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Abstract

English Version

In this thesis, I present the results obtained during the course of the Ph.D. project

Algorithms for Relativistic Lattice Boltzmann, one of the projects created in the

framework of the European network of Joint Doctorates STIMULATE.

The main focus of the project has been the algorithmic refinement and extension

of existent lattice kinetic solvers for the simulation of relativistic hydrodynamics and

their applications in the fields of astrophysics, condensed matter, nuclear physics.

The first achievement reported in the thesis is the generalization of the method to

a generic number of spatial dimensions, particularly instrumental to the correct sim-

ulation of condensed matter systems, which are typically laid out in bidimensional

fashion.

This process involves the proper calibration of transport coefficients indipen-

dently of the spatial dimension, as this is a crucial aspect when trying to reproduce

relativistic fluids with the desired dissipative properties.

Next, I present the benchmarking results obtained by the method in the sim-

ulation of two popular systems in relativistic hydrodynamics, namely the Bjorken

flow and the relativistic Riemann problem, showing that the numerical results are

compatible with both analytic solutions and data from other numerical solvers.

A technique for the extension of the numerical scheme to ballistic regimes is then

discussed. The extension is performed by adopting of product quadrature rules

in the discretization of the radial and angular variables in the momentum space.

Results of improvements in the solution of the Riemann problem in the ballistic

regime are shown.

Lastly, I present a new Lattice Boltzmann inspired kinetic scheme for the sim-

ulation of radiative transfer. This scheme draws from the structural similarities of

the main equation of Radiative Transfer with the Boltzmann equation, and is able to
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correctly reproduce radiation dynamics both in the optically thin and optically thick

limit.
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Italian Version

In questa tesi presento i risultati ottenuti durante il corso del Dottorato ’Algo-

ritmi per Metodi Relativistici di Boltzmann su Reticolo’, uno dei progetti realizzati

nell’ambito del Progetto Europeo Joint Dottorates STIMULATE.

L’obiettivo principale del progetto è stato il perfezionamento algoritmico e l’estensione

degli schemi numerici pre-esistenti su reticolo per la simulazione dell’ idrodinamica

relativistica e la loro applicazione nei campi dell’astrofisica, della Fiica della Materia

Condensata, e della Fisica Nucleare.

Il primo risultato riportato nella tesi è la generalizzazione del metodo ad un

numero generico di dimensioni spaziali, cosa che è strumentale per la corretta sim-

ulazione dei sistemi di materia condensata, che sono tipicamente bidimensionali.

Questo processo comporta la corretta calibrazione dei coefficienti di trasporto

indipendentemente dalla dimensione spaziale, dal momento che questo è un aspetto

cruciale quando si tenta di riprodurre flussi relativistici con le desiderate proprietà

dissipative.

In seguito presento i risultati ottenuti nel benchmarking di due sistemi popolari

in idrodinamica relativistica, vale a dire il flusso di Bjorken e l’iterazione relativistica

del problema di Riemann. In entrambi i casi si mostra che i risultati dello schema

numerico sono compatibili sia con le soluzioni analitiche che con i dati di altri solver

numerici.

Poi, viene discussa una tecnica per l’estensione dello schema numerico ai regimi

balistici. L’estensione si effettua adottando regole di quadratura prodotto tra le

discretizzazioni radiali e angolari nello spazio dei momenti. Viene mostrato un

miglioramento della soluzione del problema di Riemann nel regime balistico.

Infine, presento un nuovo schema cinetico ispirato al metodo Lattice Boltzmann

per la simulazione del trasporto radiativo. Questo schema attinge dalle somiglianze

strutturali dell’equazione principale del trasporto radiativo con l’equazione di Boltz-

mann, ed è capace di riprodurre la dinamica radiativa sia nel regime ottico sottile

che spesso.
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Greek Version

Σε αυτή τη διατριβή παρουσιάζω τα αποτελέσματα που προέκυψαν κατά τη διάρκεια

της διδακτορικής διατριβής μουΑλγοριτημς φορ Ρελατιvιστις Λαττιςε Βολτζμανν, ένα από

τα έργα στα πλαίσια του ευρωπαϊκού δικτύου κοινών διδακτορικών ΣΤΙΜΥΛΑΤΕ.

Ο κύριος στόχος του έργου ήταν η αλγοριθμική βελτίωση και επέκταση των υπαρ-

χόντων κινητικών επιλυτών πλέγματος για την προσομοίωση της σχετικιστικής υδρο-

δυναμικής και οι εφαρμογές τους στα πεδία της αστροφυσικής, συμπυκνωμένης ύλης,

πυρηνικής φυσικής.

Το πρώτο επίτευγμα που αναφέρεται στη διατριβή είναι η γενίκευση της μεθόδου

σε έναν γενικό αριθμό χωρικών διαστάσεων, για τη σωστή προσομοίωση συστημάτων

συμπυκνωμένης ύλης, τα οποία είναι τυπικά διαρρυθμισμένα με διδιάστατο τρόπο.

Αυτή η διαδικασία περιλαμβάνει τη σωστή βαθμονόμηση των συντελεστών μεταφοράς

ανεξάρτητα από τη χωρική διάσταση, καθώς αυτή είναι μια κρίσιμη πτυχή όταν κάποιος

προσπαθεί να αναπαράγει σχετικιστικά υγρά με την επιθυμητή διασκορπιστική ιδιότητα.

Στη συνέχεια, παρουσιάζω τα αποτελέσματα συγκριτικής αξιολόγησης που προέκυψαν

με τη μέθοδο προσομοίωσης δύο δημοφιλών συστημάτων στη σχετικιστική υδροδυναμική,

δηλαδή τη Ροή Βθορκεν και το σχετικιστικό πρόβλημα Ριεμανν, που δείχνει ότι το αριθ-

μητικό αποτέλεσμα είναι συμβατό τόσο με αναλυτικές λύσεις όσο και με δεδομένα άλλων

αριθμητικών λύσεων.

Στη συνέχεια συζητείται μια τεχνική για την επέκταση του αριθμητικού σχήματος

σε βαλλιστικά συστήματα. Η επέκταση πραγματοποιείται με την υιοθέτηση του κανόνα

τετραγωνισμού στη διακριτοποίηση των ακτινικών και γωνιακών μεταβλητών στο χώρο

ορμής. Παρουσιάζονται αποτελέσματα που βελτιώνουν τη λύση του προβλήματος Ριεμανν

στο βαλλιστικό όριο.

Τέλος, παρουσιάζω μια νέα μέθοδο εμπνευσμένη από το Λαττιςε Βολτζμανν για τη

προσομοίωση μεταφοράς ακτινοβολίας. Αυτή η μέθοδος αντλεί από τη διαρθρωτική ομοι-

ότητα της κύριας εξίσωσης της μεταφοράς ακτινοβολίας με τη εξίσωση του Βολτζμανν,

και είναι σε θέση να αναπαράγει σωστά τη δυναμική της ακτινοβολίας τόσο στο οπτικά

λεπτό και οπτικά παχύ όριο.
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Introduction

Relativistic hydrodynamics is concerned with the study of fluids which move at

velocities close to the speed of light, and as such it has been historically developed

to be applied to astrophysical and cosmological contexts [115].

In these frameworks, a non dissipative theory is formulated as the zeroth-order

expansion of relativistic kinetic theory (a treatment of classical kinetic theory of gases

within the language of special relativity), that leads to the development of the so

called Relativistic Euler equations.

In the last years, new applications in fields other than astrophysics and cosmology

(look for example at the dynamic of Quark Gluon Plasma for high energy nuclear

physics [119] and the study of electron flows in graphene for condensed matter

[1]) have made clear the necessity for a solid and structured theory of dissipative

relativistic hydrodynamics, i.e. for a relativistic equivalent of the Navier-Stokes

Equations, on which to build upon for reliable numerical simulations.

In fact, Relativistic Navier-Stokes equations have historically been plagued by

theoretical shortcomings (the presence of second order space derivatives and first

order time derivative implies super-luminal propagation) and show numerical in-

stabilities in simulations. Although multiple steps have been made to overcome

these shortcomings [31,62,64], a definitive flawless theory has yet to be formulated.

An alternative approach to the problem consists in exploiting the dynamic at

the kinetic scale to resolve the evolution at the hydrodynamic scale. The relativistic

Boltzmann equation in fact does not suffer from the same theoretical shortcomings

of the relativistic Navier-Stokes equations, since due to the hyperbolic structure of

kinetic equations the emergence of viscous effects does not break causality.

In the non relativistic scenario, this bottom-up approach can be numerically

achieved via the so called Lattice Boltzmann Methods, that evolve a seminal version

of the Boltzmann equation to get the solution of the Navier-Stokes equations. So
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the extension of Lattice Boltzmann Methods to the relativistic regime (from now on

called Relativistic Lattice Boltzmann Methods, RLBM) appears only natural.

In the past years, there have been several attempts in this direction. In [88, 89]

Mendoza et al. developed a scheme using Grad’s moment matching technique,

while in [118] Romatschke et al. established a scheme for an ultra-relativistic gas of

particles via Laguerre polynomials expansion of the Maxwell-Jüttner distribution, at

the expense of the loss of perfect streaming and therefore the need for an interpolation

scheme.

An attempt at multi-time relaxation schemes has been done in [80], with the

implicit goal of the independent tuning of shear viscosity and bulk viscosity, and

with the additional positive effect of retaining perfect streaming on a Cartesian

lattice. In [94] it has been shown that it is possible to avoid multi-time relaxation

schemes, still using a Cartesian lattice and properly tuning the bulk viscosity for

ultra-relativistic flows, so as to recover only the conservation of the momentum

energy tensor, but still lacking the capability of recovering higher order moments. A

further improvement has been obtained in [90], where an ultra relativistic scheme is

developed with perfect streaming on a Cartesian grid, and with the ability to recover,

in principle, higher order moments of the Maxwell-Jüttner distribution. In practice,

such an improvement would require velocity stencils too big to be be practical.

Blaga and Ambruş [4, 11] have developed a class of off-lattice quadrature based

models capable of including arbitrarily high order moments, thus supporting sim-

ulations well beyond the hydrodynamic regime, spanning in principle between the

inviscid regime all the way to the ballistic regime. Most of these previous schemes are

focused on the simulation of (3 + 1) dimensional ultra-relativistic systems. Through

the years several attempts at (2 + 1) dimensional schemes for the study of condensed

matter systems have been realized [25, 26, 45, 48, 100], and attempts at bridging the

gap between ultra-relativistic and non relativistic schemes were made as well [47].

This Ph.D program has been focused on the extension and generalization of [47] to

a unified, dimension independent, kinematically wide Relativistic Lattice Boltzmann

Method capable of simulating the whole mass spectrum, (from the ultra-relativistic

to non-relativistic regime), the whole rarefaction spectrum, (from ideal flows to

free streaming flows), and systems in every number of spatial dimensions, with

particular focus on the most common cases (d = 2 and d = 3).

In the last part of the program the new techniques applied to extend the validity of

xvi
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RLBM to rarefied regimes have also been employed to describe radiation dynamics,

a problem with relevant applications in astrophysical contexts [6, 27, 67]. A new

special relativistic numerical scheme, capable of bridging the gap between optically

thin regimes (when radiation weakly interacts with matter) to optically thick regimes

(strong radiation-matter interaction) has been realized.

This thesis is organized as follows, with chapters from 2 to 6 representing original

work:

• In Ch. 1 an account on the theory of Relativistic Kinetic Theory and Relativistic

Hydrodynamics is given, starting from a brief derivation of Relativistic Boltz-

mann’s Equation, with an introduction on two popular models for the approx-

imation of the Collision Integral. Next, a dimension-independent treatment of

Ideal Relativistic Hydrodynamics is provided, together with a description of

the equilibrium distribution function and an ideal Equation of State. Lastly,

dissipative effects are taken into account with the two most popular decompo-

sitions for the dissipative contributions to particle flow and energy momentum

tensor.

The content of this Chapter closely follows [20] generalizing the discussion to

(d+1) dimensions, giving in particular d-dimensional expressions for the Ideal

Equation of State, the equilibrium distribution function, and non equilibrium

components of the energy-momentum tensor.

• In Ch. 2, after a quick introduction on non-relativistic Lattice Boltzmann Meth-

ods, the derivation of the Relativistic Lattice Boltzmann Method (RLBM), a

numerical scheme capable of exploring all relativistic regimes and expressed

in a (d+1) dimensional language, is provided. Particular focus is given to the

truncated expansion of the equilibrium distribution function, to momentum

discretization, and to the conversion from Physical to Lattice units. Lastly, a

step by step description of the algorithm is provided.

An extensive discussion of the method can be found in [52], where a detailed

explanation of the velocity discretization procedure, together with additional

benchmarks of the method and an application to (2+1) electron dynamics is

given.

• In Ch. 3 the link between kinetic and macroscopic layer is established, by
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means of the Chapman-Enskog expansion and Grad’s method of moments.

Next, RLBM is used to discern which of the two methods provides the correct

link to relativistic hydrodynamics, and three different test flows are considered

in order to provide a calibration for the transport coeficients of the fluid.

Further details on the (2+1) picture and on Bulk viscosity can be found respec-

tively in [50] and [51], and again a general discussion is present in [52].

• In Ch. 4 two benchmarks for the RLBM scheme are presented: the Bjorken flow,

a toy model used in Particle Physics to mimic the hydrodynamic behavior of

Quark Gluon Plasma, and the Relativistic Sod Shock Tube, a benchmark com-

monly used in hydrodynamics to evaluate the quality of a numerical scheme

in the presence of strong velocity gradients. In particular, it is evidenced how

the previously exposed RLBM struggles in correctly reproducing the dynamic

in the presence of weakly interacting fluids.

An in depth discussion of the RLBM testing in the presence of Shock Waves

can also be found in [49].

• In Ch. 5 I present an extension of RLBM that enables the simulation of flows at

high Knudsen number (characterizing the level of interaction between particles

in the fluid), correcting the issues of the previous scheme by means of a new

momentum space discretization. In this new procedure, the perfect streaming

nature of the earlier iteration is sacrificed for more capillary and isotropic

velocity stencils, that cure the issues previously evidenced in the Relativistic

Sod Shock Tube benchmark.

Further details on the new momentum discretization can be found for the

(2+1) ultra-relativistic case in [7]. An article extending the method to (3+1)

dimensions is in preparation.

• In Ch. 6, a brief introduction on a new lattice kinetic scheme, based on the

improved stencil discretization exposed in Ch. 5, is exposed. The method is

tasked with the reproduction of radiation dynamics in both the optically thick

and thin regime.

As in this thesis work only few details on the algorithmic development are

presented, the interested reader will find an in depth description of the method

in [142].

xviii

Dan
iel

e S
im

eo
ni



Additionally, I present an application of the method to relativistic jets, systems

that are encountered in astrophysics contexts [105, 111, 114].

A list of the publications produced through the years by the author is given

below:

1. A. Gabbana, D. Simeoni, S. Succi, R. Tripiccione

Relativistic dissipation obeys Chapman-Enskog asymptotics: Analytical and

numerical evidence as a basis for accurate kinetic simulations

[50] Physical Review E, 99:052126, May 2019

2. A. Gabbana, D. Simeoni, S. Succi, R. Tripiccione

Probing bulk viscosity in relativistic flows

[51] Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 378(2175):20190409, 2020

3. A. Gabbana, S. Plumari, G. Galesi, V. Greco, D. Simeoni, S. Succi, R. Tripiccione

Dissipative hydrodynamics of relativistic shock waves in a quark gluon plasma:

Comparing and benchmarking alternate numerical methods

[49] Physical Reviews C, 101:064904, Jun 2020

4. A. Gabbana, D. Simeoni, S. Succi, R. Tripiccione

Relativistic lattice boltzmann methods: Theory and applications

[52] Physics Reports, 863:1–63, 2020

5. L.R. Weih, A. Gabbana, D. Simeoni, L. Rezzolla, S. Succi, and R. Tripiccione

Beyond moments: relativistic lattice Boltzmann methods for radiative trans-

port in computational astrophysics

[142] Monthly Notices of the Royal Astronomical Society, 498(3):3374–3394, 08 2020

6. L. Bazzanini, A. Gabbana, D. Simeoni, S. Succi, R. Tripiccione

A Lattice Boltzmann Method for Relativistic Rarefied Flows in (2 + 1) Dimen-

sions

[7] Journal of Computational Sciences, 51:101320, 2021
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Quadrature rules for relativistic Lattice Kinetic Schemes: from hydrodynamics
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Chapter 1

Relativistic Hydrodynamics

Here I give a brief description on the main principles of the theory behind Relativistic

Kinetic Theory and Hydrodynamics, since the numerical method at the base of this

thesis work is based on the first and resolves the second. The derivations included

in these chapter closely follow [20], but are often enriched with additional original

considerations that are meant to generalize the theory to (d+1)-dimensional systems,

whereas [20] often focuses on the (3+1)-dimensional case.

This chapter is divided as follows: In Sec: 1.1 I give a review on Relativistic Kinetic

Theory, a special relativistic extension of Boltzmann’s kinetic theory of gases. Then

in Sec: 1.2 and Sec: 1.3 the main theoretical concepts of relativistic hydrodynamics

are given, respectively for fluids at equilibrium and outside equilibrium.

In this thesis I consider a gas of particles with mass m in a (d+1)-dimensional Flat

space-time. The metric tensor is given by ηαβ = diag(+,−). Einstein’s summation

convention is in place, with Greek indexes running from 0 to d, and latin indexes

running from 1 to d (d-dimensional vectors are represented in bold). In the next

sections the projector on the orthogonal velocity space ∆αβ will be largely used. Its

definition and properties are summed up in Appendix. .1.

1.1 Relativistic Kinetic Theory

The starting point in the development of a relativistic kinetic theory is the single-

particle distribution function f (xα, pα), where xα = (ct, x) are space-time coordinates,

and pα = (p0,p) is relativistic momentum, that accounts for the number of particles

contained at time t in the 2d-dimensional phase space of initesimal volume dµ(t) =
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dxdp,

N(t) = f (xα, pα)dµ(t) . (1.1)

It can be shown that the distribution function is invariant with respect to Lorentz

transformations, since the number of particles is obviously invariant, and dµ(t) can

be proved to be invariant as well [20].

It can be verified [20] that the invariant equation that determines the change in

the number of particles with respect to proper time is

m
∆N(t)

∆τ
=

[
pα
∂ f
∂xα

+ mKα ∂ f
∂pα

]
dµ(t) (1.2)

with Kα =
dpα

dt the so called Minkowsky Force, here supposed to not directly

depend on momentum.

The term at first member accounts for the change in the number of particles due to

collisions, and can be derived pretty much by following the rules of non-relativistic

Boltzmann Theory, provided that the language of special relativity is used to describe

collisions, and that the following assumptions (the same taken in classical kinetic

theory) are taken:

• The gas is dilute enough that only binary elastic collisions are considered, and

collisions involving more than two particles are ignored.

• Molecular Chaos Hypothesis: The momenta of the particles involved in the colli-

sions are not correlated among each other.

• The time scales over which f changes significantly are bigger with respect to

collision times, but smaller than times between two collisions. Same apply for

length scales.

Following these hypothesis, and considering the binary collision depicted in

Fig. 1.1, one derives this form for the LHS of Eq. 1.2:

m
∆N(t)

∆τ
=

p0

c

[∫
( f ′
∗

f ′ − f∗ f )gøσdΩdp∗

]
dµ(t) , (1.3)
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Figure 1.1: Representation of an elastic collision between two particles of the fluid. The momenta

of the particles before collision are denoted by (p,p∗), while the momenta after collision are denoted

by (p′,p′
∗
). Consequently denote f = f (x,p, t), f∗ = f (x,p∗, t), f ′ = f (x,p′, t), f ′∗ = f (x,p′

∗
, t)

with gø the so called Møller speed, a measure of the relative speed between the

particles, σ the differential cross section of the scattering process. By defining the

invariant flux

F =
p0p0

∗

c
gø =

√
(pαpα∗ )2 −m4c2 (1.4)

one can finally write down the final form of the Relativistic Boltzmann Equation

for non degenerate relativistic gases

pα
∂ f
∂xα

+ mKα ∂ f
∂pα

=

∫
( f ′
∗

f ′ − f∗ f )FσdΩ
dp∗
p0
∗

. (1.5)

Note here that this equation is invariant with respect to Lorentz transformations,

as in its derivation only invariant quantities have been used. Further, note that al-

though particle mass is present into Eq. 1.5, equivalent formulations can be proposed

that are perfectly well defined also for mass-less particles (dividing everything by

p0 does in fact get rid of the mass, but also doesn’t manifestly show the coordinate

invariance of the equation).

1.1.1 Model Equations

Eq. 1.5 is a complicated integro-differential equation, and its complications derive

mainly from the quadratic nature of its collision integral, on the RHS of the equation

(from now on said term will be denoted as Ω)

Ω =

∫
( f ′
∗

f ′ − f∗ f )FσdΩ
dp∗
p0
∗

. (1.6)
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In the next sections, (specifically Sec. 1.2) it will be shown that Ω satisfies among

the others two main properties:

• For any collisional invariant ψ (introduced in the next section) the following

equality must hold: ∫
Ωψ

dp
p0 = 0 . (1.7)

• The H-theorem holds, meaning that the one particle distribution function f

tends in time toward an equilibrium value f eq (its description is given in

Sec. 1.2.2), or equivalently that∫
Ω log f

dp
p0 ≤ 0 : (1.8)

the entropy production rate (introduced later on in this chapter) is bigger than

zero and equals zero only when it is computed at equilibrium ( f = f eq). More

on this at the end of Sec. 1.2

In order to simplify Eq. 1.5, approximated and simplified collision models are

often introduced in place of Ω, especially when one develops Lattice Kinetic schemes

or approaches analytical solutions of the Boltzmann equation. A sufficient conditions

for the validity of said models is that they satisfy the conditions mentioned above

(Eq. 1.7 and Eq. 1.8).

The most common Collision model for the classical non-relativistic case is given

by the widely known Bhatnagar-Gross-Krook relaxation time approximation [9]

(which is in fact at the base of the development of the classical Lattice Boltzmann

scheme, see Sec. 2.1), but other collision models have been used in the past [18].

As for relativistic theories, two main models have been used in the literature,

both extensions of the BGK model to special relativity: Marle’s model [82–84] and

Anderson-Witting’s model [5].

Marle’s model is introduced by the following approximation:

Ω ∼ −
m
τ

(
f − f eq

)
, (1.9)

with τ a typical relaxation time, i.e. the typical time needed to f to approach its

equilibrium value f eq. This model exhibits problems for mass-less particles, since in
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this case space homogeneous solutions of the relativistic Boltzmann equation relax

to equilibrium in infinite time.

This argument was the reason why Anderson and Witting proposed their collision

model:

Ω ∼ −
pαUα

c2τ

(
f − f eq

)
, (1.10)

where Uα is the macroscopic velocity of the fluid in the Landau-Lifshitz de-

composition (see Sec. 1.3.2 for more details). This collision model does not exhibit

the problems highlighted in Marle’s model, therefore it has been selected for the

development of the Relativistic Lattice Boltzmann Method presented in Chapter 2.

1.2 Ideal Relativistic Hydrodynamics

Eq. 1.5 is the base to work out the whole theory of relativistic hydrodynamics. As a

starter, one can use it to obtain balance equations for macroscopic thermodynamic

quantities, obtained as moments of the distribution function.

Consider a generic functionψ(xα, pα) of space, time and momentum, and multiply

Eq. 1.5 by it. Then integrate over the invariant momentum space dp
p0

∫
ψ

[
pα
∂ f
∂xα

+ mKα ∂ f
∂pα

]
dp
p0 =

∫
ψ( f ′

∗
f ′ − f∗ f )FσdΩ

dp∗
p0
∗

dp
p0 . (1.11)

Further manipulations of Eq. 1.11 lead to the so called Generalized Transfer Equation

∂
∂xα

∫
ψpα f

dp
p0 −

∫
f
[
pα
∂ψ

∂xα
+ mKα ∂ψ

∂pα

]
dp
p0 (1.12)

=
1
4

∫
(ψ + ψ∗ − ψ

′
− ψ′

∗
)( f ′
∗

f ′ − f∗ f )FσdΩ
dp∗
p0
∗

dp
p0 ,

that is basically a balance equation for the macroscopic quantity
∫
ψpα f dp

p0 , with

production term due to collisions given by the RHS, and diffusive term given by the

second bit in the LHS. The primed/star notation on the ψ is self explanatory, and it

is immediately evident that quantities such that

ψ + ψ∗ − ψ
′
− ψ′

∗
= 0 (1.13)
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identify a particular class of functions, that are called Summational Invariants or

also Collision Invariants. For such quantities it is possible to verify the following

theorem (proofs can be found in [14, 20, 24]):

Theorem:. Any continuous and differentiable (at least ∈ C2) function of momentum ψ(pα)

is a summational invariant if and only if it has the following form:

ψ(pα) = a + bαpα , (1.14)

with a/bα any scalar/vector quantity that does not depend on pα.

Choosingψ = c, cpβ one obtains balance equations for the most important quanti-

ties in relativistic fluid dynamics (in the second case assume for the moment external

forces to be zero):

0 =
∂
∂xα

[
c
∫

pα f
dp
p0

]
, (1.15)

0 =
∂
∂xα

[
c
∫

pαpβ f
dp
p0

]
, (1.16)

where we define the Particle Flow Nα and the Energy Momentum-Tensor Tαβ as

respectively the first and second moment of the one-particle distribution:

Nα = c
∫

pα f
dp
p0 , (1.17)

Tαβ = c
∫

pαpβ f
dp
p0 . (1.18)

so that Eq. 1.15 and Eq. 1.16 become

∂αNα = 0 , ∂αTαβ = 0 . (1.19)

Another interesting macroscopic quantity that can be introduced by setting ψ =

−kBc f log f (not a summational invariant!) is the Entropy flow Sα.

Sα = −kBc
∫

pα f log f
dp
p0 , (1.20)

ς = −
kBc
4

∫
( f ′
∗

f ′ − f∗ f ) log
(

f ′ f ′
∗

f f∗

)
FσdΩ

dp∗
p0
∗

dp
p0 , (1.21)
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so that Eq. 1.12 becomes in this case the balance equation

∂αSα = ς . (1.22)

The entropy production rate ς here gives the rate at which entropy rises due to

collisions. By introducing

Hα = −
Sα

kB
= c

∫
pα f log f

∂p
p0 , (1.23)

S = −
ς
kB

=
c
4

∫
( f ′
∗

f ′ − f∗ f ) log
(

f ′ f ′
∗

f f∗

)
FσdΩ

dp∗
p0
∗

dp
p0 , (1.24)

Eq. 1.22 becomes

∂αHα = S . (1.25)

The following two important theorems can be proven [19] and the result goes

under the name of H-theorem:

Theorem:. If H(t) = 1
c2 HαUα is a continuous and differentiable function of time, and satisfies

the following:

∂H
∂t
≤ 0 H ≥ HE = H( f eq)

and if both f and
∫

pη+1
0 f dp are uniformly bounded [38] ( f being also equicontinuous [37])

then

lim
t→∞

H(t) = HE

Theorem:. If one has
[

lim
t→∞

H(t) = HE

]
then

[
lim
t→∞

f (t) = f eq
]

1.2.1 Fields at Equilibrium

Goal of this section will be to describe in more detail the particle flow Nα defined in

Eq. 1.17 and the energy-momentum tensor Tαβ defined in Eq. 1.18, when considering

a fluid at equilibrium. It is useful to consider these quantities in a local Lorentz

rest frame, i.e. the frame of an observer which is moving with the fluid and thus

measures its macroscopic velocity Uα at rest:
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Uα
R = (c, 0) (1.26)

Since one has the following physical understanding of the various components

of the particle flow and energy momentum tensor


1
c N0 = particle number density

Ni = particle flux density
,



T00 = internal energy density

cT0i = energy flux density

1
c Ti0 = momentum density

Ti j = momentum flux density

once the following quantities are introduced,

• n: particle number density

• P: isotropic pressure

• ε: internal energy density

• T: temperature

• s: entropy per particle

it is possible to specify Nα
R and TαβR , since in a fluid at rest there is no particle/energy

flux going on, and the only momentum contribution is given by hydrostatic pressure:


N0

R = cn

Ni
R = 0

,



T00 = ε

T0i = 0

Ti0 = 0

Ti j = Pδi j

At this point, the equilibrium versions in a generic reference frame can be iden-

tified just by considering an inverse Lorentz boost from the rest frame to the frame

where the fluid has velocity Uα:

Uα = Λα
βU

β
R →


Nα

E = Λα
βN

β
R

TαβE = Λα
µΛ

β
νT

µν
R

; (1.27)
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therefore

Nα
E = nUα , (1.28)

TαβE = (P + ε)
UαUβ

c2 − Pηαβ . (1.29)

Once the equilibrium distribution moments are defined, it is possible to derive

the Constitutive Equations of an Ideal Fluid, which are the relativistic version of Euler

equations. By imposing Eq. 1.19 on the equilibrium quantities Nα
E and TαβE , one gets:


0 = ∂αNα

E Mass Conservation

0 = Uβ∂αTαβE Energy Conservation

0 = ∆β∂αTαβE Momentum Conservation

, (1.30)

Then, taking Eq. 1.28 and Eq. 1.29, and by employing the decomposition of the

gradient ∂α into Uα parallel-orthogonal components (more on this decomposition in

Appendix .1) one can recover the conservation equations in a form similar to their

non relativistic equivalents:


0 = Dn + n∆αUα

0 = Dε + (P + ε)∇αUα

0 = DUα + c2

P+ε∇
αP

. (1.31)

1.2.2 Equilibrium distribution function

Having derived the equilibrium thermodynamic quantities, it is also possible to

derive a functional form for the equilibrium distribution function f eq that leads to

said quantities. The first to derive such a functional form was Jüttner in [70], and

therefore the relativistic counterpart of Maxwell-Boltzmann equilibrium distribution

is called Maxwell- Jüttner distribution. It is easy to see that taking the non relativistic

limit one recovers the usual Maxwell-Boltzmann statistics.

At equilibrium, the entropy production rate ς has to vanish, meaning that the

distribution function f eq has to satisfy (look at Eq. 1.20)

f eq′
∗ f eq′

− f eq
∗ f eq = 0 , (1.32)
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or, taking logarithms,

log f eq′
∗ + log f eq′ = log f eq

∗ + log f eq , (1.33)

meaning that ψ = log f eq is a summational invariant, and therefore according to

Eq. 1.14 has to be written as

log f eq = a + bαpα ⇒ f eq = exp(a + bαpα) . (1.34)

By resorting at the equilibrium quantities defined in Eq. 1.28 and Eq. 1.29, one

can work out the values for a and bα, and therefore write down explicitly Eq. 1.34:

f eq = B(n,T)exp
(
−

pαUα

kBT

)
, (1.35)

with B(n,T) a normalization coefficient that can be determined by using Eq. 1.35

into Eq. 1.17 and setting B in order to satisfy the definition Eq. 1.28:

Nα
E = c

∫
f eqpα

dp
p0

= cB
∫

e−
pµUµ

kBT pα
dp
p0

= c B Zα = nUα , (1.36)

so that together with the analytical expression for the integral Zα (see Appendix .2

for details), the correct normalization factor for the equilibrium distribution function

can be determined:

B(n,T) =
( c
kBT

)d n

2 d+1
2 π

d−1
2 ζ

d+1
2 K d+1

2
(ζ)

, (1.37)

where Ki(ζ) is the modified Bessel function of the second kind of index i.

The relativistic parameter ζ = mc2

kBT , named Relativistic Coldness, is the ratio between

the rest energy of a particle mc2 and kBT, which gives the order of magnitude of the

thermal energy in the gas. This is the parameter that quantifies the level of ’relativity’

of the gas:

ζ << 1 ⇒ ultra-relativistic regime (mass-less particles)

ζ ∼ 1 ⇒mildly-relativistic regime

ζ >> 1 ⇒ classical (non-relativistic) regime
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1.2.3 Ideal Equation of State

The closure for the conservation equations is given by an appropriate Equation

of State (EOS). In order to derive the EOS for a perfect gas in (d + 1) space-time

coordinates in a relativistic regime, one can compute Eq. 1.18 using the definition in

Eq. 1.35, together with the analytical expression for Zαβ (see again Appendix .2):

TαβE = c
∫

f eqpαpβ
dp
p0

= c B Zαβ = PGd
UαUβ

c2 − nkBTηαβ , (1.38)

where the dimensionless parameter Gd has been introduced:

Gd =
ε + P

P
= ζ

K d+3
2

(ζ)

K d+1
2

(ζ)
. (1.39)

In order to identify the EOS it is then sufficient to match the terms with the same

tensor structure in Eq. 1.38 and Eq. 1.29; one finally obtains:

ε = P (Gd − 1) ,

P = nkBT .
(1.40)

It is interesting to check whether the formulation appearing in Eq. 1.40 is com-

patible to the known ideal EOSs of the ultra-relativistic and non-relativistic cases.

First, it is easy to verify that for ζ→ 0 one gets the expected result:

εur = dP . (1.41)

For the classical case one has instead to first define a kinetic energy density

εc = ε − nmc2 by subtracting the rest energy density to ε. Then the limit ζ → ∞

provides the known result:

lim
ζ→∞

εc = lim
ζ→∞

P(Gd − 1 − ζ) =
d
2

P . (1.42)

In Fig. 1.2 the ratio εc
εur

shows the behavior of the EOS for different spatial dimen-

sions, and provides also the results for the two limiting cases.

From the EOS one can obtain a few more thermodynamic quantities which will

be useful in the coming sections, such as the heat capacity at constant volume cv:
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Figure 1.2: Ratio of kinetic energy density to ultra-relativistic energy density for a gas obeying an

ideal gas law, for different values of the spatial dimension d. One can appreciate that the limiting

cases are well recovered.

cv =
∂(ε/n)
∂T

= kB

[
(2 + d)Gd + ζ2

− G2
d − 1

]
, (1.43)

the heat capacity at constant pressure cP ( he = (ε+P)/n is the relativistic enthalpy

per particle) :

cP =
∂he

∂T
= kB

[
(2 + d)Gd + ζ2

− G2
d

]
, (1.44)

and the adiabatic sound speed cs:

cs = c

√
P

ε + P
cp

cv
= c

√√
(2 + d)Gd + ζ2 − G2

d − 1

Gd

(
(2 + d)Gd + ζ2 − G2

d

) . (1.45)

1.3 Dissipative Effects

The following explanation is a summary and d-dimensional generalization of the

contributions that can be found in [20, 29, 115].

When considering non ideal fluids, dissipative effects have to be taken into

account. Energy and momentum are transferred between infinitesimal parcels of
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fluid, and additional non equilibrium components enter in the definitions of Nα and

Tαβ.

In order to identify these values, it is necessary to understand that Nα and Tαβ

have respectively (d + 1) and 1
2 (d + 1)(d + 2) idependent terms (from Eq. 1.18 it is

possible to see in fact that Tαβ is symmetric)

1
2

(d + 1)(d + 4) =


(d + 1) Nµ

1
2 (d + 1)(d + 2) Tµν

. (1.46)

These fields have to be indentified with corresponding physical quantities, with

some of them already defined in Sec. 1.2.1. With the help of the decompositions

Eq. .23, Eq. .24 and Eq. .29 defined in Appendix .1, one has

Nα = nUα + qαN , (1.47)

Tαβ = ε
UαUβ

c2 +
1
c2

(
qαTUβ + qβTUα

)
+ π<αβ> − (P + $)∆αβ . (1.48)

The physical quantities appearing above are summed up in the following table

field nr. of terms eq/neq formula

Fluid Velocity Uα (d + 1) eq. -

Particle density n 1 eq. n = 1
c2 NαUα

Energy density ε 1 eq. ε = 1
c2 UαUβTαβ

Temperature T 1 eq. EOS

hydrostatic pressure P 1 eq. EOS

dynamic pressure $ 1 neq. $ = −P − 1
d∆αβTαβ

Pressure deviator παβ d
2 (d + 3) neq. π<αβ> =

(
∆α
γ∆

β
δ −

1
d∆αβ∆γδ

)
Tγδ

Heat flow qα = qαT − qαN (d + 1) neq. qαN = P+ε
n ∆αβNβ

qαT = ∆α
µUνTµν

and count a total of 1
2 (14 + 7d + d2) indipendent elements, that are reduced to the

expected value Eq. 1.46 once the conditions
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d + 5 =



1 P = nkBT

1 ε = P(Gd − 1)

1 UµUµ = c2

1 ∂µNµ

d + 1 ∂µTµν

(1.49)

are taken into account.

Unfortunately, it is evident from the table 1.3 that all the non equilibrium com-

ponents appearing in dissipative hydrodynamics depend on the definition of the

macroscopic velocity Uµ, and therefore are not uniquely defined.

Two main definitions have been identified in the theory:

• Eckart Decomposition [36] In this frame, the macroscopic velocity is directly

connected to the particle flux, meaning that the particle flow Nα is formally

defined as its equilibrium counterpart Nα
E. This frame is also called Particle

frame.

• Landau-Lifshitz Decomposition [79] In this frame, the macroscopic velocity

is directly connected to the energy flux, meaning that the energy momentum

tensor has only additional components that are Minkowsky-orthogonal to Uα.

This frame is also called Energy frame.

1.3.1 Eckart Decomposition

In the Eckart decomposition (every quantity in this frame will be denoted using a

subscript e) the macroscopic velocity is chosen to be parallel to the particle flow:

Uα
e =

nec2

NµNµ
Nα . (1.50)

With this prescription, it is easy to show that

qαN = 0→ qα = qαT ≡ qαe (1.51)

Therefore Nα and Tαβ are defined as follows:
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Nα = neUα
e , (1.52)

Tαβ = εe

Uα
e Uβ

e

c2 − (Pe + $e)∆αβ
e + π<αβ>e +

1
c2

(
Uα

e qβe + Uβ
e qαe

)
. (1.53)

Another quantity that can be decomposed is the entropy flow Sα = seUα
e + φαe ,

• entropy density: se = 1
c2 SαUα

e

• entropy flux: φαe = ∆α
eβS

β

1.3.2 Landau-Lifshitz Decomposition

The Landau decomposition (denoted by the subscript `) proposes instead the follow-

ing implicit definition of Uα
` :

Uα
` =

c2U`βTαβ

U`µU`νTµν
(1.54)

which implies

qαT = 0→ qα = −qαN ≡ qα` (1.55)

and the following decomposition for the particle flow and the energy-momentum

tensor:

Nα = n`Uα
` + Aα , (1.56)

Tαβ = ε`
Uα

` Uβ
`

c2 − (P` + $`)∆
αβ
` + π<αβ>` , (1.57)

where Aα is an additional, Uα-orthogonal term to be determined. In order to do

so, one defines as Vα the difference between the macroscopic velocities in the two

decompositions:

Uα
` = Uα

e + Vα . (1.58)

Obviously, at equilibrium both descriptions are equivalent, so Vα represents a

non-equilibrium quantity. Assuming to be close to equilibrium, so that quadratic
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terms can be ignored, one can determine some useful properties by imposing Uα
` U`α =

Uα
e Ueα = c2:

VαUα
` = Uα

` Ueα = 0 . (1.59)

Then, by imposing the equality of Nα among the two decompositions,

Nα = neUα
e = n`Uα

` + Aα , (1.60)

one can determine (by taking the scalar product by Uα
` ) that ne = n` ≡ n. Further,

it is easy to then verify that

Vα = −
Aα

n
, (1.61)

and by applying the same procedure to the energy momentum tensor, (equate

Eq. 1.53 to Eq. 1.57, use Eq. 1.61, and ignore all non linear terms) and entropy density,

it is possible to verify that

π<αβ>e = π<αβ>` ≡ π<αβ>,

Pe = P` ≡ P,

$e = $` ≡ $, (1.62)

εe = ε` ≡ ε,

se = s` ≡ s

and all these relationships hold as long as one stays close to equilibrium. In the

end, the Landau-Lifshitz decomposition for Nα and Tαβ reads as

Nα = nUα
` −

n
P + ε

qα , (1.63)

Tαβ = ε
Uα

` Uβ
`

c2 − (P + $)∆αβ
` + π<αβ> , (1.64)

and the relationship between the two decompositions is given by

Uα
` = Uα

e +
n

P + ε
qα . (1.65)
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In the following, unless explicitly stated, the Landau-Lifshitz decomposition will

be used, so the subscript ` will be from now on omitted. All formulas defined in

Tab. 1.3 are used.

1.3.3 Transport Equations

Once a decomposition among the ones previously presented is chosen, one can work

out the conservation equations for a dissipative fluid just like it was previously done

for an ideal fluid at the end of Sec. 1.2.1 (Eq. 1.31). For Landau-Lifshitz, for example,

one can take Eq. 1.63 and Eq. 1.64 and insert them into Eq. 1.19.

In this way one would get the relativistic versions of Navier-Stokes and Fourier

equations. The problem is that, just like in the classical case one has to specify a form

for the shear stress tensor, here the obtained conservation equations would not be of

relevant use if one does not specify a functional form for $, π<αβ>, and qα.

Traditionally, the most straight forward way of building such constitutive equa-

tions is the thermodynamic theory of irreversible processes, that assumes a linear

relationships between the thermodynamic forces and fluxes:

$ = −µ∇αUα , (1.66)

π<αβ> = 2η∇<αUβ> , (1.67)

qα = λ
(
∇
αT −

T
c2 DUα

)
. (1.68)

µ, η, and λ are respectively known as Bulk Viscosity, Shear Viscosity, and Thermal

Conductivity. The three quantities are collectively called Transport Coefficients, and

Eq. 1.66, Eq. 1.67 and Eq. 1.68 are known as First Order Transport Equations.

When considering non relativistic velocities, these equations assume the clas-

sical non-relativistic forms (since Uα = γ(c,u), with γ the Lorentz Factor, the non

relativistic limit is represented by γ ∼ 1 + O((u/c)2)):


$ = µ∂kuk

π<i j> = η(∂iu j + ∂ jui −
2
dδi j∂kuk)

qi = −λ∂iT

(1.69)

0 = π<00> = π<0i> = π<i0> = q0 .
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By comparing Eq. 1.68 with the last of Eq. 1.69, one notes that a completely

relativistic effect occurs: even when considering isothermal flows, there is a heat

flux due to pressure gradient (as it can be seen by transforming the second term of

Eq. 1.68 with the help of Eq. 1.31).

Also, a problematic property of the first order transport equations is that they

are not causal, meaning that if one inserts them into balance equations Eq. 1.19,

the second order derivatives would make them parabolic equations and therefore

would imply that information travels faster than light [65] (see [115] for a detailed

explanation).

First order theories are not compatible with special relativity, therefore second or-

der theories have been proposed through the years [75,96] that try to restore causality:

the most successful among those, known as Israel-Stewart theory (IS), encapsulates

Maxwell-Cattaneo’s relaxation formulation [17] into a theory of dissipative hydro-

dynamics [62–64]. Reviews on second order theories are available in [68, 97].

τ0D$ + $ = −µ∇αUα , (1.70)

τ1∆
α
ν∆

β
µDπ<µν> + π<αβ> = 2η∇<αUβ> , (1.71)

τ2∆
α
µDqµ + qα = λ

(
∇
αT −

T
c2 DUα

)
. (1.72)

However, in recent years it has been shown that IS formulation exhibits some

theoretical shortcomings [31] as well as poor agreement with numerical solutions of

the Boltzmann equation [13, 61]. In practice, there is still some work to do in order

to obtain an efficient, stable and causal theory of dissipative hydrodynamics.

For this reason resorting to a kinetic description to detail relativistic hydrody-

namics sounds appealing. In fact the basic equation of relativistic kinetic theory,

Eq. 1.5, does not present second order derivatives and is thus hyperbolic: it does

not show causality problems. This is in fact one of the main advantages of relativis-

tic lattice kinetic schemes: dissipation arises naturally from the dynamics, without

posing theoretical shortcomings.
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Chapter 2

Lattice Kinetic Schemes

In this chapter I will describe in detail all the algorithmic steps that have to be taken

in order to derive a Relativistic Lattice Boltzmann Method (RLBM), i.e. a Lattice

Boltzmann Method (LBM) compatible with the special relativistic formulation of

kinetic theory and hydrodynamics detailed in Ch. 1.

What will be obtained is a fully fledged numerical scheme capable to simulate

fluids ranging from the ultra-relativistic regime to the non-relativistic one, with a

firm control on the transport coefficients, and within d = 1, 2, 3 spatial dimensions.

More detail on the derivation of the method presented in this chapter can be found

in [52].

The first RLBM has been derived at the start of the past decade [88, 89] as a

natural extension of the classical LBM. It focused on the description of gases made

up of mass-less relativistic particles, and described (3+1) dimensional fluids. The

first model developed using an expansion of the Maxwell-Jüttner distribution, like

traditional LBMs, was derived in [118]. The model sacrifices perfect streaming

for a more straightforward discretization procedure, but can be formulated using

coordinates different than Cartesian ones and can be extended to work with non

ideal EOS [117] (an ideal continuation of this work can be represented by [4], that

extends the off-lattice approach to also work with beyond hydrodynamic regimes).

Subsequent development to [88, 89] (that is based on the use of classical LBM

stencils) are represented by [80], that implemented a multi-relaxation time scheme,

but was not extensible to higher order moments, and by [94], that cured some

difficulties of the original model in the energy-momentum tensor by opportunely

tuning the transport coefficients.
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All of these improvements were finalized into [90], a (3+1) lattice kinetic scheme

for ultra-relativistic flows capable of correctly reproducing the hydrodynamic mo-

ments and with perfect streaming implemented.

All the models mentioned so far only tackle ultra-relativistic flows, and a scheme

that bridges the gap between these flows and non-relativistic flows has been pre-

sented in [47]. The RLBM presented in this thesis is an algorithmic refinement of this

last scheme, that generalizes the method to a generic number of spatial dimensions,

and is also equipped with tunable macroscopic transport coefficients. Said scheme

has been presented in detail in [52].

The chapter is divided as follows: in Sec: 2.1 I give a review of the algorithmic

steps needed to derive a classical (non relativistic) LBM. In Sec: 2.2 the RLBM in its

generic (d+1) dimensional formulation is presented.

2.1 Non relativistic Lattice Boltzmann Methods

The Relativistic Lattice Boltzmann Method presented in the next sections will nat-

urally build on classical (non-relativistic) Lattice Boltzmann Method (LBM) for its

development, therefore a basic knowledge of classical lattice kinetic schemes is ad-

vised. In this section I will therefore provide a brief summary on the main features of

LBM, in order to ease the understanding of the next sections. The interested reader

will be able to find a detailed description of the method in the literature [76, 133].

LBM is a computational scheme that was realized in the past decades to tackle

the simulation of classical hydrodynamics. It is powerful, highly parallelizable, and

an alternative to the more traditional Computational Fluid Dynamic solvers, that

directly solve the macroscopic conservation equations of the fluid flow. LBM relies

instead on a statistical description at the mesoscopic scale (which is an intermediate

step between the molecular scale, of the order of the nm, and the macroscopic scale,

beyond the mm), and is therefore strongly bonded to the kinetic theory of gases [18].

The origins of the method date back to the pioneering work made in the 80s on

Lattice Gas Cellular Automata [43, 55, 87]. Subsequent developments established a

background for LBM as a self contained theory [8,23,58,59] to the point of its complete

formulation with mathematical foundations grounded in the Hermite Quadrature

[56, 128].

As already stated, LBM is theoretically based on the kinetic theory, and therefore
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has at its core the so called Boltzmann Equation

(
∂
∂t

+ v · ∇x +
F
m
· ∇v

)
f (x,v, t) = Ω , (2.1)

where the distribution function f (x,v, t) is the phase space number density of

mass m particles with velocity v, position x, at time t, that are subject to the volume

body force F.

The right hand side of Eq. 2.1, that accounts for inter-particle collisions, is a

complicated integral in the velocity space, that makes Eq. 2.1 an integro-differential

Partial Differential Equation. Therefore this term is replaced with the customary

Bhatnagar-Gross-Krook (BGK) relaxation time approximation [9]:

Ω ∼ −
1
τ

[
f (x,v, t) − f eq(x,v, t)

]
. (2.2)

This approximation is physically motivated by the natural tendency of f to reach,

in a typical time τ, the equilibrium distribution f eq represented for classical fluids by

the Maxwell-Boltzmann distribution

f eq(x,v, t) = ρ(x, t)
(

m
2πkBT(x, t)

) d
2

exp
[
−

m(v − u(x, t))2

kBT(x, t)

]
, (2.3)

with d the dimensionality of the system, kB the Boltzmann constant and ρ, T,

and u respectively the mass density, the temperature, and the macroscopic velocity

fields of the fluid (note that f eq depends on space and time trhough these quantities).

These fields can be computed as the first moments of the distribution function (T is

computed with the aid of an equation of state, and here we use an ideal EOS):

ρ(x, t) =

∫
f (x,v, t)dv , (2.4)

u(x, t) =
1

ρ(x, t)

∫
f (x,v, t)dv , (2.5)

T(x, t) =
1

dkBρ(x, t)

∫
|v − u(x, t)|2 f (x,v, t)dv ; (2.6)

The algorithmic development of LBM starts, after the variables are made dimen-

sionless, from realizing that both f and f eq can be expanded as a series of orthonormal
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polynomials, and specifically the rank n tensors Hermite polynomials H(n)(v) (the

reason for the choice of such orthonormal basis will become clear afterwards)

f (x,v, t) = ω(v)
∞∑
n

1
n!

a(n)(x, t) ·H(n)(v) , (2.7)

f eq(x,v, t) = ω(v)
∞∑
n

1
n!

a(n)
eq (x, t) ·H(n)(v) , (2.8)

with the expansion coefficients given by

a(n)(x, t) =

∫
f (x,v, t)H(n)(v)dv , (2.9)

a(n)
eq (x, t) =

∫
f eq(x,v, t)H(n)(v)dv , (2.10)

and the weight function ω(v) given by

ω(v) =
1

(2π)d/2
e−

v2
2 . (2.11)

Note that a key aspect of the whole procedure is the following equality

f eq =
ρ

Td/2
ω

(
v − u
√

T

)
, (2.12)

since it gives a way to directly compute Eq. 2.10 and provides a direct link between

the coefficients a(n)
eq and the hydrodynamic quantities of interest :

a(0)
eq = ρ (2.13)

a(1)
eq = ρu (2.14)

a(2)
eq = ρ (u ⊗ u + (T − 1)I) (2.15)

This, together with the property of the collision invariants (
∫
ψΩdv = 0 for

ψ = 1,v,v2, |v − u|2), guarantees the following

a(0)
eq =

∫
f eqdv =ρ =

∫
f dv = a(0) (2.16)

a(1)
eq =

∫
v f eqdv =ρu =

∫
v f dv = a(1) (2.17)

Tr
[
a(2)

eq

]
+ ρ(d − u2) =

∫
|v − u|2 f eqdv = ρdT =

∫
|v − u|2 f dv = Tr

[
a(2)

]
+ ρ(d − u2)
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This has two main consequences: 1), since one is interested only in the first

conserved N moments of f , Eq. 2.7 can be truncated up to N, with no fear of losing

information on the quantities of interest

f = ω
N∑
n

1
n!

a(n)
·H(n) , f eq = ω

N∑
n

1
n!

a(n)
eq ·H

(n) , (2.18)

and 2), Gauss quadrature rules can be employed for the discretization of the

velocity space.

In fact since Eq. 2.18 guarantees that f/ω is at most a polynomial of order N, from

Eq. 2.10 one sees that in order to correctly compute the expansion coefficients up to

the desired order quadrature rules that exactly integrate 2N order polynomials are

needed. This means that one needs a rule to choose a set of Npop discrete velocities

ci and related weights wi, so that the integrals of Eq. 2.10 can be exactly turned into

discrete sums without loss of information:

a(n)(x, t) =

∫
f (x,v, t)H(n)(v)dv

=

Npop∑
i

wi f (x, ci, t)
ω(ci)

H(n)(ci) , (2.19)

Obviously, Eq. 2.13 and Eq. 2.16 guarantee that quadratures working for the

expansion coefficients are also preserving the thermodynamic quantities ρ, u and T,

which in the end are exactly the quantities one wants to obtain:

ρ =

Npop∑
i

wi
f (x, ci, t)
ω(ci)

(2.20)

ρu =

Npop∑
i

wi
f (x, ci, t)
ω(ci)

ci (2.21)

ρdT =

Npop∑
i

wi
f (x, ci, t)
ω(ci)

|ci − u|2 (2.22)

The determination of minimal sets
[
wi, ci

]
has been studied in the past, and to

this day the sets for d = 1, 2, 3 and the first values of N are well established in the

literature [126] (while the case d = 1 can be solved analytically by employing the

classical formulas for the Gauss-Hermite quadrature rule [2], the higher dimensional
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cases have to be solved numerically, by resorting to the so called method of prescribed

abscissae [106]).

Once discretization in the velocity space is done, one is left with a group of Npop

values fi(x, t) = f (x, ci, t), which are commonly called populations.

By integrating Eq. 2.1 through characteristics, and with the help of a second order

explicit Euler forward scheme for the approximation of the subsequent integral (more

details on this are available in [76], Ch. 3.5), one can derive the Lattice Boltzmann

Equation, that dictates how populations fi evolve in time:

fi(x + ci∆t, t + ∆t) = fi(x, t) −
∆t
τ

(
fi(x, t) − f eq

i (x, t)
)

(2.23)

2.2 Relativistic Lattice Boltzmann Methods

In this section a review on the main logical steps needed to develop a Relativistic

Lattice Boltzmann Method will be given. It will be immediately evident that al-

though the procedure to define a RLBM stems directly from the one presented in

the previous section for LBM, there are complications in the development of the

method caused by the request of Lorentz invariance. In particular, the different

functional dependency of the equilibrium distribution function (Maxwell-Jüttner

versus Maxwell-Boltzmann) on particle’s velocities makes it impossible to adopt

Hermite polynomials for the truncated expansion of the equilibrium, and to use

Gauss-Hermite quadratures for the velocity space discretization.

The procedure used to define this RLBM has its roots in the schemes used for

ultra-relativistic gases in [90, 117], and has been developed though the years by the

author’s research group [47, 48]. Then a final, comprehensive generalization of the

method to (d+1) dimensions has been presented in [52]. This is exactly the RLBM

that will be described in this section.

The starting equation for the algorithmic development is the relativistic Boltz-

mann equation in the Anderson-Witting approximation

pα
∂ f
∂xα

+ mKα ∂ f
∂pα

= −
pαUα

c2τ

(
f − f eq

)
. (2.24)

As already stated, the derivation is similar to that of a LBM and can be summa-

rized in the following steps (from now on, unless explicitly stated, natural units will
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be used: c = kB = 1)

1. The first step consists in writing down Eq. 2.24 in a more appropriate form by

dividing it for p0:

∂ f
∂t

+ v j ∂ f
∂x j +

mKα

p0

∂ f
∂pα

= −
pαUα

τp0

(
f − f eq

)
, (2.25)

where v j = p j/p0 is particles’ velocity. In this form the equation resembles its

non-relativistic counterpart.

2. Then, an appropriate polynomial expansion of the Maxwell-Jüttner f eq has to be

produced. Since the functional dependency of f eq on the microscopic velocity

vi is not quadratic, Hermite polynomials are not suited for the job.

A proper set of rank n tensor polynomials J(n)(pµ) is therefore built by means of

a Gram-Schmidt orthogonalization procedure on the set {1, pα, pαpβ, . . . } (here ·

represents full tensor contraction).

f eq(pµ,Uµ,T) = ω(p0)
∞∑

k=0

a(k)(Uµ,T) · J(k)(pµ) (2.26)

with ω(p0) a weight function, and a(k)(Uµ,T) the tensor expansion coefficients

a(k)(Uµ,T) =

∫
f eq(pµ,Uµ,T)J(k)(pµ)

dp
p0 (2.27)

Just like in the LBM, the weight function ω(p0) is chosen in such a way that

the expansion coefficient of k-th order coincides with the k-th moment of the

distribution function, so that truncating Eq. 2.26 to order N preserves its first

N moments.

f eq

N (pµ,Uµ,T) = ω(p0)
N∑

k=0

a(k)(Uµ,T) · J(k)(pµ) (2.28)

3. A quadrature rule has now to be found. By resorting to the method of pre-

scribed abscissae [106], one identifies a set of Npop discrete momenta pµi (with the

additional caveat of the corresponding discrete velocities having to sit on the

nodes of a Cartesian Grid in order to preserve Perfect Streaming) and related

weights wi. Then one has a set of Npop distribution functions fi = f (pµi , x
µ), Npop

discrete versions of Eq. 2.25, Npop equilibrium distribution functions f eq

iN

f eq

iN = wi

N∑
k=0

a(k)(Uµ,T) · J(k)(pµi ) (2.29)
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4. Very much like it is done in the non-relativistic LBM, the discretization in

space and time is done by integrating over characteristics and approximating

the integral via a second order Euler scheme, leading to

fi(x + vi∆t, t + ∆t) = fi(x, t) −
pαi Uα

τ

(
fi(x, t) − f eq

iN

)
+ Fext

i (2.30)

with Fext
i the discretized version of the external forcing term appearing in

Eq. 2.25. Of course, this term has to be properly treated as well, and a de-

scription of its discretization will be given in the following pages.

2.2.1 Expansion of the Maxwell-Jüttner distribution

Before detailing how the expansion of the equilibrium distribution is performed,

variables have to be made dimensionless. By considering a reference temperature T0,

(note here that in natural units c = kB = 1, temperature, mass, energy and momentum

have the same physical units, and velocity is adimensional), one introduces the

following variables:

T̃ =
T
T0
, m̃ =

m
T0
, p̃α =

pα

T0
(2.31)

Then one selects a weight functionω(p̃0) to later define a scalar product on Hilbert

space of distribution functions

ω(p̃0) = C(m̃,T0)e−p̃0
. (2.32)

The weight function is selected as the Maxwell-Jüttner distribution in the fluid’s

rest frame. This choice is crucial as it provides a direct link between the expansion

coefficients of the distribution function and its moments. C is a normalization

constant selected in such a way that

∫
ω(p̃0)

dp
p0 = Td−1

0

∫
ω(p̃0)

dp̃
p̃0 = 1 , (2.33)

implying

C(m̃,T0) =
( 1
T0

)d−1 1

2 d+1
2 π

d−1
2 m̃ d−1

2 K d−1
2

(m̃)
. (2.34)
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This normalization is chosen in order to simplify the process of searching for a

quadrature, as it will be shown in the next section.

One then can define a scalar product (·, ·) on the Hilbert space of distribution

functions

(· , ·) =

∫
ω(p̃0)(·)(·)

dp̃
p̃0 , (2.35)

in order be able to build the polynomials {J(i)(pµ), i = 0, . . . ,N} via Gram-Schmidt

procedure on the set {bk, k = 1, · · · ,
(N+d+1

N

)
} = {1, p̃α, p̃αp̃β, . . . }. The well known

algorithm reads as follow:

ck = bk −

k−1∑
j=1

(b j, c j)
(c j, c j)

c j , ek =
ck√

(ck, ck)
, (2.36)

where ek stands for every single independent component of the tensors {J(i)(pµ), i =

0, . . . ,N}. During the application of the Gram-Schmidt algorithm, the results for the

integrals from App. .2 are used.

Then, using the definition given in Eq. 2.27 one can compute the coefficients of

the expansion up to the desired order N, again using the results from App. .2. The

expressions of both the polynomials and coefficients are rather bulky and therefore

are given in the appendices.

As an example the first order (N = 1) expansion of the (d+1) distribution function

is here given:

f eq
1 =

cn
kBT0

ω(p̃0)
(

1
Gd−2T̃

+
(p̃0
− G̃d−2)

G̃d−2(d − G̃d−2) + m̃2

(
U0
−

G̃d−2

T̃G̃d−2

)
−

1
G̃d−2

p̃iUi

)
,

where G̃d−2 = Gd−2(m̃). In general, the dimensional information is carried by the

expansion coefficients, that are always a product of n/T0 and adimensional terms

depending on p̃µ,Uµ, T̃. Polynomials are instead written in terms of m̃ and p̃µ.

In Fig. 2.1 a graphical comparison between the truncations at various orders

N and the original Maxwell-Jüttner distribution is provided for the case at (2+1)

dimensions. It is possible to observe that already with N = 2 the truncated expansion

well reproduces the complete distribution.

Before moving on, one final remark has to be done: the whole procedure high-

lighted so far has to be modified for the ultra-relativistic case in (1+1) dimensions.
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In this case in fact the expressions become ill-defined (polynomials and coefficients

become divergent in the limit m̃→ 0) if C is computed like Eq. 2.34.

Only in this case then the normalization is chosen to be equal to the physical

normalization B used in Eq. 1.37. When one does so, a structure like the one given

previously appears, but without ill-defined ultra-relativistic limits.

−3 −2 −1 0 1 2 3
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fMJ
N

Maxwell-Jüttner

N = 1

N = 2

N = 3

−0.2 0.0 0.2

0.12

0.14

0.16

Figure 2.1: Comparison of the truncated expansions of the equilibrium distribution function

for various orders of truncation N against the complete form of the Maxwell-Jüttner distribution.

(2+1) dimensional case. The various settings are T̃ = 1, m̃ = 0, p̃y = p̃z = 0, Uy = Uz = 0, and

β = Ux/U0 = 0.25.

2.2.2 Quadrature Rule for momentum discretization

The discretization of the momentum-velocity space has a pivotal role in any Lattice

Boltzmann scheme, since it allows for the exact calculation of the hydrodynamic

moments as finite sums over the discrete nodes of the quadrature.

In the framework of RLBM [47, 48, 90], these quadratures are designed to retain

one of the main LBM fratures, perfect streaming, i.e. it is requested that all quadrature

points lie on the nodes of a Cartesian grid, so that at every time step information

is propagated from one grid cell to the neighboring one. This has two desirable
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side-effects: i) super luminal propagation is ruled out by construction, and ii) no

artificial dissipative effects emerge, since there is no need of interpolation.

It will be seen in the next chapters though that this is not the only possible choice:

relaxing the perfect streaming condition brings a number of positive effects in the

simulation of rarefied flows.

For the moment, the method selected in the creation of Gauss-Quadratures is

the one of prescribed abscissae [106], that enforces the discretization through the

selection of sets of weights wi satysfing the orthonormality conditions between the

polynomials J(i)(pµ)

(J(n), J(m)) =

∫
ω(p̃0)J(n)

α1...αn(p̃µ)J(m)
β1...βm

(p̃µ)
dp̃
p̃0 = δn,m

n∏
k=1

δαk,βk , (2.37)

This condition becomes discrete after a set of Npop momenta {pµi } has been selected:

(J(n), J(m)) =

Npop∑
i

wiJ
(n)
α1...αn(p̃µi )J(m)

β1...βm
(p̃µi ) = δn,m

n∏
k=1

δαk,βk . (2.38)

This last condition provides a set of linear equations for the weights wi, that have

to be numerically identified. In order to enforce the condition of perfect streaming,

the following parametrization has to be considered for the discrete momenta:

p̃µi = p̃0
i (1, v0ni) , (2.39)

where ni ∈ Zd represents vectors joining the nodes of a Cartesian grid, and v0 is a

free parameter that has to be chosen in such a way that all discrete velocities vi = v0ni

are less than one (i.e. the speed of light in natural units). Additionally, p0
i is given as

p̃0
i =

m̃
√

1 − |vi|
2
. (2.40)

The whole quadrature process can be summarized in the following steps:

1. A value for m̃ is chosen.

2. A value for v0 is chosen.
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3. A set of discrete vectors ni ∈ Zd is chosen. The vectors are organized in fully

symmetric subgroups, each containing vectors of the same length. Any one of

these subsets identifies an unknown weight, and therefore one has to be sure

to include enough subgroups in the set in order to have enough unknowns to

satisfy the linear independent conditions represented by Eq. 2.38.

4. The system of equations Eq. 2.38 is then numerically solved by finding weights

wi. If no solution is found, then a new value of v0 is chosen and the proce-

dure starts again. The weights have to be non-negative in order to guarantee

numerical stability.

For the ultra-relativistic case a different parametrization has to be used: in fact

Eq. 2.39 is not well defined. One thus considers

p̃µi j = p̃0
j (1, v0ni) , (2.41)

where the p̃0
j are now free parameters and v0 is a parameter chosen such as

the vectors v0ni all have lenght one. The sets ni are identified by considering the

intersections between the surface of a d− sphere and the nodes of the grid. v0 is then

the reciprocal of their common length.

Again, the mass-less quadrature procedure is summarized by the steps:

1. A value for m̃ is chosen.

2. A d−sphere with radius R is considered. In this case we set v0 = 1/R.

3. The set of discrete vectors ∈ Zd that have length R is considered. Again, the

number of velocities in the set has to be enough to fulfill the independent

conditions present in Eq. 2.38.

4. The system of equations Eq. 2.38 is then numerically solved by finding non

negative weights wi and energy shells p̃0
j . If no solution is found, then a new

radius is chosen and the procedure starts again.

In general it is possible to find many different solutions
(
v0, {p

µ
i ,wi}

)
to the quadra-

ture problem, and some of them are valid for a wide range of m̃. In this way one

can cover the whole spectrum of particle masses, from the ultra-relativistic to the

classical limit. Fig. 2.2 shows examples of stencils for different dimensions, and

different relativistic regimes.
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Figure 2.2: Examples of stencils for the cases m̃ = 0 (left column) and m̃ = 4 (right column) in

(1+1) dimensions (top row), (2+1) dimensions (middle row), and (3+1) dimensions (bottom row). In

the ultra-relativistic case, the stencil intersects the surface of a circle (d=2) and a sphere (d=3). The

colored dots represent different energy shells. The quadrature order is N = 3 for all cases, and Npop

ranges from 6 in the (1+1) ultra relativistic case to 182 in the (3+1) massive case.
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2.2.3 Forcing Scheme

In Lattice Boltzmann Methods, definition of Forcing Schemes are nothing more than

algorithmic recipes for the discretization of the term in the Boltzmann’s Equation

describing the volume forces acting on the fluid. In the literature, many different

forcing schemes are available for classical LBM [54, 57, 77, 127, 128] (see [60] for

comparisons), with each of them showing both advantages and disadvantages.

Within RLBM, the forcing scheme is simply derived by taking the forcing term

in Eq. 2.24

Fext = mKα ∂ f
∂pα

, (2.42)

and by assuming processes close to equilibrium, so that f ∼ f eq, and by taking

the analytic form of the Maxwell-Jüttner distribution, Eq. 1.35, one gets

Fext = mKα ∂ f
∂pα
∼ mKα∂ f eq

∂pα
= −

m
T

KαUα f eq , (2.43)

and therefore one can easily discretized Fext by simply resorting to the discretiza-

tion procedure of the equilibrium distribution function. The only thing left to do

is to give a proper definition of the Minkowsky force. Following [20], and calling

F the classical not-relativistic force, one has that Kα is defined by the following two

equations (γ being the Lorentz Factor)

Kαpα = 0→ K0 =
K · p

p0 (2.44)

K = γF (2.45)

2.2.4 Conversion to Lattice Units

The last thing left to discuss is a process that is often overlooked when dealing with

LBMs: the determination of proper and clear rules for the passage between physical

units to lattice units. Some details on the conversions are already been given, but

will now be summarized.

In general, every physical quantity can be rendered dimentionless and then

brought on the lattice by recurring to some conversion factors C, which are typical
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parameters of the simulation. Any given quantity χ is converted from physical to

lattice in the following way:

χp = Cχχ` . (2.46)

The first and most obvious step one has to discuss is the conversion of length and

time scales. The conversion factor for lengths is provided by the physical distance

between two grid nodes in the lattice, computed as the ratio between a typical length

scale of the system L and the number N of grid nodes in the lattice

Cx = ∆xp =
L
N
, (2.47)

as a consequence, one has

∆x` =
∆xp

Cx
= 1 . (2.48)

For velocities, one chooses Cv = v0

vp = Cvv` = v0v` . (2.49)

Then the time scaling factor comes straightforward as Ct = Cx
Cv

= L
v0N .

Space and Time steps are directly linked by characteristics used in Eq. 2.30, that

require pseudo-particles to move from locations x to x + vi∆t. Additionally, these

jumps have to be performed between an integer number of grid nodes, implying the

following relationship

∆xp = v0∆tp . (2.50)

With these choices, one has

∆t` =
∆tp

Ct
=

∆xp

v0Ct
=

∆x`Cx

v0Ct
= 1 . (2.51)

Lastly thermal energy, temperature, momentum and mass are all converted using

the same conversion factor CT = T0, as already stated in Eq. 2.31

With these prescriptions, one can derive every other single conversion factor.

Some of them are given as an example in the following summary table:
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Lenght Cx = L/N

Velocity Cv = v0

Temperature CT = T0

Time Ct = Cx/Cv

Number Density Cn = 1/(Cx)d

Pressure (dynamic, static, deviator) CP = CTC2
vCn

Energy density Cε = CTCnC2
v

Shear and Bulk viscosity Cη = Cµ = CtCP

Thermal Conductivity Cλ = CtCn

As a final remark, it can be useful to introduce the lattice values for a couple of

adimensional numbers that are commonly encountered in hydrodynamics.

First, we introduce the Knudsen Number Kn, the ratio between the mean free

path between collisions Λ and a typical length L of the system. In relativistic systems,

the mean free path between collisions is computed as the time relaxation time τ times

a relative mean velocity < v >, that can be selected as the Møller speed gø or the

velocity of sound cs (they all have the same order of magnitude)

Λ = τ < v > (2.52)

Therefore, considering that < v >`∼ 1, one has

Kn =
τp < v >p

L
=
τ`
N

(2.53)

This last formula will be used extensively in the next chapters, as the Knudsen

number is used to evaluate the level of rarefaction in the fluid.

Another important value is the Reynolds number, that is defined as

Re =
ρpUpL
ηp

(2.54)

where ρp = mpnp is the mass density of the fluid. Then one has:

Re =
mpnpUpL

ηp

=
m̃n`U`N
η`

(2.55)

where n`, U`, m̃ and N are typical values chosen at the start of the simulation, and

η` can be obtained thanks to the estimates given by the Chapman-Enskog expansion.
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2.2.5 Algorithm

Having illustrated all the required passages needed to derive a RLBM, I will describe

in this section the algorithmic steps that are needed to perform a simulation.

At the start of the simulation, once some initial conditions for the macroscopic

fields Uα
in, Tin and nin are chosen,

Uα(x, t0) = Uα
in(x) ,

n(x, t0) = nin(x) , (2.56)

T(x, t0) = Tin(x) ,

the populations fi(x, t0) are initialized at equilibrium, i.e.

fi(x, t0) = f eq(nin(x),Uα
in(x),Tin(x)) . (2.57)

For each time step, at every point of the grid, the following set of operations is

performed:

1. Particle flow and energy-momentum tensor are computed as discrete sums

over the set of discrete momenta p̃αi . If the quadrature has been correctly

performed, the sums recover exactly the integrals of Eq. 1.17 and Eq. 1.18

Nα =

Npop∑
i

fip̃αi ,

Tαβ =

Npop∑
i

fip̃αi p̃βi .

2. All thermodynamic quantities are obtained and eventually stored on disk,

using the relationships of 3.7.

• ε and Uα are obtained solving the eigenvalue problem

εUα = TαβUβ .

• n is given by n = UαNα

• Temperature T and hydrostatic pressure P are obtained from EOS Eq. 1.40
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• Non equilibrium quantities are obtained from

qα = −
P + ε

n
∆αβNβ ,

$ = −P −
1
d

∆αβTαβ ,

π<αβ> =
(
∆α
γ∆

β
δ −

1
d

∆αβ∆γδ

)
Tγδ .

3. At this point the truncated equilibrium distribution function f eq

iN can be com-

puted using the thermodynamic quantities previously obtained.

4. If there is the need, the discrete forcing term is computed (Sec. 2.2.3).

5. The value for the relaxation time τ is provided at every grid node. This value

can be chosen to be constant or calculated in such a way that one of the transport

coefficients obtained in the Chapman-Enskog expansion (see Ch. 3) is constant.

6. The system is evolved through the Lattice Boltzmann Eq. 2.30

fi(x + vi∆t, t + ∆t) = fi(x, t) −
pαi Uα

c2τ

(
fi(x, t) − f eq

iN

)
+ Fext

i .

Such a process is usually divided into two steps, according to the Streaming &

Collide paradigm:

streaming f ∗i (x, t) = fi(x − vi∆t, t − ∆t) ,

collide fi(x, t) = f ∗i (x, t) −
pαi Uα

c2τ

(
f ∗i (x, t) − f eq

iN

)
+ Fext

i .
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Chapter 3

Derivation and Calibration of

Transport Coefficients

This chapter describes two independent analytic procedures that can be employed

for the derivation of a macroscopic dissipative relativistic theory. These alternative

methods build directly on the description of the fluid at the kinetic layer, and expand

it to the hydrodynamic layer by means of perturbations of the distribution function

f . It will be seen how these two procedures, that in classical non-relativistic theories

give coherent results, are discordant in the relativistic framework.

Also, these techniques are important calibration tools for numerical schemes

based on the kinetic layer, since they provide a description of the transport coeffi-

cients λ, η, µ in terms of the parameters at the mesoscopic layer, which at that point

can opportunely be tuned to describe fluids with the desired macroscopic properties.

Traditionally, two methods have been used to derive hydrodynamics from a

kinetic description of a fluid: Chapman-Enskog’s expansion [22] (CE) and Grad’s

method of moments [53]. In non-relativistic theories both these two methods pro-

vide a theoretical link between the Navier-Stokes-Fourier equations and Boltzmann’s

equation, giving at the same time an equivalent description of the transport coeffi-

cients of a fluid.

Everything is more complicated when moving to relativistic regimes: not only the

hydrodynamic layer is not well defined, but also CE and Grad give different results

for the transport coefficients, this last detail posing not only a theoretical problem

but also a serious obstacle to the development of a relativistic kinetic scheme.

While theoretical shortcomings have been highlighted in Grad’s method also in
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non-relativistic theories [101, 132, 138, 141], the main aspect that makes the method

less reliable is the fact that it consists in an arbitrary truncation of distribution

function’s expansion around its equilibrium value, without resorting to any control

parameter, while CE is a method that is controlled by powers of the Knudsen number,

that carefully controls the validity of the hydrodynamic description.

CE on the other hand does not cure the causality problems highlighted in the

previous section, but nevertheless seems to be the correct approach at determining

the transport coefficients. It has been shown, in fact, that the same results obtained

in CE can be also obtained with Grad once its core expansion is truncated with more

than the canonical 14 moments [31, 32, 34], or when it is augmented with entropic

arguments [66]. Furthermore, totally different approaches also present results equal

to those of CE expansion [73, 74, 139, 140].

It is also worth to point out that different approaches other than the one con-

sidered here for Grad’s method could be considered, namely exspansions of the

distribution function based on irriducible tensors of momenta [31]. Here I mantain

the more semplicistic procedure also used in [20].

In the next sections the main steps of CE and Grad methods are presented ac-

cording to the derivation shown in [20]. For what follows, the Anderson-Witting

relaxation time approximation introduced in Eq. 1.10 is used.

The results of this chapter have already been shown in [26,46,50,51] and presented

in their most general form in [52]. Here I just give a brief account on the material

of [52].

3.1 Chapman-Enskog expansion

The Chapman-Enskog expansion stems from a perturbation in the Knudsen number

Kn (the ratio between the mean free path ` of particles between two subsequent

collisions and a typical length scale L of the system) of the distribution function

around its equilibrium value:

f =

∞∑
n=0

εn f (n) , ε = ε(Kn) , (3.1)

where f (0) = f eq. Since hydrodynamics is the theory of fluids which are close

to equilibrium, I will be considering perturbations only up to the first order in Kn.
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Once the order 1 parameter φ = ε( f (1)/ f (0)) is defined, one has

f ∼ f eq + φ f eq , (3.2)

An intermediate goal is to determine the deviation from equilibrium φ. To do so,

take Eq. 1.5 without forcing terms and using the Anderson-Witting collision model

(Eq. 1.10):

pα
∂ f
∂xα

= −
pαUα

c2τ

(
f − f eq

)
. (3.3)

The first step is to insert Eq. 3.2 into Eq. 3.3, and ignore all O(ε2) contributions:

pα
∂ f eq

∂xα
= −

pαUα

c2τ
φ f eq . (3.4)

This yields φ in terms of the derivative of the Maxwell-Jüttner (Eq. 1.35) distri-

bution, that can be expressed in the following way after some lengthy calculations

φ = −
c2τ

(pµUµ) f eq
pν∂ν f eq =

= −
c2τ

(pµUµ)
pν

[∂νn
n

+ (1 − Gd)
∂νT
T

+
pµUµ

kBT2 ∂νT −
pµ∂νUµ

kBT

]
. (3.5)

Then one can use the above equation to compute the macroscopic fields:

Nβ = c
∫

pβ f eq(1 + φ)
∂p
p0 , Tαβ = c

∫
pαpβ f eq(1 + φ)

∂p
p0 , (3.6)

and by inserting Eq. 3.5 into the macroscopic fields one gets

Nβ = cBZβ − c3τ

[
∂νn
n

Kνβ + (1 − Gd)
∂νT
T

Kνβ +
∂νT
kBT2 BZβν −

∂νUδ

kBT
Kδνβ

]
,

Tαβ = cBZαβ − c3τ

[
∂νn
n

Kναβ + (1 − Gd)
∂νT
T

Kναβ +
∂νT
kBT2 BZναβ −

∂νUδ

kBT
Kδναβ

]
,

where the integrals Zα1...αn , Kα1...αn are given in Appendix .2 (the formula for a22

and a43 are also given in the Appendix).

By resorting to equations given in 3.7 for Landau-Lifshitz decomposition
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$ = −P −
1
d

∆αβTαβ ,

π<αβ> =
(
∆α
γ∆

β
δ −

1
d

∆αβ∆γδ

)
Tγδ , (3.7)

qα = −
P + ε

n
∆αβNβ ,

one can then determine the non equilibrium fluxes qα, $ and π<αβ> and confront

them with the transport equations Eq. 1.66, Eq. 1.67 and Eq. 1.68, obtaining a formula

for the transport coefficients λ, µ and η (check [52] for more detailed calculations)

λ = −c2kBnτGd (a22Gd + 1) ,

µ = Pτ
[
a43

(
1 +

2
d

)
−

ζ2
− G2

d + (d + 2)Gd

ζ2 − G2
d + (d + 2)Gd − 1

]
, (3.8)

η = Pτa43 .

The ultra relativistic limit reads as follow:

λur =
d + 1

d
c2kBnτ , µur = 0 , ηur =

d + 1
d + 2

Pτ . (3.9)

3.2 Grad’s Method of Moments

Also in Grad’s method the distribution function f is expanded around its equilibrium

value f eq. This time, however, the expansion is theoretically thought as a generic

expansion in Hilbert’s space of momenta

f = f eq(1 + λαpα + λαβpαpβ + . . . ) . (3.10)

We remark here that better expansions, built on irreducible tensors of the mo-

menta, might be preferable in order to derive more detailed expressions of the

transport coefficients [31].

Since the order of the expansion is not controlled by any parameter (contrary to

CE), a somewhat arbitrary truncation has to be performed on this expansion. Usually,

the order of the truncation is given by the number of constrains one manages to get
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using the known conditions on the fields n, Uα, T, qα, $, π<αβ>, so that one obtains a

closed system of equations for the unknowns λ, λαβ, etc.

In the derivation I follow, based on [20], a 14 unknowns truncation of Eq. 3.10 is

obtained by means of constraints derived by the integral definitions of Nα, Tαβ, and

the third order moment of the distribution function Tαβγ.

The starting point in the derivation is given by the definition of the entropy

density s (combine Eq. 1.20, Eq. 1.3.1 and Eq. 1.62), the moment defining equations

Eq. 1.17, Eq. 1.18, and the definition of the third order moment of the distribution

function (here taken trace-less, symmetric, Uα orthogonal for simplicity)

s[ f ] = −
kB

c
Uα

∫
pα f log f

dp
p0

, (3.11)

g[ f ] = UαNα
− cUα

∫
pα f

dp
p0

, (3.12)

gβ[ f ] = UαTαβ − cUα

∫
pαpβ f

dp
p0

, (3.13)

g<γβ>[ f ] = UαTα<βγ> − cUα

∫
pαp<βpγ> f

dp
p0

. (3.14)

Then, according to Lagrange’s multipliers method, one defines the functional

F[ f ] = s[ f ] + λg[ f ] + λβgβ[ f ] + λγβg<γβ>[ f ] (3.15)

and minimizes it putting

0 =
∂F[ f ]
∂ f

= −

∫
pαUα

[
kB

c
(
ln f + 1

)
+ c

(
λ + λβpβ + λγβp<γpβ>

)] dp
p0

,

f = exp
(
−1 −

c2

kB
(λ + λβpβ + λγβp<γpβ>)

)
. (3.16)

By splitting all the unknowns into an equilibrium and non equilibrium part, one

realizes that the equilibrium part has to be equal to the Maxwell-Jüttner distribution,

and therefore 3.16 can be written as
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f = f eq exp
(
−

c2

kB
(λneq + λneq

β pβ + λneq

γβp<γpβ>)
)

∼ f eq

[
−

c2

kB
(λneq + λneq

β pβ + λneq

γβp<γpβ>)
]
, (3.17)

where the Taylor approximation of the exponential in the last equality has been

carried since one assumes to have processes close to equilibrium. With this definition,

the distribution function is not yet defined. The λ coefficients can be written in terms

of the non equilibrium fields by inserting Eq. 3.17 into the definitions Eq. 1.17 and

Eq. 1.18 of Nα and Tαβ, and by computing Eq. 3.7.

All the expressions are rather cumbersome, and therefore are not shown here. We

refer to [52] for the full calculations. Suffice to say that with a complete expression

of the distribution function f in terms of qα, $ and π<αβ>, one can derive the third

order moment

Tαβγ = c
∫

pαpβpγ f
dp
p0 , (3.18)

and insert it into the relativistic Boltzmann equation, multiplied by ψ = cpβpγ

and integrated in momentum space, leading to:

Uα(Tαβγ − Tαβγeq ) = −c2τ∂αTαβγ , (3.19)

and use the Maxwellian iteration method so that only the equilibrium part of Tαβγ is

left in the derivative:

Uα(Tαβγ − Tαβγeq ) = −c2τ∂αTαβγeq . (3.20)

Note that the third order moment at the equilibrium, Tαβγeq , can be obtained

directly from Tαβγ by setting to zero the non-equilibrium quantities qα = 0, $ = 0 and

π<αβ> = 0.

By multiplying Eq. 3.20 by respectively ∆δ
βUγ, ∆βγ, and ∆(δ

β ∆ε)
γ −

1
d∆βγ∆

δε, one

can determine the non equilibrium fluxes qα, $ and π<αβ> and confront them with

the transport equations Eq. 1.66, Eq. 1.67 and Eq. 1.68, obtaining a formula for the

transport coefficients λ, µ and η:
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λ = −c2kBnτGd

(
(d + 2)Gd + ζ2

− G2
d

)2

−G2
d (d + ζ2 + 2) + (d + 2)ζ2Gd + ζ4

, (3.21)

µ = Pτ
1

d (Gd(d − Gd + 2) + ζ2 − 1)
× (3.22)(

ζ2(d − 2Gd) + Gd(−d + Gd − 1)(−d + 2Gd − 2)
)2

G2
d (d2 + 8d − 2ζ2 + 12) − Gd (d2 + d (5 − 3ζ2) − 10ζ2 + 6) + ζ2 (−d + 2ζ2 − 2) − (d + 6)G3

d

,

η =
G2

dPτ

(d + 3)Gd + ζ2 . (3.23)

The ultra-relativistic limit (ζ→ 0) of the above expressions writes as:

λur =
d + 1
d + 2

c2τnkB , µur = 0 , ηur =
d + 1
d + 3

Pτ . (3.24)

In Fig. 3.1 the behavior of η, µ and λ with respect to the Relativistic Coldness ζ

is shown for both Chapman-Enskog’s expansion and Grad’s method of moments.

It is possible to appreciate that the two procedures give sensibly different results

(with Grad underestimating all values), with differences that are bigger toward the

ultra-relativistic regime, and disappear in the non-relativistic regime. Later in this

thesis it will be seen how to address this problem of identifying what’s the correct

analysis among the two.

Two additional remarks have to be done: (1), it is worth to note that there is a ζ

region where the bulk viscosity is unexpectedly different than zero. This is a result

that could explain some behaviors in mildly relativistic gases, like those encountered

in relativistic heavy ion collisions [33, 35, 71, 72, 98]. (2), the thermal conductivity, as

it is evident by looking at Fig. 3.1, goes to zero in the non-relativistic limit (ζ → ∞,

even though one would expect to have a non zero value in classical fluids.

This is due to the fact that when one takes the non-relativistic limit λ has to be

correctly made non dimensional:

λnr = lim
ζ→∞

[
c2nkBτ f (ζ)

]
= lim

ζ→∞

[
c2nkBτ
ζ

ζ f (ζ)
]

= lim
ζ→∞

[
PkBτ

m
ζ f (ζ)

]
=

PkBτ
m

d + 2
d

, (3.25)

Which is exactly the well-known non-relativistic value.
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Figure 3.1: Comparison of the transport coefficients in 1, 2, 3-dimensions obtained using CE and

Grad’s method of moments within the Anderson-Witting relaxation time approximation. From top

to bottom, one has thermal conductivity λ, bulk viscosity µ, shear viscosity η. All quantities are

opportunely made dimensionless.
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3.3 Calibration of Transport Coefficients

In the previous two sections it has been shown that there is a discrepancy in the

connection of the macroscopic transport coefficients to the kinetic parameters: the

analytical expressions for λ, µ and η as a function of the relativistic coldness ζ come

out differently depending on the expansion method used to derive hydrodynamics

starting from the kinetic layer.

This poses a theoretical problem, and more than that, in Lattice Boltzmann sim-

ulations a firm grasp and control on the transport coefficients is strongly advised

in order to be able to reproduce dynamical systems with the desired macroscopic

properties by simply tuning the kinetic parameters of the simulation.

For this reason a numerical approach to the determination of the correct expan-

sion method has been adopted through the years [26, 46, 50, 51]. In this context, a

RLBM (like the ones discussed in Ch. 2) is used to numerically evaluate the transport

coefficients with a number of different benchmarks.

In the next sections the results presented in the previous articles have been sum-

marized and extended to 1, 2, 3 spatial dimensions, using third order quadratures

for the velocity stencils and truncation of equilibrium distribution function.

3.3.1 Thermal Conductivity

0 1 2 3 4 5 6 7 8 910 20 30 40 50

ζ

0.0

0.5

1.0

1.5

2.0

λ
τn

(1+1) dimensions

1 2 3 4 5 6 7 8 910 20 30 40 50

ζ

(2+1) dimensions

1 2 3 4 5 6 7 8 910 20 30 40 50

ζ

(3+1) dimensions

Grad

CE

RLBM

Figure 3.2: Numerical estimate of the (non-dimensional) thermal viscosity for a relativistic gas

in (1 + 1), (2 + 1) and (3 + 1) dimensions, shown respectively from left to right. The results are in

agreement with CE analysis.

First, the thermal conductivity λ has been measured. The chosen benchmark,

inspired by [26], consists in considering the following initial conditions along one

single space coordinates x:
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T(0, t0) = Tu

T(L, t0) = Td (3.26)

T(x, t0) = 0 x ∈]0,L[ ,

The macroscopic velocity Uα is set at rest, and the particle density n is set to a fixed

costant value. Through time, a thermal flux develops from one end of the domain

to the other. If ∆T = Tu − Td is chosen sufficiently small, then Eq. 1.68 becomes the

non-relativistic Fourier equation

qx = λ∇xT , (3.27)

and the system reaches a steady state where the temperature gradient becomes

almost constant and the heat flux (also almost constant) is evaluated from the formula

provided in 2.2.5:

qα = −he∆
αβNβ . (3.28)

Therefore by performing spatial averages over the whole spatial domain one is

able to measure the thermal conductivity λ

λ =
< qx >x

< ∇xT >x
. (3.29)

By performing several simulations, each time taking different values for the

relativistic coldness ζ, it is possible to extract functional dependencies λ = λ(ζ) for

every number of spatial dimensions d. The results shown in Fig. 3.2 show once again

that the numerical data are compatible with the CE analysis.

3.3.2 Bulk Viscosity

In order to provide a numerical measure of the bulk viscosity, a particular benchmark

considering a simple flow describing a mono-dimensional time-decaying sinusoidal

wave in a d dimensional periodic domain is considered; this flow is characterized

by sizeable velocity gradients, i.e. tangible compressibility effects, that allow for the

detection of bulk viscosity effects.
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Figure 3.3: Numerical estimate of the (non-dimensional) bulk viscosity for a relativistic gas in (1 +

1), (2 + 1) and (3 + 1) dimensions, shown respectively from left to right. The results are in agreement

with CE analysis.

The initial conditions for such flow are the following: along one single space

coordinate x one considers

ux =
Ux

U0 = u0 sin
(2πx

L

)
x ∈ [0,L] , (3.30)

and all other components of the macroscopic velocity are initialized to 0. Tem-

perature and density are provided a constant initial value.

With such initial conditions, the sinusoidal wave decays with time, until the fluid

goes at rest.

At an intermediate time step in the evolution, a measure of the dynamic pressure

is obtained according to the formula provided in 2.2.5

$ = −P −
1
d

∆αβTαβ , (3.31)

Then, provided that sufficiently low velocities are considered (by properly set-

ting the value v0 in Eq. 3.30), the relativistic divergence appearing in Eq. 1.66 can

be replaced with its non-relativistic counterpart, that can be evaluated via finite

differences methods

$ = −µ∇αUα
∼ −µ∂iui = −µ∂xux . (3.32)

It follows that at each time step of the simulation µ can be estimated with good

accuracy by taking spatial averages over the whole domain
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µ = −
< $ >x

< ∂xux >x
. (3.33)

By performing several simulations, each time taking different values for the

relativistic coldness ζ, it is possible to extract functional dependencies µ = µ(ζ) for

every number of spatial dimensions d. The results shown in Fig. 3.3 show once again

that the numerical data are compatible with the CE analysis.

3.3.3 Shear Viscosity
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Figure 3.4: Numerical estimate of the (non-dimensional) shear viscosity for a relativistic gas in (1 +

1), (2 + 1) and (3 + 1) dimensions, shown respectively from left to right. The results are in agreement

with CE analysis. The results for the (1+1) dimensional case are not available since the Taylor-Green

benchmark is expressed on a bi-dimensional domain.

Lastly, one can turn the attention to the shear viscosity η. The exercise that

follows is directly inspired by the one found in [46], and the benchmark adopted in

this case is an iteration of the Taylor-Green vortexes [135], that is a well known test

for hydrodynamic solvers in the non-relativistic regime as well.

Once a periodic bi-dimensional domain (x, y) ∈ [0,L]x[0,L] is taken, the initial

conditions for such flow read as

ux(x, y, t0) =
Ux

U0 = +u0 cos
(2πx

L

)
sin

(
2πy

L

)
,

uy(x, y, t0) =
Uy

U0 = −u0 sin
(2πx

L

)
cos

(
2πy

L

)
, (3.34)

with all the other components of the macroscopic velocity Uα equal to zero,

density n and temperature T set to a constant fixed value. If u0 is taken sufficiently
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small, the flux is almost non-relativistic, and the solution can be taken similar to the

classical one:

ux = F(t)ux(x, y, t0) (3.35)

uy = F(t)uy(x, y, t0) , (3.36)

The task is now the determination of the time dependency F(t). If the flow is

almost non-relativistic, then it is divergence-free (∆αUα = O(u2
0)) and the dynamic

pressure gives no contribution to the energy-momentum tensor. Tαβ can then be

written as

Tαβ = (P + ε)UαUβ
− Pηαβ + π<αβ> . (3.37)

Then, by setting the balance equation Eq. 1.19

∂αTαβ = 0 , (3.38)

one derives the following differential equation (for sufficiently small u0, one can

ignore all terms that are O(u2
0))

2ηF(t) + F′(t)(P + ε) = 0 , (3.39)

that has solution

F(t) = exp
(
−

2η
P + ε

t
)

(3.40)

considering that P + ε stays approximately constant through time. One can then

integrate over the spatial domain to obtain the averaged quantity < u2 >xy= u2
x + u2

y

(obtained combining Eq. 3.35 and Eq. 3.40) in order to get

< u2 >xy=
1
L2

∫ L

0

∫ L

0
(u2

x + u2
y)dxdy =

u2
0

2
exp

(
−

4η
P + ε

t
)

(3.41)

which gives a way to compute the shear viscosity
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η =
(P + ε

4t

)
log

(
u2

0

2 < u2 >xy

)
. (3.42)

By performing several simulations, each time taking different values for the

relativistic coldness ζ, it is possible to extract functional dependencies η = η(ζ) for

every number of spatial dimensions d. The results shown in Fig. 3.4 show once again

that the numerical data are compliant with the CE analysis.
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Figure 3.5: Comparison between the dimensionless bulk viscosity and the Knudsen number Kn.

As soon as Kn ' 10−2, the linear relationships forecast by CE and Grad’s analysis breaks down, and

there is not anymore a firm connection to the transport coefficients.

As a final remark, one can also point out that the previous analysis can be used

to also evaluate the range of validity of the hydrodynamic approximation. The

forecast made by both CE and Grad is valid as long as the small Knudsen number

hypothesis remain valid, i.e. as long as the hydrodynamic regime is valid (Kn≤ 10−2).

As already seen, Kn is computed on the lattice by setting the value of the relaxation

time τ (Eq. 2.53), and therefore this highlights an important factor to keep in mind

when doing simulations.

Evidence of what has been said is visible in Fig. 3.5, where the dimensionless bulk

viscosity µ/Pτ has been plotted against the Knudsen number Kn, as computed in

Eq. 2.53. The value of the relativistic coldness ζ is set at a fixed value ζ = 10, and the

measure is performed for different values of the relaxation time. It is immediately

evident that the functional dependency on ζ departs from linearity as soon as one

abandons hydrodynamic values of the Knudsen number.
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Chapter 4

Numerical Benchmarks

In this section we provide a couple of numerical benchmarks for the verification of

the scheme shown in Ch. 2. The first is a popular iteration of the Bjorken flow, also

called the mono-dimensional boost invariant expansion model [10]. This benchmark

is common in the community of Heavy-Ion collisions, because it mimics in a basic

way the hydrodynamic evolution of the Quark-Gluon Plasma (QGP) that are formed

during said collisions, and that at a set stage of the evolution can be described by

recurring to relativistic hydrodynamics.

In Sec. 4.1, after introducing the curvilinear Milne coordinates, I give a brief

introduction on the analytical solution of the benchmark (discussed in [4] and here

extended and generalized), discuss how said solution has to be adapted in Cartesian

coordinates, and then show the comparison with the results provided by RLBM, in

the case of ultra-relativistic inviscid gases in (d+1) dimensions. The verification of

RLBM on such flow is shown in this thesis work for the first time.

The second benchmark is the relativistic iteration of the Riemann problem, also

called Sod’s Shock Tube or mono-dimensional shock wave. This test is widely used

in computational fluid dynamics to benchmark solvers in the presence of strong

gradients and discontinuities, both in the classical case [131] and in the relativistic

one [115, 136]. The results shown here can also be found in [49, 52].

4.1 Bjorken Flow

The Bjorken flow is a toy model realized to mimic the behavior of QGP in experiments

of heavy-ion collisions, where two rays of heavy ions are made to collide with each
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other. The collision develops a hot soup of unconfined quarks, that can be described

via hydrodynamics at a set stage of the evolution.

4.1.1 Milne coordinates

In flat space-time the most natural set of coordinates to describe the space is the

Cartesian one, which is used for the development of the RLBM. A generic position

vector is therefore described as (only one spatial coordinates z is highlighted since

only one coordinate is interested in the dynamics, namely the longitudinal coordinate

along which the two rays of particles travel)

xµ = (t, z) . (4.1)

The boost invariant flow is usually described in the literature by recurring to

Milne coordinates [28], as the flow is at rest in said curvilinear coordinates, and

therefore the solution can be more easily found. From now on, every tilded quantity

will be considered as expressed within the Milne basis:

x̃µ = (τ,w) (4.2)

The change of coordinates from Cartesian to Milne is given by the following

transformation rule (No change is implied on the transverse space coordinates):


τ =

√

t2 − z2

w = arctanh
(

z
t

)


t = τ cosh (w)

z = τ sinh (w)
. (4.3)

One can therefore obtain the transformation matrix Λ
µ
ν = ∂x̃µ

∂xν between the two

reference frames, which among other things will provide an expression for the metric

in the new basis:

η̃αβ = (Λ−1)µα(Λ−1)νβ ηµν = diag
(
+1,−τ2

)
(4.4)

η̃αβ = Λα
µ Λ

β
ν η

µν . = diag
(
+1,−

1
τ2

)
(4.5)

Additionally, the curvilinear coordinates define connection coefficients Γαβγ, and

the usual derivative has to be replaced with the covariant derivative:
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Aα
;β = ∂βAα + ΓαβγAγ . (4.6)

Milne’s connection coefficients are defined by

Γ̃αβγ =
1
2
η̃αµ

(
∂βη̃µγ + ∂γη̃βµ − ∂µη̃γβ

)
, (4.7)

Γ̃0
dd = τ Γ̃d

0d =
1
τ

Γ̃d
d0 =

1
τ
, (4.8)

all other connections are zero.

The Bjorken flow is the description of a fluid which is expanding along one spatial

dimension (the z-axis) with velocity β = z
t for |z| ≤ t, starting from an initial time t0.

The Cartesian macroscopic velocity Uα can then be written as

Uα =
1

√

t2 − z2
(t, z) . (4.9)

One can then use the transformation matrix Λ
µ
ν to obtain the corresponding Milne

macroscopic velocity Ũα:

Ũµ = Λ
µ
νUν = (c, 0) . (4.10)

This prescription dictates how to solve for the particle number density n, the

energy density ε, and the temperature T.

4.1.2 Analytic Solution (ideal ultra-relativistic fluid)

In the inviscid regime, no dissipative contribution is given to the particle flow Nα

and energy-momentum tensor Tαβ (meaning that the non-equilibrium quantities in

the two moments are set to zero). Note that in the Milne framework, one has:

Ñα = nŨα , (4.11)

T̃αβ = (ε + P)ŨαŨβ
− Pη̃αβ . (4.12)

The balance equations 1.19 in Milne coordinates assume the form
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0 = Nα
;α = ∂αNα + Γ

β
βαNα , (4.13)

0 = Tαβ;α = ∂αTαβ + Γ
β
µαTµα + ΓαµαTµβ . (4.14)

By imposing such conservation equations, considering Eq. 4.10 and Eq. 4.11 one

gets:

0 = ∂τ(nτ) ,

0 = ∂τ(ε) +
P + ε
τ

, (4.15)

0 = ∂w(P) ,

that has to be solved once the initial conditions

n0 = n(τ0) , ε0 = ε(τ0) , P0 = P(τ0) , T0 = T(τ0) , (4.16)

are provided. In the ultra-relativistic case, Eqs. 4.15 can be solved analytically by

coupling them with the ideal EOS (Eq. 1.40), since in the ultra-relativistic limit one

has Gd = d + 1:

P = nT ,

ε = dP , (4.17)

and one then obtains the solution

n(τ) = n0
τ0

τ
,

ε(τ) = ε0

(
τ0

τ

) d+1
d

, (4.18)

P(τ) = P0

(
τ0

τ

) d+1
d

,

T(τ) = T0

(
τ0

τ

) 1
d

.

On the other hand, in the more general case of massive particles, the additional

dependency of the ideal EOS on temperature (ε = P(Gd(T) − 1)) does not make the
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system of equations analytically solvable. One can though solve numerically for

temperature, by expressing the second equation in 4.15 as

∂τ (T(Gd(T) − 1)) +
T
τ

= 0 . (4.19)

The particle density stays unchanged, and therefore once the temperature is

obtained the energy density and the pressure can be derived from the EOS.

4.1.3 RLBM results

In order to simulate the (ultrarelativistic) Bjorken flow within the framework of

the RLBM, the initial conditions given previously in Milne coordinates have to be

expressed back into Cartesian coordinates. Once a domain z ∈ [−L
2 ,

L
2 ] and an initial

time t = t0 are selected, the initial value τ0 is given by

τ0 =

√
t2
0 −

L2

4
. (4.20)

Therefore to set the initial thermodynamic quantities at t = t0 for all the points

−
L
2 < z < L

2 (that give values of τ > τ0) one will have to refer to Eq. 4.18. The

populations are initialized at equilibrium f eq as usual. The solution Eq. 4.18 reads in

Cartesian coordinates as

n(t, z) = n0

(
t2
0 − L2/4
t2 − z2

) 1
2

(4.21)

P(t, z) = P0

(
t2
0 − L2/4
t2 − z2

) d+1
2d

T(t, z) = T0

(
t2
0 − L2/4
t2 − z2

) 1
2d

β(t, z) =
z
t

No further trick has to be taken, except for an implementation of boundary

conditions. In fact, while in the Milne coordinate system the dynamic is periodic in

space (all thermodynamic variables are constant with respect to the space coordinate

w, and the macroscopic velocity Ũα is always at rest), in Cartesian coordinates there

is the need for a prescription for the ghost nodes immediately outside of the domain.
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Figure 4.1: Comparison of numerical results for the Bjorken flow of an ultra relativistic inviscid

gas of particles in (2+1) and (3+1) dimensions with the analytic solutions Eq. 4.18 and Eq. 4.21. The

initial settings of the flow are t0 = 1.0 f m/c, L = 0.5 f m, N = 1000. On the top panel, four snapshots

at t = 1.1 f m/c are shown against the spatial coordinate z. In the bottom panel the values of the

thermodynamic quantities taken at z = 0 are plotted against τ, and in both cases there is a perfect

match with the analytic solutions. As density and velocity do not depend on dimension, all the

curves in the respective plots are overlapped. The purple and brown marker identify the same points

in the two different coordinate systems.
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At every time step the populations in the left ghost node and right ghost node are

set to be composed of two parts: the equilibrium part is simply the Maxwell-Jüttner

equilibrium computed using the thermodynamic quantities in Eq. 4.18, while the

non equilibrium part is computed using a linear interpolation with the nearest inner

nodes.

Lastly, one final remark on the simulation has to be provided. In order to compare

the thermodynamics quantities against the value of τ, at every time step t one picks

the values of the thermodynamic quantities at z = 0, so that τ(z = 0, t) = t and

w(z = 0, t) = 0.

In Fig. 4.1 the results of the simulations in Cartesian and Milne coordinates are

provided, and a perfect matching with the analytic solutions Eq. 4.18 and Eq. 4.21 is

shown.

4.2 Mono-dimensional Shock Wave

A second test for the validity of the RLBM scheme is provided by the popular Sod’s

shock tube, or mono-dimensional shock wave (also known as Riemann Problem).

This test is widely used in computational fluid dynamics to benchmark solvers in

the presence of strong gradients and discontinuities, both in the classical case [131]

and in the relativistic one [115, 136].

The dynamic develops along one spatial dimension, characterized by the coor-

dinate x ∈ [−L/2,L/2]. At x = 0, a layer splits the fluid, initially at rest, into two

different thermodynamical states

(
P, n, T, β =

Ux

U0

)
=


(PL, nL, TL, 0) x ≤ 0

(PR, nR, TR, 0) x > 0
, (4.22)

where the left quantities are taken bigger than the right ones.

Once the layer is removed, the discontinuity at x = 0 develops into a shock/rarefaction

wave, that travels through the medium decaying with time. An analytical solution

for the problem exists for ultra relativistic gases, in the inviscid regime (Kn → 0)

or in the free-streaming regime (Kn→ ∞). In order to characterize the regime - in

addition to Kn - it is customary to introduce the quantity η/s, the shear viscosity to

entropy density ratio, where s is usually computed as [20]
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s = n
(
Gd − log

( n
neq

))
(4.23)

neq =

∫
f eq

dp
p0 = B(n,T)Z (4.24)

(with the usual definition of the integral Z given in App..2 and the coefficient

B(n,T) defined in Eq. 1.37). In what follows both the two methods will be used to

classify the regime.

As the iteration of RLBM shown in the previous chapters has been thought as

a solver for hydrodynamics, no perfect results are expected for this benchmark in

the free-streaming regime. Nonetheless, in Ch.5 an extension of RLBM specifically

realized to treat this regime will be discussed.

For the moment though only the hydrodynamic regime is examined, meaning

that only low values of η/s are considered, and the other case is left for later treatment.

In the inviscid case as the wave travels through the medium different zones with

distinctive features appear:

• In the unperturbed zones (L) and (R), all fields keep their initial values.

• In the zone (*) a rarefaction wave with head at coordinate xH and tail at coor-

dinate xT travels to the left.

• In the shock zone (C), characterized by the presence of the shock wave, there is

the presence of a discontinuity at x = xC for density and temperature, that will

therefore be labelled with I and II. Pressure and velocity, that do not exhibit a

discontinuity, are instead labelled as PI = PII = PC and βI = βII = βC.

An example of the dynamics is provided in Fig. 4.2, and in Sec. 4.2.1 the analytic

solution for the ultra-relativistic regime is presented.

When considering viscous flows this same scenario appears only with profiles

that are smoothed due to dissipation. As the solutions of the viscid and/or massive

cases would be semi-analytical, and require expensive numerical work, RLBM re-

sults are compared against another numerical solver that is though based on different

working principles:

• Relativistic Boltzmann Equation - Test Particle (RLB-TP) [107–109,112,120,121,

124, 125], a Monte Carlo-enabled solution of the full kernel of the Boltzmann

equation based on test particles method.
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Figure 4.2: Example of the dynamic of a shock/rarefaction wave for a inviscid fluid, when the initial

conditions considered are the ones in Eq. 4.22 (here represented by the dashed blue line). A later

stage of the evolution is shown by the green line, and the various zones presented in the main text

are clearly visible.

4.2.1 Analytic Solution (ideal ultra-relativistic fluid)

The starting step for the derivation of the solution in the rarefaction zone ∗ are the

constitutive equations for an ideal fluid, Euler’s equations Eq. 1.31, that are greatly

simplified in the case of massless particles (ζ = 0). By introducing the variable w = x
t ,

one writes these equations as

(
β − w

)
∂wn = −

n
1 − β2

(
1 − βw

)
∂wβ , (4.25)

(
β − w

)
∂wβ = −

1 − β2

P + ε

(
1 − βw

)
∂wP , (4.26)(

β − w
)
∂wP = −

ΓP
1 − β2

(
1 − βw

)
∂wβ , (4.27)

where

Γ =
cP

cv
=

(
1 +

1
d

)
is the ultra-relativistic adiabatic index. Combining the Eq. 4.26 and Eq. 4.27, and

using the ideal EOS, it is possible to eliminate the pressure derivative
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(
β − w

)2
=

(
1 − βw

)
c2

s , cs = 1/
√

d , (4.28)

and to get as a solution

w± =

(
β ∓ cs

1 ∓ csβ

)
. (4.29)

In what follows only w+ is considered, as it represents a rarefaction wave traveling

to the left. By inserting w+ into equations Eq. 4.25 and Eq. 4.27 one derives equations

for n and P that when are integrated in w give out the following Riemann invariants:

n
(

1 + β

1 − β

) √d
2

= cost. , (4.30)

P
(

1 + β

1 − β

) d+1
2
√

d

= cost. . (4.31)

By computing these invariants at the coordinate xH, the values for density and

pressure in the rarefaction zone are readily obtained

n∗ = nL

(
1 − β∗
1 + β∗

) √d
2

, (4.32)

P∗ = PL

(
1 − β∗
1 + β∗

) d+1
2
√

d

, (4.33)

with

β∗ =
w+ + cs

1 + csw+
. (4.34)

In order to determine the solution in the shock zone C, the Rankine-Hugoniot con-

ditions [134] are applied on the interface between zones C(II) and R. These conditions

express the continuity of the normal component of the energy momentum-tensor,

and after some manipulations write as

nIIβ
′

C√
1 − β′2C

=
nRβ

′

R√
1 − β′2R

, (4.35)

PC

(
1 + β

′2
C d

)
1 − β′2C

=
PR

(
1 + β

′2
R d

)
1 − β′2R

, (4.36)

PCβ
′

C√
1 − β′2C

=
PRβ

′

R√
1 − β′2R

, (4.37)
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where all the primed quantities are given in a reference frame where the shock

front is at rest. By applying a Lorentz boost from this frame to the lab frame one gets

β
′

C =
βC − βs

1 − βsβC
, β

′

R = −βs . (4.38)

Where βs is the shock front velocity in the lab frame. By inserting this into Eq. 4.35,

Eq. 4.36 and Eq. 4.37 one obtains

βs =

√
PR + dPC

d[PC + dPR]
, βC =

√
d(PC − PR)2

[PR + dPC][PC + dPR]
, (4.39)

and

nII = nR

√
PC[PR + dPC]
PR[PC + dPR]

. (4.40)

Next, by considering the interface between zones ∗ and C(I) and Eq. 4.33, the

contact point wT = xT/t is found.

wT =
1 − cs − (1 + cs)

(
PC
PL

) 2
√

d
d+1

1 − cs + (1 + cs)
(

PC
PL

) 2
√

d
d+1

. (4.41)

The pressure on the central plateau PC can be found by numerically solving the

equation β∗(wT) = βC, thus:

(
PL
PC

) 2
√

d
d+1
− 1(

PL
PC

) 2
√

d
d+1

+ 1
−

√
d(PC − PR)2

[PR + dPC][PC + dPR]
= 0 . (4.42)

Finally, the density field nI can be obtained from Eq. 4.32:

nI = n∗(wT) = nL

(PC

PL

) d
d+1

. (4.43)

A summary of the presented solution is given below.

xH = −cs t , xT =
βC − cs

1 − βCcs
t , xC = βC t , xS = βs t
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β(x, t) =



βL x < xH

β∗ = w+cs
1+csw xH < x < xT

βC =

√
d(PC−PR)2

[PR+dPC][PC+dPR] xT < x < xS

βR x > xS

n(x, t) =



nL x < xH

n∗ = nL
(

(1−cs)(1−w)
(1+cs)(1+w)

) √d
2 xH < x < xT

nI = nL
(

PC
PL

) d
d+1 xT < x < xC

nII = nR

√
PC[PR+dPC]
PR[PC+dPR] xC < x < xS

nR x > xS

P(x, t) =



PL x < xH

P∗ = PL

(
(1−cs)(1−w)
(1+cs)(1+w)

) d+1
2
√

d xH < x < xT

PC xT < x < xS

PR x > xS

where w = x
t , βs is

βs =

√
PR + dPC

d[PC + dPR]

and the pressure value PC can be found by numerically solving the equation:

(
PL
PC

) 2
√

d
d+1
− 1(

PL
PC

) 2
√

d
d+1 + 1

=

√
d(PC − PR)2

[PR + dPC][PC + dPR]

4.2.2 RLBM results

As a first result of RLBM, a comparison against the analytical solution for ideal ultra

relativistic fluids is provided in Fig. 4.3, for different values of the spatial dimensions

d. The initial conditions for the flow are the following:
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Figure 4.3: Comparison of RLBM with the analytic solution of the ideal ultra-relativistic Sod shock tube, for different

spatial dimensions. The fields of density (top-left panel), pressure (top-right panel), temperature (bottom-left panel) and

velocity (bottom-right panel) are shown. All quantities are opportunely made dimensionless. The RLBM agrees nicely with

the analytic solution.

(
P, T, β

)
=


(
5.4 GeV/ f md, 400 MeV, 0

)
x ≤ 0(

0.3 GeV/ f md, 200 MeV, 0
)

x > 0
, (4.44)

and density is chosen accordingly to EOS (the reference values for P, T and n are

taken to be the values of the unperturbed left zone). All simulations are conducted

on a grid with N = 6400 lattice points, representing a domain of L = 6.4 fm. The

presented snapshots are taken at t = 3.0 fm/c, and the value of the lattice relaxation

time is chosen reasonably small, so that the value of the Knudsen number computed

as of Eq. 2.53 is reasonably small (for stability reason the Lattice Boltzmann method

can not simulate completely inviscid flows, as the lattice relaxation time τ can not be

chosen < 1/2). The value chosen for τ is 2, and with the chosen spatial discretization

that translates to Kn= τ/N ∼ 3 × 10−4, which is an acceptable value for an almost

inviscid flow.

There is a good match between the numerics and the analytical solutions, showing

that RLBM is capable of reproducing the dynamics with these parameters at every

spatial dimension.

In Fig. 4.4 different masses are considered in the (3+1) dimensional case. In this

case the comparison is performed against other numerical solvers, namely the previ-
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Figure 4.4: RLBM results (dots) for different masses versus the ideal ultra-relativistic analytic

solution of the Relativistic Riemann problem (m = 0) and RLB-TP results (m , 0) in (3+1) spatial

dimensions (represented by the lines). The setup is the same used for the fig. 4.3 (Eq. 4.44 and

following), and the value of η/s is set to 0.1. For the whole set of particle masses considered, the

agreement with the reference solutions is good.

ously cited RLB-TP. In this case the parameter that characterizes the viscous regime

is the shear viscosity to entropy ratio η/s, as this is the usual quantity employed

to characterize flows in QGP simulations. The setting for the flows are the ones

previously stated, and the value of η/s is chosen at η/s = 0.1, that represents a value

for Kn well into the hydrodynamic regime. Again, good agreement between RLBM

and the reference results is found.

Lastly, I show in Fig. ?? the results for RLBM when changing the regime of the

flow, from ideal to free-streaming. As the Knudsen number (here again represented

by the value of η/s) increases, RLBM struggles to reproduce the solution, and even

though the general behavior of the curves is reproduced, a staircase effect appears.

This is the main motivation for the development of an extension of RLBM that is

suited to the reproduction of beyond-hydrodynamic flows and that will be detailed

in the next chapter.
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Chapter 5

Extension of the model to Weakly

Interacting Regimes

Beyond-hydro regimes (characterized by values of the Knudsen number beyond

0.1) are very relevant for QGP, especially with regard to their long-time evolution

after the hydrodynamic epoch [103]. Furthermore, electron conduction in pure

enough materials is almost ballistic [12], and therefore more attuned to beyond-

hydrodynamic descriptions.

As it has been seen in Ch. 4, the RLBM method presented in Ch. 2 fails in

reproducing the dynamics whenever interactions are not strong enough to ensure

the hydrodynamic condition Kn � 1. In this regime (beyond hydrodynamics), the

increasing range of interactions between particles (represented by the decrease in

the relative magnitude of the RHS in Eq. 1.5) does not correct eventual errors in the

streaming dynamics along the (pseudo-)particle trajectories selected by the discrete

velocity stencils.

All in all, being the previously shown RLBM based on a kinetic description of

relativistic gases (which in principle is valid across the whole Knudsen spectrum),

an extension of the algorithm to simulate beyond hydrodynamic regimes should in

theory be possible, and indeed it will be shown in the remaining part of this chapter

that by modifying the momentum space discretization this task can be achieved.

The final goal of the optimized discretization is the implementation of a more

isotropic velocity stencil, capable of covering homogeneously the momentum space.

This goal is achieved at the expense of a very desirable property of lattice kinetic

schemes: perfect streaming, namely the fact that the discrete streaming along trajec-
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Figure 5.1: The Knudsen Spectrum and the ranges of validity of the different fluid descriptions. As

RLBM is a kinetic numerical scheme based on a description of the dynamics at the Boltzmann level, it

should in principle be able to reproduce the whole Knudsen spectrum. On the other hand, the RLBM

iteration described in Ch. 2 has been designed to resolve the hydrodynamic picture (Kn << 1) and

therefore has to be modified in order to work at high Kn regimes.

tories has to connect the nodes of a Cartesian Grid.

This tradeoff enables though the realization of the aforementioned velocity sten-

cils, and opens the possibility of simulating weakly interacting regimes up to the

free-streaming phase (Kn→∞), also called ballistic regime.

This extension of RLBM to the study of high Knudsen flows is inspired by the

work of Ambruş and Blaga [4], and consists in employing off-lattice product-based

quadrature rules in the momentum space discretization, instead of the on-lattice

quadrature process described in 2.2.2. All the other algorithmic steps of RLBM

remain untouched, and therefore in Sec. 5.1 only this new procedure will be detailed.

Next, in section 5.2 results with this new iteration of the scheme will be presented on

the mono-dimensional shock wave benchmark. In [7] there is a detailed explanation

of the technique employed for the momentum discretization in the ultrarelativistic

(2+1)-dimensional case, and in the next sections I will be generalizing the discussion

to the massive case, as well as the (3+1) dimensional case.

5.1 Momentum Space Discretization

In this section a detailed discussion of the new momentum space discretization is

provided to open the possibility of handling beyond hydrodynamic regimes via the

development of off-lattice isotropic stencils that better cover the momentum space.

lxxxviii

Dan
iel

e S
im

eo
ni



The starting point of the new development is the orthogonality condition, Eq. 2.37,

that has to be correctly conserved when moving from continuous integrals to discrete

sums. As the J(n) are polynomials of the momentum variable p̃µ, this means that

proper quadrature rules have to discretize exactly the integrals

Iα1...αk =

∫
ω(p̃0)

k∏
i=1

(
p̃αi

) dp̃
p̃0 , (5.1)

with ∀k ≤ 2N (N being the order of the quadrature, equal or bigger than the

truncation order of the equilibrium distribution function expansion). At this point

it is beneficial to focus on the (2 + 1) and (3 + 1) dimensional cases separately, as the

procedures, while similar in theory, differ for some practical aspects.

We note here that the following procedure is not immediately extended to the

(1 + 1) dimensional case, while it should in principle be working for all dimensions

higher than 3.

5.1.1 (2+1) dimensions

By switching to polar coordinates, and by considering the mass-shell condition

p̃0 =
√

p̃2 + m2, the integral in Eq. 5.1 can be decomposed into a product of two

different integrals, which are named radial integral Iα1...αk
p̃ and angular integral Iα1...αk

Ω
:

Iα1...αk = Iα1...αk
p̃ × Iα1...αk

Ω
, (5.2)

Iα1...αk
p̃ =

∫ +∞

0
w(p̃)(p̃2 + m̃2)

k0
2 p̃kx+kydp̃ , (5.3)

Iα1...αk
Ω

=

∫ 2π

0
(cosθ)kx(sinθ)kydθ , (5.4)

with

w(p̃) = p̃
ω(

√
p̃2 + m̃2)√

p̃2 + m̃2
, (5.5)

and k0, kx and ky accounting for the number of occurrences of the various degrees

of freedom in Iα1...αk , with k0 + kx + ky = k.

This splitting suggests that a possible strategy might be represented by the adop-

tion of a Gauss-product rule between a radial quadrature discretizing Iα1...αk
p̃ , and an

angular quadrature discretizing Iα1...αk
Ω

.
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The radial quadrature can be obtained by considering the change of variables

y =
√

p̃2 + m̃2 − m̃, that sets the radial integral to

Iα1...αk
p̃ =

∫ +∞

0
W(y)Q(y)dy , (5.6)

with the new weight function

W(y) = ω(y + m̃) =
1

2π
e−y+m̃ , (5.7)

and Q(y) a polynomial of degree k if the value kx + ky is even. If it is odd, then

for symmetry reason the angular integral is zero, therefore in this case one does not

have to consider the radial discretization.

As the new weight function is just a rescaled exponential, it is immediately

evident that the correct named quadrature to adopt in this case is the Gauss-Laguerre

quadrature of order 2N:

abscissae yi roots of LN+2(y) = 0 (5.8)

weights w(p̃)
i

yi

2π[(N + 2)2LN+2(yi)]2 (5.9)

The corresponding values for p̃i and p̃0
i can be obtained from yi with back substi-

tution (p̃i
0 = yi + m̃, p̃i =

√
p̃i2

0 − m̃2). The total number of radial nodes comes out to

be N + 1.

The angular integral (independent of the mass) is promptly discretized by con-

sidering that the integrand can be recast into a sum of circular functions of maximum

degree kx + ky. Any circular function of degree K is exactly integrated on the circle

by employing K equally spaced absicissae and fixed weights:

abscissae θ j j
2π
K
, (5.10)

weights w(θ)
j

2π
K
, j = 1 . . .K . (5.11)

Since the maximum value of kx + ky is 2N, one needs to have at least K ≥ 2N + 1.

The quadrature rule can thus be built as the following product:

xc
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Figure 5.2: Some example for the off-lattice stencils depicted in the previous pages. The quadrature

values chosen are N = 3, K = 10, and m̃ = 0.0, 2.0 and 10.0 (from left to right).

p̃µi j =


√

p̃i + m̃2

p̃i cosθ j

p̃i sinθ j

 , (5.12)

wi j = w(p̃)
i w(θ)

j ,
i = 1 . . .N + 1

j = 1 . . .K
. (5.13)

with total number of populations Npop = K(N + 1). In Fig.5.2 the stencils for a set

of different mass values are depicted.

As these stencils require the perfect streaming condition to be relaxed, the usual

stream & collide paradigm has to be modified in order to collect information from

the nodes of the Cartesian grid. In two dimensions, a simple bilinear interpolation

is adopted:

fi(x − vi∆t, t − ∆t) =
1

∆x∆y

{
fi(x − rx − ry,t − ∆t)

(
∆t

∣∣∣vi
x

∣∣∣)( ∆t
∣∣∣vi

y

∣∣∣)
fi(x − ry,t − ∆t)

(
∆x − ∆t

∣∣∣vi
x

∣∣∣)( ∆t
∣∣∣vi

y

∣∣∣)
fi(x − rx ,t − ∆t)

(
∆t

∣∣∣vi
x

∣∣∣)(∆y − ∆t
∣∣∣vi

y

∣∣∣)
fi(x ,t − ∆t)

(
∆x − ∆t

∣∣∣vi
x

∣∣∣)(∆y − ∆t
∣∣∣vi

y

∣∣∣)} (5.14)

with
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rx = sgn(vi
x)∆xx̂ (5.15)

ry = sgn(vi
y)∆yŷ (5.16)

5.1.2 (3+1) dimensions

The procedure in (3+1) dimensions starts from the same steps: by switching to

spherical coordinates, and by employing the mass-shell condition, one writes

Iα1...αk = Iα1...αk
p̃ × Iα1...αk

Ω
, (5.17)

Iα1...αk
p̃ =

∫ +∞

0
w(p̃)(p̃2 + m̃2)

k0
2 p̃kx+ky+kzdp̃ , (5.18)

Iα1...αk
Ω

=

∫
Ω

(sinθ cosϕ)kx(sinθ cosϕ)ky(cosθ)kzdΩ , (5.19)

with

w(p̃) = p̃2ω(
√

p̃2 + m̃2)√
p̃2 + m̃2

, (5.20)

Going through the same change of variable of before, one finds

Iα1...αk
p̃ =

∫ +∞

0
W(y)Q(y)dy , (5.21)

with the new weight function

W(y) = ω(y + m̃)
√

(y2 + 2m̃y) =

√
y2 + 2m̃y

2π
e−y+m̃ , (5.22)

This time though the shape of the new weight function does not suggest any kind

of named quadrature to be adopted, therefore one has to create from scratch the rule.

Such task is possible once a set of polynomials Pk(y) orthogonal with respect to the

weight function W(y) is found. It turns out that such polynomials are the 0 . . . 0

entries of the set of polynomials J(k), that depend only on p̃0 meaning that
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P0(y) = J(0) = 1 (5.23)

P1(y) = J(1)
0 (y + m)

P2(y) = J(2)
00 (y + m)

. . .

PN+1(y) = J(N+1)
0...0 (y + m)

From which one builds the following quadrature rule:

abscissae yi roots of PN+1(y) = 0 (5.24)

weights w(p̃)
i

∫
∞

0
W(y)

PN+1(y)
(y − yi) P′N+1(yi)

dy (5.25)

The angular quadrature is more complicated. The integrand in Iα1...αk
Ω

can be recast

into a sum of spherical harmonics Ym
` (θ,ϕ) of maximum degree `max = kx + ky + kz,

therefore one has now to exactly discretize the integral

∫
Ω

Ym
` (θ,ϕ)dΩ =

Npop∑
k=1

wkYm
`

(
θk, ϕk

)
, ∀` ≤ `max ≤ 2N . (5.26)

There is a number of different discretizations to be adopted in order to exactly

integrate the spherical harmonics on the sphere. Here I describe three of them: the

Gauss-Legendre rule, the Lebedev rule, and the spherical-design rule, all needing a

quadrature order of degree K ≥ 2N.

• In the Gauss-Legendre quadrature, the integration over the solid angle is split

in the coordinates θ and ϕ, and while the integration over the ϕ variable is

discretized using a simple mid-point rule, the integration over the θ variable

gets discretized using a Gauss-Legendre quadrature. In this way one does not

obtain minimal sets of abscissae, and moreover the nodes are not distributed

uniformly on the surface of the sphere.

• The Lebedev quadrature relies instead on the rotational symmetries of the

ochtaedral [130] and ichosaedral [3] group, that if imposed on the final sten-

cil greatly reduce the number of non linear equations to be solved to deter-

mine nodes and weights. These stencils are a great improvement over Gauss-

Legendre, but still show some overlaps.
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• The spherical-design quadrature [30], that is the rule that has been used in this

work, is instead built on the numerical solution of Eq. 5.26, once the weights

are all taken to be equal. Here the set of stencils freely available in [144] has

been used.

All in all, after the set {θ j, ϕ j,w
(θ,ϕ)
j } has been selected, the stencil reads as

p̃µi j =



√
p̃i + m2

p̃i sinθ j cosϕ j

p̃i sinθ j sinϕ j

p̃i cosθ j


, (5.27)

wi j = w(p̃)
i w(θ,ϕ)

j ,
i = 1 . . .N + 1

j = 1 . . .NK

. (5.28)

where NK is the number of nodes in the angular quadrature, dependent on the order

K chosen. The total number of points in the quadrature is Npop = NK(N + 1).

Also in this case the scheme has to be modified at the streaming step with the

addition of a trilinear interpolation scheme:

fi(x − vi∆t, t − ∆t) =
1

∆x∆y∆z

{
(5.29)

fi(x − rx − ry − rz,t − ∆t)
(

∆t
∣∣∣vi

x

∣∣∣)( ∆t
∣∣∣vi

y

∣∣∣)( ∆t
∣∣∣vi

z

∣∣∣)
fi(x − ry − rz,t − ∆t)

(
∆x − ∆t

∣∣∣vi
x

∣∣∣)( ∆t
∣∣∣vi

y

∣∣∣)( ∆t
∣∣∣vi

z

∣∣∣)
fi(x − rx − rz,t − ∆t)

(
∆t

∣∣∣vi
x

∣∣∣)(∆y − ∆t
∣∣∣vi

y

∣∣∣)( ∆t
∣∣∣vi

z

∣∣∣)
fi(x − rx − ry ,t − ∆t)

(
∆t

∣∣∣vi
x

∣∣∣)( ∆t
∣∣∣vi

y

∣∣∣)(∆z − ∆t
∣∣∣vi

z

∣∣∣)
fi(x − rx ,t − ∆t)

(
∆t

∣∣∣vi
x

∣∣∣)(∆y − ∆t
∣∣∣vi

y

∣∣∣)(∆z − ∆t
∣∣∣vi

z

∣∣∣)
fi(x − ry ,t − ∆t)

(
∆x − ∆t

∣∣∣vi
x

∣∣∣)( ∆t
∣∣∣vi

y

∣∣∣)(∆z − ∆t
∣∣∣vi

z

∣∣∣)
fi(x − rz,t − ∆t)

(
∆x − ∆t

∣∣∣vi
x

∣∣∣)(∆y − ∆t
∣∣∣vi

y

∣∣∣)( ∆t
∣∣∣vi

z

∣∣∣)
fi(x ,t − ∆t)

(
∆x − ∆t

∣∣∣vi
x

∣∣∣)(∆y − ∆t
∣∣∣vi

y

∣∣∣)(∆z − ∆t
∣∣∣vi

z

∣∣∣)}

with
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Figure 5.3: Some example for the off-lattice stencils depicted in the previous pages. The quadrature

values chosen are N = 3, K = 8, and m̃ = 0.0, 2.0 and 10.0 (from left to right).

rx = sgn(vi
x)∆xx̂ (5.30)

ry = sgn(vi
y)∆yŷ (5.31)

rz = sgn(vi
z)∆zẑ (5.32)

5.1.3 Decoupling of radial and angular quadratures

With the procedures explained in the previous sections, one opens the possibility

of increasing the isotropy of the stencil by individually tuning the parameters N, K

or NK. This is crucial when moving to regimes characterized by high values of the

Knudsen number, since as the gas becomes more and more rarefied, even small errors

in the velocities space become increasingly detrimental to the numerical solution.

Increases in the isotropy can also be achieved by decoupling the radial and the

angular abscissae; this means that when building the product rule, one can rotate

with different angles the sub-stencils related to different energy shells.

In (2 + 1) dimensions this can be easily done by replacing the angular nodes in

Eq. 5.10 with the following:

θi j =
(
j +

i
N + 1

) 2π
K

. (5.33)

In Fig. 5.3 various stencils decoupled with this technique are shown.

The task is less trivial in (3 + 1) dimensions, as in this case there is a lot more

freedom when specifying the rotations between the sub-stencils.
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In fact, having considered an initial velocity set derived using the spherical design

quadrature rule described above, then one has, for a radial quadrature of order N,

N + 1 overlapped shells of vectors Gi belonging to the set G =
⋃

i Gi.

Then one has to determine the set of angles {αi, γi}, with i = 1 . . .N+1, that defines

the rotation matrix

R(αi, γi) =


cosαi cosγi − sinαi cosαi sinγi

sinαi cosγi cosαi sinαi sinγi

− sinγi 0 cosγi

 . (5.34)

The new stencil G′ is then defined as G′ =
⋃

i R(αi, γi) · Gi.

The approach used to devise this operation can be defined in multiple ways. In

this thesis work the following two methods are considered:

• The different rotation matrices R(αi, γi) can be determined by numerically solv-

ing the Thomson problem [44], that consists in the determination of the position

on the surface of a sphere of electrons such that the electrostatic energy is min-

imized. By taking the nodes of the quadrature as the positions of the electrons,

the matrices R(αi, γi) are iteratively determined by joining the substencils Gi

and solving the associated Thomson problem. As an example, we propose the

iterative process that solves the case N = 3:

1. the substencils G1, G2, G3 are identified using the spherical design quadra-

ture rule, and are represented by the overlapping set of points on the

sphere.

2. G2 is rotated using a rotation R(α2, γ2), with (α2, γ2) parameters to be

determined.

3. The set G′ = G1 ∪ G2 is considered, and the parameters (α2, γ2) are deter-

mined by numerically solving the Thomson problem (i.e. by minimizing

the electrostatic energy between the electrons sitting on the sphere at the

positions given by G′).

4. G3 is rotated using a rotation R(α3, γ3), with (α3, γ3) parameters to be

determined.

5. The set G′′ = G′ ∪ G3 is considered, and the parameters (α3, γ3) are deter-

mined by numerically solving the Thomson problem (i.e. by minimizing
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the electrostatic energy between the electrons sitting on the sphere at the

positions given by G′′). G′′ is the desired stencil.

• The second method is available only for shell numbers that are equal to vertexes

of platonic solids (N + 1 = (4, 6, 8, 12, 20)), consists in finding the rotation

matrices that map one vertex of the solid (one node of a single substencil) to

its other vertexes (the corresponding node on the other substencils).

For the case N = 3 one has for example 4 energy shells, and therefore one con-

siders a tetrahedron (that has four vertexes, dubbed as A,B,C,D). One identifies

then the rotation matrices R as the ones that move one vertex to the other:

1. R(α2, γ2) = moves A into B

2. R(α3, γ3) = moves A into C

3. R(α4, γ4) = moves A into D

When N+1 , (4, 6, 8, 12, 20), this method can be used by identifying as fictitious

Platonic solids with N + 1 vertexes the results of a N + 1 Thomson problem.

For example, if N = 5 one can numerically solve the Thomson problem with

five electrons, and then identify the rotations that move from one vertex to all

the other four.

5.2 Mono-dimensional Shock wave

In this section the previously shown quadrature rules are tested on the same mono-

dimensional shock wave problem of Ch. 4. I confront the RLBM results with an

analytic solution of the ultra-relativistic free-streaming Boltzmann Equation, derived

in Sec. 5.2.1, and resort to LBE-TP for the other viscous regimes.

5.2.1 Analytic Solution (free streaming ultra-relativistic fluid)

The calculations here presented are a generalization of the procedures highlighted

in [4] for the three-dimensional case to a generic number of spatial dimensions.

In order to find the analytic solution of the Mono-dimensional shock wave for

an ultra-relativistic fluid in the free-streaming regime (Kn → ∞), one starts by

considering the relativistic Boltzmann equation Eq. 2.25 in the absence of external

forces, and in the free-streaming regime:
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pα∂α f = 0 . (5.35)

In the mono-dimensional shock wave, the dynamics develop along one single

direction, say along the x̂ axis, therefore the distribution function f (x,v, t) will be

symmetric over the other degrees of freedoms, i.e. depend only on the x coordinates.

p0∂t f + px∂x f = ∂t f + vx∂x f = 0 . (5.36)

Additionally, the initial conditions already presented in Eq. 4.22, i.e.

(
P, n, T, β

)
=


(PL, nL, TL, 0) x ≤ 0

(PR, nR, TR, 0) x > 0
, (5.37)

translate on the distribution function f as

f0 = θ(−x) f eq
L + θ(x) f eq

R , (5.38)

where f eq
L and f eq

R are the equilibrium distribution Eq. 1.35 respectively computed

on the left and right unperturbed zones. By recurring to the method of characteristics

one finds that the solution of Eq. 5.36 is

f (x, p, t) = θ(−x + vxt) f eq
L + θ(x − vxt) f eq

R , (5.39)

and by introducing w = x/t one can write Eq. 5.39 by distinguishing two different

regions, respectively the unperturbed one for |w| > 1, and the perturbed one at

|w| ≤ 1:

f (w, p, vx) =


f eq
L w < −1

f eq
L + θ(w − vx)( f eq

R − f eq
L ) |w| ≤ 1

f eq
R w > 1

(5.40)

In order to define the macroscopic profiles in the perturbed region, one needs to

calculate integrals in the form of Eq. 1.17 and Eq. 1.18. The full form for Nα and Tαβ

in the perturbed region is given by:
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Nα = Nα
L + iα(w)

nR − nL

Ω
(5.41)

Tαβ = TαβL + iαβ(w)
εR − εL

Ω
(5.42)

with Ω = dπd/2

Γ(1+ d
2 ) and

i0(w) =

∫
Ω

θ(wx − vx)dΩ

ix(w) =

∫
Ω

vxθ(wx − vx)dΩ

ixx(w) =

∫
Ω

v2
xθ(wx − vx)dΩ

i0x(w) = ix(w)

i00(w) = i0(w)

iii(w) =
1

d − 1
(i00(w) − ixx(w)) ∀i , x (5.43)

and all other integrals equal to zero. The quantities i0(w), i0(w), and ixx(w) assume

different values depending on the dimension d. Here I give results for the most

common cases d = 2 and d = 3

i(0)(w) =


2π − 2 arccos(w) d = 2

2π(w + 1) d = 3
(5.44)

i(x)(w) =


−2
√

1 − w2 d = 2

π(w2
− 1) d = 3

(5.45)

i(xx)(w) =


π − w

√

1 − w2 − arccos(w) d = 2

2π
3 (1 + w3) d = 3

(5.46)

From the above relations, the thermodynamic quantities can be obtained:

(2 + 1) dimensions:

N0 = nL +

(
1 −

arccos(w)
π

)
(nR − nL) (5.47)

Nx = −

√

1 − w2

π
(nR − nL) (5.48)
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T00 = εL +

(
1 −

arccos(w)
π

)
(εR − εL) (5.49)

T0x = −

√

1 − w2

π
(εR − εL) (5.50)

Txx = PL +

1 −
w
√

1 − w2

π
−

arccos(w)
π

 (PR − PL) (5.51)

Tyy = PL +

−1 +
w
√

1 − w2

π
−

arccos(w)
π

 (PR − PL) (5.52)

(3 + 1) dimensions:

N0 = nL + (1 + w)(nR − nL) (5.53)

Nx =
1
4

(w2
− 1)(nR − nL) (5.54)

T00 = εL +
1
2

(1 + w)(εR − εL) (5.55)

T0x =
1
4

(w2
− 1)(εR − εL) (5.56)

Txx = PL +
1
2

(1 + w3)(PR − PL) (5.57)

Tyy = Tzz = PL +
1
4

(−w3 + w + 2)(PR − PL) (5.58)

5.2.2 RLBM results

In this section I show the improved results that can be obtained on the mono-

dimensional shock wave benchmark by employing the new quadrature rules Fig. 5.4.

The comparison of RLBM results is provided in the free streaming regime against the

ultra-relativistic ideal solution given in 5.2.1, and for intermediate viscous regimes

RLB-TP is used. The comparison is provided in (3+1) dimensions.

The off-lattice stencil adopted for the comparison has Npop = 480 populations,

and settings for the quadratures are as follows:

N = 3 , (5.59)

K = 16 ,

NK = 120 ,
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Figure 5.4: Comparison of RLBM results against RLB-TP and analytics across all ranges of the

Knudsen number, from ideal to the free-streaming regime. The value of the rest mass is set to zero.

With the new off-lattice stencils (N = 3 and NK = 120), RLBM is more than capable to recover the

correct solution even in the free-streaming regime. The comparison with the old on-lattice stencils

can be performed by confronting this figure with Fig. ??.

Obviously this level of discretization is not needed for all viscous regimes, as

in the hydrodynamic regime velocity stencils with less nodes are still sufficient to

reproduce the dynamics. In order to give a feeling of the scaling of the number of

populations with respect to the regime of the flow, in Fig. ?? I have reproduced the

relative error on the pressure field, computed as

λ =
||P − Pref||2

||Pref||2
. (5.60)

where Pref is a RLBM numerical solution performed with improved spatial and

momentum resolution with respect to the previously examined case. It is possible

to appreciate that as one transitions from the hydrodynamic picture to the free

streaming regime, the error goes scales with Npop, until a saturation point is reached

around the value Npop
∼ 480.
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Chapter 6

Relativistic Lattice Boltzmann Method

for Radiative Transfer

In numerical astrophysics, the study of radiation transfer is of determinant im-

portance when dealing with phenomena such as neutron stars mergers [6], core-

collapses supernovae [27, 67] and accretion disks in black holes, where numerical

simulations are vital to compare with experimental findings [39].

Through the years, the need for the study of these phenomena has given rise to a

number of numerical schemes [69, 78, 86, 91, 99, 102, 104, 116, 123, 145], which can be

grouped in two main different categories:

• Hydrodynamic schemes, that solve the ”macroscopic” equations for the first

order moments of the radiative distribution function, typically the radiation

energy density and momentum density. These methods generally resolve only

the low order moments, and some of them rely on some assumption to close

the set of equations (leakage scheme [81,95], flux limited diffusion [15,113] and M1

scheme [16, 129, 137]).

• Monte-Carlo methods that solve directly the Boltzmann equation for photons,

which suffer from the typical numerical noise [40, 93].

All in all, the fact that radiation (in the form of photons or neutrinos) interacts

with a (dynamic) background fluid via emission, absorption and scattering, makes

it so that its evolution can be considered at the kinetic level by a Boltzmann equation

with said phenomena in place of particle collisions [21].
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This opens the possibility for a third approach different than the ones given

above: a Relativistic Lattice Boltzmann Method that relies on the scale of the Boltz-

mann equation and provides solutions for the moments of the radiative distribution

function.

The techniques shown in Ch. 5 come into play as radiation has to be correctly

handled by the scheme both in the optically thin regimes (when radiation weakly

interacts with matter) and in optically thick regimes (strong radiation-matter inter-

action). Therefore the developments of Ch. 5 are central in this kind of scheme,

because in optically thin regimes the radiation is freely streaming, and in order to

reproduce the correct behavior in this regime it is important to have isotropically

defined stencils.

In this thesis work only a general review on the method is provided, with high-

lights on where the developments of Ch. 5 have been used: in Sec. 6.1 a brief the-

oretical background is provided on Radiation Transfer, then the Lattice Boltzmann

Method is described in Sec. 6.2. Then an application of the method to the study of

relativistic jets is discussed.

A more in depth description can be found in [142], where numerous test cases

that highlight the features of the method are considered.

6.1 Theoretical Background

The governing equation in radiation dynamics is given by the Radiative Transfer

Equation (RTE) that can be described through the Boltzmann equation for a gas of

massless particles i.e. photons or neutrinos moving at the speed of light [21].

Fields are expressed in terms of the distribution function fν(x, n̂, t) that accounts

for the energy density carried by photons-neutrinos through an infinitesimal surface

located at x, in the solid angle dΩ in direction n̂, and in the frequency band dν; the

RTE expresses its evolution in time:

1
c
∂ fν
∂t

+ n̂ · ∇ fν = −κa,ν fν + ην + Cs , (6.1)

where κa,ν is the coefficient of the absorption interaction with the background

fluid, ην is the coefficient regulating emission, and Cs represents the scattering term.
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After approximating Cs with the first two terms of a Legendre expansion (Eν and

Fν are respectively the energy and momentum density and κ0/1,ν are the frequency

dependent opacities)

Cs ∼ −κ0,ν fν + κ0,νEν + 3κ1,νn̂ · Fν . (6.2)

Integration of Eq. 6.1 into the frequency domain (gray approximation) yields

1
c
∂I
∂t

+ n̂ · ∇I = −κaI + η + κ0(E − I) + 3κ1n̂ · F . (6.3)

This is an evolution equation for the specific intensity

I(x, n̂, t) =

∫ +∞

0
ν3 fνdν , (6.4)

and its moments

Radiation Energy density E(x, t) =

∫
Ω

I(x, n̂, t)dΩ , (6.5)

Radiation Momentum density F(x, t) =

∫
Ω

I(x, n̂, t)n̂dΩ (6.6)

(all quantities appearing in Eq. 6.3 are frequency integrated). Note that Eq. 6.3 is

functionally similar to the dynamic equations which are at the base of lattice kinetic

solvers such as RLBM, and therefore the same methodologies used for LBM can be

applied to this case study.

6.2 RLBM method

In order to recover a form of Eq. 6.3 more prone to an LB treatment, contributions

from absorption and emission are grouped into a source term S, while the scattering

terms not containing the specific intensity make up a fictitious equilibrium intensity

Ieq:

S = −κaI + η , (6.7)

Ieq = E +
(
3
κ1

κ0

)
n̂ · F , (6.8)
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one has then

1
c
∂I
∂t

+ n̂ · ∇I = −κ0(I − Ieq) + S , (6.9)

with κ0 having the role of a relaxation time in a BGK-like approximation. At

this point, a discretization of the ”velocity space” (the space where vectors n̂, the

direction of propagation of the radiation, live) has to be performed.

In order to do so, one has just to realize that the specific intensity I is a function

only depending on angles, and that the directions n̂ are nothing more than points on

the surface of a sphere (in 3d) or a circle (in 2d). Therefore the angular quadratures

described in Sec. 5.1.1 and Sec. 5.1.2 can be employed.

One has then a set of Npop weights and abscissae (w j, n̂ j) to define the discretized

version of specific intensity

I j(x, t) = I(x, n̂ j, t) , (6.10)

to discretize the equilibrium and source term

S j = −κaI j + η , (6.11)

Ieq

j = E +
(
3
κ1

κ0

)
n̂ j · F , (6.12)

and to compute as discretized sums the energy and momentum density

E ∼
Npop∑

j

I j , (6.13)

F ∼
Npop∑

j

I jn̂ j . (6.14)

At this point the usual space and time discretization can be used, and an evolution

equation for I j is obtained:

I j(x + cn̂ j∆t, t + ∆t) = I j(x, t) − cκ0∆t
[
I j(x, t) − Ieq

j (x, t)
]

+ c∆tS j(x, t) . (6.15)

This equation can be evolved in the algorithm using the usual Stream & Collide

paradigm, together with the interpolation schemes shown in Sec. 5.1.1 and Sec. 5.1.2

in order to recover information from the Cartesian nodes of the grid.
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6.3 Simulation of a relativistic jet

While many test cases are examined in [142], I want to discuss here a test application

based on a realistic astrophysical scenario, namely a simulation of a relativistic jet as

it propagates through the interstellar medium.

Such simulations are important in the study of active galactic nuclei, where they

are produced during the formation of supermassive black holes [105, 111], and in

magnetized neutron star mergers, where they appear together with gamma-ray

bursts [114].

The simulation is set up by coupling the LB scheme previously exposed, that

solves for radiation, to the Relativistic Magneto-Hydrodynamic (RMHD) Solver

BHAC [110], that solves for the fluid.

The coupling is performed in the following way:

1. At every iteration, fluid’s rest mass density ρ, temperature T and three velocity

u are used to compute absorption κ̃a and emission η̃ coefficients, and the

scattering opacities κ̃0 and κ̃1 in the fluid rest frame (where they are more

easily defined [92]), according to the following:

• κ̃a = ρ2T−3.5, according to Rosseland mean opacity for thermal bremsstrahlung

[122]

• η̃ = σSB/πκ̃aT4, which is emissivity obtained from Kirchhoff’s law upon

assuming black-body radiation. σSB = 0.1 is chosen to ensure a moderate

amount of radiation production.

• κ̃0 = 10−3ρ and κ̃1 = 0, to simulate Thomson’s scattering which is propor-

tional to the number of scatters in the medium (hence to the density of

fluid particles) and has no preferred direction.

2. The coefficients are computed in the Eulerian lab frame where the Lattice

Boltzmann method performs the evolution of radiation. The transformation

between the two frames is the following [92, 142]:

κa =
1 − u · n̂√
1 − (u/c)2

κ̃a, η =
(1 − (u/c)2)3/2

(1 − u · n̂)3 η̃

κ0 =
1 − u · n̂√
1 − (u/c)2

κ̃0, κ1 =
(1 − (u/c)2)3/2

(1 − u · n̂)3 κ̃1
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Figure 6.1: Cut through the (x, z) plane for the relativistic jet after t = 125crjet. Shown is the mass

density for the pure-hydro (left) and the coupled hydro-radiation using LB (center) and M1 (right),

over a reference value out of the jet ρamb
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3. The LB code is now ready to perform a simulation step for every one of the Npop

radiation specific intensities, Ii. After collision and streaming are performed,

the macroscopic radiation quantities (the energy E and momentum densities

F) are computed according to 6.13.

4. From theese quantities one computes all the radiative contributions to the

energy-momentum tensor that are needed to evolve the fluid in BHAC. BHAC

then performs a simulation step, and the process starts again from the first item

in this list.

The simulation is arranged following [85]: the jet is injected from the bottom

border of the computational domain imposing a costant inlet velocity in a circular

nozzle, and propagates along the z-axis coordinate. The grid has size 160×160×640

grid cells, where the jet is injected at z = 0 through a nozzle with radius rjet = 10

lattice nodes.

The results of the simulation are compared with a similar one that instead of

the presented LB method uses the M1 code already cited to solve for the radiative

part [143]. In Fig. 6.1 the fluid mass density is shown for three different iterations: on

the left, a pure Relativistic Magneto Hydrodynamic simulation, without radiation

dynamics, is presented. The other two snapshots show instead the iterations with

radiation solved through LB (center) and the M1 scheme (right).

It is possible to appreciate that both the simulations look structurally similar to

the pure RMHD one, with the exception of the LB one being considerably shorter

than the M1. More than being an indication of the fact that the LB scheme might

have some problems, this is due to known errors [41, 42, 143] in the M1 scheme,

that assumes a closure relation for the evolution equation for the first moment of

the specific intensity, and therefore can only track the average direction of radiation

momentum.

In particular, they clearly show the ability of the LB method to handle correctly

scenarios with physical conditions that are very close to those encountered in rela-

tivistic astrophysical phenomena.
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Conclusions

In this thesis a new framework for the simulation of relativistic fluids has been

presented. The method first proposed in [47] has been expanded and generalized

into a mature tool, able to simulate relativistic flows in all relativistic regimes, from

ultra-relativistic to non-relativistic, and across the whole Knudsen spectrum.

The algorithmic description has been purposely kept indipendent of the spatial

dimension, so that the scheme can be adapted to bi-dimensional or three-dimensional

flows with no particular efforts.

I summarize here the main results presented in this work:

• Extension and generalization of the (3+1)-dimensional Relativistic Lattice Boltz-

mann Method proposed in [47] to a generic number of spatial dimensions. The

scheme is tailored for the simulation of flows at every relativistic regime via

the definition of a particle mass-tailored discrete velocity set. The scheme

preserves the main advantages of classical Lattice schemes, such as Perfect

Streaming, or ease of implementation and parallelization.

• Derivation of a link between the kinetic and the hydrodynamic layer, through

an analytic expression for all transport coefficients in all spatial dimensions, us-

ing both Chapman-Enskog expansion and Grad’s method of moments. Then,

RLBM has been used to numerically discern between the two methods. The

obtained results suggest that the Chapman-Enskog expansion is the correct

way of linking the mesoscopic description to hydrodynamics.

Furthermore, these expansion methods provide a calibration procedure for the

Transport Coefficients in the RLBM framework. These are crucial in order to

reproduce the desired dissipative properties in the simulated flows.

• Verification of the method in the form of two different test-cases, the Bjorken

flow and the mono-dimensional Relativistic Sod Shock Tube. The numerical
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data have been confronted to analytical results when possible, or to other

numerical solvers otherwise.

Such results have been given for different values of rest masses, spatial dimen-

sions, and viscous regimes.

• Extension of RLBM to cure the incorrect behavior of the scheme when sim-

ulating flows in weakly interacting regimes. The extension is based on the

implementation of a new discretization procedure for the pseudo-particles’

momenta, that results in more isotropic and better distributed velocity vectors.

• Development and test of a new Lattice Kinetic Scheme for the simulation

of radiative transfer in astrophysical contexts. The scheme draws from the

improvements considered for RLBM and is actually able to reproduce the

dynamic of radiation in both the optically thick or thin regime.

This RLBM method can potentially been used now for the simulation of a wealth

of different relativistic fluid problems across scales from astrophysics and cosmology

to high-energy physics and material science.

There is space for future methodological improvements, e.g. on boundary condi-

tions, which have specific importance in the framework of bi-dimensional flows (the

electron flows studied in laboratories are always physically bounded). Also, when

approaching high macroscopic velocities, LB methods suffer from compressibility

effects, so algorithmic developments are expected in this regard.

Furthermore, a careful analysis of the computational costs associated with the

new off-lattice discretization is needed, in order to be able to employ this technique

on large scale problems. In this context, it would be also interesting to consider

equilibrium distributions other than the Jüttner one, in order to implement quantum

effects into the flow dynamics.

As to applications, the customization of the RLBM scheme to the detailed study

of quark-gluon plasmas dynamics in current and future high-energy experiments,

appears a very appealing topic for future research.

With regards to the LB for Radiative Transfer, a natural prospect is the extension

of the method to General Relativistic framework. This process is complicated by

the curved nature of the Space Time, and by the fact that in this case the collision

step would happen in a different frame with respect to the streaming step (the
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radiation-matter interaction parameters are defined in the co-moving lab frame,

while streaming has to be operated on Eulerian lab frames).
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Appendices

.1 Projector ∆αβ

In this appendix the properties of the Minkowski-orthogonal projector to the fluid

velocity Uα, defined as

∆αβ = ηαβ −
1
c2 UαUβ , (.16)

∆αβ = ηαβ −
1
c2 UαUβ . (.17)

are summarized. In particular, once this tensor introduced, the decompositions of

vectors and tensors in Uα parallel-orthogonal components are straightforward.

By construction, the product of ∆αβ with the velocity Uβ is therefore equal to zero,

and its trace equals the number of spatial dimensions:

∆αβUβ = ∆αβUβ = 0 , (.18)

∆α
α = d . (.19)

It is useful to introduce the short-hand notation

∆α
γ = ∆αβ∆βγ = δαγ −

1
c2 UαUγ , (.20)

together with the following easily verifiable properties:

∆
γ
α∆γβ = ∆αβ , (.21)

∆α
γ∆

γ
β = ∆α

β . (.22)

These projectors can be applied to express a generic vector Aα as the sum of two

terms, respectively orthogonal and parallel to Uα:

Aα = a1
Uα

c
+ aα2


a1 = 1

c UβAβ

aα2 = ∆αβAβ

(.23)
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Likewise, any generic tensor Tαβ can be decomposed into different parts by

combining it with all possible combinations of Uα and the projector ∆αβ:

Tαβ = t1
UαUβ

c2 + tα2
Uβ

c
+ tβ3

Uα

c
+ tαβ4 (.24)

t1 =
1
c

UµUνTµν (.25)

tα2 = ∆α
µUνTµν (.26)

tβ3 = ∆
β
νUµTµν (.27)

tαβ4 = ∆α
µ∆

β
µTµν (.28)

Additionally, one can decompose any Uα-orthogonal tensor (like tαβ4 ) into sym-

metric, antyisimmetric, and simmetric traceless:

Vαβ = V[αβ] + V(αβ) = V[αβ] + V<αβ> + Tr (.29)

where:

V(αβ) =
1
2

(
∆αγ∆βδ + ∆βγ∆αδ

)
Vγδ , (.30)

V[αβ] =
1
2

(
∆αγ∆βδ

− ∆βγ∆αδ
)

Vγδ , (.31)

V<αβ> = V(αβ)
− Tr with Tr =

1
d

∆αβ∆γδVγδ , (.32)

The following properties naturally follow from the definitions above:

UαV(αβ) = 0 ηαβV(αβ) = ∆µνVµν ∆αβV(αβ) = ∆µνVµν , (.33)

UαV[αβ] = 0 ηαβV[αβ] = 0 ∆αβV[αβ] = 0 , (.34)

UαV<αβ> = 0 ηαβV<αβ> = 0 ∆αβV<αβ> = 0 . (.35)

It is at times useful to introduce a decomposition also for the gradient ∂α, by

defining the convective time derivative D and its orthogonal component ∇α:

∂α = ∆αβ∂β +
1
c2 UαUβ∂β = ∇α +

1
c2 UαD , (.36)

with the following useful properties:

Uα∇
α = 0 , (.37)

∇
αUα = ∂αUα . (.38)
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.2 Integrals of the Maxwell-Jüttner distribution

Computed here are some integrals often used in the development of the numerical

methods presented in this work and in the definition of the transport coefficients.

.2.1 Integrals Zα1...αn

Define

Z =

∫
e−

pµUµ

kBT
dp
p0

(.39)

Zα1...αn =

∫
e−

pµUµ

kBT pα1 . . . pαn
dp
p0

. (.40)

All integrals Zα1...αn can be obtained by subsequent derivations of Z with respect

to macroscopic velocity

Zα1...αn = (−kBT)n ∂Z
∂Uα1 . . . ∂Uαn

, (.41)

therefore one will only have to correctly compute this quantity in order to obtain

all the required structures. Z is a Lorentz-invariant quantity which depends only on

UαUα = c2, and therefore can be computed in every frame of reference. Choosing

fluid’s rest frame is of course the best option. Further, since one needs to compute

the derivatives in Eq. .41, one first derive Z for an unconstrained UαUα and, after

performing the derivatives, evaluate the result for UαUα = c2:

Z =

∫
e−

p0

√
UµUµ

kBT
ddp
p0

=

∫
e−
√

UµUµ

kBT

√
m2c2+p2 ddp√

m2c2 + p2
, (.42)

and then switch to spherical coordinates:

ddp = pd−1dp dΩ with
∫

dΩ =
dπ

d
2

Γ
(
1 + d

2

) ,
giving

Z =
dπ

d
2

Γ
(
1 + d

2

) ∫ +∞

0
e−
√

UµUµ

kBT

√
m2c2+p2 pd−1dp√

m2c2 + p2
.
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Changing integration variable p = mc
√

t2 − 1 and defining ζ = mc2/kBT, one has

Z =
dπ

d
2

Γ
(
1 + d

2

) (mc)d−1
∫ +∞

1
(t2
− 1)

d−1
2 −

1
2 e−

ζt
c

√
UµUµdt .

Recalling one useful definition of the modified Bessel function of the second

kind [2]:

Kν(z) =
π1/2(z/2)ν

Γ (ν + 1/2)

∫ +∞

1
e−zt(t2

− 1)ν−1/2dt ,

one finally obtains:

Z = π
d−1

2 2
d+1

2 ζ
d−1

2

(
kBT
√

c

)d−1 K d−1
2

(
ζ
c

√
UµUµ

)
(UµUµ) d−1

4

.

All integrals can now be obtained using Eq. .41; tedious but straightforward

manipulations yield a nice and regular structure. Indeed, defining the coefficients

An:

An = 2
d+1

2 π
d−1

2 ζn+ d−1
2 Kn+ d−1

2
(ζ) , (.43)

one obtains:

Z =

(
kBT

c

)d−1

A0

Zα =

(
kBT

c

)d

A1
Uα

c

Zαβ =

(
kBT

c

)d+1 [
A2

UαUβ

c2 − A1η
αβ

]
Zαβγ =

(
kBT

c

)d+2 [
A3

UαUβUγ

c3 − A2

(
ηαβUγ + ηγβUα + ηαγUβ

c

)]
. . .

Zα1α2...αn =

(
kBT

c

)d+n−1 b n
2 c∑

k=0

(−1)kAn−k
≺ Un−2kηk �

cn−2k

Where

≺ Un−2kηk �= ηα1α2 . . . ηα2k−1α2k︸            ︷︷            ︸
k terms

Uα2k+1Uα2k+2 . . .Uαn︸                ︷︷                ︸
(n-2k) terms

+permutations of indexes.
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In the above, terms like ηαβ, ηβα and UαUβ, UβUα are counted only once. To give an

example, for n = 4, k = 1, we have:

≺ U2η1 � = ηα1α2Uα3Uα4 + ηα1α3Uα2Uα4 + ηα2α3Uα1Uα4

+ ηα1α4Uα3Uα2 + ηα4α3Uα2Uα1 + ηα2α4Uα1Uα3 .

.2.2 Integrals Kα1...αn

In the derivation of the Chapman-Enskog expansion, the integrals defined as

K = B(n,T)
∫

e−
pµUµ

kBT

pµUµ

dp
p0

, (.44)

Kα1...αn = B(n,T)
∫

e−
pµUµ

kBT
pα1 . . . pαn

pµUµ

dp
p0

, (.45)

have been encountered. The tensorial structure of said integrals has to be similar

to the one of the Zα1...αn , therefore one can write down:

Kα =
n

kBT
a11

Uα

c

Kαβ =
n
c

[
a21

UαUβ

c2 − a22η
αβ

]
Kαβγ =

nkBT
c2

[
a31

UαUβUγ

c3 − a32

(
ηαβUγ + ηγβUα + ηαγUβ

c

)]
. . .

Kα1...αn =
n(kBT)n−2

cn−1

b
n
2 c∑

k=0

(−1)kan(k+1)
≺ Un−2kηk �

cn−2k

where the 1 + bn
2 c coefficients an(k+1) are to be determined. From the definition,

one gets the following property

UαnKα1...αn = B(n,T)Zα1...αn−1 . (.46)

that gives bn+1
2 c equations for the unknown coefficients, obtained by matching

equal tensorial terms in both UαnKα1...αn and B(n,T)Zα1...αn−1 :

an(k+1)

(n − 2k − 1)!
−

an(k+2)

(n − 2k − 2)!
θ
(
b
n
2
c − 1 − k

)
=

2kk!
(n − 1)!

An−1−k

A1
, (.47)
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which is valid for 0 ≤ k ≤ bn−1
2 c. The remaining condition to close the system of

equations (needed only for even values of n) is given by observing that

Kα1...αn
αn = (mc)2Kα1...αn−2 . (.48)

By applying multiple times this property, one gets for the case n even:

Kα1...αn/2
α1...αn/2

= (mc)nK , (.49)

that means that one has to be able to correctly compute the integral K to be able

to define all the Kα1...αn with n even. To do so, one can proceed in the same way

employed for the integral Z

K = B(n,T)
∫

e−
pµUµ

kBT

pµUµ

dp
p0

=
nζddπ

d
2

cA1(mc)2Γ(1 + d
2 )

∫
∞

1

e−ζt(t2
− 1)

d−1
2

t
dt (.50)

and go on with the calculation by splitting the cases d even and odd, using

Newton’s binomial rule, and re-expressing everything in term of a single formula

χ =
m2c3

n
K =

ζddπ
d
2

A1Γ(1 + d
2 )

b
d−1

2 c∑
k=0

(
b

d−1
2 c

k

)
(−1)b

d−1
2 c−kI1−2k(ζ) , (.51)

with

I1−2k(ζ) =


E1−2k(ζ) =

∫
∞

1
e−ζt

t1−2k dt d even

Ki1−2k(ζ) =
∫
∞

1
e−ζt

t1−2k
√

t2−1
dt d odd

, (.52)

which are respectively the Generalized Exponential Integral Function and the Bickley-

Naylor Function.

We give here the first coefficients, already factorized in terms of the previously

defined value Gd = A2
A1

a11 =
1
ζ2

(Gd − (d + 1))

a21 = 1 +
1
d

(χ − 1) a22 =
1
d

(χ − 1)

a31 = Gd + 2 a32 = 1

a41 =
3dGd − 3ζ2χ + 3ζ2

d(d + 2)
+ (d + 6)Gd + ζ2 a42 =

d(3d + 7)Gd − ζ2χ + ζ2

d(d + 2)
a43 =

Gd − ζ2χ + ζ2

d(d + 2)
.
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Note here that in order to get the transport coefficients in the Chapman-Enskog

procedure only a22 and a43 are needed.
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