
DEPARTMENT OF COMPUTER SCIENCE

Utilizing Mobile Nodes in Wireless Sensor Networks and

IoT Networks

Natalie Temene

A dissertation submitted to the University of Cyprus

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

December, 2022

Nata
lie

 Tem
en

e

© Natalie Temene, 2022

Nata
lie

 Tem
en

e

VALIDATION PAGE

Doctoral Candidate: Natalie Temene

Doctoral Dissertation Title: Utilizing Mobile Nodes in WSNs and IoT Networks

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy at the Department of Computer Science and was

approved on December 12 , 2022 by the members of the Examination Committee.

Examination Committee:

Research Supervisor
Professor Chryssis Georgiou

Research Supervisor

Associate Professor Vasos Vassiliou

Committee Chair
Associate Professor George Pallis

Committee Member
Professor Anna Philippou

Committee Member
Professor Sotiris Nikoletseas

Committee Member
Assistant Professor Chrysostomos Chrysostomou

iii

Nata
lie

 Tem
en

e

DECLARATION OF DOCTORAL CANDIDATE

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original

work of my own, unless otherwise mentioned through references, notes, or any other state-

ments.

Natalie Temene

.

iv

Nata
lie

 Tem
en

e

Περίληψη

Η λειτουργία του Διαδικτύου των Πραγμάτων και των Ασύρματων Δικτύων Αισθητήρων

συχνά μπορεί να διακοπεί λόγω σοβαρών προβλημάτων, όπως τη συμφόρηση, την απο-

σύνδεση διαδρομής, τα σφάλματα κόμβων και τις επιθέσεις ασφαλείας. Αυτά τα ζητήματα

προκύπτουν κυρίως από τους περιορισμούς που έχουν αυτά τα δίκτυα όσον αφορά τη

μνήμη, την υπολογιστική ισχύ και την ενέργεια. Σημαντικό ερευνητικό ενδιαφέρον για

την αντιμετώπιση των προαναφερθέντων ζητημάτων αποτελεί η μέθοδος που χρησιμοποιεί

κινητούς κόμβους που μεταφέρονται από κινητά ρομπότ. Η χρήση κινητών οντοτήτων

αυξάνει τους πόρους και τη χωρητικότητα του δικτύου, με απώτερο σκοπό την επέκταση

της διάρκειας ζωής του δικτύου.

Στην παρούσα διδακτορική διατριβή παρουσιάζουμε αλγοριθμικές λύσεις που έχουν

στόχο τη χρήση και επαναχρησιμοποίηση κινητών κόμβων στο δίκτυο για επίλυση διάφο-

ρων προβλημάτων, όπως για παράδειγμα τη συμφόρηση και τα σφάλματα κόμβων.

Η πρώτη αλγοριθμική λύση που παρουσιάστηκε αποτελείται από ένα αλγόριθμο ελέγ-

χου συμφόρησης που χρησιμοποιεί κινητούς κόμβους, και περιλαμβάνει δυο παραλλαγές

ώστε να μπορεί να βοηθήσει τους υπάρχοντες αλγορίθμους ελέγχου συμφόρησης στην

αντιμετώπιση του προβλήματος. Η πρώτη παραλλαγή χρησιμοποιεί κινητούς κόμβους για

να δημιουργήσει τοπικά ενναλακτικά μονοπάτια προς τη βάση, ενώ η δεύτερη παραλλαγή

χρησιμοποιεί κινητούς κόμβους για να δημιουργήσει ανεξάρτητα μονοπάτια προς τη βάση.

Μια άμεση επέκταση της πρώτης παραλλαγής του αλγορίθμου, περιλαμβάνει την ει-

σαγωγή του όρου «επαναχρησιμοποίηση» για τους κινητούς κόμβους. Οι κινητοί κόμβοι

μπορούν να επαναχρησιμοποιηθούν σε περιπτώσεις όπου το τρέχον πρόβλημά έχει επιλυθεί

και δεν χρειάζονται πλέον, καθώς και όταν το ενεργειακό τους επίπεδο τους επιτρέπει να

i

Nata
lie

 Tem
en

e

αναλάβουν μια νέα εργασία. Η προσθήκη του ελέγχου της κατανάλωσης ενέργειας των κι-

νητών κόμβων στο δίκτυο παρέχει τη δυνατότητα της αντικατάστασης ενός εξαντλημένου

κινητού κόμβου εγκαίρως πριν εμφανιστεί ένα νέο πρόβλημα ή την επαναχρησιμοποίησή

του σε μια νέα θέση για την επίλυση ενός νέου προβλήματος που εμφανίστηκε.

Μια ρεαλιστική επέκταση της προηγούμενης εργασίας περιλαμβάνει τη χρήση κινητών

μεταφορέων για τη μετακίνηση των κινητών κόμβων στο δίκτυο. Εδώ εξετάζεται η ιδέα

της χρήσης κινητών μεταφορέων που θα είναι υπεύθυνοι για τη μετακίνηση των κινητών

κόμβων μέσα στο δίκτυο ώστε να τοποθετηθούν στις υπολογιζόμενες για αυτούς θέσεις.

Η επέκταση αυτή αποτελείται από δυο προσεγγίσεις, την παραμονή και την επιστροφή, που

βασίζεται στην επόμενη ενέργεια του κινητού μεταφορέα. Στην προσέγγιση παραμονής,

ο κινητός μεταφορέας μετά από κάθε μετακίνηση ενός κινητού κόμβου, παραμένει εκεί

μαζί του έως ότου λάβει διαφορετικές οδηγίες από τη βάση. Ενώ στην προσέγγιση επι-

στροφής, ο κινητός μεταφορέας μετά από κάθε μετακίνηση που πραγματοποιεί, επιστρέφει

στην αρχική του θέση. Αυτός ο αλγόριθμος είναι σε θέση να χρησιμοποιεί την ενέρ-

γεια του κινητού κόμβου στο έπακρο χωρίς να λαμβάνει υπόψη τη διαδικασία επιστροφής,

η οποία αποτελεί μέρος του κινητού μεταφορέα, ενώ, παράλληλα, ο κινητός μεταφορέας

πραγματοποιεί τη μεταφορά του επιτυχώς και αποτελεσματικά.

Για την επέκταση του εύρους των προβλημάτων που αντιμετωπίζονται, μια νέα αλ-

γοριθμική λύση παρουσιάστηκε που εστιάζει στην αντιμετώπιση σφαλμάτων στο δίκτυο.

Παρουσιάζεται ένα Πλαίσιο Διαχείρισης Σφαλμάτων που χρησιμοποιεί κινητούς κόμβους

και αποτελείται από δυο μηχανισμούς: ένα αποκεντρωμένο μηχανισμό διαχείρισης σφαλ-

μάτων και ένα κεντρικοποιημένο μηχανισμό διαχείρισης σφαλμάτων. Ο πρώτος μηχανισμός

χρησιμοποιεί μια αποκεντρωμένη μέθοδο ανίχνευσης σφαλμάτων και μια τοπική μέθοδο

ανάκτησης που χρησιμοποιεί κινητούς κόμβους, ενώ ο δεύτερος μηχανισμός χρησιμοποιεί

μια κεντρικοποιημένη μέθοδο ανίχνευσης και ένα μια μέθοδο ανάκτησης που δημιουργεί

ii

Nata
lie

 Tem
en

e

μονοπάτια που αποτελούνται αποκλειστικά από κινητούς κόμβους.

Οι αλγοριθμικές λύσεις που εστιάζουν στο πρόβλημα της συμφόρησης, δείχνουν ση-

μαντική συμβολή στην άμβλυνση του προβλήματος αυτού τόσο στα Ασύρματα Δίκτυα

Αισθητήρων όσο και στο Διαδίκτυο των Πραγμάτων. Επιπλέον, οι αλγοριθμικές λύσεις

που εστιάζουν στο πρόβλημα των σφαλμάτων, παρουσιάζουν σημαντική συμβολή στη δια-

δικασία ανίχνευσης και ανάκτησης σφαλμάτων σε αυτά τα δίκτυα. ΄Ολες οι αλγοριθμικές

λύσεις έχουν την προοπτική να χρησιμοποιηθούν για άλλους τύπους δικτύων, καθώς και

άλλα προβλήματα που μπορούν να προκύψουν στα δίκτυα αυτά.

iii

Nata
lie

 Tem
en

e

Abstract

The operation of the Internet of Things (IoT) networks and Wireless Sensor Networks (WSNs)

is often disrupted by a number of problems, such as congestion, path disconnections, node

faults, and security attacks. These issues are the results of the limitations these networks

provide in terms of memory, computational power, and energy. A method that gains signif-

icant research interest for tackling the aforementioned issues is the employment of mobile

nodes or nodes deployed by mobile robots. The use of mobile elements essentially increases

the resources and the capacity of the network, which results in increasing the lifetime of the

network.

This thesis proposes algorithmic solutions that utilize mobile nodes and contribute signif-

icantly to the alleviation of different network problems, such as congestion and node failure.

The first algorithmic solution presented is the Node Placement Algorithm (NPA) that

consists of two variations to assist existing congestion control algorithms in facing conges-

tion in WSNs. The first variation, called Dynamic Node Placement Algorithm, employs

mobile nodes that create locally significant alternative paths leading to the sink, whereas the

second variation, called Direct Path Node Placement Algorithm, employs mobile nodes that

create individual (disjoint) paths to the sink.

An immediate extension of the NPA algorithm, called Energy-aware Node Placement

Algorithm (eNPA), includes the introduction of the term “reuse” to the mobile nodes. Mobile

nodes are able to be reused in cases where their current problem has been resolved and they

are not needed anymore, as well as when their energy level allows them to take on a new

task. The addition of considering the energy consumption of the mobile nodes in the network

provided a helpful task. This task was able to replace an energy exhausted mobile node in

iv

Nata
lie

 Tem
en

e

time before a new problem occurred or reuse it in a new position for resolving a new problem

occurrence.

A realistic extension of the previous work, called Carrier-based Node Placement Algo-

rithm (cNPA), includes the use of mobile carriers that carry the mobile node in the network.

The concept of mobile carriers as the transportation means that will move the mobile nodes

around the network to position them to the calculated location is examined. This concept

was examined via two approaches, stay and leave, based on the next action of the carrier. In

the stay approach, the mobile carrier, after each transportation, stays with its assigned mobile

node until instructed otherwise from the sink node. In the leave approach, the mobile carrier,

after each task, returns to its initial position. This algorithm uses the energy consumption of

each mobile node to the fullest without considering the returning process, which is part of

the carrier, while the carrier performs its transportation effectively and efficiently.

To extend the range of use cases, a new algorithmic solution is presented that focuses

in dealing with faults in the network. The Fault-Tolerant Node Placement Algorithms (FT-

NPA) is presented that consists of two variations: the decentralized and the centralized. The

Decentralized FTNPA uses a decentralized detection mechanism and a local recovery mech-

anism that uses mobile nodes, whereas the Centralized FTNPA uses a centralized detection

mechanism and its recovery mechanism creates alternative mobile nodes paths.

The evaluation of all algorithms was performed with the use of the COOJA simulator

of Contiki OS. The different approaches were compared to different scenarios of the algo-

rithm. The results show that all algorithms are able to mitigate the problem that occurs in the

network.

The algorithmic solutions that focus on the use case of congestion, show a significant

contribution to the alleviation of the problem of congestion in IoT and WSNs. Additionally,

the algorithmic solutions that focus on the use case of faults, show a significant contribution

v

Nata
lie

 Tem
en

e

to the detection and recovery process of faults in IoT and WSNs. All algorithmic solutions

have the potential of being used for other types of networks, such as Smart Cities and Indus-

trial IoT (IIoT), as well as different network problems, such as malicious attacks and data

modifications.

Overall, the thesis combines theory and practice by, on the one hand, developing novel

algorithmic solutions addressing challenges at different layers and aspects (such as position-

ing, energy, transportation, and fault-tolerance), while, on the other hand, implementing and

evaluating the solutions using simulators and identifying interesting performance trade-offs

for different methods and approaches.

vi

Nata
lie

 Tem
en

e

Acknowledgments

My PhD work wouldn’t have been possible without the guidance of my thesis supervisors,

Professor Chryssis Georgiou and Associate Professor Vasos Vassiliou. Their continuous

support, inspiring guidance, invaluable encouragement, and immense knowledge pushed me

to sharpen my way of thinking and brought my work to a higher standard. I would like to

thank each one of them separately for all the practical and financial support, for keeping their

office door always open, and particularly, for the precious time that they invested in me.

My deep gratitude goes towards Dr. Charalampos Sergiou and Dr. Christiana Ioannou

for their guidance and persistent help during my academic years. Firstly, I would like to

thank Charalampos for his continuous support all these years in my research, as well as, his

patience in reviewing my writings. Furthermore, I would like to thank Christiana for always

believing in me. Her emotional and practical support during these years was an important

guidance for accomplishing this work.

I am very thankful to the team members of the “Foundations of Computing Systems

and Theoretical Computer Science Laboratory” and the “Networks Research Laboratory” at

the University of Cyprus for being around at times of very intense effort, expressing their

support, and providing useful feedback. I am thankful to the members of the faculty of the

department of Computer Science with whom I have collaborated over these years as part

of my teaching assistance duties, and for always displaying a constructive high standard of

professionalism in their duties. Similarly, I would also like to thank the Department’s staff

who willingly and patiently provided their important services whenever required.

Finally, my deepest gratitude goes to my parents, Kyriacos and Maria, for their care and

patience over these long years of my studies. Without their encouragement this would have

vii

Nata
lie

 Tem
en

e

been impossible. Their support and love gave me the extra push and incentive I needed

to remain focused on my goal. I cannot forget to thank my friends, for providing happy

distractions to rest my mind outside of my research.

viii

Nata
lie

 Tem
en

e

Thesis Contributions

This thesis is founded on the knowledge acquired by the author’s involvement in the author-

ship of the following journal articles and conference papers:

Journal Articles
1. Natalie Temene, Charalampos Sergiou, Chryssis Georgiou, and Vasos Vassiliou. A

Survey on Mobility in Wireless Sensor Networks. Ad Hoc Networks, Vol. 125, Febru-
ary 2022.

2. Natalie Temene, Charalampos Sergiou, Christiana Ioannou, Chryssis Georgiou, and
Vasos Vassiliou, A Node Placement Algorithm Utilizing Mobile Nodes in WSN and
IoT Networks. In Telecom, Vol. 3, No. 1, pp. 17-51, Multidisciplinary Digital Pub-
lishing Institute, January 2022.

Conference and Workshop Proceedings
3. Natalie Temene, Andreas Naoum, Charalampos Sergiou, Chryssis Georgiou, and Va-

sos Vassiliou. A Decentralized Node Placement Algorithm for WSNs and IoT Net-
works. Proceedings of the 8th IEEE World Forum on Internet of Things, IEEE WFIoT
2022, Yokohama, Japan, 26 October - 11 November, 2022.

4. Natalie Temene, Andreas Naoum, Charalampos Sergiou, Chryssis Georgiou, and Va-
sos Vassiliou. A Centralized Node Placement Algorithm in WSNs and IoT Networks.
Proceedings of the Global Information Infrastructure and Networking Symposium,
GIIS 2022, pp. 25-29, Argostoli, Kefalonia Island, Greece, 26 - 28 September, 2022.

5. Natalie Temene, Charalampos Sergiou, Chryssis Georgiou, and Vasos Vassiliou. Uti-
lizing Carriers for the Energy Node Placement Algorithm in WSN and IoT Networks.
Proceedings of the 18th International Conference on Distributed Computing in Sensor
Systems, DCOSS 2022, pp. 207-214, Los Angeles, California, USA, May 30 - June 1,
2022.

6. Natalie Temene, Charalampos Sergiou, Christiana Ionannou, Chryssis Georgiou, and
Vasos Vassiliou. Energy Efficient Mechanism for Reusing Mobile Nodes in WSN
and IoT Networks. Proceedings of the 17th International Conference on Distributed
Computing in Sensor Systems, DCOSS 2021, pp. 287-294, Online, July 14-16, 2021.

7. Antonia Nicolaou, Natalie Temene, Charalampos Sergiou, Chryssis Georgiou, and Va-
sos Vassiliou. Utilizing Mobile Nodes for Congestion Control in Wireless Sensor Net-
works. Proceedings of the 30th IEEE Annual International Symposium on Personal,
Indoor and Mobile Radio Communications, PIMRC 2019, pp. 1-7, Istanbul, Turkey,
September 8-11, 2019. Also as arXiv preprint arXiv:1903.08989.

ix

Nata
lie

 Tem
en

e

8. Antonia Nicolaou, Natalie Temene, Charalampos Sergiou, Chryssis Georgiou, and Va-
sos Vassiliou. Utilizing Mobile Nodes for Congestion Control in Wireless Sensor Net-
works. Proceedings of the 15th International Conference on Distributed Computing in
Sensor Systems, DCOSS 2019, pp.176-179 Santorini, Greece, May 29-31, 2019.

9. Charalampos Sergiou, Vasos Vassiliou, Chryssis Georgiou, Christiana Ioannou, Na-
talie Temene, and Aristodemos Paphitis. Competition: Dynamic Alternative Path
Selection in Wireless Sensor Networks. Proceedings of the 2017 International Con-
ference on Embedded Wireless Systems and Networks, EWSN 2017, pp. 276-277,
Uppsala, Sweden, February 20-22, 2017.

x

Nata
lie

 Tem
en

e

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 The Extension of the MobileCC Framework 2

1.3 Contribution . 4

1.4 Document Structure . 6

2 State of the Art 7

2.1 Review of Existing Surveys on Mobility 10

2.2 Review of Mobility Algorithms . 14

2.2.1 Mobile Sink . 15

2.2.2 Mobile Nodes . 25

2.2.3 Discussion . 32

3 The Node Placement Algorithm 33

3.1 Dynamic Node Placement Algorithm . 34

3.1.1 Identification of Defected and “Defecting” nodes 34

3.1.2 Calculation of Extra Resources . 37

3.1.3 Calculation of the Position that the Mobile Node Should Move to . 37

3.2 Direct Node Placement Algorithm . 39

3.2.1 Calculation of the Position of the First Mobile Node 40

3.2.2 Creation of a Path Consisting of Mobile Nodes 40

4 The Energy-aware Node Placement Algorithm 41

4.1 Mobile Node . 42

4.1.1 Network Usage Function . 43

4.1.2 Energy Usage Function . 44

4.2 Sink Node . 44

4.2.1 Analysis . 46

4.3 In-use Node . 47

4.3.1 The Search Methods . 47

xi

Nata
lie

 Tem
en

e

5 The Carrier-based Node Placement Algorithm 52

5.1 Mobile Node . 52

5.2 Carrier . 54

5.2.1 Stay Approach . 54

5.2.2 Leave Approach . 55

5.3 Sink Node . 56

5.3.1 Choose Mobile Node and Carrier Function 58

5.4 In-use Node . 60

6 The Experimental Evaluation 61

6.1 Evaluation Setup . 61

6.2 Evaluation Metrics . 63

6.3 Evaluation of NPA . 64

6.3.1 Evaluation Scenarios . 65

6.3.2 Evaluation Results . 66

6.4 Evaluation of eNPA . 70

6.4.1 Evaluation Scenarios . 70

6.4.2 Evaluation Results . 74

6.4.3 Evaluation of eNPA with Different Energy Models 77

6.5 Evaluation of cNPA . 86

6.5.1 Evaluation Scenarios . 86

6.5.2 Evaluation Results . 89

6.6 Comparison between NPA, eNPA and cNPA 94

7 The Fault Tolerant Node Placement Algorithm 96

7.1 Mobile Fault Tolerant Framework . 97

7.2 The Fault Tolerant Node Placement Algorithm 98

7.2.1 Decentralized Fault Tolerant Node Placement Algorithm 98

7.2.2 Centralized Fault Tolerant Node Placement Algorithm 103

7.3 Experimental Evaluation of FTNPA . 107

7.3.1 Evaluation Setup . 108

7.3.2 Evaluation Scenarios . 109

7.3.3 Evaluation Metrics . 115

7.3.4 Evaluation Results . 116

xii

Nata
lie

 Tem
en

e

7.3.5 Comparison between DFTNPA and CFTNPA 124

8 Conclusions 127

8.1 Summary . 127

8.2 Future Work . 129

8.2.1 Short-term Extensions of the Thesis Work 129

8.2.2 Long-term Extensions of the Thesis Work 130

A Algorithm Flowcharts 143

A.1 Dynamic MobileCC Flowchart . 143

A.2 Direct MobileCC Algorithm Flowchart . 144

A.3 Energy-aware Node Placement Algorithm Flowchart 145

A.4 Carrier-based Node Placement Algorithm Flowchart 146

A.5 Decentralized Fault Tolerant Node Placement Algorithm Flowchart 147

A.6 Centralized Fault Tolerant Node Placement Algorithm Flowchart 148

A.7 Dynamic MobileFT Flowchart . 149

A.8 Direct MobileFT Algorithm Flowchart . 150

B Tables of Strengths and Limitations 151

B.1 Individual Mobile Sink . 151

B.2 Group of Mobile Sinks . 152

B.3 Mobile Nodes . 153

xiii

Nata
lie

 Tem
en

e

List of Algorithms

1 The Dynamic MobileCC Algorithm . 35

2 The Direct MobileCC Algorithm . 40

3 Periodic check algorithm for mobile node mi 42

4 Check Usable Function for mobile node mi 43

5 Energy Usable Function for mobile node mi 44

6 Algorithm for sink node . 45

7 Algorithm for node ni . 48

8 Optimistic method for node ni . 49

9 Allocation method for node ni . 50

10 Periodic check algorithm for mobile node mi 53

11 Algorithm for carrier - approach stay . 54

12 Algorithm for carrier ci in the Leave Approach 55

13 Algorithm for sink si . 57

14 Choose Mobile Node and Carrier Function for sink si - Stay Approach . . . 59

15 Choose Mobile Node and Carrier Function for sink si - Leave Approach . . 60

16 The DFTNPA algorithm for sink node s 99

17 The DFTNPA algorithm for mobile node mi 100

18 Dynamic MobileFT algorithm . 103

19 The CFTNPA algorithm for sink node s 104

20 The CFTNPA algorithm for mobile node mi 106

21 The CFTNPA Algorithm for node ni . 106

22 Direct Path MobileFT algorithm . 107

xiv

Nata
lie

 Tem
en

e

List of Figures

1.1 Diagram of the MobileCC Framework . 4

2.1 Taxonomy of Mobility Solutions . 7

2.2 Mobile Sinks - Mobility Patterns . 8

2.3 Mobile Sink Groups - Leader Selection 9

2.4 Mobile Sink Groups - Mobility Patterns 10

2.5 Taxonomy of the Issues the Algorithms provide Solution 14

3.1 Node Placement Positions [56] . 38

4.1 Delay Scenarios . 46

6.1 Initial Topology . 65

6.2 Execution example of the NPA variations 66

6.3 Percentage of Successfully Received Packets 67

6.4 Source to Sink Delay . 68

6.5 Total Energy Consumed . 69

6.6 Initial Topology . 70

6.7 Scenario with no reuse . 71

6.8 Scenario with reuse . 72

6.9 Scenario of returning back . 73

6.10 Percentage of Successfully Received Packets 74

6.11 Source to Sink Delay . 75

6.12 Total Energy Consumed . 76

6.13 Evaluation of the different Energy Models 83

6.14 Evaluation of the different Scenarios . 85

6.15 Initial Topology . 87

6.16 The first Congestion at node 3 . 87

6.17 Scenario 1 - No reuse . 88

6.18 Scenario 2 - Reuse . 89

6.19 Scenario 3 - Replace . 90

6.20 Percentage of Successfully Received Packets 90

xv

Nata
lie

 Tem
en

e

6.21 Source to Sink Delay . 91

6.22 Total Energy Consumed . 92

6.23 Total Distance . 93

7.1 Diagram of the MobileFT Framework . 97

7.2 Dynamic MobileFT . 102

7.3 Direct Path MobileFT . 107

7.4 Scenario 1 . 110

7.5 Scenario 2 . 110

7.6 Scenario 3 . 111

7.7 Initial Topologies of Centralized Algorithm 112

7.8 Scenario 1 . 112

7.9 Scenario 2 . 113

7.10 Scenario 3 . 113

7.11 Scenario 4 . 114

7.12 Number of Mobile Nodes used . 117

7.13 Total Distance . 117

7.14 Total Time . 118

7.15 Percentage of Successfully Received Packets 119

7.16 Total Packet Loss . 119

7.17 Total Energy Consumed . 120

7.18 Number of Mobile Nodes used . 120

7.19 Total Distance . 121

7.20 Total Time . 122

7.21 Percentage of Successfully Received Packets 122

7.22 Total Packet Loss . 123

7.23 Total Energy Consumption . 124

A.1 Dynamic MobileCC Flowchart . 143

A.2 Direct MobileCC Flowchart . 144

A.3 Energy-aware Node Placement Algorithm Flowchart 145

A.4 Carrier-based Node Placement Algorithm Flowchart 146

A.5 Decentralized Fault Tolerant Node Placement Algorithm Flowchart 147

A.6 Centralized Fault Tolerant Node Placement Algorithm Flowchart 148

A.7 Dynamic MobileFT Flowchart . 149

xvi

Nata
lie

 Tem
en

e

A.8 Direct MobileFT Flowchart . 150

xvii

Nata
lie

 Tem
en

e

List of Tables

2.1 The classification methods of each mobile sink/node survey 11

2.2 The classification methods of each individual mobile sink algorithm 16

2.3 The classification methods of each group of mobile sink algorithm 23

2.4 The classification methods of each mobile node algorithm 26

6.1 Simulation Parameters . 62

7.1 Simulation Parameters . 108

B.1 Strengths and Limitations of the Mobile Sinks Algorithms 152

B.2 Strengths and Limitations of the Mobile Sinks Group Algorithms 153

B.3 Strengths and Limitations of the Mobile Nodes Algorithms 154

xviii

Nata
lie

 Tem
en

e

Chapter 1
Introduction

1.1 Motivation

Wireless Sensor Networks (WSNs) are a special category of wireless ad-hoc networks that

consist of numerous sensor nodes [38,69]. These wireless devices have sensing, computation

and communication capabilities. In more detail, the sensor nodes of a network work together

to complete a common task, e.g., monitoring a specific area, which is determined by the

range of nodes. When an event occurs, the nodes within the sensed area become active and

start collecting information. The nodes transmit the data towards the sink(s), where all data

from the network are collected. The routing of packets within the network, in a hop-by-hop

manner, where nodes send packets to the next hop (node) selected from its neighbouring list,

is based on criteria that are normally specified by the application. Such criteria are usually

based on the number of hops from sink, the remaining energy, delay, etc.

The main task of WSNs is, in principle, to sense the environment specified by the applica-

tion, collect data, process them, and finally forward them to the sink(s). The applications [28]

of WSNs can be classified into two major categories: monitoring and tracking. Examples of

monitoring applications include environmental conditions sensing, hazardous environment

exploration, and health monitoring. Tracking applications are found in natural disaster relief

operations, tracking animals (usually in wildlife settings), and tracking objects or humans.

In our view, the device and communications part of an Internet of Thins (IoT) system

is a direct descendant of WSNs [3, 17], in the sense that it is about networked, resource-

constrained systems mainly focusing on low-power wireless devices. As such, many IoT

networks exhibit unique characteristics but also come with some important limitations, such

as energy, memory and computational power. Energy is a limitation of great importance

since the lifetime of the node, and furthermore the network’s, depends on it. In particular,

1

Nata
lie

 Tem
en

e

the nodes use batteries for energy, which inevitably restrict their lifetime. Normally, due to

the power limitations, these nodes suffer from memory and computational power restrictions.

The nature of IoT networks and WSNs is such that it makes them vulnerable to a number

of problems, such as path disconnections, node failure, and security attacks. Nowadays, it

is important that a network is able to continue functioning correctly even in the occurrence

of faults [1]. Another aspect that affects these networks is the increased traffic demand in

applications [73]. The hop-by-hop communication method from the sensor nodes to the sink

and the limited energy are the main reasons of the problems. As a result, the network may

suffer from energy holes or hot-spots, that may frequently result in congestion and network

partitioning.

An approach for solving these problems is the use of mobile elements. Mobile ele-

ments are able to change their position in the network. Algorithms that use mobile elements

normally employ two distinct tactics. The employment of mobile sink(s) or mobile nodes.

Mobile sinks have the ability to move around the network and collect data from nodes on

the spot. The mobile sink approach mitigates the problem of network disconnection due

to energy consumption. On the other hand, the employment of mobile nodes, with similar

characteristics as of static nodes, assist existing nodes in performing their tasks, either by

replacing energy exhausted or damaged nodes or by creating alternative paths to the sink(s).

Mobility in sensor nodes is able to provide a solution to many challenges that arise in

the network. A mobile sensor node that is able to move to different positions can increase

the resources and the capacity of the network by being placed in every position that needs

assistant. Algorithms that base their operation on mobile nodes are able to improve the

lifetime of the network.

1.2 The Extension of the MobileCC Framework

The MobileCC Framework was initially suggested by Koutroullos et al. in [35] and it pro-

poses the concept of utilizing mobile nodes in the network for the creation of alternative

paths to the sink. The authors present a mechanism, called Mobile Congestion Control (Mo-

bileCC), which was used in certain areas of a network that suffer from congestion repeatedly,

permanently or for a long duration. The main idea of the mechanism is to create hard alterna-

tive disjoint paths only consisting of mobile nodes to resolve congestion problems that occur

in the network. The initial position of the mobile nodes is alongside the sink node. They are

in sleep mode and are only moved when notified from the sink to help in a congested area.

2

Nata
lie

 Tem
en

e

This work shows that it is possible to mitigate the effects of congestion by using mobile

nodes and create disjoint paths. However, the actual mobile node placement strategy is not

addressed.

We now overview the MobileCC Framework. The network consists of randomly deployed

static nodes and a set of mobile nodes placed near the sink in sleep mode. The following

assumptions are also considered:

• All nodes, both static and mobile, have the same characteristics, such as computation

power, communication capabilities, sensing, and transmission range, with the excep-

tion of the mobility characteristic of the mobile nodes.

• A simple MAC protocol, such as CSMA/CA, is employed.

• All nodes are aware of their absolute or relative (to the sink) location.

• The sink is informed by the nodes about their location and communication range.

The framework consists of the following mechanisms (see Figure 1.1):

• Problem Detection Mechanism: nodes monitor their parameters, such as buffer oc-

cupancy or energy consumption, until a certain threshold is reached.

• Defective Node Selection Mechanism: the node selects which nodes it will continue

serving with the condition that the selected set of sender nodes;s sending rates do not

exit a certain threshold.

• Problem Notification Mechanism: the defected node informs the sink node about the

problem. The message includes all information needed from the neighboring table of

the node.

• Alternative Path Creation Mechanism Using Mobile Nodes: when the sink is in-

formed about the occurrence of a problem, it will create an alternative path that in-

cludes only mobile nodes. The mechanism consists of the following steps:

– Calculation of Extra Resources

– Calculation of Optimum Position of Extra Nodes

– Establishment of Alternative Path

3

Nata
lie

 Tem
en

e

Figure 1.1: Diagram of the MobileCC Framework

Concerning the three first mechanisms, a lot of work has already been done so far in the

literature. The existing detection mechanisms can be used based on the problem that occurred

in the network, such as congestion [70] or failure [54]. However, the initial MobileCC work

does not really address the actual mobile node placement strategy. It rather demonstrates, in

a before and after fashion, that if mobile nodes are used to create dedicated disjoint paths,

it is possible to mitigate the effects of congestion. To address the mobile node placement

strategy we designed and implemented different algorithms that are based on calculating the

positions of mobile nodes employed in the network. In addition, we focus on faults, with the

design of a Mobile Fault-Tolerant Framework for detection and recovery from faults.

1.3 Contribution

This thesis contributes four main novel results by providing algorithmic solutions that utilize

mobile nodes to significant problems in WSNs and IoT Networks.

Node Placement Algorithm. The Node Placement Algorithm (NPA) retains the basic prin-

ciples of MobileCC and addresses the mobile node positioning strategy. It resolves the prob-

lem by efficiently and effectively relocating mobile nodes. The main idea is that the Alter-

native Path Creation mechanism starts when existing congestion control algorithms fail. The

algorithm consists of two variations: (1) a dynamic node placement algorithm that solves

the problem locally, where the mobile node is placed in such a position that can relieve the

4

Nata
lie

 Tem
en

e

affected area, and (2) a direct node placement algorithm that creates a new direct path to the

sink, which consists only of mobile nodes.

Energy-aware Node Placement Algorithm. The extended version of the NPA, called the

Energy-aware Node Placement Algorithm (eNPA), reuses the mobile relay nodes already in

use in the network for resolving congestion, network disconnection, energy holes, or security

attack problems occurring in the network. The basic idea of placing mobile nodes in the

network to mitigate the problem to be solved is retained, and the focus is set on the energy

consumption of the active mobile nodes in the network. Considering the energy levels of a

mobile node can be useful in re-using it in a different area of the network or in replacing it

on time before causing a new problem in the network.

Carrier-based Node Placement Algorithm. The realistic extension of the eNPA, called

Carrier-based Node Placement Algorithm (cNPA), uses mobile carriers to transport the mo-

bile nodes to their destination position. The reason that we choose to employ mobile carriers

instead of mobile nodes lies on two facts. The first reason is that mobile nodes impose severe

energy costs to the network. The second reason is that networks can accommodate a limited

number of these nodes. As a result, it is realistic to state that each sensor node that needs

to be replaced in the network is carried by either an Unmanned Ground Vehicle-UGV (i.e.

mobile robot) or a Unmanned Aerial Vehicle-UAV (i.e., drone).

Fault-Tolerant Node Placement Algorithm. The use of mobile nodes can be extended to

different network problems that can occur in the network, such as faulty nodes. To deal

with this problem, we designed the Fault Tolerance Node Placement Algorithm (FTNPA)

that uses mobile nodes to recover the network from a faulty state. This algorithm consists

of two variations, the decentralized and the centralized, based on the detection method used.

The decentralized variation, called Decentralized Fault Tolerance Node Placement Algo-

rithm (DFTNPA), is able to detect a faulty node with the help of the neighboring nodes and

recovers the network with a local solution by placing a mobile node in the affected area,

whereas the other variation, called Centralized Fault Tolerance Node Placement Algorithm

(CFTNPA), uses the sink node to identify the fault and recover the network with the creation

of an alternative path of mobile nodes.

All algorithms were evaluated in the COOJA simulator of Contiki OS [58]. The ex-

perimental results demonstrate integrity trade-off with respect to percentage of successfully

received packets, source to sink delay, packet loss and energy consumption.

This thesis combines theory and practice by, on the one hand, developing novel algorithmic

solutions addressing challenges at different layers and aspects, such positioning, energy-

5

Nata
lie

 Tem
en

e

awareness, physical transportation of nodes, and fault-tolerance, in an integrated manner,

while, on the other hand, implementing and evaluating the solutions using simulators and

identifying interesting performance trade-offs for different methods and approaches.

1.4 Document Structure

The remaining parts of this thesis are structured as follows.

In Chapter 2, we present the state of the art for mobility in WSNs and IoT Networks. This

chapter presents an overview of the different mobility elements, mobility models and mobil-

ity patterns. We focus on protocols that use mobile elements to assist the static nodes in the

network. Current research divides these elements into mobile sinks (Sec. 2.2.1) and mobile

nodes (Sec. 2.2.2) based on their role in the network and use different solution techniques.

In Chapter 3, we present the Node Placement Algorithm (NPA) that uses mobile nodes to

assist the nodes in the network in case of a problem, and consists of two variations, Dynamic

Node Placement Algorithm (Sec. 3.1) and Direct Node Placement Algorithm (Sec. 3.2).

In Chapter 4, we present the extension of the Dynamic Node Placement Algorithm, called

Energy-aware Node Placement Algorithm (eNPA), that reuses the mobile node for new prob-

lems that occur in the network. In Chapter 5, we present the realistic extension of the eNPA

algorithm, called carrier-based Node Placement Algorithm (cNPA), that uses mobile carriers

to transport mobile nodes in the network.

In Chapter 6, we present the experimental evaluation of the three algorithms (NPA,eNPA

and cNPA) presented in the previous chapters. Initially, the evaluation setup and the evalua-

tion metrics are given. Then, for each algorithms the evaluation results are shown, as well as

a comparison section.

In Chapter 7, we present the Fault-Tolerant Node Placement Algorithm (FTNPA), which

uses mobile nodes to assist in case of a failure in the network, and consists of two variations,

the Decentralized Fault-Tolerant Node Placement Algorithm - DFTNPA (Sec. 7.2.1) and

Centralized Fault-Tolerant Node Placement Algorithm - CFTNPA (Sec. 7.2.2). Also, we

mention their experimental evaluation and comparison (Sec. 7.3).

We conclude with Chapter 8, where we overview the thesis work, and discuss future

research directions of the presented line of work.

6

Nata
lie

 Tem
en

e

Chapter 2
State of the Art

Mobility in WSNs refers to nodes that have the ability to alter their location after their initial

deployment [68]. Algorithms that use mobility can be developed based on two approaches,

either with the use of mobile sink(s) that receive packets while moving or by using mobile

nodes that support the task of static nodes. Fig. 2.1 presents the taxonomy of mobility.

Figure 2.1: Taxonomy of Mobility Solutions

Energy is one of the most challenging constraints of WSNs. Wireless sensor nodes nor-

mally use batteries, as their source of energy. Each task executed by a node consumes energy

and eventually this will lead into nodes becoming unavailable due to power outage. This

means that the lifetime of a node is limited and as a consequence it affects the lifetime of

7

Nata
lie

 Tem
en

e

the whole network. To deal with this challenge, recent algorithms aim at maximizing the

lifetime of the network by introducing mobility.

The vast majority of existing algorithms in WSNs employ static sinks. A static sink

receives the packets from all nodes in the network. The data transmission from node to

sink is done in a multi-hop fashion, which frequently creates bottlenecks at the nodes near

the sink. Inevitably, these nodes will be depleted and the network will become disconnected.

The problem becomes more worrisome in cases where the traffic is constantly routed through

the same nodes and as a result only these nodes are depleted. As a result, a possibility of

disconnecting the network arises from the creation of holes, while other nodes, residing in

different locations, are still fully powered.

The energy consumption among the sensor nodes can be balanced by introducing sink

mobility. This approach uses mobile sink(s), that move around the network and collect

the packets from the nodes. The mobile sink approach mitigates the problem of network

disconnection due to energy consumption. This approach can be classified, based on the

behaviour of the mobile sink, as well as on the number of them in the network, into two

types, either individual mobile sinks or groups of mobile sinks.

(a) Controlled (b) Predefined (c) Uncontrolled

Figure 2.2: Mobile Sinks - Mobility Patterns

In the first type, each mobile sink in the network moves individually and independently

from the other mobile sinks. In principle, sink mobility in WSNs can follow three basic

models. The controlled mobility model, predictable/fixed path mobility model and the un-

controlled/random mobility model. In the controlled mobility model (Fig. 2.2a), the sink

follows a controlled or guided path based on some parameters, events or objectives. In the

predictable/fixed path mobility model (Fig. 2.2b), a specific path is programmed for the sink

to follow in the network with a round robin way. In the uncontrolled/random mobility model

(Fig. 2.2c), a random path is followed by the sink with an unpredictable movement in the

network that is completely random. The sink is able to request data from its one or more

8

Nata
lie

 Tem
en

e

hops distance neighbors.

In addition to these basic patterns, a mobile sink is able to follow a real-life movement

pattern. These types of patterns follow a more realistic movement based on real-life exam-

ples. These mobile patterns can be divided into: pedestrian mobility pattern, vehicular mo-

bility pattern and dynamic mobility pattern. In the pedestrian mobility pattern, the movement

follows the characteristics of walking people that are equipped with sensor nodes attached

to their body. In the vehicular mobility pattern, the movement follows the characteristics

of vehicles equipped with sensor nodes. In the dynamic mobility pattern, the movement is

based on the medium that the node moves through, such as wind or water. Based on the

medium type used for the movement, the mobility can be of different dimension (one, two

or three dimensional movement).

In the second type, the mobile sinks move as a group. In particular, a group of mobile

sinks move closely together around the network and at each region. Each sink can freely

move around following the mobility patterns described above, but only inside the specific

region.

(a) Predetermined (b) Periodically

(c) Central (d) Closest

Figure 2.3: Mobile Sink Groups - Leader Selection

9

Nata
lie

 Tem
en

e

Each mobile sink group has a leader and the selection of the leader can be performed in

four ways. The predetermined/unchangeable leader (Fig. 2.3a), where the leader sink will

remain until the group of mobile sinks is disbanded. The periodically changeable leader

(Fig. 2.3b), where the leader sink will change randomly, in a periodically way during each

working period of the group. The central position leader (Fig. 2.3c), where the leader sink

is always the one that is in the center of the group. The closest leader (Fig. 2.3d), where the

leader sink is the one that is closer to the source node.

(a) Regular (b) Directional
(c) Random

Figure 2.4: Mobile Sink Groups - Mobility Patterns

The group mobile sinks type has three mobility patterns, which are based on the patterns

from the individual mobile sinks mentioned above. A regular movement (Fig. 2.3a), which

is the case of the mobile sinks group that move regularly, towards a destination following a

straight path. A directional movement (Fig. 2.3b), which is the case where the mobile sinks

group, move towards a destination, and a random movement (Fig. 2.3c), where the mobile

sinks group to move around the network in a random pattern, without any destination.

2.1 Review of Existing Surveys on Mobility

In the literature, a limited amount of work exists on surveys about mobility in WSNs, and

more specifically the existing surveys talk about mobile sinks and mobile robots.

The protocols mentioned in these surveys are classified based on the different approaches

with respect to the mobility. Table 2.1 shows the classification method of each mobile

sink(s)/node(s) survey mentioned in this section.

In 2011, Francesco et al. [14] presented a survey about data collection in WSNs with mo-

bile elements. The main focus of the paper is the communication process between the sensor

nodes and the sink node as well as the process of data collection in the network. Initially,

the architecture of WSNs with mobile elements is analyzed based on the different compo-

nents, followed by the description of different types of mobile elements. Furthermore, an

10

Nata
lie

 Tem
en

e

Table 2.1: The classification methods of each mobile sink/node survey

Survey Category Classification

Method

Francesco et al.(2011) [14] Mobile Elements Discovery

Data transfer

Routing

Motion control

Tunca et al. (2014) [81] Mobile Sinks Hierarchical

Non-hierarchical

Gu et al. (2016) [16] Sink mobility UMM-based

PRM-based

LRM-based

URM-based

Latambale et al. (2016) [39] Sink mobility mobility patterns

Huang et al. (2019) [22] Mobile Robots Collection

Delivery

Combination

Fissaoui et al. (2020) [11] Mobile Agents (itinerary planning)

Static

Dynamic

Hybrid

Singh et al. (2020) [75] Mobile Elements (path trajectory)

static

dynamic

Nguyen et al. (2020) [55] Mobile sink(s)/node node mobility

sink mobility

overview of the different phases of the data collection process is provided, classifying dif-

ferent approaches. Data collection consists of four phases: discovery, data transfer, routing

and motion collection. The protocols are classified based on the specific solution approach

of each phase.

In 2014, Tunca et al. [81] published a survey about distributed mobile sink routing in

WSNs. The survey starts with specifying the advantages and disadvantages of using mobile

11

Nata
lie

 Tem
en

e

sinks in WSNs. It continues with presenting different approaches for creating an effective

mobile sink routing protocol, like mobility patterns, and concurrently it emphasizes on im-

portant design issues that need to be avoided. In the main part of the survey, the protocols are

classified into hierarchical and non-hierarchical routing protocols. The hierarchical class is

defined as the most widely adopted approach that aims in decreasing the advertisement of

the mobile sink’s location, by organizing the network into a virtual hierarchy with each senor

imposing a different dynamic role. However, the non-hierarchical routing protocols elimi-

nate the overhead created by the virtual structure and the possibility of hotspots, there is a

lack in providing the benefits of the hierarchical approach, like the easy access of the mobile

sink’s location.

In 2016, Gu et al. [16] presented a survey about sink mobility management in WSNs.

The survey at first classifies the mobility models by characterizing the movement pattern of

the mobile elements into uncontrollable model and controllable model. Furthermore, based

on the mobility models, the mobility management schemes are classified into four cate-

gories: path-restricted mobility (PRM), uncontrollable mobility (UMM), unrestricted mobil-

ity (URM) and location-restricted mobility (LRM), based on the restriction and behavior of

the mobile sink.

Another survey, published in 2016, by Latambale et al. [39] surveys mobile sink tech-

niques in WSNs. The survey starts by classifying the different sink mobility patterns. Three

categories are presented, the random/unpredictable mobility pattern, the predictable/fixed-

path mobility pattern and controlled mobility pattern. Then, the authors provide a detailed

description and comparison of ten different algorithms using mobile sink based on the clas-

sification of the moving patterns.

In 2019, Huang et al. [22] presented a survey about mobile robots in WSNs. This survey

reviews different techniques related to mobile robots and divide the existing work according

to the mobile robots task that is been executed. The task of a mobile robots are: collection,

delivery and combination. In the first one, mobile robots are responsible in collecting in-

formation from sensor nodes, whereas in the second one, mobile robots are responsible in

providing something to the nodes of the network. Mobile robots with a combination task

are responsible for collecting and delivering. Each task can be further divided based on the

mobility pattern (random, partially controllable and fully controllable) of the robots. The

results of this survey show that for the collection task, all three mobility patterns have been

part of the existing work. However, in the delivery and combination task, the existing work

uses only fully controllable mobility pattern.

12

Nata
lie

 Tem
en

e

In 2020, Fissaoui et al. [11] presented a survey about information fusion using mobile

agent itinerary planning in WSNs. A mobile agent is a special software kind that is able

to move around the sensor nodes autonomously to achieve its task(s). The mobile agents

start from the sink and visit the sensor nodes in their itinerary in order to collect data and

return to the sink with the collected data. A mobile agent has two degrees of mobility: strong

and weak, based on the parts used in the transfer process. The itinerary planning for mobile

agents is classified into the following three categories: dynamic, static and hybrid, which are

further divided into single and multiple. The dynamic itinerary planning is about the decision

of the source to visiting sequence, whereas the static planning is about the selection of the

source to visiting set. The hybrid itinerary planning uses both planning for the different

method. The authors simulated the most prominent approaches and then evaluated as well

as compared them. The implementation process showed that multiple itinerary planning for

multiple agents is more complicated than the single itinerary for one mobile agent. The

results show that the multiple itinerary planning outperforms the single itinerary planning.

Another survey, published in 2020, by Singh et al. [75] overviews the path planning

schemes of mobile elements used in WSNs. A mobile element is a mechanical data carrier

that is able to extend the network lifetime, by traveling throughout the network and collected

the sensed data from the sensor nodes. Based on the mobility pattern of the mobile elements,

their trajectories can be categorized into: random, controlled and uncontrolled. The paper

classifies the existing literature into two categories: static path trajectory and dynamic path

trajectory.

Additionally, in 2020, L. Nguyen and H. Nguyen [55] presented a survey about using mo-

bile sink(s) and nodes to effectively maximize the lifetime of a WSN. The lifetime of a WSN

is defined as the total amount of time, starting from the initial deployment of the network

until the network will not be able to respond to sensing requirement or archive a specific ob-

jective. The existing literature is classified based on the type of the mobile element used into:

mobile nodes and mobile sink(s). The sensor nodes with mobility abilities are able to be used

in order to deal with hot-spot problems and effectively reduce the energy consumption of the

network. This category can be further divided into: coverage based strategies, connectiv-

ity based strategies, energy-aware based strategies, cooperative computing based strategies,

localization based strategies and clustering based strategies. The category of mobile sink(s)

is further divided into: one sink mobility for efficient energy and multiple sink mobility for

efficient energy. In both categories, the network is able to use either one or multiple mobile

sink(s), which are defined based on the mobility pattern used into: random, fixed-path and

13

Nata
lie

 Tem
en

e

controlled.

Discussion.

The existing surveys presented above are about a specific category of the mobility research

area. Specifically, most of them are about mobile sinks and their technique on collecting

the data from the network. Another perspective of these surveys is the use of mobile nodes,

which can be called in various names based on their role in the network, like mobile element,

mobile agents or mobile robots, and their task of how to move around in the network to

collect the data needed. This implies that all of the surveys mentioned focus on the routing

technique based on the mobility type of the node.

2.2 Review of Mobility Algorithms

Few algorithms have been proposed in the literature using mobile sink(s)/nodes in WSNs.

The research that exists in this topic is limited. These algorithms can be classified based on

the type of mobile nodes they employ.

Figure 2.5: Taxonomy of the Issues the Algorithms provide Solution

The algorithms mentioned in this section solve specific problems that appear in the net-

work, see Fig. 2.5. Each classification category has its own problems to resolve, however,

some issues are in common. The main idea is the need of maximizing the lifetime of the net-

work and providing an energy-efficient solution. The network disconnection is an issue that

can be avoided with the use of nodes that can move. For the mobile sink category, the main

problems to be resolved are the data gathering/collection processes. The mobile sink needs

to utilize a routing algorithm that will efficiently gather the data from all the nodes in the

14

Nata
lie

 Tem
en

e

network. A common solution of this process is to divide the network into clusters [76, 93].

Mobile node algorithms tend to resolve problems like congestion, replacement and cover-

age. The congestion problem in a network using mobile nodes is efficiently resolved by

placing them in the network and providing a new alternative path of the existing nodes. The

main goal is to either mitigate or avoid the congestion problem. This solution is also used

in solving the hot-spot problem, where the energy is drained faster at the near-sink nodes.

Additionally, mobile nodes can be used in a replacing method. This method is used for either

an energy exhausted node or a faulty node in the network.

2.2.1 Mobile Sink

As we stated in the previous paragraph, the algorithms that use mobile sink(s), are further

divided into algorithms that employ individual mobile sink as well as groups of mobile sink.

The first approach uses mobile sinks that operate independently from the other nodes in the

network, whereas the second approach uses mobile sinks that work together as one entity.

Individual Mobile Sink

The algorithms described in this section use a mobile sink that moves independently in re-

spect of the other nodes in the network. Table 2.2 shows the different mobility patterns

(Fig. 3.1) of the mobile sink used in the algorithms mentioned below.

Gandham et al. [15] presented the fist attempt on controlled mobile sinks. To increase

the lifetime of WSNs, a deployment of multiple and mobile base stations is proposed. Their

approach uses an integer linear program (ILP) and a flow-based routing protocol. Mobile

sinks work in rounds. During a round, the mobile sinks are stationed and only change their

position at the end of the round but before the beginning of the next one. The location of

these mobile sinks is determined at the beginning of each round with the use of the ILP

model. Afterwards, the flow-based routing protocol is used. The sensor nodes of the net-

work use the flow information, which is obtained by the previous model, to transmit their

messages in an energy efficient manner. The algorithm was evaluated using the CPLEX op-

timizer, a mathematical programming solver for solving difficult problems. The simulation

results show that the use of a rigorous approach in order to optimize the energy utilization

significantly increases the lifetime of the network.

Liang et al. [42] used the ILP from the previously mentioned approach to provide a

mixed integer linear programming (MILP) solution for the problem. The complexity of the

15

Nata
lie

 Tem
en

e

Mobility Pattern Algorithms

Controlled

Gandham et al. (2003) [15]

Liang et al. (2010) [42]

Farzinvash et al. (2019) [12]

Fixed/Predicted

Khan et al. (2007) [31]

Wang et al. (2008) [89]

Zhao et al. (2015) [94]

Zhong et al. (2018) [95]

Wang et al. (2019) [86]

Wang et al. (2019) [85]

Maurya et al. (2019) [49]

Renold et al. (2019) [67]

Huang et al. (2019) [21]

Uncontrolled/Random

Lin et al. (2006) [43]

Karenos et al. (2007) [29]

Hamida et al. (2008) [18]

Truong et al. (2010) [80]

Kinalis et al. (2014) [32]

Wang et al. (2018) [87]

Irish et al. (2019) [26]

Table 2.2: The classification methods of each individual mobile sink algorithm

MILP problem is shown to be NP-hard. Due to the high complexity, a scalable heuristic

algorithm is developed for calculating the distance of the mobile sink. This algorithm con-

sists of three stages and uses the sojourn tour method. The proposed heuristic algorithm

was compared with two other heuristic algorithms (Sorted Short Tour, CSPLI algorithm) for

evaluation using the lp_solver software package. The experiments adopted the parameters

of real sensors, the MICA2 motes. The results show that the heuristic algorithm was nearly

optimal with performance around 94% in respect of a much shorter running time.

Farzinvash et al. [12] presented a distributed and energy-efficient MS-based data gather-

ing algorithm for collecting emergency and normal data, called Energy-efficient Emergency

Data Collection (EEDMS). The algorithm combines two collection techniques based on the

16

Nata
lie

 Tem
en

e

data type. The data collected are divided into normal and emergency data. The collection

process of emergency data is done with the use of spanning tree and a static sink. However,

the collection process of normal data is employed with mobile sinks. Both collection pro-

cess are performed concurrently. The operating time of the network is divided into rounds,

where each round consists of the configuration phase and data collection phase. To evaluate

the proposed algorithm, it is compared with FTVBT, EAPC, Optimized LEACH, WRP and

CB, using MATLAB. The results show that EEDMS outperforms the other algorithms in

terms of lifetime and the delay of emergency data. EEDMS is able to have results reduced

to 14%-59% than the other algorithms in terms of average energy consumption and around

11%-31% less than the other algorithms in terms of energy consumption for transmitting

controlled packets.

Khan et al. [31] presented the CAEE (Congestion Avoidance and Energy Efficient) rout-

ing protocol for avoiding congestion and increase the lifetime of the network using a mobile

sink. The mobile sink uses a fix path along the periphery of the network to collect the data

from the cluster heads (CHs). In this paper, the terms "collector nodes" and "mini-sinks"

are introduced. Data collector nodes are the CHs, which are created by the mobile sink

and are the ones that create the clusters, which are called mini-sinks. The first trip of the

mobile sink around the network is for selecting the data collector nodes and then the col-

lection trip begins. The time the mobile sink will stay at the specific mini-sink is based on

the amount of data it has to receive. The evaluation of the proposed algorithm was analyzed

using OMNet++ simulation tool and is compared to a static sink-based routing strategy. The

simulation results show that the protocol is effective in terms of avoiding congestion and the

lifetime of the network is increased at nearly four times than the compared strategy of the

static sink-based method.

Wang et al. [89] presented another cluster-based approach. A cluster-based mobile rout-

ing algorithm that consists of four main phases: clustering phase, register phase, data dis-

semination phase and maintenance phase. The mobile sink starts moving around the net-

work during the second phase and when connected to a cluster head, it can receive all of its

data. The movement of the mobile sink is created based on the Hidden Markov Model of

the Random Waypoint. The algorithm was evaluated by being compared to the HCDD and

TTDD using GloMoSim simulation tool, which was created by University of Los Angeles

for wireless mobile network. The results show that, based on the overall lifetime and energy

consumption, the entire network of the proposed algorithm has a better performance with a

nearly 23% of increment.

17

Nata
lie

 Tem
en

e

Zhao et al. [94] proposed a centralized algorithm called Minimum Load Set (MLS) al-

gorithm, a tree-based heuristic topology control algorithm with mobile sinks. This paper

uses mobile sinks to maximize the lifetime of the network and its main idea is to divide the

nodes in the network to anchor and non-anchor nodes. Anchor nodes are the nodes selected

to deliver data to the mobile sink when it passes. The rest of the sensor nodes in the network,

called non-anchor nodes, are responsible to transmit their data to an anchor node using single

hop or multiple hops. MLS determines for every node its corresponding next node by creat-

ing a tree from a fictitious root node. The proposed algorithm was compared with MNL and

LOCAL-OPT using the NS-2 simulator. The experimental results show that these algorithms

can significantly outperform the two algorithms compared, with about 25% of the maximum

relative load and 30% of the time of the network to lose connectivity.

Zhong et al. [95] presented an energy efficient multiple mobile sinks based routing algo-

rithm for WSNs. The network is divided into clusters and in each one a cluster head (CH) is

selected. This selection is performed at the beginning of each round and the parameters are

the remaining energy and the distance towards the mobile sink. Only the CH can commu-

nicate with the mobile sink, while the other nodes communicate only with their CH, either

directly or via multi-hop transmission. The proposed algorithm was evaluated using Mat-

lab simulation, where the effect of the lifetime of the network was examined based on the

amount of mobile sinks in the network. Simulation results show that when the number of

mobile sinks in the network was increased, the performance of the network was improved in

respect of the lifetime. As a fact, it is shown that when three mobile sinks were part of the

network the algorithm had the best performance.

Wang et al. [86] presented a distributed routing scheme that uses data fusion and neural

networks for WSNs. The routing scheme uses intelligent data gathering scheme with data

fusion (IDGS-DF) and neural network for improving the performance of the network in data

fusion conduction. The mobile sink moves towards a predefined path and broadcast the sub-

domain ID of the cluster in its range. With a greedy algorithm, the data are transmitted by

the CH to the neighbor CH, which is directly communicating with the mobile sink. When the

mobile sink moves to the last subdomain it will backtrack. The proposed algorithm was ap-

plied in forest fire detection, where the pretrained neural network is used fo each CH node by

using the detected data to estimate the breaking out possibility of the forest fire. The evalua-

tion of the proposed algorithm was performed using MATLAB simulation and was compared

to LEACH and TBFT. Through extensive simulations the proposed algorithm shows better

performance in terms of increased network lifetime and lower energy consumption.

18

Nata
lie

 Tem
en

e

Wang et al. [85] proposed an energy efficient routing scheme that uses clusters and sink

mobility. Firstly, the network is divided into several sectors. Each sector selects a cluster

head (CH) based on the member’s weight and each member of a cluster chooses it based

on its geographical information. The CH forms a chain with the use of a greedy algorithm

to communicate with the mobile sink. The mobile sink moves in a circle with a constant

angular velocity, which is used from the nodes to calculate the current position of the mobile

sink. The proposed algorithm was evaluated using MATLAB simulation and was compared

with CCMAR and ECDRA. The results show that the proposed algorithm outperforms the

other two algorithms in respect to lower energy consumption and increased network lifetime.

Maurya et al. [49] proposed a delay aware energy efficient reliable routing (DA-EERR)

technique that used a mobile sink for data transmission in heterogeneous WSNs. The main

goal is to construct an energy efficient manner virtual ring in order to reduce collisions over-

head and have easier accessibility to the current position of the mobile sink. The DA-EERR

algorithm consists of three phases: network set up phase, data transmission phase and net-

work maintenance phase. The use of mobile sink in the network mitigates the hot-spot

problem as well as minimizing the end-to-end data delivery delay. The evaluation of the al-

gorithm was conducted in Omnet++ network simulator and was compared with VGB, Ring

Routing and LBRR. The results show that the proposed algorithm has better performance

than the other algorithms in respect of different scenarios including different speed of the

mobile sink and node density.

Renold et al. [67] proposed an energy efficient secure data collection algorithm in an

unattended wireless sensor network using mobile sink. This algorithm consists of three

phases: the identification of data collection points, the path planning by the mobile sink

and the secure data collection. The data collection process between the mobile sink and

convex nodes is done after authentication, which is implemented on an ElGamal scheme. The

proposed algorithm was evaluated in the Cooja simulator by Contiki with different scenarios

on various node counts under static and mobile sink and was compared with SEC-TMP and

a mesh routing protocol that uses a static sink. The experimentation method was performed

for different scenarios, where for ten simulation runs, metrics about packet delivery ratio,

average end-to-end delay and energy consumption were obtained. The results show that the

proposed algorithm provides better performance than the other algorithms in respect of the

evaluated metrics and has a result of 100% resilience against threats.

Huang et al. [21] consider the problem of data collection with a mobile sink in a delay-

tolerant wireless sensor network. The main goal is the creation of a cluster-based com-

19

Nata
lie

 Tem
en

e

pressive data collection algorithm for WSNs with a mobile sink. The network consists of

uniformly deployed sensor nodes and a mobile sink. The mobile sink moves periodically

at the periphery of the sensor field in a fix path. The proposed algorithm presents two ap-

proaches in achieving their goal. The first implementation consists of five steps, the mobile

sink broadcast, the cluster head (CH) election, cluster member (CM) - CH attachment, CH-

CH association and uploading. This approach due to its randomness in generating CHs, it

cannot guarantee an even distribution of CH in the network. For this reason, the second im-

plementation was inspired by the observation that CHs are kept away from each other when

they are evenly distributed. As a result, this approach introduces a competing mechanism in

order for each CH to have a certain distance between the others. This algorithm was com-

pared with MASP and MobiCluster algorithms using MATLAB. The results show that the

proposed algorithm is more efficient and improves the network lifetime in comparison with

the other two algorithms by about 1.2-2 times.

Lin et al. [43] used random mobility in order to create the Hierarchical Cluster-based

Data Dissemination (HCDD) algorithm. The proposed algorithm divides all the nodes of the

network into clusters and has three procedures, the cluster construction, the Sink Location

Registration and the Routing Path Maintenance and Data Delivery. The proposes cluster-

based method was compared with a grid-based method, where the results show that the grid-

based method is outperformed by the cluster-based method and provides longer network

lifetime and lower control overhead.

Karenos et al. [29] proposed another scheme that deals with congestion avoidance, called

CoSMoS (COngestion avoidance for Sensors with a MObile Sink). This protocol is based

on a congestion control and joint routing approach, and consists of two parts. The first part is

a low cost and complexity routing scheme, which uses a mobile sink to consider effectively

the dynamic reliability of the path. The second part is a regional load collection technique

where the maximum sustainable load is estimated for each node within an area and a path.

The proposed protocol was evaluated using the MantisOS, which is a multi-modal operating

system. The results show that the proposed scheme can balance congestion and reliability in

order to achieve higher delivery ratios while at the same time not hurting the throughput, in

cases of high mobility than in low frequencies.

Hamida et al. [18] presented the Line-based Data Dissemination (LBDD) protocol for

decoupling the operation for data dissemination using mobile sinks using the rendez-vous

region concept. This protocol defines a vertical virtual line placed in the center of the network

to divide it into two parts for all nodes to have easy access. Inline-nodes are the nodes within

20

Nata
lie

 Tem
en

e

the boundaries of the wide line, while the rest of the nodes are called ordinary nodes. The

task of this line is to act like a rendez-vous region for data storage and lookup. LBDD consist

of two steps: dissemination and collection. The proposed algorithm was evaluated using the

WSNet simulator and was compared with XYLS, RailRoad, TTDD and GHT. The realistic

simulation results show that LBDD outperforms query-based as well as event-driven scenario

approaches by presenting the best trade-off. In more detail, the LBDD presents lower energy

consumption, increased communication cost, higher delivery ratio and lower delay than the

algorithms compared.

Truong et al. [80] proposed an opportunistic routing scheme using uncontrolled mobile

sink in WSNs during building emergencies. The scenario of this scheme considers the de-

ployment of WSNs in a building during fires. The mobile sinks are small powered nodes

that are attached to the equipment pack of the firefighters entering the building. Due to their

position and the fact that the firefighters move, they can not be controlled. Each sensor in

the network, routes its data from the route towards the Base Station (BS) or to the mobile

sink if in range. The mobile sink also works as a temporary connection between clusters

that disconnect from the rest of the network due to faulty nodes. When a cluster recognizes

that it is disconnected, it starts a new policy by storing only important data and when the

energy gets low the transmission stops. Data is only transmit to the BS when the mobile

sink moves towards them and transmit the data to it. The evaluation has been performed in

a small laboratory-based WSN and within the NS2 network simulator. Results show that on

randomly damaged networks the scheme can increase the data delivery up to 50%.

Kinalis et al. [32] proposed a biased adaptive sink mobility scheme. This scheme uses a

sink node that is responsible to move around the network in a problematically way in order to

stop more times in areas that tend to produce more data and at the same time favor less visited

areas for covering the network faster. The scheme was evaluated in the NS2 simulation with

diverse network settings and was compared to existing blind random, non-adaptive schemes.

The results show that the proposed method is able to reduce the latency especially in network

with non-uniform sensor distribution, without to compromise the energy-efficiency and de-

livery success.

Wang et al. [87] presented an Enhanced Power Efficient Gathering in Sensor Information

Systems (EPEGASIS) algorithm that alleviates the hot spots problem. Hot spot nodes are

nodes around the area of the sink node that exhaust their energy quicker than the other nodes

since they receive and forward all data to/from the sink. To send a package directly to the

mobile sink, it has to be within the optimal communication distance, otherwise the package is

21

Nata
lie

 Tem
en

e

transmitted on several relays that generate the topology of the network. The Matlab simulator

was used to evaluate the algorithm by comparing it with the typical PEGASIS algorithm.

Results show that the proposed algorithm reduces the average energy consumption at about

one-third than the other algorithm. In general, EPEGASIS has a better performance than the

typical PEGASIS in terms of network lifetime. However, the elimination of the hot spots

problem is not completely.

Irish et al. [26] proposed an efficient data collection protocol named Dynamic Sink Mo-

bility for Data Collection (DSMDC). This protocol uses a virtual grid structure, where each

cell represents a cluster of nodes. Each cluster selects a cluster head (CH) based on the

remaining energy of the currently elected cluster head. The mobile sink will collect the gath-

ered data from the CH with the use of the standard SDMA method. Three sink migration

algorithms are presented. The dynamic sink mobility for data collection uses the DEF that

calculates the trail points that the mobile sink follows. The Detected Event Frequency sorted

in Ascending (DEF-A), where the table of the mobile sink is sorted in an ascending order

based on the detected event frequency. Finally, the Detected Event Frequency sorted in De-

scending (DEF-D), where the table of the mobile sink is sorted in a descending order based

on the detected event frequency. The evaluation was conducted in the NS2 simulator where

the three algorithms were compared. The results show that DSMDC presents lower energy

consumption as well as higher throughput than DEF-A and DEF-D.

Discussion. The papers presented above propose solutions using mobile sink(s). These

solutions are mainly focused in resolving the disconnection problem which is cost due to

faulty nodes in the network. It is noticeable that most solutions use one mobile sink. The

main idea is to divide the network into clusters and use the mobile sink to move at each cluster

to collect the data. Cluster head nodes are usually the ones that define the path of the mobile

sink and the only ones communicating with it. The cluster heads can be either selected

based on a parameter or by the mobile sink. In Appendix B.1, the table of the strengths

and limitations of each paper are presented. The work of this thesis uses mobile nodes that

are not represented by mobile sinks. The mobile nodes have the same characteristics and

abilities as the sensor nodes of the network, with the only difference of having the ability to

change their location. Additionally, the mobile nodes are used to assist the existing nodes

and are not used for moving around the network and collect data.

22

Nata
lie

 Tem
en

e

Group of Mobile Sinks

The algorithms described in this section use mobile sinks that move together as a group to

complete a specific task. The different mobility patterns (Fig. 2.4) of a group and the leader

selection method (Fig. 2.3) used by the algorithms of this section, are shown in Table 2.3.

Algorithm Leader Selection Group Mobility

Type Pattern

Park et al. (2010) [62] Predetermined Random

Lee et al. (2010) [40] Predetermined Random

Park et al. (2010) [61] No leader Random

Mo et al. (2013) [52] Predetermined Random

Lee et al. (2018) [41] Predetermined All

Table 2.3: The classification methods of each group of mobile sink algorithm

Park et al. [62] proposed a novel communication scheme, called Mobile Geocasting

(M-Geocasting), which is an extension of the traditional geocasting method for mobile sink

groups in WSNs. A mobile sink group moves together but the sink members of the group

can also move randomly within the restricted region. Each group has one leader sink (LS), a

groupID and a sinkID. The restricted region of a mobile sink group is calculated based on the

radius. The location of each mobile sink group is advertised from its leader. When a member

sink moves out of the CGR, it will first select an agent node and will then inform a cache

node about the location of its agent node. Hence, the data are forwarded to the member

sink through the cache node and the agent node. The proposed algorithm was evaluated

using Qualnet v4.0 simulator and was compared with TTDD and GMR. The results show

that based on the data delivery ration and energy consumption M-Geocasting outperforms

the other two algorithms with improved performance based on the flooding used for the data

delivery method.

Lee et al. [40] proposed a Region Based Data Dissemination protocol (RBDD) using

mobile sink groups to efficiently transmit data. Each mobile sink group selects a leader

sink (LS), which is responsible to advertise the current location of the group. The paper

guarantees data delivery to all the sink members of a group with the use of two mobility

support approaches, micro and macro group mobility support. The micro group mobility

support defines that in the group, each member is able to move outside or inside of the region

23

Nata
lie

 Tem
en

e

individually, whereas the macro group mobility support defines the sink group as a whole that

moves together. The proposed algorithm was evaluated using the QualNet 4.0 simulator and

was compared to TTDD and GMR. The simulation results show that the data delivery to a

mobile sinks group is guaranteed by the RBDD algorithm. In the comparison with the other

two algorithms, RBDD performs better based on the restricted flooding method used for data

delivery for all sinks that results in not needing frequent location updates by each sink, which

also reduces its energy consumption in respect of the other two algorithms.

Park et al. [61] propose a novel strategy for data dissemination in mobile sink groups,

called Cluster-based Sink Group Management (C-SGM). This algorithm has two aspects, a

cluster-based virtual infrastructure, which is independent of the sinks and source nodes of

the network, and an inter-cluster communication via geographic routing that uses recursive

location search so that it reduces the structure construction and routing state maintenance

overhead. The proposed algorithm was evaluated using Qualnet v4.0 simulator and was com-

pared with an abstract Cluster-based Virtual Infrastructure (CVI) based scheme and LBDD.

The simulation results show that C-SGM consumes a little more energy than LBDD, but

provides a longer lifetime for the network, and performs better than the other two algorithms

in respect to delivering data to the mobile sink group while moving.

Mo et al. [52] propose Virtual Line-based Dissemination Data protocol (VLDD) for a

reliable and energy efficient data delivery for mobile sink groups. The part that differenti-

ates this algorithm from similar algorithms is that it exploits a virtual line structure to store

the data in the group region instead of flooding the data. The proposed algorithm was eval-

uated using the QualNet 4.0 simulator and was compared to the M-Geocasting algorithm.

The results show that VLDD achieves better performance, where the energy consumption is

decreased and the data delivery ratio is increased in respect of the other algorithms.

Lee et al. [41] propose an active data dissemination protocol that constructs a local data

area and takes into consideration the moving direction as well as the pattern of the mobile

sink group to exploit it. The leader sink (LS) will flood a query message to gather information

about the member sinks location information, in order to calculate the region of the group.

The proposed protocol was evaluated using Qualnet 4.0 simulator and was compared to M-

Geocasting and SEAD. Many experiments took place considering specific parameters, such

as the number of mobile sink in a group, the speed of the sink nodes and others. Based on

these parameters, the simulation results show that in comparison to the other two protocols,

this protocol has better performance, by reducing the consumed energy and enhancing the

data delivery ratio.

24

Nata
lie

 Tem
en

e

Discussion. The papers mentioned above propose a solution with the use of mobile sinks

group. These solutions are mainly focused in resolving the data dissemination problem. The

main idea is to create a group region where the member sinks can move around independent

and collect data, with different variations. It is shown that a leader in the group is needed

to create this region by getting informed of the location of each member sink. This process

creates an overhead especially with the mostly used method of flooding. Most of the papers

use a predetermined and unchangeable leader selection method without getting into details

of this selection and its criteria, and neither define it in its experimental parameters. In Ap-

pendix B.2, the table of the strengths and limitations of each paper are presented. The work of

this thesis uses mobile nodes that are not represented by mobile sinks and act independently.

Each mobile nodes is a different entities used to complete a different task. Additionally, the

mobile nodes are used to assist the existing nodes and not for moving around the network to

collect data.

2.2.2 Mobile Nodes

The algorithms described in this section use mobile nodes as extra resources in the network.

Table 2.4 shows the different solution approaches of these algorithms concerning the use of

mobile nodes.

Mei et al. [51] propose an algorithm with mobile nodes used to prevent the network from

getting disconnection. This algorithm detects and reports node failure as well as replacing

the failed nodes with the use of mobile robots. Three algorithms are presented that introduce

four types of robots: the manager, the maintainer, the guardians and the guardees. A robot

manager is responsible for receiving failure reports and assign a maintainer to handle the

specific failure. A robot maintainer is responsible to receive and proceed the assignment of

replacing a failed node. A robot can have both jobs. The three algorithms are compared and

evaluated using Glomosim, a packet level simulator for ad hoc networks, where scenarios

were implemented that differ on the number of maintenance robots in the network. The

simulation results show that the centralized and dynamic algorithms have a lower motion

overhead than the fixed algorithm, with a save of 10.8% in traveling distance, whereas both

distributed algorithms have a higher messaging overhead than the centralized, due to its lack

of scalability of the latter. Additionally, the dynamic algorithm has a repair time of 10.2%

lower than the fixed and centralized.

Yu et al. [92] proposed the use of mobile nodes to reconnect the network. Based on

25

Nata
lie

 Tem
en

e

Algorithm Solution

Mei et al. (2006) [51] Replace failed nodes

Yu et al. (2006) [92] Reconnect network with mobile nodes

Sheu et al. (2008) [74] Replace nodes in network

Katsuma et al. (2009) [30] Placing mobile nodes

Koutroullos et al. (2011) [36] Alternative path of only mobile nodes

Boukerche et al. (2012) [8] The direction-aware mobility level parameter is intro-

duced

Jayakumari et al. (2015) [7] Event observation in network

Vecchio et al. (2015) [82] Area coverage with mobile nodes

Toor et al. (2019) [79] Cluster-based routing protocol using multiple mobile

nodes

Rao et al. (2020) [65] Data transmission with mobile nodes

Pang et al. (2020) [59] Data collection using multiple mobile nodes

Anuradha et al. (2020) [5] Reconnect the network using mobile nodes after a

fault

Bala Subramanian et al. (2021) [6] Path planning mechanism for mobile anchors

Feng et al (2021) [13] Mobile robots in an unknown hostile environment

Mazumdar et al. (2021) [50] Hierarchical data dissemination with mobile data col-

lector

Akram et al. (2021) [4] k-connectivity restoration using mobile nodes

Papi et al. (2022) [60] Hole recovery method with the use of mobile nodes

Wu (2022) [90] Hole recovery method with the use of mobile nodes

Table 2.4: The classification methods of each mobile node algorithm

this idea, two algorithms are developed, a graph-oriented and a divide-and-conquer, that

use as few as possible mobile nodes to solve the problem. Both algorithms were simulated

and compared in order to compute the number of the required mobile nodes. The simu-

lation results show that the graph-oriented algorithm is more complicated than the divide-

and-conquer. However, the graph-oriented algorithm needs fewer mobile nodes than the

divide-and-conquer algorithm in order to solve the problem, especially in a sparse density

topology of nodes.

Sheu et al. [74] proposed the replacement of low energy nodes in the network with

26

Nata
lie

 Tem
en

e

mobile nodes, without knowing the specific location of destination. The sink will assign

to the mobile robot the replacement, which will start navigating in the network towards

the destination. The mobile robot navigates from one node to another by monitoring the

signal strength sent from the next hop node. Eventually, the mobile robot will arrive to its

destination and will replace the low energy node. The navigation protocol was evaluated with

three experiments performed in a large, free-space classroom. The experimental results show

that the proposed protocol allows the mobile robot to navigate successfully around the sensor

network with a multi-hop destination and no extra equipment. Additionally, the results show

that the many-to-many service, due to signal interference, needs a longer navigation time

to reach the destination than the single target service. As a result, the one-to-many service

consumed fewer total energy than the many-to-many service.

Katsuma et al. [30] propose a method to solve the k-coverage problem with the use

of mobile nodes placed into specific positions and at the same time extend the lifetime of

the network. An area is k-coverage if the range of k sensor nodes cover each point of the

area. This problem is NP hard, so a genetic algorithm is proposed to find a near optimal

solution in practical time. The proposed algorithm was compared with the following meth-

ods: conventional methods, a proposed method, no balancing method, a static method and

the Wang+Balancing method. The simulation results show that considering a network with

hundreds of nodes, this method achieves a longer k-coverage lifetime at about 140%-190%

compared to the other methods.

Koutroullos et al. [36] proposed a Mobile Congestion Control algorithm used in areas

where congestion is happening permanently, for a long duration or repeatedly. The goal

of this algorithm is not to replace existing routing or congestion control algorithms but to

run alongside them. The main idea is to place a number of mobile nodes behind the sink

node and use them when congestion occurs to create hard alternative disjoint paths in the

network, in order to decrease the traffic of the congested area. The proposed algorithm was

evaluated using the COOJA simulator of Contiki OS [58] and the algorithm was compared to

a base scenario without mobile nodes. The simulation results show that congestion is indeed

mitigated and more specifically packet loss is reduced and the throughput of the network is

increased compared to the scenario without mobile nodes.

Boukerche et al. [8] introduced the direction-aware mobility level parameter. This pa-

rameter captures how fast and close to the sink node each mobile node is moving. Local,

distributed data dissemination protocols are provided that exploit the node mobility in order

to improve the performance. The parameter is divided into two categories. The high mobility

27

Nata
lie

 Tem
en

e

is used for a low cost replacement for data dissemination, and the low mobility is used either

to increase the data propagation redundancy or for long distance data transmissions. The

protocols were evaluated using the NS2 simulation and were compared to relevant meth-

ods from the state of the art. The results show significant improvements of the proposed

protocols in terms of latency, energy and delivery success.

Jayakumari et al. [7] proposed the Priority Based Congestion Control Dynamic Clus-

tering (PCCDC) protocol in order to avoid congestion and decrease energy consumption. In

this protocol, the use of mobile nodes that move around in the network and observe specific

events based on certain conditions, provides complete connectivity and coverage. The nodes

of the network are organized into dynamic clusters that change at each round. The proposed

algorithm was evaluated using ns2 simulator and was compared with PASCC. The results

show that PCCDC protocol outperforms PASCC based on 5.62% of enhanced lifetime. In

more detail, PCCDC showed 42.02% lower packet loss, 17.91% lower control overhead,

5.07% lower end-to-end delay and 18% lower residual energy than PASCC.

Vecchio et al. [82] proposed a framework that uses mobile and static nodes to increase

the sensing area coverage of monitoring WSNs. This technique is based on a distributed

method of computing the trajectories of the mobile nodes in a greedy fashion. To improve the

coverage rate, this technique uses controllable trajectories for the mobile nodes. A bidding

mechanism is used for the static nodes in order to estimate the coverage holes of the network

and assist in the navigation process of the mobile nodes. The evaluation of this algorithm was

performed with the implementation of various scenarios using different numbers of mobile

and static nodes. The proposed technique is also compared with a previous state-of-the-art

technique. The results show that the proposed method is more stable and more effective in

area coverage.

Toor et al. [79] proposed an energy aware cluster-based multi-hop energy efficient rout-

ing protocol, called Mobile Energy Aware Cluster Based Multi-hop (MEACDM), for hierar-

chical heterogeneous WSNs. The nodes are deployed in the network and divided into clus-

ters, where cluster heads are selected based on a probability equation. This equation selects

the cluster head based on the highest energy among the sensor nodes. After the formation of

the clusters, the network is divided into sectors, where in each one a mobile sensor node is

placed in order to collect the data from the cluster heads. The proposed algorithm was sim-

ulated in MATLAB and was compared to other cluster-based routing protocols. The results

show that this algorithm has better performance based on the reduced energy consumption

and hence the increased network lifetime.

28

Nata
lie

 Tem
en

e

Rao et al. [65] presented an SDN-based strategy for reliable data transmission in WSNs

using mobile nodes. They consider a system that uses a three-layered architecture based on

the SDN concept. The proposed system consists of three phases: the initialization phase,

the priority and control information generation phase and the data forwarding phase. The

proposed system is evaluated in simulations and results show that it outperforms the tradi-

tional approaches in respect of reliability by using mobility to reduce the number of hops.

In more detail, the SDN-based strategy increased the packet transmission ratio that resulted

in reducing the packet retransmission and at the same time reduced the end-to-end delay as

well as the energy consumption of each sensor node, when compared to traditional networks.

Pang et al. [59] presented a method for data collection with using multiple mobile nodes

for WSNs. The main idea is to use the mobile nodes as mobile sinks that move in the network

and collect the data, which then return to the sink node. At first, a dynamic cluster algorithm

is used to form clusters of the sensor nodes in the network. When the clusters are created, the

cluster heads are selected based on the highest energy. The area is then divided into several

sections based on the number of the mobile nodes available. Each mobile node is assigned

to one area part to travel along the cluster head and collect the data. To optimize the path

planning, the authors proposed a path-based equalization algorithm (PEABR) to adjust the

path of the mobile nodes. The proposed algorithm was simulated using MATLAB and the

results show a balanced path length for each mobile node that meet the constrains, as well as

the reduction of the total path cost.

Anuradha et al. [5] proposed a diverse mechanism for restoring the connectivity of

the network. The algorithm provides a fault node detection system, which is divided into

two variations. The first algorithm is a faulty node detection method using periodic alert

messages. The nodes in the network send a periodic alert message to the gateway with

all the information of the node. Once the getaway receives such a message, the node is

determined alive. However, when a message is not received at first, the getaway awaits the

second round of alert messages to establish the fault of the node. At this point, the node is

considered as faulty. The second algorithm is a faulty node detection method using residual

energy. Each node is responsible to calculate its energy to determine if it is faulty or not.

When the energy level of the node reaches the threshold, it is declared as faulty and informs

the getaway about it. In both detection methods, the mobile relay node is informed about the

faulty node and moves to the position to replace it. The proposed mechanism is evaluated in

a hardware setup with Node MCU and Raspberry Pi3. The results show that the proposed

approaches are suitable for resource constrained devices and provide good performance in

29

Nata
lie

 Tem
en

e

restoring the network connectivity.

Bala Subramanian et al. [6] presented a mechanism with two mobile anchors that uses

the Z-curve, an exact trajectory, to optimize their trajectory. The main idea is to use mobile

anchor nodes to help the localization process of the nodes in the area and provide an opti-

mized solution. The method consists of four levels. In the first level, the examination of

the prescribe link with the range and the localization of the unidentified sensors takes place.

In the second level, the transferring range of the mobile beacon are refreshed at the time of

all sensor being covered for the localization. In the third level, the shortest path is obtained

with the use of the mobile beacon transfer in the unknown. Finally, in the fourth level, three

non-collinear unsecured beacons via the shortest path are derived by the path. The proposed

mechanism was simulated in NS2 and the results show that it had better performance com-

pared to the SCAN algorithm [37].

Feng et al. [13] presented an autonomous deployment framework for optimal localiz-

able k-coverage strategies with the assist of a mobile robot. The localizable k-coverage is

defined as the covered area within the range of the localization process of the mobile robot

by k neighboring beacon nodes in the network. At first, a novel framework is presented

that defines the optimal localizable k-coverage problem and preserves the connectivity and

robustness for the mobile robot in the network. Then, the authors present a hole recov-

ery method for the defined problem which is achieved by the mobile robot, that knows the

concurrent mapping deployment and localization of the network. Additionally, a mapping-

to-image transformation method is presented that is able to reveal the interaction between the

WSN deployment and the network holes. In order to solve the defined problem, two optimal-

ity conditions are developed to maximize the coverage of the optimal localizable k-coverage

in the unknown hostile environment with the use of the minimum number of sensors. The

proposed framework is simulated in MATLAB by evaluating three different indoor environ-

ments: the snake-shaped, U-schaped and square-shaped. The results show it outperforming

the trilaretation and spanning tree methods for the defined problem. The 27 simulation runs

achieved an average rate of nearly 100% for 1-coverage, 91.34% for 2-coverage and 89% for

3-coverage.

Mazumdar et al. [50] proposed an adaptive hierarchical data dissemination mechanism

for multiple mobile data collector used in dynamic WSNs. This mechanism consists of three

elementary phases. The first one, called Prepare phase, a set of sojourn points is nominated

from the base station and information are shared between neighboring nodes. The second

phase, called Network configuration, runs subsequently with the first one. Here, the network

30

Nata
lie

 Tem
en

e

topology is built, where it is divided into a set of disjoint clusters, and a routing tree is formed

to disseminate each cluster data to a nominated mobile data collector sojourn point. In the

last phase, called Steady, the data transmission is performed. Each cluster head aggregates

its cluster data to the mobile data collector sojounr point. The mobile data collector visits

all of its points and collects the data, which are then return to the base station. In parallel,

a fault-tolerant mechanism is incorporated within the second phase to address the dynamic

changes of the network during the third phase. The proposed mechanism was simulated

using Python in the Spyder 3.1.2 development environment and was compared to RDLP [91],

OECF [34] and EPEGASIS [88]. The results show an improved performance with respect to

the performance metrics, such as network lifetime, energy and delay.

Akram et al. [4] presented an algorithm for solving the distributed movement assisted

k-connectivity restoration problem in a heterogeneous network that consists of static and

mobile nodes. In the algorithm, a node can identify the mobile nodes in the network and

its 2-hop local subgraph. The algorithm consists of two main phases: the setup phase and

the restoration phase. In the setup phase, each node determines its local subgraph and the

moving cost of the mobile nodes. The restoration phase always starts when a node detects

a faulty neighboring node. Upon fault detection, the node checks the effect of the fault on

the networks’s connectivity (i.e., whether the network is still k-connected or not) and starts

constructing a path and moving process in the case the failure has indeed reduced the value

of k. The neighboring node calls a mobile node to the position of the faulty node with a

minimum moving cost. The minimum cost movement path between the mobile node and a

neighbor of the failed node is constructed based on the locations of the nodes, moving costs,

and obstacles. The proposed algorithm was compared with similar algorithms in simulation

and real testbed environments. The results show the capability of the algorithm to restore the

k-connectivity of the network with up to 35.5% lower sent Bytes and 40.9% lower movement

cost.

Papi and Barati [60] presented a hole detection and recovery method (HDRM) for wire-

less sensor netowrks. The method is divided into two phases. In the first phase the detection

is performed, where the existence of holes in the network are explored by the nodes itself.

In the second phase, mobile nodes are used to cover the holes that are detected in the pre-

vious phase. In case that the number of holes is bigger than the available mobile nodes, the

selection is done based on the highest priority and shortest distance to the mobile node. The

proposed method was compared to similar methods based on different metrics with the NS2

software. The simulation results shows improved results in terms of the coverage and energy

31

Nata
lie

 Tem
en

e

consumption.

Wu [90] proposed an efficient hole recovery method that uses mobile nodes to cover the

holes in the network. This work does not separate the discovery and recovery process, but

uses the connection line structure of a one-hop neighboring node of each node to determine

the role of a hole boundary or hole interior node. The location of the mobile node is deter-

mined from the hole boundary node. The proposed method was compared to the bidding

protocol and the sensing intersection-based hole recovery technique. Simulations results

show that this method has better performance than the other techniques in terms of message

transmission and complexity.

Discussion. The papers mentioned above focus on algorithms that use mobile nodes to

help resolving the occurrence of a problem in the network. Their main focus is to assist

the existing static nodes in either replacing them or creating alternative paths. It is shown

that the most common tasks are the data dissemination method and the reconnection of a

disconnected network. The most used method is the use of clusters, where the main idea is

to send each mobile node to a number of cluster heads to collect data. In Appendix B.3, the

table of the strengths and limitations of each paper are presented. The work of this thesis

uses mobile nodes that are placed in the network to assist the existing nodes when a problem

occurs. The mobile nodes do not replace the faulty nodes, but rather are positioned in a

calculated location in order to serve as many affected nodes as possible.

2.2.3 Discussion

To the best of our knowledge, there are no other algorithms in the literature that solve the

occurrence of a problem using the approach of this thesis. Based on the existing research in

this area, the solutions that utilize mobile nodes follow two approaches. In the first approach,

the mobile nodes either refer to mobile sink nodes that collect data from sensor nodes, or

they are used for routing purposes. In the second one, mobile nodes are represented as

mobile robots that move in the network, replacing and assisting nodes. The work of this

thesis focuses only on mobile nodes, which take up the role of the sensor nodes within the

network; they are not used as mobile sink nodes and are not considered as mobile robots.

It is also worth mentioning that this work addresses challenges at different layers and

aspects (positioning, energy-awareness, physical transportation of nodes) as opposed to prior

solutions that only address each layer separately from one another.

32

Nata
lie

 Tem
en

e

Chapter 3
The Node Placement Algorithm

In this Chapter we present the Node Placement Algorithms (NPA) that addresses the mobile

node placement strategy and employs mobile nodes in the network to assist nodes when

a problem occurs. The algorithm consists of two variations. The first variation is a local

solution, called Dynamic Node Placement Algorithm, and the second variation is a solution

that creates an alternative path of mobile nodes, called Direct Node Placement Algorithm.

When a node detects a problem in the network, it sends a Problem Notification Mes-

sage (PNM) to the sink. This message contains all the information needed, so that the sink

can act for mitigating the problem that appeared in the network. This information includes:

its NodeID, its location and communication range, the number of packets received and for-

warded per sample time period, and some neighbor table information. From the neighbor

table, the following information are included: neighbor node’s NodeID, hop number, num-

ber of packets received and availability flag.

When the sink node receives the PNM message it calculates the position for mitigating

the problem. This position needs to be a “smart” placement for a mobile node in order to

provide alternative paths to the sink and help in alleviating the area from its problem. After

the calculation of the position, the sink node sends a Moving Notification Message (MNM)

to the mobile node that is selected to assist in the problem. The MNM message includes

information about the target location, the sender node’s NodeID and its next hop NodeID.

When a mobile node receives an MNM message, it switches off its radio while moving

towards the target location, and switch its radio back on at its new position. The use of

the ON/OFF tactic is so that the mobile nodes are not detectable from the static nodes in

the network while they travel towards their target locations. Finally, when the mobile node

reaches its destination, it establishes a connection with its target nodes to be served.

33

Nata
lie

 Tem
en

e

The NPA algorithm with its two variations are described below and are used for deter-

mining the number and position of mobile nodes for mitigating a problem in the network,

such as congestion.

3.1 Dynamic Node Placement Algorithm

The first algorithm proposed is the Dynamic Node Placement algorithm, referred to as Dy-

namic MobileCC. We use the term MobileCC to reflect the use of the MobileCC Framework

of Koutroulos et al. [36]. This algorithm places a mobile node in a carefully computed po-

sition so as to alleviate the problematic area and assist the affected nodes. This mobile node

can forward the packets either directly to the sink, if the sink is in its transmission range, or

it can serve as a relay node and forward the received packets to other upstream nodes.

High level idea. Initially, the Dynamic MobileCC algorithm calculates the average number

of packets per time unit that the defected node receives and cannot forward due to lack of

buffer space. Then, it discovers the nodes that transmit their packets to the defected nodes

and calculates the best position that the mobile node(s) should move to in order to receive

data from a number of them. Ideally, the best position is the position where the minimum

number of nodes can divert their traffic through the mobile node(s), whereas at the same time

their total sending rate should be equally or more than the amount of the excess traffic of the

defected node (see Alg. 1). In Appendix A.1, the flowchart of this algorithm is presented.

Its operation is based on the following functions:

• Identification of defected and “defecting” nodes;

• Calculation of extra resources;

• Calculation of the position that the mobile node should be placed.

We now provide a detailed description of these functions below.

3.1.1 Identification of Defected and “Defecting” nodes

The identification of the node that is defected and the nodes that defect this node is the first

step of the algorithm. This operation is normally performed by existing detection algorithms

based on the problem to be solved. This information, along with the position of these nodes

is communicated to the sink.

34

Nata
lie

 Tem
en

e

Algorithm 1 The Dynamic MobileCC Algorithm
1: function DYNAMICMOBILECCALGORITHM

2: for all n j ∈ downNodes do
3: ▷ find the downstream nodes that have a higher receiving rate than AR
4: if numR > AR then
5: add n j ∈ de f Neighbors
6: end if
7: end for

8: if list_length(de f Neighbors) == 1 then
9: ▷ find the intersection point from the line that starts from the sink and ends to node n j with the circle created from the range of

the node n j

10: p = intersectionPofL&C(n j,sink)
11: else
12: for all n j ∈ de f Neighbors do
13: p = intersectionPofL&C(n j,sink) ▷ calculate the distance between two points
14: dist = distance2P(p,sink)
15: add dist ∈ DistanceTable ▷ create the distance list
16: end for
17: ▷ find the point with the smallest distance to the sink from the Distance List
18: p = getBestPosition(DistanceTable)
19: end if
20: ▷ determine if the point is in range of an active node
21: flagyes = checkInRangeNode(p)
22: if flagyes == TRUE then
23: maddr = selectMobileNodetoUse()
24: send newPosition(p) message to maddr
25: else
26: set second_priority = p
27: set flagsp = TRUE
28: end if

29: if flagyes == FALSE then
30: set n = 2
31: while n ≤ 7&&n ≤ list_length(downNodes) do
32: if n == 2 then
33: set i = 0
34: ▷ find a group of two nodes that will get assist from the mobile node
35: for all ni ∈ downNodes do
36: for all n j ∈ downNodes do
37: totalAR = ar_ni + ar_n j

38: if totalAR ≥ AR then ▷ find the intersection point from the two circles created from the range of each nodes
39: p = intersectionPof2C(ni,n j)
40: dist = distance2P(p,sink)
41: add dist ∈ DistanceTable
42: i = i+1
43: end if
44: end for
45: end for
46: if i > 0 then
47: pos = getBestPosition(DistanceTable)
48: flagyes1 = checkInRangeNode(pos)
49: if flagyes1 == true then
50: maddr = selectMobileNodetoUse()
51: send newPosition(pos) message to maddr
52: else
53: second_priority1 = pos
54: flagsp1 = true
55: n++
56: end if
57: end if

35

Nata
lie

 Tem
en

e

58: else
59: ▷ find a group of more than two nodes that will get assist from the mobile node
60: for all ni ∈ downNodes do
61: for all n j ∈ downNodes do
62: p = intersectionPofL&C(ni,n j)
63: for all nz ∈ downNodes do
64: totalAR = ar_ni + ar_n j + ar_nz

65: if totalAR ≥ AR then
66: isRange = checkIsRange(p,nz)
67: if isRange == TRUE then
68: count = count + 1
69: end if
70: end if
71: end for
72: if count == n-2 then
73: dist = distance2P(p,sink)
74: add dist ∈ DistanceTable
75: end if
76: end for
77: end for
78: pos = getBestPosition(DistanceTable)
79: flagyes1 = checkInRangeNode(pos)
80: if flagyes1 == TRUE then
81: maddr = selectMobileNodetoUse()
82: send newPosition(pos) message to maddr
83: else
84: distp = distnace2P(pos,sink)
85: distp1 = distnace2P(second_priority,sink)
86: if distp ≤ distp1 then
87: second_priority1 = pos
88: flagsp1 = true
89: end if
90: end if
91: end if
92: end while
93: end if
94: if flagsp1 == FALSE && flagsp==TRUE then
95: maddr = selectMobileNodetoUse()
96: send newPosition(second_priority) message to maddr
97: else if flagsp1 == TRUE && flagsp==FALSE then
98: maddr = selectMobileNodetoUse()
99: send newPosition(second_priority1) message to maddr
100: else
101: distp = distnace2P(second_priority,sink)
102: distp1 = distnace2P(second_priority1,sink)
103: if distp ≤ distp1 then
104: maddr = selectMobileNodetoUse()
105: send newPosition(second_priority) message to maddr
106: else
107: maddr = selectMobileNodetoUse()
108: send newPosition(second_priority1) message to maddr
109: end if
110: end if
111: end function

36

Nata
lie

 Tem
en

e

3.1.2 Calculation of Extra Resources

In this step, the Additional Resources are calculated based on the average number of packets

per time unit (seconds) that the defected node receives and is not able to forward. This pa-

rameter defines the excess traffic the mobile node will require to accommodate. In particular,

for a defected node i, the Additional Resources rate AR(i) is calculated by the equation:

AR(i) =
Recv(i) − Tran(i)

t − t0
(3.1)

where,

Recv(i) is the number of packets that i has received from its neighbors,

Tran(i) is the number of packets that i has transmitted,

t is the current time, and

t0 is the time that i started transmitting packets.

Based on this equation, the mobile node that will move close to the problematic area,

should be able to receive and forward the excess traffic load that cannot be forwarded by the

defected node. Thus, the defected node will receive just the traffic it can accommodate and

the problem will be alleviated.

Below a more detailed description of each step is presented.

3.1.3 Calculation of the Position that the Mobile Node Should Move to

The algorithm checks whether there is a single node, which if it stops transmitting towards

the defected node, the problem will be alleviated. If there is such a node then the single

point where the mobile node should move is calculated (Alg. 1, lines 8-10). Otherwise, if

there are more than one nodes, then for each of these nodes a specific point is calculated.

The objective of this algorithm is to minimize the number of nodes that will transmit data

through the mobile nodes, but their total sending rate should be equal to the amount of traffic

that the defected node is not able to forward (Alg. 1, lines 11-15). Furthermore, the mobile

nodes should be placed in a position where at least an upper non-defected node should exist

in their transmission range to forward the data they receive, to the sink (Alg. 1, lines 17-19).

Finding the position where mobile nodes should move in order to serve one node.

The calculation of this specific point is performed as follows: Initially, the intersection points

between the circle that is created by the radius of the transmitting range of the defected node

37

Nata
lie

 Tem
en

e

(a) Single Node (b) Multiple Node (c) Direct Path

Figure 3.1: Node Placement Positions [56]

and the straight line that connects the sink with this node, is calculated (function intersec-

tionPofL&C()). Between these two points, the point which is closer to the destination node

in comparison to the point which is closer to the mobile node, is chosen. This is illustrated

in Fig. 3.1a.

Let us consider as (Xk,Yk) the coordinates of the node that is going to be served by the

mobile node and (Xsink,Ysink), the coordinates of the sink. In case that the coordinate X of

this node, or Y respectively, is the same as of sink’s, i.e. if Xk = Xsink, then the intersection

point will be (Xk,Yk + node′s Tx range) if Yk < Ysink and (Xk,Yk − node′s Tx range) if

Yk < Ysink. If Yk = Ysink, then the intersection point will be (Xk − node′s Tx range,Yk) if

Xk > Xsink and (Xk + node′s Tx range,Yk) if Xk < Xsink.

For each node that has a sending rate greater than the Additional Resources rate, the

position of the mobile node is calculated and the algorithm checks whether there is a node

closer to the sink which is not defected, so as to transmit the data that it receives.

Finding the position where mobile nodes should move in order to serve more than one

nodes.

If there is not any available relocation position of the mobile node suitable to serve just one

node, then for a number of nodes equal to n (Alg. 1, lines 26-81), where n is a number

between 2 and 6 according to [77] and [20], the following procedure is followed:

Initially, the algorithm described in [33] is employed. This algorithm identifies the sub-

set of the nodes that transmit their data to the defected node. Only the subsets that have a

total sending rate greater than the Additional Resources rate of the defected node are used

for calculations (Alg. 1, lines 30-47 and 48-81). For each of these subsets, the algorithm

38

Nata
lie

 Tem
en

e

finds the common point in the transmission range of the nodes, which is closer the sink. To

achieve this, the algorithm considers for each pair of these nodes, the cross-section of their

transmitting ranges. Then, it checks whether this cross-section point is within the transmit-

ting range of the rest of the nodes, besides the pair under reference (Alg. 1, lines 48-65). If,

for a subset of nodes, more than one appropriate point is calculated, then the point which is

closer to the sink is chosen (Alg. 1, lines 66-81). This is illustrated in Fig. 3.1b.

The procedure halts when at least a common subset of nodes n is found, for n ∈ [2, 6].

If there is more than one subsets of size n, and more than one common point, then a mobile

node is chosen to move to the common point that is closer to the sink. Thus, the algorithm

makes sure that, from the smallest subsets (n = 2) to the largest subset (n = 6), the subset

that is being served by the mobile node is the smallest. This attribute secures the validity of

the first limitation of this algorithm, that the least number of nodes should change destination

node.

3.2 Direct Node Placement Algorithm

The second algorithm proposed is the Direct Node Placement algorithm, referred to as Direct

MobileCC. Similarly to the Dynamic MobileCC algorithm, it does not replace any existing

topology control, congestion control, or routing algorithms, but runs alongside them. The

difference between the two algorithms relies on the use of the mobile nodes. While the

Dynamic MobileCC uses a mobile node for each problem occurrence, the solution is local,

the Direct MobileCC creates a completely new and direct (disjoint) alternative path of mobile

nodes towards the sink. This solution provides a faster establishment of the connection to

the sink node. As our experimental evaluation shows (cf., Section 6.3.2), this helps to reduce

the number of dropped packages, trading however, use of resources (and hence, energy).

High level idea. Initially, the Direct MobileCC algorithm calculates the position of the first

mobile node placed in the network with the use of the Dynamic MobileCC algorithm. Then,

a direct line is created that starts from the fist placed mobile node and ends at the sink. This

line is filled with additional mobile nodes until a direct connection with the sink is achieved

(see Alg. 2). In Appendix A.2, the flowchart of this algorithm is presented.

Its operation is based on the following functions:

• Calculation of the position of the first mobile node using the Dynamic MobileCC

algorithm.

39

Nata
lie

 Tem
en

e

Algorithm 2 The Direct MobileCC Algorithm
1: function DIRECTPATHMOBILECCALGORITHM

2: ▷ to calculate the new position of the mobile node call the dynamic algorithm
3: pos = DynamicMobileCCAlgorithm()
4: flagdp = false ▷ a flag to stop the loop
5: while flagdp == false do
6: ▷ to determine if the position is in the range of the sink
7: isSinkRange = checkinrangeofsink(pos,sink,Range)
8: if isSinkRange == true then
9: ▷ to select the mobile node that is available to be sent to position pos
10: call send_mnode(pos)
11: flagdp = true;
12: else
13: ▷ to select the mobile node that is available to be sent to position pos
14: call send_mnode(pos)
15: ▷ find the interesection point from the line at pos and the circle of the sink
16: pos = intersectionPofL&C(pos,sink,Range)
17: end if
18: end while
19: end function

• Creation of a path consisting of mobile nodes, starting from the first mobile node, that

was placed from the previous function and ending at the sink.

3.2.1 Calculation of the Position of the First Mobile Node

The first mobile node is located at the position calculated by using the Dynamic MobileCC

algorithm 1. If this mobile node is in the range of the sink and is able to transmit its re-

ceived data directly to it, the process terminates. Otherwise, the process continues with the

following step.

3.2.2 Creation of a Path Consisting of Mobile Nodes

In order to reach the sink node, it is needed to create a disjoint path. Each new mobile node

placement is calculated from the algorithm so that it is in the range of the previous placed

mobile node. The calculation of this specific point is performed as follows: The intersection

points of the virtual circles created by the transmitting range of the initially placed mobile

node and the virtual straight line between this node to the sink, is calculated. The point that

is closer to the sink is the one kept. This is illustrated in Figure 3.1c. The process continues

until the mobile node is in the sink.

40

Nata
lie

 Tem
en

e

Chapter 4
The Energy-aware Node Placement Algorithm

The NPA algorithm (see Chapter 3) stops when the mobile node is placed in the needed po-

sition and becomes active. However, at some point the current problem may be resolved and

the mobile node may no longer be needed. For this reason we extended the previously men-

tioned algorithm (the Dynamic variation) in order to reuse the mobile nodes that are placed

in the network. We call this extension Energy-aware Node Placement algorithm (eNPA), and

we refer to it as Dynamic MobileCC+. To this respect, we introduce energy considerations.

Based on the energy levels of the mobile nodes, they can be either reused or replaced; in

the latter case, the mobile node returns to its initial position (near the sink) to recharge its

battery.

When a new problem occurs in the network, there is a need to use a mobile node to

resolve it. The introduction of reuse provides the opportunity to first check among the in-use

mobile nodes, that is, the mobile nodes that are already placed in the network, whether one

of them is available to be used. The following conditions must be applied to reuse an in-use

mobile node:

1. The current problem for which the mobile node was sent to resolve, has now been

resolved or the neighbor nodes of the mobile node can now find an alternative path.

2. The energy level of the mobile node does not exceed a certain threshold, which enables

the mobile node to travel from its current position to the new position, and then from

there to its initial position (near the sink), without running out of energy.

We now present the actions of each node type: Mobile node, Sink node and node (a static

node or an in-use node acting as a relay). In Appendix A.3, the flowchart of this algorithm

is presented.

41

Nata
lie

 Tem
en

e

4.1 Mobile Node

The mobile nodes are responsible to monitor their energy and their usage in the network. This

monitoring process is done with the use of two functions: (a) the network usage function (see

Alg. 4), which is called periodically, and (b) the energy usage function (see Alg. 5), which

works as a push notification function.

Algorithm 3 Periodic check algorithm for mobile node mi

1: flag_nu = network_usable()
2: flag_eu = energy_usable()
3: if flag_nu == FALSE AND flag_eu == OK then
4: do nothing
5: end if
6: if flag_nu == TRUE AND flag_eu == OK then
7: status=idle
8: send(BecomeIdle) to sink
9: send(Idle) to to each n j ∈ neighbor_list
10: end if

11: if flag_nu == FALSE AND flag_eu == TH1 then
12: send(ShouldBeReplaced) to sink
13: wait until Treplace OR remain_energy == TH2

14: if remain_energy == TH2 then
15: send(ComingBack) to sink
16: send(GoingBack) to each n j ∈ neighbor_list
17: move to init_pos
18: end if
19: if Treplace expired then
20: send(GoingBack) to each n j ∈ neighbor_list
21: move to init_pos
22: end if
23: end if

24: if flag_nu == TRUE AND flag_eu == TH2 then
25: send(ComingBack) to sink
26: send(GoingBack) to each n j ∈ neighbor_list
27: move to init_pos
28: end if

29: upon receive ("NewPosition") from sink then
30: move to new_pos

The procedure starts by calling the two usage functions (Alg. 3, lines 1-2). Based on their

outcome, the mobile node decides its next action, as described below:

• When the node is still needed and its energy level is OK, the mobile node continues to

act as a static node (Alg. 3, lines 3-5).

• When the node is not needed and its energy level is OK, the mobile node changes its

status to idle and informs the sink node with a BecomeIdle message, as well as its

neighbors about its new status. (Alg. 3, lines 6-10).

42

Nata
lie

 Tem
en

e

• When the node is needed but its energy level has reached the first threshold (warn-

ing threshold), the replacement procedure is triggered: the mobile node requests from

the sink a replacement and waits until either the timer (Treplaced) expires or its en-

ergy level reaches the second threshold (departure threshold). When the timer expires,

which determines a time interval in which the sink node needs to send a replacement,

the node informs its neighbors about its departure and leaves (by this time, a replacing

node should have arrived). However, when the second energy threshold is reached, the

mobile node informs the sink node and its neighbors about its departure, and then it

returns to its initial position (at the sink), to get recharged (Alg. 3, lines 11-23).

• When the node’s energy level reaches the second threshold and the node is not needed

(possibly it is idle), it will inform the sink node and its neighbors about its return and

move back to its initial position (Alg. 3, lines 24-28).

4.1.1 Network Usage Function

This function checks whether the mobile node is still needed for the specific problem occur-

rence. Algorithm 4 describes this function.

Algorithm 4 Check Usable Function for mobile node mi

1: function CHECK_USABLE

2: send(FindAlternative) to each n j ∈ DN

3: wait until all n j ∈ DN to reply

4: if ∃reply j == FA-SearchFailed then

5: broadcast(SearchFail)

6: return FALSE ▷ mi needed

7: end if

return TRUE ▷ mi not needed

8: end function

The procedure starts with a (FindAlternative) request to each downstream node (DN).

This request requires from a DN to search its neighbor table in order to find an alternative

node to send its packets. The procedure stops, when at least one DN replies with a FA-

SearchFail message. The mobile node broarcasts a SearchFail message and the function

returns a False value, which means it is still needed. However, when all replies are Successful

messages, the mobile node is no longer needed and the function returns a TRUE value.

43

Nata
lie

 Tem
en

e

4.1.2 Energy Usage Function

This function retrieves the current energy level of the mobile node at any time. Algorithm 5

describes this function.

Algorithm 5 Energy Usable Function for mobile node mi

1: function ENERGY_USABLE

2: remain_energy = listening_energy + moving_energy

3: return_energy = the energy needed to return to its initial position.

4: double_return_energy = double the amount of return_energy.

5: if remain_energy == double_return_energy then

6: return TH1 ▷ energy reached threshold 1

7: else if remain_energy == return_energy then

8: return TH2 ▷ energy reached threshold 2

9: else

10: return OK ▷ energy is ok

11: end if

12: end function

The function starts by calculating three parameters: the remaining energy, the return_en-

ergy and the double_return_energy. The remain energy is defined as the sum of the listening

and moving energy of the node (more info can be found in Section 6.2). The return_energy

is defined as the energy needed from the mobile node to return to its initial position (at the

sink), whereas the double_return_energy is defined as double the amount of the return_en-

ergy (to give enough time for the replacing node to arrive). The level of the remaining energy

of the mobile node defines the energy threshold returned from this function. When the en-

ergy level equals to the double_return_energy, the function returns TH1, which means that

the first energy threshold is triggered. When the energy level drops to the return_energy, the

function returns TH2, which means that the second energy threshold is triggered. Otherwise,

the energy level of the mobile node is normal and the function returns OK.

4.2 Sink Node

In Dynamic MobileCC (see Section 3.1), the sink node was only responsible for assigning

an idle mobile node (of those waiting near the sink) for each problem occurrence in the

44

Nata
lie

 Tem
en

e

network. In our extended version, the sink node may choose either an idle mobile node that

resides at the sink (MList) or one that is already placed in the network for a previous problem

(idleMList), if there exist one. Algorithm 6 describes the tasks of the sink node.

Algorithm 6 Algorithm for sink node
1: function SEND_MNODE(new_pos)
2: if idleMList == empty then
3: choose mk ∈MList
4: send(NewPosition) to mk

5: else
6: distnacem = distance(sink_pos, new_pos)
7: distancei = distance(closestIM_pos,new_pos)
8: if distnacem < distancei then
9: choose mk ∈ idleMList
10: else
11: mk = closestIM
12: end if
13: send(NewPosition) to mk

14: end if
15: end function

16: upon receive ("problem_notification") from ni then
17: new_pos = DynamicMobileCCAlgorithm()
18: call send_mnode(new_pos)

19: upon receive ("ShouldBeReplaced") from mi then
20: new_pos = currentpositiono f mi

21: call send_mnode(current position of m_i)

22: upon receive ("ComingBack") from mi then
23: if mi ∈ idleMList then
24: remove mi from idleMList
25: end if
26: f lagmi = FALSE
27: current_posmi = init_posmi

28: upon receive ("BecomeIdle") from mi then
29: statusmi = idle
30: add mi ∈ idleMList

The selection on which mobile node to send is made on the closet distance to the calcu-

lated position. Initially, the sink defines the closest idle mobile node (closestIM) based on its

distance (distancei). Then, distancei is compared to the distance of a near sink mobile node

(distancem). The mobile node with the smallest distance is sent to the calculated position

(see Alg. 6, lines 1-15).

Another task of the sink node is to replace an in-use mobile node in case of an energy

emergency. When a mobile node informs the sink about the need of replacement, the sink

node assigns the position to a new idle mobile node by choosing the closest idle mobile node

in the network (see Alg. 6, lines 19-21). Additionally, the sink node needs to keep track of the

current status of the in-used mobile nodes. To this respect, notification messages received by

45

Nata
lie

 Tem
en

e

the mobile nodes must be processed by the sink node. When a mobile node is about to return

to its initial position, the sink node is informed in order to change its availability (f lagmi),

its position and, if necessary, remove it from the idle list (see Alg. 6, lines 22-27). When a

mobile node is not needed and becomes idle at its current position, the sink node is informed

and changes the status of the mobile node and it is added in the idle list (see Alg. 6, lines

28-30).

4.2.1 Analysis

We proceed to a simple analysis of the sink node algorithm, depending on whether there is

reuse or not. Specifically, when a new problem occurs in the network, the computational

delay (defined below) for the whole process is divided into two cases based on the scenario

used, the no reuse scenario and the reuse scenario.

(a) Delay without

Reuse

(b) Delay with Reuse

Figure 4.1: Delay Scenarios

No Reuse Scenario (Fig. 4.1a). The notification information is sent (link a) from node ‘N’

to the sink ‘S’ and then a moving notification is sent (link b) from ‘S’ to a near-sink mobile

node ‘MN’. ‘MN’ moves (link c) to its new position ‘X’.

Reuse Scenario(Fig. 4.1b). The notification information is sent (link a) from node ‘N’ to

the sink ‘S’ and then a reuse notification is sent (link b) from ‘S’ to an in-used mobile node

‘MN’ in the network. ‘MN’ moves (link c) from its current position in the network to its new

position ‘X’.

As a result, we can define the total computational delay or delay for short, as the sum of

the communication delay (links a and b) and the moving delay (link c), i.e.,

delay = communication_delay +moving_delay.

46

Nata
lie

 Tem
en

e

The communication_delay is calculated as r ∗ dist_hops, where r is the rate of the packet

per hop and dist_hops is the distance in hops, from the problematic area (N) to the sink

(S), and from the sink to the mobile node (MN). For the no reuse case, in the worst case,

dist_hops = D, where D is the diameter of the network (and b is almost zero), whereas, for

the reuse case, in the worst case, dist_hops = 2D; however, the closer the in-use mobile node

is to the problematic area, the smaller the moving delay will be.

The moving_delay is calculated as speed∗distance, where speed is the speed of the mobile

node and distance is the distance the mobile node must move from its current position to its

new position. As the algorithm attempts to find the mobile node that is closer to the position

to be moved (X), which could be a mobile node at the sink or an in-use mobile node, and

given that in general, the moving delay is longer than the communication delay (unless an

auxiliary device is used to move the mobile node, e.g., a drone), the algorithm using re-use

can significantly reduce the moving delay, and hence the total delay.

4.3 In-use Node

The role of an in-use node in the network is performed by either a static node or an in-use

mobile node acting as a relay node. In this extended version, the node is not only responsible

for forwarding the packets it receives, but it also needs to response to requests from the

mobile node in its neighborhood, which defines the search process.

A search process begins upon receiving a usage request from a neighboring mobile node

(see Alg. 7, lines 1-2). The goal of this method is to search the neighboring table in order to

find an alternative path excluding the mobile node. Two different methods are implemented

(called at line 2 of Alg. 7): the optimistic method (see Alg. 8) and the allocation method

(see Alg. 9), described below. Algorithm 7 shows all tasks of a static node.

4.3.1 The Search Methods

Here the two different search methods are presented. Firstly, the optimistic method is pre-

sented, where the search is only one step and then, the allocation method is presented, where

a reservation of resources process takes place.

47

Nata
lie

 Tem
en

e

Algorithm 7 Algorithm for node ni

1: upon receive ("FindAlternative") from m j then
2: call optimistic_method() OR allocation_method()

3: upon receive ("AllocationRequest") from n j then
4: Let R be the data rate and Ns the number of active neighbor nodes
5: dR = R

Ns+2

6: if x ≤ dR then
7: dR = dR − x
8: add n j ∈ ERlist
9: send(YES) to n j

10: else
11: send(NO) to n j

12: end if

13: upon receive ("FA-SuccessMessage") from m j then
14: f lagn j = FALSE

15: upon receive ("FA-FailMessage") from m j then
16: send(AllocationStop) to next_hop
17: next_hop = -1

18: upon receive ("AllocationStop") from n j then
19: dR = dR + x.n j

20: remove (n j,x) from ERlist

The optimistic method

When the node receives a FindAlternative request from the mobile it will search its neighbor

table to find an alternative next-hop node. If the search in the neighbor table is success-

ful, meaning that the node found at least one alternative next-hop node, it will reply to

the mobile node with a (FA-SearchSuccess). Otherwise, the reply to the mobile node is a

(FA-SearchFail), which means that the search was unsuccessful. Algorithm 8 describes this

method. When a Success Method Message is received from the mobile node, the node re-

moves the mobile node from its neighbor table and continues as normal (see Alg. 7, lines

13-14).

The allocation method

When the node receives a FindAlternative request from the mobile it will check its neighbor

table to find from all its upper nodes at least one alternative next-hop node. Algorithm 9

describes this method. For each upper node it finds, called candidate alternative node, the

node will communicate with it to ask if the candidate node can handle its extra resources.

Upon receiving a AllocationRequest request from a neighbor node, the candidate node

will calculate its additional resources to check if this extra resources can be handled (see

48

Nata
lie

 Tem
en

e

Algorithm 8 Optimistic method for node ni

1: function OPTIMISTIC_METHOD(m j)

2: counter = 0

3: for all n j ∈ neighbor_list do

4: if f lagn j == TRUE then

5: counter = counter + 1

6: end if

7: end for

8: if counter > 0 then

9: send(FA-SearchSuccess) to m j

10: else

11: send(FA-SearchFailed) to m j

12: end if

13: end function

Alg. 7, lines 3-12). The request is only accepted from the candidate node only if:

x ≤
R

Ns + 2
, (4.1)

where x is the amount of extra resources from the requesting node, R is the data rate of the

network and Ns is the number of the active neighbor nodes of the candidate node.

If the extra resources ‘x’ are in the range of the resources the candidate node can handle,

then the reply to the requesting node is an acceptance message and the node is added to the

extra resources list (ERlist). However, if the extra resource cannot be handled, then the reply

is a rejection message without any other actions. Based on the reply of the current candidate

node examine, the node will either continue its search or provide a reply to the mobile node.

If the reply from one candidate node is positive, the reply to the mobile node is a a success

message (see Alg. 9, lines 7-12); otherwise the reply is a failure message (see Alg. 9, lines

14-16). After the search method, the node waits for the results of the procedure from the

mobile node, either a success method message or failed method message. Upon receiving

a success method message, the node removes the mobile node from its neighboring table

(see Alg.7, lines 13-14) and assigns the selected node from the search as its next hop node

(see Alg. 9, line 9). The latter is important, as without this assignment the normal function

will indicate a random next-hop node but this will not work here as the selected candidate

is the one needed. However, upon receiving a failed method message, the node needs to

deallocate its extra resources from the selected node by broadcasting a stop process message

49

Nata
lie

 Tem
en

e

Algorithm 9 Allocation method for node ni

1: function ALLOCATION_METHOD(m j)

2: success = FALSE

3: for all n j ∈ neighbor_list do

4: if f lagn j == TRUE then

5: send(AllocationRequest(x)) to n j

6: wait until n j replies

7: if reply == YES then

8: send(FA-SearchSuccess) to m j

9: next_hop = n j

10: success = TRUE

11: break

12: end if

13: end if

14: if success == FALSE then

15: send(FA-SearchFailed) to m j

16: end if

17: end for

18: end function

(see Alg. 7, lines 18-20).

Analysis of the search methods

We now present a time analysis of the two search methods.

Optimistic Search method. As it can be observed from Alg. 8, this method is a one-hop

task: the mobile node communicates with its neighbors and they communicate back to it.

If we assume that a one-hop point-to-point communication takes one unit of time, then the

number of time units Topt is proportional to the number of neighbors the in-use mobile node

m has:

Topt = 2|Nm|, (4.2)

where Nm is the set of the neighboring nodes of m. Note that if m can broadcast the message

to all its neighbors within one time unit (instead of sending one message at a time to each),

then Topt = |Nm| + 1. In any case, Topt = O(|Nm|).

Allocation Search method. As it can be observed from Alg. 9, this method is a two-hop task:

the in-use mobile node m communicates with its neighbors (Nm), and each of its neighbors i

50

Nata
lie

 Tem
en

e

must communicate with its own neighbors (Ni) as well. Thus, the number of time units Tal

is bounded by:
Tal ≤ 2|Nm| + 2

∑
i∈Nm

|Ni|. (4.3)

The equality occurs in the worst case scenario where the nodes in Nm need to communicate

with all of their neighboring nodes. Even if nodes can broadcast messages to their neighbors,

it still follows that Tal = O(|Nm| +
∑

i∈Nm
|Ni|).

The above analysis suggests that the optimistic method is more efficient in terms of time.

However, the allocation method seems to be more effective in the long run, as it ensures

that the additional resources can be handled, taking into consideration what has already been

"reserved" by the ongoing search mechanism (cf. Section 6.4).

51

Nata
lie

 Tem
en

e

Chapter 5
The Carrier-based Node Placement Algorithm

In the eNPA algorithm (see Chapter 4), a mobile node was able to move to the calculated

position by itself. However, the decision of employing mobile carriers instead of mobile

nodes lies on the fact that mobile nodes impose severe energy costs to the network and

networks can accommodate a limited number of these nodes. As a result, it is realistic to

state that each sensor node that needs to be replaced in the network is carried by either a

mobile robot or a drone.

For this reason, we extended the previously mentioned algorithm (eNPA) by adding car-

riers that are able to pick the mobile nodes and transport them to the position that has been

calculated by the sink node and contribute to the solution of a problem that has appeared in

the network. We call this extension Carrier-based Node Placement algorithm (cNPA).

We now present the functionalities of each node type. In Appendix A.4, the flowchart of this

algorithm is presented.

5.1 Mobile Node

A mobile node is transported to the network by its carrier for assisting the already placed

nodes when a problem occurs. Once the mobile node is placed at its new position it will act

as a static node, but it will also be responsible of monitoring two parameters, its energy and

its usability. The monitoring of these parameters is based on two functions:

The Energy Usage function acts as a push notification and returns the current energy

level status of the mobile node. The energy is defined as the energy needed for performing

its sensing and communication activities. This function can return three possible answers

based on the current energy level of the mobile node at that time. When the energy level does

52

Nata
lie

 Tem
en

e

not reach any threshold, it returns an OK value. When the energy reaches the replacement

threshold, which is defined as the energy required until the arrival of the replacement node,

it returns a TH1 value. Alternatively, when the energy reaches the return threshold, which is

defined as the energy required for waiting the carrier to pick it up and return it to its initial

place for charging, it returns a TH2 value.

The Usability function is periodic and checks whether a mobile node is still required to

assist the network. The procedure begins by requesting each of its downstream neighboring

nodes to search for an alternative next-hop node to send their packets (FindAlternative re-

quest). When at least one neighbor’s response is negative, the procedure stops and returns

a negative value. Otherwise, when all nodes reply positively and the mobile node is not

required, a positive value is returned.

Algorithm 10 Periodic check algorithm for mobile node mi

1: f lagu = check_usable()
2: f lage = energy_usage()
3: if f lagu == FALSE AND f lage == OK then
4: do nothing
5: end if
6: if f lagu == TRUE AND f lage == OK then
7: status=idle
8: send(BecomeIdle) to sink
9: send(Idle) to to each n j ∈ neighborsList
10: end if
11: if f lagu == FALSE AND f lage == TH1 then
12: send(ShouldBeReplaced) to sink
13: wait until Treplace

14: if Treplace expired then
15: send(ComingBack) to sink
16: send(GoingBack) to each n j ∈ neighborsList
17: move to initPos
18: end if
19: end if
20: if f lage == TH2 then
21: send(ComingBack) to sink
22: send(GoingBack) to each n j ∈ neighborsList
23: move to initPos
24: end if
25: move to newPos

The procedure is a slight modification of the one presented in Section 4.1. It starts by

calling the two usage functions (Alg. 10, lines 1-2). Based on their outcome, the mobile node

decides its next action, as described below:

• Continue: the mobile node is still needed and its energy is OK, so it will continue to

act as a static node (Alg. 10, lines 3-5).

• Become Idle: the mobile node changes its status to idle when it is not needed and its

energy level is OK (Alg. 10, lines 6-10).

53

Nata
lie

 Tem
en

e

• Replace: the mobile node requests a replacement from the sink, when it is still needed

and its energy has reach the first threshold. It waits for a certain time and then returns

to its initial position to get charged, but firstly informs its neighbors about this action

(Alg. 10, lines 11-23).

• Return: the mobile node has reached its second threshold and needs to return to its

initial position for immediate charging. It informs its neighbors and sink about its

need and moves back (Alg. 10, lines 24-28).

5.2 Carrier

The node type of the carrier is the novel part of this work. A carrier represents the means of

transportation required to move the mobile nodes in the network. The use of a carrier in the

network can be divided into two approaches: (a) stay and (b) leave, based on the action after

the transportation is completed.

5.2.1 Stay Approach

In this approach the carrier moves a mobile node to its new position and waits at that position

until it gets new instructions from the sink node.

Algorithm 11 Algorithm for carrier - approach stay
1: upon receive ("Move(mi, pos1, pos2)") from sink then
2: if pos1 == currerntPos then
3: pick mi

4: move to pos2
5: else
6: move to pos1
7: pick mi

8: move to pos2
9: end if

Algorithm 11 presents the Move action of the carrier. Each movement is defined by the

first parameters of the positions (pos1). The variable pos1 defines the first location the carrier

needs to move to. In case that this position is the same as its current position (currentPost)

of the carrier, it means that the mobile node assigned for transportation is its nearest one.

Otherwise, the carrier need to move to this position and take the mobile node from there.

The first case can be either a new mobile node being placed in the network or a reuse method

for an in-used mobile node. The second position parameter (pos2) defines the second location

the carrier needs to move to, which determines the destination position.

54

Nata
lie

 Tem
en

e

The carrier is also responsible to periodically check its current energy level in order to

be able to return back and charge its battery when needed. The energy of the carrier is

calculated as the sum of its listening and moving energy. When the level is OK, it continues

operating as normal. However, when the energy threshold is reached, the carrier just returns

to its initial position for charging, but before it informs the sink about its return, to remove

the carrier from the assigned mobile node.

5.2.2 Leave Approach

In this approach, the carrier after each task is performed, always returns to its initial position

(at the sink), where it waits for new instructions by the sink node while it can charge its

battery, if needed. The Leave Approach could be used in a hostile environment, where it

could be safer for the carrier to return near the sink or its initial position in the network, rather

than stay at the destination position. This approach can easily modify the return position of

the carrier based on the needs of the network. Algorithm 12 describes all actions performed

by the carrier.

Algorithm 12 Algorithm for carrier ci in the Leave Approach
1: upon receive ("Move(mi, pos1, pos2)") from sink then
2: if pos1 == currentPos then
3: pick mi

4: move to pos2
5: place mi

6: else
7: move to pos1
8: pick mi

9: move to pos2
10: place mi

11: end if
12: return to initPos

13: upon receive ("Replace(mi, pos1, pos2,m j)") from sink then
14: if pos1 == nearSinkPos then
15: pick mi

16: move to pos2
17: place mi

18: else
19: move to pos1
20: pick mi

21: move to pos2
22: place mi

23: end if
24: pick m j

25: return to initPos

The following actions can be performed by the carrier:

• Move: this action can be divided into two tasks, place and reuse. In the place task, the

55

Nata
lie

 Tem
en

e

variable pos1 is set as a near sink position, which means that the carrier will pick a new

mobile node and transport it to the destination position (pos2), where it will leave the

mobile node. In the reuse task, the carrier will have to move to the first position, where

it will pick the mobile node up. It will then pick it up and move to the destination

position (pos2). Both tasks end with the return of the carrier to its initial position near

the sink.

• Replace: the carrier needs to transport a mobile node to a location and retrieve from

there another mobile node to return it back for charging. The first part of this action is

the same with the move task, which defines if a new mobile node or an in-use mobile

node is going to be transported to the destination position (pos2). When the carrier

reaches the destination and places the new mobile node, it will pick up the old mobile

node and return to its initial position.

It is worth mentioning that in this approach, the energy level monitoring function is not

needed because after each action the carrier is able to charge its battery as it returns to its

initial position. Additionally, the sink node always chooses the carrier whose energy level is

sufficient for the entire duration of the task, as we explain next.

5.3 Sink Node

The sink node is always responsible for selecting a mobile node and send it to its new posi-

tion, either by choosing a new one or reusing an in-use mobile node. In this extension, the

sink node needs to choose a carrier as well. Algorithm 13 describes the responsibilities of

the sink node.

The sink node can receive the following messages that need actions:

• Problem Notification Message: When the sink receives such a message, it will run the

DynamicMobileCC+ algorithm (see Chapter 4) and get the position (newPos) for the

mobile node that it will be placed. Then, it calls the chooseMobileNodeAndCarrier

function (described in Section 5.3.1) that will return the mobile node and carrier that

will be assigned to perform this task. The message about the task is sent to the carrier,

including information about the mobile node and the position (Alg. 13, lines 1-4).

• Replacement Message from mobile node: When a mobile node needs replacement,

the sink will receive a replacement message. The position for the new mobile node

56

Nata
lie

 Tem
en

e

Algorithm 13 Algorithm for sink si

1: upon receive ("problem_notification") from ni then
2: newPos = DynamicMobileCCAlgorithm()
3: call (mi,ci) = chooseMobileNodeAndCarrier(newPos)
4: send (Move[mi, curPosci ,newPos])" to ci

5: upon receive ("Replacement") from mi then
6: newPos = current position of mi

7: call (m j,c j) = chooseMobileNodeAndCarrier(newPos)
8: if approach == STAY then
9: send (Move[m j, curPosc j ,newPos])" to c j

10: if mi. f lagcarrier == True then
11: send (Move[mi, curPosci , initPosmi]) to ci

12: else ▷ mi has no carrier
13: ck = chooseCarrier(newPos)
14: send (Move[mi, curPosck , initPosmi]) to ck

15: end if
16: else ▷ approach leave
17: send (Replace[m j, curPosm j ,newPos,mi]) to c j

18: end if

19: upon receive ("comingBack") from mi then
20: if mi ∈ idleMList then
21: remove mi from idleMList
22: end if
23: if approach == STAY then
24: if mi. f lagcarrier == True then
25: send (Move[mi, curPosci , initPosmi]) to ci

26: else ▷ mi has no carrier
27: ck = chooseCarrier(newPos)
28: send (Move[mi, curPosck , initPosmi]) to ck

29: end if
30: statuscmi

= returned
31: current_poscmi

= init_poscmi

32: else ▷ approach leave
33: choose ck ∈ CList
34: send (Move[mi, curPosmi , initPosmi]) to ck

35: end if

36: upon receive ("BecomeIdle") from mi then
37: set statusmi = idle
38: add mi ∈ idleMList

is the same as the current position of the requesting node. Then the sink chooses a

new mobile node and its carrier for the replacement and informs the carrier to bring

the mobile node back (Alg. 13, lines 8). Based on the approach, different actions are

needed to be performed:

– Stay Approach: In this approach, the sink checks if the mobile node has an as-

signed carrier. If this is the case, the sink informs the carrier to return the mobile

node to its initial position (Alg. 13, lines 10-11). However, when no carrier is

assigned, the sink will choose a carrier, either from the ones near it or the one

that is closest in the network. This carrier will be assigned to return the mobile

57

Nata
lie

 Tem
en

e

node to its initial position (Alg. 13, lines 12-15).

– Leave Approach: In this approach, the carrier is responsible to take the new mo-

bile node to the destination and from there to take the old mobile node and return

it to its initial position near the sink (Alg. 13, lines 16-18).

• ComingBack message from mobile node: When the sink receives such a message from

a mobile node, it will remove it from the idle list if it is included, and change its status

into unavailable, as well as its current position to the initial position. Additionally, if

the mobile node has an assigned carrier, it will change the current position to its initial

and the status to “returned" (Alg. 13, lines 19-28).

• Returning message from carrier: When the sink receives such a message, it will change

the status of the carrier to “returned" and its position to its initial position. Additionally,

it will remove the carrier from its assigned mobile node (Alg. 13, lines 29-32).

• BecomeIdle message from mobile node: When the sink receives such a message it will

change the status of the mobile node to idle and add it to the idle list (Alg. 13, lines

33-35).

5.3.1 Choose Mobile Node and Carrier Function

This function will choose the mobile node and the carrier that will assist the problem occur-

rence in the network. This function has two variations based on the approach used and are

presented below.

Stay Approach Function (see Algorithm 14)

The stay function begins by choosing either an idle mobile node that resides at the sink

(MList) or an idle mobile node from those that are already placed in the network for the

solution of a previous problem (idleMList) (if such a problem exists or existed). The mobile

nodes and carriers are selected based on their energy availability and the energy required to

complete the specific task. The decision method is made based on the closest distance to

the calculated position in the affected area. Firstly, the closest idle mobile node without a

carrier (closestIM) and the closest idle mobile node with a carrier (closestIMC) are selected,

based on the distance to the destination. Then, the distances of each selected mobile node

are calculated, distancem for the near-sink mobile node, distancei for the idle mobile node

without a carrier and distanceic for the idle mobile node with a carrier. The shortest distance

58

Nata
lie

 Tem
en

e

is the parameter that will decide which mobile node is going to be sent to the new position.

However, when the choice is between the two idle mobile nodes in the network, another

option is reconsidered. This option will check if the carrier of the closestIMC mobile node

can cover the distance from the closestIM in a shorter distance cost. When the selected

mobile node does not have a carrier assigned to it, a carrier needs to be chosen. When the

CList with the near sink carrier is not empty, a carrier from this list is chosen. However,

when a near sink carrier is not available, it is required to choose a carrier from the in-use

carriers. The decision is made based on the closest carrier to the starting point of the selected

mobile node.

Algorithm 14 Choose Mobile Node and Carrier Function for sink si - Stay Approach
1: function CHOOSECARRIER(posmk)
2: if Clist! = empty then
3: choose ck ∈ CList
4: else
5: ck = closestC ∈ activeCList to posmk

6: end if
7: return ck

8: end function

9: function CHOOSEMOBILENODEANDCARRIER(newPos)
10: if idleMList == empty then
11: choose mk ∈MList
12: choose ck ∈ CList
13: else
14: distancem = distance(sinkPos, newPos)
15: distancei = distance(closestIM_pos,newPos)
16: distanceic = distance(closestIMC_pos,newPos)
17: if distancem < distancei && distancem < distanceic then
18: choose mk ∈ idleMList
19: ck = chooseCarrier(posmk)
20: else
21: if distanceic < distancei then
22: choose mk = closestIMC
23: choose ck = closestIMCcarrier

24: else
25: distancec = distance(closestIMC_pos, closestIM_pos) + distancei

26: if distancec < distancei then
27: mk = closestIM
28: ck = closestIMCcarrier

29: else
30: mk = closestIM
31: ck = chooseCarrier(posmk)
32: end if
33: end if
34: end if
35: return (mk, ck)
36: end if
37: end function

59

Nata
lie

 Tem
en

e

Leave Approach Function (see Algorithm 15)

The leave function begins by choosing either a near sink mobile node (MList) or an idle

mobile node (idleMList) that is already placed in the network, if such exists. The decision

on which node to choose is made based on the closest distance to the calculated position in

the affected area. Firstly, the closest idle mobile node (closestIM) is selected, based on its

distance from the new position. Then, its distance (distancei) is compared to the distance of

a near-sink mobile node (distancem). The shortest distance will decide which mobile node is

sent to the new position.

Algorithm 15 Choose Mobile Node and Carrier Function for sink si - Leave Approach
1: function CHOOSEMOBILENODEANDCARRIER(newPos)
2: if idleMList == empty then
3: choose mk ∈MList
4: else
5: distancem = distance(sinkPos, newPos)
6: distancei = distance(closestIM_pos,newPos)
7: if distancem < distancei then
8: choose mk ∈MList
9: else

10: mk = closestIM
11: end if
12: end if
13: choose ck ∈ CList
14: return (mk, ck)
15: end function

5.4 In-use Node

The in-use node class which represents either a static node or an active in-use mobile node

is responsible to forward the packets in the network. Another responsibility of this type of

node is to reply to the FindAlternative request from the mobile node. When such a request

is received, the node just checks its neighbor table and if it finds an available upper neighbor

node, it replies with a yes, otherwise with a no. For more details, the reader is reffered to

Section 4.3.

60

Nata
lie

 Tem
en

e

Chapter 6
The Experimental Evaluation

In this chapter, we present the experimental evaluation of the three algorithms mentioned in

the previous sections. Initially, we present the evaluation setup and the evaluation metrics

used. Then, for each algorithm the scenarios and their results are presented.

6.1 Evaluation Setup

To perform the experimental evaluation, we implemented our algorithms within the Con-

tiki OS [58], an open source operating system for networked, resource-constrained systems,

mainly focusing on low-power wireless Internet of Things devices. The evaluation has been

performed in the COOJA simulator, a dedicated simulator for Contiki OS nodes. The specific

tool was selected as it comes with the COOJA simulator that allows the creation of simulated

nodes that are executing application code developed in Contiki OS and can also be uploaded

to a real sensor node. The COOJA simulation is in close proximity of a real deployment.

However, the COOJA mobility plugging required to define the topology positions prior to

experimentation. To accommodate the feature of the algorithm and calculate the position

of the mobile nodes dynamically, a script was created that was an intermediate between the

algorithms and the move request to the mobile node. The algorithm sent the new position

coordinates to the script through the output console of the simulation, and, in turn, sent the

request of the new position.

The simulator parameters are presented in Table 6.1. Most of the parameters used are

the default parameters in the COOJA simulator, which are also mapped to the parameters of

real sensor nodes [58]. The total time of the simulation was selected to 15 minutes, because

it is an amount that completed all task that were needed to be investigated and the network

had also the chance to run after its reconnection. Since this work is related to the work

61

Nata
lie

 Tem
en

e

from [36], the number of nodes and the initial topology of the scenarios selected was the

same. The mobile node speed parameter is used in respect of the speed for the Wifibot

mobile robot [96]. The maximum speed of a Wifibot mobile robot is 0.9 m/s, so the speed

0.65 m/s was selected reflecting the average speed.

Simulator/OS COOJA/Contiki 3.0

Protocol Contiki Multihop/Rime

MAC ContikiMAC/CSMA

Simulation Time 15 mins

Simulation Repetition 10 times

NPA and eNPA parameters

Emulated Mote Tmote sky

Number of Nodes (Sink/Fixed/Mobile) 1/19/6

Mobile Node Speed 0.65 m/s

cNPA parameters

Emulated Mote Wismote

Number of Nodes (Sink/Fixed/Mobile) 1/19/6/6

Carrier Speed 0.65 m/s

Transmission Range (m) 25

Max Data Rate (kbps) 250

Queue Length (Pkts) 8

Packet Size (Bytes) 48

Initial Source Rate (Pkts/sec) 25

Rate Increase 50 pkts/sec every 1 minute

Table 6.1: Simulation Parameters

The network is set up and left to reach steady state for 2 minutes. All sensor nodes are

equivalent to Sky Mote / Wismote nodes and bear a 10m radio range. The sources start

injecting data to the network with a source data rate of 25 pkts/sec, for one minute. The

data rate is then increased to 50 pkts/sec and it is constantly increased with a data rate of 50

pkts/sec, for each source, every minute. After 13 minutes each source injects to the network

600 pkts/sec, with an effective rate of 230.4Kbps. For each scenario 10 experiments were

conducted each starting with a random seed.

To evaluate our algorithms, we used congestion as the case study. For this reason, we

employed DAlPaS [72], a resource-control, congestion-control algorithm. DAlPaS employs

62

Nata
lie

 Tem
en

e

a dynamic way to control topology without adding any extra load to the network. Initially,

during topology control phase it builds a spanning tree from sink to source, sorting the nodes

in accordance with their level (distance in hops from the sink). Thus, every node that is going

to transmit data searches in its neighbor table and finds the most appropriate node, the one

with the lowest level (closer to the sink) and transmits its data through this node.

When congestion occurs, each node searches in its neighbor table and finds the most

appropriate node based on parameters, like level, energy, etc. The process iterates until there

are no available paths from source to sink. In this case, DAlPaS algorithm stalls. This is

exactly the point where our proposed algorithms start to run.

6.2 Evaluation Metrics

The following metrics were used for evaluating our algorithms: the percentage of success-

fully received packets, the average source to sink delay and the total energy consumption.

For each evaluation scenario, we executed 10 simulation runs. Based on the authors

of [78], our algorithms are single-valued measures of performance, where the validation is

performed with plots of different metrics, such as average delay, total throughput, etc. The

other validation options refer to simulated and obtained data, which are obtained from the

sensor nodes or other entities. This work does not consider the data captured from the sensor

node, as a result a small packet, like a "hello world" packet, is send to the sink. The main

factor is to reconnect the network so that the nodes are able to send packets to the sink and

the sink receives them.

Percentage of Successfully Received Packets. The percentage of successfully received

packets presents the successfully received packets versus all packets generated by the sources

in the course of the simulation, and is calculated with the equation below:

Recv_Pkts_Ratio =
success f ully_received_packets

total_sent_packets
. (6.1)

Total Source to Sink Delay. The total source to sink delay presents the time the packet

needs to be transmitted to the sink node and is calculated with the equation below:

Delaysource_to_sink = tarrival_time − tstart_time. (6.2)

Energy Consumption. The total energy consumption, measured in mJ, is calculated dur-

ing the operation of the network, with the following equation:

63

Nata
lie

 Tem
en

e

TotalEnergy =
n∑

i=1

energyi (6.3)

To measure the energy consumption of the network, we calculate the energy (energyi) con-

sumed by each node i, as shown in the equation below. The general energy model used for

our nodes in the network is divided into two parts. The first one is for listening and the other

for moving.

energyi = listening_energyi +moving_energyi, (6.4)

where listening_energyi is the energy computational usage and moving_energyi is the en-

ergy usage for moving. If node i is static, then moving_energyi = 0.

Following [66], we compute listening_energyi as:

listening_energyi = (transmit · 19.5mA + listen · 21.8mA+

CPU · 1.8mA + LPM · 0.0545mA) · 3V/4096 · 8,
(6.5)

where trasmit is the total time of the radio transmitting, listen is the total time of the radio

listening, CPU is the total time of the CPU being active, and LPM is the total time of the

CPU being in low power mode.

The energymove represents the energy usage of moving that is used for the mobile nodes

(eNPA) or the carriers (cNPA). It is calculated with the following equation [96]:

energyimove = Pu ·
s
u

where Pu is the power consumption of a given speed u and s is the total traveling distance.

Computational Time. The computational time of the algorithm refers to the time needed

for the sink node to calculate the position of the mobile node. This interval can be calculated

from the time the problem notification message is received by the sink until the sink node

sends a moving message to a mobile node. This metric performed by the sink node, once all

information is gathered, a small amount of time was required within the range of ms and 3

seconds for making calculations and provide a result. Thus, it was not included in the final

results.

6.3 Evaluation of NPA

In this section, we present the evaluation scenarios and results for Algorithm NPA (Chap-

ter 3).

64

Nata
lie

 Tem
en

e

6.3.1 Evaluation Scenarios

Initially, we employed 26 Tmote Sky nodes (1 sink, 19 fixed and 6 mobiles nodes) as it is

presented in the topology of Figure 6.1. The Tmote Sky node category is the most simple of

motes for use within a WSN and ideal for initial configurations within a COOJA simulation.

Figure 6.1: Initial Topology

In this scenario there are 9 source nodes (nodes 12-20, white), 10 relay nodes (nodes 2-

11, light grey) and 6 mobile nodes (nodes 21-26, dark grey). The mobile nodes are initially

placed near the sink in a sleep mode until the moment that are required by the network,

as described in [35]. It is clear that based on the topology, two nodes (3 and 8) become

congested due to their placement in the network. Their location is critical as these nodes are

receivers from many paths and at the same time are the nodes that provide the path towards

the sink.

Figure 6.2a presents the topology, after the sink calls the Dynamic MobileCC algorithm.

In this scenario, two mobile nodes are employed, one for each congestion occurrence.

65

Nata
lie

 Tem
en

e

(a) Dynamic MobileCC Execution of

the Example (b) Direct MobileCC Execution of the

Example

Figure 6.2: Execution example of the NPA variations

In Figure 6.2b we present the topology after the sink calls the Direct MobileCC algo-

rithm. In this case two alternative mobile node paths are created. The first path consists of

two mobile nodes and the other one of four mobile nodes. The different number of mobile

nodes used for each path is related to the distance of the congested node from the sink. Cu-

mulatively, this algorithm employs six mobile nodes for the creation of two disjoint paths to

solve the congestion problem.

This simple experiment demonstrates that both Dynamic and Direct MobileCC algo-

rithms can solve the problem locally. Both algorithms must employ at least one mobile node

for each congestion occurrence in the network. This example indicates that Direct MobileCC

needs more mobile nodes than Dynamic, which is expected since the former implements a

full path of mobile nodes, from the congested point to the sink.

6.3.2 Evaluation Results

For the execution example in Section 6.3.1 we also present some basic experimental results.

66

Nata
lie

 Tem
en

e

Figure 6.3: Percentage of Successfully Received Packets

In Figure 6.3 we present the percentage of successfully received packets. We observe that

as the network load (i.e., sources’ data rate) increases, there is a point, when the data rate

is at 100 pkts/sec (i.e., 100 · 48 bytes/sec = 38.4K bits/sec) at which the DAlPaS algorithm

starts failing to find alternative paths in the existing topology and the network experiences

congestion. At higher network loads (above 150 pkts/sec) the network actually disconnects

due to congestion (several energy depleted nodes). This is the point in the simulation, when

the MobileCC algorithms are initiated.

The breaking point, when essentially no packets reach the sink, is at a source rate of

300 pkts/sec (115.2Kbps). It is interesting to note that this rate, which is roughly half of the

nominal link rate matches the theoretical results on network capacity found in [71].

Our results show that, when engaged, both Direct MobileCC and Dynamic MobileCC

can relieve the network from the congestion occurrence and maintain at a high level the

packet transmissions. The Direct MobileCC algorithm manages to recover from congestion

and recover to a received packet ratio of 94%. This is just 3% less than the original 97%

achieved with no congestion.

It is worth mentioning that Direct MobileCC delivers more packets than Dynamic Mo-

bileCC. This was expected, since Direct MobileCC creates new disjoint paths of mobile

nodes to the sink. In this case, any new appearance of congestion hotspots through this path

is avoided. On the other hand, the Dynamic MobileCC algorithm places just the required

67

Nata
lie

 Tem
en

e

number of nodes in specific points of the network, targeting the creation of new paths and

routing traffic through nodes that were not initially accessible. In such a case, congestion

may re-appear, especially in cases where some of these nodes are already in use by other

flows.

Figure 6.4: Source to Sink Delay

In Figure 6.4 we present the total source-to-sink delay in the network. In this plot, we

notice that both algorithms have a total source-to-sink delay that increases as a function of

the source data rate. This is expected due to the fact that collisions exist in the network, and

until the network stabilizes with the help of the mobile nodes many packets are either being

re-sent or sometimes are even dropped. As mentioned before, Dynamic MobileCC places

only mobile nodes in positions where paths are created from existing nodes in the network

so the delay is higher in comparison to Direct MobileCC that creates a new path with mobile

nodes.

68

Nata
lie

 Tem
en

e

Figure 6.5: Total Energy Consumed

In Figure 6.5 we present the total energy consumed, measured in mJ, during the operation

of the network. In this plot we observe that both Direct MobileCC and Dynamic MobileCC

have a stable increment based on the total packets injected in the network. In comparison, Di-

rect MobileCC has higher energy consumption than Dynamic MobileCC. That was expected,

as Direct MobileCC injects more mobile nodes in the network by creating new alternative

paths consisting of only mobile nodes.

Discussion

In general, based on the results it is observed that the Dynamic MobileCC algorithm uses

a local solution and employs less mobile nodes in the network. On the other hand, the

Direct MobileCC algorithm needs more mobile nodes to create the paths, which consists

only of mobile nodes, but has better results because of the path creation that does not need

time to establish new communications in the area, it just directly forwards packets to the

sink node. As a result, the Dynamic MobileCC algorithm trades performance for resources.

So, if limited resources are available, Dynamic MobileCC is to be chosen, otherwise Direct

MobileCC would be a better choice.

69

Nata
lie

 Tem
en

e

6.4 Evaluation of eNPA

In this section, we present the evaluation scenarios and results for Algorithm eNPA (Chap-

ter 4).

6.4.1 Evaluation Scenarios

Initially, we employed 26 Tmote Sky nodes (1 sink, 19 fixed and 6 mobiles nodes) as it is

presented in the topology of Figure 6.6.

Figure 6.6: Initial Topology

In this scenario there are 9 source nodes (nodes 12-20, white), 10 relay nodes (nodes 2-

11, light grey) and 6 mobile nodes (nodes 21-26, dark grey). The mobile nodes are initially

placed near the sink in a sleep mode until the moment that are required by the network,

as described in [35]. It is clear that based on the topology, two nodes (3 and 8) become

congested due to their placement in the network. Their location is critical as these nodes are

receivers from many paths and at the same time are the nodes that provide the path towards

the sink.

In this subsection, we present the three scenarios used for the evaluation process of eNPA,

i.e., Dynamic MobileCC+. The scenarios are divided as follow:

• Scenario 1: it presents a no-reuse scenario, which essentially evaluates the Dynamic

MobileCC algorithm. In this scenario it is assumed that the mobile nodes placed in

the network are not able to be reused for a new problem. This scenario is used for

comparing the previous algorithm with the new version.

70

Nata
lie

 Tem
en

e

• Scenario 2: it presents a reuse scenario. In this scenario it is assumed that each mobile

node that is placed in the network can be reused if all conditions are met. This scenario

is used to present the benefit of reuse, which is the new addition of the algorithm.

• Scenario 3: it presents an energy exhaustion scenario. It is divided into two cases: (A)

return scenario, where the mobile node is not needed in the network, but it needs to

return to charge its battery, and (B) replace scenario, where the mobile node is still

needed in the network and its energy level reaches its lowest threshold, and needs to

be replaced.

All scenarios presented use the two search methods. As a result, each scenario has to

cases: (1) Optimistic Method, where the optimistic search method is used, and (2) Allocation

Method, where the allocation search method is used.

Scenario 1

In this scenario, no mobile node is reused as the problem that occurred in the network is

permanent. Specifically, the congested node runs out of battery due to heavy congestion. The

mobile node sent to solve this problem will need to stay there until the end of the simulation.

As a result, if any other congestion occurs in the network the sink node will need to send

another mobile node. This scenario represents the Dynamic MobileCC (Alg. 1), where the

mobile node is just placed in the network and works as a static node and no reuse is possible.

(a) First Congestion (b) Second Congestion

Figure 6.7: Scenario with no reuse

In Figure 6.7, we present the topology of this scenario. Here, two mobile nodes are

employed, as a result of the permanent failure of congestion node 3. Mobile node 21 is

71

Nata
lie

 Tem
en

e

required in the network and at each usability check, meaning that the mobile node checks

if it is still needed, it gets a negative answer, which results in being active during the whole

experiment. When congestion occurs at node 8, the sink node can only choose from "near

sink nodes" and for this reason it sends mobile node 22 to help with the new congestion

occurrence.

Scenario 2

In this scenario, a mobile node is reused. The congestion problem for which the mobile

node was sent to solve at some point is resolved and as a result the congested node becomes

again active. At a usability check of the mobile node, the answer of its downstream nodes

is positive and the mobile node becomes idle at its current position. When a new congestion

occurs in the network, the sink node needs to choose from its near-sink nodes and the idle

mobile node in the network. Since the idle mobile nodes are closer to the congestion area,

the sink node selects this node to move to the new position.

(a) First Congestion (b) Second Congestion

Figure 6.8: Scenario with reuse

In Figure 6.8, we present the two topologies of this scenario, the "before" and "after" the

reuse of the mobile node. In this scenario, the congested node 3 will at some point resolve its

congestion problem and become active again. When the mobile node 21 checks its usability,

its downstream node has an available node and accepts its change. Therefore, mobile node

21 is free to become idle at its current position, by informing the sink node and its neighbor

nodes. When node 8 becomes congested, the sink node has to choose between the near-sink

72

Nata
lie

 Tem
en

e

nodes and the idle node in the network. As now the mobile node 21 is closer to the congested

area, the sink node chooses the idle node and mobile node 21 moves to its new position.

Scenario 3

In this scenario the mobile node in the network is required to return to its initial position

due to the lack of energy. This scenario can be implemented in two cases. The first case

(Scenario 3A) is where the mobile node is not needed and becomes idle at some point. When

its energy reaches its lowest threshold it will just send an information message to the sink, to

change the mobile node’s status, and return to its initial position. The second case (Scenario

3B) is where the mobile node is still needed in the network but its battery reaches the lowest

threshold. The mobile node informs the sink node that it needs replacement and after a

certain time it moves back to its initial position. In both cases, the mobile node that returns

is not reconsidered for being used again, until its battery is fully charged.

(a) Returning Scenario(3A) (b) Replacement Scenario (3B)

Figure 6.9: Scenario of returning back

Figure 6.9, presents the topology of the cases of this scenario. In Figure 6.9a, the mobile

node moves to its current position without causing any problems, whereas in Figure 6.9b the

mobile node needs a replacement to move back. When the sink node sends mobile node 22

to replace mobile node 21, mobile node 21 moves back to its initial position to charge its

battery. In both scenarios, the new congestion problem is resolved with a new mobile node,

mobile node 23, to be injected in the network.

These experiments demonstrate the reuse of mobile nodes in the network. Reusing the

73

Nata
lie

 Tem
en

e

mobile nodes provides the potential of using less energy and results in an energy-efficient

solution for the entire network.

6.4.2 Evaluation Results

For the scenarios presented in Section 6.4.1, we also present some basic results. Each

scenario described is executed for both search methods, the optimistic method (see Sec-

tion 4.3.1,Algorithm 8) referred as OM, and the allocation method (see Section 4.3.1, Algo-

rithm 9) referred as ALM.

The plots of percentage of successfully received packets and delay start at 600pkts/s load

in the network. This happens because this is the point where the different scenarios execute

their algorithm and difference can be shown. From the beginning of the simulation until this

point the results given are the same, which is expected, as the algorithm of all scenarios until

then, run the same commands.

Figure 6.10: Percentage of Successfully Received Packets

In Figure 6.10, we observe that based on the methods used to find an alternative node

when requested from the mobile node, the results of the Allocation Method are slightly better

than the Optimal Method. This is normal due to the nature of the two methods, since the

allocation method is more strategic and makes use of all information in the neighbor table.

By accepting an allocation request it guarantees that the mobile node will not be further

74

Nata
lie

 Tem
en

e

required. On the other hand, the optimal method does not require the node to search for

an alternative node by examining exhaustive their neighboring node, in order to make its

decision. This decision does not always comply with the whole network information. In

both methods, it is shown that the worst scenario is the one where the mobile node needs a

replacement. This is normal and accepted, because the replacement of the node will incur a

delay in the routing process until the process is accomplished. The best scenario is the one

where the node becomes idle and at some point will need charging and then will return to

its initial position. The scenario where the mobile node is reused has definitely better results

than the one where no reuse is done. This is expected, because the mobile node needs more

time to move from the near sink position in comparison with the node that is already in the

network.

Figure 6.11: Source to Sink Delay

Figure 6.11 shows the total source to sink delay in the network. It is noticeable that both

methods have an increased delay during the simulation. This is expected due to the fact of

the collisions that exist in the network where many packets are retransmitted or sometimes

dropped. The scenarios with the replacement of the mobile node has the most delay, which

is expected due to the fact that more information is injected in the network to accomplish the

replacement. The scenarios in which mobile nodes are reused have the lowest results, which

is normal due to the fact that the relocation of the mobile node saves time and fewer packets

are re-sent or dropped.

75

Nata
lie

 Tem
en

e

Figure 6.12: Total Energy Consumed

In Figure 6.12 we observe that both methods act similarly in response of energy consump-

tion. However, it is noticeable that at all scenarios, the allocation method slightly consumes

more energy than the optimal method, which is acceptable due to the nature of the algorithm

sending more information messages in the network. It is shown that after 150 seconds is the

time where each scenario has an individual execution with different outcome. The scenario

with the most consumed energy is the one where no reuse is employed. This can be explained

due to the fact that the mobile node inserted in the network will operate until the end and

new congestion issues will be handled by another mobile node. The scenario with the least

consumed energy is the one where the mobile node is not any more required and returns after

its battery is exhausted to its initial/charging location. This scenario at some point operates

with one less node in the network, which justifies the results. In the scenario of reusing the

mobile node already placed in the network, the results are acceptable, where it result is be-

tween the no reuse scenario and the one with the returned mobile node. Comparing it with

its opposite scenario, the energy consumed in this scenario is less, because mobile nodes are

reused in the network in respect with the scenario of no reuse that uses more mobile nodes.

Discussion

In general, based on the results it is observed that by reusing an idle mobile node in the

network will resolve the new problem faster and use less resources, in respect of a scenario

76

Nata
lie

 Tem
en

e

that does not reuse mobile nodes that are already placed in the network, such as Dynamic

MobileCC algorithm. Additionally, being able to replace an exhausted mobile node is an

advantage that comes with a cost over an overhead that is the time needed to complete the

replacement task. However, once the new assignment is established the problem is resolved

as a new problem with the best solution coming either from a near sink mobile node or

an idle mobile node in the network. Finally, in comparison between the two search method

used, it is noticeable that even though the Allocation Method guarantees better results it need

more time to complete the task, whereas the Optimistic method is faster but may cause a new

problem in the future of the simulation, as its calculations are not verified by the candidate

nodes.

6.4.3 Evaluation of eNPA with Different Energy Models

In this section, we evaluate the eNPA algorithm with different energy models. Initially, we

present the energy models used for the evaluation. These models are based on different types

of mobile robots. Then, we present the evaluation results, which are divided into evaluation

based on each energy model and based on each scenario.

Energy Models

In this work, we focus on the energy consumption of nodes used for moving. The mobile

nodes need to use their energy as efficient as possible in order not to waste too much energy

while moving, and hence preserve more time for their operational time. We will present three

different moving energy models from the literature, each being used by a different mobile

robot.

Moving Energy Model 1. In [96], Zorbas et al. model the power consumption of a specific

mobile robot. This work presents a model created by experimental results based on different

speed and acceleration levels.

The mobile robot used for this work is a Wifibot [63]. This mobile robot consists of a

four-wheel drive chassis controllable, infrared sensor, a web camera, a WiFi adapter, a core

and an embedded system that can be one of the following systems: Linux Ubuntu, NVIDIA

or Raspberry PI, as well as a free WiFi access point. The embedded system of the robot

refers to the motherboard where all peripherals are connected to. In order to reduce power

consumption, a low consumption power unit and a flash disk is used. A serial port is used

77

Nata
lie

 Tem
en

e

for the communication between the embedded computer and the motor board. The role of

the motor board is to play the microcontroller and the power regulator. The motor board

connects to the power supply, where the power is distributed to the microcontroller and the

other components of the robot.

The experiment setup included a mobile robot (Wifibot), a power analyzer that was con-

nected to the robot, a monitor and a keyboard. The keyboard was used for the commands and

the monitor for displaying the outputs. All experiments took place on a flat surface of a clean

non-slippery parquet-style floor, where the robot was protected of spinning or slipping. The

models built use different speed and acceleration levels and the experimental results show

the relations between the energy and the speed, as well as the distance.

A mobile robot’s power consumption is the sum of the power consumed by the motors

and the embedded devices. The former represents the mechanical power which is used for

accelerating and maintaining a constant speed.

The total energy equation is given below.

Ptotal = Pe + Pl + Pm,

where, Pe represents the power consumption of the embedded devices, Pl represents the

power loss of the transformation from electrical to mechanical energy, and Pm represents the

mechanical power and is given by: Pm = mau + gµu, where u is the robot’s speed, m is its

mass, µ is the ground friction constant and g is the acceleration of gravity.

The idea of moving is that the mobile robot starts from its initial position and accelerates

until it reaches its maximum speed, where it continues with a constant speed.

This work divided the recorded power of the mobile robot into two parts: (a) the accel-

eration power and (b) the power while maintaining a constant speed. Based on this, the total

moving energy consumption is calculated with the following equation.

Eu = Paccutaccu + Pu
s − saccu

u
,

where, Paccu is the power of acceleration at a given speed u, s is the total traveling distance,

saccu is the distance traveled during acceleration, taccu is the acceleration time and u the speed

of the robot.

The results show that the energy cost increasing up to 66% when the robot stops fre-

quently due to accelerations. Additionally, at higher speeds, the robot achieved high energy

efficient. Although all results are based on a specific mobile robot, the main conclusion is

78

Nata
lie

 Tem
en

e

that acceleration is an action that consumes a high amount of the energy, which results in

decreasing the operation time of the mobile robot.

Moving Energy Model 2. In [19], Hou et al. present a novel energy model for mobile

robots that can be used to calculate and predict their energy consumption. The main idea is

to provide an energy model to be used for energy efficient strategies.

The mobile robot used for the experimentation of this work is a Mecanum. A Mecanum [10]

is a four-wheeled omni-directional mobile robot. An omni-directional characteristic de-

scribes the ability of moving instantaneously at any direction without considering the con-

figuration. This type of robot is able to move sideways, follow complex trajectories and turn

on the spot, as well as perform tasks with both static and dynamic obstacles. This mobile

robot uses mecanum wheels, which are similar to the universal wheels except of their rollers

being mounted on angles.

The energy consumption of the robot is divided into three parts: (a) the sensor system, (b)

the control system and (c) the motion system. Each part defines its own energy consumption

and all together define the total energy consumption of the mobile robot.

The energy consumed by the sensor part is almost stable and is defined by multiplying the

electrical power (Psensor) and time (∆t). The equation is given below.

Esensor = Psensor · ∆t

The energy consumption of the control system depends on the power of the control circuit

board and is related to the robot’s running state. A robot’s running state can be divided into

three states: the standby state, the start to move state and the smoothly run state. Each one

state has its own energy consumption formula, which is given below, and is used based on

the current state of the robot.

Econtrol

Estandby = Pstandby · ∆t

Estartup =
∫

(ϕ · ∆u + (t2

10) + Pstandby)dt

Estable =
∫

(Pstandby + t2)dt.

The energy consumption of the motion system can be divided into four parts: the traction

energy consumption, the kinetic energy, the friction energy dissipation and the energy dissi-

pated in thermal form. The motion of a robot is divided into three stages: standby, startup

and stable. In the standby stage the power is constant. In the startup stage, an instantaneous

pulse is needed in order to send the signal to the electric motor. Additionally, when a robot

79

Nata
lie

 Tem
en

e

is on the move, it enters the stable operation stage. The energy consumption of the motion

system is given below.

Emotion =

∫
Pmotiondt = Ek + E f + Ee + Em.

Each energy used in the motion energy formula given above is further explained below.

• Ek is the kinetic energy of the robot. To calculate the kinetic energy, the mass, M, of the

robot and its speed, u, at the current moment are needed and is given by: Ek =M·u2/2.

• E f is the friction dissipation during the robot’s movement. To calculate this energy, it

is needed to know the mass, the speed at the current moment and the friction coeffi-

cient, µ, between the wheel and the ground, and is given by: E f =
∫

(µ ·M · u)dt.

• Ee is the energy dissipation as heat in the armatures of motors. To calculate this energy

it is needed to know the time-heat constants and the speed-heat constant of the robot,

as well as the time and speed, and is given by:

Ee =
∫

(ϵ · t2 + σ · u + λ · t)dt.

• Em is the mechanical dissipation that is caused by overcoming the friction torque in

the actuators. To calculate this energy it is needed to know the drag coefficient of the

robot itself and the vibration velocity coefficient., and is given by:

Em =
∫ [

M · eζt
· cos

(
ψ · t + u +

(
M
2

))
+M
]
dt.

The results show that the proposed energy model can be used by mobile robots to predict

its energy consumption of its movement processes. In general, this work presents a com-

plete model that connects all parts of a mobile robot and provides a feasible and effective

model. During the experimentation results, the authors noticed that the stand by state of the

mobile robot, provides in all energy consumption parts, very low numbers, which lead into

re-calculating the total energy consumption considering only the sum of the idle and moving

energy of the mobile robot.

Moving Energy Model 3. Many research works on energy models focus on differential

drive mobile robots. This type of robots uses a drive mechanism called differential drive.

This mechanism consists of two independently actuated drive wheels that are mount on a

common axis. However, each wheel is able to be driven independently either forward or

backwards. In order to perform a rolling motion, the robot needs to vary the velocity of each

wheel but at the same time rotate a point on the common wheel axis.

80

Nata
lie

 Tem
en

e

We present two works that focus on different mobile robots, namely the P3-DX robot [84]

and the Nomad Super Scout robot [27], respectively; these are popular mobile robots in

the research community of energy consumption models. P3-DX is a mobile robot with two

wheels driven by two DC motors and powered by a rechargeable battery. Nomad Super Scout

robot is a two-wheel differential robot that has an embedded robot controller to control the

motion commands and lower level motors.

In [84], Wahab et al. start by investigating various energy loss components of the differ-

ential drive robots and then present an energy model based on their findings. The experiments

were done with a robot that has four wheels, two that are driven from the DC motors and

two that act as a caster. The energy model is validated by moving the mobile robot with a

specific velocity profile, where all losses have been measured and analyzed.

In [27], Morales et al. propose a power model for a two-wheel differential drive mobile

robot. The model presented considers the dynamic parameters of the robot as well as the

motors, and it is able to predict the consumption of the robot’s energy for trajectories using

variable accelerations and payloads. The experimentation was done with the use of a Nomad

Super Scout II mobile robot for straight and curved trajectories. The results show that the

accuracies of the energy consumption for straight trajectories are 96.67% and for curved

trajectories are 81.25%.

Based on all of the above work, the following results have been obtained.

The overall energy model is given by the equation bellow after the analysis of all loss

components.

Ebattery = Edc + Ekinetic + E f riction + Eelect.

Each energy used in the overall energy model formula given above is further explained below.

Edc represents the energy produced by the DC motors of the robot. The DC motors are at-

tached to the robot’s wheel and are responsible to convert the electrical energy to mechanical

energy. The conversation depends on the losses that occur, such as armature resistance loss,

windage loss and stray loss. As a result, the energy consumption of the DC motors is given by

the sum of the armature energy and the energy of other losses that occur. The armature loss

energy (Earmature) represents the consumed energy of the armature currents and resistances of

the left and right DC motors of the robot. The energy of other losses (Eother) represents the

energy of all other losses, like friction, windage, stray etc. It is worth mentioning that the

energy of other losses can be disregarded as shown by the experimental work of the authors.

81

Nata
lie

 Tem
en

e

The equation is given below.

Edc = Earmature + Eother

Ekinetic represents the energy loss where the output power is used in order to increase the

kinetic energy and the acceleration of the robot. However, during the deceleration phase,

the kinetic energy will be transformed back but due to heating a part of it will be lost. As a

result, the kinetic energy consumption uses the linear (u(t)) and angular (w(t)) velocities of

the robot, its mass (m) and the robot’s moment of inertia (I). The equation is given below.

Ekinetic =
1
2

(mu(t)2 + Iw(t)2),

where, u is the linear velocity of the robot and is given by u = r(wR+wL)
2 , w is the rotational

velocity of the robot and is given by w = r(wR+wL)
2b , where r is the ratio of the robot’s wheel

and b is the axle length.

E f riction represents the losses due to friction. The wheels of the robot face friction due to the

cause of slight deformation of the ground or the wheel at the point of contact and can be

primarily the rolling friction or rolling resistance. The equation is given below.

E f riction =

∫
(PR

f riction + PL
f riction)dt,

where, P f riction is the total power lost against friction and is given by P f riction = PR
f riction +

PL
f riction, such that PR

f riction and PL
f riction are the power lost against friction for the right and left

motor of the robot and are given by PR
f riction = µmg(u(t) + bw(t)) and PL

f riction = µmg(u(t) −

bw(t)).

Eelect represents the losses in the electronics of the robot. A robot system includes DC mo-

tors driver, sensors and micro-controllers that compose the electronics of the robot. These

components are also consuming part of the battery’s energy. The equation is given below.

Eelect =

∫
(IelecVelec)dt.

Energy Evaluation Results

In this part of the evaluation, our novel energy efficient solution is compared with different

energy models based on different mobile robots characteristics.We use existing energy mod-

els based on three different types of mobile robots and simulate them with our own algorithm

to compare their results. The main goal is to examine if the energy model is important in

the energy consumption of the nodes in the network or the algorithm is the main resource of

consumption.

82

Nata
lie

 Tem
en

e

Evaluating the Energy Models. In this section we compare the different scenarios of the

algorithm to each energy model.

(a) Energy Model 1 (b) Energy Model 2

(c) Energy Model 3

Figure 6.13: Evaluation of the different Energy Models

In Figure 6.13a we present the results for all scenarios using the Energy Model 1. At first

all scenarios have similar results, due to the algorithms structure, and when the mobile node

starts acting differently, each scenario has a different result. We can observe that Scenario

3B finishes with the most consumed energy, which is expected because it is the only scenario

using the most mobile nodes.

In Figure 6.13b we present the results for all scenarios using the Energy Model 2. Sce-

nario 3B is the one with the most consumed energy, following by Scenario 1 having that have

a slightly difference. Scenario 2 has the least amount of consumed energy in the network,

due to the fact that only one mobile node is used in the network.

In Figure 6.13c we present the results for all scenarios using the Energy Model 3. The

same as the previous one, it is shown that Scenario 3B has the most consumption. The least

83

Nata
lie

 Tem
en

e

consumption is seen in Scenario 2 where the mobile node is reused, which is normal as only

one mobile node is needed in the network.

In general, we can observe that all energy models have the same performance while

running our algorithm. Based on the results, it is shown that Energy Model 3 presents the

largest energy consumption and Energy Model 1 has the least energy consumption. Based on

the scenarios, it is shown that Scenario 3B is the one that uses the most mobile nodes in the

network and takes the first place in energy consumption. Scenario 2 uses only one mobile

node, because of reusing the mobile nodes in the network, and results in consuming the least

energy of them all.

Evaluating the Energy Model based on the Scenario. In this section we compared dif-

ferent energy models for each scenario of the algorithm, to present the differences of each

robot’s characteristic. Does an energy model of a different robot have a different result in the

total energy consumption of the network? It is worth mentioning that the speed of the node

is set as 0.65m/s which is the same constant in all three energy models.

In Figure 6.14a we present the results of each energy model for Scenario 1. In this sce-

nario the mobile nodes in the network at the end of the simulation are two. We can observe

that Energy Model 2 and Energy Model 3 are the ones with a slightly small difference due to

their equation that uses the time variable, whereas the Energy Model 1 uses the distance vari-

able. All models use the same speed variable, so the difference relays in the other variables

of their equation.

In Figure 6.14b we present the results of each energy model for Scenario 2. In this

scenario, we reuse the mobile node in the network, so only one mobile node is inserted in

it. In respect to the general energy consumption, the numbers are lower than the previous

scenario, which is normal due to the number of mobile nodes used. In respect of the energy

models used, the one using the distance (Energy Model 1) has higher consumption than the

others using the time, which is normal due to the fact that the mobile node moves and its

distance is changed, whereas the time changes constantly.

In Figure 6.14c we present the results of each energy model for scenario 3A. In this

scenario, the mobile node in the network returns to its initial position due to energy lack

and a new mobile node takes the second congestion. It is shown that until the mobile node

leaves all models have the same reaction, whereas when the mobile node leaves and until

the new one is placed to its position the energy does not change much. The changes in the

consumption is due to the energy from the source node that are sending their packets and

84

Nata
lie

 Tem
en

e

(a) Energy Consumption of Scenario 1 (b) Energy Consumption of Scenario 2

(c) Energy Consumption of Scenario 3A (d) Energy Consumption of Scenario 3B

Figure 6.14: Evaluation of the different Scenarios

their relay nodes. When the new mobile node inserts the network the energy consumption

increases faster than before.

In Figure 6.14d we present the results of each energy model for Scenario 3B. In this

scenario, the mobile node returns back to its initial position due to energy lack but it will

be replaced by another mobile node, because it is needed in the network. When the second

congestion occurs, a new mobile node is inserted in the network. As a result, this scenario

has the largest number of mobile nodes used and the most energy consumption. All models

start to differ when the replacement is done and the source nodes send more packets in order

to create the second congestion. Before the end, a new mobile node is entered in the network

and the consumption increases. The highest number is returned by the Energy Models 2 and

3 that uses the time, whereas Energy Model 1 uses the distance consumed the least energy,

because the distance does not change so often as the time.

In general, we can observe that Energy Model 1 consumes the least energy in the network,

85

Nata
lie

 Tem
en

e

because the distance variable is not so frequently changed as the time variable. The two other

energy models, 2 and 3, that use time, which changes at all times, have more consumption.

The speed variable, which is a constant variable, does not really affect the result.

Discussion

The evaluation of our algorithm based on different energy model was to observe the impact

of the model to the total energy. The results show that the algorithm has greater impact

on the energy consumption of the node than the energy model. All energy models used in

the evaluation provided similar results with a small difference depending on specific details.

This is expected, since the energy models are based on same general criteria that relates

to speed, time and distance. As a result, we can observe that the energy consumption of

the nodes depends mainly on the algorithm and the steps they follow, rather on the specific

energy model used.

6.5 Evaluation of cNPA

In this section, we present the evaluation scenarios and results for the Algorithm cNPA

(Chapter 5). Wismote is another mote type of COOJA with better specifications than the

Tmote Sky. Since this algorithm is more demanding in terms of memory and computational

power, the new category was selected.

6.5.1 Evaluation Scenarios

Initially, we employed 32 Wismote nodes (1 sink, 19 fixed, 6 mobile nodes and 6 carriers)

according to the topology of Figure 6.15.

In this scenario there are 1 sink node (node 1), 10 relay nodes (nodes 2-11, light grey),

9 source nodes (nodes 12-20, white), 6 mobile nodes (nodes 21-26, dark grey) and 6 carrier

nodes (nodes 27-32, darker grey). The mobile nodes and carrier nodes are initially placed

near the sink in a sleep mode until needed.

The first congestion occurs at node 3 and each approach has a different solution. In

the Stay Approach (Fig. 6.16a), both mobile node 21 and carrier 27 move to the calculated

position from the sink node, whereas in the Leave Approach (Fig. 6.16b), the carrier 27 takes

the mobile node 21 to its new position and then returns to its initial position near the sink.

86

Nata
lie

 Tem
en

e

Figure 6.15: Initial Topology

(a) Stay Approach (b) Leave Approach

Figure 6.16: The first Congestion at node 3

When a new congestion occurs at node 8, based on the factors of the mobile node already

placed and the approach, the following scenarios are presented:

• Scenario 1: it presents a no-reuse scenario, where the mobile nodes are not used in a

new problem, even if the old problem is resolved.

• Scenario 2: it presents a reuse scenario, where the mobile nodes are able to be reused

for a new problem, if the conditions are applied to the node.

• Scenario 3: it presents a replacement scenario, where the mobile node reaches its

energy exhaustion threshold and needs to return for charging, but it is still needed.

All scenarios presented use the two approaches of the mobile carriers. As a result, each

scenario has two cases: (1) the Leave Approach, where the mobile carrier returns back after

87

Nata
lie

 Tem
en

e

completing a task, and (2) the Stay Approach, where the mobile carrier is assigned to a

mobile node.

Scenario 1

This scenario presents a no reuse solution, where the mobile node positioned for the first con-

gestion problem is not available for reuse in another problem. When the second congestion

occurs, a new pair of mobile node and carrier are moved to the new position calculated by

the sink for the Stay Approach (Fig. 6.17a). However, in the Leave Approach (Fig. 6.17b), a

carrier and a mobile node are selected, and the carrier after the placement of the mobile node

returns to its initial position.

(a) Stay Approach (b) Leave Approach

Figure 6.17: Scenario 1 - No reuse

Scenario 2

This scenario presents a reuse solution, where the mobile node positioned for the first con-

gestion problem is available for reuse in another problem. When the second congestion

occurs, in the Stay Approach (Fig. 6.18a), the pair of mobile node and carrier move to the

new position calculated by the sink node. However, in the Leave Approach (Fig. 6.18b), the

carrier starts from its initial position, goes to the current position of the mobile node, takes

the mobile node and move together to the new position. From there the carrier returns to its

initial position.

88

Nata
lie

 Tem
en

e

(a) Stay Approach (b) Leave Approach

Figure 6.18: Scenario 2 - Reuse

Scenario 3

This scenario presents a replacement solution, where the mobile node positioned for the

first congestion problem needs a replacement, as its battery has reached its lowest threshold.

When the sink node is aware of this request a new mobile node is placed at this position. In

the Stay Approach (Fig. 6.19a), a new pair of mobile node and carrier move to the current

position of the requesting node, and at the same time the old pair returns to their initial

position, near the sink to charge their battery. When the new congestion occurs, a new pair is

sent to the new position. In the Leave Approach (Fig. 6.19b), the replacement is performed

by the same carrier, which takes the new mobile node to the position and from their takes

the old mobile node back to its initial position. When the new congestion occurs, the carrier

takes a new mobile node to the new position and then returns back.

6.5.2 Evaluation Results

We now present some evaluation results over the mentioned scenarios. The proposed algo-

rithm is evaluated in terms of network performance and algorithm performance. The network

performance is evaluated through the percentage of successfully received packets and delay

metrics and the algorithmic performance through the total energy consumption of the net-

work. The graphs show the results from the time that the different scenarios start to run, since

before that all tasks were the same with the same results. The starting time varies based on

the metrics.

89

Nata
lie

 Tem
en

e

(a) Stay Approach (b) Leave Approach

Figure 6.19: Scenario 3 - Replace

Figure 6.20: Percentage of Successfully Received Packets

In Fig. 6.20, the percentage of successfully received packets is presented. In this plot,

we observe that the results of the Stay Approach are in all scenarios slightly better than the

Leave Approach. This is normal because in the Stay Approach, the carrier is always with the

mobile node, whereas in the Leave Approach, the carrier needs to find the mobile node and

then continue with the actual action that needs to be done. As expected, the reuse scenario in

both approaches has the best result, because the time needed for an in-use mobile node to be

90

Nata
lie

 Tem
en

e

relocated is lower than the time needed to take a new one that is further away. Additionally,

the replace scenario in both approaches presents the lowest results, which is normal as the

time needed for replacement will have impact on lost packets.

Figure 6.21: Source to Sink Delay

Fig. 6.21 presents the total source to sink delay of the network. The plot shows that

all scenarios during the simulation seem to have an increased delay due to the existence

of collisions, where many packets are retransmitted or sometimes dropped. It is observed

that the scenario with the most delay is the replace scenario, which is expected because in

this scenario more information is needed to be injected for accomplishing the task. On the

other hand, the reuse scenario is the scenario with the lowest delay, because it has the fewer

information requirements to complete the task, which means that fewer packets are dropped

as the problems occurring are solved in a shorter time.

91

Nata
lie

 Tem
en

e

Figure 6.22: Total Energy Consumed

Fig. 6.22 shows the total energy consumption of the network. This plot shows the dif-

ferent energy consumption of each scenario. It is observed that for the replace and no reuse

scenario the Leave Approach has better results than the Stay Approach, whereas in the reuse

scenario the Stay Approach has slightly better results than the Leave Approach. This is nor-

mal as the Leave Approach although it uses fewer carriers, the distances of the carrier to

move are bigger than the Stay Approach. The replace scenario of the Leave Approach uses

the lowest energy consumption of all scenarios, because it only uses one carrier to make all

actions needed, and the replacement is done at the same time, whereas in the Stay Approach

this scenario needs two carriers and one for the new problem occurrence.

92

Nata
lie

 Tem
en

e

Figure 6.23: Total Distance

Fig. 6.23 presents the total distance of the carrier traveled in the network during the

whole simulation. In the plot, it is shown that the carriers used in the Leave Approach

travel more distance than the ones in the Stay Approach. The results are normal because

in the Leave Approach a carrier always returns to its initial position so the additional last

distance is not included in the carriers of the Stay Approach. The noreuse scenario has the

smallest difference between the approaches for all scenarios, since in both approaches the

same amount of carriers is used. The replace scenario has the biggest distance, since in

this scenario an extra task is performed, the replacement, which adds extra distance than the

other two scenarios. The reuse scenario has the best results in the Stay Approach as only

one carrier is needed, whereas in the Leave Approach, the carrier needs to travel to the first

position, then to the destination and return back.

Discussion

The evaluation results show that using a carrier for the transportation task, mobile nodes are

able to use the fullest of their energy for accomplishing their task without considering the

energy for moving from and to the locations. The Stay Approach uses more resources as

each mobile nodes has a carrier assigned, but it does not have the overhead of the Leave

Approach for returning back to the initial position and the first step of finding the position

93

Nata
lie

 Tem
en

e

of an in-used mobile node. This overhead is the main reason of many delays in the Leave

Approach. In general both approaches, stay and leave, show promising results for different

environments. The Stay Approach can be used in environments where the carrier needs to

relocate the nodes frequently. On the other hand, the Leave Approach is a good solution for

hostile environments where it is safer to return to its initial position.

6.6 Comparison between NPA, eNPA and cNPA

Based on the evaluation results of each algorithm (NPA, eNPA and cNPA), it is observed that

the use of mobile nodes can alleviate the problem that has occurred in the network. As each

algorithm is a better version of the previously designed, it is important to compare them with

each other to analyze the advantages and disadvantages of them. In general, Algorithm NPA

is the first algorithm implemented and has the simplest design, as a result each one of the

other two algorithms (eNPA and cNPA) can outperform it.

In terms of energy consumption, Algorithm cNPA uses the mobile nodes to their fullest

energy, as the addition of carriers removes the responsibility of transportation to each point

from the mobile node. However, this algorithm exhibits the largest total energy consumption,

which is expected as extra resources are employed in the network, meaning the carrier. These

additional resources in total are extra nodes that the other two do not have in their network,

so in general cNPA uses more resources. Algorithm eNPA, which introduces the term of

reuse by adding the energy metric to the calculations, is able to analyze and use the energy

of the mobile nodes in a more efficient way. Whereas, Algorithm NPA does not take into

consideration any parameters except the need to serve as many affected nodes as possible. It

is worth mentioning that the Dynamic MobileCC variation uses less energy than the Direct

Path MobileCC variation, as the latter creates an alternative path, which means it uses more

mobile nodes for resolving the problem.

In terms of time, the simplicity of Algorithm NPA provides a faster computational mech-

anism which leads to resolving the problem faster. The use of an extra metric in the calcula-

tions performed by the sink node, meaning the energy consumption provided by Algorithm

eNPA, takes more time for computations, which leads to a little slower solution than Al-

gorithm NPA. Additionally, the addition of carriers in cNPA, adds a lot more time to the

computations performed by the sink node. This lead in needing more time for calculating

the new position of a mobile node in the network. However, in all three algorithms, the addi-

tional time needed is not a big overhead in the total time needed to resolve the problem and

94

Nata
lie

 Tem
en

e

restore the network to a stable state.

Essentially, each algorithm adds an extra feature to the previously implemented algo-

rithm, which makes it an improved version in terms of performance. These extra features

provide a more detailed analysis of a parameter that take into consideration a new fact about

the solution. The new fact is able to provide a more detailed and analyzed variation that

is more realistic. The main goal is to create a solution that can increase the lifetime of the

network by employing mobile nodes and using them to their fullest potentials.

95

Nata
lie

 Tem
en

e

Chapter 7
The Fault Tolerant Node Placement Algorithm

Faults is one of the most important and vital challenges that need to be addressed, as the

limitations of IoT networks and WSNs make them vulnerable to different types of faults.

Fault tolerance [9] is the technique that refers to the capability of a system to deal with

faults and to maintain its functionality. One of the most common approaches used to increase

the Fault Tolerance of a network is Fault Management [53]. A Fault Management Framework

consists of three steps: fault detection, fault diagnosis and fault recovery.

The fault detection step is responsible for detecting any factor that impacts the network

or a node. This technique can be divided into three approaches: centralized, distributed

and self-managed. In the first approach, a centralized node, like the sink, is responsible

to monitor the network and detect a faulty node. In the second approach, the detection

is handled by all nodes using the neighboring nodes and clustering methods. In the third

approach, a node is responsible to investigate and analyze its own needs and then report.

The fault diagnosis step is the step that identifies the fault, in terms of the type, the cause,

the effect on the network, etc. This step is further divided into four main monitoring ap-

proaches: passive, active, proactive and reactive. In passive monitoring, the diagnosis of a

fault activates alarms, whereas, in active monitoring, sensor nodes are instructed to report

their existence to a control center node (e.g., sink) with alive messages. In proactive moni-

toring, every past diagnosis is analyzed and future events are predicted in order to maintain

the performance of the network. Reactive monitoring is defined as a management system

that gathers information about the network state for detecting interesting past events in order

to take specific adaptive measures to reconfigure the network.

The last step, called recovery, is responsible to reconfigure or rebuild the network so

that faulty nodes can no longer affect the network’s functionality and performance. This

essentially means that the faulty state of the network is replaced by a fully functional state.

96

Nata
lie

 Tem
en

e

This technique is further divided into recovery and reconfiguration. The former removes the

impact of the fault and the latter changes the structure of the network without affecting the

overall output.

7.1 Mobile Fault Tolerant Framework

We consider a network that consists of static nodes that are randomly deployed and a small

set of mobile nodes that are initially placed near the sink node.

The primary objective of this work is to utilize the extra resources, mobile nodes, effec-

tively and efficiently in order to resolve faults in the network and, if possible, to improve the

performance.

Figure 7.1: Diagram of the MobileFT Framework

The Mobile Fault Tolerant (MobileFT) Framework consists of the following mechanisms

(see Fig. 7.1):

• Fault Detection mechanism

– Detection method

– Reporting method

– Investigation method

• Fault Recovery mechanism

– Cluster Method

– Mobile Node Placement method

97

Nata
lie

 Tem
en

e

The fault detection mechanism consists of three methods: detection, reporting and investiga-

tion. In the detection method, the faulty node is detected in the network and in the reporting

method, the sink node is notified about the fault that has been detected. In the investigation

method, the sink node sends a mobile node to investigate the affected area and report back

to it.

The fault recovery mechanism consists of two methods: cluster method and mobile node

placement method. In the cluster method, the results from the investigation method are

processed and the node that are identified as faulty are divided into clusters. In the mobile

node placement method, the mobile nodes are placed in the network in positioned calculated

by the sink node in order to assist the affected area(s).

7.2 The Fault Tolerant Node Placement Algorithm

The Fault Tolerant Node Placement Algorithm (FTNPA) consists of two variations, decen-

tralized and centralized, based on the detection method used. The Decentralized FTNPA

algorithm detects the fault with the use of the neighboring nodes, whereas in the Centralized

FTNPA algorithm, the sink node is responsible to detect any faults that occur in the network.

We further describe in detail both variations.

7.2.1 Decentralized Fault Tolerant Node Placement Algorithm

The Decentralized Fault Tolerant Node Placement Algorithm (DFTNPA) is divided into two

mechanisms: the detection and the recovery. The former detects the faults in the network,

while the latter uses mobile nodes to recover the network and stabilize it. Algorithm 16

describes the functions of the sink node and Algorithm 17 describes the functions of the

mobile node. We clarify that the detection mechanism considered in this work involves non-

malicious type of faults, such as crashes.

Detection Process

Every static node in the network is able to identify the following faults:

• Energy level (battery exhaustion): If the remaining energy is becoming lower than a

given threshold, then the node immediately informs the sink node about the upcoming

(self)node failure.

98

Nata
lie

 Tem
en

e

Algorithm 16 The DFTNPA algorithm for sink node s
1: upon receive ("Fault Notification(f n)") from ni then
2: pos = position of f n
3: expectedNeighborList = all nodes in the range of f n
4: select mobile node mi

5: send(Investigation Notification(pos, level, expectedNeighbors)) to mi

6: upon receive ("Investigation Notification Response(aliveNodesList)") from mi then
7: for all n j ∈ expectedNeighborList do
8: if n j < aliveNodesList then
9: add n j in pathList

10: end if
11: end for
12: add posmi in pathList
13: send(Investigation Path(pathList)) to mi

14: upon receive ("Investigation Path Response(nodesList)") from mi then
15: create clusters for all n j ∈ nodesList
16: for all ci ∈ clusters do
17: pos = DynamicFT(ci)
18: select mobile node m j

19: send(New Position(pos)) to m j

20: end for

• Faulty neighboring node: The node can identify a faulty node from its neighboring list

when a certain amount of time has passed from the last time of their communication.

The node, upon detecting one of the above faults, attempts to send a Faulty Notification

Message (FNM) to the sink, which contains all the information needed, such as the node

ID and its level in the network. When the fault is referred to energy exhaustion, the node

sends its own information, whereas in the case of a neighboring failure, the node sends the

neighbor’s information, which can be found in its neighboring table.

Upon receiving an FNM message, the sink forms the set of (expected) neighboring nodes

of the faulty node, and then sends an Investigate Notification Message (INM) to a selected

mobile node. INM includes the target position, the set of expected neighboring nodes, and

its new level (see Alg. 16, lines 1-5). Upon receiving the INM message, the mobile node

moves to the target position and starts the investigation process.

Investigation Process: This process is divided into two steps: the neighborhood investi-

gation and the one-level investigation. In the neighborhood investigation, the mobile node

broadcasts an “alive” message to its neighborhood and waits for the nodes to respond (see

Alg. 17, lines 1-10). When the timer expires, the mobile node sends an Investigation Notifi-

cation Response (INR) message including all nodes that have responded to its message. The

sink upon receiving the INR message finds which nodes did not respond to the message of

the mobile node. The positions of these nodes are sent to the mobile node with the Investi-

99

Nata
lie

 Tem
en

e

Algorithm 17 The DFTNPA algorithm for mobile node mi

1: upon receive ("Investigation Notification(pos, level, expectedNeighbors)") from sink then
2: move to pos
3: broadcast an "alive" message
4: wait for responses until timer Tr expires
5: if reponse received then
6: add n j ∈ aliveList
7: end if
8: if Tr expires then
9: send(Investigation Notification Response(aliveList)) to sink

10: end if
11: upon receive ("Investigation Path(pathList)") from sink then
12: for all pi ∈ pathList do
13: move to pi

14: if pi == start_point then
15: send(Investigation Path Response(aliveList)) to sink
16: break
17: end if
18: broadcast alive message
19: wait for responses until timer Tr expires
20: if reponse received from n j then
21: add n j ∈ aliveList
22: end if
23: if Tr expires then
24: move to next pi

25: end if
26: end for
27: upon receive ("New Position(pos)") from sink then
28: move to pos

gation Path (IP) message (see Alg. 16, lines 6-12). In the one-level investigation, the mobile

node receives from the sink the IP message that contains the positions of the non-responding

nodes that it should visit and investigate. At each position, the mobile node broadcasts an

“alive” message and waits for the responses. At the end of this procedure, the mobile node

returns to its starting point and informs the sink node about its finding with an Investigation

Path Response (IPR), which includes all the nodes it found alive without an upper node (i.e.,

the nodes that are alive but due to neighboring node faults, did not have a path to the sink);

see Alg. 17, lines 11-26.

Recovery Process

Based on the information collected by the IPR message, the sink calculates the number of

mobile nodes and their positions that are needed for restoring the network. This procedure

is divided into two methods: the clustering method and the positioning method (see Alg. 16,

lines 13-19). Firstly, the constraint clustering method (cf. Section 7.2.1) is used, where the

100

Nata
lie

 Tem
en

e

sink node divides all nodes without an upper node into clusters based on their positions with

a variation of the k -means clustering algorithm [44]. Then, the positioning method is used,

where the Dynamic MobileFT algorithm (cf. Section 7.2.1) runs to find the position of the

mobile node for each cluster created and is described below. When the position is calculated,

the sink node selects an available mobile node and sends it to the calculated position. When

a mobile node receives a New Position message it moves to the position and starts acting like

a static node (see Alg. 17, lines 27-28).

Constraint Clustering Method. For the clustering method, a new variations of the k -

means clustering algorithm [44] has been developed. The clustering method uses an unsu-

pervised machine learning technique. This means that the process is not able to be guided

or supervised by any external knowledge. The main goal is the creation of subgroups so that

each data point in the same cluster are similar and the ones in different clusters are dissimilar.

One of the many clustering approaches used is the partitioning clustering. In this ap-

proach the method for creating the clusters uses some parameters, such as the number of

clusters to be created, the distance measurement and the points that need to be assigned

to the clusters. One of the most known partitioning clustering algorithms is the k-means

method due to its simple implementation. Therefore we decided to use this algorithm for

our purposes. Considering different clustering algorithms is an interesting future research

direction. The k-means algorithm [44] is an iterative technique, where its goal is to parti-

tion a specific dataset into k separate non-overlapping clusters. To do so, the algorithm uses

distance-based measurements for determining the similarities between the data points. The

cluster representatives are defined as the centroids calculated by the algorithm.

In order to extend the classic clustering algorithms with the use of existing domain knowl-

edge, the constrained clustering [83] was introduced. This clustering method uses a semisu-

pervised learning technique, which uses the knowledge as a general rule to constraints. The

difference from an unsupervised algorithm is that, except the parameters mentioned before,

the input of this algorithm uses also a set of constraints. These constraints can be either

enforced in the solution, as hard requirements, or used as guidance.

To meet our needs, we created a new variation of the classic k-means clustering algorithm

by adding some constraints. The constraints consists of two groups: (a) as a hard requirement

and (b) as guidance. The constraint as a hard requirement is responsible for the coverage

range of the cluster centroid. The range of a cluster is defines as the communication range

of a node. As a result, all cluster members need to have less than this distance from the

101

Nata
lie

 Tem
en

e

centroid point of their cluster. The constraint as guidance is responsible to speed up the

process of clustering. The idea is that every time a node is without a cluster, which means

that the distance between the centroid is greater than the range, it will be assigned to an

empty cluster and all clusters are then rearranged. At the end of the clustering algorithm, all

clusters are assigned to a cluster, and each cluster member has a distance less than its range

from the cluster’s centroid point.

Dynamic MobileFT. The main idea of this algorithm is to find the position of the mobile

node that can serve all target nodes. The target nodes are all part of a cluster, where the

centroid point of this cluster is known. Based on this centroid point, the algorithm creates a

line from the centroid towards the destination point, the firstly placed mobile node, and find

the best position that can serve all target nodes. This is illustrated in Fig. 7.2.

Figure 7.2: Dynamic MobileFT

An example of placing a mobile node based on Fig. 7.2 is described below. Mobile node

M is the firstly placed mobile node that was assigned to replace the first faulty node and

was responsible for the investigation process. This node is the destination node where the

disconnected nodes of the cluster need to connect to. Nodes 1, 2 and 3 are all assigned to

a cluster with centroid c. Then, the line is created that passes from point c (posc) and from

the position of M (posM). For each node in the cluster, the intersection point with the line is

calculated. This point is then checked on whether is in range of the other cluster members.

If this is true, then the point is selected to place a new mobile node, otherwise the centroid

point is selected.

Firstly, the line created from the centroid of the cluster and the destination node (firstly

placed mobile node) is calculated (see Alg. 18, line 9). Then, for each node in the targetList,

102

Nata
lie

 Tem
en

e

Algorithm 18 Dynamic MobileFT algorithm
1: line = findLine(centroid,s)
2: for all ni ∈ targetList do
3: pos = intersectionPointofLine&Circle(line,ni)
4: for all n j ∈ targetList do
5: f lagrange = isInRange(posn j ,posmi)
6: if f lagrange == true then
7: count++
8: end if
9: end for

10: if count == targetList.size() then
11: return pos
12: end if
13: end for
14: return centroid

the intersection point of the node and the line is calculated (see Alg. 18, lines 10-11). The

point chosen is the one which is closest to the first placed mobile node for this problem. This

point is then checked with the function isInRange that checks if the point is in the range of

this mobile node. When all nodes are covered from a point, this point is returned, otherwise

the centroid point is used (see Alg. 18, lines 12-22).

7.2.2 Centralized Fault Tolerant Node Placement Algorithm

The Centralized Fault Tolerant Node Placement Algorithm (CFTNPA) is divided into two

mechanisms: the detection and the recovery. The former is responsible for detecting the

faults that occur in the network, while the latter is responsible to recover and stabilize the

network with the use of mobile nodes.

Detection Method

The sink node is able to identify a fault when it stops receiving packets from a certain node in

the network (see Alg. 19, line 38). Based on a periodic check function that identifies the last

time the sink has received a message from a node in the network (see Alg. 19, lines 1-12), the

sink can detect if a fault has occurred. When such a fault is recognized, the sink creates the

Faulty Node (FN) list (see Alg. 19, line 40). This list is created based on the nodes that may

be faulty, meaning the nodes that the sink has stopped receiving packets from (see Alg. 19,

lines 13-20). Based on these nodes, the Suspicious Faulty Nodes (SFN) List is created (see

Alg. 19, line 41). This list contains all nodes that are in the area of the nodes in the FNList.

Initially, the center of the area that covers all FNList nodes is found. Based on this center

point, the area of the SFN nodes is created, which is defined as double the size of the range

103

Nata
lie

 Tem
en

e

Algorithm 19 The CFTNPA algorithm for sink node s
1: function CHECKFORFAULTS(nodesList)
2: for all ni ∈ nodesList do
3: if ni.timereceived >= Threshold then
4: count++
5: end if
6: end for
7: if count == 0 then
8: return FALSE
9: else

10: return TRUE
11: end if
12: end function
13: function CREATEFLIST(nodesList)
14: for all ni ∈ nodesList do
15: if ni.timereceived >= Threshold then
16: add ni ∈ FList
17: end if
18: end for
19: return FList
20: end function
21: function CREATESNFLIST(FList,nodesList)
22: cF = findCenterofFaultArea(FList)
23: for all ni ∈ nodesList do
24: f lagR = inRangeofFaultyArea(posni ,poscF ,R2)
25: if f lagR == TRUE then
26: add ni ∈ SNFList
27: end if
28: end for
29: return SNFList
30: end function

of a node. The SFNList is created and contains all nodes that are in the calculated area (see

Alg. 19, lines 21-30).

Once the SFN list is created, the sink node divides the nodes into clusters based on their

position (see Alg. 19, line 42) and then creates the path list, which contains all the centroids

of each cluster (see Alg. 19, lines 31-37). A mobile node is chosen to be sent in order to

investigate the clusters (see Alg. 19, line 43). The sink informs the selected mobile node

with a Discovery Path message, which includes the pathList (see Alg. 19, line 44).

Upon receiving such a message, the mobile node moves to each position of the pathList

from the sink to discover the alive nodes. At each position, the mobile node broadcasts an

alive message and waits for responses (see Alg. 20, lines 1-9). When a node in the network

receives such a message, it replies with an Alive Reply message that contains its delivery

status, meaning if it has an active path towards the sink or not (see Alg. 21, lines 1-13).

When the mobile node completes its journey, it returns to the sink node to inform it about its

104

Nata
lie

 Tem
en

e

31: function CREATEPATHLIST(clusters)
32: for all ci ∈ clusters do
33: find centroid of cluster ci

34: add poscentroid ∈ pathList
35: end for
36: return pathList
37: end function
38: f lag f = checkForFaults(nodeList)
39: if f lag f == true then
40: FList = createFList(nodeList)
41: SNFList = createSNFList(FList,nodeList)
42: clustersSNF = createClusters(SNFList)
43: pathList = createPathList(clustersSNF)
44: choose mobile node mi

45: send(Discovery Path(pathList)) to mi

46: end if

47: upon receive ("Discover Path Response(pathNodes)") from mi then
48: for all n j ∈ pathNodeList do
49: if n j.upper == FALSE then
50: add n j in cList
51: end if
52: end for
53: clustersF = createClusters(cList)
54: for all ci ∈ clustersF do
55: run DirectPathMobileCFT(ci)
56: end for

findings (see Alg. 20, line 10).

Recovery Method

Based on the information the sink nodes receives, it will start the recovery process. The

recovery mechanism consists of two methods: the cluster method and the mobile node po-

sitioning method. In the first method, all findings from the mobile node will be processed

by the sink to find which nodes are without an upper node (see Alg. 19, lines 48-52). These

nodes are used and divided into clusters. The clusters are based on the position of these

nodes (see Alg. 19, line 53). In the second method, the new path of mobile nodes is created

(see Alg. 19, lines 54-56) with the use of the Direct Path MobileFT algorithm (see Alg. 22),

which is described below.

Constraint Clustering Method. For this method, a modified version of the classic k-

means clustering algorithm [44] is employed that uses constraints, as mentioned in Sec-

tion 7.2.1.

105

Nata
lie

 Tem
en

e

Algorithm 20 The CFTNPA algorithm for mobile node mi

1: upon receive ("Discover Path(pathList)") from sink then
2: for all pos ∈ pathList do
3: move to pos
4: broadcast an Alive message
5: wait for responses
6: if Alive Reply received then
7: add n j ∈ pathNodes
8: end if
9: end for

10: send(Discover Path Response(pathNodes)) to sink
11: upon receive ("New Position(pos)") from sink then
12: move to pos

Algorithm 21 The CFTNPA Algorithm for node ni

1: upon receive ("Alive Message()") from mi then
2: for all n j ∈ neighborList do
3: if n j.hop < ni.hop&&n j.status == OK then
4: counter++;
5: end if
6: end for
7: if counter == 0 then
8: send(Alive Reply(NO)) to mi

9: else if counter > 0 then
10: send(Alive Reply(YES)) to mi

11: end if

Direct MobileFT. The main idea of this algorithm is to create a path of mobile nodes. For

the first mobile node placed, the Dynamic MobileFT (see Alg. 18) algorithm is called to

calculate its position. Then, a direct line is created that starts from the first placed mobile

node and the destination. On the line, additional mobile nodes are placed in the range of the

previous placed mobile node until one of them is in the range either of the sink node, which

is the target destination node, or an alive node in the network where it can forward packets

directly to it. This is illustrated in Fig. 7.3.

An example of creating a mobile node path based on Fig. 7.3 is described below. Once

the first mobile node is placed with the use of the Dynamic MobileFT algorithm (cf. Sec-

tion 7.2.1), the path starts to be developed. Each new mobile node is placed in the range

of the previously placed mobile node and the procedure stops when the last placed mobile

node is in the range of the destination node. The destination node of this path is either the

sink node (see Fig. 7.3a) or an active node (see Fig. 7.3b) in the network, which needs to be

placed on the virtual line created to connected the affected area and the sink node in order to

be used as a destination node.

Initially, the Dynamic MobileFT algorithm is called, to get the position of the first mobile

106

Nata
lie

 Tem
en

e

(a) Path to the Sink Node

(b) Path to an Active Node

Figure 7.3: Direct Path MobileFT

Algorithm 22 Direct Path MobileFT algorithm
1: pos = DynamicMobileFT()
2: flagdp = false ▷ a flag to stop the loop
3: while flagdp == false do
4: choose mi ∈ mobileNodeList
5: send(New Position(pos)) to mi

6: isInRange = checkinRange(pos,r)
7: if isInRange == true then
8: flagdp = true;
9: else

10: pos = intersectionPofLine&Circle(pos,nodeList,r)
11: end if
12: end while

nodes (see Alg. 22, line 1), which is sent to the calculated position (see Alg. 22, line 4-5).

Then, this position is checked if it is in the range of the sink node or another active node in

the network (see Alg. 22, line 6). When it is in the range, the mobile node is placed to its

position and the procedure stops, otherwise, a new position is calculated in the range of the

previously placed mobile node (see Alg. 22, lines 2-14).

7.3 Experimental Evaluation of FTNPA

To verify the effectiveness of our algorithms, we run two scenarios. The first scenario eval-

uates the Decentralized Fault Tolerant Algorithm (DFTNPA), as presented in Section 7.2.1,

107

Nata
lie

 Tem
en

e

by comparing it to a benchmark solution of replacement. In the second scenario we evaluate

the Centralized Fault Tolerant Algorithm (CFTNPA), as presented in Section 7.2.2, which is

also compared to the benchmark solution.

7.3.1 Evaluation Setup

As in Chapter 6, we have implemented the algorithms within the Contiki OS [58], an open

source operating system for implementing networked, resource-constrained systems, mainly

focusing on low-power wireless Internet of Things devices. The evaluation has been per-

formed in the COOJA simulator, a dedicated simulator for Contiki OS nodes.

Table 7.1 presents the simulation parameters. Most of the parameters used are the default

parameters in the COOJA simulator, which are also mapped to the parameters of real sensor

nodes. The total time of the simulation was selected to 30 minutes. This amount is enough

for all two mechanism to run and also be able to run the network after reestablishing a

non-faulty state. The simulation time has increased in respect to the previous evaluation,

since this algorithm needs more time for the detection and recovery mechanism. The mobile

node speed parameter is used in respect of the speed for the Wifibot mobile robot [96]. The

maximum speed of a Wifibot mobile robot is 0.9 m/s, so the speed 0.65 m/s was selected that

is not maximum but also not very small.

Table 7.1: Simulation Parameters

Simulator/OS COOJA/Contiki 3.0

Protocol Contiki Multihop/Rime

MAC ContikiMAC/CSMA

Simulation Time 30 mins

Simulation Repetition 10 times

Emulated Mote Tmote sky

Transmission Range (m) 25

Max Data Rate (kbps) 250

Queue Length (Pkts) 8

Packet Size (Bytes) 48

Mobile Node Speed 0.65 m/s

The network is set up and let to reach steady state for one minute. All sensor nodes

are equivalent to Sky Mote nodes and have a 10m radio range. Each source node transmits

108

Nata
lie

 Tem
en

e

one data packet of 48 bytes every 20 seconds. The faults start after the second minute of

simulation. For each scenario 10 experiments were conducted each starting with a random

seed.

To evaluate the FTNPA algorithm, the Replacement algorithm is used as a benchmark of

comparison. This method uses the replacement technique, where each faulty node is replaced

by a new mobile node. The replacement is performed once the sink is informed about the

fault detection.

7.3.2 Evaluation Scenarios

In this section, the evaluation scenarios for each version of the algorithm are presented.

The scenarios used in the evaluation process are based on different topologies and different

numbers of faulty nodes.

DFTNPA Scenarios

We implemented three different scenarios with different topologies and different number of

faulty nodes. All scenarios employ 26 nodes, where 1 sink node (node 1), 10 relay nodes

(nodes 2-11, white), 9 source nodes (nodes 12-20, light grey) and 6 mobile nodes (nodes

21-26, dark grey). The mobile nodes are initially placed near the sink in a sleep mode until

needed.

Scenario 1. The initial topology of the scenario is presented in Fig. 7.4a. This topology

was selected to demonstrate an example where the faults can disconnect the network, when

crucial nodes fail. Fig. 7.4b shows the faults that happen in the network at nodes 4, 5, 6

and 7. When these nodes fail, the network disconnects and the detection mechanisms start

running. After mobile node 21 is placed to the position of the first faulty node (node 4) and

investigates the affected area, it will find the other faults as well. The sink will be informed

by the mobile node about its findings and start the recovery phase.

The recovery process presented in Fig. 7.4 shows the difference of the two algorithms.

In the Replacement algorithm (Fig. 7.4c), three extra mobile nodes are used, as the number

of the faulty nodes. In contrast, in the DFTNPA algorithm (Fig. 7.6d), only two extra mobile

nodes are used, since the algorithm was able to find a position to cover both affected areas

of the faulty nodes 6 and 7.

109

Nata
lie

 Tem
en

e

(a) Initial Topology
(b) Faults in Network (c) Replacement (d) DFTNPA

Figure 7.4: Scenario 1

Scenario 2. The initial topology of this scenario is presented in Fig. 7.5a. This topology

was selected to connect this algorithm with the previous ones, and have same results for

the same topology. Fig. 7.5b shows the faults that happen in the network at nodes 7 and

8. When these two nodes fail, the network disconnects and the detection mechanisms start

running. After mobile node 21 is placed to the position of the first faulty node (node 7)

and investigates the affected area, it will find the second faulty node (node 8). The sink is

informed by the mobile node of its findings and starts the recovery phase.

(a) Initial Topology (b) Faults in Network (c) Replacement (d) DFTNPA

Figure 7.5: Scenario 2

Both recovery methods (Fig. 7.5), Replacement and DFTNPA, use the same number of

mobile nodes to recover the faulty state of the network. For resolving this scenario only one

extra mobile node is needed. The difference of the two methods relays on the position of

this mobile node. The Replacement algorithm (Fig. 7.5c) just locates the mobile node to

the previous position of the faulty node, whereas the DFTNPA algorithm (Fig. 7.5d) finds a

better position based on the distances of the affected nodes.

Scenario 3. The initial topology of the network is presented in Fig. 7.6a. This topology

creates faults at critical nodes that disconnect both upper area nodes from the rest of the

110

Nata
lie

 Tem
en

e

network. Fig. 7.6b shows the faults that happen in the network during the simulation at

nodes 7, 8 and 9. Once the first fault is detected, the first mobile node is placed (mobile node

21) to investigate the area. Once all information are gathered to the sink node, the recovery

phase starts.

(a) Initial Topology (b) Faults in Network (c) Replacement (d) DFTNPA

Figure 7.6: Scenario 3

The recovery process presented in Fig. 7.6 shows the difference of the two methods. In

the Replacement algorithm (Fig. 7.6c), two extra mobile nodes are used, as the number of

the faulty nodes. In contrast, in the DFTNPA algorithm (Fig. 7.6d), only one extra mobile

node is needed, since the algorithm was able to find a position that can serve all affected

nodes in the area.

CFTNPA Scenarios

We implemented six different scenarios with different number of faulty nodes and two dif-

ferent topologies. The first topology (see Fig. 7.7a) employs 22 nodes, where 1 sink node

(node 1), 8 relay nodes (nodes 2-9, white), 7 source nodes (nodes 10-16, light grey) and 6

mobile nodes (nodes 17-22, dark grey). The second topology (see Fig. 7.7b) employs 31

nodes, where 1 sink node (node 1), 8 relay nodes (nodes 2-9, white), 7 source nodes (nodes

10-16, light grey) and 6 mobile nodes (nodes 17-22, dark grey). The first topology presents

faults happening in the same area and the second topology presents faults happening in two

opposite areas in the network The mobile nodes are initially placed near the sink in a sleep

mode until needed.

Scenario 1. Fig. 7.8 presents the different states of Scenario 1. We present the solutions

with the use of the Replacement algorithm and the CFTNPA algorithm, which is able to

provide solution with two variations, towards an active node and the sink.

111

Nata
lie

 Tem
en

e

(a) Topology 1 (b) Topology 2

Figure 7.7: Initial Topologies of Centralized Algorithm

(a) Faults in the Network (b) Replacement (c) CFTNPA - active node (d) CFTNPA - sink node

Figure 7.8: Scenario 1

Fig. 7.8a presents the faults in the network during the simulation at nodes 7 and 8. Once

the sink realizes the absent of the source nodes affected from the faults, it will send a mobile

node (mobile node 17) to investigate the area. When all information are gathered at the

sink, with the return of the investigation mobile node, the recovery phase starts. In the

Replacement algorithm (Fig. 7.8b), two mobile nodes are assigned to replaced the faulty

nodes. However, in the CFTNPA Algorithm the problem can be solved with two different

ways. The first solution shown in Fig. 7.8c will connect the affected area with an active

node (node 4), where only one mobile node is needed to resolve the problem. In the second

solution shown in Fig. 7.8d, the path will be created with destination the sink node, which

will use two mobile nodes for reconnecting the affected nodes and provide them with a new

alternative path to the sink node.

Scenario 2. Fig. 7.9 presents the different states of Scenario 2. We present the solutions

with the use of the Replacement algorithm and the CFTNPA algorithm, which is able to

provide solution with two variations, towards an active node and the sink.

112

Nata
lie

 Tem
en

e

(a) Faults in the Network (b) Replacement Algorithm (c) CFTNPA - active node (d) CFTNPA - sink node

Figure 7.9: Scenario 2

Fig. 7.9a presents the faults in the network during the simulation at nodes 7, 8 and 9.

Once the sink realizes the absent of the source nodes affected from the faults, it will send

a mobile node (mobile node 17) to investigate the area. When all information are gathered

at the sink, with the return of the investigation mobile node, the recovery phase starts. In

the Replacement algorithm (Fig. 7.9b), two mobile nodes are assigned to replace the faulty

nodes. However, in the CFTNPA Algorithm solution, we show two variations, a path towards

an active node in the network and a path towards the sink node. (Fig. 7.9c) shows the path

that uses two new mobile nodes to connect the affected nodes with an active node (node 4) in

the network, whereas (Fig. 7.9d) shows the path that uses three new mobile nodes to connect

the nodes direct to the sink node.

Scenario 3. Fig. 7.10 presents the different states of scenario 3. We present the solutions

with the use of the Replacement algorithm and the CFTNPA algorithm for a two area fault

in the same area of the network.

(a) Faults in the Network (b) Replacement (c) CFTNPA

Figure 7.10: Scenario 3

Fig. 7.10a presents the faults in the network during the simulation at nodes 7, 8 and 9,

where first the nodes 7 and 8 will fail, and then node 9. Once the sink realizes the absent

113

Nata
lie

 Tem
en

e

of the source nodes affected from the faults, it will send a mobile node (mobile node 25 and

28) to investigate the areas. When all information are gathered at the sink, with the return

of the investigation mobile nodes, the recovery phase starts. In the Replacement algorithm

(Fig. 7.10b), each faulty node is replaced with a mobile node, which means that in total

three new mobile nodes are employed in the network. However, in the CFTNPA Algorithm

(Fig. 7.10c), for the first faulty area, two mobile nodes are used in a calculated position that

is optimal than the one of the faulty nodes, and for the second fault, a new alternative path is

created towards the sink node, that uses three mobile nodes.

Scenario 4. Fig. 7.11 presents the different states of scenario 4. We present the solutions

with the use of the Replacement algorithm and the CFTNPA algorithm for a two area fault

in different areas of the network.

(a) Faults in the Network (b) Replacement (c) CFTNPA

Figure 7.11: Scenario 4

Fig. 7.11a presents the faults in the network during the simulation at nodes 7, 8 and 12.

The first area of fault is due to the faults of nodes 7 and 8, and fault at node 12 affects

the second area. Once the sink realizes the absent of the source nodes affected from the

faults, it will send two mobile nodes (mobile node 25 and 28) to investigate the two areas.

Each time one of the investigation mobile nodes returns to the sink with the information

needed, the recovery phase starts. In the Replacement algorithm (Fig. 7.11b), each faulty

node is replaced with a mobile node, which in total uses three mobile nodes. Although the

solution provided with the CFTNPA Algorithm (Fig. 7.11c) also uses three mobile nodes,

their positions are different than the previous nodes. The mobile nodes are placed in a more

optimal position than before.

114

Nata
lie

 Tem
en

e

7.3.3 Evaluation Metrics

The DFTNPA and CFTNPA algorithms were evaluated using six metrics: the number of

mobile nodes used, the total distance, the total time, the percentage of successfully received

packets, the total packet loss, and the total energy consumption. Recall from Section 6, the

algorithms are evaluated based on a single-valued measure of performance.

Total Number of Mobile Nodes. The total number of mobile nodes presents the number

of all mobile nodes that are used throughout the simulation for solving the problems that

occur in the network.

Total Distance. The total distance presents the distance of each mobile nodes that has

traveled in the network for resolving a problem that has occur. The distance for each route

a mobile node does is calculated with the euclidean distance from each starting point to its

destination point and the total amount is calculated based on the sum of each used mobile

node in the network with the equations below:

Total_Distance =
M∑

i=1

distmi

where, distmi is the distance of mobile node mi and is calculated based on the euclidean dis-

tance, with the equation: distm =
√

((xdest − xstart)2 + (ydest − ystart)2). The point (xdest, ydest)

represent the destination position of the mobile node and point (xstart, ystart) represent the

starting position of the mobile node.

Total Time. The total time presents the total time the network needs to reconnect and

return to a stable state, and is presented with the equation below:

Total_Time = t2 − t1

where, t1 represents the time where a fault is detected in the network and enters a faulty

state, and t2 represents the time where the network reconnects and the packets from the

affected area(s) are received by the sink node.

Percentage of Successfully Received Packets. As mentioned in Chapter 6, the percentage

of successfully received packets presents the ratio of the successfully received packets versus

the total sent packets and is calculated with the equation below:

Recv_Pkts_Ratio(%) =
success f ully_received_packets

total_sent_packets

115

Nata
lie

 Tem
en

e

Total Packet Loss. The total packet loss presents the ratio of the difference from the total

number of transmitted packets (Tx) and the total number of received packets (Tr), with the

total number of transmitted packets (Tx), and is calculated with the equation below:

Packet_Loss_Ratio =
Tx − Tr

Tx

Total Energy Consumption. As mentioned in Chapter 6, the total energy consumption is

measured in mJ and is defined as the sum of the computational energy (energyilisten) and the

moving energy (energyimove) of each node. Only the mobile nodes have a moving energy, for

the other nodes the moving energy is set to zero. The equation is presented below:

Etotal =

N∑
i=1

energyilisten + energyimovie (7.1)

The energylisten represents the energy computational usage and is calculated with the

equation from [66]:

listening_energyi = (transmit · 19.5mA + listen · 21.8mA+

CPU · 1.8mA + LPM · 0.0545mA) · 3V/4096 · 8

where trasmit is the total time of the radio transmitting, listen is the total time of the radio

listening, CPU is the total time of the CPU being active, and LPM is the total time of the

CPU being in low power mode.

The energymove represents the energy usage of moving, for all node types the moving

energy is set to zero expect the carrier and is calculated with the equation from [96]:

energyimove = Pu ·
s
u

(7.2)

where Pu is the power consumption of a given speed u and s is the total traveling distance.

Computational Time. As mentioned in Chapter 6, the computational time refers to the

time needed for the sink node to calculate the position of the mobile node. For the reasons

explained in Section 6.2, we do not include it in the results.

7.3.4 Evaluation Results

In this section, we present the experimental results of our evaluation. We start by presenting

the comparison of the Decentralized Node Placement Algorithm with the Replacement algo-

rithm. Then we present the results of the Centralized Node Placement Algorithm compared

to the Replacement algorithm.

116

Nata
lie

 Tem
en

e

DFTNPA Evaluation

For the execution example in Section 7.3.2, we also present some basic experimental results.

Figure 7.12: Number of Mobile Nodes used

Fig. 7.12 shows the number of mobile nodes used for each scenario. This plot shows

that the Replacement algorithm uses more mobile nodes than the DFTNPA algorithm. The

results are expected as in the DFTNPA algorithm each position calculated is examined to be

located in such a way to cover as many affected nodes that are in range as possible. The

Replacement algorithm just replaces the faulty nodes with mobile nodes without considering

the possibility that a new position can be used to assist more nodes.

Figure 7.13: Total Distance

Fig. 7.13 shows the total distance the mobile nodes traveled in the network during the

whole simulation. This plot shows that the mobile nodes in the Replacement algorithm travel

a smaller distance than the DFTNPA algorithm. This is normal as in the latter a discovery

process is performed by the first placed mobile node in the affected area as requested by the

sink, where the mobile node travels to suspected non-alive nodes to investigate their status.

117

Nata
lie

 Tem
en

e

Whereas in the former, the mobile nodes only travel to the positions of the faulty node after

assigned from the sink node. As a result, in all scenarios, the DFTNPA algorithm results

in higher values than the Replacement algorithm, even though a smaller number of mobile

nodes are used, as in Scenarios 1 and 3, or better positions are calculated, as in Scenario 2.

Figure 7.14: Total Time

Fig. 7.14 shows the total time the network needs to reconnect and return to a stable

state. This plot shows that in the Replacement algorithm the network returns to a stable state

quicker than the DFTNPA algorithm. The Replacement algorithm only finds the position

of the faulty nodes and assigns them to the new mobile nodes. However, in the DFTNPA

method, the sink node needs to calculate the new positions of the mobile nodes based on

parameters which require more time, and then assign these positions to the mobile nodes.

As a result, the extra amount of time needed from the DFTNPA method is the calculation

procedure of the sink node for the new positions of the mobile node. It can be also observed

that the time in the DFTNPA is also on from the number of faulty nodes, which means that

more faulty nodes results in more affected nodes that need to be processed to find a position

for a mobile node.

Fig. 7.15 presents the percentage of successfully received packets by the sink node dur-

ing the simulation. This plot shows that the Replacement algorithm resolves the problem

occurred in the network faster than the DFTNPA algorithm, since its procedure is simpler,

where the new node is placed on the current position of the faulty node. All scenarios start by

acting the same and fail with the same numbers, but differentiate when the recovery process

starts to run. Scenario 1 is the one that reaches the lowest throughput during simulation for

both algorithms. This happens because in this scenario the affected area of the faulty nodes

is in such a position that almost every node loses its connection to the sink. This is also the

reason why it needs more time to return to a stable state. It is observed that the parameter

118

Nata
lie

 Tem
en

e

Figure 7.15: Percentage of Successfully Received Packets

that affects this metric is not only the number of faulty nodes, but also the position of the

faults. When a bigger part of the network is affected from the faults, more time is needed

to return to a stable state. In both scenarios, 2 and 3, the DFTNPA algorithm needs more

time to increase the number of received packets, because it needs more time to calculate the

position of the mobile nodes.

Figure 7.16: Total Packet Loss

Fig. 7.16 presents the total packet loss during the simulation. This plot shows that, as

mentioned before, the Replacement algorithm reconnects the network faster so the stabiliza-

tion of the lost packets in the network happens quicker than the DFTNPA algorithm. It is

noticeable that the number of lost packets is again defined based on the position of the fault

and the number of affected nodes. Scenario 1 presents the most lost packets because it has

the highest number of faulty nodes and their positions are critical. Whereas, Scenario 3 has

the smallest number of lost packets as it has the smallest number of faults.

Fig. 7.17 shows the total energy consumption for each scenario. It is observed that in

all scenarios of the DFTNPA algorithm fewer energy is consumed in comparison with the

119

Nata
lie

 Tem
en

e

Figure 7.17: Total Energy Consumed

Replacement algorithm. This happens because the number of mobile nodes used is lower.

Another reason is that the DFTNPA algorithm calculates a new position, which is in a more

optimal location. As a result, the distance from the original position is not the same, and in

most occasions the original is further than the new one. The most consumed energy is in the

Replacement algorithm of Scenario 1, which was expected since it is the scenario with the

most faults; thus more mobile nodes are used. The best results are presented by Scenario

3 for the DFTNPA algorithm, where few faults occurred and the recovery process uses less

mobile nodes, as well as their positions are closer to the sink.

CFTNPA Evaluation

For the execution example in Section 7.3.2, we also present some basic experimental results.

(a) One area of Failure (b) Two areas of Failure

Figure 7.18: Number of Mobile Nodes used

Fig. 7.18 shows the number of mobile nodes used for each scenario. Fig. 7.18a presents

the results for the one area failure scenarios (scenario 1 and 2). This plot shows that the

120

Nata
lie

 Tem
en

e

solution of creating a new path towards an active node needs less mobile nodes than the

others. The Replacement algorithm uses as many mobile nodes as the number of faulty

nodes occur in the network. The solution with a path towards the sink uses more mobile

nodes than the other solution and same as the replacement, which is not always the case.

Fig. 7.18b presents the results for the two area failure scenarios (scenario 3 and 4). The plot

shows that in the CFTNPA algorithm the number of mobile nodes it uses depends on the

distance of the affected area to the sink node. Smaller distances will need smaller number

of mobile nodes, whereas bigger distances need more mobile nodes, even more than the

Replacement algorithm, which uses the same number as the faulty nodes.

(a) One area of Failure (b) Two areas of Failure

Figure 7.19: Total Distance

Fig. 7.19 shows the total distance the mobile nodes travel for resolving the problem in

the network. Fig. 7.19a presents the results for the one area failure scenarios (scenario 1

and 2). This plot shows that the Replacement algorithm travels the most distance than all the

solutions, as the positions of the mobile nodes are the same with the faulty ones. Because the

CFTNPA algorithm calculates more optimal positions, both versions provide smaller results.

The sink path solution provides the smallest distance since the mobile nodes closer to the

sink will travel a smaller distance. Whereas, in the active node path creation, the distances

are around the affected area. Fig. 7.19b presents the results for the two area failure scenarios

(scenario 3 and 4). The plot shows the CFTNPA algorithm provides bigger results than the

Replacement algorithm, which is normal because the CFTNPA uses more mobile nodes.

Fig. 7.20 shows the total time the network needs to reconnect the affected area with the

sink node. Fig. 7.20a presents the results for the one area failure scenarios (scenario 1 and 2).

This plot shows that the Replacement algorithm needs less time than the other solutions, as

the algorithm just replace the faulty nodes. The active path variation of CFTNPA algorithm

121

Nata
lie

 Tem
en

e

(a) One area of Failure (b) Two areas of Failure

Figure 7.20: Total Time

needs more time than the other variation, because the calculations of the new positions need

more time. Whereas in the alternative path towards the sink, only the first mobile node

placed needs more complex calculation to be placed. Fig. 7.20b presents the results for the

two area failure scenarios (scenario 3 and 4). The plot shows that the Replacement algorithm

needs less time to resolve the problems than the CFTNPA algorithm. This is normal as the

CFTNPA algorithm needs to calculate the positions the mobile nodes will be placed.

(a) One area of Failure (b) Two areas of Failure

Figure 7.21: Percentage of Successfully Received Packets

Fig. 7.21 shows the percentage of successfully received packets by the sink node during

the simulation. The one area plot (Fig. 7.21a) shows that the CFTNPA algorithm that creates

a direct alternative path towards the sink provides the most received packets after recover

than the other scenarios. This happens because the new path will not interfere with the

existing network nodes. The Replacement algorithm even though the recovery is happening

sooner than the others, due to interaction with the existing nodes and collisions that happen

122

Nata
lie

 Tem
en

e

in the network provides the worst results after the recovery. The scenario with the local

solution, path towards an active node, even though it recovers faster than the alternative path,

it needs more time to restore the received packets. In the two area plot (Fig. 7.21b), we can

observe that the faults in scenario 3 have little affect than scenario 4, due to the position of

the failures, less packets are missed. In both scenarios, it is shown that the Replacement

algorithm recovers the network quicker than the CFTNPA algorithm, as the calculations of

the positions of the mobile nodes needs more time. Except that, we can observe that Scenario

4 needs more time to recover than Scenario 3, because in the former the two failures are in

two different areas of the network and in the latter they are happening in a smaller distance

between them.

(a) One area of Failure (b) Two areas of Failure

Figure 7.22: Total Packet Loss

Fig. 7.22 shows the total packet loss during the simulation. The one area plot (Fig. 7.22a)

shows that the quickest recovery is made by Scenario 1, and more specific by the Replace-

ment algorithm. The smaller time needed by some of the scenarios is also based on the num-

ber of faults that happen in the network. The Scenario with the smallest faults needs fewer

time to recover, that is the reason why all versions of Scenario 1 are better than the ones

from Scenario 2. The versions that create alternative paths recover faster than the one with

the local solution, as the calculation of the path is easier. In the two area plot (Fig. 7.22b),

we can observe that again the Replacement algorithm recovers faster than the CFTNPA al-

gorithm. Scenario 4 needs more time to recover as the faults occurring in the network are

in two different parts of it and need more time to be investigated and recover, whereas the

investigation process in Scenario 3 is easier as the faults are in the same part of the network.

Fig. 7.23 shows the total energy consumption of the nodes in the network during the

simulation. The one area plot (Fig. 7.23a) shows that even though the Replacement algorithm

123

Nata
lie

 Tem
en

e

(a) One area of Failure (b) Two areas of Failure

Figure 7.23: Total Energy Consumption

uses the same nodes as before the faults, it consumes the most energy, and this happens

because its recovery process is faster than the CFTNPA algorithm so the packet transmission

restarts faster. The CFTNPA algorithm version of the alternative path solution has smaller

consumption than the local solution of the algorithm, as the new path relieves the area from

the extra resources that now use this path. In the two area plot (Fig. 7.23b), we can observe

the same results as in the previous plot. The CFTNPA algorithm shows smaller consumption

than the Replacement algorithm, because it needs more time to recover from the faults in the

network, so the normal transmission process starts later on in the simulation.

7.3.5 Comparison between DFTNPA and CFTNPA

Based on the evaluation results for both algorithms (DFTNPA and CFTNPA), it is observed

that the use of mobile nodes can efficiently alleviate a fault that occurs in the network. As

each algorithm uses a different detection and recovery mechanism, it can be noticed that both

algorithms have their advantages and disadvantages, which are based on different scenarios.

Algorithm DFTNPA is able to decrease the amount of extra resources used and still recover

the network, whereas Algorithm CFTNPA with the creation of an alternative path, espe-

cially, towards the sink node, is able to relieve the affected area from extra load. However,

the calculations for the position of the mobile nodes is using more time, which increases the

time of the network’s recovery process. It needs to be clarified that Algorithm Direct Mo-

bileFT, which is used for creating alternative paths of mobile nodes, initially uses Algorithm

Dynamic MobileFT for calculating the position of the first mobile node of the path. Even

though the procedure of Algorithm Direct MobileFT is simple after the first step, it needs a

little more time for its calculation than Algorithm Dynamic MobileFT. This means that in

124

Nata
lie

 Tem
en

e

general, Algorithm DFTNPA is able to recover faster than Algorithm CFTNPA.

Both algorithms have been compared with the Replacement Algorithm and shown that

even though the Replacement Algorithm is faster in resolving a problem, as it just replaces

each faulty node, Algorithms DFTNPA and CFTNPA are able to provide a better solution

for a long term period. Algorithm DFTNPA may in some cases use the same or even fewer

amount of mobile nodes as the Replacement Algorithm, but the position of the mobile nodes

placed in the network is calculated in such a way by the sink node that it is able to serve

as many nodes as possible. This means that the new position is better in terms of location

and ability to serve the affected nodes, than the one of the faulty node. Whereas, Algorithm

CFTNPA is able to extend this solution by providing a new path by using only mobile nodes

with destination either the sink node or an active node in the network. This approach is able

to unload the affected area by adding a new option to the nodes, a new path towards the sink

node.

Algorithm DFTNPA is used for resolving a fault in a local way, whereas Algorithm

CFTNPA resolves the fault in a more global way. In terms of detection, the detection mech-

anism of Algorithm CFTNPA is faster than the one of Algorithm DFTNPA. This happens

because in DFTNPA the neighboring node is responsible of detection, which means that the

nodes, except that they need time to identify the fault in their neighborhood, they also need

time to inform the sink node about its findings. The detection method can be divided into

two steps. The first step is responsible to detect the fault in the network and the second step

to inform the sink node about this fault. Algorithm DFTNPA needs to follow both steps,

whereas Algorithm CFTNPA only needs to detect the fault, as the detection is done from the

sink itself. However, in terms of the investigation process, where the affected area and nodes

are found, Algorithm DFTNPA has more accurate information than Algorithm CFTNPA.

The neighboring node of a faulty node is able to provide more detailed information to the

sink about the fault, rather than the general view of the sink node. This view is more limited

in scenarios where the static nodes are divided into source and relay nodes (which is the

assumption of our scenarios). In these cases, the sink node is only able to detect the source

nodes that it can not receive, however, these nodes may not be faulty, but the fault may be

in a different part of the path from these source nodes. Thus, the investigation process to

identify the fault is more time consuming.

In terms of recovery, Algorithm DFTNPA uses a local method to recover from the fault,

whereas Algorithm CFTNPA creates a new path of mobile nodes towards the destination

node. Algorithm DFTNPA only calculates a new position for the mobile node that is going

125

Nata
lie

 Tem
en

e

to be placed in the affected area based on the needs of the affected area. Algorithm CFTNPA

starts with the same step as Algorithm DFTNPA, where it uses the same algorithm for placing

the first mobile node, but then it creates a path from this mobile node towards the destination

node by placing more mobile nodes. The destination node can be either directly the sink

node or a lower level active node in the network. In both cases, the path is able to unload the

affected area and create a direct path towards the sink node. The creation of an alternative

path of mobile nodes means that more resources are employed in the network, which results

in consuming more energy and needing more time for resolving the problem. Although,

these parameters are a disadvantage for Algorithm CFTNPA, at the same time they can be

an advantage in cases where the failure is able to affect the whole neighborhood and it is

needed to bypass this part of the network. This is the time a new path is needed to work the

way towards the sink node. This approach is also able to reduce packet loss because the new

path is able to communicate either directly or with fewer hops to the sink node.

126

Nata
lie

 Tem
en

e

Chapter 8
Conclusions

8.1 Summary

In this doctoral dissertation we have presented algorithms that utilize mobile nodes in assist-

ing the network with the occurrence of a problem. The mobile nodes are sent to the affected

area to assist either the affected or the affecting nodes. Additionally, we introduced the term

of reuse, by reusing the mobile nodes already placed in the network if possible.

Initially, we presented the Node Placement Algorithm (NPA) with two variations, which

gets initiated when existing congestion control algorithms fail. The algorithm employs mo-

bile nodes to either create disjoint paths of mobile nodes and route the excess traffic directly

to the sink (Direct MobileCC), or to place a mobile node in such a position to create an

alternative path by bridging two disjointed areas in the network and repeating the process

if necessary (Dynamic MobileCC). Simulation results demonstrate that both variations can

alleviate congestion. In doing so, Direct MobileCC demonstrates a better average source to

sink delay and reduced packet drop, at the expense of mobile nodes used (almost double)

and energy consumed, when compared to Dynamic MobileCC. In this part of the work, we

have considered one instance of using alternative paths for alleviating congestion.

Next, we extended the previous concept by considering the energy consumption of the

mobile nodes used in the network to alleviate congestion in WSNs. We introduced the term

of reuse by extending the Dynamic MobileCC algorithm into an energy-efficient solution,

called Energy-aware Node Placement Algorithm. The extended version considers the en-

ergy consumption of the nodes in the network, where the mobile nodes added to the network

use their energy level for every decision that needs to be made. This action is helpful in re-

placing an energy exhausted mobile node in time before new congestion occurs or in reusing

it to a new position for resolving new congestion. The simulation results demonstrate that

127

Nata
lie

 Tem
en

e

the proposed algorithm can effectively alleviate congestion in the network. The two meth-

ods used for allocating an alternative node show slight differences in the results, which is

expected due to their algorithmic structure, where the allocation method uses more informa-

tion messages and computation than the optimal method. In the case of the scenarios, it is

noticeable that the least effective one is the one where no reuse occurs, with its result being

the lowest in terms of packets and the highest in terms of energy consumption. The other

scenarios have similar reactions in terms of packets, whereas based on the energy consump-

tion, they all have different reactions based on the number of mobile nodes that are used

and needed. We also evaluated this algorithm under different energy models. Based on the

results, it is demonstrated, as expected, that the energy consumption of the network increases

based on the number of nodes. When more nodes are active in the network, more energy is

consumed. Additionally, when the energy model uses the time variable, it is noticeable that

the results are increasing, as this variable changes constantly, whereas the distance variable

changes only when a node moves, which is rarer. In general, it is demonstrated that our

solution is able to be used effectively with different mobile robots.

Then, we extended the previous concept by considering the use of mobile carriers that

can transport mobile nodes around the network and position them to the requested loca-

tion and present the Carrier-based Node Placement Algorithm. The case study of resolving

congestion control problems in the network was presented as part of the evaluation of the

algorithm. Our experimental evaluation shows that the two approaches (stay or leave), de-

pending on the specific scenario, one can outperform the other. The Stay Approach, although

consuming more energy, it can be a good solution for cases where the return of the carrier

is hard. On the other hand, the Leave Approach can be implemented in environments where

the carrier needs to return to its initial position, either because it is too dangerous to stay

or few carriers are available. Both factors were responsible for the results of each scenario.

In terms of delay and throughput, the reuse scenario outperformed the others because the

network is re-established in a shorter time. Regarding the energy consumption, the replace

scenario outperformed the other because fewer extra resources were needed. Our findings

have shown that the proposed algorithm uses the energy consumption of the mobile node to

the fullest without considering the returning process, which is a part of the carrier, while the

carrier performed their transportation effectively.

Finally, we extended the problem of interest and used mobile nodes for resolving the

occurrence of faults in the network. We presented the Fault-Tolerant Node Placement Algo-

rithm (FTNPA) that consists of two variations, the Decentralized Fault-Tolerant Node Place-

128

Nata
lie

 Tem
en

e

ment Algorithm (DFTNPA) and the Centralized Fault-Tolerant Node Placement Algorithm

(CFTNPA). The DFTNPA algorithm uses a decentralized detection mechanism, where a

node in the network is responsible in identifying a faulty node in its neighborhood, and a

local recovery mechanism, where a mobile node is placed in such a position to serve the

affected nodes using the Dynamic MobileFT algorithm. The CFTNPA algorithm uses a cen-

tralized detection mechanism, where the sink node is responsible to identify a faulty node in

the network from the nodes that are sending packets to it, and a recovery mechanism that cre-

ates alternative paths towards either the sink node or an active node of the network, with the

use of the Direct MobileFT algorithm. The evaluation of these algorithms shows that both

algorithms have their advantages and disadvantages based on the scenario. The DFTNPA al-

gorithm is able to decrease the amount of extra resources used and still recover the network,

whereas the CFTNPA algorithm, with the creation of an alternative path, especially, towards

the sink node, it is able to relieve the affected area from extra load. However, the calcula-

tions for the position of the mobile nodes is using more time, which increases the time of

the network’s recovery process. We need to clarify that the Direct MobileFT algorithm used

for creating alternative paths of mobile nodes, firstly uses the Dynamic MobileFT for the

positioning of the first mobile node of the path. Even though the procedure of the Direct one

is then simple, it needs a little more time for its calculation than the Dynamic one. In long

term, it means that the DFTNPA algorithm recovers faster than the CFTNPA algorithm.

8.2 Future Work

The work presented in the thesis has several interesting future directions. Some are shorter-

term (Section 8.2.1), while other are longer-term (Section 8.2.2).

8.2.1 Short-term Extensions of the Thesis Work

The thesis work could be further extended in different directions in the near future. These

directions are presented below:

• Scalability: Since the algorithms are local and dynamic, one would expect that they

scale well with network size, number of mobile nodes, and number of failures. Fu-

ture experimental evaluation could validate this expectation. As the COOJA simulator

cannot support large number of nodes (due to resource limitations), such experimen-

tation could occur on MATLAB or NS3. Thus, the algorithms we will first need to be

129

Nata
lie

 Tem
en

e

implemented on these platforms.

• Hybrid detection mechanism: In the MobileFT Framework, the detection method of

a faulty node can be performed either by a neighboring node or the sink node. An

extension of this work is currently directed towards a hybrid mechanism of detection

that combines both a neighboring node and the sink node for faster detection. These

two mechanisms can be used for different cases of faults based on the advantages each

mechanism can provide. For the recovery mechanism, mobile nodes are used either as

a local solution or by creating an alternative path towards a destination, based on the

detection mechanism used.

• Energy-aware FTNPA solution: The existing FTNPA algorithms consider energy only

as a failure (when the nodes exhausts its energy). However, it would be interesting

to consider the energy consumption in the same level of granularity as done with the

eNPA algorithm, and investigate how it would affect the algorithms’ performance.

• Different clustering algorithms: As mentioned, for the purposes of the FTNPA algo-

rithms, we have considered the k-means clustering algorithm. It would be interesting

to consider other clustering algorithms and investigate how the use of a clustering al-

gorithm affects the performance of FTNPA.

8.2.2 Long-term Extensions of the Thesis Work

In this section, long-term research directions are presented that are more challenging that the

ones discussed in the previous section.

Handling Malicious Nodes and Attacks

An important and challenging issue for WSNs and IoT networks is security. The develop-

ment of strong security algorithms is restricted due to resources limitation as well as the

deployment environment. The network security can be threatened from data modification

and malicious attacks that can be performed during the communication between the source

nodes and the destination node. As a result, security is an essential component in dynamic

networks that needs to be further researched.

An overarching goal on this work would be to explore in a multidisciplinary way the

prominent areas of Security, Mobility and the Internet of Things. The main goal will be to

implement self-recovery and network recovery with the use of mobile elements based on a

130

Nata
lie

 Tem
en

e

range of different attacks. A possible solution is to use existing work that detect the abnor-

malities in the network and use the mobile nodes in a suitable position to avoid this situation.

In [23–25] a monitoring tool and a detection mechanism are proposed. The first work [24]

presents the Run-time Monitoring Tool (RMT) and its purpose is to monitor the operation

of the nodes in the network based on specific parameters. The second work [25] presents a

general methodology of an anomaly-based Intrusion Detection System (IDS), called mIDS

and its purpose is to use the Binary Logistic Regression (BLR) as a statistic tool in order

to classify the nodes of the network into benign and malicious. The main idea is to use

RMT as the monitoring tool to get information about the nodes behavior that will be the

input of mIDS. Then mIDS will derive a normal behavior model in order to detect abnor-

malities of the nodes. The third work [23], present an evaluation of the feasibility of running

a lightweight Intrusion Detection System within a constrained sensor or IoT node. In this

paper, mIDS is tested in a setting that contains network-layer attacks. The main idea is to

use this system, where critical data are obtained from the routing layer and are then used

as a basis for profiling sensor behavior. The results show that although the implementation

is lightweight, the attack detection accuracy levels achieved a range of 96% - 100%. Using

these algorithms in combination with the mobile nodes, it will be interesting to investigate

whether it is possible, by placing the mobiles nodes in an appropriate way, to avoid abnor-

malities of the network. Additionally, we will investigate the attack groups our approach can

be applied to.

Wireless Chargers

In recent years, research in WSN has been extended based on the movement capabilities of

nodes in the network. Mobility has been introduced either at the sink or the nodes. Mobile

sink approaches can be used to avoid congestion and at the same time increase the lifetime

of the network. This approach could be useful for many applications, like target tracking,

habitat monitoring and emergency preparedness. On the other hand, mobile nodes are useful

for the network to stay connected. They assist in congestion mitigation and node replace-

ment. When congestion is detected, mobile nodes can be placed in the network to take the

excess traffic from the congested node. The lifetime of a network is limited based on the use

of battery, but with the use of mobile nodes it can be maximized. This can happen either by

replacing the low energy nodes with mobile nodes or by using mobile nodes to transport new

nodes at the location.

131

Nata
lie

 Tem
en

e

As discussed above, it is noticeable that the lifetime of a network is limited due to the

use of battery-based sensor nodes. A node that reaches to its lower energy level cannot

recover, and as a result the network at some point will disconnect. In the literature, a recent

direction of research consider chargers [64]. A charger is a high energy supply device that

acts like a transmitter and it is responsible for the energy management in the network. This

approach can be divided into two main categories, based on the number of chargers in the

network, single or multiple chargers, and based on the ability of the chargers to move or

not, i.e., static charger or mobile charger. A static charger is located at a specific point in

the network and it will be helpful for mobile nodes. On the other hand, a mobile charger

will move around the network and therefor be helpful not only for mobile nodes but also for

static nodes. In [45], [46] the use of mobile chargers is considered. The network consists

of static sensor nodes, a sink node and mobile chargers. As mentioned, a mobile charger is

an entity with the ability to move around the network and wirelessly replenish the energy of

the sensor nodes in the network. The work in [45] proposes four protocols where the two

perform distributed, limited network knowledge coordination and charging, and the other two

perform centralized, global network knowledge coordination and charging. The work in [46]

proposes a hierarchical charging structure, by dividing the chargers into two groups, the

hierarchically lower mobile chargers that charge sensor nodes and the hierarchically higher

special chargers that charge mobile chargers. The works in [47], [48] provide solutions with

the use of static chargers. The network consists of static nodes, a sink node, mobile nodes

and static chargers. A static charger is an energy transmitter that will recharge a node when it

gets in its range. Both works focus on dynamically selecting the appropriate charging range

of a single static charger in the network. The main idea is that based on the energy of the

charger, the corresponding energy can be transmitted to all of the nodes in its range, with

respect to the node’s battery life. The work in [57] proposes a way to exchange energy in a

peer-to-peer way, without using special charger nodes. The mobile nodes used are equipped

with a battery cell, a wireless transmitter and a wireless energy receiver. The main idea is

that whenever two mobile nodes meet by intersecting their paths, they are able to exchange

energy between their battery cells with the use of an interaction protocol. Two protocols are

presented, a simple protocol for weighted energy balance with a loss-less transfer and a more

natural protocol with an energy transfer with loss.

An interesting open question, that arises from the above works is: “how could (mobile)

chargers be utilized for mobile congestion control?". We aim to redesign our algorithms

using mobile nodes in order to use chargers in an effective way. The charger approach can

132

Nata
lie

 Tem
en

e

be done either by using a static charger or using mobile chargers. A static charger is a static

node that is placed in the network that has also the ability of charging nodes near it. The

challenge of this approach is an efficient placement plan of the static nodes in the network.

The placement of the static nodes is important and must be done in a way that in case of

congestion the mobile nodes needed in the network will be placed near the static chargers.

Additionally, it would be interesting to investigate the initial placement of the mobile nodes

to be near the static chargers instead of all of them residing at the sink node. This can be

either applied to all the mobile nodes or to a part of them, where the rest of them could

be placed as defined by the MobileCC framework, near the sink node. On the other hand,

the use of mobile charger(s) in the network can be more helpful, in terms of not wasting

more resources when the local charging method can be used. This means that when a mobile

node that is still needed in the network gets a low battery threshold, a mobile charger can

be requested and the mobile node will stay at its current position and at the same time be

charged, hence continue assisting the network’s needs. In the case that currently no mobile

charger is available, the mobile node would be returning to its initial position and its place

would be taken by another mobile node, as our current algorithms do. As a result, in both

approaches, the recovery of a low-energy node will be able to extend the lifetime of the

network and provide a solution of the energy constrain in WSNs.

Initial Placement of Mobile Nodes

Another important open question for mobility in WSNs is the initial placement of the mo-

bile nodes. It would be interesting to investigate different approaches in terms of different

parameters that will define the initial placement of the mobile nodes in the network.

The placement plan can be divided into two categories: the mobile nodes as a whole

group or the mobile nodes divided into groups. In the first category, all mobile nodes are

used as a group and are placed at the same initial location, whereas, in the second category,

the mobile nodes are divided into groups which are placed into different areas of the network,

as their initial position.

Another part that needs to be defined are some parameters that play a significant role in

the selection of the initial placement. These parameters could be the following:

The problem that needs to be resolved. Based on the problem that has occurred in the

network, the solution provided needs to be different. Each solution is a different approach in

resolving the problem, which can be also a different direction for the initial placement of the

133

Nata
lie

 Tem
en

e

mobile nodes. For example, in a jamming attack the solution needs to overcome the affected

area, whereas in a fault problem the solution can be directly in the affected area. In the first

case, the mobile node needs to be placed in a position that is not in the reach of the attack,

which means outside of the affected area of the attacker. On the other hand, when a faulty

node exists in the network, in terms of energy exhaustion, a simple replacement is all needed

to resolve the problem.

The detection mechanism used. When a problem is detected by the sink node, so a

centralized approached is used, it is needed that the mobile nodes are in the reach of the

sink node’s communication range. The sink node is the one that will make the computations

and take actions, which then will be forwarded to the mobile nodes. On the other hand, in

a decentralized approach, where the detection is done by any neighboring node of a faulty

node, it may be better to place groups of mobile nodes in the network. For example, when

the detection is done by the sink node it is helpful for the mobile nodes to be placed near the

sink so that the communication between them is quicker. However, in case the detection is

done by the neighboring nodes of faulty nodes, placing in different locations of the network

small groups of mobile nodes gives the opportunity to the detection node to communicate

directly with the mobile node, which results in smaller energy and time consumption.

The topology of the network. The nature of the topology of a network can also be im-

portant for the initial placement of the mobile nodes. In some scenarios it would be best

to divide the mobile nodes into groups and scatter them in the network. On the other hand,

in other scenarios all mobile nodes would be best to be grouped only in one position. For

example, in a ring topology it is better to initially placed the mobile nodes in the center in

such a position where it minimizes the cost of moving to a new position. However, in a tree

topology the mobile nodes may be placed near the root, meaning the sink node.

Real Deployment and Evaluation

An important direction of the research in WSNs is to expand the evaluation method of these

algorithms by being experimented in a real sensor setting. Most algorithms are evaluated in

simulations, but the results shown may not be accurate when they are applied in real envi-

ronments. For accurate and unequivocal results the evaluation method should become more

experimental by deploying and evaluating their performance using real sensors executing in

a real life environment.

The main reason we have used Contiki OS to implement our algorithms is because it

134

Nata
lie

 Tem
en

e

emulates the behavior of a real network. Furthermore, the programs are readily deployable

to a real sensor environment with minimal adjustments. In particular, the code developed for

the simulation can easily be exported and uploaded to a real sensor, leading to a real deploy-

ment. Therefore, part of the future work is to deploy and evaluate our proposed algorithmic

solutions in a real sensor setting. There are many options on doing so. One case is to use

real IoT testbeds, such as FIT IoTLab [2], which is a large-scale real testbed platform within

the OpenLab Experimental Facility. The FIT IoT-Lab has six sites across France that include

in total 2700 wireless sensor nodes. Another case is to use a small scale IoT testbed at the

University of Cyprus premises using real nodes, such as Raspberry Pi, to examine obstacles

that were not anticipated and were not revealed using COOJA.

135

Nata
lie

 Tem
en

e

Bibliography

[1] G. H. Adday, S. K. Subramaniam, Z. A. Zukarnain, and N. Samian. Fault tolerance
structures in wireless sensor networks (wsns): Survey, classification, and future direc-
tions. Sensors, 22(16):6041, 2022.

[2] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-Gibollet,
F. Saint-Marcel, G. Schreiner, J. Vandaele, et al. Fit iot-lab: A large scale open exper-
imental iot testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT),
pages 459–464. IEEE, 2015.

[3] V. Agarwal, S. Tapaswi, and P. Chanak. A survey on path planning techniques for mo-
bile sink in iot-enabled wireless sensor networks. Wireless Personal Communications,
pages 1–28, 2021.

[4] V. K. Akram, O. Dagdeviren, and B. Tavli. Distributed k-connectivity restoration for
fault tolerant wireless sensor and actuator networks: Algorithm design and experimen-
tal evaluations. IEEE Trans. Reliab., 70(3):1112–1125, 2021.

[5] M. Anuradha, A. Swetha, and M. Doraipandian. Fault node detection and connectivity
restoration with mobile relay node in wireless sensor networks.

[6] C. Balasubramanian, M. Maragatharajan, and S. P. Balakannan. Inventive approach
of path planning mechanism for mobile anchors in WSN. J. Ambient Intell. Humaniz.
Comput., 12(3):3959–3967, 2021.

[7] R. Beulah Jayakumari and V. Jawahar Senthilkumar. Priority based congestion control
dynamic clustering protocol in mobile wireless sensor networks. The Scientific World
Journal, 2015, 2015.

[8] A. Boukerche, D. Efstathiou, and S. Nikoletseas. Direction-based adaptive data propa-
gation for heterogeneous sensor mobility. Journal of Parallel and Distributed Comput-
ing, 72(6):778–790, 2012.

[9] S. Chouikhi, I. El Korbi, Y. Ghamri-Doudane, and L. A. Saidane. A survey on fault tol-
erance in small and large scale wireless sensor networks. Computer Communications,
69:22–37, 2015.

[10] I. Doroftei, V. Grosu, and V. Spinu. Design and control of an omni-directional mobile
robot. In Novel algorithms and techniques in telecommunications, automation and
industrial electronics, pages 105–110. Springer, 2008.

[11] M. El Fissaoui, A. Beni-hssane, S. Ouhmad, and K. El Makkaoui. A survey on mobile
agent itinerary planning for information fusion in wireless sensor networks. Archives
of Computational Methods in Engineering, pages 1–12, 2020.

[12] L. Farzinvash, S. Najjar-Ghabel, and T. Javadzadeh. A distributed and energy-efficient
approach for collecting emergency data in wireless sensor networks with mobile sinks.
AEU-International Journal of Electronics and Communications, 108:79–86, 2019.

[13] S. Feng, H. Shi, L. Huang, S. Shen, S. Yu, H. Peng, and C. Wu. Unknown hostile
environment-oriented autonomous WSN deployment using a mobile robot. J. Netw.
Comput. Appl., 182:103053, 2021.

136

Nata
lie

 Tem
en

e

[14] M. D. Francesco, S. K. Das, and G. Anastasi. Data collection in wireless sensor net-
works with mobile elements: A survey. TOSN, 8(1):7:1–7:31, 2011.

[15] S. Gandham, M. Dawande, R. Prakash, and S. Venkatesan. Energy efficient schemes
for wireless sensor networks with multiple mobile base stations. In Proceedings of the
Global Telecommunications Conference, 2003. GLOBECOM, pages 377–381, 2003.

[16] Y. Gu, F. Ren, Y. Ji, and J. Li. The evolution of sink mobility management in wireless
sensor networks: A survey. IEEE Communications Surveys and Tutorials, 18(1):507–
524, 2016.

[17] K. Gulati, R. S. K. Boddu, D. Kapila, S. L. Bangare, N. Chandnani, and G. Saravanan.
A review paper on wireless sensor network techniques in internet of things (iot). Ma-
terials Today: Proceedings, 2021.

[18] E. B. Hamida and G. Chelius. A line-based data dissemination protocol for wireless
sensor networks with mobile sink. In Proceedings of IEEE International Conference
on Communications, ICC, pages 2201–2205, 2008.

[19] L. Hou, L. Zhang, and J. Kim. Energy modeling and power measurement for mobile
robots. Energies, 12(1):27, 2019.

[20] T. Hou and V. Li. Transmission range control in multihop packet radio networks. IEEE
Trans. Communications, 34(1):38–44, 1986.

[21] H. Huang, C. Huang, and D. Ma. The cluster based compressive data collection for
wireless sensor networks with a mobile sink. AEU-International Journal of Electronics
and Communications, 108:206–214, 2019.

[22] H. Huang, A. V. Savkin, M. Ding, and C. Huang. Mobile robots in wireless sensor
networks: A survey on tasks. Computer Networks, 148:1–19, 2019.

[23] C. Ioannou and V. Vassiliou. An intrusion detection system for constrained WSN and
iot nodes based on binary logistic regression. In Proceedings of the 21st ACM Interna-
tional Conference on Modeling, Analysis and Simulation of Wireless and Mobile Sys-
tems, MSWiM 2018, Montreal, QC, Canada, October 28 - November 02, 2018, pages
259–263, 2018.

[24] C. Ioannou, V. Vassiliou, and C. Sergiou. RMT: A wireless sensor network monitor-
ing tool. In Proceedings of the 13th ACM Symposium on Performance Evaluation of
Wireless Ad Hoc, Sensor, & Ubiquitous Networks, PE-WASUN 2016, Malta, November
13-17, 2016, pages 45–49, 2016.

[25] C. Ioannou, V. Vassiliou, and C. Sergiou. An intrusion detection system for wireless
sensor networks. In 24th International Conference on Telecommunications, ICT 2017,
Limassol, Cyprus, May 3-5, 2017, pages 1–5, 2017.

[26] A. E. Irish, S. Terence, and J. Immaculate. Efficient data collection using dynamic
mobile sink in wireless sensor network. In Wireless Communication Networks and
Internet of Things, pages 141–149. Springer, 2019.

[27] M. F. Jaramillo-Morales, S. Dogru, J. B. Gomez-Mendoza, and L. Marques. Energy
estimation for differential drive mobile robots on straight and rotational trajectories.
International Journal of Advanced Robotic Systems, 17(2):1729881420909654, 2020.

137

Nata
lie

 Tem
en

e

[28] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras. Applications of wireless sensor
networks: an up-to-date survey. Applied System Innovation, 3(1):14, 2020.

[29] K. Karenos and V. Kalogeraki. Facilitating congestion avoidance in sensor networks
with a mobile sink. In Proceedings of the 28th IEEE Real-Time Systems Symposium
(RTSS, pages 321–332, 2007.

[30] R. Katsuma, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito. Extending k-coverage
lifetime of wireless sensor networks using mobile sensor nodes. In 5th IEEE Interna-
tional Conference on Wireless and Mobile Computing, Networking and Communica-
tions, WiMob, pages 48–54, 2009.

[31] M. I. Khan, W. N. Gansterer, and G. Haring. Congestion avoidance and energy efficient
routing protocol for wireless sensor networks with a mobile sink. JNW, 2(6):42–49,
2007.

[32] A. Kinalis, S. Nikoletseas, D. Patroumpa, and J. Rolim. Biased sink mobility with
adaptive stop times for low latency data collection in sensor networks. Information
fusion, 15:56–63, 2014.

[33] D. Knuth. The art of computer programming: Generating all combinations and parti-
tions (vol. 4, fascicle 3), 2005.

[34] K. Koosheshi and S. Ebadi. Optimization energy consumption with multiple mobile
sinks using fuzzy logic in wireless sensor networks. Wirel. Networks, 25(3):1215–
1234, 2019.

[35] M. Koutroullos, C. Sergiou, and V. Vassiliou. Mobile-CC: Introducing Mobility to
WSNs for Congestion Mitigation in Heavily Congested Areas. In Telecommunications
(ICT), 2011 18th International Conference on, pages 400 –405, May 2011.

[36] M. Koutroullos, C. Sergiou, and V. Vassiliou. Mobile-cc: Introducing mobility to wsns
for congestion mitigation in heavily congested areas. In 18th International Conference
on Telecommunications, ICT 2011, Ayia Napa, Cyprus, May 8-11, 2011, pages 400–
405, 2011.

[37] D. Koutsonikolas, S. M. Das, and Y. C. Hu. Path planning of mobile landmarks for
localization in wireless sensor networks. Comput. Commun., 30(13):2577–2592, 2007.

[38] J. F. Kurose and K. W. Ross. Computer networking - a top-down approach featuring
the internet. Addison-Wesley-Longman, 2001.

[39] S. Latambale and S. Sirsikar. A survey of various sink mobility based techniques in
wireless sensor network. In Proceedings of the ACM Symposium on Women in Research
2016, pages 45–50, 2016.

[40] H. Lee, J. Lee, S. Kim, and S. Noh. Region based data dissemination scheme for mobile
sink groups in wireless sensor networks. In Proceedings of the Global Communications
Conference, 2010. GLOBECOM 2010, 6-10 December 2010, Miami, Florida, USA,
pages 1–5, 2010.

[41] J. Lee, S. Oh, S. Park, Y. Yim, S. Kim, and E. Lee. Active data dissemination for
mobile sink groups in wireless sensor networks. Ad Hoc Networks, 72:56–67, 2018.

138

Nata
lie

 Tem
en

e

[42] W. Liang, J. Luo, and X. Xu. Prolonging network lifetime via a controlled mobile sink
in wireless sensor networks. In Proceedings of the Global Communications Confer-
ence, 2010. GLOBECOM, pages 1–6, 2010.

[43] C. Lin, P. Chou, and C. Chou. HCDD: hierarchical cluster-based data dissemination in
wireless sensor networks with mobile sink. In Proceedings of the International Confer-
ence on Wireless Communications and Mobile Computing, IWCMC, pages 1189–1194,
2006.

[44] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information The-
ory, 28(2):129–137, 1982.

[45] A. Madhja, S. E. Nikoletseas, and T. P. Raptis. Distributed wireless power transfer in
sensor networks with multiple mobile chargers. Computer Networks, 80:89–108, 2015.

[46] A. Madhja, S. E. Nikoletseas, and T. P. Raptis. Hierarchical, collaborative wireless
energy transfer in sensor networks with multiple mobile chargers. Computer Networks,
97:98–112, 2016.

[47] A. Madhja, S. E. Nikoletseas, and A. A. Voudouris. Mobility-aware, adaptive algo-
rithms for wireless power transfer in ad hoc networks. In Algorithms for Sensor Sys-
tems - 14th International Symposium on Algorithms and Experiments for Wireless Sen-
sor Networks, ALGOSENSORS 2018, Helsinki, Finland, August 23-24, 2018, Revised
Selected Papers, pages 145–158, 2018.

[48] A. Madhja, S. E. Nikoletseas, and A. A. Voudouris. Adaptive wireless power transfer
in mobile ad hoc networks. Computer Networks, 152:87–97, 2019.

[49] S. Maurya, V. K. Jain, and D. R. Chowdhury. Delay aware energy efficient reliable
routing for data transmission in heterogeneous mobile sink wireless sensor network. J.
Netw. Comput. Appl., 144:118–137, 2019.

[50] N. Mazumdar, S. Roy, A. Nag, and S. Nandi. An adaptive hierarchical data dissemi-
nation mechanism for mobile data collector enabled dynamic wireless sensor network.
Journal of Network and Computer Applications, 186:103097, 2021.

[51] Y. Mei, C. Xian, S. Das, Y. C. Hu, and Y.-H. Lu. Repairing sensor network using
mobile robots. In Workshop on Wireless Ad hoc and Sensor Networks, 2006.

[52] H. Mo, E. Lee, S. Park, and S. Kim. Virtual line-based data dissemination for mobile
sink groups in wireless sensor networks. IEEE Communications Letters, 17(9):1864–
1867, 2013.

[53] E. Moridi, M. Haghparast, M. Hosseinzadeh, and S. J. Jassbi. Fault management frame-
works in wireless sensor networks: A survey. Computer communications, 155:205–
226, 2020.

[54] T. Muhammed and R. A. Shaikh. An analysis of fault detection strategies in wireless
sensor networks. J. Netw. Comput. Appl., 78:267–287, 2017.

[55] L. Nguyen and H. T. Nguyen. Mobility based network lifetime in wireless sensor
networks: A review. Comput. Networks, 174:107236, 2020.

139

Nata
lie

 Tem
en

e

[56] A. Nicolaou, N. Temene, C. Sergiou, C. Georgiou, and V. Vassiliou. Utilizing mobile
nodes for congestion control in wireless sensor networks. In 15th International Con-
ference on Distributed Computing in Sensor Systems, DCOSS 2019, Santorini, Greece,
May 29-31, 2019, pages 176–178. IEEE, 2019.

[57] S. E. Nikoletseas, T. P. Raptis, and C. Raptopoulos. Wireless charging for weighted
energy balance in populations of mobile peers. Ad Hoc Networks, 60:1–10, 2017.

[58] C. OS. Contiki: The open source os for the internet of things. http://www.
contiki-os.org/.

[59] A. Pang, F. Chao, H. Zhou, and J. Zhang. The method of data collection based on
multiple mobile nodes for wireless sensor network. IEEE Access, 8:14704–14713,
2020.

[60] F. Papi and H. Barati. Hdrm: A hole detection and recovery method in wireless sensor
network. International Journal of Communication Systems, 35(8):e5120, 2022.

[61] S. Park, E. Lee, M. Jin, and S. Kim. Novel strategy for data dissemination to mobile
sink groups in wireless sensor networks. IEEE Communications Letters, 14(3):202–
204, 2010.

[62] S. Park, E. Lee, H. Park, H. Lee, and S. Kim. Mobile geocasting to support mobile sink
groups in wireless sensor networks. IEEE Communications Letters, 14(10):939–941,
2010.

[63] L. Payá, A. Gil, O. Reinoso, M. Juliá, L. Riera, and L. Jiménez. Distributed platform for
the control of the wifibot robot through internet. IFAC Proceedings Volumes, 39(6):59–
64, 2006.

[64] S. Prakash and V. Saroj. A review of wireless charging nodes in wireless sensor net-
works. Data science and big data analytics, pages 177–188, 2019.

[65] V. S. Rao and M. Dakshayini. An sdn-based strategy for reliable data transmission
in mobile wireless sensor networks. In EAI International Conference on Big Data
Innovation for Sustainable Cognitive Computing, pages 87–96. Springer, 2020.

[66] S. Raza, L. Wallgren, and T. Voigt. SVELTE: real-time intrusion detection in the inter-
net of things. Ad Hoc Networks, 11(8):2661–2674, 2013.

[67] A. P. Renold and B. G. Athi. Energy efficient secure data collection with path-
constrained mobile sink in duty-cycled unattended wireless sensor network. Pervasive
and Mobile Computing, 55:1–12, 2019.

[68] J. Rezazadeh. Mobile wireles sensor networks overview. International Journal of
Computer Communications and Networks (IJCCN), 2(1), 2012.

[69] K. Römer and F. Mattern. The design space of wireless sensor networks. IEEE Wireless
Commun., 11(6):54–61, 2004.

[70] C. Sergiou, P. Antoniou, and V. Vassiliou. A comprehensive survey of congestion con-
trol protocols in wireless sensor networks. IEEE Communications Surveys Tutorials,
16(4):1839–1859, 2014.

[71] C. Sergiou and V. Vassiliou. Estimating maximum traffic volume in wireless sensor
networks using fluid dynamics principles. IEEE Commun. Lett., 17(2):257–260, 2013.

140

Nata
lie

 Tem
en

e

http://www.contiki-os.org/
http://www.contiki-os.org/

[72] C. Sergiou, V. Vassiliou, and A. Paphitis. Congestion Control in Wireless Sensor Net-
works through Dynamic Alternative Path Selection. 75, Part A:226 – 238, 2014.

[73] S. Sharma, R. K. Bansal, and S. Bansal. Issues and challenges in wireless sensor
networks. In 2013 International Conference on Machine Intelligence and Research
Advancement, pages 58–62. IEEE, 2013.

[74] J. Sheu, K. Hsieh, and P. Cheng. Design and implementation of mobile robot for nodes
replacement in wireless sensor networks. J. Inf. Sci. Eng., 24(2):393–410, 2008.

[75] S. K. Singh and P. Kumar. A comprehensive survey on trajectory schemes for data
collection using mobile elements in wsns. J. Ambient Intell. Humaniz. Comput.,
11(1):291–312, 2020.

[76] J. Sumathi and R. L. Velusamy. A review on distributed cluster based routing ap-
proaches in mobile wireless sensor networks. J. Ambient Intell. Humaniz. Comput.,
12(1):835–849, 2021.

[77] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly distributed
packet radio terminals. IEEE Trans. Communications, 32(3):246–257, 1984.

[78] T. Toledo and H. N. Koutsopoulos. Statistical validation of traffic simulation models.
Transportation Research Record, 1876(1):142–150, 2004.

[79] A. S. Toor and A. Jain. Energy aware cluster based multi-hop energy efficient routing
protocol using multiple mobile nodes (meacbm) in wireless sensor networks. AEU-
International Journal of Electronics and Communications, 102:41–53, 2019.

[80] T. T. Truong, K. N. Brown, C. J. Sreenan, and T. T. Truong. Using mobile sinks
in wireless sensor networks to improve building emergency response. In Royal Irish
Academy Research Colloquium on Wireless as an Enabling Technology. Royal Irish
Academy, 2010.

[81] C. Tunca, S. Isik, M. Y. Donmez, and C. Ersoy. Distributed mobile sink routing for
wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials,
16(2):877–897, 2014.

[82] M. Vecchio and R. López-Valcarce. Improving area coverage of wireless sensor net-
works via controllable mobile nodes: A greedy approach. J. Network and Computer
Applications, 48:1–13, 2015.

[83] K. L. Wagstaff. Constrained Clustering, pages 220–221. Springer US, 2010.

[84] M. Wahab, F. Rios-Gutierrez, and A. El Shahat. Energy modeling of differential drive
robots. IEEE, 2015.

[85] J. Wang, Y. Gao, W. Liu, A. K. Sangaiah, and H. Kim. Energy efficient routing al-
gorithm with mobile sink support for wireless sensor networks. Sensors, 19(7):1494,
2019.

[86] J. Wang, Y. Gao, W. Liu, A. K. Sangaiah, and H. Kim. An intelligent data gathering
schema with data fusion supported for mobile sink in wireless sensor networks. IJDSN,
15(3), 2019.

141

Nata
lie

 Tem
en

e

[87] J. Wang, Y. Gao, X. Yin, F. Li, and H. Kim. An enhanced PEGASIS algorithm with mo-
bile sink support for wireless sensor networks. Wireless Communications and Mobile
Computing, 2018:9472075:1–9472075:9, 2018.

[88] J. Wang, Y. Gao, X. Yin, F. Li, and H.-J. Kim. An enhanced pegasis algorithm with mo-
bile sink support for wireless sensor networks. Wireless Communications and Mobile
Computing, 2018, 2018.

[89] Y. Wang, K. Huang, P. Fu, and J. Wang. Mobile sink routing protocol with registering
in cluster-based wireless sensor networks. In Ubiquitous Intelligence and Computing,
5th International Conference, UIC, pages 352–362, 2008.

[90] M. Wu. An efficient hole recovery method in wireless sensor networks. In 2022 24th
International Conference on Advanced Communication Technology (ICACT), pages
1399–1404. IEEE, 2022.

[91] R. Yarinezhad. Reducing delay and prolonging the lifetime of wireless sensor network
using efficient routing protocol based on mobile sink and virtual infrastructure. Ad Hoc
Networks, 84:42–55, 2019.

[92] C. W. Yu, E. Chen, and C.-C. Fang. Deploying mobile nodes to connect wireless sensor
networks using novel algorithms. In Wireless Algorithms, Systems and Applications,
pages 199–204, 2007.

[93] Y.-G. Yue and P. He. A comprehensive survey on the reliability of mobile wireless
sensor networks: Taxonomy, challenges, and future directions. Information Fusion,
44:188–204, 2018.

[94] H. Zhao, S. Guo, X. Wang, and F. Wang. Energy-efficient topology control algorithm
for maximizing network lifetime in wireless sensor networks with mobile sink. Appl.
Soft Comput., 34:539–550, 2015.

[95] P. Zhong and F. Ruan. An energy efficient multiple mobile sinks based routing algo-
rithm for wireless sensor networks. In IOP Conference Series: Materials Science and
Engineering, volume 323, page 012029, 2018.

[96] D. Zorbas and T. Razafindralambo. Modeling the power consumption of a wifibot and
studying the role of communication cost in operation time. CoRR, abs/1512.04380,
2015.

142

Nata
lie

 Tem
en

e

Chapter A
Algorithm Flowcharts

In this section we present the flowcharts of each algorithm mentioned in the paper. These
flowcharts show a simpler version of the algorithm presenting the higher level idea.

A.1 Dynamic MobileCC Flowchart
In this section we present the flowchart of the Dynamic MobileCC algorithm (see Fig. A.1)
presented in Section 3.1.

Figure A.1: Dynamic MobileCC Flowchart

143

Nata
lie

 Tem
en

e

A.2 Direct MobileCC Algorithm Flowchart
In this section we present the flowchart of the Direct MobileCC algorithm (see Fig. A.2)
presented in Section 3.2.

Figure A.2: Direct MobileCC Flowchart

144

Nata
lie

 Tem
en

e

A.3 Energy-aware Node Placement Algorithm Flowchart
In this section we present the flowchart of the Energy-aware Node Placement Algorithm (see
Fig. A.3) presented in Chapter 4.

Figure A.3: Energy-aware Node Placement Algorithm Flowchart

145

Nata
lie

 Tem
en

e

A.4 Carrier-based Node Placement Algorithm Flowchart
In this section we present the flowchart of the Carrier-based Node Placement Algorithm (see
Fig. A.4) presented in Chapter 5.

Figure A.4: Carrier-based Node Placement Algorithm Flowchart

146

Nata
lie

 Tem
en

e

A.5 Decentralized Fault Tolerant Node Placement Algorithm
Flowchart

In this section we present the flowchart of the Decentralized Fault Tolerant Node Placement
Algorithm Flowchart (see Fig. A.5) presented in Section 7.2.1.

Figure A.5: Decentralized Fault Tolerant Node Placement Algorithm Flowchart

147

Nata
lie

 Tem
en

e

A.6 Centralized Fault Tolerant Node Placement Algorithm
Flowchart

In this section we present the flowchart of the Decentralized Fault Tolerant Node Placement
Algorithm Flowchart (see Fig. A.6) presented in Section 7.2.2.

Figure A.6: Centralized Fault Tolerant Node Placement Algorithm Flowchart

148

Nata
lie

 Tem
en

e

A.7 Dynamic MobileFT Flowchart
In this section we present the flowchart of the Dynamic MobileFT algorithm (see Fig. A.7)
presented in Section 7.2.1.

Figure A.7: Dynamic MobileFT Flowchart

149

Nata
lie

 Tem
en

e

A.8 Direct MobileFT Algorithm Flowchart
In this section we present the flowchart of the Direct MobileFT algorithm (see Fig. A.8)
presented in Section 7.2.2.

Figure A.8: Direct MobileFT Flowchart

150

Nata
lie

 Tem
en

e

Chapter B
Tables of Strengths and Limitations

In this section we present the tables of each paper mentioned in Chapter 2. The tables show
the strengths and limitations of each algorithm.

B.1 Individual Mobile Sink
Table B.1 presents the strengths and limitations of each paper from Section 2.2.1.

Algorithm Remarks

Gandham et al. [15]
Strengths relocation of the mobile sink at each round.

Limitations overhead in action to account node failure if done
from itself.

Liang et al. [42]
Strengths low computational complexity and high scalability

Limitations re-calculating the sojourn time in stage three.

Farzinvash et al. [12]
Strengths low delay and different strategies for different priority

data.
Limitations two methods of data collection done concurrently.

Khan et al. [31]
Strengths clusters created by the mobile sink. The data deter-

mine the time of the mobile sink at the cluster head.
Limitations overhead at cluster head nodes.

Wang et al. [89]
Strengths considers energy consumption and data dissemination

inside and outside of the cluster.
Limitations overhead at the cluster and registration process.

Zhao et al. [94]
Strengths used for large-scale networks. It uses only local infor-

mation and considers the transmission range for en-
ergy.

Limitations

Zhong et al. [95]
Strengths distributes evenly the hot spot nodes. Experiments

with different numbers of mobile sinks.
Limitations at each round, a different cluster head based on the

energy level. The path is not determined.

Wang et al. [86]
Strengths data fussion with the use of neural networks.

Limitations overhead at cluster head nodes and agent nodes.

Wang et al. [85]
Strengths the cluster head is only changed when energy level

gets low.
Limitations overhead at the inter cluster communication process.

Maurya et al. [49]
Strengths densley deployment large scale networks and differ-

ent roles of the nodes.
Limitations overhead at the ring formation process.

151

Nata
lie

 Tem
en

e

Renold et al. [67]
Strengths mobile sink determines the collection nodes. Secure

data communication with cryptography.
Limitations mobile sink moves only on the periphery of the net-

work. Overhead of the identification process.

Huang et al. [21]
Strengths hierarchical communication. Implementation infor-

mation.
Limitations overhead for the cluster head election method.

Lin et al. [43]
Strengths light control overhead for data dissemination process.

Limitations overhead in sink localization registration.

Karenos et al. [29]
Strengths it favors the good paths to avoid congestion.

Limitations continuously movement of the mobile sink in the net-
work, the energy consumption is not account.

Hamida et al. [18]
Strengths the rendez-vous line is placed in the middle of the net-

work. Use of multiple sinks.
Limitations overhead at the data request process of the sink re-

quest.

Truong et al. [80]
Strengths the data are stored until the reconnection of the net-

work.
Limitations due to movement, the hop count changes frequently.

Wang et al. [87]
Strengths use mobile sink to balance the energy consumption of

the network and use threshold values to protect from
energy exhaustion failure.

Limitations the energy of the mobile sink is not account, it is as-
sumed unconstrained.

Irish et al. [26]
Strengths the mobile sink visits the grid with the highest detec-

tion event frequency, meaning it provides priority.
Limitations overhead at cluster head nodes.

Table B.1: Strengths and Limitations of the Mobile Sinks Algorithms

B.2 Group of Mobile Sinks
Table B.2 presents the strengths and limitations of each paper from Section 2.2.1.

Algorithm Remarks

Park et al. [62]
Strengths adopt the traditional geocasting method for a solution

using mobile sink groups. Supports movement out-
side the group region without loosing the data dissem-
ination.

Limitations overhead on location updates notifications in the net-
work. The criteria of selecting the leader are not clari-
fied. When the radius rate is increased, more flooding
is needed which creates broadcasting problems.

Lee et al. [40]
Strengths guarantees data transmission when the groups moves

as a whole, as well as when each member sink moves
inside or outside of the group region. Avoids frequent
location updates from the member sinks to the leader
or the source node.

152

Nata
lie

 Tem
en

e

Limitations the leader selection determination is not explained in
the experimental method. Which criteria are followed
based on the mission or the policy that define the
leader.

Park et al. [61]
Strengths Use of clusters to avoid leader selection. No depen-

dency between the group and a leader which results
in no overhead.

Limitations the access nodes and the cluster heads need to con-
sume more energy for the data dissemination process.
Overhead created from the cluster head selection pro-
cess that uses the flooding method.

Mo et al. [52]
Strengths A virtual line structure is used to storage data, with-

out using the flooding method. The data are collected
from mobile sinks from the line whenever needed.
Creates an energy efficient solution based on the den-
sity of the nodes and the region size.

Limitations not explained how the selection of the leader is made,
on which criteria. Overhead creating the group re-
gion.

Lee et al. [41]
Strengths present three schemes based on the three mobility pat-

terns that exist. Experiments with different number of
mobile sinks in a group and different speed.

Limitations only evaluation of the random mobility pattern. The
leader selection criteria are not defined.

Table B.2: Strengths and Limitations of the Mobile Sinks Group Algorithms

B.3 Mobile Nodes
Table B.3 presents the strengths and limitations of each paper from Section 2.2.2.

Algorithm Remarks

Mei et al. [51]
Strengths Different solutions based on the location and behavior

of the manager robot.
Limitations Fixed distributed solution: motion overhead, central-

ized solution: low scalability,two distributed solu-
tions: high message cost.

Yu et al. [92]
Strengths Use mobile nodes to connect a disconnected network.

Limitations No implementation details.

Sheu et al. [74]
Strengths The mobile robot navigates without a map or location

info, just with the receiving strength signal.
Limitations Navigates at wrong directions and does not consider

the navigation path already created.

Katsuma et al. [30]
Strengths Balances the communication traffic of the near sink

nodes.
Limitations Yhe implementation difficulties of this solution are

not mentioned.

Koutroullos et al. [36]
Strengths Guarantees the delivery of the packets.

Limitations use of extra resources that its cost is not account.

Jayakumari et al. [7]
Strengths Packets are classified based on their priority.

153

Nata
lie

 Tem
en

e

Limitations More energy consumption when adjusting the trans-
mission route. The clusters change at each round, re-
sults in selecting new cluster heads at each round.

Vecchio et al. [82]
Strengths Use of mobile nodes to increase the sensing area. In-

dependent determination of the next position of the
mobile nodes.

Limitations Evaluation only with five mobile nodes in the net-
work.

Toor et al. [79]
Strengths Uses a hybrid combination of clustering, mobility and

multihoping.
Limitations Overhead in creating clusters and subclusters.

Rao et al. [65]
Strengths One-hop transmission from the cluster head to the

mobile node. Less number of retransmissions.
Limitations The cluster head selection criteria is not defined.

Pang et al. [59]
Strengths Mobile nodes are used as sink nodes. The network is

divided based on the number of the mobile nodes.
Limitations Evaluation only with three mobile nodes. Cluster

heads get too much traffic, more possible to get faster
energy exhausted.

Anuradha et al. (2020) [5]
Strengths the energy level determination of failure of the node

itself.
Limitations the periodic alert messages towards the getaway will

get to much traffic in the network.

Bala Subramanian et al. [6]
Strengths Use mobile anchor nodes that can localize the static

nodes. Path planning with grid scan method.
Limitations Evaluation with only two mobile anchor nodes.

Feng et al [13]
Strengths A mobile robot is self localized, it knwos the con-

current mapping, deployment and localization of the
network.

Limitations Evaluation is performed with only three beacon nodes

Mazumdar et al. [50]
Strengths The sojourn points are selected from the base station.

The mobile data collectors use a specific path for data
collection.

Limitations The cluster head selection criteria is not determined.
Cluster head and sojourn point are prone to energy
exhaustion.

Akram et al. (2021) [4]
Strengths simulation and real testbed environment evaluation

performance.
Limitations The nodes in the network have to deal with a lot of

calculations

Papi et al. (2022) [60]
Strengths when the number of holes exceeds the mobile node,

the ones with most priority are selected.
Limitations Evaluation is performed with only ten mobile nodes

for a range of 50 to 500 static nodes.

Wu (2022) [90]
Strengths the recovery technique uses a simple procedure and

formula.
Limitations only one experiment was performed.

Table B.3: Strengths and Limitations of the Mobile Nodes Algorithms

154

Nata
lie

 Tem
en

e

	Introduction
	Motivation
	The Extension of the MobileCC Framework
	Contribution
	Document Structure

	State of the Art
	Review of Existing Surveys on Mobility
	Review of Mobility Algorithms
	Mobile Sink
	Mobile Nodes
	Discussion

	The Node Placement Algorithm
	Dynamic Node Placement Algorithm
	Identification of Defected and ``Defecting'' nodes
	Calculation of Extra Resources
	Calculation of the Position that the Mobile Node Should Move to

	Direct Node Placement Algorithm
	Calculation of the Position of the First Mobile Node
	Creation of a Path Consisting of Mobile Nodes

	The Energy-aware Node Placement Algorithm
	Mobile Node
	Network Usage Function
	Energy Usage Function

	Sink Node
	Analysis

	In-use Node
	The Search Methods

	The Carrier-based Node Placement Algorithm
	Mobile Node
	Carrier
	Stay Approach
	Leave Approach

	Sink Node
	Choose Mobile Node and Carrier Function

	In-use Node

	The Experimental Evaluation
	Evaluation Setup
	Evaluation Metrics
	Evaluation of NPA
	Evaluation Scenarios
	Evaluation Results

	Evaluation of eNPA
	Evaluation Scenarios
	Evaluation Results
	Evaluation of eNPA with Different Energy Models

	Evaluation of cNPA
	Evaluation Scenarios
	Evaluation Results

	Comparison between NPA, eNPA and cNPA

	The Fault Tolerant Node Placement Algorithm
	Mobile Fault Tolerant Framework
	The Fault Tolerant Node Placement Algorithm
	Decentralized Fault Tolerant Node Placement Algorithm
	Centralized Fault Tolerant Node Placement Algorithm

	Experimental Evaluation of FTNPA
	Evaluation Setup
	Evaluation Scenarios
	Evaluation Metrics
	Evaluation Results
	Comparison between DFTNPA and CFTNPA

	Conclusions
	Summary
	Future Work
	Short-term Extensions of the Thesis Work
	Long-term Extensions of the Thesis Work

	Algorithm Flowcharts
	Dynamic MobileCC Flowchart
	Direct MobileCC Algorithm Flowchart
	Energy-aware Node Placement Algorithm Flowchart
	Carrier-based Node Placement Algorithm Flowchart
	Decentralized Fault Tolerant Node Placement Algorithm Flowchart
	Centralized Fault Tolerant Node Placement Algorithm Flowchart
	Dynamic MobileFT Flowchart
	Direct MobileFT Algorithm Flowchart

	Tables of Strengths and Limitations
	Individual Mobile Sink
	Group of Mobile Sinks
	Mobile Nodes

