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Abstract 

Image object detection has shown tremendous success in recent years, leading to its adaptation 

to the domain of video. However, the major advancements based on single-shot deep learning 

models process single frames individually. Hence, relying on spatial information alone can be 

problematic in cases where there are occlusions, blurred/unclear background, lack of 

information in low-resolution, and changing lighting conditions, all of which are common 

occurrences in transportation monitoring applications. Overcoming these problems necessitates 

incorporating both spatial and temporal information into the detection process. To address this 

challenge, several spatiotemporal detection models were investigated, which used sequences of 

video frames and explicit motion cues to build better representations of the scene context. First, 

a representative custom dataset of video sequences of aerial road network footage from an 

unmanned aerial vehicle was collected and annotated with three vehicle classes, to be used for 

model training and validation. Then, different spatiotemporal models were developed and 

incorporated into the YOLO framework. Overall, the spatiotemporal models show significant 

improvement in results, with the best model showing a mean average precision (mAP50) of 

83.1% for all classes, which is a 16.22% improvement over its corresponding single frame 

model. The addition of attention mechanisms to the spatiotemporal models’ architecture was 

also explored. Inference tests were carried out to perform qualitative and inference speed 

comparisons. Finally, it was concluded that the addition of temporal information to deep 

learning object detectors is in fact an effective approach to improve vehicle detection in aerial 

video data. 
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Chapter 1 - Introduction 

Traditionally, object detection has operated on single images where the inception of large-scale 

image datasets such as ImageNet and COCO have revolutionized and allowed the sizeable 

advancement in the area of deep neural networks as various state-of-the-art CNN-based 

networks have been proposed such as the Region-based CNN series (RCNN) [1-3], and the You 

Only Look Once series (YOLO) [4-8] have achieved remarkable results in object detection on 

images. While the performance of image object detection was continuously improving, the need 

to venture into video-based object detection was inevitable. Since video-based data more closely 

resembles the needs of real-life scenarios in recent times, ranging from monitoring and security 

in different surveillance systems, robot navigation and autonomous vehicles. 

1.1 Problem Statement 

Initially, because of the similarity of carrying out the detection task for image and video, 

methods of image detection could be successfully applied to videos, as videos are ultimately a 

sequence of image frames. However, this does not always produce reliable results, as each 

image will be perceived independently. Video data, especially in applications of monitoring 

transportation networks, has several different phenomena such as occlusion, motion blur, and 

illumination variations. Therefore, applying a still-image object detector that relies on spatial 

information alone may not yield the most reliable results, as it does not account for the valuable 

motion information present in the videos. 

In view of the high performance and structural robustness achieved by image object detection 

algorithms, special models based upon these algorithms were introduced to take on the task of 

extracting the rich motion information in videos. The approach that was initially taken by 

researchers was to postprocess the results of an image detection algorithm applied on video 

frames, to extract spatiotemporal cues to improve the preliminary results [16-18]. These 

techniques were slow and not suitable for real-time applications. Afterwards, researchers 

integrated these postprocessing modules into the network itself to create an end-to-end network 

for video object detection. These modules employed different methods to capture the motion 

information, such as optical flow [17-19], memory modules [24, 25], all of which are 

computationally expensive and slow. 
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1.2 Contributions and Proposed Approach 

The thesis aims to use spatiotemporal object detection models for the task of enhancing aerial 

vehicle detection in transportation monitoring applications, by attempting to leverage the 

temporal information found in road network videos captured from UAVs, efficiently and in an 

end-to-end fashion using different techniques.   

The contributions of this thesis are summarized as follows: 

• A custom dataset of 6600 frame sequence images labeled with 3 vehicle classes: ‘car’, 

‘truck’ and ‘bus, compiled from aerial videos captured by UAVs from several 

different road network segments in the Republic of Cyprus.  

• Three different spatiotemporal models based on the YOLOv5 Object detection 

framework, each modified to incorporate temporality using different architectures and 

input representations. 

• Several attention-spatiotemporal models that investigated the effect of channel 

attention on the spatiotemporal feature channels by applying channel attention 

mechanisms within the spatiotemporal model architecture.  

1.3 Main results 

The main results of this thesis demonstrate that the inclusion of additional temporal context 

through different spatiotemporal models significantly improves detection and classification 

performance on aerial road network video data. Specifically, it was shown that utilizing frame 

difference information from two consecutive frames allows notable performance enhancement 

with a small inference speed hold-up. It was found that two-stream approaches achieve the 

highest performance but introduce slightly greater complexity and computational time over the 

one-stream approaches that utilize the same input representation. Results also demonstrate that 

incorporating attention mechanisms in the models enhances overall performance. The findings 

of this thesis highlight the importance of considering spatiotemporal factors for accurate video 

object detection, as well as the potential to further improve spatiotemporal model effectiveness 

through supplementary attention mechanisms. 

1.4 Thesis Outline 

The thesis is organized as follows: Chapter 2 provides some preliminaries to the subjects 

described in the thesis, as well as a summary of related works in image and video object 

detection, as well as some attention implementations in computer vision. Chapter 3 provides a 

brief overview of YOLOv5 and the custom dataset, as well as explaining the methodology 

behind all the presented spatiotemporal and attention-spatiotemporal models. Chapter 4 
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describes the performance metrics considered and the setup of model training, validation, and 

inference testing. Chapter 5 displays, compares, and discusses the experimental results, both 

quantitative and qualitative. Finally, Chapter 6 presents the conclusions made from the results, 

the limitations, as well as areas of improvement and future work. 
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Chapter 2 - Literature Review 

2.1 Preliminaries 

2.1.1 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a special type of artificial neural network, designed 

for processing grid-like topology data, such as an image. They can learn and identify image 

patterns and features by using convolutional layers which apply a previously specified number 

of filters to the input data, generating feature maps, thus making these networks highly effective 

for different tasks and applications including image and video recognition, natural language 

processing and object detection. The use of CNNs has become prevalent in the recent past on 

account of their ability to achieve state-of-the-art performance on a variety of tasks as well as 

the availability of high-quality open-source implementations [9]. 

2.1.2 Object Detection 

Object detection is a computer vision technique that is used for locating instances of certain 

objects in images or videos and drawing a bounding box around them. It has a wide range of 

real-life applications such as in monitoring, security, autonomous vehicles, drone and 

transportation surveillance, and for a multitude of well-researched domains such as multi-

category detection, face detection, pose detection, pedestrian detection etc. The evolution of 

object detection techniques was by virtue of the recent advancements in deep learning and GPU 

computing power, where deep learning networks were used to extract deep level features from 

images or videos to perform localization and classification [10]. 

2.1.3 Attention 

The concept of attention has become one of the most valuable breakthroughs in deep learning. 

It paved the way for numerous recent advancements in natural language processing (NLP). It is 

inspired by the human cognitive process that selectively concentrates or focuses on a few 

distinctive parts and ignores the rest when processing a large amount of information [11]. The 

nature-inspired concept of self-attention was introduced in transformers [12]. The concept was 

afterwards extended for computer vision tasks as vision transformers (ViTs) [13], and 

consequently video vision transformers (ViViTs) [14], constructed from pure deep-self-

attention networks, in what is considered the most recent era of developments in attention in 

computer vision [15]. Before the era of self-attention, the concept of attention was used in CNN-

based computer vision applications as dynamic weight adjustment based on important features 

of the input data, mimicking the aspect of the human visual system.  It allowed neural networks 

to refine their feature extraction process, by focusing on key information in the model features, 
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and ignoring the less relevant information, thus greatly improving network efficiency and 

accuracy [15]. 

2.2 Related Work 

2.2.1 Image Object Detection 

Developments in deep learning in the recent past have led to remarkable advancements in the 

field of object detection. Where the most notable contributions in literature and state-of-the-art 

are associated with deep convolutional neural networks utilizing feature extractor backbones 

and detector heads [10]. Image object detectors can be divided into two categories: two-stage 

detectors and one-stage detectors. An exemplary two-stage detector is the Faster R-CNN [3], 

where candidate object bounding boxes are proposed in the first stage, and features are extracted 

from each candidate box in the second stage to carry out the bounding-box regression and 

classification tasks. These kinds of detectors possess very high accuracy at the expense of high 

inference speeds. One-stage detectors, on the other hand, such as SSD [16] and the YOLO 

family of detectors [4]-[8], do not have an initial region proposal step, they propose predicted 

bounding boxes and class probabilities from the images directly in one stage, making them more 

time efficient and suitable for real-time applications due to their high inference speeds. 

YOLO [4] divides the input image into grid cells, where each grid cell is responsible for 

predicting the bounding box and confidence scores of objects centered within it. Confidence 

scores indicate how likely an object exists according to the model. YOLOv2 [5] further built on 

top of the original YOLO, adopting several novel concepts to improve its speed and precision. 

It employed batch normalization layers ahead of every convolutional layer in order to regularize 

the model and allow it to converge faster. YOLOv2 adopted anchor boxes to generate the 

predicted bounding boxes, removing the fully connected layer that YOLO previously used to 

generate the boxes. The third generation of YOLO [6] proposed a more robust feature extractor 

for its backbone called Darknet-53, which was inspired by ResNet. It allowed adaptation to 

more complex datasets containing multiple overlapping labels. It also utilized three different 

feature maps scales to predict bounding boxes, increasing its performance on smaller sized 

objects. YOLOv4 [7] further added techniques to achieve the best speed-accuracy trade-off, 

they implemented an improved loss function, Complete-IoU, and experimented with additional 

augmentation techniques. YOLOv5 [8] allowed faster training and ease of usage as it was built 

with Python and Pytorch, which was its native framework. It allowed more rapid detection with 

a similar accuracy to YOLOv4. 

Researchers modified existing image object detection models to improve accuracy and speed 

for different applications and extract more effective features for different image detection 
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problems. However, when it comes to video data problems, even the best image object detection 

networks struggle to achieve a satisfactory speed-accuracy balance, as videos carry rich 

temporal context information, thus, applying image detection algorithms to videos causes this 

data to be lost when the video stream is handled as unrelated images. Nevertheless, image object 

detection has established the foundation for the needed development of video object detection 

networks [22]. 

2.2.2 Video Object Detection 

Video detection, or Spatiotemporal detection is a more challenging task, as it aims to detect and 

describe patterns in both space and time. The earliest attempts to detect objects in video included 

using a state-of-the-art image detector on the video frames, extracting the spatiotemporal 

information, and using it to improve the image detector’s preliminary results in a postprocessing 

fashion. Seq-NMS [17], TPN [18] and T-CNN: Tubelets with CNNs [19] all had a main strategy 

of mapping the results of image detectors across adjacent video frames, with the main difference 

between the post-processing methods being the mapping strategy used. While these methods 

are straightforward, postprocessing techniques are usually undesirable and do not meet 

requirements for modern real-time applications. 

Several methods for spatiotemporal understanding were later integrated into the single image 

detectors, allowing them to learn motion information directly during training in an end-to-end 

manner. Feature level methods that use optical flow such as FGFA [20] and DFF [21], acquire 

temporal information from pixel-to-pixel correspondence between adjacent frames, using a key-

frame to supplement features of other frames. However, adding optical flow to a network 

significantly increases model parameters, making these methods slow [22]. 

Subnetworks based on context were also integrated into single image detectors for the aim of 

spatiotemporal understanding. A variant of the traditional long short-term memory (LSTM) 

model [23], that achieved very good results in many fields in the past, is the convolutional 

LSTM model [24]. It uses different ‘gate’ operations to extract and propagate features, namely, 

forget gates, remember gates, and focus gates. Through these operations it is able to establish 

context and long-term object associations between consecutive frames, similar to an RNN 

network. It is simpler to integrate into deep learning networks than optical flow, and it is able 

to capture features over a longer period than optical flow methods that operate only between 

two frames. The Association-LSTM [25], was proposed to improve video object detection. It 

consists mainly of the SSD [16] image object detector, and a convolutional LSTM [24]. SSD 

performs the detection on each frame of the video, extracting individual frame features, which 

are then stacked and fed to the LSTM. In addition to the bounding box regression error of the 

objects, Association-LSTMs calculate an association error that resembles the timing difference 
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between the two frames. When this error is minimized, the model better maintains the temporal 

context consistency of the object. While LSTMs require fewer computation than optical flow, 

they require memory and can carry a lot of redundant information. 

Karpathy et al. [26] studied several approaches for stretching a CNN connectivity to the time 

domain by fusing temporal information at different stages of the model. Their approach was to 

use a double-stream architecture; a context stream that learned on low resolution frames, and a 

fovea stream that learns on only the middle portion of high-resolution frames. They used this 

multi-resolution double-stream architecture to perform video classification on a large dataset of 

1 million videos and 487 classes (Sports-1M dataset) and reported significant improvement over 

the traditional feature-based methods. However, they also found that these methods would 

underperform when there is camera motion present, concluding that the models are not easily 

able to learn across many different camera angles and zoom. 

Another approach to extending convolutional neural networks into the time dimension is to 

employ 3-dimensional CNNs for spatiotemporal feature learning. Ji et al. developed a 3D CNN 

model to capture motion information encoded in multiple adjacent frames for the task of action 

recognition in airport surveillance videos [27]. Tran et al. [28] proposed 3D CNNs in the context 

of large-scale supervised learning tasks. They showed that 3D CNNs can outperform 2D CNNs 

on various video analysis applications. 

While 3D CNN based methods achieve good performance, their deployment is expensive as 

they have higher complexity than conventional 2D CNNs and are therefore much more 

computationally intensive. Due to the robustness and efficiency of conventional CNNs, 

researchers were inclined to build onto the existing architecture merely by introducing a special 

module that can extract and learn temporal representations.  Lin et al. proposed the TSM:   

Temporal Shift Module [29], an approach that was able to achieve the performance of 3D CNNs 

without the added complexity and cost. The module shifts part of the channels along the 

temporal dimension to allow motion cues exchanges between sequences of frames and facilitate 

video understanding and achieve d state-of-the-art results on the Something-Something action 

recognition dataset. However, too many shifts can result in performance degradation as it harms 

the model’s spatial modeling ability.  

Duran-Vega et al. [30] proposed a temporal detector based on YOLOv5 for the task of real-time 

handgun detection in video. They utilized Quasi-recurrent neural network (QRNN) modules, 

which differ from RNNs by allowing parallel feature extraction as they employ convolutional 

layers. They applied these QRNN modules on the feature maps at each of the three output scales 

to extract temporal features just before they are passed to the detection head. While the approach 

indeed outperforms the standard YOLOv5 on their temporal dataset while maintaining required 
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speed for real-time applications, adding recurrent neural networks to the model architecture 

remains a computationally expensive approach. 

Spatiotemporal information was also utilized for the task of tiny object detection (TOD) in wide 

area motion imagery (WAMI). Lalonde et al. [31] proposed a two-stage spatiotemporal CNN 

that exploits both appearance and motion information using an input of five stacked grayscale 

frames. The first stage is a Faster-R-CNN-like region proposal network that finds regions where 

objects are expected, these regions of interest are then processed in the second stage to locate 

the objects. Their method exceeded state-of-the-art results on the WPAFB 2009 dataset. Corsel 

et al. [32] later outperformed this work on the same dataset using a spatiotemporal model based 

on the YOLOv5 object detection framework, thus, a one-stage object detector that eliminates 

slow region proposal networks by design. They proposed two approaches, the first approach 

exploits temporal context by sampling every three consecutive frames from video sequences of 

the greyscale WPAFB 2009 WAMI dataset, where with each frame ft, ft-1 and ft+1 were sampled 

with it, thus requiring a future frame to process the current frame. Their second approach was 

to use a two-stream architecture with the first stream handling the three frame representations 

from the first approach, and with the second stream handling exclusive motion information 

obtained from the absolute difference of the three frames used. They applied their models to 

single-class detection of tiny objects in aerial surveillance and person detection domains. 

Inspired by Corsel et al.’s [32] two-stream approach, one of the spatiotemporal models 

introduced in this thesis aims to leverage temporal information in its own exclusive stream, 

using the absolute greyscale frame difference of two RGB frames, ft, and ft-1 along with the two 

frames themselves in another stream. Unlike Corsel et al.’s work, this thesis’s work attempts to 

leverage temporal information without sampling future frames (ft+1), making them more suitable 

for real-time applications. This thesis applies the two-stream architecture approach for multi-

label, multi-class detection and classification on a custom aerial RGB dataset of transportation 

networks captured from a UAV. 

2.2.3 Attention in Computer Vision 

As attention mechanisms excel in improving network efficiency and accuracy by focusing on 

higher-value information, they were widely adapted to various tasks including computer vision 

[11]. The progress of attention-based models in computer vision in the deep learning era can be 

divided into four phases [15]. The first phase is characterized by the pioneering work that 

combined deep neural networks with attention mechanisms in the RAM [33] network, that 

recurrently predicts important features while updating the network concurrently. Various works 

adopted a similar strategy that used RNNs [1] that were essential for the mechanism. The second 

phase began with the introduction of spatial attention, a mechanism that learns positions of 

Kris
tin

a T
ele

gra
ph

 



 16 

interest in the spatial input map. They transform the spatial information into another dimension 

in order for key data to be extracted. when Jaderberg et al. [34] introduced a differentiable 

spatial transformer (STN) that finds these positions of interest through different transformations 

such as cropping, rotation, scaling and skew, adaptively according to the input feature map. The 

third phase began with a novel-attention mechanism called SENet (Squeeze-and-Excitation 

networks) [35]. SENets adaptively recalibrated features channel-wise by explicitly modelling 

their interdependencies, to focus on the most important channels. More channel attention 

mechanisms followed like ECA-Net (Efficient Channel Attention networks) [36], and some 

researchers then combined both spatial and channel attention and proposed several mixed 

attention mechanisms such as the convolutional block attention module (CBAM) [37]. The last 

and current phase of attention in computer vision is the self-attention era that was first 

introduced by Vaswani et al. [12] in transformers and rapidly revolutionized the field of natural 

language processing. The first to introduce self-attention to computer vision was Wang et al. 

[38] who proposed non-local neural networks that achieved great success in object detection. 

Various pure deep self-attention networks for computer vision followed [13, 14], showing the 

great potential of attention-based models to supersede convolutional neural networks and 

emerge as a more powerful and versatile architecture in the field of computer vision. 
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Chapter 3 - Methodology 

3.1 YOLOv5 Overview 

The YOLOv5 object detection framework [8], was chosen as the foundation of this thesis for 

its fast inference speeds, high level of accuracy and scalability. It is a member of the YOLO 

(You Only Look Once) family of single-stage regression object detectors, hence its name. It 

uses a CNN architecture that is trained on single images in one forward pass to predict object 

bounding boxes and their class probabilities. It applies a technique called Non-Maximum 

Suppression (NMS) to identify and filter the redundant or incorrect bounding boxes to yield a 

single bounding box for each object in the image. The model architecture of the 7th version of 

the YOLOv5 framework comprises of a backbone network, responsible for extracting deep-

level features, and a head, which acts as a feature aggregator, combining features from the 

backbone from different scales, and finally passing them to the detection head which is 

responsible for making the predictions. 

The simplified architecture of YOLOv5 can be visualized in figure 1 below. 

 

Figure 1. YOLOv5 Architecture 

As seen from figure 1, the C3 module is a critical component in both the backbone and head 

architecture. It is a simplified variant of the Cross Stage Partial network (CSP) block [39], it 

contains two parallel convolutional layers, the first layer passes input features through a 
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bottleneck layer, whereas the second layer directly outputs the features. The outputs of the two 

layers are concatenated and passed through another convolutional layer [8]. 

YOLOv5 has multiple models of different sizes ranging from the smallest YOLOv5n, to the 

largest YOLOv5x, each designed for a specific use case of required speed-accuracy trade-off. 

In this thesis, the YOLOv5s architecture is adapted to create spatiotemporal models. 

Additionally, models will be trained from scratch on a custom temporal dataset, as the 

spatiotemporal models have different architectures and cannot entirely utilize the pre-trained 

YOLOv5 weights on the COCO image dataset [8]. 

3.2 Dataset 

A dataset is compiled from several aerial video clips, taken using UAVs of different road 

segments in the Republic of Cyprus. All frames are taken from the 30 FPS clips, a multi-object 

detector is applied to them to provisionally add the bounding boxes and classification of 

vehicles, before all the frames were manually cleaned of false detections and misclassifications, 

as well as labeling the additional vehicles that were not initially detected. 

The dataset finally amounted to 6600 images of 3 classes: ‘car’, ‘truck’ and ‘bus’. The dataset 

was prepared in YOLO format where each image has an identically named .txt file. It is split 

into 80% training and 20% validation.  

Two versions of the dataset were prepared: the full dataset for training the spatiotemporal 

models, and half of the dataset containing only even frames and their labels for training the 

single frame benchmark model. 

The dataset contains class imbalance, as there exists significantly more instances of cars than 

trucks and buses in the regular transportation network. Figure 2 below shows the number of 

instances for the three classes. 

 

Figure 2. Number of instances for each class in the dataset 
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3.3 Single Frame Model 

The single frame model is trained on single frames individually, to act as a benchmark for 

comparison for the spatiotemporal models and conclude any improvements resulting from the 

additional temporal connectivity. It is trained on only half of the dataset, specifically the even-

numbered frames, to allow fair comparison with the spatiotemporal models that are likewise 

trained on an identical portion of that dataset ground truth labels. 

Figure 3 below provides an illustration of the first three training examples that the model is 

given. As well as showing the input shapes that are standard 3-channel images for every 

example. 

 

Figure 3. Overview of single frame model (even frames). 

3.4 Spatiotemporal Models 

The spatiotemporal models utilize additional temporal information; hence they make use of 

both spatial and temporal data. The spatiotemporal models are trained on the full dataset, while 

utilizing the ground truth labels of the second and most recent frame, thus, utilizing only the 

even-numbered ground truth labels, which justifies the reasoning for using only half the dataset 

in the single frame benchmark model. 

3.4.1 Frame Pair Model 

This model proposes using as input pairs of two consecutive frames at a time, concatenated 

channel-wise to result in a tensor of 6 channels.  Figure 4 below illustrates the first two training 

examples given to the model. 

Kris
tin

a T
ele

gra
ph

 



 20 

 

Figure 4. Overview of frame pair model. 

3.4.2 Frame Pair and Difference Model 

This model proposes using a 7-channel input comprised of a pair of two consecutive frames, as 

in the Frame Pair Model, with the addition of the absolute greyscale frame difference, that is, 

the absolute value of the difference of the two frames in greyscale, which is a single-channel 

tensor, that is concatenated along the channel dimension of the frame pair to result in a 7-

channel input tensor. Figure 5 below illustrates this model’s approach. 

 

Figure 5. Overview of frame pair and difference model. 
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3.4.3 Two-Stream Model 

This model proposes using the same input as the Frame Pair and Difference Model, however, 

the input is split in two as the frame pair and the frame difference channels are fed into two 

separate backbones, after which the outputs of both backbones are concatenated and passed to 

the model head, where the extracted features are concatenated at three detection scales. Both 

backbones are identical to that of the base YOLOv5 backbone shown in Figure 1: YOLOv5 

Architecture, except for their input layer channels.  

The head architecture is also identical to that of base YOLOv5.  

Figure 6 below illustrates the proposed two-stream model architecture. 

 

Figure 6. Two-stream model architecture. 

However, to remove the need for having to load data twice, one for each of the inputs, into the 

model, the 7-channel tensor is loaded whole as in the 3.4.2 Frame Pair and Difference Model, 

before being sliced when it is fed into the model so that each backbone receives its 

corresponding slice of the tensor. Subsequently, backbone 1 receives the first 6 channels of the 

tensor, the pair of frames, and backbone 2 receives the last channel, their corresponding frame 

difference in greyscale. 

Figure 7 below illustrates how the input tensor is sliced for each input and fed to the model. 
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Figure 7. Two-stream model input slicing. 

3.5 Attention-Spatiotemporal Models 

Attention-spatiotemporal models propose embedding different attention mechanisms in the 

architecture of the previously proposed spatiotemporal models. The attention mechanisms 

would be applied to the spatiotemporal feature maps, allowing the model to refine them by 

focusing on the important information and ignoring the less important information. Two 

attention mechanisms were explored, Squeeze-and-Excitation networks (SENet) [35], as well 

as Efficient Channel Attention networks (ECA-Net) [36]. Their addition was investigated in 

both the Two-Stream Model as well as the Frame Pair and Difference Model. 

SENet is a CNN architecture that employs Squeeze-and-Excitation blocks. These blocks weigh 

their input channels adaptively according to their relevance, as opposed to convolutional layers 

in a CNN which give equal weights to each channel. Fundamentally, the block first squeezes 

each channel into a single numerical value using global average pooling, resulting in a vector 

of size C, where C is the number of channels in the input. This vector is fed into a two-layer 

feed-forward network which outputs a same-size vector. This vector contains the weights for 

each channel which are then applied to the input channels, scaling each channel based on its 

context [35]. 

The block is illustrated in Figure 8 below. 

 

Figure 8. Squeeze-and-Excitation block [35].   
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ECA-Net is a CNN architecture that employs Efficient Channel Attention blocks. As with 

SENets, ECA-Nets also provide channel attention but at a lower complexity trade-off and thus 

computational cost. It reduces each channel in the input tensor to a single pixel in the same way 

as in SENets, this vector is then subjected to a 1-D striding convolution. This makes ECA-Net 

more efficient as the total number of parameters added is just the size of the convolutional kernel 

k, as opposed to SENets which employ a feed-forward network. By design, this also eliminates 

the dimensionality reduction present in SENets hidden layer [36]. The block is illustrated in 

figure 9 below. 

 

Figure 9. Efficient Channel Attention block [36]. 

The addition of these blocks to the spatiotemporal models was explored in two different ways 

in the model architecture, adding them as a layer at a single level at the end of the backbone, 

right before the final SPPF layer, as well as embedding them into the C3 modules at four 

different levels in the head architecture. 

Figure 10 below shows where the SE or ECA layers are added in the model backbone. 

 

Figure 10. Attention mechanisms as a layer in spatiotemporal models’ backbone 

architecture. 
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In the attention embedded two-stream model, the attention layers are added in both backbones 

1 and 2, at the same position. As a result, the two-stream-SE model has two SE layers, one in 

each backbone. Similarly, the two-stream-ECA model has two ECA layers, one in each 

backbone. 

Another approach that was explored was embedding the SE and ECA mechanisms into the C3 

modules in the head architecture to apply attention during feature aggregation at different scales. 

The C3 module, discussed in 3.1 YOLOv5 Overview, is responsible for extracting feature maps 

at different scales and resolutions [8]. Therefore, adding attention mechanisms in the C3 blocks 

could help the network amplify the more important features at different input scales and 

resolutions. 

The resulting modules of embedding SE and ECA into the C3 modules were called the C3SE 

and C3ECA modules respectively. Figure 11 below shows how these modified C3SE modules 

are substituted in place of the original C3 modules in the head architecture of the spatiotemporal 

models. 

 

Figure 11. Attention mechanisms embedded in C3 in spatiotemporal models’ head 

architecture. 

In the attention-spatiotemporal models that utilize C3ECA modules, those modules are 

implemented in the same way in the architecture as Figure 11.  
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Chapter 4 - Experiments 

4.1 Performance Metrics 

4.1.1 Precision and Recall 

Precision is the percentage of correct positive predictions. It is the model’s ability to identify 

and detect only relevant objects. Recall is the model’s ability to find all relevant objects, it is 

the percentage of correct positive predictions among all ground-truths [40]. 

In order to establish prediction ‘correctness’, the measurement of intersection over union (IOU) 

is used, which measures the area overlap between the predicted bounding box and the ground-

truth bounding box divided by the union area between them [41]. Given by: 

 

Figure 12. Illustration of intersection over union (IOU) [41]. 

To calculate precision and recall, the following concepts also need to be defined: 

• True positive (TP): A correct detection of a ground-truth bounding box. 

• False positive (FP): An incorrect detection of an object that is nonexistent, or a 

misplaced detection of an existing object. 

• False negative (FN): An undetected existing ground-truth bounding box. 

Given each detected bounding box is classified as one of the above, precision (P) and recall (R) 

can be formally expressed by the following equations: 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
     𝑅 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
  [41] 

4.1.2   Mean Average Precision 

Average precision is a metric based on the area under the precision/recall curve, however, as 

this curve often has a zig-zag nature, it is first processed to smooth out the curve. Mean average 

precision is the mean over all classes of the dataset [41]. In the context of YOLO however, 

average precision (AP) and mean average precision (mAP) are identical in meaning. 

The mAP50 metric is the main performance metric used to compare the models, which is the 

mean average precision with a threshold of 50%, which means that a predicted box is considered 

correct if the IoU with the ground truth box is greater than or equal to 0.5. 
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4.1.3 Inference Speed 

The model inference speed is a metric to consider if the model is aimed to be used in real-time 

applications. The speed is recorded for all models during inference experiments, indicated as 

the inference time per frame, as well as in terms of frames per second (FPS). 

4.2 Setup 

Training, validation, and inference tests of all models were carried out on an NVIDIA Tesla 

V100 GPU. Experiment specific setups are discussed in the relevant sections below. 

4.2.1 Training 

The changes that are made in the training script that are applied to all models are disabled 

augmentations and disabled rectangular training. Augmentations and in turn, mosaics, were 

disabled as they would affect the spatial as well as the temporal aspect of the model learning, 

which is not desirable. Whereas rectangular training is disabled as it sorts training images by 

aspect ratio, which interferes with frame order and is therefore undesirable in the context of 

spatiotemporal learning. 

Conversely, shuffling the training data is a fundamental part of model training and helps prevent 

model overfitting by ensuring that batches are more representative of the entire dataset. Hence, 

images are shuffled during training in the single frame models and shuffled in pairs before 

training in the spatiotemporal models. This allows the model to be exposed to a different 

sequence of samples, preventing it from memorizing and overfitting to specific patterns, without 

affecting the temporality of the pairs or triplets that the spatiotemporal models are trained on. 

Additionally, to combat the dataset’s class imbalance, class weights are also calculated when 

training each model and are factored into the classification loss, so that misclassifications of the 

minority classes of ‘truck’ and ‘bus’ are more heavily penalized than the majority ‘car’ class by 

having a larger effect on the classification loss function during the training process, and as a 

result will allow the model to achieve better results.  

The image size is set at 640 with a training batch size of 16. Hyperparameters are kept at their 

default values in YOLOv5’s hyp.scratch-low.yaml [8], and training is carried out from scratch 

for 300 epochs. 

4.2.2 Validation 

The models were validated on the best weights from training on the validation set. The image 

size used was 640 as with training, the batch size was 32. The results also contained the class-

specific metrics. 
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4.2.3 Inference Tests 

Inference tests were carried out to perform a qualitative analysis of the spatiotemporal as well 

as the attention-spatiotemporal models’ results. The tests were done on several video frames 

from the validation set of different road segments and environments. A graph was finally 

constructed showing the performance/speed trade-off for all models and their attention-infused 

versions. 
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Chapter 5 - Results and Discussion 

5.1 Training 

Figure 13 below shows the mAP50/epochs graph generated from training the single frame and 

spatiotemporal models. 

 

Figure 13. Training mAP50/epochs results for single frame and spatiotemporal models. 

The graph indicates that the models were able to fit well and converge after less than 100 epochs. 

It can be observed that all spatiotemporal models show higher results than the single frame 

model, with the two-stream model indicating the highest performance, followed by the frame 

pair and difference model, and finally by the frame pair model. 

Figure 14 below shows the mAP50/epochs graph containing results of all models, including the 

attention-infused spatiotemporal models. The y-axis was trimmed to begin from 0.4 mAP for 

better visualization. 

 

Figure 14. Training mAP50/epochs results for all models. 
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It can be concluded from figure 14 that all spatiotemporal models and attention-spatiotemporal 

models outperform the single frame model by a wide margin. Where some of the attention-

spatiotemporal models appeared to outperform their standard spatiotemporal versions from 

these provisional training results. 

5.2 Validation 

5.2.1 Spatiotemporal Models 

Table 1 below shows the validation results of the single frame and the three spatiotemporal 

models for each and all classes of the dataset. 

Table 1. Validation results of single frame and spatiotemporal models 

 Model Class P R mAP50 

Single Frame Even Frames 

All 0.777 0.697 0.715 

Car 0.977 0.94 0.969 

Truck 0.816 0.375 0.484 

Bus 0.538 0.777 0.691 

Spatiotemporal 

Frame Pair 

All 0.856 0.736 0.778 

Car 0.986 0.929 0.972 

Truck 0.89 0.448 0.532 

Bus 0.691 0.832 0.832 

Frame Pair and 

Difference 

All 0.79 0.752 0.811 

Car 0.979 0.947 0.976 

Truck 0.926 0.494 0.734 

Bus 0.465 0.817 0.722 

Two-Stream 

All 0.906 0.781 0.831 

Car 0.979 0.944 0.972 

Truck 0.881 0.558 0.626 

Bus 0.859 0.842 0.895 

 

It can be concluded from table 1 that all three spatiotemporal models result in improved mAP50 

over the single frame model, with the two-stream model having the highest overall performance 
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improvement. The frame pair model achieves a total mAP of 0.778 on all three classes, an 

8.81% improvement over the single frame model. The frame pair and difference model achieves 

an improvement of 13.43% with a total mAP of 0.811. Finally, the two-stream model achieves 

the highest total mAP of all classes, with a total improvement of 16.22% over the single frame 

model. 

Comparing the performance of the models in different classes, all spatiotemporal models show 

slightly improved mAP50 on the ‘car’ class. For the ‘car’ as well as the ‘truck’ class, the frame 

pair and difference model gives the highest mAPs of 0.976 and 0.734 respectively. The frame 

pair model and the two-stream model present a smaller improvement in the ‘truck’ class over 

the single frame model’s very low mAP of 0.484. The ‘bus’ class mAP performance is also 

improved in all three spatiotemporal models, with the Two-Stream model indicating the largest 

improvement over the single frame model from 0.691 to 0.895 mAP. 

To sum up, the spatiotemporal models exhibit improvement in results for all classes, and 

significant improvement for the minority classes of ‘truck’ and ‘bus’ that exhibited very poor 

performance in the single frame model. While the two-stream model shows the highest overall 

mAP improvement, the frame pair and difference model displays the most balanced mAP 

outcome among the spatiotemporal models for the ‘truck’ and ‘bus’ classes, of 0.734 and 0.722 

respectively. 

5.2.2 Attention-Spatiotemporal Models 

Tables 2 and 3 below show the validation results of the attention infused two-stream and frame 

pair and difference spatiotemporal models for each and all classes of the dataset, alongside the 

results of the regular relevant spatiotemporal models to form a comparison. 

Table 2. Validation results of attention two-stream spatiotemporal models 

 Model Class P R mAP50 

Spatiotemporal Two-Stream 

All 0.906 0.781 0.831 

Car 0.979 0.944 0.972 

Truck 0.881 0.558 0.626 

Bus 0.859 0.842 0.895 

 

 

 

Two-Stream - SE 

All 0.853 0.779 0.844 

Car 0.985 0.924 0.973 

Truck 0.887 0.561 0.712 
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Attention-

Spatiotemporal 

Bus 0.688 0.851 0.848 

Two-Stream - 

ECA 

All 0.952 0.788 0.833 

Car 0.985 0.938 0.975 

Truck 0.954 0.551 0.616 

Bus 0.917 0.876 0.91 

 

Two-Stream – 

C3SE – Head 

All 0.864 0.771 0.861 

Car 0.984 0.936 0.972 

Truck 0.942 0.554 0.771 

Bus 0.667 0.822 0.839 

Two-Stream – 

C3ECA – Head 

All 0.874 0.766 0.839 

Car 0.984 0.935 0.973 

Truck 0.908 0.505 0.652 

Bus 0.731 0.856 0.892 

 

It can be seen from Table 2 that all attention models show higher performance at varying degrees 

over the standard two-stream model. With the two-stream–C3SE–head model having the 

highest overall increase in performance of 3.61% over the standard model, due to the steep 

increase in the mAP50 on the ‘truck’ class, regardless of the slight decrease in performance on 

the ‘bus’ class. 

An observation that was made from the results was that SE-based attention was found to 

improve results on the ‘truck’ class at the expense of worsening results on the ‘bus’ class. And 

ECA-based attention was unable to boost performance on the ‘truck’ class but was able to 

maintain or boost performance on the ‘bus’ class. 
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Table 3 below shows the results of the attention-frame pair and difference models. Only 

Squeeze-and-Excitation [31] attention was experimented with the frame pair and difference 

model. 

Table 3. Validation results of attention frame pair and difference spatiotemporal models 

 Model Class P R mAP50 

Spatiotemporal 
Frame Pair and 

Difference 

All 0.79 0.752 0.811 

Car 0.979 0.947 0.976 

Truck 0.926 0.494 0.734 

Bus 0.465 0.817 0.722 

Attention-

Spatiotemporal 

Frame Pair and 

Difference - SE 

All 0.818 0.764 0.844 

Car 0.981 0.934 0.972 

Truck 0.982 0.432 0.679 

Bus 0.49 0.926 0.88 

Frame Pair and 

Difference – 

C3SE – Head 

All 0.808 0.77 0.819 

Car 0.97 0.955 0.976 

Truck 0.869 0.519 0.64 

Bus 0.585 0.837 0.841 

 

The results of attention-frame pair and difference models in Table 3 show that the attention 

mechanisms provide a general boost in the overall mAP50, with the frame pair and difference 

– SE model giving a higher boost at 0.844 mAP50, while the frame pair and difference – C3SE 

– head model only increased the overall mAP50 from 0.811 in the standard model, to 0.819. 

However, class-specific results show that while the attention mechanisms increase the 

performance on the ‘bus’ class, it can also be seen that the performance of the ‘truck’ class 

decreases significantly in both attention models. 

To sum up the results of the attention-spatiotemporal models, while the attention-enhanced 

models indicate an overall positive effect on performance, class specific metrics indicate that 

this might be due to a boost in the results of one of the minority classes, however while 

decreasing the results of the other minority class. A possible reason for this behavior could be 

attributed to the fact that the model could be misclassifying the ‘truck’ and ‘bus’ classes in some 

cases, leading to this unbalanced boost. 
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A further analysis of the confusion matrices of the models reveals that there is indeed confusion 

mainly with the truck class. The single frame model misses a large portion of the dataset’s 

trucks, as indicated by confusion with the background for 35% of truck instances as shown in 

figure 15 below. There was also 10% and 12% confusion with buses and cars respectively. 

Buses, on the other hand, were not confused by the model as trucks at all. 

 

Figure 15. Confusion matrix of the single frame model 

 

The confusion matrix of the frame pair and difference model is also illustrated in figure 16 

below. Kris
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Figure 16. Confusion matrix of the frame pair and difference model 

 

Analysis of the confusion matrix of the frame pair and difference model in figure 16 reveals the 

decreased confusion of trucks with the background and with cars, indicating the motion 

information significantly helps the model with identifying the presence of the trucks. However, 

the confusion with buses is significantly increased to 30%, affirming the behavior of the 

attention-frame pair and difference models with the alternating performance between the two 

classes. 
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5.3 Inference Tests  

5.3.1 Spatiotemporal Models 

Figure 17 below displays the inference test results of the single frame and the three 

spatiotemporal models in full picture. Figure 18 displays some focused regions of interest 

containing the minority truck and bus classes to analyze each model’s performance. 

 

Figure 17. Inference tests results comparison for spatiotemporal models. 

 

  

Figure 18. Inference tests regions of interest comparison for spatiotemporal models. 

It can be observed from figure 18 that the spatiotemporal models have a slightly higher 

confidence score for the ‘car’ class detections than the single frame model. From the first 

column of tests, it can be observed that the spatiotemporal models do a better job of localizing 
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the bus than the single frame model. In the second column, the test reveals that all models 

confuse the back compartment of the semi-truck with a bus. It is also observed that the single 

frame model falsely detects a shed on the roadside as a bus, whereas the spatiotemporal models 

all do not exhibit this false positive. In the third column, the single frame model fails to correctly 

draw the bounding box around the bus, possibly due to the shadows cast by the nearby buildings 

and trees. The spatiotemporal models on the other hand show better bounding box localization 

on the bus with higher confidence scores of 0.95 and 0.96 even in the presence of shadowing. 

In the fourth and final column, the inference test reveals that the spatiotemporal models are 

more confident in the detection of partially occluded vehicles, as exhibited with the vehicle on 

the roundabout as it emerges from under the bridge. 

Given the qualitative analysis, it can be concluded that the spatiotemporal models show better 

performance in localizing the minority classes, as well as better localizing and confidence scores 

in cases of occlusion and shadowing. The spatiotemporal models give better overall confidence 

scores for cars, with the frame pair and difference model showing the highest confidence scores 

on average. Both the single frame and the spatiotemporal models display that they can mistake 

semi-trucks’ trailers for buses and missing the truck detection altogether, confirming the 

analysis of the confusion matrices. This can be the result of insufficient examples of semi-trucks 

in the dataset. 

The Inference times in milliseconds were recorded for each model’s test, and the inference 

speed in frames per second was calculated. 

Table 4. Spatiotemporal models inference times and speeds. 

Model Inference Time (ms) Inference Speed (FPS) 

Single Frame  4.3 232 

Frame Pair 4.9 204 

Frame Pair and Difference 5.5 181 

Two-Stream 8.6 116 

 

From table 4, it was observed that the frame pair model records the fastest inference speed 

among the spatiotemporal models at 204 FPS, only slightly lower than the single frame model’s 

232 FPS. It was followed by the frame pair and difference model at 181 FPS. The two-stream 

model performs the slowest at 116 FPS, which is still very fast and sufficient for real-time 

applications.  
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5.3.2 Attention-Spatiotemporal Models 

Figure 19 below displays some focused regions of interest from the inference tests on selected 

attention-spatiotemporal models, compared with their standard models without attention. 

 

Figure 19. Inference tests regions of interest comparison for attention-spatiotemporal 

models. 

As seen from figure 19, the first column reveals that both attention-two-stream models also 

misclassify the trailer of the semi-truck as a bus. The attention-frame pair and difference models 

however both indicate a positive learning response as they correctly classify the same semi-

truck, although with incorrect bounding box localization, they prove that they are able to focus 

on features at different scales to learn to better recognize the truck. The second column of the 

inference tests reveals that both attention-two-stream models exhibit better localization and 

higher confidence scores for the truck. The frame pair and difference-C3SE-head model also 

exhibits the same improved behavior on the truck, while the frame pair and difference-SE model 

Kris
tin

a T
ele

gra
ph

 



 38 

does not. The third and last column shows how the attention-two-stream models detect buses 

with lower confidence, presenting how they can increase performance on trucks while at the 

same time decreasing performance on buses. Conversely, both attention-frame pair and 

difference models significantly boost confidence scores on the bus. 

Inference tests were carried out for the attention-spatiotemporal models and inference times in 

milliseconds were recorded for each model, and the inference speed in frames per second was 

also calculated alongside the standard models. 

Table 5. Attention-spatiotemporal models inference times and speeds. 

Model Inference Time (ms) Inference Speed (FPS) 

Two-Stream 8.6 116 

Two-Stream - SE 9.2 108 

Two-Stream - ECA 9.1 109 

Two-Stream – C3SE – Head 8.7 114 

Two-Stream – C3ECA – Head 8.9 112 

Frame Pair and Difference 5.5 181 

Frame Pair and Difference- SE 6.9 144 

Frame Pair and Difference – C3SE 

– Head 

7.6 131 

 

Table 5 reveals that the attention-two-stream models require only slightly additional inference 

time compared to the regular two-stream model. The attention-frame pair and difference 

models, however, reveal that they take significantly more time. 

5.3.3 Performance/Speed Analysis 

Figure 20 below shows a mAP50/Inference time graph for all models, including the single frame 

model, the spatiotemporal models, and their attention-infused versions. Kris
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Figure 20. mAP50/Inference time (ms/frame) graph for all models 

It can be concluded from Figure 20 that all spatiotemporal models have higher inference time 

than the single frame model, which was an anticipated observation. Nevertheless, the inference 

speeds were not higher by a large margin, especially in the frame pair model and frame pair and 

difference model where inference speeds were only 4.9 ms and 5.5 ms respectively, compared 

to 4.3 ms in the single frame model. The attention models of the frame pair and difference model 

both have considerably larger inference times than the standard model. Whereas the attention 

models of the two-stream model had slightly larger inference times than that of the standard 

two-stream model. Given the graph, it was observed that the frame pair model offers a relatively 

large boost in mAP50 considering the very small increase in inference time of 0.6 ms. 

Ultimately, it can be concluded that the frame pair and difference model has the best inference 

time and performance trade-off among the spatiotemporal models. Among the attention-

spatiotemporal models, it appears the frame pair and difference-SE followed by the two-stream-

C3SE-head have the best inference time and performance trade-off.  

5.4 Further Experiments 

Apart from utilizing colored pairs of frames and their frame difference, other representations 

were considered. Triplet frame (three consecutive frames) representations were considered for 

model input, both colored and in greyscale. Where the input is a 9-channel tensor when colored 

frames are used, and a 3-channel tensor when greyscale frames are used. 

The triplet models use as ground truth the labels of the third and most recent frame. Therefore, 

the single frame model that is compared with the triplet frame models to conclude effects must 

SE

C3SE-Head

C3SE-Head

C3ECA-Head
ECA

SE

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

4 5 6 7 8 9 10

m
A

P
5

0

Inference Time (ms/frame)

Single Frame

Frame Pair

Frame Pair and Difference

Two-Stream

Faster

Kris
tin

a T
ele

gra
ph

 



 40 

be trained on one third of the dataset containing every third frame, to utilize the same ground 

truth labels for equitable comparison. 

Figure 21 below provides an illustration of the first three training examples that the triplet 

benchmark model is given.  

 

Figure 21. Overview of single frame model (every third frame) for triplet frame comparison 

 

Figure 22 below shows the provisional training results. 

 

Figure 22. Training mAP50/epochs results for triplet single frame and triplet 

spatiotemporal models. 

The provisional training results indicated that the triplet spatiotemporal models, both in color 

and greyscale, have decreased performance over their comparative single frame model. Where 

the greyscale triplet frame model’s performance is significantly worsened. 

Validation tests were carried out to observe the class-specific metrics. The results are illustrated 

in Table 6 below. 
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Table 6. Validation results of triplet frames spatiotemporal models 

 Model Class mAP50 

Single Frame 

Every 

Third 

Frame 

All 0.798 

Car 0.968 

Truck 0.608 

Bus 0.818 

Spatiotemporal 

Triplet 

Frames 

All 0.771 

Car 0.974 

Truck 0.567 

Bus 0.772 

Greyscale 

Triplet 

Frames 

All 0.647 

Car 0.949 

Truck 0.576 

Bus 0.415 

 

The validation results indicate that unlike using two frames, using three frame representations 

does not yield improved overall results over its comparable single frame model. In the regular 

triplet frame model, although the ‘car’ class shows an improvement in accuracy over the single 

frame model, the ‘truck’ and ‘bus’ class show declining accuracy, which is responsible for the 

overall decline. This could possibly be due to the single frame model evading several 

challenging frames during its validation as it only uses one third of the dataset. Consequently, 

in the triplet frames model, it is possible the model struggles due to not being familiar enough 

with challenging ‘truck’ and ‘bus’ instances as it was not trained on adequate examples due to 

the skipped frames. 

Additionally, as for the presence of color, it was shown that the model performance greatly 

regresses with the greyscale frames in contrast with the colored frames, affirming that color 

plays an important factor in the detection and classification process in this dataset.  
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Chapter 6 - Conclusions and Future Work 

6.1 Conclusions 

This thesis presented several spatiotemporal models based on the YOLOv5 object detection 

framework with modified architectures and input structures for aerial vehicle detection in 

transportation monitoring applications. It was concluded that additional temporal context can 

significantly improve detection and classification performance. It was also concluded that 

utilizing additional motion information in the form of frame difference in the same input stream 

can greatly increase overall performance with a small computational overhead over utilizing 

just a sequence of pairs. Furthermore, two attention mechanisms were embedded into the 

architecture of two of the spatiotemporal models at different architecture scales to explore the 

effect of channel attention on spatiotemporal feature channels. It was observed from quantitative 

and qualitative results that attention mechanisms indeed have the potential to enhance the 

learning ability of the spatiotemporal models, especially with minority ‘truck’ and ‘bus’ classes. 

A limitation of the models was the apparent misclassification of some white semi-truck’s trailers 

as buses, missing the truck detection altogether. This limitation was ascribed to the small 

number of semi-trucks in the custom dataset.  

Furthermore, experiments on triplet frame representations concluded declining performance in 

contrast to the comparative single frame model trained on one third of the dataset, due to 

declining performance on trucks and buses. This was concluded to be because of forgoing two 

thirds of the dataset’s ground truth labels that the models lose out on learning, especially the 

minority class instances that are already scarce. This also introduces another limitation of the 

spatiotemporal models that utilize two consecutive frames, signifying that the spatiotemporal 

models could also greatly benefit from taking advantage of all the dataset’s ground truth labels 

instead of half of them. 

6.2 Future Work 

For future work, the spatiotemporal models ought to be experimented with a larger dataset 

containing more trucks and buses of all varieties to reduce misclassifications and achieve 

equally high accuracy in all classes. Experimenting with higher frame sampling rates to capture 

longer ranges of motion from more frames is also worthy of experimentation. However, because 

the number of skipped frames in training increases with a higher frame sampling rate, future 

work aims to find methods to allow the leveraging of all frame annotations and taking advantage 

of the complete dataset while concurrently performing data shuffle that preserves frame 

sequence order for every example in the training process, to prevent model overfitting from 
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training on similar sequences in succession. Temporal augmentation techniques that can be 

applied to temporal data without altering spatiotemporal dependencies to improve model 

learning are also worth studying and investigating. Finally, other attention mechanisms within 

the spatiotemporal model architecture could be applied within the spatiotemporal model 

architecture and at different points to investigate their effect. 
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