levels. This property can be achieved by using fully
saturated organic bridges and metal M. and Mg groups. ! The Myr)-L(R) electronic
couplings will be very weak for the B. and Br bridge lengths of the order of 10 A and can

be estimated from experiments. 2

We first present the simplest junction case where the redox energies of M. and Mg groups

are quasi-resonant to the Fermi level of the L and R electrodes at zero bias (
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Em 0 =Em,0 =& ~0 ineq. (4.12)), and then relax this condition (i.e., set & #0). Figure
4.7 shows the I-V behavior of such a junction at T = 308 K (o, =a =1/3, &, =0,
A =2,=01eV, ¢ =c,=022x10'eV*’ns* and c=0.15eV*?ns?). The

reorganization energy values are low (inner sphere), typical of a “dry” junction environment.

The ¢, values are consistent with those derived from voltammetric experiments of

heterogeneous ET between metal redox centers connected to electrodes by saturated bridges

_fur 1
O [

the ¢ , values correspond to T', =0.8x10"eV < A ) (consistent with a localized

of 7 - 10 A length. #° Since ¢, , for reorganization energies of 0.1eV ,

redox-level regime and with the nonadiabatic limit). Choosing c=0.15eV*?ns™* for
=27 1
ho Jar(a+2)

bridge-mediated coupling of H,, =1.6x10"eV , a plausible value for metals connected

of the intra-molecular rate (eq. (4.6)), corresponds to a weak

by a saturated bridge of a few Angstroms length. ! In this parameter regime the intra-
molecular M-to-Mr ET rates are the slowest, and all ET rates (intra-molecular and
heterogeneous) are much slower than (psec)?, a typical vibrational relaxation rate. Thus
thermal-equilibrium nonadiabatic theory is justified for all ET rates, intra-molecular and

heterogeneous. The conditions of [ g < A ry and of rates slower than (psec)? are

important for enabling correlations with solution-phase ET.

The 1-V behavior in Fig. 4.7 shows current maxima at the bias-voltage values £V__ . At

higher (lower) bias voltages than +V_, (-V..) the current drops, showing a type of

Negative Differential Resistance (NDR) behavior. NDR can arise from a variety of
mechanisms and has been observed in several cases. 3¢-3° We will show that in the context

of the proposed quasi-linear junction, this behavior is due to the fact that the intra-molecular

Mr-to-M_ ET rates (Izim, IZim) limit the overall current and they are also driven by the bias

voltage from the normal to the activationless and back to their inverted regimes. In an actual
experiment the current will likely not drop completely to zero at the highest bias-voltage
values because other high-voltage channels may start contributing to the current. However,
for the proposed parameter regime and for a quasi-linear (stretched) junction geometry, such
additional channels will be weaker tunneling currents and the peak region of the current

around £V__. will be observable (see Supplement section 4.4.4).
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Figure 4.7 Current | (eqgs (4.8) and (4.9)) versus the bias voltage V at T = 308 K for the
partially pinned system of Fig. 4.6. Parameter values: a. = ar = 0.33, 0= 0, AL.= Ar = 0.1
eV, cL = cr=0.22 x 10! eV'¥2 ns? and ¢ = 0.15 eV¥2 ns. The current shows a gaussian

dependence on the voltage that reflects the energy gap dependence of the intra-molecular ET

rates k.

int

or k...

To clarify the dependence of the current on the intra-molecular ET rates, we focus on the

positive bias region of Fig. 4.7, where g, > 1, and the forward intra-molecular M_-to-Mg

ET rate is slower than the backward Mg-to-M,_ rate, k. << k.

int int ?

since AG =Au/3. Fig. 4.8a

shows the Mg-to-M. ET rate k

int

as a function of bias voltage (bottom x axis) and as a
function of the MiMr energy gap (top x axis), which is given by
AG(V)=s,_ (V)-&y (V)=6€V/3. The ET rate has the expected gaussian energy-gap
behavior ~ (normal, activationless and inverted) with a maximum at
AG (V max)zAG* = A, _+ A, . Figure 4.8b shows the corresponding current (eqgs (4.8) and
(4.9)) in the positive voltage region and also an approximate expression for the current,
I (V)~ek, . The figure demonstrates that, in this ET-rate limited regime, the current is

determined by the ET rate and the current’s voltage dependence reflects the free energy gap

dependence of the rate. The maximum current voltage is at V™ =3AG /e =3(4_+4;)/e

and the voltage width of the current’s gaussian region is AV =0, = 3\/ 2(A + A5 )k T / e.

Both of these variables could be used to predict the reorganization energy of the intra-

molecular ET reaction in the junction environment. The approximate expression for the
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current, 1(V)~ek,,

can be derived from eq. (4.8) in the limit where k,, <IZL(R),kL(R)

(Supplement section 4.4.2, eqgs (4.20) and (4.21)). For negative voltages the current in this

example is given by 1 (V)

= —eIZ.

int *

This type of experiment can be readily correlated to one

involving the solution-phase ET reaction for an identical DBA system.
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Figure 4.8 (a) Backward intra-molecular rate |Zim versus the bias voltage V and Gibbs free
energy 4G at T = 308 K. (b) Current | versus the bias voltage V and Gibbs free energy 4G

at T = 308 K (covering the positive V region of Figure 7). Exact current expression (eq (4.9)

~ ek, red dots). Parameter values for

black dots) and approximate current expression ( 1 (V)

both graphs: a. = ar=0.33, &0=0, AL =Ar=0.1€eV, cL=cr=0.22 x 10* eV*?nst and ¢ =

0.15 V2 s, V™ =3AG e =3(4, + 4 )/e and o, = o, =3\2(A + 4 kT Je.

Figure 4.9 is similar to Fig. 4.8 showing the I-V behavior for positive bias voltage in the case

of larger reorganization energy (4, =4, =0.2eV) and larger bridge-mediated DA coupling
Hy, m, =3.0 x10™eV (all other parameters are the same as in Figs 4.7 and 4.8). The

current is still rate limited by the intra-molecular rate, but the maximum current bias voltage

V™ and the width of the gaussian region o, are higher due to the larger reorganization

energy (4_+7g) of the intra-molecular ET rate.
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Figure 4.9 (a) Backward intra-molecular rate |Zim versus the bias voltage V and Gibbs free

energy AG at T = 308 K. (b) Current | versus the bias voltage V and Gibbs free energy 4G
at T = 308 K. Exact current expression (eq. (4.9) black dots) and approximate current

expression (1 (V) ~ek;

int

red dots). Parameter values for both graphs: oL = ar = 0.33, 0= 0,

= kR =02¢8V, c. = cr= 015 x 10! eV nst! and ¢ = 0.38 eV¥? nsl

V™ =3AG fe=3(,+4)/e and o, = o, =3J2(A + 4 kT /e.

Figure 4.10a shows the I-V behavior of the symmetric junction in the case where all
parameters are identical to those of Figs 4.7 and 4.8 apart from the zero-bias redox energy

of ML (MRr) which is now taken to be off-resonant with respect to the Fermi level

(gML,O =&y, 0 =& = 0.1eV). Figure 4.10a shows the corresponding current (egs (4.8) and

(4.9)) and also an approximate expression for the current, | (V) ~ _EEKR% for positive
int + kR + kR
voltages and | (V) e —& for negative bias voltages (Supplement section 4.4.2).
K +k_+K_
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Figure 4.10 Current I versus the bias voltage V at T = 308 K for a junction with off-resonant
M. and Mg redox levels at zero bias. Parameter values for both graphs: oL = ar = 0.33, e0 =
0.1eV, L= r=0.1¢8V,cL=cr=0.22x10'eV¥?nstandc=0.15 eV’ ns?. (a) Exact

current expression (eg. (4.9) black dots) and approximate current expressions for the positive

ek, k

bias voltage regime (1(V)~ Rt red dots) and for the negative bias regime (
K +Kg +Kg
I(V)z—% blue dots). (b) Current | versus the bias voltage V at T = 308 K
I(int + kL + L

(covering the positive V region). Exact current expression (eg. (4.9) black dots) and rate-

limited approximate current expression (I (V) ~ ek

int

red dots).

Apart from a low-bias activated region for bias voltages between —0.2 V and +0.2 V , (due
to the off-resonant redox levels at zero bias), the 1-V curve shows the inverted Marcus

behavior expected of a current that is limited by the intra-molecular rate. Figure 4.10b shows

that the current is limited by the intra-molecular rate (I (V)zeIZ

int

) in region around the

current maximum. Thus, the rise and fall in current with voltage reflects the inverted Marcus
behavior of the current-limiting intra-molecular rate (see more examples in the Supplement
section 4.4.2).

The behaviors shown in Figs 4.7 to 4.10 are accessible experimentally if the voltage profile

inside the molecule is such that it induces an energy gap between the donor and acceptor

(M) groups. However, if the voltage profile is very flat and AG (V) ~ 0, it will not be

possible to observe the inverted and normal regime for the intra-molecular rates even if the

87



latter are the slowest rates. In this case k., =k _ =k., where k;

 NNint Y int

is an intra-molecular rate
(eg. (4.6)) with activation energy (4, +4;)/4 . For positive bias, k,, <k, k (i = ML, Mg),
k, ~ k. and assuming that the intra-molecular rate is not much smaller than the rest of the

heterogeneous rates, the current is given by the approximate expression

(V)= ek by negative bias it is given by 1 (V)=

T3k

int

— —& (Supplement
+kq + K, 3k, +k_+k,

int

section 4.4.2, eq. (4.23)).

Figure 4.11b shows the 1-V behavior of a BLMLBMmMRgBR junction at T = 308 K for the case
where ML and Mg remain resonant at the center of the Fermi window for all voltages (i.e., a

flat voltage profile for the M_-Mgr section). The parameter values are identical to those of

Figs 4.7 and 4.8, 4, =4, =0.1eV, ¢ =¢C, =0.22 x10"eV ¥’ ns™ and ¢c=0.15eV**ns™,
apart from the pinning parameters (o, =, =0.50 and &, =0). The current’s voltage

dependence is determined by the heterogeneous ET rates (since the M -Mr energy gap
remains zero) and the abovementioned approximate formulas give good approximations to
the current. In this situation the current’s dependence on the intra-molecular rate is masked

by the heterogeneous rates because the intra-molecular rate energy gap is not affected by the

bias voltage.
) . . . (b) . .
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Figure 4.11 (a) Right backward injection rate IZR (black dots) and left forward injection rate

IZL (red dots) versus the bias voltage V at T = 308 K. (b) Current | versus the bias voltage V

at T = 308 K. Exact current expression (eq. (4.9) black dots) and approximate current
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ek.k

expressions for the positive bias voltage regime (1 (V) ~——FRt___ red dots) and for the
3k, + kg +Kgq
negative bias regime (1(V )~ —& blue dots). Parameter values for both graphs:
3k, +k_+k,

a=0or=0.50,6=0,A=Ar=0.1¢eV,c.=cr=0.22x 10 eV¥2 nst and c = 0.15 eV*2 ns-
1

Finally, in the limit where the intra-molecular rate is fast compared to the heterogeneous ET
rates, the current is either limited by a heterogeneous rate or a combination of heterogeneous
rates. In this situation the current voltage is sigmoidal-like and resembles the profile
expected from the model in Fig. 4.2 (e.g., Fig. 4.4). The intra-molecular rate is not observable

in this regime. An example is given in Fig. 4.12.
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Figure 4.12 Current | versus the bias voltage V at T = 308 K for a junction with partially
pinned M. and Mg. Parameter values: a. = or = 0.33,0=0,AL.=4Ar=0.1eV,cL=cr=0.15
eV Y2 nstand ¢ = 0.15 x 10% eV¥2 ns. The timescale of ET between the M. and Mg sites is
of the order of tens of psec. The ET timescale between the M; and the leads is of the order

of nsec.

In addition to the bias-voltage dependence of the current, its temperature dependence
contains information about transport mechanism. When the current is limited by an intra-
molecular ET rate, the temperature dependence of the current will be identical to that of the

rate (eq. (4.6)). The nonadiabatic intra-molecular rate is thermally activated in both the
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inverted and normal regimes (in contrast to the heterogeneous ET rates which are
activationless in the inverted regime). Figure 4.13 shows the temperature dependence of the
current for the case of Figs 4.7 and 4.8, where the current is limited by the backward intra-

molecular rate for positive V, | (V ) ~ ek

int *

Figure 4.13a shows the 1-V curves for positive
V at different temperatures. For V <V, —o, the intra-molecular rate (and thus the current)

is well inside in the normal Marcus regime and for V >V,__ +o, itis inside the inverted

Marcus regime.

For both of these voltage regions the current has a specific activated Arrhenius temperature

dependence with a bias-voltage-dependent activation energy. Namely, since I(V)zeIZint

and k

int

is given by eq 6, In[l (V)]z%ln[consth‘l}—(Eact (V)/kB)xT‘l (denoted as

current behavior “A” in Fig. 4.13b). In this equation
const =e 27z H fALVMR/(h\/47z(/1L +n)ks ) and By (V) =(AG(V)~(2.+ ) /4(A + %)

with AG(V) given by eq. (4.12). In contrast, for V =V, ,, the rate is in the Marcus

activationless regime and the current decreases with  temperature as

In [ 1 (V )] z% In [Const xT ’1] (denoted as current behavior “B” in Fig. 4.13b). In particular,

as the bias voltage is increased from V =V __ —A (normal region of intra-molecular rate,
V =V, in Fig. 4.13a) to V =V_ (activationless, V =V, in Fig. 4.13a) to V =V, +A
(inverted region, V =V, in Fig. 4.13a) the temperature dependence changes from the
activated Arrhenius form “A” to the non-activated In [COHStXT_lj dependence and back to

the activated Arrhenius. The behavior shown in Fig. 4.13b should be compared to the
temperature dependence in Fig. 4.4b which is indicative of a heterogeneous ET rate. In the

latter case as the voltage increases the current just switches from thermally activated to

~ In[ constxT ], never reversing to activated at higher voltages.
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Figure 4.13 (a) Current (eq. (4.9)) | versus the bias voltage V at T = 100-400 K. (b) The
natural logarithm of the current versus 1000/T at V = 0.2 V (black dots) indicates the
temperature dependence of the intra-molecular Marcus rate: 0.2 V (black dots) normal
Marcus regime (current behavior “A” of main text), 0.6 V (red dots) activationless regime
(current behavior “B” of main text), 1.0 V (blue dots) inverted regime (current behavior
“A”). Parameter values for both graphs: a. = ar = 0.33, 0= 0, AL.=Ar=0.1eV,CcL=Cr =
0.22 x 10! VY2 nst and ¢ = 0.15 eV¥2 nsL. The current is limited by the intra-molecular
M_-to-Mr rate.

Figure 4.14 shows another example of this temperature dependence as a function of bias
voltage for larger reorganization energies (the parameters are those of Fig. 4.9). The switch
from the “A” to the “B” form and back to the “A” form as the voltage is scanned across V..
(shown in Figs 4.13b and 4.14b) is a clear signature of a current that is limited by an intra-
molecular nonadiabatic ET rate. Mechanisms involving simple coherent off-resonant or
resonant tunneling are expected to give activationless, temperature-independent current
behaviors as the voltage is increased, as long as the resonant/off-resonant regime is

maintained at all voltage values (i.e., Al ;, <€V in the case of resonant tunneling and

eV <&(V)F Al 4, inthe case of off-resonant tunneling %°).
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Figure 4.14 (a) Exact current | (eq. (4.9)) versus the bias voltage V at T = 100-400 K. (b)
The natural logarithm of the current versus 1000/T at V = 0.6 V (black dots) indicates the
temperature dependence of the intra-molecular Marcus rate: 0.6 V (black dots) normal
Marcus regime (current behavior “A”), 1.2 V (red dots) activationless regime (current
behavior “B”), 1.8 V (blue dots) inverted regime (current behavior “A”). Parameter values
for both graphs: oL = ar = 0.33, &0=10, AL, =Ar=0.2 eV, cL = cr= 0.15 x 10* eV ns* and
¢ = 0.38 eV¥2 ns. The current is limited by the intra-molecular M_-to-Mg rate.

As a final example we consider the case where M and Mr redox levels are nearly pinned to
the L and R electrodes, respectively, ie., &, (V)= and g, (V)= (o =a <<1).
Such pinning would imply that the voltage drop across the junction is a large fraction of the
M_-to-Mr voltage drop and the M.-Mr energy gap for the intra-molecular ET reaction (eq.

(4.12)) would be approximately equal to Az across the junction (JAG|~|Ax| in Fig. 4.6).

In this situation, for a linear voltage profile in a quasi-linear junction where

gy~ Dy, uiw) / D, » the redox groups would have to be close to an electrode to increase
the pinning, i.e., DML(R),L(R)/DtOt <« 1. Thus, the electronic couplings M.-L and Mr-R would

be stronger compared to the values considered in the previous examples and the forward and
backward heterogeneous ET rates would most likely be adiabatic. Given the aim that the in-
junction redox-level localization resembles the solution-phase redox-level localization, we

still require that I, <4, . To maximize pinning of M. and Mr while avoiding

hybridization with the electrodes, the BL and Br bridges should be shorter than 7 A
(assuming saturated organic bridges 2°), but should not be so short that the redox centers

directly contact the electrodes (in the stretched junction geometry). The central bridge Bm
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should be larger than 7 A so that most of the voltage drops in the M -Mg segment, i.e.,
DMR,R/Dtot = DL,ML/Dtot << DML,MR/Dtot '

Consider such a junction with approximately 25 A length and with B bridges of

approximately 6 A lengths. This system would give a, r) 0.2, and level broadenings Lry

of a few meV. ?° For a reorganization energy of 0.2 eV and classical ET-active modes of
My vy With average frequency of the order of 0.01 (psec)™, the heterogeneous ET rates would
be adiabatic (see the discussion of the adiabaticity parameter in Supplement section 4.4.3).
To estimate minimum (zero-bias) values for the heterogeneous adiabatic ET rates in this

example, we use an expression that approximates well the rate for [r) << /IL(R) (large

reorganization energies) and for low overpotentials with high activation energies

(

at zero bias, (go = 0), we predict minimum (zero-bias) heterogeneous rates of the order of

Hi(ry = €y ‘ < AL(R) / 4) (eqs (4.26) — (4.29)). *° For the case of quasi-resonant redox levels

1.0 (psec) ™. Therefore, the current will be limited by the intra-molecular M-Mg rates, which
will be even slower compared to the cases described previously, since the length of the

central off-resonant bridge (Bw) is increased in order to minimize ¢, .

In this example a non-zero bias voltage likely leads to heterogeneous rates faster than (psec)
!, Thermal-equilibrium theories and models of adiabatic reactions are not applicable for
describing sub-psec rates. Further, if the heterogeneous ET rates are of the order of or faster
than the typical vibrational relaxation rate, (psec)?, the ET-active vibrations of the M. (Mg)
group never equilibrate thermally when the group accepts an electron from Mg (M.) because
the electron transfers to the connecting electrode faster than the vibrational relaxation time
scale. Therefore, the in-junction intra-molecular rates may not be promoted by thermally
equilibrated vibrations and cannot be described by simple Marcus theory as in the previous

examples. In conclusion, although in this example FL(R) < A/4 such that each redox level

remains localized in the redox group (as in solution-phase ET), we expect differences
between the in-junction intra-molecular rate and the solution-phase one that are due to
nonequilibrium vibrational effects of the in-junction redox groups. The current will be
proportional to the in-junction intra-molecular rate, since it is the slowest rate, but the voltage

dependence of the current will not be described by thermally equilibrated Marcus theory.

If the redox groups are even more strongly coupled to the electrodes, i.e., I' g = 4,z , the

in-junction redox levels, although fully pinned, will be very hybridized with electrode levels.
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Also, the L(R) injection time scales are likely much faster than psec for all bias voltages. In
this case the hybridized in-junction redox levels are very different from the solution-phase
ones and vibrational nonequilibrium effects are very prominent. The I-V behavior will not
give information about the solution-phase intra-molecular rate even if the in-junction intra-

molecular rate is current limiting.

The examples considered above are not exhaustive, but they demonstrate how different
system parameters affect the phenomenology of the observed current. Achieving a variation
with bias of the M. -Mr energy gap that is greater than the total reorganization energy

A, + A, of the current-limiting intra-molecular rate is a necessary condition for observing

the full energy-gap dependence of the rate and current. Good choices for My and Mg are
metal-containing redox groups with redox energies slightly higher than the Fermi level of

the metal leads at zero bias. In our model this situation is described by setting &, , >0 in

eqs (4.10) and (4.11) such that there is an activation energy for heterogeneous ET from the
lead to the redox center (Fig. 4.10). Figure 4.14 shows examples of the 1-V behavior in this
regime where, in addition to activated charge injection rates, the M -to-Mgr ET rates are
current limiting. The Marcus-inverted-parabola behavior of the intra-molecular ET rate is
observable for a wide range of parameters, although it is partially masked by the sigmoidal
behavior of the activated heterogeneous ET rates. It is possible that at higher voltages in the
inverted Marcus regime the current-limiting rate shows a softer drop with voltage as
compared to the normal region due to quantum-vibrational effects. In this situation a mixed
quantum-classical expression should be used to describe the nonadiabatic intra-molecular

rate. 1219

In the context of the proposed quasi-linear junction architecture with metal redox centers,
good choices for bridges are saturated organic bridges that are known to act as high tunneling
barriers when connected to metal centers and that also support off-resonant tunneling
currents when connected directly to metal (e.g., Au) electrodes for bias voltages of 1.0 - 2.0
V and for lengths of the order of 10 A. #! Within the experimental voltage window such
bridges remain tunneling barriers for electrode to Myr) and M.-Mr electron transfer steps,
although they give voltage-dependent tunneling matrix elements. This voltage dependence
does not destroy the observation of the inverted Marcus regime (see Supplement section
4.4.4 for a model of this dependence). Further, if the connecting bridges are rigid, they are
likely to preserve weak mixing (charge transfer) between the redox levels and the lead levels
in the presence of thermal structural fluctuations and under the influence of the external

electric field. Tuning the bridge-mediated tunneling between the redox levels (thus the intra-
94



molecular rate) may be done by varying the length of the central bridge or by changing the
bridge chemical structure so as to alter through-bond and/or through-space tunneling
pathways, as in the case of solution-phase and biological ET studies. 111542

Only transport channels that involve current-limiting intra-molecular M-Mr ET will give
an inverted Marcus behavior of the current as a function of voltage. Therefore, from an
experimental point of view, it is important to use experimental methods that measure current
traces for the maximally stretched geometries of the bridge-redox system between the leads,
43 and analysis methods such as clustering #* that can identify the traces of the most linear
geometries. Given the quasi-linear form of the bridge-redox molecular assembly and the
high tunneling barriers provided by saturated bridges, stretched geometries cannot support
other transport channels that bypass ET between the redox groups (Supplement section
4.4.4).

Incoherent transport has been shown to occur in small-molecule junctions containing a metal
redox group connected to the leads by organic linkers. The redox group is involved in
incoherent transport channels as a charge donor and acceptor. 22 Even in junctions
comprised of metal-containing ET proteins, transport can be dominated by the metal’s redox
states that are near-resonant to the gold electrode Fermi levels and that contribute to
incoherent transport channels as electron donors and acceptors (e.g., the Cu center of Azurin
9254541 "In solution-phase chemical and biological ET, metal - organic bridge - metal
systems are ubiquitous and most often ET between the metals takes place via through-bridge
tunneling. 441> Further, heterogeneous ET rates for metal - organic bridge - electrode
systems are well characterized. 27263 Therefore, the use of metal redox groups with redox
energies close to the lead Fermi levels is a good choice for observing a donor-to-acceptor
ET rate in the current of a molecular junction experiment and comparing it to the

corresponding rate in a solution-phase ET experiment.

Observing the Marcus inverted region for chemical and biological nonadiabatic ET has been
a difficult task as it requires varying sufficiently the free energy gap of an ET reaction by
altering one of the redox groups, while keeping other parameters constant. 4852 Alternatively,
applying an external electric field in solution or in a polymer matrix to tune the free energy
gap for a fixed D-A pair is often hampered due to disorder and ensemble effects. >3- These
difficulties may be partially overcome at the single-molecule level by using the proposed

molecular-junction setup.
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4.3 Conclusions

We propose a type of donor-bridge-acceptor junction that could be used to observe directly
an intra-molecular donor-to-acceptor electron transfer rate through the measured current.
The junction’s architecture and energetics may enable the comparison between intra-
molecular donor-to-acceptor electron transfer rates in solution phase and the corresponding
rates in the junction environment. Under specific conditions, the junction could be used to
vary the donor-to-acceptor energy gap and to observe the Marcus-inverted-parabola
dependence of the corresponding rate in the nonadiabatic regime. We discuss the optimal
junction parameters and experimental conditions that would lead to a direct relation between
the current and the intra-molecular rate. The junction should be quasi-linear (lead — linker —
donor — bridge — acceptor — linker - lead). In the quasi-linear geometry, the only lead-to-lead
transport channel should involve incoherent electron hopping between donor and acceptor
moieties, with the bridge and the linkers acting as tunneling barriers. It is critical that the
donor-to-acceptor electron transfer hopping rates be slow enough compared to the
heterogeneous electron transfer hopping rates such that the overall current be limited by the
donor-to-acceptor rates. Slowing down the latter is possible by varying the length of the
central bridge (tunneling barrier for donor-to-acceptor transfer) or the bridge’s chemical
structure. The ability to vary the donor the donor-to-acceptor energy gap from the normal to
the inverted regime by applying a bias depends critically on the voltage profile within the
junction. This profile may be partially controlled by the (linear) positions of the redox groups
along the junction with the aim that a good part of the bias-voltage drop across the junction
would occur in the region between donor and acceptor. The donor and acceptor redox
energies should be close to the Fermi levels of the leads at zero bias and should not be
strongly coupled to the leads (the coupling tuned by the linker lengths), so that their electron
donating and accepting levels retain their localized character, as in solution phase. Metal
donors and acceptor moieties such as those encountered in biological electron transfer chains
are good candidates for the proposed junction. Even if the above conditions are realized, the
donor and acceptor electronic levels involved in solution-phase electron transfer may not be
identical to the levels involved in molecular junction electron transfer. Nevertheless, the
proposed architecture and optimal conditions lead to a junction intra-molecular rate whose
parameters are as close as possible to the parameters of the solution-phase rate. Thus, any
differences between the energy gap, bridge-length, and temperature dependencies of the

donor-to-acceptor rates in the two environments (solution-phase versus junction) would
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contain important information about environmental effects on electron-transfer mechanism

and would provide insights about the junction’s local environment.

4.4 Supplement

Derivations of all approximate expressions for the current that are described in the main text
for junctions with one and two redox groups and comparisons of these expressions with the
exact current. Descriptions of the nonadiabatic and adiabatic regimes for donor-acceptor and
heterogeneous ET, and of the adiabatic heterogenous ET rate equation used in the main text.
Description of the tight-binding model of BL, Bm and Br bridges used to explore the voltage
dependence of the bridge electronic couplings between the redox levels and between the
redox levels and the electrodes. Discussion of the effects of voltage dependent couplings on

the rate-limited current behavior and on the observation of the Marcus inverted regime.

4.4.1 Junction with one redox level: Heterogeneous ET rate limits the current

We review the single-site hopping model (see Fig. 4.1) that is often used to describe the
incoherent hopping mechanism. We are interested in cases where the M redox site is partially

pinned to the R electrode and the M-R electrode coupling is greater than the M-L electrode
coupling. Therefore H, << H, and k_,k_<<Kg,k, given that the other rate parameters are

not too different.

For positive high bias and k_k, <k kg, k_+k, <k_+k,, charge flows from R to L

direction at much higher rates than it does from the L to R direction. Then,

+ |~

Ke—kke [ Kk, 1—(kKe /K K Kk,
kL

_lZL
k. +IZR+ R

Further, since k,_ <<k,

L (4.14)

and the current is rate-limited by IZL . Inthis limit the behavior of the current with temperature

or voltage is just the behavior of IZL (see relevant Fig. 4.4a).
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4.4.2 Junction with two redox groups quasi-resonant to the Fermi levels at zero bias:

Approximate expressions for the rate-limited current

To determine the steady-state current for the case of two redox sites M., Mr (see Fig. 4.5),

we need to compute the stationary occupations (F’i(ss) = 0) of the M, MR sites by solving the

corresponding kinetics equations:

—(k, + ki ) P + ki P+ R =0

int int R

KiePe = (K

int

P+ Py + R =1

+Ke )R +kePS =0 (4.15)

int

The steady state current (evaluated in the left interface) is given by:
I (V) :_e(ELPL(,SFSQ) _k_LPI\EIS,_S)) (4.16)

By solving the above kinetics equations and calculating the stationary occupations, we end

up with the following expression for the steady state current:

I(V):—eE& S !
k k +k Kk +k k +k k.,

int

The above equation can be rewritten as

1(V)=-e

R
A N A N G R
k K- (1+ EtR:]”Lki“‘(“ Ez}r ke [1+R:]+kLkR+ o (K k)

For V>0 suppose that k <Kk , ky <k, k. <k  such that Kk, <kKsg,

k K, ks <k Ke ki, . k +ko <k +k, and k_ +k, +kg <k +ks+k,, . Charge flows from

the R to L direction at much higher rates than it does from the L to R direction. Then,
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(4.19)

Given that the intra-molecular rates are much smaller than the remaining rates (either
forward or backward), k.., k. <k_,k K.k, . Therefore,

int? "tint

—k ki k —k kK. —k ki K
I(V)z—e _ _ kL |nthk ka:|:_e _ LNint MR - z_e|:kkL |n£|1:| (420)
kLkR +kinth +kintkL +kL R k_Lk_R [l+l<imJ+k_LR'R (1+Jntj I(L R +kLkR
L R
In this situation, the steady state current becomes
k Kok -
1(V)~e LR '“;Z ~ ek, 11
Kk | 14 K= (4.21)
kR

Thus, the current is rate-limited by k.. and the behavior of the current with temperature or

int

voltage is just the behavior of k. .. In this parameter regime, where the intra-molecular M-

int *
to-MR ET rates are the slowest rates, the I-V behavior reflects the energy-gap dependence of
these ET rates (see relevant Figs 4.8b and 4.9b).

4.4.3 Junction with two redox levels quasi-resonant to the Fermi level at zero bias

whose relative energies are unaffected by the voltage bias

We now consider the case where the two redox sites M, Mr (see Fig. 4.5) remain in the
middle of the Fermi window. Thus, the M_Mr energy gap is zero and does not change with
bias voltage so that the forward and backward intra-molecular rates are equal at for all bias

voltages, k., =k =k . We will assume that k. is the slowest rate but that it is not much

— Nint * int

smaller than the rest of the heterogeneous rates (this regime is relevant to the system in Fig.
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4.11). For V >0 k_ <k, ky <kg, kky <kkq, k +Kk; <k_+kq, and net charge flows

from the R to the L direction. Then, from eq. (4.17),

|(v)=—eﬁ lzk o ke —
it | ool ook ool kLkR ok LkR kLkR
k. +k, +k +kg+ +kg +kg + +
kim I(in'[ I(in'[
KK, Eﬁ—q -
=—e — — s LR 7 — |~e kkkLkR —
k. (1+ lEL }+IZR [1+ lfRJ+ ik [1+ }lfR }L K, + kg + kiky k, +Keq + kike +K +ke + kike
L kR I(im L™R kim I<im |(im
Considering also that, k ~kg,
H(V)~e __ — |~e ke g LN =6kim[3kklsl2]'
IZL 1+=- +kL R+2uR+kLkR k, 1+ki+21(R +k7R 3+k7R+k7R it T Kp T Kg
kL kim kint kint kL kinl I(int I(int

(4.22)

(4.23)

4.4.4 Junction with two redox levels off-resonant to the Fermi level at zero bias:

Approximate expressions for the rate-limited current

We consider the parameter regime with &, , =&, , =&, >0 inegs (4.10) and (4.11) such

that there is an activation energy for heterogeneous ET from the lead to the redox center (see

Fig. 4.15). Figure 4.16 shows examples of the I-V behavior in this regime. The Marcus-
inverted-parabola behavior is observable for a wide range of parameters. In Fig. 4.16 the
case where g0 = 0.25 eV could correspond to M, Mr = Ferrocene Fc(+)/Fc redox group (with
reduction potential Eo = 400 mV versus SHE) 2 and to Au electrodes (Fermi level of -5.1

eV). °" The case g0 = 0.35 eV could correspond to Azurin' s Cu(2+)/Cu(+) center redox

groups (with reduction potential Eo = 310 mV versus SHE) *8 and to Au electrodes.

100



Uy =+€eV/2

k.
u =—eV/2 &

AG:(I_G‘L _afe)x(#lf _#1’4)

Figure 4.15 Schematic representation of the levels in the BLMLBmMRrBR junction. The
diagram shows a positive bias situation with the M. (MR) energy gap written as a function
of the total bias across the junction. The bridge levels act as deep tunneling barriers for the
transferring electron such that only M. and Mg change their oxidation state during transfer.
The Mrand Mg redox energies are slightly higher than the Fermi levels of the leads at zero
bias such that the charge injection rates from the leads are activated and possibly current

limiting for a voltage bias range.
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Figure 4.16 Current | versus the bias voltage V and the Gibbs free energy 4G at T = 308 K

for a junction with off-resonant redox levels at zero bias (Fig. 4.15). The energy gap is given

by AG(V)=eV/3. Parameter values: e = ar = 0.33, 1L =4r = 0.1 €V, c. = cr = 0.22 x 10"

eVY2 ns? (the timescale of ET between the M; and the leads is in the order of tens of psec),
¢ = 0.15 eV¥? ns! (the timescale of ET between the My and Mg sites is in the order of nsec)
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and & = 0 (black dots), eo = 0.1 eV (red dots), eo = 0.2 eV (blue dots), eo = 0.25 eV (cyan
dots, could correspond to Ferrocene ML and Mr redox groups with Au leads), eo = 0.3 eV
(magenta dots), and go = 0.35 eV (yellow dots, could correspond to Azurin Cu center redox
groups with Au leads). The low bias current decreases as the ¢ value increases (charge
injection becomes more activated), but the current has the expected intra-molecular-rate

energy gap behavior (inverted and normal).

The behaviors shown in Fig. 4.16 corresponds to an energy gap between the M and Mr

groups equal to one third of the chemical potential drop across the junction. For positive bias

voltage, the left backward heterogeneous ET rate is faster than the forward rate (IZL < IZL)

and the same is true for the intra-molecular ET rates (IZ. <k

int int

), such that

k k. ke <k k_ke. In the regime of Fig. 4.16 both k, and k_ can be of comparable

int

magnitude and both can be current limiting for the net R to L charge flow. Therefore, we

always consider the product k IZR as having a small value. Then, from eq. (4.17),

int

-k
|(V)_—e _ _ L7tint 'R 2
Ot (. ot A S A o
LR L R
(4.24)
. A Q
AR A EIL T Ml L
kintkL int
Given that k <k, and k; k <k Kk _ the above expression simplifies to
k ki .k
1(V)~e AL (4.25)
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In the regime of Fig. 4.16, k k < IZL, and the approximate current expression for the

int

positive bias voltage is | (V) ~ = EkFik — . Similar arguments for negative bias lead to the
K, +Kg +Kg
approximate equation (V)= —&.
K. +K_+Kk,

Figure 4.17 shows the exact current (eqgs (4.8) and (4.9)) and the approximate expressions

kk
k+k+k

int

for positive bias voltages in the case

int

for the current, 1(V)~ and | (V)=~ek,

of the system of Fig. 4.16 with the highest redox-level energies (¢o=0.35 eV, aL = ar = 0.33,
JL=Jr=01¢eV, c.=cr=022x 10! eV nst and ¢ = 0.15 eV¥2 ns?). The figure

. ek, k. —
demonstrates that the expression 1(V )~ _RT"M IS a very good approximation to the
+

K k

int

exact current for the case of off-resonant redox levels at zero bias (&, > 0). Further, its shows

that | ( ) ek, starts to become a good approximation to the exact current just before the

int

inverted regime peak at V. (because the current becomes limited by k ). For & <0.35eV

int

(Fig. 4.16) the expression 1(V )~ ek, . starts to become a good approximation to the exact

int

current for lower voltages.
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Figure 4.17 Current | versus bias voltage V at T = 308 K (positive V region). Parameter
values: a. = ar=0.33, e0=0.35eV, A.=Ar=0.1eV,cL=Ccr=0.22x 10' eV¥2 nstand ¢ =
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0.15 eV*¥2 ns?. Exact current expression (eq. (4.9) black line) and approximate current

expressions (I (V )~ == _ plue dots, 1(V )~ ek,, red dots).

445 Two-state and heterogeneous electron transfer — Nonadiabatic to Adiabatic
Limit

To describe the transition from the nonadiabatic to the adiabatic regimes for two-state (D-
A) solution-phase ET with classical ET-active vibrations, it is common to use the Landau-

Zener parameter y,, =7HJ , (hca/mlkBT ) * @=27V is the average frequency of the

ET active vibrations (with 7@ <kgT since they are classical vibrations), H, , is the D-A

coupling and A=A, + 4, is the reorganization energy. For 7, <1 (VLz 21) the D-A ET

rate is nonadiabatic (adiabatic). In all examples of the main text the parameters of the M-

Mr ET rates are such that y,, <1.

For heterogeneous ET between an electrode L(R) and a redox moiety M = Myw), the

adiabaticity parameter is defined as y =y, pksT , where the electrode is approximated as

multiple D(A) states of a total number equal to pk,T (p the density of state). 4 Thus

I kT
= |, 4.26
4 ho \ A (4.26)
where, I'=T" ), 4=4,, and @ =27V is the average nuclear vibration frequency of all

classical vibrations that promote ET. For y <1 (y>1) the heterogeneous ET rate is

nonadiabatic (adiabatic). In all the examples of the figures in the main text y <<1.

An approximate expression for the heterogeneous ET rate that interpolates between

nonadiabatic and adiabatic regimes, “° is

) zvx{z(l—exp(—y/z))}c

2—exp(-y/2)

(4.27)

where v =@/27 and
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(2~(ul(V)+E)+ey (V)

C=(kT)" [dEf(E-pm)e  ** (4.28)

for electrode-to-M ET, and

(A+(ulV)+E)-en (V))°

C=(k,T )‘1jdE[1— f(E-u)]e 47ksT (4.29)

for M-to-electrode ET. The above expression, eq. (4.27), is valid for large reorganization

energies and small overpotentials, i.e., for |,u(V)—gM \Y )| < A/4and T <« 1/4.

In the limit where y <1 such that exp(—y/2)~1—(y/2), the above formula leads to the

nonadiabatic heterogeneous ET rate expressions (egs (4.2) — (4.4) in the main text). Consider

the zero bias (=0 eV ) ratesof eq. (4.27) where T ~1.0 x10°eV , 1=0.2€V , £, ~0 eV
and v ~0.04 (psec)fl. In this case y =7 (strong adiabatic regime) and from eq. (4.27),

k :1.0(psec)_1.

4.4.6 Voltage-dependent tunneling matrix elements — A tight-binding model

For the proposed quasi-linear junction architecture with metal redox centers, good choices
for the connecting bridges are saturated organic bridges. These are known to be high
tunneling barriers for solution-phase ET between metal donors and acceptors 141415 and for
heterogeneous ET between metal redox sites and electrodes. 2%3° Such bridges also maintain
off-resonant tunneling currents when connecting directly metal (e.g., Au) electrodes for bias
voltages of 1.0 - 2.0 V and for lengths of the order of few tens of Angstroms. ** Within the
experimental voltage window, saturated organic bridges should remain tunneling barriers
for electrode-to-MLr) and M_-Mr ET steps, even though they may give voltage-dependent

tunneling matrix elements, as shown below.

To calculate the dependence of the tunneling matrix elements on bias voltage, and to explore
how this dependence affects the observation of the Marcus inverted regime, we consider a

linear nearest-neighbor tight-binding model consisting of Br, Bm and B bridges with ng_,
ng and ng tight-binding levels (sites), respectively (Fig. 4.18). The i, and iy, sites of

the model represent the redox levels, which are assumed to be off-resonant to the bridge

levels and also quasi-resonant to the electrodes at zero bias. At non-zero bias the bridge site-
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energies and the redox-site energies will be shifted, and we model how these shifts affect the

through-bridge tunneling barriers.

nBL I’]BM nBR
! t P t o t i
; N N = N YN L NN :
HEIEt e S TR
B
= 1 I &y 1 | =\
”TL TL [} TL TR \ I TR TR‘
I
I M, iy ! \

\4

A

i:n,j“ +y, +25i_‘”‘ E=n, + | = dag,
>« D > < D
DLVML MLYMR M R

R

Figure 4.18 Schematic representation of a tight-binding nearest-neighbor model of a

BLMLBMMRrBR junction. The B, Bm and Br linear bridges consist of ng , n; and n,_sites,

respectively. At zero bias the bridge site-energies are equal, of value & (measured with

respect to the Fermi level of the electrodes). The redox level M(r) energies are off-resonant
to the bridge energies and resonant to the electrodes. The nearest-neighbor electronic
couplings between bridge sites are denoted t (curved red lines). The nearest-neighbor

electronic couplings between Mg and the bridge sites are denoted T, ) and those between

(R
the last (first) bridge site and the L (R) electrode, are denoted T_L(R) (red dotted lines). D,
, Dw, m, and Dy, . are the distances of the L-Mi, M.-Mr and Mgr-R segments of the

junction. The diagram shows a symmetric junction with D, =Dy, =Dy y -

LoWVIR

D

tot =

Dy w, + Du_m, T Dy, r IS the total length of the junction. The distance between

nearest neighbor sites is a =D, /(N +1).

We assume linear voltage drop profile under bias where the voltage drop is measured with

respect to the R electrode Fermi level g, (,uR =Auf2= eV/2) . If the site belongs to a bridge

the energy of the i site is given by &° (V):%—i(i)ev +&5, where &7 =¢; and

tot
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a= Nl t°‘1 is the distance between nearest-neighbor sites. For a redox site, i=n; +1=i,,
+ i F

and i=n, +ng +2=iy, (Fig. 4.18). Therefore, the redox-site energies under bias are

&, (V)=%—iMR [Dijev +&y,0 ANd & (V)=%—iML (Dijev +&y o (in Fig. 4.18

tot tot

Em o = &m0 =0). These expressions reduce to eqs (4.10) and (4.11) of the main text when

iy, =Lland iy, =2 (with ¢, =a; =a/D, ).

Given the above model, we derive the bias voltage dependence of the bridge-mediated M-
Mg tunneling matrix element and of the M_r)-L(R) tunneling matrix elements. The M_-Mr

tunneling matrix element is
HML,MR (V) =T, Tq Gi(MBLM—)L g +1 (Etun) (4.30)

where G(BM)(E) is the Green’s function of the Bwm bridge segment, defined as

-1

G™)(E) =(E [ —H ) (V)) . H®J (V) is the voltage-dependent Hamiltonian of the Bu

bridge segment,

HEI (V)= 3 e (W)]i)+ 3 t(i)(i+1+he). (4.31)

Eun = (2w, (V) -2, (v))/z is the tunneling energy and T, ., are the electronic couplings

tun

between Myr) and the nearest-neighbor Bm bridge site. We model the bias-voltage

dependence of the level broadenings in a similar way, i.e., T, (V):ﬁpr,,L(R),L(R) V),
where

How (V)=T. T.G™ (E,)and H, (V)=T,T,G"™ (E,,). é(BL””)(E) is the Green's
function of the By(r) bridge segment, E,,, = (IUL(R) — &y, (Ma) (V))/Z and the couplings T,

and T, are shown in Fig. 4.18.

Consider saturated linear bridges (e.g., linear alkanes) that are known to mediate hole
tunneling pathways through C-C sigma bonds. 13 Each bridge site of the tight binding
model is interpreted as a sigma bond orbital in a tetrahedral geometry. The distance between

the centers of nearest-neighbor sigma bonds in an extended alkane chain is a ~1.26 4. The
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magnitude of the electronic matrix element between the nearest-neighbor bond orbitals is

t ~ 4eV . %8 For linear alkane chains connected to metal electrodes, the dependence of the
conductance as a function of bridge length D is given by G(D) = Aexp(—4D), with a decay
parameter value S ~1.0 4. ! A similar exponential length decay parameter value is derived

for redox currents in voltammetric studies involving redox metals connected to gold

electrodes by alkanethiol bridges. 2°2° We use this experimental £ value in our model to fix

/6" (E.)

bridges of n+1 and n sites, respectively). Thus, given the computed value of t ~4 eV , 563

2
the ratio |t/ |, since ‘Gf::l)(Ewn) ~exp(—Ba) (where (n+1) and (n) denote

we can determine the effective site energy &; of the sigma bond (with respect to the Fermi
level of the electrodes at zero bias) that produces S ~1.04 for a~1.26 4 (assuming gold
electrodes).

As an example, consider linear bridges with n, =n, =ng =5 sigma bonds, each of a total
length of 6—7 4 (e.g., a total length of the junction, D, ~ 20— 25 4 taking into account few
Angstrom sizes of the metal redox sites). With the t =4 eV and & =10 eV we get S ~1.0
A Forthese t and &; values, and for H,, |, (V =0)=1.6 x10"eV (of Figs 4.7 and 4.8),
eq. (4.30) gives T, T, =25x107eV’ (ie., T, =T, =0.15eV for a symmetric system).
Further, for the zero-bias level broadenings T' g, (V=0)=1.0x10"eV (of Figs 4.7 and
4.8) we get T, ) =1.0x 107 eV .

Given the above parameters we compute the voltage dependence of the coupling and the
level shifts, i.e., H, , (V) and T 4 (V), and use them in egs (4.2)-(4.11) where, at each
voltage, we substitute Hy, , (V) and ', , (V). Figures 4.19aand 4.19b show Hy, |, (V)
and T, g, (V) for positive bias voltages and for the junction parameters of Figs 4.7 and 4.8

(AG = Au/3). Figure 4.19c compares the 1-V dependence computed using eqs (4.2)-(4.11)
with Hy (V) and T, (V) of Figs 4.19a and 4.19b to the I-V dependence computed

using egs (4.2)-(4.11) with HZ |, (V) and T’ (V =0). The current obtained with

voltage-dependent couplings remains rate-limited by intra-molecular rates, having a

Gaussian voltage dependence. The current’s maximum shifts to a higher bias V, ., and has
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a higher maximum value compared to the case of the current with voltage-independent (zero-

bias) couplings (maximumat V).

These changes are due to the lowering of the tunneling barriers with bias voltage (Figs 4.19a
and 4.19b). The minimum bridge eigenvalue of this tight-binding model is 3.07 eV above
the Fermi level of the electrodes at zero bias, while at bias voltages of 1.0 V and 2.0 V the
minimum eigenvalue has dropped 2.24 eV and 1.4 eV above g, respectively ( z; is the
highest Fermi level for positive bias). Thus, the tunneling mechanism is maintained for the
entire bias voltage range. The preservation of tunneling is expected for saturated organic
bridges and also for some unsaturated bridges that sustain tunneling currents for lengths of

tens of Angstroms and for bias voltages of 1.0 — 2.0 V. %49

(@)

6.00x10° -

5.00x10° -

4.00x10°

3.00x10°

HZMLMR[eVZ]

2.00x10°

1.00x10™

0.00 : : :
0.0 0.5 1.0 15 2.0

Voltage [V]

(b)

2.50x10° -
2.00x10°
— 1.50x10°
S x10

2,
-
—

1.00x10° -

5.00x107

0.00

0.0 0.5 10 15 2.0
Voltage [V]

109



(©)

200 - n m  Tight-binding model | |
.ﬁ e Two-site model
I. : ...
[] ; ']
L [}
150 - . i .
- " : [}
< . /\._ .
oy A W]
< 100 - ue . [
[ u® o u
- ... 0. -
‘5 L e u
(&) .0. %
50 s % i
' %
7 .
0
T T T T
0.0 0.5 :vmax’z 1.0 1.5 2.0
max,1
Voltage [V]

Figure 4.19 (a) Bias-dependent Hy, \, (V) (eq. (4.30)) versus the bias voltage V at T = 308
K for the positive bias region, (b) Bias-dependent broadening I, g, (V) versus bias voltage
V. (c) Current (eqs (4.2)-(4.11)) versus bias voltage V using H,, ,, (V =0) and
' (V =0) (red dots, as in Fig. 4.7), and using the H,, , (V) and " ¢, (V) (black dots),
Parameter values for all graphs: n, =n, =n, =5,&°=10.0eV,1L.=Ar=0.1eV,t=4.0

eV, TL=Tr=15x10"eVand T, =T, =1.0 x 10°eV .

The specific research work presented in this chapter has been published during the doctoral

program (see ref. [66]).
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CHAPTER 5

The Role of Bridge-state Intermediates in Singlet
Fission for Donor-bridge-acceptor Systems: A Semi-
analytical Approach to Bridge-tuning of the Donor-

acceptor Fission Coupling

We describe a semi-analytical / computational framework to explore structure-function
relationships for singlet fission in Donor (D) — Bridge (B) — Acceptor (A) molecular
architectures. The aim of introducing a bridging linker between the D and A molecules is to
tune, by modifying the bridge structure, the electronic pathways that lead to fission and to
D-A-separated correlated triplets. We identify different bridge-mediation regimes for the
effective singlet-fission coupling in the coherent tunneling limit and show how to derive the
dominant fission pathways in each regime. We describe the dependence of these regimes on
D-B-A many-electron state energetics and on D-B (A-B) one-electron and two-electron
matrix elements. This semi-analytical approach can be used to guide computational and
experimental searches for D-B-A systems with tuned singlet fission rates. We use this
approach to interpret the bridge-resonance effect of singlet fission that has been observed in

recent experiments.

Singlet Fission (SF) is a spin-allowed process in which a photo-excited singlet state S, in a
molecular system is converted into two correlated triplet excited states 2xT,. ' SF offers a

promising way to overcome the Shockley-Queisser limit on the efficiency of single-junction

1-3,5

photovoltaics, and it is possible if a material satisfies the exoergicity criterion

Energy(S,)>2Energy(T,). An extensive body of work has examined SF in different

materials due to its potential for photovoltaics applications. ¢!* There are many
experimental, computational '*!7 and theoretical studies >*!*!1%!° of SF mechanisms and of
the roles of SF intermediate states in dimeric systems (donor(D)-acceptor(A)). More
recently, systems in which a bridge (B) unit connects the D and A moieties '!"!* have received
attention with the purpose of understanding how a bridge linker mediates SF. 32°-26 Recent
experiments 226 have observed a correlation between SF-rate enhancement and the lowering
of the B HOMO-LUMO gap (the “bridge-resonance effect” of SF 2°). Another important
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direction in the field is the computational design of SF molecular assemblies with tunable

SF rates. 273!

In this paper, we introduce an analytical framework, supported by ab-initio computations, to
explore structure-function relationships for bridge-mediated SF in D-B-A molecular
architectures. The aim of this type of analysis is to understand how the bridge affects the SF
coupling based on parametrized analytical models, and ultimately to guide the synthesis of
D-B-A systems for tuned SF. We apply our method to bridge-mediated SF in the coherent
tunneling regime. We also use our analytical results to interpret the recent experiments on

bridge-resonance effects of SF.

5.1 Theoretical methods

Consider a D-B-A molecular assembly to be used as a tunable singlet-fission / triplet-
separation device. Suppose that initial photoexcitation leads to a singlet excited state
localized on the D moiety that subsequently undergoes SF to create a Correlated Triplet-Pair
(CTP) state where one triplet is localized in the D moiety and the other is localized in the A

moiety. In the coherent tunneling regime, where all SF intermediates are off(quasi)-resonant
to the initial and final states, the SF rate is given by K¢ = |\/SF |2 Prc » Where Vg is the bridge-

mediated effective SF coupling between initial (D singlet) and final (D-A CTP) states, and

Prc 18 the Franck-Condon factor. Therefore, the efficiency of D-A CTP creation can be
tuned by controlling V¢ through structural modifications of the bridge. To this end it is

necessary to obtain structure-function relationships for the bridge-mediated SF pathways

that contribute to V. .
The electronic Hamiltonian operator of the system is given by H® =h™ +V?, where

N
hle :Z

=1 <My

N N 2

Ze ) ) ) ) )
Z Z ‘ ﬁ is the Hamiltonian for N independent electrons in the
|

n

2

field of N, atomic nuclei, and V? = ZZ

. — 1is the total electron-electron
2155 147r50 |r r |

Coulombic operator. In our modelling, we use a D, B, A fragment-orbital basis set to
describe many-electron states for the D-B-A system. 3>* This is a natural representation

since any approach to the design of SF molecular assemblies is necessarily fragment-based.

We construct the many-electron basis to represent He using the Configuration Interaction

118



method with single and double excitations (CISD). 3¢ The active space consists of six
electrons (out of N ) in six fragment orbitals. For the applications considered below, the
active orbitals are taken to be the frontier orbitals of each fragment (HOMO and LUMO

denoted as H,,L,,Hg,Lg,H,,L,). The use of frontier orbitals is common in SF studies. -

3:19.23.2830 Our method does not depend on the particular choice of fragment-orbital basis and

is not limited to two active orbitals per fragment (see Supplement section 5.4.5).

In the first step of the SF process both the initial and final states are singlets, so we consider

only singlet states as SF intermediates. For this active space and using the branching diagram
method we derive analytically 40 singlet spin-spatial eigenstates |¥’ n>SA (SA denotes Spin-

Adapted) that include single and double inter- and intra-fragment excitationsd (see the
discussion in section 5.4.1 of the Supplement). >’ We use this set and the Slater-Condon

rules -3¢ to obtain analytical expressions for all Hamiltonian matrix elements between these

states, H,ffm = <‘Pn | He |‘I’m>SA (see Supplement section 5.4.2).

The singly-excited basis states can be categorized as locally-excited (LE) and charge-transfer
(CT). LE states have an excited electron and a hole on the same fragment (intra-fragment
excitation). An example is the bridge exciton (BE) with an electron-hole (e-h) pair in the B
fragment (see Fig. 5.1). For CT states the excited electron is on a different fragment than the
hole (inter-fragment e-h excitation). An example is the D-A excitonic state (DAE) with an
inter-fragment e-h excitation among the D, A fragments. The doubly-excited (DE) states
include many more excitation combinations. We denote locally doubly-excited states (LDE)
those that contain two intra-fragment excitons (each exciton is localized within D, B or A).

In addition to locally doubly-excited (LDE) there are CT doubly-excited states (CTDE) that

combine a CT and a LE exciton, e.g., D+"B"A+>SA (see Fig. 5.1). The LDE and CTDE

include both correlated triplet-pair and correlated singlet-pair states (CTP and CSP,

respectively). 3134041

In general, the basis-state energies are functions of ionization potentials, electron affinities,

core terms, Coulomb and exchange two-electron (2e) integrals, i.e.,

g - (1) R (VI (B ) ) )

(see Supplement section 5.4.2 for analytical expressions). The off-diagonal matrix elements

are functions of one-electron (le) Fock matrix elements, overlap matrix elements and 2e

integrals,
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SA<an|':|el|'[jm>SA:Hn,m({<Pi|'f‘Qj>}’ {(Pin‘RiZj)}’ {Seoj}’ {JF’.Q,}’ {KRQ,}) (5.2)

where P, Q,R,Z =H, L and i,j = D, B, A (see Supplement section 5.4.2).

® Lumo 4

|
Y
L e S

|D*"B 4) |DB* 4) |D*B " 4)
LE (in) LE (BE) CT (B)
Initial state: Donor exciton Bridge Exciton Donor-Bridge
b
® Lumo 2 ! 4 I ]
Homo —4 4 t +— t
D B A D B A D B A
DB AT DB 4) |D*B47)
LDE (fi) LDE (BE) CTDE (B")

Final state: Donor, Acceptor Excitons Donor, Bridge Excitons Donor, CT Excitons

Figure 5.1 Schematic illustration of the notation used to describe the many-electron basis
states relevant to the SF pathways. (a) Examples of singly-excited (LE and CT) and (b)
doubly-excited (LDE and CTDE) states using the minimum set of orbitals per fragment
(HOMO and LUMO). The kets denote Slater determinants with the spin distributions shown
in the diagrams. The actual basis states used in the calculations (Table 5.1 and Supplement
section 5.4.1), are spin-adapted (singlet) states that are linear combinations of Slater

determinants.

Table 5.1 describes the nomenclature and notation used to group the basis states. The table
contains the most important groups for the discussion that follows. The first column shows
the group names and the second the mathematical notation for the states. The third column
gives approximate expressions for the excitation energies within each group (with respect to
the DBA ground state). The approximate expressions are derived from the exact equations
in the Supplement section 5.4.2 using ab-initio computations on reference systems to
determine small terms that can be ignored (see below). These approximate energies are

written in terms of the fragment variables X ( X ), y (Y )and z which are separately defined

for the D-B fragment or A-B fragment,
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X =x-1J +2K , Y=y-J, +2K, ., z=IP°W_|p® (5.3)

Ho(a o) Ho(aLo(a)
where
x = IPP™W _EAPW |y = |P® —EAB. (5.4)

IP denotes ionization potential and EA denotes electron affinity. The variables X and Y
are the HOMO — to — LUMO exciton energies of the isolated D(A) and B fragments and are

functions of x (Y ) and intra-molecular (intra-fragment) Coulomb (J ) and exchange ( K)

integrals. We choose to write the basis-state excitation energies in terms of these variables
because values for these variables are easily obtainable from experiments or computations
on the fragments. The state energies in Table 5.1 are also functions of inter-fragment

Coulomb and exchange integrals (denoted as inter).

Hole and Electron
Group Name Approximate excitation energy
distribution notation

. B SA
LE (in) ID"BA) X
LDEcte (fi) DB A*’)Zip 2X 2K, | —2K,, .
S
LDEcre (BE) ‘ D™ B+_A>:P : ‘ - B+_A+_>c/:p X+Y - 2KHD{A)LD<A> —2Ky,
SA
LE (BE) DB A) Y
. L, \SA L \SA X =28 Tty ~ 2Kt
CT(B) ‘DBA> "DBA> +Jinter _2Jinter_2Jinter
HBlp(A) HgHp HgHA
- o A\SA L \SA YHz+dy,, —2Ky,,
CT(B) ‘DBA> ;‘DBA> +Jinter +2Jinter _2Jinter
Hp(a)te Ha)ts Hp(a)HB
Lo SA [ \SA Xt Jroton = 2K roiatony
CT(DAE) ‘D BA> "D BA> +2Jinter _2Jinter

Help(a) Ha(D)He

Table 5.1 Approximate excitation energies of the lowest-lying basis states of the D-B-A

system. 1*' column: Names of the different groups of the most important singlet basis states
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for the D-B-A system. CTP (CSP) denotes Correlated-Triplet-Pair (Correlated-Singlet-Pair).
2" column: Mathematical notation for the spin-adapted states in each group. 3™ column:
Approximate excitation energies of the lowest-lying states of the D-B-A system (derived
from the exact expressions in Table 5.4) as a function of the X, Y, z parameters (see text
and Fig. 5.2) and 2e integrals. The first two groups refer to the initial and final CTP states,
denoted as (in) and (fi) respectively. In most remaining cases the grouping is according to

the B state, such as B*, B~ and bridge excitonic (BE) state.

The excitation energies will depend on the type of solvent the D-B-A system is in. In
particular, the energies of states with CT excitations are most sensitive to the solvent
dielectric constant. Since we have not included an effective dielectric constant in the
analytical expressions, the following analysis is more relevant to non-polar solvents. In Fig.

5.2 we describe three different energetic regimes defined by the X, y and z values for the

D-B fragment. We label these regimes as type-1, type-1I and type-III. +?

5.2 Results and Discussion

In the following we consider the situation where initial photo-excitation of D-B-A creates a
D-localized singlet exciton that can be approximated by | in> r ‘ DB A>SA (first row in Table
5.1). The coherent SF process should lead to a final state that is approximated by the D-A

CTP state | fi> z‘D*’B A*’)?P (second row of Table 5.1). All other intermediate states

(third-to-final rows of Tables 5.1 and 5.4) are off-resonant to |in) and to | fi) such that SF

takes place by tunneling when the initial and final states come to resonance at an energy E,

(the SF rate being ki = [\/SF |2 Prc )- The aim of our analysis is to understand how the V. is

tuned by the identities of the D, B and A fragments and by their relative geometries.

To make contact with realistic systems, we use some reference D-B-A groups (Fig. 5.3)
where the D and A moieties are taken to be pentacenes in a face-to-face geometry and B is
either pentacene (in pi-stacking or non-pi stacking conformation), tetracene (in non-pi-
stacking conformation) or the non-conjugated 1,3-diethynyladamantyl spacer (NC1 in ref.
[12]). Pentacene has been studied extensively both experimentally and computationally as
an individual (monomer) and as part of a larger system (dimer, trimer etc.) for the study of

various SF mechanisms. '%132126 Although the systems considered below are symmetric
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(D=A), the method is general and applicable to non-symmetric systems (see Supplement

section 5.4.5).

Type-I11

Type-1

—EA"

il

D B D B D B
y>x;2<0; y>x;2<0;

>xX;z2>
Z>X-y y>x;z>0 Z<Xx-y
Figure 5.2 Schematic representation of type-I, type-II and type-III D-B regimes in the

independent-electron approximation. Virtual orbitals are shown in red and occupied orbitals

in blue. Since we only consider bridge-mediated tunneling case, y > X.

For these reference systems, we use the GAMESS-US #*** program in the fragment-orbital
representation (6-31G(d) basis set) to compute the reference values for the le and 2e
variables in the analytical expressions of the diagonal and off-diagonal elements of the CISD
Hamiltonian (eqs (5.1) and (5.2), and discussion in 5.4.2 section). These variables include
IPs, EAs, core terms, Fock and overlap matrix elements, Coulomb and exchange integrals.

The computed le and 2e variables set reference values for X,y and z (thus for X,Y ) in
eqs (5.3) and (5.4). Following this step, for each reference system, we vary y and z while

keeping all other le and 2e parameters and X fixed to the reference values.
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i
:

D B

Figure 5.3 Reference D-B-A systems. (a) Pi-stacking pentacene trimer, (b) non-pi-stacking
pentacene trimer, (¢) pentacene-tetracene-pentacene trimer, (d) NC1 system of ref. [12]. For

(a)-(c) R = 3.5 A.

This process mimics a transformation of the B structure, with respect to the reference one,
via a variation of the IP® and EA® (while keeping D and A parameters fixed). An alternative
point of view is that we are varying the B fragment exciton energy with respect to the D-
fragment exciton energy (Y with respect to X ). We explore how such transformations alter

V,

s and the SF pathways for the fully-coupled D-B-A system in the tunneling regime. Vg

1s computed by exact diagonalization of the full Hamiltonian (40 states, with the exact matrix

elements), setting both initial and final state-energies equal to the resonance (tunneling)

energy E . = (Ein +E; ) / 2 (Fig. 5.5 and Supplement section 5.4.3). Pathway contributions

to V- are obtained by Green’s function methods and by deleting intermediate states in the
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Hamiltonian and computing the effect on V. (Supplement section 5.4.3). ***° Thus, the V.

plots in Fig. 5.4 are exact, involving diagonalization, whereas the dominant pathway

structures in Fig. 5.5 are approximate interpretations of the exact results.

Figure 5.4 shows contour plots of In |VSF (Y /X, z/X )| for the reference systems of Fig. 5.3,

where X is fixed to the D(A) pentacene value. Figures 5.4a, 5.4b, 5.4c, 5.4d relate to the
reference systems 5.3a, 5.3b, 5.3c, 5.3d, respectively. The circles in the plots correspond to
the coupling values for the computed Y and z of the reference systems. The labels (i), (ii),
(ii1) and (iv) refer to the pathway structures contributing to the SF couplings (see following

discussion).

In| Vel (b) “2.30A_\

2,900

0,6375
-1,625
-3,888
6,150
8413
-10,68

-12,94

-15,20
12 16 20 24 28 32 36 40 12 16 20 24 28 32 36 40

Y/X Y/X

(d)

z/X

12 16 20 24 28 32 36 40 12 1,6 20 24 28 32 36
Y/X Y/X

Figure 5.4 InIVSF| plot as a function of Y/X and z/X parameters for (a) pi-stacking

conformation shown in Fig. 5.3a, (b) the non-pi-stacking conformation shown in Fig. 5.3b,
(c) the pentacene-tetracene-pentacene molecular system of Fig. 5.3c¢ and (d) the NCI

molecular system of Fig. 5.3d. The dashed lines outline the three regimes defined in Fig. 5.2.
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The black contour corresponds to a coupling Vg:|=10"eV , the blue to Vg|=107€V and
the magenta lines to |\/SF|=10’3eV . The colormap scaling is the same for all plots. The

circles represent the Y/X, z/X and V. values of the reference systems in Fig. 5.3. The

labels (i) to (iv) refer to the pathway structures discussed in the text.

The above contour plots for the SF coupling variation relating to the different system types

(and to the different reference systems) have similar generic features. |\/5F| increases as

Y - X (Y > X)), i.e., as quasi-resonance between the initial (final) state and the BE states

is approached from off-resonance (quasi-resonance corresponds to the leftmost side of

contour plots). The maximum . | value for all types (I-II1) is V| ~107'eV (In|Vg|~-2.3
). For the type-I case the maximum coupling is only due to the BE-character states because
these are the closest in energy to the initial and final states. The dominant type-I pathway
structure is (i): LE (in)g LE(BE)(V—Z; LDE, (BE)&) LDE. (fi) and it is mediated by
purely 2e interactions, i.e., V,, = (an |\72e |$”m> In contrast, the maximum coupling region

for type-II or type-IIT involves CT (B¥) or (B") excitons, respectively, in addition to the
above-mentioned BE states. These D(A)-B CT states have lower energies as compared to
the type-I case, and approach the energies of the BE-character states. Thus, the dominant

pathway structure for type-11 1s (11):

V.,

Vie Vie Voe 2e
LE (in)«<>CT (B*)«>LE(BE)<>LDEy, (BE)«>LDE, (fi) and for type-Il is (iii):

Vle Vle VZE VZe
LE(in)<>CT (B~ )<>LE(BE ) «>LDEy, (BE)«>LDEy ( fi). Both pathways involve 2e

and le interactions (V,, = (Y/n | he |S” " > ). These pathway structures relate to symmetric D-B-
A systems (D=A) and to non-polar solvents. Polar solvents would lower CT-state energies.
The three pathway structures are largely preserved as Y increases with respect to X , i.e.

moving from the quasi-resonant to the off-resonant regime (from the left to the right side of

the contour plots). The Y/ X increase implies an increase in the energies of the BE-character
states, thus a weakening of the |VSF | magnitude for all the system types. In the deep-tunneling

regime (Y/X > 1.0, rightmost side of contour plots), the relative contribution from the high-
energy BE-character states is reduced and D-A CT excitons (DAE) become important. For

example, for the NC1 reference structure, |\/5F| ~10"*eV (red circle in type-I region of Fig.
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L 12

5.4d). This value is consistent with the results from Basel ez al. '~ who studied this molecular

system using CASSCF calculations on a 4e4o active space with D(A)-centered orbitals
(XMCQDPT/DZV level of theory). Our computations, which also include bridge-centered

states, show that the dominant pathway structure is (iv):
Vle Vle VZe VZe

LE (in)<>CT (B*)<>CT (DAE ) <> LDE, (BE)«>LDE, ( fi). D-A CT excitons have

the lowest energies and are major contributors to |VSF| . The lowest-coupling blue region in

the deep-tunneling regime arises from destructive pathway interferences.

Below, we show schematic representations of the most important states (energies) and the

corresponding inter-state coupling topology for the different types of systems discussed

above. We find that the CT doubly-excited states (CTDE in Fig. 5.1) and all the CSP states

(included in the full-Hamiltonian computations) do not contribute significantly to V- due

to their high energies.

(a) (b)
Type-11 (or 111) molecular system
Type-1 molecular system pathway (ii) (or (iii))
%‘ pathway (i) % §CT (B or (CT (B))
3 ) LE (BE)
(<)
E LE (BE) LICJ LDEcp (BE)
 LDE o (BE)
VZE
LE (in) \Z -
== Eres Te-a E,
TN SRET— s
LDEcqp (fi) LDEcyp (fi)
(C) Deep-tunneling regime
pathway (iv)
= LE (BE)
<
3
£
|
R0 B
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Figure 5.5 Schematic representation of the energies and the couplings structure of the
intermediate states of Table 5.1, for (a) the type-I, (b) the type-II (or -III) energetic regime

and (c) the deep-tunneling case with Y/X >1.0. V,, (red arrows) denotes coupling
dominated by 2e matrix elements, V,, =(¥, |\729|5”m>, and V,, (black arrows) denotes
coupling dominated by le matrix elements, V,, = (¥, | hte |7,,). The weaker matrix elements

are represented by dotted lines and E = ( E, +E; ) / 2. These dominant pathway structures

relate to symmetric D-B-A systems for which (D=A) and to non-polar solvents.

5.3 Conclusions

In summary, for each system type considered here and for symmetric D-B-A systems, we
identified the dominant bridge-mediated SF pathways and the corresponding SF
intermediates (Fig. 5.5). We find that all system types can give similar magnitudes for the
SF coupling even though the underlying pathway structures differ. An important conclusion

is that for all system types the bridge can enhance V. through the CTP states

‘ DB A>CTP (‘ DB™ A+’>CTP ) and the single-exciton state ‘ DB A> . For type-II and type-

III systems, D(A)-B CT states ‘ D’B+A> (‘ D B*A’>) or ‘ D*B’A> (‘ D B’A+>) also
contribute significantly to V. . Explicit expressions for all these intermediate states are given

in the Supplement section 5.4.1. We also find that the differences between the In|VSF|

contour plots in Fig. 5.4 are mainly due to differences in intermediate-state energies rather

than the inter-state couplings V,, and V,, shown in Fig. 5.5 (see Supplement section 5.4.4).

However, molecular motions and disorder could modulate the inter-state couplings such that
the pathways contributing to the ensemble-averaged <V52F > may show some differences as

compared to the static V.

Nevertheless, the bridge-tuning of V¢ is most sensitive to energy differences between the

above-mentioned intermediate states and the initial | in> = ‘ D" BA> (given that the final state

‘D*‘BA*‘ >CTP has lower energy than the initial). We have shown analytically that these

energy differences, AE, = E\V’> - E‘in> , can be approximated in terms of D(A) and B fragment
exciton energies X and Y , a few intra-fragment and inter-fragment Coulomb and exchange
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integrals and differences in fragment IPs, z=1P® —IP® (Table 5.1). These variables are
easily computed using fragment calculations. Some of them, such as IPs and fragment
singlet-exciton energies (X and Y ), can be approximated from experiments on the

fragments.

Figures 5.5a and 5.5b show that the bi-excitonic CTP states ‘ DB A>CTP (‘ DB™A™ >CTP)

, whose equations are given in Table 5.4, are “bottleneck” states for V. for all system types,
in the sense that they are the only intermediates that are strongly coupled to the fission

product ‘D*‘ BA™ >CTP . Therefore, an approximate approach to bridge-tuning of Vg is to

modulate the energies of the “bottleneck” intermediates and their couplings to the final SF
state. From Table 5.1 we conclude that rough estimates of these energies (for the systems
under study in the off-resonant regime), are given by the sums of the energies of the D(A)

and B fragment triplet excitons (exact energies are shown in Table 5.4),

E( DB A)cre z(X — 2Ky, )+(Y —2K,1, ) ~ Egiﬁl + Egj?l
E o a o = (X = 2K )+ (Y 2Ky ) = EJP +ELY (5.5)

The couplings to the final SF state are simple exchange integrals that are easy to compute,

D BA)" =134 (LLy|H,H,)
DB A+_>Zip =\/3Z(LDLB|HDHB)

(we find maximum values of 0.1 eV ). The “bottleneck” intermediates are accessed from the

{ore Al

(5.6)

SA +— A+ 1g¢
(D B“A"|H
CTP

initial ‘ DB A>SA state through different pathways, depending on the system type. For type-

S
I, they are mainly accessed through the LE (BE) state ‘ D B+*A> " via 2e interactions that
involve pairs of exchange integrals. For type-II and -III the “bottleneck™ states are mainly
accessed from the initial state via BE and D-B CT states (II: ‘ D~ B+A>SA , I ‘DJ’ B_A>SA)

with pathways that involve both 1e and 2e interactions (Supplement section 5.4.2).

The concept of “bottleneck” states sheds light on the bridge-resonance effect in SF. The
systems studied in refs [25,26] are type-I (Fig. 5.5a). The D(A) and B HOMO LUMO gaps
in our notation are X and Y. Lowering the B HOMO-LUMO gap corresponds to Y — X (

Y/X —1), leading to an enhancement of the SF coupling (moving towards the leftmost side
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of the contour plots in Fig. 5.4). As y — X the “bottleneck™-state energy is reduced due to

lowering of the bridge triplet-exciton energy (eq. (5.5) and Table 5.1).

In conclusion the semi-analytical approach is a useful tool to derive, interpret and predict
structure-function relationships and electronic pathways for bridge-mediated SF rates. It can
also be used to guide searches of candidate D-B-A systems given target SF coupling
magnitudes. These candidate systems may then be studied at a higher level of quantum

chemical theory and tested by experiment.

5.4 Supplement

Derivation of the many-electron spin-adapted basis set using the branching diagram method
in the context of CISD method and D, B, A HOMO/LUMO orbitals. Derivation of the many-
electron DBA Hamiltonian matrix elements using the above basis set. Description of SF
effective coupling computation using exact diagonalization of the Hamiltonian and SF
coupling pathways. Analysis of the relative importance of intermediate-state energies as
compared to inter-state couplings in determining the SF effective coupling. Discussion of
the generality of the method (non-frontier-orbital basis, non-symmetric D-B-A systems,

fragment excitations that involve more than one pair of electron and hole orbitals).

5.4.1 Many-electron Spin-adapted States

In the first step of the SF process both the initial and final states are singlets, so we consider
only singlet states as intermediates for this step (within the CISD formalism, these include
single and double excitations). The many-electron states we use describe the D, B or A
localization of the excited electron (e) and the hole (h), and are eigenstates of the total spin.
They can be represented by linear combinations of singly- and doubly-excited N — electron

determinants.

The spin eigenfunctions are constructed via the branching diagram method (using the

Yamanouchi-Kotani functions). ’3° For N s=1/2 spins we construct eigenfunctions of

S 5, S,y (with quantum numbers S, and M, respectively). For a given quantum number

S, there are different groups of such eigenfunctions, each group containing 2S, +1 SAZ’N

eigenfunctions. Given a value of S, the number of such groups for N spins is
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N N

-1 . We denote the eigenfunctions of SA,ﬁ and SAZ'N

f(N,Sy)=
(N.Sy) 1N—SN “N-S, -1
2 2

belonging to the k™ group by X(k)=X(N,S,,M;k). The construction of the
eigenfunctions in each group is done iteratively. Given the X(N -1,§,,, M Sy k)
eigenfunctions we obtain new eigenfunctions corresponding to either S, =S, ;+1/2 or

S, =Sy, —1/2 by adding or subtracting the spin of the N electron, respectively. 373

The spin-spatial state with a prespecified occupation of spatial orbitals, is constructed by
first multiplying a X (k) by a product of the prespecified spatial orbitals,
Y(A,B,..2)=y,(1)v;(2)..v,(N). The y's are one-electron (le) orbitals and
A,B,..., 0 are the orbital labels (e.g., H, for the HOMO of the Donor fragment, L, for the

LUMO of Acceptor fragment, etc.). Thus, the spin-spatial antisymmetric wavefunctions can

be written in a multi-determinant form as
‘SU(A,B,...,_Q) - X (k)>SA = AN ¥ (AB,...02)X (k) where A, is the antisymmetrization

15,35 |

operator. >SA denotes a “Spin-Adapted” state that most often involves a linear

combination of Slater determinants of le spin orbitals (denoted simply by | > ).

Since we consider only singlet states, we will not use a total-spin label in our notation. For
our active space we can create f (N =4, S, :0) =2 groups of spin eigenfunctions of S,ﬁ

that describe the possible states of the system. Below in Table 5.2, are shown some examples

of the most important singly-excited states (LE and CT) used in SF pathways. Some of these

states are illustrated in Fig. 5.1 of the main text. ‘5”;> denotes a singly-excited determinant
in which an electron, which occupied spin-orbital y, in the Hartree-Fock (HF) ground state
of the D-B-A N — electron system |YJO,N>’ has been promoted to a virtual spin-orbital y, .

In such determinants, y, (or a) is used to denote spin-orbital with spin up and y, (or @)

spin-orbital with spin down. 350 The superscript “+” (“-”) denotes hole (electron).
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h-e distribution notation Expression
‘D+_BA>SA %( e >+ v >)
EE e )i )
‘D+B_A>SA %( e >+ v >)
pBA)” e )i )
‘D+BA_>SA %( w, >+ v >)

Table 5.2 The most important singly-excited spin-adapted (SA) singlet states used as a basis
to represent the D-B-A many-electron Hamiltonian. 1% column: Mathematical notation for

the spin-adapted many-electron basis states. 2" column: Spin-spatial multi-electronic states

as linear combinations of singly-excited Slater determinants.

The doubly-excited (DE) states include many more excitation combinations. In these cases,
using the branching diagram method, we can construct correlated triplet-pair DE states
(denoted by CTP) and correlated singlet-pair DE states (denoted by CSP). Below in Table

5.3, we give some examples of the most important CTP and CSP doubly-excited states (LDE

and CTDE). #154041 |/P) denotes doubly-excited determinants.

h-e distribution .
. EXxpression
notation
plobs >_ Lo Ly >
_ _\SA 1 Lo Lp LD 1 Hp Ha Hp Ha
‘ DTBA" >CTP \/g 1}/% Ha >+ 5IIHD Aa >_E LL, L L
B y/HD Ha > ‘SUHD Ha >
_ _ 1 0L L L 0L L L
+ + D “A D -A D “A D LA
‘D BA >CSP E(‘Y/HDHA >+‘§UHDHA >+‘¥/HDHA >+‘§UHDHA >)
whb >_ whole >
- - SA 1 L Lp Lg Op 1 Hp Hg Hp Hg
‘DJr B+ A>CTP \/; ‘}/HD Hg >+ l{IHD Hg >_§ O Ly Ly Ly
- yIHD HE! >+ THD HB >
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o-aA, e ot ol o)

Lalg
Ha HB

LA Lg
HA HB

DB A" :

Lg La >_1
CTP 3

Ha Hg 2

EB LA
we >+ @

LA LA LA Lg

HA HB

L
Hg HD

LA b
HB HD

Y

DB A 1

CTP 3

Lp Ca >_l

ED LA
we >+ @

Hg Hp 2

LA LD LA Lo
H HD

oe s, s el ol > i)

ool i ol ol >+\sv¢:zz )
et 1 L L L 1 FE‘it'f’b>_ HLiLFTD>

DA e | 7505 PR 2| it i

DB A e Yl Ve )+l )

Table 5.3 Examples of doubly-excited spin-adapted (SA) states used as a basis to represent
the D-B-A Hamiltonian. 1% column: Mathematical notation for the spin-adapted many-
electron basis states. 2" column: Spin-spatial multi-electronic states as linear combinations
of doubly-excited Slater determinants (CTP: correlated Triplet-Pair; CSP: correlated
Singlet-Pair).

5.4.2 Hamiltonian Matrix Elements

Diagonal Matrix Elements

In the table below, we give exact expressions for the diagonal elements SA(?’n |H® |¥’n>SA
of the Hamiltonian H® =h'® +V . Each element is given as a function of ionization
potentials (IP), electron affinities (EA), core terms, Coulomb and exchange integrals,
calculated using the Slater-Cordon rules in the above-mentioned basis of states. *>°*

In our computations we use these exact expressions to compute the Hamiltonian for the

reference systems and for the coupling plots. In particular, we compute the le and 2e

contributions in each equation of Table 5.4 using the GAMESS-US *¥ program in the
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fragment-orbital representation. The section 5.2 presents approximate expressions for the
lowest-lying states (Table 5.1). The validity of each approximate expression is verified from
the ab-initio computations of the different contributions in the exact expressions shown in
Table 5.4.

In the equations of Table 5.4, \7Hk denote Coulombic attractive interactions between the
electrons and the k™ fragment nuclei (part of the core term in the Hamiltonian). ino,. and
KPin are Coulomb and exchange 2e integrals involving the y, and Vo, fragment molecular

orbitals (MOs), where P,Q=H,L and i,j=D,B,A,®

Jno, =(RRIQ Q)= [d°E d° vy (B) wa () ry wo, (B) v, (), (B.7)
Koo, =(RQIQR)=[d% dF, vy (B) v () ru v (B)we (B). (58
State char. CA T

Singly - Excited States

IP°—EA®-J, +2K,

A N
+2dy 235 24k, — 234,

_KHALD - KHBLD + KHDHA + KHDHB

Ho)~(HolVen,

Ho )

IP® —EA®

Ho)=(Ho Ve

Ho)

DB A" CT®) Hlolea[to) o] o)~ {Hoen
+dhn 2300, =230, — 234 m,

+KHDLB - KHALB + KHDHB + KHDHA

IP® —EA®

Ha)=(Ha Ve,

Ha)

[DBA)” | CT®) Holen Lo} {Lollea]bo)~{Ho Ve
+da, 2300, — 20 m, — 230k,

K -K +K +K
B-D A-D D''B B''A
RLAYTIY Hal, HpH HgH
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DBAT)"

CT
(DAE)

IP*—EA®

(Lo Moo, | Lo )+ (Lo Ve, [ Lo ) = (Ha Ve [Ha )= (Ha Voo, | Ha)
Iy, 230, — 230k, — 230k,

K -K +K +K
A-D B-D D"'A B''A
TRu,L Hgl, HpH HgH

SA

D*BA’}

CT
(DAE)

IP° —EA*

LNy | ) + (L Ve, [ L) = (Ho Ve, [Ho )= (Ho Vo, [Ho )
Iy, 230, =23 4, 20k,

K -K, +K +K
D-A B-A D"'A D''B
RILYINE Hgl, HpH HpH

A

[> |3+-A>S

LE (BE)

IPE-EA®-J,  +2K,

#{LeNern L) (Lo Ve L) ~(HolVe, [Ho)=(Hole,
+2‘]HALB +2‘]HDLB _Z‘JHBHA _ZJHDHB

_KHALB - KHDLB + KHBHA + KHDHB

Ha)

DB AT)”

CT (BY)

IP® —EA"

LN [La) (L Ve | La) = (He Voo, [ Ha ) = (Ha Vo, [ He )
+du F2300, =200, — 24k,

+KHBLA - KHDLA + KHBHA + KHDHB

D B-A+>SA

CT (BY)

IP*—EA®

el )

+JHALB +2JHDLB —2\]HBHA —ZJHDHA

Ha)={Hal,

Hy)

+KHALB - KHDLB + KHBHA + KHDHA

Doubly — Excited States (DE)

DB A*‘>SA

CTP

LDEctp
(fi)

IP®+IP*~EA°—EA" -3,  -J,
#{LoVen|Lo )+ {LoVen Lo+ (LaVocrs L) +{LuNocn L)
(Vo [Ha)=(Halen [ )= (Ho e, [Ho )= (Ho e [Ho)

=3dun, 23 m, —2dwm, Tl Ik T2 Ik, 200,

5 1 1 1
+§ KHDHA + KHDHB + KHBHA +E KLDLA +E KHDLA - KHBLA +§ KHALD - KHBLD
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S
R R AN el A o

(B) ~33um, —23um, — 23, e o I Fduo 200,
5 1 1 1
+§KHH +KHH +KHH +EKLBL KHL + KHL EKHL KHL

IP®+IP"—EA®-EA° -],
(A (AN I I (A R (R AN
D8 A R (ol o~ (Moo Ho) - (Hal [H) - ()

(B ) _3JHDHA _2JHBHA _2JHDHB + JLDLB + JHALB + JHDLB + JHALD +2JHBLD

5 1 1 1
+E KHDHA + KHBHA + KHDHB +§ KLDLB - KHALB +§ KHDLB +§ KHALD - KHBLD

IP® +1P® ~EA° —EA"-J,

#{o Ve Lo (oM Lo (Vo )+ (Lo 1)

|D B'A” >CTP CT:]ZIE)CTP _<HD‘v\ean‘HD>_<HDNean‘HD>_<HBNean‘HB>_<HBNean‘HB>
=3Ium, 2wk, —2dm, TIhn Ik, T2, T Ik T Ih,L

5 1 1 1
+§ KHDHB + KHDHA + KHBHA +E KLDLA +§ KHBLD - KHALD +§ KHDLA - KHBLA

IPA+1P® —EA*—EA°-J,
(AN TRV (R AN W RS (R A TR BT RN
L e (AN NS O RN R GRS ER AN

(B
=3Jin, ~ 2, —23hm, F I Ik T2, Ik T Ik

5 1 1 1
i) Kigra T Kiign, + Ko, 5 Kioee 5 Kigt, = Kior, 5 Ko =Kty

IP®+IPA—EA°—EA* -1, —J,
(Lo Vo L)+ {Le Ve | La ) +{La Ve | L)+ (La Ve [ L)
08412, | T (e )

(BE) =3Jum, —23hm, —23hn, T Ik T 20 T I, T2
5 1

1 1
+§ KHBHA + KHDHB + KHDHA +E KLBLA +E KHBLA - KHDLA +§ KHALB - KHDLB
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IP*+1P® —EA® —EA® - In,
e )
CTDE . .
e af, | TR o) -
(BE) =3Jhn, —2dhm, —2wm, T FIh, 2900 tha, T,
+§KHBHA+KHDHB+KHDHA % LDLB+% Halg HDLB+% Hglp ~ "“Halp
IP° +IP® —EA" —EA® - Jn,
IR R SRR
CTP A A
ooen | TRl ) ()
=3Jpm, — 2w m, — 23k, T, T Ihon 2900, tdh,, T IM,L
+2KHDHB+KHBHA+KHDHA+% LBLA+% Hplg ' “Halg +E Hgla ' “Hpla

Table 5.4 Examples of analytical expressions for the basis-state energies (diagonal elements
of the many-electron Hamiltonian). 1% column: Mathematical notation of the spin-adapted
(SA) many-electron basis states. 2™ column: Names of the different groups of these states
for the D-B-A system. 3™ column: Exact expressions for the excitation energies of these
states for the D-B-A system as a function of ionization potentials, electron affinities, core

terms and two-electron integrals.

Off-diagonal Matrix Elements

In the table below, we present some of the most important off-diagonal elements, among the
above-mentioned spin-adapted states. As with the diagonal elements, the expressions are

evaluated using ab-initio computations. In the equations below F, Q denote Fock matrix
elements between the B and Q; MOs. Also, for simplicity of presentation we do not include

terms proportional to Spin (Pi ¢Qj). The off-diagonal elements of the overlap matrix

between orbitals in different fragments are very close to zero (SPin ~0, B=Q,).
States
Coupling Notation Coupling expression
Involved
LE (in)

%((HDLA|HDHA)_(LDLA|HALD))

e
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LDEcTe (fi)

LE (in)
V2e - 2(HDLD|HBLB)_(LDLB|HDHB)
LE (BE)
LE (BE)
V2e - %((HBLD(A) HD(A)HB)_(LD(A)LB HD(A)LB))
LDEcre (BE)
LE (in)
V2e - %((HDLB|HDHB)_(LDLB|HBLD))
LDEcre (BE)
LE (BE)
LDEce (fi)
LDEce (BE)
Vze - \/% (LD(A) LB‘ HD(A)HB)
LDEce (fi)
CT (BY)
V,, - ~Fyy o, +2(Hplp|Helo ) —(HoHs Loy )
LE (in)
CT (BY)
Vie - FLD(A)LB+2<HBLB|HBLD(A))_(LD(A)LB‘HBHB)
LE (BE)
CT (BY)
y . FHD(A)LB+2(HD(A)HB HBLB)
le - 5
\/E _Z(HD(A)LD(A) LD(A)LB)+(HD(A)LB‘LD(A)LD(A))
LDEctr (BE)
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CT (B")

LDEcTe (fi)

CT (B)
V, _ FLDLB+2(HDLD|HDLB)—(LDLB|HDHD)

e

LE (in)

CT (B)
Ve - _FHD(A)HB+2(HD(A)LB‘HBLB)_(HD(A)HB‘LBLB)

LE (BE)

CT (B)

1
2 —2(HBLB|LD(A)LB)+(HBLD
LDEcr (BE)

CT (B)

LDEcre (fi)

Table 5.5 Analytical expressions for Hamiltonian matrix elements between spin-adapted

states. 1% column: Coupling Notation, V,, denotes coupling dominated by the le matrix

element (Fock matrix element), while V,, is a coupling dominated entirely by 2e matrix

elements. 2" column: notation of the states involved in the corresponding coupling. 3™
column: Exact expressions for the off-diagonal matrix elements as a function of Fock matrix

elements and 2e integrals ignoring overlap off-diagonal matrix elements.

5.4.3 Effective Coupling Analysis

As mentioned in the main text, we explore the situation where the initial photo-excitation
. SA

creates a D-localized singlet exciton that can be approximated by |In> ~ ‘ DB A> (first

row in Table 5.1). The coherent SF process leads to a final state that is approximated by the

SA

D-A separated correlated triplet-pair | fi> ~ ‘ DB A+_>CTP (second row of Table 5.1). The
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assumption of a D-localized | in) implies that all other intermediate states (third-to-final rows

of Table 5.1) are off-resonant to |in) (and also to | fi) , since it has lower energy than |in) ).

We denote this regime of SF as the coherent tunneling regime. Singlet fission will take place

when the initial and final states come to resonance at an energy E, .. Using standard

re

46-48

projection methods, we approximate the effective coupling for the SF process by

o . fi| H* |7, ) (7, |[H[in)
={fi|H*G™ *lin) = < AL 5.9
VSF <fI|H G (Eres)H |In> ; Eres+i5_ék : ( )
In the equation above E = (Ein +E; ) / 2 and

G (Ep) = (Ee 1™ +i5 —H™) (5.10)

is the Green’s function operator for the exact Hamiltonian of the subspace of all intermediate

states. That is, H™ =(j(int)|:|e'(j(i"t), where QU™ = f—(|in><in|+| fi)(fi |) E, and ‘¢k> are

the eigenenergies and eigenstates of this Hamiltonian (I:I (int)

' > =E, ‘5’7,( >) . The eigenstate
expression for Vi enables decomposing the SF coupling into channel contributions from
each eigenstate. Using perturbation theory, V- can be further decomposed into sums of

terms each of which can be interpreted as a SF pathway that contributes to the total SF

coupling. Each pathway starts in |in) , visits some of the intermediate states and ends in | fi)

. The validity of eq. (5.9) in approximating the effective SF coupling is checked via exact

diagonalization performed by setting E, ->E. and E; —>E_ . In the off-resonant

tunneling regime exact diagonalization for resonant |in> and | fi) gives two eigenstates
|‘P+>z%(|in>i| fi)) with energy splitting between them |E, —E |~ 2Vg|. As quasi-

resonance is approached the two lowest eigenstates have main (equal) contributions from
the initial and final states but there is more mixing with the other intermediate states (as

compared to the off-resonance case).

We analyse the SF pathways for each set of V- plots by turning-off off-diagonal matrix
elements in the Hamiltonian connecting a specific state with the rest, and observing how the
effective coupling is affected. Specifically, we compute the ratio M) of V- when we turn-
off the contribution of a specific intermediate state in the Hamiltonian matrix to the exact
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V.. value. The higher the ratio M) the greater the contribution of the particular

intermediate state to the exact effective coupling. In addition to the above analysis we also
derive pathways by doing a perturbative expansion of eqs (5.9) and (5.10) in powers of the
off-diagonal matrix elements of the Hamiltonian and keeping the highest terms (strongest

pathways).

5.4.4 Difference among Contour Plots
To explore the relative importance between intermediate-state energies as compared to inter-
state couplings in determining the |VSF| values we focus on the cases of the pi-stacking and

non-pi-stacking conformations as shown in the Figs 5.3a, 5.3b. We produce two different

plots |In|\/SF |/[VS'F|| and |In|VSF |/Ver |

coupling for the non-pi-stacking conformation (as in the original Fig. 5.4b). v/ 1is the

as a function Y/X and z/X , where V. is the effective

corresponding value if we replace only the off-diagonal elements of the non-pi-stacking
system with the ones of the pi-stacking system and Vg is the value when we replace only
the diagonal elements.

As can be seen from Fig. 5.6 the largest change in effective coupling comes from the
diagonal Hamiltonian elements, as they can cause a change in effective coupling up to four

orders of magnitude (OM). In the case of off-diagonal elements (inter-state couplings) the

maximum change is limited to one OM. We find that the magnitudes of the V,, and V,, do

not vary significantly among the reference structures of Fig. 5.3 (maximum percentage

changes and average percentage for V,, of the order of 40% and 16% , respectively, and for
V,, 33% and 15%, respectively). The maximum coupling magnitude is of the order of

0.1eV.
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Figure 5.6 Difference contour plots. (a) [In|Vy:|/Ve: as a function of

and (b) |InVee |/|Ver
Y/X and z/X . The dashed lines outline the three regimes defined in Fig. 5.2. The black

contour corresponds to a coupling ratio equal to 10 which roughly corresponds to a
difference of an order of magnitude (OM), the blue to 2 OM, magenta to 3 OM and red to 4
OM. The colormap scaling is the same for both plots.

5.4.5 Generality of the analytical model

In the Supplement sections 5.4.1 and 5.4.2, the analytical formulas for energies and
couplings are presented in a fragment HOMO-LUMO basis because we want to correlate
our analysis with IPs and EAs that are known for many molecules that may be used as
potential fragments (and that are used as indicators of bridge-resonance in the experiments

mentioned in text). However, the formulas presented in the Tables 5.2-5.5, from a
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mathematical point of view, are general (i.e., not restricted to HOMO and LUMO fragment

orbitals). We illustrate this with some examples for singly and doubly-excited states.

From Tables 5.2 and 5.3 consider the spin-adapted singly-excited states, ‘ DB A>SA (intra-

fragment excitation) and ‘D*B’A}SA (inter-fragment excitation) and the spin-adapted
doubly-excited state that is one of the bridge-mixed CTP states, which we find to be a

“bottleneck” B*‘A>S . These formulas are valid even if the fragment hole and

electron orbitals are not HOMO and LUMO. Namely, one just needs to replace in the

equations H.,L. with OV, where O.,V. is an occupied and a virtual orbital,

respectively, of fragment F (F =D, B, A),

1 1

DB A" = (s oo )) (0B A = | )i ) s

What these orbitals are is system-specific and should be deduced from experiment coupled

with ab-initio computations on the system under study.

The corresponding energies and coupling expressions between diabatic states are also
general. Again, for the fragment HOMO-LUMO basis some examples are given in Tables
5.4 and 5.5. In Table 5.4, we have written the energies in terms of fragment IPs and EAs.
However, if we substitute the equations for each fragment IP and EA in these expressions,
e.g., IP°=—(H,|h*|H,)-J, g EA” =—(L, o[ Lp ) - 23y, + K, ., etc., we get the
energies of Table 5.4 as functions only of 1e and 2e matrix elements that are derivable from
ab-initio computations. Having written these energies in terms of 1e and 2e matrix elements

we only need to replace H.,L. with O,V to get the generalized expressions. For example,

for the first state in eq. (5.11),

E o = Vol M Vo)=(05[1]05) = 3o 6, + I, + Koy,

D"BA)
ol Vo) ol Vo)~ (00, |00 ) (0
+2Jy0, +2dv,0, = 2Jo,0, ~ 200,
-K

V

OD> (5.12)

e-ny

VpO, KvDoB + KoDoA + KoDoB

For a CTP state involving fragment orbitals O,,V, and O, ,V;,
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o |1 Vo) + (Vs [1"* |V ) = (O |1*|O5 ) = (O [ O )

D+ B™A

CTP

0gOg ‘]oo +‘]ov +‘Jov KoDoD_KoBvB

=(v
+< o) (b ) (o Ve Vo ) (Vo o Vo)
{00 Ve [00)~{O0 .. [00 ) ~(0a Ve, |0e)~{Ou ..y 0n)

-3J,, 2JvoB —2J0.0, T v, Tdow, T 20y, T v,0, +29v,0,

1 1 1

OBOD + KOAOB + KODOA + E KVBVD + E OBVD - OAVD + E KVBOD - KVBOA

(5.13)

EK
2

The same holds for the analytical expressions of the off-diagonal matrix elements between

the many-electron states (Table 5.5), e.g.,

D"BA") :J%(LDLEJHDHB)aJ%(VDVB|ODOB) (5.14)

These general formulas allow us to consider cases where the fragment excited states are not

SA<D B+7A+7 |:| el
CTP

intra-fragment O —»V. or inter-fragment O —V. excitations, but rather linear

combinations of excitations involving more than a pair of occupied and virtual orbitals. For
example, rather than having the ‘D*’B A>SA expression of eq. (5.11), we could have chosen

the excitation to be more complex, such as the linear combination of
[D"BA)"=C (\WD +\Wa>)+c' (\stD +\stD>) with  O,=H,-1 and
V=L, +1.

The choice of fragment excited-states will depend on the systems considered and on the
experimental and computational information we can get for the nature of their excitations
(i.e., if they are single excitations or linear combinations of single excitations). Since we

have analytical expressions of the Hamiltonian matrix elements in terms of any O,V

orbitals, we can deduce analytically and computationally the relevant minimum model and
approximate pathways that describe the specific system. Finally, the exact formulas for the
basis states, their energies and their Hamiltonian interactions are not based on any
assumption about the strengths of the interactions. Since the effective coupling is computed
exactly by diagonalization of the full Hamiltonian at the initial-to-final state resonance
(tunneling) energy (see section 5.4.3), the method can treat both asymmetric D-B-A systems

and strongly-interacting fragments.
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CHAPTER 6

Construction of Spin-Spatial Many-electron Basis

One of the most fundamental principles for a many-electron system, is the construction of
N — electron wavefunctions that satisfy the antisymmetry principle. This chapter describes
the creation of spin-spatial multi-electronic states (spin-spatial antisymmetric
wavefunctions) that are used as a basis for representing the many-electron Hamiltonian in
the CISD approximation. This construction is the key to the semi-analytical / computational
framework that we used in Chapter 5, in the study of the singlet fission process in donor (D)
- bridge (B) - Acceptor (A) molecular systems. Initially through the branching diagram
method we construct spin eigenfunctions for a given number of electrons (N ) and spin
quantum number (S ). Then, we combine these spin eigenfunctions with the appropriate
spatial part we create N — electron states. 1 The principle goal is the study of the structure
of the wavefunction and the derivation of the rules for the calculation of the matrix elements
of the Hamiltonian. Namely, we apply this methodology for creating the basis set (singly-
and doubly-excited states) that describes all the possible states within the CISD formalism.

6.1 Genealogical Construction of Spin Eigenfunctions

Let us assume that we know the spin eigenfunctions of the N —1 electronic system and we
want to construct spin eigenfunctions for the N — electronic system. We can start by

considering N =1 and knowing that the electron can have a spin eigenfunction y, (or «)
corresponding to spin-orbital with spin up and y, (or &) corresponding to spin-orbital with
spin down. This case corresponds to the addition theorem on angular momenta where one

subsystem consists of N —1 electrons with spin quantum number S, ,, while the other
subsystem consists of one electron with spin quantum number 1/2. Then, the S, quantum

number of the system can have only two values: S, ,—1/2 and S, +1/2.

Using the branching diagram method (and the Yamanouchi-Kotani functions), 1 from a
given quantum number S, ,, we can obtain new eigenfunctions corresponding to either

Sy =Sy, +Y2 or S, =S,_,—12 (by adding or subtracting the spin of the N electron).
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For a given quantum number S, there are different groups of such eigenfunctions, each
group containing 2S, +1 SAZYN eigenfunctions. The spin degeneracy of state N, S, is
obtained as follows,

f(N,Sy)=f(N-1S,,+1/2)- f (N-1S, ,~1/2). 6.1)

Using the indicative method, we prove that f (N, S ) is given by the following formula,

N N
- 1 . (6.2)

The spin degeneracy can be represented in a pictorial way by the branching diagram (Fig.

6.1). 1" Each state is represented by a circle with the coordinates N and S, and in each
circle is written the corresponding f (N : SN) value. As can be observed, the number of

independent spin states increases sharply as N increases.

Figure 6.1 Schematic representation of the branching diagram, Sy as a function of the
number of electrons, N. Circles represent the different states and the number in each circle
corresponds to the f (N, Sn) values.
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We denote the eigenfunctions of §,§ and SAZ,N belonging to the k™ group by
X (k)= X (N, Sy, Mg; k). The formulas for adding and subtracting the N* electron are

given by the following equations,

L AM+IX (N -1,y ;M) (N)
Sua—Mg X(N-1S, , M +1)@(N) ©3)

X(N,Sy,+1/2,M+1/2)=1/[2S  + [

Mg X (N =15, ;,M;)a(N)
sN1+|v| F1X (N =15, ,M+1)@(N)

X (NS 1 -Y2,M+Y2) =125, +1 [ ] (6.4)

Spin orbitals with spin up are symbolized with a and orbitals with spin down with a..

6.2 Antisymmetry Principle

A many-electron wavefunction is antisymmetric with respect to interchange of the
coordinates (both spin and spatial) of any two electrons (the wavefunction changes sign).
This principle should be taken into account in the construction of full spin-spatial functions.
In the remaining chapter we will deal with the creation of total wavefunctions that include
both spatial and spin part that satisfy the antisymmetry principle. For this purpose, we must

define the antisymmetrization operator as follows, 4°
Y 1 b A
A= NZ(_l) P (6.5)
=P

where P is the permutation operator and p keeps track of the number of permutations from

0 to N. The antisymmetrization operator has the property of commuting with the
Hamiltonian. This follows from the fact that the Hamiltonian is invariant with respect to the
permutation of the coordinates of the electrons, so the Hamiltonian commutes with every

permutation and therefore it commutes with the antisymmetrization operator.

6.3 Combination of Spatial and Spin Functions

Let us choose a spatial function consisting of prespecified orbitals determined by the state

we want to create, ¥(A,B,...22)=vy,(1)w,(2)..w,(N). The y's are one-electron
orbitals and A,B,...,£2 are the orbitals labels (e.g., HOMO, LUMO, etc.).
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The total wavefunction is obtained by multiplying the eigenfunction
X (k)=X(N,Sy, Mg; k) by the spatial function ¥( A,B,...,.£2) and by antisymmetrizing
the product. The wavefunction obtained in this way satisfies the antisymmetry principle.

Thus, the spin-spatial antisymmetric wavefunction can be written in a multi-determinant

form as,

|7, =|# (AB,...2); X (k)" = A, ¥ (A,B,..2)X (k). (6.6)

| ...>SA denotes a “Spin Adapted” state that most often involves a linear combination of Slater

determinants of one-electron spin orbitals (denoted simply by |) ).

6.4 The Many-electron Spin-adapted Basis Set

In the first step of the Singlet Fission (SF) process that studied extensively in Chapter 5 both
the initial and final states are singlets, so we consider only singlet states as intermediates for
this step (within the CISD formalism, these include single and double excitations). The
many-electron basis states we use describe the D, B or A localization of the excited electron
(e) and the hole (h), and are eigenstates of the total spin. They can be represented by linear
combinations of singly- and doubly-excited N — electron determinants. The spin
eigenfunctions are constructed via the branching diagram method (using the Yamanouchi-
Kotani functions) as described previously. ' For N s=1/2 spins we construct
eigenfunctions of S,ﬁ SAZ,N (with quantum numbers S, and M., respectively). For a given
quantum number S, there are different groups of such eigenfunctions, each group
containing 2S, +1 éz,N eigenfunctions. Given a value of S, the number of such groups
N N
for N spins is f(N,SN): 1 -1 . We denote the eigenfunctions of

SN=Sy | [ SN-8 -1

SZ and S, belonging to the k" group by X (k)= X (N, S, My ; k). The construction of
the eigenfunctions in each group is done iteratively. Given the X (N -1, Sy, Mg k)

eigenfunctions we obtain new eigenfunctions corresponding to either S, =S, ,+1/2 or

S, =Sy, —1/2 by adding or subtracting the spin of the N electron, respectively.
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The Table 6.1 below shows the f (6,0) =5 (apply an active space with N =6 electrons

looking for singlet spin eigenfunctions, S, =0) spin eigenfunctions as generated using the

above procedure as a function of the appropriate 20 primitive spin functions, 6, .

X X(2) X(3) X (4) X (5) 0
1 3 aaoaoaaa
2 -1 4 aaooaa
3 -1 -2 2 aoaoaooa
4 -1 -2 -2 aaoaoaa
5 -1 -2 2 aaooaoa
6 -1 1 -1 -1 1 aoaoaoaoa
7 -1 1 1 -1 -1 aaoaoaoa
8 1 -1 -1 -1 -1 aaooaa
9 1 -1 1 -1 1 aaoaoaoa
10 1 2 2 aacoaooa
11 -1 -2 -2 aooooo
12 -1 1 -1 1 -1 aooooo
13 -1 1 1 1 1 aooooo
14 1 -1 -1 1 1 aaooaa
15 1 -1 1 1 -1 aooooo
16 1 2 -2 aooooo
17 1 2 2 aaaaaa
18 1 2 -2 aooooo
19 1 -4 aooooo
20 -3 aooooo
c? 36 72 24 24 8

Table 6.1 Spin eigenfunctions X (k) (k =1-5) as linear combinations of primitive spin

functions, & (i keeps track of the number of primitive functions from 0 to 20) multiplying

with the appropriate coefficients, c.

The spin-spatial multi-electronic state with a prespecified occupation of spatial orbitals, is

constructed by first multiplying X (k) by a product of the prespecified orbitals,
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Y(A,B,.2)=y, (1) v;(2)..v,(N). The y's are le orbitals and A4,B,....Q2 are the
orbital labels (e.g., H, for the HOMO of the Donor fragment, L, for the LUMO of Acceptor
fragment, etc.). Thus, the spin-spatial antisymmetric wavefunctions can be written in a multi-
determinant form as ‘?’(A,B,...,Q);X (k)>SA = A, ¥ (A,B,...2)X (k) where A, is the

antisymmetrization operator as described above.

Since we consider only singlet states, we will not use a total-spin label in our notation.
Combining the spin eigenfunctions with an active space of 6 HOMO and LUMO orbitals (

H,, Ly, Hg, Lg, H,, L,)tocreate single and double excitations, we derive 40 singlet spin-
spatial eigenstates |5"n>SA (n =1—40). For an active space of 4 electrons in 6 orbitals, the
degeneracy is reduced to f (N =4, S, :0) =2 groups of spin eigenfunctions of S,ﬁ (the
other 3 groups of spin eigenfunctions vanish when we add the spatial part, since of the 6

total electrons, only the 4 are active). We use the basis set of |9”n>SA and the Slater-Condon

. . . SA = SA 1 " 7
rules to obtain analytical expressions for Hy =" (¥ [H®|¥, )" where H® =h®+V?*.

46

The singly-excited states can be categorized as locally-excited (LE) and charge-transfer
(CT). LE states have an excited electron and a hole on the same fragment (intra-fragment
excitation). Such a state is the bridge excitonic (BE) state with an electron-hole (e-h) pair in
the B fragment. For CT states the excited electron is on a different fragment than the hole

(inter-fragment e-h excitation). Such a state is the Donor-Acceptor excitonic (DAE) state.

The doubly-excited (DE) states include many more excitation combinations. We denote
locally doubly-excited states (LDE) those that contain two intra-fragment excitons (each
exciton is localized within D, B or A). In addition to locally doubly-excited (LDE) there are

doubly-excited CT states (CTDE) that combine a CT and LE exciton, e.g., D™ B*Af)SA. In

these cases, using the branching diagram method, we can construct correlated triplet-pair DE
states (denoted by CTP) and correlated singlet-pair DE states (denoted by CSP).

Table 6.2 shows the many-electron basis states as generated using the above procedure as

linear combinations of N — electron Slater determinants. In the notation used below, ‘5”;>
denotes a singly-excited determinant in which an electron, which occupied spin-orbital y,

in the Hartree-Fock (HF) ground state of the D-B-A N — electron system |#, ), has been
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promoted to a virtual spin-orbital y,. In addition, |¥,) denotes a doubly-excited
determinant in which two electrons, which occupied spin-orbitals y,, 7, in the Hartree-Fock
(HF) ground state of the D-B-A N — electron system |YJO,N> , have been promoted to virtual
spin-orbitals y,,y,., respectively. In such determinants, y, (or a) is used to denote spin-
orbital with spin up and ¥, (or &) spin-orbital with spin down. 4 The superscript “+” (“-”)

denotes hole (electron).

h-e
char. distribution Expression
notation
Singly-Excited states
LE (in) ID"BA)” %(\sv;f; >+‘lp§§ >)
LE (BE) [DBA)” %(\sv,:i HWHEBB >)
e A [
T oany i o)
[DB°A)”
i DB A T(‘yj 2 )l )
DB} |
CT (DAE) oeal ﬁ(‘%’;; >+‘Y/H’;‘(A)) >)
Doubly-Excited states
Lp L, Lp L
. - - 1 Lalp A lp 1 'Pizf’*>_¥/zﬁl*>
LDEcre (fi) | [D"BA™)" S| e )3 ] ;EEEZ>+ :UL”L>
L DEcss ‘D+_B A+_>csp (‘TLD Ca > ‘TLD Ca > ‘Y,LD La > ‘BUHLD LHAA >)
e | 078 A |l iy ) ol
BE) | |pB A7) i U - TP e ey
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Hp(a) He Hp(a) He Hp(a) He

D"B"A - . -
LDEcsp ‘ >CSP l(‘ Y/LD(A) Ls >+ ‘ TLD(A) I:B >+ ‘ WED(A) Ls >+ ‘ y/LD(A) Ls >)
(BE) |IDBA"

s I
v
A Mp(a)

LB I‘D Al
SUH H( )
A Tp(A)

EB EDA
v )
A(D) "TD(A)

Gl
—|Pe o )+
A(D) "'D(A)

CTDEcre | |[D BT A’
(BE) D BTA

Hao) Hoa)

(BE) DB A Ha Horw

CTDEctp ‘DiBJrAJr?

Hg Hp )

Lao) Lo > _

w LA(Dl )
Hg Hp(a)

|
N[

)
)
)
CTDEcsp ‘ DB+A+§CSP 1 (‘ s o >+“PLB Lora) >+ e o >+‘Y/LB o) >)
)
)

(B%) ‘D+_B+A_ cTP o o - "U:ND) : EA) >+ yjn::[)r)«;i” >
CTDEcs | [DB'AT), | 4 (‘5,,%) ot HT © D<A>> ‘Y,LA{D o >+‘W°> Lot >)
Ag A Hg A Hg H
(B+) ‘ D+—B+A—>CSP 2 8 Hp(a) 8 Hoa 8 Hp(a)
D= A+— Lao) Le Lao) Le
CTDEcre ‘ DB A >CTP 1 |5 Loy Llp \ 1 SUF‘/;AZ He >_ BUHD((A)) Ha >
—D— A+ 5 Tﬁb(A)HE>+ 5IIHD(A)':'B>_E Cyo L Lyo L
®) | |07, Jri )l )
CTDEcsp ‘ D'B"A 7>CSP l Y’LA{D) B ‘PLA(D) L ‘PEA(D) Le TLA(D) Le
] . Aom s | T % How As /T Ay He ) T2 Hopm He
(B) ‘D+ B A+> 2 o(4) o(A) o(4) (A)
csp
‘D+B+Aﬁ> 1 Lao L Ty L
+ = A(0) Lao) Lao) Lao)
PE(E) ‘D“B+A+> \/5( Phcin >+‘T“D(A> He >)
TR AT 1 s Ls B B
DE(B?) | |D'BTA) 3(\%@ Vel )

Table 6.2 Spin-spatial multi-electronic states written as linear combinations of singly- and
doubly-excited Slater determinants. 1% column: Names of the different groups of lowest-
lying singlet basis states for the D-B-A system. 2" column: Mathematical notation for the
spin-adapted basis states in each group. 3" column: Spin-spatial multi-electronic states as
linear combinations of singly- and doubly-excited Slater determinants. In most cases the
grouping is according to the B state, such as B*, B~ and bridge excitonic (BE) state, while

the initial and final CTP states are denoted as (in) and (fi).
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In our analysis ‘D*‘B A>SA is taken to be the initial photo-excited state that produces the

CTP final state and the CSP locally doubly-excited state (described below, eqgs (6.7) and
(6.8))

- o aflEE ) e )
‘D BA >CTP \/7 ‘Y/HLZ;DA> ‘Y/HLZ;DA> ‘IPLDLA> ‘W;Z;AA> 6.7)
and
D BA" )Cspzé(‘yf > ‘WLDLA> ‘WLDLA >+‘¥/HL2;AA >) (6.8)

‘ DB A*’>Z/:P is the generalization to D-B-A system of the correlated D-A triplet-pair state

that is a linear combination of products of D- and A-localized triplet excitons. "% In

particular, for an N — electron system,

' (6.9)
T 1, o)1), 1), e
where 1,J,K,L are four electrons (out of N), ‘Tr,;“(SA)>I | is a two-electron triplet state

formed by 1™ and J" electrons. For example, ‘Trg’}” _ 1 (‘?’LD —‘?’LD> ) where

2
‘T,ﬁz}u :%(V/LDa(I)z//HD&(J)—z//HD&(I)z//LDa(J)) is a two-electron (1,J) Slater
determinant (and similarly for ‘5”,5‘; >| ; ). ‘Tr,;“(SA)>K ) is a two-electron triplet state formed by

K™ and L™ electrons. |SVO’N_4> is the Slater determinant for the remaining N —4 electrons

of the remaining occupied orbitals that do not belong to the active space. ‘D+‘B A+‘>ZP is

also known as the Correlated Singlet-Pair (CSP) and it is given by,

. AN-4)T QN NN o T
ID"BA )CSP— TZ;;M(—Q S8 ), ,[SiR), |Fons)  (610)

where, e.g., \Sif;)LJ —T("PLD> ‘TLD>IJ)
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CHAPTER /

Construction of the CISD Hamiltonian Matrix

In this chapter we describe how we construct the Configuration Interaction Singles and
Doubles (CISD) Hamiltonian matrix using the spin-adapted (SA) basis set of Chapter 5. This
matrix is used to study analytically and computationally the singlet fission (SF) process,

described in detail in Chapter 5.

7.1 Calculation of the Hamiltonian Matrix

The following electronic Hamiltonian was introduced in Chapter 1 (see eq. (1.5)),

Hel ——ﬁ N p|2 N Np 1 N N 2
(v >—§2mel-22 \r ﬁn Esz_lmgop_ 3 (7.1)

The first term is the operator corresponding to the sum of the kinetic energy of the N
electrons, the second term corresponds to the sum of the attractions between the N electrons

and the N, nuclei and the final term describes the inter-electronic repulsions. The first two

terms constitute the one-electron operator,

(7.2)

since it is the independent-electron Hamiltonian for N electrons in the field of N, atomic

nuclei. While, the last term is the two-electron repulsive Coulombic operator

N N 2

Sk (7.3)

u

The spin-spatial antisymmetric wavefunctions are written in a multi-determinant form, so

we can use the Slater-Condon rules to calculate the Hamiltonian matrix elements, 3
Hr?!m :<\Pn||:|el|q1m>' (7.4)

Using the Slater-Condon rules, we calculate analytically the energies (diagonal Hamiltonian

matrix elements) and the corresponding couplings (off-diagonal Hamiltonian matrix
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elements) as a function of ionization potentials (1P), electron affinities (EA), core terms,

overlap matrix elements, Coulomb and exchange 2e integrals and 1e Fock matrix elements.

7.2 Excitation Energies and Couplings

Using the Slater-Condon rules - we obtain analytical expressions for the donor (D) — bridge
(B) — acceptor (A) electronic Hamiltonian matrix in representation of the many-electron
basis described in Chapter 5, based on the six-orbital active space with single and double
excitations. The electronic Hamiltonian describing this type of system can be written as
linear combination of the fragment electronic Hamiltonians and the inter-fragment

interactions,
|:|IeDIBA:|:|IgI+|:|I§I+|:|2|+|:|im (7-5)

where the first three terms are the electronic Hamiltonians of the three fragments D, B, A,
while the last term includes all the inter-fragment interactions between the electrons and the

nuclei of the fragments. These terms can be given as,

2 Np Np X

R Np 2 Np Nip Z e
Hel — pl _ l —
° &Hom, ZHZD: 4re, ‘F. R, 2 ;;4;:;:0 [ (7.6)
A Ng p|2 Ng Nng 1 e Ng Ng (7 7)
B _.Z;Zme. _Z%Meo ‘ﬁ Fin ‘ ;;47[50 |r 3 :
Ny 2 Ny Nog N, N, o2
l:lel A pl _ 1 (78)
A IZ;Zmel ZHZA: 47, ‘F N ;;47@) Ir, -1
. No (Mg Ng z, e & 1 Z.¢€
R b e B 09
z,e8 &1 Z.¢
_Z[§47r€0 |r —ﬁ |+%47ng |f| _ﬁnBJ.

In the above equations, 1,J keep track of the number of electrons from 0 to N, (total number

of electrons in fragment i) and n; keeps track of the number of nuclei from 0 to N, (the
number of nuclei in fragment i) (i=D,B,A). With T we denote the position of the 1"

electron in space and with ﬁni the position of the n" nucleus.

161



In general, the basis-state energies are functions of ionization potentials, electron affinities,

core terms, Coulomb and exchange integrals, i.e.,

SA(5lfn||—”|e'|5vn>s’*:En({|P‘}, (EAT, {<Lr\/ Li>}, {<Hr\/

The off-diagonal matrix elements are functions of one-electron Fock matrix elements,

Hi>}, (g, {KHQ]})- (7.10)

overlap matrix elements and two-electron integrals,
M) " = o ([RIFIQ)] {(RQUIRZ, ) {Siq ). {00 ) (Keo})  (7.10)

In the equations above \/AF__nk denote Coulombic attractive interactions between the electrons
and the k™ fragment nuclei (part of the core term in the Hamiltonian). inqj and Kpin are
Coulomb and exchange 2e integrals involving the y, and Vo, fragment molecular orbitals
(MOs),

Jno, =(RRIQQ)=[d% d%, v (£) we (R) ru wg (B) v, (5), (712

Koo, =(RQIQR)=[d° d°% vy (7) o, (7) 1™ wo, (1) v (1) - (7.13)
where P,Q,R,Z=H,Land i,j = D,B,A.*3

Below we present analytical expressions for the diagonal and off-diagonal elements of the
Hamiltonian calculated using the Slater Condon rules. The basis set includes singly-excited
states (LE and CT) and doubly-excited (DE, correlated triplet- and correlated-singlet LDE
and CTDE).

char. notation Exact Energy Expression

Singly - Excited States
IP°—EA°—J,  +2K,
+<LD

Voo Lo )+ (Lo Ve |Lo )~ (Ho
2w, +23n, — 230, — 234 0,

_KLDHA - KLDHB + KHDHA + KHDHB

Vv

Ho)=(Hol..,

HD>

SN e-Ny

LE (in) | |D"BA)

IP?-EA®-J, +2K,

LE (BE) ‘ D B*’A> +<LB ’\ie‘”A LB>+<LB M-no LB>_<HB Ne—m\
23, +23n, — 2304, — 234 h,

_KLBHA - KLBHD + KHBHA + KHBHD

Ha)~(HaVor,

a)

162



IP°* —EA®
o
CT (B) ‘D B A>, +<LB NHD(A) LB>+<LB r\;e*’wm LB>_<HD(A) N“”A{o) HD(A)>_<HD(A) Ne*"a HD(A)>
‘ D B—A+> +‘]HD(A>LB +2‘]HA(D)LB _Z‘JHD(A)HB —2.]HDHA
+KHD(A)LB - KHA(D)LB + KHDWHB + KHDHA
IP® —EA°®
-t
CT (B9 ‘ DB A>’ +<'-D<A> Ven| Lo A)>+<LD<A> Ne—nm LD(A)>‘<HB Nen, HB>‘<HB Ver, HB>
‘ D B+A—> +JHBLDW +2JHA{D)LD(A, —2JHBHD —2JHBHA
+KHBLD(A) - KHA{D)LD(A) + KHBHD + KHBHA
IPA®) _EAP™
—
CcT ‘D BA >’ +<'-D(A> NWD) LD<A>>+<'-D<A> Ve, LD(A)>‘<HA(D) Ven, HA(D)>‘<HA(D) Ne—nm, HA(D)>
(DAE) ‘ DB A7> oo 2 et =2ty =2,
+KHA{D)LD¢A) - KHBLD(A) + KHAHD + KHND)HB
Doubly — Excited States
IP°+IP"~EA° —EA*-J,  -J, .
#{LoNon Lo ) (Lo Ve Lo ) (Lo L)+ (Lo >
‘D+7BA+7>CTP _<HANS’”D HA>_<HANHB HA>_<HD’V > < >
“33 = 20p, — 20y I I 2D, I 2]
LDE +g KHDHA + KHDHB + KHBHA +% KLDLA +% KHDLA - KHBLA +% KLDHA - KLDHB
(i) IP°+IPA—EA° —EA*-J,  —J,  +2K, +2K,
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—SJHDHA —ZJHDHB —ZJHBHA + JLDLA + JHDLA +2JHBLA + JLDHA + ZJLDHB
+g KHDHA + KHDHB + KHBHA _% LoLa _% HpLa ~ '"“Hgla _% LoHa ~ "“LpHg
P+ 1PH? —EA® —EAM® -3, -3,
AN Bt DR
CTP
‘D*’B*’A) ‘<HA<D> b’(, HA(D)>‘<HA(D) Vecw [ Haoy) = (He Ve, [Ho )= (He Vecr, [Ho )
et | B~ 2ratte = 2Ibor F it F st F 2 Mo+ Jtattney 2o
LDE +g KHBHND) + KHDWHB + KHDHA +% KLBLA(D) +% KHBLA(D, ~Kigto) +%KLEHND) - KLEHDW
(BE) 1P+ 1IPAP —EA® —EANO -], - Iy T 2Ky +2K0 1
IDBA") #(LaNn | o)+ (LaVorn L)+ L Vo, LA<D>>+<LA<D> Vors, LA(D)>
CSP
‘D+‘B+‘A> ‘<HA<D> Mecnn HA(D)>‘<HA(D) Ve [Huo) = (Hs Ve [He )~ (Hi Ve, [ H)
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IP?™ +1P® —2EAND 1,
DB A) +2(LuNogy | L) +2( LV L)

‘D,,B+A+> _<HD(A) ’VHWD) HD(A)>_<HD(A) IVE,nB
=330 = 2o, = 2, + 2y,
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Ha)=(Heloc,

o)
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Hg + KHDHA + KHBHA(D -K
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D(A) ) Ho(a)ao) Halao)

IP°+IPA—2EA® +],

+2<LB V... LB>+2<LB’\7HA LB>
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A

HA>
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Table 7.1 Analytical exact expressions for basis-state energies. 1% column: Names of the
different groups of the basis states for the D-B-A system. 2" column: Mathematical notation
of the spin-adapted (SA) many-electron basis states. 3™ column: Exact expressions for the
excitation energies of these states of the D-B-A system as a function of ionization potentials,

electron affinities, core terms and two-electron integrals.

The table below shows detailed expressions for the off-diagonal Hamiltonian elements as a

function of 2e integrals and Fock Matrix elements. We separated them, into couplings
between singly-excited states (Ve ¢, Vic_cr. Ver_cr ), into couplings between singly- and

doubly-excited and between doubly-excited states. It is worth noting that integrals

containing molecular orbitals of all the three fragments are very weak compared to the rest
(two to three orders of magnitude smaller) and thus can be ignored (e.g., (R Q |Qk Pk) ~0).
In the following notation we use i, j,k = D,B, A meaning different monomers and i — j for
CT state where an electron is transferred from i to j monomer (e.g., V.22 5" denote the

coupling between a LE state on D monomer (initial) and a CTDE state that includes D-to-B
CT exciton and a LE on A monomer state). Also, the off-diagonal elements of the overlap

matrix are very close to zero and thus are vanishing (SPin ~0, B =Q,) while the diagonal

elements are unity (Sq, =1). 145 For example, the exact expression of V,2%* coupling
contains terms of the form S_ ((HD h'|Hp)+2(H, " HA>)+SHDLA<HD h'|Ly),

which can be ignored since the off-diagonal elements of the overlap matrix are too small and

so the whole term is zeroed.
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Matrix Element

not.

(1Ae]) vl

Couplings between Singly - Excited States

(D*"BA|H|D"BA) v 208 (Lo |F|Ls)+2(LoHp |HoLg )= (LoLs [HoH,)
(D"BA | A> Vil (LolFLa)+2(LoHo [HoLa) ~(LoLa | HoHo )
(D7BA[H[DBA) | VRTP ~(Ho [F[Hg)+2(LoHp [Halo )~ (HoHa|LoLs)
(D"BA ") V2A2P —(Hp |[FHA)+2(LoHp [HaLy )= (HoHA|LoLy)
(D"BA YT /T [SS— 2(LoHo [HaLe ) ~(LoLs [HoH, )
(D"BA[H|DB'A") | V2A | 2(LoHp [HgLy)—(LoLa|HgHp) =0
(D"BA|H|DB A") VAR | 2(LoHp|HaLs ) —(LoLg|HAH, ) =0
(DB AJH ) VD80 (LB|If|J_A>+2(LBHD|HDLA)—(LBLA|HDHD)
~(Lo|F|Ly)
(D'B'A|H|DB'A) | VE2EEP | 2(LgHp [Halp ) —(LoLp [HeHo)
(D'B"A|H|D BA") VO2EASD | 2(LgHp|HaLs)—(LsLp|HAH, ) =0
(D'B"A|H|DB"A) vEooRe —(Hp|FIHa)+2(Hplg|LgHy )~ (HpHg |LaLs)
(D'B"A|H|DB*A™)|  VOZEEA | 2(HpLg|LyHg )= (HpHg|LiLg ) = 0
s Ao a)| yoes | ol IR (ol L) ~(Ho ko)
=—(Ho|F[H,)
(D'BAT|H|DB'A) | VO7APP | 2(LaHp|HaLs ) —(Lalp|HgH, ) =0
(D'BA|H|DBA")| VE&AP | 2(LaHp [HaLp )= (Lalo [HAH,)
(D'BA"|H|DB" A) VOCRE 2(LyHp [Hals ) —(LaLe|HgH, ) =0
. —(Hp |F|Hg)+2(HpL | LiHg )—(HpH, |LAL
(D'BA|H|DBA") V2 ABA ~<_<DH|D|||3|H>B> (HoLs| )-(HoHs|L,Ly)
(D'BAT|H|DBAY) | VHZAE | 2(LyHp [H,Lg )~ (LaLs|HAH, ) =0
. —(Hg|F[H, ) +2(H Ly |LoH, )= (HH, L L
oo Aff[pBaT) | yamas z<_<BH|B||ﬁ|;>A>( Lo LoH.)~(HoH Lo L)
(D°B"A[H[DB"A) Ver e (Lo|FlLs)+2(Helo [LgH, ) —(HeHo [LoLs )
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(Lp|FILy)+2(Hgls |LyHg ) —(HgHg |LoL, )

. R A B—>D,B—>A

( HIDB*A) | V&2 (L [FIL)

be Ay [ vEes 2(HsLo |LgH )~ (HaHg |LoLs ) ~ 0
(DBA|A[DBA) | VAP | 2(LoHalHsLs )= (LoLs [HeH, ) =0
<D B A" H|DB A> VE22EA 2(Lp A|HBLA)_(LDLA|HBHA)zO
(DB"AJH|DBA)|[ Vi (Lol F|La)+2(LoHs [HoL) ~(LoLalHoHo)

(DBA|A[DBAT)|  VEAE —(Hg [F[H ) +2(HpLs|LgH, )~ (HgH, [LoLs )
(DB A[A[DB AY)|  VEAME | 2(LyHe[HaLg )~ (LaLe[HAH:)

Couplings between Singly- and Doubly — Excited States

_Z(HALA|HDHD)+2(HALA|LDLD) |

+2(HALA|HAHA)+4(HALA|HBHB)

. 1
D"BA(H|D"BA" Sl | =
< | >CSP VD,D;A V2 \/E _Z(HAHB|HBLA)_(HAHD|HDLA)
LE-LDE __( Halo |LD LA) i
+— q +- +- 3 3
(DBARDBAT) | | \E(HDLAlHAHD)—\E(LDLAIHALD)
~ 2 1
(D"BAJA|D"B A™)_ T E(LDLB|HALA)_ﬁ(LDLA|HALB)zO
VLE CTDE
<D+—BA‘H‘D+B_A+_>CTP ---------- _\/§<LDLA|HALB)zO
D*BA|H|D*"B A" 2 1L, | [H 1 +2(HALB|HAHA)+4(HALB|HBHB)
< ' ‘ >CSP 72< B‘ ‘ > ﬁ _Z(H H |H L )_ H
Ve e -

<D BA\ \D BA>

CTP

~(Hlotste)

3 3
\E(HDLB|HAHD)—\E(LDLB|HALD)zO

167




2(Hob oty ) +2(Habftolo)
o . 1 +2(HaLy [HgHg )+ 4(HL,H,H,)
(D"BA|H|D"B"A")__ -l | ——=
\/D/BAD \/E _Z(HBHA|HALA)_(H pbka
LE-CTDE
|~ (Halofls) |
(D BAH[D B A) . || e —\E(HDLAIHBHD%E(LDLAIHBLD)W
<D+7BA‘|:|‘D78+A+7>CSP """""" i(HBHD|HA|—A)_L(HBI—A|HAHD)z0
VD,B—)D;A \/E \/E
LE-CTDE
(D"BAR[DB'AT) | | e —\E(HBLA|HAHD)z0
<D*’B A\ H \ D B*’A*’>CSP ___________________________
VD,B;A
(D"BA|H|DB"A")__ e
(DBARDBA) | | e —i(LBLD|HBLA)+i(LBLA|HB p)~0
VDA)B,BA)A;D \/E \/E
) CT-CTDE 3
(DBAHIDBA) || e \E(LBLA|HBLD)zo
<D+BiA||:||DiB+A+7>CSP e & | T/
VCT?CT’D; ’
<D*B’A| H | D’B*A*’>CTP ...........................
<D+BiA‘H‘D+7BA%>csp """""" i(I—BI—D|HA|—A)_L(I—BI—A|HA|—D)zo
VD—>B,D;A \/E \/E
CT-LDE 3
(DB AH[DTBAY) | e —\/;(LBLA|HALD)zO
_Z(HALA|HDHD)+2(HALA|LBLB) |
2(H,L,|H,H,)+4(H,L,[H.H
peAdpEa), 2oy | | P2k AL )
\/D—B.D-BiA \/E _Z(HAHB|HBLA)_(HAHD|HDLA)
CT-CTDE __(HALB |LB LA) |
e A~ R A 3 3
(DB ARDBA) | \E(HDLAIHAHD)—\E(LBLAIHALB)

168




2(HubofHsF, ) -2(Hoetely) |
(M) L +(HDLD|HAHD)+(HALD|HDHD)
VDAB,A%B;D +M+(HALD|HAHA)
CT-CTDE
- (H.HefHs o)

<D*B’A‘ H ‘D*’B’A* >

CsP

&
5

(D'BAH[D™BA) | | s _\/g(HBLD|HAHB)+\/§(LBLD|HALB)zO

: 2 L
(BARPETAT), || —=(HeHo [HaL) === (HoLa|HaHo ) <0
VD—)B,B;A \/E \/E
CT-LDE
(oBARpEA), | | e =2 (HyLu|H,Ho ) <0
CTP 2 B™—A A" "D

2(H Lot F ) —2(H, L L )

1 | *+(Holo [HaHp )+ (Halo[HoHo )
V2| +(H, Lo |LaLy) + (Halo [HAH,)

\/DADIA - (HuHetHe )
CT-LDE

(D'BA |H|D"BA") L) | —

CsP

=

3 3
—\E(HBLD|HAHB)+\E(LALD|HALA)
<D*BA"F|‘D*’BA*’>CTP ____________
3
z\/;(LALD|HALA)

[2(H,Lg [HoHg ) —2(H,La|LaLs ) ]
R +(H o) + (H oP

V2] 4 (H, L JLuLy )+ (HaLs [HAH,)
__(HAHB|HBLB)

(D'BA[R|D'B A, T

S

V D—A,D—B;A
CT-CTDE

+ -1y R At 3 3
(peaff[oBA) | e —\E(HBLB|HAHB)+\E(LALB|HALA)

. 2 1
(DBA|ADBA) || e —“=(LaLs |HuLg ) - —=(LaLg [H Ly ) = 0

CsP \/E \/E

CT-CTDE

VDA)A,AA)B;D
(DBAH[DBA) | | e _\E(LALB IH,Ly)~0

169




2(HaLoHiF, ) ~2(HobofrTo) |

+(HpLp [HgHp )+(HgLy [HoHy)

. ~ 1
<D+BA7‘H‘D+7B+A7 >CSP i<HB|hle|LD>_
VDaA,BaA;D V2 \/E +M+(HBLD|HBHB)
CT-CTDE
_—Wﬁ@ i
(D'BAHR[D BA) | e \E(HALDIHBHA)—\E(LALDIHBLA)zO
. 2 1
<D+BA7|H|DiB+A+i>csp ““““““ ﬁ(HBLD |HAHD)_5(HBHD |HALD) ~0
VG g 3
(DBAH[DBA) || e —\E(HBHD|HALD)~0
. 2 1
<D+BA7|H|DB+7A+7>CSP ““““““ E(HBLB |HAHD)_E(HBHD |HALB) ~0
v :

(DBA|H|DB"AT) | | e —\E(HBHD|HALB)z0
ATV W I —— 5 (HoHuH,L )+ 5 (HoLeHH, ) <0
Vit 3

(DBAH[D"BAT) . | | e \E(HDLA|HAHB)zo
<D’B*A| H | D+B’A*’>Cs ...........................
dl
<D’B*A‘ H \ D*B’A*’>CTP ___________________________
<DiB+A||:||D+7BiA+>CSP """""" _%(HDHB |HALB)+%(HDLB |HAHB)zO
: Ver oroe 3
(peAR[pBA) | e \E(HDLB|HAHB)zO
. 2 1
<D_B+A H | D B+—A+_>CSP """""" _ﬁ(LD LB |HALA)+E(LDLA|HALB) ~0
veae

<D’B*A|I:||DB*’A*’>

CTP

170




2(HpLa[HaHA)=2(HpLo |LoLy)

(DB'A|H|D"B"A) {Ho L)

S

\/ B—D,B—>A;D B''B
CT-CTDE

(DBAR[DB A || e \E(HALA|HDHA)—\E(LDLA|HDLD)

[2(H,La|HgHg ) +2(H,La LoLy)
(D'B*A|H|D B'A") 2 (R 1 +2(HALA|HAHA)+4(HALA|HDHD)
’ V2| -2(H,H, |HoL, )~ (HaHo |H,L,)

\/ B—D,B—D;A
__(HALD|LDLA)

CT-CTDE
e Ak DB A 3 3
(DB'AH|[DBAT) || s _\/;(HAHB|HBLA)+\/;(HALD“‘DLA)

- +]14 = gt 2 1
<D BA H|DB A >CSP T _ﬁ(LDLA|HBLB)+E(LDLB|HBLA)zO
DBA"|H|DBA" o 3
< | | >ch """""" E(LDLB|HBLA)ZO
. 2 1
<D_BA+ H|D+B_A+_>CSP """""" ﬁ(HDLB|LDLA)_E(HDLA|LDLB)zo
\/ AT?D,D4+B;A
D BA*|H|D*B A" ~ 8
< | >cw """""" - E(HDLA“‘DLB)zO
—ZW_Z(HDLD“‘DLA)_
CRISCIES S gy | | At oM (ol HoHo )

V2| +(HpLy |LoLo )+ (HoLa|HAH,)

VD0 ~ (HoHstH L, )
CT-LDE L

3 3
2 (MM S (L oL,

~ _(LDLA|HDLD)

<D’B A*‘I—]‘D*’B A*’> ____________

CTP

ST

171




2(HpLg|HgHa)—2(Hpbs |LoLs)

(DBAA[D B A) *%(Hn\ﬁ”\m 1 +W+(H Al A
V2| 4 (HoLg |LsLo )+ (HoLg [HoHo)

__(HDHB|HBLB)

V A-D,A-B;D
CT-CTDE

(DBATH[D"BA) | | e _\/g(HBLB|HDHB)+\/%(LDLEJHDLD)

= 2 1

(DBA|A[DBA) | ﬁ(HBLA|HDHA)—E(HBHA|HDLA)zO
VAR

(DBA'H[D™BA) | | e —\E(HBHA|HDLA)zo

2 (Ha Lty ) —2(Holoft Ty )|
1 +(HALA|HBHA)+(HBLA|HAHA)
- VA»D,BAD;A i \/E +W+(HBLA|HBHB)
CT-CTDE
_wm

<D'BA*\H\D-B+A+->

(DBA'HIDBA) | s \/g(HDLA|HBHD)_\/g(LDLA|HBLD)zO

2 1

(DB=AADBA) || e ——=(HoLo |LeLs )+ —=(HpLa|LsLs ) = O
VB,B—)A;D \/E \/E
) LE-CTDE 3
(DB"AH[D"B'A) | | e \E (HoLa|LsLy) =0
(DB AR[DBAT) | | s —i(HALA|LBLD)+i(HALD |LBLA) ~0
VB,B—)D;A \/E \/E
LE-CTDE 3
(DB AH[DBAT) | e \E (Halo|LsLs) =0
(DB"AH|D"BA") | | | e
: Viztioe
(DB"AJH|D"BA") | e |
(oB-AA[DBAT) | | e —i(HALA|HDHB)+i(HDLA|HAHB)zO
VB,DAB;A \/E \/E
LE-CTDE 3
(DBUAH[DBAY) || e \E(HDLA|HAHB)zo

172




. 2 1
(DB AH[DBA) | | ——=(HpLy|H,Hg )+ == (HaLy [HoHg ) 0
VB,A—>B;D \/5 \/5
LE-CTDE
(DB"AH|D"BA) | | e \E(HALD|HDHB)z0

[2(H,LaHAH,)+2(H, L, Lo L)

1 | +2(H,Ly[HgHg ) +4(H, L HoH,)
V2| -2(H, H, |HoL, )~ (HaHo |H,L,)
__(HALB|LBLA)

<D B*’A‘I—]‘DB*’A*’>

CsP

B,B;A
VLE—LDE

(DBTA[H[DBTAT) | | s \E(HBLA|HAHB)—\E(LBLA|HALB)

. 2 1

<DB+A7‘H‘D+7BA+7>CSP ATV _E(HDLD|HAHB)+$(HDHB|HALD)zO
o VCT_—)LIZ’)EY 3
(DBA[R[D"BAT) || e E(HDHB|HALD)z0
2 1
pB*A |d|DB A" | | ——(H.L.IH.H.)J+—=(H.-H.H.L.)~0
< ‘ ‘ >csp P \/E( D B| A B) \/E( D B| A B)
CT-CTDE
(DB A [H[DBAY) || s /E(H Hg[H,Lg )~ 0
cTP 2 D"'B A™B

<D B*A“ﬁ \ D+-B-A+> ___________________________
csP V B—A,A—B;D

(DB'A |H|D" B A")__ crewe T
[ 2(Hplp [HoHp ) +2(Hply |LuLy) ]
(5[] e i | L +2(HpLs [HgHy ) +4(HpLo [H,H,)
P T2 —2(HgHAHL L )~ (HoHg [HoL
VB—)A,B—)A;D ( D A| A D) ( D B| B D)
CT-CTDE __(HDLA|LALD) |

(pB'A[R[DTB A || e \E(HBLD|HDHB)—\E(LALD|HDLA)

_Z(HALD|HDHD)_2(HALA|LALD) |
: +(H + (HuLotHeF)
H|D'B'A") verReoDA | Ly | ﬁ)ﬂﬁm oE
csp CT-CTDE N7 \/5 +(HALD|HAHA)+(HALD|LALA)
__(HAHD|HDLD)

<D B'A

173




<DB*A’|I:I|D’B*A*’> .

3 3
\/;(HDLD|HAHD)_\/;(LALD|HALA)

1

_ZW_Z(HALA|LALB)—

1 +(HAHB|HBLB)+(HALB|HBHB)

<D B’A*‘H \ D*’B’A*>

V A—B,A—B;D
CT-CTDE

(DB*A |H|DB"A") ﬁ(HA\ﬁ“\'—J —
V2| +(Hu Ly HH, )+ (HaLs|LaLy)
vEe ~(Huoftol) _
3 3
< ‘A‘ > \/;(HDLB|HAHD)_\/;(LALB|HALA)
DB*A |H|DB*"A") | | oo
) 3
z_\/;(LALB|HALA)

) 2 1
<DB?A+‘H‘D+7BA+7> - | s ﬁ(HDLD|LBLA)_$(HDLA|LBLD)zO
vt ;

(DB AT[R[DBAT) || e —\E(HDLA|LBLD)zo
2 (HoloHsHy ) —2(Holefts L)
N N, 1 | +(HaLa[HoH, ) +(Hp Ly H,H,)
(DB A"|H|D'B A™) ~HalIL) | ——=
VA—)B,D—>B;A \/E +(HDLA|HDHD)+ H BB
CT-CTDE
-~ (HoHetHiL,) |
(PBAH[DBAY) || s —\E(HBLA|HDHB)+\E(LBLA|HDLB)zo
2(HpLy [HH L) +2(HpLy |LsLy)
<DB’A*‘I—A|'D**B*A+> i(H L) i +2(HDLD|HDHD)+4(HDLD|HBHB)

V2| —2(HyHg [Halp ) —(HoLe |LsLs)
__(HDHA|HALD)

3 3
\/;(HALD|HDHA)_\/;(LBLD|HDLB)

H|D B A_> VA—)B,B—)A;D ---------------------------

~ CT-CTDE

H|D+-B+A-> ...........................

) . 2 1

H|D_B+A+_> Vcﬁng’SE)D’A ““““““ _E(HBLD|LBLA)+_(HBLA|LBLD)zO

N

174




A+ -nt At 3
<DBA H|DBA >CTP """"""" \/;(HBLA“‘BLD)zO
<DB*A+‘|_A|‘DB**A+’>CSP ———————————— _%(HBLB |LBLA)+%(HBLA|LBLB)
VA—)B,B;A
CT-LDE 3
(DB A'|H[DB"A") | | s \/;(HBLA“-BLB)
Couplings between Doubly - Excited states
csp<D+7BA+7‘|:| ‘ D+7BA+7>CTP L%;EAC'SSL?_DECTP ____________ ?( LoHa + KHDLA - KHDHA - KLDLA ) ~ O

2(LDLB|HBHB)+(LDLB|HDHD)

— +(HpLs [LoHp ) —(LoHg [HpLs )

LDEqsp—CTDE 1 1
- (LHAHT) - (Lol

CSP<D+7BA+7‘|:|‘D+87A+7> <LD‘ﬁle‘LB>

CsP

73

T I W A p— _g(LDLAuALB)+7(LDHA|HALB)zo

2(LuLg|HgHg ) +(LaLg [H H,)

D;A,A-B;D +(HALB|LAHA)_(LAHB|HBLB)

LDEqs,—CTDE 1 1
— (L] = (LT

CSP<D+_BA+_‘|:|‘D+_B_A+> <LA‘ﬁ1e‘LB>

CsP

NG e

w(DTBAT[H[DTBAY) —7(LA|—D |LDLB)+7(LAHD |HDLB)z 0

H >Hp ) +(HgH, [HgHy)

+(HBHA|HAHA)+W
+(HgH A |LaLy)—2(HgLa|LH,)
1

CSP<D+7BA+7‘|:|‘D+7B+A7>csp <HA‘ﬁle‘HB>

D;A,B—>A;D
LDE.s,—CTDE

CTP

w(DBATR[DTBA) ] e —7(H H |HDHA)+7(H

175




(H H, +(HBHD|HBHB)

+(HBHD|HDHD)+M

CSP<D+7BA+7‘|:|‘DiB+A+7>csp <HD‘ﬁle‘HB>
D;A,B—D;A +(HBHD|LDLD)_2(HBLD|LDHD)
LDEsp-CTDE 1 1
_E(H A"'D _E A" D
w(DBAT[R[DBAT) e —?(HBHA|HAHD)+§(HBLA|LAHD)zO
(H AHL) +(HgHy [HgH)
: : +(HgHo [HoH, )+ (HoBsttT,)
CSP<D+_BA+_‘H‘DB+_A+_>CSP <HD‘hle‘HB>

+(HBHD|LBLB)—2(HBLB|LBHD)

D;AB;A
LDEgp—LDE 1 y 1
5 (HaHtHRFG) = (Hol o)
(DTBAT[A[DBTAT) 1 e —?(HBHA|HAHD)+§(HBLA|LAHD) ~0
. (D'BA"|A|D"BA") VRoBADA \/5 \/g

CTP

CTDEcgp—~LDEcrp

—7(LBLA|LALD)+7(LBHA|HALD)zo

csp <D+BiA+7‘ H ‘ D+B?A+7>CTP

D—>B;A,D—B;A
CTDE¢sp ~CTDEcrp

?(KLBHA +%‘%‘ KLBLA)

IRCEVSUILEYY

CsP

ICETSELRTS

CTP

D—B;A,A->B;D
CTDE¢s» ~CTDE

1 N
Ll
2

1 1

_E(LALD|HDHD)_§(LALD|HAHA)
1 1

_E L BB _E(HDLD|LAHD)
1

+§ L =Lp

3

L)

3
_ﬁw_g(LALD |HDHD)
3 3
_g(LALD|HAHA)_§M
3 3
(L o)+ 2 (LT

3

_7(HALD|LAHA)

MUEVSTIERDY

CsP

D—B;A,B>AD
CTDE¢sp ~CTDE

1
(LBLD|HBHA)—E(LBHA|HBLD)zO

176




w(DBAT[R[DBA) e g(LBLD|HBHA)+§(LBHA|HBLD)zO

CSP<D+B—A+—‘|.‘|‘D-B+A+->CSP ———————————— (LBLD |HBHD)_2(LBHD |HBLD)
D—B;A,BHD;A
CTDEg» ~CTDE
W(DBATHDBAY) | ﬁ( LeLs |HBH D)
(H Alla +(HBHD|HBHB)

+(HBHD|HDHD)+M

CSP<D+BiA+7‘H‘DB+7A+7>csp <HD‘ﬁle‘HB>
D—B;A,B;A +(HBHD|LBLB)_2(HBLB|LBHD)
CTDE¢g—-LDE
L _=
2 A" "D 2 A" "D
w(DBATHDB AT ] e f(HBHA|H Hp )+ \/2§(HBLA|LAHD)zO
LoealAen), | VigERAEe | S K Ko Ko Ko
csp<D+7B?A+‘l:|‘D+7B+A7>csp """""" (HBHA|LBLA)_2(HBLA|LBHA)
A—B;D,B—>A;D
CTDEsp—CTDE
csp<D+fB?A+‘H‘D+7B+A7>CTP """""" ﬁ(HBHA“_BLA)
. 1
csp<D+7B?A+‘H‘DiB+A+7>CSP ____________ (HBHD |LBLA)_E(HBLA |LBHD) ~ O
A—B;D,B—>D;A
CTDEsp—CTDE
T A PR 53 b1, Lo+ B L L H, ) <0
. 1
csp<D+7BiA+‘H‘DB+7A+7>CSP ------------ (LDHD |HBLA)_§(LDLA|HBHD)zO
Vetoes, Lok NG NG
s(DTBARPBIAT) ] e ~~(LoHp |HBLA)+?(LDLA|HBHD) ~0

mt A | N RE A B—A;D,B—A;D
CSP<D BTA ‘H‘D B'A >CTP VCTDECSFﬁCTDECTP """"""" ( LyHg / 51/)

~(HALy |LyHp )= (H,L L H,)
1

oo o) | yEAnE s %ﬂ>+iWWW“)(H“WH)

D"B*A |H|DB*A"™ 2ADEO, =(Hy |0 [H,

csp s CTDEcsp~CTDE N E H . ) 1(H H |L L )

2 2
1 1
+5(HaHo|LuL, )+ (H Hg)

177




NG

_@(HALD|LDHD)+7(HAHD|HDHD)

+§(HAHD|HAHA)+§W

(DB AR[DBAT) B 1) 7 i
3 3
+7(HAHD|LDLD)+7(HAHD|LALA)
3
—% (HoHofHFL)
. 1
wPEARDE A || e ~(LoHo[Hale)+5(LoLe [HAH, )~ 0
B—A;D,B;A
CTDEp-LDE
w(PEARDBTAT) ] e —%(LDHD|HALB)—§(LDLB|HAHD)zO
Ao AAID AT | VST @(KLAHB + Kl Ko, ~ Kel)
2(LpLg [HoH, )+ (L H,
+(L,LyH,H, )+ (L
(DB AAfps A, (Lol |L,) (fotu Mt )+ (LobotiC)

B—D;AB;A
CTDEc¢p-LDE

Csp

(D'B*A*'\H\DB*'A*')

CTP

+(HBLD|LBHB)_(LDHD|HDLB)

1 1
= (LHAT) -2 (LobAT,)

NG e

_7(|_DLA|LALB)+7(LDHA|HALB)zO

CSP

B;A,B;A

(DBA"|H[DB"A") LDE¢gp-LDE¢yp

B,

2 Hala ' “HgHa KLBLA)

Table 7.2 Analytical exact coupling expressions. 1% column: Mathematical notation of the

Hamiltonian element. 2" column: Symbolism of the calculated coupling, defining the

diabatic states that it consists of. 3 column: Exact expressions for the off-diagonal matrix

elements as a function of Fock matrix elements, and two-electron integrals.
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CHAPTER 8

Computation of Hamiltonian Matrix Elements

As we have described in detail in the previous two chapters (Chapters 6 and 7), the diagonal
and off-diagonal elements of the CISD Hamiltonian used for the model of Singlet Fission
(SF) (see eqgs (7.5)-(7.9) and Tables 7.1 and 7.2), are functions of several quantities, i.e.,

A = (1P (B (Lo W) (M H)) ) (Ko )] @)

H A" = Ho ((RIFIQ)L {(RRIRZ)L S} Pea )t (Kna)):  82)

In general, the diagonal matrix elements (basis-state energies) are functions of ionization

potentials (IP'), electron affinities (EA'), core terms (<F>i ’\78-“1

Pi>), Coulomb (‘]F’in ) and
exchange integrals (KPiQJ ). The off-diagonal matrix elements (inter-state couplings) are
functions of one-electron Fock matrix elements ((Pi | F ‘Qj>), overlap matrix elements (Spin

) and two-electron integrals ((PiQJ. R Zj)) where P,Q,R,Z=H,L and i,j=D,B,A. All
these quantities have been described in detail in the previous two chapters.

For the D-B-A systems discussed in Chapter 5, we need to compute the intra-fragment and
inter-fragment quantities included in egs (8.1) and (8.2) and Tables 7.1 and 7.2. We compute
the relevant quantities using two quantum chemistry program packages, the General Atomic
and Molecular Electronic Structure System (GAMESS-US) 2 and the Python Quantum
Chemistry (PyQuante) #°. The use of PyQuante is secondary in the sense that we recompute
with this program all of the quantities in egs (8.1) and (8.2), after computing them with
GAMESS-US, in order to double check for errors.® The codes we wrote for use with
PyQuante produce values identical to those generated by GAMESS-US. The results from
these programs are combined in appropriate code in MATLAB which implements all
equations in Tables 7.1 and 7.2 (Chapters 6 and 7) using input from the computations.
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8.1 GAMESS-US Program

The General Atomic and Molecular Electronic Structure System (GAMESS-US) is a
program for ab initio molecular quantum chemistry calculations. Briefly, GAMESS-US can
compute SCF wavefunctions ranging from RHF, ROHF, UHF, GVB and MCSCF. The
advantage of this program is that it can split a large system into fragments. The Fragment
Molecular Orbital (FMO) method permits use of many of these sophisticated treatments to
be used on very large systems, by dividing the computation into small fragments. " In our
case, we use the program to perform SCF, RHF, CISD, % both on individual D, B, A
fragments and on the entire D-B-A system.

Using the GAMESS-US program, we compute the desired intra-fragment quantities such as
IP, EA, excitations energies, eigenvectors of the molecular orbitals, overlap matrix, Fock
matrix, 1e and 2e integrals, as well as the corresponding inter-fragment ones (one- and two-

electron integrals) (see Fig. 8.6).

First, to build the input file for such a calculation, we need to enter the $CONTRL keyword
to specify the type of wavefunction ("SCFTYP"), the type of calculation ("RUNTYP"), the
units of the coordinates ("UNITS"), the spherical harmonics ("ISPHER") and the gradient of
the printed output ("NPRINT"). We also need to give to the program various control
information about the computer's operation via the $SYSTEM keyword, such as the
maximum replicated memory which the job can use on every core ("MWORDS") and the
time limitation ("TIMLIM™). A necessary addition to the input file is the inclusion of the
Gaussian basis set on which the calculation will be based, through the $BASIS keyword.
Additionally, to perform the calculation in the fragment-orbital representation we must
include the $FMO group keyword in the input file, specifying the number of FMO fragments
("NFRAG"), the charge ("ICHARG") and the name of each fragment ("FRGNAM"),
identifying the active fragments ("IACTFG") and placing the atoms in the various fragments
("INDAT"). Optionally we can also enter the SINTGRL keyword to control atomic orbitals
(AO) integral formats. The $SFMOPRP keyword also helps define the various properties of
FMOs. Finally, another necessary addition to the input file is to specify the x, y, z FMO
coordinates (using the $SFMOXYZ keyword), as well as the symmetry. Through a script,
using these keywords, we apply the restricted HF (RHF) theories followed by CISD in the

FMO basis to obtain the fragment-based quantities described above.

Below we present an example calculation in the FMO basis of a pentacene trimer molecular

system (Fig. 8.1).
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$CONTRL SCFTYP=RHF RUNTYP=GRADIENT UNITS=ANGS ISPHER=1 NPRINT=4

$END

$SYSTEM MWORDS=100 TIMLIM=1 $END

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END

$FMO NFRAG=3 ICHARG(1)=0,0,0
FRGNAM(1)=Donor,Bridge,Acceptor
INDAT(1)=0, 1,-36,0 37,-72,0 73,-108,0
IACTFG(1)=1,2,3

$END

SINTGRL SCHWRZ=.FALSE. NINTMX=17290672 $END

$FMOPRP NPRINT=0 $END

$FMOXYZ

CC -4.81562 -18.12637 48.36059

CC -5.50427 -17.85160 47.16956

CC -4.84244 -17.99081 45.92658

CC -3.50174 -18.40273 45.89301

CC -3.47496 -18.53838 48.32701

CC -2.78683 -18.81320 49.51866

CC -1.47220 -19.08972 47.04970

CC -1.44672 -19.22516 49.48439

CC -0.78447 -19.36446 48.24062

CC -0.75411 -19.50138 50.67409

HH -1.24394 -19.40053 51.63531

CC 0.55724 -19.77722 48.21128

CC 0.58133 -19.91148 50.63038

$END

$DATA

Basis set input, with no atomic coordinates
C1

H-11

C-16

$END

Figure 8.1 A script file of GAMESS-US for calculating the various properties of a pentacene

trimer molecular system using FMO and SCF methods implementing RHF theories. The

dots in the scheme imply the remaining coordinates of the molecule.

Using the FMO analysis, we can identify the fragment corresponding to each MO in a D-B-

A system and extract from the output file intra-fragment and inter-fragment integrals

between specific FMOs as linear combinations of the appropriate atomic orbitals (AOs)

obtained from the basis set that we choose.

In Chapter 5 we used, in addition to the FMO method, CISD computations ®!! to calculate

intra-fragment properties (such as IP', EA', singlet or triplet excitation energies of specific

fragment etc., where i =D,B,A).

182



The appropriate input file must be built to perform this calculation by entering the
appropriate keywords, so that the output file contains all the necessary information. First in
the SCONTRL group we should define as "RHF" the reference type of SCF wavefunction
and then define as "CIS" the type of Cl calculation. In the same group we can define the type
of coordinates of the molecule, the units of the coordinates as well as the gradient of the
printed output. In the $SYSTEM group we can give control information about the computer's
operations while in the $BASIS group we are required to define the Gaussian basis set of the
calculation. Once we have defined "CIS" as the type of CI calculation, we need to use the
$CIS keyword to include some properties of the CIS method. In this group we must definitely
define the number of chemical core orbitals ("NACORE"), the number of states to be found
("NSTATE"), the state for which properties and/or gradient will be calculated ("IROOT"),
the type of CI Hamiltonian to use ("HAMTYP") and the multiplicity (1 or 3) of the singly
excited SAPS ("MULT"). Finally, another necessary addition to the input file is to specify
the coordinates of the molecule (using the $DATA keyword), as well as the symmetry.
Below is presented an example of a script input file for the calculation of the CISD
properties, excitation energies, 1le and 2e intra-fragment integrals of a pentacene molecule
(Fig. 8.2).

$CONTRL SCFTYP=RHF CITYP=CIS RUNTYP=GRADIENT NZVAR=0 UNITS=ANGS
NPRINT=4 $END

$SYSTEM MWORDS=100 $END

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END

$CIS HAMTYP=SAPS MULT=3 NACORE=0 NSTATE=1 IROOT=0 DGAPRX=.FALSE.
$END

$DATA

Pentacenel (Donor) CIS/6-31G(d) level of theory

C1

C6.0 0.4983720000 -19.0037120000 42.7664130000

C6.0 -0.1914010000 -18.7272860000 41.5764260000

C6.0 0.4987210000 -18.7537600000 40.3413350000

C6.0 1.8684090000 -19.0562680000 40.3145080000

C6.0 1.8680390000 -19.3063110000 42.7395770000

C6.0 2.5572890000 -19.5828570000 43.9301840000

$END

Figure 8.2 A script file of GAMESS-US for calculating the various CISD properties of a
pentacene molecule using SCF methods implementing RHF theories. %! The dots in the

scheme imply the remaining coordinates of the molecule.
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8.2 PyQuante Program

Using the Python Quantum Chemistry (PyQuante) program “° one can include all the
molecular integrals and the HF code in one file or split the code into several files. The
suggested file structure is: “base.py” (to hold database information and construct the atomic
orbital base), “oei.py” (to calculate the le integrals, “S”, “T”, “V”), “eri.py” (for the
calculation of the 2e integrals, “G”) and “main.py” (to combine the first three files that will
lead to the results in the HF code). Most of these code files need to import some modules

from the PyQuante library to perform some specialized mathematical operations.

The initial input requires the molecule’s name, the coordinates of the atoms together with
the atomic number of each atom (e.g., [(1, (0,0,0)), (1, (1.4,0,0)), ...]), the spin multiplicity,
as well as the charge of the molecule. Starting from the above, we can run a simple HF
calculation by inserting the appropriate modules (such as the SCF for self-consistent-field
methods). The “SCF” module includes implementations of HF and Density Functional
Theory (DFT) for restricted, unrestricted, closed-shell or open-shell Slater determinant
references. To use this module, one specifies the molecule on which the calculation will be
made, the base to be used (e.g., the minimum basis set “STO-3G”, “6-31G” etc.) as well as
the self-consistent-field method (e.g., HF). Basis functions are constructed using the CGBF
(contracted Gaussian basis function) object, which, in turn, uses the PGBF (primitive
Gaussian basis function) object. Basis sets are simply lists of CGBF’s. In the “Ints” module
there is a convenience function “getbasis” that constructs basis sets for different molecules.
The calculation should then be repeated until it converges. At the end HF energy can be
requested to be printed. Having determined the molecule with its X, y, z coordinates, as well
as the basis function set, then we can calculate the 1le and 2e integrals at the base of the
atomic orbitals. In this case the "onee_integrals” and "twoe_integrals” modules should be
imported to calculate the 1e and 2e integrals, respectively. We can calculate the overlap
matrix (“S”), the kinetic matrix (“T”), the nuclear attraction matrix (“V”), as well as the 2e

integrals (“ERI_hgp”) on the basis of the atomic orbitals.

Below we present an example calculation of 1e integrals and the basis function set (Fig. 8.3)
of a pentacene molecule (a molecule that has been extensively used and studied in Chapter
5). Then by saving the orbitals of the basis function set in a matrix we can calculate 2e

integrals between them using the “ERI_hgp” module (Fig. 8.4).
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import pyquante2

from pyquante2 import molecule # Construct the pentacene molecule
pentacene=molecule([(6,0.49837,-19.00371,42.76641), (6,-0.19140,-18.72729,41.57643),
(6,0.49872,-18.75376,40.34134), (6,1.86841,-19.05627,40.31451), (6,1.86804,-
19.30631,42.73958), (6,2.55729,-19.58286,43.93018), (6,3.92810,-19.63544,41.47689),
(6,3.92640,-19.88541,43.90264), (6,4.61696,-19.91190,42.66677), (6,4.62027 -
20.16291,45.09132), (1,4.10903,-20.14747,46.04654), (6,5.98766,-20.21536,42.64415),
(6,5.98473,-20.46352,45.05435), (1,6.53311,-20.24046,41.70825), (6,6.66609,-
20.48966,43.83494), (1,7.72275,-20.72311,43.81252), (1,6.51539,-20.67679,45.97328), (6,-
2.25033,-18.14878,40.41408), (6,-1.55978,-18.17527,39.17821), (6,-1.56139,-
18.42486,41.60399), (6,-0.19058,-18.47745,39.15070), (6,-4.29968,-17.57199,39.24582), (1,-
5.35643,-17.33895,39.26819), (6,-3.61832,-17.59813,38.02641), (6,-3.62114,-
17.84578,40.43665), (1,-4.14908,-17.38527,37.10743), (6,-2.25375,-17.89824,37.98949),
(1,2.02887,-19.56276,44.87743), (6,2.55816,-19.33278,41.50449), (1,-0.03072,-
18.98343,43.71331), (1,2.39750,-19.07658,39.36761), (1,4.45784,-19.65594,40.53040), (1,-
4.16660,-17.82072,41.37255), (1,-1.74252,-17.91371,37.03426), (1,-2.09113,-
18.40440,42.55049), (1,0.33782,-18.49758,38.20346)],units="Angstrom’, multiplicity=1)

# Calculate the Hartree Fock energy of pentacene molecule
from pyquante2 import rhf, basisset
bfs=basisset(pentacene,'sto3g")

py2en=rhf(pentacene,bfs)

py2en.converge()

# Calculate all the one-electron integrals

from pyquante2.ints.integrals import onee_integrals
il=onee_integrals(bfs,pentacene)

py2S=il.S

py2T=il.T

py2V=ilV

py2h=py2T + py2V

# Print the Results

print 'Basis function set: \n ', bfs

print 'Hartree Fock energy: \n ', 'using pyquante2: EHF ="', py2en.energy
print \n Overlap integral: \n ', 'using pyquante2: S =", py2S

print \n One-electron operators: \n ', 'using pyquante2: h ="', py2h

Figure 8.3 Code in python for calculating le integrals (“S”, “T” and “V” matrixes) in
pentacene molecule in the minimum basis set, “STO-3G”, by import pyquante2, an open-
source suite of programs for developing quantum chemistry methods and then introducing
various modules needed for the calculation (such as, “molecule”, “rhf’, “basisset”,

“onee_integrals” etc.).
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import pyquante2
from pyquante2 import cgbf
from pyquante2.ctwo import ERI, ERI_hgp

t=[]

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(0, 0,
0),[71.616837, 13.045096, 3.5305122],[0.15432897000916182, 0.53532814003178,
0.44463454002639596]))

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(0, 0,
0),[2.9412494, 0.6834831, 0.2222899],[-0.09996723007596425, 0.39951283030358636,
0.7001154705320117]))

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(1, 0,
0),[2.9412494, 0.6834831, 0.2222899],[0.15591627210510742, 0.607683728204657,
0.39195739529202256]))

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(0, 1,
0),[2.9412494, 0.6834831, 0.2222899],[0.15591627210510742, 0.607683728204657,
0.39195739529202256]))

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(0, 0,
1),[2.9412494, 0.6834831, 0.2222899],[0.15591627210510742, 0.607683728204657,
0.39195739529202256]))

t.append(cgbf((-0.3616935542140059, -35.38944660865418, 78.5680602833324),(0, 0,
0),[71.616837, 13.045096, 3.5305122],[0.15432897000916182, 0.53532814003178,
0.44463454002639596]))

t.append(cgbf((-0.3616935542140059, -35.38944660865418, 78.5680602833324),(0, 0,
0),[2.9412494, 0.6834831, 0.2222899],[-0.09996723007596425, 0.39951283030358636,
0.7001154705320117]))

out = open("pentacene_CGBS.txt", "r+")
i 11 range(123):
jinrange(123):
k in range(123):
| in range(123):
a = f(c{i}c{iHc{k}c{1}) = {ERI_hgp(t[i].t[1 .tk t[)} \n’

out.write(a)

Figure 8.4 Code in python for calculating various 2e integrals in a pentacene molecule in

the minimum basis set, “STO-3G”, by import pyquante2 and then introducing “ERI” and

“ERI hgp” modules needed for the calculation. The dots in the scheme indicate the

remaining functions of the basis set stored in the "t" matrix.

After using both programs and concluding that our results converge, for time-saving

purposes we chose GAMESS-US to study the molecular systems used in the study of the SF

process. So, in Chapter 5 we use GAMESS-US to calculate all the required quantities needed

to build the electronic Hamiltonian (egs (8.1) and (8.2)). First, we build our systems using

the Avogadro molecular editor and then through ORCA 2 we optimize the structure (except

for the NC1 molecular system where we got the original coordinates from the published
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paper 13). In the case of the NC1 molecular system, we create D, B and A fragments cutting
the C=C bonds between the bridge and the pentacene D (A) and then capping with H. Then,
we perform geometry optimization for each fragment without changing the inter-fragment
geometries and distances. Next, using GAMESS-US we calculate all the required quantities
(inter-fragment and intra-fragment terms) using scripts similar to those presented above
(Figs 8.3 and 8.4). The results from these calculations together with the semi-analytical
framework created earlier (see discussion in Chapters 6 and 7), are introduced in a script in
MATLAB. There, numbers were essentially added to the quantities of egs (8.1) and (8.2),

thus building the HZ., . Finally, another script have to be used in MATLAB to calculate the
SF effective coupling, V- viaegs (5.9) and (5.10) as well as the corresponding SF pathways

(see discussion in section 5.4.3). Below, in Fig. 8.6 we present this whole process in the form
of flowchart.

8.3 MATLAB code programming

MATLAB (MATrix LABoratory) is a programming language and numeric computing
environment developed and owned by MathWorks. 1*1° Below | present an example of the
scripts | wrote in MATLAB code that use the above-mentioned GAMESS-US and PyQuante
computationsin order to compute the SF effective coupling (in the context of the semi-
analytical framework described in detail in Chapter 5). In particular, | present a MATLAB
script for the construction of the D-B-A Hamiltonian and the calculation of the effective
coupling Vg for the non-pi-stacking molecular system (see Fig. 5.3b). The script requests
as input data: 1) the constant parameter X (constant D(A) HOMO-to-LUMO exciton
energy), 2) maximum and minimum values for the variable parameters Y (B HOMO-to-
LUMO exciton energy) and z (difference between ionization potentials of D(A) and B), 3)
the step sizes oY and oz for the variation of Y and z. The script then constructs the
Hamiltonian and uses perturbation-theory and Green's function methods to calculate the SF

effective coupling Vg as explained in detail in section 5.4.3 (see egs (5.9)-(5.10)).
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% This code computes the SF effective coupling of the Hamiltonian in the basis states set using
% perturbation and Green’s function methods

clear all; clc;

global HAM P QPQ QP dijenQvQ dQenP vP dP E GQ G VSF

global x y z ymax ymin nsteps dsteps mx my mz

%%% Constants %%%

X = 2.86; % D(A) HOMO-to-LUMO exciton energy

ymax = 12.46; % maximum value of B HOMO-to-LUMO exciton energy
ymin = 3.16; % minimum value

nsteps = 20; % number of steps

dsteps = (ymax-ymin)/nsteps;

VSF = zeros (nsteps,1);

mx = zeros (nsteps,1);

my = zeros (nsteps,1);

mz = zeros (nsteps,1);

%%% Hamiltonian's Construction %%%
HAM = xlIsread('Hamiltonian.xlsx");
d = size(HAM);
fori=1:17
for j=1:17
if gt(i,j)
HAM(i,j) = HAM(j,i);
else
HAM(,j) = HAM(i,j);
end
end
end

%%% SF effective coupling calculation %%%
for z=-7.9:0.5:3.5 % |IPD-IPB]|

data = ['VSF_funct_z=', num2str(z),".csv1;

y=ymin;

for i=1:nsteps
mx(i) = x; % x matrix
my(i) =y; % y matrix
mz(i) = z; % z matrix
HAM(1,1) = x;
HAM(2,2) = (2*x)-3.35;
HAM(3,3) =;
HAM(4,4) = z+y+3.4964;
HAM(5,5) = x-z+2.50098;
HAM(6,6) = x+3.133;
HAM(7,7) = x+3.133;
HAM(8,8) = x-z+2.50098;
HAM(9,9) = z+y+3.4964;
HAM(10,10) = y+z+x+2.3964;
HAM(11,11) = (2*x)-z+0.2492;
HAM(12,12) = y+z+x+2.3964;
HAM(13,13) = (2*x)-z+0.2492;
HAM(14,14) = x+y+1.1906;
HAM(15,15) = x+y+1.1906;
HAM(16,16) = x+y-3.0444;
HAM(17,17) = x+y-3.0444;
P =HAM(1:2,1:2); % P subspace construction
Q =HAM(3:17,3:17); % Q subspace construction
PQ = HAM(1:2,3:17); % PQ subspace construction




QP = HAM(3:17,1:2); % QP subspace construction
enQ = eig(Q); % find the eigenenergies of Q subspace
[vQ,dQ] = eig(Q); % find the eigenstates of Q subspace: vQ
enP = eig(P); % find the eigenenergies of Q subspace
E = (HAM(1,1)+HAM(2,2))./2; % find the average value between the two eigenenergies
[vP,dP] = eig(P); % find the eigenstates of Q subspace: vP
GQ = inv(E*eye(15,15)-Q); % Green Function GQ
G = PQ*GQ*QP;
VSF(i) = G(2,1); % SF effective coupling
y = ymin + i*dsteps;

end

dimwrite(data,VSF,'precision’,'%1.16X");

end

Figure 8.5 MATLAB code for computing the D-B-A Hamiltonian and the SF effective

coupling for the non-pi-stacking molecular system described in Chapter 5.

D,B,A Entire D-B-A
fragments system

GAMESS-US calculation Semi-analytical framework GAMESS-US calculation

RHF wavefunction Construction of the /1, FMO analysis
CISD calculation RHF calculation
(egs (5.1) and (5.2))

Intra-fragment Inter-fragment
terms v terms
(IP', EA', Jpiqi, - (Jriqi, Krigj, Spigj
Kpriqi etc.) MATLAB coding etc.)

.| Construction of the SA

basis-set Hamiltonian

He‘.f

nn ?
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Hﬂ 1
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MATLAB coding

Calculation of the ¥,
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Figure 8.6 Flowchart demonstrating the semi-analytical / computational framework

constructed for the analysis described in Chapter 5.
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CHAPTER 9

Conclusions

This dissertation describes analytical and computational studies of electron transfer (ET) and
transport (ETr) in molecules and molecular junctions, as well as singlet fission (SF) in
molecular systems. Most of the work is closely related to experiments although its scope is
broader than specific experiments. It relates to two published and one submitted research

paper, and a review article.

Specifically, in our first two published papers as presented in Chapters 3 and 4, we deal with
the field of molecular electronics and junctions. In Chapter 3 we model transport in hybrid
metal — ET protein — metal heterojunctions systems. The goal is to explain experimental
results on the dependence of current on temperature and bias voltage for Azurin (Az): Holo-
Az (Cu-substituted Az), Apo-Az (no metal) and Ni-, Co- and Zn-substituted Az. The
experimental results are very interesting because they enable the analysis of transport
through the same protein monolayer medium as a function of the metal substitution, the
temperature and the voltage. Our results strongly suggest that for Holo-Az the transport
mechanism depends on the protein monolayer/heterojunction setup. In one type of
heterojunction, transport is dominated by resonant incoherent hopping through the Cu redox
site, whereas in the other it is mediated by off-resonant tunneling. For the unsubstituted
(Apo-Az) and other metal-substituted Azurins the dominant transport mechanism at low
temperatures is off-resonant tunneling, with an average tunneling barrier that depends on the
type of metal dopant, and at the highest temperatures it is through-amino acid hopping
(Valianti, S.; Cuevas, J. C.; Skourtis, S. S. Charge-Transport Mechanisms in Azurin-Based
Monolayer Junctions. J. Phys. Chem. C 2019, 123 (10), 5907-5922.).

In Chapter 4, we propose a donor (D) — bridge (B) — acceptor (A) molecular junction,
functioning in the incoherent hopping regime, that is suited for establishing direct
correlations between the electrode-to-electrode current and the intramolecular donor-to-
acceptor electron transfer rate. We suggest that this type of junction may be used to observe
the Marcus-inverted-parabola dependence of the intramolecular rate on energy gap, by
varying the bias voltage. The realization of such an experiment would enable meaningful
comparisons between solution-phase electron transfer rates and molecular-junction currents

for the same molecule (Valianti, S.; Skourtis, S. S. Observing Donor-to-Acceptor Electron-
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Transfer Rates and the Marcus Inverted Parabola in Molecular Junctions. J. Phys. Chem. B

2019, 123(45), 9641-9653.).

In Chapter 5 we describe a semi-analytical / computational framework to explore structure-
function relationships for singlet fission in D-B-A molecular architectures. The aim of
introducing a bridging linker between the D and A molecules is to tune, by modifying the
bridge structure, the electronic pathways that lead to fission and to D-A-separated correlated
triplets. We identify different bridge-mediation regimes for the effective singlet-fission
coupling in the coherent tunneling limit and derive the dominant fission pathways in each
regime. We describe the dependence of these regimes on D-B-A exciton-state energetics and
on D-B (A-B) one-electron and two-electron matrix elements. This semi-analytical approach
can be used to guide computational and experimental searches for D-B-A systems with tuned
singlet fission rates. We use this approach to interpret the bridge-resonance effect of singlet
fission that has been observed in recent experiments. We identify bi-excitonic D(A)-B

correlated triplet-pair (CTP) states ‘ DB A>CTP (‘ DB™A™ >cw ) , that act as “bottleneck”

states for singlet fission and are responsible for the bridge-resonance effect that leads to the
enhancement of the SF rate (Valianti, S.; Skourtis, S. S. The Role of Bridge-state
Intermediates for Donor-bridge-acceptor Systems: A Semi-analytical Approach to Bridge-

tuning of the Donor-acceptor Fission Coupling. J. Phys. Chem. Lett. under review).

In Appendix A we present an extensive review article on vibrational effects in molecular
electron transfer reactions (Valianti, S.; Skourtis, S. S. Vibrational control of molecular
electron transfer reactions. Mol. Phys. 2019, 117 (19), 2618-2631.).
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APPENDIX A

Vibrational Control of Molecular Electron Transfer

Reactions

Vibrational motions promote molecular electron transfer reactions by bringing electron
donor and electron acceptor electronic states to fleeting resonance, and by modulating the
donor-to-acceptor electronic coupling. The main experimental signature of molecular
motion effects on the electron transfer rate is the temperature dependence of the rate, which
gives information about the overall free energy activation barrier for the electron transfer
reaction. Another approach to probing the vibrational control of electron transfer rections is
to excite specific electron-transfer-active vibrational motions by external infrared fields.
This type of experimental probe is potentially more specific than thermal excitation and
recent experiments have shown that molecular electron transfer rates can be perturbed by
mode-specific infrared driving. We review the theory and experiments of vibrational control
of electron transfer rates, and discuss future challenges that need to be tackled in order to
achieve the mode-specific tuning of rates.

Molecular electron transfer and energy transfer reactions are ubiquitous in chemistry and
biology. 1 Molecular motions are critical in determining the electron transfer (ET) rates by
modulating the relative energies of electron donating and accepting states and the electronic
couplings between these states ([9,10] and [8,11-15] for reviews). An interesting approach
to probing the vibrational control of ET rates experimentally is to identify vibrational modes
that influence the transport rate (“ET-active” modes), and to perturb these vibrations
selectively by infrared (IR) excitation. 317 This type of experiment can reveal ET
mechanism and potentially offer reversible mode-specific control of the reaction rate, since
the influence of the IR excitation on the molecule is non-destructive and reversible. We first
review the theory of molecular ET rates with an emphasis on the roles of ET-active
vibrations. Then we discuss the theory of IR-perturbed ET and the experimental advances in

this new and exciting field.
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A.1l ET rate regimes: the roles of vibrational motions

The central roles of molecular vibrations in mediating chemical reactions is known since the
development of transition state theory (TST). ®8 Traditional ET rate theory of molecular
donor-to-acceptor ET reactions is largely based on transition state TST. %! Thus, the
important “ET-active” vibrations are those which bring electron-donor and electron-acceptor
states to quasi-resonance. Here we consider the simplest case of an electron that is initially
localized in a donor (D) molecular electronic state (Fig. A.1). The electron may transfer to a
final acceptor (A) electronic state by tunneling through a connecting molecular bridge (B).

19 The bridge-mediated D-A electronic coupling is denoted V .

Potential energy of elec.

A

£ (0)

E¢(R) }AEB

. -e

Figure A.1 Bridge-mediated donor-to-acceptor electron transfer (ET). The energy
difference between donor (D) and acceptor (A) electronic states, AE,,, is modulated by
vibrations (accepting modes) that bring D and A to resonance. In the diagram one accepting
mode R is assumed to modulate the D-state energy. When the B electronic state energy ( Ef
) is off-resonant to the donor and acceptor energies (E¢', ES ), the bridge acts as a tunnelling
barrier for the transferring electron. The bridge-mediated tunnelling matrix element between

D and A is denoted V . Bridge vibrations that modulate E{ cause fluctuations in V

(promoting modes). The diagram shows a single promoting mode Q. If EZ (Q) fluctuations
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are large enough to bring the B state to D (A) resonance, ET may take place by a flickering

resonance or a hopping mechanism, rather than tunnelling.

The D and A state energies are modulated by some vibration (described by a normal mode
coordinate R). This type of ET-active vibration is often called an accepting mode. For some

value R=R,Dand A states become resonant, (Eg (R ) =Ej (R, )), and the probability

res !

of ET from D-to-A is enhanced. In our simple model we will also include a vibrational mode

Q that modulates the D-A coupling, V(Q). This vibration may modulate the tunneling

barrier width (eg. D-A distance modulation) or the tunneling barrier height (e.g., a bridge
electronic-level modulation, Fig. A.1). Such an an ET-active vibration is often called a
promoting or inducing mode. The Born-Oppenheimer Hamiltonian of the model is described

by eq. 1 and is illustrated in Fig. A.2
R =Eg° (R)[D)(D|+E (R)|A)(A[+V (Q)(ID)(A|+hc.). (A1)

Ec® (R) (ER° (R)) are the diabatic Born-Oppenheimer (BO) surfaces for the D and A states.
In Fig. A.2 they are assumed to be harmonic of frequency o, i.e,
EX(R)=EX, +mw’(R-R,)’/2 and EX(R)=EX, +me?(R-R,)’/2. The
accepting mode coordinate R sees the diabatic potential energy surface E5° (R) (Ez° (R)

) when the electron is at the D (A) state. For the coordinate value R=R__, the D and A

res !

diabatic BO surfaces cross, i.e., E;° (R, )=E;° (R,,) in Fig. A.2. This crossing defines

the center of the resonance region (see below). We assume that the promoting mode

coordinate Q which modulates the coupling V (Q) also sees a harmonic potential energy

surface that is independent of whether the electron is in the D or A state. For bridge-mediated

ET, this independence would be largely true for a bridge-localized vibration. We denote the

promoting ~ mode  potential  energy  surface  E,(Q)=.Q’(Q-Q, )2 /2.
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A(min)

EH(J
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Figure A.2 The dynamics of the accepting mode R in Fig. A.1 depend on the transferring

electron’s state. When the electron is initially localized at the donor (D) state, the accepting

mode R “sees” the potential energy surface E;° (R) (diabatic BO surface) with equilibrium
value R, . When the electron has transferred to the acceptor (A) state the dynamics of R is
governed by E°(R) with equilibrium value R,. With the electron initially at D, and
assuming that R is a classical vibration, the oscillations of R around R, lead to D-A energy

gap fluctuations AE,, (R). Whenever crosses R, , D an A states become resonant and ET

res ?

takes place with high probability due to the coupling V , with a probability equal to the
Landau-Zener probability PS’,. In the nonadiabatic limit, the coupling is weak P:%, <1,
and many crossings of R are required to change electronic state from D to A (i.e., for ET

to take place). Thus, the diabatic BO surfaces (diagonal part of the Hamiltonian in eq. (A.1)),

give the correct electronic-state-dependent dynamics of R.

In the following, the above model is used to describe different ET regimes and the roles of
ET-active vibrations in determining the rate in each regime. 34911 We distinguish between
classical and quantum vibrational effects. Traditional ET theory relates only to accepting-
mode dynamics so we first assume that the D-A coupling in eq. (A.1) does not fluctuate (

V(Q)=V, aconstant).
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A.2 Classical accepting modes

The accepting mode may be treated as a classical vibration at a given temperature T if

KsT >> . In this situation the dynamics of R is described by classical trajectories R(t)

on the D (or A) BO surfaces. To distinguish between the different limiting regimes of ET
(weak versus strong electronic coupling V ), we use the Landau-Zener D-to-A transition

probability Py%, =1-exp(-y) where y, (V) is the Landau-Zener parameter (e.g.,
[10,11]). Suppose the electron is originally in the D state and R is far from the resonance
value R, . The potential energy surface that determines the dynamics of R is the diabatic
E5° (R) (Fig. A.2). Since EZ° (R) is harmonic, any mode trajectory R(t) with the electron
in the D state will oscillate around the EZS° (R) equilibrium value R, and the D-A energy
gap will be time-dependent, i.e., AE,, (t)=Ez°(R(t))-E;°(R(t)) in Fig. A.2. A mode

resonance-crossing event takes place every time (denoted t__) the trajectory R(t) attains the

res

D-A resonance value R(t,, ) =R, for which AE;, (R(t.,))=0 and the D and A electronic

res

states become resonant i.e., Ej(R.)=Eg (R.). For each such crossing event the
probability of D-to-A ET is given by the Landau-Zener probability PL% , zl—exp(—yLZ).
The parameter y,, may be interpreted as the ratio between the Landau —Zener time and the
Rabi time, i.e., ., ® 7., /Trsi (€-0., [20]). The Landau-Zener time is a measure of the time
D and A states remain in the resonance region per crossing event, where the resonance region
is defined by all values of t around t

(or of R(t) around R,,) such that [AE,, (t)|<|V|.

res res

Thus T, zv/<‘thEDA (treS)

> where (...)eq denotes thermal (equilibrium) average and
€q

d, =d/dt. The Rabi time, 7., ~h/V, is a measure of the period of oscillations of the
transition probability P, ,(t) if the D and A states remain in resonance. A more exact

analysis in terms of the simple model in Fig. A.2 gives

7[3/2v2

Yz :W ’ (A.2)

where 2 =ma?® (R, -R, )2/2 is the reorganization energy (Fig. A.2). 1 The term w\/Ak,T
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is obtained from <‘thEDA (tres)> by writing it in terms of the mean mean velocity of the

oscillator at the resonance crossing, i.e., <‘thEDA (tres)>q = <\dR(tres )/dtDeq x‘dAEDA /dR|.

A.2.1 Nonadiabatic weak-coupling regime

This regime applies to weak D-A coupling V such that y,, <<1 and 7., >> 17, . In this
nonadiabatic limit, the probability of ET for each resonance crossing is very small and is

given by Ps%, =~y . The rate is given by

27 1 U
ket =Z2VEOE e = —exp(——a“ (A3)
h Jdmik,T KT '

where p&* is the classical thermal Franck Condon factor. U™ is the activation energy of

act

the reaction and given by,
(A.4)

where AE =E0. —Epo., is the energy gap between BO surface minima (Fig. A.2). In the

nonadiabatic limit, the ET is rate-limited by the activation event to the crossing region (

act

oc exp(—Unad /kBT)) and by the D-A coupling (<V?). The ET-active mode enables the

activation to resonance and its frequency also determines the amount of time D and A remain

in resonance (the latter appears in the Landau-Zener parameter).

A more general form of eq. (A.5) replaces the activation energy by an activation free energy.
This generalization applies to the realistic case where several independent accepting

vibrational ~ modes  {R} modulate  the  D-A  energy  gap, i.e.,
AE, ({R})=EX ({R})-ES°({R}). In this situation many different sets of resonance

configurations {R;}  are possible (for which AEDA({Ri}r ): 0). Thus, there is an entropy

kg In(N) associated with the number N of all such sets with AE_, =0, and the activation

energy should be replaced by an activation free energy which includes this entropy.
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A.2.2 Adiabatic strong-coupling regime

This regime is characterized by strong coupling V such that y, >1 and 7, <z, . Inthe

adiabatic limit the probability of ET for each resonance crossing is near-unity P, ~1
(complete D-to-A ET per resonance crossing). The rate is given by

ad(eq) _ O U
ker™ = Zepr_k_th (A.5)
B

with activation energy U2 ~ U™ —|\/| that is lower than the nonadiabatic activation energy.

act act

This lowering is due to the broadening of the Landau-Zener region (Fig. A.3).

The adiabatic rate is rate-limited by the activation event to the adiabatic crossing region (

oc exp(—U ad(eq)/kBT)) but not by the electronic coupling. Rather, the rate is proportional to

act

the oscillation frequency of the ET-active vibration (which is the TST attempt-frequency).

As in the nonadiabatic case, the ET-active mode enables D-A resonance.

Energy

BO
“ ) {(min)

F}J’(}

“ A(min)

Figure A.3 In the adiabatic limit (strong D-A coupling V ) the dynamics of the promoting
mode R is best described by an adiabatic BO surface (lowest eigenstate of the Hamiltonian
ineq. (A.1)). Due to the large value of V , D and A states are quasi-resonant in a wider region

of R around R, . Assuming that R is a classical coordinate, D-to-A ET takes place with
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near-unity probability every time R enters this quasi-resonance region, Pt , ~1. Thus, as

a function of R, the potential energy surface that determines the dynamics in the resonance
region is due to the lowest adiabatic BO state which is a linear combination of diabatic D
and A BO states of Fig. A.2.

A.3 Quantum accepting modes

The accepting mode may be treated as quantum at a given temperature T if kK, T <<Z®. In

this situation the dynamics of R is described by vibrational wavefunctions and the state of
the ET system is described by products of electronic and vibrational states

|el;vi) =|el)®|vi) (vibronic states).

A.3.1 Nonadiabatic weak-coupling regime

For a quantum accepting mode the full Hamiltonian of the ET system is written as
H =|D)(D|®H}" +|A)(A|®H " +V (|D)(A|+hc.)@ ™, where
HY> = 2/2m+EB°( ) and H® = 2/2m+EB°( ) The vibrational states |n, ) and |n,)

denote harmonic oscillator eigenstates of H' and HY", respectively, with eigenenergies

and E;’

BO
E A(min)

(mln) nD

+g,  (Fig. Ad4), where & =ho(n,+1/2) and

EnA

= ha)(nA +1/ 2). The ET rate can be expressed as a thermally weighted sum of Fermi-

Golden Rule rates k™

D,np—>A,ny

between initial |D;n,)=|D)|n,) and final |A;n,)=|A)|n,)

vibronic states (Fig A.4). Each rate k>

D,np—>Any

is induced by the coupling

(D;n,|H|An,) =V x(ny|n,) (where (n,|n,) is the vibrational-state overlap). Thus, the

thermally averaged nonadiabatic ET rate is given by
nad e nad
q z p Z D,np—>An, ? (AGa)
where

R onny = 2N i [0 O] (e + i, |~ {ESuy +20,} ] (A.6b)
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The tilde notation denotes quantum-mode, (to distinguish from the classical-mode rate in eq.

(A.3)). The double sum in eq. (A.6a) is between initial (|n,)) and final (|n,)) vibrational
states, where p? =e ™" / > e ™" s the thermal equilibrium probability of each

initial vibrational state (KnD|nA>‘2 is the |ny) to |n,) Franck-Condon factor). Equations

(A.6a) and (A.6b) can be cast in a more familiar form analogous to eq. (A.3), i.e.,

ké‘?d(eq (Zﬂ/h)v qu(E‘Q)’
i = 3 Ko ) o[ (B8 +, |~ (5 50| ] v

D s the quantum thermally-weighted Franck-Condon factor. Since the initial and final

vibrational states have finite lifetimes due to vibrational relaxation, their energies are

homogeneously broadened. Thus, each of the delta functions should be thought of as a

Lorentzian (hF/;r)[({EBO } {EBO ) })2 +(h1“)2} whose width is determined

mln A(min

I, of the initial and final vibrational states, i.e.,

np ' Ny

by the vibrational relaxation rates I
where I'=T", +T', (Fig. A4).
Equations (A.6a), (A.6b) or (A.7) describe the nonadiabatic rate in the Condon

approximation. This approximation is explained below when we consider coupling

fluctuations. The weak-coupling (nonadiabatic) regime is valid when |V x(n, |, )| << 7T,

in which case there are no coherent oscillations in the transition probabilities between initial

and final vibronic states. Thus, the time evolution of the transition probabilities can be

described by rates k™™ proportional to ‘V x (g | nA>‘2.

D,np—>Any
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Figure A.4 Vibronic picture of the nonadiabatic ET rate for a quantum accepting mode. The

average rate is a thermally weighted sum of vibronic rates k2™ between initial

Dy AN
|D;n, ) =|D)|n,) and final | A;n,)=|A)|n,) vibronic states. Each transition is induced by
the vibronic coupling V x(n,|n,). |n,) and |n,) denote harmonic oscillator eigenstates of
the E5°(R) and E;°(R), respectively. I', and I, are the vibrational relaxation rates of
the initial and final vibrational states (I'=I"|_+I", ). The quantum nonadiabatic regime is
valid when \V x(ny[n,)| <Al In the quantum adiabatic regime, |V x(n;|n,)|> I, and
coherent oscillations between quasi-resonant |D)|n,) and | A)|n,) vibronic states may be

important. The ET transition is not fully described by simple rate equations.

A.3.2 Adiabatic strong-coupling regime

When |V><(nD|nA>|th (see Fig. A.4) coherent oscillations between quasi-resonant

|D)|n,) and |A)|n,) vibronic states may be observed and, in this case, the ET reaction
cannot be described by simple rate equations. The time evolution of the transition probability
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from D-to-A should be described by density matrix equations of the relevant vibronic states
which incorporate the vibronic-state coupling to the bath degrees of freedom. This
methodology is briefly described in the discussion of eq. (A.18).

A.4 Rates in terms of vibrational-coordinate and energy-gap probability densities

To show explicitly the role of vibrational fluctuations on ET rates, we consider as an example
the nonadiabatic rate in eq. (A.3) for a classical accepting-mode R, and show how to express

this rate in terms of the canonical probability density of R. This density is given by

P (R)= _fdP Pean (P, R), Where

Pean (P’ R) =

exp| -(P?/2m+ EZ° (R)) /kgT |/ [[ dPdRexp| —(P?/2m +ES° (R)) /kqT |.

(A.8)

The nonadiabatic rate is an equilibrium thermal average (...)eq(D) with respect to R of R—

dependent ET rates derived from Fermi’s golden rule:

nad (e na e 2
kETd( V= <kETd (R)>eq(D) - .[dR Po' (R) h_ﬂ-v 25(AEDA(R))' (A.9)

For the harmonic energy surface in Fig. A.2, E;° (R)=ES )+ me®(R—R,)?/2, and the

(min

equilibrium density is Gaussian,

Py (R)= - exp(—(R-Ry)*/20%),  on =k,T/ma’. (A.10)
R

Equation (A.3) is obtained from egs (A.8) and (A.9) by assuming harmonic BO surfaces for
AE,, (R)=E° (R)-ES° (R) suchthat, in the delta-function, AE,, (R)~ AES;™ (R) where

AEBE/\;m (R) :(EE(Omin) - ES(Omin))+/1_(2/1/( RA - RD)) R.

Alternatively, the nonadiabatic rate can be written in terms of the energy gap AEDA(R)

fluctuations caused by the R vibration. This approach is more natural for the realistic case
of many accepting modes, where the D-A energy gap arising from all modes is the relevant
ET rate reaction coordinate rather than the individual mode coordinates. In our simple

example, the equilibrium probability density for the energy gap is given by
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P (AEy,) = de Py (R) 8(AEp, —AEp, (R)), where AE,, denotes a specific energy-gap

value. From eq. (A.8) and from the expression for AEY™ (R) it can be shown that
eq 1 2 2
P35 (AE,) = z—zexp(—(AEoA ~(AE,)) [20%, ). (A11)
N 7O e,

where, oy =24kgT and (AE,,)=Ef0. —ERo:, +4 . The nonadiabatic rate in eq. (A.3)

Is a thermal average over AE,, values of Fermi’ s golden rule rates:

kE?d(eQ) — <k2$d (AEDA )>eq =
e 2 2 e
[dAE,, P (AE,,) h—”vza(AEDA) :7” V2 pii (AE,, =0)

¢l (eq)
FC

(A.12)

P

The adiabatic rate in eq. (A.5) may also be derived from the probability density of the
classical accepting mode coordinate. This approach to deriving the adiabatic rate is identical
to analogous derivations of TST rates which involve thermal activation over a simple barrier.
9.18.21-22 A formulation of the quantum-nonadiabatic rate (eqs (A.6a) and (A.6b)) in terms of
the accepting-mode-coordinate probability distributions requires the use of semi-classical

formulations of the ET rate (e.g., [22] for a review).

A.5 Coupling fluctuation effects and promoting modes

Up to this point we have assumed that the D-A electronic coupling V in eq. (A.1) does not
fluctuate. If we allow for coupling fluctuations in addition to energy-gap fluctuations we can
obtain a simple generalization of the nonadiabatic rate expressions ([12,14] for reviews).

Consider, for example, a bridge mode Q of frequency Q (Fig. A.1) which modulates the
tunnelling barrier between D and A such that the bridge-mediated D-A coupling depends on

the mode coordinate, V =V (Q) Q is denoted a promoting mode and it may be considered

a classical oscillator if #Q <<k,T , and a quantum oscillator in the opposite limit.
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A.5.1 Classical promoting mode
For a classical promoting mode, the equilibrium probability density of Q is given
P (Q)= (27zaé )_1/2 exp(—(Q —(Q))Z/Zaé) (as in eq. (A.10)) where B denotes bridge. The

equilibrium  probability  density for the D-A coupling is given by
d V):.[dQ ps'(Q) 6(V -V (Q)). The nonadiabatic ET rate in eg. (A.3), which is an

equilibrium average over accepting mode fluctuations, must now also be averaged over
promoting mode fluctuations, i.e.,

(ke (Q)> =

X (A.13)

2 e 2 2 cl(e
[dQ e (Q)=F V(Q) it = [dv 2 )hﬂV Pre —h—ﬂ(V2>eq P

Defining an average rate as in eqg. (A.13) assumes the typical slowest timescale of coupling
fluctuations is fast compared to the typical ET time (inverse ET rate). If the coupling
fluctuation timescale is slower than the ET time, then the ET kinetics will be distributed and
such Kkinetics cannot be described by a single (average-rate) value (see e.g., [23] for a

discussion of this regime in ET).

In summary, the simplest effect of coupling fluctuations in eq. (A.2) is the replacement of

V? by a thermally averaged <V2>eq. Equation (A.13) generalizes the classical nonadiabatic
rate in the Franck-Condon approximation by incorporating “static” effects of coupling
fluctuations via the average <V2>eq =<V>:q+a\f. It is useful for the discussion in the

following sections to express the rate in eq. (A.13) as a double average over promoting and

accepting mode fluctuations or, equivalently, coupling and energy gap fluctuations

nad (eq) de p )J‘dR p;q (Q) Z;V (Q)25(AEDA(R))
(A.14)

‘ 2
= [dQ p5" (V)[ dAE,, p& (AE,,) %Vzd(AEDA).

206



A.5.2 Quantum promoting modes and the breakdown of the Condon approximation

The quantum nonadiabatic ET rate in egs (A.6) or (A.7) is a thermally-weighted sum of
nonadiabatic rates between initial and final vibronic states (eq. (A.6a)). To incorporate the
effects of a quantum accepting mode in the nonadiabatic rate, the vibronic states of the
system must now include the promoting mode eigenstates. 2 Therefore, initial and final

vibronic states of the ET reaction are written as |D,n,,v,)=|D)|ny)|v;,) and
|An,,ve)=|A)n)|vy), where |v,) and |v,) are initial and final promoting mode
eigenstates, respectively, with energies &, =hQ(v, +1/2) and &, =hQ(v,+1/2). By

analogy to egs (A.6a) and (A.6b),

kg vamz P D ZkSaffD oAy (A.15)

Vin Vi

where k"™

D,np Vip > ANy Vi

is the Fermi-Golden Rule rate between |D,n,,v;,) and [A,n,,v),

knad _
D,np Vin=>ANA Vi

(A.16)

D No vaAn Vi

[{EBomm) +&, +&, } {EB(omm) +&, +&, }}

The average in eg. (A.15) is over accepting and promoting mode equilibrium distributions.
pe =g / > el ps e /kBT/ P “n’T The coupling in eq. (A.16) is

given by (D,ny, v,

A‘A,nA,vﬁ>=<D,vin[\/(Q)|A,vﬁ>(nD|nA>, where
V =V (Q)(|D)(A|+h.c.). To compute the matrix elements (D, v, |V (Q)| A,vﬁ> , V(Q) can

1| d?V
be expanded as V (Q) =V (Qo)+§{sz

} (Q —Qo)2 + higher order . The golden-rule limit
Qo

is valid when ‘V ><<nD|nA>><<vin >‘ <<nhl', where T'=T, +I, +I, +T, is a total

vibrational relaxation rate for the initial and final vibrational states.

The expression in egs (A.15) and (A.16) can be cast into a time-domain form ([12,14] and
references therein). It is the time Fourier transform of the product of two equilibrium

correlation functions (eq. (A.17)), where the transform is evaluated at the frequency of the

Eg(omin) - Efé?nin) gap (F|g AZ)
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redlea) _ h_12 j‘” gt ' (EBn ~Exun )1/ <Cv (t)>eq(s) <éFC (t)> (A.17)

<CV (t)> o :<\7 (t)V (0)> is the time-dependent coupling correlation function where
eq

eq(B)
\7(t):exp(itl—];ib/h)\?(O)exp(—itl—]g‘b/h) is evolved in time using the vibrational
Hamiltonian H;ib for the promoting mode. The averaging is over the promoting mode

Vin

equilibrium distribution, (...)eq(B):z Pt (Vi [ Vin ) - <CFC(t)> o) is the Franck-
Vin eq

Condon correlation function, where C.. (t)=exp(itHgb/h)exp(—itlfl,{‘b/h) and H'® and

H'" are the accepting-mode vibrational Hamiltonians for the D and A BO surfaces of Fig.

A.2. The equilibrium average involves the D vibrational equilibrium distribution

(o = o, P (M 1)

Equation (A.17) is convenient for computations involving molecular dynamics simulations,
where the correlation-function averages can be evaluated in the semi-classical
approximation. It is also the starting point for deriving the Condon approximation and its

dynamical corrections. If coupling fluctuations are very slow with respect to energy gap

fluctuations then, in eq. (A.17), <Q, (t)> ) G0 be replaced by <Q, (t :O)> " :<\72> o
eq €q €q

and taken out of the Fourier integral. This leads to the most-general expression for the

quantum nonadiabatic rate in the Condon approximation, k2" :27z/h<\72> " pre,
eq

which is a generalization of eq. (A.7) for fluctuating coupling. The classical limit of this

expression leads to egs (A.13) or (A.14). Dynamical non-Condon effects are important when

the coupling and energy-gap fluctuations are of similar magnitudes and timescales.

Dynamical non-Condon corrections to the Condon rate can be computed by expanding

<CV (t)> . in a Taylor series with respect to time and keeping successive terms
eq

(t”/n!)x d:

" <CV (t= O)> in the Fourier integral of eq. (A.17). %

eq(B)

The nonadiabatic rate equations can be further generalized to include several promoting and

accepting modes, mixed classical and quantum modes within the same molecular system,

and interdependent promoting and accepting modes, i.e., V =V (Q,R). Although the
nonadiabatic-rate limit is not always valid (see below), we will use egs (A.13)-(A.15) in
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much of our discussion of non-equilibrium vibrational effects because these rate equations
are easily generalized to describe non-equilibrium vibrational distributions of the ET-active

modes.

A.5.3 Adiabatic strong-coupling regime

Introducing a classical accepting mode for the adiabatic rate in eg. (A.5) means that the mode
will modulate the adiabatic activation energy (Fig. A.3) through the coupling, i.e.,

Ui ~UE V| > UZ(Q)~UZ -V (Q)|. Thus, the averaging of the adiabatic rate over

act act act act

accepting and promoting mode fluctuations maps to problems of stochastic resonance which

involve rate averaging over fluctuating barriers. 2

In the quantum  adiabatic  regime, ‘V><<nD|nA>><<vin

vﬁ>‘2hl“, where
r=r, +r, +I, +I[, s a total vibrational relaxation rate for the initial and final

vibrational states. As already discussed, simple rate equations are not appropriate in this limit
and the time evolution of the transition probability from D-to-A may be partially oscillatory.
The ET transition should be described by density matrix equations involving the relevant

accepting and promoting vibronic states and the system’s coupling to bath degrees of

freedom. Namely, the D-B-A system Hamiltonian is written in the basis of the |D,ny,v;,)

and |A,n,,v,) states as Hy=H,+Hy+H,+Hpy+H,, where Hy, Hy and H, are
vibronic Hamiltonians for the D, B and A moieties, while I—]DB and H A are vibronic

Hamiltonians for the D-B and A-B interactions. Each I-AIK is of the form

He=Hg +HY +HZ™ where "el" denotes electronic, "vi" vibrational and "el-vi"

electronic-vibrational-coupling. The time evolution of the system’s vibronic populations and

coherences is described by a stochastic Liouville equation for the reduced (system) density

matrix & (t), given by:
in— 2= H,6(t) |+ ("6 (t). (A.18)

[I—]s , &(t)] is the coherent partand [ (t) & (t) is the dissipative part which describes the

interaction of the system’s vibronic states with the bath and which contains vibronic
coherence and population decay rates T",. %19
209



A.6 Examples of energy-level and coupling fluctuations in electron transfer reactions

Numerous computational studies have examined the fluctuation dependence of the bridge-
mediated D-A coupling for long-distance ET in systems where the transfer mechanism is

tunneling ([12,14] for reviews). The general conclusion of these studies is that the Condon

approximation expression for the nonadiabatic rate, k., = 27z/h<vz>eq(8) Prc » describes the

rates quite accurately. These studies show that coupling fluctuations are important in

determining the rate, especially for metal-to-metal protein ET which involves extended and

floppy protein bridge structures. Writing <V2>eq =(V >§q +o2, itis found that o2 3> (V)* for

D-A distances greater than 6-7 Angstrom. 2 In this regime of large coupling fluctuations,
thermal fluctuations of the D-B-A structure access molecular conformations with tunnelling
matrix elements that are order-of-magnitude larger than the average-structure matrix

element.

Energy-level fluctuations are particularly important in low-gap D-B-A systems where, at
thermal equilibrium, there exist molecular conformations for which bridge electronic states
are quasi-resonant with the donor and acceptor electronic states. ®'°> Molecular dynamics
simulations combined with electronic structure computations on DNA hole-transfer systems
show that, in many cases, the fluctuations in the D(A)-to-B energy gap is of the order of the

average gap, i.e., <AEDB>zajEDB (the bridge states are usually the highest occupied

molecular orbitals of the bases). 2%° In such systems, different transport mechanisms may
coexist at the ensemble level, with contributions from tunnelling, thermally activated
hopping and flickering resonance ET channels. 3% The multiplicity of mechanisms makes
the phenomenology of the D-to-A ET rate complex. An open question is how to deconvolute
the experimentally the different channels.

For the primary reactions in photosynthesis, 33 where excited state ET is ultrafast
(picosecond timescale), there is experimental evidence of vibrational enhancement of the
primary ET rate. 3 For example, in the Photosystem Il reaction center, there exist vibrational
modes with phonon energies that are resonant to the energy gap between the primary electron
donor and the first charge-transfer exciton states. Two-dimensional electronic spectroscopy
and modelling in the spirit of eq. (A.18), (where the system is described in a vibronic basis
that includes the relevant modes), suggests that the primary ET reaction rate is enhanced and
controlled by the vibronic resonances involving these resonant vibrations ([33] and

references therein).
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A very interesting aspect of fluctuation dynamics in ET is non-ergodic and gated dynamics.
For example, when accepting mode vibrational timescales are much slower than the ET
timescale, the DA energy gap fluctuations caused by these slow modes are frozen on the ET
(experimental) timescale. Such an ET system is denoted non-ergodic with respect to these
slow vibrations because, on the timescale of ET, these vibrations do not explore their entire
phase space so as to contribute to ET activation. Thus, the canonical distributions in egs
(A.8) and (A.10)-(A.11) cannot be applied to these vibrations. Gated dynamics describe the
situation when different interconverting stable conformations of the ET system (structural
and/or solvent polarization) lead to different ET rates. When the interconversion rates are
comparable or slower than the ET rates, the ET dynamics is said to be gated by these
interconversion events. These regimes have been studied in reaction-rate and ET theory for
some time, e.g., in the context of solvent-controlled ET ([3,8,14] for reviews of the extensive
literature). The experimental phenomenology of the above-mentioned regimes includes non-
exponential ET rate kinetics and the non-Arrhenius temperature dependence of the rate. The
non-ergodic regime may also imply non-Gaussian fluctuations for the D-A energy gaps (i.e.,
eg. (A.11) does not apply). %3¢ Non-ergodic energy gap fluctuations were shown to be
relevant in some biological ET systems and it has been suggested that they improve the

efficiency of some biological ET reactions. 8373

A.7 Tuning electron transfer rates by driving vibrations with external fields

Given the importance of energy-level and coupling fluctuations in molecular ET reactions,
it has been proposed to control these fluctuations by using external infra-red (IR) fields. 4*
4 The goal is to perturb the ET reaction rate in a mode-specific way and also to probe ET
mechanism. 12141617 The suggested approach involves either targeting with IR existing IR-
active groups in the molecular ET system, or substituting IR-active groups in the molecule
which could transfer their excitation energy (imparted by the IR pulse) to molecular ET-
active vibrations. Further, isotopic substitutions of IR-active groups in specific locations in
the molecule could enable the selective perturbation of donor, bridge or acceptor vibrations.
4042 pye the transient effect of the IR pulse on the ET rate, a large IR-induced perturbation
of the ET reaction yield is expected in systems with multiple reactions which compete with
ET. * Indeed, many of the successful IR-perturbed ET experiments described below involve

competing reaction systems.
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IR-driving may enhance or reduce the ET rate by creating transient IR-perturbed molecular
ensembles with non-equilibrium probability distributions for the ET-active mode
coordinates (and thus, non-equilibrium probabilities for the energy-gap or coupling). The
simplest expression for the IR-perturbed nonadiabatic rate in the case of classical mode

excitations is given by

na 2
ke ™ (t) = [dQ pi™ (Q.t)[dR pi™ (Q.t) %v (Q)*(AE,, (R))
(A.19)
(IR) R) 2 2
= [dQ p™ (V. 1)[ dAE,, o5 (AE,,.1) 7v(Q) 5(AEp, ).
(to be compared to the equilibrium rate in eq. (A.14)). The nonadiabatic rate is an average
over Q (promoting mode) and R (accepting mode) of (Q, R)—dependent golden rule ET
rates. In contrast to the equilibrium eq. (A.14), the averaging is with respect to time-
dependent (non-equilibrium) distributions of the promoting and the accepting modes. In the
second line of the equation the integral over the accepting mode coordinate is converted to
an integral over the DA energy gap. Similarly, for quantum mode excitations, the simplest

IR-perturbed nonadiabatic rate expression is

nad (nea) Z pvm )nZ: pn Z Z k[;agD Vin=>ANa Vi (AZO)

Vi

(replacing the rate in eq. (A.15)). In the equations above p"® (t) and p"™ (t) denote time-

dependent (non-equilibrium) probability densities or distributions. The equations assume
that both the accepting and the promoting modes have been targeted and driven out of

equilibrium by IR.

These equations indicate that the effect of IR driving on the ET rate is transient and it is
expected to vanish sometime after the application of the IR pulse and on a timescale that is
related to the intra-molecular vibrational energy redistribution (IVR) times of the molecule-

solvent ET system (denoted 7, ). Thus, setting as t =0 the time right after the application
of the IR pulse, we expect the IR-perturbed mode probability distributions to decay to the

equilibrium distributions for t>7,., ie, p"™ (t)—22—p* in eq. (A.19) (and
(™ (t)—2=— p in eq. (A.20)). A large IR-induced effect on the nonadiabatic ET rate
would require that, for the time period between the application of the IR pulse and 7,

kSR (1) < k2@ or kEHM) (t) >> ke,
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The transient nature of the time-dependent IR perturbation on the ET rate suggests that
permanent effects of the perturbation, such as changing the ET reaction yield, can be
achieved in systems where secondary reactions compete with ET. ** For example, ET
systems with a single donor and multiple acceptor units connected by independent bridges,
(AL-BL-D-Br-ARr), are good candidates for using pulsed-IR excitation to change the relative
populations and yields of (AL) and (Ar) ET products (Fig. A.5). An isotopic substitution of
an IR-sensitive group in one of the bridge units allows the selective IR-perturbation of one
of the ET reactions, thus influencing the relative L/R yields. * An example of a related recent

experiment is described in the following section.

Equation (A.19) implies that the classical nonadiabatic rate may be accelerated by the IR
excitation of an accepting mode if the resulting non-equilibrium probability density for the

energy gap enhances the probability of D-A resonance as compared to the equilibrium
density, i.e., p8™ (AE, =0,t)>> pl¥ (AE,, =0,t) (the opposite condition applies for a
significant reduction of the ET rate). The excitation of promoting modes may have a

significant effect on the Condon rate (o< (V?)), if p{™ (V,t) is sufficiently different from

PV (V) such that, for 0<t <7y, (<V2>neq(B) —<V2>eq(B) ) / <V2>eq(B) is large (“neq” denotes

the non-equilibrium ensemble average which is time-dependent).

C
<

@
'@
U)A

Q/i/v@

ET rate: ke ET rate: kr

N S

Irreversible competing reactions

Figure A.5 A D moiety connected via left (L) and right (R) B units to distinct A moieties.
Upon photo-excitation of D by UV, irreversible ET is initiated to AL and to Ar
simultaneously (with ET rates k, and k;). The IR excitation of one B unit which trasiently

affects the corresponding ET rate, can irreversibly affect the the L to R reaction yield of the

competing ET reactions and thus tune the directionality of ET.

213



Similar considerations apply for the quantum nonadiabatic rate of eq. (A.20). The IR

excitation effects on the ET rate will be observable if the IR pulse causes large changes in
the probabilities p™ — p!"™ (t) of those initial accepting-mode (|ng )) or promoting-mode

(|vi)) states which have significant transfer rates k™ . The excitation of a

D\ in —>ANA v
quantum promoting mode may also enhance inelastic tunnelling and switch on an otherwise
symmetry forbidden transition. In a molecule with alternative through-bridge tunnelling
paths, ° the isotopic substitution of an IR-sensitive group in one of the paths could be used
to realize a which-way molecular interferometer. The IR pulse targeting this group selects
the electron’s tunneling path by causing a path-specific vibration to exchange a quantum of
vibrational energy with the electron traversing the path. 4143

However, some words of caution about oversimplified interpretations of IR-perturbation
effects are in place. First, IR-perturbations could enhance non-Condon effects within the
nonadiabatic regime. For example, the excitation of high frequency promoting modes could
speed up the timescale of coupling fluctuations, * thus inducing the breakdown of the

Condon approximation ([14] for a review). In this case, the equilibrium coupling correlation

function <év (t)>eq(B) in eq. (A.17) should be replaced by a non-equilibrium <év (t)>neq(8) :
neq(B)

are of comparable timescales as the decay time of the Franck-Condon correlation function

<éFC (t)> ©’ then the IR-perturbed rate should not be interpreted in terms of the Condon
eq

equation k(") :(Zﬂ/h)<\72> Pec, but rather in terms of the non-equilibrium eq.

neq(B)

(A.17) where <CV (t)> is retained inside the time integral.

neq(B)

Second, eqs (A.19) and (A.20) are often too simple to be used for the prediction or the
interpretation of IR-perturbation effects on nonadiabatic rates. The equations assume only
two ET-active modes (one accepting and one promoting) which are either both classical (eq.
(A.19)) or both quantum (eq. (A.20)). In many ET systems there are several classical and
quantum promoting and accepting modes affecting ET. Therefore, more general multi-mode
expressions should be used which incorporate several quantum- and classical-mode ET
channels. This means that the initial and final vibrational states in the double sum of eq.

(A.20) should be replaced by sums over initial and final multi-mode (product) states of

accepting and promoting vibrations; i.e., [N, )|v;, ) —|vibr, ) and |nA>‘vﬁ> — ‘Vibrﬁ> , where
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nA(,)>Hm‘vﬁ(m)>. Further,  the

in the multi-mode sum become functions of

Vm(,-)> and  |vibry) =T,

nad
D, vibr,, — A, vibrg

|Vibrin>=Hi nD(i)>Hj
corresponding vibronic rates k

several classical accepting and promoting mode coordinates {R }.{Q,}. ie.,

|Z nad
D, vibr,, —>A,vibrg

({Rk},{Qn}). Thus, the overall quantum-classical nonadiabatic rate involves

both a quantum average over initial vibronic states with probabilities Hi an(_)Hj Py,

(where only the probabilities of modes perturbed by IR and are non-equilibrium), and a

classical average over the classical mode probability densities pp ({Rk},t) o3 ({Q,},t).

When there are several ET-active modes contributing to the energy gap and to the coupling
fluctuations, the IR-perturbation of a few of these modes may not have a substantial effect

on the ET rate.

Timescales of IVR in molecules range between tens of femtoseconds to tens of picoseconds.
Therefore, ET systems with ET times much greater than tens of picoseconds are too slow to
be perturbed effectively by IR fields. In such systems the vibrational perturbation imparted
by the IR pulse will be lost to the solvent by the time ET takes place. This ET-time limitation
imposed by the IVR timescales implies that IR-perturbations of ET are likely to be large for

fast ET reactions with transfer times (7., ) up to tens of picoseconds. However, reactions

with ultrafast timescales (picoseconds or less) are not in the nonadiabatic limit and the
interpretation of IR-perturbation effects of such ultrafast ET rates should not be based on
nonadiabatic rate theory (egs (A.19) and (A.20) and their quantum-classical multimode
generalizations). Instead, the more general vibronic-density-matrix approach should be used

(eq. (A.18)), where the effect of the IR-pulse field (E"

pulse

(t)) is included as a perturbation of
the system Hamiltonian, i.e., H, — H,+V.(t) in eq. (A.17). * For example, for a

perturbation of the accepting mode R, Vi, (t) =—(84/6R)RE}

ouse (1) Where 4 is the dipole
operator in the vibronic basis. For such ultrafast reactions the effects of the IR perturbation
may be system specific and the ET probability can show vibronic coherences which are

affected by the IR pulse. **

For systems with low tunnelling barriers (Fig. A.1), the IR perturbation may bring bridge
electronic states to flickering resonance with donor and acceptor states. ®3%% In this
situation, two-state donor-acceptor Hamiltonians as in eq. (A.1), which incorporate the effect
of the bridge through a bridge-mediated tunnelling matrix element V , are not appropriate

for the description of the IR-perturbed ET reaction at the ensemble level. The Hamiltonian
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in eq. (A.1) can only describe through-bridge tunnelling ET (via off-resonant virtual bridge
electronic states). For a D-B-A system with low-lying bridge electronic states, the IR-
perturbed ensemble will contain a sub-ensemble where the B states are resonant to D and A,
and where ET takes place by a resonant tunnelling mechanism. For this sub-ensemble the
transferring electron will proceed through real bridge intermediate states. This process can
only be described by at least three-state D-B-A Hamiltonians which incorporate the B state
intermediate on an equal footing as the D and A states. **>! Indeed, it has been shown that
the IR perturbation of the bridge will have the largest effects on the donor-to-acceptor ET
rate if the B electronic state becomes quasi-resonant to D and A. * It should be noted that
much of the above discussion applies to photoinduced ultrafast ET reaction systems, where
the vibrational excitation is not caused by an IR field but rather by the electronic absorption
which initiates ET. The ground-to-excited electronic state transition creates non-equilibrium

vibrational probability distributions on the excited donor energy surface. 3

A.8 Experiments of IR-perturbed electron transfer

The first experimental attempt to perturb molecular ET rates by IR pulses was a UV (pump)
— IR (pump) —Vis (probe) experiment on an anthracene/dimethylaniline (DMA-GC-Anth)
structure bridged by a guanosine-cytidine (GC) hydrogen-bonded pair (Fig. A.6). &
Photoexcitation of anthracene by the UV pump induces an ET reaction from DMA to the
photo-excited anthracene on a timescale of tens of picoseconds. The experiment found that
the IR pulse, targeted to excite the bridge hydrogen-bond vibrations, causes ET rate slowing
of about 67% per excited molecule. Very recently, a similar UV(pump)-IR(pump)-
Vis(probe) experiment on the same molecule (targeting by IR the hydrogen bond vibrations)

demonstrated that the reverse charge recombination reaction is accelerated by IR by 3.5-fold

per molecule. **
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Figure A.6 UV (pump)-IR(pump)-Vis(probe) experiment on an anthracene/dimethylaniline
(DMA-GC-Anth) structure bridged by a guanosine-cytidine (GC) hydrogen-bonded pair.
Photoexcitation of anthracene by the UV pump induces an ET reaction from DMA to the
photo-excited anthracene on a timescale of tens of picoseconds. The experiment found that
the IR pulse exciting bridge hydrogen-bond vibrations causes the ET rate slowing about 67%
per excited molecule. A more recent experiment showed that the IR excitation accelerates

the recombination rate by 3.5-fold per molecule. **

A series of UV(pump)-IR(pump)-IR(probe) experiments were performed on ET D-B-A
molecules with phenothiazine (PTZ) donors, a naphthalene monoimide (NAP) acceptor, and
a platinum(II)-trans-acetylide bridge (Fig. A.7a). '">>7 In these experiments a 400nm UV-
pump was used to prepare a DB*A" charge transfer (CT) state. This state can undergo three
different competing reactions: DB*A" to DBA (charge-recombination), DB*A" to *A
(formation of a triplet excited state that is acceptor-localized), and DB*A"to *D*BA" (forward
ET reaction). This ET reaction takes place on ultrafast timescales (sub-picoseconds to tens
of picoseconds). In the experiments, a narrow band IR (pump) pulse was used to excite the
acetylide bridge -C=C- stretching modes. For a PTZ-CH> donor the result of the IR-

perturbation was 100% suppression of the DB*A"to *D'BA" ET reaction, and a concomitant
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increase of the DB'A" to 3A reaction yield. For PTZ and MeO-PTZ donors, the IR

suppression of the DB*A to *D*BA" ET reaction was 50% and no suppression, respectively.
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Figure A.7 (a) UV(pump)-IR(pump)-IR(probe) experiments on ET molecules with
phenothiazine (PTZ) donors, a naphthalene monoimide (NAP) acceptor, and a platinum(II)-
trans-acetylide bridge. A 400nm UV-pump prepares a DB"A" charge transfer (CT) state.
Following the UV excitation a DB"A"to *D'BA" ET reaction takes place on timescales of up
to tens of picoseconds. The IR excitation of the acetylide bridge -C=C- stretching modes can
fully suppress this reaction. (b) Experiments with fac-[Re'(CO);(DCEB)(3-DMABN)]
(ReEBA) complexes where 3DMABN is 3-dimethylaminobenzonitrile and DCEB is 4,4'-
(dicarboxyethyl)-2,2-bipyridine. Photo-excitation by UV creates a triplet metal-to-ligand
charge transfer *MLCT) excited state where the electron is localized in 3-DMABN. This
state then converts to a triplet ligand-to-ligand charge transfer ((LLCT) state through a ~10
picosecond ET reaction from 3-DMABN to DCEB. The IR (pump) excitation which targets
the electron-acceptor (DCEB) ring-stretching modes accelerates the ET rate by ~28%.

Another UV(pump)- IR(pump)-IR(probe) experiment used forked Di-B-A-Bis-Dr ET

systems (the subscripts L, R denote left and right) with a central acceptor ((CO2Et)2bpy)

connected to two independent bridge-donor (acetylide-PTZ) units through a central Pt atom

(the reverse architecture of Fig. A.5). °® One of the -C=C- units was replaced by the isotopic

substitute -3C="3C- (Bisot) such that it could be targeted independently from the other by the
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IR pump pulse. Initial UV excitation at 400nm creates within a few picoseconds a metal-to-
ligand (Pt-to-bpy) charge transfer state (MLCT). This state can decay in approximately 10
picoseconds to L and R charge-separated states (A-B-Dr" and A-Bis-Dr"), following ET
from Dr and Dr. After the UV excitation, the selective IR excitation of the Bisot stretching
modes reduced the rate of A-Bis-Dr" formation by ~70% and increased the rate of A-B-Dr."
formation by ~40%. Approximately the reverse behavior was seen when the other bridge (B)

was targeted by the IR pump.

The fourth type of ET system used for UV(pump)-IR(pump)-IR(probe) experiments
involves fac-[Re'(CO);(DCEB)(3-DMABN)] (ReEBA) complexes (Fig. A.7b), where
3DMABN is 3-dimethylaminobenzonitrile and DCEB is 4,4'-(dicarboxyethyl)-2,2-
bipyridine. In these experiments > the initial state formed upon photo-excitation by UV is
a triplet metal-to-ligand charge transfer CMLCT) excited state where the electron is localized
in 3-DMABN. This state then converts to a triplet ligand-to-ligand charge transfer CLLCT)
state through a ~10 picosecond ET reaction from 3-DMABN to DCEB. In the experiments
the IR pump excitation targeted the electron-acceptor (DCEB) ring-stretching modes and the
ET rate accelerated by ~28%.

The above experiments clearly demonstrate that the mode-specific IR perturbation of an ET
reaction can have significant effects on the reaction rate if the ET time is up to a few tens of
picoseconds (i.e., not much greater than I\VVR times). The detailed interpretation of these IR-
perturbation effects can be quite challenging. For the PTZ-bridge-NAP systems in Fig. A.7,
the authors suggest that IR excitation modifies the D-A energy gap and the D-A coupling.
17,5556 Recent computational studies based on a vibronic model build from ab-initio excited-
state computations indicate that the IR excitation increases the D-A coupling. " For the
system in Fig. A.7b, the ET rate acceleration was interpreted using TD-DFT computations
of the triplet excited electronic state energies as a function of the bipyridine-ring-stretching
normal-mode coordinates (targeted by the IR excitation). These computations suggest that
the IR excitation brings the donor and acceptor electronic states ((MLCT and *LLCT) to near
degeneracy. >>® For the case of the DMA-GC-Anth structure (Fig. A.6), the IR-induced
deceleration of the forward ET reaction and the acceleration of the recombination reaction
were analysed theoretically and computationally and explained in [54,61]. It was found that
the forward reaction is near-activationless (the crossing between the D and A BO surfaces
in Fig. A.2 is near the minimum of the D BO surface). The IR perturbation depletes
vibrational population from the minimum of the (initial) D BO surface, which slows down

the forward reaction since this minimum is the D-to-A crossing region. The reverse ET
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reaction is necessarily activated and the IR perturbation, which adds vibrational energy on
the A BO surface, increases the vibrational population at the crossing region, thus
accelerating the reaction. >*

A.9 Conclusions

Theoretical studies of IR-pulse control of ET rates %#* inspired experiments on D-B-A ET
systems which demonstrated the feasibility of ET rate modulation up to 100% by targeting
specific bridge ET-active modes. 16175360 The ET rates in these experiments are fast (up to
tens of picoseconds) and the magnitudes of the IR-induced modulations vary depending on
the system. The central challenges in this field are to identify the general parameter regimes
determining the magnitudes of the IR-perturbation effects, and to predict and simulate these
effects for particular molecular systems and pulse sequences using the tools of computational

guantum chemistry and molecular dynamics.

The design of an experiment that produces a significant IR modulation of an ET rate will
depend critically on the details of D-B-A molecular structure. Given the right molecular
structure, a successful experiment should first be able to excite the most important ET-active
modes, either directly by IR or indirectly (i.e., the ET-active modes should be sinks for the
excess energy supplied to the system by the IR excitation). Second, the excess energy
supplied to these modes should be maintained on a timescale comparable to the ET
timescale. Third, since the vibrational perturbation is transient, a permanent effect on the ET

reaction yield can be achieved if the ET reaction competes with other reactions. *

Given the above constraints, it is essential to develop computational tools that can identify
the ET-active modes which modulate the ET energy gaps and couplings, and can also
simulate simultaneously the pulse excitation events, the time-dependent IVR pathways
following the excitation events, and the time-dependent ET pathways. Vibrational energy
redistribution (and dephasing) is likely to have the most significant influence on the level of

IR-perturbation of the ET rate.

The mode-specific driving of ET reactions can be a very useful experimental tool for probing
ET mechanism, with the potential of modifying the mechanism in D-B-A systems with low
bridge energy gaps (where IR driving may switch between through-bridge hopping or
flickering-resonance channels and through-bridge tunneling). For the IR control of ET

reactions at the ensemble level, (rather than the single molecule level), a major obstacle is
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the low IR absorption intensity of molecular vibrations. To augment the level of vibrational
excitation it is possible to use surface enhanced IR absorption methods. ** Another path
would be to damp vibrational energy to the D-B-A system via electronic absorption by
attaching to the system heating molecules such as azobenene. Such molecules undergo rapid
internal conversion when excited electronically and could damp the excess vibrational
energy to the D-B-A system. Finally, advances in producing intense psec-wide Terahertz
(THz) pulses suggest that THz driving of ET-active modes will be possible in the near future.
THz pulses would target low-frequency “classical” vibrations (not accessed directly by IR)

which are often the most important in gating ET reactions.

The specific research work presented in this Chapter has been published during the doctoral

program (see ref. [61]).
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APPENDIX B

Energies of the many-electron basis states of the D-B-A
systems as a function of the HOMO-LUMO exciton

energies and of the differences between the IPs of D(A)
and B

In Chapter 5 we studied the role of bridge-state intermediates in Singlet Fission (SF) for
donor (D) - bridge (B) - acceptor (A) systems. For this purpose, we constructed a semi-
analytical / computational framework to explore structure-function relationships for SF in
D-B-A molecular architectures. Through this semi-analytical approach we expressed the
energies of the basis-states used to represent the CISD Hamiltonian, as functions of the

exciton energies of D(A) and B and of the energy difference between the ionization

potentials (IPS) of D(A) and B, through the parameters X,Y and z, respectively (see

approximate excitation energies on Table 5.1 and analytical exact expressions on Table 7.1),

X=x-J +2K s Y=y=Jdy, T2Ky s 7 — |PP® _|p® (B.1)

Ho(a o) Ho(aLo(a)
where
x = IPPW —EAPW y = |P® _EAE, (B.2)

Below we present 3D graphs showing this dependence for the four different reference
molecular systems we studied (pi-stacking pentacene trimer, non-pi-stacking pentacene

trimer, pentacene-tetracene-pentacene and NC1 molecular systems in Fig. 5.3).
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Figure B.1 Basis States energies as a function of Y/X and z/X parameters for: (a) the pi-

stacking tri-pentacene conformation shown in Fig. 5.3a, (b) the non-pi-stacking tri-
pentacene conformation shown in Fig. 5.3b, (c) the pentacene-tetracene-pentacene

molecular system of Fig. 5.3¢, and (d) the NC1 molecular system of Fig. 5.3d.
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