
- 1 -

Master’s Thesis

Volumetric Capture with multiple azure Kinects in Unreal Engine

Marios Charalambous

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

JUNE 2023

Mari
os

 C
ha

ral
am

bo
us

- 2 -

Volumetric Capture with multiple azure Kinects in Unreal Engine

Marios Charalambous

University of Cyprus, 2023

A Thesis

 Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

at the

University of Cyprus

Recommended for Acceptance

By the Department of Computer Science

June, 2023

Mari
os

 C
ha

ral
am

bo
us

- 3 -

APPROVAL PAGE

Master of Science Thesis

VOLUMETRIC CAPTURE WITH MULTIPLE AZURE KINECTS IN UNREAL ENGINE

Presented by

Marios Charalambous

Research Supervisor Andreas Aristidou

Committee Member Panayiotis Charalambous

Committee Member Yiorgos Chrysanthou

University of Cyprus

June 2023

Mari
os

 C
ha

ral
am

bo
us

- 4 -

ACKNOWLEDGEMENTS

This thesis is a diploma thesis in the context of the Master of Science in Computer Science

program of the Faculty of Science of the University of Cyprus.

With the completion of my thesis, I would like to thank some of the people I met, collaborated

with, and played a very important role in its realization.

I would like to thank my thesis supervisor, Dr. Andreas Aristidou, who entrusted me with this

thesis and guided me in its execution.

I also thank Dr.. Panagiotis Charalambous who is the head of the V-EUPNEA MRG team of

the CYENS Center of Excellence for the guidelines for the completion of the thesis and his

continuous response to any issues that arose and the help he provided me to solve them.

Mari
os

 C
ha

ral
am

bo
us

- 5 -

ABSTRACT

Volumetric capture (Volumetric video) is a technique that allows to create “holographic”

recordings of actors, sets and props. The technique can be used to create immersive stories that

sometimes reflect aspects of reality better than realistic 3D models. For example, volumetric

captures of actors do not seem to cause uncanny valley effect. Volumetric video is a core

underlying technology for emerging Mixed Reality systems. What was previously available for

a glimpse only in science fiction movies and futuristic predictions, now with the ongoing

research on volumetric video capturing, coding and presentation, realistic mixed reality

experiences are close to become a reality. At the same time, computer generated holography

and other digital 3D projection techniques start to became more common and affordable. The

emergence of solutions for capturing volumetric video and devices which can display

volumetric video mixed with the real world are paving the way to a new media, where a real

object and its volumetric virtual image are indistinguishable. Virtual simulation of human faces

and facial movements has challenged media artists and computer scientists since the first

realistic 3D renderings of a human face by Fred Parke in 1972. Today, a range of software and

techniques are available for modelling virtual characters and their facial behavior in immersive

environments, such as computer games or storyworlds. However, applying these techniques

often requires large teams with multidisciplinary expertise, extensive amount of manual labour,

as well as financial conditions that are not typically available for individual media artists.

In this thesis first created a metahuman from photographs with the help of KeenTools

FaceBuilder and the MetaHuman plugin. Also thesis aims to use three Azure Kinects DK

devices(depth sensors) to capture in real-time the ''hologram'' of the user. All of the above is

built on Epic Games' Unreal Engine game platform in C++ programming language in visual

studio 2022.

Mari
os

 C
ha

ral
am

bo
us

- 6 -

Content

Chapter 1 Introduction……………………………………………………… 1

1.1 Introduction 1

1.2 Motivation 1

1.3 Related Work 2

1.4 Thesis Organization 2

Chapter 2 Theoretical Background and Scene Description………….……. 4

2.1 Theoretical Background 4

 2.1.1 Unreal Engine 4

 2.1.2 Microsoft Azure Kinect DK 5

 2.1.3 PCL Library C++ 5

 2.1.4 Azure Kinect SDK 6

 2.1.5 Python Open3D 6

2.2 Scene Description 6

2.2.1 Scene 1 – The Metahuman Character of myself 6

2.2.2 Scene 2 – Realtime Volumetric Capture in UE 7

Chapter 3 Methodology………….…………………………………….. 1 9

3.1 Process to create Metahuman Character of myself 19

3.2 General overview how to create volumetric character with multiple

depth sensors 10

3.3 Setting up of Microsoft Azure kinects depth sensors 24

3.4 Capturing the character – object 26

3.5 Merging point cloud - Calibration 30

3.6 Processing the data 32

3.7 Animating the character 35

Chapter 4 Operatıons……………………………………………………. 36

4.1 Should Register Multiple Kinects

4.2 Save Registration

Mari
os

 C
ha

ral
am

bo
us

- 7 -

4.3 Register to World

4.4 Record Point Cloud

Chapter 5 Manual ……………………………………………. ………………

5.1 Scene 1 – The Metahuman Character of myself

 5.2 Scene 2 – Realtime Volumetric Capture in UE

Chapter 6 Conclusions – Results and Future Work ……………………

6.1 Conclusions – Results 46

 6.1.1 Summary of the thesis 46

 6.1.2 Discussion of the results 46

 6.1.2.1 Chessboard vs Lattice 47

 6.1.2.2 Calibration Mean Error for the positions of the depth

sensors 49

6.1.2.3 Calibration Mean Error for lighting conditions. 53

6.1.2.4 Time needed for Calibration - lighting conditions. 54

6.1.2.5 Time and Calibration Mean Error – Change height 54

6.1.2.6 NFOV vs WFOV 55

6.1.2.7 Ball-Pivoting vs Poisson Algorithm 58

6.2 Future Work 61

7 Bibliography …………………………………………………………… 62

8 Appendix ………………………………………………………………… 62

8.1 Source Code 62

8.2 Structure 63

Mari
os

 C
ha

ral
am

bo
us

- 8 -

List Figures

Figure 1 - Metahuman Character of myself (front) .. - 19 -

Figure 2 - Metahuman Character of myself (right angle) ... - 19 -

Figure 3 - Metahuman Character Control Rig – Up Arm ... - 20 -

Figure 4 - Metahuman Character Control Rig – Up Arm ... - 20 -

Figure 5 - Metahuman Character Control Rig – Face .. - 20 -

Figure 6 - Initialization of the three azure kinect .. - 21 -

Figure 7 - Start Capturing .. - 21 -

Figure 8 - high-quality photo(front) .. - 22 -

Figure 9 - high-quality photo(left angle) ... - 22 -

Figure 10 - high-quality photo(right side) ... - 22 -

Figure 11 - align face - left... - 23 -

Figure 12 - align face - up .. - 23 -

Figure 13 - align face - left... - 23 -

Figure 14 - align face - front .. - 23 -

Figure 15 - Kentool Mesh .. - 24 -

Figure 16 - Kentool mesh with texture ... - 24 -

Figure 17 - Kentool texture ... - 24 -

Figure 18 - Align Face to create Metahuman.. - 25 -

Figure 19 - Final texture .. - 26 -

Figure 20 - Metahuman of myself ... - 26 -

Figure 21 - NFOV distances ... - 28 -

Figure 22 - WFOV distances .. - 28 -

Figure 23 -Ideal configuration for triple azure kinects sensors(WFOV) .. - 29 -

Figure 24 - Ideal configuration for triple azure kinects sensors(NFOV) .. - 29 -

Figure 25 - Kinects Setup... - 29 -

Figure 26 - Point Cloud rendering in unreal engine .. - 33 -

Figure 27 - Chessboard pattern .. - 33 -

Figure 28 - Configuration for chessboard pattern .. - 34 -

Figure 29 - lattice .. - 35 -

Figure 30 - Merging Point cloud .. - 36 -

Figure 31 - Record file ... - 38 -

Figure 32 - Ball Bivoting Mesh - frame 2 ... - 39 -

Figure 33 - Ball Pivoting mesh – frame 1 .. - 39 -

Figure 34- Possion Reconstruction - frame 2 .. - 40 -

Figure 35 - Poisson Recostruction - frame 1 ... - 40 -

Figure 36 - frame 2 animation .. - 41 -

Figure 37 - frame 1 animation .. - 41 -

Figure 38 - frame 4 animation .. - 41 -

Figure 39 - frame 3 animation .. - 41 -

Figure 40 - Registration file ... - 42 -

Figure 41 - Record File .. - 43 -

Figure 42 - Animation Sequence ... - 44 -

Figure 43 - Operations .. - 45 -

Figure 44 - NFOV vs WFOV .. - 55 -

Mari
os

 C
ha

ral
am

bo
us

file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901730
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901731
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901732
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901733
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901734
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901735
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901736
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901737
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901738
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901739
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901740
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901741
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901742
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901743
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901744
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901745
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901746
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901747
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901748
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901749
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901750
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901751
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901752
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901754
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901755
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901756
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901757
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901758
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901759
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901760
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901761
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901762
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901763
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901764
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901765
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901766
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901767
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901768
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901769
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901770
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901771
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901772
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901773

- 9 -

Figure 45 - Point Cloud .. - 58 -

Figure 46 - Mesh radius=2 max_nn=30 ... - 58 -

Figure 47 - Mesh radius=10 ,max_nn=300.. - 59 -

Figure 48 - Mesh radius=5, max_nn=90 .. - 59 -

Figure 49 - mesh depth = 8 ... - 60 -

Figure 50 - mesh depth = 10 ... - 60 -

Figure 51 - mesh depth = 6 ... - 60 -

List Graphs

Graph 1 - Chessboard vs Lattice pattern (Mean Error) ... - 47 -

Graph 2 - Chessboard vs Lattice (Time needed for calibration) ... - 49 -

Graph 3 - Mean error for positions of the depth sensors ... - 50 -

Graph 4 - time needed for calibration the depth sensors .. - 51 -

Graph 5 - mean error for lighting conditions .. - 52 -

Graph 6 - time needed for calibration (lighting conditions) ... - 53 -

Graph 7 - NFOV vs WFOV Calibration Mean Error .. - 56 -

Graph 8 - NFOV vs WFOV Time for Calibration ... - 57 -

Mari
os

 C
ha

ral
am

bo
us

file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901774
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901775
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901776
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901777
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901778
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901779
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901780
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901781
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901782
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901783
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901784
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901785
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901786
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901787
file:///C:/Users/mchar/Desktop/UCY/diplomatiki/Ατομική%20Διπλωματική%20Εργασία.docx%23_Toc135901788

- 10 -

Chapter 1

1.1 Introduction

Volumetric capture technology has emerged as a powerful tool in the field of computer

graphics and multimedia applications. This technology allows to create 3D models of real life

objects and people, which are captured from multiple viewing angles in a given space. Various

applications, such as video games, virtual reality, AR and teleconferencing among others, can

benefit from these 3D models.

Volumetric capture technology involves capturing the geometry, texture and motion of an

object in 3D space. This requires multiple cameras, depth sensors and various devices that

collect images of the object from a number of angles and distances. Once the data has been

collected, it is then processed to create a 3D model that can be viewed and manipulated in a

real time.

Over the past years, researchers and practitioners have given a lot of attention to volumetric

capture because they are trying different applications and techniques for improving its quality

and efficiency. This has led to the development of new algorithms, hardware and software

tools, which have made volumetric capture more accessible and affordable.

This thesis aims to use three Azure Kinects DK devices to capture in real-time the ''hologram''

of the user within the unreal engine which is a game creation platform. Further analysis of the

process, difficulties, and results will be done later.

1.2 Motivation

With the passing of the years, we are getting closer and closer to the era of the ''metaverse''.

This gives a huge motivation to someone to deal with volumetric capture because, with the

results it has, the creation of realistic characters and objects, the experience in virtual and

augmented reality become impressive. Thus, the main objective of this thesis was to create a

realistic character, control various parameters and extract influencing results (such as camera

position, lighting in the space, etc.) that would help in future projects.

Mari
os

 C
ha

ral
am

bo
us

- 11 -

1.3 Related Work

Continuing in this chapter, a brief summary of the relevant work done previously is provided.

A large body of studies have been accumulated in the field of realistic human modelling and

animation over the years. However, making use of a captured workflow based on automation

and algorithms instead of traditional tridimensional modelling pipelines, is a relatively recent

practice. This work is highly influenced by the achievements of the USC Institute for Creative

Technologies Especially Digital Emily (Alexander, 2010) and Digital Ira (von der Pahlen et

al., 2014) can be mentioned. as works, where high-end hardware and software were created in

order to achieve a realistic virtual human being,. In our case, we seek for the same outcome but

utilizing low-end and off-the-shelf solutions available for individual media artists. The work

of Zollhöfer et al. (2018) also shares similar aspects with our workflow. In their article “State

of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications” they evaluate

different algorithms for the capture and reconstruction of human faces, introducing also

possibilities of capturing actors’ movements. With a strict engineering focus, their work

communicates very well with the automated approach proposed in this thesis. Out work relates

to the extended work of Mark Sagar et al. (2016) at the Laboratory for Animate Technologies

of Auckland University , especially their work conducted on the ways the viewer may interact

with virtual characters. The same is true also with facial game technologies, especially

volumetric technologies used in games like L.A. Noire (Star, 2011) and the achievements of

Ninja Theory’s Hellblade (2017). From the scientific view-point , the research by Mark

Cavazza and others (2002) shares similarities with our work, particularly related to character

based interactive storytelling. This work also seeks to relate the researches and developments

in sequenced volumetric capture solutions, especially the experiments from the volumetric

capture community, such as the work of Or and Anlen (2018), Dou et al. (2017), Scatter (2017),

as well as volumetric capture studios as Microsoft Mixed Reality Capture Studio (2018) and

Fraun-hofer Institute’s Volucap Studio (2018). The uncanny valley discussions, specially the

psychological research by Jari Kätsyri et al. (2015), Aline W. de Borst and Beatrice de Gelder

(2015) and Rachel McDonnell et al. (2012) are also of great value to this work, bringing and

opening discussions on the way humans perceive and interact with virtual characters. Then,

due to the rapid development of technology and the performance of computers in recent years,

the results of volumetric capture systems are astonishing. In 2018 Zollhöfer published the paper

"Live Volumetric Performance Capture" where presents a system for live volumetric

performance capture, which can be used to create real-time 3D content. Also, "Volumetric

Mari
os

 C
ha

ral
am

bo
us

- 12 -

Capture of Humans with a Single RGBD Sensor" by J. Xie et al., IEEE Transactions on

Visualization and Computer Graphics, 2019. This paper presents a method for volumetric

capture of humans using a single RGBD sensor. Finally, another interesting paper is "Efficient

Volumetric Video Coding for Interactive Applications" by H. Aksay et al., ACM Transactions

on Multimedia Computing, Communications, and Applications, 2020. This paper presents an

efficient method for compressing and transmitting volumetric video data, which is important

for interactive applications.

1.4 Thesis Organization

Chapter 1 gives a general introduction to what volumetric capture is and what it can be used

for. Also, the motivation and objectives of the thesis, creating a realistic virtual character and

extracting results and finally the literature review, i.e. the works created before my own thesis.

The rest of the report will follow the following structure:

Chapter 2 will present the system requirements covering both hardware and software, the

packages used to carry out this work. In addition, the two scenes made on the unreal engine

game platform will be presented and the way it works will be analyzed.

In chapter 3 the whole process of creating the virtual metahuman character and the process of

creating a real-time volumetric capture character will be presented and analyzed.

In chapter 4 all the game functions will be extensively reported and analyzed.

Chapter 5 will present the user manual of the simulation game, i.e. how the user can run and

see the results on the Unreal Engine platform.

In chapter 6 all results and conclusions will be analysed with graphical extraction and

comparison of the methods. And finally the future research that can be done to improve the

existing thesis.

Mari
os

 C
ha

ral
am

bo
us

- 13 -

Chapter 2

2 Theoretical Background – Frameworks - Tools and Scene Description

2.1 Theoretical Background – Frameworks - Tools 12

2.1.1 Unreal Engine 12

2.1.2 Microsoft Azure Kinect DK 13

2.1.3 PCL Library C++ 13

 2.1.4 Azure Kinect SDK 14

 2.1.5 Python Open3D Library 14

 2.1.6 OpenCV library 15

2.2 Challenges 16

 2.2.1 Storage and Compression 16

 2.2.2 Data Acquisition and Processing 16

 2.2.3 Real-Time Rendering 17

 2.2.4 Hardware and Sensor Limitations 17

 2.2.5 Depth and Occlusion Challenges 17

2.3 Scene Description 18

 2.3.1 Scene 1 – The Metahuman Character of myself 18

 2.3.2 Scene 2 – Realtime Volumetric Capture in Unreal Engine 20

Before the analysis of the simulation, general information and concepts that are necessary to

understand for the continuation of the work will be explained.

2.1 Theoretical Background

2.1.1 Unreal Engine

Unreal EngineΣφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. is a popular and

powerful game engine developed and maintained by Epic Games. It is a collection of software

tools and technologies that can be used to create high-quality, interactive 3D games,

simulations, and other interactive applications.

Mari
os

 C
ha

ral
am

bo
us

- 14 -

Unreal Engine provides a wide range of features, including a visual scripting system called

Blueprints, a robust physics engine, advanced AI systems, and support for virtual reality and

augmented reality. It also supports a variety of platforms, including Windows, Mac, Linux,

Xbox, PlayStation, and mobile devices.

One of the key benefits of Unreal Engine is its ease of use and accessibility to developers of

all skill levels. It provides a large and active community of developers and users, as well as

extensive documentation and tutorials to help developers get started quickly. Τhe scripts were

written in Visual Studio 2022 with the c++ programming language.

Unreal Engine Marketplace provides a wide range of high-quality assets and resources to

Unreal Engine users. It's got everything from a character, environment, or animation to sound

effects, music and plugins. Developers are also able to make their own assets available on the

marketplace, making it easier for them to generate income from their skills and work.

2.1.2 Microsoft Azure Kinect DK

The Microsoft Azure Kinect DK(Developer Kit) [2] is a sensor package designed for computer

vision and speech models. To capture high quality data for computer vision and speech

applications, it is the combination of depth sensors, a high definition RGB camera with multiple

microphone inputs that can be used.

The Microsoft Azure DK Kinect provides developers with a wide range of features, which

allow them to create cutting edge computer vision and speech applications. Some of the main

features are as follows: Depth Sensor: The depth sensor enables developers to create 3D models

of objects, detect and track movement, and enable gesture recognition. High definition RGB

camera: High resolution video and pictures can be captured by the High-Definition RGB

camera which is capable of recognizing objects as well as tracking them.

Microphone Array: The microphone array offers excellent speech recognition capabilities,

allowing developers to develop applications that can recognize commands and react in

accordance with them. Software development kit: In order to help developers create apps fast

and easy, the Azure Kinect DK will come with a software development kit containing APIs,

code samples or other documentation.

Mari
os

 C
ha

ral
am

bo
us

- 15 -

2.1.3 PCL Library C++

The Point Cloud Library (PCL) [3] is an open-source library for processing 2D and 3D point

clouds. It was developed by a community of researchers and engineers from various

universities and companies, and is widely used in computer vision, robotics, and 3D printing.

A number of algorithms and tools for working with point cloud data are available in PCL, such

as filtering, segmentation, registration or surface reconstruction. It supports a number of

common file formats for point cloud data, such as PCD, POY, OBJ, STL, etc. The library is

compiled in C++, and contains API for Python, Java, and MATLAB among other programming

languages. A number of platforms, such as Windows, Linux or macOS, are supported by PCL.

2.1.4 Azure Kinect SDK

Azure Kinect SDK Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. is a

collection of software tools and libraries that enables developers to create applications that use

data from the Azure Kinect sensor. The Azure Kinect sensor is a high-end depth camera

designed for computer vision and robotics applications.

The SDK includes APIs that enable you to access sensor data in depth, color, and infrared as

well as perform body tracking or other computer vision tasks. In order to speed up the

development process, it includes a set of sample applications and code snippets.

The Azure Kinect SDK supports C++, C# and Python programming languages that can be used

on both Windows and Linux. The SDK is free to use, available on GitHub, making it possible

for developers to contribute and edit their own code in order to suit their individual needs.

2.1.5 Python Open3D Library

The Open3D library[6] is an open-source 3D data processing library which was first released

in 2018. It includes a set of powerful, easy to use tools for the generation, manipulation and

simulation of 3D geometry and simulating point clouds. Open3D is created in C++ and offers

Python bindings, so it can be used by both C++ and Python developers.

Some of the key features of Open3D include:

Mari
os

 C
ha

ral
am

bo
us

- 16 -

• 3D data types: a range of 3D data types, such as Pointcloud, TriangleMesh, VoxelGrid

and Images are available from Open3D.

• A large range of 3D processing tools, such as a point cloud registration, mesh

reconstruction, segmentation and more are available in Open3D.

• Visualization: Open3D provides a set of easy-to-use visualization tools that allow you

to visualize your 3D data in 3D space.

• IO: Open3D supports importing and exporting various 3D file formats, including PLY,

OBJ, STL, and OFF.

• Integration with deep learning: Open3D has integration with popular deep learning

frameworks such as PyTorch and TensorFlow, making it a useful tool for tasks such as

3D object detection and segmentation.

In general, Open3D is a powerful and easy to use library which has become increasingly

popular amongst 3D Data Processing Enthusiasts and Researchers.

2.1.6 OpenCV library

OpenCV (Open-Source Computer Vision)[7] is an open-source library that provides tools and

functions for computer vision and image processing tasks. It was originally developed by Intel

and later supported by Willow Garage and Itseez.

OpenCV is widely used in various fields such as robotics, augmented reality, facial recognition,

object detection, and video analysis. The library supports multiple programming languages,

including C++, Python, Java, and MATLAB, making it accessible to developers in different

domains.

Here are some key features and functionalities provided by OpenCV:

• Image and video I/O: OpenCV can read and write images and videos from various file

formats.

• Image processing: It offers a wide range of functions for manipulating images,

including resizing, cropping, filtering, and transforming images.

• Feature detection and extraction: OpenCV provides algorithms to detect and extract

features from images, such as corners, edges, and keypoints.

Mari
os

 C
ha

ral
am

bo
us

- 17 -

• Object detection and recognition: The library includes pre-trained models and methods

for object detection and recognition tasks, such as Haar cascades, HOG (Histogram of

Oriented Gradients), and deep learning-based approaches.

• Camera calibration: OpenCV allows calibration of cameras to correct for lens distortion

and obtain accurate measurements from images.

• Machine learning support: OpenCV integrates with popular machine learning

frameworks like TensorFlow and PyTorch, enabling the use of trained models for

various computer vision tasks.

• Video analysis: It provides functions for video stabilization, motion tracking, and

background subtraction.

• GUI and visualization: OpenCV offers graphical user interface (GUI) components to

display and interact with images and videos.

• Parallel computing: OpenCV utilizes multi-core processors and hardware acceleration

to optimize performance for computationally intensive tasks.

2.2 Challenges

2.2.1 Storage and Compression

The enormous amount of information required makes storage and compression of volumetric

data extremely difficult. Raw volumetric data may be difficult to store and send, as well as

being computationally expensive. Therefore, effective volumetric data compression techniques

are being created to minimize storage needs and enable real-time streaming of collected

material. These compression methods make an effort to maintain visual integrity while

balancing compression ratios, guaranteeing that volumetric data may still be accessed and used

without suffering significantly.

2.2.2 Real-Time Rendering

Volumetric content rendering in real time is a difficult undertaking because of its complexity

and computing demands. To retain realism, volumetric data has to be rendered from a variety

of angles with precise lighting and shading. To reach interactive frame rates for volumetric

content, researchers are investigating strategies including level-of-detail representations,

Mari
os

 C
ha

ral
am

bo
us

- 18 -

hierarchical data structures, and GPU-based rendering algorithms. Advancements in real-time

rendering are essential for providing interactive experiences, live performances, and dynamic

virtual worlds with volumetric capture.

2.2.3 Data Acquisition and Processing

The effective acquisition and processing of massive volumes of data presents one of the main

technological hurdles in volumetric capture. Massive data sets with many perspectives, depth

information, and color data are produced by volumetric capture devices. High-resolution and

high-fidelity volumetric material demands significant processing and storage power. To

address these issues and improve accessibility of volumetric capture, researchers are currently

investigating data compression methods, effective data formats, and distributed computing

options.

2.2.4 Hardware and Sensor Limitations

The cost, scalability, and mobility of the hardware and sensor technologies utilized in

volumetric capture systems might be drawbacks. To collect volumetric data, multi-camera

systems, depth sensors, and specialized capture rigs are frequently employed. To lessen the

complexity and expense of volumetric capture systems, researchers are looking into alternative

hardware configurations such single-sensor depth estimation methods. Volumetric capture may

become more affordable and extensively used as a result of improvements in consumer-grade

depth sensors and hardware downsizing.

2.2.5 Depth and Occlusion Challenges

Volumetric capture faces continual difficulties with controlling occlusions and accurately

recording depth information. Incomplete or incorrect representations may result from depth

sensors' inability to handle obstructed regions and capture fine features. To increase depth

estimate accuracy and effectively handle occlusion, researchers are looking into new

algorithms and sensor fusion approaches. To solve these issues and improve the fidelity of

volumetric capture, methods including multi-view stereo reconstruction, depth inpainting, and

sensor fusion techniques are being investigated.

Mari
os

 C
ha

ral
am

bo
us

- 19 -

2.3 Scene Description

2.3.1 The Metahuman Character of myself

The first scene is the metahuman character of myself created with photos from different angles

and with the help of Kentool Facebuilder[5] and the metahuman plugin. Details of the process

followed to create the character will be discussed in the next chapter, chapter 3.

Figure 2 - Metahuman Character of myself (right angle) Figure 1 - Metahuman Character of myself (front)

Mari
os

 C
ha

ral
am

bo
us

- 20 -

the character can be easily animated since it has a skeleton - rig and so you can control

exactly the position, and the rotation of the movement of each point. For example to lift up

the character's arm or open his mouth

Figure 4 - Metahuman Character Control Rig – Up Arm Figure 3 - Metahuman Character Control Rig – Up Arm

Figure 5 - Metahuman Character Control Rig – Face

Mari
os

 C
ha

ral
am

bo
us

- 21 -

2.3.2 Scene 2 – Realtime Volumetric Capture in Unreal Engine

In the second scene the only actor present is the Registration Manager where it is responsible

to first find out how many Microsoft Azure Kinect depth sensors are connected to the computer

and create the correct number of Azure Kinect Actor. It is also responsible for the following

operations:

• Should Register Multiple Kinects

• Save Registration

• Register to World

• Record Point Cloud

And finally, close all depth sensors that were previously opened. The analysis and explanation

of the operations will be done in chapter 4.

Figure 6 - Initialization of the three azure kinect

Figure 7 - Start Capturing Mari
os

 C
ha

ral
am

bo
us

- 22 -

Chapter 3

3 Methodology

3.1 Process to create Metahuman Character of myself 19

3.2 General overview how to create volumetric character with multiple depth sensors 23

3.2 Setting up of Microsoft Azure Kinect depth sensors 24

3.3 Capturing the character – object 26

3.4 Merging point cloud - Calibration 30

3.5 Processing the data 32

3.6 Animating the character 35

3.1 Process to create Metahuman Character of myself

For the metahuman creation used KeenTool FaceBuilder for blender and the metahuman plugin

offered by epic games for the unreal engine. Initially the first step take high-quality photos of

the human face from multiple angles and it is very important that the lighting in the room is

ambient to avoid reflections and shadows that will ruin the textures will use to create the

metahuman.

Figure 8 - high-quality
photo(front)

Figure 9 - high-quality photo(left
angle)

Figure 10 - high-quality
photo(right side)

Mari
os

 C
ha

ral
am

bo
us

- 23 -

Align Face

A couple of neural networks will find a face on the photo and set up some pins to match the

position and the shape based on facial landmarks(mouth, ears ,noise, eyes, eyebrows).

Figure 11 - align face - left Figure 12 - align face - up

Figure 13 - align face - left Figure 14 - align face - front

Mari
os

 C
ha

ral
am

bo
us

- 24 -

Once the head and face are pinned across the desired number of views, FaceBuilder can create

the texture from the photos automatically. And final export the model as an FBX file which

will load to Unreal Engine.

Figure 15 - Kentool Mesh Figure 16 - Kentool mesh with texture

Figure 17 - Kentool texture Mari
os

 C
ha

ral
am

bo
us

- 25 -

Mesh to MetaHuman: Aligning the model

At this stage the mesh must become a metahuman, that is, it must have the topology of the

metahuman in order to be animated easily. Then frame the face to see the frontal view with all

its details and launch auto-tracking, which takes a couple of moments and gives us the

automatically detected facial landmarks.

MetaHuman Creator: set up the appearance of the character

In the online MetaHuman editor, choose the character and tune it to match the person from the

photos as closely as possible by tweaking the skin colour, eyes, facial hair, clothes and so on.

Using the online editor, you can reach a very good level of likeness, but there’s a way to make

it even better. To achieve this replace the generated MetaHuman texture with something more

realistic and feature-rich.

Photoshop: Preparing the texture for MetaHuman

MetaHuman uses four textures for different facial expressions including the neutral one. Take

them all to Photoshop and merge with the mh texture previously extracted from the photos by

FaceBuilder. The mh texture map of FaceBuilder was created specifically to make this process

as simple as possible. It matches the layout of the built-in MetaHuman texture perfectly, so all

facial parts will align naturally, just need to set up the size of the texture properly while creating

and exporting the texture. At this stage, need to accurately join high and low-frequency details

Figure 18 - Align Face to create Metahuman

Mari
os

 C
ha

ral
am

bo
us

- 26 -

from both textures and match their colours. Also clean up the standard MetaHuman texture

from the features that it has, but your real person hasn’t.

Unreal Engine: adding the new textures

The final step ,replace the textures of the model with the ones created earlier in Photoshop out

of the MetaHuman ones and the ones extracted from the photos by FaceBuilder. Do it one by

one for every expression.

Figure 19 - Final texture

Figure 20 - Metahuman of myself
Mari

os
 C

ha
ral

am
bo

us

- 27 -

3.2 General Overview how to create volumetric character with multiple depth sensors

in realtime

Creating a volumetric capture character with multiple depth sensors in realtime involves using

several devices to capture the subject from different angles and perspectives. A general

overview of the steps required to create a volumetric capture character with multiple depth

sensors is given below:

1. Setting up of depth sensors: It shall be necessary to fix a number of depth sensors and

recalibrate them so that they are able to capture the correct depth information. In this

case, the sensor shall be placed at a precise distance from the subject and its settings

adjusted to ensure best capture.

2. Capturing the character - object: The character-object shall be placed in a captured area,

which by definition is an equatorial or polarised space to allow for simultaneous capture

from multiple angles. The depth sensors capture both the color and depth information

of the character - object, creating multiple point clouds of the character’s shape and

position.

3. Merging the point clouds: The captured data from each depth sensor is then merged

together using a calibration technique. This involves aligning multiple point clouds to

a single, unified 3D model of the object.

4. Processing the data: The point clouds captured by the sensors need to be processed to

create a smooth and accurate surface representation of the character. This typically

involves performing various steps such as filtering, meshing, and surface

reconstruction.

5. Animating the character: Once the volumetric representation of the character is created,

it can be animated in real-time. This involves mapping the motion of the sensors to the

character's surface, allowing the character to move in real-time as the sensors capture

its movement.

3.3 Setting up of Microsoft Azure kinects depth sensors

Initially very important was the positioning of the cameras. Depending on the depth mode of

the camera that the user wants to choose (NFOV or WFOV) the cameras must be placed at a

different distance for better capture of space and character. For NFOV depth mode the cameras

Mari
os

 C
ha

ral
am

bo
us

- 28 -

must be placed above the ground at least 0.7 meters and no more than 1.5 meters and the person

at a distance of more than 1.5 meters away from the camera for a complete capture of his body.

For WFOV depth mode the cameras must be placed above the ground at least 0.7 meters and

no more than 1.5 meters and the person at a distance of more than 0.8 meters away from the

camera for a complete capture of his body.

Αpart from the height and distance that the user must have from the camera, there is also the

angle and distance that each camera must have between each other. For NFOV depth mode

ideally, depth sensors should be placed at apexes of equilateral triangle with sides equal to

Figure 21 - NFOV distances

Figure 22 - WFOV distances Mari
os

 C
ha

ral
am

bo
us

- 29 -

about 5 meters and for WFOV depth sensors should be placed at apexes of equilateral triangle

with sides equal to about 3 meters.

Figure 24 - Ideal configuration for triple azure kinects
sensors(NFOV)

In the picture above you can see the set up of the depth sensors.

Figure 23 -Ideal configuration for triple azure kinects
sensors(WFOV)

Figure 25 - Kinects Setup

Mari
os

 C
ha

ral
am

bo
us

- 30 -

3.4 Capture the character - object

After the correct placement of the cameras, the process of character capture and creation of

point clouds for each individual camera follows. The steps for this process are:

1. Initialize the Azure Kinect device and configure its settings. This includes specifying

the color format and resolution, depth mode, and camera FPS.

2. Retrieve the device's calibration data, which provides information about the intrinsic

and extrinsic parameters of the color and depth cameras.

3. Create a transformation object that can convert depth images to point clouds using the

calibration data.

4. Start the device and retrieve a capture, which contains the latest color and depth

images.

5. Extract the depth and color images from the capture.

6. Use the transformation object to convert the depth image to a point cloud image.

7. Access the point cloud data to extract the 3D coordinates of the points in the cloud.

8. Perform any additional processing or analysis on the point cloud data as

needed.(median filter at point cloud image for remove the noise – outliers points)

9. To Render the point cloud into the scene in unreal engine the easiest way is use

Niagara Point Cloud System. The position of each point is the depth image and the

color of each point is the color image. Configure the renderer, set the "Point Size" and

"Minimum Pixel Size" parameters to control the size of the rendered points.

10. Release all resources when finished, including the device, calibration data,

transformation object, and images.

Psedocode

// Initialize the Kinect sensor and transformation

k4a_device_t device = NULL;

if (k4a_device_open(0, &device) != K4A_RESULT_SUCCEEDED) {

 printf("Failed to open device\n");

 return;

}

k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;

config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32;

Mari
os

 C
ha

ral
am

bo
us

- 31 -

config.color_resolution = K4A_COLOR_RESOLUTION_720P;

config.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED;

if (k4a_device_start_cameras(device, &config) != K4A_RESULT_SUCCEEDED) {

 printf("Failed to start cameras\n");

 k4a_device_close(device);

 return;

}

k4a_calibration_t calibration;

if (k4a_device_get_calibration(device, config.depth_mode, config.color_resolution,

&calibration) != K4A_RESULT_SUCCEEDED) {

 printf("Failed to get calibration\n");

 k4a_device_stop_cameras(device);

 k4a_device_close(device);

 return;

}

k4a_transformation_t transformation = k4a_transformation_create(&calibration);

while (true) {

 // Capture a color and depth frame from the Kinect sensor

 k4a_capture_t capture = NULL;

 if (k4a_device_get_capture(device, &capture, K4A_WAIT_INFINITE) !=

K4A_RESULT_SUCCEEDED) {

 printf("Failed to get capture\n");

 continue;

 }

 k4a_image_t color_image = k4a_capture_get_color_image(capture);

 k4a_image_t depth_image = k4a_capture_get_depth_image(capture);

 // Generate the point cloud

 k4a_image_t undistorted_depth_image = NULL;

 if (k4a_image_create(K4A_IMAGE_FORMAT_DEPTH16, width, height, width *

(int)sizeof(uint16_t), &undistorted_depth_image) != K4A_RESULT_SUCCEEDED) {

 printf("Failed to create undistorted depth image\n");

 k4a_device_stop_cameras(device);

 k4a_device_close(device);

Mari
os

 C
ha

ral
am

bo
us

- 32 -

 return;

 }

 k4a_image_t transformed_color_image = NULL;

 if (k4a_image_create(K4A_IMAGE_FORMAT_COLOR_BGRA32, width, height, width

* (int)sizeof(uint32_t), &transformed_color_image) != K4A_RESULT_SUCCEEDED) {

 printf("Failed to create transformed color image\n");

 k4a_device_stop_cameras(device);

 k4a_device_close(device);

 return;

 }

 k4a_transformation_depth_image_to_color_camera(transformation, depth_image,

undistorted_depth_image);

 k4a_transformation_color_image_to_depth_camera(transformation, depth_image,

color_image, transformed_color_image);

 // Get the color data

 uint8_t* color_data = k4a_image_get_buffer(transformed_color_image);

 int color_stride = k4a_image_get_stride_bytes(transformed_color_image);

 int color_width = k4a_image_get_width_pixels(transformed_color_image);

 int color_height = k4a_image_get_height_pixels(transformed_color_image);

 // Allocate memory for the point clouds

k4a_float3_t* point_cloud = new k4a_float3_t[width * height];

// Generate the point cloud

for (int i = 0; i < width * height; i++) {

 int x = i % width;

 int y = i / width;

 k4a_float2_t undistorted_point = k4a_float2_t{ (float)x, (float)y };

 uint16_t depth_value = *reinterpret_cast<const

uint16_t*>(k4a_image_get_buffer(undistorted_depth_image)) +

(k4a_image_get_stride_bytes(undistorted_depth_image) * y) / sizeof(uint16_t) + x;

 k4a_float3_t point = k4a_calibration_2d_to_3d(&calibration, &undistorted_point,

depth_value, K4A_CALIBRATION_TYPE_NFOV_UNBINNED);

 point_cloud[i] = point;

}

Mari
os

 C
ha

ral
am

bo
us

- 33 -

// Release resources

k4a_image_release(color_image);

k4a_image_release(depth_image);

k4a_image_release(undistorted_depth_image);

k4a_image_release(transformed_color_image);

delete[] point_cloud;

k4a_capture_release(capture);

3.5 Merging point cloud - Calibration

Up until this point, you create a separate point cloud for each Kinect depth sensor. What needs

to be done is merge into one point cloud.

Methods 1 chessboard pattern:

To calibrate multiple Azure Kinect cameras using a chessboard pattern, you can follow these

general steps:

1. Capture images of a chessboard pattern(see Fig.23)

using each of the Azure Kinect cameras. It's best to

capture the images in a well-lit environment to ensure

that the chessboard pattern is clearly visible in the

images.

2. Use a calibration toolbox like OpenCV to extract the

corners of the chessboard pattern in each image. Will

Figure 26 - Point Cloud rendering in unreal engine

Figure 27 - Chessboard pattern

Mari
os

 C
ha

ral
am

bo
us

- 34 -

need to specify the dimensions of the chessboard squares in millimetres.

3. Use the extracted chessboard corners to calibrate each of the Azure Kinect cameras

individually. This can be done using a standard calibration routine, such as the

cv2.calibrateCamera() function in OpenCV.

4. Once have the intrinsic camera parameters (like focal length and principal point) for

each camera, can use a stereo calibration routine to compute the extrinsic parameters

(like rotation and translation) that describe the relative pose of the cameras with respect

to each other. This can be done using the cv2.stereoCalibrate() function in.

5. Finally, can use the computed extrinsic parameters to rectify the images and create a

depth map. This can be done using the cv2.stereoRectify() function in OpenCV.

Τhe problem with this method was when the depth

sensors had to be placed next to each other, because

they had to be able to see the chessboard. This way all

the information of the object or character on one side

was lost.

Methods 2 lattice pattern:

Instead of using a checkerboard pattern in an infrared image (IR) for calibration, created a

lattice with evenly spaced rectangular holes that can be detected directly in a depth image. This

lattice consists of 25 evenly spaced rectangular holes (4cm x 4cm each) (see Fig. 23).

Figure 28 - Configuration for chessboard
pattern

Mari
os

 C
ha

ral
am

bo
us

- 35 -

First, look for gaps in the depth image that correspond to the lattice's geometry. Then, cluster

these gap segments to determine the physical lattice's region, filtering out clusters that do not

meet certain thresholds. Use proximity to gap segments to identify 3D points that could belong

to the lattice, and filter out noise using RANSAC to fit a plane and classify points as inliers or

outliers. Only after this do determine the precise locations of the holes in 3D. Identify the holes

by iterating over points and considering those that are not inliers and are circumscribed by

inliers. Merge segments belonging to the same hole using the union find structure, and estimate

the centers of each hole by averaging the inliers in the neighborhood of the hole segments.

In order to determine the orientation of the lattice, a heuristic that can handle even noisy hole

centers, which will be called grid nodes in the following. In order to do so, define the following

set of vectors: 𝑉 = {𝑛 − 𝑚 | 𝑙 < 𝑑𝑖𝑠𝑡(𝑚, 𝑛) < ℎ, 𝑚 ∈ 𝐻, 𝑛 ∈ 𝐻}

where 𝑙 = 𝑑 − 𝛿, ℎ = 𝑑 + 𝛿, 𝑑 = 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑎𝑛𝑑 𝛿 𝑖𝑠 𝑎 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (𝑑 =

8𝑐𝑚 𝑎𝑛𝑑 𝛿 = 2𝑐𝑚).,

25 cm

 4 cm

Figure 29 - lattice

Mari
os

 C
ha

ral
am

bo
us

- 36 -

This set is clustered by the angle the vectors subtend with the x-axis. The two largest clusters

represent the prevalent directions; the median of each is considered the direction of the x- and

y-axis of the lattice. Now have the two very stable directions of the calibration lattice in space,

but don’t know which one is which axis and their signs. To resolve this ambiguity, consider

the hands holding the lattice to estimate the orientation and align the x-axis such that it points

towards the hands. For the third z-axis use the normal of the plane determined by RANSAC

earlier, and align it towards the camera. Finally, register the depth cameras using the SVD-

based transformation estimation of the Point Cloud Library[15].

Figure 30 - Merging Point cloud

Mari
os

 C
ha

ral
am

bo
us

- 37 -

3.6 Processing the data

The merged point cloud before it becomes a mesh has to be filtered to clean up the noise it has

(to remove outliers). This was done with the median filter. A median filter is a type of digital

signal processing filter commonly used in image processing and digital audio signal processing.

The purpose of the median filter is to reduce noise in the signal by replacing each pixel value

with the median value of adjacent pixels within a given window.

A median filter works by sliding a window of a specified size over the input signal and

computing the median of the pixel values within the window for each window position. This

median value is used to replace the original pixel value in the center of the window.

Compared to other filter types, median filters are a type of noise that can appear in an image or

audio signal when individual pixels or samples are randomly aliased to very high or very low

values. It is particularly effective in reducing “salt and paper” noise, which is A median filter

is a nonlinear filter. That is, the output depends not only on the input signal, but also on the

properties of the filter itself. Nonlinear filters can produce artifacts and other undesirable

effects, so it is important to choose an appropriate filter size and other parameters when using

median filters. So when applied over the textures (depth and color) created by the sensors, it

cleared the merged point cloud.

Median filter Pseudocode

1. allocate outputPixelValue[image width][image height]

2. allocate window[window width × window height]

3. edgex := (window width / 2) rounded down

4. edgey := (window height / 2) rounded down

 for x from edgex to image width - edgex do

 for y from edgey to image height - edgey do

 i = 0

 for fx from 0 to window width do

 for fy from 0 to window height do

 window[i] := inputPixelValue[x + fx - edgex][y + fy - edgey]

 i := i + 1

 sort entries in window[]

 outputPixelValue[x][y] := window[window width * window height / 2]

At this point the mesh creation process can start.(Surface reconstruction). In computer graphics

and computer vision, the process of surface reconstruction entails building a 3D surface model

of an object or scene from a collection of 2D or 3D data points. This method is often employed

in several fields, including robots, virtual reality, and medical imaging.

Mari
os

 C
ha

ral
am

bo
us

- 38 -

Surface reconstruction may be accomplished using a variety of strategies, including point-

based techniques, implicit surface fitting, and parametric methods. A set of parameters, such

as a collection of curves or surfaces, are used in parametric techniques to define the surface by

fitting them to the input data points. In order to create a surface, implicit surface fitting entails

fitting a mathematical function to the input data points.

Τhis process required powerful hardware and therefore

was done in non-real time. The positions of the points and

colors (X Y Z R G B) (See Fig. 25) were exported in each

frame and with the help of the open3d library a scipt was

created in the python programming language where the

steps of the process are as follows:

1. Load and prepare the data: takes the correct values for the positions of the points and

colors (first three values for positions and the remaining three values for colors) and

calculates the average distance between the points and their neighbours. This is done in

order to estimate the normals so that it can create the final mesh.

2. Choose a meshing strategy: the first strategy is the Ball-Pivoting Algorithm and the

second strategy is Poisson reconstruction.

• Strategy 1 Ball-Pivoting Algorithm: The Ball-Pivoting Algorithm's

(BPA) goal is to construct a mesh from a point cloud by simulating the

usage of a virtual ball. Assume initially that the offered point cloud is

made up of points that were taken as samples from an object's surface.

For the rebuilt mesh to be explicit, points must rigorously represent a

surface (and be noise-free). Using this assumption, imagine rolling a tiny

ball across the point cloud “surface”. Depending on the size of the mesh,

this little ball should be a little bigger than the typical distance between

points. A ball will get captured and land on three points that will

eventually form the seed triangle if you drop it onto the surface of some

points. The ball moves from that point along the edge of the triangle

created by the two locations. The ball then settles in a new location: one

new triangle is added to the mesh and a new triangle is created from two

of the previous vertices. New triangles are formed and added to the mesh

Figure 31 - Record file

Mari
os

 C
ha

ral
am

bo
us

- 39 -

as we keep rolling and pivoting the ball. The mesh is completely

constructed when the ball stops moving.

• Strategy 2 Poisson reconstruction: The Poisson Reconstruction involves

a little more math and technology. Its method, called an implicit

meshing method, can be thought of as an attempt to "envelop" the data

in a smooth fabric. Without getting into much detail, we attempt to

create a watertight surface from the original point set by building a

brand-new point set that represents an isosurface connected to the

normals. There are several parameters available that affect the result of

the meshing: Firstly Which depth? The reconstruction makes use of a

tree-depth. The mesh has greater detail the higher it is (the default is 8).

In a mesh that is created from noisy data, outlier vertices are still there

but are not recognized as such by the algorithm. As a result, a low

number (maybe between 5 and 7) smoothes the image, but you lose

detail. The number of vertices in the created mesh increases as the depth-

value increases. Which scale? It describes the ratio between the diameter

of the cube used for reconstruction and the diameter of the samples’

bounding cube. Very abstract, the default parameter usually works well

(1.1). And finally which fit? the linear_fit parameter if set to true, let the

reconstructor use linear interpolation to estimate the positions of iso-

vertices.

3. Export and visualize: export both the BPA and Poisson’s reconstructions as .ply files.

Results of Strategy 1

Figure 33 - Ball Pivoting mesh – frame 1 Figure 32 - Ball Bivoting Mesh - frame 2

Mari
os

 C
ha

ral
am

bo
us

- 40 -

Results of Strategy 2

The results with the Poisson reconstruction method are better since the Ball Pivoting method

lacks vertices and triangles, so gaps are created and the mesh surface is not good. In contrast

with the Poisson reconstruction, we get an improved mesh surface without many artifacts and

noise.

Figure 35 - Poisson Recostruction - frame 1 Figure 34- Possion Reconstruction - frame 2

Mari
os

 C
ha

ral
am

bo
us

- 41 -

3.7 Animating the Character

The last step is animating the mesh. The construction of the mesh in each frame as discussed

in the previous chapter (see 3.6) gives the character motion(see fig. 32 – 35).

Figure 37 - frame 1 animation Figure 36 - frame 2 animation

Figure 39 - frame 3 animation Figure 38 - frame 4 animation

Mari
os

 C
ha

ral
am

bo
us

- 42 -

Chapter 4

4 Operations

4.1 Should Register Multiple Kinects 42

4.2 Save Registration 42

4.3 Register to World 43

4.4 Record Point Cloud 43

4.1 Should Register Multiple Kinects

 The first function is the Multiple Kinects Register which is responsible for calibrating the

cameras and merging the three point clouds into one. The process of explaining the

calibration was explained in chapter 3.4. First, cache parallel all the points from the point

clouds and finds the grids for all three depth sensors. When detect the grids, match hole

points of all grids. So, get results for registrate all the point clouds into the first point cloud.

4.2 Save Registration

the SaveRegistration function is responsible for saving to a Txt file the transformation

matrixes needed to merge the point clouds. The procedure followed is simple, first it checks

how many depth sensors are connected to the computer, and for each depth sensor, it saves its

CurrentRegistration in the file.

The structure of each transformation is the first three lines

are the Vector for the three axes (X, Y, Z) and the fourth line

is the Vector for the translation.

Figure 40 - Registration file

Mari
os

 C
ha

ral
am

bo
us

- 43 -

4.3 Register to World

The RegisterToWorld function takes the registration file (see fig.30) saved in the previous

function (SaveRegistration) and gives each Kinect the transformation it needs to

automatically perform the Calibration without needing the lattice (see fig.25 chapter 3.5). The

procedure followed is for each line in the file it splits the values in the vectors for the three

axes (X, Y, Z) and for the translation in each ‘,’ it finds for each Kinect. Thus each Kinect

becomes the correct transform to do the calibration automatically.

4.4 Record Point Cloud

The last function is RecordPointCloudToFile. This function stores in each frame the positions

of each point on all three axes (X, Y, Z) and the color of each point (R, G, B). This is done

for all point clouds created. When the user presses the RecordPointCloudToFile button the

process starts and initially, the txt File(Record.txt) is created. Then, at the same time, it saves

for each point cloud in each frame the positions of each point on all three axes(X, Y, Z) and

the color that each point has(R, G, B). It stops the process when the user disables the

RecordPointCloudToFile button.

the first three columns are the position of each point and

the next three columns are the color of each point.

Figure 41 - Record File Mari
os

 C
ha

ral
am

bo
us

- 44 -

Chapter 5

5 Manual

5.1 Scene 1 – The Metahuman Character of myself 44

5.2 Scene 2 – Realtime Volumetric Capture in UE 45

5.1 Scene 1 – The Metahuman Character of myself

Opening the first scene is the metahuman character and a cinemachine camera that tracks him.

By pressing the start button, the animation of the character starts. Easily the user can create his

own animation by opening the Animation Sequence inside the scene and choosing which bone

he wants to rotate and move in whichever frame he wants.

Figure 42 - Animation Sequence

Mari
os

 C
ha

ral
am

bo
us

- 45 -

in the picture above (see Fig.38) the ControlRig of metahuman is divided into face and body.

First you choose which one you want to move and then you choose which bone you want from

the two categories (face and body). Then you choose in which frame you want to start or end

the movement of the bone you initially selected. This creates the animation and gives "life" to

the character.

5.2 Scene 2 – Realtime Volumetric Capture in UE

Opening the second scene, only the registrationManager Actor containing the four functions

is placed (see chapter 4) and pressing the Start button ,registrationManager Actor is

responsible for finding how many Azure Kinect Depth sensors are connected on the computer

and creating AzureKinect Actors to start capturing the space in a point cloud. Then he can

choose the function he wants to perform by pressing the appropriate button. If he wants to

merge the point clouds into one, then he chooses Should Register to Multiple Kinects(Fig.39

number 1) and with the help of the lattice pattern he does the calibration. Second function, if

you choose Save Registration (Fig.39 number 2), it will save in a txt file the calibration

matrix that the depth sensors have at that moment. Third operation, if the user selects

Register to Word (Fig.39 number 3), then it takes the matrices saved in the second mode and

transforms the Kinects for automatic calibration. And the last function that the user can

choose is the Record Point Cloud (Fig.39 number 4), where by pressing the button it starts

simultaneously and saves in a file the positions and colors of all the points of the Point cloud

and stops when the button is disabled. See chapter 4 for details on what each function does.

Figure 43 - Operations

Mari
os

 C
ha

ral
am

bo
us

- 46 -

Chapter 6

6 Conclusions – Results and Future Work

6.1 Conclusions – Results 46

 6.1.1 Summary of the thesis 46

 6.1.2 Discussion of the results 46

 6.1.2.1 Chessboard vs Lattice 47

 6.1.2.2 Calibration Mean Error for the positions of the depth sensors 49

6.1.2.3 Calibration Mean Error for lighting conditions. 53

6.1.2.4 Time needed for Calibration - lighting conditions. 54

6.1.2.5 Time and Calibration Mean Error – Change height 54

6.1.2.6 NFOV vs WFOV 55

6.1.2.7 Ball-Pivoting vs Poisson Algorithm 58

6.2 Future Work 61

6.1 Conclusions – Results

6.1.1 Summary of the thesis

In this thesis, the process of creating one's metahuman character with photos from different

angles and having the topology of the metahuman avatar to be easily animated was first

presented. In addition, it analyzed in detail the process of creating a volumetric capture

system with multiple Azure Kinect depth sensors in real-time in the Unreal engine game

platform. The process was initially to get the cameras set up in the correct position. Then,

create each camera's point cloud and merge them into one. Then followed by processing the

data where it was filtering - cleaning the point cloud and surface reconstruction where this

process was done in non-real-time. And it was finally animating the character.

Mari
os

 C
ha

ral
am

bo
us

- 47 -

6.1.2 Discussion of the results

6.1.2.1 Chessboard vs Lattice

Chapter 3.5 presented the two methods used to merge the point clouds into one, to get the

correct calibration on the cameras. The first method calibrates the cameras using the

chessboard pattern and the infrared image (IR) as opposed to the second method which uses

the depth image directly. The problem encountered with the first method was that the depth

sensors had to be placed on the same side (side by side) to see the chessboard. This resulted

in losing a lot of information about the object - character to be captured. On the other hand in

the second method, the cameras can be placed anywhere.

The above graph compares the two methods in terms of mean error. The mean error is

calculated as follows:

• Finds the distance of each point(sV to the corresponding point of the other point

cloud(tV).

• sums these distances (sumError += Distance(sV,tV)).

• divides them by the size (meanError = sumError / size).

Graph 1 - Chessboard vs Lattice pattern (Mean Error)

Mari
os

 C
ha

ral
am

bo
us

- 48 -

In both methods, the cameras were placed side by side at the same height(1 m) ,at distances

of 2, 2.5, 3, and 3.5 meters and the mean error at these four distances was calculated. To

determine the errors, the mean error was calculated six times for each distance and the

average of the six values was plotted. As can be seen in both cases the results are almost the

same with a small mean error. The best distance in both methods is 3 meters distance

between the cameras with a mean error of just over 2 mm and the worst is 3.5 meters with a

mean error of 0.35 mm.

Mari
os

 C
ha

ral
am

bo
us

- 49 -

In the above graph, there is another comparison of the two methods but this time it is done in

terms of the time it took to calibrate the sensors. The time is calculated as soon as the

calibration starts, i.e. the timer starts when the cameras see the chessboard and the lattice

pattern respectively, and stops when the point clouds are aligned. Compared to the mean

error, the time it took to do the calibration is much better in the second method (using depth

image - lattice pattern) since at each distance calculated (2, 2.5, 3, 3.5 meters), it is about 0.35

sec faster. Again, in both methods the best distance is 3 meters with a time a little over 1.4sec

and about 1sec respectively and the worst distance is 3.5 meters with times approximately

1.7sec and 1.4sec.

Graph 2 - Chessboard vs Lattice (Time needed for calibration)

Mari
os

 C
ha

ral
am

bo
us

- 50 -

6.1.2.2 Calibration Mean Error for the positions of the depth sensors

In the graph below (see Graph 3), the three cameras were placed in a triangle shape (see Fig.

19) with a constant height of 1 meter, changing the distance between them, the calibration

mean error was calculated as explained previously (see chapter 6.1.2.1).

The distances examined are 2, 2.5, 3, 3.5, 4 meters and in each case to reduce the errors the

mean error was calculated six times and the average of the six values was placed in the graph.

The point clouds were merged on Kinect 0 that's why there are only two lines where blue is

for Kinect 1 and orange is for Kinect 2. The best placement of the depth sensors was at 3

meters distance between them with mean errors for both kinects around 0.25cm, and the

longest placement at 4 meters with around 0.42cm for both kinects. The calibration mean

error almost doubled from 3 meters compared to 4 meters so camera placement plays quite a

role in the quality of the merged point cloud.

Graph 3 - Mean error for positions of the depth sensors

Mari
os

 C
ha

ral
am

bo
us

- 51 -

In the graph below (see Graph 4), the three cameras were placed in a triangle shape (see Fig.

19) with a constant height of 1 meter, changing the distance between them, the time needed

for calibration was calculated as explained previously (see chapter 6.1.2.1).

The distances examined are 2, 2.5, 3, 3.5, 4 meters and in each case to reduce the errors the

mean error was calculated six times and the average of the six values was placed in the graph.

The point clouds were merged on Kinect 0 that's why there are only two lines where blue is

for Kinect 1 and orange is for Kinect 2. And in this case, the best placement of the depth

sensors is at 3 meters distance between them and the worst at 4 meters. The time at 4 meters

is more than 2.5 times compared to 3 meters, since at 3 meters the time it took to do the

calibration is about 1 sec for both cameras, while at 4 meters it is about 2.65 sec.

Graph 4 - time needed for calibration the depth sensors

Mari
os

 C
ha

ral
am

bo
us

- 52 -

6.1.2.3 Calibration Mean Error for lighting conditions.

Another important factor that was examined to see if it affects the calibration and overall

quality of volumetric capture is lighting. The depth sensors were placed 3 meters apart in a

triangle shape with 1 meter height from the ground and the mean error and the time needed

for calibration were calculated at three different times of the day. In the morning to midday

when the light intensity was high, in the afternoon when the light intensity is moderate, and

almost at night with low light intensity. In all three different conditions (morning - afternoon

- evening) the mean error and the time were calculated six times and the average of the six

values was placed on the graph to reduce the errors.

As shown in the graph above (see Graph 5) the intensity of the lighting plays a huge role. The

blue line is for Kinect 1 and the orange line is for Kinect 2, where the point cloud merging

was done on Kinect 0. In the morning the calibration means error for both Kinects was about

0.25cm, in the afternoon about 0.38cm, and in the evening about 0. 65cm with Kinect 2

having a slightly larger mean error than Kinect 1. The calibration mean error increases non-

grammatically since the difference between morning and afternoon is about 1.5 times and

with evening the difference is about 2.6 times.

Graph 5 - mean error for lighting conditions

Mari
os

 C
ha

ral
am

bo
us

- 53 -

6.1.2.4 Time needed for Calibration - lighting conditions.

As expected, the time needed to calibrate the depth sensors increases significantly as the

intensity of the lighting decreases, as can be seen in the graph (see). The blue line is for

Kinect 1 and the orange line is for Kinect 2. In the morning the time is about 1sec, in the

afternoon it is about 1.8sec and in the evening about 4.2sec. And in this case it increases non-

linearly since the difference from the morning compared to the evening was 1.8 times greater

while the difference from the morning compared to the night was 4.2 times.

Graph 6 - time needed for calibration (lighting conditions)

Mari
os

 C
ha

ral
am

bo
us

- 54 -

6.1.2.5 Time and Calibration Mean Error – Change height

Apart from the position of the depth sensors, the height was also examined, i.e. the distance

between the cameras was kept constant at 3 meters by changing their height from the ground.

Again, the depth sensors were placed in a triangle shape.

Table 1 – Time and Calibration Mean Error - change height

 Height(m) Calibration

Mean Error(cm)

Time Needed

for

Calibration(sec)

Set up 1 Kinect 1 0.7 0.306 1.17

 Kinect 2 1 0.492 2.63

Set up 2 Kinect 1 0.7 0.2467 1.03

 Kinect 2 1.3 0.683 3.4

Set up 3 Kinect 1 1 0.431 2.603

 Kinect 2 1 0.4367 2.647

Set up 4 Kinect 1 1.3 0.703 3.531

 Kinect 2 1 0.447 2.41

Set up 5 Kinect 1 1.3 0.692 3.56

 Kinect 2 1.3 0.710 3.61

Mari
os

 C
ha

ral
am

bo
us

- 55 -

Kinect 0 is fixed at height 0.7 and the other two point clouds will be merged into it. From the

above table (see Table 1), 5 different scenarios were examined where in the third column you

see the height that each depth sensor had from the ground and in the fourth column the

calibration mean error. The results show that the height of the depth sensors clearly affects

the final result. Since when the height of the Kinect is at the same height as the Main Kinect

(Kinect 0 - 0.7m) then the Calibration Mean Error is approximately 0.25cm, when it is at 1

meter height the Calibration Mean Error is approximately 0.46cm and at 1.3 meters it is about

0.7cm.

As expected, the time it takes to perform the calibration depends a lot on the height of the

Kinects. When the Kinects are at the same height as the main Kinect (Kinect 0 - 0.7m), the

time they need to calibrate is about 1.1 sec, when they are at 1 meter about 2.5 sec and at 1.3

meters the time is about 3.6 sec.

6.1.2.6 NFOV vs WFOV

The depth sensors have two depth modes the NFOV (Narrow field-of-view depth mode) and

the WFOV (Wide field-of-view depth mode), where the difference between the two is shown

in the picture below (see Fig.38). NFOV provides a narrower field of view, which means it

captures a smaller area but with more detail and a higher level of precision. WFOV, on the

other hand, offers a wider field of view, allowing it to capture a larger area but with less

detail and potentially lower precision compared to NFOV.

Figure 44 - NFOV vs WFOV

Mari
os

 C
ha

ral
am

bo
us

- 56 -

The depth sensors were placed at the same height from the ground (1 meter) and by changing

the distance between them in a triangle shape the calibration mean error and the time needed

for calibration were calculated for both depth modes. The distances considered are 2,2.5,3

and 3.5 meters and in each case six times were calculated and the average of the six values

were plotted to reduce the errors.

From the graph above (see Graph 7), the blue line is for NFOV calibration mean error and the

orange line is for WFOV. It can be seen that for close distances WFOV has a slightly smaller

calibration mean error with a better distance between depth sensors of 2.5 meters. In

comparison, for longer distances NFOV is superior with a better distance between depth

sensors of 3 meters.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 2.5 3 3.5

M
ea

n
 e

rr
o

r(
cm

)

Distance(m)

NFOV vs WFOV Calibration
mean error

NFOV-mean error

WFOV-mean error

Graph 7 - NFOV vs WFOV Calibration Mean Error

Mari
os

 C
ha

ral
am

bo
us

- 57 -

As before for the calibration mean error the time spent on calibration at each distance was

calculated. In the graph above where the blue line is for NFOV time for calibration and the

orange line for WFOV time for calibration it can be seen that WFOV takes much longer to do

the calibration at all distances. This makes sense since it captures more space than NFOV and

thus creates larger point clouds where it takes much longer to do the calibration. It took the

least time the WFOV at a distance of 2.5 meters which was about 2.25 seconds and worst the

distance of 3.5 meters with a time of about 3.75 seconds. Contrast this with the NFOV where

it was best at 3 meters with a time of about 1 second and worst at 3.5 meters with a time of

about 1.5 seconds. The time difference needed for the calibration is quite large where the

WFOV is 2.5 times slower than the NFOV.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5

Ti
m

e
fo

r
C

al
ib

ra
ti

o
n

(s
ec

)

DIstance(m)

NFOV vs WFOV Time for Calibration

NFOV-time for
calibration

WFOV-time for
calibration

Graph 8 - NFOV vs WFOV Time for Calibration

Mari
os

 C
ha

ral
am

bo
us

- 58 -

6.1.2.7 Ball-Pivoting vs Poisson Algorithm

As mentioned before, the only parameters that affect the ball-pivoting algorithm are the

radius that the ball will circle to create the surface triangles and the maximum neighbours it

will search in this space.

in the image above(see Fig.45) is the Point cloud tested to mesh with the two algorithms.

Changing these two parameters

creates the mesh. In the adjacent

image (see Fig.46) with radius=2

and maximum neighbours 30 the

result is bad with too many holes

and low detail mesh. The reason for

this is that not enough triangles

were created and so it has too many

holes.

Figure 45 - Point Cloud

Figure 46 - Mesh radius=2 max_nn=30 Mari
os

 C
ha

ral
am

bo
us

- 59 -

In the adjacent image(see Fig.48)

with a radius of 5 and a maximum

neighbor of 90, the result is better

with better mesh detail. However,

there are still several holes because

not enough triangles were created,

even in the case of Pally.

the last mesh(see Fig.47) made was with a radius 10 and maximum neighbors 300 and the

result is much better with higher detail and fewer holes. The conclusion is that you create a

better mesh as you increase the radius and the neighbors you can find within that space.

Figure 48 - Mesh radius=5, max_nn=90

Figure 47 - Mesh radius=10 ,max_nn=300

Mari
os

 C
ha

ral
am

bo
us

- 60 -

Τhe second algorithm(Poisson) the parameter that affects the quality of the mesh is the depth

of the tree. The greater the depth, the better the mesh will be created. Again from the same

point cloud (see Fig.45) they made the meshes by changing the depth.

In the above images (see Fig 49-51) , the difference in the quality of the mesh by changing

the depth is huge since initially with depth = 6 the result is miserable with very few triangles

being created while as the depth increases the result is much better. Better results were

obtained with the Poison algorithm since the meshes had no holes and fewer artifacts than the

meshes created with the ball-pivoting algorithm.

Figure 51 - mesh depth = 6 Figure 49 - mesh depth = 8

Figure 50 - mesh depth = 10 Mari
os

 C
ha

ral
am

bo
us

- 61 -

6.2 Future Work

Further improvements will always be made and certainly the first is to improve the quality of

volumetric capture, developing better algorithms for capturing and reconstructing 3D models,

improving the accuracy and resolution of the captured data.

Also another improvement is to be able to make the 3D model in real time efficiently and

with good quality. For this it is necessary to have the appropriate hardware that can support

this complex process.

And finally, to make different applications such as VR and AR applications to create more

immersive and interactive experiences for users, allow users to interact with the captured data

in real-time, such as by enabling them to move around or manipulate the captured objects.

Mari
os

 C
ha

ral
am

bo
us

- 62 -

7 Bibliography

[1] URL : https://www.unrealengine.com/en-US

[2] URL : https://azure.microsoft.com/en-us/products/kinect-dk

[3] URL : https://pointclouds.org/

[4] URL : https://github.com/microsoft/Azure-Kinect-Sensor-SDK

[5] URL:https://medium.com/keentools/keentools-facebuilder-x-metahuman-guide-

81bc193ef2a

[6] URL : http://www.open3d.org/docs/0.6.0/#

[7] URL : https://opencv.org/

[8] "Free-Viewpoint Television" by T. Fujii et al., Proceedings of the IEEE, 2012. This

paper provides an overview of free-viewpoint television, a technique used in volumetric

capture to create immersive 3D content.

[9] "State-of-the-art in 3D Reconstruction with RGB-D Cameras" by C. Stachniss et al.,

IEEE Transactions on Robotics, 2014. This paper discusses the state-of-the-art in 3D

reconstruction using RGB-D cameras, which are commonly used in volumetric capture.

[10] "Volumetric Performance Capture from Minimal Camera Viewpoints" by P.

Pérez et al., ACM Transactions on Graphics, 2018. This paper presents a method for

volumetric performance capture that requires only a few camera viewpoints.

[11] "Live Volumetric Performance Capture" by M. Zollhöfer et al., ACM

Transactions on Graphics, 2018. This paper presents a system for live volumetric

performance capture, which can be used to create real-time 3D content.

[12] "A Survey of 3D Modeling Techniques for Interactive Applications" by D.

Luebke et al., IEEE Computer Graphics and Applications, 2003. This paper provides

an overview of various 3D modeling techniques, including volumetric capture, and

discusses their applications in interactive environments.

[13] "Volumetric Capture of Humans with a Single RGBD Sensor" by J. Xie et al.,

IEEE Transactions on Visualization and Computer Graphics, 2019. This paper presents

a method for volumetric capture of humans using a single RGBD sensor.

[14] "Efficient Volumetric Video Coding for Interactive Applications" by H. Aksay

et al., ACM Transactions on Multimedia Computing, Communications, and

Applications, 2020. This paper presents an efficient method for compressing and

transmitting volumetric video data, which is important for interactive applications.

Mari
os

 C
ha

ral
am

bo
us

https://medium.com/keentools/keentools-facebuilder-x-metahuman-guide-81bc193ef2a
https://medium.com/keentools/keentools-facebuilder-x-metahuman-guide-81bc193ef2a
http://www.open3d.org/docs/0.6.0/

- 63 -

[15] RUSU R. B., COUSINS S.: 3D is here: Point Cloud Library (PCL). In IEEE

International Conference on Robotics and Automation (ICRA) (Shanghai, China, May

9-13 2011)

Mari
os

 C
ha

ral
am

bo
us

- 64 -

Appendix

7.1 Source Code

Content of Source Folder :

o PointCloud - the textures created by capturing(depth and color image)

o TXTfiles – all files stored

o Blueprints – All blueprints

o Animations – Metahuman animations

o Maps – Metahuman and Volumetric capture scenes

o Metahuman – Body, Face, Textures of my metahuman

o Scripts – C++ files

♦ AzureKinect.cpp – Initialize and start Kinect.

♦ PointCloudRender.cpp – Render Point cloud in the scene

♦ RegistrationManager.cpp – Get all the result from registration

♦ TXTManager.cpp – check txt file

♦ RecordPointCloud.cpp – Save positions and color of all points

♦ SaveRegistration.cpp – Save transformation matrixes for calibration

♦ GridDetector.cpp – detect Grid for Calibration

♦ MultiPointCloudRegistration.cpp – Perform calibration for all kinect

♦ Structs.h - contains two structs which are used as input and output for the

lattice detector

♦ Vector4f.h - is our internal Vector class.

♦ Matrix4f.h - is our internal Matrix class.

Mari
os

 C
ha

ral
am

bo
us

- 65 -

7.2 Structure

Mari
os

 C
ha

ral
am

bo
us

