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Abstract 

Tissue engineering can utilize the use of Porous Collagen Scaffolds (PCS) to act as a guide for 

cells in wound healing applications. Improving healing time and reducing scar formation 

leading to improved quality of life in treated patients. Interactions between cells and PCS is 

still not fully understood. Recent research has focused on utilizing computational techniques 

which can reveal insight not currently achievable experimentally. 

The Finite Element method was employed to construct PCS and simulate cell contractile forces. 

Before modelling cell-matrix interactions the PCS model was validated by unconfined 

compression simulations. Cell contractile forces were randomly generated throughout scaffolds 

to observe cell-matrix effects on a microscopic and a macroscopic (spatial) scale. Using defined 

parameters, the process was automated to allow for design optimization of PCS, which can be 

used as a guide when fabricating PCS for medical applications.  

Unconfined compression simulations revealed scaffolds with a pore size of 110 μm to have an 

initial linear elastic modulus (E*) of 179.07 Pa, being within the same order of magnitude as 

experimental compression tests. The compression simulations were also able to validate the use 

of 1D Pipe elements to model open-cell elastomeric foams applied to scaffolds constructed 

from 14-sided tetrakaidekahedrons. Cell-matrix interactions demonstrated an inverse 

relationship between the average contraction of scaffolds and the average stiffness that is sensed 

by cells.  

Parametrization of variables in the model allowed a design optimization process to be 

implemented which was able to identify PCS candidates that reduced the contraction based on 

varying the strut thickness and the elastic modulus of struts (Es). The work offers techniques 

that can be applied to a range of PCS such as Collagen-Glycosaminoglycan scaffolds, which is 

also argued in the prospects for future work in this research direction. 
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Chapter 1  

Introduction 

Cell-matrix interactions have been shown to be vital in the wound healing process and a major 

factor in tissue engineering [8,11,44]. Porous Collagen Scaffolds (PCS) are built to replace 

damaged or missing tissue acting as a support structure for cell proliferation, differentiation etc. 

The mechanical stimuli being applied to cells (mechanosensing) is a factor effecting cell 

proliferation and differentiation [21,24,45]. Contractile forces of cells cause macroscopic 

contraction of PCS affecting wound healing and scar tissue formation [40,41]. Scar tissue has 

poor mechanical properties, limiting functionality and resulting in physical disfigurements. An 

improved understanding of how cells effect the surrounding extra-cellular matrix (ECM) and 

vice versa can lead to improved design of biomaterial-based scaffolds to reduce scar tissue 

formation.  

Cell contractile forces are applied by attaching to ECM and pulling applying force within the 

nano newton range during cell migration [16]. Understanding the forces applied per cell and 

how they attach poses challenges due to the size and quantity of cells within a scaffold. Cell-

matrix interactions and dependencies on a micro to nano scale could be used to develop 

treatments with improved results and faster healing times in a wide range of applications.  

One of the primary challenges with investigating mechanics on a small scale is the lack of 

knowledge on cell properties and cell-matrix interactions. For this reason a technique needed 

to be developed, by which the mechanics experienced by individual cells could be recorded 

thus relating microscopic and macroscopic properties. 

1.1 Porous Collagen-based Scaffolds (PCS) 

The term Porous Collagen-based Scaffolds (PCS) refers to a class of biomaterials that have 

three major common characteristics: i) they are highly porous biomaterials, with a mean pore 
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diameter in the order of 100 μm, ii) their chemical backbone is microfibrillar collagen I, and 

iii) they are fabricated in dry state via lyophilization. PCS of various chemical composition 

have been reported in the literature, including collagen-glycosaminoglycan (CG) scaffolds and 

plain collagen scaffolds. Both CG scaffolds and plain collagen scaffolds are of medical interest 

as they have been utilized in FDA-approved regenerative medicine grafts. 

Collagen is the primary constituent in the ECM of several tissue. CG scaffolds are highly porous 

structures interconnected with randomly orientated collagen struts (Fig. 1.1). They are produced 

via freeze drying which allows tuneable geometric features, a desirable property for tissue 

engineering applications.  

 

Figure 1.1: Scanning Electron Microscopy (SEM) images of collagen-

glycosaminoglycan (CG) scaffolds. A) Low magnification. Scale bar: 1 mm. B) High 

magnification image. Scale bar: 100 𝜇m [15]. 

1.2 Mechanical Properties of PCS – Modelling and Experimental 

Characterization 

1.2.1 Macroscopic Characterization 

Harley et al. 2007a reported that the macroscopic behaviour of isotropic equiaxed CG scaffolds 

acts as an open-cell elastomeric foam (Fig. 1.2). Having an initial linear elastic region (E*), 

followed by a collapse plateau due to buckling (Δσ/Δε), and finally a densification regime. The 

transition from E* to Δσ/Δε can determine the elastic buckling stress (𝜎𝑒𝑙
∗ ) and the elastic 

buckling strain (𝜀𝑒𝑙
∗ ). The strength of scaffolds is dependent on whether they are dry or hydrated, 

with hydrated being significantly weaker [15]. 
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Figure 1.2: A) The stress-strain relationship of open-cell elastomeric foams consists of an 

initial linear elastic response, a collapse plateau, and a densification regime. B) Linear 

regression slopes of the linear elastic region (E*) and the collapse plateau (∆σ/∆ε), with 

intersecting elastic buckling stress (σel
∗ ) and elastic buckling strain (εel

∗ ) [15]. 

Unconfined compression tests on equiaxed CG scaffold samples of 20 mm diameter and 3.4 

mm thickness (Tab. 1.1), revealed that the macroscopic young’s modulus (Fig. 1.2) of hydrated 

CG scaffolds in the linear elastic region (E*) was 208 ±41 Pa and 92 ±14 Pa in the collapse 

plateau region (∆𝜎/∆𝜀) for pore sizes ranging from 96-151 𝜇m [15].  

Table 1.1: Macroscopic elastic modulus in initial linear elastic region (E*) & collapse 

plateau region (∆𝜎/∆𝜀), elastic buckling strength (𝜎𝑒𝑙
∗ ), and elastic buckling strain (𝜀𝑒𝑙

∗ ) 

from unconfined compression tests performed on hydrated CG scaffolds by Harley et al., 

2007a. 

Average 

Pore Size 

(𝝁m) 

Initial Elastic 

Modulus (E*) 

Collapse 

Plateau 

Modulus 

(∆ 𝝈 ∆𝜺⁄ ) 

Elastic 

Buckling 

Stress 

(𝝈𝒆𝒍
∗ ) 

Elastic 

Buckling 

Strain (𝜺𝒆𝒍
∗ ) 

Relative 

Density 

(𝝆∗ 𝝆𝒔⁄ ) 

96 𝜇m 206 ±36 Pa 98 ±15 Pa 18  ±4 Pa 0.079  ±0.017 0.0058 ±0.0003 

110 𝜇m 176 ±41 Pa 83 ±11 Pa 14  ±8 Pa 0.076 ±0.031 0.0059 ±0.0003 

121 𝜇m 221 ±47 Pa 93 ±11 Pa 31  ±5 Pa 0.151 ±0.055 0.0061 ±0.0003 

151 𝜇m 229 ±22 Pa 94 ±18 Pa 22  ±4 Pa 0.107 ±0.022 0.0062 ±0.0005 

 

Mechanical characterization tests have been performed on various PCS. Herrera et al., 2019 

used highly aligned macroporous collagen scaffolds consisting of collagen walls linked by 

struts. Performing monoaxial compression tests they measured macroscopic elastic modulus to 
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range from 1 ±0.1 kPa to 29.7 ±2.3 kPa with increasing collagen content, 0.8 wt% to 3.0 wt%. 

The increase in stiffness when compared to the CG scaffold tested by Harley et al., 2007a could 

be attributed to the alignment of collagen walls in the direction of compression. The 

compression tests acted perpendicular to the orientation of the struts, so they had no significance 

mechanically and only their volume and thickness were measured.  

1.2.2 Microscopic Characterization 

The microscopic properties of a PCS relate to the elastic modulus of struts (Es) which build the 

scaffolds. In CG scaffolds Atomic Force Microscopy (AFM) measured the bending stiffness of 

dry struts to calculate the dry strut modulus (Es,dry). The hydrated state modulus (Es,hydrated) was 

calculated using the ratio between macroscopic young’s modulus between dry and hydrated 

scaffolds; Es,hydrated = 5.28 ±0.25 MPa [15]. 

Herrera et al., 2019 used AFM to measure the elastic modulus of walls (Ewall). Increasing 

collagen content from 1.1 wt% to 1.5 wt% also increased the elastic modulus of walls (Ewall) 

from 96.3 kPa to 554.5 kPa. This increase in stiffness was attributed in part to the increase of 

the thickness of the scaffold walls. 

Experimental results, see Herrera et al., 2019 and Harley et al., 2007a, suggest that the 

macroscopic elastic modulus (E*) of PCS is significantly (several orders of magnitude) smaller 

in comparison to the microscopic elastic modulus of scaffold walls Ewall or scaffold struts Es. 

Elastic modulus can therefore be defined as macroscopic when referring to a collection of pores, 

and microscopic when talking about the constituents of pores (e.g., struts, walls etc.).  

1.2.3 Defined Relationships Between Microscopic and Macroscopic Properties 

Gibson et al., 1997 defined a relationship between the normalised elastic modulus (E*/Es) of 

open-cell elastomeric foams to the relative density (𝜌∗ 𝜌𝑠⁄ ) of PCS, defined as the ration of the 

macroscopic density (𝜌∗) to the strut density (𝜌𝑠), measured as 1.3 g cm-3.  

 𝐸∗

𝐸𝑠

= 𝐶1 (
𝜌∗

𝜌𝑠

)
𝑛

 (1.1) 
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where C1 and n are constants (Tab. 1.2), E*/Es is the normalised elastic modulus of the linear 

region, and 𝜌∗ 𝜌𝑠⁄  is the relative of the pores in the PCS. Gibson et al., 1997 also defined a 

relationship between the normalised collapse stress (𝜎𝑒𝑙
∗ /Es) and 𝜌∗ 𝜌𝑠⁄  as, 

 𝜎𝑒𝑙
∗

𝐸𝑠

= 𝐶2 (
𝜌∗

𝜌𝑠

)
𝑚

 (1.2) 

where C2 and m are constants (Tab. 1.2), and 𝜎𝑒𝑙
∗  is the elastic buckling stress (Pa). The values 

of these constants have been defined and redefined through experimental results (Fig. 1.3) 

[15,22]. 

Table 1.2: Constants for the relationship between normalised elastic modulus (E*/Es) & 

normalised collapse strength (𝜎𝑒𝑙
∗ /Es) with the relative density (𝜌∗ 𝜌𝑠⁄ ) of PCS defined 

from experimental compression tests on CG scaffolds (Eq. 1.1 & 1.2). 

Reference C1 n C2 m 

Gibson et al. 1997 1 2 0.2 2 

Harley et al., 2007a 0.00416 0.89 0.000873 0.95 

Kanungo et al., 2010 0.006 0.98 0.0009 0.94 

 

 

Figure 1.3: Normalized elastic modulus (E*/Es) and normalized collapse strength (σel
∗ /Es) 

plotted against relative density (ρ∗ ρs⁄ ), with experimental data as points, solid line 

demonstrates the theoretical relationship from cellular solids model, dashed line is from 

linear regression analysis of the shaded point [14,15,22]. 
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1.3 Geometric Modelling of PCS  

In silico investigations of PCS require an accurate characterization of PCS geometry. Various 

geometric models exist. For example, Rhombicuboctahedrons have been utilised to model 

porous scaffolds in bone [1,6,35]. Subsequently rhombicuboctahedrons were validated by 

experimental testing [1]. 

The design of the PCS can rely on fabrication techniques [13,18]. For example, if 3D printing 

techniques are used the PCS design should allow for it. Früh et al., 2022 attempted to create 

polycaprolactone (PCL) scaffolds via 3D printing for use in bone tissue engineering. The 

scaffold consisted of square unit cells (pores) allowing for 3D bio-plotting. 

PCS geometry can be replicated from in vitro studies using imaging techniques, such as 

scanning electron microscopy (SEM) [5,19]. The geometry must be able to capture the 

mechanical properties both on a micro- and macro-scopic level making design from 

experimental images desirable.  

14-sided tetrakaidecahedrons, also sometimes referred as the kelvin foam model (Fig. 1.4), can 

capture the young’s modulus, shear modulus, and Poisson’s ratio for equi-axed isotropic, open-

cell elastomeric foams [31,42]. PCS are considered to act as open-cell elastomeric foam (Fig. 

1.2) [17]. Some research has disputed the use of the kelvin foam model due to a lack of 

randomness and anisotropic properties which is not how real foams are structured [31].  

 

Figure 1.4: Geometry of the Kelvin cell. Ps is the pore diameter, l is the strut length, and 

t is the strut thickness [31]. 
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Mohammadalipour et al., 2023 demonstrated that the use of tetrakaidekahedrons produced 

more accurate predictions compared to honeycomb and power-law models for electrospun 

polyhydroxybutyrate mats.  

Strut thickness (Fig. 1.4) and pore diameter is related to the 𝜌∗ 𝜌𝑠⁄  of PCS constructed with 

tetrakaidekahedrons, 

 𝜌 ∗

𝜌𝑠

= 8.19 (
𝑡

𝑃𝑠

)
2

 (1.3) 

where 𝜌∗ 𝜌𝑠⁄  is the relative density of pores, t is the thickness of collagen struts (μm), and Ps is 

the diameter of the pore (μm) [22]. For PCS of 𝜌∗ 𝜌𝑠⁄ ≈ 0.006 [15,22]. 𝜌∗ 𝜌𝑠⁄  is also related to 

the porosity of a scaffold [30]. 

 
%𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = (1 −

𝜌∗

𝜌𝑠

) × 100 (1.4) 

The porosity of PCS is highly influential on cell migration and hence a key factor in tissue 

engineering [9,28]. PCS have extremely high porosity often measured to be 98% or higher 

depending on the application [26,36]. 

1.4 Finite Element Modelling of PCS 

Experimental data (imaging, mechanical testing) allows one to create a finite element model of 

PCS. The introduction of improved computational techniques reduces processing times 

allowing for more detailed analysis with improved efficacy.  

PCS act as elastomeric open-cell foams which are hyper-elastic materials modelled by 

techniques such as the neo-Hookean approach [10]. 3D finite elements are commonly used 

when modelling hyper-elastic materials. Techniques are required to minimise the 

computational costs due to model complexity. 2D and 1D elements are more efficient than 3D 

elements and have been utilized in PCS modelling. Herrera et al., 2019 created finite element 

models of scaffolds using 2D shell elements to model the walls and 1D beam elements to model 
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the struts connecting the walls. The model efficiency improved but did not consider non-linear 

elastic materials which will produce different results at higher strains. 

Früh et al., 2022, used beam elements to model scaffold deformation, stating that results were 

only valid up to strains of 3%, where the linear elastic region was valid. Boccaccio et al., 2018, 

modelled scaffolds consisting of rhombicuboctahedrons using 3D meshing to allow for non-

linear modelling thus allowing for higher strain results. Current PCS FEA models are either 

very computationally expensive or are limited to linear behaviour meaning they cannot be used 

to model large strain accurately. 

1.5 Cell-Scaffold Interactions 

Cell-Scaffold interactions are considered as the contractile forces a cell generates on a PCS. 

These interactions have been measured in experiments and applied during In silico 

investigations [16,17]. 

1.5.1 Experimental Studies  

Fibroblasts are cells of interest in relation to wound contraction and subsequent scar tissue 

formation [41]. Myofibroblasts (highly contractile differentiated fibroblasts) appear in a large 

number around wound sites and are related to wound contraction as well as ECM formation 

[12]. Control over cell contraction could give control over macroscopic wound contraction 

which is shown to be related to tissue regeneration [46].  

Fibroblasts contract collagen scaffolds by creating at least two attachment sites and pulling 

towards the cell’s center of mass, resulting in bending, and sometimes buckling of struts in the 

scaffold (Fig. 1.5). The microscopic contraction leads to reduced scaffold dimensions over time. 

Freyman et al., 2002 showed free floating scaffolds reduced in diameter over a period of 14 

days due to these contractile forces. 
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Figure 1.5: Schematic of a contracting fibroblast cell applying force (Fc) to a CG strut 

with ideal conditions (left) such that the strut buckles (middle). The mechanical and 

geometrical properties of the strut are characterized by its length (l), thickness (t), and 

young’s modulus (Es) [16]. 

The forces cells exert on the struts are difficult to measure due to the size of cells. Being on a 

scale of micrometers and producing forces in the nN range means that it was almost impossible 

to accurately assess the mechanical properties produced by a single fibroblast cell.  

Freyman et al., 2002 used a custom Cell Force Monitor (CFM) device to record the total force 

acting on a scaffold and hence calculate the average force exerted by a single cell. The results 

estimated that the asymptotic force per cell was close to approximately 3 nN [12]. However, 

the experiment posed several assumptions meaning there was a margin of error. It has been 

shown there are times where fibroblast cells present in a scaffold are not active and hence do 

not exert any forces. PCS can contain thousands of cells per mm3 [38]. Averaging contractile 

force becomes inaccurate as it was assumed that every cell seeded into the scaffold was active. 

The direction of forces was also neglected. Should a contractile force of one cell be opposing 

another the summation of the two does not fairly represent the actual force that is being 

implemented.  

Attempting to remedy these assumptions Harley et al., 2007b developed a technique to 

investigate the individual cell forces within a three-dimensional CG scaffold. The method 

worked by taking the mechanical [15] and geometrical properties of an individual CG strut, 
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measured using live cell imaging, and calculating the force (Fc) required for the cell to buckle 

the strut. The force to buckle can be calculated using Euler’s formula. It was calculated that for 

an average cell the contractile force was estimated to range from around 11-41 nN with an 

average of 26 ±13 nN. When considering the variation of strut thickness, the range of forces 

changed to 11 ±5 nN – 52 ±27 nN [16]. The values are not indicative of the maximum forces 

applicable by the fibroblast cells rather just the forces seen within these scaffolds. To that end 

one case was seen in which a contracting fibroblast cell failed to buckle a strut. Using Euler’s 

formula for buckling, it was found that the contractile force required to buckle that strut would 

have been 450 nN. This suggested fibroblast cells cannot reach forces of 450 nN or higher. 

Another study suggested that 200 nN is the maximum force a cell can generate [16,20]. Using 

cell morphology to determine whether a fibroblast cell was active in contraction, Zahlak et al., 

2000 also estimated contractile force of 21 nN. 

1.5.2 In Silico 

Interactions between cells and CG scaffolds can be studied with in silico investigations [17,33]. 

To model fibroblast contractile forces in a scaffold two diagonally opposing nodes could be 

selected with the forces pointing in equal and opposite directions (Fig. 1.5). The distance 

between the two attaching nodes can reach 200 𝜇m [17]. Herrera et al., 2019 deduced that with 

the current studies on contractile cell forces, 30 nN of force was appropriate for in silico models 

[15,20,25,29,37,39]. After applying the cell force further information about the mechanical 

environment of cells could be investigated. 

1.6 Cell-effective Stiffness of PCS 

The concept of  “cell-effective stiffness” was introduced by Herrera et al., 2019 to measure the 

stiffness that an individual cell senses in its local environment using highly aligned 

macroporous scaffolds constituted by walls and struts. This study identified the effect of cell-

effective stiffness on cell differentiation in vitro, validating mechanosensing as important for 

cell behaviour. The cell-effective stiffness was calculated by modelling the traction forces of a 
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single cell on a collagen wall. Cell-effective stiffness was shown to increase with the stiffness 

of collagen walls, ranging from 4.6 ±0.8 kPa, for the scaffold with lowest collagen content 

(0.8%), to 169.9 ±10.8 kPa, for the scaffold with the highest collagen content (3.0%) [17]. 

The study Herrera et al., 2019 was limited to a porous structure composed of walls of varying 

collagen dispersion interconnected by struts. However, the principles behind the model can be 

applied to a wide variety of geometries and can be used to find connections between cell-matrix 

mechanics. With the relationship correctly defined correlations can be drawn between 

macroscopic scaffold properties and cellular processes such as “migration, proliferation, early 

differentiation processes, long term stem cell commitment, and ECM formation and 

maturation” [17].  

1.7 Scaffold Design optimization  

To check the effects of specific geometrical parameters, such as strut thickness, in vitro and in 

vivo requires a long and laborious process of changing one feature within the scaffold and 

repeating the experiment. Considering the amount of scaffold variations possible, scaffold 

optimization becomes increasingly time consuming. Computational techniques can be used to 

model various scaffold conditions simultaneously with a large range of conditions. Thus cutting 

down on cost, material, and time spent compared to experimental parametric studies. 

The principle behind using computational methods in tissue engineered scaffolds is to generate 

optimal conditions for desirable cell/matrix responses. Using variables to define specific 

features (e.g., young’s modulus, strut length etc.) one can adjust parameters to assess optimal 

conditions for single or multiple objectives (e.g., macroscopic contraction). Some studies have 

now progressed to optimizing geometrical scaffold design features to give specific results, such 

as improved cell velocity and reduced wound contraction [33,34,40]. 

Optimization can also be used to calibrate model parameters to better resemble experimental 

results. In cell mechanobiology one difficulty lies in analysis the properties on such a small 

scale hence the calibration technique can be extremely beneficial. AFM was used to obtain the 
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mechanical response of cells [43]. Through calibration via optimization subcellular components 

could be assigned young’s moduli that is otherwise unobtainable.  

A major issue with optimization is computational costs, with many optimization procedures 

taking more than a day [1]. A lot of work has focused to simulating smaller volumes to avoid 

excessive computation times. Either reducing the volume or apply symmetry boundary 

conditions results in improved computation times with a sacrifice in result accuracy. One aspect 

to the following research is to use a variety of computational techniques to minimize processing 

time to produce efficient and accurate design optimization with respect to the cell-effective 

stiffness and the overall macroscopic affects created by cell-matrix interactions. 

1.8 Thesis Objectives 

Extensive work over the last years focused on bridging gaps in the existing knowledge of cell-

matrix interactions. Several papers have focused on optimizing scaffold design based on 

various objectives such as increasing velocity of cell during migration [1,32,33,40,43]. To build 

from the current state of the art the following research hopes to identify and fill any assumptions 

deemed problematic in relation to cell-matrix interactions (Table 1.3). 

Despite advancements, still several limitations are apparent. Models either focus on results on 

the microscopic or the macroscopic scale, except for the work of Herrera et al., 2019, and 

neglect the potential relevance the two set of results may be playing on one another. Despite 

the inclusion of microscopic results in the form of cell-effective stiffness, the results by Herrera 

et al., 2019 consider linear elastic scaffolds and probe stiffness sensed by cells on a single 

collagen wall. With the effects of contraction between multiple walls or other constituents (i.e., 

struts) being excluded.  
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Table 1.3: Checklist of key features for correctly simulating cell-matrix interactions. 

Reference 
Microscopic 

Results 

Macroscopic 

Results 

Cell-matrix 

Interactions 

Non-

Linear 

mechanics 

1D Finite 

Elements 
Year 

[1]  ✔  ✔  2017 

[17] ✔ ✔ ✔  ✔ 2019 

[32]  ✔    2021 

[40]  ✔ ✔ ✔  2021 

[13]  ✔   ✔ 2021 

[33] ✔     2022 

Presented 

Research ✔ ✔ ✔ ✔ ✔ 2023 

A relevant in silico model in the field of skin tissue was recently presented by Sohutskay et al., 

2021. This model described wound contraction in rat skin injuries grafted with PCS, and 

considered cell-matrix interactions, non-linear collagen mechanics, and skin tissue, via a 

chemo-bio-mechanical finite element model [2-5].  

The method in the subsequent section has a more concentrated look on cell-matrix mechanics 

explicitly outlining how cell contraction effects the surrounding collagen scaffold on the 

macroscopic level and how the mechanical and geometrical features of the scaffold can be used 

to influence cells macroscopic effects and what the cell will sense as a result. 

Although brute force design optimization comes at significant computational costs, 

computational costs can be significantly reduced if optimization relies on appropriate in silico 

models that use 1D elements instead of 3D elements. Using 1D elements for non-linear analysis 

has not yet been validated but could significantly reduce computational costs and provide 

improved output capabilities. Using previous experimental results the method will provide an 

additional validation test for CG scaffold using 1D elements not yet previously achieved.   
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Chapter 2  

Methodology 

2.1 Materials & Computational Tools 

This thesis utilized ANSYS Workbench 2021 R1 consisting of ANSYS SpaceClaim, a 3D CAD 

software, and ANSYS Mechanical, a Finite Element (FE) solver, both available in the 

component systems of workbench under the option static structural. ANSYS ran on the 

Cloudpaging player. Due to unforeseen errors with the CloudPaging player, results were 

finalized on ANSYS Workbench Student 2023 R1. All work reported was carried out on an 

MSI GL65 Leopard 10SDR laptop (Table 2.1).  

Table 2.1: Hardware specifications of the MSI GL65 Leopard 10SDR computer used for 

simulations. 

Hardware Specifications 

Processor Type 
Intel(R)Core(TM)i7-10750H 

x64-based processor 

Number of Cores 6 

Frequency 2.60 GHz 

RAM 16.0 GB 

Operating System 64-bit operating system 

2.2 Model Assumptions 

In this thesis, a PCS was modeled as a series of interconnected struts organized as a 3D array 

of a unit cell. The geometry of the model was homogeneous, meaning pore size, strut length, 

and strut diameter was constant throughout the scaffolds. Strut cross section was assumed 

circular producing cylindrical beams for the FE solver. Forces applied by each cell were 

modeled using a pair of equal and opposite force vectors. Every cell was considered to exert 

the same amount of force. Some assumptions were validated using simulations discussed in 

section 2.5 The model was time independent. Hence, the static structural system (Fig. 2.1) was 

used on ANSYS workbench. 
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Figure 2.1: Flow chart of the static structural pipeline available on ANSYS workbench. 

Light blue shows the input engineering data (used to define material properties), dark blue 

is ANSYS SpaceClaim, and light purple is ANSYS Mechanical. 

2.3 Material Modelling 

2.3.1 Linear Mechanics 

Linear models of PCS struts in this thesis assume a homogenous linear elastic material, 

described by generalized Hooke’s equations. This set of constitutive equations utilize two 

parameters: the young’s modulus 𝐸, and Poisson’s ratio 𝑣. According to literature 𝐸 = 𝐸𝑠 =

5.28 𝑀𝑃𝑎 (Es of hydrated CG struts [15]) and 𝑣 = 0.3 [7]. In ANSYS, linear elastic analysis 

utilizes Beam188 or Pipe288 1D finite elements. Non-linear geometric changes were not active 

for linear models. 
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2.3.2 Non-Linear Mechanics 

Non-linear mechanics of PCS struts were modeled using the Neo-Hookean model for hyper-

elastic materials, described by the following constitutive law: 

 
𝜓 =

𝜇

2
(𝐼1 − 3) +

1

𝑑
(𝐽 − 1) (2.1) 

where 𝜓 is the strain energy in the material, I1 is the first strain invariant, J is the volumetric 

change, 𝜇 is the initial shear modulus (Pa) defined as 

 
𝜇 = (

𝐸

2(1 + 𝑣)
) (2.2) 

and d is the incompressibility constant (Pa-1) defined as 

 
𝑑 =

2

𝐾
= 2 (

3(1 − 2𝑣)

𝐸
) (2.3) 

where E is the Young’s modulus (Pa; here E≈Es), v is Poison’s ratio, and K is the initial bulk 

modulus (Pa). The estimated neo-Hookean model parameters for the PCS, based on parameters 

measured in Harley et al., 2007a, are shown in Table 2.2.  

Table 2.2: Values of neo-Hookean model parameters. 

Material Property Value 

Initial young’s modulus (E) 5.28 MPa 

Poisson’s Ratio (v) 0.3 

Initial shear modulus (𝜇) 2.03 MPa 

Initial bulk modulus (K)  4.40 MPa 

Incompressibility constant (d)  0.45 MPa-1 

 

ANSYS Beam188 elements cannot model hyper elasticity. Instead, non-linear analysis model 

struts using Pipe288 1D finite elements as they can model hyper-elastic materials. For non-

linear modelling non-linear geometrical changes were active. 

2.4 Scaffold Geometric Modelling 

In this thesis PCS geometry was described using a 3D lattice that is constructed by order 

repetition of unit cells each representing a pore. Two different unit cells were used. Unit cells 

were defined in the ANSYS SpaceClaim software by drawing line bodies representing scaffold 
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struts. A single unit cell was then repeated in x, y, and z directions to construct the PCS lattice. 

Once the scaffold was constructed a cylindrical cross-sectional area of thickness t was applied 

to all struts. 

While beam finite elements have a solid cross section, pipe finite elements have an internal 

diameter. The internal diameter chosen was 0.1 nm so that it has had no effect on results, which 

was verified during unconfined compression simulations (Section 2.5). Due to size limitations 

on ANSYS mechanical modelling the geometry was scaled so that 1mm was equivalent to 1 

μm. 

2.4.1 Cube Unit Cell 

The simple cube unit cell (Fig. 2.2) is not an accurate model of a PCS pore geometry, yet it 

offers simplicity and low computational cost. The size of each unit cell (Ps) in the scaffold 

equaled the length of a strut (Sl). Strut thickness t was the second unit cell geometry parameter. 

An ANSYS SpaceClaim script was used to define scaffold structure and define parameters 

(Appendix A.1). SpaceClaim script uses python which has built in functions for SpaceClaim 

features. Pores vertices were created, according to their x, y, and z coordinates, and line bodies 

were drawn to connect these vertices. 

 

Figure 2.2: Scaffold (left) constructed from cube unit cells (right). t is the thickness of 

collagen struts in the pore, D the depth, H the height, and W the width of a single pore. 
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Each unit cell has 8 vertices (corners). The distance between neighboring vertices equals Sl. The 

linear pattern feature of SpaceClaim was utilized to copy and paste unit cells to generate a 

desired number of pores along each axis. Considering that the minimum producible size of cell-

seeded scaffolds producible for in vitro experiments is 1 mm3, PCS lattices were generated by 

positioning 7-10 pores along each axis, depending on Ps.  

2.4.2 Tetrakaidekahedron Unit Cell 

The second unit cell considered was a 14-sided tetrakaidecahedron (Fig. 2.3), a geometry used 

often to model open-cell elastomeric foams [30]. 

 

Figure 2.3: Scaffold (left) constructed from pores (right) modelled as tetrakaidekahedral 

unit cells. t is the thickness of collagen struts, Sl the length of struts, D (red) the depth, H 

the height (green), and W the width (blue) of a single pore. 

Each tetrakaidekahedron has 24 vertices (Fig. 2.4 & Tab. 2.3). Using symmetry and defining 

several relationships the unit cells were drawn dependent given Sl or Ps (Appendix A.2 & A.3). 

Ps refers to the diameter of the unit cell whilst Sl refers to the length of struts between vertices.  Olive
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Figure 2.4: Unit cell of Ps=150 μm with the 24 vertices labelled. x,y,z coordinates are 

defined in Table 2.3. 

Table 2.3: List of x,y,z coordinates produced when creating a unit cell of Ps=150 μm, see 

Figure 2.4 for physical representation. Coordinates derived using Equations A.12-15 

(Appendix A.2.2). 

Point x y z 

1 75 0 37.5 

2 37.5 0 75 

3 75 0 112.5 

4 112.5 0 75 

5 75 37.5 0 

6 0 37.5 75 

7 75 37.5 15 

8 15 37.5 75 

9 37.5 75 0 

10 0 75 37.5 

11 0 75 112.5 

12 37.5 75 150 

13 112.5 75 150 

14 150 75 112.5 

15 150 75 37.5 

16 112.5 75 0 

17 75 112.5 0 

18 0 112.5 75 

19 75 112.5 150 

20 150 112.5 75 

21 75 150 37.5 

22 37.5 150 75 

23 75 150 112.5 

24 112.5 150 75 
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Once a unit cell was created it could be copied as a linear pattern in the x, y, and z directions 

(Fig. 2.5). The unit cells are connected by sharing vertices at a shared face (Fig. 2.5). 

 

Figure 2.5: PCS model of tetrakaidekahedral unit cells of Ps = 150 μm. Demonstrating 

how unit cells were copied and pasted along each edge (y and Z). Points are shared 

vertices between adjacent unit cells. 

2.5 Simulations of Scaffold Unconfined Compression  

2.5.1 Numerical Analysis 

This section describes numerical simulations of the unconfined compression of a PCS. Due to 

the availability of experimental data in the literature, these simulations were used to validate 

the FE model of PCS described in sections 2.1 & 2.4 and fine tune its parameters (unit cell, 

material parameters, finite element type). Based on the literature (section 1.2) simulations 

consider two mean pore diameters, 96 & 110 𝜇m. Strut elastic modulus was set to Es = 5.28 

MPa. Strut thickness 𝑡, initial shear modulus μ and the incompressibility constant 𝑑 were 

calculated based on known parameters (Tab. 1.1) using Eq. (1.3), Eq. (2.2) & (2.3). 
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Table 2.4: Scaffold properties used in simulations of PCS unconfined compression tests: 

unit cell size Ps , Strut modulus of elasticity Es, Poisson’s ratio v, initial shear modulus 𝜇, 

initial bulk modulus K, incompressibility constant d, relative density 𝜌∗ 𝜌𝑠⁄ , strut 

thickness t. 

Ps (μm) 
 Es 

(MPa) 
v  𝝁 (MPa) 

K 

(MPa) 

d  

(MPa-1) 
𝝆∗

𝝆𝒔
⁄  t (μm) 

110  
5.28 0.3 2.03 4.40 0.45 

0.0059 2.95  

96  0.0058 2.55  

 

Initial simulations utilized lattices Ps and t were used for compression tests on the cubic unit 

cell scaffolds to allow analysis of the arrangement of struts. Published experiments used 

scaffolds of 20 mm diameter and 3.4 mm thickness. Due to processing power limitations 

simulations were limited to scaffolds of volume close to 1 mm3, or equivalently 10 unit cells 

per dimensions (Tab. 2.5).  

Table 2.5: Scaffold width, thickness, and volume for simulated unconfined compression 

tests. 

Pore Size 

(μm) 

Number of Units Cells 

Per Edge 
Lattice Width (μm) 

Lattice Volume 

(mm3) 

110 μm 10 1100  1.33  

96 μm 10 960  0.88  

 

To reduce computational costs only an eighth (1/8) of the scaffold was modelled. Symmetry 

boundary conditions were applied so that the reaction force of the whole scaffold response 

could be approximated (Fig. 2.6). The corner was 5-unit cells across along each axis for 

scaffolds of 96 and 110 𝜇m pore size (Fig. 2.7). Olive
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Figure 2.6: Boundary conditions for unconfined compression simulations. Ux,y,z 

represents the displacement in the x, y and z direction. Purple represents nodes 

constrained in the x direction, black nodes constrained in the y direction and orange nodes 

constrained in the z direction. 

Boundary conditions were applied to the scaffolds at three faces. Faces were constrained in the 

perpendicular direction, acting as roller constraints, mimicking the actions of the corner of the 

scaffold. 

 

Figure 2.7: Corner of scaffold built from pores of 110 𝜇m used in simulation tests. 

Number of pores along each edge from a front view is shown on the right. 

To simulate the compression test a plate was used acting as a rigid body. The contact between 

the plate and the scaffold was set to rough so that no translational sliding resulted at the plate-
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scaffold interface. The plate was set to move down and press into the scaffolds to a maximum 

strain of ε = 0.8 or until the FE solver could not converge on a solution. The same procedure 

was replicated on scaffolds consisting of cube unit cells with the same dimensions (Tab. 2.5) 

where Ps was thought of as equal Sl. 

To produce a set of results the reaction force at the bottom of the scaffold was predicted against 

the displacement of the rigid plate. The force-displacement curve was then converted to a stress-

strain curve by calculating the stress 𝜎 (Pa),  

 
𝜎 =

𝐹

𝐴
 (2.4) 

where F is the reaction force from the numerical solution (N), and A is the area of the scaffold 

in contact with the plate (Fig. 2.8; m2). Strain 𝜀 was given as 

 
𝜀 =

∆𝐿

𝐿
 (2.5) 

where ∆L is the displacement of the plate (m), and L is the initial length of the scaffold. From 

the stress-strain curve E* was calculated from the initial gradient. ∆𝜎 ∆𝜀⁄ , 𝜎𝑒𝑙
∗  and 𝜀𝑒𝑙

∗  were 

estimated using Microsoft excels linear regression on the collapse plateau region, from 0.2 to 

~0.5 strain or maximum strain before the model failed to converge.  

2.5.2 Analytical Analysis 

In scaffolds consisting of tetrakaidekahedron unit cells, the macroscopic Young Modulus E* 

and elastic buckling stress 𝜎𝑒𝑙
∗  can be estimated analytically using equations reported in the 

literature (Eq. 1.1 & 1.2, Table 1.2).  

For scaffolds consisting of cubic unit cells, validation can be performed by estimating the 

stiffness of each strut. Each vertical strut can be considered as a spring of stiffness, 

 
𝑘𝑠 = 𝐸𝑠

𝐴

𝑆𝑙

 (2.6) 
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 where ks is the stiffness of each individual vertical strut (N/m), Es is the strut elastic modulus 

(Pa), A is the strut cross-sectional area (m2), and Sl is the strut length (m). Once the stiffness of 

individual struts is calculated the overall stiffness is found as, 

 
𝑘𝑇 = 𝑁𝑝𝑎𝑟 (

𝑘𝑠

𝑁𝑐𝑜𝑛

) (2.7) 

where kT is the total stiffness (N/m), Ncon is the number of struts connected in one line of struts 

(units along axes), and Npar is the number of lines of struts in the scaffold (Fig. 2.8). The reaction 

force (F) can be estimated using, 

 𝐹 = 𝑘𝑇∆𝐿 (2.8) 

where ∆L is the change in length of the scaffold (m). Using equation 2.4 & 2.5 we can get the 

stress-strain relationship to calculate macroscopic Young Modulus E* (Pa), 

 𝐸∗ =
𝜎

𝜀
 (2.9) 

 

 

Figure 2.8: Schematic of a scaffold consisting of cube unit cell and the rigid plate used in 

compression simulations. A line of vertical struts is highlighted red. 
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2.6 Simulation of Cell-Scaffold Interactions 

The scaffolds produced could be used to model the contractile forces (Fc) produced during 

processes such as cell migration. The contractile forces used in the model were equal to that of 

fibroblast cells often seen in wound healing. 

2.6.1 Cell Attachment Sites 

The contractile forces of cells were modelled by creating two attachment sites on struts of the 

scaffold. At these attachment sites equal and opposite force vectors were generated simulating 

how cells pull struts towards their centre of mass (Fig. 2.9). Cell attachment sites are chosen at 

mesh nodes produced by dividing PCS struts into smaller elements of equal length. 

 

Figure 2.9: Depiction of a PCS lattice cubic unit cells demonstrating a pair of force 

vectors applied to two mesh nodes. Each strut is divided into 10 finite elements. 

To improve the computational efficiency of simulations, the PCS lattice was split into two parts 

(Fig. 2.10). First, a fine mesh was applied within the part cells are located. As cells attach to 

mesh nodes, possible orientations of cells increased with a finer mesh. The fine mesh region 

was limited to 5 divisions or less at the present time due to node number restrictions on ANSYS 

student. Secondly, a coarse mesh was applied in the lattice part where no cells attached, as 

deformation is expected to be lower in this region.  
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A spherical coordinate system was created at the centre of the scaffold lattice, selecting all the 

nodes within a defined radius (r). The sphere known as the cell space defines possible locations 

for cell attachment sites (Fig. 2.10).  

 

Figure 2.10: Diagram of the sphere in which cell attachment nodes can be located (light 

blue sphere), the finer meshed lines (red) that enable force vectors to be applied, and the 

coarser meshed lines (grey). 

2.6.2 Cell Contractile Forces 

Forces were applied at random in the cell space between a pair of attachment sites. Pair 

separation was set to be a maximum of 100 𝜇m apart. The magnitude of the force Fc (N) was 

defined as, 

 𝐹𝑐
2 = 𝐹𝑥

2 + 𝐹𝑦
2 + 𝐹𝑧

2 (2.10) 

where Fx, Fy, and Fz are force components along each axis. Using a defined force (F) and the x, 

y, and z coordinates between the two attachment sites Fx, Fy, and Fz was calculated to ensure 

force vectors were equal and opposite between pairs of forces.  
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Like ANSYS SpaceClaim, ANSYS Mechanical offers the ability to automatize procedures via 

the creation of Mechanical APDL script commands. Mechanical APDL is the FEA solver used 

by ANSYS mechanical. The use of APDL commands meant that the cell space radius (r) (Fig. 

2.9), cell number (Cn), and contractile forces (Fc) can be defined by the user using a script 

(appendix A.4). 

2.6.3 Boundary Conditions 

Usually PCS in vitro are free-floating. However, it is of interest to study PCS mounted via 

specific means. Along this direction, here it is assumed two lateral sides of the scaffold are 

fixed (zero displacement) leaving four faces free to translate (Fig. 2.11). 

 

Figure 2.11: Boundary conditions applied to a PCS lattice during simulations of cell-

matrix interactions, lateral sides (highlighted in red) are fixed in all directions. 

2.6.4 Post-processing: Quantifying Cell-effective stiffness 

The stiffness sensed by each cell kce (N/m) was estimated based on the displacement of nodes 

where it applied forces (Fig. 2.12). Olive
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Figure 2.12: Example of scaffold strut deformation between a pair of contractile forces 

(Fc) in 1D to demonstrate change in distance (∆𝐿= L - l) between nodes after forces were 

applied. 

Based on Hooke’s law, cell effective stiffness kce is defined as, 

 
𝑘𝑐𝑒 =

𝐹𝑐

∆𝐿
=

𝐹𝑐

𝐿 − 𝑙
 (2.11) 

where Fc is the contractile force applied by the cell (N), L is the initial distance between cell 

attachment sites (m), and l is the distance between attachment sites after contraction (m).  

2.6.5 Post-Processing: Macroscopic Scaffold Contraction  

In cell-seeded scaffolds, macroscopic effects on the scaffolds can be quantified by calculating, 

the average node displacement of the 4 unfixed faces of the PCS lattice (Fig. 2.13).  

 

Figure 2.13: Macroscopic contraction of PCS scaffold, showing free faces being pulled 

towards the centre of the scaffold. 
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To normalize the macroscopic contraction of the scaffold a percentage reduction in area was 

calculated as, 

 
%𝐴𝐶 =

∆𝐴𝑟𝑒𝑎

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝑟𝑒𝑎
× 100 (2.12) 

where the %AC is the amount of cross-sectional area change in the scaffold along the 

unconstrained axes, ∆Area is the change of cross-sectional area of the scaffold (m2), 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝑟𝑒𝑎 is the original cross-sectional area of the scaffold (m2), calculated as, 

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝑟𝑒𝑎 =  𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑠𝑐𝑎𝑓𝑓 × 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑠𝑐𝑎𝑓𝑓  (2.13) 

where 𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑠𝑐𝑎𝑓𝑓 is the initial scaffold depth (m) and 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑠𝑐𝑎𝑓𝑓 is the initial scaffold 

height (m) (Fig. 2.11). Microscopic and macroscopic results were stored and extracted using 

the scripting features in mechanical APDL (Appendix A.4). 

2.7 Variable Effects 

To assess the effects of variable in the scaffold each variable was change independently from 

the other. Some variables during PCS design can be controlled such as the strut thickness t, 

pore size (or unit cell size) Ps, and the strut elastic modulus Es. Other variables also exist in the 

model which cannot be controlled in vitro or in vivo. These include number of active cells Cn, 

Contractile force Fc, and the cell distribution (controlled by the cell space radius (r)) and may 

need to be altered or optimized in future studies. The effects of individual variable were able to 

be controlled and as such their effect on microscopic and macroscopic results could be 

determined. To test the effects a standard set of variable values was created, in line with 

published values (Table 2.6). The number of unit cells along each axis is also tuneable but was 

not adjusted to save on processing times. 
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Table 2.6: Nominal simulation case for variable tests, values were derived from previous 

publications outline in section 1. 

Variable Value Units 

Strut Elastic Modulus (Es) 5 MPa 

Cell Contractile Force (Fc) 25 nN 

Cell Number (CN) 1000 - 

Strut Thickness (t) 3 μm 

Cell Space Radius (r) 400 μm 

Unit cell size (Ps) 150 μm 

Unit cells in each axis 7 - 

 

With all other variables fixed a model could be produced to run in batch repeating 20 

simulations per variable condition (Tab. 2.7). To interpret the result of the parameters box plots 

were made for the simulations of each value (Tab. 2.7) against the mean cell effective stiffness 

(kce) and a summary table with the mean kce and mean %AC was produced. 

Table 2.7: Values used to test the effects of individual changes in variables on the 

macroscopic and microscopic results. 

 Variable Test No. 

Variable 1 2 3 4 5 

Es 100 kPa 500 kPa 1 MPa 5 MPa 10 MPa 

Fc 10 nN 20 nN 25 nN 40 nN 50 nN 

CN 500 1000 2000 3000 4000 

t 1 μm 2 μm 3 μm 4 μm 5 μm 

r 50 100 200 300 400 

Ps 100 150 200 250 - 

 

2.8 Design Optimization 

Using a parametric study the model can be adapted to be used for design optimization of PCS 

by controlling tuneable variables such as t, Ps, and Es. SpaceClaim scripting (geometric 

modelling) and APDL scripting (cell forces) allows the model to be parametrized (Fig. 2.14). 

To fully allow automatization the boundary conditions, and meshing which were done manually 

now were performed on a python script on ANSYS mechanical (Appendix A.5). 

Olive
r S

an
tos

-Lo
pe

s



31 

 

 

Figure 2.14: Diagram of the set of parameters applied across different phases of the static 

structural method (i.e., engineering data, SpaceClaim, & mechanical). Parameters include 

both input parameters from the users and outputs from the solution. 

For the optimization process direct optimization was used available on ANSYS workbench 

(Fig. 2.15). Direct optimization uses an initial model and changes parameters within that model 

over range of different designs to come up with candidate parameter values that meet user 

defined conditions. The user can define criteria for the results, constraints of input parameters, 

and the number of designs modelled. The number of designs tested during this optimization 

was 100. Only the parameters which are controllable in vitro/in vivo such as the sturt modulus 

(Es), and strut thickness (t) were varied.  

The initial model used the variables of the nominal simulation case (Table 2.6). The range of 

possible Es was that of 1 MPa to 10 MPa, and the thickness of struts was constrained so that 

porosity was at least 98% (Section 1.3; Equation 1.3 & 1.4). The optimizer was set to minimize 

the macroscopic contraction of the scaffold (Equation 2.12; %AC). Olive
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Figure 2.15: Flow chart describing the general procedure direct optimization. Parameters 

are defined prior to starting optimization including the range of possible values for 

optimizable parameters. The parameters being optimized are listed in the top right. 

Optimization stage is indicated as red for initial inputs, amber for optimizing in progress, 

and green for optimal parameters found. Software where parameters are assigned are 

defined as baby blue for engineering data, dark blue for ANSYS SpaceClaim, and light 

purple for ANSYS Mechanical. The optimized parameters are allocated in engineering 

data and SpaceClaim. 
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Chapter 3  

Results 

3.1 Simulation of Unconfined Compression  

3.1.1 Lattices Derived from Tetrakaidekahedral Unit Cells 

Compression simulations were performed on PCS lattices of Ps = 96 μm & Ps = 110 μm (Fig. 

3.1). Stress-strain curves for PCS consisting of 10×10×10 tetrakaidekahedral unit cells 

(Section 2.5) under unconfined compression simulations were calculated from force-

displacement graphs derived from ANSYS mechanical (Fig. 3.2). ANSYS solver provided 

results for linear elastic scaffolds up to maximum strain of ε=0.8. Unit cell models that consider 

non-linear material mechanics (Pipe288 elements with neo-Hookean constitutive law) only 

managed to converge on a solution up until ε=0.46 for unit cells of 110 μm and ε=0.275 for 

unit cells of 96 μm. Models fail due to mesh element distortion resulting from large 

deformations of strut. 

 

Figure 3.1: Unconfined compression simulation on PCS lattice with tetrakaidekahedron 

unit cells of Ps = 110 μm. Linear elastic material properties (Es = 5.28 MPa, v = 0.3), with 

non-linear geometric changes inactive. 
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Figure 3.2: Stress-strain curves for unconfined compression simulations on PCS 

consisting of 10×10×10 tetrakaidekahedral unit cells of pore diameter Ps= 96 μm (left) 

and 110 μm (right). Black Dots: Results from models that assume linear mechanics and 

utilize 1D beam elements. Grey Dashes: Results from models that assume linear 

mechanics and utilize 1D pipe elements. Grey Line: Results from models that assume 

non-linear mechanics. Red Dashes: Linear regression curve to define the collapse plateau 

elastic modulus (∆𝜎 ∆𝜀⁄ ). 

At low strains (up to ε=5%) the non-linear model and the two linear models provide nearly 

identical results. At strains larger than 10%, results provided by non-linear and linear models 

diverge due to strut buckling, a phenomenon that only calculated when non-linear geometric 

changes are active. The use of 1D pipe elements instead of 1D beam elements was validated 

based on the linear elastic modulus (E*) of the stress-strain curves (Tab. 3.1). Results show that 

use of pipe finite elements instead of tube finite elements had minimal effect on results and did 

not increase computational costs. 
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Table 3.1: Apparent macroscopic elastic modulus E* of PCS in unconfined compression 

derived using linear models that utilize 1D beam or 1D pipe finite elements. 

Unit Cell Size 

(μm) 

Beam Elements Pipe Elements 
Error (%) 

E* (Pa) E* (Pa) 

96 170.53 170.89 0.21 

110 177.05 177.43 0.21 

 

Models that considered non-linear elastic mechanics converged for strains ε < 50%. Yet, this 

strain range was enough to simulate in silico the collapse plateau (∆𝜎 ∆𝜀⁄ ) region, the elastic 

buckling strain (𝜀𝑒𝑙
∗ ), and the elastic buckling strength (𝜎𝑒𝑙

∗ ) of PCS, shown in (Tab. 3.2). Linear 

regression was used to fit stress-strain data for ε > 20% to a straight line. As R2 ≈ 1, results 

show that the simulated stress-strain relationship in the collapse plateau region is well described 

by a linear function, in agreement with experimental data [15]. 

Table 3.2: Estimations of the macroscopic Young modulus (E*), the elastic modulus of 

the collapse plateau (∆𝜎 ∆𝜀⁄ ), the elastic buckling strain (𝜀𝑒𝑙
∗ ), and the elastic buckling 

strength (𝜎𝑒𝑙
∗ ) derived by PCS finite element models that utilized tetrakaidekahedral unit 

cells and nonlinear mechanics (neo-Hookean model). R2 refers to the linear regression of 

𝜎(𝜀) for 𝜀 > 20%. 

Unit Cell 

Size (μm) 
E* (Pa) ∆𝝈 ∆𝜺⁄  (Pa) 𝝈𝒆𝒍

∗  (Pa) 𝜺𝒆𝒍
∗  R2 

96 170.74 70.44 13 0.08 0.9997 

110 179.07 72.73 17.5 0.1 0.9985 

Simulation results presented in Table 3.2 were compared against estimations of 𝐸∗, 𝜎𝑒𝑙
∗  

calculated from published experimental data using Eq. (1.1) & (1.2) and (Table 1.2). Results 

show that estimates of 𝐸∗ derived from numerical simulations (nonlinear FE model) agree 

reasonably with estimates based on experimental data. On the other hand, estimates of 𝜎𝑒𝑙
∗  

derived from numerical simulations (around 9%) are somewhat smaller compared to estimated 
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derived from experimental results (Table 3.3). The collapse plateau (∆𝝈 ∆𝜺⁄ ) was greater than 

experimental which may be related to the size of scaffolds in the simulated compression tests 

[15]. 

Table 3.3: Estimations of  𝐸∗, 𝜎𝑒𝑙
∗  obtained from published data using Eq. (1.1), (1.2) and 

Table 1.2.  

Pore Size 

(μm) 

Gibson et al. 1997 Harley et al., 2007a Kanungo et al., 2010 

E* (Pa) 𝝈𝒆𝒍
∗  (Pa) E* (Pa) 𝝈𝒆𝒍

∗  (Pa) E* (Pa) 𝝈𝒆𝒍
∗  (Pa) 

96 177.62 35.52 224.4 34.59 203.7 37.54 

110 183.80 36.76 227.9 35.15 207.12 38.14 

3.1.2 Cubic Unit Cells 

Compression simulations were repeated on PCS lattice of cubic unit cells with the same 

dimensions (Fig. 3.3).  

 

Figure 3.3: Unconfined compression simulation on PCS lattice with cubic unit cells of Ps 

= 96 μm. Linear elastic material properties (Es = 5.28 MPa, v = 0.3), with non-linear 

geometric changes inactive. 

Simulation results on PCS unconfined provided from lattices derived from cubic unit cells 

provide much higher estimates of the scaffold bulk Young Modulus E* (Fig. 3.4). Numerical 

estimates of the bulk scaffold modulus 𝐸∗ based on the slope of the 𝜎(𝜀) curve derived from 

simulation results agree very well with analytic predictions derived using Eq. 2.6-2.9. For the 

linear elastic material 1D Pipe elements results were close to that of analytical values and 1D 
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beam results (Table 3.4). The increase elastic modulus was due to the alignment of struts in the 

direction of compression. 

 

Figure 3.4: The stress-strain of macroscopic elastic modulus considering only linear 

elasticity with 1D beam (black dots) and pipe (grey dashes) elements. 

Table 3.4: Numerical and Analytic elastic modulus for linear elastic unconfined 

compression simulations. 

Unit Cell Size Beam Elements Pipe Elements 
Analytical E* (Pa) 

E* (Pa) E* (Pa) 

96 8412.534 8426.296 8424.97 

110 8572.38 8579.83 8591.60 

Simulations of unconfined compression that considered non-linear mechanics required a more 

refined mesh which led to increased processing time (Fig. 3.5). Despite the refined mesh the 

maximum strain before the FEA solver could no longer converge on a solution was just above 

20% (Fig. 3.6). The solver could not converge due to significant element distortion seen during 

the buckling of struts (Fig. 3.5). Unlike lattices that utilized tetrakaidekahedral unit cells, in 

lattices that utilized cubic unit cells the transition from the initial elastic region (E*) to the 

plateau ∆𝜎 ∆𝜀⁄  appeared at a low strain ε = 0.0016 and had a sharper transition (Fig. 3.6). 
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Figure 3.5: Unconfined compression simulation on PCS lattice with cubic unit cells of Ps 

= 96 μm. Linear elastic material properties (μ = 2.03 MPa, d = 0.45 MPa-1), with non-

linear geometric changes inactive. Line bodies were divided into 50 1D pipe elements. 

The non-linear elastic model had a lower initial macroscopic elastic modulus E* = 7700 Pa 

(Table 3.5) compared to the linear elastic model with 1D pipe elements E* = 8426 Pa (Table 

3.4). The reduced E* was due to large deflections in the collagen struts from initial deformation. 

Buckling is not considered in linear elastic models and so a higher E* was predicted. A large 

decrease in the elastic modulus was seen after the initiation of buckling in the non-linear elastic 

model.  

For the cubic unit cell model the elastic buckling strength and strain were at the point connect 

E* and ∆𝜎/∆𝜀 (Fig. 3.6). 𝜀𝑒𝑙
∗  and 𝜎𝑒𝑙

∗  was than the scaffolds with tetrakaidekahedral unit cells 

despite having higher E* (Tab. 3.5). The results from these compression simulations 

demonstrate that the cubic unit cell cannot simulate the response of open-cell elastomeric 

foams. The initial elastic modulus (E*) and the collapse plateau elastic modulus (∆𝜎 ∆𝜀⁄ ) are 

too high, and the elastic buckling stress (𝜎𝑒𝑙
∗ ) and strain (𝜀𝑒𝑙

∗ ) are too low and results in a sudden 

collapse in the scaffold not seen in open-cell elastomeric foams [15]. 
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Figure 3.6: The stress-strain curve for scaffold of cubic unit cells of 96 μm pore size. 

Non-linear relationship represented by black curve, linear relationship by grey, and linear 

regression of collapse plateau (∆𝜎 ∆𝜀⁄ ) by red dashed line. 

Table 3.5: Summary of mechanical response of PCS lattice of Ps = 96 μm, with cubic unit 

cells and non-linear material properties. E* = initial macroscopic elastic modulus, ∆𝜎 ∆𝜀⁄  

= elastic modulus of the collapse plateau, 𝜀𝑒𝑙
∗  = elastic buckling strain, 𝜎𝑒𝑙

∗  = elastic 

buckling strength. 

Unit Cell 

Size (μm) 
E* (Pa) ∆𝝈 ∆𝜺⁄  (Pa) 𝝈𝒆𝒍

∗  (Pa) 𝜺𝒆𝒍
∗  

96 7700.46 275.95 6.26 0.0016 

 

3.2 Simulation of Cell-Matrix Interactions 

Despite the ability of pipe elements to model non-linear material properties the limit of strain 

meant that cell-matrix interactions were not achievable unless using low cell forces and a low 

cell number. This was due to the local strain exerted on struts resulting in element distortion. 

Hence, cell-matrix interactions were modelled using a finite element model that utilizes linear 
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elastic material (Fig. 3.7). Modelling PCS using lattices and 1D elements enabled running over 

100 simulations within an hour in a standard laptop. 

 

Figure 3.7: Simulation of a cell-matrix interactions with the nominal case. Legend shows 

the magnitude of deformation of struts within the PCS lattice. 

3.2.1 Parameter Effects in Cell-Matrix Interactions 

The effects of certain variables on the mean cell effective stiffness and macroscopic contraction 

(%AC) were estimated across various values (Tab. 3.6 & Fig. 3.8).  

An increase in the strut Young modulus (Es) and strut thickness (t) led to an increase in the cell 

effective stiffness and a decrease in the average contraction of the scaffold (Tab. 3.6). An 

increase in the cell force (Fc), and cell space radius (r), decreased the mean cell effective 

stiffness and increased the average contraction of the scaffold (Tab. 3.6). The mean cell 

effective stiffness was independent of the active cell number (Cn) . The unit cell size (Ps) 

appeared to have a decrease in mean kce with an increase from 100 μm to 200 μm and 250 μm 

but the nominal case (Ps = 150 μm) did not fit this trend. The results show that there is an inverse 

relationship between the cell effective stiffness and the contraction of a PCS.  

During the cell-matric models the strut thickness and unit cell size were varied independently. 

The relative density (𝜌∗ 𝜌𝑠⁄ ) of the PCS lattice as a result also varied (Eq. 1.3). The macroscopic 

contraction (%AC) was consistently small across the various parameters, with a couple of 

outliers (t = 1μm & Es = 100 kPa). The macroscopic contraction is taken for a single load step 
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which simulates the early stages of cell-matrix interactions. The low macroscopic contraction 

is hence in agreement with experimental studies of scaffold contraction during early stages of 

cell-matrix interactions [12]. 

Table 3.6: Summary of average (mean) microscopic and macroscopic results from 

varying individual variables within the cell-matrix PCS models. * Denotes models that 

failed to provide realistic deformations.⬧ Denotes results with poor results range. 

Variable Value 

Mean Cell 

effective Stiffness 

(N/m) 

Mean %AC 

Nominal 

Case 
- 2.69 0.027 

t 

*1 μm 0.01  46.29 

2 μm 0.38  0.230 

4 μm 9.02  0.013 

5 μm 28.67  0.008 

Es 

*100 kPa 0.02  15.66 

500 kPa 0.12  0.800 

1 MPa 0.35  0.250 

10 MPa 4.61  0.012 

Fc 

10 nN 5.48  0.010 

40 nN 2.93 0.051 

50 nN 2.89 0.069 

100 nN 1.53 0.194 

Cn 

500 6.99 0.016 

2000 2.43 0.052 

3000 2.99 0.072 

4000 2.22 0.079 

r 

⬧100 μm 25 0.020 

150 μm 10.43 0.027 

200 μm 2.42 0.029 

300 μm 4.76 0.027 

Ps 

100 μm 185.74 0.040 

200 μm 35.98 0.032 

250 μm 18.07 0.024 

 

A drastic increase in PCS contraction was observed when the strut thickness was reduced to 1 

μm or the strut Young modulus was reduced to 𝐸𝑠 100 kPa. The model on closer inspection had 

collapsed on itself meaning the values from these models should not be considered as reliable. 

These results were omitted from further analysis and were only included as a reference to the 

model limits. The simulations on a cell space radius (r) of 100 μm failed to provide a sample 
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range and hence were not included in the box plots. The range of values differed in orders of 

magnitude hence to clearly see the range of results a logarithmic scale was required. 
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Figure 3.8: Box plots of the simulations carried out on variables; results all plotted against 

the cell-effective stiffness using a logarithmic scale. Diamonds represent the mean values 

across 20 simulations provided for each variable value. Points represent outliers in the 

data. 

Olive
r S

an
tos

-Lo
pe

s



44 

 

3.3. Design Optimization 

During the production of PCS certain parameters can be controlled such as the strut modulus, 

strut thickness, and the pore size. Using these parameters in the cell-matrix model meant that 

optimal scaffold geometries could be produced to reduce phenomena such as wound 

contraction. Which can improve tissue regeneration. Due to limitations in the parameterization 

of unit cell size (Ps) the parameter was not included in the optimizer.  

The design optimization adjusted the strut modulus Es and the strut thickness t to minimize the 

macroscopic contraction of the PCS lattice (%AC) whilst maintaining a high porosity (Eq. 1.4; 

porosity > 98 %). An initial model was created with the parameters of the nominal case after 

which the optimizer altered only Es and t. The initial scaffold had a porosity of 99.7% and a 

%AC of 0.04% calculated from Eq. (1.3), (1.4) and (2.12). 

The scaffold was then optimized by brute force to reduce the contraction of the scaffold whilst 

simultaneously maintaining a high porosity. The optimizer ran initially over 100 different 

samples and then created additional models based on the scaffold parameters that produced the 

best results. The total procedure took between 1 to 2 hours and 4 candidates were selected which 

reduced the contraction of the scaffold whilst still maintain a high level of porosity. Other 

optimization processes performed on similar applications have taken multiple days to produce 

the same number of results highlighting the model’s low computational cost [33]. 

Table 3.7: Candidates produced by the direct optimization on ANSYS, with %AC, 

porosity, and cell effective stiffness. 

Candidates t (μm) Es (MPa) %AC  
Porosity 

(%) 

Mean Cell 

effective 

Stiffness (N/m) 

Nominal 

Case 
3 5 0.04 99.7 5.02 

No. 1 3.766 9.736 0.00893  99.48 % 970.4 

No. 2 3.702 9.761 0.0092 99.50 % 2592 

No. 3 3.094 9.73 0.0153 99.65 % 381 

No. 4 3.074 9.73 0.0156 99.66 % 395 
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All candidates showed a significant decrease in the contraction (Fig. 3.6) of the scaffold whilst 

still maintain high porosity (Tab. 3.7). In all cases the strut modulus was increased to roughly 

9.7 MPa. This is because the optimizer is still missing a condition that would require a reduced 

strut modulus. Inclusion of a range of values for the mean cell effective stiffness would allow 

for the correct optimization of Es. The cell effective stiffness was most effected by the elastic 

modulus of the struts in comparison to the thickness of struts (Tab. 3.7).  
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Chapter 4  

Discussion 

This thesis focuses on creating a computationally efficient method to model the mechanical 

behaviour of Porous Collagen-based Scaffolds (PCS) in the micrometre and millimetre. The 

sponge-like structure of PCS was modelled using lattices generated by repetition of a unit cell, 

either cube or tetrakaidekahedrons. Finite element models of PCS were generated using 1D 

finite elements. Both linear mechanics and nonlinear (neo-Hookean) mechanics were 

considered. 

The implication is that models can be produced to study interactions of cells with PCS on a 

microscopic scale and relate this back to macroscopic changes in the scaffold. 

Creating cell-matrix interactions allowed the investigation of cell variables such as the 

distribution of cells throughout PCS, the force (Fc) etc. and scaffold variables e.g., strut 

thickness (t), unit cell size (Ps) etc. The model was able to utilize design optimization features 

meaning that controllable aspects of the design such as the strut modulus (Es) and the thickness 

of struts (t) could be tuned to achieve desirable contraction whilst maintaining a sufficient 

porosity for events such as cell migration and proliferation. 

Unconfined compression simulations for linear elastic materials could simulate high-strain 

deformations. The use of pipe elements instead of beam elements was shown to be 

interchangeable when modelling linear elastic properties. However pipe elements could include 

hyper elastic material models, in contrast to beam elements. The use of pipe elements 

demonstrated a good capability to capture strain of up until ε=46% in the case of Ps =110 μm 

and ε=27.5% for Ps = 96 μm with tetrakaidekahedral unit cells.  
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Simulations of unconfined compression of PCS of mean pore diameter Ps = 110 μm, the full 

version of ANSYS was used. The compression simulations for Ps = 96 μm was performed on 

ANSYS student version which may have been in part a reason the results were only given to ε 

= 27.5% versus ε = 46%. This is because ANSYS student has a limited processing capacity. 

For example, despite the hardware used having 6 cores available (Table 2.1), ANSYS student 

limits the number of cores to a maximum of 4. 

Worth noting is that for the compression simulation with Ps = 110 μm the full version of ANSYS 

was used. The compression simulations for Ps = 96 μm was performed on ANSYS student 

version which may have been in part a reason the strain was lower.  

The initial macroscopic elastic modulus (E*), the collapse plateau elastic modulus (∆𝜎 ∆𝜀⁄ ), the 

elastic buckling stress (𝜎𝑒𝑙
∗ ) and strain (𝜀𝑒𝑙

∗ ) were all able to be estimated (Tab. 3.2). E*, 𝜎𝑒𝑙
∗ , and 

𝜀𝑒𝑙
∗  by a particular finite element model (tetrakaidekahedron unit cell, pipe finite elements, neo-

Hookean mechanics) had a good agreement with the experimental measurements (Tab. 1.1). E* 

had a good agreement with the analytical calculations using constants defined by Gibson et al., 

1997 (Table 1.2, Tab. 3.3), the other analytical results had some margin of error but were all in 

the correct order of magnitude.  

The reduction in the elastic modulus of E* and ∆𝜎 ∆𝜀⁄  may be due to the overall reduced 

dimensions of the scaffold when compared to the experimental scaffolds [15]. To observe if 

this is the case the lattice could be expanded, and the compression simulations repeated. If the 

results do change it suggests that macroscopic elastic modulus is not only related to the relative 

density (Eq. (1.1)) but also the scaffold dimensions. 

Cubic unit cells demonstrated that the geometry of individual unit cells is important to correctly 

characterize the macroscopic effects of PCS. Alignment of struts in the direction of 

compression led to increased macroscopic elastic modulus. The effect was like that of the works 

of Herrera et al., 2019, where porous scaffold (composed of collagen walls aligned in parallel) 
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had a higher macroscopic elastic modulus compared to PCS with randomly orientated struts 

such as CG scaffolds [15].  

Despite the increase in E* for cubic unit cells, the scaffold began to collapse at lower stress. 

The reduction in elastic buckling stress (𝜎𝑒𝑙
∗ ) may also be attributed to the number of struts 

within the scaffold. A single unit cell for the cube scaffold is composed of 12 struts compared 

to a tetrakaidekahedral unit cell having 36 struts. This leads to a scaffold composed of 

tetrakaidekahedrons having 3 times the number of struts compared to the cubic unit cell 

scaffolds. Normally cubic unit cells have a higher strut thickness. However in the simulations 

performed the unit cell size and strut thickness was equal to that of the tetrakaidekahedral unit 

cell tests (Ps = 96 μm, t = 2.55 μm). Another way to compare between the unit cells (cubic and 

tetrakaidekahedrons) is to keep the relative density of the two scaffolds constant. This would 

give the cubic unit cells a larger strut thickness which is more representative of PCS with cubic 

unit cells. 

The results of the compression simulations show lattices derived from cubic unit cells cannot 

capture the properties of open-cell elastomeric foams. The use of the cubic unit cells was best 

suited for testing aspects of the model set up rather than simulating cell-matrix interactions. 

Despite being unrealistic for modelling elastomeric foams the cube unit cells offer the 

advantage of faster processing times. The tetrakaidekahedron has 24 vertices connected by a 

total of 36 struts, whereas the cube has only 8 vertices and 12 struts meaning the geometry was 

a lot easier to produce. Due to the simpler geometry models with cubic unit cells could make 

larger scaffolds than the tetrakaidekahedron unit cells. Something which was a limitation 

throughout simulations. 

Models that study cell-scaffold interactions consider extra variables including the number of 

active cells, the magnitude of forces applied by cells, and cell localization. Due to the inclusion 

of such variables in the model, specific conditions not controllable experimentally were able to 

be assessed and trends could be seen. It was seen that when mean cell effective stiffness 

increased the macroscopic contraction decreased (Table 3.6). 
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One question that remains is the desirable cell effective stiffness. Herrera et al., 2019 showed 

that kce is important for cell responses such as migration, proliferation, and differentiation. But 

it has not been shown what is the optimal kce for applications such as wound healing. The model 

offers ways to investigate scaffold design parameters and cell variables on the average kce whilst 

also being able to predict the macroscopic effects on the scaffold. With identification of ideal 

kce the model optimization process could be further improved. 

Most of the simulations had %AC in the same order of magnitude (Tab. 3.6). As the model was 

static, essentially applying only initial contractile forces to the scaffold. Scaffold are shown to 

contract over a period having initially very small levels of contraction [12]. The contraction is 

due to cell proliferation resulting in increased cell numbers and hence lager contractions, larger 

contraction was seen in the model with increasing active cell number (Table 3.6). The only 

models that produced a significantly large contraction either had exceptionally low strut 

thickness (1 μm), or a low strut modulus (100 kPa). This implies that there are critical values 

that PCS design should adhere to, to avoid significant contraction which may result in failure.  

The average cell effective stiffness was shown to be lower than the substrate for which they are 

adhering and lower than the macroscopic stiffness. Herrera et al., 2019 reported that the 

stiffness sensed by cells was lower than the substrate but greater than the macroscopic stiffness. 

The reason for the difference requires further investigation but could be due to the fact many 

cells were used compared to the use of only a single cell by Herrera 2019. Cell effective 

stiffness could be affected by the actions of neighbouring cells in the PCS lattice. 

The design optimization procedure improved upon an initial scaffold design having 3 μm strut 

thickness (t) and 5 MPa strut elastic modulus (Es). The aim of the optimizer was to reduce the 

scaffold contraction by adjusting the strut modulus and strut thickness. The procedure produced 

4 possible candidates (Tab. 3.7 ) which all showed reductions in contraction whilst still maintain 

a high porosity (~99.5%). The candidates that had the lowest contraction had a higher thickness 

and strut modulus which was expected. The stiffness sensed by cells was also recorded 

alongside these scaffolds. The highest kce was found in the candidate with the greatest strut 
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modulus suggesting that Es is more influential on kce than the strut thickness. The current model 

was able to simulate cell-matrix interactions and perform mass simulations with lower 

computational cost than other PCS models solving within hours compared to days it takes for 

other procedures. For example, Parsons et al., 2022 optimized fibre dimensions to increase cell 

velocity. Parson’s optimization procedure took 24 days to solve 105 simulations. The 

optimization used on the cell-matrix model in this study solved 100 simulations in between 1 

to 2 hours. 

Limitations 

Design optimization is used to produce possible design for experimental applications. A key 

feature in scaffold design is the mean size of pores in the scaffold. The model was unable to 

include the pore size (Ps) in optimization at the present state. The geometry however did 

consider pore size as a variable and the effects of increasing pore size on cell-matrix interactions 

was recorded (Fig. 3.4). Ps should be included in design optimization studies in the future as 

they are a key feature which can be tuned when designing PCS. 

The implementation of non-linear material properties was done during compression simulations 

but not in cell-matrix interaction models. The struts in the PCS lattice underwent significant 

deformations. At high strain 1D finite elements that model the struts were subject to element 

distortion. Hence the model failed to converge with normal to high cell force (20 – 100 nN), 

and normal to high active cell numbers (1000+). The model was in some instances able to solve 

with a refined mesh, low force, low cell number, and reduced rate of loading. However, the 

model then represents scaffolds under low strain which is comparable with linear elastic 

materials. This is not useful as it does not show the non-linear effects and comes with an 

increase in computational costs. 

Using a finer mesh was shown to reduce element distortion and is a recommended and tested 

solution. However, ANSYS student, for which a large portion of the cell-matrix interactions 

were modelled, has a limit to the number of mesh nodes and cannot produce the desired mesh. 
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Despite not being able to include the non-linear material properties in cell-matrix interactions 

the use of 1D elements was validated. With future investigations as to why the model failed 1D 

elements could greatly improve computational costs and model non-linear materials which have 

so far been only done using 3D elements.  

An assumption that was made was that the cell-matrix interactions were independent of time. 

This meant that cell forces were only applied at one instant. It has been shown experimentally 

that for large scaffold contraction the cells apply forces over a period of days [12]. The model 

could be adapted to apply forces, randomly move the location of these forces, and apply them 

again in a repetitive manner thus produced scaffold deformations over a period. Doing this may 

allow for easier comparison with experimental data and would also provide better insight for 

scaffold design optimization. 

Cell effective stiffness was averaged by taking the displacements of mesh nodes after solving 

the model and calculating the change in distance between attachment sites. The model cannot 

tell the user whether the cell is in compression (due to the contraction of the cell) or tension 

(due to contraction of surrounding cell) which may be important for understanding 

mechanosensing. The model may be adapted to be able to divide cell effective stiffness into 

two groups. One under tension and another under compression. This can give more information 

about cell-cell interactions. 

The design optimization was set to achieve  low scaffold contraction whilst maintaining a high 

porosity by adjusting Es and t. It has been shown that the elastic modulus of scaffold constituents 

(such as struts) can be controlled [17]. However, the increase of elastic modulus can in turn 

affect the geometrical features of scaffold pores. For example, Herrera et al., 2019 

demonstrated that increasing the wt% of collagen led to increase in the elastic modulus of 

collagen walls but also influenced their thickness. The optimizer in this research does not factor 

that an increase to the thickness of struts may be associated with increase strut modulus. 

Unconfined compression tests can relate the pore size and strut thickness to Es (Eq. (1.1) & 
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(1.2)). The use of these relations could be applied to the model to adjust the thickness as a 

function of Es.  

Future Work 

The model was limited to only being able to model linear cell-matrix interactions. This was due 

to the limitations with mesh size. In future a mesh study should be carried out to observe if a 

finer mesh can be implemented to resolve element distortion. The model should also be adapted 

to be able to optimize the size of pores. The inclusion of pore size will greatly influence the 

porosity of the scaffold and is influential on cell interactions such as migration. 

Variables that were used during the model set up are useful for defining specific conditions 

seen in experiment. For example, it is shown that the distribution of cells is affected by the 

scaffold in which they are seeded [27]. The cell space radius can control the distribution of cells 

but could also be used to create cluster of cells at various volumes in the scaffolds (Fig. 4.1). 

 

Figure 4.1: Use of multiple cell spaces in a single PCS model, demonstrating how 

clustering of cells could be modelled. 

It was suggested that the orientation of struts in the cubic unit cells were responsible for the 

change in macroscopic stiffness. This can be validated using the script for the 

tetrakaidekahedral unit cells (Appendix A.3). The unit cells produced in this script included the 

aspect ratio between the height of the pore and its width/length. This means that the orientation 

of struts can be aligned either vertically or horizontally (Fig. 4.2). 
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Figure 4.2: Effect of adjusting the aspect ratio on a unit cell using the tetrakaidekahedron 

script (Appendix A.3) 

The model presented was set to only consider scaffolds of minimal dimensions (~ 1mm3). With 

improved hardware the scripts that produced the geometries could be applied to produce large 

scale scaffolds. Better hardware could also improve upon modelling times. The use of script 

not only allows the adaptability of variables (e.g., strut thickness) but also allows the cell-matrix 

interactions to be applied to various PCS designs. Provided the model is set up with 1D 

elements. 
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Conclusions 

A new technique for modelling Porous Collagen-based Scaffolds was presented. Demonstrating 

capabilities to model open-cell elastomeric foams using 1D Pipe elements in place of 1D beam 

elements. The mechanical response of 1D pipe elements to model PCS was validated through 

unconfined compression simulations. The model also validated the use of tetrakaidekahedrons 

in capturing the macroscopic stress-strain behaviour. Cell-matrix interactions were simulated 

allowing for control over cellular variables such as the magnitude of cell contractile forces, the 

number of active cells within a PCS, and how these cells are distributed within the scaffold. 

The results demonstrated that the average stiffness sensed by cells increases with both strut 

thickness and elastic modulus of struts. The simulations were computationally efficient due to 

the use of 1D elements and automatization of the model set up through scripting available on 

ANSYS. The results demonstrated that cell effective stiffness is influenced by the surrounding 

cells as well as the macroscopic and microscopic properties of the scaffolds. The method 

provided can be adapted to fit various types of PCS by changing unit cell geometry and the 

mechanical properties of the struts. 
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Appendix A  

Appendix A.1: SpaceClaim Script – Cubic Unit Cells 

The code in the following section is used to create scaffolds consisting of cubic unit cells. The 

user must input the size of the unit cell, how many units are along each edge, and the thickness 

of the struts in the scaffold. The script will then automatically construct the scaffolds to the 

specified values. 

 
# Python Script, API Version = V19 
ClearAll() # Clear Current geometry 
 
#Prepare Sketch Area 
CreateSketch = Sketch3D.Set3DSketchMode(True) 
 
#Define number of cells, diameter, and strut length 
 
num_cells = 3 # Number of units along each axis 
strut_length = 100 # Strut length or unit cell size 
Diam = 3 # Strut thickness 
 
#Create Points (vertices) 
p1x = 0 
p1y = 0 
p1z = 0 
P1 = Point.Create(MM(p1x),MM(p1y),MM(p1z)) 
 
p2x = p1x + strut_length 
p2y = p1y 
p2z = p1z 
P2 = Point.Create(MM(p2x),MM(p2y),MM(p2z)) 
 
p3x = p1x 
p3y = p1y 
p3z = p1z + strut_length 
P3 = Point.Create(MM(p3x),MM(p3y),MM(p3z)) 
 
p4x = p1x + strut_length 
p4y = p1y 
p4z = p1z + strut_length 
P4 = Point.Create(MM(p4x),MM(p4y),MM(p4z)) 
 
p5x = p1x 
p5y = p1y + strut_length 
p5z = p1z 
P5 = Point.Create(MM(p5x),MM(p5y),MM(p5z)) 
 
p6x = p1x + strut_length 
p6y = p5y 
p6z = p1z 
P6 = Point.Create(MM(p6x),MM(p6y),MM(p6z)) 
 
p7x = p1x 
p7y = p5y 
p7z = p1z + strut_length 
P7 = Point.Create(MM(p7x),MM(p7y),MM(p7z)) 
 
p8x = p1x + strut_length 
p8y = p5y 
p8z = p1z + strut_length 
P8 = Point.Create(MM(p8x),MM(p8y),MM(p8z)) 
 
 
#Create Lines (miss lines – not included initially to prevent overlapping) 
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L1 = SketchLine.Create(P4,P8) 
L2 = SketchLine.Create(P6,P8) 
L3 = SketchLine.Create(P7,P8) 
 
if num_cells > 1: 
    select = Selection.SelectAll() 
    data = LinearPatternData() 
    data.PatternDimension = PatternDimensionType.Two 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[1]) 
    data.CountX = num_cells 
    data.PitchX = MM(strut_length) 
    data.CountY = num_cells 
    data.PitchY = MM(strut_length) 
    result = Pattern.CreateLinear(select, data, None) 
    
    select = Selection.SelectAll() 
    data = LinearPatternData() 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[2]) 
    data.CountX = num_cells 
    data.PitchX = MM(strut_length) 
    result = Pattern.CreateLinear(select, data, None) 
     
# Fill in missing lines (Bottom) 
 
L1 = SketchLine.Create(P2,P4) 
L2 = SketchLine.Create(P3,P4) 
 
num_lines1 = 3*(num_cells**3) 
 
# Create Named Selection Group 
primarySelection = Selection.Create([GetRootPart().Curves[num_lines1], 
    GetRootPart().Curves[num_lines1+1]]) 
secondarySelection = Selection.Empty() 
result = NamedSelection.Create(primarySelection, secondarySelection) 
 
if num_cells > 1: 
    select = Selection.CreateByGroups("Group1") 
    data = LinearPatternData() 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[2]) 
    data.CountX = num_cells 
    data.PitchX = MM(strut_length) 
    result = Pattern.CreateLinear(select, data, None) 
     
num_lines2 = num_lines1 + 2*num_cells 
 
if num_cells > 1: 
    select = Selection.Create(GetRootPart().Curves[(num_lines1):(num_lines2)]) 
    data = LinearPatternData() 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[0]) 
    data.CountX = num_cells 
    data.PitchX = MM(strut_length) 
    result = Pattern.CreateLinear(select, data, None) 
     
#Fill in missing lines (left) 
 
L1 = SketchLine.Create(P5,P7) 
L2 = SketchLine.Create(P3,P7) 
 
num_lines3 = 3*(num_cells**3)+(2*num_cells**2) 
 
# Create Named Selection Group 
primarySelection = Selection.Create([GetRootPart().Curves[num_lines3], 
    GetRootPart().Curves[num_lines3+1]]) 
secondarySelection = Selection.Empty() 
result = NamedSelection.Create(primarySelection, secondarySelection) 
# EndBlock 
 
if num_cells > 1: 
    select = Selection.CreateByGroups("Group2") 
    data = LinearPatternData() 
    data.PatternDimension = PatternDimensionType.Two 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[2]) 
    data.CountX = num_cells 
    data.PitchX = MM(strut_length) 
    data.CountY = num_cells 
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    data.PitchY = MM(strut_length) 
    result = Pattern.CreateLinear(select, data, None) 
     
#Fill in missing lines (back face) 
L1 = SketchLine.Create(P2,P6) 
L2 = SketchLine.Create(P5,P6) 
 
num_lines4 = (3)*(num_cells**3)+2*(2*num_cells**2) 
 
# Create Named Selection Group 
primarySelection = Selection.Create([GetRootPart().Curves[num_lines4], 
    GetRootPart().Curves[num_lines4+1]]) 
secondarySelection = Selection.Empty() 
result = NamedSelection.Create(primarySelection, secondarySelection) 
# EndBlock 
 
if num_cells > 1: 
    select = Selection.CreateByGroups("Group3") 
    data = LinearPatternData() 
    data.PatternDimension = PatternDimensionType.Two 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[1]) 
    data.CountX = num_cells 
    data.PitchX = MM(strut_length) 
    data.CountY = num_cells 
    data.PitchY = MM(strut_length) 
    result = Pattern.CreateLinear(select, data, None) 
     
# Fill in lines (final) 
L1 = SketchLine.Create(P1,P3) 
 
num_lines5 = (3)*(num_cells**3)+3*(2*num_cells**2) 
 
# Create Named Selection Group 
primarySelection = Selection.Create(GetRootPart().Curves[num_lines5]) 
secondarySelection = Selection.Empty() 
result = NamedSelection.Create(primarySelection, secondarySelection) 
 
#Linear Pattern 
if num_cells > 1: 
    select = Selection.CreateByGroups("Group4") 
    data = LinearPatternData() 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[2]) 
    data.CountX = num_cells 
    data.PitchX = MM(strut_length) 
    result = Pattern.CreateLinear(select, data, None) 
 
# Fill in missing lines     
L1 = SketchLine.Create(P1,P2) 
num_lines6 = (3)*(num_cells**3)+3*(2*num_cells**2)+(num_cells) 
 
primarySelection = Selection.Create(GetRootPart().Curves[num_lines6]) 
secondarySelection = Selection.Empty() 
result = NamedSelection.Create(primarySelection, secondarySelection) 
 
if num_cells > 1: 
    select = Selection.CreateByGroups("Group5") 
    data = LinearPatternData() 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[0]) 
    data.CountX = num_cells 
    data.PitchX = MM(strut_length) 
    result = Pattern.CreateLinear(select, data, None) 
     
L1 = SketchLine.Create(P1,P5) 
 
num_lines7 = (3)*(num_cells**3)+3*(2*num_cells**2)+2*(num_cells) 
 
# Create Named Selection Group 
primarySelection = Selection.Create(GetRootPart().Curves[num_lines7]) 
secondarySelection = Selection.Empty() 
result = NamedSelection.Create(primarySelection, secondarySelection) 
 
if num_cells > 1: 
    select = Selection.CreateByGroups("Group6") 
    data = LinearPatternData() 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[1]) 
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    data.CountX = num_cells 
    data.PitchX = MM(strut_length) 
    result = Pattern.CreateLinear(select, data, None) 
             
#Create Cross Section Area 
CrossArea = BeamProfile.CreateDisk(MM(Diam),'Cross') #Comment out for pipe elements 
CrossArea = BeamProfile.CreateCircular(MM(Diam),MM(0.0001),"Cross") #Comment out for beam elements 
 
# Create Beam 
BeamAss = Part1 #SpaceClaim creates Part1 to be able to assign the cross sectional area to the line bodies 
select = Selection.SelectAll() 
result = Beam.Create(select,BeamAss) 
 
# Assign all bodies to act as one component 
result = ComponentHelper.MoveBodiesToComponent(select, None) 
 
#Set the topology of the line bodies to be shared thus acting as a single body 
options = ShareTopologyOptions() 
result = ShareTopology.FindAndFix(options) 
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Appendix A.2: Tetrakaidekahedral Equations Derivation 

 

Appendix Figure A.1: Top, front, and side view of tetrakaidekahedral unit cell. Labels 

correlate to change in x (α), y (γ), and z (β) coordinates which were used to derive an 

expression relating the 

To draw the vertices for the tetrakaidekahedral unit cell the width (W), depth (D), and height 

(H), which define the pore size, were broken down into α1,2, β1,2, and γ1,2 which denote the 

change in x coordinate, change in z coordinate and change in y coordinate between each vertex 

(Fig. A.1).  

A.2.1: Equations for unit cell dependent on strut length 

Using the strut length as the input and considering that the depth (D) is equal to the width (W) 

gave the following, 

 𝐷 = 𝑊 = 2𝛼1 + 2𝛼2 = 2𝛽1 + 2𝛽2 (A.1) 

 

and, 
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 𝐻 = 2𝛾1 + 2𝛾2 (A.2) 

where 𝛼1  and 𝛼2 is the change in x coordinate between vertices, 𝛽1 and 𝛽2 is the change in z 

coordinate between vertices, and 𝛾1 and 𝛾2 is the change in y coordinates between vertices. Due 

to symmetry in the y axis from the AR, the change in y coordinate is constant from one end of 

the pore to the other. Hence eq. 2.6 becomes, 

 𝐻 = 4𝛾 (A.3) 

where 𝛾 is the change in y coordinate between vertices. Considering that W and D are equal, 

 𝛼1 = 𝛽1     &    𝛼2 = 𝛽2   

The aspect ratio can now be written as, 

 
𝐴𝑅 =

𝑊

𝐻
=

2𝛼1 + 2𝛼2

4𝛾
 (A.4) 

Using a defined strut length as an input and Pythagoras’ theorem to determine the change in 

coordinates gave, 

 𝑆𝑙
2 = 𝛾2 + 𝛼2

2 (A.5) 

 𝑆𝑙
2 = 𝛼1

2 + 𝛽1
2 = 2𝛼1

2 (A.6) 

 ∴ 𝛾2 = 𝑆𝑙
2 − 𝛼2

2 (A.7) 

 

∴ 𝛼1 = √
𝑆𝑙

2

2
=

𝑆𝑙

√2
 (A.8) 

where Sl is the strut length. With the relationships defined eq. (2.8) was squared giving, 

 
𝐴𝑅2 =

(2𝛼1 + 2𝛼2)2

16𝛾2
=

4𝛼1
2 + 8𝛼1𝛼2 + 4𝛼2

2

16(𝑆𝑙
2 − 𝛼2

2)
 (A.9) 

 

∴ 𝐴𝑅2 =

4 (
𝑆𝑙

√2
)

2

+ 8 (
𝑆𝑙

√2
) 𝛼2 + 4𝛼2

2

16(𝑆𝑙
2 − 𝛼2

2)
=

2𝑆𝑙
2 +

8

√2
𝑆𝑙𝛼2 + 4𝛼2

2

16(𝑆𝑙
2 − 𝛼2

2)
 

(A.10) 

 
∴ 4𝛼2

2 + 16𝛼2
2𝐴𝑅2 +

8

√2
𝑆𝑙𝛼2 + 2𝑆𝑙

2 − 16𝑆𝑙
2𝐴𝑅2 = 0 (A.11) 

 

With quadratic formula 𝛼2 can be determined, hence 𝛾 is found (2.11) and the positions of all 

vertices can be calculated using a script (Adjust script in Appendix A3). 
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A.2.2: Equations for unit cell dependent on pore size (unit cell size) 

Using AR (A.2.1 - Eq. A.4) and defining either the height or the width as the unit cell size 

allows the change in y coordinate (γ) to be calculated. The change in the x (α) or z (β) 

coordinates can be thought of as equal due to symmetry of the depth and width (Eq. A.1) giving, 

 
𝛼1 =

𝐷

2
+ 𝛼2 (A.12) 

and with Eq. A.5 &A.6, 

 𝛼1
2 = 𝛾2 + 𝛼2

2 (A.13) 

Eq. A.9 with the substitution of Eq. A.12 & A.13 becomes, 

 

𝐴𝑅2 =
(2𝛼1 + 2𝛼2)2

16𝛾2
=

4 (
𝛾2

2
+

𝛼2
2

2
) + 8 (

𝐷
2

− 𝛼2) 𝛼2 + 4𝛼2
2

16𝛾2
 

(A.14) 

 ∴ 2𝛼2
2 − 4𝐷𝛼2

2 + 16𝐴𝑅2𝛾2 − 2𝛾2 = 0 (A.15) 

Using quadratic formula on Eq. A.15 gives 𝛼2 which is substituted back into A.12 to get 𝛼1, 

the equation was implement into a script to produce the tetrakaidekahedron unit cells (see 

Appendix A.3). 

 

 

 

 

 

 

 
Olive

r S
an

tos
-Lo

pe
s



66 

 

Appendix A.3: SpaceClaim Script – Tetrakaidekahedral Unit Cells (pore 

size dependent) 

The code in this section constructs scaffolds composed of tetrakaidekahedral unit cells. The 

script works by creating unit cells dependent on the diameter of a tetrakaidekahedral unit 

(Section A.2.2). The user must input the unit cell size, the number of units along each edge, and 

the thickness of the struts in the scaffold. 

# Python Script, API Version = V19 
ClearAll() 
 
#Prepare Sketch 
CreateSketch = Sketch3D.Set3DSketchMode(True) 
 
#Create Lines 
 
#Define number of cells, diameter, and strut length 
num_cells = 3 #number of units along each axis 
PW = 100 #Define the pore size 
Diam = 2.95 #Define strut thickness 
AR = 1 #Cell Ascpect Ratio 
PH = PW/AR 
 
#DEFINE dx,dz, and dy (pore size dependent) 
 
import math 
 
#Define values using equations in appendix A.2.2 
dy = float(PH)/4 
 
a = 2 
b = -4*PW 
c = (16*AR**2*dy**2-2*dy**2) 
 
dx2 = (-b - math.sqrt((b**2) - 4*a*c))/(2*a) #Quadratic formula 
dz2 = dx2 
 
dx1 = (PW/2)-dx2 
dz1 = dx1 
 
strut_length = math.sqrt(dx2**2 + dy**2) 
checkSL = math.sqrt(2*(dx1**2)) 
 
 
### CREATE SINGLE UNIT ### 
# P1 
x1 = dx2 + dx1 
y1 = 0 
z1 = dz1 
P1 = Point.Create(MM(x1),MM(y1),MM(z1)) 
#P2 
x2 = x1 - dx1 
y2 = 0 
z2 = z1 + dz1 
P2 = Point.Create(MM(x2),MM(y2),MM(z2)) 
#P3 
x3 = x2 + dx1 
y3 = 0 
z3 = z2 + dz1 
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P3 = Point.Create(MM(x3),MM(y3),MM(z3)) 
#P4 
x4 = x3 +dx1 
y4 = 0  
z4 = z3 - dz1 
P4 = Point.Create(MM(x4),MM(y4),MM(z4)) 
#P5 
x5 = x1 
y5 = y1 + dy 
z5 = z1 - dz2 
P5 = Point.Create(MM(x5),MM(y5),MM(z5)) 
#P6 
x6 = x2 - dx2 
y6 = y2 + dy 
z6 = z2 
P6 = Point.Create(MM(x6),MM(y6),MM(z6)) 
#P7 
x7 = x3 
y7 = y3 +dy 
z7 = z3 + dz2 
P7 = Point.Create(MM(x7),MM(y7),MM(z7)) 
#P8 
x8 = x4 + dx2 
y8 = y4 + dy 
z8 = z4 
P8 = Point.Create(MM(x8),MM(y8),MM(z8)) 
#P9 
x9 = x5 - dx2 
y9 = y5 + dy 
z9 = z5 
P9 = Point.Create(MM(x9),MM(y9),MM(z9)) 
#P10 
x10 = x6 
y10 = y6 + dy 
z10 = z6 - dz2 
P10 = Point.Create(MM(x10),MM(y10),MM(z10)) 
#P11 
x11 = x6 
y11 = y6 + dy 
z11 = z6 + dz2 
P11 = Point.Create(MM(x11),MM(y11),MM(z11)) 
#P12 
x12 = x7 - dx2 
y12 = y7 + dy 
z12 = z7  
P12 = Point.Create(MM(x12),MM(y12),MM(z12)) 
#P13 
x13 = x7 + dx2 
y13 = y7 + dy 
z13 = z7  
P13 = Point.Create(MM(x13),MM(y13),MM(z13)) 
#P14 
x14 = x8  
y14 = y8 + dy 
z14 = z8 + dz2 
P14 = Point.Create(MM(x14),MM(y14),MM(z14)) 
#P15 
x15 = x8  
y15 = y8 + dy 
z15 = z8 - dz2 
P15 = Point.Create(MM(x15),MM(y15),MM(z15)) 
#P16 
x16 = x5 + dx2 
y16 = y5 + dy 
z16 = z5  
P16 = Point.Create(MM(x16),MM(y16),MM(z16)) 
#P17 
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x17 = x9 + dx2 
y17 = y9 + dy 
z17 = z9  
P17 = Point.Create(MM(x17),MM(y17),MM(z17)) 
#P18 
x18 = x10  
y18 = y10 + dy 
z18 = z10 + dz2  
P18 = Point.Create(MM(x18),MM(y18),MM(z18)) 
#P19 
x19 = x12 + dx2 
y19 = y12 + dy 
z19 = z12   
P19 = Point.Create(MM(x19),MM(y19),MM(z19)) 
#P20 
x20 = x14  
y20 = y14 + dy 
z20 = z14 - dz2  
P20 = Point.Create(MM(x20),MM(y20),MM(z20)) 
#P21 
x21 = x17  
y21 = y17 + dy 
z21 = z17 + dz2  
P21 = Point.Create(MM(x21),MM(y21),MM(z21)) 
#P22 
x22 = x18 + dx2 
y22 = y18 + dy 
z22 = z18   
P22 = Point.Create(MM(x22),MM(y22),MM(z22)) 
#P23 
x23 = x19  
y23 = y17 + dy 
z23 = z19 - dz2  
P23 = Point.Create(MM(x23),MM(y23),MM(z23)) 
#P24 
x24 = x20 - dx2 
y24 = y20 + dy 
z24 = z20   
P24 = Point.Create(MM(x24),MM(y24),MM(z24)) 
#Draw Lines 
#L13-L32 (Group 4: miss lines – not included initially to prevent overlapping 
L13 = SketchLine.Create(P1,P5) 
L14 = SketchLine.Create(P2,P6) 
L15 = SketchLine.Create(P3,P7) 
L16 = SketchLine.Create(P4,P8) 
L17 = SketchLine.Create(P7,P12) 
L18 = SketchLine.Create(P7,P13) 
L19 = SketchLine.Create(P8,P14) 
L20 = SketchLine.Create(P8,P15) 
L21 = SketchLine.Create(P9,P10) 
L22 = SketchLine.Create(P11,P12) 
L23 = SketchLine.Create(P13,P14) 
L24 = SketchLine.Create(P15,P16) 
L25 = SketchLine.Create(P12,P19) 
L26 = SketchLine.Create(P13,P19) 
L27 = SketchLine.Create(P14,P20) 
L28 = SketchLine.Create(P15,P20) 
L29 = SketchLine.Create(P17,P21) 
L30 = SketchLine.Create(P18,P22) 
L31 = SketchLine.Create(P19,P23) 
L32 = SketchLine.Create(P20,P24) 
L33 = SketchLine.Create(P21,P22) 
L34 = SketchLine.Create(P22,P23) 
L35 = SketchLine.Create(P23,P24) 
L36 = SketchLine.Create(P24,P21) 
 
if num_cells > 1: 
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    select = Selection.SelectAll() 
    data = LinearPatternData() 
    data.PatternDimension = PatternDimensionType.Two 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[1]) 
    data.CountX = num_cells 
    data.PitchX = MM(PW) 
    data.CountY = num_cells 
    data.PitchY = MM(PH) 
    result = Pattern.CreateLinear(select, data, None) 
     
if num_cells > 1: 
    select = Selection.SelectAll() 
    data = LinearPatternData() 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[2]) 
    data.CountX = num_cells 
    data.PitchX = MM(PW) 
    result = Pattern.CreateLinear(select, data, None) 
 
num_lines1 = (36-12)*(num_cells**3) 
 
#L1-L4 (Group 1) 
L1 = SketchLine.Create(P1,P2) 
L2 = SketchLine.Create(P2,P3) 
L3 = SketchLine.Create(P3,P4) 
L4 = SketchLine.Create(P4,P1) 
 
# Create Named Selection Group 
primarySelection = Selection.Create([GetRootPart().Curves[num_lines1], 
    GetRootPart().Curves[num_lines1+1], 
    GetRootPart().Curves[num_lines1+2], 
    GetRootPart().Curves[num_lines1+3]]) 
secondarySelection = Selection.Empty() 
result = NamedSelection.Create(primarySelection, secondarySelection) 
 
num_lines2 = num_lines1 + 4*num_cells 
 
if num_cells > 1: 
    select = Selection.CreateByGroups("Group1") 
    data = LinearPatternData() 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[2]) 
    data.CountX = num_cells 
    data.PitchX = MM(PW) 
    result = Pattern.CreateLinear(select, data, None) 
     
if num_cells > 1: 
    select = Selection.Create(GetRootPart().Curves[(num_lines1):(num_lines2)]) 
    data = LinearPatternData() 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[0]) 
    data.CountX = num_cells 
    data.PitchX = MM(PW) 
    result = Pattern.CreateLinear(select, data, None) 
     
num_lines3 = (36-12)*(num_cells**3)+(4*num_cells**2) 
 
#L5-L8 (Group 2) 
L5 = SketchLine.Create(P5,P9) 
L6 = SketchLine.Create(P5,P16) 
L7 = SketchLine.Create(P9,P17) 
L8 = SketchLine.Create(P16,P17) 
 
# Create Named Selection Group 
primarySelection = Selection.Create([GetRootPart().Curves[num_lines3], 
    GetRootPart().Curves[num_lines3+1], 
    GetRootPart().Curves[num_lines3+2], 
    GetRootPart().Curves[num_lines3+3]]) 
secondarySelection = Selection.Empty() 
result = NamedSelection.Create(primarySelection, secondarySelection) 
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# EndBlock 
if num_cells > 1: 
    select = Selection.CreateByGroups("Group2") 
    data = LinearPatternData() 
    data.PatternDimension = PatternDimensionType.Two 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[1]) 
    data.CountX = num_cells 
    data.PitchX = MM(PW) 
    data.CountY = num_cells 
    data.PitchY = MM(PH) 
    result = Pattern.CreateLinear(select, data, None) 
     
num_lines4 = (36-12)*(num_cells**3)+2*(4*num_cells**2) 
 
#L9-L12 (Group 3) 
L9 = SketchLine.Create(P6,P10) 
L10 = SketchLine.Create(P6,P11) 
L11 = SketchLine.Create(P10,P18) 
L12 = SketchLine.Create(P11,P18) 
 
# Create Named Selection Group 
primarySelection = Selection.Create([GetRootPart().Curves[num_lines4], 
    GetRootPart().Curves[num_lines4+1], 
    GetRootPart().Curves[num_lines4+2], 
    GetRootPart().Curves[num_lines4+3]]) 
secondarySelection = Selection.Empty() 
result = NamedSelection.Create(primarySelection, secondarySelection) 
 
if num_cells > 1: 
    select = Selection.CreateByGroups("Group3") 
    data = LinearPatternData() 
    data.PatternDimension = PatternDimensionType.Two 
    data.LinearDirection = Selection.Create(GetRootPart().CoordinateSystems[0].Axes[2]) 
    data.CountX = num_cells 
    data.PitchX = MM(PW) 
    data.CountY = num_cells 
    data.PitchY = MM(PH) 
    result = Pattern.CreateLinear(select, data, None) 
     
###APPLY CROSS SECTIONAL AREA### 
 
select = Selection.SelectAll() 
 
#Create Cross Section Area – Comment one out depending on whether you want beam or pipe elements 
CrossArea = BeamProfile.CreateDisk(MM(Diam),'Cross') 
CrossArea = BeamProfile.CreateCircular(MM(Diam),MM(0.0001),'Cross') 
BeamASS = Part1 
 
result = Beam.Create(select, BeamASS) 
 
# Assign all bodies to act as one component 
result = ComponentHelper.MoveBodiesToComponent(select, None) 

#Set the topology of the line bodies to be shared thus acting as a single body 
options = ShareTopologyOptions() 
result = ShareTopology.FindAndFix(options) 
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Appendix A.4: Mechanical APDL Script  

The script for APDL in mechanical is split into three different sections which correlate to what 

order they are read during the solving procedure. /Prep7 refers to code executed during the 

model set up e.g., material properties (section A.4.1). The second part of the script is executed 

before the solve command is issued by ANSYS mechanical (Section A.4.2) and is responsible 

for applying loading conditions and updating nodal coordinate positions for post-processing. 

The third part of the script is executed once the model is solved and is used to extract results 

specifically the cell effective stiffness (section A.4.3). 

A.4.1: /Prep7 APDL Commands  

The first section of commands is performed at the end of /PREP7 in APDL correlating to model 

set up. The script selected mesh nodes within the cell space for cell forces to be applied to and 

defined features of the scaffold such as the scaffold volume which was used for macroscopic 

results. The cell number was also input in this part of the automation. The user must define the 

overall length of the scaffold for the %AC to be measured. 

#START OF SCRIPT 
#Define the dimensions of the scaffold and calculate initial cross-section area 
SCAFFOLD_LENGTH = 1050 
APPROX_AREA = SCAFFOLD_LENGTH**2  
 

#Define number of cells 
CELL_NUMBER = 1000 
 
#Define a radius in which cells can possibly be 
RADIUS = 400 
 
#Create local coordinate system at center of scaffold 
CLOCAL,50,2,525,525,525 
*DIM,CELL_PAIRS_,ARRAY,2,CELL_NUMBER 
*DIM,COORDINATES_,ARRAY,6,CELL_NUMBER 
*DO,I,1,CELL_NUMBER,1 
 
#Select nodes in the radius 
CSYS,50 
ESEL,S,CENT,X,0,RADIUS 
NSLE,S,ACTIVE 
*GET,NumNodes,NODE,0,COUNT 
*DIM,ntab,ARRAY,NumNodes 
*VGET,ntab(1),NODE,,NLIST 
*SET,Randomnum,NINT(RAND(1,NumNodes)) 
CELL_A = ntab(Randomnum) 
 
CSYS,0 
 
*GET,X1,NODE,CELL_A,LOC,X 
*GET,Y1,NODE,CELL_A,LOC,Y 
*GET,Z1,NODE,CELL_A,LOC,Z 
 
*SET,CELL_A,NODE(X1,Y1,Z1) 
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COORDINATE_SYS = 21 + I 

#Select a secondary node  

LOCAL,COORDINATE_SYS,2,X1,Y1,Z1 
CSYS,COORDINATE_SYS 
ESEL,S,CENT,X,0,100 
NSLE,S,ACTIVE 
*GET,NUMNODES,NODE,0,COUNT 
*DIM,DTAB,ARRAY,NUMNODES 
*VGET,DTAB(1),NODE,,NLIST 
*SET,RANDOMNUM,NINT(RAND(1,NUMNODES)) 
CELL_B = DTAB(RANDOMNUM) 
 

CSYS,0 
 
*GET,x2,NODE,Cell_B,LOC,X 
*GET,y2,NODE,Cell_B,LOC,Y 
*GET,z2,NODE,Cell_B,LOC,Z 
 
*SET,CELL_B,NODE(X2,Y2,Z2) 
 
#Assign selected nodes to a list 
*SET,CELL_PAIRS_(1,I),CELL_A 
*SET,CELL_PAIRS_(2,I),CELL_B 
 

#Redord the initial coordinates of the nodes 
*SET,COORDINATES_(1,I),X1 
*SET,COORDINATES_(2,I),Y1 
*SET,COORDINATES_(3,I),Z1 
*SET,COORDINATES_(4,I),X2 
*SET,COORDINATES_(5,I),Y2 
*SET,COORDINATES_(6,I),Z2 
 

*ENDDO 

A.4.2: Solve APDL Commands 

The script in this section is performed just before the solve command in APDL. It applies forces 

on all the selected nodes and updates the nodal coordinate positions to extraction information 

for the cell effective stiffness. The user must define the cell contractile force in this section. 

#START OF SCRIPT 

#Define the force 
F_IN = 0.06 #due to scaling mN = nN 
 
*DIM,INITIAL_LENGTH_,ARRAY,1,CELL_NUMBER 
 
 
*DO,I,1,CELL_NUMBER,1 
 
#Extract the coordinates saved from previous script 
X1 = COORDINATES_(1,I) 
Y1 = COORDINATES_(2,I) 
Z1 = COORDINATES_(3,I) 
 
X2 = COORDINATES_(4,I) 
Y2 = COORDINATES_(5,I) 
Z2 = COORDINATES_(6,I) 
 

#Calculate the force components 
X = X2-X1 
Y = Y2-Y1 
Z = Z2-Z1 
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LENGTH_AB = SQRT(X**2+Y**2+Z**2) 
 
*SET,INITIAL_LENGTH_(1,I),LENGTH_AB 
 
*IF,X,NE,0,THEN 
 
    X_FACTOR = X/X 
    Y_FACTOR = Y/X 
    Z_FACTOR = Z/X 
     
    F_X = F_IN/SQRT(X_FACTOR**2 + Y_FACTOR**2 + Z_FACTOR**2) 
     

    F_Y = F_X*Y_FACTOR 
    F_Z = F_X*Z_FACTOR 
     
    *ELSEIF,Y,NE,0 
 
        X_FACTOR = 0 
        Y_FACTOR = Y/Y 
        Z_FACTOR = Z/Y 
         

        F_Y = F_IN/SQRT(X_FACTOR**2 + Y_FACTOR**2 + Z_FACTOR**2) 
         
        F_X = F_Y*X_FACTOR 
        F_Z = F_Y*Z_FACTOR 
             
        *ELSEIF,Z,NE,0 
 

            X_FACTOR = 0 
            Y_FACTOR = 0 
            Z_FACTOR = Z/Z 
             
            F_Z = F_IN/SQRT(X_FACTOR**2 + Y_FACTOR**2 + Z_FACTOR**2) 
             
            F_X = F_Z*X_FACTOR 
            F_Y = F_Z*Y_FACTOR 
 
*ENDIF 
 

*IF,X2,LT,X1,THEN 
 
    F_X=-F_X 
 
*ENDIF 
 
*IF,Y2,LT,Y1,THEN 
 
    F_Y=-F_Y 
 
*ENDIF 
 
*IF,Z2,LT,Z1,THEN 
 

    F_Z=-F_Z 
     
*ENDIF 
 
CELL_A = CELL_PAIRS_(1,I) 
CELL_B = CELL_PAIRS_(2,I) 
 
F,CELL_A,FX,F_X 
F,CELL_A,FY,F_Y 
F,CELL_A,FZ,F_Z 
 

F,CELL_B,Fx,-F_X 
F,CELL_B,Fy,-F_Y 
F,CELL_B,Fz,-F_Z 
 
*ENDDO 
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SOLVE 
 
/SOLU 
 
#Update coordinates and calculate cell effective stiffness for each cell 
UPCOORD,1 
 
*DIM,CELL_EFF_STIFF_,ARRAY,1,CELL_NUMBER 
 

*DO,I,1,CELL_NUMBER,1 
 
CELL_A = CELL_PAIRS_(1,I) 
CELL_B = CELL_PAIRS_(2,I) 
 
*GET,FINAL_X1,NODE,CELL_A,LOC,X 
*GET,FINAL_Y1,NODE,CELL_A,LOC,Y 
*GET,FINAL_Z1,NODE,CELL_A,LOC,Z 
 
*GET,FINAL_X2,NODE,CELL_B,LOC,X 
*GET,FINAL_Y2,NODE,CELL_B,LOC,Y 
*GET,FINAL_Z2,NODE,CELL_B,LOC,Z 
 

FINAL_LENGTH = SQRT((FINAL_X2-FINAL_X1)**2+(FINAL_Y2-FINAL_Y1)**2+(FINAL_Z2-FINAL_Z1)**2) 
 
DELTA_LENGTH = INITIAL_LENGTH_(1,I)-FINAL_LENGTH 
 
*IF,DELTA_LENGTH,NE,0,THEN 
 
CELL_STIFFNESS = F_IN/DELTA_LENGTH 
 
*ELSEIF,DELTA_LENGTH,EQ,0 
 
CELL_STIFFNESS = 0 
 
*ENDIF 
 

*IF,CELL_STIFFNESS,LT,0,THEN 
CELL_STIFFNESS = -CELL_STIFFNESS 
*ENDIF 
 
*SET,CELL_EFF_STIFF_(1,I),CELL_STIFFNESS 
 
*ENDDO 

A.4.3: /Post1 APDL Commands 

The commands in this section were performed after /POST1 which is responsible for the post 

processing of results. The code averages the cell effective stiffness and outputs the results for 

the design optimization process. The contraction is calculated by taking the average 

deformation of the nodes on the free faces of the scaffold, which must have a named selection 

applied. 

#START OF SCRIPT 

#Initate the total cell effective stiffness and calculate the average 
TOT_CES = 0.0 
 
*DO,I,1,CELL_NUMBER,1 
 
    TOT_CES = TOT_CES + CELL_EFF_STIFF_(1,I) 
 
*ENDDO 
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MY_AVE_CELL_STIFFNESS = TOT_CES/CELL_NUMBER 
 
ALLSEL,ALL 
 
SET,LAST 
CMSEL,S,TOP_FACE,NODE 
TOT_DIS_Y = 0.0 
*GET,NNUM,NODE,0,COUNT 
NCOUNTER=0 
 
#Calculate the displacement of the free faces 
*DO,I,1,NNUM,1 
    NCOUNTER=NDNEXT(NCOUNTER) 
    NAREA=ARNODE(NCOUNTER) 
    *GET,DIS_Y,NODE,NCOUNTER,U,Y 
    TOT_DIS_Y = TOT_DIS_Y +DIS_Y 
     
*ENDDO 
 
MY_AVE_DIS_Y_TOP = TOT_DIS_Y/NNUM 
 
CMSEL,S,BOTTOM_FACE,NODE 
TOT_DIS_Y = 0.0 
*GET,NNUM,NODE,0,COUNT 
NCOUNTER=0 
 
*DO,I,1,NNUM,1 
    NCOUNTER=NDNEXT(NCOUNTER) 
    NAREA=ARNODE(NCOUNTER) 
    *GET,DIS_Y,NODE,NCOUNTER,U,Y 
    TOT_DIS_Y = TOT_DIS_Y +DIS_Y 
     
*ENDDO 
 
MY_AVE_DIS_Y_BOTTOM = TOT_DIS_Y/NNUM 
 
CMSEL,S,FRONT_FACE,NODE 
TOT_DIS_X = 0.0 
*GET,NNUM,NODE,0,COUNT 
NCOUNTER=0 
 
*DO,I,1,NNUM,1 
    NCOUNTER=NDNEXT(NCOUNTER) 
    NAREA=ARNODE(NCOUNTER) 
    *GET,DIS_X,NODE,NCOUNTER,U,X 
    TOT_DIS_X = TOT_DIS_X +DIS_X 
     
*ENDDO 
 
MY_AVE_DIS_X_FRONT = TOT_DIS_X/NNUM 
 
CMSEL,S,BACK_FACE,NODE 
TOT_DIS_X = 0.0 
*GET,NNUM,NODE,0,COUNT 
NCOUNTER=0 
 
*DO,I,1,NNUM,1 
    NCOUNTER=NDNEXT(NCOUNTER) 
    NAREA=ARNODE(NCOUNTER) 
    *GET,DIS_X,NODE,NCOUNTER,U,X 
    TOT_DIS_X = TOT_DIS_X +DIS_X 
     
*ENDDO 
 
MY_AVE_DIS_X_BACK = TOT_DIS_X/NNUM 
MY_FINAL_HEIGHT = SCAFFOLD_LENGTH + (- MY_AVE_DIS_Y_BOTTOM) + (MY_AVE_DIS_Y_TOP) 
MY_FINAL_WIDTH = SCAFFOLD_LENGTH + (- MY_AVE_DIS_X_BACK) + (MY_AVE_DIS_X_FRONT) 
 
MY_FINAL_AREA_APPROX = MY_FINAL_HEIGHT*MY_FINAL_WIDTH 
#Calculate the percentage of area reduced 
MY_AVE_CONTRACTION = ((APPROX_AREA - MY_FINAL_AREA_APPROX)/APPROX_AREA)*100 
FINISH  
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Appendix A.5: Mechanical Python Script 

The final script used created the mesh, boundary conditions, and the named selection which 

were used in the post processing (A.4.3). The user defines the scaffold length and number of 

divisions in the finer meshed region (see Fig. 2.10). 

def after_object_changed(this, object_changed, property_name):# Do not edit this line 

    """ 
    Called after an object is changed. 

    Keyword Arguments :  

        this -- the datamodel object instance of the python code object you are currently editing in the tree 
        object_changed -- The object that was changed 

        property_name -- The property that was changed 

    """ 

    pass 

model = ExtAPI.DataModel.Project.Model 

geom = model.Geometry 

mesh = model.Mesh 
connections = model.Connections 

materials = model.Materials 
analysis = model.Analyses[0] 

solution = analysis.Solution 

 
 

#Create Name Selections 

sel = model.AddNamedSelection() 
sel.Name = "Scaffold" 

sel.ScopingMethod = GeometryDefineByType.Worksheet 

PointA = sel.GenerationCriteria 
PointA.Add(None) 

PointA[0].EntityType = SelectionType.GeoEdge 

PointA[0].Criterion = SelectionCriterionType.LocationX 
PointA[0].Operator = SelectionOperatorType.GreaterThanOrEqual  

PointA[0].Value=Quantity(0, "mm") 

sel.Generate() 
 

ns = model.AddNamedSelection() 

ns.Name = "Mesh_Zone" 
ns.ScopingMethod = GeometryDefineByType.Worksheet 

PointA = ns.GenerationCriteria 

PointA.Add(None) 
PointA[0].EntityType = SelectionType.GeoEdge 

PointA[0].Criterion = SelectionCriterionType.LocationX 

PointA[0].Operator = SelectionOperatorType.GreaterThanOrEqual #CHECKK 
PointA[0].Value=Quantity(100, "mm") 

PointA.Add(None) 

PointA[1].Action=SelectionActionType.Remove 
PointA[1].EntityType = SelectionType.GeoEdge 

PointA[1].Criterion = SelectionCriterionType.LocationX 

PointA[1].Operator = SelectionOperatorType.GreaterThan #CHECKK 
PointA[1].Value=Quantity(950, "mm") 

PointA.Add(None) 

PointA[2].Action=SelectionActionType.Remove 
PointA[2].EntityType = SelectionType.GeoEdge 

PointA[2].Criterion = SelectionCriterionType.LocationY 

PointA[2].Operator = SelectionOperatorType.GreaterThan #CHECKK 
PointA[2].Value=Quantity(950, "mm") 

PointA.Add(None) 

PointA[3].Action=SelectionActionType.Remove 
PointA[3].EntityType = SelectionType.GeoEdge 

PointA[3].Criterion = SelectionCriterionType.LocationZ 

PointA[3].Operator = SelectionOperatorType.GreaterThan #CHECKK 
PointA[3].Value=Quantity(950, "mm") 

PointA.Add(None) 

PointA[4].Action=SelectionActionType.Remove 
PointA[4].EntityType = SelectionType.GeoEdge 

PointA[4].Criterion = SelectionCriterionType.LocationY 
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PointA[4].Operator = SelectionOperatorType.LessThan  

PointA[4].Value=Quantity(100, "mm") 

PointA.Add(None) 

PointA[5].Action=SelectionActionType.Remove 
PointA[5].EntityType = SelectionType.GeoEdge 

PointA[5].Criterion = SelectionCriterionType.LocationZ 

PointA[5].Operator = SelectionOperatorType.LessThan  
PointA[5].Value=Quantity(100, "mm") 

ns.Generate() 

mesh_1 = mesh.AddSizing() 
Name = "Scaffold" 

mesh_1.Location = ExtAPI.DataModel.GetObjectsByName(Name)[0] 

mesh_1.Type = SizingType.NumberOfDivisions 
mesh_1.NumberOfDivisions = 1 

mesh_2 = mesh.AddSizing() 

Name = "Mesh_Zone" 
mesh_2.Location = ExtAPI.DataModel.GetObjectsByName(Name)[0] 

mesh_2.Type = SizingType.NumberOfDivisions 

mesh_2.NumberOfDivisions = 10 
 sel = model.AddNamedSelection() 

sel.Name = "TOP_FACE" 

sel.ScopingMethod = GeometryDefineByType.Worksheet 
PointA = sel.GenerationCriteria 

PointA.Add(None) 

PointA[0].EntityType = SelectionType.MeshNode 
PointA[0].Criterion = SelectionCriterionType.LocationY 

PointA[0].Operator = SelectionOperatorType.Equal #CHECKK 
PointA[0].Value=Quantity(1050, "mm") 

sel.Generate() 

 
sel = model.AddNamedSelection() 

sel.Name = "BOTTOM_FACE" 

sel.ScopingMethod = GeometryDefineByType.Worksheet 
PointA = sel.GenerationCriteria 

PointA.Add(None) 

PointA[0].EntityType = SelectionType.MeshNode 
PointA[0].Criterion = SelectionCriterionType.LocationY 

PointA[0].Operator = SelectionOperatorType.Equal #CHECKK 

PointA[0].Value=Quantity(0, "mm") 
sel.Generate() 

 

sel = model.AddNamedSelection() 
sel.Name = "FRONT_FACE" 

sel.ScopingMethod = GeometryDefineByType.Worksheet 

PointA = sel.GenerationCriteria 
PointA.Add(None) 

PointA[0].EntityType = SelectionType.MeshNode 

PointA[0].Criterion = SelectionCriterionType.LocationX 
PointA[0].Operator = SelectionOperatorType.Equal #CHECKK 

PointA[0].Value=Quantity(1050, "mm") 

sel.Generate() 
 

sel = model.AddNamedSelection() 

sel.Name = "BACK_FACE" 
sel.ScopingMethod = GeometryDefineByType.Worksheet 

PointA = sel.GenerationCriteria 

PointA.Add(None) 
PointA[0].EntityType = SelectionType.MeshNode 

PointA[0].Criterion = SelectionCriterionType.LocationX 

PointA[0].Operator = SelectionOperatorType.Equal #CHECKK 
PointA[0].Value=Quantity(0, "mm") 

sel.Generate() 

 
sel = model.AddNamedSelection() 

sel.Name = "BOUNDARY" 

sel.ScopingMethod = GeometryDefineByType.Worksheet 
PointA = sel.GenerationCriteria 

PointA.Add(None) 

PointA[0].EntityType = SelectionType.MeshNode 
PointA[0].Criterion = SelectionCriterionType.LocationZ 

PointA[0].Operator = SelectionOperatorType.Equal #CHECKK 

PointA[0].Value=Quantity(1050, "mm") 
PointA.Add(None) 

PointA[1].EntityType = SelectionType.MeshNode 

PointA[1].Criterion = SelectionCriterionType.LocationZ 
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PointA[1].Operator = SelectionOperatorType.Equal  

PointA[1].Value=Quantity(0, "mm") 

sel.Generate() 

 
mesh.GenerateMesh() 

 

#Define fixed support 
FS = analysis.AddFixedSupport() 

FS.Location = DataModel.GetObjectsByName("BOUNDARY")[0] 

Olive
r S

an
tos

-Lo
pe

s


