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Abstract 

Distributed computing has been in the foreground for decades, with distributed 

systems having numerous applications. Due to their architecture, one fundamental 

problem that these systems often need to solve is the consensus problem. To 

accomplish that, the nodes of such a system must cooperate to decide on a value. 

A significant percentage of the system nodes should agree on the same value. An 

impediment to this is that it should expect some of these nodes to act arbitrarily, 

deviating from their expected behavior, leading to the whole system deciding on an 

invalid value during consensus. These nodes are called Byzantine or faulty, and their 

malicious act may happen because of some internal software or hardware malfunction 

or a malware attack. A fundamental property of distributed systems is that their non-

faulty nodes can achieve consensus in the presence of Byzantine nodes. 

Another property of a Distributed System is Self Stabilization and how the system 

behaves to handle errors. Such self-stabilizing systems can automatically recover from 

arbitrary transient faults, violating the system operation assumptions. Examples of 

such faults might be simple bit-flips in state variables or messages, but with the code 

left induct. 

In this thesis, a self-stabilizing Multivalued consensus algorithm is implemented, 

validated, and experimentally evaluated in the presence of up to t Byzantine 

processes, where t < n/3, with n being the total number of processes. Consensus is 

performed on an asynchronous message-passing network using the Go programming 

language and the ZeroMQ message library. Experiments are performed on a local 

workstation and the Emulab testbed platform. 
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Chapter 1 

Introduction 

1.1 Motivation 

Distributed systems have been part of our everyday life since the 1970s. They are 

used in a significant percentage of the systems we use, with networks, databases, and 

distributed real-time systems being some of them. A distributed system has 

components distributed on different computers, all communicating through the network 

to achieve their common goal [1]. Despite many computers, end-users see and use a 

distributed system as a standalone interface. A distributed system's computers are 

usually called nodes, processors, processes, and others. Their main difference from a 

standard parallel system is that they operate far from each other, even on different 

continents.  

Distributed computing, which studies the principles of distributed systems, depends on 

their topology, as the nodes act as needed to communicate and solve problems. 

Distributed systems are expected to contain faulty nodes during operation, which, 

when low in numbers, should not affect the system's overall behavior. One of the most 

challenging problems distributed systems must solve while operating and expecting 

faulty nodes is reaching consensus [2]. The consensus problem definition is 

straightforward but more complex to solve in action. The goal is that each non-faulty 

node supports a value from a predefined set of values, and in the end, they agree on 

one. In the simplest form, Binary Consensus [3], all non-faulty nodes must decide on 

a value from a set of only two possible values, {0, 1}. The consensus problem is called 

Multivalued Consensus when the set contains more than two possible values [3]. 
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The consensus problem is hard to solve because of faulty nodes, commonly named 

Byzantine nodes, after the Byzantine Generals Problem [4]. Byzantine nodes fail to 

follow the algorithm instructions, for example, changing or not sending messages to 

other nodes. It can result from the node's hardware or software malfunctions or even 

malware attacks, where an adversary controls the node. It is a vital property of 

Distributed Systems to defend against Byzantine nodes. 

Another type of failure is arbitrary transient faults that rarely happen on a node. 

Transient faults can also be a violation of how the node is designed to work, where this 

can be a corruption on a control variable, like the program counter or the messages 

sent or received. Distributed systems can be designed to handle such errors using 

Self-Stabilization [5]; as the name implies, the node handles and bypasses the 

occurring fault without human intervention. 

It is easy to notice that there are many properties that a distributed system must have 

in order to operate and solve the problems that it was designed for while handling the 

variety of errors that may occur.  

1.2 Objective and Contribution 

This thesis aimed to implement, validate and experimentally evaluate the Self-

stabilizing Byzantine tolerant Multivalued Consensus algorithm for asynchronous 

messages passing by Duvignau et al. [6]. To the best of our knowledge, it is the first 

algorithm that solves the Multivalued Consensus problem in asynchronous message-

passing that is both Self-stabilizing and Byzantine tolerant, as it can handle up to t < 

n/3 Byzantine nodes. The relevant paper analyzes and theoretically evaluates the 

algorithm [6]. However, it is essential for the algorithm to be implemented and 

experimentally evaluated to verify the theoretical specifications and capabilities and 

confirm that there are no limitations when applied in practice. 
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The algorithm was studied, implemented, and evaluated on real-world-like simulations 

for validity. Then it was experimentally compared to a non-self stabilizing Byzantine-

tolerant multivalued consensus implementation [7] for performance and message 

complexity. The algorithm was implemented using the Go Programming Language [8] 

alongside the ZeroMQ messaging library [9], whereas the experiments were 

conducted on a local workstation and the Emulab testbed platform [10]. Again, to the 

best of our knowledge, this is the first implementation, experimental validation, and 

evaluation of the algorithm in [6]. 

1.3 Methodology 

We used the Go programming language alongside the ZeroMQ library to implement 

the algorithm. We describe the reasons that led to this decision in Section 2.6. 

The overall thesis goal was finished in ten months, as it was done part-time. In order 

to conduct the Thesis goal, an initial study was performed on the field, containing 

Distributed Systems, Byzantine Fault Tolerance, Binary/Multi-value Consensus, and 

Self-stabilization. Additional focus was given to the paper introducing the algorithm [6] 

and on a thesis that used similar technologies [7].  

After the initial study, we got familiar with the Go Programming Language, with which 

we did not have prior experience, and then with the ZeroMQ message-passing library. 

We then performed the design phase. We agreed on all application modules, setup, 

and network configuration so that the application nodes are configured and executed 

as simply as possible. 

With everything ready, we started the implementation of the algorithm from scratch. 

After implementing the message-passing layer, one by one module, Byzantine 

Reliable Broadcast (BRB), Validated Byzantine Broadcast (VBB), Binary Consensus 

(BC), and Multivalued Byzantine-tolerant Consensus (MVC) were built, starting from 

the bottom of the algorithm stack. At first, we implemented the non-self-stabilizing 
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version for each module and then converted it to self-stabilizing. It was possible to 

implement the self-stabilizing version of the module directly, but by implementing the 

simple form, it was helpful to understand each module and its properties. Every module 

was validated with manual testing, unit, and automation tests that tested whole 

scenarios when added to the stack. 

Finally, after the whole algorithm was finished and tested for validity, it was 

benchmarked on a local personal computer and then on a cluster of 10 nodes, with 

200 CPUs in total, using the Emulab testbed platform [10]. We analyze benchmark 

results and information in  Chapter 6 - Experimental Analysis. Extended timesheet 

details are shown in Figure 1. 

1.4 Document Structure 

In Chapter 2 - Background and Related Work, there are references to the Related 

Work and Background. Specifically, we mention existing Byzantine fault-tolerant 

algorithms, Multivalued Consensus, and Self-stabilization. Moreover, some 

introduction to the Go programming language and the ZeroMQ library used for 

implementing the algorithm, and the Emulab testbed platform for executing 

experiments. 

Chapter 3 - The Algorithm contains a complete explanation of the implemented 

algorithm with all of its building blocks. Then, in Chapter 4 - Implementation Details, 

there is a complete description of the implementation details of our solution, and in 

Chapter 5 - Self-stabilization and Byzantine Fault Tolerance, we show all the covered 

and evaluated use cases alongside the validation and tests performed. Chapter 6 - 

Experimental Analysis shows the experimental setup and analysis performed 

alongside the performance and complexity comparisons to other related work. 

Finally, Chapter 7 - Conclusion contains a retrospective where we show all our 

conclusions and final points related to the implementation and possible future work. 
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Figure 1: Gantt Diagram 

Sep Oct Nov Dec Jan Feb Mar Apr May June

Initial Meetings (15/09/2021 - 16/09/2021)
Meeting for subject and related work
Study of related work (17/09/2021 - 31/01/2022)
Byzantine Fault Tolerance
Binary and Multi-value Consensus
Related thesis and algorithms
Paper about the algorithm to be implemented
Technical Training (18/01/2022 - 12/02/2022)
Learning Go programming language
Learning ZeroMQ library
Design Phase (13/02/2022 - 20/02/2022)
Application and network setup
Implementation of algorithm (21/02/2022 - 09/04/2022)
Non-self-stabilizing implemention
Conversion to self-stabilizing
Manual testing
Unit tests - automation tests
Benchmarking (10/04/2022 - 30/06/2022)
Local Benchmarking
Benchmarking on Emulab

2021 2022
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Chapter 2  

Background and Related Work 

2.1 Fault Tolerance 

2.1.1 General 

Fault tolerance is, if not the most, one of the most critical capabilities of a distributed 

system. As the name implies, a distributed system must be able to overcome internal 

partial faults and keep functioning, masking the error as if it never happened, with only 

some graceful drawbacks in performance. A system is fault-tolerant when the following 

requirements are met [11]: 

1. Availability: the system is available to be used as expected at any time. 

2. Reliability: the system can work correctly for an extended period without 

failure. 

3. Security: the system does not allow unauthorized access. 

4. Safety: in case the system cannot carry out a failure, leading to the working 

incorrectly for some time, but with no catastrophic results. 

5. Maintainability: system failures can be observed and fixed mechanically. 

2.1.2 Types of Faults 

Different kinds of faults can occur on a distributed system. Some types are less crucial, 

which are easier to notice and handle, and other types can be disastrous for a system 

and sometimes cannot be fixed by the system. Next, we describe the main fault types 

in distributed systems, starting from the less serious to the most severe [12]. 

The first type of fault is crash faults, which can contain simple system component 

crashes like a processor crash or a link crash. In this case, a component may stop 

working without any warning.  
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The next type of fault is omission fault, during which a component may omit the 

execution of a specific operation. For example, during communication omission, a 

node does not send a message that was supposed to be sent. Another common type 

of fault is the timing fault, which can happen when a component fails to execute an 

operation during a sufficient time window. 

The final and most crucial type of fault are Byzantine faults, which are the most difficult 

to handle and can even create issues that cannot be solved. These errors are 

considered arbitrary or malicious and happen when a faulty component has an 

arbitrary behavior. For example, a node can send invalid messages, pretending to be 

another processor, and stay idle while executing. These are the kind of faults that we 

study below. 

2.1.3 Byzantine Fault Tolerance 

Since Byzantine Faults are the most severe fault types, a distributed system must be 

Byzantine fault-tolerant. The name Byzantine comes from the Byzantine Generals 

Problem introduced by Leslie Lamport, Robert Shostak, and Marshall Pease [4].  

The problem definition states that several Byzantine Generals, each with their army 

division, are camping around an enemy city, planning to attack. For their attack to be 

successful, they must coordinate to simultaneously attack all or at least a significant 

number of divisions. This operation is also known as reaching consensus. Generals 

can only communicate through messengers, saying if they should attack or retreat, 

and what makes the operation complicated is that a general or generals are traitors. In 

Figure 2, we see an illustration of the Byzantine Generals Problem, where on the top 

image is shown what each general said if he would attack or retreat and on the bottom 

what exactly he did. Loyal generals assumed that everyone would attack, while traitors, 

in the end, retreated. Thus, the attack was unsuccessful. 

Through this problem, Leslie Lamport, Robert Shostak, and Marshall Pease proved 

that in the presence of Byzantine Generals, consensus could not be reached if the 
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number of Byzantines was considerable. Specifically, when there are n generals total, 

the number of Byzantines t must not exceed (n/3) – 1. The same applies to distributed 

systems, even if the system is synchronous, with a guaranteed common global notion 

of time and operations taking place in synchrony. 

 

Figure 2: Illustration of the Byzantine Generals' Problem 
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2.2 Consensus 

As mentioned in Section 2.1.3, when we have a decentralized system whose 

components need to coordinate and agree on an action or value, that is called 

consensus [3]. In distributed systems, nodes are constantly called to reach consensus 

to function correctly. It was also made clear that the consensus problem becomes 

much more complicated and even unsolvable in the presence of Byzantine nodes. In 

its simplest form, consensus must satisfy the following three (3) requirements: 

1. Consistency: All correct nodes agree on the same value. 

2. Validity: The decided value was initially proposed from at least a correct node. 

3. Termination: Every correct node eventually decides on a value. 

2.3 FLP Impossibility Result 

After looking at the Fault Tolerance and Consensus properties, we will see why their 

properties can not be simultaneously assured in asynchronous systems without some 

additional mechanism. We saw above that the nodes of a distributed system 

communicate and exchange messages to achieve consensus. In synchronous 

systems, faster nodes eventually wait for messages from the slowest nodes. However, 

in asynchronous systems, there is no specific limit that it will take for a slow node to 

respond. Because of this, we cannot be sure if a node faulted or is simply slow. 

The FLP Impossibility result, which took its name from the authors that introduced it, 

Fischer, Lynch, and Paterson [13], states that in asynchronous distributed systems, 

if a single failure occurs, then the system cannot reach a consensus (agreement-safety 

/ termination-liveness). Therefore the agreement, fault tolerance, and termination 

properties cannot be satisfied simultaneously in asynchronous systems. 

There were multiple approaches to solve the FLP Impossibility result, in which specific 

mechanisms are used. One of them is adding synchrony assumptions in the 

asynchronous system, for example, using a predefined network delay. Other options 
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include failure detection mechanisms [14] for detecting faults or non-deterministic 

models with randomization [15]. 

2.4 Self-Stabilization 

In the previous sections, we listed the different types of faults and why fault tolerance 

is necessary for a distributed system. A fault-tolerant mechanism is explicitly designed 

depending on assumptions that can be variables or protocols, which help distributed 

systems defend against faults. This sub-chapter views another type of fault, arbitrary-

transient-faults, and how a system can detect and overcome them using self-

stabilization. 

2.4.1 Arbitrary transient faults 

We said that fault tolerance depends on critical system assumptions. It is fair to 

characterize these assumptions as necessary since one single violation can break fault 

tolerance and even be fatal to the system. Another type of fault that can affect a 

distributed system is arbitrary-transient-faults [16], which temporarily violate the 

assumptions that a system or network was designed to follow. They are minimal in 

terms of how they violate the assumptions. However, as already said, they can even 

be lethal for the distributed system, turning the system completely useless, making 

human intervention necessary for stabilizing it again. 

This kind of error rarely happens, in an unexpected way, making it impossible to detect 

it at the time that it happens. It can be tiny and simple, like a single bit-flip on a variable 

or a message. Such small alternation can happen on the program counter, bringing 

the system to a faulty state. The system can not recover since it was never designed 

to be in that state [17]; for example, on a blocking message receive operation, without 

performing a send operation first.  
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2.4.2 Self-stabilization after arbitrary transient faults 

Self-stabilization [18] is precisely how a system can detect and recover when an 

arbitrary transient fault happens. As the name implies, when designed with self-

stabilization properties, a system that comes in an arbitrary state can stabilize and 

correct itself without human interaction and return to a valid operating state.  

The self-stabilization notion was first mentioned by Edsger Dijkstra while solving the 

mutual exclusion problem [18]. Dijkstra stated that when there is a violation in the 

assumptions that a system follows in order to operate and the system goes into an 

arbitrary state, then with self-stabilization, the system can recover.  

Based on this, a distributed system needs two properties: (1) an initial (reset) state and 

(2) the ability to recover to that state from every arbitrary state. An example of an initial 

reset state could be the program counter pointing at the beginning of a distributed 

algorithm and resetting the control variables related to the algorithm. For the latter 

property, a system performs checks at specific points in the algorithm, and in case a 

violation is detected, it returns to the initial state. 

Even though self-stabilization is considered a fault tolerance mechanism, it should be 

distinguishable from other fault tolerance methods. As mentioned in the previous 

sections, fault tolerance methods mask errors and prevent failures. In contrast, on the 

other side, self-stabilization guarantees recovery after a transient failure occurs. The 

transient failure may have a noticeable effect on the system operation before it 

recovers. 

2.5 Existing Algorithms 

As mentioned by Duvignau et al. [6], the studied algorithm, by the best of their 

knowledge, is the first self-stabilizing, Byzantine, and intrusion-tolerant algorithm for 

solving multivalued consensus in asynchronous message-passing systems. Existing 

solutions consist of non-Byzantine fault-tolerant solutions that do not use self-
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stabilization [19] and self-stabilizing solutions that do not have fault-tolerance against 

Byzantine failures [20] [5] [21] [22]. 

The first approach of Byzantine tolerance in asynchronous systems reducing 

multivalued consensus to binary consensus was that of Ben-Or, Kelmer, and Rabin 

[23]. However, it did not consider intrusion tolerance which later Mostéfaoui and Raynal 

[24] [25] and Correia, Neves, and Veríssimo [26] [27] proposed. We will see later that 

the MVC-no-intrusion (intrusion tolerance) requirement states that the decided value 

cannot be a value proposed only by Byzantine nodes. 

A related solution for solving Binary Consensus is that of Mostéfaoui et al. [28] [29], 

who presented an asynchronous randomized solution with common coins. Georgiou 

et al. [16] proposed a self-stabilizing variation on Mostéfaoui et al.'s algorithm. The 

self-stabilizing Byzantine-tolerant Binary consensus object from this proposal will be 

used in the studied algorithm by Duvignau, Schiller, and Raynal [6], from which 

randomization is inherited therefore bypassing the FLP Impossibility result. 

2.6 Go Programming Language 

Go, or Golang [8], is a relatively new open-source programming language, with its first 

version being released in March of 2012. It was designed and implemented at Google 

by Robert Griesemer, Rob Pike, and Ken Thompson. Its main goal was to improve 

programming productivity, providing multithreading and network tools imported at the 

syntax level. Designers shared a common opinion against languages used at Google, 

increasing the complexity of Google's codebase. However, they focused on designing 

Go, keeping the valuable capabilities of each one of them. This approach gave Go the 

characteristics of a Static typing, compiled, run-time efficient language like C. Easily 

readable and usable like Python and Javascript, and High-performance networking 

and multiprocessing [30]. Another important feature of Go is that it contains goroutines 

and channels in the language syntax. The first is used to implement multithreading 
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applications, and the second is to provide communication mechanisms between 

threads. These features make implementing, reading, and maintaining multithreading 

applications easy. 

The mentioned characteristics make the language one of the simplest for server-side 

programming, game development, cloud-based programming, and Data-Science [31]. 

Go offers easy-to-read documentation about its features and packages directly through 

the official website [8]. Combined with the increasing community and support, the 

language is considered one of the most hyped and loved programming languages. 

The combination of the above led us to use Go to implement the algorithm, as it 

perfectly fits our needs. Also, the existing implementation of a related algorithm was 

conducted with Go, so we can be more precise in comparing the two. Initially, we 

started the implementation with go1.17 and upgraded to g1.18 shortly after to get 

advantages of added features like Generics. 

2.7 Emulab – Cloudlab 

Our implementation was evaluated and benchmarked using the Emulab platform 

technologies. Emulab [10] is a network testbed that allows researchers to create 

environments, setups, and configurations for general development, testing, debugging 

and evaluating experiments and systems. It provides many physical and visual nodes 

with various specs so that users can build the most suitable environment for their 

experiments. 

Researchers can request access to the platform by filling out an application form, and 

after their application is evaluated, they are granted access. After that, they are free to 

allocate resources, depending on availability, to set up clusters for running 

experiments. We managed to get access by creating an account using our Institutional 

Email and specifying the purpose of our experiments. Instructions for getting access 

and documentation for using the platform are included in the Emulab manual [32]. 
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For our experiments, we used Cloudlab [33], which uses the same technologies, 

interface, and user accounts as Emulab but provides far more resources, including 

access to the Emulab resources. During the time we used it, the Cloudlab deployment 

consisted of more than 25,000 cores distributed across three sites at the University of 

Wisconsin, Clemson University, and the University of Utah [33]. 

2.8 ZeroMQ 

ZeroMQ, also known as ØMQ, 0MQ, or ZMQ [9], is a high-performance asynchronous 

network message-passing library. It is designed mainly for distributed and concurrent 

systems. The Zero prefix describes the framework's profile, referring to its minimalism, 

with zero brokers, high performing with zero latency, zero cost as it is free, and zero 

administration. On most operating systems, it provides APIs for the most known 

programming languages, like C, C++, Java, Go, Python, Rust, and many other 

programming languages. With these asynchronous features, the library was the best 

fit for our algorithm implementation [9].  

2.8.1 ZeroMQ Sockets and Patterns 

The library provides a plethora of communication sockets and patterns, giving 

developers the flexibility to design and structure their network however they want. 

There are many types of sockets provided that can be combined to satisfy every 

scenario. Next, we describe some of them. 

2.8.1.1 REQ and REP sockets 

Two of the most basic sockets are REQ and REP, which stand for request and reply, 

respectively; combined, they give a basic client-server pattern. These two sockets are 

synchronous, limiting their practical, real-world applications. In order to function, these 

two ports must send and receive messages alternately. For example, they cannot send 

two messages consecutively without receiving a message between them. The REQ 

socket first sends then receives in a Send, Receive, Send Receive pattern, whereas 
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REP first receives, then sends in a Receive, Send, Receive, Send pattern. Figure 3 

shows the primary valid and invalid use of REQ and REP sockets. 

 

Figure 3: Valid and invalid scenarios of REQ and REP sockets 

2.8.1.2 DEALER and ROUTER sockets 

DEALER and ROUTER sockets are considered the non-blocking, asynchronous 

variant of REQ-REP sockets, DEALER (old name: XREQ) acting REQ, and ROUTER 

(old name: XREP) as REP sockets. The most important thing that allows ROUTER to 

work asynchronously is that it expects all incoming messages to contain a leading 

identity frame containing information about its sender. Neither port has any restriction 

on the sending/receiving sequence pattern. 

2.8.1.3 PUB and SUB sockets 

The pair of PUB, meaning publisher, and SUB, meaning subscriber, are used for the 

well-known publisher-subscriber pattern. PUB sockets publish messages, and SUB 
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sockets receive those messages. PUB sockets cannot receive, and SUB sockets 

cannot send messages on the other side. Since SUB sockets do not send any 

response to acknowledgments to PUB messages, their communication is 

asynchronous. 

2.8.1.4 PUSH and PULL sockets 

ZeroMQ sockets can also apply a pipeline pattern in cases where few nodes push work 

to many workers, who then forward results to others. A PUSH socket communicates 

with several PULL peers and can only send messages and not receive. Similarly, a 

PULL socket is connected to some PUSH socket peers and is allowed to receive and 

not send messages. A property of this setup is that PUSH and PULL sockets do not 

know anything about their peers. 

2.8.1.5 PAIR sockets 

Pair sockets are used in specific scenarios and are unsuitable for TCP network 

communication. They are mainly used for inter-thread communication within a single 

process and can only connect to a single peer at a time.
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Chapter 3 

The Algorithm 

3.1 Algorithm Structure 

Like almost every consensus algorithm (or module), the studied Multivalued 

Consensus algorithm is built on top of other algorithms. As shown in Figure 4, 

Duvignau, Shiller, and Raynal's [6] whole structure contained a multivalued Byzantine-

tolerant consensus algorithm (MVC) built on top of a Binary Consensus Object (BC) 

and Validated Byzantine Broadcast (VBB). VBB is built on top of Byzantine Reliable 

Broadcast (BRB). On top of the multivalued consensus algorithm, a reliable broadcast 

with a total-order delivery algorithm can then rely on it. On top of that, state-emulation 

is achieved. All the above depend on an asynchronous message-passing system. The 

studied algorithm of Duvignau, Shiller, and Raynal contains only MVC, VBB, and BRB, 

assuming the existence of a BC object is shown in blue cells in Figure 4. Our 

implemented and used (Byzantine-tolerant binary consensus [16]) protocols are shown 

in red-bordered cells. 

 

Figure 4: The studied architecture. Algorithms studied by Duvignau, Schiller, and Raynal are in blue 
cells. Our implementation is shown in red-bordered cells. 

The following sections show the studied protocols starting from the protocol stack's 

base and moving to the top in their non-self-stabilizing version. Later, we show how 

they are converted to self-stabilizing. All the shown algorithm figures in the section are 
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written in simplified pseudocode syntax and originated from Duvignau, Shiller, and 

Raynal’s paper [6]. 

3.2 Protocol Stack 

3.2.1 Message-passing system 

Starting from the base, a vital property for a distributed algorithm is communication 

and networking. In the basic non-self-stabilizing form, the broadcasting algorithms 

depend on reliable communication channels. Such channels offer basic guarantees; 

for example, all sent messages are eventually delivered (fairness), a received 

message is created and sent from some process (no-creation), and every sent 

message is received precisely once (no-duplication) [34]. We will discuss later further 

how these properties are satisfied in our implementation. 

3.2.2 Byzantine Reliable Broadcast 

The first broadcasting algorithm is Byzantine Reliable Broadcast, proposed by Bracha 

and Toueg [35]. The BRB algorithm has the abstraction of two (2) primary operations 

that of brbBroadcast(message) in order to broadcast a value to all other peers and 

brbDeliver() raised from a node that received a message from another node so that 

the following assumptions are applied: 

1. BRB-validity: if a correct node raised brbDeliver for a message m from a 

process p, process p invoked brbBroadcast(m). 

2. BRB-integrity: a correct node cannot brbDeliver the same message from the 

same process more than once. 

3. BRB-no-duplicity: two different correct processes cannot brbDeliver different 

messages from a process p, where p can even be faulty. 

4. BRB-Completion-1: when a correct process p invokes brbBroadcast(m), all 

correct nodes brbDeliver its message m. 
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5. BRB-Completion-2: if a correct process pi brbDeliver a message m from pj 

that can even be faulty, then all correct nodes eventually brbDeliver message 

m from pj. 

Each message broadcasted with BRB can be one of three (3) types; INIT when a 

process broadcasts its initial value, ECHO for messages containing the value of 

another node, and READY when a node is ready to brbDeliver a message from a node. 

BRB can guarantee reliable broadcast assuming t < n/3, where t is the number of faulty 

processes. 

3.2.2.1 No-Duplicity Broadcast 

BRB depends on a simpler broadcast algorithm, No-Duplicity Broadcast (ND-

Broadcast), proposed again by Toueg [15]. ND-Broadcast, similarly to BRB, offers two 

(2) operations; ndBroadcast(message), which is the same as 

brbBroadacast(message), and ndDeliver(), which is raised before brbDeliver().  

The ND-Broadcast algorithm is shown in Figure 5. Assuming that we have a process 

pi that ndBroadcasts a message mi and every other process receives this message, pi 

invokes ndBroadcast(mi), with INIT(i, mi) being sent to every other process. When 

another process pj receives INIT(i, mi) for the first time, it broadcasts an ECHO(i, mi) to 

the rest of the processes. If pj then receives ECHO(i, mi) from at least (n + t)/2 nodes, 

where n and t are respectively the numbers of all processes and faulty processes, then 

pj raises ndDeliver event for message mi from process pi. 
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 3 
 4 
 5 
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 8 
 9 
10 
11 
12 
13 

ndDeliver(k, mJ): 
    // event raised when mJ ND-Delivered from node k 
 
ndBroadcast(m): 
    broadcast ND_INIT(m) 
     
on arrival of ND_INIT(mJ) from node j: 
    broadcast ND_ECHO(j, mJ) 
     
on arrival of ND_ECHO(k, mJ) from j: 
    if received ND_ECHO(k, mJ) from at least (n+2)/2 nodes: 
        if not yet invoked ndDeliver(k, mJ): 
            ndDeliver(k, mJ) 

 

Figure 5: The ND-broadcast algorithm 

3.2.2.2 Byzantine Reliable Broadcast on ND-Broadcast 

As already mentioned, BRB is built on ND-Broadcast, and actually, it is a continuation 

of it. The main difference is on the part where ndDeliver is raised, where BRB sends 

the last type of READY message waiting for equivalent messages from other nodes, 

which guarantees the reliability of broadcasting in the presence of Byzantine 

processes. The BRB algorithm is shown in Figure 6. 

Continuing from the previous algorithm, when a node pj receives ECHO(i, mi) from at 

least (n + t)/2 nodes, then and if it did not do it already, it broadcasts READY(i, mi). 

Next, when node pj receives READY(i, mi) from another node, it performs two checks. 

Firstly, if it received the same READY message from t+1 nodes, meaning that at least 

one correct node sent a READY, and if not yet broadcasted, it broadcasts  

READY(i, mi). This case can happen in the case where the node receives enough 

READY messages before receiving enough ECHOs.  

Secondly, it checks if it received the same READY message from at least 2t+1 nodes, 

and if not already done, it raises a brbDeliver for that message. This check ensures no 

two correct nodes brbDeliver different values, as BRB-Completion-2 states. 
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21 

brbDeliver(k, mJ): 
    // event raised when mJ BRB-Delivered from node k 
 
brbBroadcast(m): 
    broadcast BRB_INIT(m) 
     
on arrival of BBR_INIT(mJ) from node j: 
    broadcast BRB_ECHO(j, mJ) 
     
on arrival of BRB_ECHO(k, mJ) from j: 
    if received BRB_ECHO(k, mJ) from at least (n+2)/2 nodes: 
        if not yet broadcasted BRB_READY(k, mJ) 
            broadcast BRB_READY(k, mJ) 
             
on arrival of BRB_ECHO(k, mJ) from j: 
    if received BRB_READY(k, mJ) from (t+1) nodes: 
        if not yet broadcasted BRB_READY(k, mJ) 
            broadcast BRB_READY(k, mJ) 
    if received BRB_READY(k, mJ) from (2t+1) nodes: 
        if not yet invoked brbDeliver(k, mJ): 
            brbDeliver(k, mJ) 

 

Figure 6: The BRB-broadcast algorithm 

3.2.3 Validated Byzantine Broadcast 

The final studied broadcast algorithm is that of Validated Byzantine Broadcast (VBB) 

and is built on top of BRB. Again, it offers two operations, vbbBroadcast(message) 

for VBB broadcasting a message and vbbDeliver() raised when a VBB message is 

delivered. As the name implies, a message is validated by checking if it is VBB 

delivered by a number of nodes. When a message from a sender cannot be validated, 

then a transient error symbol Ψ indicates the invalidity of a message. The VBB 

requirements are: 

1. VBB-validity: 

a. VBB-justification: if a correct node raises vbbDeliver for message m ≠ 

Ψ, there is at least one correct node that invoked vbbBroadcast(m). 

b. VBB-obligation: if all correct nodes invoked vbbBroadcast(m) for the 

same message m, all correct nodes raise vbbDeliver for every m from 

each node broadcasted. 
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2. VBB-uniformity: if a correct node raises vbbDeliver for m' ∈ {m, Ψ} from a 

node p that can even be faulty, then every other correct node raises 

vbbDeliver for m' from p. 

3. VBB-Completion: when a correct node p invokes vbbBroadcast(m), all 

correct nodes raise vbbDeliver for m from p. 

Figure 7 shows the VBB algorithm. The multiset rec is used for the implementation, 

containing all the BRB-delivered values. Also, equal(v, rec) returns the number of 

elements in rec equal to v, and differ(v, rec) returns the number of elements not equal 

to v.  

In contrast to the BRB algorithm, where we could assume that only one process 

broadcasts its value, VBB works with all processes broadcasting their value. There are 

two (2) types of VBB messages, INIT and VALID, where the first is used mainly for 

broadcasting the value and the latter for the messages validation procedure. In 

general, the algorithm is split into two parts. The first part contains broadcasting of 

values, gathering values of other processes, and validating them. The second part 

waits for validations from other processes to finally raise vbbDeliver. 

Initially, every node BRB-Broadcasts a VBB-INIT message m and waits until at least 

(n-t) VBB-INIT messages are BRB-Delivered. Those values, as mentioned above, are 

stored in the rec multiset. When that number of messages are BRB-delivered, the node 

counts how many times he can find his proposed value in rec multiset, and if they are 

more than n-2t, then it brbBroadcasts a VBB-VALID message with the value true, 

otherwise with the value false. 

After sending the VBB-VALID message, the node executes a background task for each 

one of the other nodes, for vbbDelivering their value or the error value Ψ. Taking into 

consideration the background task where node pi validates the value of pj, firstly, node 

pi waits for both VBB-INIT and VBB-VALID messages to be BRB-delivered. When both 

messages are BRB-delivered, the VBB-VALID message value from pj is checked. If it 
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is true, pi waits until the VBB-INIT message value of pj is BRB-delivered from at least 

n-2t nodes. If this happens, pi VBB-delivers value vj from pj. Else if the value is false, 

pi waits for t+1 values that are different from pj to be BRB-delivered. If that happens, pi 

VBB-delivers the transient symbol Ψ from pj. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

variables: 
    rec // multiset that contains all BRB-delivered values 
equal(v): 
    return number of elements in rec equal to v 
differ(v): 
    return number of elements in rec not equal to v 
     
 
vbbDeliver(j, d): 
    // raised when the value d is VBB-Delivered from node j 
 
vbbBroadcast(v): 
    brbBroadcast(VBB_INIT(i, v)) 
    wait until len(rec) >= n-t 
    brbBroadcast(VBB_VALID(i, equal(v) >= n-2t)) 
     
background tasks (one for every node j, j != i): 
    wait VBB_VALID(j, x) and VBB_INIT(j, v) BRB-delivered from j 
    if x == true: 
        wait until equal(v) >= n-2t 
        d = v 
    else: 
        wait until differ(v) >= t+1 
        d = Ψ 
    vbbDeliver(j, d) 

 

Figure 7: The VBB-broadcast Algorithm for node i 

3.2.4 Randomized Byzantine-tolerant Binary Consensus 

One fundamental property of the studied algorithm is the reduction from Multivalued 

Consensus to Binary Consensus. The latter is a simplified version of the first one since 

in MVC, we can have whatever value proposed, whereas, in BC, only two (2) different 

values can be the outcome of consensus, that of 0 or 1. Binary consensus offers two 

operations, binPropose(), where one of two possible values can be proposed for 

consensus, and binResult(), which returns the result of consensus. There are a set of 

properties held during Binary Consensus: 

1. BC-Validity: if every correct node proposes a value b, then every correct node 

can decide only that value b. 

And
rea

s N
. C

ha
ral

am
po

us



24 

 

 

2. BC-Agreement: two correct nodes cannot decide on different values. 

3. BC-Termination: every correct node eventually decides. 

Binary consensus is not contained in the studied architecture of Duvignau, Shiller, and 

Raynal. For our implementation, we used a Randomized Binary Consensus built on 

Binary Value broadcast (BVB), shown in Figure 8. The BVB-broadcast algorithm is a 

basic algorithm in which a node broadcasts its binary value and waits for the values of 

other nodes. When it receives a value from at least t+1 processes, and if not done yet, 

it broadcasts it to the other nodes. If the same value is received from 2t+1 processes, 

it is added to a set called bin_values. We will see below how this set is used during 

Binary Consensus. The two (2) types of Binary Consensus messages are EST and 

AUX, sent in different phases.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 

variables: 
    bin_values // set that contains binary values received  
               // from 2t+1 different processes 
 
bvbBroadcast(b): 
    broadcast b 
     
on arrival of value b: 
    if received b from at least (t+1) nodes: 
        if not already invoked bvbBroadcast(b): 
            bvbBroadcast(b) 
    if received b from at least (2t+1) nodes: 
        add b to bin_values 

 

Figure 8: The BVB-broadcast algorithm 

The Binary Consensus is split into three (3) phases, executed in rounds. In the first 

phase, all nodes exchange their proposed binary value by sending it through BVB 

alongside the current round and the EST tag. Then they wait until their bin_values set 

is filled with at least a value.  

In the second phase, nodes send a random value from the bin_values set with the 

round number and the AUX tag. Again they wait for n-t AUX messages delivered 

containing a value that exists in the bin_values set.  
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By having such a value, the node proceeds to the third phase, where it first flips a coin 

common for all nodes. For the common coin, we used a very dummy generator, which 

considers the round in which is flipped and a prime number. After getting the common 

coin value, it checks if the value from the second phase is the same as its round 

estimation and the value from the common coin. If they all match, the node decides on 

value v. Otherwise, it moves to a new round. Also, if the second phase value does not 

match the node's round estimation, it adopts that value and moves to the next round. 

This procedure is repeated until consensus is reached. The complete algorithm is 

shown below.  

 1 
 2 
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 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
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20 
21 
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25 
26 
27 
28 
29 

binPropose(v): 
    estimation = v 
    round = 0 
    do forever: 
        round++ 
         
        // phase 1 
        m = (round, estimation, BC_EST) 
        bvbBroadcast(m) 
        wait until bin_values not empty 
         
        // phase 2 
        aux_value = bin_values[0] 
        m = (round, aux_value, BC_AUX) 
        broadcast m 
        // received values are kept in values set 
        wait until n-t messages received  
          from different nodes with values  
          contained in bin_values  
         
        // phase 3 
        common_coin_value = common_coin() 
        if set values contains exactly v: 
            if v equals common_coin_value: 
                return v 
            else 
                estimation = v 
        else 
            estimation = common_coin_value 

 

Figure 9: The BC Algorithm 

3.2.5 Multivalued Byzantine-tolerant Consensus 

Next, we look at the goal algorithm, Multivalued Byzantine-tolerant Consensus. MVC 

contains the propose() operation, where a node can propose its value to all other 
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nodes to initialize the consensus procedure. The algorithm depends upon VBB-

broadcast communication abstraction and a Byzantine fault-tolerant Binary consensus. 

The MVC algorithm contains the following requirements: 

1. MVC-Completion: all correct nodes eventually decide on a value. 

2. MVC-Agreement: two correct nodes cannot decide on different values. 

3. MVC-Validity: only a value that was proposed can be decided. 

4. MVC-no-intrusion: the decided value cannot be a value that was proposed by 

faulty processes only. 

All correct nodes are expected to invoke the propose() operation during MVC. There 

is only one (1) MVC message type: EST. The algorithm is shown in Figure 10. 

The first step of a node i is that of vbbBroadcasting an EST message containing the 

proposed value. Node i waits for EST messages to be vbbDelivered from at least n-t 

different nodes, which are kept in a multiset rec. When this happens, node i tests 

whether rec includes at least n-2t non-Ψ replies and exactly one non-Ψ value. The 

next step contains the part where MVC is reduced to BC since the test result, true or 

false, is binProposed to BC. 

Once the BC result is available, if its value is false, node i returns the transient error 

Ψ. If the result value is true, node i waits until it receives n-2t messages from different 

nodes that match his value, and if this happens, it returns his proposed value v. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 

variables: 
    rec // multiset that contains all VBB-delivered values 
distinct(): 
    return number of distinct non-psi values in rec 
nonPsi(): 
    return number of non-psi values in rec 
 
bp(): 
    return nonPsi() >= n-2t && distinct(rec) == 1 
     
propose(v): 
    vbbBroadcast(EST(v)) 
    wait until len(rec) >= n-t 
    if binPropose(bp()): 
        wait until value v≠Ψ VBB-delivered from n-2t nodes 
        return v 
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17 
18 

    else: 
        return Ψ 

 

Figure 10: The MVC algorithm 

3.3 Self-stabilizing Byzantine-tolerant Multivalued Consensus 

Having a complete check on the non-self-stabilizing version of all algorithms, we will 

address the challenges towards self-stabilization mentioned in Duvignau, Schiller, and 

Raynal's proposal. We will then list all solutions and show how each algorithm is 

converted to the self-stabilizing version to give us the Self-stabilizing Byzantine-

tolerant Multivalued Consensus. 

3.3.1 Challenges and Solutions 

3.3.1.1 Blocking Operations 

The main obstacle to achieving self-stabilization is that the MVC algorithm blocks on 

many operations. As mentioned, there are operations where the node waits for a result 

or a reply from another node. Specifically, the MVC propose() as well as 

vbbBroadcast() block until there is a result. Besides these operations, BRB and VBB 

are designed to block until brbDeliver(), and vbbDeliver() provide a result. We will see 

in the next chapter how these operations are transformed into non-blocking. 

3.3.1.2 Blocking Reliable channels and transient errors 

The reliable channels are another algorithm component that can block the system 

during execution. In order to assure reliability, the channels must either block until there 

is a reply or resend a message in case the first one was omitted. The solution here is 

to gather all messages into one big message and resend it in a repeated for-loop; thus, 

we can assume that messages will be eventually transferred. This solution also solves 

the problem of transient errors, where a transient error in our case can cause the 

program to come into an error state. For example, a state variable change that does 

not let the algorithm finish or corruption on the program counter can block the system 

on a communication procedure. To avoid this, all the code parts that a node would wait 
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for are converted to if-statements, and in combination with the for-loop, the system will 

never block.  

3.3.2 The Self-stabilizing Byzantine-tolerant Multivalued Consensus Algorithm 

We can now show the proposing Self-stabilizing Byzantine-tolerant Multivalued 

Consensus Algorithm by Duvignau, Schiller, and Raynal. Each algorithm's conversion 

and building block is analyzed in the following sub-sections.  

3.3.2.1 General Structure, variables, and types 

In contrast to how the algorithms work, as shown in Section 3.2, the Self-stabilizing 

Byzantine-tolerant Multivalued Consensus works in an iterating way. 

First, to avoid blocking during many broadcasting operations in the algorithms, all 

messages are unified in one big message and then sent. For that, a structure msg[][][] 

is used for holding all messages that are sent and received. This 3-dimensional 

structure stores the messages, according to the following logic: 

msg[nodeId][vbbType][brbType]. First, messages are grouped by nodes. Assuming a 

node with id i, msg[i] contains all the messages that node i is supposed to send. For 

every other node with id j ≠ i, the received messages are kept in msg[j]. Next, the VBB-

broadcast messages and finally BRB-broadcast messages are stored; for example, 

the received VBB_INIT messages of node j are stored in msg[j][VBB_INIT], and the 

BRB_READY messages of VBB_INIT messages are stored in 

msg[j][VBB_INIT][BRB_READY]. As already said, there are two (2) types of VBB 

messages and three (3) of BRB; VBB_INIT, VBB_READY for VBB-broadcast, and 

BRB_INIT, BRB_ECHO, BRB_READY for BRB-broadcast. 

There is a background task that is responsible for handling received messages and 

storing them in the msg[][][] structure. In each iteration, the algorithm operations take 

place by checking the received messages in the msg[][][], and all new messages that 

should be sent are added to that structure. At the end of each iteration, the node's 
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messages stored in msg[i] are broadcasted. This operation happens in a forever for-

loop. 

The algorithm also uses a Byzantine-tolerant Binary Consensus algorithm, which is 

formatted as a binary consensus object bcO, whose initial state is inactive (⊥) and 

becomes active when bcO.propose() is invoked. The binary consensus algorithm is 

executed as a background task when activated, hence not blocking the main MVC 

algorithm. The bcO.result() operation returns the decided binary value. 

Mentioned variables and types are shown below. 

  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 

types: 
    brbTypes = {BRB_INIT, BRB_ECHO, BRB_READY} 
    vbbTypes = {VBB_INIT, VBB_VALID} 
variables: 
    msg[][][] // most recently sent and received messages 
    bcO // binary object, ⊥ when not running 
background task: 
    when message m arrived from node with nodeId: 
        msg[nodeId] = m  

 

Figure 11: Self-stabilizing MVC Variables and types 

3.3.2.2 Self-stabilizing BRB-broadcast and VBB-broadcast 

The self-stabilizing BRB-broadcast and VBB-broadcast algorithms are shown below. 

We see how their broadcast and deliver operations do not directly broadcast or wait 

for messages but read/write to the msg[][][] structure. 
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// BRB-broadcast 
brbBroadcast(vbbType, v): 
    msg[i][vbbType][BRB_INIT] = v 
     
brbDeliver(vbbType, nodeId): 
    if (nodeId, m) in msg[*][vbbType][BRB_READY]  
      of 2t+1 different nodes: 
        return m 
    else: 
        return ⊥ 
         
// VBB-broadcast 
vbbEq(vbbType, v): 
    if brbDeliver(vbbType, nodeId) == v  
      by at least n-2t nodes: 
        return true 
    else: 
        return false 
         
vbbDiff(vbbType, v): 
    if brbDeliver(vbbType, nodeId) ≠ v  
      by at least t+1 nodes: 
        return true 
    else: 
        return false 
         
vbbEcho(vbbType): 
    if brbDeliver(vbbType, nodeId) ≠ ⊥  
      by at least n-t nodes: 
        return true 
    else: 
        return false 
 
vbbBroadcast(v): 
    brbBroadcast(VBB_INIT, (i, v)) 
     
vbbDeliver(nodeId): 
    if msg[nodeId][VBB_INIT][BRB_INIT] == ⊥ && 
      msg[nodeId][VBB_VALID][BRB_INIT] ≠ ⊥: 
        return Ψ 
         
    initValue = brbDeliver(VBB_INIT, nodeId) 
    validValue = brbDeliver(VBB_VALID, nodeId) 
     
    if  ¬(initValue ≠ ⊥ && validValue ≠ ⊥): 
        return ⊥ 
    if validValue == true && vbbEq(VBB_INIT, initValue): 
        return initValue 
    if validValue == false && vbbDiff(VBB_INIT, initValue): 
        return Ψ 
    if vbbEcho(VBB_VALID): 
        return Ψ 
    return ⊥ 

 

Figure 12: Self-stabilizing BRB-broadcast and VBB-broadcast algorithms 
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3.3.2.3 Consistency tests 

For the algorithm to be self-stabilizing, consistency tests must be in place to detect and 

recover from arbitrary transient errors. The consistency tests are shown in Figure 13. 

The first two consistency tests (brbMessagesConsistencyTest() and 

vbbValidMessagesConsistencyTest()) are used for BRB-broadcast messages and 

VBB-broadcast messages, respectively, and check for inconsistency in BRB_ECHO, 

BRB_READY and VBB_VALID messages that a node is about to send. The last 

consistency test checks for inconsistencies in received messages. In case 

inconsistency is detected, all the equivalent messages are erased. This message 

purge is safe since the algorithm is designed to resend all messages again. 

 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 

// Consistency tests 
brbMessagesConsistencyTest(vbbType): 
    for message in msg[i][vbbType][BRB_ECHO]: 
        if not equivalent BRB_INIT message: 
            clear msg[i]  
    for message in msg[i][vbbType][BRB_READY]: 
        if ¬(at least (n+t)/2 equivalent BRB_ECHO messages ||  
          at least t+1 equivalent BRB_READY messages): 
            clear msg[i] 
             
vbbValidMessagesConsistencyTest(vbbType): 
    initValue = msg[i][vbbType][BRB_INIT] 
    validValue = msg[i][VBB_VALID][BRB_INIT] 
    if initValue == ⊥: 
        clear msg[i]  
    if validValue ≠ ⊥: 
        if ¬(vbbEcho(vbbType) &&  
          validValue == vbbEq(VBB_INIT, initValue)): 
            clear msg[i] 
 
receivedMessagesConsistencyTest(vbbType): 
    for every nodeId in msg[][][]: 
        initValue = msg[nodeId][VBB_INIT][BRB_INIT] 
        if initValue == ⊥ || initValue sender ≠ nodeId: 
            clear msg[nodeId] 
   
        for message in msg[nodeId][vbbType][BRB_ECHO]: 
            if message sender duplicate: 
                clear msg[nodeId] 
         
        for message in msg[nodeId][vbbType][BRB_READY]: 
            if message sender duplicate: 
                clear msg[nodeId] 

 

Figure 13: Consistency test for self-stabilizing MVC 
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3.3.2.4 Self-stabilizing Multivalued Consensus 

On top of the self-stabilizing Byzantine and intrusion-tolerant protocol stack, we have 

the self-stabilizing Multivalued consensus. There is a minor change in the Binary 

Consensus algorithm for the self-stabilizing MVC to work. The binPropose() shown in 

Figure 9 changes and is executed asynchronously instead of blocking until a binary 

value is decided. When a value is decided, it is stored in a variable and can be retrieved 

asynchronously through bcO.binResult(). 

In Figure 14, we see the logic of the self-stabilizing MVC algorithm. Specifically, we 

see the propose() operation in lines 111-112, which invokes the vbbBroadcast() 

operation. In lines 114-128, we have the result() operation, which is meant to be 

invoked asynchronously to the MVC() operation. If there is a decided value, the value 

is returned, otherwise ⊥ or Ψ, depending on the BC result.  

The main algorithm logic MVC() is in lines 130-156, executed in a never-ending for-

loop. At the start of each iteration, in lines 133-135, the consistency tests are executed. 

In lines 137-151, we see all the relevant checks performed on received BRB and VBB 

messages. In lines 153-154, we see the check on VBB messages and the proposal to 

the Binary Consensus object, which is the result of the bp() test found in lines 103-

109. Finally, the node broadcasts all of its messages at the end of each iteration, in 

line 156. 
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// MVC 
bp(): 
    if only one distinct non-Ψ value vbbDelivered && 
      vbbDelivered by at least n-2t nodes: 
        return true 
    else: 
        return false 
         
propose(v): 
    vbbBroadcast(v) 
     
result(): 
    if bcO == ⊥ || bcO.binResult() == ⊥ || 
      msg[i][VBB_INIT][BRB_INIT] == ⊥: 
        return ⊥ 
         
    if bcO.result() == Ψ: 
        return Ψ 
         
    if more than n-t values ∉ {⊥, Ψ} vbbDelivered && ¬bp(): 
        return Ψ 
     
    if there is v vbbDelivered by at least n-2t nodes: 
        return v 
 
    return ⊥ 
     
MVC(): 
    do forever: 
        for each vbbType in vbbTypes: 
            brbMessagesConsistencyTest(vbbType) 
            vbbValidMessagesConsistencyTest(vbbType) 
            receivedMessagesConsistencyTest(vbbType) 
             
            if received BRB_INIT message: 
                add equivalent BRB_ECHO message to 
                msg[i][vbbType][BRB_ECHO] 
                 
            if same message msg[*][vbbType][BRB_ECHO]  
              by at least (n+t)/2 nodes || 
            if same message msg[*][vbbType][BRB_READY]  
              by at least t+1 nodes: 
                add equivalent BRB_ECHO message to 
                msg[i][vbbType][BRB_READY] 
         
        if vbbEcho(messages.VBB_INIT) == true: 
            validValue = vbbEq(messages.VBB_INIT, 
              msg[i][VBB_INIT][BRB_INIT]) 
            brbBroadcast(messages.VBB_VALID, validValue) 
 
        if n-t values ∉ {⊥, Ψ} vbbDelivered: 
            bcO.binPropose(bp()) 
             
        broadcast msg[i] 

 

Figure 14: Self-stabilizing MVC algorithm 
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Chapter 4 

Implementation Details 

4.1 Technical Details 

As mentioned in Chapter 2, for the implementation, we used the Go Programming 

Language for its simplicity and strong concurrency tools, like channels and goroutines, 

which are part of the language syntax. It also helped us be more precise with our 

comparison with other implementations. Specifically, we used the go1.18 version. 

We used the ZeroMQ message-passing library for its high performance on 

asynchronous communication operations for the communication between the 

processes. The ZeroMQ is provided in the most famous languages and almost every 

operating system. We used the equivalent ZeroMQ library in Go, which can be found 

on Github under pebbe/zmq4 v1.2.8 [36]. 

The algorithm was implemented and tested on Visual Studio Code [37] on Linux 

Ubuntu 20.04 64-bit operating system [38]. 

4.2 Project Overview 

To implement the project's algorithm, we created a module named self-stabilizing-

mvc. The module contains five (5) packages, including the main package, where the 

source file with the main function is placed, alongside four (4) other packages 

necessary for executing the algorithm. The utils package contains essential utility 

functions, i.e., for serializing and deserializing and parsers for the program cmd 

arguments and config files. Everything related to ZeroMQ sockets and communication 

among processes is placed in the network package. Next, the messages package 

contains structure implementations and logic related to the BC and MVC messages 

and message passing between internal goroutines. Lastly, every MVC and BC protocol 
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stack protocol is implemented in the consensus package. Every package, alongside 

each source file, contains another unit and automation test file, following the naming 

convention source-file-name_test.go, i.e., the network package contains a source file 

named network-utils.go, and the unit test file network-utils_test.go. The project can be 

found on Github [39]. 

4.3 Implementation challenges 

While studying the algorithm [6], an initial challenge was the existence of some 

ambiguities and typographical errors in the pseudocode and explanations. These 

mismatches led to bugs during implementation, but we could resolve them through 

additional discussions and studying of the relevant algorithms. 

A primary challenge we faced was implementing inter-node communication since it 

should be asynchronous, fast, and not over-engineered. We tackled this issue quickly 

by using the already described ZeroMQ messaging library, which covered our needs 

for this implementation requirement. Thanks to ZeroMQ, the provided sockets, and 

easy-to-use functions, we eventually implemented the network architecture described 

in the next section, which covered all of our needs. 

Another challenge faced when a concurrent algorithm is implemented is that it was not 

straightforward how to debug our implementation in cases of errors. For that, we took 

advantage of the algorithms’ iterative design, and in each iteration, we could print the 

received and broadcasted messages to detect issues. 

There was an added risk because every added functionality was not tested in a real-

life-like environment and only on the local workstation. This could lead to missing bugs 

that would only be visible during experimental analysis. For that, we tried running 

multiple scenarios on at least two conventional laptops with up to 75 nodes. Eventually, 

there were not any issues missed. 

 

And
rea

s N
. C

ha
ral

am
po

us



36 

 

 

 

4.4 Communication structure 

For the communication between the nodes, ZeroMQ sockets were explicitly used. 

Since the studied architecture assumes an asynchronous message-passing system, 

we were flexible with the socket implementation. For this, every node needs two types 

of sockets, one for receiving messages from other nodes and another set of nodes that 

can be used for sending messages asynchronously.  

As we can observe in the resulting algorithm in Figure 14, we only see how messages 

are sent, and there is no code for receiving messages needed for the algorithm. The 

reason is that receiving messages is considered a background task, running on 

another thread that cannot block the algorithm’s execution. For simplicity, the receiving 

operation can even be a blocking operation. When a message is received, it is added 

to the received messages collection. 

On the other side, sending messages is part of the algorithm, meaning that a node 

must be able to send a message to another node and not block until the other node 

receives the message and replies. The property of asynchronously sending messages 

combined with the repeating transmitting absolves the node from caring if the message 

is received from the other side. Hence the only action needed by the node is to 

"publish" its messages in every iteration. 

Considering the above, ideally, the ZeroMQ PUB and SUB sockets should be used for 

the algorithm, but for simplicity, we used the classic REQ and REP sockets with the 

zmq4.DONTWAIT flag of the implemented library [36], creating the same behavior. 

Specifically, each node has a REP socket listening to incoming messages on a 

different thread, and when a message is received, it is added to the received messages 

collection. Moreover, each node has a set of n-1 REQ sockets for communicating with 

other nodes' REP sockets. Messages are sent through each REQ socket, and since 
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the REQ sockets need to perform a receive operation between its sents, a dummy 

receive with the DONTWAIT flag is performed. We can see the complete 

communication structure in Figure 15. 

 

Figure 15: The implemented network architecture 

4.5 Protocols Implementation 

We can now see the implementation of all the protocols using the Go programming 

language, starting from the bottom of the protocols stack. We will see code parts for 

each algorithm and how they match the resulting algorithm. There are enough 

comments on each code shown for those unfamiliar with the Go syntax. 

4.5.1 Messages 

 Starting with the messages, we have two (2) structs used as collections to hold all the 

exchanged MVC and BC messages. BCMessagesRegistry and 

MvcMessagesRegistry, as shown in Figure 16 and Figure 17, respectively, are used 

for holding the messages. Whenever a node is said to send a message, that message 

is added to the equivalent registry. At the end of each for-loop iteration, the current 

node's content in the registry is sent to all nodes. Because there are two types of 
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messages and, for simplicity, only one REP socket per node, messages are wrapped 

in another struct containing their message type, MSG_TYPE_MVC or 

MSG_TYPE_BC, so the receiving node knows how to deal with each message. 

 1 
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// Binary consensus message types 
var BcTypes = []int{BC_EST, BC_AUX} 
const ( 
    BC_EST = iota 
    BC_AUX 
) 
 
// Struct that holds all messages sent and received 
var BcMessagesRegistry struct { 
    // maps nodeId to its messages 
    NodesMessages map[string]*BcRoundMessages  
    BinValues     map[int][]bool // the bin_values collection 
    CurrentNodeId string // the current nodeId 
    // mutex for accessing and modifying the structure 
    Mutex         *sync.Mutex  
} 
 
// struct that maps the BC messages of a node to the round  
// that were sent/received  
type BcRoundMessages struct { 
    RoundMessages map[int]*BcMessages 
} 
 
// all messages of a specific node that could be  
// sent/received during a round 
type BcMessages struct { 
    EstMessages *[]bool 
    AuxMessage *[1]bool 
} 

 

Figure 16: Implementation of the BC Messages struct 
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// VBB Message types 
var ( 
    BrbTypes = []int{BRB_INIT, BRB_ECHO, BRB_READY} 
    VbbTypes = []int{VBB_INIT, VBB_VALID} 
) 
const ( 
    BRB_INIT = iota 
    BRB_ECHO 
    BRB_READY 
) 
const ( 
    VBB_INIT = iota 
    VBB_VALID 
) 
 
// Holds all MVC shared messages (msg[][][]) 
var MvcMessagesRegistry struct { 
    // maps nodeId to its messages 
    NodesMessages map[string]VbbMessages  
    CurrentNodeId string // the current nodeId 
    // mutex for accessing and modifying the structure 
    Mutex         *sync.RWMutex  
} 
 
// Holds all VBB Messages that were BRB Broadcasted 
type VbbMessages struct { 
    // 0: VBB Init Message, 2: VBB Valid Message 
    BrbMessages [2]BrbMessages  
} 
 
// Holds all BRB Messages that were broadcasted 
type BrbMessages struct { 
    // 0: BRB Init Message,1: BRB Echo Messages,2: BRB Ready Messages 
    Messages [3]*[]Message  
} 
 
//message containing sender nodeId and the value that it broadcasted 
type Message struct { 
    NodeId string 
    Value  string 
} 

 

Figure 17: Implementation of the MVC Messages struct 

4.5.2 Asynchronous message-passing system 

Every message object transferred is serialized and deserialized using the 

encoding/gob library [40], so the equivalent SendBytes() and RecvBytes() of ZeroMQ 

sockets are used. There is a goroutine running in the background in which the REP 

socket listens to incoming messages and forwards them to handlers. Handlers extract 

the sender, and messages are added to the equivalent registry. When broadcasting 
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messages, a non-blocking send is called for each REQ socket. Below we see the REP 

and REQ sockets' functionality. 
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// The given REP keeps listening to incoming messages and after 
// checking its type, it forwards to the equivalent handler 
func ReplySocketReader(replySocket *zmq4.Socket) { 
 
    for { 
 
        // blocking - reading for incoming messages 
        msgBytes, _ := replySocket.RecvBytes(0) 
 
        // deserialization of message 
        message, err := utils.ToObject(msgBytes) 
        if err != nil { 
            logger.WarnLogger.Println("Decoding failed", err) 
            continue 
        } 
 
        // message is forwarded to equivalent message handler 
        if message.MsgType == messages.MSG_TYPE_MVC { 
            messages.MVCChannel <- message 
        } else if message.MsgType == messages.MSG_TYPE_BC { 
            messages.BCChannel <- message 
        } 
 
        // dummy non blocking send, so that socket state resets 
        replySocket.Send("", zmq4.DONTWAIT) 
    } 
} 

 

Figure 18: Implementation of the REP socket 
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// Broadcasts the payload to all given sockets 
func BroadcastToAll(remoteSockets []*zmq4.Socket, msg interface{}) { 
 
    // serialization of message 
    payload, err := utils.ToBytes(msg) 
    if err != nil { 
        logger.WarnLogger.Println("Encoding failed", err) 
        return 
    } 
 
    // send to every REQ socket 
    for _, remoteSocket := range remoteSockets { 
 
        // mutex used in case BC broadcasts  
        // at the same time with MVC protocol 
        remoteSocketsMutex.Lock() 
 
        // non-blocking send 
        remoteSocket.SendBytes(payload, zmq4.DONTWAIT) 
         
        // dummy non-blocking receive, to restart socket state 
        remoteSocket.Recv(zmq4.DONTWAIT) 
 
        remoteSocketsMutex.Unlock() 
    } 
} 

 

Figure 19: Implementation of broadcast functionality using REQ sockets 

4.5.3 Byzantine Reliable Broadcast 

The implementation of the BRB operations is shown below. During the brbBroadcast 

operation, the equivalent message is added to the MvcMessagesRegistry. During 

brbDeliver, the messages in the registry are checked, and the corresponding value is 

returned. 
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// brbBroadcasts the given message 
func BrbBroadcast(vbbType int, message Message) { 
 
    validateVbbType(vbbType) 
 
    currentNodeId := ConsensusContext.NodeId 
 
    nodeMessages := MvcMessagesRegistry.NodesMessages[currentNodeId] 
    // the brbMessages of the equivalent VBB messages are fetched 
    brbInitMessages := BrbMessages[vbbType].Messages[BRB_INIT] 
     
    // new brb  
    if len(*brbInitMessages) == 0 { 
        *brbInitMessages = append(*brbInitMessages, message) 
    } else { 
        (*brbInitMessages)[0] = message 
    } 
} 
 
// Checks if vbbType message of nodeId given is brbDelivered. 
// The brbDeliver value is returned else NonDecidedValue "{}" 
func BrbDeliver(vbbType int, nodeId string) string { 
 
    validateVbbType(vbbType) 
 
    // Check if message exists in node given 
    nodesMessages := MvcMessagesRegistry.NodesMessages 
    nodeMessages, exists := nodesMessages[nodeId] 
    if !exists { 
        return NonDecidedValue 
    } 
 
    brbInitMessages := nodeMessages.BrbMessages[vbbType]. 
        Messages[BRB_INIT] 
    if brbInitMessages == nil || len(*brbInitMessages) == 0 { 
        return NonDecidedValue 
    } 
 
    expectedMessage := (*brbInitMessages)[0] 
 
    currentNodeId := ConsensusContext.NodeId 
    minimumReadies := 2*ConsensusContext.MaximumByzantines + 1 
 
    // finds number of readies sent by other nodes, matching the  
    // node's brbInit value 
    actualReadies := 0 
    for checkedNode, checkedNodeMessages := range nodesMessages { 
 
        // ignore current node and the node whom value is checked 
        // for delivery 
        if checkedNode == currentNodeId || checkedNode == nodeId { 
            continue 
        } 
 
        brbReadyMessages := checkedNodeMessages.BrbMessages[vbbType]. 
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            Messages[messages.BRB_READY] 
        // if the checked node has sent a matching READY message, 
        // the counter of READY sent is increased 
        if brbReadyMessages != nil && utils.SliceContains( 
            *brbReadyMessages, 
            expectedMessage) { 
             
                actualReadies++ 
        } 
    } 
 
    // if enough READY received, the value is brbDelivered 
    if actualReadies >= minimumReadies { 
        return expectedMessage.Value 
    } else { 
        return NonDecidedValue 
    } 
} 

 

Figure 20: The implemented BRB-broadcast algorithm 

4.5.4 Validated Byzantine Broadcast 

Next, we see the implementation of VBB operations, which depends on the BRB 

operations described in the previous section. 
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// vbbBroadcasts the given value 
func VbbBroadcast(value string) { 
 
    currentNodeId := ConsensusContext.NodeId 
 
    message := Message{ 
        NodeId: currentNodeId, 
        Value:  value, 
    } 
 
    BrbBroadcast(VBB_INIT, message) 
} 
// Checks if the message of given node is vbbDelivered. 
// If validated, then the message sent from the node is returned. 
// If not yet delivered, then the NonDecidedValue "{}" is returned. 
// If the message is invalid, then ErrorValuePsi "#PSI" is returned. 
func VbbDeliver(nodeId string) string { 
 
    nodeMessages := MvcMessagesRegistry.NodesMessages[nodeId] 
    vbbInitMessages := nodeMessages.BrbMessages[VBB_INIT]. 
        Messages[BRB_INIT] 
 
    if vbbInitMessages == nil { 
        return ErrorValuePsi 
    } 
 
    // checks if both VBB_INIT and VBB_VALID are brbDelivered 
    initDeliveredValue := BrbDeliver(VBB_INIT, nodeId) 
    validDeliveredValue := BrbDeliver(VBB_VALID, nodeId) 
 
    if initDeliveredValue == NonDecidedValue ||  
        validDeliveredValue == NonDecidedValue {  
            return NonDecidedValue 
    } 
 
    if validDeliveredValue == "true" &&  
        vbbEq(VBB_INIT, initDeliveredValue) { 
            return initDeliveredValue 
    } 
 
    if validDeliveredValue == "false" &&  
        vbbDiff(VBB_INIT, initDeliveredValue) { 
            return ErrorValuePsi 
    } 
 
    if vbbEcho(VBB_VALID) { 
        return ErrorValuePsi 
    } 
 
    return NonDecidedValue 
} 

 

Figure 21: The implemented VBB-broadcast algorithm 
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4.5.5 Randomized Binary Consensus 

Our implementation of Binary Consensus is a transformation of the existing solution 

provided by Petrou [7] to fit our asynchronous message-passing. Flow is similar to 

MVC. Each round runs in a for-loop until progressing to the next round or deciding on 

a value. The BcMessagesRegistry is filled during Binary-value broadcast, and in 

every iteration, the messages are broadcasted to all nodes. This module is not self-

stabilizing but does not affect our MVC implementation, as they are executed in parallel 

and independently. BVB and BC implementations are shown in Figure 8 and Figure 9. 
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// bvbBroadcasts the value of given type for the round provided  
func BvbBroadcast(round int, value bool, bcType int) { 
 
    broadcastBinaryValue(round, value, bcType) 
 
    checkReceivedEstValues(round) 
} 
 
// Check received EST values for rebroadcasting or  
// adding to bin_values 
func checkReceivedEstValues(round int) { 
 
    valuesCounter := GetBcValuesCounterForMsgType(round, BC_EST) 
    maximumByzantines := ConsensusContext.MaximumByzantines 
 
    for value, occurrences := range valuesCounter { 
 
        if occurrences >= maximumByzantines+1 { 
            broadcastBinaryValue(round, value, BC_EST) 
        } 
 
        if occurrences >= 2*maximumByzantines+1 && 
            !utils.SliceContains( 
                BcMessagesRegistry.BinValues[round], 
                value) { 
 
            BcMessagesRegistry.BinValues[round] = append( 
                BcMessagesRegistry.BinValues[round], 
                value) 
        } 
    } 
} 

 

Figure 22: The implemented BVB-broadcast algorithm 
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//implementation of the binPropose operation of Binary Consensus 
func BcPropose(value bool) { 
    // initial estimation 
    estimation := value 
    for round := 1; ; round++ { 
        for { 
            // BC PHASE 1 
            BcMessagesRegistry.Mutex.Lock() 
            BvbBroadcast(round, estimation, BC_EST) 
            // sends all node messages to other nodes 
            broadcastBcMessages() 
 
            // can't continue to second phase, till there are 
            // bin_values 
            if len(BcMessagesRegistry.BinValues[round]) <= 0 { 
                BcMessagesRegistry.Mutex.Unlock() 
                continue 
            } 
 
            // BC PHASE 2 
            auxValue := BcMessagesRegistry.BinValues[round][0] 
            broadcastBinaryValue(round, auxValue, BC_AUX) 
            auxValues, totalAuxValues := getAuxValues(round) 
 
            BcMessagesRegistry.Mutex.Unlock() 
 
            totalNodes := ConsensusContext.NumberOfNodes 
            byzantines := ConsensusContext.MaximumByzantines 
 
            if totalAuxValues < totalNodes-byzantines { 
                continue 
            } 
            // BC PHASE 3 
            coinValue := flipCommonCoin(round) 
            if len(auxValues) == 2 { 
                estimation = coinValue 
            } else if auxValues[0] != coinValue { 
                estimation = auxValues[0] 
            } else { 
                decide(auxValues[0]) 
            } 
            break 
        } 
    } 
} 
 
// Returns the decided value or NonDecidedValue "{}" 
func BcResult() string { 
    bcMutex.Lock() 
    defer bcMutex.Unlock() 
    result := decidedValue 
    return result 
} 

 

Figure 23: The implemented BC algorithm 
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4.5.6 Multivalued Byzantine Consensus 

Finally, Multi-valued Byzantine Consensus is built above all of the previous protocols. 

Below we can see the propose() and result() operations of MVC and the main core of 

the whole algorithm. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

// Implementation of propose() operation 
func MvcPropose(value string) { 
 
    VbbBroadcast(value) 
} 
 
// Implemenation of Self-stabilizing, Byzantine-no-intrusion-tolerant 
// Multivalued Consensus 
func MultiValueConsensus(value string) { 
 
    for { 
 
        MvcMessagesRegistry.Mutex.Lock() 
 
        // perform consistency tests and check for forwarding 
        // messages for each VBB message type 
        for _, vbbType := range VbbTypes { 
 
            consistencyTestBrbMessages(vbbType) 
            consistencyTestVbbValidMessages(vbbType) 
            consistencyTestReceivedMessages(vbbType) 
 
            // checks if there are new BRB-INIT messages, in order 
            // to send equivalent echo messages 
            checkForSendingEcho(vbbType) 
            // checks if there are enough BRB-ECHO messages, in order 
            // to send equivalent READY messages 
            checkForSendingReady(vbbType) 
        } 
 
        // re-proposing in case proposed value erased during 
        // consistency tests 
        MvcPropose(value) 
 
        // checks if there are enough VBB-INIT that were brbDelivered, 
        // in order to send first VBB-VALID message 
        checkForBroadcastingVbbValid() 
 
        // checks if there are enough VBB-delivered messages, in order 
        // to propose to BC object 
        checkForBcProposing() 
 
        // broadcast all MVC messages of current node 
        broadcastCurrentNodeMvcMessages() 
        MvcMessagesRegistry.Mutex.Unlock() 
    } 
} 

And
rea

s N
. C

ha
ral

am
po

us



48 

 

 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

 
// Get the MVC decided value. 
// If no value decided yet, NonDecided "{}" is returned. 
// If consensus could not be reached, ErrorValue Psi "#PSI" 
// is returned. 
func MvcResult() string { 
 
    MvcMessagesRegistry.Mutex.RLock() 
    defer MvcMessagesRegistry.Mutex.RUnlock() 
 
    currentNodeId := ConsensusContext.NodeId 
    currentNodeMessages := MvcMessagesRegistry. 
                            NodesMessages[currentNodeId] 
    initMessage := currentNodeMessages.BrbMessages[VBB_INIT]. 
                    Messages[BRB_INIT] 
 
    if !isBcObjectActive()  
        || BcResult() == NonDecidedValue  
        || initMessage == nil { 
            return NonDecidedValue 
    } 
 
    if BcResult() != "true" { 
        return ErrorValuePsi 
    } 
 
    numberOfNodes := ConsensusContext.NumberOfNodes 
    maximumByzantines := ConsensusContext.MaximumByzantines 
 
    vbbDeliveredValues, vbbDeliveredCounter := getVbbDeliveredValues() 
    if vbbDeliveredCounter >= numberOfNodes-maximumByzantines &&  
        !bp() { 
            return ErrorValuePsi 
    } 
 
    minimumValueOccurrences := numberOfNodes - 2*maximumByzantines 
    for value, occurrences := range vbbDeliveredValues { 
 
        if occurrences >= minimumValueOccurrences { 
            return value 
        } 
    } 
 
    return NonDecidedValue 
} 

 

Figure 24: The implemented MVC algorithm 

4.6 Execution & Configuration Details 

The project can be built with the command: 

 
$ go build 
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An executable named self-stabilizing-mvc is created, which starts a node when 

executed. Two main execution parameters are needed for the node to start; a port 

number to where the REP socket will bind and a path to a configuration file 

containing the hostname and port of each other node to be reached with the REQ 

sockets. There are another two execution arguments, one for starting a Byzantine node 

following a specific scenario and one for simulating a transient error inside a node. The 

parameters and configuration details are analyzed next. 

4.6.1 Port and Remote Nodes configuration 

A configuration file is used for each node to know its remote nodes. The file contains 

in each line a remote node, in the syntax of <protocol>://<host>:<port>. Figure 25 

shows an example of a config file of nodes that connect to five (5) remote hosts.  

# configuration.conf file 
 
http://node1:1234 
http://node2:1234 
http://node3:1234 
http://node4:1234 
http://node5:1234 

Figure 25: Example of a network configuration file 

The following needed property is the node's port to listen for receiving messages from 

remote nodes. To start a node, the following command is executed: 

 

The above will start a node listening for incoming messages to port 8080 and send 

messages to remote nodes specified in the configuration.conf file. 

4.6.2 Byzantine nodes and Transient Errors 

The last two execution arguments can be used to start byzantine nodes or simulate 

transient errors. A transient error can be simulated by giving the flag –t, and Byzantine 

nodes can apply one of the attack scenarios analyzed in Chapter 6 by giving the flag 

–b and specifying one of the following values during execution: 

$ ./self-stabilizing-mvc –p 8080 –f configuration.conf 
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Scenario Flag value 

Failure-free Scenario 0 

Byzantines Idle Attack Scenario 1 

Byzantines Half & Half Attack Scenario 2 

Byzantines Random Messages Attack Scenario 3 

 

The following command will start a byzantine node receiving messages on port 8080, 

and its remote nodes are found in file configuration.conf. The node will apply the 

Byzantines Half & Half Attack scenario. 

 

On the other hand, the following command will start a non-Byzantine node receiving 

messages on port 8080, and its remote nodes are found in file configuration.conf. Also, 

a transient internal error will happen during its execution. 

 

 

$ ./self-stabilizing-mvc –p 8080 –f configuration.conf –b 2 

$ ./self-stabilizing-mvc –p 8080 –f configuration.conf –t 
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Chapter 5 

Self-stabilization and Byzantine Fault 

Tolerance Scenarios and Validation 

5.1 Introduction 

In this chapter, we will look at different use cases handled by the algorithm to reach 

consensus eventually. We tested every case during implementation and provided 

automation tests that simulated the bare minimum of each case to assure validity and 

easy repetition of scenarios. Therefore, for each scenario presented, we show the 

equivalent automation test, in which one node performs MVC, and we simulate the rest 

of the nodes by inserting messages in the MvcMessagesRegistry. In Section 5.2, we 

see some scenarios in the presence of byzantine attacks, and in Section 5.3, we look 

at consensus scenarios in different cases where transient errors happen. Finally, in 

Section 5.4, we see scenarios where consensus is reached even when transient errors 

and byzantine faults happen simultaneously. 

5.2 Byzantine Fault Tolerance Scenarios 

Byzantine Fault Tolerance Scenarios contain scenarios where Byzantine nodes act 

maliciously, sabotaging during MVC in order the system does not come to consensus. 

Our tests consider that Byzantine nodes interfere only with the messages they send, 

meaning that they can either send invalid messages, omit them, or even not respond. 

5.2.1 Byzantine node that is Idle or proposes an invalid value 

In the first case, we test that consensus is reached if there are Byzantine nodes as 

long as the number of Byzantine nodes is t < n/3. Here, we have six nodes, one being 
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Byzantine, and since 1 < 6/3(=2), consensus is reached without a problem. Every 

correct node proposes the value 42. 
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func TestMultiValueConsensusWithExpectedFaultyWhichIsIdle (t 
*testing.T) { 
 
    // sets up testing environment with total number of nodes 
    // and attack scenario that should be performed by current node 
    setupTestingConsensusContext(t, 6, NO_ATTACK) 
    proposedValue := "42" 
 
    sendMvcMessagesOf4CorrectNodes() 
 
    go MultiValueConsensus(proposedValue) 
 
    sendBcMessagesOf4CorrectNodes() 
 
    // keep getting mvc result until consensus is reached 
    var mvcResult string 
    for { 
 
        mvcResult = MvcResult() 
        if mvcResult != NonDecidedValue { 
            break 
        } 
    } 
 
    // check that the expected value is decided 
    assert.Equal(t, mvcResult, proposedValue) 
} 

 

 

Similarly, consensus is still reached if the Byzantine node sends a random invalid 

value. In this case, the Byzantine node proposes the value 7. 
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func TestMultiValueConsensusWithExpectedFaultyProposingInvalidValue(t 
*testing.T) { 
 
    // sets up testing environment with total number of nodes 
    // and attack scenario that should be performed by current node 
    setupTestingConsensusContext(t, 6, NO_ATTACK) 
    proposedValue := "42" 
 
    sendMvcMessagesOf4CorrectAndOneFaultyNode() 
 
    go MultiValueConsensus(proposedValue) 
 
    sendBcMessagesOf4CorrectAndOneFaultyNode() 
 
    // keep getting mvc result until consensus is reached 
    var mvcResult string 
    for { 
 
        mvcResult = MvcResult() 
        if mvcResult != NonDecidedValue { 
            break 
        } 
    } 
 
    // check that the expected value is decided 
    assert.Equal(t, mvcResult, proposedValue) 
} 

 

 

5.2.2 Byzantine node sending invalid ECHO 

The next test is similar to the previous, but instead of having a Byzantine node that 

proposes an invalid value, now the Byzantine node sends invalid ECHO messages. 

Specifically, the Byzantine node with ID 6 will send an ECHO message saying that the 

node with ID 2 proposed the value 7. Again consensus is reached on value 42. 
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func TestMultiValueConsensusWithExpectedFaultyWhichSendsInvalidEcho(t 
*testing.T) { 
 
    // sets up testing environment with total number of nodes 
    // and attack scenario that should be performed by current node 
    setupTestingConsensusContext(t, 6, NO_ATTACK) 
    proposedValue := "42" 
 
    sendMvcMessagesOf4CorrectAndOneFaultyNode() 
 
    // invalid echo message, node 6 says that node 2 sent BRB_INIT  
    // with value 7 
    addMvcMessage("6", VBB_INIT, BRB_ECHO, "2", "7") 
 
    go MultiValueConsensus(proposedValue) 
 
    sendBcMessagesOf4CorrectAndOneFaultyNode() 
 
    // keep getting mvc result until consensus is reached 
    var mvcResult string 
    for { 
 
        mvcResult = MvcResult() 
        if mvcResult != NonDecidedValue { 
            break 
        } 
    } 
 
    // check that the expected value is decided 
    assert.Equal(t, mvcResult, proposedValue) 
} 

 

 

5.2.3 No Consensus with more Byzantines than expected 

In this last test, we verify that consensus cannot be reached if the number of Byzantine 

nodes exceeds the third of all nodes. We specify an environment of seven nodes with 

four idles that do not send or reply to any messages, where 4 > 7/3. Therefore, 

consensus is never reached. 
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func TestMultiValueConsensusWithMoreFaultyThanExpected(t *testing.T) { 
 
    // sets up testing environment with total number of nodes 
    // and attack scenario that should be performed by current node 
    setupTestingConsensusContext(t, 7, NO_ATTACK) 
    proposedValue := "42" 
 
    // only 2 + 1 correct, 4 missing considered faulty 
    sendMvcMessagesOf2CorrectNodes() 
 
    go MultiValueConsensus(proposedValue) 
 
    // for 5 seconds, every 100ms we get the result and we verify 
    // that every time consensus is not reached 
    for i := 1; i < 50; i++ { 
 
        time.Sleep(100 * time.Millisecond) 
        assert.Equal(t, NonDecidedValue, MvcResult()) 
    } 
} 

 

 

5.3 Self-stabilization on transient errors 

Of course, one main property we tested and assured is self-stabilization in case of 

transient errors. In these automation tests, we inject transient errors by modifying the 

messages that a node holds. These errors should not be confused with the Byzantine 

attacks, meaning that alternations in messages happen internally and can even 

alternate messages sent by a correct node. Below we present three examples of such 

errors and how the system self-stabilizes after each one. The cases are many more, 

but they are identified and handled similarly. 

5.3.1 Transient error on the proposed value 

As part of this scenario, after the node made its value proposal to MVC, we overwrite 

that proposal with an invalid value. We assume three nodes in this setup, and by 

injecting the error, consensus should not be reached without self-stabilization since 

one node will "act" as faulty. This error is handled by proposing the correct value for 

every iteration in the for-loop. In the end, we see that consensus is reached. 
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func TestMultiValueConsensusWithTransientErrorOnInit(t *testing.T) { 
 
    setupTestingConsensusContext(t, 3, NO_ATTACK) 
    proposedValue := "42" 
    currentNodeId := ConsensusContext.NodeId 
 
    sendMvcMessagesOf2CorrectNodes() 
 
    go MultiValueConsensus(proposedValue) 
 
    // transient error - overwrite init message 
    addMvcMessage(currentNodeId,VBB_INIT,  
        BRB_INIT, currentNodeId, "1231234") 
 
    sendBcMessagesOf2CorrectNodes() 
 
    // keep getting mvc result until consensus is reached 
    var mvcResult string 
    for { 
 
        mvcResult = MvcResult() 
        if mvcResult != NonDecidedValue { 
            break 
        } 
    } 
 
    // check that the expected value is decided 
    assert.Equal(t, mvcResult, proposedValue) 
} 

 

 

5.3.2 Transient Error on ECHO message 

Here we inject an invalid echo message, stating that nodes 2 and 3 proposed a 

different value. Because of the consistency tests, the ECHO messages are not 

matching the INIT messages. Therefore by rule, all the current node's messages are 

deleted, starting the mvcPropose from the beginning. Similarly to the previous test, we 

have three nodes in total, and the current node is supposed to act faulty. We can verify 

again that consensus has been reached. 
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func TestMultiValueConsensusWithTransientErrorOnEcho(t *testing.T) { 
 
    setupTestingConsensusContext(t, 3, NO_ATTACK) 
    proposedValue := "42" 
    currentNodeId := ConsensusContext.NodeId 
 
    sendMvcMessagesOf2CorrectNodes() 
 
    // transient error - inject invalid echo messages 
    addMvcMessage(currentNodeId, VBB_INIT,BRB_ECHO, "2", "1231234") 
    addMvcMessage(currentNodeId, VBB_INIT,BRB_ECHO, "3", "1231234") 
 
    go MultiValueConsensus(proposedValue) 
 
    sendBcMessagesOf2CorrectNodes() 
 
    var mvcResult string 
    for { 
 
        mvcResult = MvcResult() 
        if mvcResult != NonDecidedValue { 
            break 
        } 
    } 
 
    // check that the expected value is decided 
    assert.Equal(t, mvcResult, proposedValue) 
} 

 

 

5.3.3 Transient error on validity check 

We showed that during Validated Byzantine Broadcast, when enough values are 

brbDelivered, a validity test takes place, and the result is proposed to the Binary 

Consensus object. This test shows how the system recovers if the validity check results 

are corrupted. 
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func TestMultiValueConsensusTransientErrorOnValidInit(t *testing.T) { 
 
    setupTestingConsensusContext(t, 3, NO_ATTACK) 
    proposedValue := "42" 
    currentNodeId := ConsensusContext.NodeId 
 
    sendMvcMessagesOf2CorrectNodes() 
 
    addMvcMessage(currentNodeId, VBB_INIT, BRB_INIT, 
         currentNodeId, proposedValue) 
 
    // transient error - inject invalid valid-init message 
    addMvcMessage(currentNodeId, VBB_VALID, BRB_INIT, 
        currentNodeId, "false") 
 
    go MultiValueConsensus(proposedValue) 
 
    sendBcMessagesOf2CorrectNodes() 
 
    var mvcResult string 
    for { 
 
        mvcResult = MvcResult() 
        if mvcResult != NonDecidedValue { 
            break 
        } 
    } 
     
    // check that the expected value is decided 
    assert.Equal(t, mvcResult, proposedValue) 
} 

 

5.4 Combination of Byzantine Attacks and transient errors 

After looking at the two group scenarios above, it is interesting to evaluate if the 

algorithm can outstand and recover when transient errors and Byzantine attacks 

happen simultaneously. We repeat that if a transient error occurs in a node that is not 

self-stabilizing, its behavior can combine with existing Byzantine nodes and, in 

conclusion, not allow the system to reach consensus. Below we show some basic 

combination scenarios. 

5.4.1 Byzantine node that is idle + Transient error on the proposed value  

In the first combination test, we combine the Byzantine Idle attack shown in Section 

5.2.1 with the transient error on the INIT message case. We will see that, in this case, 

consensus is still reached. 
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func TestMultiValueConsensusWithByzantineIdleAndTransientErrorOnInit(t 
*testing.T) { 
 
    // sets up testing environment with total number of nodes 
    // and attack scenario that should be performed by current node 
    setupTestingConsensusContext(t, 6, NO_ATTACK) 
    proposedValue := "42" 
 
    sendMvcMessagesOf4CorrectNodes() 
 
    go MultiValueConsensus(proposedValue) 
 
    // transient error - inject invalid init message 
    addMvcMessage(currentNodeId, VBB_INIT, BRB_INIT, 
      currentNodeId, "1231234") 
 
    sendBcMessagesOf4CorrectNodes() 
 
    // keep getting mvc result until consensus is reached 
    var mvcResult string 
    for { 
 
        mvcResult = MvcResult() 
        if mvcResult != NonDecidedValue { 
            break 
        } 
    } 
 
    // check that the expected value is decided 
    assert.Equal(t, mvcResult, proposedValue) 
} 

 

 

5.4.2 Byzantine node with invalid proposal + Transient Error on the proposed value 

Another combination of failures that, in a different case, would not let the system reach 

consensus would be a Byzantine node proposing an invalid value. By chance, a 

transient error happens in a correct node that makes its proposed value the same as 

the Byzantine one. If we assumed that we reached the maximum number of Byzantines 

allowed in the system to work correctly, we could come to a state where we have 

another one that agrees with the Byzantines. We test this combination in the following 

test, and we can again see that consensus has been reached. Only one Byzantine 

node is tolerable, proposing the value 7, and at the same time, a transient error 

changes a correct node's proposal to 7 as well. 
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func TestMultiValueConsensusWithByzantineInvalidValueAndTransient 
ErrorOnINIT(t *testing.T) { 
 
    // sets up testing environment with total number of nodes 
    // and attack scenario that should be performed by current node 
    setupTestingConsensusContext(t, 6, NO_ATTACK) 
    proposedValue := "42" 
 
    sendMvcMessagesOf4CorrectAndOneFaultyNode() 
 
    go MultiValueConsensus(proposedValue) 
 
    // transient error - overwrite init message 
    addMvcMessage(currentNodeId, VBB_INIT,  
        BRB_INIT, currentNodeId, "7") 
 
    sendBcMessagesOf4CorrectAndOneFaultyNode() 
 
    // keep getting mvc result until consensus is reached 
    var mvcResult string 
    for { 
 
        mvcResult = MvcResult() 
        if mvcResult != NonDecidedValue { 
            break 
        } 
    } 
 
    // check that the expected value is decided 
    assert.Equal(t, mvcResult, proposedValue) 
} 

 

5.5 Conclusion 

In this chapter, we presented some of our studied scenarios in which the algorithm is 

designed to perform without issues. We saw that even in the combination of Byzantine 

Attacks and Transient errors, the system could recover and reach consensus as long 

as the code and system variables were intact, and the number of Byzantine nodes was 

less than a third of the total number of nodes. To our knowledge, no combination of 

scenarios like the above could prevent the system from working as it was designed, 

always considering the type of allowed errors and attacks and the minimum 

requirements. 
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Chapter 6 

Experimental Analysis 

6.1 Experimental Environment 

We performed experiments on a local conventional workstation for the experimental 

analysis and then deployed the algorithm on a cluster reserved on Cloudlab [33]. The 

goal was to first validate the algorithm towards the theoretical assumptions on the local 

workstation and then move it to a distributed-like system for more precise and scalable 

measurements. In both environments, we started multiple MVC nodes per machine, 

where each node printed the decided value, the time until consensus was reached, 

and message size and count complexities. Based on these, we could calculate results 

on the three following properties. 

1. Operation latency: The average time needed by the system to reach 

consensus. Specifically, it is the time difference between the start of nodes' 

execution and the exact time a value is decided. 

2. Message Complexity: The average number of messages broadcasted by the 

nodes until consensus is reached. 

3. Bit Complexity: The average payload size sent by nodes until consensus is 

reached. 

Regarding Message and Bit Complexities, by recalling Section 3.3.2.1, nodes group 

all their messages and send them as one big message. Moreover, the same message 

can be repeatedly sent hundreds of times without receiving any proof of delivery. 

Based on the above, Message Complexity and Bit Complexity count the number and 

the size of the big messages, e.g., if 2 big messages are sent containing 16 algorithms 

(VBB, BRB) messages, then message complexity is 2. 
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Finally, we will observe how the three properties described above fluctuate while 

increasing the number of total nodes to verify the algorithm's scalability. 

6.1.1 Local Workstation Environment 

At first, we executed various experiments on an ordinary personal computer, with 

varying nodes and the occurrence of a transient error, to verify the algorithm’s validity 

and theoretical specifications. The local machine contains the specifications shown in 

Figure 26. 

Operating 
System RAM CPU(s) Thread(s) per 

core 
Core(s) per 

socket Socket(s) CPU Model name 

Linux Ubuntu 
20.04 LTS 

x86_64 

DDR4 
8GB 8 2 4 1 Intel(R) Core(TM) 

i7-7700HQ CPU 

Figure 26: Local workstation environment specifications 

6.1.2 Cloudlab Environment 

After local experiments, we were granted access to the Cloudlab testbed platform to 

emulate distributed systems' executions. There are many machine setups and 

configurations, but we used ten machines of the type xl170 [41] and started multiple 

nodes per machine. The cluster machines' specifications are shown in Figure 27. 
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Node 
ID Operating System RAM CPU(s) Thread(s) per 

core 
Core(s) per 

socket Socket(s) CPU Model name 

0 Linux Ubuntu 18.04 
LTS x86_64 

DDR4 
8GB 20 2 10 2 

Intel(R) Xeon(R) 
CPU E5-2640 v4 

@ 2.40GHz 

1 Linux Ubuntu 18.04 
LTS x86_64 

DDR4 
8GB 20 2 10 2 

Intel(R) Xeon(R) 
CPU E5-2640 v4 

@ 2.40GHz 

3 Linux Ubuntu 18.04 
LTS x86_64 

DDR4 
8GB 20 2 10 2 

Intel(R) Xeon(R) 
CPU E5-2640 v4 

@ 2.40GHz 

4 Linux Ubuntu 18.04 
LTS x86_64 

DDR4 
8GB 20 2 10 2 

Intel(R) Xeon(R) 
CPU E5-2640 v4 

@ 2.40GHz 

5 Linux Ubuntu 18.04 
LTS x86_64 

DDR4 
8GB 20 2 10 2 

Intel(R) Xeon(R) 
CPU E5-2640 v4 

@ 2.40GHz 

6 Linux Ubuntu 18.04 
LTS x86_64 

DDR4 
8GB 20 2 10 2 

Intel(R) Xeon(R) 
CPU E5-2640 v4 

@ 2.40GHz 

7 Linux Ubuntu 18.04 
LTS x86_64 

DDR4 
8GB 20 2 10 2 

Intel(R) Xeon(R) 
CPU E5-2640 v4 

@ 2.40GHz 

8 Linux Ubuntu 18.04 
LTS x86_64 

DDR4 
8GB 20 2 10 2 

Intel(R) Xeon(R) 
CPU E5-2640 v4 

@ 2.40GHz 

9 Linux Ubuntu 18.04 
LTS x86_64 

DDR4 
8GB 20 2 10 2 

Intel(R) Xeon(R) 
CPU E5-2640 v4 

@ 2.40GHz 
Figure 27: The Cloudlab setup specifications 

6.2 Experiment Scenarios 

We executed various scenarios that combined Byzantine nodes' presence and 

transient errors.  

As a transient error, for simplicity, we delete the INIT proposed message of the node 

before proposing to Binary Consensus, leading to the deletion of all messages in the 

node due to consistency tests. The maximum tolerant number of Byzantine nodes is 

used in the scenarios where Byzantine nodes are used. 

In the following sub-sections, we describe the different Attack Scenarios that Byzantine 

nodes perform. 

6.2.1 Failure-free Scenario 

The first scenario is the basic scenario where there are no Byzantine nodes or 

arbitrary-transient faults. In this scenario, every node is non-faulty and acts as 
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expected, with no probability of arbitrary-transient faults. The results of this scenario 

will be used as the reference point for the rest of the scenarios. 

6.2.2 Byzantines Idle Scenario 

During this scenario, every Byzantine node stays idle, meaning it does not take part in 

reaching a consensus. Simply, it does not send or reply to any of the messages. The 

Byzantine nodes can still keep executing and receiving messages, but they give no 

signs of execution to the rest of the nodes. This basic scenario is crucial, as it emulates 

crashed/refusing to work at all nodes in a system that still manages to perform. 

6.2.3 Byzantines Half & Half Attack Scenario  

The Half & Half Attack Scenario is the first of the two scenarios where Byzantines try 

to sabotage consensus by sending invalid messages. In this scenario, Byzantine 

nodes reply and broadcast all messages, but they send invalid messages to half of the 

nodes. Specifically, when a message (BRB or VBB) is sent, the correct messages are 

sent to n/2, and a set of messages with invalid/modified values is sent to the other n/2. 

This scenario helps us see the overhead added in the presence of Byzantine nodes, 

although consensus is still reached. 

6.2.4 Byzantines Random Messages Attack Scenario 

Similar to the previous attack scenario, in this scenario, Byzantine nodes try to 

sabotage consensus by sending invalid messages with random values at any time. In 

plain, a Byzantine node, before sending a message, modifies its value with a randomly 

generated value and then sends it. This attack also adds overhead, and in specific 

cases, it is even more significant than the Half & Half attack since Byzantine nodes 

sent invalid values to all other nodes. This attack is a good scenario put to the test to 

see the results when Byzantine nodes send nothing coordinated but invalid random 

values. 
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6.3 Results and Theoretical Analysis Evaluation 

In this section, we are first going to look at the theoretical analysis from the paper [6], 

then analyze each setup and the executed scenario alongside their results and finally 

compare them to the theoretical analysis. 

6.3.1 Theoretical Specifications and Performance 

First, we evaluate whether the algorithm has optimal resilience by assuming t < n/3, 

where t is the number of faulty nodes and n is the number of total nodes. This 

assumption is already verified in the scenarios we covered in Chapter 5, where we saw 

that consensus is reached when the number of faulty nodes is not more than a third of 

the total of nodes. Here, we will verify that the same happens with more nodes in real-

life-like simulations. Additionally, we will execute scenarios where arbitrary-transient 

errors are injected in one node and how this affects the overall system. This 

specification was again covered in Chapter 5, but we will verify it through our 

experiments. Lastly, we will evaluate if the self-stabilizing algorithm performs similarly 

to the non-self-stabilizing variation, with only a small expected overhead. 

6.3.2 Scenarios, setups, and results 

On the local workstation presented in Section 6.1.1, we run experiments to calculate 

the operation latency, message complexity, and bit complexity over the increasing 

number of total nodes n, using Byzantine Attacks and injecting transient errors. We 

executed scenarios using 3 to 15 nodes to validate the algorithm's behavior in basic 

setups. 

On the Cloudlab cluster, we executed specific setups to observe the algorithm's 

performance over scalable systems. Precisely, we executed the Failure-free Scenario 

using an increasing number of nodes per machine, starting from 1 node per machine 

(total: 10 nodes) to 15 nodes per machine (total:150 nodes). We then kept the number 

of nodes per machine stable, precisely 10 per machine (total: 100 nodes), and 

executed scenarios combining Byzantine nodes and transient errors. 
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Finally, again on Cloudlab, we executed more basic scenarios with 3 up to 20 nodes, 

with the Byzantine Idle and Byzantine Half & Half Attacks, to compare the studied 

algorithm to the non-self-stabilizing version by Mostéfaoui et al. [3], using the 

implementation by Petrou [7].  

6.3.2.1 Operation Latency 

In the figures in this section, we look at how operation latency changes on scenarios 

executed in the two environments and setups explained above. 

 

 

Figure 28: Operation Latency (in seconds) on Byzantine Attack Scenarios on Local Workstation 
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Figure 29: Operation Latency (in seconds) on Byzantine Attack Scenarios, combined with transient 

errors, on Local Workstation 

 

Figure 30: Operation Latency (in seconds) on scaling number of nodes per machine on Cloudlab 

Cluster 
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Figure 31: Operation Latency with Byzantine Attacks and Transient Errors, on Cloudlab Cluster (10 

nodes per machine) 

Based on the life-like simulation results above, combined with the test cases in Chapter 

5, we can verify that the algorithm is resilient for up to t < n/3 Byzantine nodes. This 

conclusion comes from using the maximum tolerant number of Byzantine nodes in 

every Byzantine Attack Scenario, and the consensus was still reached. Also, we see 

that the algorithm is self-stabilizing as it reaches consensus in the scenarios where 

transient faults are injected, even when there are maximum tolerant Byzantine nodes 

in the system. 

In terms of operation latency, initially, we can see an increase in the time needed to 

reach consensus when the transient fault is injected, especially in the presence of 

Byzantine nodes. The results indicate that cases of transient errors are detected 

instantly, and additional “graceful” time is needed to reach a consensus. 

Additionally, we can observe how needed time is changed in different Byzantine Attack 

Scenarios. Starting with the Byzantines Idle Attack Scenario, we notice a minor 

increase in the operation latency compared to the Failure-free Scenario because, in 

the latter, each node had more available nodes to receive messages from in order to 

proceed. We see later in scalable scenarios that this attack decreases the time needed 
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in cases where the system is flooded with resources and communication overhead 

since this will decrease it. In the local workstation setup, we also see our algorithm 

implementation handles Half&Half and Random Message attacks with similar 

drawbacks. 

The Cloudlab cluster results show that the algorithm is scalable and works for many 

nodes, as long as the number of Byzantine nodes is not greater than a third of the total 

number of nodes. We can again see in every scenario the additional small overhead 

added when a transient error occurs. It is also noticeable, as already said, how the Idle 

Byzantine Attack Scenario decreases the operation latency in more significant node 

numbers since there is less resource utilization. Similar to the local workstation results, 

the Half & Half and Random Attacks have similar drawbacks. 

6.3.2.2 Messages Complexity 

In this section, we are evaluating the message complexity of the algorithm. As already 

described, the message complexity shows the average number of messages sent per 

node. Similar to the section above, the following figures show executions on both the 

local workstation and the Cloudlab cluster. 

 

Figure 32: Message Complexity on Byzantine Attack Scenarios on Local Workstation 
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Figure 33: Message Complexity on Byzantine Attack Scenarios, combined with transient errors, on 

Local Workstation 

 

Figure 34: Message Complexity on scaling number of nodes per machine on Cloudlab Cluster 
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Figure 35: Message Complexity with Byzantine Attacks and Transient Errors, on Cloudlab Cluster 

(10 nodes per machine) 
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6.3.2.3 Bit Complexity 

Next, we take a look at the bit complexity, which shows the average payload size sent 

per node. Since Bit Complexity and Message Complexity have similar behaviors, we 

can see how Byzantine attacks also increase Bit Complexity.  

 

Figure 36: Bit complexity (in MB) on Byzantine Attack Scenarios on Local Workstation 

 

Figure 37: Bit Complexity (in MB) on Byzantine Attack Scenarios, combined with transient errors, on 

Local Workstation 
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Figure 38: Bit Complexity (in MB) on scaling number of nodes per machine on Cloudlab Cluster 

 

Figure 39: Bit Complexity (in MB) with Byzantine Attacks and Transient Errors on Cloudlab Cluster 
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they were. In cases where small messages were repeatedly sent, there should only be 

a slight increase of bit complexity. The same applies the other way around.  

Although the above, we can still extract conclusions from the scaled scenarios in the 

Cloudlab Cluster. In the equivalent figures, we can see how bit complexity is decreased 

until 4 nodes per machine, and then it has a standard increase. As expected, we see 

an increase when Byzantine faults happen, especially when combined with transient 

errors. We also see how bit complexity is decreased during Idle Byzantine Attack, 

where fewer resources are used. 

6.3.2.4 Comparison with the non-self-stabilizing algorithm 

In this part, we compare our implementation to the non-self-stabilizing algorithm by 

Mostéfaoui et al. [3], using the implementation by Petrou [7]. As already said, the two 

implementations use the same technology stack, built using Go and ZeroMQ. For the 

operation latency comparison, we executed scenarios of 3 to 20 nodes on the Cloudlab 

Cluster, and for the message complexities, we executed scenarios locally with 3 to 15 

nodes. We calculated the operation latency, message, and bit complexity in failure-

free scenarios and Byzantine Idle and Half & Half Attacks. 

Of course, one advantage of the studied algorithm, and as its name implies, is that it 

can recover from arbitrary-transient errors, while the algorithm by Mostéfaoui cannot. 

This capability is expected to increase the operation latency compared to the non-self-

stabilizing algorithm since many checks are performed. The goal is to keep this 

increase as little as possible. 

The figures below show the performance difference between the two algorithms. 
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Figure 40: Operation Latency (in seconds) comparing Self-stabilizing and Non-self-stabilizing 

variants using Byzantine Attacks on Cloudlab Cluster 
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can see the measurements of the non-self-stabilizing algorithm as they were extracted 

from Petrou [7]. 

 

Figure 41: Message complexity of the non-self-stabilizing algorithm on Local Workstation 

 

Figure 42: Bit complexity (in MB) of the non-self-stabilizing algorithm on Local Workstation 
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6.4 Experimental Summary 

This chapter evaluated the algorithm’s specifications, validity, and properties. We saw 

how operation latency, message, and bit complexity change in different scenarios, 

including Byzantine faults in combination with arbitrary-transient-faults. 

First, we saw with real-life scenarios that the studied algorithm is indeed tolerant for up 

to t < n/3 faulty nodes, no matter the attack they perform. We verified once again that 

the algorithm is self-stabilizing and can detect and recover from transient faults. Both 

Byzantine and transient faults add an overhead to the time needed for reaching 

consensus, but the algorithm can still perform with acceptable results. 

With the scaled setup executions on the Cloudlab cluster, we verified that the algorithm 

is scalable and can perform well under huge setups with hundreds of nodes. 

Depending on its design, one big drawback of the algorithm is that an enormous 

number of messages are repeatedly sent, leading to the exploitation of resources. 

Additional studies can be made to find the perfect settings for broadcasting to get the 

most out of the algorithm. 

Another essential outcome was the comparison of the algorithm with the non-self-

stabilizing algorithm by Mostéfaoui et al. [3]. We saw that the studied algorithm could 

perform similarly to the non-self-stabilizing variation, with minimal additional overhead.
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Chapter 7 

Conclusion 

 

7.1 Summary 

In this dissertation, we looked at essential properties that a distributed system must 

have, such as Fault Tolerance, Self-stabilization, and their combination towards 

consensus in the presence of Byzantine nodes and arbitrary transient errors.  

During the thesis, we analyzed the algorithm by Duvignau et al. [6], the first proposed 

Byzantine and intrusion-tolerant Self-stabilizing multivalued consensus algorithm. We 

inspected the building blocks needed for the implementation, one by one, and the 

challenges and solutions for the algorithm to behave as a Self-stabilizing algorithm.  

After studying the algorithm, we built, to the best of our knowledge, the first 

implementation of the algorithm [6] by using the Go programming language with the 

ZeroMQ messaging library, which can be integrated into other algorithm stacks. The 

algorithm was then proved to handle complicated faults, including Byzantine and 

transient faults combined.  

We evaluated the algorithm by executing real-life scenarios on a local workstation and 

a cluster using Emulab/Cloudlab testbed platform. We evaluated the algorithm’s 

theoretical properties and performance through various setups and scenarios. We 

executed additional scenarios that would help us demonstrate that the algorithm can 

perform well on scalable systems. Finally, we compared our implementation to a Non-

self-stabilizing variation [3] [7] and verified the self-stabilizing overhead, which is 

nevertheless minor and acceptable. We were able to discover and point out 
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drawbacks/limitations, mainly on resource exploitation, and how additional studies can 

improve our implementation. 

 

7.2 Future Work 

Implementing the algorithm is only the beginning of what can be achieved later. As 

stated in Chapter 3, the algorithm stack contains building blocks on top of our 

implementation. Another set of protocols can be added for more reliable results, like 

Reliable Broadcast with total-order delivery and Emulation of state-machine 

replication. 

Also, in our implementation, to get the best result, we do not have any timing 

mechanism in the main for-loop, leading to exploitation of the system resources since 

the for-loop runs indefinitely, pushing messages all the time. A possible solution would 

be to add a simple "sleep" in each iteration or avoid sending messages in every 

iteration, for example, every ten iterations. This way, the sent messages are not much 

more than the number needed, leading to a performance increase. Additional study 

can be done to find the most suitable tweaks needed for the best result. 

Another work that could be done, but at this time-being and resources was not feasible, 

is running the algorithm on a complete Distributed System, such as Amazon Web 

Service (AWS), with nodes scattered over long distances and different continents. 

Theoretically, our implementation should be able to perform on such a setup, and the 

only drawback should be the time needed for consensus to be reached. 

7.3 Personal Retrospection 

I am again grateful that I had the chance to work on a complete project of this item. By 

getting hands-on with existing functional projects, this thesis allowed me to understand 

Distributed Systems, Byzantine Fault Tolerance, Consensus, and others. Additionally, 
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I had the opportunity to explore Self-stabilization, understand why and how it is vital to 

Distributed Systems, and finally become confident in implementing one such system. 

Moreover, I learned an entirely new language, Go, from scratch and familiarized myself 

with the ZeroMQ library through this project. In general, I had the chance to gain more 

experience by implementing this project from the beginning. 
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