

0

Automatic number-plate recognition (ANPR) in video streams

and data anonymization for traffic monitoring, by use of machine vision

Master of Science Thesis

Arestis Pavlides

December 2022

Ares
tis

 Pav
lid

es

1

December 2022

Arestis Pavlides

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

 at the University of Cyprus

Automatic number-plate recognition (ANPR) in video streams

and data anonymization for traffic monitoring, by use of machine vision

Ares
tis

 Pav
lid

es

 APPROVAL PAGE

Master of Science Thesis

AUTOMATIC NUMBER-PLATE RECOGNITION (ANPR) IN VIDEO

STREAMS AND DATA ANONYMIZATION FOR TRAFFIC MONITORING,

BY USE OF MACHINE VISION

Presented by

 Arestis Pavlides

 University of Cyprus

December 2022

Research Supervisor

 Dr. Symeon Christodoulou
Professor

Committee Member

 Dr. Loukas Dimitriou
Assistant Professor Ares

tis
 Pav

lid
es

ACKNOWLEDGEMENTS

Researching and composing this Master’s thesis couldn’t be done without

help. Foremost, I would like to express my sincere gratitude to my academic

adviser Professor Dr. Symeon Christodoulou for the continuous support of my

Master’s thesis study and research, for his patience, motivation, enthusiasm,

and immense knowledge which inspired me greatly. His guidance helped me

continuously in the research and the writing of this thesis.

Besides my adviser, I would like to thank the rest of my thesis committee

members for their encouragement, insightful comments, and hard questions.

Last but not the least, I would like to thank my family: my parents Soteris and

Eleni and my sister Andromachi for supporting me through every step-in life

and being there when I needed them. Their sacrifices, love and advises in

order to provide me a better life have molded me to the person I am today.

Ares
tis

 Pav
lid

es

i

Table of Contents

ΠΕΡΙΛΗΨΗ .. 1

1. Introduction ... 1

1.1 Possible applications of machine vision in transport... 2

1.2 Overview of research methodology on ANPR technology .. 3

1.3 The use of the Python programming language for the purpose of this research
work 3

2. Literature review .. 5

2.1 ANPR technology ... 5

2.2 Python programming language ... 6

2.3 Python libraries .. 8

2.4 Integrated Development Environment (IDE) ... 8

2.5 PyCharm IDE ... 9

2.6 Region(s) Of Interest (ROI) ... 9

2.7 Haar cascade classifier ... 10

2.8 Thresholding .. 11

2.9 Contours ... 12

2.10 Optical Character Recognition (OCR) ... 12

3. Software code structure .. 14

3.1 Computer specifications .. 17

3.2 Necessary libraries for running the code ... 18

3.2.1 OpenCV Python library, version 4.6.0.66 ... 19

3.2.2 NumPy version 1.23.3 .. 19

3.2.3 PyTesseract OCR 0.3.10 ... 20

3.3 Image capture .. 21

3.4 Number plate detection ... 22

3.5 Character recognition .. 24

3.6 Blurring of license plate ... 25

3.7 Exporting license plate text.. 25

3.8 Saving image .. 26

4. The code in Python .. 27

Ares
tis

 Pav
lid

es

ii

4.1 Function values .. 27

4.1.1 OCR function .. 27

4.1.2 Picture size and brightness .. 29

4.1.3 Size of minimum plate area ... 30

4.1.4 Color of the image .. 31

4.1.5 Edge detection ... 31

5. Results .. 33

5.1 Approaching system accuracy as a two-stage problem ... 36

5.1.1 First stage’s accuracy results (Automatic number plate detection) 37

5.1.2 Second stage’s accuracy results (automatic number plate (OCR) recognition)
 38

5.2 Page segmentation modes (PSM) accuracy results ... 39

5.3 Scale factor accuracy results .. 42

5.4 Minimum amount of neighboring rectangles accuracy results 44

6. Results analysis .. 46

6.1 Automatic number plate detection results.. 46

6.2 Automatic number plate (OCR) recognition results .. 48

7. Discussion of results ... 50

7.1 Limitations of first stage and ways to increase system accuracy 51

7.2 Limitations of second stage and ways to increase system accuracy 52

7.3 How could traffic cameras be accurate with minimum possibilities of fail? 53

8. Further applications ... 55

Bibliography ... 58

Ares
tis

 Pav
lid

es

iii

Table of Abbreviations

Abbreviation Definition

ANPR Automatic Number Plate Recognition

CPU Central Processing Unit

CV Computer Vision

GDPR General Data Protection Regulation

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical User Interface

IDE Integrated Development Environment

ID Identification

MinNeigh Minimum number of neighboring rectangles

OCR Optical Character Recognition

PC Personal Computer

RAM Random Access Memory

RGB Red Green Blue

ROI Region Of Interest

 Ares
tis

 Pav
lid

es

iv

List of Figures

Figure 1-1 Typical ANPR system diagram of a mobile ANPR system (left) and a fixed ANPR
System (right) (Mufti, 2021) .. 1
Figure 1-2 ANPR system used for speed limit enforcement (Infratech, 2014) 2
Figure 2-1 Example of Tattile ALPR camera collecting data, such as the vehicle’s estimated
speed, direction, and country of origin. Some cameras can even classify the vehicle and
recognise the brand, colour, class and model. .. 6
Figure 3-1 Code Structure diagramm ... 14
Figure 4-1 Command that performs OCR in the image and prints the output in the terminal27
Figure 4-2 Options 1 till 18 for the command “cap.set”(option 1-18,value) 30
Figure 4-3 Command for finding Minimum area .. 31
Figure 5-1 Result using PC camera to run the code in Pycharm IDE .Photo in daylight
conditions .. 33
Figure 5-2 Result using PC camera to run the code in Pycharm IDE. Photo in nightlight
conditions (poor accuracy).. 34
Figure 5-3 Result using video file 1 to run the code in Pycharm IDE 34
Figure 5-4 Result using video file 1 to run the code in Pycharm IDE (Letter i is mistaken with
number 1) .. 34
Figure 5-5 Result using video file 1 to run the code in Pycharm IDE(Letter M is mistaken with
letter H) .. 34
Figure 5-6 Result using video file 1 to run the code in Pycharm IDE(Letter “S” is mistaken
with number “5”) ... 35
Figure 5-7 Result using video file 2 to run the code in Pycharm IDE 35
Figure 5-8 Result using video file 2 to run the code in Pycharm IDE (Number plate detection
fails) .. 35
Figure 5-9 Result using video file 2 to run the code in Pycharm IDE 36
Figure 5-10 Result using canny edge detection and video file 1 to run the code in Pycharm
IDE .. 36
Figure 5-11 Equation for calculating automatic number plate detection accuracy 37
Figure 5-12 Equation for calculating automatic number plate detection accuracy 38
Figure 5-13 Chart of the resulting Accuracy for a given psm option with constant scale factor
=1.2 and minNeigh=4 ... 41
Figure 5-14 Chart of the resulting accuracy scored for the given video files for each
Scalefactor value .. 43
Figure 5-15 Chart of the resulting accuracy scored for the given video files for each Minimum
amount of neighboring rectangles value ... 45
Figure 8-1 Vehicle license plates been used by ANPR camera system allowing authorized
vehicles into controlled areas as well as for tracking the vehicles’ movements. (Nortech,
2022) .. 56

Ares

tis
 Pav

lid
es

v

List of Tables

Table 3-1 Commands for : sharpening the image , applying Gaussian blur and applying canny
edge detection ... 16
Table 3-2 PC Specifications for writing and running the code ... 17
Table 3-3 Commands in python for obtaining the image in a video file or video stream 21
Table 3-4 While loop which scans every frame of the video and save it , in the variable “img”
 ... 21
Table 3-5 Command that Turns image to grayscale .. 22
Table 3-6 Command that crops the indicated portion of the image in video file 1 23
Table 3-7 Rotates images from video stream by 4 degrees clockwise 23
Table 3-8 Command for searching the rectangle shape that number plates have using the
classifier from haar cascade file ... 24
Table 3-9 Command for setting the plate’s rectangle minimum area and cropping that
portion of image .. 24
Table 3-10 Command for performing character recognition with Pytesseract OCR tool and
printing the output .. 24
Table 3-11 Command for blurring the plates creating rectangle around them and put text on
the created rectangle ... 25
Table 3-12 Command for printing the output of the Tesseract OCR 26
Table 3-13 License plates’ command to be saved in an image file .. 26
Table 4-1 Options for setting Tesseract to only run a subset of layout analysis and assume a
certain form of image. ... 28
Table 4-2 Options for Setting Tesseract Engine mode. ... 28
Table 4-3 Commands for picture size and brightness for webcam video stream 29
Table 4-4 Command for turning colored image to gray .. 31
Table 4-5 Command for the detection of the number plate using cascade classifier 31
Table 5-1 Accuracy scored for the given video file for each option of the psm 39
Table 5-2 Accuracy scored for the given video file for each value from 1-2 with an interval of
0.1 .. 42
Table 5-3 Accuracy for the given video files with the parameter neighboring rectangles’ value
range from 1-5 with an interval of 1. ... 44
Table 6-1 Values which scored higher accuracy for the given parameters 46
Table 6-2 Highest Accuracy scores using the parameter values in Table 6-1 46
Table 6-3 Parameters that affected stage 1 and the values with the highest accuracy 47
 Ares

tis
 Pav

lid
es

Abstract

The research work described in this thesis focuses on the creation of an

Automatic Number Plate Recognition (ANPR) software that is able to analyze

images from video streams, to detect and to extract a vehicle’s license plate

for subsequent use. In order to adhere to the General Data Protection

Regulation (GDPR) and thus avoid any privacy issues with video processing,

the developed process involves two key stages: (1) the video streams in

analysis are first ‘anonymized’, by blurring any detected plate numbers, and

(2) the detected plated numbers are stored in a different (textual) file for later

use by the users. Also listed in the thesis, are the problems that arose in the

process, and the tools and methods used to solve them.

The program is written in the Python programming language. This language

was preferred because of its suitability to task, its many contributions in the

field of open computer vision (CV) and the abundance of tools available for

public use (About OpenCV, 2022).

As aforementioned, a key consideration in this work was compliance to GDPR

so that processed sensitive data (such as vehicle license plates) would be

protected by an anonymization process. This was done by blurring out the

parts of the image that contained such sensitive information. The detection

and anonymization process used exhibited a high accuracy and could also be

expanded in other applications (Janowski, 2014).

Keywords: Automatic Number Plate Recognition, optical character

recognition, Open computer vision, anonymized, blur license plate

Ares
tis

 Pav
lid

es

ΠΕΡΙΛΗΨΗ

Η ερευνητική εργασία που περιγράφεται σε αυτή τη διατριβή επικεντρώνεται

στη δημιουργία κώδικα λογισμικού αυτόματης αναγνώρισης αριθμού

πινακίδας οχημάτων (ANPR), το οποίο είναι σε θέση να αναλύει εικόνες από

ροές βίντεο, να ανιχνεύει και να εξάγει την πινακίδα κυκλοφορίας ενός

οχήματος για μεταγενέστερη χρήση. Προκειμένου να τηρηθεί ο Γενικός

Κανονισμός Προστασίας Δεδομένων (GDPR) και να αποφευχθούν τυχόν

προβλήματα απορρήτου με την επεξεργασία βίντεο, η αναπτυγμένη

διαδικασία περιλαμβάνει δύο βασικά στάδια: (1) οι ροές βίντεο στην ανάλυση

πρώτα «ανωνυμοποιούνται», θολώνοντας κάθε αριθμό πινακίδας που έχει

εντοπιστεί και (2) οι ανιχνευθέντες αριθμοί που εντοπίζονται, αποθηκεύονται

σε διαφορετικό αρχείο (κειμένου) για μελλοντική χρήση από τους χρήστες.

Επίσης στη διατριβή αναφέρονται τα προβλήματα που προέκυψαν κατά τη

διαδικασία, καθώς και τα εργαλεία και οι μέθοδοι που χρησιμοποιήθηκαν για

την επίλυσή τους.

Το πρόγραμμα είναι γραμμένο στη γλώσσα προγραμματισμού Python. Αυτή η

γλώσσα προτιμήθηκε λόγω της καταλληλόλητάς της για την εν λόγω εργασία,

των πολλών συνεισφορών της στον τομέα της ανοιχτής όρασης υπολογιστή

(openCV) και της πληθώρας εργαλείων που είναι διαθέσιμα για δημόσια

χρήση (About OpenCV, 2022).

Όπως προαναφέρθηκε, ένα βασικό στοιχείο σε αυτήν την εργασία ήταν η

συμμόρφωση με τον κανονισμό GDPR περί προσωπικών δεδομένων, έτσι

ώστε τυχόν εντοπισμένα ευαίσθητα δεδομένα (όπως οι πινακίδες

κυκλοφορίας των οχημάτων) να προστατεύονται από μια διαδικασία

Ares
tis

 Pav
lid

es

2

ανωνυμοποίησης. Αυτό επιτυγχάνεται με τη θόλωση των μερών της εικόνας

που περιείχαν ευαίσθητες πληροφορίες. Η διαδικασία ανίχνευσης και

ανωνυμοποίησης που χρησιμοποιήθηκε επέδειξε υψηλή ακρίβεια και θα

μπορούσε επίσης να επεκταθεί σε άλλες εφαρμογές (Janowski, 2014).

Ares
tis

 Pav
lid

es

1

1. Introduction

The steady increase of vehicles on the streets and the pressing need to better

manage and continuously optimize traffic flows have led to the need for traffic

monitoring (Patel, 2013). There is a plethora of reasons why an around-the-

clock traffic monitoring program can help agencies worldwide, and why it is in

high demand by them (Janowski, 2014). With the necessary information about

car flows, the control and prediction of traffic jams and of accidents can be

improved (Cynthia Lum, 2011), and by using related camera-hosted

technologies could monitor unremittingly the traffic situation in the country and

provide transport authorities much needed information and unprecedented,

until now, monitoring capabilities, to manage their transport networks. A

typical ANPR system, as shown in the diagram of Figure 1-1, can be either

fixed or mobile and is already being used by law enforcement agencies

across the globe.

Figure 1-1 Typical ANPR system diagram of a mobile ANPR system (left) and a fixed ANPR System (right) (Mufti,
2021)

Ares
tis

 Pav
lid

es

2

1.1 Possible applications of machine vision in transport

Machine vision can serve the purpose of detecting and reading a license plate

that can be used in solving misdemeanors such as illegal parking, driver

license expiration, mechanical inspection of vehicle (roadworthiness tests

certificate expiration) (Han, 2020), or other more serious cases such as car

theft, and placing a car at a location and date for investigation purposes

(Sharma, 2019). With regard to traffic monitoring, the technology can be

utilized in traffic-counting at locations of interest and in providing information

about the traffic flow. This information can subsequently be used to explore if

a certain road is able to handle traffic demand and/or other key performance

metrics. An example of an ANPR system used for speed limit enforcement is

shown in Figure 1-2.

Figure 1-2 ANPR system used for speed limit enforcement (Infratech, 2014)

 Ares
tis

 Pav
lid

es

3

1.2 Overview of research methodology on ANPR technology

In order to develop a software program that can detect license plates in

images, a solid background in the field of computer vision had to be obtained

and many related programs in optical character recognition had to be

considered (Patel, 2013). The vast majority of the programs that were studied

were written in the Python programming language. The choice of using this

language for developing the code for the current study is further explained in

Chapter 1.3.

A similar to this thesis’s Python code structure, that can detect and extract a

car’s license plate numbers using images from a camera or video file, has

been reported by other researchers in the field of computer vision. (About

OpenCV, 2022; Patel, 2013; Sharifara, 2014)

Further, the specific language and generic computing technology, such as a

PC and a web camera, can furnish a developer with the tools to not only

develop a powerful ANPR application but to also test it in real-life situations.

1.3 The use of the Python programming language for the purpose of

this research work

As explained in Dubois (2007), Python is open-source and thus available

universally. It comes with a variety of standard libraries which contain support

for the majority of areas of computer science and data science, and its

“extensive set of third-party tools and modules covers additional tasks, from

managing a Web site to doing a fast Fourier transform to distributed or parallel

programming. Python’s motto, “batteries included,” is meant to convey the

Ares
tis

 Pav
lid

es

4

idea that Python comes with everything you need. Python is an interpreted,

high-level programming language and has become standard for exploratory,

interactive, and computation-driven scientific research” (Millman, 2011).

The Python programming language is one of the most popular languages for

scientific computing. Due to its top interactive nature and its continuously

upgrading list of scientific libraries, it is an attractive choice for algorithmic

development and investigative data analysis. Further, as a multipurpose

language, it is frequently used not only in academic applications but also in

industry (Pedregosa, 2011).

Furthermore, Python enables code reusability and flexibility. It has a fast edit-

inspect-debug which makes debugging a straightforward task in Python

programs. It has its own debugger written in Python itself. Also, Python

includes a variety of third-party components present in the Python Package

Index (PyPI).

In conclusion, Python is the most suitable programming language for the

current study, due to its abundance of functions, readily available library of

toolboxes and its vast knowledge base.

Ares
tis

 Pav
lid

es

5

2. Literature review

In this chapter, necessary background knowledge is presented in order to

describe ANPR-related technology. The definition and brief description of the

most critical aspects of the underlying code will enable the comprehension of

the code syntax subsequently presented in chapter “Code Structure”. The

sequencing of the code functions, as utilized in this thesis, can be altered to

serve different needs but the overall structure of the code used is similar to

several machine vision systems that use Python.

2.1 ANPR technology

Automatic Number Plate Recognition (ANPR) is an application of computer

vision technology and can be used in all sorts of applications such as listing

all the cars that are in a parking lot, helping crime investigations etc.

(Sharifara, 2014; Han, 2020).

Computer vision involves using a camera and a program that takes the

information and processes it in order to find a given object or character and

answer a certain question that the user asks about the object (Janowski,

2014; About OpenCV, 2022).

There are numerous machine vision tools for Python that use Optical

Character Recognition (OCR) technology such as Keras OCR, PyTesseract,

Calamari OCR etc. They often use image editing techniques like image

binarization, edge detection, Hough transform, blob detection, neural

networks (Draghici, 1997; Patel, 2013), cropping, blurring and adjusting the

Ares
tis

 Pav
lid

es

6

image in order to enable the computer to identify and recognize text in images

(About OpenCV, 2022).

Figure 2-1 Example of Tattile ALPR camera collecting data, such as the vehicle’s estimated speed, direction,
and country of origin. Some cameras can even classify the vehicle and recognise the brand, colour, class and
model.

Using cameras for traffic purposes must be fast and accurate, for avoiding

false penalties, providing evidence for the law as well as data for statistical

analysis. The aim of the current study is to fill the scientific gap. Unfortunately,

in Cyprus at the time this project was executed there was a lack of using

traffic cameras for law enforcement with efficiency. ANPR technology has

made its appearance in the country but it is not as trusted due to the

possibility of false penalties (Chatzivasilis, 2022).

2.2 Python programming language

Created by Guido van Rossum in 1991, Python is a high-level, object-oriented

programming language and it is easy to comprehend and use. According to

(Python® – the language of today and tomorrow), Guido van Rossum set the

following goals for Python in 1999:

• An easy and instinctive language powerful as all other programming

languages;

Ares
tis

 Pav
lid

es

7

• Open-source, enabling contribution from everyone to its development;

• An easy and readable code;

• To have short development times.

Python is widely used by researchers in several scientific domains, it is used

by companies around the world for data processing, and it supports different

styles of programming including structural and object-oriented providing the

user numerous programming capabilities (Srinath, 2017).

Some of the flexibilities that Python provides are its ability to use modular

components that were designed in other programming languages. For

example, you “can write a program in C++ programming language and import

it to python as a module and design a GUI for that program. The high-level

language serves as a “glue” to tie modules and components together to

rapidly create specialized applications” (Sanner, 1999). In the community of

software development this concept is known, but it can be used in a variety of

other fields, for example molecular computations.

Moreover, a model exported to Python language can serve as a reference

point for a final program making Python a very good choice for program

writing. Though scripting in Python has some requirements on user

knowledge in programming skills, it is designed to be learnt easily (Dobesova,

2011).

As a result, Python has very clear syntax and it is a suitable language for both

learning and real-world programming making it a great choice for this project.
Ares

tis
 Pav

lid
es

8

2.3 Python libraries

In order to reduce the writing time of a code, programming languages have a

set of pre-written functions that are called libraries. They make it simpler for

the user to write and compute the code for a given task.

For example, the function that computes the square root of a number, which is

used frequently in scientific research, is pre written in a math library. A library

eliminates the need for writing every time this function is when a new program

is created.

Libraries help the user recall the function in different programs and reduce the

risk of bugs in the code. These set of functions in a library were created in

order to accelerate the speed that the code is written and tested. The libraries

for python programming language used in this project are Opencv, Numpy

and Pytesseract OCR and are discussed in the following chapters. These

libraries enable the program to read and process images and extract

important features from them like shapes and characters.

2.4 Integrated Development Environment (IDE)

IDE is a software that provides the capability of constructing applications by

using a graphical user interface (GUI) along with frequently used developer

tools.

An IDE usually contains a text editor that can assist in writing software code

by using functions and text auto-completion. Also, it checks for bugs while the

code is being written. It uses automations that reduce repeatable tasks. It has

a compiler that turns the computer source code into binary code, packages it

Ares
tis

 Pav
lid

es

9

and runs tests. Furthermore, an IDE has a debugger which is a program for

testing other programs and can graphically display the location of a bug in the

original code.

There were multiple tests that were made, aiming to achieve the program’s

scope, and an IDE made the composition of the code and the insertion of the

libraries much easier. In this project, the Pycharm IDE was used in order to

test the code for the ANPR program which will be discussed in the next

chapter.

2.5 PyCharm IDE

PyCharm is an application developed by the firm ‘JetBrains’ as an IDE for

Python (Islam, 2015). It is commonly used for Python application

development. Some massive organizations use PyCharm as their Python IDE.

PyCharm is an application that enables the user to write Python scripts/code

and run them in a user-friendly environment. The code syntax is checked by

the application. All the necessary dependencies for a given project are

installed separately, eliminating the risk of interference between the libraries.

PyCharm was used due to its convenience in writing Python scripts and easy

access to multiple projects. All of this while learning some useful tips about

the Python language.

2.6 Region(s) Of Interest (ROI)

ANPR technology handles a large amount of image data in order to function.

Image processing is a high computational task and the PC running the code

has to analyze thousands of pixels in an image (and/or video frame) and

Ares
tis

 Pav
lid

es

10

determine if it contains the information of a character. In order to reduce the

amount of data being processed a region of interest (ROI) has to be identified

and then the original image has to be cropped. Locating a region of interest

lessens the computational cost and the code entanglement. For example, a

frequent size for an image has 1024x768 resolution and contains a total of

786,432 pixels. The region of interest for this project is the license plate

bounding box and it may be responsible for nearly 10% of the original image

area. This magnifies the simplification of the algorithm structure and overall

process time (Mitra, 2016; Badr, 2011).

The method for determining the ROI is based on the Haar cascade classifiers

which will be further described in the chapter 2.7.

2.7 Haar cascade classifier

The Haar feature-based cascade classifier is an object detection technique

created by P. Viola and M. Jones (Viola and Jones, 2001). Haar-like features

works by using machine learning based approach (involving AdaBoost

(Freund, 1997)). A cascade function is trained in a large number of positive

and negative images and then upgrades their classifier. It‘s been used to

locate objects amidst different images by sliding a fixed size window across

our image at multiple scales. At each of these phases, our window stops,

computes some features, and then classifies the region as the positive

images have a license plate and negative images without a plate) (Sharifara,

2014). The classifier uses the positive and negative images to train its

classifier. Therefore, the classifier is able to detect objects in other images by

extracting features from them. This requires a bit of machine learning. We

Ares
tis

 Pav
lid

es

11

need a classifier that is trained in using positive and negative samples of a

number plate. Given these positive and negative data points, we can “train” a

classifier to recognize whether a given region of an image contains number

plate. However, using a fixed sliding window and sliding it across every (x, y)-

coordinate of an image, followed by computing these Haar-like features, and

finally performing the actual classification can be computationally expensive.

OpenCV can perform plate detection using a pre-trained Haar cascade like

the one used in this project. Using Viola algorithm it declares numerical values

for features (e.g. edges, lines) effectively with the concept of integral

image (or summed-area table), which trumps the default computationally-

heavy way of subtracting sums of pixels across multiple regions of an entire

image.

In addition, it uses the ‘Cascade of Classifiers’. This means that instead of

applying hundreds of classifiers for the many features within the image at one

go (which is very inefficient), the classifiers are applied one by one.

For instance, in an image of a human face if the first classifier for the ‘eyes’

feature has failed (i.e. fail to detect human eyes in the image), the algorithm

does not bother applying the subsequent classifiers (e.g., nose, mouth, etc.).

Instead, it stops and declares that no face is detected.

2.8 Thresholding

Thresholding function accepts only grayscale images and provides an output

where each pixel value has been mapped to either zero or 255, depending on

two parameters – the current pixel value and the threshold limit. Any pixel

having value less than the decided limit would be mapped to zero (black) and

Ares
tis

 Pav
lid

es

12

any pixel having value greater than the limit would be mapped to 255 (white).

A lot of different and advanced thresholding techniques are available in

OpenCV (Sharma, 2019).

2.9 Contours

Contours can be understood as lines joining the boundary of the image based

on the changes in neighboring pixel values (CV, 2022). Finding contours in an

image is perhaps the most important aspect of this system as our license

plate contains characters inside a rectangle therefore it has to be able to

recognize the geometry arising from these lines. OpenCV provides versatile

functions for finding contours. One drawback of this function is that it does not

discriminate between the image and noise and therefore passing this image

directly would result in an incorrect output. Thus, some filtering techniques

have to be applied on the image in order to reduce noise and increase the

possibility of detecting the plates (Sharma, 2019).

2.10 Optical Character Recognition (OCR)

Characters in an image like letters, numbers or symbols can be recognized

through an OCR library. This library takes the original image and scans it in

order to find the text. In this project we try to scan only the region of interest,

in this case the number plate, in order to find extract the characters.

An industrial OCR uses algorithms studied by different researchers in the

areas of image processing, pattern recognition, machine learning, language

analysis, document understanding. There is no universal algorithm that is Ares
tis

 Pav
lid

es

13

suitable for any OCR problem, thus recent systems try to adapt themselves to

the given features of the image or document that is processed (Marosi, 2007).

There are currently several OCR libraries that can be used in Python, some of

which being the following: PyTesseract, Nautilus OCR, Keras OCR, Calamari

OCR, EasyOCR, Kraken OCR. In this project, the tool that is used for text

recognition is the PyTesseract library, which is discussed further in chapter

3.2.3.

Ares
tis

 Pav
lid

es

14

3. Software code structure

The developed code is structured as seen in the below figure.

Imports
Necessary
libraries

Image Capture

Number plate
detection

Character
Recognition

Blurring of
licence Plate

Export Licence
Plate Text

Export Licence
Plate Photo

Figure 3-1 Code Structure diagramm

Ares
tis

 Pav
lid

es

15

The code that was used in this project was based on previous ANPR

algorithms, as listed in Appendix A, with key implemented changes to them

listed below:

• The use of a blurring function for the plates, as shown in Table 3-11

Command for blurring the plates creating rectangle around them and

put text on the created rectangleTable 3-11, was added.

• The use of an OCR tool, in this case PyTesseract, for video streams

was used for the conversion of an image to text as shown in Table

3-10.

• Fine-tuning of function values, as seen in chapter 4.1. These function

values were changed from the default ones in the original codes, to fit

the needs of this study.

• The insertion of a cropping command for the frame as shown in Table

3-6.

• The insertion of a rotating command for original image from video

streams as shown in Table 3-7.

• The image saving command after detection of a license plate as shown

in Table 3-12.

The commands shown in Table 3-1 for:

• sharpening the image,

• applying Gaussian blur, and

Ares
tis

 Pav
lid

es

16

• applying canny edge detection

were also tested in order to see if the results’ accuracy was significantly

altered.

The final code didn’t have these commands because the resulting accuracy

wasn’t improved by using them.

Table 3-1 Commands for : sharpening the image , applying Gaussian blur and applying canny edge detection

Python command Code task

kernel = np.array([[0, -1, 0],

 [-1, 5, -1],

 [0, -1, 0]])

image_sharp = cv2.filter2D(src=imgGray,

ddepth=-1, kernel=kernel)

sharpening the image

image = cv2.GaussianBlur(imgGray, (5,5), 0)

applying Gaussian blur

edge = cv2.Canny(image_sharp, 255,255,

 5)

applying canny edge

detection

The code segments that retained similarities with the ANPR algorithms listed

in Appendix A was:

• Setting the Image size and brightness for webcam videostreams,

• The minimum area for the plate to be detected,

Ares
tis

 Pav
lid

es

17

• The transformation of the image to grayscale,

• The use of the existing haar-cascade file.

3.1 Computer specifications

The PC that was used for the development and execution of the code was

Dell Latitude E5470, with the following technical specifications:

Table 3-2 PC Specifications for writing and running the code

PC specifications

Feature Specification

Processing Unit (CPU): Intel Core i5 - 6300U @ 2.40 Ghz

Memory (RAM) 16 GB - DDR4

Graphic Card None

Web camera Yes

• Camera resolution

 0.92 megapixels

• HD Panel Resolution

 1366 1377 x 768 pixels

• FHD Panel Resolution

 1920 x 1080 pixels

• HD Panel Video Resolution (maximum)

 1366 x 768 pixels

• FHD Panel Video Resolution (maximum)

 1920 x 1080 pixels

Ares
tis

 Pav
lid

es

18

PC specifications

• Diagonal viewing angle

 74°

Hard Disk 400 GB

Operating System Microsoft Windows 10

Pycharm Application Installed

PyTesseract

Installed

The overall execution speed of the program was sufficient, given the PC

specifications. For faster results a PC with a graphic card and better CPU

would have a reduction in the calculation speed.

3.2 Necessary libraries for running the code

In the first lines of the developed code, all the necessary dependencies are

loaded in the python environment (PyCharm Application). These

dependencies are:

• Opencv-python version 4.6.0.66

• Numpy version 1.23.3

• Pytesseract OCR version 0.3.10

These libraries contain all fit-to-task functions in order to achieve the

calculations needed to perform image processing and information extraction.

The role of each library will be discussed in subsequent chapters.

Ares
tis

 Pav
lid

es

19

3.2.1 OpenCV Python library, version 4.6.0.66

In this project, the OpenCV library was used as a tool that can read an image

and detect a license plate shape (contour) in it. OpenCV was used because it

is an open-source library and it contains the necessary functions for reading

an image or video frame. The video source can be either offline (i.e. a video

file) or live (i.e. a web camera). The library has the capability of detecting

contours and shapes and extracting their area in order to determine if the

rectangle that it reads has the potential of being a license plate (i.e. a

rectangle). A detected rectangle is the region of interest (ROI) for this project

and it takes a very small portion of the image that is analyzed. Since all

license plates have common width to length ratio the tool searches this kind of

geometry in the picture frame in order to extract the characters. With the aim

of finding this geometry, the library uses a pre-trained Haar Cascade XML file.

This geometry is embedded in the weights file

“haarcascade_russian_plate_number.xml” which contains a trained model for

detecting our region of interest. After this ROI is found, a bounding box

around the number plate is created and the image is cropped in order to

reduce data for the optical character recognition which will be used in the next

step. The functions that were imported from OpenCV library start with the

expression “cv2.” and are shown in chapter 4 (The code in).

3.2.2 NumPy version 1.23.3

NumPy is an array programming library for the Python language, and it is

widely used in scientific research as it provides fundamental algorithms for

scientific computing. It is used in order to enable Python to do computations

between multidimensional arrays (Harris, 2020). For image processing

Ares
tis

 Pav
lid

es

20

NumPy supplies numeric computing capabilities and is a dependency of

OpenCV's Python bindings (Howse, 2013).

An image in OpenCV can be seen as an array of pixels. In a grayscale image,

every pixel has values for y,x coordinates and a value from 0 to 255 where

255 is white and 0 is black. We can access these values through NumPy and

perform calculations.

NumPy also includes multiple array functions found in linear algebra, and Fast

Fourier Transformations (FFT). “Its goal is to create the corner-stone for a

useful environment for scientific computing” (Oliphant, 2006).

3.2.3 PyTesseract OCR 0.3.10

PyTesseract OCR is a library that contains the algorithms for extracting

optical characters from an image and convert it into text. It is able to extract

characters from an image file, in this case the characters that are been

searched are latin alphabet characters A-Z and numeric values 0-9, since all

license plates in Cyprus contain this sort of format.

The PyTesseract process for making the recognition possible involves several

steps. Tesseract assumes that its input is a binary image with optional

polygonal text regions defined. The first step is a connected component

analysis in which the outlines of the components are stored. At this stage,

outlines are gathered together, purely by nesting, into blobs. Blobs are

organized into text lines, text lines are broken into words. Recognition then

proceeds as a two-pass process. In the first pass, an attempt is made to

recognize each word in turn. Each word that is satisfactory is passed to an

adaptive classifier as training data. The adaptive classifier then gets a chance

Ares
tis

 Pav
lid

es

21

to more accurately recognize text lower down the page. A final phase resolves

fuzzy spaces, and checks alternative hypotheses for the x-height to locate

small-cap text. Tesseract is behind the leading commercial engines in terms

of its accuracy. Its key strength is probably its unusual choice of features. Its

key weakness is probably its use of a polygonal approximation as input to the

classifier instead of the raw outlines (Smith, 2007).

The latest releases of Tesseract support deep-learning-based OCR that is

significantly more accurate. The OCR engine itself is built on a Long Short-

Term Memory (LSTM) network, a kind of Recurrent Neural Network (RNN).

3.3 Image capture

OpenCV provides image capture from video file. In the table below the

commands for obtaining the image in a video file or video stream are given

Table 3-3 Commands in python for obtaining the image in a video file or video stream

Python command Code task

cap = cv2.VideoCapture("leof strovol2.mp4") Imports the Video File

cap = cv2.VideoCapture(0) Imports image from camera

In order for the code to scan every frame of the video and save it, a while loop

had to be written. In the table below the command for performing this task is

given:

Table 3-4 While loop which scans every frame of the video and save it , in the variable “img”

Python command Code task Ares
tis

 Pav
lid

es

22

While True:

 success, img = cap.read()

Scans every frame of the video stream

and saves it, in the variable “img”

For every frame that the code reads is performs some modifications to the

original image in order for the Haar cascade classifier to detect the license

plate. In the next subchapter number, the number plates’ detection commands

are explained.

3.4 Number plate detection

Most of the detection algorithms used for detecting license plates incorporate

a lot of techniques, according to their application, in order to make the

program to detect license plates like color changing, blurring, cropping of the

image. For example, by changing the color of the image to grayscale, the

background of the plates, stand out more easily due to most of the plates

having a white color which is detected faster. In this project the first

transformation that was chosen is the command which transforms the colored

image to grayscale. In the table below the command for performing this task is

given:

Table 3-5 Command that Turns image to grayscale

Python command Code task

imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Turns image to
grayscale

 Ares
tis

 Pav
lid

es

23

The second transformation was the cropping of the original frame to a

proportion that the remaining image only contained the license plates being

studied. For example, in video file 1 by using the command

Table 3-6 Command that crops the indicated portion of the image in video file 1

Python command Code task

img = img[200:600, 0:1000]

Crops the indicated
portion of the image
in video file 1

The third transformation was the rotation of the original image to any degree

needed, in order to align horizontal the plate text and help the OCR detect it

more easily. As shown in the table below, the degree chosen for video file 1 to

be rotated was 4 degrees clockwise and was made possible by the

commands :

Table 3-7 Rotates images from video stream by 4 degrees clockwise

Python command Code task

M = cv2.getRotationMatrix2D([0, 0], 4, 1.0)

img = cv2.warpAffine(img, M, (0, 0))

Rotates images
from video stream
by 4 degrees
clockwise

After the image color is transformed, the open source Haar cascade classifier

was used with a trained model for detecting the plates by searching

rectangles of a given geometry. The command for using the classifier is given

in the table below: Ares
tis

 Pav
lid

es

24

Table 3-8 Command for searching the rectangle shape that number plates have using the classifier from haar
cascade file

Python command Code task

numberPlates = plateCascade.detectMultiScale(imgGray, 1.2,
4)

Looks for plate’s
shape using the
cascade classifier

The model was pre-trained in detecting Russian plates which had similar

shape and size like the plates used in Cyprus. The trained model was chosen

because it is an open-source classifier that is widely used by researchers and

has good accuracy for detecting the plates.

3.5 Character recognition

After the license plate is detected the minimum area of the plate is given to

help program to detect the plate’s rectangle size and location in the image.

The portion of image that has the license plate is cropped and is saved in the

variable “imgROI”.

This is done by the commands in the table below:

Table 3-9 Command for setting the plate’s rectangle minimum area and cropping that portion of image

Python command Code task

for (x, y, w, h) in numberPlates:
area = w * h
 if area > minArea:

minimum area of the
plate for detecting
the rectangle size
and location in the
image

imgRoi = img[y:y + h, x:x + w]

Crops the license
plate is saves it in
the variable
“imgROI”

Then the characters are recognized by using the command:

Table 3-10 Command for performing character recognition with Pytesseract OCR tool and printing the output

Python command Code task

Ares
tis

 Pav
lid

es

25

pytesseract.image_to_string(imgRoi,
config=f'--psm 7 --oem 3 -c
tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXY
Z0123456789')

takes the cropped
image named
“imgROI” and
performs character
recognition using
PyTesseract OCR.

3.6 Blurring of license plate

After the detection of the license plates, they had to be blurred out by hiding

information that is on the plates for privacy issues. The command for blurring

the part of the image that contained the plate, creating a rectangle around the

plates and put text on the created rectangle is given in the table below:

Table 3-11 Command for blurring the plates creating rectangle around them and put text on the created
rectangle

Python command Code task

plate = cv2.blur(imgRoi, ksize=(20, 20)
Blurs the plates

cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 10)
Creates rectangle in
the image around
the plates

cv2.putText(img, "NumberPlate", (x, y - 5),
Puts text in above
rectangle created in
the image

cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)
Chooses font for the
text

3.7 Exporting license plate text

The license plate text is exported or printed in the PyCharm Terminal after

Tesseract converts the image to text. The text is shown while the program

runs. This is done from the command given in the Error! Reference source

not found. below:
Ares

tis
 Pav

lid
es

26

Table 3-12 Command for printing the output of the Tesseract OCR

Python command Code task

print(pytesseract.image_to_string(imgRoi,
config=f'--psm 7 --oem 3 -c
tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789'))

Print the OCR
output in the
terminal

3.8 Saving image

The license plates after are located and cropped are saved in an image file in

the python project folder with the extension ‘.jpeg’ by use of the following

command:

Table 3-13 License plates’ command to be saved in an image file

Python command Code task

cv2.imwrite("images" + str(count) + ".jpg", imgRoi)

saves plate
picture in an
image file

Ares
tis

 Pav
lid

es

27

4. The code in Python

In this chapter, further details are shown about the choices for the function

values of the code that is used in this research work.

4.1 Function values

There is no universal calibration that performs optimization for any given video

file. The function values used in the project were chosen because of the

overall increase of accuracy of the OCR and Haar cascade file.

4.1.1 OCR function

In order for the OCR to perform with higher accuracy, adjustments in the

image and OCR library had to be made through their function values. For

example, through the below shown command.

The command in Figure 4-1 signals the OCR to search only for the certain

character list numbers from 0-9 and letters A-Z. This relates to the fact that

number plates in Cyprus have only these characters in them.

The variables “psm” (Page Segmentation Modes) and “oem” (OCR Engine

Mode) were calibrated. In the tables below the options that were available for

“psm” and “oem” are listed.

print(pytesseract.image_to_string(imgRoi,
 config=f'--psm 7 --oem 3 -c
tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ012345
6789'))

Figure 4-1 Command that performs OCR in the image and prints the output in the
terminal

Ares
tis

 Pav
lid

es

28

Table 4-1 Options for setting Tesseract to only run a subset of layout analysis and assume a certain form of
image.

--psm N

Sets Tesseract to only run a subset of layout analysis and assume a certain form of image.
The options for N are:

0 = Orientation and script detection (OSD) only.
1 = Automatic page segmentation with OSD.
2 = Automatic page segmentation, but no OSD, or OCR. (not implemented)
3 = Fully automatic page segmentation, but no OSD. (Default)
4 = Assume a single column of text of variable sizes.
5 = Assume a single uniform block of vertically aligned text.
6 = Assume a single uniform block of text.
7 = Treat the image as a single text line.
8 = Treat the image as a single word.
9 = Treat the image as a single word in a circle.
10 = Treat the image as a single character.
11 = Sparse text. Find as much text as possible in no particular order.
12 = Sparse text with OSD.
13 = Raw line. Treat the image as a single text line, bypassing hacks that are Tesseract-
specific.

The options 5-13 for “psm” were chosen for calibration. The choices were

tested with the same video files for objective measurement. The resulting

accuracies can be seen in the tables later in the chapter Results Analysis.

For the variable “oem”, which selects the OCR Engine mode, the option 3 was

chosen as seen in the image below.

Table 4-2 Options for Setting Tesseract Engine mode.

--oem N
Specify OCR Engine mode. The options for N are:
0 = Original Tesseract only.
1 = Neural nets LSTM only.
2 = Tesseract + LSTM.
3 = Default, based on what is available.

Ares

tis
 Pav

lid
es

29

4.1.2 Picture size and brightness

Other variables that can were calibrated were the picture frame width, the

height and the brightness. The values set for these parameters depended on

the video quality and lightning that were chosen to process. This was done in

order for the cascade classifier to detect the plates in the images more

accurately by separating the background from the plates. Subsequently, the

change in these variables could help increase the detection accuracy of the

image characters by Pytesseract OCR.

The commands for setting these parameters are shown below.

Table 4-3 Commands for picture size and brightness for webcam video stream

Python command Code task

cap.set(3,640)
cap.set(4,480)
cap.set(10, 150)

Sets image size and
brightness in the desired
value.

In Figure 4-2 one can see the various options that can be adjusted by the

command cap.set (option 1-18, value) in order to gain more control over the

image parameters.

Ares
tis

 Pav
lid

es

30

Figure 4-2 Options 1 till 18 for the command “cap.set”(option 1-18,value)

In this project the options 3,4 and 10, for setting the frame width, height and

brightness respectively, as seen in Figure 4-2, were chosen to remain

constant for the duration of the study.

4.1.3 Size of minimum plate area

Further, the minimum plate area value is set to 500 and is calculated by

multiplying the width and height of the rectangle that is found when a plate is

recognized by the Haar cascade classifier. After the area is found, the code

performs cropping of the initial image. Sometimes, motorcycles and large

dumpster trucks mount their plates sideways. This would have to be

considered for a highly accurate license plate system. In this project we won’t

consider this case

Some countries and regions allow for multi-line plates with a near 1:1 aspect

ratio; again, we won’t consider this edge case.

Ares
tis

 Pav
lid

es

31

The minimum area of the plate could be checked by the command as seen in

Figure 4-3 :

4.1.4 Color of the image

Monochrome (or black & white) representation of image is more appropriate

for OCR analysis, because it defines clear boundaries of contained characters

(Martinsky, 2007).

The initial image is turned to grayscale by the command seen in the table

below:

Table 4-4 Command for turning colored image to gray

Python command Code task

imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Turns colored image to
grayscale

4.1.5 Edge detection

The command in the table below is used for detecting the edges of the

number plate:

Table 4-5 Command for the detection of the number plate using cascade classifier

Python command Code task

plateCascade.detectMultiScale(imgGray, 1.2, 4)
Detects the edges of the
number plate

for (x, y, w, h) in numberPlates:
 area = w * h
 if area > minArea:
 imgRoi = img[y:y + h, x:x + w]

Figure 4-3 Command for finding Minimum area

Ares
tis

 Pav
lid

es

32

 The parameters scaleFactor (value=1.2) and Minimum Amount of

Neighboring Rectangles (value=4) were calibrated and the resulting accuracy

for each option is given in the ‘Results’ chapter.

The parameter scaleFactor is responsible for specifying how much the image

size is reduced at each image scale. In this project scaleFactor is given a

value of 1.2 which means that OpenCV will scale the image down by 20% for

better matching the car plates.

The parameter minNeighbors specifies how many neighbors each candidate

rectangle should have in order for the candidate rectangle to be retained.

(OpenCV, 2022). This parameter influences the quality of the detected

objects. For this project the value was checked between1-5 and the default

value was set to 4.

Ares
tis

 Pav
lid

es

33

5. Results

The Results for our ANPR system are shown in this chapter. The code is able

to detect the license plate and extract the characters from video streams. It

also blurs the license plate for privacy issues and the plate detected is

exported in an image file as seen in the following images.

Figure 5-1 Result using PC camera to run the code in Pycharm IDE .Photo in daylight conditions

Output from OCR

Output plate
detection using haar
cascade classifier

Blurring of the
License
plate(Anonymization)

Ares
tis

 Pav
lid

es

34

Figure 5-2 Result using PC camera to run the code in Pycharm IDE. Photo in nightlight conditions (poor
accuracy)

Figure 5-3 Result using video file 1 to run the code in Pycharm IDE

Figure 5-4 Result using video file 1 to run the code in Pycharm IDE (Letter i is mistaken with number 1)

Figure 5-5 Result using video file 1 to run the code in Pycharm IDE(Letter M is mistaken with letter H)

Ares
tis

 Pav
lid

es

35

Figure 5-6 Result using video file 1 to run the code in Pycharm IDE(Letter “S” is mistaken with number “5”)

Figure 5-7 Result using video file 2 to run the code in Pycharm IDE

Figure 5-8 Result using video file 2 to run the code in Pycharm IDE (Number plate detection fails) Ares
tis

 Pav
lid

es

36

Figure 5-9 Result using video file 2 to run the code in Pycharm IDE

Figure 5-10 Result using canny edge detection and video file 1 to run the code in Pycharm IDE

5.1 Approaching system accuracy as a two-stage problem

As seen in Figure 5-4,Figure 5-5,Figure 5-6,Figure 5-8 , although number

plates were detected, the resulting text output from the OCR was failing to be

accurate. In order to comprehend the reasons that affected the resulting

accuracy, the system that is described in this project was chosen to be

examined in two main stages:

a) automatic number plate detection

Ares
tis

 Pav
lid

es

37

b) automatic number plate (OCR) recognition

The subsequent results’ accuracy is given in the following chapters 5.2, 5.3,

5.4, and the accuracy is discriminated for the two video files that are used and

for each stage of the system process.

5.1.1 First stage’s accuracy results (Automatic number plate detection)

In order to evaluate each step involved in this process, two video files having

100 cars were used. The accuracy of the first stage was calculated by dividing

A (the total number of accurate plate detections) with N (Total plate

detections) which is the sum of F (Total Number of false detected Plates) and

C (total number of car plates in the video). The equation for calculating

automatic number plate detection accuracy is given in Figure 5-11:

Figure 5-11 Equation for calculating automatic number plate detection accuracy

For example in Figure 5-8 the plate detection stage was giving a wrong part of

an image as a license plate and that was counted in F (Total Number of False

detected Plates). If a car plate was in the frame and the algorithm didn’t detect

it, that was counted in C (Number of Cars in the video). Only if the code

Accuracy of automatic number plate detection (%) =
஺

ிା஼
∗ 100 =

஺

ே
∗ 100

Where:

F: Total Number of false detected Plates (not cars)

C: Total Number of car plates in the video

A: Total Number of accurate plate detections

Ares
tis

 Pav
lid

es

38

detected an actual plate of a car was counted in A (Total accurate plate

detections).

The accuracy of the number plate detection stage was also tested for its

connection with the parameters seen in chapters 5.3 Scale factor accuracy

results and chapter 5.4 Minimum amount of neighboring rectangles accuracy

results.

The accuracy results of the first stage for each parameter value and for each

video file can be seen in Table 5-1,Table 5-2,Table 5-3.

5.1.2 Second stage’s accuracy results (automatic number plate (OCR)

recognition)

The second stage’s accuracy which is OCR recognition output was measured

in the videos by dividing O (Total accurate number of OCR recognitions) with

S (Total number of OCR recognitions) which is the sum of W (Total number

of false OCR detection of plates) and P (Total number of car plates in the

video). The equation for calculating automatic number plate (OCR)

recognition accuracy is given in Error! Reference source not found..

Figure 5-12 Equation for calculating automatic number plate detection accuracy

Accuracy of automatic number plate (OCR) recognition (%) =
ை

ௐା௉
∗ 100 =

ை

ௌ
∗ 100

Where:

W: Total Number of false OCR detection of Plates (not cars) Ares
tis

 Pav
lid

es

39

The accuracy results of the second stage for each parameter value and for

each video file can be seen in Table 5-1,Table 5-2,Table 5-3.

 This stage was highly affected by the tool used to recognize the characters in

the image, which is pytesseract library in this case. The quality of the video

image and any modifications in the original image affected the accuracy of the

OCR.

The accuracy of the OCR output was also tested for its connection with the

parameter in 5.2 5.2 Page segmentation modes (PSM) accuracy results .

5.2 Page segmentation modes (PSM) accuracy results

In order to appraise the accuracy of the OCR library, a sample of about 100

cars were introduced to the developed software through two video files and

the performance for each car sample was recorded by changing the

parameter “psm” and keeping the other values like scale factor, picture size,

minimum amount of neighboring rectangles constant and to the values seen

in Table 6-1. In the table below one can see the accuracy scored for the given

video file and for each option of the psm.

Table 5-1 Accuracy scored for the given video file for each option of the psm

--psm N with scale factor =1.2 and minNeigh=4

N

Accuracy
for number

plate
detection

in
Video file 1

(%)

Accuracy for
number plate
detection in
Video file 2

(%)

Accuracy of
automatic

number plate
(OCR)

recognition in
Video file 1(%)

Accuracy of
automatic

number plate
(OCR)

recognition in
Video file 2 (%)

5 = Assume a single uniform block of
vertically aligned text.

87 48
0 0

6 = Assume a single uniform block of text. 87 48 44 30
7 = Treat the image as a single text line. 87 48 69 40
8 = Treat the image as a single word. 87 48 25 0

Ares
tis

 Pav
lid

es

40

--psm N with scale factor =1.2 and minNeigh=4

N

Accuracy
for number

plate
detection

in
Video file 1

(%)

Accuracy for
number plate
detection in
Video file 2

(%)

Accuracy of
automatic

number plate
(OCR)

recognition in
Video file 1(%)

Accuracy of
automatic

number plate
(OCR)

recognition in
Video file 2 (%)

9 = Treat the image as a single word in a
circle.

87 48
56 40

10 = Treat the image as a single character. 87 48 63 20
11 = Sparse text. Find as much text as

possible in no particular order.
87 48

56 10
12 = Sparse text with OSD. 87 48 44 10
13 = Raw line. Treat the image as a single

text line, bypassing hacks that are
Tesseract-specific.

87 48

25 0

Ares
tis

 Pav
lid

es

41

Figure 5-13 Chart of the resulting Accuracy for a given psm option with constant scale factor =1.2 and minNeigh=4

0

44

69

25

56
63

56

44

25

0

30

40

0

40

20

10 10

0

48 48 48 48 48 48 48 48 48

87 87 87 87 87 87 87 87 87

0

10

20

30

40

50

60

70

80

90

100

5 = Assume a
single uniform

block of
vertically

aligned text.

6 = Assume a
single uniform
block of text.

7 = Treat the
image as a

single text line.

8 = Treat the
image as a

single word.

9 = Treat the
image as a

single word in a
circle.

10 = Treat the
image as a

single character.

11 = Sparse
text. Find as
much text as
possible in no

particular order.

12 = Sparse text
with OSD.

13 = Raw line.
Treat the image
as a single text
line, bypassing
hacks that are

Tesseract-
specific.

Ac
cu

ra
cy

Psm options

Accuracy for OCR Video file 1
Accuracy for OCR Video file 2
Accuracy for ANP Detection Video file 2
Accuracy for ANP Detection Video file 1

Ares
tis

 Pav
lid

es

42

5.3 Scale factor accuracy results

As with the previous appraisal, in order to measure the accuracy of the scale

factor parameter a sample of about 100 cars were introduced in the program

through two video files and the performance for each sample was recorded by

changing the parameter scale factor and keeping the other values like psm

minimum amount of neighboring rectangles constant and to the values seen

in Table 6-1. In the table below, one can see the accuracy scored for the

given video file for each value from 1-2 with an interval of 0.1.

Table 5-2 Accuracy scored for the given video file for each value from 1-2 with an interval of 0.1

Scale factor N with psm =7 and min Neighb=4

N

Accuracy for number
plate detection in

Video file 1
(%)

Accuracy for
number plate
detection in
Video file 2

(%)

Accuracy of
automatic number

plate (OCR)
recognition in Video

file 1 (%)

Accuracy of automatic number
plate (OCR) recognition in

Video file 2 (%)
1.01 7 3 0.0 0.0
1.1 64 12.5 62.5 30.0
1.2 87 48 69.0 30.0
1.3 75 22.5 69.0 20.0
1.4 50 15 25.0 10.0
1.5 53 12.5 38.0 10.0
1.6 47 10 25.0 0.0
1.7 35 7.5 19.0 0.0
1.8 30 5 25.0 0.0
1.9 30 5 25.0 0.0
2.0 45 17.5 31.0 20.0

Ares
tis

 Pav
lid

es

43

Figure 5-14 Chart of the resulting accuracy scored for the given video files for each Scalefactor value

0

62.5

69 69

25

38

25

19

25 25

31

0

30 30

20

10 10

0 0 0 0

20

7

64

87

75

50
53

47

35
30 30

45

3

12.5

48

22.5

15
12.5

10
7.5

5 5

17.5

0

10

20

30

40

50

60

70

80

90

100

1.01 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Ac
cu

ra
cy

Scale factor value

Accuracy for OCR Video file 1

Accuracy for OCR Video file 2

Accuracy for ANP Detection Video file 1

Accuracy for ANP Detection Video file 2

Ares
tis

 Pav
lid

es

44

5.4 Minimum amount of neighboring rectangles accuracy results

In order to measure the accuracy of the minimum amount of neighboring

rectangles parameter, a sample of about 100 cars were introduced in the

program through two video files and the performance for each sample was

recorded by changing the parameter minimum amount of neighboring

rectangles and keeping the values of psm, scale factor to the values seen in

Table 6-1. In the table below you can see the accuracy for the given video

files with the parameter neighboring rectangles’ value range from 1-5 with an

interval of 1.

Table 5-3 Accuracy for the given video files with the parameter neighboring rectangles’ value range from 1-5
with an interval of 1.

Minimum amount of neighboring rectangles N with psm=7 and scale factor=1.2

N

Accuracy for
number plate
detection in
Video file 1
(%)

Accuracy for
number plate
detection in
Video file 2
(%)

Accuracy of automatic number
plate (OCR) recognition in Video
file 1 (%)

Accuracy of automatic
number plate (OCR)
recognition in Video file 2 (%)

1 15 32 55 27
2 17 33 65 27
3 20 23 50 18
4 87 48 69 30
5 55 23 33 10

Ares
tis

 Pav
lid

es

45

Figure 5-15 Chart of the resulting accuracy scored for the given video files for each Minimum amount of neighboring rectangles value

15 17
20

87

55

32 33

23

48

23

55

65

50

69

33

27 27

18

30

10

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Ac
cu

ra
cy

 (
%

)

Minimum amount of neighboring rectangles
value (N)

Accuracy for ANP
Detection Video file 1

Accuracy for ANP
Detection Video file 2

Accuracy for OCR Video
file 1

Accuracy for OCR Video
file 2

Ares
tis

 Pav
lid

es

46

6. Results analysis

The overall system accuracy is highest if the parameters values are set as

shown in Table 6-1 and the highest accuracy scores for the first stage (

Accuracy of number plate detection) in Video file 1 & 2 and for the second

stage (Accuracy of OCR recognition in Video file 1 & 2) are given in Table

6-2.

Parameter name Value with the highest accuracy

PSM 7
Scale Factor 1.2
Minimum amount of neighboring
rectangles

4

Table 6-1 Values which scored higher accuracy for the given parameters

Highest Accuracy scores for the parameters in Table 6-1

Name Resulting accuracy (%)

Accuracy for number plate detection in
Video file 1

87

Accuracy for number plate detection in
Video file 2

48

Accuracy of automatic number plate (OCR)
recognition in Video file 1

69

Accuracy of automatic number plate (OCR)
recognition in Video file 2

30

Table 6-2 Highest Accuracy scores using the parameter values in Table 6-1

6.1 Automatic number plate detection results

The code is able to detect license plates with 87% accuracy, as seen in

Figure 5-13 Chart of the resulting Accuracy for a given psm option with

constant scale factor =1.2 and minNeigh=4. Moreover in the aforementioned

figure is been shown that PSM modes didn’t affect the accuracy of ANP

Ares
tis

 Pav
lid

es

47

detection because they are a part of OCR library that is performing

calculations after the license plate is detected. The accuracy of the code is

highly depended on the haar cascade classifier file, the videos’ image quality

and image preprocessing used in this project. When the haar cascade

classifier file is trained in a large sample of images containing license plates it

performs with higher accuracy and can reach accuracies used in industrial

applications. The first stage was affected by the aforementioned parameters.

It gave the highest results for video file 1 and for video file 2 using the

parameter values in the table below. For video file 1 gave 87% accurate plate

detections and for video file 2 resulted in 48% accurate plate detections.

 Table 6-3 Parameters that affected stage 1 and the values with the highest accuracy

The Video file 1 had a greater quality than video file 2 and this resulted in

higher accuracy score. The parameters scale factor and minimum amount of

neighboring rectangles are affecting the ANP detection as seen in from the

results in Figure 5-14 and Figure 5-15 because they are preprocessing the

image before haar cascade file performs the detection and therefore

disturbing the detection process. By fine tuning the scale factor parameter the

code was able to scale the image to a certain point that is more easily to trace

the license plate in the image. By fine tuning the minimum amount of

neighboring rectangles ,the plates detected by the haar cascade file had to

reach a certain amount of detections before the code decide if they are indeed

license plates.

Parameter name Value with the highest accuracy

Scale Factor 1.2
Minimum amount of neighboring
rectangles

4

Ares
tis

 Pav
lid

es

48

The haar cascade file had its limitations which had to do with the certain file

trained to detect the plates. These limitations are further expanded in chapter

7.1.

6.2 Automatic number plate (OCR) recognition results

By using PyTesseract library we were able to extract vehicle number text from

vehicle license plate .The code gave up to 70% accuracy score which, even

though high, is not recommended for industrial application. It presented the

limitations of an ANPR system and ways to increase system accuracy if some

factors such as image quality and transformation are improved.

The values of the parameters in Table 6-1 were adjusted in order to

approximate the highest performance of the code.

The image orientation affected the OCR accuracy because the pytesseract’s

number 7 PSM mode was set to detect a text with horizontal alignment. An

image rotation function was used and the value in the function was set to

rotate the image in video file 1 by 4 degrees clockwise which made the text in

the image appear horizontal .Since OCR was set to detect horizontal text it

gave higher accuracy score. For higher rotation values, the OCR didn’t

perform as well. Therefore a horizontal alignment of the license plate text has

to be obtained for increasing system accuracy ,by rotating the image to a

certain value using a function, in order for the OCR recognize better the

characters.

Ares
tis

 Pav
lid

es

49

The results would have a positive impact on the method’s accuracy if these

factors were improved. That is shown after multiple calibration settings done

to the code shown in this research as to other codes used in other ANPR

projects.

Ares
tis

 Pav
lid

es

50

7. Discussion of results

In this project, the process of license plate recognition was examined through

widely known algorithms and open source libraries. The code is able to detect

the license plate using the Haar cascade classifier and extract the characters

using PyTesseract with an accuracy highly depended on the quality of the

video file and camera used to take the image. Lighting conditions were

constant through the video and it could be more difficult for the code to

perform under changing or low lightning conditions. For example as shown in

Figure 5-2 the output of the ocr is false due to the different lightning

conditions.

Furthermore, Haar cascades tend to be prone to false-positive detections,

require parameter tuning when being applied for detection, and are not as

accurate as the more industrial algorithms.

An ANPR system is a complex problem due to the number of functions it

needs to perform and conditions to meet. The developed system has not

achieved 100% overall accuracy in the stages examined. Certain factors like

different illumination conditions, text orientation, vehicle shadow and non-

uniform size of license plate characters, different font and background color

affect the performance of ANPR and OCR recognition system. Some systems

work in these restricted conditions only and might not produce good amount

of accuracy in adverse conditions. Haar cascades are an important part of the

computer vision and image processing literature and are still used with

OpenCV still useful, particularly when working in resource-constrained

devices as we cannot afford to use more computationally expensive object

Ares
tis

 Pav
lid

es

51

detectors. Some of the systems are developed and used for a specific

country. It is known that very few of the ANPR are developed in Cyprus and

there is an increasing demand to develop such a system for a country like

Cyprus. This thesis and the underlying research provides a comprehensive

study of recent developments and future trends in ANPR.

7.1 Limitations of first stage and ways to increase system accuracy

Limitations of the ANPR detection stage are summed in the list that follows:

• The code doesn't do well with images affected by artifacts including

partial occlusion, distorted perspective, and complex background.

• The accuracy of the program highly depends on the quality of the

image taken, lightning of the scene

• The license plate shape poses a problem in its detection,

• number plate shape mistaken for a similar shape like a building

window or rectangular road sign.

• The license plate cleanliness obstructs ANP detection.

• The accuracy of the program highly depends on the Haar cascade file

and the number of trained images

and ways to increase ANP detection accuracy by:

• the use of a better camera.

• Use of better trained haar cascade file

• Rotation of the image

Ares
tis

 Pav
lid

es

52

• Image denoising

• Good lightning conditions

• Image color manipulation

• Image pre-cropping to lessen computations and false positives.

7.2 Limitations of second stage and ways to increase system

accuracy

Tesseract limitations:

• The text orientation poses a problem in its detection and recognition,

• The license plate cleanliness obstructs OCR recognition.

• The OCR tool doesn't do well with images affected by artifacts

including partial occlusion, distorted perspective, and complex

background

• The developed OCR and its underlying open-source libraries are not as

accurate as some commercial solutions available to us.

• the confusion of the OCR for some letters and numbers that look alike,

for example number “1” and the letter “I”

• It may find gibberish and report this as OCR output.

• If a document contains languages outside of those given in the -l LANG

arguments, results may be poor. Ares
tis

 Pav
lid

es

53

• It is not always good at analyzing the natural reading order of

documents. For example, it may fail to recognize that a document

contains two columns, and may try to join text across columns.

• Poor quality scans may produce poor quality OCR.

• It does not expose information about what font family text belongs to.

and ways to increase OCR accuracy by:

• The use of a better camera.

• The use of better OCR tool

• Rotation of the image

• Image denoising

• Good lightning conditions

• Image color manipulation

7.3 How could traffic cameras be accurate with minimum possibilities

of fail?

ANPR technology can be as accurate as over 90% of the occasions if some

variables of the program are changed (Ganta, 2020). For example, if:

• the cascade model that is trained for finding license plate is exposed to

a large number of samples containing plates.

• Better image quality is obtained. This done by better camera and

lighting conditions.

Ares
tis

 Pav
lid

es

54

• An OCR that further preprocesses the image and performs with higher

accuracy is used.

Ares
tis

 Pav
lid

es

55

8. Further applications

The procedure shown in this research can be repeated using tools that have

open access and can be modified to serve different applications. Already

traffic cameras can also be used as:

• Congestion charge cameras to detect vehicles inside the chargeable

area which have not paid the appropriate fee.

• High-occupancy vehicle lane cameras to identify vehicles violating

occupancy requirements.

• Level crossing cameras to identifying vehicles crossing railways at

grade.

• Noise pollution cameras that record evidence of heavy vehicles that

break noise regulations by using compression release engine brakes

• Parking cameras which issue citations to vehicles which are illegally

parked or which were not moved from a street at posted times.

• Toll-booth cameras to identify vehicles proceeding through a toll booth

without paying the toll.

• Turn cameras at intersections where specific turns are prohibited on

red. This type of camera is mostly used in cities or heavy populated

areas. Ares
tis

 Pav
lid

es

56

• Automatic number-plate recognition systems can be used for multiple

purposes, including identifying untaxed and uninsured vehicles, stolen

cars and potentially mass surveillance of motorists.

• Bus lane cameras that detect vehicles that should not be in the bus

lane. These may be mounted on buses themselves as well as by the

roadside

In Figure 8-1 an existing application of an ANPR system is shown where it

allows authorized vehicles into controlled areas as well as for tracking the

vehicles’ movements.

Figure 8-1 Vehicle license plates been used by ANPR camera system allowing authorized vehicles into
controlled areas as well as for tracking the vehicles’ movements. (Nortech, 2022)

In this project, we covered how to set up OpenCV and TesseractOCR (in the

form of PyTesseract) within Python and how to use their powerful in-built

functions to detect car license plates and extract the text from these number

plates. Ares
tis

 Pav
lid

es

57

On top of that, we also discussed several theoretical concepts such as Haar

Cascades, multi-scale detection parameters, image processing for optimized

recognition, and TesseractOCR’s page segmentation modes (PSM).

This project serves as a stepping stone for larger scale (and more advanced)

computer vision projects, such as bulk extraction of car license plate text from

large image quantities and applying these concepts on video files or live feed.

Ares
tis

 Pav
lid

es

58

Bibliography

(n.d.).

(1905). "Time Recording Camera for Trapping Motorists". In Popular Mechanics. Vol. 7, no. 9.
Hearst Magazines. (p. p. 926). Chicago: Popular Mechanics Company.

About OpenCV. (2022). Retrieved 10 15, 2022, from Opencv.org:
http://www.opencv.org/about

Astor, J. J. (1894). From A Journey In Other Worlds. United States: D. Appleton and Co.

Badr, A. M. (2011). "Automatic number plate recognition system.". Annals of the University
of Craiova-Mathematics and Computer Science Series 38, no. 1 , 62-71.

Chatzivasilis, M. (2022, 05 31). Philenews. Retrieved 06 01, 2022, from Άκυρα 11 χιλιάδες
πρόστιμα - Δεν προχωρά η επόμενη φάση:
https://www.philenews.com/koinonia/eidiseis/article/1478967/akyra-11-chiliades-
prostima-den-prochora-i-epomeni-fasi

CV, O. (2022). Open CV. Retrieved 08 2022, from Tutorial_py_contours_begin:
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html

Cynthia Lum, J. H. (2011). License plate reader(LRP) police patrols in crime hot spots: an
experimental evaluation in two adjacent jurisdictionss. Journal of Experimel
Criminology, Springer Netherlands, pp. 312-345.

Dobesova, Z. (2011). Programming language Python for data processing. (pp. 4866-4869).
International Conference on Electrical and Control Engineering, 4866-4869.

Draghici, S. (1997). A neural network based artificial vision system for licence plate
recognition. International Journal of Neural Systems, 113-126.

Dubois, P. F. (2007). Guest editor's introduction: Python: batteries included. Computing in
Science & Engineering 9, no. 3, 7-9.

Edmonton Police. (2011). Web Archive. Retrieved 10 20 , 2022, from Edmonton Police
Service Intersection Safety Camera Ticket Cancellations:
https://web.archive.org/web/20111105094905/http://www.edmontonpolice.ca/Tra
fficVehicles/IntersectionSafetyCameras/ISCCancellations.aspx

Edureka. (2022, 07). Edureka. Retrieved 07 2022, from Top 10 Features of Python You Need
to Know: https://www.edureka.co/blog/python-features/

Freund, Y. a. (1997). A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences 55, no. 1, 119-139.

Ares
tis

 Pav
lid

es

59

Ganta, S. a. (2020). A novel method for Indian vehicle registration number plate detection
and recognition using image processing techniques. Procedia Computer Science, 167,
2623-2633.

Han, B. L. (2020). License plate image generation using generative adversarial networks for
end-to-end license plate character recognition from a small set of real images.
Applied Sciences, 10(8) p.2780.

Harris, C. M. (2020). Array programming with NumPy. Nature, 585(7825), pp.357-362.

Howse, J. (2013). OpenCV computer vision with python. Birmingham: Packt Publishing, 1-
122.

Infratech, T. (2014, February 4). ANPR is a very useful tool in traffic
management,enforcement,tolling and security. Retrieved 08 02, 2022, from Traffic
Infratech magazine: https://www.trafficinfratech.com/anpr-is-avery-useful-tool-in-
traffic-management/

Islam, Q. N. (2015). Mastering PyCharm. Birmingham - Mumbai: Packt Publishing Ltd.

Janowski, L. K. (2014). Quality assessment for a visual and automatic license. Multimedia
Tools and Applications, 68(1), pp.23-40.

Leung, K. (2022, 12 28). Towards Data Science. Retrieved 08 02, 2022, from HANDS-ON
TUTORIALS Russian Car Plate Detection with OpenCV and TesseractOCR:
https://towardsdatascience.com/russian-car-plate-detection-with-opencv-and-
tesseractocr-dce3d3f9ff5c

Maleehak. (2020, 09 10). Car-number-plate-recognition-using-OpenCV. Retrieved 08 02,
2022, from github.com: https://github.com/Maleehak/Car-number-plate-
recognition-using-OpenCV/blob/master/detectvideo.py

Marosi, I. (2007). Industrial OCR approaches: architecture, algorithms, and adaptation
techniques. . Document Recognition and Retrieval XIV , (Vol. 6500, pp. 11-20). SPIE.

Martinsky, O. (2007). Algorithmic and mathematical principles of automatic number plate
recognition systems. . Brno University of technology, 20-23.

Millman, K. J. (2011). Python for scientists and engineers. Computing in Science &
Engineering, 13(2), pp.9-12.

Mitra, D. a. (2016). Automatic number plate recognition system: a histogram based
approach. IOSR Journal of Electrical and Electronics Engineering vol .11, 26-32.

Mufti, N. a. (2021). Automatic number plate Recognition: A detailed survey of relevant
algorithms. Sensors, 21(9), p.3028.

(1961). Netherlands: Precision Speed Trap. In New Scientist Vol. 12 No 265 (p. p. 687).
Netherlands: New Scientist.

Ares
tis

 Pav
lid

es

60

Nortech. (2022, 08). AUTOMATIC NUMBER PLATE RECOGNITION (ANPR). Retrieved 08 2022,
from Nortech Control:
https://www.nortechcontrol.com/solutions/vehicle/automatic-number-plate-
recognition-anpr/

Oliphant, T. (2006). A guide to NumPy . In T. Oliphant, A guide to NumPy (pp. (Vol. 1, p. 85).).
USA: Trelgol Publishing.

OpenCV. (2022, 07). cv::CascadeClassifier Class Reference Public Member Functions.
Retrieved 07 2022, from Open Source Computer Vision:
https://docs.opencv.org/3.4/d1/de5/classcv_1_1CascadeClassifier.html

Patel, C. &. (2013). Automatic Number Plate Recognition System (ANPR): A Survey.
International Journal of Computer Applications (IJCA), 69. 21-33. 10.5120/11871-
7665.

Pedregosa, F. G. (2011). Scikit-learn: Machine learning in Python. The Journal of machine
Learning research 12, 2825-2830.

Python® – the language of today and tomorrow. (n.d.). Retrieved 09 2022, from Python
Institute: https://pythoninstitute.org/about-
python#:~:text=Python%20was%20created%20by%20Guido,called%20Monty%20Py
thon's%20Flying%20Circus.

Sanner, M. F. (1999). Python: a programming language for software integration and
development. Journal of Molecular Graphics and Modelling (J Mol Graph Model 17
), no. 1, 57-61.

Shakya, S. (2020, 06 12). Number_Plate_Detection. Retrieved 08 02, 2022, from github.com:
https://github.com/thesachinshakya/Number_Plate_Detection/blob/master/Numbe
r_plate_detection.py

Sharifara, A. R. (2014). A general review of human face detection including a study of neural
networks and Haar feature-based cascade classifier in face detection. 2014
International symposium on biometrics and security, 5.

Sharma, P. R. (2019). Localisation of license plate and character recognition using Haar
cascade. In 2019 6th International Conference on Computing for Sustainable Global
Development (INDIACom)IEEE., 971-974.

Smith, R. (2007). An overview of the Tesseract OCR engine. Ninth international conference
on document analysis and recognition (ICDAR 2007), Vol. 2, pp. 629-633 IEEE.

Srinath, K. (2017). Python–the fastest growing programming language. . International
Research Journal of Engineering and Technology, 4(12), pp.354-357.

Viola and Jones. (2001). Rapid object detection using a boosted cascade of simple features.
In Proceedings of the 2001 IEEE computer society conference on computer vision and
pattern recognition., CVPR 2001 (Vol. 1, pp. I-I). Ieee.

Ares
tis

 Pav
lid

es

61

Wilson, C. W. (2010). Speed cameras for the prevention of road traffic injuries and deaths.
Cochrane database of systematic reviews, (11). Wiley Publishers.

Ares
tis

 Pav
lid

es

APPENDIX A

In this Appendix, the code that was used in this project is shown along with

the code that was influenced by. The changes made to perform the ANPR

task are given later in this chapter . Most of the codes found are able to detect

license plates but cannot recognize text. This task was made possible by

combining commands from various files, that perform extraction of characters

from an image, through Pytesseract.

The code bellow was used in this project and is responsible for the

importation of a video file and plate recognition using a haar cascade file and

also the blurring of the plates.

Explanation for every command in the code lines can be seen next to the” #

“symbol.

The code used is given below:

import cv2 # Imports the library OpenCV version 4.6.0.66

import numpy as np # Imports the library numpy version 1.23.3 and calls it

with the letters “np”

import pytesseract # Imports the library Pytesseract OCR 5.2.2022

pytesseract.pytesseract.tesseract_ cmd =

r'C:\Users\user\AppData\Local\Tesseract-OCR\tesseract.exe' # Location of

the pytesseract file, in the system

Ares
tis

 Pav
lid

es

63

plateCascade =

cv2.CascadeClassifier("haarcascade_russian_plate_number.xml")#Imports

the Haar Cascade file

minArea = 500 #Sets the value for minimum Area to be detected

cap = cv2.VideoCapture("leof strovol2.mp4") #Imports the Video File

cap.set(3, 640) #Sets the frame width to desired value (only for webcam)

cap.set(4, 480) #Sets the frame Height to desired value (only for webcam)

cap.set(10, 150) #Sets the frame brightness to desired value (only for

webcam)

count = 0

while True:

 success, img = cap.read() # read first frame as an image

 img = img[200:600, 0:1000] # crops the frame by desired value

 M = cv2.getRotationMatrix2D([0, 0], 4, 1.0) #rotates image by 4 degrees

clockwise

 img = cv2.warpAffine(img, M, (0, 0)) #Creates new rotated image

 imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Turn image to

Grayscale

numberPlates = plateCascade.detectMultiScale(imgGray, 1.2, 4) # Detects

the edges of a number plate from Haar Cascade file

Ares
tis

 Pav
lid

es

64

 for (x, y, w, h) in numberPlates:

 area = w * h #Computes area of number plate

 if area > minArea: #if minimum area detected ,it extracts the Region of

Interest

 imgRoi = img[y:y + h, x:x + w] #Crop the ROI from the frame

 plate = cv2.blur(imgRoi, ksize=(20, 20)) #Blur the part of the image

that has the plates

 cv2.imwrite("images" + str(count) + ".jpg", imgRoi) # Save result image

 cv2.imshow('ROI', imgRoi) # Display ROI result image

 print(pytesseract.image_to_string(imgRoi,

 config=f'--psm 7 --oem 3 -c

tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')

)#Detect and Show the Characters of the plate

 # Create Rectangle Around the Plates Plate

 cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 10)

 # Put text above the Rectangle

 cv2.putText(img, "NumberPlate", (x, y - 5),

cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)

 img[y: y + h, x:x + w] = plate # Replaces blurred part of image to the

original

Ares
tis

 Pav
lid

es

65

 cv2.imshow("Result", img) # Display result image

 cv2.waitKey(10)#Time for displaying the result

 count += 1 #Proceed to the next frame

Taken from (Maleehak, 2020) the following code recognizes plates , crops

and blurs the part of the image that contain the plates.

import

cv2

 import numpy as np

 carPlatesCascade =

cv2.CascadeClassifier('haarcascades/haarcascade_russian_plate_number.xml')

 cap = cv2.VideoCapture('carVideo.mp4')

 cap.set(cv2.CAP_PROP_FRAME_WIDTH, 320)

 cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 80)

 if (cap.isOpened()==False):

 print('Error Reading video')

 while True:

 ret,frame = cap.read()

 gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

 car_plates = carPlatesCascade.detectMultiScale(gray,scaleFactor=1.2,

 minNeighbors = 5, minSize=(25,25))

 for (x,y,w,h) in car_plates:

 cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)

 plate = frame[y: y+h, x:x+w]

 plate = cv2.blur(plate,ksize=(20,20))

 # put the blurred plate into the original image

 frame[y: y+h, x:x+w,2] = plate

 if ret == True:

 cv2.imshow('Video',frame)

 if cv2.waitKey(0) & 0xFF == ord('q'):

 Break

 else:

 Break

 cap.release()

Ares
tis

 Pav
lid

es

66

 cv2.destroyAllWindows()

The code bellow is responsible for the importation of a video stream and plate

recognition from a haar cascade file. Taken from (Shakya, 2020)

import

cv2

 import numpy as np

 frameWidth = 640 #Frame Width

 franeHeight = 480 # Frame Height

 plateCascade =

cv2.CascadeClassifier("D:\SACHIN\haarcascade_russian_plate_number.xml")

 minArea = 500

 cap =cv2.VideoCapture(0)

 cap.set(3,frameWidth)

 cap.set(4,franeHeight)

 cap.set(10,150)

 count = 0

 while True:

 success , img = cap.read()

 imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 numberPlates = plateCascade .detectMultiScale(imgGray, 1.1, 4)

 for (x, y, w, h) in numberPlates:

 area = w*h

 if area > minArea:

 cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

 cv2.putText(img,"NumberPlate",(x,y-

5),cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2)

 imgRoi = img[y:y+h,x:x+w]

 cv2.imshow("ROI",imgRoi)

 cv2.imshow("Result",img)

 if cv2.waitKey(1) & 0xFF ==ord('s'):

 cv2.imwrite("D:\SACHIN\cascade\IMAGES"+str(count)+".jpg",imgRoi)

 cv2.rectangle(img,(0,200),(640,300),(0,255,0),cv2.FILLED)

 cv2.putText(img,"Scan

Saved",(15,265),cv2.FONT_HERSHEY_COMPLEX,2,(0,0,255),2)

 cv2.imshow("Result",img)

 cv2.waitKey(500)

 count+=1

 Ares
tis

 Pav
lid

es

67

The code bellow is responsible for the extraction of text from an image. It

performs character recognition using pytesseract and exports the resulting

text: taken from (Leung, 2022)

Display the text extracted from the car plate

print(pytesseract.image_to_string(carplate_extract_img_gray_blur, config = f'-

-psm 8 --oem 3 -c

tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')

)

Ares
tis

 Pav
lid

es

