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ΠΕΡΙΛΗΨΗ 

 

Η παρούσα διδακτορική διατριβή περιγράφει έρευνα σχετική με μοριακά φαινόμενα 

μεταφοράς ηλεκτρονίων (ΜΗΛ) και με μοριακές πολυεξιτονικές διεργασίες Ο βασικός 

στόχος της έρευνας είναι να διερευνήσει μοριακούς μηχανισμούς ΜΗΛ και μηχανισμούς 

σχάσης απλής εξιτονικής κατάστασης σε τριπλές  (ΣΑΚΣΤ). Μέρος της διατριβής, στο πεδίο 

της μοριακής ηλεκτρονικής και των μοριακών συνδέσεων, εξηγεί τη συμπεριφορά 

ρεύματος-τάσης και ρεύματος-θερμοκρασίας σε πειράματα μοριακών συνδέσεων. Επίσης 

προτείνει πειράματα μοριακών συνδέσεων που επιτρέπουν την παρατήρηση της 

ανεστραμμένης περιοχής Marcus σε αντιδράσεις ΜΗΛ, η οποία μέχρι σήμερα έχει 

παρατηρηθεί μόνο  σε περιβάλλον διαλύματος. Το άλλο μέρος της διατριβής, που σχετίζεται 

με την πολυεξιτονική μοριακή φυσική, διερευνά διαδικασίες σχάσης απλής κατάστασης σε 

μοριακά συστήματα δότη (ΔΟ) – γέφυρας (ΓΕ) – δέκτη (ΔΕ). Αναπτύσσει ένα  

ημιαναλυτικό/υπολογιστικό πλαίσιο για την ανάλυση φαινομένων ΣΑΚΣΤ και το 

χρησιμοποιεί για να εξηγήσει πρόσφατες πειραματικές παρατηρήσεις. 

Οι μοριακές συνδέσεις είναι ιδανικές για τη διερεύνηση μηχανισμών ΜΗΛ που παίζουν 

σημαντικό ρόλο στη χημεία και τη βιολογία. Περιγράφουμε τη θεωρητική μοντελοποίηση 

των μηχανισμών ΜΗΛ σε υβριδικές ετεροσυνδέσεις μετάλλου – πρωτεΐνης ΜΗΛ – 

μετάλλου. Εστιάζουμε σε ένα μεγάλο αριθμό πειραματικών αποτελεσμάτων που μετρούν 

τη συμπεριφορά ρεύματος-τάσης και ρεύματος-θερμοκρασίας των συνδέσεων. Τα υπό 

μελέτη συστήματα περιλαμβάνουν ετεροσυνδέσεις Αζουρίνης  Holo-Az (η πρωτεΐνη 

περιέχει άτομο χαλκού), Apo-Az (χωρίς άτομο μετάλλου), όπως και Αζουρίνης  με νικέλιο, 

ή κοβάλτιο ή ψευδάργυρο. Ο στόχος της μοντελοποίησης είναι να κατανοήσουμε από τα 

πειράματα πως ο μηχανισμός ΜΗΛ εξαρτάται από το είδος του μετάλλου. Λαμβάνουμε 

υπόψη διαφορετικά μοντέλα μεταφοράς (συνεκτικά και μη-συνεκτικά). Αυτή η εργασία έχει 

δημοσιευθεί στο Journal of Physical Chemistry C (Valianti, S.; Cuevas, J. C.; Skourtis, S. S. 

Charge-Transport Mechanisms in Azurin-Based Monolayer Junctions. J. Phys. Chem. C. 

2019, 123 (10), 5907-5922). 

Το άλλο μέρος της διατριβής που σχετίζεται με μηχανισμούς ΜΗΛ προτείνει μία 

αρχιτεκτονική μοριακής σύνδεσης ΔΟ-ΓΕ-ΔΕ που λειτουργεί μέσω του μη-συνεκτικού 

μηχανισμού θερμικής μεταπήδησης (ΜΘΜ). Αυτό το είδος συνδέσμου επιτρέπει  τη 

συσχέτιση ανάμεσα στην ένταση ρεύματος, που μετριέται στο πείραμα μοριακής σύνδεσης, 

με τον ενδομοριακό ρυθμό ΜΗΛ από το δότη (ΔΟ) στο δέκτη (ΔΕ). Προτείνουμε ότι αυτός 

ο τύπος σύνδεσης μπορεί να χρησιμοποιηθεί για την παρατήρηση της ανεστραμμένης 
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περιοχής Marcus του ενδομοριακού ρυθμού ΜΗΛ. H περιοχή αυτή μέχρι σήμερα έχει 

παρατηρηθεί μόνο σε αντιδράσεις ΜΗΛ σε διάλυμα. Στην προτεινόμενη σύνδεση η 

πρόσβαση στην ανεστραμμένη περιοχή γίνεται μεταβάλλοντας τη διαφορά δυναμικού κατά 

μήκος της σύνδεσης. Η πραγματοποίηση ενός τέτοιου πειράματος θα επέτρεπε ουσιαστικές 

συγκρίσεις μεταξύ του ρυθμού αντίδρασης ΜΗΛ σε περιβάλλον διαλύματος  και του ίδιου 

ρυθμού στο στεγνό περιβάλλον της μοριακής σύνδεσης. Αυτή η εργασία δημοσιεύτηκε στο 

Journal of Physical Chemistry B (Valianti, S.; Skourtis, S. S. Observing Donor-to-Acceptor 

Electron-Transfer Rates and the Marcus Inverted-Parabola in Molecular Junctions. J. Phys. 

Chem. B 2019, 123 (45), 9641-9653). 

Το άλλο πεδίο της ερευνητικής μου δραστηριότητας σχετίζεται με  διαδικασίες ΣΑΚΣΤ σε 

μοριακά συστήματα ΔΟ-ΓΕ-ΔΕ. Ο κύριος στόχος είναι να κατανοήσουμε πως μία γέφυρα-

που συνδέει το ΔΟ με το ΔΕ μπορεί να χρησιμοποιηθεί για να ελέγξει το ρυθμό  αντίδρασης 

ΣΑΚΣΤ. Στην αντίδραση η απλή εξιτονική κατάσταση που δημιουργείται στο ΔΟ, μέσω 

φωτοδιέγερσης, μετατρέπεται σε δύο τριπλές εξιτονικές καταστάσεις, μία εντοπισμένη στο 

ΔΟ και μία στο ΔΕ. Ο έλεγχος του ρυθμού αντίδρασης ΣΑΚΣΤ μπορεί να επιτευχθεί 

ρυθμίζοντας την ηλεκτρονιακή σύζευξη ΣΑΚΣΤ δότη-δέκτη μέσω της γέφυρας. Για το 

σκοπό αυτό αναπτύσσουμε ένα ημιαναλυτικό / υπολογιστικό πλαίσιο που επιτρέπει την 

ανάλυση αντιδράσεων ΣΑΚΣΤ σε μοριακές αρχιτεκτονικές ΔΟ-ΓΕ-ΔΕ. Προσδιορίζουμε 

διαφορετικές περιοχές φυσικών παραμέτρων που καθορίζουν τη σύζευξη. Μελετούμε την 

εξάρτηση της σύζευξης από τις ενέργειες των εξιτονικών καταστάσεων κάνοντας 

υπολογισμούς  για διαφορετικά συστήματα  ΔΟ-ΓΕ-ΔΕ.  Αυτή η ημιαναλυτική μεθοδολογία 

μπορεί να χρησιμοποιηθεί για να καθοδηγήσει υπολογιστικές και πειραματικές μελέτες 

αντιδράσεων ΣΑΚΣΤ σε συστήματα ΔΟ-ΓΕ-ΔΕ. Στη διατριβή χρησιμοποιούμε τη 

μεθοδολογία και για να εξηγήσουμε το φαινόμενο συντονισμού γέφυρας για αντιδράσεις 

ΣΑΚΣΤ, που έχει παρατηρηθεί σε πρόσφατα πειράματα. Οι προαναφερθείσες ερευνητικές 

μελέτες  έχουν υποβληθεί ως άρθρο στο Journal of Physical Chemistry Letters. Σε  αυτή τη 

φάση το άρθρο είναι  υπό εξέταση (Valianti, S.; Skourtis, S. S. The Role of Bridge-state 

Intermediates in Singlet Fission for Donor-bridge-acceptor Systems: A Semi-analytical 

Approach to Bridge-tuning of the Donor-acceptor Fission Coupling.). 

Το τελευταίο μέρος της διδακτορικής διατριβής περιλαμβάνει ένα άρθρο ανασκόπησης που 

έγραψα σχετικά με την επίδραση των δονητικών μοριακών καταστάσεων στις μοριακές 

αντιδράσεις ΜΗΛ. Το άρθρο  δημοσιεύτηκε στο περιοδικό Molecular Physics (Valianti, S.; 

Skourtis, S. S. Vibrational control of molecular electron transfer reactions. Mol. Phys. 2019, 

117 (19), 2618-2631).  
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ABSTRACT 

 

This Ph.D. Thesis describes research work on molecular electron transfer (ET) and multi-

excitonic processes. The underlying objective of the research is to develop a physical 

understanding of how to control ET and Singlet Fission (SF) in molecules. Part of the work, 

on the field of molecular electronics, explains current-voltage and current-temperature 

behavior in molecular-junction experiments, and proposes novel junction experiments for 

observing the solution-phase Marcus inverted region in junction environments. The other 

part, that relates to multi-excitonic molecular physics, investigates SF processes in molecular 

donor (D) – bridge (B) – acceptor (A) systems through the development of a semi-analytical 

/ computational framework. It also uses this framework to explain experimental 

observations. 

Molecular junctions are ideal systems for the investigation of ET mechanisms that play an 

important role in chemistry and biology. We describe theoretical modeling of ET in hybrid 

metal – ET protein (e.g., Azurin (Az)) - metal heterojunctions, focusing on a large set of 

experimental results that measure the current-voltage and current-temperature behavior of 

the junctions. The systems under study include heterojunctions with Holo-Az (Cu-

substituted), Apo-Az (no metal), and Ni-, Co- and Zn-substituted Azurins. The goal of our 

analysis is to understand from the experiments how the transport mechanism is determined 

by the metal substitution. We consider different transport models (coherent and incoherent). 

This work has been published in the Journal of Physical Chemistry C (Valianti, S.; Cuevas, 

J. C.; Skourtis, S. S. Charge-Transport Mechanisms in Azurin-Based Monolayer Junctions. 

J. Phys. Chem. C. 2019, 123 (10), 5907-5922). 

The other work related to ET, proposes a D-B-A molecular junction architecture functioning 

in the incoherent hopping regime, that is suited for establishing direct correlations between 

the electrode-to-electrode current and the intra-molecular D-to-A ET rate. We suggest that 

this type of junction may be used to observe the Marcus-inverted-parabola dependence of 

the intra-molecular rate on energy gap. The Marcus inverted regime is thought to be only 

observable in solution-phase ET. In the proposed junction the inverted regime is accessed 

by varying the bias voltage. The realization of such an experiment would enable meaningful 

comparisons between solution-phase ET rates and molecular-junction currents for the same 

molecule. This work was published in the Journal of Physical Chemistry B (Valianti, S.; 

Skourtis, S. S. Observing Donor-to-Acceptor Electron-Transfer Rates and the Marcus 

Inverted-Parabola in Molecular Junctions. J. Phys. Chem. B 2019, 123 (45), 9641-9653). 

STEFANI V
ALIA

NTI 



The other field of my research activity is spin molecular physics and chemistry, in particular 

photo-induced spin processes. My research focuses on the investigation of the Singlet 

Fission (SF) process in molecular D-B-A systems. The main goal is to understand how a 

bridge linker connecting D and A can tune the effective SF coupling that leads to D-A-

separated correlated triplet excitons. For this purpose, we develop a semi-analytical / 

computational framework to explore structure-function relationships for SF in D-B-A 

molecular architectures. We identify different bridge-mediation regimes for the effective SF 

coupling in the coherent tunneling limit and derive the dominant fission pathways in each 

regime. We describe the dependence of these regimes on D-B-A exciton state energetics and 

on D-B (A-B) interactions. This semi-analytical approach can be used to guide 

computational and experimental searches for D-B-A systems with tuned SF rates. We use 

this approach to interpret the bridge-resonance effect of SF that has been observed in recent 

experiments. This work has been submitted to the Journal of Physical Chemistry Letters and 

is under review (Valianti, S.; Skourtis, S. S. The Role of Bridge-state Intermediates in Singlet 

Fission for Donor-bridge-acceptor Systems: A Semi-analytical Approach to Bridge-tuning 

of the Donor-acceptor Fission Coupling.). 

The final part of the Thesis includes a review article I wrote on vibrational control of electron 

transfer reactions that was published in Molecular Physics (Valianti, S.; Skourtis, S. S. 

Vibrational control of molecular electron transfer reactions. Mol. Phys. 2019, 117 (19), 

2618-2631). 
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Figure 1.1 The coupled dynamic energy of a DA complex Vs. the coordinate of the reaction. 

According to Landau-Zener theory, dynamic energies are approached by straight lines 

around the crossing point. Asymptotic regions R →   are also indicated. 

 

Figure 1.2. Potential energy surfaces of the ET system when the electron is at the D 

electronic states (initial), DE  and the A electronic states (final), AE . 

 

Figure 1.3 ET regimes, (a) normal regime (upper graph), (b) activationless regime (center 

graph) and (c) inverted regime (lower graph).  

 

Figure 1.4 Scattering wavefunction (incident wave) colliding with a potential barrier. The 

wave is partially reflected with probability R  and partially transmitted with probability 

2
T t=  (where t  is the width of the transmission probability). 

 

Figure 1.5 Schematic representation of the model described in the hopping mechanism via 

a molecular junction. Here, each localized electron level j  in the j  regime of the molecule 

(straight lines) is connected to the nearest levels with a transfer rate 1j , jk   (dashed arrow 

lines). The metallic states of the electrodes are shown on the left and right and E  is the 

activation energy. 

 

Figure 3.1 (a) Experimental current density (current per unit area) versus temperature (ln(J) 

versus 1000/T) for Apo-Az at different bias voltages. (b) Experimental ln(J) versus V for 

Apo-Az at T = 128, 148, 168, 188 K. (c) Experimental ln(J) versus 1000/T of Holo-Az at 

different bias voltages. (d) Experimental ln(J) versus V of Holo-Az junction at room 

temperature (exp. I). 

 

Figure 3.2 Experimental ln(J) versus 1000/T of Holo-, Ni-, Co-, Zn- and Apo-Az junction 

at -50 mV bias (exp. I). 
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Figure 3.3. Experimental current-voltage curves via Holo-Az: (a) I versus V (-1 ≤ V ≤ 1), 

with current plotted as log(I), at different temperatures. (b) Current at 0.1 V and 0.5 V, 

indicating the same temperature-independent behavior at different bias voltages (exp. II). 

 

Figure 3.4 Comparison of current-voltage behaviors in experiments I and II. Each current is 

normalized by its value at 1.0 V and the temperature is 200 K.  

 

Figure 3.5 Schematic representation of the layout used for the description of some 

theoretical models to describe the experiments. M denotes metal dopant (e.g., Cu) and HL, 

HR are the protein-mediated tunneling matrix elements between L and R electrodes. 

 

Figure 3.6 Schematic representation of the basic parameters used in the Landauer models 

(ε0 (V), ΓL(R)). 

 

Figure 3.7 Reorganization energy, λ, distributions W
ox

 and W
red at equilibrium (left) and 

after application of a cathodic overpotential. 

 

Figure 3.8 Experimental ln(J) versus 1000/T of Apo- and Holo-Az junction at +50 mV bias. 

 

Figure 3.9 Experimental ln(J) versus 1000/T of Cu-Az (Holo-Az) for different bias voltages 

versus theoretical predictions (eqs (3.1)-(3.4)). (a) Bias voltages of -50 mV and -250 mV, 

(b) bias voltages of +50 mV and +250 mV. Parameter values of eqs (3.1)-(3.4) for all graphs: 

ε0=0.03 eV, α=0.75, ΓL=3.3 10-5eV, and ΓR/ΓL=1000. 

 

Figure 3.10 (a) Experimental ln(J) versus voltage of Cu-Az at T = 300 K and theoretical 

best-fit using the single-channel resonant-tunneling model (eqs (3.1)-(3.4)) with the best fit 

parameter values of ε0=0.03 eV, α=0.75 , ΓL=3.3 10-5 eV and ΓR/ΓL=1000, as in Fig. 3.9. The 

fit fails for bias voltages beyond 250 mV. This is because the current of a single resonant 

tunneling channel will saturate at higher bias voltages. (b) Theoretical resonant tunneling J 

versus voltage of Cu-Az at T = 300 K showing the saturation of the current at higher voltages 

for the best fit parameters. Since the resonant tunneling current in this parameter regime is 

larely temperature-independent for T = 100-400 K the shape of the J-V curve will not be 

altered within the experimental temperature range. 
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Figure 3.11 Experimental ln(J) versus voltage of Cu-Az at T = 300 K and theoretical best-

fit using the off-resonant tunneling model (eqs (3.1)-(3.4)) with the best fit parameter values 

of ε
0
=0.8 eV, α=0.5, Γ

L
=3.3 10-4 eV and Γ

R
 /Γ

L
=1000. 

 

Figure 3.12 Experimental ln(J) versus 1000/T of Cu-Az (Holo-Az) for different bias 

voltages versus theoretical best-fit using the one-site hopping model (eqs (3.5)-(3.7)). (a) 

Bias voltages of -50 mV and -250 mV, (b) bias voltages of +50 mV and +250 mV. The 

parameter values of eqs (3.5)-(3.7) for all graphs are: λ=0.2 eV, α=0.75, ε0=0.01 eV, ΓL=1.0 

10-4 eV and ΓR/ΓL=1000. 

 

Figure 3.13 (a) Experimental ln(J) versus voltage of Cu-Az at T = 300K and theoretical 

best-fit using the one-site hopping model (eqs (3.5)-(3.7)) (parameter values: λ=0.2 eV, 

α=0.75, ε0=0.01 eV, ΓL=1.0 10-4 eV and ΓR/ΓL=1000). (b) Theoretical single-channel 

resonant hopping J versus voltage of Cu-Az at T = 300 K for the same parameter values, 

showing saturation behavior of the current. The behavior does not qualitatively change with 

temperature as the model predicts temperature independent transport for T = 100-400 K (Fig. 

3.12).  

 

Figure 3.14 Schematic representation of the Cu-level multi-channel hypothesis. 

 

Figure 3.15  Theoretical J versus V of Cu-Az at T = 300 K using a range of energy levels, 

ε0,k≠1 =0.1-0.5 eV (a) for the coherent resonant tunneling model (parameter values: ε0,1=0.03 

eV (best-fit at low bias regime), α=0.75, ΓL=3.3 10-5 eV, ΓR /ΓL=1000) and (b) for the 

incoherent hopping model (parameter values: ε0,1=0.01 eV (best-fit at low bias regime), 

λ=0.2 eV, α=0.75, ΓL=1.0 10-4 eV, ΓR /ΓL=1000). 

 

Figure 3.16 Experimental ln(J) versus voltage of Cu-Az at T = 300 K and theoretical fits 

using the multi-channel hypothesis of eq. (3.8) using (a) the incoherent hopping mechanism 

(coefficients derived from multiple regression analysis: P1=0.35, P2=0.50, P3=3.14, P4=4.68, 

P5=13.01), (b) the coherent tunneling mechanism (coefficients of multiple regression 

analysis: P1=0.06, P2=6.84, P3=7.77, P4=3.21, P5=7.68). 
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Figure 3.17 Experimental ln(I) versus 1000/T of Cu-Az at +500 mV and +100 mV bias, 

versus theoretical fits (eqs (3.1)-(3.4)) using the parameter values: α=0.470, ε0=0.80 eV, 

ΓL=1.15 10-5 eV and ΓR/ΓL=1000.   

 

Figure 3.18 Experimental ln(I) versus voltage of Cu-Az at (a) 275 K and (b) 25 K, versus 

theoretical fits (eqs (3.1)-(3.4)) using the parameter values: α=0.470, ε0=0.80 eV, ΓL=1.15 

10-5 eV, and ΓR/ΓL=1000. 

 

Figure 3.19 (a) Experimental ln(J) versus voltage of Apo-Az at T = 128 K and theoretical 

fits using eqs (3.1)-(3.4). Since for 100 ≤ T ≤ 200 K, the current is temperature independent, 

the fit does not change with temperature. (b) Experimental ln(J) versus 1000/T of Apo-Az 

as a function of temperature at V = 0.05 and 0.10 V, and theoretical fits using eqs (3.1)-(3.4). 

For both (a), (b) the parameter values in eqs (1)-(4) are: α=0.50, ε0=0.70 eV, ΓL=1.0 10-3 eV, 

ΓR/ΓL=1. 

 

Figure 3.20 (a) Experimental ln(J) versus 1000/T of Apo-Az as a function of temperature at 

V = -0.05 V versus theoretical fits (eqs (3.9)-(3.10)). (b) Experimental ln(J) versus voltage 

of Apo-Az at T = 128 K (low temperature regime) and theoretical fits using eqs (3.9)-(3.10). 

(c) Experimental ln(J) versus voltage of Apo-Az at T = 308 K (high temperature regime) and 

theoretical fits using eqs (3.9)-(3.10). For all graphs the parameter values are: λ=1.1 eV, 

α=0.50, ε0=0.60 eV, ΓL=1.0 10-3 eV and ΓR/ΓL=1. 

 

Figure 3.21 Schematic representation of the hopping model where a molecular bridge with 

N=3 incoherent sites coupled to the left (L) and right (R) electrodes. 

 

Figure 3.22 (a) Experimental ln(J) versus voltage of Apo-Az at T = 308 K and theoretical 

fits (eqs (3.11)-(3.14)). (b) Experimental ln(J) versus 1000/T of Apo-Az at V = 0.50 V over 

the entire temperature range and theoretical fits (using eqs (3.11)-(3.14) at high temperatures, 

eqs (3.1)-(3.4) at low temperatures and eq. (3.15) for both temperature regimes). Model 

parameter values of eqs (3.11)-(3.14): N=3, λ=0.3 eV, αL=αR=-0.40, ε0=0.40 eV, Γ=3.30 10-

7 eV, ΓL=3.30 10-8 eV and ΓR/ΓL=100. Model parameter values of eqs (3.1)-(3.4): α=0.50, 

ε0=0.70 eV, ΓL=1.0 10-3 eV and ΓR/ΓL=1. Parameter value of eq. (3.15) (red line): p=0.3.  
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Figure 3.23 Experimental ln(J) versus 1000/T of Ni-, Co- and Zn-Az at -50 mV bias and 

theoretical best-fit using the off-resonant tunneling model (eqs (3.1)-(3.4)) with the best fit 

parameter values of ΓL=1.0 10-3 eV, ΓR/ΓL=1, α=0.50 and ε0=0.20, 0.22, 0.55 eV for Ni-, Co- 

and Zn-Az heterojunctions respectively. 

 

Figure 3.24 Experimental ln(J) versus 1000/T of Zn-Az at V=-50 mV over the entire 

temperature range and theoretical fits (using eqs (3.11)-(3.14) at high temperatures, eqs 

(3.1)-(3.4) at low temperatures and eq. (3.15) for both temperature regimes). Model 

parameter values of eqs (3.11)-(3.14): N=3, λ=0.3eV, αL=αR=-0.40, ε0=0.20 eV, Γ=1.0 10-12 

eV, ΓL=3.30 10-8 eV and ΓR/ΓL=1. Model parameter values of eqs (3.1)-(3.4): α=0.50, 

ε0=0.55 eV, ΓL=1.0 10-3 eV and ΓR/ΓL=1. Parameter value of eq. (3.15) (red line): p=0.3.   

 

Figure 4.1 Schematic representation of a linear one-site hopping model with a single 

hopping site (redox moiety M) connected to left (L) and right (R) electrodes, respectively. 

The connection to the L electrode is through a molecular bridge that is assumed to act as a 

high tunneling barrier for the transferring electrons. The M-to-electrode hopping rates are 

given by Marcus theory rates for heterogeneous ET (eqs (4.2) and (4.3)). 

 

Figure 4.2 Schematic representation of the molecular levels in the junction setup of Fig. 4.1. 

The diagram shows a positive bias situation, where the backward rates are much larger than 

the forward rates. The bridge levels BL and BR shown to be of much higher energy than the 

redox level M. M indirectly couples to the L and R electrodes through the bridge levels 

(electronic couplings are represented by red dotted lines).  

 

Figure 4.3 Left backward rate ( Lk  eq. (4.2)) versus the bias voltage V at T = 100-400 K. 

The heterogeneous ET rates have a sigmoidal dependence on voltage, increasing in the 

normal regime and saturating in the inverted regime. Parameter values: α = 0.65, ε0 = 0, λ = 

0.2 eV, cL = 0.15 x 102 eV-1/2 ns-1 and cR/cL = 1000. 

 

Figure 4.4 (a) Current I versus the bias voltage V at T = 300 K. Exact current expression 

(eq. (4.1) black dots) and approximate expressions for the positive bias voltage regime (

( ) LI V ek  red dots) and for the negative bias regime ( ( ) LI V ek −  blue dots). (b) Current 

I versus 1000/T at V = 0.05 V (black dots) indicates the normal Marcus regime, 0.2 V (red 
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dots) indicates the activationless regime, 0.4 V (blue dots) indicates the inverted Marcus 

regime. Parameter values: α = 0.65, ε0 = 0, λ = 0.2 eV, cL = 0.15 x 102 eV-1/2 ns-1 and cR/cL = 

1000.  

 

Figure 4.5 Schematic representation of the linear redox junction model. Donor (ML) and 

acceptor (MR) redox groups are connected to left (L) and right (R) electrodes, respectively 

via left (BL) and right (BR) bridges and also connected to each other by a middle bridge (BM). 

All bridge units are tunneling barriers for the transferring electrons. The model assumes that 

the ET mechanism between ML and MR is incoherent hopping with forward and backward 

intra-molecular ET rates given by eq. (4.6). ET between ML (MR) and the L (R) electrode is 

also incoherent hopping with forward and backward heterogeneous ET rates given by eqs 

(4.2) and (4.3). 

 

Figure 4.6 Schematic representation of the levels in the BLMLBMMRBR junction of Fig. 4.5. 

Electronic couplings between the levels are represented by red dotted lines. The diagram 

shows a positive bias situation with the ML (MR) DA energy gap written as a function of the 

total bias across the junction. In our model this fraction is controlled by the parameters αL 

and αR. The figure shows that the bridge levels act as deep tunneling barriers for the 

transferring electron such that only ML and MR change their oxidation state during transfer. 

Positive bias leads to a positive L-to-R current (R-to-L electron flow). 

 

Figure 4.7 Current I (eqs (4.8) and (4.9)) versus the bias voltage V at T = 308 K for the 

partially pinned system of Fig. 4.6. Parameter values: αL = αR = 0.33, ε0 = 0, λL = λR = 0.1 

eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 0.15 eV1/2 ns-1. The current shows a gaussian 

dependence on the voltage that reflects the energy gap dependence of the intra-molecular ET 

rates intk  or intk . 

 

Figure 4.8 (a) Backward intra-molecular rate intk  versus the bias voltage V and Gibbs free 

energy ΔG at T = 308 K. (b) Current I versus the bias voltage V and Gibbs free energy ΔG 

at T = 308 K (covering the positive V region of Fig. 4.7). Exact current expression (eq. (4.9) 

black dots) and approximate current expression ( ( ) intI V ek  red dots). Parameter values for 

both graphs: αL = αR = 0.33, ε0 = 0, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 

0.15 eV1/2 ns-1. ( )max *3 3 L RV G e e =  = +  and ( )
int

3 2I k L R Bk T e   = = + . 
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Figure 4.9 (a) Backward intra-molecular rate intk  versus the bias voltage V and Gibbs free 

energy ΔG at T = 308 K. (b) Current I versus the bias voltage V and Gibbs free energy ΔG 

at T = 308 K. Exact current expression (eq. (4.9) black dots) and approximate current 

expression ( ( ) intI V ek  red dots). Parameter values for both graphs: αL = αR = 0.33, ε0 = 0, 

λL = λR = 0.2 eV, cL = cR = 0.15 x 101 eV-1/2 ns-1 and c = 0.38 eV1/2 ns-1. 

( )max *3 3 L RV G e e =  = +  and ( )
int

3 2I k L R Bk T e   = = + . 

 

Figure 4.10 Current I versus the bias voltage V at T = 308 K for a junction with off-resonant 

ML and MR redox levels at zero bias. Parameter values for both graphs: αL = αR = 0.33, ε0 = 

0.1 eV, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 0.15 eV1/2 ns-1. (a) Exact 

current expression (eq. (4.9) black dots) and approximate current expressions for the positive 

bias voltage regime ( ( ) int

int

R

R R

ek k
I V

k k k


+ +
 red dots) and for the negative bias regime (

( ) int

int

L

L L

ek k
I V

k k k
 −

+ +
 blue dots). (b) Current I versus the bias voltage V at T = 308 K 

(covering the positive V region). Exact current expression (eq. (4.9) black dots) and rate-

limited approximate current expression ( ( ) intI V ek  red dots).  

 

Figure 4.11 (a) Right backward injection rate Rk  (black dots) and left forward injection rate 

Lk  (red dots) versus the bias voltage V at T = 308 K. (b) Current I versus the bias voltage V 

at T = 308 K. Exact current expression (eq. (4.9) black dots) and approximate current 

expressions for the positive bias voltage regime ( ( ) int

int3

R

R R

ek k
I V

k k k


+ +
 red dots) and for the 

negative bias regime ( ( ) int

int3

L

L L

ek k
I V

k k k
 −

+ +
 blue dots). Parameter values for both graphs: 

αL = αR = 0.50, ε0 = 0, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 0.15 eV1/2 ns-

1. 

 

Figure 4.12 Current I versus the bias voltage V at T = 308 K for a junction with partially 

pinned ML and MR. Parameter values: αL = αR = 0.33, ε0 = 0, λL = λR = 0.1 eV, cL = cR = 0.15 

eV-1/2 ns-1 and c = 0.15 x 102 eV1/2 ns-1. Τhe timescale of ET between the ML and MR sites is 
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of the order of tens of psec. The ET timescale between the Mi and the leads is of the order 

of nsec.  

 

Figure 4.13 (a) Current (eq. (4.9)) I versus the bias voltage V at T = 100-400 K. (b) The 

natural logarithm of the current versus 1000/T at V = 0.2 V (black dots) indicates the 

temperature dependence of the intra-molecular Marcus rate: 0.2 V (black dots) normal 

Marcus regime (current  behavior “A” of main text), 0.6 V (red dots) activationless regime 

(current behavior “B” of main text), 1.0 V (blue dots) inverted regime (current behavior 

“A”). Parameter values for both graphs: αL = αR = 0.33, ε0 = 0, λL = λR = 0.1 eV, cL = cR = 

0.22 x 101 eV-1/2 ns-1 and c = 0.15 eV1/2 ns-1. The current is limited by the intra-molecular 

ML-to-MR rate. 

 

Figure 4.14 (a) Exact current I (eq. (4.9)) versus the bias voltage V at T = 100-400 K. (b) 

The natural logarithm of the current versus 1000/T at V = 0.6 V (black dots) indicates the 

temperature dependence of the intra-molecular Marcus rate: 0.6 V (black dots) normal 

Marcus regime (current behavior “A”), 1.2 V (red dots) activationless regime (current 

behavior “B”), 1.8 V (blue dots) inverted regime (current behavior “A”). Parameter values 

for both graphs: αL = αR = 0.33, ε0 = 0, λL = λR = 0.2 eV, cL = cR = 0.15 x 101 eV-1/2 ns-1 and 

c = 0.38 eV1/2 ns-1. The current is limited by the intra-molecular ML-to-MR rate. 

 

Figure 4.15 Schematic representation of the levels in the BLMLBMMRBR junction. The 

diagram shows a positive bias situation with the ML (MR) energy gap written as a function 

of the total bias across the junction. The bridge levels act as deep tunneling barriers for the 

transferring electron such that only ML and MR change their oxidation state during transfer. 

The ML and MR redox energies are slightly higher than the Fermi levels of the leads at zero 

bias such that the charge injection rates from the leads are activated and possibly current 

limiting for a voltage bias range. 

 

Figure 4.16 Current I versus the bias voltage V and the Gibbs free energy ΔG at T = 308 K 

for a junction with off-resonant redox levels at zero bias (Fig. 4.15). The energy gap is given 

by ( ) 3G V eV = . Parameter values: αL = αR = 0.33, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 

eV-1/2 ns-1 (the timescale of ET between the Mi and the leads is in the order of tens of psec), 

c = 0.15 eV1/2 ns-1 (the timescale of ET between the ML and MR sites is in the order of nsec) 

and ε0 = 0 (black dots), ε0 = 0.1 eV (red dots), ε0 = 0.2 eV (blue dots), ε0 = 0.25 eV (cyan 
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dots, could correspond to Ferrocene ML and MR redox groups with Au leads), ε0 = 0.3 eV 

(magenta dots), and ε0 = 0.35 eV (yellow dots, could correspond to Azurin Cu center redox 

groups with Au leads). The low bias current decreases as the ε0 value increases (charge 

injection becomes more activated), but the current has the expected intra-molecular-rate 

energy gap behavior (inverted and normal).  

 

Figure 4.17 Current I versus bias voltage V at T = 308 K (positive V region). Parameter 

values: αL = αR = 0.33, ε0 = 0.35 eV, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 

0.15 eV1/2 ns-1. Exact current expression (eq. (4.9) black line) and approximate current 

expressions ( ( ) int

int

R

R R

ek k
I V

k k k


+ +
 blue dots, ( ) intI V ek  red dots).  

 

Figure 4.18 Schematic representation of a tight-binding nearest-neighbor model of a 

BLMLBMMRBR junction. The BL, BM and BR linear bridges consist of 
LBn , 

MBn  and 
RBn  sites, 

respectively. At zero bias the bridge site-energies are equal, of value 0

B  (measured with 

respect to the Fermi level of the electrodes). The redox level ML(R) energies are off-resonant 

to the bridge energies and resonant to the electrodes. The nearest-neighbor electronic 

couplings between bridge sites are denoted t  (curved red lines). The nearest-neighbor 

electronic couplings between ML(R) and the bridge sites are denoted  
( )L R

T  and those between 

the last (first) bridge site and the L (R) electrode, are denoted ( )L R
T  (red dotted lines). , LL MD

, ,L RM MD  and ,RM RD  are the distances of the L-ML, ML-MR and MR-R segments of the 

junction. The diagram shows a symmetric junction with , , ,L R L RL M M R M MD D D= = . 

, , ,L L R Rtot L M M M M RD D D D= + +  is the total length of the junction. The distance between 

nearest neighbor sites is ( )1tota D N= + . 

 

Figure 4.19 (a) Bias-dependent ( )2

,L RM MH V  (eq. (4.30)) versus the bias voltage V at T = 308 

K for the positive bias region, (b) Bias-dependent broadening ( )( )L R V  versus bias voltage 

V. (c) Current (eqs (4.2)-(4.11)) versus  bias voltage V using ( ), 0
L RM MH V =  and 

( )( ) 0L R V =  (red dots, as in Fig. 4.7), and using the ( ),L RM MH V  and ( )( )L R V  (black dots). 

Parameter values for all graphs: 5
R M LB B Bn n n= = = , ε0

Β = 10.0 eV, λL = λR = 0.1 eV, t = 4.0 

eV, TL = TR = 1.5 x 10-1 eV and 
31.0 10L RT T eV−= =  . 
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Figure 5.1 Schematic illustration of the notation used to describe the many-electron basis 

states relevant to the SF pathways. (a) Examples of singly-excited (LE and CT) and (b) 

doubly-excited (LDE and CTDE) states using the minimum set of orbitals per fragment 

(HOMO and LUMO). The kets denote Slater determinants with the spin distributions shown 

in the diagrams. The actual basis states used in the calculations (Table 5.1 and Supplement 

section 5.4.1), are spin-adapted (singlet) states that are linear combinations of Slater 

determinants. 

 

Figure 5.2 Schematic representation of type-I, type-II and type-III D-B regimes in the 

independent-electron approximation. Virtual orbitals are shown in red and occupied orbitals 

in blue. Since we only consider bridge-mediated tunneling case, y x .  

 

Figure 5.3 Reference D-B-A systems. (a) Pi-stacking pentacene trimer, (b) non-pi-stacking 

pentacene trimer, (c) pentacene-tetracene-pentacene trimer, (d) NC1 system. For (a)-(c) RH-

H ≈ 3.5 Å. 

 

Figure 5.4 SFln V  plot as a function of Y X  and z X  parameters for (a) pi-stacking 

conformation shown in Fig. 5.3a, (b) the non-pi-stacking conformation shown in Fig. 5.3b, 

(c) the pentacene-tetracene-pentacene molecular system of Fig. 5.3c and (d) the NC1 

molecular system of Fig. 5.3d. The dashed lines outline the three regimes defined in Fig. 5.2. 

The black contour corresponds to a coupling 110SFV eV−= , the blue to 210SFV eV−=  and 

the magenta lines to 310SFV eV−= . The colormap scaling is the same for all plots. The 

circles represent the Y X , z X  and SFV  values of the reference systems in Fig. 5.3. The 

labels (i) to (iv) refer to the pathway structures discussed in the text. 

 

Figure 5.5 Schematic representation of the energies and the couplings structure of the 

intermediate states of Table 5.1, for (a) the type-I, (b) the type-II (or -III) energetic regime 

and (c) the deep-tunneling case with 1 0Y X . . 2eV  (red arrows) denotes coupling 

dominated by 2e matrix elements, 
2

2

e

e n m
ˆV V = , and 1eV  (black arrows) denotes 

coupling dominated by 1e matrix elements, 
1

1

e

e n m
ˆV h = . The weaker matrix elements 

are represented by dotted lines and ( ) 2res in fiE E E= + . These dominant pathway structures 

relate to symmetric D-B-A systems for which (D=A) and to non-polar solvents. 
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Figure 5.6 Difference contour plots. (a) SF SFln V V   and (b) SF SFln V V   as a function of 

Y X  and z X . The dashed lines outline the three regimes defined in Fig. 5.2. The black 

contour corresponds to a coupling ratio equal to 10 which roughly corresponds to a 

difference of an order of magnitude (OM), the blue to 2 OM, magenta to 3 OM and red to 4 

OM. The colormap scaling is the same for both plots. 

 

Figure 6.1 Schematic representation of the branching diagram, SN as a function of the 

number of electrons, N. Circles represent the different states and the number in each circle 

corresponds to the f (N, SN) values. 

 

Figure 8.1 A script file of GAMESS-US for calculating the various properties of a pentacene 

trimer molecular system using FMO and SCF methods implementing RHF theories. The 

dots in the scheme imply the remaining coordinates of the molecule. 

 

Figure 8.2 A script file of GAMESS-US for calculating the various CISD properties of a 

pentacene molecule using SCF methods implementing RHF theories. The dots in the scheme 

imply the remaining coordinates of the molecule. 

 

Figure 8.3 Code in python for calculating 1e integrals (“S”, “T” and “V” matrixes) in 

pentacene molecule in the minimum basis set, “STO-3G”, by import pyquante2, an open-

source suite of programs for developing quantum chemistry methods and then introducing 

various modules needed for the calculation (such as, “molecule”, “rhf”, “basisset”, 

“onee_integrals” etc.). 

 

Figure 8.4 Code in python for calculating various 2e integrals in a pentacene molecule in 

the minimum basis set, “STO-3G”, by import pyquante2 and then introducing “ERI” and 

“ERI_hgp” modules needed for the calculation. The dots in the scheme indicate the 

remaining functions of the basis set stored in the "t" matrix. 

 

Figure 8.5 MATLAB code for computing the D-B-A Hamiltonian and the SF effective 

coupling for the non-pi-stacking molecular system described in Chapter 5. 

 

Figure 8.6 Flowchart demonstrating the semi-analytical / computational framework 

constructed for the implementation of the subject of Chapter 5. 
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Figure A.1 Bridge-mediated donor-to-acceptor electron transfer (ET). The energy 

difference between donor (D) and acceptor (A) electronic states, DAE , is modulated by 

vibrations (accepting modes) that bring D and A to resonance. In the diagram one accepting 

mode R is assumed to modulate the D-state energy. When the B electronic state energy ( el

BE

) is off-resonant to the donor and acceptor energies ( el

DE , el

AE ), the bridge acts as a tunnelling 

barrier for the transferring electron. The bridge-mediated tunnelling matrix element between 

D and A is denoted V . Bridge vibrations that modulate el

BE   cause fluctuations in V  

(promoting modes). The diagram shows a single promoting mode Q .  If ( )el

BE Q  fluctuations 

are large enough to bring the B state to D (A) resonance, ET may take place by a flickering 

resonance or a hopping mechanism, rather than tunnelling. 

 

Figure A.2 The dynamics of the accepting mode R  in Fig. A.1 depend on the transferring 

electron’s state. When the electron is initially localized at the donor (D) state, the accepting 

mode R  “sees” the potential energy surface ( )BO

DE R  (diabatic BO surface) with equilibrium 

value DR . When the electron has transferred to the acceptor (A) state the dynamics of R  is 

governed by ( )BO

AE R  with equilibrium value AR . With the electron initially at D, and 

assuming that R  is a classical vibration, the oscillations of R  around DR  lead to D-A energy 

gap fluctuations ( )DAE R . Whenever crosses resR , D an A states become resonant and ET 

takes place with high probability due to the coupling V , with a probability equal to the 

Landau-Zener probability 
LZ

D AP → . In the nonadiabatic limit, the coupling is weak 1LZ

D AP → , 

and many crossings of resR  are required to change electronic state from D to A (i.e., for ET 

to take place). Thus, the diabatic BO surfaces (diagonal part of the Hamiltonian in eq. (A.1)), 

give the correct electronic-state-dependent dynamics of R . 

 

Figure A.3 In the adiabatic limit (strong D-A coupling V ) the dynamics of the promoting 

mode R  is best described by an adiabatic BO surface (lowest eigenstate of the Hamiltonian 

in eq. (A.1)). Due to the large value of V , D and A states are quasi-resonant in a wider region 

of R  around resR . Assuming that R  is a classical coordinate, D-to-A ET takes place with 

near-unity probability every time R  enters this quasi-resonance region, 1LZ

D AP →  . Thus, as 

a function of R , the potential energy surface that determines the dynamics in the resonance 
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region is due to the lowest adiabatic BO state which is a linear combination of diabatic D 

and A BO states of Fig. A.2. 

 

Figure A.4 Vibronic picture of the nonadiabatic ET rate for a quantum accepting mode. The 

average rate is a thermally weighted sum of vibronic rates , ,D A

nad

D n A nk →  between initial 

; D DD n D n=  and final ; A AA n A n=  vibronic states. Each transition is induced by 

the vibronic coupling  D AV n n .  Dn  and An  denote harmonic oscillator eigenstates 

of the ( )BO

DE R  and ( )BO

AE R , respectively. 
Dn  and 

An  are the vibrational relaxation rates 

of the initial and final vibrational states (
D An n =  +  ). The quantum nonadiabatic regime 

is valid when D AV n n   . In the quantum adiabatic regime, D AV n n   , and 

coherent oscillations between quasi-resonant DD n  and AA n  vibronic states may be 

important. The ET transition is not fully described by simple rate equations.  

 

Figure A.5 A D moiety connected via left (L) and right (R) B units to distinct A moieties. 

Upon photo-excitation of D by UV, irreversible ET is initiated to AL and to AR 

simultaneously (with ET rates Lk  and Rk ). The IR excitation of one B unit which trasiently 

affects the corresponding ET rate, can irreversibly affect the the  L to R reaction yield of the 

competing ET reactions and thus tune the directionality of ET.  

 

Figure A.6 UV(pump)–IR(pump)-Vis(probe) experiment on an anthracene/dimethylaniline 

(DMA-GC-Anth) structure bridged by a guanosine-cytidine (GC) hydrogen-bonded pair. 

Photoexcitation of anthracene by the UV pump induces an ET reaction from DMA to the 

photo-excited anthracene on a timescale of tens of picoseconds. The experiment found that 

the IR pulse exciting bridge hydrogen-bond vibrations causes the ET rate slowing about 67% 

per excited molecule. A more recent experiment showed that the IR excitation accelerates 

the recombination rate by 3.5-fold per molecule. 

 

Figure A.7 (a) UV(pump)-IR(pump)-IR(probe) experiments on ET molecules with 

phenothiazine (PTZ) donors, a naphthalene monoimide (NAP) acceptor, and a platinum(II)-

trans-acetylide bridge. A 400nm UV-pump prepares a DB+A- charge transfer (CT) state. 

Following the UV excitation a DB+A- to 3D+BA-  ET reaction takes place on timescales of up 

to tens of picoseconds. The IR excitation of the acetylide bridge -CC- stretching modes can 
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fully suppress this reaction. (b) Experiments with fac-[ReI(CO)3(DCEB)(3-DMABN)] 

(ReEBA) complexes where 3DMABN is 3-dimethylaminobenzonitrile and DCEB is 4,4′-

(dicarboxyethyl)-2,2-bipyridine. Photo-excitation by UV creates a triplet metal-to-ligand 

charge transfer (3MLCT) excited state where the electron is localized in 3-DMABN. This 

state then converts to a triplet ligand-to-ligand charge transfer (3LLCT) state through a ~10 

picosecond ET reaction from 3-DMABN to DCEB. The IR (pump) excitation which targets 

the electron-acceptor (DCEB) ring-stretching modes accelerates the ET rate by ~28%.  

 

Figure B.1 Basis States energies as a function of Y X  and z X  parameters for: (a) the pi-

stacking tri-pentacene conformation shown in Fig. 5.3a, (b) the non-pi-stacking tri-

pentacene conformation shown in Fig. 5.3b, (c) the pentacene-tetracene-pentacene 

molecular system of Fig. 5.3c, and (d) the NC1 molecular system of Fig. 5.3d.  
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Table 3.1 Conversion of reduction potentials vs. SHE (mV) into electronic energies with 
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and Fig. 5.2) and 2e integrals. The first two groups refer to the initial and final CTP states, 
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Table 5.4 Examples of analytical expressions for the basis-state energies (diagonal elements 

of the many-electron Hamiltonian). 1st column: Mathematical notation of the spin-adapted 

(SA) many-electron basis states. 2nd column: Names of the different groups of these states 

for the D-B-A system. 3rd column: Exact expressions for the excitation energies of these 
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CHAPTER 1 

Introduction 

 

Molecular electron transfer (ET) reactions are of great importance in chemistry, biology and 

energy science. 1-4 Over the past decades, experimental, theoretical and computational 

studies of ET molecules and ET proteins (ETpr’s) have shown that it is possible to tune 

molecular ET rates and the overall charge flow in biological ET chains by chemical 

modifications of the donor, acceptor and the bridge units or by modifying the solvent 

environment. 2,5 Since there is extensive knowledge of how to tune solution-phase through-

protein ET mechanisms by chemical modifications, 4,5 an attractive idea is to use ETpr’s as 

the main current-carrying material in molecular electronics devices. Thus, an intensive area 

of research is molecular electron transport (ETr) in molecular junctions. 1,3,6 

Experimental studies by Prof. David Cahen's research team at the Weizmann Institute of 

Science suggest that metal-containing ETpr’s, may be ideal tunable components in a 

molecular electronics device. 7,8 This research group measured the current-voltage and 

current-temperature dependencies of Azurin monolayer heterojunctions as a function of 

metal-type substitution in the Az active site. The experiments give a rich phenomenology of 

current dependencies 7,8 for a variety of metal substituents. Using models for coherent and 

incoherent charge transport, we interpret this phenomenology in terms of underlying 

transport mechanisms that are specific to the different types of metal substituents (see 

Chapter 3). 9 

How do solution-phase ET mechanisms in a donor-bridge-acceptor system correlate with 

junction-phase ETr mechanisms for the same donor-bridge-acceptor system? To address this 

question, we propose donor-bridge-acceptor architectures and junction experiments for 

observing the Marcus Inverted regime (see Chapter 4). 10 The Marcus inverted region is a 

signature of solution-phase nonadiabatic ET and it has never been observed in a junction. 

Our work derives the necessary conditions for observing the full inverted Marcus parabola 

as a function of donor-acceptor driving force in the junction current. Metal donors and 

acceptor moieties such as those encountered in biological ET chains are good candidates for 

the proposed junction.  
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Singlet Fission (SF) is a spin-allowed process in which a photo-excited singlet state 
1S  in a 

molecular system is converted into two correlated triplet excited states 
12 T . 12-14 SF offers 

a promising way to overcome the Shockley-Queisser limit on the efficiency of single-

junction photovoltaics. 12-15 An extensive body of work has examined SF in different 

materials 16-19 due to its potential for photovoltaics applications. Part of my research work is 

dedicated to developing analytical models and semi-analytical / computational frameworks 

for exploring SF structure-function relationships in donor-bridge-acceptor molecular 

architectures. In such systems the donor is photo-excited and one measures the rate for 

creating donor and acceptor (separated) triplets as a function of bridge structure. The 

proposed semi-analytical / computational framework is used to explain experimental 

observations on the role of bridge linkers in SF donor-to-acceptor rates (see Chapters 5-8). 

19-21 It is also used to characterized the different types of bridge-mediated SF pathways in 

different classes of molecular systems.  

Further, in Appendix A we present a comprehensive review article on vibrational effects in 

molecular electron transfer reactions. 22 In the following, we give a brief introduction to the 

theory of ET in molecular systems and of ETr in junctions, as a background for the third and 

fourth chapters. 

 

1.1   Electron Transfer in Molecules 

This section is a brief overview of some of the basic concepts of molecular electron transfer 

(ΕΤ) reactions. The ΕΤ process can be thought as a spontaneous transfer of electrons from 

an initial state spatially localized in the electron donor part to a final state spatially localized 

in the acceptor part of the molecular system. The dynamics of the electronic transition are 

always accompanied by instantaneous nuclear rearrangement and by the interaction between 

electronic and nuclear dynamics. Next, the theories of electron transfer rates will be 

discussed, accompanied by presentations of the different regimes of electron transfer rates 

using the Landau-Zener approach. Finally, we conclude with the classical Marcus ET theory 

in the nonadiabatic regime introducing the well-known Marcus-rate expression. 
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1.1.1 The Born-Oppenheimer Approximation 

Let us first consider a molecule composed of N  electrons and 
nucN  nuclei atoms. The 

Cartesian coordinates and momenta will be denoted as 
Ir  and 

Ip , for electrons and nR , 
np  

for the nuclei, respectively. The total Hamiltonian operator has the general form 

mol el nucˆ ˆ ˆ ˆH T T V= + + , (1.1) 

nucT̂  is the nuclear kinetic energy, elT̂  is the electron kinetic energy, V̂  is the potential 

energy of the system. The kinetic equations of elT̂  and nucT̂  are given by, 

22

1 12 2

nucNN
el nuc nI

I nel n

ppˆ ˆT , T
m M= =

= =  , (1.2) 

where, nM  and elm  are the mass of the thn  nucleus and electron, respectively. 

The potential energy includes Coulomb repulsion interactions between electron-electron and 

nuclear-nuclear, and Coulomb attractive interactions between electrons and nuclei 

2 22
2

1 10 0 0

1 1 1 1 1

2 4 2 4 4

nuc nuc nucN N NN N N
e nuc nuc el nucm n n

I J J m n n I nI J m n I n

Z Z e Z eeˆ ˆ ˆV , V , V
r r R R r R  

− −

 =  =

= = = −
− − −

    (1.3) 

where, mZ , nZ  are the atomic numbers of the thm  and thn  nucleus. 

Thus, the time-dependent Schrödinger equation for this system is, 

( ) ( )molĤ r ,R r ,R =  , (1.4) 

where, ( )r ,R  is the multi-particle wavefunction (system eigenstate), and r ,R  denote the 

electronic and nuclear Cartesian coordinates, respectively.   denotes the total energy of the 

system (eigenenergy). 

Due to the large number of particles, the Schrodinger equation cannot be solved analytically 

and approximations are required. Since nuclei are much heavier than electrons, they move 

more slowly. 1,3,23 Hence, a good approximation, one can consider the electrons in a molecule 

to be moving in the field of fixed nuclei. Within the approximation, the kinetic energy of the 

nuclei, nucT̂ , can be neglected and the Coulomb repulsion interactions between the nuclei, 

nuc nucV̂ − , can be consider to be constant. Any constant added to an operator only adds to the 

operator eigenvalues and has no effect in the operator eigenfunctions. Thus, the remaining 

terms in the molecular Hamiltonian, are the electronic Hamiltonian or Hamiltonian 

describing the motion of N  in the field of nucN  point charges, 
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( ) 2el el el nuc eˆ ˆ ˆ ˆH r ,R T V V−= + + . (1.5) 

The solution to a Schrodinger equation involving the electronic Hamiltonian,  

( ) ( )el el el

elĤ r ,R r ,R =   (1.6) 

is the electronic wavefunction which describes the motion of the electrons and explicitly 

depends on the electronic coordinates but depends parametrically on the nuclear coordinates. 

In order to find the total energy of the system, it needs to add to the electronic energy, el  

and the constant nuclear repulsion,  

2

1 0

1 1

2 4

nuc nucN N

m n
el

m n n m n

Z Z e

R R
 

 =

= +
−

 . (1.7) 

This approximation, leads to the definition of the Born-Oppenheimer Hamiltonian, 

( ) ( )BO el nuc nucˆ ˆ ˆH r ,R H r ,R V −= + . (1.8) 

The Born-Oppenheimer Hamiltonian BOĤ  is comprised of the electronic Hamiltonian elĤ  

and the nuclei repulsion interactions nuc nucV̂ − . Like elĤ , so the BOĤ  carry a parametric 

dependence on the nuclear coordinates, R . Therefore, instead of solving the Schrodinger 

equation for the total molecular Hamiltonian, one can solve the respective Schrodinger 

equation within the Born-Oppenheimer approximation, 

( ) ( ) ( )BO BO BO BOĤ r ,R E R r ,R =   (1.9) 

where, ( )BO r ,R  and ( )BOE R  are the eigenstates and eigenenergies of the BOĤ , 

respectively. ( )BOE R  defines a surface in the space of nuclear coordinates R , the potential 

energy surface (PES) for the nuclear motions in a specific state. 

 

1.1.2   Regimes of Electron Transfer - Landau-Zener Theory 

In order to characterize Electron Transfer (ET) in a DA (Donor - Acceptor) complex, we 

will use the widely used classical approach developed by Landau and Zener. 1-4,11,23-36 

Initially, Landau considered scattering between two atoms, while Zener focused on the 

electronic states of a diatomic molecule. The advantage of the approach is that one can draw 
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an analytical formula for the electron transfer rate that applies to any value of the 
DAV  

coupling ranging from adiabatic to nonadiabatic ET. 

In order to front the ET reaction in a DA complex, according to Landau and Zener, must be 

chosen a classic description for a single vibrational coordinate. To ensure the ET rate, we let 

the vibrational coordinate begin moving to the donor potential energy surface (PES) away 

from the crossing point 
resR , to the acceptor potential energy surface. If the coordinate moves 

through the crossover regime, will be determined the probability with which the electron is 

transferred to the acceptor’s level, as well as the probability of remaining at the donor’s level. 

The vibrational Hamiltonian ( )mE R  ( )m D,A=  includes the dynamic energy of the D and 

A, ( )DE R  and ( )AE R , respectively. Both depend on the vibrational coordinate R  and may 

in principle have an arbitrary shape. The crossing point resR  between ( )DE R  and ( )AE R  

plays an important role in the transport, so the two dynamic energies are extended around 

resR , 

( ) ( )m res m resE R E F R R= −   (1.10) 

where, 

( )
( )

res

m
m res R R

E R
F R

R
=


= −


 (1.11) 

denotes the force with which the vibrational coordinate stabilizes at resR  when the electron 

is in m D,A= . Furthermore, resR R R = − , and ( ) ( )res D res A resE E R E R= =  (see Fig. 1.1 

below). 

 

STEFANI V
ALIA

NTI 



6 

 

 

Figure 1.1 The coupled dynamic energy of a DA complex Vs. the coordinate of the reaction. 

According to Landau-Zener theory, dynamic energies are approached by straight lines 

around the crossing point. Asymptotic regions R →   are also indicated. 

 

The time dependence of R  (or R ) coordinate is unknown. Based on these approaches, 

Hamiltonian becomes time-dependent, 

( )ˆ ˆ ˆ ˆDA vib el

resH T H R H= + + . (1.12) 

The classic part ( )ˆ ˆvib

resT H R+  is less interesting than the following. The time-dependent 

piece is also written, 

( )( ) ( )( ) ( )ˆ ( )el

D A DAH t E R t D D E R t A A V D A A D= + + +  (1.13) 

where, ( )( )DE R t , ( )( )AE R t  represents diabatic PES localized at D and A, respectively. At 

a time window rest  the reaction coordinate reaches the resonance region ( )( )res resR t R=  

during which the D and A electronic energies cross, such that ( ) ( )res D res A resE E R E R= = . 

The D to A transition probability for this crossing event can be estimated adopting the 

Landau-Zener approach which assumes a linear time dependence of the reaction coordinate 

around the resonance regime. We perform a Taylor expansion for both PES, 

 

 

 

 
 

Potential  

Energy 
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( )( ) ( )
resres

m
m res res

tR

dE dR
E R t E t t

dR dt

 
= +  − 

  

. (1.14) 

The D to A Landau-Zener transfer probability is given by, 

( )
2

1 2DAP exp   = − −
 

 (1.15) 

It depends on the so-called Massey parameter which is defined as, 

LZ Rabi  =  (1.16) 

and written as a ratio of two times, the Rabi time and the Landau Zener time. The Rabi time 

is Rabi DAh V =  and is a good estimate for the time required in a time-independent resonant 

D-A system, i.e., when D A DAE E V−  , to induce a complete D to A transition ( )1DAP  . 

Landau-Zener time LZ  is the spent by the D and A energies in the resonance region in a 

time-dependent D-A system and given by,  

  
res res

DA

LZ

D At R

V

dR dt dE dR dE dR
 =

−
. 

(1.17) 

In the adiabatic limit ( )1LZ Rabi  = , the D and A energies remain in resonance for a 

long time, LZ Rabi   and induce a complete D to A transition. The probability of electron 

transfer is 100% for each crossing ( )1DAP  . The respective adiabatic ET rate can be 

expressed as a standard Arrhenius act BE k T

DAk e
−

, where actE  is the activation energy to reach 

the resonance region.  

In the nonadiabatic limit, the motion of the reaction coordinate in the resonance region 

( )D A DAE E V−   is so fast such that the D and A energies do not remain in resonance for 

long time, LZ Rabi  , in order to induce a complete D to A transition i.e., 1LZ Rabi .  =  

In the limit, then exponent can be expanded in a Taylor series such that the D to A transition 

probability becomes promotional to the square of the electronic coupling, 

( )
22

2DA DAP V   , so the corresponding nonadiabatic ET rate is proportional to 
2

DAV . 

It is obvious, that in the nonadiabatic limit the probability of ET for every crossing is small. 
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1.1.3   The Nonadiabatic Regime of Electron Transfer and Classical Marcus Theory  

The definition of nonadiabatic electron transfer (ET) has already been introduced in the 

previous section. In molecular ET reactions the observable quantity is often the D to A ET 

rate and the main model describing ET reactions is the classical Marcus-rate expression. 1-

4,11,24-27 “Classical” means that the vibrations of atoms that activate ET are described by 

classical mechanics. The expression of the rate equation, should be given by a usual 

Arrhenius form, 

2 /act BE k T

ET DAk V e
−

 . (1.18) 

In the high temperature limit, the energy of a characteristic vibrational quantum   of the 

reaction coordinate R  is much smaller than the thermal energy Bk T  ( )Bk T  . In this 

case the vibrational modes of the system can be described using classical physics. 

Generally, a collective set of system motions, described by the reaction coordinate R , 

modulates the energies of D and A electronic states. Then, thermal fluctuations of R , bring 

the system to a D-A resonance conformation resR  for which ( ) ( )res D res A resE E R E R= =  and 

thus should become ET. The ET from D to A only proceeds if the system is in the resonance 

regime. In this case, the total energy needed for R  to reach resR  should be 
tot min

D actE E E +  

(see Fig. 1.2 below). For every time rest , resR  is reached, the D to A transfer probability will 

be given by the Landau-Zener transfer probability in the nonadiabatic limit, 

( ) ( )
  

2

2 2
2

res res

DAtot

DA

D At R

V
P E

dR dt dE dR dE dR


 = =

−
 (1.19) 

and the respective ET rate will be given by, 

( ) ( )2
2

tot tot

DA DAk E P E



=  (1.20) 

As known, for an ensemble of D-A molecules, the ET rate is given by a product of a 

Boltzmann probability average over the D PES and DAk , for every energy crossing, STEFANI V
ALIA

NTI 



9 

 

( ) ( )
( )

( )

D res

tot
B

tot
B

min
D

tot tot tot

DA DA Boltz .

E R

E k T
tot

Boltz .

E k Ttot

E

k dE k E P E ,

e
P E .

dE e



−



−

=

=





 (1.21) 

This calculation leads to the Marcus-rate expression, 

22
DA DA FCk V


=  (1.22) 

where, 

( )
1

4
FC act B

B

exp E k T
k T




= −  (1.23) 

is the classical Franck-Condon factor (or classical high-temperature Boltzmann probability) 

for the activation step, 1-4,11,24-27 and 

( )
2

4
act

E
E





 +
=  (1.24) 

is the activation energy to reach the resonance conformation resR . 

min min

DE E E = −  is frequently called as the driving force of the ET reaction,   denotes the 

reorganization energy given by, ( ) ( )( ) ( ) ( )( )min min

D A A D D A D A
E R E R = − , or ( )

22 2A Dm R R . = −  

The reorganization energy is defined as the energy required to reorganize the system to the 

new equilibrium coordinate conformation. 

All the parameters we introduced above are shown in the Fig. 1.2 below for the potential 

energy of the ET system. 
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Figure 1.2. Potential energy surfaces of the ET system when the electron is at the D 

electronic states (initial), DE  and the A electronic states (final), AE . 

 

Let us examine the ET rate in dependence on the driving force E  of the reaction at a given 

value of DAV  and  . The situation shown in Fig. 1.3a, called the normal regime of the ET. 

Starting from this regime and increasing the E , move resR  to the left until the activation 

energy 0actE =  for E  =  (see Fig. 1.3b). This is an activationless regime. This ET regime 

is observed in the experiment if the rate becomes temperature-independent. Further increase 

in E , implies increase in actE . This is the so-called inverted regime. 
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Figure 1.3 ET regimes, (a) normal regime (upper graph), (b) activationless regime (center 

graph) and (c) inverted regime (lower graph).  

  

1.2   Molecular Electronics 

Molecular electronics is the field of science that investigates electronic circuits in which the 

charge transfer (electrons or holes) takes place in part, through molecules. Obviously, some 

of the characteristic dimensions of these molecular circuits are of the order of nanometers 

(or even smaller) and, therefore, molecular electronics should be considered as a subfield of 

nanosciences and nanotechnology in traditional disciplines such as physics, chemistry, 

materials science, electrical engineering and biology. 6 From the point of view of basic 

science, molecular electronics offers the possibility of researching electronic and thermal 

conductivity on the smallest scale imaginable, where physics is completely dominated by 

the effects of quantum mechanics. Also, the small dimensions of molecular circuits along 

with the variety of electrical, mechanical and optical properties of the molecules can lead to 

countless new natural phenomena. Molecular junctions are also ideal systems where they 
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can be explored and at the same time shed light on fundamental electron transport 

mechanisms that play a key role in both chemistry and biology. 

 

1.2.1   Coherent Transfer via Molecular Junctions 

The electrical conductivity in macroscopic metal wires is described by Ohm's law, which 

states that the current I  is proportional to the applied voltage V . The constant of 

proportionality is simply the conductivity, G , which for a given sample increases linearly 

with transverse region S  and is inversely proportional to the length of L , i.e., 

S
G

L
=  (1.25) 

where   is the conductivity of the sample. Conductivity will be a key quantity in our 

analysis, for the transport properties of atomic and molecular nodes. However, concepts such 

as Ohm's law do not apply on an individual scale. Atomic-sized conductors are a marginal 

case of a mesoscopic system in which quantum coherence plays a central role in transport 

properties. 

In this chapter we will introduce the scattering (or Landauer) approach, 1,3,6 which is 

currently the best theoretical formalism to describe coherent transport in nanowires. The 

central idea of this approach is that if one can ignore inelastic interactions, a transport 

problem can always be treated as a scattering problem. This, in practice means that transport 

properties, such as electrical conductivity, are closely linked to the transmission probability 

of an electron. 

 

1.2.2   Introduction to the Landauer Approach 

In a typical transfer experiment in a nanodevices, the sample is connected to macroscopic 

electrodes from a set of conductors (or electrodes) that allow current to flow from the sample 

and determine the voltage difference between the electrodes. The electrodes act as ideal 

electron reservoirs in thermal equilibrium with well-defined temperature and chemical 

potential. The basic idea of the scattering approach is to correlate transport properties with 

transmission and reflection probabilities. In this one-electron approach, phase-coherence is 

supposed to be maintained throughout the samples and non-elastic scattering limited to 

electron reservoirs only. Instead of dealing with complex processes that take place inside the 
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reservoirs, one deals only with their description as a set of boundary conditions. Despite its 

simplicity, this approach has been very successful in explaining many nanowire experiments. 

Before dealing with the description of the general scattering formalism, it is useful to 

understand the relationship between current I  and the transmission probability T  with a 

simple argument. Consider a one-dimensional state, as illustrated in Fig. 1.4. Here, the 

potential simulates the central part of an intersection, where electrons are scattered elastically 

before reaching one of the electrodes. Assume that when the electrons are in the reservoirs, 

they are in thermal equilibrium at the temperature of the corresponding electrode. Let us now 

consider that a plane wave, ( )1 ikxL e  (incident reservoir scattering state) strikes the 

potential barrier from the left ( L  represents the length of the system). This wave is partially 

reflected with probability amplitude R  and partially transmitted with probability 
2

T t= . 

We can now calculate the electric current density, kJ , carried by an electron and described 

by this wavefunction. It will be given by the following expression, 

*
*( ) ( ) ( ) ( )

2
k

d d e
J x x u k T k

mi dx dx L

  
=  −  = 

 
 (1.26) 

where ( )u k k m=  is the group velocity. 

 

 

Figure 1.4 Scattering wavefunction (incident wave) colliding with a potential barrier. The 

wave is partially reflected with probability R  and partially transmitted with probability 

2
T t=  (where t  is the width of the transmission probability). 6 

 

In a solid-state device there are many electrons that contribute to the value of the current. 

Therefore, we need to enter a sum with respect to all k . In addition, we must take into 

account Pauli's principle, which in practice means that we must introduce a factor 
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( ) ( )( )1L Rf k f k− , where 
( ) ( )L R

f k  is the Fermi function of the electron reservoir on the left, 

L  (right, R ) of the potential barrier. These Fermi functions also take into account the fact 

that the corresponding chemical potentials can be changed by an applied polarization 

voltage, V . The factor ( ) ( )( )1L Rf k f k−  ensures that only the initially occupied states on 

the left and unoccupied states on the right contribute to the current flowing from left to right, 

L RJ →
, 

( ) ( ) ( )(1 ( ))L R L R

k

e
J u k T k f k f k

L
→ = −  (1.27) 

Now, we can convert the sum to an integral with the usual substitution 

1
(1/ ) ( ) ( )

2k

L g k g k dk


→  . So, we have, 

( ) ( ) ( )(1 ( ))
2

L R L R

e
J u k T k f k f k dk


→ = −  (1.28) 

Then we can do the conversion from the variable k  to the energy E , by entering the density 

of states, 

1

2

dk dE m

dE dk k

−

 
= = 

 
, since 

2 2

2

k
E

m
= . The current flowing from left to right, L RJ →

, takes the form, 

( ) ( ) (1 ( ))L R L R

e
J T E f E f E dE

h
→ = −  (1.29) 

Now, the total current ( ) L R R LI V J J→ →= − , can easily be expressed as, 

 
2

( ) ( ) ( ) ( )L R

e
I V T E f E f E dE

h



−
= −  (1.30) 

This expression is the simplest version of the so-called Landauer formalism and shows the 

close relation between current and the transmission probability. 1,3,6 At zero temperature, 

( ) ( )L R
f E  are step functions, equal to 1 below 2FE eV+  and 2FE eV−  respectively, and 

0  above these energies. If we also assume that we have low voltages (linear region), this 

expression (eq. 1.30) becomes I GV= , where the conductivity is ( )22G e h T= , and where 

T  is calculated in the Fermi energy. This expression proves that if the electron transmission 

between the two electrodes is perfect, then the conductivity is given by the quantity 

( )
12

0 2 12 9G e h . k
−

=   . 
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1.2.3   Introduction to the Hopping Mechanism 

One of the central topics of this chapter is the analysis of charge transfer in situations in 

which phase coherence is completely lost within the molecular junction. This incoherent 

limit describes the transition when the tunneling traversal time is significantly longer than 

the time scale associated with the inelastic interactions. Obviously, this becomes more likely 

as the length of the molecular junction increases. In the extreme case where the inelastic 

scattering time is much shorter than the tunneling traversal time, the current is transferred 

by electrons that successively hop from one part of the molecule (localized state) to another 

in an incoherent way. This mechanism of transport is also referred to as hopping regime. 

1,3,4,26,28-30 

In long molecules, especially biological ones, there are additional issues that need to be 

considered when exploring electronic transport through them. Thus, for example, the 

environment (solvent, atmosphere, etc.) in which the experiments are performed plays a 

decisive role. The hopping regime, however, is characterized by the following two 

characteristics: the conductivity decreases inversely with the length of the molecular wire 

and also depends exponentially on temperature as B

E
k Te

−

, where E  is an activation energy 

that depends on the system under study. 

In the following, we will discuss a simple model that shows where these two characteristics 

come from. The model for a metal-molecule-metal junction is schematically represented in 

Fig. 1.5. Here, the molecular bridge has N  parts (with localized states-levels and electronic 

couplings between them). The hopping transfer mechanism is described by transfer rates i , jk  

(from state j  to state i ). For the sake of simplicity, we assume that all states have the same 

energy, which differs by E  from the Fermi energy (equilibrium energy) of the conductors. 
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Figure 1.5 Schematic representation of the model described in the hopping mechanism via 

a molecular junction. Here, each localized electron level j  in the j  regime of the molecule 

(straight lines) is connected to the nearest levels with a transfer rate 1j , jk   (dashed arrow 

lines). The metallic states of the electrodes are shown on the left and right and E  is the 

activation energy. 6 

 

In this model the current between the states j  and 1j +  is determined by the rate 1j , jk +  and 

the probabilities of finding the charge at the respective levels jP  and 1jP + , 

( )1, , 1 1j j j j j j jI e k P k P+ + += −  (1.31) 

The rates follow the following equations, 

.

1 0,1 2,1 1 1,0 0 1,2 2( )P k k P k P k P= − + + +  

 

.

1, 1, , 1 1 , 1 1( )j j j j j j j j j j j jP k k P k P k P− + − − + += − + + +  

 

.

1, 1, , 1 1 , 1 1( )N N N N N N N N N N N NP k k P k P k P− + − − + += − + + +  

(1.32) 

where jP  means jdP dt , 0 LP f=  and 1N RP f+ = , 
( )L R

f  are the Fermi functions that describe 

the electron occupations on the left and right electrodes. We are interested in cases of 

stationary current where 0jP = . In this case, the previous kinetic equations are combined 

into the following algebraic equations, 

0,1 2,1 1 1,0 0 1,2 2( )k k P k P k P+ = +  

 

1, 1, , 1 1 , 1 1( )j j j j j j j j j j jk k P k P k P− + − − + ++ = +  

 

1, 1, , 1 1 , 1 1( )N N N N N N N N N N Nk k P k P k P− + − − + ++ = +  

(1.33) 

As a further simplification, we assume that all internal rates in the bridge molecule are equal: 

, 1j jk k = . In addition, the state of equilibrium leads to the following rates relations, 
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( )/

1,0 0,1

/

, 1 1,

,

,

B

B

E eV k T

L L

E k T

N N R N N R

k k e k k

k k e k k

−  −

−

+ +

= =

= =
 (1.34) 

Solving the above equations, we end up with the steady state current, 

 

/
/

1/ 1/ ( 1) /

B

B

E k T
eV k T

L R

L R

e
I e e f f

k k N k

−

 = − + + −
. (1.35) 

Also, the corresponding linear conductivity can be expressed as, 

 

/2

1/ 1/ ( 1) /

BE k T

B L R

e e
G

k T k k N k

−

=
+ + −

. (1.36) 

Here, for the sake of simplicity, we have neglected the temperature dependence of the Fermi 

functions of the conductors. From the previous equation one can observe the two 

characteristics described at the beginning of this section. First, we observe that the 

conductivity decreases inversely with respect to the number of states, N  and therefore to 

the length of the molecular bridge. This is nothing but Ohm's classical law, which is a 

consequence of the loss of quantum coherence. Conductivity, on the other hand, depends 

exponentially on temperature, T  as in any thermal process. In this model, this process takes 

place at the metal-molecule interfaces, but in general can occur at any point along the 

junction (i.e., the rates , 1j jk k = ). 
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CHAPTER 2 

Computational Methodologies 

 

The aim of quantum-chemical computational methods is to determine the molecular 

electronic and vibrational structure. The central approximation used in most methods is the 

Born-Oppenheimer approximation mentioned in Chapter 1. Ab-initio quantum-chemical 

methods solve numerically the molecular Schrödinger equation with inputs the values of the 

fundamental constants, the atomic numbers of the atoms and their coordinates. The 

computations of electronic and vibrational structure can be performed using a variety of 

quantum chemistry computer programs. In this chapter we describe basic concepts 

underlying quantum-chemical computational techniques that are used in this dissertation. I 

mainly performed ab initio electronic structure calculations using the GAMESS-US and 

PyQuante package programs. 1-4 These computational approaches were mostly used in the 

studies of Singlet Fission described in Chapters 5-8. 

 

2.1   Hartree-Fock Theory 

In computational physics and chemistry, the Hartree–Fock (HF) method is an approximate 

method for the determination of the wavefunction and the corresponding energy of 

a quantum many-body system in a stationary state. 5-8 The HF method often assumes that the 

exact N −  body wavefunction of the system can be approximated by a single Slater 

determinant 9 (in the case where the particles are fermions) or by a single permanent (in the 

case of bosons) of N  spin-orbitals. By invoking the variational method, one can derive a set 

of N −  coupled equations for the N  spin orbitals. A solution of these equations yields the 

HF wavefunction and energy of the system. 

The HF method is the starting point for a plurality of electronic structure computational 

approaches. The basic idea is to first model the ground state, 0  and then any multi-

electronic state, as a single Slater determinant. Each of these determinants consist of products 

of N  spin orbitals, ( )x , each a product of a spatial orbital, ( )r , and a spin function 

(spin up ( )   or spin down ( )  ). Sometimes it is convenient to use a notation that 

indicates a spin orbital by its spatial part, using a bar ( ) ( ) ( )( )r r     or a lack of a bar 
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( ) ( ) ( )( )r r     to describe the spin component. The HF N −  electrons ground state 

is the single determinant 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2

0

1

el el

i j k

i j k

i N j N k N

x x x

x x ... x

N !

x x x

  

  


  

= . (2.1) 

The factor ( )
1

2N !
−

 is a normalization factor. This Slater determinant has N  electrons 

occupying N  spin orbitals ( )i j k, ,. . .,    without specifying which electron is in which 

orbital. Slater determinants meet the requirement of the antisymmetric principle since, 

interchanging the coordinates of any two electrons (corresponding to interchanging two rows 

of the Slater determinant), changes the sign of the determinant. It would be useful for the 

rest of the discussion to introduce a short notation for a normalized Slater determinant, which 

includes the normalization constant, 

( )0 1 2 N i j kx ,x ,. . .,x . . .    = =  (2.2) 

choosing the electron labels to be in the order 1 2 Nx ,x ,. . .,x . 

Starting with the Born-Oppenheimer approximation, the molecular Hamiltonian, BOĤ  can 

be written as the sum of the electronic Hamiltonian, elĤ  and the repulsive Coulomb 

interaction between nuclei, nuc nucV̂ −  

BO el nuc nucˆ ˆ ˆH H V −= + , (2.3) 

2el el el nuc eˆ ˆ ˆ ˆH T V V−= + + . (2.4) 

The first two terms in the electronic Hamiltonian constitute the one-electron operator, 1ˆ eh  

including the kinetic energy of the N  electrons as well as the attractive interactions between 

the N  electrons and the nucN  nuclei. The last term constitutes the two-electron Coulombic 

operator, 2ˆ eV  describing the repulsive interactions between the electrons.  

The essence of the HF method is that the Coulombic two-electron interactions, 2ˆ eV  are 

treated in an "average" way, so that each single electron is considered to be embedded in the 

average electrostatic field of the nuclei and the remaining electrons. 5,6 The repulsive 

Coulomb interactions between nuclei, 
nuc nucV̂ −

 are a constant for the computation of 
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electronic structure (but become as dynamical variables for the computational of vibrational 

structure in the Born-Oppenheimer approach operations). The variation principle (on which 

the computational HF methodology is based) states that the best wavefunction of the form 

in eq. (2.1) is the one that gives the lowest possible energy, 

0 0 0

elˆE H =  (2.5) 

which is always greater or equal to the real the ground state energy of the Hamiltonian.      

The spin orbitals are computed by minimizing 0E  with respect to variations in the orbitals. 

This variational method leads to a self-consistent field equation, known as the Hartree-Fock 

equation which determines the optimal spin orbitals, 5,6 

( ) ( ) ( )1 1 1i i if̂ x x x  = . (2.5) 

i  is the energy of the i  spin orbital and f̂  is an effective one-electron operator (called the 

Fock operator). The Fock operator is defined as a sum of the core-Hamiltonian 1ˆ eh  (one-

electron operator), the Coulomb Ĵ , and the exchange operator K̂ . 

( ) ( ) ( ) ( )1

1 1 1 1

e

b b

b

ˆ ˆ ˆ ˆf x h x J x K x = + −  , (2.6) 

where the sum is over all the occupied orbitals. The Coulomb operator bĴ  acting on spin 

orbital i  represents the average potential of an electron in spin orbital i  at position 1x  due 

to the charge distribution from an electron in spin orbital b , 

( ) ( ) ( ) ( )( ) ( )1

1 1 2 2 12 2 1

*

b i b b iĴ x x dx x r x x   −=  . (2.7) 

In the same way, we define the exchange operator bK̂  derived from the antisymmetric 

property of the determinantal wavefunction. This operator is defined as, 

( ) ( ) ( ) ( )( ) ( )1

1 1 2 2 12 2 1

*

b i b i bK̂ x x dx x r x x   −=  . (2.8) 

For an electron in spin orbital i  the expectation values of the Coulomb and exchange 

potentials bĴ  and bK̂  are just the well-known Coulomb and exchange integrals, i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( )1

1 1 1 1 2 1 1 12 1 1

* *

i b i i i b b
ˆx J x x dx dx x x r x x i i bb     −= =     (2.9) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )1

1 1 1 1 2 1 1 12 1 1

* *

i b i i b b i
ˆx K x x dx dx x x r x x ib bi     −= =      (2.10) 

 

2.1.1   Closed-Shell Hartree-Fock: Restricted Spin Orbitals 

The spin orbitals described in the previous section may be of two types: restricted spin 

orbitals, which are constrained to have the same spatial function for spin functions a  (spin 

up) and   (spin down), and unrestricted spin orbitals, which have different spatial functions 

for spin up and spin down. In this section we focus on procedures calculating closed-shell 

restricted HF (RHF) wavefunctions. In other words, the RHF method assumes that each 

spatial orbital ( )r  is doubly occupied by electrons with opposite spins. 

A restricted set of N  spin orbitals ( )i x  has the form 5 

( )
( ) ( )

( ) ( )
1 2

j

i

j

r
x , j ,. . .,N

r

  


  


= =


, (2.11) 

and the closed-shell restricted ground state is 

0 1 1 2 2 1 1 2 2

RHF

N N N Na . . . a . . .          = = . (2.12) 

By converting the general HF equation (2.5) to a spatial orbital eigenvalue equation, we 

obtain the Roothan equations. 10 The HF equations for the individual spatial orbital 

wavefunctions are, 

( ) ( ) ( )1 1 1j j jf̂ r r r  = . (2.13) 

The closed-shell Fock operator thus has the form, 

( ) ( ) ( ) ( )
2

1

1 1 1 12
N

e

b b

b

ˆ ˆf r h r J r K r= + −    (2.14) 

where now the closed-shell Coulomb and exchange operators are defined by 

( ) ( ) ( )1

1 2 2 12 2

*

b b bJ r dr r r r −=   (2.15) 

( ) ( ) ( ) ( ) ( )1

1 1 2 2 12 2 1

*

b j b j bK r r dr r r r r   − =
  . (2.16) 
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These equations are analogous to those for spin orbitals eqs (2.5)-(2.8), except for the “2” 

factor occurring with the Coulomb operator and the sum in eq. (2.14) which is over the 2N  

occupied orbitals ( ) b r . 

The closed-shell HF energy for the closed-shell determinant 0

RHF  (see eq. (2.12)) is  

 0 2 2RHF

aa b b

b

E h J K 
 

= + −   (2.17) 

where, aah  is the matrix element 
1eĥ    and bJ  ( )bK   are the Coulomb (exchange) 

integrals over the spatial molecular orbitals   and b  . 

 

2.1.2   The Roothan Equations 

To solve the HF equation (2.13) one must introduce a set of K  known spatial (atom-

centered) basis functions and express each unknown molecular orbital as a linear 

combination of the basis functions, 

1

1 2j jC , j , ,. . .,K


 


 
=

= = . (2.18) 

jC  are unknown coefficients and    is a set of K  atomic orbital basis functions. 

Substituting eq. (2.18) into HF eq. (2.13) and multiplying by ( )1

* r , one can arrive at two 

matrices, the overlap matrix S  and the Fock matrix F  which are defined as, 

( ) ( )1 1 1

*S dr r r   =   (2.19) 

( ) ( ) ( )1 1 1 1

* ˆF dr r f r r   =  . (2.20) 

With these definitions of F  and S  the integrated HF equation can be written as, 

1 2j j jF C S C , j , ,. . .,K   
 

= =   (2.21) 

These are the Roothan equations that can be written in matrix form as, 

F C S C=  (2.22) 
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where, C  and F  are K K  square matrices of the coefficients and the Fock elements 

respectively.   is a K K  diagonal matrix of the orbital energies j . 

 

2.1.3   The Fock Matrix 

The Fock matrix is the matrix representation of the Fock operator (see eq. (2.14)) in the    

basis, 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

2
1

1 1 1 1 1 1 1 1 12

*

N
* e *

b b

b

ˆF dr r f r r

ˆ ˆ ˆdr r h r r dr r J r K r r .

  

   

 

   

=

 = + − 



 
 (2.23) 

The first term in this relation is defined as the core-Hamiltonian matrix and consists of one-

electron integrals (kinetic energy and nuclear attraction integrals) according to eq. (2.4), 

( ) ( ) ( )1

1 1 1 1

core * e el el nucˆH dr r h r r T V      −= = + , (2.24) 

( ) ( ) ( )1 1 1 1

el * elˆT dr r T r r   =  , (2.25) 

( ) ( ) ( )1 1 1 1

el nuc * el nucˆV dr r V r r   − −=  . (2.26) 

Returning to eq. (2.23), we can express the Coulomb and exchange integrals according to 

eqs (2.9) and (2.10) and then insert the linear expansion for the molecular orbitals (eq. (2.18)) 

to get, 

( ) ( )
2

2 2
N

core *

b b

b

F C C   


     = + −  . (2.27) 

It contains a one-electron part core  and a two-electron part which depends on the unknown 

coefficients of the molecular orbitals and a set of two-electron integrals of the form 

( ) ( ) ( ) ( ) ( )1

1 2 1 1 12 2 2

* *dr dr r r r r r        −=  . (2.28) 

Because of the large number of the atomic orbitals    that form a specific molecular 

orbital, the evaluation and manipulation of such a two-electron integral is the major difficulty 

in a HF calculation. For a set of K  basis functions    the number of two-electron integrals 
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to evaluate is of the order of 4K . Specialized quantum chemistry package programs contain 

subroutines to calculate efficiently such integral. 

With the background of the HF method, we are now able to describe the computational 

procedure for obtaining RHF wavefunctions for molecules. The computational solution 

procedure used is the well-known self-consistent-field (SCF) method that handles and solves 

HF equations iteratively. According to this procedure, initially we have to choose a set of 

spatial basis functions    (usually atomic orbitals). Subsequently, we calculate all the 

required molecular integrals, such as the overlap matrix elements S , the one-electron core-

Hamiltonian elements coreH  and the two-electron integrals ( )  . Then, using various 

methods provided by respective program, we guess a set of trial expansion coefficients 

 jC  and construct from them, and from the abovementioned integrals, the Fock and 

overlap matrices to be diagonalized by solving the Roothan equations (see eq. (2.22)). The 

diagonalization leads to a new set of expansion coefficients  jC


 and consequently a new 

set of molecular orbitals  j 
. With these new molecular orbitals, we calculate the updated 

matrix elements, S
 , coreH

  and ( )   . The procedure is repeated iteratively until the 

ground state energy converges as a function of iteration, so self-consistency is reached (see 

Chapter 8). 

 

2.2   Configuration Interaction 

The HF ground state wavefunction that we introduced above is an approximation and 

definitely does not represent the exact wavefunction. The HF ground state energy 0

RHFE  

differ from the exact nonrelativistic energy of the system 0 . The HF energy is an upper 

bound to the exact energy, so the correction (or correlation) energy is negative, 

0 0 0RHF

corrE E= −  . (2.29) 

The Configuration Interaction (CI) method 5,6,11-14 is based on the variational method for 

obtaining the correlation energy. In the CI method the exact N −  electron ground state 

wavefunction may be expressed as a linear combination of N −  electron trial determinants. 

It is convenient to describe these other determinants by stating how they differ from the RHF 
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N −  electron ground state wavefunction 0

RHF  (called as the “reference” state). If 0

RHF  is 

a reasonable approximation to exact electronic wavefunction 
0 , then we know from the 

variation principle that a better approximation is 

0 0 0

RHF b b bc bc

i i ij ij ijk ijk

i i j i j k
b b c

c c c c . . .     


 

    
  
  

= + + + +    
(2.30) 

This is the form of the full CI wavefunction. i

  denotes a singly-excited determinant in 

which an electron, which occupied i  in the HF ground state, has been promoted to a virtual 

spin orbital  . In the same way, b

ij

  denotes a doubly-excited determinant in which two 

electrons, that occupied i  and j  in the HF ground state, has been promoted to virtual spin 

orbitals   and b , respectively. bc

ijk

  denotes a triply-excited determinant in which three 

electrons, that occupied i , j  and k  in the HF ground state, has been promoted to virtual 

spin orbitals  , b  and c , respectively. The c' s  are expansion coefficients and 

restrictions on the summation indices (e.g., b, i j    ). 

 

2.2.1   Configuration Interaction Singles 

The Configuration Interaction Singles (CIS) method assumes that only single-excitations are 

allowed. So, this method describes excitation energies for one-electron transitions (single 

electron-hole excitations). 5,12,15 Therefore, we must limit the above linear combination (eq. 

(2.30)) to a basis of singly-excited determinants, i.e., a CIS state is expressed as, 

0 0 0

RHF

,CIS i i

i

c c 



  = + . (2.31) 

The Hamiltonian matrix elements among CIS basis states are 

( ) ( )0 2el b RHF

i j ij b ij b b ijĤ E F F i jb ij ab

        = + − + − . (2.32) 

This Hamiltonian is diagonalized to obtain all CIS eigenstates and eigenenergies. 0

RHFE  is 

the RHF ground state energy (see eq. (2.17)), bF  and ijF  are Fock matrix elements (see eq. 

(2.20)), and the last two terms are two-electron integrals as described in eq. (2.28). 
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Given the above matrix elements and assuming real CI coefficients, the CIS energy for the 

CIS wavefunction 0,CIS  is given by, 

( ) ( )0 02RHF b b

CIS i i i i b i j ij i j

i i b ij ij b

E E c c F c c F c c F c c i jb ij ab    

 
   

 = + + − + −     . 
(2.33) 

 

2.2.2   Configuration Interaction Singles and Doubles 

The Configuration Interaction Singles Doubles (CISD) method is similar to CIS but it 

includes both singly- and doubly-excited determinants. The CISD trial state is  

0 0 0

RHF b b

,CISD i i ij ij

i i j
b

c c c   




   



= + +  . 
(2.34) 

The widely-employed CISD wavefunction includes only those N −  electron basis functions 

which represent single or double substitutions relative to the reference state and typically 

accounts for about 95% of the correlation energy for small molecules near their equilibrium 

geometries. The Hamiltonian matrix elements of CISD are more complex than eq. 2.32. 

These matrix elements are described in detail in Chapter 7.  
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CHAPTER 3 

Charge-Transport Mechanisms in Azurin-Based 

Monolayer Junctions 

 

We study the transport mechanisms of different types of Azurin (Az) monolayer 

heterojunctions with a variety of metal substituents. The systems include Holo-Az (Cu-

substituted), Apo-Az (no metal) and Ni-, Co- and Zn-substituted Azurins. Our theoretical 

analysis is based on measurements of the voltage and temperature dependencies of the 

current and attempts to reproduce both dependencies using a common mechanism and 

corresponding set of parameters. Our results strongly suggest that for Holo-Az the transport 

mechanism depends on the protein monolayer/heterojunction setup. In one type of 

heterojunction, transport is dominated by resonant incoherent hopping through the Cu redox 

site, whereas in the other it is mediated by off-resonant tunneling. For the unsubstituted 

(Apo-Az) and other metal substituted Azurins the dominant transport mechanism at low 

temperatures is off-resonant tunneling, with an average tunneling barrier that depends on the 

type of metal dopant, and at the highest temperatures it is through-amino acid hopping. 

Biomolecular electron-transfer (ET) reactions participate in many biological functions such 

as biological energy conversion processes, biological signalling pathways and disease-repair 

mechanisms. 1-10 Biomolecular ET reactions are often components of ET chains which are 

hopping networks of donor-to-acceptor charge-transfer rates. 3 The electron/hole donor (D) 

and acceptor (A) moieties in these chains are atom or molecule dopants embedded in protein 

or DNA matrices which act as the bridge (B) connecting donors to acceptors. 5-7 Each D-to-

A hopping step of the network involves through-protein or through-DNA electron tunneling. 

The D-to-A electronic couplings and D-to-A activation energies of each step determine the 

magnitude of the corresponding D-to-A ET hopping rate (kET). 11-14 Biological ET chains 

can operate over a variety of length scales (from nanometer to over micrometer distances). 

8,9 

Over the past decades, experimental, theoretical and computational studies of ET molecules 

and ET proteins (ETpr’s) have shown that it is possible to tune molecular ET rates and the 

charge flow in biological ET chains by chemical modifications of the donor, acceptor and 

the bridge, by changing the locations of donor and acceptor, or by modifying the solvent 

environment. 4,7,11-18 
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ETpr’s are also of interest in molecular electronics. 19,20 Since there is extensive knowledge 

of how to tune solution-phase through-protein ET mechanisms by chemical modifications, 

7,11 an attractive idea is to use ETpr’s as the main current-carrying material in hybrid 

electronic devices. Chemical modifications of the ETpr’s in the device may enable tuning 

the through-protein current and thus the functionality of the device. 21,22 

Solution-phase ET reactions mediated by blue Copper proteins, (containing a Cu ion as the 

redox center), and in particular Azurin, have been studied thoroughly both experimentally 

and computationally (e.g., ref. [7, 16, 17, 23, 24] and references therein). In addition to the 

solution-phase ET studies, there are several experiments that measure transport (current) 

through Azurin in different types of molecular junction setups, e.g., refs [25-28] for early 

works. 

This work focuses on two experiments, 29,30 that measure current-voltage and current-

temperature characteristics of Az monolayer heterojunctions. Ref. [29] (also denoted exp. I) 

reported current measurements for heterojunctions comprised of oriented Az monolayers, 

sandwiched between an Si-oxide substrate and a gold (Au) or mercury (Hg) macroscopic 

LOFO (lift-off, float-on) contact 31 with an area of 0.2 mm2. In the present study, we focused 

on the experiments conducted with the Au LOFO contact, for comparison purposes with the 

results of ref. [30] (see below). The experiments in ref. [29] observed temperature-

independent transport across the Az monolayer (transport distance is about 3.5 nm) for a 

wide range of temperatures ( )T 100 400K= −  for Az molecules containing Cu (Holo-Az). 

When the Cu atom is removed from Az (Apo-Az) the current ( )I  through the monolayers 

is reduced by more than two orders of magnitude as compared to Holo-Az for T 200K . 

Also, for Apo-Az the current becomes temperature-dependent for T 200K . We 

summarize the experimental results of exp. I in Fig. 3.1.  
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Figure 3.1 (a) Experimental current density (current per unit area) versus temperature (ln(J) 

versus 1000/T) for Apo-Az at different bias voltages. (b) Experimental ln(J) versus V for 

Apo-Az at T = 128, 148, 168, 188 K. (c) Experimental ln(J) versus 1000/T of Holo-Az at 

different bias voltages. (d) Experimental ln(J) versus V of Holo-Az junction at room 

temperature (exp. I). 29 

 

An interesting observation in ref. [29] is that substitutions of Apo-Az with metals other than 

Cu, show temperature dependencies that are intermediate between Apo-Az and Holo-Az (see 

Fig. 3.2 below). 
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Figure 3.2 Experimental ln(J) versus 1000/T of Holo-, Ni-, Co-, Zn- and Apo-Az junction 

at -50 mV bias (exp. I). 29   

    

Ref. [30] (also denoted exp. II) reported experiments on oriented Holo-Az monolayers 

sandwiched between soft Au microelectrodes using the “suspended-wire” technique. 32,33 

The currents measured in ref. [30] are temperature-independent 34 for a range of temperatures 

from 25 to 275 K (see Fig. 3.3).  

 

 

Figure 3.3. Experimental current-voltage curves via Holo-Az: (a) I versus V (-1 ≤ V ≤ 1), 

with current plotted as log(I), at different temperatures. (b) Current at 0.1 V and 0.5 V, 

indicating the same temperature-independent behavior at different bias voltages (exp. II). 30 
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The abovementioned experiments involve different numbers of proteins in the monolayer (

7 9

contactN 10 10 −  for ref. 29 and contactN 50 200 −  for ref. [30]). Further, in the first 

experiment, 29 the proteins in the monolayer are covalently bound to the P++ Si/oxide Si 

substrate via the exposed cysteine residue (Cys3 or Cys26) which binds to a (≈ 6 Å) 3-

MPTMS linker molecule. The other side of the monolayer is physisorbed to the Au/Hg 

LOFO. In the second experiment, 30 the proteins in the monolayer are covalently bound to 

both Au substrates by an S-Au bond between the Au and one of the relatively exposed Az 

cysteine thiolates.  
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Figure 3.4 Comparison of current-voltage behaviors in experiments I 29 and II 30. Each 

current is normalized by its value at 1.0 V and the temperature is 200 K.  

 

Figure 3.4 is an example of the normalized current, in linear scale, as a function of voltage 

for the two experiments 29,30 (the normalization is with respect to the current value at 1.0 V). 

Note that the normalized current in ref. [29] grows slowly around V 0= , while in ref. [30] 

it grows more rapidly and almost linearly. Comparing the two graphs (Fig. 3.4), the I V ' s−  

have very different shapes, especially in the low voltage ( ).V 0 5V  regime. Also, the 

current per molecule, total contactI I N= , at a constant voltage value seems to be very different 

in the two experiments. For example, for .V 0 1V=  and using the abovementioned and 

approximate coverages, . .19 17I 6 0 10 6 0 10 A− −= −  in ref. [29] and 

. .12 12I 1 5 10 6 0 10 A− −= −  in ref. [30]. This difference is probably due to the insulating layer 

added by the SiOx and a linker in the setup of ref. [29], which lowers the current by some 
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orders of magnitude, since RI e − , where   is the tunneling decay parameter for Az at the 

average injection energy and R  is the molecular bridge’s length. 34 Therefore, even though 

the protein transport medium in both experiments is the same (Az monolayers), the transport 

mechanisms in the two systems seem to be different. 

In the present work, we will study the I V−  and I T−  behaviors reported in the experiments 

using different phenomenological models which describe possible transport mechanisms 

(see below). We will also attempt to explain the changes in current behavior seen when the 

Cu ion is removed from Az (see Figs 3.1a, 3.1b). To our knowledge, there is still no 

comprehensive theoretical modeling of both experiments. Our modeling results are relevant 

to the analysis of the current behavior over a range of temperatures for any molecular-

heterojunction device.  

 

3.1   Theoretical Methods 

We will present and discuss results for current-voltage and current-temperature 

measurements as reported in both experiments 29,30 using different basic models that relate 

to different transport mechanisms. These include the one-site hopping model, 13,14,20,35,36 the 

Landauer off-resonant tunneling and resonant tunneling models, 13,14,19 multi-site extensions 

of these models, the extended fully adiabatic Newns-Anderson model 37-40 and the two-step 

ET model (2sETm). 41,42 These models are motivated by the experiments 29,30 and are 

described in full detail below.  

For all models, in the schematic representation (Fig. 3.5), ( )L R  denote the left (right) 

electrodes, where the protein Azurin and the binding ligands are placed between them. For 

the experimental setup of ref. [29], R  represents the LOFO (Au or Hg) and L  represents the 

substrate (Si / oxide Si). It is believed that on average, Cu is closer to the R  electrode. 

However, in our modeling we do not make any assumptions about orientation. For the 

experiments of ref. [30], R  and L  represent Au electrodes. 
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Figure 3.5 Schematic representation of the layout used for the description of some 

theoretical models to describe the experiments. M denotes metal dopant (e.g., Cu) and HL, 

HR are the protein-mediated tunneling matrix elements between L and R electrodes. 

 

For an Az monolayer of contactN  molecules, the total current is approximated by  

total contactI N I=  and below we describe several models for I . The experiments measure a 

current density totalJ I A= , where A  is the total contact area. It should be noted that the 

effective number of contacts (molecules) in these experiments is to some extent an uncertain 

variable due to the complexity of the heterojunctions. Also, the effective number of contacts 

will depend on the extent of intermolecular interactions which is also unknown. 43 Thus, in 

our fitting, we probe a range of contactN  values and we place more importance on modeling 

the experimental temperature and voltage dependencies rather than absolute current values. 

The first set of models used, describe coherent transport and are based on the Landauer 

formalism. 13,14,19 The current per molecule is given by 

( ) ( )
1

( )  ( , ) / 2 / 2I V e dE T E V f E eV f E eV


= − + − −   , (3.1) 

where  

( )  
2 2

0

4
( , ) L R

L R

T E V
E V

 
=

− +  +   

 (3.2) 

is the transmission probability, V  is the voltage bias across the junction, LeV 2 − =  (the 

Fermi energy of L  electrode), ReV 2 + =  (the fermi energy of R  electrode) (see Fig. 3.6). 

Here, ( )0 V  is a molecular level energy, which acts as a transmission channel,  

L R  M 

Azurin  
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( )0 0( ) 1/ 2V eV  = + − . (3.3) 

The dependence of the level energy on bias enters via a parameter  . For example, if 

.0 5 = , the level energy is independent of voltage. For 0 0 =  and 0 = , it is pinned to 
L  

and for 
0 0 =  and 1 = , it is pinned to 

R . Moreover, 
( )L R

  are the level broadenings 

associated with the level couplings 
( )L R

H  to the ( )L R  leads (see Fig. 3.5), 

( ) ( )
2

( )L R L R L R
H  = , (3.4) 

where 
( )L R

  are the electronic densities of states of the ( )L R  leads. These broadenings are 

related to the Fermi Golden rule rates, 
( )L R

 , for electron transfer from the level to the leads 

( )( ) ( )2L R L R =  . The main parameters of this model are, ( )0 V  and 
( )L R

  (see Fig. 3.6). 

 

 

Figure 3.6 Schematic representation of the basic parameters used in the Landauer models 

(ε0 (V), ΓL(R)). 

 

The Landauer model, summarized in eqs (3.1)-(3.4), is used in two ways. Ref. [29] observed 

that upon extraction of the Cu atom from Az (Holo→Apo), the current is reduced by two 

orders of magnitude for a large range of temperatures (see Fig. 3.1). Thus, for Holo-Az, Cu 

seems to provide the most important transmission channel. For this reason, when modeling 

Holo-Az via eqs (3.1) and (3.2), the level energy ( )0 V  will be interpreted as a Cu state 

energy. ( )L R
H  will be interpreted as the through-Az tunneling matrix elements between the 
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Cu level and the ( )L R  electrodes. In this case, eqs (3.1) and (3.2) describe an (off-) resonant 

tunneling model (through Cu).   

For the case of Apo-Az, the Az/ligand supra-molecule seems to be a deep tunneling barrier 

for a wide range of temperatures (thus, the current reduction in Figs 3.1a, 3.1b). Since Apo-

Az contains many amino acids with several levels providing tunneling transmission 

channels, ( )0 V  cannot be interpreted as a single Az protein (amino acids) electronic level. 

Therefore, in eq. (3.3), ( )0 V  is taken to be an effective parameter that modulates the overall 

tunneling barrier provided by the molecule. When 
( )0 ( )

L R
V   the model describes an off-

resonant tunneling mechanism through the Az amino acids. When 
( )0 ( )

L R
V   the model 

describes a resonant tunneling mechanism through the Az amino acids. We will also consider 

generalizations of the Landauer model which incorporate single and multiple fluctuating 

resonances. These more general models may be collectively described as descriptions of 

thermally modulated coherent tunneling. 44-46 They will be used to explore mostly the high 

temperature regime of the Apo-Az experiments. 29 

Since for Holo-Az the Cu atom plays a central role for the transmission, we also need to 

consider the possibility that Cu provides a fully incoherent transmission channel. The length 

of the molecular bridge (30 Å) gives us the right to consider the ET as a hopping process, 

involving reversible transitions between the two oxidation states of bridge (oxidized and 

reduced Cu’ s electronic states) (see Fig. 3.7) and the ( )L R  electrodes. Thus, an alternative 

model used for Holo-Az is the one-site hopping model (incoherent model), where the 

hopping site is a Cu level. For the case of the hopping model, Cu acts as a redox site with 

reorganization energy   (see Fig. 3.7). This means that when the electron reaches the Cu 

atom, it remains there for sufficient time to reorganize the Cu-Az ligands. The steady state 

current per molecule is given by  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
L R L R

L L R R

k V k V k V k V
I V e

k V k V k V k V

→ →  

→  → 

−
= −

+ + +
, (3.5) 

where ( )L R
k  and ( )L R

k  are hopping rates to Cu from ( )L R  leads and from Cu to ( )L R  leads. 

When the Az - electrodes couplings are weak, so that the time scale for ET is long relative 

to that of thermal relaxation, each hopping step is associated with a rate obtained with the 

framework of the Marcus heterogeneous ET theory, 13,14,20,35,36 
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                 ( ) ( ) ( )( )02 ,L
L L ox Lk V dE f E W V  


= − , 

                 ( ) ( ) ( )( )02 ,R
R R ox Rk V dE f E W V  


= − , 

                  ( ) ( ) ( )( )02 1 ,L
L L red Lk V dE f E W V  


= − −   , 

                  ( ) ( ) ( )( )02 1 ,R
R R red Rk V dE f E W V  


= − −   . 

(3.6) 

In the equations above, ( ) ( )( )0 ,ox L R
W V   and ( ) ( )( )0 ,red L R

W V   are distribution functions 

35 for Cu oxidation and reduction respectively (see Fig. 3.7) and are given by 

( ) ( )( )
( )( ) ( )( )

2

0

4

0

1
,

4

L R

B

E V

k T

ox L R

B

W V e
k T

  

 


− + +
−

=  

( ) ( )( )
( )( ) ( )( )

2

0

4

0

1
, .

4

L R

B

E V

k T

red L R

B

W V e
k T

  

 


+ + −
−

=  

(3.7) 

The chemical potentials of the ( )L R  electrode are set to L eV 2 = −  ( )R eV 2 = + .  

The main parameters used in this model are: the Cu’s site energy, 0 ( )V , the reorganization 

energy,  , for oxidation / reduction of Cu and ( )L R  arising from the electrodes to Cu 

tunneling couplings through Az amino acids (see Fig. 3.7). 
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Figure 3.7 Reorganization energy, λ, distributions W
ox

 and W
red at equilibrium (left) and 

after application of a cathodic overpotential. 

 

We will also consider generalizations of the above incoherent hopping model, to multi-site 

hopping through the Az monolayer. This generalization will be necessary for describing the 

temperature dependence of Apo-Az in the T 200K  region (see Fig. 3.1a and Fig. 3.8 

below). In addition to the above simplest models that represent the extremes of coherent and 

incoherent transport we have also tested models describing intermediate regimes and 

containing relatively few parameters. These are the extended – fully adiabatic Newns-

Anderson model 37-40 and the two-step vibrationally coherent ET model (2sETm) 41,42 and 

are described in the Supplement section. 

 

3.2.   Modeling of Holo-Az heterojunctions in experiments I and II 

3.2.1   Experiment on Si-oxide substrate – Az – Au LOFO heterojunctions (exp. I) 

Figures 3.1a and 3.1c show the temperature dependence of ( )ln J  ( )totalJ I A=  for Apo-Az 

(Fig. 3.1a) and Holo-Az (Fig. 3.1c) for a wide range of bias voltages. In the case of Apo-Az, 

the current decreases with decreasing temperature for cT T  ( )cT 200K=  and then becomes 

temperature-independent. cT  remains the same for all voltages. Transport via Holo-Az is 

orders of magnitude greater than Apo-Az (apart from the highest temperatures, when the 

Holo- and Apo-Az currents are similar). Further, the Holo-Az current is temperature-

independent for all temperatures ( )T 100 400K= −  and all voltages ( ). .V 0 05 1 0V= − .  

Figure 3.8 is an example comparison of the Holo- and Apo-Az currents, as a function of 

temperature, for a specific voltage value ( )V 50mV= + . This figure shows the switch at 

T 200K  from temperature independence to temperature dependence (activated transport) 

in the case of Apo-Az. The activation energy for thermally activated transport is 

aE 250 255meV − . 
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Figure 3.8 Experimental ln(J) versus 1000/T of Apo- and Holo-Az junction at +50 mV bias. 

29 

 

The large enhancement of the current due to the addition of Cu (Apo → Holo) observed in 

ref. [29] (Fig. 3.8), indicates that Cu is the most important transmission channel for Holo-

Az. Thus, for Holo-Az, Cu is likely to act as a near-resonant/resonant tunneling or incoherent 

hopping site. In the following, we attempt to fit the temperature and voltage dependencies 

of the Holo-Az current using the simplest one-level coherent model (eqs (3.1)-(3.4)) and the 

one-level incoherent hopping model (eqs (3.5)-(3.7)). The best-fit parameters for both 

models are derived from the low bias regime for which we do not expect the electric field to 

perturb the structures of the proteins in the monolayer. 

Figures 3.9 and 3.10 show representative simultaneous fits of the temperature and voltage 

dependencies of the current measured in ref. [29], using the coherent tunneling model, (eqs 

(3.1)-(3.4)) with a common set of parameter values. Figure 3.9 shows ( )ln J T−  fitting for 

,V 50 250mV=   and Fig. 3.10a shows ( )ln J V−  fitting at 300T K= . The common 

parameter values derived from these fits are: 0 0.03eV = , .0 75 = , 
53.3 10L eV− =  and 

R L 10 1000  = −  (the Fermi level at zero bias is 0 eV). We find that there is no much 

flexibility in the 0  value which affects both the voltage and temperature dependence. There 

is more flexibility in the ( )L R
  values due to the uncertainty about the exact number of 

proteins in the system, contactN . Thus, the best-fit of the coherent tunneling model predicts a 

very low tunneling barrier at zero bias, as expected by the large enhancement seen in the 

current for Holo-Az as compared to Apo-Az. 
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Figure 3.9 Experimental ln(J) versus 1000/T of Cu-Az (Holo-Az) 29 for different bias 

voltages versus theoretical predictions (eqs (3.1)-(3.4)). (a) Bias voltages of -50 mV and -

250 mV, (b) bias voltages of +50 mV and +250 mV. Parameter values of eqs (3.1)-(3.4) for 

all graphs: ε0=0.03 eV, α=0.75, ΓL=3.3 10-5eV, and ΓR/ΓL=1000. 

 

Figure 3.10 (a) Experimental ln(J) versus voltage of Cu-Az 29 at T = 300 K and theoretical 

best-fit using the single-channel resonant-tunneling model (eqs (3.1)-(3.4)) with the best fit 

parameter values of ε0=0.03 eV, α=0.75 , ΓL=3.3 10-5 eV and ΓR/ΓL=1000, as in Fig. 3.9. The 

fit fails for bias voltages beyond 250 mV. This is because the current of a single resonant 

tunneling channel will saturate at higher bias voltages. (b) Theoretical resonant tunneling J 

versus voltage of Cu-Az at T = 300 K showing the saturation of the current at higher voltages 

for the best fit parameters. Since the resonant tunneling current in this parameter regime is 

larely temperature-independent for T = 100-400 K the shape of the J-V curve will not be 

altered within the experimental temperature range. 
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Figure 3.9 shows that the current can be near temperature independent for the resonant 

tunneling regime. This is an expected feature of this regime, 19 only if ( )0,B L Rk T V  +   

which turns out to be the case for the experimental temperature range and for the 

abovementioned best fit parameters. Figure 3.10a shows that the resonant tunneling channel 

that reproduces the low bias experimental results cannot reproduce the high bias current. 

This feature is expected for a single-channel resonant tunneling current which tends to 

saturate at high enough voltages. 

Although it is tempting to adopt an off-resonant tunneling model (high 
0  in eq. (3.3)) which 

is known to give temperature independence, 19 such a model completely fails to predict the 

low bias voltage profile of the experiments in ref. [29]. A representative example is shown 

in Fig. 3.11, which shows a typical ( )ln J V−  best-fit for an one-level coherent tunneling 

model, where the level energy is high ( )0 0.8eV = , such that the current is temperature 

independent at all voltages. Figure 3.11 clearly demonstrates that such a model can only 

reproduce the experimental results at very low voltages. 
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Figure 3.11 Experimental ln(J) versus voltage of Cu-Az 29 at T = 300 K and theoretical best-

fit using the off-resonant tunneling model (eqs (3.1)-(3.4)) with the best fit parameter values 

of ε
0
=0.8 eV, α=0.5, Γ

L
=3.3 10-4 eV and Γ

R
 /Γ

L
=1000. 

 

Figures 3.12 and 3.13 are representative simultaneous fits of the temperature and voltage 

dependencies of the current measured in ref. [29], using the incoherent one-site hopping 
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model (eqs (3.5)-(3.7)) with a common set of parameter values given by: .0 2eV = , 

.0 75 = , . .0 0 01 0 03eV = − , . .5 3

L 1 0 10 1 0 10 eV− − = −  and .R L 10 1000  = −  Figure 

3.12 shows ( )ln J T−  fits for ,V 50 250mV=   and Fig. 3.13a shows ( )ln J V−  fitting at 

300T K= . The range of values of our fit parameters, is due to the uncertainty about the 

exact number of proteins in the system, 
contactN . The one-site hopping model thus predicts a 

near resonant Cu level at zero bias that enters the Fermi window at non-zero bias. It also 

predicts a low reorganization energy for the Cu redox site which is consistent with inner 

sphere redox reorganization energies in Azurin. 47 Both of these features are necessary to 

give a near temperature-independent current at the various voltages (Fig. 3.12). 36 The model 

simultaneously reproduces the ( )ln J V−  behavior for bias values up to 250mV  (Fig. 

3.13a). Beyond the 250mV  bias the one-level hopping current saturates (Fig. 3.13b), as 

expected. 

 

 

Figure 3.12 Experimental ln(J) versus 1000/T of Cu-Az (Holo-Az) 29 for different bias 

voltages versus theoretical best-fit using the one-site hopping model (eqs (3.5)-(3.7)). (a) 

Bias voltages of -50 mV and -250 mV, (b) bias voltages of +50 mV and +250 mV. The 

parameter values of eqs (3.5)-(3.7) for all graphs are: λ=0.2 eV, α=0.75, ε0=0.01 eV, ΓL=1.0 

10-4 eV and ΓR/ΓL=1000. 
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Figure 3.13 (a) Experimental ln(J) versus voltage of Cu-Az 29 at T = 300K and theoretical 

best-fit using the one-site hopping model (eqs (3.5)-(3.7)) (parameter values: λ=0.2 eV, 

α=0.75, ε0=0.01 eV, ΓL=1.0 10-4 eV and ΓR/ΓL=1000). (b) Theoretical single-channel 

resonant hopping J versus voltage of Cu-Az at T = 300 K for the same parameter values, 

showing saturation behavior of the current. The behavior does not qualitatively change with 

temperature as the model predicts temperature independent transport for T = 100-400 K (Fig. 

3.12).  

 

A comparison of the ( )ln J V−  fits obtained using the coherent resonant tunneling (Fig. 

3.10a) to the fits obtained from the resonant single-channel hopping model (Fig. 3.13a), 

shows that the one-site hopping model gives a better fit for a wider range of bias voltages. 

However, both models fail to reproduce the high bias currents since both predict current 

saturation. We were also not able to reproduce the experimental results by global fitting 

using more complex models such as Newns-Anderson 37-40 or 2sETm 41,42 (see Supplement 

section for a description of these models).  

The conclusion that a through-Cu resonant hopping model (with a low reorganization energy 

of 0.1-0.2 eV) can reproduce the low-bias Holo-Az currents of ref. [29] is consistent with 

previous modeling of EC-STM experiments on Holo-Az molecular junctions. 28 Further, the 

reorganization energy values predicted by our fitting using the through-Cu hopping model 

are consistent with ab-initio and molecular dynamics computations of inner-sphere 

reorganization energies for the Cu ion in blue copper proteins 17,47,48 (the systems we study 

are not in aqueous environment, so we expect the reorganization energy to be inner-sphere). 

Recent experiments on small molecule systems 49 clearly demonstrate transport via a 
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hopping mechanism. A very recent experimental work on Azurin-based molecular junctions, 

50 showed that by weakening the coupling between the protein and the gold electrodes, the 

amount of inelastic current increases. This trend clearly suggests that in experiments like 

those of ref. [29], which involve linkers that weaken the Cu-electrode couplings, the current 

may well proceed incoherently through the molecules. 

The analysis in Figs 3.9 - 3.13 shows that the high-bias current observed in ref. [29] cannot 

be due to a single resonant ( )0 V  transport channel. Since the current does not saturate, 

additional resonant ( )0 V  channels in the protein monolayer must come into resonance at 

higher voltages. 36 In the monolayer, different proteins are expected to have slightly different 

orientations, conformations and local environments. Therefore, the Cu energy levels of the 

different Holo-Az proteins at zero bias will have a range of values (which are expected to be 

closer to the Fermi level as compared to the amino acids, see Table 3.1).  Figure 3.14a 

illustrates this idea, where 0,k  refers to the zero-bias Cu level energy of protein k  in the 

monolayer. Given the fact that we were able to fit the voltage dependence of the current for 

the lower bias voltages with single channel (single 0  value) models (Figs 3.9, 3.10 and 

3.12, 3.13), a fraction of the energies  0,k  should be quasi-resonant with the Fermi level 

at zero bias. However, since ( )0, 0,( ) 1/ 2k kV eV  = + − , for high-enough bias more Cu 

levels in the monolayer ensemble will enter the Fermi window (Fig. 3.14b), providing the 

monolayer with additional transport channels and avoiding a saturation of the monolayer 

current at high voltages (Fig. 3.14b).  

 

 

Figure 3.14 Schematic representation of the Cu-level multi-channel hypothesis. 
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To test in the simplest manner this multi-channel hypothesis for both, the resonant tunneling 

and hopping mechanisms, we describe the monolayer (ensemble) current in terms of the 

following formula, 

( )( ) ( )( )0,1 0, 0, 1 0,1

1
  

,    >  multi k k k

k
low bias channel

J J V P J V   



= +  . (3.8) 

On the right-hand side of this equation the J ’s are current densities that are either computed 

by eqs (3.1)-(3.4) (coherent tunneling) or (3.5)-(3.7) (incoherent hopping). The subscript 

“multi” means multi- ( )0 V  sum. The first J  ( ( )0,1 V ) is computed using the zero-bias 0  

value and the other parameter values that produce the low-bias fits in Figs 3.9, 3.10  (for the 

coherent model) or Figs 3.12, 3.13 (for the incoherent model). The remaining J ’s are 

computed by using a range of higher zero bias level energies 0, 1 0.1 0.5k eV  = −  with all 

other parameters fixed to the values of the low bias channel. The prefactors kP  are calculated 

from fitting to the experimental ( )ln J V−  for the whole range of experimental voltages 

using multiple regression analysis. kP  can be interpreted as the zero-bias ratio of population 

of proteins in the ensemble with a given 0, 1k   to the population of proteins with 0,1 . 

Figure 3.15 below shows the individual J ’s in eq. (3.8) for the coherent (Fig. 3.15a) and the 

incoherent hopping (Fig. 3.15b) models for a similar range of 0,k  values. The bias saturation 

behaviors of the current in the two mechanisms are very different. Figure 3.16 shows the 

monolayer (ensemble) current obtaining from eq. (3.8) for both mechanisms using the 

identical zero bias level energies, 0, 1k  . Figure 16a is a representative fit of the ( )ln J V−  

dependence measured in ref. [29], using the incoherent multi-channel hopping model and 

Fig. 3.16b shows the fit results using the coherent multi-channel tunneling model.  The 

hopping model of eq. (3.8) gives a much better fit for a wider range of bias voltages, up to 

0.75V V=  , after which starts to saturate (to avoid saturation, more 0, 1k   should be added).  

On the other hand, the tunneling model of eq. (3.8) begins to saturate at much lower voltages 

and also shows an asymmetry when reversing the voltage, not consistent with the 

experimental results. Both models give approximate temperature independence of the multi-

channel current (similar to Figs 3.9 and 3.12).  We conclude that the dominant mechanism 

of Holo-Az transport in ref. [29], for the whole range of bias voltages probed in the 

experiments, is resonant through-Cu hopping.  
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Figure 3.15  Theoretical J versus V of Cu-Az at T = 300 K using a range of energy levels, 

ε0,k≠1 =0.1-0.5 eV (a) for the coherent resonant tunneling model (parameter values: ε0,1=0.03 

eV (best-fit at low bias regime), α=0.75, ΓL=3.3 10-5 eV, ΓR /ΓL=1000) and (b) for the 

incoherent hopping model (parameter values: ε0,1=0.01 eV (best-fit at low bias regime), 

λ=0.2 eV, α=0.75, ΓL=1.0 10-4 eV, ΓR /ΓL=1000). 

 

 

Figure 3.16 Experimental ln(J) versus voltage of Cu-Az 29 at T = 300 K and theoretical fits 

using the multi-channel hypothesis of eq. (3.8) using (a) the incoherent hopping mechanism 

(coefficients derived from multiple regression analysis: P1=0.35, P2=0.50, P3=3.14, P4=4.68, 

P5=13.01), (b) the coherent tunneling mechanism (coefficients of multiple regression 

analysis: P1=0.06, P2=6.84, P3=7.77, P4=3.21, P5=7.68). 
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3.2.2   Experiment on Au microelectrode – Az – Au microelectrode heterojunctions 

(exp. II) 

Ref. [30] reported temperature-dependent current-voltage ( )I V−  measurements on 

Au(substrate) – Holo Az – Au (nanowire) junctions with a small number of proteins 

(nominally 50 ). The currents were approximately temperature-independent (Figs 3.3a, 

3.3b). The I V−  curves are symmetric in contrast to the J V−  curves in ref. [29]. 

We find that the I V−  experimental results of ref. [30] can be reproduced by a single-

channel coherent tunneling model (eqs (3.1)-(3.4)), where the level energy is off-resonant to 

the Fermi level, 0  at zero bias. Typical ( )ln I T−  and ( )ln I V−  experimental and modeling 

plots are shown in Figs 3.17 and 3.18. The coherent tunneling model (eqs (3.1)-(3.4)) 

parameter values that reproduce the experimental results are: .0 470 = , . .0 0 70 0 80eV = −

, . .5 5

L 1 1 10 2 5 10 eV− − = −  and R L 100 1000  = − . 
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Figure 3.17 Experimental ln(I) versus 1000/T of Cu-Az 30 at +500 mV and +100 mV bias, 

versus theoretical fits (eqs (3.1)-(3.4)) using the parameter values: α=0.470, ε0=0.80 eV, 

ΓL=1.15 10-5 eV and ΓR/ΓL=1000.   
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Figure 3.18 Experimental ln(I) versus voltage of Cu-Az 30 at (a) 275 K and (b) 25 K, versus 

theoretical fits (eqs (3.1)-(3.4)) using the parameter values: α=0.470, ε0=0.80 eV, ΓL=1.15 

10-5 eV, and ΓR/ΓL=1000. 

 

In conclusion, the Holo-Az transport mechanisms differ in the two experiments 29,30 as 

suggested by Fig. 3.4. For the Holo-Az heterojunction in ref. [29], the best low bias fits to 

experiment are obtained by an one-channel resonant hopping model. To reproduce the high 

bias currents multiple resonant Cu-hopping channels must be introduced.  For ref. [30] a 

single-channel off-resonant tunneling model adequately describes the experimental results. 

These results are not that surprising given the structural differences between the 

heterojunctions in the two experiments. In the experiment of ref. [30], the proteins in the 

monolayer are covalently bound to both leads. In the experiment of ref. [29] the proteins in 

the monolayer are only covalently bound via a linker molecule to the substrate and are 

physisorbed to the Au LOFO. Thus, in the latter heterojunctions, there is much more disorder 

and weaker coupling of the metal to the leads (as compared to ref. [30]), both due to the 

physisorption and due to the linker molecule, which increases by approximately 6 Å the 

molecular bridge.  

 

3.3   Modeling of Apo-Az heterojunction experiments (exp. I) 

The modeling of Apo-Az experiments 29 is more involved. This is because two behaviors of 
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is notable that for the highest temperatures in the experiments (i.e. 400T K= ), the current 

for Apo-Az approaches the current for Holo-Az.  

 

3.3.1   Low Temperatures (
cT T ) 

We find that the experimental results for the Apo-Az heterojunction in the temperature-

independent regime ( )T 200K  can only be described via eqs (3.1)-(3.4) using an off-

resonant tunneling model. Example comparisons of experiment and theory are shown in Fig. 

3.19. The parameter values employed for the fit are: .0 50 = , . .0 0 60 0 70eV = − , 

. .3 3

L 1 0 10 2 5 10 eV− − = −  and R L 1  = . The off-resonant tunneling behavior may be 

interpreted as a consequence of the fact that the proteins are missing the metal ion capable 

to localize the charge (in a locally stable state). 

 

 

Figure 3.19 (a) Experimental ln(J) versus voltage of Apo-Az 29 at T = 128 K and theoretical 

fits using eqs (3.1)-(3.4). Since for 100 ≤ T ≤ 200 K, the current is temperature independent, 

the fit does not change with temperature. (b) Experimental ln(J) versus 1000/T of Apo-Az 

as a function of temperature at V = 0.05 and 0.10 V, and theoretical fits using eqs (3.1)-(3.4). 

For both (a), (b) the parameter values in eqs (1)-(4) are: α=0.50, ε0=0.70 eV, ΓL=1.0 10-3 eV, 

ΓR/ΓL=1. 
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In contrast to the case of Holo-Az, where 
0  in eqs (3.2), (3.3) was interpreted as a Cu-level 

energy, in the case of Apo-Az 
0  should be interpreted as an average amino acid tunneling 

barrier. 

 

3.3.2   High Temperatures (
cT T )  

In order to reproduce the experimental results for the Apo-Az heterojunctions (ref. [29], Figs 

3.1a, 3.1b, 3.2) in the thermally activated transport regime ( )T 200K , we need a 

mechanism that shows activated current behavior and produces Apo-Az current for the 

highest temperatures that approach the Holo-Az currents (see Fig. 3.8). This last observation 

implies that at the highest temperatures the protein (amino acids) provides channels 

(resonances) that are either within the Fermi window or that can easily be accessed 

thermally. These resonances will either be accessed by transferring charge coherently or 

incoherently. 

We find that the simple coherent transport model of eqs (3.1)-(3.4) cannot reproduce both 

the flat and the activated dependence of the Apo-Az current. The simplest generalization of 

this coherent model which incorporates a fluctuating resonance is a thermally modulated 

tunneling model. 44-46 In this model the level energy 0  in eqs (3.2)-(3.3) is a stochastic 

variable with a Gaussian probability density, 

                                 ( )
( )

( ) ( )
,

2 2
0 0 2 T

0

1
e

2 T

  
 



− −
=  (3.9) 

where ( ) eff BT k T =  ( eff  is an effective reorganization energy that characterizes the 

dependence of 0  level fluctuations as a function of temperature). The measured mean 

current is an average over level fluctuations, 

                                  ( ) ( ) ( ),0 0 0I V d V   
+

−

=  , (3.10) 

where ( ), 0V   is the current per molecule based on the Landauer Formalism (eqs (3.1)–

(3.4)). This model can partially reproduce the temperature dependence of the current in the 

thermally activated and the thermally-independent regions for 1 1eff . eV  and 0 0 60. eV =  

and only for low voltage values ( )0 250V . V  (see Fig. 3.20a). However, the parameters 
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that give the temperature-dependence in Fig. 3.20a cannot reproduce the experimental 

voltage dependence in the different temperature regimes (Figs 3.20b for 128T K=  and 3.20c 

for 308T K= ). 

 

 

Figure 3.20 (a) Experimental ln(J) versus 1000/T of Apo-Az 29 as a function of temperature 

at V = -0.05 V versus theoretical fits (eqs (3.9)-(3.10)). (b) Experimental ln(J) versus voltage 

of Apo-Az at T = 128 K (low temperature regime) and theoretical fits using eqs (3.9)-(3.10). 

(c) Experimental ln(J) versus voltage of Apo-Az at T = 308 K (high temperature regime) and 

theoretical fits using eqs (3.9)-(3.10).  For all graphs the parameter values are: λ=1.1 eV, 

α=0.50, ε0=0.60 eV, ΓL=1.0 10-3 eV and ΓR/ΓL=1. 

 

As an alternative to the above model for the behavior of the Apo-Az currents at high T , we 

have also tested a multi-site incoherent hopping model. To describe incoherent transport 

through the amino acids we use a generalization of the one-site hopping model to N  sites, 
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where N  is a parameter to be determined by fitting. This model 51,52 is schematically 

represented in Fig. 3.21, where ( )L R  denote the left (right) electron reservoirs (electrodes) 

and the 
iB  correspond to the different incoherent sites each of which should be interpreted 

as an electronic level of energy ( )i V , delocalized over one or more amino acids. The 

different i jk →  in this figure correspond to the different (forward and backward) electron 

transfer rates between these levels.  

 

 

Figure 3.21 Schematic representation of the hopping model where a molecular bridge with 

N=3 incoherent sites coupled to the left (L) and right (R) electrodes. 

 

To determine the steady state current in this model, we need to compute the stationary 

occupations 
( )( )ss

iP 0=  in the different sites (e.g., N 3=  below) by solving the 

corresponding kinetic equations: 

                       

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

,

ss ss ss

L 1 2 1 2 1 2 L L R

ss ss ss

1 2 1 2 1 2 3 2 3 2 3

ss ss ss

2 3 2 3 2 R 3 R L R

k k P k P k P 0

k P k k P k P 0

k P k k P k P 0

→ 

→  → 

→ 

− + + + =

− + + =

− + + =

 (3.11) 

The steady state current per molecule (evaluated at the left interface) is simply given by: 

                                    ( ) ( ) ( )( ),

ss ss

L L R L 1I V e k P k P= − − . (3.12) 

In order to specify the voltage dependence of the molecular levels ( )( )i V , we will assume 

that a portion ,L R  of the bias voltage drops at the left and the right metal-molecule 

interfaces, and a portion Ma  drops along the molecule such that: L M Ra a a 1+ + = . 

For simplicity, we will assume that all the forward rates are equal, i i 1 fk k→ + = . The same is 

true for the backward intra-molecular rates, i i 1 bk k − = . The rates are given by: 

L Lk

Lk

 B1 
1 2k →

2 1k 

 B2 

3 2k 

2 3k →

 B
3
 

Rk

Rk

R 
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( ) ( )( ) ( )

2

i j i j B i jV V 4k T

i jk k e
     − − + + +

→ =  (3.13) 

and they satisfy the detailed balance equation below: 

                                      Bi i 1
G k T

i i 1 i i 1k k e → +
−

→ +  − = . (3.14) 

For the voltage-dependent rates involving charge transfer to the electrodes, we shall use the 

typical expressions taken from heterogeneous electron transfer theory, 13 in eqs (3.6)-(3.7). 

For hopping rates from/to the ( )L R  electrode we use the molecular level coupled to the 

( )L R  electrode, ( ) ( )1
V


.   

The main parameters used in this model are: N  (number of incoherent hopping sites),   

(reorganization energy),   (the one-site energy of the molecular level at zero bias, assumed 

to be equal for all of them), k  (zero-bias intra-molecular transfer rate), ,L R  (parameters 

describing the voltage drop at the metal-molecule interfaces) and ( )( ) ( )2L R L R =   (golden 

rule rates).  

We find that to reproduce the activated behavior of the Apo-Az current for T 200K  we 

need at least N 3=  incoherent sites in the molecular bridge (amino acid centers). An 

example comparison of experiment and N −  site hopping theory is shown in Fig. 3.22. 

Figure 3.22a compares the experimental ( )ln J V−  curve (black square) to a theoretical fit 

using the N 3=  hopping-site model (red circle). Figure 3.22b compares the experimental 

( )ln J T−  curve to a theoretical fit using the same model (magenta triangle). The hopping 

model parameter values are: .0 3eV =  (typical for amino acids 53), .L R 0 40 = = − , 

.0 0 40eV = , . .8 8

L 1 0 10 3 30 10 eV− − = − , R L 100  =  and . .7 71 0 10 3 30 10 eV− − = − .  

Since the N 3=  hopping-site model is not relevant to the low temperature behavior, Fig. 

3.22b also shows a theoretical fit of the low temperature regime using the off-resonant 

tunneling model (eqs (3.1)-(3.4)) (blue triangle). STEFANI V
ALIA
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Figure 3.22 (a) Experimental ln(J) versus voltage of Apo-Az 29 at T = 308 K and theoretical 

fits (eqs (3.11)-(3.14)). (b) Experimental ln(J) versus 1000/T of Apo-Az at V = 0.50 V over 

the entire temperature range and theoretical fits (using eqs (3.11)-(3.14) at high temperatures, 

eqs (3.1)-(3.4) at low temperatures and eq. (3.15) for both temperature regimes). Model 

parameter values of eqs (3.11)-(3.14): N=3, λ=0.3 eV, αL=αR=-0.40, ε0=0.40 eV, Γ=3.30 10-

7 eV, ΓL=3.30 10-8 eV and ΓR/ΓL=100. Model parameter values of eqs (3.1)-(3.4): α=0.50, 

ε0=0.70 eV, ΓL=1.0 10-3 eV and ΓR/ΓL=1. Parameter value of eq. (3.15) (red line): p=0.3.  

 

The fitting results suggest that the Apo-Az current at low temperatures is mediated by 

tunneling and at high temperatures by through-amino acid hopping. The simplest 

interpretation of the above is that, the ensemble (monolayer) current density is described by 

the following simple relationship 

( ) ( ). .(1 )total Hopp TunnJ pJ T p J T= + −  (3.15) 

where ( ).HoppJ T  is the current density through the N 3=  hopping sites at the high 

temperature regime and ( ).TunnJ T  is the off-resonant tunneling current density. A good fit of 

eq. (3.15) to the experimental temperature dependence for the whole range of temperatures 

is also shown in Fig. 3.22b (red line). 

If we consider that every protein in the ensemble may transport charge via two dominant 

channels, hopping and tunneling, then the prefactor p  could be interpreted as the probability 

of hopping and 1 p−  as the probability of tunneling. However, this probabilistic 

interpretation of the parameter may be an oversimplified picture given the approximate 

nature of the models. Equation (3.15) could also be interpreted as a result emerging from a 
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more complete, rigorous theory, which reduces to the two limiting cases (tunneling, hopping) 

at different (low, high) temperatures.  

 

3.4   Modeling heterojunction experiments of Zinc-, Cobalt- and Nickel-substituted 

Azurins (exp. I) 

In addition to the Apo- and Holo-Az heterojunction experiments, ref. [29] reports the 

temperature and voltage dependencies of the current for Zn-, Ni- and Co- substituted Azurin 

heterojunctions. Figure 3.2 compares the current temperature dependencies of Apo-Az and 

Holo-Az to those of Zn-, Co- and Ni-Az at a voltage of -50 mV. The current temperature 

dependencies all exhibit a temperature independent region ( )cT T  and temperature-

dependent (activated) region ( )cT T . The shapes of the ( )ln J  versus 1 T  plots for Zn-, 

Co- and Ni-Az are intermediates between those of Apo-Az and Holo-Az. The Zn-Az and 

Apo-Az heterojunctions have similar current temperature dependencies and so do the Holo-

Az and Ni-Az heterojunctions. The Co-Az current temperature dependence is approximately 

intermediate between the Apo-Az and Holo-Az extremes.  

As the medium is changed from Apo-Az to Zn-, Co-, Ni- and Cu-substituted Az, the trend 

in the temperature dependence of the current is a reduction of the total current enhancement 

in the thermally-activated region, i.e., a reduction of 

( ) ( ) ( )( ) ( )( )max min max minln ln ln lnactJ J J J T J T = −  − , with a simultaneous increase of the 

minimum current, ( ) ( )( )min minln lnJ J T , in the temperature-independent region. This 

trend seems to be correlated with the reduction potentials Vs. SHE of the substituted metals 

and of some common amino acids (Table 3.1). The last column in Table 3.1 converts the 

reduction potentials Vs. SHE to an absolute energy scale (in eV) with respect to vacuum, 

50,54-58 to be compared to the Au fermi level of -5.1 eV. 59 It is obvious from the table that 

the barrier 
0

XG  for reduction of a metal or of an amino acid (AA) X  from Au follows the 

same trend as 
act

XJ , i.e., 
0 0 0 0 0

Cu Ni Co Zn AAG G G G G          and 

.act act act act act

Cu Az Ni Az Co Az Zn Az Apo AzJ J J J J− − − − −          

 

 

STEFANI V
ALIA

NTI 



58 

 

 

 

Table 3.1 Conversion of reduction potentials vs. SHE (mV) into electronic energies with 

respect to vacuum (eV) for metals relevant to experiments I and II and for some amino acids. 

50,54-58 

 

Therefore, we expect that in going from Zn to Ni the ensemble-averaged barrier for tunneling 

through Az is progressively lowered if the metal participates in transport. Figure 3.23 shows 

fits of the experimental results for the cases of Ni-, Co- and Zn-Az heterojunctions in the 

temperature-independent regime ( )T 200K  using the tunneling model (eqs (3.1)-(3.4)) 

with different values of 0  that follow the trend of 
0

XG  in Table 3.1. An example 

comparison of experiment and theory is shown in Fig. 3.23. The parameter values employed 

for the fit are: . .3 3

L 1 0 10 2 5 10 eV− − = − , R L 1  = , .0 50 =  and . , . , .0 0 2 0 22 0 55eV =  

for Ni-, Co- and Zn-Az heterojunctions respectively (eqs (3.1)-(3.4)). 

Reactions 
Reduction Potential 

0

XG  

Vs. SHE [mV] 

Reduction Potential 
0

XG  

with respect to vaccum [eV] 

Cu2+/Cu+ (Azurin) 310 -4.75 

Cu2+/Cu+ 160 -4.6 

Ni2+/Ni -257 -4.18 

Co2+/Co -277 -4.16 

Zn2+/Zn -760 -3.68 

Amino acids [at pH=7] 

Gly 1225 -3.215 

Trp 1250 -3.19 

Cys 1300 -3.14 

Tyr 1350 -3.09 
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Figure 3.23 Experimental ln(J) versus 1000/T of Ni-, Co- and Zn-Az 29 at -50 mV bias and 

theoretical best-fit using the off-resonant tunneling model (eqs (3.1)-(3.4)) with the best fit 

parameter values of ΓL=1.0 10-3 eV, ΓR/ΓL=1, α=0.50 and ε0=0.20, 0.22, 0.55 eV for Ni-, Co- 

and Zn-Az heterojunctions respectively. 

 

In the cases of Ni-Az and Co-Az heterojunctions, we can reproduce the experimental results 

both in the temperature-independent ( )T 200K  and thermally activated regimes 

( )T 200K  using the Landauer model (eqs (3.1)-(3.4)) with .  0 0 2 eV =  (Ni) and 

.  0 0 22 eV =  (Co). In the case of the Zn-Az heterojunction the current-temperature 

dependence resembles very much that of Apo-Az. This is reasonable since the reduction 

potential of Zn ( 0E 760mV= −  Vs. SHE) 54 is relatively close to that amino acid redox 

potentials (e.g. Tyr, Cys, Trp, Gly) (see Table 3.1). Therefore, Zn does not provide a much 

better transport channel than the amino acids in Azurin, and to explain the temperature 

behavior we can adopt the same modeling as in Apo-Az. Figure 3.23 shows that the Zn-Az 

current in the temperature-independent region ( )T 200K  is reproduced by a tunneling 

model with .0 0 55eV = , but this model cannot reproduce the current in the thermally 

activated region ( )T 200K . For this region, we use the N −  site hopping model, and as in 

the Apo-Az case we can reproduce the current for N 3  (Fig. 3.24). 

As in the case of Apo-Az, the hopping and tunneling currents can be combined to reproduce 

the Zn-Az current in the whole temperature range via eq. (3.15). Figure 3.24 (red line) shows 

the monolayer Zn-Az current computed from eq. (3.15) and compared to the experimental 

results of ref. [29].  
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Figure 3.24 Experimental ln(J) versus 1000/T of Zn-Az 29 at V=-50 mV over the entire 

temperature range and theoretical fits (using eqs (3.11)-(3.14) at high temperatures, eqs 

(3.1)-(3.4) at low temperatures and eq. (3.15) for both temperature regimes). Model 

parameter values of eqs (3.11)-(3.14): N=3, λ=0.3eV, αL=αR=-0.40, ε0=0.20 eV, Γ=1.0 10-12 

eV, ΓL=3.30 10-8 eV and ΓR/ΓL=1. Model parameter values of eqs (3.1)-(3.4): α=0.50, 

ε0=0.55 eV, ΓL=1.0 10-3 eV and ΓR/ΓL=1. Parameter value of eq. (3.15) (red line): p=0.3.   

 

It should be noted that the temperature dependencies of the activated currents in Fig. 3.2 for 

Ni-Az and Co-Az can also be reproduced by a through – amino acid hopping model, as is 

the case of Apo- and Zn-Az. Given the fact that at the highest temperatures all currents in 

Fig. 3.2 converge to similar values, the best interpretation of the activated region is that the 

current is dominated by through amino acid hopping in all cases. 

 

3.5   Conclusions 

The present theoretical investigation is motivated by experiments 29,30 which measure the 

current-voltage and current-temperature dependencies of ETpr Azurin monolayer 

heterojunctions. The experiments in ref. [29] (exp. I) involve Si-oxide substrate – Az – Au 

or Hg LOFO heterojunctions and compare the voltage and temperature dependencies of 

Holo-Az (with Cu as the redox site) and Apo-Az (with Cu removed). They also measure the 

temperature dependencies of other metal-substituted Azurins (Ni, Co, and Zn). The 

experiments in ref. [30] (exp. II) involve Au microelectrode – Az – Au microelectrode 

heterojunctions and measure the current-voltage and current-temperature dependencies of 

Holo-Az. The experimental results are very interesting because they enable the analysis of 
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transport through the same protein monolayer medium as a function of the metal substitution, 

temperature and voltage. 

In both types of heterojunctions 29,30 the Holo-Az current is approximately temperature 

independent but the bias voltage dependence of the Holo-Az current in ref. [29] differs 

considerably from ref. [30]. Further, in contrast to the temperature-independent Holo-Az, 

the Apo-Az current in ref. [29] shows activationless behavior at lower temperatures 

( )T 200K and activated behavior at higher temperatures ( )T 200K . The temperature 

dependencies of the current for the other metal substituted Azurin monolayers interpolate 

between the Holo-Az behavior and the Apo-Az behavior. In the temperature-independent 

regime, the magnitude of the current is the highest for Holo-Az and the lowest for Apo-Az 

with the other metal-substituted Azurins showing intermediate current values between the 

two extremes (Cu-Az > Ni-Az > Co-Az > Zn-Az > Apo-Az). At the highest temperatures 

the current magnitudes of all Azurin types are similar.  

The richness of the above phenomenology offers an opportunity to explore transport 

mechanisms through the Azurin monolayers and to gain insight into the competition between 

metal- and amino acid-mediated transport in these systems. In our work we have attempted 

to fit the experimental results using several standard models of coherent and incoherent 

transport mechanisms. Importantly, for each mechanism we fit simultaneously both the 

voltage and temperature dependencies of the logarithm of the current, using a common set 

of parameters. This approach turns out to limit to a large extent both the type of transport 

mechanism and its corresponding parameter set compatible with experiment. Our results do 

not exclude the possibility that the systems studied may operate in more complex, in 

intermediate regimes between the extremes of fully coherent and fully incoherent transport. 

However, given the information we have about the systems, it is impossible to determine 

more precisely those regimes. Our results are summarized in Table 3.2. 

 

Holo-Az experiments 

29,30 

Temp. independent 

current 

Zn- and Apo-Az 

experiments 29 

Temp. dependent current: 

cT T  

Temp. independent current: 

cT T  

Ni- and Co-Az         

experiments 29 

Current temp. dependence is 

intermediate between the Holo- 

and Apo-Az behaviors 
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Exp. I 29                 

through-Cu incoherent 

resonant hopping      

(high disorder) 

 

Exp. II 30                      

off-resonant tunneling 

 

cT T                                     

off-resonant tunneling 

 

cT T                             

through-amino acid hopping 

 

cT T                                     

near-resonant tunneling 

 

cT T                                     

both near-resonant tunneling and 

through-amino acid hopping are 

consistent with experiment 

 

Table 3.2 Transport mechanisms for the Azurin heterojunctions 29,30 in the different 

temperature regimes. Tc ≈ 200K remains the same for all Azurin heterojunctions. 

 

We find that in the Holo-Az heterojunctions of ref. [29] transport is mediated by through-

Cu incoherent resonant hopping with the possibility of through-Cu coherent resonant 

tunneling also contributing for low bias voltages. In contrast, for the Holo-Az 

heterojunctions in ref. [30], transport is mediated by off-resonant tunneling. Our analysis 

also shows that the Cu-level energies of the Holo-Az monolayers in ref. [29] are much more 

disordered compared to the monolayers in ref. [30]. These results explain the large 

differences in the low bias voltage dependencies of the current per Azurin molecule observed 

in the two experiments (Fig. 3.4) and also are consistent with the structural differences 

between the two types of heterojunctions. The proteins in ref. [29] are covalently bound via 

a linker molecule to one lead and physisorbed to the other. The proteins in ref. [30] are 

covalently bound by S-Au bonds to both leads. Thus, each Cu metal in the heterojunctions 

of ref. [29] is on average much more weakly coupled to the leads as compared to ref. [30], 

and the protein monolayer is much more disordered.   

For the Apo-Az experiments, 29 we find that the removal of the Cu atom changes the 

transport mechanism to through-amino acid off-resonant tunneling in the lower temperature 

(temperature-independent) regime and to through-amino acid hopping in the higher 

temperature, activated regime. For the other metal substituted Azurins (Zn, Ni, Co), the off-

resonant tunneling model reproduces the currents in the temperature-independent regime 

with average tunneling barriers that follow the same magnitude trend as the redox potentials 

of the metals, indicating that the metal type plays a role in influencing the average tunneling 
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barrier in these systems. For the high-temperature, activated regime, through-amino acid 

hopping can reproduce the current behavior for all three metal substitutions, although the 

off-resonant tunneling model can also reproduce the activated region for Ni- and Co-

substituted Azurins. The best self-consistent interpretation of the currents’ temperature 

dependence at the highest temperatures in Apo-, Zn- Co-, and Ni-Az monolayers is a 

through-amino acid hopping mechanism. 

The variability and mixing of transport mechanisms in the protein heterojunctions (see Table 

3.2) is consistent with our current understanding of biomolecular ET. Even at the single 

molecule level, protein structural fluctuations can lead to fluctuating molecular and metal 

electronic-level energies and intra-level couplings, giving rise to a spread of ET rates and to 

ET mechanism switches. 8,16,18,24,46,60 At the monolayer level there is also additional static 

disorder. Further, the dominance of the through-Cu hopping mechanism for the Holo-Az 

heterojunctions with weak metal-lead couplings is not surprising given the recent theoretical 

and experimental results on redox molecular junctions. 49,61,62 Our results show that when 

the redox hopping site is near-resonant to or within the Fermi window, and the reorganization 

is small, (as is the case of the Cu level in the heterojunctions of ref. [29]), the hopping current 

can be near temperature-independent for finite bias voltages. Therefore, a temperature-

independent current does not necessarily imply a coherent tunneling mechanism nor does it 

exclude a hopping mechanism. This conclusion is consistent with other theoretical working 

on hopping transport. 36 

 

3.6   Supplement 

In addition to the models described in detail in the main text which were partially successful 

in reproducing all of the experiments, we also tried to fit the experimental data using two 

more-complex models that often appear in the literature. These models failed to reproduce 

the experimental results of both experiments. 29,30 For the sake of completeness, we describe 

the models in the following. The first is the extended – fully adiabatic Newns-Anderson 

model. 37-40 According to the Newns-Anderson model the current is modulated by a 

collective coordinate Q  (solvent or molecule coordinate). The instantaneous current 37 I  

for a fixed value of Q  is given by 

( )
( ) ( )0 02

; , arctan arctana

V eV Ve
I V Q

h

 


+ 
=  − 

  
, (3.16) 
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where 

L R =  +   and 
4 1 1

a L R

= +
  

 (3.17) 

are the arithmetic and harmonic averages of the broadening functions 
( )L R

 . The energy 

offset from the substrate’s Fermi energy at fixed molecular configuration Q , can be 

expressed as 

( )0 ( , , ) 1 2Q V e e V Q    = − − + − , (3.18) 

where   is the reorganization energy,   is a gating efficiency, 0 1  ,   is the 

overpotential, ( )( ) 2L
eq eq L RV V e

e


  = − = + , and   is a voltage division factor 

.0 1   

The theoretical (total) current to be compared with the experimental current should be 

computed as a temporal average within a time meas . Because meas  is long compared to 

fluct  instead of temporal averaging, one can perform ensemble averaging 

( )
( ) ( )

( )

; , ; ,

; ,

; ,
Q Q

I V Q P Q V dQ

I V Q

P Q V dQ

 







−



−

=




, (3.19) 

where ( ); ,P Q V  is the thermal weight and can be expressed as 

( )  ; ; exp ad BP Q V U k T = −  , where ( ); ;adU Q V  is the adiabatic Gibbs free energy. In 

this model the site 0( , , )Q V   is interpreted as the redox Cu state energy which depends on 

a molecular conformation Q . 

The other model is a vibrationally coherent two-step ET model (2sETm). 41,42 The formula 

which gives the current and describes molecular transport in the adiabatic limit and for 0V   

is the following: 

( ) ( )( )
22

2

1 1
exp exp 1

4 4B B

AV
I

e e V e eV
k T k T

     
 

=
   

− − + + − −   
   

, 
(3.20) 

where 
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2

( ) ( )
4

ph L R L R

e
A w k 


=  (3.21) 

is a prefactor, ( )L Rk  are the microscopic transmission rates, ( )L R  are the densities of states 

and phw  is an average of the (solvent) phonon frequency. 

The specific research work presented in this chapter has been published during the doctoral 

program (see ref. [63]). 
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CHAPTER 4 

Observing Donor-to-Acceptor Electron-Transfer Rates 

and the Marcus Inverted Parabola in Molecular 

Junctions 
 

A recurring theme in molecular electronics is the relationship between the intra-molecular 

electron transfer rate in a donor-bridge-acceptor system and the conductance at low bias in 

the corresponding electrode-bridge-electrode junction. The similarities between through-

bridge donor-to-acceptor electron tunneling and through-bridge electrode-to-electrode 

Landauer transport led to the suggestion of an approximate linear relationship between the 

rate and the conductance for any given bridge. A large body of work indicates that the two 

quantities are not necessarily linearly related, showing different behaviors as a function of 

temperature, voltage and bridge length. Apart from Landauer tunneling, incoherent hopping 

can be an important mechanism in molecular junctions. We propose a donor-bridge-acceptor 

molecular junction, functioning in the incoherent hopping regime, that is suited for 

establishing direct correlations between the electrode-to-electrode current and the intra-

molecular donor-to-acceptor electron transfer rate. We suggest that this type of junction may 

be used to observe the Marcus-inverted-parabola dependence of the intra-molecular rate on 

energy gap by varying the bias voltage. The realization of such an experiment would enable 

meaningful comparisons between solution-phase electron transfer rates and molecular-

junction currents for the same molecule. 

A recurring theme in molecular electron transfer (ET) and transport (ETr) is understanding 

the role of the molecular bridge in transferring electrons, whether in the context of a donor-

bridge-acceptor ET reaction or in the context of an electrode-bridge-electrode ETr 

experiment. What features of the bridge’s structure tune the rate of an ET reaction and the 

conductance of a molecular-junction ETr experiment? Is it possible to correlate a donor-to-

acceptor ET rate to the electrode-to-electrode conductance for the same molecular bridge? 

These questions were posed in refs [1,2] where it was argued that an approximately linear 

relationship between the ET rate and the low-bias Landauer conductance exists in the 

simplest cases.  

References [1,2] inspired theoretical and experimental studies that explored correlations 

between ET rates and conductances. 3-8 The general conclusion is that the relationship 
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between the two quantities is not linear. There are several differences between an intra-

molecular ET experiment and a molecular ETr experiment, even when comparing a donor-

bridge-acceptor system to an electrode-bridge-electrode junction comprised of the same 

bridging molecule. For example, the molecular electron donor and acceptor states are 

localized, with discrete energies, in contrast to the electrode-donor and electrode-acceptor 

states which are more delocalized with a continuous or quasi-continuous energy spectrum. 

The donor-bridge and acceptor-bridge energy gaps and couplings in the ET experiment will 

generally differ from the electrode-bridge energy gaps and couplings in ETr. The solvent 

environment, much “dryer” in a molecular junction as compared to solution-phase ET, is 

also likely to influence the role of the bridge by perturbing the bridge’s conformation and its 

electronic states, and by altering the time scale of dephasing and vibrational relaxation. The 

electric field applied across a molecular junction induces additional types of perturbation to 

the bridge which are absent in the (zero-field) molecular donor-bridge-acceptor experiment. 

In addition to all of the above, differences in experimental probes (e.g., current versus time 

resolved absorption measurements), and other experiment-specific differences such as 

bridge-electrode contact disorder, are likely to make simple correlation between ET rates 

and ETr conductances.  

In spite of the above complications there are common bridge-dependence trends among ET 

and ETr experiments. For example, saturated bridges are less conductive than unsaturated 

ones and bridges that act as tunneling barriers show exponential dependence of the rate and 

the conductance on bridge length. In both ET and ETr communities one talks about through-

bridge off-resonant tunneling, resonant-tunneling and hopping mechanisms, and there are 

efforts to incorporate biological ET molecules (proteins and DNA) in molecular junctions or 

self-assembled monolayer heterojunctions with the aim of using some of the molecular ET 

properties to tune the corresponding currents in the junctions. 9,10  

The most common ET mechanism in chemical and biological systems is incoherent hopping. 

12-18 The hopping centers (sites) are redox moieties connected by molecular bridges that most 

often act as tunneling barriers. The electron moves from the donor site (D) to the acceptor 

site (A) via a through-bridge coherent tunneling step. The closest analogy in a junction is 

through-bridge electrode-to-electrode coherent tunneling at low bias, described by the 

Landauer theory. However, it is possible, in the regime of weak electrode-bridge coupling, 

that a part of the molecular bridge between the electrodes acts as an incoherent site that 

accepts (donates) a transferring electron. Simple rate models for such incoherent transport 

mechanisms are abundant. 2,3,19-21 For example, the introduction of a redox moiety inside the 
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molecular bridge can create an additional incoherent channel that involves switching 

between the redox moiety’s oxidation states. Indeed, recent theoretical work considered 

junctions containing a redox moiety with multiple fast and slow channels. 22-24 Such 

junctions (denoted “redox”) have very rich voltammetric phenomenology such as negative 

differential resistance and hysteresis because the switching charge state of the redox moiety 

can gate the molecular electronic level energies. In general, there is strong experimental 

evidence of incoherent hopping in junctions where a bridge contains a redox center. 24-26 

Motivated by these advances and by ref. [2] that compared the low-bias conductance to a D-

to-A ET rate, we propose a molecular junction setup containing two redox centers connected 

to each other by a linear bridge and also to the electrodes by linear bridges. “Linear” is an 

approximate term, e.g., a planar bridge with one dimension much larger than the other two 

is also considered linear if the redox center/electrode is connected at the end of the larger 

bridge dimension. The two redox centers of the junction may be chosen from solution-phase 

ET systems for which they are the DA pair in bridge-mediated D-to-A ET reactions 

operating in the limit of nonadiabatic Marcus theory. We discuss junction parameters that 

enable the direct observation of a nonadiabatic bridge-mediated ET rate between these redox 

centers by measuring the junction current under a bias voltage. 

 

4.1   Theoretical methods 

Prior to discussing the proposed junction setup, we review a simple (single-site) hopping 

model that is often used to describe the incoherent hopping mechanism (Fig. 4.1). 19,20,25,26 

A redox center (incoherent hopping site) is connected to a left (L) electrode and to a right 

(R) electrode via bridges (linkers). The bridges are not necessarily of the same length and 

both act as tunneling barriers for electron transfer between the hopping site and the electrodes 

(Fig. 4.2). There is only one (hopping) channel that supports the current and it involves a 

single electronic level of M. 

 

 

L R

Redox center 

  BL 

Bridge  

Lk

Lk Rk

Rk

   BR    M 
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Figure 4.1 Schematic representation of a linear one-site hopping model with a single 

hopping site (redox moiety M) connected to left (L) and right (R) electrodes, respectively. 

The connection to the L electrode is through a molecular bridge that is assumed to act as a 

high tunneling barrier for the transferring electrons. The M-to-electrode hopping rates are 

given by Marcus theory rates for heterogeneous ET (eqs (4.2) and (4.3)). 

 

In the fully incoherent limit (weak M-electrode coupling) the bias-voltage and temperature 

dependence of the current can be interpreted in terms of a hopping model that involves 

heterogeneous ET between the level of M and the right (R) or left (L) electrode. Figure 4.2 

shows the energetics assuming a positive bias. The left and right bridge levels BL (BR) are 

shown to be of much higher energy than both M level energy and the L (R) Fermi levels. 

This depiction implies that the bridge levels act as tunneling barriers, providing only virtual 

intermediates for the transferring electrons. For example, assuming that the current is carried 

by holes, the accessible charge states of the junction are LBLM+BRR and LBLMBRR (with 

LBL
+MBRR and LBLMBR

+R energetically inaccessible). 

 

                                 

Figure 4.2 Schematic representation of the molecular levels in the junction setup of Fig. 4.1. 

The diagram shows a positive bias situation, where the backward rates are much larger than 

the forward rates. The bridge levels BL and BR shown to be of much higher energy than the 

redox level M. M indirectly couples to the L and R electrodes through the bridge levels 

(electronic couplings are represented by red dotted lines).  

 

The steady-state current given the above assumptions is  

M 

2L eV = −

L

2R eV = +

R

Lk

Lk

Rk

Rk
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I V e

k V k V k V k V

→ →  

→  → 

−
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+ + +
, (4.1) 

where the rates are described by Marcus theory for heterogeneous ET, 19,21,22,27,28 
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( ) ( ) ( )( )

2 , , ,

2 1 , , ,

L
L L ox M L
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and 

(4.2) 

( ) ( ) ( )( )
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2 , , .
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R R red M R
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  
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
= − −  


= −
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

 (4.3) 

In the equations above, ( )iik k  are reduction (oxidation) rates of M by the ith electrode (i = 

L, R). ( ) ( )( ), ,ox M L R
W E V   and ( ) ( )( ), ,red M L R

W E V   are distribution functions 27 for the 

oxidation and reduction of M, and are given by  

( ) ( )( )
( )( ) ( )( )

2

41
, ,

4

ML R

B

E V

k T

ox M L R

B

W E V e
k T

  

 


− + +
−

= , 

( ) ( )( )
( )( ) ( )( )

2

41
, ,

4

ML R

B

E V

k T

red M L R

B

W E V e
k T

  

 


+ + −
−

= . 

(4.4) 

L eV 2 = −  ( )R eV 2 = +  are the chemical potentials of the L (R) electrode and ( )M V  

the redox-level energy, given by ( ) ( )0 1 2M V eV  = + −  , where 0  is the zero-bias 

energy of the M level and   determines the voltage dependence of the level, e.g., a value of 

0.5 =  leads to ( ) 0M V = , whereas 0.50   would give a voltage dependence of the M 

level energy that is more pinned to the right electrode.   is the reorganization energy for 

oxidation / reduction of the redox moiety, and ( )L R  are the level broadenings associated 

with the bridge-mediated couplings ( )L R
H  between M and the L (R) leads, 

( ) ( )
2

( )L R L R L R
H  = , (4.5) 
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where 
( )L R

  are the electronic densities of states of the L (R) leads. ( )L RH  should be 

interpreted as a through-bridge (BL(R)) tunneling matrix elements. In the following we denote 

the prefactors for the heterogeneous ET rates as ( )

( )

( )

2 1

4

L R

L R

L R

c



= . These prefactors 

can be approximated from voltammetric studies of nonadiabatic heterogeneous ET for a 

variety of redox center-bridge-electrode systems. 29,30 

If LH  is much weaker than RH , we expect to encounter regimes for which the ( )Lk V

( )( )Lk V  is current limiting, depending on the sign of the bias voltage (much smaller than 

the ( )Rk V ( )( )Rk V . For example, in a situation when the ( )Lk V  is current limiting, the 

current in eq. (4.1) is directly proportional to ( )Lk V , i.e., ( ) ( )LI V ek V  for 0V   and 

( ) ( )LI V ek V −  for 0V  . In this situation, the voltage and temperature dependence of the 

current reflects the voltage and temperature dependence of the heterogeneous ET rate. Figs 

4.3 and 4.4 are examples of this situation for a system with ( ) ( )0.15M V eV = +  , 

0.2eV =  and L Rc c . Figure 4.3 is a plot of ( )Lk V  as a function of voltage at different 

temperatures. The behavior is typical of a heterogeneous ET rate which has a sigmoidal 

dependence on overpotential, increasing in the normal region and saturating in the inverted 

region (the former showing activated temperature dependence and the latter temperature 

independence, see Fig. 4.4b). Figure 4.4a shows the exact and approximate (rate-limited) 

current expression as a function of voltage, indicating that ( ) ( )LI V ek V  for 0V   and 

( ) ( )LI V ek V −  for 0V  . Figure 4.4b shows the temperature dependence of the current at 

three different voltages, corresponding to the normal (thermally activated), inverted and 

activationless regimes of the heterogeneous ET rate in Fig. 4.3 and the approximate current. 

The signatures of Marcus heterogeneous ET rates have recently been observed in ref. [24], 

which probed the bias-voltage dependence of the current in a more complex (redox) 

molecular junction, and in ref. [26]. STEFANI V
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Figure 4.3 Left backward rate ( Lk  eq. (4.2)) versus the bias voltage V at T = 100-400 K. 

The heterogeneous ET rates have a sigmoidal dependence on voltage, increasing in the 

normal regime and saturating in the inverted regime. Parameter values: α = 0.65, ε0 = 0, λ = 

0.2 eV, cL = 0.15 x 102 eV-1/2 ns-1 and cR/cL = 1000. 29 

 

 

Figure 4.4 (a) Current I versus the bias voltage V at T = 300 K. Exact current expression (eq 

(4.1) black dots) and approximate expressions for the positive bias voltage regime (

( ) LI V ek  red dots) and for the negative bias regime ( ( ) LI V ek −  blue dots). (b) Current 

I versus 1000/T at V = 0.05 V (black dots) indicates the normal Marcus regime, 0.2 V (red 

dots) indicates the activationless regime, 0.4 V (blue dots) indicates the inverted Marcus 

regime. Parameter values: α = 0.65, ε0 = 0, λ = 0.2 eV, cL = 0.15 x 102 eV-1/2 ns-1 and cR/cL = 

1000.  
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In contrast to the Marcus heterogeneous ET rate between a redox center and an electrode 

(eqs (4.2)-(4.5)) the intra-molecular Marcus ET rate between two redox centers (D and A) 

in a DBA system shows an inverted-parabola behavior (for the natural logarithm of the rate) 

as a function of DA energy gap. 31,32 As the energy gap is changed from positive to negative 

values, the rate increases (in the normal activated region) reaches a maximum (in the 

activationless region) and then decreases again (in the inverted activated region). We 

propose a molecular junction setup suited to observe directly an intra-molecular ground-state 

D-to-A ET rate in the current measurement. The ultimate proof of success for the junction 

experiment would be to demonstrate that the natural logarithm of the current under bias 

shows the inverted-parabola behavior of the rate’s energy gap dependence. We discuss 

conditions under which this observation would be possible.  

The simplest setup (model) is a linear junction with two groups ML and MR that act as 

incoherent D and A hopping sites, and that are connected by a central molecular bridge (BM). 

BM acts as a tunneling barrier for electron transfer between ML and MR (Fig. 4.5). The ML 

group is also connected to a left electrode (L) via a bridge BL and the MR group to a right 

electrode (R) via a bridge BR (both acting as tunneling barriers). Applying a bias voltage V 

across the junction induces a current that involves electron tunneling between ML and MR. 

The rate of ML-MR electron transfer is nonadiabatic, described by Marcus theory. Due to the 

quasi-linearity of the junction there are no other parallel transport channels that avoid ML-

MR electron transfer. Under what conditions is the current proportional to bridge-mediated 

ML-to-MR ET rates (backward or forward), similar to the intra-molecular D-to-A ET rates 

that would be observed in a solution-phase ground-state ET experiment of the DBA system 

where ML and MR act as D and A? 

A critical condition is that ML and MR redox levels be weakly coupled to each other by the 

bridge, such that ET between ML and MR within the junction is the slowest rate process (thus 

current limiting). Using the notation of Figure 5, the ML-to-MR ET rates, intk  and intk , 31 are 

given by,  

( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

2

2

42

int ,

42

int ,

2 1
,

4

2 1
.

4

L R

L R B

L R

L R

L R B

L R

G V

k T

M M

L R B

G V

k T

M M

L R B

k H e
k T

k H e
k T

 

 

 

 



  



  

 + +
−

+

 − +
−

+

=
+

=
+

 (4.6) 
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,L RM MH  is the bridge-mediated ML-MR tunneling matrix element and 
L , 

R  are the ML, MR 

reorganization energies, respectively. ( ) ( )
R LM MG V V  = −  is the energy gap for bias 

voltage V, where ( )
LM V , ( )

RM V  are the redox energies of ML and MR. 

The forward and backward rates for ET between ML (MR) and the L (R) electrode are 

described using nonadiabatic Marcus theory for heterogeneous ET where ( )Lk V  and ( )Lk V  

are given by eq. (4.2) with M replaced by ML and ( )Rk V  and ( )Rk V  are given by eq. (4.3) 

with M replaced by MR. The underlying assumption for using eqs (4.2) and (4.3) is that the 

ML-L and MR-R electronic couplings and widths ( ,L RM MH  and ( )L R ) are relatively weak. 

Thus, the ML and MR redox levels are localized on the redox units as would be the case for 

the solution-phase system.  

 

 

Figure 4.5 Schematic representation of the linear redox junction model. Donor (ML) and 

acceptor (MR) redox groups are connected to left (L) and right (R) electrodes, respectively 

via left (BL) and right (BR) bridges and also connected to each other by a middle bridge (BM). 

All bridge units are tunneling barriers for the transferring electrons. The model assumes that 

the ET mechanism between ML and MR is incoherent hopping with forward and backward 

intra-molecular ET rates given by eq. (4.6). ET between ML (MR) and the L (R) electrode is 

also incoherent hopping with forward and backward heterogeneous ET rates given by eqs 

(4.2) and (4.3). 

  

To calculate the steady state current in this model, we use the method in refs [33-35]. We 

obtain the stationary occupations 
( )ss

iP  for each site i  (i = ML, MR, L/R) by solving the 

following kinetic equations with 
( )

0
ss

iP = : 

L R

 

    BM 

Middle bridge  

(tunneling barrier for intra-molecular ET) 

intk
intk

Lk

Lk Rk

Rk

       BL  BR      ML  MR 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

int int ,

int int ,

,

0

0

1

L R

L R

L R

ss ss ss

L M M L L R

ss ss ss

M R M R L R

ss ss ss

M M L R

k k P k P k P

k P k k P k P

P P P

− + + + =

− + + =

+ + =

 (4.7) 

The steady state current (evaluated for the left interface) is: 

( ) ( ) ( )( ), L

ss ss

L L R L MI V e k P k P= − − , (4.8) 

leading to the following exact expression for the steady state current (see Supplement 

section): 

( ) int int

int int int int int int

L R L R

L L L R L R R R L R L R

k k k k k k
I V e

k k k k k k k k k k k k k k k k k k

 −
= −  

+ + + + + + + + 
 (4.9) 

To describe the bias-voltage dependence of the redox-level energies ( ( )i V , i = ML, MR), 

we assume that a fraction ( )L R   of the bias voltage drops at the left (right) electrode-

molecule interface, and a fraction M  drops along the molecular bridge between the ML and 

MR redox groups ( )1L M R  + + = . In terms of these parameters, the bias-voltage 

dependence of the ML and MR redox-level energies are described by  

( ) ( ),0 1 2
L LM M LV eV  = + − , (4.10) 

and  

( ) ( ),0 1 2
R RM M RV eV  = − − , (4.11) 

where ,0i  (i = ML, MR) are the zero-bias redox energies of ML and MR. Therefore, the ML-

MR energy gap that determines the intra-molecular ET rates (eq. (4.6)) is given by  

( ) ( ) ( ) ( ) ( ),0 ,0 1
R L R LM M M M L RG V V V eV      = − = − − + − . (4.12) 

This equation expresses the energy gap as a function of the Fermi window of the junction, 

as shown in Fig. 4.6 for a positive bias voltage and for ,0 ,0L RM M = . 
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Figure 4.6 Schematic representation of the levels in the BLMLBMMRBR junction of Figure 

4.5. Electronic couplings between the levels are represented by red dotted lines. The diagram 

shows a positive bias situation with the ML (MR) DA energy gap written as a function of the 

total bias across the junction. In our model this fraction is controlled by the parameters αL 

and αR. The figure shows that the bridge levels act as deep tunneling barriers for the 

transferring electron such that only ML and MR change their oxidation state during transfer. 

Positive bias leads to a positive L-to-R current (R-to-L electron flow). 

 

The model assumes that the junction only accesses states with one extra electron (or hole) 

on the bridge (as implied by the constraint in the third line of eq. (4.7)). Further it assumes 

that the extra charge is either localized on ΜL and/or MR units but not on the bridge units Bi 

whose levels act as high energy virtual intermediates. Thus, the junction ΜL-to-MR ET step 

is analogous to a ΜL-to-MR charge shift process in solution phase. In summary, apart from 

the bias voltage and temperature, the main parameters of the model are: i  and ,0i  

(reorganization energies and redox energies of redox groups i = ML, MR ), i  (electrode-to-

ML (MR) voltage-drop fraction), ( )L R
c  (prefactors for the ET rates from the levels to the leads, 

related to the level broadenings) and c  (prefactor for the intra-molecular ET rates, 

( )
2

,

2 1

4
L RM M

L R

c H


  
=

+
 ). 

In the following we give examples of different regimes that could be observable in the 

proposed junction (Figs 4.5 and 4.6) under the abovementioned conditions. We consider the 

simplest junction setup, a symmetric system of identical ML and MR groups (

2L eV = −

L

2R eV = +

R

LM

RM

 

 

 

 
 

Lk

Lk

Rk

Rk

intk

intk
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,0 ,0 0L RM M  = =  in eqs (4.10) and (4.11)) connected by a symmetric bridge and having 

identical L and R leads and ML-L and MR-R couplings. The model’s ET parameters are given 

values that are typical of molecular and electrochemical nonadiabatic ET. 

 

4.2   Results and Discussion 

In all of the examples of the figures that follow, the energy, coupling and reorganization 

energy values are such that the intra-molecular and heterogeneous ET rates are nonadiabatic 

(see the discussion in section 4.4.3 of the Supplement). Further, all of the ET rates can be 

described by thermal-equilibrium theories because they are slower than typical vibrational 

relaxation times.  

In order to explore the behavior of the current in the proposed quasi-linear symmetric 

junction, it is necessary to model the voltage profile across the junction, i.e., to justify values 

for L  and R  in eq. (4.12). We first consider the model of a linear voltage drop across the 

junction. Denoting the L-ML, ML-MR and MR-R distances as , LL MD , ,L RM MD  and ,RM RD  

respectively, a linear voltage profile leads to ,RR M R totD D   and , LL L M totD D  , where 

, , ,L L R Rtot L M M M M RD D D D= + +  is the total length of the junction. For example, for a 

symmetric junction with , , ,L R L RL M M R M MD D D  , 1/ 3L R =  . For a linear voltage 

profile with 1/ 3L R =  , the energy gap between ML and MR redox levels (free energy 

for the intra-molecular ET reaction) is ( ) 3G V eV =  (eq. (4.12)), lower than   across 

the junction (see Fig. 4.6).  

For a meaningful comparison to solution-phase ML-MR ET rates, the in-junction redox levels 

of ML and MR should not be hybridized with the electrodes even if the redox-level energies 

are close to the Fermi levels, i.e., ( ) ( ) 4L RL R
 . To this end, the BL and BR bridges 

connecting the redox groups to the electrodes should be high tunneling barriers for ET 

between the electrodes and the redox levels. This property can be achieved by using fully 

saturated organic bridges and metal ML and MR groups. 11 The ML(R)-L(R) electronic 

couplings will be very weak for the BL and BR bridge lengths of the order of 10 Å and can 

be estimated from experiments. 29  

We first present the simplest junction case where the redox energies of ML and MR groups 

are quasi-resonant to the Fermi level of the L and R electrodes at zero bias (
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,0 ,0 0 0
L RM M  = =   in eq. (4.12)), and then relax this condition (i.e., set 

0 0  ). Figure 

4.7 shows the I-V behavior of such a junction at T = 308 K ( 1/ 3L R = = , 
0 0 = , 

0.1L R eV = = , 1 1 2 10.22 10L Rc c eV ns− −= =   and 1 2 10.15c eV ns−= ). The 

reorganization energy values are low (inner sphere), typical of a “dry” junction environment. 

The 
( )L R

c  values are consistent with those derived from voltammetric experiments of 

heterogeneous ET between metal redox centers connected to electrodes by saturated bridges 

of 7 - 10 Å length. 29 Since ( )

( )

( )

2 1

4

L R

L R

L R

c



= , for reorganization energies of 0.1eV , 

the 
( )L R

c  values correspond to ( ) ( )
60.8 10

L R L R
eV − =   (consistent with a localized 

redox-level regime and with the nonadiabatic limit). Choosing 1 2 10.15c eV ns−=  for 

( )
2

,

2 1

4
L RM M

L R

c H


  
=

+
 of the intra-molecular rate (eq. (4.6)), corresponds to a weak 

bridge-mediated coupling of 4

, 1.6 10
L RM MH eV−=  , a plausible value for metals connected 

by a saturated bridge of a few Angstroms length. 11 In this parameter regime the intra-

molecular ML-to-MR ET rates are the slowest, and all ET rates (intra-molecular and 

heterogeneous) are much slower than (psec)-1, a typical vibrational relaxation rate. Thus 

thermal-equilibrium nonadiabatic theory is justified for all ET rates, intra-molecular and 

heterogeneous. The conditions of ( ) ( )L RL R
  and of rates slower than (psec)-1 are 

important for enabling correlations with solution-phase ET. 

The I-V behavior in Fig. 4.7 shows current maxima at the bias-voltage values maxV . At 

higher (lower) bias voltages than maxV+  ( maxV− ) the current drops, showing a type of 

Negative Differential Resistance (NDR) behavior. NDR can arise from a variety of 

mechanisms and has been observed in several cases. 36-39 We will show that in the context 

of the proposed quasi-linear junction, this behavior is due to the fact that the intra-molecular 

MR-to-ML ET rates ( )int int,k k  limit the overall current and they are also driven by the bias 

voltage from the normal to the activationless and back to their inverted regimes. In an actual 

experiment the current will likely not drop completely to zero at the highest bias-voltage 

values because other high-voltage channels may start contributing to the current. However, 

for the proposed parameter regime and for a quasi-linear (stretched) junction geometry, such 

additional channels will be weaker tunneling currents and the peak region of the current 

around maxV  will be observable (see Supplement section 4.4.4).  
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Figure 4.7 Current I (eqs (4.8) and (4.9)) versus the bias voltage V at T = 308 K for the 

partially pinned system of Fig. 4.6. Parameter values: αL = αR = 0.33, ε0 = 0, λL = λR = 0.1 

eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 0.15 eV1/2 ns-1. The current shows a gaussian 

dependence on the voltage that reflects the energy gap dependence of the intra-molecular ET 

rates intk  or intk . 

 

To clarify the dependence of the current on the intra-molecular ET rates, we focus on the 

positive bias region of Fig. 4.7, where R L   and the forward intra-molecular ML-to-MR 

ET rate is slower than the backward MR-to-ML rate, int intk k , since 3G  =  . Fig. 4.8a 

shows the MR-to-ML ET rate intk  as a function of bias voltage (bottom x axis) and as a 

function of the MLMR energy gap (top x axis), which is given by 

( ) ( ) ( ) 3.
R LM MG V V V eV  = − =  The ET rate has the expected gaussian energy-gap 

behavior (normal, activationless and inverted) with a maximum at 

( )max *

L RG V G   =  = + . Figure 4.8b shows the corresponding current (eqs (4.8) and 

(4.9)) in the positive voltage region and also an approximate expression for the current, 

( ) intI V ek . The figure demonstrates that, in this ET-rate limited regime, the current is 

determined by the ET rate and the current’s voltage dependence reflects the free energy gap 

dependence of the rate. The maximum current voltage is at ( )max *3 3 L RV G e e =  = +  

and the voltage width of the current’s gaussian region is ( )3 2I L R BV k T e    = + . 

Both of these variables could be used to predict the reorganization energy of the intra-

molecular ET reaction in the junction environment. The approximate expression for the 
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current, ( ) intI V ek , can be derived from eq. (4.8) in the limit where int ( ) ( ),L R L Rk k k  

(Supplement section 4.4.2, eqs (4.20) and (4.21)). For negative voltages the current in this 

example is given by ( ) intI V ek − . This type of experiment can be readily correlated to one 

involving the solution-phase ET reaction for an identical DBA system. 

 

 

Figure 4.8 (a) Backward intra-molecular rate intk  versus the bias voltage V and Gibbs free 

energy ΔG at T = 308 K. (b) Current I versus the bias voltage V and Gibbs free energy ΔG 

at T = 308 K (covering the positive V region of Figure 7). Exact current expression (eq (4.9) 

black dots) and approximate current expression ( ( ) intI V ek  red dots). Parameter values for 

both graphs: αL = αR = 0.33, ε0 = 0, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 

0.15 eV1/2 ns-1. ( )max *3 3 L RV G e e =  = +  and ( )
int

3 2I k L R Bk T e   = = + . 

 

Figure 4.9 is similar to Fig. 4.8 showing the I-V behavior for positive bias voltage in the case 

of larger reorganization energy ( )0.2L R eV = =  and larger bridge-mediated DA coupling

4

, 3.0 10
L RM MH eV−=   (all other parameters are the same as in Figs 4.7 and 4.8). The 

current is still rate limited by the intra-molecular rate, but the maximum current bias voltage 

maxV  and the width of the gaussian region I  are higher due to the larger reorganization 

energy ( )L R +  of the intra-molecular ET rate. 
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Figure 4.9 (a) Backward intra-molecular rate intk  versus the bias voltage V and Gibbs free 

energy ΔG at T = 308 K. (b) Current I versus the bias voltage V and Gibbs free energy ΔG 

at T = 308 K. Exact current expression (eq. (4.9) black dots) and approximate current 

expression ( ( ) intI V ek  red dots). Parameter values for both graphs: αL = αR = 0.33, ε0 = 0, 

λL = λR = 0.2 eV, cL = cR = 0.15 x 101 eV-1/2 ns-1 and c = 0.38 eV1/2 ns-1. 

( )max *3 3 L RV G e e =  = +  and ( )
int

3 2I k L R Bk T e   = = + . 

 

Figure 4.10a shows the I-V behavior of the symmetric junction in the case where all 

parameters are identical to those of Figs 4.7 and 4.8 apart from the zero-bias redox energy 

of ML (MR) which is now taken to be off-resonant with respect to the Fermi level 

( ),0 ,0 0 0.1
L RM M eV  = = = . Figure 4.10a shows the corresponding current (eqs (4.8) and 

(4.9)) and also an approximate expression for the current, ( ) int

int

R

R R

ek k
I V

k k k


+ +
 for positive 

voltages and ( ) int

int

L

L L

ek k
I V

k k k
 −

+ +
 for negative bias voltages (Supplement section 4.4.2). 
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Figure 4.10 Current I versus the bias voltage V at T = 308 K for a junction with off-resonant 

ML and MR redox levels at zero bias. Parameter values for both graphs: αL = αR = 0.33, ε0 = 

0.1 eV, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 0.15 eV1/2 ns-1. (a) Exact 

current expression (eq. (4.9) black dots) and approximate current expressions for the positive 

bias voltage regime ( ( ) int

int

R

R R

ek k
I V

k k k


+ +
 red dots) and for the negative bias regime (

( ) int

int

L

L L

ek k
I V

k k k
 −

+ +
 blue dots). (b) Current I versus the bias voltage V at T = 308 K 

(covering the positive V region). Exact current expression (eq. (4.9) black dots) and rate-

limited approximate current expression ( ( ) intI V ek  red dots).  

 

Apart from a low-bias activated region for bias voltages between 0.2 V−  and 0.2 V+ , (due 

to the off-resonant redox levels at zero bias), the I-V curve shows the inverted Marcus 

behavior expected of a current that is limited by the intra-molecular rate. Figure 4.10b shows 

that the current is limited by the intra-molecular rate ( )( )intI V ek  in region around the 

current maximum. Thus, the rise and fall in current with voltage reflects the inverted Marcus 

behavior of the current-limiting intra-molecular rate (see more examples in the Supplement 

section 4.4.2). 

The behaviors shown in Figs 4.7 to 4.10 are accessible experimentally if the voltage profile 

inside the molecule is such that it induces an energy gap between the donor and acceptor 

(ML(R)) groups. However, if the voltage profile is very flat and ( ) 0G V  , it will not be 

possible to observe the inverted and normal regime for the intra-molecular rates even if the 
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latter are the slowest rates. In this case int int intk k k= = , where 
intk  is an intra-molecular rate 

(eq. (4.6)) with activation energy ( ) 4L R + . For positive bias, int ,i ik k k  (i = ML, MR), 

L Rk k  and assuming that the intra-molecular rate is not much smaller than the rest of the 

heterogeneous rates, the current is given by the approximate expression 

( ) int

int3

R

R R

ek k
I V

k k k


+ +
. For negative bias it is given by ( ) int

int3

L

L L

ek k
I V

k k k
 −

+ +
 (Supplement 

section 4.4.2, eq. (4.23)).  

Figure 4.11b shows the I-V behavior of a BLMLBMMRBR junction at T = 308 K for the case 

where ML and MR remain resonant at the center of the Fermi window for all voltages (i.e., a 

flat voltage profile for the ML-MR section). The parameter values are identical to those of 

Figs 4.7 and 4.8, 0.1L R eV = = , 
1 1 2 10.22 10L Rc c eV ns− −= =   and 1 2 10.15c eV ns−= , 

apart from the pinning parameters ( 0.50L R = =  and 0 0 = ). The current’s voltage 

dependence is determined by the heterogeneous ET rates (since the ML-MR energy gap 

remains zero) and the abovementioned approximate formulas give good approximations to 

the current. In this situation the current’s dependence on the intra-molecular rate is masked 

by the heterogeneous rates because the intra-molecular rate energy gap is not affected by the 

bias voltage. 

 

 

Figure 4.11 (a) Right backward injection rate Rk  (black dots) and left forward injection rate 

Lk  (red dots) versus the bias voltage V at T = 308 K. (b) Current I versus the bias voltage V 

at T = 308 K. Exact current expression (eq. (4.9) black dots) and approximate current 
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expressions for the positive bias voltage regime ( ( ) int

int3

R

R R

ek k
I V

k k k


+ +
 red dots) and for the 

negative bias regime ( ( ) int

int3

L

L L

ek k
I V

k k k
 −

+ +
 blue dots). Parameter values for both graphs: 

αL = αR = 0.50, ε0 = 0, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 0.15 eV1/2 ns-

1. 

 

Finally, in the limit where the intra-molecular rate is fast compared to the heterogeneous ET 

rates, the current is either limited by a heterogeneous rate or a combination of heterogeneous 

rates. In this situation the current voltage is sigmoidal-like and resembles the profile 

expected from the model in Fig. 4.2 (e.g., Fig. 4.4). The intra-molecular rate is not observable 

in this regime. An example is given in Fig. 4.12. 
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Figure 4.12 Current I versus the bias voltage V at T = 308 K for a junction with partially 

pinned ML and MR. Parameter values: αL = αR = 0.33, ε0 = 0, λL = λR = 0.1 eV, cL = cR = 0.15 

eV-1/2 ns-1 and c = 0.15 x 102 eV1/2 ns-1. Τhe timescale of ET between the ML and MR sites is 

of the order of tens of psec. The ET timescale between the Mi and the leads is of the order 

of nsec.  

 

In addition to the bias-voltage dependence of the current, its temperature dependence 

contains information about transport mechanism. When the current is limited by an intra-

molecular ET rate, the temperature dependence of the current will be identical to that of the 

rate (eq. (4.6)). The nonadiabatic intra-molecular rate is thermally activated in both the 
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inverted and normal regimes (in contrast to the heterogeneous ET rates which are 

activationless in the inverted regime). Figure 4.13 shows the temperature dependence of the 

current for the case of Figs 4.7 and 4.8, where the current is limited by the backward intra-

molecular rate for positive V, ( ) intI V ek . Figure 4.13a shows the I-V curves for positive 

V at different temperatures. For max IV V  −  the intra-molecular rate (and thus the current) 

is well inside in the normal Marcus regime and for max IV V  +  it is inside the inverted 

Marcus regime.  

For both of these voltage regions the current has a specific activated Arrhenius temperature 

dependence with a bias-voltage-dependent activation energy. Namely, since ( ) intI V ek  

and intk  is given by eq 6, ( ) ( )( )1 11
ln ln

2
act BI V const T E V k T− −   −       (denoted as 

current behavior “A” in Fig. 4.13b). In this equation 

( )( ),

22 4
L RM M L R Bconst e H k   = +  and ( ) ( ) ( )( ) ( )

2

4act L R L RE V G V    =  − + +  

with ( )G V  given by eq. (4.12). In contrast, for maxV V  the rate is in the Marcus 

activationless regime and the current decreases with temperature as 

( ) 11
ln ln

2
I V const T −        (denoted as current behavior “B” in Fig. 4.13b). In particular, 

as the bias voltage is increased from maxV V= −   (normal region of intra-molecular rate, 

1V V=  in Fig. 4.13a)  to maxV V=  (activationless, 2V V=  in Fig. 4.13a) to maxV V= +   

(inverted region, 3V V=  in Fig. 4.13a) the temperature dependence changes from the 

activated Arrhenius form “A” to the non-activated 1ln const T −    dependence and back to 

the activated Arrhenius. The behavior shown in Fig. 4.13b should be compared to the 

temperature dependence in Fig. 4.4b which is indicative of a heterogeneous ET rate. In the 

latter case as the voltage increases the current just switches from thermally activated to 

1ln const T −   , never reversing to activated at higher voltages.  STEFANI V
ALIA
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Figure 4.13 (a) Current (eq. (4.9)) I versus the bias voltage V at T = 100-400 K. (b) The 

natural logarithm of the current versus 1000/T at V = 0.2 V (black dots) indicates the 

temperature dependence of the intra-molecular Marcus rate: 0.2 V (black dots) normal 

Marcus regime (current  behavior “A” of main text), 0.6 V (red dots) activationless regime 

(current behavior “B” of main text), 1.0 V (blue dots) inverted regime (current behavior 

“A”). Parameter values for both graphs: αL = αR = 0.33, ε0 = 0, λL = λR = 0.1 eV, cL = cR = 

0.22 x 101 eV-1/2 ns-1 and c = 0.15 eV1/2 ns-1. The current is limited by the intra-molecular 

ML-to-MR rate. 

 

Figure 4.14 shows another example of this temperature dependence as a function of bias 

voltage for larger reorganization energies (the parameters are those of Fig. 4.9). The switch 

from the “A” to the “B” form and back to the “A” form as the voltage is scanned across maxV  

(shown in Figs 4.13b and 4.14b) is a clear signature of a current that is limited by an intra-

molecular nonadiabatic ET rate. Mechanisms involving simple coherent off-resonant or 

resonant tunneling are expected to give activationless, temperature-independent current 

behaviors as the voltage is increased, as long as the resonant/off-resonant regime is 

maintained at all voltage values (i.e., ( )L R eV   in the case  of resonant tunneling and 

( ) ( )L ReV V   in the case of off-resonant tunneling 20).  
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Figure 4.14 (a) Exact current I (eq. (4.9)) versus the bias voltage V at T = 100-400 K. (b) 

The natural logarithm of the current versus 1000/T at V = 0.6 V (black dots) indicates the 

temperature dependence of the intra-molecular Marcus rate: 0.6 V (black dots) normal 

Marcus regime (current behavior “A”), 1.2 V (red dots) activationless regime (current 

behavior “B”), 1.8 V (blue dots) inverted regime (current behavior “A”). Parameter values 

for both graphs: αL = αR = 0.33, ε0 = 0, λL = λR = 0.2 eV, cL = cR = 0.15 x 101 eV-1/2 ns-1 and 

c = 0.38 eV1/2 ns-1. The current is limited by the intra-molecular ML-to-MR rate. 

 

As a final example we consider the case where ML and MR redox levels are nearly pinned to 

the L and R electrodes, respectively, i.e., ( )
LM LV   and ( )

RM RV   ( )1 .L R =   

Such pinning would imply that the voltage drop across the junction is a large fraction of the 

ML-to-MR voltage drop and the ML-MR energy gap for the intra-molecular ET reaction (eq. 

(4.12)) would be approximately equal to   across the junction ( G     in Fig. 4.6). 

In this situation, for a linear voltage profile in a quasi-linear junction where 

( )( )
( ) ,L R

L R totM L R
D D  , the redox groups would have to be close to an electrode to increase 

the pinning, i.e., ( )( ) ,
1

L R
totM L R

D D . Thus, the electronic couplings ML-L and MR-R would 

be stronger compared to the values considered in the previous examples and the forward and 

backward heterogeneous ET rates would most likely be adiabatic. Given the aim that the in-

junction redox-level localization resembles the solution-phase redox-level localization, we 

still require that ( ) ( )L R L R
  . To maximize pinning of ML and MR while avoiding 

hybridization with the electrodes, the BL and BR bridges should be shorter than 7 Å 

(assuming saturated organic bridges 29), but should not be so short that the redox centers 

directly contact the electrodes (in the stretched junction geometry). The central bridge BM 
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should be larger than 7 Å so that most of the voltage drops in the ML-MR segment, i.e., 

, , ,R L L RM R tot L M tot M M totD D D D D D=  .  

Consider such a junction with approximately 25 Å length and with BL(R) bridges of 

approximately 6 Å lengths. This system would give ( ) 0.2L R  , and level broadenings 
( )L R

  

of a few meV. 29 For a reorganization energy of 0.2 eV and classical ET-active modes of 

ML(R) with average frequency of the order of 0.01 (psec)-1, the heterogeneous ET rates would 

be adiabatic (see the discussion of the adiabaticity parameter in Supplement section 4.4.3). 

To estimate minimum (zero-bias) values for the heterogeneous adiabatic ET rates in this 

example, we use an expression that approximates well the rate for 
( ) ( )L R L R

   (large 

reorganization energies) and for low overpotentials with high activation energies 

( ) ( ) ( )( )4
L RML R L R

  −  (eqs (4.26) – (4.29)). 40 For the case of quasi-resonant redox levels 

at zero bias, ( )0 0 = , we predict minimum (zero-bias) heterogeneous rates of the order of 

1.0 (psec)-1. Therefore, the current will be limited by the intra-molecular ML-MR rates, which 

will be even slower compared to the cases described previously, since the length of the 

central off-resonant bridge (BM) is increased in order to minimize ( )L R .  

In this example a non-zero bias voltage likely leads to heterogeneous rates faster than (psec)-

1. Thermal-equilibrium theories and models of adiabatic reactions are not applicable for 

describing sub-psec rates. Further, if the heterogeneous ET rates are of the order of or faster 

than the typical vibrational relaxation rate, (psec)-1, the ET-active vibrations of the ΜL (MR) 

group never equilibrate thermally when the group accepts an electron from MR (ML) because 

the electron transfers to the connecting electrode faster than the vibrational relaxation time 

scale. Therefore, the in-junction intra-molecular rates may not be promoted by thermally 

equilibrated vibrations and cannot be described by simple Marcus theory as in the previous 

examples. In conclusion, although in this example ( ) 4
L R

  such that each redox level 

remains localized in the redox group (as in solution-phase ET), we expect differences 

between the in-junction intra-molecular rate and the solution-phase one that are due to 

nonequilibrium vibrational effects of the in-junction redox groups. The current will be 

proportional to the in-junction intra-molecular rate, since it is the slowest rate, but the voltage 

dependence of the current will not be described by thermally equilibrated Marcus theory.  

If the redox groups are even more strongly coupled to the electrodes, i.e., ( ) ( )L R L R
  , the 

in-junction redox levels, although fully pinned, will be very hybridized with electrode levels. 
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Also, the L(R) injection time scales are likely much faster than psec for all bias voltages. In 

this case the hybridized in-junction redox levels are very different from the solution-phase 

ones and vibrational nonequilibrium effects are very prominent. The I-V behavior will not 

give information about the solution-phase intra-molecular rate even if the in-junction intra-

molecular rate is current limiting. 

The examples considered above are not exhaustive, but they demonstrate how different 

system parameters affect the phenomenology of the observed current. Achieving a variation 

with bias of the ML -MR energy gap that is greater than the total reorganization energy 

L R +  of the current-limiting intra-molecular rate is a necessary condition for observing 

the full energy-gap dependence of the rate and current. Good choices for ML
 and MR

 are 

metal-containing redox groups with redox energies slightly higher than the Fermi level of 

the metal leads at zero bias. In our model this situation is described by setting ,0 0
iM   in 

eqs (4.10) and (4.11) such that there is an activation energy for heterogeneous ET from the 

lead to the redox center (Fig. 4.10). Figure 4.14 shows examples of the I-V behavior in this 

regime where, in addition to activated charge injection rates, the ML-to-MR ET rates are 

current limiting. The Marcus-inverted-parabola behavior of the intra-molecular ET rate is 

observable for a wide range of parameters, although it is partially masked by the sigmoidal 

behavior of the activated heterogeneous ET rates. It is possible that at higher voltages in the 

inverted Marcus regime the current-limiting rate shows a softer drop with voltage as 

compared to the normal region due to quantum-vibrational effects. In this situation a mixed 

quantum-classical expression should be used to describe the nonadiabatic intra-molecular 

rate. 12,19 

In the context of the proposed quasi-linear junction architecture with metal redox centers, 

good choices for bridges are saturated organic bridges that are known to act as high tunneling 

barriers when connected to metal centers and that also support off-resonant tunneling 

currents when connected directly to metal (e.g., Au) electrodes for bias voltages of 1.0 - 2.0 

V and for lengths of the order of 10 Å. 41 Within the experimental voltage window such 

bridges remain tunneling barriers for electrode to ML(R) and ML-MR electron transfer steps, 

although they give voltage-dependent tunneling matrix elements. This voltage dependence 

does not destroy the observation of the inverted Marcus regime (see Supplement section 

4.4.4 for a model of this dependence). Further, if the connecting bridges are rigid, they are 

likely to preserve weak mixing (charge transfer) between the redox levels and the lead levels 

in the presence of thermal structural fluctuations and under the influence of the external 

electric field. Tuning the bridge-mediated tunneling between the redox levels (thus the intra-
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molecular rate) may be done by varying the length of the central bridge or by changing the 

bridge chemical structure so as to alter through-bond and/or through-space tunneling 

pathways, as in the case of solution-phase and biological ET studies. 11,15,42 

Only transport channels that involve current-limiting intra-molecular ML-MR ET will give 

an inverted Marcus behavior of the current as a function of voltage. Therefore, from an 

experimental point of view, it is important to use experimental methods that measure current 

traces for the maximally stretched geometries of the bridge-redox system between the leads, 

43 and analysis methods such as clustering 44 that can identify the traces of the most linear 

geometries. Given the quasi-linear form of the bridge-redox molecular assembly and the 

high tunneling barriers provided by saturated bridges, stretched geometries cannot support 

other transport channels that bypass ET between the redox groups (Supplement section 

4.4.4). 

Incoherent transport has been shown to occur in small-molecule junctions containing a metal 

redox group connected to the leads by organic linkers. The redox group is involved in 

incoherent transport channels as a charge donor and acceptor. 24,26 Even in junctions 

comprised of metal-containing ET proteins, transport can be dominated by the metal’s redox 

states that are near-resonant to the gold electrode Fermi levels and that contribute to 

incoherent transport channels as electron donors and acceptors (e.g., the Cu center of Azurin 

9,25,45-47). In solution-phase chemical and biological ET, metal - organic bridge - metal 

systems are ubiquitous and most often ET between the metals takes place via through-bridge 

tunneling. 11,14,15 Further, heterogeneous ET rates for metal - organic bridge - electrode 

systems are well characterized. 27,28-30 Therefore, the use of metal redox groups with redox 

energies close to the lead Fermi levels is a good choice for observing a donor-to-acceptor 

ET rate in the current of a molecular junction experiment and comparing it to the 

corresponding rate in a solution-phase ET experiment.  

Observing the Marcus inverted region for chemical and biological nonadiabatic ET has been 

a difficult task as it requires varying sufficiently the free energy gap of an ET reaction by 

altering one of the redox groups, while keeping other parameters constant. 48-53 Alternatively, 

applying an external electric field in solution or in a polymer matrix to tune the free energy 

gap for a fixed D-A pair is often hampered due to disorder and ensemble effects. 53-56 These 

difficulties may be partially overcome at the single-molecule level by using the proposed 

molecular-junction setup. 
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4.3   Conclusions 

We propose a type of donor-bridge-acceptor junction that could be used to observe directly 

an intra-molecular donor-to-acceptor electron transfer rate through the measured current. 

The junction’s architecture and energetics may enable the comparison between intra-

molecular donor-to-acceptor electron transfer rates in solution phase and the corresponding 

rates in the junction environment. Under specific conditions, the junction could be used to 

vary the donor-to-acceptor energy gap and to observe the Marcus-inverted-parabola 

dependence of the corresponding rate in the nonadiabatic regime. We discuss the optimal 

junction parameters and experimental conditions that would lead to a direct relation between 

the current and the intra-molecular rate. The junction should be quasi-linear (lead – linker – 

donor – bridge – acceptor – linker - lead). In the quasi-linear geometry, the only lead-to-lead 

transport channel should involve incoherent electron hopping between donor and acceptor 

moieties, with the bridge and the linkers acting as tunneling barriers. It is critical that the 

donor-to-acceptor electron transfer hopping rates be slow enough compared to the 

heterogeneous electron transfer hopping rates such that the overall current be limited by the 

donor-to-acceptor rates. Slowing down the latter is possible by varying the length of the 

central bridge (tunneling barrier for donor-to-acceptor transfer) or the bridge’s chemical 

structure. The ability to vary the donor the donor-to-acceptor energy gap from the normal to 

the inverted regime by applying a bias depends critically on the voltage profile within the 

junction. This profile may be partially controlled by the (linear) positions of the redox groups 

along the junction with the aim that a good part of the bias-voltage drop across the junction 

would occur in the region between donor and acceptor. The donor and acceptor redox 

energies should be close to the Fermi levels of the leads at zero bias and should not be 

strongly coupled to the leads (the coupling tuned by the linker lengths), so that their electron 

donating and accepting levels retain their localized character, as in solution phase. Metal 

donors and acceptor moieties such as those encountered in biological electron transfer chains 

are good candidates for the proposed junction. Even if the above conditions are realized, the 

donor and acceptor electronic levels involved in solution-phase electron transfer may not be 

identical to the levels involved in molecular junction electron transfer. Nevertheless, the 

proposed architecture and optimal conditions lead to a junction intra-molecular rate whose 

parameters are as close as possible to the parameters of the solution-phase rate. Thus, any 

differences between the energy gap, bridge-length, and temperature dependencies of the 

donor-to-acceptor rates in the two environments (solution-phase versus junction) would 
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contain important information about environmental effects on electron-transfer mechanism 

and would provide insights about the junction’s local environment. 

 

4.4   Supplement 

Derivations of all approximate expressions for the current that are described in the main text 

for junctions with one and two redox groups and comparisons of these expressions with the 

exact current. Descriptions of the nonadiabatic and adiabatic regimes for donor-acceptor and 

heterogeneous ET, and of the adiabatic heterogenous ET rate equation used in the main text. 

Description of the tight-binding model of BL, BM and BR bridges used to explore the voltage 

dependence of the bridge electronic couplings between the redox levels and between the 

redox levels and the electrodes. Discussion of the effects of voltage dependent couplings on 

the rate-limited current behavior and on the observation of the Marcus inverted regime. 

 

4.4.1   Junction with one redox level: Heterogeneous ET rate limits the current  

We review the single-site hopping model (see Fig. 4.1) that is often used to describe the 

incoherent hopping mechanism. We are interested in cases where the Μ redox site is partially 

pinned to the R electrode and the M-R electrode coupling is greater than the M-L electrode 

coupling. Therefore L RH H  and , ,L L R Rk k k k  given that the other rate parameters are 

not too different. 

For positive high bias and  L R L Rk k k k , L R L Rk k k k+ + , charge flows from R to L 

direction at much higher rates than it does from the L to R direction. Then,  

( )
( )

( ) ( )( )
1

1

L R L R
L R L R L R L R

L L R R L R L RL R L R

k k k kk k k k k k k k
I V e e e

k k k k k k k kk k k k

− −
= − =  

+ + + + ++ + + 
 (4.13) 

Further, since L Rk k , 

( )
( )1

L R L
L

L R L R

k k k
I V e e ek

k k k k
  

+ +
, (4.14) 

and the current is rate-limited by Lk . In this limit the behavior of the current with temperature 

or voltage is just the behavior of Lk  (see relevant Fig. 4.4a). 

STEFANI V
ALIA

NTI 



98 

 

4.4.2   Junction with two redox groups quasi-resonant to the Fermi levels at zero bias: 

Approximate expressions for the rate-limited current  

To determine the steady-state current for the case of two redox sites ML, MR (see Fig. 4.5), 

we need to compute the stationary occupations 
( )( )0
ss

iP =  of the ML, MR sites by solving the 

corresponding kinetics equations: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

int int ,

int int ,

,

0

0

1

L R

L R

L R

ss ss ss

L M M L L R

ss ss ss

M R M R L R

ss ss ss

M M L R

k k P k P k P

k P k k P k P

P P P

− + + + =

− + + =

+ + =

 (4.15) 

The steady state current (evaluated in the left interface) is given by: 

( ) ( ) ( )( ), L

ss ss

L L R L MI V e k P k P= − −  (4.16) 

By solving the above kinetics equations and calculating the stationary occupations, we end 

up with the following expression for the steady state current: 

( ) int int

int int int int int int

L R L R

L L L R L R R R L R L R

k k k k k k
I V e

k k k k k k k k k k k k k k k k k k

 −
= −  

+ + + + + + + + 
 (4.17) 

The above equation can be rewritten as 

( )

( )

int
int

int

int
int int int

int

1

1 1 1

L R
L R

L R

L R R
L R L R L R L R

L R R

k k k
k k k

k k k
I V e

kk k k
k k k k k k k k k k k

k k k k

  
−  

  = −
     
 + + + + + + + +    
      

 (4.18) 

For 0V   suppose that int int, ,L L R Rk k k k k k  such that L R L Rk k k k , 

int intL R L Rk k k k k k , L R L Rk k k k+ +  and int intL R L Rk k k k k k+ + + + . Charge flows from 

the R to L direction at much higher rates than it does from the L to R direction. Then,  STEFANI V
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( )
( )

( )
( )

int

int int int

int

int
int

        .

1 1

L R

L R L R L R L R

L R

L
L R L R L R

L L R

k k k
I V e

k k k k k k k k k k k

k k k
e

k k
k k k k k k k

k k k

 
−

  −
 + + + + +
 

 
 
 

− = −
   

  + + + + + 
  +    

 (4.19) 

Given that the intra-molecular rates are much smaller than the remaining rates (either 

forward or backward), int int, , , ,L L R Rk k k k k k . Therefore, 

( ) int int int

int int int int1 1

L R L R L R

L R R L L R L R L R

L R L R

L R

k k k k k k k k k
I V e e e

k k k k k k k k k k k kk k
k k k k

k k

 
 

   − − −  − = −  −       + + + +    + + +   
     

 
(4.20) 

In this situation, the steady state current becomes  

( ) int
int

1

L R

R
L R

R

k k k
I V e ek

k
k k

k

 
 

+ 
 

 
(4.21) 

Thus, the current is rate-limited by intk  and the behavior of the current with temperature or 

voltage is just the behavior of intk . In this parameter regime, where the intra-molecular ML-

to-MR ET rates are the slowest rates, the I-V behavior reflects the energy-gap dependence of 

these ET rates (see relevant Figs 4.8b and 4.9b). 

 

4.4.3   Junction with two redox levels quasi-resonant to the Fermi level at zero bias 

whose relative energies are unaffected by the voltage bias 

We now consider the case where the two redox sites ML, MR (see Fig. 4.5) remain in the 

middle of the Fermi window. Thus, the MLMR energy gap is zero and does not change with 

bias voltage so that the forward and backward intra-molecular rates are equal at for all bias 

voltages, int int intk k k= = . We will assume that intk  is the slowest rate but that it is not much 

smaller than the rest of the heterogeneous rates (this regime is relevant to the system in Fig. 
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4.11). For 0V   ,L L R Rk k k k , L R L Rk k k k , L R L Rk k k k+ + , and net charge flows 

from the R to the L direction. Then, from eq. (4.17), 

( ) int

int

int int int

int

1

        

1 1 1

L R L R

L R L R L R
L L L R R R

L R
L R

L R

L R L R L R
L R

L R L R

k k k k k
I V e

k k k k k k k
k k k k k k

k k k

k k
k k

k k
e

k k k k k k
k k k

kk k k k

 
 

− = −
 

+ + + + + + + + 
 

 
− 

 = −
     

+ + + + + +     
      int intint

L R

L R L RL R
L R L RL R

k k
e

k k k kk k
k k k kk

k kk

   
   
   
   

+ + + + + + +      

 

(4.22) 

Considering also that, L Rk k ,  

( ) int

int

int int int int int int

.
32

1 2 1 3

L R L R R R

R RL L R L R R R R R R
L R L

L L

k k k k k k
I V e e e ek

k k kk k k k k k k k k k
k k k

k k k k k kk k

     
     

        = =             + +      + + + + + + + + +          
          

 
(4.23) 

 

4.4.4   Junction with two redox levels off-resonant to the Fermi level at zero bias: 

Approximate expressions for the rate-limited current  

We consider the parameter regime with ,0 ,0 0 0
L RM M  = =   in eqs (4.10) and (4.11) such 

that there is an activation energy for heterogeneous ET from the lead to the redox center (see 

Fig. 4.15). Figure 4.16 shows examples of the I-V behavior in this regime. The Marcus-

inverted-parabola behavior is observable for a wide range of parameters. In Fig. 4.16 the 

case where ε0 = 0.25 eV could correspond to ML, MR = Ferrocene Fc(+)/Fc redox group (with 

reduction potential E0 = 400 mV versus SHE) 28 and to Au electrodes (Fermi level of -5.1 

eV). 57 The case ε0 = 0.35 eV could correspond to Azurin' s Cu(2+)/Cu(+) center redox 

groups (with reduction potential E0 = 310 mV versus SHE) 58 and to Au electrodes. 
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Figure 4.15 Schematic representation of the levels in the BLMLBMMRBR junction. The 

diagram shows a positive bias situation with the ML (MR) energy gap written as a function 

of the total bias across the junction. The bridge levels act as deep tunneling barriers for the 

transferring electron such that only ML and MR change their oxidation state during transfer. 

The ML and MR redox energies are slightly higher than the Fermi levels of the leads at zero 

bias such that the charge injection rates from the leads are activated and possibly current 

limiting for a voltage bias range. 

 

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-150

-100

-50

0

50

100

150
-0.67 -0.50 -0.33 -0.17 0.00 0.17 0.33 0.50 0.67

Vmax

 G [eV]

 

 0=0

 0=0.1 eV

 0=0.2 eV

 0=0.25 eV

 0=0.30 eV

 0=0.35 eV

C
u

rr
e
n

t 
[p

A
]

Voltage [V]

-Vmax

 

Figure 4.16 Current I versus the bias voltage V and the Gibbs free energy ΔG at T = 308 K 

for a junction with off-resonant redox levels at zero bias (Fig. 4.15). The energy gap is given 

by ( ) 3G V eV = . Parameter values: αL = αR = 0.33, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 

eV-1/2 ns-1 (the timescale of ET between the Mi and the leads is in the order of tens of psec), 

c = 0.15 eV1/2 ns-1 (the timescale of ET between the ML and MR sites is in the order of nsec) 

2L eV = −

L

2R eV = +

RLM

RM

 

 

Lk
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intk
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and ε0 = 0 (black dots), ε0 = 0.1 eV (red dots), ε0 = 0.2 eV (blue dots), ε0 = 0.25 eV (cyan 

dots, could correspond to Ferrocene ML and MR redox groups with Au leads), ε0 = 0.3 eV 

(magenta dots), and ε0 = 0.35 eV (yellow dots, could correspond to Azurin Cu center redox 

groups with Au leads). The low bias current decreases as the ε0 value increases (charge 

injection becomes more activated), but the current has the expected intra-molecular-rate 

energy gap behavior (inverted and normal).  

 

The behaviors shown in Fig. 4.16 corresponds to an energy gap between the ML and MR 

groups equal to one third of the chemical potential drop across the junction. For positive bias 

voltage, the left backward heterogeneous ET rate is faster than the forward rate ( )L Lk k  

and the same is true for the intra-molecular ET rates ( )int intk k , such that 

int intL R L Rk k k k k k . In the regime of Fig. 4.16 both Rk  and intk  can be of comparable 

magnitude and both can be current limiting for the net R to L charge flow. Therefore, we 

always consider the product int Rk k  as having a small value. Then, from eq. (4.17), 

( )

int
int

int

int int int int

int

int
int

1

1 1 1

1

L R
L R

L R

L R L R
L R L R L R R L

L R L R

L R

L R L R L

k k k
k k k

k k k
I V e

k k k k
k k k k k k k k k k k k

k k k k

k k k
e

k
k k k k k k

  
−  

  = −
      
 + + + + + + + +     
       



+ + + int
int

int int

1L
R

L

k k
k k

k k k

 
 
 
    
 + +   
     

 (4.24) 

Given that int intk k  and int intL Lk k k k  the above expression simplifies to  

( ) int

int
int

.L R

R
L R R

L

k k k
I V e

k k
k k k k

k

 
 
 
  
 + + + 
   
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In the regime of Fig. 4.16, int R Lk k k , and the approximate current expression for the 

positive bias voltage is ( ) int

int

R

R R

ek k
I V

k k k


+ +
. Similar arguments for negative bias lead to the 

approximate equation  ( ) int

int

.L

L L

ek k
I V

k k k
 −

+ +
 

Figure 4.17 shows the exact current (eqs (4.8) and (4.9)) and the approximate expressions 

for the current, ( ) int

int

R

R R

ek k
I V

k k k


+ +
 and ( ) intI V ek , for positive bias voltages in the case 

of the system of Fig. 4.16 with the highest redox-level energies (ε0 = 0.35 eV, αL = αR = 0.33, 

λL = λR = 0.1 eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 0.15 eV1/2 ns-1). The figure 

demonstrates that the expression ( ) int

int

R

R R

ek k
I V

k k k


+ +
 is a very good approximation to the 

exact current for the case of off-resonant redox levels at zero bias ( )0 0  . Further, its shows 

that ( ) intI V ek  starts to become a good approximation to the exact current just before the 

inverted regime peak at maxV  (because the current becomes limited by intk ). For 0 0.35 eV   

(Fig. 4.16) the expression ( ) intI V ek  starts to become a good approximation to the exact 

current for lower voltages.  
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Figure 4.17 Current I versus bias voltage V at T = 308 K (positive V region). Parameter 

values: αL = αR = 0.33, ε0 = 0.35 eV, λL = λR = 0.1 eV, cL = cR = 0.22 x 101 eV-1/2 ns-1 and c = 
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0.15 eV1/2 ns-1. Exact current expression (eq. (4.9) black line) and approximate current 

expressions ( ( ) int

int

R

R R

ek k
I V

k k k


+ +
 blue dots, ( ) intI V ek  red dots).  

 

4.4.5   Two-state and heterogeneous electron transfer – Nonadiabatic to Adiabatic 

Limit 

To describe the transition from the nonadiabatic to the adiabatic regimes for two-state (D-

A) solution-phase ET with classical ET-active vibrations, it is common to use the Landau-

Zener parameter ( )2

,LZ D A BH k T   = , 59 2 v =  is the average frequency of the 

ET active vibrations (with Bk T   since they are classical vibrations), ,D AH  is the D-A 

coupling and D A  = +  is the reorganization energy. For 1LZ   ( )1LZ   the D-A ET 

rate is nonadiabatic (adiabatic). In all examples of the main text the parameters of the ML-

MR ET rates are such that 1LZ . 

For heterogeneous ET between an electrode L(R) and a redox moiety M = ML(R), the 

adiabaticity parameter is defined as LZ Bk T  = , where the electrode is approximated as 

multiple D(A) states of a total number equal to Bk T  (   the density of state). 40,59 Thus 

,Bk T


 


=  (4.26) 

where, ( )L R
 =  , ( )L R

 =  and 2 v =  is the average nuclear vibration frequency of all 

classical vibrations that promote ET. For 1   ( )1   the heterogeneous ET rate is 

nonadiabatic (adiabatic). In all the examples of the figures in the main text 1  . 

An approximate expression for the heterogeneous ET rate that interpolates between 

nonadiabatic and adiabatic regimes, 40 is  

( )( )
( )

2 1 exp 2

2 exp 2
k C






 − −
  

− −  

 (4.27) 

where 2  =  and 

STEFANI V
ALIA

NTI 



105 

 

( ) ( )
( )( ) ( )( )

2

1 4

M

B

V E V

k T

BC k T dE f E e

  



− + +
−

−
= −  

(4.28) 

for electrode-to-M ET, and  

( ) ( )
( )( ) ( )( )

2

1 41

M

B

V E V

k T

BC k T dE f E e

  



+ + −
−

−
= − −    

(4.29) 

for M-to-electrode ET. The above expression, eq. (4.27), is valid for large reorganization 

energies and small overpotentials, i.e., for ( ) ( ) 4MV V  −  and 4 . 

In the limit where 1   such that ( ) ( )exp 2 1 2 −  − , the above formula leads to the 

nonadiabatic heterogeneous ET rate expressions (eqs (4.2) – (4.4) in the main text). Consider 

the zero bias ( )0 eV =  rates of eq. (4.27) where 31.0 10 eV−   , 0.2 eV = , 0 M eV   

and ( )
1

0.04 psecv
−

 . In this case 7   (strong adiabatic regime) and from eq. (4.27), 

( )
1

1.0 psec .k
−

 

 

4.4.6   Voltage-dependent tunneling matrix elements – A tight-binding model  

For the proposed quasi-linear junction architecture with metal redox centers, good choices 

for the connecting bridges are saturated organic bridges. These are known to be high 

tunneling barriers for solution-phase ET between metal donors and acceptors 11,14,15 and for 

heterogeneous ET between metal redox sites and electrodes. 29,30 Such bridges also maintain 

off-resonant tunneling currents when connecting directly metal (e.g., Au) electrodes for bias 

voltages of 1.0 - 2.0 V and for lengths of the order of few tens of Angstroms. 41 Within the 

experimental voltage window, saturated organic bridges should remain tunneling barriers 

for electrode-to-ML(R) and ML-MR ET steps, even though they may give voltage-dependent 

tunneling matrix elements, as shown below. 

To calculate the dependence of the tunneling matrix elements on bias voltage, and to explore 

how this dependence affects the observation of the Marcus inverted regime, we consider a 

linear nearest-neighbor tight-binding model consisting of BR, BM and BL bridges with 
RBn , 

MBn  and 
LBn  tight-binding levels (sites), respectively (Fig. 4.18). The 

LMi  and 
RMi  sites of 

the model represent the redox levels, which are assumed to be off-resonant to the bridge 

levels and also quasi-resonant to the electrodes at zero bias. At non-zero bias the bridge site-
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energies and the redox-site energies will be shifted, and we model how these shifts affect the 

through-bridge tunneling barriers. 

 

 

Figure 4.18 Schematic representation of a tight-binding nearest-neighbor model of a 

BLMLBMMRBR junction. The BL, BM and BR linear bridges consist of 
LBn , 

MBn  and 
RBn  sites, 

respectively. At zero bias the bridge site-energies are equal, of value 0

B  (measured with 

respect to the Fermi level of the electrodes). The redox level ML(R) energies are off-resonant 

to the bridge energies and resonant to the electrodes. The nearest-neighbor electronic 

couplings between bridge sites are denoted t  (curved red lines). The nearest-neighbor 

electronic couplings between ML(R) and the bridge sites are denoted  
( )L R

T  and those between 

the last (first) bridge site and the L (R) electrode, are denoted ( )L R
T  (red dotted lines). , LL MD

, ,L RM MD  and ,RM RD  are the distances of the L-ML, ML-MR and MR-R segments of the 

junction. The diagram shows a symmetric junction with , , ,L R L RL M M R M MD D D= = . 

, , ,L L R Rtot L M M M M RD D D D= + +  is the total length of the junction. The distance between 

nearest neighbor sites is ( )1tota D N= + .  

 

We assume linear voltage drop profile under bias where the voltage drop is measured with 

respect to the R electrode Fermi level R  ( )2 2R eV =  = . If the site belongs to a bridge 

the energy of the ith site is given by ( ) ,0
2

B B

i i

tot

eV a
V i eV

D
 

 
= − + 

 
, where ,0 0

B B

i =  and 

L R

LM RM

LBn
MBn

RBn

1i =2i =....i N=

t t t

LT LT RT RT
RTLT 0

B

, LL MD ,L RM MD ,RM RD
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1

totD
a

N
=

+
 is the distance between nearest-neighbor sites. For a redox site, 1

R RB Mi n i= +   

and  2
R M LB B Mi n n i= + +   (Fig. 4.18). Therefore, the redox-site energies under bias are 

( ) ,0
2M R RR

i M M

tot

eV a
V i eV

D
 

 
= − + 

 
 and ( ) ,0

2M L LL
i M M

tot

eV a
V i eV

D
 

 
= − + 

 
 (in Fig. 4.18 

,0 ,0 0
L RM M = = ). These expressions reduce to eqs (4.10) and (4.11) of the main text when 

1
RMi =  and 2

LMi =  (with L R tota D = = ). 

Given the above model, we derive the bias voltage dependence of the bridge-mediated ML-

MR tunneling matrix element and of the ML(R)-L(R) tunneling matrix elements. The ML-MR 

tunneling matrix element is 60  

( ) ( ) ( ), 1, 1
M

L R M ML R

B

M M L R i i tunH V T T G E− +=  (4.30) 

where 
( ) ( )ˆ MB

G E  is the Green’s function of the BM bridge segment, defined as 

( ) ( ) ( ) ( )( )
1

ˆ ˆ ˆM MB B
G E E I H V

−

= − . 
( ) ( )ˆ MB

H V  is the voltage-dependent Hamiltonian of the BM 

bridge segment,  

( ) ( ) ( ) ( )
1 1

1 1

ˆ 1 .
M ML L

M

M MR R

i i

B B

i

i i i i

H V V i i t i i h c
− −

= + = +

= + + +  . (4.31) 

( ) ( )( ) 2
R Ltun M ME V V = −  is the tunneling energy and 

( )L R
T  are the electronic couplings 

between ML(R) and the nearest-neighbor BM bridge site. We model the bias-voltage 

dependence of the level broadenings in a similar way, i.e., ( ) ( ) ( )
( )

2

, ( )L RM L RL R
V H V = , 

where  

( ) ( ) ( )
, 1,

L

L N ML

B

L M L L tuni
H V T T G E

+
=  and ( ) ( ) ( )

1, 1,
R

R MR

B

R M R R tuni
H V T T G E

−
= . 

( )( )
( )ˆ L RB

G E  is the Green's 

function of the BL(R) bridge segment, ( ) ( ) ( )( ) 2
L R

tun L R M M
E V = −  and the couplings ( )L R

T  

and ( )L R
T  are shown in Fig. 4.18.  

Consider saturated linear bridges (e.g., linear alkanes) that are known to mediate hole 

tunneling pathways through C-C sigma bonds. 61-63 Each bridge site of the tight binding 

model is interpreted as a sigma bond orbital in a tetrahedral geometry. The distance between 

the centers of nearest-neighbor sigma bonds in an extended alkane chain is 1.26a  Å. The 
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magnitude of the electronic matrix element between the nearest-neighbor bond orbitals is 

4t eV . 61-63 For linear alkane chains connected to metal electrodes, the dependence of the 

conductance as a function of bridge length D  is given by ( ) exp( )G D A D= − , with a decay 

parameter value 1.0  Å-1. 41 A similar exponential length decay parameter value is derived 

for redox currents in voltammetric studies involving redox metals connected to gold 

electrodes by alkanethiol bridges. 29,30 We use this experimental   value in our model to fix 

the ratio 0

Bt  , since 
( ) ( ) ( ) ( )
1, 1 1,

2 2
1

exp( )
n n

n n

tun tunG E G E a
+

+
 −  (where (n+1) and (n) denote 

bridges of n+1 and n sites, respectively). Thus, given the computed value of 4 t eV , 61-63 

we can determine the effective site energy 0

B  of the sigma bond (with respect to the Fermi 

level of the electrodes at zero bias) that produces 1.0  Å-1 for 1.26a  Å (assuming gold 

electrodes). 

As an example, consider linear bridges with 5
R M LB B Bn n n= = =  sigma bonds, each of a total 

length of 6 7−  Å (e.g., a total length of the junction, 20 25totD  − Å taking into account few 

Angstrom sizes of the metal redox sites). With the 4 t eV= and 0 10 B eV = we get 1.0 

Å-1. For these t  and 0

B  values, and for ( ) 4

, 0 1.6 10
L RM MH V eV−= =   (of Figs 4.7 and 4.8), 

eq. (4.30) gives 
2 22.5 10L RT T eV−=   (i.e., 0.15L RT T eV= =  for a symmetric system). 

Further, for the zero-bias level broadenings ( ) ( ) 60 1.0 10
L R

V eV− = =   (of Figs 4.7 and 

4.8) we get ( )
31.0 10

L R
T eV−=  . 

Given the above parameters we compute the voltage dependence of the coupling and the 

level shifts, i.e., ( ),L RM MH V  and ( )( )L R V , and use them in eqs (4.2)-(4.11) where, at each 

voltage, we substitute ( )2

,L RM MH V  and ( )( )L R V . Figures 4.19a and 4.19b show ( )2

,L RM MH V  

and ( )( )L R V  for positive bias voltages and for the junction parameters of Figs 4.7 and 4.8 

( 3G  =  ). Figure 4.19c compares the I-V dependence computed using eqs (4.2)-(4.11) 

with ( )2

,L RM MH V  and  ( )( )L R V  of Figs 4.19a and 4.19b to the I-V dependence computed 

using eqs (4.2)-(4.11) with ( )2

,L RM MH V  and ( )( ) 0L R V = . The current obtained with 

voltage-dependent couplings remains rate-limited by intra-molecular rates, having a 

Gaussian voltage dependence. The current’s maximum shifts to a higher bias max,2V  and has 
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a higher maximum value compared to the case of the current with voltage-independent (zero-

bias) couplings (maximum at max,1V ).  

These changes are due to the lowering of the tunneling barriers with bias voltage (Figs 4.19a 

and 4.19b). The minimum bridge eigenvalue of this tight-binding model is 3.07 eV above 

the Fermi level of the electrodes at zero bias, while at bias voltages of 1.0 V and 2.0 V the 

minimum eigenvalue has dropped 2.24 eV and 1.4 eV above 
R , respectively (

R  is the 

highest Fermi level for positive bias). Thus, the tunneling mechanism is maintained for the 

entire bias voltage range. The preservation of tunneling is expected for saturated organic 

bridges and also for some unsaturated bridges that sustain tunneling currents for lengths of 

tens of Angstroms and for bias voltages of 1.0 – 2.0 V. 64-65 
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Figure 4.19 (a) Bias-dependent ( )2

,L RM MH V  (eq. (4.30)) versus the bias voltage V at T = 308 

K for the positive bias region, (b) Bias-dependent broadening ( )( )L R V  versus bias voltage 

V. (c) Current (eqs (4.2)-(4.11)) versus  bias voltage V using ( ), 0
L RM MH V =  and 

( )( ) 0L R V =  (red dots, as in Fig. 4.7), and using the ( ),L RM MH V  and ( )( )L R V  (black dots). 

Parameter values for all graphs: 5
R M LB B Bn n n= = = , ε0

Β = 10.0 eV, λL = λR = 0.1 eV, t = 4.0 

eV, TL = TR = 1.5 x 10-1 eV and 
31.0 10L RT T eV−= =  . 

 

The specific research work presented in this chapter has been published during the doctoral 

program (see ref. [66]). 
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CHAPTER 5 

The Role of Bridge-state Intermediates in Singlet 

Fission for Donor-bridge-acceptor Systems: A Semi-

analytical Approach to Bridge-tuning of the Donor-

acceptor Fission Coupling 

 

We describe a semi-analytical / computational framework to explore structure-function 

relationships for singlet fission in Donor (D) – Bridge (B) – Acceptor (A) molecular 

architectures. The aim of introducing a bridging linker between the D and A molecules is to 

tune, by modifying the bridge structure, the electronic pathways that lead to fission and to 

D-A-separated correlated triplets. We identify different bridge-mediation regimes for the 

effective singlet-fission coupling in the coherent tunneling limit and show how to derive the 

dominant fission pathways in each regime. We describe the dependence of these regimes on 

D-B-A many-electron state energetics and on D-B (A-B) one-electron and two-electron 

matrix elements. This semi-analytical approach can be used to guide computational and 

experimental searches for D-B-A systems with tuned singlet fission rates. We use this 

approach to interpret the bridge-resonance effect of singlet fission that has been observed in 

recent experiments. 

Singlet Fission (SF) is a spin-allowed process in which a photo-excited singlet state 1S  in a 

molecular system is converted into two correlated triplet excited states 12 T . 1-4 SF offers a 

promising way to overcome the Shockley-Queisser limit on the efficiency of single-junction 

photovoltaics, 1-3,5 and it is possible if a material satisfies the exoergicity criterion 

( ) ( )1 1Energy 2EnergyS T . An extensive body of work has examined SF in different 

materials due to its potential for photovoltaics applications. 6-13 There are many 

experimental, computational 14-17 and theoretical studies 3,4,14,18,19 of SF mechanisms and of 

the roles of SF intermediate states in dimeric systems (donor(D)-acceptor(A)). More 

recently, systems in which a bridge (B) unit connects the D and A moieties 11-13 have received 

attention with the purpose of understanding how a bridge linker mediates SF. 5,20-26 Recent 

experiments 24-26 have observed a correlation between SF-rate enhancement and the lowering 

of the B HOMO-LUMO gap (the “bridge-resonance effect” of SF 26). Another important 
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direction in the field is the computational design of SF molecular assemblies with tunable 

SF rates. 27-31  

In this paper, we introduce an analytical framework, supported by ab-initio computations, to 

explore structure-function relationships for bridge-mediated SF in D-B-A molecular 

architectures.  The aim of this type of analysis is to understand how the bridge affects the SF 

coupling based on parametrized analytical models, and ultimately to guide the synthesis of 

D-B-A systems for tuned SF. We apply our method to bridge-mediated SF in the coherent 

tunneling regime. We also use our analytical results to interpret the recent experiments on 

bridge-resonance effects of SF.  

 

5.1   Theoretical methods 

Consider a D-B-A molecular assembly to be used as a tunable singlet-fission / triplet-

separation device. Suppose that initial photoexcitation leads to a singlet excited state 

localized on the D moiety that subsequently undergoes SF to create a Correlated Triplet-Pair 

(CTP) state where one triplet is localized in the D moiety and the other is localized in the A 

moiety. Ιn the coherent tunneling regime, where all SF intermediates are off(quasi)-resonant 

to the initial and final states, the SF rate is given by 
2

SF SF FCk V = , where SFV  is the bridge-

mediated effective SF coupling between initial (D singlet) and final (D-A CTP) states, and 

FC  is the Franck-Condon factor. Therefore, the efficiency of D-A CTP creation can be 

tuned by controlling SFV  through structural modifications of the bridge. To this end it is 

necessary to obtain structure-function relationships for the bridge-mediated SF pathways 

that contribute to SFV . 

The electronic Hamiltonian operator of the system is given by 1 2el e eˆˆ ˆH h V= + , where 

22
1

1 0

1

2 4

nucNN N
e nI

I I nel I n

ˆ Z ep
ĥ  

m r R=

= −
−

   is the Hamiltonian for N  independent electrons in the 

field of nucN  atomic nuclei, and 
2

2

1 0

1 1

2 4

N N
e

I J J I J

e
V̂

r r =

=
−

  is the total electron-electron 

Coulombic operator. In our modelling, we use a D, B, A fragment-orbital basis set to 

describe many-electron states for the D-B-A system. 32-34 This is a natural representation 

since any approach to the design of SF molecular assemblies is necessarily fragment-based. 

We construct the many-electron basis to represent elĤ  using the Configuration Interaction 
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method with single and double excitations (CISD). 35,36 The active space consists of six 

electrons (out of N ) in six fragment orbitals. For the applications considered below, the 

active orbitals are taken to be the frontier orbitals of each fragment (HOMO and LUMO 

denoted as , , , , ,D D B B A AH L H L H L ). The use of frontier orbitals is common in SF studies. 1-

3,19,23,28,30 Our method does not depend on the particular choice of fragment-orbital basis and 

is not limited to two active orbitals per fragment (see Supplement section 5.4.5). 

In the first step of the SF process both the initial and final states are singlets, so we consider 

only singlet states as SF intermediates. For this active space and using the branching diagram 

method we derive analytically 40 singlet spin-spatial eigenstates 
SA

n  (SA denotes Spin-

Adapted) that include single and double inter- and intra-fragment excitationsd (see the 

discussion in section 5.4.1 of the Supplement). 37-39 We use this set and the Slater-Condon 

rules 35,36 to obtain analytical expressions for all Hamiltonian matrix elements between these 

states, 
SA SAel el

n,m n m
ˆH H=    (see Supplement section 5.4.2). 

The singly-excited basis states can be categorized as locally-excited (LE) and charge-transfer 

(CT). LE states have an excited electron and a hole on the same fragment (intra-fragment 

excitation). An example is the bridge exciton (BE) with an electron-hole (e-h) pair in the B 

fragment (see Fig. 5.1). For CT states the excited electron is on a different fragment than the 

hole (inter-fragment e-h excitation). An example is the D-A excitonic state (DAE) with an 

inter-fragment e-h excitation among the D, A fragments. The doubly-excited (DE) states 

include many more excitation combinations. We denote locally doubly-excited states (LDE) 

those that contain two intra-fragment excitons (each exciton is localized within D, B or A). 

In addition to locally doubly-excited (LDE) there are CT doubly-excited states (CTDE) that 

combine a CT and a LE exciton, e.g., 
SA

D B A+− − +  (see Fig. 5.1). The LDE and CTDE 

include both correlated triplet-pair and correlated singlet-pair states (CTP and CSP, 

respectively). 3,15,40,41  

In general, the basis-state energies are functions of ionization potentials, electron affinities, 

core terms, Coulomb and exchange two-electron (2e) integrals, i.e., 

           ( )j j

i j i j

SA SA e n e nel i i

n n n i i i i PQ PQ
ˆ ˆ ˆH E IP , EA , L V L , H V H , J , K 

− −
= . (5.1) 

(see Supplement section 5.4.2 for analytical expressions). The off-diagonal matrix elements 

are functions of one-electron (1e) Fock matrix elements, overlap matrix elements and 2e 

integrals, 
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  ( )       ( )i j i j i j

SA SAel

n m n,m i j i j i j PQ PQ PQ
ˆ ˆH H P F Q , P Q R Z , S , J , K  =  (5.2) 

where P, Q, R, Z  H , L=  and  i, j  D, B, A=  (see Supplement section 5.4.2). 

 

  

Figure 5.1 Schematic illustration of the notation used to describe the many-electron basis 

states relevant to the SF pathways. (a) Examples of singly-excited (LE and CT) and (b) 

doubly-excited (LDE and CTDE) states using the minimum set of orbitals per fragment 

(HOMO and LUMO). The kets denote Slater determinants with the spin distributions shown 

in the diagrams. The actual basis states used in the calculations (Table 5.1 and Supplement 

section 5.4.1), are spin-adapted (singlet) states that are linear combinations of Slater 

determinants. 

 

Table 5.1 describes the nomenclature and notation used to group the basis states. The table 

contains the most important groups for the discussion that follows. The first column shows 

the group names and the second the mathematical notation for the states. The third column 

gives approximate expressions for the excitation energies within each group (with respect to 

the DBA ground state). The approximate expressions are derived from the exact equations 

in the Supplement section 5.4.2 using ab-initio computations on reference systems to 

determine small terms that can be ignored (see below). These approximate energies are 

written in terms of the fragment variables x  ( X ), y  (Y ) and z  which are separately defined 

for the D-B fragment or A-B fragment, 

HOMO 

LUMO 

D          B           A D          B           A D          B           A 

  

HOMO 

LUMO 

D          B           A D          B           A D          B          A 

   

(a) 

(b) 

LE (in) 

Initial state: Donor exciton 

LE (BE) 

Bridge Exciton 

CT (B-) 

Donor-Bridge 

Exciton 

LDE (fi)  

Final state: Donor, Acceptor Excitons 
 

CTDE (B-) 

Donor, CT Excitons 

LDE (BE)  

Donor, Bridge Excitons 
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( ) ( ) ( ) ( )
2

D A D A D A D AH L H LX x J K − +  ,  2
B B B BH L H LY y J K − + , ( )D A Bz IP IP= −  (5.3) 

where  

( ) ( )D A D A
x IP EA= − , B By IP EA= − . (5.4) 

IP  denotes ionization potential and EA  denotes electron affinity. The variables X  and Y  

are the HOMO – to – LUMO exciton energies of the isolated D(A) and B fragments and are 

functions of x  ( y ) and intra-molecular (intra-fragment) Coulomb ( J ) and exchange ( K ) 

integrals. We choose to write the basis-state excitation energies in terms of these variables 

because values for these variables are easily obtainable from experiments or computations 

on the fragments. The state energies in Table 5.1 are also functions of inter-fragment 

Coulomb and exchange integrals (denoted as inter). 

 

Group Name 
Hole and Electron 

distribution notation 
Approximate excitation energy 

LE (in) 
SA

D B A+−  X  

LDECTP (fi) 
SA

CTP
D B A+− +−  2 2 2

D D A AH L H LX K K− −  

LDECTP (BE) 
SA SA

CTP CTP
D B A , D B A+− +− +− +−  

( ) ( )
2 2

B BD A D AH L H LX Y K K+ − −  

LE (BE) 
SA

D B A+−  Y  

CT (B+) 
SA SA

D B A , D B A− + + −  
( ) ( ) ( ) ( )

( )

2

2 2

D A D A D A D A

H L H H H HB B D B AD A

H L H L

inter inter inter

X z J K

J J J

− + −

+ − −
 

CT (B-) 

SA SA

D B A , D B A+ − − +  

( ) ( ) ( )

2

2 2

B B B B

H L H L H HB B BD A A D D A

H L H L

inter inter inter

Y z J K

J J J

+ + −

+ + −
 

CT (DAE) 

SA SA

D B A , D B A− + + −  
( ) ( ) ( ) ( )

( ) ( )

2

2 2

D D D DA A A A

H L H HB BD A A D

H L H L

inter inter

X J K

J J

+ −

+ −
 

 

Table 5.1 Approximate excitation energies of the lowest-lying basis states of the D-B-A 

system. 1st column: Names of the different groups of the most important singlet basis states 
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for the D-B-A system. CTP (CSP) denotes Correlated-Triplet-Pair (Correlated-Singlet-Pair). 

2nd column: Mathematical notation for the spin-adapted states in each group. 3rd column: 

Approximate excitation energies of the lowest-lying states of the D-B-A system (derived 

from the exact expressions in Table 5.4) as a function of the X , Y , z  parameters (see text 

and Fig. 5.2) and 2e integrals. The first two groups refer to the initial and final CTP states, 

denoted as (in) and (fi) respectively. In most remaining cases the grouping is according to 

the B state, such as B+, B- and bridge excitonic (BE) state. 

 

The excitation energies will depend on the type of solvent the D-B-A system is in. In 

particular, the energies of states with CT excitations are most sensitive to the solvent 

dielectric constant. Since we have not included an effective dielectric constant in the 

analytical expressions, the following analysis is more relevant to non-polar solvents. In Fig. 

5.2 we describe three different energetic regimes defined by the x , y  and z  values for the 

D-B fragment. We label these regimes as type-I, type-II and type-III. 42  

 

5.2   Results and Discussion 

In the following we consider the situation where initial photo-excitation of D-B-A creates a 

D-localized singlet exciton that can be approximated by 
SA

in D B A+−  (first row in Table 

5.1). The coherent SF process should lead to a final state that is approximated by the D-A 

CTP state 
SA

CTP
fi D B A+− +−  (second row of Table 5.1). All other intermediate states 

(third-to-final rows of Tables 5.1 and  5.4) are off-resonant to in  and to fi  such that SF 

takes place by tunneling when the initial and final states come to resonance at an energy resE  

(the SF rate being 
2

SF SF FCk V = ). The aim of our analysis is to understand how the SFV  is 

tuned by the identities of the D, B and A fragments and by their relative geometries. 

To make contact with realistic systems, we use some reference D-B-A groups (Fig. 5.3) 

where the D and A moieties are taken to be pentacenes in a face-to-face geometry and B is 

either pentacene (in pi-stacking or non-pi stacking conformation), tetracene (in non-pi-

stacking conformation) or the non-conjugated 1,3-diethynyladamantyl spacer (NC1 in ref. 

[12]). Pentacene has been studied extensively both experimentally and computationally as 

an individual (monomer) and as part of a larger system (dimer, trimer etc.) for the study of 

various SF mechanisms. 10-13,21,26 Although the systems considered below are symmetric 
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(D=A), the method is general and applicable to non-symmetric systems (see Supplement 

section 5.4.5). 

 

 

Figure 5.2 Schematic representation of type-I, type-II and type-III D-B regimes in the 

independent-electron approximation. Virtual orbitals are shown in red and occupied orbitals 

in blue. Since we only consider bridge-mediated tunneling case, y x .  

 

For these reference systems, we use the GAMESS-US 43-45 program in the fragment-orbital 

representation (6-31G(d) basis set) to compute the reference values for the 1e and 2e 

variables in the analytical expressions of the diagonal and off-diagonal elements of the CISD 

Hamiltonian (eqs (5.1) and (5.2), and discussion in 5.4.2 section). These variables include 

IPs , EAs , core terms, Fock and overlap matrix elements, Coulomb and exchange integrals. 

The computed 1e and 2e variables set reference values for x, y  and z  (thus for X , Y ) in 

eqs (5.3) and (5.4). Following this step, for each reference system, we vary y  and z  while 

keeping all other 1e and 2e parameters and x  fixed to the reference values. 

Type-I  

y > x ; z < 0 ; 

    z > x - y 

Type-II  

 

y > x ; z > 0 

 

 

    D                B     D                B 

e e 

e e 

x 

z 

y 

x 

z 

y 

  

x 

y 

z 

Type-III  

    D                   B 
y > x ; z < 0 ; 

    z < x - y 
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Figure 5.3 Reference D-B-A systems. (a) Pi-stacking pentacene trimer, (b) non-pi-stacking 

pentacene trimer, (c) pentacene-tetracene-pentacene trimer, (d) NC1 system of ref. [12]. For 

(a)-(c) RH-H ≈ 3.5 Å. 

 

This process mimics a transformation of the B structure, with respect to the reference one, 

via a variation of the BIP  and BEA  (while keeping D and A parameters fixed). An alternative 

point of view is that we are varying the B fragment exciton energy with respect to the D-

fragment exciton energy (Y  with respect to X ). We explore how such transformations alter 

SFV  and the SF pathways for the fully-coupled D-B-A system in the tunneling regime. SFV  

is computed by exact diagonalization of the full Hamiltonian (40 states, with the exact matrix 

elements), setting both initial and final state-energies equal to the resonance (tunneling) 

energy ( ) 2res in fiE E E= +   (Fig. 5.5 and Supplement section 5.4.3). Pathway contributions 

to SFV  are obtained by Green’s function methods and by deleting intermediate states in the 

RH-H 

   D       B                A 

(a) 

RH-H 

(b) 

(d) 

   D                                    A 

B 

   D              B                  A 

RH-H 

(c) 

   D            B                       A 
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Hamiltonian and computing the effect on 
SFV  (Supplement section 5.4.3). 46-49 Thus, the 

SFV  

plots in Fig. 5.4 are exact, involving diagonalization, whereas the dominant pathway 

structures in Fig. 5.5 are approximate interpretations of the exact results. 

Figure 5.4 shows contour plots of ( )SFln V Y X , z X  for the reference systems of Fig. 5.3, 

where X  is fixed to the D(A) pentacene value. Figures 5.4a, 5.4b, 5.4c, 5.4d relate to the 

reference systems 5.3a, 5.3b, 5.3c, 5.3d, respectively. The circles in the plots correspond to 

the coupling values for the computed Y  and z  of the reference systems. The labels (i), (ii), 

(iii) and (iv) refer to the pathway structures contributing to the SF couplings (see following 

discussion).  

 

 

Figure 5.4 SFln V  plot as a function of Y X  and z X  parameters for (a) pi-stacking 

conformation shown in Fig. 5.3a, (b) the non-pi-stacking conformation shown in Fig. 5.3b, 

(c) the pentacene-tetracene-pentacene molecular system of Fig. 5.3c and (d) the NC1 

molecular system of Fig. 5.3d. The dashed lines outline the three regimes defined in Fig. 5.2. 

(a) 

(c) 

(b) 

(d) 
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The black contour corresponds to a coupling 110SFV eV−= , the blue to 210SFV eV−=  and 

the magenta lines to 310SFV eV−= . The colormap scaling is the same for all plots. The 

circles represent the Y X , z X  and SFV  values of the reference systems in Fig. 5.3. The 

labels (i) to (iv) refer to the pathway structures discussed in the text. 

 

The above contour plots for the SF coupling variation relating to the different system types 

(and to the different reference systems) have similar generic features. SFV  increases as 

Y X→  (Y X ), i.e., as quasi-resonance between the initial (final) state and the BE states 

is approached from off-resonance (quasi-resonance corresponds to the leftmost side of 

contour plots). The maximum SFV  value for all types (I-III) is 110SFV eV−  ( 2 3SFln V .−

). For the type-I case the maximum coupling is only due to the BE-character states because 

these are the closest in energy to the initial and final states. The dominant type-I pathway 

structure is (i): ( ) ( ) ( ) ( )
2 2 2e e eV V V

CTP CTPLE in LE BE LDE BE LDE fi    and it is mediated by 

purely 2e interactions, i.e., 
2

2

e

e n m
ˆV V = . In contrast, the maximum coupling region 

for type-II or type-III involves CT (B+) or (B-) excitons, respectively, in addition to the 

above-mentioned BE states. These D(A)-B CT states have lower energies as compared to 

the type-I case, and approach the energies of the BE-character states. Thus, the dominant 

pathway structure for type-II is (ii): 

( ) ( ) ( ) ( ) ( )
1 1 2 2e e e eV V V V

CTP CTPLE in CT B LE BE LDE BE LDE fi+     and for type-III is (iii): 

( ) ( ) ( ) ( ) ( )
1 1 2 2e e e eV V V V

CTP CTPLE in CT B LE BE LDE BE LDE fi−    . Both pathways involve 2e 

and 1e interactions (
1

1

e

e n m
ˆV h = ). These pathway structures relate to symmetric D-B-

A systems (D=A) and to non-polar solvents. Polar solvents would lower CT-state energies. 

The three pathway structures are largely preserved as Y  increases with respect to X , i.e. 

moving from the quasi-resonant to the off-resonant regime (from the left to the right side of 

the contour plots). The Y X  increase implies an increase in the energies of the BE-character 

states, thus a weakening of the SFV  magnitude for all the system types. In the deep-tunneling 

regime ( 1 0Y X . , rightmost side of contour plots), the relative contribution from the high-

energy BE-character states is reduced and D-A CT excitons (DAE) become important. For 

example, for the NC1 reference structure, 
410SFV eV−

 (red circle in type-I region of Fig. 
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5.4d). This value is consistent with the results from Basel et al. 12 who studied this molecular 

system using CASSCF calculations on a 4e4o active space with D(A)-centered orbitals 

(XMCQDPT/DZV level of theory). Our computations, which also include bridge-centered 

states, show that the dominant pathway structure is (iv): 

( ) ( ) ( ) ( ) ( )
1 1 2 2e e e eV V V V

CTP CTPLE in CT B CT DAE LDE BE LDE fi+    . D-A CT excitons have 

the lowest energies and are major contributors to SFV . The lowest-coupling blue region in 

the deep-tunneling regime arises from destructive pathway interferences. 

Below, we show schematic representations of the most important states (energies) and the 

corresponding inter-state coupling topology for the different types of systems discussed 

above. We find that the CT doubly-excited states (CTDE in Fig. 5.1) and all the CSP states 

(included in the full-Hamiltonian computations) do not contribute significantly to SFV  due 

to their high energies. 
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Figure 5.5 Schematic representation of the energies and the couplings structure of the 

intermediate states of Table 5.1, for (a) the type-I, (b) the type-II (or -III) energetic regime 

and (c) the deep-tunneling case with 1 0Y X . . 
2eV  (red arrows) denotes coupling 

dominated by 2e matrix elements, 2

2

e

e n m
ˆV V = , and 

1eV  (black arrows) denotes 

coupling dominated by 1e matrix elements, 1

1

e

e n m
ˆV h = . The weaker matrix elements 

are represented by dotted lines and ( ) 2res in fiE E E= + . These dominant pathway structures 

relate to symmetric D-B-A systems for which (D=A) and to non-polar solvents. 

 

5.3   Conclusions 

In summary, for each system type considered here and for symmetric D-B-A systems, we 

identified the dominant bridge-mediated SF pathways and the corresponding SF 

intermediates (Fig. 5.5). We find that all system types can give similar magnitudes for the 

SF coupling even though the underlying pathway structures differ. An important conclusion 

is that for all system types the bridge can enhance SFV  through the CTP states 

( )
CTP CTP

D B A  D B A+− +− +− +−  and the single-exciton state D B A+− . For type-II and type-

III systems, D(A)-B CT states ( )D B A  D B A− + + −  or  ( )D B A  D B A+ − − +  also 

contribute significantly to SFV . Explicit expressions for all these intermediate states are given 

in the Supplement section 5.4.1. We also find that the differences between the SFln V  

contour plots in Fig. 5.4 are mainly due to differences in intermediate-state energies rather 

than the inter-state couplings 1eV  and 2eV  shown in Fig. 5.5 (see Supplement section 5.4.4). 

However, molecular motions and disorder could modulate the inter-state couplings such that 

the pathways contributing to the ensemble-averaged 2

SFV  may show some differences as 

compared to the static SFV . 

Nevertheless, the bridge-tuning of SFV  is most sensitive to energy differences between the 

above-mentioned intermediate states and the initial in D BA+−=  (given that the final state 

CTP
D BA+− +−  has lower energy than the initial). We have shown analytically that these 

energy differences, 
in

E E E 
 = − , can be approximated in terms of D(A) and B fragment 

exciton energies X  and Y , a few intra-fragment and inter-fragment Coulomb and exchange 
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integrals and differences in fragment IPs , B Dz IP IP= −  (Table 5.1). These variables are 

easily computed using fragment calculations. Some of them, such as IPs  and fragment 

singlet-exciton energies ( X  and Y ), can be approximated from experiments on the 

fragments. 

Figures 5.5a and 5.5b show that the bi-excitonic CTP states ( )
CTP CTP

D B A  D B A+− +− +− +−

, whose equations are given in Table 5.4, are “bottleneck” states for SFV  for all system types, 

in the sense that they are the only intermediates that are strongly coupled to the fission 

product 
CTP

D BA+− +− . Therefore, an approximate approach to bridge-tuning of SFV  is to 

modulate the energies of the “bottleneck” intermediates and their couplings to the final SF 

state. From Table 5.1 we conclude that rough estimates of these energies (for the systems 

under study in the off-resonant regime), are given by the sums of the energies of the D(A) 

and B fragment triplet excitons (exact energies are shown in Table 5.4), 

( ) ( )

( ) ( )

2 2

2 2

D D B BCTP

A A B BCTP

tripl tripl

H L H L( D B A ) D B

tripl tripl

H L H L( D B A ) A B

E X K Y K E E

E X K Y K E E

+− +− +− +−

+− +− +− +−

 − + −  +

 − + −  +
 (5.5) 

The couplings to the final SF state are simple exchange integrals that are easy to compute, 

( )

( )

3
2

3
2

SA SA
el

A B A BCTP CTP

SA SA
el

D B D BCTP CTP

ˆD B A H D B A L L H H

ˆD B A H D B A L L H H

+− +− +− +−

+− +− +− +−

=

=

 (5.6) 

(we find maximum values of 0.1 eV ). The “bottleneck” intermediates are accessed from the 

initial 
SA

D B A+−  state through different pathways, depending on the system type. For type-

I, they are mainly accessed through the LE (BE) state 
SA

D B A+−  via 2e interactions that 

involve pairs of exchange integrals. For type-II and -III the “bottleneck” states are mainly 

accessed from the initial state via BE and D-B CT states (II: 
SA

D B A− + , III: 
SA

D B A+ − ) 

with pathways that involve both 1e and 2e interactions (Supplement section 5.4.2). 

The concept of “bottleneck” states sheds light on the bridge-resonance effect in SF. The 

systems studied in refs [25,26] are type-I (Fig. 5.5a). The D(A) and B HOMO LUMO gaps 

in our notation are x  and y . Lowering the B HOMO-LUMO gap corresponds to y x→  (

1Y X → ), leading to an enhancement of the SF coupling (moving towards the leftmost side 
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of the contour plots in Fig. 5.4). As y x→  the “bottleneck”-state energy is reduced due to 

lowering of the bridge triplet-exciton energy (eq. (5.5) and Table 5.1). 

In conclusion the semi-analytical approach is a useful tool to derive, interpret and predict 

structure-function relationships and electronic pathways for bridge-mediated SF rates. It can 

also be used to guide searches of candidate D-B-A systems given target SF coupling 

magnitudes. These candidate systems may then be studied at a higher level of quantum 

chemical theory and tested by experiment.  

 

5.4   Supplement 

Derivation of the many-electron spin-adapted basis set using the branching diagram method 

in the context of CISD method and D, B, A HOMO/LUMO orbitals. Derivation of the many-

electron DBA Hamiltonian matrix elements using the above basis set. Description of SF 

effective coupling computation using exact diagonalization of the Hamiltonian and SF 

coupling pathways. Analysis of the relative importance of intermediate-state energies as 

compared to inter-state couplings in determining the SF effective coupling. Discussion of 

the generality of the method (non-frontier-orbital basis, non-symmetric D-B-A systems, 

fragment excitations that involve more than one pair of electron and hole orbitals). 

 

5.4.1   Many-electron Spin-adapted States 

In the first step of the SF process both the initial and final states are singlets, so we consider 

only singlet states as intermediates for this step (within the CISD formalism, these include 

single and double excitations). The many-electron states we use describe the D, B or A 

localization of the excited electron (e) and the hole (h), and are eigenstates of the total spin. 

They can be represented by linear combinations of singly- and doubly-excited N −  electron 

determinants.  

The spin eigenfunctions are constructed via the branching diagram method (using the 

Yamanouchi-Kotani functions). 37-39 For N  1 2s =  spins we construct eigenfunctions of 

2

NŜ , z ,NŜ  (with quantum numbers NS  and SM , respectively). For a given quantum number 

NS  there are different groups of such eigenfunctions, each group containing 2 1NS +  z ,NŜ  

eigenfunctions. Given a value of NS , the number of such groups for N  spins is 
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( ) 1 1
1

2 2

N

N N

N N

f N ,S .
N S N S

   
   = −
   − − −
   

 We denote the eigenfunctions of 2

NŜ  and z ,NŜ  

belonging to the thk  group by ( ) ( )N SX k X N, S , M ; k . The construction of the 

eigenfunctions in each group is done iteratively. Given the ( )
111

NN SX N , S , M ; k
−−−  

eigenfunctions we obtain new eigenfunctions corresponding to either 
1 1 2N NS S −= +  or 

1 1 2N NS S −= −  by adding or subtracting the spin of the thN  electron, respectively. 37,38  

The spin-spatial state with a prespecified occupation of spatial orbitals, is constructed by 

first multiplying a ( )X k  by a product of the prespecified spatial orbitals, 

( ) ( ) ( )1 2( , ,..., ) ... N        = . The ' s  are one-electron (1e) orbitals and 

, ,...,    are the orbital labels (e.g., DH  for the HOMO of the Donor fragment, AL  for the 

LUMO of Acceptor fragment, etc.). Thus, the spin-spatial antisymmetric wavefunctions can 

be written in a multi-determinant form as 

( ) ( ) ( ) ( )
SA

N
ˆA,B,..., ; X k A , ,..., X k     =  where ˆ

NA  is the antisymmetrization 

operator. 15,35 
SA

...  denotes a “Spin-Adapted” state that most often involves a linear 

combination of Slater determinants of 1e spin orbitals (denoted simply by ... ). 

Since we consider only singlet states, we will not use a total-spin label in our notation. For 

our active space we can create ( )4 0 2Nf N , S= = =  groups of spin eigenfunctions of 2

NŜ  

that describe the possible states of the system. Below in Table 5.2, are shown some examples 

of the most important singly-excited states (LE and CT) used in SF pathways. Some of these 

states are illustrated in Fig. 5.1 of the main text. r

a  denotes a singly-excited determinant 

in which an electron, which occupied spin-orbital a  in the Hartree-Fock (HF) ground state 

of the D-B-A N −  electron system 0,N , has been promoted to a virtual spin-orbital r . 

In such determinants, a  (or a ) is used to denote spin-orbital with spin up and a  (or a ) 

spin-orbital with spin down. 35,50 The superscript “+” (“-”) denotes hole (electron). 
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h-e distribution notation Expression 

SA

D B A+−  ( )1

2

D D

D D

L L

H H
 +  

SA

D B A+−  ( )1

2

B B

B B

L L

H H
 +  

SA

D B A+ −  ( )1

2

B B

D D

L L

H H
 +  

SA

D B A− +  ( )1

2

D D

B B

L L

H H
 +  

SA

D B A+ −  ( )1

2

A A

D D

L L

H H
 +  

Table 5.2 The most important singly-excited spin-adapted (SA) singlet states used as a basis 

to represent the D-B-A many-electron Hamiltonian. 1st column: Mathematical notation for 

the spin-adapted many-electron basis states. 2nd column: Spin-spatial multi-electronic states 

as linear combinations of singly-excited Slater determinants. 

 

The doubly-excited (DE) states include many more excitation combinations. In these cases, 

using the branching diagram method, we can construct correlated triplet-pair DE states 

(denoted by CTP) and correlated singlet-pair DE states (denoted by CSP). Below in Table 

5.3, we give some examples of the most important CTP and CSP doubly-excited states (LDE 

and CTDE). 3,15,40,41 r ,p

a ,b  denotes doubly-excited determinants. 

 

h-e distribution 

notation 
Expression 

SA

CTP
D B A+− +−  

1 1

3 2

D A D A

D A D A
A D A D

D A D A
D A D A

D AD A

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 
 

 

  −
  

+ −  
− +  

  

 

CSP
D B A+− +−  ( )1

2

D A D A D A D A

D AD A D A D A

L L L L L L L L

H HH H H H H H
   + + +  

SA

CTP
D B A+− +−  

1 1

3 2

D B D B

D B D B
B D B D

D B D B
D A D B

D BD B

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 
 

 

  −
  

+ −  
− +  

  
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CSP
D B A+− +−  ( )1

2

D B D B D B D B

D BD B D B D B

L L L L L L L L

H HH H H H H H
   + + +  

SA

CTP
D B A+− +−  

1 1

3 2

A B A B

A B A B
B A B A

A B A B
A A A B

A BA B

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 
 

 

  −
  

+ −  
− +  

  

 

SA

CSP
D B A+− +−  ( )1

2

A B A B A B A B

A BA B A B A B

L L L L L L L L

H HH H H H H H
   + + +  

SA

CTP
D B A− + +−  

1 1

3 2

A D A D

B D B D
D A D A

B D B D
A D A D

B DB D

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 
 

 

  −
  

+ −  
− +  

  

 

SA

CSP
D B A− + +−  ( )1

2

A D A D A D A D

B DB D B D B D

L L L L L L L L

H HH H H H H H
   + + +  

CTP
D B A− +− +  

( ) ( )

1 1

3 2

B D B D

A D A D
D B D B

A AD A D A
B D B D

A DA D

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 
 

 

  −
  

+ −  
− +  

  

 

CSP
D B A− +− +  ( )1

2

B D B D B D B D

A DA D A D A D

L L L L L L L L

H HH H H H H H
   + + +  

 

Table 5.3 Examples of doubly-excited spin-adapted (SA) states used as a basis to represent 

the D-B-A Hamiltonian. 1st column: Mathematical notation for the spin-adapted many-

electron basis states. 2nd column: Spin-spatial multi-electronic states as linear combinations 

of doubly-excited Slater determinants (CTP: correlated Triplet-Pair; CSP: correlated 

Singlet-Pair).  

 

5.4.2   Hamiltonian Matrix Elements 

Diagonal Matrix Elements 

In the table below, we give exact expressions for the diagonal elements 
SA SAel

n nĤ   

of the Hamiltonian 1 2el e eˆˆ ˆH h V= + . Each element is given as a function of ionization 

potentials ( )IP , electron affinities ( )EA , core terms, Coulomb and exchange integrals, 

calculated using the Slater-Cordon rules in the above-mentioned basis of states. 35,51  

In our computations we use these exact expressions to compute the Hamiltonian for the 

reference systems and for the coupling plots. In particular, we compute the 1e and 2e 

contributions in each equation of Table 5.4 using the GAMESS-US 43-45 program in the 
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fragment-orbital representation. The section 5.2 presents approximate expressions for the 

lowest-lying states (Table 5.1). The validity of each approximate expression is verified from 

the ab-initio computations of the different contributions in the exact expressions shown in 

Table 5.4. 

In the equations of Table 5.4, ˆ
ke nV −  denote Coulombic attractive interactions between the 

electrons and the thk  fragment nuclei (part of the core term in the Hamiltonian). 
i jP QJ  and 

i jP QK  are Coulomb and exchange 2e integrals involving the 
iP  and 

jQ  fragment molecular 

orbitals (MOs), where , ,P Q H L=  and i, j D,B,A= , 35 

( ) ( ) ( ) ( ) ( )3 3 * 1 *

1 2 1 1 12 2 2i j i i j jP Q i i j j P P Q QJ P P Q Q d r d r r r r r r   − =  , (5.7) 

( ) ( ) ( ) ( ) ( )3 3 * 1 *

1 2 1 1 12 2 2 .
i j i j j iP Q i j j i P Q Q PK P Q Q P d r d r r r r r r   − =   (5.8) 

 

State char. ˆ 
SA SAel

n nH  

Singly - Excited States 

SA

D B A+−  LE (in) 

2

ˆ ˆ ˆ ˆ

2 2 2 2

D D D D

A B A B

A D B D D A D B

A D B D D A D B

D D

H L H L

D e n D D e n D D e n D D e n D

H L H L H H H H

H L H L H H H H

IP EA J K

L V L L V L H V H H V H

J J J J

K K K K

− − − −

− − +

+ + − −

+ + − −

− − + +

 

SA

D B A+ −  CT (B-) 
ˆ ˆ ˆ ˆ

2 2 2

D A A B

D B A B D B D A

D B A B D B D A

D B

B e n B B e n B D e n D D e n D

H L H L H H H H

H L H L H H H H

IP EA

L V L L V L H V H H V H

J J J J

K K K K

− − − −

−

+ + − −

+ + − −

+ − + +

 

SA

D B A− +  CT (B+) 
ˆ ˆ ˆ ˆ

2 2 2

B A A D

B D A D D B B A

B D A D D B B A

B D

D e n D D e n D B e n B B e n B

H L H L H H H H

H L H L H H H H

IP EA

L V L L V L H V H H V H

J J J J

K K K K

− − − −

−

+ + − −

+ + − −

+ − + +
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SA

D B A− +  
CT 

(DAE) 

ˆ ˆ ˆ ˆ

2 2 2

A B B D

A D B D D A B A

A D B D D A B A

A D

D e n D D e n D A e n A A e n A

H L H L H H H H

H L H L H H H H

IP EA

L V L L V L H V H H V H

J J J J

K K K K

− − − −

−

+ + − −

+ + − −

+ − + +

 

SA

D B A+ −  
CT 

(DAE) 

ˆ ˆ ˆ ˆ

2 2 2

D B B A

D A B A D A D B

D A B A D A D B

D A

A e n A A e n A D e n D D e n D

H L H L H H H H

H L H L H H H H

IP EA

L V L L V L H V H H V H

J J J J

K K K K

− − − −

−

+ + − −

+ + − −

+ − + +

 

SA

D B A+−  LE (BE) 

2

ˆ ˆ ˆ ˆ

2 2 2 2

B B B B

A D A D

A B D B B A D B

A B D B B A D B

B B

H L H L

B e n B B e n B B e n B B e n B

H L H L H H H H

H L H L H H H H

IP EA J K

L V L L V L H V H H V H

J J J J

K K K K

− − − −

− − +

+ + − −

+ + − −

− − + +

 

SA

D B A+ −  CT (B+) 
ˆ ˆ ˆ ˆ

2 2 2

B D D A

B A D A B A D B

B A D A B A D B

B A

A e n A A e n A B e n B B e n B

H L H L H H H H

H L H L H H H H

IP EA

L V L L V L H V H H V H

J J J J

K K K K

− − − −

−

+ + − −

+ + − −

+ − + +

 

SA

D B A− +  CT (B-) 

ˆ ˆ ˆ ˆ

2 2 2

A D D B

A B D B B A D A

A B D B B A D A

A B

B e n B B e n B A e n A A e n A

H L H L H H H H

H L H L H H H H

IP EA

L V L L V L H V H H V H

J J J J

K K K K

− − − −

−

+ + − −

+ + − −

+ − + +

 

Doubly – Excited States (DE) 

SA

CTP
D B A+− +−  

LDECTP 

(fi) 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2 2

5 1 1

2 2 2

D D A A

A B D B

D B A B

D A D B B A D A D A B A A D B D

D A D B B A D A

D A D A

H L H L

D e n D D e n D A e n A A e n A

A e n A A e n A D e n D D e n D

H H H H H H L L H L H L H L H L

H H H H H H L L

IP IP EA EA J J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K K

− − − −

− − − −

+ − − − −

+ + + +

− − − −

− − − + + + + +

+ + + + +
1

2D A B A A D B DH L H L H L H LK K K− + −
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SA

CTP
D B A+ − +−  

CTDECTP 

(B-) 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

5 1 1

2 2 2

A A

D A D B

D B A B

D A D B B A B A D B A B D A B A

D A D B B A B A D B

D A B A

H L

B e n B B e n B A e n A A e n A

A e n A A e n A D e n D D e n D

H H H H H H L L H L H L H L H L

H H H H H H L L H L H

IP IP EA EA J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K K K

− − − −

− − − −

+ − − −

+ + + +

− − − −

− − − + + + + +

+ + + + − +
1

2A B D A B AL H L H LK K+ −

 

SA

CTP
D B A+− − +  

CTDECTP 

(B-) 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

5 1 1

2 2 2

D D

D A A B

A B D B

D A B A D B D B A B D B A D B D

D A B A D B D B A B

D A B D

H L

B e n B B e n B D e n D D e n D

D e n D D e n D A e n A A e n A

H H H H H H L L H L H L H L H L

H H H H H H L L H L H

IP IP EA EA J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K K K

− − − −

− − − −

+ − − −

+ + + +

− − − −

− − − + + + + +

+ + + + − +
1

2D B A D B DL H L H LK K+ −

 

SA

CTP
D B A+− + −  

CTDECTP 

(B+) 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

5 1 1

2 2 2

D D

A B D B

A B D A

D B D A B A D A B D A D D A B A

D B D A B A D A B D

D B D A

H L

D e n D D e n D A e n A A e n A

D e n D D e n D B e n B B e n B

H H H H H H L L H L H L H L H L

H H H H H H L L H L H

IP IP EA EA J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K K K

− − − −

− − − −

+ − − −

+ + + +

− − − −

− − − + + + + +

+ + + + + −
1

2A D D A B AL H L H LK K+ −

 

SA

CTP
D B A− + +−  

CTDECTP 

(B+) 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

5 1 1

2 2 2

A A

D B A B

D B D A

B A D A D B D A B A D A A D B D

B A D A D B D A B A

A B A D

H L

A e n A A e n A D e n D D e n D

A e n A A e n A B e n B B e n B

H H H H H H L L H L H L H L H L

H H H H H H L L H L H

IP IP EA EA J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K K K

− − − −

− − − −

+ − − −

+ + + +

− − − −

− − − + + + + +

+ + + + + −
1

2D A A D B DL H L H LK K+ −

 

SA

CTP
D B A+− +−  

LDECTP 

(BE) 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2 2

5 1 1

2 2 2

B B A A

A D D B

D B A D

B A D B D A B A B A D A A B D B

B A D B D A B A

B A B A

H L H L

B e n B B e n B A e n A A e n A

A e n A A e n A B e n B B e n B

H H H H H H L L H L H L H L H L

H H H H H H L L

IP IP EA EA J J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K K

− − − −

− − − −

+ − − − −

+ + + +

− − − −

− − − + + + + +

+ + + + +
1

2B A D A A B D BH L H L H L H LK K K− + −
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SA

CTP
D B A− +− +  

CTDECTP 

(BE) 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

5 1 1

2 2 2

B B

D A A B

D A D B

B A D B D A D B A B D B B D A D

B A D B D A D B A B

A B D B

H L

B e n B B e n B D e n D D e n D

B e n B B e n B A e n A A e n A

H H H H H H L L H L H L H L H L

H H H H H H L L H L H

IP IP EA EA J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K K K

− − − −

− − − −

+ − − −

+ + + +

− − − −

− − − + + + + +

+ + + + + −
1

2D B B D A DL H L H LK K+ −

 

SA

CTP
D B A+ +− −  

CTDECTP 

(BE) 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

5 1 1

2 2 2

B B

D A D B

D A A B

D B B A D A B A D B A B B A D A

D B B A D A B A D B

D B A B

H L

B e n B B e n B A e n A A e n A

B e n B B e n B D e n D D e n D

H H H H H H L L H L H L H L H L

H H H H H H L L H L H

IP IP EA EA J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K K K

− − − −

− − − −

+ − − −

+ + + +

− − − −

− − − + + + + +

+ + + + + −
1

2A B B A D AL H L H LK K+ −

 

 

Table 5.4 Examples of analytical expressions for the basis-state energies (diagonal elements 

of the many-electron Hamiltonian). 1st column: Mathematical notation of the spin-adapted 

(SA) many-electron basis states. 2nd column: Names of the different groups of these states 

for the D-B-A system. 3rd column: Exact expressions for the excitation energies of these 

states for the D-B-A system as a function of ionization potentials, electron affinities, core 

terms and two-electron integrals. 

 

Off-diagonal Matrix Elements 

In the table below, we present some of the most important off-diagonal elements, among the 

above-mentioned spin-adapted states. As with the diagonal elements, the expressions are 

evaluated using ab-initio computations. In the equations below 
i jP ,QF  denote Fock matrix 

elements between the iP  and jQ  MOs. Also, for simplicity of presentation we do not include 

terms proportional to 
i jPQS ( )i jP Q . The off-diagonal elements of the overlap matrix 

between orbitals in different fragments are very close to zero ( 0
i jPQS  , i jP Q ). 

Coupling Notation 

States 

Involved 

Coupling expression 

2eV  

LE (in) 

– 

( ) ( )( )3
2 D A D A D A A DH L H H L L H L−  
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LDECTP (fi) 

2eV  

LE (in) 

– 

LE (BE) 

( ) ( )2 D D B B D B D BH L H L L L H H−  

2eV  

LE (BE) 

– 

LDECTP (BE) 

( ) ( )( ) ( ) ( )( )( )3
2 B B B BD A D A D A D A

H L H H L L H L−  

2eV  

LE (in) 

– 

LDECTP (BE) 

( ) ( )( )3
2 D B D B D B B DH L H H L L H L−  

----- 

LE (BE) 

– 

LDECTP (fi) 

----- 

2eV  

LDECTP (BE) 

– 

LDECTP (fi) 

( ) ( )( )3
2 B BD A D A

L L H H  

1eV  

CT (B+) 

– 

LE (in) 

( ) ( )2
D BH H D D B D D B D DF H L H L H H L L− + −  

1eV  

CT (B+) 

– 

LE (BE) 

( ) ( )( ) ( )( )2
BD AL L B B B B B BD A D A

F H L H L L L H H+ −  

1eV  

CT (B+) 

– 

LDECTP (BE) 

( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

2
1

2 2

BD AH L B B BD A

B BD A D A D A D A D A D A

F H H H L

H L L L H L L L

 +
 
 

− + 
 

 

STEFANI V
ALIA

NTI 



139 

 

----- 

CT (B+) 

– 

LDECTP (fi) 

----- 

1eV  

CT (B-) 

– 

LE (in) 

( ) ( )2
D BL L D D D B D B D DF H L H L L L H H+ −  

1eV  

CT (B-) 

– 

LE (BE) 

( ) ( )( ) ( )( )2
BD AH H B B B B B BD A D A

F H L H L H H L L− + −  

1eV  

CT (B-) 

– 

LDECTP (BE) 

( ) ( ) ( ) ( )( )

( )( ) ( )( )

2
1

2 2

B D AH L B D A D A D A

B B B B B BD A D A

F H H H L

H L L L H L L L

 +
 
 

− + 
 

 

----- 

CT (B-) 

– 

LDECTP (fi) 

----- 

 

Table 5.5 Analytical expressions for Hamiltonian matrix elements between spin-adapted 

states. 1st column: Coupling Notation, 1eV  denotes coupling dominated by the 1e matrix 

element (Fock matrix element), while 2eV  is a coupling dominated entirely by 2e matrix 

elements. 2nd column: notation of the states involved in the corresponding coupling. 3rd 

column: Exact expressions for the off-diagonal matrix elements as a function of Fock matrix 

elements and 2e integrals ignoring overlap off-diagonal matrix elements. 

 

5.4.3   Effective Coupling Analysis 

As mentioned in the main text, we explore the situation where the initial photo-excitation 

creates a D-localized singlet exciton that can be approximated by 
SA

in D B A+−  (first 

row in Table 5.1). The coherent SF process leads to a final state that is approximated by the 

D-A separated correlated triplet-pair 
SA

CTP
fi D B A+− +−  (second row of Table 5.1). The 
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assumption of a D-localized in  implies that all other intermediate states (third-to-final rows 

of Table 5.1) are off-resonant to in  (and also to fi , since it has lower energy than in ). 

We denote this regime of SF as the coherent tunneling regime. Singlet fission will take place 

when the initial and final states come to resonance at an energy 
resE . Using standard 

projection methods, 46-48 we approximate the effective coupling for the SF process by  

( ) ( )
el el

k kintel el

SF res

k res k

ˆ ˆfi H H in
ˆˆ ˆV fi H G E H in

E i E

 


= =

+ −
 . (5.9) 

In the equation above ( ) 2res in fiE E E= +  and 

( ) ( ) ( ) ( )( )
1

int int int

res res
ˆ ˆ ˆG E E I i H

−

= + −  (5.10) 

is the Green’s function operator for the exact Hamiltonian of the subspace of all intermediate 

states. That is, 
( ) ( ) ( )int int intelˆ ˆˆ ˆH Q H Q= , where ( ) ( )intˆ ˆQ I in in fi fi .= − +  kE  and k  are 

the eigenenergies and eigenstates of this Hamiltonian 
( )( )int

k k kĤ E = . The eigenstate 

expression for SFV  enables decomposing the SF coupling into channel contributions from 

each eigenstate. Using perturbation theory, SFV  can be further decomposed into sums of 

terms each of which can be interpreted as a SF pathway that contributes to the total SF 

coupling. Each pathway starts in in , visits some of the intermediate states and ends in fi

. The validity of eq. (5.9) in approximating the effective SF coupling is checked via exact 

diagonalization performed by setting in resE E→  and fi resE E→ . In the off-resonant 

tunneling regime exact diagonalization for resonant in  and fi  gives two eigenstates 

( )
1

2
in fi     with energy splitting between them 2 SFE E V+ −−  . As quasi-

resonance is approached the two lowest eigenstates have main (equal) contributions from 

the initial and final states but there is more mixing with the other intermediate states (as 

compared to the off-resonance case). 

We analyse the SF pathways for each set of SFV  plots by turning-off off-diagonal matrix 

elements in the Hamiltonian connecting a specific state with the rest, and observing how the 

effective coupling is affected. Specifically, we compute the ratio 
k

  of SFV  when we turn-

off the contribution of a specific intermediate state in the Hamiltonian matrix to the exact 
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SFV  value. The higher the ratio 
k

 , the greater the contribution of the particular 

intermediate state to the exact effective coupling. In addition to the above analysis we also 

derive pathways by doing a perturbative expansion of eqs (5.9) and (5.10) in powers of the 

off-diagonal matrix elements of the Hamiltonian and keeping the highest terms (strongest 

pathways). 

 

5.4.4   Difference among Contour Plots 

To explore the relative importance between intermediate-state energies as compared to inter-

state couplings in determining the SFV  values we focus on the cases of the pi-stacking and 

non-pi-stacking conformations as shown in the Figs 5.3a, 5.3b. We produce two different 

plots SF SFln V V   and SF SFln V V   as a function Y X  and z X , where SFV  is the effective 

coupling for the non-pi-stacking conformation (as in the original Fig. 5.4b). 
SFV   is the 

corresponding value if we replace only the off-diagonal elements of the non-pi-stacking 

system with the ones of the pi-stacking system and SFV   is the value when we replace only 

the diagonal elements. 

As can be seen from Fig. 5.6 the largest change in effective coupling comes from the 

diagonal Hamiltonian elements, as they can cause a change in effective coupling up to four 

orders of magnitude (OM). In the case of off-diagonal elements (inter-state couplings) the 

maximum change is limited to one OM. We find that the magnitudes of the 1eV  and 2eV  do 

not vary significantly among the reference structures of Fig. 5.3 (maximum percentage 

changes and average percentage for 1eV  of the order of 40%  and 16% , respectively, and for 

2eV  33%  and 15% , respectively). The maximum coupling magnitude is of the order of 

0.1eV . 
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Figure 5.6 Difference contour plots. (a) SF SFln V V   and (b) SF SFln V V   as a function of 

Y X  and z X . The dashed lines outline the three regimes defined in Fig. 5.2. The black 

contour corresponds to a coupling ratio equal to 10 which roughly corresponds to a 

difference of an order of magnitude (OM), the blue to 2 OM, magenta to 3 OM and red to 4 

OM. The colormap scaling is the same for both plots. 

 

5.4.5 Generality of the analytical model 

In the Supplement sections 5.4.1 and 5.4.2, the analytical formulas for energies and 

couplings are presented in a fragment HOMO-LUMO basis because we want to correlate 

our analysis with IPs  and EAs  that are known for many molecules that may be used as 

potential fragments (and that are used as indicators of bridge-resonance in the experiments 

mentioned in text). However, the formulas presented in the Tables 5.2-5.5, from a 

(b) 

Y / X 

(a) 

Y / X 

z 
/ 

X
 

z 
/ 

X
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mathematical point of view, are general (i.e., not restricted to HOMO and LUMO fragment 

orbitals). We illustrate this with some examples for singly and doubly-excited states. 

From Tables 5.2 and 5.3 consider the spin-adapted singly-excited states, 
SA

D B A+−  (intra-

fragment excitation) and 
SA

D B A+ −  (inter-fragment excitation) and the spin-adapted 

doubly-excited state that is one of the bridge-mixed CTP states, which we find to be a 

“bottleneck” state, 
SA

CTP
D B A+− +− . These formulas are valid even if the fragment hole and 

electron orbitals are not HOMO and LUMO. Namely, one just needs to replace in the 

equations F FH ,L  with F FO ,V  where F FO ,V  is an occupied and a virtual orbital, 

respectively, of fragment F  ( , ,F D B A= ),  

( ) ( )1 1

2 2

D D B B

D DD D

SA SAV V V V

O OO O
D B A , D B A ...   +− + −= + = +  (5.11) 

What these orbitals are is system-specific and should be deduced from experiment coupled 

with ab-initio computations on the system under study. 

The corresponding energies and coupling expressions between diabatic states are also 

general. Again, for the fragment HOMO-LUMO basis some examples are given in Tables 

5.4 and 5.5. In Table 5.4, we have written the energies in terms of fragment IPs  and EAs . 

However, if we substitute the equations for each fragment IP  and EA  in these expressions, 

e.g., 1ˆ
D D

D e

D D H HIP H h H J= − − , 1ˆ 2
D D D D

D e

D D H L H LEA L h L J K= − − +  etc., we get the 

energies of Table 5.4 as functions only of 1e and 2e matrix elements that are derivable from 

ab-initio computations. Having written these energies in terms of 1e and 2e matrix elements 

we only need to replace F FH ,L  with F FO ,V  to get the generalized expressions. For example, 

for the first state in eq. (5.11), 

1 1ˆ ˆ

ˆ ˆ ˆ ˆ

2 2 2 2

SA
D D D D D D

A B A B

D A D B D A D B

D A D B D A D B

e e

D D D D O O O V O V
D B A

D e n D D e n D D e n D D e n D

V O V O O O O O

V O V O O O O O

E V h V O h O J J K

V V V V V V O V O O V O

J J J J

K K K K

+−

− − − −

= − − + +

+ + − −

+ + − −

− − + +

 (5.12) 

For a CTP state involving fragment orbitals D DO ,V  and B BO ,V , 
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1 1 1 1ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2

SA

CTP

B B D D B B D D D D B B

A D A B

A B A D

B D A B D A B D

e e e e

D D B B D D B B
D B A

O O O O O V O V O O O V

B e n B B e n B D e n D D e n D

D e n D D e n D B e n B B e n B

O O O O O O V V

E V h V V h V O h O O h O

J J J J K K

V V V V V V V V V V V V

O V O O V O O V O O V O

J J J J

+− +−

− − − −

− − − −

= + − −

− − + + − −

+ + + +

− − − −

− − − + 2 2

5 1 1 1

2 2 2 2

B D A D B D B A

B D A B D A B D B D A D B D B A

O V O V V O V O

O O O O O O V V O V O V V O V O

J J J J

K K K K K K K K

+ + + +

+ + + + + − + −

 
(5.13) 

The same holds for the analytical expressions of the off-diagonal matrix elements between 

the many-electron states (Table 5.5), e.g.,  

( ) ( )3 3
2 2

SA SA
el

D B D B D B D BCTP CTP

ˆD B A H D B A L L H H V V O O+− +− +− +− = →  (5.14) 

These general formulas allow us to consider cases where the fragment excited states are not 

intra-fragment F FO V→  or inter-fragment F FO V →  excitations, but rather linear 

combinations of excitations involving more than a pair of occupied and virtual orbitals. For 

example, rather than having the 
SA

D B A+−  expression of eq. (5.11), we could have chosen 

the excitation to be more complex, such as the linear combination of 

( ) ( )1 1

2 2

D D D D

D DD D

SA
V V V V

O OO O
D B A C C   

 +−

 
= + + +  with 1D DO H = −  and 

1D DV L = + .  

The choice of fragment excited-states will depend on the systems considered and on the 

experimental and computational information we can get for the nature of their excitations 

(i.e., if they are single excitations or linear combinations of single excitations). Since we 

have analytical expressions of the Hamiltonian matrix elements in terms of any F FO ,V  

orbitals, we can deduce analytically and computationally the relevant minimum model and 

approximate pathways that describe the specific system. Finally, the exact formulas for the 

basis states, their energies and their Hamiltonian interactions are not based on any 

assumption about the strengths of the interactions. Since the effective coupling is computed 

exactly by diagonalization of the full Hamiltonian at the initial-to-final state resonance 

(tunneling) energy (see section 5.4.3), the method can treat both asymmetric D-B-A systems 

and strongly-interacting fragments.  
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CHAPTER 6 

Construction of Spin-Spatial Many-electron Basis 

 

One of the most fundamental principles for a many-electron system, is the construction of 

N −  electron wavefunctions that satisfy the antisymmetry principle. This chapter describes 

the creation of spin-spatial multi-electronic states (spin-spatial antisymmetric 

wavefunctions) that are used as a basis for representing the many-electron Hamiltonian in 

the CISD approximation. This construction is the key to the semi-analytical / computational 

framework that we used in Chapter 5, in the study of the singlet fission process in donor (D) 

- bridge (B) - Acceptor (A) molecular systems. Initially through the branching diagram 

method we construct spin eigenfunctions for a given number of electrons ( N ) and spin 

quantum number ( NS ). Then, we combine these spin eigenfunctions with the appropriate 

spatial part we create N −  electron states. 1-3 The principle goal is the study of the structure 

of the wavefunction and the derivation of the rules for the calculation of the matrix elements 

of the Hamiltonian. Namely, we apply this methodology for creating the basis set (singly- 

and doubly-excited states) that describes all the possible states within the CISD formalism. 

 

6.1   Genealogical Construction of Spin Eigenfunctions 

Let us assume that we know the spin eigenfunctions of the 1N −  electronic system and we 

want to construct spin eigenfunctions for the N −  electronic system. We can start by 

considering 1N =  and knowing that the electron can have a spin eigenfunction   (or  ) 

corresponding to spin-orbital with spin up and   (or  ) corresponding to spin-orbital with 

spin down. This case corresponds to the addition theorem on angular momenta where one 

subsystem consists of 1N −  electrons with spin quantum number 1NS − , while the other 

subsystem consists of one electron with spin quantum number 1 2 . Then, the NS  quantum 

number of the system can have only two values: 1 1 2NS − −  and 1 1 2NS − + . 

Using the branching diagram method (and the Yamanouchi-Kotani functions), 1-3 from a 

given quantum number 1NS − , we can obtain new eigenfunctions corresponding to either 

1 1 2N NS S −= +  or 1 1 2N NS S −= −  (by adding or subtracting the spin of the 
thN  electron). 
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For a given quantum number 
NS  there are different groups of such eigenfunctions, each 

group containing 2 1NS +  z ,NŜ  eigenfunctions. The spin degeneracy of state 
NN, S  is 

obtained as follows, 

( ) ( ) ( )1 11 1 2 1 1 2N N Nf N , S f N ,S f N ,S− −= − + − − − . (6.1) 

Using the indicative method, we prove that ( )Nf N , S  is given by the following formula,  

( ) 1 1
1

2 2

N

N N

N N

f N ,S .
N S N S

   
   = −
   − − −
   

 (6.2) 

The spin degeneracy can be represented in a pictorial way by the branching diagram (Fig. 

6.1). 1-3 Each state is represented by a circle with the coordinates N  and NS , and in each 

circle is written the corresponding ( )Nf N , S  value. As can be observed, the number of 

independent spin states increases sharply as N  increases. 

 

 

Figure 6.1 Schematic representation of the branching diagram, SN as a function of the 

number of electrons, N. Circles represent the different states and the number in each circle 

corresponds to the f (N, SN) values. 
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We denote the eigenfunctions of 2

NŜ  and z ,NŜ  belonging to the thk  group by 

( ) ( )N SX k X N, S , M ; k . The formulas for adding and subtracting the thN  electron are 

given by the following equations, 1-3 

( )
( ) ( )

( ) ( )

1 1

1 1

1 1

1 1
1 2 1 2 1 2 1

1 1

N S N S

N S N

N S N S

S M X N ,S ,M N
X N ,S ,M S

S M X N ,S ,M N





− −

− −

− −

 + + −
 + + = +
 + − − + 

 (6.3) 

 

( )
( ) ( )

( ) ( )

1 1

1 1

1 1

1
1 2 1 2 1 2 1

1 1 1

N S N S

N S N

N S N S

S M X N ,S ,M N
X N ,S ,M S

S M X N ,S ,M N





− −

− −

− −

 − − −
 − + = +
 + + + − + 

 (6.4) 

Spin orbitals with spin up are symbolized with a  and orbitals with spin down with a . 

 

6.2   Antisymmetry Principle 

A many-electron wavefunction is antisymmetric with respect to interchange of the 

coordinates (both spin and spatial) of any two electrons (the wavefunction changes sign). 

This principle should be taken into account in the construction of full spin-spatial functions. 

In the remaining chapter we will deal with the creation of total wavefunctions that include 

both spatial and spin part that satisfy the antisymmetry principle. For this purpose, we must 

define the antisymmetrization operator as follows, 4,5 

( )
1ˆ ˆ1

!

p

N

p

A P
N

= −  (6.5) 

where P̂  is the permutation operator and p  keeps track of the number of permutations from 

0  to N . The antisymmetrization operator has the property of commuting with the 

Hamiltonian. This follows from the fact that the Hamiltonian is invariant with respect to the 

permutation of the coordinates of the electrons, so the Hamiltonian commutes with every 

permutation and therefore it commutes with the antisymmetrization operator. 

 

6.3   Combination of Spatial and Spin Functions    

Let us choose a spatial function consisting of prespecified orbitals determined by the state 

we want to create, ( ) ( ) ( )1 2( , ,..., ) ... N        = . The ' s  are one-electron 

orbitals and , ,...,    are the orbitals labels (e.g., HOMO, LUMO, etc.). 

STEFANI V
ALIA

NTI 



153 

 

The total wavefunction is obtained by multiplying the eigenfunction 

( ) ( )N SX k X N, S , M ; k  by the spatial function ( , ,..., )     and by antisymmetrizing 

the product. The wavefunction obtained in this way satisfies the antisymmetry principle. 

Thus, the spin-spatial antisymmetric wavefunction can be written in a multi-determinant 

form as, 

( ) ( ) ( ) ( )
SA

k N
ˆA,B,..., ; X k A , ,..., X k       = . (6.6) 

SA
...  denotes a “Spin Adapted” state that most often involves a linear combination of Slater 

determinants of one-electron spin orbitals (denoted simply by ... ). 

 

6.4   The Many-electron Spin-adapted Basis Set 

In the first step of the Singlet Fission (SF) process that studied extensively in Chapter 5 both 

the initial and final states are singlets, so we consider only singlet states as intermediates for 

this step (within the CISD formalism, these include single and double excitations). The 

many-electron basis states we use describe the D, B or A localization of the excited electron 

(e) and the hole (h), and are eigenstates of the total spin. They can be represented by linear 

combinations of singly- and doubly-excited N −  electron determinants. The spin 

eigenfunctions are constructed via the branching diagram method (using the Yamanouchi-

Kotani functions) as described previously. 1-3 For N  1 2s =  spins we construct 

eigenfunctions of 2

NŜ , z ,NŜ  (with quantum numbers NS  and SM , respectively). For a given 

quantum number NS  there are different groups of such eigenfunctions, each group 

containing 2 1NS +  z ,NŜ  eigenfunctions. Given a value of NS , the number of such groups 

for N  spins is ( ) 1 1
1

2 2

N

N N

N N

f N ,S .
N S N S

   
   = −
   − − −
   

 We denote the eigenfunctions of 

2

NŜ  and z ,NŜ  belonging to the thk  group by ( ) ( )N SX k X N, S , M ; k . The construction of 

the eigenfunctions in each group is done iteratively. Given the ( )
111

NN SX N , S , M ; k
−−−  

eigenfunctions we obtain new eigenfunctions corresponding to either 1 1 2N NS S −= +  or 

1 1 2N NS S −= −  by adding or subtracting the spin of the 
thN  electron, respectively.  
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The Table 6.1 below shows the ( )6 0 5f , =  (apply an active space with 6N =  electrons 

looking for singlet spin eigenfunctions, 0NS = ) spin eigenfunctions as generated using the 

above procedure as a function of the appropriate 20 primitive spin functions, 
i . 

 

i  ( )1X  ( )2X  ( )3X  ( )4X  ( )5X  
i  

1 3       

2 -1 4      

3 -1 -2 2     

4 -1 -2 -2     

5 -1 -2  2    

6 -1 1 -1 -1 1   

7 -1 1 1 -1 -1   

8 1 -1 -1 -1 -1   

9 1 -1 1 -1 1   

10 1 2  2    

11 -1 -2  -2    

12 -1 1 -1 1 -1   

13 -1 1 1 1 1   

14 1 -1 -1 1 1   

15 1 -1 1 1 -1   

16 1 2  -2    

17 1 2 2     

18 1 2 -2     

19 1 -4      

20 -3       

−c 2  36 72 24 24 8  

 

Table 6.1 Spin eigenfunctions ( )X k  ( 1 5k = − ) as linear combinations of primitive spin 

functions, i  ( i  keeps track of the number of primitive functions from 0  to 20 ) multiplying 

with the appropriate coefficients, c .  

 

The spin-spatial multi-electronic state with a prespecified occupation of spatial orbitals, is 

constructed by first multiplying ( )X k  by a product of the prespecified orbitals, 
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( ) ( ) ( )1 2( , ,..., ) ... N        = . The ' s  are 1e orbitals and , ,...,    are the 

orbital labels (e.g., DH  for the HOMO of the Donor fragment, AL  for the LUMO of Acceptor 

fragment, etc.). Thus, the spin-spatial antisymmetric wavefunctions can be written in a multi-

determinant form as ( ) ( ) ( ) ( )
SA

N
ˆA,B,..., ; X k A , ,..., X k     =  where ˆ

NA  is the 

antisymmetrization operator as described above. 

Since we consider only singlet states, we will not use a total-spin label in our notation. 

Combining the spin eigenfunctions with an active space of 6 HOMO and LUMO orbitals (

DH , DL , BH , BL , AH , AL ) to create single and double excitations, we derive 40 singlet spin-

spatial eigenstates 
SA

n  ( )1 40n = − . For an active space of 4 electrons in 6 orbitals, the 

degeneracy is reduced to ( )4 0 2Nf N , S= = =  groups of spin eigenfunctions of 2

NŜ  (the 

other 3 groups of spin eigenfunctions vanish when we add the spatial part, since of the 6 

total electrons, only the 4 are active). We use the basis set of 
SA

n  and the Slater-Condon 

rules to obtain analytical expressions for 
SA SAel el

n,m n m
ˆH H=    where 1 2el e eˆˆ ˆH h V= + . 

4,6 

The singly-excited states can be categorized as locally-excited (LE) and charge-transfer 

(CT). LE states have an excited electron and a hole on the same fragment (intra-fragment 

excitation). Such a state is the bridge excitonic (BE) state with an electron-hole (e-h) pair in 

the B fragment. For CT states the excited electron is on a different fragment than the hole 

(inter-fragment e-h excitation). Such a state is the Donor-Acceptor excitonic (DAE) state.  

The doubly-excited (DE) states include many more excitation combinations. We denote 

locally doubly-excited states (LDE) those that contain two intra-fragment excitons (each 

exciton is localized within D, B or A). In addition to locally doubly-excited (LDE) there are 

doubly-excited CT states (CTDE) that combine a CT and LE exciton, e.g., 
SA

D B A+− + − . In 

these cases, using the branching diagram method, we can construct correlated triplet-pair DE 

states (denoted by CTP) and correlated singlet-pair DE states (denoted by CSP).  

Table 6.2 shows the many-electron basis states as generated using the above procedure as 

linear combinations of N −  electron Slater determinants. In the notation used below, r

a  

denotes a singly-excited determinant in which an electron, which occupied spin-orbital a  

in the Hartree-Fock (HF) ground state of the D-B-A N −  electron system 0,N , has been 
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promoted to a virtual spin-orbital r . In addition, r r

a a 

  denotes a doubly-excited 

determinant in which two electrons, which occupied spin-orbitals a a,    in the Hartree-Fock 

(HF) ground state of the D-B-A N −  electron system 0,N , have been promoted to virtual 

spin-orbitals 
r r,   , respectively. In such determinants, 

a  (or a ) is used to denote spin-

orbital with spin up and 
a  (or a ) spin-orbital with spin down. 4 The superscript “+” (“-”) 

denotes hole (electron). 

 

char. 

h-e 

distribution 

notation 

Expression 

Singly-Excited states 

LE (in) 
SA

D B A+−  ( )1

2

D D

D D

L L

H H
 +  

LE (BE) 
SA

D B A+−  ( )1

2

B B

B B

L L

H H
 +  

CT (B-) 

SA

D B A+ −  

SA

D B A− +  
( ) ( )( )1

2

B B

D A D A

L L

H H
 +  

CT (B+) 

SA

D B A− +  

SA

D B A+ −  

( ) ( )( )1

2

D A D A

B B

L L

H H
 +  

CT (DAE) 

SA

D B A+ −  

SA

D B A− +  
( )

( )

( )

( )( )1

2

A D A D

D A D A

L L

H H
 +  

Doubly-Excited states 

LDECTP (fi) 
SA

CTP
D B A+− +−  

1 1

3 2

D A D A

D A D A
A D A D

D A D A
D A D A

D AD A

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 
 

 

  −
  

+ −  
− +  

  

 

LDECSP 
CSP

D B A+− +−  ( )1

2

D A D A D A D A

D AD A D A D A

L L L L L L L L

H HH H H H H H
   + + +  

LDECTP 

(BE) 

SA

CTP

SA

CTP

D B A

D B A

+− +−

+− +−

 
( )

( )

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )

1 1

3 2

B BD A D A

B BD A D A
B BD A D A

B BD A D A
A BD A D A

BD ABD A

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 

 

 

  −  
+ −  

  − + 
  
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LDECSP 

(BE) 

SA

CSP

SA

CSP

D B A

D B A

+− +−

+− +−

 
( )

( )

( )

( )

( )

( )

( )

( )( )1

2

B B B BD A D A D A D A

BD AB B BD A D A D A

L L L L L L L L

H HH H H H H H
   + + +  

CTDECTP 

(BE) 

CTP

CTP

D B A

D B A

− +− +

+ +− −
 

( ) ( )

( )

( ) ( )

( )
( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )

1 1

3 2

B BD A D A

AA D D A D A
B BD A D A

A D D A A D D A
B BD A D A

A D AA D D A

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 

 

 

  −  
+ −  

  − + 
  

 

CTDECSP 

(BE) 

CSP

CSP

D B A

D B A

− +− +

+ +− −
 

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )( )1

2

B B B BD A D A D A D A

A D AAA D D A D A A D D A

L L L L L L L L

H HH H H H H H
   + + +  

CTDECTP 

(B+) 

CTP

CTP

D B A

D B A

− + +−

+− + −
 

( )

( ) ( )

( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

1 1

3 2

A D D A A D D A

B BD A D A
D A A D D A A D

B BD A D A
A D D A A D D A

B D AB D A

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 

 

 

  −  
+ −  

  − + 
  

 

CTDECSP 

(B+) 

CSP

CSP

D B A

D B A

− + +−

+− + −
 

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )( )1

2

A D D A A D D A A D D A A D D A

B D AB B BD A D A D A

L L L L L L L L

H HH H H H H H
   + + +  

CTDECTP 

(B-) 

CTP

CTP

D B A

D B A

+ − +−

+− − +
 

( )

( )

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )

1 1

3 2

B BA D A D

B BD A D A
B BA D A D

B BD A D A
B BA D A D

BD ABD A

L L L L

H H H H
L L L L

H H H H
L L L L

H HH H

 

 

 

  −  
+ −  

  − + 
  

 

CTDECSP 

(B-) 

CSP

CSP

D B A

D B A

+ − +−

+− − +
 

( )

( )

( )

( )

( )

( )

( )

( )( )1

2

B B B BA D A D A D A D

BD AB B BD A D A D A

L L L L L L L L

H HH H H H H H
   + + +  

DE (B+) 
D B A

D B A

+ + −−

−− + +
 

( )

( ) ( )

( )

( ) ( )( )1

2

A D A D A D A D

B BD A D A

L L L L

H H H H
 +  

DE (B--) D B A+ −− +  ( )1

2

B B B B

D A D A

L L L L

H H H H
 +  

 

Table 6.2 Spin-spatial multi-electronic states written as linear combinations of singly- and 

doubly-excited Slater determinants. 1st column: Names of the different groups of lowest-

lying singlet basis states for the D-B-A system. 2nd column: Mathematical notation for the 

spin-adapted basis states in each group. 3rd column: Spin-spatial multi-electronic states as 

linear combinations of singly- and doubly-excited Slater determinants. In most cases the 

grouping is according to the B state, such as B+, B- and bridge excitonic (BE) state, while 

the initial and final CTP states are denoted as (in) and (fi).  
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In our analysis 
SA

D B A+−  is taken to be the initial photo-excited state that produces the 

CTP final state and the CSP locally doubly-excited state (described below, eqs (6.7) and 

(6.8)) 

1 1

3 2

D A D A

D A D A
A D A D

D A D A
D A D A

D AD A

L L L L

H H H HSA L L L L

H H H HCTP L L L L

H HH H

D B A

 
 

 

+− +−

  −
  

= + −  
− +  

  

 (6.7) 

and 

( )1

2

D A D A D A D A

D AD A D A D A

SA L L L L L L L L

H HH H H H H HCSP
D B A    +− +− = + + + . (6.8) 

SA

CTP
D B A+− +−  is the generalization to D-B-A system of the correlated D-A triplet-pair state 

that is a linear combination of products of D- and A-localized triplet excitons. 7-10 In 

particular, for an N −  electron system,  

( )
( )

( )

1

1 1 1 1 0 0

0 4

4 4
1

1

3

N N N N
SA I J

CTP
I J I K L K

D A D A D A ,NI ,J K ,L I ,J K ,L I ,J K ,L

N !
D B A

N !

Tr Tr Tr Tr Tr Tr 

+ ++− +−

 

− −

−

−
= −

  
+ − 

  


 (6.9) 

where I ,J ,K ,L  are four electrons (out of N ), ( )
Sm

D A
I ,J

Tr  is a two-electron triplet state 

formed by thI  and thJ  electrons. For example, ( )0 1

2

D D

D D

L L

D H HI ,J I ,J I ,J
Tr  = − , where 

( ) ( ) ( ) ( )( )
1

2

D

D D D D D

L

H L H H L
I ,J

I J I J        = −  is a two-electron ( )I ,J  Slater 

determinant (and similarly for D

D

L

H
I ,J

 ). ( )
Sm

D A
K ,L

Tr  is a two-electron triplet state formed by 

thK  and thL  electrons. 0 4,N −  is the Slater determinant for the remaining 4N −  electrons 

of the remaining occupied orbitals that do not belong to the active space. 
SA

CSP
D B A+− +−

 is 

also known as the Correlated Singlet-Pair (CSP) and it is given by, 

( )
( )

1 0 0

0 4

4 4
1

N N N N
SA I J

D A ,NCSP I ,J K ,L
I J I K L K

N !
D B A Si Si

N !


+ ++− +−

−

 

−
= −  (6.10) 

where, e.g., ( )0 1

2

D D

D D

L L

D H HI ,J I ,J I ,J
Si  = + .  
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CHAPTER 7 

Construction of the CISD Hamiltonian Matrix 

 

In this chapter we describe how we construct the Configuration Interaction Singles and 

Doubles (CISD) Hamiltonian matrix using the spin-adapted (SA) basis set of Chapter 5. This 

matrix is used to study analytically and computationally the singlet fission (SF) process, 

described in detail in Chapter 5. 

 

7.1   Calculation of the Hamiltonian Matrix 

The following electronic Hamiltonian was introduced in Chapter 1 (see eq. (1.5)), 

( )
22 2

1 10 0

1 1 1

2 4 2 4

nucN N NN N
el nI

I I n I J Jel I JI n

Z ep e
Ĥ r ,R

m r rr R =  =

= − +
−−

   . (7.1) 

The first term is the operator corresponding to the sum of the kinetic energy of the N  

electrons, the second term corresponds to the sum of the attractions between the N  electrons 

and the nucN  nuclei and the final term describes the inter-electronic repulsions. Τhe first two 

terms constitute the one-electron operator,  

22
1

1 0

1

2 4

nucNN N
e nI

I I nel I n

Z ep
ĥ

m r R=

 −
−

   (7.2) 

since it is the independent-electron Hamiltonian for N  electrons in the field of nucN  atomic 

nuclei. While, the last term is the two-electron repulsive Coulombic operator 

2
2

1 0

1 1

2 4

N N
e

I J J I J

e
V̂

r r =


−

 . (7.3) 

The spin-spatial antisymmetric wavefunctions are written in a multi-determinant form, so 

we can use the Slater-Condon rules to calculate the Hamiltonian matrix elements, 1-3 

el el

n,m n m
ˆH H=   . (7.4) 

Using the Slater-Condon rules, we calculate analytically the energies (diagonal Hamiltonian 

matrix elements) and the corresponding couplings (off-diagonal Hamiltonian matrix 
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elements) as a function of ionization potentials ( )IP , electron affinities ( )EA , core terms, 

overlap matrix elements, Coulomb and exchange 2e integrals and 1e Fock matrix elements. 

 

7.2   Excitation Energies and Couplings 

Using the Slater-Condon rules 1-3 we obtain analytical expressions for the donor (D) – bridge 

(B) – acceptor (A) electronic Hamiltonian matrix in representation of the many-electron 

basis described in Chapter 5, based on the six-orbital active space with single and double 

excitations. The electronic Hamiltonian describing this type of system can be written as 

linear combination of the fragment electronic Hamiltonians and the inter-fragment 

interactions, 

ˆ ˆ ˆ ˆ ˆel el el el

DBA D B A intH H H H H= + + +  (7.5) 

where the first three terms are the electronic Hamiltonians of the three fragments D, B, A, 

while the last term includes all the inter-fragment interactions between the electrons and the 

nuclei of the fragments. These terms can be given as, 

22 2

1 10 0

1 1 1ˆ
2 4 2 4

nD D D D D

D

D D

NN N N N
nel I

D

I I n I J Jel I JI n

Z ep e
H

m r rr R =  =

= − +
−−

     (7.6) 

22 2

1 10 0

1 1 1ˆ
2 4 2 4

nB B B B B

B

B B

NN N N N
nel I

B

I I n I J Jel I JI n

Z ep e
H

m r rr R =  =

= − +
−−

    (7.7) 

22 2

1 10 0

1 1 1ˆ
2 4 2 4

nA A A A A

A

A A

NN N N N
nel I

A

I I n I J Jel I JI n

Z ep e
H

m r rr R =  =

= − +
−−

    (7.8) 

2 2 2 2

0 0 0 0

2 2

0 0

1 1 1 1ˆ
4 4 4 4

1 1
.

4 4

n n n nD B A B D A

B A D A

B A D AB A D A

n nA D B

D B

D BD B

N N N NN N
n n n n

int

I n n I n nI n I n I n I n

N NN
n n

I n nI n I n

Z e Z e Z e Z e
H

r R r R r R r R

Z e Z e

r R r R

   

 

   
   = − + − +
   − − − −
   

 
 − +
 − −
 

     

  

 
(7.9) 

In the above equations, I,J  keep track of the number of electrons from 0 to iN  (total number 

of electrons in fragment i ) and in  keeps track of the number of nuclei from 0 to 
inN  (the 

number of nuclei in fragment i ) ( , ,i D B A= ). With Ir  we denote the position of the thI  

electron in space and with 
inR  the position of the 

th

in  nucleus. 
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In general, the basis-state energies are functions of ionization potentials, electron affinities, 

core terms, Coulomb and exchange integrals, i.e., 

           ( )j j i j i j

SA SAel i i

n n n i e n i i e n i PQ PQ
ˆ ˆ ˆH E IP , EA , L V L , H V H , J , K  − −= . (7.10) 

The off-diagonal matrix elements are functions of one-electron Fock matrix elements, 

overlap matrix elements and two-electron integrals, 

  ( )       ( )i j i j i j

SA SAel

n m n,m i j i j i j PQ PQ PQ
ˆ ˆH H P F Q , P Q R Z , S , J , K  =  (7.11) 

In the equations above ˆ
ke nV −  denote Coulombic attractive interactions between the electrons 

and the thk  fragment nuclei (part of the core term in the Hamiltonian). 
i jP QJ  and 

i jP QK  are 

Coulomb and exchange 2e integrals involving the 
iP  and 

jQ  fragment molecular orbitals 

(MOs),  

( ) ( ) ( ) ( ) ( )3 3 * 1 *

1 2 1 1 12 2 2i j i i j jP Q i i j j P P Q QJ P P Q Q d r d r r r r r r   − =  , (7.12) 

( ) ( ) ( ) ( ) ( )3 3 * 1 *

1 2 1 1 12 2 2 .
i j i j j iP Q i j j i P Q Q PK P Q Q P d r d r r r r r r   − =   (7.13) 

where P, Q, R, Z  H , L=  and  i, j  D, B, A= . 1-3 

Below we present analytical expressions for the diagonal and off-diagonal elements of the 

Hamiltonian calculated using the Slater Condon rules. The basis set includes singly-excited 

states (LE and CT) and doubly-excited (DE, correlated triplet- and correlated-singlet LDE 

and CTDE). 

 

char. notation Exact Energy Expression 

 Singly - Excited States 

LE (in) D B A+−  

2

ˆ ˆ ˆ ˆ

2 2 2 2

D D D D

A B A B

D A D B D A D B

D A D B D A D B

D D

H L H L

D e n D D e n D D e n D D e n D

L H L H H H H H

L H L H H H H H

IP EA J K

L V L L V L H V H H V H

J J J J

K K K K

− − − −

− − +

+ + − −

+ + − −

− − + +

 

LE (BE) D B A+−  

2

ˆ ˆ ˆ ˆ

2 2 2 2

B B B B

A D A D

B A B D B A B D

B A B D B A B D

B B

H L H L

B e n B B e n B B e n B B e n B

L H L H H H H H

L H L H H H H H

IP EA J K

L V L L V L H V H H V H

J J J J

K K K K

− − − −

− − +

+ + − −

+ + − −

− − + +
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CT (B-) 

D B A+ − , 

D B A− +  

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ ˆ

2 2 2

BD A A D A D

B B B D AD A A D D A

B B B D AD A A D D A

D A B

B e n B B e n B e n e nD A D A D A D A

H L H L H H H H

H L H L H H H H

IP EA

L V L L V L H V H H V H

J J J J

K K K K

− − − −

−

+ + − −

+ + − −

+ − + +

 

CT (B+) 

D B A− + , 

D B A+ −  

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ ˆ

2 2 2

B A DA D

B B D B AD A A D D A

B B D B AD A A D D A

D AB

e n e n B e n B B e n BD A D A D A D A

H L H L H H H H

H L H L H H H H

IP EA

L V L L V L H V H H V H

J J J J

K K K K

− − − −

−

+ + − −

+ + − −

+ − + +

 

CT 

(DAE) 

D B A− + , 

D B A+ −  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ

2 2 2

B BA D D A

B A D BA D D A D A A D

B A D BA D D A D A A D

A D D A

e n e n e n e nD A D A D A D A A D A D A D A D

H L H L H H H H

H L H L H H H H

IP EA

L V L L V L H V H H V H

J J J J

K K K K

− − − −

−

+ + − −

+ + − −

+ − + +

 

 Doubly – Excited States 

LDE  

(fi) 

CTP
D B A+− +−  

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2 2

5 1 1

2 2 2

D D A A

A B D B

D B A B

D A D B B A D A D A B A D A D B

D A D B B A D A

D A D A

H L H L

D e n D D e n D A e n A A e n A

A e n A A e n A D e n D D e n D

H H H H H H L L H L H L L H L H

H H H H H H L L

IP IP EA EA J J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K K

− − − −

− − − −

+ − − − −

+ + + +

− − − −

− − − + + + + +

+ + + + +
1

2D A B A D A D BH L H L L H L HK K K− + −

 

CSP
D B A+− +−  

2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2 2

3

2

D D A A D D A A

A B D B

D B A B

D A D B B A D A D A B A D A D B

D A D B B

D A D A

H L H L H L H L

D e n D D e n D A e n A A e n A

A e n A A e n A D e n D D e n D

H H H H H H L L H L H L L H L H

H H H H H

IP IP EA EA J J K K

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K

− − − −

− − − −

+ − − − − + +

+ + + +

− − − −

− − − + + + + +

+ + +
1 1 1

2 2 2A D A D A B A D A D BH L L H L H L L H L HK K K K K− − − − −

 

LDE 

(BE) 

CTP
D B A+− +−  

CTP
D B A+− +−  

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2 2

5

2

B B A D A D

A D BD A

B A DD A

B B D A B B B BA D D A A D A D D A A D A D D A

B A D

A D A DB B

H L H L

B e n B B e n B e n e nA D A D A D A D

e n e n B e n B B e n BA D A D A D A D

H H H H H H L L H L H L L H L H

H H

IP IP EA EA J J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K

− − − −

− − − −

+ − − − −

+ + + +

− − − −

− − − + + + + +

+ +
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

2 2 2B D A B B B BD A A D A D D A A D A D D AH H H H L L H L H L L H L HK K K K K K K+ + + − + −

 

CSP
D B A+− +−  

CSP
D B A+− +−  

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2 2

B B B BA D A D A D A D

A D B D A

B A DD A

B B D A B B BA D D A A D A D D A A D A D

A D A DB B

H L H L H L H L

B e n B B e n B e n e nA D A D A D A D

e n e n B e n B B e n BA D A D A D A D

H H H H H H L L H L H L L H

IP IP EA EA J J K K

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J

− − − −

− − − −

+ − − − − + +

+ + + +

− − − −

− − − + + + + +
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 1 1 1

2 2 2 2

B D A

B B D A B B B BA D D A A D A D D A A D A D D A

L H

H H H H H H L L H L H L L H L H

J

K K K K K K K K+ + + − − − − −
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CTDE 

(BE) 

CTP
D B A− +− +  

CTP
D B A+ +− −  

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

5

2

B B

A D B A D

B A DD A

B B D A B B B BA D D A D A A D D A D A A D D A

B BA D D A

A D D AB B

H L

B e n B B e n B e n e nD A D A D A D A

e n e n B e n B B e n BA D A D A D A D

H H H H H H L L H L H L H L H L

H H H H H

IP IP EA EA J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K

− − − −

− − − −

+ − − −

+ + + +

− − − −

− − − + + + + +

+ + +
( ) ( ) ( ) ( ) ( ) ( )

1 1 1

2 2 2D A B B B BD A A D D A D A A D D AH L L H L H L H L H LK K K K K+ + − + −

 

CSP
D B A− +− +  

CSP
D B A+ +− −  

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

3

2

B B B B D A D A

A D B A D

B A DD A

B B D A B B B BA D D A D A A D D A D A A D D A

A D D AB B

H L H L H L

B e n B B e n B e n e nD A D A D A D A

e n e n B e n B B e n BA D A D A D A D

H H H H H H L L H L H L H L H L

H

IP IP EA EA J K K

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K

− − − −

− − − −

+ − − − + +

+ + + +

− − − −

− − − + + + + +

+
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2B B D A B B B BA D D A D A A D D A D A A D D AH H H H H L L H L H L H L H LK K K K K K K+ + − − + − +

 

CTDE 

(B+) 

CTP
D B A+− + −  

CTP
D B A− + +−  

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

5 1

2 2

D A D A

A B D B

B D AA D

B D A B D A D B B AD A A D D A A D D A A D

B D A BD A A D

D A B D A

H L

D e n D D e n D A e n A A e n A

e n e n B e n B B e n BD A D A D A D A

H H H H H H L L L H L H H L H L

H H H H H H

IP IP EA EA J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K

− − − −

− − − −

+ − − −

+ + + +

− − − −

− − − + + + + +

+ + + +
( ) ( ) ( ) ( ) ( ) ( )

1 1

2 2D A B BD A D A A D D A A D A DL L L H L H H L H LK K K K K+ − + −

 

CSP
D B A+− + −  

CSP
D B A− + +−  

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

3

2

D D A AD A D A

A B D B

B D AA D

B D A B D A D B B AD A A D D A A D D A A D

B DD A

D A B D A

H L H L H L

D e n D D e n D A e n A A e n A

e n e n B e n B B e n BD A D A D A D A

H H H H H H L L L H L H H L H L

H H H

IP IP EA EA J K K

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K

− − − −

− − − −

+ − − − + +

+ + + +

− − − −

− − − + + + + +

+ +
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2A B D A B BA D D A D A A D D A A D A DH H H L L L H L H H L H LK K K K K K+ − − + − +

 

CTDE  

(B-) 

CTP
D B A+ − +−  

CTP
D B A+− − +  

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

5 1

2 2

A D A D

D A BD A

D B A B

D A D B B A B D B A B BA D D A A D A D

D A D B B A B

A DD A B

H L

B e n B B e n B e n e nA D A D A D A D

A e n A A e n A D e n D D e n D

H H H H H H L L H L H L H L H L

H H H H H H L L

IP IP EA EA J

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K K K

− − − −

− − − −

+ − − −

+ + + +

− − − −

− − − + + + + +

+ + + +
( ) ( ) ( ) ( ) ( ) ( )

1 1

2 2B B BA D D A A D D A A D A DH L H L H L H LK K K K− + + −

 

CSP
D B A+ − +−  

CSP
D B A+− − +  

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

3 2 2 2

3

2

B BA D A D A D A D

D A BD A

D B A B

D A D B B A B D B A B BA D D A A D A D

D A D

A DD A B

H L H L H L

B e n B B e n B e n e nA D A D A D A D

A e n A A e n A D e n D D e n D

H H H H H H L L H L H L H L H L

H H H H

IP IP EA EA J K K

L V L L V L L V L L V L

H V H H V H H V H H V H

J J J J J J J J

K K

− − − −

− − − −

+ − − − + +

+ + + +

− − − −

− − − + + + + +

+ +
( ) ( ) ( ) ( ) ( ) ( )

1 1 1

2 2 2B B A B B B BA D D A A D D A A D A DH H L L H L H L H L H LK K K K K K+ − + − − −
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Table 7.1 Analytical exact expressions for basis-state energies. 1st column: Names of the 

different groups of the basis states for the D-B-A system. 2nd column: Mathematical notation 

of the spin-adapted (SA) many-electron basis states. 3rd column: Exact expressions for the 

excitation energies of these states of the D-B-A system as a function of ionization potentials, 

electron affinities, core terms and two-electron integrals. 

 

The table below shows detailed expressions for the off-diagonal Hamiltonian elements as a 

function of 2e integrals and Fock Matrix elements. We separated them, into couplings 

between singly-excited states ( ), ,LE LE LE CT CT CTV V V− − − , into couplings between singly- and 

doubly-excited and between doubly-excited states. It is worth noting that integrals 

containing molecular orbitals of all the three fragments are very weak compared to the rest 

(two to three orders of magnitude smaller) and thus can be ignored (e.g., ( ) 0i j k kP Q Q P  ). 

In the following notation we use i, j,k D,B,A=  meaning different monomers and i j→  for 

CT state where an electron is transferred from i  to j  monomer (e.g., 
, ;D D B A

LE CTDEV →

− denote the 

coupling between a LE state on D monomer (initial) and a CTDE state that includes D-to-B 

CT exciton and a LE on A monomer state). Also, the off-diagonal elements of the overlap 

matrix are very close to zero and thus are vanishing ( 0
i jPQS  , i jP Q ) while the diagonal 

elements are unity ( 1
i iPPS = ). 1,4,5 For example, the exact expression of 

,D D A

LE CTV →

−  coupling 

contains terms of the form ( )1 1 1ˆ ˆ ˆ2
D A D A

e e e

L L D D A A H L D DS H h H H h H S H h L+ + , 

which can be ignored since the off-diagonal elements of the overlap matrix are too small and 

so the whole term is zeroed. 

DE (B+) 
D B A

D B A

+ + −−

−− + +
 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

ˆ ˆ2 2

ˆ ˆ ˆ ˆ

3 2 2 2 2

2

A A

D B

B D AA D

B D A B BD A A D D A A D A D

B D A B BD A A D D A A D A D

D A A DB

L L

A e n A A e n A

e n e n B e n B B e n BD A D A D A D A

H H H H H H H L H L

H H H H H H H L H L

IP IP EA J

L V L L V L

H V H H V H H V H H V H

J J J J J

K K K K K

− −

− − − −

+ − +

+ +

− − − −

− − − + +

+ + + − −

 

DE (B--) D B A+ −− +  

2

ˆ ˆ2 2

ˆ ˆ ˆ ˆ

3 2 2 2 2

2

B B

D A

A B D B

D A D B B A D B A B

D A D B B A D B A B

D A B

L L

B e n B B e n B

D e n D D e n D A e n A A e n A

H H H H H H H L H L

H H H H H H H L H L

IP IP EA J

L V L L V L

H V H H V H H V H H V H

J J J J J

K K K K K

− −

− − − −

+ − +

+ +

− − − −

− − − + +

+ + + − −
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Matrix Element not. 
1ˆ eh  2ˆ eV  

Couplings between Singly - Excited States 

ˆD B A H D B A+− + −  ,D D B

LE CTV →

−  ( ) ( )ˆ 2D B D D D B D B D DL F L L H H L L L H H+ −  

ˆD B A H D B A+− + −  ,D D A

LE CTV →

−  ( ) ( )ˆ 2D A D D D A D A D DL F L L H H L L L H H+ −  

ˆD B A H D B A+− − +  ,BD D

LE CTV →

−  ( ) ( )ˆ 2D B D D B D D B D DH F H L H H L H H L L− + −  

ˆD B A H D B A+− − +  ,AD D

LE CTV →

−  ( ) ( )ˆ 2D A D D A D D A D DH F H L H H L H H L L− + −  

ˆD B A H D B A+− +−  ,D B

LE LEV −  ------------ ( ) ( )2 D D B B D B B DL H H L L L H H−  

ˆD B A H D B A+− + −  ,D B A

LE CTV →

−  ------------ ( ) ( )2 0D D B A D A B DL H H L L L H H−   

ˆD B A H D B A+− − +  ,AD B

LE CTV →

−  ------------ ( ) ( )2 0D D A B D B A DL H H L L L H H−   

ˆD B A H D B A+ − + −  ,D B D A

CT CTV → →

−  
( ) ( )ˆ 2

ˆ

B A B D D A B A D D

B A

L F L L H H L L L H H

L F L

+ −


 

ˆD B A H D B A+ − − +  ,D B B D

CT CTV → →

−  ------------ ( ) ( )2 B D B D B D B DL H H L L L H H−  

ˆD B A H D B A+ − − +  ,D B A D

CT CTV → →

−  ------------ ( ) ( )2 0B D A D B D A DL H H L L L H H−   

ˆD B A H D B A+ − +−  ,D B B

CT LEV →

−  ( ) ( )ˆ 2D B D B B B D B B BH F H H L L H H H L L− + −  

ˆD B A H D B A+ − + −  ,D B B A

CT CTV → →

−  ------------ ( ) ( )2 0D B A B D B A BH L L H H H L L−   

ˆD B A H D B A+ − − +  ,D B A B

CT CTV → →

−  
( ) ( )ˆ 2

ˆ

D A D B B A D A B B

D A

H F H H L L H H H L L

H F H

− + −

 −
 

ˆD B A H D B A+ − − +  ,D A B D

CT CTV → →

−  ------------ ( ) ( )2 0A D B D A D B DL H H L L L H H−   

ˆD B A H D B A+ − − +  ,D A A D

CT CTV → →

−  ------------ ( ) ( )2 A D A D A D A DL H H L L L H H−  

ˆD B A H D B A+ − +−  ,D A B

CT LEV →

−  ------------ ( ) ( )2 0A D B B A B B DL H H L L L H H−   

ˆD B A H D B A+ − + −  ,D A B A

CT CTV → →

−  
( ) ( )ˆ 2

ˆ

D B D A A B D B A A

D B

H F H H L L H H H L L

H F H

− + −

 −
 

ˆD B A H D B A+ − − +  ,D A A B

CT CTV → →

−  ------------ ( ) ( )2 0A D A B A B A DL H H L L L H H−   

ˆD B A H D B A− + − +  ,B D A D

CT CTV → →

−  
( ) ( )ˆ 2

ˆ

B A B D D A B A D D

B A

H F H H L L H H H L L

H F H

− + −

 −
 

ˆD B A H D B A− + +−  ,B D B

CT LEV →

−  ( ) ( )ˆ 2D B B D B B B B D BL F L H L L H H H L L+ −  
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ˆD B A H D B A− + + −  ,B D B A

CT CTV → →

−  
( ) ( )ˆ 2

ˆ

D A B D A B B B D A

D A

L F L H L L H H H L L

L F L

+ −


 

ˆD B A H D B A− + − +  ,B D A B

CT CTV → →

−  ------------ ( ) ( )2 0B D B A A B D BH L L H H H L L−   

ˆD B A H D B A− + +−  ,A D B

CT LEV →

−  ------------ ( ) ( )2 0D A B B D B B AL H H L L L H H−   

ˆD B A H D B A− + + −  ,A D B A

CT CTV → →

−  ------------ ( ) ( )2 0D A B A D A B AL H H L L L H H−   

ˆD B A H D B A+− + −  ,B B A

LE CTV →

−  ( ) ( )ˆ 2B A B B B A B A B BL F L L H H L L L H H+ −  

ˆD B A H D B A+− − +  ,B A B

LE CTV →

−  ( ) ( )ˆ 2B A B B B A B A B BH F H H L L H H H L L− + −  

ˆD B A H D B A+ − − +  ,B A A B

CT CTV → →

−  ------------ ( ) ( )2 A B A B A B A BL H H L L L H H−  

 

Couplings between Singly- and Doubly – Excited States 

ˆ
CSP

D B A H D B A+− +− +−  

, ;D D A

LE LDEV −  

12 ˆ

2

e

A AL h H
 

( ) ( )

( ) ( )

( ) ( )

( )

2 2

2 41

2 2

A A D D A A D D

A A A A A A B B

A B B A A D D A

A D D A

H L H H H L L L

H L H H H L H H

H H H L H H H L

H L L L

 +
 
+ + 

 
− − 

 
−  

 

ˆ
CTP

D B A H D B A+− +− +−  ------------ ( ) ( )
3 3

2 2
D A A D D A A DH L H H L L H L−  

ˆ
CSP

D B A H D B A+− + − +−  

, ;D D B A

LE CTDEV →

−  

------------ ( ) ( )
2 1

0
2 2

D B A A D A A BL L H L L L H L−   

ˆ
CTP

D B A H D B A+− + − +−  ------------ ( )
3

0
2

D A A BL L H L−   

ˆ
CSP

D B A H D B A+− +− − +  

, ;D A B D

LE CTDEV →

−  

12 ˆ

2

e

B AL h H
 

( )2

1

2

A B D DH L H H ( )2 A B D DH L L L+

( ) ( )

( ) ( )

2 4

2

A B A A A B B B

A B B B A D D B

H L H H H L H H

H H H L H H H L

+ +

− −

( )A D D BH L L L−

 
 
 
 
 
 
 
  

 

ˆ
CTP

D B A H D B A+− +− − +  ------------ ( ) ( )
3 3

0
2 2

D B A D D B A DH L H H L L H L−   
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ˆ
CSP

D B A H D B A+− +− + −  

, ;D B A D

LE CTDEV →

−  

12 ˆ

2

e

A BL h H−
 

( )2

1

2

B A D DH L H H

−

( )2 B A D DH L L L+

( ) ( )

( ) ( )

2 4

2

B A B B B A A A

B A A A B D D A

H L H H H L H H

H H H L H H H L

+ +

− −

( )B D D AH L L L−

 
 
 
 
 
 
 
  

 

ˆ
CTP

D B A H D B A+− +− + −  ------------ ( ) ( )
3 3

0
2 2

D A B D D A B DH L H H L L H L− +   

ˆ
CSP

D B A H D B A+− − + +−  

, ;D B D A

LE CTDEV →

−  

------------ ( ) ( )
2 1

0
2 2

B D A A B A A DH H H L H L H H−   

ˆ
CTP

D B A H D B A+− − + +−  ------------ ( )
3

0
2

B A A DH L H H−   

ˆ
CSP

D B A H D B A+− +− +−  
, ;D B A

LE LDEV −  
------------ --------------- 

ˆ
CTP

D B A H D B A+− +− +−  ------------ --------------- 

ˆ
CSP

D B A H D B A+ − +− + −  

, ;D B B A D

CT CTDEV → →

−  

------------ ( ) ( )
2 1

0
2 2

B D B A B A B DL L H L L L H L− +   

ˆ
CTP

D B A H D B A+ − +− + −  ------------ ( )
3

0
2

B A B DL L H L   

ˆ
CSP

D B A H D B A+ − − + +−  
, ;D B B D A

CT CTDEV → →

−  
------------ --------------- 

ˆ
CTP

D B A H D B A+ − − + +−  ------------ --------------- 

ˆ
CSP

D B A H D B A+ − +− +−  

, ;D B D A

CT LDEV →

−  

------------ ( ) ( )
2 1

0
2 2

B D A A B A A DL L H L L L H L−   

ˆ
CTP

D B A H D B A+ − +− +−  ------------ ( )
3

0
2

B A A DL L H L−   

ˆ
CSP

D B A H D B A+ − + − +−  

, ;D B D B A

CT CTDEV → →

−  

12 ˆ

2

e

A AH h L
 

( ) ( )

( ) ( )

( ) ( )

( )

2 2

2 41

2 2

A A D D A A B B

A A A A A A B B

A B B A A D D A

A B B A

H L H H H L L L

H L H H H L H H

H H H L H H H L

H L L L

 +
 
+ + 

 
− − 

 
−  

 

ˆ
CTP

D B A H D B A+ − + − +−  ------------ ( ) ( )
3 3

2 2
D A A D B A A BH L H H L L H L−  
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ˆ
CSP

D B A H D B A+ − +− − +  

, ;D B A B D

CT CTDEV → →

−  

11 ˆ

2

e

A DH h L−
 

( )2

1

2

A D B BH L H H

−

( )2 A B B DH L L L−

( ) ( )

( )

D D A D A D D D

A D B B

H L H H H L H H

H L L L

+ +

+ ( )

( )

A D A A

A B B D

H L H H

H H H L

+

−

 
 
 
 
 
 
 
  

 

ˆ
CTP

D B A H D B A+ − +− − +  ------------ ( ) ( )
3 3

0
2 2

B D A B B D A BH L H H L L H L− +   

ˆ
CSP

D B A H D B A+ − +− +−  

, ;D B B A

CT LDEV →

−  

------------ ( ) ( )
2 1

0
2 2

B D A A B A A DH H H L H L H H−   

ˆ
CTP

D B A H D B A+ − +− +−  ------------ ( )
3

0
2

B A A DH L H H−   

ˆ
CSP

D B A H D B A+ − +− +−  

, ;D A D A

CT LDEV →

−  

11 ˆ

2

e

A DH h L−
 

( )2

1

2

A D B BH L H H

−

( )

( ) ( )

( ) ( )

( )

2 A A A D

D D A D A D D D

A D A A A D A A

A B B D

H L L L

H L H H H L H H

H L L L H L H H

H H H L

−

+ +

+ +

−

 
 
 
 
 
 
 
 

 

ˆ
CTP

D B A H D B A+ − +− +−  ------------ 

( ) ( )

( )

3 3

2 2

3

2

B D A B A D A A

A D A A

H L H H L L H L

L L H L

− +



 

ˆ
CSP

D B A H D B A+ − + − +−  

, ;D A D B A

CT CTDEV → →

−  

11 ˆ

2

e

A BH h L−
 

( ) ( )

( )

2 2

1

2

A B B B A A A B

D B A D

H L H H H L L L

H L H H

−

+
−

( )A B D DH L H H+

( ) ( )

( )
A B A A A B A A

A B B B

H L L L H L H H

H H H L

 
 
 
 
 + +
 
 − 

 

ˆ
CTP

D B A H D B A+ − + − +−  ------------ ( ) ( )
3 3

2 2
B B A B A B A AH L H H L L H L− +  

ˆ
CSP

D B A H D B A+ − +− − +  

, ;D A A B D

CT CTDEV → →

−  

------------ ( ) ( )
2 1

0
2 2

A D A B A B A DL L H L L L H L−   

ˆ
CTP

D B A H D B A+ − +− − +  ------------ ( )
3

0
2

A B A DL L H L−   
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ˆ
CSP

D B A H D B A+ − +− + −  

, ;D A B A D

CT CTDEV → →

−  

11 ˆ

2

e

B DH h L  

( )2

1

2

B D A AH L H H ( )2 B A A DH L L L−

( ) ( )

( )

D D B D B D D D

B D A A

H L H H H L H H

H L L L

+ +

+ ( )

( )

B D B B

B A A D

H L H H

H H H L

+

−

 
 
 
 
 
 
 
  

 

ˆ
CTP

D B A H D B A+ − +− + −  ------------ ( ) ( )
3 3

0
2 2

A D B A A D B AH L H H L L H L−   

ˆ
CSP

D B A H D B A+ − − + +−  

, ;D A B D A

CT CTDEV → →

−  

------------ ( ) ( )
2 1

0
2 2

B D A D B D A DH L H H H H H L−   

ˆ
CTP

D B A H D B A+ − − + +−  ------------ ( )
3

0
2

B D A DH H H L−   

ˆ
CSP

D B A H D B A+ − +− +−  

, ;D A B A

CT LDEV →

−  

------------ ( ) ( )
2 1

0
2 2

B B A D B D A BH L H H H H H L−   

ˆ
CTP

D B A H D B A+ − +− +−  ------------ ( )
3

0
2

B D A BH H H L−   

ˆ
CSP

D B A H D B A− + +− +−  

, ;B D D A

CT LDEV →

−  

------------ ( ) ( )
2 1

0
2 2

D B A A D A A BH H H L H L H H− +   

ˆ
CTP

D B A H D B A− + +− +−  ------------ ( )
3

0
2

D A A BH L H H   

ˆ
CSP

D B A H D B A− + + − +−  
, ;B D D B A

CT CTDEV → →

−  
------------ --------------- 

ˆ
CTP

D B A H D B A− + + − +−  ------------ --------------- 

ˆ
CSP

D B A H D B A− + +− − +  

, ;B D A B D

CT CTDEV → →

−  

------------ ( ) ( )
2 1

0
2 2

D B A B D B A BH H H L H L H H− +   

ˆ
CTP

D B A H D B A− + +− − +  ------------ ( )
3

0
2

D B A BH L H H   

ˆ
CSP

D B A H D B A− + +− +−  

, ;B D B A

CT LDEV →

−  

------------ ( ) ( )
2 1

0
2 2

D B A A D A A BL L H L L L H L− +   

ˆ
CTP

D B A H D B A− + +− +−  ------------ ( )
3

0
2

D A A BL L H L   STEFANI V
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ˆ
CSP

D B A H D B A− + +− + −  

, ;B D B A D

CT CTDEV → →

−  

11 ˆ

2

e

D AH h L
 

( ) ( )

( )

2 2

1

2

D A A A D D D A

D B B A

H L H H H L L L

H H H L

−

+ ( )

( )

D A D D

D A B B

H L H H

H L H H

+

+ ( )

( )

D A D D

D A A A

H L L L

H H H L

 
 
 
 
 +
 
 
− 

 

ˆ
CTP

D B A H D B A− + +− + −  ------------ ( ) ( )
3 3

2 2
A A D A D A D DH L H H L L H L−  

ˆ
CSP

D B A H D B A− + − + +−  

, ;B D B D A

CT CTDEV → →

−  

12 ˆ

2

e

A AH h L−

 

( ) ( )

( ) ( )

( ) ( )

( )

2 2

2 41

2 2

A A B B A A D D

A A A A A A D D

A D D A A B B A

A D D A

H L H H H L L L

H L H H H L H H

H H H L H H H L

H L L L

 +
 
+ + 

−  
− − 

 
−  

 

ˆ
CTP

D B A H D B A− + − + +−  ------------ ( ) ( )
3 3

2 2
A B B A A D D AH H H L H L L L− +  

ˆ
CSP

D B A H D B A− + +− +−  

, ;A D B A

CT LDEV →

−  

------------ ( ) ( )
2 1

0
2 2

D A B B D B B AL L H L L L H L− +   

ˆ
CTP

D B A H D B A− + +− +−  ------------ ( )
3

0
2

D B B AL L H L   

ˆ
CSP

D B A H D B A− + + − +−  

, ;A D D B A

CT CTDEV → →

−  

------------ ( ) ( )
2 1

0
2 2

D B D A D A D BH L L L H L L L−   

ˆ
CTP

D B A H D B A− + + − +−  ------------ ( )
3

0
2

D A D BH L L L−   

ˆ
CSP

D B A H D B A− + +− +−  

, ;A D D A

CT LDEV →

−  

11 ˆ

2

e

D AH h L−
 

( )2

1

2

D A B BH L H H

−

( )

( ) ( )

( ) ( )

( )

2 D D D A

A A D A D A D D

D A D D D A A A

D B B A

H L L L

H L H H H L H H

H L L L H L H H

H H H L

−

+ +

+ +

−

 
 
 
 
 
 
 
 

 

ˆ
CTP

D B A H D B A− + +− +−  ------------ 

( ) ( )

( )

3 3

2 2

3

2

B A D B D A D D

D A D D

H L H H L L H L

L L H L

− +


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ˆ
CSP

D B A H D B A− + +− − +  

, ;A D A B D

CT CTDEV → →

−  

11 ˆ

2

e

D BH h L−
 

( ) ( )

( )

2 2

1

2

D B B B D D D B

A B D A

H L H H H L L L

H L H H

−

+
−

( )D B A AH L H H+

( ) ( )

( )
D B D D D B D D

D B B B

H L L L H L H H
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Table 7.2 Analytical exact coupling expressions. 1st column: Mathematical notation of the 

Hamiltonian element. 2nd column: Symbolism of the calculated coupling, defining the 

diabatic states that it consists of. 3rd column: Exact expressions for the off-diagonal matrix 

elements as a function of Fock matrix elements, and two-electron integrals. 
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CHAPTER 8 

Computation of Hamiltonian Matrix Elements 

 

As we have described in detail in the previous two chapters (Chapters 6 and 7), the diagonal 

and off-diagonal elements of the CISD Hamiltonian used for the model of Singlet Fission 

(SF) (see eqs (7.5)-(7.9) and Tables 7.1 and 7.2), are functions of several quantities, i.e.,  

           ( )j j i j i j

SA SAel i i

n n n i e n i i e n i PQ PQ
ˆ ˆ ˆH E IP , EA , L V L , H V H , J , K  − −= , (8.1) 

  ( )       ( )i j i j i j

SA SAel

n m n,m i j i j i j PQ PQ PQ
ˆ ˆH H P F Q , P Q R Z , S , J , K  = . (8.2) 

In general, the diagonal matrix elements (basis-state energies) are functions of ionization 

potentials ( iIP ), electron affinities ( iEA ), core terms (
ji e n i

ˆP V P− ), Coulomb (
i jPQJ ) and 

exchange integrals (
i jPQK ). The off-diagonal matrix elements (inter-state couplings) are 

functions of one-electron Fock matrix elements ( i j
ˆP F Q ), overlap matrix elements (

i jPQS

) and two-electron integrals ( ( )i j i jP Q R Z ) where P,Q,R,Z H ,L=  and i, j D,B,A= . All 

these quantities have been described in detail in the previous two chapters. 

For the D-B-A systems discussed in Chapter 5, we need to compute the intra-fragment and 

inter-fragment quantities included in eqs (8.1) and (8.2) and Tables 7.1 and 7.2. We compute 

the relevant quantities using two quantum chemistry program packages, the General Atomic 

and Molecular Electronic Structure System (GAMESS-US) 1-3 and the Python Quantum 

Chemistry (PyQuante) 4,5. The use of PyQuante is secondary in the sense that we recompute 

with this program all of the quantities in eqs (8.1) and (8.2), after computing them with 

GAMESS-US, in order to double check for errors.6 The codes we wrote for use with 

PyQuante produce values identical to those generated by GAMESS-US. The results from 

these programs are combined in appropriate code in MATLAB which implements all 

equations in Tables 7.1 and 7.2 (Chapters 6 and 7) using input from the computations. 
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8.1   GAMESS-US Program 

The General Atomic and Molecular Electronic Structure System (GAMESS-US) is a 

program for ab initio molecular quantum chemistry calculations. Briefly, GAMESS-US can 

compute SCF wavefunctions ranging from RHF, ROHF, UHF, GVB and MCSCF. The 

advantage of this program is that it can split a large system into fragments. The Fragment 

Molecular Orbital (FMO) method permits use of many of these sophisticated treatments to 

be used on very large systems, by dividing the computation into small fragments. 7-9 In our 

case, we use the program to perform SCF, RHF, CISD, 10 both on individual D, B, A 

fragments and on the entire D-B-A system. 

Using the GAMESS-US program, we compute the desired intra-fragment quantities such as 

IP , EA , excitations energies, eigenvectors of the molecular orbitals, overlap matrix, Fock 

matrix, 1e and 2e integrals, as well as the corresponding inter-fragment ones (one- and two-

electron integrals) (see Fig. 8.6). 

First, to build the input file for such a calculation, we need to enter the $CONTRL keyword 

to specify the type of wavefunction ("SCFTYP"), the type of calculation ("RUNTYP"), the 

units of the coordinates ("UNITS"), the spherical harmonics ("ISPHER") and the gradient of 

the printed output ("NPRINT"). We also need to give to the program various control 

information about the computer's operation via the $SYSTEM keyword, such as the 

maximum replicated memory which the job can use on every core ("MWORDS") and the 

time limitation ("TIMLIM"). A necessary addition to the input file is the inclusion of the 

Gaussian basis set on which the calculation will be based, through the $BASIS keyword. 

Additionally, to perform the calculation in the fragment-orbital representation we must 

include the $FMO group keyword in the input file, specifying the number of FMO fragments 

("NFRAG"), the charge ("ICHARG") and the name of each fragment ("FRGNAM"), 

identifying the active fragments ("IACTFG") and placing the atoms in the various fragments 

("INDAT"). Optionally we can also enter the $INTGRL keyword to control atomic orbitals 

(AO) integral formats. The $FMOPRP keyword also helps define the various properties of 

FMOs. Finally, another necessary addition to the input file is to specify the x, y, z FMO 

coordinates (using the $FMOXYZ keyword), as well as the symmetry. Through a script, 

using these keywords, we apply the restricted HF (RHF) theories followed by CISD in the 

FMO basis to obtain the fragment-based quantities described above. 

Below we present an example calculation in the FMO basis of a pentacene trimer molecular 

system (Fig. 8.1). 
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Figure 8.1 A script file of GAMESS-US for calculating the various properties of a pentacene 

trimer molecular system using FMO and SCF methods implementing RHF theories. The 

dots in the scheme imply the remaining coordinates of the molecule. 

 

Using the FMO analysis, we can identify the fragment corresponding to each MO in a D-B-

A system and extract from the output file intra-fragment and inter-fragment integrals 

between specific FMOs as linear combinations of the appropriate atomic orbitals (AOs) 

obtained from the basis set that we choose. 

In Chapter 5 we used, in addition to the FMO method, CISD computations 10,11 to calculate 

intra-fragment properties (such as iIP , iEA , singlet or triplet excitation energies of specific 

fragment etc., where i D,B,A= ). 

$CONTRL SCFTYP=RHF RUNTYP=GRADIENT UNITS=ANGS ISPHER=1 NPRINT=4 

$END 

$SYSTEM MWORDS=100 TIMLIM=1 $END 

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END 

$FMO NFRAG=3 ICHARG(1)=0,0,0 

            FRGNAM(1)=Donor,Bridge,Acceptor 

            INDAT(1)=0, 1,-36,0 37,-72,0 73,-108,0 

            IACTFG(1)=1,2,3 

$END 

$INTGRL SCHWRZ=.FALSE. NINTMX=17290672 $END 

$FMOPRP NPRINT=0 $END 

$FMOXYZ 

C C    -4.81562   -18.12637    48.36059 

C C    -5.50427   -17.85160    47.16956 

C C    -4.84244   -17.99081    45.92658 

C C    -3.50174   -18.40273    45.89301 

C C    -3.47496   -18.53838    48.32701 

C C    -2.78683   -18.81320    49.51866 

C C    -1.47220   -19.08972    47.04970 

C C    -1.44672   -19.22516    49.48439 

C C    -0.78447   -19.36446    48.24062 

C C    -0.75411   -19.50138    50.67409 

H H    -1.24394   -19.40053    51.63531 

C C     0.55724   -19.77722    48.21128 

C C     0.58133   -19.91148    50.63038 

. 

. 

. 

$END 

$DATA 

Basis set input, with no atomic coordinates 

C1 

H-1 1 

C-1 6 

$END 
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The appropriate input file must be built to perform this calculation by entering the 

appropriate keywords, so that the output file contains all the necessary information. First in 

the $CONTRL group we should define as "RHF" the reference type of SCF wavefunction 

and then define as "CIS" the type of CI calculation. In the same group we can define the type 

of coordinates of the molecule, the units of the coordinates as well as the gradient of the 

printed output. In the $SYSTEM group we can give control information about the computer's 

operations while in the $BASIS group we are required to define the Gaussian basis set of the 

calculation. Once we have defined "CIS" as the type of CI calculation, we need to use the 

$CIS keyword to include some properties of the CIS method. In this group we must definitely 

define the number of chemical core orbitals ("NACORE"), the number of states to be found 

("NSTATE"), the state for which properties and/or gradient will be calculated ("IROOT"), 

the type of CI Hamiltonian to use ("HAMTYP") and the multiplicity (1 or 3) of the singly 

excited SAPS ("MULT"). Finally, another necessary addition to the input file is to specify 

the coordinates of the molecule (using the $DATA keyword), as well as the symmetry. 

Below is presented an example of a script input file for the calculation of the CISD 

properties, excitation energies, 1e and 2e intra-fragment integrals of a pentacene molecule 

(Fig. 8.2). 

 

 

Figure 8.2 A script file of GAMESS-US for calculating the various CISD properties of a 

pentacene molecule using SCF methods implementing RHF theories. 10,11 The dots in the 

scheme imply the remaining coordinates of the molecule. 

 

$CONTRL SCFTYP=RHF CITYP=CIS RUNTYP=GRADIENT NZVAR=0 UNITS=ANGS 

NPRINT=4 $END 

$SYSTEM MWORDS=100 $END 

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END 

$CIS HAMTYP=SAPS MULT=3 NACORE=0 NSTATE=1 IROOT=0 DGAPRX=.FALSE. 

$END 

$DATA 

Pentacene1 (Donor) CIS/6-31G(d) level of theory 

C1 

C 6.0        0.4983720000    -19.0037120000     42.7664130000                  

C 6.0       -0.1914010000    -18.7272860000     41.5764260000                  

C 6.0        0.4987210000    -18.7537600000     40.3413350000                  

C 6.0        1.8684090000    -19.0562680000     40.3145080000                  

C 6.0        1.8680390000    -19.3063110000     42.7395770000                  

C 6.0        2.5572890000    -19.5828570000     43.9301840000                   

. 

. 

.         

$END 
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8.2   PyQuante Program 

Using the Python Quantum Chemistry (PyQuante) program 4,5 one can include all the 

molecular integrals and the HF code in one file or split the code into several files. The 

suggested file structure is: “base.py” (to hold database information and construct the atomic 

orbital base), “oei.py” (to calculate the 1e integrals, “S”, “T”, “V”), “eri.py” (for the 

calculation of the 2e integrals, “G”) and “main.py” (to combine the first three files that will 

lead to the results in the HF code). Most of these code files need to import some modules 

from the PyQuante library to perform some specialized mathematical operations. 

The initial input requires the molecule’s name, the coordinates of the atoms together with 

the atomic number of each atom (e.g., [(1, (0,0,0)), (1, (1.4,0,0)), ...]), the spin multiplicity, 

as well as the charge of the molecule. Starting from the above, we can run a simple HF 

calculation by inserting the appropriate modules (such as the SCF for self-consistent-field 

methods). The “SCF” module includes implementations of HF and Density Functional 

Theory (DFT) for restricted, unrestricted, closed-shell or open-shell Slater determinant 

references. To use this module, one specifies the molecule on which the calculation will be 

made, the base to be used (e.g., the minimum basis set “STO-3G”, “6-31G” etc.) as well as 

the self-consistent-field method (e.g., HF). Basis functions are constructed using the CGBF 

(contracted Gaussian basis function) object, which, in turn, uses the PGBF (primitive 

Gaussian basis function) object. Basis sets are simply lists of CGBF’s. In the “Ints” module 

there is a convenience function “getbasis” that constructs basis sets for different molecules. 

The calculation should then be repeated until it converges. At the end HF energy can be 

requested to be printed. Having determined the molecule with its x, y, z coordinates, as well 

as the basis function set, then we can calculate the 1e and 2e integrals at the base of the 

atomic orbitals. In this case the "onee_integrals" and "twoe_integrals" modules should be 

imported to calculate the 1e and 2e integrals, respectively. We can calculate the overlap 

matrix (“S”), the kinetic matrix (“T”), the nuclear attraction matrix (“V”), as well as the 2e 

integrals (“ERI_hgp”) on the basis of the atomic orbitals.  

Below we present an example calculation of 1e integrals and the basis function set (Fig. 8.3) 

of a pentacene molecule (a molecule that has been extensively used and studied in Chapter 

5). Then by saving the orbitals of the basis function set in a matrix we can calculate 2e 

integrals between them using the “ERI_hgp” module (Fig. 8.4). 

 

STEFANI V
ALIA

NTI 



185 

 

  

Figure 8.3 Code in python for calculating 1e integrals (“S”, “T” and “V” matrixes) in 

pentacene molecule in the minimum basis set, “STO-3G”, by import pyquante2, an open-

source suite of programs for developing quantum chemistry methods and then introducing 

various modules needed for the calculation (such as, “molecule”, “rhf”, “basisset”, 

“onee_integrals” etc.). 

 

 

import pyquante2 

from pyquante2 import molecule # Construct the pentacene molecule 

pentacene=molecule([(6,0.49837,-19.00371,42.76641), (6,-0.19140,-18.72729,41.57643), 

(6,0.49872,-18.75376,40.34134), (6,1.86841,-19.05627,40.31451), (6,1.86804,-

19.30631,42.73958), (6,2.55729,-19.58286,43.93018), (6,3.92810,-19.63544,41.47689), 

(6,3.92640,-19.88541,43.90264), (6,4.61696,-19.91190,42.66677), (6,4.62027,-

20.16291,45.09132), (1,4.10903,-20.14747,46.04654), (6,5.98766,-20.21536,42.64415), 

(6,5.98473,-20.46352,45.05435), (1,6.53311,-20.24046,41.70825), (6,6.66609,-

20.48966,43.83494), (1,7.72275,-20.72311,43.81252), (1,6.51539,-20.67679,45.97328), (6,-

2.25033,-18.14878,40.41408), (6,-1.55978,-18.17527,39.17821), (6,-1.56139,-

18.42486,41.60399), (6,-0.19058,-18.47745,39.15070), (6,-4.29968,-17.57199,39.24582), (1,-

5.35643,-17.33895,39.26819), (6,-3.61832,-17.59813,38.02641), (6,-3.62114,-

17.84578,40.43665), (1,-4.14908,-17.38527,37.10743), (6,-2.25375,-17.89824,37.98949), 

(1,2.02887,-19.56276,44.87743), (6,2.55816,-19.33278,41.50449), (1,-0.03072,-

18.98343,43.71331), (1,2.39750,-19.07658,39.36761), (1,4.45784,-19.65594,40.53040), (1,-

4.16660,-17.82072,41.37255), (1,-1.74252,-17.91371,37.03426), (1,-2.09113,-

18.40440,42.55049), (1,0.33782,-18.49758,38.20346)],units='Angstrom', multiplicity=1) 

 

# Calculate the Hartree Fock energy of pentacene molecule 

from pyquante2 import rhf, basisset  

bfs=basisset(pentacene,'sto3g') 

py2en=rhf(pentacene,bfs) 

py2en.converge() 

 

# Calculate all the one-electron integrals 

from pyquante2.ints.integrals import onee_integrals  

i1=onee_integrals(bfs,pentacene) 

py2S=i1.S 

py2T=i1.T 

py2V=i1.V 

py2h=py2T + py2V 

 

# Print the Results 

print 'Basis function set: \n ', bfs 

print 'Hartree Fock energy: \n ', 'using pyquante2: EHF = ', py2en.energy 

print '\n Overlap integral: \n ', 'using pyquante2: S = ', py2S 

print '\n One-electron operators: \n ', 'using pyquante2: h = ', py2h 
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Figure 8.4 Code in python for calculating various 2e integrals in a pentacene molecule in 

the minimum basis set, “STO-3G”, by import pyquante2 and then introducing “ERI” and 

“ERI_hgp” modules needed for the calculation. The dots in the scheme indicate the 

remaining functions of the basis set stored in the "t" matrix. 

 

After using both programs and concluding that our results converge, for time-saving 

purposes we chose GAMESS-US to study the molecular systems used in the study of the SF 

process. So, in Chapter 5 we use GAMESS-US to calculate all the required quantities needed 

to build the electronic Hamiltonian (eqs (8.1) and (8.2)). First, we build our systems using 

the Avogadro molecular editor and then through ORCA 12 we optimize the structure (except 

for the NC1 molecular system where we got the original coordinates from the published 

import pyquante2 

from pyquante2 import cgbf 

from pyquante2.ctwo import ERI, ERI_hgp 

 

t=[] 

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(0, 0, 

0),[71.616837, 13.045096, 3.5305122],[0.15432897000916182, 0.53532814003178, 

0.44463454002639596])) 

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(0, 0, 

0),[2.9412494, 0.6834831, 0.2222899],[-0.09996723007596425, 0.39951283030358636, 

0.7001154705320117])) 

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(1, 0, 

0),[2.9412494, 0.6834831, 0.2222899],[0.15591627210510742, 0.607683728204657, 

0.39195739529202256])) 

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(0, 1, 

0),[2.9412494, 0.6834831, 0.2222899],[0.15591627210510742, 0.607683728204657, 

0.39195739529202256])) 

t.append(cgbf((0.9417827409280779, -35.911804666417176, 80.81679641522155),(0, 0, 

1),[2.9412494, 0.6834831, 0.2222899],[0.15591627210510742, 0.607683728204657, 

0.39195739529202256])) 

t.append(cgbf((-0.3616935542140059, -35.38944660865418, 78.5680602833324),(0, 0, 

0),[71.616837, 13.045096, 3.5305122],[0.15432897000916182, 0.53532814003178, 

0.44463454002639596])) 

t.append(cgbf((-0.3616935542140059, -35.38944660865418, 78.5680602833324),(0, 0, 

0),[2.9412494, 0.6834831, 0.2222899],[-0.09996723007596425, 0.39951283030358636, 

0.7001154705320117])) 

. 

. 

. 

out = open("pentacene_CGBS.txt", "r+") 

for i in range(123): 

        for j in range(123): 

                for k in range(123): 

                        for l in range(123): 

                                a = f'(c{i}c{j}|c{k}c{l}) = {ERI_hgp(t[i],t[j],t[k],t[l])} \n' 

                                out.write(a) 
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paper 13). In the case of the NC1 molecular system, we create D, B and A fragments cutting 

the C=C bonds between the bridge and the pentacene D (A) and then capping with H. Then, 

we perform geometry optimization for each fragment without changing the inter-fragment 

geometries and distances. Next, using GAMESS-US we calculate all the required quantities 

(inter-fragment and intra-fragment terms) using scripts similar to those presented above 

(Figs 8.3 and 8.4). The results from these calculations together with the semi-analytical 

framework created earlier (see discussion in Chapters 6 and 7), are introduced in a script in 

MATLAB. There, numbers were essentially added to the quantities of eqs (8.1) and (8.2), 

thus building the ˆ el

DBAH . Finally, another script have to be used in MATLAB to calculate the 

SF effective coupling, SFV  via eqs (5.9) and (5.10) as well as the corresponding SF pathways 

(see discussion in section 5.4.3). Below, in Fig. 8.6 we present this whole process in the form 

of flowchart. 

 

8.3   MATLAB code programming 

MATLAB (MATrix LABoratory) is a programming language and numeric computing 

environment developed and owned by MathWorks. 14,15 Below I present an example of the 

scripts I wrote in MATLAB code that use the above-mentioned GAMESS-US and PyQuante 

computationsin order to compute the SF effective coupling (in the context of the semi-

analytical framework described in detail in Chapter 5). In particular, I present a MATLAB 

script for the construction of the D-B-A Hamiltonian and the calculation of the effective 

coupling SFV  for the non-pi-stacking molecular system (see Fig. 5.3b). The script requests 

as input data: 1) the constant parameter X  (constant D(A) HOMO-to-LUMO exciton 

energy), 2) maximum and minimum values for the variable parameters Y  (B HOMO-to-

LUMO exciton energy) and z  (difference between ionization potentials of D(A) and B), 3) 

the step sizes Y  and z  for the variation of Y  and z . The script then constructs the 

Hamiltonian and uses perturbation-theory and Green's function methods to calculate the SF 

effective coupling SFV  as explained in detail in section 5.4.3 (see eqs (5.9)-(5.10)). STEFANI V
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% This code computes the SF effective coupling of the Hamiltonian in the basis states set using 

% perturbation and Green’s function methods   

clear all; clc; 

global HAM P Q PQ QP d i j enQ vQ dQ enP vP dP E GQ G VSF 

global x y z ymax ymin nsteps dsteps mx my mz 

  

%%% Constants %%% 

x = 2.86;         % D(A) HOMO-to-LUMO exciton energy 

ymax = 12.46;         % maximum value of B HOMO-to-LUMO exciton energy 

ymin = 3.16;         % minimum value  

nsteps = 20;         % number of steps 

dsteps = (ymax-ymin)/nsteps; 

VSF = zeros (nsteps,1); 

mx = zeros (nsteps,1); 

my = zeros (nsteps,1); 

mz = zeros (nsteps,1); 

  

%%% Hamiltonian's Construction %%% 

HAM = xlsread('Hamiltonian.xlsx'); 

d = size(HAM); 

for i=1:17 

    for j=1:17 

        if gt(i,j) 

           HAM(i,j) = HAM(j,i); 

       else 

           HAM(i,j) = HAM(i,j); 

       end 

    end 

end 

 

%%% SF effective coupling calculation %%%  

for z=-7.9:0.5:3.5 % |IPD-IPB| 

    data = ['VSF_funct_z=', num2str(z),'.csv']; 

    y=ymin; 

    for i=1:nsteps 

        mx(i) = x; % x matrix 

        my(i) = y;  % y matrix 

        mz(i) = z; % z matrix 

        HAM(1,1) = x; 

        HAM(2,2) = (2*x)-3.35; 

        HAM(3,3) = y; 

        HAM(4,4) = z+y+3.4964; 

        HAM(5,5) = x-z+2.50098; 

        HAM(6,6) = x+3.133; 

        HAM(7,7) = x+3.133; 

        HAM(8,8) = x-z+2.50098; 

        HAM(9,9) = z+y+3.4964; 

        HAM(10,10) = y+z+x+2.3964; 

        HAM(11,11) = (2*x)-z+0.2492; 

        HAM(12,12) = y+z+x+2.3964; 

        HAM(13,13) = (2*x)-z+0.2492; 

        HAM(14,14) = x+y+1.1906; 

        HAM(15,15) = x+y+1.1906; 

        HAM(16,16) = x+y-3.0444; 

        HAM(17,17) = x+y-3.0444; 

        P = HAM(1:2,1:2); % P subspace construction 

        Q = HAM(3:17,3:17); % Q subspace construction 

        PQ = HAM(1:2,3:17); % PQ subspace construction 

         

: vP 

        GQ = inv(E*eye(15,15)-Q); % Green Function GQ 

        G = PQ*GQ*QP; 
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Figure 8.5 MATLAB code for computing the D-B-A Hamiltonian and the SF effective 

coupling for the non-pi-stacking molecular system described in Chapter 5. 

 

 

Figure 8.6 Flowchart demonstrating the semi-analytical / computational framework 

constructed for the analysis described in Chapter 5. 

 

        QP = HAM(3:17,1:2); % QP subspace construction 

        enQ = eig(Q); % find the eigenenergies of Q subspace 

        [vQ,dQ] = eig(Q); % find the eigenstates of Q subspace: vQ 

        enP = eig(P); % find the eigenenergies of Q subspace 

        E = (HAM(1,1)+HAM(2,2))./2; % find the average value between the two eigenenergies 

        [vP,dP] = eig(P); % find the eigenstates of Q subspace: vP 

        GQ = inv(E*eye(15,15)-Q); % Green Function GQ 

        G = PQ*GQ*QP; 

        VSF(i) = G(2,1); % SF effective coupling   

        y = ymin + i*dsteps; 

    end 

    dlmwrite(data,VSF,'precision','%1.16X');     

end 
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(eqs (5.1) and (5.2)) 

 

Entire D-B-A 

system 

GAMESS-US calculation 

FMO analysis 

RHF calculation 

D, B, A  

fragments 

GAMESS-US calculation 

RHF wavefunction 

CISD calculation 

VSF 

MATLAB coding 

Construction of the SA 

basis-set Hamiltonian 

MATLAB coding 

Calculation of the  

 

SF pathways 

Intra-fragment 

terms  

(IPi, EAi, JPiQi, 

KPiQi etc.) 

Inter-fragment  

terms 

(JPiQj, KPiQj, SPiQj 

etc.) 
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CHAPTER 9 

Conclusions 

 

This dissertation describes analytical and computational studies of electron transfer (ET) and 

transport (ETr) in molecules and molecular junctions, as well as singlet fission (SF) in 

molecular systems. Most of the work is closely related to experiments although its scope is 

broader than specific experiments. It relates to two published and one submitted research 

paper, and a review article. 

Specifically, in our first two published papers as presented in Chapters 3 and 4, we deal with 

the field of molecular electronics and junctions. In Chapter 3 we model transport in hybrid 

metal – ET protein – metal heterojunctions systems. The goal is to explain experimental 

results on the dependence of current on temperature and bias voltage for Azurin (Az): Holo-

Az (Cu-substituted Az), Apo-Az (no metal) and Ni-, Co- and Zn-substituted Az. The 

experimental results are very interesting because they enable the analysis of transport 

through the same protein monolayer medium as a function of the metal substitution, the 

temperature and the voltage. Our results strongly suggest that for Holo-Az the transport 

mechanism depends on the protein monolayer/heterojunction setup. In one type of 

heterojunction, transport is dominated by resonant incoherent hopping through the Cu redox 

site, whereas in the other it is mediated by off-resonant tunneling. For the unsubstituted 

(Apo-Az) and other metal-substituted Azurins the dominant transport mechanism at low 

temperatures is off-resonant tunneling, with an average tunneling barrier that depends on the 

type of metal dopant, and at the highest temperatures it is through-amino acid hopping 

(Valianti, S.; Cuevas, J. C.; Skourtis, S. S. Charge-Transport Mechanisms in Azurin-Based 

Monolayer Junctions. J. Phys. Chem. C 2019, 123 (10), 5907-5922.). 

In Chapter 4, we propose a donor (D) – bridge (B) – acceptor (A) molecular junction, 

functioning in the incoherent hopping regime, that is suited for establishing direct 

correlations between the electrode-to-electrode current and the intramolecular donor-to-

acceptor electron transfer rate. We suggest that this type of junction may be used to observe 

the Marcus-inverted-parabola dependence of the intramolecular rate on energy gap, by 

varying the bias voltage. The realization of such an experiment would enable meaningful 

comparisons between solution-phase electron transfer rates and molecular-junction currents 

for the same molecule (Valianti, S.; Skourtis, S. S. Observing Donor-to-Acceptor Electron-
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Transfer Rates and the Marcus Inverted Parabola in Molecular Junctions. J. Phys. Chem. B 

2019, 123(45), 9641-9653.). 

In Chapter 5 we describe a semi-analytical / computational framework to explore structure-

function relationships for singlet fission in D-B-A molecular architectures. The aim of 

introducing a bridging linker between the D and A molecules is to tune, by modifying the 

bridge structure, the electronic pathways that lead to fission and to D-A-separated correlated 

triplets. We identify different bridge-mediation regimes for the effective singlet-fission 

coupling in the coherent tunneling limit and derive the dominant fission pathways in each 

regime. We describe the dependence of these regimes on D-B-A exciton-state energetics and 

on D-B (A-B) one-electron and two-electron matrix elements. This semi-analytical approach 

can be used to guide computational and experimental searches for D-B-A systems with tuned 

singlet fission rates. We use this approach to interpret the bridge-resonance effect of singlet 

fission that has been observed in recent experiments. We identify bi-excitonic D(A)-B 

correlated triplet-pair (CTP) states ( )
CTP CTP

D B A  D B A+− +− +− +− , that act as “bottleneck” 

states for singlet fission and are responsible for the bridge-resonance effect that leads to the 

enhancement of the SF rate (Valianti, S.; Skourtis, S. S. The Role of Bridge-state 

Intermediates for Donor-bridge-acceptor Systems: A Semi-analytical Approach to Bridge-

tuning of the Donor-acceptor Fission Coupling. J. Phys. Chem. Lett. under review). 

In Appendix A we present an extensive review article on vibrational effects in molecular 

electron transfer reactions (Valianti, S.; Skourtis, S. S. Vibrational control of molecular 

electron transfer reactions. Mol. Phys. 2019, 117 (19), 2618-2631.). 
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APPENDIX A 

Vibrational Control of Molecular Electron Transfer 

Reactions 

 

Vibrational motions promote molecular electron transfer reactions by bringing electron 

donor and electron acceptor electronic states to fleeting resonance, and by modulating the 

donor-to-acceptor electronic coupling. The main experimental signature of molecular 

motion effects on the electron transfer rate is the temperature dependence of the rate, which 

gives information about the overall free energy activation barrier for the electron transfer 

reaction. Another approach to probing the vibrational control of electron transfer rections is 

to  excite specific electron-transfer-active vibrational motions by external infrared fields. 

This type of experimental probe is potentially more specific than thermal excitation and 

recent experiments have shown that molecular electron transfer rates can be perturbed by 

mode-specific infrared driving. We review the theory and experiments of vibrational control 

of electron transfer rates, and discuss future challenges that need to be tackled in order to 

achieve the mode-specific tuning of rates.  

Molecular electron transfer and energy transfer reactions are ubiquitous in chemistry and 

biology. 1-8 Molecular motions are critical in determining the electron transfer (ET) rates by 

modulating the relative energies of electron donating and accepting states and the electronic 

couplings between these states ([9,10] and [8,11-15] for reviews). An interesting approach 

to probing the vibrational control of ET rates experimentally is to identify vibrational modes 

that influence the transport rate (“ET-active” modes), and to perturb these vibrations 

selectively by infrared (IR) excitation. 13-17 This type of experiment can reveal ET 

mechanism and potentially offer reversible mode-specific control of the reaction rate, since 

the influence of the IR excitation on the molecule is non-destructive and reversible. We first 

review the theory of molecular ET rates with an emphasis on the roles of ET-active 

vibrations. Then we discuss the theory of IR-perturbed ET and the experimental advances in 

this new and exciting field. 
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A.1   ET rate regimes: the roles of vibrational motions 

The central roles of molecular vibrations in mediating chemical reactions is known since the 

development of transition state theory (TST). 9,18 Traditional ET rate theory of molecular 

donor-to-acceptor ET reactions is largely based on transition state TST. 9-11 Thus, the 

important “ET-active” vibrations are those which bring electron-donor and electron-acceptor 

states to quasi-resonance. Here we consider the simplest case of an electron that is initially 

localized in a donor (D) molecular electronic state (Fig. A.1). The electron may transfer to a 

final acceptor (A) electronic state by tunneling through a connecting molecular bridge (B). 

19 The bridge-mediated D-A electronic coupling is denoted V .  

 

 

Figure A.1 Bridge-mediated donor-to-acceptor electron transfer (ET). The energy 

difference between donor (D) and acceptor (A) electronic states, DAE , is modulated by 

vibrations (accepting modes) that bring D and A to resonance. In the diagram one accepting 

mode R is assumed to modulate the D-state energy. When the B electronic state energy (
el

BE

) is off-resonant to the donor and acceptor energies (
el

DE , 
el

AE ), the bridge acts as a tunnelling 

barrier for the transferring electron. The bridge-mediated tunnelling matrix element between 

D and A is denoted V . Bridge vibrations that modulate 
el

BE  cause fluctuations in V  

(promoting modes). The diagram shows a single promoting mode Q .  If ( )el

BE Q  fluctuations 

D B A 

  Potential energy of elec. 
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are large enough to bring the B state to D (A) resonance, ET may take place by a flickering 

resonance or a hopping mechanism, rather than tunnelling. 

 

The D and A state energies are modulated by some vibration (described by a normal mode 

coordinate R ). This type of ET-active vibration is often called an accepting mode. For some 

value resR R= , D and A  states become resonant, ( ( ) ( )el el

D res A resE R E R= ) , and the probability 

of ET from D-to-A is enhanced. In our simple model we will also include a vibrational mode 

Q  that modulates the D-A coupling, ( )V Q . This vibration may modulate the tunneling 

barrier width (eg. D-A distance modulation) or the tunneling barrier height (e.g., a bridge 

electronic-level modulation, Fig. A.1). Such an an ET-active vibration is often called a 

promoting or inducing mode.  The Born-Oppenheimer Hamiltonian of the model is described 

by eq. 1 and is illustrated in Fig. A.2 

( ) ( ) ( )( )ˆ . .BO BO BO

D AH E R D D E R A A V Q D A h c= + + + . (A.1) 

( )BO

DE R  ( ( )BO

AE R ) are the diabatic Born-Oppenheimer (BO) surfaces for the D and A states. 

In Fig. A.2 they are assumed to be harmonic of frequency  , i.e., 

( ) ( )
22

(min) 2BO BO

D D DE R E m R R= + −  and ( ) ( )
22

(min) 2BO BO

A A AE R E m R R= + − . The 

accepting mode coordinate R  sees the diabatic potential energy surface ( )BO

DE R  ( ( )BO

AE R

)  when the electron is at the D (A) state. For the coordinate value resR R= , the D and A 

diabatic BO surfaces cross, i.e., ( ) ( )BO BO

D res A resE R E R=  in Fig. A.2. This crossing defines 

the center of the resonance region (see below). We assume that the promoting mode 

coordinate Q  which modulates the coupling ( )V Q  also sees a harmonic potential energy 

surface that is independent of whether the electron is in the D or A state. For bridge-mediated 

ET, this independence would be largely true for a bridge-localized vibration. We denote the 

promoting mode potential energy surface ( ) ( )
2

2 2B eqE Q Q Q=  − .STEFANI V
ALIA

NTI 



197 

 

 

Figure A.2 The dynamics of the accepting mode R  in Fig. A.1 depend on the transferring 

electron’s state. When the electron is initially localized at the donor (D) state, the accepting 

mode R  “sees” the potential energy surface ( )BO

DE R  (diabatic BO surface) with equilibrium 

value DR . When the electron has transferred to the acceptor (A) state the dynamics of R  is 

governed by ( )BO

AE R  with equilibrium value AR . With the electron initially at D, and 

assuming that R  is a classical vibration, the oscillations of R  around DR  lead to D-A energy 

gap fluctuations ( )DAE R . Whenever crosses resR , D an A states become resonant and ET 

takes place with high probability due to the coupling V , with a probability equal to the 

Landau-Zener probability 
LZ

D AP → . In the nonadiabatic limit, the coupling is weak 1LZ

D AP → , 

and many crossings of  resR  are required to change electronic state from D to A (i.e., for ET 

to take place). Thus, the diabatic BO surfaces (diagonal part of the Hamiltonian in eq. (A.1)), 

give the correct electronic-state-dependent dynamics of R . 

 

In the following, the above model is used to describe different ET regimes and the roles of 

ET-active vibrations in determining the rate in each regime. 1,3,4,9-11 We distinguish between 

classical and quantum vibrational effects. Traditional ET theory relates only to accepting-

mode dynamics so we first assume that the D-A coupling in eq. (A.1) does not fluctuate (

( )V Q V= , a constant).  

Energy 

D-A resonance   
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A.2   Classical accepting modes 

The accepting mode may be treated as a classical vibration  at a given temperature T  if 

Bk T  . In this situation the dynamics of R  is described by classical trajectories ( )R t  

on the D (or A) BO surfaces. To distinguish between the different limiting regimes of ET 

(weak versus strong electronic coupling V ), we use the Landau-Zener D-to-A transition 

probability ( )1 expLZ

D A LZP → = − −  where ( )LZ V  is the Landau-Zener parameter (e.g., 

[10,11]). Suppose the electron is originally in the D state and R  is far from the resonance 

value resR . The potential energy surface that determines the dynamics of R  is the diabatic

( )BO

DE R  (Fig. A.2). Since ( )BO

DE R  is harmonic, any mode trajectory ( )R t  with the electron 

in the D state will oscillate around the ( )BO

DE R  equilibrium value DR  and the D-A energy 

gap will be time-dependent, i.e., ( ) ( )( ) ( )( )BO BO

DA A DE t E R t E R t = −  in Fig. A.2. A mode 

resonance-crossing event takes place every time (denoted rest ) the trajectory ( )R t  attains the 

D-A resonance value ( )res resR t R=  for which ( )( ) 0DA resE R t =  and  the D and A electronic 

states become resonant i.e., ( ) ( )el el

D res A resE R E R= . For each such crossing event the 

probability of D-to-A ET is given by the Landau-Zener probability ( )1 expLZ

D A LZP → = − − . 

The parameter LZ  may be interpreted as the ratio between the Landau –Zener time and the 

Rabi time, i.e., LZ LZ Rabi    (e.g., [20]). The Landau-Zener time  is a measure of the time 

D and A states remain in the resonance region per crossing event, where the resonance region 

is defined by all values of t  around rest  (or of ( )R t  around resR ) such that ( )DAE t V  .  

Thus ( )LZ t DA res
eq

V d E t    where ...
eq

 denotes thermal (equilibrium) average and 

td d dt . The Rabi time, Rabi h V  , is a measure of the period of oscillations of the 

transition probability ( )D AP t→  if the D and A states remain in resonance. A more exact 

analysis in terms of the simple model in Fig. A.2 gives  

3/2 2

LZ

B

V

k T




 
=  , (A.2) 

where ( )
22 2A Dm R R = −  is the reorganization energy (Fig. A.2). 11 The term Bk T   
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is obtained from ( )t DA resd E t  by writing it in terms of the mean mean velocity of the 

oscillator at the resonance crossing, i.e., ( ) ( ) /t DA res res DA
eqq

d E t dR t dt d E dR =   . 

 

A.2.1   Nonadiabatic weak-coupling regime 

This regime applies to weak D-A coupling V such that 1LZ   and Rabi LZ   . In this 

nonadiabatic limit, the probability of ET for each resonance crossing is very small and is 

given by LZ

D A LZP →   . The rate is given by    

                   
( ) 2 ( )2nad eq cl eq

ET FCk V


= ,          
BB

1
exp

4

nad

act
FC

U

k Tπλk T


 
= − 

 
 (A.3) 

where 
( )cl eq

FC  is the classical thermal Franck Condon factor. nad

actU  is the activation energy of 

the reaction and given by, 

( )
2

4

nad

act

E
U





 +
=  (A.4) 

where (min) (min)

BO BO

A DE E E = −  is the energy gap between BO surface minima (Fig. A.2). In the 

nonadiabatic limit, the ET is rate-limited by the activation event to the crossing region (

( )Bexp nad

actU k T − ) and by the D-A coupling ( 2V ). The ET-active mode enables the 

activation to resonance and its frequency also determines the amount of time D and A remain 

in resonance (the latter appears in the Landau-Zener parameter).  

A more general form of eq. (A.5) replaces the activation energy by an activation free energy. 

This generalization applies to the realistic case where several independent accepting 

vibrational modes  iR  modulate the D-A energy gap, i.e., 

 ( )  ( )  ( )BO BO

DA i A i D iE R E R E R = − . In this situation many different sets of resonance 

configurations  i res
R  are possible (for which  ( ) 0DA i res

E R = ). Thus, there is an entropy 

ln(N)Bk  associated with  the number N  of all such sets with 0DAE = ,  and the activation 

energy should be replaced by an activation free energy which includes this entropy. 
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A.2.2   Adiabatic strong-coupling regime  

This regime is characterized by strong coupling V  such that 1LZ   and 
Rabi LZ  . In the 

adiabatic limit the probability of ET for each resonance crossing is near-unity 1LZ

D AP →   

(complete D-to-A ET per resonance crossing). The rate is given by  

( )

B

exp
2

ad
ad eq act
ET

U
k

k T





 
 − 

 
 (A.5) 

with activation energy ad nad

act actU U V −  that is lower than the nonadiabatic activation energy. 

This lowering is due to the broadening of the Landau-Zener region (Fig. A.3).  

The adiabatic rate is rate-limited by the activation event to the adiabatic crossing region (

( )( )Bexp
ad eq

actU k T − ) but not by the electronic coupling. Rather, the rate is proportional to 

the oscillation frequency of the ET-active vibration (which is the TST attempt-frequency). 

As in the nonadiabatic case, the ET-active mode enables D-A resonance. 

 

 

Figure A.3 In the adiabatic limit (strong D-A coupling V ) the dynamics of the promoting 

mode R  is best described by an adiabatic BO surface (lowest eigenstate of the Hamiltonian 

in eq. (A.1)). Due to the large value of V , D and A states are quasi-resonant in a wider region 

of R  around resR . Assuming that R  is a classical coordinate, D-to-A ET takes place with 

Energy 
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near-unity probability every time R  enters this quasi-resonance region, 1LZ

D AP →  . Thus, as 

a function of R , the potential energy surface that determines the dynamics in the resonance 

region is due to the lowest adiabatic BO state which is a linear combination of diabatic D 

and A BO states of Fig. A.2. 

 

A.3   Quantum accepting modes 

The accepting mode may be treated as quantum  at a given temperature T  if Bk T  .  In 

this situation the dynamics of R  is described by vibrational wavefunctions and the state of 

the ET system is described by products of electronic and vibrational states 

;el vi el vi=   (vibronic states).  

 

A.3.1   Nonadiabatic weak-coupling regime 

For a quantum accepting mode the full Hamiltonian of the ET system is written as 

( )ˆ ˆ ˆ ˆ. .vib vib vib

D AH D D H A A H V D A h c I=  +  + +  , where 

( )2ˆ ˆ ˆ2vib BO

D DH P m E R= + , and ( )2ˆ ˆ ˆ2vib BO

A AH P m E R= + . The vibrational states Dn  and An  

denote harmonic oscillator eigenstates of ˆ vib

DH  and ˆ vib

AH , respectively,  with eigenenergies 

( )min D

BO

nD
E +  and ( )min A

BO

nA
E +  (Fig. A.4), where ( )1/ 2

Dn Dn = +  and  

( )1/ 2
An An = + . The ET rate can be expressed as a thermally weighted sum of Fermi-

Golden Rule rates , ,D A

nad

D n A nk →  between initial ; D DD n D n=  and final ; A AA n A n=  

vibronic states (Fig A.4). Each rate , ,D A

nad

D n A nk →  is induced by the coupling  

ˆ; ;D A D AD n H A n V n n=   (where D An n  is the vibrational-state overlap). Thus, the 

thermally averaged nonadiabatic ET rate is given by  

( )
, ,D D A

D A

nad eq eq nad

ET n D n A n

n n

k p k →=   , (A.6a) 

where  

( )  ( ) 
22

, , min min

2
D A D A

nad BO BO

D n A n D A n nD A
k V n n E E


  →

 = + − +
 

. (A.6b) 
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The tilde notation denotes quantum-mode, (to distinguish from the classical-mode rate in eq. 

(A.3)). The double sum in eq. (A.6a) is between initial  ( Dn ) and final  ( An ) vibrational 

states, where 
/ /n B n BD D

D D

k T k Teq

n n
p e e

 − −
=   is the thermal equilibrium probability of each 

initial vibrational state  (
2

D An n  is the Dn  to An  Franck-Condon factor). Equations 

(A.6a) and (A.6b) can be cast in a more familiar form analogous to eq. (A.3), i.e.,  

( ) ( )

( )  ( ) 

2 ( )

2( )

min min

2 ,

D D A

D A

nad eq qu eq

ET FC

qu eq eq BO BO

FC n D A n nD A
n n

k V

p n n E E

 

   

=

 = + − +
  

. (A.7) 

( )qu eq

FC  is the quantum thermally-weighted Franck-Condon factor. Since the initial and final 

vibrational states have finite lifetimes due to vibrational relaxation, their energies are 

homogeneously broadened. Thus, each of the delta functions should be thought of as a 

Lorentzian ( ) ( )  ( ) ( ) ( )
1

2
2

min minD A

BO BO

n nD A
E E  

−

 
 + − + +   

 whose width is determined 

by the vibrational relaxation rates 
Dn , 

An  of the initial and final vibrational states, i.e., 

where  
D An n =  +   (Fig. A.4).    

Equations (A.6a), (A.6b) or (A.7) describe the nonadiabatic rate in the Condon 

approximation. This approximation is explained below when we consider coupling 

fluctuations.  The weak-coupling (nonadiabatic) regime is valid when D AV n n   , 

in which case there are no coherent oscillations in the transition probabilities between initial 

and final vibronic states. Thus, the time evolution of the transition probabilities can be 

described by rates , ,D A

nad

D n A nk →  proportional to 
2

D AV n n . 
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Figure A.4 Vibronic picture of the nonadiabatic ET rate for a quantum accepting mode. The 

average rate is a thermally weighted sum of vibronic rates , ,D A

nad

D n A nk →  between initial 

; D DD n D n=  and final ; A AA n A n=  vibronic states. Each transition is induced by 

the vibronic coupling  D AV n n . Dn  and An  denote harmonic oscillator eigenstates of 

the ( )BO

DE R  and ( )BO

AE R , respectively. 
Dn  and 

An  are the vibrational relaxation rates of 

the initial and final vibrational states (
D An n =  +  ). The quantum nonadiabatic regime is 

valid when D AV n n   . In the quantum adiabatic regime, D AV n n   , and 

coherent oscillations between quasi-resonant DD n  and AA n  vibronic states may be 

important. The ET transition is not fully described by simple rate equations.  

 

A.3.2   Adiabatic strong-coupling regime  

When  D AV n n    (see Fig. A.4) coherent oscillations between quasi-resonant  

DD n  and AA n  vibronic states may be observed and, in this case, the ET reaction 

cannot be described by simple rate equations. The time evolution of the transition probability 

Energy 
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from D-to-A should be described by density matrix equations of the relevant vibronic states 

which incorporate the vibronic-state coupling to the bath degrees of freedom. This 

methodology is briefly described in the discussion of eq. (A.18).   

 

A.4   Rates in terms of vibrational-coordinate and energy-gap probability densities  

To show explicitly the role of vibrational fluctuations on ET rates, we consider as an example 

the nonadiabatic rate in eq. (A.3) for a classical accepting-mode R , and show how to express 

this rate in terms of the canonical probability density of R . This density is given by 

( ) ( ) ,eq

D canp R dP P R=  , where 

( )

( )( ) ( )( )2 2

,

exp 2 exp 2 .

can

BO BO

D B D B

P R

P m E R k T dPdR P m E R k T

 =

   − + − +
   

 (A.8) 

The nonadiabatic rate is an equilibrium thermal average 
( )

...
eq D

 with respect to R  of R −

dependent ET rates derived from Fermi’s golden rule: 

   
( ) ( )

( )
( ) ( )( )22

   
nad eq nad eq

ET ET D DAeq D
k k R dR p R V E R


= =  .                        (A.9) 

For the harmonic energy surface in Fig. A.2, ( ) ( )
2 2

min
( ) 2BO BO

D DD
E R E m R R= + − , and the 

equilibrium density is Gaussian, 

   ( ) ( )2 2 2 2

2

1
exp ( ) 2 ,      

2

eq

D D R R B

R

p R R R k T m  


= − − = .                          (A.10) 

Equation (A.3) is obtained from eqs (A.8) and (A.9) by assuming harmonic BO surfaces for

( ) ( ) ( )BO BO

DA A DE R E R E R = −  such that, in the delta-function, ( ) ( )harm

DA DAE R E R    where 

( ) ( ) ( )( )(min) (min) 2harm BO BO

DA A D A DE R E E R R R  = − + − − .   

Alternatively, the nonadiabatic rate can be written in terms of the energy gap ( )DAE R  

fluctuations caused by the R  vibration. This approach is more natural for the realistic case 

of many accepting modes, where the D-A energy gap arising from all modes is the relevant 

ET rate reaction coordinate rather than the individual mode coordinates. In our simple 

example, the equilibrium probability density for the energy gap is given by 
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( ) ( ) ( )( )   eq eq

D DA D DA DAE dR p R E E R  =  −  , where 
DAE  denotes a specific energy-gap 

value.  From eq. (A.8) and from the expression for ( )harm

DAE R , it can be shown that 

( ) ( )( )2 2

2

1
exp 2

2
DA

AD

eq

D DA DA DA E

E

E E E 






 = −  −  , (A.11) 

where, 
2 2

DAE Bk T  =  and (min) (min)

BO BO

DA D AE E E  = − + . The nonadiabatic rate in eq. (A.3) 

is a thermal average over DAE  values of Fermi’ s golden rule rates: 

( ) ( )

( ) ( ) ( )
( )

2 22 2
    0

cl eq
FC

nad eq nad

ET ET DA eq

eq eq

DA D DA DA D DA

k k E

d E E V E V E



 
  

=  =

   =  =
 (A.12) 

The adiabatic rate in eq. (A.5) may also be derived from the probability density of the 

classical accepting mode coordinate. This approach to deriving the adiabatic rate is identical 

to analogous derivations of TST rates which involve thermal activation over a simple barrier. 

9,18,21-22 A formulation of the quantum-nonadiabatic rate (eqs (A.6a) and (A.6b)) in terms of 

the accepting-mode-coordinate probability distributions requires the use of semi-classical 

formulations of the ET rate (e.g., [22] for a review).  

 

A.5   Coupling fluctuation effects and promoting modes 

Up to this point we have assumed that the D-A electronic coupling V  in eq. (A.1) does not 

fluctuate. If we allow for coupling fluctuations in addition to energy-gap fluctuations we can 

obtain a simple generalization of the nonadiabatic rate expressions ([12,14] for reviews).   

Consider, for example, a bridge mode Q  of frequency   (Fig. A.1) which modulates the 

tunnelling barrier between D and A such that the bridge-mediated D-A coupling depends on 

the mode coordinate, ( )V V Q= . Q  is denoted a promoting mode and it may be considered 

a classical oscillator if Bk T  , and a quantum oscillator in the opposite limit. 
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A.5.1   Classical promoting mode 

For a classical promoting mode, the equilibrium probability density of Q  is given 

( ) ( ) ( )
1/2

2 2 22 exp ( ) 2eq

B Q Qp Q Q Q 
−

= − −  (as in eq. (A.10)) where B denotes bridge. The 

equilibrium probability density for the D-A coupling is given by 

( ) ( ) ( )( )   eq eq

V BV dQ p Q V V Q = − . The nonadiabatic ET rate in eq. (A.3), which is an 

equilibrium average over accepting mode fluctuations, must now also be averaged over 

promoting mode fluctuations, i.e.,  

( )

( ) ( ) ( ) ( )2 2 22 2 2
  

nad

ET eq

cl eqeq eq eq

B FC B FC FCeq

k Q

dQ p Q V Q dV V V V
  

   

=

= = 
 (A.13) 

Defining an average rate as in eq. (A.13) assumes the typical slowest timescale of coupling 

fluctuations is fast compared to the typical ET time (inverse ET rate). If the coupling 

fluctuation timescale is slower than the ET time, then the ET kinetics will be distributed and 

such kinetics cannot be described by a single (average-rate) value (see e.g., [23] for a 

discussion of this regime in ET).  

In summary, the simplest effect of coupling fluctuations in eq. (A.2) is the replacement of 

2V  by a thermally averaged 
2

eq
V . Equation (A.13) generalizes the classical nonadiabatic 

rate in the Franck-Condon approximation by incorporating “static” effects of coupling 

fluctuations via the average 
22 2

Veqeq
V V = + . It is useful for the discussion in the 

following sections to express the rate in eq. (A.13) as a double average over promoting and 

accepting mode fluctuations or, equivalently, coupling and energy gap fluctuations 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

2

2

2
   

2
             .

nad eq eq eq

ET B R DA

eq eq

B DA D DA DA

k dQ p Q dR p Q V Q E R

dQ V d E E V E





  

= 

=   

 

 

 (A.14) 
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A.5.2   Quantum promoting modes and the breakdown of the Condon approximation 

The quantum nonadiabatic ET rate in eqs (A.6) or (A.7) is a thermally-weighted sum of 

nonadiabatic rates between initial and final vibronic states (eq. (A.6a)). To incorporate the 

effects of a quantum accepting mode in the nonadiabatic rate, the vibronic states of the 

system must now include the promoting mode eigenstates. 24 Therefore, initial and final 

vibronic states of the ET reaction are written as , ,D in D inD n D n =  and 

, ,A fi A fiA n A n = , where inv  and fiv  are initial and final promoting mode 

eigenstates, respectively, with energies ( )1/ 2
in in =  +  and ( )1/ 2

fi fi =  + . By 

analogy to eqs (A.6a) and (A.6b),  

( )
, , , ,in D D in A fi

in D fi A

nad eq eq eq nad

ET n D n A n

n n

k p p k  
 

→=     , 
(A.15) 

where , , , ,D in A fi

nad

D n A nk  →  is the Fermi-Golden Rule rate between , ,D inD n   and , ,A fiA n  , 

( )  ( ) 

, , , ,

2

min min

2 ˆ, , , , .

D in A fi

D in A fi

nad

D n A n

BO BO

D in A fi n v n vD A

k

D n V A n E E

 


      

→ =

 + + − + +
 

 (A.16) 

The average in eq. (A.15) is over accepting and promoting mode equilibrium distributions. 

/ /n B n BD D

D D

k T k Teq

n n
p e e

 − −
=  , 

/ /B v Bin in

in D

k T k Teq

n
p e e 



− −
=  . The coupling in eq. (A.16) is 

given by ˆ, , , , , ( ) , |D in A fi in fi D AD n V A n D V Q A n n   = , where 

( )( )ˆ . .V V Q D A h c= + . To compute the matrix elements , ( ) ,in fiD V Q A  , ( )V Q  can 

be expanded as ( ) ( ) ( )
0

2
2

0 02

1

2
Q

d V
V Q V Q Q Q higher order

dQ

 
= + − + 

 
. The golden-rule limit 

is valid when D A in fiV n n      , where 
D A in fin n   =  +  +  +   is a total 

vibrational relaxation rate for the initial and final vibrational states. 

The expression in eqs (A.15) and (A.16) can be cast into a time-domain form ([12,14] and 

references therein). It is the time Fourier transform of the product of two equilibrium 

correlation functions (eq. (A.17)), where the transform is evaluated at the frequency of the 

(min) (min)

BO BO

D AE E−  gap (Fig. A.2): 
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( ) ( ) ( )( )
( )

( )
( )

( )

min min

2

1 ˆ ˆ   
BO BO
D Ai E E tnad eq

ET V FC
eq B eq D

k dt e C t C t

+
−

−

=  . (A.17) 

( )
( )

( ) ( )
( )

ˆ ˆ ˆ 0V
eq Beq B

C t V t V=  is the time-dependent coupling correlation function where 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆexp 0 expvib vib

B BV t itH V itH= −  is evolved in time using the vibrational 

Hamiltonian ˆ vib

BH  for the promoting mode. The averaging is over the promoting mode 

equilibrium distribution, 
( )

... | ... |
inin

eq

in ineq B
p

 =  . ( )
( )

ˆ
FC

eq D
C t  is the Franck-

Condon correlation function, where ( ) ( ) ( )ˆ ˆ ˆexp expvib vib

FC D AC t itH itH= −  and ˆ vib

DH  and 

ˆ vib

AH  are the accepting-mode vibrational Hamiltonians for the D and A BO surfaces of Fig. 

A.2. The equilibrium average involves the D vibrational equilibrium distribution

( )
... | ... |

DD

eq

n D Deq D n
p n n=  . 

Equation (A.17) is convenient for computations involving molecular dynamics simulations, 

where the correlation-function averages can be evaluated in the semi-classical 

approximation. It is also the starting point for deriving the Condon approximation and its 

dynamical corrections. If coupling fluctuations are very slow with respect to energy gap 

fluctuations then, in eq. (A.17), ( )
( )

ˆ
V

eq B
C t  can be replaced by ( )

( ) ( )

2ˆ ˆ0V
eq Beq B

C t V= =  

and taken out of the Fourier integral. This leads to the most-general expression for the 

quantum nonadiabatic rate in the Condon approximation, 
( )

( )

( )2ˆ2
nad eq qu cl

ET FC
eq B

k V = ,  

which is a generalization of eq. (A.7) for fluctuating coupling. The classical limit of this 

expression leads to eqs (A.13) or (A.14). Dynamical non-Condon effects are important when 

the coupling and energy-gap fluctuations are of similar magnitudes and timescales. 

Dynamical non-Condon corrections to the Condon rate can be computed by expanding

( )
( )

ˆ
V

eq B
C t  in a Taylor series with respect to time and keeping successive terms  

( ) ( )
( )

ˆ! 0
n

n

Vn
eq B

d
t n C t

dt
 =  in the Fourier integral of eq. (A.17). 24 

The nonadiabatic rate equations can be further generalized to include several promoting and 

accepting modes, mixed classical and quantum modes within the same molecular system, 

and interdependent promoting and accepting modes, i.e., ( ),V V Q R= . Although the 

nonadiabatic-rate limit is not always valid (see below), we will use eqs (A.13)-(A.15) in 
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much of our discussion of non-equilibrium vibrational effects because these rate equations  

are easily generalized to describe non-equilibrium vibrational distributions of the ET-active 

modes. 

 

A.5.3   Adiabatic strong-coupling regime  

Introducing a classical accepting mode for the adiabatic rate in eq. (A.5) means that the mode 

will modulate the adiabatic activation energy (Fig. A.3) through the coupling, i.e., 

ad nad

act actU U V − → ( ) ( )ad ad

act actU Q U V Q − . Thus, the averaging of the adiabatic rate over 

accepting and promoting mode fluctuations maps to problems of stochastic resonance which 

involve rate averaging over fluctuating barriers. 21 

In the quantum adiabatic regime, D A in fiV n n      , where 

D A in fin n   =  +  +  +   is a total vibrational relaxation rate for the initial and final 

vibrational states. As already discussed, simple rate equations are not appropriate in this limit 

and the time evolution of the transition probability from D-to-A may be partially oscillatory. 

The ET transition should be described by density matrix equations involving the relevant 

accepting and promoting vibronic states and the system’s coupling to bath degrees of 

freedom. Namely, the D-B-A system Hamiltonian is written in the basis of the , ,D inD n   

and , ,A fiA n   states as ˆ ˆ ˆ ˆ ˆ ˆ
S D B A DB ABH H H H H H= + + + +  where ˆ

DH , ˆ
BH  and ˆ

AH  are 

vibronic Hamiltonians for the D, B and A moieties, while ˆ
DBH  and ˆ

ABH  are vibronic 

Hamiltonians for the D-B and A-B interactions. Each ˆ
KH  is of the form 

ˆ ˆ ˆ ˆel vi el vi

K K K KH H H H −= + +  where "el" denotes electronic, "vi" vibrational and "el-vi" 

electronic-vibrational-coupling. The time evolution of the system’s vibronic populations and 

coherences is described by a stochastic Liouville equation for the reduced (system) density 

matrix ( )ˆ t , given by:  

( )
( ) ( )

ˆ
ˆ ˆˆ ˆ, diss

S

d t
i H t L t

dt


  = +

 
.  (A.18) 

( )ˆ ˆ,SH t 
 

 is the coherent part and  ( ) ( )ˆ ˆdissL t t  is the dissipative part which describes the 

interaction of the system’s vibronic states with the bath and which contains vibronic 

coherence and population decay rates i . 9,10 
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A.6   Examples of energy-level and coupling fluctuations in electron transfer reactions   

Numerous computational studies have examined the fluctuation dependence of the bridge-

mediated D-A coupling for long-distance ET in systems where the transfer mechanism is 

tunneling ([12,14] for reviews). The general conclusion of these studies is that the Condon 

approximation expression for the nonadiabatic rate, 
( )

22ET FCeq B
k V = , describes the 

rates quite accurately. These studies show that coupling fluctuations are important in 

determining the rate, especially for metal-to-metal protein ET which involves extended and 

floppy protein bridge structures. Writing 
22 2

Veqeq
V V = + , it is found that 

22

V V  for 

D-A distances greater than 6-7 Angstrom. 25 In this regime of large coupling fluctuations, 

thermal fluctuations of the D-B-A structure access molecular conformations with tunnelling 

matrix elements that are order-of-magnitude larger than the average-structure matrix 

element.  

Energy-level fluctuations are particularly important in low-gap D-B-A systems where, at 

thermal equilibrium, there exist molecular conformations for which bridge electronic states 

are quasi-resonant with the donor and acceptor electronic states. 6,15 Molecular dynamics 

simulations combined with electronic structure computations on DNA hole-transfer systems 

show that, in many cases, the fluctuations in the D(A)-to-B energy gap is of the order of the 

average gap, i.e., 2

DBDB EE     (the bridge states are usually the highest occupied 

molecular orbitals of the bases). 26-29 In such systems, different transport mechanisms may 

coexist at the ensemble level, with contributions from tunnelling, thermally activated 

hopping and flickering resonance ET channels. 6,8,30 The multiplicity of mechanisms makes 

the phenomenology of the D-to-A ET rate complex. An open question is how to deconvolute 

the experimentally the different channels. 

For the primary reactions in photosynthesis, 31,32 where excited state ET is ultrafast 

(picosecond timescale), there is experimental evidence of vibrational enhancement of the 

primary ET rate. 33 For example, in the Photosystem II reaction center, there exist vibrational 

modes with phonon energies that are resonant to the energy gap between the primary electron 

donor and the first charge-transfer exciton states. Two-dimensional electronic spectroscopy 

and modelling in the spirit of eq. (A.18), (where the system is described in a vibronic basis 

that includes the relevant modes), suggests that the primary ET reaction rate is enhanced and 

controlled by the vibronic resonances involving these resonant vibrations ([33] and 

references therein).  
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A very interesting aspect of fluctuation dynamics in ET is non-ergodic and gated dynamics.  

For example, when accepting mode vibrational timescales are much slower than the ET 

timescale, the DA energy gap fluctuations caused by these slow modes are frozen on the ET 

(experimental) timescale. Such an ET system is denoted non-ergodic with respect to these 

slow vibrations because, on the timescale of ET, these vibrations do not explore their entire 

phase space so as to contribute to ET activation. Thus, the canonical distributions in eqs 

(A.8) and (A.10)-(A.11) cannot be applied to these vibrations. Gated dynamics describe the 

situation when different interconverting stable conformations of the ET system (structural 

and/or solvent polarization) lead to different ET rates. When the interconversion rates are 

comparable or slower than the ET rates, the ET dynamics is said to be gated by these 

interconversion events.  These regimes have been studied in reaction-rate and ET theory for 

some time, e.g., in the context of solvent-controlled ET ([3,8,14] for reviews of the extensive 

literature). The experimental phenomenology of the above-mentioned regimes includes non-

exponential ET rate kinetics and the non-Arrhenius temperature dependence of the rate. The 

non-ergodic regime may also imply non-Gaussian fluctuations for the D-A energy gaps (i.e., 

eq. (A.11) does not apply). 34-36 Non-ergodic energy gap fluctuations were shown to be 

relevant in some biological ET systems and it has been suggested that they improve the 

efficiency of some biological ET reactions. 8,37-39 

 

A.7   Tuning electron transfer rates by driving vibrations with external fields  

Given the importance of energy-level and coupling fluctuations in molecular ET reactions, 

it has been proposed to control these fluctuations by using external infra-red (IR) fields. 40-

44 The goal is to perturb the ET reaction rate in a mode-specific way and also to probe ET 

mechanism. 12-14,16,17 The suggested approach involves either targeting with IR existing IR-

active groups in the molecular ET system, or substituting IR-active groups in the molecule 

which could transfer their excitation energy (imparted by the IR pulse) to molecular ET-

active vibrations. Further, isotopic substitutions of IR-active groups in specific locations in 

the molecule could enable the selective perturbation of donor, bridge or acceptor vibrations. 

40-42 Due the transient effect of the IR pulse on the ET rate, a large IR-induced perturbation 

of the ET reaction yield is expected in systems with multiple reactions which compete with 

ET. 44 Indeed, many of the successful IR-perturbed ET experiments described below involve 

competing reaction systems. 
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IR-driving may enhance or reduce the ET rate by creating transient IR-perturbed molecular 

ensembles with non-equilibrium probability distributions for the ET-active mode 

coordinates (and thus, non-equilibrium probabilities for the energy-gap or coupling). The 

simplest expression for the IR-perturbed nonadiabatic rate in the case of classical mode 

excitations is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2

2

2
 ,  ,  

2
                ,  ,  .

nad IR IR IR

ET B R DA

IR IR

B DA D DA DA

k t dQ p Q t dR p Q t V Q E R

dQ V t d E E t V Q E





  

= 

=   

 

 

 (A.19) 

 (to be compared to the equilibrium rate in eq. (A.14)). The nonadiabatic rate is an average 

over Q  (promoting mode) and R  (accepting mode) of ( ),Q R − dependent golden rule ET 

rates. In contrast to the equilibrium eq. (A.14), the averaging is with respect to time-

dependent (non-equilibrium) distributions of the promoting and the accepting modes. In the 

second line of the equation the integral over the accepting mode coordinate is converted to 

an integral over the DA energy gap. Similarly, for quantum mode excitations, the simplest 

IR-perturbed nonadiabatic rate expression is  

( ) ( ) ( ) ( ) ( ) ( ) , , , ,in D D in A fi

in D fi A

nad neq IR IR nad

ET n D n A n

n n

k t p t p t k  
 

→=      
(A.20) 

(replacing the rate in eq. (A.15)). In the equations above ( )( )IR t  and ( )( )IR

ip t  denote time-

dependent (non-equilibrium) probability densities or distributions. The equations assume 

that both the accepting and the promoting modes have been targeted and driven out of 

equilibrium by IR.  

These equations indicate that the effect of IR driving on the ET rate is transient and it is 

expected to vanish sometime after the application of the IR pulse and on a timescale that is 

related to the intra-molecular vibrational energy redistribution (IVR) times of the molecule-

solvent ET system (denoted IVR ). Thus, setting as 0t =  the time right after the application 

of the IR pulse, we expect the IR-perturbed mode probability distributions to decay to the 

equilibrium distributions for IVRt  , i.e., ( )( ) ( )IVRIR eqt
 ⎯⎯→  in eq. (A.19) (and 

( ) ( ) ( )IVRIR eq

i ip t p


⎯⎯→  in eq. (A.20)). A large IR-induced effect on the nonadiabatic ET rate 

would require that, for the time period between the application of the IR pulse and IVR ,  

( ) ( ) ( )nad IR nad eq

ET ETk t k  or 
( ) ( ) ( )nad IR nad eq

ET ETk t k .  
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The transient nature of the time-dependent IR perturbation on the ET rate suggests that 

permanent effects of the perturbation, such as changing the ET reaction yield, can be 

achieved in systems where secondary reactions compete with ET. 44 For example, ET 

systems with a single donor and multiple acceptor units connected by independent bridges, 

(AL-BL-D-BR-AR), are good candidates for using pulsed-IR excitation to change the relative 

populations and yields of (AL)-
 and (AR)-

 ET products (Fig. A.5). An isotopic substitution of 

an IR-sensitive group in one of the bridge units allows the selective IR-perturbation of one 

of the ET reactions, thus influencing the relative L/R yields. 44 An example of a related recent 

experiment is described in the following section. 

Equation (A.19) implies that the classical nonadiabatic rate may be accelerated by the IR 

excitation of an accepting mode if the resulting non-equilibrium probability density for the 

energy gap enhances the probability of D-A resonance as compared to the equilibrium 

density, i.e., 
( ) ( ) ( ) ( )0, 0,
IR eq

D DA D DAE t E t  =   =  (the opposite condition applies for a 

significant reduction of the ET rate). The excitation of promoting modes may have a 

significant effect on the Condon rate ( 2V ),  if 
( ) ( ),
IR

B V t  is sufficiently different from 

( ) ( )eq

B V  such that, for  0 IVRt   , ( )2 2 2

( ) ( ) ( )neq B eq B eq B
V V V−  is large (“neq” denotes 

the non-equilibrium ensemble average which is time-dependent).  

 

 

Figure A.5 A D moiety connected via left (L) and right (R) B units to distinct A moieties. 

Upon photo-excitation of D by UV, irreversible ET is initiated to AL and to AR 

simultaneously (with ET rates Lk  and Rk ).  The IR excitation of one B unit which trasiently 

affects the corresponding ET rate, can irreversibly affect the the  L to R reaction yield of the 

competing ET reactions and thus tune the directionality of ET.  

UV 
pump 

BR  AR 

ET rate: kR 

IR  

AL  BL  

ET rate: kL 
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Similar considerations apply for the quantum nonadiabatic rate of eq. (A.20). The IR 

excitation effects on the ET rate will be observable if the IR pulse causes large changes in 

the probabilities 
( ) ( ) ( )eq IR

i ip p t→  of those initial accepting-mode ( Dn ) or promoting-mode 

( in ) states which have significant transfer rates 
, , , ,D in A fi

nad

D n A nk  →
. The excitation of a 

quantum promoting mode may also enhance inelastic tunnelling and switch on an otherwise 

symmetry forbidden transition. In a molecule with alternative through-bridge tunnelling 

paths, 19 the isotopic substitution of an IR-sensitive group in one of the paths could be used 

to realize a which-way molecular interferometer. The IR pulse targeting this group selects 

the electron’s tunneling path by causing a path-specific vibration to exchange a quantum of 

vibrational energy with the electron traversing the path. 41-43 

However, some words of caution about oversimplified interpretations of IR-perturbation 

effects are in place. First, IR-perturbations could enhance non-Condon effects within the 

nonadiabatic regime. For example, the excitation of high frequency promoting modes could 

speed up the timescale of coupling fluctuations, 45 thus inducing the breakdown of the 

Condon approximation ([14] for a review). In this case, the equilibrium coupling correlation 

function ( )
( )

ˆ
V

eq B
C t  in eq. (A.17) should be replaced by a non-equilibrium ( )

( )

ˆ
V

neq B
C t , 

where 
( )

( )( ).... | ..... |
inin

IR

in inneq B
p t

 =  . If the  IR-induced fluctuations of  ( )
( )

ˆ
V

neq B
C t  

are of comparable timescales as the decay time of the Franck-Condon correlation function

( )
( )

ˆ
FC

eq B
C t , then the IR-perturbed rate should not be interpreted in terms of the Condon 

equation 
( ) ( )

( )

2ˆ2
nad neq

ET FC
neq B

k V = , but rather in terms of the non-equilibrium eq. 

(A.17) where ( )
( )

ˆ
V

neq B
C t  is retained inside  the time integral. 

Second, eqs (A.19) and (A.20) are often too simple to be used for the prediction or the 

interpretation of IR-perturbation effects on nonadiabatic rates. The equations assume only 

two ET-active modes (one accepting and one promoting) which are either both classical (eq. 

(A.19)) or both quantum (eq. (A.20)). In many ET systems there are several classical and 

quantum promoting and accepting modes affecting ET. Therefore, more general multi-mode 

expressions should be used which incorporate several quantum- and classical-mode ET 

channels. This means that the initial and final vibrational states in the double sum of eq. 

(A.20) should be replaced by sums over initial and final multi-mode (product) states of 

accepting and promoting vibrations; i.e., D in inn vibr →  and A fi fin vibr → , where 
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( ) ( )in D i in ji j
vibr n =    and 

( ) ( )fi A l fi ml m
vibr n =   . Further, the 

corresponding vibronic rates , ,in fi

nad

D vibr A vibrk →  in the multi-mode sum become functions of 

several classical accepting and promoting mode coordinates    ,k nR Q , i.e., 

   ( ), , ,
in fi

nad

D vibr A vibr k nk R Q→ . Thus, the overall quantum-classical nonadiabatic rate involves 

both a quantum average over initial vibronic states with probabilities 
( ) ( )in jD in vi j

p p   

(where only the probabilities of modes perturbed by IR and are non-equilibrium), and a 

classical average over the classical mode probability densities  ( )  ( ), ,D k v lR t Q t  . 

When there are several ET-active modes contributing to the energy gap and to the coupling 

fluctuations, the IR-perturbation of a few of these modes may not have a substantial effect 

on the ET rate.  

Timescales of IVR in molecules range between tens of femtoseconds to tens of picoseconds. 

Therefore, ET systems with ET times much greater than tens of picoseconds are too slow to 

be perturbed effectively by IR fields. In such systems the vibrational perturbation imparted 

by the IR pulse will be lost to the solvent by the time ET takes place. This ET-time limitation 

imposed by the IVR timescales implies that IR-perturbations of ET are likely to be large for 

fast ET reactions with transfer times ( ET ) up to tens of picoseconds. However, reactions 

with ultrafast timescales (picoseconds or less) are not in the nonadiabatic limit and the 

interpretation of IR-perturbation effects of such ultrafast ET rates should not be based on 

nonadiabatic rate theory (eqs (A.19) and (A.20) and their quantum-classical multimode 

generalizations). Instead, the more general vibronic-density-matrix approach should be used 

(eq. (A.18)), where the effect of the IR-pulse field ( ( )IR

pulseE t ) is included as a perturbation of 

the system Hamiltonian, i.e., ˆ ˆ ˆ ( )S S IRH H V t→ +  in eq. (A.17). 44 For example, for a 

perturbation of the accepting mode R , ( )ˆ ˆ( ) ( )IR

IR pulseV t R R E t= −    where ̂  is the dipole 

operator in the vibronic basis. For such ultrafast reactions the effects of the IR perturbation 

may be system specific and the ET probability can show vibronic coherences which are 

affected by the IR pulse. 44 

For systems with low tunnelling barriers (Fig. A.1), the IR perturbation may bring bridge 

electronic states to flickering resonance with donor and acceptor states. 6,30,45 In this 

situation, two-state donor-acceptor Hamiltonians as in eq. (A.1), which incorporate the effect 

of the bridge through a bridge-mediated tunnelling matrix element V , are not appropriate 

for the description of the IR-perturbed ET reaction at the ensemble level. The Hamiltonian 
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in eq. (A.1) can only describe through-bridge tunnelling ET (via off-resonant virtual bridge 

electronic states). For a D-B-A system with low-lying bridge electronic states, the IR-

perturbed ensemble will contain a sub-ensemble where the B states are resonant to D and A, 

and where ET takes place by a resonant tunnelling mechanism. For this sub-ensemble the 

transferring electron will proceed through real bridge intermediate states. This process can 

only be described by at least three-state D-B-A Hamiltonians which incorporate the B state 

intermediate on an equal footing as the D and A states. 46-51 Indeed, it has been shown that 

the IR perturbation of the bridge will have the largest effects on the donor-to-acceptor ET 

rate if the B electronic state becomes quasi-resonant to D and A. 44 It should be noted that 

much of the above discussion applies to photoinduced ultrafast ET reaction systems, where 

the vibrational excitation is not caused by an IR field but rather by the electronic absorption 

which initiates ET. The ground-to-excited electronic state transition creates non-equilibrium 

vibrational probability distributions on the excited donor energy surface. 52 

 

A.8   Experiments of IR-perturbed electron transfer  

The first experimental attempt to perturb molecular ET rates by IR pulses was a UV (pump) 

– IR (pump) –Vis (probe) experiment on an anthracene/dimethylaniline (DMA-GC-Anth) 

structure bridged by a guanosine-cytidine (GC) hydrogen-bonded pair (Fig. A.6). 16,53 

Photoexcitation of anthracene by the UV pump induces an ET reaction from DMA to the 

photo-excited anthracene on a timescale of tens of picoseconds. The experiment found that 

the IR pulse, targeted to excite the bridge hydrogen-bond vibrations, causes ET rate slowing 

of about 67% per excited molecule. Very recently, a similar UV(pump)-IR(pump)-

Vis(probe) experiment on the same molecule (targeting by IR the hydrogen bond vibrations) 

demonstrated that the reverse charge recombination reaction is accelerated by IR by 3.5-fold 

per molecule. 54 
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Figure A.6 UV(pump)–IR(pump)-Vis(probe) experiment on an anthracene/dimethylaniline 

(DMA-GC-Anth) structure bridged by a guanosine-cytidine (GC) hydrogen-bonded pair. 

Photoexcitation of anthracene by the UV pump induces an ET reaction from DMA to the 

photo-excited anthracene on a timescale of tens of picoseconds. The experiment found that 

the IR pulse exciting bridge hydrogen-bond vibrations causes the ET rate slowing about 67% 

per excited molecule. A more recent experiment showed that the IR excitation accelerates 

the recombination rate by 3.5-fold per molecule. 54 

 

A series of UV(pump)-IR(pump)-IR(probe) experiments were performed on ET D-B-A 

molecules with phenothiazine (PTZ) donors, a naphthalene monoimide (NAP) acceptor, and 

a platinum(II)-trans-acetylide bridge (Fig. A.7a). 17,55-57 In these experiments a 400nm UV-

pump was used to prepare a DB+A- charge transfer (CT) state.  This state can undergo three 

different competing reactions: DB+A- to DBA (charge-recombination), DB+A- to 3A 

(formation of a triplet excited state that is acceptor-localized), and DB+A- to 3D+BA- (forward 

ET reaction). This ET reaction takes place on ultrafast timescales (sub-picoseconds to tens 

of picoseconds). In the experiments, a narrow band IR (pump) pulse was used to excite the 

acetylide bridge -CC- stretching modes. For a PTZ-CH2 donor the result of the IR-

perturbation was 100% suppression of the DB+A- to 3D+BA- ET reaction, and a concomitant 

D B A 
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 
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T 

IR 
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increase of the DB+A- to 3A reaction yield. For PTZ and MeO-PTZ donors, the IR 

suppression of the DB+A- to 3D+BA- ET reaction was 50% and no suppression, respectively.   

 

 

Figure A.7 (a) UV(pump)-IR(pump)-IR(probe) experiments on ET molecules with 

phenothiazine (PTZ) donors, a naphthalene monoimide (NAP) acceptor, and a platinum(II)-

trans-acetylide bridge. A 400nm UV-pump prepares a DB+A- charge transfer (CT) state. 

Following the UV excitation a DB+A- to 3D+BA-  ET reaction takes place on timescales of up 

to tens of picoseconds. The IR excitation of the acetylide bridge -CC- stretching modes can 

fully suppress this reaction. (b) Experiments with fac-[ReI(CO)3(DCEB)(3-DMABN)] 

(ReEBA) complexes where 3DMABN is 3-dimethylaminobenzonitrile and DCEB is 4,4′-

(dicarboxyethyl)-2,2-bipyridine. Photo-excitation by UV creates a triplet metal-to-ligand 

charge transfer (3MLCT) excited state where the electron is localized in 3-DMABN. This 

state then converts to a triplet ligand-to-ligand charge transfer (3LLCT) state through a ~10 

picosecond ET reaction from 3-DMABN to DCEB. The IR (pump) excitation which targets 

the electron-acceptor (DCEB) ring-stretching modes accelerates the ET rate by ~28%.  

 

Another UV(pump)- IR(pump)-IR(probe) experiment used forked DL-B-A-Bis-DR ET 

systems (the subscripts L, R denote left and right) with a central acceptor ((CO2Et)2bpy) 

connected to two independent bridge-donor (acetylide-PTZ) units through a central Pt atom 

(the reverse architecture of Fig. A.5). 58 One of the -CC- units was replaced by the isotopic 

substitute -13C13C- (Bisot) such that it could be targeted independently from the other by the 
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IR pump pulse. Initial UV excitation at 400nm creates within a few picoseconds a metal-to-

ligand (Pt-to-bpy) charge transfer state (MLCT). This state can decay in approximately 10 

picoseconds to L and R charge-separated states (A--B-DL
+ and A--Bis-DR

+), following ET 

from DL and DR. After the UV excitation, the selective IR excitation of the Bisot stretching 

modes reduced the rate of A--Bis-DR
+ formation by ~70% and increased the rate of A--B-DL

+ 

formation by ~40%. Approximately the reverse behavior was seen when the other bridge (B) 

was targeted by the IR pump.  

The fourth type of ET system used for UV(pump)-IR(pump)-IR(probe) experiments  

involves fac-[ReI(CO)3(DCEB)(3-DMABN)] (ReEBA) complexes (Fig. A.7b), where 

3DMABN is 3-dimethylaminobenzonitrile and DCEB is 4,4′-(dicarboxyethyl)-2,2-

bipyridine. In these experiments 59,60 the initial state formed upon photo-excitation by UV is 

a triplet metal-to-ligand charge transfer (3MLCT) excited state where the electron is localized 

in 3-DMABN. This state then converts to a triplet ligand-to-ligand charge transfer (3LLCT) 

state through a ~10 picosecond ET reaction from 3-DMABN to DCEB. In the experiments 

the IR pump excitation targeted the electron-acceptor (DCEB) ring-stretching modes and the 

ET rate accelerated by ~28%.  

The above experiments clearly demonstrate that the mode-specific IR perturbation of an ET 

reaction can have significant effects on the reaction rate if the ET time is up to a few tens of 

picoseconds (i.e., not much greater than IVR times). The detailed interpretation of these IR-

perturbation effects can be quite challenging. For the PTZ-bridge-NAP systems in Fig. A.7, 

the authors suggest that IR excitation modifies the D-A energy gap and the D-A coupling. 

17,55,56 Recent computational studies based on a vibronic model build from ab-initio excited-

state computations indicate that the IR excitation increases the D-A coupling. 57 For the 

system in Fig. A.7b, the ET rate acceleration was interpreted using TD-DFT computations 

of the triplet excited electronic state energies as a function of the bipyridine-ring-stretching 

normal-mode coordinates (targeted by the IR excitation). These computations suggest that 

the IR excitation brings the donor and acceptor electronic states (3MLCT and 3LLCT) to near 

degeneracy. 59,60 For the case of the DMA-GC-Anth structure (Fig. A.6), the IR-induced 

deceleration of the forward ET reaction and the acceleration of the recombination reaction 

were analysed theoretically and computationally and explained in [54,61]. It was found that 

the forward reaction is near-activationless (the crossing between the D and A BO surfaces 

in Fig. A.2 is near the minimum of the D BO surface). The IR perturbation depletes 

vibrational population from the minimum of the (initial) D BO surface, which slows down 

the forward reaction since this minimum is the D-to-A crossing region. The reverse ET 
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reaction is necessarily activated and the IR perturbation, which adds vibrational energy on 

the A BO surface, increases the vibrational population at the crossing region, thus 

accelerating the reaction. 54 

 

A.9   Conclusions  

Theoretical studies of IR-pulse control of ET rates 40-44 inspired experiments on D-B-A ET 

systems which demonstrated the feasibility of ET rate modulation up to 100% by targeting 

specific bridge ET-active modes. 16,17,53-60 The ET rates in these experiments are fast (up to 

tens of picoseconds) and the magnitudes of the IR-induced modulations vary depending on 

the system. The central challenges in this field are to identify the general parameter regimes 

determining the magnitudes of the IR-perturbation effects, and to predict and simulate these 

effects for particular molecular systems and pulse sequences using the tools of computational 

quantum chemistry and molecular dynamics.  

The design of an experiment that produces a significant IR modulation of an ET rate will 

depend critically on the details of D-B-A molecular structure. Given the right molecular 

structure, a successful experiment should first be able to excite the most important ET-active 

modes, either directly by IR or indirectly (i.e., the ET-active modes should be sinks for the 

excess energy supplied to the system by the IR excitation). Second, the excess energy 

supplied to these modes should be maintained on a timescale comparable to the ET 

timescale. Third, since the vibrational perturbation is transient, a permanent effect on the ET 

reaction yield can be achieved if the ET reaction competes with other reactions. 44 

Given the above constraints, it is essential to develop computational tools that can identify 

the ET-active modes which modulate the ET energy gaps and couplings, and can also 

simulate simultaneously the pulse excitation events, the time-dependent IVR pathways 

following the excitation events, and the time-dependent ET pathways. Vibrational energy 

redistribution (and dephasing) is likely to have the most significant influence on the level of 

IR-perturbation of the ET rate. 

The mode-specific driving of ET reactions can be a very useful experimental tool for probing 

ET mechanism, with the potential of modifying the mechanism in D-B-A systems with low 

bridge energy gaps (where IR driving may switch between through-bridge hopping or 

flickering-resonance channels and through-bridge tunneling). For the IR control of ET 

reactions at the ensemble level, (rather than the single molecule level), a major obstacle is 
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the low IR absorption intensity of molecular vibrations. To augment the level of vibrational 

excitation it is possible to use surface enhanced IR absorption methods. 44 Another path 

would be to damp vibrational energy to the D-B-A system via electronic absorption by 

attaching to the system heating molecules such as azobenene. Such molecules undergo rapid 

internal conversion when excited electronically and could damp the excess vibrational 

energy to the D-B-A system. Finally, advances in producing intense psec-wide Terahertz 

(THz) pulses suggest that THz driving of ET-active modes will be possible in the near future. 

THz pulses would target low-frequency “classical” vibrations (not accessed directly by IR) 

which are often the most important in gating ET reactions. 45 

The specific research work presented in this Chapter has been published during the doctoral 

program (see ref. [61]). 
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APPENDIX B 

Energies of the many-electron basis states of the D-B-A 

systems as a function of the HOMO-LUMO exciton 

energies and of the differences between the IPs of D(A) 

and B  

 

In Chapter 5 we studied the role of bridge-state intermediates in Singlet Fission (SF) for 

donor (D) - bridge (B) - acceptor (A) systems. For this purpose, we constructed a semi-

analytical / computational framework to explore structure-function relationships for SF in 

D-B-A molecular architectures. Through this semi-analytical approach we expressed the 

energies of the basis-states used to represent the CISD Hamiltonian, as functions of the 

exciton energies of D(A) and B and of the energy difference between the ionization 

potentials ( )IPs  of D(A) and B, through the parameters ,X Y  and z , respectively (see 

approximate excitation energies on Table 5.1 and analytical exact expressions on Table 7.1), 

( ) ( ) ( ) ( )
2

D A D A D A D AH L H LX x J K − +  ,  2
B B B BH L H LY y J K − + , 

( )D A Bz IP IP= −  (B.1) 

where  

( ) ( )D A D A
x IP EA= − , B By IP EA= − . (B.2) 

Below we present 3D graphs showing this dependence for the four different reference 

molecular systems we studied (pi-stacking pentacene trimer, non-pi-stacking pentacene 

trimer, pentacene-tetracene-pentacene and NC1 molecular systems in Fig. 5.3). 
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Figure B.1 Basis States energies as a function of Y X  and z X  parameters for: (a) the pi-

stacking tri-pentacene conformation shown in Fig. 5.3a, (b) the non-pi-stacking tri-

pentacene conformation shown in Fig. 5.3b, (c) the pentacene-tetracene-pentacene 

molecular system of Fig. 5.3c, and (d) the NC1 molecular system of Fig. 5.3d.  
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