
MASTER THESIS

Implementation, Validation, and Experimental
Evaluation of a Self-stabilizing Byzantine-tolerant

Multivalued Consensus Algorithm

Andreas N. Charalampous

Supervisor:

Professor Chryssis Georgiou

NICOSIA, CYPRUS

JULY 2022

And
rea

s N
. C

ha
ral

am
po

us

ii

IMPLEMENTATION, VALIDATION, AND
EXPERIMENTAL EVALUATION OF A SELF-

STABILIZING BYZANTINE-TOLERANT MULTIVALUED
CONSENSUS ALGORITHM

Andreas N. Charalampous

This Dissertation Thesis is submitted for Partial Fulfillment of the requirements for

obtaining the Master's Degree in Computer Science

from the Department of Computer Science of the University of Cyprus

Recommended for Acceptance
from the Department of Computer Science

July 2022

And
rea

s N
. C

ha
ral

am
po

us

iii

Abstract

Distributed computing has been in the foreground for decades, with distributed

systems having numerous applications. Due to their architecture, one fundamental

problem that these systems often need to solve is the consensus problem. To

accomplish that, the nodes of such a system must cooperate to decide on a value.

A significant percentage of the system nodes should agree on the same value. An

impediment to this is that it should expect some of these nodes to act arbitrarily,

deviating from their expected behavior, leading to the whole system deciding on an

invalid value during consensus. These nodes are called Byzantine or faulty, and their

malicious act may happen because of some internal software or hardware malfunction

or a malware attack. A fundamental property of distributed systems is that their non-

faulty nodes can achieve consensus in the presence of Byzantine nodes.

Another property of a Distributed System is Self Stabilization and how the system

behaves to handle errors. Such self-stabilizing systems can automatically recover from

arbitrary transient faults, violating the system operation assumptions. Examples of

such faults might be simple bit-flips in state variables or messages, but with the code

left induct.

In this thesis, a self-stabilizing Multivalued consensus algorithm is implemented,

validated, and experimentally evaluated in the presence of up to t Byzantine

processes, where t < n/3, with n being the total number of processes. Consensus is

performed on an asynchronous message-passing network using the Go programming

language and the ZeroMQ message library. Experiments are performed on a local

workstation and the Emulab testbed platform.

 And
rea

s N
. C

ha
ral

am
po

us

iv

APPROVAL PAGE

Dissertation Thesis

IMPLEMENTATION, VALIDATION, AND
EXPERIMENTAL EVALUATION OF A SELF-

STABILIZING BYZANTINE-TOLERANT MULTIVALUED
CONSENSUS ALGORITHM

Presented by

Andreas N. Charalampous

 Supervisor

 Dr. Chryssis Georgiou

Committee Member

 Dr. Ioannis Marcoullis

 Committee Member

 Dr. George Pallis

University of Cyprus

July 2022

And
rea

s N
. C

ha
ral

am
po

us

v

Acknowledgments

First of all, I would like to express my gratitude to my supervisor, Professor Chryssis

Georgiou, for giving me the chance to work on and implement this project. Next, for

guiding me through the thesis object by providing his knowledge and experience for

the best and most effective outcome.

Moreover, I would like to express gratitude to my fiancé Florentia for always being next

to me and helping me throughout my studies and career from the beginning. Kudos for

her patience.

Finally, many thanks to my family and friends for their support all these years.

And
rea

s N
. C

ha
ral

am
po

us

vi

Table of Contents

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION .. 1

1.2 OBJECTIVE AND CONTRIBUTION .. 2

1.3 METHODOLOGY .. 3

1.4 DOCUMENT STRUCTURE ... 4

CHAPTER 2 BACKGROUND AND RELATED WORK .. 6

2.1 FAULT TOLERANCE ... 6

2.2 CONSENSUS .. 9

2.3 FLP IMPOSSIBILITY RESULT .. 9

2.4 SELF-STABILIZATION ... 10

2.5 EXISTING ALGORITHMS ... 11

2.6 GO PROGRAMMING LANGUAGE ... 12

2.7 EMULAB – CLOUDLAB .. 13

2.8 ZEROMQ ... 14

CHAPTER 3 THE ALGORITHM .. 17

3.1 ALGORITHM STRUCTURE ... 17

3.2 PROTOCOL STACK .. 18

3.3 SELF-STABILIZING BYZANTINE-TOLERANT MULTIVALUED CONSENSUS ... 27

CHAPTER 4 IMPLEMENTATION DETAILS .. 34

4.1 TECHNICAL DETAILS ... 34

4.2 PROJECT OVERVIEW ... 34

4.3 IMPLEMENTATION CHALLENGES .. 35

4.4 COMMUNICATION STRUCTURE ... 36

4.5 PROTOCOLS IMPLEMENTATION ... 37

And
rea

s N
. C

ha
ral

am
po

us

vii

4.6 EXECUTION & CONFIGURATION DETAILS .. 48

CHAPTER 5 SELF-STABILIZATION AND BYZANTINE FAULT TOLERANCE SCENARIOS AND

VALIDATION ... 51

5.1 INTRODUCTION ... 51

5.2 BYZANTINE FAULT TOLERANCE SCENARIOS ... 51

5.3 SELF-STABILIZATION ON TRANSIENT ERRORS .. 55

5.4 COMBINATION OF BYZANTINE ATTACKS AND TRANSIENT ERRORS .. 58

5.5 CONCLUSION .. 60

CHAPTER 6 EXPERIMENTAL ANALYSIS... 61

6.1 EXPERIMENTAL ENVIRONMENT .. 61

6.2 EXPERIMENT SCENARIOS ... 63

6.3 RESULTS AND THEORETICAL ANALYSIS EVALUATION ... 65

6.4 EXPERIMENTAL SUMMARY .. 77

CHAPTER 7 CONCLUSION .. 78

7.1 SUMMARY ... 78

7.2 FUTURE WORK ... 79

7.3 PERSONAL RETROSPECTION ... 79

BIBLIOGRAPHY ... 81

And
rea

s N
. C

ha
ral

am
po

us

viii

List of Figures

Figure 1: Gantt Diagram .. 5

Figure 2: Illustration of the Byzantine Generals' Problem 8

Figure 3: Valid and invalid scenarios of REQ and REP sockets 15

Figure 4: The studied architecture. .. 17

Figure 5: The ND-broadcast algorithm .. 20

Figure 6: The BRB-broadcast algorithm .. 21

Figure 7: The VBB-broadcast Algorithm for node i .. 23

Figure 8: The BVB-broadcast algorithm .. 24

Figure 9: The BC Algorithm ... 25

Figure 10: The MVC algorithm .. 27

Figure 11: Self-stabilizing MVC Variables and types .. 29

Figure 12: Self-stabilizing BRB-broadcast and VBB-broadcast algorithms 30

Figure 13: Consistency test for self-stabilizing MVC ... 31

Figure 14: Self-stabilizing MVC algorithm ... 33

Figure 15: The implemented network architecture .. 37

Figure 16: Implementation of the BC Messages struct 38

Figure 17: Implementation of the MVC Messages struct 39

Figure 18: Implementation of the REP socket ... 40

Figure 19: Implementation of broadcast functionality using REQ sockets 41

Figure 20: The implemented BRB-broadcast algorithm 43

Figure 21: The implemented VBB-broadcast algorithm 44

Figure 22: The implemented BVB-broadcast algorithm 45

Figure 23: The implemented BC algorithm .. 46

Figure 24: The implemented MVC algorithm ... 48

Figure 25: Example of a network configuration file ... 49

And
rea

s N
. C

ha
ral

am
po

us

ix

Figure 26: Local workstation environment specifications 62

Figure 27: The Cloudlab setup specifications ... 63

Figure 28: Operation Latency (in seconds) on Byzantine Attack Scenarios on Local

Workstation ... 66

Figure 29: Operation Latency (in seconds) on Byzantine Attack Scenarios,

combined with transient errors, on Local Workstation .. 67

Figure 30: Operation Latency (in seconds) on scaling number of nodes per

machine on Cloudlab Cluster .. 67

Figure 31: Operation Latency with Byzantine Attacks and Transient Errors, on

Cloudlab Cluster (10 nodes per machine) ... 68

Figure 32: Message Complexity on Byzantine Attack Scenarios on Local

Workstation ... 69

Figure 33: Message Complexity on Byzantine Attack Scenarios, combined with

transient errors, on Local Workstation .. 70

Figure 34: Message Complexity on scaling number of nodes per machine on

Cloudlab Cluster .. 70

Figure 35: Message Complexity with Byzantine Attacks and Transient Errors, on

Cloudlab Cluster (10 nodes per machine) ... 71

Figure 36: Bit complexity (in MB) on Byzantine Attack Scenarios on Local

Workstation ... 72

Figure 37: Bit Complexity (in MB) on Byzantine Attack Scenarios, combined with

transient errors, on Local Workstation .. 72

Figure 38: Bit Complexity (in MB) on scaling number of nodes per machine on

Cloudlab Cluster .. 73

Figure 39: Bit Complexity (in MB) with Byzantine Attacks and Transient Errors on

Cloudlab Cluster (10 nodes per machine) ... 73

And
rea

s N
. C

ha
ral

am
po

us

x

Figure 40: Operation Latency (in seconds) comparing Self-stabilizing and Non-self-

stabilizing variants using Byzantine Attacks on Cloudlab Cluster 75

Figure 41: Message complexity of the non-self-stabilizing algorithm on Local

Workstation ... 76

Figure 42: Bit complexity (in MB) of the non-self-stabilizing algorithm on Local

Workstation ... 76

And
rea

s N
. C

ha
ral

am
po

us

xi

Abbreviations

MVC: Multivalued Consensus

BC: Binary Consensus

VBB: Validated Byzantine Broadcast

BRB: Byzantine Reliable Broadcast

BVB: Binary Value Broadcast

AWS: Amazon Web Services

And
rea

s N
. C

ha
ral

am
po

us

1

Chapter 1

Introduction

1.1 Motivation

Distributed systems have been part of our everyday life since the 1970s. They are

used in a significant percentage of the systems we use, with networks, databases, and

distributed real-time systems being some of them. A distributed system has

components distributed on different computers, all communicating through the network

to achieve their common goal [1]. Despite many computers, end-users see and use a

distributed system as a standalone interface. A distributed system's computers are

usually called nodes, processors, processes, and others. Their main difference from a

standard parallel system is that they operate far from each other, even on different

continents.

Distributed computing, which studies the principles of distributed systems, depends on

their topology, as the nodes act as needed to communicate and solve problems.

Distributed systems are expected to contain faulty nodes during operation, which,

when low in numbers, should not affect the system's overall behavior. One of the most

challenging problems distributed systems must solve while operating and expecting

faulty nodes is reaching consensus [2]. The consensus problem definition is

straightforward but more complex to solve in action. The goal is that each non-faulty

node supports a value from a predefined set of values, and in the end, they agree on

one. In the simplest form, Binary Consensus [3], all non-faulty nodes must decide on

a value from a set of only two possible values, {0, 1}. The consensus problem is called

Multivalued Consensus when the set contains more than two possible values [3].

And
rea

s N
. C

ha
ral

am
po

us

2

The consensus problem is hard to solve because of faulty nodes, commonly named

Byzantine nodes, after the Byzantine Generals Problem [4]. Byzantine nodes fail to

follow the algorithm instructions, for example, changing or not sending messages to

other nodes. It can result from the node's hardware or software malfunctions or even

malware attacks, where an adversary controls the node. It is a vital property of

Distributed Systems to defend against Byzantine nodes.

Another type of failure is arbitrary transient faults that rarely happen on a node.

Transient faults can also be a violation of how the node is designed to work, where this

can be a corruption on a control variable, like the program counter or the messages

sent or received. Distributed systems can be designed to handle such errors using

Self-Stabilization [5]; as the name implies, the node handles and bypasses the

occurring fault without human intervention.

It is easy to notice that there are many properties that a distributed system must have

in order to operate and solve the problems that it was designed for while handling the

variety of errors that may occur.

1.2 Objective and Contribution

This thesis aimed to implement, validate and experimentally evaluate the Self-

stabilizing Byzantine tolerant Multivalued Consensus algorithm for asynchronous

messages passing by Duvignau et al. [6]. To the best of our knowledge, it is the first

algorithm that solves the Multivalued Consensus problem in asynchronous message-

passing that is both Self-stabilizing and Byzantine tolerant, as it can handle up to t <

n/3 Byzantine nodes. The relevant paper analyzes and theoretically evaluates the

algorithm [6]. However, it is essential for the algorithm to be implemented and

experimentally evaluated to verify the theoretical specifications and capabilities and

confirm that there are no limitations when applied in practice.

And
rea

s N
. C

ha
ral

am
po

us

3

The algorithm was studied, implemented, and evaluated on real-world-like simulations

for validity. Then it was experimentally compared to a non-self stabilizing Byzantine-

tolerant multivalued consensus implementation [7] for performance and message

complexity. The algorithm was implemented using the Go Programming Language [8]

alongside the ZeroMQ messaging library [9], whereas the experiments were

conducted on a local workstation and the Emulab testbed platform [10]. Again, to the

best of our knowledge, this is the first implementation, experimental validation, and

evaluation of the algorithm in [6].

1.3 Methodology

We used the Go programming language alongside the ZeroMQ library to implement

the algorithm. We describe the reasons that led to this decision in Section 2.6.

The overall thesis goal was finished in ten months, as it was done part-time. In order

to conduct the Thesis goal, an initial study was performed on the field, containing

Distributed Systems, Byzantine Fault Tolerance, Binary/Multi-value Consensus, and

Self-stabilization. Additional focus was given to the paper introducing the algorithm [6]

and on a thesis that used similar technologies [7].

After the initial study, we got familiar with the Go Programming Language, with which

we did not have prior experience, and then with the ZeroMQ message-passing library.

We then performed the design phase. We agreed on all application modules, setup,

and network configuration so that the application nodes are configured and executed

as simply as possible.

With everything ready, we started the implementation of the algorithm from scratch.

After implementing the message-passing layer, one by one module, Byzantine

Reliable Broadcast (BRB), Validated Byzantine Broadcast (VBB), Binary Consensus

(BC), and Multivalued Byzantine-tolerant Consensus (MVC) were built, starting from

the bottom of the algorithm stack. At first, we implemented the non-self-stabilizing

And
rea

s N
. C

ha
ral

am
po

us

4

version for each module and then converted it to self-stabilizing. It was possible to

implement the self-stabilizing version of the module directly, but by implementing the

simple form, it was helpful to understand each module and its properties. Every module

was validated with manual testing, unit, and automation tests that tested whole

scenarios when added to the stack.

Finally, after the whole algorithm was finished and tested for validity, it was

benchmarked on a local personal computer and then on a cluster of 10 nodes, with

200 CPUs in total, using the Emulab testbed platform [10]. We analyze benchmark

results and information in Chapter 6 - Experimental Analysis. Extended timesheet

details are shown in Figure 1.

1.4 Document Structure

In Chapter 2 - Background and Related Work, there are references to the Related

Work and Background. Specifically, we mention existing Byzantine fault-tolerant

algorithms, Multivalued Consensus, and Self-stabilization. Moreover, some

introduction to the Go programming language and the ZeroMQ library used for

implementing the algorithm, and the Emulab testbed platform for executing

experiments.

Chapter 3 - The Algorithm contains a complete explanation of the implemented

algorithm with all of its building blocks. Then, in Chapter 4 - Implementation Details,

there is a complete description of the implementation details of our solution, and in

Chapter 5 - Self-stabilization and Byzantine Fault Tolerance, we show all the covered

and evaluated use cases alongside the validation and tests performed. Chapter 6 -

Experimental Analysis shows the experimental setup and analysis performed

alongside the performance and complexity comparisons to other related work.

Finally, Chapter 7 - Conclusion contains a retrospective where we show all our

conclusions and final points related to the implementation and possible future work.

And
rea

s N
. C

ha
ral

am
po

us

5

Figure 1: Gantt Diagram

Sep Oct Nov Dec Jan Feb Mar Apr May June

Initial Meetings (15/09/2021 - 16/09/2021)
Meeting for subject and related work
Study of related work (17/09/2021 - 31/01/2022)
Byzantine Fault Tolerance
Binary and Multi-value Consensus
Related thesis and algorithms
Paper about the algorithm to be implemented
Technical Training (18/01/2022 - 12/02/2022)
Learning Go programming language
Learning ZeroMQ library
Design Phase (13/02/2022 - 20/02/2022)
Application and network setup
Implementation of algorithm (21/02/2022 - 09/04/2022)
Non-self-stabilizing implemention
Conversion to self-stabilizing
Manual testing
Unit tests - automation tests
Benchmarking (10/04/2022 - 30/06/2022)
Local Benchmarking
Benchmarking on Emulab

2021 2022

And
rea

s N
. C

ha
ral

am
po

us

6

Chapter 2

Background and Related Work

2.1 Fault Tolerance

2.1.1 General

Fault tolerance is, if not the most, one of the most critical capabilities of a distributed

system. As the name implies, a distributed system must be able to overcome internal

partial faults and keep functioning, masking the error as if it never happened, with only

some graceful drawbacks in performance. A system is fault-tolerant when the following

requirements are met [11]:

1. Availability: the system is available to be used as expected at any time.

2. Reliability: the system can work correctly for an extended period without

failure.

3. Security: the system does not allow unauthorized access.

4. Safety: in case the system cannot carry out a failure, leading to the working

incorrectly for some time, but with no catastrophic results.

5. Maintainability: system failures can be observed and fixed mechanically.

2.1.2 Types of Faults

Different kinds of faults can occur on a distributed system. Some types are less crucial,

which are easier to notice and handle, and other types can be disastrous for a system

and sometimes cannot be fixed by the system. Next, we describe the main fault types

in distributed systems, starting from the less serious to the most severe [12].

The first type of fault is crash faults, which can contain simple system component

crashes like a processor crash or a link crash. In this case, a component may stop

working without any warning.

And
rea

s N
. C

ha
ral

am
po

us

7

The next type of fault is omission fault, during which a component may omit the

execution of a specific operation. For example, during communication omission, a

node does not send a message that was supposed to be sent. Another common type

of fault is the timing fault, which can happen when a component fails to execute an

operation during a sufficient time window.

The final and most crucial type of fault are Byzantine faults, which are the most difficult

to handle and can even create issues that cannot be solved. These errors are

considered arbitrary or malicious and happen when a faulty component has an

arbitrary behavior. For example, a node can send invalid messages, pretending to be

another processor, and stay idle while executing. These are the kind of faults that we

study below.

2.1.3 Byzantine Fault Tolerance

Since Byzantine Faults are the most severe fault types, a distributed system must be

Byzantine fault-tolerant. The name Byzantine comes from the Byzantine Generals

Problem introduced by Leslie Lamport, Robert Shostak, and Marshall Pease [4].

The problem definition states that several Byzantine Generals, each with their army

division, are camping around an enemy city, planning to attack. For their attack to be

successful, they must coordinate to simultaneously attack all or at least a significant

number of divisions. This operation is also known as reaching consensus. Generals

can only communicate through messengers, saying if they should attack or retreat,

and what makes the operation complicated is that a general or generals are traitors. In

Figure 2, we see an illustration of the Byzantine Generals Problem, where on the top

image is shown what each general said if he would attack or retreat and on the bottom

what exactly he did. Loyal generals assumed that everyone would attack, while traitors,

in the end, retreated. Thus, the attack was unsuccessful.

Through this problem, Leslie Lamport, Robert Shostak, and Marshall Pease proved

that in the presence of Byzantine Generals, consensus could not be reached if the

And
rea

s N
. C

ha
ral

am
po

us

8

number of Byzantines was considerable. Specifically, when there are n generals total,

the number of Byzantines t must not exceed (n/3) – 1. The same applies to distributed

systems, even if the system is synchronous, with a guaranteed common global notion

of time and operations taking place in synchrony.

Figure 2: Illustration of the Byzantine Generals' Problem

And
rea

s N
. C

ha
ral

am
po

us

9

2.2 Consensus

As mentioned in Section 2.1.3, when we have a decentralized system whose

components need to coordinate and agree on an action or value, that is called

consensus [3]. In distributed systems, nodes are constantly called to reach consensus

to function correctly. It was also made clear that the consensus problem becomes

much more complicated and even unsolvable in the presence of Byzantine nodes. In

its simplest form, consensus must satisfy the following three (3) requirements:

1. Consistency: All correct nodes agree on the same value.

2. Validity: The decided value was initially proposed from at least a correct node.

3. Termination: Every correct node eventually decides on a value.

2.3 FLP Impossibility Result

After looking at the Fault Tolerance and Consensus properties, we will see why their

properties can not be simultaneously assured in asynchronous systems without some

additional mechanism. We saw above that the nodes of a distributed system

communicate and exchange messages to achieve consensus. In synchronous

systems, faster nodes eventually wait for messages from the slowest nodes. However,

in asynchronous systems, there is no specific limit that it will take for a slow node to

respond. Because of this, we cannot be sure if a node faulted or is simply slow.

The FLP Impossibility result, which took its name from the authors that introduced it,

Fischer, Lynch, and Paterson [13], states that in asynchronous distributed systems,

if a single failure occurs, then the system cannot reach a consensus (agreement-safety

/ termination-liveness). Therefore the agreement, fault tolerance, and termination

properties cannot be satisfied simultaneously in asynchronous systems.

There were multiple approaches to solve the FLP Impossibility result, in which specific

mechanisms are used. One of them is adding synchrony assumptions in the

asynchronous system, for example, using a predefined network delay. Other options

And
rea

s N
. C

ha
ral

am
po

us

10

include failure detection mechanisms [14] for detecting faults or non-deterministic

models with randomization [15].

2.4 Self-Stabilization

In the previous sections, we listed the different types of faults and why fault tolerance

is necessary for a distributed system. A fault-tolerant mechanism is explicitly designed

depending on assumptions that can be variables or protocols, which help distributed

systems defend against faults. This sub-chapter views another type of fault, arbitrary-

transient-faults, and how a system can detect and overcome them using self-

stabilization.

2.4.1 Arbitrary transient faults

We said that fault tolerance depends on critical system assumptions. It is fair to

characterize these assumptions as necessary since one single violation can break fault

tolerance and even be fatal to the system. Another type of fault that can affect a

distributed system is arbitrary-transient-faults [16], which temporarily violate the

assumptions that a system or network was designed to follow. They are minimal in

terms of how they violate the assumptions. However, as already said, they can even

be lethal for the distributed system, turning the system completely useless, making

human intervention necessary for stabilizing it again.

This kind of error rarely happens, in an unexpected way, making it impossible to detect

it at the time that it happens. It can be tiny and simple, like a single bit-flip on a variable

or a message. Such small alternation can happen on the program counter, bringing

the system to a faulty state. The system can not recover since it was never designed

to be in that state [17]; for example, on a blocking message receive operation, without

performing a send operation first.
And

rea
s N

. C
ha

ral
am

po
us

11

2.4.2 Self-stabilization after arbitrary transient faults

Self-stabilization [18] is precisely how a system can detect and recover when an

arbitrary transient fault happens. As the name implies, when designed with self-

stabilization properties, a system that comes in an arbitrary state can stabilize and

correct itself without human interaction and return to a valid operating state.

The self-stabilization notion was first mentioned by Edsger Dijkstra while solving the

mutual exclusion problem [18]. Dijkstra stated that when there is a violation in the

assumptions that a system follows in order to operate and the system goes into an

arbitrary state, then with self-stabilization, the system can recover.

Based on this, a distributed system needs two properties: (1) an initial (reset) state and

(2) the ability to recover to that state from every arbitrary state. An example of an initial

reset state could be the program counter pointing at the beginning of a distributed

algorithm and resetting the control variables related to the algorithm. For the latter

property, a system performs checks at specific points in the algorithm, and in case a

violation is detected, it returns to the initial state.

Even though self-stabilization is considered a fault tolerance mechanism, it should be

distinguishable from other fault tolerance methods. As mentioned in the previous

sections, fault tolerance methods mask errors and prevent failures. In contrast, on the

other side, self-stabilization guarantees recovery after a transient failure occurs. The

transient failure may have a noticeable effect on the system operation before it

recovers.

2.5 Existing Algorithms

As mentioned by Duvignau et al. [6], the studied algorithm, by the best of their

knowledge, is the first self-stabilizing, Byzantine, and intrusion-tolerant algorithm for

solving multivalued consensus in asynchronous message-passing systems. Existing

solutions consist of non-Byzantine fault-tolerant solutions that do not use self-

And
rea

s N
. C

ha
ral

am
po

us

12

stabilization [19] and self-stabilizing solutions that do not have fault-tolerance against

Byzantine failures [20] [5] [21] [22].

The first approach of Byzantine tolerance in asynchronous systems reducing

multivalued consensus to binary consensus was that of Ben-Or, Kelmer, and Rabin

[23]. However, it did not consider intrusion tolerance which later Mostéfaoui and Raynal

[24] [25] and Correia, Neves, and Veríssimo [26] [27] proposed. We will see later that

the MVC-no-intrusion (intrusion tolerance) requirement states that the decided value

cannot be a value proposed only by Byzantine nodes.

A related solution for solving Binary Consensus is that of Mostéfaoui et al. [28] [29],

who presented an asynchronous randomized solution with common coins. Georgiou

et al. [16] proposed a self-stabilizing variation on Mostéfaoui et al.'s algorithm. The

self-stabilizing Byzantine-tolerant Binary consensus object from this proposal will be

used in the studied algorithm by Duvignau, Schiller, and Raynal [6], from which

randomization is inherited therefore bypassing the FLP Impossibility result.

2.6 Go Programming Language

Go, or Golang [8], is a relatively new open-source programming language, with its first

version being released in March of 2012. It was designed and implemented at Google

by Robert Griesemer, Rob Pike, and Ken Thompson. Its main goal was to improve

programming productivity, providing multithreading and network tools imported at the

syntax level. Designers shared a common opinion against languages used at Google,

increasing the complexity of Google's codebase. However, they focused on designing

Go, keeping the valuable capabilities of each one of them. This approach gave Go the

characteristics of a Static typing, compiled, run-time efficient language like C. Easily

readable and usable like Python and Javascript, and High-performance networking

and multiprocessing [30]. Another important feature of Go is that it contains goroutines

and channels in the language syntax. The first is used to implement multithreading

And
rea

s N
. C

ha
ral

am
po

us

13

applications, and the second is to provide communication mechanisms between

threads. These features make implementing, reading, and maintaining multithreading

applications easy.

The mentioned characteristics make the language one of the simplest for server-side

programming, game development, cloud-based programming, and Data-Science [31].

Go offers easy-to-read documentation about its features and packages directly through

the official website [8]. Combined with the increasing community and support, the

language is considered one of the most hyped and loved programming languages.

The combination of the above led us to use Go to implement the algorithm, as it

perfectly fits our needs. Also, the existing implementation of a related algorithm was

conducted with Go, so we can be more precise in comparing the two. Initially, we

started the implementation with go1.17 and upgraded to g1.18 shortly after to get

advantages of added features like Generics.

2.7 Emulab – Cloudlab

Our implementation was evaluated and benchmarked using the Emulab platform

technologies. Emulab [10] is a network testbed that allows researchers to create

environments, setups, and configurations for general development, testing, debugging

and evaluating experiments and systems. It provides many physical and visual nodes

with various specs so that users can build the most suitable environment for their

experiments.

Researchers can request access to the platform by filling out an application form, and

after their application is evaluated, they are granted access. After that, they are free to

allocate resources, depending on availability, to set up clusters for running

experiments. We managed to get access by creating an account using our Institutional

Email and specifying the purpose of our experiments. Instructions for getting access

and documentation for using the platform are included in the Emulab manual [32].

And
rea

s N
. C

ha
ral

am
po

us

14

For our experiments, we used Cloudlab [33], which uses the same technologies,

interface, and user accounts as Emulab but provides far more resources, including

access to the Emulab resources. During the time we used it, the Cloudlab deployment

consisted of more than 25,000 cores distributed across three sites at the University of

Wisconsin, Clemson University, and the University of Utah [33].

2.8 ZeroMQ

ZeroMQ, also known as ØMQ, 0MQ, or ZMQ [9], is a high-performance asynchronous

network message-passing library. It is designed mainly for distributed and concurrent

systems. The Zero prefix describes the framework's profile, referring to its minimalism,

with zero brokers, high performing with zero latency, zero cost as it is free, and zero

administration. On most operating systems, it provides APIs for the most known

programming languages, like C, C++, Java, Go, Python, Rust, and many other

programming languages. With these asynchronous features, the library was the best

fit for our algorithm implementation [9].

2.8.1 ZeroMQ Sockets and Patterns

The library provides a plethora of communication sockets and patterns, giving

developers the flexibility to design and structure their network however they want.

There are many types of sockets provided that can be combined to satisfy every

scenario. Next, we describe some of them.

2.8.1.1 REQ and REP sockets

Two of the most basic sockets are REQ and REP, which stand for request and reply,

respectively; combined, they give a basic client-server pattern. These two sockets are

synchronous, limiting their practical, real-world applications. In order to function, these

two ports must send and receive messages alternately. For example, they cannot send

two messages consecutively without receiving a message between them. The REQ

socket first sends then receives in a Send, Receive, Send Receive pattern, whereas

And
rea

s N
. C

ha
ral

am
po

us

15

REP first receives, then sends in a Receive, Send, Receive, Send pattern. Figure 3

shows the primary valid and invalid use of REQ and REP sockets.

Figure 3: Valid and invalid scenarios of REQ and REP sockets

2.8.1.2 DEALER and ROUTER sockets

DEALER and ROUTER sockets are considered the non-blocking, asynchronous

variant of REQ-REP sockets, DEALER (old name: XREQ) acting REQ, and ROUTER

(old name: XREP) as REP sockets. The most important thing that allows ROUTER to

work asynchronously is that it expects all incoming messages to contain a leading

identity frame containing information about its sender. Neither port has any restriction

on the sending/receiving sequence pattern.

2.8.1.3 PUB and SUB sockets

The pair of PUB, meaning publisher, and SUB, meaning subscriber, are used for the

well-known publisher-subscriber pattern. PUB sockets publish messages, and SUB

And
rea

s N
. C

ha
ral

am
po

us

16

sockets receive those messages. PUB sockets cannot receive, and SUB sockets

cannot send messages on the other side. Since SUB sockets do not send any

response to acknowledgments to PUB messages, their communication is

asynchronous.

2.8.1.4 PUSH and PULL sockets

ZeroMQ sockets can also apply a pipeline pattern in cases where few nodes push work

to many workers, who then forward results to others. A PUSH socket communicates

with several PULL peers and can only send messages and not receive. Similarly, a

PULL socket is connected to some PUSH socket peers and is allowed to receive and

not send messages. A property of this setup is that PUSH and PULL sockets do not

know anything about their peers.

2.8.1.5 PAIR sockets

Pair sockets are used in specific scenarios and are unsuitable for TCP network

communication. They are mainly used for inter-thread communication within a single

process and can only connect to a single peer at a time.

And
rea

s N
. C

ha
ral

am
po

us

17

Chapter 3

The Algorithm

3.1 Algorithm Structure

Like almost every consensus algorithm (or module), the studied Multivalued

Consensus algorithm is built on top of other algorithms. As shown in Figure 4,

Duvignau, Shiller, and Raynal's [6] whole structure contained a multivalued Byzantine-

tolerant consensus algorithm (MVC) built on top of a Binary Consensus Object (BC)

and Validated Byzantine Broadcast (VBB). VBB is built on top of Byzantine Reliable

Broadcast (BRB). On top of the multivalued consensus algorithm, a reliable broadcast

with a total-order delivery algorithm can then rely on it. On top of that, state-emulation

is achieved. All the above depend on an asynchronous message-passing system. The

studied algorithm of Duvignau, Shiller, and Raynal contains only MVC, VBB, and BRB,

assuming the existence of a BC object is shown in blue cells in Figure 4. Our

implemented and used (Byzantine-tolerant binary consensus [16]) protocols are shown

in red-bordered cells.

Figure 4: The studied architecture. Algorithms studied by Duvignau, Schiller, and Raynal are in blue
cells. Our implementation is shown in red-bordered cells.

The following sections show the studied protocols starting from the protocol stack's

base and moving to the top in their non-self-stabilizing version. Later, we show how

they are converted to self-stabilizing. All the shown algorithm figures in the section are

And
rea

s N
. C

ha
ral

am
po

us

18

written in simplified pseudocode syntax and originated from Duvignau, Shiller, and

Raynal’s paper [6].

3.2 Protocol Stack

3.2.1 Message-passing system

Starting from the base, a vital property for a distributed algorithm is communication

and networking. In the basic non-self-stabilizing form, the broadcasting algorithms

depend on reliable communication channels. Such channels offer basic guarantees;

for example, all sent messages are eventually delivered (fairness), a received

message is created and sent from some process (no-creation), and every sent

message is received precisely once (no-duplication) [34]. We will discuss later further

how these properties are satisfied in our implementation.

3.2.2 Byzantine Reliable Broadcast

The first broadcasting algorithm is Byzantine Reliable Broadcast, proposed by Bracha

and Toueg [35]. The BRB algorithm has the abstraction of two (2) primary operations

that of brbBroadcast(message) in order to broadcast a value to all other peers and

brbDeliver() raised from a node that received a message from another node so that

the following assumptions are applied:

1. BRB-validity: if a correct node raised brbDeliver for a message m from a

process p, process p invoked brbBroadcast(m).

2. BRB-integrity: a correct node cannot brbDeliver the same message from the

same process more than once.

3. BRB-no-duplicity: two different correct processes cannot brbDeliver different

messages from a process p, where p can even be faulty.

4. BRB-Completion-1: when a correct process p invokes brbBroadcast(m), all

correct nodes brbDeliver its message m.

And
rea

s N
. C

ha
ral

am
po

us

19

5. BRB-Completion-2: if a correct process pi brbDeliver a message m from pj

that can even be faulty, then all correct nodes eventually brbDeliver message

m from pj.

Each message broadcasted with BRB can be one of three (3) types; INIT when a

process broadcasts its initial value, ECHO for messages containing the value of

another node, and READY when a node is ready to brbDeliver a message from a node.

BRB can guarantee reliable broadcast assuming t < n/3, where t is the number of faulty

processes.

3.2.2.1 No-Duplicity Broadcast

BRB depends on a simpler broadcast algorithm, No-Duplicity Broadcast (ND-

Broadcast), proposed again by Toueg [15]. ND-Broadcast, similarly to BRB, offers two

(2) operations; ndBroadcast(message), which is the same as

brbBroadacast(message), and ndDeliver(), which is raised before brbDeliver().

The ND-Broadcast algorithm is shown in Figure 5. Assuming that we have a process

pi that ndBroadcasts a message mi and every other process receives this message, pi

invokes ndBroadcast(mi), with INIT(i, mi) being sent to every other process. When

another process pj receives INIT(i, mi) for the first time, it broadcasts an ECHO(i, mi) to

the rest of the processes. If pj then receives ECHO(i, mi) from at least (n + t)/2 nodes,

where n and t are respectively the numbers of all processes and faulty processes, then

pj raises ndDeliver event for message mi from process pi.

And
rea

s N
. C

ha
ral

am
po

us

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

ndDeliver(k, mJ):
 // event raised when mJ ND-Delivered from node k

ndBroadcast(m):
 broadcast ND_INIT(m)

on arrival of ND_INIT(mJ) from node j:
 broadcast ND_ECHO(j, mJ)

on arrival of ND_ECHO(k, mJ) from j:
 if received ND_ECHO(k, mJ) from at least (n+2)/2 nodes:
 if not yet invoked ndDeliver(k, mJ):
 ndDeliver(k, mJ)

Figure 5: The ND-broadcast algorithm

3.2.2.2 Byzantine Reliable Broadcast on ND-Broadcast

As already mentioned, BRB is built on ND-Broadcast, and actually, it is a continuation

of it. The main difference is on the part where ndDeliver is raised, where BRB sends

the last type of READY message waiting for equivalent messages from other nodes,

which guarantees the reliability of broadcasting in the presence of Byzantine

processes. The BRB algorithm is shown in Figure 6.

Continuing from the previous algorithm, when a node pj receives ECHO(i, mi) from at

least (n + t)/2 nodes, then and if it did not do it already, it broadcasts READY(i, mi).

Next, when node pj receives READY(i, mi) from another node, it performs two checks.

Firstly, if it received the same READY message from t+1 nodes, meaning that at least

one correct node sent a READY, and if not yet broadcasted, it broadcasts

READY(i, mi). This case can happen in the case where the node receives enough

READY messages before receiving enough ECHOs.

Secondly, it checks if it received the same READY message from at least 2t+1 nodes,

and if not already done, it raises a brbDeliver for that message. This check ensures no

two correct nodes brbDeliver different values, as BRB-Completion-2 states.

And

rea
s N

. C
ha

ral
am

po
us

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

brbDeliver(k, mJ):
 // event raised when mJ BRB-Delivered from node k

brbBroadcast(m):
 broadcast BRB_INIT(m)

on arrival of BBR_INIT(mJ) from node j:
 broadcast BRB_ECHO(j, mJ)

on arrival of BRB_ECHO(k, mJ) from j:
 if received BRB_ECHO(k, mJ) from at least (n+2)/2 nodes:
 if not yet broadcasted BRB_READY(k, mJ)
 broadcast BRB_READY(k, mJ)

on arrival of BRB_ECHO(k, mJ) from j:
 if received BRB_READY(k, mJ) from (t+1) nodes:
 if not yet broadcasted BRB_READY(k, mJ)
 broadcast BRB_READY(k, mJ)
 if received BRB_READY(k, mJ) from (2t+1) nodes:
 if not yet invoked brbDeliver(k, mJ):
 brbDeliver(k, mJ)

Figure 6: The BRB-broadcast algorithm

3.2.3 Validated Byzantine Broadcast

The final studied broadcast algorithm is that of Validated Byzantine Broadcast (VBB)

and is built on top of BRB. Again, it offers two operations, vbbBroadcast(message)

for VBB broadcasting a message and vbbDeliver() raised when a VBB message is

delivered. As the name implies, a message is validated by checking if it is VBB

delivered by a number of nodes. When a message from a sender cannot be validated,

then a transient error symbol Ψ indicates the invalidity of a message. The VBB

requirements are:

1. VBB-validity:

a. VBB-justification: if a correct node raises vbbDeliver for message m ≠

Ψ, there is at least one correct node that invoked vbbBroadcast(m).

b. VBB-obligation: if all correct nodes invoked vbbBroadcast(m) for the

same message m, all correct nodes raise vbbDeliver for every m from

each node broadcasted.

And
rea

s N
. C

ha
ral

am
po

us

22

2. VBB-uniformity: if a correct node raises vbbDeliver for m' ∈ {m, Ψ} from a

node p that can even be faulty, then every other correct node raises

vbbDeliver for m' from p.

3. VBB-Completion: when a correct node p invokes vbbBroadcast(m), all

correct nodes raise vbbDeliver for m from p.

Figure 7 shows the VBB algorithm. The multiset rec is used for the implementation,

containing all the BRB-delivered values. Also, equal(v, rec) returns the number of

elements in rec equal to v, and differ(v, rec) returns the number of elements not equal

to v.

In contrast to the BRB algorithm, where we could assume that only one process

broadcasts its value, VBB works with all processes broadcasting their value. There are

two (2) types of VBB messages, INIT and VALID, where the first is used mainly for

broadcasting the value and the latter for the messages validation procedure. In

general, the algorithm is split into two parts. The first part contains broadcasting of

values, gathering values of other processes, and validating them. The second part

waits for validations from other processes to finally raise vbbDeliver.

Initially, every node BRB-Broadcasts a VBB-INIT message m and waits until at least

(n-t) VBB-INIT messages are BRB-Delivered. Those values, as mentioned above, are

stored in the rec multiset. When that number of messages are BRB-delivered, the node

counts how many times he can find his proposed value in rec multiset, and if they are

more than n-2t, then it brbBroadcasts a VBB-VALID message with the value true,

otherwise with the value false.

After sending the VBB-VALID message, the node executes a background task for each

one of the other nodes, for vbbDelivering their value or the error value Ψ. Taking into

consideration the background task where node pi validates the value of pj, firstly, node

pi waits for both VBB-INIT and VBB-VALID messages to be BRB-delivered. When both

messages are BRB-delivered, the VBB-VALID message value from pj is checked. If it

And
rea

s N
. C

ha
ral

am
po

us

23

is true, pi waits until the VBB-INIT message value of pj is BRB-delivered from at least

n-2t nodes. If this happens, pi VBB-delivers value vj from pj. Else if the value is false,

pi waits for t+1 values that are different from pj to be BRB-delivered. If that happens, pi

VBB-delivers the transient symbol Ψ from pj.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

variables:
 rec // multiset that contains all BRB-delivered values
equal(v):
 return number of elements in rec equal to v
differ(v):
 return number of elements in rec not equal to v

vbbDeliver(j, d):
 // raised when the value d is VBB-Delivered from node j

vbbBroadcast(v):
 brbBroadcast(VBB_INIT(i, v))
 wait until len(rec) >= n-t
 brbBroadcast(VBB_VALID(i, equal(v) >= n-2t))

background tasks (one for every node j, j != i):
 wait VBB_VALID(j, x) and VBB_INIT(j, v) BRB-delivered from j
 if x == true:
 wait until equal(v) >= n-2t
 d = v
 else:
 wait until differ(v) >= t+1
 d = Ψ
 vbbDeliver(j, d)

Figure 7: The VBB-broadcast Algorithm for node i

3.2.4 Randomized Byzantine-tolerant Binary Consensus

One fundamental property of the studied algorithm is the reduction from Multivalued

Consensus to Binary Consensus. The latter is a simplified version of the first one since

in MVC, we can have whatever value proposed, whereas, in BC, only two (2) different

values can be the outcome of consensus, that of 0 or 1. Binary consensus offers two

operations, binPropose(), where one of two possible values can be proposed for

consensus, and binResult(), which returns the result of consensus. There are a set of

properties held during Binary Consensus:

1. BC-Validity: if every correct node proposes a value b, then every correct node

can decide only that value b.

And
rea

s N
. C

ha
ral

am
po

us

24

2. BC-Agreement: two correct nodes cannot decide on different values.

3. BC-Termination: every correct node eventually decides.

Binary consensus is not contained in the studied architecture of Duvignau, Shiller, and

Raynal. For our implementation, we used a Randomized Binary Consensus built on

Binary Value broadcast (BVB), shown in Figure 8. The BVB-broadcast algorithm is a

basic algorithm in which a node broadcasts its binary value and waits for the values of

other nodes. When it receives a value from at least t+1 processes, and if not done yet,

it broadcasts it to the other nodes. If the same value is received from 2t+1 processes,

it is added to a set called bin_values. We will see below how this set is used during

Binary Consensus. The two (2) types of Binary Consensus messages are EST and

AUX, sent in different phases.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

variables:
 bin_values // set that contains binary values received
 // from 2t+1 different processes

bvbBroadcast(b):
 broadcast b

on arrival of value b:
 if received b from at least (t+1) nodes:
 if not already invoked bvbBroadcast(b):
 bvbBroadcast(b)
 if received b from at least (2t+1) nodes:
 add b to bin_values

Figure 8: The BVB-broadcast algorithm

The Binary Consensus is split into three (3) phases, executed in rounds. In the first

phase, all nodes exchange their proposed binary value by sending it through BVB

alongside the current round and the EST tag. Then they wait until their bin_values set

is filled with at least a value.

In the second phase, nodes send a random value from the bin_values set with the

round number and the AUX tag. Again they wait for n-t AUX messages delivered

containing a value that exists in the bin_values set.

And
rea

s N
. C

ha
ral

am
po

us

25

By having such a value, the node proceeds to the third phase, where it first flips a coin

common for all nodes. For the common coin, we used a very dummy generator, which

considers the round in which is flipped and a prime number. After getting the common

coin value, it checks if the value from the second phase is the same as its round

estimation and the value from the common coin. If they all match, the node decides on

value v. Otherwise, it moves to a new round. Also, if the second phase value does not

match the node's round estimation, it adopts that value and moves to the next round.

This procedure is repeated until consensus is reached. The complete algorithm is

shown below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

binPropose(v):
 estimation = v
 round = 0
 do forever:
 round++

 // phase 1
 m = (round, estimation, BC_EST)
 bvbBroadcast(m)
 wait until bin_values not empty

 // phase 2
 aux_value = bin_values[0]
 m = (round, aux_value, BC_AUX)
 broadcast m
 // received values are kept in values set
 wait until n-t messages received
 from different nodes with values
 contained in bin_values

 // phase 3
 common_coin_value = common_coin()
 if set values contains exactly v:
 if v equals common_coin_value:
 return v
 else
 estimation = v
 else
 estimation = common_coin_value

Figure 9: The BC Algorithm

3.2.5 Multivalued Byzantine-tolerant Consensus

Next, we look at the goal algorithm, Multivalued Byzantine-tolerant Consensus. MVC

contains the propose() operation, where a node can propose its value to all other

And
rea

s N
. C

ha
ral

am
po

us

26

nodes to initialize the consensus procedure. The algorithm depends upon VBB-

broadcast communication abstraction and a Byzantine fault-tolerant Binary consensus.

The MVC algorithm contains the following requirements:

1. MVC-Completion: all correct nodes eventually decide on a value.

2. MVC-Agreement: two correct nodes cannot decide on different values.

3. MVC-Validity: only a value that was proposed can be decided.

4. MVC-no-intrusion: the decided value cannot be a value that was proposed by

faulty processes only.

All correct nodes are expected to invoke the propose() operation during MVC. There

is only one (1) MVC message type: EST. The algorithm is shown in Figure 10.

The first step of a node i is that of vbbBroadcasting an EST message containing the

proposed value. Node i waits for EST messages to be vbbDelivered from at least n-t

different nodes, which are kept in a multiset rec. When this happens, node i tests

whether rec includes at least n-2t non-Ψ replies and exactly one non-Ψ value. The

next step contains the part where MVC is reduced to BC since the test result, true or

false, is binProposed to BC.

Once the BC result is available, if its value is false, node i returns the transient error

Ψ. If the result value is true, node i waits until it receives n-2t messages from different

nodes that match his value, and if this happens, it returns his proposed value v.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

variables:
 rec // multiset that contains all VBB-delivered values
distinct():
 return number of distinct non-psi values in rec
nonPsi():
 return number of non-psi values in rec

bp():
 return nonPsi() >= n-2t && distinct(rec) == 1

propose(v):
 vbbBroadcast(EST(v))
 wait until len(rec) >= n-t
 if binPropose(bp()):
 wait until value v≠Ψ VBB-delivered from n-2t nodes
 return v

And
rea

s N
. C

ha
ral

am
po

us

27

17
18

 else:
 return Ψ

Figure 10: The MVC algorithm

3.3 Self-stabilizing Byzantine-tolerant Multivalued Consensus

Having a complete check on the non-self-stabilizing version of all algorithms, we will

address the challenges towards self-stabilization mentioned in Duvignau, Schiller, and

Raynal's proposal. We will then list all solutions and show how each algorithm is

converted to the self-stabilizing version to give us the Self-stabilizing Byzantine-

tolerant Multivalued Consensus.

3.3.1 Challenges and Solutions

3.3.1.1 Blocking Operations

The main obstacle to achieving self-stabilization is that the MVC algorithm blocks on

many operations. As mentioned, there are operations where the node waits for a result

or a reply from another node. Specifically, the MVC propose() as well as

vbbBroadcast() block until there is a result. Besides these operations, BRB and VBB

are designed to block until brbDeliver(), and vbbDeliver() provide a result. We will see

in the next chapter how these operations are transformed into non-blocking.

3.3.1.2 Blocking Reliable channels and transient errors

The reliable channels are another algorithm component that can block the system

during execution. In order to assure reliability, the channels must either block until there

is a reply or resend a message in case the first one was omitted. The solution here is

to gather all messages into one big message and resend it in a repeated for-loop; thus,

we can assume that messages will be eventually transferred. This solution also solves

the problem of transient errors, where a transient error in our case can cause the

program to come into an error state. For example, a state variable change that does

not let the algorithm finish or corruption on the program counter can block the system

on a communication procedure. To avoid this, all the code parts that a node would wait

And
rea

s N
. C

ha
ral

am
po

us

28

for are converted to if-statements, and in combination with the for-loop, the system will

never block.

3.3.2 The Self-stabilizing Byzantine-tolerant Multivalued Consensus Algorithm

We can now show the proposing Self-stabilizing Byzantine-tolerant Multivalued

Consensus Algorithm by Duvignau, Schiller, and Raynal. Each algorithm's conversion

and building block is analyzed in the following sub-sections.

3.3.2.1 General Structure, variables, and types

In contrast to how the algorithms work, as shown in Section 3.2, the Self-stabilizing

Byzantine-tolerant Multivalued Consensus works in an iterating way.

First, to avoid blocking during many broadcasting operations in the algorithms, all

messages are unified in one big message and then sent. For that, a structure msg[][][]

is used for holding all messages that are sent and received. This 3-dimensional

structure stores the messages, according to the following logic:

msg[nodeId][vbbType][brbType]. First, messages are grouped by nodes. Assuming a

node with id i, msg[i] contains all the messages that node i is supposed to send. For

every other node with id j ≠ i, the received messages are kept in msg[j]. Next, the VBB-

broadcast messages and finally BRB-broadcast messages are stored; for example,

the received VBB_INIT messages of node j are stored in msg[j][VBB_INIT], and the

BRB_READY messages of VBB_INIT messages are stored in

msg[j][VBB_INIT][BRB_READY]. As already said, there are two (2) types of VBB

messages and three (3) of BRB; VBB_INIT, VBB_READY for VBB-broadcast, and

BRB_INIT, BRB_ECHO, BRB_READY for BRB-broadcast.

There is a background task that is responsible for handling received messages and

storing them in the msg[][][] structure. In each iteration, the algorithm operations take

place by checking the received messages in the msg[][][], and all new messages that

should be sent are added to that structure. At the end of each iteration, the node's

And
rea

s N
. C

ha
ral

am
po

us

29

messages stored in msg[i] are broadcasted. This operation happens in a forever for-

loop.

The algorithm also uses a Byzantine-tolerant Binary Consensus algorithm, which is

formatted as a binary consensus object bcO, whose initial state is inactive (⊥) and

becomes active when bcO.propose() is invoked. The binary consensus algorithm is

executed as a background task when activated, hence not blocking the main MVC

algorithm. The bcO.result() operation returns the decided binary value.

Mentioned variables and types are shown below.

 1
 2
 3
 4
 5
 6
 7
 8
 9

types:
 brbTypes = {BRB_INIT, BRB_ECHO, BRB_READY}
 vbbTypes = {VBB_INIT, VBB_VALID}
variables:
 msg[][][] // most recently sent and received messages
 bcO // binary object, ⊥ when not running
background task:
 when message m arrived from node with nodeId:
 msg[nodeId] = m

Figure 11: Self-stabilizing MVC Variables and types

3.3.2.2 Self-stabilizing BRB-broadcast and VBB-broadcast

The self-stabilizing BRB-broadcast and VBB-broadcast algorithms are shown below.

We see how their broadcast and deliver operations do not directly broadcast or wait

for messages but read/write to the msg[][][] structure.

And
rea

s N
. C

ha
ral

am
po

us

30

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

// BRB-broadcast
brbBroadcast(vbbType, v):
 msg[i][vbbType][BRB_INIT] = v

brbDeliver(vbbType, nodeId):
 if (nodeId, m) in msg[*][vbbType][BRB_READY]
 of 2t+1 different nodes:
 return m
 else:
 return ⊥

// VBB-broadcast
vbbEq(vbbType, v):
 if brbDeliver(vbbType, nodeId) == v
 by at least n-2t nodes:
 return true
 else:
 return false

vbbDiff(vbbType, v):
 if brbDeliver(vbbType, nodeId) ≠ v
 by at least t+1 nodes:
 return true
 else:
 return false

vbbEcho(vbbType):
 if brbDeliver(vbbType, nodeId) ≠ ⊥
 by at least n-t nodes:
 return true
 else:
 return false

vbbBroadcast(v):
 brbBroadcast(VBB_INIT, (i, v))

vbbDeliver(nodeId):
 if msg[nodeId][VBB_INIT][BRB_INIT] == ⊥ &&
 msg[nodeId][VBB_VALID][BRB_INIT] ≠ ⊥:
 return Ψ

 initValue = brbDeliver(VBB_INIT, nodeId)
 validValue = brbDeliver(VBB_VALID, nodeId)

 if ¬(initValue ≠ ⊥ && validValue ≠ ⊥):
 return ⊥
 if validValue == true && vbbEq(VBB_INIT, initValue):
 return initValue
 if validValue == false && vbbDiff(VBB_INIT, initValue):
 return Ψ
 if vbbEcho(VBB_VALID):
 return Ψ
 return ⊥

Figure 12: Self-stabilizing BRB-broadcast and VBB-broadcast algorithms

And
rea

s N
. C

ha
ral

am
po

us

31

3.3.2.3 Consistency tests

For the algorithm to be self-stabilizing, consistency tests must be in place to detect and

recover from arbitrary transient errors. The consistency tests are shown in Figure 13.

The first two consistency tests (brbMessagesConsistencyTest() and

vbbValidMessagesConsistencyTest()) are used for BRB-broadcast messages and

VBB-broadcast messages, respectively, and check for inconsistency in BRB_ECHO,

BRB_READY and VBB_VALID messages that a node is about to send. The last

consistency test checks for inconsistencies in received messages. In case

inconsistency is detected, all the equivalent messages are erased. This message

purge is safe since the algorithm is designed to resend all messages again.

 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99

// Consistency tests
brbMessagesConsistencyTest(vbbType):
 for message in msg[i][vbbType][BRB_ECHO]:
 if not equivalent BRB_INIT message:
 clear msg[i]
 for message in msg[i][vbbType][BRB_READY]:
 if ¬(at least (n+t)/2 equivalent BRB_ECHO messages ||
 at least t+1 equivalent BRB_READY messages):
 clear msg[i]

vbbValidMessagesConsistencyTest(vbbType):
 initValue = msg[i][vbbType][BRB_INIT]
 validValue = msg[i][VBB_VALID][BRB_INIT]
 if initValue == ⊥:
 clear msg[i]
 if validValue ≠ ⊥:
 if ¬(vbbEcho(vbbType) &&
 validValue == vbbEq(VBB_INIT, initValue)):
 clear msg[i]

receivedMessagesConsistencyTest(vbbType):
 for every nodeId in msg[][][]:
 initValue = msg[nodeId][VBB_INIT][BRB_INIT]
 if initValue == ⊥ || initValue sender ≠ nodeId:
 clear msg[nodeId]

 for message in msg[nodeId][vbbType][BRB_ECHO]:
 if message sender duplicate:
 clear msg[nodeId]

 for message in msg[nodeId][vbbType][BRB_READY]:
 if message sender duplicate:
 clear msg[nodeId]

Figure 13: Consistency test for self-stabilizing MVC

And
rea

s N
. C

ha
ral

am
po

us

32

3.3.2.4 Self-stabilizing Multivalued Consensus

On top of the self-stabilizing Byzantine and intrusion-tolerant protocol stack, we have

the self-stabilizing Multivalued consensus. There is a minor change in the Binary

Consensus algorithm for the self-stabilizing MVC to work. The binPropose() shown in

Figure 9 changes and is executed asynchronously instead of blocking until a binary

value is decided. When a value is decided, it is stored in a variable and can be retrieved

asynchronously through bcO.binResult().

In Figure 14, we see the logic of the self-stabilizing MVC algorithm. Specifically, we

see the propose() operation in lines 111-112, which invokes the vbbBroadcast()

operation. In lines 114-128, we have the result() operation, which is meant to be

invoked asynchronously to the MVC() operation. If there is a decided value, the value

is returned, otherwise ⊥ or Ψ, depending on the BC result.

The main algorithm logic MVC() is in lines 130-156, executed in a never-ending for-

loop. At the start of each iteration, in lines 133-135, the consistency tests are executed.

In lines 137-151, we see all the relevant checks performed on received BRB and VBB

messages. In lines 153-154, we see the check on VBB messages and the proposal to

the Binary Consensus object, which is the result of the bp() test found in lines 103-

109. Finally, the node broadcasts all of its messages at the end of each iteration, in

line 156.

And
rea

s N
. C

ha
ral

am
po

us

33

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

// MVC
bp():
 if only one distinct non-Ψ value vbbDelivered &&
 vbbDelivered by at least n-2t nodes:
 return true
 else:
 return false

propose(v):
 vbbBroadcast(v)

result():
 if bcO == ⊥ || bcO.binResult() == ⊥ ||
 msg[i][VBB_INIT][BRB_INIT] == ⊥:
 return ⊥

 if bcO.result() == Ψ:
 return Ψ

 if more than n-t values ∉ {⊥, Ψ} vbbDelivered && ¬bp():
 return Ψ

 if there is v vbbDelivered by at least n-2t nodes:
 return v

 return ⊥

MVC():
 do forever:
 for each vbbType in vbbTypes:
 brbMessagesConsistencyTest(vbbType)
 vbbValidMessagesConsistencyTest(vbbType)
 receivedMessagesConsistencyTest(vbbType)

 if received BRB_INIT message:
 add equivalent BRB_ECHO message to
 msg[i][vbbType][BRB_ECHO]

 if same message msg[*][vbbType][BRB_ECHO]
 by at least (n+t)/2 nodes ||
 if same message msg[*][vbbType][BRB_READY]
 by at least t+1 nodes:
 add equivalent BRB_ECHO message to
 msg[i][vbbType][BRB_READY]

 if vbbEcho(messages.VBB_INIT) == true:
 validValue = vbbEq(messages.VBB_INIT,
 msg[i][VBB_INIT][BRB_INIT])
 brbBroadcast(messages.VBB_VALID, validValue)

 if n-t values ∉ {⊥, Ψ} vbbDelivered:
 bcO.binPropose(bp())

 broadcast msg[i]

Figure 14: Self-stabilizing MVC algorithm

And
rea

s N
. C

ha
ral

am
po

us

34

Chapter 4

Implementation Details

4.1 Technical Details

As mentioned in Chapter 2, for the implementation, we used the Go Programming

Language for its simplicity and strong concurrency tools, like channels and goroutines,

which are part of the language syntax. It also helped us be more precise with our

comparison with other implementations. Specifically, we used the go1.18 version.

We used the ZeroMQ message-passing library for its high performance on

asynchronous communication operations for the communication between the

processes. The ZeroMQ is provided in the most famous languages and almost every

operating system. We used the equivalent ZeroMQ library in Go, which can be found

on Github under pebbe/zmq4 v1.2.8 [36].

The algorithm was implemented and tested on Visual Studio Code [37] on Linux

Ubuntu 20.04 64-bit operating system [38].

4.2 Project Overview

To implement the project's algorithm, we created a module named self-stabilizing-

mvc. The module contains five (5) packages, including the main package, where the

source file with the main function is placed, alongside four (4) other packages

necessary for executing the algorithm. The utils package contains essential utility

functions, i.e., for serializing and deserializing and parsers for the program cmd

arguments and config files. Everything related to ZeroMQ sockets and communication

among processes is placed in the network package. Next, the messages package

contains structure implementations and logic related to the BC and MVC messages

and message passing between internal goroutines. Lastly, every MVC and BC protocol

And
rea

s N
. C

ha
ral

am
po

us

35

stack protocol is implemented in the consensus package. Every package, alongside

each source file, contains another unit and automation test file, following the naming

convention source-file-name_test.go, i.e., the network package contains a source file

named network-utils.go, and the unit test file network-utils_test.go. The project can be

found on Github [39].

4.3 Implementation challenges

While studying the algorithm [6], an initial challenge was the existence of some

ambiguities and typographical errors in the pseudocode and explanations. These

mismatches led to bugs during implementation, but we could resolve them through

additional discussions and studying of the relevant algorithms.

A primary challenge we faced was implementing inter-node communication since it

should be asynchronous, fast, and not over-engineered. We tackled this issue quickly

by using the already described ZeroMQ messaging library, which covered our needs

for this implementation requirement. Thanks to ZeroMQ, the provided sockets, and

easy-to-use functions, we eventually implemented the network architecture described

in the next section, which covered all of our needs.

Another challenge faced when a concurrent algorithm is implemented is that it was not

straightforward how to debug our implementation in cases of errors. For that, we took

advantage of the algorithms’ iterative design, and in each iteration, we could print the

received and broadcasted messages to detect issues.

There was an added risk because every added functionality was not tested in a real-

life-like environment and only on the local workstation. This could lead to missing bugs

that would only be visible during experimental analysis. For that, we tried running

multiple scenarios on at least two conventional laptops with up to 75 nodes. Eventually,

there were not any issues missed.

And
rea

s N
. C

ha
ral

am
po

us

36

4.4 Communication structure

For the communication between the nodes, ZeroMQ sockets were explicitly used.

Since the studied architecture assumes an asynchronous message-passing system,

we were flexible with the socket implementation. For this, every node needs two types

of sockets, one for receiving messages from other nodes and another set of nodes that

can be used for sending messages asynchronously.

As we can observe in the resulting algorithm in Figure 14, we only see how messages

are sent, and there is no code for receiving messages needed for the algorithm. The

reason is that receiving messages is considered a background task, running on

another thread that cannot block the algorithm’s execution. For simplicity, the receiving

operation can even be a blocking operation. When a message is received, it is added

to the received messages collection.

On the other side, sending messages is part of the algorithm, meaning that a node

must be able to send a message to another node and not block until the other node

receives the message and replies. The property of asynchronously sending messages

combined with the repeating transmitting absolves the node from caring if the message

is received from the other side. Hence the only action needed by the node is to

"publish" its messages in every iteration.

Considering the above, ideally, the ZeroMQ PUB and SUB sockets should be used for

the algorithm, but for simplicity, we used the classic REQ and REP sockets with the

zmq4.DONTWAIT flag of the implemented library [36], creating the same behavior.

Specifically, each node has a REP socket listening to incoming messages on a

different thread, and when a message is received, it is added to the received messages

collection. Moreover, each node has a set of n-1 REQ sockets for communicating with

other nodes' REP sockets. Messages are sent through each REQ socket, and since

And
rea

s N
. C

ha
ral

am
po

us

37

the REQ sockets need to perform a receive operation between its sents, a dummy

receive with the DONTWAIT flag is performed. We can see the complete

communication structure in Figure 15.

Figure 15: The implemented network architecture

4.5 Protocols Implementation

We can now see the implementation of all the protocols using the Go programming

language, starting from the bottom of the protocols stack. We will see code parts for

each algorithm and how they match the resulting algorithm. There are enough

comments on each code shown for those unfamiliar with the Go syntax.

4.5.1 Messages

 Starting with the messages, we have two (2) structs used as collections to hold all the

exchanged MVC and BC messages. BCMessagesRegistry and

MvcMessagesRegistry, as shown in Figure 16 and Figure 17, respectively, are used

for holding the messages. Whenever a node is said to send a message, that message

is added to the equivalent registry. At the end of each for-loop iteration, the current

node's content in the registry is sent to all nodes. Because there are two types of

And
rea

s N
. C

ha
ral

am
po

us

38

messages and, for simplicity, only one REP socket per node, messages are wrapped

in another struct containing their message type, MSG_TYPE_MVC or

MSG_TYPE_BC, so the receiving node knows how to deal with each message.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// Binary consensus message types
var BcTypes = []int{BC_EST, BC_AUX}
const (
 BC_EST = iota
 BC_AUX
)

// Struct that holds all messages sent and received
var BcMessagesRegistry struct {
 // maps nodeId to its messages
 NodesMessages map[string]*BcRoundMessages
 BinValues map[int][]bool // the bin_values collection
 CurrentNodeId string // the current nodeId
 // mutex for accessing and modifying the structure
 Mutex *sync.Mutex
}

// struct that maps the BC messages of a node to the round
// that were sent/received
type BcRoundMessages struct {
 RoundMessages map[int]*BcMessages
}

// all messages of a specific node that could be
// sent/received during a round
type BcMessages struct {
 EstMessages *[]bool
 AuxMessage *[1]bool
}

Figure 16: Implementation of the BC Messages struct

And
rea

s N
. C

ha
ral

am
po

us

39

1
2
3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// VBB Message types
var (
 BrbTypes = []int{BRB_INIT, BRB_ECHO, BRB_READY}
 VbbTypes = []int{VBB_INIT, VBB_VALID}
)
const (
 BRB_INIT = iota
 BRB_ECHO
 BRB_READY
)
const (
 VBB_INIT = iota
 VBB_VALID
)

// Holds all MVC shared messages (msg[][][])
var MvcMessagesRegistry struct {
 // maps nodeId to its messages
 NodesMessages map[string]VbbMessages
 CurrentNodeId string // the current nodeId
 // mutex for accessing and modifying the structure
 Mutex *sync.RWMutex
}

// Holds all VBB Messages that were BRB Broadcasted
type VbbMessages struct {
 // 0: VBB Init Message, 2: VBB Valid Message
 BrbMessages [2]BrbMessages
}

// Holds all BRB Messages that were broadcasted
type BrbMessages struct {
 // 0: BRB Init Message,1: BRB Echo Messages,2: BRB Ready Messages
 Messages [3]*[]Message
}

//message containing sender nodeId and the value that it broadcasted
type Message struct {
 NodeId string
 Value string
}

Figure 17: Implementation of the MVC Messages struct

4.5.2 Asynchronous message-passing system

Every message object transferred is serialized and deserialized using the

encoding/gob library [40], so the equivalent SendBytes() and RecvBytes() of ZeroMQ

sockets are used. There is a goroutine running in the background in which the REP

socket listens to incoming messages and forwards them to handlers. Handlers extract

the sender, and messages are added to the equivalent registry. When broadcasting

And
rea

s N
. C

ha
ral

am
po

us

40

messages, a non-blocking send is called for each REQ socket. Below we see the REP

and REQ sockets' functionality.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// The given REP keeps listening to incoming messages and after
// checking its type, it forwards to the equivalent handler
func ReplySocketReader(replySocket *zmq4.Socket) {

 for {

 // blocking - reading for incoming messages
 msgBytes, _ := replySocket.RecvBytes(0)

 // deserialization of message
 message, err := utils.ToObject(msgBytes)
 if err != nil {
 logger.WarnLogger.Println("Decoding failed", err)
 continue
 }

 // message is forwarded to equivalent message handler
 if message.MsgType == messages.MSG_TYPE_MVC {
 messages.MVCChannel <- message
 } else if message.MsgType == messages.MSG_TYPE_BC {
 messages.BCChannel <- message
 }

 // dummy non blocking send, so that socket state resets
 replySocket.Send("", zmq4.DONTWAIT)
 }
}

Figure 18: Implementation of the REP socket

And
rea

s N
. C

ha
ral

am
po

us

41

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// Broadcasts the payload to all given sockets
func BroadcastToAll(remoteSockets []*zmq4.Socket, msg interface{}) {

 // serialization of message
 payload, err := utils.ToBytes(msg)
 if err != nil {
 logger.WarnLogger.Println("Encoding failed", err)
 return
 }

 // send to every REQ socket
 for _, remoteSocket := range remoteSockets {

 // mutex used in case BC broadcasts
 // at the same time with MVC protocol
 remoteSocketsMutex.Lock()

 // non-blocking send
 remoteSocket.SendBytes(payload, zmq4.DONTWAIT)

 // dummy non-blocking receive, to restart socket state
 remoteSocket.Recv(zmq4.DONTWAIT)

 remoteSocketsMutex.Unlock()
 }
}

Figure 19: Implementation of broadcast functionality using REQ sockets

4.5.3 Byzantine Reliable Broadcast

The implementation of the BRB operations is shown below. During the brbBroadcast

operation, the equivalent message is added to the MvcMessagesRegistry. During

brbDeliver, the messages in the registry are checked, and the corresponding value is

returned.

And
rea

s N
. C

ha
ral

am
po

us

42

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

// brbBroadcasts the given message
func BrbBroadcast(vbbType int, message Message) {

 validateVbbType(vbbType)

 currentNodeId := ConsensusContext.NodeId

 nodeMessages := MvcMessagesRegistry.NodesMessages[currentNodeId]
 // the brbMessages of the equivalent VBB messages are fetched
 brbInitMessages := BrbMessages[vbbType].Messages[BRB_INIT]

 // new brb
 if len(*brbInitMessages) == 0 {
 *brbInitMessages = append(*brbInitMessages, message)
 } else {
 (*brbInitMessages)[0] = message
 }
}

// Checks if vbbType message of nodeId given is brbDelivered.
// The brbDeliver value is returned else NonDecidedValue "{}"
func BrbDeliver(vbbType int, nodeId string) string {

 validateVbbType(vbbType)

 // Check if message exists in node given
 nodesMessages := MvcMessagesRegistry.NodesMessages
 nodeMessages, exists := nodesMessages[nodeId]
 if !exists {
 return NonDecidedValue
 }

 brbInitMessages := nodeMessages.BrbMessages[vbbType].
 Messages[BRB_INIT]
 if brbInitMessages == nil || len(*brbInitMessages) == 0 {
 return NonDecidedValue
 }

 expectedMessage := (*brbInitMessages)[0]

 currentNodeId := ConsensusContext.NodeId
 minimumReadies := 2*ConsensusContext.MaximumByzantines + 1

 // finds number of readies sent by other nodes, matching the
 // node's brbInit value
 actualReadies := 0
 for checkedNode, checkedNodeMessages := range nodesMessages {

 // ignore current node and the node whom value is checked
 // for delivery
 if checkedNode == currentNodeId || checkedNode == nodeId {
 continue
 }

 brbReadyMessages := checkedNodeMessages.BrbMessages[vbbType].

And
rea

s N
. C

ha
ral

am
po

us

43

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

 Messages[messages.BRB_READY]
 // if the checked node has sent a matching READY message,
 // the counter of READY sent is increased
 if brbReadyMessages != nil && utils.SliceContains(
 *brbReadyMessages,
 expectedMessage) {

 actualReadies++
 }
 }

 // if enough READY received, the value is brbDelivered
 if actualReadies >= minimumReadies {
 return expectedMessage.Value
 } else {
 return NonDecidedValue
 }
}

Figure 20: The implemented BRB-broadcast algorithm

4.5.4 Validated Byzantine Broadcast

Next, we see the implementation of VBB operations, which depends on the BRB

operations described in the previous section.

And
rea

s N
. C

ha
ral

am
po

us

44

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// vbbBroadcasts the given value
func VbbBroadcast(value string) {

 currentNodeId := ConsensusContext.NodeId

 message := Message{
 NodeId: currentNodeId,
 Value: value,
 }

 BrbBroadcast(VBB_INIT, message)
}
// Checks if the message of given node is vbbDelivered.
// If validated, then the message sent from the node is returned.
// If not yet delivered, then the NonDecidedValue "{}" is returned.
// If the message is invalid, then ErrorValuePsi "#PSI" is returned.
func VbbDeliver(nodeId string) string {

 nodeMessages := MvcMessagesRegistry.NodesMessages[nodeId]
 vbbInitMessages := nodeMessages.BrbMessages[VBB_INIT].
 Messages[BRB_INIT]

 if vbbInitMessages == nil {
 return ErrorValuePsi
 }

 // checks if both VBB_INIT and VBB_VALID are brbDelivered
 initDeliveredValue := BrbDeliver(VBB_INIT, nodeId)
 validDeliveredValue := BrbDeliver(VBB_VALID, nodeId)

 if initDeliveredValue == NonDecidedValue ||
 validDeliveredValue == NonDecidedValue {
 return NonDecidedValue
 }

 if validDeliveredValue == "true" &&
 vbbEq(VBB_INIT, initDeliveredValue) {
 return initDeliveredValue
 }

 if validDeliveredValue == "false" &&
 vbbDiff(VBB_INIT, initDeliveredValue) {
 return ErrorValuePsi
 }

 if vbbEcho(VBB_VALID) {
 return ErrorValuePsi
 }

 return NonDecidedValue
}

Figure 21: The implemented VBB-broadcast algorithm

And
rea

s N
. C

ha
ral

am
po

us

45

4.5.5 Randomized Binary Consensus

Our implementation of Binary Consensus is a transformation of the existing solution

provided by Petrou [7] to fit our asynchronous message-passing. Flow is similar to

MVC. Each round runs in a for-loop until progressing to the next round or deciding on

a value. The BcMessagesRegistry is filled during Binary-value broadcast, and in

every iteration, the messages are broadcasted to all nodes. This module is not self-

stabilizing but does not affect our MVC implementation, as they are executed in parallel

and independently. BVB and BC implementations are shown in Figure 8 and Figure 9.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

// bvbBroadcasts the value of given type for the round provided
func BvbBroadcast(round int, value bool, bcType int) {

 broadcastBinaryValue(round, value, bcType)

 checkReceivedEstValues(round)
}

// Check received EST values for rebroadcasting or
// adding to bin_values
func checkReceivedEstValues(round int) {

 valuesCounter := GetBcValuesCounterForMsgType(round, BC_EST)
 maximumByzantines := ConsensusContext.MaximumByzantines

 for value, occurrences := range valuesCounter {

 if occurrences >= maximumByzantines+1 {
 broadcastBinaryValue(round, value, BC_EST)
 }

 if occurrences >= 2*maximumByzantines+1 &&
 !utils.SliceContains(
 BcMessagesRegistry.BinValues[round],
 value) {

 BcMessagesRegistry.BinValues[round] = append(
 BcMessagesRegistry.BinValues[round],
 value)
 }
 }
}

Figure 22: The implemented BVB-broadcast algorithm

And
rea

s N
. C

ha
ral

am
po

us

46

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

//implementation of the binPropose operation of Binary Consensus
func BcPropose(value bool) {
 // initial estimation
 estimation := value
 for round := 1; ; round++ {
 for {
 // BC PHASE 1
 BcMessagesRegistry.Mutex.Lock()
 BvbBroadcast(round, estimation, BC_EST)
 // sends all node messages to other nodes
 broadcastBcMessages()

 // can't continue to second phase, till there are
 // bin_values
 if len(BcMessagesRegistry.BinValues[round]) <= 0 {
 BcMessagesRegistry.Mutex.Unlock()
 continue
 }

 // BC PHASE 2
 auxValue := BcMessagesRegistry.BinValues[round][0]
 broadcastBinaryValue(round, auxValue, BC_AUX)
 auxValues, totalAuxValues := getAuxValues(round)

 BcMessagesRegistry.Mutex.Unlock()

 totalNodes := ConsensusContext.NumberOfNodes
 byzantines := ConsensusContext.MaximumByzantines

 if totalAuxValues < totalNodes-byzantines {
 continue
 }
 // BC PHASE 3
 coinValue := flipCommonCoin(round)
 if len(auxValues) == 2 {
 estimation = coinValue
 } else if auxValues[0] != coinValue {
 estimation = auxValues[0]
 } else {
 decide(auxValues[0])
 }
 break
 }
 }
}

// Returns the decided value or NonDecidedValue "{}"
func BcResult() string {
 bcMutex.Lock()
 defer bcMutex.Unlock()
 result := decidedValue
 return result
}

Figure 23: The implemented BC algorithm

And
rea

s N
. C

ha
ral

am
po

us

47

4.5.6 Multivalued Byzantine Consensus

Finally, Multi-valued Byzantine Consensus is built above all of the previous protocols.

Below we can see the propose() and result() operations of MVC and the main core of

the whole algorithm.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

// Implementation of propose() operation
func MvcPropose(value string) {

 VbbBroadcast(value)
}

// Implemenation of Self-stabilizing, Byzantine-no-intrusion-tolerant
// Multivalued Consensus
func MultiValueConsensus(value string) {

 for {

 MvcMessagesRegistry.Mutex.Lock()

 // perform consistency tests and check for forwarding
 // messages for each VBB message type
 for _, vbbType := range VbbTypes {

 consistencyTestBrbMessages(vbbType)
 consistencyTestVbbValidMessages(vbbType)
 consistencyTestReceivedMessages(vbbType)

 // checks if there are new BRB-INIT messages, in order
 // to send equivalent echo messages
 checkForSendingEcho(vbbType)
 // checks if there are enough BRB-ECHO messages, in order
 // to send equivalent READY messages
 checkForSendingReady(vbbType)
 }

 // re-proposing in case proposed value erased during
 // consistency tests
 MvcPropose(value)

 // checks if there are enough VBB-INIT that were brbDelivered,
 // in order to send first VBB-VALID message
 checkForBroadcastingVbbValid()

 // checks if there are enough VBB-delivered messages, in order
 // to propose to BC object
 checkForBcProposing()

 // broadcast all MVC messages of current node
 broadcastCurrentNodeMvcMessages()
 MvcMessagesRegistry.Mutex.Unlock()
 }
}

And
rea

s N
. C

ha
ral

am
po

us

48

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

// Get the MVC decided value.
// If no value decided yet, NonDecided "{}" is returned.
// If consensus could not be reached, ErrorValue Psi "#PSI"
// is returned.
func MvcResult() string {

 MvcMessagesRegistry.Mutex.RLock()
 defer MvcMessagesRegistry.Mutex.RUnlock()

 currentNodeId := ConsensusContext.NodeId
 currentNodeMessages := MvcMessagesRegistry.
 NodesMessages[currentNodeId]
 initMessage := currentNodeMessages.BrbMessages[VBB_INIT].
 Messages[BRB_INIT]

 if !isBcObjectActive()
 || BcResult() == NonDecidedValue
 || initMessage == nil {
 return NonDecidedValue
 }

 if BcResult() != "true" {
 return ErrorValuePsi
 }

 numberOfNodes := ConsensusContext.NumberOfNodes
 maximumByzantines := ConsensusContext.MaximumByzantines

 vbbDeliveredValues, vbbDeliveredCounter := getVbbDeliveredValues()
 if vbbDeliveredCounter >= numberOfNodes-maximumByzantines &&
 !bp() {
 return ErrorValuePsi
 }

 minimumValueOccurrences := numberOfNodes - 2*maximumByzantines
 for value, occurrences := range vbbDeliveredValues {

 if occurrences >= minimumValueOccurrences {
 return value
 }
 }

 return NonDecidedValue
}

Figure 24: The implemented MVC algorithm

4.6 Execution & Configuration Details

The project can be built with the command:

$ go build

And
rea

s N
. C

ha
ral

am
po

us

49

An executable named self-stabilizing-mvc is created, which starts a node when

executed. Two main execution parameters are needed for the node to start; a port

number to where the REP socket will bind and a path to a configuration file

containing the hostname and port of each other node to be reached with the REQ

sockets. There are another two execution arguments, one for starting a Byzantine node

following a specific scenario and one for simulating a transient error inside a node. The

parameters and configuration details are analyzed next.

4.6.1 Port and Remote Nodes configuration

A configuration file is used for each node to know its remote nodes. The file contains

in each line a remote node, in the syntax of <protocol>://<host>:<port>. Figure 25

shows an example of a config file of nodes that connect to five (5) remote hosts.

configuration.conf file

http://node1:1234
http://node2:1234
http://node3:1234
http://node4:1234
http://node5:1234

Figure 25: Example of a network configuration file

The following needed property is the node's port to listen for receiving messages from

remote nodes. To start a node, the following command is executed:

The above will start a node listening for incoming messages to port 8080 and send

messages to remote nodes specified in the configuration.conf file.

4.6.2 Byzantine nodes and Transient Errors

The last two execution arguments can be used to start byzantine nodes or simulate

transient errors. A transient error can be simulated by giving the flag –t, and Byzantine

nodes can apply one of the attack scenarios analyzed in Chapter 6 by giving the flag

–b and specifying one of the following values during execution:

$./self-stabilizing-mvc –p 8080 –f configuration.conf

And
rea

s N
. C

ha
ral

am
po

us

50

Scenario Flag value

Failure-free Scenario 0

Byzantines Idle Attack Scenario 1

Byzantines Half & Half Attack Scenario 2

Byzantines Random Messages Attack Scenario 3

The following command will start a byzantine node receiving messages on port 8080,

and its remote nodes are found in file configuration.conf. The node will apply the

Byzantines Half & Half Attack scenario.

On the other hand, the following command will start a non-Byzantine node receiving

messages on port 8080, and its remote nodes are found in file configuration.conf. Also,

a transient internal error will happen during its execution.

$./self-stabilizing-mvc –p 8080 –f configuration.conf –b 2

$./self-stabilizing-mvc –p 8080 –f configuration.conf –t

And
rea

s N
. C

ha
ral

am
po

us

51

Chapter 5

Self-stabilization and Byzantine Fault

Tolerance Scenarios and Validation

5.1 Introduction

In this chapter, we will look at different use cases handled by the algorithm to reach

consensus eventually. We tested every case during implementation and provided

automation tests that simulated the bare minimum of each case to assure validity and

easy repetition of scenarios. Therefore, for each scenario presented, we show the

equivalent automation test, in which one node performs MVC, and we simulate the rest

of the nodes by inserting messages in the MvcMessagesRegistry. In Section 5.2, we

see some scenarios in the presence of byzantine attacks, and in Section 5.3, we look

at consensus scenarios in different cases where transient errors happen. Finally, in

Section 5.4, we see scenarios where consensus is reached even when transient errors

and byzantine faults happen simultaneously.

5.2 Byzantine Fault Tolerance Scenarios

Byzantine Fault Tolerance Scenarios contain scenarios where Byzantine nodes act

maliciously, sabotaging during MVC in order the system does not come to consensus.

Our tests consider that Byzantine nodes interfere only with the messages they send,

meaning that they can either send invalid messages, omit them, or even not respond.

5.2.1 Byzantine node that is Idle or proposes an invalid value

In the first case, we test that consensus is reached if there are Byzantine nodes as

long as the number of Byzantine nodes is t < n/3. Here, we have six nodes, one being

And
rea

s N
. C

ha
ral

am
po

us

52

Byzantine, and since 1 < 6/3(=2), consensus is reached without a problem. Every

correct node proposes the value 42.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

func TestMultiValueConsensusWithExpectedFaultyWhichIsIdle (t
*testing.T) {

 // sets up testing environment with total number of nodes
 // and attack scenario that should be performed by current node
 setupTestingConsensusContext(t, 6, NO_ATTACK)
 proposedValue := "42"

 sendMvcMessagesOf4CorrectNodes()

 go MultiValueConsensus(proposedValue)

 sendBcMessagesOf4CorrectNodes()

 // keep getting mvc result until consensus is reached
 var mvcResult string
 for {

 mvcResult = MvcResult()
 if mvcResult != NonDecidedValue {
 break
 }
 }

 // check that the expected value is decided
 assert.Equal(t, mvcResult, proposedValue)
}

Similarly, consensus is still reached if the Byzantine node sends a random invalid

value. In this case, the Byzantine node proposes the value 7.

And
rea

s N
. C

ha
ral

am
po

us

53

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

func TestMultiValueConsensusWithExpectedFaultyProposingInvalidValue(t
*testing.T) {

 // sets up testing environment with total number of nodes
 // and attack scenario that should be performed by current node
 setupTestingConsensusContext(t, 6, NO_ATTACK)
 proposedValue := "42"

 sendMvcMessagesOf4CorrectAndOneFaultyNode()

 go MultiValueConsensus(proposedValue)

 sendBcMessagesOf4CorrectAndOneFaultyNode()

 // keep getting mvc result until consensus is reached
 var mvcResult string
 for {

 mvcResult = MvcResult()
 if mvcResult != NonDecidedValue {
 break
 }
 }

 // check that the expected value is decided
 assert.Equal(t, mvcResult, proposedValue)
}

5.2.2 Byzantine node sending invalid ECHO

The next test is similar to the previous, but instead of having a Byzantine node that

proposes an invalid value, now the Byzantine node sends invalid ECHO messages.

Specifically, the Byzantine node with ID 6 will send an ECHO message saying that the

node with ID 2 proposed the value 7. Again consensus is reached on value 42.

And
rea

s N
. C

ha
ral

am
po

us

54

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

func TestMultiValueConsensusWithExpectedFaultyWhichSendsInvalidEcho(t
*testing.T) {

 // sets up testing environment with total number of nodes
 // and attack scenario that should be performed by current node
 setupTestingConsensusContext(t, 6, NO_ATTACK)
 proposedValue := "42"

 sendMvcMessagesOf4CorrectAndOneFaultyNode()

 // invalid echo message, node 6 says that node 2 sent BRB_INIT
 // with value 7
 addMvcMessage("6", VBB_INIT, BRB_ECHO, "2", "7")

 go MultiValueConsensus(proposedValue)

 sendBcMessagesOf4CorrectAndOneFaultyNode()

 // keep getting mvc result until consensus is reached
 var mvcResult string
 for {

 mvcResult = MvcResult()
 if mvcResult != NonDecidedValue {
 break
 }
 }

 // check that the expected value is decided
 assert.Equal(t, mvcResult, proposedValue)
}

5.2.3 No Consensus with more Byzantines than expected

In this last test, we verify that consensus cannot be reached if the number of Byzantine

nodes exceeds the third of all nodes. We specify an environment of seven nodes with

four idles that do not send or reply to any messages, where 4 > 7/3. Therefore,

consensus is never reached.

And
rea

s N
. C

ha
ral

am
po

us

55

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

func TestMultiValueConsensusWithMoreFaultyThanExpected(t *testing.T) {

 // sets up testing environment with total number of nodes
 // and attack scenario that should be performed by current node
 setupTestingConsensusContext(t, 7, NO_ATTACK)
 proposedValue := "42"

 // only 2 + 1 correct, 4 missing considered faulty
 sendMvcMessagesOf2CorrectNodes()

 go MultiValueConsensus(proposedValue)

 // for 5 seconds, every 100ms we get the result and we verify
 // that every time consensus is not reached
 for i := 1; i < 50; i++ {

 time.Sleep(100 * time.Millisecond)
 assert.Equal(t, NonDecidedValue, MvcResult())
 }
}

5.3 Self-stabilization on transient errors

Of course, one main property we tested and assured is self-stabilization in case of

transient errors. In these automation tests, we inject transient errors by modifying the

messages that a node holds. These errors should not be confused with the Byzantine

attacks, meaning that alternations in messages happen internally and can even

alternate messages sent by a correct node. Below we present three examples of such

errors and how the system self-stabilizes after each one. The cases are many more,

but they are identified and handled similarly.

5.3.1 Transient error on the proposed value

As part of this scenario, after the node made its value proposal to MVC, we overwrite

that proposal with an invalid value. We assume three nodes in this setup, and by

injecting the error, consensus should not be reached without self-stabilization since

one node will "act" as faulty. This error is handled by proposing the correct value for

every iteration in the for-loop. In the end, we see that consensus is reached.

And
rea

s N
. C

ha
ral

am
po

us

56

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

func TestMultiValueConsensusWithTransientErrorOnInit(t *testing.T) {

 setupTestingConsensusContext(t, 3, NO_ATTACK)
 proposedValue := "42"
 currentNodeId := ConsensusContext.NodeId

 sendMvcMessagesOf2CorrectNodes()

 go MultiValueConsensus(proposedValue)

 // transient error - overwrite init message
 addMvcMessage(currentNodeId,VBB_INIT,
 BRB_INIT, currentNodeId, "1231234")

 sendBcMessagesOf2CorrectNodes()

 // keep getting mvc result until consensus is reached
 var mvcResult string
 for {

 mvcResult = MvcResult()
 if mvcResult != NonDecidedValue {
 break
 }
 }

 // check that the expected value is decided
 assert.Equal(t, mvcResult, proposedValue)
}

5.3.2 Transient Error on ECHO message

Here we inject an invalid echo message, stating that nodes 2 and 3 proposed a

different value. Because of the consistency tests, the ECHO messages are not

matching the INIT messages. Therefore by rule, all the current node's messages are

deleted, starting the mvcPropose from the beginning. Similarly to the previous test, we

have three nodes in total, and the current node is supposed to act faulty. We can verify

again that consensus has been reached.

 And
rea

s N
. C

ha
ral

am
po

us

57

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

func TestMultiValueConsensusWithTransientErrorOnEcho(t *testing.T) {

 setupTestingConsensusContext(t, 3, NO_ATTACK)
 proposedValue := "42"
 currentNodeId := ConsensusContext.NodeId

 sendMvcMessagesOf2CorrectNodes()

 // transient error - inject invalid echo messages
 addMvcMessage(currentNodeId, VBB_INIT,BRB_ECHO, "2", "1231234")
 addMvcMessage(currentNodeId, VBB_INIT,BRB_ECHO, "3", "1231234")

 go MultiValueConsensus(proposedValue)

 sendBcMessagesOf2CorrectNodes()

 var mvcResult string
 for {

 mvcResult = MvcResult()
 if mvcResult != NonDecidedValue {
 break
 }
 }

 // check that the expected value is decided
 assert.Equal(t, mvcResult, proposedValue)
}

5.3.3 Transient error on validity check

We showed that during Validated Byzantine Broadcast, when enough values are

brbDelivered, a validity test takes place, and the result is proposed to the Binary

Consensus object. This test shows how the system recovers if the validity check results

are corrupted.

And
rea

s N
. C

ha
ral

am
po

us

58

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

func TestMultiValueConsensusTransientErrorOnValidInit(t *testing.T) {

 setupTestingConsensusContext(t, 3, NO_ATTACK)
 proposedValue := "42"
 currentNodeId := ConsensusContext.NodeId

 sendMvcMessagesOf2CorrectNodes()

 addMvcMessage(currentNodeId, VBB_INIT, BRB_INIT,
 currentNodeId, proposedValue)

 // transient error - inject invalid valid-init message
 addMvcMessage(currentNodeId, VBB_VALID, BRB_INIT,
 currentNodeId, "false")

 go MultiValueConsensus(proposedValue)

 sendBcMessagesOf2CorrectNodes()

 var mvcResult string
 for {

 mvcResult = MvcResult()
 if mvcResult != NonDecidedValue {
 break
 }
 }

 // check that the expected value is decided
 assert.Equal(t, mvcResult, proposedValue)
}

5.4 Combination of Byzantine Attacks and transient errors

After looking at the two group scenarios above, it is interesting to evaluate if the

algorithm can outstand and recover when transient errors and Byzantine attacks

happen simultaneously. We repeat that if a transient error occurs in a node that is not

self-stabilizing, its behavior can combine with existing Byzantine nodes and, in

conclusion, not allow the system to reach consensus. Below we show some basic

combination scenarios.

5.4.1 Byzantine node that is idle + Transient error on the proposed value

In the first combination test, we combine the Byzantine Idle attack shown in Section

5.2.1 with the transient error on the INIT message case. We will see that, in this case,

consensus is still reached.

And
rea

s N
. C

ha
ral

am
po

us

59

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

func TestMultiValueConsensusWithByzantineIdleAndTransientErrorOnInit(t
*testing.T) {

 // sets up testing environment with total number of nodes
 // and attack scenario that should be performed by current node
 setupTestingConsensusContext(t, 6, NO_ATTACK)
 proposedValue := "42"

 sendMvcMessagesOf4CorrectNodes()

 go MultiValueConsensus(proposedValue)

 // transient error - inject invalid init message
 addMvcMessage(currentNodeId, VBB_INIT, BRB_INIT,
 currentNodeId, "1231234")

 sendBcMessagesOf4CorrectNodes()

 // keep getting mvc result until consensus is reached
 var mvcResult string
 for {

 mvcResult = MvcResult()
 if mvcResult != NonDecidedValue {
 break
 }
 }

 // check that the expected value is decided
 assert.Equal(t, mvcResult, proposedValue)
}

5.4.2 Byzantine node with invalid proposal + Transient Error on the proposed value

Another combination of failures that, in a different case, would not let the system reach

consensus would be a Byzantine node proposing an invalid value. By chance, a

transient error happens in a correct node that makes its proposed value the same as

the Byzantine one. If we assumed that we reached the maximum number of Byzantines

allowed in the system to work correctly, we could come to a state where we have

another one that agrees with the Byzantines. We test this combination in the following

test, and we can again see that consensus has been reached. Only one Byzantine

node is tolerable, proposing the value 7, and at the same time, a transient error

changes a correct node's proposal to 7 as well.

And
rea

s N
. C

ha
ral

am
po

us

60

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

func TestMultiValueConsensusWithByzantineInvalidValueAndTransient
ErrorOnINIT(t *testing.T) {

 // sets up testing environment with total number of nodes
 // and attack scenario that should be performed by current node
 setupTestingConsensusContext(t, 6, NO_ATTACK)
 proposedValue := "42"

 sendMvcMessagesOf4CorrectAndOneFaultyNode()

 go MultiValueConsensus(proposedValue)

 // transient error - overwrite init message
 addMvcMessage(currentNodeId, VBB_INIT,
 BRB_INIT, currentNodeId, "7")

 sendBcMessagesOf4CorrectAndOneFaultyNode()

 // keep getting mvc result until consensus is reached
 var mvcResult string
 for {

 mvcResult = MvcResult()
 if mvcResult != NonDecidedValue {
 break
 }
 }

 // check that the expected value is decided
 assert.Equal(t, mvcResult, proposedValue)
}

5.5 Conclusion

In this chapter, we presented some of our studied scenarios in which the algorithm is

designed to perform without issues. We saw that even in the combination of Byzantine

Attacks and Transient errors, the system could recover and reach consensus as long

as the code and system variables were intact, and the number of Byzantine nodes was

less than a third of the total number of nodes. To our knowledge, no combination of

scenarios like the above could prevent the system from working as it was designed,

always considering the type of allowed errors and attacks and the minimum

requirements.
And

rea
s N

. C
ha

ral
am

po
us

61

Chapter 6

Experimental Analysis

6.1 Experimental Environment

We performed experiments on a local conventional workstation for the experimental

analysis and then deployed the algorithm on a cluster reserved on Cloudlab [33]. The

goal was to first validate the algorithm towards the theoretical assumptions on the local

workstation and then move it to a distributed-like system for more precise and scalable

measurements. In both environments, we started multiple MVC nodes per machine,

where each node printed the decided value, the time until consensus was reached,

and message size and count complexities. Based on these, we could calculate results

on the three following properties.

1. Operation latency: The average time needed by the system to reach

consensus. Specifically, it is the time difference between the start of nodes'

execution and the exact time a value is decided.

2. Message Complexity: The average number of messages broadcasted by the

nodes until consensus is reached.

3. Bit Complexity: The average payload size sent by nodes until consensus is

reached.

Regarding Message and Bit Complexities, by recalling Section 3.3.2.1, nodes group

all their messages and send them as one big message. Moreover, the same message

can be repeatedly sent hundreds of times without receiving any proof of delivery.

Based on the above, Message Complexity and Bit Complexity count the number and

the size of the big messages, e.g., if 2 big messages are sent containing 16 algorithms

(VBB, BRB) messages, then message complexity is 2.

And
rea

s N
. C

ha
ral

am
po

us

62

Finally, we will observe how the three properties described above fluctuate while

increasing the number of total nodes to verify the algorithm's scalability.

6.1.1 Local Workstation Environment

At first, we executed various experiments on an ordinary personal computer, with

varying nodes and the occurrence of a transient error, to verify the algorithm’s validity

and theoretical specifications. The local machine contains the specifications shown in

Figure 26.

Operating
System RAM CPU(s) Thread(s) per

core
Core(s) per

socket Socket(s) CPU Model name

Linux Ubuntu
20.04 LTS

x86_64

DDR4
8GB 8 2 4 1 Intel(R) Core(TM)

i7-7700HQ CPU

Figure 26: Local workstation environment specifications

6.1.2 Cloudlab Environment

After local experiments, we were granted access to the Cloudlab testbed platform to

emulate distributed systems' executions. There are many machine setups and

configurations, but we used ten machines of the type xl170 [41] and started multiple

nodes per machine. The cluster machines' specifications are shown in Figure 27.

And
rea

s N
. C

ha
ral

am
po

us

63

Node
ID Operating System RAM CPU(s) Thread(s) per

core
Core(s) per

socket Socket(s) CPU Model name

0 Linux Ubuntu 18.04
LTS x86_64

DDR4
8GB 20 2 10 2

Intel(R) Xeon(R)
CPU E5-2640 v4

@ 2.40GHz

1 Linux Ubuntu 18.04
LTS x86_64

DDR4
8GB 20 2 10 2

Intel(R) Xeon(R)
CPU E5-2640 v4

@ 2.40GHz

3 Linux Ubuntu 18.04
LTS x86_64

DDR4
8GB 20 2 10 2

Intel(R) Xeon(R)
CPU E5-2640 v4

@ 2.40GHz

4 Linux Ubuntu 18.04
LTS x86_64

DDR4
8GB 20 2 10 2

Intel(R) Xeon(R)
CPU E5-2640 v4

@ 2.40GHz

5 Linux Ubuntu 18.04
LTS x86_64

DDR4
8GB 20 2 10 2

Intel(R) Xeon(R)
CPU E5-2640 v4

@ 2.40GHz

6 Linux Ubuntu 18.04
LTS x86_64

DDR4
8GB 20 2 10 2

Intel(R) Xeon(R)
CPU E5-2640 v4

@ 2.40GHz

7 Linux Ubuntu 18.04
LTS x86_64

DDR4
8GB 20 2 10 2

Intel(R) Xeon(R)
CPU E5-2640 v4

@ 2.40GHz

8 Linux Ubuntu 18.04
LTS x86_64

DDR4
8GB 20 2 10 2

Intel(R) Xeon(R)
CPU E5-2640 v4

@ 2.40GHz

9 Linux Ubuntu 18.04
LTS x86_64

DDR4
8GB 20 2 10 2

Intel(R) Xeon(R)
CPU E5-2640 v4

@ 2.40GHz
Figure 27: The Cloudlab setup specifications

6.2 Experiment Scenarios

We executed various scenarios that combined Byzantine nodes' presence and

transient errors.

As a transient error, for simplicity, we delete the INIT proposed message of the node

before proposing to Binary Consensus, leading to the deletion of all messages in the

node due to consistency tests. The maximum tolerant number of Byzantine nodes is

used in the scenarios where Byzantine nodes are used.

In the following sub-sections, we describe the different Attack Scenarios that Byzantine

nodes perform.

6.2.1 Failure-free Scenario

The first scenario is the basic scenario where there are no Byzantine nodes or

arbitrary-transient faults. In this scenario, every node is non-faulty and acts as

And
rea

s N
. C

ha
ral

am
po

us

64

expected, with no probability of arbitrary-transient faults. The results of this scenario

will be used as the reference point for the rest of the scenarios.

6.2.2 Byzantines Idle Scenario

During this scenario, every Byzantine node stays idle, meaning it does not take part in

reaching a consensus. Simply, it does not send or reply to any of the messages. The

Byzantine nodes can still keep executing and receiving messages, but they give no

signs of execution to the rest of the nodes. This basic scenario is crucial, as it emulates

crashed/refusing to work at all nodes in a system that still manages to perform.

6.2.3 Byzantines Half & Half Attack Scenario

The Half & Half Attack Scenario is the first of the two scenarios where Byzantines try

to sabotage consensus by sending invalid messages. In this scenario, Byzantine

nodes reply and broadcast all messages, but they send invalid messages to half of the

nodes. Specifically, when a message (BRB or VBB) is sent, the correct messages are

sent to n/2, and a set of messages with invalid/modified values is sent to the other n/2.

This scenario helps us see the overhead added in the presence of Byzantine nodes,

although consensus is still reached.

6.2.4 Byzantines Random Messages Attack Scenario

Similar to the previous attack scenario, in this scenario, Byzantine nodes try to

sabotage consensus by sending invalid messages with random values at any time. In

plain, a Byzantine node, before sending a message, modifies its value with a randomly

generated value and then sends it. This attack also adds overhead, and in specific

cases, it is even more significant than the Half & Half attack since Byzantine nodes

sent invalid values to all other nodes. This attack is a good scenario put to the test to

see the results when Byzantine nodes send nothing coordinated but invalid random

values.

And
rea

s N
. C

ha
ral

am
po

us

65

6.3 Results and Theoretical Analysis Evaluation

In this section, we are first going to look at the theoretical analysis from the paper [6],

then analyze each setup and the executed scenario alongside their results and finally

compare them to the theoretical analysis.

6.3.1 Theoretical Specifications and Performance

First, we evaluate whether the algorithm has optimal resilience by assuming t < n/3,

where t is the number of faulty nodes and n is the number of total nodes. This

assumption is already verified in the scenarios we covered in Chapter 5, where we saw

that consensus is reached when the number of faulty nodes is not more than a third of

the total of nodes. Here, we will verify that the same happens with more nodes in real-

life-like simulations. Additionally, we will execute scenarios where arbitrary-transient

errors are injected in one node and how this affects the overall system. This

specification was again covered in Chapter 5, but we will verify it through our

experiments. Lastly, we will evaluate if the self-stabilizing algorithm performs similarly

to the non-self-stabilizing variation, with only a small expected overhead.

6.3.2 Scenarios, setups, and results

On the local workstation presented in Section 6.1.1, we run experiments to calculate

the operation latency, message complexity, and bit complexity over the increasing

number of total nodes n, using Byzantine Attacks and injecting transient errors. We

executed scenarios using 3 to 15 nodes to validate the algorithm's behavior in basic

setups.

On the Cloudlab cluster, we executed specific setups to observe the algorithm's

performance over scalable systems. Precisely, we executed the Failure-free Scenario

using an increasing number of nodes per machine, starting from 1 node per machine

(total: 10 nodes) to 15 nodes per machine (total:150 nodes). We then kept the number

of nodes per machine stable, precisely 10 per machine (total: 100 nodes), and

executed scenarios combining Byzantine nodes and transient errors.

And
rea

s N
. C

ha
ral

am
po

us

66

Finally, again on Cloudlab, we executed more basic scenarios with 3 up to 20 nodes,

with the Byzantine Idle and Byzantine Half & Half Attacks, to compare the studied

algorithm to the non-self-stabilizing version by Mostéfaoui et al. [3], using the

implementation by Petrou [7].

6.3.2.1 Operation Latency

In the figures in this section, we look at how operation latency changes on scenarios

executed in the two environments and setups explained above.

Figure 28: Operation Latency (in seconds) on Byzantine Attack Scenarios on Local Workstation

3 5 7 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

number of nodes (n)

tim
e

(s
)

Operation Latency

Failure-free Idle Half&Half Random

Local Workstation

And
rea

s N
. C

ha
ral

am
po

us

67

Figure 29: Operation Latency (in seconds) on Byzantine Attack Scenarios, combined with transient

errors, on Local Workstation

Figure 30: Operation Latency (in seconds) on scaling number of nodes per machine on Cloudlab

Cluster

3 5 7 10 15
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

number of nodes (n)

tim
e

(s
)

Operation latency
(with transient error)

Failure-free Idle + Transient Error

Half&Half + Transient Random + Transient Error

Local Workstation

0
10
20
30
40
50
60
70
80
90

100

number of nodes / machine

tim
e

(s
)

Operation Latency

Failure-free

Cloudlab Cluster

And
rea

s N
. C

ha
ral

am
po

us

68

Figure 31: Operation Latency with Byzantine Attacks and Transient Errors, on Cloudlab Cluster (10

nodes per machine)

Based on the life-like simulation results above, combined with the test cases in Chapter

5, we can verify that the algorithm is resilient for up to t < n/3 Byzantine nodes. This

conclusion comes from using the maximum tolerant number of Byzantine nodes in

every Byzantine Attack Scenario, and the consensus was still reached. Also, we see

that the algorithm is self-stabilizing as it reaches consensus in the scenarios where

transient faults are injected, even when there are maximum tolerant Byzantine nodes

in the system.

In terms of operation latency, initially, we can see an increase in the time needed to

reach consensus when the transient fault is injected, especially in the presence of

Byzantine nodes. The results indicate that cases of transient errors are detected

instantly, and additional “graceful” time is needed to reach a consensus.

Additionally, we can observe how needed time is changed in different Byzantine Attack

Scenarios. Starting with the Byzantines Idle Attack Scenario, we notice a minor

increase in the operation latency compared to the Failure-free Scenario because, in

the latter, each node had more available nodes to receive messages from in order to

proceed. We see later in scalable scenarios that this attack decreases the time needed

0

5

10

15

20

25

30

35

Failure-free Idle Half&Half Random Idle +
Transient

Error

Half&Half +
Transient

Random +
Transient

Error

tim
e

(s
)

Operation Latency
(10 nodes / machine)

Cloudlab Cluster

And
rea

s N
. C

ha
ral

am
po

us

69

in cases where the system is flooded with resources and communication overhead

since this will decrease it. In the local workstation setup, we also see our algorithm

implementation handles Half&Half and Random Message attacks with similar

drawbacks.

The Cloudlab cluster results show that the algorithm is scalable and works for many

nodes, as long as the number of Byzantine nodes is not greater than a third of the total

number of nodes. We can again see in every scenario the additional small overhead

added when a transient error occurs. It is also noticeable, as already said, how the Idle

Byzantine Attack Scenario decreases the operation latency in more significant node

numbers since there is less resource utilization. Similar to the local workstation results,

the Half & Half and Random Attacks have similar drawbacks.

6.3.2.2 Messages Complexity

In this section, we are evaluating the message complexity of the algorithm. As already

described, the message complexity shows the average number of messages sent per

node. Similar to the section above, the following figures show executions on both the

local workstation and the Cloudlab cluster.

Figure 32: Message Complexity on Byzantine Attack Scenarios on Local Workstation

3 5 7 10 15
0

500

1000

1500

2000

2500

3000

3500

number of nodes (n)

N
um

be
r o

f m
es

sa
ge

s

Message Complexity

Failure-free Idle Half&Half Random

Local Workstation

And
rea

s N
. C

ha
ral

am
po

us

70

Figure 33: Message Complexity on Byzantine Attack Scenarios, combined with transient errors, on

Local Workstation

Figure 34: Message Complexity on scaling number of nodes per machine on Cloudlab Cluster

3 5 7 10 15
0

2000

4000

6000

8000

10000

12000

number of nodes (n)

nu
m

be
r o

f m
es

sa
ge

s

Message Complexity
(with transient error)

Failure-free Idle + Transient Error

Half&Half + Transient Random + Transient Error

Local Workstation

0
500

1000
1500
2000
2500
3000
3500
4000
4500

number of nodes (n)

nu
m

be
r o

f m
es

sa
ge

s

Message Complexity

Failure-free

Cloudlab Cluster

And
rea

s N
. C

ha
ral

am
po

us

71

Figure 35: Message Complexity with Byzantine Attacks and Transient Errors, on Cloudlab Cluster

(10 nodes per machine)

Due to the algorithm’s design, the for-loop, and the continuous broadcasting of

messages, resources are expected to be exploited when they are available. We see

that on both machines, in initial scenarios where the number of nodes is small and the

number of resources more significant, there is a massive number of messages sent,

even though the consensus is reached fast enough. We see that message complexity

decreases as nodes number increases until it becomes stable at a specific point.

In terms of faults and how they change the message complexity, we see that when a

transient error occurs, the number of messages is significantly increased for the

smaller number of nodes. The message complexity at the 15-node setup is closer to

the transient-error-free scenarios. In the local workstation executions, we see that the

transient error has more impact on the message complexity. However, on the Cloudlab

cluster, we see the impact to be much less since, in scaled setups, a small transient

error will lead to a much less percentage of sent messages needed to reach

consensus. We can conclude that Byzantine faults, in combination with transient

errors, can add overhead to message complexity depending on resource availability.

0

100

200

300

400

500

600

700

Failure-free Idle Half&Half Random Idle +
Transient

Error

Half&Half +
Transient

Random +
Transient

Error

nu
m

be
r o

f m
es

sa
ge

s

Message Complexity
(10 nodes / machine)

Cloudlab Cluster

And
rea

s N
. C

ha
ral

am
po

us

72

6.3.2.3 Bit Complexity

Next, we take a look at the bit complexity, which shows the average payload size sent

per node. Since Bit Complexity and Message Complexity have similar behaviors, we

can see how Byzantine attacks also increase Bit Complexity.

Figure 36: Bit complexity (in MB) on Byzantine Attack Scenarios on Local Workstation

Figure 37: Bit Complexity (in MB) on Byzantine Attack Scenarios, combined with transient errors, on

Local Workstation

3 5 7 10 15
0

0.5

1

1.5

2

2.5

number of nodes (n)

to
ta

l s
iz

e
(M

B)

Bit Complexity

Failure-free Idle Half&Half Random

Local Workstation

3 5 7 10 15
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

number of nodes (n)

to
ta

l s
iz

e
(M

B)

Bit Complexity
(with transient error)

Failure-free Idle + Transient Error

Half&Half + Transient Random + Transient Error

Local Workstation

And
rea

s N
. C

ha
ral

am
po

us

73

Figure 38: Bit Complexity (in MB) on scaling number of nodes per machine on Cloudlab Cluster

Figure 39: Bit Complexity (in MB) with Byzantine Attacks and Transient Errors on Cloudlab Cluster

(10 nodes per machine)

We see more scattered results in the local workstation, making it hard to extract

conclusions, in contrast to Message Complexity. The reason is that with the existing

checks, we cannot know what messages were repeatedly broadcasted and how big

0

1

2

3

4

5

6

7

to
ta

l s
iz

e
(M

B)

Bit Complexity

Failure-free

Cloudlab Cluster

0

0.5

1

1.5

2

2.5

3

3.5

4

Failure-free Idle Half&Half Random Idle +
Transient

Error

Half&Half +
Transient

Random +
Transient

Error

to
ta

l s
iz

e
(M

B)

Bit Complexity
(10 nodes / machine)

Cloudlab Cluster

And
rea

s N
. C

ha
ral

am
po

us

74

they were. In cases where small messages were repeatedly sent, there should only be

a slight increase of bit complexity. The same applies the other way around.

Although the above, we can still extract conclusions from the scaled scenarios in the

Cloudlab Cluster. In the equivalent figures, we can see how bit complexity is decreased

until 4 nodes per machine, and then it has a standard increase. As expected, we see

an increase when Byzantine faults happen, especially when combined with transient

errors. We also see how bit complexity is decreased during Idle Byzantine Attack,

where fewer resources are used.

6.3.2.4 Comparison with the non-self-stabilizing algorithm

In this part, we compare our implementation to the non-self-stabilizing algorithm by

Mostéfaoui et al. [3], using the implementation by Petrou [7]. As already said, the two

implementations use the same technology stack, built using Go and ZeroMQ. For the

operation latency comparison, we executed scenarios of 3 to 20 nodes on the Cloudlab

Cluster, and for the message complexities, we executed scenarios locally with 3 to 15

nodes. We calculated the operation latency, message, and bit complexity in failure-

free scenarios and Byzantine Idle and Half & Half Attacks.

Of course, one advantage of the studied algorithm, and as its name implies, is that it

can recover from arbitrary-transient errors, while the algorithm by Mostéfaoui cannot.

This capability is expected to increase the operation latency compared to the non-self-

stabilizing algorithm since many checks are performed. The goal is to keep this

increase as little as possible.

The figures below show the performance difference between the two algorithms.

And
rea

s N
. C

ha
ral

am
po

us

75

Figure 40: Operation Latency (in seconds) comparing Self-stabilizing and Non-self-stabilizing

variants using Byzantine Attacks on Cloudlab Cluster

Starting with the operation latency, we see how it increases in the self-stabilizing

version. The two algorithms behave similarly in every scenario, with the operation

latency increasing at a similar rate while the number of nodes increases. In conclusion,

the performance drawback in exchange for the self-stabilization property is graceful

and therefore acceptable.

Finally, we empirically compare Message and Bit Complexity and how they change

depending on the scenario. For these properties, we cannot be exact in comparing

because of the different designs of the two algorithms and how they measure

messages. We, therefore, compared them according to how they fluctuate. Below we

3 5 7 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

number of nodes (n)

tim
e

(s
)

Operation Latency

Self-stabilizing Failure-free Non-self-stabilizing Failure-free

Self-stabilizing Idle Non-self-stabilizing Idle

Self-stabilizing Half&Half Non-self-stabilizing Half&Half

Cloudlab Cluster

And
rea

s N
. C

ha
ral

am
po

us

76

can see the measurements of the non-self-stabilizing algorithm as they were extracted

from Petrou [7].

Figure 41: Message complexity of the non-self-stabilizing algorithm on Local Workstation

Figure 42: Bit complexity (in MB) of the non-self-stabilizing algorithm on Local Workstation

Comparing the figures above with those in Sections 6.3.2.2 and 6.3.2.3, we can again

verify the exploitation of resources happening in the self-stabilizing algorithm, as the

Message and Bit Complexities are more significant for small setups and decrease until

a point. In contrast, the non-self-stabilizing algorithm starts with more minor

complexities and gradually increases.

0

500

1000

1500

2000

2500

3 5 7 10 15

nu
m

be
r o

f m
es

sa
ge

s

number of nodes (n)

Message Complexity
(non-self-stabilizing)

Failure-free Idle Half&Half

Local Workstation

0
1
2
3
4
5
6
7
8

3 5 7 10 15

to
ta

l s
iz

e
(M

B)

number of nodes (n)

Bit Complexity
(non-self-stabilizing)

Failure-free Idle Half&Half

Local Workstation

And
rea

s N
. C

ha
ral

am
po

us

77

6.4 Experimental Summary

This chapter evaluated the algorithm’s specifications, validity, and properties. We saw

how operation latency, message, and bit complexity change in different scenarios,

including Byzantine faults in combination with arbitrary-transient-faults.

First, we saw with real-life scenarios that the studied algorithm is indeed tolerant for up

to t < n/3 faulty nodes, no matter the attack they perform. We verified once again that

the algorithm is self-stabilizing and can detect and recover from transient faults. Both

Byzantine and transient faults add an overhead to the time needed for reaching

consensus, but the algorithm can still perform with acceptable results.

With the scaled setup executions on the Cloudlab cluster, we verified that the algorithm

is scalable and can perform well under huge setups with hundreds of nodes.

Depending on its design, one big drawback of the algorithm is that an enormous

number of messages are repeatedly sent, leading to the exploitation of resources.

Additional studies can be made to find the perfect settings for broadcasting to get the

most out of the algorithm.

Another essential outcome was the comparison of the algorithm with the non-self-

stabilizing algorithm by Mostéfaoui et al. [3]. We saw that the studied algorithm could

perform similarly to the non-self-stabilizing variation, with minimal additional overhead.

And
rea

s N
. C

ha
ral

am
po

us

78

Chapter 7

Conclusion

7.1 Summary

In this dissertation, we looked at essential properties that a distributed system must

have, such as Fault Tolerance, Self-stabilization, and their combination towards

consensus in the presence of Byzantine nodes and arbitrary transient errors.

During the thesis, we analyzed the algorithm by Duvignau et al. [6], the first proposed

Byzantine and intrusion-tolerant Self-stabilizing multivalued consensus algorithm. We

inspected the building blocks needed for the implementation, one by one, and the

challenges and solutions for the algorithm to behave as a Self-stabilizing algorithm.

After studying the algorithm, we built, to the best of our knowledge, the first

implementation of the algorithm [6] by using the Go programming language with the

ZeroMQ messaging library, which can be integrated into other algorithm stacks. The

algorithm was then proved to handle complicated faults, including Byzantine and

transient faults combined.

We evaluated the algorithm by executing real-life scenarios on a local workstation and

a cluster using Emulab/Cloudlab testbed platform. We evaluated the algorithm’s

theoretical properties and performance through various setups and scenarios. We

executed additional scenarios that would help us demonstrate that the algorithm can

perform well on scalable systems. Finally, we compared our implementation to a Non-

self-stabilizing variation [3] [7] and verified the self-stabilizing overhead, which is

nevertheless minor and acceptable. We were able to discover and point out

And
rea

s N
. C

ha
ral

am
po

us

79

drawbacks/limitations, mainly on resource exploitation, and how additional studies can

improve our implementation.

7.2 Future Work

Implementing the algorithm is only the beginning of what can be achieved later. As

stated in Chapter 3, the algorithm stack contains building blocks on top of our

implementation. Another set of protocols can be added for more reliable results, like

Reliable Broadcast with total-order delivery and Emulation of state-machine

replication.

Also, in our implementation, to get the best result, we do not have any timing

mechanism in the main for-loop, leading to exploitation of the system resources since

the for-loop runs indefinitely, pushing messages all the time. A possible solution would

be to add a simple "sleep" in each iteration or avoid sending messages in every

iteration, for example, every ten iterations. This way, the sent messages are not much

more than the number needed, leading to a performance increase. Additional study

can be done to find the most suitable tweaks needed for the best result.

Another work that could be done, but at this time-being and resources was not feasible,

is running the algorithm on a complete Distributed System, such as Amazon Web

Service (AWS), with nodes scattered over long distances and different continents.

Theoretically, our implementation should be able to perform on such a setup, and the

only drawback should be the time needed for consensus to be reached.

7.3 Personal Retrospection

I am again grateful that I had the chance to work on a complete project of this item. By

getting hands-on with existing functional projects, this thesis allowed me to understand

Distributed Systems, Byzantine Fault Tolerance, Consensus, and others. Additionally,

And
rea

s N
. C

ha
ral

am
po

us

80

I had the opportunity to explore Self-stabilization, understand why and how it is vital to

Distributed Systems, and finally become confident in implementing one such system.

Moreover, I learned an entirely new language, Go, from scratch and familiarized myself

with the ZeroMQ library through this project. In general, I had the chance to gain more

experience by implementing this project from the beginning.

And
rea

s N
. C

ha
ral

am
po

us

81

Bibliography

[1] "Wikipedia - Distributed Computing," [Online]. Available:

https://en.wikipedia.org/wiki/Distributed_computing. [Accessed April 2022].

[2] M. H. Degroot, "Reaching a Consensus," Journal of the American

Statistical association, vol. 69, no. 345, pp. 118-121, 1974.

[3] A. Mostéfaoui, M. Hamouma and M. Raynal, "Signature-free

asynchronous Byzantine consensus with t < n/3 and O (n2) messages,"

Proceedings of the 2014 ACM symposium on Principles of distributed

computing, pp. 2-9, 2014.

[4] L. Lamport, R. Shostak and M. Pease, "The Byzantine generals problem,"

Concurrency: the Works of Leslie Lamport, vol. 203, no. 226, pp. 203-226,

2019.

[5] S. Dolev, R. I. Kat and E. M. Schiller, "When consensus meets self-

stabilization," Journal of Computer and System Sciences, vol. 76, no. 8, pp.

884-900, 2010.

[6] R. Duvignau, M. Raynal and E. M. Schiller, "Self-stabilizing Byzantine-and

Intrusion-tolerant Consensus," arXiv preprint arXiv:2110.08592, 2021.

[7] V. Petrou, "Implementation and Evaluation of a Randomized Byzantine

Fault Tolerant Distributed Algorithm," May, 2021.

[8] "Golang Documentation," [Online]. Available: go.dev/doc. [Accessed April

2022].

[9] "ZeroMQ," [Online]. Available: https://zeromq.org/get-started/. [Accessed

April 2022].

And
rea

s N
. C

ha
ral

am
po

us

82

[10] "Emulab," [Online]. Available: https://www.emulab.net/. [Accessed June

2022].

[11] A. Sari and M. Akkaya, "Fault Tolerance Mechanisms in Distributed

Systems," International Journal of Communications, Network and System

Sciences, vol. 08, no. 12, p. 12, 2015.

[12] A. Kumar, Y. S. Rama and R. J. Anjali, "Fault tolerance in real time

distributed system," International Journal on Computer Science and

Engineering, vol. 3, no. 2, pp. 933-939, 2011.

[13] M. J. Fisher, N. A. Lynch and M. S. Paterson, "Impossibility of distributed

consensus with one faulty process," Journal of the ACM (JACM), vol. 32, no.

2, pp. 374-382, 1985.

[14] M. K. Aguilera, S. Toueg and B. Deianov, "Revisiting the weakest failure

detector for uniform reliable broadcast," International Symposium on

Distributed Computing, pp. 19-34, 1999.

[15] S. Toueg, "Randomized byzantine agreements," Proceedings of the third

annual ACM symposium on Principles of distributed computing, pp. 163-178,

1984.

[16] C. Georgiou, I. Marcoulis, M. Raynal and E. M. Schiller, "Loosely-self-

stabilizing Byzantine-tolerant binary consensus for signature-free message-

passing systems," International Conference on Networked Systems, no. 36-

53, 2021.

[17] Y. Yoshida, "Toyota case: Single bit flip that killed, 2013," [Online].

Available: https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/.

[Accessed May 2022].
And

rea
s N

. C
ha

ral
am

po
us

83

[18] E. W. Dijkstra, "Self-stabilizing systems in spite of distributed control,"

Communications of the ACM, vol. 17, no. 11, pp. 643-644, 1974.

[19] M. Raynal, "Fault-Tolerant Message-Passing Distributed Systems - An

Algorithmic Approach," Springer, 2018.

[20] P. Blanchard, S. Dolev, J. Beauquier and S. Delaët, "Practically self-

stabilizing Paxos replicated state-machine," International Conference on

Networked Systems, pp. 99-121, 2014.

[21] O. Lundström, M. Raynal and E. M. Schiller, "Self-stabilizing multivalued

consensus in asyncrhonous crash-prone systems," 2021 17th European

Dependable Computing Conference (EDCC), pp. 111-118, 2021.

[22] O. Lundström, M. Raynal and E. M. Schiller, "Self-stabilizing indulgent

zero-degrading binary consensus," International Conference on Distributed

Computing and Networking 2021, pp. 106-115, 2021.

[23] M. Ben-Or, B. Kelmer and T. Rabin, "Asynchronous secure computations

with optimal resilience," Proceedings of the thirteenth annual ACM

symposium on Principles of distributed computing, pp. 183-192, 1994.

[24] A. Mostéfaoui and M. Raynal, "Intrusion-tolerant broadcast and

agreement abstractions in the presence of Byzantine processes," IEEE

Transactions on Parallel and Distributed Systems, vol. 27, no. 4, pp. 1085-

1098, 2015.

[25] A. Mostéfaoui and M. Raynal, "Signature-free asynchonous Byzantine

systems: from multivalued to binary consensus with t < n/3, o(n^2) messages,

and constant time," Acta Informatica, vol. 54, no. 5, pp. 501-520, 2017. And
rea

s N
. C

ha
ral

am
po

us

84

[26] M. Correia, N. F. Neves and P. Veríssimo, "From consensus to atomic

broadcast: Time-free Byzantine-resistant protocols without signatures," The

Computer Journal, vol. 49, no. 1, pp. 82-96, 2006.

[27] N. F. Neves, M. Correia and P. Veríssimo, "Solving vector consensus with

a wormhole," IEEE Transactions on Parallel Distributed Systems, vol. 16, no.

12, pp. 1120-1131, 2005.

[28] A. Mostéfaoui, M. Hammouma and R. Michel, "Signature-free

asynchronous Byzantine consensus with t < n/3 and o(n^2) messages," ACM

Principles of Distributed Computing, 2014.

[29] A. Mostéfaoui, M. Hamouma and M. Ryanal, "Signature-free

asynchronous binary Byzantine consensus with t < n/3, o(n^2) messages,

and O(1) expected time," Journal of the ACM (JACM), vol. 62, no. 4, pp. 1-

21, 2015.

[30] "Wikipedia - Go Programming Language," [Online]. Available:

https://en.wikipedia.org/wiki/Go_(programming_language). [Accessed April

2022].

[31] "freecodecamp - What is Go? Golang Programming Language Meaning

Explained," [Online]. Available: freecodecamp.org/news/what-is-go-

programming-language. [Accessed April 2022].

[32] "The Emulab Manual," [Online]. Available: http://docs.emulab.net.

[Accessed June 2022].

[33] "Cloudlab," [Online]. Available: https://www.cloudlab.us. [Accessed June

2022].

[34] R. Guerraoui and R. Oliveira, "Stubborn Communication Channels," LSE,

D'epartement d'Informatique, Ecole Polytechnique F'ed'erale, 1996.

And
rea

s N
. C

ha
ral

am
po

us

85

[35] G. Bracha and S. Toueg, "Asynchronous consensus and broadcast

protocols," Journal of the ACM (JACM), vol. 32, no. 4, pp. 824-840, 1985.

[36] "Github - Implementation of ZeroMQ Go Interface," [Online]. Available:

https://github.com/pebbe/zmq4. [Accessed April 2022].

[37] "Visual Studio Code," [Online]. Available: https://code.visualstudio.com/.

[Accessed April 2022].

[38] "Ubuntu," [Online]. Available: https://ubuntu.com/. [Accessed April 2022].

[39] "Github - self-stabilizing-mvc," [Online]. Available:

https://github.com/acharalampous/self-stabilizing-mvc.

[40] "Go gob package," [Online]. Available: https://pkg.go.dev/encoding/gob.

[Accessed May 2022].

[41] "Cloudlab xl170 node type," [Online]. Available:

https://www.utah.cloudlab.us/portal/show-nodetype.php?type=xl170.

[Accessed June 2022].

And
rea

s N
. C

ha
ral

am
po

us

