

ΔΙΑΦΟΡΑ ΦΑΣΗΣ ΜΕΤΑΞΥ ΤΕΜΝΟΥΣΑΣ ΒΑΣΗΣ ΚΑΙ ΣΕΙΣΜΙΚΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΕΔΑΦΟΥΣ ΚΑΙ Η ΕΠΙΠΤΩΣΗ ΤΗΣ ΣΤΟΝ ΕΛΕΓΧΟ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΘΕΜΕΛΙΩΝ

ΔΙΑΤΡΙΒΗ MASTER OF SCIENCE **ΖΑΦΕΙΡΗΣ ΛΟΥΛΟΥΡΓΑΣ**

Επιβλέπων καθηγητής: Δημήτριος Λουκίδης, Αναπληρωτής Καθηγητής

Λευκωσία, Μάιος 2023

ΔΙΑΦΟΡΑ ΦΑΣΗΣ ΜΕΤΑΞΥ ΤΕΜΝΟΥΣΑΣ ΒΑΣΗΣ ΚΑΙ ΣΕΙΣΜΙΚΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΕΛΑΦΟΥΣ ΚΑΙ Η ΕΠΙΠΤΩΣΗ ΤΗΣ ΣΤΟΝ ΕΛΕΓΧΟ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΘΕΜΕΛΙΩΝ

 $ZA\Phi EIPH\Sigma \Lambda OY \Lambda OY P\Gamma A\Sigma$

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΔΗΜΗΤΡΙΟΣ ΛΟΥΚΙΔΗΣ, Αναπληρωτής Καθηγητής Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Πανεπιστήμιο Κύπρου

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:

ΠΕΤΡΟΣ ΚΩΜΟΔΡΟΜΟΣ, Αναπληρωτής Καθηγητής Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Πανεπιστήμιο Κύπρου

ΠΑΝΑΓΙΩΤΗΣ ΡΟΥΣΗΣ, Επίκουρος Καθηγητής Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Πανεπιστήμιο Κύπρου

ΔΗΜΗΤΡΙΟΣ ΛΟΥΚΙΔΗΣ, Αναπληρωτής Καθηγητής Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Πανεπιστήμιο Κύπρου

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή της μεταπτυχιακής μου διατριβής, Δημήτριο Λουκίδη, για τη συνεχή καθοδήγηση και βοήθεια που μου παρείχε, καθώς και για την άψογη συνεργασία καθ' όλη τη διάρκεια της έρευνας. Θα ήθελα ακόμη να ευχαριστήσω τα μέλη της εξεταστικής επιτροπής, Πέτρο Κωμοδρόμο και Παναγιώτη Ρουσή, για το χρόνο που διέθεσαν για την αξιολόγηση της διατριβής μου. Επίσης, θα ήθελα να ευχαριστήσω τους προαναφερθέντες και για τις πολύτιμες γνώσεις που μου μετέδωσαν ως καθηγητές μου τόσο σε προπτυχιακό όσο και σε μεταπτυχιακό επίπεδο.

Τέλος, θα ήθελα να ευχαριστήσω τους γονείς μου, την αδερφή μου και τη γυναίκα μου για την υποστήριξη τους σε κάθε μου επιλογή κατά την διάρκεια των σπουδών μου.

ΠΕΡΙΛΗΨΗ

Η παρούσα διπλωματική εργασία εξετάζει την εκτίμηση της φέρουσας ικανότητας επιφανειακών θεμελιώσεων βάσει των εξισώσεων που προτείνονται στο Παράρτημα F του Ευρωκώδικα 8 – Μέρος 5 (EN 1998-5:2004). Συγκεκριμένα, διερευνάται η υπόθεση της μεθοδολογίας του Παραρτήματος F ότι και η εδαφική επιτάχυνση, και κατά συνέπεια οι αδρανειακές δυνάμεις εντός του μηχανισμού αστοχίας του εδάφους, βρίσκονται «σε φάση» με την τέμνουσα βάσης. Από τη θεωρία αρμονικά διεγειρόμενου μονοβάθμιου ταλαντωτή είναι γνωστό ότι η τέμνουσα βάσης και η εδαφική επιτάχυνση στην περίπτωση του συντονισμού και για ιδιοπεριόδους ταλαντωτή μεγαλύτερες από την περίοδο της διέγερσης. Συνεπώς τίθεται το ερώτημα κατά πόσο η εκτίμηση της φέρουσας ικανότητας με βάση τη θεώρηση συμφωνίας φάσης είναι υπερσυντηρητική.

Στα πλαίσια της διατριβής εκτελέστηκαν αναλύσεις ταλάντωσης μονοβάθμιων και πολυβάθμιων συστημάτων διαφόρων δυναμικών χαρακτηριστικών, διεγειρόμενων από επιταχυνσιογραφήματα πραγματικών σεισμών. Πλέον των 550 επιταχυνσιογραφημάτων πάρθηκαν από το PEER Ground Motion Database και ομαδοποιήθηκαν με βάση το μέγεθος του σεισμού, την απόσταση της καταγραφής από το σεισμογόνο ρήγμα και την κατηγορία του εδάφους. Η ολοκλήρωση του συστήματος εξισώσεων κίνησης έγινε με τη μέθοδο Newmark στο περιβάλλον της MATLAB.

Τα αποτελέσματα των αναλύσεων δείχνουν ότι η τιμή της εδαφικής επιτάχυνσης που δρα στη βάση του ταλαντωτή όταν συμβαίνει η μέγιστη τιμή τέμνουσας μειώνεται προοδευτικά όσο η θεμελιώδης ιδιοπερίοδος του ταλαντωτή αυξάνεται. Σε γενικές γραμμές μπορεί να εξαχθεί το συμπέρασμα ότι είναι σχεδόν μηδενική όταν η θεμελιώδης ιδιοπερίοδος γίνει ίση με τη δεσπόζουσα περίοδο του επιταχυνσιογραφήματος, ενώ μπορεί ακόμη και να λάβει αντίθετο πρόσημο σε σχέση την τέμνουσα βάσης σε περίπτωση που η ιδιοπερίοδος είναι μεγαλύτερη από τη δεσπόζουσα περίοδο της διέγερσης.

Στη συνέχεια και με βάση τα ευρήματα των παραμετρικών αναλύσεων, παρουσιάζεται μέσω διαγραμμάτων ο βαθμός συντηρητισμού που δύναται να προκύψει από τις εξεταζόμενες σχέσεις φέρουσας ικανότητας του Ευρωκώδικα 8 για διάφορες περιπτώσεις θεμελιώσεων σε άμμους και αργίλους.

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ	6
1.1. Περιγραφή του προβλήματος	7
1.2. Διάρθρωση της παρούσας ερευνητικής εργασίας	8
ΚΕΦΑΛΑΙΟ 2: ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ	10
2.1 Φέρουσα ικανότητα θεμελίωσης σε σεισμό - Εξισώσεις EN 1998-5	10
2.2 Εισαγωγή στα μονοβάθμια και πολυβάθμια συστήματα	14
2.2.1 Εξίσωση κίνησης μονοβάθμιου συστήματος	14
2.2.2 Μέθοδος Newmark για ΜΒΣ	15
2.2.3 Εξίσωση κίνησης πολυβάθμιου συστήματος	17
2.2.4 Ιδιομορφές ΠΒΣ	20
2.2.5 Απόσβεση ΠΒΣ	21
2.2.6 Μέθοδος Newmark για ΠΒΣ	21
ΚΕΦΑΛΑΙΟ 3: ΜΕΘΟΔΟΛΟΓΙΑ	23
3.1. Επιλογή και ομαδοποίηση σεισμικών καταγραφών	24
3.2. Προσδιορισμός της εδαφικής επιτάχυνσης τη χρονική στιγμή της μέγιστης τέμνουσας βάσης	26
3.2.1. Μονοβάθμια συστήματα	26
3.2.2. Πολυβάθμια συστήματα	29
3.3. Επαλήθευση υπολογιστικής μεθοδολογίας	31
3.4. Επίπτωση στον υπολογισμός φέρουσας ικανότητας	35
ΚΕΦΑΛΑΙΟ 4: ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΝΑΛΥΣΕΩΝ	37
4.1. Συγκριτικά διαγράμματα	37
4.1.1. Μονοβάθμια συστήματα	37
4.1.2. Πολυβάθμια συστήματα - Δύο βαθμοί ελευθερίας	40
4.1.3. Πολυβάθμια συστήματα - Τέσσερεις βαθμοί ελευθερίας	43
4.1.4. Πολυβάθμια συστήματα - Οκτώ βαθμοί ελευθερίας	46
4.2. Διαγράμματα λόγου συντελεστού ODF	49
4.2.1. Κοιτόστρωση σε άργιλο	51
4.2.2. Κοιτόστρωση σε άμμο	53
4.2.3. Θεμέλιο σε άργιλο	54
4.2.4. Θεμέλιο σε άμμο	54

ΚΕΦΑΛΑΙΟ 5: ΣΥΜΠΕΡΑΣΜΑΤΑ	57
ΒΙΒΛΙΟΓΡΑΦΙΑ	59
ПАРАРТНМА А	61
Α.1. Κώδικας για ανάλυση ΜΒΣ	62
Α.2. Κώδικας για ανάλυση ΠΒΣ	66
ПАРАРТНМА В	70
ΠΑΡΑΡΤΗΜΑ Γ	88

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ

Οι θεμελιώσεις αποτελούν ίσως το σημαντικότερο στοιχείο μιας κατασκευής, καθώς αναλαμβάνουν την μεταφορά των φορτίων της ανωδομής στο έδαφος. Διακρίνονται σε δύο κύριες κατηγορίες, τις επιφανειακές και τις βαθιές θεμελιώσεις. Αν δεν συντρέχουν ειδικοί λόγοι, ως η ευκολότερη και οικονομικότερη λύση επιλέγεται η κατασκευή κάποιου τύπου επιφανειακής θεμελίωσης, καθώς δεν απαιτεί τη χρήση εξειδικευμένου εξοπλισμού. Για τη διαστασιολόγηση της θεμελίωσης, απαιτείται η εκτίμηση της φέρουσας ικανότητας κάτω από όλους τους συνδυασμούς φορτίων σχεδιασμού, συμπεριλαμβανομένου και του σεισμικού συνδυασμού.

Σύμφωνα με τον Pecker (1996), ο έλεγχος της φέρουσας ικανότητας επιφανειακών θεμελιώσεων δεν είχε εξεταστεί επαρκώς για την περίπτωση της σεισμικής δράσης λόγω του ότι τα περιστατικά αστοχίας που είχαν καταγραφεί μέχρι τότε και δεν οφείλονταν σε ρευστοποίηση εδαφών ή αστάθεια πρανών, ήταν σχετικά λίγα. Όπως αναφέρουν οι Paolucci & Pecker (1997), κατά τον σεισμό του Michoacan (Μεξικό, 1985) παρατηρήθηκαν αρκετές αστοχίες, αν και σε γενικές γραμμές η επίδοση των επιφανειακών θεμελιώσεων κρίθηκε επαρκής. Ακολούθησαν όμως οι σεισμοί του Kobe (Ιαπωνία, 1995) και της Νικομήδειας (Izmit – Τουρκία, 1999) και οι καταγραφές σημαντικών αστοχιών θεμελιώσεων πλήθυναν. Στα επόμενα χρόνια, έγινε προσπάθεια να συμπεριληφθεί στα κανονιστικά πλαίσια και οδηγίες η επίδραση της αδρανειακής δύναμης που αναπτύσσεται εντός του εδάφους στην εκτίμηση της φέρουσας ικανότητας επιφανειακών θεμελιώσεων, καθώς η συνήθης πρακτική ήταν να χρησιμοποιούνται απλές προσεγγίσεις που δεν την λάμβαναν υπόψη, όπως η κλασική σχέση του Terzaghi (1943) συνδυαζόμενη με συντελεστές κλίσης φορτίου (π.χ. Vesic, 1973) και μειωμένο πλάτος («ενεργό») λόγω εκκεντρότητας κατακόρυφου φορτίου (Meyerhof, 1953), όπως χρησιμοποιούνται και για τις στατικές συνθήκες. Παρά ταύτα, στη βιβλιογραφία εξακολουθούν να είναι σχετικά λίγες οι προτεινόμενες σχέσεις που συμπεριλαμβάνουν τις αδρανειακές δυνάμεις του εδάφους εντός του μηγανισμού αστοχίας (Conti, 2018).

Σχήμα 1.1. Μηχανισμοί αστοχίας φέρουσας ικανότητας σε συνεκτικά εδάφη υπό σεισμικές συνθήκες (Pecker, 1996).

1.1. Περιγραφή του προβλήματος

Στην Κύπρο, ο αντισεισμικός κανονισμός που βρίσκεται σε ισγύ είναι ο Ευρωκώδικας 8 με τα αντίστοιχα Εθνικά Προσαρτήματα. Στο πληροφοριακό (informative) Παράρτημα F του Ευρωκώδικα 8 – Μέρος 5 (EN 1998-5:2004-Annex F), παρατίθενται οι σχέσεις που αφορούν στον έλεγγο της φέρουσας ικανότητας επιφανειακής θεμελίωσης υποκείμενης σε σεισμική δράση, οι οποίες βασίστηκαν στις επιλύσεις των Pecker (1996) και Paolucci & Pecker (1997). Στη βασική εξίσωση ελέγχου φέρουσας ικανότητας γίνεται χρήση σχέσεων που περιλαμβάνουν την τέμνουσα βάσης σχεδιασμού V_{Ed} (μέγιστη-peak τιμή) και την επιτάχυνση σχεδιασμού a_{eR} που αντιστοιχεί στη μέγιστη (peak) εδαφική επιτάχυνση για έδαφος τύπου Α. Επομένως, στη μεθοδολογία του Παραρτήματος F γίνεται η υπόθεση ότι τα δύο αυτά μεγέθη βρίσκονται «σε φάση» (συμβαίνουν ταυτόχρονα), όπως φαίνεται και στο Σχήμα 1.1. Εντούτοις, από τη θεωρία των φασμάτων απόκρισης για αρμονικά διεγειρόμενα μονοβάθμια συστήματα (MBΣ) γνωρίζουμε ότι κάτι τέτοιο δεν μπορεί να συμβαίνει παρά μόνο για συστήματα με πολύ μικρή ιδιοπερίοδο (άρα πολύ μεγάλη δυσκαμψία), τα οποία κινούνται πρακτικώς μαζί με το έδαφος και με σχεδόν μηδενική σχετική μετακίνηση. Στην περίπτωση πολύ εύκαμπτου ταλαντωτή (πολύ μεγάλη ιδιοπερίοδος), η κίνηση της μάζας του και η κίνηση του εδάφους είναι σε αντίθεση φάσης, δηλαδή διαφορά φάσης ίση με 180° (Chopra, 2013), όπως φαίνεται στο Σχήμα 1.2.

Σχήμα 1.2. Διαφορά φάσης μεταξύ σχετικής μετακίνησης και διέγερσης αρμονικού ταλαντωτή συναρτήσει του λόγου της συχνότητας διέγερσης ω ως προς την ιδιοσυχνότητα ω_n για διάφορες τιμές του λόγου απόσβεσης ζ (από Chopra, 2013).

Για τους σκοπούς της παρούσας ερευνητικής εργασίας, πραγματοποιείται έλεγχος της παραπάνω παραδοχής μέσω αναλύσεων απόκρισης μονοβάθμιων και πολυβάθμιων ταλαντωτών σε πραγματικούς σεισμούς. Συγκεκριμένα, ερευνάται η επίδραση της θεμελιώδους ιδιοπεριόδου μονοβάθμιων και πολυβάθμιων συστημάτων στην τιμή που έχει η επιτάχυνση του εδάφους τη στιγμή που συμβαίνει η μέγιστη τέμνουσα βάσης που αναπτύσσεται λόγω σεισμικής διέγερσης. Στη συνέχεια, εξετάζεται ο βαθμός ενδεχόμενης υπερδιαστασιολόγησης μιας θεμελίωσης όταν χρησιμοποιούνται οι εξισώσεις του προτύπου ΕΝ 1998-5:2004-Annex F.

1.2. Διάρθρωση της παρούσας ερευνητικής εργασίας

Η παρούσα διατριβή περιλαμβάνει πέντε κεφάλαια, το περιεχόμενο των οποίων περιγράφεται συνοπτικά ακολούθως.

Στο 1° κεφάλαιο έγινε διατύπωση του πρακτικού προβλήματος και παρουσιάστηκε το αντικείμενο της μελέτης.

Στο 2° κεφάλαιο παρατίθενται και επεξηγούνται οι εξισώσεις του Παραρτήματος F του Ευρωκώδικα 8 – Μέρος 5. Επίσης πραγματοποιείται περιγραφή των βασικών χαρακτηριστικών μονοβάθμιων και πολυβάθμιων συστημάτων διεγειρόμενων από σεισμική διέγερση, καθώς και της μεθόδου Newmark που χρησιμοποιείται για τον υπολογισμό της απόκρισης.

Στο 3° κεφάλαιο αναλύεται η μεθοδολογία που ακολουθήθηκε για τον προσδιορισμό της τιμής της εδαφικής επιτάχυνσης όταν συμβαίνει η μέγιστη τέμνουσας βάσης και περιγράφεται η επιλογή των σεισμικών καταγραφών για τις οποίες έγιναν αναλύσεις απόκρισης.

Στο 4° κεφάλαιο παρουσιάζονται τα διαγράμματα που προέκυψαν από τις αναλύσεις απόκρισης που πραγματοποιήθηκαν στη MATLAB, καθώς και διαγράμματα που αποτυπώνουν τον βαθμό ενδεχόμενου υπερσυντηρητισμού της μεθοδολογίας του EN 1998-5:2004-Annex F μέσω υπολογισμού του συντελεστή ασφαλείας έναντι φέρουσας ικανότητας.

Στο 5° κεφάλαιο καταγράφονται και σχολιάζονται τα σημαντικότερα συμπεράσματα που προκύπτουν από την παρούσα ερευνητική εργασία.

ΚΕΦΑΛΑΙΟ 2: ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ

2.1 Φέρουσα ικανότητα θεμελίωσης σε σεισμό - Εξισώσεις ΕΝ 1998-5

Σύμφωνα με τον Ευρωκώδικα 8 (Μέρος 5 – Παράρτημα F), η αστοχία σε φέρουσα ικανότητα επιφανειακής θεμελίωσης που εδράζεται σε ομοιογενές έδαφος ελέγχεται με χρήση της ακόλουθης σχέσης:

$$\frac{(1-e\cdot\bar{F})^{c}T\cdot(\beta\cdot\bar{V})^{c}T}{\bar{N}^{a}\cdot\left[\left(1-m_{f}\cdot\bar{F}^{k}\right)^{k'}-\bar{N}\right]^{b}} + \frac{(1-f\cdot\bar{F})^{c'_{M}}\cdot(\gamma\cdot\bar{M})^{c}M}{\bar{N}^{c}\cdot\left[\left(1-m_{f}\cdot\bar{F}^{k}\right)^{k'}-\bar{N}\right]^{d}} - 1 \le 0 \qquad (E\xi.2.1)$$

όπου:

- \overline{N} : ανηγμένη κατακόρυφη (αξονική) δύναμη
- *M*: ανηγμένη ροπή
- \overline{F} : αδιάστατη αδρανειακή δύναμη εδάφους
- *a*, *b*, *c*, *d*, *e*, *f*, *m_f*, *k*, *k'*, *c_T*, *c_M*, *c'_M*, *β*, *γ*: σταθερές με τιμές ανάλογα με τον τύπο του εδάφους (Πίνακας 2.1)

	Συνεκτικά εδάφη	Μη συνεκτικά εδάφη
α	0,70	0,92
b	1,29	1,25
С	2,14	0,92
d	1,81	1,25
е	0,21	0,41
f	0,44	0,32
<i>m</i> _f	0,21	0,96
k	1,22	1,00
k'	1,00	0,39
СТ	2,00	1,14
См	2,00	1,01
С'М	1,00	1,01
β	2,57	2,90
γ	1,85	2,80

Πίνακας 2.1	. Τιμές	σταθερών	εξίσωσης	(2.1)) για συνεκ	τικά και	μη συνε	εκτικά εδάφι	٦.
			2 13						

Η εξίσωση (2.1) συσχετίζει την αντοχή του εδάφους, την αδρανειακή δύναμη που αναπτύσσεται εντός αυτού και τα εντατικά μεγέθη σχεδιασμού στο επίπεδο της θεμελίωσης. Οι ανηγμένες τιμές των φορτίων που επιβάλλονται στη θεμελίωση υπολογίζονται ως εξής:

$$\overline{N} = \frac{\gamma_{Rd} \cdot N_{Ed}}{N_{max}}, \ \overline{V} = \frac{\gamma_{Rd} \cdot V_{Ed}}{N_{max}}, \ \overline{M} = \frac{\gamma_{Rd} \cdot M_{Ed}}{B \cdot N_{max}}$$
(Eξ. 2.2α,β,γ)

όπου:

- N_{Ed} , V_{Ed} , M_{Ed} : σεισμικά φορτία σχεδιασμού της θεμελίωσης
- N_{max}: μέγιστη κατακόρυφη φέρουσα ικανότητα θεμελίωσης (δηλαδή όταν φορτίζεται μόνο από κατακόρυφο φορτίο στο μέσον της)
- γ_{Rd} : επιμέρους συντελεστής μοντέλου (Πίνακας 2.2)
- Β: πλάτος θεμελίωσης

Πίνακας 2.2. Τιμές συντελεστή γ_{Rd} .

Μετρίως πυκνή	Χαλαρή ξηρή	Χαλαρή κορεσμένη	Μη ευαίσθητη	Ευαίσθητη
προς πυκνή άμμος	άμμος	άμμος	άργιλος	άργιλος
1.00	1.15	1.50	1.00	1.15

Πρέπει να σημειωθεί ότι, βάσει του Εθνικού Προσαρτήματος στο CYS EN 1998-5:2004, στην Κύπρο για τον έλεγχο σεισμικής φέρουσας ικανότητας δεν χρησιμοποιούνται συντελεστές υλικού γ_M (έχουν τιμή 1.0), ενώ ο συντελεστής γ_{Rd} ισούται με 1.4, όπως υπό στατικές συνθήκες.

Η αδιάστατη αδρανειακή δύναμη του εδάφους \overline{F} και η μέγιστη φέρουσα ικανότητα της θεμελίωσης N_{max} καθορίζονται ανάλογα με το είδος του εδάφους ως ακολούθως:

Αμιγώς συνεκτικά ή κορεσμένα μη συνεκτικά εδάφη

Σε αυτή την περίπτωση, η μέγιστη φέρουσα ικανότητα υπολογίζεται σύμφωνα με την ακόλουθη σχέση:

$$N_{max} = (\pi + 2) \cdot \frac{\bar{c}}{\gamma_M} \cdot B \tag{E\xi.2.3}$$

όπου:

- \bar{c} : αστράγγιστη διατμητική αντοχή του εδάφους, c_u , για συνεκτικά εδάφη ή η κυκλική αστράγγιστη διατμητική αντοχή, $\tau_{cy,u}$, για μη συνεκτικά εδάφη
- γ_M : επιμέρους συντελεστής αντοχής εδάφους (EN1998-5:2004 παρ.3.1 (3))

Η αδιάστατη αδρανειακή δύναμη του εδάφους σε αυτή την περίπτωση υπολογίζεται από τη σχέση:

$$\bar{F} = \frac{\rho \cdot a_g \cdot S \cdot B}{\bar{c}} \tag{E\xi.2.4}$$

όπου:

- ρ: πυκνότητα του εδαφικού υλικού
- a_g : τιμή εδαφικής επιτάχυνσης σχεδιασμού που αντιστοιχεί σε έδαφος τύπου Α ($a_g = \gamma_I \cdot a_{gR}$)
- a_{gR} : τιμή αναφοράς της μέγιστης εδαφικής επιτάχυνσης για έδαφος τύπου A
- γ_I : συντελεστής σπουδαιότητας (Πίνακας 2.3)
- S: συντελεστής εδάφους (Πίνακας 2.4)

Επιπλέον, για τις σχέσεις (2.1) και (2.2) πρέπει να ισχύουν:

$$0 < \overline{N} \le 1 \quad , \quad |\overline{V}| \le 1 \tag{E\xi.2.5}$$

Τύπος εδάφους	S
Α	1.0
В	1.2
С	1.15
D	1.35
Ε	1.4

Κατηγορία σπουδαιότητας	Συντελεστής σπουδαιότητας (γι)	Κτίρια	
Ι	0.8	Κτίρια ελάσσονος σημασίας για τη δημόσια ασφάλεια, π.χ. αγροτικά κτίρια	
Π	1.0	Συνήθη κτίρια, κτίρια που δεν ανήκουν σε άλλες κατηγορίες	
III	1.2	Κτίρια των οποίων η αντοχή τους σε σεισμό είναι σημαντική, λαμβάνοντας υπόψη τις συνέπειες σε περίπτωση κατάρρευσης, π.χ. σχολεία, αίθουσες συνάθροισης, πολιτιστικά κέντρα κλπ.	
IV	1.4	Κτίρια των οποίων η ακεραιότητα κατά τη διάρκεια σεισμού είναι ζωτικής σημασίας, π.χ. νοσοκομεία, πυροσβεστικοί σταθμοί, εργοστάσια παραγωγής ενέργειας κλπ.	

Πίνακας 2.4. Συντελεστές σπουδαιότητας. Πηγή: EN1998-1:2004 (Table 4.3 παρ.4.2.5)

Αμιγώς μη συνεκτικά ή κορεσμένα μη συνεκτικά εδάφη χωρίς σημαντική πίεση πόρων

Σε αυτή την περίπτωση, γίνεται χρήση της εξίσωσης:

$$N_{max} = \frac{1}{2} \cdot \rho \cdot g \cdot (1 \pm \frac{\alpha_{\nu}}{g}) \cdot B^2 \cdot N_{\gamma}$$
(Eξ.2.6)

όπου:

- g: επιτάχυνση της βαρύτητας
- a_v : εδαφική επιτάχυνση στην κατακόρυφη διεύθυνση, που μπορεί να θεωρηθεί ίση με $a_v = 0.5 \cdot a_g \cdot S$
- Ν_γ: συντελεστής φέρουσας ικανότητας, που αποτελεί συνάρτηση της τιμής σχεδιασμού
 της γωνίας τριβής του εδάφους φ_d'
- φ'_d : γωνία τριβής σχεδιασμού του εδάφους, η οποία προκύπτει διαιρώντας τη χαρακτηριστική γωνία τριβής με τον επιμέρους συντελεστή υλικού γ_M

Η αδιάστατη αδρανειακή δύναμη του εδάφους υπολογίζεται από τη σχέση:

$$\bar{F} = \frac{a_g}{g \cdot tan\varphi'_d} \tag{E\xi.2.7}$$

Επιπλέον, για τις σχέσεις (2.1) και (2.2) θα πρέπει να ισχύουν:

$$0 < \overline{N} \le (1 - m \cdot \overline{F})^{k'} \tag{E\xi.2.8}$$

Πρέπει να σημειωθεί ότι το Παράρτημα F αναφέρει ότι, σε συνήθεις περιπτώσεις, η τιμή της αδιάστατης αδρανειακής δύναμης του εδάφους \overline{F} για συνεκτικά εδάφη μπορεί να μη ληφθεί υπόψη (\overline{F} =0). Όσον αφορά στα μη συνεκτικά εδάφη, μπορεί μη ληφθεί υπόψη αν $a_g \cdot S < 0.1 \cdot g$ (δηλαδή σε περιοχές χαμηλής σεισμικότητας).

2.2 Εισαγωγή στα μονοβάθμια και πολυβάθμια συστήματα

Για την πραγματοποίηση δυναμικής ανάλυσης μιας κατασκευής που υποβάλλεται σε σεισμική διέγερση, υπάρχει η δυνατότητα προσομοίωσης της με σύστημα ενός ή περισσοτέρων δυναμικών βαθμών ελευθερίας. Στην πρώτη περίπτωση θεωρείται ότι το σύνολο της μάζας βρίσκεται συγκεντρωμένο σε ένα σημείο και στηρίζεται σε αβαρή κατασκευή με δυσκαμψία k και απόσβεση c. Στην περίπτωση του πολυβάθμιου συστήματος στην παρούσα διατριβή υιοθετείται το μοντέλο όπου κάθε όροφος της κατασκευής διαθέτει έναν βαθμό ελευθερίας σε οριζόντια μετακίνηση (διατμητικό πλαίσιο). Και οι δύο απλουστεύσεις προσομοιώνουν ικανοποιητικά την απόκριση σε σεισμική διέγερση, ιδιαίτερα αν εξετάζονται κανονικά σε κάτοψη και χωρίς εκκεντρότητες κτίρια, πυλώνες γεφυρών ή πύργοι. Επιπλέον, σε όλες τις περιπτώσεις θεωρείται ότι το σύστημα συμπεριφέρεται γραμμικώς ελαστικά.

2.2.1 Εξίσωση κίνησης μονοβάθμιου συστήματος

Η διαφορική εξίσωση που περιγράφει την κίνηση μονοβάθμιου συστήματος (MBΣ) υπό την επίδραση επιβαλλόμενου φορτίου έχει τη μορφή:

$$m \cdot \ddot{u}(t) + c \cdot \dot{u}(t) + k \cdot u(t) = P(t)$$
(E\xi.2.9)

όπου:

- m: μάζα
- c: συντελεστής απόσβεσης
- k: δυσκαμψία
- ü(t): χρονοϊστορία σχετικής επιτάχυνσης
- u(t): χρονοϊστορία σχετικής μετατόπισης
- P(t): χρονοϊστορία επιβαλλόμενου φορτίου

Στην περίπτωση όπου το σύστημα διεγείρεται λόγω κίνησης στη βάση του (σεισμική κίνηση), το P(t) δίνεται από τον ακόλουθο τύπο:

$$P(t) = -m \cdot \ddot{u}_a(t) \tag{E\xi.2.10}$$

όπου $\ddot{u}_{g}(t)$ η χρονοϊστορία της εδαφικής επιτάχυνσης.

Η επίλυση της διαφορικής εξίσωσης (2.9) πραγματοποιείται με χρήση αριθμητικών μεθόδων, από τις οποίες, αφού ληφθούν παραδοχές ως προς τον τρόπο μεταβολής της επιτάχυνσης και της ταχύτητας, προκύπτουν λύσεις για συγκεκριμένες χρονικές τιμές, ανά σταθερό χρονικό βήμα Δt. Εφόσον εξετάζονται πραγματικές σεισμικές καταγραφές, οι οποίες ανάγονται σε χρονοϊστορίες εδαφικών επιταχύνσεων, το βήμα Δt είναι δεδομένο και ίσο με το βήμα του ψηφιακού επιταχυνσιογραφήματος (συνήθως 0.005s με 0.02s). Για κάθε ένα βήμα υπολογισμού Δt, υπολογίζεται η μετακίνηση (και κατ' επέκταση η ταχύτητα και η επιτάχυνση) για τη χρονική στιγμή t+Δt, ώστε να ικανοποιείται η εξίσωση δυναμικής ισορροπίας (2.9). Στις αναλύσεις απόκρισης της παρούσας διατριβής γίνεται χρήση μιας μορφής της μεθόδου Newmark (1959), όπως αυτή διατυπώνεται στο βιβλίο «Finite Element Procedures» του Bathe (1996).

2.2.2 Μέθοδος Newmark για ΜΒΣ

Σύμφωνα με τη μέθοδο ολοκλήρωσης Newmark, με δεδομένο ότι η απόκριση είναι γνωστή μέχρι τη χρονική στιγμή t, οι ακόλουθες προσεγγιστικές σχέσεις οδηγούν στον υπολογισμό της μετατόπισης στη χρονική στιγμή t+Δt:

$$\dot{u}_{(t+\Delta t)} = \dot{u}_{(t)} + \ddot{u}_{(t)} \cdot (1-\gamma) \cdot \Delta t + \ddot{u}_{(t+\Delta t)} \cdot \gamma \cdot \Delta t$$
(Eξ.2.11)

$$u_{(t+\Delta t)} = u_{(t)} + \dot{u}_{(t)} \cdot \Delta t + \ddot{u}_{(t)} \cdot (0.5 - \beta) \cdot \Delta t^2 + \ddot{u}_{(t+\Delta t)} \cdot \beta \cdot \Delta t^2$$
(Eξ.2.12)

Τα β και γ αποτελούν παραμέτρους της μεθόδου ολοκλήρωσης. Αν β=0.25 και γ=0.5, οι υπολογισμοί ισοδυναμούν με το να θεωρείται ότι η επιτάχυνση κατά τη διάρκεια του χρονικού βήματος Δt είναι σταθερή και ίση με τη μέση τιμή των τιμών επιτάχυνσης στις χρονικές στιγμές t και t+Δt (μέθοδος «μέσης επιτάχυνσης»). Αν β=1/6 και γ=0.5, είναι σαν να θεωρείται γραμμική αύξηση της επιτάχυνσης κατά το διάστημα Δt (μέθοδος «γραμμικής επιτάχυνσης»). Αν και η μέθοδος γραμμικής επιτάχυνσης είναι πιο ακριβής από τη μέθοδο μέσης επιτάχυνσης (Chopra, 2013), η δεύτερη είναι πιο διαδεδομένη διότι παρέχει αριθμητική σταθερότητα ανεξαρτήτως του μεγέθους του υπολογιστικού βήματος Δt και των χαρακτηριστικών του ταλαντωτή. Στις αναλύσεις απόκρισης της παρούσας διατριβής γίνεται χρήση της μεθόδου μέσης επιτάχυνσης (β=0.25, γ=0.5).

Θεωρώντας τιμές β=0.25, γ=0.5 και αντικαθιστώντας τις σχέσεις 2.11 και 2.12 στην εξίσωση κίνησης (2.9), προκύπτει η παρακάτω σχέση:

$$\widehat{K} \cdot u_{(t+\Delta t)} = \widehat{P}_{(t+\Delta t)} \tag{E\xi.2.13}$$

όπου:

$$\begin{aligned} & - \dot{K} = k + a_0 \cdot m + a_1 \cdot c & (E\xi.2.14) \\ & - \hat{P}_{(t+\Delta t)} = P_{(t+\Delta t)} + m \cdot (a_0 \cdot u_{(t)} + a_2 \cdot \dot{u}_{(t)} + a_3 \cdot \ddot{u}_{(t)}) + c \cdot (a_1 \cdot u_{(t)} + a_4 \cdot \dot{u}_{(t)} + a_5 \cdot \dot{u}_{(t)}) \\ & - \dot{u}_{(t)}) & (E\xi.2.15) \\ & - a_0 = \frac{4}{\Delta t^2}, a_1 = \frac{2}{\Delta t}, a_2 = \frac{4}{\Delta t}, a_3 = a_4 = 1, a_5 = 0, a_6 = a_7 = \frac{\Delta t}{2} \end{aligned}$$

Η σχέση 2.13 λύνεται ως προς την άγνωστη μετατόπιση κατά τη χρονική στιγμή t+Δt:

$$u_{(t+\Delta t)} = \frac{\hat{P}_{(t+\Delta t)}}{\hat{K}}$$
(E\xi.2.16)

Έπειτα, μορφώνονται οι εξισώσεις που υπολογίζουν την επιτάχυνση και την ταχύτητα του μονοβάθμιου συστήματος σε χρόνο t+Δt:

$$\ddot{u}_{(t+\Delta t)} = a_0 \cdot \left(u_{(t+\Delta t)} - u_{(t)} \right) - a_2 \cdot \dot{u}_{(t)} - a_3 \cdot \ddot{u}_{(t)}$$
(Eξ.2.17)

$$\dot{u}_{(t+\Delta t)} = \dot{u}_{(t)} + a_6 \cdot \ddot{u}_{(t)} + a_7 \cdot \ddot{u}_{(t+\Delta t)}$$
(E§.2.18)

2.2.3 Εξίσωση κίνησης πολυβάθμιου συστήματος

Η διαφορική εξίσωση που περιγράφει την κίνηση πολυβάθμιου συστήματος (ΠΒΣ) υπό την επίδραση επιβαλλόμενων φορτίων **P**(t) έχει τη μορφή:

$$\boldsymbol{M}\ddot{\boldsymbol{u}}(t) + \boldsymbol{C}\dot{\boldsymbol{u}}(t) + \boldsymbol{K}\boldsymbol{u}(t) = \boldsymbol{P}(t) \tag{E\xi.2.19}$$

όπου:

- Μ: μητρώο μάζας
- C: μητρώο απόσβεσης
- Κ: μητρώο δυσκαμψίας

Όταν το σύστημα διεγείρεται λόγω κίνησης στη βάση του (σεισμική επιτάχυνση \ddot{u}_g), το μητρώο στήλη των επιβαλλόμενων φορτίων δίνεται από τον ακόλουθο τύπο:

$$\boldsymbol{P}(t) = -\boldsymbol{M} \cdot \boldsymbol{\iota} \cdot \ddot{\boldsymbol{u}}_g(t) \tag{E\xi.2.20}$$

όπου:

ι: μητρώο επιρροής, όπου για σύστημα της μορφής διατμητικού πλαισίου ισούται με το μοναδιαίο διάνυσμα (μητρώο στήλη) με στοιχεία όσα οι βαθμοί ελευθερίας.

Προκειμένου να παρουσιαστεί σε αυτή την ενότητα η μορφή των μητρώων που αντιστοιχούν σε σύστημα με συμπεριφορά διατμητικού πλαισίου, θεωρείται ως παράδειγμα το σύστημα τεσσάρων βαθμών ελευθερίας του Σχήματος 2.1. Συγκεκριμένα, λαμβάνονται ως παραδοχές η πλήρης ακαμψία των οποιωνδήποτε οριζόντιων μελών, οι αμελητέες αξονικές παραμορφώσεις, καθώς και η ύπαρξη μόνο τεσσάρων δυναμικών βαθμών ελευθερίας που αντιστοιχούν στις οριζόντιες μετακινήσεις των ορόφων (Σχήμα 2.1β). Παρότι η μάζα στην πραγματικότητα επιμερίζεται στο σύνολο του κτιρίου, στην περίπτωση διατμητικού πλαισίου μπορεί να προσομοιωθεί ως σημειακή, ευρισκόμενη στο επίπεδο της πλάκας (δίσκου) κάθε ορόφου.

Σχήμα 2.1. Σχηματισμός εξισώσεων κίνησης τετραώροφου κτιρίου.

Η κίνηση του τετραώροφου κτιρίου, αφού εκτραπεί από την αρχική θέση ισορροπίας εξαιτίας επιβολής της διέγερσης (Σχήμα 2.1γ,δ), διέπεται από το σύστημα διαφορικών εξισώσεων (2.19). Τα μητρώα μάζας, απόσβεσης και δυσκαμψίας καταρτίζονται ως ακολούθως:

$$\boldsymbol{M} = \begin{bmatrix} m_1 & 0 & 0 & 0\\ 0 & m_2 & 0 & 0\\ 0 & 0 & m_3 & 0\\ 0 & 0 & 0 & m_4 \end{bmatrix}$$
(E\xi.2.21)

$$\boldsymbol{C} = \begin{bmatrix} c_1 + c_2 & -c_2 & 0 & 0\\ -c_2 & c_2 + c_3 & -c_3 & 0\\ 0 & -c_3 & c_3 + c_4 & -c_4\\ 0 & 0 & -c_4 & c_4 \end{bmatrix}$$
(E\xi.2.22)

$$\boldsymbol{K} = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 & 0\\ -k_2 & k_2 + k_3 & -k_3 & 0\\ 0 & -k_3 & k_3 + k_4 & -k_4\\ 0 & 0 & -k_4 & k_4 \end{bmatrix}$$
(E\xi.2.23)

Οι τιμές κάθε στήλης του μητρώου δυσκαμψίας προκύπτουν με διαδοχική επιβολή μοναδιαίας μετατόπισης σε κάποιον εκ των βαθμών ελευθερίας, ενώ οι εναπομένουσες μετατοπίσεις λαμβάνονται μηδενικές. Έτσι, η αντίστοιχη δυσκαμψία κάθε βαθμού ελευθερίας προκύπτει ίση με το άθροισμα των επιμέρους τιμών δυσκαμψίας που παρουσιάζουν τα κατακόρυφα στοιχεία των ορόφων που συνδέονται σε αυτόν. Με αντίστοιχη λογική σχηματίζονται και τα μητρώα μάζας και απόσβεσης (επιβολή μοναδιαίας ταχύτητας και επιτάχυνσης, αντίστοιχα). Λόγω του ότι οι μάζες *m*_i θεωρούνται σημειακές (lumped mass approach), το μητρώο μάζας είναι διαγώνιο (μηδενικοί μη-διαγώνιοι όροι).

Καταλήγοντας, η κίνηση κάθε ΠΒΣ καθορίζεται από ένα σύστημα διαφορικών εξισώσεων, ο αριθμός των οποίων ισούται με τους βαθμούς ελευθερίας. Το σύστημα είναι συζευγμένο και μπορεί να επιλυθεί με μετασχηματισμό με την βοήθεια των ιδιομορφών της κατασκευής (με την προϋπόθεση ότι το σύστημα είναι γραμμικά ελαστικό) ή με απευθείας ολοκλήρωση με χρήση αριθμητικών μεθόδων.

2.2.4 Ιδιομορφές ΠΒΣ

Θεωρώντας ΠΒΣ που εκτελεί ελεύθερη ταλάντωση χωρίς απόσβεση, η εξίσωση κίνησης προκύπτει από τροποποίηση της σχέσης 2.19:

$$\boldsymbol{M}\ddot{\boldsymbol{u}}(t) + \boldsymbol{K}\boldsymbol{u}(t) = \boldsymbol{0} \tag{E\xi.2.24}$$

Ιδιομορφές ή φυσικές μορφές ταλάντωσης Φ μιας κατασκευής ονομάζονται οι μορφές παραμορφωμένου φορέα τις οποίες αναπτύσσει το ΠΒΣ όταν εκτελεί ελεύθερη ταλάντωση. Ο αριθμός των ιδιομορφών που έχει ένα σύστημα ισούται με τον αριθμό των βαθμών ελευθερίας. Επιπλέον, κάθε ιδιομορφή *n* χαρακτηρίζεται από μια ιδιοπερίοδο T_n , κυκλική ιδιοσυχνότητα $ω_n$ και ιδιοσυχνότητα f_n . Η 1^η ιδιομορφή (*n*=1) καλείται θεμελιώδης και θεωρείται ότι έχει τη σημαντικότερη συνεισφορά στην ταλάντωση του συστήματος, ενώ εμφανίζει την μεγαλύτερη τιμή ιδιοπεριόδου και την μικρότερη τιμή ιδιοσυχνότητας. Στο Σχήμα 2.2 παρουσιάζονται οι ιδιομορφές ενός συστήματος με τέσσερεις βαθμούς ελευθερίας.

Σχήμα 2.2. Ιδιομορφές συστήματος με 4 βαθμούς ελευθερίας.

Για την εύρεση των κυκλικών ιδιοσυχνοτήτων ω_n και κατ' επέκταση των ιδιοπεριόδων T_n ενός ΠΒΣ, απαιτείται η επίλυση του παρακάτω προβλήματος ιδιοτήτων:

$$det[\mathbf{K} - \omega_n^2 \mathbf{M}] = \mathbf{0} \tag{E\xi.2.25}$$

όπου det[] συμβολίζει την ορίζουσα του πίνακα που περιέχεται εντός της αγκύλης. Στα πολυβάθμια συστήματα που εξετάζονται, θεωρείται ότι όλοι ο βαθμοί ελευθερίας έχουν την ίδια μάζα m. Επίσης, στη μεθοδολογία που ακολουθείται για τις αναλύσεις της παρούσας διατριβής, είναι δεδομένη κάθε φορά η επιθυμητή (target) τιμή θεμελιώδους (πρώτης) ιδιοπεριόδου. Οπότε η εξίσωση 2.25 λύνεται εδώ ως προς την άγνωστη μάζα m με δεδομένο το ω_n.

2.2.5 Απόσβεση ΠΒΣ

Δεδομένου ότι οι αναλύσεις απόκρισης που παρουσιάζονται στα επόμενα κεφάλαια πραγματοποιούνται με απευθείας ολοκλήρωση, έναντι της ιδιομορφικής ανάλυσης, είναι αναγκαίος ο καθορισμός των μητρώων απόσβεσης. Ο απλούστερος τρόπος υπολογισμού του μητρώου C ώστε να επιτυγχάνεται (προσεγγιστικά) μια επιθυμητή τιμή λόγου απόσβεσης είναι κατά Rayleigh. Σε αυτή την περίπτωση θεωρείται ότι το μητρώο απόσβεσης αποτελεί γραμμικό συνδυασμό των μητρώων μάζας και δυσκαμψίας:

$$\boldsymbol{C} = \alpha_r \boldsymbol{M} + \beta_r \boldsymbol{K} \tag{E\xi.2.26}$$

όπου α_r , β_r αποτελούν σταθερές που εξαρτώνται από τον στοχευόμενο λόγο απόσβεσης ξ και το εύρος κυκλικών συχνοτήτων [ω_i , ω_j] εντός του οποίου θα πρέπει να επιτευχθεί. Οι σταθερές αυτές μπορούν να εκτιμηθούν από τις παρακάτω σχέσεις:

$$\alpha_r = \xi \frac{2\omega_i \omega_j}{\omega_i + \omega_j} , \quad \beta_r = \xi \frac{2}{\omega_i + \omega_j}$$
(E\xi.2.27\alpha,\beta)

Ο λόγος απόσβεσης ξ για συνήθεις κατασκευές λαμβάνεται ίσος με 0.05 (5%). Τα όρια του εύρους κυκλικής συχνότητας ω_i και ω_j μπορούν να τεθούν ίσα με την πρώτη και την τελευταία ιδιοσυχνότητα ενός ΠΒΣ.

2.2.6 Μέθοδος Newmark για ΠΒΣ

Οι προσεγγιστικές σχέσεις που ισχύουν για τον υπολογισμό των ζητούμενων μεγεθών στα μονοβάθμια συστήματα, εφαρμόζονται και στα πολυβάθμια συστήματα με τη διαφορά ότι αναφέρονται σε διανύσματα (μητρώα στήλες) μετατοπίσεων, ταχυτήτων και επιταχύνσεων. Επομένως, οι εξισώσεις 2.11 και 2.18 μετασχηματίζονται σε:

$$\dot{\boldsymbol{u}}_{(t+\Delta t)} = \dot{\boldsymbol{u}}_{(t)} + \ddot{\boldsymbol{u}}_{(t)}(1-\gamma)\Delta t + \ddot{\boldsymbol{u}}_{(t+\Delta t)}\gamma\Delta t$$
(Eξ.2.28)

$$\boldsymbol{u}_{(t+\Delta t)} = \boldsymbol{u}_{(t)} + \dot{\boldsymbol{u}}_{(t)}\Delta t + \ddot{\boldsymbol{u}}_{(t)}(0.5 - \beta)\Delta t^2 + \ddot{\boldsymbol{u}}_{(t+\Delta t)}\beta\Delta t^2$$
(Eξ.2.29)

Αντικαθιστώντας τις σχέσεις 2.28 και 2.29 στην εξίσωση 2.19 και θέτοντας β=0.25 και γ=0.5, προκύπτει η παρακάτω σχέση:

$$K_{eff}u_{(t+\Delta t)} = P_{eff}_{(t+\Delta t)}$$
(Eξ.2.30)

όπου:

$$- K_{eff} = K + a_0 M + a_1 C (E\xi.2.31)$$

-
$$P_{eff_{(t+\Delta t)}} = P_{(t+\Delta t)} + M(a_0 u_{(t)} + a_2 \dot{u}_{(t)} + a_3 \ddot{u}_{(t)}) + c \cdot (a_1 u_{(t)} + a_4 \dot{u}_{(t)} + a_5 \ddot{u}_{(t)})$$

(Eξ.2.32)
- $a_0 = \frac{4}{\Delta t^2}, a_1 = \frac{2}{\Delta t}, a_2 = \frac{4}{\Delta t}, a_3 = a_4 = 1, a_5 = 0, a_6 = a_7 = \frac{\Delta t}{2}$

Αντιστρέφοντας το μητρώο Keff, από την εξίσωση 2.30 μπορούν να υπολογιστούν οι άγνωστες τιμές της μετατόπισης τη χρονική στιγμή t+Δt:

$$\boldsymbol{u}_{(t+\Delta t)} = \boldsymbol{K}_{eff}^{-1} \boldsymbol{P}_{eff}_{(t+\Delta t)}$$
(E\xi.2.33)

Έπειτα, υπολογίζονται η επιτάχυνση και η ταχύτητα του συστήματος σε χρόνο t+Δt από τις παρακάτω εξισώσεις:

$$\ddot{\boldsymbol{u}}_{(t+\Delta t)} = a_0 (\boldsymbol{u}_{(t+\Delta t)} - \boldsymbol{u}_{(t)}) - a_2 \dot{\boldsymbol{u}}_{(t)} - a_3 \ddot{\boldsymbol{u}}_{(t)}$$
(Eξ.2.34)

$$\dot{\boldsymbol{u}}_{(t+\Delta t)} = \dot{\boldsymbol{u}}_{(t)} + a_6 \ddot{\boldsymbol{u}}_{(t)} + a_7 \ddot{\boldsymbol{u}}_{(t+\Delta t)}$$
(Eξ.2.35)

ΚΕΦΑΛΑΙΟ 3: ΜΕΘΟΔΟΛΟΓΙΑ

Για την πραγματοποίηση των αναλύσεων απόκρισης μονοβάθμιων ή πολυβάθμιων συστημάτων με την μέθοδο Newmark χρησιμοποιήθηκαν οι υπορουτίνες σε MATLAB του Π. Κωμοδρόμου, οι οποίες περιγράφονται στο βιβλίο «Ανάλυση Κατασκευών – Σύγχρονες μέθοδοι με τη χρήση ηλεκτρονικών υπολογιστών» (Κωμοδρόμος, 2009). Γύρω από αυτές προστέθηκαν γραμμές κώδικα που χρειάζονταν για τις ανάγκες τις παρούσας έρευνας. Συγκεκριμένα, προστέθηκε η δυνατότητα ανάγνωσης και αποθήκευσης όλων των επιταχυνσιογραφημάτων που βρίσκονται σε φάκελο που ορίζεται από τον χρήστη, καθώς και η ανάλυση του κάθε επιταχυνσιογραφήματος με τη μέθοδο Fast Fourier Transform και κατ' επέκταση ο προσδιορισμός της δεσπόζουσας περιόδου Τ_p (predominant period), δηλαδή την τιμή περιόδου στην οποία αντιστοιχεί η κορυφαία τιμή του φάσματος Fourier.

Στη συνέχεια, με τη βοήθεια υπορουτίνας, εισάγονται τα χαρακτηριστικά μονοβάθμιου ή πολυβάθμιου συστήματος και πραγματοποιείται αριθμητικός υπολογισμός της δυναμικής απόκρισης υπό σεισμική διέγερση με τη μέθοδο Newmark που αναφέρεται στις παραγράφους 2.2.2 και 2.2.6. Με σκοπό την αυτοματοποίηση των αναλύσεων, ο κώδικας δομήθηκε ώστε να εκτελεί υπολογισμούς για ένα μεγάλο πλήθος συστημάτων και διεγέρσεων. Συνολικά εκτελέστηκαν αναλύσεις απόκρισης για 401 μονοβάθμια συστήματα και 101 αναλύσεις για πολυβάθμια συστημάτα. Η διαφορά στο πλήθος αναλύσεων ΜΒΣ και ΠΒΣ οφείλεται στο σαφώς μεγαλύτερο υπολογιστικό κόστος των δεύτερων. Οι κώδικες ΜΑΤLAB που χρησιμοποιήθηκαν για τις αναλύσεις απόκρισης και την εξαγωγή αποτελεσμάτων παρατίθενται στο Παράρτημα Α.

Μετά το πέρας των αναλύσεων στη MATLAB, τα αποτελέσματα εισήχθησαν σε υπολογιστικό φύλλο του Excel, προκειμένου να παραχθούν διαγράμματα ώστε να ελεγχθεί η επίδραση της μεταβολής της ιδιοπεριόδου μιας κατασκευής στην τιμή και το πρόσημο της εδαφικής επιτάχυνσης τη χρονική στιγμή που λαμβάνει μέγιστη τιμή η τέμνουσα βάσης (τιμή σχεδιασμού V_{Ed} κατά τον Ευρωκώδικα 8-Μέρος 5). Ως τέμνουσα βάσης θεωρείται η αντίδραση που προέρχεται και από τη δυσκαμψία του μέλους του συστήματος που συνδέεται με τη θεμελίωση αλλά και από την απόσβεση, δηλαδή $V_E(t) = k_1 u_1(t) + c_1 \dot{u}_1(t)$, αφού αυτή είναι η συνολική δράση που θα κληθεί να αναλάβει η θεμελίωση σε ένα πραγματικό σεισμικό γεγονός.

Η διαδικασία ολοκληρώθηκε σε υπολογιστικό φύλλο του Excel, όπου διερευνήθηκε ο βαθμός υπερσυντηρητισμού της θεμελίωσης που προκύπτει βάσει των Εξ.2.1 έως 2.8.

3.1. Επιλογή και ομαδοποίηση σεισμικών καταγραφών

Τα επιταχυνσιογραφήματα που χρησιμοποιήθηκαν για την διεξαγωγή των αναλύσεων προέρχονται από τη βάση δεδομένων του PEER (Pacific Earthquake Engineering Research Center) του University of California – Berkeley, και συγκεκριμένα της βάσης NGA-West2 η οποία αρμόζει στο σεισμοτεκτονικό περιβάλλον της Μεσογείου. Η επιλογή τους πραγματοποιήθηκε με γνώμονα να εξεταστούν τυχαίες καταγραφές εντός συγκεκριμένου κάθε φορά εύρους παραμέτρων. Συγκεκριμένα, η κατηγοριοποίηση έγινε με βάση το μέγεθος του σεισμού σεισμικής ροπής M (moment magnitude), την απόσταση από την προβολή της επιφάνειας διάρρηξης στην επιφάνεια του εδάφους R_{JB} (Joyner-Boore distance) και την ταχύτητα διάδοσης των εγκάρσιων σεισμικών κυμάτων σε βάθος 30 μέτρων από την επιφάνεια του εδάφους V_{s30}.

Στον Πίνακα 3.1 παρουσιάζεται η προαναφερθείσα κατηγοριοποίηση, ο αριθμός των καταγραφών που εντοπίστηκαν στη βάση δεδομένων και ο αριθμός των καταγραφών που χρησιμοποιήθηκαν στις αναλύσεις (συνολικά 557 καταγραφές). Να σημειωθεί ότι η κάθε καταγραφή περιλαμβάνει επιταχυνσιογραφήματα κατά τους δυο οριζόντιους άξονες (x και y άξονες) και κατά την κατακόρυφη διεύθυνση. Άρα η στήλη που αφορά των αριθμό των καταγραφών εμφανίζει το μισό των επιταχυνσιογραφημάτων (οριζόντιας κίνησης) που υπήρχε η δυνατότητα να χρησιμοποιηθούν.

Για όσες κατηγορίες (γραμμές του Πίνακα 3.1) υπήρχαν διαθέσιμες λιγότερες από 7 καταγραφές επιλέχθηκε να μη πραγματοποιηθούν αναλύσεις καθώς ο περιορισμένος αριθμός δεν θα επέτρεπε την παραγωγή αξιόπιστων στατιστικών αποτελεσμάτων (μέσου όρου και τυπικής απόκλισης). Ως εκ τούτου, απέμειναν 32 κατηγορίες (ομάδες) επιταχυνσιογραφημάτων που καταχωρήθηκαν σε αντίστοιχο αριθμό ηλεκτρονικών φακέλων, ώστε να μπορούν να φορτωθούν στο πρόγραμμα. Σε όσες κατηγορίες βρέθηκαν περισσότερες από 20 καταγραφές, επιλέχθηκαν τυχαία 18-20 από αυτές και επίσης τυχαία επιλέχθηκε να χρησιμοποιηθεί το επιταχυνσιογραφημάτων ανά κατηγορία τέθηκε ώστε να μη υπάρχει μεγάλη διαφορά στο μέγεθος του δείγματος μεταξύ των κατηγοριών.

Τα στοιχεία και χαρακτηριστικά (συμπεριλαμβανομένης της T_p) όλων το επιταχυνσιογραφημάτων που χρησιμοποιήθηκαν παρουσιάζονται σε πίνακες στο Παράρτημα B.

A/A	Μέγεθος	RJB (km)	V _{s30} (m/sec)	Αριθμός καταγραφών στην βάση δεδομένων	Αριθμός καταγραφών που χρησιμοποιήθηκαν
1	5-6	0-20	0-180	3	-
2	5-6	0-20	180-360	>100	20
3	5-6	0-20	360-800	>100	20
4	5-6	0-20	800-2000	9	9
5	5-6	20-100	0-180	10	10
6	5-6	20-100	180-360	>100	20
7	5-6	20-100	360-800	>100	20
8	5-6	20-100	800-2000	24	20
9	5-6	100-1000	0-180	4	8
10	5-6	100-1000	180-360	>100	20
11	5-6	100-1000	360-800	>100	20
12	5-6	100-1000	800-2000	53	20
13	6-7	0-20	0-180	7	7
14	6-7	0-20	180-360	>100	20
15	6-7	0-20	360-800	>100	20
16	6-7	0-20	800-2000	9	9
17	6-7	20-100	0-180	50	20
18	6-7	20-100	180-360	>100	18
19	6-7	20-100	360-800	>100	20
20	6-7	20-100	800-2000	38	20

Πίνακας 3.1. Κατηγοριοποίηση των επιταχυνσιογραφημάτων.

21	6-7	100-1000	0-180	>100	20
22	6-7	100-1000	180-360	>100	20
23	6-7	100-1000	360-800	>100	20
24	6-7	100-1000	800-2000	73	20
25	7-8	0-20	0-180	1	-
26	7-8	0-20	180-360	42	20
27	7-8	0-20	360-800	81	20
28	7-8	0-20	800-2000	2	-
29	7-8	20-100	0-180	10	10
30	7-8	20-100	180-360	>100	20
31	7-8	20-100	360-800	>100	20
32	7-8	20-100	800-2000	7	7
33	7-8	100-1000	0-180	3	-
34	7-8	100-1000	180-360	>100	19
35	7-8	100-1000	360-800	>100	20
36	7-8	100-1000	800-2000	30	20

3.2. Προσδιορισμός της εδαφικής επιτάχυνσης τη χρονική στιγμή της μέγιστης τέμνουσας βάσης

3.2.1. Μονοβάθμια συστήματα

Θεωρήθηκαν μονοβάθμια συστήματα με σταθερή μάζα (m=10000kg) και μεταβαλλόμενη ιδιοπερίοδο, τέτοια ώστε ο λόγος ιδιοπεριόδου T_n προς την δεσπόζουσα περίοδο T_p του εκάστοτε επιταχυνσιογραφήματος να λαμβάνει τιμές από 0.05 έως 20 με σταθερό βήμα 0.05, πέραν μιας αρχικής τιμής 0.01 (σύνολο 401 τιμές). Με δεδομένο τον λόγο T_n/T_p που πρέπει να επιτευχθεί και αφού οριστεί από τον χρήστη ο φάκελος που περιέχει την ομάδα επαταχυνσιογραφημάτων, το πρόγραμμα υπολογίζει την δεσπόζουσα περίοδο T_p κάθε σεισμικής καταγραφής και με βάση αυτή την ιδιοπερίοδο T_n του συστήματος, και κατ' επέκταση την αντίστοιχη κυκλική ιδιοσυχνότητα ω_n,

δυσκαμψία k, και συντελεστή απόσβεσης c. Έπειτα, με χρήση της μεθόδου ολοκλήρωσης Newmark υπολογίζονται οι χρονοϊστορίες σχετικής μετατόπισης, σχετικής ταχύτητας και σχετικής επιτάχυνσης της μάζας του ταλαντωτή. Προσθέτοντας τις τιμές της εδαφικής επιτάχυνσης σε αυτές της σχετικής επιτάχυνσης του ταλαντωτή προκύπτουν οι τιμές της ολικής (απόλυτης) επιτάχυνσης \ddot{u}_{tot} , και στη συνέχεια γίνεται εύρεση της μέγιστης (peak) τιμής της. Στην περίπτωση του μονοβάθμιου ταλαντωτή, η χρονική στιγμή που συμβαίνει η μέγιστη \ddot{u}_{tot} είναι η ίδια με αυτή της τέμνουσας βάσης $V_E(t) = ku(t) + c\dot{u}(t)$ αφού η V_E θα πρέπει να εξισορροπεί την αδρανειακή δύναμη $m\ddot{u}_{tot}$ που αναπτύσσεται στη μάζα του ταλαντωτή. Για την χρονική στιγμή που προκύπτει η μέγιστη απόλυτη επιτάχυνση ($\ddot{u}_{tot,peak}$) εντοπίζεται η αντίστοιχη τιμή της εδαφικής επιτάχυνσης (a_s) και προσδιορίζεται ο λόγος της ως προς τη μέγιστη τιμή PGA (peak ground acceleration) του επιταχυνσιογραφήματος, λαμβάνοντας ταυτόχρονα υπόψη το αν οι a_s και $\ddot{u}_{tot,peak}$ έχουν την ίδια ή αντίθετη φορά (ίδια ή αντίθετα πρόσημα):

$$R = \frac{|a_s|}{PGA} \cdot sign(a_s \cdot \ddot{u}_{tot,peak})$$
(Eξ.3.1)

όπου:

- R: λόγος εδαφικής επιτάχυνσης που αντιστοιχεί στη χρονική στιγμή της μέγιστης απόλυτης επιτάχυνσης MBΣ προς τη μέγιστη εδαφική επιτάχυνση
- $\ddot{u}_{tot,peak}$: μέγιστη απόλυτη επιτάχυνση του ταλαντωτή
- *a_s*: επιτάχυνση του εδάφους τη στιγμή που εμφανίζεται η μέγιστη απόλυτη επιτάχυνση
 του ταλαντωτή
- PGA: μέγιστη εδαφική επιτάχυνση (peak ground acceleration)
- sign(): το πρόσημο της ποσότητας εντός της παρένθεσης

Η συνάρτηση $sign(a_s \cdot \ddot{u}_{tot,peak})$ παίρνει τιμή 1 όταν οι a_s και $\ddot{u}_{tot,peak}$ έχουν το ίδιο πρόσημο και -1 όταν έχουν αντίθετο πρόσημο.

Στη συνέχεια, παράγεται πίνακας με τους υπολογισθέντες λόγους *R*, οι στήλες του οποίου αντιστοιχούν στον αριθμό των επιταχυνσιογραφημάτων που χρησιμοποιήθηκαν, ενώ οι γραμμές είναι ίσες με το πλήθος των μονοβάθμιων συστημάτων που εξετάστηκαν (401 τιμές).

Πέραν των αναλύσεων απόκρισης που πραγματοποιήθηκαν για κάθε μία από τις 32 ομάδες επιταχυνσιογραφημάτων, εκτελέστηκαν υπολογισμοί και για ημιτονοειδή (αρμονική) διέγερση

για σκοπούς σύγκρισης. Επίσης, για να διερευνηθεί η επίδραση του ξ στον λόγο R, οι υπολογισμοί έγιναν για τρεις διαφορετικούς λόγους απόσβεσης, ξ=3%, 5% και 10%. Οι πίνακες με τους λόγους R εισήχθησαν σε υπολογιστικό φύλλο του Excel με σκοπό τη δημιουργία καμπυλών συναρτήσει του λόγου T_n/T_p , όπως στο Σχήμα 3.1. Στο Σχήμα 3.1 φαίνονται οι καμπύλες για όλα τα επιταχυνσιογραφήματα που ανήκουν στην ομάδα με μέγεθος σεισμού M από 6 έως 7, απόσταση Joyner-Boore R_{JB} από 20km έως 100km και εδαφικό προφίλ με ταχύτητα διάδοσης διατμητικών κυμάτων V_{s,30} από 180m/s έως 360m/s. Παρατηρούμε ότι όλες οι καμπύλες ζεκινούν με R=1 για πολύ χαμηλές τιμές της ιδιοπεριόδου T_n (πολύ δύσκαμπτα συστήματα). Στη συνέχεια, όσο αυξάνεται ο λόγος T_n/T_p, η τιμή του R μειώνεται γρήγορα και από ένα σημείο και πέρα λαμβάνει ως επί το πλείστον αρνητικές τιμές, δηλαδή όταν συμβαίνει η μέγιστη τέμνουσα βάσης η εδαφική επιτάχυνση είναι ίση κατά μέγεθος με την PGA αλλά έχει αντίθετη φορά με την τέμνουσα βάσης. Διαγράμματα όπως αυτό του Σχήματος 3.1 παρουσιάζονται στο Παράρτημα Γ για όλες τις αναλύσεις MBΣ που πραγματοποιήθηκαν.

Σχήμα 3.1. Διάγραμμα λόγου R συναρτήσει λόγου ιδιοπεριόδου, T_n, μονοβάθμιου συστήματος προς δεσπόζουσα περίοδο, T_p, σεισμικής καταγραφής. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, RJB=20-100 km, V_{s30}=180-360 m/s και ξ=5%.

Από στατιστική επεξεργασία του θύσανου των καμπυλών προκύπτουν οι καμπύλες του μέσου όρου (mean), καθώς και οι καμπύλες μέσου όρου ± μια ή δυο φορές η τυπική απόκλιση (mean±σ , mean±2σ). Από τα αποτελέσματα που παρουσιάζονται στο Σχήμα 3.1 φαίνεται ότι οι καμπύλες mean±σ περικλείουν σε μεγάλο βαθμό τον θύσανο καμπυλών, ειδικά για $T_n/T_p > 3$. Αντίθετα οι καμπύλες mean±2σ σε μεγάλο εύρος τιμών T_n/T_p υπερβαίνουν σημαντικά τις υπολογισθείσες τιμές R. Για τον καταρτισμό των συγκριτικών διαγραμμάτων του Κεφαλαίου 4 γίνεται χρήση μόνο των καμπυλών mean και mean±σ.

3.2.2. Πολυβάθμια συστήματα

Θεωρήθηκαν πολυβάθμια συστήματα δύο, τεσσάρων και οκτώ βαθμών ελευθερίας, με την ίδια δυσκαμψία σε κάθε στάθμη (k) και την ίδια μάζα σε κάθε βαθμό ελευθερίας (m). Κατ' επέκταση η τιμή της σταθεράς απόσβεσης είναι επίσης η ίδια σε κάθε στάθμη (c). Η τιμή του k διατηρείται σταθερή και ίση 10^6 kN/m σε όλα τα συστήματα, ενώ η μάζα m αυξάνεται από ανάλυση σε ανάλυση ώστε ο λόγος της θεμελιώδους (πρώτης) ιδιοπεριόδου προς τη δεσπόζουσα περίοδο του εκάστοτε επιταχυνσιογραφήματος να λαμβάνει τιμές από 0.05 έως 5 με σταθερό βήμα 0.05, πλέον μιας αρχικής τιμής 0.01. Με δεδομένο τον λόγο T_n/T_p που πρέπει να επιτευχθεί και αφού οριστεί από τον χρήστη ο φάκελος με τα επιταχυνσιογραφήματα, το πρόγραμμα υπολογίζει την δεσπόζουσα περίοδο κάθε σεισμικής καταγραφής και με βάση αυτή την επιθυμητή ιδιοπερίοδο του κάθε συστήματος. Έπειτα, με χρήση των εντολών της MATLAB που καθορίζουν τις ιδιοτιμές και ιδιομορφές δύο πινάκων, υπολογίζεται η απαιτούμενη τιμή μάζας m.

Θεωρώντας τιμές λόγου απόσβεσης ξ=3%, 5% και 10%, εκτιμάται το μητρώο απόσβεσης κατά Rayleigh. Στη συνέχεια, χρησιμοποιείται η μέθοδος Newmark για τον υπολογισμό των χρονοϊστοριών σχετικής μετατόπισης, σχετικής ταχύτητας και σχετικής επιτάχυνσης. Η χρονοϊστορία της τέμνουσας βάσης προσδιορίζεται από τις χρονοϊστορίες της σχετικής μετατόπισης και της σχετικής ταχύτητας της πρώτης στάθμης του ΠΒΣ, δηλαδή $V_E(t) = ku_1(t) + c\dot{u}_1(t)$. Για την χρονική στιγμή που συμβαίνει η μέγιστη (κορυφαία) τιμή της τέμνουσας βάσης (V_{E,peak}), εντοπίζεται η αντίστοιχη τιμή της εδαφικής επιτάχυνσης (a_s) και προσδιορίζεται ο λόγος της ως προς τη μέγιστη τιμή PGA (peak ground acceleration) του επιταχυνσιογραφήματος, λαμβάνοντας ταυτόχρονα υπόψη το αν οι a_s και $V_{E,peak}$ έχουν την ίδια ή αντίθετη φορά (ίδια ή αντίθετα πρόσημα):

$$R = \frac{|a_s|}{PGA} \cdot sign(a_s \cdot V_{E,peak})$$
(Eξ.3.2)

όπου:

- R: λόγος εδαφικής επιτάχυνσης που αντιστοιχεί στη χρονική στιγμή της μέγιστης
 τέμνουσας βάσης προς τη μέγιστη εδαφική επιτάχυνση PGA
- V_{E,peak}: μέγιστη (κορυφαία) τιμή τέμνουσας βάσης
- *a_s*: επιτάχυνση του εδάφους τη στιγμή που εμφανίζεται η μέγιστη τιμή της τέμνουσας
 βάσης
- sign(): το πρόσημο της ποσότητας εντός της παρένθεσης

Η συνάρτηση $sign(a_s \cdot V_{E,peak})$ παίρνει τιμή 1 όταν οι a_s και $V_{E,peak}$ έχουν το ίδιο πρόσημο και -1 όταν έχουν αντίθετο πρόσημο.

Τέλος, δημιουργείται πίνακας με τους λόγους R, οι στήλες του οποίου εξαρτώνται από τον αριθμό των επιταχυνσιογραφημάτων που χρησιμοποιήθηκαν, ενώ οι γραμμές είναι ίσες με το πλήθος των πολυβάθμιων συστημάτων που εξετάστηκαν (101 τιμές). Η παραπάνω διαδικασία εφαρμόστηκε για κάθε μία από τις 32 κατηγορίες (ομάδες) σεισμικών καταγραφών, καθώς και για ημιτονοειδή (αρμονική) διέγερση για σκοπούς σύγκρισης. Αναλύσεις πραγματοποιήθηκαν για τιμές λόγου απόσβεσης ξ=3%, 5% και 10% για συστήματα δύο, τεσσάρων και οκτώ βαθμών ελευθερίας.

Στο Σχήμα 3.2 φαίνονται οι καμπύλες για όλα τα επιταχυνσιογραφήματα που ανήκουν στην ομάδα με μέγεθος σεισμού M από 6 έως 7, απόσταση Joyner-Boore R_{JB} από 20km έως 100km και εδαφικό προφίλ με ταχύτητα διάδοσης διατμητικών κυμάτων V_{s,30} από 180m/s έως 360m/s. Όπως και στην περίπτωση των μονοβάθμιων συστημάτων, η τιμή του R μειώνεται γρήγορα από αρχική τιμή 1 όσο αυξάνεται ο λόγος T_n/T_p, φτάνοντας μεσοσταθμικά τιμή μηδέν για T_n/T_p περίπου ίση με 1.0 (συνθήκες συντονισμού). Για μεγαλύτερες τιμές T_n/T_p, ο λόγος R παίρνει γενικά τιμές μεταξύ 0 και -0.4, δηλαδή η εδαφική επιτάχυνση έχει αντίθετη φορά από ότι η τέμνουσα βάσης. Διαγράμματα όπως αυτό του Σχήματος 3.2 παρουσιάζονται στο Παράρτημα Γ για όλες τις αναλύσεις ΠΒΣ που πραγματοποιήθηκαν.

Σχήμα 3.2. Διάγραμμα λόγου R συναρτήσει λόγου θεμελιώδους ιδιοπεριόδου T_n πολυβάθμιου συστήματος (με 4 βαθμούς ελευθερίας) προς δεσπόζουσα περίοδο T_p επιταχυνσιογραφήματος. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, R_{JB}=20-100 km, V_{s30}=180-360 m/s και ξ=5%.

3.3. Έλεγχος της υπολογιστικής μεθοδολογίας

Προκειμένου να ελεγχθεί η ορθότητα του προγράμματος στη MATLAB και να επιβεβαιωθούν τα αποτελέσματα του, δημιουργήθηκε υπολογιστικό φύλλο στο Excel στο οποίο γίνονται οι υπολογισμοί απόκρισης μονοβάθμιου ταλαντωτή με χρήση της μεθόδου Newmark όπως αυτή διατυπώθηκε αρχικά (Newmark, 1959). Το γράφημα που απεικονίζεται στο Σχήμα 3.3 συγκρίνει τα αποτελέσματα που προκύπτουν από τους δυο αλγορίθμους για MBΣ με δυσκαμψία k=25000 kN/m και μεταβαλλόμενη μάζα με τιμές από 1 ton έως 9000 ton. Η σεισμική καταγραφή που χρησιμοποιήθηκε αφορά στον σεισμό της Loma Prieta, 1989. Παρατηρούνται κάποιες σχετικά μικρές διαφορές στον υπολογιζόμενο λόγο R όσο αυξάνεται η ιδιοπερίοδος του συστήματος, ειδικά όταν ο λόγος T_n/T_p είναι μεγαλύτερος από 2.5. Επιπλέον, εντοπίζεται μικρή διαφορά και στον υπολογισμό της δεσπόζουσας περιόδου T_p. Οι διαφορές πιθανόν να προκύπτουν κυρίως λόγω διαφορετικού σφάλματος αποκοπής στα δυο προγράμματα.

Σχήμα 3.3. Διάγραμμα λόγου R συναρτήσει λόγου ιδιοπεριόδου T_n μονοβάθμιου συστήματος προς δεσπόζουσα περίοδο T_p σεισμικής καταγραφής. Αποτελέσματα για το επιταχυνσιογράφημα Loma Prieta από ανάλυση στο υπολογιστικό φύλλο του Excel και στο περιβάλλον της MATLAB για ξ=2%.

Σχήμα 3.4. Διάγραμμα λόγου R συναρτήσει λόγου ιδιοπεριόδου T_n μονοβάθμιου συστήματος προς δεσπόζουσα περίοδο T_p ημιτονοειδούς διέγερσης. Αποτελέσματα από ανάλυση στο υπολογιστικό φύλλο του Excel και στο περιβάλλον της MATLAB για ξ=10%.

Επιπλέον, έγινε σύγκριση αποτελεσμάτων στην περίπτωση ημιτονοειδούς (αρμονικής) διέγερση με τιμές περιόδου από 0 έως 19,98sec με βήμα 0,01sec. Ο έλεγχος πραγματοποιήθηκε για τιμές λόγου απόσβεσης ξ=3%, 5%, 10%, 15% και 30%. Για τον προσδιορισμό του λόγου R χρησιμοποιήθηκε η απόκριση του συστήματος μετά τα 15sec ώστε να έχει αποσβεσθεί η όποια παροδική (transient) απόκριση από την έναρξη της επιβολής της διέγερσης και να έχει απομείνει η μόνιμη (steady-state) ταλάντωση. Στο Σχήμα 3.4 παρουσιάζονται ενδεικτικά τα διαγράμματα $R - T_n/T_p$ για ξ=10%. Στην περίπτωση αρμονικής διέγερσης, οι διαφορές μεταξύ των δυο αλγορίθμων είναι αμελητέες.

Η δεσπόζουσα περίοδος Τ_p ορίζεται σύμφωνα με τον Kramer (1996) ως αυτή που αντιστοιχεί στην κορυφαία τιμή του φάσματος Fourier. Εντούτοις, για προβλήματα που αφορούν την αντισεισμική μηχανική και την απόκριση κατασκευών, είθισται να λαμβάνεται ως δεσπόζουσα περίοδος αυτή που αντιστοιχεί στην κορυφαία τιμή του φάσματος απόκρισης μονοβάθμιου ταλαντωτή. Τίθεται επομένως το ερώτημα ποιος ορισμός από τους δυο παράγει τιμές Tp που οδηγούν σε καλύτερη κανονικοποίηση (normalization) των καμπυλών $R - T_n/T_p$, δηλαδή επιτυγχάνει μικρότερη διασπορά των καμπυλών των θυσάνων. Έτσι, για επιλεγμένες περιπτώσεις έγινε σύγκριση των θυσάνων που προκύπτουν θεωρώντας τιμές Τ_p από ανάλυση Fourier και από το φάσμα απόκρισης, όπως αυτό δίνεται στο περιβάλλον αναζήτησης του ιστοτόπου της βάσης δεδομένων PEER (Εικόνα 3.1). Ενδεικτικά παρατίθενται τα Σχήματα 3.5 και 3.6 που αφορούν σε σύστημα δύο βαθμών ελευθερίας με $\xi=5\%$ που υποβάλλεται σε σεισμικές διεγέρσεις με M=7.0-8.0, R_{JB}=100-1000 km και V_{s30} =800-2000 m/s. Παρατηρήθηκε ότι χρησιμοποιώντας τις τιμές δεσπόζουσας περιόδου από το φάσμα απόκρισης προκύπτει πολύ μεγάλη διασπορά των καμπυλών (Σχήμα 3.6) από ότι αν ληφθούν οι τιμές δεσπόζουσας περιόδου από το φάσμα Fourier (Σχήμα 3.5). Αυτό ισχύει ιδιαίτερα για καταγραφές από μεγάλους σεισμούς ή σε μακρινές αποστάσεις από την πηγή. Κατά συνέπεια, επιλέχθηκε ο προσδιορισμός των Tp να γίνεται με βάση το φάσμα Fourier.

Σχήμα 3.5. Διάγραμμα λόγου R συναρτήσει λόγου ιδιοπεριόδου, T_n, πολυβάθμιου συστήματος 2 β.ε., με ξ=5%, προς δεσπόζουσα περίοδο επιταχυνσιογραφήματος, T_p, προσδιοριζόμενη με βάση το φάσμα Fourier. Αποτελέσματα για σεισμικές καταγραφές με M=7.0-8.0, RJB=100-1000 km, V_{s30} =800-2000 m/s.

Σχήμα 3.6. Διάγραμμα λόγου R συναρτήσει λόγου ιδιοπεριόδου, T_n, πολυβάθμιου συστήματος 2 β.ε., με ξ=5%, προς δεσπόζουσα περίοδο επιταχυνσιογραφήματος, T_p, προσδιοριζόμενης με βάση το φάσμα απόκρισης. Αποτελέσματα για σεισμικές καταγραφές με M=7.0-8.0, RJB=100-1000 km, V_{s30}=800-2000 m/s.

Εικόνα 3.1. Παράδειγμα φάσματος απόκρισης ψευδο-επιτάχυνσης για ξ=5% από τη βάση δεδομένων PEER.

3.4. Επίπτωση στον υπολογισμό φέρουσας ικανότητας

Μετασχηματίζοντας την συνθήκη ελέγχου αστοχίας σε φέρουσα ικανότητα (Εξ.2.1) ως ακολούθως, ορίζεται ο συντελεστής υπερδιαστασιολόγησης ODF (Overdesign Factor):

$$ODF_{C} = \frac{1}{\frac{(1-e\cdot\overline{F})^{C}T\cdot(\beta\cdot\overline{V})^{C}T}{\overline{N}^{a}\cdot\left[\left(1-m_{f}\cdot\overline{F}^{k}\right)^{k'}-\overline{N}\right]^{b}} + \frac{(1-f\cdot\overline{F})^{C'}M\cdot(\gamma\cdot\overline{M})^{C}M}{\overline{N}^{C}\cdot\left[\left(1-m_{f}\cdot\overline{F}^{k}\right)^{k'}-\overline{N}\right]^{d}} \ge 1$$
(Eξ.3.3)

Ο συντελεστής ODF_C αφορά σε αστοχία λόγω δυσμενούς συνδυασμού ροπής και τέμνουσας. Για να ληφθεί υπόψη και το ενδεχόμενο αστοχίας λόγω υπερβάλλουσας αξονικής φόρτισης, ορίζεται και συντελεστής υπερδιαστασιολόγησης που αντιστοιχεί στην αστοχία της θεμελίωσης λόγω αξονικής δύναμης με βάση τις εξισώσεις 2.5 και 2.8:

$$ODF_N = \frac{1}{\overline{N}}$$
 για συνεκτικά εδάφη (Εξ. 3.4α)
$$ODF_{N} = \frac{\left(1 - m_{f} \cdot \bar{F}^{k}\right)^{k'}}{\bar{N}}$$
 για μη-συνεκτικά εδάφη (Εξ.3.4β)

Ο συντελεστής ODF που διέπει τη θεμελίωση προκύπτει ως η ελάχιστη από τις τιμές των Εξ.3.3 και 3.4. Η επίπτωση του ετεροχρονισμού μέγιστης τέμνουσας βάσης και μέγιστης εδαφικής επιτάχυνσης εξετάζεται συγκρίνοντας τις τιμές ODF που προκύπτουν για εδαφική επιτάχυνση διαφορετική από την PGA στον υπολογισμό του όρου \overline{F} .

ΚΕΦΑΛΑΙΟ 4: ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΝΑΛΥΣΕΩΝ

Τα αποτελέσματα των αναλύσεων που πραγματοποιήθηκαν με χρήση της MATLAB για μονοβάθμια και πολυβάθμια συστήματα, οδήγησαν στην παραγωγή διαγραμμάτων συσχετισμού του λόγου R με τον λόγο T_n/T_p (π.χ. Σχήματα 3.1 και 3.2). Προκειμένου να μελετηθεί η επιρροή των παραμέτρων του προβλήματος στον λόγο R, θεωρούνται ως κεντρικές παραμετρικές αναλύσεις αυτές με M=6.0-7.0, R_{JB}=20-100 km, V_{s30}=180-360 m/s και ξ=5%. Τα συγκριτικά διαγράμματα καμπυλών μέσου όρου (mean) και μέσου όρου ± μια φορά τυπική απόκλιση (mean±σ) που ακολουθούν (Σχήματα 4.1-4.16) καταρτίστηκαν διατηρώντας σταθερές τρείς εκ των κεντρικών τιμών των παραμέτρων και μεταβάλλοντας την τέταρτη, σύμφωνα με τα εύρη του Πίνακα 3.1. Διαγράμματα παρουσιάζονται για μονοβάθμια και πολυβάθμια συστήματα (όπως περιγράφονται στο Κεφάλαιο 3), ώστε να εξεταστεί και η επίδραση του πλήθους των βαθμών ελευθερίας.

4.1. Συγκριτικά διαγράμματα

4.1.1. Μονοβάθμια συστήματα

Στα Σχήματα 4.1 έως 4.4 δίνονται οι καμπύλες μέσου όρου και μέσου όρου ± μια φορά τυπική που προκύπτουν από τους θύσανους καμπυλών από τις αναλύσεις απόκρισης μονοβάθμιων ταλαντωτών. Παρατηρούμε ότι, σχεδόν σε όλες τις περιπτώσεις, μέχρι η τιμή της ιδιοπεριόδου του συστήματος να ξεπεράσει την τιμή της δεσπόζουσας περιόδου της σεισμικής διέγερσης, ο λόγος R έχει θετικό πρόσημο και τείνει προοδευτικά προς το μηδέν. Η καμπύλη μέσου όρου διασταυρώνει τον οριζόντιο άξονα (R=0) για λόγο περιόδων T_n/T_p ίσο με 1. Για $T_n/T_p>1$, ο μέσος R λαμβάνει μια τιμή που είναι πρακτικά ανεξάρτητη του T_n/T_p και η οποία σε όλες τις περιπτώσεις έχει αρνητικό πρόσημο (R μεταξύ -0.4 και -0.2), δηλαδή η μέγιστη τέμνουσα βάσης και η εδαφική επιτάχυνση στην αντίστοιχη χρονική στιγμή έχουν αντίθετες φορές.

Η θεώρηση του μέσου όρου αποτελεσμάτων από αναλύσεις με 7 ή περισσότερα επιταχυνσιογραφήματα είναι αποδεκτή σύμφωνα με τον ΕΝ 1998-1, παράγραφος 4.3.3.4.3(3). Εντούτοις, στο γεωτεχνικό σχεδιασμό ενίοτε λαμβάνεται υπόψη η μέση τιμή συν μια φορά η τυπική απόκλιση. Από τα σχήματα προκύπτει ότι οι καμπύλες mean+σ βρίσκονται γενικά πάνω στον οριζόντιο άξονα R=0 για $T_n/T_p>1$, με κάποιες περιπτώσεις (κυρίως για σεισμούς μεγάλου

μεγέθους και καταγραφή σε βράχο) η τιμή του R να φτάνει το 0.2 (Σχήματα 4.3, 4.4). Επίσης η αρχική μείωση του R φαίνεται να είναι πιο απότομη για χαμηλές τιμές της ταχύτητας διάδοσης διατμητικών κυμάτων V_{s30} (Σχήμα 4.3). Αντίθετα, η απόσταση R_{JB} από τη σεισμική πηγή και ο λόγος απόσβεσης ξ δεν φαίνεται να έχουν επίδραση στις καμπύλες του λόγου R.

Σχήμα 4.1. Διάγραμμα $R-T_n/T_p$ μονοβάθμιου συστήματος με ξ=5%. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, V_{s30}=180-360 m/s και διαφορετικές τιμές απόστασης από πηγή R_{JB}.

Σχήμα 4.2. Διάγραμμα R-T_n/T_p για μονοβάθμια συστήματα με διαφορετικές τιμές λόγου απόσβεσης ξ. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, V_s30 =180-360 m/s και R_{JB}=20-100 km.

Στα σχήματα παρατίθενται επίσης και καμπύλες R συναρτήσει του T_n/T_p για τη θεωρητική περίπτωση αρμονικά διεγειρόμενου ταλαντωτή. Οι καμπύλες αυτές έχουν σαφείς ποιοτικές διαφορές σε σχέση με αυτές που προκύπτουν από πραγματικά επιταχυνσιογραφήματα. Συγκεκριμένα, ενώ για πραγματικά επιταχυνσιογραφήματα η μείωση του R είναι σταδιακή και ξεκινάει από μόλις ο λόγος T_n/T_p ξεπεράσει το 0.05, η τιμή R για αρμονικό ταλαντωτή παραμένει ίση με 1 (μηδενική διαφορά φάσης) για $T_n/T_p < 0.9$ και με περαιτέρω αύξηση του λόγου περιόδων μειώνεται απότομα προς την τιμή -1 (διαφορά φάσης 180°). Οι αστάθειες (μικρές διακυμάνσεις) που εμφανίζουν αυτές οι καμπύλες για μεγάλες τιμές T_n/T_p οφείλονται πιθανώς στη συσσώρευση αριθμητικού σφάλματος, δεδομένου ότι για με μεγάλο T_n/T_p η μέγιστη τέμνουσα βάσης συμβαίνει μετά από παρέλευση πολλών κύκλων ταλάντωσης μεγάλης διάρκειας και άρα πολλών υπολογιστικών βημάτων.

Σχήμα 4.3. Διάγραμμα R-T_n/T_p μονοβάθμιου συστήματος με ξ =5%. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, R_{JB}=20-100 km και διαφορετικές τιμές ταχύτητας διατμητικών κυμάτων V_{s30}.

Στο Σχήμα 4.2, φαίνεται ότι η μετάβαση από R=1 σε R=-1 του αρμονικού ταλαντωτή γίνεται ελαφρώς πιο ομαλή όσο αυξάνεται ο λόγος απόσβεσης του συστήματος. Αυτή η συμπεριφορά είναι εφάμιλλη με αυτή που φαίνεται στο Σχήμα 1.2 από το βιβλίο του Chopra (2013), όπου δίνεται η διαφορά φάσης μεταξύ μετατόπισης του MBΣ και διεγείρουσας δύναμης, η οποία διαφορά φάσης είναι ταυτόσημη με τη διαφορά φάσης μεταξύ σχετικής μετατόπισης ταλαντωτή και

μετακίνησης εδάφους, και κατ' επέκταση σχετικής επιτάχυνσης ταλαντωτή και διεγείρουσας επιτάχυνσης εδάφους. Εντούτοις, παρατηρούμε στο Σχήμα 4.2 ότι όσο αυξάνεται ο λόγος απόσβεσης ξ, η κατώτερη τιμή R για μεγάλες τιμές T_n/T_p δεν είναι κοντά στο -1 αλλά προσεγγίζει το -0.8. Θα πρέπει να σημειωθεί εδώ ότι η διαφορά φάσης που αποτυπώνεται στον λόγο R αφορά σε αυτή μεταξύ διεγείρουσας εδαφικής επιτάχυνσης και ολικής (απόλυτης) επιτάχυνσης του ταλαντωτή, όχι της σχετικής.

Σχήμα 4.4. Διάγραμμα R-T_n/T_p μονοβάθμιου συστήματος με ξ =5%. Αποτελέσματα για σεισμικές καταγραφές με R_{JB}=20-100 km, V_{s30}=180-360 m/s και διαφορετικές τιμές μεγέθους σεισμού M.

4.1.2. Πολυβάθμια συστήματα - Δύο βαθμοί ελευθερίας

Στα Σχήματα 4.5-4.8 φαίνονται οι καμπύλες R - T_n/T_p για σύστημα με 2 βαθμούς ελευθερίας (2DOF) με διέγερση από πραγματικά επιταχυνσιογραφήματα. Τα ποιοτικά χαρακτηριστικά αυτών των καμπυλών είναι ταυτόσημα με αυτά για το μονοβάθμιο σύστημα, παρά το γεγονός ότι το διβάθμιο σύστημα ενέχει μια ακόμη ιδιομορφή. Συγκεκριμένα, οι καμπύλες μέσου όρου διασταυρώνουν τον οριζόντιο άξονα πρακτικά σε $T_n/T_p = 1$, και για $T_n/T_p > 1.5$ ο μέσος λόγος R κυμαίνεται από -0.2 έως -0.4. Η απόσταση από την σεισμική πηγή R_{JB} και ο λόγος απόσβεσης ξ δεν φαίνεται να παίζουν κάποιο ρόλο (Σχήματα 4.5 και 4.6). Αντίθετα, η αύξηση της ταχύτητας διάδοσης διατμητικών κυμάτων V_{s30} τείνει να μετατοπίσει τις καμπύλες προς τα πάνω σε όλο το

εύρος των τιμών T_n/T_p. Αντίστοιχη αλλά σαφώς πιο ασθενής εξάρτηση φαίνεται να υπάρχει και μεταξύ των καμπυλών και του σεισμικού μεγέθους M.

Σχήμα 4.5. Διάγραμμα R-T_n/T_p συστήματος 2 βαθμών ελευθερίας με ξ=5%. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, V_{s30} =180-360 m/s και διαφορετικές τιμές απόσταση από την πηγή R_{JB}.

Σχήμα 4.6. Διάγραμμα R-T_n/T_p για συστήματα 2 βαθμών ελευθερίας με διαφορετικές τιμές λόγου απόσβεσης ξ. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, R_{JB}=20-100 km και V_{s30} =180-360 m/s.

Όπως και στην περίπτωση του μονοβάθμιου ταλαντωτή, οι καμπύλες R - T_n/T_p για αρμονικά διεγειρόμενο ΠΒΣ έχουν πολύ μεγάλες ποιοτικές και ποσοτικές διαφορές σε σχέση με αυτές που προκύπτουν για σύστημα που διεγείρεται από πραγματικά επιταχυνσιογραφήματα. Από τις καμπύλες R - T_n/T_p για αρμονικά (ημιτονοειδώς) διεγειρόμενο σύστημα παρατηρούμε ότι στην περίπτωση του συστήματος με 2 βαθμούς ελευθερίας υπάρχουν περισσότερες από μια τιμές λόγου T_n/T_p για τις οποίες ο λόγος R γίνεται ίσος με 0, δηλαδή έχουμε διαφορά φάσης 90° μεταξύ τέμνουσας βάσης και εδαφικής επιτάχυνσης. Οι τιμές αυτές (πέραν της αναμενόμενης $T_n/T_p=1$) είναι 2.25 και 2.7, ανεξαρτήτως του λόγου απόσβεσης ξ (Σχήμα 4.6). Ως αποτέλεσμα, στα εύρος μεταξύ αυτών των τιμών T_n/T_p , η τιμή του R ξαναγίνεται θετική, δηλαδή η μέγιστη τέμνουσα βάσης και η αντίστοιχη εδαφική επιτάχυνση έχουν την ίδια φορά. Υπενθυμίζεται σε αυτό το σημείο ότι τα αποτελέσματα για αρμονικά διεγειρόμενο σύστημα αφορούν τη μόνιμη απόκριση (steady-state), αφού έχει αποσβεσθεί πλήρως η παροδική (transient) απόκριση.

Σχήμα 4.7. Διάγραμμα R-T_n/T_p συστήματος 2 βαθμών ελευθερίας με ξ=5%. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, R_{JB}=20-100 km και διαφορετικές τιμές V_s30.

Σχήμα 4.8. Διάγραμμα R-T_n/T_p συστήματος 2 βαθμών ελευθερίας με ξ=5%. Αποτελέσματα για σεισμικές καταγραφές με R_{JB}=20-100 km, V_{s30} =180-360 m/s, και διαφορετικές τιμές μεγέθους σεισμού M.

4.1.3. Πολυβάθμια συστήματα - Τέσσερεις βαθμοί ελευθερίας

Στα Σχήματα 4.9-4.12 φαίνονται οι καμπύλες R - T_n/T_p για σύστημα με 4 βαθμούς ελευθερίας (4DOF). Παρόμοια με την προηγούμενη υποενότητα, η ύπαρξη 4 ιδιομορφών δεν επηρεάζει τα ποιοτικά χαρακτηριστικά των καμπυλών R - T_n/T_p , είτε πρόκειται για την μέση καμπύλη είτε για τις αυτές με ± μια φορά την τυπική απόκλιση. Για $T_n/T_p > 1.5$ ο μέσος λόγος R κυμαίνεται γύρω από το -0.2. Μεταξύ των χαρακτηριστικών των επιταχυνσιογραφημάτων, αισθητό ρόλο παίζει η ταχύτητας διάδοσης διατμητικών κυμάτων V_{s30} , η οποία μεταθέτει τις καμπύλες προς τα πάνω, αλλά στην παρούσα περίπτωση μόνο για το εύρος $0 < T_n/T_p < 1.1$.

Από το αρμονικά (ημιτονοειδώς) διεγειρόμενο σύστημα παρατηρούμε ότι στην περίπτωση του συστήματος με 4 βαθμούς ελευθερίας υπάρχουν εντός των διαγραμμάτων 5 τιμές λόγου T_n/T_p για τις οποίες ο R γίνεται ίσος με 0 (διαφορά φάσης 90°). Επίσης, στο Σχήμα 4.10 παρατηρούμε ότι η αύξηση του λόγου απόσβεσης ξ αμβλύνει τις κορυφαίες (θετικές και αρνητικές) τιμές του R για αρμονικά διεγειρόμενο σύστημα.

Σχήμα 4.9. Διάγραμμα R-T_n/T_p συστήματος 4 βαθμών ελευθερίας με ξ =5%. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, V_{s30}=180-360 m/s και διαφορετικές τιμές απόστασης R_{JB}.

Σχήμα 4.10. Διάγραμμα R-T_n/T_p για συστήματα 4 βαθμών ελευθερίας με διαφορετικές τιμές ξ. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, R_{JB}=20-100 km και V_{s30}=180-360 m/s.

Σχήμα 4.11. Διάγραμμα R-T_n/T_p συστήματος 4 βαθμών ελευθερίας με ξ =5%. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, R_{JB}=20-100 km και διαφορετικές τιμές V_{s30}.

Σχήμα 4.12. Διάγραμμα R-T_n/T_p συστήματος 4 βαθμών ελευθερίας με ξ =5%. Αποτελέσματα για σεισμικές καταγραφές με R_{JB}=20-100 km, V_{s30}=180-360 m/s, και διαφορετικές τιμές μεγέθους σεισμού M.

4.1.4. Πολυβάθμια συστήματα - Οκτώ βαθμοί ελευθερίας

Στα Σχήματα 4.13-4.16 δίνονται τα αποτελέσματα για σύστημα με 8 βαθμούς ελευθερίας (8DOF). Η γενική εικόνα των καμπυλών R - T_n/T_p είναι ποιοτικά η ίδια με αυτή για τα συστήματα λιγότερων βαθμών ελευθερίας. Για T_n/T_p > 1.5 ο μέσος λόγος R κυμαίνεται μεταξύ -0.2 και 0, ενώ η καμπύλη mean+σ κυμαίνεται μεταξύ 0 και 0.2. Το μέγεθος του σεισμού M, ο λόγος απόσβεσης ξ και η απόσταση από τη σεισμική πηγή R_{JB} δεν φαίνεται να έχουν κάποια επιρροή, ενώ η ταχύτητα διάδοσης διατμητικών κυμάτων V_{s30} εξακολουθεί να τείνει να αυξήσει τις τιμές του λόγου R. Αλλά παρόμοια με την περίπτωση των 4 βαθμών ελευθερίας, αυτό ισχύει μόνο για το εύρος $0 < T_n/T_p < 1$. Σε αντίθεση με τις προηγούμενες περιπτώσεις, οι καμπύλες R - T_n/T_p για πραγματικά επιταχυνσιογραφήματα τείνουν να εμφανίσουν τοπικές ανυψώσεις και κοιλάδες σε συμφωνία τις αντίστοιχες (και σαφώς πιο έντονες) της καμπύλης για αρμονικά διεγειρόμενο ταλαντωτή, υποδηλώνοντας ενδεχομένως την ισχυρότερη επίδραση των περισσότερων ιδιομορφών.

Σχήμα 4.13. Διάγραμμα R-T_n/T_p συστήματος 8 βαθμών ελευθερίας με ξ =5%. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, V_{s30}=180-360 m/s και διαφορετικές τιμές απόστασης RJB.

Σχήμα 4.14. Διάγραμμα R-T_n/T_p για συστήματα 8 βαθμών ελευθερίας με διαφορετικές τιμές λόγους απόσβεσης ξ. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, R_{JB}=20-100 km και V_{s30} =180-360 m/s.

Σχήμα 4.15. Διάγραμμα R-T_n/T_p συστήματος 8 βαθμών ελευθερίας με ξ =5%. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, R_{JB}=20-100 km και διαφορετικές τιμές V_{s30}.

Σχήμα 4.16. Διάγραμμα R-T_n/T_p συστήματος 8 βαθμών ελευθερίας με ξ =5%. Αποτελέσματα για σεισμικές καταγραφές με R_{JB}=20-100 km, V_{s30}=180-360 m/s, και διαφορετικές τιμές μεγέθους σεισμού M.

Τέλος, στο Σχήμα 4.17 γίνεται σύγκριση των αποτελεσμάτων μεταξύ συστημάτων με διαφορετικούς βαθμούς ελευθερίας (SDOF, 2DOF, 4DOF, 8DOF). Παρατηρούμε ότι όσο μεγαλύτερος είναι ο αριθμός των βαθμών ελευθερίας, τα τμήματα των καμπυλών για $T_n/T_p>1$ μετατοπίζονται προοδευτικά προς τα πάνω. Αυτό ισχύει και για τις καμπύλες mean και για τις mean±σ. Για παράδειγμα, ενώ η καμπύλη mean+σ για μονοβάθμιο ταλαντωτή ξεπερνά ελάχιστα την τιμή R=0, η αντίστοιχη καμπύλη για σύστημα 8 βαθμών ελευθερίας κυμαίνεται μεταξύ 0 και 0.2. Αντίθετα, για $T_n/T_p \le 1$ οι καμπύλες πρακτικά ταυτίζονται, δηλαδή είναι ανεξάρτητες του πλήθους βαθμών ελευθερίας. Αυτές οι παρατηρήσεις μπορούν να αποδοθούν στο ότι οι «αρμονικές» των ιδιομορφών πέραν τις πρώτης συμβάλουν στο να μειώσουν το βαθμό ετεροχρονισμού (να «διαταράξουν» την τάση για αντίθεση φάσης) που υπάρχει όταν $T_n/T_p>1$.

Σχήμα 4.17. Διάγραμμα R-T_n/T_p συστημάτων με 1, 2, 4 και 8 βαθμούς ελευθερίας με ξ =5%. Αποτελέσματα για σεισμικές καταγραφές με M=6.0-7.0, R_{JB}=20-100 km και V_{s30}=180-360 m/s.

4.2. Διαγράμματα λόγου συντελεστού ODF

Από τα αποτελέσματα της προηγούμενης ενότητας, θα μπορούσε να θεωρηθεί από γενική πρακτική σκοπιά ότι ο λόγος R μειώνεται σχεδόν γραμμικά από τιμή 1.0 για ιδιοπερίοδο T_n=0 σε τιμή μηδενική για λόγο T_n/T_p=1 (κατάσταση συντονισμού). Για T_n/T_p>1, η τιμή του R μπορεί να θεωρηθεί συντηρητικά ότι παραμένει ίση με 0. Αξίζει να σημειωθεί ότι η περίπτωση T_n/T_p>1 (και κατ' επέκταση R=0), δηλαδή θεμελιώδους ιδιοπεριόδου μεγαλύτερης από τη δεσπόζουσα περίοδο του σεισμού σχεδιασμού δεν είναι ασυνήθιστη για το σεισμοτεκτονικό περιβάλλον της Κύπρου, όπου ο σεισμός σχεδιασμού είναι μεγέθους 6.5-7.5 και σε απόσταση 5km-50km, ειδικά αν πρόκειται για πολυώροφα κτίρια, βάθρα γεφυρών και υδατόπυργους. Οπότε για την εξέταση του βαθμού συντηρητισμού της υπόθεσης ταυτόχρονης δράσης της PGA και της μέγιστης τέμνουσας βάσης (R=1) που κάνει το Annex F του EC8-5, υπολογίζεται ο λόγος του συντελεστή υπερδιαστασιολόγησης (overdesign factor, ODF) για R=0, δηλαδή για μηδενική εδαφική επιτάχυνση εντός του μηχανισμού αστοχίας (ODF_{a=0}) και συγκρίνεται με τον λόγο ODF για R=1, δηλαδή θεωρώντας τη μέγιστη (peak) τιμή εδαφικής επιτάχυνσης (ODF_{a=ag}). Όσο μεγαλύτερος είναι ο λόγος ODF_{a=ag}, τόσο περισσότερο συντηρητική είναι η θεώρηση του Annex F.

Πρέπει να σημειωθεί ότι εξέταση του ODF για την περίπτωση που η επιτάχυνση του εδάφους έχει αντίθετη φορά από την τέμνουσα βάσης δεν είναι δόκιμη διότι η Εξ. 2.1 πιθανότατα δεν έχει προσαρμοστεί σε αριθμητικά δεδομένα από επιλύσεις όπου η επιτάχυνση του εδάφους έχει αρνητικό πρόσημο. Επίσης ενδεικτικό της περιορισμένης εφαρμοσιμότητας της Εξ. 2.1 στην περίπτωση των συνεκτικών εδαφών είναι ότι για πολύ μεγάλα πλάτη θεμελίωσης Β (όπως π.χ. στην περίπτωση των κοιτοστρώσεων), η αδιάστατη αδρανειακή δύναμη εδάφους που υπολογίζεται από την Εξ. 2.4 μπορεί να προκύψει υπέρμετρα μεγάλη (λόγω της παρουσίας του Β στον αριθμητή της εξίσωσης) και έτσι ο όρος στην παρένθεση των παρονομαστών της Εξ. 2.1 να γίνει αρνητικός (καθιστώντας αδύνατο τον οποιοδήποτε υπολογισμό).

Εξετάζονται τέσσερις πρακτικές περιπτώσεις: κοιτόστρωση και θεμέλιο σε αργιλώδες έδαφος (συνεκτικό), και κοιτόστρωση και θεμέλιο σε αμμώδες έδαφος (μη-συνεκτικό). Για τις κοιτοστρώσεις χρησιμοποιήθηκαν διάφορες τιμές εδαφικής αντοχής, πλήθους ορόφων (άρα και κατακόρυφων φορτίων) και πλάτους θεμελίωσης, ενώ για τα θεμέλια εξετάστηκε κυρίως η επίδραση της αναλογίας των φορτίων (αξονική, τέμνουσα, ροπή), της αδρανειακής δύναμης του εδάφους και η μεταξύ τους σχέση. Για τον καθορισμό των παραπάνω μεγεθών και την πραγματοποίηση ελέγχων, θεωρήθηκε ότι η αξονική δύναμη σχεδιασμού ανά μέτρο μήκους της κοιτόστρωσης είναι:

$$N_{Ed} = (12kPa) \cdot n \cdot B \tag{E\xi.3.5}$$

όπου:

n: αριθμός ορόφων κατασκευής

Β: πλάτος θεμελίωσης

Η τέμνουσα σχεδιασμού λήφθηκε ως:

$$V_{Ed} = N_{Ed} \cdot S_d \cdot \lambda \tag{E\xi.3.6}$$

όπου:

- V_{Ed}: τέμνουσα σχεδιασμού
- *S_d*: φασματική επιτάχυνση σχεδιασμού (2.5α_g βάσει του επίπεδου κλάδου του ελαστικού φάσματος σχεδιασμού)

- λ: συντελεστής που λαμβάνει τιμή 0,85 όταν ο αριθμός των ορόφων είναι μεγαλύτερος
 από δύο, διαφορετικά ισούται με τη μονάδα

Επιπλέον, η ροπή σχεδιασμού θεωρείται ότι προκύπτει από τη δράση της τέμνουσας στο 0.7 του ύψους του κτιρίου (με τυπικό ύψος ορόφου 3 μέτρα):

$$M_{Ed} = V_{Ed} \cdot (0.7 \cdot n \cdot 3) \tag{E\xi.3.7}$$

Η μέγιστη φέρουσα ικανότητα θεμελίωσης (υπό την επίδραση κάθετου φορτίου στο μέσον της), N_{max} , υπολογίστηκε ανάλογα με το είδος του εδάφους από τις Εξ.2.3 και 2.6, ενώ αντίστοιχα προέκυψε η τιμή της αδιάστατης αδρανειακής δύναμης, \overline{F} , από τις Εξ.2.4 και 2.7. Για τον υπολογισμό της \overline{F} , θεωρήθηκε ζώνη σεισμικότητας ΙΙΙ της Κύπρου (a_{gR} =0.25g), συντελεστής εδαφικής ενίσχυσης 1.2 και συντελεστής σπουδαιότητας 1.0. Για τον υπολογισμό της N_{max} στην περίπτωση μη συνεκτικών εδαφών (Εξ. 2.6), θεωρείται ότι η κατακόρυφη επιτάχυνση a_v δρα με φορά προς τα πάνω. Ο υπολογισμός των τιμών του συντελεστή φέρουσας ικανότητας Ν_γ γίνεται με τη σχέση του Brinch Hansen (1970).

4.2.1. Κοιτόστρωση σε άργιλο

Στα Σχήματα 4.18 και 4.19 παρατηρείται ότι για αριθμό ορόφων μεγαλύτερο των 3, θέτοντας την εδαφική επιτάχυνση ίση με το μηδέν, ο $ODF_{a=0}$ προκύπτει στις περισσότερες περιπτώσεις σαφώς μεγαλύτερος από τον $ODF_{a=ag}$, με τιμές $ODF_{a=0}/ODF_{a=ag}$ που φτάνουν και ξεπερνούν το 1.2. Αντίθετα, από το Σχήμα 4.19 γίνεται αντιληπτό ότι με αύξηση της αντοχής του εδάφους ο λόγος $ODF_{a=0}/ODF_{a=ag}$ και άρα ο βαθμός υπερσυντηρητισμού του Annex F περιορίζονται.

Υπάρχουν και περιπτώσεις όπου ο λόγος ODF_{a=0}/ODF_{a=ag} προκύπτει μικρότερος του 1.0. Αυτό μάλλον οφείλεται περισσότερο σε περιορισμούς της εφαρμοσιμότητας της Εξ. 2.1, η οποία έχει προκύψει από στατιστική προσαρμογή (fitting) σε αριθμητικά δεδομένα, παρά στο να πρόκειται για περιπτώσεις όπου η αδρανειακή επιτάχυνση του εδάφους δρα πραγματικά ευμενώς στην ανάπτυξη φέρουσας ικανότητας.

Σχήμα 4.18. Κοιτόστρωση σε άργιλο. Διάγραμμα $ODF_{a=0}/ODF_{a=ag}$ ως προς τον αριθμό των ορόφων. Αποτελέσματα για αντοχή c=60 kPa και για διαφορετικές τιμές πλάτους θεμελίωσης B.

Σχήμα 4.19. Κοιτόστρωση σε άργιλο. Διάγραμμα $ODF_{a=a}$ (ODF_{a=ag} ως προς τον αριθμό των ορόφων. Αποτελέσματα για πλάτος θεμελίωσης B=20 m και για διαφορετικές τιμές συνοχής c.

Σχήμα 4.20. Κοιτόστρωση σε άμμο. Διάγραμμα $ODF_{a=0}/ODF_{a=ag}$ ως προς τον αριθμό των ορόφων. Αποτελέσματα για πλάτος θεμελίωσης B=20 m και για διαφορετικές τιμές γωνίας τριβής φ.

4.2.2. Κοιτόστρωση σε άμμο

Από τα Σχήματα 4.20 και 4.21 προκύπτει ότι στην περίπτωση συνεκτικών εδαφών όσο μεγαλύτερος είναι ο αριθμός των ορόφων της κατασκευής, τόσο αυξάνεται ο λόγος ODF_{a=0}/ODF_{a=ag}, με τις τιμές να κυμαίνονται από 1.04 έως 1.15. Ο ρυθμός αύξησης είναι μικρότερος όσο μεγαλύτερη είναι η γωνίας τριβής του εδάφους, δηλαδή όσο πιο ανθεκτικό είναι το έδαφος θεμελίωσης. Επίσης, όσο μικρότερο είναι το πλάτος B της θεμελίωσης τόσο μεγαλύτερος είναι βαθμός υπερσυντηρητισμού της θεώρησης του Annex F.

Σχήμα 4.21. Κοιτόστρωση σε άμμο. Διάγραμμα ODF_{a=0}/ODF_{a=ag} ως προς τον αριθμό των ορόφων. Αποτελέσματα για γωνία τριβής φ=35⁰ και για διαφορετικές τιμές πλάτους θεμελίωσης B.

4.2.3. Θεμέλιο σε άργιλο

Στο Σχήμα 4.22 παρατηρείται ότι διατηρώντας σταθερή την αδιάστατη αδρανειακή δύναμη \overline{F} , η αύξηση της ανηγμένης αξονικής δύναμης \overline{N} με ταυτόχρονη αύξηση της ανηγμένης τέμνουσας \overline{V} οδηγεί σε μεγαλύτερο λόγο ODF_{a=0}/ODF_{a=ag}, με τιμές που φτάνουν το 1.08. Στο Σχήμα 4.23 φαίνεται ότι κρατώντας σταθερή την ανηγμένη αξονική δύναμη \overline{N} και αυξάνοντας την \overline{F} (π.χ. μειώνοντας τη συνοχή του εδάφους), αυξάνεται ο βαθμός υπερσυντηρητισμού της θεώρησης επιτάχυνσης εδάφους ίση με τη μέγιστη (PGA).

4.2.4. Θεμέλιο σε άμμο

Στο Σχήμα 4.24 παρατηρείται ότι η αύξηση της ανηγμένης αξονικής δύναμης \overline{N} οδηγεί σε ελαφριά αύξηση του λόγου ODF_{a=0}/ODF_{a=ag}, όπως και στην περίπτωση των συνεκτικών εδαφών. Παρά ταύτα, οι τιμές σε όλες τις περιπτώσεις βρίσκονται πολύ κοντά στο 1.10 με το φ της άμμου σταθερά ίσο με 40°. Από το Σχήμα 4.25 φαίνεται ότι η μείωση της γωνίας τριβής κρατώντας σταθερά τα \overline{N} και \overline{V} οδηγεί σε σημαντική αύξηση του λόγου ODF_{a=0}/ODF_{a=ag}, με την τιμή να φτάνει το 1.25 για γωνία τριβής ίση με 30° (χαλαρή άμμος).

Σχήμα 4.22. Θεμέλιο σε άργιλο. Διάγραμμα $ODF_{a=0}/ODF_{a=ag}$ ως προς την ανηγμένη διατμητική δύναμη. Αποτελέσματα για $\overline{F}=0.59$, $\overline{M}=0.3\overline{V}$ και διαφορετικές τιμές ανηγμένης αξονικής δύναμης.

Σχήμα 4.23. Θεμέλιο σε άργιλο. Διάγραμμα $ODF_{a=0}/ODF_{a=ag}$ ως προς την ανηγμένη διατμητική δύναμη. Αποτελέσματα για $\overline{N}=0.5$, $\overline{M}=0.3\overline{V}$ και διαφορετικές τιμές αδιάστατης αδρανειακής δύναμης.

Σχήμα 4.24. Θεμέλιο σε άργιλο. Διάγραμμα $ODF_{a=ag}$ ως προς την ανηγμένη διατμητική δύναμη. Αποτελέσματα για γωνία τριβής φ=40⁰, \overline{M} =0.3 \overline{V} και διαφορετικές τιμές ανηγμένης αξονικής δύναμης.

Σχήμα 4.25. Θεμέλιο σε άργιλο. Διάγραμμα $ODF_{a=0}/ODF_{a=ag}$ ως προς την ανηγμένη διατμητική δύναμη. Αποτελέσματα για $\overline{N}=0.25$, $\overline{M}=0.3\overline{V}$ και διαφορετικές τιμές γωνίας τριβής.

ΚΕΦΑΛΑΙΟ 5: ΣΥΜΠΕΡΑΣΜΑΤΑ

Στα πλαίσια της παρούσας διατριβής εξετάστηκε το πόση είναι η τιμή της εδαφικής επιτάχυνσης όταν συμβαίνει η μέγιστη τιμή της τέμνουσας βάσης που φορτίζει μια θεμελίωση, και κατ' επέκταση ο βαθμός υπερσυντηρητισμού της μεθόδου εκτίμησης φέρουσας ικανότητας επιφανειακών θεμελιώσεων που προτείνεται στο Παράρτημα F του Ευρωκώδικα 8 – Μέρος 5, η οποία υποθέτει ότι η τέμνουσα σχεδιασμού και η μέγιστη εδαφική επιτάχυνση δρουν ταυτόχρονα. Για τους σκοπούς αυτούς, πραγματοποιήθηκε ένα μεγάλο πλήθος αναλύσεων απόκρισης μονοβάθμιων και πολυβάθμιων συστημάτων υπό σεισμική διέγερση χρησιμοποιώντας πραγματικά επιταχυνσιογραφήματα.

Σε ότι αφορά τον ετεροχρονισμό μεταξύ της μέγιστης εδαφικής επιτάχυνσης και της μέγιστης τέμνουσας βάσης, τα συμπεράσματα της μελέτης μπορούν να συνοψισθούν ως εξής :

- i) Επιβεβαιώθηκε, ως αναμενόταν και από τη θεωρία αρμονικά διεγειρόμενου μονοβάθμιου ταλαντωτή, ότι η υπόθεση η μέγιστη τέμνουσα βάσης να συμβαίνει ταυτόχρονα με τη μέγιστη εδαφική επιτάχυνση ισχύει μόνο για πολύ δύσκαμπτα συστήματα, δηλαδή για κατασκευές με ιδιοπερίοδο δέκα φορές μικρότερη από τη δεσπόζουσα περίοδο της διέγερσης. Η αύξηση της ιδιοπεριόδου οδηγεί σε μείωση της τιμής εδαφικής επιτάχυνση α₈ που ισχύει όταν συμβαίνει η μέγιστη (peak) τιμή της τέμνουσας βάσης. Όσο η θεμελιώδης ιδιοπερίοδος του συστήματος (μονοβάθμιου ή πολυβάθμιου) προσεγγίζει τη δεσπόζουσα περίοδο της σεισμικής διέγερσης, ο λόγος της α₈ προς την μέγιστη επιτάχυνση PGA φθίνει σχεδόν γραμμικά και μηδενίζεται όταν οι δυο περίοδοι γίνουν πρακτικά ίσες (κατάσταση «συντονισμού»).
- ii) Αν η τιμή της ιδιοπεριόδου μιας κατασκευής ξεπερνά τη δεσπόζουσα περίοδο της σεισμικής διέγερσης, η επιτάχυνση εντός του εδάφους έχει γενικά αντίθετη φορά από τη μέγιστη τέμνουσα βάσης, γεγονός που αναμένεται να δρα ευεργετικά σε ότι αφορά την αντίσταση έναντι αστοχίας φέρουσας ικανότητας.
- iii) Το μέγεθος του σεισμού, η απόσταση από την προβολή του ρήγματος στην επιφάνεια του εδάφους, και ο λόγος απόσβεσης της κατασκευής δεν επηρεάζουν σημαντικά την εξέλιξη του λόγου R της εδαφικής επιτάχυνσης α_s προς την μέγιστη επιτάχυνση PGA αυξανομένης

της ιδιοπεριόδου ενός συστήματος. Εξαίρεση φαίνεται να αποτελεί η ταχύτητα διάδοσης διατμητικών κυμάτων στα ανώτερα 30m του εδαφικού προφίλ, η οποία όσο αυξάνεται τείνει να μετατοπίσει προς τα πάνω τις τιμές του λόγου R σε όλο το εύρος των τιμών θεμελιώδους ιδιοπεριόδου.

iv) Όσο περισσότεροι είναι οι βαθμοί ελευθερίας τόσο ο λόγος R που ισχύει για τιμές θεμελιώδους ιδιοπεριόδου μεγαλύτερες από τη δεσπόζουσα περίοδο λαμβάνει λιγότερο αρνητικές τιμές και προσεγγίζει το μηδέν.

Στη συνεχεία, για την εξέταση του βαθμού υπερσυντηρητισμού της μεθοδολογίας εκτίμησης φέρουσας ικανότητας του προτύπου EN 1998-5:2004 (Annex F), θεωρήθηκαν τόσο η μέγιστη όσο και μηδενική εδαφική επιτάχυνση εντός του μηχανισμού αστοχίας. Για μη συνεκτικό έδαφος, στις πλείστες των περιπτώσεων ο συντελεστής υπερδιαστασιολόγησης (overdesign factor, ODF) της θεμελίωσης για επιτάχυνση εδάφους ίση με μηδέν (ODF_{a=0}) προκύπτει 5% με 20% μεγαλύτερος από τον αντίστοιχο ODF που υπολογίζεται με θεώρηση της μέγιστης εδαφικής επιτάχυνσης (ODF_{a=ag}). Για συνεκτικό έδαφος, υπάρχουν περιπτώσεις που αυτή η διαφορά είναι ακόμη μεγαλύτερη.

Συνοψίζοντας, η εξίσωση εκτίμησης φέρουσας ικανότητας επιφανειακών θεμελιώσεων που προτείνεται στο Παράρτημα F του Ευρωκώδικα 8 – Μέρος 5 βασίζεται στη μη ρεαλιστική παραδοχή ταυτόχρονης δράσης τέμνουσας βάσης σχεδιασμού και εδαφικής επιτάχυνσης σχεδιασμού, οδηγώντας σε υπερδιαστασιολόγηση. Για εύκαμπτες κατασκευές με θεμελιώδη ιδιοπερίοδο μεγαλύτερη από την αναμενόμενη δεσπόζουσα περίοδο του σεισμού σχεδιασμού, οι αδρανειακές δυνάμεις εντός του μηχανισμού αστοχίας φέρουσας ικανότητας μπορούν να αγνοηθούν και ο έλεγχος φέρουσας ικανότητας μπορεί να γίνει χρησιμοποιώντας τύπους που έχουν προκύψει για στατικές συνθήκες, που είναι και πιο δοκιμασμένοι στην πράξη.

ΒΙΒΛΙΟΓΡΑΦΙΑ

Διεθνής βιβλιογραφία

- Bathe, K.J. (1996). Finite element procedures. Prentice-Hall Inc.
- Brinch Hansen, J. (1970). A revised and extended formula for bearing capacity. Danish Geotechnical Institute Bulletin, 28, 5-11.
- Chopra, A.K. (2013). Dynamics of Structures, Theory and Applications to Earthquake Engineering, 4th edition. Pearson Education Limited
- Conti, R. (2018). Simplified formulas for the seismic bearing capacity of shallow strip foundations. Soil Dynamics and Earthquake Engineering, 104, 64–74.
- Cyprus National Annex to CYS EN 1998-5:2004 Eurocode 8: Design of Structures for Earthquake Resistance - Part 5: Foundation, retaining structures and geotechnical aspects. Cyprus Organisation for Standardisation, Nicosia.
- European Standard (2004a). Eurocode 8: Design of structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels.
- European Standard (2004b). Eurocode 8: Design of structures for earthquake resistance Part 5: Foundations, retaining structures & geotechnical aspects. European Committee for Standardization, Brussels.
- Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice-Hall.
- Meyerhof, G. (1953). The Bearing Capacity of Foundations under Eccentric and Inclined Loads. In Proceedings of the 3_{rd} International Conference on Soil Mechanics and Foundation Engineering, Zurich, Vol. 1, p. 440-445.
- Newmark, N. M. (1959), A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, 85(EM3), 67–94
- Paolucci, R. and Pecker, A. (1997). Seismic bearing capacity of shallow strip foundations on dry soils. Soils and Foundations, 37(3), 95-105.
- Pecker, A. (1996). Seismic bearing capacity of shallow foundations. Paper No.2076 Eleventh World Conference on Earthquake Engineering. Elsevier Science Ltd
- PEER Ground Motion Database. Website: https://ngawest2.berkeley.edu/
- Rathje, E. M., Abrahamson, N. A., & Bray, J. D. (1998). Simplified frequency content estimates of earthquake ground motions. Journal of Geotechnical and Geoenvironmental Engineering, 124(2), 150-159.

Terzaghi, K. 1943. Theoretical Soil Mechanics. Wiley Publishing, New York, USA.

Vesić, A. S. (1973). Analysis of ultimate loads of shallow foundations. Journal of the Soil Mechanics and Foundations Division, 99(1), 45-73.

Ελληνική βιβλιογραφία

- Καββαδάς, Μ. (2005). Οριακή φέρουσα ικανότητα επιφανειακών θεμελιώσεων λόγω σεισμικών δράσεων. Οργανισμός Αντισεισμικού Σχεδιασμού και Προστασίας (ΟΑΣΠ)
- Κωμοδρόμος, Π. (2009). Ανάλυση Κατασκευών: Σύγχρονες μέθοδοι με χρήση ηλεκτρονικών υπολογιστών, 2^η Αναθεωρημένη Έκδοση. Εκδόσεις Παπασωτηρίου

ПАРАРТНМА А

ΠΡΟΓΡΑΜΜΑΤΑ ΑΝΑΛΥΣΗΣ ΑΠΟΚΡΙΣΗΣ ΜΟΝΟΒΑΘΜΙΩΝ ΚΑΙ ΠΟΛΥΒΑΘΜΙΩΝ ΤΑΛΑΝΤΩΤΩΝ

Α.1. Κώδικας για ανάλυση ΜΒΣ

Ακολουθεί το πρόγραμμα και οι υπορουτίνες στη MATLAB που χρησιμοποιήθηκαν για τον υπολογισμό της απόκρισης μονοβάθμιων συστημάτων.

sdof response.m

```
%% This program uses Newmark's method for calculating the earthquake response
of SDOF systems.
%% Written by Dr. Petros Komodromos
%% Customized by Zafeiris Loulourgas
%% Program starts here
% Set input folder (full path)
input folder='...';
% Read all *.txt files from input folder
files=dir(fullfile(input folder, '*.txt'));
% Get full path names for each text file
file paths=fullfile({files.folder}, {files.name});
% Read data from files
for i=1:numel(file paths)
    % Read data from ith file
    data=textread(file paths{i},'');
    % Extract ground acceleration sequence (ag) from ith file (check
units!!!)
    % Extract time sequence (t) from ith file
    g=9.81;
    ag{i}=(data(:,2))*g;
    t{i}=data(:,1);
    n(i) = length(t{i});
    % Apply Fast Fourier Transform
    % N(i) = numel(ag{i});
    Ts{i}=(t{i}(n(i))-t{i}(1))/(n(i)-1);
                                                   % Sample Time
    Fs{i}=1/Ts{i};
                                    % Sampling Frequency
    df(i)=Fs{i}/n(i);
    Y{i}=fft(aq{i})/n(i);
    f{i}=(0:n(i)-1)*df(i);
    % Initialize parameters
    Ymax(i) = abs(Y\{i\}(1));
    fYmax(i)=f{i}(1);
    % Peak Y
    % Frequency value when Peak Y occurs
    % Dominant period of record
```

```
for x=2:n(i)
    if Ymax(i) < abs(Y{i}(x))</pre>
       Ymax(i) = abs(Y{i}(x));
       fYmax(i) = f\{i\}(x);
       Tp(i) = 1/fYmax(i);
    end
    end
    % SDOF input data
    sdof input
    for l=1:length(Tx)
    % Initialize parameters for Newmark
    u0=0;
    v0=0;
    dt(i) = t\{i\}(2) - t\{i\}(1);
    P\{i\}=-aq\{i\}*m;
    % Apply Newmark to calculate SDOF relative acceleration
    Newmark
    % Define SDOF total acceleration (atot) for ith file
    % Initialize parameters
    atot{i,l}=a{i,l}'+ag{i};
    dt(i) = t\{1, i\}(2) - t\{1, i\}(1);
    pga(i) = abs(ag{i}(1));
    tpga(i)=t{i}(1);
    % PGA
    % Time when PGA occurs
    % Total acceleration value when PGA occurs
    for j=2:n(i)
    if pga(i) < abs(ag{i}(j))</pre>
       pga(i) = abs(ag{i}(j));
       tpga(i)=t{i}(j);
       atottpga{i,l}=atot{i,l}(j);
    end
    end
    % Peak total acceleration
    % Time when PTA occurs
    % Ground acceleration value when PTA occurs
    [~,X]=max(abs(atot{i,l}));
    atotmax(i,l)=atot{i,l}(X);
    a g(i,l)=ag{i}(X);
    S(i,l)=sign(a g(i,l)*atotmax(i,l));
    R(i,l)=abs(a_g(i,l))/pga(i)*S(i,l);
    end
end
R=R';
clear u0;
clear v0;
```

sdof input.m

```
m=10000;
Tx=[0.01 0.05:0.05:20]';
Tn{i}=((Tx).*Tp(i));
z=0.1;
```

```
%for l=1:length(Tx)
wn{i}=(2*pi)./Tn{i};
k{i}=m.*(wn{i}.^2);
fn{i}=1./Tn{i};
c{i}=(2*z*m).*wn{i};
```

Newmark.m

```
%% Written by Dr. Petros Komodromos
alpha=0.25;
delta=0.5;
a0=1/(alpha*dt(i)^2);
al=delta/(alpha*dt(i));
a2=1/(alpha*dt(i));
a3=1/(2*alpha)-1;
a4=delta/alpha-1;
a5=dt(i)/2*(delta/alpha-2);
a6=dt(i)*(1-delta);
a7=delta*dt(i);
keff{i}=k{i}+a0*m+a1*c{i};
u\{i, l\}(1) = u0;
v{i,l}(1)=v0;
a{i,l}(1) = (P{i}(1) - c{i}(1) * v{i,l}(1) - k{i}(1) * u{i,l}(1))/m;
up{i,l}=u{i,l}(1);
vp{i,l}=v{i,l}(1);
ap{i,l}=a{i,l}(1);
for x=1:n(i)-1
Peff{i}(l)=P{i}(x+1)+m*(a0*up{i,l}+a2*vp{i,l}+a3*ap{i,l})+c{i}(l)*(a1*up{i,l})
+a4*vp{i,l}+a5*ap{i,l});
    u{i,l}(x+1)=Peff{i}(l)/keff{i}(l);
    a{i,l}(x+1)=a0*(u{i,l}(x+1)-up{i,l})-a2*vp{i,l}-a3*ap{i,l};
    v{i,l}(x+1)=vp{i,l}+a6*ap{i,l}+a7*a{i,l}(x+1);
    up\{i,l\}=u\{i,l\}(x+1);
    vp\{i,l\}=v\{i,l\}(x+1);
    ap{i,l}=a{i,l}(x+1);
end
clear a0;
clear al;
clear a2;
```

clear	a3;
clear	a4;
clear	a5;
clear	a6;
clear	a7;
clear	u;
clear	up;
clear	v;
clear	vp;
clear	ap;

Α.2. Κώδικας για ανάλυση ΠΒΣ

Παρατίθεται το πρόγραμμα και οι υπορουτίνες στη MATLAB που χρησιμοποιήθηκαν για τον υπολογισμό της απόκρισης πολυβάθμιων συστημάτων. Ενδεικτικά, παρουσιάζονται όσα αφορούν σύστημα τεσσάρων βαθμών ελευθερίας.

fourdof_response.m

```
%% This program uses Newmark's method for calculating the earthquake response
of SDOF systems.
%% Written by Dr. Petros Komodromos
%% Customized by Zafeiris Loulourgas
%% Program starts here
T target=[0.01 0.05:0.05:5]';
% Set input folder
input folder='C:\Users\Zafeiris Loulourgas\Desktop\recfinal\6-7,20-100,0-
180';
% Read all *.txt files from input folder
files=dir(fullfile(input folder,'*.txt'));
% Get full path names for each text file
file paths=fullfile({files.folder}, {files.name});
% Read data from files
for i=1:numel(file paths)
    % Read data from ith file
    data=textread(file paths{i},'');
    % Extract ground acceleration sequence (ag) from ith file (check
units!!!)
    % Extract time sequence (t) from ith file
   g=9.81;
    ag{i}=(data(:,2))*g;
   t{i}=data(:,1);
   n(i) = length(t{i});
    % Apply Fast Fourier Transform
    Ts{i}=(t{i}(n(i))-t{i}(1))/(n(i)-1); % Sample Time
   Fs{i}=1/Ts{i};
                                   % Sampling Frequency
   df(i)=Fs{i}/n(i);
    Y{i}=fft(ag{i})/n(i);
   f{i}=(0:n(i)-1)*df(i);
    % Initialize parameters
    Ymax(i) = abs(Y{i}(1));
    fYmax(i)=f{i}(1);
```

```
% Peak Y
    % Frequency value when Peak Y occurs
    % Dominant period of record
    for q=2:n(i)
    if Ymax(i) < abs(Y{i}(q))</pre>
       Ymax(i) = abs(Y{i}(q));
       fYmax(i) = f\{i\}(q);
       Tdes(i)=1/fYmax(i);
    end
    end
k(1)=10e6;
k(2)=10e6;
k(3)=10e6;
k(4)=10e6;
N=length(k);
for j=1:length(T target)
%Stiffness and Mass matrices
K=zeros(N,N);
M\{j\} = zeros(N, N);
for l=1:N
    TN{i}=((T target).*Tdes(i));
    w{i}=((2*pi)./TN{i}).^2;
    B\{j\}(l,l) = w\{i\}(j);
    K(1,1) = k(1);
    if 1>1
       K(l, l-1) = K(l, l-1) - k(l);
       K(l-1, 1) = K(l-1, 1) - k(1);
       K(l-1, l-1) = K(l-1, l-1) + k(l);
    end
end
% Eigenvalues and modes
[Modes{j},D{j}]=eig(K,B{j});
for l=1:N
    M\{j\}(l,l)=D\{j\}(l,l);
end
% Eigenvalues and modes (after defining mass)
[MD,D2]=eig(K,M{j});
for l=1:N
    wN(j,l)=sqrt(D2(l,l));
end
z1=0.05;
z4=0.05;
%Rayleigh Damping
x{j} = [1/wN(j,1) wN(j,1); 1/wN(j,N) wN(j,N)];
y\{j\} = [2*z1; 2*z4];
```

```
rcoeff{j}=inv(x{j})*y{j};
C{j}=rcoeff{j}(1)*M{j}+rcoeff{j}(2)*K;
   % for j=1:Tt
    %Initialize parameters
    u0=zeros(N,j);
    v0=zeros(N,j);
    dt(i) = t\{i\}(2) - t\{i\}(1);
    P{i,j}=-(M{j}*ones(N,1))*ag{i}';
    %Apply Newmark
    Newmark mdof
    for floor=1:N
    if floor>1
        dU{i,j}(floor,:)=U{i,j}(floor,:)-U{i,j}(floor-1,:);
        dV{i,j}(floor,:)=V{i,j}(floor,:)-V{i,j}(floor-1,:);
    else
        dU{i,j}(floor,:)=U{i,j}(floor,:);
        dV{i,j}(floor,:)=V{i,j}(floor,:);
    end
    end
    %Base shear
    Vbase{i,j}(1,:) = -(k(1) * dU{i,j}(1,:) + C{j}(1) * dV{i,j}(1,:));
    [~,Z]=max(abs(Vbase{i,j}(1,:)));
    Tpeak(i,j)=Vbase\{i,j\}(Z);
    a g(i,j)=ag{i}(Z);
    % Define MDOF total acceleration (Atot) for ith file
    % Initialize parameters
    Atot{i,j}=A{i,j}(:,1)'+ag{i};
    dt(i) = t\{1, i\}(2) - t\{1, i\}(1);
    pga(i) = abs(ag{i}(1));
    tpga(i)=t{i}(1);
    % PGA
    % Time when PGA occurs
    % Total acceleration value when PGA occurs
    for r=2:n(i)
    if pga(i) < abs(ag{i}(r))</pre>
       pga(i) = abs(ag{i}(r));
       tpga(i)=t{i}(r);
       Atottpga{i,j}=Atot{i,j}(r);
    end
    end
    S(i,j)=sign(a g(i,j)*Tpeak(i,j));
    R(i,j)=abs(a g(i,j))/pga(i)*S(i,j);
end
end
R=R';
```

```
clearvars -except R;
```

Newmark.m

clear a5; clear a6; clear a7;

```
%% Written by Dr. Petros Komodromos
alpha=0.25;
delta=0.5;
a0=1/(alpha*dt(i)^2);
a1=delta/(alpha*dt(i));
a2=1/(alpha*dt(i));
a3=1/(2*alpha)-1;
a4=delta/alpha-1;
a5=dt(i)/2*(delta/alpha-2);
a6=dt(i)*(1-delta);
a7=delta*dt(i);
U\{i, j\}(:, 1) = u0(:, 1);
V\{i, j\}(:, 1) = v0(:, 1);
A{i,j}(:,1)=inv(M{j})*(P{i,j}(:,1)-C{j}*V{i,j}(:,1)-K*U{i,j}(:,1));
Keff{j}=K+a0*M{j}+a1*C{j};
for x1=1:n(i)-1
Peff{i,j}=P{i,j}(:,x1+1)+M{j}*(a0*U{i,j}(:,x1)+a2*V{i,j}(:,x1)+a3*A{i,j}(:,x1)
))+C{j}*(a1*U{i,j}(:,x1)+a4*V{i,j}(:,x1)+a5*A{i,j}(:,x1));
               U{i,j}(:,x1+1)=inv(Keff{j})*Peff{i,j};
              A{i,j}(:,x1+1)=a0*(U{i,j}(:,x1+1)-U{i,j}(:,x1))-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,x1)-a2*V{i,j}(:,
a3*A{i,j}(:,x1);
               V{i,j}(:,x1+1)=V{i,j}(:,x1)+a6*A{i,j}(:,x1)+a7*A{i,j}(:,x1+1);
end
clear a0;
clear a1;
clear a2;
clear a3;
clear a4;
```

ПАРАРТНМА В

ΣΤΟΙΧΕΙΑ ΕΠΙΤΑΧΥΝΣΙΟΓΡΑΦΗΜΑΤΩΝ ΑΠΟ ΤΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ΡΕΕR

Πίνακας Ι	B.1
-----------	------------

M=5.0-6.0, R_{JB} =0-20 km, V_{s30} =180-360 (m/sec)											
Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename		
		"Managua_ Nicaragua-									
96	0.443	02"	1972	"Managua_ESSO"	5.2	strike slip	4.33	288.77	RSN96_MANAGUA_B-ESO090.AT2		
97	0.799	"Point Mugu"	1973	"Port Hueneme"	5.65	Reverse	15.48	248.98	RSN97_PTMUGU_PHN270.AT2		
149	0.680	"Coyote Lake"	1979	"Gilroy Array #4"	5.74	strike slip	4.79	221.78	RSN149_COYOTELK_G04270.AT2		
199	0.375	"Imperial Valley-07"	1979	"El Centro Array #11"	5.01	strike slip	13.61	196.25	RSN199_IMPVALL.A_A-E11230.AT2		
206	0.283	"Imperial Valley-07"	1979	"El Centro Array #8"	5.01	strike slip	8.18	206.08	RSN206_IMPVALL.A_A-E08140.AT2		
314	0.145	"Westmorland"	1981	"Brawley Airport"	5.9	strike slip	15.28	208.71	RSN314_WESMORL_BRA315.AT2		
316	0.662	"Westmorland"	1981	"Parachute Test Site"	5.9	strike slip	16.54	348.69	RSN316_WESMORL_PTS225.AT2		
383	0.299	"Coalinga-02"	1983	"Pleasant Valley P.P yard"	5.09	Reverse	6.51	257.38	RSN383_COALINGA_A-PVY135.AT2		
10.4			1000	"Coalinga-14th & Elm (Old							
406	0.561	"Coalinga-05"	1983	CHP)"	5.77	Reverse	7.02	286.41	RSN406_COALINGA_D-CHP000.AT2		
445	0.264	"New Zealand-01"	1984	"Turangi Telephone Exchange"	5.5	Normal	3.76	356.39	RSN445_NEWZEAL_D-TUR329.AT2		
502	1.212	"Mt. Lewis"	1986	"Halls Valley"	5.6	strike slip	12.37	281.61	RSN502_MTLEWIS_HVR000.AT2		
595	0.612	"Whittier Narrows-01"	1987	"Bell Gardens - Jaboneria"	5.99	Reverse Oblique	10.31	267.13	RSN595_WHITTIER.A_A-JAB297.AT2		
614	0.540	"Whittier Narrows-01"	1987	"Downey - Birchdale"	5.99	Reverse Oblique	14.9	245.06	RSN614_WHITTIER.A_A-BIR090.AT2		
622	0.261	"Whittier Narrows-01"	1987	"Hacienda Heights - Colima"	5.99	Reverse Oblique	9.6	337	RSN622_WHITTIER.A_A-COM230.AT2		
635	0.526	"Whittier Narrows-01"	1987	"LA - Hollywood Stor FF"	5.99	Reverse Oblique	19.22	316.46	RSN635_WHITTIER.A_A-PEL000.AT2		
676	0.710	"Whittier Narrows-01"	1987	"Pasadena - CIT Bridge Lab"	5.99	Reverse Oblique	4.3	341.14	RSN676_WHITTIER.A_A-BRI360.AT2		
681	0.154	"Whittier Narrows-01"	1987	"Pasadena - CIT Lura St"	5.99	Reverse Oblique	4.3	341.14	RSN681_WHITTIER.A_A-LUR090.AT2		
701	0.290	"Whittier Narrows-01"	1987	"Terminal Island - S Seaside"	5.99	Reverse Oblique	37.67	260.6	RSN701_WHITTIER.A_A-SSE342.AT2		
1681	0.870	"Northridge-04"	1994	"Moorpark - Fire Sta"	5.93	Reverse Oblique	13.61	341.58	RSN1681_NORTH142_MRP090.AT2		
1693	0.225	"Northridge-06"	1994	"Arleta - Nordhoff Fire Sta"	5.28	Reverse	1.32	297.71	RSN1693_NORTH392_ARL360.AT2		
M=5.0-6.0, R _{JB} =0-20 km, V _{s30} =360-800 (m/sec)											
Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{jb} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename		
45	0.162	"Lytle Creek"	1970	"Devil's Canyon"	5.33	Reverse Oblique	18.39	667.13	RSN45_LYTLECR_DCF090.AT2		
136	0.600	"Santa Barbara"	1978	"Santa Barbara Courthouse"	5.92	Reverse Oblique	0	514.99	RSN136_SBARB_SBA222.AT2		
214	0.954	"Livermore-01"	1980	"San Ramon - Eastman Kodak"	5.8	strike slip	15.19	377.51	RSN214_LIVERMOR_A-KOD180.AT2		
226	0.153	"Anza (Horse Canyon)- 01"	1980	"Anza - Terwilliger Valley"	5.19	strike slip	5.85	617.78	RSN226_ANZA_TVY135.AT2		
234	0.508	"Mammoth Lakes-02"	1980	"Long Valley Dam (Upr L Abut)"	5.69	strike slip	14.28	537.16	RSN234_MAMMOTH.J_J-LUL000.AT2		
240	0.149	"Mammoth Lakes-04"	1980	"Convict Creek"	5.7	strike slip	1.37	382.12	RSN240_MAMMOTH.AH_B- CVK180.AT2		
245	0.380	"Mammoth Lakes-05"	1980	"Long Valley Dam (Upr L Abut)"	5.7	strike slip	14.91	537.16	RSN245_MAMMOTH.K_K-LUL000.AT2		
318	0.423	"Westmorland"	1981	"Superstition Mtn Camera"	5.9	strike slip	19.26	362.38	RSN318_WESMORL_SUP135.AT2		
377	0.354	"Coalinga-02"	1983	"LLN (temp)"	5.09	Reverse	3.55	486.67	RSN377_COALINGA_A-LLN000.AT2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
---	--------------	----------------------------	--------------------------------------	------	----------------------------------	-----------	-----------------	-------------------------	-----------------------------	---------------------------------	
395 0.228 "Couling-O4" 1983 "Anicline Radge Par" 5.18 Reverse 1.550 478.63 RSN955_COALINGA_CA_CATEPTOAL2 4414 0.192 "Colling-05" 1983 "Soliphur Bails (emp)" 5.77 Reverse 1.25 617.43 RSN42_COALINGA_CCSUB00AT2 442 0.66 "Bornh Fast, ID-C2" 1983 "Soliphur Bails (emp)" 5.77 Reverse 0.25 617.43 RSN42_COALINGA_CCSUB00AT2 442 0.516 "Bornh Fast, ID-C2" 1983 "BOR" 5.11 Normal 16.31 46.44 RSN42_EOMALTAS BORBOAT2 477 0.594 "Lacor Abranza, Inty" 1986 "Normal 16.31 46.44 RSN42_EOMALTAS BORBOAT2 590 0.9345 "Substanting" 1986 "Normal 16.31 46.44 RSN42_EOMALTAS BORBOAT2 590 0.9345 "Substanting" 1986 "Normal 16.31 46.44 RSN42_EOMALTAS BORBOAT2 500 0.9345 "Substanting" 1986 Normal 16.31 46.44 RSN44_EOMALTAS BORBOAT2 501 0.9455 Normal anitas Substa	384	0.267	"Coalinga-02"	1983	"SGT (temp)"	5.09	Reverse	4.57	481.07	RSN384_COALINGA_A-SGT350.AT2	
4410 0.220 Conlinge-05" 1983 Studphar Bults (temp)" 5.18 Revence 12.53 617.43 RSN414 COALINGA CCSU090AT2 442 0.655 Burth Peak, ID Q" 1983 Studphar Bults (temp)" 5.11 Normal 16.31 468.44 RSN414 COALINGA D-CSU000AT2 447 0.556 Burth Peak, ID Q" 1983 1906" 5.11 Normal 16.31 468.44 RSN42 COALINGA D-CSU000AT2 447 0.561 Burth Peak, ID Q" 1983 Tolkov 5.8 Normal 12.8 SS5.04 RSN452 CIALINGA D-RONOADT2 549 0.845 San Salvador 1986 Telsion- Paralise Lodge" 5.77 strike slip 3.51 RSN452 CIALINATI IS BANG20ATINS AT2 550 0.058 Winitine Karrows on" 1987 "TA - Cypress Ave" 5.99 Reverse Oblique 8.5 656.71 RSN652_WINTIFIEA_A ALTOROAT2 62.0 San Francisco" 1987 "Ceidea Gate Park" 5.28 Reverse Oblique 8.16 8.506.11 RSN643_UNISAT2 RSN643_UNISAT2 <tr< td=""><td>395</td><td>0.226</td><td>"Coalinga-04"</td><td>1983</td><td>"Anticline Ridge Pad"</td><td>5.18</td><td>Reverse</td><td>5.56</td><td>478.63</td><td>RSN395_COALINGA_C-ATP270.AT2</td></tr<>	395	0.226	"Coalinga-04"	1983	"Anticline Ridge Pad"	5.18	Reverse	5.56	478.63	RSN395_COALINGA_C-ATP270.AT2	
	403	0.250	"Coalinga-04"	1983	"Sulphur Baths (temp)"	5.18	Reverse	12.53	617.43	RSN403_COALINGA_C-CSU090.AT2	
	414	0.192	"Coalinga-05"	1983	"Sulphur Baths (temp)"	5.77	Reverse	9.75	617.43	RSN414_COALINGA_D-CSU000.AT2	
442 0.516 Borab Peak. DP42" 1984 "1008" 5.1 Normal 16.31 408.44 RSN42_DORALAS_R DROUGAT2 545 0.592 Tais Advator 1984 "Athia" 5.8 Normal 12.8 St504 RSN77_DRUZZO_ATINE B-BPL160AT2 569 0.045 "Smathador" 1986 "Athia" 5.8 strike slip 1.9 3.71 455.3 RSN630_SMSN1V_SIGNRAT2 632 0.048 "Whitter Narrows-01" 1987 "Athelema Eaton Canyon" 5.99 Reverse Oblique 8.72 375.16 RSN530_SMSN1V_SIGNRAT2 WHITTIER A. A-L1090AT2 632 0.048 "Whitter Narrows-01" 1987 "Athelema Park" 5.39 Reverse Oblique 8.71 RSN632_WHITTIER A. A-L1090AT2 743 74 (c) "Earlequake Name Year Station Name Magnitude Mechanism Rin Rin<	442	0.665	"Borah Peak_ ID-02"	1983	"BOR"	5.1	Normal	16.31	468.44	RSN442_BORAH.AS_BOR000.AT2	
	442	0.516	"Borah Peak_ ID-02"	1983	"BOR"	5.1	Normal	16.31	468.44	RSN442_BORAH.AS_BOR090.AT2	
	477	0.592	"Lazio-Abruzzo_ Italy"	1984	"Atina"	5.8	Normal	12.8	585.04	RSN477_ABRUZZO_ATI-NS.AT2	
	545	0.974	"Chalfant Valley-01"	1986	"Bishop - Paradise Lodge"	5.77	strike slip	14.99	585.12	RSN545_CHALFANT.B_B-BPL160.AT2	
	569	0.845	"San Salvador"	1986	"National Geografical Inst"	5.8	strike slip	3.71	455.93	RSN569_SANSALV_NGI180.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	590	0.095	"Whittier Narrows-01"	1987	"Altadena - Eaton Canyon"	5.99	Reverse Oblique	8.72	375.16	RSN590_WHITTIER.A_A-ALT090.AT2	
$ \begin{split} \label{eq:metric} \hline M=5.0-6.0, Rm=0-200 (m/sec) \\ \hline Record Sequence $T_{p}(sec)$ Earthquake Name $Year Station Name $Magnitude $Magnitude $Mechanism $Ris (m/sec)$ Horizontal Acc. Filename $Mignitude $Name $Year $San Francisco"$1957 "Golden Gate Park"$5.28 Reverse $9.74 $874.72 RSN23 SANFRAN GGP010.AT2 $43 0.121 $T_Jtle Creek"$1970 "Cedar Springs_Allen Ranch"$5.33 Reverse $9.99 $1428.14 $RSN84 Adv3_JYTLFCR_CSM185.AT2 $1943 $Color $1000 $T_Color $Springs_Allen Ranch"$5.34 Reverse $9.99 $1428.14 $RSN84 RSN43_JYTLFCR_CSM185.AT2 $1000 $Color $1000 $T_Color $Springs_Allen Ranch"$5.34 Reverse $0.110 $1001 $1010157.AT2 $143 $13.48 $RSN43_JYTLFCR_CSM185.AT2 $1000 $Color $1000 $T_Tistaden $-CT $1000 $T_Tistaden $100 $T_Tistaden 100	632	0.498	"Whittier Narrows-01"	1987	"LA - Cypress Ave"	5.99	Reverse Oblique	8.56	366.71	RSN632_WHITTIER.A_A-CYP053.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M=5.0-6.0.	R 1в=0-20 km.	V _{\$30} =800-2000 (m/sec)								
	Record										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sequence	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23	0.260	"San Francisco"	1957	"Golden Gate Park"	5.28	Reverse	9.74	874.72	RSN23 SANFRAN GGP010.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	43	0.121	"Lytle Creek"	1970	"Cedar Springs Allen Ranch"	5.33	Reverse Oblique	17.4	813.48	RSN43 LYTLECR CSM185.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	98	0.110	"Hollister-03"	1974	"Gilroy Array #1"	5.14	strike slip	9.99	1428.14	RSN98 HOLLISTR A-G01157.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	146	0.200	"Coyote Lake"	1979	"Gilroy Array #1"	5.74	strike slip	10.21	1428.14	RSN146 COYOTELK G01320.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	680	0.702	"Whittier Narrows-01"	1987	"Pasadena - CIT Kresge Lab"	5.99	Reverse Oblique	6.78	969.07	RSN680_WHITTIER.A_A-KRE090.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1709	0.495	"Northridge-06"	1994	"LA - Griffith Park Observatory"	5.28	Reverse	18.53	1015.88	RSN1709_NORTH392_GPO270.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1715	0.250	"Northridge-06"	1994	"LA - Wonderland Ave"	5.28	Reverse	13.15	1222.52	RSN1715_NORTH392_WON095.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4312	0.243	"Umbria-03_ Italy"	1984	"Gubbio"	5.6	Normal	14.67	922	RSN4312_UMBRIA.P_I-GBB090.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9291	0.505	"14095628"	2004	"Cattani Ranch"	5.03	strike slip	19.91	895	RSN9291_14095628_CITEHHLE.AT2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M=5.0-6.0, 1	R _{JB} =20-100 kı	n, V _{s30} <180 (m/sec)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Record							D			
NumberImage: Construction of the second	Sequence	$T_p(sec)$	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB}	V s30	Horizontal Acc. Filename	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number		•			Ū.		(KM)	(m/sec)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	608	0.781	"Whittier Narrows-01"	1987	"Carson - Water St"	5.99	Reverse Oblique	26.3	160.58	RSN608_WHITTIER.A_A-WAT270.AT2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1843	0.495	"Yountville"	2000	"APEEL 2 - Redwood City"	5	strike slip	94.18	133.11	RSN1843_YOUNTVL_A02090.AT2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1852	0.607	"Yountville"	2000	"Larkspur Ferry Terminal (FF)"	5	strike slip	47.65	169.72	RSN1852_YOUNTVL_LKS360.AT2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2175	0.215	"Chi-Chi_ Taiwan-02"	1999	"CHY047"	5.9	Reverse	67.81	169.52	RSN2175_CHICHI.02_CHY047N.AT2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2178	0.487	"Chi-Chi_ Taiwan-02"	1999	"CHY054"	5.9	Reverse	92.14	172.1	RSN2178_CHICHI.02_CHY054E.AT2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2192	0.247	"Chi-Chi_ Taiwan-02"	1999	"CHY076"	5.9	Reverse	79.64	169.84	RSN2192_CHICHI.02_CHY076N.AT2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2209	0.374	"Chi-Chi_ Taiwan-02"	1999	"CHY107"	5.9	Reverse	94.3	175.68	RSN2209_CHICHI.02_CHY107W.AT2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2284	0.976	"Chi-Chi_ Taiwan-02"	1999	"ILA044"	5.9	Reverse	98.04	158.13	RSN2284_CHICHI.02_ILA044N.AT2	
38281.224"Yountville"2000"Treasure Island"5strike slip 60.29 155.11RSN3828_YOUNTVL_TIGA360.AT2M=5.0-6.0, RJB=20-100 km, Vs30=180-360 (m/sec)Record Sequence NumberTp (sec)Earthquake NameYearStation NameMagnitudeMechanism $R_{JB}(km)$ V_{s30} (m/sec)Horizontal Acc. Filename100.444"Imperial Valley-03"1951"El Centro Array #9"5.6strike slip24.58213.44RSN10_IMPVALL.BG_C-ELC000.AT2190.651"Central Calif-01"1954"Hollister City Hall"5.3strike slip25.11198.77RSN19_CTRCALIF_A-HCH271.AT2460.262"Lytle Creek"1970"LA - Hollywood Stor FF"5.33Reverse Oblique73.46316.46RSN46 LYTLECR PEL090.AT2	3697	0.731	"Whittier Narrows-02"	1987	"Carson - Water St"	5.27	Reverse Oblique	26.14	160.58	RSN3697_WHITTIER.B_B-WAT180.AT2	
M=5.0-6.0, R_{JB} =20-100 km, V_{s30} =180-360 (m/sec)Record Sequence NumberEarthquake NameYearStation NameMagnitudeMechanism $R_{JB}(km)$ V_{s30} (m/sec)Horizontal Acc. Filename100.444"Imperial Valley-03"1951"El Centro Array #9"5.6strike slip24.58213.44RSN10_IMPVALL.BG_C-ELC000.AT2190.651"Central Calif-01"1954"Hollister City Hall"5.3strike slip25.11198.77RSN19_CTRCALIF_A-HCH271.AT2460.262"Lytle Creek"1970"LA - Hollywood Stor FF"5.33Reverse Oblique73.46316.46RSN46 LYTLECR PEL090.AT2	3828	1.224	"Yountville"	2000	"Treasure Island"	5	strike slip	60.29	155.11	RSN3828_YOUNTVL_TIGA360.AT2	
Record Sequence NumberTp (sec)Earthquake NameYearStation NameMagnitudeMechanismRJB(km) V_{s30} (m/sec)Horizontal Acc. Filename100.444"Imperial Valley-03"1951"El Centro Array #9"5.6strike slip24.58213.44RSN10_IMPVALL.BG_C-ELC000.AT2190.651"Central Calif-01"1954"Hollister City Hall"5.3strike slip25.11198.77RSN19_CTRCALIF_A-HCH271.AT2460.262"Lytle Creek"1970"LA - Hollywood Stor FF"5.33Reverse Oblique73.46316.46RSN46_LYTLECR PEL090.AT2	M=5.0-6.0, 1	R _{JB} =20-100 kı	n, V _{s30} =180-360 (m/sec)			•					
NumberTp (sec)Earthquake NameYearStation NameMagnitudeMechanismRJB(km)Vs30 (m/sec)Horizontal Acc. Filename100.444"Imperial Valley-03"1951"El Centro Array #9"5.6strike slip24.58213.44RSN10_IMPVALL.BG_C-ELC000.AT2190.651"Central Calif-01"1954"Hollister City Hall"5.3strike slip25.11198.77RSN19_CTRCALIF_A-HCH271.AT2460.262"Lytle Creek"1970"LA - Hollywood Stor FF"5.33Reverse Oblique73.46316.46RSN46_LYTLECR PEL090.AT2	Record	-									
NumberImage: International ControlImage: Internatio	Sequence	T_{p} (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{IB} (km)	V _{s30}	Horizontal Acc. Filename	
10 0.444 "Imperial Valley-03" 1951 "El Centro Array #9" 5.6 strike slip 24.58 213.44 RSN10_IMPVALL.BG_C-ELC000.AT2 19 0.651 "Central Calif-01" 1954 "Hollister City Hall" 5.3 strike slip 25.11 198.77 RSN19_CTRCALIF_A-HCH271.AT2 46 0.262 "Lytle Creek" 1970 "LA - Hollywood Stor FF" 5.33 Reverse Oblique 73.46 316.46 RSN46_LYTLECR PEL090.AT2	Number	- p (5000)				gilling			(m/sec)		
19 0.651 "Central Calif-01" 1954 "Hollister City Hall" 5.3 strike slip 25.11 198.77 RSN19_CTRCALIF_A-HCH271.AT2 46 0.262 "Lytle Creek" 1970 "LA - Hollywood Stor FF" 5.33 Reverse Oblique 73.46 316.46 RSN46_LYTLECR PEL090.AT2	10	0.444	"Imperial Vallev-03"	1951	"El Centro Arrav #9"	5.6	strike slip	24.58	213.44	RSN10 IMPVALL.BG C-ELC000.AT2	
46 0.262 "Lytle Creek" 1970 "LA - Hollywood Stor FF" 5.33 Reverse Oblique 73.46 316.46 RSN46_LYTLECR PEL090.AT2	19	0.651	"Central Calif-01"	1954	"Hollister City Hall"	5.3	strike slip	25.11	198.77	RSN19 CTRCALIF A-HCH271.AT2	
	46	0.262	"Lytle Creek"	1970	"LA - Hollywood Stor FF"	5.33	Reverse Oblique	73.46	316.46	RSN46 LYTLECR PEL090.AT2	

151	0.429	"Coyote Lake"	1979	"Halls Valley"	5.74	strike slip	33.69	281.61	RSN151_COYOTELK_HVR240.AT2
196	0.355	"Imperial Valley-07"	1979	"Delta"	5.01	strike slip	49.4	242.05	RSN196_IMPVALL.A_A-DLT262.AT2
218	0.305	"Livermore-02"	1980	"Antioch - 510 G St"	5.42	strike slip	29.31	304.68	RSN218_LIVERMOR_B-ANT360.AT2
		"Anza (Horse Canyon)-							
228	0.411	01"	1980	"Borrego Air Ranch"	5.19	strike slip	39.21	336.07	RSN228_ANZA_BAR225.AT2
309	0.248	"Taiwan SMART1(5)"	1981	"SMART1 M01"	5.9	Reverse	26.31	268.37	RSN309_SMART1.05_05M01NS.AT2
421	0.363	"Trinidad offshore"	1983	"Rio Dell Overpass_ E Ground"	5.7	strike slip	68.02	311.75	RSN421_TRINIDAD_RDE000.AT2
478	0.597	"Lazio-Abruzzo_ Italy"	1984	"Garigliano-Centrale Nucleare"	5.8	Normal	49.33	266.41	RSN478_ABRUZZO_GCN-NS.AT2
486	0.432	"Taiwan SMART1(33)"	1985	"SMART1 C00"	5.8	Normal	41.53	309.41	RSN486_SMART1.33_33C00EW.AT2
492	0.167	"Taiwan SMART1(33)"	1985	"SMART1 007"	5.8	Normal	41.24	314.33	RSN492_SMART1.33_33007NS.AT2
544	1.109	"Chalfant Valley-01"	1986	"Bishop - LADWP South St"	5.77	strike slip	23.38	303.47	RSN544_CHALFANT.B_B-LAD180.AT2
562	0.518	"Chalfant Valley-04"	1986	"Bishop - LADWP South St"	5.44	strike slip	23.99	303.47	RSN562_CHALFANT.B_D-LAD270.AT2
607	0.765	"Whittier Narrows-01"	1987	"Carson - Catskill Ave"	5.99	Reverse Oblique	29.85	305.14	RSN607_WHITTIER.A_A-CAT090.AT2
624	0.258	"Whittier Narrows-01"	1987	"Huntington Beach - Lake St"	5.99	Reverse Oblique	42.16	315.52	RSN624_WHITTIER.A_A-HNT360.AT2
670	0.192	"Whittier Narrows-01"	1987	"Pacific Palisades - Sunset"	5.99	Reverse Oblique	38.7	191.06	RSN670_WHITTIER.A_A-SUN190.AT2
689	0.354	"Whittier Narrows-01"	1987	"Rosamond - Goode Ranch"	5.99	Reverse Oblique	81.74	275.12	RSN689_WHITTIER.A_A-ROS090.AT2
717	0.349	"Whittier Narrows-02"	1987	"Tarzana - Cedar Hill"	5.27	Reverse Oblique	39.95	257.21	RSN717_WHITTIER.B_B-TAR000.AT2
1684	0.690	"Northridge-05"	1994	"Elizabeth Lake"	5.13	Reverse Oblique	41.59	326.19	RSN1684_NORTH151_ELL180.AT2

M=5.0-6.0, R_{JB}=20-100 km, V_{s30}=360-800 (m/sec)

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
48	0.339	"Lytle Creek"	1970	"Puddingstone Dam (Abutment)"	5.33	Reverse Oblique	29.49	421.44	RSN48_LYTLECR_PUD055.AT2
105	0.210	"Northern Calif-07"	1975	"Shelter Cove_ Sta B"	5.2	strike slip	59.7	518.98	RSN105_NCALIF.AG_D-SCP160.AT2
135	0.300	"Santa Barbara"	1978	"Cachuma Dam Toe"	5.92	Reverse Oblique	23.75	465.51	RSN135_SBARB_CAD250.AT2
152	0.419	"Coyote Lake"	1979	"SJB Overpass_ Bent 3 g.l."	5.74	strike slip	20.44	367.43	RSN152_COYOTELK_SJ3337.AT2
246	0.788	"Mammoth Lakes-06"	1980	"Benton"	5.94	strike slip	41.75	370.94	RSN246_MAMMOTH.L_L-BEN270.AT2
370	0.507	"Coalinga-02"	1983	"ALP (temp)"	5.09	Reverse	24.23	467.03	RSN370_COALINGA_A-ALP355.AT2
444	0.058	"Borah Peak_ ID-02"	1983	"HAU"	5.1	Normal	48.43	612.78	RSN444_BORAH.AS_HAU000.AT2
479	0.182	"Lazio-Abruzzo_ Italy"	1984	"Isernia-Sant'Agapito"	5.8	Normal	29.71	460.31	RSN479_ABRUZZO_ISE-NS.AT2
494	0.346	"Drama_ Greece"	1985	"Kavala"	5.2	Normal Oblique	43.38	535.24	RSN494_GREECE_G-KAV-WE.AT2
543	0.487	"Chalfant Valley-01"	1986	"Benton"	5.77	strike slip	24.25	370.94	RSN543_CHALFANT.B_B-BEN270.AT2
598	0.196	"Whittier Narrows-01"	1987	"Big Tujunga_ Angeles Nat F"	5.99	Reverse Oblique	22.5	550.11	RSN598_WHITTIER.A_A-TUJ352.AT2
617	0.305	"Whittier Narrows-01"	1987	"Featherly Park - Maint"	5.99	Reverse Oblique	35.04	367.54	RSN617_WHITTIER.A_A-FEA000.AT2
631	0.330	"Whittier Narrows-01"	1987	"LA - Chalon Rd"	5.99	Reverse Oblique	32.11	740.05	RSN631_WHITTIER.A_A-CHL120.AT2
659	0.764	"Whittier Narrows-01"	1987	"Malibu - W Pacific Cst Hwy"	5.99	Reverse Oblique	60.35	436.53	RSN659_WHITTIER.A_A-WPA060.AT2
		"Roermond_							
822	0.441	Netherlands"	1992	"GSH"	5.3	Normal	55.48	445.66	RSN822_ROERMOND_GSH-EW.AT2
1133	0.209	"Kozani_ Greece-04"	1995	"Grevena"	5.1	Normal Oblique	83.8	520.19	RSN1133_KOZANI_C-GR1L.AT2
1729	0.247	"Northridge-06"	1994	"San Marino - SW Academy"	5.28	Reverse	32.06	379.43	RSN1729_NORTH392_SMA360.AT2
1847	0.561	"Yountville"	2000	"Danville Fire Station"	5	strike slip	71.63	365.26	RSN1847_YOUNTVL_0722A090.AT2
				"Carson City - Nevada Com					
1911	0.323	"Mohawk Val_ Portola"	2001	College"	5.17	strike slip	97.58	436.79	RSN1911_MOHAWK_1409C090.AT2
2159	0.265	"Chi-Chi_ Taiwan-02"	1999	"CHY024"	5.9	Reverse	38.33	427.73	RSN2159_CHICHI.02_CHY024E.AT2

M=5.0-6.0, I	R _{JB} =20-100 kı	n, V _{s30} =800-2000 (m/sec)							
Record Sequence	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB}	V_{s30}	Horizontal Acc. Filename
Number							(KIII)	(III/SEC)	
643	0.143	"Whittier Narrows-01"	1987	"LA - Wonderland Ave"	5.99	Reverse Oblique	23.4	1222.52	RSN643_WHITTIER.A_A-WON075.AT2
703	0.230	"Whittier Narrows-01"	1987	"Vasquez Rocks Park"	5.99	Reverse Oblique	47.25	996.43	RSN703_WHITTIER.A_A-VAS090.AT2
1649	0.274	"Sierra Madre"	1991	"Vasquez Rocks Park"	5.61	Reverse	37.63	996.43	RSN1649_SMADRE_VAS000.AT2
2207	0.301	"Chi-Chi_ Taiwan-02"	1999	"CHY102"	5.9	Reverse	78.6	804.36	RSN2207_CHICHI.02_CHY102N.AT2
2296	0.220	"Chi-Chi_ Taiwan-02"	1999	"ILA063"	5.9	Reverse	80.14	996.51	RSN2296_CHICHI.02_ILA063N.AT2
2396	0.344	"Chi-Chi_ Taiwan-02"	1999	"TCU085"	5.9	Reverse	78.11	999.66	RSN2396_CHICHI.02_TCU085N.AT2
2447	0.302	"Chi-Chi_ Taiwan-02"	1999	"TTN042"	5.9	Reverse	97.46	845.34	RSN2447_CHICHI.02_TTN042W.AT2
3718	0.092	"Whittier Narrows-02"	1987	"LA - Wonderland Ave"	5.27	Reverse Oblique	25.04	1222.52	RSN3718_WHITTIER.B_B-WON075.AT2
4438	0.188	"Molise-02_ Italy"	2002	"Sannicandro"	5.7	strike slip	49.6	865	RSN4438_MOLISE.P_B-SCO000.AT2
4438	0.200	"Molise-02_ Italy"	2002	"Sannicandro"	5.7	strike slip	49.6	865	RSN4438_MOLISE.P_B-SCO270.AT2
8775	0.092	"14383980"	2008	"Chilao Flat Rngr Sta"	5.39	Reverse Oblique	46.9	927	RSN8775_14383980_CICHFHNE.AT2
8845	0.334	"14383980"	2008	"Saddle Butte State Park"	5.39	Reverse Oblique	80.94	1131	RSN8845_14383980_CSBB2HNN.AT2
8877	0.391	"14383980"	2008	"Wonderland Avenue School"	5.39	Reverse Oblique	57.15	1043	RSN8877_14383980_CIWNSHLE.AT2
8931	0.238	"14383980"	2008	"Idyllwild - Keenwild Fire Sta."	5.39	Reverse Oblique	97.46	845.41	RSN8931_14383980_N5232270.AT2
9014	0.034	"14151344"	2005	"El Monte County Park"	5.2	strike slip	74.08	805	RSN9014_14151344_CIEMLHHE.AT2
				"Marine Combat Center		-			
9050	0.165	"14151344"	2005	29palms"	5.2	strike slip	91.03	1188	RSN9050_14151344_CIMCTHHN.AT2
9187	0.332	"14095628"	2004	"Edwards Air Force Base 2"	5.03	strike slip	78.99	1242	RSN9187_14095628_CEDW2HLE.AT2
18007	0.565	"14517500"	2009	"China Lake"	5	strike slip	65.8	1464	RSN18007_14517500_CICLCHHN.AT2
18072	0.224	"14519780"	2009	"China Lake"	5.19	strike slip	68.27	1464	RSN18072_14519780_CICLCHNE.AT2
18146	0.155	"14519780"	2009	"Springville 2"	5.19	strike slip	83.55	924	RSN18146_14519780_CSPG2HNN.AT2
M=5.0-6.0, I	R _{JB} =100-1000	km, V _{s30} <180 (m/sec)							
Record							P		
Sequence	$T_p(sec)$	Earthquake Name	Year	Station Name	Magnitude	Mechanism	Кјв	V s30	Horizontal Acc. Filename
Number	1 ()	1			e		(km)	(m/sec)	
2193	0.415	"Chi-Chi_ Taiwan-02"	1999	"CHY078"	5.9	Reverse	119.96	160.67	RSN2193_CHICHI.02_CHY078N.AT2
2193	0.293	"Chi-Chi_ Taiwan-02"	1999	"CHY078"	5.9	Reverse	119.96	160.67	RSN2193_CHICHI.02_CHY078E.AT2
2266	0.955	"Chi-Chi_ Taiwan-02"	1999	"ILA004"	5.9	Reverse	107.49	124.27	RSN2266_CHICHI.02_ILA004N.AT2
2266	1.333	"Chi-Chi_ Taiwan-02"	1999	"ILA004"	5.9	Reverse	107.49	124.27	RSN2266_CHICHI.02_ILA004W.AT2
2309	0.947	"Chi-Chi Taiwan-02"	1999	"TAP005"	5.9	Reverse	128.36	179.84	RSN2309 CHICHI.02 TAP005E.AT2
2309	1.315	"Chi-Chi Taiwan-02"	1999	"TAP005"	5.9	Reverse	128.36	179.84	RSN2309 CHICHI.02 TAP005N.AT2
2317	1.029	"Chi-Chi Taiwan-02"	1999	"TAP021"	5.9	Reverse	122.52	167.18	RSN2317 CHICHI.02 TAP021N.AT2
2317	1.458	"Chi-Chi Taiwan-02"	1999	"TAP021"	5.9	Reverse	122.52	167.18	RSN2317 CHICHI.02 TAP021E.AT2
M-50601	P	km V180 260 (m/soc)							
M=5.0-0.0, I	NJB-100-1000	кш, v _{s30} =100-300 (Ш/Sec)		1	Т				
Record	T ()		v			M 1 .	R _{JB}	V _{s30}	
Sequence	T_p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	(km)	(m/sec)	Horizontal Acc. Filename
Number	0.000	"W71::4:: NI. 01"	1007	"ILLaward Eine Odard" "	5.00	Deveres OI 1	102.00	220.00	DONICOO WILLITTIED & A LIOCOTO ATO
623	0.200	whittier Narrows-01"	198/	Hemet Fire Station	5.99	Keverse Oblique	102.88	328.09	KSIN025_WHITTIEK.A_A-H05270.AT2
1916	0.301	"Nohawk Val_Portola"	2001	"Silver Springs Fire Station"	5.17	strike slip	125.65	306.37	K5N1916_MUHAWK_1996B360.AT2
2156	0.740	"Chi-Chi_ Taiwan-02"	1999	"CHY017"	5.9	Reverse	102.54	190.57	KSN2156_CHICHI.02_CHY01/N.AT2

	0.404		1000			5			
2213	0.401	"Chi-Chi_Taiwan-02"	1999	"CHY115"	5.9	Reverse	121.41	259.43	RSN2213_CHICHI.02_CHY115W.AT2
2279	1.074	"Chi-Chi_ Taiwan-02"	1999	"ILA030"	5.9	Reverse	104.25	200.98	RSN2279_CHICHI.02_ILA030E.AT2
2279	0.575	"Chi-Chi_ Taiwan-02"	1999	"ILA030"	5.9	Reverse	104.25	200.98	RSN2279_CHICHI.02_ILA030N.AT2
2291	0.636	"Chi-Chi_ Taiwan-02"	1999	"ILA055"	5.9	Reverse	108.56	266.77	RSN2291_CHICHI.02_ILA055N.AT2
2314	1.531	"Chi-Chi_ Taiwan-02"	1999	"TAP014"	5.9	Reverse	124.6	188.98	RSN2314_CHICHI.02_TAP014E.AT2
2343	0.683	"Chi-Chi_ Taiwan-02"	1999	"TAP090"	5.9	Reverse	126.63	324.38	RSN2343_CHICHI.02_TAP090N.AT2
2343	0.651	"Chi-Chi_ Taiwan-02"	1999	"TAP090"	5.9	Reverse	126.63	324.38	RSN2343_CHICHI.02_TAP090E.AT2
2394	1.186	"Chi-Chi_ Taiwan-02"	1999	"TCU083"	5.9	Reverse	105.62	354.63	RSN2394_CHICHI.02_TCU083E.AT2
				"Half Moon Bay - Hwy					
3829	0.755	"Yountville"	2000	101/Tunitas GeoArray"	5	strike slip	111.98	353.43	RSN3829 YOUNTVL HMB360.AT2
3842	0.324	"Chi-Chi Taiwan-02"	1999	"CHY016"	5.9	Reverse	110.38	200.86	RSN3842 CHICHI.02 CHY016N.AT2
		"L'Aquila (aftershock 1)							
4539	0.958	Italy"	2009	"San Sepolero"	5.6	Normal Oblique	175.24	322	RSN4539 L-AOUILA A CA057YLN AT2
1557	0.750	"I 'Aquila (aftershock 2)	2007	Sui Seperere	5.0	Hollina Oblique	173.21	522	
4570	1 193	Italy"	2009	"Bojano"	54	Normal	142 79	306	RSN4570 I - AOUII A B FU163XTE AT2
4370	1.175	"I 'Aquila (aftershock 2)	2007	Dojano	5.4	Normai	142.79	500	KBIN+570_L-MQUILA.D_EHI05ATE.M12
4570	1 103	L'Aquita (artersnock 2)_ Italy"	2000	"Boinno"	5.4	Normal	142 70	306	PSN4570 I AOUII A R EU62VIN AT2
6061	1.195	"Mohawik Val Bortola"	2009	"Carson City Fire Station #1."	5.17	striko alin	142.79	206.27	PSN6061_MOHAWK_CE01000_AT2
0001	1.036		2001		5.17	suike siip	246.66	217	K5N0001_MOHAWK_CF01090.A12
8/10	0.933	40204628	2007		5.43	Surke sip	240.00	256	KSIN6/10_40204026_INMINILDHINE.A12
8855	1.527	14383980	2008	Snosnone	5.39	Reverse Oblique	255.39	350	KSN8855_14383980_CISHOHHN.A12
89/3	0.621	"14151344"	2005	"LA - Obregon Park"	5.2	strike slip	156.95	349.43	RSN8973_14151344_24400HLE.A12
M=5.0-6.0, R _J	_{JB} =100-1000	km, V _{s30} =360-800 (m/sec)							
Record							D	N/	
Sequence	T_p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	K _{JB}	V s30	Horizontal Acc. Filename
Number	1	-			C C		(KM)	(m/sec)	
41	0.334	"Lytle Creek"	1970	"Castaic - Old Ridge Route"	5.33	Reverse Oblique	103.23	450.28	RSN41_LYTLECR_ORR021.AT2
484	0.242	"Pelekanada Greece"	1984	"Pelekanada"	5	Normal	154.56	527.96	RSN484 GREECE E-PLK-NS.AT2
484	0.298	"Pelekanada Greece"	1984	"Pelekanada"	5	Normal	154.56	527.96	RSN484 GREECE E-PLK-WE.AT2
	0.127 0	"Roermond							
824	0.329	Netherlands"	1992	"WBS"	5.3	Normal	100.81	525.95	RSN824 ROERMOND WBS-NS AT2
	0.02)	"Roermond	1777	1120	010	Ttoring	100.01	020000	
824	0.631	Netherlands"	1992	"WBS"	53	Normal	100.81	525 95	RSN824 ROFRMOND WBS-FW AT2
2158	0.031	"Chi-Chi Taiwan-02"	1999	"CHY022"	5.9	Reverse	105.72	564.07	RSN2158 CHICHI 02 CHY022N AT2
2101	0.117	"Chi Chi Taiwan 02"	1000	"CHV075"	5.9	Poverse	146.06	165.86	PSN2101_CHICHL02_CHV075E_AT2
2171	1 322	"Chi Chi Taiwan-02"	1999	"TAD0/2"	5.9	Davarsa	178 /2	375.85	DSN2226 CHICHI 02 TAD0/2N AT2
2320	1.333	"Chi Chi Taiwan-02"	1999	"T A D004"	5.9	Davarsa	120.43	116.24	DSN2244 CHICHI 02 TAD004E AT2
2344	1.233	"Chi Chi Taiwan-02"	1999	1 AFU94 "TOLI014"	5.9	Deverse	130.78	410.34	RSIN2344_UTIUTI.U2_1APU94E.A12
2333	1.038	"Chi Chi T i O2"	1999	1CUU14	5.9	Reverse	110.05	490.47	RSIN2535_CHICHI.02_TCU014IN.AT2
2433	0.797	Uni-Uni_Taiwan-02"	1999		5.9	Reverse	104.56	403.59	K5IN2455_CHICHI.02_TIN004W.A12
2450	0.408	"Chi-Chi_ Taiwan-02"	1999	"TTN046"	5.9	Keverse	100.13	528.12	KSN2450_CHICHI.02_TTN046N.AT2
4424	0.272	"Molise-01_ Italy"	2002	"Lab.Gran Sasso"	5.7	strike slip	129.93	547	RSN4424_MOLISE.P_A-ASE000.AT2
4424	0.251	"Molise-01_ Italy"	2002	"Lab.Gran Sasso"	5.7	strike slip	129.93	547	RSN4424_MOLISE.P_A-ASE270.AT2
		"L'Aquila (aftershock 1)_							
4541			2000	"Detrollo Tifornino"	56	Normal Oblique	116.82	496.46	RSN4541 L-AOUILA.A AL106XTE.AT2
	0.483	Italy"	2009	i ettena i nemina	5.0	Horman Oblique		.,	
	0.483	Italy" "L'Aquila (aftershock 1)_	2009	Tettena Thenima	5.0	Ttorinar Oblique			
4541	0.483 0.584	Italy" "L'Aquila (aftershock 1)_ Italy"	2009	"Petrella Tifernina"	5.6	Normal Oblique	116.82	496.46	RSN4541_L-AQUILA.A_AL106YLN.AT2
4541	0.483	Italy" "L'Aquila (aftershock 1)_ Italy" "L'Aquila (aftershock 2)_	2009	"Petrella Tifernina"	5.6	Normal Oblique	116.82	496.46	RSN4541_L-AQUILA.A_AL106YLN.AT2

		"L'Aquila (aftershock 2)							
4576	0.298	Italy"	2009	"Cassino"	5.4	Normal	115.65	630	RSN4576 L-AQUILA.B BS031YLN.AT2
8309	0.306	"CA/Baja Border Area"	2002	"Dos Picos County Park"	5.31	strike slip	167.88	611	RSN8309_CABAJA_CIDPPHHN.AT2
8309	0.029	"CA/Baja Border Area"	2002	"Dos Picos County Park"	5.31	strike slip	167.88	611	RSN8309_CABAJA_CIDPPHHE.AT2
M=5.0-6.0, I	R _{JB} =100-1000	km, V _{s30} =800-2000 (m/sec)		· · · · ·		•			
Record							D	V.	
Sequence	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	KJB (km)	\mathbf{v}_{s30}	Horizontal Acc. Filename
Number							(KIII)	(III/Sec)	
8743	2.299	"40204628"	2007	"San Luis Hill Digital"	5.45	strike slip	265.1	818	RSN8743_40204628_PGSHDHNE.AT2
8792	0.391	"14383980"	2008	"El Monte County Park"	5.39	Reverse Oblique	142.06	805	RSN8792_14383980_CIEMLHNN.AT2
				"Marine Combat Center					
8812	1.149	"14383980"	2008	29palms"	5.39	Reverse Oblique	159.21	1188	RSN8812_14383980_CIMCTHNE.AT2
8853	0.256	"14383980"	2008	"San Diego Road Dept"	5.39	Reverse Oblique	151.84	827	RSN8853_14383980_CISDRHNN.AT2
8869	0.901	"14383980"	2008	"Toro Canyon"	5.39	Reverse Oblique	145.27	1100	RSN8869_14383980_CITORHNE.AT2
8989	0.806	"14151344"	2005	"Blythe"	5.2	strike slip	189.49	1029	RSN8989_14151344_CIBLYHHN.AT2
9000	0.971	"14151344"	2005	"China Lake"	5.2	strike slip	269.3	1464	RSN9000_14151344_CICLCHLE.AT2
9013	0.369	"14151344"	2005	"Edwards Air Force Base 2"	5.2	strike slip	197.45	1242	RSN9013_14151344_CEDW2HHN.AT2
9089	0.833	"14151344"	2005	"Santa Barbara Island"	5.2	strike slip	226.12	854	RSN9089_14151344_CISBIHHE.AT2
9114	0.649	"14151344"	2005	"Turquoise Mountain"	5.2	strike slip	219.06	819	RSN9114_14151344_CITUQHHN.AT2
9126	0.441	"14346868"	2008	"El Monte County Park"	5.1	strike slip	151.28	805	RSN9126_14346868_CIEMLHLE.AT2
9168	0.878	"14095628"	2004	"Chilao Flat Rngr Sta"	5.03	strike slip	128.14	927	RSN9168_14095628_CICHFHLN.AT2
9188	0.535	"14095628"	2004	"El Monte County Park"	5.03	strike slip	321.18	805	RSN9188_14095628_CIEMLHHE.AT2
				"Iron Mountain Pumping		•			
9201	3.001	"14095628"	2004	Station"	5.03	strike slip	344.93	981	RSN9201_14095628_CIIRMHLN.AT2
9268	1.961	"14095628"	2004	"Santa Barbara Island"	5.03	strike slip	214.82	854	RSN9268_14095628_CISBIHHE.AT2
18012	0.482	"14517500"	2009	"Edwards Air Force Base 2"	5	strike slip	166.36	1242	RSN18012_14517500_CEDW2HHN.AT2
				"Granite Mountains Research		^			
18087	4.217	"14519780"	2009	Center"	5.19	strike slip	267.14	943	RSN18087_14519780_CIGMRHNE.AT2
				"Marine Combat Center		•			
18103	2.179	"14519780"	2009	29palms"	5.19	strike slip	292.2	1188	RSN18103_14519780_CIMCTHNN.AT2
18156	0.864	"14519780"	2009	"Turquoise Mountain"	5.19	strike slip	203.25	819	RSN18156_14519780_CITUQHNE.AT2
18392	1.266	"21401069"	2004	"Kaiser Creek_ CA_ USA"	5	strike slip	183.93	1252	RSN18392_21401069_BKKCCHHN.AT2
			•			-			
M-60.701	R 10–0-20 km	V_20<180 (m/sec)							
Decord	-0 20 Milly	· 550 × 100 (111/500)							

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
178	2.476	"Imperial Valley-06"	1979	"El Centro Array #3"	6.53	strike slip	10.79	162.94	RSN178_IMPVALL.H_H-E03140.AT2
				"Imperial Valley Wildlife					
718	0.426	"Superstition Hills-01"	1987	Liquefaction Array"	6.22	strike slip	17.59	179	RSN718_SUPER.A_A-IVW360.AT2
3934	0.900	"Tottori_ Japan"	2000	"SMN002"	6.61	strike slip	16.6	138.76	RSN3934_TOTTORI_SMN002EW.AT2
3965	1.075	"Tottori_ Japan"	2000	"TTR008"	6.61	strike slip	6.86	139.21	RSN3965_TOTTORI_TTR008NS.AT2
4100	0.727	"Parkfield-02_CA"	2004	"Parkfield - Cholame 2WA"	6	strike slip	1.63	173.02	RSN4100_PARK2004_C02090.AT2
4107	0.723	"Parkfield-02_CA"	2004	"Parkfield - Fault Zone 1"	6	strike slip	0.02	178.27	RSN4107_PARK2004_COW360.AT2
		"Christchurch_ New							
8123	0.926	Zealand"	2011	"Christchurch Resthaven "	6.2	Reverse Oblique	5.11	141	RSN8123_CCHURCH_REHSN02E.AT2

M=6.0-7.0, I	R _{JB} =0-20 km,	V _{s30} =180-360 (m/sec)							
Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
6	0.680	"Imperial Valley-02"	1940	"El Centro Array #9"	6.95	strike slip	6.09	213.44	RSN6_IMPVALL.I_I-ELC180.AT2
31	0.495	"Parkfield"	1966	"Cholame - Shandon Array #8"	6.19	strike slip	12.9	256.82	RSN31_PARKF_C08320.AT2
126	1.078	"Gazli_ USSR"	1976	"Karakyr"	6.8	Reverse	3.92	259.59	RSN126_GAZLI_GAZ000.AT2
				"El Centro - Meloland Geot.					
171	2.667	"Imperial Valley-06"	1979	Array"	6.53	strike slip	0.07	264.57	RSN171_IMPVALL.H_H-EMO270.AT2
179	0.909	"Imperial Valley-06"	1979	"El Centro Array #4"	6.53	strike slip	4.9	208.91	RSN179_IMPVALL.H_H-E04140.AT2
232	0.454	"Mammoth Lakes-01"	1980	"Mammoth Lakes H. S."	6.06	Normal Oblique	4.48	346.82	RSN232_MAMMOTH.I_I-MLS344.AT2
266	0.675	"Victoria_ Mexico"	1980	"Chihuahua"	6.33	strike slip	18.53	242.05	RSN266_VICT_CHI102.AT2
367	0.329	"Coalinga-01"	1983	"Pleasant Valley P.P bldg"	6.36	Reverse	7.69	257.38	RSN367_COALINGA.H_H-PVB135.AT2
461	0.526	"Morgan Hill"	1984	"Halls Valley"	6.19	strike slip	3.45	281.61	RSN461_MORGAN_HVR150.AT2
529	0.297	"N. Palm Springs"	1986	"North Palm Springs"	6.06	Reverse Oblique	0	344.67	RSN529_PALMSPR_NPS300.AT2
723	0.744	"Superstition Hills-02"	1987	"Parachute Test Site"	6.54	strike slip	0.95	348.69	RSN723_SUPER.B_B-PTS315.AT2
764	1.538	"Loma Prieta"	1989	"Gilroy - Historic Bldg."	6.93	Reverse Oblique	10.27	308.55	RSN764_LOMAP_GOF160.AT2
803	1.212	"Loma Prieta"	1989	"Saratoga - W Valley Coll."	6.93	Reverse Oblique	8.48	347.9	RSN803_LOMAP_WVC270.AT2
821	0.670	"Erzican_ Turkey"	1992	"Erzincan"	6.69	strike slip	0	352.05	RSN821_ERZINCAN_ERZ-EW.AT2
1063	0.306	"Northridge-01"	1994	"Rinaldi Receiving Sta"	6.69	Reverse	0	282.25	RSN1063_NORTHR_RRS318.AT2
1116	0.694	"Kobe_ Japan"	1995	"Shin-Osaka"	6.9	strike slip	19.14	256	RSN1116_KOBE_SHI000.AT2
1141	0.875	"Dinar_ Turkey"	1995	"Dinar"	6.4	Normal	0	219.75	RSN1141_DINAR_DIN180.AT2
1752	0.220	"Northwest China-03"	1997	"Jiashi"	6.1	Normal	9.98	240.09	RSN1752_NWCHINA3_JIA000.AT2
3933	0.240	"Tottori_ Japan"	2000	"SMN001"	6.61	strike slip	14.42	331	RSN3933_TOTTORI_SMN001NS.AT2
4066	0.135	"Parkfield-02_CA"	2004	"PARKFIELD - FROELICH"	6	strike slip	1.85	226.63	RSN4066_PARK2004_FROEL-90.AT2
M-60-701	R10=0-20 km	V.20-360-800 (m/sec)							
Record	ujb=0 2 0 mili,	(11/5ee)							
Sequence	T _n (sec)	Farthquake Name	Vear	Station Name	Magnitude	Mechanism	Rjb	V _{s30}	Horizontal Acc. Filename
Number	1p (300)	Lartiquake Tvaille	1 cui	Station Funce	Magintude	Wieenamsin	(km)	(m/sec)	Honzontal Acc. Filohame
1	0.404	"Helena Montana-01"	1935	"Carroll College"	6	strike slip	2.07	593.35	RSN1 HELENA.A A-HMC180.AT2
28	1.342	"Parkfield"	1966	"Cholame - Shandon Array #12"	6.19	strike slip	17.64	408.93	RSN28 PARKF C12320.AT2
73	0.153	"San Fernando"	1971	"Lake Hughes #9"	6.61	Reverse	17.22	670.84	RSN73 SFERN L09291.AT2
125	0.498	"Friuli Italy-01"	1976	"Tolmezzo"	6.5	Reverse	14.97	505.23	RSN125 FRIULIA A-TMZ000.AT2
265	0.573	"Victoria Mexico"	1980	"Cerro Prieto"	6.33	strike slip	13.8	471.53	RSN265 VICT CPE315.AT2
284	0.591	"Irpinia Italy-01"	1980	"Auletta"	6.9	Normal	9.52	476.62	RSN284 ITALY A-AUL000.AT2
313	0.544	"Corinth Greece"	1981	"Corinth"	6.6	Normal Oblique	10.27	361.4	RSN313 CORINTH CORL AT2
496	0.525	"Nahanni Canada"	1985	"Site 2"	6.76	Reverse	0	605.04	RSN496 NAHANNI S2240 AT2
518	0.722	"N Palm Springs"	1986	"Fun Valley"	6.06	Reverse Oblique	12.79	388.63	RSN518 PALMSPR FVR135 AT2
553	0.722	"Chalfant Valley-02"	1986	"Long Valley Dam (Downst)"	6.00	strike slin	18.3	537.16	RSN553 CHAI FANT A A-LVD000 AT2
564	0.200	"Kalamata Greece-01"	1986	"Kalamata (bsmt)"	62	Normal	6.45	382.21	RSN564 GREECE H-KAL-NS AT2
587	3 289	"New Zealand-02"	1987	"Matahina Dam"	6.6	Normal	16.09	551.3	RSN587 NEWZEAL A-MAT353 AT2
770	0.6/1	"Loma Prieta"	1080	"I GPC"	6.03	Reverse Oblique	10.09	59/ 82	RSN779 I OMAP I GD000 AT2
802	2 857	"Loma Prieto"	1000	"Saratoga - Aloha Aya"	6.02	Reverse Oblique	7 59	380.80	RSN802 LOMAD STC000 AT2
902	0.335	"Big Beer_01"	1909	"Big Bear Lake - Civic Center"	6.46	strike slip	7.30	130.09	RSN002_LOWIAI_STOU90.AT2
701	0.335		1772	"Jensen Filter Dent	0.40	suike sup	7.51	+50.50	K51701_DIODEAK_DEC2/0.A12
982	1.059	"Northridge-01"	1994	Administrative Building"	6.69	Reverse	0	373.07	RSN982_NORTHR_JEN292.AT2

				"Jensen Filter Plant Generator					
983	0.349	"Northridge-01"	1994	Building"	6.69	Reverse	0	525.79	RSN983_NORTHR_JGB022.AT2
1085	1.116	"Northridge-01"	1994	"Sylmar - Converter Sta East"	6.69	Reverse	0	370.52	RSN1085_NORTHR_SCE281.AT2
1126	0.170	"Kozani_ Greece-01"	1995	"Kozani"	6.4	Normal	14.13	649.67	RSN1126_KOZANI_KOZL.AT2
3907	0.177	"Tottori_ Japan"	2000	"OKY004"	6.61	strike slip	19.72	475.8	RSN3907_TOTTORI_OKY004NS.AT2

M=6.0-7.0, R_{JB}=0-20 km, V_{s30}=800-2000 (m/sec)

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
455	0.208	"Morgan Hill"	1984	"Gilroy Array #1"	6.19	strike slip	14.9	1428.14	RSN455_MORGAN_G01230.AT2
765	0.374	"Loma Prieta"	1989	"Gilroy Array #1"	6.93	Reverse Oblique	8.84	1428.14	RSN765_LOMAP_G01090.AT2
1011	0.789	"Northridge-01"	1994	"LA - Wonderland Ave"	6.69	Reverse	15.11	1222.52	RSN1011_NORTHR_WON095.AT2
1108	1.333	"Kobe_ Japan"	1995	"Kobe University"	6.9	strike slip	0.9	1043	RSN1108_KOBE_KBU090.AT2
3548	1.107	"Loma Prieta"	1989	"Los Gatos - Lexington Dam"	6.93	Reverse Oblique	3.22	1070.34	RSN3548_LOMAP_LEX000.AT2
3925	0.069	"Tottori_ Japan"	2000	"OKYH07"	6.61	strike slip	15.23	940.2	RSN3925_TOTTORI_OKYH07NS.AT2
3954	0.385	"Tottori_ Japan"	2000	"SMNH10"	6.61	strike slip	15.58	967.27	RSN3954_TOTTORI_SMNH10EW.AT2
				"PARKFIELD - TURKEY					
4083	0.581	"Parkfield-02_CA"	2004	FLAT #1 (0M)"	6	strike slip	4.66	906.96	RSN4083_PARK2004_36529360.AT2
5618	2.454	"Iwate_ Japan"	2008	"IWT010"	6.9	Reverse	16.26	825.83	RSN5618_IWATE_IWT010EW.AT2

M=6.0-7.0, R_{JB}=20-100 km, V_{s30}<180 (m/sec)

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
334	1.250	"Coalinga-01"	1983	"Parkfield - Fault Zone 1"	6.36	Reverse	41.04	178.27	RSN334_COALINGA.H_H-COW000.AT2
				"Imperial Valley Wildlife					
729	2.069	"Superstition Hills-02"	1987	Liquefaction Array"	6.54	strike slip	23.85	179	RSN729_SUPER.B_B-IVW360.AT2
759	1.091	"Loma Prieta"	1989	"Foster City - APEEL 1"	6.93	Reverse Oblique	43.77	116.35	RSN759_LOMAP_A01000.AT2
780	0.954	"Loma Prieta"	1989	"Larkspur Ferry Terminal (FF)"	6.93	Reverse Oblique	94.56	169.72	RSN780_LOMAP_LKS360.AT2
2492	3.009	"Chi-Chi_ Taiwan-03"	1999	"CHY076"	6.2	Reverse	59.24	169.84	RSN2492_CHICHI.03_CHY076E.AT2
2715	1.367	"Chi-Chi_ Taiwan-04"	1999	"CHY047"	6.2	strike slip	38.59	169.52	RSN2715_CHICHI.04_CHY047N.AT2
2737	1.267	"Chi-Chi_ Taiwan-04"	1999	"CHY078"	6.2	strike slip	84.01	160.67	RSN2737_CHICHI.04_CHY078E.AT2
2955	0.284	"Chi-Chi_ Taiwan-05"	1999	"CHY047"	6.2	Reverse	66.53	169.52	RSN2955_CHICHI.05_CHY047N.AT2
2975	0.107	"Chi-Chi_ Taiwan-05"	1999	"CHY076"	6.2	Reverse	83.74	169.84	RSN2975_CHICHI.05_CHY076E.AT2
3282	1.764	"Chi-Chi_ Taiwan-06"	1999	"CHY047"	6.3	Reverse	53.54	169.52	RSN3282_CHICHI.06_CHY047N.AT2
3302	2.500	"Chi-Chi_ Taiwan-06"	1999	"CHY076"	6.3	Reverse	69.66	169.84	RSN3302_CHICHI.06_CHY076E.AT2
4199	1.176	"Niigata_ Japan"	2004	"NIG009"	6.63	Reverse	71.02	179.6	RSN4199_NIIGATA_NIG009NS.AT2
4203	2.802	"Niigata_ Japan"	2004	"NIG013"	6.63	Reverse	38	174.55	RSN4203_NIIGATA_NIG013EW.AT2
5117	0.921	"Chuetsu-oki_ Japan"	2007	"ISK002"	6.8	Reverse	96.52	166.91	RSN5117_CHUETSU_ISK002NS.AT2
5256	3.358	"Chuetsu-oki_ Japan"	2007	"NIG010"	6.8	Reverse	48.1	173.09	RSN5256_CHUETSU_NIG010EW.AT2
5271	0.732	"Chuetsu-oki_ Japan"	2007	"NIG025"	6.8	Reverse	28.3	134.5	RSN5271_CHUETSU_NIG025NS.AT2
5470	3.437	"Iwate_ Japan"	2008	"AKT015"	6.9	Reverse	74.75	135.4	RSN5470_IWATE_AKT015EW.AT2
5665	2.970	"Iwate_ Japan"	2008	"MYG006"	6.9	Reverse	30.38	146.72	RSN5665_IWATE_MYG006NS.AT2
5676	1.059	"Iwate_ Japan"	2008	"MYG017"	6.9	Reverse	95.3	122.07	RSN5676_IWATE_MYG017EW.AT2
5749	3.612	"Iwate_ Japan"	2008	"YMT006"	6.9	Reverse	40.83	130.69	RSN5749_IWATE_YMT006NS.AT2

M=6.0-7.0, l	R _{JB} =20-100 kr	n, V _{s30} =180-360 (m/sec)							
Record							RIB	V_{e30}	
Sequence	$T_p(sec)$	Earthquake Name	Year	Station Name	Magnitude	Mechanism	(km)	(m/sec)	Horizontal Acc. Filename
Number	1.420	"Northweat Calif 02"	1041	"Famidala City Hall"	6.6	atuilea alim	01.15	210.21	DENIZ NIWCALIE C. C. EDN045 AT2
20	1.429	"Northarn Calif 02"	1941	"Form dala City Hall"	0.0	strike slip	91.13	219.51	RSN7_NWCALIF.C_C-FKN045.A12
20	0.625	Northern Call-05	1954	"Deat Hear and "	0.5	Strike slip	20.72	219.31	RSN20_NCALIF.FH_H-FKN314.A12
82	2.324	"San Fernando"	1971	Port Hueneme	0.01	Reverse	68.84	248.98	RSN82_SFERN_PHN180.A12
123	0.314	"Friuli_ Italy-01"	1976		6.5	Reverse	80.37	352.05	RSN123_FRIULI.A_A-CLV2/0.A12
191	0.189	Imperial Valley-06"	19/9	Victoria	6.53	strike slip	31.92	242.05	RSN191_IMPVALL.H_H-VC10/5.A12
298	0.771	"Irpinia_ Italy-02"	1980	Bovino	6.2	Normal	43.5	356.39	RSN298_IIALY_B-BOV2/0.A12
328	0.706	"Coalinga-01"	1983	"Parkfield - Cholame 3W"	6.36	Reverse	44.82	230.57	RSN328_COALINGA.H_H-C03000.A12
341	1.250	"Coalinga-01"	1983	"Parkfield - Fault Zone 2"	6.36	Reverse	37.92	294.26	RSN341_COALINGA.H_H-Z02090.A12
348	1.303	"Coalinga-01"	1983	"Parkfield - Gold Hill 1W"	6.36	Reverse	35.04	214.43	RSN348_COALINGA.H_H-PG1000.AT2
425	1.501	"Taiwan SMART1(25)"	1983	"SMART1 C00"	6.5	Reverse	95.57	309.41	RSN425_SMART1.25_25C00NS.AT2
431	0.944	"Taiwan SMART1(25)"	1983	"SMART1 M06"	6.5	Reverse	94.58	308.39	RSN431_SMART1.25_25M06EW.AT2
436	0.268	"Borah Peak_ ID-01"	1983	"CPP-601"	6.88	Normal	82.6	279.97	RSN436_BORAH.MS_CPPA179.AT2
446	0.741	"Morgan Hill"	1984	"APEEL 1E - Hayward"	6.19	strike slip	51.68	219.8	RSN446_MORGAN_A1E000.AT2
464	0.541	"Morgan Hill"	1984	"Hollister Differential Array #3"	6.19	strike slip	26.42	215.54	RSN464_MORGAN_HD3345.AT2
504	0.987	"Taiwan SMART1(40)"	1986	"SMART1 E01"	6.32	Reverse	55.96	308.39	RSN504_SMART1.40_40EO1EW.AT2
509	0.938	"Taiwan SMART1(40)"	1986	"SMART1 O01"	6.32	Reverse	60.77	267.67	RSN509_SMART1.40_40001NS.AT2
522	1.579	"N. Palm Springs"	1986	"Indio"	6.06	Reverse Oblique	35.34	307.54	RSN522_PALMSPR_INO225.AT2
556	0.252	"Chalfant Valley-02"	1986	"McGee Creek - Surface"	6.19	strike slip	28.2	359.23	RSN556_CHALFANT.A_A-MCG360.AT2
M=6.0-7.0, 1	R _{JB} =20-100 kr	n, V _{s30} =360-800 (m/sec)	1						
Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
17	0.597	"Southern Calif"	1952	"San Luis Obispo"	6	strike slip	73.35	493.5	RSN17_SCALIF_SLO234.AT2
32	0.508	"Parkfield"	1966	"San Luis Obispo"	6.19	strike slip	63.34	493.5	RSN32_PARKF_SLO324.AT2
58	0.290	"San Fernando"	1971	"Cedar Springs Pumphouse"	6.61	Reverse	92.25	477.22	
63	0.273	"San Fernando"	1971	"Fairmont Dam"	6.61				RSN58_SFERN_CSP126.AT2
190	0.464	"Imperial Valley-06"	1979	"Superstition Mtn Camera"		Reverse	25.58	634.33	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2
303	0.560	"Iminia Italy 02"		Superstition with Cumera	6.53	Reverse strike slip	25.58 24.61	634.33 362.38	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2
357	0.4.60	IIpinia_ naiy-02	1980	"Sturno (STN)"	6.53 6.2	Reverse strike slip Normal	25.58 24.61 20.38	634.33 362.38 382	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2
420	0.469	"Coalinga-01"	1980 1983	"Sturno (STN)" "Parkfield - Stone Corral 3E"	6.53 6.2 6.36	Reverse strike slip Normal Reverse	25.58 24.61 20.38 32.81	634.33 362.38 382 565.08	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2
427	0.469	"Coalinga-01" "Ierissos_Greece"	1980 1983 1983	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos"	6.53 6.2 6.36 6.7	Reverse strike slip Normal Reverse strike slip	25.58 24.61 20.38 32.81 65.67	634.33 362.38 382 565.08 463.92	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2
120	0.469 0.258 0.505	"Coalinga-01" "Ierissos_ Greece" "Taiwan SMART1(25)"	1980 1983 1983 1983	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02"	6.53 6.2 6.36 6.7 6.5	Reverse strike slip Normal Reverse strike slip Reverse	25.58 24.61 20.38 32.81 65.67 91.54	634.33 362.38 382 565.08 463.92 671.52	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2
438	0.469 0.258 0.505 0.369	"Coalinga-01" "Ierissos_ Greece" "Taiwan SMART1(25)" "Borah Peak ID-01"	1980 1983 1983 1983 1983 1983	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02" "PBF (second bsmt)"	6.53 6.2 6.36 6.7 6.5 6.88	Reversestrike slipNormalReversestrike slipReverseNormal	25.58 24.61 20.38 32.81 65.67 91.54 87.69	634.33 362.38 382 565.08 463.92 671.52 375.38	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2 RSN438_BORAH.MS_PBFSOU.AT2
438	0.469 0.258 0.505 0.369 0.328	"Coalinga-01" "Ierissos_ Greece" "Taiwan SMART1(25)" "Borah Peak_ ID-01" "Chalfant Valley-02"	1980 1983 1983 1983 1983 1983 1983	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02" "PBF (second bsmt)" "Mammoth Lakes Sheriff Subst."	6.53 6.2 6.36 6.7 6.5 6.88 6.19	Reversestrike slipNormalReversestrike slipReverseNormalstrike slip	25.58 24.61 20.38 32.81 65.67 91.54 87.69 34.92	634.33 362.38 382 565.08 463.92 671.52 375.38 529.39	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2 RSN438_BORAH.MS_PBFS0U.AT2 RSN555_CHALFANT.A_A-MAM020.AT2
438 555 751	0.469 0.258 0.505 0.369 0.328 0.782	"Coalinga-01" "Ierissos_ Greece" "Taiwan SMART1(25)" "Borah Peak_ ID-01" "Chalfant Valley-02" "Loma Prieta"	1980 1983 1983 1983 1983 1983 1986 1989	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02" "PBF (second bsmt)" "Mammoth Lakes Sheriff Subst."	6.53 6.2 6.36 6.7 6.5 6.88 6.19 6.93	Reversestrike slipNormalReversestrike slipReverseNormalstrike slipReverse Oblique	25.58 24.61 20.38 32.81 65.67 91.54 87.69 34.92 35.28	634.33 362.38 382 565.08 463.92 671.52 375.38 529.39 571.99	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2 RSN438_BORAH.MS_PBFS0U.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN751_LOMAP_CLR180.AT2
438 555 751 814	0.469 0.258 0.505 0.369 0.328 0.782 0.633	"Coalinga-01" "Ierissos_Greece" "Taiwan SMART1(25)" "Borah Peak_ID-01" "Chalfant Valley-02" "Loma Prieta"	1980 1983 1983 1983 1983 1983 1986 1989	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02" "PBF (second bsmt)" "Mammoth Lakes Sheriff Subst." "Calaveras Reservoir" "Edessa (bsmt)"	6.53 6.2 6.36 6.7 6.5 6.88 6.19 6.93 6.1	Reversestrike slipNormalReversestrike slipReverseNormalstrike slipReverse ObliqueNormal	25.58 24.61 20.38 32.81 65.67 91.54 87.69 34.92 35.28 32.84	634.33 362.38 382 565.08 463.92 671.52 375.38 529.39 571.99 551.3	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2 RSN438_BORAH.MS_PBFS0U.AT2 RSN438_BORAH.MS_PBFS0U.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN751_LOMAP_CLR180.AT2 RSN814_GREFCE_L=EDF=WE AT2
438 555 751 814 818	0.469 0.258 0.505 0.369 0.328 0.782 0.633 0.745	"Coalinga-01" "Ierissos_Greece" "Taiwan SMART1(25)" "Borah Peak_ID-01" "Chalfant Valley-02" "Loma Prieta" "Griva_Greece" "Georgia_USSR"	1980 1983 1983 1983 1983 1983 1986 1989 1990	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02" "PBF (second bsmt)" "Mammoth Lakes Sheriff Subst." "Calaveras Reservoir" "Edessa (bsmt)"	$\begin{array}{r} 6.53 \\ 6.2 \\ 6.36 \\ 6.7 \\ 6.5 \\ 6.88 \\ 6.19 \\ 6.93 \\ 6.1 \\ 6.2 \end{array}$	Reversestrike slipNormalReversestrike slipReverseNormalstrike slipReverse ObliqueNormalReverse	25.58 24.61 20.38 32.81 65.67 91.54 87.69 34.92 35.28 32.84 31.38	634.33 362.38 382 565.08 463.92 671.52 375.38 529.39 571.99 551.3 437.72	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2 RSN438_BORAH.MS_PBFSOU.AT2 RSN438_BORAH.MS_PBFSOU.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN511_LOMAP_CLR180.AT2 RSN814_GREECE_L-EDE-WE.AT2 RSN814_GREECE_L-EDE-WE.AT2 RSN818_GEORGIA_IRIX_AT2
438 555 751 814 818 934	0.469 0.258 0.505 0.369 0.328 0.782 0.633 0.745 0.184	"Coalinga-01" "Ierissos_Greece" "Taiwan SMART1(25)" "Borah Peak_ID-01" "Chalfant Valley-02" "Loma Prieta" "Griva_Greece" "Georgia_USSR" "Big Bear-01"	1980 1983 1983 1983 1983 1983 1986 1989 1990 1991 1992	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02" "PBF (second bsmt)" "Mammoth Lakes Sheriff Subst." "Calaveras Reservoir" "Edessa (bsmt)" "Iri" "Silent Valley - Poppet Flat"	$\begin{array}{r} 6.53 \\ 6.2 \\ 6.36 \\ 6.7 \\ 6.5 \\ 6.88 \\ 6.19 \\ 6.93 \\ 6.1 \\ 6.2 \\ 6.46 \end{array}$	Reversestrike slipNormalReversestrike slipReverseNormalstrike slipReverse ObliqueNormalReversestrike slipstrike slip	25.58 24.61 20.38 32.81 65.67 91.54 87.69 34.92 35.28 32.84 31.38 34.43	634.33 362.38 382 565.08 463.92 671.52 375.38 529.39 571.99 551.3 437.72 659.09	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2 RSN438_BORAH.MS_PBFSOU.AT2 RSN438_BORAH.MS_PBFSOU.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN751_LOMAP_CLR180.AT2 RSN814_GREECE_L-EDE-WE.AT2 RSN818_GEORGIA_IRI-X.AT2 RSN818_GEORGIA_IRI-X.AT2 RSN934_BIGBEAR_SU_360_AT2
438 555 751 814 818 934 942	$\begin{array}{c} 0.469\\ 0.258\\ 0.505\\ 0.369\\ 0.328\\ 0.782\\ 0.633\\ 0.745\\ 0.184\\ 0.723\\ \end{array}$	"Coalinga-01" "Coalinga-01" "Ierissos_Greece" "Taiwan SMART1(25)" "Borah Peak_ID-01" "Chalfant Valley-02" "Loma Prieta" "Griva_Greece" "Georgia_USSR" "Big Bear-01"	1980 1983 1983 1983 1983 1986 1986 1989 1990 1991 1992	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02" "PBF (second bsmt)" "Mammoth Lakes Sheriff Subst." "Calaveras Reservoir" "Edessa (bsmt)" "Iri" "Silent Valley - Poppet Flat" "Alhambra - Eremont School"	$\begin{array}{r} 6.53 \\ 6.2 \\ 6.36 \\ 6.7 \\ 6.5 \\ 6.88 \\ 6.19 \\ 6.93 \\ 6.1 \\ 6.2 \\ 6.46 \\ 6.69 \end{array}$	Reversestrike slipNormalReversestrike slipReverseNormalstrike slipReverse ObliqueNormalReversestrike slipReversestrike slipReversestrike slipReversestrike slipReverse	25.58 24.61 20.38 32.81 65.67 91.54 87.69 34.92 35.28 32.84 31.38 34.43 35.66	634.33 362.38 382 565.08 463.92 671.52 375.38 529.39 571.99 551.3 437.72 659.09 549.75	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2 RSN438_BORAH.MS_PBFSOU.AT2 RSN438_BORAH.MS_PBFSOU.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN751_LOMAP_CLR180.AT2 RSN814_GREECE_L-EDE-WE.AT2 RSN814_GREECE_L-EDE-WE.AT2 RSN818_GEORGIA_IRI-X.AT2 RSN934_BIGBEAR_SIL360.AT2 RSN942_NORTHR_ALH090_AT2
438 555 751 814 818 934 942 1123	$\begin{array}{c} 0.469\\ 0.258\\ 0.505\\ 0.369\\ 0.328\\ 0.782\\ 0.633\\ 0.745\\ 0.184\\ 0.723\\ 0.249\end{array}$	"Coalinga-01" "Coalinga-01" "Ierissos_Greece" "Taiwan SMART1(25)" "Borah Peak_ID-01" "Chalfant Valley-02" "Loma Prieta" "Griva_Greece" "Georgia_USSR" "Big Bear-01" "Northridge-01"	1980 1983 1983 1983 1983 1986 1989 1990 1991 1992 1994 1995	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02" "PBF (second bsmt)" "Mammoth Lakes Sheriff Subst." "Calaveras Reservoir" "Edessa (bsmt)" "Iri" "Silent Valley - Poppet Flat" "Alhambra - Fremont School"	$\begin{array}{c} 6.53 \\ 6.2 \\ 6.36 \\ 6.7 \\ 6.5 \\ 6.88 \\ 6.19 \\ 6.93 \\ 6.1 \\ 6.2 \\ 6.46 \\ 6.69 \\ 6.4 \end{array}$	Reversestrike slipNormalReversestrike slipReverseNormalstrike slipReverse ObliqueNormalReversestrike slipReversestrike slipReversestrike slipReversestrike slipReverseNormalNormalReverseNormalNormal	25.58 24.61 20.38 32.81 65.67 91.54 87.69 34.92 35.28 32.84 31.38 34.43 35.66 72.82	634.33 362.38 382 565.08 463.92 671.52 375.38 529.39 571.99 551.3 437.72 659.09 549.75 649.67	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2 RSN438_BORAH.MS_PBFSOU.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN751_LOMAP_CLR180.AT2 RSN814_GREECE_L-EDE-WE.AT2 RSN814_GREECE_L-EDE-WE.AT2 RSN818_GEORGIA_IRIX.AT2 RSN934_BIGBEAR_SIL360.AT2 RSN942_NORTHR_ALH090.AT2 RSN1123_K07ANLELR_J_AT2
438 555 751 814 818 934 942 1123 1139	$\begin{array}{c} 0.469\\ 0.258\\ 0.505\\ 0.369\\ 0.328\\ 0.782\\ 0.633\\ 0.745\\ 0.184\\ 0.723\\ 0.249\\ 0.366\end{array}$	"Coalinga-01" "Coalinga-01" "Ierissos_Greece" "Taiwan SMART1(25)" "Borah Peak_ID-01" "Chalfant Valley-02" "Loma Prieta" "Griva_Greece" "Georgia_USSR" "Big Bear-01" "Northridge-01" "Kozani_Greece-01"	1980 1983 1983 1983 1983 1986 1989 1990 1991 1992 1994 1995 1995	"Sturno (STN)" "Parkfield - Stone Corral 3E" "Ierissos" "SMART1 E02" "PBF (second bsmt)" "Mammoth Lakes Sheriff Subst." "Calaveras Reservoir" "Edessa (bsmt)" "Iri" "Silent Valley - Poppet Flat" "Alhambra - Fremont School" "Florina" "Cardak"	$\begin{array}{c} 6.53\\ 6.2\\ 6.36\\ 6.7\\ 6.5\\ 6.88\\ 6.19\\ 6.93\\ 6.1\\ 6.2\\ 6.46\\ 6.69\\ 6.4\\ 6.4\\ 6.4\end{array}$	Reversestrike slipNormalReversestrike slipReverseNormalstrike slipReverse ObliqueNormalReversestrike slipReversestrike slipReverseNormalNormalNormalNormalNormalNormalNormalNormal	25.58 24.61 20.38 32.81 65.67 91.54 87.69 34.92 35.28 32.84 31.38 34.43 35.66 72.82 43.13	634.33 362.38 382 565.08 463.92 671.52 375.38 529.39 571.99 551.3 437.72 659.09 549.75 649.67 428.57	RSN58_SFERN_CSP126.AT2 RSN63_SFERN_FTR326.AT2 RSN190_IMPVALL.H_H-SUP045.AT2 RSN303_ITALY_B-STU270.AT2 RSN357_COALINGA.H_H-SC3000.AT2 RSN420_GREECE_B-IER-NS.AT2 RSN427_SMART1.25_25E02EW.AT2 RSN438_BORAH.MS_PBFSOU.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN555_CHALFANT.A_A-MAM020.AT2 RSN751_LOMAP_CLR180.AT2 RSN814_GREECE_L-EDE-WE.AT2 RSN814_GREECE_L-EDE-WE.AT2 RSN818_GEORGIA_IRIX.AT2 RSN934_BIGBEAR_SIL360.AT2 RSN942_NORTHR_ALH090.AT2 RSN1123_KOZANI_FLRL.AT2 RSN1139_DINAR_CAP346_AT2

4350	2.000	"Umbria Marche_ Italy"	1997	"Gubbio-Piana"	6	Normal	35.79	492	RSN4350_UBMARCHE.P_A-GBP000.AT2
4487	1.175	"L'Aquila_ Italy"	2009	"Mompeo 1"	6.3	Normal	47.45	574.88	RSN4487_L-AQUILA_CU008YLN.AT2

M=6.0-7.0, R_{JB}=20-100 km, V_{s30}=800-2000 (m/sec)

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
59	0.921	"San Fernando"	1971	"Cedar Springs_ Allen Ranch"	6.61	Reverse	89.37	813.48	RSN59_SFERN_CSM095.AT2
80	0.266	"San Fernando"	1971	"Pasadena - Old Seismo Lab"	6.61	Reverse	21.5	969.07	RSN80_SFERN_PSL270.AT2
				"Piedmont Jr High School					
788	0.471	"Loma Prieta"	1989	Grounds"	6.93	Reverse Oblique	72.9	895.36	RSN788_LOMAP_PJH045.AT2
789	1.428	"Loma Prieta"	1989	"Point Bonita"	6.93	Reverse Oblique	83.37	1315.92	RSN789_LOMAP_PTB297.AT2
795	0.800	"Loma Prieta"	1989	"SF - Pacific Heights"	6.93	Reverse Oblique	75.96	1249.86	RSN795_LOMAP_PHT270.AT2
1091	0.615	"Northridge-01"	1994	"Vasquez Rocks Park"	6.69	Reverse	23.1	996.43	RSN1091_NORTHR_VAS090.AT2
2508	0.803	"Chi-Chi_ Taiwan-03"	1999	"CHY102"	6.2	Reverse	59.99	804.36	RSN2508_CHICHI.03_CHY102E.AT2
2753	0.075	"Chi-Chi_ Taiwan-04"	1999	"CHY102"	6.2	strike slip	39.3	804.36	RSN2753_CHICHI.04_CHY102N.AT2
2989	0.075	"Chi-Chi_ Taiwan-05"	1999	"CHY102"	6.2	Reverse	69.76	804.36	RSN2989_CHICHI.05_CHY102E.AT2
3194	0.326	"Chi-Chi_ Taiwan-05"	1999	"TCU085"	6.2	Reverse	91.5	999.66	RSN3194_CHICHI.05_TCU085N.AT2
3390	0.182	"Chi-Chi_ Taiwan-06"	1999	"ILA063"	6.3	Reverse	82.06	996.51	RSN3390_CHICHI.06_ILA063W.AT2
3542	1.226	"Chi-Chi_ Taiwan-06"	1999	"TTN042"	6.3	Reverse	84.03	845.34	RSN3542_CHICHI.06_TTN042N.AT2
3920	1.053	"Tottori_ Japan"	2000	"OKYH02"	6.61	strike slip	70.52	1047.01	RSN3920_TOTTORI_OKYH02NS.AT2
4167	0.078	"Niigata_ Japan"	2004	"FKSH07"	6.63	Reverse	52.15	828.95	RSN4167_NIIGATA_FKSH07EW.AT2
5006	0.080	"Chuetsu-oki_ Japan"	2007	"FKSH07"	6.8	Reverse	77.65	828.95	RSN5006_CHUETSU_FKSH07NS.AT2
5483	0.121	"Iwate_ Japan"	2008	"AKTH05"	6.9	Reverse	37.45	829.46	RSN5483_IWATE_AKTH05EW.AT2
5650	0.125	"Iwate_ Japan"	2008	"IWTH18"	6.9	Reverse	64.27	891.55	RSN5650_IWATE_IWTH18NS.AT2
5762	3.985	"Iwate_ Japan"	2008	"YMTH03"	6.9	Reverse	99.49	899.84	RSN5762_IWATE_YMTH03EW.AT2
8167	4.908	"San Simeon_ CA"	2003	"Diablo Canyon Power Plant"	6.52	Reverse	37.92	1100	RSN8167_SANSIMEO_DCPP337.AT2
8168	0.583	"Parkfield-02_CA"	2004	"Diablo Canyon Power Plant"	6	strike slip	78.14	1100	RSN8168_PARK2004_EST28247.AT2

M=6.0-7.0, R_{JB}=100-1000 km, V_{s30}<180 (m/sec)

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
2561	1.490	"Chi-Chi_ Taiwan-03"	1999	"ILA044"	6.2	Reverse	125.18	158.13	RSN2561_CHICHI.03_ILA044N.AT2
2818	1.180	"Chi-Chi_ Taiwan-04"	1999	"KAU045"	6.2	strike slip	119.21	150.18	RSN2818_CHICHI.04_KAU045E.AT2
2976	1.837	"Chi-Chi_ Taiwan-05"	1999	"CHY078"	6.2	Reverse	113.51	160.67	RSN2976_CHICHI.05_CHY078N.AT2
3303	3.192	"Chi-Chi_ Taiwan-06"	1999	"CHY078"	6.3	Reverse	103.8	160.67	RSN3303_CHICHI.06_CHY078E.AT2
4151	2.710	"Niigata_ Japan"	2004	"FKS020"	6.63	Reverse	101.78	133.05	RSN4151_NIIGATA_FKS020NS.AT2
4900	1.361	"Chuetsu-oki_ Japan"	2007	"AIC001"	6.8	Reverse	274.22	162.09	RSN4900_CHUETSU_AIC001EW.AT2
4947	2.529	"Chuetsu-oki_ Japan"	2007	"CHB014"	6.8	Reverse	241.67	166.02	RSN4947_CHUETSU_CHB014NS.AT2
4965	1.214	"Chuetsu-oki_ Japan"	2007	"FKI003"	6.8	Reverse	242.95	135.18	RSN4965_CHUETSU_FKI003EW.AT2
5103	1.737	"Chuetsu-oki_ Japan"	2007	"IBRH07"	6.8	Reverse	217.49	106.83	RSN5103_CHUETSU_IBRH07NS.AT2
5119	0.393	"Chuetsu-oki_ Japan"	2007	"ISK004"	6.8	Reverse	109.16	139.13	RSN5119_CHUETSU_ISK004EW.AT2
5536	0.877	"Iwate_ Japan"	2008	"AOMH13"	6.9	Reverse	159.15	154.27	RSN5536_IWATE_AOMH13NS.AT2
5695	2.418	"Iwate_ Japan"	2008	"NIG009"	6.9	Reverse	157.76	179.6	RSN5695_IWATE_NIG009EW.AT2
5758	1.707	"Iwate_ Japan"	2008	"YMT015"	6.9	Reverse	121.15	164.79	RSN5758_IWATE_YMT015NS.AT2

6130 1994 "Interd, Japa" 2000 "AC000" 6.61 wrike skip 299-13 144-57 RSN6130_10TTORL1_AC0030EW AT2 6026 0.954 "Interdig Japa" 2000 "RK0002" 6.61 wrike skip 120.08 137.98 RSN6137_0TTOR011, FEGO032W AT2 6037 0.716 "Interdig Japa" 2000 "KYN003" 6.61 wrike skip 164.52 147.31 RSN6730_TOTTOR1_LEWTONDSWAT2 6393 0.716 "Interdig Japa" 2000 "KYN03" 6.63 wrike skip 164.51 147.31 RSN6730_TOTTOR1_LWTONDSWAT2 6393 0.714 "Intergu Japa" 2004 "IRULAT?" 6.63 Reverse 146.8 80.63 RSN6731_NITGATA_STTORDWAT2 6303 1.537 "Ningar_Japa" 2004 "Strons" 6.63 Reverse 114.8 RSN673_NITGATA_STTORDWAT2 64.63 Reverse Taba Reverse 114.51 RSN673_NITGATA_STTORDWAT2 16.64 RSN73_NITGATA_STTORDWAT2 75 141.01 "Startingende Nition" Start Reverse										
	6130	1.904	"Tottori_ Japan"	2000	"AIC003"	6.61	strike slip	299.13	144.37	RSN6130_TOTTORI.1_AIC003EW.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6177	0.640	"Tottori_ Japan"	2000	"FKO002"	6.61	strike slip	290.78	129.45	RSN6177_TOTTORI.1_FKO002NS.AT2
	6206	0.954	"Tottori_ Japan"	2000	"HRS013"	6.61	strike slip	124.08	137.98	RSN6206_TOTTORI.1_HRS013EW.AT2
	6273	0.706	"Tottori_ Japan"	2000	"KYT004"	6.61	strike slip	164.52	147.73	RSN6273_TOTTORI.1_KYT004NS.AT2
6598 1.747 "Niigata, Japan" 2004 "IBRH07" 6.63 Reverse 19.28 106.38 BSN6598, NIIGATA_JBRR07NS AT2 M=6.0-7.0, Rm=100-1000 km, V.sm=180-360 (m/sec) Record Farthquake Name Year Station Name Magnitude Mechanism Rin V.st Horizontal Acc, Filename Number 22 1.538 "El Alamo" 1966 "El Centro Array #0" 6.8 strike slip 121 213.44 RSN22 JiLALAMO JLAC.180.AT2 37 Liall "Borgo Mn" 1968 "TA - Hollywood Stor FP" 6.63 strike slip 222.42 31.646 RSN75, FORREOQ, APEI 180.AT2 74 1.999 "San Fernando" 1971 Tohoame-Shandban Array #8" 6.61 Reverse 198.53 SEREX, SKN75, SEREX, BEALSON AT2 918 Doop9 "San Fernando" 1971 Tohoame-Shandban Array #8" 6.61 Reverse 198.53 SEREX, SKN75, SEREX, BEALSON AT2 918 Doop9 "San Fernando" 1971 Tohoame-Shandban Array #8" 6.61 Reverse 198.53 SEREX, SKN75, S	6393	0.714	"Tottori_ Japan"	2000	"WKY003"	6.61	strike slip	190.35	152.33	RSN6393_TOTTORI.1_WKY003EW.AT2
6731 1.327 "Ningan, Japan" 2004 "NTOOI" 6.63 Reverse 146.8 99.93 RSN0731 NIGATA SIT003BW AT2 M=6.0-7.0, Rue=100-1000 km, Voze=180-360 (m/sec) Record Station Name Magnitude Record Number Number <td>6598</td> <td>1.747</td> <td>"Niigata Japan"</td> <td>2004</td> <td>"IBRH07"</td> <td>6.63</td> <td>Reverse</td> <td>192.88</td> <td>106.83</td> <td>RSN6598 NIIGATA IBRH07NS.AT2</td>	6598	1.747	"Niigata Japan"	2004	"IBRH07"	6.63	Reverse	192.88	106.83	RSN6598 NIIGATA IBRH07NS.AT2
M=6.0-7.0, Rm=100-1000 km, V.s=180-560 (m/sec) Record Sequence Earthquake Name Year Station Name Magnitude Mechanism Ris (km) V.20 (m/sec) Horizontal Acc. Filename 22 1.538 'Pi Alamor" 1956 'Pi Centro Array #9" 6.8 strike slip 121 21.44 RSN22_FI ALAMO_FI/C180.A12 37 1.401 Borrego Mu" 1968 'LA - Hollywood Stor FP" 6.63 strike slip 21.21 21.646 RSN73 BORREGO A-PEL180.A12 33 2.222 'San Fernando" 1971<''Nefoduer - Shandon Array #0"	6731	1.327	"Niigata Japan"	2004	"SIT003"	6.63	Reverse	146.8	99.93	RSN6731 NIIGATA SIT003EW.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M=6.0-7.0, H	R _{JB} =100-1000	km, V _{s30} =180-360 (m/sec)	1						
22 1.538 "ET Alamo" 1956 "ET Centro Array 49" 6.8 strike slip 121 213.44 RNS22_ETALAMO_ETCIOAT2 33 2.222 "San Fernando" 1971 "Bakersfield - Harvey Aud" 6.61 Reverse 111.88 214.14 RNS33_SERNEGO APELISOAT2 61 1.133 "San Fernando" 1971 "Maricopa Array #8" 6.61 Reverse 218.17 256.82 RSN61_SFERN_BFA180.AT2 918 0.909 "Big Bear-01" 1992 "Newport Bch - Irvine Ave, F.S" 6.40 strike slip 115.51 296.62 RSN33_SFERN_BFA180.AT2 918 0.909 "Big Bear-01" 1992 "Newport Bch - Irvine Ave, F.S" 6.40 strike slip 15.51 296.62 RSN33_BERGBA.S RENDOAT2 918 0.909 "Big Bear-01" 1992 "Reverse 6.7 strike slip 25.62 RSN33_BERGBA.S RENDOAT2 914 Alaska" 2002 "Anchorage - Abo Res - - - - - - - - - RSN33_BERGBA	Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	1.538	"El Alamo"	1956	"El Centro Array #9"	6.8	strike slip	121	213.44	RSN22_ELALAMO_ELC180.AT2
53 2.222 "San Fernando" 1971 "Bakersfield-Harvey Aud" 6.61 Reverse 11.18 241.41 RNN3.5FERN. BFAI80.AT2 61 11.33 "San Fernando" 1971 "Maricopa Array 41" 6.61 Reverse 193.7 256.82 RSN14.5FERN. OBS21.AT2 918 0.909 "Big Bear-01" 1992 "Seau Beach-Ofree Big" 6.61 Reverse 193.25 303.79 RSN14.SFERN. MAI130.AT2 913 1.420 "Big Bear-01" 1992 "Seau Beach-Ofree Big" 6.46 strike slip 110.7 256 RSN103.BIGBEAR.BE3600.AT2 103 1.420 "Robe Japan" 1995 "FUK" 6.9 strike slip 155.7 266.6 RSN103.BIGBEAR.BE3600.AT2 "Nenana Mountain "Anchorage - Aho Res - - - RSN1103 <kobe fuk900.at2<="" td=""> 2021 1.5131 Alaska" 2002 "Anchorage - K2-22" 6.7 strike slip 210.2 Statts slip 110.2 255.4 RSN203.CHCH05.0 CH1104.N172 2028 1.136</kobe>	37	1.401	"Borrego Mtn"	1968	"LA - Hollywood Stor FF"	6.63	strike slip	222.42	316.46	RSN37_BORREGO_A-PEL180.AT2
61 1.133 "San Fernando" 1971 "Cholame - Shandon Army #8" 6.61 Reverse 218.17 256.82 RSN61_SFERN_C08321.AT2 918 0.900 "Big Bear-O1" 1992 "Newport Bch - Irvine Ave, F.S" 6.46 strike slip 107.18 330.6 RSN918_BIGBEAR_NB1360.AT2 933 1.429 "Big Bear-O1" 1992 "Newport Bch - Irvine Ave, F.S" 6.46 strike slip 115.57 296.62 RSN93_BIGBEAR_SEA000.AT2 933 1.429 "Robe_Japan" 1992 "Seal Beach - Office Bidg" 6.46 strike slip 115.57 296.62 RSN93_BIGBEAR_SEA000.AT2 1103 Lakak" 2000 "Anchorage - K2-22" 6.7 strike slip 270.65 341.56 RSN2032_NENANA_AH090.AT2 2813 2.788 Chi-Chi, Taiwan-04" 1999 "CHY116" 6.2 Reverse 102.9 195.38 RSN2513_CHICH103_CHY116NAT2 2808 1.169 Chi-Chi, Taiwan-05" 1999 "CHY169" 6.2 Reverse 113.31 242.05 RSN2046_CHICH103_CHY16NAT2 <td>53</td> <td>2.222</td> <td>"San Fernando"</td> <td>1971</td> <td>"Bakersfield - Harvey Aud"</td> <td>6.61</td> <td>Reverse</td> <td>111.88</td> <td>241.41</td> <td>RSN53_SFERN_BFA180.AT2</td>	53	2.222	"San Fernando"	1971	"Bakersfield - Harvey Aud"	6.61	Reverse	111.88	241.41	RSN53_SFERN_BFA180.AT2
74 1.999 "San Fernando" 1971 "Maricopa Array #1" 6.61 Reverse 193.25 303.79 RSN74.SFERN_MAI100.AT2 918 0.090 "Big Bear-01" 1992 "Newport Bch_Tvine Ave, F.S" 6.46 strike slip 107.18 339.6 RSN918_BIGBEAR_NBI360.AT2 933 1.429 "Kobe Japan" 1992 "Newport Bch_Tvine Ave, F.S" 6.46 strike slip 115.57 296.62 RSN103_RIGBEAR_SEA00.AT2 "Nennan Mountain "Anchorage - Aho Res - - RSN205_NEANA_AHO990.AT2 2059 1.514 Alaska" 2002 'Aachorage - K2-22" 6.7 strike slip 280.41 341.56 RSN2052_NEANA_AE22360.AT2 2513 2.788 'Chi-Chi_Taiwan-03" 1999 "CHY116" 6.2 strike slip 110.26 285.94 RSN2053_CHICHL04_KAL006KAL72 2063 1.169 'Chi-Chi_Taiwan-04" 1999 "CHY116" 6.2 Reverse 113.31 191.09 RSN2053_CHICHL04_KAL006WAT2 2063 1.433 'Chi-Chi_Taiwan-04" 19	61	1.133	"San Fernando"	1971	"Cholame - Shandon Array #8"	6.61	Reverse	218.17	256.82	RSN61_SFERN_C08321.AT2
918 0.099 "Big Bear-01" 1992 "Newport Bch - Frince Ave, F.S" 6.46 strike slip 117.18 333.06 RSN918. BIGBEAR, NB1300 AT2 933 1.429 "Big Bear-01" 1992 "Scal Beach - Office Bidg" 6.46 strike slip 115.57 296.62 RSN933 BIGBEAR, SEA000, AT2 1103 1.200 "Nennan Mountain" "Anchorage - Aho Res " - - - RSN1103 KOBE FUK000.AT2 2059 1.514 Alaska" 2002 "Anchorage - K2-22" 6.7 strike slip 280.1 341.56 RSN2082_NENAA_AE022360.AT2 22813 2.788 "Chi-Chi, Taiwan-03" 1999 "CHY116" 6.2 Reverse 102.9 195.38 RSN2082_NENAA_K222360.AT2 22663 1.833 "Chi-Chi, Taiwan-03" 1999 "CHY059" 6.2 Reverse 113.93 191.09 RSN2082_NENAA_K222360.AT2 2363 1.833 "Chi-Chi, Taiwan-05" 1999 "CHY1059" 6.2 Reverse 113.93 191.09 RSN2082_NEN104A_ALOD00KOR122	74	1.999	"San Fernando"	1971	"Maricopa Array #1"	6.61	Reverse	193.25	303.79	RSN74_SFERN_MA1130.AT2
933 1.429 "Big Bear-01" 1992 "Scall Beach - Office Bldg" 6.46 strike slip 115.57 296.62 RSN035_BIGBEAR_SEA000_AT2 1103 1.250 "Kobe_Japan" 1995 "FUK" 6.9 strike slip 15.807 256 RSN103_KOBE_FUK090_AT2 "Nemana Mountain "Anchorage - Aho Res - - - - RSN2059_NENANA_AHO090_AT2 2082 1.313 Alaska" 2002 "Anchorage - K2-22" 6.7 strike slip 280.41 341.56 RSN2082_NENANA_K222360_AT2 2808 1.169 "Chi-ChiTaiwan-04" 1999<"/td> "CHV116" 6.2 strike slip 110.26 285.94 RSN2082_NENANA_K222360_AT2 2963 1.833 "Chi-ChiTaiwan-04" 1999<"/td> "CHV059" 6.2 strike slip 113.8 270.41 RSN2062_CHICHL04_KAU008E_AT2 4050 1.019 "BamIran" 2003<"Kerman 1"	918	0.909	"Big Bear-01"	1992	"Newport Bch - Irvine Ave. F.S"	6.46	strike slip	107.18	339.6	RSN918 BIGBEAR NBI360.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	933	1.429	"Big Bear-01"	1992	"Seal Beach - Office Bldg"	6.46	strike slip	115.57	296.62	RSN933 BIGBEAR SEA000.AT2
"Nenaña Mountain_ "Anchorage - Aho Res 6.7 strike slip 270.65 341.56 RSN2059_NENANA_AH0090.AT2 2082 1.313 Alaska" 2002 "Anchorage - K2-22" 6.7 strike slip 280.41 341.56 RSN2059_NENANA_AH0090.AT2 2082 1.313 Alaska" 2002 "Anchorage - K2-22" 6.7 strike slip 102.9 195.38 RSN2053_NENANA_K222360.AT2 2808 1.169 "Chi-Chi, Taiwan-04" 1999<" "CHV116"	1103	1.250	"Kobe Japan"	1995	"FUK"	6.9	strike slip	158.07	256	RSN1103 KOBE FUK090.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			"Nenana Mountain		"Anchorage - Aho Res		I I I I I I I I I I I I I I I I I I I			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2059	1.514	Alaska"	2002	(Basement)"	6.7	strike slip	270.65	341.56	RSN2059 NENANA AHO090.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			"Nenana Mountain							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2082	1.313	 Alaska''	2002	"Anchorage - K2-22"	6.7	strike slip	280.41	341.56	RSN2082_NENANA_K222360.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2513	2.788	"Chi-Chi_ Taiwan-03"	1999	"CHY116"	6.2	Reverse	102.9	195.38	RSN2513_CHICHI.03_CHY116N.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2808	1.169	"Chi-Chi_ Taiwan-04"	1999	"KAU008"	6.2	strike slip	110.26	285.94	RSN2808_CHICHI.04_KAU008E.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2963	1.833	"Chi-Chi_ Taiwan-05"	1999	"CHY059"	6.2	Reverse	113.93	191.09	RSN2963_CHICHI.05_CHY059N.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3046	1.377	"Chi-Chi_ Taiwan-05"	1999	"ILA006"	6.2	Reverse	113.18	279.41	RSN3046_CHICHI.05_ILA006W.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4050	1.019	"Bam_ Iran"	2003	"Kerman 1"	6.6	strike slip	180.63	242.05	RSN4050_BAM_KER1-L.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4058	0.260	"Bam_ Iran"	2003	"Shahdad"	6.6	strike slip	158.32	342.7	RSN4058_BAM_SHAH-T.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4473	1.261	"L'Aquila_ Italy"	2009	"Cerignola"	6.3	Normal	227.08	315.95	RSN4473_L-AQUILA_EB150XTE.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4497	2.489	"L'Aquila_Italy"	2009	"S. Severo"	6.3	Normal	164.92	321.36	RSN4497_L-AQUILA_IY045YLN.AT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6133	1.538	"Tottori_ Japan"	2000	"AIC012"	6.61	strike slip	328.2	193.88	RSN6133_TOTTORI.1_AIC012EW.AT2
M=6.0-7.0, R _{IB} =100-1000 km, V_{s30}=360-800 (m/sec)Record Sequence NumberFearthquake NameYearStation NameMagnitudeMechanism R_{IB} (km) V_{s30} (m/sec)Horizontal Acc. Filename400.502"Borrego Mtn"1968"San Onofre - So Cal Edison"6.63strike slip129.11442.88RSN40_BORREGO_A-SON303.AT2520.438"San Fernando"1971"Anza Post Office"6.61Reverse173.16360.45RSN52_SFERN_AZP045.AT2861.220"San Fernando"1971"San Onofre - So Cal Edison"6.61Reverse124.79442.88RSN86_SFERN_SON303.AT24350.496"Borah Peak_ID-01"1983"ANL-768 Power Plant (Bsmt)"6.88Normal100.22445.66RSN435_BORAH.MS_ANLCEAS.AT27850.727"Loma Prieta"1989"Olema - Point Reyes Station"6.93Reverse Oblique117.02418.07RSN785_LOMAP_OLEM090.AT29120.432"Big Bear-01"1992"LA - City Terrace"6.46strike slip119.64609RSN1117_KOBE_TOT090.AT211361.430"Dinar_Turkey"1995"Balkesir"6.4Normal255.44468.44RSN1136_DINAR BLK000.AT2	6140	0.647	"Tottori_ Japan"	2000	"EHM003"	6.61	strike slip	137.83	244.59	RSN6140_TOTTORI.1_EHM003NS.AT2
Record Sequence NumberTp (sec)Earthquake NameYearStation NameMagnitudeMechanism R_{JB} (km) V_{s30} (m/sec)Horizontal Acc. Filename400.502"Borrego Mtn"1968"San Onofre - So Cal Edison"6.63strike slip129.11442.88RSN40_BORREGO_A-SON303.AT2520.438"San Fernando"1971"Anza Post Office"6.61Reverse173.16360.45RSN52_SFERN_AZP045.AT2861.220"San Fernando"1971"San Onofre - So Cal Edison"6.61Reverse124.79442.88RSN86_SFERN_SON303.AT24350.496"Borah Peak_ID-01"1983"ANL-768 Power Plant (Bsmt)"6.88Normal100.22445.66RSN435_BORAH.MS_ANLCEAS.AT27850.727"Loma Prieta"1989"Olema - Point Reyes Station"6.93Reverse Oblique117.02418.07RSN785_LOMAP_OLEM090.AT29120.432"Big Bear-01"1992"LA - City Terrace"6.46strike slip114.94365.22RSN912_BIGBEAR_LAC090.AT211170.708"Kobe_Japan"1995"TOT"6.9strike slip119.64609RSN1117_KOBE_TOT090.AT211361.430"Dinar_Turkey"1995"Balikesir"6.4Normal255.44468.44RSN1136_DINAR_BLK000.AT2	M=6.0-7.0, H	R _{JB} =100-1000	km, V _{s30} =360-800 (m/sec)					1		
40 0.502 "Borrego Mtn" 1968 "San Onofre - So Cal Edison" 6.63 strike slip 129.11 442.88 RSN40_BORREGO_A-SON303.AT2 52 0.438 "San Fernando" 1971 "Anza Post Office" 6.61 Reverse 173.16 360.45 RSN52_SFERN_AZP045.AT2 86 1.220 "San Fernando" 1971 "San Onofre - So Cal Edison" 6.61 Reverse 124.79 442.88 RSN86_SFERN_SON303.AT2 435 0.496 "Borah Peak_ID-01" 1983 "ANL-768 Power Plant (Bsmt)" 6.88 Normal 100.22 445.66 RSN435_BORAH.MS_ANLCEAS.AT2 785 0.727 "Loma Prieta" 1989 "Olema - Point Reyes Station" 6.93 Reverse Oblique 117.02 418.07 RSN785_LOMAP_OLEM090.AT2 912 0.432 "Big Bear-01" 1992 "LA - City Terrace" 6.46 strike slip 114.94 365.22 RSN1117_KOBE_TOT090.AT2 1117 0.708 "Kobe_Japan" 1995 "TOT" 6.9 strike slip 119.64 609 RSN1117_KOBE_	Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
52 0.438 "San Fernando" 1971 "Anza Post Office" 6.61 Reverse 173.16 360.45 RSN52_SFERN_AZP045.AT2 86 1.220 "San Fernando" 1971 "San Onofre - So Cal Edison" 6.61 Reverse 124.79 442.88 RSN86_SFERN_SON303.AT2 435 0.496 "Borah Peak_ID-01" 1983 "ANL-768 Power Plant (Bsmt)" 6.88 Normal 100.22 445.66 RSN435_BORAH.MS_ANLCEAS.AT2 785 0.727 "Loma Prieta" 1989 "Olema - Point Reyes Station" 6.93 Reverse Oblique 117.02 418.07 RSN785_LOMAP_OLEM090.AT2 912 0.432 "Big Bear-01" 1992 "LA - City Terrace" 6.46 strike slip 114.94 365.22 RSN912_BIGBEAR_LAC090.AT2 1117 0.708 "Kobe_Japan" 1995 "TOT" 6.9 strike slip 119.64 609 RSN1117_KOBE_TOT090.AT2 1136 1.430 "Dinar_Turkey" 1995 "Balikesir" 6.4 Normal 255.44 468.44 RSN1136_DINAR_BLK000.AT2	40	0.502	"Borrego Mtn"	1968	"San Onofre - So Cal Edison"	6.63	strike slip	129.11	442.88	RSN40_BORREGO_A-SON303.AT2
86 1.220 "San Fernando" 1971 "San Onofre - So Cal Edison" 6.61 Reverse 124.79 442.88 RSN86_SFERN_SON303.AT2 435 0.496 "Borah Peak_ID-01" 1983 "ANL-768 Power Plant (Bsmt)" 6.88 Normal 100.22 445.66 RSN435_BORAH.MS_ANLCEAS.AT2 785 0.727 "Loma Prieta" 1989 "Olema - Point Reyes Station" 6.93 Reverse Oblique 117.02 418.07 RSN785_LOMAP_OLEM090.AT2 912 0.432 "Big Bear-01" 1992 "LA - City Terrace" 6.46 strike slip 114.94 365.22 RSN912_BIGBEAR_LAC090.AT2 1117 0.708 "Kobe_Japan" 1995 "TOT" 6.9 strike slip 119.64 609 RSN1117_KOBE_TOT090.AT2 1136 1.430 "Dinar_Turkey" 1995 "Balikesir" 6.4 Normal 255.44 468.44 RSN1136_DINAR_BLK000.AT2	52	0.438	"San Fernando"	1971	"Anza Post Office"	6.61	Reverse	173.16	360.45	RSN52_SFERN_AZP045.AT2
435 0.496 "Borah Peak_ID-01" 1983 "ANL-768 Power Plant (Bsmt)" 6.88 Normal 100.22 445.66 RSN435_BORAH.MS_ANLCEAS.AT2 785 0.727 "Loma Prieta" 1989 "Olema - Point Reyes Station" 6.93 Reverse Oblique 117.02 418.07 RSN785_LOMAP_OLEM090.AT2 912 0.432 "Big Bear-01" 1992 "LA - City Terrace" 6.46 strike slip 114.94 365.22 RSN912_BIGBEAR_LAC090.AT2 1117 0.708 "Kobe_Japan" 1995 "TOT" 6.9 strike slip 119.64 609 RSN1117_KOBE_TOT090.AT2 1136 1.430 "Dinar_Turkey" 1995 "Balikesir" 6.4 Normal 255.44 468.44 RSN1136_DINAR_BLK000.AT2	86	1.220	"San Fernando"	1971	"San Onofre - So Cal Edison"	6.61	Reverse	124.79	442.88	RSN86_SFERN_SON303.AT2
785 0.727 "Loma Prieta" 1989 "Olema - Point Reyes Station" 6.93 Reverse Oblique 117.02 418.07 RSN785_LOMAP_OLEM090.AT2 912 0.432 "Big Bear-01" 1992 "LA - City Terrace" 6.46 strike slip 114.94 365.22 RSN912_BIGBEAR_LAC090.AT2 1117 0.708 "Kobe_Japan" 1995 "TOT" 6.9 strike slip 119.64 609 RSN1117_KOBE_TOT090.AT2 1136 1.430 "Dinar_Turkey" 1995 "Balikesir" 6.4 Normal 255.44 468.44 RSN1136_DINAR_BLK000.AT2	435	0.496	"Borah Peak_ ID-01"	1983	"ANL-768 Power Plant (Bsmt)"	6.88	Normal	100.22	445.66	RSN435_BORAH.MS_ANLCEAS.AT2
912 0.432 "Big Bear-01" 1992 "LA - City Terrace" 6.46 strike slip 114.94 365.22 RSN912_BIGBEAR_LAC090.AT2 1117 0.708 "Kobe_Japan" 1995 "TOT" 6.9 strike slip 119.64 609 RSN1117_KOBE_TOT090.AT2 1136 1.430 "Dinar_Turkey" 1995 "Balikesir" 6.4 Normal 255.44 468.44 RSN1136_DINAR_BLK000.AT2	785	0.727	"Loma Prieta"	1989	"Olema - Point Reyes Station"	6.93	Reverse Oblique	117.02	418.07	RSN785_LOMAP_OLEM090.AT2
1117 0.708 "Kobe_Japan" 1995 "TOT" 6.9 strike slip 119.64 609 RSN1117_KOBE_TOT090.AT2 1136 1.430 "Dinar_Turkey" 1995 "Balikesir" 6.4 Normal 255.44 468.44 RSN1136_DINAR_BLK000.AT2	912	0.432	"Big Bear-01"	1992	"LA - City Terrace"	6.46	strike slip	114.94	365.22	RSN912_BIGBEAR_LAC090.AT2
1136 1.430 "Dinar_Turkey" 1995 "Balikesir" 6.4 Normal 255.44 468.44 RSN1136_DINAR_BLK000.AT2	1117	0.708	"Kobe_ Japan"	1995	"TOT"	6.9	strike slip	119.64	609	
	1136	1.430	"Dinar_ Turkey"	1995	"Balikesir"	6.4	Normal	255.44	468.44	RSN1136_DINAR_BLK000.AT2

1138	0.968	"Dinar_ Turkey"	1995	"Bursa"	6.4	Normal	240.71	490.65	RSN1138_DINAR_BUS090.AT2
		"Nenana Mountain_							
2091	1.486	Alaska"	2002	"TAPS Pump Station #07"	6.7	strike slip	199.27	424.9	RSN2091_NENANA_PS07039.AT2
2569	1.811	"Chi-Chi_ Taiwan-03"	1999	"KAU012"	6.2	Reverse	106.87	516.18	RSN2569_CHICHI.03_KAU012N.AT2
2843	0.864	"Chi-Chi_ Taiwan-04"	1999	"TCU026"	6.2	strike slip	126.71	569.98	RSN2843_CHICHI.04_TCU026E.AT2
3047	0.657	"Chi-Chi_ Taiwan-05"	1999	"ILA007"	6.2	Reverse	110.97	496.27	RSN3047_CHICHI.05_ILA007W.AT2
3383	1.432	"Chi-Chi_ Taiwan-06"	1999	"ILA051"	6.3	Reverse	100.23	520.64	RSN3383_CHICHI.06_ILA051N.AT2
		"Nenana Mountain_							
3831	2.959	Alaska"	2002	"Anchorage - K2-01"	6.7	strike slip	265.25	425	RSN3831_NENANA_K201090.AT2
3875	0.121	"Tottori_ Japan"	2000	"HRS006"	6.61	strike slip	108.36	457.52	RSN3875_TOTTORI_HRS006NS.AT2
4048	0.108	"Bam_ Iran"	2003	"Joshan"	6.6	strike slip	133.3	412.23	RSN4048_BAM_JOSH-L.AT2
4470	1.279	"L'Aquila_ Italy"	2009	"Castelmauro"	6.3	Normal	108.72	638.39	RSN4470_L-AQUILA_AU056YLN.AT2
4506	1.257	"L'Aquila_Italy"	2009	"Vairano Patenora"	6.3	Normal	115.19	476.54	RSN4506_L-AQUILA_QX001XTE.AT2
6202	2.714	"Tottori_ Japan"	2000	"GIFH07"	6.61	strike slip	272.99	424.3	RSN6202_TOTTORI.1_GIFH07NS.AT2

M=6.0-7.0, R_{JB}=100-1000 km, V_{s30}=800-2000 (m/sec)

Record Sequence Number	$T_p(sec)$	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
2805	0.677	"Chi-Chi_ Taiwan-04"	1999	"KAU003"	6.2	strike slip	116.17	913.77	RSN2805_CHICHI.04_KAU003N.AT2
3042	0.389	"Chi-Chi_ Taiwan-05"	1999	"ILA001"	6.2	Reverse	134.67	909.09	RSN3042_CHICHI.05_ILA001W.AT2
3094	1.237	"Chi-Chi_ Taiwan-05"	1999	"KAU051"	6.2	Reverse	157.44	1004.58	RSN3094_CHICHI.05_KAU051E.AT2
3145	0.400	"Chi-Chi_ Taiwan-05"	1999	"TAP086"	6.2	Reverse	127.97	887.68	RSN3145_CHICHI.05_TAP086N.AT2
3430	0.361	"Chi-Chi_ Taiwan-06"	1999	"TAP086"	6.3	Reverse	117.56	887.68	RSN3430_CHICHI.06_TAP086N.AT2
3893	0.822	"Tottori_ Japan"	2000	"HYG004"	6.61	strike slip	108.34	834.56	RSN3893_TOTTORI_HYG004EW.AT2
4247	0.091	"Niigata_ Japan"	2004	"TCGH14"	6.63	Reverse	100.37	849.01	RSN4247_NIIGATA_TCGH14NS.AT2
4926	0.113	"Chuetsu-oki_ Japan"	2007	"AKTH05"	6.8	Reverse	219.2	829.46	RSN4926_CHUETSU_AKTH05EW.AT2
5013	0.385	"Chuetsu-oki_ Japan"	2007	"FKSH15"	6.8	Reverse	125.46	803.57	RSN5013_CHUETSU_FKSH15NS.AT2
5052	1.141	"Chuetsu-oki_ Japan"	2007	"GIFH20"	6.8	Reverse	202.73	809.86	RSN5052_CHUETSU_GIFH20EW.AT2
5606	0.590	"Iwate_ Japan"	2008	"IBRH14"	6.9	Reverse	239.71	829.12	RSN5606_IWATE_IBRH14NS.AT2
5743	5.212	"Iwate_ Japan"	2008	"TCGH17"	6.9	Reverse	228.66	1432.75	RSN5743_IWATE_TCGH17EW.AT2
6231	2.926	"Tottori_ Japan"	2000	"HYG027"	6.61	strike slip	152.1	901.98	RSN6231_TOTTORI.1_HYG027NS.AT2
6287	0.414	"Tottori_ Japan"	2000	"KYTH04"	6.61	strike slip	191.54	1068.94	RSN6287_TOTTORI.1_KYTH04EW.AT2
6336	6.261	"Tottori_ Japan"	2000	"OITH05"	6.61	strike slip	281.77	1269.4	RSN6336_TOTTORI.1_OITH05NS.AT2
6440	6.444	"Tottori_ Japan"	2000	"YMGH12"	6.61	strike slip	216.55	1137.66	RSN6440_TOTTORI.1_YMGH12EW.AT2
6463	0.116	"Niigata_ Japan"	2004	"AKTH05"	6.63	Reverse	222.04	829.46	RSN6463_NIIGATA_AKTH05NS.AT2
6551	7.059	"Niigata_ Japan"	2004	"GIFH11"	6.63	Reverse	236.74	904.15	RSN6551_NIIGATA_GIFH11EW.AT2
6714	1.535	"Niigata_ Japan"	2004	"NGNH22"	6.63	Reverse	169.76	938.5	RSN6714_NIIGATA_NGNH22NS.AT2
6861	0.164	"Niigata_ Japan"	2004	"YMTH03"	6.63	Reverse	131.62	899.84	RSN6861_NIIGATA_YMTH03EW.AT2

M=7.0-8.0, R_{JB}=0-20 km, V_{s30}=180-360 (m/sec)

Record Sequence Number	Tp (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
848	0.528	"Landers"	1992	"Coolwater"	7.28	strike slip	19.74	352.98	RSN848_LANDERS_CLW-LN.AT2
1158	1.942	"Kocaeli_ Turkey"	1999	"Duzce"	7.51	strike slip	13.6	281.86	RSN1158_KOCAELI_DZC270.AT2

1176									
11/0	3.889	"Kocaeli_ Turkey"	1999	"Yarimca"	7.51	strike slip	1.38	297	RSN1176_KOCAELI_YPT060.AT2
1194	1.579	"Chi-Chi_ Taiwan"	1999	"CHY025"	7.62	Reverse Oblique	19.07	277.5	RSN1194_CHICHI_CHY025-N.AT2
1203	0.796	"Chi-Chi_ Taiwan"	1999	"CHY036"	7.62	Reverse Oblique	16.04	233.14	RSN1203_CHICHI_CHY036-E.AT2
1244	4.500	"Chi-Chi_ Taiwan"	1999	"CHY101"	7.62	Reverse Oblique	9.94	258.89	RSN1244_CHICHI_CHY101-N.AT2
1246	4.688	"Chi-Chi_ Taiwan"	1999	"CHY104"	7.62	Reverse Oblique	18.02	223.24	RSN1246_CHICHI_CHY104-W.AT2
1503	1.071	"Chi-Chi_ Taiwan"	1999	"TCU065"	7.62	Reverse Oblique	0.57	305.85	RSN1503_CHICHI_TCU065-E.AT2
1602	0.766	"Duzce_ Turkey"	1999	"Bolu"	7.14	strike slip	12.02	293.57	RSN1602_DUZCE_BOL090.AT2
1615	0.356	"Duzce_ Turkey"	1999	"Lamont 1062"	7.14	strike slip	9.14	338	RSN1615_DUZCE_1062-E.AT2
2114	1.375	"Denali_ Alaska"	2002	"TAPS Pump Station #10"	7.9	strike slip	0.18	329.4	RSN2114_DENALI_PS10-317.AT2
3749	0.543	"Cape Mendocino"	1992	"Fortuna Fire Station"	7.01	Reverse	16.54	355.18	RSN3749_CAPEMEND_FFT270.AT2
		"Montenegro_							
4458	1.460	Yugoslavia"	1979	"Ulcinj - Hotel Olimpic"	7.1	Reverse	3.97	318.74	RSN4458_MONTENE.GRO_ULO090.AT2
		"El Mayor-Cucapah_		"CERRO PRIETO					
5825	3.030	Mexico"	2010	GEOTHERMAL"	7.2	strike slip	8.88	242.05	RSN5825_SIERRA.MEX_GEO000.AT2
		"El Mayor-Cucapah_							
5991	0.582	Mexico"	2010	"El Centro Array #10"	7.2	strike slip	19.36	202.85	RSN5991_SIERRA.MEX_E10320.AT2
				"Christchurch Cathedral					
6888	2.683	"Darfield_ New Zealand"	2010	College"	7	strike slip	19.89	198	RSN6888_DARFIELD_CCCCN26W.AT2
6906	1.302	"Darfield_ New Zealand"	2010	"GDLC"	7	strike slip	1.22	344.02	RSN6906_DARFIELD_GDLCN55W.AT2
6927	2.478	"Darfield_ New Zealand"	2010	"LINC"	7	strike slip	5.07	263.2	RSN6927_DARFIELD_LINCN67W.AT2
6962	1.305	"Darfield_ New Zealand"	2010	"ROLC"	7	strike slip	0	295.74	RSN6962_DARFIELD_ROLCS61W.AT2
		"El Mayor-Cucapah_							
8606	4.651	Mexico"	2010	"Westside Elementary School"	7.2	strike slip	10.31	242	RSN8606_SIERRA.MEX_CIWESHNN.AT2
M=7.0-8.0, I	R _{JB} =0-20 km,	Vs30=360-800 (m/sec)							
M=7.0-8.0, I Record	R _{JB} =0-20 km,	V _{s30} =360-800 (m/sec)					Dup	V. co	
M=7.0-8.0, 1 Record Sequence	R JB= 0-20 km , T _p (sec)	V _{s30} =360-800 (m/sec) Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB}	V_{s30}	Horizontal Acc. Filename
M=7.0-8.0, I Record Sequence Number	$\frac{\mathbf{R_{JB}=0-20 \text{ km,}}}{T_{p} \text{ (sec)}}$	V _{s30} =360-800 (m/sec) Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
M=7.0-8.0, I Record Sequence Number 139	R _{JB} =0-20 km, T _p (sec) 0.389	Vs30=360-800 (m/sec) Earthquake Name "Tabas_ Iran"	Year 1978	Station Name "Dayhook"	Magnitude 7.35	Mechanism Reverse	R _{JB} (km)	V _{s30} (m/sec) 471.53	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2
M=7.0-8.0, I Record Sequence Number 139 143	R _{JB} =0-20 km, T _p (sec) 0.389 0.786	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_ Iran" "Tabas_ Iran"	Year 1978 1978	Station Name "Dayhook" "Tabas"	Magnitude 7.35 7.35	Mechanism Reverse Reverse	R _{IB} (km) 0 1.79	V _{s30} (m/sec) 471.53 766.77	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2
M=7.0-8.0, I Record Sequence Number 139 143 825	R _{JB} =0-20 km, T _p (sec) 0.389 0.786 0.286	V _{\$30} =360-800 (m/sec) Earthquake Name "Tabas_ Iran" "Tabas_ Iran" "Cape Mendocino"	Year 1978 1978 1992	Station Name "Dayhook" "Tabas" "Cape Mendocino"	Magnitude 7.35 7.35 7.01	Mechanism Reverse Reverse Reverse	R _{JB} (km) 0 1.79 0	V _{s30} (m/sec) 471.53 766.77 567.78	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2
M=7.0-8.0, I Record Sequence Number 139 143 825 827	R _{JB} =0-20 km, T _p (sec) 0.389 0.786 0.286 3.143	V _{\$30} =360-800 (m/sec) Earthquake Name "Tabas_ Iran" "Tabas_ Iran" "Cape Mendocino" "Cape Mendocino"	Year 1978 1978 1992 1992	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd"	Magnitude 7.35 7.35 7.01 7.01	Mechanism Reverse Reverse Reverse Reverse	R _{JB} (km) 0 1.79 0 15.97	V _{s30} (m/sec) 471.53 766.77 567.78 457.06	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2
M=7.0-8.0, I Record Sequence Number 139 143 825 827 828	RJB=0-20 km, Tp (sec) 0.389 0.786 0.286 3.143 0.735	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino"	Year 1978 1978 1992 1992 1992	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.01	Mechanism Reverse Reverse Reverse Reverse Reverse	R _{JB} (km) 0 1.79 0 15.97 0	V _{s30} (m/sec) 471.53 766.77 567.78 457.06 422.17	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2
M=7.0-8.0, I Record Sequence Number 139 143 825 827 828 828 864	RJB=0-20 km, Tp (sec) 0.389 0.786 0.286 3.143 0.735 0.688	Vs30=360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Cape Mendocino" "Landers"	Year 1978 1978 1992 1992 1992 1992	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.28	Mechanism Reverse Reverse Reverse Reverse Reverse strike slip	R _{JB} (km) 0 1.79 0 15.97 0 11.03	V _{s30} (m/sec) 471.53 766.77 567.78 457.06 422.17 379.32	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2
M=7.0-8.0, I Record Sequence Number 139 143 825 827 828 828 864 881	RJB=0-20 km, Tp (sec) 0.389 0.786 0.286 3.143 0.735 0.688 1.809	Vs30=360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers"	Year 1978 1978 1992 1992 1992 1992 1992	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.01 7.28 7.28	Mechanism Reverse Reverse Reverse Reverse Reverse strike slip strike slip	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36	V _{s30} (m/sec) 471.53 766.77 567.78 457.06 422.17 379.32 396.41	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN881_LANDERS_MVH045.AT2
M=7.0-8.0, I Record Sequence Number 139 143 825 827 828 827 828 864 881 1197	RJB=0-20 km, Tp (sec) 0.389 0.786 0.286 3.143 0.735 0.688 1.809 0.841	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Chi-Chi_Taiwan"	Year 1978 1978 1992 1992 1992 1992 1992 1999	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.01 7.28 7.28 7.28 7.62	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip Reverse Oblique	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12	V _{s30} (m/sec) 471.53 766.77 567.78 457.06 422.17 379.32 396.41 542.61	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN881_LANDERS_MVH045.AT2 RSN1197_CHICHI_CHY028-N.AT2
M=7.0-8.0, I Record Sequence Number 139 143 825 827 828 827 828 864 881 1197 1231	RJB=0-20 km, Tp (sec) 0.389 0.786 0.286 3.143 0.735 0.688 1.809 0.841 0.826	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Chi-Chi_Taiwan"	Year 1978 1978 1992 1992 1992 1992 1992 1999 1999	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028" "CHY080"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.01 7.28 7.28 7.28 7.62 7.62	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip Reverse Oblique Reverse Oblique	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12 0.11	V _{s30} (m/sec) 471.53 766.77 567.78 457.06 422.17 379.32 396.41 542.61 496.21	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN881_LANDERS_MVH045.AT2 RSN1197_CHICHI_CHY028-N.AT2 RSN1231_CHICHI_CHY080-E.AT2
M=7.0-8.0, 1 Record Sequence Number 139 143 825 827 828 864 881 1197 1231 1489	$\begin{array}{c} \textbf{R}_{\text{JB}} = \textbf{0-20 km}, \\ \hline T_{\text{p}} (\text{sec}) \\ \hline 0.389 \\ 0.786 \\ 0.286 \\ \hline 3.143 \\ 0.735 \\ \hline 0.688 \\ 1.809 \\ \hline 0.841 \\ 0.826 \\ \hline 6.000 \end{array}$	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan"	Year 1978 1978 1992 1992 1992 1992 1992 1999 1999	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028" "CHY080" "TCU049"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.01 7.28 7.28 7.28 7.62 7.62 7.62	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip Reverse Oblique Reverse Oblique	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12 0.11 3.76	V _{s30} (m/sec) 471.53 766.77 567.78 457.06 422.17 379.32 396.41 542.61 496.21 487.27	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN881_LANDERS_MVH045.AT2 RSN1197_CHICHI_CHY028-N.AT2 RSN1231_CHICHI_CHY080-E.AT2 RSN1489_CHICHI_TCU049-N.AT2
M=7.0-8.0, 1 Record Sequence Number 139 143 825 827 828 864 881 1197 1231 1489 1492	$\begin{array}{c} \textbf{R}_{\text{IB}} = \textbf{0-20 km}, \\ \hline \textbf{T}_{\text{p}} (\text{sec}) \\ \hline 0.389 \\ 0.786 \\ 0.286 \\ \hline 3.143 \\ 0.735 \\ \hline 0.688 \\ 1.809 \\ \hline 0.841 \\ 0.826 \\ \hline 6.000 \\ 2.195 \end{array}$	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_ Iran" "Tabas_ Iran" "Cape Mendocino" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Chi-Chi_ Taiwan" "Chi-Chi_ Taiwan" "Chi-Chi_ Taiwan"	Year 1978 1978 1992 1992 1992 1992 1992 1999 1999 1999 1999	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028" "CHY080" "TCU049" "TCU052"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.01 7.28 7.28 7.28 7.62 7.62 7.62 7.62 7.62	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip Reverse Oblique Reverse Oblique Reverse Oblique	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12 0.11 3.76 0	$\begin{array}{c} V_{s30} \\ (m/sec) \\ \hline 471.53 \\ 766.77 \\ \hline 567.78 \\ 457.06 \\ 422.17 \\ 379.32 \\ 396.41 \\ \hline 542.61 \\ 496.21 \\ \hline 487.27 \\ \hline 579.1 \\ \end{array}$	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN881_LANDERS_MVH045.AT2 RSN1197_CHICHI_CHY028-N.AT2 RSN1231_CHICHI_CHY080-E.AT2 RSN1489_CHICHI_TCU049-N.AT2 RSN1492_CHICHI_TCU052-E.AT2
M=7.0-8.0, 1 Record Sequence Number 139 143 825 827 828 864 881 1197 1231 1489 1492 1504	$\begin{array}{c} \textbf{R}_{\text{JB}} = \textbf{0-20 km}, \\ \hline \textbf{T}_{\text{p}} (\text{sec}) \\ \hline 0.389 \\ 0.786 \\ 0.286 \\ 0.286 \\ 0.286 \\ 0.735 \\ 0.688 \\ 1.809 \\ 0.841 \\ 0.826 \\ 6.000 \\ 2.195 \\ 0.390 \\ \end{array}$	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan"	Year 1978 1978 1992 1992 1992 1992 1992 1999 1999 1999 1999 1999	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028" "CHY080" "TCU049" "TCU052" "TCU067"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.01 7.28 7.28 7.28 7.62 7.62 7.62 7.62 7.62 7.62	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12 0.11 3.76 0 0 0.62	$\begin{array}{c} V_{s30} \\ (m/sec) \\ \hline 471.53 \\ 766.77 \\ \hline 567.78 \\ 457.06 \\ 422.17 \\ 379.32 \\ 396.41 \\ \hline 542.61 \\ 496.21 \\ 487.27 \\ \hline 579.1 \\ 433.63 \\ \end{array}$	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN881_LANDERS_MVH045.AT2 RSN1197_CHICHI_CHY028-N.AT2 RSN1231_CHICHI_CHY080-E.AT2 RSN1489_CHICHI_TCU049-N.AT2 RSN1492_CHICHI_TCU052-E.AT2 RSN1504_CHICHI_TCU067-N.AT2
M=7.0-8.0, 1 Record Sequence Number 139 143 825 827 828 864 881 1197 1231 1489 1492 1504 1533	$\begin{array}{c} \textbf{R}_{\text{JB}} = \textbf{0-20 km}, \\ \hline \textbf{T}_{\text{p}} (\text{sec}) \\ \hline 0.389 \\ 0.786 \\ 0.286 \\ 0.286 \\ 3.143 \\ 0.735 \\ 0.688 \\ 1.809 \\ 0.841 \\ 0.826 \\ 6.000 \\ 2.195 \\ 0.390 \\ 2.432 \end{array}$	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan"	Year 1978 1978 1992 1992 1992 1992 1992 1999 1999 1999 1999 1999 1999	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028" "CHY080" "TCU049" "TCU052" "TCU067"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.28 7.28 7.28 7.28 7.62	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip strike slip Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12 0.11 3.76 0 0 0.62 14.97	$\begin{array}{c} V_{s30} \\ (m/sec) \\ \hline 471.53 \\ 766.77 \\ \hline 567.78 \\ 457.06 \\ 422.17 \\ 379.32 \\ 396.41 \\ \hline 542.61 \\ 496.21 \\ 487.27 \\ \hline 579.1 \\ 433.63 \\ 451.37 \\ \end{array}$	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN881_LANDERS_MVH045.AT2 RSN1197_CHICHI_CHY028-N.AT2 RSN1231_CHICHI_CHY080-E.AT2 RSN1489_CHICHI_TCU049-N.AT2 RSN1492_CHICHI_TCU052-E.AT2 RSN1504_CHICHI_TCU067-N.AT2 RSN1533_CHICHI_TCU106-E.AT2
M=7.0-8.0, 1 Record Sequence Number 139 143 825 827 828 864 881 1197 1231 1489 1492 1504 1551	$\begin{array}{c} \textbf{R}_{\text{JB}} = \textbf{0-20 km}, \\ \hline \textbf{T}_{\text{p}} (\text{sec}) \\ \hline 0.389 \\ 0.786 \\ 0.286 \\ 0.286 \\ 3.143 \\ 0.735 \\ 0.688 \\ 1.809 \\ 0.841 \\ 0.826 \\ 6.000 \\ 2.195 \\ 0.390 \\ 2.432 \\ 1.442 \end{array}$	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Landers" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan"	Year 1978 1978 1992 1992 1992 1992 1999 1999 1999 1999 1999 1999 1999 1999 1999	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028" "CHY080" "TCU049" "TCU052" "TCU067" "TCU106" "TCU138"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.01 7.28 7.28 7.28 7.62	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip strike slip Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12 0.11 3.76 0 0.62 14.97 9.78	$\begin{array}{c} V_{s30} \\ (m/sec) \\ 471.53 \\ 766.77 \\ 567.78 \\ 457.06 \\ 422.17 \\ 379.32 \\ 396.41 \\ 542.61 \\ 496.21 \\ 487.27 \\ 579.1 \\ 433.63 \\ 451.37 \\ 652.85 \end{array}$	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN844_LANDERS_JOS090.AT2 RSN881_LANDERS_MVH045.AT2 RSN1197_CHICHI_CHY028-N.AT2 RSN1231_CHICHI_CHY080-E.AT2 RSN1489_CHICHI_TCU049-N.AT2 RSN1489_CHICHI_TCU052-E.AT2 RSN1504_CHICHI_TCU106-E.AT2 RSN1533_CHICHI_TCU106-E.AT2 RSN1551_CHICHI_TCU138-N.AT2
M=7.0-8.0, 1 Record Sequence Number 139 143 825 827 828 864 881 1197 1231 1489 1492 1504 1533 1551 1617	$\begin{array}{c} \textbf{R}_{\text{JB}} = \textbf{0-20 km}, \\ \hline \textbf{T}_{\text{p}} (\text{sec}) \\ \hline 0.389 \\ 0.786 \\ 0.286 \\ 0.286 \\ 3.143 \\ 0.735 \\ 0.688 \\ 1.809 \\ 0.841 \\ 0.826 \\ 6.000 \\ 2.195 \\ 0.390 \\ 2.432 \\ 1.442 \\ 0.343 \end{array}$	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Landers" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan"	Year 1978 1978 1992 1992 1992 1992 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028" "CHY080" "TCU049" "TCU049" "TCU052" "TCU067" "TCU106" "TCU138" "Lamont 375"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.01 7.28 7.28 7.28 7.28 7.62	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12 0.11 3.76 0 0.62 14.97 9.78 3.93	$\begin{array}{c} V_{s30} \\ (m/sec) \\ \hline 471.53 \\ \hline 766.77 \\ \hline 567.78 \\ \hline 457.06 \\ \hline 422.17 \\ \hline 379.32 \\ \hline 396.41 \\ \hline 542.61 \\ \hline 496.21 \\ \hline 487.27 \\ \hline 579.1 \\ \hline 433.63 \\ \hline 451.37 \\ \hline 652.85 \\ \hline 454.2 \end{array}$	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN827_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN864_LANDERS_MVH045.AT2 RSN197_CHICHI_CHY028-N.AT2 RSN1231_CHICHI_CHY080-E.AT2 RSN1489_CHICHI_TCU049-N.AT2 RSN1489_CHICHI_TCU052-E.AT2 RSN1504_CHICHI_TCU067-N.AT2 RSN1533_CHICHI_TCU106-E.AT2 RSN1551_CHICHI_TCU138-N.AT2 RSN1617_DUZCE_375-N.AT2
M=7.0-8.0, I Record Sequence Number 139 143 825 827 828 864 881 1197 1231 1489 1492 1504 1533 1551 1617 1633	$\begin{array}{c} \textbf{R}_{\text{JB}} = \textbf{0-20 km}, \\ \hline \textbf{T}_{\text{p}} (\text{sec}) \\ \hline 0.389 \\ 0.786 \\ 0.286 \\ 0.286 \\ 0.286 \\ 0.286 \\ 0.286 \\ 0.286 \\ 0.284 \\ 0.841 \\ 0.826 \\ 0.841 \\ 0.826 \\ 0.000 \\ 2.195 \\ 0.390 \\ 2.432 \\ 1.442 \\ 0.343 \\ 0.369 \end{array}$	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Landers" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan"	Year 1978 1978 1992 1992 1992 1992 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028" "CHY080" "TCU049" "TCU049" "TCU052" "TCU067" "TCU106" "TCU138" "Lamont 375" "Abbar"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.28 7.28 7.28 7.28 7.62	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique strike slip	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12 0.11 3.76 0 0.62 14.97 9.78 3.93 12.55	$\begin{array}{c} V_{s30} \\ (m/sec) \\ \hline 471.53 \\ \hline 766.77 \\ \hline 567.78 \\ \hline 457.06 \\ \hline 422.17 \\ \hline 379.32 \\ \hline 396.41 \\ \hline 542.61 \\ \hline 496.21 \\ \hline 496.21 \\ \hline 487.27 \\ \hline 579.1 \\ \hline 433.63 \\ \hline 451.37 \\ \hline 652.85 \\ \hline 454.2 \\ \hline 723.95 \\ \end{array}$	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN825_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN864_LANDERS_MVH045.AT2 RSN197_CHICHI_CHY028-N.AT2 RSN1231_CHICHI_CHY080-E.AT2 RSN1489_CHICHI_TCU049-N.AT2 RSN1489_CHICHI_TCU052-E.AT2 RSN1492_CHICHI_TCU067-N.AT2 RSN1504_CHICHI_TCU106-E.AT2 RSN1533_CHICHI_TCU138-N.AT2 RSN1633_MANJIL_ABBARL.AT2
M=7.0-8.0, I Record Sequence Number 139 143 825 827 828 864 881 1197 1231 1489 1492 1504 1533 1551 1617 1633 1787	$\begin{array}{c} \textbf{R}_{\text{JB}} = \textbf{0-20 km}, \\ \hline \textbf{T}_{\text{p}} (\text{sec}) \\ \hline 0.389 \\ 0.786 \\ \hline 0.286 \\ 3.143 \\ 0.735 \\ \hline 0.688 \\ 1.809 \\ \hline 0.841 \\ 0.826 \\ \hline 6.000 \\ 2.195 \\ \hline 0.390 \\ 2.432 \\ 1.442 \\ \hline 0.343 \\ 0.369 \\ \hline 0.553 \end{array}$	V _{s30} =360-800 (m/sec) Earthquake Name "Tabas_Iran" "Tabas_Iran" "Cape Mendocino" "Cape Mendocino" "Cape Mendocino" "Landers" "Landers" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan" "Chi-Chi_Taiwan"	Year 1978 1978 1992 1992 1992 1992 1999 199 1990 1	Station Name "Dayhook" "Tabas" "Cape Mendocino" "Fortuna - Fortuna Blvd" "Petrolia" "Joshua Tree" "Morongo Valley Fire Station" "CHY028" "CHY080" "TCU049" "TCU049" "TCU052" "TCU067" "TCU067" "TCU106" "TCU138" "Lamont 375" "Abbar" "Hector"	Magnitude 7.35 7.35 7.01 7.01 7.01 7.28 7.28 7.28 7.62 7.14 7.37	Mechanism Reverse Reverse Reverse Reverse strike slip strike slip Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique Reverse Oblique strike slip strike slip	R _{JB} (km) 0 1.79 0 15.97 0 11.03 17.36 3.12 0.11 3.76 0 0.62 14.97 9.78 3.93 12.55 10.35	$\begin{array}{c} V_{s30} \\ (m/sec) \\ \hline 471.53 \\ \hline 766.77 \\ \hline 567.78 \\ \hline 457.06 \\ \hline 422.17 \\ \hline 379.32 \\ \hline 396.41 \\ \hline 542.61 \\ \hline 496.21 \\ \hline 496.21 \\ \hline 487.27 \\ \hline 579.1 \\ \hline 433.63 \\ \hline 451.37 \\ \hline 652.85 \\ \hline 454.2 \\ \hline 723.95 \\ \hline 726 \end{array}$	Horizontal Acc. Filename RSN139_TABAS_DAY-L1.AT2 RSN143_TABAS_TAB-T1.AT2 RSN825_CAPEMEND_CPM000.AT2 RSN825_CAPEMEND_FOR090.AT2 RSN828_CAPEMEND_PET000.AT2 RSN864_LANDERS_JOS090.AT2 RSN881_LANDERS_MVH045.AT2 RSN1197_CHICHI_CHY028-N.AT2 RSN1231_CHICHI_CHY080-E.AT2 RSN1489_CHICHI_TCU049-N.AT2 RSN1489_CHICHI_TCU052-E.AT2 RSN1492_CHICHI_TCU067-N.AT2 RSN1504_CHICHI_TCU106-E.AT2 RSN1533_CHICHI_TCU106-E.AT2 RSN1551_CHICHI_TCU138-N.AT2 RSN1617_DUZCE_375-N.AT2 RSN1633_MANJIL_ABBARL.AT2 RSN1787_HECTOR_HEC090.AT2

		"Montenegro_							
4451	0.563	Yugoslavia"	1979	"Bar-Skupstina Opstine"	7.1	Reverse	0	462.23	RSN4451_MONTENE.GRO_BSO090.AT2
8166	0.340	"Duzce_ Turkey"	1999	"IRIGM 498"	7.14	strike slip	3.58	425	RSN8166_DUZCE_498-EW.AT2

M=7.0-8.0, R_{JB}=20-100 km, V_{s30}<180 (m/sec)

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
1147	0.880	"Kocaeli Turkey"	1999	"Ambarli"	7.51	strike slip	68.09	175	RSN1147 KOCAELI ATS000.AT2
1209	0.263	"Chi-Chi Taiwan"	1999	"CHY047"	7.62	Reverse Oblique	24.13	169.52	RSN1209 CHICHI CHY047-W.AT2
1212	2.045	"Chi-Chi Taiwan"	1999	"CHY054"	7.62	Reverse Oblique	48.49	172.1	RSN1212 CHICHI CHY054-E.AT2
1228	7.500	"Chi-Chi Taiwan"	1999	"CHY076"	7.62	Reverse Oblique	42.15	169.84	RSN1228 CHICHI CHY076-N.AT2
1229	0.726	"Chi-Chi Taiwan"	1999	"CHY078"	7.62	Reverse Oblique	77.19	160.67	RSN1229 CHICHI CHY078-E.AT2
1247	3.571	"Chi-Chi Taiwan"	1999	"CHY107"	7.62	Reverse Oblique	50.61	175.68	RSN1247 CHICHI CHY107-W.AT2
1310	5.192	"Chi-Chi Taiwan"	1999	"ILA004"	7.62	Reverse Oblique	86.61	124.27	RSN1310 CHICHI ILA004-N.AT2
1334	2.475	"Chi-Chi_ Taiwan"	1999	"ILA044"	7.62	Reverse Oblique	78	158.13	RSN1334_CHICHI_ILA044-W.AT2
1421	1.895	"Chi-Chi_ Taiwan"	1999	"TAP021"	7.62	Reverse Oblique	99.54	167.18	RSN1421_CHICHI_TAP021-E.AT2
		"El Mayor-Cucapah_				1			
5989	5.778	Mexico"	2010	"El Centro Array #3"	7.2	strike slip	40.96	162.94	RSN5989_SIERRA.MEX_E03360.AT2
M=7.0-8.0, I	R _{JB} =20-100 kı	m, V _{s30} =180-360 (m/sec)	•		· · · · · · · · · · · · · · · · · · ·				
Record							Dm	V aa	
Sequence	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	KJB (km)	\mathbf{v}_{s30}	Horizontal Acc. Filename
Number							(KIII)	(III/SEC)	
138	0.522	"Tabas_ Iran"	1978	"Boshrooyeh"	7.35	Reverse	24.07	324.57	RSN138_TABAS_BOS-L1.AT2
140	0.186	"Tabas_ Iran"	1978	"Ferdows"	7.35	Reverse	89.76	302.64	RSN140_TABAS_FER-T1.AT2
280	0.895	"Trinidad"	1980	"Rio Dell Overpass - FF"	7.2	strike slip	76.06	311.75	RSN280_TRINIDAD.B_B-RDL000.AT2
281	0.319	"Trinidad"	1980	"Rio Dell Overpass_ E Ground"	7.2	strike slip	76.06	311.75	RSN281_TRINIDAD.B_B-RDE270.AT2
282	0.314	"Trinidad"	1980	"Rio Dell Overpass_ W Ground"	7.2	strike slip	76.06	311.75	RSN282_TRINIDAD.B_B-RDW000.AT2
570	3.057	"Taiwan SMART1(45)"	1986	"SMART1 C00"	7.3	Reverse	56.01	309.41	RSN570_SMART1.45_45C00NS.AT2
583	0.612	"Taiwan SMART1(45)"	1986	"SMART1 O10"	7.3	Reverse	56.94	320.11	RSN583_SMART1.45_45O10EW.AT2
826	1.419	"Cape Mendocino"	1992	"Eureka - Myrtle & West"	7.01	Reverse	40.23	337.46	RSN826_CAPEMEND_EUR090.AT2
841	0.800	"Landers"	1992	"Boron Fire Station"	7.28	strike slip	89.69	291.03	RSN841_LANDERS_BFS000.AT2
882	1.051	"Landers"	1992	"North Palm Springs"	7.28	strike slip	26.84	344.67	RSN882_LANDERS_FHS090.AT2
1144	0.458	"Gulf of Aqaba"	1995	"Eilat"	7.2	strike slip	43.29	354.88	RSN1144_AQABA_EIL-EW.AT2
1163	1.720	"Kocaeli_ Turkey"	1999	"Hava Alani"	7.51	strike slip	58.33	354.37	RSN1163_KOCAELI_DHM090.AT2
1637	0.696	"Manjil_ Iran"	1990	"Rudsar"	7.37	strike slip	63.96	242.05	RSN1637_MANJIL_188040.AT2
1791	1.000	"Hector Mine"	1999	"Indio - Coachella Canal"	7.13	strike slip	73.55	339.02	RSN1791_HECTOR_IND360.AT2
2111	0.224	"Denali_ Alaska"	2002	"R109 (temp)"	7.9	strike slip	42.99	341.56	RSN2111_DENALI_R109-90.AT2
3758	0.981	"Landers"	1992	"Thousand Palms Post Office"	7.28	strike slip	36.93	333.89	RSN3758_LANDERS_TPP135.AT2
		"El Mayor-Cucapah_							
5972	4.333	Mexico"	2010	"Brawley Airport"	7.2	strike slip	41.15	208.71	RSN5972_SIERRA.MEX_BRA090.AT2
6923	0.768	"Darfield_ New Zealand"	2010	"Kaiapoi North School "	7	strike slip	30.53	255	RSN6923_DARFIELD_KPOCS75E.AT2
		"El Mayor-Cucapah_							
8160	5.981	Mexico"	2010	"El Centro Array #4"	7.2	strike slip	35.08	208.91	RSN8160_SIERRA.MEX_E04090.AT2
		"El Mayor-Cucapah_							
8492	1.961	Mexico"	2010	"Salton Sea Wildlife Refuge"	7.2	strike slip	57.74	191.14	RSN8492_SIERRA.MEX_N5062HLN.AT2

M=7.0-8.0, R _{JB} =20-100 km, V _{s30} =360-800 (m/sec)										
Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename	
14	0.543	"Kern County"	1952	"Santa Barbara Courthouse"	7.36	Reverse	81.3	514.99	RSN14_KERN_SBA042.AT2	
15	0.334	"Kern County"	1952	"Taft Lincoln School"	7.36	Reverse	38.42	385.43	RSN15_KERN_TAF111.AT2	
572	0.471	"Taiwan SMART1(45)"	1986	"SMART1 E02"	7.3	Reverse	51.35	671.52	RSN572_SMART1.45_45EO2EW.AT2	
830	0.138	"Cape Mendocino"	1992	"Shelter Cove Airport"	7.01	Reverse	26.51	518.98	RSN830_CAPEMEND_SHL090.AT2	
832	2.632	"Landers"	1992	"Amboy"	7.28	strike slip	69.21	382.93	RSN832_LANDERS_ABY000.AT2	
838	0.727	"Landers"	1992	"Barstow"	7.28	strike slip	34.86	370.08	RSN838_LANDERS_BRS090.AT2	
891	0.119	"Landers"	1992	"Silent Valley - Poppet Flat"	7.28	strike slip	50.85	659.09	RSN891_LANDERS_SIL000.AT2	
1154	1.514	"Kocaeli_ Turkey"	1999	"Bursa Sivil"	7.51	strike slip	65.53	612.78	RSN1154_KOCAELI_BSI090.AT2	
1169	7.529	"Kocaeli_ Turkey"	1999	"Maslak"	7.51	strike slip	52.96	445.66	RSN1169_KOCAELI_MSK000.AT2	
1190	0.982	"Chi-Chi_ Taiwan"	1999	"CHY019"	7.62	Reverse Oblique	49.98	497.53	RSN1190_CHICHI_CHY019-N.AT2	
1211	0.348	"Chi-Chi_ Taiwan"	1999	"CHY052"	7.62	Reverse Oblique	38.7	573.04	RSN1211_CHICHI_CHY052-W.AT2	
1268	0.685	"Chi-Chi_ Taiwan"	1999	"HWA017"	7.62	Reverse Oblique	47.04	578.11	RSN1268_CHICHI_HWA017-E.AT2	
1339	0.856	"Chi-Chi_ Taiwan"	1999	"ILA051"	7.62	Reverse Oblique	76.45	520.64	RSN1339_CHICHI_ILA051-N.AT2	
1444	0.890	"Chi-Chi_ Taiwan"	1999	"TAP072"	7.62	Reverse Oblique	99.76	671.52	RSN1444_CHICHI_TAP072-W.AT2	
1616	1.349	"Duzce_ Turkey"	1999	"Lamont 362"	7.14	strike slip	23.41	517	RSN1616_DUZCE_362-N.AT2	
1762	1.667	"Hector Mine"	1999	"Amboy"	7.13	strike slip	41.81	382.93	RSN1762_HECTOR_ABY090.AT2	
1773	2.037	"Hector Mine"	1999	"Cabazon"	7.13	strike slip	77.01	376.91	RSN1773_HECTOR_CAB270.AT2	
1786	0.397	"Hector Mine"	1999	"Heart Bar State Park"	7.13	strike slip	61.21	624.94	RSN1786_HECTOR_HBS090.AT2	
2113	4.217	"Denali_ Alaska"	2002	"TAPS Pump Station #09"	7.9	strike slip	53.02	382.5	RSN2113_DENALI_PS09-13.AT2	
				"North Palm Springs Fire Sta						
3757	0.860	"Landers"	1992	#36"	7.28	strike slip	26.95	367.84	RSN3757_LANDERS_NPF180.AT2	

M=7.0-8.0, R_{JB}=20-100 km, V_{s30}=800-2000 (m/sec)

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
1245	0.968	"Chi-Chi_ Taiwan"	1999	"CHY102"	7.62	Reverse Oblique	36.06	804.36	RSN1245_CHICHI_CHY102-E.AT2
1257	0.823	"Chi-Chi_ Taiwan"	1999	"HWA003"	7.62	Reverse Oblique	52.46	1525.85	RSN1257_CHICHI_HWA003-N.AT2
1347	0.242	"Chi-Chi_ Taiwan"	1999	"ILA063"	7.62	Reverse Oblique	57.69	996.51	RSN1347_CHICHI_ILA063-W.AT2
1442	0.919	"Chi-Chi_ Taiwan"	1999	"TAP067"	7.62	Reverse Oblique	95.31	807.68	RSN1442_CHICHI_TAP067-E.AT2
1452	1.169	"Chi-Chi_ Taiwan"	1999	"TAP086"	7.62	Reverse Oblique	92.01	887.68	RSN1452_CHICHI_TAP086-N.AT2
1518	0.590	"Chi-Chi_ Taiwan"	1999	"TCU085"	7.62	Reverse Oblique	55.14	999.66	RSN1518_CHICHI_TCU085-E.AT2
1587	0.595	"Chi-Chi_ Taiwan"	1999	"TTN042"	7.62	Reverse Oblique	62.11	845.34	RSN1587_CHICHI_TTN042-N.AT2

M=7.0-8.0, R_{JB}=100-1000 km, V_{s30}=180-360 (m/sec)

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
12	0.833	"Kern County"	1952	"LA - Hollywood Stor FF"	7.36	Reverse	114.62	316.46	RSN12_KERN.PEL_PEL090.AT2
141	1.833	"Tabas_ Iran"	1978	"Kashmar"	7.35	Reverse	193.91	280.26	RSN141_TABAS_KSH-T1.AT2
142	0.755	"Tabas_ Iran"	1978	"Sedeh"	7.35	Reverse	150.33	354.37	RSN142_TABAS_SED-L1.AT2

833	0.992	"Landers"	1992	"Anaheim - W Ball Rd"	7.28	strike slip	144.9	269.29	RSN833_LANDERS_WBA090.AT2
834	1.280	"Landers"	1992	"Arcadia - Arcadia Av"	7.28	strike slip	137.25	330.5	RSN834_LANDERS_ARC172.AT2
1145	0.714	"Gulf of Aqaba"	1995	"Hadera"	7.2	strike slip	365.14	276.92	RSN1145_AQABA_HAD-NS.AT2
1173	0.623	"Kocaeli_ Turkey"	1999	"Tokat"	7.51	strike slip	472.56	323.8	RSN1173_KOCAELI_TKT090.AT2
1354	1.406	"Chi-Chi_ Taiwan"	1999	"KAU007"	7.62	Reverse Oblique	105.92	290.86	RSN1354_CHICHI_KAU007-N.AT2
1382	0.909	"Chi-Chi_ Taiwan"	1999	"KAU058"	7.62	Reverse Oblique	107.77	229.66	RSN1382_CHICHI_KAU058-E.AT2
1413	1.063	"Chi-Chi_ Taiwan"	1999	"TAP007"	7.62	Reverse Oblique	102.16	207.39	RSN1413_CHICHI_TAP007-W.AT2
1456	0.699	"Chi-Chi_ Taiwan"	1999	"TAP095"	7.62	Reverse Oblique	107.8	206.24	RSN1456_CHICHI_TAP095-E.AT2
1607	1.174	"Duzce_ Turkey"	1999	"Galata Kop."	7.14	strike slip	164.32	329.45	RSN1607_DUZCE_GB270.AT2
1639	0.475	"Manjil_ Iran"	1990	"Tehran - Sarif University"	7.37	strike slip	171.75	302.64	RSN1639_MANJIL_186008.AT2
1760	2.478	"Hector Mine"	1999	"Alhambra - LA Co PW HQ FF"	7.13	strike slip	174.9	338.99	RSN1760_HECTOR_ALC360.AT2
1779	5.062	"Hector Mine"	1999	"El Centro Array #10"	7.13	strike slip	186	202.85	RSN1779_HECTOR_E10230.AT2
1808	0 367	"Hector Mine"	1999	"Los Angeles - Acosta Residence"	7 13	strike slin	177 48	330.03	RSN1808 HECTOR ACR270 AT2
1000	0.507		1///	"Anchorage - Dowl Eng	7.15	sume sup	177.10	330.05	
2096	1.515	"Denali_ Alaska"	2002	Warehouse"	7.9	strike slip	270.25	212.48	RSN2096_DENALI_DOWL-90.AT2
				"Anaheim - Kraemer & La					
3781	5.857	"Hector Mine"	1999	Palma"	7.13	strike slip	162.36	283.54	RSN3781_HECTOR_AKL342.AT2
				"Van Nuys - Civic Center					
3824	2.537	"Hector Mine"	1999	Grounds"	7.13	strike slip	196.24	304.04	RSN3824_HECTOR_VNC090.AT2

M=7.0-8.0, R_{JB}=100-1000 km, V_{s30}=360-800 (m/sec)

Record Sequence Number	T _p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	R _{JB} (km)	V _{s30} (m/sec)	Horizontal Acc. Filename
13	0.955	"Kern County"	1952	"Pasadena - CIT Athenaeum"	7.36	Reverse	122.65	415.13	RSN13_KERN_PAS270.AT2
137	0.207	"Tabas_ Iran"	1978	"Bajestan"	7.35	Reverse	119.77	377.56	RSN137_TABAS_BAJ-L1.AT2
835	1.640	"Landers"	1992	"Arcadia - Campus Dr"	7.28	strike slip	135.22	367.53	RSN835_LANDERS_CAM279.AT2
837	2.636	"Landers"	1992	"Baldwin Park - N Holly"	7.28	strike slip	131.92	544.68	RSN837_LANDERS_NHO180.AT2
840	7.294	"Landers"	1992	"Big Tujunga_ Angeles Nat F"	7.28	strike slip	144.13	550.11	RSN840_LANDERS_TUJ352.AT2
1159	0.710	"Kocaeli_ Turkey"	1999	"Eregli"	7.51	strike slip	141.37	585.09	RSN1159_KOCAELI_ERG090.AT2
1172	0.918	"Kocaeli_ Turkey"	1999	"Tekirdag"	7.51	strike slip	164.18	521.76	RSN1172_KOCAELI_TKR180.AT2
1368	0.814	"Chi-Chi_ Taiwan"	1999	"KAU038"	7.62	Reverse Oblique	141.79	667.59	RSN1368_CHICHI_KAU038-E.AT2
1404	0.135	"Chi-Chi_ Taiwan"	1999	"PNG"	7.62	Reverse Oblique	110.3	465.86	RSN1404_CHICHI_PNG-N.AT2
1435	1.200	"Chi-Chi_ Taiwan"	1999	"TAP051"	7.62	Reverse Oblique	102.46	403.17	RSN1435_CHICHI_TAP051-E.AT2
1460	0.928	"Chi-Chi_ Taiwan"	1999	"TAP103"	7.62	Reverse Oblique	114.28	429.49	RSN1460_CHICHI_TAP103-N.AT2
1600	8.566	"Duzce_ Turkey"	1999	"Arcelik"	7.14	strike slip	131.17	523	RSN1600_DUZCE_ARE000.AT2
1638	0.661	"Manjil_ Iran"	1990	"Tehran - Building & Housing"	7.37	strike slip	174.55	376.92	RSN1638_MANJIL_187268.AT2
1769	1.191	"Hector Mine"	1999	"Beverly Hills Pac Bell Bsmt"	7.13	strike slip	195.87	460.09	RSN1769_HECTOR_BHP090.AT2
1818	1.095	"Hector Mine"	1999	"Pacoima Kagel Canyon"	7.13	strike slip	186.31	508.08	RSN1818_HECTOR_PKC360.AT2
2098	1.739	"Denali_ Alaska"	2002	"Anchorage - K2-03"	7.9	strike slip	263.54	428.08	RSN2098_DENALI_K203-90.AT2
4452	0.301	"Montenegro_ Yugoslavia"	1979	"Debar - Skupstina Opstine"	7.1	Reverse	118.21	485.04	RSN4452_MONTENE.GRO_DEB090.AT2
5824	0.559	"El Mayor-Cucapah_ Mexico"	2010	"CICESE"	7.2	strike slip	118.4	505.23	RSN5824_SIERRA.MEX_CIC000.AT2

		"El Mouer Cueensh								
5950	0.255	El Mayor-Cucapan_	2010	"Spring Valley Jamasha"	7.2	stuilto alin	116.04	441 70	DEN5950 SIEDDA MEX 02152260 AT2	
3830	0.555	"Montonooro	2010	Spring Valley - Jamacha	1.2	surke slip	110.84	441.78	KSIN3830_SIEKKA.MEA_03132300.A12	
6872	0.275	Yugoslavia"	1979	"Stolac - PPD"	7.1	Reverse	103.14	536.7	RSN6872 MONTENE.GRO 5679NS.AT2	
M 70.00	D 100 1000									
M=7.0-8.0, R _{JB} =100-1000 km, V _{s30} =800-2000 (m/sec)										
Record										
Sequence	-			a			RJB	V _{s30}		
Number	T_p (sec)	Earthquake Name	Year	Station Name	Magnitude	Mechanism	(km)	(m/sec)	Horizontal Acc. Filename	
1307	4.882	"Chi-Chi_ Taiwan"	1999	"ILA001"	7.62	Reverse Oblique	101.24	909.09	RSN1307_CHICHI_ILA001-N.AT2	
1352	3.225	"Chi-Chi_ Taiwan"	1999	"KAU003"	7.62	Reverse Oblique	113.39	913.77	RSN1352_CHICHI_KAU003-W.AT2	
1366	0.765	"Chi-Chi_ Taiwan"	1999	"KAU034"	7.62	Reverse Oblique	106.72	1010.4	RSN1366_CHICHI_KAU034-E.AT2	
1371	1.765	"Chi-Chi_ Taiwan"	1999	"KAU042"	7.62	Reverse Oblique	158.96	806.48	RSN1371_CHICHI_KAU042-N.AT2	
1378	1.861	"Chi-Chi_ Taiwan"	1999	"KAU051"	7.62	Reverse Oblique	123.56	1004.58	RSN1378_CHICHI_KAU051-E.AT2	
1440	1.818	"Chi-Chi_ Taiwan"	1999	"TAP065"	7.62	Reverse Oblique	120.84	1023.45	RSN1440_CHICHI_TAP065-N.AT2	
1446	0.965	"Chi-Chi_ Taiwan"	1999	"TAP077"	7.62	Reverse Oblique	117.31	1022.77	RSN1446_CHICHI_TAP077-W.AT2	
1571	1.629	"Chi-Chi_ Taiwan"	1999	"TTN016"	7.62	Reverse Oblique	121.45	826.15	RSN1571_CHICHI_TTN016-E.AT2	
3799	0.793	"Hector Mine"	1999	"LA - Griffith Park Observatory"	7.13	strike slip	185.92	1015.88	RSN3799_HECTOR_GPO360.AT2	
		"El Mayor-Cucapah_								
5967	5.496	Mexico"	2010	"Blythe"	7.2	strike slip	164.38	1029	RSN5967_SIERRA.MEX_BLY-90.AT2	
		"El Mayor-Cucapah_		-						
5993	0.075	Mexico"	2010	"El Monte County Park"	7.2	strike slip	104.9	805	RSN5993_SIERRA.MEX_EML360.AT2	
		"El Mayor-Cucapah_								
6009	10.750	Mexico"	2010	"Idyllwild - Keenwild Fire Sta."	7.2	strike slip	147.39	845.41	RSN6009_SIERRA.MEX_0604A180.AT2	
		"El Mayor-Cucapah_								
6051	7.618	Mexico"	2010	"Toro Canyon"	7.2	strike slip	111.38	1100	RSN6051_SIERRA.MEX_TOR360.AT2	
		"El Mayor-Cucapah_								
8520	7.408	Mexico"	2010	"Desert Studies Center"	7.2	strike slip	277.74	1329	RSN8520_SIERRA.MEX_CIDSCHNE.AT2	
		"El Mayor-Cucapah_		"Granite Mountains Research						
8528	8.001	Mexico"	2010	Center"	7.2	strike slip	235.77	943	RSN8528_SIERRA.MEX_CIGMRHHN.AT2	
		"El Mayor-Cucapah_		"Marine Combat Center						
8551	10.001	Mexico"	2010	29palms"	7.2	strike slip	176.05	1188	RSN8551_SIERRA.MEX_CIMCTHNE.AT2	
		"El Mayor-Cucapah_		-						
8569	8.000	Mexico"	2010	"Parker Dam"	7.2	strike slip	233.99	1312	RSN8569_SIERRA.MEX_CIPDMHNN.AT2	
		"El Mayor-Cucapah_								
8586	7.143	Mexico"	2010	"Santa Barbara Island"	7.2	strike slip	318.58	854	RSN8586_SIERRA.MEX_CISBIHNE.AT2	
		"El Mayor-Cucapah_								
8599	9.091	Mexico"	2010	"Cattani Ranch"	7.2	strike slip	382.84	895	RSN8599_SIERRA.MEX_CITEHHNN.AT2	
		"El Mayor-Cucapah_								
8609	7.693	Mexico"	2010	"Wonderland Avenue School"	7.2	strike slip	292.84	1043	RSN8609_SIERRA.MEX_CIWNSHNE.AT2	

ΠΑΡΑΡΤΗΜΑ Γ

ΔΙΑΓΡΑΜΜΑΤΑ R vs. T_n/T_p ΑΠΟ ΑΝΑΛΥΣΕΙΣ ΑΠΟΚΡΙΣΗΣ

Γ1. ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΕΝΑ ΒΑΘΜΟ ΕΛΕΥΘΕΡΙΑΣ (1DOF)

---- mean+σ ---- mean-σ ---- mean+2σ ---- mean-2σ

--- mean-2σ

-0.2 -0.4 -0.6

Γ2. ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕ 2 ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ (2DOF)

---- mean+σ ---- mean-σ ---- mean+2σ ---- mean-2σ

---- mean+σ ---- mean-σ ---- mean+2σ ---- mean-2σ

---- mean+σ ---- mean-σ ---- mean+2σ ---- mean-2σ

Γ3. ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕ 4 ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ (4DOF)

---mean+σ ---mean-σ ---mean+2σ

---mean-2σ

mean mean+σ mean-σ mean+2σ mean-2σ

---- mean+σ ---- mean-σ ---- mean+2σ ---- mean-2σ

Γ4. ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕ 8 ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ (8DOF)

mean mean+σ mean-σ mean+2σ mean-2σ

--- mean+σ --- mean-σ --- mean+2σ

--- mean-2σ

