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ITepiAndn

H nopoloa dimhwyatixr epyacta exnoviinxe ota mhalold Tou dBidaxTopX0) TEOYEAU-
uatog otatioTxig Tou Turuatogc Madnuatixwy xa Ytatiotxrc tou Havemotnuiov Ko-
TEOU.

H dewpla tov otatiotix®y cuvaptioewy U éyel ewcaydel and tov W. Hoef fding
(1948). Tlohhoi epeuvntéc yerétnoay xat cuveyilouy Vo UEAETOUY TNV ACUUTTWTIXT OUY-
TEPLPOEA. TOUG OTAY AUTEG XATAOXEVALOVTOL UE AVECHPTNTEG XU LOOVOUES TOQAUTNRHOEL.
Yy mo npoogaty BBAoypapia OUWS TUpoUIdlEL HEYTAD EVOLAGEROY 1) UEAETY) AUTMDV
TWY CTATICTIXWY CUVIPTHOEWY OTAY AUTES xAUTAOKEVALOVTAL UE ECUPTNUEVES TUQUTNENOEL.
‘Eva eldog e€dptnong eivon 1 Vetiny| xou apvrtixy| cOvdeon (association), o onofeg €y ouv
ewoayVel and toug Esary et al. (1967) xou Joag-Dev and Proschan (1983) avtiototyo.

O ot6y0c g mupovoas BIATEIBNG EMXEVTIPWVETH XUPIWE OTNY AOUUTTOTIXY] CUY-
TEPLPORY. TWV GTATICTIXWY cLVapTHceEwY U mou xataoxeudlovton ye Jetnd 1 apvntixd
cuvOedeuEveg Tuyaieg uetaBintéc. T Tov oxomd auTd amodEYIOVTOL GV PEdyUaT
POV XL YENOWES EXVETINES, UEYIOTIXEG OVIGOTNTES TOU amoTEAOVUY Paoxd epyahel-
o YL TV omOOELLT) ACUUTTWTIXWY ATOTEAECUdTWY. Elodyouue tnv évvola twv reverse
demimartingales xou reverse demisubmartingales mou elvan yevixevon twv reverse
martingales xau reverse submartingales avtioTtorya, xot anodEXVOOUUE YEYIOTIXES O-
viootneg tOmou Chow xou Doob.

H otevy| olvoeon yetald martingales, demimartingales, N-demimartingales xou
TWY OTATIOTIXOY cuVapTAcEwY U anoteroly eniorg pépog tng perétng pog. To acuymtw-
TIXd amoTEAEGUATA TTOU Loy Louy yia demimartingales xou N-demimartingales urogoiv
VoL Y eNoLoTon o0y YL THY ATOOEET] VOUWY TV UEYIAWY aplUy Yo OTATIOCTIXES CUVIQ-
oeic U nou PaciCovton oe e€aptnuéveg tuyaieg YetaBAntéc Ye moludidoTtatoug deixTeg
xodidg xou yio oTaTioTég ouvapTthoe U nou PaciCovtar oe moAhamAd OetyyaToL.

Xpnowonowlue enlong aviodtnteg xot dhha anoTeEAEopaTa Tou toyvouy Yo aveldp-

TNTEC XL LOOVOUES TAUQUTNENCELC VIOl VO BoOVUE TNV amdoTUCT UETOE) TWY CTATIOTIXMV
Y U patnen Y POVUE TN nu



ouvapthoewy U mou PaciCovtan o€ aveldptnTeg xat I0OVOUES TURUTNEACELS Xal UAG Tu-
yotog petoBAnTyic mou axoloudel Ty TUTOTOMNUEVT Xavovixn xotavour|. Tpogavae To a-
TOTEAEOUATO IOV Lo VOUY Yol AVECHQTNTES XA LGOVOUES TUQUTNENOELS OEV LOYUOUY XU Yol
NV Tep{nTwoT TV eupTNUEVKY Taputneioewy. Ta arotehéouato auTtd ToTOTOVVTAL 1)
avTiooTavtar eVIEANOS Yl Vo PEAETNVEL 1) amdoTaon UETAEY TWY OTATICTIXWY CUVIOTH-
oewv U Ue aveldpTnTES Xl LOOVOUES TORUTNPNOELS X0 TWV OTATICTIXWY OLUVIRTRGEWY U
ue eCapTnuévee Tuyaieg ueTaBANTéS Tou €youy TNy (Bl xatavour. IMupoucidletar eniong
1 AOUUTTOTIXT XOYOVIXOTNTA TV CTATIOTIX®Y GLVaRTHoEwY U Ttou xataoxeudlovtal anod
VeTINd CUVDOEDEUEVES TUYAMES UETABANTES, OTWE XL 1) ATOGTUOY PETAL) TWV OTATICTIXDY
oLVaETACEWY U Tou %xataoxeudlovTon and Ui GUANOYT| LoGVOUWY Xt eV TIXE GUVOEDE-
UEVGWY Tuyaiwy UeTaBANnTOY and wa tuyaio UETUBANTH Tou oxOhOLUEL TNY TUTOTOUEVT
AAVOVIXT| XATAVOUT YENOWOTOIWVTAS T Yetpwxy| Zolotarev. To armotehéoyata autd o-
TOTENOVOY %eVTEX Oploxd VewpruaTo Ta 0Tolo UEAETOVTOL UE UL EVUARAXTIXY TEYVIXT)
xon ouyxexptuéva e tn Pordeia petpxwy anootdcewy. Ilupdhinio nopouctdlovton av-
TloToL o AMOTEAEOUATA Yol Yot JAAT) CUYYEVIXT] XAUTNY0plol OTATIOTIXMY CUVAPTHCEWY, TIG
otatiotiés ouvapthoe V, (V-statistics).

Téhog egapudleton 1 teyvint| emavaderypatoiniog Jackknife oe otatioTinés ouvae-
toeic U nou Bacilovton oe Yetind 1) apvnTind cuvOedeUévee Tuyaieg UETABANTES UE OO0
TNV EXTUNOY TOL TUTIXOD CQAINUATOG XL TNG HEROANYIUG TNG EXTATELAS TNE OLaoT0EdS

TWV GUVIPTAGEWY AUTOV.
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Abstract

The basic theory of U-statistics was developed by W. Hoeffding (1948). U-statistics
are generalized averages and include among others the sample mean and the unbiased
sample variance as special cases. Detailed expositions of the general topic may be
found in Denker (1985), Lee (1990). See also Fraser (1957) Chapter 6, Serfling (1980)
Chapter 5, and Lehmann (1999) Chapter 6. The closely related class of V-statistics
has been introduced by von Mises (1947).

U-statistics were originally defined on i.i.d. observations and many authors study
their asymptotic behavior. However, many authors have also studied U-statistics based
on dependent observations since the theoretical results which are valid for U-statistics
based on i.i.d. random variables cannot automatically be applied to the case of U-
statistics based on dependent random variables. One type of dependence is association
(negative or positive). Positively associated, or simply associated random variables
were introduced by Esary et al. (1967) and negative association was introduced by
Joag-Dev and Proschan (1983).

Our study is mainly focused on the asymptotic behavior of U-statistics based on
associated and negatively associated random variables. Although some results have
been established, the conditions imposed are restrictive and in some cases unrealistic.
Our aim is to study the asymptotic behavior under conditions which are applicable and
verifiable. Among our objectives in this thesis, is to prove moment and exponential
inequalities for this type of U-statistics. We introduce the concept of a reverse demi-
martingale and a reverse demisubmartingale as a generalization of the notion of reverse
(backward) martingales and reverse submartingales, and we establish Chow and Doob
type maximal inequalities.

The close connection between martingales, demimartingales, N-demimartingales
and U-statistics is fully exploited. The asymptotic results derived from demimartin-

gales and N-demimartingales can be applied to U-statistics, to obtain strong laws for

il



U-statistics based on multidimensionally indexed associated random variables and mul-
tisample U-statistics on collections of associated random variables that are introduced
for the first time, as a natural generalization of one sample U-statistics.

We also use tools such as inequalities and results valid for U-statistics on i.i.d. ob-
servations, to find the distance between U-statistics on i.i.d. observations and a normal
random variable. It is obvious that results proved for the classical setup (i.e. for i.i.d.
observations) which are not applicable for the case of associated observations are mod-
ified or replaced altogether by results on associated random variables. The distance
between U-statistics on i.i.d. observations and U-statistics on identically distributed
associated random variables having the same distribution is also investigated and ex-
ploited. Asymptotic normality for U-statistics based on associated random variables
is also presented. We also investigate the distance between a U-statistic based on a
collection of identically distributed negatively associated random variables and a nor-
mal random variable using the Zolotarev’s ideal metric. Those results also provide a
central limit theorem for U-statistics with an alternative technique using probability
metrics. Finally, it is natural that we also investigate another related class of statistics,
the von Mises statistics or V-statistics. Corresponding results are also proved for this
type of statistics.

Finally, jackknifing U-statistics based on associated and negatively associated ran-

dom variables is also part of our study.

iv



Acknowledgments

First and foremost, I should like to express my heartfelt thanks to Prof. Tasos
Christofides, for his guidance, encouragement and support during the running of my
PhD study. The meetings, conversations and his feedback were vital in inspiring me
to complete this thesis.

I would also like to thank the members of my committee: Prof. Fazekas Istvan,
Prof. Rita Giuliano, Associate Prof. Anastassia Baxevani and Assistant Prof. Sergios
Agapiou for their careful reading of this thesis and their valuable comments.

Moreover, I would like to express my gratitude to my family and friends whose

support has been an important contribution in finishing this work.



Contents

ITepiAndn i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Literature review and outline of the thesis . . . . . ... ... ... .. 1

1.2 Associated and negatively associated random variables . . . . . . . .. 5)

1.3 Demimartingales and N-demimartingales . . . . . . . .. ... ... .. 8
1.4 U-statistics based on associated and negatively associated random vari-

ables . . . . L 9

1.5 Hoeffding decomposition of a U-statistic based on a kernel of degree two 12

1.6 Demimartingale and N-demimartingale approach . . . . .. ... ... 16
1.7 Probability metrics and distances . . . . . . ... ..o 17
1.8 Functions of bounded variation . . . . .. ... ... ... 19

2 Inequalities for U-statistics based on associated and negatively asso-
ciated random variables 22
2.1 Moment inequalities . . . . . . . . ... L 22

2.1.1 Moment inequalities for U-statistics based on negatively associ-
ated random variables . . . . ... ..o 23

2.1.2  Moment inequalities for V-statistics based on negatively associ-
ated random variables . . . . .. ... o000 27

2.2 An exponential inequality for U-Statistics based on negatively associated
random variables . . . . .. ..o 30

2.3 Reverse Demimartingales and N-demimartingales . . . . . .. ... .. 33

vi



3 Strong convergence for U-statistics based on associated random vari-

2.3.1 Chow and Doob type maximal inequality for reverse demisub-

martingales . . . . ...

35

2.3.2 Maximal inequalities for functions of Reverse Demisubmartingales 41

2.3.3 Doob type maximal inequality for reverse Demimartingales . . .

2.3.4 U-statistics and reverse Demimartingales . . . . . . . . . .. ..

ables

3.1 Strong law for one sample U-statistics based on associated random vari-
ables . . . L

3.2 U-statistics based on associated multidimensionally indexed random vari-
ables . . ..
3.2.1 A strong law in the case of nondecreasing kernels . . . . . . ..
3.2.2 A strong law in the case of kernels of bounded variation . . . . .

3.3 Multi-sample U-statistics on collections of associated random variables

3.3.1 A strong law in the case of nondecreasing kernels . . . . . . ..

4 Stochastic orders and distances for U-statistics

4.1

4.2

4.3

4.4

Distance between U,, based on associated random variables and U based
on ii.d. random variables . . . ... ... L oL
4.1.1 Stochastic ordering of random variables . . . . . . .. .. .. ..
4.1.2 Distance between U, and U . . . . . . . ... ... ... ...

Asymptotic normality for U-statistics based on associated random vari-

4.2.1 Definitions and related results . . . . . . ... .. ... ... ..
4.2.2  Asymptotic normality . . . .. ... 000
Distance between a U-statistic based on i.i.d. observations and a normal
random variable . . . . .. ... L
4.3.1 Definitions and notation . . . . . ... ... ...
4.3.2 Distance between a U-statistic and a normal random variable

4.3.3 Distance between a V-statistic and a normal random variable

Distance between a U-statistic based on negatively associated random
variables and a normal random variable . . . . . . . ... ... ... ..

4.4.1 Distance between a U-statistic and a normal random variable

vii

46
48

50



Chapter 0 Section 0.0

4.4.2 Distance between a V-statistic and a normal random variable . 93

4.4.3 Statistical Applications . . . . . . .. ... 96

5 Jackknifing U-statistics based on associated and negatively associated

random variables 99
5.1 Jackknifing U-statistics based on associated random variables. . . . . . 99
5.1.1 The jackknife estimate of variance for U-statistics . . . . . . .. 99
5.1.2 The bias of the jackknife estimate of the variance . . . . . . .. 100
5.1.3 Jackknifing functions of U-statistics . . . . . . . . ... ... .. 106

5.2 Jackknifing U-statistics based on negatively associated random variables 108

6 Future work 113

6.1 Distance between a U-statistics based on associated random variables

and a normal random variables . . . . . . ... ... 113

6.2 U-statistics based on F-associated random variables . . . . . . . . . .. 114
6.3 U-statistics based on m-negatively associated random variables . . . . . 116
References 118

viil



Chapter 1

Introduction

1.1 Literature review and outline of the thesis

According to Lee (1990) the class of U-statistics is important for at least three
reasons. First, a great many statistics in common use are in fact members of this
class, so that the theory provides a unified paradigm for the study of the distributional
properties of many well-known test statistics and estimators, particularly in the field
of non-parametric statistics. Second, the simple structure of U-statistics makes them
ideal for studying general estimation processes such as bootstrapping and jackknifing,
and for generalizing those parts of asymptotic theory concerned with the behavior of
the sequence of sample means. Third, application of the theory often generates new
statistics useful in particular estimation problems.

U-statistics were originally defined on i.i.d. observations. However, many authors
have studied U-statistics based on dependent observations. Among them Sen (1963),
Nandi and Sen (1963), Serfling (1968), Denker and Keller (1983) and Becker and Utev
(2001). One notion of dependence is the concept of association. Since independent ran-
dom variables are associated, the class of U-statistics introduced by Hoeffding (1948)
is included as a special case in the class of U-statistics constructed on associated ran-
dom variables. Since many of the theoretical results which are valid for Hoeffding’s
(1948) U-statistics depend on the assumption of independence, the theory known can-
not automatically be applied to the case of U-statistics based on associated random
variables.

A few authors have studied the limiting behavior of U-statistics based on associ-

ated observations. Dewan and Prakasa Rao (2001) established a central limit theorem



Chapter 1 Section 1.1

for U-statistics based on stationary associated random variables using an orthogonal
expansion for the underlying kernel. Dewan and Prakasa Rao (2002) and its corri-
gendum Dewan and Prakasa Rao (2015) give a central limit theorem for U-statistics
using Hoeffding’s decomposition with continuous component-wise monotonic kernels
of degree two. Furthermore, Christofides (2004) studied this class of U-statistics in
a different way, using the concept of demimartingales. He has shown the connection
between one sample U-statistics and demimartingales and also has proved a strong
law of large numbers for U-statistics based on associated random variables in the case
where the kernel of the statistic belongs to a large family of functions called kernels
of bounded variation. Garg and Dewan (2015) obtained the limiting distribution of
U-statistics based on kernels of bounded Hardy-Krause variation when the underlying
sample consists of stationary associated observations. Continuing with the investiga-
tions, Garg and Dewan (2018) discussed a central limit theorem for U-statistics based
on associated random variables on differentiable kernels of degree two or higher.

Some other authors have studied the limiting behavior of U-statistics based on neg-
atively associated random variables. Huang and Zhang (2006) studied the asymptotic
normality of those U-statistics, when the U-statistic is degenerate or non-degenerate.
Budsaba et al. (2009) established the Marcinkiewicz-Zygmund type strong laws of large
numbers for certain class of multilinear U-statistics based also on negatively associated
random variables.

Our study mainly focuses on the asymptotic behavior of U-statistics based on ob-
servations which are dependent and specifically on observations which are associated
or negatively associated. Also we investigate U-statistics based on multidimension-
ally indexed associated random variables and multisample U-statistics on collections
of associated random variables that are introduced for the first time, as a natural gen-
eralization of one sample U-statistics. Jackknifing U-statistics based on associated and
negatively associated random variables is also part of our study. Finally, it is natural
that we also investigate another related class of statistics, the von Mises statistics or
V-statistics.

This thesis is organized as follows. In Chapter 1 we present the necessary literature
review, the definitions and some auxiliary results of associated and negatively associ-
ated random variables with some properties included. The concept of demimartingales,
N-demimartingales are also presented and we define one sample U-statistics with asso-

ciated and negatively associated random variables.
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In Chapter 2, we discuss some inequalities for U-statistics based on associated
and negatively associated random variables. Generally, in probability theory, moment
and exponential inequalities play an important role in various proofs of limit theo-
rems. In particular they provide a measure of convergence rate for the strong law
of large numbers. Moment inequalities for sums of associated random variables were
studied by Birkel (1988) and Oliveira (2012). Exponential inequalities for negatively
associated random variables were obtained by Kim and Kim (2007), Nooghabi and
Azarnoosh (2009), Xing et al. (2009), Sung (2009), Xing and Shanchao (2010). The
chapter is organized as follows. In Section 2.1 we establish moment inequalities for
U-statistics and V-statistics based on negatively associated random variables. In Sec-
tion 2.2 we present an exponential bound for U-statistics based on the same type of
random variables. Wang and Hu (2009) generalized the results of Christofides (2000)
for demimartingales and demisubmartingales. In Section 2.3 we introduce the con-
cept of a reverse demimartingale and a reverse demisubmartingale as a generalization
of the notion of reverse (backward) martingales and reverse submartingales. Chow
(1960) proved a maximal inequality for submartingales. Christofides (2000) showed
that Chow’s inequality is valid for the more general glass of demisubmartingales. In
this chapter we give a Chow type maximal inequality for reverse demisubmartingales
and we establish a Doob’s maximal inequality for reverse demisubmartingales. Finally,
we show the connection between U-statistics based on associated random variables and
reverse demimartingales and we give some examples.

Christofides (2004) established a strong law of large numbers for U-statistics based
on associated random variables. In Chapter 3 we introduced the definition of U-
statistics on associated multidimensionally indexed random variables and multisample
U-statistics on collections of associated random variables. We focus on their connec-
tion with multidimensionally indexed demimartingales, and we establish strong laws
for this type of U-statistics.

Probability metrics play an important role in asymptotic statistics. Generally
speaking, a probability metric is a functional that measures the distance between two
random quantities and are very useful in investigating the asymptotic behavior of a
statistical function or estimator. The metric approach to problems on the accuracy
of approximations of distributions appeared in the theory of probability in the mid
1930s. In Chapter 4, we use some metrics that are commonly found in probability and

statistics. One useful metric utilized in this paper is the so called Zolotarev’s ideal
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metric (Zolotarev (1983)). In Section 4.1, we give the distance between a U-statistic
U,, based on associated random variables and a U-statistic U based on i.i.d. random
variables under Zolotarev’s ideal metric. Asymptotic normality for U-statistics based
on associated random variables is also presented in Section 4.2, with an alternative
way to prove asymptotic normality for this type of U-statistics to the approach of
Garg and Dewan (2015). We also investigate the distance between a U-statistic based
on a collection of independent identically distributed random variables with a distri-
bution function F', and a normal random variable using the Zolotarev’s ideal metric.
Sharakhmetov (2004) proved limit theorems for U-statistics using the mean metric x;.
In Section 4.3, based on Sharakhmetov (2004) we improve his results using a higher
order metric, the Zolotarev’s ideal metric. It is worth mentioning that limit theo-
rems for U-statistics are usually considered for the uniform (Kolmogorov) metric (see
Serfling (1980) or Korolyuk and Borovskikh (1989)). The rate of convergence in the
central limit theorem in the form of a uniform Berry-Esseen bound for U-statistics has
been investigated among others by Filippova (1962), Grams and Serfling (1973), Bickel
(1974), Chan and Wierman (1977), Callaert and Janssen (1978), van Zwet (1984) and
Friedrich (1989). Our goal is to depart from the approach of a uniform Berry-Esseen
bound for U-statistics and provide an alternative approach for the distance between a
U-statistic and a normal random variable. This result is used to establish a “central
limit theorem” for U-statistics. Corresponding results are also investigated for von
Mises statistics. Finally in Section 4.3 we discuss an alternative way to prove central
limit theorems for U-statistics based on dependent random variables to the approach
of Garg and Dewan (2015, 2018) and Huang and Zhang (2006), using Zolotarev’s ideal
metric.

In Chapter 5 we apply the jackknife technique on U-statistics based on associ-
ated and negatively associated random variables. The jackknife is a technique used to
estimate the variance and bias of a large population. This resampling method was origi-
nally proposed by Quenouille (1949) as a method of reducing the bias of an estimator of
a serial correlation coefficient. The same author expanded the technique in Quenouille
(1956) and explored its general bias reduction properties in an infinite-population con-
text. Later, the technique was refined and given its current name by Tukey (1958).
Tukey (1958) described its use in constructing confidence limits for a large class of
estimators. In the case of U-statistics, this concept has been studied by few authors

in the past. In particular, the problem of estimating the standard error of U-statistics

4
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was first considered by Arvesen (1969) although an equivalent formulation appears in
Sen (1960). Majumdar and Sen (1978) studied the invariance principles for jackknif-
ing U-statistics for finite population sampling. Krewski (1978) applied the jackknifing
technique on U-statistics in finite populations. Yamato, Toda and Nomachi (2007) in-
vestigated the jackknifing method on a convex combination of one-sample U-statistics.
Chapter 5 is organized in two sections. In Section 5.1 we jackknife U-statistics based
on associated random variables and in Section 5.2 we jackknife U-statistics based on
negatively associated random variables.

Finally, in Chapter 6 we discuss our future research plan which can be initiated

based on the results presented in this thesis.

1.2 Associated and negatively associated random

variables

The basic concepts of association, U-statistics and demimartingales are crucial for

our investigation. We briefly introduce each one and offer some elementary examples.

Positively associated, or simply associated random variables are of considerable
interest in reliability theory, percolation theory and statistical mechanics. For a review
of several probabilistic and statistical inferential results for associated sequences, see
for example Newman (1984), Cox and Grimmett (1984), Birkel (1988), Birkel (1989),
Roussas (1993), Matula (1998), Roussas (1999) and Dewan and Prakasa Rao (2001).

All random variables appearing in this thesis are defined on a probability space

(©,A,P). The definition of associated random variables is given below.

Definition 1.2.1. Let {X;,i > 1} be a sequence of random variables. FEvery finite
collection { X1, Xo, ..., X, } is said to be associated if for any real valued, coordinatewise

nondecreasing functions f,qg: R™ — R, we have
Ccov [f (Xl, XQ, vy Xn) , g (Xl, X27 ey Xn)] Z 0

whenever the covariance is defined. An infinite collection is associated if every finite

subcollection is associated.

A weaker concept of association is presented in the following definition.
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Definition 1.2.2. Let {X;,i > 1} be a sequence of random variables. A finite collection
{X1, X, ..., X,, } is said to be weakly associated if for any nonempty disjoint subsets A
and B of {1,...,n} and for any real valued, coordinatewise nondecreasing functions

f:RHA R and g : RIBI = R, where |A| is the cardinality of A, we have
cov|f (XiieA),g(X;,7€B)>0.

An infinite collection is weakly associated if every finite subcollection is weakly associ-

ated.

Associated random variables were introduced by Esary et al. (1967). Some prop-

erties of association are the following:

e Any subset of associated random variables is a set of associated random variables.

If two sets of associated random variables are independent of one another, then

their union is a set of associated random variables.

The set consisting of a single random variable is associated.

Nondecreasing functions of associated random variables are associated.

Independent random variables are associated.

The covariance structure of an associated sequence {X;,i > 1} presented below,
plays a significant role in studying the probabilistic properties of the associated se-

quence.

Notation 1.2.3. (Oliveira (2012), p. 41). Let {X;,i € N}, be a sequence of random
variables. Denote

u(n) = sup Z cov (X, X)), n>0.
R gili—klzn

Remark 1.2.4. Notice that if we assume the random variables to be stationary, then

u(n) =2 Z cov (X1,X;), n>0.

j=n+1

One can recognize this expression as the asymptotic variance in central limit theorems

for dependent variables if we choose n = 0.
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Birkel (1988) observed that moment bounds for partial sums of associated sequences

also depend on the rate of decrease of u(n).

Proposition 1.2.5. (Birkel (1988)). Let {X;,j € N}, be a sequence of associated

random variables satisfying E(X;) = 0 for every j and

sup E | X" < 0o for some r >2, § > 0.
jeN

Assume

(r=2)(r+8))
u(n) =0 (n_ e ) :

Then there is a constant B not depending on n such that for alln € N

n+m r
sup £ Z X; < Bnz.
m>0 .

j=m+1

The definition of negatively associated random variables is given below.

Definition 1.2.6. Let { X;,i > 1} be a sequence of random variables. A finite collection
{X1, Xo, ..., X,,} is said to be negatively associated (NA) if for any nonempty disjoint
subsets A and B of {1,...,n} and for any real valued, coordinatewise nondecreasing
bounded functions f : R4 — R and g : RIBI — R, where |A| is the cardinality of A,
we have

cov|f (XiieA),g(X;,7€eB)]<0.

An infinite collection is negatively associated if every finite subcollection is negatively

associated.

Negative association was introduced by Joag-Dev and Proschan (1983). Some prop-

erties of negatively associated random variables are the following.

e A subset of two or more NA random variables is a subset of NA random variables.
e A set of independent random variables is a set of NA random variables.

e Increasing functions defined on disjoint subsets of a set of NA random variables

are NA.

e The union of independent sets of NA random variables is a set of NA random

variables.
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We present now some important moment bounds for sums of negatively associated

random variables.

Proposition 1.2.7. (Shao (2000)). Let p > 1, {X;, 1 < i < n} be a collection of
negatively associated mean zero random variables with E|X;|P < oo for every 1 <i < mn,
and let {X}, 1 <i <n} be a collection of independent random variables such that X;
and X have the same distribution for each 1 <1i <n. Then

p
<E

p

E

>
i=1

>
=1

Proposition 1.2.8. (Shao (2000)). Let {X;, 1 <i <n} be a collection of negatively
associated mean zero random variables with E|X;|P? < oo for every 1 < i < n and

1<p<2 Then

p n
E <27y EIXP.
=1

>ox
i=1

Proposition 1.2.9. (Su et al. (1997)). Let {X;, 1 < i < n} be a collection of
negatively associated mean zero random variables and E|X;|P < oo, fori=1,...,n and

for p > 2. Then there exists a positive constant C, which only depends on p such that

p n
E <GP Y E|XP,
=1

>
i=1

where C,, = max {p?,p'*2e? B(2,2)} with B(a,b) = fol 27711 — x)ldx.

1.3 Demimartingales and N-demimartingales

Relevant to the notion of positively associated random variables is the notion of

demimartingales. Below we give the definition.

Definition 1.3.1. Let S;, Ss, ... be an L' sequence of random variables. Assume that
forj=1,2,..
E{(Sjt1—S5;) f(51,52,....,9)} >0

for all coordinatewise mnondecreasing functions f such that the expectation is defined.
Then {S; }jzl 15 called a demimartingale. If in addition the function fis assumed to be

nonnegative, the sequence {Sj}j>1 1s called a demisubmartingale.
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One can easily verify that the partial sum of mean zero positively associated random
variables is a demimartingale. It is worth mentioning that a martingale with the natural
choice of g-algebras is a demimartingale. Furthermore, it can also be verified that a

submartingale (with the natural choice of o-algebras) is a demisubmartingale.

Motivated by the definition of a demimartingale, the idea of a similar generalization
for negatively associated random variables leads to the concept of the so-called N-

demimartingales and N-demisupermartingales. The definition is as follows.

Definition 1.3.2. Let S;, Ss, ... be an L' sequence of random variables. Assume that
forj =12, ..
E{(Sjt1—5;) f(51,5,...,5)} <0

for all coordinatewise nondecreasing functions f whenever the expectation is defined.
Then the sequence {Sj}j>1 is called an N-demimartingale. If the inequality holds for
18

nonnegative coordinatewise nondecreasing functions f, then the sequence {Sj}j21

called an N-demisupermartingale.

It is trivial to verify that the partial sum of mean zero negatively associated ran-
dom variables is an N-demimartingale. It is also worth mentioning that a martingale
with the natural choice of g-algebras is an N-demimartingale. Furthermore, it can
be verified that a supermartingale (with the natural choice of o-algebras) is an N-

demisupermartingale.

Newman and Wright (1982) introduced the concept of a demimartingale and a
demisubmartingale as a generalization of martingales and submartingales respectively.
For a review of some probabilistic results see Christofides (2000), Wang (2004), Wang et
al. (2009, 2010) and Prakasa Rao (2012). The notion of N-demimartingales was intro-
duced later by Christofides (2003). Various results and examples of N-demimartingales
and N-demisupermartingales can be found in Christofides (2003), Prakasa Rao (2004,
2007), Hadjikyriakou (2010) and Wang et al. (2011).

1.4 U-statistics based on associated and negatively
associated random variables

U-statistics were introduced by Hoeffding (1948) following an idea of Halmos (1946).

They are generalized averages containing some classical statistics as special cases such

9
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as the sample mean and the sample variance. In what follows we give the definition
of U-statistics defined not on i.i.d. random variables as in the original construction of

Hoeffding but on associated random variables.

Definition 1.4.1. Let { X, Xo, ..., X,,} be a collection of identically distributed associ-
ated (or negatively associated) random variables. In a large class of problems, param-
eters to be estimated are of the form ¥ = E [h (X4, X2, ..., X;n)| where m is a positive
integer m < n and h is a symmetric mapping from R™ to R called a “kernel”. An

unbiased estimator of U is

—1
n
U, = S WX, X, Xi
(m) ( 1 2 m)

1<i) <ip<-<im<n

where Zl<i1<i2<~~<im<n denotes summation over all (:1) combinations of the m distinct
elements {iy, 12, ...,0,m} from {1,...,n}. The estimator U, is called a U-statistic based

on the kernel h and the given observations.

Some closely related statistics are the V-statistics. A V-statistic (von Mises (1947))

based on the symmetric kernel h of degree m is defined by

Vo= n_mi zn: h( Xy, Xy ooy X5, -

i1=1 im=1
The next proposition shows the asymptotic connection beetween U and V-statistics.

Proposition 1.4.2. (Prakasa Rao (2012), p. 180). Let {X,,n > 1} be a stationary
associated sequence. Let U, and V, be the U-statistic and the V -statistic respectively
based on these observations and on a symmetric kernel h of degree 2. Assume that

h (X1, X5) is monotonic in X1. Furthermore, suppose that
E [|h(X1,X2)|’“+5 <00 for r>2 48>0,

and
2 Z cov (h (X1, X2), h (Xaj-1, X2;)) = O (n’%) .
j=n+1

Then

T

E|Un|T:O(n_§), n — 0o,

10
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and

EU,—V,["=0(n"%), n— oo.

Suppose that { X7, Xs, ..., X,,} is a collection of associated (or negatively associated)
random variables identically distributed with distribution function F'. Below we present

some examples of U-statistics.

Example 1.4.3. If m = 1, U,, is simply the sample mean. Consider the estimation
of ¥ = pu™, where p = E(X;) and m is a positive integer. Using h (1, X, ..., xy) =

X1Tg - - Ty, we obtain the following U-statistic as an unbiased estimator of 9 = pu™:

-1
n

1<t << <tm<n
Example 1.4.4. Consider the estimation of 9 = 0> = Var (X;). Since
o? = [Var(X,) + Var(X,)]/2 = BE[(X1 — X»)?/2],

we obtain the following U-statistic with kernel h(x1,zy) = (11 — 22)%/2:

_ 2 (Xi_Xj)Z_ 1 - 2 w2 | _ @2
Un—n(n—l) Z 2 T n—1 ilei nXT) =5

1<i<j<n

which is the sample variance.

Example 1.4.5. We obtain the following U-statistic with kernel h(x1) = Lz, <4 where

Iy is the indicator function:

-1 n n
n 1 .
0= (1) 200 =t = F
which is the empirical distribution function.

Example 1.4.6. In some cases, we would like to estimate 9 = E|X1 — X5|, a measure
of concentration. Using the kernel h(xy,x2) = |x1 — 23|, we obtain the following U-

statistic as an unbiased estimator of 9 = E|X; — Xy:

2
= X; - X;

1<i<j<n

11
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which is known as Gini’s mean difference. This statistic has a number of applications

in studying the income of human populations.

Example 1.4.7. Let ) = P(X14+X, < 0). Using the kernel h(z1,x2) = Lo 0)(x1+22),

we obtain the following U-statistic:

2
U,=——— Z ]I(_Oop}(Xi + Xj)

n(n —1) 1<i<j<n

which 1s known as the one-sample Wilcoxon statistic.

1.5 Hoeffding decomposition of a U-statistic based
on a kernel of degree two

The Hoeffding decomposition was introduced by Hoeffding (1961). This result
is very useful in providing asymptotic results for U-statistics. Next we present the

Hoeffding decomposition of a U-statistic based on a kernel of degree two.

Let {X,, n > 1} be a sequence of identically distributed associated or negatively

associated random variables. Define the U-statistic of dimension two by

Un:(;’)_l Y h(X, X)

1<ii<ia<n

where h is a real-valued function symmetric in its arguments. Furthermore, the von

Mises statistic V,, of dimension two is defined by

Vn:%ZZh(Xi,Xj).

i=1 j=1
One can express V,, in terms of U, in the form

v, n—1

1 n
Un+ﬁ;h(Xi,Xi).

- n
Let

o= [ "~ / " ha y)dF () dF ().

[e.9] [e.9]

12
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“+oo

hy (1) = Elh (21, Xs)] = / h(xy,z2) dF(xs),

—0o0

h(l) ($1) = hl (.Z‘l) —0
and

h(2) (231,372) =h (l’l, .232) — hl (331) — hl (l’g) + 9

Then, the Hoeffding decomposition (H-decomposition) for U, is given by (see Lee,
1990)
U,=0+20" + H?,

where H,(Lj ) is the U-statistic of degree j based on the kernel A9, j = 1,2, that is,

1 n
HY = =N a1 (X,) and HP = 2 (X5, Xi,) -

1<i1<i2<n

The well-known H-decomposition is described in Hoeffding (1961). The importance
of this decomposition is that a U-statistic can be expressed as a sum of two new
uncorrelated U-statistics. To simplify our calculation let also E(h (X1, X5)) = 0, in
short, £(h) = 0. Using the Hoeffding decomposition we can write

e LSt S e, s
201 n2oy n2(n —1)oy 1<i<j<n

where 07 = Var[h; (X;)] < oco. A similar Hoeffding decomposition for a von Mises

statistic of dimension two is given by

1 < 2(n — 1) < 2
Va= 32 h(XX)+ =05 (X + 5 3 WX X)),
i=1 i=1 1<i<j<n
and thus
v, R RS
(A (X0 X0) + e > A (X) S P (X, X))
20-1 2”201 i=1 nzo; i=1 n o1 1<i<j<n

We now present the Hoeffding-decomposition for some U-statistics. Let {X,,, n > 1}
be a sequence of identically distributed associated or negatively associated random vari-

ables with F(X;) = pu1, E(X}) = po and Var(X;) =

13
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Example 1.5.1. (Estimator of second moment). Consider the estimation of

0 = E(X?) = 0%+ u? U, is based on the kernels

h(l’l,xz) = X172,
W (21) = pay — (0° + 1),

h(z)(flfl,l‘g) = T1To — ,Le(xl + 56’2) + (0'2 + M2).

Example 1.5.2. (Estimator of variance). Consider the estimation of

0 =Var(X,) = c% U, is based on the kernels

h($17$2) = 5(1’1 - $2)27
(1) 1, L 2
h (1) 25931—#9514'5(# —0%),

h(Q)(._'lfl,.Ig) = p(zy + 29) — 2129 — 2.

Example 1.5.3. (Estimator of third central moment). Consider the estimation of the

third central moment 0 = E(X, — u1)®. Then

n

U, = (TL — 1)<7L — 2) Z(Xz - Xn) > (3) Z h(XiNXiw i3>

i=1 1<i1<i9<i3<n

1s based on the kernels

S S 3 r3(xy + x3) + 25 (71 + 73) + T5(T1 + T2)

h(xy, g, 23) = + 221 X903,

3 2
213 + 23
h(l)(xl) = % — M2,
WO (21, 25) = pz +at a3 wimy + afwy + pa(2 + 1)
1,42 3 5 .

where E(X?) = py and E(X3}) = us, if we assume that E(X;) = 0.

Example 1.5.4. (Wilcoxon’s one sample rank statistic). Recall Wilcozon’s one sample
test, which is used to test if a distribution F' is symmetric about zero. Let

¥ = P(X1 + X3 > 0). Using the kernel h(x1,x2) = Lz, 12,50y, we obtain the following
U-statistic:

A 2
Y= —- Tix.ox.
n(n—1) Z {X;+X;>0}

1<i<j<n

which is known as the one-sample Wilcozon statistic. The Hoeffding-decomposition for

14
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V is based on kernels

h’(xla LUQ) == ]I{J:1+$2>0}7
hi(z1) = Ellz 4 x.50)) = 1 — P(Xq < —1y),
h(l)(l'l) =1- P(Xl S —l‘l) - 19,

h(2) (Il,xg) = h (.171, .1’2) — ]’Ll ([El) — hl (.172) + 19

Example 1.5.5. (Estimator Gini’s mean difference). Gini’s mean difference is an
index that measures the variability for observations from a distribution F. Assume that
we have a finite population with N elements and a sample with n < N observations is

drawn without replacement. An unbiased estimator of

o / |z — y|dF()dF(y),

1s the U-statistic

-1
n

1<i<j<n

We rewrite U, in the form
n\ " —
U, = (2> ;(23 —n—1)Xj.,,

where X1, < ... < X,., are the order statistics of the observations of the sample.

Denote a; = Qi&N and A; = X1 —X; with 1 <1 < N—1. The Hoeffding decomposition

of Uy, 1s
Up=0+Y h(Xe)+ Y ha (X, X))
k=1 1<k<I<n
with Nl
2 N 7
hi (Xy) = ———— Iiisp — — | a;\; 1<k<N
1( k) nN—2Z,:1 ({z>k} N)az 13 fO?“ _k_
4 N-1
ho (Xk, X)) = ————= D (1) Ay, 1<kE<I<N
2 (X, Xi) n(n—1) 121 ko (4) Jor1<k<I<
where

15
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i(ti —1)/A, if 1<i<k

Dry(i) =9 —(i—1)(N—i—1)/A, if k<i<I

(N—i—1)(N—d)/A, if I<i<k

with A = (N — 1)(N — 2).

1.6 Demimartingale and N-demimartingale approach

Classical U-statistics based on independent random variables can be expressed in
terms of martingales. This follows from the H-decomposition that we described in
Section 1.5. In the case of U-statistics which are constructed using a collection of
associated random variables this result is not true. However, for a special class of
kernels, a U-statistic can be expressed in terms of a demimartingale as the following

result shows.

Proposition 1.6.1. (Christofides (2004)). Let U, be a U-statistic based on associated
random variables and on the kernel h. Assume that h is componentwise nondecreasing

and E(h) = 0. Then {S, = (")U,, n > m} is a demimartingale.

Proof. We can write

Sn—‘,—l —Sn — Z h<Xi17-“aXim) - Z h(Xila“'7Xim)

1<y < <im<n+1 1<y < <im<n

- Z h (Xh’ s Xim—1 ) Xn+1) .

1<i1 <+ <im-1<n

Then for f componentwise nondecreasing function

—E > h (Xiys eoos X s Xo1) f(Sms ooy Sn)

1<i1<-<tm-1<n

- Z E{h (Xi17"-7Xim—17Xn+1) f(Sm77Sn)}

1<i1 < <tm-1<n

— > E{h (Xiys ooy Xipy 13 Xo1) 9(X1s e, X))

1<y <-<im_1<n

>0,

16
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where the function ¢ defined as

g(x1, ey ) = f(R(21, ooy ),

Z ATy ey Ty )y eee Z h(zip, ..., %5,,))

1< < <im<m+1 1< < <im<n

is componentwise nondecreasing since h, f are componentwise nondecreasing and the
last inequality follows from the nondecreasingness of ¢g and the fact that {X;};>1 is a

sequence of associated random variables. W

The following proposition from Prakasa Rao (2012) shows that a U-statistic based
on negatively associated random variables and having a specific structure can be ex-

pressed in terms of an N-demimartingale for a particular class of kernels.

Proposition 1.6.2. Suppose that { X;,1 > 1} is a sequence of negatively associated ran-
dom variables. For any fized integer m < n, let h (x1, xg, ..., Ty) = h (1) h (2) -+ h (Tm)
be a kernel mapping R™ to R for some nondecreasing function h () with E [ﬁ (Xl)} = 0.
Then the sequence {Sn = (;:L) Up,n > m} 15 an N-demimartingale.

More results and examples for N-demimartingales can be found in Prakasa Rao (2012).

1.7 Probability metrics and distances

Probability metrics play an important role in asymptotic statistics. Generally
speaking, a probability metric is a functional that measures the distance between two
random quantities and is very useful for investigating the asymptotic behavior of a
statistical function or estimator. The definitions of probability and ideal probability

metrics are given below.

Definition 1.7.1. A probability metric u(X,Y) is a functional which measures the
closeness between the random wvariables X and Y, and satisfies the following three
properties:

Property 1. (X,Y) >0 for any X, Y and (X, X) = 0.

Property 2. (X,Y) = u(Y, X) for any X, Y.

17
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Property 3. W(X,Y) < w(X,Z2) +w(Z,Y) for any X, Y, Z.

The three properties are called the identity axiom, the symmetry axiom, and the triangle

inequality, respectively.

The ideal probability metrics are probability metrics which satisfy two additional
properties which make them uniquely positioned to study problems related to the gener-
alized central limit theorem (CLT). The two additional properties are the homogeneity
of order r property and the regularity property.

The homogeneity property is

Property 4. w(cX,cY) = |c|"u(X,Y) for any X, Y and constants c € R and r € R.
The reqularity property is

Property 5. n(X + Z,Y + 7Z) < p(Y,X) for any X, Y and Z independent of X
and Y.

Next we give some various metrics that are needed for our study.

Definition 1.7.2. Let X, Y random wvariables. The uniform or Kolmogorov distance
is defined as

p(X,Y) = sup |Fx (z) — Fy (2)].

Definition 1.7.3. Let s € N. For two random variables X and Y denote by ks the

mean metric, that is,
ko (X,Y) = s/ t° | Fx (t) — Fy (t)] dt.
Definition 1.7.4. Let X,Y random variables. The Levy metric is defined as
L(X,)Y)=inf{e>0:Fx(x—¢)—e< Fy(z) < Fx(x+¢)+e, VzeR}.

An ideal probability metric is the Zolotarev’s ideal metric introduced by Zolotarev

(1983).

Definition 1.7.5. The Zolotarev’s ideal metric is defined as

G(X,Y) = ﬁ/ h |E(X —t)5" = E(Y —t)5"|dt, seN

—00

18
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where E|X|*™" < 0o, E|Y|*™" < 00 and X, = max {0, X}.

1.8 Functions of bounded variation

The concept of functions of bounded variation is presented in the following defini-

tions and propositions.

Definition 1.8.1. A partition of an interval [a,b] is a set of points {xg, 1, ..., Tn} such

thata =xg <21 < --- < x, =D.

Definition 1.8.2. Let f : [a,b] — R be a function and 11 = {xy, x1,...,x,} a partition
of the interval [a,b]. We denote

Cru(f) =Y _If (@) = f (wx-1)]

and set

Cf = sup CH (f) )
[a,b] I
where the supremum is taken over all partitions 11 of the interval [a,b].

Definition 1.8.3. A function f : [a,b] — R is said to be of bounded variation on [a,b]
if C[’;b] is finite.

Similarly, we present the concept of functions of bounded variation on a rectangle

[a,b] X [c,d].
Definition 1.8.4. Let f : [a,b] X [c,d] — R be a function defined on the rectangle [a, b] x

le,d], II} = {xo,x1,...,xn} a partition of the interval [a,b] and Iy = {yo,y1, ..., Ym} a
partition of the interval [c,d]. We denote

Criprty (1) = DD 1 (@) = f(@wion, ) = f (i y5-0) + f (@1, 95|

i=1 j=1

and set

C[{z,b]x[c,d] = Ssup CHl xIlz (f) )
H1 XHQ

where the supremum is taken over all possible subdivisions of the rectangle [a, b] X [c, d].

Definition 1.8.5. A function f : [a,b] X [¢,d] = R is said to be of bounded variation

on the rectangle |a,b] X [c,d] if C[];,b]x[c,d} is finite.
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We now consider some of the properties of functions of bounded variation on [a, b]

that are still valid on the rectangle [a, b] X [c, d].

Proposition 1.8.6. Let f and g be functions of bounded variation on |a,b] and let k
be a constant. Then

(1) f is bounded on [a,b];

(2) f is of bounded variation on every closed subinterval of |a, b];

(3) kf is of bounded variation on |a,b|;

(4) f+ g and f — g are of bounded variation on [a,b|;

(5) fg is of bounded variation on |a,b);

(6) if 1/g is bounded on [a,b], then f/g is of bounded variation on |a,b|;

(7) if f is constant on [a,b], then f is of bounded variation on [a,b];

(8) if [ is monotone on [a,b], then f is of bounded variation on [a,b].

Remark 1.8.7. The results in Proposition 1.8.6 are still valid for functions f and g

of bounded variation on the rectangle [a,b] X [c, d].

Another very useful property is the fact that a function of bounded variation can

be written as the difference of two increasing functions.

Proposition 1.8.8. If f : [a,b] — R is a function of bounded variation on |a,b] then

there exist two nondecreasing functions on |a,b], fi and fa, such that f = fi — fo.

Proposition 1.8.9. If f : [a,b] X [¢,d] — R is a function of bounded variation on

la,b] X [c,d] then there exist two nondecreasing functions on [a,b] X [c,d], fi and fs,

such that f = f1 — fo.

Here are some examples of functions of bounded variation:

(1) f(z) = ¢, where c is a constant ;
(2) f(z) == ;

(3) flz,y) =2y ;

(4) flz,y) =z ty;

() flz,y) = |z —yl;

(6) f(2,y) = Lzzyy;

where I is the indicator function.

It is worth noticing that for some U-statistics, the functions h, R and h(? involved

in the Hoeffding decomposition are functions of bounded variation. We present here a
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few examples. Let {X1, Xs, ..., X,,} be a collection of identically distributed negatively
associated random variables with F(X;) = y and Var(X;) = o>

Example 1.8.10. Consider the estimation of = Var(X,) = o, U, is based on the

kernels .
h(I1,$2) = 5(171 - 352)27
(1) L, L, 2
W (@) = a1 — pan + (w0 = 07),

h(2)(a;1,x2) = p(zy + 29) — 2129 — 7.
One can verify that h, K'Y and h'® are functions of bounded variation.

Example 1.8.11. Consider the estimation of 06 = E(X?) = o® + p?. U, is based on

the kernels
h($1, 1’2) = T1%2,

W (@) = par — (0% + i),
W (2, x5) = 29 — (1 + 22) + (62 + 12).

One can verify that h, hY and h'® are functions of bounded variation.
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Chapter 2

Inequalities for U-statistics based
on associated and negatively

assoclated random variables

In Chapter 2, we discuss some inequalities for U-statistics based on associated and
negatively associated random variables. The chapter is organized as follows. In Sec-
tion 2.1 we obtain moment inequalities for U-statistics based on negatively associated
random variables and in Section 2.2 we present an exponential bound for U-statistics
based on the same class of random variables. In Section 2.3 we introduce the concept
of a reverse demimartingale and a reverse demisubmartingale as a generalization of the
notion of reverse (backward) martingales and reverse submartingales. Furthermore,
we give a Chow type maximal inequality for reverse demisubmartingales and we es-
tablish a Doob’s maximal inequality for reverse demisubmartingales. Finally, we show
the connection between U-statistics based on associated random variables and reverse

demimartingales and we give some examples.

2.1 Moment inequalities

Moment inequalities are useful tools for studying asymptotic results in statistics.
Below we give some inequalities for the partial sum of random variables. The following
inequality is a crude one, valid for any random variables but can be used in cases where

no other inequality is available.
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Proposition 2.1.1. Let {X;, 1 <i <n} be any random variables. Then
E’X1+X2+"'+Xn‘lSnlile’XiVa l21
i=1
The following inequality can be applied to the case of independent random variables.

Proposition 2.1.2. (Petrov (1995), p. 62). Let X1, Xs, ..., X,, be independent random

variables with zero means, and let p > 2. Then

p n
B <Ot S BIXP.
=1

>
i=1

where C(p) is a positive constant depending only on p.

2.1.1 Moment inequalities for U-statistics based on negatively

associated random variables

A number of authors have studied moment inequalities for negatively associated
random variables. The most interesting results are obtained in Shao (2000) and Su et al.
(1997). However, moment inequalities for U-statistics based on negatively associated
random variables are rarely discussed in the literature. In this section we give an upper
bound for F |U,|” when p is a real number 1 < p < 2 or p > 2, when U, is based on

negatively associated random variables.

Lemma 2.1.3 that follows, provides a moment bound of a U-statistic based on

negatively associated random variables.

Lemma 2.1.3. Let U, be a U-statistic based on negatively associated random variables
and on the kernel h of dimension two. Assume that h is componentwise nondecreasing
and p is a real number, p > 2. Further assume that E |h (X;, X;)|" < ¢ < oo for all
1<i<j<n. Then

EU,P <2C3 ' (n— 17772 Y " E|h(X:, X)),

1<i<j<n
where C,, = max {p?,p'*2e? B(2, )} with B(a,b) = fol 22711 — z)"tdx. Moreover

D
2

E|Un|p:O<n_>, n — 0o.
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Proof. It can be easily verified that the sum ), , .., h (X;, X;) can be written as a

sum of n — 1 blocks

> (X, X)) :nZ_IAk, (2.1.1)

1<i<j<n

where Ay = S F h(XG, Xigg) for k=1,2,..,n — 1.

It is obvious that each block Aj when k > |2!|, where |z] is the floor function,
is a sum of negatively associated random variables since increasing functions defined
on disjoint subsets of a set of negatively associated random variables are negatively

associated random variables (see Property 5 of Joag-Dev and Proschan (1983)). On

the other hand, when k£ < L”THJ, this statement is not true. But we observe that

each block Ay, when k£ < \_"T“J, can be divided into two new blocks with each one

now being a sum of negatively associated random variables. The result of this remark
is that the sum in the right-hand side of (2.1.1) is a sum of blocks where each block
Bs, s =1,2,...,mis a sum of negatively associated random variables and m = F(TZT_I)J

denotes the number of the blocks. Thus,

3
—

> h(XiX;) =) A=) B.
1 s=1

1<i<j<n

3

The p-th moment of the U-statistic can be written now as

-p
E|U,J" = (Z) E

Applying now Proposition 2.1.1 we have that

m p

>n,

s=1

(2.1.2)

—p m
E|U,J < (Z) m* 'S BB,
s=1

Since each block By (s = 1,2, ...,m) is a sum of negatively associated random variables

from Proposition 1.2.9 we have that

—p m
n _ _
B < (5) wo S |Gt Y B,

s=1 1<i<j<n ¢
h(X;,X;)€Bs
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where n, is the number of elements of the s block. Since ny, < n —1 for all n > 2, we

get that

—p m
Bl < (5) wrGm -1t Y S ERGX)P

s=1 1<i<j<n :
h(Xi,Xj)EBS

<2037 P (n — 1P N B (X, X))

1<i<j<n

where the positive constant C), depends only on p.

Under the assumption of E |h (X;, X;)[" < c¢ < oo forall 1 <i<j<nitfollows
that
E[Un\p:0<n’%), n—oo. N

Note that the previous result, Lemma 2.1.3, is still valid for U-statistics based on
a kernel h of bounded variation as the next result shows because of the fact that a
function of bounded variation can be written as the difference of two nondecreasing

functions.

Corollary 2.1.4. Let U, be a U-statistic based on negatively associated random vari-
ables and on the kernel h of dimension two. Assume that h is a function of bounded
variation and p is a real number, p > 2. Furthermore, assume that

Eh (X, X;)|P <c<oo foralll <i<j<n. Then

E|Un|p:O(n_g> , M — 0.

—-Pp
n
E P = E
= (3)

Since the kernel h is a function of bounded variation there are two nondecreasing

Proof.

p

> (X, X))

1<i<j<n

functions hy and hs such that h = hy — hy. Therefore U,, can be expressed as
U, = U _ U(2),

where UL and U? are U-statistics based on the componentwise nondecreasing kernels

25



Chapter 2 Section 2.1

hy and hy respectively. Then from Proposition 2.1.1 and Lemma 2.1.3 it follows that

P
2

EU, P <2 BV + 22 E|[UQ)" = 0 <n* ) N

Lemma 2.1.5 that follows, provides a moment bound for a U-statistic based on nega-

tively associated random variables when p is a real number 1 < p < 2.

Lemma 2.1.5. Let U, be a U-statistic based on negatively associated random variables
and on the kernel h of dimension two. Assume that h is componentwise nondecreasing
and p is a real number 1 < p < 2. Furthermore, assume that E|h (X;, X;)|" < ¢ < o0

foralll1 <i<j<mn. Then

E|U,P <372 nP(n—1)"" Y Eh(X;, X)),

1<i<j<n

and thus,

E|U,["=0 (n'"?), n— oo.

Proof. Using the same steps as in the proof of Lemma 2.1.3 we have that

—p p —p
n n
E|U," = E = E

where m = L@J denotes the number of the blocks.

> (X, X))

1<i<j<n

Applying now Proposition 2.1.1 we have that

E|U, < (Z) m* 'S BB,
s=1

Since every block By (s = 1,2,...,m) is a sum of negatively associated random variables

from Proposition 1.2.8 we have that

s < () [ T Emer

s=1 1<i<j<n :
h(X;,X;)€Bs

=312 PP - 1) > B (X, X))

1<i<j<n
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Under the assumption E |h (X;, X;)[" < ¢ < oo forall 1 <i < j <n it follows that
EUP=0(n""), n—oco. M

Corollary 2.1.6. Let U, be a U-statistic based on negatively associated random vari-
ables and on the kernel h of dimension two. Assume that h is a function of bounded
variation and p 1s a real number 1 < p < 2. Furthermore, assume that

Elh(X;, X;)|" <c<oo foralll <i<j<mn. Then

E|U,"=0(n""?), n— oo.

—-p
n

E np: E
v, (2)

Since the kernel h is a function of bounded variation there are two nondecreasing

Proof.

p

> (X, X))

1<i<j<n

functions hy; and hy such that h = hy — hy. Therefore U,, can be expressed as

where US" and U? are U-statistics based on the componentwise nondecreasing kernels

hy and hsy respectively. Then from Proposition 2.1.1 and Lemma 2.1.5 it follows that

EB|UP <227t E UM + 27 E|UP =0 (n'?), n—oo. W

2.1.2 Moment inequalities for V-statistics based on negatively
associated random variables
The corresponding theorem for V-statistics can be proved similarly. Lemma 2.1.7

that follows, provides a bound for the p-th absolute moment of a V-statistic based on

negatively associated random variables when p is a real number, p > 2.

Lemma 2.1.7. Let V,, be a V-statistic based on negatively associated random variables
and on the kernel h of dimension two. Assume that h is componentwise nondecreasing

and p is a real number, p > 2. Furthermore, assume that E |h (X;, X;)|" < ¢ < oo for
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alll1 <i<n,1<75<n. Then

E|V,|P < 27377 Con ™ (n — )72 3" B0 (X, X;)|

1<i<j<n

+ 27PN B B (X, X)) P

i=1
where C,, = max {p?,p'*2e? B(2, )} with B(a,b) = fol 2711 — x)*"Ldx. Moreover

2
2

E\Vn|p:O<n_>, n— 0o.

Proof.

p
1
EV,P=E|"

n

1 n
U, + ﬁ;h(Xi,Xi)

(2.1.3)

P

_ P
< or—1p ’n_lUn Lorlp
n

1 n
3 > h(Xi, X;)
=1

Applying Proposition 1.2.9 and Lemma 2.1.3, since increasing functions defined on
disjoint subsets of a set of negatively associated random variables are negatively asso-
ciated random variables (see Property 5 of Joag-Dev and Proschan (1983)), we have
that the first term of the RHS of (2.1.3) by Lemma 2.1.3 is O (n"%). Now consider the

second term. Using Proposition 1.2.9

p n
E < Cn Y B b (X, Xl

i=1
=0 (n_%p) .

Combining the two, the result follows. W

1 n
7 > (X, Xi)
=1

Remark 2.1.8. The previous result, Lemma 2.1.7, is still valid for V-statistics based
on a kernel h of bounded variation because a function of bounded wvariation can be

written as the difference of two nondecreasing functions.

Corollary 2.1.9. Let V,, be a V-statistic based on negatively associated random vari-
ables and on the kernel h of dimension two. Assume that h is a function of bounded
variation and p is a real number, p > 2. Furthermore, assume that

Eh (X, X;)|P <c<oo forall foralll1 <i<n,1<j<n. Then
E|Vn|p:O(n_§>, n— 0o.
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Proof. Since h can be expressed as the difference of two nondecreasing functions hy
and hq, then V,, can be expressed as the difference of two V-statistics,

V,=V® - v@

n

where Vn(l) and Vn(2) are the V-statistics based on the nondecreasing kernels h; and ho

respectively. The result now follows using Lemma 2.1.7. W

Lemma 2.1.10 that follows, provides a moment bound for a V-statistic based on

negatively associated random variables for a real number 1 < p < 2.

Lemma 2.1.10. Let V), be a V-statistic based on negatively associated random variables
and on the kernel h of dimension two. Assume that h is componentwise nondecreasing
and p is a real number, 1 < p < 2. Furthermore, assume that E |h (X;, X;)[" < ¢ < oo

foralll1<i<n,1<j<mn. Then
EV, [P <23 (n—1"'n Y E[h(X;,X;)]
1<i<j<n

+An™P > B h (X5, X))

i=1

and
E|V,F =0 ((n"?), n-— oo
Proof. )
) n—1 1 o ;
E|V,F=E U,ﬂ—ﬁz (Xi, X))

_ (2.1.4)

n p

%Zh(XhXi)

i=1

p

< or—1lp ‘n__lUn Lorlp
n

Applying Proposition 1.2.8 and Lemma 2.1.5, since increasing functions defined on
disjoint subsets of a set of negatively associated random variables are negatively asso-
ciated random variables (see Property 5 of Joag-Dev and Proschan (1983)), we have

that the first term of the RHS of (2.1.4) by Lemma 2.1.5 is O (n'™?). Now consider
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the second term. Using Proposition 1.2.8

p n
E <n PPN B[ (X, X))

i=1

=0 (nl_Qp) )

1 n
— D h(Xi, X))
i=1

Combining the two, the result follows. W

Remark 2.1.11. The previous result, Lemma 2.1.10, is still valid for V-statistics
based on a kernel h of bounded variation because a function of bounded variation can

be written as the difference of two nondecreasing functions.

Corollary 2.1.12. Let V,, be a V-statistic based on negatively associated random vari-
ables and on the kernel h of dimension two. Assume that h is a function of bounded
variation and p is a real number, 1 < p < 2. Furthermore, for all 1 < i < n and

1 < j <n assume that E |h(X;, X;)|" <c¢ < oo. Then
EV,F=0((n"?), n-— oo

Proof. Since h can be expressed as the difference of two nondecreasing functions hy

and ho, then V,, can be expressed as the difference of two V-statistics,

V, = v _ V(2),

n n

where Vn(l) and Vn@) are the V-statistics based on the nondecreasing kernels h; and ho

respectively. The result now follows using Lemma 2.1.4. B

2.2 An exponential inequality for U-Statistics based
on negatively associated random variables

Generally, in probability theory, exponential inequalities play an important role
in various proofs of limit theorems. In particular they provide a measure of conver-
gence rate for the strong law of large numbers. Exponential inequalities for negatively
associated random variables were obtained by Kim and Kim (2007), Nooghabi and
Azarnoosh (2009), Xing et al. (2009), Sung (2009), Xing and Shanchao (2010).

Consider now the class of U-statistics which are based on a collection of negatively
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associated random variables. In this section, we establish an exponential inequality for
identically distributed negatively associated random variables. First, we state some

propositions required to prove the main result given in Theorem 2.2.4.

Proposition 2.2.1. Let x € R. Then

x 2% 1o
e §1+x+?e .

Proposition 2.2.2. Leta >0, b >0, r > 1. Then

a b
ab S — + 0
T T

1,1 _
where -+ =1

Lemma 2.2.3. Let U, be a U-statistic based on negatively associated random variables

and on a kernel h of dimension two with E(h) =0. Then forr >1 andt >0,

t2r 32t (r—1) b
tUn 2r ‘ N2 P |Un|)
E(eU) < e:cp{—nr T 2 BICGX) E E (e

1<i<j<n

where G, = max {p?, p L B3, )} with Bla,b) = [}/« (1 = 2)"lda.

Proof. Using Propositions 2.2.1 and 2.2.2 and the representation of U,, as a sum of
blocks, which every block consists of negatively associated random variables we may

write

2
E() <1+ E{tU,) + E (%Uget"fnl)

s=1

12r —2r m r 1

n ’
= ]_ E BS _E ( tr |Un|>
+ r2" (2) (Z ) + r’ c

<1 B () s pm s L ()
- r2r\2 ’ r

s=1

31



Chapter 2 Section 2.2

2 0\ " [3(n—-1)]""" . | "
r— oy 2T r|Un|>
<1+ (2) {—2 ] o™ " EIR (X X" + B <e ,

1<i<j<n

where the two inequalities follow form Propositions 2.1.1 and 1.2.9 respectively.

1 ,
B(eW) <14 E|h(X:, X)) —E(“"'U”|>
@) <A S S BN B (e
1<i<j<n

tZT 327”—1 CQ ) (T — 1) tr
< C "N B X)) —E< T—llUn')
— exp{nr 702,4_1 n(n— 1) ‘ ( ’ J)’ + r € )

1<i<j<n

where the last inequality follows from 1 +x <e*, Vx e R. R

The following theorem gives the exponential bound for U-Statistics based on neg-

atively associated random variables.

Theorem 2.2.4. Let U, be a U-statistic based on negatively associated random vari-
ables and on the kernel h with E(h) = 0. Assume that E (e%‘U”O <d forr>1 and

t > 0, where d 1s a positive constant. Then for e > 0,

Tip 1 1 dir —1
P(U, >¢) <exp _Z 17}2 — — — | + (r=1) .
\2r—1 (ZT)m (27“) 2r—1 T

)\ . 321“71 027’ Z E |h (X X‘)|27’
Cr2ln(n—1) v

1<i<j<n

where

Proof. Assume that » > 1 and ¢t > 0. Applying Markov’s inequality and Lemma 2.2.3

we have that

P (U, >¢) =P (e > ¢*)

S e—taE (etUn)

t?r 327"—1 C . . 1
:exp{—ts—i—— 2 > Eh(X:, X)) +Fd}

where g(t) = —te + f—:)\ + £ The function g(t) is minimized at

1

o en’\ 1
o\ 2rA '
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Then

. eninTT 1 1 d(r — 1)
g(t ) = 1 T 2r +
A2r—1 (27n) 2r—1 (27’) 2r—1 r

o 7,.27“—1€2r 2r—1 1 1
= —n2r-1 3274,]_0 1 E h X, X 2 1 o
2rn(n—1) Zl§i<j§n | ( 1y ])‘ (27‘) 2r—1 (27")27‘—1
d(ir—1)

+—"
r

Hence we have that

2r r

2r—1q2r—1 1 1 dlr —1

P(Un>5)<exp{—€)\7? ( — — 2r>+ (r )}I
2r—1

Example 2.2.5. Let {X,,n > 1} be a sequence of i.i.d. standard normal random
variables. Then {X,,n > 1} are negatively associated random variables with

E (65|X1|) < oo for and real number 6. Let U, be a U-statistic based on the previous
random variables with E(h) = 0. Then for § = % > 0, U, satisfies the conditions of

Theorem 2.2.4.

2.3 Reverse Demimartingales and N-demimartingales

In this section we introduce the concept of reverse demimartingales and reverse
demisubmartingales as a generalization of the notion of reverse (backward) martingales

and reverse submartingales.

Definition 2.3.1. Let S;, 5, ... be an L' sequence of random variables with Sy = 0.

Assume that for all j =1,2,... and all k > j+ 1

E {(Sj - Sj+1) f (Sj—l—lv Sj+2a X3 Sk)} >0

for all coordinatewise nondecreasing functions f such that the expectation is defined.
Then {Sj}j21 1s called a reverse demimartingale. If in addition the function f is as-

sumed to be nonnegative, the sequence {Sj}j>1 is called a reverse demisubmartingale.

Definition 2.3.2. Let Si,Ss,... be an L' sequence of random variables with Sy = 0.

Assume that for all j =1,2,... and all k > j+ 1

E{(SJ — Sj+1) f (Sj—i-la Sj+2a ) Sk)} <0
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for all coordinatewise nondecreasing functions f such that the expectation is defined.
Then {Sj}j21 15 called a reverse N-demimartingale. If in addition the function fis as-

sumed to be nonnegative, the sequence {S; }j>1 is called a reverse N-demisupermartingale.

Remark 2.3.3. Let Si,Ss,... be an L' sequence of random wvariables with Sy = 0
and let A= 0(S;+1,Sj42,...). A reverse martingale under the o-algebra A is a reverse
demimartingale. Furthermore, it can also be verified that a reverse submartingale (with

the same choice of o-algebra A) is a reverse demisubmartingale.

We can verify that the sample mean of associated random variables (with zero

mean) is a reverse demimartingale under an appropriate assumption.

Proposition 2.3.4. Let {X1, X5, ..., X,,} be a sequence of random variables with
E(X;) =0 fori> 1. Then the sample mean X, = %sz:l X, is a reverse demimartin-

gale if
Cov [Xn7 f (XnJrlv s Xk)} > Cov [Xn+17 f (XnJrla 7Xk)] (231)

for all coordinatewise nondecreasing functions f such that the expectation is defined.

Proof. We need to show that

E (%0~ K1) f (Boprs Kz s X)) 20, k>t 1

for all coordinatewise nondecreasing functions f.

Note that
1 n+1

_ _ 1 <&
Xn—XnH:E;Xi—nHZXi

i=1
(n+ 1), X —n Y X,
B n(n+1)
_ Z?zl Xz - an—‘rl _ Xn - Xn+1
n(n+1) n+1

Under assumption (2.3.1) we can easily have that

B (% = %) £ (Kens s o X0)]
1 _ _ _ _
= n+ 1E [(Xn - Xn—i—l) f (Xn+17Xn+27 7Xk)]

>0. 1
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Example 2.3.5. Let X be a random variable with E|X| < oo and let X; = 7' X, i > 1.
Then {X;, i > 1} are associated random variables by properties (P3) and (P4) of Esary
et al. (1967). We can easily prove that assumption (2.3.1) is satisfied:

Cov [ X, f (Xng1, o X Cov[ Z X f (Kityeoms )]
= E; ;COV |:X,f (Xn+17 ,Xk)}

1 1 1 _ _
= - <1+ 3 NN ﬁ) Cov [X,f (Xn+1,...,Xk)}

1 _ _
> nr 1COV [X,f (Xn+17 ,Xk)}

= Cov |:Xn+17f (XnJrla 7Xk)j| .

Thus the sample mean of these random variables is a reverse demimartingale.

Remark 2.3.6. The previous example is a special case of a collection of random vari-
ables satisfying assumption (2.5.1). Let X be a random variable with E(X) = 0 and
let {X,, = c, X, n>1}, where {c,,n > 1} is a sequence of positive numbers satisfying

1 n v _ 1\ : - :
= i1 Ci > Cny1. Then the sample mean X, = = > " | X; is a reverse demimartingale.

Remark 2.3.7. A nonincreasing sequence {c,,n > 1} clearly satisfies the assumption

n
1
— E Ci 2 Cpyt.
n <

=1

2.3.1 Chow and Doob type maximal inequality for reverse

demisubmartingales

Chow (1960) proved a maximal inequality for submartingales. Christofides (2000)
showed that Chow’s inequality is valid for the more general class of demisubmartingales.
Theorem 2.3.8 presents a Chow type maximal inequality for reverse demisubmartin-
gales, and will be used later in this chapter to establish a Doob’s maximal inequality

for reverse demisubmartingales.

Theorem 2.3.8. Let Sy, 5s,... be a reverse demisubmartingale and {cx, k > 1} a

nondecreasing sequence of positive numbers. Then for e > 0,

N
5P{ max ¢Sy = 5} < enE(SY) + Z ¢ E(ST, —S))

n<k<N

35



Chapter 2 Section 2.3

where X+ = max {0, X }.

Proof. Let, A = {max,<p<n xSk = €}. Then A can be written as A = U;V:nA
where A; = {¢;S; <e, n<j<i<N, ¢;S; > ¢} and A;(A; =0 when i # j. Then

for e > 0,
N N N N
eP(A) = 5ZP(Aj) = > FEl(ely,) Z (c;jSila,) ZE(CJ-S;FIAJ.)
j=n Jj=n Jj=n Jj=n
N-2
= enE(S%) — enE(S{1ag,) + en1 B(S§_yTay ) + Y ¢ E(S] La))
j=n
= CNE(SX}) - CNE<S]—\’}IAC ) +cn_ 1E(SN 1IAC )
— ena B(SH_ Tagnas, )+ Z ¢;E(S} 1) (2.3.2)

where (2.3.2) follows from the fact that 14, , = Lag, — Tag,nas,_, which in turn holds
since Ay_1 C A5 By the nondecreasingness of the sequence {cj, k > 1} the quantity

on the right-hand side of (2.3.2) is less than or equal to

enE(Sy) + enE{(Sy_1 — Sy)ag } — en1E(Sy 1 Lag g, )

Let h(y) = lim,,- (7 —y") /(x —y). Then h is a nondecreasing function. By the

convexity of the function * = max {0, 2z} we have
Sy_1— S = (Sn—1— Sn)h(SwN)
and we get that
E{(S%_, =S¥ ay} = E{(Sn_1— Sn)h(Sn)1ay}- (2.3.4)

Since h(Sn)I4, is a nonnegative and componentwise nondecreasing function of Sy by
the reverse demisubmartingale property the expression on the right-hand side of (2.3.4)

is nonnegative. Thus,

E{(S§ 1~ S5)Lay} >0
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and the right-hand side of (2.3.3) is bounded by

N—2
B =cyE(S}) + enE(SY_y = SY) — ent1 B(S§_y Tagnas, )+ Y ¢ E(SF Ly)).
j=n
Furthermore,
B =cnE(Sy) +enE(Sy_ — S%) — en 1 BE(Sy 1 Lagnas, )
N-3
+ CN—2E<S]TI—21AN72) + Z CjE(S]—"—‘[Aj)
Jj=n
= CNE(SX}) + CNE(SR_;_I — S]—\i}) — CN—IE(S]—C'_llAfVﬁAC ) + CN— QE(SN QIAC ﬂAC 1)
N-3
_ CN72E<S]J\?7QIA§V0A§V_10A§V_2) + Z CjE(Sj[A].) (235)
j=n
where (2.3.5) follows from the fact that I, , = Ixe enas,_, — las,nag,_ nag,_, since

An_o C AGNAS ;. Again by the nondecreasingness of the sequence {cg, k > 1}, now
the right-hand side of (2.3.5) is less than or equal to

CNE(SXI)—FCNE(SZJ\? 1 S+)—|—CN 1E{( N_2 S )[AC NAS, 1}

N-3
— en-2B(SY s Lagnag o5, _) + ) 6 B(S] L)
j=n

N
:cNE(SJJ\r/)—i_ Z CjE(S _S+)_CN 1E{< N-2 SJJ\FI—I)]ANUANA}

j=N-1
N-3
I CN_QE(S]TT—QIA?VmA?v71mA?v72) + Z CjE(S;_]Aj). (236)
Jj=n

Again by the convexity of the function ™, it follows that

E{(SY_5 — Sh_)ayuay_.} = E{(Snv—2 — Sn—1)h(Sn-1)Tayuan_, }- (2.3.7)

Since h(Sn-1)Iayuay_, is @ nonnegative and componentwise nondecreasing function of
{Sn_1,Sn} by the reverse demisubmartingale property the right-hand side of (2.3.7)
is nonnegative and thus the quantity in (2.3.6) is bounded by

N N-3
CNE S+ + Z C]E —S+) — CN— QE(SN QIAC GNAS_ NA% +ZC] S ]A)
j=n

j=N-1
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Working in this way we prove that

N
eP(A) < enE(S{) + Y GE(Sf ) = Sf) = caB(S) Lae)
j=n+1
N
<enBE(SH)+ > GEST,-Sf). m

j=n+1

The following result shows that the function of a reverse demisubmartingale (or a
reverse demimartingale) is a reverse demisubmartingale under a monotonicity assump-

tion.

Lemma 2.3.9. Let Sy, S, ... be a reverse demisubmartingale (or a reverse demimartin-
gale) and g be a nondecreasing convex function. Then ¢(S1),9(S2),... is a reverse

demisubmartingale.

Proof. We need to show that

E{(Q(Sj) - 9(5j+1)) / (9(5j+1)79(5j+2)u - 9(Sk))} >0,

for every fnonnegative and coordinatewise nondecreasing function. Since g is a non-

decreasing convex function
9(5;) = 9(Sj41) + (S5 = Sj1) h(Sj),

where h is the left derivative of g. Obviously A is a nonnegative nondecreasing function.

Then for every fnonnegative and coordinatewise nondecreasing function we have that

E{(Q(Sj) - 9(5j+1)) / (9(Sj+1>a9(5j+2)> -, 9(Sk))}
> E{(Sj - Sj+1) h(5j+1)f (Q(Sj+1)79(5j+2)u ~‘79(Sk))}
= E{(S; — Sj+1) " (Sj41, 12, -, k) }

>0

- Y

since {5}, j > 1} is a reverse demimartingale and

f7(Sj1, g2, -y Sk) = M(Sj31) f (9(S)41), 9(Sj42), ., 9(Sk))

is a nonnegative componentwise nondecreasing function f*: #*=7 — R®. N
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Lemma 2.3.10. If S, Sy, ... is a reverse demimartingale then Si", S5, ... is a reverse

demisubmartingale and Sy, 55 , ... is a reverse demisubmartingale.

Proof. Obviously the function g(x) = max{0,z} is nondecreasing and convex. Ap-
plying Lemma 2.3.9, we have that S;7, S5, ... is a reverse demisubmartingale. Now let
Y, = —=5;, i = 1,2,... . Then by the reverse demimartingale property we note that
Y}, Ys, ... is also a reverse demimartingale. Furthermore, by Lemma 2.3.9 Y7, V! ...
is a reverse demisubmartingale. Clearly Y;" = S;. Therefore S;,S; , ... is a reverse

demisubmartingale. W

A corollary to the Chow type maximal inequality is the following Doob type in-
equality.

Corollary 2.3.11. (Doob’s inequality). Let Sy, S5, ... be a reverse demisubmartingale.

Then, for any e > 0,

1
P{ max Sk2€}<—/ SndP.
n<k<N £ {maxnngN Sp=e}

Proof. In the proof of Theorem 2.3.8, in (2.3.2) we departed from the reverse demisub-
martingale Sy, Sy, ... to the reverse demisubmartingale Si", S5, ... because in (2.3.3)
we needed to bound ex_1E(Sy_yIac_) by enE(Sy_ilas,_,). This is correct since
E(S]J\F,_IIA%A) is nonegative and cy > cy_1. However, if all the ¢;’s are equal, such a
need does not arise. Therefore, we can stay with the original reverse demisubmartin-

gale. Then in such a case we have

N
eP {nglkaéXNSk 2 6} < E(SN) + Zl E(Sj_l - S]) — E(SnIAc)
j=n+

(Sn) = E(Snlac)

(Sn[A)

:/ S,dP. 1
{max,<p<n Sp>¢}

=F
=K

Corollary 2.3.12 that follows generalizes the result in Corollary 2.3.11.

Corollary 2.3.12. (Doob’s inequality). Let Sy, S5, ... be a reverse demisubmartingale

and g be a nondecreasing convex function on R. Then, for any e > 0,
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1
P{ max g(Sy) > 5} < —/ g(Sy)dP.
n<k<N - e {maxp<k<n 9(Sk)>e}

Proof. This result follows from the fact that the sequence ¢(S1), g(S2), ... is a reverse
demisubmartingale (Lemma 2.3.9) and by applying Theorem 2.3.8 on the Doob type

maximal inequality for reverse demisubmartingales. W

Remark 2.3.13. Observe that S? = (SZ’)2 - (S-_)2. In general

[Sil” = (S7)" + (7)), v > 1.

)

This observation will be useful to prove Theorem 2.3.14.

Now if we take g(x) = |z|”, v > 1 in Corollary 2.3.12 we can obtain the following

result.

Theorem 2.3.14. Let Sy, Ss,... be a reverse demisubmartingale and E|S,|" < oo,

n > 1 for some v > 1. Then, for any e > 0,
1
P{ max |Sy| > 5} < —E|S,|".
n<k<N gy

Proof. Let £ > 0. Using the observation in Remark 2.3.13

v e¥ \V e¥
Pl > <h < P { s (50> Ther (s (507> T} @89
Since (Sfr)y, (SQL)V ,... and (Sl_)y, (S{)V ,... are reverse demisubmartingales, then

from the Doob type maximal inequality for reverse demisubmartingales (Corollary

2.3.11), we have that the right-hand side of (2.3.8) is bounded by

2 2
= (S;)/dP + — (S;) dP
€7 Jmax, <k n (S7)rzer} €7 Jmax,<k<n (S v >ev}
1
< — |Sp|VdP
EV

{maxp<p<n |Sk|">e"}

1
< SEIS, ). m
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2.3.2 Maximal inequalities for functions of Reverse Demisub-

martingales

Wang and Hu (2009) generalized the results of Christofides (2000) for demimartin-
gales and demisubmartingales. Here, we present a similar theorem which generalizes

Theorem 2.3.8 for reverse demisubmartingales.

Theorem 2.3.15. Let Sy, Sy, ... be a reverse demimartingale, g be a nonnegative convex
function on R with g(0) = 0 and g(S;) € L', i > 1. Let {c, k > 1} a nondecreasing

sequence of positive numbers. Then for e > 0,

P { s 0(50 > < | <evBlasi) + Y B(S,) - a(5)

j=n+1

Proof. Define the functions
u(@) = g(@) 0 and v(z) = g(x)lp<)
Note that
g(x) = u(z) + v(z) = max{u(x),v(x)}, =xeR, (2.3.9)

where u(z) is a nonnegative nondecreasing convex function and v(x) is a nonnegative

nonincreasing convex function.

Then we have that

gP{ max c,g(Sk) = 8}

=eP {nr<nka%XNCk max(u(Sk), v(Sk)) = 8}
= ¢ P {max(c, max(u(S,),v(S,)), ...,cy max(u(Sy),v(Sy))) = €}
< eP {max(c,u(Sy), ...,enu(Sy)) = €} + e P {max(c,v(S,), ...,cnv(Sy)) = €}

= €P{ max cpu(Sg) = 6} + SP{ max c;v(S) = 6} : (2.3.10)

n<k<N n<k<N
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Furthermore, combining Theorem 2.3.8 and Lemma 2.3.9 we have that

5P{ max cpu(Sg) = z—:} < enE(u(Sy)) + Z G E(u(S;—1) —u(S;)),  (2.3.11)

n<k<N
j=n+1

since u(x) is a nondecreasing convex function.

Let A = {max,<x<n cxv(Sk) = €}. Then A can be written as A = Ujvzn A;, where
={cv(S;) <e, j<i<N, ¢u(S;) >¢e},n<j <N, and the A;’s are disjoint.
Therefore,

eP(A) = 8ZP<AJ) = ZE(dAj) < ZE(CJU(Sj)IAj) = ZE(CjU(Sj)[Aj)
= cnvE(u(Sn)) — enE(v(Sn)1ag,) + en—1 E(v(Sn—1)Lay_,) + Z ¢; E(v(S5)1a;)
= CNE(’U(SN)) - CNE(’U(SN)IAC ) + CN_lE(U(SN_l)IAC )
— en—1E(u(Sn_1)Lag nas, ) + Z o E (2.3.12)

where (2.3.12) follows from the fact that 14, , = Tas, — Lag,nag,_, which in turn holds
since Ay_; € AS. By the nondecreasingness of the sequence {cg, k > 1} the right-
hand side of (2.3.12) is less than or equal to

enE(u(Sy)) + en E{(v(Sn-1) — v(Sn))ag } — en—1E(v(Sn—1)Lag nag,_,)

- i i E(v(S))1a,). (2:3.13)

Let h(y) = lim,,- (v(z) —v(y))/(z —y). Then h is a nondecreasing non-positive

function. By the convexity of v(z), we have

v(Sy-1) —v(Sn) = (Sn-1 — Sn)h(SN)

and, therefore,

E{(U(SN_l) - U(SN))]AN} 2 E{(SN_l — SN)h(SN)IAN} (2314)

Since I, is a nonincreasing function of Sy and h(.) is a non-positive nondecreasing
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function, it follows that h(Sy)Ila, is a nondecreasing function of Sy. By the reverse

demimartingale property the right-hand side of (2.3.14) is nonnegative. Thus,
E{(v(Sn-1) = v(Sn))ay} 2 0
and the right-hand side of (2.3.13) is bounded by

B :CNE(U(SN)) + CNE(U(SNfl) - ’U(SN)) - CN*].E(U<SN71>IA?VQAC )

N-1

N-2
+ > E(S))1a,).
j=n
Furthermore,

B =cnE(v(Sn)) + enE(w(Sn-1) —v(Sn)) — en 1 E(v(Sy-1)Lagnas, )

N—-1
N-3
+en 2 B((Sn-a)lay_,) + Y ¢ E(0(S;)1a;)
j=n
= CNE(U(SN)) + CNE(U(SN_1> - ’U(SN)) - CN—lE(U(SN—l)IAﬁvﬁA?Vil)
+enaE(v(Sn_2)lagnas, ) — en—2E(v(Sn—2)lagnas,_nas,_,)
N-3
+ > ¢ EW(S)) 1)), (2.3.15)
j=n
where (2.3.15) follows from the fact that I,, , = ]A%QA%A — IAfvahlmA?v% since

An_o C AG N AS ;. Again by the nondecreasingness of the sequence {c;, k > 1}, the
right-hand side of (2.3.15) is less than or equal to

CNE<U(SN)) + CNE(U<SN,1> - U(SN)) + CNflE{<U(SN,2) — ’U(SN,l))[A?VﬁAc }

N-1

N-3
—cn o B(v(Sy_2)lagnas,_ nag,_,) + Z c;E(v(S5)14,)
j=n

=cnE(v(Sy)) + Z c;E(v(S;-1) —v(S5)))

—en 1 B{(v(Sn—2) = v(Sn-1))Layuay_, } — cn2E(0(Sn—2)Lagnas,_nas,_,)

+ z_:CjE('U(S])IAj)‘ (2316)
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Again by the convexity of v(x) we have that
E{(v(Sn-2) = v(Sn-1)layvan_,} 2 E{(Sv—2 = Sn-)h(Sn-1)layuay_, ). (2:3.17)

Since I4,uay_, 1S a nonnegative and componentwise nonincreasing function of {Sy_1, Sn}
and h(.) is a non-positive nondecreasing function, it follows that h(Sny_1)layuay_, I8
a nondecreasing function of {Sy_1, Sy}. By the reverse demimartingale property the
right-hand side of (2.3.17) is nonnegative and thus the quantity in (2.3.16) is bounded
by

enE(v(Sy)) + Z ¢ EW(Sj-1) —v(5))) — en—2E(v(Sn—2)lagnag,_,nas_,)

j=N-1
N-3
+> ¢ E(w(S))1a,)
j=n

Working in this manner we prove that

eP(A) < cnE(v(Sy)) + c;E(w(Sj—1) —v(S))) — cn E(v(Sn)1ac)

N
j=n+1
N

<ecnE(w(Sy))+ c;E(w(S;—1) —v(S;)). (2.3.18)

j=n+1

Finally, by (2.3.10), (2.3.11) and (2.3.18), we have that

L {nrgnkanchg(Sk) > 8}

< 5P{ max cpu(Sg) = s} + &?P{ max cxv(Sy) = 5}

n<k<N n<k<N

< enB(u(Sv) + D e B(u(Si) — u(S;)

+ enBSW) + D Bu(Sia) = o(S))
= enB(g(Sn)) + D ¢B(g(S;) = 9(5;)) ™ (2.3.19)

Observe that for g(z) = |z| in Theorem 2.3.15 we obtain the following result.
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Remark 2.3.16. Since g(x) = |z| is a nonnegative convez function with g(0) = 0,

applying Theorem 2.3.15 for every € > 0, we have that

N
EP{ max cg|Sk| = 5} < cenE|Sy| + Z i E(|Sj-1] — 155])-

n<k<N .
j=n+1

A corollary to the Chow type maximal inequality is the following Doob type in-
equality.

Corollary 2.3.17. (Doob’s inequality). Let Sy, Ss, ... be a reverse demimartingale, g
be a nonnegative convex function on R with g(0) =0 and g(S;) € L', i > 1. Then for

e >0,

1
P{ max ¢(Sg) > 8} < —/ g(Sy,)dP.
nsksN € J{max,<k<n 9(Sk)>e}

Proof. Let u(z) and v(z) be as defined in Theorem 2.3.15. Since u(x) is a nondecreas-

ing convex function, by Corollary 2.3.12 we have

5P{ max u(Sy) = 6} < / u(S,)dP
n<k<N {max,<k<n u(Sk)=e}

< u(S,)dP. (2.3.20)

/{maxn<k<N 9(Sk)=¢e}

Furthermore, from Theorem 2.3.15 with ¢, =1, k> 1

gp{ max v(Sy) > 5} < E(w(Sy)) + ‘Z EW(S;_1) — v(S;)) — E(u(Sp)Lae)

n<k<N

= E(v(Sn)1a)

_ / v(S,)dP
{max, <p<n v(Sk)>e}

S / v(S,)dP. (2.3.21)
{max,<p<n 9(Sk)>¢}
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Finally, by (2.3.10), (2.3.20) and (2.3.21), we have that

er { w0050 >

n<k<N

< 5P{ max u(Sy) = 8} + €P{ max v(Sg) = 8}

n<k<N n<lk<N

< u(Sy,)dP + / v(S,)dP

{max,<r<n g(Sk)>e}

/{maxn<k<N g(Sk)=e}

< g9(S,)dP. m (2.3.22)

/{maxngkgzv 9(Sk)>¢}
Again, taking g(z) = |z|”, v > 1 in Corollary 2.3.17 we get the following result.

Corollary 2.3.18. Let S1,955,... be a reverse demimartingale, v > 1. Then for any

e >0,
1 14 1 14
P{ max [Si| >ep < — |Su|"dP < — E|S,[".
n<ksN €” J{max,<p<n |Sk|v=e} €

Proof. By taking g(z) = |z|”, » > 1 in Corollary 2.3.17, then for any ¢ > 0,

P{ max |Sg| > 5} = P{ max |Sg|” > 6”}
n<k<N n<k<N

1
- 1S, " dP

51/
{max,<p<n |Sk|">e"}

/N

1
< —ElS,)”. m
61/

2.3.3 Doob type maximal inequality for reverse Demimartin-

gales

Some results that Wang and Hu (2009) established for demimartingales (see their
Theorem 3.1 and Corollary 3.1), with appropriate modification are still valid for reverse

demimartingales.

Lemma 2.3.19. Let 51,5, ... be a reverse demimartingale and g be a monnegative

function with g(0) = 0. Assume that E(g(Sy))? < oo for p > 1. Then
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B (maotso) < (12 Blasy

L—p
Proof. Applying Holder’s inequality and Corollary 2.3.18, we can obtain that

p oo
— p—1
E (n1<nka<XNg(Sk)) = p/o 2P P {nrglkzszg(Sk) > x} dx

< p/ooo 2F <g(Sn)I{ max g(Si) > m}) dx

n<k<N

nI<nka<XNg(Sk)
=pk g(Sn)/ T 2P 2dx
0
p o
= 1|95 (nglkangg(Sk))

< LB GE)T |5 (maas ) | "

n<k<N

where 1/p+1/g = 1. Since E(g(Sk))? < oo for p > 1 we have that

(e g<sk>)p] Y e 2 m s,

n<k<N p—1
and

B g<sk>>p < (L)pﬂg(sn))p. .

n<k<N 1—p

Applying now g(z) = |z| in Lemma 2.3.19 we get the following corollary.

Corollary 2.3.20. Let Sy, Sy, ... be a reverse demimartingale. Assume that
E|Sk|P < 00, k> 1, for p> 1. Then

p p p
- p
B (s ls) < (12) EGs..

Proof. If we take g(x) = |z| in Lemma 2.3.19 we immediately have the result. W
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2.3.4 U-statistics and reverse Demimartingales

Proposition 2.3.21. Let U, be a U-statistic based on a collection of random variables

and on the kernel h with E(h) = 0. Assume that

m Z Cov[h(Xiy, s Xin) )y f(Uns1, -, Ug)]

1< < <im<n+1

> (n+1) > Cov[n(Xs,, ooy Xiy s Xid)y f(Unsn, . Uy, (2.3.23)

1<i1 < <im—1<n

for all coordinatewise nondecreasing functions f such that the expectation is defined.

Then {U,,n > m} is a reverse demimartingale.

Proof. We need to show that
E{(Us = Upt1) [ Uns1, U2, -, Up)} 20, k>n+1

for all coordinatewise nondecreasing functions f.

Let
S, = > h(Xs,, Xy, ooy X)) -

1< <ig < <im<n

Then note that

Un - Un+1
Sn Sn+1 (n:n—l) S" T (TZ) Sn+1 n—ﬁi—lm (:L) Sn B (:1) Sn‘H

OGS I GO [ R (") G

_ (n+1)S,—(n+1—m)S,1 _ (n+ 1)[S, — Spy1] + mSni1
(") (n+1—m) (" (n+1—m)

m m

mSn—l-l - (n + 1) 21§i1<--~<z‘m,1§n h(XiN R Ximq ) Xn—i-l)
("+1) (n+1—m) '

m

Under (2.3.23) we can easily have that

E {(Un — Un+1) f (Un+1, Un+2> LS Uk)}
(2.3.24)
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B mSn—i—l - (n + 1) Zl§i1<~~~<im,1§n h(Xi1) ceey Ximmen-‘rl)
(n+1) (7’L + 1— m)

m

Finally, we give an example of a reverse demimartingale.

Example 2.3.22. Let X be a random variable with E|X| < oo and assume that
{X;=i'X, i >1}. Let U, be the U-statistic based on {X,}n>1 with kernel

h(z,y) = xy. Then the previous assumption is true, since,

m Z COV[}L(XZ‘I,..-,Xim)af(Un+1:--'>Uk)]

1< < <im<n+1

1
-9 E —X?
COV[Z,j 5 f(Un—i-la 9 Uk’)]

1<i<j<n+1

= 2Cov[X2, f(Upsr, o Un)] ) L

= ()
1<i<j<n+1

2 COV[XQ,f<Un+1,...,Uk)] Z 1

)
1<i<n+1

=(n+1) Z Cov[i(n:_ 1)X27f(Un+1, o Up)]

=(n+1) Z Cov|[h(Xiy, Xiy)s f(Unta, - Ur)]-

1<i1<i2<n

) f (Un+17 Un+2a

7Uk)}
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Strong convergence for U-statistics
based on associated random

variables

In Chapter 3 we study strong convergence for U-statistics based on associated ran-
dom variables. The chapter is organized as follows. In Section 3.1 we present a strong
law for one sample U-statistics based on associated random variables which can be
found in Christofides (2000). In Section 3.2 we obtain a strong law for U-statistics
based on associated multidimensionally indexed random variables. Furthermore in
Section 3.3, we prove a strong law for multi-sample U-statistics based on collections of

associated random variables.

3.1 Strong law for one sample U-statistics based on
associated random variables

The following result gives a strong law of large numbers for demimartingales and
can be found in Christofides (2000). Christofides (2000) gives a strong law of large
numbers for U-Statistics based on associated random variables in the case where the
kernel of the U-statistic belongs to a large family of functions, called kernels of bounded

variation.

Lemma 3.1.1. Let Sy, S1,Ss, ... be a demimartingale, with So = 0. Let {c, k > 1} be

a nonincreasing sequence of positive numbers with limy_,o ¢ = 0. Assume that
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E|Sy|” < forv > 1, for all k. If

S AE (S~ [Sial’) < o0

k=1

then

CnSn =250, n — 00.

Combining Lemma 3.1.1 and Proposition 1.6.1 we get the following strong law of

large numbers.

Theorem 3.1.2. (Christofides (2002)). Let U, be a U-statistic based on a collection of
associated random variables and on the kernel h. Assume that E|Ug|” < oo forv >'1

and all k > m. Furthermore assume that h is componentwise nondecreasing. If
d (k+1)TE(U) <
k=m

then
U, — EU,) £ 0, n— oo.

A U-statistic based on associated random variables is a demimartingale if the kernel
h is componentwise nondecreasing. But not all kernels of interest fullfill this require-
ment. For example the kernel h(z;y) =| x —y | or h(z;y) = 1fz>,y. In that case,
the U-statistic defined is not necessarily a demimartingale. However, if the kernel h
belongs to a large family of functions which includes all nondecreasing functions then
the U-statistic can be expressed as the difference of two U-statistics, each of which
has a componentwise nondecreasing kernel. Christofides (2004) introduced this type
of kernels termed as kernels of bounded variation and also proves a strong law of large

numbers for this family of kernels.

Definition 3.1.3. (Christofides (2004)). Assume that [a,b],[c,d] C R and fis a real-
valued function defined on the rectangle [a, b] X [c,d]. For simplicity by Af((q,7), (s,t))
we denote the quantity f(r,t) — f(q,t) — f(r,s) + f(¢g,s) with a < g < r < b and
c<s<t<d. Let

a<xg<T < -+ <x,=>0

and

c<yYyp<p<---<y=d
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be any subdivisions of the intervals [a,b] and [c,d], respectively. Let

!
C’EZZMJC Ti1, %), (Yi—1,95))| -

i=1 j=1

The function f : [a,b] X [c,d] — R is called a function of bounded variation on |a,b] X
[c, d] if

C[];b]xcd =sup(C < oo.

Theorem 3.1.2 is extended to the case of kernels of bounded variation.

Theorem 3.1.4. (Christofides (2004)). Let U, be a U-statistic based on a collection of
associated random variables and on the kernel h. Assume that E|Uy|” < oo forv > 1

and all k > m. Furthermore assume that h is a function of bounded variation. If

Y k+1D)TE(U) <

k=m

then

a.s.

Un_E<Un) HO, n — OQ.

3.2 U-statistics based on associated multidimension-
ally indexed random variables

For a positive integer d let N¢ denote the d-dimensional positive integer lattice.
Furthermore, for n = (n4,...,ng4), we put |n| = Hle n;, and by n — oo we mean that
In| — oo (equivalently, max {ny,...,ny} — o0). For n, m € N with n = (ny, ..., ny)
and m = (my, ..., my) the notation n < m means that n; < m; Vi = 1,...,d while the

notation n < m means that n; <m; Vi =1,...,d with at least one inequality strict.

Definition 3.2.1. A collection of multidimensionally indexed random variables
{ Xk, k< mn, ne N} issaid to be associated if for any two coordinatewise nondecreas-

ing functions f and g
cov(f(Xg, k< n),g(Xp, k<mn)) >0,

provided that the covariance is defined. An infinite collection is associated if every finite

subcollection is associated.
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The above definition is just the classical definition of association stated for the case
of multidimensionally indexed random variables. The index of the variables in no way
affects the qualitative property of association, i.e., that nondecreasing functions of all

(or some) of the variables are nonnegatively correlated.

Definition 3.2.2. Let {Sn, n < Nd} be a collection of multidimensionally indexed ran-

dom wvariables. The collection is called a multidimensionally indexed demimartingale
if
E[(Se=50) f (S k<7)] =0

for all t,r € N% with r < t and for all componentwise nondecreasing functions f.

It is easy to verify that the partial sum of mean zero associated multidimensionally

indexed random variables is a multidimensionally indexed demimartingale.

A U-statistic on multidimensionally indexed random variables can be defined as

follows:

Definition 3.2.3. Let {Xi, k< n, n€ N9} be a collection of identically distributed
associated multidimensionally indexed random variables. Let h be a symmetric mapping

from R™ to R with m < |n|. We define the corresponding U-statistic
v, = (1" _IZh(X- Xis s X;)
n m - 21 29 tm

||
m

{8, %, ..., 2} from {(1,...;1), ..., (n1,....,nq) }.

where ). denotes the summation over the ( ) combinations of the m distinct elements

A U-statistic as given by Definition 3.2.3 can be shown to be expressed in terms

of a multidimensionally indexed demimartingale under the usual assumptions on the

kernel h.

Proposition 3.2.4. Assume for simplicity that d=2. Let U, be a U-statistic with
m = 2 based on a sample of associated random variables and on the kernel h. Let
S, = (‘;")Un where n = (ny,n2), ng > 1, ng > 1 and |n| > 2. Assume that h is
componentwise nondecreasing and that E(h) = 0. Then the collection {Sn, m > 1} is

a multidimensionally indexed demimartingale.
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Proof. Let

Zh (X3, X;5) Zh (X3, X;)

where t = (t1,t3) and r = (ry,rp) with r < t. Also ¢ and ¢; denote the summation
over the (|’21|) combinations of the m=2 distinct elements {i,j} from {(1,1), ..., (r1,72)}
and {(1,1), ..., (t1,t2)} respectively.

We can write

Se— S =Y h(Xi,Xj).

Ct-r

Then for any componentwise nondecreasing function f we have

E[(Se—S) f(Sek<1)] =Y E[(X:, X)) f (Sk, k <71)]

Ct-r

= Eh(X:, X;) g (X k <1)]

Ct-r

>0

where the function g defined as:

g (X, k<r) Z h(xyq,x;), Z h(xy 2, 1;), Z h(x21,x;),

(1,1)<j<r (1,2)<j<r (2,1)<j<r

Z h<x7’1—1,7’27xj)7 Z h(xT17T2—17xj))7

r1—1,ra<j<r r1,r2—1<j<r

is componentwise nondecreacing since h, fare componentwise nondecreacing, (see prop-

erty 4 in Esary et al. (1967)). W

3.2.1 A strong law in the case of nondecreasing kernels

The following result gives a strong law of large numbers for multidimensionally

indexed demimartingales and can be found in Christofides and Hadjikyriakou (2011).

Lemma 3.2.5. Assume that {Yy, k € N}, {c, k ¢ N} and the function g is a
nonnegative convexr function on R with g(0) = 0. Further assume that there exists
a number p > 1 such that Elg(Yy)]P < oo for all k and for some 1 < s < d,
2B (g(YD)]" = [9(Visin,—1)]") < 00 and 3 o, v E([9(Yisn)]?) < oo for each
N € N. Then

crg(Ye) 2250, as k—oo,
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where Yigi = Yi,  ky_vikysr. kg, 06, at the s position of the index k the component k,
15 equal to i, and where Yy, should be taken to be zero if at least one of ky, ..., kq 1s zero.
In the simple case where g(z) = 2 and d = 2 we have the following result.

Lemma 3.2.6. Let {S,, n € N} be a multidimensionally indexed demimartingale and
{cn, m € N?} a nonincreasing array of positive numbers. Assume that there exists a

number p > 1 such that E|S;;|" < oo, for alli>1, j > 1 and

ZchE |Sin|]? <00 ¥V NeN  and ZZC%EUSUV) —[8i—1;") < o0

i=1 =2 j=1

or
Zcﬁ’vjE\SNﬂp <oo V NeN and ZZC%EOS@'HP —|Sij-1l?) < 0.
=1 i=1 j=2

Then

Cryny Sning —23 0, as (ny,ng) — o0o.
Combining Lemma 3.2.6 and Proposition 3.2.4 we get the following strong law

of large numbers for a U-statistics based on multidimensionally indexed associated

random variables. First a simple auxiliary result is needed.

()7~ ] @ -

fori>1,7>1,m>1 and p>1.

Lemma 3.2.7.

Proof.

(3.2.1)

[\

3
N
3 &
"
X
+
—
| ——|
7N
3 8
~
|

|
VRS
~.
()
RS
[
S~—
"
L
| I |
VAR
3 8
~
kS
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eIy

iGHDEG+1D) =1 [i(G+ 1) =m+1—ij(ij— 1) (i —m+1)
G+ DEG+1) =1 i+ 1) —m+ 1]

i+ D™ = (i —m+ 1"
[i(j+1)—m+ 1™

mli(j+ D] i +m — 1)
S TG ) —met 1 (322)

- oG

where (3.2.1) and (3.2.2) follow from the elementary inequality 2" —y" < ra" ! (z — y)
which is valid for z,y > 0, > 1. R

Theorem 3.2.8. Let U, be a U-statistic based on a collection of multidimensionally
indexed associated random variables (d = 2) and on the kernel h. Assume that h is
componentiwise nondecreasing and E |U;|” < oo for p > 1 and for alli > my, j > my.

Furthermore assume that

ST ElUNP<oo ¥ NeEN and > > jTE(U4) < 0

i=m1 i=mi j=mao+1

or

S EUnP<oo ¥V NeEN and Y Y i'B(Uy") < 0

Jj=ma i=mi1+1 j=mo

then

Proof. Let S,, = (L‘;')Un for m < |n| and S,, = 0 for m > |n|. Since h is nondecreasing,
~1
Sh is a multidimensionally indexed demimartingale. Clearly ¢,, = (l::l‘) is a decreasing

sequence of positive numbers.

By Lemma 2.1 of Christofides and Hadjikyriakou (2011) which obtain a strong law
of large numbers for multidimensionally indexed demimartingales, where g(z) = x and

d = 2, we observe that
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provided that

Z C?NElsiN|p < o0

for all N € N, and
A E

1=my j=mao+1

(‘Sz‘j|p - |Sij—1|p) < 0.

Observe that

) [eS) iN —p iN » o
._z:chE|SiN|p:,_z: (m) E (m)UiN :'_ EUin|" < o0
for all N € N, and
> > GBS~ 1Sil")
i=my j=mz+1
oo o0 .. —p
i
-3 % () Esr - 1sn
i=my j=ma+1
o e /. .\ —p . —p]
tJ i(j+1)
>3 () - (Yar) | s

i=mq j=ma+1

i=m1 j=ma+1 L

)

i(j+1
m

)

) B,

ij
m

< i i j_lElUZ‘j|p<OO

i=mq j=ma+1

where the last inequality follows from Lemma 3.2.7. W
Usually strong laws for U-statistics are stated with conditions on the moments of
kernel h. Lemma 3.2.10 gives conditions on h under which the moment condition of

Theorem 3.2.8 holds true. Before we obtain Lemma 3.2.10 we present a moment bound

for associated random fields by Bulinski (1994).
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Proposition 3.2.9. (Bulinski (1994)). Let U be the class of blocks in Z?, that is,
of sets F' = ((ay,b1] x (ag,bs]) N Z%, a; < by, a;, b € R, i = 1,2. Let F =
{(1—e,n] x (1 —¢€,n9]} NZ?* where 0 < ¢ < 1 and |F| is the cardinality of F. Let
{Xj, j € N?} be a collection of identically distributed associated multidimensionally
indexed random variables. Assume that E(Xj) = 0 and for some p > 2, § > 0,
0<u< # where k =0 4 (p+ 9) (p — 2) the collection satisfies

sup B | X;/" < oo,
jez?

0/k
sup Z [Z cov (Xi,Xj)] = O (In|)".

Fev .
|Fl=[n] (JEF LréF
Then

DX

jeF

p} =0 (InP”?).

sup { F
Fev

|F[=[n]

Lemma 3.2.10. Let U be the class of blocks in Z?, that is, of sets F' = ((a1, b1] x (ag, by])N
72, a; < b;, a;, by € R, 1 = 1,2. Let F = {(1 —¢&,m] x (1 —¢,ny]} N Z* where
0 < e < 1 and |F| is the cardinality of F. Let {Xj, j € N*} be a collection of
identically distributed associated multidimensionally indexed random variables. Let U,
be a U-statistic based on the collection of multidimensionally indexed associated ran-
dom wvariables and on the kernel h. Assume that h is componentiwise nondecreasing,
E(h) =0 and for somep>2,6>0,0<pu< # where k = 3§ + (p+9) (p — 2) the

collection satisfies

sup E |h(X;, X;)|P < oo,

1,jEZ?
and
/K

sup 4 > [ Y cov [A(Xs, X5), h(Xy, X)) = O (In|)*.

F|on| | 1IEF [trgF
Then

E|U.” =0 (yny—p/2> .
Proof. )
’ 1
p __ . . — — . .
E|S,ff =E ;h(Xl,XJ) - F Qi;jgh(xl,xj) , (3.2.3)
A
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where ) denotes the summation over the ("21‘) combinations of the two distinct ele-

ments {i,j} from {(1,1),...,(ny,n2)}.

p

1
P p—1
E|S." < o In| E E

i<n

Zh(XhXj)

j<n

, (3.2.4)

where (3.2.4) follows from (3.2.3) and Proposition 2.1.1. Since h is a nondecreasing
function, the collection of random variables {h(Xj, Xi), k <n, n € N%} is associated

(see property 4 in Esary et al. (1967)). By Proposition 3.2.9 we have that

1

- I ] A

E|Sa|" <
where A is a constant which does not depend on |n|. Finally
E |Un|P < ]n]_sz|n|3p/2 < A\n\_p/Q

= E|U," =0 <|n’—p/2> m

3.2.2 A strong law in the case of kernels of bounded variation

Recall the definition of kernels of bounded variation of dimension two introduced

in Section 3.1.

Theorem 3.2.11. (Christofides (2004)). A function f : [a,b] X [c,d] — R is of
bounded variation on |a,b] X [c,d] if and only if it can be written as the difference of two
componentwise nondecreasing functions G, H on [a, b] X [c, d] with AG((q,7), (s,t)) >0
and AH((q,7),(s,t)) >0 fora<qg<r<b c<s<t<d.

Remark 3.2.12. The results for functions of bounded variation are presented in the
case of functions defined on R?. The extension to higher dimensions is straightforward
by using induction. However, the notation becomes cumbersome. For example, in the
case of a real function of bounded variation defined on the parallelepiped

[a1, b1] X [ag, ba] X [ag, bs] the statement of Theorem 3.2.11 involves the quantity

AG((q,1),(s,t), (u,v)) defined as
G(r,t,v)—G(q,t,v)—G(r,s,v)+G(q, s,v)—G(r,t,u)+G(q, t,u)+G(r,s,u)—G(q, s,u)

forap <g<r<by, as<s<t<by, a3 <u<v<bs.
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Theorem 3.2.13. Let U, be a U-statistic based on a collection of multidimensionally
indexed associated random variables (d = 2) and on the kernel h. Assume that h is a
function of bounded variation and E|Uy;|" < oo for p > 1 and for all i > my, j > mo.

Furthermore assume that

Y EUnP<oo V NEN and Y > jE(U;P) <o (3.25)

i=mq i=m1 j=mo+1

or

Y E|Uyf <o ¥V NeEN and Y Y i'B(U;P) < oo

Jj=mz i=mi1+1 j=mso

Then

Un— E(Un) %50, 1 — oo

Proof. By Theorem 3.1 of Christofides (2004) the kernel h can be written as the
difference of two componentwise nondecreasing functions, say G and H whose explicit
expressions can be found in the proof of the theorem. Therefore U, can be expressed

as

Uy =UY —UD, (3.2.6)

where U" and U? are U-statistics based on the componentwise nondecreasing kernels

G and H, respectively. From Theorem 3.2.8 it follows that

Ul — BUM) 50, n— oo (3.2.7)
and
U - EBUP) 250, n— oo (3.2.8)

provided that

SN B < (3.2.9)

i=m1 j=mo+1

and

SN STEUSP < . (3.2.10)

i=mq j=ma+1
By the construction of the functions G and F' both (3.2.9) and (3.2.10) are implied by

(3.2.5). The result now follows from (3.2.7) and (3.2.8). W

Remark 3.2.14. Condition (3.2.5) is stated in terms of the moments of the U-statistic.

This in a way says that convergence depends not only on the kernel h but also on the
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nature of the observations. Let us consider the following example.

Example 3.2.15. Let X be a random variable with E|X| < oo and let

121, 521

Y

Then {X;j,i >1,j > 1} are associated by properties (P3) and (P4) of Esary et al.
(1967). Let h(x;y) = |v — y| and consider the U-statistic based on {X;;,i > 1,7 > 1}

and on the kernel h, which is a function of bounded variation. Then

log Z] +1)  log(kl+1)
kl '

_ x| (””)ZZ >y

i=1 j=1 k=i+1l=j+1

Direct computation shows that condition (3.2.5) for p =1 is satisfied and by Theorem
3.2.183 the strong law of large numbers holds. Consider now the U-statistic based on

the same kernel, but on the observations {Y;;,i > 1,j > 1} where

Then

—1ni—1no—1 nq
U, = | X]| (”1"2) % Z lij log(ij) — kllog(kl)|
1 j=1 k=

= i+11=j+1

It can easily be shown by direct computation that U, does not converge. In addition,

condition (3.2.5) for p =1 is violated.

3.3 Multi-sample U-statistics on collections of as-
sociated random variables

U-statistics can also be extended to multisample setups. For example, in a two-
sample model, let {X;, Xs, ..., X,,, } be a finite collection of identically distributed as-
sociated random variables with distribution F and {Y},Y5,...,Y,,} be another finite
collection of identically distributed associated random variables with distribution func-

tion G. Assume that the two samples are independent. We write ¢ = 9 (F, G) as

19 = EIF,G [h (X17X27 "'JXm1;}/17}/27 7Ym2)]
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where my, mo are positive integers my; < ny , my < ny and the kernel A is a symmetric,

in each set of X3, Xs, ..., X;,, and Y7, Y5, ..., ¥,,, mapping R™*™2 to R.

We define the generalized or two-sample U-statistic as

—1 —1
ni 9
Un1,n2 = (ml) (m2> Z h (XilaXiza "'aXiml;)/j1a}/j27 "'75/jm2)
1§i1<i2<"'<iml <n

1§.71 <j2<"'<.jm2§n2

where >° denotes the summation over the (:11) combinations
1§i1<i2<---<im1§n1 !
1<ji<jo< - <Jmy <o

of the my distinct elements {iq,1s,. .., 0y, } from {1,...,n;} and the (:122) combinations

of the my distinct elements {j1, ja, . .., jm,} from {1,...,no} respectively.

U-statistics on more than two independent samples of associated random variables

can be defined in a similar way. In the simplest case where m; = my = 1 we have

1 ni 2

Example 3.3.1. (Lee (1990)). Let {X1, Xs, ..., Xpn, } be a finite collection of associated
identically distributed random variables with distribution function F and {Y1,Ya, ..., Yy, }
be another finite collection of associated identically distributed random variables with
distribution function G. The two samples are independent. Let R; denote the rank of

Y; in the combined sample. Then the Wilcoxon rank sum statistic is

W — iRﬂ
j=1

If we define
h(z;y) = Loy
0 otherwise;
and .
1 1 N2
Ui = 0, ZZh (Xi:¥)

i=1 j=1

then in the absence of ties it can be shown that

W = nanUnhTQ + TLQ(HQ + 1)/2
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Here the generalized U-statistic which is the two sample Wilcoxon (Mann-Whitney)
statistic is the estimator of ¥ = P(X; < Y1).

Example 3.3.2. (Kowalski (2008)). Let {Xi,Xa,..., X, } be a finite collection of
wdentically distributed associated random variables with a continuous distribution with
variance o3 and {Y1,Ys,....,Y,,} be another finite collection of identically distributed
associated random wvariables with a continuous distribution function with variance o3.

The two samples are independent.

For the two sample U-statistic, in the case of mi = mo = 2, let us define a sym-
metric kernel as follows:

1

(21 — $2)2 ) (1 — y2)2 .

N | —

h(x1, 22591, 42) =
Then, it follows that
¥ =FEh(X, X2 Y1,Ys)] =0} — 05

If 9 = 0, then the two populations have the same variance. Thus the two sample

U-statistic given by

-1 -1
n1 N2 .
Un1,n2 = <2) (2> Z Z h(XhaXleY}nY}Q)
1< <iz<ny 1<j1<j2<n2

can be used to test the null hypothesis of equal variances between the two populations.

The following result shows that a multisample U-statistic on collections of associ-
ated random variables, under certain conditions on the kernel, is a multidimensionally

indexed demimartingale.

Proposition 3.3.3. Assume for simplicity that d=2. Let U,, », be a U-statistic with
m1 = mo = 1 based on two independent samples with associated random variables and
on the kernel h. Let Sy, n, = ninaUp, n, where ny > my,ng > my. Assume that h is

componentwise nondecreasing and that E(h) = 0. Then the sequence
{Snins, M1 > My, No > ma}

15 a multidimensionally indexed demimartingale.
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Proof. Let

to 71 T2

h(Xi:Y)), Se =) > h(X;Y))
1

=1 j=1

t1
i=1

=1 j=

where t = (t1,%3) and r = (r1,79) with r < t.

We can write

Sy — S—ZithY +§:Zh Xi;Y;) Z th,,y

i=r1+1 j=1 i=1 j=ro+1 i=r1+1 j=ro+1

Then for any componentwise nondecreasing function f we have

E[(St — Se) f (S, k <) = ZZE 3 Y)f (S k < 1)
1=r1+1 j=1

1

PSS B Sk <ol Y D BN (S < 1)

i=1 j=ro+1 i=r1+1 j=ro+1

Z ZE z, j X17X27---aXm;Yla}/Qa-“aY;z)]

= r1+1] 1

+Z Z E “ ] (XhXQ,...,Xrl;Yi,}/é,...,K2)]

=1 j=ro+1
—+ Z Z z; ] (X17X27‘-‘7X7“1;}/17§/27"'7}/;’2)]
1=r1+1 j=ro+1

>0

where the function g defined as:

g (X17X27 "'7X7'1;}/17}/27 "'7}/;“2)

1 2 2 L T2

h(fEl;yl)aZZh(fEi;yj)aZZ (@5 97)s o D> i)

i=1 j=1 i=1 j=1 =1 j=1

is componentwise nondecreacing since h and f are componentwise nondecreacing, (see
property 4 in Esary et al. (1967)). The last inequality follows from the nondecreasing-
ness of the function ¢ and the fact that the sequences {X;,7 > 1} and {Y;,j > 1} are

associated random variables, and the two sequences are independent. W
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3.3.1 A strong law in the case of nondecreasing kernels

Theorem 3.3.4. Let U,, », be a two-sample U-statistic based on two collections of
associated random variables and on the kernel h. Assume that h is componentiwise
nondecreasing and E |U;;|” < oo for p > 1 and for all i > my, j > may. Furthermore

assume that

ST EUNP <00 ¥ NeN and Y > jTE(U4P) < 0

i=m1 i=mi j=mao+1

or

S EUnP<oo ¥V NeEN  and Y Y iT'B(|U4P) < .

Jj=ma i=m1+1 j=mag
Then

Un17n2 ) (Unl,n2) E'_> 07 as (n17n2) — O0.

Proof. Let S, n, = (;;11) (;Z)Uan for my < ny and my < ny. Since h is nondecreas-

ing, Sy, n, is @ multidimensionally indexed demimartingale. Clearly

-1 -1
ni no
Cn17n2 :
ma mo

is a decreasing sequence of positive numbers. By Lemma 2.1 of Christofides and Had-
jikyriakou (2011) which obtain a strong law of large numbers for multidimensionally

indexed demimartingales, where g(x) = = and d = 2, we observe that

1 1
(nl) (nQ) (Snyng — F (Snyng)) 2250, as (ny,my) — 00

ma mo

provided that

> dNE|SivlP < o

=m1

for all N € N, and
DD BE(Sy" — 1S5) < oo

1=mj j=mao+1

Observe that

s £ (0 (2) 7|4

=m1 =m1

p 00
= E|UiN|p<OO

=m
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for all N € N, and

> ) GE(SP - 1S5

i=mq j=mao+1

-2 2 ()72 "eusul - 1ssar)

i=m1 j=ma+1

-y Y (ml ()= (0) O T sasam

i=m1 j=mo+1 L

) )

_i;g: (m) (o) = Go) O () () e
(o) -
)"

I
¢
M
En

2

9y ¥ (7;2
mao—+1

i=my j=

2

=pmy Y > G+ 1)TE(UL)

i=1 j=ma+1

< i i JTE U, < o0,

i=mq j=mo+1

where the last equality follows from the inequality " — y" < r2" ! (z — y) which is

valid for z,y > 0,r>1. A
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Stochastic orders and distances for

U-statistics

Limit theorems for U-statistics are usually considered for the Kolmogorov metric.
Our goal is to depart from this approach and provide an alternative approach for the
distance between a U-statistic and a normal random variable. In particular, in Section
4.1, we give the distance between a U-statistic U, based on associated random vari-
ables and a U-statistic U} based on i.i.d. random variables. Asymptotic normality for
U-statistics based on associated random variables is presented in Section 4.2. In Sec-
tion 4.3 we obtain the distance between a U-statistic based on i.i.d. random variables
and a normal random variable by utilizing Zolotarev’s ideal metric. This result also
establishes a central limit theorem for U-statistics, with an alternative technique, using
probability metrics. Corresponding results are also investigated for von Mises statis-
tics. In Section 4.4 we also prove similar results for U-statistics based on negatively

associated random variables also under Zolotarev’s ideal metric.

4.1 Distance between U, based on associated ran-
dom variables and U] based on i.i.d. random
variables

Generally speaking, stochastic ordering tries to order random variables according
to an appropriate criterion. In this section before we study our main object which

is the distance between a U-statistic U,, based on associated random variables and a
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U-statistic U based on i.i.d. random variables, we present some definitions and results

that are connected with stochastic orderings.

4.1.1 Stochastic ordering of random variables

Definition 4.1.1. (a) A random wvariable X is said to be smaller than a random
variable Y in the convex order, denoted by X <. Y, if Ef(X) < Ef(Y) for all convex

functions f for which the expectations exist.

(b) A random wvariable X is smaller than a random wvariable Y in the increasing
convex order, denoted by X < Y, if Ef(X) < Ef(Y) for all increasing convex

functions f for which the expectations exist.

Similarly, one may define the so-called concave and increasing concave orders de-

noted by <X and <., TESpectively.

Lemma 4.1.2. (Shaked and Shanthikumar (1997), p.197). Let X and Y be a pair of
random variables. If X Kiee Y and E(X) = E(Y), then X <. Y.

Now we turn our attention to a multivariate stochastic order which is based on
the notion of supermodularity. For any two points x = (z1,29,...,2,) and y =

(Y1, Y2, -y Yn), X, y € R", define the componentwise maximum as

x Vy = (max{zy,y1}, max{za, yo}, ..., max{z,, y, })

and the componentwise minimum as

x Ay := (min{xy, y1 }, min{xs, yo }, ..., min{x,, y, }).

Definition 4.1.3. A function f : R* — R is called supermodular (superadditive or
L-superadditive) if

flevy + fleny) > fle)+ f(y), VayeR"

On the other hand, a function is called submodular (subadditive or L-subadditive) if
the reverse inequality holds true. A function f is supermodular if and only if -f is

submodular.
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Definition 4.1.4. A random vector X = (X1, Xo, ..., X;,) is said to be smaller than a
random vector Y = (Y1,Ys,...,Y,) in the supermodular order, denoted by X <sm Y, if
Ef(X) < Ef(Y) for all supermodular functions f for which the expectations exist.

Consider a collection of real-valued random variables X7, X, ..., X,,. Then, through-
out this chapter we shall use the notation X7, X3, ..., X' to denote independent random
variables such that X; =, X for all i = 1,...,n (where = denotes equality in distri-

bution).

Lemma 4.1.5. (Christofides and Vaggelatou (2004)).
(a) Let X1, Xa, ..., X,, be a collection of weakly associated r.v.’s. Then

(p(Xl, XQ, ceey Xn> %icm (,O(Xf, X;, . X;)

for every ¢ monotone and supermodular.

(b) If X1, X, ..., X, is a collection of negatively associated r.v.’s, then

@(Xl, XQ, ceey Xn> %iaz ()O(Xf, X;, ceey XT*L)

for every ¢ monotone and supermodular.

Lemma 4.1.6. If a function f : M — R defined on a nonempty subset M of R™ and

taking real values is convex, then g(x) = f(cx) is also convex, where ¢ is a real number.

Proof. For any z,y € M and every A € [0, 1], we have that

g Az + (1= Ny) = flehz +c(1 = Ny).

Now from the convexity of f we have that function g is also convex,

fledz +c(1 = N)y) < Af(ex) + (1= A)f(ey) < Ag(z) + (1 = N)g(y). B

Lemma 4.1.7. Let X,Y be random variables such that X <., Y. For a > 0, then

aX <., aY.
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Proof. From the definition of the convex order we have that Ff(X) < Ef(Y) for
all convex functions f for which the expectations exist. According to Lemma 4.1.6 we

have that Ef(aX) < Ef(aY) because f(ax) is also convex. So we have the result. B

Remark 4.1.8. [t is obvious that in the same manner we can prove that if f is an

increasing convex function then g(z) = f(cx) is also increasing convez, where ¢ > 0.

Lemma 4.1.9. (Shaked and Shanthikumar (1997), p.123). Let X be a random variable
with E(X) =0. Then
X e X,

whenever ¢ > 1.

Lemma 4.1.10. Let X,Y be random variables such that X <. Y, and 0 < a < b.
Then
aX <q bY

respectively.

Proof. Applying Lemma 4.1.7, for a > 0 we have that
X <Y = aX <, aY.
Since g > 1, from Lemma 4.1.9 we arrive at
b
aX <K aY = aX K 0-Y = aX L, 0Y.
a

Remark 4.1.11. [t is obvious that in the same manner we can prove that the previous

result also applies in the case of X <o Y.

Lemma 4.1.12. Let {X,,,n > 1} be a finite collection of identically distributed asso-
ciated stationary random variables with a continuous distribution F and {X},n > 1}
be a finite collection of identically distributed independent random wvariables with the
same continuous distribution F'. Moreover let U,, be the U-statistic based on the associ-
ated random variables and on the kernel h assumed to be monotone and supermodular.

Let U} be the U-statistic based on the independent random variables and on the kernel

h. Assume that E[h(X1, Xo)] = E[R(X},X5)] = 0. If oy = of +23 2, of; where
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o7 = Var[hy (X1)] and oF; = cov(hi(X1), hi(X145)), then

1o 1
n2U} n2U,
™NCcT N

20'U 20‘[]

Proof. Applying Lemma 4.1.5 of Christofides and Vaggelatou (2004), if & is monotone

n n
U* 41’0:): Un
(505 <= (3)

because the summation of monotone and supermodular functions is monotone and

and supermodular

supermodular. Furthermore from Lemma 4.1.2 we have that

n n
U* 4C$ Un?
because Eh(X1, Xo)] = E[h(X7, X})|. Finally applying Lemma 4.1.10 we get that

1 1
1oy 1
n2U; n2U,
™N'Ccx

20'U 20’U

Proposition 4.1.13. (Boutsikas and Vaggelatou (2002)). Let us denote by ¥;,(R),
U C R, the space of all random variables X defined on the probability space (2, A, P)
and taking values in U with B|X|* < oco. If X, Y € ¥*(R) and X <. Y, then

G(X,)Y) =-[Var(Y) — Var(X)].

1
2
Proposition 4.1.14. The variance of the U-statistic based on i.i.d. random variables

403 1
Var (U,,) = ﬂ+0<—).

n n

18

Proposition 4.1.15. Let U,, be a U-statistic based on stationary associated (or nega-

tively associated) random variables and of, = 0% + 2 Z;; O'%j. Then

4o} 1
Var (U,,) = &+0<—),

n n

where o} = Var[h; (X1)] < oo and 03; = cov(hi(X1), hi(X14;5))-
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4.1.2 Distance between U, and U}

Theorem 4.1.16. Let {X,,,n > 1} be a finite collection of identically distributed asso-
ciated stationary random variables with a continuous distribution F' and {X},n > 1}
be a finite collection of identically distributed independent random variables with the
same continuous distribution F'. Moreover let U,, be the U-statistic based on the associ-
ated random variables and on the kernel h assumed to be monotone and supermodular.
Let U} be the U-statistic based on the independent random variables and on the kernel
h. Assume that E[h(X1, X,)] = E[R(X},X5)] = 0. If oy = o +23 72, 0f; where
o} = Varl[hy (X1)] and o7; = cov(hy(X1), hi(X14;)). Then

1 1
n2U, n2U* o2
Ll=(1-— 1).
<2<20_U7 20_1> ( 20_[2]>+0<)
Proof. Using the triangular inequality and applying Lemma 4.1.12 and Proposition
4.1.13 we have that

n%Un H%U; H%Un n%U;'; n%U: n%U;’;
CQ ) < CQ ) + CQ )
20‘U 20’1 20’U 20’U 20'U 20‘1

1 3 nzlU* 1 nzU* nzU*
— v _V (AN IR RV; ny _y n
5 [Var(5, =) = Var(5 %) | + 5 |Var(5 —#) = Var(5 %)

n (40} 1 n (4o} 1
+tos|—Fol-) | sz (—+Fo| =
807 \ 1 n 8o \ 1 n

0.2

= (1—%) +o0(1). |

4.2 Asymptotic normality for U-statistics based on
associated random variables

In this section we investigate the distance between a U-statistic based on a collection

of identically distributed associated random variables with distribution function F' and
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a normal random variable under the Kolmogorov metric. We present an alternative
way to the approach of Garg and Dewan (2015) to prove asymptotic normality for this
type of U-statistics.

4.2.1 Definitions and related results

Below is a list of various metrics and related results that are needed for our expo-

sition.

Proposition 4.2.1. (Lyapunov’s Inequality). Let X be a random variable, with

E| X |'< co. Then, for 0 < s <t < oo,

1 1
S t

[E|X[] < [E|X]]".

Definition 4.2.2. Let 7, (X,Y) = E | X®) — Y|, where ) =z lz|*~" fors > 1, and

7. (X,Y) =inf 7, (X, Y),

where the infimum is taken over all joint distributions Pxy whose marginal distribu-

tions P (X < z) and P(Y <y) are fized.

Proposition 4.2.3. (Sharakhmetov (2004)). The metric ks (X,Y) is minimal for the
metric Ts (X,Y), that is, ks (X,Y) < 75 (X,Y) and 75 (X, Y) = ks (X, Y).

Definition 4.2.4. Let X,Y be random variables. Then (), is defined as
G (X,Y) = sup {|BF(X) = B |7, < 1.

where 1/p+1/q=1 and m = 0,1,2,.... By f'™*Y) we denote the (m + 1)th derivative

of the density function f and ||.||, denotes the L? norm.

Remark 4.2.5. (Rachev (1991), p. 270). When m =0 and p =1, we have that
Coa (X,Y) <k (X,Y).
Proposition 4.2.6. (Rachev (1991), p. 303). Let X,Y random variables. Then
L(X,Y) < [emplmp (X, V)0

73



Chapter 4 Section 4.2

where L (X,Y) is the Levy metric, r = m+ 1/p and

_ (2m+2)!(2m + 3)1/2
T e I 2/p)

Applying Proposition 4.2.6 we have the next two remarks.

Remark 4.2.7. (Rachev (1991), p.258).

L(X,Y)<[46 (X, 7).
Remark 4.2.8. Combining Remark 4.2.5 and Proposition 4.2.6 we have that,

L(X,Y) < [2v3 5y (X,Y)] v

Proposition 4.2.9. (Rachev (1991), p. 303). If Y has a bounded density py, then

p(X,Y) < <1 +su§}R)py (ac)) L(X)Y).

Proposition 4.2.10. (Boutsikas and Vaggelatou (2002)). Let X1, Xo, ... be a strictly
stationary sequence of associated random variables such that E(X;) =0 and

0 < E(X?) <oo. If o := BE(X?) + 2377, E(X1X;) < 0o, then, for n = mk,

G <Z\ZEXY) < [o?— B (X7)] +2<1—%>u(ak)+c%

for some constant ¢ > 0, where Y is a standard normal random variable, {ay} is

any sequence of positive integers such that ar, < k, a — oo, % — 0 as k — oo,
Lk

pr i =FE ‘k‘ 2y X

3
and u(i) == Y72, | B (X1X;) — 0 as i — oo.

Lemma 4.2.11. Let U, be a U-statistic of dimension two based on stationary associated
random variables and on the kernel h. Assume that E(h) =0 and 0 < E(h?) < co. If
of = 01 + 2372, 0, where of = Var[hy (X1)] and of; = cov(hi(X1), hi(X115)) < oo,
then, for n = mk,

1
m?2

G (n% S h® () ,Y) < % [o—?] — E (h" (Xl))2] +2 (1 - %) u (ag) + c 22
i=1
for some constant ¢ > 0, where Y is a standard normal random variable, {ay} is any
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sequence of positive integers such that ap < k, ar — 0o, % — 0 as k — oo, pp =

3
Elk2 30 AW (X5)| and u(i) =32 B (R (X1) A (X)) = 0 as i — 0.
Proof. Apply Lemma 4.2.10. W

Remark 4.2.12. Note that

G (n% Z h (X;) ,Y> =o0(1), asn — .
i—1

Definition 4.2.13. (Garg and Dewan (2015)). The Vitali variation of a function f :
la,b] = R, where [a,b] = {x € R¥ : a < x < b}, a,b € R k € N is defined as || f|,, =
SUp Y pea |ArSf|. The supremum is taken over all finite collections of k-dimensional
rectangles A = {R; : 1 < i < m} such that ", R; = [a,b], and the interiors of any two
rectangles in A are disjoint. Here, if R = [c,d], a k-dimensional rectangle contained
in la,b], then, Apf = Zlg{m,...,k}(_1>|I‘f(w1)7 where, x; is the vector in R* whose ith
element is given by ¢; ifi € I, or by d; ifi ¢ I, fy = f(b). For instance, if k =2 and
R = [c1,di] X [ca,d] then, Arf = f(di,ds) — f(c1,d2) — f(di,c2) + f(cr,ca).

Definition 4.2.14. (Garg and Dewan (2015)). The Hardy-Krause variation of a func-
tion f : [a,b] — R, where [a,b] = {x € R* : a < x < b}, a,b € R¥ k € N is given by

HfHHK = Zw;ﬂg
the real valued function on [, la;,b;] obtained by setting the ith argument of f equal

w 1 f1lly- Here, given a non-empty set I C {1,2,....k}, fi denotes

.....

to b; whenever i & I.

Remark 4.2.15. When k = 1, the Hardy-Krause variation is equivalent to the Vitali

variation and hence the standard definition of total variation.

Lemma 4.2.16. (Garg and Dewan (2015)). Let {X,,, n > 1} be a sequence of station-
ary associated random variables with | X,| < C; < oo, for alln > 1. Assume that the
density function of X1, denoted by f, is bounded. If h\®(xz,y) is a degenerate symmet-
ric kernel of degree 2 which is of bounded Hardy-Krause variation and left continuous,

then, under the condition

Z COV(Xl, Xj)fy < 00,
j=1
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for some 0 < v < %,

Z Z @ ( (Xi, X ) h® (Xk7Xl))| = o(n?).

1<i<j<n 1<k<i<n

4.2.2 Asymptotic normality

Lemma 4.2.17. Assume the conditions of Lemma 4.2.16 hold and let
A (i j, 1) = cov [W? (X5, X;) b (X, X))

Then

Proof.

peT=(3) XY aGik

1<i<j<n 1<k<I<n

(Z>_ Y Y B (X X) h® (X, X)) |

1<i<j<n 1<k<Ii<n
_ -1
=o(n ). W

Lemma 4.2.18. Assume the conditions of Lemma 4.2.16 hold. Then

> WP (X, X;)

1<i<j<n

[Z > Azg,kl]l

1<i<j<n 1<k<iI<n

—o(n}).

Proof. Applying Lemma 4.2.17 and Proposition 4.2.1 we get

(e
(5) [E121]
-(3)|

E| > (X X))

1<i<j<n

N

IN

(Z)_Q S Y AGgkD

1<i<j<n 1<k<I<n

N
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:[ > Y A(i,j,k,l)r

1<i<j<n 1<k<i<n

—o(nt). m

Lemma 4.2.19. Assume the conditions of Lemma 4.2.16 hold. Then

K1 (n;Un’ 11 ih(l) (Xl)) = 0(1)'

2UU n2oy i—1

Proof. Applying Proposition 4.2.3 we have that

U, 1 & U, 1 <&
K1 (n U y I Zh(l) (X1)> <7 (n » I Zh(l) (Xz)>
1

200 n2oy i 200 n2oy i1

1
nzU, 1
- > V(X))

20’U 7150'(] i—1

=E h? (X, X))

ni(n — oy
nZ(n - UU 1<i<j<n

1

nz(n—1)oy

> (X, X))

1<i<j<n

Finally, from Lemma 4.2.18 we have that

K1 (n%U”, 11 ihm (Xi)> =o0(1). W

20’U n2oy =1

Theorem 4.2.20. Let {X,,,n > 1} be a finite collection of identically distributed asso-
ciated stationary random variables with a distribution function F'. Assume the condi-
tions of Lemma 4.2.16 hold. Moreover let U, be a U-statistic of dimension two based on
the kernel h and the given observations. Also assume that E(h) =0, 0 < E(h?) < oo
and 377, E(X1X;) = 0 as i — oo. Then

n2U,
p( ",Y)—>O as mn — oo,
20’U

where Y is a standard normal random variable.
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Proof. Using the triangular inequality, Proposition 4.2.9 and the inequalities between

the metrics (Remarks 4.2.7 and 4.2.8), we have that

n:U n:lU, 1 < 1 <&
"y | < n (X, W (xX).v|.
,0(2@, >_p( h (z)>+p<1 > (X,

9 1
200 n2oy - n2oy i

1 n 1/2
<a [2\/§/€1 (712 Un’ 11 Zh(l) (XJ)]

ou n2oy

1/3

where c;, ¢y are positive constants. Finally combining Lemmas 4.2.11 and 4.2.19 we

P ("QU",Y) —o(1). W
20’U

4.3 Distance between a U-statistic based on i.i.d.

have that

observations and a normal random variable

Limit theorems for U-statistics are usually considered for the Kolmogorov metric.
Our goal is to depart from this approach and provide an alternative approach for
the distance between a U-statistic and a normal random variable. In particular, we
obtain the distance between a U-statistic and a normal random variable by utilizing
Zolotarev’s ideal metric. This result is also established as a central limit theorem for
U-statistics, with an alternative technique, using probability metrics. Corresponding

results are also investigated for von Mises statistics.

4.3.1 Definitions and notation

As mentioned before, our goal in this section is to calculate the distance between
U-statistics based on i.i.d. random variables and a standard normal variable with an
alternative method, using probability metrics. The following definitions and auxiliary

results are essential for our exposition.

Proposition 4.3.1. (Rachev (1991), p. 258). Let X, Y be random variables. Consider
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the mean metric ko and the Zolotarev’s ideal metric (5. Then
2C2 (X, Y) S K2 (X, Y) .

Proposition 4.3.2. (Rachev (1991), p. 262). Let X, Y be random wvariables and
0<d<1. Then for any N > 0,

%@ (X,Y) :/m Py (t) — Fy(t)] dt

< Nwi(X,Y)+N~° [E IX[*7 + E |Y|2+5] .

Next, we present a closed-form expression for the variance and a moment bound

for U-statistics and V-statistics.

Proposition 4.3.3. The variance of the U-statistic with kernel based on i.i.d. random

variables is
402

Var (U,,) = rew +o(n').

Proposition 4.3.4. (Serfling (1980), p. 185). Let r be a real number, r > 2. Assume
that E |h|" < 0o and E(h) = 0. Then

ElU,"=0(n"%), n— oo

Proposition 4.3.5. (Serfling (1980), p. 206). Let r be a positive integer. Assume
that E |h|" < co. Then

E|U,-V,|"=0(n""), n— .
Lemma 4.3.6. Let r be a positive integer, r > 2. Suppose that E |h|" < co. Then
EV,|"=0(n"%), n— oo
Proof. Using Minkowski’s inequality we have that

EV, I =E|V, - U, +U,|" <2 E |V, - U, + E|U,|T.
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Moreover, combining Propositions 4.3.4 and 4.3.5 we have that
E|V,"=0(®"%). |

4.3.2 Distance between a U-statistic and a normal random

variable

Before we state and prove our main theorem of this section, we state and prove
some useful auxiliary results. Lemma 4.3.8, is an application of the next proposition
from Sharakhmetov (2004). This proposition provides an upper bound for the distance
between the U-statistic and the first term of the decomposition in (1.5.1) under the

mean metric Kso.

Proposition 4.3.7. (Sharakhmetov (2004)). Let Y be a standard normal random
variable and &, ..., &, be independent identically distributed random variables such that

E(&) =0, E(&) =02, and E & < oo for some p > 2. Then

n

1 _ -2 F |§1|p0
Ks (W;&wy) <cno2 om0
where 1 < s < p, p> 2, pop = min(3,p) and the constant ¢ > 0 depends only on s and

p. Moreover,

1 n
K (—Zfi,Y —0 as n — oo.
Vno = >

Lemma 4.3.8. Let {X1, Xs,..., X,,} be a collection of i.i.d random variables and Y be

a standard normal random variable and 0 < 6 < 1. If E |hV (Xl)‘2+5

1 & E|hW (x)*
l‘fg( . Zh(l) <X1)7Y> Scn—g | ( 1)| ,

1 246
n2oy - 01+

< 00, then

where ¢ depends only on 6. Moreover,

1 n
m( 7 Zh(l)(Xi),Y> —0 as n— oo.

n§O'1 i=1
Proof. Apply Proposition 4.3.7. B

Lemma 4.3.10 that follows, is an application of Proposition 4.3.9 and provides a
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moment bound for the sum that appears in the second term of the decomposition in

(1.5.1).

Proposition 4.3.9. (Korolyuk and Borovskikh (1989), p. 72). Let {X1, Xs,..., X}
be a collection of independent identically distributed random wvariables. Let U, be the

U-statistic of dimension two based on the kernel h and the given observations. Assume

that E(h) =0 and E | h |P< 0o for some 1 <p < 2. Then
n\ ' "
E|U, |P< a;“;<2) E|[n?(X,, X,)[",

where oy, < 227P.

Let us now denote with U the U-statistic of dimension 2 based on the degenerate

kernel . Then the Hoeffding decomposition for U, is given by

= %zn:iz“) (X)) + Z h? (Xi, X;)
=1

1<z<]<n

where

and

Observe that

MV (X;) = B [P (X3, X;) | Xi]
= Eh(Xi, X;) — hi (X;) — b (X;) [X]
= E[h (X3, X;) |Xi] = Eh (X3) [Xi] = E'[hy (X;) X
= hi (X;) = by (Xi) — E [hy (Xj)]

= 0.
Similarly 2 (X;) = 0. Then
h® (X, X;) = P (X, X5) = bV (X)) = B (X5) = P (X4, X5)

Lemma 4.3.10. Let {X;, Xy, ..., X,,} be a collection of independent identically dis-

tributed random variables. Let U} be the U-statistic of dimension 2 based on the de-
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generate kernel h®) and the given observations. Assume that E | h® (X1, X5) |P< oo

for some 1 < p < 2. Then

p

<n(n—1)2""E |h® (X, Xo)|".

E| > w(X;, X))

1<i<j<n

Proof. Applying Proposition 4.3.9 and the previous observation that 2 (X;, X;) =
h® (X;, X;), we have that

1-p
E|U:|P< <g> 93(2-p) ‘h(2) (X1, Xa) P

p
«—F <;L> Un* S (Z) 23(2—P)E ‘h(Q) (Xl, X2) p
p
—=E| > (X, X)) <nn-12"ER® (X, X)|". ®
1<i<j<n

The following Lemma 4.3.11 provides the distance between the U-statistic and the

first term of the decomposition in (1.5.1) under the x; metric.

Lemma 4.3.11. Let {X1, Xs,..., X,,} be a collection of i.i.d. random variables. As-
sume E | h® (X1, Xy) |**< 0o for 0 < 6 < 1. Then

3—56 3—6

nil, 1 <=, 527 A%
K1 > AV () | <ns [E}h (X1, Xa))| } .

20‘1 n2oq i—1

Proof. Applying Proposition 4.2.3 we have that

1 n 1 n
n2U, 1 n2U, 1
R1 ( y T 1 E h(l) (Xz)> <7 ( ) T 1 E h(l) (Xl>>

201 nigy el 201 nigy i1

lUn 1 n
- ”2 - hD (X,)
01 n2o -
1
Sy o) I — h® (X;, X;)
nz(n —1)o; 1<;<n

Z h? (X;, X;)

1<i<j<n

n%(n—l
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Furthermore, combining Proposition 4.2.1 and Lemma 4.3.10 we have that

n%Un 1 — 1
NE o

20, noy -

3—¢
75 4

IN

E| > hP (X X))

1<i<j<n

1 4187
- - 1)2(5 3575 E ‘h X17X2)}3—6i|

A
i

1-6 146 23_475(S a3
<03 (0= )7 (B (00,2077
01
23;56 A N 3-3
<n 3’ [E }h@) (X1,X2)|375} Y m

Now we are ready to prove the main result of this section.

Theorem 4.3.12. Let {X1, X, ..., X,,} be a collection of independent identically dis-
tributed random variables. Let U, be the U-statistic of dimension two based on the
kernel h and the given observations. Assume that E(h) =0, E | h|**°< 00, 0 <4 < 1

and0<5<g. Then

3—548 3—6

G (mUn’Y) < ng_gQT [E ’h(2) (Xl,XQ)‘%]T 10 (n_aa)

(1) 246
_5501 1 2448 _gE ‘h (X1>‘
n U§+5Elh<> DI eaOn™ i = —.

where ¢1(6), c2(0) are positive constants depending only on 6 and Y is a standard

normal random variable.

Proof. Using the triangular inequality and Proposition 4.3.1 we have that

nzU, ) (
C2(217 >_<2<201’n201;h )—l—Cz(mUl;h )

1 nil, 1 <&
<k L Y (X)) | + =k RV
-2 2 < 20'1 nzoy ZZI ( )> 2 n20'1 ZZI
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)

and furthermore applying Proposition 4.3.2 with N = n®, where 0 < € < £, we have

nzl, nzl, 1 -
Y| <nk . Y (X,
C2 ( 201 ) - ! ( 201 n%g’l ; ( )

that

4]
n_aé%E |h(1) (Xl)‘%é + co(0)n "2
91 91

where ¢1(d), c2(9) are positive constants depending only on §. W

Corollary 4.3.13. Under the assumptions of Theorem 4.4.6,

naU
C2< n,Y)—)O as n — o0.

20’1

Proof. Follows easily from Theorem 4.4.6. B

4.3.3 Distance between a V-statistic and a normal random

variable

The corresponding theorem for V-statistics can be proved similarly.

Lemma 4.3.14. Let {X;, Xy, ..., X,,} be a collection of independent identically dis-
tributed random variables and Y be a standard normal random variable. Furthermore

assume that E | hV (X,) [*9< oo for 0 < § < 1. Then
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where ¢ depends only on 6. Moreover,

-1
(n Zh , >—>0 as n — o0.

nzoy -
Proof. Apply Proposition 4.3.7. B

Lemma 4.3.15. Let {X;, Xo,...,X,,} be a collection of independent identically dis-
tributed random variables. Assume that 0 < § < 1 and E | h® (X1, X,) [*H< oo.
Then

niV, n—1< 95 s 1%°
n - _é _4
K1 ( —— > _hW (Xi)) <n3 [E\h XI,X2)|3-6} .

20’1 nz2o; i—1 01

Proof. Applying Proposition 4.2.3 we have that

an n—1— nz2V, n—1
T PO SNTR (x| < ’ h (X;
K1 ( 20_1 ; ngal ; ( )) =T ( 20_1 ngo_l Z ( )

=1

B n2V, n3— 1 B (X))
201 n2oy -
1 n
_E h(X:, Xi) + h? (X, X;)
230y 12—; nioy 1<§<n
E h(X, X 1
< | ( 1 1) | + - E Z h(2) (XZ,X)
27”‘71 n201  |i<icj<n

3—46
AT
E|h(X,X) | 2l 3 hO (x,x) o
g 1 19
27150'1 TL2O'1 1<i<j<n
E|h(X,X 1 4%
_ ’ (117 1)|+ . [n(n_1>25—3%E|h(2) (leXZ)‘:%ﬂs]
2n2oq no;
E|h(X1,X 2% a5
— | (117 1) | _i_nf% |:E‘h(2) (X17X2>‘3—6j| 4 ' .
2n20 01
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Theorem 4.3.16. Let {X1, X, ..., X;,} be a collection of independent identically dis-
tributed random variables. Let V, be the von Mises statistic of dimension two based

on the kernel h and the given observations. Assume that E(h) =0, E | h |>*°< oo,

O<5§1and0<5<g. Then

1 3—56 3—4
2 1 B h X, X 271 =51 %
CQ (n Vn’Y> S nf2 | ( 1, 1) | _i_nsfg |:E ‘h(Q) (X17X2)|3—5i| 4

20’1 01

E (1) X 2+40
+0 (1) + 0080 5 0 (x,) [ 4 ep(ayn-t I EOL
iy

244
03

where ¢1(6), c2(6) are positive constants depending only on 0 and Y is a standard

normal random variable.

Proof. Using the triangular inequality and Proposition 4.3.1 we have that

1 1 n "
n2V, nzV, n—1 n—1
CQ ( 20_1 7Y> S CQ ( 20_1 ) 3 Z h (Xz)) + <2 ( 3 g h (XZ> 7Y>

77,50'1 i=1

1 niV, n—1< 1 n—1w—
Si’ﬁ( - 3 Zh(l) (Xi>>+§"€2< 3 Zh(l) (Xi)ay)>

=1

and furthermore applying Proposition 4.3.2 with N = n¢, where 0 < ¢ < ¢, we have

27
that
niV, niV, n—1 <
Y| <n® n (X,
6 () oo (B S0 0

=1

L (246
nzV,

20’1

1 (n—1
+§m< ; Zh(l)(Xi),Y).

nzoy 5

+n | E

Finally combining Proposition 2.1.2 and Lemmas 4.3.6, 4.3.14 and 4.3.15 we have that

1 3—56 3—46
3 B h(X, X 24 el C
G (nz Vn,Y) <npfh | ( 15 1) | + nef% [E ‘h@) (X17X2)|3_,;} 7

20’1 20’1 01

240
—e _s¢1(9) 249 s B[R (X,)
+0(n"%) +n 5012+6E|h(1)(X1)| + co(6)n 2 | o | :
1 1

where ¢1(6), c2(0) are positive constants depending only on 6. H
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Corollary 4.3.17. Under the assumptions of Theorem 4.3.16,

nzV,
(2( "Y>—>O as n — o0.

)
20’1

Proof. Follows easily from Theorem 4.3.16. W

4.4 Distance between a U-statistic based on nega-
tively associated random variables and a nor-
mal random variable

Now let us turn our attention to collections of random variables that are dependent.
In this section we study the distance of a U-statistic based on a collection of identically
distributed negatively associated random variables and a normal random variable using
again Zolotarev’s ideal metric. In bibliography the asymptotic normality of U-statistics
based on negatively associated random variables under the assumption of degenerate

or non-degenerate kernel is investigated only in Huang and Zhang (2006).

4.4.1 Distance between a U-statistic and a normal random
variable
Proposition 4.4.1. (Christofides and Vaggelatou (2004)).

If Xi,Xo,..., X, is a collection of negatively associated r.v.’s and X{,X5,..., X} are
independent copies of X1, Xa, ..., X,,. Then

(X1, Xoy ooy X)) <om (X7, X5, o0, X0).

n

Proposition 4.4.2. (Boutsikas and Vaggelatou (2002)). Let X1, Xo,... be a strictly
stationary sequence of negatively associated random variables such that E(X;) =0 and

0 < E(X?) <oo. Ifo?:= BE(X?) + 2372, E(X1Xj) >0, then, for n =mk,

"X 1
Co <Zaz\/ﬁ’,Y> < % [E(Xf) —02] —2(1—%)10(%)—1—0'0];;

for some constant ¢ > 0, where Y is a standard normal random variable, {ay} is

any sequence of positive integers such that ap < k, ap — oo, % — 0 as k — oo,
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L 3

pr=FE k20 X, and u(i) = Yo E(X1X;) = 0 asi— oo.

Lemma 4.4.3. Let U, be a U-statistic of dimension two based on stationary nega-
tively associated random variables and on the mondecreasing kernel h. Assume that
R is degenerate. Assume further that E(hY)) = 0 and 0 < EMY]? < oco. If
o = Var[hy (X1)] + 2370, cov[hi(X1), hi(Xiy;)] > 0, then, for n =mk,

G2 (ni ihm (Xi) ,Y> < % [E (hD (X1))” - 0121] —2 (1 - %) w (o) + 22 1

for some constant ¢ > 0, where Y is a standard normal random variable, {ay} is any

sequence of positive integers such that ar < k, ap — o0, 3%t — 0 as k — oo, p =

k
1 3
E ‘;m S RV (X)| and u(i) =32, B (hW(X7) 2D (X;)) = 0 as i — oo.

Proof. Since nondecreasing functions of negatively associated random variables are
negatively associated, we have that {h()(X;), i > 1} are negatively associated. Ap-

plying now Lemma 4.4.2, we have the result. Wl

Remark 4.4.4. Note that if E |} b (Xi)‘g < 00, then

G (n% ihm (X2) ,Y) =o(1), asn — .
i=1

Lemma 4.4.5. Let {X1, Xs,..., X,,} be a collection of identically distributed station-
ary negatiwely associated random variables. Let U, be the U-statistic of dimension
two based on the kernel h and the given observations and assume that the degenerate
kernel h®) is a componentwise nondecreasing function. Let now {X}, X3, ..., X'} be
independent copies of {X1, X, ..., X,,} and assume that E(h(X7,X3)) = 0. Further-
more assume that the function g (z,y,z) = h'® (z,y) h? (z,2) is supermodular. If

E‘h@) (Xl-,Xj)‘2 <c<oo foralll <i<j<n, then

K1 (néUn 1 zn:h(ﬂ (Xz)) < (n—1): [ : Z E [h@) (Xian)}Q 5’

200 ' n3 o n(n —1
U n2oy 5 U ( )1§i<j§n

where of; = 07 +2 37 0f; > 0 with o7 = Var[hy (X1)] and 0f; = cov(hi(X1), hi(X145)).
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Proof. By applying Propositions 4.2.3 and 4.2.1 we may write

Ky (TLQUn, 11 Z h(l) <X1)> S m <n2Un’ 11 Z h(l) (X1)>

20’U n2oy i—1 20’U n2oy i—1

B nzl, 11 B (X))

20U nio'U i—1

1

nz(n—1)oy 13%@

= — E| > (X, X))
n2 (n — Doy 1<i<j<n
. 2 3

< Z h(2) (Xi7Xj)

nz(n— 1oy

1<i<j<n

(4.4.1)

The expansion of the sum on the right-hand side of (4.4.1) gives

S a® XZ,X] = Y Em® X, X))

1<i<j<n

+2 Y Y B[R (X, X)) h® (X, X))] . (4.4.2)

1<i<j<n 1<k<lI<n
(4,5) 7 (k1)

Let
= > Y ERO(X, X)) (X, X))

1<i<j<n 1<k<i<n

(6:5)# (ko)

It can be easily verified that the terms in expression B are of two kinds. In the
first case indices {i, j, k,[} are all different. Since the kernel h(?) is a componentwise
nondecreasing function from the definition of negatively associated random variables

it follows that

E [h(2) (Xi, X;) h® (X, X)) <o. (4.4.3)
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Furthermore in the second case when indices {3, j, k,} are not all different, necessarily
{i = kand j # 1} or {i # k and j = l}. Without loss of generality assume that
{i =k and j # 1}. We will prove that in that case it derives also that

B [h® (X, X5) B (X5, X)] < B [0 (X7 X)W (X7, X)) =0, (444)
where X/, X7, X;" are independent copies of X;, X;, X.

Since g is supermodular from Proposition 4.4.1 we have that
E(g(X:, X5, X)) < E(g (X], X, X))).
Now working on E(g (X7, X7, X})), it follows that
E(g (X7, X5, X)) = E[B® (X7, X)) h®? (X7, X))
= E [ER® (X7, X7) b (X7, X7) |1 X]]]
E [h® (@, X)W (2, X])] dF (z)

E[h®(z, X)] E [h® (2, X])] dF (z) (4.4.5)

St

where (4.4.5) follows by independence and the last equality follows from the fact that
E[W®(z,X7)] = E [h(z, X]) — hi(2) — ha(X]) + 0] = hy(z) — ha(z) — 0 + 0 = 0.

Combining the results in (4.4.1), (4.4.2), (4.4.3) and (4.4.4) we arrive at

Ky <n2Un 11 Zh(l) (Xl)> S 1

11 T
200 2oy i3 nz(n—1)oy [1§i<j§n

2

B (X, Xj)]Zl

N

_ (Tl — 1>_% [ 1 Z E [h(2) (Xi,Xj)]Q

u n(n—1) 1<i<j<n

Now we are ready to prove the main result of this section.
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Theorem 4.4.6. Let {X1, X, ..., X,,} be a collection of identically distributed station-
ary negatively associated random variables. Let U, be the U-statistic of dimension
two based on the kernel h and the given observations. Let now {X{, X5, ..., X} be
independent copies of {X1, Xo, ..., X,,} and assume that E(h(X],X3)) = 0. Further
assume that h is componentwise nondecreasing function, E|h|**® < o0, 0 < § < 1
and 0 < & < 1 with o} = o} + 232,01, > 0 where of = Var[hy (X1)] and
o1, = cov(hi(X1), hi(X145)). Also assume that the degenerate kernels hV), h® are
nondecreasing functions and the function g (x,y,z) = h® (z,y) h® (x, 2) is supermod-

wlar. Then

N

" (TZUZY) <t [”(nl— IPIRAGC R OlY

1<i<j<n
C 3 1+46 1
—es L2468 248
= —_— Eh(X;, X;
T (2) T 2 Elh(X X))l
U 1<i<j<n

_55 C2+6 1 ZEVl(I) |2+6

2+5

Qg

+o [E (R (X1)) - UU} -2 (1 — %) u(ag) + Lt !

1
m2

)

for some constant ¢ > 0, where Y is a standard normal random variable, {ay} is any

Ak

E = 0ask — oo, pp :=

and u(i) =72, | E (AW (X7) RV (X)) = 0 asi — 00, Cays

sequence of positive integers such that ap < k, ap — o0,
3
E k=2 30, b (X))

1S a positive constant depending only on 9.

Proof. The triangular inequality and Proposition 4.3.1 together give,

1 1 n n
n2U, n2U, 1 1
Y| < L V(x| + - A (X;),Y

1 (nzU, 1 < R
§§H2< 1 Zh(l)(Xz‘)>+C2< T Zh(l)(Xi%Y),

200 n2oy ‘=

and furthermore applying Proposition 4.3.2 with N = n®, where 0 < € < 3, we have

nzl, nzl. 1 -
ny | <nf n RO (X,
G2 ( 20m > < nfk; ( 200 oy ; ( ))

that
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- 2+6 Lo 2+6
e ol Lt [y o hD (X,)
20y nioy =
1 Zn (1)
+ §2 1 h (Xl) aY .
n2oy 5

Finally combining Proposition 1.2.9 and Lemmas 2.1.3, 4.4.3 and 4.4.5 we arrive at

G2 (71220([?7)/) = - _ai)gg [n(nl— 1) Z E [h@) (XivXj)f]

1<i<j<n
Cors (3N 1
—e§ Y2440 246
S Elh(X;,X;
+n 0_2+5 <2> n(n—l) Z ’h( i j)|
U 1<i<j<n

Cois1
75 2445 (1 2448
Ca ZEW DI

+ % [E (h(l) (Xl)) — UU} -2 <1 — a—;) u(ag) + ¢

pr+1

1
m2

)

for some constant ¢ > 0, where Y is a standard normal random variable, {ax} is
any sequence of positive integers such that ap < k, ap — oo, % — 0 as k — o0,

k
3
pri=Ek2 30 b0 (X5)| and u(i) := 300, B (AW (X)) A (X)) — 0 asi — oo,
Cy.s is a positive constant depending only on /. W

Jj=it+1

Corollary 4.4.7. Under the assumptions of Theorem 4.4.6 and E |37, h() (XZ-)}3 <

n:U,
Cg( n,Y>—>O as mn — Q.

oo, then

20’U

Proof. Follows easily from Theorem 4.4.6. W

Remark 4.4.8. Note that the previous result, Theorem 4.4.6, s still valid for U-
statistics based on a kernel h of bounded variation, with degenerate kernels RV, h of
bounded variation also, because of the fact that a function of bounded variation can be

written as the difference of two nondecreasing functions.

Theorem 4.4.6 has an assumption related to the concept of supermodularity. Here,
we should give some trivial examples of supermodular functions. The functions f(z,y) =
r+y and f(z,y) = zy are supermodular on R%. For various properties and applica-
tions concerning supermodular functions, see Topkis (1998). Furthermore, Example
4.4.9 below presents a U-statistic which satisfies all the kernel assumptions made in

Theorem 4.4.6.
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Example 4.4.9. Let {X1, X5, ..., X,,} be a collection of identically distributed station-
ary negatively associated random variables. Let U, be the U-statistic of dimension two
based on the kernel h and the given observations. Assume that E(X;) = 0. Consider

the estimation of 0 = o%. U, is based on the kernels

1
h(xy,22) = 5(«’70% + 3),

1
hY(zy) = 5(35% +0?),

1
A (a2) = 2(a3 + %),

1

R (zq, x,) 5(:1:% +a3) — (23 4+ 0?) — =(z5+ %) + 0> =0

One can verify that h, RV and h® are functions of bounded variation and trivially

g(z,y,2) =h? (z,y) h? (2, 2) is supermodular.

4.4.2 Distance between a V-statistic and a normal random

variable

Lemma 4.4.10. Let {X;, Xy, ..., X,,} be a collection of identically distributed station-
ary negatively associated random variables. Let V,, be the von Mises statistic of dimen-
sion two based on the kernel h and the given observations. Let now { X7, X5, ..., X} be
independent copies of {X1, X, ..., X,,} and assume that E(h(X7,X3)) = 0. Further-
more assume that the degenerate kernel h® is a componentwise nondecreasing function
and the function g (z,y, z) = h? (z,y) k' (z, 2) is supermodular. If E |h® (X, Xj)|2 <

c<oo foralll <i<j<n, then

1
n2V, n—1
( =l S <xi>)

Y
20‘U n2oy i

N

- E | h(leXl) | + n_% [n(nl ) Z E |h(2) (Xi’Xj)f]

1
3 o
2nzoy U 1<izj<n

Proof. Applying Proposition 4.2.3 we have that

n%Vn n—1« n%Vn n—1«
K1 ( _ Zh(l) (Xz)> <7 < _ Zh(l) (Xz))

200 ' ns 200 ' ns
ou n2oy ou n2oy 5
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B nzV, _ ng_ 1 BM (Xz)
200 n2oy =
1 & 1
L S Y 0
2n20y i—1 n20y 1<i<j<n
E|h(X17X1)| Z L2 (X; X
2n20U WUU 1<i<j<n 7

Furthermore, combining Proposition 4.2.1 and an inequality proved in Lemma 4.4.5 we

have that

Z h(2) (X”h Xj)

1<i<j<n

1 n
V. m—1 E|h(X,X 1
/11( ) 3 Zh(l) (XJ) | ( 1 1)|+

5 3 3
ov nioy — 2n2o'U n2ogy

1
2
LB XY, 1 [E E‘h@)(Xi,Xj)f]

2z oy N20U |1<i<j<n

N

1
E|h(X1,X1) | L [ 1 Z E[h® (Xi;Xj)f

2n2 oy ou n(n o 1) 1<i<j<n

Theorem 4.4.11. Let { X1, X, ..., X,,} be a collection of identically distributed station-
ary negatively associated random variables. Let V,, be the von Mises statistic of dimen-
sion two based on the kernel h and the given observations. Let now {X7, X5, ..., X*}
be independent copies of { X1, Xa, ..., X,,} and assume that E(h(X7, X5)) = 0. Further
assume that h is componentwise nondecreasing function, E|h|**® < o0, 0 < § < 1
and 0 < & < 3 with of = o7 + 2322 0% > 0 where of = Var[hy (X1)] and

o}, = cov(hi(X1), h(X145)). We also assume that the degenerate kernels ), h2)
are nondecreasing functions and the function g (z,y,z) = h® (2,y) h® (z, 2) is super-

modular. Then

an Elh(X;. X ey
o (1 ) <o BRI AL s g

20y 200 oy

N|=

1<z<]<n
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s Coys 245 31+5 2 946
Dp—1 C Elh (X, X,
+n*(n—1)""2nz Bop)7e 2+5n(n—1) Z |7 ( i)l
1<i<j<n

—2-8(e+1) Y240 02—1—5 Elh X X, 244

+n (200) 2+6n Z [ (X3, Xi)|
—1 O Oys 1

+ nfas (n - ) 221-((; Z E‘h |2+6

pe+1

1
m?2

)

+ % [E (R (Xl))2 — JU} -2 (1 - %’“) u(ax) + ¢

for some constant ¢ > 0, where Y is a standard normal random variable, {ay} is any

sequence of positive integers such that ap, < k, ap — oo, % — 0 as k — o0, py 1=
3

E ‘k—% SR andu(i) =30, E (MY (X)) W (X;)) = 0 as i — 00, Coys

j=i+1
is a positive constant depending only on 9.

Proof. Using the triangular inequality and Proposition 4.3.1 we have that

n

nsv, nzV, n—1g n—1
"y | < n Y (X, M (X)), Y
§2 ( QO'U ) ) = €2 ( QUU ) n%O_U Zz_; ( )) + CQ (ngaU ; ( )

1 n%Vn n—1w— n—1«w—
Sﬁ"{?( ») 3 Zh(l) (Xl))+<2( 3 Zh(l) (XZ)7Y>a

nzou =

and furthermore applying Proposition 4.3.2 with N = n®, where 0 < ¢ < —, we have

that ) .
G2 nﬂfn’y < n'ky nﬂ/n,ns—lzh(l) (X3)
20'U 20’U n20oy i—1
sy 2 L 245
TRl Do) Ml By o} R (X))
20y n2oy 4
n—1
+<2< 3 R (X;) Y)
n2oy i=1

Finally combining Proposition 1.2.9 and Lemmas 4.4.3, 2.1.7, 4.4.10 and we have that

VB (X, X 2 1 :
G <”V Y)<n€— RACSTR. VR [ = D E|h(2)(Xi,Xj)\2]

20 - 20 o
U U 4 1<i<j<n
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—es o4 208 3T 2
“n—-1)""=2n2 C
1) (200)250 " nln —1)

Yo Bl (XXM

1<i<j<n

Coys

—2-5(e+1) Y245
tn (200)* n

ZEyh (X;, X;) [P

1 2+6C 1
et (M) SRS ()
n

Qg

+ o [E (R (Xl)) - UU} -2 (1 — %) u(ag) + Pt !

1
mz2

Y

for some constant ¢ > 0, where Y is a standard normal random variable, {ax} is
any sequence of positive integers such that ap < k, ap — oo, % — 0 as k — oo,

k
) 3

pr:=F ‘kﬁ SR (X))| and (i) == 3000, B (AW (X1) bW (X)) — 0asi — oo,

Uy, is a positive constant depending only on 5. W

Jj=t+1

Corollary 4.4.12. If E|Y:2, hV (Xi)‘g

4411,

< 00, under the assumptions of Theorem

v
(o (n2 ,Y>—>0 as n — Q.
20’U

Proof. Follows easily from Theorem 4.4.11. W

Remark 4.4.13. Note that the previous result, Theorem 4.4.11, is still valid for V-
statistics based on a kernel h of bounded variation, with degenerate kernels ht, h? of
bounded variation also, because of the fact that a function of bounded variation can be

expressed as the difference of two nondecreasing functions.

4.4.3 Statistical Applications
Estimators of mean and variance

Let {Xi, X, ..., X,,} be a collection of identically negatively associated random
variables from the distribution F with E(X;) = pu and Var(X;) = o®. Suppose that
we want to estimate the parameters p and 0. Consider the estimations of §; = p and

0, = 0. We obtain the following U-statistics respectively,
. 1 —
Iy
n-
=1
- 2 (X - Xj) n\
O = —— = 2 2N h? (X,
= 2 Sy« (3) ¥ reonx),

1<i<j<n 1<i1<i2<n
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where 1 |
WO (1) = Sat = par + (0 = 0?),

h(2)(a;1,x2) = p(zy + 29) — 2129 — 7.

Note that the kernels h, b and A are functions of bounded variation.

Suppose now, that we have a large sample size and we want to construct asymptotic
confidence intervals or to perform hypothesis tests for ;. Applying Corollary 4.4.7, we
get that

il )

02

4 N(0,1).

The (1 — a)% asymptotic confidence interval for ¢ is given by

~

y 2
91 + za -,
2
n

and for the test statistic to perform hypothesis tests we have that

ng\f(o’l)_

~

02
Wilcoxon’s one sample rank statistic

Recall Wilcoxon’s one sample test, which is used to test if a distribution F' is
symmetric about zero. Let ¥ = P(X; + Xy > 0). Using the kernel h(zy,z2) =

Iz, +2,>0y, We obtain the following U-statistic:

- 2
V= — Iix o x.

1<i<j<n

which is known as the one-sample Wilcoxon statistic. The Hoeffding-decomposition

for 1) is based on kernels

h(xla m2) - ]I{x1+x2>0}7

hi(zy) = E[H{x1+X2>0}] =1-P(X; < —1),
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Note that the kernels A, (Y and h® are functions of bounded variation.

Suppose that we have a large sample size. Applying Corollary 4.4.7 we construct
asymptotic confidence intervals and we have the asymptotic distribution to perform

hypothesis tests for parameter 9.
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Jackknifing U-statistics based on
associated and negatively

assoclated random variables

In Chapter 5 we apply the jackknife technique on U-statistics based on associated
and negatively associated random variables. The jackknife technique is a useful method
of variance estimation. Chapter 5 is organized in two sections. In Section 5.1 we jack-
knife U-statistics based on associated random variables and in Section 5.2 we jackknife

U-statistics based on negatively associated random variables.

5.1 Jackknifing U-statistics based on associated ran-

dom variables

5.1.1 The jackknife estimate of variance for U-statistics

We consider the jackknife pseudovalues for U-statistics by Tukey

~

Ui=nU, — (n—1)U,(=i) for i=1,2,..,n,

where U, (—1) is the U-statistic computed on the sample of n — 1 variables formed from
the original data set by deleting the ith data value. Then the jackknife estimate is the

average

. ] e -
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and the jackknife estimate of the variance is given by

Var(JACK) = 2=

n

Z[Un(_i) - Un]2-

i=1
Now, using the Hoeffding decomposition we get that

Up(—i) = 0 + 2HWY (i) + HP (—i)

where

1 A
HWD(—4) = > hV (X)) and Hg)(—z’):(”Z ) > (X, X))
k=1

n—1
=1 1<s<t<n
k#i s,t#1

Applying the H-decomposition we rewrite the jackknife estimate of variance as
n

VargACK) = "3 o) — 1)+ (1) — )|

n -
=1

=1

+ 3 [HP(~i) - HO)’
=1

LAY HY ()~ HO D (i) - Hf?)]}.

5.1.2 The bias of the jackknife estimate of the variance

Below we present some various results that are connected with associated random
variables and with U-statistics based on this type of random variables that are needed

for our exposition.

Lemma 5.1.1. (Dewan and Prakasa Rao (2002)). Let {X,, n > 1} be a sequence of

stationary associated random variables. Let of, = of +23°°2, 07, > 0 where o =

Var[hy (X1)] and 07; = cov(hi(X1), h1(X145)). Assume that

oo
E 2
=1

Further suppose that for some non-negative function r(k) satisfying >, 7(k) < oo,
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we have for all (i, 7, k,1)
|A(Z7J7 k? l)‘ S T’(I’IlaXHi - k’v ‘.] - lH)v

where

A(i, j, k, 1) = Cov(h'® (X, X;) , h? (X, X))
Then
402 1
Var (U,,) = % +o <—) .

n

Proof. See the proof of Theorem 3.1 in Dewan and Prakasa Rao (2002). B

Lemma 5.1.2. Suppose that all conditions of Lemma 5.1.1 are satisfied. Then

1 - 1
Var(H(V) = - (0% +2 ZJ%) +o (E) ;

J=1

Var(H®) = o (1) |

n

1
|COV(H7(11),H,(12))| <o (—) )

n

Proof. See the proof of Theorem 3.1 from Dewan and Prakasa Rao (2002). W

Lemma 5.1.3. Let { X1, Xo, ..., X,,} be a collection of identically distributed stationary
associated random variables. Let U, be a U-statistic based on a symmetric kernel h(z,y)

of degree 2. Suppose that the conditions of Lemma 5.1.1 hold. Then
Vvn(U, —0) LN N(0,40%) as n — oo,

where 6 = fj;o fj;o h(z,y)dF (x)dF(y).
Proof. See the proof of Theorem 3.2 in Dewan and Prakasa Rao (2002). W

The next three Lemmas 5.1.4, 5.1.5, 5.1.6, give a simplified expression of @(JACK)

which is crucial to exploit the bias of the jackknife estimate of the variance.

Lemma 5.1.4. Considering the kernels HT(ZI)(—Z') and HY we get that

n

4N [HO(~i) — HO)]® = T STIRD (X022~ n(HD .

=1
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Proof. First we calculate the difference H,gl)(—i) — =Y,

W(_j) — g — _ 2 (1)
H (=) — H _n_lzh (Xk) Zh (Xz)
k;éz
1 n
=——(n) AW (n—1)> rY(Xy)
n(n—1) Z p
- k;éz

Using the previous result we arrive at

2 (B (i) - HY)J - [ = (X))

3

L i=1

Lemma 5.1.5. Considering the kernels Hy(?)(—i) and HY it follows that

1<i<j<n

+2) Y hP(X, X) AP (X, X)) = n(n - 1)2<H,g2>)2}.
i=1 1§s<7£§n
s, t#1

Proof. Starting with the difference Hr(?)(—i) — H? we have that

1\ ! -
HT(L2)(_2')—H7(L2):(”2 ) 3 h(2)(Xs,Xt)—<Z) ST (X, X)

1<s<t<n 1<s<t<n
s, t#£1

T 1) n—2[ >, ML X) = (n=2) ) WYX X))

1<s<t<n 1<s<t<n
s, t#£1
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:nm_30ha>FCDHQ_WE:mﬂu%X“]

k=1
ki
_ 2 0 DHO ST RO (x .
(n—l)(n—Z)[< ) H¢ ;h (X,,X)].
ki

Using the previous result we can write

n

S [HP (i) - BT = "P—MW—i

2
(X5, X3)
i=1 (n—1)*(n —2)? i=1 k=1
ki
4 n n
= n(n —1)>(H®)? - 2(n — 1)H? (X, Xp)
(n—l)z(n—2)2{ im 1;;
k#£i
n n 2
+) ( h® (Xi,Xk)) }
=1 k=1
ki
4 2
n(n —1)>(H?)? = 2(n — 1)H,§2>2< ) )42 (h@) X, X; ))
e P2y

i=1 1<s<t<n
8,t#1

+22 > WP (X, X,) h(2)(XZ-,Xt)}

— ! @ (x,
(n_l)z(n_2)2{2 Z <h (X:, X;) ) +22 > h® (X, X)) b (X, Xy)

1<i<j<n =1 1<s<t<n
s,t#1

—n(n — 1)2(H7(12))2}. |

Lemma 5.1.6. Considering the kernels H,sj)(—i) and H with j = 1,2 it follows that

42 (HV(—i) — HOJHD (—i) — HP)
8 n n
= Y (X;) P (X, Xp) —n(n — YHYH
(n—1)%(n—2) 121;
ki

Proof. The multiplication of the differences H\" (=) — H{" and H{? (—i) — HY® gives
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that

_ W _ M 2 CNH® N
(n—1) [ = R (X)) (n—1)(n—2) (n—1)H; kz:;h (Xz:Xk)]
kit
2 { n
— Ve (n 1)H51)H£2) H(l)zh@) (XZ,Xk)—(n—l)h (X)H(Z)
(n—1)%(n—2) =

Hence, from the previous calculations we have that

42 HOHP (i) — 1) =

= 1;( 5 {n(n ~DHOH® H<1>2(”> H® —n(n—1)HOH®
n — n —

= M ol — YD @)
B (n—1)2 n—2 Zzh XuXk) n(n—1)H, ' H . |
=1 k=1

k#1 y,

The following Lemma 5.1.7 gives the simplified expression of @(J ACK).

Lemma 5.1.7. The jackknife estimator of variance, m(JACK) can be expressed as

Var(JACK) = (n : AL [i[h(” (X)) ~ n(HS))QI

4 ® 0y x )
+(n_1)2(n_2)2{2 > (h (XZ,X])>+

1<i<j<n

2§ Y RP(XG, X)) (X, X)) = n(n — 1)*(H >)2}
i=1 1<5<7£§n
s,t#1
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8
+ AW ( (X, Xi) = n(n —1)HYH®
(n—1)2%(n—2) ;g

Proof. Apply Lemmas 5.1.4, 5.1.5, 5.1.6. B

Lemma 5.1.8. The expectation of @“(JACK) is given by

E[VaT(JAC’K)

n—l

Z E[h —nE(H)? ]

4 @ x x )
+(n_1)2(n_2)2{2 > E(h (XZ,XJ)> +

1<i<j<n

23" B (X, X) B (X, X)) — o~ 1) E(ng}

=1 1<s<t<n

s, t#1
8 n n

ERY (X;) h® (X, Xi)] — n(n — 1)E[HYH®

ICES ) ZZ b (X;) @ (X;, X,)] = n(n — 1) E[HD HP)
ki

Proof. Using Lemma 5.1.7 we easily get the result. W

Theorem 5.1.9. Let { X1, Xo, ..., X,,} be a collection of identically distributed station-
ary associated random wvariables. Let U, be the U-statistic of dimension two based
on the kernel h and the given observations. Assume that h is a real valued function
symmetric in its arguments with E(h) = 0. Define of, = of +23 72, 0f; > 0 where
o7 = Var[hy (X1)] and 0f; = cov(hy(X1), hi(X14;)). Under the assumptions of Lemma
5.1.1 and furthermore let E[hY (X;)]? < Oy < oo for all1 <i < n, E[h® (X;, X;)]* <
Cy < oo foralll < i < j <n, BEh?(X;,X,)h?(X;,X,)] < C3 < oo for all
1<i<nandl<s<t<n withs,t#iand E [h(l) (X;) h® (XZ-,Xk)] < Cy < oo for
all1 <i<n, 1<k<n withk # i, we have that

E[Var(JACK)] =0 as n — oo,

where C, Cy, Cs, Cy are positive constants.

Proof. Applying Lemmas 5.1.1, 5.1.2 and 5.1.8 we get the result. W
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Corollary 5.1.10. Under the assumptions of Theorem 5.1.9 we have that
BIAS(JACK) = E[Var(JACK)] — Var(U,) = 0 as n — oo.

Proof. Applying Theorem 5.1.9 and Lemma 5.1.1 we get the result. W

Remark 5.1.11. Note that E[@’(JACK)] and BIAS(JACK) are of order n™".

5.1.3 Jackknifing functions of U-statistics

Let 6 be an unknown parameter and g be a real valued function. Consider using

the function g(U,,) of U, to estimate g(f). The jackknife estimate of g(#) is given by
-~ I
9(U,) =~ _G(Uy),
i=1
where

9(U;) =ng(U,) — (n—1)g(Up(=1)) for i=1,2,...n, (5.1.1)

are the jackknife pseudovalues for functions of U-statistics by Tukey. The estimate of

Var(g(U,)] is

n—1

Var(JACK) =
Before we establish the theorem of jackknifing functions of U-statistics, we present
some useful results.

Lemma 5.1.12. (Taylor’s Theorem) Let g be an (n + 1) times differentiable function

on an open interval containing the points a and x. Then

g () (g
ola) = gla) + g @) ) + L90w — a4+ L a4 Ry
where )
Rufa) = = oy

for some number ¢ between a and x.
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Lemma 5.1.13. Let X,, % 6 and \/n(X, — 0) N N(0,0?). Suppose that a function g
has a continuous derivative in (0 —e,0 + €), with e > 0 and ¢'(0) # 0. Then

Vilg(Xa) — g(0) 2 N (o, ﬁ) .

We now obtain the theorem of jackknifing functions of U-statistics.

Theorem 5.1.14. Suppose that the conditions of Lemma 5.1.3 hold. Let g the function

have a bounded second derivative in a neighborhood of 6. Then

VAU — () 2 N (o, [g‘*%(,)])

provided that g'(0) # 0.

Proof. The function g has a bounded second derivative in a neighborhood of U,.

Applying Taylor’s Theorem we may expand g about U,, and obtain

9" (&)
2!

9(Un(=1)) = g(Un) + ¢'(Un)(Un(—1) = Un) + (Un(=1) = Un)*

where &; lies between U, (—i) and U,. Summing both side and dividing by n we have
that
1 Y 1 1 - : 2.1
=D 9Uu(=0)) = g(Ua) + 5 D _(Un(=1) = Un)¢"(&) (5.1.2)
i=1

2n 4
=1

according to the relation U, = + 31" | U, (—1).

Also summing both sides and dividing by n in (5.1.1), we have that

n—1

Combining (5.1.2) and (5.1.3) we get

n

S (U (i) — U6,

i=1

n—1
2n
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Since the second derivative of g is assumed to be bounded in a neighborhood of 6,
combining Lemmas 5.1.3 and 5.1.13 the first term on the right hand side of (5.1.4)
converges in distribution to N (O, %). According to Slutsky’s theorem we need to
prove that

VIR LSS (i) - U (E) B 0 (5.1.5)

i=1

2 n

to have the result. Since U, (—i) and U, are consistent estimators of 6, it suffices to

show that \/n @(J ACK) 2, 0 which is obviously applying from Lemma 5.1.7. W

5.2 Jackknifing U-statistics based on negatively as-
sociated random variables

Consider an orthonormal basis {ex(z), k > 0} with respect to the measure dF(x),

with eg(z) = 1, such that

hz,y) =Y Meex(z)ex(y)
Then
/_ " en(@)h(z, y)dF () = Meex(y). (5.2.1)

Definition 5.2.1. The U-statistic U,, and its kernel h are called degenerate if

[ hare) =

o0

for all .

Lemma 5.2.2. (Huang and Zhang (2006)). Let {X1, Xs,..., X, } be a collection of
identically distributed stationary negatively associated random variables with E(X;) =

0. Let U, be a degenerate U-statistic where the kernel h satisfies

/+OO h(z,y)dF (z)dF(y) < 0.

o0

Assume that the eigenfunctions ey (x) given by (5.2.1) are functions with bounded vari-

108



Chapter 5 Section 5.2

ation on any finite interval. Furthermore, assume that

supps1FE [ka (Xl)] < 00

and
i=1
Then
Vvn(U, — E(U,)) EEN N(0,0%) as n — oo,
where
o? = Var(p(Xy)) + 2 Z Cov(p(Xi), p(X;))
=2
and

o) = [ heire)

provided ¢(.) is a function with bounded variation on any finite interval, which sat-
isfies E [V2(X1)] < oo, where Vy(x) is the total variation function of o(x), i.e,
Vo(z) = ViE(p) for x >0, V,(z) = =V2(p) for x <0, where

V2(g) =sup > [ (xx) — @ (24-1))|

denotes the total variation of (x) on |a,b]. The supremum is taken over all partitions

of the interval [a,b].
Proof. See the proof of Theorem 2 from Huang and Zhang (2006). W
Corollary 5.2.3. Suppose, the conditions of Lemma 5.2.2 hold. Then

4 2
Var (U,) =27 45 n— .
n

Lemma 5.2.4. The jackknife estimator of variance, @(JACK) can be expressed as

4 n

Var(JACK) = S

=1
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4 ®x x0 )
+(n_1)2(n_2)2{2 > (h (Xz,X]))Jr

1<i<j<n

=1 1<s<t<n
s,t#1

QZ Z h? X“X h(2)(X Xt)—n(n_l) (H())Q}

+ Z Z A ( (X, Xi) —n(n — 1)HPHP
(n=12(n=2) | < =

Proof. Same as Lemma 5.1.7. I

Lemma 5.2.5. The expectation of @“(JACK) is given by

[Var(JACK

n—l

ZE )2 — nE(HW)? }

4 @ x x )
+(n_1)2(n_2)2{2 > E(h (XZ,X])) +

1<i<j<n

23" Y0 B (X, XK (X, X))~ (o - 1) E(H@)?}

=1 1<s<t<n
s, t#£1

+ (n— 1)§(n —9) z": z”: B (X;) B? (X, Xp)] = n(n — ) E[HD H?|
=1 k=1

Proof. Same as Lemma 5.1.8. W

Theorem 5.2.6. Let { X1, Xo, ..., X,,} be a collection of identically distributed station-
ary negatively associated random variables. Under the assumptions of Lemma 5.2.2 and
furthermore let E[hY (X;)]? < Cy < oo for all 1 <i < n, E[h? (X;, X;)]? < Oy < o0
foralll <i < j<n, E[h( ) (Xi,Xs)h( ) (Xi, Xy)] < C3 < o0 foralll <i<n and
1<s<t<n withs,t#1and E [h(l) (X;) h? (Xi,Xk)} <Cp< oo foralll <i<n,
1 <k <n with k # i, we have that E[h® (X, X,)? < Ci < oo foralll <s<t<n
and FE [h(l) (X;) h® (Xi,Xk)} <Cy<ooforalll<i<n,1<k<nandk #1, we
have that
E[@(JAC’K)] —0 as n— oo and

BIAS(JACK) = E[Var(JACK)] — Var(U,) = 0 as n — oo,
where C1, Cy, Cs, Cy are positive constants.
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Proof. Applying Lemmas 5.2.5 and 5.2.3. W
Remark 5.2.7. Note that E[@’(JACK)] and BIAS(JACK) are of order n™".

Theorem 5.2.8. Suppose, the conditions of Lemma 5.2.2 hold. Let g the function
have a bounded second derivative in a neighborhood of 0 = E(U,). Then

VAU - g(6)) > N (o, [94%9)])

provided that g'(0) # 0.

Proof. The function g has a bounded second derivative in a neighborhood of U,.

Applying Taylor’s Theorem we may expand g about U, and obtain

g9"(&)

91 (Un<_i) - Un>2

9(Un(=1)) = g(Un) + ¢'(Un)(Un(—i) = Un) +

where &; lies between U, (—i) and U,. Summing both side and dividing by n we have

that

n

S ) = 90 + 5o SO~ G (5:22)

according to the relation U, = + 3" | U, (—1).

Also summing both sides and dividing by n in (5.1.1), we have that

n—1

%i g(Un(—Z)) _ ng(Un) _ b\(Un) (523)

Combining (5.2.2) and (5.2.3) we get

n

U = 9(U) = 5= S (WUa(=) — Ung'(€),
and so
~ \/ﬁn_1 . . 2 n
V(@) - 9(0) = Vialg(Us) = 9(6)) — T2 S (Un(—) — UG €). (524

=1

Since the second derivative of ¢ is assumed to be bounded in a neighborhood of 6,

combining Lemmas 5.2.2 and 5.1.13 the first term on the right hand side of (5.2.4)
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converges in distribution to NV (0, %). According to Slutsky’s theorem we need to

prove that

YRR SN0 (<) - )R (6) B 0 (5.25)

2 n 4
=1

to have the result. Since U,(—i) and U, are consistent estimators of 6, it suffices to

show that v/n @(JACK ) 25 0 which is obviously applying from Lemma 5.2.4. W
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Future work

In this dissertation we studied the asymptotic behavior of U-statistics based on
associated and negatively associated random variables. However in no way we have
exhausted all possible directions of researching the specific asymptotic behavior. Some
results that are presented in the thesis can be extended or can be a starting point for

further research. In what follows we briefly describe some directions for future work.

6.1 Distance between a U-statistics based on asso-
ciated random variables and a normal random
variables

In this thesis we studied asymptotic results for U-statistics using the Zolotarev’s
ideal metric. In particular, we gave the distance between a U-statistic U, based on
associated random variables and a U-statistic U based on i.i.d. random variables.
We obtained the distance between a U-statistic based on i.i.d. random variables and
a normal random variable. The same result also established for U-statistics based
on negatively associated random variables. In future work our goal is to obtain the
distance between a U-statistic based on associated random variables and a normal
random variable by utilizing the Zolotarev’s ideal metric. This result will also provide
a central limit theorem for this type of U-statistics. Corresponding results for V-
statistics could also be a topic of investigation. For this aim existing results for partial
sums of associated sequence will be very useful. It is also expected that results proved

for the classical setup (i.e. for iid observations) which are not applicable for the case of
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associated observations will be modified or replaced altogether by results on associated

random variables.

6.2 U-statistics based on F-associated random vari-
ables

The type of dependence that we study in this thesis is association and negative
association. Below we give the definition of an alternative concept of dependence

called conditional association. The concept of condition association was introduced in

Prakasa Rao (2009).

Definition 6.2.1. Let X and Y be random variables defined on a probability space
(Q, A, P) with E(X?) < oo and E(Y?) < oco. Let F be a sub-o-algebra of A. We

define the conditional covariance of X andY given F or F-covariance as
Cov” (X,Y)=E" [(X - E"X) (Y - E7Y)],

where EX(X) = E(X|F), (¢f. Prakasa Rao (2009)). It is easy to see that the F-
covariance reduces to the ordinary concept of covariance when F = {0,Q}. A set of
random variables { Xy, 1 < k < n} is said to be F-associated if for any componentwise

nondegreasing functions h, g defined on R",
Cov” (M X1, ..., X0n), 9(X1,..., X)) >0 a.s.

Remark 6.2.2. A sequence of random variables {X,,, n > 1} is said to be F-associated

if every finite subset of the sequences {X,,, n > 1} is F-associated.

A relative concept is the concept of conditional demimartingales. Hadjikyriakou
(2010) introduced the notion of conditional demimartingales and studied their proper-

ties.

Definition 6.2.3. Let {S,, n > 1} be a sequence of random variables defined on a
probability space (2, A, P). Let F be a sub-o-algebra of A. The sequence {S,, n > 1}

is called an F-demimartingale if for every componentwise nondecreasing function
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f:RI =R,
E{(Sj — Sl)f(517827751>’f)} >0, 1<i<j<ox.

If moreover, fis assumed to be nonnegative, then the sequence {Sn}n21 1s called an

F-demisubmartingale.

Remark 6.2.4. From the property of conditional expectations that E(E(Z|F)) = E(Z)
for any random wvariable Z with E|Z| < oo, it follows that any F-demimartingale
defined on a probability space (2, A, P) is a demimartingale on the probability space
(Q, A, P) and any F-demisubmartingale defined on the probability space (2, A, P) is a
demisubmartingale on the probability space (2, A, P). The converse cannot always be

true due to Example 2.5.5 from Hadjikyriakou (2010).
Moreover we present a trivial example of an F-demimartingale sequence.

Example 6.2.5. Let {X,,, n > 1} be a sequence of F-associated random variables such

that E7(X,) =0 a.s., n > 1. Let
i=1
Then it is easy to check that the sequence {Sn}n21 15 an F-demimartingale.

In what follows we obtain the definition of U-statistics based on F-associated ran-

dom variables.

Definition 6.2.6. Let {X1, Xs, ..., X,,} be a collection of identically distributed JF-
associated random variables. Assume that m is a positive integer m < n and h is a

symmetric mapping from R™ to R. Then

-1
Ul = (”) 3 WX, Xy s Xs,)

1<i1 << <im<n

where Zl§i1<i2<~--<im§n denotes summation over all (:1) combinations of the m distinct
elements {iy,i9,...,im} from {1,...,n}, is called a U-statistic based on F-associated

random variables.

Hadjikyriakou (2010) established a strong law of large numbers for F-demimartingales.

An interesting extension is to focus on the connection between U-statistics based on
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F-associated random variables and F-demimartingales and provide strong laws for this
type of U-statistics. One can also introduce U-statistics based on F-associated mul-
tidimensionally indexed random variables and multisample U-statistics on collections
of F-associated random variables. One can turn his/her attention on their connection
with multidimensionally indexed F-demimartingales, and could establish strong laws
for also those types of U-statistics. Based on the results presented in the thesis, one can
also study the distance between a U-statistic based on F-associated random variables
and a normal random variable using probability metrics. That result will be useful to

provide central limit theorems for this type of U-statistics.

6.3 U-statistics based on m-negatively associated
random variables

The concept of m-negatively associated random variables are natural extensions
from negatively associated random variables. Motivated by the definition of negatively
associated random variables, Hu et al. (2009) introduced the concept of m-negatively

associated random variables as follows.

Definition 6.3.1. Let m > 1 be a fized integer. A sequence of random wvariables
{X,,n > 1} is said to be m-negatively associated if for any n > 2 and any iy, ..., i

such that |i, —i;| >m for all1 <k #j<n, X;,..., X,

are negatively associated.

Note that when m = 1, the concept of m-negatively associated random variables
equals to the concept of negatively associated random variables.

Hu et al. (2009) studied the Kolmogorov exponential inequality for m-negatively
associated random variables. The complete convergence and complete moment conver-
gence for weighted sums of m-negatively associated random variables were proposed by
Wu et al. (2015). The moment inequalities for m-negatively associated random vari-
ables were proved by Shen et al. (2017). Mengge et al. (2019) presented the Spitzer
type law of large numbers for the maximum of partial sums of m-negatively associated
random variables.

Similar properties we used and proved in this thesis for negatively associated ran-
dom variables are still valid for m-negatively associated random variables. For more

details see Shen et al. (2017).

116



Chapter 6 Section 6.3

There are no studies in bibliography yet for U-statistics based on m-negatively asso-
ciated random variables. A final possible direction is to study the asymptotic behavior
of U-statistics based on random variables with this alternative type of dependance.
Our goal is to prove useful inequalities such as moment and exponential inequalities
for this type of U-statistics. To study the asymptotic normality, to obtain strong laws
of large numbers and central limit theorems using probability metrics for U-statistics

based on m-negatively associated random variables.
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