
DEPARTMENT OF PHYSICS

MULTILEVEL ALGORITHMS IN LATTICE QCD FOR EXASCALE MACHINES

GUSTAVO ALONSO RAMIREZ HIDALGO

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF CYPRUS IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

OCTOBER, 2022

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

©Gustavo Alonso Ramírez Hidalgo, 2022

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Doctoral candidate:

Gustavo Alonso Ramirez Hidalgo

Dissertation Title:

Multilevel algorithms in lattice QCD for exascale machines

The present Doctoral Dissertation was submitted in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy at the Department of Physics at the
University of Cyprus, for the degree of Doctor in Rerum Naturalium at the Depart-
ment of Mathematics and Natural Sciences of the University of Wuppertal, and Doctor
of Philosophy at the Department of Physics and Earth Sciences at the University of
Ferrara, and was approved on the 14th of July 2022 by the members of the Examination
Committee.

Examination Committee:

Prof. Dr. Constantia Alexandrou
University of Cyprus, Supervisor

Prof. Dr. Andreas Frommer
University of Wuppertal, Supervisor

Prof. Dr. Francesco Knechtli
University of Wuppertal

Prof. Dr. Halarambos Panagoupoulos
University of Cyprus

Dr. Halil Saka
University of Cyprus

Prof. Dr. Sebastiano Schifano
University of Ferrara

i

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Declaration of Doctoral Candidate

The present doctoral dissertation was submitted in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy at the University of Cyprus, for the
degree of Doctor in Rerum Naturalium at the University of Wuppertal, and Doctor of
Philosophy at the University of Ferrara. It is a product of original work of my own,
unless otherwise mentioned through references, notes, or any other statements.

Gustavo Alonso Ramirez Hidalgo

ii

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Περίληψη

Η παρούσα διατριβή πραγματεύεται την εφαρμογή και ανάπτυξη μεθόδων πολλαπλών

επιπέδων, για την επίλυση γραμμικών συστημάτων εξισώσεων και υπολογισμού ιχνών

συναρτήσεων πινάκων, στη ρύθμιση δικτυωτού Κβαντική Χρωμοδυναμική (ΚΧΔ). ΄Οταν

τα εξαιρετικά μεγάλα και κακώς διαμορφωμένος γραμμικά συστήματα επιλύονται μέσω

μεθόδων πολλαπλών δικτύων, η επεκτασιμότητα της υλοποίησης συνήθως διακυβεύεται

καθώς μετακινούμαστε σε μεγάλο αριθμό κόμβων υπολογιστών. Η πρώτη συμβολή αυτής

της διατριβής είναι στη μείωση αυτών των ζητημάτων επεκτασιμότητας στο ΔΔ-αΑΜΓ
(μια βιβλιοθήκη για την επίλυση γραμμικών συστημάτων σε δικτυωτά ΚΧΔ). Αυτό το

κάνουμε ενσωματώνοντας τέσσερις μεθόδους στο πιο χονδροειδές επίπεδο: ανακύκλωση,

πολυωνυμική προετοιμασία, προετοιμασία με διαγώνιο μπλοκ και διοχέτευση. Με αυτόν

τον τρόπο, έχουμε αξιοσημείωτα αλγοριθμικά και υπολογιστικά κέρδη στην περίπτωση

Ωιλσον και είμαστε επίσης σε θέση να απαλλαγούμε από μια κάπως τεχνητή παράμετρο

στο πιο χονδροειδές επίπεδο στην περίπτωση συνεστραμμένης μάζας. Στη συνέχεια,

στρεφόμαστε σε περισσότερες υπολογιστικές πτυχές και, ως δεύτερη συνεισφορά από

την εργασία μας, επεκτείνουμε τη βιβλιοθήκη ΔΔ-αΑΜΓ για να γίνει μια υβριδική δι-
αλύτης ΓΠΥ+ΞΠΥ, μεταφέροντας ορισμένα μέρη του κώδικα μέσω ΞΥΔΑ Ξ . ΄Ετσι,

αντιλαμβανόμαστε τη σημασία της ομαλότερης αποσύνθεσης με βάση τον τομέα κατά την

εκτέλεση σε ΓΠΥ, καθώς και της χρήσης μιας (πιο) επιθετικής χονδροειδοποίησης στην

ιεραρχία πολλαπλών δικτύων, κατά την εκτέλεση με τον υβριδικό μας επιλύτη. Τέλος,

συζητάμε την ανάπτυξη και τη δοκιμή μιας νέας μεθόδου για τον υπολογισμό των ιχνών

των συναρτήσεων των πινάκων, tr(f(A)). Αυτή η νέα μέθοδος βασίζεται στο πολυεπίπεδο
Μοντε Ξαρλο, σε συνδυασμό με μια ιεραρχία πολλαπλών δικτύων. Δοκιμάσαμε τη μέθοδο

στην αντίστροφη συνάρτηση (δηλαδή f(A) = A−1), για τρεις πίνακες: Σξηωινγερ, Ωιλ-
σον και στριμμένη μάζα. Βλέπουμε αξιοσημείωτα αποτελέσματα στο Σξηωινγερ, και πολύ

καλά και πολλά υποσχόμενα αποτελέσματα για τον Ωιλσον και τη στριφτή μάζα. Αυτά

τα αποτελέσματα ανοίγουν νέους δρόμους έρευνας, όπου η πολυεπίπεδη μέθοδος Μοντε

Ξαρλο πολλαπλών δικτύων μπορεί να χρησιμοποιηθεί σε συνδυασμό με άλλες μεθόδους

όπως ο αποπληθωρισμός και η ιεραρχική ανίχνευση.

iii

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Abstract

This thesis deals with the implementation and development of multilevel methods, for
solving linear systems of equations and computing traces of functions of matrices, in
the lattice Quantum Chromodynamics (QCD) setting. When extremely large and ill-
conditioned linear systems are being solved via multigrid methods, the scalability of
the implementation is typically compromised as we move to a large number of compute
nodes. The first contribution of this thesis is on diminishing these scalability issues
in DD-αAMG (a library for solving linear systems in lattice QCD). We do this by in-
tegrating four methods into the coarsest level: recycling, polynomial preconditioning,
block-diagonal preconditioning and pipelining. In doing so, we get remarkable algo-
rithmic and computational gains in the Wilson case, and we are also able to get rid
of a somewhat artificial parameter at the coarsest level in the twisted mass case. We
then turn to more computational aspects and, as a second contribution from our work,
we extend the DD-αAMG library to become a hybrid GPU+CPU solver, by porting
some parts of the code via CUDA C. In doing so, we realize the importance of having
a smoother based on domain decomposition when running on GPUs, as well as of us-
ing an (more) aggressive coarsening in the multigrid hierarchy, when running with our
hybrid solver. Finally, we discuss the development and testing of a new method for the
computation of traces of functions of matrices, tr(f(A)). This new method is based on
multilevel Monte Carlo, in combination with a multigrid hierarchy. We have tested the
method on the inverse (i.e. f(A) = A−1), for three matrices: Schwinger, Wilson and
twisted mass. We see remarkable results in Schwinger, and very good and promising
results for Wilson and twisted mass. These results open new paths of research, where
the multigrid multilevel Monte Carlo method can be used in combination with other
methods such as deflation and hierarchical probing.

iv

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Acknowledgments

This PhD would not have been successfully completed without the contribution, in
different ways, of many people.

I would like to thank first Fabio Schifano, Lele Tripiccione, Dina Alexandrou and
Andreas Frommer, my (co-)supervisors. To Lele, who always had a great disposition
whenever we had a question of any kind, and who is unfortunately not with us anymore,
and to Fabio, for stepping in afterwards. To Dina, for her continuous help througout
the PhD, and her advice, in particular physics-wise; thank you also for playing such
a great role in making STIMULATE possible. And to Andreas, for welcoming me
to his group, for creating such a nice working environment in it, for great advice
throughout the different research projects, and for always being in good spirits, be it
during coffee breaks or our (interesting and engaging) meetings. I’m also grateful to
many of my colleagues, for many interesting conversations, nice coffee breaks, (recently)
fun bouldering sessions, and the ocassional technical/conceptual help; in particular,
thanks to Matthias Rottmann and Artur Strebel who were of great help especially at the
beginning of my PhD, and furthermore to Daniela Ebeling, cuya labor administrativa
ha sido invaluable en nuestro grupo y durante mis primeros meses en Wuppertal, y
quien a través de su amistad me ha hecho sentir a gusto en el grupo desde el inicio,
sabiendo que siempre que voy a su oficina hay tiempo para una conversación interesante,
unas risas y un buen té. I would also like to thank many close friends: for providing
good advice, great conversations, and a nice and relaxing time overall; this has been
fundamental in distracting me from the (sometimes) absorbing life that a PhD can
represent.

And last but not least, I would like to thank my closest family. A papi y mami:
todavía no entiendo cómo lograron salir adelante ante semejantes adversidades, pero
sin ese esfuerzo y el ejemplo de trabajo duro, nada de esto hubiera sido posible. Gracias,
también, por enseñarme a pensar antes de actuar, así como apreciar la no-obviedad
de las cosas. To my siblings, Arleth, Maricela, Kike and Fabricio: for teaching me so
many lessons, sometimes without you even realizing. And of course, to Fleur: thank
you for motivating me to be more careful, less cranky, more active, and just happier.
The chances for us to meet were astronomically small, if we think about it, yet here
we are. Can’t wait to experience what’s coming!

———

I thank the CLS and ETMC collaborations for providing me with configurations for
the numerical tests, and in particular to Jacob Finkenrath for personally providing the
twisted mass configurations and for multiple interesting conversations on various topics
related to my research.

v

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 765048.

All numerical results shown in this thesis were computed at the Jülich Supercomputing
Centre (JSC) using the supercomputer JUWELS, and in two of the machines in our
group: aicomp03 and aicomp04.

vi

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Contents

Validation i

Declaration ii

Περίληψη iii

Abstract iv

Acknowledgments v

Contents vii

List of Figures x

List of Tables xiii

1 Introduction 1

2 Quantum chromodynamics on the lattice 4

2.1 The standard model and quantum chromodynamics 4

2.2 Path integral and hybrid Monte Carlo 6

2.3 Lattice discretizations in quantum chromodynamics 8

2.4 Disconnected diagrams . 15

2.5 Other theories: the Schwinger model 17

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method 19

3.1 Numerical linear algebra fundamentals 19

3.1.1 Eigenvalues, singular values and conditioning 19

vii

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

3.1.2 Iterative methods for sparse linear systems of equations 22

3.2 Multigrid methods . 29

3.2.1 Motivation . 30

3.2.2 Two levels and multilevel multigrid 32

3.3 Algebraic multigrid . 33

3.3.1 Algebraic multigrid in lattice QCD 34

3.3.2 Aggregation-based prolongation and restriction 37

3.3.3 Petrov-Galerkin approach . 38

3.3.4 Domain decomposition aggregation-based αdaptive algebraic multi-
grid method . 40

3.3.5 DD-αAMG for twisted mass fermions 43

4 Coarsest level improvements 45

4.1 Krylov based improvements . 46

4.2 Numerical tests: Krylov based . 55

4.2.1 The clover-improved Wilson operator 55

4.2.2 The twisted mass operator . 61

4.3 LU based improvements . 63

4.3.1 Direct solves via MUMPS . 63

4.4 Numerical tests: LU based . 64

4.5 Outlook on coarsets-level computations 66

5 Hybrid GPU/CPU DD-αAMG 68

5.1 SAP in DD-αAMG . 69

5.2 Schwarz Alternating Procedure on GPUs 69

5.2.1 Domain Decomposition: GPUs vs CPUs 69

5.2.2 SAP in DD-αAMG on GPUs: implementation details 72

5.3 Numerical tests . 76

5.3.1 SAP on GPUs . 76

5.3.2 Hybrid GPU+CPU DD-αAMG solver 77

5.4 Outlook on GPU implementations . 80

6 Multigrid Multilevel Monte Carlo 81

6.1 Stochastic trace estimation and multilevel Monte Carlo 82

6.1.1 Multilevel Monte-Carlo . 83

viii

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

6.1.2 Stochastic estimation of the trace of a matrix 84

6.1.3 Multilevel Monte-Carlo for the trace of the inverse 87

6.2 Numerical tests . 92

6.2.1 Schwinger model . 92

6.2.2 LQCD I: clover-improved Wilson-Dirac operator 95

6.2.3 LQCD II: twisted mass operator 97

6.3 Outlook on multigrid multilevel Monte Carlo 98

Conclusions 100

Bibliography 101

ix

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

List of Figures

2.1 Our convention for gauge links on the lattice. Image taken from [1].
A more common convention is the one where the gauge links go in the
opposite direcion [2]. 11

2.2 Left panel: spectrum of a 44 Wilson-Dirac operator with m0 = 0 and
csw = 0. Right panel: spectrum of a 44 clover improved Wilson-Dirac
operator with m0 = 0 and csw = 1. Image taken from [1]. 14

2.3 Left panel: connected pieces of a meson correlator. Rigt panel: discon-
nected pieces of a meson correlator. Image taken from [2]. 16

3.1 Error e(k) of the Gauss-Seidel method when applied to the Laplace 2D
problem with random initial guess x(0) and k = 1 iterations for the left
plot and k = 20 iterations for the right plot. 32

3.2 Linear interpolation of a vector on the coarse grid to the fine grid in a
one-dimensional lattice. Image taken from [3]. 34

3.3 Construction of P from the decomposition, based on local coherence, of
a few vectors from the near kernel of the Dirac operator. Image taken
from [1]. 38

3.4 Comparing computational cost for solving linear systems with a con-
figuration from a BMW collaboration configuration1 using DD-αAMG
and a Krylov subspace method. The left plot reports on timings for
the solve only, whereas the right plot includes the multigrid setup time.
Both plots were generated on the JUROPA high performance computer
from the Jülich Supercomputing Centre. 43

x

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

4.1 Tuning of the parameters k and d . The color of each square in the
heatmap from the left represents the total execution time of the whole
DD-αAMG solver, while the right corresponds to the time spent at the
coarsest level. The configuration was for a lattice of size 128×643; we
used 32 nodes with 48 OpenMP threads, each. All these computations
were done for m0 = −0.355937 (i.e. the most ill-conditioned case in
fig. 4.2). The darkest boxes in the heatmap on the left all represent
times larger than 200 seconds for d = 0 and around 92 seconds for
(k, d) = (0, 4). The numbers in the boxes on the right indicate the aver-
age number of iterations at the coarsest level during the whole multigrid
solve. 57

4.2 Total execution time of the solve phase in DD-αAMG as the system
becomes more ill-conditioned (i.e. as m0 becomes more negative). The
vertical dashed line closest to -0.354 represents the value with which
the Markov chain was generated and the vertical dashed line closest to
-0.356 represents mcrit. The right plot zooms into the region where the
old version of the solver does not perform well. 59

4.3 Strong scaling tests on Wilson fermions for the new coarsest-level ad-
ditions. The solves were applied over a 128×643 lattice. Old means
the previous version of DD-αAMG without the coarsest-level improve-
ments introduced in this chapter, and the vertical axis represents the
whole solve time. The dashed lines indicate how both cases would be-
have in case of perfect scaling. All these computations were done for
m0 = −0.355937 (i.e. the most ill-conditioned case in fig. 4.2). 60

4.4 Strong scaling tests on Wilson fermions for the new coarsest-level ad-
ditions. The solves were applied over a 128×643 lattice. Old means
the previous version of DD-αAMG without the coarsest-level improve-
ments discussed in this chapter, and the vertical axis represents the
whole solve time. The dashed lines indicate how both cases would be-
have in case of perfect scaling. All these computations were done for
m0 = −0.35371847789. 61

4.5 Strong scaling tests on twisted mass fermions for the new coarsest-level
additions. Left: µc = 8.0, comparing the previous version of DD-αAMG
(old) with the one including coarsest-level improvements (new), and total
representing the whole solve time. Right: strong scaling plus running
over different values of µc, with only total (and not coarsest) times plotted. 62

5.1 One step of DD-αAMG’s 3-level multigrid (MG). 69

5.2 Illustration of how we mapped the domain-decomposition blocks to be
computed to the CUDA threads used for such computations. Note that
M ≥ N i.e. {Bi} is a subset of {DDi}. The illustration here is for the
case when our domain-decomposition block size is 44 and the CUDA
block size is 96 with 6 CUDA threads per lattice site. 74

5.3 Four hopping terms in 2D. 75

5.4 Left: CPU coarsening. Right: GPU coarsening. 78

xi

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

5.5 Strong scaling form0 = −0.35371847789 of the old version of DD-αAMG
(before the GPU improvements) and the new (running on GPUs) ver-
sion. The solid lines represent total execution time of a whole solve,
and the dashed lines the time spent on coarser levels. The dotted line
exemplifies how perfect scaling would look like in the hybrid solver. For
CPU executions, 1 MPI process corresponds to 1 node, and for GPU
executions we associate 4 MPI processes to each node with 1 GPU per
MPI process. 79

6.1 Multilevel Monte-Carlo and deflated Hutchinson for the Schwinger ma-
trix: no of stochastic estimates on each level difference eq. 6.21 and total
cost for different masses m. 95

6.2 Multilevel Monte-Carlo and “plain" Hutchinson for the clover-improved
Wilson-Dirac matrix: no of stochastic estimates on each level difference
eq. 6.21 and total execution time for different masses m. Contrary to
fig. 6.1 where we have used connecting lines in the plots, we have fitted
here the data with exponentials. For ℓ = 1, the values on the left plot
are around 40 and on the right plot around 2000.0. The corresponding
(approximate) values for ℓ = 2 are 90 and 1000.0. 97

xii

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

List of Tables

2.1 The twelve fundamental fermions divided into quarks and leptons, with
their corresponding charge and mass. Table taken from [4]. 5

2.2 The forces experienced by different fundamental fermions. Table taken
from [4]. 5

2.3 Exchange bosons for the four forces in nature. The relative strengths
are approximate indicative values for two fundamental particles at a
distance of 1 fm = 10−15 m (roughly the radius of a proton). Table
taken from [4]. 6

2.4 Quantum numbers of the most commonly used meson interpolators. Ta-
ble taken from [2]. 16

4.1 Effect of the block diagonal preconditioner (BDP) on coarsest-level solves
in DD-αAMG, where we have the BDP as the only preconditioner of
GMRES. The second and third columns are average number of itera-
tions at the coarsest level in the solve phase. We have used configuration
D450r010n1 here with different values of m0. 56

4.2 Base parameters in our DD-αAMG solves. 56

4.3 Effect of pipelining on the whole DD-αAMG solver. We have used con-
figuration D450r010n1 here with m0 = −0.355937. 58

4.4 Execution times for parts of the coarse grid solves with and without
pipelining. Times in last three columns are in seconds. 58

4.5 Number of iterations of the outermost FGMRES in DD-αAMG as m0
moves down to more ill-conditioned cases. 59

4.6 Base parameters in our DD-αAMG solves, with MUMPS. 65

4.7 Execution times for the comparison of MUMPS versus no MUMPS in
coarsest-level solves in a twisted mass gauge configuration with a lattice
size of 128× 643. The times are in seconds. 65

xiii

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

5.1 Two types of speedup for the smoother on GPUs, one taking into account
only computations and the second one (last column) including times for
transferring data from the CPU to the GPU and viceversa. The first
column indicates the size of the local lattice. NVIDIA Quadro P6000
GPUs were used. 76

5.2 Time per SAP call versus domain decomposition block size, on a lat-
tice of size 64×323 with two processes and one GPU per MPI process.
NVIDIA Quadro P6000 were used. 77

5.3 More detailed timings of some multigrid components in DD-αAMG, cor-
responding to the run with 64 processes from fig. 5.5. Times here are
in seconds. Coarse grid time represents in this case the total time spent
at ℓ = 2 and ℓ = 3 combined. The columns labeled as CPU and GPU1
correspond to the data displayed in fig. 5.5. 78

6.1 Parameters and quantities for the numerical experiments with the Schwinger
operator. 94

6.2 Parameters in DD-αAMG for multilevel Monte Carlo. 96

6.3 Base parameters in our DD-αAMG solves, for multilevel Monte Carlo
with MUMPS. 98

6.4 Results for the application of multigrid multilevel Monte Carlo in the
twisted mass case. For multilevel Monte Carlo, ℓ = 1, ℓ = 2 and ℓ = 3
represent difference levels, wherereas ℓ = 4 is the coarsest level. For the
Hutchinson method there are no difference levels, hence ℓ = 1 is the only
option. 99

xiv

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Chapter 1
Introduction

Quantum Chromodynamics (QCD) [5, 6] is the theory describing the interaction of
quarks and gluons (among themselves and among each other). As confinement does
not allow isolated quarks in nature, analytic calculations in QCD, when seen the need
to be matched with experiments, consist of the description of hadrons (i.e. objects
somehow composed of quarks, and allowed to be in isolation due to no confinement re-
strictions). Analytic calculations in physics oftentimes rely on perturbative expansions
of the theory under study. Such mathematical tools are not applicable when studying
QCD in some particular energetic regimes. In such cases, alternative methods have to
be employed, one of them being the use of numerical and computational methods.

Lattice QCD is the discretization of the continuous QCD theory on a four dimensional
lattice, with the use of Wick rotations enabling the possibility of simulating the theory
on a discretized Euclidean space-time [7]. Many challenges emerge, from the point of
view of applied mathematics and high performance computing, when simulating QCD
on the lattice, and it is one of the world’s most demanding computational problems
[8, 9]. The success of lattice QCD outweighs, by far, its difficulty, leveraging results in
very good agreement with experiments, see e.g. [10].

As described in chapter 2, simulating the theory on the lattice implies the frequent solu-
tion of linear systems of equations. When trying to match the discretized QCD theory
with the one in the continuum, the parameters of the theory on the lattice (e.g. quark
masses and lattice volume) change, and these changes imply more ill-conditioned linear
systems to be solved, which in the physics community is termed as “critical slowing
down". Not only do the systems become more ill-conditioned, but also the associated
matrices of coefficients increase in size. These two issues force an appropriate mixture
of methods coming from numerical linear algebra and high performance computing.

To cope with those highly ill-conditioned and large systems of equations, the lattice
QCD community has traditionally used methods like odd-even preconditioning [11, 12],
deflation [13] or domain decomposition [14, 15], and although they all bring improve-
ments over traditional Krylov methods, they still suffer from critical slowing down.
Multigrid methods represent an attractive alternative for the solves in lattice QCD,
due to their potential (e.g., for elliptic PDEs) of convergence independently of the con-
ditioning of the linear system. Due to the random nature of the matrices appearing in
lattice QCD simulations, the use of geometric multigrid methods (i.e. methods based
on the underlying PDE only) was elusive for many years [16–19].

1

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Multigrid (or multigrid-related) methods are currently being used in the lattice QCD
community [13, 20–22], with multiple libraries implementing them [23–25]. The new
developments and implementations that we explore in this thesis revolve around the
DD-αAMG method, currently available for the clover-improved Wilson [26–28] and
twisted mass [29–31] lattice discretizations.

When extremely large and ill-conditioned linear systems are being solved via multigrid
methods, the scalability of the implementation is typically compromised as we move
to a large number of compute nodes. When using (scalable) domain decomposition
smoothers, as in DD-αAMG, this poor scalability is then caused by the (typically)
bad scaling properties of the coarsest level in the multigrid hierarchy. Our first con-
tribution here is on diminishing these scalability issues in DD-αAMG. We do this by
integrating recycling methods [32] with a polynomial preconditioner [33–35]; we find
that this combination has a great algorithmic performance for the problems at hand.
Furthermore, we exploit locality by including a block-diagonal preconditioner as well,
based on the idea of block Jacobi [36]. Finally, we explore communication hiding
via pipelining [37]. All these methods, when combined, leverage a complex and pow-
erful coarsest-level solver, which in the case of Wilson fermions gives us remarkable
algorithmic and computational gains. When applied to twisted mass fermions, these
Krylov-based methods (plus the block-diagonal preconditioner) allow us to get rid of an
“artificially"-introduced coarsest-level parameter. We further broaden the algorithmic
possibilities at the last level in DD-αAMG, by using an LU-based approximate solver
as a preconditioner to restarted GMRES. Those approximate direct solves, done via
the MUMPS library [38, 39], allow us to, in the twisted mass case, not only get rid
of the same “artificial" parameter at the coarsest level, but they also give us improved
algorithmic and computational performances, on a single node, with respect to all the
other methods explored here.

Our second contribution deals with GPU programming. We extend the DD-αAMG
library to become a hybrid GPU+CPU solver, by porting some parts of the code via
CUDA C [40]. In doing so, we realize the importance of having a smoother based
on domain decomposition, and furthermore we explore the computational behaviour
of the smoother when having different sizes for the domain decomposition blocks. We
conclude that smaller blocks are better in terms of computational performance. We also
notice the importance of using (more) aggressive coarsening in the multigrid hierarchy,
when running with our hybrid solver. The resulting implementation currently performs
with an execution time similar to the old CPU version, but with the great advantage
that further GPU improvements at the finest level can render a hybrid solver largely
outperforming the CPU version.

Our third and last contribution is on the development and testing of a new method
for the computation of traces of functions of matrices, tr(f(A)). This new method
is based on multilevel Monte Carlo [41], in combination with a multigrid hierarchy.
Although completely general in terms of the function f and the matrix A, the method
is tested here on the inverse2 (i.e. f(A) = A−1), for three matrices: Schwinger, Wilson
and twisted mass. We show that the method works in all three cases, with both
algorithmic and computational gains in all, with remarkable results in Schwinger, and
very good and promising results for Wilson and twisted mass. These results open new
paths of research, where our multigrid multilevel Monte Carlo method can be used in
combination with other methods such as deflation [42] and hierarchical probing [43].

2We focus on the inverse here, due to its importance in lattice QCD.

2

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

The results on multilevel Monte Carlo applied to the Schwinger model, and presented
in chapter 6 of this thesis, have been published in [44]. The results on Krylov-based
coarsest-level improvements in chapter 4 are part of one of our papers currently under
preparation. The LU-based and the application of agglomeration, both part of chapter
4, will be part of a paper soon to be prepared, within the context of Henning Leemhuis’
PhD research. The code for the hybrid GPU+CPU solver discused in chapter 5 is
already available here, and after porting the whole finest level to CUDA C we will
prepare a paper to publish the corresponding results. Finally, the multilevel Monte
Carlo results on its application to lattice QCD (i.e. for both Wilson and twisted mass
fermions), in chapter 6, will be part of a paper soon to be prepared, and within the
context of Jose Jiménez’s PhD research.

The remaining of this thesis is structured as follows: we give a brief overview of lattice
QCD, in chapter 2, with emphasis on the most important concepts in terms of where
the computation of linear systems of equations and tr(f(A)) appear. We then go and
describe the whole DD-αAMG method in chapter 3, skipping some very specific and
technical details along the way. In chapter 4, we describe the algorithmic nature of the
new coarsest-level solver in DD-αAMG, both in the Krylov- and LU-based cases, with
extensive numerical tests for both. Our new hybrid GPU+CPU DD-αAMG solver is
presented in chapter 5, where we discuss technical details of its implementation, and
extensive numerical tests showing the good performance and further potential of the
solver. Finally, chapter 6 introduces our new method for the computation of tr(f(A))
based on multilevel Monte Carlo, with its application to Schwinger, Wilson and twisted
mass matrices.

3

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

https://github.com/Gustavroot/DDalphaAMG

Chapter 2
Quantum chromodynamics on the lattice

Oftentimes, there is a deep link between new algorithmic developments in applied
mathematics, and the conceptual grounds of the physical systems they lay on. Under-
standing this connection is usually of utmost importance, for gaining a better intuition
not only of the restrictions imposed on the algorithms, but also of the expected be-
haviour from them. This is particularly important in lattice quantum chromodynamics.
Having a clear view of those conceptual grounds is useful, also, for a full understanding
of the motivation behind the implementations and new developments. In this chap-
ter we set up and define all the physics background behind the methods discussed in
subsequent chapters.

We start this chapter by stating how quantum chromodynamics, the theory describing
the strong force, fits in the standard model of theoretical physics. We then briefly
describe, in sect. 2.2, the role that path integrals play when describing quantum chro-
modynamics on a lattice and we shortly outline the stochastic method employed to
simulate lattice quantum chromodynamics i.e. hybrid Monte Carlo. The two lattice
discretizations of relevance in this thesis, Wilson and twisted mass, are presented and
briefly discussed in sect. 2.3. Finally, we shortly introduce two topics which will be of
importance when we turn to the discussion of traces of functions of matrices in chapt. 6:
disconnected diagrams (sect. 2.4) and the Schwinger model (sect. 2.5).

Sect. 2.1 is largely based on [4], sects. 2.2 and 2.4 on [2, 45], sect. 2.3 on [1, 30], and
sect. 2.5 on [46].

2.1 The standard model and quantum chromodynamics

Three out of the four fundamental forces, electromagnetism, weak interation and the
strong force, are currently described in a single theory known as the Standard Model of
Particle Physics [4]. Via mostly group theory and quantum field theory, the standard
model describes how different combinations of particles interact and behave under those
interactions. To this end, after decades of theoretical developments and experimental
advances and with the help of particle accelerators, a small set of particles is currently
considered as “fundamental", and we present those particles, their charges and masses
in a tabulated manner in tab. 2.1.

4

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Generation Leptons Quarks
Particle Q mass/GeV Particle Q mass/GeV

First electron (e−) -1 0.0005 down (d) -1/3 0.003
neutrino (νe) 0 < 10−9 up (u) +1/3 0.005

Second muon (µ−) -1 0.106 strage (s) -1/3 0.1
neutrino (νµ) 0 < 10−9 charm (c) +2/3 1.3

Third tau (τ−) -1 1.78 bottom (b) -1/3 4.5
neutrino (ντ) 0 < 10−9 top (t) +2/3 174

Table 2.1: The twelve fundamental fermions divided into quarks and leptons,
with their corresponding charge and mass. Table taken from [4].

But, not all fermions “feel" the three forces described by the standard model. To
understand this better, we can look at the table in fig. 2.2: the quarks, for example,
are the only fermions who feel the strong force.

strong electromagnetic weak
Quarks down,up d,u s,c b,t ✓ ✓ ✓
Leptons charged e− µ− τ− ✓ ✓

neutrinos νe νµ ντ ✓

Table 2.2: The forces experienced by different fundamental fermions. Table taken
from [4].

In its current form, the standard model describes the electromagnetic and weak forces
in a single combined model known as electroweak theory. This allows understanding
the electromagnetic and weak forces as a single force, which can be broken under certain
conditions to split into the two separate constituent forces. On the other hand, the
strong force, although not being currently understood as a single force in combination
with the electroweak one, is part of the standard model and as such shares many
properties with electromagnetism and the weak force.

The common tools that describe these three forces are symmetries and quantum field
theory: the theories that describe each of the forces are all quantum field theories, each
of them with a different group associated to it. The electroweak force is described by
the local SU(2)×U(1) group, which undergoes spontaneous symmetry breaking to give
masses to certain particles in the standard model [47]. The strong force is described
by the local SU(3) group, there is no breaking in this case and the resulting theory is
known as Quantum Chromodynamics (QCD).

With the number of generators of the group associated to each force, a corresponding
number of exchange bosons (also known as gauge bosons) come into play for each of
those forces [48]. For example, the group U(1) which describes electromagnetism has
a single degree of freedom, hence there is only a single exchange boson for that force
i.e. the photon. The table in fig. 2.3 lists the gauge bosons corresponding to each of
the four forces in nature, some of their properties, and an approximate value of the
strength of the interaction in each of the forces.

Usually, in physics, Taylor series (or other asymptotic expansions) can be used to e.g.
simplify certain analytic calculations, that are otherwise very difficult to solve or simply
not solvable at all. This is the case in the standard model, where series expansions are

5

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Force Strength Boson Spin Mass/GeV
Strong 1 Gluon g 1 0

Electromagnetism 10−3 Photon γ 1 0
Weak 10−8 W boson W± 1 80.4

Z boson Z 1 91.2
Gravity 10−37 Graviton? G 2 0

Table 2.3: Exchange bosons for the four forces in nature. The relative strengths
are approximate indicative values for two fundamental particles at a distance of
1 fm = 10−15 m (roughly the radius of a proton). Table taken from [4].

used throughout the whole theory. There are some situations, or more specifically some
energetic regimes, in which series expansions are not useful in the standard model, for
example when studying QCD in some low-energy interactions. An alternative to those
tools is to keep the model as a whole, no analytic approximations, and treat it via
computational methods.

The history of QCD combines a plethora of different areas involving physics and mathe-
matics: representations in group theory, statistical mechanics, renormalization of non-
Abelian group theories, experimental scattering, and many others, all of them con-
verging in experimental settings taking place in the single largest and most complex
machine built in human history: the Large Hadron Collider at Conseil Européen pour
la Recherche Nucléaire (CERN). We skip here a historical overview of QCD3 and rather
state some properties of QCD from a theoretical point of view. A full understanding
of QCD implies a good understanding of at least modern quantum mechanics [50, 51],
special relativity [52] and quantum field theory [53, 54]. We describe QCD here from
an applied mathematics point of view, where we state the necessary concepts in order
to describe how QCD can be simulated on computers.

2.2 Path integral and hybrid Monte Carlo

Statistical mechanics, which studies macroscopic phenomena in nature solely from the
application of statistical methods and probability theory to large assemblies of micro-
scopic objects [55], repeatedly makes use of probability distribution functions (p.d.f.s)
and averages and variances in order to study and characterize a physical system. This
is mainly done via the partition function which is, in probability terms, the normaliza-
tion factor of the p.d.f. describing that system. The partition function is not the way
to understand the full dynamics of the system, but rather it gives access to macroscopic
features of it known as observables.

The concept of partition function permeates many areas of study in physics. In partic-
ular, it is fundamentally important in quantum mechanics and furthermore in quantum
field theory, where it is realized as a path integral [56, 57]. The path integral in quantum
field theory, just as in statistical mechanics, allows for the extraction of observables
without having to work out many very small and complicated technical mathematical
details of the theory.

3Which can be found for example in [49].

6

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

We skip here all the mathematical and conceptual developments necessary to under-
stand how the path integral emerges in QCD, and we simply present it as a tool that is
necessary to obtain observables in the theory. Furthermore, as was mentioned before,
for some energetic regimes QCD has to be simulated on computers in order to access
values for those observables. Therefore, we restrict ourselves here to the path integral
for QCD on the lattice.

Euclidean correlators, which are very important quantities in lattice QCD used e.g.
in the extraction of masses of bound states (for example, the proton mass), can be
expressed by means of path integrals in the following way [2]:

⟨O2(t)O1(0)⟩ = 1
Z

∫
D[ψ, ψ̄]D[U]e−SF [ψ,ψ̄,U]−SG[U]O2[ψ, ψ̄, U]O1[ψ, ψ̄, U] (2.1)

where the partition function is given by

Z = 1
Z

∫
D[ψ, ψ̄]D[U]e−SF [ψ,ψ̄,U]−SG[U]. (2.2)

In eqs. 2.1 and 2.2, ψ embodies the fermionic information4, and U is an indirect
representation of the gauge bosons i.e. gluons, and the latter are known as gauge
links. The gluonic action SG[U] contains information relevant to fully understand the
dynamics of the interaction of gluons with each other. The fermionic action SF [ψ, ψ̄, U],
on the other hand, gives access to the dynamics of the interaction of fermions via (and
with) gluons.

On the lattice, the measures in eqs. 2.1 and 2.2 are products of measures of all quark
field components and products of measures of all gauge link variables:

D[ψ, ψ̄] =
∏
n∈Λ

∏
f,α,c

dψ(f)(n)α,cdψ̄(f)(n)α,c, D[U] =
∏
n∈Λ

4∏
µ=1

dUµ(n). (2.3)

The gauge link Uµ(n) in eq. 2.3 is an object connecting the lattice site n to the lattice
site n+ µ̂.

As can be seen from the measures in eq. 2.3, the integration in eq. 2.1 consists of a
very-high-dimensional integral, an integration for each ψ(f)(n)α,c, ψ̄(f)(n)α,c and Uµ(n),
where n runs over all the sites in the lattice. Using a deterministic integration method
such as e.g. Simpson’s rule [58] to compute eq. 2.1 is not a good option as the error
usually grows nestedly with the dimensionality of the integral. Monte Carlo methods,
in particular Markov Chain Monte Carlo (MCMC), are a much better alternative to
solve such high-dimensional integrals.

The MCMC method of choice in current lattice QCD computations is hybrid Monte
Carlo (HMC) [59]. This method is also known as Hamiltonian Monte Carlo. This
algorithm takes, in the particular case of lattice QCD, the total action S = SF + SG
and defines it as proportional to a classical Hamiltonian. In order to fully describe the
dynamics of a classical system characterized by that Hamiltonian and to use Hamil-
tonian mechanics [60], artificial auxiliary momenta Pµ(n) are introduced as conjugate

4The fields ψ, following Fermi statistics and the Pauli exclusion principle, are Grassmannian fields.
The study of Grassmannian variables is beyond the scope of this thesis (see for example [53]).

7

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

(in the Hamiltonian-mechanics sense) to the gauge links Uµ(n)5. HMC generates a set
of configurations using Markov chains where each configuration is an “evolution" (in
the Molecular Dynamics (MD) sense) of the previous one. We give an outline of the
fundamental ideas of the HMC algorithm next [61–63]:

1. Choose an initial configuration U0 and set i = 1.

2. Generate random momentum fields P conjugate to Ui−1.

3. Evolve the configuration Ui−1 via MD to obtain a new candidate U ′.

4. Accept Ui = U ′ with some probability Pacc, otherwise set Ui = Ui−1, i ← i + 1
and go to step 2.

5. If Ui is thermalized, save it.

6. Go to step 2 until enough configurations are generated.

For the initial configuration, two common approaches are a cold start where all gauge
links are set to the identity, or a hot start, where all gauge links are random elements
of the SU(3) group. In step 4 the acceptance rate Pacc of the new configuration is
determined using the Metropolis-Hastings algorithm [64, 65], which allows us to sample
from the p.d.f. e−SF−SG after thermalization. The term thermalized in step 5 can be
interpreted as a converged configuration i.e. given enough steps of the HMC algorithm,
the configuration space reaches an equilibrium state in which the distribution of the
gauge links follows the prescribed equilibrium distribution, such that new physical
configurations can be generated by going back to step 2 and repeat the procedure.
Thermalization is important to ensure that physically more likely configurations are
also more likely to be produced by the HMC algorithm.

2.3 Lattice discretizations in quantum chromodynamics

A first step into computing the integral in eq. 2.1 is to choose an appropriate numerical
integration scheme, for which the lattice QCD community has chosen HMC. A second
step consists of fully describing the lattice on which the computations will take place
and writing a discretized form of the total action S = SF + SG on it.

In simulating QCD on the lattice via HMC, an important step that emerges is the need
to solve a partial differential equation (PDE) on the lattice. This PDE corresponds to
the Dirac equation [53, 66] for fermionic fields interacting via (and with) the gluonic
fields. In the continuum, the operator D characterizing this PDE, also known as the
covariant derivative of the theory, can be written as

D =
3∑

µ=0
γµ ⊗ (∂µ + Aµ) (2.4)

5Another step is necessary at this point: the introduction of pseudofermions. This allows us to move
from a Grassmannian integral, which is not a good representation for numerical simulations, to
integrals of complex-valued functions. As understanding HMC deeply is not necessary to follow
the rest of this thesis, the use of pseudofermions is beyond the scope of this thesis and can be
studied further e.g. in [2].

8

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

where ∂µ = ∂/∂xµ and Aµ(x) is the field describing the gauge bosons (at the spacetime
point x). The anti-Hermitian traceless matrices Aµ(x) are elements of su(3), the Lie
algebra spanning SU(3). The Dirac matrices i.e. γµ ∈ C4×4 are Hermitian and unitary
matrices which generate the Clifford algebra C0,4(R) [67].

Definition 2.1.
A set of Hermitian, unitary matrices {γµ ∈ C4×4 : µ = 0, 1, 2, 3} is called a set of
generators of the Clifford algebra C0,4(R), iff

γµγν + γνγµ =

⎧⎨⎩2 · I4, µ = ν

1, µ ̸= ν
µ, ν = 0, 1, 2, 3. (2.5)

The matrices γµ are called γ-matrices or Dirac matrices.

Before writing an explicit discretization of the operator in eq. 2.4, let us give a more
formal statement on the properties of the gluonic fields in the continuum.

Definition 2.2.
Let C := {1, 2, 3} be the set of color indices, S := {0, 1, 2, 3} the spin indices and

ψ : R4 → C12 ∼= CC×S

x ↦→ (ψ10(x), ψ20(x), ψ30(x), ψ11(x), ..., ψ33(x))T

a differentiable function. Then ψ defines a quark field or matter field. Let M = {ψ :
ψ matter field}. The twelve component vector ψ(x) is called spinor. Furthermore, for
µ = 0, 1, 2, 3

Aµ : R4 → su(3)
x ↦→ Aµ(x)

the set {Aµ : µ = 0, 1, 2, 3} defines a gauge field, i.e., a gluonic counterpart of a quark
field.

The multiplication of a γ-matrix with ψ is defined by (γµψ)(x) := (γµ⊗I3)ψ(x), with I3
the identity in color space. In case operations act unambiguously on the color but differ-
ently on the spin degrees of freedom we use the notation ψσ to denote those components
of the quark field belonging to the fixed spin index σ. For a given point x, ψσ(x) is thus
represented by a three component column vector ψσ(x) = (ψ1σ(x), ψ2σ(x), ψ3σ(x))T .
The value of the gauge field Aµ at point x acts non-trivially on the color and trivially
on the spin degrees of freedom in the sense that (Aµψ)(x) := (I4 ⊗ Aµ(x))ψ(x).

This allows us to define the effect of the covariant derivative in eq. 2.4 on matter fields
in the following way.

Definition 2.3.
Let M be the space of matter fields. The continuum Dirac operator is the map

D :M→M

9

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

defined by

D =
3∑

µ=0
γµ ⊗ (∂µ + Aµ)

where ∂µ = ∂/∂xµ denotes the partial derivative in direction µ. Evaluating Dψ at
x ∈ R4, we have

(Dψ)(x) =
3∑

µ=0
γµ((∂µ + Aµ)ψ)(x). (2.6)

The need for the gamma matrices in the covariant derivative come from imposing that
the dynamics of the physical system is invariant under transformations by the Lorentz
group i.e. under special relativity’s boosts and rotations [53]. The fields Aµ represent
the gauge bosons of QCD i.e. the gluons, which appear after enforcing invariance of
the equations of motion of the system under local SU(3) transformations.

Having defined the Dirac operator in the continuum D and its effect on matter fields
ψ, the last step before discretizing the Dirac operator on the lattice is to define the
lattice itself.

Definition 2.4.
Consider a four-dimensional torus T . Then, a lattice L with lattice spacing a is a
subset of T such that for any x, y ∈ L there exists p ∈ Z4 fulfilling

y = x+ a · p, i.e., yµ = xµ + a · pµ for µ = 0, 1, 2, 3

For shift operations on the lattice, let µ̂ ∈ R4 denote shift vectors defined by

µ̂ν =

⎧⎨⎩a, µ = ν

0, else
µ, ν = 0, 1, 2, 3

The full discretization of the Dirac equation, i.e. of the PDE associated to the operator
in eq. 2.6, follows a clear path at this point:

1. Discretize ψ(x) and Aµ(x) on the lattice6.

2. Choose a discretization scheme for the differential part in eq. 2.6.

For the ψ field, it is sufficient to be defined at each lattice point only, as follows

ψ : L → C12

x ↦→ ψ(x)

As in continuum QCD, the spinor ψ(x) again has color and spin indices ψcσ, c ∈ C and
σ ∈ S (see def. 2.2).

6In lattice QCD calculations, the initial point is always a discrete gauge configuration U (introduced
in def. 2.5) and the translation from Aµ to Uµ is more of a theoretical interest and never performed
in practice.

10

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

We have stated before that we are skipping here many specific details of continuum
QCD, this in favour of more technical details of QCD on the lattice from an applied
mathematics point of view. One such detail is that the continuum fields Aµ(x), asso-
ciated to the gauge bosons, connect infinitesimally close spacetime points [53]. Those
infinitesimally close points in spacetime become two points on the lattice next to each
other. The discretization of continuum Aµ(x) onto the lattice is done via the introduc-
tion of Uµ(x) fields.

Definition 2.5.
Given a gauge field Aµ, the corresponding discretized gauge field Uµ at point x is defined
by the path ordered integral along the link (x, x+ µ̂)

Uµ(x) := e−
∫ x+µ̂

x
Aµ(s)ds ≈ e−aAµ(x+ 1

2 µ̂)

The discretized gauge field U = {Uµ(x) : x ∈ L, µ = 0, 1, 2, 3} is called (gauge)
configuration.

These gauge configurations are precisely the same ones introduced in eqs. 2.1 and 2.2,
where we mentioned that gauge links are an indirect representation of the gauge bosons
on the lattice. It is clear at this point why we refer to them as gauge links.

Since Uµ(x) connects x with x + µ̂, we regard Uµ(x) as being associated with the link
between those two points. The link going in the opposite direction i.e. from x + µ̂ to
x, is given by Uµ(x)−1. The matrices Uµ(x) satisfy

Uµ(x) ∈ SU(3), in particular Uµ(x)−1 = Uµ(x)H

Fig. 2.1 illustrates the naming conventions for the representation of gauge links on the
lattice.

Figure 2.1: Our convention for gauge links on the lattice. Image taken from [1].
A more common convention is the one where the gauge links go in the opposite
direcion [2].

11

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

There are multiple approaches to discretizing the continuum Dirac operator, resulting
in different discretized operators D e.g. Wilson, Twisted Mass, Staggered, and others
[2, 7, 68, 69]. We focus here on the two which are of interest to our computational
implementations and tests: Wilson and Twisted Mass.

Wilson

We continue now by discretizing the differential part in the covariant derivative via
centralized finite differences.

Definition 2.6.
Let Aµ be a gauge field and Uµ the corresponding gauge configuration. Defining forward
covariant finite differences7

(∆µψσ)(x) := Uµ(x)ψσ(x+ µ̂)− ψσ(x)
a

=
a→0

(∂µ + Aµ)ψσ(x)

and backward covariant finite differences8

(∆µψσ)(x) :=
ψσ(x)− UH

µ (x− µ̂)ψσ(x− µ̂)
a

the centralized covariant finite difference discretization of the Dirac operator D is given
by

DN :=
3∑

µ=0
γµ ⊗ (∆µ + ∆µ)/2. (2.7)

This is called the naive discretization of the Dirac operator. The naive discretization
generates unphysical eigenvectors, a standard phenomenon when discretizing first order
derivatives using central finite differences [70], also known as the “species doubling
effect" [71, 72] or “red-black instability". The eigenspace for each eigenvalue of DN has
dimension 16, but only a one-dimensional subspace corresponds to an eigenfunction of
the continuum operator. In order to avoid the doubling problem, Wilson introduced
the stabilization term a∆µ∆µ, a centralized second order covariant finite difference.

Definition 2.7.
Given a gauge configuration U on a lattice L with nL sites, lattice spacing a and mass
parameter m0, the Wilson discretization of the Dirac operator (also known as Wilson-
Dirac operator) is defined by

DW := m0

a
I12nL + 1

2

3∑
µ=0

(γµ ⊗ (∆µ + ∆µ)− aI4 ⊗∆µ∆µ) (2.8)

7The use of upper and lower indices as in e.g. ∆µ or ∆µ is not meant to be as in General Relativity
where they refer to either covariant or contravariant spaces. The notation is not only avoided
here, but it would be useless anyways as we are dealing with a Euclidean space when studying
computations on the lattice.

8Here we use µ as sub and superscript, to denote backward and forward covariant finite differences,
respectively, instead of for example

←−
∆ and

−→
∆ .

12

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

where the mass parameter m0 sets the quark mass9.

The anti-commutation relations of the γ-matrices (see def. 2.1) imply a non-trivial
symmetry of DW .

Lemma 2.8.
Defining γ5 := γ0γ1γ2γ3 and with Γ5 := InL⊗γ5⊗I3, with sizes 12×12 and 12nL×12nL,
respectively, the Wilson-Dirac operator DW is Γ5-symmetric i.e.

(Γ5DW)H = Γ5DW . (2.9)

Proof. A proof of this lemma can be found in e.g. [1]. It relies on the fact that
γ5γµ = −γµγ5 for µ = 0, 1, 2, 3. DW itself is not Hermitian.

To reduce the order of the discretization error as a funtion of the lattice spacing a, the
Sheikholeslami-Wohlert or clover term [74], depending on a parameter csw, is added to
the Wilson-Dirac operator.

Definition 2.9.
Given a configuration of gauge links {Uµ(x)}, the plaquette Qµ,ν

x at lattice point x is
defined as

Qµ,ν
x := Uν(x)Uµ(x+ ν̂)UH

ν (x+ µ̂)UH
µ (x)

Furthermore, defining

Qµν(x) := Qµ,ν
x +Qµ,−ν

x +Q−µ,νx Q−µ,−νx

the clover term C is defined as

C(x) := csw
32

3∑
µ,ν=0

(γµγν)⊗ (Qµν(x)−Qνµ(x)) (2.10)

with csw ∈ R. For an arbitrary quark field ψ and a lattice site x, the clover improved
Wilson-Dirac operator D is defined as

Dψ(x) := DWψ(x)− C(x)ψ(x). (2.11)

The clover term is diagonal on the lattice L, which is computationally appealing. It
removes O(a)-discretization effects from the covariant finite difference discretization of
the continuum Dirac operator. Different lattice QCD simulations require an appropri-
ate tunning of csw [74]. The resulting discretized Dirac Dirac operator D has then local
discretization errors of order O(a2). On the other hand, in practice, m0 is negative and
for physically relevant mass parameters, the spectrum of D is contained in the right
half plane (see fig. 2.2). Both operators, D and Dw, have some interesting and useful
spectral properties, stated in lemma 2.10.

9For further details on the specific relation between quark masses and the mass parameter m0 see
[73].

13

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Figure 2.2: Left panel: spectrum of a 44 Wilson-Dirac operator with m0 = 0 and
csw = 0. Right panel: spectrum of a 44 clover improved Wilson-Dirac operator
with m0 = 0 and csw = 1. Image taken from [1].

Lemma 2.10.(a) The clover improved Wilson-Dirac operator D is Γ5-symmetric i.e.

(Γ5D)H = (Γ5D). (2.12)

(b) Every right eigenvector ψλ to an eigenvalue λ of D corresponds to a left eigenvector

ψ̄λ̄ = Γ5ψλ

to the eigenvalue λ̄ of D and vice versa. In particular, the spectrum of D is
symmetric with respect to the real axis.

(c) The spectrum of DW is symmetric with respect to the vertical line Re(z) = 4+m0
a

i.e.

λ ∈ spec(DW) ⇒ 2m0 + 4
a

− λ ∈ spec(DW).

Proof. A proof of this lemma can be found in e.g. [1].

Depending on the choice for the specific representation of the γ-matrices we will get
slightly different expressions for the Dirac operator on the lattice. Despite these dif-
ferences, the physical results will ultimately be the same for all those different rep-
resentations. We use, througout this thesis, representations of the γ-matrices such
that

γ5 = γ0γ1γ2γ3 =

⎛⎜⎜⎜⎝
1

1
−1

−1

⎞⎟⎟⎟⎠

Twisted mass

The continuum QCD action (see eqs. 2.1 and 2.2) is invariant under chiral symmetry
[4, 53] in the massless case. This means that, by applying these chiral transformations,
the form of the action in the continuum changes but its actual value does not, implying

14

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

that the underlying physics will remain the same. Having a different form of the action
leads to a different form for the PDE to be solved when applying HMC to simulate the
theory. This means a different expression for the Dirac operator in the continuum.

Following this procedure of: chiral symmetry transformation → new continuum Dirac
operator → discretize on the lattice, one can end up with a new lattice discretization
[68, 75, 76]

DTM(µ) = D + iµΓ5 (2.13)

where D is as defined in eq. 2.11 and a new parameter µ ∈ R has been introduced,
known as the twisted mass parameter. This is the clover improved Wilson-Dirac twisted
mass discretization, we refer to it simply as the twisted mass discretization and to the
operator in eq. 2.13 as the twisted mass operator.

The twisted mass operator in eq. 2.13 presents two very interesting properties. The
first of them is very advantageous algorithmically, the second one not so much (more
on the twisted mass operator in sect. 4.2.2):

1. The parameter µ “shields" the spectrum away from 0 in the sense that the smallest
singular value of DTM is

√
λ2
sm + µ2 with λsm the smallest eigenvalue in absolute

value of the symmetrized clover-improved Wilson Dirac operator Q = Γ5D.

2. There is some flexibility in choosing the value of µ when simulating QCD with
the twisted mass discretization. A particular choice of this parameter is µ =
mq, where mq is the quark mass, and this choice is called maximal twist. At
maximal twist, the region of eigenvalues of DH

TMDTM just above µ2 becomes very
dense, which represents a challenge for many algorithms used in solving the linear
systems of equations, in particular when using Krylov-subspace-based methods.

2.4 Disconnected diagrams

When simulating QCD on the lattice, the extraction of some physical properties of a
particular system can be done via, for example, eq. 2.1. The operators O1 and O2 are
chosen such that they possess the same quantum numbers as the system under study.
For details on how to choose appropriate forms for those operators, see e.g. [2].

A general local meson10 interpolator has the form

OM(n) = ψ̄(f1)(n)Γψ(f2)(n) (2.14)

where Γ is a monomial of γ-matrices, n ∈ L and fi refers to a particular quark flavour
(there are six quark flavours, as was shown in fig. 2.2). When f1 = f2, a condition
known as degenerate flavours, combinations of the interpolator in eq. 2.14 are built
to obtain the desired flavour symmetries. Fig. 2.4 lists the matrices Γ for the most
commonly used interpolators together with the corresponding quantum numbers.

10A composite subatomic particle with two or more quarks is known as hadron. Those with two
quarks are called mesons and those with three quarks are baryons [4].

15

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Table 2.4: Quantum numbers of the most commonly used meson interpolators.
Table taken from [2].

An example of an interpolator in the degenerate case (f1 = f2) is OS = (ūΓu+d̄Γd)/
√

2
11. After some technical steps, which again fall outside of the scope of this thesis, the
fermionic part (i.e. the fermionic integration) in eq. 2.1 can be written as (∗ denotes
complex conjugation)

⟨OS(n)O∗S(m)⟩F = −1
2tr[ΓD−1

u (n|m)ΓD−1
u (m|n)]

+ 1
2tr[ΓD−1

u (n|n)]tr[ΓD−1
u (m|m)]

+ 1
2tr[ΓD−1

u (n|n)]tr[ΓD−1
d (m|m)] + u↔ d.

(2.15)

The first term in the right hand side in eq. 2.15 can be associated to fermionic lines
propagating first from n to m and then from m back to n, in a connected way, as can
be seen in the left-side panel in fig. 2.3. The traces in the other terms in that equation
e.g. tr[ΓD−1

u (n|n)], on the other hand, are associated to disconnected terms i.e. loops
of fermionic lines that go from a point n in spacetime back to the same point n in a
single continuous manner (see the right pannel in fig. 2.15).

Figure 2.3: Left panel: connected pieces of a meson correlator. Rigt panel: dis-
connected pieces of a meson correlator. Image taken from [2].

The traces appearing in eq. 2.15 are often computed via stochastic methods. Numeri-
cally, the disconnected contributions need much more computational effort and higher
statistics than the connected parts, and many studies avoid considering those mesons
or drop the disconnected pieces.

11The fermionic fields u and d correspond to the two lightest quarks i.e. up and down (see the
table in fig. 2.2). The factor of 1/

√
2 is known as a Clebsch–Gordan coefficient. How to use

those coefficients, the use of isospin in the construction of composite subatomic particles and the
construction of interpolators such as OS are all beyond the scope of this presentation (see [4] for
more on all of these topics).

16

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

The computation of correlators of the form presented in eq. 2.15, therefore, leads to a
new type of quantity vastly studied in applied mathematics: the trace of the function of
a matrix A i.e. tr(f(A)). In the particular case of lattice QCD, the function of interest
is f(A) = ΓA−1, with A being replaced by the Dirac matrix. See [45], in particular
chapter 3 therein, for a thorough description on how disconnected diagrams are related
to tr(ΓD−1) and the importance of Monte Carlo methods in their computation.

2.5 Other theories: the Schwinger model

In our road towards the development of a new method for computing tr(f(A)) in
general and the application of it to the particular case of the Dirac matrix in lattice
QCD, we have used another model which shares some properties with QCD, namely the
Schwinger model: this is a description of Quantum Electrodynamics (QED) in (1+1)-
dimensional i.e. two spacetime dimensions [77, 78]. In the development of algorithms
for lattice QCD, the operators arising in lattice QED are oftentimes used as a first
test-bed, because of the similar spectral behavior and symmetries.

The Dirac operator of lattice QED acts on a 2-dimensional Euclidean space with 2
spin components12, with the generators of the Clifford algebra now given by the Pauli-
matrices

γ1 = σ1 =
(

1
1

)
and γ2 = σ2 =

(
i

−i

)
(2.16)

The gauge field Aµ of continuum QED in the Schwinger formulation is given as a
continuous real-valued function, with the gauge configurations U ∈ U(1) on the lattice
a subset of the complex numbers with modulus one.

Just as in def. 2.7, stabilization of the naive discretization of lattice QED is necessary
in order to suppress the doubling problem.

Definition 2.11.
Given a gauge configuration Uµ(x) on a lattice L with nL sites, lattice spacing a and
mass parameter m0, the Wilson-Schwinger operator SW is defined by

SW := m0

a
I2nL + 1

2

1∑
µ=0

(σµ ⊗ (∆µ + ∆µ)− aI2 ⊗∆µ∆µ) (2.17)

where the mass parameter m0 sets the fermion mass.

The analogous to the lattice QCD matrix γ5 is σ3 = iσ1σ2 in lattice QED. Furthermore,
the analogous to Γ5 is

Σ3 = σ3 ⊗ InL . (2.18)

Similarly to lattice QCD, the Wilson-Schwinger operator SW is Σ3-symmetric i.e.

(Σ3SW)H = Σ3SW . (2.19)
12Two spin components and no color unlike in QCD, implies that the Dirac operator of lattice QED

has 2 degrees of freedom per lattice site (in turn, the lattice QCD Dirac operator has 12).

17

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Some properties of the lattice QCD Dirac operator are shared by the Schwinger oper-
ator SW , as stated next.

Lemma 2.12.
The eigenvalues λ of SW are either real or appear in complex conjugate pairs.

Proof. The proof of this lemma follows from the proof of the second point in lemma
2.10.

Lemma 2.13.
For any right eigenvector v with eigenvalue λ, i.e., fulfilling SWv = λv, the vector Σ3v
is the left eigenvector to the eigenvalue λ̄ satisfying

(Σ3v)HSW = λ̄(Σ3v)H

Proof. The proof of this lemma follows from the proof of the second point in lemma
2.10.

18

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Chapter 3
Domain decomposition aggregation-based
αdaptive algebraic multigrid method

The Domain Decomposition aggregation-based αdaptive algebraic multigrid meth- od
(DD-αAMG) is a solver for linear systems of equations arising in simulations of lattice
QCD involving Wilson or twisted mass fermions. In this chapter, we introduce all
the conceptual background necessary for a full understanding of this method. All the
methods implemented in later chapters are done so in the context of DD-αAMG.

Sect. 3.1 contains mostly some of the basic tools from numerical linear algebra necessary
for understanding DD-αAMG. Sect. 3.2 gives a general introduction to multigrid, from
a rather conceptual point of view. We then present, in sect. 3.3, how algebraic multigrid
solvers are realized, focusing on the particular problem of lattice QCD, with sect. 3.3.4
outlining how the ingredients described in 3.3.1, 3.3.2 and 3.3.3 are combined to give
rise to DD-αAMG. Finally, sect. 3.3.5 briefly deals with an extension of DD-αAMG
from Wilson to twisted mass fermions.

The contents of this chapter are largely based on [1, 3, 36, 79, 80].

3.1 Numerical linear algebra fundamentals

Before introducing multigrid methods, in particular algebraic multigrid (AMG), it is
useful to introduce first some basics of numerical linear algebra (NLA). All of the
concepts presented in this section can be found in e.g. ref.s [36, 79, 81].

3.1.1 Eigenvalues, singular values and conditioning

Certain types of matrices are important in general for the understanding of numerical
linear algebra, but in particular for the development of appropriate algorithms to solve
certain types of problems (such as solving and/or eigensolving).

Definition 3.1.
We call a matrix A ∈ Cn×n

• symmetric, if A = AT ,

19

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

• Hermitian, if A = AH ,

• unitary, if AHA = I,

• normal, if AHA = AAH ,

• a projection, if A2 = A,

• sparse, if the number of non-zero (nnz) entries per row is significantly smaller
than n and independent of n.

Remark 3.2.

1. We can also define non-square semi-unitary matrices: A ∈ Cn×m with n ≥ m is
semi-unitary, if every column vector ai has unit length and ⟨ai, aj⟩ = 0 holds for
all i ̸= j.

2. If A is a projection then (I − A) also defines a projection, as
(I − A)2 = I − 2A+ A2 = I − 2A+ A = I − A.

As in many other areas of physics and mathematics, projectors and unitary matrices
permeate the whole NLA to aid in solving problems by transforming them from their
original form into a simpler or easier one, without being too invasive on the underlying
properties of the problem itself.

Later in this thesis, in particular when we discuss deflation in Krylov methods via e.g.
GCRO-DR and spectral mappings by means of a polynomial preconditioner, having
concepts such as eigenvalue decomposition and singular value decomposition are of
upmost importance. We procede then by introducing concepts related to eigenvalues
and eigenvectors.

Definition 3.3.
Given a square matrix A ∈ Cn×n we call λ ∈ C an eigenvalue of A if and only if there
exists a nonzero vector x ∈ Cn such that

Ax = λx. (3.1)

Additional characteristics and terms related to eigenvalues:

• x is called an eigenvector (belonging to λ).

• A pair (λ, x) of eigenvalue λ and its eigenvector x is called an eigenpair.

• The set of all eigenvalues of A is called spectrum of A and is denoted by spec(A).

• The spectral radius of A is defined as ρ(A) ··= max
λ∈Λ(A)

(|λ|).

• Eigenvalues λi are the roots of the characteristic polynomial of A, i.e., pA(λ) ··=
det(A− λI) = 0.

• The multiplicity mi of an eigenvalue in pA(λ) is called algebraic multiplicity of
λ.

• The geometric multiplicity of λi is denoted by gi and is the dimension of the
eigenspace of λi, i.e. the nullspace of A− λiI

20

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Definition 3.4.
A square matrix A ∈ Cn×n is called diagonalizable if and only if gi = mi for all λi ∈ Λ.
We define in this case the eigenvalue decomposition

A = XDX−1,

where each column xi of X contains an eigenvector of A belonging to the eigenvalue
Di,i = λi of the diagonal matrix D.

More general (and sometimes more important) than the eigenvalue decomposition is
the concept of singular value decomposition.

Definition 3.5.
Given a matrix A ∈ Cm×n we can define the singular value decomposition (SVD) as
the matrix decomposition

A = UΣV H ,

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Cm×n is a diagonal
matrix with non-negative entries σi,i. We call the column vectors ui and vi left and
right singular vectors (of σi,i), respectively, and σi,i the singular values.

The SVD introduced in def. 3.5 exists for any matrix A ∈ Cn×m, and it is unique up to
complex scalar factors of absolute value 1 (a proof of this can be found in e.g. [79, 82]).

As stated in chapter 2, a very frequent operation in lattice QCD simulations is the
solution of a linear system of equations. The matrices involved in those solves (in
the lattice QCD context) are large, sparse and the systems hard to solve13. Those
properties imply that the solution of linear systems of equations usually represent
most of the overall execution time in simulations.

Conditioning is a notion that allows us to quantify how “difficult" it is to solve a system
of equations, from the properties of its associated matrix of coefficients. Different
simulations in lattice QCD will lead to changing Dirac matrices, which in turn will
lead to changing conditioning. The conditioning of the Dirac matrix can be drastically
different from one simulation to another, depending on the parameters of the simulation
(mass, lattice spacing, etc.).

More specifically, and in general, conditioning describes how the output y of a function
f is affected by perturbations in the input x, and it is independent of the algorithm
which might implement this function on a computer, i.e. conditioning is a property of
the problem itself. Inaccuracies in numerical solutions of problems on computers come
from two sources: one of them is conditioning of the problem, and the other one is
stability14 of the algorithm used to solve the problem.

We interpret a problem as well-conditioned if small changes in the input only cause
small changes in the output, and vice versa we interpret a problem as ill-conditioned
if small changes in the input lead to big changes in the output.

13A metric on how hard it is to solve a linear system of equations will be introduced soon, namely
conditioning.

14Stability comes from the discretization of the continuous problem on the computer. We will not
further discuss stability here. For more on stability, see e.g. [79].

21

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Definition 3.6.
Let f : X → Y be a problem and let x ∈ X. Let δx be some (infinitesimal) perturbation
of x and δf ··= f(x + δx) − f(x). We define the absolute condition number κ̂ = κ̂(x)
of f at x as

κ̂ = lim
δ→0

sup
∥δx∥≤δ

∥δf∥
∥δx∥

. (3.2)

The relative condition number κ = κ(x) is defined as

κ = sup
δx

(
∥δf∥
∥f(x)∥

/
∥δx∥
∥x∥

)
. (3.3)

If f is differentiable, then

κ̂ = ∥J(x)∥ and κ = ∥J(x)∥
∥f(x)∥/∥x∥ , (3.4)

where J(x) is the Jacobian of f at x.

Well-conditioned problems have a small condition number, whereas ill-conditioned
problems have a large one.

The main interest in this thesis is on functions that map an input vector b to an
output vector x such that x = A−1b is the solution of a linear system of equations.
For this specific mapping, it is known that the condition number can be bounded as
κ ≤ ∥A∥ · ∥A−1∥ [79]). It is common practice to talk about the condition number of
the matrix A and define it as κ(A) := ∥A∥ · ∥A−1∥. When the norm is chosen to be the
Euclidean 2-norm, then ∥A∥2 = σ1, i.e. the largest singular value and ∥A−1∥2 = 1

σn
,

i.e. the reciprocal of the smallest singular value. Then

κ(A) = σ1

σn
. (3.5)

Being σ1 the largest singular value and σn the smallest one, the quotient of both
resulting in κ(A) gives an indirect measure of the extent of the region in the real axis
that we need to have access to in order to solve the problem, and it indicates as well
the closeness of that region to the origin of the axis. When continuous problems are
solved on the computer, finite precision is necessary, which can be implemented on
computers via e.g. the IEEE-754 standard [83]. Precisions in IEEE-754 being non-
uniform throughout the real axis, the condition number is telling us how, in solving
a problem, we might jump between regions with different separations of a number to
its neighbor point on the discretized axis, which might in turn lead to catastrophic
rounding errors.

3.1.2 Iterative methods for sparse linear systems of equations

For large and sparse matrices, such as those appearing in lattice QCD simulations,
we cannot invert A directly i.e. we cannot compute the full form of A−1, due to both

22

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

storage and computation time restrictions15. Therefore, in finding approximations to
x for Ax = b we need to make use of iterative methods.

For large sparse matrices, iterative solvers have been developed whose computational
costs are typically dominated by matrix-vector products, which have computational
complexity of O(n). These methods have the additional advantage that the matrix
does not need to be stored in memory, but rather only requires a routine for the action
Ax of the matrix A on a vector x. Also, iterative methods can be terminated early
to give an approximate solution, whereas direct methods typically only yield a feasible
solution at the last step of the algorithm.

At the k-th step in an iterative method, with a corresponding approximate solution
x(k), the residual can be computed to indirectly access the error of the approximation
x(k) with respect to the exact solution x.

Definition 3.7.
Defining the residual r(k) ··= b−Ax(k) and the error e(k) ··= x−x(k) for a given x(k) ∈ Cn,
we formulate the residual equation:

Ae(k) = r(k). (3.6)

The problem of finding the error e(k) in eq. 3.6 is clearly equivalent to the problem
of finding x in Ax = b, since x = x(k) + e(k). Since the error will typically not be
available, the quality of an approximation x(k) can only be measured via the residual
r(k). Looking at eq. 3.6, we see that ∥e(k)∥ ≤ ∥A−1∥ · ∥r(k)∥. This shows that if ∥A−1∥
is large, the error can still be large, despite the residual being small. Many iterative
methods follow the idea of updating the iteration vector x(k) in every step starting from
an initial vector x(0) by approximating the error via

x(k+1) ··= x(k) + ẽ(k). (3.7)

where ẽ(k) is an approximation of e(k) in eq. 3.6.

The following three sections present first two classes of iterative methods (relaxation
schemes in sect. 3.1.2.1 and Krylov subspace methods in sect. 3.1.2.2), followed by the
important concept of preconditioning (sect. 3.1.2.3). These are all very relevant and
necessary in solving ill-conditioned systems of equations with large and sparse matrices.

3.1.2.1 Relaxation schemes

Starting with an initial approximation x(0), relaxation methods modify the components
of the approximation, one or a few at a time and in a certain order, until convergence is
reached. Each of these modifications, called relaxation steps, is aimed at annihilating
one or a few components of the residual vector.

A typical way of obtaining different relaxation methods is via e.g. a splitting [36].

15To compute the full A−1, direct methods have to be employed [84]. Direct methods have the obvious
drawbacks of taking up huge amounts of memory and having computational complexities of O(n2)
or worse.

23

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Definition 3.8.
Let A, M and N be three given matrices satisfying A = M −N . The pair of matrices
M,N is a splitting of A, if M is nonsingular.

By using the previous splitting on the system of equations Ax = b, we can write
x = M−1Nx+M−1b. The latter relation can be then taken to the relaxation method,
via the splitting, like this

x(k+1) = M−1Nx(k) +M−1b. (3.8)

Different forms for the splitting M,N lead to different relaxation methods. One ex-
ample is M := D and N := L + U , which corresponds to the diagonal of A and the
off-diagonal part of A, respectively. This first example gives us the Jacobi method.
A second example of a possible splitting is M := D − L and N := U , building up
with this the Gauss-Seidel method. Considerations on the convergence of Jacobi and
Gauss-Seidel can be found, again, in e.g. [36]. Gauss-Seidel typically converges faster
than Jacobi (for regular splittings, but not necessarily always), but in turn Jacobi is
highly parallelizable and Gauss-Seidel scales badly in a parallel setting.

Coloring comes to the rescue, enabling Gauss-Seidel to be able to perform well in a
parallel setting. If the problem matrix A comes from e.g. a 2-dimensional rectangular
equispaced lattice, and furthermore the matrix is such that the interaction is only
between each site and its four nearest neighbors, then we can color the lattice in a
red-black manner. With this we can decouple neighboring lattice sites and render
Gauss-Seidel parallelizable. This is the red-black Gauss-Seidel method.

Opting for algorithms that operate on single-elements of a matrix is a waste of resources
from the point of view of modern computer hardware. Thanks to features such as
paging, cache and others [85], algorithms based on blocks can be used instead: for
a matrix A, we can group sets of variables into block variables. By defining a block
decomposition of A and compatible block vectors x and b:

A =

⎡⎢⎢⎢⎢⎣
A1,1 A1,2 · · · A1,p
A2,1 A2,2 · · · A2,p

...
Ap,1 Ap,2 · · · Ap,p

⎤⎥⎥⎥⎥⎦ , x =

⎡⎢⎢⎢⎢⎣
x1
x2
...
xp

⎤⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎣
b1
b2
...
bp

⎤⎥⎥⎥⎥⎦ (3.9)

where Ai,j ∈ Cℓi×ℓj , xi ∈ Cℓi and bi ∈ Cℓi with ∑p
i=1 ℓi = n, we can formulate block

variants of Jacobi and Gauss-Seidel. In implementations of these algorithms, we can
then make use of BLAS3 [86] fundamental operations to improve the performance from
a computational point of view.

Defining the matrix Ii ∈ Cn×ℓi with the identity on the i-th block row and zero ev-
erywhere else as the canonical injection from the i-th block column A·,i into A and ITi
as the trivial injection from the i-th block row Ai,· into A, respectively, we obtain the
block inverse A−1

i,i
··= (ITi AIi)−1. Then we can apply the same block-analog splittings to

Jacobi and Gauss-Seidel, where D, L and U are block diagonal, lower block triangular
and upper block triangular matrices, respectively. These block Jacobi and Gauss-Seidel
methods are also termed the additive and multiplicative Schwarz Alternating Proce-
dure (SAP) [87, 88], which is a domain decomposition method for discretized partial

24

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

differential equations. SAP is a crucial building block for the two-level method that
we introduce in sect. 3.3.1, so we give a description for these methods in alg. 3.1 and
alg. 3.2.

Algorithm 3.1: Additive SAP (block Jacobi)
input: Matrix A with blocks Ai,j, right hand side b, initial guess x(0)

output: Solution x
for k = 0, 1, 2, . . .1

r(k) ← b− Ax(k)2

foreach diagonal block Ai,i do3

x(k) ← x(k) + IiA
−1
i,i I

T
i r

(k)4

x(k+1) ← x(k)5

Algorithm 3.2: Multiplicative SAP (block Gauss-Seidel)
input: Matrix A with blocks Ai,j, right hand side b, initial guess x(0)

output: Solution x
for k = 0, 1, 2, . . .1

foreach diagonal block Ai, do2

r(k) ← b− Ax(k)3

x(k) ← x(k) + IiA
−1
i,i I

T
i r

(k)4

x(k+1) ← x(k)5

From alg. 3.2 it is apparent that multiplicative SAP has to be performed sequentially,
which is not the case for additive SAP (alg. 3.1). This makes additive SAP a natural
choice in a parallel computing environment. However, coloring comes to the rescue
again: we can decouple the sequential block solves of multiplicative SAP by using
an appropriate coloring scheme leading to e.g. red-black SAP [26], which will be the
method of choice for the multigrid method in sect. 3.3.1.

The segmentation in blocks via submatrices of A as in eq. 3.9 has a direct correspon-
dence in terms of a domain decomposition of the underlying lattice. We now state
these corresponding lattice blocks in a precise manner for the lattice of interest to us
here.

Definition 3.9.
Asumme that {T 0

1 , ..., T 0
ℓ0} is a partitioning of {1, ..., Nt} into ℓ0 blocks of consecutive

time points,

T 0
j = {tj−1 + 1, ..., tj}, j = 1, ..., ℓ0, 0 = t0 < t1 < ... < tℓ0 = Nt

and similarly for the spatial dimensions with partitionings {T µ1 , ..., T µℓµ}, µ = 1, 2, 3.

A block decomposition of L is a partitioning of L into ℓ = ℓ0ℓ1ℓ2ℓ3 lattice blocks Li,
where each lattice block is of the form

Li = T 0
j0(i) × T 1

j1(i) × T 2
j2(i) × T 3

j3(i)

25

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Accordingly we define a block decomposition of all 12nL variables in V = L × C × S
into ℓ blocks Vi by grouping all spin and color components corresponding to the lattice
block Li, i.e.,

Vi = Li × C × S

Another block decomposition {L′i : i = 1, ..., t′} is called refinement of {Li : i = 1, ..., t}
if for each L′i there exists a Lj such that

L′i ⊆ Lj

3.1.2.2 Krylov subspace methods

Let us start off by defining a Krylov subspace.

Definition 3.10.
Let A ∈ Cn×n and r ∈ Cn. Then the m-th Krylov subspace is defined as

Km(A, r) ··= span{r, Ar,A2r, . . . , Am−1r}.

If unambiguous we use the shorthand Km.

Krylov subspace methods [36] only require matrix-vector multiplications and have mod-
est storage requirements and are thus favorable in cases when what is available is a
function receiving as input a vector x and returning as output the application of a
matrix A on that vector i.e. Ax.

There are many Krylov-based methods. We focus for now on the generalized minimal
residual method (GMRES). GMRES is an iterative method aimed at solving large non-
symmetric linear systems of equations represented as Ax = b with some nonsingular
matrix A ∈ Cn×n and x, b ∈ Cn. It is a Krylov subspace method i.e. it searches for an
approximate solution x ∈ x(0) + Km(A, r(0)) with x(0) and r(0) being, correspondingly,
the initial guess and the initial residual [89]. Another interesting way to reformulate this
statement is that the approximate solution can be written as a polynomial expression:

x = x(0) + ϕ(A)r(0), (3.10)

where ϕ(α) is a polynomial of degree at most k − 1 in α. The main feature that
characterizes GMRES and distinguishes it from other algorithms such as the Full Or-
thogonalization Method (FOM) [90] is that it draws the approximate solution x from
x(0) +Kk(A, r(0)) by minimizing the 2-norm of the residual. Taking this into account, it
is then possible to rephrase GMRES as a polynomial optimization method. Denoting
Pk as the set of all polynomials of degree k:

min
x∈x(0)+Kk(A,r(0))

∥b− Ax∥2 = min
ϕ∈Pk−1

∥b− A(x(0) + ϕ(A)r(0))∥2

= min
ϕ∈Pk−1

∥(I − A · ϕ(A))r(0)∥2

= min
π∈Pk,π(0)=1

∥π(A)r(0)∥2.

(3.11)

26

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

where the polynomial π, usually called GMRES polynomial, is defined as π(α) =
1 − αϕ(α) and it is such that it minimizes the residual 2-norm of π(A)r(0) within the
polynomial space Pk [82]. The internal working of GMRES go briefly as follows: first
an orthonormal basis for Kk(A, r(0)) is constructed by means of the Arnoldi process
[91]:

Algorithm 3.3: Arnoldi process
Data: v1, such that ∥v1∥2 = 1
Result: Set of vectors Vk, and Hessenberg matrix H̄k.
r(0) = b− Ax(0)1

β = ∥r(0)∥22

v1 = r(0)/β3

for j = 1, . . . , k4

for i = 1, . . . , j5

hi,j = (Avj, vi)6

wj = wj − hi,jvi7

hj+1,j = ∥wj∥28

If hj+1,j = 0 then STOP9

vj+1 = wj/hj+1,j10

which results in the set of orthonormal vectors Vk = [v1, v2, · · · , vk] i.e. Vk ∈ Cn×k is
orthonormal. The orthogonalization generates scalars hij ∈ C which when arranged as
a Hessenberg matrix Hk = (hij) ∈ Ck×k satisfy the following recurrent relation

AVk = Vk+1H̄k, (3.12)

where H̄k corresponds to Hk with an extra row (0 0 · · · hk+1,k) at the bottom. The
next step consists of writing the approximate solution in terms of Vk:

x = x(0) + Vky,

where y is a k-vector resulting from the minimization of the function J(y) defined as

J(y) = ∥βe1 − H̄ky∥2,

with e1 an m-vector of the form e1 = (1 0 0 · · · 0)H and β the norm of r(0) [36].

A major drawback of GMRES is that because it is based on the Arnoldi process,
the computational work and memory required increase with each iteration (i.e. they
grow, respectively, as O(n · k2) and O(nk) at the k-th iteration). Therefore, for very
large systems, accessing a satisfactory number of iterations with GMRES may quickly
become prohibitive. To circumvent this difficulty, restarted GMRES (also denoted
GMRES(m)) was proposed in [89]. This approach consists of restarting the orthonor-
mal base Vk for the Krylov subspace every time it reaches a maximum number m of
vectors, where m is small compared to n and is chosen in such a way that memory
and computational costs become manageable [92]. The idea is that each new cycle
uses as the initial guess the approximate solution obtained on the previous restart
(the first cycle starts with the original proposal x(0)). This means that the residuals
from consecutive cycles will be related through r(c) = πc(A)r(c−1), where r(c) and r(c−1)

27

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

are, respectively, the residuals of the cycles c and c − 1, and πc is the c-clycle GM-
RES polynomial. In terms of r(0), r(c) can be expressed as r(c) = Πc(A)r(0), where
Πc(A) = πc · · · π1, a polynomial of degree c · m. From here it can be seen that the
Krylov subspace corresponding to the (c+ 1)-st cycle is

Km(A,Πc(A)r(0)) = span{Πc(A)r(0), AΠc(A)r(0), . . . , Am−1Πc(A)r(0)}, (3.13)

and the approximate solution that is drawn from it has the form:

x = x(0) + ϕc+1(A)Πc(A)r(0). (3.14)

The convenience of restarted GMRES comes with a subtle cost: the robustness of
the method gets compromised in the sense that there is no preserved orthogonality
between the subspaces constructed in consecutive cycles. This comes with the negative
side effect that restarted GMRES generally converges more slowly than GMRES and
in fact, may even stagnate [93]. In such scenarios preconditioning might become useful
or even necessary.

3.1.2.3 Preconditioning

As described earlier, the convergence of iterative methods oftentimes depends on the
condition number κ(A) of the system matrix A. In the particular case of GMRES,
the distribution of eigenvalues is also of importance for convergence (among other
factors e.g. contidioning of the matrix of eigenvectors κ(X) in the decomposition A =
XΛX−1, provided such a decomposition exists [36]). More specifically, if some subsets
of eigenvalues are clustered too close to each other, the GMRES polynomial might have
a hard time interpolating over them. Furthermore, unpredictable and even paradoxical
behavior can be seen when using restarted GMRES [94].

The idea of preconditioning is to reduce the condition number by transforming the
problem to an equivalent one with a smaller condition number and possibly a more
scattered spectrum. In general we are interested in a matrix M which is in some way
close to A−1, such that

1 = κ(I) ≈ κ(MA)≪ κ(A).

We define left preconditioning via

Ax = b⇔MAx = Mb,

and right preconditioning via

Ax = b⇔ AMy = b,

where x = My. As a consequence, in preconditioned methods every matrix vector
multiplication also requires the application of the preconditioner. Thus from a practical
point of view the application of M needs to be significantly cheaper compared to the
solution of linear systems with A, since they are applied in every iteration, but should
still be “close enough” to A−1 to have a notable impact on the condition number.

28

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

When a non-stationary16 preconditioner is to be employed in conjunction with GMRES,
the relation in eq. 3.12 does not hold in general anymore, and switching to a flexible
method such as FGMRES is necessary. The FGMRES algorithm is presented in alg.
3.4 [36].

Algorithm 3.4: Flexible GMRES (FGMRES)
Data: Initial guess x(0).
Result: Sets of vectors Zm and Vm+1, and Hessenberg matrix H̄m.
r(0) = b− Ax(0)1

β = ∥r(0)∥22

v1 = r(0)/β3

for j = 1, · · · ,m4

zj = M−1
j vj5

w = Azj6

for i = 1, · · · , j7

hi,j = (w, vi)8

w = w − hi,jvi9

hj+1,j = ∥w∥210

vj+1 = w/hj+1,j11

Define : Zm := [z1, ..., zm]12

Define : H̄m := {hi,j}1≤i≤j+1;1≤j≤m13

ym = argminy∥βe1 − H̄my∥214

xm = x(0) + Zmy15

If satisfied, stop. Else, set x(0) ← xm and GOTO 1.16

In the case of FGMRES, the relation in eq. 3.12 takes the following form:

AZk = Vk+1H̄k, (3.15)

which still allows us to minimize the norm of the residual (see line 14 in alg. 3.4) in
a cheap fashion. An obvious drawback of FGMRES versus plain GMRES is that not
only the Vm+1 vectors need to be saved but also the Zm vectors.

3.2 Multigrid methods

The iterative methods introduced in sect. 3.1.2 i.e. relaxation and Krylov-based solvers,
all suffer from a common complication: the larger the condition number κ(A) of the
matrix of coefficients A of the system of equations, the larger is typically the iteration
count for the solver to reach a certain relative tolerance. A solver is said to suffer from
critical slowing down if, as κ(A) grows, that iteration count increases as well17, with the
variation of the iteration count as a function of κ(A) depending on the solver of choice.
In many scientific computing applications, the larger A the larger κ(A), which increases

16See e.g. [36] for the difference between stationary and non-stationary methods. Stationary methods
come from splittings as defined in def. 3.8. Jacobi and Gauss-Seidel classify as stationary, whereas
GMRES is considered a non-stationary method.

17Critical slowing down can also appear e.g. in the context of Markov Chain Monte Carlo, where it
is seen as problematic in the sense of a rise in the autocorrelation time [95].

29

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

the difficulty of the problem two-fold: the larger the matrix the more computationally
expensive the matrix-vector multiplications with it will be. Furthermore, the larger
κ(A) is, the more iterations it takes to solve the linear system of equations with those
methods from sect. 3.1.2. If A grows in size, it is of course necessary to invest more
computational work to apply that matrix on a vector, this is unavoidable. The question
then is: can we have a solver for which, if κ(A) increases, its iteration count does not?
Here is where multigrid methods become remarkably useful.

Extensive presentations of multigrid methods can be found in e.g. [96, 97]. Our pre-
sentation here is, in turn, rather brief, and it follows mostly [3].

3.2.1 Motivation

Before tackling complicated systems such as the Schwinger matrix in lattice QED and
the Dirac matrix in lattice QCD, let us first introduce a simpler model in order to be
able to motivate multigrid in a simpler manner.

The Poisson equation ∇2ϕ = f is commonly found in many different areas of physics.
For example, in electrostatics [98] it is used to describe the scalar potential created
by a distribution of charge over space and in Newtonian gravity [99], the gravitational
potential can be computed from a matter source. When discretized on a lattice, the
Poisson equation serves as a good setting in which to test different algorithms and their
implementations.

Let us consider a two-dimensional setting:

− ∂2u

∂x2 −
∂2u

∂y2 = f(x, y), 0 < x < 1, 0 < y < 1 (3.16)

with u = 0 on the boundary of the unit square. After applying second-order finite
differences, we end up with a system of equations Ax = b with18

A =

⎛⎜⎜⎜⎜⎜⎜⎝
B −I
−I B −I
. . .

. . −I
−I B

⎞⎟⎟⎟⎟⎟⎟⎠ (3.17)

where

B =

⎛⎜⎜⎜⎜⎜⎜⎝
4 −1
−1 4 −1

. . .
−1 4 −1

−1 4

⎞⎟⎟⎟⎟⎟⎟⎠ (3.18)

Due to the discretization scheme chosen, each variable is coupled to nearest neighbors
only. We call this the Laplace 2D problem.

18See e.g. [3] for a description on how this discretization is done. The motivation described in this
section was partially based on that same reference.

30

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Let us choose one of the solvers from sect. 3.1.2 and represent the application of ν
iterations of it by M (ν), i.e. M (ν) approximates A−1. Starting from an initial guess
x(0), the initial residual is r(0) = b − Ax(0). Then, the residual equation (see eq. 3.6)
which takes the form of Ae = r can be roughly solved by applying M (ν) which results
in an approximant of the form

x ≈ x(0) +M (ν)r(0). (3.19)

We can re-arrange eq. 3.19 in the following way

x ≈ x(0) +M (ν)r(0) = x(0) +M (ν)(b− Ax(0)) = M (ν)b+ (I −M (ν)A)x(0). (3.20)

If, after a certain number of iterations ν the operator M (ν) is equal to A−1 up to some
accuracy, then the system of equations has been solved. The term in parenthesis in
the far-right of eq. 3.20 is termed the error propagator of the solver used

Es := (I −M (ν)A). (3.21)

The error propagator gives us an indication of the quality of a solver in terms of number
of iterations to solution, and its analysis with regard to the spectrum of A is of upmost
importance in the development of fastly convergent algorithms. If we write successive
iterations of M (ν) as x(k+1) = Mb+Esx

(k) (with M corresponding to M (ν) with ν = 1),
and if the method is convergent to the actual solution, after many iterations we will
get x = Mb+Esx, and by combining both relations we can write e(k+1) = Ese

(k) with
the error e(k) = x − x(k). The error propagator, then, gives us a quantification on the
reduction of the error.

An interesting observation can be made at this point: let us choose for x(0) a random
initial guess. With this initial guess, and for the actual solution x, the error e(0) = x−
x(0) can be written in terms of a spectral decomposition (provided this decomposition
exists, which is the case in the Laplace 2D example that we are discussing here).

e(0) =
N∑
i=1

civi (3.22)

where vi are the eigenvectors of A and ci are just coefficients of the decomposition.
The eigenvectors vi to associated large eigenvalues λi in eq. 3.22 are also known as
high frequency modes and the ones corresponding to small eigenvalues are known as
low frequency modes. Therefore, we can re-write eq. 3.22 as

e(0) = e
(0)
low + e

(0)
high. (3.23)

We can at this point run a few iterations of the methods introduced in sect. 3.1.2, in
particular relaxation schemes, and come to some important realizations in terms of the
components of the error that are tackled better by them. Let us choose, in particular,
the Gauss-Seidel method, which can be applied to the Laplace 2D problem described
before, results of which are displayed in fig. 3.1.

As can be seen from fig. 3.1, it is visually clear that high-frequency components of
the error have been removed, i.e. parts of the error that oscillate rapidly have been

31

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Figure 3.1: Error e(k) of the Gauss-Seidel method when applied to the Laplace
2D problem with random initial guess x(0) and k = 1 iterations for the left plot
and k = 20 iterations for the right plot.

reduced. This is typical of relaxation methods: a few iterations of them lead to a quick
removal of high-frequency components of the error. But, numerical tests indicate that
after a few iterations the reduction of the error starts to stagnate and more iterations
of the solver lead to almost no reduction in the error. In terms of eq. 3.23, these
methods are good are removing ehigh but quite bad when it comes to dealing with elow.
Basically the same observations can be concluded when using a Krylov-based method
e.g. GMRES instead of Gauss-Seidel as we did before. These methods are then good
smoothers i.e. they are good at smoothing the error by quickly reducing ehigh with just
a few iterations.

Although they are good at smoothing the error quickly, they continue to be bad solvers
due to their limited action on elow. We would like, though, to keep using those first
few iterations of those methods which are good at smoothing, and complement them
with something that deals with elow efficiently. Here is where having more than one
grid becomes beneficial [3].

3.2.2 Two levels and multilevel multigrid

The error in fig. 3.1 has been smoothed down. At that point, we can create a coarser
lattice i.e. one with a larger lattice spacing and thus with less grid points and represent
the whole system there, which implies representing the error in the right plot in fig. 3.1
on that coarser lattice as well. This takes us to a two-grid correction scheme [3] (the
quantities with a bar, e.g. x̄, correspond to variables on the coarse grid):

1. Apply ν1 iterations of the smoother (e.g. Gauss-Seidel, Jacobi, GMRES) on Ax =
b at the fine grid, with initial guess x(0), obtaining with this a first approximant
x(a).

2. Compute the residual, still at the fine grid: r(a) = b− Ax(a).

3. Transport this residual to the coarse grid: r(a) → r̄(a).

4. Solve Āē = r̄(a) at the coarse grid, to obtain ē(a).

5. Transport the error back to the fine grid: ē(a) → e(a).

6. Perform a correction step at the fine grid: x(b) = x(a) + e(a).

32

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

7. Apply ν2 iterations of the smoother on Ax = b at the fine grid, with initial guess
x(b), obtaining with this a new approximant x(c).

Points 1 and 7 in the two-grid scheme above remove ehigh, while points 2 to 6 are meant
to efficiently deal with elow. Clearly, to have a good reduction of elow the operators for
transporting from the fine to the coarse grid and viceversa need to be carefully chosen,
as well as the construction of Ā.

Let us be a bit more precise now and make the following associations: the operator in
charge of transporting from the fine to the coarse grid is named the restrictor R, the
one transporting from the coarse to the fine grid is the prolongator (or interpolator) P ,
and for the construction of the coarse-grid matrix Ā we use here the Petrov-Galerkin
approach

Ā = RAP. (3.24)

Following the points above from the two-grid scheme and a re-arrangement similar to
the one in eq. 3.20 we can write the error propagator for the coarse-grid correction as
follows

Ec := I − PĀ−1RA. (3.25)

Although the error in fig. 3.1 looks “smooth" in the fine grid employed, it will become
more oscillatory when transported to the coarse grid i.e. some portions of elow in the
finer grid will be seen as high-frequency components from the point of view of the
coarser one i.e. elow → ēhigh + ēlow. This clearly opens up the possibility of a multigrid
hierarchy with more than two levels, where ēhigh can be treated via a smoother at the
coarse grid, and then a new third level has to be created to correct for that part of the
error not efficiently removed by a few iterations of the smoother i.e. ēlow. Illustration
and a precise description of schemes with more than two levels are held until later
sections and discusssed in the context of algebraic multigrid.

The success of the coarse-grid correction at every level depends then on an appropriate
choice for both P and R. Very efficient operators P and R have been succesfully
constructed in many applications appearing in scientific computing [100–102], such
that the smoother and the coarse-grid correction complement each other very well to
the point that critical slowing down does not seem to affect the solver. We will describe
one such construction in upcoming sections in the context of lattice QCD.

3.3 Algebraic multigrid

As described in sect. 3.2.2, an appropriate construction of P and R, in order to ef-
ficiently deal with elow, is of upmost importance in multigrid methods to have an
algorithm as independent of κ(A) as possible. An obvious way to construct P is the
one illustrated in fig. 3.2, corresponding to a linear interpolation from the coarse to
the fine grid when dealing with a one-dimensional lattice. This is clearly a geometric
multigrid approach i.e. it is solely based on the geometry of the lattice, regardless of
the entries of the matrix A of the linear system of equations. Evidently, other choices
for P are possible when using geometric multigrid, e.g. constant, cubic, etc.

33

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Figure 3.2: Linear interpolation of a vector on the coarse grid to the fine grid in
a one-dimensional lattice. Image taken from [3].

In matrices arising from the discretization of PDEs with smooth coefficients, the lowest
modes of A can be closely connected to geometric considerations i.e. to the associated
lattice. The lowest modes, as we have suggested before, are important in multigrid to
properly deal with elow i.e. it is important that the fine-grid matrix A and the coarse-
grid matrix Ac are similar to each other in the sense of their lowest modes. This all
indicates that, in a geometric multigrid construction we can build P from geometric
considerations and have the reductions of elow that we want.

When A contains random entries, the associations from geometry to low modes is
generally not possible, and the construction of P is then based on the information of A
itself rather than on the geometry of the underlying lattice. This leads to general and
powerful methods anyway, as not all matrices are generated from the discretization of a
partial differential equation on a grid. A multigrid construction where P is constructed
based on properties of A itself regardless of the lattice is known as algebraic multigrid,
which we describe now in the context of lattice QCD.

All the developments discussed in the next three chapters revolve around the multi-
grid method DD-αAMG (Domain decomposition aggregation-based αdaptive algebraic
multigrid method [1, 26]), which can be considered as both a code package and a con-
ceptual framework for solving linear systems of equations involving the Dirac matrix.

The sects. 3.3.1, 3.3.2 and 3.3.3 establish, in increasing level of complexity, the main
ingredients of DD-αAMG, and we introduce there some formal statements as well
as some more heuristic motivations on the inner workings of this multigrid method.
Building on this, sect. 3.3.4 presents DD-αAMG in a more compact way, and introduces
the important cycling strategy known as K-cycles.

In chap. 6 we will use the DD-αAMG method to construct our own algebraic multigrid
solver in the context of lattice QED i.e. an AMG solver built for the Schwinger operator
described in sect. 2.5.

3.3.1 Algebraic multigrid in lattice QCD

As described in chapter 2, the Dirac matrix appearing in lattice QCD simulations is
a function of the gauge links (which are an indirect representation, on the lattice, of

34

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

the gauge bosons from QCD in the continuum). The evaluation of the path integral,
as also described in that chapter, is performed via a Monte Carlo procedure, which
leads to the gauge links being random, rendering with this the Dirac operator D to
be a matrix with random entries. This randomness suggests already that algebraic
rather than geometric multigrid is the method of choice to solve the linear equations
appearing in lattice QCD.

As presented in chapter 2, there are different approaches to discretizing the Dirac op-
erator. These different approaches lead to various lattice discretizations and therefore
to different forms of the operator D e.g. Wilson, Twisted Mass, Staggered, and others
[2, 7, 68, 69]. In lattice QCD, adaptive (algebraic) multigrid methods have been es-
tablished as the most efficient methods for solving linear systems involving the Wilson
Dirac operator [20, 26, 103–105], and they have also found their way into other lat-
tice QCD discretizations (e.g. twisted mass [29], staggered [21] and Domain-Wall [22]
fermions). They demonstrate significant speedups compared to conventional Krylov
subspace methods, achieving orders of magnitude faster convergence and insensitivity
to conditioning.

Let us adapt now our notation in order to fit better the one typically used in lattice
QCD discussions of linear solvers (see e.g. [1]).

Definition 3.11.
Let the linear system of equations Dψ = η, n = 12nL and nc < n be given. Assuming
we have full rank linear restriction and prolongation/ interpolation operators

R : Cn → Cnc ,

P : Cnc → Cn

we define a Petrov-Galerkin projection of D, i.e., the coarse grid operator

Dc := RDP, (3.26)

and the corresponding coarse grid correction

ψ ← ψ + PD−1
c Rr

with r = η −Dψ.

The relations in def. 3.11 are, of course, in agreement with our previous introduction
of a two-grid scheme, see eqs. 3.24 and 3.25. The coarse grid correction for a current
iterate ψ restricts the current residual r via R to the subspace, where we solve

Dcec = Rr (3.27)

and transporting the coarse error ec via P back to the original space as a correction
for ψ. In eq. 3.20, one step of coarse grid correction can be summarized as

35

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

ψ ← (I − PD−1
c RD)ψ + PD−1

c Rη (3.28)

with the associated coarse grid error propagation operator (see eqs. 3.21 and 3.25)
being

E = I − PD−1
c RD (3.29)

The operator in eq. 3.29 is a projector. The goal is for this projector to easily remove
low modes, with the high modes being treated by the smoother. We define now the
subspaces relevant to the construction of a good coarse grid correction in eq. 3.29.

Definition 3.12.
Let us define the near kernel as the space spanned by the right eigenvectors belonging to
small (in modulus) eigenvalues of D. By near right kernel we mean the same as near
kernel, and we define near left kernel as the subspace spanned by small left eigenvectors.

As discussed in [26], by choosing range(P) to approximately contain the near right
kernel and range(R) the near left kernel, we have then a good complement between the
two-grid correction in eq. 3.28 and the smoother. A rather geometric interpretation of
the effect of E on different components of the error, and how this can impose conditions
on P and R, can be found in chapter 5 of [3].

We state now a two-level multigrid method, with the same structure as in sect. 3.2.2 but
with the newly introduced notation of this section. Based on numerical experiments
[1], a good choice for the smoother is multiplicative SAP (see alg. 3.2) with red-black
block coloring. We use here M (ν)

SAP to represent this SAP smoother, and in particular
this two-grid scheme uses ν steps of post-smoothing only.

Algorithm 3.5: Two-level V-cycle with post-smoothing
input: ψ, η, ν
output: ψ
r ← η −Dψ1

ψ ← ψ + PD−1
c Rr2

r ← η −Dψ3

ψ ← ψ +M
(ν)
SAP r4

Alg. 3.5 can be recursively extended to a true multigrid method by recursively calling
it every time the coarse-grid solve needs to be performed. As discussed in sect. 3.2.2,
going from fine to coarse grid is motivated by the decomposition elow → ēhigh + ēlow,
which is at the basis of this recursion. In LQCD, the multigrid hierarchy consists of
two or three levels, rendering the coarsest level still quite large and difficult to solve
in some cases. A more thorough discussion of these aspects and the need for a good
coarsest-level solver are presented in chapter 4.

36

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

3.3.2 Aggregation-based prolongation and restriction

An important point concluded in sect. 3.3.1 motivates the construction of R in terms of
P , namely, that range(R) needs to be spanned by the near left kernel of D in order to
have a good complement between smoother and coarse grid correction. Furthermore,
the construction of P itself is motivated by the phenomenon of local coherence.

Local coherence comes from the observation in [13] that eigenvectors belonging to small
eigenvalues of D tend to (approximately) coincide on a large number of lattice blocks
Li (see def. 3.9). More specifically, local coherence means that we can approximately
represent many eigenvectors belonging to small eigenvalues from just a few by decom-
posing them into the parts belonging to each of the lattice blocks19. Local coherence is
the conceptual base for aggregation-based interpolation as constructed in [106, 107] for
general cases. It is of upmost importance in lattice QCD computations [20, 103, 104].
The idea of taking a few eigenvectors and being able to generate many small eigen-
vectors from them resonates with the properties of P discussed before. Hence, we
state it again: range(P) should approximately contain the near kernel of D due to
elow ∈ range(P). We know then that, provided that local coherence holds, we can
then compute a small set of small eigenvectors and then apply the decomposition as
suggested by local coherence such that we obtain as many vectors as necessary in order
to construct P . Of course, it is better to have a sparse form for P , as done in the
following construction.

Definition 3.13.
An aggregation {A1, ...,As} is a partitioning of the set V = L× C × S of all variables
(see def. 3.9). It is termed a lattice-block-based aggregation if each Ai is of the form

Ai := Lj(i) ×Wi

where Lj are the lattice blocks of a block decomposition of the lattice L andWi ⊆ C×S.

The key difference between the decomposition based on lattice blocks as introduced in
def. 3.9 and the one from def. 3.13 is that an aggregate does not have to contain all
spin and color variables, which implies that a lattice block Li can be associated with
more than one aggregate.

By combining the notion of local coherence with this newly introduced concept of
aggregates, we can specify the construction of the interpolation operator as follows:

Definition 3.14.
Consider a set {v1, . . . , vN} ⊆ Cn of so-called test vectors representing the near kernel
and a set of aggregates {A1, . . . ,As}. The interpolation operator P is then defined by
decomposing the test vectors over the aggregates as in fig. 3.3.

Formally, each aggregate Ai induces N variables (i − 1)N + 1, ..., iN on the coarse
system, and we define

Pe(i−1)N+j := IAi
IHAi

vj, for i = 1, . . . , s, j = 1, . . . , N (3.30)

where IHAi
represents the trivial restriction operator for the aggregate Ai, i.e., IAi

IHAi
vj

leaves the components of vj from Ai unchanged while zeroing all others.
19See [13] for a full qualitative analysis of this phenomenon.

37

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Figure 3.3: Construction of P from the decomposition, based on local coherence,
of a few vectors from the near kernel of the Dirac operator. Image taken from
[1].

To avoid stability issues, after constructing P as in def. 3.14 the columns of P are then
orthonormalized locally20. This construction of a sparse interpolation operator is such
that each aggregate can be associated to a single site on the coarse lattice, and the
sparsity and nearest-neighbor structure of Dc = RDP resembles the one of the Dirac
operator at the fine grid.

In a two-level hierarchy, the degrees of freedom per lattice site at the finest level is
12, due to a direct discretization of continuum QCD on the lattice. The number of
degrees of freedom per lattice site at the coarse grid will depend on the choice for the
aggregates, e.g. if we choose the aggregates such that each lattice block is associated
to one aggregate only, then N is the number of degrees of freedom per lattice site in
the coarse lattice.

3.3.3 Petrov-Galerkin approach

We describe now a more precise construction of R as well as a more precise definition of
the aggregates to be considered from here onwards. In sect. 3.3.2, we have concluded
that range(R) needs to be spanned by the smallest left eigenvectors of D. This, in
combination with the relation between right and left eigenvectors of D (see lemma
2.10), leads to the natural choice

R = (Γ5P)H . (3.31)

However, as pointed out in [103], it seems desirable to have R = PH by taking the
special spin-structure of the Dirac operator into account when defining the aggregates.

Definition 3.15.
The aggregation {Ai : i = 1, ..., s} is termed Γ5-compatible if any given aggregate Ai is
composed exclusively of fine variables with spin 0 and 1 or of fine variables with spin 2
and 3.

20For more details on this orthonormalization procedure and more details on the efficient application
of P on vectors, see [1].

38

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

From def. 3.14 and assuming we choose to have a Γ5-compatible aggregation, we can
show that

Γ5P = PΓc5.

where Γc5 acts as the identity on aggregates with spins 0 or 1, and as negative identity
for aggregates with spins 2 or 3.

The following lemma is the last pillar in deciding the kind of aggregates to be used, as
well as the relation between R and P .

Lemma 3.16.
Let the aggregation be Γ5-compatible and P a corresponding aggregation-based prolon-
gation (see def. 3.14) and R = (Γ5P)H . Consider the two coarse grid operators

DPG
c = RDP and Dc = PHDP

Then

(i) Dc = Γc5DPG
c .

(ii) I − PD−1
c PHD = I − P (DPG

c)−1RD.

(iii) DPG
c is Hermitian, Dc is Γc5-symmetric.

(iv) For the field of values F(D) := {ψHDψ : ψHψ = 1}, we have F(Dc) ⊆ F(D).

Proof. A proof of this lemma can be found in e.g. [1].

Therefore, choosing Dc over DPG
c seems to be a “better" choice in the sense that it gives

us coarser representations of the Dirac operator that are closer in their properties to the
finest-level one, rendering a cleaner recursive construction of the multigrid hierarchy,
and with some extra advantages that have been found from numerical experiments21.

Now that we have completely specified the details on the construction of P and how R
relates to P , as well as the construction of the coarse matrix Dc, the last missing piece
is a more detailed specification on how the aggregates are realized (this is, of course,
Γ5-compatible).

Definition 3.17.
Let {Lj : j = 1, ..., nLc} be a block decomposition of the lattice L. Then the standard
aggregation {Aj,τ : j = 1, ..., nLc , τ = 0, 1} with respect to this block decomposition is
given by

Aj,0 := Lj × {0, 1} × C and Aj,0 := Lj × {2, 3} × C

The standard aggregates induce a coarse lattice Lc with nLc sites where each coarse
lattice site corresponds to one lattice block Lj and holds 2N variables with N the
number of test vectors. Hence, the overall system size of the coarse system is nc =
2NnLc . With standard aggregation, Dc = PHDP is such that the coarse lattice points
can be arranged as a 4D periodic lattice and the system represents a nearest neighbor
coupling on the torus.
21For a complete discussion of this choice, see e.g. [1].

39

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

3.3.4 Domain decomposition aggregation-based αdaptive algebraic
multigrid method

With all the ingredients covered in sects. 3.3.1, 3.3.2 and 3.3.3, we can go ahead now and
describe the DD-αAMG method. The description here will be at a rather superficial
level i.e. we will state the algorithms involved in the method and omit further deeper
conceptual considerations as well as comparisons against other implementations of
algebraic multigrid available in the lattice QCD community. For more on all of these
aspects, see [1]. A crucial missing piece from previous sections is how the test vectors
are constructed, which is mentioned in sect. 3.3.4.3.

3.3.4.1 Two-levels DD-αAMG

For the two-level scheme of DD-αAMG, M (ν)
SAP is taken as the smoother, which as

mentioned in sect. 3.3.1 consists of a red-black multiplicative SAP (see alg. 3.2). The
coarse system Dc is obtained as Dc = PHDP , see lemma 3.16. From defs. 3.14 and
3.17, P is an aggregation-based interpolation operator, i.e. the aggregates are from a
Γ5-compatible standard aggregation..

When using two levels, in DD-αAMG the smoother and the coarse grid correction are
combined into a standard V-cycle22 with no pre- and ν steps of post-smoothing so that
the iteration matrix of one V-cycle is given by [1]

C(ν) = M
(ν)
SAP + PD−1

c PH −M (ν)
SAPDPD

−1
c PH . (3.32)

Instead of using this V-cycle as a stand-alone solver, DD-αAMG uses this two-level
method as a right preconditioner of flexible GMRES23 [36], with the preconditioner
matrix given by C(ν) in eq. 3.32

3.3.4.2 Multilevel DD-αAMG

The multilevel approach of DD-αAMG, based on the two-level one from sect. 3.3.4.1,
combines again the red-black multiplicative SAP smoother and the interpolation oper-
ator based on the standard aggregation (see, again, def. 3.17). The operations M (ν)

SAP

and P are taken to be of the same type on all levels in the multigrid hierarchy. We
define now, in more precise terms, this multigrid hierarchy.

Definition 3.18.
Let L be the number of levels employed and denote D1 := D. Furthermore, let nℓ,
ℓ = 1, ..., L be the dimension of the underlying vector space on each level ℓ. Just as in
def. 3.11 we define interpolation operators

Pℓ : Cnℓ+1 → Cnℓ , ℓ = 1, ..., L− 1

which transfer information from level ℓ+1 to ℓ. Accordingly, the operators PH
ℓ transfer

information from level ℓ to ℓ+1. Using these operators we recursively define coarse-level
operators
22See [3] for a description of the different cycling strategies.
23A flexible method is necessary due to the coarse grid being solved via GMRES to very low relative

tolerance, which renders the two-level method non-stationary..

40

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Dℓ : Cnℓ → Cnℓ , Dℓ = PH
ℓ−1Dℓ−1Pℓ−1

for ℓ = 2, ..., L. The complementary smoothers on each level are denoted by

Mℓ, ℓ = 1, ..., L− 1

Having all these ingredients, we call

{(Pℓ, Dℓ+1,Mℓ) : ℓ = 1, ..., L− 1}

a multigrid hierarchy.

When more than two levels are under use, we can choose among several different cycling
strategies. Different cycling strategies can be found in e.g. [1, 36], and the one under
common use in DD-αAMG is known as the K-cycle, as suggested in [108]. A K-cycle
optimally recombines several coarse-level solves, again in a recursive manner. More
precisely, on every level an approximate solution of the coarse-level system is obtained
by a few iterations of a flexible Krylov subspace method (in the case of DD-αAMG
this is flexible GMRES), preconditioned by the K-cycle from level ℓ + 1 to L. A
fundamental difference from the original approach in [108] is that DD-αAMG uses a
stopping criterion based on the reduction of the residual rather than a fixed number of
iterations.

The K-cycle used in DD-αAMG is stated in alg. 3.6.

Algorithm 3.6: K-cycle
input: ℓ, ηℓ
output: ψℓ
if ℓ = L then1

ψℓ ← D−1
ℓ ηℓ2

else3

ψℓ = 0 for i = 1 to µ4

ψℓ ← ψℓ +Mℓ(ηℓ −Dℓψℓ)5

ηℓ+1 ← PH(ηℓ −Dℓψℓ)6

ψℓ+1 ← FGMRES(Dℓ+1, ηℓ+1) with preconditioner = K-cycle7

ψℓ ← ψℓ + Pℓψℓ+18

for i = 1 to ν9

ψℓ ← ψℓ +Mℓ(ηℓ −Dℓψℓ)10

3.3.4.3 Adaptive setup phase in multilevel DD-αAMG

We have now provided, in the previous sections of this chapter, not only a relatively
detailed discussion on all of the necessary elements composing the DD-αAMG method,
but also the specific algorithmic arrangements in the method itself. We have not
explained, though, how we obtain the test vectors, which should approximate low
eigenmodes and are used in the construction of P and R. This is the task of the setup
procedure that we explain now. The setup described in this section corresponds to

41

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

the one currently implemented in DD-αAMG. This is an adaptive procedure (in some
ways, based on [107, 109]; see [1] for these associations, where the connection between
adaptivity and bootstrap AMG as introduced in [107] is discussed in the context of
DD-αAMG), where the method is used to aproximate the near kernel with updates on
the multigrid solver itself as the test vectors improve. Alg. 3.7 contains an algorithmic
description of this setup phase.

Algorithm 3.7: Bootstrap AMG setup
input: smoothing method M , number of iterative phases k
output: Intergrid operators P = RH and coarse grid operator Dc

// Initial phase
Define set of random test vectors W = [w1, . . . , wntv]1

for j = 1, . . . , ntv2

wj ←Mwj3

construct P and Dc from W4

perform initial phase for Dc5

// Iterative phase
for i = 0, . . . , k6

for j = 0, . . . , ntv7

wj ← AMG(wj)8

update P and Dc9

perform iterative phase for Dc10

The larger the value of k at a certain level ℓ in alg. 3.7, the better the test vectors
at ℓ approximate low modes of Dℓ. This improves the quality of the solver at level
ℓ, in the sense of the coarse grid correction at ℓ being a better complement to the
smoother at that same level, which implies in turn a reduction in the iteration count in
the outermost FGMRES at that same level. Based on this and the fact that the setup
phase is in general quite expensive, the number of setup iterations k to be chosen at
different levels in the setup phase depends also on whether we want to solve for a single
right hand side or many. So, when we need to solve for many right hand sides, more
time can be spent on the setup phase to improve the quality of the solver, but when
only one right hand side is provided then the setup phase time needs to be minimized
in combination with the solve time.

We close this whole description of DD-αAMG by displaying its effectiveness over con-
ventional Krylov subspace methods. Fig. 3.4 shows a comparison of two, three and four
levels DD-αAMG versus a very optimized implementation of BiCGStab. The left plot
shows the time for a single solve of a linear system with the Dirac operator, which is de-
pendent on a mass shift m0 ∈ R. This shift is an indicator for the ill-conditioning of the
system i.e. the smaller m0 the more ill-conditioned the matrix. The multigrid method
outperforms the Krylov subspace method by more than two orders of magnitude for
physically relevant mass shifts. We also see that depending on the conditioning, it
is (sometimes) beneficial to use additional multigrid levels. The right plot shows the
same situation, but includes the time spent for the multigrid setup phase. Due to the
bootstrap approach for the setup, the overall cost of the multigrid method is domi-
nated by the setup cost, but is still clearly favorable over BiCGStab by one order of
magnitude.
24Lattice of size 644, m0 = −0.0529 – see [80] for more details on the configuration employed in this

numerical experiment.

42

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

102

103

104

−0.01−0.03−0.05mudmcrit

mdmu

tim
e

to
so

lu
tio

n
(in

se
co

nd
s)

m0

mp oe BiCGStab
2-level DD-αAMG
3-level DD-αAMG
4-level DD-αAMG

102

103

104

−0.01−0.03−0.05mudmcrit

mdmu

tim
e

to
so

lu
tio

n
+

se
tu

p
tim

e
(in

se
co

nd
s)

m0

mp oe BiCGStab
2-level DD-αAMG
3-level DD-αAMG
4-level DD-αAMG

Figure 3.4: Comparing computational cost for solving linear systems with a con-
figuration from a BMW collaboration configuration24 using DD-αAMG and a
Krylov subspace method. The left plot reports on timings for the solve only,
whereas the right plot includes the multigrid setup time. Both plots were gen-
erated on the JUROPA high performance computer from the Jülich Supercom-
puting Centre.

Some more specific details such as odd-even preconditioning, mixed precision and the
solver employed in the blocks solves in the smoother, are introduced later in this thesis
when needed.

3.3.5 DD-αAMG for twisted mass fermions

The DD-αAMG library for clover-improved Wilson-Dirac fermions has been extended
to deal with the clover-improved Wilson-Dirac twisted mass operator [30] (see eq. 2.13).
The conceptual construction of the method in the twisted mass case is the same as the
one outlined in sects. 3.3.4.1 and 3.3.4.2. A critical difference with respect to the
Wilson case is the construction of the coarse-grid operator.

In the same way as explained before, the relation between the prolongator and the
restrictor is R = PH . This leads to a coarsening of the operator in eq. 2.13 of the form

DTM,c = R(D + iµΓ5)P = PHDP + iµPHΓ5P

Now, since the coarsening is done via Γ5-compatible aggregates (see the standard ag-
gregation described in def. 3.17), the prolongator satisfies Γ5P = PΓ5,c, and then

DTM,c = PHDP + iµΓ5,c. (3.33)

The coarse-grid operator shares some properties with the fine-grid one, in particular the
high density of eigenvalues (in absolute value) around the minimum for the DH

TM,cDTM,c

operator. This is challenging for iterative solvers such as Krylov-subspace-based meth-
ods. As described in [30], the operator in eq. 3.33 is generalized in the sense that µ is
allowed to vary, denoted as

DTM,c = PHDP + iδµΓ5,c, δ ≥ 1 (3.34)

43

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

which allows one to artificially decrease the condition number by increasing δ. As
numerical experiments show, this does not substantially increase the iteration count of
the outermost FGMRES but largely decreases the iteration count in the coarsest-level
GMRES. Although, from the same numerical experiments it is seen that, as δ increases,
the density of eigenvalues (in absolute value) of DH

TM,cDTM,c around the smallest ones
increases even further. This makes it harder for GMRES to construct an appropriate
polynomial to approximate the inverse of DTM,c.

44

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Chapter 4
Coarsest level improvements

In adaptive algebraic multigrid implementations for lattice QCD, L = 2 or L = 3
levels are typically used [24, 110] and the coarsest level is usually solved via a Krylov-
subspace-based method, e.g. GMRES, possibly enhanced with a simple preconditioner
and explicit deflation. In a parallel environment, the coarsest level solves suffer from an
unfavorable ratio of communication vs. computation: a processor will have relatively
few components to update, but a matrix vector multiplication will require a relatively
high amount of data to be communicated between neighboring processors. Even more
importantly, the communication cost for global reductions (mainly arising in the form
of dot products) becomes quite large in comparison to computation [1]. As a result,
coarsest level solves usually dominate the cost and can reach up to ∼ 95% of the overall
compute time in some cases. Hence, improving scalability of the coarsest-level solver
is mandatory to improve the scalability of the whole multigrid solver.

In sect. 4.1, we consider a combination of three major techniques to improve the coarsest
level solves:

1. Reducing the number of iterations by preconditioning with operators which do
not require global communication.

2. Reducing the number of iterations by approximate deflation using Krylov recy-
cling techniques.

3. Hiding global communication by rearranging computations.

As it will turn out, these techniques can yield a solver much less sensitive to conditioning
when approaching mcrit (see sect. 4.2.1.3) and improve scalability (see sect. 4.2.1.4).
Furthermore, in the particular case of the twisted mass discretization, they prove to
be useful in eliminating the artificially introduced parameter at the coarsest level (see
eq. 3.34).

The three methods mentioned above are somehow related to Krylov subspace methods.
Due to the large density of eigenvalues around the smallest ones in the case of the
twisted mass discretization, see sect. 3.3.5, solving becomes difficult for Krylov based
methods particularly at the coarsest level. We propose using a different approach in
sect. 4.3, based on an incomplete LU factorization.

45

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Sects. 4.2 and 4.4 present results from Krylov- and LU-based methods, respectively.
Sects. 4.1 and 4.2 are largely based on [111]25. The techniques used in sect. 4.3 come
from collaborative work with Henning Leemhuis, which resulted in his M.Sc. thesis
[112], hence sects. 4.3 and 4.4 are partially based on that thesis.

4.1 Krylov based improvements

This chapter deals exclusively with improvements of the coarsest level solves in adaptive
algebraic multigrid methods. On the coarsest level, if we order odd lattice sites before
even lattice sites, the matrix DL (i.e. the matrix at level ℓ = L, see def. 3.18) has the
structure

DL =
(
Dee Deo

Doe Doo

)
. (4.1)

Herein, Doe and Deo represent the coupling with the nearest neighbors on the lattice.
For the standard Wilson discretization, the diagonal matrices Dee and Doo are just
multiples of the identity. When we include the clover term, Dee and Doo describe a
self-coupling between the variables at each lattice point, i.e. they are block diagonal
with the size of each block equal to ntv, the number of variables per grid points26. If we
take the spin-preserving approach, see def. 3.17, the self-coupling is between variables
of the same spin only, i.e. we actually have two diagonal blocks, each again with size
ntv which now is half the number of variables per lattice site.

In order to solve coarsest level systems

DLψ = η ⇐⇒
(
Doo Doe

Deo Dee

)(
ψo
ψe

)
=
(
ηo
ηe

)
,

the standard approach is to solve the odd-even reduced system

(Dee −DeoD
−1
oo Doe)ψe = ηe −DeoD

−1
oo ηo

for ψe with a Krylov subspace method like GMRES, possibly enhanced with a deflation
procedure, and then retrieve ψo = D−1

oo (ηo −Doeψe) [1].

For future reference we denote

Dc = Dee −DeoD
−1
oo Doe (4.2)

the odd-even reduced matrix of the system at the coarsest level. For each lattice site,
it describes a coupling with the variables from the 48 even lattices at distance 2. This
is why Dc is not formed explicitly – a matrix-vector multiplication with Dc is rather
done by using the factored form (4.2), where each multiplication with Deo and Doe

involves the 8 nearest neighbor sites only. Since Doo and Dee are diagonal across the
the lattice sites, multiplying with them does not involve other lattice sites, and the

25A paper on our work to improve the coarsest-level of DD-αAMG via Krylov-based methods will
soon be uploaded to arXiv.

26At the end of sect. 3.3.3 we labeled this quantity as N , being this the number of test vectors used
in connecting level L− 1 to L.

46

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

explicit computation of their inverse boils down to compute inverses of the local, small
ntv × ntv diagonal blocks they are made up from.

The GMRES, introduced in sect. 3.1.2.2, is the best possible method to solve

Dcx = b,

The GMRES method relies on the Arnoldi process. The Arnoldi process introduced in
alg. 3.3 relies on modified Gram Schmidt [36]. We presented now in alg. 4.1 based on
classical Gram Schmidt

Algorithm 4.1: Arnoldi process
Data: (residual) vector r0, matrix A, dimension k
Result: orthonormal matrix Vk = [v1| · · · |vk] ∈ Cn×k, and Hessenberg matrix

H̄k = (hij ∈ C(k+1)×k.
β = ∥r0∥2;1

v1 = r0/β;2

for j = 1, . . . , k3

for i = 1, . . . , j4

hi,j = (Avj, vi);5

wj = Avj −
∑j
i=1 hi,jvi;6

hj+1,j = ∥wj∥2;7

if hj+1,j = 0 then8

STOP9

vj+1 = wj/hj+1,j;10

Lines 4-6 in the Arnoldi process orthogonalize Avj against v1, . . . , vj. This is done with
the classical Gram-Schmidt procedure. It is known that the following mathematically
equivalent modified Gram-Schmidt procedure (as used in alg. 3.3) which uses the
partially orthogonalized vector wj for the computation of the hi,j is numerically more
stable.

for j = 1, . . . , k1

wj = Avj;2

for i = 1, . . . , j3

hi,j = (wj, vi); wj = wj − hi,jvi;4

When using classical Gram-Schmidt as in alg. 4.1 on a parallel computer, the compu-
tation of the k inner products can be fused into one single global reduction operation.
This represents a substantial saving when the computational work load per process is
small, as it is typically the case when solving systems with the coarsest grid marix Dc.
Stability is a minor concern, since very inaccurate solves on the coarsest level typically
are sufficient, reducing the initial residual by just one order of magnitude. However,
the number of iterations required is nonetheless high (some hundreds or even thou-
sands). This makes GMRES increasingly inefficient, since the orthogonalizations in
the Arnoldi process require k vector-vector operations in step k, eventually becoming
far more costly than the matrix-vector multiplication. This is why, usually, GMRES
must be restarted, as explained in sect. 3.1.2.2.

47

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

In the context of restarted GMRES, preconditioning becomes useful (see sect. 3.1.2.3),
and in this chapter we use it to improve scalability by trading global reductions against
increased local computations. In sect. 4.1.0.1 we describe how we use a left block
diagonal preconditioner to accomplish this, and then in sect. 4.1.0.2 we use a right
preconditioner.

Furthermore, we explore the interplay of those preconditioners with a deflation+recycling
method, specifically GCRO-DR [32], in sect. 4.1.0.3. Both preconditioners allow for a
reduction of the iteration count in coarsest-level solves with the immediate advantage of
having less dot products at that level but at the expense of an increase in local work (i.e.
matrix-vector multiplications), particularly for the polynomial preconditioner. More-
over, preconditioning tends to cluster the spectrum of the preconditioned matrix such
that the number of small eigenmodes becomes small. It is particularly in such situ-
ations that deflation achieved using GCRO-DR can yield substantial accelerations of
convergence, since the deflation will damp the influence of these small eigenmodes. A
minor computational drawback of using deflation+recycling is that recycling vectors
have to be constructed, which requires additional work, and they are then deflated
via projection in each Arnoldi iteration. But those deflations can be merged with the
Arnoldi dot products when using classical Gram Schmidt. This increases the risk of
instability, but, as explained before, the coarsest level can be solved with low accuracy.

Finally, in sect. 4.1.0.4 we integrate pipelining with the algorithms obtained so far as
a means to hide global communications and thus further improve scalability of the
coarsest level solves.

4.1.0.1 Block diagonal preconditioner

Left preconditioning uses a non-singular matrix B to transform the original system
Dcx = b into

B−1Dcx = B−1b. (4.3)

GMRES is now applied to this system. This means that in each iteration we now
have a multiplication with B−1Dc, which is done as two consecutive matrix-vector
multiplications. This is why multiplication with B−1 should be easy and cheap in
computational cost. We took B to be an approximate block Jacobi preconditioner.
More precisely B is the bock diagonal of Dee, where each ntv × ntv diagonal block
Bi corresponds to all variables associated with lattice site i. We compute B−1

i once
for each i, and then perform the matrix vector products with B−1

i as direct vector
products. This is computationally more efficient than computing an LU -factorization
of Bi and then perform two triangular solves each time we need to multily with B−1

i .
Note that all multiplications with B−1

i can be done in parallel and they do not require
any communication if we — as we always do — keep all variables for a given lattice
site on one processor.

The diagonal blocks of Dee are not identical to those of Dc, and one might expect
to obtain a more efficient preconditioner when using those of Dc. Computing the
part of DeoD

−1
oo Doe contributing to each diagonal block of Dc can, in principle, be

done in parallel, but it requires inversions of Doo and communication with neighboring
processes due to the couplings present in Deo and Doe. Limited numerical experiments

48

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

suggest that the additional benefit of incorporating this part into the block diagonal
preconditioner is moderate, so that we used the more simple-to-compute preconditioner
which works exclusively with the block diagonal of Dee. Further numerical experiments
(see sect. 4.2) indicate that this block preconditioner gives a reduction by a factor of
roughly 1.5 in the iteration count in some cases, with very little extra computational
effort. It has no effect if there is no clover term, since then the diagonal blocks are all
multiples of the identity.

4.1.0.2 Polynomial preconditioner

Right polynomial preconditioning for the system Dcx = b amounts to fixing a polyno-
mial q such that q(Dc) is an approximation to D−1

c and then solving

Dcq(Dc)y = b

for y using GMRES, transforming back after convergence via the back transformation
xk = q(Dc)yk. This implies that we have

xk ∈ x0 +Kk(Dcq(Dc), r0),

and xk is such that the residual rk = b − Dcxk is minimized over the space x0 +
Kk(Dcq(Dc), r0). If q has degree µ − 1, we invest kµ matrix-vector multiplications
to build the orthonormal basis of Kk(Dcq(Dc), r0), a space of dimension k, in the
Arnoldi process. With the same effort in matrix-vector multiplications, we can as
well build the kµ-dimensional subspace Kµk(Dc, r0) which contains Kk(Dcq(Dc), r0).
This shows that for the same amount of matrix-vector multiplications, the residual
of the k-th GMRES iterate of the polynomially preconditioned system can never be
smaller than that of the µk-th iterate of standard GMRES. In other words, polynomial
preconditioning reduces the iteration count while possibly increasing the total number
of matrix-vector products. Polynomial preconditioning can nevertheless be attractive
for two reasons: The first is that the above trade-off can be reversed in the presence
of restarts. Standard GMRES is slowed down due to restarts; so if the polynomial
preconditioner is good enough to allow to perform preconditioned GMRES without
restarts, we might end up with less matrix-vector multiplications. The second is that
costs other than the matrix-vector products may become dominant. At iteration k, k
inner products and k vector updates are performed in the Arnoldi process. In a parallel
computing framework, these inner products, which require global communication, may
become dominant for already quite small values of k, while very often matrix-vector
products exhibit better potential for parallelization and display much more promising
scalability profiles compared to inner products. This even holds if we use the less
stable standard Gram-Schmidt orthogonalization within Arnoldi which allows to fuse
all k inner products into one global reduction operation as explained after alg. 4.1.

We give an indicative example: assume that q has degree 3 and that we need 100
iterations with polynomially preconditioned GMRES. This amounts to 400 matrix-
vector multiplications and 100 global reduction operations (for fused inner products).
Assume further that with standard GMRES we need 200 iterations, i.e. 200 matrix
vector multiplications and 200 global reductions. So the additional matrix-vector mul-
tiplications in polynomial preconditioning are more than compensated for by savings in

49

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

global reductions as soon as those take more time than two matrix-vector multiplica-
tions. Furthermore, the polynomially preconditioned method also saves on the vector
operations related to the orthogonalization.

Several types of polynomial preconditioners have been suggested in the literature, based
on Neumann series, Chebyshev polynomials or least squares polynomials [113], e.g.
These approaches typically rely on detailed a priori information on the spectrum of the
matrix and its boundaries. Recently, [33, 34], based on an idea from [35], showed that
polynomial preconditioning with a polynomial obtained from a preliminary GMRES
iteration can yield tremendous gains in efficiency when computing eigenpairs. We will
use their way of adaptively constructing the polynomial for the preconditioner as we
explain now.

In standard GMRES, an iterate xµ ∈ x0+Kµ(Dc, r0) can be expressed as x0+qµ−1(Dc)r0
with qµ−1 a polynomial of degree µ−1, and thus rµ = b−Dcxµ = (I−Dcqµ−1(Dc))r0 =:
pµ(Dc)r0. Since rµ is made as small as possible in GMRES, we can consider the
polynomial qµ−1 to yield a good approximation qµ−1(Dc) to D−1

c . Strictly speaking,
this interpretation only holds as far as the action on the vector r0 is concerned, but we
might expect this to hold for the action on just any vector if r0 is not too special like
a vector with random components, e.g.

As is explained in [34, 114], the polynomial qµ−1 can be constructed from the harmonic
Ritz values of Dc with respect to the Krylov subspace Kk(Dc, r0). These are the
eigenvalues θi of the matrix

(Hµ + h2
µ+1,µfe

T
µ), (4.4)

with Hµ and hµ+1,µ from the Arnoldi process, alg. 4.1, and f = H−Hµ eµ [115]. The
polynomial pµ(t) = 1− tqµ−1(t) with rµ = pµ(Dc)r0 is then given as

pµ(t) =
µ∏
i=1

(
1− t

θi

)
, (4.5)

and since qµ−1 interpolates the values 1
θi

at the nodes θi, eq. 4.5 gives, after some
algebraic manipulation, a representation for qµ−1 similar to the Newton interpolation
polynomial formula as

qµ−1(t) =
µ∑
i=1

1
θi

i−1∏
j=1

(
1− t

θj

)
. (4.6)

Here, by convention, the empty product is 1.

With this representation we can compute qk−1(Dc)v using µ−1 matrix-vector products
by summing over accumulations of multiplications with I − 1

θj
Dc.

Leja ordering

The representation in eq. 4.6 depends on the numbering which we choose for the har-
monic Ritz values θi while, of course, mathematically qµ is independent of the ordering.
In numerical computation, however, the ordering matters due to different sensitivities
to round-off errors. If Dc is not very well conditioned, the range of 1/θi may cover
several orders of magnitudes so that it is important not to have all the big or all the

50

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

small values appear in succession [35]. An ordering choice that works well for a wide
variety of cases is the Leja ordering [116]. An algorithm to Leja order harmonic Ritz
values is given as alg. 4.2.

Algorithm 4.2: Leja ordering of harmonic Ritz values
Data: Set K = {θk}µk=1 of harmonic Ritz values.
Result: Set {θLk }

µ
k=1 Leja ordered harmonic Ritz values.

Choose θL0 ∈ K such that |θL0 | = max{|θ| : θ ∈ K}1

for k = 2, · · · , µ2

Remove θLk−1 from K3

Determine θLk ∈ K, such that;4

k−1∏
j=1
|θLk − θLj | = max

θ∈K

k−1∏
j=1
|θ − θLj |. (4.7)

Alg. 4.3 summarizes the process of computing and applying the preconditioning poly-
nomial q of degree µ− 1.

Algorithm 4.3: Polynomialy-Preconditioned GMRES(m)
Construct the decomposition DcVµ = Vµ+1H̄µ by running µ steps of the Arnoldi1

process using a random initial vector v0;
Compute the harmonic Ritz values θk of Dc as the eigenvalues of Hµ + h2

µ+1,µfe
T
µ ;2

Leja order the obtained harmonic Ritz values θk;3

Run GMRES(m) using the right preconditioner4

q(Dc) = ∑µ
i=1

1
θi

(
I − 1

θ1
Dc

)
· · ·

(
I − 1

θi−1
Dc

)
.

For the new implementations in DD-αAMG involved in this work we merge the block
diagonal (left) preconditioner with polynomial preconditioning. This means that the
preconditioning polynomial q is constructed using B−1Dc rather than Dc so that the
overall preconditioned system takes the form (see also eq. 4.3)

(B−1Dc)q(B−1Dc)y = B−1b,

x = q(B−1Dc)y.
(4.8)

4.1.0.3 Deflation with GCRO-DR

A typical algebraic multigrid solve will take 10-30 iterations. Depending on the cycling
strategy (see sect. 3.3), each iteration will require one or more approximate solves on
the coarsest level. In DD-αAMG as in other multigrid methods for lattice QCD, the
cycling strategy is to use K-cycles [108]. This means that with just three levels we will
have in the order of ten coarsest level solves per iteration, and this number increases
as the number of levels increases. Even when using the preconditioning techniques
presented so far, it usually happens that we need to perform several cycles of restarted
GMRES to achieve the (relatively low) target accuracy required for these solves.

51

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

This is why acceleration through deflation appears as an attractive approach in our
situation. The idea is to use information gathered in one cycle of restarted GMRES to
obtain increasingly better approximations of small eigenmodes of Dc and to use those to
augment the Krylov subspace for the next cycle. Then even better approximations are
computed and used in the follwoing cycle or for the next system solve, etc. Effectively,
this means that small eigenmodes are (approximately) deflated from the residuals, thus
resulting in substantial acceleration of convergence.

Many deflation and augmentation techniques have been developed in the last 20 years
[117, 118], and some of them have already been used in lattice QCD, typically eigCG
[119] in the Hermitian case and GMRES-DR [120] for non-Hermitian problems. For
Hermitian matrices, eigCG mimics the approximation of eigenpairs as done in Lanczos-
based eigensolvers with a restart on the eigensolving part of the algorithm but in
principle no restarts of CG itself. GMRES-DR, on the other hand, is used for non-
Hermitian problems and, similarly to eigCG, it deflates approximations of low modes.
When a sequence of linear systems is to be solved, eigCG can be employed in the
Hermitian case but GMRES-DR in principle is not applicable in that case. Here,
we propose to use GCRO-DR, the generalized conjugate residual method with inner
orthogonalization and deflated restarts of [32].

GCRO-DR combines elements of GMRES-DR [120] and GCRO [121]: it takes deflation
from GMRES-DR, and the inner/outer scheme with a minimization over arbitrary
spaces from GCRO. It is particularly well suited to our situation where we not only
have to perform restarts but also repeatedly solve linear systems with the same matrix
and different right hand sides.

A high level description of one cycle of GCRO-DR with a subspace dimension of m is
as follows27:

1. Extract k < m approximations to small eigenmodes of Dc from the current cycle.

2. Determine a basis u1,uk for the space spanned by these approximate eigen-
modes, gathered as columns of Uk = [u1| · · · |uk] such that Ck = DcUk has or-
thonormal columns c1, . . . , ck.

3. With the current residual, perform m − k steps of the Arnoldi process where
you not only orthogonalize against the newly computed Arnoldi vectors, but also
against c1, . . . , ck. This yields the relation (by imposing Ck = DcUk as well)

Dc[Uk Vm−k] = [Ck Vm−k+1]Gm (4.9)

where

Gm =
[
Ik Bk

0 H̄m−k

]
with Bk = CH

k DcVm−k (4.10)

4. Obtain the new iterate by requiring the norm of its residual to be minimal over
the space spanned by the columns of Uk and Vm−k. This amounts to solving a
least squares problem with Gm ∈ C(m+1)×m.

The very first cycle of GCRO-DR, where we do not yet have approximate eigenmodes
available, is just a standard GMRES cycle of length m. In all subsequent cycles,

27For the complete step-by-step GCRO-DR algorithm, see the appendix in [32].

52

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

including those for solving systems with further right hand sides, the first step above
typically computes the small eigenmodes as the small harmonic Ritz vectors of the
matrix Gm of the previous cycle. We have the option to stop updating the small
approximate eigenmodes once they are sufficiently accurate.

A source of extra work in GCRO-DR compared to GMRES is the construction of
the recycling vectors in U and C from the harmonic Ritz vectors. By the imposition
of Ck = DcUk and via a QR decomposition of a very small matrix (which is done
redundantly in each process without the need for communications), Ck can be efficiently
updated from Uk, so this extra work is relatively small. If the matrix changes from one
linear system to the next, the application DcUk is needed which implies more extra
work, but this is not the case in our solves. Another source of extra work is the deflation
of Ck in each Arnoldi iteration, which is again relatively cheap as the dot products due
to those deflations can be merged with the already existing dot products from Arnoldi
into a single global reduction.

4.1.0.4 Communication hiding: pipelining

An additional way to reduce communication time in the coarsest-level solves, comple-
mentary to what we have discussed so far, is communication hiding, i.e. by overlapping
global communication phases with local computations. In this direction, [37] intro-
duces a pipelined version of the GMRES algorithm which loosens the data dependency
between the application of the matrix vector products and the dot products within
the Arnoldi process. This is achieved by lagging the generation of the data obtained
from the computation of the matrix-vector products from its actual use in the classical
Gram-Schmidt process, so that the proposal vector that gets orthogonalized in a given
iteration is precomputed one or more iterations in the past. The number of “lagging”
iterations is called the latency of the pipelining.

The method (with latency 1) requires the introduction of an extra set of vectors vai ,
devised to store the matrix-vector products which are computed in advance. These
“precomputed vectors” are related to the orthonormal vectors vi from the Arnoldi
process as va0 = v0 and vaj = (A − σjI)vj for j ≥ 1. Here, σj ∈ C can be chosen
arbitrarily, and judicious choices contribute to maintain numerical stability. In our
particular implementations we have chosen the σj coefficients to be zero since stability
never was problematic due to the low relative tolerance required for the coarsest-level
solves.

While this approach allows to hide global communications in Gram-Schmidt orthog-
onalizations behind local vector update operations, it does not so for the global com-
munication required when normalizing the thus orthogonalized vector wj to obtain the
final orthonormal vector vj+1.

In order to address this concern, it was observed in [37] that this communication can
be avoided if instead we compute ∥Avj∥2

2 and then use

h2
j+1,j = ∥wj∥2

2 = ∥Avj∥2
2 −

j∑
i=1
|hij|2. (4.11)

The computation of ∥Avj∥2
2 can now be done within the same global reduction com-

munication used for the inner products yielding the coefficients hi,j in the classical
Gram-Schmidt orthogonalization.

53

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

It should be mentioned that a possible complication of this approach is that, due to
numerical loss of orthogonality, we might get that ∥Avj∥2

2−
∑j
i=1 |hi,j|2 is not positive,

which results in a breakdown. Even when there is no such breakdown, the above
re-arrangement of terms tends to make the method less stable numerically.

Algorithm 4.4: Latency 1 pipelined preconditioned GMRES
v0 ← r0/∥r0∥21

va0 ← DcMv0, where M is the polynomial preconditioner qµ−1(B−1Dc) (see2

sect. 4.1.0.2), with B−1 the block diagonal preconditioner from sect. 4.1.0.1
for i = 1, . . . ,m3

wi−1 ← DcMvai−14

for j = 0, . . . , i− 15

hj,i−1 ← (vj, vai−1)6

t← ∥vai−1∥2
2 −

∑i−1
k=0 h

2
k,i−17

if t < 0 then breakdown8

hi,i−1 ←
√
t9

vi ←
(
vai−1 −

∑i−1
k=0 vkhk,i−1

)
/hi,i−110

vai ←
(
wi−1 −

∑i−1
k=0 v

a
khk,i−1

)
/hi,i−111

y ← argmin
Hm+1,my − ∥r0∥2e0

212

x← x0 +MVmy13

Alg. 4.4 summarizes the method. Mathematically, it is equivalent to standard GMRES.
As compared to the latter, pipelined GMRES requires more memory to store the extra
set of vectors vai , and it requires more local computation in the form of additional AXPY
operations. The advantage is that the global communications required to obtain the
hj,i−1 coefficients in the outer loop i and ∥vai−1∥2 can be performed in parallel to the
matrix-vector multiplication needed to compute wi−1.

In order to extend the presented approach to GCRO-DR, which includes recycling and
deflation, a new set of pre-computed vectors has to be introduced, specially aimed to
store the matrix-vector plus preconditioner application on the recycling vectors. In alg.
4.5 we represent them by vcj . Fortunately, these vectors need to be re-computed only
when Uk (and by association Ck) changes, which we typically do only for the first few
linear systems in the sequence Dcxi = bi.

The whole coarsest-level solver

We have combined the block diagonal preconditioning with D−1
ee , adaptive polynomial

preconditioning, deflation and recycling via GCRO-DR, and pipelining into a single
implementation for coarsest-level solves within DD-αAMG. The code was implemented
in a modularized way such that the user can enable any combination of these four
methods already during the compilation of the program. The implementation is ready
to use and available at this GitHub repository. At runtime, the execution of the
polynomial preconditioner and GCRO-DR is dynamic in the following sense: if the user
enables the polynomial preconditioner at compile time with a degree of e.g. d = 10,
but the number of iterations at the coarsest level is quite low e.g. 5, then we do not
force the construction of the polynomial and the polynomial preconditioner is kept off.

54

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

https://github.com/JesusEV/DDalphaAMG_ci

Algorithm 4.5: Latency 1 pipelined preconditioned GCRO-DR
r = r0 − CkCH

k r01

v0 ← r/∥r∥2

for j = 0, · · · , k do : vcj = DcMcj end, where M is the polynomial preconditioner3

qµ−1(B−1Dc) (see sect. 4.1.0.2), with B−1 the block diagonal preconditioner from
sect. 4.1.0.1
va0 ← DcMv04

for i = 0, · · · ,m5

wi−1 ← DcMvai−16

for j = 0, · · · , k do : bj,i−1 = (cj, vai−1) end7

for j = 0, · · · , i− 1 do : hj,i−1 = (vj, vai−1) end8

t← ∥vai−1∥2
2 −

∑i−1
k=0 h

2
k,i−1 −

∑i−1
k=0 b

2
k,i−19

if t < 0 then Breakdown10

hi,i−1 ←
√
t11

vi ←
(
vai−1 −

∑i−1
k=0 vkhk,i−1 −

∑i−1
k=0 ckbk,i−1

)
/hi,i−112

vai ←
(
wi−1 −

∑i−1
k=0 v

a
khk,i−1 −

∑i−1
k=0 v

c
kbk,i−1

)
/hi,i−113

y ← argmin
Gm+1,my − ∥r∥2ek+1

, with r = r0 − CkCH
k r014

x← x0 + Ẑy, with Ẑ = [U MVm−k]15

The block diagonal preconditioner and pipelining were not implemented like this, and
if enabled at compile time they are always used during execution.

4.2 Numerical tests: Krylov based

All (Krylov-based) computations were performed on the JUWELS supercomputer from
the Jülich Supercomputing Centre. In most of our tests on JUWELS, one process per
node and 48 OpenMP threads28 per process were used in the JUWELS cluster module.
In Section 4.2.1 we present results for the clover-improved Wilson discretization using
configuration D450r010n1 from the D450 ensemble of the CLS collaboration29 [122].
Section 4.2.2 deals with twisted mass fermions where we use configuration conf.1000
of the cB211.072.64 ensemble of the Extended Twisted Mass Collaboration30 [123]. In
both cases the lattice is of size 128× 643.

4.2.1 The clover-improved Wilson operator

With the inclusion of new algorithms at the coarsest level, new parameters for these
algorithms need to be tuned, which we do in sect. 4.2.1.1. Once this is done, we
test how the whole solver is affected by the numerical conditioning of the discretized

28The number of threads per MPI process can be varied in some cases and for example a value of 20
might be better in certain situations where the number of nodes is extremely large and the work
per thread is very small such that the thread barriers start becoming significant. We take this into
consideration in sect. 4.2.1.2.

29Provided to us by Tomasz Korzec and Francesco Knechtli, both part of the physics department at
Bergische Universität Wuppertal.

30Provided to us by Jacob Finkenrath, who is part of CaSToRC at the Cyprus Institute.

55

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

operator by varying the mass parameter. Moreover, we perform some scaling tests of
the whole solver.

The block diagonal preconditioner of sect. 4.1.0.1 is always used in all experiments
here. It comes at very little extra computational cost, but can give a reduction of up
to about 1.5 in the iteration count at the coarsest level, as can be seen from tab. 4.1.
Furthermore, numerical tests in MATLAB indicate that there is not much difference
in the reduction in the iteration count due to the use of the BDP when using the block
diagonal of Dc instead of Dee, hence we continue using Dee here.

m0 without BDP with BDP
-0.3515 21 15

-0.35371847789 35 26
-0.354 40 28
-0.3545 52 37

Table 4.1: Effect of the block diagonal preconditioner (BDP) on coarsest-level
solves in DD-αAMG, where we have the BDP as the only preconditioner of
GMRES. The second and third columns are average number of iterations at the
coarsest level in the solve phase. We have used configuration D450r010n1 here
with different values of m0.

4.2.1.1 Tuning parameters

The set of default parameters in our solves can be found in tab. 4.2 (see [1, 27] for
more on these parameters).

ℓ = 1 restart length of FGMRES 10
relative residual tolerance 10−9

number of test vectors 24
size of lattice-blocks for aggregates 44

pre-smoothing steps 0
post-smoothing steps 3

Minimal Residual iterations 4
boostrap setup iterations 4

ℓ = 2 restart length of FGMRES 5
maximal restarts of FGMRES 2

relative residual tolerance 10−1

number of test vectors 32
size of lattice-blocks for aggregates 24

pre-smoothing steps 0
post-smoothing steps 2

Minimal Residual iterations 4
boostrap setup iterations 3

ℓ = 3 restart length of GMRES 60
maximal restarts of FGMRES 20

relative residual tolerance 10−1

Table 4.2: Base parameters in our DD-αAMG solves.

56

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

In addition to this set of parameters, there are two more that need to be tuned in order
to minimize the total execution time of the solves. These parameters are:

• k: number of recycling vectors i.e. dimension of the recycling subspace in GCRO-
DR.

• d: degree of the polynomial employed as polynomial preconditioner.

• u: the number of times we update the recycling subspace information represented
by U and C. After u updates, we continue to use the last U and C in all further
restarts and all further solves with new right hand sides.

The performance dependence on u shows initial gains for smaller values of u with only
marginal progress for already only moderately large values. This is why we fixed u = 10
in all our experiments.

Figure 4.1: Tuning of the parameters k and d . The color of each square in
the heatmap from the left represents the total execution time of the whole DD-
αAMG solver, while the right corresponds to the time spent at the coarsest level.
The configuration was for a lattice of size 128×643; we used 32 nodes with 48
OpenMP threads, each. All these computations were done for m0 = −0.355937
(i.e. the most ill-conditioned case in fig. 4.2). The darkest boxes in the heatmap
on the left all represent times larger than 200 seconds for d = 0 and around
92 seconds for (k, d) = (0, 4). The numbers in the boxes on the right indicate
the average number of iterations at the coarsest level during the whole multigrid
solve.

With a 128 × 643 lattice and with u = 10 fixed, fig. 4.1 displays the execution time
for the solve phase in DD-αAMG for a cartesian product of (k, d) pairs. The choice
k = 0, d = 0 (left upper) corresponds to no polynomial perconditioing and no deflation.
We see that the choice d = 4, k = 25 gives more than a factor of 18 improvement over
this case, and that choices for k, d in the neighborhood of this optimal pair affect the
execution time only marginally. As a rule, smaller values of k should be preferred as
a low value of k reduces the risk of inducing instabilities (due to having deflation and
Arnoldi dot products merged, see sect. 4.1.0.3). From fig. 4.1 we see that d = 4 and
d = 8 are equally good in the particular tests that we have run.

57

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

4.2.1.2 Pipelining

Nproc Nthr with pipel. without pipel.
128 20 5.02 4.56
256 20 3.18 2.98
512 10 2.7 2.6
1024 10 2.18 2.0

Table 4.3: Effect of pipelining on the whole DD-αAMG solver. We have used
configuration D450r010n1 here with m0 = −0.355937.

Table 4.3 gives a comparison of the total execution time for one DD-αAMG-solve
without and with pipelining in the preconditioned GCRO-DR solves on the coarsest
level. As we see, pipelining always increases the execution time by up to 10%, even for
larger number of processors.

Nproc Nthr pipel. mvm mvm-w. glob-reds
256 20 OFF 0.638 0.127 0.235
512 10 OFF 0.687 0.210 0.259
1024 10 OFF 0.606 0.144 0.33
256 20 ON 0.964 0.331 0.0558
512 10 ON 0.901 0.294 0.0614
1024 10 ON 1.050 0.468 0.0896

Table 4.4: Execution times for parts of the coarse grid solves with and without
pipelining. Times in last three columns are in seconds.

To understand this behavior better, we timed the relevant parts of the computation
and communication on the coarsest level for our MPI implementation on JUWELS.
The results are reported in Table 4.4. Here, for different numbers Nproc of processors
and Nth of threads, we report three different timings: mvm refers to the time spent
in one matrix-vector multiplication (arithmetic plus communications), mvm-w is the
time processors spent in an MPI-wait for the communication related to the matrix-
vector multiplication to be completed. Note that DD-αAMG uses a technique from
[124] that aims to overlap computation and communication as much as possible for the
nearest neighbor communication arising in the matrix-vector multiplication. Finally,
glob-reds reports the time processors wait for the global reductions to be completed.
We see that these wait times are indeed almost entirely suppressed in the pipelined
version. However, we also see that we do not succeed to hide the communication
for the global reductions behind the matrix-vector multiplication, since the time of
the latter is increased when pipelining is turned on. We conclude that on JUWELS
and with the MPI implementation in use, the communication for global reductions
and for the matrix-vector multiplication compete for the same network resources, thus
counteracting the intended hiding of communication. We anticipate that pipelining will
pay off in situations where the matrix-vector multiplications present in the polynomial
preconditioner can be done in a non-synchronized manner, so that the mvm-wait times
are almost reduced to zero. We hypothesize that this can be achieved in a manner
similar to what is called communication avoiding GMRES [125], whereby one exchanges
vector components which belong to lattice sites up to a distance k in one go and then
can evaluate polynomials up to degree k in A without any further communication.

58

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

m0 old new
−0.355770 19 19
−0.355815 23 19
−0.355850 26 20
−0.355895 29 20
−0.355937 30 20

Table 4.5: Number of iterations of the outermost FGMRES in DD-αAMG as m0
moves down to more ill-conditioned cases.

Implementing this approach is a major endeavor, though, and out of scope for this
thesis.

4.2.1.3 Shifting m0

With the number of processes fixed at 128, we now shift the mass parameter m0 to
see how much the new coarse grid solver improves upon the old when conditioning of
the Wilson-Dirac matrix changes. Results are given in fig. 4.2. Pipelining is turned
off for these tests and we put k = 25, d = 4 throughout. Our experiments show
that the improvements due to the new coarse grid solver are close to marginal for
the better conditioned matrices, but that they become very substantial in the most
ill-conditioned cases. Actually, the times for the new solver are almost constant over
the whole range for m0, whereas the times for the old one increase drastically for the
most ill-conditioned systems. The left dotted vertical line, located very close to -0.356,
represents the location of mcrit i.e. the value of m0 for which the Dirac operator becomes
singular.

Old
New

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

20

40

60

80

100

m0
−0,356 −0,355 −0,354 −0,353 −0,352 −0,351

Old
New

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

20

40

60

80

100

m0
−0,3562 −0,356 −0,3558 −0,3556

Figure 4.2: Total execution time of the solve phase in DD-αAMG as the system
becomes more ill-conditioned (i.e. as m0 becomes more negative). The vertical
dashed line closest to -0.354 represents the value with which the Markov chain
was generated and the vertical dashed line closest to -0.356 represents mcrit.
The right plot zooms into the region where the old version of the solver does not
perform well.

In Table 4.5 we summarily report an interesting observation regarding the setup of
DD-αAMG. According to the bootstrap principle, the setup performs iterations in
which the multigrid hierarchy is improved from one step to the next. In ill-conditioned

59

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

situations, the solver on the coarsest level might stop at the prescribed maximum of
possible iterations rather than because it has achieved the required accuracy. This
affects the quality of the resulting final operator hierarchy. The table shows that for
a given comparable effort for the setup, the one that uses the improved coarse grid
solvers obtains a better overall method, since the coarsest systems are solved more
accurately.

4.2.1.4 Strong scaling

Figure 4.3 reports a strong scaling test for both the old and the new coarse grid solves
within DD-αAMG. We see that the new version improves scalability quite substantially,
due to the better scalability of the coarse grid solve. This is to be attributed to the fact
that the new coarse grid solver reduces the fraction of work spent in inner products
and thus global reductions which start to dominate for large numbers of processors.
Still, we do not see perfect scaling, one reason being that after some point the wait
times occurring in the matrix-vector multiplications become perceptible.

Old
New

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

1

10

100

1000

number	of	processes
100 1000

Figure 4.3: Strong scaling tests on Wilson fermions for the new coarsest-level
additions. The solves were applied over a 128×643 lattice. Old means the previ-
ous version of DD-αAMG without the coarsest-level improvements introduced in
this chapter, and the vertical axis represents the whole solve time. The dashed
lines indicate how both cases would behave in case of perfect scaling. All these
computations were done for m0 = −0.355937 (i.e. the most ill-conditioned case
in fig. 4.2).

We have mentioned before the need to tune the number of OpenMP threads when
going to a very large number of processes. Indeed, as the work per OpenMP thread
becomes quite small, then thread barriers start becoming problematic from a computa-
tional performance point of view. The results presented in fig. 4.3 already include this
tuning: for 32 and 64 process we used 48 OpenMP threads per process, for 128 and
256 we switched to 20 threads, and finally for 512 and 1024 we rather used 10 threads.
Pipelining has been kept off for these scaling tests.

We ran another strong scaling test with m0 = −0.35371847789 i.e. the value of the
mass parameter originally used for the generation of the ensemble. The results of this

60

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Old
New

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

1

10

number	of	processes
100 1000

Figure 4.4: Strong scaling tests on Wilson fermions for the new coarsest-level
additions. The solves were applied over a 128×643 lattice. Old means the previ-
ous version of DD-αAMG without the coarsest-level improvements discussed in
this chapter, and the vertical axis represents the whole solve time. The dashed
lines indicate how both cases would behave in case of perfect scaling. All these
computations were done for m0 = −0.35371847789.

are shown in fig. 4.4. The coarsest-level improvements did not bring visible gains to the
whole solver execution time, which is due to having a quite well-conditioned coarsest
level. We also note that the new and old versions of the solver match in this case and
for any other relatively well-conditioned value m0, which gives consistency to the new
implementation with respect to the old one.

4.2.2 The twisted mass operator

We now turn to the twisted mass discretization, eq. 2.13, where the parameter µ
“shields" the spectrum away from 0 in the sense that the smallest singular value of
DTM is

√
λ2
sm + µ2 with λsm the smallest eigenvalue in absolute value of the sym-

metrized clover-improved Wilson Dirac operator D. This is, in general, algorithmically
advantageous, but eigenvalues now have the tendency to cluster around the smallest
ones [68].

There is an extension of DD-αAMG that operates on twisted mass fermions [30]. In
that version, the twisted mass parameter µ remains, in principle, propagated without
changes from one level to the next. On the coarsest level, the clustering phenomenon
of small eigenvalues is particulalry pronounced, resulting in large iteration numbers of
the solver at the coarsest level. A way to alleviate this is to use, instead of µ, a multiple
µc = δ · µ with a factor δ > 1.0 on the coarsest level. As was shown in [29], this can
decrease the required number of iterations substantially.

We used configuration conf.1000 of the cB211.072.64 ensemble of the Extended Twisted
Mass Collaboration [123]. The lattice size is 128×643 and µ = 0.00072. Different values
of µc lead to a different spectrum at the coarsest level, and therefore for each different
value of µc a new tuning of the new coarsest-level parameters u, k and d has to be

61

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

performed. We tuned parameters in a similar way as we described before for Wilson
fermions. For δ = 8.0, δ = 16.0 and δ = 20.0, u = 5 was found to be sufficient, with
k = 35 and d = 2 being optimal values. Also, we have used, in the twisted mass
case in this section, the same DD-αAMG base parameters used in the Wilson case (see
tab. 4.2).

(a)

total	(old)
total	(new)
coarsest(old)
coarsest	(new)

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

10

2

5

20

number	of	processes
10050 200 500

(b)

mu=20.0	(old)
mu=20.0	(new)
mu=16.0	(old)
mu=16.0	(new)
mu=8.0	(old)
mu=8.0	(new)

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

10

20

number	of	processes
10050 200 500

Figure 4.5: Strong scaling tests on twisted mass fermions for the new coarsest-
level additions. Left: µc = 8.0, comparing the previous version of DD-αAMG
(old) with the one including coarsest-level improvements (new), and total repre-
senting the whole solve time. Right: strong scaling plus running over different
values of µc, with only total (and not coarsest) times plotted.

We ran strong scaling tests31 with the three different values of µc stated above. The
results are shown in fig. 4.5. The left plot, which is for µ = 8.0, shows the impact of
the coarsest-level improvements on the overall performance of the solver. For example,
the execution time for the coarsest level and for the whole solve are reduced by a factor
of around 3 and 2, respectively, when using 512 nodes. Moreover, the scalability of
the whole solver improves, as the coarsest level time now represents a smaller portion
of the whole solver time, and the coarsest level itself scales better in part due to the
polynomial preconditioner.

In the right plot of fig. 5.5 we compare the scaling of the whole solver for different
values of µc. For the old coarsest-level solver, the larger µc, the better the scaling of
the whole solver, which agrees with the findings in [29, 30]. This is because we need less
iterations for one coarsest level solve when µc is increased, while at the same time the
total number of iterations for the whole multigrid method is only marginally affected
by the size of µc. With the new improvements, gains are in the order of 10%-40%, and
they are more pronounced for larger numbers of processors and for smaller values of
µc. With the improvements the dependence on µc is reversed: We need less time when
µc becomes smaller. We explain this by an increase in the density of small modes of
the coarsest-level operator, which renders GCRO-DR less effective, as it would require
large values of d to resolve the many low modes of the operator.

This leads to the idea of exploring the coarsest-level improvements for even smaller
values of µc. We did so for δ = 1. In this case, the optimal values for the improved
coarsest level solver were u = 5, d = 10 and k = 80. The improvements over the old
coarsest level solver, which is plain restarted GMRES with a restart length of 100, are
tremendous: The old solver needs on the order of 100,000 iterations to reduce the norm
31We varied the number of OpenMP threads with the number of processes in the same way (and with

the same values) as in the Wilson case.

62

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

of the residual by a factor of 10−1, while including the new features brings this number
down to the order of 100. However, when we compare the fully improved coarsest level
with δ = 1 to plain restarted GMRES with δ = 8, we perform only slightly better in
the sense of overall execution time. Although δ = 1 is not the typical value to use in
conjunction with plain restarted GMRES, we have accomplished bringing δ back down
to 1.0, removing thereafter this artificially introduced parameter. Furthermore, we have
gained up to a factor of 2 in speedup by increasing δ and keeping our coarsest-level
improvements on.

4.3 LU based improvements

The relatively low success of our improvements presented in sects. 4.1 and 4.2 (based
on Krylov subspace methods) in dealing with the very hard coarsest-level solves in
the twisted mass discretization32, has motivated us to use an alternative coarsest-level
solver rather based on direct methods via the MUltifrontal Massively Parallel direct
Solver (MUMPS33) package, which we discuss in the subsequent section.

This section is motivated by [126] and largely based on the master thesis project of
Henning Leemhuis34.

4.3.1 Direct solves via MUMPS

MUMPS [38, 39] is a package for solving sparse linear systems via approximate direct
solves based on Gaussian elimination. It can deal in particular with non-symmetric
complex matrices in single precision, which matches our systems at the coarsest level
of our multigrid hierarchy. Just as in Gaussian elimination, the approximate inverse is
pre-computed once in a setup phase, and then applied as a matrix-vector multiplication
every time a coarsest-level solve is needed. More specifically, MUMPS does this via
three steps:

• Analysis: this consists first of a preprocessing step which takes care of improving
the quality of the linear system (through e.g. pre-defining an initial pivoting),
and second the creation of an assembly tree which defines dependencies between
the unknowns of the linear system and finds dense subproblems. In the former
step, the sparsity pattern of the matrix of the system of equations (in our case
Dc

35) is used to find the best pivots to maintain sparsity of the factors L and
U , and in the latter step data structure for the factorize and solve phases are
created.

• Factorization: after the assembly tree is built and the pivot and data structures
created in the analysis phase, the actual numerical factorization is computed in
this phase.

• Solve: forward elimination and backward substitution are used to approximate
the solution.

32We have been able to bring the µc factor down to 1.0 but at no further gain in performance.
33http://MUMPS-solver.org/
34Who is now a new member of our group as a PhD researcher.
35We will use Dc from hereon to refer to the matrix to be factorized by MUMPS.

63

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

http://MUMPS-solver.org/

MUMPS allows for a hybrid MPI+OpenMP execution, which is in accordance with
the parallel programming model of DD-αAMG. This will be useful in future numerical
tests which fall beyond the reach of this thesis.

A clear disadvantage of direct methods such as Gaussian elimination is that there
is no mechanism for tuning e.g. the relative residual tolerance in our solves, which
might allow us to save unnecessary extra computational work. MUMPS offers such a
mechanism, via a block low-rank (BLR) approximation. When using the BLR method,
MUMPS partitions the matrix Dc in p×p blocks and maps it to an approximation D̃c:

D̃c =

⎛⎜⎜⎜⎜⎜⎝
D̃c,1,1 D̃c,1,2 . . . D̃c,1,p

D̃c,2,1
.

...
D̃c,p,1 . . . D̃c,p,p

⎞⎟⎟⎟⎟⎟⎠ (4.12)

A low-rank approximation can be applied to each off-diagonal block in the form D̃c,i,j =
Xi,jY

H
i,j , with this compression such that ∥D̃c −Dc∥ < ϵ in some norm, and the value

of ϵ allows us to approximately tune the desired tolerance in our solves with Dc.

Since the matrix D̃c consists of several local independent compression steps, the results
of a matrix multiplication D̃c can deviate from the result of Dcx by more than ϵ. Any
global relative residual norm ∥Dcx− D̃cx∥2/∥Dcx∥2 can still be larger than ϵ.

4.4 Numerical tests: LU based

As introduced in sect. 4.1, the coarsest level in DD-αAMG comes with an odd-even
factorization. As implemented in DD-αAMG, all matrix-vector multiplications are
highly optimized and the application of any matrix is encoded in a function that
receives a vector and returns the result of the matrix multiplication, but the matrix
itself is never stored explicitly. In order to use MUMPS, we need to store the coarsest-
level matrix Dc in an explicit sparse format e.g. CRS to provide MUMPS with the
actual matrix. To do this, we first turned off odd-even preconditioning at the coarsest
level and then stored Dc by means of three arrays (rows, columns, values) representing
the matrix in sparse format. This array is accepted by MUMPS.

We ran our MUMPS comparison tests36 on a single node Intel(R) Xeon(R) Platinum
8180 CPU @ 2.50GHz with 56 cores and 1.5 TB or RAM. We ran with 32 processes
and 1 OpenMP thread per process. We tested again with the 128× 643 twisted mass
matrix from sect. 4.2.2. We found that the optimal number of levels when using
restarted GMRES as the coarsest-level solver is three, while when using MUMPS it is
better to use four37. Tab. 4.6 lists the parameters used when solving at the coarsest
level with MUMPS i.e. with four levels, with the unlisted ones having the same value
as in tab. 4.2. When using three levels (i.e. plain restarted GMRES), the DD-αAMG

36These tests were performed in collaborative work with Henning Leemhuis as part of his master
thesis project.

37The main reasons to prefer having four levels over three (i.e. 164 versus 84 coarsest-level lattices)
when using MUMPS are, first, a substantial reduction in the volume of data communicated among
processes when performing the approximate direct solves, and second a large reduction in arith-
metic work done in the factorisation phase of MUMPS.

64

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

parameters are almost the same as in tab. 4.2, except for the ones listed in tab. 4.6 for
ℓ = 1 and ℓ = 2.

ℓ = 1 relative residual tolerance 10−10

boostrap setup iterations 5
post-smoothing steps 3

ℓ = 2 boostrap setup iterations 4
ℓ = 3 restart length of FGMRES 5

maximal restarts of FGMRES 2
relative residual tolerance 10−1

number of test vectors 32
size of lattice-blocks for aggregates 24

pre-smoothing steps 0
post-smoothing steps 3

Minimal Residual iterations 4
boostrap setup iterations 4

ℓ = 4 restart length of GMRES 60
maximal restarts of FGMRES 20

relative residual tolerance 10−1

Table 4.6: Base parameters in our DD-αAMG solves, with MUMPS.

The results of these tests are displayed in tab. 4.7, where the times are all in seconds.
The second column corresponds to plain restarted GMRES as the coarsest-level solver,
while in the third column we have used MUMPS as a preconditioner to GMRES. The
time tℓ is to be interpreted as the time seen from level ℓ, e.g. t3 is the time spent at
level three only, t2 the time spend in the combination of levels two and three, and so
on. The times when using MUMPS are an upper bound in the sense that odd-even
preconditioning has been turned off entirely38 when using MUMPS i.e. it is not even
used in the blocks solves in SAP, which if enabled would give us even lower execution
times in column three.

Numerically, we see the iteration count of GMRES at the coarsest level going from
∼ 400 without MUMPS to 1 when using MUMPS. Also, due to the small coarsest
lattice when using MUMPS, the setup times for MUMPS to analyze and factorize the
38We have done so for simplicity, i.e. some extra coding is required to have odd-even preconditioning

in SAP but not at the coarsest level. This will be of course enabled in a later version of our code.

tℓ Without MUMPS With MUMPS
(δ = 8.0) (δ = 1.0)

t0 2012.8 1347.9
t1 1515.7 920.3
t2 1236.5 450.0
t3 - 176.1

Table 4.7: Execution times for the comparison of MUMPS versus no MUMPS in
coarsest-level solves in a twisted mass gauge configuration with a lattice size of
128× 643. The times are in seconds.

65

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

matrix Dc are relatively small, leading to a reduction in the setup phase of DD-αAMG
time from 11401.2 to 7243.6 seconds.

Coarsest-level solves via MUMPS are certainly promising on a single node, as we have
seen above, and they seem to be the way to go when dealing with the twisted mass
discretization. This motivates us to further explore this approach in the future.

4.5 Outlook on coarsets-level computations

There are further improvements to be done for both approaches presented in this
chapter, i.e. Krylov and LU based. They are all fundamentally important in the
context of large-scale computing, and particularly relevant as current supercomputers
dive more into the exascale. We briefly discuss these now.

Krylov based

An important outcome of the discussion in sect. 4.2.1.2 is the need of a communication-
avoiding scheme in our coarsest-level implementations: as we increase the number of
nodes in our executions, nearest-neighbor communications become a two-fold prob-
lem, first in the sense of its lack of scalability, and second as they interfere with
the global communications trying to be hidden by pipelining. We will implement a
communication-avoiding method, which we expect to have a nice interplay with both
pipelining and the polynomial preconditioner.

A less pressing (but still relevant) improvement consists of evaluating, implementing
and testing the extraction of the actual block-diagonal of Dc, to be used in the block
diagonal preconditioner (see sect. 4.1.0.1) instead of Dee. Our MATLAB tests, on
relatively small lattices, indicate so far that there is no significant algorithmic gain
when using Dc instead of Dee. We would like to further test this on more realistic
lattices.

LU based

From sect. 4.4, see in particular tab. 4.7 in there, MUMPS seems to be a better way of
solving the coarsest-level for twisted-mass fermions, compared to Krylov-based meth-
ods. However, our tests in sect. 4.4 are on a single node, and the BLR approximate
direct solver of MUMPS scales quite badly39 as we increase the number of compute
nodes. Although our Krylov-based methods suffer also as we increase the number of
nodes, the effect is more dramatic in the MUMPS solver that we have used here.

The concept of agglomeration can be introduced in multigrid methods40, to improve
the scalability of the overall solver. The core idea behind agglomeration is quite simple:
run coarser levels on less nodes than finer ones. In particular, one can choose to apply
agglomeration at the coarsest-level only. In the particular case of using MUMPS at the
coarsest-level in DD-αAMG, agglomeration might allow us to scale well up to a large

39Neither its factorisation phase nor its solve phase scale well.
40See [126] for a discussion on agglomeration and examples of its use.

66

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

number of nodes, without the different stages of MUMPS having to necessarily scale
well.

Furthermore, we will apply agglomeration in combination with our Krylov-based meth-
ods as well, in particular for twisted-mass solves, which might bring an additional
performance in that case.

Our upcoming work involving agglomeration and MUMPS in DD-αAMG will continue
to be in collaboration with Henning Leemhuis, as one of the topics in his PhD research.

All the DD-αAMG improvements, associated to the twisted mass discretization, will be
directly useful in hybrid Monte Carlo computations performed by the Extended Twisted
Mass Collaboration. As for the improvements related to the clover-improved Wilson
operator, we plan to run a comparison of the current state of the solver in OpenQCD,
against our latest DD-αAMG, in lattice QCD computations via distillation, this in the
context of the PhD work of Juan Urrea (under the supervision of Prof. Dr. Francesco
Knechtli at Bergische Universität Wuppertal).

67

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Chapter 5
Hybrid GPU/CPU DD-αAMG

With the currently fast and ongoing evolution of Graphic Processing Units (GPUs) and
High Performance Computing hardware in general, computational science applications
are seeing much faster and energy-efficient implementations for some of its most de-
manding large-scale computations. Such applications go from Machine Learning [127]
to collisions in molecular dynamics [128], and lattice QCD is also one of them. One of
the main efforts in using heterogeneous computing for lattice QCD computations is the
QUDA library41 [129], through which one can perform calculations in lattice QCD on
GPUs via NVIDIA’s CUDA platform. The smoother in the multigrid solver within the
QUDA library can be chosen from multiple options, the best one for scalability being
either an additive or multiplicative SAP, where the SAP domain-decomposition blocks
are of the size of the local lattice i.e. the lattice size per MPI process. In sect. 5.3.1 we
show how having the SAP domain decomposition match the process decomposition is
not the best option for efficiency.

Furthermore, the multigrid solver in the QUDA library offloads operations at all levels
of the multigrid hierarchy to be computed on GPUs. The efficiency problems at the
coarsest level described in chapter 4 can be particularly apparent when using GPUs, in
two ways. First, as finest-level operations are computed faster on GPUs, the coarsest
level is more exposed. Second, if all levels are computed on GPUs, then scalability
issues are coming not only from large communication times on coarser levels, but also
due to the very little data being used for computations on them42. Our contribution in
this chapter consists of a hybrid solver where some finest-level operations of DD-αAMG
are done on GPUs and coarser levels run on CPUs.

The remainder of this chapter is organized as follows. A short reminder on the role that
smoothers play in DD-αAMG is given in sect. 5.1. Some details regarding offloading
smoothers to GPUs are presented in sect. 5.2. Then, results of numerical tests on the
finest-level smoother alone and the GPU-boosted DD-αAMG solver as a whole are
shown in sect. 5.3, where we talk about aggressive coarsening as a way to use GPU
resources better and to improve the scalability of hybrid GPU+CPU solvers in lattice
QCD. All of the implementations for this chapter were done within the DD-αAMG
library for clover-improved Wilson fermions [1].

41See https://github.com/lattice/quda
42The less the number of lattice sites involved in GPU computations, the sooner scalability issues will

appear – this happens faster on GPUs than on CPUs due to the lack of a cache memory hierarchy
like the one present on CPUs.

68

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

The nature of this chapter is different compared to previous ones. Here the main
focus is on implementation aspects at a low level e.g. cache efficiency on GPUs and
CPUs, GPU hardware, etc., although we still rely on the conceptual grounds of AMG
introduced in chapter 3.

5.1 SAP in DD-αAMG

Let us now briefly recall the general algorithmic structure of DD-αAMG, with special
emphasis on the smoother at the finest level.

One iteration of the K-cycle employed by DD-αAMG (see sect. 3.3.4.2) has the struc-
ture given in fig. 5.1, where R and P stand for restriction and prolongation steps,
the blocks labeled with A correspond to Arnoldi operations not detailed further in
the figure, the S blocks are the smoother and the lowest-level black boxes are the
coarsest-level solves.

Figure 5.1: One step of DD-αAMG’s 3-level multigrid (MG).

The smoother (sect. 3.3.4.2) is red-black block Gauss-Seidel i.e. multiplicative SAP,
which on CPUs uses caches in an advantageous manner, matching perfectly the hybrid
distributed+shared programming model (e.g. MPI+OpenMP) used by DD-αAMG and
scales very well with the number of processors on large-scale machines.

The lowest-level black boxes in fig. 5.1 are performed via GMRES in the original
version of DD-αAMG, and can be boosted via the algorithmic combinations described
in chapter 4.

5.2 Schwarz Alternating Procedure on GPUs

5.2.1 Domain Decomposition: GPUs vs CPUs

The SAP algorithm used in DD-αAMG behaves differently, from an efficiency point of
view, if it is implemented either on CPUs or GPUs (although, its algorithmic properties
remain the same). Furthermore, the blocks in SAP are arranged in a red-black fashion
(see sect. 4.1) and the solves with the Schur complement are performed by a few steps
of the minimal residual (MR) algorithm [36], which is mathematically equivalent to
GMRES(1) i.e., restarted GMRES with a cycle length of 1. MR allows us to perform
solves with non-symmetric block-matrices with minimum memory requirements [36].

69

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

5.2.1.1 CPUs

When plain (non-blocked) Gauss-Seidel with coloring is used, one of the main problems
with implementing it “naively” (i.e. no domain-decomposition) is that it does not make
good use of cache. This is one of the main motivations behind preferring SAP over for
example plain Gauss-Seidel when we are trying to develop highly performing scientific
codes [130]. Another motivation for preferring SAP is of course the expected faster
convergence due to more frequent local updates [131].

Let us illustrate this cache-friendliness with some numbers43. If our block-lattice has
dimensions 44 then a single vector living in that lattice has a size of 12×44 = 3072 =
24 KB (in single precision). Due to symmetries and sparsity, the data for the corre-
sponding block-matrix does not have a size of 3072×3072 = 9437184 = 72 MB, but
rather 9×42×44 = 756 KB. MR, as implemented in DD-αAMG, reads/writes roughly
10 vectors and the block-matrix during its execution, which amounts to a total memory
of 10·(24 KB) + (756 KB) = 996 KB. The machine where we perform our numerical
experiments has an L2 cache of size 1024K, which is enough to contain all the data
associated with a whole single block solve.

We present how SAP is realized in a bit more detail in alg. 5.1: launch asynchronous
communications (line 2), then perform all the computations related to the blocks of
color c = 0 (i.e. the first color, let us call this red) not involved in the communications
launched in line 2, and then in the second iteration of the for loop in c compute with
the black blocks also not involved in communications. These initial computations
correspond to lines 7 and 9. Then, after waiting for the communications to finish in
line 10, all those blocks that have not been updated yet are processed in the second
for loop in c.

What is important at this point is to notice that MR in alg. 5.1 is executed on a
single block every time it is called, and that the execution of each block is completely
independent of that of all the other blocks of the same color. This is an interesting
fact if we think about shared memory, because it implies that we can use different
OpenMP threads to process for example all the blocks of a certain color not involved
in communications (this is the way it is actually implemented in DD-αAMG). An ideal
scenario would be if we could process e.g. all of those blocks of a certain color not
involved in communications at the same time, which is unfortunately not possible on
CPUs, but it becomes a good feature when we turn to use GPUs. On CPUs we could
try to get close to this approach (of “fusing” blocks) as much as possible by using
vectorization, but still the inherent serial nature of CPUs makes it impossible.

But although we have to go block-by-block on our per-thread computations in SAP,
the fact that we use blocks small enough to fit in L2 or L3 cache makes the CPU
implementations in DD-αAMG highly well-performing.

5.2.1.2 GPUs

In its CPU implementation, DD-αAMG makes use of MPI and OpenMP for distributed
and shared memory manipulations. At the “lowest” level i.e. for the execution of the

43All of these numbers are associated to the finest-level, where the matrix is D, as defined in eq. 2.11.

70

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Algorithm 5.1: SAP on CPUs
Data: Block (array of domain-decomposition blocks), s (SAP iterations), nb (number

of domain-decomposition blocks)
for k = 1, . . . , s1

for c = 0, 12

StartGhostExchanges()3

for i = 1, . . . , nb4

if Block[i].color==c & Block[i].no_comm then5

// some boundary-related operations on a single block6

BoundaryOpsCPU(Block[i])7

// minimal residual on a single block8

MR(Block[i])9

for c = 0, 110

WaitGhostExchanges()11

for i = 1, . . . , nb12

if Block[i].color==c & Block[i].comm then13

// some boundary-related operations on a single block14

BoundaryOpsCPU(Block[i])15

// minimal residual on a single block16

MR(Block[i])17

// some final operations18

FinalOps()19

fundamental operations (+,−,∗,/) it uses SIMD [132] through SSE for vectorization44.

When we switch to use GPUs, we keep using MPI for distributed memory but we use
SIMT (Single Instruction Multiple Threads [40]) for the fundamental operations.

To get the most performance out of our GPU computations, we have to launch as many
tasks as possible in a single CUDA kernel. By doing this, while some groups of threads
are retrieving memory from device RAM, other threads are computing their tasks. In
this way, reading from device RAM can be hidden behind computations quite well by
massively launching tasks concurrently.

Alg. 5.2 shows the approach that we follow when offloading parts of SAP to GPUs
within DD-αAMG.

Using GPUs for HPC applications has pros and cons. In particular, in the context of
SAP, one disadvantage is that cache-friendliness as we had it for CPUs is gone. To
see this, let us go back to the numbers given in Sect. 5.2.1.1: a single lattice block
requires 324 KB. In some of our numerical experiments, we have used Quadro P6000
GPUs45, which have 3 MB of L2 cache and although this is enough to store all the data
associated with a single lattice block, we do not compute one such block at a time, but
rather a group of them concurrently as can be seen from alg. 5.2.

For example, if we have a local lattice (i.e. per GPU) of dimensions 164 then, with
blocks of dimension 44 we get 256 such blocks. This implies that at some point in SAP
44The use of vectorization is optional i.e. it can be disabled, and its use is of course dependent on

whether the compiler and the hardware allow it.
45See https://www.techpowerup.com/gpu-specs/quadro-p6000.c2865.

71

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

https://www.techpowerup.com/gpu-specs/quadro-p6000.c2865

Algorithm 5.2: SAP on GPUs
Data: Block (array of domain-decomposition blocks), s (SAP iterations), nb (number

of domain-decomposition blocks)
for k = 1, . . . , s1

StartGhostExchanges()2

for c = 0, 13

BlocksList = []4

for i = 1, . . . , nb5

if Block[i].color==c & Block[i].no_comm then6

BlocksList.append(Block[i])7

// some boundary-related operations on a set of blocks8

BoundaryOpsCPU(BlocksList)9

// minimal residual on a set of blocks10

MR(BlocksList)11

WaitGhostExchanges()12

for c = 0, 113

BlocksList = []14

for i = 1, . . . , nb15

if Block[i].color==c & Block[i].comm then16

BlocksList.append(Block[i])17

// some boundary-related operations on a set of blocks18

BoundaryOpsCPU(BlocksList)19

// minimal residual on a set of blocks20

MR(BlocksList)21

// some final operations22

FinalOps()23

we will have to launch over 64 lattice blocks concurrently46, for a total memory larger
than 64×(996 KB) = 62.25 MB. In conclusion, doing things the CPU-way (alg. 5.1)
is no longer a possibility if we want our code to run efficiently on GPUs.

5.2.2 SAP in DD-αAMG on GPUs: implementation details

5.2.2.1 Switching for loops: blocks fusing

The use of GPUs presents, in our case, an important trade-off. We loose cache friend-
liness, but we can take advantage of a related SAP feature: the independence of
domain-decomposition blocks. This enables the launch of all of the concurrent domain-
decomposition block computations at the same time on GPUs. This independence was
of course present as well in alg. 5.1, but on GPUs we have the possibility to actually
launch all of those blocks at the same time.

Both the main advantage and the main downside from using GPUs with respect to
CPUs come from within the call to MR in alg. 5.2:
46The list BlocksList, in alg. 5.2, is filled-up four times: two colors and with/without communi-

cations. In this 164 local lattice that we are describing here, two of those lists will have over 64
blocks, and the other two therefore less than 64.

72

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

• Downside: we have to perform all the operations within MR sequentially i.e.
we take a set of domain-decomposition blocks and run the first operation wihtin
MR, then for the same blocks the next operation and so on. Although we had
the same sequential nature on CPUs, cache friendliness then made things fast,
because after the few first statements within MR all of the block’s information
was already loaded to cache, and therefore the operations became very fast.
However, on GPUs we have to reload everything to cache every time we call a
new statement within MR.

• Advantage: the obvious advantage is that we get the chance to run each statement
within MR for all of the domain-decomposition blocks in parallel, which gives us
very large tasks to run on GPUs and therefore we can get highly performing
executions.

A final downside of using GPUs with respect to CPUs is, again, related to cache
friendliness: when we compute MR we have an extra sequential layer, which is related
to the physical dimension of our problem and appears due to coupling terms. These
terms are those in eq. 2.7 appart from the identity. In other words, some of the
statements within MR consist of eight operations that have to be run one after the
other (4×2 due to physical spatial dimension and possible directions + and −). A
first problem with having so many sequential calls on GPUs (even with each call being
a large task) is that this demands a great deal of hardware synchronization which
decreases concurrency, and a second problem is that when we launch many GPU tasks
we start accumulating overhead due to setup times.

Even with all the issues that appear when switching to GPUs, the fact that we can
launch very large tasks corresponding to many domain-decomposition blocks at the
same time, and without large dot products, outweighs the problems just described,
and we get significant speedups in our computations (see sect. 5.3).

5.2.2.2 CUDA threads, Domain-Decomposition blocks and memory
re-arrangements

Before going into the results of our numerical experiments, we will first describe in this
section the mapping that we employed to assign work to our CUDA threads and GPU
cores, and how these map to our data and operations within SAP.

Mapping CUDA threads to a set of domain-decomposition blocks

When writing the actual implementation of the CUDA kernels that are in charge of
GPU computations when we offload parts from the CPUs into the GPUs, there are
multiple decisions to make in terms of hardware, concurrency and memory mappings.
In fig. 5.2 we show the hardware mapping of our choosing, which allowed us to avoid
frequent on-the-fly memory re-arrangements due to having frequent switchings from
CPU to GPU and viceversa.

With the hardware mapping illustrated in fig. 5.2, we kept our previous CPU memory
layouts almost intact, except for the memory re-arrangements associated to fusing sites
for hopping terms discussed soon.

73

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Figure 5.2: Illustration of how we mapped the domain-decomposition blocks to be
computed to the CUDA threads used for such computations. Note that M ≥ N
i.e. {Bi} is a subset of {DDi}. The illustration here is for the case when our
domain-decomposition block size is 44 and the CUDA block size is 96 with 6
CUDA threads per lattice site.

In fig. 5.2, the set of domain-decomposition blocks {DDi} consists of all the blocks in
our system of equations. However, the set {Bi} is that of the blocks to be computed
in a particular situation (e.g. those of red color involved in communications; see alg.
5.2). The mapping in fig. 5.2 is quite particular and interesting for multiple reasons.
If we choose to use a single CUDA thread per lattice site, there is not much room for
decisions to be made, but if we want to use more than one CUDA thread per lattice
site then we have to be careful with our mapping. For example, if we want to use two
CUDA threads per lattice site and due to having a physical GPU hardware warp being
of size 32, then we can allocate 16 lattice sites per warp. The issue with having two
CUDA threads per lattice site is that it requires quite a lot of GPU hardware resources
per CUDA thread (and the same applies when using a single CUDA thread per lattice
site, even worse).

If we want to use six threads per lattice site, the mapping becomes tricky: due to the
size of a warp, we have to associate 96 CUDA threads to 16 lattice sites. Although this
cuts our warps in a sort of “fractional” manner, the amount of resources per CUDA
thread is much less and we increase concurrency greatly which allows the GPU to hide
device RAM accesses much better.

In our implementations we have enabled the option to chose between 2 and 6 CUDA
threads per lattice site, and correspondingly CUDA block sizes that are multiples of
32 and 96, respectively.

Memory re-arrangements and fusing sites for hopping terms

The coupling terms discussed in sect. 5.2.2.1 are problematic not only due to their
sequential nature but also because of their crossed memory accesses. We illustrate
these terms (in a reduced space of 2D) in fig. 5.3 for a 24 domain-decomposition block.

74

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Figure 5.3: Four hopping terms in 2D.

Suppose we have a matrix application that acts following the stages and arrows as
indicated in fig. 5.3, e.g. in stage #2 the lattice site labeled as 3 will depend on the
current value of the lattice site labeled as 4. Furthermore, there is a sub-matrix D3←4
that will give us the rule on how to update site 3 from 4.

When we run over all of the stages and operations in fig. 5.3 it will be inevitable to do
crossed memory accesses of the information corresponding to the lattice sites, no matter
how we store them in memory. But we can save a significant amount of execution time
due to crossed memory accesses of the matrix elements Di←j; the way to do this is by
storing a submatrix associated to stage #1, another one associated to stage #2, and so
on. This is precisely what we have done in our GPU computations i.e. we have fused
all of the necessary lattice sites for each of the eight possible directions.

To summarize, the crossed memory accesses of the vectors (i.e. the lattice sites) are
unavoidable, but we have avoided crossed accesses of the matrix elements. Even better,
due to the hardware mapping depicted in fig. 5.2 our matrix memory accesses are
almost all done in half-warps which is an optimal reading from device RAM, and due
to having domain-decomposition blocks the crossed readings of lattice sites do not
address locations which are too far in device RAM.

Further memory optimizations

Besides global memory (i.e. device RAM) we have also used shared and constant
memories in the following way:

• shared: when performing matrix-vector multiplications e.g. within MR, we used
shared memory to collaboratively (i.e. as done by a group of CUDA threads) load
the local matrix into shared memory. For some of those matrix-vector operations,
we need buffers. We used shared memory as well to store such buffers to improve
locality (e.g. when we have crossed accesses as in hopping terms).

• constant: the only way in which we have used this memory so far is to store
the data associated to the γ-matrices (i.e. the matrices coming from the Clifford
algebra, see def. 2.1).

75

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

5.3 Numerical tests

5.3.1 SAP on GPUs

For the numerical tests of SAP on the finest level, to be reported in this section, we
use configurations for which we do not specify where they come from nor detail their
parameters. Those details are not relevant due to the purely implementational nature
of this sub-section. For the tests in sect. 5.3.2, which consist of calls to the whole
multigrid solver, we provide specific details for the matrices involved.

We ran our first numerical experiments with 324 and 484 local lattices (i.e. lattice size
per GPU) with two processes and one GPU per MPI process, and the results are shown
in tab. 5.1. We have focused here on times for SAP at the finest level only, which is
the part of the code that we have enabled to use GPUs on.

L4 Speedup Comp Speedup Tot
324 33.54 22.11
484 41.71 26.18

Table 5.1: Two types of speedup for the smoother on GPUs, one taking into
account only computations and the second one (last column) including times for
transferring data from the CPU to the GPU and viceversa. The first column
indicates the size of the local lattice. NVIDIA Quadro P6000 GPUs were used.

The second column in tab. 5.1 gives us the speedups that we obtain if we compare the
whole SAP on CPUs versus the compute part of SAP on GPUs. This is not a realistic
speedup due to the current state of our code: in our current implementation, every
time we call SAP on GPUs we have to send data to the GPUs, compute, and then
retrieve data back to the CPUs47. Therefore, a more realistic speedup in our case is the
one displayed in the third column of tab. 5.1, in which case we also take into account
the data transfers CPU-to-GPU and viceversa.

It is important to note that speedups of ∼30 are to be expected, as we are comparing
against CPU code that has been optimized for cache friendliness and with vectorization
enabled. More specifically: if we compare only one iteration of MR as called in alg. 5.1
versus the same MR in alg. 5.2, on CPUs and GPUs, then we will see a huge speedup
due to GPU usage, of e.g. roughly 80 or even 100. But this speedup decreases as soon
as we perform multiple MR iterations. This is, again, because when computing on
CPUs after only one iteration of MR everything we need has been loaded to cache e.g.
L3, but in the case of GPUs we have to reload data every time we call a statement in
MR.

47Once we have more portions of our code ported to GPUs e.g. the whole finest level, then we won’t
have to take into account these data transfers.

76

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Varying the SAP block size

For a 64×323 lattice, we have run our GPU implementation of SAP with different
sizes of the SAP blocks, and the results have been tabulated in tab. 5.2. As we can
see, smaller SAP blocks lead to better performance. Conversely, we can conclude that
taking each domain decomposition block to be of the size of the local volume, i.e. 324,
will not be the best performing choice.

SAP block Time per SAP call
(seconds)

44 0.1444
84 0.1562
164 0.2316

Table 5.2: Time per SAP call versus domain decomposition block size, on a lattice
of size 64×323 with two processes and one GPU per MPI process. NVIDIA
Quadro P6000 were used.

5.3.2 Hybrid GPU+CPU DD-αAMG solver

We have fully ported the SAP smoother in DD-αAMG from C to CUDA C. Hence, the
current state of our solver48 is hybrid: the smoother runs fully on MPI+CUDA and
the remaining parts of the solver on MPI+OpenMP+SSE.

In fig. 5.4, two aggregation schemes are shown for DD-αAMG solves with a lattice of
size 128×643 and three levels. The left-column scheme in that figure corresponds to
a coarsening as usually employed in DD-αAMG. This traditional coarsening performs
well when running on CPUs, and from chapter 4 we know its scalability is relatively
poor when the number of nodes is relatively large and the coarsest level represents a
quite large portion of the execution time49. Using our GPU-boosted smoother in such
an aggregation scheme does not provide substantial gains, as the smoother does not
represent much of the overall solve time; this is an observation that we will support
with results from computational tests in this section. Furthermore, porting the whole
solver to run on GPUs is also not a good idea, as the second and third levels will scale
particularly bad on GPUs.

A better way to make good use of our smoother running on GPUs is to opt for a more
aggressive coarsening, as displayed in the right column of fig. 5.4. By switching to this
alternative aggregation scheme we redirect most of the execution time to the smoother
at the finest level, with the crucial advantage that the total time spent at coarser levels
is (even after turning GPU usage on) a relatively small percentage of the whole solve
time.

We ran numerical experiments using both coarsening schemes presented in fig. 5.4, with
the left one running fully on CPUs and the right one in a hybrid GPU+CPU manner.
We have used the same clover-improved Wilson-Dirac configuration as in chapter 4.

48Which we have made available on GitHub: https://github.com/Gustavroot/DDalphaAMG
49This can be alleviated in many cases via our coarsest-level improvements from chapter 4.

77

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

https://github.com/Gustavroot/DDalphaAMG

Figure 5.4: Left: CPU coarsening. Right: GPU coarsening.

The DD-αAMG parameters are almost the same as in tab. 4.6, except for aggressive
coarsening. In this latter case the parameters changed are as depicted on the right in
fig. 5.4. The results are presented in fig. 5.5. We have performed tests with up to 256
GPUs. Both the CPU and hybrid solvers run with the coarsest-level improvements
from chapter 4 already included50. The runs were performed on the booster module of
the JUWELS supercomputer from the Jülich Supercomputing Centre51.

Although the old (CPU) and new (GPU) results from fig. 5.5 are almost equivalent
from the point of view of overall execution time, they are quite different when we take
a closer look at the execution time spent on the individual components that make up
the multigrid hierarchy. We do so in tab. 5.3, where GPU1 means running our hybrid
solver with the coarsening on the right in fig. 5.4 (i.e. aggressive coarsening), and for
GPU2 we have run the hybrid solver with the non-aggressive coarsening (see left in
fig. 5.4). It is clear from this table that GPU1 is a much better alternative than GPU2,
as we want to minimize the coarse-grid time due to its bad scalability and due to better
possible performance improvements of the finest level via GPUs.

CPU GPU1 GPU2
total solve time 6.14 7.73 7.7414
fine grid time 3.91 (64%) 6.7 (87%) 3.5367 (45.7%)

coarse grid time 2.23 (36%) 1.03 (13%) 4.2047 (54.3%)
smoother at ℓ = 1 2.85 1.98 0.934
P and R at ℓ = 1 0.62 2.89 1.59

Table 5.3: More detailed timings of some multigrid components in DD-αAMG,
corresponding to the run with 64 processes from fig. 5.5. Times here are in
seconds. Coarse grid time represents in this case the total time spent at ℓ = 2
and ℓ = 3 combined. The columns labeled as CPU and GPU1 correspond to the
data displayed in fig. 5.5.

50Although the impact of those coarsest-level improvements is not big here, as we are using the same
mass parameter as in fig. 4.4

51Runs in the booster module have been done via the project cecy00 with title Transverse momentum
dependent soft function in lattice QCD.

78

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

GPU	(whole)
CPU	(whole)
CPU	(coarse)
GPU	(coarse)

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

1

10

number	of	processes
10050 200

Figure 5.5: Strong scaling for m0 = −0.35371847789 of the old version of DD-
αAMG (before the GPU improvements) and the new (running on GPUs) version.
The solid lines represent total execution time of a whole solve, and the dashed
lines the time spent on coarser levels. The dotted line exemplifies how perfect
scaling would look like in the hybrid solver. For CPU executions, 1 MPI process
corresponds to 1 node, and for GPU executions we associate 4 MPI processes to
each node with 1 GPU per MPI process.

From the timings presented in tab. 5.3 it is clear that further improving the hybrid
GPU+CPU implementation seems to be very promising. In particular, improvements
via which we can possibly enhance the GPU version, are:

• Port the whole finest level, and not only the smoother at that level. The finest
level is very rich in floating point operations, and communications are nicely
hidden behind those. By merging the smoother at the finest level with all the
other operations there, we can avoid frequent and large data transfers from CPU
to GPU and viceversa.

• Explore the use of lower precisions for the smoother at ℓ = 1. Currently, our
smoother runs in single precision, which we can further lower to half and with
this take advantage of the good performance that GPUs offer at that precision.

• By using Tensor Cores52 at different precisions throughout our implementations
we can further improve the performance of the smoother at the finest level.

A clear suggestion from tab. 5.3 is that we keep coarser levels (i.e. ℓ > 1) on CPUs, and
only port the finest level from C to CUDA C, provided we do aggressive coarsening.
Furthermore, another very interesting and useful consequence of the use of aggressive
coarsening here is that the time spent on interpolation and restriction at ℓ = 1 rep-
resents a large portion of the total execution time, which will be very beneficial for
performance gains when we port the whole level ℓ = 1 to be computed on GPUs.

GPU implementations tend to scale relatively poorly when the number of GPUs is
increased too much. We expect this to happen also in our hybrid GPU+CPU code

52https://www.nvidia.com/en-us/data-center/tensor-cores/

79

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

https://www.nvidia.com/en-us/data-center/tensor-cores/

at some point. With this in mind, fig. 5.5 seems to suggest that a good strategy to
optimize the use of computational resources might be to stay at 64 GPUs or less (for the
lattice configuration under use here) and improve the finest level as much as possible
via the advantages that GPUs provide.

5.4 Outlook on GPU implementations

From sect. 5.3.2 we can conclude that our approach of aggressive coarsening plus of-
floading the finest level onto GPUs, shows promise; most of the execution time is now
being spent at the finest level. Furthermore, the total time spent at coarser levels in
the case illustrated in tab. 5.3 is now around 1 second, which is a very low price to pay
for such a large (128× 643 in this case) lattice.

Based on the results of this chapter, we will then continue this work in the following
directions, which we list in ascending order of priority, to improve our hybrid solver:

1. Usage of Tensor Cores.

2. Multiple precisions: we will employ different precisions on different parts of the
finest level, e.g. the smoother in half precision.

3. Block solver: extension of our solver to act on multiple right hand sides “at
once". The development of this will be within the context of the PhD work of
Liam Burke (under supervision of Prof. Dr. Kirk M. Soodhalter at Trinity College
Dublin), and the resulting code will then be used in lattice QCD computations
via distillation, this in the context of the PhD work of Juan Urrea (under the
supervision of Prof. Dr. Francesco Knechtli at Bergische Universität Wuppertal).

4. Coarsest level: when the coarsest level starts becoming representative again,
the improvements from chapter 4, and furthermore the future work described in
sect. 4.5, will be of immediate use here.

In developing the points above, we hew to the following constraints in our upcoming
GPU developments for the hybrid DD-αAMG: stay at a relatively low number of nodes,
e.g. 32 or 64; keep coarser levels (i.e. ℓ > 1) running on CPUs; instead of attempting to
have good strong scaling, try to reduce the execution time at the finest level as much
as possible, via an offloading of finest-level operations onto GPUs. We will additionally
perform numerical experiments to compare our solver with other alternatives out there,
e.g. QUDA.

80

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Chapter 6
Multigrid Multilevel Monte Carlo

In this chapter we develop and test a new method for the computation of the trace of a
matrix function f(A). Sects. 6.1 and 6.2.1 are largely based on our paper on multilevel
Monte-Carlo for trace computations [44]. The application of our method to the Wilson
operator, presented in sect. 6.2.2, comes from collaborative work with Jose Jiménez,
which resulted in his M.Sc. thesis [133], hence that section here is partially based on
his thesis.

As mentioned in sect. 2.4, the computation of disconnected diagrams in lattice QCD
requires the extraction of the trace of f(A) = ΓA−1. We consider here first the situation
where one is interested in the trace tr(f(A)) of a matrix function f(A), in general. Here,
f(A) ∈ Cn×n is the matrix obtained from A ∈ Cn×n and the function f : z ∈ D ⊆
C → f(z) ∈ C is the usual operator in the theoretic sense; see [134], e.g. Our focus
is on the inverse A−1, i.e. f(z) = z−1. Computing the trace is an important task
arising in many applications. The trace of the inverse is required, for example, in the
study of fractals [135], in generalized cross-validation and its applications [136, 137].
In network analysis, the Estrada index—a total centrality measure for networks—is
defined as the trace of the exponential of the adjacency matrix A of a graph [138, 139]
and an analogous measure is given by the trace of the resolvent (ρI − A)−1 [140,
Section 8.1]. For Hermitian positive definite matrices A, one can compute the log-
determinant log(det(A)) as the trace of the logarithm of A. The log-determinant is
needed in machine learning and related fields [141, 142]. Further applications are
discussed in [143–145]. The particular application that we tackle in this chapter is the
one described in sect. 2.4 i.e. the trace of the inverse of the discretized Dirac operator
[146]. As simulation methods get more and more precise, these contributions become
increasingly important.

It is usually unfeasible to compute the diagonal entries f(A)ii directly as eHi f(A)ei, ei
the ith canonical unit vector, and then obtain the trace by summation. For example, for
the inverse this would mean that we have to solve n linear systems, which is prohibitive
for large values of n.

One large class of methods which aims at circumventing this cost barrier are determin-
istic approximation techniques. Probing methods, for example, approximate

tr(f(A)) ≈
N∑
i=1

wHi f(A)wi, (6.1)

81

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

where the vectors wi are carefully chosen sums of canonical unit vectors and N is not
too large. Various approaches have been suggested and explored in order to keep N
small while at the same time achieving good accuracy in (6.1). This includes approaches
based on graph colorings; see [147–149] e.g., and the hierarchical probing techniques
from [43, 150]. In order for probing with such vectors to yield good results, the matrix
f(A) should expose a decay of the moduli of its entries when we move away from the
diagonal, since the sizes of the entries farther away from the diagonal determine the
accuracy of the approximation. Recent theoretical results in this direction were given
in [151]. Lanczos techniques represent another deterministic approximation approach
and are investigated in [152–154], e.g. Without giving details let us just mention that
in order to improve their accuracy, deterministic approximation techniques can be
combined with the stochastic techniques presented in the sequel; see [145], e.g.

In this chapter, we deal with the other big class of methods which aim at breaking
the cost barrier using stochastic estimation. In general, they work for any matrix and,
at least in principle, do not require a decay away from the diagonal. Our goal was to
develop a multilevel Monte-Carlo method to estimate tr(f(A)) stochastically, which we
have accomplished. Our approach can be regarded as a variance reduction technique
applied to the classical stochastic “Hutchinson” estimator [155]

tr(f(A)) ≈ 1
N

N∑
n=1

(x(n))Hf(A)x(n), (6.2)

where the components of the random vectors x(n) obey an appropriate probability
distribution. The variance of the estimator in eq. 6.2 decreases only like 1

N
, which

makes the method too costly when higher precisions are to be achieved. The multilevel
approach presented here aims at curing this by working with representations of A at
different levels. On the higher numbered levels, evaluating f(A) becomes increasingly
cheap, while on the lower levels, which are more costly to evaluate, the variance is small.
Our focus here is on the trace of the matrix inverse, where we can evaluate A−1x using
a fast solver. We just note that for a general matrix function f(A), stochastic trace
estimation techniques can be combined with the Lanczos process to approximately
evaluate the quadratic forms xHf(A)x; see, e.g. [153, 154].

This chapter is organized as follows: in sect. 6.1.1 we recall the general framework of
multilevel Monte-Carlo estimators. In sect. 6.1.2 we then discuss Hutchinson’s method
for stochastically estimating the trace before turning to our new multilevel approach
in sect. 6.1.3. This section also contains a comparison to known approaches based on
deflation as a motivation of why the new multilevel method should provide additional
efficiency. Several numerical results are presented in sects. 6.2.1, 6.2.2 and 6.2.3, for
the Schwinger, Wilson and twisted mass operators, respectively.

6.1 Stochastic trace estimation and multilevel Monte
Carlo

We establish the full theoretical foundation to develop a multigrid multilevel Monte
Carlo method, including stochastic estimation via Huthinson’s method and the mul-
tilevel Monte Carlo method, ultimately combining the two of them by assuming the
existence of a multigrid hierarchy for the given problem matrix.

82

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

6.1.1 Multilevel Monte-Carlo

We discuss the basics of the multilevel Monte-Carlo approach as a variance reduction
technique. We place ourselves in a general setting, thereby closely following [41].

Assume that we are given a probability space (Ω,F ,P) with sample space Ω, sigma-
algebra F ⊆ Ω and probability measure P : F → [0, 1]. For a given random variable
f : Ω → C , the standard Monte-Carlo approach estimates its expected value E[f] as
the arithmetic mean

E[f] ≈ 1
M

M∑
m=1

f(ω(m)), (6.3)

where the ω(m) are independent events coming from (Ω,F ,P). The variance of this
estimator is 1

M
V[f], so the root mean square deviation has order O(M−1/2). This

indicates that the number M of events has to increase quadratically with the accuracy
required which is why, typically, higher accuracies require very high computational
effort in this type of Monte-Carlo estimation.

The idea of multilevel Monte-Carlo is to split the random variable f as a sum

f =
L∑
ℓ=1

gℓ, (6.4)

where the random variables gℓ : Ω→ C are regarded as contributions “at level ℓ” to f .
This gives

E[f] =
L∑
ℓ=1

E[gℓ],

and an unbiased estimator for E[f] is obtained as

E[f] ≈
L∑
ℓ=1

1
Mℓ

Mℓ∑
m=1

gℓ(ω(m,ℓ)),

where the ω(m,ℓ) denote the independent events on each level. The variance of this
estimator is

L∑
ℓ=1

1
Mℓ

V[gℓ].

The idea is that we are able to find a multilevel decomposition of the form in eq. 6.4
in which the cost Cℓ to evaluate gℓ is low when the variance Vℓ := V[gℓ] is high and
vice versa. As is explained in [41], the solution to the minimization problem which
minimizes the total cost subject to achieving a given target variance ϵ2

minimize
L∑
l=1

MℓCℓ s.t.
L∑
ℓ=1

1
Mℓ

Vℓ = ϵ2

gives Mℓ = µ
√
Vℓ/Cℓ. Here, the Lagrangian multiplier µ satisfies µ = ϵ−2

L∑
ℓ=1

√
Vℓ/Cℓ,

and the corresponding minimal total cost is

C = ϵ−2
(

L∑
ℓ=1

√
VℓCℓ

)2

.

83

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

The typical situation is that the contributions gℓ on level ℓ are given as differences
fℓ − fℓ+1 of approximations fℓ to f on the various levels, i.e. we have

f =
L−1∑
ℓ=1

(fℓ − fℓ+1)
=gℓ

+ fL
=gL

with f1 = f. (6.5)

If we assume that the cost Ĉℓ to evaluate fℓ decreases rapidly with the level ℓ, the cost
Cℓ for evaluating the differences gℓ = fℓ − fℓ+1 is well approximated by Ĉℓ. The ratio
of the total cost encountered when reducing the variance to a given value between
multilevel Monte-Carlo (with optimal choice of Nℓ) and standard Monte-Carlo, see
eq. 6.3, is then approximately given by

(
L∑
ℓ=1

√
VℓĈℓ

)2 / (
V[f]Ĉ1

)
.

This is the basic quantitative relation indicating how the costs Ĉℓ to evaluate the fℓ
and the variances Vℓ of the differences fℓ−fℓ+1 have to relate in order for the multilevel
approach to be more efficient than standard Monte-Carlo estimation of f .

If the computations are being performed on a single compute node, then communica-
tions will (most likely) not play a big role in the overall execution time. Thus, the
computational effort (i.e. execution time) can be modeled well by e.g. the number of
nonzero elements in the matrices involved in the calculations. This is for example the
case for the Schwinger matrix that we consider in sect. 6.2.1. In the main case under
study here, i.e. matrices coming from lattice QCD discretizations, the situation is more
difficult than this: as discussed in chapter 4, global reductions and nearest-neighbor
communications induce a non-linear behaviour in terms of execution time as we in-
crease the number of nodes, which is manifested more strongly for coarser levels. This
renders the straighforward connection between execution time and arithmetic work
made above not realistic. Furthermore, the assumption made on the rapid decrease in
the cost at a certain level ℓ as we move down in the multigrid hierarchy is also invalid.
The alternative is thus, when running on large-scale machines53, to optimize the total
computational effort in terms of the execution time at the various levels, rather than
modeling via the arithmetic work (we have used the latter in the Schwinger case).

6.1.2 Stochastic estimation of the trace of a matrix

We now assume that we are given, in an indirect manner, a matrix A = (aij) ∈ Cn×n

for which we want to compute the trace

tr(A) =
n∑
i=1

aii.

Our basic assumption is that the entries aii of A are neither available directly nor
obtainable at decent computational cost. This is typically the case when A arises as
a function of a large (and sparse) matrix, the most common case being the matrix
inverse.

53Although our numerical tests in sects. 6.2.2 and 6.2.3 are on a single node, more realistic scenarios
will later involve many nodes.

84

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

In a seminal paper [155], Hutchinson suggested to use a stochastic estimator to ap-
proximate tr(A). The following theorem summarizes his result together with the gen-
eralizations on the admissible probability spaces; see [156, 157], e.g.

Theorem 6.1.
Let P : Ω → [0, 1] be a probability measure on a sample space Ω and assume that the
components xi of the vector x ∈ Cn are random variables depending on ω ∈ Ω satisfying

E[xi] = 0 and E[xixj] = δij (where δij is the Kronecker delta). (6.6)

Then
E[xHAx] = tr(A) and V[xHAx] =

n∑
i,j,k,p=1
i̸=j,k ̸=p

aijakpE[xixjxkxp].

In particular, if the probability space is such that each component xi is independent
from xj for i ̸= j, then

V[xHAx] =
n∑
i,j

i̸=j

aijaij +
n∑
i,j

i̸=j

aijajiE[x2
i]E[x2

j].

Proof. The proof is simple, but we repeat it here because the literature often treats
only the real and not the general complex case. We have

E[xHAx] =
n∑
i=1

aiiE(xixi) +
n∑

i,j=1,i̸=j
aijE(xixj) = tr(A),

where the last inequality follows from eq. 6.6. Similarly

V[xHAx] = E
[
(xHAx− tr(A))(xHAx− tr(A))

]
= E

[(n∑
i,j=1
i̸=j

xiaijxj
)(n∑

k,p=1
k ̸=p

xkakpxp
)]

= E
[n∑

i,j,k,p=1
i̸=j,k ̸=p

aijakpxixjxkxp
]

=
n∑

i,j,k,p=1
i̸=j,k ̸=p

aijakpE[xixjxkxp]. (6.7)

Since the components xi are assumed to be independent, we have E[xixjxkxp] = 0
except when i = j, k = p (which does not occur in eq. 6.7) or i = k, j = p or i = p, j = k.
This gives

n∑
i,j,k,p=1
i̸=j,k ̸=p

aijakpE[xixjxkxp] =
n∑
i,j

i̸=j

aijaijE[xixjxixj] +
n∑
i,j

i̸=j

aijajiE[xixjxjxi],

and in the first sum E[xixjxixi] = E[xixi]E[xjxj] = 1 by assumption, whereas in the
second sum we have E[xixjxjxi] = E[x2

i]E[x2
j].

Note that as a definition for the variance of a complex random variable y we used
E[(y − E(y)(y − E[y]] rather than E[(y − E[y])2] to keep it real and non-negative.

85

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Standard choices for the probability spaces are to take x with identically and indepen-
dently distributed (i.i.d.) components as

xi ∈ {−1, 1} with equal probability 1
2 , (6.8)

xi ∈ {−1, 1,−i, i} with equal probability 1
4 , (6.9)

xi = exp(iθ) with θ uniformly distributed in [0, 2π], (6.10)
xi is N(0, 1) normally distributed. (6.11)

Corollary 6.2.
If the components xi are i.i.d. with the distribution in eq. 6.8 or eq. 6.11, then

V[xHAx] = 1
2∥offdiag(A+ AT)∥2

F ,

where ∥ · ∥F denotes the Frobenius norm and offdiag the offdiagonal part of a matrix.
If the components are i.i.d. with the distribution in eq. 6.9 or 6.10, then

V[xHAx] = ∥offdiag(A)∥2
F .

Proof. For the distributions in eqs. 6.8 and 6.11, the components xi have only real
values and E[x2

i] = 1. Therefore
n∑
i,j

i̸=j

aijaij +
n∑
i,j

i̸=j

aijajiE[x2
i]E[x2

j] =
n∑
i,j

i̸=j

aijaij +
n∑
i,j

i̸=j

aijaji

= 1
2

n∑
i,j

i̸=j

(aij + aji)(aij + aji)

= 1
2∥offdiag(A+ AT)∥2

F .

For the distributions in eqs. 6.9 and 6.10 we have E[x2
i] = 0, and thus

n∑
i,j

i̸=j

aijaij +
n∑
i,j

i̸=j

aijajiE[x2
i]E[x2

j] =
n∑
i,j

i̸=j

aijaij = ∥offdiag(A)∥2
F .

In a practical situation where we approximate tr(A) by averaging over N samples we
can compute the sample root mean square deviation along with the averages and rely
on the law of large numbers to assess the probability that the computed mean lies
within the σ, 2σ or 3σ interval. Several results on Hutchinson’s method have been
formulated which go beyond this asymptotic aspects by giving tail or concentration
bounds; see [158–160], e.g. For the sake of illustration we here report a summary of
these results as given in [143]. In our numerical examples, we will simply work with
the sample root mean square deviation to assess accuracy.

Theorem 6.3.
Let the distribution for the i.i.d. components of the random vectors x(m) be sub-Gaussian,

86

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

and let ϵ, δ ∈ (0, 1). Then for M = O(log(1/δ)/ϵ2) we have that the probability for⏐⏐⏐⏐⏐ 1
M

M∑
m=1

(x(m))HAx(m) − tr(A)
⏐⏐⏐⏐⏐ ≤ ϵ∥A∥F (6.12)

is ≥ 1− δ.

Note that if A is symmetric positive semidefinite with λi denoting its (non-negative)
eigenvalues, then

∥A∥F =
(

n∑
i=1

λ2
i

)1/2

≤
n∑
i=1

λi = tr(A),

implying that eq. 6.12 yields a (probabilistic) relative error bound for the trace. Also
note that the real distributions in eqs. 6.8 and 6.11 are sub-Gaussian [143].

6.1.3 Multilevel Monte-Carlo for the trace of the inverse

We now turn to the situation where we want to estimate tr(A−1) for a large and sparse
matrix A. Direct application of theor. 6.1 shows that an unbiased estimator for tr(A−1)
is given by

1
M

M∑
m=1

x(m)HA−1x(m) ≈ tr(A−1), (6.13)

where the vectors x(m) are independent random variables satisfying eq. 6.6, and that
its variance is

1
M
∥offdiag(A−1 + A−T)∥2

F or 1
M
∥offdiag(A−1)∥2

F ,

depending on whether the components of x(m) satisfy eqs. 6.8, 6.11 or eqs. 6.9, 6.10,
respectively.

Each time we add a sample m to eq. 6.13 we have to solve a linear system with matrix
A and right hand side x(m), and the cost for solving these linear systems determines
the cost for each stochastic estimate. For a large class of matrices, multigrid methods
represent particularly efficient linear solvers. We assume that this is the case for our
matrix A and now describe how to derive a multilevel Monte-Carlo method for the
approximation of tr(A−1) which uses the multigrid hierarchy not only for the linear
solver, but also to obtain a good representation as in eq. 6.5 required for a multilevel
Monte-Carlo approach.

6.1.3.1 Derivation of a multilevel Monte-Carlo method

Multigrid methods rely on the interplay between a smoothing iteration and a coarse
grid correction which are applied alternatingly. In the geometric interpretation, where
we view components of vectors as representing a continuous function on a discrete grid,
the smoother has the property that it makes the error of the current iterate smooth,
i.e. varying slowly from one grid point to the next. Such error can be represented
accurately by a coarser grid, and the coarse grid correction solves for this coarse error
on the coarse grid using a coarse grid representation of the matrix. The solution is
then interpolated back to the original “fine” grid and applied as a correction to the

87

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

iterate. The principle can be applied recursively using a sequence of coarser grids
with corresponding operators, the solves on the coarsest grid being obtained by direct
factorization.

To obtain a multilevel Monte-Carlo decomposition we discard the smoother and only
consider the coarse grid operators and the intergrid transfer operators. The coarse grid
operators

Aℓ ∈ Cnℓ×nℓ , ℓ = 1, . . . , L,

the prolongation and restriction operators

Pℓ ∈ Cnℓ×nℓ+1 , Rℓ ∈ Cnℓ+1×nℓ , ℓ = 1, . . . , L− 1,

and the coarse system matrices

Aℓ+1 = RℓAℓPℓ, ℓ = 1, . . . , L− 1,

have all been introduced, in general, in chapter 3.

Using the accumulated prolongation and restriction operators

P̂ℓ = P1 · · ·Pℓ−1 ∈ Cn×nℓ , R̂ℓ = Rℓ−1 · · ·R1 ∈ Cnℓ×n, ℓ = 1, . . . , L,

where we put R̂1 = P̂1 = I ∈ Cn×n by convention, we regard P̂ℓA
−1
ℓ R̂ℓ as the approx-

imation to A−1 at level ℓ. We thus obtain a multilevel decomposition for the trace
as

tr(A−1) =
L−1∑
ℓ=1

tr
(
P̂ℓA

−1
ℓ R̂ℓ − P̂ℓ+1A

−1
ℓ+1R̂ℓ+1

)
+ tr(P̂LA−1

L R̂L). (6.14)

This gives

tr(A−1) =
L−1∑
ℓ=1

E
[
(xℓ)H

(
P̂ℓA

−1
ℓ R̂ℓ − P̂ℓ+1A

−1
ℓ+1R̂ℓ+1

)
xℓ
]

+ E
[
(xL)HP̂LA−1

L R̂Lx
L
]
,

with the components of xℓ ∈ Cn being i.i.d. stochastic variables satisfying eq. 6.6. The
unbiased multilevel Monte-Carlo estimator is then

tr(A−1) ≈
L−1∑
ℓ=1

1
Mℓ

Mℓ∑
m=1

(
(x(m,ℓ))HP̂ℓA−1

ℓ R̂ℓx
(m,ℓ) − (x(m,ℓ))HP̂ℓ+1A

−1
ℓ+1R̂ℓ+1x

(m,ℓ)
)

+ 1
ML

ML∑
i=1

(x(m,L))HP̂LA−1
L R̂Lx

(m,L),

where the vectors x(m,ℓ) ∈ Cn are stochastically independent samples of the random
variable x ∈ Cn satisfying eq. 6.6.

The following remarks collect some important observations about this stochastic esti-
mator.

Remark 6.4.
Computationally, the estimator requires to solve systems of the form Aℓy

(m,ℓ) = z with
z = R̂ℓx

(m,ℓ). Since the matrices Aℓ arise from the multigrid hierarchy, we directly have
a multigrid method available for these systems by restricting the method for A to the
levels ℓ, . . . , L.

88

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Remark 6.5.
Since for any two matrices B = (bij) ∈ Cn×m and C = (ckl) ∈ Cm×n, the trace of their
product does not depend on the order,

tr(BC) =
n∑
i=1

m∑
j=1

bijcji =
m∑
j=1

n∑
i=1

cjibij = tr(CB), (6.15)

we have
tr(P̂LA−1

L R̂L) = tr(A−1
L P̂LR̂L).

So, instead of estimating the contribution tr(P̂LA−1
L R̂L) in eq. 6.14 stochastically, we

can also compute it directly by inverting the matrix AL ∈ CnL×nL and computing the
product A−1

L R̂LP̂L. Note that R̂L and P̂L are usually sparse with a maximum of d, say,
non-zero entries per row. The arithmetic work for A−1

L R̂LP̂L is thus of order O(dn2
L)

for the product R̂LP̂L plus O(n3
L) for the inversion of AL and the product A−1

L (R̂LP̂L).
Since the variance of xHP̂LA−1

L R̂Lx is presumably large, this direct computation can be
much more efficient than a stochastic estimation, even when we aim at only quite low
precision in the stochastic estimate.

The direct inversions suggested in remark 6.4 are of important use when the coarsest-
level is small enough and communications over many nodes is not an issue. This is
the case for the numerical experiments with the Schwinger model in sect. 6.2.1, where
we run on a single node and the coarsest-level is indeed small enough. This is not the
case, though, for the tests presented in sects. 6.2.2 and 6.2.3 in the context of lattice
QCD, where although we run on a single node, the coarsest-level matrices are too large
to invert directly.

Remark 6.6.
There are situations where R̂ℓP̂ℓ = I ∈ Cnℓ×nℓ, for example in aggregation based multi-
grid methods, where the columns of Pℓ are orthonormal and Rℓ = PH

ℓ , see [107, 161].
Then

tr(P̂ℓA−1
ℓ R̂ℓ) = tr(A−1

ℓ R̂ℓP̂ℓ) = tr(A−1
ℓ),

and

tr(P̂ℓ+1A
−1
ℓ+1R̂ℓ+1) = tr(P̂ℓPℓA−1

ℓ+1RℓR̂ℓ) = tr(PℓA−1
ℓ+1RℓR̂ℓP̂ℓ) = tr(PℓA−1

ℓ+1Rℓ).

This means that instead of the multilevel decomposition in eq. 6.14 we can use

tr(A) =
L−1∑
ℓ=1

tr
(
A−1
ℓ − PℓA−1

ℓ+1Rℓ

)
+ tr(A−1

L),

in which the stochastic estimation on level ℓ now involves random vectors from Cnℓ

instead of Cn.

6.1.3.2 Discussion of the multilevel Monte-Carlo method

A profound analysis of the proposed multilevel Monte-Carlo method must take the
approximation properties of the representation of the matrix at the various levels into
account. This is highly problem dependent, and although we know the properties
of the specific problems at hand (i.e. Schwinger and lattice QCD), formulating such

89

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

an analysis for the multilevel Monte-Carlo method introduced here, applied to these
particular problems, remains a difficult task. So, here we only provide a discussion of
heuristics on why the proposed approach has the potential to yield efficient multilevel
Monte-Carlo schemes.

To simplify the discussion to follow, let us assume that the variance of the estimator
at level ℓ is given by the square of the Frobenius norm of the off-diagonal part. This
is the case, for example, if the components are i.i.d. with the distribution in eq. 6.9 or
6.10; see coroll. 6.2. This Frobenius norm can be related to the singular values of A.
Recall that the singular value decomposition of a non-singular matrix A is

A = UΣV H with U,Σ, V ∈ Cn×n, UHU = V HV = I, (6.16)
U = [u1| · · · |un], V = [v1| . . . |vn],
Σ = diag(σ1, . . . , σn), 0 < σ1 ≤ · · · ≤ σn,

with left singular vectors ui, right singular vectors vi and positive singular values σi
which we ordered by increasing value for convenience here. In the following we base
all our discussion on singular values and vectors. It is therefore worthwhile to mention
that in the case of a Hermitian matrix A this discussion simplifies in the sense that
then the singular values are the moduli of the eigenvalues, and left and right singular
vectors are identical and coincide with the eigenvectors.

If A ∈ Cn×n has singular values σi, i = 1, . . . , n, then

∥offdiag(A)∥2
F =

n∑
i=1

σ2
i −

n∑
i=1

|aii|2, (6.17)

since ∥A∥2
F = ∑n

i=1 σ
2
i ; see, e.g. [82]. For the trace of the inverse A−1 we thus have

∥offdiag(A−1)∥2
F =

n∑
i=1

σ−2
i −

n∑
i=1

|(A−1)ii|2. (6.18)

since the reciprocals of the singular values of A, are the singular values of A−1. There-
fore, in a simplified manner—disregarding the second term in eq. 6.18—we hypothesize
that the small singular values of A are those who contribute most to the variance for
the Hutchinson estimator, see eq. 6.13, for tr(A−1). In high performance computing
practice, deflation has thus become a common tool, see [42, 148, 162, 163], e.g., to
reduce the variance: One precomputes the k, say, smallest singular values σ1, . . . , σk
of A in the singular value decomposition, see eq. 6.16, together with their left singular
vectors u1, . . . , uk. With the orthogonal projector

Π = UkU
H
k , where Uk = [u1| · · · |uk], (6.19)

we now have A−1 = A−1(I − Π) + A−1Π with

A−1(I − Π) =
n∑

i=k+1
viσ
−1
i uHi , A−1Π =

k∑
i=1

A−1uiu
H
i . (6.20)

This shows that in A−1(I − Π) we have deflated the small singular values of A, so
that we can expect a reduction of the variance when estimating the trace of this part
stochastically. The trace of the second part is equal to the sum ∑k

i=1 u
H
i A
−1ui (see

eq. 6.15), and A−1ui = σ−1
i vi. So the second part can be computed directly from the

90

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

singular triplets computed for the deflation. If A is Hermitian, the deflation approach
simplifies and amounts to precomputing the k smallest eigenpairs. We refer to the
results in [42] for a more in-depth analysis and discussion about the heuristics just
presented.

The deflation approach is still quite costly, since one has to precompute the singular
values and vectors, and if the size of the matrix increases it is likely that we have to
increase k to maintain the same reduction in the variance. Approximate deflation has
thus been put forward as an alternative [164, 165], where one can use larger values for
k while at the same time allowing that the contribution of the small singular values to
the variance is eliminated only approximately. One then replaces Π by a more general
projector of the form

Π = Ûk(V̂ H
k AÛk)−1V̂ H

k A, Ûk, V̂k ∈ Cn×k

where now Ûk and V̂k can be regarded as containing approximate left and right singu-
lar vectors, respectively, as their columns. Actually, it is sufficient that their range is
spanned by such approximations to left and right singular vectors, since the construc-
tion of Π is invariant under transformations Û → ÛBU , V̂ → V̂ BV with non-singular
matrices BU , BV ∈ Ck×k. In the decomposition A−1 = A−1(I − Π) + A−1Π we now
have, again using eq. 6.15,

tr(A−1(I − Π)) = tr(A−1)− tr(Ûk(V̂ H
k AÛk)−1V̂ H

k),
tr(A−1Π) = tr(Ûk(V̂ H

k AÛk)−1V̂ H
k).

If k is relatively small, the second trace can be computed directly as in the exact
deflation approach. If we take larger values for k, we can estimate it stochastically.
The inexact deflation approach then becomes a two-level Monte-Carlo method.

If we look at our multilevel Monte-Carlo decomposition in eq. 6.4 with just two levels,
then it differs from inexact deflation in that the value for k is now very large, namely
the grid size at level 2 which usually is O(n). The matrix Ûk spanning the approximate
singular vectors is replaced by the prolongation operator P1, and V̂ H

k corresponds to
the restriction operator R1. The multigrid construction principle should ensure that
the range of P1 contains good approximations to O(n) left singular vectors belonging
to small singular values, and similarly for RH

1 with respect to right singular vectors.
This is why the variance reduction can be expected to be efficient. We thus have a large
value of k—proportional to n—which targets at a high reduction of the variance of the
first term. The second term involves the second level matrix representation, which is
still of large size, and its trace estimator will, in addition, still have large variance. This
is the reason why we extend the approach to involve many levels, ideally until a level
L where we can compute the trace directly, so that we do not suffer from a potentially
high variance of a stochastic estimator. In the numerical results to be reported in
sect. 6.2, the variance is exposed via the number of stochastic estimates required to
obtain a given target accuracy. In all examples, the number of stochastic estimates
is small on the finer levels and increases substantially on the coarser levels. So the
numerical examples experimentally confirm the above theoretical motivation.

To conclude this discussion, we note that several other techniques for variance reduction
have been suggested which can also be regarded as two-level Monte-Carlo techniques.
For example, [166, 167] take a decomposition A−1− p(A) + p(A) with an appropriately
chosen polynomial p(A) and then estimates tr(A−1 − p(A)) stochastically. The “trun-

91

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

cated solver” method of [168] follows a related idea by subtracting an approximation
to the inverse. A similar decomposition with p being a truncated Chebyshev series ap-
proximation was considered in [144, 169, 170], for example, in which case tr(A−1−p(A))
is actually neglected. The work then resides in the stochastic estimation of tr(p(A)),
thus avoiding to solve linear systems.

Finally, we refer to [143] for a recent further variance reduction technique for Hutchin-
son’s method, enhancing it by using vectors of the form A−1v with random vectors
v.

6.2 Numerical tests

In this section, we perform numerical experiments to test the performance of the
method introduced in sect. 6.1.3. We first test the method on the Schwinger oper-
ator in sect. 6.2.1, and then we proceed to further test it with two different lattice
QCD discretizations in sects. 6.2.2 and 6.2.3. The numerical tests in sect. 6.2.1 are the
same ones described in ref. [44], and the ones in sect. 6.2.2 the same as in ref. [133].

The function for which we compute the trace is tr(f(A)) = A−1 for all the three
matrices used in this section.

6.2.1 Schwinger model

In the Schwinger case, the improvements of the multilevel approach compared to “plain”
Hutchinson (eq. 6.13) are tremendous and typically reach two orders of magnitude or
more. This is why we compare against deflated Hutchinson, where we deflate the ndefl
smallest eigenpairs of the matrix A. With U ∈ Cn×ndefl holding the respective eigenvec-
tors in its columns, we use the projector Π = I − UUH as in eq. 6.19, resulting in the
decomposition eq. 6.20. Therein we estimate tr(A−1(I −Π)) with the Hutchinson esti-
mator whereas tr(A−1Π) = ∑ndefl

i=1 λ−1
i is obtained directly from the deflated eigenpairs.

We always performed a rough scan to determine a number ndefl of deflated eigenpairs
which is close to time-optimal. The deflated Hutchinson approach usually gains at
least one order of magnitude in time and arithmetic cost over plain Hutchinson.

All our Schwinger computations were done on a single thread of an Intel Xeon Processor
E5-2699 v4, with a Python implementation. We aimed in this case at a relative accuracy
of ϵ = 10−3. This is done as follows: We first perform five stochastic estimates, take
their mean and subtract their sample root mean square deviation, giving the value τ .
In the deflated Hutchinson method we now perform stochastic estimates with sampling
vectors x(n) as long as their sample root mean square deviation√ 1

M

M∑
m=1

(
(x(m))HA−1x(m) − t̄M

)2
, where t̄M = 1

M

M∑
n=1

(x(m))HA−1x(m)

exceeds ϵτ . For the multilevel Monte-Carlo method we have to prescribe a value for
the sample root mean square deviations ρℓ for the stochastic estimation of each of the
traces

tr
(
P̂ℓA

−1
ℓ R̂ℓ − P̂ℓ+1A

−1
ℓ+1R̂ℓ+1

)
, ℓ = 1, . . . , L− 1, (6.21)

92

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

from eq. 6.14, while we always compute the last term tr(P̂LA−1
L R̂L) in eq. 6.14 non-

stochastically as tr(A−1
L R̂LP̂L), inverting AL explicitly. The requirement is to have

L−1∑
ℓ=1

ρ2
ℓ = (ϵτ)2,

so the obvious approach is to put ρℓ = ϵτ/
√
L− 1 for all ℓ. It might be advantageous,

though, to allow for a larger value of ρℓ on those level differences where the cost is high,
and we do so in this section for the Schwinger model. To prevent a possible unlucky
severe under-estimation of the exact mean square deviation by the sample mean square
deviation, we always perform at least five stochastic estimates for each ℓ in eq. 6.21.

For each stochastic estimate for eq. 6.21 we have to solve linear systems with the
matrices Aℓ and Aℓ+1. This is done using a multigrid method based on the same
prolongations Pℓ, restrictions Rℓ and coarse grid operators Aℓ that we use to obtain
our multilevel decomposition in eq. 6.14. However, when multigrid is used as a solver,
we use the full hierarchy going down to coarse grids of very small sizes, whereas in the
multilevel decomposition (eq. 6.14) used in multilevel Monte-Carlo we might stop at
an earlier level; we do not do this in our computations, though, because the number of
levels is relatively small in our examples.

For the Schwinger case in this section, we report mainly two quantities. The first
is the number of stochastic estimates that are performed at each level difference in
eq. 6.21 for multilevel Monte-Carlo together with the number of stochastic estimates
in deflated Hutchinson (which always requires linear solves at the finest level). These
numbers may be interpreted as illustrating how multilevel Monte-Carlo moves the
higher variances to the coarser level differences. As a second quantity, we report the
approximate arithmetic cost for both methods, deflated Hutchinson and multilevel
Monte-Carlo, which we obtain using the following cost model54 for the computation
of a quantity55 xHPℓA

−1
ℓ Rℓx: We only consider the matrix-vector products occurring

in this computation. These arise through multiplications with Pℓ and Rℓ and through
the matrix-vector multiplications that we perform in the multigrid solver that we use
to compute A−1

ℓ y. For every matrix-vector product of the generic form Bx we assume
a cost of nnz(B), the number of nonzeros in B. In this manner, one unit in the cost
model roughly corresponds to a multiplication plus an addition. This applies to the
computation of residuals, of prolongations and restrictions and the coarsest grid solve
in the multigrid solver as well as to the “global” restrictions and prolongations R̂ℓ, P̂ℓ
used in each stochastic estimate in multilevel Monte-Carlo. For the latter method,
we also count the cost for the direct computation of the trace at the coarsest level,
which involves the inversion of the coarsest grid matrix and additional matrix-matrix
products. This cost model thus only neglects vector-vector and scalar operations and
is thus considered sufficiently accurate for our purposes.

We used a Schwinger matrix arising from a thermalized configuration within a Markov

54This cost model applies here for the Schwinger case only. For this particular problem, we have
used V-cycles in its corresponding multigrid solver, instead of the K-cycles currently under use
in DD-αAMG. We do not have such a cost model for the solves in DD-αAMG, which involves a
relatively complicated formulation due to the combination of K-cycles and communications when
we go to a large number of nodes.

55For both problems here, Schwinger and lattice QCD, we used a standard aggregation (see def. 3.17),
which thanks to remark 6.6 allows us to avoid accumulated interpolation and restriction operators
P̂ℓ and R̂ℓ and use Pℓ and Rℓ instead.

93

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

process. This guarantees that the random gauge links obey a Boltzmann distribution
with a given temperature parameter. The matrix belongs to an N × N lattice with
N = 128, and is thus of size 2N2×2N2 = 32, 768× 32, 768.

The multigrid hierarchy for the Schwinger matrix was obtained through the aggregation
based approach described in chapter 3: at each level, the operator represents a periodic
nearest neighbor coupling an a 2-dimensional lattice of decreasing size. At each lattice
site we have several, d say, degrees of freedom (dofs), i.e. variables belonging to a lattice
site are vectors of length d. When going from one level to the next, we subdivide the
lattice into small sublattices—the aggregates. Each aggregate becomes a single lattice
site on the next level. The corresponding restriction operator is obtained by computing
(quite inexact) approximations to the d smallest eigenvectors, the components of which
are assembled over the aggregates and orthogonalized. This gives restriction operators
which are orthonormal, and since we take the prolongations to be their adjoints, we
are in the simplified situation of remark 6.6 for estimating the traces of the differences
in multilevel Monte-Carlo.

The Schwinger matrix is not Hermitian, and from lemma 2.12 its eigenvalues come in
complex conjugate pairs. This spin symmetry can be preserved on the coarser levels
if one doubles the dofs, as was explained in chapter 3 (see in particular def. 3.17 in
there).

We built a multigrid hierarchy with four levels. For the aggregates, at all levels we
always aggregated 4 × 4 sublattices into one lattice site on the next level, and we
started with 2 dofs for the second level and 4 for all remaining levels. Those dofs
are then doubled because we implemented the spin structure preserving approach.
Tab. 6.1 summarizes the most important information on the multigrid hierarchy. It
also shows the five different (negative) values for the mass m that we used in our
experiments. These values are physically meaningful, and for all of them the spectrum
of SN is contained in the right half plane. As m becomes smaller, SN becomes more
ill-conditioned, so the cost for each stochastic estimate increases. When solving linear
systems at the various levels, we used one V-cycle of multigrid with two steps of Gauss-
Seidel pre- and post-smoothing as a preconditioner for flexible GMRES [36]. Our
implementation was done in Python56, and the relative tolerance for the solves at each
level was set to 10−7.

Schwinger model
N ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 L

128 nℓ 2 · 1282 4 · 322 8 · 82 8 · 22 4
nnz(SNℓ) 2.94e5 1.64e5 2.46e4 1024

m −0.1320 −0.1325 −0.1329 −0.1332 −0.1333
ndefl 384 384 512 512 512

Table 6.1: Parameters and quantities for the numerical experiments with the
Schwinger operator.

Fig. 6.1 shows our results. We tuned the required sample root mean square deviation
ρℓ at each level due to the observation that this time the sample root mean square
deviation is comparably small on the last level difference. The values we chose, inde-
pendently of the mass parameter m, are ρ1 =

√
0.4ϵτ , ρ2 =

√
0.55ϵτ and ρ3 =

√
0.05ϵτ

for all masses.
56The code can be found in the GitHub repository https://github.com/Gustavroot/MLMCTraceComputer

94

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

-0
.1

333

-0
.1

332

-0
.1

329

-0
.1

325

-0
.1

32

m

0

2000

4000

6000

8000

10000

12000

14000

#
 e

s
ti
m

a
te

s

Schwinger, eps = 0.001

l = 1

l = 2

l = 3

defl. Hutchinson

-0.1333-0.1332 -0.1329 -0.1325 -0.132

m

0

0.5

1

1.5

2

2.5

3

3.5

c
o

s
t

10
11 Schwinger, eps = 0.001

multilevel MC

defl. Hutch w/o eigen comp.

Figure 6.1: Multilevel Monte-Carlo and deflated Hutchinson for the Schwinger
matrix: no of stochastic estimates on each level difference eq. 6.21 and total cost
for different masses m.

We compared against deflated Hutchinson with a time-optimal number of deflated
eigenpairs, and we did not count the cost for the eigenpair computation. The figure
shows that multilevel Monte-Carlo becomes increasingly efficient over deflated Hutchin-
son as the masses become smaller, ending up in a one order of magnitude improvement
in cost for the smallest. Interestingly, we also see that the number of stochastic esti-
mates to be performed on each level in multilevel Monte-Carlo depends on the masses
only very mildly, whereas the number of stochastic estimates increase rapidly in de-
flated Hutchinson.

Further optimizations may be achieved by skipping some of the levels57. While all
levels are generally needed in the multigrid solver, we could, for example, skip every
other level in the multilevel Monte-Carlo decomposition eq. 6.14. First experiments
in this Schwinger setting and with ϵ = 10−3 show that this can indeed pay off: The
second level matrix A2 in the Schwinger example is such that the work for solving a
system with A2 is comparable to that for solving a system with A1. So, if we skip level
2 or levels 2 and 3 together, although we need more stochastic estimates than what
we need when we use all levels, we have less overall work. This work is comparable in
both cases and about 40% less than the total work when using all levels.

6.2.2 LQCD I: clover-improved Wilson-Dirac operator

We turn now from the relatively simple Schwinger model to lattice QCD, and test our
multilevel Monte-Carlo method for computing the trace of the inverse of the 4D Dirac
operator, in the particular case of the clover-improved Wilson-Dirac discretization58.

We have performed the same numerical tests as in the Schwinger case, now with a lattice
QCD gauge configuration for a lattice of size59 64×323. We used three multigrid levels
with aggregation blocks of size 44 from the finest level to the first coarse one, and of size

57This idea of skipping levels was suggested by an anonymous referee of our paper [44].
58This comes from collaborative work with Jose Jiménez and my involvement in the supervision of

his master thesis project.
59This configuration was provided by the lattice QCD group at the University of Regensburg via

the Collaborative Research Centre SFB-TRR55, with parameters m0 = −0.332159624413 and
csw = 1.9192 [171].

95

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

24 from the first coarse level to the coarsest. Furthermore, for our multilevel Monte-
Carlo trace computation we tuned the stopping criteria for the sample root mean square
deviations to be ρ1 =

√
0.95ϵτ and ρ2 =

√
0.04ϵτ for the first two difference levels.

Unlike in the Schwinger case, we compute the trace at the coarsest level stochastically
rather than directly, and we tuned ρ3 =

√
0.01ϵτ for that level. The trace at the

coarsest level is computed via (non-deflated) Hutchinson, and unlike in our Schwinger
numerical experiments, we compare the overall multilevel Monte-Carlo against non-
deflated Hutchinson. We set ϵ = 10−4, and τ is obtained again by averaging over five
estimates.

To implement both our multilevel Monte Carlo and the Hutchinson method, we used
DD-αAMG whenever solving a linear system was needed at different levels in the
multilevel hierarchy. Our code can be found at this GitHub repository, and all of our
multilevel Monte Carlo computations for the Wilson operator were done on 32 processes
and 1 OpenMP thread of a single Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
node. As in the Schwinger case, we have shifted the value of the mass parameter m0
to values more negative than the one originally employed in the construction of the
corresponding Markov chain, to reach more ill-conditioned situations. Due to this shift
to harder matrices, we have seen the need to enable our coarsest-level improvements
from chapter 4 and we found that, without enabling them, the execution times were
prohibitively large when going to our smallest values of m0 and we would not have
been able to perform our multilevel Monte Carlo tests in a reasonable amount of time.
Some of the parameters in the multigrid hierarchy in DD-αAMG change with respect
to the default values (see tab. 4.2) when we want to have a good multigrid hierarchy
for multilevel Monte Carlo computations; in tab. 6.2 we list the changed ones. The
parameters have been changed, compared to the base ones in tab. 4.2, to improve the
quality of the operators at levels ℓ = 2 and ℓ = 3 as they will be more similar now to
the finest-level one, in the sense of having a more similar near kernel (see sect. 3.3.1
for more on the concept of near kernel, and sects. 6.1.3.1 and 6.1.3.2 where we have
discussed why it is important to have “similar" operators when going from one level to
the next in the multigrid hierarchy employed in our multilevel Monte Carlo method).

As discussed before, we present execution times in this section rather than results
in terms of a cost model. We do so mainly because a cost model for DD-αAMG
would be quite involved, mostly due to the mixture of K-cycles with different types of
communications (i.e. global and nearest-neighbors).

ℓ = 1 number of test vectors 28
boostrap setup iterations 7

ℓ = 2 boostrap setup iterations 6

Table 6.2: Parameters in DD-αAMG for multilevel Monte Carlo.

As in fig. 6.1 for Schwinger, we present our results in the Wilson case in fig. 6.2, where
we see a similar behaviour: the two difference levels are not affected by changes in the
value of m0. The coarsest level does get affected by changes in m0, leading to values
in the number of estimates as large as in Hutchinson. But due to the coarsest-level’s
small size, the overall execution time is then considerably smaller in the multilevel
Monte Carlo case, compared to the Hutchinson case, by a factor of around 5 for the
most ill-conditioned m0.

96

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Figure 6.2: Multilevel Monte-Carlo and “plain" Hutchinson for the clover-
improved Wilson-Dirac matrix: no of stochastic estimates on each level difference
eq. 6.21 and total execution time for different masses m. Contrary to fig. 6.1
where we have used connecting lines in the plots, we have fitted here the data
with exponentials. For ℓ = 1, the values on the left plot are around 40 and on
the right plot around 2000.0. The corresponding (approximate) values for ℓ = 2
are 90 and 1000.0.

6.2.3 LQCD II: twisted mass operator

We apply now our multigrid multilevel Monte Carlo method to twisted mass matrices.
The numerical tests are the same as for Wilson, but in this case we have used a 96×483

lattice60. The coarsest-level solves are done now via MUMPS. Similar to tab. 4.6, the
DD-αAMG parameters used in the run, changed with respect to tab. 4.2, can be found
in tab. 6.3. At the coarsest level, we have set δ = 1.0.

For our multilevel Monte-Carlo trace computation we have tuned the stopping criteria
for the sample root mean square deviations to be ρ1 =

√
0.45ϵτ , ρ2 =

√
0.45ϵτ , ρ3 =√

0.09ϵτ and ρ4 =
√

0.01ϵτ . The trace at the coarsest level is computed via (non-
deflated) Hutchinson, and we compare here the overall multilevel Monte-Carlo against
non-deflated Hutchinson. We have set ϵ = 2.0 · 10−5, and τ is obtained again by
averaging over five estimates.

The computations were done on a single node Intel(R) Xeon(R) Platinum 8180 CPU @
2.50GHz with 56 cores and 1.5 TB or RAM. We ran with 54 processes and 1 OpenMP
thread per process. Tab. 6.4 shows the results of our run.

The last row in tab. 6.4 displays the total computational gain of our multilevel method
over (non-deflated) Hutchinson, with a speedup of a bit over a factor of 5. But, more
importantly, we see a tremendous algorithmic gain when comparing the first difference
level in the multilevel Monte Carlo method versus Hutchinson: we see a reduction
in the number of estimates of the former of around 18 times smaller than the latter.
This algorithmic gain is spoiled mostly by the expensive execution time associated to
the solves of the operator at the second level: the time for solving with the operator
at the finest level is only a factor of 2.4 more expensive than solving at the second
level, which is the main element bringing down the algorithmic factor of 18 down the

60From the Extended Twisted Mass Collaboration, provided to us by Jacob Finkenrath, who is part
of CaSToRC at the Cyprus Institute. The main parameters of this configuration are κ = 0.137290,
csw = 1.57551 and µ = 0.0009.

97

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

ℓ = 1 number of test vectors 32
post-smoothing steps 4

boostrap setup iterations 8
number of test vectors 36
post-smoothing steps 3

ℓ = 2 boostrap setup iterations 7
ℓ = 3 restart length of FGMRES 5

maximal restarts of FGMRES 2
relative residual tolerance 10−1

number of test vectors 36
size of lattice-blocks for aggregates 24

pre-smoothing steps 0
post-smoothing steps 3

Minimal Residual iterations 4
boostrap setup iterations 6

ℓ = 4 restart length of GMRES 60
maximal restarts of FGMRES 20

relative residual tolerance 10−1

Table 6.3: Base parameters in our DD-αAMG solves, for multilevel Monte Carlo
with MUMPS.

computational factor of 5. This interference of the second-level operator motivates us
again to skip levels in multilevel Monte Carlo: in the Schwinger model, the second-
level operator contained, roughly, the same number of nonzero entries as the finest-level
one, and skipping that level in the multilevel Monte Carlo computation represented
improvements in the computational results, with relatively small increase in the number
of estimates. The results in tab. 6.4 seem to indicate that skipping the second level
might be a good idea again in the twisted mass case. We might see more algorithmic
loss in twisted mass than with the Schwinger model, but the combination of our method
with deflation might overcome this issue (this is future work, though; see sect. 6.3).

6.3 Outlook on multigrid multilevel Monte Carlo

The results in sect. 6.2.1 are remarkable, and they have motivated us to further perform
the tests in sects. 6.2.2 and 6.2.3. The performance gains in the latter two sections,
i.e. in the context of lattice QCD, although not compared yet to deflated Hutchinson,
show the great potential of our multigrid multilevel Monte Carlo method when applied
to lattice QCD matrices.

Due to each level difference (and level, the coarsest) in our multigrid multilevel Monte
Carlo being computed via Hutchinson, the method is very adaptable, in the sense that
we can now further enhance each level difference, via different already-existing methods
typically used for the computation of tr f(A) in lattice QCD. Two of these methods
are deflation [42] and hierarchical probing [43]. We will pursue this line of research
further, still in the context of both Wilson and twisted mass fermions, and we will
combine our multigrid multilevel Monte Carlo method with deflation and hierarchical
probing, within the PhD research work of Jose Jiménez. Deflation, in particular, is
of importance in combination with our method: when taking difference levels, and

98

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

measurement Mult. MC Hutchinson
ℓ = 1 # estimates 63 1164

time (seconds) 17,010.0 221,160.0
ℓ = 2 # estimates 172 -

time (seconds) 15,480.0 -
ℓ = 3 # estimates 903 -

time (seconds) 9,030.0 -
ℓ = 4 # estimates 7715 -

time (seconds) 1,543.0 -
total # estimates - 1164
total time (seconds) 43,063.0 221,160.0

Table 6.4: Results for the application of multigrid multilevel Monte Carlo in the
twisted mass case. For multilevel Monte Carlo, ℓ = 1, ℓ = 2 and ℓ = 3 represent
difference levels, wherereas ℓ = 4 is the coarsest level. For the Hutchinson
method there are no difference levels, hence ℓ = 1 is the only option.

due to the approximate nature of the test vectors and furthermore of P and R due
to local coherence, there might be some outlying eigenvectors which might be easy to
pick and deflate. Our method is not restricted, though, to be combined with deflation
and probing only, hence many other (algorithmic) doors have been opened with the
introduction of this new technique, and we will also explore some of them.

Another interesting feature of the method introduced here, but this time of a rather
more computational nature, is the possibility to use agglomeration, as discussed in
sect. 4.5, in a dynamic way at every level: we can run the first difference level on
the total number of nodes, but then we can re-factor the code to run the second level
difference in an agglomerated/batched way, i.e. we can run this second difference level
on for example a quarter of the total number of nodes, and each subset of processes can
run a certain number of estimates (i.e. a batch) before all the subsets synchronize to
check for convergence. This process can be repeated recursively and coarser difference
levels can be computed on less nodes i.e. with an even more aggressive agglomeration.
We will investigate this in future work.

99

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Conclusions

The new developments and implementations presented in this thesis target two expen-
sive operations in lattice QCD simualations: the solution of linear systems of the form
Dx = b and the calculation of the trace of the inverse of D, with D the Dirac operator,
a sparse matrix typically very large and ill-conditioned.

In chapter 4 we have shown how, by using communication-reducing (block diagonal
and polynomial preconditioning) and recycling and deflation (via GCRO-DR) at the
coarsest level, we can restore insensitivity to conditioning of the DD-αAMG multi-
grid solver when solving with the Wilson-Dirac operator. The twisted mass operator
has a more dense spectrum, which renders Krylov methods less effective and therefore
the aforementioned coarsest-level enhancements were less effective for solving linear
systems with this second operator. Hence, instead of Krylov methods, we have re-
sorted to a block low-rank (BLR) approximation from the MUMPS library, which, in
preliminary results shown in chapter 4 for numerical experiments on a single node,
has lead to algorihmic and computational improvements. The work on Krylov-based
methods has been published as a preprint in arXiv [111] and submitted to Computer
Physics Communications, and the work using BLR approximations is currently under
preparation.

In chapter 5 we explain how the DD-αAMG library, originally a CPU-only code, has
been partially ported to run on GPUs via CUDA C. In particular, in the current state
of the GPU+CPU hybrid DD-αAMG solver, the smoother is offloaded to GPUs, with
the main thread per MPI process being in control of launching the different kernels
that compose the CUDA C code for the smoother. We have found that, with a more
aggressive coarsening, the GPU+CPU version is competitive with the CPU-only one,
with the additional desired feature that more of the execution time is spent on finest-
level operations compared to the CPU-only case, which will be beneficial as more code is
ported via CUDA C. This proves that a hybrid GPU+CPU DD-αAMG implementation
is a good path to pursue. We are currently porting the rest (i.e. besides the smoother)
of the finest level with CUDA C, and this work will be published in a peer reviewed
journal.

Finally, in chapter 6, a new method for the computation of tr(D−1) is presented. This
new algorithm is based on multilevel Monte Carlo in combination with a multigrid
hierarchy. The method outperforms exactly deflated Hutchinson when applied to the
Schwinger model, and outperforms the Hutchinson method for Wilson and twisted
mass. Furthermore, the variance of the difference levels displays insensitivity to condi-
tioning. The results with the Schwinger model have been published in [44]. Numerical
experiments for Wilson and twisted mass are currently being performed in combination
with inexact deflation, and results on this will be published in a peer reviewed journal.

100

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

Bibliography

[1] Matthias Rottmann. Adaptive Domain Decomposition Multigrid for Lattice QCD.
PhD thesis, Wuppertal U., 2016.

[2] Christof Gattringer and Christian Lang. Quantum Chromodynamics on the Lat-
tice: an Introductory Presentation, volume 788. Springer Science & Business
Media, 2009.

[3] William L Briggs, Van Emden Henson, and Steve F McCormick. A Multigrid
Tutorial. SIAM, 2000.

[4] Mark Thomson. Modern Particle Physics. Cambridge University Press, 2013.

[5] John Campbell, Joey Huston, and Frank Krauss. The Black Book of Quantum
Chromodynamics: a Primer for the LHC Era. Oxford University Press, 2018.

[6] Walter Greiner, Stefan Schramm, and Eckart Stein. Quantum Chromodynamics.
Springer Science & Business Media, 2007.

[7] Kenneth G Wilson. Confinement of quarks. Physical review D, 10(8):2445, 1974.

[8] Tanja Bergrath, Maria Ramalho, Richard Kenway, et al. PRACE
scientific annual report 2012. Technical report, PRACE, 2012.
http://www.prace-ri.eu/IMG/pdf/PRACE_Scientific_Annual_Report_
2012.pdf, p. 32.

[9] Martyn Guest, Giovanni Aloisio, Richard Kenway, et al. The scientific case
for HPC in Europe 2012 - 2020. Technical report, PRACE, October 2012.
http://www.prace-ri.eu/PRACE-The-Scientific-Case-for-HPC, p. 75.

[10] S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg,
T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert. Ab initio
determination of light hadron masses. Science, 322(5905):1224–1227, 2008. ISSN
0036-8075. doi: 10.1126/science.1163233. URL http://science.sciencemag.
org/content/322/5905/1224.

[11] Thomas A. DeGrand and Pietro Rossi. Conditioning techniques for dynam-
ical fermions. Comput. Phys. Commun., 60:211–214, 1990. doi: 10.1016/
0010-4655(90)90006-M.

[12] S. Fischer, A. Frommer, U. Glassner, T. Lippert, G. Ritzenhofer, and K. Schilling.
A parallel SSOR preconditioner for lattice QCD. Comput. Phys. Commun., 98:
20–34, 1996. doi: 10.1016/0010-4655(96)00089-6.

101

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

http://science.sciencemag.org/content/322/5905/1224
http://science.sciencemag.org/content/322/5905/1224

[13] Martin Lüscher. Local coherence and deflation of the low quark modes in lattice
QCD. JHEP, 2007(07):081, 2007. URL http://stacks.iop.org/1126-6708/
2007/i=07/a=081.

[14] Andreas Frommer, Andrea Nobile, and Paul Zingler. Deflation and flexible SAP-
preconditioning of GMRES in lattice QCD simulations. 4 2012. arXiv:1204.5463.

[15] Martin Lüscher. Solution of the Dirac equation in lattice QCD using a domain
decomposition method. Comput. Phys. Commun., 156:209–220, 2004. doi: 10.
1016/S0010-4655(03)00486-7.

[16] R Ben-Av, Achi Brandt, M Harmatz, E Katznelson, PG Lauwers, Shay Solomon,
and K Wolowesky. Fermion simulations using parallel transported multigrid.
Physics Letters B, 253(1-2):185–192, 1991.

[17] Richard C Brower, K Moriarty, E Myers, and Claudio Rebbi. The multigrid
method for fermion calculations in quantum chromodynamics. Multigrid Meth-
ods: Theory, Applications, and Supercomputing, SF McCormick, ed, 110:85–100,
1987.

[18] Thomas Kalkreuter. Multigrid methods for propagators in lattice gauge theories.
Journal of computational and applied mathematics, 63(1-3):57–68, 1995.

[19] Jeroen C Vink. Multigrid inversion of staggered and Wilson fermion oper-
ators with SU(2) gauge fields in two dimensions. Physics Letters,(Section)
B;(Netherlands), 272(1/2), 1991.

[20] J. C. Osborn, R. Babich, J. Brannick, R. C. Brower, M. A. Clark, S. D. Cohen,
and C. Rebbi. Multigrid solver for clover fermions. PoS, LATTICE2010:037,
2010. doi: 10.22323/1.105.0037.

[21] Richard C Brower, MA Clark, Alexei Strelchenko, and Evan Weinberg. Multigrid
for staggered lattice fermions. arXiv preprint arXiv:1801.07823, 2018.

[22] Saul D Cohen, RC Brower, MA Clark, and JC Osborn. Multigrid algorithms for
domain-wall fermions. arXiv preprint arXiv:1205.2933, 2012.

[23] J.C. Osborn. QOPQDP software. https://github.com/usqcd-software/
qopqdp.

[24] OpenQCD. https://luscher.web.cern.ch/luscher/openQCD/. 2012.

[25] QUDA: A library for QCD on GPUs. http://lattice.github.io/quda/. Ac-
cessed: 2022-04-11.

[26] Andreas Frommer, Karsten Kahl, Stefan Krieg, Björn Leder, and Matthias
Rottmann. Adaptive aggregation-based domain decomposition multigrid for
the lattice Wilson-Dirac operator. SIAM journal on scientific computing, 36
(4):A1581–A1608, 2014.

[27] Andreas Frommer, K Kahl, S Krieg, B Leder, and M Rottmann. An adap-
tive aggregation based domain decomposition multilevel method for the lattice
Wilson-Dirac operator: Multilevel results. arXiv preprint arXiv:1307.6101, 2013.

[28] M. Rottmann, A Strebel, S. Heybrock, S. Bacchio, B. Leder, and I Kanamori.
DD-αAMG software, Wilson. https://github.com/DDalphaAMG/DDalphaAMG, .

102

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

http://stacks.iop.org/1126-6708/2007/i=07/a=081
http://stacks.iop.org/1126-6708/2007/i=07/a=081
https://luscher.web.cern.ch/luscher/openQCD/
http://lattice.github.io/quda/

[29] Constantia Alexandrou, Simone Bacchio, Jacob Finkenrath, Andreas Frommer,
Karsten Kahl, and Matthias Rottmann. Adaptive aggregation-based domain
decomposition multigrid for twisted mass fermions. Physical Review D, 94(11):
114509, 2016.

[30] Simone G Bacchio. Simulating Maximally Twisted Fermions at the Physical Point
with Multigrid Methods. PhD thesis, 2019.

[31] M. Rottmann, A Strebel, S. Heybrock, S. Bacchio, B. Leder,
and I Kanamori. DD-αAMG software, twisted mass.
https://github.com/sbacchio/DDalphaAMG, .

[32] M. Parks, E. De Sturler, G. Mackey, D. Johnson, and S. Maiti. Recycling Krylov
subspaces for sequences of linear systems. SIAM J. Sci. Comput., 28(5):1651–
1674, 2006.

[33] M. Embree, J. Loe, and R. Morgan. Polynomial preconditioned Arnoldi. arXiv
preprint arXiv:1806.08020, 2018.

[34] J. Loe and R. Morgan. New polynomial preconditioned GMRES. arXiv preprint
arXiv:1911.07065, 2019.

[35] N. Nachtigal, L. Reichel, and L. Trefethen. A hybrid GMRES algorithm for
nonsymmetric linear systems. SIAM J. Matrix Anal. Appl., 13(3):796–825, 1992.

[36] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[37] P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose. Hiding global commu-
nication latency in the GMRES algorithm on massively parallel machines. SIAM
J. Sci. Comput., 35(1):C48–C71, 2013.

[38] Patrick R Amestoy, Alfredo Buttari, Jean-Yves L’excellent, and Theo Mary. Per-
formance and scalability of the block low-rank multifrontal factorization on mul-
ticore architectures. ACM Transactions on Mathematical Software (TOMS), 45
(1):1–26, 2019.

[39] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully
asynchronous multifrontal solver using distributed dynamic scheduling. SIAM
Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[40] J. Cheng, M. Grossman, and Ty. McKercher. Professional CUDA C Program-
ming. John Wiley & Sons, Inc., 2014.

[41] Michael B Giles. Multilevel Monte Carlo methods. Acta Numer., 24:259–328,
2015. doi: 10.1017/S096249291500001X.

[42] Arjun Singh Gambhir, Andreas Stathopoulos, and Kostas Orginos. Deflation as a
method of variance reduction for estimating the trace of a matrix inverse. SIAM
J. on Sci. Comput., 39(2):A532–A558, 2017. doi: 10.1137/16M1066361.

[43] Andreas Stathopoulos, Jesse Laeuchli, and Kostas Orginos. Hierarchical probing
for estimating the trace of the matrix inverse on toroidal lattices. SIAM J. Sci.
Comput., 35(5):299–322, 2013.

[44] Andreas Frommer, Mostafa Nasr Khalil, and Gustavo Ramirez-Hidalgo. A mul-
tilevel approach to variance reduction in the stochastic estimation of the trace of
a matrix. SIAM Journal on Scientific Computing, 44(4):A2536–A2556, 2022.

103

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

[45] Arjun Singh Gambhir. Disconnected Diagrams in Lattice QCD. PhD thesis,
College of William and Mary, 2017.

[46] Karsten Kahl. Adaptive Algebraic Multigrid for Lattice QCD computations.
PhD thesis, Universität Wuppertal, Fakultät für Mathematik und Naturwis-
senschaften, 2018.

[47] Aron Beekman, Louk Rademaker, and Jasper van Wezel. An introduction to
spontaneous symmetry breaking. SciPost Physics Lecture Notes, page 011, 2019.

[48] Giovanni Costa and Gianluigi Fogli. Symmetries and Group Theory in Particle
Physics: An Introduction to Space-time and Internal Symmetries, volume 823.
Springer Science & Business Media, 2012.

[49] H Fritzsch. The history of quantum chromodynamics. International Journal of
Modern Physics A, 34(01):1930001, 2019.

[50] Leslie E Ballentine. Quantum Mechanics: a Modern Development. World Scien-
tific Publishing Company, 2014.

[51] Jun John Sakurai and Jim Napolitano. Modern Quantum Mechanics; 2nd ed.
Addison-Wesley, San Francisco, CA, 2011. URL https://cds.cern.ch/record/
1341875.

[52] Leonard Susskind and Art Friedman. Special Relativity and Classical Field The-
ory. Penguin UK, 2017.

[53] Michael Peskin. An Introduction to Quantum Field Theory. CRC press, 2018.

[54] Steven Weinberg. The Quantum Theory of Fields, volume 2. Cambridge univer-
sity press, 1995.

[55] Charles Kittel and Herbert Kroemer. Thermal Physics, volume 9690. Wiley New
York, 1970.

[56] Richard Phillips Feynman. Space-time approach to non-relativistic quantum
mechanics. Feynman’s Thesis—A New Approach To Quantum Theory, pages
71–109, 2005.

[57] Richard P Feynman, Albert R Hibbs, and Daniel F Styer. Quantum Mechanics
and Path Integrals. Courier Corporation, 2010.

[58] Philip J Davis and Philip Rabinowitz. Methods of Numerical Integration. Courier
Corporation, 2007.

[59] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth.
Hybrid Monte Carlo. Physics letters B, 195(2):216–222, 1987.

[60] Herbert Goldstein. Classical Mechanics. Addison-Wesley, 1980.

[61] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of
Markov Chain Monte Carlo. CRC press, 2011.

[62] Michael Betancourt. A conceptual introduction to Hamiltonian Monte Carlo.
arXiv preprint arXiv:1701.02434, 2017.

[63] Taylor Ryan Haar. Optimisations to Hybrid Monte Carlo for Lattice QCD. PhD
thesis, 2019.

104

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

https://cds.cern.ch/record/1341875
https://cds.cern.ch/record/1341875

[64] W.K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57:97–109, 1970. doi: 10.1093/biomet/57.1.97.

[65] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. J. Chem. Phys., 21:
1087–1092, 1953. doi: 10.1063/1.1699114.

[66] Paul Adrien Maurice Dirac. The quantum theory of the electron. Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character, 117(778):610–624, 1928.

[67] H Blaine Lawson and Marie-Louise Michelsohn. Spin Geometry (PMS-38), Vol-
ume 38. Princeton university press, 2016.

[68] Roberto Frezzotti, Pietro Antonio Grassi, Stefan Sint, and Peter Weisz. A local
formulation of lattice QCD without unphysical fermion zero modes. Nuclear
Physics B-Proceedings Supplements, 83:941–946, 2000.

[69] John Kogut and Leonard Susskind. Hamiltonian formulation of Wilson’s lattice
gauge theories. Physical Review D, 11(2):395, 1975.

[70] Gordon D Smith, Gordon D Smith, and Gordon Dennis Smith Smith. Numerical
Solution of Partial Differential Equations: Finite Difference Methods. Oxford
university press, 1985.

[71] Leonard Susskind. Lattice fermions. Physical Review D, 16(10):3031, 1977.

[72] Kenneth G. Wilson. Quarks and Strings on a Lattice. Springer US, 1977.

[73] István Montvay and Gernot Münster. Quantum Fields on a Lattice. Cambridge
University Press, 1997.

[74] Bijan Sheikholeslami and Ralf Wohlert. Improved continuum limit lattice action
for QCD with Wilson fermions. Nuclear Physics B, 259(4):572–596, 1985.

[75] Roberto Frezzotti, Pietro Antonio Grassi, Stefan Sint, Peter Weisz, Alpha Col-
laboration, et al. Lattice QCD with a chirally twisted mass term. Journal of
High Energy Physics, 2001(08):058, 2001.

[76] Roberto Frezzotti, Stefan Sint, and Peter Weisz. O(a) improved twisted mass
lattice QCD. Journal of High Energy Physics, 2001(07):048, 2001.

[77] Julian Schwinger. Gauge invariance and mass. II. Physical Review, 128(5):2425,
1962.

[78] Robert Link. The Schwinger Model. PhD thesis, University of British Columbia,
1986.

[79] Lloyd N Trefethen and David Bau III. Numerical Linear Algebra, volume 50.
Siam, 1997.

[80] Artur Strebel. Advanced Applications for Algebraic Multigrid Methods in Lat-
tice QCD. PhD thesis, Universität Wuppertal, Fakultät für Mathematik und
Naturwissenschaften, 2020.

[81] James W Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[82] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

105

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

[83] William Kahan. Lecture notes on the status of IEEE standard 754
for binary floating-point arithmetic. http://http. cs. berkeley. edu/˜ wka-
han/ieee754status/ieee. ps, 1996.

[84] James R Bunch and Beresford N Parlett. Direct methods for solving symmetric
indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 8
(4):639–655, 1971.

[85] Andrew Tanenbaum. Modern Operating Systems. Pearson Education, Inc.„ 2009.

[86] Kyle Gallivan, William Jalby, and Ulrike Meier. The use of BLAS3 in linear
algebra on a parallel processor with a hierarchical memory. SIAM Journal on
Scientific and Statistical Computing, 8(6):1079–1084, 1987.

[87] H. Schwarz. Gesammelte mathematische Abhandlungen. Vierteljahrschrift
Naturforsch. Ges. Zürich, pages 272–286, 1870.

[88] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decomposition: Par-
allel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge
University Press, New York, 1996.

[89] Yousef Saad and Martin H Schultz. GMRES: A gneralized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific
and statistical computing, 7(3):856–869, 1986.

[90] Mongi Benhamadou et al. On the FOM algorithm for the resolution of the linear
systems Ax= b. Advances in Linear Algebra & Matrix Theory, 4(03):156, 2014.

[91] Walter Edwin Arnoldi. The principle of minimized iterations in the solution of
the matrix eigenvalue problem. Quarterly of applied mathematics, 9(1):17–29,
1951.

[92] Wayne Joubert. On the convergence behavior of the restarted GMRES algo-
rithm for solving nonsymmetric linear systems. Numerical linear algebra with
applications, 1(5):427–447, 1994.

[93] Ilya Zavorin, DianneP O’Leary, and Howard Elman. Complete stagnation of
GMRES. Linear Algebra and its Applications, 367:165–183, 2003.

[94] Mark Embree. The tortoise and the hare restart GMRES. SIAM review, 45(2):
259–266, 2003.

[95] Guido Cossu, Peter Boyle, Norman Christ, Chulwoo Jung, Andreas Jüttner, and
Francesco Sanfilippo. Testing algorithms for critical slowing down. In EPJ Web
of Conferences, volume 175, page 02008. EDP Sciences, 2018.

[96] Wolfgang Hackbusch. Multi-grid Methods and Applications, volume 4. Springer
Science & Business Media, 2013.

[97] John W Ruge and Klaus Stüben. Algebraic multigrid. In Multigrid methods,
pages 73–130. SIAM, 1987.

[98] John David Jackson. Classical electrodynamics, volume 31999. Wiley New York,
1977.

[99] Eric Poisson and Clifford M Will. Gravity: Newtonian, post-Newtonian, Rela-
tivistic. Cambridge University Press, 2014.

106

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

[100] Pieter Wesseling and Cornelis W Oosterlee. Geometric multigrid with applica-
tions to computational fluid dynamics. Journal of computational and applied
mathematics, 128(1-2):311–334, 2001.

[101] Suha Kayum, Michel Cancelliere, Marcin Rogowski, and Ahmed Al-Zawawi. Ap-
plication of algebraic multigrid in fully implicit massive reservoir simulations. In
SPE Europec featured at 81st EAGE Conference and Exhibition. OnePetro, 2019.

[102] Mark F Adams. Algebraic multigrid methods for constrained linear systems with
applications to contact problems in solid mechanics. Numerical linear algebra
with applications, 11(2-3):141–153, 2004.

[103] Ronald Babich, James Brannick, Richard C Brower, MA Clark, Thomas A Man-
teuffel, SF McCormick, JC Osborn, and C Rebbi. Adaptive multigrid algorithm
for the lattice Wilson-Dirac operator. Physical review letters, 105(20):201602,
2010.

[104] James Brannick, Richard C Brower, MA Clark, James C Osborn, and Claudio
Rebbi. Adaptive multigrid algorithm for lattice QCD. Physical review letters,
100(4):041601, 2008.

[105] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann. Aggregation-based
multilevel methods for lattice QCD. Proceedings of Science, LATTICE2011:046,
2011. http://pos.sissa.it.

[106] Dietrich Braess. Towards algebraic multigrid for elliptic problems of second order.
Computing, 55(4):379–393, 1995.

[107] Marian Brezina, R Falgout, Scott MacLachlan, T Manteuffel, S McCormick, and
J Ruge. Adaptive smoothed aggregation (αSA) multigrid. SIAM review, 47(2):
317–346, 2005.

[108] Yvan Notay and Panayot S Vassilevski. Recursive Krylov-based multigrid cycles.
Numerical Linear Algebra with Applications, 15(5):473–487, 2008.

[109] Achi Brandt, James Brannick, Karsten Kahl, and Irene Livshits. Bootstrap amg.
SIAM Journal on Scientific Computing, 33(2):612–632, 2011.

[110] M. Clark, B. Joó, A. Strelchenko, M. Cheng, A. Gambhir, and R. Brower. Ac-
celerating lattice QCD multigrid on GPUs using fine-grained parallelization. In
SC’16: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 795–806. IEEE, 2016.

[111] Jesus Espinoza-Valverde, Andreas Frommer, Gustavo Ramirez-Hidalgo, and
Matthias Rottmann. Coarsest-level improvements in multigrid for lattice QCD
on large-scale computers. arXiv preprint arXiv:2205.09104, 2022.

[112] Henning Leemhuis. Approximate direct solves on the coarsest level of multigrid.
Master’s thesis, Bergische Universität Wuppertal, Germany, 2022.

[113] Y. Saad. Practical use of polynomial preconditionings for the conjugate gradient
method. SIAM J. Sci. Statist. Comput., 6(4):865–881, 1985.

[114] R. Morgan. Computing interior eigenvalues of large matrices. Linear Algebra
Appl., 154:289–309, 1991.

107

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

http://pos.sissa.it

[115] R. Morgan and M. Zeng. A harmonic restarted Arnoldi algorithm for calculating
eigenvalues and determining multiplicity. Linear Algebra Appl., 415(1):96–113,
2006.

[116] D. Calvetti and L. Reichel. On the evaluation of polynomial coefficients. Numer-
ical Algorithms, 33(1-4):153–161, 2003.

[117] O. Coulaud, L. Giraud, P. Ramet, and X. Vasseur. Deflation and augmentation
techniques in Krylov subspace methods for the solution of linear systems. arXiv
preprint arXiv:1303.5692, 2013.

[118] K. Soodhalter, E. de Sturler, and M. Kilmer. A survey of subspace recycling
iterative methods. GAMM-Mitteilungen, 43(4):e202000016, 2020.

[119] A. Stathopoulos and K. Orginos. Computing and deflating eigenvalues while
solving multiple right-hand side linear systems with an application to quantum
chromodynamics. SIAM J. Sci. Comput., 32(1):439–462, 2010.

[120] R. Morgan. GMRES with deflated restarting. SIAM J. Sci. Comput., 24(1):
20–37, 2002.

[121] Eric de Sturler. Nested Krylov methods based on GCR. Journal of Computational
and Applied Mathematics, 67(1):15–41, 1996.

[122] Daniel Mohler, Stefan Schaefer, and Jakob Simeth. CLS 2+1 flavor simulations
at physical light- and strange-quark masses. In EPJ Web of Conferences, volume
175, page 02010. EDP Sciences, 2018.

[123] Constantia Alexandrou, Simone Bacchio, Panagiotis Charalambous, Petros Di-
mopoulos, Jacob Finkenrath, Roberto Frezzotti, Kyriakos Hadjiyiannakou, Karl
Jansen, Giannis Koutsou, Bartosz Kostrzewa, et al. Simulating twisted mass
fermions at physical light, strange, and charm quark masses. Physical Review D,
98(5):054518, 2018.

[124] Stefan Krieg and Thomas Lippert. Tuning lattice QCD to petascale on Blue
Gene. In P, NIC Symposium, volume 2010, pages 155–164, 2010.

[125] Mark Hoemmen. Communication-Avoiding Krylov Subspace Methods. PhD the-
sis, University of California, Berkeley, 2010.

[126] Philippe Leleux. Hybrid Direct and Interactive Solvers for Sparse Indefinite and
Overdetermined Systems on Future Exascale Architectures. PhD thesis, 2021.

[127] D. Steinkraus, I. Buck, and P. Y. Simard. Using GPUs for machine learning al-
gorithms. In Eighth International Conference on Document Analysis and Recog-
nition (ICDAR’05), pages 1115–1120 Vol. 2, 2005.

[128] C. Yang, Q. Wu, J. Chen, and Z. Ge. GPU acceleration of high-speed collision
molecular dynamics simulation. In 2009 Ninth IEEE International Conference
on Computer and Information Technology, volume 2, pages 254–259, 2009.

[129] M.A. Clark, R. Babich, K. Barros, R.C. Brower, and C. Rebbi. Solving lat-
tice QCD systems of equations using mixed precision solvers on GPUs. Com-
puter Physics Communications, 181(9):1517–1528, Sep 2010. ISSN 0010-4655.
doi: 10.1016/j.cpc.2010.05.002. URL http://dx.doi.org/10.1016/j.cpc.
2010.05.002.

108

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

http://dx.doi.org/10.1016/j.cpc.2010.05.002
http://dx.doi.org/10.1016/j.cpc.2010.05.002

[130] Y. Nakamura, K. Ishikawa, Y. Kuramashi, T. Sakurai, and H. Tadano. Modified
block BiCGStab for lattice QCD. Comput. Phys. Commun., 183(1):34–37, 2012.

[131] M. Lüscher. Lattice QCD and the Schwarz alternating procedure. JHEP, 183:p.
052, 2003.

[132] J. Cardoso, J. Coutinho, and P. Diniz. Embedded Computing for High Per-
formance Computing. Elsevier Inc., 2017. ISBN 9781417642595. URL http:
//books.google.com/books?id=W-xMPgAACAAJ.

[133] Jose Jiménez. A Block Trace estimator and its Application to Lattice QCD.
Master’s thesis, Bergische Universität Wuppertal, Germany, 2022.

[134] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008. ISBN
0898716462, 9780898716467.

[135] B. Sapoval, Th. Gobron, and A. Margolina. Vibrations of fractal drums. Phys.
Rev. Lett., 67:2974–2977, Nov 1991.

[136] Gene H. Golub and Urs von Matt. Generalized cross-validation for large scale
problems. J. Comput. Graph. Statist., 6:1–34, 1995.

[137] Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation
as a method for choosing a good ridge parameter. Technometrics, 21(2):215–223,
1979.

[138] Ernesto Estrada and Desmond J Higham. Network properties revealed through
matrix functions. SIAM Rev., 52(4):696–714, 2010.

[139] Yuval Ginosar, Ivan Gutman, Toufik Mansour, and Matthias Schork. Estrada
index and Chebyshev polynomials. Chem. Phys. Lett., 454:145–147, 2008.

[140] Ernesto Estrada. The Structure of Complex Networks: Theory and Applications.
Oxford University Press, Inc., New York, 2011.

[141] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[142] Havard Rue and Leonhard Held. Gaussian Markov Random Fields: Theory And
Applications. CRC press, 2005.

[143] Raphael A Meyer, Cameron Musco, Christopher Musco, and David P Woodruff.
Hutch++: Optimal stochastic trace estimation. In Symposium on Simplicity in
Algorithms (SOSA), pages 142–155. SIAM, 2021.

[144] Shashanka Ubaru and Yousef Saad. Applications of trace estimation techniques.
In International Conference on High Performance Computing in Science and
Engineering, pages 19–33. Springer, 2017.

[145] Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(A)) via
stochastic Lanczos quadrature. SIAM J. Matrix Anal. Appl., 38(4):1075–1099,
2017.

[146] J. Sexton and D. Weingarten. Systematic expansion for full QCD based on the
valence approximation, 1994.

109

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

http://books.google.com/books?id=W-xMPgAACAAJ
http://books.google.com/books?id=W-xMPgAACAAJ

[147] Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for the
diagonal of a matrix. Applied Numerical Mathematics, 57:1214–1229, 11 2007.

[148] Eric Endress, Carlos Pena, and Karthee Sivalingam. Variance Reduction with
Practical All-to-all Lattice Propagators. Comput. Phys. Commun., 195:35–48,
2015. doi: 10.1016/j.cpc.2015.04.017.

[149] Jok M. Tang and Yousef Saad. A probing method for computing the diagonal
of a matrix inverse. Numer. Linear Algebra Appl., 19(3):485–501, 2012.

[150] Jesse Laeuchli and Andreas Stathopoulos. Extending hierarchical probing for
computing the trace of matrix inverses. SIAM J. Sci. Comput., 42(3):A1459–
A1485, 2020.

[151] Andreas Frommer, Claudia Schimmel, and Marcel Schweitzer. Analysis of
probing techniques for sparse approximation and trace estimation of decay-
ing matrix functions. SIAM J. Matrix Anal. Appl., 42:1290–1318, 2021. doi:
https://doi.org/10.1137/20M1364461.

[152] A. H. Bentbib, M. El Ghomari, K. Jbilou, and L. Reichel. Shifted ex-
tended global Lanczos processes for trace estimation with application to net-
work analysis. Calcolo, 58(1):Paper No. 4, 35, 2021. ISSN 0008-0624. doi:
10.1007/s10092-020-00395-1.

[153] Jie Chen and Yousef Saad. A posteriori error estimate for computing tr(f(A)) by
using the Lanczos method. Numer. Linear Algebra Appl., 25(5):e2170, 20, 2018.
ISSN 1070-5325. doi: 10.1002/nla.2170.

[154] Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities
of large matrices. SIAM Rev., 58(1):34–65, 2016. ISSN 0036-1445. doi:
10.1137/130934283.

[155] M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix
for Laplacian smoothing splines. Comm. Statist. Simulation Comput., 19(2):
433–450, 1990. ISSN 0361-0918. doi: 10.1080/03610919008812864.

[156] S.J. Dong and K.F. Liu. Stochastic estimation with Z2 noise. Phys. Lett. B, 328:
130–136, 1994.

[157] Walter Wilcox. Noise methods for flavor singlet quantities. 1999.

[158] Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace
of an implicit symmetric positive semi-definite matrix. J. ACM, 58(2), 2011.

[159] Alice Cortinovis and Daniel Kressner. On randomized trace estimates for indefi-
nite matrices with an application to determinants, 2020.

[160] Farbod Roosta Khorasani and Uri Ascher. Improved bounds on sample size for
implicit matrix trace estimators. Foundations of Computational Mathematics, 15
(5):1187–1212, 2015.

[161] Dietrich Braess. Towards algebraic multigrid for elliptic problems of second order.
Computing, 55(4):379–393, 1995. doi: {10.1007/BF02238488}.

[162] Thomas A. DeGrand and Stefan Schaefer. Improving Meson Two Point Functions
in Lattice QCD. Comput. Phys. Commun., 159:185–191, 2004. doi: 10.1016/j.
cpc.2004.02.006.

110

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

[163] Leonardo Giusti, P. Hernandez, M. Laine, P. Weisz, and H. Wittig. Low-energy
Couplings of QCD from Current Correlators near the Chiral Limit. JHEP, 04:
013, 2004. doi: 10.1088/1126-6708/2004/04/013.

[164] Gunnar Bali, Sara Collins, Andreas Frommer, Karsten Kahl, Issaku Kanamori,
Benjamin Müller, Matthias Rottmann, and Jakob Simeth. (Approximate) low-
mode averaging with a new multigrid eigensolver, 2015.

[165] Eloy Romero, Andreas Stathopoulos, and Kostas Orginos. Multigrid deflation
for lattice QCD. J. Comput. Phys., 409:109356, May 2020. ISSN 0021-9991. doi:
10.1016/j.jcp.2020.109356.

[166] Suman Baral, Travis Whyte, Walter Wilcox, and Ronald B. Morgan. Discon-
nected loop subtraction methods in lattice QCD. Comput. Phys. Commun., 241:
64–79, 2019. ISSN 0010-4655.

[167] Quan Liu, Walter Wilcox, and Ron Morgan. Polynomial subtraction method for
disconnected quark loops, 2014.

[168] C. Alexandrou, M. Constantinou, V. Drach, K. Hadjiyiannakou, K. Jansen,
G. Koutsou, A. Strelchenko, and A. Vaquero. Evaluation of disconnected quark
loops for hadron structure using GPUs. Comput. Phys. Commun., 185(5):
1370–1382, May 2014. ISSN 0010-4655. doi: 10.1016/j.cpc.2014.01.009.

[169] Insu Han, Dmitry Malioutov, Haim Avron, and Jinwoo Shin. Approximating
spectral sums of large-scale matrices using stochastic Chebyshev approximations.
SIAM J. Sci. Comput., 39(4):A1558–A1585, 2017. ISSN 1064-8275. doi: 10.1137/
16M1078148.

[170] Insu Han, Dmitry Malioutov, and Jinwoo Shin. Large-scale log-determinant com-
putation through stochastic Chebyshev expansions. In International Conference
on Machine Learning, pages 908–917, 2015.

[171] Gunnar S. Bali, Sara Collins, Benjamin Gläßle, Meinulf Göckeler, Johannes Na-
jjar, Rudolf H. Rödl, Andreas Schäfer, Rainer W. Schiel, André Sternbeck, and
Wolfgang Söldner. The moment ⟨x⟩u−d of the nucleon from nf = 2 lattice QCD
down to nearly physical quark masses. Phys. Rev., D90(7):074510, 2014. doi:
10.1103/PhysRevD.90.074510.

111

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

112

GUSTAVO ALO
NSO R

AMIR
EZ H

ID
ALG

O

	Validation
	Declaration
	Perílhyh
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Quantum chromodynamics on the lattice
	The standard model and quantum chromodynamics
	Path integral and hybrid Monte Carlo
	Lattice discretizations in quantum chromodynamics
	Disconnected diagrams
	Other theories: the Schwinger model

	Domain decomposition aggregation-based αdaptive algebraic multigrid method
	Numerical linear algebra fundamentals
	Eigenvalues, singular values and conditioning
	Iterative methods for sparse linear systems of equations

	Multigrid methods
	Motivation
	Two levels and multilevel multigrid

	Algebraic multigrid
	Algebraic multigrid in lattice QCD
	Aggregation-based prolongation and restriction
	Petrov-Galerkin approach
	Domain decomposition aggregation-based αdaptive algebraic multigrid method
	DD-αAMG for twisted mass fermions

	Coarsest level improvements
	Krylov based improvements
	Numerical tests: Krylov based
	The clover-improved Wilson operator
	The twisted mass operator

	LU based improvements
	Direct solves via MUMPS

	Numerical tests: LU based
	Outlook on coarsets-level computations

	Hybrid GPU/CPU DD-αAMG
	SAP in DD-αAMG
	Schwarz Alternating Procedure on GPUs
	Domain Decomposition: GPUs vs CPUs
	SAP in DD-αAMG on GPUs: implementation details

	Numerical tests
	SAP on GPUs
	Hybrid GPU+CPU DD-αAMG solver

	Outlook on GPU implementations

	Multigrid Multilevel Monte Carlo
	Stochastic trace estimation and multilevel Monte Carlo
	Multilevel Monte-Carlo
	Stochastic estimation of the trace of a matrix
	Multilevel Monte-Carlo for the trace of the inverse

	Numerical tests
	Schwinger model
	LQCD I: clover-improved Wilson-Dirac operator
	LQCD II: twisted mass operator

	Outlook on multigrid multilevel Monte Carlo

	Conclusions
	Bibliography

