

FRONT-END INTERFACE FOR A DISTRIBUTED STORAGE

SYSTEM USING LARAVEL

Andreas Neofytou

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Master Degree of

Computer Science

at the University of Cyprus

Recommended for Acceptance

by the Department of Computer Science June, 2023

And
rea

s N
eo

fyt
ou

ii

ABSTRACT

This Thesis is about a distributed system application which is able to manage large

shared data objects in distributed storage systems (DSS) while increasing the number

of concurrent accesses, maintaining high levels of consistency assurance, and assuring

smooth operation. So, the backend of the program manages the files using the COBFS

framework where the files are fragmented to blocks. The fragments belong to the

same object, each file is a linked list of objects that can be covered by blocks. The

framework supports typical file operations, such as create, read, write/update, delete

or change permission access. The users can concurrently access the same files at the

same time by modifying or reading different blocks of the object. The front-end part

which is a user interface is what this thesis focuses on. This user interface was created

with Laravel, a popular PHP web application framework. Laravel is one of the best

options for web developers looking to construct high-quality web applications since it

offers reliable and effective tools for creating contemporary, dynamic user interfaces.

The application starts with a login page where different users have different accesses

(for example administrative access where the user has access to all files). When the

user logs in, there are actions like rename, read and download a file while he/she can

“drag and drop” or create a file in the directory of the application to have access on it.

Also, the users can change password and username. Another, part of the interface is

the Database. The database consists of three tables, the files table which has

information about files, the users table which has information about each user and the

permissions that has all the accesses of users on files. The database is running on

MySQL. The interface is designed to be efficient and simple so that it helps users to

understand how it works and operates. Lastly, the front-end application is connected

to the servers that implement the COBFS framework. The files are displayed to the

user through a dashboard of the interface. Overall, it is an application that aims to

simplicity, efficiency, operability and concurrency.

Andreas Neofytou – University of Cyprus, 2023

And
rea

s N
eo

fyt
ou

iii

APPROVAL PAGE

Master of Science in Computer Science Thesis

FRONT END INTERFACE FOR A DISTRIBUTED STORAGE SYSTEM

USING LARAVEL

Presented by

Andreas Neofytou

Research Supervisor

 Prof. Chryssis Georgiou

Committee Member

Prof. Anna Philippou

Committee Member

Associate Prof. George Pallis

University of Cyprus June, 2023

And
rea

s N
eo

fyt
ou

iv

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Prof. Chryssis Georgiou for his continuous

support and guidance that he offered me throughout my thesis. Further, I would like to

thank Dr. Nicolas Nicolaou and Ms. Andria Trigeorgi that were by my side

throughout of the project. I would also like to thank my family and my friends for all

for their support.

And
rea

s N
eo

fyt
ou

v

TABLE OF CONTENTS

Chapter 1 ..1

Introduction ...1

1.1 Motivation ..1

1.2 Development Methodology ...2

1.3 Related work ...3

1.4 Document Organization ..4

Chapter 2 ..5

An Overview of Distributed Storage Systems ..5

2.1 Distributed Systems ..5

2.2 Distributed Storage System ...6

2.3 Atomicity ..7

2.4 Challenges of Distributed Memory ..8

Chapter 3 ..9

The COBFS Framework ..9

3.1 Fragmented Objects ..9

3.2 The COBFS Algorithm ...9

3.3 COARESF Algorithm ... 10

Chapter 4 .. 11

Program Specifications .. 11

4.1 Why a Good Interface is Needed for COBFS ... 11

4.2 User Interface Specifications for COBFS .. 12

4.2.1 General Specifications of the System ... 12

4.2.2 System Requirements and Specifications ... 12

4.2.3 System User Specifications ... 13

4.3 System Architecture .. 13

4.4 Laravel Framework as a Tool to Implement the User Interface 14

And
rea

s N
eo

fyt
ou

vi

4.5 MVC... 16

4.6 Sanctum Security .. 20

4.7 Bootstrap .. 21

4.8 Database in Laravel ... 21

4.8.1 Entity Relationship Diagram ... 22

4.8.2 Tables ... 23

4.8.3 Laravel's Query Builder ... 24

4.9 HTTP Requests using GUZZLE in Laravel ... 26

4.10 Creation of APIs to Communicate with Servers using POST and GET 28

4.11 EMAIL Verification in Laravel using Mailtrap as a Testing Tool 31

Chapter 5 .. 34

Program Implementation ... 34

5.1 Login Page .. 34

5.2 Dashboard ... 35

5.3 Change Password .. 36

5.4 Rename File Page ... 37

5.5 Administrator Access Page .. 38

5.6 The Database Page .. 39

5.7 The Permissions Page ... 41

5.8 Register Page .. 44

Chapter 6 .. 48

Conclusions ... 48

1.1 Summary .. 48

1.2 Future Work .. 49

Bibliography ... 50

And
rea

s N
eo

fyt
ou

vii

TABLE OF FIGURES

Figure 1.1 Dashboard of User Interface..…...………………………………………….2

Figure 2.1 Atomicity Read/Write………...……………………………………………8

Figure 3.1 Basic architecture of COBFS..10

Figure 4.1 System Architecture..14

Figure 4.2 Views of User Interface…………………………………………………...16

Figure 4.3 The App Layout blade file………………………………………………...17

Figure 4.4 Dashboard…………………………………………………………………18

Figure 4.5 App Layout ……………………………………………………………….18

Figure 4.6 Controller File ……………………………………………....……………19

Figure 4.7 Routes file………………………………………………………………...19

Figure 4.8 Sanctum in Routes file……………………………………………………21

Figure 4.9 ENV file……………………………………………………………….….22

Figure 4.10 Entity Relationship Diagram...22

Figure 4.11 Record creation in FileID……………………..…………………….…...25

Figure 4.12 Delete Record….…...……………………………………………………25

Figure 4.13 FILL function Laravel Databases…..….……….………………………..25

Figure 4.14 HTTP Request example 1….………………………..…….………….….27

Figure 4.15 HTTP Request example 2……….…………………………...…………..27

Figure 4.16 API Request example 1…………….………………………………...….28

Figure 4.17 API Request example 2…….………………………………………...….29

Figure 4.18 API Request example 3……….………………………………………....30

Figure 4.19 API Request example 4……….………………………………...……….31

Figure 4.20 User Model with Email Verification….……………………...………….32

Figure 4.21 Routes with middleware verified 1…….………………...……………...32

And
rea

s N
eo

fyt
ou

viii

Figure 4.22 Routes with middleware verified 2…….…………………………..........33

Figure 5.1 Login……………………………………………………………………...34

Figure 5.2 Dashboard…………………………………………………………………35

Figure 5.3 Dashboard…………………………………………………………………36

Figure 5.4 Dashboard 2…………………………………………………………….…36

Figure 5.5 Password change……………………………………………………….…37

Figure 5.6 Rename File……………………………………………………………….37

Figure 5.7 Administrator Access…………………………………….…………….…39

Figure 5.8 Database Access………………………………………………………..…39

Figure 5.9 Database Access 2…………………………………………………….…..41

Figure 5.10 Modify Table….…………………………………………………………41

Figure 5.11 Modify Permissions.……………………………………..………….…...41

Figure 5.12 Access……….…………………………………………………………...42

Figure 5.13 Icon of File…….……………………………………………………...…42

Figure 5.14 Modify Permissions 2….……………………………………………...…43

Figure 5.15 Permissions Table……….……………………………………………....43

Figure 5.16 Modify Permissions 3……….……………………………………….......43

Figure 5.17 Modify Permissions……….………………………………………......…44

Figure 5.18 Register……………….……………………………………………..…...45

Figure 5.19 Success Registration...…….…………………………………………..…45

Figure 5.20 Failed Registration………….…………………………………………...46

Figure 5.21 Email Verification……….…………………………………….….…..…46

Figure 5.22 Mailtrap…………….………………………………………………...….46

Figure 5.23 Mailtrap 2……….……………………………………...………………..47

Figure 5.24 Database…………………….…………………………………...………47

And
rea

s N
eo

fyt
ou

ix

LIST OF TABLES

Table 1 User Table……………...……….…………………………………...……….23

Table 2 Permissions Table……………….…………………………………...………23

Table 3 Files Table……………...……….…………………………………...………24

And
rea

s N
eo

fyt
ou

1

Chapter 1

Introduction

1.1 Motivation

We live in a world where most of the data are digitalized and big data are a very

important part in our life. The problem is that we need to manage these data, so

distributed storage systems [1] and concurrent accesses are needed. Large volumes of

data can be stored and managed across several network nodes using distributed

storage systems. A distributed storage system’s main objective is to ensure data

consistency across all network nodes and to offer high availability, fault tolerance, and

scalability. A distributed system is not centralized avoiding a single point of failure.

Therefore, to let users use this distributed system a user interface is needed. A good

user interface should have the following characteristics: it is easy-to-use, user-friendly

and predictable for the user, meaning it will do the functionalities as expected from

the user. It also, has the main functions the distributed system needs in order to

operate correctly. This project focuses on the user interface that is built on the Laravel

framework [6].

Data consistency [1,2] is one of the main obstacles to designing a distributed storage

system. Data consistency is the quality of having the same view of the data at all times

across all nodes in the network. Due to network delay, bandwidth restrictions and

node failures, it is difficult to provide good consistency in a distributed storage

system. As a result, weak consistency models rather than strong consistency are

utilized by many distributed storage systems.

Weak consistency allows for eventual consistency, which means that while there may

be a slight delay before all nodes have the same view of the data, updates to the data

will eventually spread to all nodes in the network. Data inconsistencies may emerge

from this delay, although it is frequently a fair trade-off given the scalability and fault

tolerance advantages of a distributed storage system.

To this respect, the COBFS framework [1,2] was introduced towards leading to do a

DSS with strong consistency and high concurrency guarantees. So, this study is about

an interface for a system not to just store data, but also to enable users to easily

maintain, update, delete and download files (data), avoiding problems like race

conditions or crashes when multiple accesses happen to a file. The solution to these

problems is a distributed storage system using COBFS, which manages huge items by

using a block fragmentation method. The main focus of this study is the development

of front-end prototype for providing an easy-to-use user interface for COBFS. The

main focus was on creating a user interface that is effective and user friendly and lets

the users work fast and learn quickly the capabilities of the system. Figure 1.1 shows

the dashboard of the system which is one of the main pages of the user interface.

And
rea

s N
eo

fyt
ou

2

Figure 1.1 Dashboard of User Interface

1.2 Development Methodology

The study was initiated by becoming aware of the concept of the Distributed Storage

System and of the COBFS framework. We were then given the assignment of building

an intuitive, simple-to-use user interface using the Laravel framework.

Subsequently, we started to read and investigate the research of COBFS and the

capabilities of distributed storage systems and before starting the project. Then, we

studied research papers that we were given [1,2]. This made it easier to understand the

capabilities and features that are needed to be built into the user interface.

We started working on the user interface once we had a better knowledge of the

system. Then, the next step was to understand what is Laravel. So, we started learning

how Laravel works and what exactly are the capabilities of this framework. Laravel is

an open-source PHP web framework that is intended for the development of web

applications. In other words, it is a framework that helps developers build websites for

systems. The goal is to provide an administrator control panel and dashboard for all

users that would make it simple for users to manage their files and other operations

that are needed from the distributed storage system. The user interface was created to

be simple to use and straightforward, including capabilities for routine tasks like

changing passwords and read/write operations on files as well as obvious navigation.

To make sure the user interface satisfied COBFS, we routinely communicated with

the research team throughout the project. To enhance the user experience, suggestions

were included by the university researcher into the design. The user interface was also

routinely tested to make sure it worked properly without getting any errors and

crashes.

After implementing the dashboard, we started to work on the API integration as the

project advanced. The Distributed Storage System utilizing COBFS was built to

operate with APIs created using Laravel. These APIs include some functionalities for

example, getting files which returns all the files information of a particular user. To

make sure they worked properly and offered the user-required functionalities, these

APIs underwent testing. The research team proved after testing that APIs would

And
rea

s N
eo

fyt
ou

3

enable the interface to be integrated to the COBFS system. We kept working on the

user interface and APIs as the project came to a close, improving their functionality

and design to make sure it complied with all requirements.

The outcome in the end was a user interface and API system that allowed COBFS to

manage files. The APIs offered the essential capability for managing files and

carrying out typical activities like renaming files and requesting user tokens, while the

user interface was created to be simple to use and traverse.

1.3 Related work

As more data is created and has to be kept securely and effectively, distributed storage

systems (DSS) are becoming more common. However, maintaining data in these

systems can be difficult, especially for non-technical users. To solve this issue, user

interfaces (UI) are required to let people to interact with the DSS. A study by M. I. Ali

and M. D. Assaf [13], examines previous work on UI for DSS, concentrating on two

major areas: UI design principles and UI features. These principles and features of the

related work helped us to understand how our study should start and have a better

view for what we should expect from our UI that is implemented in this study.

The article begins by going through the design guidelines that should be followed

while creating a UI for DSS. Usability, learnability, adaptability, consistency, and

beauty are examples of Distributed Storage System UI. Usability relates to how easily

users can complete tasks using the UI, whereas learnability refers to how easily users

can learn to use the UI. The capacity of the UI to adapt to varied user demands is

referred to as flexibility, whereas consistency guarantees that the UI is predictable and

recognizable to users. Finally, aesthetics relates to the UI's visual attractiveness, which

might influence users' impressions of its usability and efficacy. All of these are very

important for this kind of UIs and we were influenced by these guidelines as we tried

to build the UI on Laravel to maintain all these design guidelines.

The study finishes by outlining future research areas in the field of UI for DSS. These

include incorporating natural language processing and machine learning into UI

design, as well as creating new UI elements that can assist users in better

understanding and managing their data in DSS. Furthermore, the article emphasizes

the importance of additional research on the usability and efficacy of UI for DSS, as

well as the establishment of defined criteria for measuring UI performance.

Overall, this article presents a thorough analysis of the relevant work on UI for DSS,

stressing the main design concepts and aspects to consider when creating an effective

UI for these systems. The report offers significant insights for DSS academics and

practitioners, as well as consumers who must engage with these systems on a daily

basis. [13] This article was a great choice that helped us understand the ideology for

our study. This article was very helpful and enabled us to understand all of the

ideology that our UI needed to be implemented. All the examples of UIs that this

related work includes, helped us to build our system (usability, learnability, flexibility,

consistency and attractiveness)

And
rea

s N
eo

fyt
ou

4

1.4 Document Organization

In Chapter 2 we overview of what is a Distributed System and explain what is a

Distributed Storage System in more detail. Also, emphasis is given on atomicity and

why it is important for DSS.

Chapter 3 overviews the COBFS framework. It analyses the framework and explains

basic information that help the reader to understand the framework better.

Chapter 4 gives all the interfaces’ specifications in detail. Also, it explains all of the

components of Laravel that were used to build successfully the User Interface of this

study.

In Chapter 5, all of the pages of the User interface are analyzed in detail. This lets the

reader understand all of the main UI functionalities and gives a good starting point for

anyone that reads this study to be able to use in an effective way the User Interface.

In the last chapter, Chapter 6, some conclusions are given for this study, as identified

during the implementation of the User Interface as well as some difficulties that we

faced and how we managed to overcome them. Lastly, there is a section of future

work with suggestions on how this work can be continued and expanded in the future.

And
rea

s N
eo

fyt
ou

5

Chapter 2

An Overview of Distributed Storage Systems

2.1 Distributed Systems

In a distributed system [1,2], different components are dispersed across a number of

computers (or other computing devices) connected to a network. A system is

decentralized if its components are found in different areas, with no or limited

coordination. In other words, a distributed system is a collection of independed

components that work together and appear to users as one coherent system. These

devices divide up the labor and coordinated their efforts to do the task more quickly

than if only one device had been in charge of it. Also, this kind of systems avoid the

single point of failure where if a device fails the system will keep working avoiding

the problem where the system will stop. This provides high availability or reliability to

any system that is distributed.

There are a lot of objectives and principles of distributed systems, the most important

are Transparency, Heterogeneity, Openness, Scalability, Performance, Dependability.

Transparency is when hiding the distribution from users and making the system look

like a single system. The different types of Transparency are:

• Access: gain unified access to resources.

• Location: conceal the location of a resource.

• Migration: is the movement of resources without affecting access.

• Relocation: is the movement of resources when they are used.

• Replication: Hide the fact that the resource has several copies. Copies of a

resource must have the same name.

• Concurrency: concurrent access to a resource by competing users.

• Failure: Hiding a resource's failure and recovery.

Heterogeneity is when connecting users and resources like remote resource access and

controlled resource sharing. Other components of Heterogeneity are variety and

diversity which include communication network, material, operating systems,

programming languages and databases and Implementations from various software

development actors.

And
rea

s N
eo

fyt
ou

6

Openness is the ability that enables collaboration across implementations from various

vendors operating on various platforms (the distributed systems have to be scalable).

Scalability is the principle that allows the distributed system to be scalable if,

following a significant growth in the systems’ resources and users, the system remains

efficient and effective.

Performance is the characteristic of the distributed system that aims for the system to

be fast on processing process.

Dependability has three main objectives fault-tolerance, availability and security. All

the systems have faults, but a distributed system should have the ability to

troubleshoot and fix faults or hide them in order for the system to work properly.

Availability is the probability that the system will function successfully whenever it is

accessible to service its users and security refers to the securities of information and

data.

2.2 Distributed Storage System

A distributed storage system [4] is a distributed system that allows data to be

dispersed over numerous physical servers or devices, and typically across different

data centers. Distributed storage system is a software-defined storage solution that

allows access to data when, where, and with whom someone chooses. Distributed

storage system is a logical volume management system that is designed to handle

scalability and data access in a HA (High Availability) environment while also

detecting and responding to faults and cyber threats.

Massively scalable cloud storage systems like Amazon S3 and Microsoft Azure Blob

Storage, as well as on-premise distributed storage systems like Cloudian Hyperstore,

are built on distributed storage [4].

Several types of data can be stored in distributed storage systems:

• Files: a distributed storage system enables devices to mount a virtual drive, with

the real files spread over several workstations.

• Data: is stored in volumes known as blocks in a block storage system.

• Objects: a distributed object storage system encapsulates data in objects, each of

which is recognized by a unique ID or hash.

There are various advantages of using distributed storage systems (some of them have

already been explained in Section 2.1):

• Scalability: the fundamental reason for spreading storage is to grow horizontally,

providing additional storage capacity to the cluster by adding more storage nodes.

• Redundancy: for high availability, backup, and disaster recovery, distributed

storage systems can store several copies of the same data.

And
rea

s N
eo

fyt
ou

7

• Cost: distributed storage allows for the use of less expensive, commodity hardware

to store huge amounts of data at a low cost.

• Performance: In some cases, distributed storage can outperform a single server

because it can store data closer to its customers or enable massively parallel access

to enormous files.

• Fault tolerance: is the ability to keep data available even when one or more nodes

in a distributed storage cluster fail.

Some of the main challenges of distributed system are Consistency, Availability, and

Partition Tolerance. Partition Tolerance is the capacity to recover from a partition

failure comprising a portion of the data. Consistency is when every node or user has

the same view of the data at any given time, regardless of which client has modified

the data [2]. Availability is the probability that the system is working properly at any

given time and it is available to serve its users. As mentioned, there are many

examples of distributed systems. In this study COBFS is considered, which is

presented in the next chapter.

2.3 Atomicity

An important consistency property in distributed storage systems is atomicity or

linearizability [1,2]. Atomicity is when every operation in an object seems to happen

sometime between its invocation and its return. Atomicity is a solution where all

operations are executed in a way as if executed on a single machine, strong

consistency. Coverability [1] is a consistency condition that extends linearizability and

concerns versioned objects. A coverable (versioned) object implementation is an

object which the read operation returns both the version and the value of the object.

Writes, on the other hand, try to write a "versioned" value to the object. If the reported

version is older than the most recent, the write is ignored and transformed into a read

operation, preventing the object from being overwritten by a newer version.

Even in the face of complex processes and erratic network conditions, a distributed

storage system may offer strong assurances of consistency and dependability by

assuring atomicity. This is crucial for applications that depend on the availability and

integrity of data, such as those that deal with financial transactions, medical

information, or data used in scientific research.

Atomicity access conditions:

• A function reading p of an object x returns either the value of x's most recent

complete writing or the value of a writing that is concurrent with p (but does

not have to be finished).

• If a read function p1 reads the value written by a write function g1 and a read

function p2 reads the value written by a write function g2 and p1≠p2, then

g2→g1.

And
rea

s N
eo

fyt
ou

8

Examples of atomicity:

Figure 2.1 shows two examples based on the atomicity conditions. The first example,

shows a read operation that is concurrent with a write operation. The write operation

is trying to write the value ‘8’. Based on the conditions the read can either return the

number ‘8’ or ‘0’. It correctly returns ‘0’ which is the most recent complete writing.

The next read operation returns the value ‘8’ which is the latest value of a completed

write operation.

The second example in Figure 2.1, shows a write operation that is trying to write the

value ‘8’ and two read operations, the one happening after the other, that are

concurrent with the write operation. Both of the read operations, return the value ‘8’,

satisfying the condition that a read operation can return the value of a writing

operation which is concurrent with a read.

Figure 2.1 Atomicity Read/Write

2.4 Challenges of Distributed Memory

By using distributed systems some challenges have to be solved. One important is the

memory management. With the correct memory management, it is ensured that the

system will give correct data and work correctly to satisfy the requirements of the

user. But, in order to have memory consistency some extra information are needed

when the data are uploaded. These data specify when the data was updated, by who

and what operation happened (write or delete).

And
rea

s N
eo

fyt
ou

9

Chapter 3

The COBFS Framework

3.1 Fragmented Objects

A concurrent object made out of a finite list of blocks is referred to as a fragmented

object [1] since it can be accessed concurrently by many processes. Two clients can

have access to different blocks at the same time of the fragment object, promoting

concurrency. In the next pages we overview algorithms that implement fragmented

objects (e.g. files) leading to robust DSS.

3.2 The COBFS Algorithm

COBFS (Consistent Object-Based File System) was introduced in [2] as a framework

to manage large-scale, high-performance, and fault-tolerant storage in a distributed

environment. COBFS basically relies on a block fragmentation technique to handle

large fragmented objects. The object-based system fragmented architecture, on which

the method is based, enables the system to manage files as fragmented objects and to

store and retrieve them independently of one another.

The COBFS method employs a distributed metadata management strategy, with a

piece of the metadata being stored on each system node. This makes it possible to

update and access metadata quickly, and it also lessens the effect that metadata

operations have on system performance as a whole.

The replication technique used by the COBFS algorithm ensures consistency and fault

tolerance. Updates are distributed to all replicas to preserve consistency, and each file

object is replicated over several system nodes. The system can continue to function

and fulfil file requests even if a node fails or becomes unavailable by utilising the

replicas that are still available.

When editing files, it is assumed that a value change would add to the object's current

value. In such circumstances, a writer should be informed of the object's most recent

value (i.e., via reading the object) before altering it. To keep this attribute coverable

linearizable blocks have to be used. Coverability improves linearizability by ensuring

that object writes succeed when linking the written value with the object's "current"

version. In a different instance, a write action becomes a read operation and returns

the object's newest version and associated value [2].

The file system provides fractured coverability as a consistency guarantee by

leveraging coverable blocks. In the implementation, the underlying theoretical

formulation enables for this implementation to be extended to handle many types of

huge object [2].

And
rea

s N
eo

fyt
ou

10

The basic architecture appears in Figure 3.1 which shows the fundamental architecture

of COBFS. COBFS is made up of two primary modules: Fragmentation Module (FM)

and Distributed Shared Memory Module (DSMM). The FM implements the

fragmented object, whereas the DSMM defines an interface to a shared memory

service that enables read/write operations on individual block objects. Following this

design, clients may access the file system via the FM, while servers keep the blocks of

each file via the DSMM. The FM writes and reads blocks to shared memory using the

DSMM as an external service. COBFS is adaptable enough to use any underlying

distributed shared object technique in this regard.

Figure 3.1 Basic architecture of COBFS [2].

In general, the COBFS algorithm offers distributed systems a highly scalable, fault-

tolerant, and high-performance storage solution. It is an effective distributed storage

system because it makes use of object-based file storage, distributed metadata

management, replication, caching and prefetching.

3.3 COARESF Algorithm

In a research paper [3], COBFS is enhanced to provide COARESF algorithm, which is

a dynamic consistent storage system ideal for large items. The COBFS framework

was expanded to support reconfiguration [1].

Configuration [1]: is a set of servers maintaining the storage.

Reconfiguration: is the process of changing the set of servers that hold the object

replicas. In other words, it is the transition of one configuration to another.

In order to expand COBFS the developers had to interact COBFS with ARES. When a

reconfiguration operation is invoked in ARES, a client requests that the configuration

of the servers hosting the single R/W object be changed. When dealing with a file

(fragmented object) f that is made up of numerous blocks, the fragmentation manager

tries to introduce the new configuration for each block in f. COARES, performs a

dsmm-reconfiguration operation which is for each block in f. Concurrent write

operations may result in the addition of additional blocks to the same file.

And
rea

s N
eo

fyt
ou

11

Chapter 4

Program Specifications

4.1 Why a Good Interface is Needed for COBFS

For COBFS, an interface is essential for various reasons [6]:

Usability: Users can interact with the system more easily when the interface is good.

The intuitive user interface makes it simple for users to obtain the capabilities they

require, navigate the system, and carry out their duties quickly. This enhances

usability and increases the system's usability for a broader range of users.

Efficiency: COBFS can be made substantially more efficient with a decent interface.

Users may search the files they need, upload and download files, and carry out other

actions with the help of an easy and user-friendly interface. By reducing errors and

saving time, this can enhance production.

Precision: The user interface can help to guarantee that users interact with the system

appropriately and that data is entered precisely. The user interface that can walk users

through the required procedures and verifies their input can lower the chance of errors

and guarantee correct and consistent data.

Scalability: The interface can also increase the scalability of COBFS. The system can

handle more users and data with an interface that is built to handle high traffic and big

volumes of data without sluggishness or instability.

For COBFS, an easy-to-use interface is crucial ensuring usability, effectiveness,

correctness, and scalability. The user interface can increase productivity, decrease

errors, and allow the system to accommodate larger amounts of data and users by

making it simpler for users to engage with the system. A straight forward user

interface is vital because it helps users to navigate and use the system or program with

little misunderstanding or irritation. An intuitive layout and simple navigation should

be provided in a user-friendly interface in order to maximize user happiness and

productivity. A simple user interface also makes it simpler for new users to grasp how

to use the system and access its capabilities, which lowers the learning curve for them.

Furthermore, a clear and concise interface can help to lower the possibility of user

errors and mistakes, ensuring that users can complete their tasks with the least amount

of effort and the highest level of accuracy.

And
rea

s N
eo

fyt
ou

12

4.2 User Interface Specifications for COBFS

4.2.1 General Specifications of the System

The User interface that is created has many features that are needed in order for the

users to keep and maintain track of their new and old files. The interface has the

ability to store and let the users have access on their files based on permissions. The

main functionality of the system is the dashboard that includes adding new files,

delete existing ones, read and download files, manage user roles and permissions, and

download files. All of these can happen in real time and the system has the ability to

receive post and get requests from COBFS without needing to login in the system with

the use of APIs. Also, the system is straight forward to help a new user to create an

account and login to his/her new account.

For example, when a user visits the register page and enters the email account, then,

the system will prompt the user to verify the account through his/her email inbox.

There are two kinds of users, the administrator and the normal user. The administrator

has more access to the system and can change a lot of information that can influence

all of the users, i.e. like changing the database tables where all of the accounts and file

information is saved. When a user logs in the system will prompt him/her to the

dashboard where all the files of the user are there. The user can change/read the

existing files or add new files from the drag and drop box. The files that are shown to

a user are the files that the user has access to based on the permissions. The

permissions of each file can be changed only from the owner of the file. The owner of

the file is the user that created the file by uploading it to the user interface.

4.2.2 System Requirements and Specifications

The requirements of the system are very important and many meetings with the team

researchers were needed in order to specify all the functional requirements of the

system. The functional requirements are for user roles that were considered in the

study. The main requirements for the system are:

• User account: Create an account, write new permissions, delete a password by

replacing it with new, rename username.

• User files: Create, write, delete, rename, upload new files, change permissions.

• Database Table Records Management: Create records, edit records, delete

records, add new permissions.

• Admin Access: dashboard access, database access where all the tables are shown.

And
rea

s N
eo

fyt
ou

13

4.2.3 System User Specifications

It is critical to accurately specify the system's users while defining them. To ensure

that the system is created appropriately, it is critical to consider aspects such as the

users' educational level and the duties they will have in the system.

The two user roles are:

• Normal User

• Administrator

Normal Users

Users can create new accounts and assign roles to other users or themselves using this

user interface. With administrators having more control over the database and system

settings, this enables different levels of access to the system.

Users have the ability to create new files, add material to them, remove or change

already existing files after logging in. The system is built to disperse the storage of the

files, making them available from different servers and reducing the possibility of data

loss.

The ability for users to manage file permissions is a crucial component of your user

interface. To regulate who can view, update, or delete a file, users who have access to

a particular file can grant or revoke access to other users. This aids in preserving the

safety and privacy of the system's stored files.

Administrator

The administrator has more rights than the normal user. The administrator has access

to capabilities like altering user roles and changing the database. This enables more

control and customization over the system, ensuring that it satisfies the requirements

of the business or person utilizing it.

Each role has its own set of rights, however each user role may have distinct

privileges like the permissions on different files or accesses to different files. All the

roles are important because they are designed to fulfill their purpose.

4.3 System Architecture

The client-server architecture (Client-Server) is used in this system. In this design, the

client asks information or an action from the server (COBFS), which then utilizes the

database to carry out the requested action. The client then analyses the server's

response to show the results on the client's screen. Figure 4.1 shows exactly how this

architecture works.

And
rea

s N
eo

fyt
ou

14

Figure 4.1 System Architecture

4.4 Laravel Framework as a Tool to Implement the User Interface

Building web applications, including distributed storage systems, may be immensely

helpful when using the well-liked and potent PHP framework Laravel [6]. The

following are some components of Laravel that assisted this study in designing the

user interface for COBFS [6]:

Blade templating engine: Laravel has an effective templating engine called Blade

that makes it simple to construct reusable templates for your user interface. Thus,

Someone, can create a consistent and eye-catching user interface for a system rapidly

with Blade. This was used in our study by creating a lot of blades (views) that worked

as the main pages of the user interface. For example, the dashboard view of the user

interface.

Eloquent ORM: Eloquent ORM from Laravel offers a simple and intuitive approach

to interact with the database. Eloquent makes it simpler to access and store data from a

database, which makes it simpler to create dynamic user interfaces that react to user

input. For example, accessing the database a lot of times in the Page Controller code

and with a simple one-line code someone we could retrieve and store newly added

data to the database tables of the user interface.

Routing: The routing system in Laravel offers a versatile means of handling user

requests and directing them to the proper controller method. For this user interface the

Web.php file is used that helped to create user-friendly URLs for the system (get and

post routes), which enhance the user experience.

Artisan CLI: The Artisan command-line interface (CLI) from Laravel offers a robust

collection of tools for controlling the application. It helped in this study to give the

ability to produce code, carry out database migrations, and do other operations with

Artisan that assisted in developing a better user experience. For example, when

wanting to delete everything from the database and start fresh, the command ‘php

And
rea

s N
eo

fyt
ou

15

artisan migrate: refresh’ is called that basically recreates the database tables. Also, for

this study it was used to create new tables that assisted in the user interface.

Community Support: Laravel has a sizable and vibrant developer community that

contributes to the framework and offers assistance through forums, blogs, and other

platforms. When creating a user interface, this can be incredibly beneficial because

you can learn from the mistakes of others and come up with fixes for problems that

are frequently encountered. Very useful websites were [7] and [8] that both helped to

overcome a lot of issues and errors or even new features that were included in the

interface. For anyone using the Laravel framework for web development, community

support is a crucial component. There is a sizable and vibrant community of Laravel

developers who work on the framework, support it through forums, blogs, and other

platforms, and impart their wisdom to others. For developers who are new to Laravel

or are having difficulties with their projects, this community support can be

immensely helpful. Developers who have access to a helpful community can get

answers to their questions, discover new methods and best practices, and immediately

get assistance with problems. This can help them prevent errors and save time, which

will result in quicker and more effective development initiatives.

Security: In terms of security Laravel is emphasizing on offering robust security

features right out of the box. Laravel is widely recognized as a very secure framework

that helped us protect the interface from many possible attacks. Below, the most

important features of security that were used in this study are explained. Among

Laravel's primary security features are the following that our research team used them

in this study. The way these features are used is explained below:

• Sensitive information is safeguarded both in transit and at rest thanks to Laravel's

robust encryption capabilities for user data.

• Secure password hashing: By default, Laravel employs the bcrypt algorithm, which

is regarded as one of the safest password hashing techniques available. When

creating a user, the bcrypt function is used in order to hash the password of each

user. With this way all the user’s passwords are protected by encryption in the user

interface.

• Cross-site request forgery (CSRF) protection: Laravel has built-in CSRF defense that

aids in thwarting malicious attempts that try to forge requests to the application. For

example, all the post requests have to be authenticated before our interface executes

that post request, otherwise it blocks that specific post request.

• Preventing SQL injection attacks via prepared statements and parameter binding is a

feature of Laravel. This kind of attacks are prevented by allowing only the

administrator having access to the MySQL Database.

• The built-in authentication and authorization features offered by Laravel make it

simple to create secure user authentication and access management. A user has to log

in our interface to access important data (files).

And
rea

s N
eo

fyt
ou

16

• Two-factor authentication (2FA): Two-factor authentication, which adds an extra

layer of protection to user accounts, is also included into Laravel. All the user

accounts have to be authenticated and verified by the email of the user.

• Automated security updates are provided by Laravel, helping to keep the framework

up to current with the most recent security patches and fixes. So, with this way the

interface will be up to date in terms of security.

In conclusion, Laravel offers a variety of features and tools that assisted in designing

the user interface for COBFS. A user can create a new account in the interface that is

both aesthetically pleasing and simple to use with Laravel's aid thanks to its template

engine, ORM, routing system, CLI, and community support.

4.5 MVC

The MVC (Model-View-Controller) [9] architectural pattern is used in the Laravel

framework to divide application logic into Models, Views, and Controllers. Because

of the separation of concerns, the program can be maintained more easily in the long

run and has superior scalability and code structure. Here is an explanation of each

component's duties:

Views (Blades): The Views component is in charge of showing the user the

application's user interface. Views in Laravel are usually created using the Blade

templating engine. Views should be as straightforward and devoid of business logic as

feasible. Views receive data from Controllers and organize and visually appealingly

display it to the user. Figure 4.2 shows all the views of the interface that we have built.

Figure 4.2 Views of User Interface

And
rea

s N
eo

fyt
ou

17

Layout Blades: Layout blades are views that are crucial elements in Laravel that

make it simpler to develop reusable views and templates. An HTML page's layout is

its basic structure and includes a header, footer, and other widely used components.

On the other side, blades are the templates that have dynamic content injected into

them.

Blade templates can be used to construct layouts in Laravel. With the use of blade

templates, developers may create clear, simple, and reusable code. Blade templates'

main advantage is that they let programmers isolate presentation logic from

application logic. As the application develops, this makes it simpler to maintain and

adjust the layout.

Blade templates provide a straightforward syntax that is simple to learn and

comprehend. Curly braces are used to indicate variables, and the @ sign is used to

indicate directives. Developers can incorporate conditional logic, loops, and other

programming elements into a template by using directives, which are control

structures.

The @extends directive can be used to extend blade templates. Developers can specify

a parent template that contains the page's fundamental structure and child templates

that describe the content of the page using the @extends directive. Using the @section

directive, child templates can take sections from the parent template.

The @include directive can also be used to add blade templates. Developers can reuse

common HTML components in various templates by using the @include directive.

This makes it simpler to maintain an application-wide look and feel that is consistent.

In conclusion, the two crucial elements of Laravel that enable developers to produce

reusable views and templates are layouts and blades. Developers may more easily

maintain and adjust the layout as the application matures by separating the

presentation logic from the application code using Blade templates. Developers can

construct dynamic, responsive web pages with Blade templates that are simple to read,

edit, and manage.

Below, is the app.blade (Figure 4.3) which is a layout view in the Dashboard and in

the header of the Dashboard appear buttons like Logout, change password, Database

and even a refresh button called Dashboard that reloads the page of the dashboard

(Figure 4.4).

Figure 4.3 The App Layout blade file

And
rea

s N
eo

fyt
ou

18

Figure 4.4 Dashboard

In this study all of these buttons are defined in the header, in the app.blade as seen in

Figure 4.5:

Figure 4.5 App Layout

Controllers: The Controllers component manages application logic and responds to

user queries. Users provide input to controllers, which are then responsible for

validating it and using it to communicate with models to retrieve or change data.

Views then display this information to the user after being passed by controllers.

Controllers should manage application flow and business logic rather than include any

HTML code. Figure 4.6 the main Controller file PageController.php is shown.

And
rea

s N
eo

fyt
ou

19

Figure 4.6 Controller File

Routes: The Routes component specifies how the application should respond to user

queries. The routes/web.php file in Laravel defines routes. Each route links a URL to

a particular Controller method, which manages the request. The HTTP method (GET,

POST, PUT, or DELETE) necessary to reach a certain resource can also be specified

using routes. In this project the post and the get routes were used. The information in

[11] and [12] were very helpful to create these routes. In Figure 4.7 the file of the

routes web.php is shown.

Figure 4.7 Routes file

GET and POST are two HTTP methods that are frequently used in the Laravel

framework to communicate with a web server. These two HTTP methods differ

mostly in the following ways:

GET technique:

• Through the URL query string, data is transmitted.

• The maximum length of a URL determines the amount of data that can be

delivered.

• The same outcome will be produced by several identical GET requests because

these requests are idempotent.

• The browser has the ability to cache GET requests.

• When requesting information from a server, such as to fetch a web page, GET

requests should be used.

• Views are in charge of showing data to the user, Controllers are in charge of

taking user input and controlling application logic, and Routes specify how the

application should respond to requests. Developers may build cleaner, more

organized code that is simpler to maintain and scale over time by separating

these roles.

And
rea

s N
eo

fyt
ou

20

POST approach:

• The request's body contains the data.

• The HTTP protocol does not place any restrictions on the maximum quantity of

data that can be transferred.

• POST requests are not idempotent, which means that different outcomes may be

obtained from multiple requests that are similar.

• The browser cannot save POST requests in its cache.

• When sending information to the server, such as when submitting a form, POST

requests should be used.

Overall, POST requests are used to submit data to the server, whilst GET requests are

used to get data from the server. POST requests have no such restrictions and cannot

be cached, whereas GET requests have a limit on the amount of data they can transmit

and can. To achieve the best performance and security, it's crucial to select the correct

HTTP method for the particular activity at hand.

4.6 Sanctum Security

Laravel Sanctum is a popular authentication package that provides a simple and safe

solution to deploy token-based authentication in Laravel applications. Positive and

significant aspects of Laravel Sanctum include:

Simple and intuitive interface: Laravel Sanctum makes it simple for developers to

start using the package by offering a simple and intuitive interface for enabling token-

based authentication in Laravel apps.

Lightweight and adaptable: Laravel Sanctum is an authentication package that is

adaptable and lightweight, and it can be simply configured to meet the unique

requirements of an application.

Secure: Laravel Sanctum employs secure token-based authentication, which aids in

the prevention of typical security risks such as cross-site scripting (XSS) and cross-

site request forgery (CSRF).

Cross-platform compatibility: Laravel Sanctum is made to function with both

classic server-rendered apps and cutting-edge single-page applications (SPAs) without

a hitch, offering a constant authentication experience across platforms.

Revocation features are included into Laravel Sanctum, enabling developers to

quickly revoke users' access to particular tokens as needed.

Integration with other Laravel features: Built on top of Laravel's robust

authentication and authorization tools, Laravel Sanctum offers easy integration with

other Laravel elements like routes, middleware, and policies.

Laravel Sanctum is a strong and flexible authentication package that provides a safe

and user-friendly solution for token-based authentication in Laravel applications.

Developers that require a dependable and adaptable authentication solution for their

And
rea

s N
eo

fyt
ou

21

apps should use Laravel Sanctum because of its lightweight design, built-in security

features, and seamless connection with other Laravel components.

For this project the auth:sanctum middleware was used to protect the routes. When a

user signs in then the current user has access to certain routes that are only allowed to

authenticated users and these routes have to be protected. These routes are the access

to files, for example download, delete, upload, rename or read. Password change or

user’s permissions change to files and access to table of the permissions route,

changes in the whole database which is only allowed to the administrator. Other

important routes that can change files or data in user interface have to be inside the

group protected by the auth:sanctum middleware. Figure 4.8 shows the part of code

that auth:sanctum middleware, protects the routes in the user interface.

Figure 4.8 Sanctum in Routes file

4.7 Bootstrap

It is a collection of fully-made website components and functionalities

(tables, buttons, bars, menus, headers) which are open source and easy to be used by

any developer. Bootstrap was used in this study to help the presentation design of the

user interface that saved a lot of time and effort during this study. One important

example, are the files that are displayed in the dashboard of the UI. Bootstrap was able

to help to present the files in a table design, making them more easy to use and more

understandable for the users.

4.8 Database in Laravel

In Laravel, databases are essential to the development of online applications. Working

with databases is made simpler and more intuitive with Laravel's expressive and

practical database abstraction layer. Figure 4.9 is a part of the .env file where it shows

how the database was created by calling Laravel to built it.

Figure 4.9 ENV file

And
rea

s N
eo

fyt
ou

22

Numerous databases, including MySQL, PostgreSQL, SQLite, and SQL Server, are

supported by Laravel. The database layer of the framework offers a straightforward

and standardized API to interact with various databases. Additionally, the database

layer of Laravel includes tools like migrations, eloquent ORM, and query builders.

With Laravel's query builder capability, programmers can construct expressive and

straightforward database queries. This feature facilitates the creation of complicated

queries while assisting in the prevention of SQL injection threats. Developers can also

connect together many query clauses using the query builder to create more

complicated inquiries.

Laravel's query builder feature is a potent tool for creating database queries with an

easy-to-use syntax. It offers a fluid API for building SQL queries that may be used

with various database systems.

4.8.1 Entity Relationship Diagram

In Figure 4.10 the Database entity relationship diagram is presented.

Figure 4.10 Entity Relationship Diagram

And
rea

s N
eo

fyt
ou

23

Each User:

• Can have many files and each file ids can have only one owner as user.

• Can have many permissions and each permission id can have only one user.

Each Permission:

• Can have only one file and many files can have many permissions.

• Can have only one User and each user can have many permission ids.

Each File:

• Can have one user as owner and each user can have many files.

• Can have many permissions and each permission can have one file.

4.8.2 Tables

Users Table

In this Table all the information about a user is stored.

Name Type

1 ID int

2 Password String

3 Username String

4 Email String

5 Token String

6 Email Verified At Date

Table 1 User Table

Permissions Table

In this Table each User and File have their permission type. With this way the

interface checks the permission of each user to each file.

Name Type

1 ID int

2 User ID String

3 File ID String

4 Permission String

Table 2 Permissions Table

Files Table

In this table all the information for each file is stored. All the records have their

unique ids where with this way the interface identifies the files. The field “updated at”

And
rea

s N
eo

fyt
ou

24

is when the file was updated and the “created at” when the file was created. Both are

dates.

Name Type

1 ID int

2 Name String

3 Size String

4 Owner String

5 Access String

6 Updated At Date

7 Created At Date

Table 3 Files Table

In the user interface the Database consists of 3 tables, the User database which

consists of 'username', 'email', 'password', 'remember_token' which is the token of the

user when authenticated, 'name' which is the username and 'email_verified_at' which

is when the user has been authenticated. The File id table which consists of 'name',

'owner', 'size', 'access' which are all the users that have access on the specific file.

Lastly, the PermissionsID table where it consists of 'userid', 'fileid', 'permissions'.

The way that the tables work is that all the information of the user is saved in a new

record in the Users table. Then, if the user creates a new file, then all of the

information of the file is contained in the FileID table. Also, when the user, owner of a

file adds new permissions to new users to access the file, the file id and the user id

with the permissions w(write), r(read), wr(write/read) are saved to a new record in the

PermissionsID table.

4.8.3 Laravel's Query Builder

Utilizing Laravel's query builder has a number of advantages, one of which is that it

reduces the risk of SQL injection attacks. Input from users is automatically escaped by

Laravel, making it considerably more challenging for hackers to insert dangerous SQL

code.

The query builder offers considerably simpler and more user-friendly syntax for

creating complex SQL queries in addition to its security advantages. The query

builder, for instance, enables you to chain methods together to create queries in a way

that is more readable and maintainable than manually concatenating text.

Figure 4.11 is an illustration of how to create a straightforward SQL query in Laravel

using the query builder from my User Interface code:

And
rea

s N
eo

fyt
ou

25

Figure 4.11 Record creation in FileID

As you can see the SQL create feature is very easy to use and very dynamic and it

allows the flexibility to developers to make fast records in databases. Basically, in the

above code when a new file is uploaded the upload function is called in the controller

file script and the record is created in the FileID table of the database.

Furthermore, another example that was used in this project and was very useful in a

lot of evaluations and if statements is Figure 4.12 and Figure 4.13:

Figure 4.12 Delete Record

Figure 4.13 FILL function Laravel Databases

And
rea

s N
eo

fyt
ou

26

So, Laravel has the ability to find the table and run a query just by saying the word

like where, order by and select. In the above example the code finds a specific file

name in the ‘name’ column and deletes the specific record. The other ability is the

fill() function where it overwrites a specific record in a column and replaces the data

with the new one. The first() basically captures the first record that is found using the

where clause.

Another Laravel tool that enables developers to change the database schema in an

organized manner is migrations. Database tables, columns, indexes, and foreign keys

may all be defined using Laravel's simple and elegant syntax. Because migrations are

version-controlled, developers can quickly roll back or forward their modifications.

Eloquent, Laravel's ORM, offers a straightforward and expressive syntax for working

with database records. Database tables can be defined as PHP classes by developers,

who can then utilize Eloquent to communicate with the database. Eloquent has a

number of capabilities, including query scopes, soft deletes, and model relationships.

Laravel offers a reliable and practical database layer that makes working with

databases easier for developers. Eloquent ORM with features like the query builder

and migrations make it simple for developers to create complicated web apps.

4.9 HTTP Requests using GUZZLE in Laravel

Popular PHP HTTP client Guzzle is simple to incorporate into Laravel projects. It

supports features like HTTP/2, middleware, and authentication and offers a

straightforward and user-friendly API for sending HTTP requests to external services

or APIs.

Guzzle may be set up and utilized in Laravel with Composer, PHP's package

management. After installation, Guzzle can be used to quickly send HTTP queries to

external services or APIs. To use Guzzle the following procedure is followed.

• First, launch a fresh instance of the Guzzle client as follows:

$client = new GuzzleHttp\Client();

• Next, send a GET request to an external API using the get() method:

$response = $client->get('https://api.example.com/users');

• With this, a GET request will be made to the specified URL, returning a response

object from which we can get the response content, the status code, and other details:

$body = $response->getBody();

And
rea

s N
eo

fyt
ou

27

$status = $response->getStatusCode();

Guzzle has a wide range of functionality, including request parameters, middleware,

and authentication, in addition to supporting more HTTP methods like POST, PUT,

and DELETE.

Guzzle, a component of Laravel, can be used to communicate with third-party APIs or

services, like payment processors, social media APIs, and cloud services. It can also

be used to send HTTP requests to a microservice or another internal API in order to

communicate with other components of our application.

Figure 4.14 and Figure 4.15 are showing real parts of code that were used to send post

requests to COBFS the ‘create’ and the ‘read’ of a file:

Figure 4.14 HTTP Request example 1

Figure 4.15 HTTP Request example 2

Overall, Guzzle is a strong and adaptable HTTP client that is simple to incorporate

into Laravel applications. It is a wonderful option for developing contemporary online

applications because of its support for features like HTTP/2, middleware, and

authentication, as well as its straightforward and user-friendly API that makes it

simple to perform HTTP calls to external services or APIs.

And
rea

s N
eo

fyt
ou

28

4.10 Creation of APIs to Communicate with Servers using POST and GET

In order for COBFS to communicate with user interface we constructed multiple APIs

to the user interface for COBFS. These APIs were created to allow COBFS request

information from the user interface, such as file renaming, file information for a

specific user, login token requests, and file ID requests. COBFS is able to deliver a

more streamlined and efficient data by using these APIs of the user interface, allowing

COBFS to quickly manage and interact with the files stored in the system. All of these

APIs were tested and the procedure followed is explained in this chapter.

GetFiles using get method API: The url of this method is

http://localhost:8000/feestype/getFiles. The technique developed in this study takes

the user's token from COBFS as input and outputs all of the files owned by that user.

This technique allows the server to access the files quickly and easily by merely

entering their token. Details such as the file name, file size, file type, and the date of

the last update are supplied. This strategy simplifies file management for the user by

allowing them to rapidly view all of their files' information in one spot. Furthermore,

it minimizes the time and effort necessary for the server to discover a certain file since

the technique allows the server to easily search through the files using the information

offered by the approach.

In Figure 4.16 the code shows the input that the function gets from the server and

returns back the name, updated at, possible permissions, size and id of each file owned

by a particular user. Otherwise, it gives error message back.

Figure 4.16 API Request example 1

RenameRequest post method API: The url of this API is

http://192.168.0.102:8000/feestype/renameRequest. The "rename file" technique in

COBFS user interface takes two inputs: the file ID and the new name that the server

wants to assign to the file. This approach is intended to allow the server to simply

And
rea

s N
eo

fyt
ou

http://localhost:8000/feestype/getFiles
http://192.168.0.102:8000/feestype/renameRequest

29

rename files without having to explore the user interface file structure. The technique

waits for these inputs from COBFS and then performs the renaming action. The

procedure then returns to COBFS the file's new information, including the updated

information for the renamed file. This functionality allows the server to easily manage

the files and quickly rename the files.

Figure 4.17 shows the method that the rename function gets as input the id of the file,

finds the file from the database and then changes the file name from both the database

and the file itself. Lastly, it returns a success message and the new name of the file.

Otherwise, the api returns an error message.

Figure 4.17 API Request example 2

RequestToken get method API: The url of this api is

http://localhost:8000/feestype/requestToken. The "request token" method in COBFS

user interface is intended to wait for system input in the form of a user's login and

password. When this input is received, the method checks the user's credentials

against the system's database to see if the user already has a token. The function

returns the token to the system if the user has one. Otherwise, the user interface gives

back an error message meaning the certain user does not exist in the database.

Figure 4.18 shows the part of code where the user interface tries to find from the

database the user token and id. If the user exists the output of the result is not null and

the method returns the information. Otherwise, the error message status, as mentioned

in the paragraph above, is returned.

And
rea

s N
eo

fyt
ou

http://localhost:8000/feestype/requestToken

30

Figure 4.18 API Request example 3

Get File ID post method API: The "get file id" API is intended to take a file name

and token of a user from COBFS and produce a new ID for that file. This API

generates a new record in the user interface's database to hold the file details. When a

user asks information on a file, the user interface will access the database using the

file ID. The user interface may successfully handle all of the files stored in COBFS by

producing a new record for each file. This approach is an important part of the user

interface since it allows COBFS to quickly access and manage files by assigning a

unique identity that can be used to get file information. Furthermore, this API is

critical for preserving the database integrity of the user interface, ensuring that each

file is displayed appropriately and without duplication.

Figure 4.19 shows that the api creates a new record in the database with the username

of the token that COBFS gave and adds the name of the file in the record. This api

responds back to the server the new id of the file with a success respond message.

And
rea

s N
eo

fyt
ou

31

Figure 4.19 API Request example 4

4.11 EMAIL Verification in Laravel using Mailtrap as a Testing Tool

When registering users for web applications, email verification is an essential step.

The implementation of email verification in Laravel is rather simple, and using

Mailtrap makes testing and debugging much simpler.

Without sending the emails to actual users, Mailtrap is a program that simulates

sending and receiving emails in a testing or development environment. It can be used

to test email-based functions like user email verification in web applications.

Developers must first set up the Laravel application to utilize Mailtrap as the mail

driver in order to enable email verification using Mailtrap in Laravel. This entails

adding Mailtrap login information to your Laravel project's .env file.

This study used the following methods below, and implements the email verification

after setting up Laravel to use Mailtrap:

a) First use the make:auth command of the php artisan script to create a fresh

Laravel authentication scaffolding.

And
rea

s N
eo

fyt
ou

32

b) Add a verified attribute and a sendEmailVerificationNotification method by

editing the User model. The sendEmailVerificationNotification method sends

the email verification link to the user's email address, and the verified attribute

indicates if a user's email address has been verified.

c) Make a new notification class that will deliver the user's email address the

email verification link. The php artisan make:notification command can be

used to accomplish this.

d) Add a toMail method that generates the email verification message by editing

the VerifyEmail class.

e) Create a new route to handle requests for email verification.

f) To display a success message when the user has validated their email address,

update the verification.blade.php file.

These procedures helped to test and debug Laravel's Mailtrap email verification. A

link will be provided to the user's email address for email verification, once he/she

registers for the app. The user can click the link to validate his/hers email address,

update attribute for verified status, and gain access to the application.

Figure 4.20 shows the User Model where it is imported the email verification.

Figure 4.20 User Model with Email Verification

Also, in order to make certain routes use email verification, then the middleware

(['auth', 'verified']) has to be added in order for the interface to ask for email

verification. Figure 4.21 and Figure 4.22 show the protected routes using the

authentication protection.

Figure 4.21 Routes with middleware verified 1

And
rea

s N
eo

fyt
ou

33

Figure 4.22 Routes with middleware verified 2

And
rea

s N
eo

fyt
ou

34

Chapter 5

Program Implementation

It is crucial for this project to comprehend how the user interface functions and what

each button accomplishes. Users will engage with COBFS primarily through the User

Interface, therefore it must be clear and simple to use. This project contains a number

of buttons that carry out different functions, knowing what each one will help the user

utilize the application more efficiently.

5.1 Login Page

The first view when someone opens the interface is the Login page. Figure 5.1 shows

the Login page which is the first page that a user comes across. The Login page view

has a good UI, easy for the User to understand and navigate through it. It has the

functionality to inform the user for bad credentials with an alert warning, rules that act

as validations when the user clicks submit and a button for the user to register

Figure 5.1 Login

Having a number of built-in tools and functionalities that make it simple to establish

reliable user authentication and authorization procedures is one of the main

advantages of using Laravel for the login page. This includes functions that can help

to guarantee that user data is safe and secure, such as secure password hashing, two-

factor authentication, and multi-factor authentication. Additionally, Laravel offers a

straightforward and understandable syntax for building forms that can be used to build

unique login pages that are catered to the particular requirements of the application.

By offering a simpler and more user-friendly login process, this can aid in enhancing

the user experience. The login page's security is further improved by Laravel's strong

And
rea

s N
eo

fyt
ou

35

routing and middleware features like sanctum that was used to secure our routes to

only logged in Users.

5.2 Dashboard

The Dashboard view as shown in Figure 5.2 is activated when the user enters the

correct credentials and logs in to his account after he/she presses the button submit.

The Dashboard has the most functionalities of the interface. The most important

functionality is the part where it shows all the files that are hosted from the server. A

user can download, delete, rename, read or even change the permissions of a file or

even upload a file. Other than the files, this page is self-synchronizing after a file is

successfully uploaded, so if a user uploads a new file, then after the synchronization it

will be shown to him/her. A user can also press the Dashboard text that will call again

the dashboard and refresh the page (for synchronization purposes). There are also

some buttons that help with navigation like the login that takes the user to the login

page, logout that logs out the user, the change password that lets the user change a

password. Also, there is the “User:” text box that shows who the user is that is logged

in currently.

Figure 5.2 Dashboard

The upload part of the interface is also included in the dashboard page as discussed

above. It is very user friendly allowing the user to drag and drop any file that he/she

wants (.jpeg,.jpg,.png,.pdf,.doc,.docx, txt). There are two ways to upload a file by drag

and drop or click the white box of the upload and find the file from the local

computer. When the user inserts a file, a done sign will be shown to him/her or a

failure mark if it is uploaded successfully or not.

There are functionalities for each icon of the file, for example when clicking the

interface lets the user change the permissions of file or double click to open the

permissions view in order to change the permissions.

There are two requests that can happen from the upload drag and drop page as shown

in Figure 5.3. Firstly, the write operation where someone replaces the old file with the

new file but the files have to be identical, and the upload which is the create request

that the user(owner) uploads a new file. Both operations have to be firstly approved

from the server before they can happen.

And
rea

s N
eo

fyt
ou

36

Figure 5.3 Dashboard

As shown in Figure 5.4, there are also the delete operation where it deletes the file

which is a request delete to the server and has to be approved, the download operation

(read operation) and the rename operation which is a write operation explained in the

next sub chapter. Also, there is the read operation which is a double click on the file.

All these operations have to be accepted by the server before they proceed to take

action.

Figure 5.4 Dashboard 2

Any storage distributed system user interface must include a dashboard because it

gives users a central location to access critical file information. It acts as a window

into the system, enabling users to follow progress, view the status of their files, and

easily access the locations they use the most. As the dashboard is frequently the first

thing users see when accessing the system, it must be simple and simple to use. The

dashboard can save users time and increase efficiency by giving them the information

they need to make informed decisions about their files. Additionally, it enables users

to spot problems or errors right away, reducing the chance of data loss or system

outages. Any storage distributed system must have a well-designed dashboard, and it

must be simple to use and intuitive so that users can efficiently manage their files and

complete their tasks.

5.3 Change Password

The user has the ability to also change the password of his/her account. The change

password button is in the right-up corner in the Dashboard view. Firstly, the user

enters his/her username, his password for verification and the new password that

wants to be changed. The system then finds the username from the database, verifies

that the user is indeed himself/herself and changes only the password with the new

And
rea

s N
eo

fyt
ou

37

one. After the change happens when the user will need to log in again and he/she will

use the new password that was entered. When the user presses the submit button the

program navigates the user automatically to the login page where he can login again

with the new credentials. Figure 5.5 shows the page where a user can change

password.

Figure 5.5 Password change

5.4 Rename File Page

Other than the permissions of a file, there is also the view about the rename of a file

where the program finds the record of the file in the database and replaces the old

name with the new name. The view can be accessed from the dashboard (Figure 5.6).

Figure 5.6 Rename File

Next to each file (Figure 5.6) there is a button ‘rename’ and with this way it makes it

easier for users to understand the functionality of the button.

And
rea

s N
eo

fyt
ou

38

The rename feature is connected with the server and it needs a rename request to be

accepted from the server before the rename is made.

Also, when a user renames a file, he/she has to enter the type of the file in other words

the extension of the file (ex. Doc, docx, txt, pdf). This happens because the user can

change the extension of the file by typing another extension. For example, if a doc file

can be changed to a pdf file. But this feature is only acceptable to convertible files like

doc/docx and pdf.

The rename page of files is a crucial function that is required in the user interface for a

number of reasons. Here are a few examples:

Clarity and organization: In a user interface system, it might be challenging to

maintain track of all the files a user owns. Users can label and organize their files with

the use of a rename option, making it simpler to discover what they need right away.

Consistency: Any file management system should have a consistent naming

convention. A rename feature can help make sure that all files have the same structure.

This can be crucial when several people are collaborating on the same files.

Usefulness: The ability to rename files makes it easier for users to edit their content

without having to delete and reupload the original files. Time is saved, and the chance

of data loss by accident is decreased.

Flexibility: By renaming files, users can alter a file's name without changing its

contents, making it simpler to use the same information in various circumstances.

Maintenance: A file system can be kept up with the use of a rename feature. For

instance, files can be renamed to clearly indicate that they are no longer in use as they

age or cease to be necessary.

5.5 Administrator Access Page

If a user is an administrator, then he/she has some more privileges. These are that the

admin can access the database tables of users and files, there the user can modify or

even delete records of users and files. This page is only accessible to administrators.

In the testing phase, user “neophytou29@gmail.com”, was used as the sole

administrator in the project. Figure 5.7 shows the page where an administrator can

access the dashboard or access the database for modifications.

A database's administrators are crucial to its management, hence they must have

access to it. The stability, security, and performance of the database are the

responsibility of the administrators, and access to it enables them to keep track of,

troubleshoot, and improve its operations.

To carry out recurring maintenance procedures like recovery, patching, and upgrades,

administrators need database access. In order to increase the database's effectiveness,

they must also be able to track its performance indicators, identify problems, and

And
rea

s N
eo

fyt
ou

mailto:neophytou29@gmail.com

39

make the required adjustments. In order to manage users, give rights, and guarantee

data security, so administrators require to have access to the database.

The availability, dependability, and security of the database are the responsibility of

the database administrators. They need access to the database in order to manage users

and permissions, monitor performance, diagnose problems, and execute normal

maintenance. Without this access, the database's security and functioning may be

jeopardized, potentially resulting in data loss, downtime, and other problems.

Figure 5.7 Administrator Access

5.6 The Database Page

The database page consists of two tables (Figure 5.8). The user table where each

record holds the data of each user includes, the id, username, email, password, token

when authenticated and date of email which is when the account is verified. Also, the

files’ table includes the id, name, owner permissions, accesses and size of the file. The

admin can modify the record of the table by clicking the edit button(pencil). Then a

new page comes up asking which value can be modified and if the user writes

something it replaces the old with the new data or otherwise skips the empty input by

keeping the old data. A user can also delete the record by easily clicking the trash

button and the page redirects to this page again with the record deleted.

Figure 5.8 Database Access

Effective database management demands a user interface that enables database table

modifications. Database administrators and other authorized users can easily edit the

And
rea

s N
eo

fyt
ou

40

tables' fields, structure, and data using a screen like this without having to directly

access the database.

Users can carry out operations including adding or removing columns, altering data

types, modifying constraints, and inserting or updating data when the database's tables

provide from the user interface for table modification. Particularly for complex

databases with several tables and fields, this capability may be time-saving.

The user interface by changing database tables can also assist in avoiding errors and

data damage. By enforcing data validation criteria, the interface can stop users from

entering inaccurate data. It can also offer auto-complete tools or suggestions to

guarantee uniformity across the database.

A vital component for effective database management, the user interface by changing

database tables can increase productivity, decrease errors, and improve data

consistency.

How the page works:

1. First the admin has the ability to delete the record by pressing the trash button

(Figure 5.9).

Figure 5.9 Database Access 2

2. Then the user is redirected back to the Dashboard page with the record missing

(because it has been deleted).

3. The edit works by pressing the pencil button next to each record and the admin

can change username, password or email of a record as shown in Figure 5.10.

(The same with the files but for name, permissions, owner and accesses).

4. If the admin will not change anything the program detects it and ignores the

null text boxes and leaves the old data in.

And
rea

s N
eo

fyt
ou

41

Figure 5.10 Modify Table

5.7 The Permissions Page

Figure 5.11 Modify Permissions

An effective method for controlling access to a file is a user interface that enables

users to add new rights and accesses (Figure 5.11). Users can often provide the

appropriate access level or permission type, such as read-only or read-write access,

from the table of the database.

The user interface page shows a list of all users with access to the particular file along

with their matching permission levels (r,w,wr) once the user submits the form or

adjusts the permissions. It is simpler to handle access control when owners of the files

can quickly and easily determine who has access to the file and at what level, thanks

to this list.

And
rea

s N
eo

fyt
ou

42

The user interface enables users to add new rights and accesses is an efficient way to

restrict access to a file. Through a form or fields on this interface, users can frequently

specify the proper access level or permission type, such as read-only or read-write

access.

Once the user submits the new access or changes the permissions, the user interface

page displays a list of all users with access to the specific file along with their

corresponding permission levels (Figure 5.12). When owners can quickly and easily

determine who has access to the file and at what level, thanks to this list, it makes

access control easier to manage. A column in the dashboard was also added that

shows all the users that have access to the file to help all the users that have access to

the file to know which other users can access the file.

Figure 5.12 Access

How to create permissions:

1. First, in order to give permissions, you have to be the owner of the file. Press the

icon of the file once and the permissions (Figure 5.13).

Figure 5.13 Icon of File

2. After the icon is clicked once (click twice is for read) the permissions view is

brought up to the screen. The permissions screen shows the different permissions

of users in a file and which user has access to the file (Figure 5.14).

3. After filling the username and clicking on what kind of permissions the owner of

the file wants the user to have, the owner presses submit.

And
rea

s N
eo

fyt
ou

43

Figure 5.14 Modify Permissions 2

4. The new permission is added to the table as seen in the Figure 5.15.

Figure 5.15 Permissions Table

5. If the pencil is clicked on the current record permission, then the user can change

the permission as shown in Figure 5.16 or click the trash button to delete the whole

permission record access.

Figure 5.16 Modify Permissions 3

6. The acess colunm on the dashboard is updated with the new user that has

permission (Figure 5.17).

And
rea

s N
eo

fyt
ou

44

Figure 5.17 Modify Permissions

5.8 Register Page

Having a register functional page in the user interface is important for various reasons.

First, the registration page gives new users a way to register for an account and log

into the system. Without this feature, system administrators would have to manually

add users, which might be both time-consuming and ineffective.

The system can confirm the user's identity on the register page, which helps to ensure

that only authorized users can access the system. This promotes system security and

guards against illegal access to private information.

Thirdly, visitors can create an account and customize their preferences on the register

page by adding their own password, username and email. As a result, users may have

a better user experience and find the system more desirable.

Fourthly, the system can gather vital data about the user from the registration page,

like their email address or username. If the users forget their login information, this

information can be used to email them password reset links or to alert them to

significant system upgrades or changes in the future.

Overall, a distributed storage system's user interface should have a register functional

page since it gives new users a quick and secure way to log in and customize their

account settings. By confirming the user's identification and gathering vital data about

them, it also contributes to maintaining the security and integrity of the system.

How the page works:

The file distribution system registration page's user interface was made to appear

uncomplicated in order to offer customers who want to create an account a hassle-free

and smooth experience. Users may simply traverse the page and understand what

information is required of them thanks to its straightforward and user-friendly design

components.

Users are guided step-by-step through the registration process by the page layout,

which includes labels and explicit directions for each field. There are few distractions

or extraneous pieces of information on the interface, which is tidy and uncluttered.

And
rea

s N
eo

fyt
ou

45

The design places a strong emphasis on usability and simplicity in order to provide a

satisfying user experience. Users are more likely to successfully register an account

and interact with the system if the registration procedure is simplified and the user

interface is friendly. COBFS will ultimately become more widely adopted and used,

which is essential for any software application to succeed.

1. First the user adds his/her Username, email and password in the missing fields as

shown in Figure 5.18.

Figure 5.18 Register

2. Then the submit button is pressed and if the user credentials are accepted based on

the rules, i.e., the password has to have length of four and above, or the username has

to be unique, the account is created and added to the database.

3. Then a message is shown on the page informing the user that the account has been

created (Figure 5.19).

Figure 5.19 Success Registration

4. If the account already exists then a message is shown on the page and the account

will not be created as shown in Figure 5.20.

And
rea

s N
eo

fyt
ou

46

Figure 5.20 Failed Registration

5. After the return to log in page is pressed the user is prompt to verify his/her new

account by informing the user that a verification link is sent (Figure 5.21).

Figure 5.21 Email Verification

6. To verify the email laravel just send a verification email to the inbox (Figure 5.22

and Figure 5.23) of the entered email and the user just has to press verify email and

he/she will be promt to the log in page to log in with the new account. From that

point and on the account is verified.

Figure 5.22 Mailtrap

 And
rea

s N
eo

fyt
ou

47

Figure 5.23 Mailtrap 2

7. Lastly, the user interface shows that the user is created succesfully and the user exists

in the database as presented in Figure 5.24.

Figure 5.24 Database

And
rea

s N
eo

fyt
ou

48

Chapter 6

Conclusions

1.1 Summary

In conclusion, any online application, including those created with the Laravel

framework and a distributed storage system, must have a user interface. The user

experience, user engagement, and overall application performance can all be improved

by a well-designed user interface.

During this study we have successfully built a user interface on Laravel that has the

ability to let users interact with COBFS. Users for example are able to create files,

open files, share files with other users, edit files, delete and rename files, interact with

the system using their personal account, view the system file list continuously, which

includes all the information users need to know, preview a file, and determine what

permissions other users will have for the files they uploaded (owners of files). As a

result, the system we created performs all of the duties that a user interface is intended

to do in these situations.

Several problems were encountered throughout the development phase of the study on

user interface for COBFS utilizing the Laravel framework. One of the difficulties was

to design a user-friendly interface that consumers could readily understand and utilize.

The user interface was built in a straight forward manner so that it is easy to

understand and use its features.

Another problem was ensuring the system's security, especially when dealing with

sensitive data such as user passwords and files. This was solved by enforcing strong

password restrictions and adopting secure authentication and permission processes

(sanctum), such as utilizing encrypted tokens. These are Laravel tools that we were

able to import them in the user interface.

The system's performance was also an issue because it had to manage significant

requests at the same time. This was handled by minimizing database queries,

employing caching methods, and rewriting some functions using the help of Laravel

framework's tools.

Integration with the distributed storage system utilizing COBFS was also a problem

that was successfully overcome by building and testing APIs for different activities

such as renaming a file, requesting a user token, listing all files, and obtaining the file

id. The procedure for building and testing the APIs has been referred to in the specific

chapter of this study. These APIs worked locally and remotely. They were tested with

the local address by sending local requests. With the use of port forwarding we

managed to test these APIs remotely. The system was able to receive requests from

COBFS although it was located in a different area.

And
rea

s N
eo

fyt
ou

49

Upon completion of this thesis we were able to gain a lot of significant knowledge in

various fields. This significant information includes getting familiar with all the tools

that were used in this study like developing a web user interface, user authentication

and more advanced programming knowledge.

In conclusion, developing a user interface is a crucial component of creating online

applications, particularly this one that was created with the Laravel framework to

connect to a distributed storage system. We tried to create a user interface that was

both practical and aesthetically beautiful by adhering to UI development best practices

and utilizing Laravel's broad UI development tools.

1.2 Future Work

Every system including this one has room for improvement. One important feature

that can be included in the system is AI. For example, when a user last login exceeds a

certain number of months, then the account should be deleted to free up space in the

database of unused accounts. This will be done by the system because it will be able

to recognize inactive accounts. Another important future work is about administrators.

Now, the system has one administrator, so in the future the number of administrators

can be increased by letting the main administrator (the current administrator that this

user interface has) assign the privilege of admin rights to other users. This can be done

by adding another column in the users table and naming it admin which will be

Boolean. True if the user has admin rights and false if the user is just a normal user.

The only one that will be able to change that column will be the main administrator.

Further additions for future work can include personalized themes for each user on the

user interface so each user can have his/her own theme when logging in and a profile

picture that will be saved in the database with the users’ information. Furthermore, a

new page for settings can be included in the future work that will let users customize

important functionalities of the user interface and their accounts. Lastly, the user

interface is accessible through the browser of a user. This can be enhanced in the

future by letting mobile users access the UI from a mobile application in Android/IOS.

In this way future users will be able to manage their files everywhere they are by

simply using a mobile device.

Laravel apps like user interfaces are likely to see a lot of exciting new developments

in the future. This is because Laravel has a lot of tools that can help developers and

researchers add new features or make the UIs even better. These tools are upgraded by

Laravel letting these applications up to date and were also used by us to build a lot of

functions in the user interface like user authentication (Laravel sanctum). We expect

in the future the tools we used in this study to become even more sophisticated and

this can lead our user interface meet a higher standard.

In conclusion, by adding all of these future work designs to the application it will

increase the productivity of the user interface and let users control more easily their

accounts and manage their files in a more effective way.

And
rea

s N
eo

fyt
ou

50

Bibliography

1. [1] C. Georgiou, N. Nicolaou, and A. Trigeorgi, “Fragmented ARES: Dynamic

Storage for Large Objects,” arXiv:2201.13292 [cs], Jan. 2022, Accessed: May

08, 2023. [Online]. Available: https://arxiv.org/abs/2201.13292

2. [2] A. Fernández Anta et al., “Fragmented objects: Boosting concurrency of

shared large objects,” Structural Information and Communication Complexity,

pp. 106–126, 2021. doi:10.1007/978-3-030-79527-6_7

3. [3] Write, read, and server protocols of the ABD algorithm.,

https://www.researchgate.net/figure/Write-read-and-server-protocols-of-the-

ABD-algorithm_fig2_279843747.

4. [4] “Distributed Storage: What’s Inside Amazon S3?,” Cloudian, 2011

https://cloudian.com/guides/data-backup/distributed

storage/#:~:text=A%20distributed%20storage%20system%20is.

5. [5] Ijad Madisch, Sören Hofmayer, and Horst FickenscherResearchgate.net.

[Online].Available: https://www.researchgate.net/figure/, 2008 Simulation-

results-for-algorithms-COABD-and-COBFS_fig3_349620869.

6. [6] Taylor Otwell, “Laravel - the PHP framework for web artisans,” ”, June 9,

2011, Laravel.com. [Online]. Available: https://laravel.com/.

7. [7] Jeffrey Way, "Laracasts - The Best Laravel and PHP Screencasts”, 2013.

https://laracasts.com/

8. [8] Stack Overflow, “Stack Overflow - Where Developers Learn, Share, &

Build Careers,” Stack Overflow, 2022. https://stackoverflow.com/

9. [9] “How Laravel implements MVC and how to use it effectively | Pusher

blog,” pusher.com. https://pusher.com/blog/laravel-mvc-use/#:~:text=Laravel

%20is%20a%20PHP%2Dbased.

10. [10] Taylor Otwell , “Laravel - The PHP Framework For Web Artisans”, June

9, 2011. laravel.com. https://laravel.com/docs/10.x/blade

11. [11] Taylor Otwell, “Laravel - The PHP Framework For Web Artisans” , June

9, 2011. laravel.com laravel.com. https://laravel.com/docs/10.x/routing

12. [12] M. Satterfield, “PHP: Difference between laravel get and post route,”

CopyProgramming, https://copyprogramming.com/howto/difference-between-

laravel-get-and-post-route?utm_content=cmp-true.

13. M. I. Ali and M. D. Assaf, "Design and implementation of a web-based user

interface for cloud storage systems," 2014 IEEE 28th International Conference

on Advanced Information Networking and Applications Workshops, Victoria,

BC, 2014, pp. 128-133, doi: 10.1109/WAINA.2014.43.

And
rea

s N
eo

fyt
ou

https://arxiv.org/abs/2201.13292
https://www.researchgate.net/figure/Write-read-and-server-protocols-of-the-ABD-algorithm_fig2_279843747
https://www.researchgate.net/figure/Write-read-and-server-protocols-of-the-ABD-algorithm_fig2_279843747
https://cloudian.com/guides/data-backup/distributed%20storage/#:~:text=A%20distributed%20storage%20system%20is
https://cloudian.com/guides/data-backup/distributed%20storage/#:~:text=A%20distributed%20storage%20system%20is
https://www.researchgate.net/figure/
https://laracasts.com/
https://stackoverflow.com/
https://pusher.com/blog/laravel-mvc-use/#:~:text=Laravel %20is%20a%20PHP%2Dbased
https://pusher.com/blog/laravel-mvc-use/#:~:text=Laravel %20is%20a%20PHP%2Dbased
https://laravel.com/docs/10.x/blade
https://laravel.com/docs/10.x/routing
https://copyprogramming.com/howto/difference-between-laravel-get-and-post-route?utm_content=cmp-true
https://copyprogramming.com/howto/difference-between-laravel-get-and-post-route?utm_content=cmp-true

