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PerÐlhyh

H paroÔsa diplwmatik  ergasÐa ekpon jhke sta plaÐsia tou didaktorikoÔ progr�m-

matoc statistik c tou Tm matoc Majhmatik¸n kai Statistik c tou PanepisthmÐou KÔ-

prou.

H jewrÐa twn statistik¸n sunart sewn U èqei eisaqjeÐ apì ton W. Hoeffding

(1948). PolloÐ ereunhtèc melèthsan kai suneqÐzoun na meletoÔn thn asumptwtik  sum-

perifor� touc ìtan autèc kataskeu�zontai me anex�rthtec kai isìnomec parathr seic.

Sthn pio prìsfath bibliografÐa ìmwc parousi�zei meg�lo endiafèron h melèth aut¸n

twn statistik¸n sunart sewn ìtan autèc kataskeu�zontai me exarthmènec parathr seic.

'Ena eÐdoc ex�rthshc eÐnai h jetik  kai arnhtik  sÔndesh (association), oi opoÐec èqoun

eisaqjeÐ apì touc Esary et al. (1967) kai Joag-Dev and Proschan (1983) antÐstoiqa.

O stìqoc thc paroÔsac diatrib c epikentr¸netai kurÐwc sthn asumptwtik  sum-

perifor� twn statistik¸n sunart sewn U pou kataskeu�zontai me jetik�   arnhtik�

sundedemènec tuqaÐec metablhtèc. Gia ton skopì autì apodeiknÔontai �nw fr�gmata

rop¸n kai qr simec ekjetikèc, megistikèc anisìthtec pou apoteloÔn basik� ergaleÐ-

a gia thn apìdeixh asumptwtik¸n apotelesm�twn. Eis�goume thn ènnoia twn reverse

demimartingales kai reverse demisubmartingales pou eÐnai genÐkeush twn reverse

martingales kai reverse submartingales antÐstoiqa, kai apodeiknÔoume megistikèc a-

nisìthtec tÔpou Chow kai Doob.

H sten  sÔndesh metaxÔ martingales, demimartingales, N -demimartingales kai

twn statistik¸n sunart sewn U apoteloÔn epÐshc mèroc thc melèthc mac. Ta asumptw-

tik� apotelèsmata pou isqÔoun gia demimartingales kai N -demimartingales mporoÔn

na qrhsimopoihjoÔn gia thn apìdeixh nìmwn twn meg�lwn arijm¸n gia statistikèc sunar-

t seic U pou basÐzontai se exarthmènec tuqaÐec metablhtèc me poludi�statouc deÐktec

kaj¸c kai gia statistikèc sunart seic U pou basÐzontai se pollapl� deÐgmata.

QrhsimopoioÔme epÐshc anisìthtec kai �lla apotelèsmata pou isqÔoun gia anex�r-

thtec kai isìnomec parathr seic gia na broÔme thn apìstash metaxÔ twn statistik¸n
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sunart sewn U pou basÐzontai se anex�rthtec kai isìnomec parathr seic kai miac tu-

qaÐac metablht c pou akoloujeÐ thn tupopoihmènh kanonik  katanom . Profan¸c ta a-

potelèsmata pou isqÔoun gia anex�rthtec kai isìnomec parathr seic den isqÔoun kai gia

thn perÐptwsh twn exarthmènwn parathr sewn. Ta apotelèsmata aut� tropopoioÔntai  

antikajÐstantai entel¸c gia na melethjeÐ h apìstash metaxÔ twn statistik¸n sunart -

sewn U me anex�rthtec kai isìnomec parathr seic kai twn statistik¸n sunart sewn U

me exarthmènec tuqaÐec metablhtèc pou èqoun thn Ðdia katanom . Parousi�zetai epÐshc

h asumptwtik  kanonikìthta twn statistik¸n sunart sewn U pou kataskeu�zontai apì

jetik� sundedemènec tuqaÐec metablhtèc, ìpwc kai h apìstash metaxÔ twn statistik¸n

sunart sewn U pou kataskeu�zontai apì mia sullog  isìnomwn kai arnhtik� sundede-

mènwn tuqaÐwn metablht¸n apì mia tuqaÐa metablht  pou akoloujeÐ thn tupopoihmènh

kanonik  katanom  qrhsimopoi¸ntac th metrik  Zolotarev. Ta apotelèsmata aut� a-

poteloÔn kentrik� oriak� jewr mata ta opoÐa melet¸ntai me mia enallaktik  teqnik 

kai sugkekrimèna me th bo jeia metrik¸n apost�sewn. Par�llhla parousi�zontai an-

tÐstoiqa apotèlesmata gia mia �llh suggenik  kathgorÐa statistik¸n sunart sewn, tic

statistikèc sunart seic V, (V -statistics).

Tèloc efarmìzetai h teqnik  epanadeigmatolhψÐac Jackknife se statistikèc sunar-

t seic U pou basÐzontai se jetik�   arnhtik� sundedemènec tuqaÐec metablhtèc me skopì

thn ektÐmhsh tou tupikoÔ sf�lmatoc kai thc merolhψÐac thc ektim triac thc diaspor�c

twn sunart sewn aut¸n.
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Abstract

The basic theory of U-statistics was developed by W. Hoeffding (1948). U-statistics

are generalized averages and include among others the sample mean and the unbiased

sample variance as special cases. Detailed expositions of the general topic may be

found in Denker (1985), Lee (1990). See also Fraser (1957) Chapter 6, Serfling (1980)

Chapter 5, and Lehmann (1999) Chapter 6. The closely related class of V-statistics

has been introduced by von Mises (1947).

U-statistics were originally defined on i.i.d. observations and many authors study

their asymptotic behavior. However, many authors have also studied U-statistics based

on dependent observations since the theoretical results which are valid for U-statistics

based on i.i.d. random variables cannot automatically be applied to the case of U-

statistics based on dependent random variables. One type of dependence is association

(negative or positive). Positively associated, or simply associated random variables

were introduced by Esary et al. (1967) and negative association was introduced by

Joag-Dev and Proschan (1983).

Our study is mainly focused on the asymptotic behavior of U-statistics based on

associated and negatively associated random variables. Although some results have

been established, the conditions imposed are restrictive and in some cases unrealistic.

Our aim is to study the asymptotic behavior under conditions which are applicable and

verifiable. Among our objectives in this thesis, is to prove moment and exponential

inequalities for this type of U-statistics. We introduce the concept of a reverse demi-

martingale and a reverse demisubmartingale as a generalization of the notion of reverse

(backward) martingales and reverse submartingales, and we establish Chow and Doob

type maximal inequalities.

The close connection between martingales, demimartingales, N-demimartingales

and U-statistics is fully exploited. The asymptotic results derived from demimartin-

gales and N-demimartingales can be applied to U-statistics, to obtain strong laws for

iii
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U-statistics based on multidimensionally indexed associated random variables and mul-

tisample U-statistics on collections of associated random variables that are introduced

for the first time, as a natural generalization of one sample U-statistics.

We also use tools such as inequalities and results valid for U-statistics on i.i.d. ob-

servations, to find the distance between U-statistics on i.i.d. observations and a normal

random variable. It is obvious that results proved for the classical setup (i.e. for i.i.d.

observations) which are not applicable for the case of associated observations are mod-

ified or replaced altogether by results on associated random variables. The distance

between U-statistics on i.i.d. observations and U-statistics on identically distributed

associated random variables having the same distribution is also investigated and ex-

ploited. Asymptotic normality for U-statistics based on associated random variables

is also presented. We also investigate the distance between a U-statistic based on a

collection of identically distributed negatively associated random variables and a nor-

mal random variable using the Zolotarev’s ideal metric. Those results also provide a

central limit theorem for U-statistics with an alternative technique using probability

metrics. Finally, it is natural that we also investigate another related class of statistics,

the von Mises statistics or V-statistics. Corresponding results are also proved for this

type of statistics.

Finally, jackknifing U-statistics based on associated and negatively associated ran-

dom variables is also part of our study.

iv
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Chapter 1

Introduction

1.1 Literature review and outline of the thesis

According to Lee (1990) the class of U-statistics is important for at least three

reasons. First, a great many statistics in common use are in fact members of this

class, so that the theory provides a unified paradigm for the study of the distributional

properties of many well-known test statistics and estimators, particularly in the field

of non-parametric statistics. Second, the simple structure of U-statistics makes them

ideal for studying general estimation processes such as bootstrapping and jackknifing,

and for generalizing those parts of asymptotic theory concerned with the behavior of

the sequence of sample means. Third, application of the theory often generates new

statistics useful in particular estimation problems.

U-statistics were originally defined on i.i.d. observations. However, many authors

have studied U-statistics based on dependent observations. Among them Sen (1963),

Nandi and Sen (1963), Serfling (1968), Denker and Keller (1983) and Becker and Utev

(2001). One notion of dependence is the concept of association. Since independent ran-

dom variables are associated, the class of U-statistics introduced by Hoeffding (1948)

is included as a special case in the class of U-statistics constructed on associated ran-

dom variables. Since many of the theoretical results which are valid for Hoeffding’s

(1948) U-statistics depend on the assumption of independence, the theory known can-

not automatically be applied to the case of U-statistics based on associated random

variables.

A few authors have studied the limiting behavior of U-statistics based on associ-

ated observations. Dewan and Prakasa Rao (2001) established a central limit theorem

1
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Chapter 1 Section 1.1

for U-statistics based on stationary associated random variables using an orthogonal

expansion for the underlying kernel. Dewan and Prakasa Rao (2002) and its corri-

gendum Dewan and Prakasa Rao (2015) give a central limit theorem for U-statistics

using Hoeffding’s decomposition with continuous component-wise monotonic kernels

of degree two. Furthermore, Christofides (2004) studied this class of U-statistics in

a different way, using the concept of demimartingales. He has shown the connection

between one sample U-statistics and demimartingales and also has proved a strong

law of large numbers for U-statistics based on associated random variables in the case

where the kernel of the statistic belongs to a large family of functions called kernels

of bounded variation. Garg and Dewan (2015) obtained the limiting distribution of

U-statistics based on kernels of bounded Hardy-Krause variation when the underlying

sample consists of stationary associated observations. Continuing with the investiga-

tions, Garg and Dewan (2018) discussed a central limit theorem for U-statistics based

on associated random variables on differentiable kernels of degree two or higher.

Some other authors have studied the limiting behavior of U-statistics based on neg-

atively associated random variables. Huang and Zhang (2006) studied the asymptotic

normality of those U-statistics, when the U-statistic is degenerate or non-degenerate.

Budsaba et al. (2009) established the Marcinkiewicz-Zygmund type strong laws of large

numbers for certain class of multilinear U-statistics based also on negatively associated

random variables.

Our study mainly focuses on the asymptotic behavior of U-statistics based on ob-

servations which are dependent and specifically on observations which are associated

or negatively associated. Also we investigate U-statistics based on multidimension-

ally indexed associated random variables and multisample U-statistics on collections

of associated random variables that are introduced for the first time, as a natural gen-

eralization of one sample U-statistics. Jackknifing U-statistics based on associated and

negatively associated random variables is also part of our study. Finally, it is natural

that we also investigate another related class of statistics, the von Mises statistics or

V-statistics.

This thesis is organized as follows. In Chapter 1 we present the necessary literature

review, the definitions and some auxiliary results of associated and negatively associ-

ated random variables with some properties included. The concept of demimartingales,

N-demimartingales are also presented and we define one sample U-statistics with asso-

ciated and negatively associated random variables.

2
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Chapter 1 Section 1.1

In Chapter 2, we discuss some inequalities for U-statistics based on associated

and negatively associated random variables. Generally, in probability theory, moment

and exponential inequalities play an important role in various proofs of limit theo-

rems. In particular they provide a measure of convergence rate for the strong law

of large numbers. Moment inequalities for sums of associated random variables were

studied by Birkel (1988) and Oliveira (2012). Exponential inequalities for negatively

associated random variables were obtained by Kim and Kim (2007), Nooghabi and

Azarnoosh (2009), Xing et al. (2009), Sung (2009), Xing and Shanchao (2010). The

chapter is organized as follows. In Section 2.1 we establish moment inequalities for

U-statistics and V-statistics based on negatively associated random variables. In Sec-

tion 2.2 we present an exponential bound for U-statistics based on the same type of

random variables. Wang and Hu (2009) generalized the results of Christofides (2000)

for demimartingales and demisubmartingales. In Section 2.3 we introduce the con-

cept of a reverse demimartingale and a reverse demisubmartingale as a generalization

of the notion of reverse (backward) martingales and reverse submartingales. Chow

(1960) proved a maximal inequality for submartingales. Christofides (2000) showed

that Chow’s inequality is valid for the more general glass of demisubmartingales. In

this chapter we give a Chow type maximal inequality for reverse demisubmartingales

and we establish a Doob’s maximal inequality for reverse demisubmartingales. Finally,

we show the connection between U-statistics based on associated random variables and

reverse demimartingales and we give some examples.

Christofides (2004) established a strong law of large numbers for U-statistics based

on associated random variables. In Chapter 3 we introduced the definition of U-

statistics on associated multidimensionally indexed random variables and multisample

U-statistics on collections of associated random variables. We focus on their connec-

tion with multidimensionally indexed demimartingales, and we establish strong laws

for this type of U-statistics.

Probability metrics play an important role in asymptotic statistics. Generally

speaking, a probability metric is a functional that measures the distance between two

random quantities and are very useful in investigating the asymptotic behavior of a

statistical function or estimator. The metric approach to problems on the accuracy

of approximations of distributions appeared in the theory of probability in the mid

1930s. In Chapter 4, we use some metrics that are commonly found in probability and

statistics. One useful metric utilized in this paper is the so called Zolotarev’s ideal

3
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Chapter 1 Section 1.1

metric (Zolotarev (1983)). In Section 4.1, we give the distance between a U-statistic

Un based on associated random variables and a U-statistic U∗
n based on i.i.d. random

variables under Zolotarev’s ideal metric. Asymptotic normality for U-statistics based

on associated random variables is also presented in Section 4.2, with an alternative

way to prove asymptotic normality for this type of U-statistics to the approach of

Garg and Dewan (2015). We also investigate the distance between a U-statistic based

on a collection of independent identically distributed random variables with a distri-

bution function F , and a normal random variable using the Zolotarev’s ideal metric.

Sharakhmetov (2004) proved limit theorems for U-statistics using the mean metric κ1.

In Section 4.3, based on Sharakhmetov (2004) we improve his results using a higher

order metric, the Zolotarev’s ideal metric. It is worth mentioning that limit theo-

rems for U-statistics are usually considered for the uniform (Kolmogorov) metric (see

Serfling (1980) or Korolyuk and Borovskikh (1989)). The rate of convergence in the

central limit theorem in the form of a uniform Berry-Esseen bound for U-statistics has

been investigated among others by Filippova (1962), Grams and Serfling (1973), Bickel

(1974), Chan and Wierman (1977), Callaert and Janssen (1978), van Zwet (1984) and

Friedrich (1989). Our goal is to depart from the approach of a uniform Berry-Esseen

bound for U-statistics and provide an alternative approach for the distance between a

U-statistic and a normal random variable. This result is used to establish a “central

limit theorem” for U-statistics. Corresponding results are also investigated for von

Mises statistics. Finally in Section 4.3 we discuss an alternative way to prove central

limit theorems for U-statistics based on dependent random variables to the approach

of Garg and Dewan (2015, 2018) and Huang and Zhang (2006), using Zolotarev’s ideal

metric.

In Chapter 5 we apply the jackknife technique on U-statistics based on associ-

ated and negatively associated random variables. The jackknife is a technique used to

estimate the variance and bias of a large population. This resampling method was origi-

nally proposed by Quenouille (1949) as a method of reducing the bias of an estimator of

a serial correlation coefficient. The same author expanded the technique in Quenouille

(1956) and explored its general bias reduction properties in an infinite-population con-

text. Later, the technique was refined and given its current name by Tukey (1958).

Tukey (1958) described its use in constructing confidence limits for a large class of

estimators. In the case of U-statistics, this concept has been studied by few authors

in the past. In particular, the problem of estimating the standard error of U-statistics

4
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Chapter 1 Section 1.2

was first considered by Arvesen (1969) although an equivalent formulation appears in

Sen (1960). Majumdar and Sen (1978) studied the invariance principles for jackknif-

ing U-statistics for finite population sampling. Krewski (1978) applied the jackknifing

technique on U-statistics in finite populations. Yamato, Toda and Nomachi (2007) in-

vestigated the jackknifing method on a convex combination of one-sample U-statistics.

Chapter 5 is organized in two sections. In Section 5.1 we jackknife U-statistics based

on associated random variables and in Section 5.2 we jackknife U-statistics based on

negatively associated random variables.

Finally, in Chapter 6 we discuss our future research plan which can be initiated

based on the results presented in this thesis.

1.2 Associated and negatively associated random

variables

The basic concepts of association, U-statistics and demimartingales are crucial for

our investigation. We briefly introduce each one and offer some elementary examples.

Positively associated, or simply associated random variables are of considerable

interest in reliability theory, percolation theory and statistical mechanics. For a review

of several probabilistic and statistical inferential results for associated sequences, see

for example Newman (1984), Cox and Grimmett (1984), Birkel (1988), Birkel (1989),

Roussas (1993), Matula (1998), Roussas (1999) and Dewan and Prakasa Rao (2001).

All random variables appearing in this thesis are defined on a probability space

(Ω,A,P). The definition of associated random variables is given below.

Definition 1.2.1. Let {Xi, i ≥ 1} be a sequence of random variables. Every finite

collection {X1, X2, ..., Xn} is said to be associated if for any real valued, coordinatewise

nondecreasing functions f, g : Rn → R, we have

cov [f (X1, X2, ..., Xn) , g (X1, X2, ..., Xn)] ≥ 0

whenever the covariance is defined. An infinite collection is associated if every finite

subcollection is associated.

A weaker concept of association is presented in the following definition.
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Chapter 1 Section 1.2

Definition 1.2.2. Let {Xi, i ≥ 1} be a sequence of random variables. A finite collection

{X1, X2, ..., Xn} is said to be weakly associated if for any nonempty disjoint subsets A

and B of {1, ..., n} and for any real valued, coordinatewise nondecreasing functions

f : R|A| → R and g : R|B| → R, where |A| is the cardinality of A, we have

cov [f (Xi, i ϵ A) , g (Xj, j ϵ B)] ≥ 0.

An infinite collection is weakly associated if every finite subcollection is weakly associ-

ated.

Associated random variables were introduced by Esary et al. (1967). Some prop-

erties of association are the following:

• Any subset of associated random variables is a set of associated random variables.

• If two sets of associated random variables are independent of one another, then

their union is a set of associated random variables.

• The set consisting of a single random variable is associated.

• Nondecreasing functions of associated random variables are associated.

• Independent random variables are associated.

The covariance structure of an associated sequence {Xi, i ≥ 1} presented below,

plays a significant role in studying the probabilistic properties of the associated se-

quence.

Notation 1.2.3. (Oliveira (2012), p. 41). Let {Xi, i ∈ N}, be a sequence of random

variables. Denote

u(n) = sup
k∈N

∑
j:|j−k|≥n

cov (Xj, Xk) , n ≥ 0.

Remark 1.2.4. Notice that if we assume the random variables to be stationary, then

u(n) = 2
∞∑

j=n+1

cov (X1, Xj) , n ≥ 0.

One can recognize this expression as the asymptotic variance in central limit theorems

for dependent variables if we choose n = 0.
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Chapter 1 Section 1.2

Birkel (1988) observed that moment bounds for partial sums of associated sequences

also depend on the rate of decrease of u(n).

Proposition 1.2.5. (Birkel (1988)). Let {Xj, j ∈ N}, be a sequence of associated

random variables satisfying E(Xj) = 0 for every j and

sup
j∈N

E |Xj|r+δ <∞ for some r > 2, δ > 0.

Assume

u(n) = O
(
n− (r−2)(r+δ))

2δ

)
.

Then there is a constant B not depending on n such that for all n ∈ N

sup
m≥0

E

∣∣∣∣∣
n+m∑

j=m+1

Xj

∣∣∣∣∣
r

≤ Bn
r
2 .

The definition of negatively associated random variables is given below.

Definition 1.2.6. Let {Xi, i ≥ 1} be a sequence of random variables. A finite collection

{X1, X2, ..., Xn} is said to be negatively associated (NA) if for any nonempty disjoint

subsets A and B of {1, ..., n} and for any real valued, coordinatewise nondecreasing

bounded functions f : R|A| → R and g : R|B| → R, where |A| is the cardinality of A,

we have

cov [f (Xi, i ϵ A) , g (Xj, j ϵ B)] ≤ 0.

An infinite collection is negatively associated if every finite subcollection is negatively

associated.

Negative association was introduced by Joag-Dev and Proschan (1983). Some prop-

erties of negatively associated random variables are the following.

• A subset of two or more NA random variables is a subset of NA random variables.

• A set of independent random variables is a set of NA random variables.

• Increasing functions defined on disjoint subsets of a set of NA random variables

are NA.

• The union of independent sets of NA random variables is a set of NA random

variables.
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Chapter 1 Section 1.3

We present now some important moment bounds for sums of negatively associated

random variables.

Proposition 1.2.7. (Shao (2000)). Let p ≥ 1, {Xi, 1 ≤ i ≤ n} be a collection of

negatively associated mean zero random variables with E|Xi|p <∞ for every 1 ≤ i ≤ n,

and let {X∗
i , 1 ≤ i ≤ n} be a collection of independent random variables such that Xi

and X∗
i have the same distribution for each 1 ≤ i ≤ n. Then

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

6 E

∣∣∣∣∣
n∑

i=1

X∗
i

∣∣∣∣∣
p

.

Proposition 1.2.8. (Shao (2000)). Let {Xi, 1 ≤ i ≤ n} be a collection of negatively

associated mean zero random variables with E|Xi|p < ∞ for every 1 ≤ i ≤ n and

1 < p ≤ 2. Then

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

6 23−p

n∑
i=1

E |Xi|p .

Proposition 1.2.9. (Su et al. (1997)). Let {Xi, 1 ≤ i ≤ n} be a collection of

negatively associated mean zero random variables and E|Xi|p <∞, for i = 1, ..., n and

for p ≥ 2. Then there exists a positive constant Cp which only depends on p such that

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

6 Cpn
p/2−1

n∑
i=1

E |Xi|p ,

where Cp = max
{
pp, p1+

p
2 epB(p

2
, p
2
)
}
with B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx.

1.3 Demimartingales and N-demimartingales

Relevant to the notion of positively associated random variables is the notion of

demimartingales. Below we give the definition.

Definition 1.3.1. Let S1, S2, ... be an L1 sequence of random variables. Assume that

for j = 1, 2, ...

E {(Sj+1 − Sj) f (S1, S2, ..., Sj)} ≥ 0

for all coordinatewise nondecreasing functions f such that the expectation is defined.

Then {Sj}j≥1 is called a demimartingale. If in addition the function f is assumed to be

nonnegative, the sequence {Sj}j≥1 is called a demisubmartingale.
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Chapter 1 Section 1.4

One can easily verify that the partial sum of mean zero positively associated random

variables is a demimartingale. It is worth mentioning that a martingale with the natural

choice of σ-algebras is a demimartingale. Furthermore, it can also be verified that a

submartingale (with the natural choice of σ-algebras) is a demisubmartingale.

Motivated by the definition of a demimartingale, the idea of a similar generalization

for negatively associated random variables leads to the concept of the so-called N-

demimartingales and N-demisupermartingales. The definition is as follows.

Definition 1.3.2. Let S1, S2, ... be an L1 sequence of random variables. Assume that

for j = 1, 2, ...

E {(Sj+1 − Sj) f (S1, S2, ..., Sj)} ≤ 0

for all coordinatewise nondecreasing functions f whenever the expectation is defined.

Then the sequence {Sj}j≥1 is called an N-demimartingale. If the inequality holds for

nonnegative coordinatewise nondecreasing functions f, then the sequence {Sj}j≥1 is

called an N-demisupermartingale.

It is trivial to verify that the partial sum of mean zero negatively associated ran-

dom variables is an N-demimartingale. It is also worth mentioning that a martingale

with the natural choice of σ-algebras is an N-demimartingale. Furthermore, it can

be verified that a supermartingale (with the natural choice of σ-algebras) is an N-

demisupermartingale.

Newman and Wright (1982) introduced the concept of a demimartingale and a

demisubmartingale as a generalization of martingales and submartingales respectively.

For a review of some probabilistic results see Christofides (2000), Wang (2004), Wang et

al. (2009, 2010) and Prakasa Rao (2012). The notion of N-demimartingales was intro-

duced later by Christofides (2003). Various results and examples of N-demimartingales

and N-demisupermartingales can be found in Christofides (2003), Prakasa Rao (2004,

2007), Hadjikyriakou (2010) and Wang et al. (2011).

1.4 U-statistics based on associated and negatively

associated random variables

U-statistics were introduced by Hoeffding (1948) following an idea of Halmos (1946).

They are generalized averages containing some classical statistics as special cases such
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Chapter 1 Section 1.4

as the sample mean and the sample variance. In what follows we give the definition

of U-statistics defined not on i.i.d. random variables as in the original construction of

Hoeffding but on associated random variables.

Definition 1.4.1. Let {X1, X2, ..., Xn} be a collection of identically distributed associ-

ated (or negatively associated) random variables. In a large class of problems, param-

eters to be estimated are of the form ϑ = E [h (X1, X2, ..., Xm)] where m is a positive

integer m ≤ n and h is a symmetric mapping from Rm to R called a “kernel”. An

unbiased estimator of ϑ is

Un =

(
n

m

)−1 ∑
1≤i1<i2<···<im≤n

h (Xi1 , Xi2 , ..., Xim)

where
∑

1≤i1<i2<···<im≤n denotes summation over all
(
n
m

)
combinations of the m distinct

elements {i1, i2, ..., im} from {1, ..., n}. The estimator Un is called a U-statistic based

on the kernel h and the given observations.

Some closely related statistics are the V-statistics. A V-statistic (von Mises (1947))

based on the symmetric kernel h of degree m is defined by

Vn = n−m

n∑
i1=1

· · ·
n∑

im=1

h (Xi1 , Xi2 , ..., Xim) .

The next proposition shows the asymptotic connection beetween U and V-statistics.

Proposition 1.4.2. (Prakasa Rao (2012), p. 180). Let {Xn, n ≥ 1} be a stationary

associated sequence. Let Un and Vn be the U-statistic and the V -statistic respectively

based on these observations and on a symmetric kernel h of degree 2. Assume that

h (X1, X2) is monotonic in X1. Furthermore, suppose that

E
[
|h (X1, X2)|r+δ

]
<∞ for r > 2, δ > 0,

and

2
∞∑

j=n+1

cov (h (X1, X2) , h (X2j−1, X2j)) = O
(
n− (r−2)(r+δ))

2δ

)
.

Then

E |Un|r = O
(
n− r

2

)
, n→ ∞,
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Chapter 1 Section 1.4

and

E |Un − Vn|r = O
(
n− r

2

)
, n→ ∞.

Suppose that {X1, X2, ..., Xn} is a collection of associated (or negatively associated)

random variables identically distributed with distribution function F . Below we present

some examples of U-statistics.

Example 1.4.3. If m = 1, Un is simply the sample mean. Consider the estimation

of ϑ = µm, where µ = E (X1) and m is a positive integer. Using h (x1, x2, ..., xm) =

x1x2 · · ·xm, we obtain the following U-statistic as an unbiased estimator of ϑ = µm:

Un =

(
n

m

)−1 ∑
1≤i1<i2<···<im≤n

Xi1Xi2 · · ·Xim .

Example 1.4.4. Consider the estimation of ϑ = σ2 = V ar (X1). Since

σ2 = [V ar(X1) + V ar(X2)]/2 = E[(X1 −X2)
2/2],

we obtain the following U-statistic with kernel h(x1, x2) = (x1 − x2)
2/2:

Un =
2

n(n− 1)

∑
1≤i<j≤n

(Xi −Xj)
2

2
=

1

n− 1

(
n∑

i=1

X2
i − nX̄2

)
= S2

which is the sample variance.

Example 1.4.5. We obtain the following U-statistic with kernel h(x1) = I{x1≤x} where

I{·} is the indicator function:

Un =

(
n

1

)−1 n∑
i=1

h (Xi) =
1

n

n∑
i=1

I{Xi≤x} = F̂ (x)

which is the empirical distribution function.

Example 1.4.6. In some cases, we would like to estimate ϑ = E|X1−X2|, a measure

of concentration. Using the kernel h(x1, x2) = |x1 − x2|, we obtain the following U-

statistic as an unbiased estimator of ϑ = E|X1 −X2|:

Un =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj|

11

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 1 Section 1.5

which is known as Gini’s mean difference. This statistic has a number of applications

in studying the income of human populations.

Example 1.4.7. Let ϑ = P (X1+X2 ≤ 0). Using the kernel h(x1, x2) = I(−∞,0](x1+x2),

we obtain the following U-statistic:

Un =
2

n(n− 1)

∑
1≤i<j≤n

I(−∞,0](Xi +Xj)

which is known as the one-sample Wilcoxon statistic.

1.5 Hoeffding decomposition of a U-statistic based

on a kernel of degree two

The Hoeffding decomposition was introduced by Hoeffding (1961). This result

is very useful in providing asymptotic results for U-statistics. Next we present the

Hoeffding decomposition of a U-statistic based on a kernel of degree two.

Let {Xn, n ≥ 1} be a sequence of identically distributed associated or negatively

associated random variables. Define the U-statistic of dimension two by

Un =

(
n

2

)−1 ∑
1≤i1<i2≤n

h (Xi1 , Xi2)

where h is a real-valued function symmetric in its arguments. Furthermore, the von

Mises statistic Vn of dimension two is defined by

Vn =
1

n2

n∑
i=1

n∑
j=1

h (Xi, Xj) .

One can express Vn in terms of Un in the form

Vn =
n− 1

n
Un +

1

n2

n∑
i=1

h (Xi, Xi) .

Let

θ =

∫ +∞

−∞

∫ +∞

−∞
h(x, y)dF (x)dF (y),
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Chapter 1 Section 1.5

h1 (x1) = E[h (x1, X2)] =

∫ +∞

−∞
h (x1, x2) dF (x2),

h(1) (x1) = h1 (x1)− θ

and

h(2) (x1, x2) = h (x1, x2)− h1 (x1)− h1 (x2) + θ.

Then, the Hoeffding decomposition (H-decomposition) for Un is given by (see Lee,

1990)

Un = θ + 2H(1)
n +H(2)

n ,

where H
(j)
n is the U-statistic of degree j based on the kernel h(j), j = 1, 2, that is,

H(1)
n =

1

n

n∑
i=1

h(1) (Xi) and H(2)
n =

1(
n
2

) ∑
1≤i1<i2≤n

h(2) (Xi1 , Xi2) .

The well-known H-decomposition is described in Hoeffding (1961). The importance

of this decomposition is that a U-statistic can be expressed as a sum of two new

uncorrelated U-statistics. To simplify our calculation let also E(h (X1, X2)) = 0, in

short, E(h) = 0. Using the Hoeffding decomposition we can write

n
1
2Un

2σ1
=

1

n
1
2σ1

n∑
i=1

h(1) (Xi) +
1

n
1
2 (n− 1)σ1

∑
1≤i<j≤n

h(2) (Xi, Xj) , (1.5.1)

where σ2
1 = Var[h1 (X1)] < ∞. A similar Hoeffding decomposition for a von Mises

statistic of dimension two is given by

Vn =
1

n2

n∑
i=1

h (Xi, Xi) +
2(n− 1)

n2

n∑
i=1

h(1) (Xi) +
2

n2

∑
1≤i<j≤n

h(2) (Xi, Xj) ,

and thus

n
1
2Vn
2σ1

=
1

2n
3
2σ1

n∑
i=1

h (Xi, Xi) +
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi) +
1

n
3
2σ1

∑
1≤i<j≤n

h(2) (Xi, Xj) .

We now present the Hoeffding-decomposition for some U-statistics. Let {Xn, n ≥ 1}

be a sequence of identically distributed associated or negatively associated random vari-

ables with E(X1) = µ1, E(X
2
1 ) = µ2 and Var(X1) = σ2.
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Chapter 1 Section 1.5

Example 1.5.1. (Estimator of second moment). Consider the estimation of

θ = E(X2
1 ) = σ2 + µ2. Un is based on the kernels

h(x1, x2) = x1x2,

h(1)(x1) = µx1 − (σ2 + µ2),

h(2)(x1, x2) = x1x2 − µ(x1 + x2) + (σ2 + µ2).

Example 1.5.2. (Estimator of variance). Consider the estimation of

θ = V ar(X1) = σ2. Un is based on the kernels

h(x1, x2) =
1

2
(x1 − x2)

2,

h(1)(x1) =
1

2
x21 − µx1 +

1

2
(µ2 − σ2),

h(2)(x1, x2) = µ(x1 + x2)− x1x2 − µ2.

Example 1.5.3. (Estimator of third central moment). Consider the estimation of the

third central moment θ = E(X1 − µ1)
3. Then

Un =
n

(n− 1)(n− 2)

n∑
i=1

(Xi − X̄n)
3 =

(
n

3

)−1 ∑
1≤i1<i2<i3≤n

h (Xi1 , Xi2 , Xi3)

is based on the kernels

h(x1, x2, x3) =
x31 + x32 + x33

3
− x21(x2 + x3) + x22(x1 + x3) + x23(x1 + x2)

2
+ 2x1x2x3,

h(1)(x1) =
2µ3 + x31

3
− µ2x1,

h(2)(x1, x2) =
µ3 + x31 + x32

3
− x21x2 + x22x1 + µ2(x1 + x2)

2
.

where E(X2
1 ) = µ2 and E(X3

1 ) = µ3, if we assume that E(X1) = 0.

Example 1.5.4. (Wilcoxon’s one sample rank statistic). Recall Wilcoxon’s one sample

test, which is used to test if a distribution F is symmetric about zero. Let

ϑ = P (X1 +X2 > 0). Using the kernel h(x1, x2) = I{x1+x2>0}, we obtain the following

U-statistic:

ϑ̂ =
2

n(n− 1)

∑
1≤i<j≤n

I{Xi+Xj>0}

which is known as the one-sample Wilcoxon statistic. The Hoeffding-decomposition for
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Chapter 1 Section 1.5

ϑ̂ is based on kernels

h(x1, x2) = I{x1+x2>0},

h1(x1) = E[I{x1+X2>0}] = 1− P (X1 ≤ −x1),

h(1)(x1) = 1− P (X1 ≤ −x1)− ϑ,

h(2) (x1, x2) = h (x1, x2)− h1 (x1)− h1 (x2) + ϑ.

Example 1.5.5. (Estimator Gini’s mean difference). Gini’s mean difference is an

index that measures the variability for observations from a distribution F. Assume that

we have a finite population with N elements and a sample with n < N observations is

drawn without replacement. An unbiased estimator of

θ =

∫∫
|x− y|dF (x)dF (y),

is the U-statistic

Un =

(
n

2

)−1 ∑
1≤i<j≤n

|Xi −Xj|.

We rewrite Un in the form

Un =

(
n

2

)−1 n∑
j=1

(2j − n− 1)Xj:n,

where X1:n 6 . . . 6 Xn:n are the order statistics of the observations of the sample.

Denote ai =
2i−N
N

and ∆i = Xi+1−Xi with 1 ≤ i ≤ N−1. The Hoeffding decomposition

of Un is

Un = θ +
n∑

k=1

h1 (Xk) +
∑

1≤k<l≤n

h2 (Xk, Xl)

with

h1 (Xk) = − 2

n

N

N − 2

N−1∑
i=1

(
I{i≥k} −

i

N

)
ai∆i, for 1 ≤ k ≤ N

h2 (Xk, Xl) = − 4

n(n− 1)

N−1∑
i=1

Φk,l (i)∆i, for 1 ≤ k < l ≤ N

where
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Chapter 1 Section 1.6

Φk,l (i) =



i(i− 1)/A, if 1 ≤ i ≤ k

−(i− 1)(N − i− 1)/A, if k ≤ i ≤ l

(N − i− 1)(N − i)/A, if l ≤ i ≤ k

with A = (N − 1)(N − 2).

1.6 Demimartingale and N-demimartingale approach

Classical U-statistics based on independent random variables can be expressed in

terms of martingales. This follows from the H-decomposition that we described in

Section 1.5. In the case of U-statistics which are constructed using a collection of

associated random variables this result is not true. However, for a special class of

kernels, a U-statistic can be expressed in terms of a demimartingale as the following

result shows.

Proposition 1.6.1. (Christofides (2004)). Let Un be a U-statistic based on associated

random variables and on the kernel h. Assume that h is componentwise nondecreasing

and E(h) = 0. Then
{
Sn =

(
n
m

)
Un, n ≥ m

}
is a demimartingale.

Proof. We can write

Sn+1 − Sn =
∑

1≤i1<···<im≤n+1

h (Xi1 , ..., Xim)−
∑

1≤i1<···<im≤n

h (Xi1 , ..., Xim)

=
∑

1≤i1<···<im−1≤n

h
(
Xi1 , ..., Xim−1 , Xn+1

)
.

Then for f componentwise nondecreasing function

E{(Sn+1 − Sn)f(Sm, ..., Sn)}

= E

 ∑
1≤i1<···<im−1≤n

h
(
Xi1 , ..., Xim−1 , Xn+1

)
f(Sm, ..., Sn)


=

∑
1≤i1<···<im−1≤n

E{h
(
Xi1 , ..., Xim−1 , Xn+1

)
f(Sm, ..., Sn)}

=
∑

1≤i1<···<im−1≤n

E{h
(
Xi1 , ..., Xim−1 , Xn+1

)
g(X1, ..., Xn)}

≥ 0,
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Chapter 1 Section 1.7

where the function g defined as

g(x1, ..., xn) = f(h(x1, ..., xm),∑
1≤i1<···<im≤m+1

h (xi1 , ..., xim , ) , ...,
∑

1≤i1<···<im≤n

h (xi1 , ..., xim))

is componentwise nondecreasing since h, f are componentwise nondecreasing and the

last inequality follows from the nondecreasingness of g and the fact that {Xi}i≥1 is a

sequence of associated random variables. �

The following proposition from Prakasa Rao (2012) shows that a U-statistic based

on negatively associated random variables and having a specific structure can be ex-

pressed in terms of an N-demimartingale for a particular class of kernels.

Proposition 1.6.2. Suppose that {Xi, i ≥ 1} is a sequence of negatively associated ran-

dom variables. For any fixed integerm ≤ n, let h (x1, x2, ..., xm) = h̃ (x1) h̃ (x2) · · · h̃ (xm)

be a kernel mapping Rm to R for some nondecreasing function h̃ (.) with E
[
h̃ (X1)

]
= 0.

Then the sequence
{
Sn =

(
n
m

)
Un, n ≥ m

}
is an N-demimartingale.

More results and examples for N-demimartingales can be found in Prakasa Rao (2012).

1.7 Probability metrics and distances

Probability metrics play an important role in asymptotic statistics. Generally

speaking, a probability metric is a functional that measures the distance between two

random quantities and is very useful for investigating the asymptotic behavior of a

statistical function or estimator. The definitions of probability and ideal probability

metrics are given below.

Definition 1.7.1. A probability metric µ(X,Y ) is a functional which measures the

closeness between the random variables X and Y , and satisfies the following three

properties:

Property 1. µ(X, Y ) ≥ 0 for any X, Y and µ(X,X) = 0.

Property 2. µ(X, Y ) = µ(Y,X) for any X, Y .
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Chapter 1 Section 1.7

Property 3. µ(X, Y ) ≤ µ(X,Z) + µ(Z, Y ) for any X, Y, Z.

The three properties are called the identity axiom, the symmetry axiom, and the triangle

inequality, respectively.

The ideal probability metrics are probability metrics which satisfy two additional

properties which make them uniquely positioned to study problems related to the gener-

alized central limit theorem (CLT). The two additional properties are the homogeneity

of order r property and the regularity property.

The homogeneity property is

Property 4. µ(cX, cY ) = |c|rµ(X,Y ) for any X, Y and constants c ϵ ℜ and r ∈ ℜ.

The regularity property is

Property 5. µ(X + Z, Y + Z) ≤ µ(Y,X) for any X, Y and Z independent of X

and Y .

Next we give some various metrics that are needed for our study.

Definition 1.7.2. Let X, Y random variables. The uniform or Kolmogorov distance

is defined as

ρ(X, Y ) = sup
xϵℜ

|FX (x)− FY (x)| .

Definition 1.7.3. Let s ∈ N. For two random variables X and Y denote by κs the

mean metric, that is,

κs(X, Y ) = s

∫
|t|s−1 |FX(t)− FY (t)| dt.

Definition 1.7.4. Let X, Y random variables. The Levy metric is defined as

L (X, Y ) = inf {ε > 0 : FX (x− ε)− ε 6 FY (x) 6 FX (x+ ε) + ε, ∀ x ∈ ℜ} .

An ideal probability metric is the Zolotarev’s ideal metric introduced by Zolotarev

(1983).

Definition 1.7.5. The Zolotarev’s ideal metric is defined as

ζs (X,Y ) =
1

(s− 1)!

∫ +∞

−∞

∣∣E(X − t)s−1
+ − E(Y − t)s−1

+

∣∣ dt, s ∈ N
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Chapter 1 Section 1.8

where E |X|s−1 <∞, E |Y |s−1 <∞ and X+ = max {0, X}.

1.8 Functions of bounded variation

The concept of functions of bounded variation is presented in the following defini-

tions and propositions.

Definition 1.8.1. A partition of an interval [a, b] is a set of points {x0, x1, ..., xn} such

that a = x0 < x1 < · · · < xn = b.

Definition 1.8.2. Let f : [a, b] → R be a function and Π = {x0, x1, ..., xn} a partition

of the interval [a, b]. We denote

CΠ (f) =
n∑

k=1

|f (xk)− f (xk−1)|

and set

Cf
[a,b] = sup

Π
CΠ (f) ,

where the supremum is taken over all partitions Π of the interval [a, b].

Definition 1.8.3. A function f : [a, b] → R is said to be of bounded variation on [a, b]

if Cf
[a,b] is finite.

Similarly, we present the concept of functions of bounded variation on a rectangle

[a, b]× [c, d].

Definition 1.8.4. Let f : [a, b]×[c, d] → R be a function defined on the rectangle [a, b]×

[c, d], Π1 = {x0, x1, ..., xn} a partition of the interval [a, b] and Π2 = {y0, y1, ..., ym} a

partition of the interval [c, d]. We denote

CΠ1×Π2 (f) =
n∑

i=1

m∑
j=1

|f (xi, yj)− f (xi−1, yj)− f (xi, yj−1) + f (xi−1, yj−1)|

and set

Cf
[a,b]×[c,d] = sup

Π1×Π2

CΠ1×Π2 (f) ,

where the supremum is taken over all possible subdivisions of the rectangle [a, b]× [c, d].

Definition 1.8.5. A function f : [a, b]× [c, d] → R is said to be of bounded variation

on the rectangle [a, b]× [c, d] if Cf
[a,b]×[c,d] is finite.
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Chapter 1 Section 1.8

We now consider some of the properties of functions of bounded variation on [a, b]

that are still valid on the rectangle [a, b]× [c, d].

Proposition 1.8.6. Let f and g be functions of bounded variation on [a, b] and let k

be a constant. Then

(1) f is bounded on [a, b];

(2) f is of bounded variation on every closed subinterval of [a, b];

(3) kf is of bounded variation on [a, b];

(4) f + g and f − g are of bounded variation on [a, b];

(5) fg is of bounded variation on [a, b];

(6) if 1/g is bounded on [a, b], then f/g is of bounded variation on [a, b];

(7) if f is constant on [a, b], then f is of bounded variation on [a, b];

(8) if f is monotone on [a, b], then f is of bounded variation on [a, b].

Remark 1.8.7. The results in Proposition 1.8.6 are still valid for functions f and g

of bounded variation on the rectangle [a, b]× [c, d].

Another very useful property is the fact that a function of bounded variation can

be written as the difference of two increasing functions.

Proposition 1.8.8. If f : [a, b] → R is a function of bounded variation on [a, b] then

there exist two nondecreasing functions on [a, b], f1 and f2, such that f = f1 − f2.

Proposition 1.8.9. If f : [a, b] × [c, d] → R is a function of bounded variation on

[a, b] × [c, d] then there exist two nondecreasing functions on [a, b] × [c, d], f1 and f2,

such that f = f1 − f2.

Here are some examples of functions of bounded variation:

(1) f(x) = c, where c is a constant ;

(2) f(x) = x ;

(3) f(x, y) = xy ;

(4) f(x, y) = x± y;

(5) f(x, y) = |x− y|;

(6) f(x, y) = I{x≥y};

where I is the indicator function.

It is worth noticing that for some U-statistics, the functions h, h(1) and h(2) involved

in the Hoeffding decomposition are functions of bounded variation. We present here a
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Chapter 1 Section 1.8

few examples. Let {X1, X2, ..., Xn} be a collection of identically distributed negatively

associated random variables with E(X1) = µ and V ar(X1) = σ2.

Example 1.8.10. Consider the estimation of θ = V ar(X1) = σ2, Un is based on the

kernels

h(x1, x2) =
1

2
(x1 − x2)

2,

h(1)(x1) =
1

2
x21 − µx1 +

1

2
(µ2 − σ2),

h(2)(x1, x2) = µ(x1 + x2)− x1x2 − µ2.

One can verify that h, h(1) and h(2) are functions of bounded variation.

Example 1.8.11. Consider the estimation of θ = E(X2
1 ) = σ2 + µ2. Un is based on

the kernels

h(x1, x2) = x1x2,

h(1)(x1) = µx1 − (σ2 + µ2),

h(2)(x1, x2) = x1x2 − µ(x1 + x2) + (σ2 + µ2).

One can verify that h, h(1) and h(2) are functions of bounded variation.
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Chapter 2

Inequalities for U-statistics based

on associated and negatively

associated random variables

In Chapter 2, we discuss some inequalities for U-statistics based on associated and

negatively associated random variables. The chapter is organized as follows. In Sec-

tion 2.1 we obtain moment inequalities for U-statistics based on negatively associated

random variables and in Section 2.2 we present an exponential bound for U-statistics

based on the same class of random variables. In Section 2.3 we introduce the concept

of a reverse demimartingale and a reverse demisubmartingale as a generalization of the

notion of reverse (backward) martingales and reverse submartingales. Furthermore,

we give a Chow type maximal inequality for reverse demisubmartingales and we es-

tablish a Doob’s maximal inequality for reverse demisubmartingales. Finally, we show

the connection between U-statistics based on associated random variables and reverse

demimartingales and we give some examples.

2.1 Moment inequalities

Moment inequalities are useful tools for studying asymptotic results in statistics.

Below we give some inequalities for the partial sum of random variables. The following

inequality is a crude one, valid for any random variables but can be used in cases where

no other inequality is available.

22

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 2 Section 2.1

Proposition 2.1.1. Let {Xi, 1 ≤ i ≤ n} be any random variables. Then

E |X1 +X2 + · · ·+Xn|l ≤ nl−1

n∑
i=1

E |Xi|l , l ≥ 1.

The following inequality can be applied to the case of independent random variables.

Proposition 2.1.2. (Petrov (1995), p. 62). Let X1, X2, ..., Xn be independent random

variables with zero means, and let p ≥ 2. Then

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≤ C (p)n
p
2
−1

n∑
i=1

E |Xi|p ,

where C(p) is a positive constant depending only on p.

2.1.1 Moment inequalities for U-statistics based on negatively

associated random variables

A number of authors have studied moment inequalities for negatively associated

random variables. The most interesting results are obtained in Shao (2000) and Su et al.

(1997). However, moment inequalities for U-statistics based on negatively associated

random variables are rarely discussed in the literature. In this section we give an upper

bound for E |Un|p when p is a real number 1 < p ≤ 2 or p ≥ 2, when Un is based on

negatively associated random variables.

Lemma 2.1.3 that follows, provides a moment bound of a U-statistic based on

negatively associated random variables.

Lemma 2.1.3. Let Un be a U-statistic based on negatively associated random variables

and on the kernel h of dimension two. Assume that h is componentwise nondecreasing

and p is a real number, p ≥ 2. Further assume that E |h (Xi, Xj)|p ≤ c < ∞ for all

1 ≤ i < j ≤ n. Then

E |Un|p < 2Cp3
p−1n−p(n− 1)p/2−2

∑
1≤i<j≤n

E |h (Xi, Xj)|p ,

where Cp = max
{
pp, p1+

p
2 epB(p

2
, p
2
)
}
with B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx. Moreover

E |Un|p = O
(
n− p

2

)
, n→ ∞.
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Chapter 2 Section 2.1

Proof. It can be easily verified that the sum
∑

1≤i<j≤n h (Xi, Xj) can be written as a

sum of n− 1 blocks

∑
1≤i<j≤n

h (Xi, Xj) =
n−1∑
k=1

Ak, (2.1.1)

where Ak =
∑n−k

i=1 h(Xi, Xi+k) for k = 1, 2, ..., n− 1.

It is obvious that each block Ak when k ≥
⌊
n+1
2

⌋
, where ⌊x⌋ is the floor function,

is a sum of negatively associated random variables since increasing functions defined

on disjoint subsets of a set of negatively associated random variables are negatively

associated random variables (see Property 5 of Joag-Dev and Proschan (1983)). On

the other hand, when k <
⌊
n+1
2

⌋
, this statement is not true. But we observe that

each block Ak, when k <
⌊
n+1
2

⌋
, can be divided into two new blocks with each one

now being a sum of negatively associated random variables. The result of this remark

is that the sum in the right-hand side of (2.1.1) is a sum of blocks where each block

Bs, s = 1, 2, ...,m is a sum of negatively associated random variables and m =
⌊
3(n−1)

2

⌋
denotes the number of the blocks. Thus,

∑
1≤i<j≤n

h (Xi, Xj) =
n−1∑
k=1

Ak =
m∑
s=1

Bs.

The p-th moment of the U-statistic can be written now as

E |Un|p =
(
n

2

)−p

E

∣∣∣∣∣
m∑
s=1

Bs

∣∣∣∣∣
p

(2.1.2)

Applying now Proposition 2.1.1 we have that

E |Un|p ≤
(
n

2

)−p

mp−1

m∑
s=1

E |Bs|p .

Since each block Bs (s = 1, 2, ...,m) is a sum of negatively associated random variables

from Proposition 1.2.9 we have that

E |Un|p ≤
(
n

2

)−p

mp−1

m∑
s=1

Cpn
p/2−1
s

∑
1≤i<j≤n :

h(Xi,Xj)∈Bs

E |h (Xi, Xj)|p

 ,
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Chapter 2 Section 2.1

where ns is the number of elements of the sth block. Since ns ≤ n− 1 for all n ≥ 2, we

get that

E |Un|p ≤
(
n

2

)−p

mp−1Cp(n− 1)p/2−1

m∑
s=1

∑
1≤i<j≤n :

h(Xi,Xj)∈Bs

E |h (Xi, Xj)|p

< 2Cp3
p−1n−p(n− 1)p/2−2

∑
1≤i<j≤n

E |h (Xi, Xj)|p ,

where the positive constant Cp depends only on p.

Under the assumption of E |h (Xi, Xj)|p ≤ c < ∞ for all 1 ≤ i < j ≤ n it follows

that

E |Un|p = O
(
n− p

2

)
, n→ ∞. �

Note that the previous result, Lemma 2.1.3, is still valid for U-statistics based on

a kernel h of bounded variation as the next result shows because of the fact that a

function of bounded variation can be written as the difference of two nondecreasing

functions.

Corollary 2.1.4. Let Un be a U-statistic based on negatively associated random vari-

ables and on the kernel h of dimension two. Assume that h is a function of bounded

variation and p is a real number, p ≥ 2. Furthermore, assume that

E |h (Xi, Xj)|p ≤ c <∞ for all 1 ≤ i < j ≤ n. Then

E |Un|p = O
(
n− p

2

)
, n→ ∞.

Proof.

E |Un|p =
(
n

2

)−p

E

∣∣∣∣∣ ∑
1≤i<j≤n

h (Xi, Xj)

∣∣∣∣∣
p

.

Since the kernel h is a function of bounded variation there are two nondecreasing

functions h1 and h2 such that h = h1 − h2. Therefore Un can be expressed as

Un = U (1)
n − U (2)

n ,

where U
(1)
n and U

(2)
n are U-statistics based on the componentwise nondecreasing kernels
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Chapter 2 Section 2.1

h1 and h2 respectively. Then from Proposition 2.1.1 and Lemma 2.1.3 it follows that

E |Un|p ≤ 2p−1E
∣∣U (1)

n

∣∣p + 2p−1E
∣∣U (2)

n

∣∣p = O
(
n− p

2

)
, n→ ∞. �

Lemma 2.1.5 that follows, provides a moment bound for a U-statistic based on nega-

tively associated random variables when p is a real number 1 < p ≤ 2.

Lemma 2.1.5. Let Un be a U-statistic based on negatively associated random variables

and on the kernel h of dimension two. Assume that h is componentwise nondecreasing

and p is a real number 1 < p ≤ 2. Furthermore, assume that E |h (Xi, Xj)|p ≤ c < ∞

for all 1 ≤ i < j ≤ n. Then

E |Un|p < 3p−124−pn−p(n− 1)−1
∑

1≤i<j≤n

E |h (Xi, Xj)|p ,

and thus,

E |Un|p = O
(
n1−p

)
, n→ ∞.

Proof. Using the same steps as in the proof of Lemma 2.1.3 we have that

E |Un|p =
(
n

2

)−p

E

∣∣∣∣∣ ∑
1≤i<j≤n

h (Xi, Xj)

∣∣∣∣∣
p

=

(
n

2

)−p

E

∣∣∣∣∣
m∑
s=1

Bs

∣∣∣∣∣
p

,

where m =
⌊
3(n−1)

2

⌋
denotes the number of the blocks.

Applying now Proposition 2.1.1 we have that

E |Un|p ≤
(
n

2

)−p

mp−1

m∑
s=1

E |Bs|p .

Since every block Bs (s = 1, 2, ...,m) is a sum of negatively associated random variables

from Proposition 1.2.8 we have that

E |Un|p <
(
n

2

)−p [
3(n− 1)

2

]p−1 m∑
s=1

23−p
∑

1≤i<j≤n :

h(Xi,Xj)∈Bs

E |h (Xi, Xj)|p



= 3p−124−pn−p(n− 1)−1
∑

1≤i<j≤n

E |h (Xi, Xj)|p .
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Chapter 2 Section 2.1

Under the assumption E |h (Xi, Xj)|p ≤ c <∞ for all 1 ≤ i < j ≤ n it follows that

E |Un|p = O
(
n1−p

)
, n→ ∞. �

Corollary 2.1.6. Let Un be a U-statistic based on negatively associated random vari-

ables and on the kernel h of dimension two. Assume that h is a function of bounded

variation and p is a real number 1 < p ≤ 2. Furthermore, assume that

E |h (Xi, Xj)|p ≤ c <∞ for all 1 ≤ i < j ≤ n. Then

E |Un|p = O
(
n1−p

)
, n→ ∞.

Proof.

E |Un|p =
(
n

2

)−p

E

∣∣∣∣∣ ∑
1≤i<j≤n

h (Xi, Xj)

∣∣∣∣∣
p

.

Since the kernel h is a function of bounded variation there are two nondecreasing

functions h1 and h2 such that h = h1 − h2. Therefore Un can be expressed as

Un = U (1)
n − U (2)

n ,

where U
(1)
n and U

(2)
n are U-statistics based on the componentwise nondecreasing kernels

h1 and h2 respectively. Then from Proposition 2.1.1 and Lemma 2.1.5 it follows that

E |Un|p ≤ 2p−1E
∣∣U (1)

n

∣∣p + 2p−1E
∣∣U (2)

n

∣∣p = O
(
n1−p

)
, n→ ∞. �

2.1.2 Moment inequalities for V-statistics based on negatively

associated random variables

The corresponding theorem for V-statistics can be proved similarly. Lemma 2.1.7

that follows, provides a bound for the p-th absolute moment of a V-statistic based on

negatively associated random variables when p is a real number, p ≥ 2.

Lemma 2.1.7. Let Vn be a V-statistic based on negatively associated random variables

and on the kernel h of dimension two. Assume that h is componentwise nondecreasing

and p is a real number, p ≥ 2. Furthermore, assume that E |h (Xi, Xj)|p ≤ c < ∞ for
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Chapter 2 Section 2.1

all 1 ≤ i ≤ n, 1 ≤ j ≤ n. Then

E |Vn|p < 2p3p−1Cpn
−2p(n− 1)3p/2−2

∑
1≤i<j≤n

E |h (Xi, Xj)|p

+ 2p−1Cpn
−3p/2−1

n∑
i=1

E |h (Xi, Xi)|p ,

where Cp = max
{
pp, p1+

p
2 epB(p

2
, p
2
)
}
with B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx. Moreover

E |Vn|p = O
(
n− p

2

)
, n→ ∞.

Proof.

E |Vn|p = E

∣∣∣∣∣n− 1

n
Un +

1

n2

n∑
i=1

h (Xi, Xi)

∣∣∣∣∣
p

≤ 2p−1E

∣∣∣∣n− 1

n
Un

∣∣∣∣p + 2p−1E

∣∣∣∣∣ 1n2

n∑
i=1

h (Xi, Xi)

∣∣∣∣∣
p

.

(2.1.3)

Applying Proposition 1.2.9 and Lemma 2.1.3, since increasing functions defined on

disjoint subsets of a set of negatively associated random variables are negatively asso-

ciated random variables (see Property 5 of Joag-Dev and Proschan (1983)), we have

that the first term of the RHS of (2.1.3) by Lemma 2.1.3 is O
(
n− p

2

)
. Now consider the

second term. Using Proposition 1.2.9

E

∣∣∣∣∣ 1n2

n∑
i=1

h (Xi, Xi)

∣∣∣∣∣
p

≤ Cpn
− 3p

2
−1

n∑
i=1

E |h (Xi, Xi)|p

= O
(
n− 3p

2

)
.

Combining the two, the result follows. �

Remark 2.1.8. The previous result, Lemma 2.1.7, is still valid for V-statistics based

on a kernel h of bounded variation because a function of bounded variation can be

written as the difference of two nondecreasing functions.

Corollary 2.1.9. Let Vn be a V-statistic based on negatively associated random vari-

ables and on the kernel h of dimension two. Assume that h is a function of bounded

variation and p is a real number, p ≥ 2. Furthermore, assume that

E |h (Xi, Xj)|p ≤ c <∞ for all for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. Then

E |Vn|p = O
(
n− p

2

)
, n→ ∞.
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Chapter 2 Section 2.1

Proof. Since h can be expressed as the difference of two nondecreasing functions h1

and h2, then Vn can be expressed as the difference of two V-statistics,

Vn = V (1)
n − V (2)

n ,

where V
(1)
n and V

(2)
n are the V-statistics based on the nondecreasing kernels h1 and h2

respectively. The result now follows using Lemma 2.1.7. �

Lemma 2.1.10 that follows, provides a moment bound for a V-statistic based on

negatively associated random variables for a real number 1 < p ≤ 2.

Lemma 2.1.10. Let Vn be a V-statistic based on negatively associated random variables

and on the kernel h of dimension two. Assume that h is componentwise nondecreasing

and p is a real number, 1 < p ≤ 2. Furthermore, assume that E |h (Xi, Xj)|p ≤ c <∞

for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. Then

E |Vn|p < 233p−1(n− 1)p−1n−2p
∑

1≤i<j≤n

E |h (Xi, Xj)|p

+ 4n−2p

n∑
i=1

E |h (Xi, Xi)|p .

and

E |Vn|p = O
(
n1−p

)
, n→ ∞.

Proof.

E |Vn|p = E

∣∣∣∣∣n− 1

n
Un +

1

n2

n∑
i=1

h (Xi, Xi)

∣∣∣∣∣
p

≤ 2p−1E

∣∣∣∣n− 1

n
Un

∣∣∣∣p + 2p−1E

∣∣∣∣∣ 1n2

n∑
i=1

h (Xi, Xi)

∣∣∣∣∣
p

.

(2.1.4)

Applying Proposition 1.2.8 and Lemma 2.1.5, since increasing functions defined on

disjoint subsets of a set of negatively associated random variables are negatively asso-

ciated random variables (see Property 5 of Joag-Dev and Proschan (1983)), we have

that the first term of the RHS of (2.1.4) by Lemma 2.1.5 is O (n1−p). Now consider
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the second term. Using Proposition 1.2.8

E

∣∣∣∣∣ 1n2

n∑
i=1

h (Xi, Xi)

∣∣∣∣∣
p

≤ n−2p23−p

n∑
i=1

E |h (Xi, Xi)|p

= O
(
n1−2p

)
.

Combining the two, the result follows. �

Remark 2.1.11. The previous result, Lemma 2.1.10, is still valid for V-statistics

based on a kernel h of bounded variation because a function of bounded variation can

be written as the difference of two nondecreasing functions.

Corollary 2.1.12. Let Vn be a V-statistic based on negatively associated random vari-

ables and on the kernel h of dimension two. Assume that h is a function of bounded

variation and p is a real number, 1 < p ≤ 2. Furthermore, for all 1 ≤ i ≤ n and

1 ≤ j ≤ n assume that E |h (Xi, Xj)|p ≤ c <∞. Then

E |Vn|p = O
(
n1−p

)
, n→ ∞.

Proof. Since h can be expressed as the difference of two nondecreasing functions h1

and h2, then Vn can be expressed as the difference of two V-statistics,

Vn = V (1)
n − V (2)

n ,

where V
(1)
n and V

(2)
n are the V-statistics based on the nondecreasing kernels h1 and h2

respectively. The result now follows using Lemma 2.1.4. �

2.2 An exponential inequality for U-Statistics based

on negatively associated random variables

Generally, in probability theory, exponential inequalities play an important role

in various proofs of limit theorems. In particular they provide a measure of conver-

gence rate for the strong law of large numbers. Exponential inequalities for negatively

associated random variables were obtained by Kim and Kim (2007), Nooghabi and

Azarnoosh (2009), Xing et al. (2009), Sung (2009), Xing and Shanchao (2010).

Consider now the class of U-statistics which are based on a collection of negatively
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associated random variables. In this section, we establish an exponential inequality for

identically distributed negatively associated random variables. First, we state some

propositions required to prove the main result given in Theorem 2.2.4.

Proposition 2.2.1. Let x ∈ R. Then

ex ≤ 1 + x+
x2

2
e|x|.

Proposition 2.2.2. Let a > 0, b > 0, r > 1. Then

ab ≤ ar

r
+
br

′

r′
,

where 1
r
+ 1

r′
= 1.

Lemma 2.2.3. Let Un be a U-statistic based on negatively associated random variables

and on a kernel h of dimension two with E(h) = 0. Then for r > 1 and t > 0,

E(etUn) < exp

{
t2r

nr

32r−1

r2r−1

C2r

n(n− 1)

∑
1≤i<j≤n

E |h (Xi, Xj)|2r +
(r − 1)

r
E
(
e

tr
r−1

|Un|
)}

where Cp = max
{
pp, p1+

p
2 epB(p

2
, p
2
)
}
with B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx.

Proof. Using Propositions 2.2.1 and 2.2.2 and the representation of Un as a sum of

blocks, which every block consists of negatively associated random variables we may

write

E(etUn) ≤ 1 + E(tUn) + E

(
t2

2
U2
ne

t|Un|
)

≤ 1 +
t2r

r2r
E(Un)

2r +
1

r′
E
(
etr

′|Un|
)

= 1 +
t2r

r2r

(
n

2

)−2r

E

(
m∑
s=1

Bs

)2r

+
1

r′
E
(
etr

′|Un|
)

≤ 1 +
t2r

r2r

(
n

2

)−2r

m2r−1

m∑
s=1

E |Bs|2r +
1

r′
E
(
etr

′|Un|
)
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< 1 +
t2r

r2r

(
n

2

)−2r [
3 (n− 1)

2

]2r−1

C2rn
r−1

∑
1≤i<j≤n

E |h (Xi, Xj)|2r +
1

r′
E
(
etr

′|Un|
)
,

where the two inequalities follow form Propositions 2.1.1 and 1.2.9 respectively.

E(etUn) < 1 +
t2r

nr

32r−1

r2r−1

C2r

n(n− 1)

∑
1≤i<j≤n

E |h (Xi, Xj)|2r +
1

r′
E
(
etr

′|Un|
)

≤ exp

{
t2r

nr

32r−1

r2r−1

C2r

n(n− 1)

∑
1≤i<j≤n

E |h (Xi, Xj)|2r +
(r − 1)

r
E
(
e

tr
r−1

|Un|
)}

,

where the last inequality follows from 1 + x ≤ ex, ∀ x ∈ ℜ. �

The following theorem gives the exponential bound for U-Statistics based on neg-

atively associated random variables.

Theorem 2.2.4. Let Un be a U-statistic based on negatively associated random vari-

ables and on the kernel h with E(h) = 0. Assume that E
(
e

tr
r−1

|Un|
)
≤ d for r > 1 and

t > 0, where d is a positive constant. Then for ε > 0,

P (Un > ε) < exp

{
−ε

2r
2r−1n

r
2r−1

λ
1

2r−1

(
1

(2r)
1

2r−1

− 1

(2r)
2r

2r−1

)
+
d(r − 1)

r

}
.

where

λ =
32r−1

r2r−1

C2r

n(n− 1)

∑
1≤i<j≤n

E |h (Xi, Xj)|2r .

Proof. Assume that r > 1 and t > 0. Applying Markov’s inequality and Lemma 2.2.3

we have that

P (Un > ε) = P
(
etUn > etε

)
≤ e−tεE

(
etUn

)
= exp

{
−tε+ t2r

nr

32r−1

r2r−1

C2r

n(n− 1)

∑
1≤i<j≤n

E |h (Xi, Xj)|2r +
1

r′
d

}

= exp {g(t)} ,

where g(t) = −tε+ t2r

nr λ+ d
r′
. The function g(t) is minimized at

t∗ =

(
εnr

2rλ

) 1
2r−1

.
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Then

g(t∗) = −ε
2r

2r−1n
r

2r−1

λ
1

2r−1

(
1

(2r)
1

2r−1

− 1

(2r)
2r

2r−1

)
+
d(r − 1)

r

= −n
r

2r−1

(
r2r−1ε2r

32r−1C2r
1

n(n−1)

∑
1≤i<j≤nE |h (Xi, Xj)|2r

) 1
2r−1

(
1

(2r)
1

2r−1

− 1

(2r)
2r

2r−1

)

+
d(r − 1)

r
.

Hence we have that

P (Un > ε) < exp

{
−ε

2r
2r−1n

r
2r−1

λ
1

2r−1

(
1

(2r)
1

2r−1

− 1

(2r)
2r

2r−1

)
+
d(r − 1)

r

}
. �

Example 2.2.5. Let {Xn, n ≥ 1} be a sequence of i.i.d. standard normal random

variables. Then {Xn, n ≥ 1} are negatively associated random variables with

E
(
eδ|X1|

)
< ∞ for and real number δ. Let Un be a U-statistic based on the previous

random variables with E(h) = 0. Then for δ = tr
r−1

> 0, Un satisfies the conditions of

Theorem 2.2.4.

2.3 Reverse Demimartingales and N-demimartingales

In this section we introduce the concept of reverse demimartingales and reverse

demisubmartingales as a generalization of the notion of reverse (backward) martingales

and reverse submartingales.

Definition 2.3.1. Let S1, S2, ... be an L1 sequence of random variables with S0 ≡ 0.

Assume that for all j = 1, 2, ... and all k ≥ j + 1

E {(Sj − Sj+1) f (Sj+1, Sj+2, ..., Sk)} ≥ 0

for all coordinatewise nondecreasing functions f such that the expectation is defined.

Then {Sj}j≥1 is called a reverse demimartingale. If in addition the function f is as-

sumed to be nonnegative, the sequence {Sj}j≥1 is called a reverse demisubmartingale.

Definition 2.3.2. Let S1, S2, ... be an L1 sequence of random variables with S0 ≡ 0.

Assume that for all j = 1, 2, ... and all k ≥ j + 1

E {(Sj − Sj+1) f (Sj+1, Sj+2, ..., Sk)} ≤ 0
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for all coordinatewise nondecreasing functions f such that the expectation is defined.

Then {Sj}j≥1 is called a reverse N-demimartingale. If in addition the function f is as-

sumed to be nonnegative, the sequence {Sj}j≥1 is called a reverse N-demisupermartingale.

Remark 2.3.3. Let S1, S2, ... be an L1 sequence of random variables with S0 ≡ 0

and let A = σ(Sj+1, Sj+2, ...). A reverse martingale under the σ-algebra A is a reverse

demimartingale. Furthermore, it can also be verified that a reverse submartingale (with

the same choice of σ-algebra A) is a reverse demisubmartingale.

We can verify that the sample mean of associated random variables (with zero

mean) is a reverse demimartingale under an appropriate assumption.

Proposition 2.3.4. Let {X1, X2, ..., Xn} be a sequence of random variables with

E(Xi) = 0 for i ≥ 1. Then the sample mean X̄n = 1
n

∑n
i=1Xi is a reverse demimartin-

gale if

Cov
[
X̄n, f

(
X̄n+1, ..., X̄k

)]
≥ Cov

[
Xn+1, f

(
X̄n+1, ..., X̄k

)]
(2.3.1)

for all coordinatewise nondecreasing functions f such that the expectation is defined.

Proof. We need to show that

E
{(
X̄n − X̄n+1

)
f
(
X̄n+1, X̄n+2, ..., X̄k

)}
≥ 0, k ≥ n+ 1

for all coordinatewise nondecreasing functions f.

Note that

X̄n − X̄n+1 =
1

n

n∑
i=1

Xi −
1

n+ 1

n+1∑
i=1

Xi

=
(n+ 1)

∑n
i=1Xi − n

∑n+1
i=1 Xi

n(n+ 1)

=

∑n
i=1Xi − nXn+1

n(n+ 1)
=
X̄n −Xn+1

n+ 1
.

Under assumption (2.3.1) we can easily have that

E
[(
X̄n − X̄n+1

)
f
(
X̄n+1, X̄n+2, ..., X̄k

)]
=

1

n+ 1
E
[(
X̄n −Xn+1

)
f
(
X̄n+1, X̄n+2, ..., X̄k

)]
≥ 0. �
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Example 2.3.5. Let X be a random variable with E|X| <∞ and let Xi = i−1X, i ≥ 1.

Then {Xi, i ≥ 1} are associated random variables by properties (P3) and (P4) of Esary

et al. (1967). We can easily prove that assumption (2.3.1) is satisfied:

Cov
[
X̄n, f

(
X̄n+1, ..., X̄k

)]
=Cov

[
1

n

n∑
i=1

1

i
X, f

(
X̄n+1, ..., X̄k

)]

=
1

n

n∑
i=1

1

i
Cov

[
X, f

(
X̄n+1, ..., X̄k

)]
=

1

n

(
1 +

1

2
+ · · ·+ 1

n

)
Cov

[
X, f

(
X̄n+1, ..., X̄k

)]
≥ 1

n+ 1
Cov

[
X, f

(
X̄n+1, ..., X̄k

)]
= Cov

[
Xn+1, f

(
X̄n+1, ..., X̄k

)]
.

Thus the sample mean of these random variables is a reverse demimartingale.

Remark 2.3.6. The previous example is a special case of a collection of random vari-

ables satisfying assumption (2.3.1). Let X be a random variable with E(X) = 0 and

let {Xn = cnX, n ≥ 1}, where {cn, n ≥ 1} is a sequence of positive numbers satisfying

1
n

∑n
i=1 ci ≥ cn+1. Then the sample mean X̄n = 1

n

∑n
i=1Xi is a reverse demimartingale.

Remark 2.3.7. A nonincreasing sequence {cn, n ≥ 1} clearly satisfies the assumption

1

n

n∑
i=1

ci ≥ cn+1.

2.3.1 Chow and Doob type maximal inequality for reverse

demisubmartingales

Chow (1960) proved a maximal inequality for submartingales. Christofides (2000)

showed that Chow’s inequality is valid for the more general class of demisubmartingales.

Theorem 2.3.8 presents a Chow type maximal inequality for reverse demisubmartin-

gales, and will be used later in this chapter to establish a Doob’s maximal inequality

for reverse demisubmartingales.

Theorem 2.3.8. Let S1, S2, ... be a reverse demisubmartingale and {ck, k ≥ 1} a

nondecreasing sequence of positive numbers. Then for ε > 0,

εP

{
max

n≤k≤N
ckSk > ε

}
6 cNE(S

+
N) +

N∑
j=n+1

cjE(S
+
j−1 − S+

j )
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where X+ = max {0, X}.

Proof. Let, A = {maxn≤k≤N ckSk > ε}. Then A can be written as A =
∪N

j=nAj,

where Aj = {ciSi < ε, n ≤ j < i ≤ N, cjSj ≥ ε} and Ai

∩
Aj = ∅ when i ̸= j. Then

for ε > 0,

εP (A) = ε
N∑

j=n

P (Aj) =
N∑

j=n

E(εIAj
) ≤

N∑
j=n

E(cjSjIAj
) =

N∑
j=n

E(cjS
+
j IAj

)

= cNE(S
+
N)− cNE(S

+
NIAc

N
) + cN−1E(S

+
N−1IAN−1

) +
N−2∑
j=n

cjE(S
+
j IAj

)

= cNE(S
+
N)− cNE(S

+
NIAc

N
) + cN−1E(S

+
N−1IAc

N
)

− cN−1E(S
+
N−1IAc

N∩Ac
N−1

) +
N−2∑
j=n

cjE(S
+
j IAj

) (2.3.2)

where (2.3.2) follows from the fact that IAN−1
= IAc

N
− IAc

N∩Ac
N−1

which in turn holds

since AN−1 ⊆ Ac
N . By the nondecreasingness of the sequence {ck, k ≥ 1} the quantity

on the right-hand side of (2.3.2) is less than or equal to

cNE(S
+
N) + cNE{(S+

N−1 − S+
N)IAc

N
} − cN−1E(S

+
N−1IAc

N∩Ac
N−1

)

+
N−2∑
j=n

cjE(S
+
j IAj

). (2.3.3)

Let h(y) = limx→y− (x+ − y+) / (x− y). Then h is a nondecreasing function. By the

convexity of the function x+ = max {0, x} we have

S+
N−1 − S+

N > (SN−1 − SN)h(SN)

and we get that

E{(S+
N−1 − S+

N)IAN
} > E{(SN−1 − SN)h(SN)IAN

}. (2.3.4)

Since h(SN)IAN
is a nonnegative and componentwise nondecreasing function of SN by

the reverse demisubmartingale property the expression on the right-hand side of (2.3.4)

is nonnegative. Thus,

E{(S+
N−1 − S+

N)IAN
} > 0
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and the right-hand side of (2.3.3) is bounded by

B = cNE(S
+
N) + cNE(S

+
N−1 − S+

N)− cN−1E(S
+
N−1IAc

N∩Ac
N−1

) +
N−2∑
j=n

cjE(S
+
j IAj

).

Furthermore,

B = cNE(S
+
N) + cNE(S

+
N−1 − S+

N)− cN−1E(S
+
N−1IAc

N∩Ac
N−1

)

+ cN−2E(S
+
N−2IAN−2

) +
N−3∑
j=n

cjE(S
+
j IAj

)

= cNE(S
+
N) + cNE(S

+
N−1 − S+

N)− cN−1E(S
+
N−1IAc

N∩Ac
N−1

) + cN−2E(S
+
N−2IAc

N∩Ac
N−1

)

− cN−2E(S
+
N−2IAc

N∩Ac
N−1∩A

c
N−2

) +
N−3∑
j=n

cjE(S
+
j IAj

) (2.3.5)

where (2.3.5) follows from the fact that IAN−2
= IAc

N∩Ac
N−1

− IAc
N∩Ac

N−1∩A
c
N−2

since

AN−2 ⊆ Ac
N ∩Ac

N−1. Again by the nondecreasingness of the sequence {ck, k ≥ 1}, now

the right-hand side of (2.3.5) is less than or equal to

cNE(S
+
N) + cNE(S

+
N−1 − S+

N) + cN−1E{(S+
N−2 − S+

N−1)IAc
N∩Ac

N−1
}

− cN−2E(S
+
N−2IAc

N∩Ac
N−1∩A

c
N−2

) +
N−3∑
j=n

cjE(S
+
j IAj

)

= cNE(S
+
N) +

N∑
j=N−1

cjE(S
+
j−1 − S+

j )− cN−1E{(S+
N−2 − S+

N−1)IAN∪AN−1
}

− cN−2E(S
+
N−2IAc

N∩Ac
N−1∩A

c
N−2

) +
N−3∑
j=n

cjE(S
+
j IAj

). (2.3.6)

Again by the convexity of the function x+, it follows that

E{(S+
N−2 − S+

N−1)IAN∪AN−1
} > E{(SN−2 − SN−1)h(SN−1)IAN∪AN−1

}. (2.3.7)

Since h(SN−1)IAN∪AN−1
is a nonnegative and componentwise nondecreasing function of

{SN−1, SN} by the reverse demisubmartingale property the right-hand side of (2.3.7)

is nonnegative and thus the quantity in (2.3.6) is bounded by

cNE(S
+
N) +

N∑
j=N−1

cjE(S
+
j−1 − S+

j )− cN−2E(S
+
N−2IAc

N∩Ac
N−1∩A

c
N−2

) +
N−3∑
j=n

cjE(S
+
j IAj

).
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Working in this way we prove that

εP (A) ≤ cNE(S
+
N) +

N∑
j=n+1

cjE(S
+
j−1 − S+

j )− cnE(S
+
n IAc)

≤ cNE(S
+
N) +

N∑
j=n+1

cjE(S
+
j−1 − S+

j ). �

The following result shows that the function of a reverse demisubmartingale (or a

reverse demimartingale) is a reverse demisubmartingale under a monotonicity assump-

tion.

Lemma 2.3.9. Let S1, S2, ... be a reverse demisubmartingale (or a reverse demimartin-

gale) and g be a nondecreasing convex function. Then g(S1), g(S2), ... is a reverse

demisubmartingale.

Proof. We need to show that

E {(g(Sj)− g(Sj+1)) f (g(Sj+1), g(Sj+2), ..., g(Sk))} ≥ 0,

for every f nonnegative and coordinatewise nondecreasing function. Since g is a non-

decreasing convex function

g(Sj) ≥ g(Sj+1) + (Sj − Sj+1)h(Sj+1),

where h is the left derivative of g. Obviously h is a nonnegative nondecreasing function.

Then for every f nonnegative and coordinatewise nondecreasing function we have that

E {(g(Sj)− g(Sj+1)) f (g(Sj+1), g(Sj+2), ..., g(Sk))}

≥ E {(Sj − Sj+1)h(Sj+1)f (g(Sj+1), g(Sj+2), ..., g(Sk))}

= E {(Sj − Sj+1) f
∗ (Sj+1, Sj+2, ..., Sk)}

≥ 0,

since {Sj, j ≥ 1} is a reverse demimartingale and

f ∗ (Sj+1, Sj+2, ..., Sk) = h(Sj+1)f (g(Sj+1), g(Sj+2), ..., g(Sk))

is a nonnegative componentwise nondecreasing function f∗ : ℜk−j → ℜ. �
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Lemma 2.3.10. If S1, S2, ... is a reverse demimartingale then S+
1 , S

+
2 , ... is a reverse

demisubmartingale and S−
1 , S

−
2 , ... is a reverse demisubmartingale.

Proof. Obviously the function g(x) = max {0, x} is nondecreasing and convex. Ap-

plying Lemma 2.3.9, we have that S+
1 , S

+
2 , ... is a reverse demisubmartingale. Now let

Yi = −Si, i = 1, 2, ... . Then by the reverse demimartingale property we note that

Y1, Y2, ... is also a reverse demimartingale. Furthermore, by Lemma 2.3.9 Y +
1 , Y

+
2 , ...

is a reverse demisubmartingale. Clearly Y +
i = S−

i . Therefore S−
1 , S

−
2 , ... is a reverse

demisubmartingale. �

A corollary to the Chow type maximal inequality is the following Doob type in-

equality.

Corollary 2.3.11. (Doob’s inequality). Let S1, S2, ... be a reverse demisubmartingale.

Then, for any ε > 0,

P

{
max

n≤k≤N
Sk > ε

}
6 1

ε

∫
{maxn≤k≤N Sk>ε}

SndP.

Proof. In the proof of Theorem 2.3.8, in (2.3.2) we departed from the reverse demisub-

martingale S1, S2, ... to the reverse demisubmartingale S+
1 , S

+
2 , ... because in (2.3.3)

we needed to bound cN−1E(S
+
N−1IAc

N−1
) by cNE(S

+
N−1IAc

N−1
). This is correct since

E(S+
N−1IAc

N−1
) is nonegative and cN ≥ cN−1. However, if all the ci’s are equal, such a

need does not arise. Therefore, we can stay with the original reverse demisubmartin-

gale. Then in such a case we have

εP

{
max

n≤k≤N
Sk > ε

}
6 E(SN) +

N∑
j=n+1

E(Sj−1 − Sj)− E(SnIAc)

= E(Sn)− E(SnIAc)

= E(SnIA)

=

∫
{maxn≤k≤N Sk>ε}

SndP. �

Corollary 2.3.12 that follows generalizes the result in Corollary 2.3.11.

Corollary 2.3.12. (Doob’s inequality). Let S1, S2, ... be a reverse demisubmartingale

and g be a nondecreasing convex function on ℜ. Then, for any ε > 0,
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P

{
max

n≤k≤N
g(Sk) > ε

}
6 1

ε

∫
{maxn≤k≤N g(Sk)>ε}

g(Sn)dP.

Proof. This result follows from the fact that the sequence g(S1), g(S2), ... is a reverse

demisubmartingale (Lemma 2.3.9) and by applying Theorem 2.3.8 on the Doob type

maximal inequality for reverse demisubmartingales. �

Remark 2.3.13. Observe that S2
i =

(
S+
i

)2
+
(
S−
i

)2
. In general

|Si|ν =
(
S+
i

)ν
+
(
S−
i

)ν
, ν ≥ 1.

This observation will be useful to prove Theorem 2.3.14.

Now if we take g(x) = |x|ν , ν ≥ 1 in Corollary 2.3.12 we can obtain the following

result.

Theorem 2.3.14. Let S1, S2, ... be a reverse demisubmartingale and E|Sn|ν < ∞,

n ≥ 1 for some ν ≥ 1. Then, for any ε > 0,

P

{
max

n≤k≤N
|Sk| > ε

}
6 1

εν
E|Sn|ν .

Proof. Let ε > 0. Using the observation in Remark 2.3.13

P

{
max

n≤k≤N
|Sk| > ε

}
6 P

{
max

n≤k≤N

(
S+
k

)ν > εν

2

}
+ P

{
max

n≤k≤N

(
S−
k

)ν > εν

2

}
. (2.3.8)

Since
(
S+
1

)ν
,
(
S+
2

)ν
, ... and

(
S−
1

)ν
,
(
S−
2

)ν
, ... are reverse demisubmartingales, then

from the Doob type maximal inequality for reverse demisubmartingales (Corollary

2.3.11), we have that the right-hand side of (2.3.8) is bounded by

2

εν

∫
{maxn≤k≤N (S+

k )ν>εν}
(S+

n )
νdP +

2

εν

∫
{maxn≤k≤N (S−

k )ν>εν}
(S−

n )
νdP

6 1

εν

∫
{maxn≤k≤N |Sk|ν>εν}

|Sn|νdP

6 1

εν
E|Sn|ν . �
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2.3.2 Maximal inequalities for functions of Reverse Demisub-

martingales

Wang and Hu (2009) generalized the results of Christofides (2000) for demimartin-

gales and demisubmartingales. Here, we present a similar theorem which generalizes

Theorem 2.3.8 for reverse demisubmartingales.

Theorem 2.3.15. Let S1, S2, ... be a reverse demimartingale, g be a nonnegative convex

function on ℜ with g(0) = 0 and g(Si) ∈ L1, i ≥ 1. Let {ck, k ≥ 1} a nondecreasing

sequence of positive numbers. Then for ε > 0,

εP

{
max

n≤k≤N
ckg(Sk) > ε

}
6 cNE(g(SN)) +

N∑
j=n+1

cjE(g(Sj−1)− g(Sj)).

Proof. Define the functions

u(x) = g(x)I[x≥0] and v(x) = g(x)I[x<0].

Note that

g(x) = u(x) + v(x) = max{u(x), v(x)}, x ∈ ℜ, (2.3.9)

where u(x) is a nonnegative nondecreasing convex function and v(x) is a nonnegative

nonincreasing convex function.

Then we have that

εP

{
max

n≤k≤N
ckg(Sk) > ε

}

= εP

{
max

n≤k≤N
ck max(u(Sk), v(Sk)) > ε

}

= εP {max(cnmax(u(Sn), v(Sn)), ..., cN max(u(SN), v(SN))) > ε}

6 εP {max(cnu(Sn), ..., cNu(SN)) > ε}+ εP {max(cnv(Sn), ..., cNv(SN)) > ε}

= εP

{
max

n≤k≤N
cku(Sk) > ε

}
+ εP

{
max

n≤k≤N
ckv(Sk) > ε

}
. (2.3.10)
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Furthermore, combining Theorem 2.3.8 and Lemma 2.3.9 we have that

εP

{
max

n≤k≤N
cku(Sk) > ε

}
6 cNE(u(SN)) +

N∑
j=n+1

cjE(u(Sj−1)− u(Sj)), (2.3.11)

since u(x) is a nondecreasing convex function.

Let A = {maxn≤k≤N ckv(Sk) > ε}. Then A can be written as A =
∪N

j=nAj, where

Aj = {civ(Si) < ε, j < i ≤ N, cjv(Sj) ≥ ε}, n ≤ j ≤ N , and the Aj’s are disjoint.

Therefore,

εP (A) = ε

N∑
j=n

P (Aj) =
N∑

j=n

E(εIAj
) ≤

N∑
j=n

E(cjv(Sj)IAj
) =

N∑
j=n

E(cjv(Sj)IAj
)

= cNE(v(SN))− cNE(v(SN)IAc
N
) + cN−1E(v(SN−1)IAN−1

) +
N−2∑
j=n

cjE(v(Sj)IAj
)

= cNE(v(SN))− cNE(v(SN)IAc
N
) + cN−1E(v(SN−1)IAc

N
)

− cN−1E(v(SN−1)IAc
N∩Ac

N−1
) +

N−2∑
j=n

cjE(v(Sj)IAj
) (2.3.12)

where (2.3.12) follows from the fact that IAN−1
= IAc

N
− IAc

N∩Ac
N−1

which in turn holds

since AN−1 ⊆ Ac
N . By the nondecreasingness of the sequence {ck, k ≥ 1} the right-

hand side of (2.3.12) is less than or equal to

cNE(v(SN)) + cNE{(v(SN−1)− v(SN))IAc
N
} − cN−1E(v(SN−1)IAc

N∩Ac
N−1

)

+
N−2∑
j=n

cjE(v(Sj)IAj
). (2.3.13)

Let h(y) = limx→y− (v(x)− v(y)) / (x− y). Then h is a nondecreasing non-positive

function. By the convexity of v(x), we have

v(SN−1)− v(SN) > (SN−1 − SN)h(SN)

and, therefore,

E{(v(SN−1)− v(SN))IAN
} > E{(SN−1 − SN)h(SN)IAN

}. (2.3.14)

Since IAN
is a nonincreasing function of SN and h(.) is a non-positive nondecreasing
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function, it follows that h(SN)IAN
is a nondecreasing function of SN . By the reverse

demimartingale property the right-hand side of (2.3.14) is nonnegative. Thus,

E{(v(SN−1)− v(SN))IAN
} > 0

and the right-hand side of (2.3.13) is bounded by

B =cNE(v(SN)) + cNE(v(SN−1)− v(SN))− cN−1E(v(SN−1)IAc
N∩Ac

N−1
)

+
N−2∑
j=n

cjE(v(Sj)IAj
).

Furthermore,

B = cNE(v(SN)) + cNE(v(SN−1)− v(SN))− cN−1E(v(SN−1)IAc
N∩Ac

N−1
)

+ cN−2E(v(SN−2)IAN−2
) +

N−3∑
j=n

cjE(v(Sj)IAj
)

= cNE(v(SN)) + cNE(v(SN−1)− v(SN))− cN−1E(v(SN−1)IAc
N∩Ac

N−1
)

+ cN−2E(v(SN−2)IAc
N∩Ac

N−1
)− cN−2E(v(SN−2)IAc

N∩Ac
N−1∩A

c
N−2

)

+
N−3∑
j=n

cjE(v(Sj)IAj
), (2.3.15)

where (2.3.15) follows from the fact that IAN−2
= IAc

N∩Ac
N−1

− IAc
N∩Ac

N−1∩A
c
N−2

since

AN−2 ⊆ Ac
N ∩Ac

N−1. Again by the nondecreasingness of the sequence {ck, k ≥ 1}, the

right-hand side of (2.3.15) is less than or equal to

cNE(v(SN)) + cNE(v(SN−1)− v(SN)) + cN−1E{(v(SN−2)− v(SN−1))IAc
N∩Ac

N−1
}

− cN−2E(v(SN−2)IAc
N∩Ac

N−1∩A
c
N−2

) +
N−3∑
j=n

cjE(v(Sj)IAj
)

= cNE(v(SN)) +
N∑

j=N−1

cjE(v(Sj−1)− v(Sj))

− cN−1E{(v(SN−2)− v(SN−1))IAN∪AN−1
} − cN−2E(v(SN−2)IAc

N∩Ac
N−1∩A

c
N−2

)

+
N−3∑
j=n

cjE(v(Sj)IAj
). (2.3.16)
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Again by the convexity of v(x) we have that

E{(v(SN−2)− v(SN−1))IAN∪AN−1
} > E{(SN−2 − SN−1)h(SN−1)IAN∪AN−1

}. (2.3.17)

Since IAN∪AN−1
is a nonnegative and componentwise nonincreasing function of {SN−1, SN}

and h(.) is a non-positive nondecreasing function, it follows that h(SN−1)IAN∪AN−1
is

a nondecreasing function of {SN−1, SN}. By the reverse demimartingale property the

right-hand side of (2.3.17) is nonnegative and thus the quantity in (2.3.16) is bounded

by

cNE(v(SN)) +
N∑

j=N−1

cjE(v(Sj−1)− v(Sj))− cN−2E(v(SN−2)IAc
N∩Ac

N−1∩A
c
N−2

)

+
N−3∑
j=n

cjE(v(Sj)IAj
).

Working in this manner we prove that

εP (A) ≤ cNE(v(SN)) +
N∑

j=n+1

cjE(v(Sj−1)− v(Sj))− cnE(v(Sn)IAc)

≤ cNE(v(SN)) +
N∑

j=n+1

cjE(v(Sj−1)− v(Sj)). (2.3.18)

Finally, by (2.3.10), (2.3.11) and (2.3.18), we have that

εP

{
max

n≤k≤N
ckg(Sk) > ε

}

6 εP

{
max

n≤k≤N
cku(Sk) > ε

}
+ εP

{
max

n≤k≤N
ckv(Sk) > ε

}

6 cNE(u(SN)) +
N∑

j=n+1

cjE(u(Sj−1)− u(Sj))

+ cNE(v(SN)) +
N∑

j=n+1

cjE(v(Sj−1)− v(Sj))

= cNE(g(SN)) +
N∑

j=n+1

cjE(g(Sj−1)− g(Sj)). � (2.3.19)

Observe that for g(x) = |x| in Theorem 2.3.15 we obtain the following result.
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Remark 2.3.16. Since g(x) = |x| is a nonnegative convex function with g(0) = 0,

applying Theorem 2.3.15 for every ε > 0, we have that

εP

{
max

n≤k≤N
ck|Sk| > ε

}
6 cNE|SN |+

N∑
j=n+1

cjE(|Sj−1| − |Sj|).

A corollary to the Chow type maximal inequality is the following Doob type in-

equality.

Corollary 2.3.17. (Doob’s inequality). Let S1, S2, ... be a reverse demimartingale, g

be a nonnegative convex function on ℜ with g(0) = 0 and g(Si) ∈ L1, i ≥ 1. Then for

ε > 0,

P

{
max

n≤k≤N
g(Sk) > ε

}
6 1

ε

∫
{maxn≤k≤N g(Sk)>ε}

g(Sn)dP.

Proof. Let u(x) and v(x) be as defined in Theorem 2.3.15. Since u(x) is a nondecreas-

ing convex function, by Corollary 2.3.12 we have

εP

{
max

n≤k≤N
u(Sk) > ε

}
6
∫
{maxn≤k≤N u(Sk)>ε}

u(Sn)dP

6
∫
{maxn≤k≤N g(Sk)>ε}

u(Sn)dP. (2.3.20)

Furthermore, from Theorem 2.3.15 with ck ≡ 1, k ≥ 1

εP

{
max

n≤k≤N
v(Sk) > ε

}
6 E(v(SN)) +

N∑
j=n+1

E(v(Sj−1)− v(Sj))− E(v(Sn)IAc)

= E(v(Sn))− E(v(Sn)IAc)

= E(v(Sn)IA)

=

∫
{maxn≤k≤N v(Sk)>ε}

v(Sn)dP

6
∫
{maxn≤k≤N g(Sk)>ε}

v(Sn)dP. (2.3.21)
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Finally, by (2.3.10), (2.3.20) and (2.3.21), we have that

εP

{
max

n≤k≤N
g(Sk) > ε

}

6 εP

{
max

n≤k≤N
u(Sk) > ε

}
+ εP

{
max

n≤k≤N
v(Sk) > ε

}

6
∫
{maxn≤k≤N g(Sk)>ε}

u(Sn)dP +

∫
{maxn≤k≤N g(Sk)>ε}

v(Sn)dP

6
∫
{maxn≤k≤N g(Sk)>ε}

g(Sn)dP. � (2.3.22)

Again, taking g(x) = |x|ν , ν ≥ 1 in Corollary 2.3.17 we get the following result.

Corollary 2.3.18. Let S1, S2, ... be a reverse demimartingale, ν ≥ 1. Then for any

ε > 0,

P

{
max

n≤k≤N
|Sk| > ε

}
6 1

εν

∫
{maxn≤k≤N |Sk|ν>εν}

|Sn|νdP 6 1

εν
E|Sn|ν .

Proof. By taking g(x) = |x|ν , ν ≥ 1 in Corollary 2.3.17, then for any ε > 0,

P

{
max

n≤k≤N
|Sk| > ε

}
= P

{
max

n≤k≤N
|Sk|ν > εν

}

6 1

εν

∫
{maxn≤k≤N |Sk|ν>εν}

|Sn|νdP

6 1

εν
E|Sn|ν . �

2.3.3 Doob type maximal inequality for reverse Demimartin-

gales

Some results that Wang and Hu (2009) established for demimartingales (see their

Theorem 3.1 and Corollary 3.1), with appropriate modification are still valid for reverse

demimartingales.

Lemma 2.3.19. Let S1, S2, ... be a reverse demimartingale and g be a nonnegative

function with g(0) = 0. Assume that E(g(Sk))
p <∞ for p > 1. Then
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E

(
max

n≤k≤N
g(Sk)

)p

6
(

p

1− p

)p

E(g(Sn))
p.

Proof. Applying Holder’s inequality and Corollary 2.3.18, we can obtain that

E

(
max

n≤k≤N
g(Sk)

)p

= p

∫ ∞

0

xp−1P

{
max

n≤k≤N
g(Sk) ≥ x

}
dx

6 p

∫ ∞

0

xp−2E

(
g(Sn)I

{
max

n≤k≤N
g(Sk) ≥ x

})
dx

= pE

(
g(Sn)

∫ max
n≤k≤N

g(Sk)

0

xp−2dx

)

=
p

p− 1
E

(
g(Sn)

(
max

n≤k≤N
g(Sk)

)p−1
)

6 p

p− 1
[E (g(Sn))

p]
1/p

[
E

(
max

n≤k≤N
g(Sk)

)p]1/q
,

where 1/p+ 1/q = 1. Since E(g(Sk))
p <∞ for p > 1 we have that

E

[(
max

n≤k≤N
g(Sk)

)p]1/p
≤ p

p− 1
[E (g(Sn))

p]
1/p

,

and

E

(
max

n≤k≤N
g(Sk)

)p

6
(

p

1− p

)p

E(g(Sn))
p. �

Applying now g(x) = |x| in Lemma 2.3.19 we get the following corollary.

Corollary 2.3.20. Let S1, S2, ... be a reverse demimartingale. Assume that

E|Sk|p <∞, k ≥ 1, for p > 1. Then

E

(
max

n≤k≤N
|Sk|

)p

6
(

p

1− p

)p

E(|Sn|)p.

Proof. If we take g(x) = |x| in Lemma 2.3.19 we immediately have the result. �
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2.3.4 U-statistics and reverse Demimartingales

Proposition 2.3.21. Let Un be a U-statistic based on a collection of random variables

and on the kernel h with E(h) = 0. Assume that

m
∑

1≤i1<···<im≤n+1

Cov[h(Xi1 , ..., Xim), f(Un+1, ..., Uk)]

> (n+ 1)
∑

1≤i1<···<im−1≤n

Cov[h(Xi1 , ..., Xim−1 , Xn+1), f(Un+1, ..., Uk)], (2.3.23)

for all coordinatewise nondecreasing functions f such that the expectation is defined.

Then {Un, n ≥ m} is a reverse demimartingale.

Proof. We need to show that

E {(Un − Un+1) f (Un+1, Un+2, ..., Uk)} ≥ 0, k ≥ n+ 1

for all coordinatewise nondecreasing functions f.

Let

Sn =
∑

1≤i1<i2<···<im≤n

h (Xi1 , Xi2 , ..., Xim) .

Then note that

Un − Un+1

=
Sn(
n
m

) − Sn+1(
n+1
m

) =

(
n+1
m

)
Sn −

(
n
m

)
Sn+1(

n+1
m

)(
n
m

) =
n+1

n+1−m

(
n
m

)
Sn −

(
n
m

)
Sn+1(

n+1
m

)(
n
m

)

=
(n+ 1)Sn − (n+ 1−m)Sn+1(

n+1
m

)
(n+ 1−m)

=
(n+ 1)[Sn − Sn+1] +mSn+1(

n+1
m

)
(n+ 1−m)

=
mSn+1 − (n+ 1)

∑
1≤i1<···<im−1≤n h(Xi1 , ..., Xim−1 , Xn+1)(
n+1
m

)
(n+ 1−m)

.

Under (2.3.23) we can easily have that

E {(Un − Un+1) f (Un+1, Un+2, ..., Uk)}

(2.3.24)
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= E

{(
mSn+1 − (n+ 1)

∑
1≤i1<···<im−1≤n h(Xi1 , ..., Xim−1 , Xn+1)(
n+1
m

)
(n+ 1−m)

)
f (Un+1, Un+2, ..., Uk)

}

≥ 0. �

Finally, we give an example of a reverse demimartingale.

Example 2.3.22. Let X be a random variable with E|X| <∞ and assume that

{Xi = i−1X, i ≥ 1}. Let Un be the U-statistic based on {Xn}n≥1 with kernel

h(x, y) = xy. Then the previous assumption is true, since,

m
∑

1≤i1<···<im≤n+1

Cov[h(Xi1 , ..., Xim), f(Un+1, ..., Uk)]

= 2
∑

1≤i<j≤n+1

Cov[
1

ij
X2, f(Un+1, ..., Uk)]

= 2Cov[X2, f(Un+1, ..., Uk)]
∑

1≤i<j≤n+1

1

ij

> Cov[X2, f(Un+1, ..., Uk)]
∑

1≤i≤n+1

1

i

= (n+ 1)
∑

1≤i≤n+1

Cov[
1

i(n+ 1)
X2, f(Un+1, ..., Uk)]

= (n+ 1)
∑

1≤i1<i2≤n

Cov[h(Xi1 , Xi2), f(Un+1, ..., Uk)].
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Chapter 3

Strong convergence for U-statistics

based on associated random

variables

In Chapter 3 we study strong convergence for U-statistics based on associated ran-

dom variables. The chapter is organized as follows. In Section 3.1 we present a strong

law for one sample U-statistics based on associated random variables which can be

found in Christofides (2000). In Section 3.2 we obtain a strong law for U-statistics

based on associated multidimensionally indexed random variables. Furthermore in

Section 3.3, we prove a strong law for multi-sample U-statistics based on collections of

associated random variables.

3.1 Strong law for one sample U-statistics based on

associated random variables

The following result gives a strong law of large numbers for demimartingales and

can be found in Christofides (2000). Christofides (2000) gives a strong law of large

numbers for U-Statistics based on associated random variables in the case where the

kernel of the U-statistic belongs to a large family of functions, called kernels of bounded

variation.

Lemma 3.1.1. Let S0, S1, S2, ... be a demimartingale, with S0 = 0. Let {ck, k ≥ 1} be

a nonincreasing sequence of positive numbers with limk→∞ ck = 0. Assume that

50

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 3 Section 3.1

E|Sk|ν < for ν ≥ 1, for all k. If

∞∑
k=1

cνkE (|Sk|ν − |Sk−1|ν) <∞

then

cnSn
a.s.−−→ 0, n→ ∞.

Combining Lemma 3.1.1 and Proposition 1.6.1 we get the following strong law of

large numbers.

Theorem 3.1.2. (Christofides (2002)). Let Un be a U-statistic based on a collection of

associated random variables and on the kernel h. Assume that E|Uk|ν < ∞ for ν ≥ 1

and all k ≥ m. Furthermore assume that h is componentwise nondecreasing. If

∞∑
k=m

(k + 1)−1E(|Uk|ν) <∞

then

Un − E(Un)
a.s.−−→ 0, n→ ∞.

A U-statistic based on associated random variables is a demimartingale if the kernel

h is componentwise nondecreasing. But not all kernels of interest fullfill this require-

ment. For example the kernel h(x; y) =| x − y | or h(x; y) = 1{x>y}. In that case,

the U-statistic defined is not necessarily a demimartingale. However, if the kernel h

belongs to a large family of functions which includes all nondecreasing functions then

the U-statistic can be expressed as the difference of two U-statistics, each of which

has a componentwise nondecreasing kernel. Christofides (2004) introduced this type

of kernels termed as kernels of bounded variation and also proves a strong law of large

numbers for this family of kernels.

Definition 3.1.3. (Christofides (2004)). Assume that [a, b], [c, d] ⊆ ℜ and f is a real-

valued function defined on the rectangle [a, b]× [c, d]. For simplicity by ∆f((q, r), (s, t))

we denote the quantity f(r, t) − f(q, t) − f(r, s) + f(q, s) with a ≤ q < r ≤ b and

c ≤ s < t ≤ d. Let

a < x0 < x1 < · · · < xk = b

and

c < y0 < y1 < · · · < yl = d
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be any subdivisions of the intervals [a, b] and [c, d], respectively. Let

C ≡
k∑

i=1

l∑
j=1

|∆f((xi−1, xi), (yj−1, yj))| .

The function f : [a, b]× [c, d] → ℜ is called a function of bounded variation on [a, b]×

[c, d] if

Cf
[a,b]×[c,d] = supC <∞.

Theorem 3.1.2 is extended to the case of kernels of bounded variation.

Theorem 3.1.4. (Christofides (2004)). Let Un be a U-statistic based on a collection of

associated random variables and on the kernel h. Assume that E|Uk|ν < ∞ for ν ≥ 1

and all k ≥ m. Furthermore assume that h is a function of bounded variation. If

∞∑
k=m

(k + 1)−1E(|Uk|ν) <∞

then

Un − E(Un)
a.s.−−→ 0, n→ ∞.

3.2 U-statistics based on associated multidimension-

ally indexed random variables

For a positive integer d let Nd denote the d-dimensional positive integer lattice.

Furthermore, for n = (n1, ..., nd), we put |n| =
∏d

i=1 ni, and by n → ∞ we mean that

|n| → ∞ (equivalently, max {n1, ..., nd} → ∞). For n, m ∈ Nd with n = (n1, ..., nd)

and m = (m1, ...,md) the notation n ≤ m means that ni ≤ mi ∀ i = 1, ..., d while the

notation n <m means that ni ≤ mi ∀ i = 1, ..., d with at least one inequality strict.

Definition 3.2.1. A collection of multidimensionally indexed random variables

{Xk, k ≤ n, n ∈ Nd} is said to be associated if for any two coordinatewise nondecreas-

ing functions f and g

cov(f(Xk, k ≤ n), g(Xk, k ≤ n)) ≥ 0,

provided that the covariance is defined. An infinite collection is associated if every finite

subcollection is associated.
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The above definition is just the classical definition of association stated for the case

of multidimensionally indexed random variables. The index of the variables in no way

affects the qualitative property of association, i.e., that nondecreasing functions of all

(or some) of the variables are nonnegatively correlated.

Definition 3.2.2. Let
{
Sn,n ∈ Nd

}
be a collection of multidimensionally indexed ran-

dom variables. The collection is called a multidimensionally indexed demimartingale

if

E [(St − Sr) f (Sk, k ≤ r)] ≥ 0

for all t, r ∈ Nd with r ≤ t and for all componentwise nondecreasing functions f.

It is easy to verify that the partial sum of mean zero associated multidimensionally

indexed random variables is a multidimensionally indexed demimartingale.

A U-statistic on multidimensionally indexed random variables can be defined as

follows:

Definition 3.2.3. Let {Xk, k ≤ n, n ∈ Nd} be a collection of identically distributed

associated multidimensionally indexed random variables. Let h be a symmetric mapping

from Rm to R with m ≤ |n|. We define the corresponding U-statistic

Un =

(
| n |
m

)−1∑
c

h (Xi1 , Xi2 , ..., Xim)

where
∑

c denotes the summation over the
(|n|
m

)
combinations of the m distinct elements

{i1, i2, ..., im} from {(1, ..., 1), ..., (n1, ..., nd)}.

A U-statistic as given by Definition 3.2.3 can be shown to be expressed in terms

of a multidimensionally indexed demimartingale under the usual assumptions on the

kernel h.

Proposition 3.2.4. Assume for simplicity that d=2. Let Un be a U-statistic with

m = 2 based on a sample of associated random variables and on the kernel h. Let

Sn =
(|n|

2

)
Un where n = (n1, n2), n1 ≥ 1, n2 ≥ 1 and |n| ≥ 2. Assume that h is

componentwise nondecreasing and that E(h) = 0. Then the collection {Sn, n > 1} is

a multidimensionally indexed demimartingale.
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Proof. Let

St =
∑
ct

h (Xi, Xj) , Sr =
∑
cr

h (Xi, Xj)

where t = (t1, t2) and r = (r1, r2) with r ≤ t. Also cr and ct denote the summation

over the
(|n|

2

)
combinations of the m=2 distinct elements {i, j} from {(1, 1), ..., (r1, r2)}

and {(1, 1), ..., (t1, t2)} respectively.

We can write

St − Sr =
∑
ct-r

h (Xi, Xj) .

Then for any componentwise nondecreasing function f we have

E [(St − Sr) f (Sk,k ≤ r)] =
∑
ct-r

E[h (Xi, Xj) f (Sk,k ≤ r)]

=
∑
ct-r

E[h (Xi, Xj) g (Xk,k ≤ r)]

≥ 0

where the function g defined as:

g (Xk,k ≤ r) = f(
∑

(1,1)<j≤r

h(x1,1, xj),
∑

(1,2)<j≤r

h(x1,2, xj),
∑

(2,1)<j≤r

h(x2,1, xj), ...,

∑
r1−1,r2<j≤r

h(xr1−1,r2 , xj),
∑

r1,r2−1<j≤r

h(xr1,r2−1, xj)),

is componentwise nondecreacing since h, f are componentwise nondecreacing, (see prop-

erty 4 in Esary et al. (1967)). �

3.2.1 A strong law in the case of nondecreasing kernels

The following result gives a strong law of large numbers for multidimensionally

indexed demimartingales and can be found in Christofides and Hadjikyriakou (2011).

Lemma 3.2.5. Assume that {Yk, k ∈ Nd}, {ck, k ϵ Nd} and the function g is a

nonnegative convex function on ℜ with g(0) = 0. Further assume that there exists

a number p ≥ 1 such that E[g(Yk)]
p < ∞ for all k and for some 1 ≤ s ≤ d,∑

k c
p
kE([g(Yk)]

p − [g(Yk;s;ks−1)]
p) < ∞ and

∑
ki,i̸=s c

p
k;s;NE([g(Yk;s;N)]

p) < ∞ for each

N ∈ N. Then

ckg(Yk)
a.s.−−→ 0, as k→∞,
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where Yk;s;i = Yk1...ks−1iks+1...kd, i.e., at the s
th position of the index k the component ks

is equal to i, and where Yk should be taken to be zero if at least one of k1, ..., kd is zero.

In the simple case where g(x) = x and d = 2 we have the following result.

Lemma 3.2.6. Let {Sn, n ∈ N2} be a multidimensionally indexed demimartingale and

{cn, n ∈ N2} a nonincreasing array of positive numbers. Assume that there exists a

number p ≥ 1 such that E |Sij|p <∞, for all i ≥ 1, j ≥ 1 and

∞∑
i=1

cpiNE |SiN |p <∞ ∀ N ∈ N and

∞∑
i=2

∞∑
j=1

cpijE(|Sij|p − |Si−1j|p) <∞

or

∞∑
j=1

cpNjE |SNj|p <∞ ∀ N ∈ N and

∞∑
i=1

∞∑
j=2

cpijE(|Sij|p − |Sij−1|p) <∞.

Then

cn1n2Sn1n2

a.s.−−→ 0, as (n1, n2) → ∞.

Combining Lemma 3.2.6 and Proposition 3.2.4 we get the following strong law

of large numbers for a U-statistics based on multidimensionally indexed associated

random variables. First a simple auxiliary result is needed.

Lemma 3.2.7. [(
ij

m

)−p

−
(
i(j + 1)

m

)−p
](

ij

m

)p

= O(j−1)

for i ≥ 1, j ≥ 1,m ≥ 1 and p ≥ 1.

Proof. [(
ij

m

)−p

−
(
i(j + 1)

m

)−p
](

ij

m

)p

≤ p

(
ij

m

)−p+1
[(

ij

m

)−1

−
(
i(j + 1)

m

)−1
](

ij

m

)p

(3.2.1)

= p

(
ij

m

)[(
ij

m

)−1

−
(
i(j + 1)

m

)−1
]

55

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 3 Section 3.2

=

[(
i(j + 1)

m

)
−
(
ij

m

)](
i(j + 1)

m

)−1

=
i(j + 1)[i(j + 1)− 1] · · · [i(j + 1)−m+ 1]− ij(ij − 1) · · · (ij −m+ 1)

i(j + 1)[i(j + 1)− 1] · · · [i(j + 1)−m+ 1]

<
[i(j + 1)]m − (ij −m+ 1)m

[i(j + 1)−m+ 1]m

<
m[i(j + 1)]m−1(i+m− 1)

[i(j + 1)−m+ 1]m
(3.2.2)

= O(j−1)

where (3.2.1) and (3.2.2) follow from the elementary inequality xr − yr ≤ rxr−1 (x− y)

which is valid for x, y > 0, r ≥ 1. �

Theorem 3.2.8. Let Un be a U-statistic based on a collection of multidimensionally

indexed associated random variables (d = 2) and on the kernel h. Assume that h is

componentiwise nondecreasing and E |Uij|p <∞ for p ≥ 1 and for all i ≥ m1, j ≥ m2.

Furthermore assume that

∞∑
i=m1

E |UiN |p <∞ ∀ N ∈ N and
∞∑

i=m1

∞∑
j=m2+1

j−1E(|Uij|p) <∞

or
∞∑

j=m2

E |UNj|p <∞ ∀ N ∈ N and

∞∑
i=m1+1

∞∑
j=m2

i−1E(|Uij|p) <∞

then

Un − E (Un)
a.s.−−→ 0, n → ∞.

Proof. Let Sn =
(|n|
m

)
Un for m ≤ |n| and Sn = 0 for m > |n|. Since h is nondecreasing,

Sn is a multidimensionally indexed demimartingale. Clearly cn =
(|n|
m

)−1
is a decreasing

sequence of positive numbers.

By Lemma 2.1 of Christofides and Hadjikyriakou (2011) which obtain a strong law

of large numbers for multidimensionally indexed demimartingales, where g(x) = x and

d = 2, we observe that
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(
|n|
m

)−1

(Sn − E (Sn))
a.s.−−→ 0, n → ∞

provided that
∞∑

i=m1

cpiNE |SiN |p <∞

for all N ∈ N, and
∞∑

i=m1

∞∑
j=m2+1

cpijE(|Sij|p − |Sij−1|p) <∞.

Observe that

∞∑
i=m1

cpiNE |SiN |p =
∞∑

i=m1

(
iN

m

)−p

E

∣∣∣∣(iNm
)
UiN

∣∣∣∣p = ∞∑
i=m1

E |UiN |p <∞

for all N ∈ N, and

∞∑
i=m1

∞∑
j=m2+1

cpijE(|Sij|p − |Sij−1|p)

=
∞∑

i=m1

∞∑
j=m2+1

(
ij

m

)−p

E(|Sij|p − |Sij−1|p)

=
∞∑

i=m1

∞∑
j=m2+1

[(
ij

m

)−p

−
(
i(j + 1)

m

)−p
]
E(|Sij|p)

=
∞∑

i=m1

∞∑
j=m2+1

[(
ij

m

)−p

−
(
i(j + 1)

m

)−p
](

ij

m

)p

E(|Uij|p)

<

∞∑
i=m1

∞∑
j=m2+1

j−1E |Uij|p <∞

where the last inequality follows from Lemma 3.2.7. �

Usually strong laws for U-statistics are stated with conditions on the moments of

kernel h. Lemma 3.2.10 gives conditions on h under which the moment condition of

Theorem 3.2.8 holds true. Before we obtain Lemma 3.2.10 we present a moment bound

for associated random fields by Bulinski (1994).
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Proposition 3.2.9. (Bulinski (1994)). Let Ψ be the class of blocks in Z2, that is,

of sets F = ((a1, b1]× (a2, b2]) ∩ Z2, ai < bi, ai, bi ∈ ℜ, i = 1, 2. Let F =

{(1− ε, n1]× (1− ε, n2]} ∩ Z2 where 0 < ε < 1 and |F | is the cardinality of F . Let

{Xj, j ∈ N2} be a collection of identically distributed associated multidimensionally

indexed random variables. Assume that E(Xj) = 0 and for some p > 2, δ > 0,

0 ≤ µ < 1+δ/κ
2

where κ = δ + (p+ δ) (p− 2) the collection satisfies

sup
j∈Z2

E |Xj|p+δ <∞,

sup
F∈Ψ

|F |=|n|

∑
j∈F

[∑
r/∈F

cov (Xi, Xj)

]δ/κ = O (|n|)µ .

Then

sup
F∈Ψ

|F |=|n|

{
E

∣∣∣∣∣∑
j∈F

Xj

∣∣∣∣∣
p}

= O
(
|n|p/2

)
.

Lemma 3.2.10. Let Ψ be the class of blocks in Z2, that is, of sets F = ((a1, b1]× (a2, b2])∩

Z2, ai < bi, ai, bi ∈ ℜ, i = 1, 2. Let F = {(1− ε, n1]× (1− ε, n2]} ∩ Z2 where

0 < ε < 1 and |F | is the cardinality of F . Let {Xj, j ∈ N2} be a collection of

identically distributed associated multidimensionally indexed random variables. Let Un

be a U-statistic based on the collection of multidimensionally indexed associated ran-

dom variables and on the kernel h. Assume that h is componentiwise nondecreasing,

E(h) = 0 and for some p > 2, δ > 0, 0 ≤ µ < 1+δ/κ
2

where κ = δ + (p+ δ) (p− 2) the

collection satisfies

sup
i,j∈Z2

E |h(Xi, Xj)|p+δ <∞,

and

sup
F∈Ψ

|F |=|n|


∑
i,j∈F

∑
t,r/∈F

cov [h(Xi, Xj), h(Xt, Xr)]

δ/κ
 = O (|n|)µ .

Then

E |Un|p = O
(
|n|−p/2

)
.

Proof.

E |Sn|p = E

∣∣∣∣∣∑
c

h(Xi, Xj)

∣∣∣∣∣
p

= E

∣∣∣∣∣∣∣∣
1

2

∑
i≤n

∑
j≤n
i̸=j

h(Xi, Xj)

∣∣∣∣∣∣∣∣
p

, (3.2.3)
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where
∑

c denotes the summation over the
(|n|

2

)
combinations of the two distinct ele-

ments {i, j} from {(1, 1), ..., (n1, n2)}.

E |Sn|p ≤
1

2p
|n|p−1

∑
i≤n

E

∣∣∣∣∣∑
j≤n

h(Xi, Xj)

∣∣∣∣∣
p

, (3.2.4)

where (3.2.4) follows from (3.2.3) and Proposition 2.1.1. Since h is a nondecreasing

function, the collection of random variables {h(Xi, Xk), k ≤ n, n ∈ Nd} is associated

(see property 4 in Esary et al. (1967)). By Proposition 3.2.9 we have that

E |Sn|p ≤
1

2p
|n|p−1 |n|A |n|p/2

where A is a constant which does not depend on |n|. Finally

E |Un|p ≤ |n|−2pA |n|3p/2 ≤ A |n|−p/2

⇒ E |Un|p = O
(
|n|−p/2

)
. �

3.2.2 A strong law in the case of kernels of bounded variation

Recall the definition of kernels of bounded variation of dimension two introduced

in Section 3.1.

Theorem 3.2.11. (Christofides (2004)). A function f : [a, b] × [c, d] → ℜ is of

bounded variation on [a, b]× [c, d] if and only if it can be written as the difference of two

componentwise nondecreasing functions G, H on [a, b]×[c, d] with ∆G((q, r), (s, t)) ≥ 0

and ∆H((q, r), (s, t)) ≥ 0 for a ≤ q < r ≤ b, c ≤ s < t ≤ d.

Remark 3.2.12. The results for functions of bounded variation are presented in the

case of functions defined on ℜ2. The extension to higher dimensions is straightforward

by using induction. However, the notation becomes cumbersome. For example, in the

case of a real function of bounded variation defined on the parallelepiped

[a1, b1]× [a2, b2]× [a3, b3] the statement of Theorem 3.2.11 involves the quantity

∆G((q, r), (s, t), (u, v)) defined as

G(r, t, v)−G(q, t, v)−G(r, s, v)+G(q, s, v)−G(r, t, u)+G(q, t, u)+G(r, s, u)−G(q, s, u)

for a1 ≤ q < r ≤ b1, a2 ≤ s < t ≤ b2, a3 ≤ u < v ≤ b3.
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Theorem 3.2.13. Let Un be a U-statistic based on a collection of multidimensionally

indexed associated random variables (d = 2) and on the kernel h. Assume that h is a

function of bounded variation and E |Uij|p <∞ for p ≥ 1 and for all i ≥ m1, j ≥ m2.

Furthermore assume that

∞∑
i=m1

E |UiN |p <∞ ∀ N ∈ N and

∞∑
i=m1

∞∑
j=m2+1

j−1E(|Uij|p) <∞ (3.2.5)

or
∞∑

j=m2

E |UNj|p <∞ ∀ N ∈ N and
∞∑

i=m1+1

∞∑
j=m2

i−1E(|Uij|p) <∞.

Then

Un − E (Un)
a.s.−−→ 0, n → ∞.

Proof. By Theorem 3.1 of Christofides (2004) the kernel h can be written as the

difference of two componentwise nondecreasing functions, say G and H whose explicit

expressions can be found in the proof of the theorem. Therefore Un can be expressed

as

Un = U (1)
n − U (2)

n , (3.2.6)

where U
(1)
n and U

(2)
n are U-statistics based on the componentwise nondecreasing kernels

G and H, respectively. From Theorem 3.2.8 it follows that

U (1)
n − E(U (1)

n )
a.s.−−→ 0, n → ∞ (3.2.7)

and

U (2)
n − E(U (2)

n )
a.s.−−→ 0, n → ∞ (3.2.8)

provided that
∞∑

i=m1

∞∑
j=m2+1

j−1E|U (1)
ij |p <∞ (3.2.9)

and
∞∑

i=m1

∞∑
j=m2+1

j−1E|U (2)
ij |p <∞. (3.2.10)

By the construction of the functions G and F both (3.2.9) and (3.2.10) are implied by

(3.2.5). The result now follows from (3.2.7) and (3.2.8). �

Remark 3.2.14. Condition (3.2.5) is stated in terms of the moments of the U-statistic.

This in a way says that convergence depends not only on the kernel h but also on the
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nature of the observations. Let us consider the following example.

Example 3.2.15. Let X be a random variable with E|X| <∞ and let

Xij =
log(ij + 1)

ij
X, i ≥ 1, j ≥ 1.

Then {Xij, i ≥ 1, j ≥ 1} are associated by properties (P3) and (P4) of Esary et al.

(1967). Let h(x; y) = |x − y| and consider the U-statistic based on {Xij, i ≥ 1, j ≥ 1}

and on the kernel h, which is a function of bounded variation. Then

Un = |X|
(
n1n2

2

)−1 n1−1∑
i=1

n2−1∑
j=1

n1∑
k=i+1

n2∑
l=j+1

∣∣∣∣ log(ij + 1)

ij
− log(kl + 1)

kl

∣∣∣∣ .
Direct computation shows that condition (3.2.5) for p = 1 is satisfied and by Theorem

3.2.13 the strong law of large numbers holds. Consider now the U-statistic based on

the same kernel, but on the observations {Yij, i ≥ 1, j ≥ 1} where

Yij = ij log(ij)X, i ≥ 1, j ≥ 1.

Then

Un = |X|
(
n1n2

2

)−1 n1−1∑
i=1

n2−1∑
j=1

n1∑
k=i+1

n2∑
l=j+1

|ij log(ij)− kl log(kl)|

It can easily be shown by direct computation that Un does not converge. In addition,

condition (3.2.5) for p = 1 is violated.

3.3 Multi-sample U-statistics on collections of as-

sociated random variables

U-statistics can also be extended to multisample setups. For example, in a two-

sample model, let {X1, X2, ..., Xn1} be a finite collection of identically distributed as-

sociated random variables with distribution F and {Y1, Y2, ..., Yn2} be another finite

collection of identically distributed associated random variables with distribution func-

tion G. Assume that the two samples are independent. We write ϑ = ϑ (F,G) as

ϑ = EF,G [h (X1, X2, ..., Xm1 ;Y1, Y2, ..., Ym2)]
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where m1,m2 are positive integers m1 ≤ n1 , m2 ≤ n2 and the kernel h is a symmetric,

in each set of X1, X2, ..., Xm1 and Y1, Y2, ..., Ym2 mapping Rm1+m2 to R.

We define the generalized or two-sample U-statistic as

Un1,n2 =

(
n1

m1

)−1(
n2

m2

)−1 ∑
1 ≤ i1 < i2 < · · · < im1 ≤ n1

1 ≤ j1 < j2 < · · · < jm2 ≤ n2

h
(
Xi1 , Xi2 , ..., Xim1

;Yj1 , Yj2 , ..., Yjm2

)

where
∑

1 ≤ i1 < i2 < · · · < im1 ≤ n1

1 ≤ j1 < j2 < · · · < jm2 ≤ n2

denotes the summation over the
(
n1

m1

)
combinations

of the m1 distinct elements {i1, i2, . . . , im1} from {1, ..., n1} and the
(
n2

m2

)
combinations

of the m2 distinct elements {j1, j2, . . . , jm2} from {1, ..., n2} respectively.

U-statistics on more than two independent samples of associated random variables

can be defined in a similar way. In the simplest case where m1 = m2 = 1 we have

Un1,n2 =
1

n1n2

n1∑
i=1

n2∑
j=1

h (Xi;Yj) .

Example 3.3.1. (Lee (1990)). Let {X1, X2, ..., Xn1} be a finite collection of associated

identically distributed random variables with distribution function F and {Y1, Y2, ..., Yn2}

be another finite collection of associated identically distributed random variables with

distribution function G. The two samples are independent. Let Rj denote the rank of

Yj in the combined sample. Then the Wilcoxon rank sum statistic is

W =

n2∑
j=1

Rj.

If we define

h(x; y) =

1 if x < y

0 otherwise;

and

Un1,n2 =
1

n1n2

n1∑
i=1

n2∑
j=1

h (Xi;Yj)

then in the absence of ties it can be shown that

W = n1n2Un1,n2 + n2(n2 + 1)/2.

62

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 3 Section 3.3

Here the generalized U-statistic which is the two sample Wilcoxon (Mann-Whitney)

statistic is the estimator of ϑ = P (X1 < Y1).

Example 3.3.2. (Kowalski (2008)). Let {X1, X2, ..., Xn1} be a finite collection of

identically distributed associated random variables with a continuous distribution with

variance σ2
1 and {Y1, Y2, ..., Yn2} be another finite collection of identically distributed

associated random variables with a continuous distribution function with variance σ2
2.

The two samples are independent.

For the two sample U-statistic, in the case of m1 = m2 = 2, let us define a sym-

metric kernel as follows:

h (x1, x2; y1, y2) =
1

2
(x1 − x2)

2 − 1

2
(y1 − y2)

2 .

Then, it follows that

ϑ = E [h (X1, X2;Y1, Y2)] = σ2
1 − σ2

2.

If ϑ = 0, then the two populations have the same variance. Thus the two sample

U-statistic given by

Un1,n2 =

(
n1

2

)−1(
n2

2

)−1 ∑
1≤i1<i2≤n1

∑
1≤j1<j2≤n2

h (Xi1 , Xi2 ;Yj1 , Yj2)

can be used to test the null hypothesis of equal variances between the two populations.

The following result shows that a multisample U-statistic on collections of associ-

ated random variables, under certain conditions on the kernel, is a multidimensionally

indexed demimartingale.

Proposition 3.3.3. Assume for simplicity that d=2. Let Un1,n2 be a U-statistic with

m1 = m2 = 1 based on two independent samples with associated random variables and

on the kernel h. Let Sn1,n2 = n1n2Un1,n2 where n1 ≥ m1, n2 ≥ m2. Assume that h is

componentwise nondecreasing and that E(h) = 0. Then the sequence

{Sn1,n2 , n1 ≥ m1, n2 ≥ m2}

is a multidimensionally indexed demimartingale.
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Proof. Let

St =

t1∑
i=1

t2∑
j=1

h(Xi;Yj), Sr =

r1∑
i=1

r2∑
j=1

h(Xi;Yj)

where t = (t1, t2) and r = (r1, r2) with r ≤ t.

We can write

St − Sr =

t1∑
i=r1+1

r2∑
j=1

h(Xi;Yj) +

r1∑
i=1

t2∑
j=r2+1

h(Xi;Yj) +

t1∑
i=r1+1

t2∑
j=r2+1

h(Xi;Yj).

Then for any componentwise nondecreasing function f we have

E [(St − Sr) f (Sk,k ≤ r)] =

t1∑
i=r1+1

r2∑
j=1

E[h(Xi;Yj)f (Sk,k ≤ r)]

+

r1∑
i=1

t2∑
j=r2+1

E[h(Xi;Yj)f (Sk,k ≤ r)] +

t1∑
i=r1+1

t2∑
j=r2+1

E[h(Xi;Yj)f (Sk,k ≤ r)]

=

t1∑
i=r1+1

r2∑
j=1

E[h(Xi;Yj)g (X1, X2, ..., Xr1 ;Y1, Y2, ..., Yr2)]

+

r1∑
i=1

t2∑
j=r2+1

E[h(Xi;Yj)g (X1, X2, ..., Xr1 ;Y1, Y2, ..., Yr2)]

+

t1∑
i=r1+1

t2∑
j=r2+1

E[h(Xi;Yj)g (X1, X2, ..., Xr1 ;Y1, Y2, ..., Yr2)]

≥ 0

where the function g defined as:

g (X1, X2, ..., Xr1 ;Y1, Y2, ..., Yr2)

= f(h(x1; y1),
1∑

i=1

2∑
j=1

h(xi; yj),
2∑

i=1

1∑
j=1

h(xi; yj), ...,

r1∑
i=1

r2∑
j=1

h(xi; yj))

is componentwise nondecreacing since h and f are componentwise nondecreacing, (see

property 4 in Esary et al. (1967)). The last inequality follows from the nondecreasing-

ness of the function g and the fact that the sequences {Xi, i ≥ 1} and {Yj, j ≥ 1} are

associated random variables, and the two sequences are independent. �

64

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 3 Section 3.3

3.3.1 A strong law in the case of nondecreasing kernels

Theorem 3.3.4. Let Un1,n2 be a two-sample U-statistic based on two collections of

associated random variables and on the kernel h. Assume that h is componentiwise

nondecreasing and E |Uij|p < ∞ for p ≥ 1 and for all i ≥ m1, j ≥ m2. Furthermore

assume that

∞∑
i=m1

E |UiN |p <∞ ∀ N ∈ N and

∞∑
i=m1

∞∑
j=m2+1

j−1E(|Uij|p) <∞

or
∞∑

j=m2

E |UNj|p <∞ ∀ N ∈ N and
∞∑

i=m1+1

∞∑
j=m2

i−1E(|Uij|p) <∞.

Then

Un1,n2 − E (Un1,n2)
a.s.−−→ 0, as (n1, n2) → ∞.

Proof. Let Sn1,n2 =
(
n1

m1

)(
n2

m2

)
Un1,n2 for m1 ≤ n1 and m2 ≤ n2. Since h is nondecreas-

ing, Sn1,n2 is a multidimensionally indexed demimartingale. Clearly

cn1,n2 =

(
n1

m1

)−1(
n2

m2

)−1

is a decreasing sequence of positive numbers. By Lemma 2.1 of Christofides and Had-

jikyriakou (2011) which obtain a strong law of large numbers for multidimensionally

indexed demimartingales, where g(x) = x and d = 2, we observe that

(
n1

m1

)−1(
n2

m2

)−1

(Sn1,n2 − E (Sn1,n2))
a.s.−−→ 0, as (n1, n2) → ∞

provided that
∞∑

i=m1

cpiNE |SiN |p <∞

for all N ∈ N, and
∞∑

i=m1

∞∑
j=m2+1

cpijE(|Sij|p − |Sij−1|p) <∞.

Observe that

∞∑
i=m1

cpiNE |SiN |p =
∞∑

i=m1

(
i

m1

)−p(
N

m2

)−p

E

∣∣∣∣( i

m1

)(
N

m2

)
UiN

∣∣∣∣p = ∞∑
i=m1

E |UiN |p <∞
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for all N ∈ N, and

∞∑
i=m1

∞∑
j=m2+1

cpijE(|Sij|p − |Sij−1|p)

=
∞∑

i=m1

∞∑
j=m2+1

(
i

m1

)−p(
j

m2

)−p

E(|Sij|p − |Sij−1|p)

=
∞∑

i=m1

∞∑
j=m2+1

[(
i

m1

)−p(
j

m2

)−p

−
(
i

m1

)−p(
j + 1

m2

)−p
]
E(|Sij|p)

=
∞∑

i=m1

∞∑
j=m2+1

[(
i

m1

)−p(
j

m2

)−p

−
(
i

m1

)−p(
j + 1

m2

)−p
](

i

m1

)p(
j

m2

)p

E(|Uij|p)

=
∞∑

i=m1

∞∑
j=m2+1

[(
j

m2

)−p

−
(
j + 1

m2

)−p
](

j

m2

)p

E(|Uij|p)

< p

∞∑
i=m1

∞∑
j=m2+1

(
j

m2

)−p+1
[(

j

m2

)−1

−
(
j + 1

m2

)−1
](

j

m2

)p

E(|Uij|p)

= pm2

∞∑
i=1

∞∑
j=m2+1

(j + 1)−1E(|Uij|p)

<
∞∑

i=m1

∞∑
j=m2+1

j−1E |Uij|p <∞,

where the last equality follows from the inequality xr − yr ≤ rxr−1 (x− y) which is

valid for x, y > 0, r ≥ 1. �

66

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 4

Stochastic orders and distances for

U-statistics

Limit theorems for U-statistics are usually considered for the Kolmogorov metric.

Our goal is to depart from this approach and provide an alternative approach for the

distance between a U-statistic and a normal random variable. In particular, in Section

4.1, we give the distance between a U-statistic Un based on associated random vari-

ables and a U-statistic U∗
n based on i.i.d. random variables. Asymptotic normality for

U-statistics based on associated random variables is presented in Section 4.2. In Sec-

tion 4.3 we obtain the distance between a U-statistic based on i.i.d. random variables

and a normal random variable by utilizing Zolotarev’s ideal metric. This result also

establishes a central limit theorem for U-statistics, with an alternative technique, using

probability metrics. Corresponding results are also investigated for von Mises statis-

tics. In Section 4.4 we also prove similar results for U-statistics based on negatively

associated random variables also under Zolotarev’s ideal metric.

4.1 Distance between Un based on associated ran-

dom variables and U ∗
n based on i.i.d. random

variables

Generally speaking, stochastic ordering tries to order random variables according

to an appropriate criterion. In this section before we study our main object which

is the distance between a U-statistic Un based on associated random variables and a
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U-statistic U∗
n based on i.i.d. random variables, we present some definitions and results

that are connected with stochastic orderings.

4.1.1 Stochastic ordering of random variables

Definition 4.1.1. (a) A random variable X is said to be smaller than a random

variable Y in the convex order, denoted by X 4cx Y , if Ef(X) 6 Ef(Y ) for all convex

functions f for which the expectations exist.

(b) A random variable X is smaller than a random variable Y in the increasing

convex order, denoted by X 4icx Y , if Ef(X) 6 Ef(Y ) for all increasing convex

functions f for which the expectations exist.

Similarly, one may define the so-called concave and increasing concave orders de-

noted by 4cv and 4icv respectively.

Lemma 4.1.2. (Shaked and Shanthikumar (1997), p.197). Let X and Y be a pair of

random variables. If X 4icx Y and E(X) = E(Y ), then X 4cx Y .

Now we turn our attention to a multivariate stochastic order which is based on

the notion of supermodularity. For any two points x = (x1, x2, ..., xn) and y =

(y1, y2, ..., yn), x, y ∈ ℜn, define the componentwise maximum as

x ∨ y := (max{x1, y1},max{x2, y2}, ...,max{xn, yn})

and the componentwise minimum as

x ∧ y := (min{x1, y1},min{x2, y2}, ...,min{xn, yn}).

Definition 4.1.3. A function f : ℜn → ℜ is called supermodular (superadditive or

L-superadditive) if

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y), ∀ x,y ϵ ℜn.

On the other hand, a function is called submodular (subadditive or L-subadditive) if

the reverse inequality holds true. A function f is supermodular if and only if -f is

submodular.
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Definition 4.1.4. A random vector X = (X1, X2, ..., Xn) is said to be smaller than a

random vector Y = (Y1, Y2, ..., Yn) in the supermodular order, denoted by X 4sm Y , if

Ef(X) 6 Ef(Y) for all supermodular functions f for which the expectations exist.

Consider a collection of real-valued random variablesX1, X2, ..., Xn. Then, through-

out this chapter we shall use the notation X∗
1 , X

∗
2 , ..., X

∗
n to denote independent random

variables such that Xi =st X
∗
i for all i = 1, ..., n (where =st denotes equality in distri-

bution).

Lemma 4.1.5. (Christofides and Vaggelatou (2004)).

(a) Let X1, X2, ..., Xn be a collection of weakly associated r.v.’s. Then

φ(X1, X2, ..., Xn) <icx φ(X
∗
1 , X

∗
2 , ..., X

∗
n)

for every φ monotone and supermodular.

(b) If X1, X2, ..., Xn is a collection of negatively associated r.v.’s, then

φ(X1, X2, ..., Xn) 4icx φ(X
∗
1 , X

∗
2 , ..., X

∗
n)

for every φ monotone and supermodular.

Lemma 4.1.6. If a function f : M → R defined on a nonempty subset M of Rn and

taking real values is convex, then g(x) = f(cx) is also convex, where c is a real number.

Proof. For any x, y ∈M and every λ ∈ [0, 1], we have that

g(λx+ (1− λ)y) = f(cλx+ c(1− λ)y).

Now from the convexity of f we have that function g is also convex,

f(cλx+ c(1− λ)y) ≤ λf(cx) + (1− λ)f(cy) ≤ λg(x) + (1− λ)g(y). �

Lemma 4.1.7. Let X, Y be random variables such that X 4cx Y . For a > 0, then

aX 4cx aY.
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Proof. From the definition of the convex order we have that Ef(X) 6 Ef(Y ) for

all convex functions f for which the expectations exist. According to Lemma 4.1.6 we

have that Ef(aX) 6 Ef(aY ) because f(ax) is also convex. So we have the result. �

Remark 4.1.8. It is obvious that in the same manner we can prove that if f is an

increasing convex function then g(x) = f(cx) is also increasing convex, where c > 0.

Lemma 4.1.9. (Shaked and Shanthikumar (1997), p.123). Let X be a random variable

with E(X) = 0. Then

X 4cx cX,

whenever c ≥ 1.

Lemma 4.1.10. Let X,Y be random variables such that X 4cx Y , and 0 < a ≤ b.

Then

aX 4cx bY

respectively.

Proof. Applying Lemma 4.1.7, for a > 0 we have that

X 4cx Y =⇒ aX 4cx aY.

Since b
a
≥ 1, from Lemma 4.1.9 we arrive at

aX 4cx aY =⇒ aX 4cx a
b

a
Y =⇒ aX 4cx bY. �

Remark 4.1.11. It is obvious that in the same manner we can prove that the previous

result also applies in the case of X 4icx Y.

Lemma 4.1.12. Let {Xn, n ≥ 1} be a finite collection of identically distributed asso-

ciated stationary random variables with a continuous distribution F and {X∗
n, n ≥ 1}

be a finite collection of identically distributed independent random variables with the

same continuous distribution F . Moreover let Un be the U-statistic based on the associ-

ated random variables and on the kernel h assumed to be monotone and supermodular.

Let U∗
n be the U-statistic based on the independent random variables and on the kernel

h. Assume that E[h(X1, X2)] = E[h(X∗
1 , X

∗
2 )] = 0. If σ2

U = σ2
1 + 2

∑∞
j=1 σ

2
1j where
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σ2
1 = Var[h1 (X1)] and σ

2
1j = cov(h1(X1), h1(X1+j)), then

n
1
2U∗

n

2σU
4cx

n
1
2Un

2σU
.

Proof. Applying Lemma 4.1.5 of Christofides and Vaggelatou (2004), if h is monotone

and supermodular (
n

2

)
U∗
n 4icx

(
n

2

)
Un

because the summation of monotone and supermodular functions is monotone and

supermodular. Furthermore from Lemma 4.1.2 we have that

(
n

2

)
U∗
n 4cx

(
n

2

)
Un,

because E[h(X1, X2)] = E[h(X∗
1 , X

∗
2 )]. Finally applying Lemma 4.1.10 we get that

n
1
2U∗

n

2σU
4cx

n
1
2Un

2σU
. �

Proposition 4.1.13. (Boutsikas and Vaggelatou (2002)). Let us denote by Us
U(ℜ),

U ⊆ ℜ, the space of all random variables X defined on the probability space (Ω,A,P)

and taking values in U with E|X|s <∞. If X, Y ∈ U2(ℜ) and X ≼cx Y , then

ζ2 (X,Y ) =
1

2
[Var(Y )− Var(X)] .

Proposition 4.1.14. The variance of the U-statistic based on i.i.d. random variables

is

Var (Un) =
4σ2

1

n
+ o

(
1

n

)
.

Proposition 4.1.15. Let Un be a U-statistic based on stationary associated (or nega-

tively associated) random variables and σ2
U = σ2

1 + 2
∑∞

j=1 σ
2
1j. Then

Var (Un) =
4σ2

U

n
+ o

(
1

n

)
,

where σ2
1 = Var[h1 (X1)] <∞ and σ2

1j = cov(h1(X1), h1(X1+j)).
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4.1.2 Distance between Un and U ∗
n

Theorem 4.1.16. Let {Xn, n ≥ 1} be a finite collection of identically distributed asso-

ciated stationary random variables with a continuous distribution F and {X∗
n, n ≥ 1}

be a finite collection of identically distributed independent random variables with the

same continuous distribution F . Moreover let Un be the U-statistic based on the associ-

ated random variables and on the kernel h assumed to be monotone and supermodular.

Let U∗
n be the U-statistic based on the independent random variables and on the kernel

h. Assume that E[h(X1, X2)] = E[h(X∗
1 , X

∗
2 )] = 0. If σ2

U = σ2
1 + 2

∑∞
j=1 σ

2
1j where

σ2
1 = Var[h1 (X1)] and σ

2
1j = cov(h1(X1), h1(X1+j)). Then

ζ2

(
n

1
2Un

2σU
,
n

1
2U∗

n

2σ1

)
=

(
1− σ2

1

2σ2
U

)
+ o (1) .

Proof. Using the triangular inequality and applying Lemma 4.1.12 and Proposition

4.1.13 we have that

ζ2

(
n

1
2Un

2σU
,
n

1
2U∗

n

2σ1

)
≤ ζ2

(
n

1
2Un

2σU
,
n

1
2U∗

n

2σU

)
+ ζ2

(
n

1
2U∗

n

2σU
,
n

1
2U∗

n

2σ1

)

=
1

2

[
Var(

n
1
2Un

2σU
)− Var(

n
1
2U∗

n

2σU
)

]
+

1

2

[
Var(

n
1
2U∗

n

2σ1
)− Var(

n
1
2U∗

n

2σU
)

]

=
n

8σ2
U

(
4σ2

U

n
+ o

(
1

n

))
− n

8σ2
U

(
4σ2

1

n
+ o

(
1

n

))

+
n

8σ2
1

(
4σ2

1

n
+ o

(
1

n

))
− n

8σ2
U

(
4σ2

1

n
+ o

(
1

n

))

=

(
1− σ2

1

2σ2
U

)
+ o (1) . �

4.2 Asymptotic normality for U-statistics based on

associated random variables

In this section we investigate the distance between a U-statistic based on a collection

of identically distributed associated random variables with distribution function F and
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a normal random variable under the Kolmogorov metric. We present an alternative

way to the approach of Garg and Dewan (2015) to prove asymptotic normality for this

type of U-statistics.

4.2.1 Definitions and related results

Below is a list of various metrics and related results that are needed for our expo-

sition.

Proposition 4.2.1. (Lyapunov’s Inequality). Let X be a random variable, with

E | X |t<∞. Then, for 0 < s ≤ t <∞,

[E |X|s]
1
s ≤

[
E |X|t

] 1
t .

Definition 4.2.2. Let τs (X, Y ) = E
∣∣X(s) − Y (s)

∣∣, where x(s) = x |x|s−1 for s ≥ 1, and

τ̂s (X, Y ) = inf τs (X, Y ),

where the infimum is taken over all joint distributions PX,Y whose marginal distribu-

tions P (X < x) and P (Y < y) are fixed.

Proposition 4.2.3. (Sharakhmetov (2004)). The metric κs (X,Y ) is minimal for the

metric τs (X, Y ), that is, κs (X,Y ) ≤ τs (X, Y ) and τ̂s (X, Y ) = κs (X, Y ).

Definition 4.2.4. Let X, Y be random variables. Then ζm,p is defined as

ζm,p (X,Y ) = sup
f

{
|Ef(X)− Ef(Y )| :

∥∥f (m+1)
∥∥
q
6 1
}
,

where 1/p+ 1/q = 1 and m = 0, 1, 2, .... By f (m+1) we denote the (m+ 1)th derivative

of the density function f and ||.||q denotes the Lq norm.

Remark 4.2.5. (Rachev (1991), p. 270). When m = 0 and p = 1, we have that

ζ0,1 (X, Y ) ≤ κ1 (X, Y ) .

Proposition 4.2.6. (Rachev (1991), p. 303). Let X,Y random variables. Then

L (X,Y ) 6 [cm,pζm,p (X, Y )]1/(r+1) ,
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where L (X,Y ) is the Levy metric, r = m+ 1/p and

cm,p =
(2m+ 2)!(2m+ 3)1/2

(m+ 1)!(3− 2/p)1/2
.

Applying Proposition 4.2.6 we have the next two remarks.

Remark 4.2.7. (Rachev (1991), p.258).

L (X, Y ) 6 [4ζ2 (X, Y )]1/3 .

Remark 4.2.8. Combining Remark 4.2.5 and Proposition 4.2.6 we have that,

L (X, Y ) 6
[
2
√
3 κ1 (X, Y )

]1/2
.

Proposition 4.2.9. (Rachev (1991), p. 303). If Y has a bounded density pY , then

ρ(X, Y ) 6
(
1 + sup

xϵℜ
pY (x)

)
L (X, Y ) .

Proposition 4.2.10. (Boutsikas and Vaggelatou (2002)). Let X1, X2, . . . be a strictly

stationary sequence of associated random variables such that E(X1) = 0 and

0 < E(X2
1 ) <∞. If σ2 := E(X2

1 ) + 2
∑∞

j=2E(X1Xj) <∞, then, for n = mk,

ζ2

(∑n
i Xi√
n

, Y

)
≤ ak

k

[
σ2 − E

(
X2

1

)]
+ 2

(
1− ak

k

)
u (ak) + c

ρk

m
1
2

for some constant c > 0, where Y is a standard normal random variable, {ak} is

any sequence of positive integers such that ak ≤ k, ak → ∞, ak
k

→ 0 as k → ∞,

ρk := E
∣∣∣k− 1

2

∑k
i=1Xi

∣∣∣3 and u(i) :=
∑∞

j=i+1E (X1Xj) → 0 as i→ ∞.

Lemma 4.2.11. Let Un be a U-statistic of dimension two based on stationary associated

random variables and on the kernel h. Assume that E(h) = 0 and 0 < E(h2) < ∞. If

σ2
U = σ2

1 + 2
∑∞

j=1 σ
2
1j where σ2

1 = Var[h1 (X1)] and σ
2
1j = cov(h1(X1), h1(X1+j)) < ∞,

then, for n = mk,

ζ2

(
n− 1

2

n∑
i=1

h(1) (Xi) , Y

)
≤ ak

k

[
σ2
U − E

(
h(1) (X1)

)2]
+ 2

(
1− ak

k

)
u (ak) + c

ρk

m
1
2

for some constant c > 0, where Y is a standard normal random variable, {ak} is any

74

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 4 Section 4.2

sequence of positive integers such that ak ≤ k, ak → ∞, ak
k

→ 0 as k → ∞, ρk :=

E
∣∣∣k− 1

2

∑k
i=1 h

(1) (Xi)
∣∣∣3 and u(i) :=

∑∞
j=i+1E

(
h(1) (X1)h

(1) (Xj)
)
→ 0 as i→ ∞.

Proof. Apply Lemma 4.2.10. �

Remark 4.2.12. Note that

ζ2

(
n− 1

2

n∑
i=1

h(1) (Xi) , Y

)
= o(1), as n→ ∞.

Definition 4.2.13. (Garg and Dewan (2015)). The Vitali variation of a function f :

[a, b] → R, where [a, b] = {x ∈ Rk : a ≤ x ≤ b}, a, b ∈ Rk, k ∈ N is defined as ∥f∥V =

sup
∑

R∈A |∆Rf |. The supremum is taken over all finite collections of k-dimensional

rectangles A = {Ri : 1 ≤ i ≤ m} such that
∪m

i=1Ri = [a, b], and the interiors of any two

rectangles in A are disjoint. Here, if R = [c, d], a k-dimensional rectangle contained

in [a, b], then, ∆Rf =
∑

I⊆{1,2,...,k}(−1)|I|f(xI), where, xI is the vector in Rk whose ith

element is given by ci if i ∈ I, or by di if i /∈ I, f∅ = f(b). For instance, if k = 2 and

R = [c1, d1]× [c2, d2] then, ∆Rf = f(d1, d2)− f(c1, d2)− f(d1, c2) + f(c1, c2).

Definition 4.2.14. (Garg and Dewan (2015)). The Hardy-Krause variation of a func-

tion f : [a, b] → R, where [a, b] = {x ∈ Rk : a ≤ x ≤ b}, a, b ∈ Rk, k ∈ N is given by

∥f∥HK =
∑

∅̸=I⊆1,...,k] ∥fI∥V . Here, given a non-empty set I ⊆ {1, 2, ..., k}, fI denotes

the real valued function on
∏

i∈I [ai, bi] obtained by setting the ith argument of f equal

to bi whenever i /∈ I.

Remark 4.2.15. When k = 1, the Hardy-Krause variation is equivalent to the Vitali

variation and hence the standard definition of total variation.

Lemma 4.2.16. (Garg and Dewan (2015)). Let {Xn, n ≥ 1} be a sequence of station-

ary associated random variables with |Xn| < C1 < ∞, for all n ≥ 1. Assume that the

density function of X1, denoted by f , is bounded. If h(2)(x, y) is a degenerate symmet-

ric kernel of degree 2 which is of bounded Hardy-Krause variation and left continuous,

then, under the condition
∞∑
j=1

Cov(X1, Xj)
γ <∞,
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for some 0 < γ < 1
6
,

∑
1≤i<j≤n

∑
1≤k<l≤n

∣∣E (h(2) (Xi, Xj)h
(2) (Xk, Xl)

)∣∣ = o(n3).

4.2.2 Asymptotic normality

Lemma 4.2.17. Assume the conditions of Lemma 4.2.16 hold and let

∆(i, j, k, l) = cov
[
h(2) (Xi, Xj) , h

(2) (Xk, Xl)
]
.

Then

E
[
H(2)

n

]2
= o(n−1).

Proof.

E
[
H(2)

n

]2
=

(
n

2

)−2 ∑
1≤i<j≤n

∑
1≤k<l≤n

∆(i, j, k, l)

(
n

2

)−2 ∑
1≤i<j≤n

∑
1≤k<l≤n

∣∣E (h(2) (Xi, Xj)h
(2) (Xk, Xl)

)∣∣
= o(n−1). �

Lemma 4.2.18. Assume the conditions of Lemma 4.2.16 hold. Then

E

∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣ ≤
[ ∑
1≤i<j≤n

∑
1≤k<l≤n

∆(i, j, k, l)

] 1
2

= o
(
n

3
2

)
.

Proof. Applying Lemma 4.2.17 and Proposition 4.2.1 we get

E

∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣ =
(
n

2

)
E
∣∣H(2)

n

∣∣

≤
(
n

2

)[
E
∣∣H(2)

n

∣∣2] 1
2

=

(
n

2

)[(
n

2

)−2 ∑
1≤i<j≤n

∑
1≤k<l≤n

∆(i, j, k, l)

] 1
2
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=

[ ∑
1≤i<j≤n

∑
1≤k<l≤n

∆(i, j, k, l)

] 1
2

= o
(
n

3
2

)
. �

Lemma 4.2.19. Assume the conditions of Lemma 4.2.16 hold. Then

κ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
= o (1) .

Proof. Applying Proposition 4.2.3 we have that

κ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
≤ τ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)

= E

∣∣∣∣∣n
1
2Un

2σU
− 1

n
1
2σU

n∑
i=1

h(1) (Xi)

∣∣∣∣∣

= E

∣∣∣∣∣ 1

n
1
2 (n− 1)σU

∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣

=
1

n
1
2 (n− 1)σU

E

∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣ .
Finally, from Lemma 4.2.18 we have that

κ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
= o (1) . �

Theorem 4.2.20. Let {Xn, n ≥ 1} be a finite collection of identically distributed asso-

ciated stationary random variables with a distribution function F . Assume the condi-

tions of Lemma 4.2.16 hold. Moreover let Un be a U-statistic of dimension two based on

the kernel h and the given observations. Also assume that E(h) = 0, 0 < E(h2) < ∞

and
∑∞

j=i+1E (X1Xj) → 0 as i→ ∞. Then

ρ

(
n

1
2Un

2σU
, Y

)
→ 0 as n→ ∞,

where Y is a standard normal random variable.
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Proof. Using the triangular inequality, Proposition 4.2.9 and the inequalities between

the metrics (Remarks 4.2.7 and 4.2.8), we have that

ρ

(
n

1
2Un

2σU
, Y

)
≤ ρ

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
+ ρ

(
1

n
1
2σU

n∑
i=1

h(1) (Xi) , Y

)
.

≤ c1

[
2
√
3κ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)]1/2

+ c2

[
4ζ2

(
1

n
1
2σU

n∑
i=1

h(1) (Xi) , Y

)]1/3
,

where c1, c2 are positive constants. Finally combining Lemmas 4.2.11 and 4.2.19 we

have that

ρ

(
n

1
2Un

2σU
, Y

)
= o (1) . �

4.3 Distance between a U-statistic based on i.i.d.

observations and a normal random variable

Limit theorems for U-statistics are usually considered for the Kolmogorov metric.

Our goal is to depart from this approach and provide an alternative approach for

the distance between a U-statistic and a normal random variable. In particular, we

obtain the distance between a U-statistic and a normal random variable by utilizing

Zolotarev’s ideal metric. This result is also established as a central limit theorem for

U-statistics, with an alternative technique, using probability metrics. Corresponding

results are also investigated for von Mises statistics.

4.3.1 Definitions and notation

As mentioned before, our goal in this section is to calculate the distance between

U-statistics based on i.i.d. random variables and a standard normal variable with an

alternative method, using probability metrics. The following definitions and auxiliary

results are essential for our exposition.

Proposition 4.3.1. (Rachev (1991), p. 258). Let X, Y be random variables. Consider
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the mean metric κ2 and the Zolotarev’s ideal metric ζ2. Then

2ζ2 (X, Y ) ≤ κ2 (X, Y ) .

Proposition 4.3.2. (Rachev (1991), p. 262). Let X, Y be random variables and

0 < δ ≤ 1. Then for any N > 0,

1

2
κ2 (X, Y ) =

∫
|t| |FX(t)− FY (t)| dt

≤ Nκ1(X, Y ) +N−δ
[
E |X|2+δ + E |Y |2+δ

]
.

Next, we present a closed-form expression for the variance and a moment bound

for U-statistics and V-statistics.

Proposition 4.3.3. The variance of the U-statistic with kernel based on i.i.d. random

variables is

Var (Un) =
4σ2

1

n
+ o

(
n−1
)
.

Proposition 4.3.4. (Serfling (1980), p. 185). Let r be a real number, r ≥ 2. Assume

that E |h|r <∞ and E(h) = 0. Then

E |Un|r = O
(
n− r

2

)
, n→ ∞.

Proposition 4.3.5. (Serfling (1980), p. 206). Let r be a positive integer. Assume

that E |h|r <∞. Then

E |Un − Vn|r = O
(
n−r
)
, n→ ∞.

Lemma 4.3.6. Let r be a positive integer, r ≥ 2. Suppose that E |h|r <∞. Then

E |Vn|r = O
(
n− r

2

)
, n→ ∞.

Proof. Using Minkowski’s inequality we have that

E |Vn|r = E |Vn − Un + Un|r ≤ 2r−1 [E |Vn − Un|r + E |Un|r] .
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Moreover, combining Propositions 4.3.4 and 4.3.5 we have that

E |Vn|r = O(n− r
2 ). �

4.3.2 Distance between a U-statistic and a normal random

variable

Before we state and prove our main theorem of this section, we state and prove

some useful auxiliary results. Lemma 4.3.8, is an application of the next proposition

from Sharakhmetov (2004). This proposition provides an upper bound for the distance

between the U-statistic and the first term of the decomposition in (1.5.1) under the

mean metric κ2.

Proposition 4.3.7. (Sharakhmetov (2004)). Let Y be a standard normal random

variable and ξ1, ..., ξn be independent identically distributed random variables such that

E(ξ1) = 0, E(ξ21) = σ2, and E |ξ1|p <∞ for some p ≥ 2. Then

κs

(
1√
nσ

n∑
i=1

ξi, Y

)
≤ cn− (p0−2)

2
E |ξ1|p0

σp0
,

where 1 ≤ s ≤ p, p > 2, p0 = min(3, p) and the constant c > 0 depends only on s and

p. Moreover,

κs

(
1√
nσ

n∑
i=1

ξi, Y

)
→ 0 as n→ ∞.

Lemma 4.3.8. Let {X1, X2, ..., Xn} be a collection of i.i.d random variables and Y be

a standard normal random variable and 0 < δ ≤ 1. If E
∣∣h(1) (X1)

∣∣2+δ
<∞, then

κ2

(
1

n
1
2σ1

n∑
i=1

h(1) (Xi) , Y

)
≤ cn− δ

2
E
∣∣h(1) (X1)

∣∣2+δ

σ2+δ
1

,

where c depends only on δ. Moreover,

κ2

(
1

n
1
2σ1

n∑
i=1

h(1) (Xi) , Y

)
→ 0 as n→ ∞.

Proof. Apply Proposition 4.3.7. �

Lemma 4.3.10 that follows, is an application of Proposition 4.3.9 and provides a
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moment bound for the sum that appears in the second term of the decomposition in

(1.5.1).

Proposition 4.3.9. (Korolyuk and Borovskikh (1989), p. 72). Let {X1, X2, ..., Xn}

be a collection of independent identically distributed random variables. Let Un be the

U-statistic of dimension two based on the kernel h and the given observations. Assume

that E(h) = 0 and E | h |p<∞ for some 1 ≤ p ≤ 2. Then

E | Un |p≤ α3
p

(
n

2

)1−p

E
∣∣h(2)(X1, X2)

∣∣p ,
where αp ≤ 22−p.

Let us now denote with U∗
n the U-statistic of dimension 2 based on the degenerate

kernel h(2). Then the Hoeffding decomposition for U∗
n is given by

U∗
n =

2

n

n∑
i=1

h̃(1) (Xi) +
2

n(n− 1)

∑
1≤i<j≤n

h̃(2) (Xi, Xj) ,

where

h̃(1) (xi) = E
(
h(2) (Xi, Xj) |Xi = xi

)
,

and

h̃(2) (xi, xj) = h(2) (xi, xj)− h̃(1) (xi)− h̃(1) (xj) .

Observe that

h̃(1) (Xi) = E
[
h(2) (Xi, Xj) |Xi

]
= E [h (Xi, Xj)− h1 (Xi)− h1 (Xj) |Xi]

= E [h (Xi, Xj) |Xi]− E [h1 (Xi) |Xi]− E [h1 (Xj) |Xi]

= h1 (Xi)− h1 (Xi)− E [h1 (Xj)]

= 0.

Similarly h̃(1) (Xj) = 0. Then

h̃(2) (Xi, Xj) = h(2) (Xi, Xj)− h̃(1) (Xi)− h̃(1) (Xj) = h(2) (Xi, Xj) .

Lemma 4.3.10. Let {X1, X2, ..., Xn} be a collection of independent identically dis-

tributed random variables. Let U∗
n be the U-statistic of dimension 2 based on the de-
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generate kernel h(2 ) and the given observations. Assume that E | h(2) (X1, X2) |p< ∞

for some 1 ≤ p ≤ 2. Then

E

∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣
p

≤ n(n− 1)25−3pE
∣∣h(2) (X1, X2)

∣∣p .
Proof. Applying Proposition 4.3.9 and the previous observation that h̃(2) (Xi, Xj) =

h(2) (Xi, Xj), we have that

E | U∗
n |p≤

(
n

2

)1−p

23(2−p)E
∣∣∣h̃(2)(X1, X2)

∣∣∣p
⇐⇒E

∣∣∣∣(n2
)
U∗
n

∣∣∣∣p ≤ (n2
)
23(2−p)E

∣∣∣h̃(2) (X1, X2)
∣∣∣p

⇐⇒E

∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣
p

≤ n(n− 1)25−3pE
∣∣h(2) (X1, X2)

∣∣p . �

The following Lemma 4.3.11 provides the distance between the U-statistic and the

first term of the decomposition in (1.5.1) under the κ1 metric.

Lemma 4.3.11. Let {X1, X2, ..., Xn} be a collection of i.i.d. random variables. As-

sume E | h(2) (X1, X2) |2+δ<∞ for 0 < δ ≤ 1. Then

κ1

(
n

1
2Un

2σ1
,

1

n
1
2σ1

n∑
i=1

h(1) (Xi)

)
≤ n− δ

2
2

3−5δ
4

σ1

[
E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

.

Proof. Applying Proposition 4.2.3 we have that

κ1

(
n

1
2Un

2σ1
,

1

n
1
2σ1

n∑
i=1

h(1) (Xi)

)
≤ τ1

(
n

1
2Un

2σ1
,

1

n
1
2σ1

n∑
i=1

h(1) (Xi)

)

= E

∣∣∣∣∣n
1
2Un

2σ1
− 1

n
1
2σ1

n∑
i=1

h(1) (Xi)

∣∣∣∣∣
= E

∣∣∣∣∣ 1

n
1
2 (n− 1)σ1

∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣
=

1

n
1
2 (n− 1)σ1

E

∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣ .

82

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 4 Section 4.3

Furthermore, combining Proposition 4.2.1 and Lemma 4.3.10 we have that

κ1

(
n

1
2Un

2σ1
,

1

n
1
2σ1

n∑
i=1

h(1) (Xi)

)
≤ 1

n
1
2 (n− 1)σ1

E ∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣
4

3−δ


3−δ
4

≤ 1

n
1
2 (n− 1)σ1

[
n(n− 1)2(5−3 4

3−δ
)E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

≤ n
1−δ
4 (n− 1)−

1+δ
4
2

3−5δ
4

σ1

[
E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

≤ n− δ
2
2

3−5δ
4

σ1

[
E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

. �

Now we are ready to prove the main result of this section.

Theorem 4.3.12. Let {X1, X2, ..., Xn} be a collection of independent identically dis-

tributed random variables. Let Un be the U-statistic of dimension two based on the

kernel h and the given observations. Assume that E(h) = 0, E | h |2+δ<∞, 0 < δ ≤ 1

and 0 < ε < δ
2
. Then

ζ2

(
n

1
2Un

2σ1
, Y

)
≤ nε− δ

2
2

3−5δ
4

σ1

[
E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

+O
(
n−εδ

)

+ n−εδ c1(δ)

σ2+δ
1

E
∣∣h(1) (X1)

∣∣2+δ
+ c2(δ)n

− δ
2
E
∣∣h(1) (X1)

∣∣2+δ

σ2+δ
1

,

where c1(δ), c2(δ) are positive constants depending only on δ and Y is a standard

normal random variable.

Proof. Using the triangular inequality and Proposition 4.3.1 we have that

ζ2

(
n

1
2Un

2σ1
, Y

)
≤ ζ2

(
n

1
2Un

2σ1
,

1

n
1
2σ1

n∑
i=1

h(1) (Xi)

)
+ ζ2

(
1

n
1
2σ1

n∑
i=1

h(1) (Xi) , Y

)

≤ 1

2
κ2

(
n

1
2Un

2σ1
,

1

n
1
2σ1

n∑
i=1

h(1) (Xi)

)
+

1

2
κ2

(
1

n
1
2σ1

n∑
i=1

h(1) (Xi) , Y

)
,
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and furthermore applying Proposition 4.3.2 with N = nε, where 0 < ε < δ
2
, we have

that

ζ2

(
n

1
2Un

2σ1
, Y

)
≤ nεκ1

(
n

1
2Un

2σ1
,

1

n
1
2σ1

n∑
i=1

h(1) (Xi)

)

+ n−εδ

E ∣∣∣∣∣n
1
2Un

2σ1

∣∣∣∣∣
2+δ

+ E

∣∣∣∣∣ 1

n
1
2σ1

n∑
i=1

h(1) (Xi)

∣∣∣∣∣
2+δ


+
1

2
κ2

(
1

n
1
2σ1

n∑
i=1

h(1) (Xi) , Y

)
.

Finally combining Propositions 4.3.4, 2.1.2 and Lemmas 4.3.8 and 4.3.11 we have that

ζ2

(
n

1
2Un

2σ1
, Y

)
≤ nε− δ

2
2

3−5δ
4

σ1

[
E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

+O
(
n−εδ

)

+ n−εδ c1(δ)

σ2+δ
1

E
∣∣h(1) (X1)

∣∣2+δ
+ c2(δ)n

− δ
2
E
∣∣h(1) (X1)

∣∣2+δ

σ2+δ
1

,

where c1(δ), c2(δ) are positive constants depending only on δ. �

Corollary 4.3.13. Under the assumptions of Theorem 4.4.6,

ζ2

(
n

1
2Un

2σ1
, Y

)
→ 0 as n→ ∞.

Proof. Follows easily from Theorem 4.4.6. �

4.3.3 Distance between a V-statistic and a normal random

variable

The corresponding theorem for V-statistics can be proved similarly.

Lemma 4.3.14. Let {X1, X2, ..., Xn} be a collection of independent identically dis-

tributed random variables and Y be a standard normal random variable. Furthermore

assume that E | h(1) (X1) |2+δ<∞ for 0 < δ ≤ 1. Then

κ2

(
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi) , Y

)
≤ cn− δ

2
E
∣∣h(1) (X1)

∣∣2+δ

σ2+δ
1

,
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where c depends only on δ. Moreover,

κ2

(
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi) , Y

)
→ 0 as n→ ∞.

Proof. Apply Proposition 4.3.7. �

Lemma 4.3.15. Let {X1, X2, ..., Xn} be a collection of independent identically dis-

tributed random variables. Assume that 0 < δ ≤ 1 and E | h(2) (X1, X2) |2+δ< ∞.

Then

κ1

(
n

1
2Vn
2σ1

,
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi)

)
≤ n− δ

2
2

3−5δ
4

σ1

[
E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

.

Proof. Applying Proposition 4.2.3 we have that

κ1

(
n

1
2Vn
2σ1

,
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi)

)
≤ τ1

(
n

1
2Vn
2σ1

,
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi)

)

= E

∣∣∣∣∣n
1
2Vn
2σ1

− n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi)

∣∣∣∣∣
= E

∣∣∣∣∣ 1

2n
3
2σ1

n∑
i=1

h (Xi, Xi) +
1

n
3
2σ1

∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣
≤ E | h (X1, X1) |

2n
1
2σ1

+
1

n
3
2σ1

E

∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣ .
Furthermore, combining Proposition 4.2.1 and Lemma 4.3.10 we have that

κ1

(
n

1
2Vn
2σ1

,
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi)

)

≤ E | h (X1, X1) |
2n

1
2σ1

+
1

n
3
2σ1

E ∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣
4

3−δ


3−δ
4

=
E | h (X1, X1) |

2n
1
2σ1

+
1

n
3
2σ1

[
n(n− 1)25−3 4

3−δE
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

=
E | h (X1, X1) |

2n
1
2σ1

+ n− δ
2
2

3−5δ
4

σ1

[
E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

. �

85

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 4 Section 4.3

Theorem 4.3.16. Let {X1, X2, ..., Xn} be a collection of independent identically dis-

tributed random variables. Let Vn be the von Mises statistic of dimension two based

on the kernel h and the given observations. Assume that E(h) = 0, E | h |2+δ< ∞,

0 < δ ≤ 1 and 0 < ε < δ
2
. Then

ζ2

(
n

1
2Vn
2σ1

, Y

)
≤ nε− 1

2
E | h (X1, X1) |

2σ1
+ nε− δ

2
2

3−5δ
4

σ1

[
E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

+O
(
n−εδ

)
+ n−εδ c1(δ)

σ2+δ
1

E
∣∣h(1) (X1)

∣∣2+δ
+ c2(δ)n

− δ
2
E
∣∣h(1) (X1)

∣∣2+δ

σ2+δ
1

,

where c1(δ), c2(δ) are positive constants depending only on δ and Y is a standard

normal random variable.

Proof. Using the triangular inequality and Proposition 4.3.1 we have that

ζ2

(
n

1
2Vn
2σ1

, Y

)
≤ ζ2

(
n

1
2Vn
2σ1

,
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi)

)
+ ζ2

(
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi) , Y

)

≤ 1

2
κ2

(
n

1
2Vn
2σ1

,
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi)

)
+

1

2
κ2

(
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi) , Y

)
,

and furthermore applying Proposition 4.3.2 with N = nε, where 0 < ε < δ
2
, we have

that

ζ2

(
n

1
2Vn
2σ1

, Y

)
≤ nεκ1

(
n

1
2Vn
2σ1

,
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi)

)

+ n−εδ

E ∣∣∣∣∣n
1
2Vn
2σ1

∣∣∣∣∣
2+δ

+ E

∣∣∣∣∣n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi)

∣∣∣∣∣
2+δ


+
1

2
κ2

(
n− 1

n
3
2σ1

n∑
i=1

h(1) (Xi) , Y

)
.

Finally combining Proposition 2.1.2 and Lemmas 4.3.6, 4.3.14 and 4.3.15 we have that

ζ2

(
n

1
2Vn
2σ1

, Y

)
≤ nε− 1

2
E | h (X1, X1) |

2σ1
+ nε− δ

2
2

3−5δ
4

σ1

[
E
∣∣h(2) (X1, X2)

∣∣ 4
3−δ

] 3−δ
4

+O
(
n−εδ

)
+ n−εδ c1(δ)

σ2+δ
1

E
∣∣h(1) (X1)

∣∣2+δ
+ c2(δ)n

− δ
2
E
∣∣h(1) (X1)

∣∣2+δ

σ2+δ
1

,

where c1(δ), c2(δ) are positive constants depending only on δ. �
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Corollary 4.3.17. Under the assumptions of Theorem 4.3.16,

ζ2

(
n

1
2Vn
2σ1

, Y

)
→ 0 as n→ ∞.

Proof. Follows easily from Theorem 4.3.16. �

4.4 Distance between a U-statistic based on nega-

tively associated random variables and a nor-

mal random variable

Now let us turn our attention to collections of random variables that are dependent.

In this section we study the distance of a U-statistic based on a collection of identically

distributed negatively associated random variables and a normal random variable using

again Zolotarev’s ideal metric. In bibliography the asymptotic normality of U-statistics

based on negatively associated random variables under the assumption of degenerate

or non-degenerate kernel is investigated only in Huang and Zhang (2006).

4.4.1 Distance between a U-statistic and a normal random

variable

Proposition 4.4.1. (Christofides and Vaggelatou (2004)).

If X1, X2, ..., Xn is a collection of negatively associated r.v.’s and X∗
1 , X

∗
2 , ..., X

∗
n are

independent copies of X1, X2, ..., Xn. Then

(X1, X2, ..., Xn) 4sm (X∗
1 , X

∗
2 , ..., X

∗
n).

Proposition 4.4.2. (Boutsikas and Vaggelatou (2002)). Let X1, X2, . . . be a strictly

stationary sequence of negatively associated random variables such that E(X1) = 0 and

0 < E(X2
1 ) <∞. If σ2 := E(X2

1 ) + 2
∑∞

j=2E(X1Xj) > 0, then, for n = mk,

ζ2

(∑n
i Xi

σ
√
n
, Y

)
≤ ak

k

[
E
(
X2

1

)
− σ2

]
− 2

(
1− ak

k

)
u (ak) + c

ρk + 1

m
1
2

for some constant c > 0, where Y is a standard normal random variable, {ak} is

any sequence of positive integers such that ak ≤ k, ak → ∞, ak
k

→ 0 as k → ∞,
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ρk := E
∣∣∣k− 1

2

∑k
i=1Xi

∣∣∣3 and u(i) :=
∑∞

j=i+1E (X1Xj) → 0 as i→ ∞.

Lemma 4.4.3. Let Un be a U-statistic of dimension two based on stationary nega-

tively associated random variables and on the nondecreasing kernel h. Assume that

h(1) is degenerate. Assume further that E(h(1)) = 0 and 0 < E[h(1)]2 < ∞. If

σ2
U = Var[h1 (X1)] + 2

∑n
j=1 cov[h1(X1), h1(X1+j)] > 0, then, for n = mk,

ζ2

(
n− 1

2

σU

n∑
i=1

h(1) (Xi) , Y

)
≤ ak

k

[
E
(
h(1) (X1)

)2 − σ2
U

]
− 2

(
1− ak

k

)
u (ak) + c

ρk + 1

m
1
2

for some constant c > 0, where Y is a standard normal random variable, {ak} is any

sequence of positive integers such that ak ≤ k, ak → ∞, ak
k

→ 0 as k → ∞, ρk :=

E
∣∣∣k− 1

2

∑k
i=1 h

(1) (Xi)
∣∣∣3 and u(i) :=

∑∞
j=i+1E

(
h(1) (X1)h

(1) (Xj)
)
→ 0 as i→ ∞.

Proof. Since nondecreasing functions of negatively associated random variables are

negatively associated, we have that {h(1)(Xi), i ≥ 1} are negatively associated. Ap-

plying now Lemma 4.4.2, we have the result. �

Remark 4.4.4. Note that if E
∣∣∑∞

i=1 h
(1) (Xi)

∣∣3 <∞, then

ζ2

(
n− 1

2

n∑
i=1

h(1) (Xi) , Y

)
= o(1), as n→ ∞.

Lemma 4.4.5. Let {X1, X2, ..., Xn} be a collection of identically distributed station-

ary negatively associated random variables. Let Un be the U-statistic of dimension

two based on the kernel h and the given observations and assume that the degenerate

kernel h(2) is a componentwise nondecreasing function. Let now {X∗
1 , X

∗
2 , ..., X

∗
n} be

independent copies of {X1, X2, ..., Xn} and assume that E(h(X∗
1 , X

∗
2 )) = 0. Further-

more assume that the function g (x, y, z) = h(2) (x, y)h(2) (x, z) is supermodular. If

E
∣∣h(2) (Xi, Xj)

∣∣2 ≤ c <∞ for all 1 ≤ i < j ≤ n, then

κ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
≤ (n− 1)−

1
2

σU

[
1

n(n− 1)

∑
1≤i<j≤n

E
[
h(2) (Xi, Xj)

]2] 1
2

,

where σ2
U = σ2

1+2
∑∞

j=1 σ
2
1j > 0 with σ2

1 = Var[h1 (X1)] and σ
2
1j = cov(h1(X1), h1(X1+j)).
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Proof. By applying Propositions 4.2.3 and 4.2.1 we may write

κ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
≤ τ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)

= E

∣∣∣∣∣n
1
2Un

2σU
− 1

n
1
2σU

n∑
i=1

h(1) (Xi)

∣∣∣∣∣
= E

∣∣∣∣∣ 1

n
1
2 (n− 1)σU

∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣
=

1

n
1
2 (n− 1)σU

E

∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣ .

≤ 1

n
1
2 (n− 1)σU

E ∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣
2
 1

2

.

(4.4.1)

The expansion of the sum on the right-hand side of (4.4.1) gives

E

[ ∑
1≤i<j≤n

h(2) (Xi, Xj)

]2
=

∑
1≤i<j≤n

E
[
h(2) (Xi, Xj)

]2

+ 2
∑

1≤i<j≤n

∑
1≤k<l≤n

(i,j)̸=(k,l)

E
[
h(2) (Xi, Xj)h

(2) (Xk, Xl)
]
. (4.4.2)

Let

B =
∑

1≤i<j≤n

∑
1≤k<l≤n

(i,j) ̸=(k,l)

E
[
h(2) (Xi, Xj)h

(2) (Xk, Xl)
]
.

It can be easily verified that the terms in expression B are of two kinds. In the

first case indices {i, j, k, l} are all different. Since the kernel h(2) is a componentwise

nondecreasing function from the definition of negatively associated random variables

it follows that

E
[
h(2) (Xi, Xj)h

(2) (Xk, Xl)
]
≤ 0. (4.4.3)
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Furthermore in the second case when indices {i, j, k, l} are not all different, necessarily

{i = k and j ̸= l} or {i ̸= k and j = l}. Without loss of generality assume that

{i = k and j ̸= l}. We will prove that in that case it derives also that

E
[
h(2) (Xi, Xj)h

(2) (Xi, Xl)
]
≤ E

[
h(2)

(
X∗

i , X
∗
j

)
h(2) (X∗

i , X
∗
l )
]
= 0, (4.4.4)

where X∗
i , X

∗
j , X

∗
l are independent copies of Xi, Xj, Xl.

Since g is supermodular from Proposition 4.4.1 we have that

E(g (Xi, Xj, Xl)) ≤ E(g
(
X∗

i , X
∗
j , X

∗
l

)
).

Now working on E(g
(
X∗

i , X
∗
j , X

∗
l

)
), it follows that

E(g
(
X∗

i , X
∗
j , X

∗
l

)
) = E

[
h(2)

(
X∗

i , X
∗
j

)
h(2) (X∗

i , X
∗
l )
]

= E
[
E[h(2)

(
X∗

i , X
∗
j

)
h(2) (X∗

i , X
∗
l ) |X∗

i ]
]

=

∫
E
[
h(2)(x,X∗

j )h
(2)(x,X∗

l )
]
dF (x)

=

∫
E
[
h(2)(x,X∗

j )
]
E
[
h(2)(x,X∗

l )
]
dF (x) (4.4.5)

= 0.

where (4.4.5) follows by independence and the last equality follows from the fact that

E
[
h(2)(x,X∗

j )
]
= E

[
h(x,X∗

j )− h1(x)− h1(X
∗
j ) + θ

]
= h1(x)− h1(x)− θ + θ = 0.

Combining the results in (4.4.1), (4.4.2), (4.4.3) and (4.4.4) we arrive at

κ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
≤ 1

n
1
2 (n− 1)σU

[ ∑
1≤i<j≤n

E
[
h(2) (Xi, Xj)

]2] 1
2

=
(n− 1)−

1
2

σU

[
1

n(n− 1)

∑
1≤i<j≤n

E
[
h(2) (Xi, Xj)

]2] 1
2

. �

Now we are ready to prove the main result of this section.
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Theorem 4.4.6. Let {X1, X2, ..., Xn} be a collection of identically distributed station-

ary negatively associated random variables. Let Un be the U-statistic of dimension

two based on the kernel h and the given observations. Let now {X∗
1 , X

∗
2 , ..., X

∗
n} be

independent copies of {X1, X2, ..., Xn} and assume that E(h(X∗
1 , X

∗
2 )) = 0. Further

assume that h is componentwise nondecreasing function, E|h|2+δ < ∞, 0 < δ ≤ 1

and 0 < ε < 1
2
with σ2

U = σ2
1 + 2

∑∞
j=1 σ

2
1j > 0 where σ2

1 = Var[h1 (X1)] and

σ2
1j = cov(h1(X1), h1(X1+j)). Also assume that the degenerate kernels h(1), h(2) are

nondecreasing functions and the function g (x, y, z) = h(2) (x, y)h(2) (x, z) is supermod-

ular. Then

ζ2

(
n

1
2Un

2σU
, Y

)
≤ (n− 1)ε−

1
2

σU

[
1

n(n− 1)

∑
1≤i<j≤n

E
[
h(2) (Xi, Xj)

]2] 1
2

+ n−εδC2+δ

σ2+δ
U

(
3

2

)1+δ
1

n (n− 1)

∑
1≤i<j≤n

E |h (Xi, Xj)|2+δ

+ n−εδC2+δ

σ2+δ
U

1

n

n∑
i=1

E|h(1) (Xi) |2+δ

+
ak
k

[
E
(
h(1) (X1)

)2 − σ2
U

]
− 2

(
1− ak

k

)
u (ak) + c

ρk + 1

m
1
2

,

for some constant c > 0, where Y is a standard normal random variable, {ak} is any

sequence of positive integers such that ak ≤ k, ak → ∞, ak
k

→ 0 as k → ∞, ρk :=

E
∣∣∣k− 1

2

∑k
i=1 h

(1) (Xi)
∣∣∣3 and u(i) :=∑∞

j=i+1E
(
h(1) (X1)h

(1) (Xj)
)
→ 0 as i→ ∞, C2+δ

is a positive constant depending only on δ.

Proof. The triangular inequality and Proposition 4.3.1 together give,

ζ2

(
n

1
2Un

2σU
, Y

)
≤ ζ2

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
+ ζ2

(
1

n
1
2σU

n∑
i=1

h(1) (Xi) , Y

)

≤ 1

2
κ2

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
+ ζ2

(
1

n
1
2σU

n∑
i=1

h(1) (Xi) , Y

)
,

and furthermore applying Proposition 4.3.2 with N = nε, where 0 < ε < 1
2
, we have

that

ζ2

(
n

1
2Un

2σU
, Y

)
≤ nεκ1

(
n

1
2Un

2σU
,

1

n
1
2σU

n∑
i=1

h(1) (Xi)

)
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+ n−εδ

E ∣∣∣∣∣n
1
2Un

2σU

∣∣∣∣∣
2+δ

+ E

∣∣∣∣∣ 1

n
1
2σU

n∑
i=1

h(1) (Xi)

∣∣∣∣∣
2+δ


+ ζ2

(
1

n
1
2σU

n∑
i=1

h(1) (Xi) , Y

)
.

Finally combining Proposition 1.2.9 and Lemmas 2.1.3, 4.4.3 and 4.4.5 we arrive at

ζ2

(
n

1
2Un

2σU
, Y

)
≤ (n− 1)ε−

1
2

σU

[
1

n(n− 1)

∑
1≤i<j≤n

E
[
h(2) (Xi, Xj)

]2] 1
2

+ n−εδC2+δ

σ2+δ
U

(
3

2

)1+δ
1

n (n− 1)

∑
1≤i<j≤n

E |h (Xi, Xj)|2+δ

+ n−εδC2+δ

σ2+δ
U

1

n

n∑
i=1

E|h(1) (Xi) |2+δ

+
ak
k

[
E
(
h(1) (X1)

)2 − σ2
U

]
− 2

(
1− ak

k

)
u (ak) + c

ρk + 1

m
1
2

,

for some constant c > 0, where Y is a standard normal random variable, {ak} is

any sequence of positive integers such that ak ≤ k, ak → ∞, ak
k

→ 0 as k → ∞,

ρk := E
∣∣∣k− 1

2

∑k
i=1 h

(1) (Xi)
∣∣∣3 and u(i) :=∑∞

j=i+1E
(
h(1) (X1)h

(1) (Xj)
)
→ 0 as i→ ∞,

C2+δ is a positive constant depending only on δ. �

Corollary 4.4.7. Under the assumptions of Theorem 4.4.6 and E
∣∣∑∞

i=1 h
(1) (Xi)

∣∣3 <
∞, then

ζ2

(
n

1
2Un

2σU
, Y

)
→ 0 as n→ ∞.

Proof. Follows easily from Theorem 4.4.6. �

Remark 4.4.8. Note that the previous result, Theorem 4.4.6, is still valid for U-

statistics based on a kernel h of bounded variation, with degenerate kernels h(1), h(2) of

bounded variation also, because of the fact that a function of bounded variation can be

written as the difference of two nondecreasing functions.

Theorem 4.4.6 has an assumption related to the concept of supermodularity. Here,

we should give some trivial examples of supermodular functions. The functions f(x, y) =

x + y and f(x, y) = xy are supermodular on R2. For various properties and applica-

tions concerning supermodular functions, see Topkis (1998). Furthermore, Example

4.4.9 below presents a U-statistic which satisfies all the kernel assumptions made in

Theorem 4.4.6.
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Example 4.4.9. Let {X1, X2, ..., Xn} be a collection of identically distributed station-

ary negatively associated random variables. Let Un be the U-statistic of dimension two

based on the kernel h and the given observations. Assume that E(X1) = 0. Consider

the estimation of θ = σ2. Un is based on the kernels

h(x1, x2) =
1

2
(x21 + x22),

h(1)(x1) =
1

2
(x21 + σ2),

h(1)(x2) =
1

2
(x22 + σ2),

h(2)(x1, x2) =
1

2
(x21 + x22)−

1

2
(x21 + σ2)− 1

2
(x22 + σ2) + σ2 = 0.

One can verify that h, h(1) and h(2) are functions of bounded variation and trivially

g (x, y, z) = h(2) (x, y)h(2) (x, z) is supermodular.

4.4.2 Distance between a V-statistic and a normal random

variable

Lemma 4.4.10. Let {X1, X2, ..., Xn} be a collection of identically distributed station-

ary negatively associated random variables. Let Vn be the von Mises statistic of dimen-

sion two based on the kernel h and the given observations. Let now {X∗
1 , X

∗
2 , ..., X

∗
n} be

independent copies of {X1, X2, ..., Xn} and assume that E(h(X∗
1 , X

∗
2 )) = 0. Further-

more assume that the degenerate kernel h(2) is a componentwise nondecreasing function

and the function g (x, y, z) = h(2) (x, y)h(2) (x, z) is supermodular. If E
∣∣h(2) (Xi, Xj)

∣∣2 ≤
c <∞ for all 1 ≤ i < j ≤ n, then

κ1

(
n

1
2Vn
2σU

,
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi)

)

<
E | h (X1, X1) |

2n
1
2σU

+
n− 1

2

σU

[
1

n(n− 1)

∑
1≤i<j≤n

E
∣∣h(2) (Xi, Xj)

∣∣2] 1
2

.

Proof. Applying Proposition 4.2.3 we have that

κ1

(
n

1
2Vn
2σU

,
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi)

)
≤ τ1

(
n

1
2Vn
2σU

,
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi)

)
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= E

∣∣∣∣∣n
1
2Vn
2σU

− n− 1

n
3
2σU

n∑
i=1

h(1) (Xi)

∣∣∣∣∣
= E

∣∣∣∣∣ 1

2n
3
2σU

n∑
i=1

h (Xi, Xi) +
1

n
3
2σU

∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣

≤ E | h (X1, X1) |
2n

1
2σU

+
1

n
3
2σU

E

∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣ .
Furthermore, combining Proposition 4.2.1 and an inequality proved in Lemma 4.4.5 we

have that

κ1

(
n

1
2Vn
2σU

,
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi)

)
≤ E | h (X1, X1) |

2n
1
2σU

+
1

n
3
2σU

E ∣∣∣∣∣ ∑
1≤i<j≤n

h(2) (Xi, Xj)

∣∣∣∣∣
2
 1

2

<
E | h (X1, X1) |

2n
1
2σU

+
1

n
3
2σU

[ ∑
1≤i<j≤n

E
∣∣h(2) (Xi, Xj)

∣∣2] 1
2

<
E | h (X1, X1) |

2n
1
2σU

+
n− 1

2

σU

[
1

n(n− 1)

∑
1≤i<j≤n

E
∣∣h(2) (Xi, Xj)

∣∣2] 1
2

. �

Theorem 4.4.11. Let {X1, X2, ..., Xn} be a collection of identically distributed station-

ary negatively associated random variables. Let Vn be the von Mises statistic of dimen-

sion two based on the kernel h and the given observations. Let now {X∗
1 , X

∗
2 , ..., X

∗
n}

be independent copies of {X1, X2, ..., Xn} and assume that E(h(X∗
1 , X

∗
2 )) = 0. Further

assume that h is componentwise nondecreasing function, E|h|2+δ < ∞, 0 < δ ≤ 1

and 0 < ε < 1
2
with σ2

U = σ2
1 + 2

∑∞
j=1 σ

2
1j > 0 where σ2

1 = Var[h1 (X1)] and

σ2
1j = cov(h1(X1), h1(X1+j)). We also assume that the degenerate kernels h(1), h(2)

are nondecreasing functions and the function g (x, y, z) = h(2) (x, y)h(2) (x, z) is super-

modular. Then

ζ2

(
n

1
2Vn
2σU

, Y

)
≤ nε− 1

2
E | h (X1, X1) |

2σU
+
nε− 1

2

σU

[
1

n(n− 1)

∑
1≤i<j≤n

E
[
h(2) (Xi, Xj)

]2] 1
2
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+ n−εδ(n− 1)−
2+δ
2 n

2+δ
2

31+δ

(2σU)2+δ
C2+δ

2

n(n− 1)

∑
1≤i<j≤n

E |h (Xi, Xj)|2+δ

+ n−2−δ(ε+1) C2+δ

(2σU)2+δ

1

n

n∑
i=1

E |h (Xi, Xi)|2+δ

+ n−εδ

(
n− 1

n

)2+δ
C2+δ

σ2+δ
U

1

n

n∑
i=1

E|h(1) (Xi) |2+δ

+
ak
k

[
E
(
h(1) (X1)

)2 − σ2
U

]
− 2

(
1− ak

k

)
u (ak) + c

ρk + 1

m
1
2

,

for some constant c > 0, where Y is a standard normal random variable, {ak} is any

sequence of positive integers such that ak ≤ k, ak → ∞, ak
k

→ 0 as k → ∞, ρk :=

E
∣∣∣k− 1

2

∑k
i=1 h

(1) (Xi)
∣∣∣3 and u(i) :=∑∞

j=i+1E
(
h(1) (X1)h

(1) (Xj)
)
→ 0 as i→ ∞, C2+δ

is a positive constant depending only on δ.

Proof. Using the triangular inequality and Proposition 4.3.1 we have that

ζ2

(
n

1
2Vn
2σU

, Y

)
≤ ζ2

(
n

1
2Vn
2σU

,
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi)

)
+ ζ2

(
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi) , Y

)

≤ 1

2
κ2

(
n

1
2Vn
2σU

,
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi)

)
+ ζ2

(
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi) , Y

)
,

and furthermore applying Proposition 4.3.2 with N = nε, where 0 < ε < δ
2
, we have

that

ζ2

(
n

1
2Vn
2σU

, Y

)
≤ nεκ1

(
n

1
2Vn
2σU

,
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi)

)

+ n−εδ

E ∣∣∣∣∣n
1
2Vn
2σU

∣∣∣∣∣
2+δ

+ E

∣∣∣∣∣n− 1

n
3
2σU

n∑
i=1

h(1) (Xi)

∣∣∣∣∣
2+δ


+ ζ2

(
n− 1

n
3
2σU

n∑
i=1

h(1) (Xi) , Y

)
.

Finally combining Proposition 1.2.9 and Lemmas 4.4.3, 2.1.7, 4.4.10 and we have that

ζ2

(
n

1
2Vn
2σU

, Y

)
≤ nε− 1

2
E | h (X1, X1) |

2σU
+
n− 1

2

σU

[
1

n(n− 1)

∑
1≤i<j≤n

E
∣∣h(2) (Xi, Xj)

∣∣2] 1
2
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+ n−εδ(n− 1)−
2+δ
2 n

2+δ
2

31+δ

(2σU)2+δ
C2+δ

2

n(n− 1)

∑
1≤i<j≤n

E |h (Xi, Xj)|2+δ

+ n−2−δ(ε+1) C2+δ

(2σU)2+δ

1

n

n∑
i=1

E |h (Xi, Xi)|2+δ

+ n−εδ

(
n− 1

n

)2+δ
C2+δ

σ2+δ
U

1

n

n∑
i=1

E|h(1) (Xi) |2+δ

+
ak
k

[
E
(
h(1) (X1)

)2 − σ2
U

]
− 2

(
1− ak

k

)
u (ak) + c

ρk + 1

m
1
2

,

for some constant c > 0, where Y is a standard normal random variable, {ak} is

any sequence of positive integers such that ak ≤ k, ak → ∞, ak
k

→ 0 as k → ∞,

ρk := E
∣∣∣k− 1

2

∑k
i=1 h

(1) (Xi)
∣∣∣3 and u(i) :=∑∞

j=i+1E
(
h(1) (X1)h

(1) (Xj)
)
→ 0 as i→ ∞,

C2+δ is a positive constant depending only on δ. �

Corollary 4.4.12. If E
∣∣∑∞

i=1 h
(1) (Xi)

∣∣3 < ∞, under the assumptions of Theorem

4.4.11,

ζ2

(
n

1
2Vn
2σU

, Y

)
→ 0 as n→ ∞.

Proof. Follows easily from Theorem 4.4.11. �

Remark 4.4.13. Note that the previous result, Theorem 4.4.11, is still valid for V-

statistics based on a kernel h of bounded variation, with degenerate kernels h1, h2 of

bounded variation also, because of the fact that a function of bounded variation can be

expressed as the difference of two nondecreasing functions.

4.4.3 Statistical Applications

Estimators of mean and variance

Let {X1, X2, ..., Xn} be a collection of identically negatively associated random

variables from the distribution F with E(X1) = µ and V ar(X1) = σ2. Suppose that

we want to estimate the parameters µ and σ2. Consider the estimations of θ1 = µ and

θ2 = σ2. We obtain the following U-statistics respectively,

θ̂1 =
1

n

n∑
i=1

Xi,

θ̂2 =
2

n(n− 1)

∑
1≤i<j≤n

(Xi −Xj)
2

2
=

2

n

n∑
i=1

h(1) (Xi) +

(
n

2

)−1 ∑
1≤i1<i2≤n

h(2) (Xi1 , Xi2) ,
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where

h(1)(x1) =
1

2
x21 − µx1 +

1

2
(µ2 − σ2),

h(2)(x1, x2) = µ(x1 + x2)− x1x2 − µ2.

Note that the kernels h, h(1) and h(2) are functions of bounded variation.

Suppose now, that we have a large sample size and we want to construct asymptotic

confidence intervals or to perform hypothesis tests for θ1. Applying Corollary 4.4.7, we

get that
√
n
(
θ̂1 − θ1

)
√
θ̂2

d→ N (0, 1) .

The (1− a)% asymptotic confidence interval for θ1 is given by

θ̂1 ± za
2

√
θ̂2
n
,

and for the test statistic to perform hypothesis tests we have that

√
n
(
θ̂1 − θ1

)
√
θ̂2

d→ N (0, 1) .

Wilcoxon’s one sample rank statistic

Recall Wilcoxon’s one sample test, which is used to test if a distribution F is

symmetric about zero. Let ϑ = P (X1 + X2 > 0). Using the kernel h(x1, x2) =

I{x1+x2>0}, we obtain the following U-statistic:

ϑ̂ =
2

n(n− 1)

∑
1≤i<j≤n

I{Xi+Xj>0}

which is known as the one-sample Wilcoxon statistic. The Hoeffding-decomposition

for ϑ̂ is based on kernels

h(x1, x2) = I{x1+x2>0},

h1(x1) = E[I{x1+X2>0}] = 1− P (X1 ≤ −x1),

h(1)(x1) = 1− P (X1 ≤ −x1)− ϑ,

h(2) (x1, x2) = h (x1, x2)− h1 (x1)− h1 (x2) + ϑ.
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Note that the kernels h, h(1) and h(2) are functions of bounded variation.

Suppose that we have a large sample size. Applying Corollary 4.4.7 we construct

asymptotic confidence intervals and we have the asymptotic distribution to perform

hypothesis tests for parameter ϑ.
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Chapter 5

Jackknifing U-statistics based on

associated and negatively

associated random variables

In Chapter 5 we apply the jackknife technique on U-statistics based on associated

and negatively associated random variables. The jackknife technique is a useful method

of variance estimation. Chapter 5 is organized in two sections. In Section 5.1 we jack-

knife U-statistics based on associated random variables and in Section 5.2 we jackknife

U-statistics based on negatively associated random variables.

5.1 Jackknifing U-statistics based on associated ran-

dom variables

5.1.1 The jackknife estimate of variance for U-statistics

We consider the jackknife pseudovalues for U-statistics by Tukey

Ûi = nUn − (n− 1)Un(−i) for i = 1, 2, ..., n,

where Un(−i) is the U-statistic computed on the sample of n−1 variables formed from

the original data set by deleting the ith data value. Then the jackknife estimate is the

average

Ûn =
1

n

n∑
i=1

Ûi,
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and the jackknife estimate of the variance is given by

V̂ ar(JACK) =
n− 1

n

n∑
i=1

[Un(−i)− Un]
2.

Now, using the Hoeffding decomposition we get that

Un(−i) = θ + 2H(1)
n (−i) +H(2)

n (−i)

where

H(1)
n (−i) = 1

n− 1

n∑
k=1
k ̸=i

h(1) (Xk) and H(2)
n (−i) =

(
n− 1

2

)−1 ∑
1≤s<t≤n

s,t ̸=i

h(2) (Xs, Xt) .

Applying the H-decomposition we rewrite the jackknife estimate of variance as

V̂ ar(JACK) =
n− 1

n

n∑
i=1

[
2(H(1)

n (−i)−H(1)
n ) + (H(2)

n (−i)−H(2)
n )

]2

=
n− 1

n

{
4

n∑
i=1

[
H(1)

n (−i)−H(1)
n

]2

+
n∑

i=1

[
H(2)

n (−i)−H(2)
n

]2

+ 4
n∑

i=1

[H(1)
n (−i)−H(1)

n ][H(2)
n (−i)−H(2)

n ]

}
.

5.1.2 The bias of the jackknife estimate of the variance

Below we present some various results that are connected with associated random

variables and with U-statistics based on this type of random variables that are needed

for our exposition.

Lemma 5.1.1. (Dewan and Prakasa Rao (2002)). Let {Xn, n ≥ 1} be a sequence of

stationary associated random variables. Let σ2
U = σ2

1 + 2
∑∞

j=1 σ
2
1j > 0 where σ2

1 =

Var[h1 (X1)] and σ
2
1j = cov(h1(X1), h1(X1+j)). Assume that

∞∑
j=1

σ2
1j <∞.

Further suppose that for some non-negative function r(k) satisfying
∑∞

k=0 r(k) < ∞,
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we have for all (i, j, k, l)

|∆(i, j, k, l)| ≤ r(max[|i− k|, |j − l|]),

where

∆(i, j, k, l) = Cov(h(2) (Xi, Xj) , h
(2) (Xk, Xl)).

Then

Var (Un) =
4σ2

U

n
+ o

(
1

n

)
.

Proof. See the proof of Theorem 3.1 in Dewan and Prakasa Rao (2002). �

Lemma 5.1.2. Suppose that all conditions of Lemma 5.1.1 are satisfied. Then

Var(H(1)
n ) =

1

n

(
σ2
1 + 2

∞∑
j=1

σ2
1j

)
+ o

(
1

n

)
,

Var(H(2)
n ) = o

(
1

n

)
,

|Cov(H(1)
n , H(2)

n )| ≤ o

(
1

n

)
.

Proof. See the proof of Theorem 3.1 from Dewan and Prakasa Rao (2002). �

Lemma 5.1.3. Let {X1, X2, ..., Xn} be a collection of identically distributed stationary

associated random variables. Let Un be a U-statistic based on a symmetric kernel h(x, y)

of degree 2. Suppose that the conditions of Lemma 5.1.1 hold. Then

√
n(Un − θ)

D−→ N(0, 4σ2
U) as n→ ∞,

where θ =
∫ +∞
−∞

∫ +∞
−∞ h(x, y)dF (x)dF (y).

Proof. See the proof of Theorem 3.2 in Dewan and Prakasa Rao (2002). �

The next three Lemmas 5.1.4, 5.1.5, 5.1.6, give a simplified expression of V̂ ar(JACK)

which is crucial to exploit the bias of the jackknife estimate of the variance.

Lemma 5.1.4. Considering the kernels H
(1)
n (−i) and H(1)

n we get that

4
n∑

i=1

[
H(1)

n (−i)−H(1)
n )
]2

=
4

(n− 1)2

[
n∑

i=1

[h(1) (Xi)]
2 − n(H(1)

n )2

]
.
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Proof. First we calculate the difference H
(1)
n (−i)−H

(1)
n ,

H(1)
n (−i)−H(1)

n =
1

n− 1

n∑
k=1
k ̸=i

h(1) (Xk)−
1

n

n∑
k=1

h(1) (Xk)

=
1

n(n− 1)

[
n

n∑
k=1
k ̸=i

h(1) (Xk)− (n− 1)
n∑

k=1

h(1) (Xk)

]

=
1

n(n− 1)

[
n∑

k=1

h(1) (Xk)− nh(1) (Xi)

]

=
1

(n− 1)

[
H(1)

n − h(1) (Xi)
]
.

Using the previous result we arrive at

4
n∑

i=1

[
H(1)

n (−i)−H(1)
n )
]2

=
4

(n− 1)2

n∑
i=1

[
H(1)

n − h(1) (Xi)
]2

=
4

(n− 1)2

[
n(H(1)

n )2 − 2n(H(1)
n )2 +

n∑
i=1

[h(1) (Xi)]
2

]

=
4

(n− 1)2

[
n∑

i=1

[h(1) (Xi)]
2 − n(H(1)

n )2

]
. �

Lemma 5.1.5. Considering the kernels H
(2)
n (−i) and H(2)

n it follows that

n∑
i=1

[
H(2)

n (−i)−H(2)
n

]2
=

4

(n− 1)2(n− 2)2

{
2
∑

1≤i<j≤n

(
h(2) (Xi, Xj)

)2

+ 2
n∑

i=1

∑
1≤s<t≤n

s,t ̸=i

h(2) (Xi, Xs)h
(2) (Xi, Xt)− n(n− 1)2(H(2)

n )2

}
.

Proof. Starting with the difference H
(2)
n (−i)−H

(2)
n , we have that

H(2)
n (−i)−H(2)

n =

(
n− 1

2

)−1 ∑
1≤s<t≤n

s,t ̸=i

h(2) (Xs, Xt)−
(
n

2

)−1 ∑
1≤s<t≤n

h(2) (Xs, Xt)

=
2

n(n− 1)(n− 2)

[
n
∑

1≤s<t≤n
s,t ̸=i

h(2) (Xs, Xt)− (n− 2)
∑

1≤s<t≤n

h(2) (Xs, Xt)

]
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=
2

n(n− 1)(n− 2)

[
2

(
n

2

)
H(2)

n − n

n∑
k=1
k ̸=i

h(2) (Xi, Xk)

]

=
2

(n− 1)(n− 2)

[
(n− 1)H(2)

n −
n∑

k=1
k ̸=i

h(2) (Xi, Xk)

]
.

Using the previous result we can write

n∑
i=1

[
H(2)

n (−i)−H(2)
n

]2
=

4

(n− 1)2(n− 2)2

n∑
i=1

[
(n− 1)H(2)

n −
n∑

k=1
k ̸=i

h(2) (Xi, Xk)

]2

=
4

(n− 1)2(n− 2)2

{
n(n− 1)2(H(2)

n )2 − 2(n− 1)H(2)
n

n∑
i=1

n∑
k=1
k ̸=i

h(2) (Xi, Xk)

+
n∑

i=1

( n∑
k=1
k ̸=i

h(2) (Xi, Xk)

)2
}

=
4

(n− 1)2(n− 2)2

{
n(n− 1)2(H(2)

n )2 − 2(n− 1)H(2)
n 2

(
n

2

)
H(2)

n + 2
∑

1≤i<j≤n

(
h(2) (Xi, Xj)

)2

+ 2
n∑

i=1

∑
1≤s<t≤n

s,t ̸=i

h(2) (Xi, Xs)h
(2) (Xi, Xt)

}

=
4

(n− 1)2(n− 2)2

{
2
∑

1≤i<j≤n

(
h(2) (Xi, Xj)

)2

+ 2
n∑

i=1

∑
1≤s<t≤n

s,t ̸=i

h(2) (Xi, Xs)h
(2) (Xi, Xt)

− n(n− 1)2(H(2)
n )2

}
. �

Lemma 5.1.6. Considering the kernels H
(j)
n (−i) and H(j)

n with j = 1, 2 it follows that

4
n∑

i=1

[H(1)
n (−i)−H(1)

n ][H(2)
n (−i)−H(2)

n ]

=
8

(n− 1)2(n− 2)


n∑

i=1

n∑
k=1
k ̸=i

h(1) (Xi)h
(2) (Xi, Xk)− n(n− 1)H(1)

n H(2)
n

 .

Proof. The multiplication of the differences H
(1)
n (−i)−H(1)

n and H
(2)
n (−i)−H(2)

n gives
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that

[H(1)
n (−i)−H(1)

n ][H(2)
n (−i)−H(2)

n ] =

=
1

(n− 1)

[
H(1)

n − h(1) (Xi)
] 2

(n− 1)(n− 2)

[
(n− 1)H(2)

n −
n∑

k=1
k ̸=i

h(2) (Xi, Xk)

]

=
2

(n− 1)2(n− 2)

{
(n− 1)H(1)

n H(2)
n −H(1)

n

n∑
k=1
k ̸=i

h(2) (Xi, Xk)− (n− 1)h(1) (Xi)H
(2)
n

+ h(1) (Xi)
n∑

k=1
k ̸=i

h(2) (Xi, Xk)

}
.

Hence, from the previous calculations we have that

4
n∑

i=1

[H(1)
n (−i)−H(1)

n ][H(2)
n (−i)−H(2)

n ] =

=
8

(n− 1)2(n− 2)

{
n(n− 1)H(1)

n H(2)
n −H(1)

n 2

(
n

2

)
H(2)

n − n(n− 1)H(1)
n H(2)

n

+
n∑

i=1

[
h(1) (Xi)

n∑
k=1
k ̸=i

h(2) (Xi, Xk)

]}

=
8

(n− 1)2(n− 2)


n∑

i=1

n∑
k=1
k ̸=i

h(1) (Xi)h
(2) (Xi, Xk)− n(n− 1)H(1)

n H(2)
n

 . �

The following Lemma 5.1.7 gives the simplified expression of V̂ ar(JACK).

Lemma 5.1.7. The jackknife estimator of variance, V̂ ar(JACK) can be expressed as

V̂ ar(JACK) =
4

(n− 1)2

[
n∑

i=1

[h(1) (Xi)]
2 − n(H(1)

n )2

]

+
4

(n− 1)2(n− 2)2

{
2
∑

1≤i<j≤n

(
h(2) (Xi, Xj)

)2

+

2
n∑

i=1

∑
1≤s<t≤n

s,t ̸=i

h(2) (Xi, Xs)h
(2) (Xi, Xt)− n(n− 1)2(H(2)

n )2

}
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+
8

(n− 1)2(n− 2)


n∑

i=1

n∑
k=1
k ̸=i

h(1) (Xi)h
(2) (Xi, Xk)− n(n− 1)H(1)

n H(2)
n

 .

Proof. Apply Lemmas 5.1.4, 5.1.5, 5.1.6. �

Lemma 5.1.8. The expectation of V̂ ar(JACK) is given by

E[V̂ ar(JACK)] =
4

(n− 1)2

[
n∑

i=1

E[h(1) (Xi)]
2 − nE(H(1)

n )2

]

+
4

(n− 1)2(n− 2)2

{
2
∑

1≤i<j≤n

E

(
h(2) (Xi, Xj)

)2

+

2
n∑

i=1

∑
1≤s<t≤n

s,t ̸=i

E[h(2) (Xi, Xs)h
(2) (Xi, Xt)]− n(n− 1)2E(H(2)

n )2

}

+
8

(n− 1)2(n− 2)


n∑

i=1

n∑
k=1
k ̸=i

E[h(1) (Xi)h
(2) (Xi, Xk)]− n(n− 1)E[H(1)

n H(2)
n ]

 .

Proof. Using Lemma 5.1.7 we easily get the result. �

Theorem 5.1.9. Let {X1, X2, ..., Xn} be a collection of identically distributed station-

ary associated random variables. Let Un be the U-statistic of dimension two based

on the kernel h and the given observations. Assume that h is a real valued function

symmetric in its arguments with E(h) = 0. Define σ2
U = σ2

1 + 2
∑∞

j=1 σ
2
1j > 0 where

σ2
1 = Var[h1 (X1)] and σ

2
1j = cov(h1(X1), h1(X1+j)). Under the assumptions of Lemma

5.1.1 and furthermore let E[h(1) (Xi)]
2 ≤ C1 <∞ for all 1 ≤ i ≤ n, E[h(2) (Xi, Xj)]

2 ≤

C2 < ∞ for all 1 ≤ i < j ≤ n, E[h(2) (Xi, Xs)h
(2) (Xi, Xt)] ≤ C3 < ∞ for all

1 ≤ i ≤ n and 1 ≤ s < t ≤ n with s, t ̸= i and E
[
h(1) (Xi)h

(2) (Xi, Xk)
]
≤ C4 <∞ for

all 1 ≤ i ≤ n, 1 ≤ k ≤ n with k ̸= i, we have that

E[V̂ ar(JACK)] → 0 as n→ ∞,

where C1, C2, C3, C4 are positive constants.

Proof. Applying Lemmas 5.1.1, 5.1.2 and 5.1.8 we get the result. �

105

Cha
ral

am
bo

s C
ha

ral
am

bo
us



Chapter 5 Section 5.1

Corollary 5.1.10. Under the assumptions of Theorem 5.1.9 we have that

BIAS(JACK) = E[V̂ ar(JACK)]− V ar(Un) → 0 as n→ ∞.

Proof. Applying Theorem 5.1.9 and Lemma 5.1.1 we get the result. �

Remark 5.1.11. Note that E[V̂ ar(JACK)] and BIAS(JACK) are of order n−1.

5.1.3 Jackknifing functions of U-statistics

Let θ be an unknown parameter and g be a real valued function. Consider using

the function g(Un) of Un to estimate g(θ). The jackknife estimate of g(θ) is given by

ĝ(Un) =
1

n

n∑
i=1

ĝ(Ui),

where

ĝ(Ui) = ng(Un)− (n− 1)g(Un(−i)) for i = 1, 2, ..., n, (5.1.1)

are the jackknife pseudovalues for functions of U-statistics by Tukey. The estimate of

V ar[g(Un)] is

V̂ ar(JACK) =
n− 1

n

n∑
i=1

[g(Un(−i))− g(Un)]
2 .

Before we establish the theorem of jackknifing functions of U-statistics, we present

some useful results.

Lemma 5.1.12. (Taylor’s Theorem) Let g be an (n+ 1) times differentiable function

on an open interval containing the points a and x. Then

g(x) = g(a) + g′(a)(x− a) +
g′′(a)

2!
(x− a)2 + · · ·+ g(n)(a)

n!
(x− a)n +Rn(x)

where

Rn(x) =
g(n+1)(c)

(n+ 1)!
(x− a)n+1

for some number c between a and x.
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Lemma 5.1.13. Let Xn
p−→ θ and

√
n(Xn − θ)

D−→ N(0, σ2). Suppose that a function g

has a continuous derivative in (θ − ε, θ + ε), with ε > 0 and g′(θ) ̸= 0. Then

√
n(g(Xn)− g(θ))

D−→ N

(
0,

σ2

[g′(θ)]2

)
.

We now obtain the theorem of jackknifing functions of U-statistics.

Theorem 5.1.14. Suppose that the conditions of Lemma 5.1.3 hold. Let g the function

have a bounded second derivative in a neighborhood of θ. Then

√
n(ĝ(Un)− g(θ))

D−→ N

(
0,

4σ2
U

[g′(θ)]2

)

provided that g′(θ) ̸= 0.

Proof. The function g has a bounded second derivative in a neighborhood of Un.

Applying Taylor’s Theorem we may expand g about Un and obtain

g(Un(−i)) = g(Un) + g′(Un)(Un(−i)− Un) +
g′′(ξi)

2!
(Un(−i)− Un)

2

where ξi lies between Un(−i) and Un. Summing both side and dividing by n we have

that

1

n

n∑
i=1

g(Un(−i)) = g(Un) +
1

2n

n∑
i=1

(Un(−i)− Un)
2g′′(ξi) (5.1.2)

according to the relation Un = 1
n

∑n
i=1 Un(−i).

Also summing both sides and dividing by n in (5.1.1), we have that

1

n

n∑
i=1

g(Un(−i)) =
ng(Un)− ĝ(Un)

n− 1
. (5.1.3)

Combining (5.1.2) and (5.1.3) we get

ĝ(Un) = g(Un)−
n− 1

2n

n∑
i=1

(Un(−i)− Un)
2g′′(ξi),

and so

√
n(ĝ(Un)− g(θ)) =

√
n(g(Un)− g(θ))−

√
n

2

n− 1

n

n∑
i=1

(Un(−i)− Un)
2g′′(ξi). (5.1.4)
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Since the second derivative of g is assumed to be bounded in a neighborhood of θ,

combining Lemmas 5.1.3 and 5.1.13 the first term on the right hand side of (5.1.4)

converges in distribution to N
(
0,

4σ2
U

[g′(θ)]2

)
. According to Slutsky’s theorem we need to

prove that

−
√
n

2

n− 1

n

n∑
i=1

(Un(−i)− Un)
2g′′(ξi)

p→ 0 (5.1.5)

to have the result. Since Un(−i) and Un are consistent estimators of θ, it suffices to

show that
√
n V̂ ar(JACK)

D−→ 0 which is obviously applying from Lemma 5.1.7. �

5.2 Jackknifing U-statistics based on negatively as-

sociated random variables

Consider an orthonormal basis {ek(x), k ≥ 0} with respect to the measure dF (x),

with e0(x) = 1, such that

h(x, y) =
∞∑
k=0

λkek(x)ek(y).

Then

∫ +∞

−∞
ek(x)h(x, y)dF (x) = λkek(y). (5.2.1)

Definition 5.2.1. The U-statistic Un and its kernel h are called degenerate if

∫ +∞

−∞
h(x, y)dF (y) = 0

for all x.

Lemma 5.2.2. (Huang and Zhang (2006)). Let {X1, X2, ..., Xn} be a collection of

identically distributed stationary negatively associated random variables with E(X1) =

0. Let Un be a degenerate U-statistic where the kernel h satisfies

∫ +∞

−∞
h(x, y)dF (x)dF (y) <∞.

Assume that the eigenfunctions ek(x) given by (5.2.1) are functions with bounded vari-
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ation on any finite interval. Furthermore, assume that

supk>1E
[
V 2
ek
(X1)

]
<∞

and
∞∑
i=1

|λk| <∞.

Then
√
n(Un − E(Un))

D−→ N(0, σ2) as n→ ∞,

where

σ2 = V ar(φ(X1)) + 2
∞∑
j=2

Cov(φ(Xi), φ(Xj))

and

φ(x) =

∫ +∞

−∞
h(x, y)dF (y),

provided φ(.) is a function with bounded variation on any finite interval, which sat-

isfies E
[
V 2
φ (X1)

]
< ∞, where Vφ(x) is the total variation function of φ(x), i.e,

Vφ(x) = V x
0 (φ) for x ≥ 0, Vφ(x) = −V 0

x (φ) for x ≤ 0, where

V b
a (φ) = sup

n∑
k=1

|φ (xk)− φ (xk−1)|

denotes the total variation of φ(x) on [a, b]. The supremum is taken over all partitions

of the interval [a, b].

Proof. See the proof of Theorem 2 from Huang and Zhang (2006). �

Corollary 5.2.3. Suppose, the conditions of Lemma 5.2.2 hold. Then

Var (Un) =
4σ2

n
as n→ ∞.

Lemma 5.2.4. The jackknife estimator of variance, V̂ ar(JACK) can be expressed as

V̂ ar(JACK) =
4

(n− 1)2

[
n∑

i=1

[h(1) (Xi)]
2 − n(H(1)

n )2

]
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+
4

(n− 1)2(n− 2)2

{
2
∑

1≤i<j≤n

(
h(2) (Xi, Xj)

)2

+

2
n∑

i=1

∑
1≤s<t≤n

s,t ̸=i

h(2) (Xi, Xs)h
(2) (Xi, Xt)− n(n− 1)2(H(2)

n )2

}

+
8

(n− 1)2(n− 2)


n∑

i=1

n∑
k=1
k ̸=i

h(1) (Xi)h
(2) (Xi, Xk)− n(n− 1)H(1)

n H(2)
n

 .

Proof. Same as Lemma 5.1.7. �

Lemma 5.2.5. The expectation of V̂ ar(JACK) is given by

E[V̂ ar(JACK)] =
4

(n− 1)2

[
n∑

i=1

E[h(1) (Xi)]
2 − nE(H(1)

n )2

]

+
4

(n− 1)2(n− 2)2

{
2
∑

1≤i<j≤n

E

(
h(2) (Xi, Xj)

)2

+

2
n∑

i=1

∑
1≤s<t≤n

s,t ̸=i

E[h(2) (Xi, Xs)h
(2) (Xi, Xt)]− n(n− 1)2E(H(2)

n )2

}

+
8

(n− 1)2(n− 2)


n∑

i=1

n∑
k=1
k ̸=i

E[h(1) (Xi)h
(2) (Xi, Xk)]− n(n− 1)E[H(1)

n H(2)
n ]

 .

Proof. Same as Lemma 5.1.8. �

Theorem 5.2.6. Let {X1, X2, ..., Xn} be a collection of identically distributed station-

ary negatively associated random variables. Under the assumptions of Lemma 5.2.2 and

furthermore let E[h(1) (Xi)]
2 ≤ C1 < ∞ for all 1 ≤ i ≤ n, E[h(2) (Xi, Xj)]

2 ≤ C2 < ∞

for all 1 ≤ i < j ≤ n, E[h(2) (Xi, Xs)h
(2) (Xi, Xt)] ≤ C3 < ∞ for all 1 ≤ i ≤ n and

1 ≤ s < t ≤ n with s, t ̸= i and E
[
h(1) (Xi)h

(2) (Xi, Xk)
]
≤ C4 <∞ for all 1 ≤ i ≤ n,

1 ≤ k ≤ n with k ̸= i, we have that E[h(2) (Xs, Xt)]
2 ≤ C1 < ∞ for all 1 ≤ s < t ≤ n

and E
[
h(1) (Xi)h

(2) (Xi, Xk)
]
≤ C2 < ∞ for all 1 ≤ i ≤ n, 1 ≤ k ≤ n and k ̸= i, we

have that

E[V̂ ar(JACK)] → 0 as n→ ∞ and

BIAS(JACK) = E[V̂ ar(JACK)]− V ar(Un) → 0 as n→ ∞,

where C1, C2, C3, C4 are positive constants.
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Proof. Applying Lemmas 5.2.5 and 5.2.3. �

Remark 5.2.7. Note that E[V̂ ar(JACK)] and BIAS(JACK) are of order n−1.

Theorem 5.2.8. Suppose, the conditions of Lemma 5.2.2 hold. Let g the function

have a bounded second derivative in a neighborhood of θ = E(Un). Then

√
n(ĝ(Un)− g(θ))

D−→ N

(
0,

4σ2
U

[g′(θ)]2

)

provided that g′(θ) ̸= 0.

Proof. The function g has a bounded second derivative in a neighborhood of Un.

Applying Taylor’s Theorem we may expand g about Un and obtain

g(Un(−i)) = g(Un) + g′(Un)(Un(−i)− Un) +
g′′(ξi)

2!
(Un(−i)− Un)

2

where ξi lies between Un(−i) and Un. Summing both side and dividing by n we have

that

1

n

n∑
i=1

g(Un(−i)) = g(Un) +
1

2n

n∑
i=1

(Un(−i)− Un)
2g′′(ξi) (5.2.2)

according to the relation Un = 1
n

∑n
i=1 Un(−i).

Also summing both sides and dividing by n in (5.1.1), we have that

1

n

n∑
i=1

g(Un(−i)) =
ng(Un)− ĝ(Un)

n− 1
. (5.2.3)

Combining (5.2.2) and (5.2.3) we get

ĝ(Un) = g(Un)−
n− 1

2n

n∑
i=1

(Un(−i)− Un)
2g′′(ξi),

and so

√
n(ĝ(Un)− g(θ)) =

√
n(g(Un)− g(θ))−

√
n

2

n− 1

n

n∑
i=1

(Un(−i)− Un)
2g′′(ξi). (5.2.4)

Since the second derivative of g is assumed to be bounded in a neighborhood of θ,

combining Lemmas 5.2.2 and 5.1.13 the first term on the right hand side of (5.2.4)
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converges in distribution to N
(
0,

4σ2
U

[g′(θ)]2

)
. According to Slutsky’s theorem we need to

prove that

−
√
n

2

n− 1

n

n∑
i=1

(Un(−i)− Un)
2g′′(ξi)

p→ 0 (5.2.5)

to have the result. Since Un(−i) and Un are consistent estimators of θ, it suffices to

show that
√
n V̂ ar(JACK)

D−→ 0 which is obviously applying from Lemma 5.2.4. �
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Chapter 6

Future work

In this dissertation we studied the asymptotic behavior of U-statistics based on

associated and negatively associated random variables. However in no way we have

exhausted all possible directions of researching the specific asymptotic behavior. Some

results that are presented in the thesis can be extended or can be a starting point for

further research. In what follows we briefly describe some directions for future work.

6.1 Distance between a U-statistics based on asso-

ciated random variables and a normal random

variables

In this thesis we studied asymptotic results for U-statistics using the Zolotarev’s

ideal metric. In particular, we gave the distance between a U-statistic Un based on

associated random variables and a U-statistic U∗
n based on i.i.d. random variables.

We obtained the distance between a U-statistic based on i.i.d. random variables and

a normal random variable. The same result also established for U-statistics based

on negatively associated random variables. In future work our goal is to obtain the

distance between a U-statistic based on associated random variables and a normal

random variable by utilizing the Zolotarev’s ideal metric. This result will also provide

a central limit theorem for this type of U-statistics. Corresponding results for V-

statistics could also be a topic of investigation. For this aim existing results for partial

sums of associated sequence will be very useful. It is also expected that results proved

for the classical setup (i.e. for iid observations) which are not applicable for the case of
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associated observations will be modified or replaced altogether by results on associated

random variables.

6.2 U-statistics based on F-associated random vari-

ables

The type of dependence that we study in this thesis is association and negative

association. Below we give the definition of an alternative concept of dependence

called conditional association. The concept of condition association was introduced in

Prakasa Rao (2009).

Definition 6.2.1. Let X and Y be random variables defined on a probability space

(Ω,A,P) with E(X2) < ∞ and E(Y 2) < ∞. Let F be a sub-σ-algebra of A. We

define the conditional covariance of X and Y given F or F-covariance as

CovF(X,Y ) = EF [(X − EFX)
(
Y − EFY

)]
,

where EF(X) = E(X|F), (cf. Prakasa Rao (2009)). It is easy to see that the F-

covariance reduces to the ordinary concept of covariance when F = {∅,Ω}. A set of

random variables {Xk, 1 ≤ k ≤ n} is said to be F-associated if for any componentwise

nondegreasing functions h, g defined on Rn,

CovF(h(X1, ..., Xn), g(X1, ..., Xn)) ≥ 0 a.s.

Remark 6.2.2. A sequence of random variables {Xn, n ≥ 1} is said to be F-associated

if every finite subset of the sequences {Xn, n ≥ 1} is F-associated.

A relative concept is the concept of conditional demimartingales. Hadjikyriakou

(2010) introduced the notion of conditional demimartingales and studied their proper-

ties.

Definition 6.2.3. Let {Sn, n ≥ 1} be a sequence of random variables defined on a

probability space (Ω,A,P). Let F be a sub-σ-algebra of A. The sequence {Sn, n ≥ 1}

is called an F-demimartingale if for every componentwise nondecreasing function
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f : Rj → R,

E {(Sj − Si) f (S1, S2, ..., Si)|F)} ≥ 0, 1 ≤ i < j <∞.

If moreover, f is assumed to be nonnegative, then the sequence {Sn}n≥1 is called an

F-demisubmartingale.

Remark 6.2.4. From the property of conditional expectations that E(E(Z|F )) = E(Z)

for any random variable Z with E|Z| < ∞, it follows that any F-demimartingale

defined on a probability space (Ω,A,P) is a demimartingale on the probability space

(Ω,A,P) and any F-demisubmartingale defined on the probability space (Ω,A,P) is a

demisubmartingale on the probability space (Ω,A,P). The converse cannot always be

true due to Example 2.5.5 from Hadjikyriakou (2010).

Moreover we present a trivial example of an F -demimartingale sequence.

Example 6.2.5. Let {Xn, n ≥ 1} be a sequence of F-associated random variables such

that EF(Xn) = 0 a.s., n ≥ 1. Let

Sn =
n∑

i=1

Xi, n ≥ 1.

Then it is easy to check that the sequence {Sn}n≥1 is an F-demimartingale.

In what follows we obtain the definition of U-statistics based on F -associated ran-

dom variables.

Definition 6.2.6. Let {X1, X2, ..., Xn} be a collection of identically distributed F-

associated random variables. Assume that m is a positive integer m ≤ n and h is a

symmetric mapping from Rm to R. Then

UF
n =

(
n

m

)−1 ∑
1≤i1<i2<···<im≤n

h (Xi1 , Xi2 , ..., Xim)

where
∑

1≤i1<i2<···<im≤n denotes summation over all
(
n
m

)
combinations of the m distinct

elements {i1, i2, ..., im} from {1, ..., n}, is called a U-statistic based on F-associated

random variables.

Hadjikyriakou (2010) established a strong law of large numbers forF -demimartingales.

An interesting extension is to focus on the connection between U-statistics based on
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Chapter 6 Section 6.3

F -associated random variables and F -demimartingales and provide strong laws for this

type of U-statistics. One can also introduce U-statistics based on F -associated mul-

tidimensionally indexed random variables and multisample U-statistics on collections

of F -associated random variables. One can turn his/her attention on their connection

with multidimensionally indexed F -demimartingales, and could establish strong laws

for also those types of U-statistics. Based on the results presented in the thesis, one can

also study the distance between a U-statistic based on F -associated random variables

and a normal random variable using probability metrics. That result will be useful to

provide central limit theorems for this type of U-statistics.

6.3 U-statistics based on m-negatively associated

random variables

The concept of m-negatively associated random variables are natural extensions

from negatively associated random variables. Motivated by the definition of negatively

associated random variables, Hu et al. (2009) introduced the concept of m-negatively

associated random variables as follows.

Definition 6.3.1. Let m ≥ 1 be a fixed integer. A sequence of random variables

{Xn, n ≥ 1} is said to be m-negatively associated if for any n ≥ 2 and any i1, ..., ik

such that |ik − ij| ≥ m for all 1 ≤ k ̸= j ≤ n, Xi1 , ..., Xin are negatively associated.

Note that when m = 1, the concept of m-negatively associated random variables

equals to the concept of negatively associated random variables.

Hu et al. (2009) studied the Kolmogorov exponential inequality for m-negatively

associated random variables. The complete convergence and complete moment conver-

gence for weighted sums of m-negatively associated random variables were proposed by

Wu et al. (2015). The moment inequalities for m-negatively associated random vari-

ables were proved by Shen et al. (2017). Mengge et al. (2019) presented the Spitzer

type law of large numbers for the maximum of partial sums of m-negatively associated

random variables.

Similar properties we used and proved in this thesis for negatively associated ran-

dom variables are still valid for m-negatively associated random variables. For more

details see Shen et al. (2017).
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Chapter 6 Section 6.3

There are no studies in bibliography yet for U-statistics based onm-negatively asso-

ciated random variables. A final possible direction is to study the asymptotic behavior

of U-statistics based on random variables with this alternative type of dependance.

Our goal is to prove useful inequalities such as moment and exponential inequalities

for this type of U-statistics. To study the asymptotic normality, to obtain strong laws

of large numbers and central limit theorems using probability metrics for U-statistics

based on m-negatively associated random variables.
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