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ABSTRACT 
 

Volumetric capture (Volumetric video) is a technique that allows to create “holographic” 

recordings of actors, sets and props. The technique can be used to create immersive stories that 

sometimes reflect aspects of reality better than realistic 3D models. For example, volumetric 

captures of actors do not seem to cause uncanny valley effect. Volumetric video is a core 

underlying technology for emerging Mixed Reality systems. What was previously available for 

a glimpse only in science fiction movies and futuristic predictions, now with the ongoing 

research on volumetric video capturing, coding and presentation, realistic mixed reality 

experiences are close to become a reality. At the same time, computer generated holography 

and other digital 3D projection techniques start to became more common and affordable. The 

emergence of solutions for capturing volumetric video and devices which can display 

volumetric video mixed with the real world are paving the way to a new media, where a real 

object and its volumetric virtual image are indistinguishable. Virtual simulation of human faces 

and facial movements has challenged media artists and computer scientists since the first 

realistic 3D renderings of a human face by Fred Parke in 1972. Today, a range of software and 

techniques are available for modelling virtual characters and their facial behavior in immersive 

environments, such as computer games or storyworlds. However, applying these techniques 

often requires large teams with multidisciplinary expertise, extensive amount of manual labour, 

as well as financial conditions that are not typically available for individual media artists. 

In this thesis first created a metahuman from photographs with the help of KeenTools 

FaceBuilder and the MetaHuman plugin. Also thesis aims to use three Azure Kinects DK 

devices(depth sensors) to capture in real-time the ''hologram'' of the user. All of the above is 

built on Epic Games' Unreal Engine game platform in C++ programming language in visual 

studio 2022. 
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Chapter 1 

 

1.1 Introduction 

 

Volumetric capture technology has emerged as a powerful tool in the field of computer 

graphics and multimedia applications. This technology allows to create 3D models of real life 

objects and people, which are captured from multiple viewing angles in a given space. Various 

applications, such as video games, virtual reality, AR and teleconferencing among others, can 

benefit from these 3D models. 

Volumetric capture technology involves capturing the geometry, texture and motion of an 

object in 3D space. This requires multiple cameras, depth sensors and various devices that 

collect images of the object from a number of angles and distances. Once the data has been 

collected, it is then processed to create a 3D model that can be viewed and manipulated in a 

real time. 

Over the past years, researchers and practitioners have given a lot of attention to volumetric 

capture because they are trying different applications and techniques for improving its quality 

and efficiency. This has led to the development of new algorithms, hardware and software 

tools, which have made volumetric capture more accessible and affordable. 

This thesis aims to use three Azure Kinects DK devices to capture in real-time the ''hologram'' 

of the user within the unreal engine which is a game creation platform. Further analysis of the 

process, difficulties, and results will be done later. 

 

1.2 Motivation 

 

With the passing of the years, we are getting closer and closer to the era of the ''metaverse''. 

This gives a huge motivation to someone to deal with volumetric capture because, with the 

results it has, the creation of realistic characters and objects, the experience in virtual and 

augmented reality become impressive. Thus, the main objective of this thesis was to create a 

realistic character, control various parameters and extract influencing results (such as camera 

position, lighting in the space, etc.) that would help in future projects. 
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1.3 Related Work 

 

Continuing in this chapter, a brief summary of the relevant work done previously is provided. 

A large body of studies have been accumulated in the field of realistic human modelling and 

animation over the years. However, making use of a captured workflow based on automation 

and algorithms instead of traditional tridimensional modelling pipelines, is a relatively recent 

practice. This work is highly influenced by the achievements of the USC Institute for Creative 

Technologies Especially Digital Emily (Alexander, 2010) and Digital Ira (von der Pahlen et 

al., 2014) can be mentioned. as works, where high-end hardware and software were created in 

order to achieve a realistic virtual human being,. In our case, we seek for the same outcome but 

utilizing low-end and off-the-shelf solutions available for individual media artists. The work 

of Zollhöfer et al. (2018) also shares similar aspects with our workflow. In their article “State 

of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications” they evaluate 

different algorithms for the capture and reconstruction of human faces, introducing also 

possibilities of capturing actors’ movements. With a strict engineering focus, their work 

communicates very well with the automated approach proposed in this thesis. Out work relates 

to the extended work of Mark Sagar et al. (2016) at the Laboratory for Animate Technologies 

of Auckland University , especially their work conducted on the ways the viewer may interact 

with virtual characters. The same is true also with facial game technologies, especially 

volumetric technologies used in games like L.A. Noire (Star, 2011) and the achievements of 

Ninja Theory’s Hellblade (2017). From the scientific view-point , the research by Mark 

Cavazza and others (2002) shares similarities with our work, particularly related to character 

based interactive storytelling. This work also seeks to relate the researches and developments 

in sequenced volumetric capture solutions, especially the experiments from the volumetric 

capture community, such as the work of Or and Anlen (2018), Dou et al. (2017), Scatter (2017), 

as well as volumetric capture studios as Microsoft Mixed Reality Capture Studio (2018) and 

Fraun-hofer Institute’s Volucap Studio (2018). The uncanny valley discussions, specially the 

psychological research by Jari Kätsyri et al. (2015), Aline W. de Borst and Beatrice de Gelder 

(2015) and Rachel McDonnell et al. (2012) are also of great value to this work, bringing and 

opening discussions on the way humans perceive and interact with virtual characters. Then, 

due to the rapid development of technology and the performance of computers in recent years, 

the results of volumetric capture systems are astonishing. In 2018 Zollhöfer published the paper 

"Live Volumetric Performance Capture" where presents a system for live volumetric 

performance capture, which can be used to create real-time 3D content. Also, "Volumetric 
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Capture of Humans with a Single RGBD Sensor" by J. Xie et al., IEEE Transactions on 

Visualization and Computer Graphics, 2019. This paper presents a method for volumetric 

capture of humans using a single RGBD sensor. Finally, another interesting paper is "Efficient 

Volumetric Video Coding for Interactive Applications" by H. Aksay et al., ACM Transactions 

on Multimedia Computing, Communications, and Applications, 2020. This paper presents an 

efficient method for compressing and transmitting volumetric video data, which is important 

for interactive applications. 

 

 

1.4 Thesis Organization 

 

Chapter 1 gives a general introduction to what volumetric capture is and what it can be used 

for. Also, the motivation and objectives of the thesis, creating a realistic virtual character and 

extracting results and finally the literature review, i.e. the works created before my own thesis. 

The rest of the report will follow the following structure: 

Chapter 2 will present the system requirements covering both hardware and software, the 

packages used to carry out this work. In addition, the two scenes made on the unreal engine 

game platform will be presented and the way it works will be analyzed. 

In chapter 3 the whole process of creating the virtual metahuman character and the process of 

creating a real-time volumetric capture character will be presented and analyzed. 

In chapter 4 all the game functions will be extensively reported and analyzed. 

Chapter 5 will present the user manual of the simulation game, i.e. how the user can run and 

see the results on the Unreal Engine platform. 

In chapter 6 all results and conclusions will be analysed with graphical extraction and 

comparison of the methods. And finally the future research that can be done to improve the 

existing thesis.  
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Chapter 2 

 

2 Theoretical Background – Frameworks - Tools and Scene Description 
 

 

2.1 Theoretical Background – Frameworks - Tools      12 

2.1.1 Unreal Engine         12 

2.1.2 Microsoft Azure Kinect DK       13 

2.1.3 PCL Library C++         13 

 2.1.4 Azure Kinect SDK        14 

 2.1.5 Python Open3D Library        14 

 2.1.6 OpenCV library         15 

2.2 Challenges           16 

 2.2.1 Storage and Compression         16 

 2.2.2 Data Acquisition and Processing       16 

 2.2.3 Real-Time Rendering        17 

 2.2.4 Hardware and Sensor Limitations       17 

 2.2.5 Depth and Occlusion Challenges       17 
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Before the analysis of the simulation, general information and concepts that are necessary to 

understand for the continuation of the work will be explained. 

2.1 Theoretical Background 

2.1.1 Unreal Engine 

 

Unreal EngineΣφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. is a popular and 

powerful game engine developed and maintained by Epic Games. It is a collection of software 

tools and technologies that can be used to create high-quality, interactive 3D games, 

simulations, and other interactive applications. 
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Unreal Engine provides a wide range of features, including a visual scripting system called 

Blueprints, a robust physics engine, advanced AI systems, and support for virtual reality and 

augmented reality. It also supports a variety of platforms, including Windows, Mac, Linux, 

Xbox, PlayStation, and mobile devices. 

One of the key benefits of Unreal Engine is its ease of use and accessibility to developers of 

all skill levels. It provides a large and active community of developers and users, as well as 

extensive documentation and tutorials to help developers get started quickly. Τhe scripts were 

written in Visual Studio 2022 with the c++ programming language. 

Unreal Engine Marketplace provides a wide range of high-quality assets and resources to 

Unreal Engine users. It's got everything from a character, environment, or animation to sound 

effects, music and plugins. Developers are also able to make their own assets available on the 

marketplace, making it easier for them to generate income from their skills and work. 

 

2.1.2 Microsoft Azure Kinect DK 

 

The Microsoft Azure Kinect DK(Developer Kit) [2] is a sensor package designed for computer 

vision and speech models. To capture high quality data for computer vision and speech 

applications, it is the combination of depth sensors, a high definition RGB camera with multiple 

microphone inputs that can be used. 

The Microsoft Azure DK Kinect provides developers with a wide range of features, which 

allow them to create cutting edge computer vision and speech applications. Some of the main 

features are as follows: Depth Sensor: The depth sensor enables developers to create 3D models 

of objects, detect and track movement, and enable gesture recognition. High definition RGB 

camera: High resolution video and pictures can be captured by the High-Definition RGB 

camera which is capable of recognizing objects as well as tracking them. 

Microphone Array: The microphone array offers excellent speech recognition capabilities, 

allowing developers to develop applications that can recognize commands and react in 

accordance with them. Software development kit: In order to help developers create apps fast 

and easy, the Azure Kinect DK will come with a software development kit containing APIs, 

code samples or other documentation. 
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2.1.3 PCL Library C++ 

 

The Point Cloud Library (PCL) [3] is an open-source library for processing 2D and 3D point 

clouds. It was developed by a community of researchers and engineers from various 

universities and companies, and is widely used in computer vision, robotics, and 3D printing. 

A number of algorithms and tools for working with point cloud data are available in PCL, such 

as filtering, segmentation, registration or surface reconstruction. It supports a number of 

common file formats for point cloud data, such as PCD, POY, OBJ, STL, etc. The library is 

compiled in C++, and contains API for Python, Java, and MATLAB among other programming 

languages. A number of platforms, such as Windows, Linux or macOS, are supported by PCL. 

 

 

2.1.4 Azure Kinect SDK 

 

Azure Kinect SDK Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. is a 

collection of software tools and libraries that enables developers to create applications that use 

data from the Azure Kinect sensor. The Azure Kinect sensor is a high-end depth camera 

designed for computer vision and robotics applications.  

The SDK includes APIs that enable you to access sensor data in depth, color, and infrared as 

well as perform body tracking or other computer vision tasks. In order to speed up the 

development process, it includes a set of sample applications and code snippets.  

The Azure Kinect SDK supports C++, C# and Python programming languages that can be used 

on both Windows and Linux. The SDK is free to use, available on GitHub, making it possible 

for developers to contribute and edit their own code in order to suit their individual needs. 

 

2.1.5 Python Open3D Library 

 

The Open3D library[6] is an open-source 3D data processing library which was first released 

in 2018. It includes a set of powerful, easy to use tools for the generation, manipulation and 

simulation of 3D geometry and simulating point clouds. Open3D is created in C++ and offers 

Python bindings, so it can be used by both C++ and Python developers. 

Some of the key features of Open3D include: 
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• 3D data types: a range of 3D data types, such as Pointcloud, TriangleMesh, VoxelGrid 

and Images are available from Open3D. 

• A large range of 3D processing tools, such as a point cloud registration, mesh 

reconstruction, segmentation and more are available in Open3D.  

• Visualization: Open3D provides a set of easy-to-use visualization tools that allow you 

to visualize your 3D data in 3D space. 

• IO: Open3D supports importing and exporting various 3D file formats, including PLY, 

OBJ, STL, and OFF. 

 

• Integration with deep learning: Open3D has integration with popular deep learning 

frameworks such as PyTorch and TensorFlow, making it a useful tool for tasks such as 

3D object detection and segmentation. 

In general, Open3D is a powerful and easy to use library which has become increasingly 

popular amongst 3D Data Processing Enthusiasts and Researchers. 

 

2.1.6 OpenCV library 

 

OpenCV (Open-Source Computer Vision)[7] is an open-source library that provides tools and 

functions for computer vision and image processing tasks. It was originally developed by Intel 

and later supported by Willow Garage and Itseez. 

OpenCV is widely used in various fields such as robotics, augmented reality, facial recognition, 

object detection, and video analysis. The library supports multiple programming languages, 

including C++, Python, Java, and MATLAB, making it accessible to developers in different 

domains. 

Here are some key features and functionalities provided by OpenCV: 

• Image and video I/O: OpenCV can read and write images and videos from various file 

formats. 

• Image processing: It offers a wide range of functions for manipulating images, 

including resizing, cropping, filtering, and transforming images. 

• Feature detection and extraction: OpenCV provides algorithms to detect and extract 

features from images, such as corners, edges, and keypoints. 
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• Object detection and recognition: The library includes pre-trained models and methods 

for object detection and recognition tasks, such as Haar cascades, HOG (Histogram of 

Oriented Gradients), and deep learning-based approaches. 

• Camera calibration: OpenCV allows calibration of cameras to correct for lens distortion 

and obtain accurate measurements from images. 

• Machine learning support: OpenCV integrates with popular machine learning 

frameworks like TensorFlow and PyTorch, enabling the use of trained models for 

various computer vision tasks. 

• Video analysis: It provides functions for video stabilization, motion tracking, and 

background subtraction. 

• GUI and visualization: OpenCV offers graphical user interface (GUI) components to 

display and interact with images and videos. 

• Parallel computing: OpenCV utilizes multi-core processors and hardware acceleration 

to optimize performance for computationally intensive tasks. 

 

 

2.2 Challenges 

2.2.1 Storage and Compression 

 

The enormous amount of information required makes storage and compression of volumetric 

data extremely difficult. Raw volumetric data may be difficult to store and send, as well as 

being computationally expensive. Therefore, effective volumetric data compression techniques 

are being created to minimize storage needs and enable real-time streaming of collected 

material. These compression methods make an effort to maintain visual integrity while 

balancing compression ratios, guaranteeing that volumetric data may still be accessed and used 

without suffering significantly. 

 

2.2.2 Real-Time Rendering 

 

Volumetric content rendering in real time is a difficult undertaking because of its complexity 

and computing demands. To retain realism, volumetric data has to be rendered from a variety 

of angles with precise lighting and shading. To reach interactive frame rates for volumetric 

content, researchers are investigating strategies including level-of-detail representations, 
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hierarchical data structures, and GPU-based rendering algorithms. Advancements in real-time 

rendering are essential for providing interactive experiences, live performances, and dynamic 

virtual worlds with volumetric capture. 

 

2.2.3 Data Acquisition and Processing 

 

The effective acquisition and processing of massive volumes of data presents one of the main 

technological hurdles in volumetric capture. Massive data sets with many perspectives, depth 

information, and color data are produced by volumetric capture devices. High-resolution and 

high-fidelity volumetric material demands significant processing and storage power. To 

address these issues and improve accessibility of volumetric capture, researchers are currently 

investigating data compression methods, effective data formats, and distributed computing 

options. 

 

2.2.4 Hardware and Sensor Limitations 

 

The cost, scalability, and mobility of the hardware and sensor technologies utilized in 

volumetric capture systems might be drawbacks. To collect volumetric data, multi-camera 

systems, depth sensors, and specialized capture rigs are frequently employed. To lessen the 

complexity and expense of volumetric capture systems, researchers are looking into alternative 

hardware configurations such single-sensor depth estimation methods. Volumetric capture may 

become more affordable and extensively used as a result of improvements in consumer-grade 

depth sensors and hardware downsizing. 

 

2.2.5 Depth and Occlusion Challenges 

 

Volumetric capture faces continual difficulties with controlling occlusions and accurately 

recording depth information. Incomplete or incorrect representations may result from depth 

sensors' inability to handle obstructed regions and capture fine features. To increase depth 

estimate accuracy and effectively handle occlusion, researchers are looking into new 

algorithms and sensor fusion approaches. To solve these issues and improve the fidelity of 

volumetric capture, methods including multi-view stereo reconstruction, depth inpainting, and 

sensor fusion techniques are being investigated. 
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2.3 Scene Description 

2.3.1 The Metahuman Character of myself 

 

The first scene is the metahuman character of myself created with photos from different angles 

and with the help of Kentool Facebuilder[5] and the metahuman plugin. Details of the process 

followed to create the character will be discussed in the next chapter, chapter 3.  

 

Figure 2 - Metahuman Character of myself (right angle) Figure 1 - Metahuman Character of myself (front) 

Mari
os

 C
ha

ral
am

bo
us

 



- 20 - 
 

the character can be easily animated since it has a skeleton - rig and so you can control 

exactly the position, and the rotation of the movement of each point. For example to lift up 

the character's arm or open his mouth 

 

         

Figure 4 - Metahuman Character Control Rig – Up Arm Figure 3 - Metahuman Character Control Rig – Up Arm 

Figure 5 - Metahuman Character Control Rig – Face 
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2.3.2 Scene 2 –  Realtime Volumetric Capture in Unreal Engine 

 

In the second scene the only actor present is the Registration Manager where it is responsible 

to first find out how many Microsoft Azure Kinect depth sensors are connected to the computer 

and create the correct number of Azure Kinect Actor. It is also responsible for the following 

operations: 

• Should Register Multiple Kinects 

• Save Registration 

• Register to World 

• Record Point Cloud 

And finally, close all depth sensors that were previously opened. The analysis and explanation 

of the operations will be done in chapter 4. 

 

  

  

Figure 6 - Initialization of the three azure kinect 

Figure 7 - Start Capturing Mari
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Chapter 3 

 

3 Methodology 
 

 

3.1 Process to create Metahuman Character of myself     19 

3.2 General overview how to create volumetric character with multiple depth sensors  23 

3.2 Setting up of Microsoft Azure Kinect depth sensors      24 

3.3 Capturing the character – object         26 

3.4 Merging point cloud - Calibration         30 

3.5 Processing the data           32 

3.6 Animating the character          35 

 

 

3.1 Process to create Metahuman Character of myself 

For the metahuman creation used KeenTool FaceBuilder for blender and the metahuman plugin 

offered by epic games for the unreal engine. Initially the first step take high-quality photos of 

the human face from multiple angles and it is very important that the lighting in the room is 

ambient to avoid reflections and shadows that will ruin the textures will use to create the 

metahuman. 

  

Figure 8 - high-quality 
photo(front) 

Figure 9 - high-quality photo(left 
angle) 

Figure 10 - high-quality 
photo(right side) 
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Align Face 

A couple of neural networks will find a face on the photo and set up some pins to match the 

position and the shape based on facial landmarks(mouth, ears ,noise, eyes, eyebrows). 

 

 

 

  

Figure 11 - align face - left Figure 12 - align face - up 

Figure 13 - align face - left Figure 14 - align face - front 
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Once the head and face are pinned across the desired number of views, FaceBuilder can create 

the texture from the photos automatically. And final export the model as an FBX file which 

will load to Unreal Engine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 15 - Kentool Mesh Figure 16 - Kentool mesh with texture 

Figure 17 - Kentool texture Mari
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Mesh to MetaHuman: Aligning the model 

At this stage the mesh must become a metahuman, that is, it must have the topology of the 

metahuman in order to be animated easily. Then frame the face to see the frontal view with all 

its details and launch auto-tracking, which takes a couple of moments and gives us the 

automatically detected facial landmarks. 

 

 

 

 

 

 

 

 

 

 

 

MetaHuman Creator: set up the appearance of the character 

In the online MetaHuman editor, choose the character and tune it to match the person from the 

photos as closely as possible by tweaking the skin colour, eyes, facial hair, clothes and so on. 

Using the online editor, you can reach a very good level of likeness, but there’s a way to make 

it even better. To achieve this replace the generated MetaHuman texture with something more 

realistic and feature-rich. 

Photoshop: Preparing the texture for MetaHuman  

MetaHuman uses four textures for different facial expressions including the neutral one. Take 

them all to Photoshop and merge with the mh texture previously extracted from the photos by 

FaceBuilder. The mh texture map of FaceBuilder was created specifically to make this process 

as simple as possible. It matches the layout of the built-in MetaHuman texture perfectly, so all 

facial parts will align naturally, just need to set up the size of the texture properly while creating 

and exporting the texture. At this stage, need to accurately join high and low-frequency details 

Figure 18 - Align Face to create Metahuman 
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from both textures and match their colours. Also clean up the standard MetaHuman texture 

from the features that it has, but your real person hasn’t. 

 

  

 

 

 

 

 

 

 

 

 

Unreal Engine: adding the new textures 

The final step ,replace the textures of the model with the ones created earlier in Photoshop out 

of the MetaHuman ones and the ones extracted from the photos by FaceBuilder. Do it one by 

one for every expression. 

 

 

 

 

 

 

 

 

  

Figure 19 - Final texture 

Figure 20 - Metahuman of myself 
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3.2 General Overview how to create volumetric character with multiple depth sensors 

in realtime 

Creating a volumetric capture character with multiple depth sensors in realtime involves using 

several devices to capture the subject from different angles and perspectives. A general 

overview of the steps required to create a volumetric capture character with multiple depth 

sensors is given below: 

1. Setting up of depth sensors: It shall be necessary to fix a number of depth sensors and 

recalibrate them so that they are able to capture the correct depth information. In this 

case, the sensor shall be placed at a precise distance from the subject and its settings 

adjusted to ensure best capture. 

2. Capturing the character - object: The character-object shall be placed in a captured area, 

which by definition is an equatorial or polarised space to allow for simultaneous capture 

from multiple angles. The depth sensors capture both the color and depth information 

of the character - object, creating multiple point clouds of the character’s shape and 

position. 

3. Merging the point clouds: The captured data from each depth sensor is then merged 

together using a calibration technique. This involves aligning multiple point clouds to 

a single, unified 3D model of the object. 

4. Processing the data: The point clouds captured by the sensors need to be processed to 

create a smooth and accurate surface representation of the character. This typically 

involves performing various steps such as filtering, meshing, and surface 

reconstruction. 

5. Animating the character: Once the volumetric representation of the character is created, 

it can be animated in real-time. This involves mapping the motion of the sensors to the 

character's surface, allowing the character to move in real-time as the sensors capture 

its movement. 

 

3.3 Setting up of Microsoft Azure kinects depth sensors  

Initially very important was the positioning of the cameras. Depending on the depth mode of 

the camera that the user wants to choose (NFOV or WFOV) the cameras must be placed at a 

different distance for better capture of space and character. For NFOV depth mode the cameras 
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must be placed above the ground at least 0.7 meters and no more than 1.5 meters and the person 

at a distance of more than 1.5 meters away from the camera for a complete capture of his body. 

 

 

 

 

 

 

 

 

 

 

 

For WFOV depth mode the cameras must be placed above the ground at least 0.7 meters and 

no more than 1.5 meters and the person at a distance of more than 0.8 meters away from the 

camera for a complete capture of his body. 

 

 

 

 

 

 

 

 

  

Αpart from the height and distance that the user must have from the camera, there is also the 

angle and distance that each camera must have between each other.  For NFOV depth mode 

ideally, depth sensors should be placed at apexes of equilateral triangle with sides equal to 

Figure 21 - NFOV distances 

Figure 22 - WFOV distances Mari
os

 C
ha

ral
am

bo
us

 



- 29 - 
 

about 5 meters and for WFOV depth sensors should be placed at apexes of equilateral triangle 

with sides equal to about 3 meters. 

 

 

Figure 24 - Ideal configuration for triple azure kinects 
sensors(NFOV) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the picture above you can see the set up of the depth sensors. 

 

Figure 23 -Ideal configuration for triple azure kinects 
sensors(WFOV) 

Figure 25 - Kinects Setup 

Mari
os

 C
ha

ral
am

bo
us

 



- 30 - 
 

3.4 Capture the character - object  

After the correct placement of the cameras, the process of character capture and creation of 

point clouds for each individual camera follows. The steps for this process are: 

1. Initialize the Azure Kinect device and configure its settings. This includes specifying 

the color format and resolution, depth mode, and camera FPS. 

2. Retrieve the device's calibration data, which provides information about the intrinsic 

and extrinsic parameters of the color and depth cameras. 

3. Create a transformation object that can convert depth images to point clouds using the 

calibration data. 

4. Start the device and retrieve a capture, which contains the latest color and depth 

images. 

5. Extract the depth and color images from the capture. 

6. Use the transformation object to convert the depth image to a point cloud image. 

7. Access the point cloud data to extract the 3D coordinates of the points in the cloud. 

8. Perform any additional processing or analysis on the point cloud data as 

needed.(median filter at point cloud image for remove the noise – outliers points) 

9. To Render the point cloud into the scene in unreal engine the easiest way is use 

Niagara Point Cloud System. The position of each point is the depth image and the 

color of each point is the color image. Configure the renderer, set the "Point Size" and 

"Minimum Pixel Size" parameters to control the size of the rendered points.  

10. Release all resources when finished, including the device, calibration data, 

transformation object, and images. 

Psedocode 

// Initialize the Kinect sensor and transformation 

k4a_device_t device = NULL; 

if (k4a_device_open(0, &device) != K4A_RESULT_SUCCEEDED) { 

    printf("Failed to open device\n"); 

    return; 

} 

k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL; 

config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32; 
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config.color_resolution = K4A_COLOR_RESOLUTION_720P; 

config.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED; 

if (k4a_device_start_cameras(device, &config) != K4A_RESULT_SUCCEEDED) { 

    printf("Failed to start cameras\n"); 

    k4a_device_close(device); 

    return; 

} 

k4a_calibration_t calibration; 

if (k4a_device_get_calibration(device, config.depth_mode, config.color_resolution, 

&calibration) != K4A_RESULT_SUCCEEDED) { 

    printf("Failed to get calibration\n"); 

    k4a_device_stop_cameras(device); 

    k4a_device_close(device); 

    return; 

} 

k4a_transformation_t transformation = k4a_transformation_create(&calibration); 

while (true) { 

    // Capture a color and depth frame from the Kinect sensor 

    k4a_capture_t capture = NULL; 

    if (k4a_device_get_capture(device, &capture, K4A_WAIT_INFINITE) != 

K4A_RESULT_SUCCEEDED) { 

        printf("Failed to get capture\n"); 

        continue; 

    } 

    k4a_image_t color_image = k4a_capture_get_color_image(capture); 

    k4a_image_t depth_image = k4a_capture_get_depth_image(capture); 

    // Generate the point cloud 

    k4a_image_t undistorted_depth_image = NULL; 

    if (k4a_image_create(K4A_IMAGE_FORMAT_DEPTH16, width, height, width * 

(int)sizeof(uint16_t), &undistorted_depth_image) != K4A_RESULT_SUCCEEDED) { 

        printf("Failed to create undistorted depth image\n"); 

        k4a_device_stop_cameras(device); 

        k4a_device_close(device); 
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        return; 

    } 

    k4a_image_t transformed_color_image = NULL; 

    if (k4a_image_create(K4A_IMAGE_FORMAT_COLOR_BGRA32, width, height, width 

* (int)sizeof(uint32_t), &transformed_color_image) != K4A_RESULT_SUCCEEDED) { 

        printf("Failed to create transformed color image\n"); 

        k4a_device_stop_cameras(device); 

        k4a_device_close(device); 

        return; 

    } 

    k4a_transformation_depth_image_to_color_camera(transformation, depth_image, 

undistorted_depth_image); 

    k4a_transformation_color_image_to_depth_camera(transformation, depth_image, 

color_image, transformed_color_image); 

 

    // Get the color data 

    uint8_t* color_data = k4a_image_get_buffer(transformed_color_image); 

    int color_stride = k4a_image_get_stride_bytes(transformed_color_image); 

    int color_width = k4a_image_get_width_pixels(transformed_color_image); 

    int color_height = k4a_image_get_height_pixels(transformed_color_image); 

    // Allocate memory for the point clouds 

k4a_float3_t* point_cloud = new k4a_float3_t[width * height]; 

// Generate the point cloud 

for (int i = 0; i < width * height; i++) { 

    int x = i % width; 

    int y = i / width; 

    k4a_float2_t undistorted_point = k4a_float2_t{ (float)x, (float)y }; 

    uint16_t depth_value = *reinterpret_cast<const 

uint16_t*>(k4a_image_get_buffer(undistorted_depth_image)) + 

(k4a_image_get_stride_bytes(undistorted_depth_image) * y) / sizeof(uint16_t) + x; 

    k4a_float3_t point = k4a_calibration_2d_to_3d(&calibration, &undistorted_point, 

depth_value, K4A_CALIBRATION_TYPE_NFOV_UNBINNED); 

    point_cloud[i] = point; 

} 
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// Release resources 

k4a_image_release(color_image); 

k4a_image_release(depth_image); 

k4a_image_release(undistorted_depth_image); 

k4a_image_release(transformed_color_image); 

delete[] point_cloud; 

k4a_capture_release(capture); 

 

 

 

 

 

 

 

 

 

 

3.5 Merging point cloud - Calibration 

Up until this point, you create a separate point cloud for each Kinect depth sensor. What needs 

to be done is merge into one point cloud.  

Methods 1 chessboard pattern: 

To calibrate multiple Azure Kinect cameras using a chessboard pattern, you can follow these 

general steps: 

1. Capture images of a chessboard pattern(see Fig.23) 

using each of the Azure Kinect cameras. It's best to 

capture the images in a well-lit environment to ensure 

that the chessboard pattern is clearly visible in the 

images.  

2. Use a calibration toolbox like OpenCV to extract the 

corners of the chessboard pattern in each image. Will 

Figure 26 - Point Cloud rendering in unreal engine 

Figure 27 - Chessboard pattern 
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need to specify the dimensions of the chessboard squares in millimetres. 

3. Use the extracted chessboard corners to calibrate each of the Azure Kinect cameras 

individually. This can be done using a standard calibration routine, such as the 

cv2.calibrateCamera() function in OpenCV.  

4. Once have the intrinsic camera parameters (like focal length and principal point) for 

each camera, can use a stereo calibration routine to compute the extrinsic parameters 

(like rotation and translation) that describe the relative pose of the cameras with respect 

to each other. This can be done using the cv2.stereoCalibrate() function in.  

5. Finally, can use the computed extrinsic parameters to rectify the images and create a 

depth map. This can be done using the cv2.stereoRectify() function in OpenCV. 

 

Τhe problem with this method was when the depth 

sensors had to be placed next to each other, because 

they had to be able to see the chessboard. This way all 

the information of the object or character on one side 

was lost.  

 

 

 

 

 

Methods 2 lattice pattern: 

Instead of using a checkerboard pattern in an infrared image (IR) for calibration, created a 

lattice with evenly spaced rectangular holes that can be detected directly in a depth image. This 

lattice consists of 25 evenly spaced rectangular holes (4cm x 4cm each) (see Fig. 23).  

Figure 28 - Configuration for chessboard 
pattern 
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First, look for gaps in the depth image that correspond to the lattice's geometry. Then, cluster 

these gap segments to determine the physical lattice's region, filtering out clusters that do not 

meet certain thresholds. Use proximity to gap segments to identify 3D points that could belong 

to the lattice, and filter out noise using RANSAC to fit a plane and classify points as inliers or 

outliers. Only after this do determine the precise locations of the holes in 3D. Identify the holes 

by iterating over points and considering those that are not inliers and are circumscribed by 

inliers. Merge segments belonging to the same hole using the union find structure, and estimate 

the centers of each hole by averaging the inliers in the neighborhood of the hole segments. 

In order to determine the orientation of the lattice, a heuristic that can handle even noisy hole 

centers, which will be called grid nodes in the following. In order to do so, define the following 

set of vectors: 𝑉 = {𝑛 − 𝑚 | 𝑙 < 𝑑𝑖𝑠𝑡(𝑚, 𝑛) < ℎ, 𝑚 ∈ 𝐻, 𝑛 ∈ 𝐻} 

where 𝑙 = 𝑑 − 𝛿, ℎ = 𝑑 + 𝛿, 𝑑 = 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑎𝑛𝑑 𝛿 𝑖𝑠 𝑎 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (𝑑 =

8𝑐𝑚 𝑎𝑛𝑑 𝛿 = 2𝑐𝑚).,  

25 cm 

 

 4 cm 

Figure 29 - lattice 
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This set is clustered by the angle the vectors subtend with the x-axis. The two largest clusters 

represent the prevalent directions; the median of each is considered the direction of the x- and 

y-axis of the lattice. Now have the two very stable directions of the calibration lattice in space, 

but don’t know which one is which axis and their signs. To resolve this ambiguity, consider 

the hands holding the lattice to estimate the orientation and align the x-axis such that it points 

towards the hands. For the third z-axis use the normal of the plane determined by RANSAC 

earlier, and align it towards the camera. Finally, register the depth cameras using the SVD-

based transformation estimation of the Point Cloud Library[15]. 

 

 

  

Figure 30 - Merging Point cloud 
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3.6 Processing the data 

The merged point cloud before it becomes a mesh has to be filtered to clean up the noise it has 

(to remove outliers). This was done with the median filter. A median filter is a type of digital 

signal processing filter commonly used in image processing and digital audio signal processing. 

The purpose of the median filter is to reduce noise in the signal by replacing each pixel value 

with the median value of adjacent pixels within a given window. 

A median filter works by sliding a window of a specified size over the input signal and 

computing the median of the pixel values within the window for each window position. This 

median value is used to replace the original pixel value in the center of the window. 

Compared to other filter types, median filters are a type of noise that can appear in an image or 

audio signal when individual pixels or samples are randomly aliased to very high or very low 

values. It is particularly effective in reducing “salt and paper” noise, which is A median filter 

is a nonlinear filter. That is, the output depends not only on the input signal, but also on the 

properties of the filter itself. Nonlinear filters can produce artifacts and other undesirable 

effects, so it is important to choose an appropriate filter size and other parameters when using 

median filters. So when applied over the textures (depth and color) created by the sensors, it 

cleared the merged point cloud. 

Median filter Pseudocode  

1. allocate outputPixelValue[image width][image height] 

2. allocate window[window width × window height] 

3. edgex := (window width / 2) rounded down 

4. edgey := (window height / 2) rounded down 

    for x from edgex to image width - edgex do 

    for y from edgey to image height - edgey do 

        i = 0 

        for fx from 0 to window width do 

            for fy from 0 to window height do 

                window[i] := inputPixelValue[x + fx - edgex][y + fy - edgey] 

                i := i + 1 

        sort entries in window[] 

        outputPixelValue[x][y] := window[window width * window height / 2] 

 

 

At this point the mesh creation process can start.(Surface reconstruction). In computer graphics 

and computer vision, the process of surface reconstruction entails building a 3D surface model 

of an object or scene from a collection of 2D or 3D data points. This method is often employed 

in several fields, including robots, virtual reality, and medical imaging. 
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Surface reconstruction may be accomplished using a variety of strategies, including point-

based techniques, implicit surface fitting, and parametric methods. A set of parameters, such 

as a collection of curves or surfaces, are used in parametric techniques to define the surface by 

fitting them to the input data points. In order to create a surface, implicit surface fitting entails 

fitting a mathematical function to the input data points. 

Τhis process required powerful hardware and therefore 

was done in non-real time. The positions of the points and 

colors (X Y Z R G B) (See Fig. 25) were exported in each 

frame and with the help of the open3d library a scipt was 

created in the python programming language where the 

steps of the process are as follows: 

 

1. Load and prepare the data: takes the correct values for the positions of the points and 

colors (first three values for positions and the remaining three values for colors) and 

calculates the average distance between the points and their neighbours. This is done in 

order to estimate the normals so that it can create the final mesh. 

2. Choose a meshing strategy: the first strategy is the Ball-Pivoting Algorithm and the 

second strategy is Poisson reconstruction. 

• Strategy 1 Ball-Pivoting Algorithm: The Ball-Pivoting Algorithm's 

(BPA) goal is to construct a mesh from a point cloud by simulating the 

usage of a virtual ball. Assume initially that the offered point cloud is 

made up of points that were taken as samples from an object's surface. 

For the rebuilt mesh to be explicit, points must rigorously represent a 

surface (and be noise-free). Using this assumption, imagine rolling a tiny 

ball across the point cloud “surface”. Depending on the size of the mesh, 

this little ball should be a little bigger than the typical distance between 

points. A ball will get captured and land on three points that will 

eventually form the seed triangle if you drop it onto the surface of some 

points. The ball moves from that point along the edge of the triangle 

created by the two locations. The ball then settles in a new location: one 

new triangle is added to the mesh and a new triangle is created from two 

of the previous vertices. New triangles are formed and added to the mesh 

Figure 31 - Record file 
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as we keep rolling and pivoting the ball. The mesh is completely 

constructed when the ball stops moving. 

• Strategy 2 Poisson reconstruction: The Poisson Reconstruction involves 

a little more math and technology. Its method, called an implicit 

meshing method, can be thought of as an attempt to "envelop" the data 

in a smooth fabric. Without getting into much detail, we attempt to 

create a watertight surface from the original point set by building a 

brand-new point set that represents an isosurface connected to the 

normals. There are several parameters available that affect the result of 

the meshing: Firstly Which depth? The reconstruction makes use of a 

tree-depth. The mesh has greater detail the higher it is (the default is 8). 

In a mesh that is created from noisy data, outlier vertices are still there 

but are not recognized as such by the algorithm. As a result, a low 

number (maybe between 5 and 7) smoothes the image, but you lose 

detail. The number of vertices in the created mesh increases as the depth-

value increases. Which scale? It describes the ratio between the diameter 

of the cube used for reconstruction and the diameter of the samples’ 

bounding cube. Very abstract, the default parameter usually works well 

(1.1). And finally which fit? the linear_fit parameter if set to true, let the 

reconstructor use linear interpolation to estimate the positions of iso-

vertices. 

3. Export and visualize: export both the BPA and Poisson’s reconstructions as .ply files. 

Results of Strategy 1 

 

 

 

  

Figure 33 - Ball Pivoting mesh – frame 1 Figure 32 - Ball Bivoting Mesh - frame 2 
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Results of Strategy 2 

 

The results with the Poisson reconstruction method are better since the Ball Pivoting method 

lacks vertices and triangles, so gaps are created and the mesh surface is not good. In contrast 

with the Poisson reconstruction, we get an improved mesh surface without many artifacts and 

noise.  

  

Figure 35 - Poisson Recostruction - frame 1 Figure 34- Possion Reconstruction - frame 2 
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3.7 Animating the Character 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The last step is animating the mesh. The construction of the mesh in each frame as discussed 

in the previous chapter (see 3.6) gives the character motion(see fig. 32 – 35).  

Figure 37 - frame 1 animation Figure 36 - frame 2 animation 

Figure 39 - frame 3 animation Figure 38 - frame 4 animation 
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Chapter 4 

4 Operations 
 

 

4.1 Should Register Multiple Kinects         42 

4.2 Save Registration           42 

4.3 Register to World           43 

4.4 Record Point Cloud           43 

 

 

4.1 Should Register Multiple Kinects 

 The first function is the Multiple Kinects Register which is responsible for calibrating the 

cameras and merging the three point clouds into one. The process of explaining the 

calibration was explained in chapter 3.4. First, cache parallel all the points from the point 

clouds and finds the grids for all three depth sensors. When detect the grids, match hole 

points of all grids. So, get results for registrate all the point clouds into the first point cloud.   

 

4.2 Save Registration  

 

the SaveRegistration function is responsible for saving to a Txt file the transformation 

matrixes needed to merge the point clouds. The procedure followed is simple, first it checks 

how many depth sensors are connected to the computer, and for each depth sensor, it saves its 

CurrentRegistration in the file. 

The structure of each transformation is the first three lines 

are the Vector for the three axes (X, Y, Z) and the fourth line 

is the Vector for the translation. 

 

 
Figure 40 - Registration file 
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4.3 Register to World 

 

The RegisterToWorld function takes the registration file (see fig.30) saved in the previous 

function (SaveRegistration) and gives each Kinect the transformation it needs to 

automatically perform the Calibration without needing the lattice (see fig.25 chapter 3.5). The 

procedure followed is for each line in the file it splits the values in the vectors for the three 

axes (X, Y, Z) and for the translation in each ‘,’ it finds for each Kinect. Thus each Kinect 

becomes the correct transform to do the calibration automatically. 

 

4.4 Record Point Cloud 

 

The last function is RecordPointCloudToFile. This function stores in each frame the positions 

of each point on all three axes (X, Y, Z) and the color of each point (R, G, B). This is done 

for all point clouds created. When the user presses the RecordPointCloudToFile button the 

process starts and initially, the txt File(Record.txt) is created. Then, at the same time, it saves 

for each point cloud in each frame the positions of each point on all three axes(X, Y, Z) and 

the color that each point has( R, G, B). It stops the process when the user disables the 

RecordPointCloudToFile button. 

the first three columns are the position of each point and 

the next three columns are the color of each point.   

Figure 41 - Record File Mari
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Chapter  5 

 

5 Manual 
 

 

5.1 Scene 1 – The Metahuman Character of myself       44 

5.2 Scene 2 – Realtime Volumetric Capture in UE       45 

 

 

5.1 Scene 1 – The Metahuman Character of myself 

Opening the first scene is the metahuman character and a cinemachine camera that tracks him. 

By pressing the start button, the animation of the character starts. Easily the user can create his 

own animation by opening the Animation Sequence inside the scene and choosing which bone 

he wants to rotate and move in whichever frame he wants. 

  

Figure 42 - Animation Sequence 
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in the picture above (see Fig.38) the ControlRig of metahuman is divided into face and body. 

First you choose which one you want to move and then you choose which bone you want from 

the two categories (face and body). Then you choose in which frame you want to start or end 

the movement of the bone you initially selected. This creates the animation and gives "life" to 

the character. 

 

5.2 Scene 2 – Realtime Volumetric Capture in UE  

 

Opening the second scene, only the registrationManager Actor containing the four functions 

is placed (see chapter 4) and pressing the Start button ,registrationManager Actor is 

responsible for finding how many Azure Kinect Depth sensors are connected on the computer 

and creating AzureKinect Actors to start capturing the space in a point cloud. Then he can 

choose the function he wants to perform by pressing the appropriate button. If he wants to 

merge the point clouds into one, then he chooses Should Register to Multiple Kinects(Fig.39 

number 1) and with the help of the lattice pattern he does the calibration. Second function, if 

you choose Save Registration (Fig.39 number 2), it will save in a txt file the calibration 

matrix that the depth sensors have at that moment. Third operation, if the user selects 

Register to Word (Fig.39 number 3), then it takes the matrices saved in the second mode and 

transforms the Kinects for automatic calibration. And the last function that the user can 

choose is the Record Point Cloud (Fig.39 number 4), where by pressing the button it starts 

simultaneously and saves in a file the positions and colors of all the points of the Point cloud 

and stops when the button is disabled. See chapter 4 for details on what each function does.  

  

Figure 43 - Operations 

Mari
os

 C
ha

ral
am

bo
us

 



- 46 - 
 

Chapter  6  

 

6  Conclusions – Results and Future Work 
 

 

6.1 Conclusions – Results          46 

 6.1.1 Summary of the thesis                     46 

 6.1.2 Discussion of the results         46 

  6.1.2.1 Chessboard vs Lattice        47 

  6.1.2.2 Calibration Mean Error for the positions of the depth sensors   49 

6.1.2.3 Calibration Mean Error for lighting conditions.     53 

6.1.2.4 Time needed for Calibration - lighting conditions.    54 

6.1.2.5 Time and Calibration Mean Error – Change height    54 

6.1.2.6 NFOV vs WFOV        55 

6.1.2.7 Ball-Pivoting vs Poisson Algorithm      58 

6.2 Future Work           61 

 

 

6.1 Conclusions – Results 

6.1.1 Summary of the thesis 

In this thesis, the process of creating one's metahuman character with photos from different 

angles and having the topology of the metahuman avatar to be easily animated was first 

presented. In addition, it analyzed in detail the process of creating a volumetric capture 

system with multiple Azure Kinect depth sensors in real-time in the Unreal engine game 

platform. The process was initially to get the cameras set up in the correct position. Then, 

create each camera's point cloud and merge them into one. Then followed by processing the 

data where it was filtering - cleaning the point cloud and surface reconstruction where this 

process was done in non-real-time. And it was finally animating the character. 
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6.1.2 Discussion of the results 

6.1.2.1 Chessboard vs Lattice 

Chapter 3.5 presented the two methods used to merge the point clouds into one, to get the 

correct calibration on the cameras. The first method calibrates the cameras using the 

chessboard pattern and the infrared image (IR) as opposed to the second method which uses 

the depth image directly. The problem encountered with the first method was that the depth 

sensors had to be placed on the same side (side by side) to see the chessboard. This resulted 

in losing a lot of information about the object - character to be captured. On the other hand in 

the second method, the cameras can be placed anywhere. 

 

The above graph compares the two methods in terms of mean error. The mean error is 

calculated as follows: 

• Finds the distance of each point(sV to the corresponding point of the other point 

cloud(tV). 

• sums these distances (sumError += Distance( sV,tV)). 

• divides them by the size (meanError = sumError / size). 

Graph 1 - Chessboard vs Lattice pattern (Mean Error) 
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In both methods, the cameras were placed side by side at the same height(1 m) ,at distances 

of 2, 2.5, 3, and 3.5 meters and the mean error at these four distances was calculated. To 

determine the errors, the mean error was calculated six times for each distance and the 

average of the six values was plotted. As can be seen in both cases the results are almost the 

same with a small mean error. The best distance in both methods is 3 meters distance 

between the cameras with a mean error of just over 2 mm and the worst is 3.5 meters with a 

mean error of 0.35 mm. 
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In the above graph, there is another comparison of the two methods but this time it is done in 

terms of the time it took to calibrate the sensors. The time is calculated as soon as the 

calibration starts, i.e. the timer starts when the cameras see the chessboard and the lattice 

pattern respectively, and stops when the point clouds are aligned. Compared to the mean 

error, the time it took to do the calibration is much better in the second method (using depth 

image - lattice pattern) since at each distance calculated (2, 2.5, 3, 3.5 meters), it is about 0.35 

sec faster. Again, in both methods the best distance is 3 meters with a time a little over 1.4sec 

and about 1sec respectively and the worst distance is 3.5 meters with times approximately 

1.7sec and 1.4sec. 

 

 

 

 

 

 

 

 

Graph 2 - Chessboard vs Lattice (Time needed for calibration) 
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6.1.2.2 Calibration Mean Error for the positions of the depth sensors 

 

In the graph below (see Graph 3), the three cameras were placed in a triangle shape (see Fig. 

19) with a constant height of 1 meter, changing the distance between them, the calibration 

mean error was calculated as explained previously (see chapter 6.1.2.1). 

The distances examined are 2, 2.5, 3, 3.5, 4 meters and in each case to reduce the errors the 

mean error was calculated six times and the average of the six values was placed in the graph. 

The point clouds were merged on Kinect 0 that's why there are only two lines where blue is 

for Kinect 1 and orange is for Kinect 2. The best placement of the depth sensors was at 3 

meters distance between them with mean errors for both kinects around 0.25cm, and the 

longest placement at 4 meters with around 0.42cm for both kinects. The calibration mean 

error almost doubled from 3 meters compared to 4 meters so camera placement plays quite a 

role in the quality of the merged point cloud. 

 

Graph 3 - Mean error for positions of the depth sensors 
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In the graph below (see Graph 4), the three cameras were placed in a triangle shape (see Fig. 

19) with a constant height of 1 meter, changing the distance between them, the time needed 

for calibration was calculated as explained previously (see chapter 6.1.2.1). 

 

 

The distances examined are 2, 2.5, 3, 3.5, 4 meters and in each case to reduce the errors the 

mean error was calculated six times and the average of the six values was placed in the graph. 

The point clouds were merged on Kinect 0 that's why there are only two lines where blue is 

for Kinect 1 and orange is for Kinect 2. And in this case, the best placement of the depth 

sensors is at 3 meters distance between them and the worst at 4 meters. The time at 4 meters 

is more than 2.5 times compared to 3 meters, since at 3 meters the time it took to do the 

calibration is about 1 sec for both cameras, while at 4 meters it is about 2.65 sec.  

Graph 4 - time needed for calibration the depth sensors 
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6.1.2.3 Calibration Mean Error for lighting conditions. 

Another important factor that was examined to see if it affects the calibration and overall 

quality of volumetric capture is lighting. The depth sensors were placed 3 meters apart in a 

triangle shape with 1 meter height from the ground and the mean error and the time needed 

for calibration were calculated at three different times of the day. In the morning to midday 

when the light intensity was high, in the afternoon when the light intensity is moderate, and 

almost at night with low light intensity. In all three different conditions (morning - afternoon 

- evening) the mean error and the time were calculated six times and the average of the six 

values was placed on the graph to reduce the errors. 

 

 

 

 

 

 

 

 

 

 

 

  

 

As shown in the graph above (see Graph 5) the intensity of the lighting plays a huge role. The 

blue line is for Kinect 1 and the orange line is for Kinect 2, where the point cloud merging 

was done on Kinect 0. In the morning the calibration means error for both Kinects was about 

0.25cm, in the afternoon about 0.38cm, and in the evening about 0. 65cm with Kinect 2 

having a slightly larger mean error than Kinect 1. The calibration mean error increases non-

grammatically since the difference between morning and afternoon is about 1.5 times and 

with evening the difference is about 2.6 times. 

  

Graph 5 - mean error for lighting conditions 
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6.1.2.4 Time needed for Calibration - lighting conditions. 

 

 

 

As expected, the time needed to calibrate the depth sensors increases significantly as the 

intensity of the lighting decreases, as can be seen in the graph (see). The blue line is for 

Kinect 1 and the orange line is for Kinect 2. In the morning the time is about 1sec, in the 

afternoon it is about 1.8sec and in the evening about 4.2sec. And in this case it increases non-

linearly since the difference from the morning compared to the evening was 1.8 times greater 

while the difference from the morning compared to the night was 4.2 times. 

  

Graph 6 - time needed for calibration (lighting conditions) 
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6.1.2.5 Time and Calibration Mean Error – Change height 

 

Apart from the position of the depth sensors, the height was also examined, i.e. the distance 

between the cameras was kept constant at 3 meters by changing their height from the ground. 

Again, the depth sensors were placed in a triangle shape. 

Table 1 – Time and Calibration Mean Error - change height 
 

  

  Height(m) Calibration 

Mean Error(cm) 

Time Needed 

for 

Calibration(sec) 

Set up 1 Kinect 1 0.7 0.306 1.17 

 Kinect 2 1 0.492 2.63 

     

Set up 2 Kinect 1 0.7 0.2467 1.03 

 Kinect 2 1.3 0.683 3.4 

     

Set up 3 Kinect 1 1 0.431 2.603 

 Kinect 2 1 0.4367 2.647 

     

Set up 4 Kinect 1 1.3 0.703 3.531 

 Kinect 2 1 0.447 2.41 

     

Set up 5 Kinect 1 1.3 0.692 3.56 

 Kinect 2 1.3 0.710 3.61 
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Kinect 0 is fixed at height 0.7 and the other two point clouds will be merged into it. From the 

above table (see Table 1), 5 different scenarios were examined where in the third column you 

see the height that each depth sensor had from the ground and in the fourth column the 

calibration mean error. The results show that the height of the depth sensors clearly affects 

the final result. Since when the height of the Kinect is at the same height as the Main Kinect 

(Kinect 0 - 0.7m) then the Calibration Mean Error is approximately 0.25cm, when it is at 1 

meter height the Calibration Mean Error is approximately 0.46cm and at 1.3 meters it is about 

0.7cm. 

As expected, the time it takes to perform the calibration depends a lot on the height of the 

Kinects. When the Kinects are at the same height as the main Kinect (Kinect 0 - 0.7m), the 

time they need to calibrate is about 1.1 sec, when they are at 1 meter about 2.5 sec and at 1.3 

meters the time is about 3.6 sec. 

 

6.1.2.6 NFOV vs WFOV 

 

The depth sensors have two depth modes the NFOV (Narrow field-of-view depth mode) and 

the WFOV (Wide field-of-view depth mode), where the difference between the two is shown 

in the picture below (see Fig.38). NFOV provides a narrower field of view, which means it 

captures a smaller area but with more detail and a higher level of precision. WFOV, on the 

other hand, offers a wider field of view, allowing it to capture a larger area but with less 

detail and potentially lower precision compared to NFOV. 

  

Figure 44 - NFOV vs WFOV 
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The depth sensors were placed at the same height from the ground (1 meter) and by changing 

the distance between them in a triangle shape the calibration mean error and the time needed 

for calibration were calculated for both depth modes. The distances considered are 2,2.5,3 

and 3.5 meters and in each case six times were calculated and the average of the six values 

were plotted to reduce the errors.  

 

 

From the graph above (see Graph 7), the blue line is for NFOV calibration mean error and the 

orange line is for WFOV. It can be seen that for close distances WFOV has a slightly smaller 

calibration mean error with a better distance between depth sensors of 2.5 meters. In 

comparison, for longer distances NFOV is superior with a better distance between depth 

sensors of 3 meters.  
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As before for the calibration mean error the time spent on calibration at each distance was 

calculated. In the graph above where the blue line is for NFOV time for calibration and the 

orange line for WFOV time for calibration it can be seen that WFOV takes much longer to do 

the calibration at all distances. This makes sense since it captures more space than NFOV and 

thus creates larger point clouds where it takes much longer to do the calibration. It took the 

least time the WFOV at a distance of 2.5 meters which was about 2.25 seconds and worst the 

distance of 3.5 meters with a time of about 3.75 seconds. Contrast this with the NFOV where 

it was best at 3 meters with a time of about 1 second and worst at 3.5 meters with a time of 

about 1.5 seconds. The time difference needed for the calibration is quite large where the 

WFOV is 2.5 times slower than the NFOV.  
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6.1.2.7 Ball-Pivoting vs Poisson Algorithm 

 

As mentioned before, the only parameters that affect the ball-pivoting algorithm are the 

radius that the ball will circle to create the surface triangles and the maximum neighbours it 

will search in this space. 

 

 

 

 

 

 

 

 

in the image above(see Fig.45) is the Point cloud tested to mesh with the two algorithms. 

Changing these two parameters 

creates the mesh. In the adjacent 

image (see Fig.46) with radius=2 

and maximum neighbours 30 the 

result is bad with too many holes 

and low detail mesh. The reason for 

this is that not enough triangles 

were created and so it has too many 

holes. 

  

Figure 45 - Point Cloud 

Figure 46 - Mesh radius=2 max_nn=30 Mari
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In the adjacent image(see Fig.48) 

with a radius of 5 and a maximum 

neighbor of 90, the result is better 

with better mesh detail. However, 

there are still several holes because 

not enough triangles were created, 

even in the case of Pally. 

 

 

 

 

 

 

 

 

 

 

the last mesh(see Fig.47) made was with a radius 10 and maximum neighbors 300 and the 

result is much better with higher detail and fewer holes. The conclusion is that you create a 

better mesh as you increase the radius and the neighbors you can find within that space. 

  

Figure 48 - Mesh radius=5, max_nn=90 

Figure 47 - Mesh radius=10 ,max_nn=300 
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Τhe second algorithm(Poisson) the parameter that affects the quality of the mesh is the depth 

of the tree. The greater the depth, the better the mesh will be created. Again from the same 

point cloud (see Fig.45) they made the meshes by changing the depth. 

 

 

 

 

 

 

 

 

 

 

 

 

In the above images (see Fig 49-51) , the difference in the quality of the mesh by changing 

the depth is huge since initially with depth = 6 the result is miserable with very few triangles 

being created while as the depth increases the result is much better. Better results were 

obtained with the Poison algorithm since the meshes had no holes and fewer artifacts than the 

meshes created with the ball-pivoting algorithm.  

Figure 51 - mesh depth = 6 Figure 49 - mesh depth = 8 

Figure 50 - mesh depth = 10 Mari
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6.2 Future Work 

Further improvements will always be made and certainly the first is to improve the quality of 

volumetric capture, developing better algorithms for capturing and reconstructing 3D models, 

improving the accuracy and resolution of the captured data. 

Also another improvement is to be able to make the 3D model in real time efficiently and 

with good quality. For this it is necessary to have the appropriate hardware that can support 

this complex process.  

And finally, to make different applications such as VR and AR applications to create more 

immersive and interactive experiences for users, allow users to interact with the captured data 

in real-time, such as by enabling them to move around or manipulate the captured objects.   
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Appendix  

7.1  Source Code  

Content of Source Folder : 

o PointCloud - the textures created by capturing(depth and color image) 

o TXTfiles – all files stored 

o Blueprints – All blueprints 

o Animations – Metahuman animations 

o Maps – Metahuman and Volumetric capture scenes 

o Metahuman – Body, Face, Textures of my metahuman 

o Scripts – C++ files 

♦ AzureKinect.cpp – Initialize and start Kinect. 

♦ PointCloudRender.cpp – Render Point cloud in the scene 

♦ RegistrationManager.cpp – Get all the result from registration 

♦ TXTManager.cpp – check txt file 

♦ RecordPointCloud.cpp  –  Save positions and color of all points 

♦ SaveRegistration.cpp – Save transformation matrixes for calibration 

♦ GridDetector.cpp – detect Grid for Calibration 

♦ MultiPointCloudRegistration.cpp – Perform calibration for all kinect 

♦ Structs.h - contains two structs which are used as input and output for the 

lattice detector 

♦ Vector4f.h - is our internal Vector class. 

♦ Matrix4f.h - is our internal Matrix class. 
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7.2 Structure   
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