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1 Introduction
In this thesis we study the numerical approximation of the solution to Fredholm
integral and integro-differential equations of the second type, as these will be de-
fined in the next chapter. Integral equations can be used to model population
growth [5], biological systems [9], elastohydrodynamic lubrication [4], quantum
scattering [3], and heat transfer [6]. Furthermore, ordinary and partial differential
equations (ODEs and PDEs), which also arise in a wide range of physical prob-
lems, can be reformulated as integral equations. The advantage of the integral
equation reformulation is that associated boundary and initial conditions (BCs
and ICs) are incorporated within the integral equation, in contrast to ODEs and
PDEs on which BCs and ICs are imposed.

It all began in 1823 when Abel proposed a generalization of the tautochrone
problem whose solution involved the solution of an integral equation which was
later designated as an integral equation of the first type, and in 1837 Liouville
showed that the determination of a particular solution of a second order linear
differential equation depends on solving an integral equation of a different type,
called the integral equation of the second kind. After that, the work of Volterra,
Fredholm, and Hilbert, starting in 1896, has made integral equations a discipline
of its own, so to speak. In this thesis, we focus on Fredholm integral equations of
the second type, and the approximation of their solution.

In Chapter 2, we give an overview of integral equations, including integro-
differential equations; we present their definition, the different categories they are
divided in, existence and uniqueness of a solution, as well as some other general
results.

In Chapter 3, we consider numerical approximations by means of classical
composite quadrature rules and collocation, an approach called Nyström’s method
in the literature [2]. In particular, we utilize the composite Trapezoidal and Simp-
son’s Rules for the approximation of the integral in the equation, in conjunction
with collocation at the same nodal points.

In Chapter 4, we consider Fredholm integro-differential equations of the sec-
ond type, and present the numerical approximation for their solution by the com-
posite Trapezoidal rule, along with centered finite differences for the approxima-
tion of the derivative. In Section 4.1 we consider singularly perturbed Fredholm
integro-differential equations of the second type, and present the numerical ap-
proximation for their solution, using the popular Shishkin mesh [8].

We close with some concluding remarks in Chapter 5.
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2 Integral Equations
An equation that contains the unknown function u(x) within an integral is called
an integral equation. For example

f (x) =
∫ b

a
K(x, t)u(t)dt, x ∈ [a, b], (1)

where we assume that the so-called kernel K(x, t) is a given function on the inter-
val [a, b] × [a, b], satisfying∫ b

a

∫ b

a
|K(x, t)|2dxdt < ∞, (2)

and that f (x) is a given, continuous function on [a, b]. Since the limits of integra-
tion are constant, (1) is called an integral equation of Fredholm type. The integral
equation

f (x) =
∫ x

a
K(x, t)u(t)dt, x ∈ [a, b],

is of Voltera type, since it has a variable limit of integration. We will only consider
Fredholm integral equations in this thesis.

If u(x) appears inside and outside the integral, the Fredholm integral equation
is called of the second type:

u(x) = f (x) +
∫ b

a
K(x, t)u(t)dt, x ∈ [a, b]. (3)

The celebrated Fredholm Alternative [2] tells us when an integral equation has a
unique solution: If the homogeneous integral equation

y(x) =
∫ b

a
K(x, t)y(t)dt, x ∈ [a, b],

has only the zero solution y(x) = 0, then the corresponding non-homogeneous
integral equation

y(x) = f (x) +
∫ b

a
K(x, t)y(t)dt, x ∈ [a, b],

always has a unique solution. Conversely, if the homogeneous equation has non-
zero solutions, then the non-homogeneous integral equation either has no solu-
tions or has infinite solutions, and this depends on the given function f (x) (see [2]
for more details).
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We mention that in the so-called case of a separable kernel, i.e. K(x, t) =
k1(x)k2(t), for some smooth functions k1, k2, integral equations may be solved an-
alytically, in most cases (see Example 2.1 below). However, in the more general
case of a smooth kernel considered in this thesis, a numerical method is necessary.
In Chapter 3 we will consider the numerical approximation of the solution to (3).

Example 2.1: Separable Kernel

We consider the problem

y(x) = f (x) +
∫ b

a
k1(x)k2(t)y(t)dt, x ∈ [a, b],

which may be written as

y(x) = f (x) + k1(x)
∫ b

a
k2(t)y(t)dt.

Multiplying by k2(x) and integrating from a to b, gives∫ b

a
k2(x)y(x)dx =

∫ b

a
k2(x) f (x)dx +

∫ b

a
k2(x)k1(x)dx

∫ b

a
k2(t)y(t)dt(

1 −
∫ b

a
k2(x)k1(x)dx

) ∫ b

a
k2(t)y(t)dt =

∫ b

a
k2(x) f (x)dx,

from which we may calculate

C∗ :=
∫ b

a
k2(t)y(t)dt =

∫ b

a
k2(x) f (x)dx

1 −
∫ b

a
k2(x)k1(x)dx

∈ R,

provided

1 −
∫ b

a
k2(x)k1(x)dx , 0.

Hence, the solution is given by

y(x) = f (x) +C∗k1(x).

One other type of equation we will consider involves the derivative of the
unknown function as well, e.g.,

u′(x) = f (x) +
∫ b

a
K(x, t)u(t)dt, x ∈ (a, b], (4)

u(a) = ua ∈ R. (5)
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This is an integro-differential equation (of first order in this case, since only first
derivatives appear) of Fredholm type, and it includes the initial condition (5) in
order to have a unique solution. We could have higher order integro-differential
equations, but we will focus only on the type given by (4). In Section 4.1 we will
consider the numerical approximation of the solution to (4)–(5).

A more general version of (4)–(5), not considered in this thesis, would be

u′(x) + c(x)u(x) = f (x) +
∫ b

a
K(x, t)u(t)dt, x ∈ (a, b],

u(a) = ua ∈ R,

with, additionally, c > 0 a given sufficiently smooth function. The methods pre-
sented in this thesis could easily be extended to this case with minor modifications.

4

Mari
a C

ha
ral

am
bo

us



3 Numerical Solution of Fredholm Integral Equa-
tions of the 2nd type

Our goal in this chapter is to approximate the solution u of (3). We begin by
constructing a grid a = x1 < ... < xm−1 < xm = b and substitute each xi in equation
(3), i.e. we use collocation:

u(xi) = f (xi) +
∫ b

a
K(xi, t)u(t)dt, i = 1, ...,m. (6)

The integral in (6) is approximated by numerical quadrature, based on the nodal
points x1, x2, ..., xm. Recall that in numerical integration, we use∫ b

a
g(t)dt ≈

N∑
j=1

w jg(t j),

where the w j are called weights and the t j nodes, (N is the number of terms).
The different integration rules result from different choices for w j and t j. We take
t j = xi, N = m, when approximating the integral in (6), in order to have only
the unknown values u(xi) without introducing new ones. This corresponds to the
linear system

Ui = f (xi) +
m∑

j=1

w jK(xi, x j)U j, i = 1, ...m, (7)

where Ui ≈ u(xi). Solving the system results in the approximate values u(x1), ..., u(xm).
In matrix form, the linear system (7) is written as

AU⃗ = b⃗,

where

[A]i, j =


1 − w1K(x1, x1) −w2K(x1, x2) ... −wN K(x1, xm)
−w1K(x2, x1) 1 − w2K(x2, x2) ... −wN K(x2, xm)

...
... ...

...
−wN K(xm, x1) −w2K(xm, x2) ... 1 − wN K(xm, xm)

 (8)

or A = (I − M) with I the identity matrix, Mi j = w jK(xi, x j), and

b⃗ =


f (x1)
f (x2)
f (x3)
...

f (xm)


.
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The above method is known as Nyström’s method in the literature [2].
For example, if we were to use the Composite Trapezoidal Rule as our nu-

merical integration scheme, the weights w j and nodes x j in (7) are

w⃗ = [w1, ...,wm]T =
1
2

(
b − a

m

)
[1, 2..., 2, 1],

x j =
b − a

m
j, j = 1, ...,m.

The integration scheme is∫ b

a
g(x)dx ≈

1
2

(
b − a

m

)
[g(x1) + 2(g(x2) + ... + g(xm−1)) + g(xm)]

and the system matrix in (8) is

[A]i, j =


1 − K1,1 −2K1,2 ... −2K1,m−1 −K1,m

−K2,1 1 − 2K2,2 ... −2K2,m−1 −K2,m
...

... ...
...

...
−Km,1 −2Km,2 ... −2Km,m−1 1 − Km,m

 , (9)

where we used the notation Ki, j = K(xi, x j).
Similarly, for the Composite Simpson’s Rule, where the weights w j and nodes

x j in (7) are

w⃗ = [w1, ...wm]T =
1
3

(
b − a

m

)
[1, 4, 2, 4, ..., 2, 4, 1],

x j =
b − a

m
j, j = 1, ...,m,

the numerical integration scheme is∫ b

a
g(x)dx ≈

1
3

(
b − a

m

)
[g(x0)+4g(x1)+2g(x2)+4g(x3)+...+2g(xm−2)+4g(xm−1)+g(xm)]

and the system matrix in (8) is

[A]i, j =


1 − K1,1 −4K1,2 −2K1,3 ... −2K1,m−2 −4K1,m−1 −K1,m

−K2,1 1 − 4K2,2 −2K2,3 ... −2K2,m−2 −4K2,m−1 −K2,m
...

...
... ...

...
...

...
−Km,1 −4Km,2 −2Km,3 ... −2Km,m−2 −4Km,m−1 1 − Km,m

 .
(10)
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We illustrate the above in the following elementary example, with most calcu-
lations being displayed in detail.

Example 3.1:

Let a = 0, b = 1, f (x) = x2,K(x, t) = e|x−t|, and divide [0, 1] into 4 subintervals,
using the nodal points x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 0.75, x4 = 1. Using the
Composite Trapezoidal Rule, we write the equations satisfied by u(xi), as

u(xi) = x2
i +

1
2

(
1 − 0

4
)[e|xi−x0 |u(x0)+2e|xi−x1 |u(x1)+2e|xi−x2 |u(x2)+2e|xi−x3 |u(x3)+e|xi−x4 |u(x4)],

where i = 0, 1, 2, 3, 4, or equivalently as

7
8 −1

4e
1
4 −1

4e
1
2 −1

4e
3
4 −1

8e1

−1
8e

1
4 3

4 −1
4e

1
4 −1

4e
1
2 −1

8e
3
4

−1
8e

1
2 −1

4e
1
4 3

4 −1
8e

1
4 −1

8e
1
2

−1
8e

3
4 −1

4e
1
2 −1

4e
1
4 3

4 −1
8e

1
4

−1
8e1 −1

4e
3
4 −1

4e
1
2 −1

4e
1
4 7

8




u(x0)
u(x1)
u(x2)
u(x3)
u(x4)

 =


0
1
16
1
4
9
16
1

 .

Solving the system we find the approximate values of u(x0), u(x1), u(x2), u(x3), u(x4)
as u(0) = −1.2309, u(0.25) = −0.9738, u(0.5) = −0.6817, u(0.75) = −0.6118, u(1) =
−0.4698.

For the Composite Simpson’s Rule, we have

u(xi) = x2
i +

1
3

(
1 − 0

4
)[e|xi−x0 |u(x0)+4e|xi−x1 |u(x1)+2e|xi−x2 |u(x2)+4e|xi−x3 |u(x3)+e|xi−x4 |u(x4)],

where i = 0, 1, 2, 3, 4, or equivalently as

11
12 −1

3e
1
4 −1

6e
1
2 −1

3e
3
4 − 1

12e1

− 1
12e

1
4 2

3 −1
6e

1
4 −1

3e
1
2 − 1

12e
3
4

− 1
12e

1
2 −1

3e
1
4 5

6 −1
3e

1
4 − 1

12e
1
2

− 1
12e

3
4 −1

3e
1
2 −1

6e
1
4 2

3 − 1
12e

1
4

− 1
12e1 −1

3e
3
4 −1

6e
1
2 −1

3e
1
4 11

12




u(x0)
u(x1)
u(x2)
u(x3)
u(x4)

 =


0
1
16
1
4
9
16
1


Solving the system we find the approximate values of u(x0), u(x1), u(x2), u(x3), u(x4)
as u(0) = −1.2343, u(0.25) = −0.9507, u(0.5) = −0.7659, u(0.75) = −0.5845, u(1) =
−0.4485.

As a second example, we illustrate the method for a larger number of nodal
points.
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Example 3.2:

Let a = −1, b = 1, f (x) = 1,K(x, t) = xt + x2t2. We implemented the method
in MATLAB and present the results in Figure 1 below. The result of both the
Composite Trapezoidal and Simpson rule is shown (for 10 and 20 nodal points),
along with the exact solution u(x) = 1 + 10

9 x2; the agreement is as expected.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

1

1.2

1.4

1.6

1.8

2

2.2

2.4

y

Example 3.2

Exact

Trapezoidal Rule

Simpson's Rule

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

1

1.2

1.4

1.6

1.8

2

2.2

y

Example 3.2

Exact

Trapezoidal Rule

Simpson's Rule

Figure 1: Approximation: Number of nodal ponts: 10 (top) and 20 (bottom).

In terms of the convergence of the method, we will study the algorithm with
the two composite methods used above. We know from [1] that the Compos-
ite Trapezoidal Rule (for numerical integration) converges with order O(h2), and
the Composite Simpson’s Rule with order O(h4), as the meshwidth h tends to 0.
This carries over to the numerical solution of (3), as we illustrate in the following
example.
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Example 3.3:

Let a = 0, b = π/2, f (x) = sin(x),K(x, t) = sin(x) cos(t). The exact solution is
u(x) = 2 sin(x), so we may calculate the errors reliably. We show in Figure 2 the
convergence of the method, with the Composite Trapezoidal and Simpson Rules,
as the number of nodal points m, increases. It is a logarithmic plot, and since we
get straight lines with slope approximately –2, –4, respectively, we conclude that
the methods converge with orders O(m−2),O(m−4), respectively.

10
1

10
2

10
3

Number of nodal points

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

M
a

x
im

u
m

 E
rr

o
r

Example 3.3

slope  - 2

slope  - 4

Trapezoidal Rule

Simpson's Rule

Figure 2: The convergence of the methods.

The fact that the error in Nyström’s method depends on the order of the in-
tegration scheme as well as the smoothness of the kernel K(x, t) may be seen as
follows (see also [2]): subtracting (7) from (6) , we have

|u(xi) − U(xi)| = |
∫ b

a
K(xi, t)u(t)dt −

m∑
j=1

w jK(xi, x j)U(x j)| = O(m−p),

where p is the order of the quadrature scheme (assuming K(x, t) is sufficiently
smooth). In the Composite Trapezoidal Rule, p = 2, and in the Composite Simp-
son’s Rule, p = 4.
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4 Numerical Solution of Fredholm Integro-Differential
Equations of the 2nd type

Equation (4) defines a Fredholm integro-differential equation of the 2nd type; our
goal, again, is to approximate u. We will consider the approximation of the solu-
tion to the problem

u′(x) = f (x) +
∫ b

a
K(x, t)u(t)dt, (11)

u(a) = ua ∈ R.
We begin by constructing a grid a = x1 < ... < xm+1 = b and substitute xi in
equation (11):

u′(xi) = f (xi) +
∫ b

a
K(xi, t)u(t)dt, i = 1, ...,m + 1 (12)

The integral in (12) is approximated by numerical quadrature, based on the nodal
points x1, x2, ..., xm+1:∫ b

a
K(xi, t)u(t)dt ≈

m+1∑
j=1

w jK(xi, x j)u(x j).

The derivative u′(xi) is approximated using finite differences. Assuming the sub-
division is uniform with meshwidth

h = xi+1 − xi, ∀ i = 1, . . . ,m,

we use the centered difference

u′(xi) ≈
u(xi+1) − u(xi−1)

2h
, i = 2, . . . ,m,

for the internal nodal points, and for the endpoints we use

u′(x1) ≈
u(x2) − u(x1)

h
, u′(xm+1) ≈

u(xm+1) − u(xm)
h

,

which are the forward and backward differences, respectively.
Denoting Ui ≈ u(xi), we substitute the above in (12) and obtain

U2 − U1

h
= f (x1) +

m+1∑
j=1

w jK(x1, x j)U j,

Ui+1 − Ui−1

2h
= f (xi) +

m+1∑
j=1

w jK(xi, x j)U j , i = 2, . . . ,m,

Um+1 − Um

h
= f (xm+1) +

m+1∑
j=1

w jK(xm+1, x j)U j.
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In matrix form, the above system may be written as

AU⃗ = F⃗,

where F⃗ = [h f (x1), 2h f (x2), . . . , 2h f (xm), h f (xm+1)]T , U⃗ = [U1, . . . ,Um+1]T , and
the coefficient matrix A is given by

A = J − M,

with

J =


−1 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 1


, Mi, j =


−hw jK(x1, x j), i = 1, j = 1, . . . ,m + 1

−2hw jK(xi, x j), i = 2, ...,m, j = 1, . . . ,m + 1
−hw jK(xm+1, x j), i = m + 1, j = 1, . . . ,m + 1

We note that the value of U1 is already known from the initial condition
(U1 = u(a) = ua), so the first row and column of A, as well as the first ele-
ment in F⃗, are deleted before solving the linear system, yielding a vector U⃗ ∈ Rm

(as opposed to Rm+1); the approximate values for u(xi), i = 1, . . . ,m + 1 are given
by [ua,U2, . . . ,Um+1]T ∈ Rm+1.

Example 4.1:

We illustrate the method for the following problem:

u′(x) = xex + ex − x +
∫ 1

0
xu(t)dt,

u(0) = 0,

with exact solution u(x) = xex. We use the composite Trapezoidal Rule, and in
Figure 4 we show the exact and approximate solutions, showing excellent agree-
ment. In Figure 4, we show the convergence as the number of nodal points is
increased, in a log-log scale. The slope of the resulting line gives the (expected)
convergence rate of −2.
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Example 4.1, m = 8
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Example 4.1, m = 16
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Exact

Figure 3: Exact and approximate solutions for Example 4.1.

4.1 Singularly perturbed Fredholm Integro-Differential Equa-
tions of the 2nd type

Suppose now that there is a parameter ε ∈ (0, 1] multiplying the derivative in (11),
and we allow ε→ 0. The problem becomes

εu′(x) = f (x) +
∫ b

a
K(x, t)u(t)dt, (13)

u(a) = ua ∈ R.

We begin, as usual, by constructing a grid a = x1 < ... < xm+1 = b and substitute
xi in equation (13):

εu′(xi) = f (xi) +
∫ b

a
K(xi, t)u(t)dt, i = 1, ...,m + 1. (14)
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 Example 4.1, Trapezoidal Rule 

slope  - 2

Figure 4: The convergence of the method for Example 4.1.

The approximation of the integral in (14) is∫ b

a
K(xi, t)u(t)dt ≈

m+1∑
j=1

w jK(xi, x j)u(x j),

and the derivative u′(xi) is approximated using finite differences. Assuming the
subdivision is uniform with meshwidth h, we use centered differences for the in-
ternal nodal points, and for the endpoints we use forward and backward differ-
ences, as was done before.

Denoting Ui ≈ u(xi), we substitute the above in (14) and obtain

ε
U2 − U1

h
= f (x1) +

m+1∑
j=1

w jK(x1, x j)U j,

ε
Ui+1 − Ui−1

2h
= f (xi) +

m+1∑
j=1

w jK(xi, x j)U j , i = 2, . . . ,m,

ε
Um+1 − Um

h
= f (xm+1) +

m+1∑
j=1

w jK(xm+1, x j)U j.

In matrix form, the above system may be written as

AU⃗ = F⃗,

where F⃗ = [h f (x1), 2h f (x2), . . . , 2h f (xm), h f (xm+1)]T , U⃗ = [U1, . . . ,Um+1]T , and
the coefficient matrix A is given by

A = J̃ − M,
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with

J̃ =


−ε ε
−ε 0 ε

. . .
. . .

. . .

−ε 0 ε
−ε ε


, Mi, j =


−hw jK(x1, x j), i = 1, j = 1, . . . ,m + 1

−2hw jK(xi, x j), i = 2, ...,m, j = 1, . . . ,m + 1
−hw jK(xm+1, x j), i = m + 1, j = 1, . . . ,m + 1

As before, the value of U1 is already known from the initial condition (U1 =

u(a) = ua), so the first row and column of A, as well as the first element in F⃗,
are deleted before solving the linear system; the approximate values for u(xi), i =
1, . . . ,m + 1 are given by [ua,U2, . . . ,Um+1]T ∈ Rm+1.

We illustrate the numerical difficulties that arise when ε→ 0, in the following
example.

Example 4.2:

Consider the following problem:

εu′(x) = f (x) +
∫ 1

0
xtu(t)dt,

u(0) = 0,

with f chosen so that the exact solution is u(x) = 1− e−x/ε. We use the Composite
Trapezoidal Rule for the approximation, and in Figure 5 we show the results. For
large values of ε, the method performs well; however, as ε → 0, the approxima-
tions become inaccurate.
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Ex. 4.2:    = 0.5, Trapezoidal Rule with 64 points
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Ex. 4.2 :  = 0.1, Trapezoidal Rule with 64 points
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Ex. 4.2 :  = 0.025, Trapezoidal Rule with 64 points
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Ex. 4.2 :  = 0.01, Trapezoidal Rule with 64 points
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Exact

Figure 5: The exact and approximate solutions for Example 4.2.

Clearly, the method fails to provide an accurate approximation as ε → 0,
unless the stepsize h is O(ε). A uniform mesh is not appropriate for singularly
perturbed problems.

This deterioration is due to the presence of boundary layers in u, which are
rapidly varying solution components, in the vicinity of the boundary (or initial
point in our case). We assume that the solution u of (11) may be decomposed as

u = uS + uBL + uR, (15)

where the smooth part uS is as smooth as the input data, the boundary layer part
uBL behaves like the function e−t/ε, and the remainder uR is negligible. This as-
sumption is based on the analogous decomposition for singularly perturbed prob-
lems [8].

One non-uniform, layer adapted mesh is the so-called Shishkin mesh, which is
a piecewise unform mesh commonly used in the literature for singularly perturbed
problems [8]. To define the Shishkin mesh, we let

τ = min{(b − a)/2, 2ε ln 2m}, (16)

where 2m is the number of subintervals we wish to use in the interval [a, b]. Then,
[a, b] is subdivided into [a, a + τ], [a + τ, b], and in each subinterval, a uniform
partition (of m subintervals) is used. We set h = τ/m,H = (b − a − τ)/m as the
two different meshwidths. (See Figure 6 below.)
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Collocating at xi, i = 1, . . . , 2m + 1, gives

εu′(xi) = f (xi) +
∫ b

a
K(xi, t)u(t)dt, i = 1, . . . , 2m + 1. (17)

-� -�Hh

a ba + τ

Figure 6: The Shishkin mesh.

For the approximation of the integral in (17) we have∫ b

a
K(x, t)u(t)dt =

∫ a+τ

a
K(x, t)u(t)dt +

∫ b

a+τ
K(x, t)u(t)dt,

with ∫ a+τ

a
K(xi, t)u(t)dt ≈

m+1∑
j=1

w jK(xi, x j)u(x j),

∫ a+τ

a
K(xi, t)u(t)dt ≈

m+1∑
j=1

W jK(xi, x j+m)u(xm+ j),

where w j,W j are the weights in the chosen composite quadrature rule on [a, a +
τ], [a + τ, b], respectively. The discrete equations become

εu′i = f (xi) +
m+1∑
j=1

w jK(xi, x j)u j +

m+1∑
j=1

W jK(xi, x j+m)um+ j. (18)

The derivative u′i above is approximated using finite differences as before –
forward difference for the first point, backward difference for the last point, and
centered difference for the internal points. However, for u′(xm+1) the meshwidth
is different in the two intervals surrounding xm+1 = a+ τ (see Figure 6), hence the
centered difference for this point is modified as follows [10]:

u′m+1 ≈
um+2 − (H/h)2um − (1 − (H/h)2)um+1

H(1 + H/h)
.

The resulting system, in matrix form, may be written as

AU⃗ = F⃗,
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where F⃗ = [h f (x1), 2h f (x2), . . . , 2H f (x2m),H f (x2m+1)]T , U⃗ = [U1, . . . ,U2m+1]T ,
j=1,. . . ,2m+1, and the coefficient matrix A is given by

A =

 J1 − M1 a⃗1 −M2

a⃗2 α a⃗3

−M3 a⃗4 J2 − M4

 ,
where

J1 =


−ε ε
−ε 0 ε

. . .
. . .

. . .

−ε 0 ε
−ε 0


∈ Rm×m , J2 =


0 ε
−ε 0 ε

. . .
. . .

. . .

−ε 0 ε
−ε 0


∈ Rm×m,

[M1]i, j =

{
hw jK(x1, x j), i = 1, j = 1, . . . ,m

2hw jK(xi, x j), i = 2, ...,m, j = 1, . . . ,m

[M2]i, j =

{
hW j+1K(x1, x j+m+1), i = 1, j = 1, . . . ,m

2hW j+1K(xi, x j+m+1), i = 2, ...,m, j = 1, . . . ,m

[M3]i, j =

{
2Hw jK(xm+1+i, x j), i = 1, j = 1, . . . ,m
Hw jK(x2m+1, x j), i = m, j = 1, . . . ,m

[M4]i, j =


2HW j+1K(xm+1+i, xm+1+ j), i = 1, . . . ,m − 1

, j = 1, . . . ,m
HW j+1K(x2m+1, xm+1+ j), j = 1, . . . ,m

and
a⃗1 = [c1, V⃗1, c2]T , a⃗2 = [V⃗2, c3], a⃗3 = [c4, V⃗3], a⃗4 = [c5, V⃗4, c6]T

[V⃗1]k = −2h(wm+1 +W1)K(xk+1, xm+1), k = 1, . . . ,m − 2

[V⃗4]k = −2H(wm+1 +W1)K(xk+2+m, xm+1), k = 1, . . . ,m − 2

[V⃗2] j = −H(1 + H/h)w jK(xm+1, x j), j = 1, . . . ,m − 1

[V⃗3] j = −H(1 + H/h)W j+2K(xm+1, x j+m+2), j = 1, . . . ,m − 1

c1 = −h(wm+1 +W1)K(x1, xm+1)

c2 = ε − 2h(wm+1 +W1)K(xm, xm+1)

c3 = −ε(H/h)2 − H(1 + (H/h)wm +W1)K(xm+1, xm)

c4 = ε − H(1 + (H/h)W2K(xm+1, xm+2)
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c5 = −ε − 2H(wm+1 +W1)K(xm+2, xm+1)

c6 = −H(wm+1 +W1)K(x2m+1, xm+1)

α = −ε(1 − (H/h)2) − H(1 + (H/h)Wm+1K(xm+1, xm+1)

We re-visit the problem in Example 4.2 in the following.

Example 4.3

Consider the problem:

εu′(x) = f (x) +
∫ 1

0
xtu(t)dt,

u(0) = 0,

with f chosen so that the exact solution is u(x) = 1 − e−x/ε. We use the Compos-
ite Trapezoidal Rule for the approximation, on the Shishkin mesh, as described
above. In Figure 7 we show the results for ε = 0.025, 0.01, and no deterioration is
observed (as was the case in Example 4.2).
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Example 4.3: Shishkin mesh with 64 nodes,  = 0.025
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Example 4.3: Shishkin mesh with 64 nodes,  = 0.01
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Exact

Figure 7: The exact and approximate solutions for Example 4.3.

We also show the convergence of the method for various values of ε, in Figure
8. We first observe that the method is robust (with respect to ε). Next, the slope
calculated is slightly lower than −2, as was observed for non-singularly perturbed
problems. The reason for this is that the Shishkin mesh yields a convergence
rate of order O(m−2 ln2(m)) as opposed to O(m−2), with the logarithmic term not
removable (see, e.g. [8]).
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Figure 8: Convergence of the method for Example 4.3.

As a final example, we consider the following.

Example 4.4

εu′(x) = f (x) +
∫ 1

0
(cos(x) + sin(t))u(t)dt,

u(0) = 0,

with f chosen so that the exact solution is u(x) = cos(πx) − e−x/ε. We use the
Composite Trapezoidal Rule for the approximation, on the Shishkin mesh, and in
Figure 9 we show the result for ε = 0.01.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
(t

)

Example 4.4: Shishkin mesh with 64 nodes,  = 0.01.
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Figure 9: Exact and approximate solutions for Example 4.4.
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Figure 10: Convergence for Example 4.4.

The convergence of the method for various values of ε, is shown in Figure 10.
The observations are exactly the same as the previous example.

Example 4.5

We finally consider a problem without a known exact solution:

εu′(x) = 1 − e−x/e +

∫ 1

0
(t + e−x/e)u(t)dt,

u(0) = 0.

In Figure 11 we show the approximate solution for various ε, and we see that the
method produces the expected results.
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Figure 11: Approximate solution for Example 4.5.
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5 Closing Remarks
In this thesis we considered Fredholm integral and integro-differential equations of
the second type, and the numerical approximation of their solution using Nyström’s
method of collocation, in conjunction with the composite Trapezoidal and Simp-
son’s rules – we mainly utilized the Trapezoidal Rule.

For Fredholm integral equations, we implemented the method and performed
numerical experiments for problems with smooth data (hence smooth solution).
The convergence rates observed, for both composite quadrature rule choices, namely
O(m−2) and O(m−4), respectively, where m is the number of nodal points, were the
expected ones.

We also considered integro-differential equations of first order, and for the
derivative approximation we used finite differences. In particular, we used cen-
tered differences for the internal nodal points, and forward and backward differ-
ences for the first and last points, respectively. For smooth data, the method was
observed to yield the expected O(m−2) convergence rate, when the Trapezoidal
Rule was used for the integral.

The above convergence rate did not hold when we considered singularly per-
turbed integro-differential equations. The method “broke down” due to the fact
that we were using a uniform mesh to approximate a solution which includes
boundary layers. This was rectified with the use of a layer-adapted, piecewise uni-
form Shishkin mesh [8]. We verified through numerical experiments that with this
choice of the mesh points, Nyström’s method yields uniform convergence, inde-
pendently of ε, as the number of mesh points is increased, at the rate O(m−2 ln2 m)
(for the Trapezoidal Rule).

The next step in the study of this method for such problems is to prove the
observed convergence rates. Once this is done, the case of systems could be con-
sidered, with either one or different singular perturbation parameters.

One could also study Galerkin variational methods [7] for the numerical ap-
proximation of the solution to such problems. In the Galerkin method for, e.g (11),
we multiply the equation with a so-called test function v(x) and integrate over the
interval [a, b], to get∫ b

a
v(x)εu′(x)dx =

∫ b

a
v(x) f (x)dx +

∫ b

a

∫ b

a
v(x)K(x, t)u(t)dtdx. (19)

The variational problem to be solved is: find u ∈ U such that (19) holds for v ∈ V ,
where U,V are appropriate function spaces (e.g. derivatives are squared integrable
functions, etc.). At the discrete level, we seek uN ∈ UN ⊂ U such that (19) holds
for all v ∈ VN , where UN ,VN are appropriate finite dimensional subspaces of U,V ,
respectively. Assuming

UN = span{ϕ1, . . . , ϕN} , VN = span{ψ1, . . . , ψN}
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with ϕ, ψ polynomials, we have

uN =

N∑
i=1

ξiϕi , vN =

N∑
i=1

ζiψi.

Substituting the above expressions in (19), we obtain a linear system for the coef-
ficients ξi, i = 1, . . . ,N, hence we obtain the approximate solution uN . This study
will appear elsewhere.
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