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Abstract 

Connected and Autonomous Vehicles (CAVs) are becoming increasingly popular due to their 

ability to make driving safer and more efficient. However, these vehicles rely heavily on GPS 

systems to determine their location and route. Unfortunately, GPS systems are vulnerable to 

spoofing attacks, where malicious actors can provide false location information to the CAV, 

potentially causing accidents or other dangerous situations.  

In the literature foreseen, there is a limitation for the detection and mitigation technique for GPS 

spoofing. To address this problem, we have developed a solution by using in-vehicle detection. 

The vehicle takes information from the sensors of the car like Inertial Measurement Unit (IMU), 

Global Navigation Satellite System (GNSS), and Odometer, and detects any anomalies that may 

indicate a spoofing attack. This approach is practical and effective, as it does not require 

information from neighboring vehicles, which can be unreliable in certain situations. 

Another analysis as a part of this thesis is by utilizing Machine Learning (ML) algorithms. The 

traditional attack detection solutions developed by using ML techniques require normal and 

attack data labels. Obtaining 'normal' and 'attack' data labels in practical or controlled settings 

is challenging for conventional attack detection methods. To address this limitation, we are 

utilizing the ML algorithm only to process attack-free scenarios for the training stage. Different 

ML techniques are used that support the detection of anomalies. This proposed approach is 

effective as it does not require labeled data and can adapt to new and evolving attack strategies.  

The suggested solution builds on a previous research project at KIOS, called the " CARAMEL-

In-vehicle Detection Solution ". By combining In-vehicle Detection Solution and machine 

learning-based techniques, this solution can effectively detect GPS spoofing attacks in CAVs. 
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Chapter 1 - Introduction 

1.1 Background 

By 2050, the CAVs industry is projected to achieve a market value of $7 trillion [1]. This growth 

has been accompanied by the implementation of updated standards for vehicular 

communications such as IEEE 802.11p and LTE-PC5, which operate without reliance on 

infrastructure and use unlicensed frequency bands. However, these advancements in 

connectivity have also brought about a significant rise in the potential for cyber-threats [2]. 

CAVs become more prevalent, there is a genuine concern regarding the possibility of cyber-

attacks targeting these vehicles by exploiting various vulnerabilities. Since CAVs heavily rely 

on digital connectivity and communication systems, they become potential targets for hackers 

who may exploit weaknesses in their software, hardware, or network infrastructure. These 

cyber-attacks could encompass unauthorized access to the vehicle's systems, manipulation of 

critical functions, theft of sensitive data, or even remote control of the vehicle. The increasing 

connectivity of CAVs amplifies the risk of cyber threats, emphasizing the importance of 

implementing robust security measures to safeguard these vehicles and ensure the safety of 

passengers and the general public. The automotive industry is increasingly concerned about 

attacks targeting the GPS receiver of CAVs, particularly spoofing attacks on GPS locations. 

This kind of attack poses a significant threat as the security of CAVs can be compromised, 

potentially resulting in severe consequences for both drivers and pedestrians. Currently, there 

are detection solutions available that rely on specific hardware like antenna arrays and satellite 

signal processing techniques, which offer high accuracy but they are expensive in terms of 

installation in the CAVs and are bulky too. Therefore, there is a growing need for lightweight 

and cost-effective solutions that can effectively detect GPS spoofing attacks in order to address 

this issue. 

The dependable and secure functioning of GPS sensors plays a vital role in ensuring the broader 

adoption of CAVs and the implementation of Vehicular Ad-hoc Networks (VANETs). GPS 

sensors are essential for both as they provide accurate positioning and navigation information, 

enabling various critical functionalities. Reliable GPS functioning is critical for CAVs 

performing activities such as autonomous driving, route planning, and collision avoidance. 

Likewise, VANETs rely largely on GPS sensors to enable vehicle communication and 

coordination for traffic management, congestion control, and safety applications. To improve 

the acceptance and efficacy of CAVs and VANETs in real-world circumstances, it is critical to 

ensure the dependability and security of GPS sensors [3]. GPS readings and detailed maps are 

critical for autonomous cars to operate effectively and autonomously. Vehicles may calculate 
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the most direct and efficient route from one site to another by using GPS data and high-

definition maps. The lack of human intervention in the navigation process is eliminated by this 

autonomy. Vehicles optimize their functioning and save journey time by picking the quickest 

way independently. This level of autonomy dramatically improves transportation networks ease 

and efficacy by allowing cars to function effectively and autonomously [4].  

1.2 Problem Statement 

GPS is vulnerable to attacks such as spoofing  and jamming. Jamming involves transmitting 

disruptive signals on the same frequencies as GPS signals, completely blocking its operation. 

Spoofing, on the other hand, deceives users by transmitting signals that mimic legitimate GPS 

satellite signals. GPS location spoofing poses a critical threat to the safety of CAV users, with 

various open-source resources available for carrying out such attacks. To address these risks, 

ongoing efforts focus on securing sensor systems and utilizing commercially available receivers 

to study vulnerabilities and potential threats.  

1.3 Motivation 

GPS spoofing exploits the stable characteristics of GPS signals, allowing attackers to generate 

fake signals that resemble genuine ones, leading to incorrect position, velocity, and time 

solutions for GPS receivers [5-7]. Advanced attacking strategies typically require patience on 

the part of the attacker. To carry out a successful attack on a GPS receiver, the attacker must 

synchronize their disruptive signals with the satellite signals. By increasing the power of their 

signals, attacker can manipulate the GPS to lock onto the false signals, thus exerting control 

over the victim's location. Several techniques exist for GPS spoofing, including Lift-off-aligned, 

Lift-off-delay, meaconing, jam and spoof, and trajectory spoofing. In terms of defense, various 

techniques focus on monitoring the signal power, analyzing the characteristics of signal at 

arrival, examining correlation of signal peaks, and fusion of multi-sensor employment. The 

cooperative localization approach in VANETs aligns with concept of collaborative defense, 

where network nodes exchange measurements to improve accuracy of location, detect spoofing 

attacks on GPS and mitigate them. [8-13].  

To detect GPS spoofing attacks, current solutions rely on either data-driven approaches [14-17] 

or signal processing techniques [18-19]. Large volumes of data are analyzed and processed in 

data-driven ways to find trends and abnormalities that may signal a spoofing assault. Signal 

processing techniques, on the other hand, concentrate on studying the properties of GPS signals 

to detect any symptoms of faking. These methods use a variety of algorithms and strategies to 

distinguish between genuine GPS signals and spoof signals.  
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1.4 Contribution 

Researchers and practitioners want to create effective solutions for detecting and combating 

GPS spoofing attacks by utilizing data-driven and signal processing technologies. 

Several ML methods have been developed to identify irregularities related with GPS spoofing 

attempts. These systems use artificial intelligence to evaluate trends, learn from prior data, and 

spot variations that may indicate spoofing. [20-26]. 

This thesis builds upon the research conducted in papers [14] and [27] to introduce and assess 

a framework designed for detecting GPS location spoofing attacks within a vehicle. The design 

of the system suggested in this study makes use of data fusion from numerous sources. The 

following are the important contributions of this thesis: 

1. GPS spoofing detection method in-vehicle: This study presents a viable and effective 

approach for detecting and mitigating GPS spoofing attacks within the vehicle itself. 

The car can detect irregularities that suggest a possible spoofing attack by analyzing 

data from multiple sensors such as the IMU, GNSS, and Odometer. This method is 

useful since it does not rely on information from nearby cars, which might be 

untrustworthy in some scenarios.  

2. ML techniques for attack detection: For normal and attack settings, traditional ML-

based attack detection algorithms require labeled data. Obtaining such labeled data in 

realistic or controlled circumstances, on the other hand, might be difficult. To overcome 

this limitation, this research employs ML algorithms solely for processing attack-free 

scenarios during the training stage. Different ML techniques are utilized to detect 

anomalies, enabling the system to adapt to new and evolving attack strategies. This 

approach is effective as it does not rely on labeled data and can enhance the detection 

capabilities of the system. 

The rest of the thesis is structured as follow. Chapter 2 overviews the related work on GPS 

location spoofing attack detection methods. Attack detection frame work different sensors 

calibrations and attack generation model is described in Chapter 3. A part form this Chapter 3 

also contains the extended work to this thesis which was done in collaboration of University of 

Patras Team in Section 3.8. Chapter 4 presents the frame work of Machine learning and deep 

learning models-based solution and their comparative results. At last Chapter 5 consists of the 

Conclusion and Future works. 
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Chapter 2 - Related Work 

Signal processing-based solutions often rely on specialized equipment to detect and mitigate 

GPS spoofing attacks. The research [18] displays real-time GPS spoofing detection utilizing 

software defined radios (SDRs) as one example. The raw (I,Q) coefficients from the radio 

frequency front end are captured by SDRs. The phase difference of GPS signals obtained from 

separate antennas is then used to calculate these coefficients. The system can determine the 

position and identify possible spoofing by comparing the signals and measuring their 

interference levels. The study makes use of an open-source framework called GNSS-SDR to 

help with signal processing and analysis. In the mentioned study [19], vehicles use dedicated 

short-range communication to share GPS code pseudo-range measurements with other vehicles. 

Each car performs a linear operation on the GPS data received, generating separate statistics 

based on the measurements of each nearby vehicle. These statistics are then utilized to conduct 

a cumulative summing operation at each car, with the goal of detecting a strong correlation of 

arrival times for any faked GPS signals. The vehicles communicate their local detection values 

to a predetermined head vehicle. The head vehicles use a minimum-maximum change detection 

approach to maximize worldwide detection of GPS spoofing. The system improves its capacity 

to detect and neutralize spoofing attempts throughout the network of cars by merging local 

detection values and employing this optimization approach. 

Data-driven solutions for detecting GPS location spoofing attacks utilize data as input and apply 

specific algorithms to mitigate the adversarial activity. In one particular solution found in the 

literature, in-vehicle multisensory data (such as accelerometer, gyroscope, compass, etc.) are 

leveraged to compute a parallel GPS-free stream of estimated vehicle locations. This is achieved 

through a fallback localization method based on Bayesian filtering. The solution utilizes the 

available sensor data to estimate the vehicles' positions, providing an alternative source of 

location information independent of GPS signals. By employing Bayesian filtering techniques, 

the system can enhance the accuracy and reliability of the estimated vehicle locations, 

contributing to the detection and mitigation of GPS location spoofing attacks. By comparing 

the estimated vehicle position with the GPS location reading, this facilitates the identification 

of possible location spoofing attacks [14].  The second method presents a collective defensive 

strategy against GPS spoofing attacks, which is especially useful within a VANET. This 

approach employs multi-modal sensor fusion, which combines data from many sensors, to 

improve the detection and mitigation of spoofing attacks. This fusion method incorporates 

metrics like as relative distances, relative angles, and relative azimuth angles among the vehicles 

in the network. Furthermore, the absolute location measurements of every vehicle received by 

GPS positions are considered. The collaborative defensive mechanism attempts to increase the 
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accuracy and reliability of detecting GPS spoofing attacks within the VANET environment by 

aggregating and analyzing this broad range of sensor data. [15] Several strategies for detecting 

GPS spoofing have been presented in the available literature. One prominent method, detailed 

in [16], compares accelerometer data from the vehicle to predicted acceleration measurements 

from the GPS device. A substantial discrepancy that exceeds a predefined threshold indicates 

the presence of a GPS spoofing assault. The decision variable is calculated using the 

acceleration error matrix, which quantifies the difference between the actual and estimated 

values. The threshold is set based on the desired likelihood of false alarm, establishing a balance 

between detecting spoofing attacks accurately and avoiding false positive outcomes.   This 

technique uses accelerometer data and acceleration measurement comparison to give an extra 

layer of security against GPS spoofing attempts. Researchers have looked into using multi-

sensor fusion (MSF) approaches to predict the vehicle's position in order to reduce reliance on 

GPS signals totally [17]. To improve the accuracy and resilience of the predicted vehicle 

location, these algorithms combine input from many sensors, including as cameras, LiDAR, 

radar, and inertial sensors. The MSF model reduces the probability of off-road and wrong-way 

attacks in autonomous cars by combining information from several sources. The threat model 

utilized in the technique considers an attacker's possible capabilities as well as assumptions 

about the CAV's control mechanisms. By examining a broader variety of sensor data and 

various attack scenarios, this comprehensive methodology attempts to improve the security and 

dependability of the CAVs positioning system. 

ML methods have been used to detect location spoofing attacks as the amount of sensory data 

generated by vehicles has increased. However, there is a scarcity of study in this field that is 

primarily focused on autonomous vehicles. As a result, it is critical to investigate existing 

studies in related domains, such as autonomous aerial vehicles, to gain insights and comprehend 

how ML methods can be applied. ML methods can be categorized broadly into two different 

groups: supervised methods and unsupervised methods. Supervised methods necessitate ground 

truth information, which involves labeling data as either normal or indicating an attack in the 

scenario of location spoofing. These methods use labeled data to train models and predict 

whether a new data point represents a legitimate or spoofed location. Unsupervised methods, 

on the other hand, do not rely on pre-labeled data. Instead, they seek to detect patterns or 

abnormalities in data without being aware of individual assault occurrences. Even in the absence 

of labeled data, these algorithms use the intrinsic properties and distributions of the data to 

detect probable location spoofing attempts. Both supervised and unsupervised machine learning 

approaches have advantages and disadvantages and can be used depending on the availability 

of labeled data and the desired detection capabilities. Each solution delivers distinct insights 
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and helps to the broader understanding of identifying location spoofing attempts using ML 

methods. 

The authors of reference [20] use two specific algorithms in the overall framework of supervised 

machine learning (ML) methods for detecting location spoofing attacks: k-Nearest Neighbor 

(k-NN) and Support Vector Machine (SVM). To classify instances based on their similarity to 

neighboring data points, the k-Nearest Neighbor algorithm is used. This algorithm considers 

features such as location and movement plausibility checks when detecting location spoofing. 

The algorithm determines whether a given instance is normal or indicative of location spoofing 

by comparing its characteristics with those of its k nearest neighbors in the training data. SVM 

is a classification approach that seeks to identify an ideal hyperplane to divide distinct classes 

of data points. SVM is trained to detect location spoofing using labeled data, where instances 

are classified as either normal or spoofed. The approach learns the patterns and boundaries that 

differentiate these classes, allowing it to categorize new instances as normal or indicative of 

location spoofing. In the referenced work [21], To detect GPS spoofing signals on Unmanned 

Aerial Vehicles (UAVs), an artificial Neural Network (NN) is used as a detection technique. 

Various information is acquired from the incoming GPS signals, which act as input features, to 

train and use the NN. The number of satellites, which refers to the number of GPS satellites 

from which the UAV gets signals, is one of these input characteristics. The Signal-to-Noise 

Ratio (SNR) assesses the intensity and quality of GPS signals received. Higher SNR levels are 

often associated with a more dependable and accurate signal. By using SNR as an input 

characteristic, the NN may detect inconsistencies or abnormalities that could indicate GPS 

spoofing efforts. Doppler shift refers to the change in frequency of the GPS signal induced by 

the UAV's relative motion to the GPS satellites. This data may be used to calculate the velocity 

of the UAV. The NN may identify discrepancies or anomalous data that may suggest GPS 

spoofing by using the doppler shift as an input feature.  

The authors of the cited paper [22] conducted a comparative investigation of numerous machine 

learning (ML) algorithms for detecting jamming attacks in wireless networks. Their goal was 

to find the best effective method for detecting and neutralizing these disruptive signals. To do 

this, the scientists investigated several signal properties that might be suggestive of jamming 

activity. When wireless transmissions are jammed, these features capture certain traits or 

patterns. The ML models can learn to discriminate between normal network activity and the 

presence of jamming signals by examining these properties, and the Random Forest, SVM, and 

NN models were used. In [23] The authors suggest utilizing a multi-layer neural network (NN) 

to identify GPS signal faking. This method makes use of NNs' capacity to understand 

complicated patterns and correlations in data. While the authors recognize the usefulness of 

these strategies, they point out a restriction in terms of labeled data availability, particularly in 
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the case of attack data. Labeled data is essential for training supervised ML models such as the 

multi-layer NN described in the article. It is made up of samples with labels that indicate 

whether they are real GPS signals or faked signals. In reality, however, acquiring a substantial 

volume of labeled attack data might be difficult. This limitation prevents supervised ML 

approaches for detecting GPS signal spoofing from being widely used. It is difficult to build 

good and trustworthy algorithms that can discriminate between regular and faked GPS signals 

without a large annotated dataset. 

To address the constraints of limited labeled data, researchers have resorted to unsupervised 

machine learning (ML) methods, notably anomaly detection algorithms. In the study [24], an 

autoencoder, a form of NN especially built for data reduction and reconstruction, is presented 

for defect detection in UAVs. The autoencoder model is trained to understand the regular 

patterns and traits of UAV behavior using a range of features. These features span across five 

classifications, including internal measurements, such as sensor readings, as well as external 

factors like location, position, orientation, system status, and control information. n [25], an 

unsupervised multivariate Gaussian-based anomaly detection system is applied to discover 

atypical driving behaviors in semi-autonomous cars. This algorithm focuses on analyzing data 

collected from accelerometer and GPS sensors in manually driven automobiles. 

The algorithm is unsupervised, which means it does not rely on pre-labeled data indicating 

normal or abnormal behavior. Instead, the multivariate Gaussian distribution is used to model 

normal driving patterns based on sensor data. By capturing the statistical properties of the 

accelerometer and GPS readings during regular driving, the algorithm establishes a baseline for 

what is considered typical behavior. [26] employs an unsupervised multivariate Gaussian-based 

anomaly detection algorithm to detect unusual driving behaviors in semi-autonomous vehicles. 

This algorithm focuses on analyzing data collected from accelerometer and GPS sensors in 

manually driven automobiles. The algorithm is unsupervised, which means it does not rely on 

pre-labeled data indicating normal or abnormal behavior. Instead, the multivariate Gaussian 

distribution is used to model normal driving patterns based on sensor data. The algorithm 

establishes a baseline for what is considered typical behavior by capturing the statistical 

properties of the accelerometer and GPS readings during regular driving. The method compares 

real-time sensor data from semi-autonomous cars to the predefined typical behavior model 

during operation. Any major abnormalities from the revealed patterns are marked as odd driving 

behaviors. These abnormalities may signal possible safety issues, inappropriate vehicle 

operation, or unusual driving situations that necessitate additional examination or action. 
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Chapter 3 - Detecting and Countering Cyber-Attacks in CAVs 

3.1 Introduction 

Concerns about the susceptibility of CAVs to cyber-attacks are developing as their use grows. 

Because CAVs rely largely on digital networking and communication systems, they are 

appealing targets for hackers who can exploit software, hardware, or network flaws. Cyber-

attacks against CAVs can include illegal access, manipulation of essential systems, data theft, 

or even remote control of the vehicle, highlighting the importance of strong security measures 

to safeguard passengers and maintain public safety. Attacks against the GPS receiver of CAVs, 

particularly spoofing attacks on GPS positions, are a major source of worry. The compromise 

of the GPS security of CAVs poses a serious risk to both drivers and pedestrians. The respective 

chapter comprises of the studies about how to detects such attacks in autonomous vehicles. 

3.2 Methodology 

There are numerous essential entities engaged in the situation of GPS location spoofing. The 

CAV and the attacker are the key players. There are also two infrastructure components: GPS 

satellite infrastructure and wireless network infrastructure. The CAV is a vehicle that uses GPS 

signals to find its location and move independently. It employs GPS receivers to receive signals 

from GPS satellites and determine its position based on the information received. The attacker 

intends to modify the GPS signals received by the CAV as part of the spoofing attack. The GPS 

satellite infrastructure is made up of a network of satellites that orbit the Earth and emit signals 

that GPS receivers use to derive accurate positional information. These satellites constantly 

broadcast signals providing time and location information. The wireless network infrastructure 

is the communication backbone that allows numerous devices, including the CAV and the 

attacker, to communicate with one another. Telecommunication firms’ cellular towers, Wi-Fi 

access points, routers, and other networking equipment are all part of this infrastructure. It offers 

the wireless connectivity required for data transmission and communication between 

organizations. Figure 1 depicts the linkages and interactions between these entities in the GPS 

location spoofing scenario, with a graphical depiction of their responsibilities and connections. Sye
da

 Zilla
y N

ain
 Zuk

hra
f 



 

 9 

 

Figure 1. GPS Spoofing attack scenario on CAV 

The statement's system model relates to a CAV traveling on a road network. The model 

considers two critical factors: the CAV's real position and velocity. The CAV's real position is 

represented by a vector p𝑘 = [x𝑘 , y𝑘]
𝑇, where x𝑘and y𝑘 are the CAV's coordinates at a single 

time instance marked by k. For mathematical simplicity, the "T" superscript indicates the 

transpose operation, which turns the row vector to a column vector. Similarly, the CAV's 

velocity is represented by a vector u𝑘 = [ẋ𝑘 , ẏ𝑘]
𝑇, where ẋ𝑘 and ẏ𝑘 are the derivatives (rates of 

change) of the  x𝑘and y𝑘 coordinates. The dot above the variables indicates the time derivative, 

which shows how the position coordinates vary over time. 

CAV is outfitted with a GPS receiver that receives satellite signals and delivers the vehicle's 

GPS location, abbreviated as p𝑘
𝐺 = [x𝑘

𝐺 , y𝑘
𝐺]𝑇. In the context of prospective attacks, an attacker 

can utilize off-the-shelf equipment, such as SDR hardware, amplifiers, and antennas, as well as 

open-source SDR software, to interfere with and modify legal GPS signals. The attacker can 

carry this equipment on the ground or mount on an UAV. It is assumed in this study that the 

attacker spoofs the GPS position by providing a constant bias value in both GPS location 

coordinates. The GPS position of the attacked CAV is treated as Gaussian random variable,   

p𝑘
𝐺~𝒩[p𝑘 + 𝐵𝐴, ∑𝑘

𝐺]𝑇.  , where ∑𝑘
𝐺 = 𝑑𝑖𝑎𝑔2(σ𝑘

𝐺) is the covariance matrix of the GPS readings 

with equal standard deviation σ𝑘
𝐺 = σ𝐺  in both coordinates. 

The bias provided by the attacker is represented by the attack vector 𝐵𝐴 = b[1,1]
𝑇, whereas b 

which indicates the size of the attack in meters for each point. A value of b = 0 implies that no 

attack is present. When the CAV is within range of the attack, the GPS receiver provides a 

spoofed position (i.e., b ≠ 0), which the CAV interprets as its true location unless it has a 

reliable method to detect and counteract spoofing attempts. In other words, if suitable detection 

mechanisms are not implemented, the CAV will accept the spoof location as real during the 

attack. 
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The CAV is outfitted with a specific technology that can estimate position independently of 

GPS. This gadget monitors signals from the surrounding wireless network infrastructure and 

other linked cars using SDR hardware and software. It employs a Localization Algorithm (LA) 

to predict the CAV's present location based on these signals. The LA can use network-assisted 

methodologies, such as measuring time, angle, or signal intensity from nearby transmitters like 

as cellular towers or Wi-Fi access points.  Cooperative LAs take use of vehicle collaboration to 

increase location estimate accuracy. This second device improves the CAV's capacity to detect 

its location, providing redundancy and possibly acting as a backup in instances when GPS 

signals are inaccurate or corrupted. 

The CAV's specialized device offers an estimated position for the vehicle, which is indicated as  

p𝑘
𝐿 = [x𝑘

𝐿 , y𝑘
𝐿]𝑇. This estimated position is represented by a Gaussian random variable, 

p𝑘
𝐿~𝒩[p𝑘 , ∑𝑘

𝐿 ]𝑇, where pk is the real location of the CAV and ∑𝑘
𝐿 = 𝑑𝑖𝑎𝑔2(σ𝑘

𝐿)  is the 

covariance matrix that describes the uncertainty or noise associated with the estimation. The 

standard deviation of the noise in the Localization Algorithm (LA) calculated CAV positions is 

represented as σ𝑘
𝐿 = σ𝐿 in both coordinates. The variability and uncertainty in the predicted 

locations supplied by the LA are captured by this Gaussian modeling. It admits that estimated 

positions may differ from genuine locations owing to a variety of causes like as measurement 

mistakes, signal interference, or algorithmic flaws. The magnitude of this uncertainty is 

reflected in the covariance matrix, with bigger values indicating greater uncertainty in the 

calculated locations. The system may accommodate for the inherent constraints and uncertainty 

in the localization process by including this probabilistic representation, resulting in more 

robust and dependable location-awareness for the CAV. 

3.3 Attack Detection Framework 

3.3.1 Overview 

Figure 2 depicts the suggested method for detecting GPS spoofing attacks, which includes an 

in-vehicle assessment of GPS location integrity. During the Prediction phase, the onboard 

sensor readings collected through the OBU or CAN bus are used to anticipate the CAV's 

location at time k+1. This forecast, designated as p̂𝑘+1 = [x̂𝑘+1, ŷ𝑘+1]
𝑇, is based on the CAV's 

prior revised location estimate, p̃𝑘 = [x̃𝑘 , ỹ𝑘]
𝑇. The position is projected ahead of time by 

combining sensor readings and utilizing the CAV's underlying mobility model. The CAV's 

GPS-free position measurements, referred to as p𝑘+1
𝐿 , derived through the LA, are utilized to 

refine the anticipated location estimate during the Update phase. This refinement is 

accomplished using Bayesian filtering techniques, which utilize the fresh measurements to 
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update the anticipated position and produce a more precise estimate of the CAV's location at 

time k + 1, indicated as p̃𝑘+1. 

The suggested approach improves the accuracy and reliability of the CAV's position estimation 

by integrating the Prediction and Update stages. It refines the anticipated position estimate using 

sensor readings and GPS-free location measurements, thereby reducing the effects of GPS 

spoofing attacks. This method allows the CAV to keep a consistent knowledge of its position, 

which is critical for safe and effective autonomous driving operations. 

The GPS position measurements collected from the vehicle's GPS receiver, p𝑘+1
𝐺 , are compared 

to the refined location estimate, p̃𝑘+1 , during the Attack Detection phase. If the difference 

between them exceeds a predetermined threshold T𝑑, an alert is triggered, indicating the 

detection of a GPS spoofing attempt. The algorithm below describes the complete procedure. If 

an attack is discovered, one mitigating method is for the CAV to stop utilizing GPS data and 

instead depend on the revised position estimate, p̃𝑘+1, for location-based functions like as 

navigation. This guarantees that the CAV's actions are not based on compromised GPS data and 

that it can continue to execute dependable and precise operations even in the midst of an attack. 

 

Figure 2. In-Vehicle attack detection data flow framework 

 

Below is the algorithm developed to detect GPS spoofing attack. 

𝑰𝒏𝒑𝒖𝒕: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 [𝑝̃𝑘 , ∑𝑘
𝑝̃
], 𝐶𝐴𝑉′𝑠 𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑑𝑎𝑡𝑎 (α, φ, v),̇   

              𝑟adio signal data, GPS location [p𝑘+1
𝐺 , ∑𝑘+1

𝐺 ], 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒 𝜔 𝑎𝑛𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 T𝑑    

𝑶𝒖𝒕𝒑𝒖𝒕: 𝐺𝑃𝑆 𝑆𝑝𝑜𝑜𝑓𝑖𝑛𝑔 𝐴𝑡𝑡𝑎𝑐𝑘 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛  
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1. [𝑝̂𝑘+1, ∑𝑘+1
𝑝
] ←EKF predicted (𝑝̃𝑘 , α, φ̇, 𝑣) 

2. [p𝑘+1
𝐿 , ∑𝑘+1

𝐿 ] ←LA (radio signal data) 

3. [𝑝̂𝑘+1, ∑𝑘+1
𝑝
] ←EKF update( [𝑝̂𝑘+1, ∑𝑘+1

𝑝
], [p𝑘+1

𝐿 , ∑𝑘+1
𝐿 ]) 

4. 𝑑𝑘+1
𝐸 ←distance ( [𝑝̂𝑘+1, ∑𝑘+1

𝑝
], [p𝑘+1

𝐿 , ∑𝑘+1
𝐿 ])  

5. 𝑑𝑘+1
𝐸 ←filter (𝑑𝑘−𝜔+2

𝐸 , … . , 𝑑𝑘+1
𝐸 ) 

6. 𝑖𝑓 𝑑𝑘+1
𝐸  > T𝑑

𝐸 then GPS location spoofing attack detected. 

3.3.2 Prediction Phase 

During the prediction phase, our approach makes use of data from the vehicle's onboard sensors, 

such as steering angle (α), yaw rate (φ̇), and wheel speed (v). Using these sensor inputs, our 

approach forecasts the vehicle's future position, indicated as p̂𝑘+1, inside a time step of Δt. This 

prediction is based on the use of the well-known bicycle model [39], which is a nonlinear model 

that represents the vehicle's system state using fundamental physics rules. The one-step forecast 

of the vehicle's position and speed in its body-frame reference system may be calculated by 

assuming the vehicle's body-frame aligned with the x-axis. 

(

 
 

𝑥𝑘+1
𝑢

𝑥̇𝑘+1
𝑢

𝑦𝑘+1
𝑢

𝑦̇𝑘+1
𝑢

)

 
 
=

(

 
 
 
 

υΔt
υ

1

2
(𝐶𝑓 (𝛼 −

𝑙𝑓φ̇

υ
) + 𝐶𝑟

𝑙𝑟φ̇

υ
)
1

𝑀
Δt2

(𝐶𝑓 (𝛼 −
𝑙𝑓φ̇

υ
) + 𝐶𝑟

𝑙𝑟φ̇

υ
)
1

𝑀
Δt

)

 
 
 
 

 ………… (1)  

In equation (1) the variables 𝑥𝑘+1
𝑢  and 𝑦𝑘+1

𝑢  in the current context reflect the longitudinal and 

lateral displacements (velocities) between two successive time steps in the vehicle's body frame. 

The parameters 𝑙𝑓 and 𝑙𝑟 represent the front and rear wheel distances from the vehicle's 

barycenter, respectively. 𝑀 denotes the vehicle's mass, whereas 𝐶𝑓 and 𝐶𝑟 denote the corner 

stiffness of the front and rear wheels, respectively. 

We may acquire a one-step prediction of the vehicle's position in the global geographic 

reference system after conducting a coordinate transformation. This transformation enables us 

to change the expected position from the body frame of the vehicle to the global frame: 

(

  
 

𝑥𝑘+1
𝑥̂̇𝑘+1
𝑦̂𝑘+1
𝑦̂̇𝑘+1
φ̂𝑘+1)

  
 
=

(

  
 

x̃𝑘 + 𝑥𝑘+1
𝑢 𝑐𝑜𝑠φ̂𝑘 − 𝑦𝑘+1

𝑢 𝑠𝑖𝑛φ̂𝑘
𝑥̇𝑘+1
𝑢 𝑐𝑜𝑠φ̂𝑘 − 𝑦̇𝑘+1

𝑢 𝑠𝑖𝑛φ̂𝑘
ỹ𝑘 + 𝑥𝑘+1

𝑢 𝑐𝑜𝑠φ̂𝑘 − 𝑦𝑘+1
𝑢 𝑠𝑖𝑛φ̂𝑘

𝑥̇𝑘+1
𝑢 𝑠𝑖𝑛φ̂𝑘 − 𝑦̇𝑘+1

𝑢 𝑐𝑜𝑠φ̂𝑘
φ̂𝑘 + φ̇Δt )

  
 
…………(2) 

We employ the Extended Kalman Filter (EKF) technique to estimate the covariance of the 

vehicle's system state, assuming that the measurement noise is uncorrelated and has a Gaussian 

distribution. This is accomplished by applying the EKF method to equations (1) and (2) in [39]. 
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The predicted position, 𝑝̂𝑘+1, is represented as 𝑝̂𝑘+1~𝒩[𝑝̂𝑘+1, ∑𝑘+1
𝑝
], where ∑𝑘+1

𝑝
 represents 

the covariance matrix that quantifies the uncertainty associated with the anticipated location. 

3.3.3 Update Phase 

The EKF method combines the anticipated vehicle's position, 𝑝̂𝑘+1, with the GPS-free global 

location measurement, p𝑘+1
𝐿 , received from the LA utilizing radio signal data during the update 

phase. As seen in Algorithm in lines 2-3, this fusion process yields a revised location estimate, 

p̃𝑘+1. The improved position estimate has a Gaussian distribution, which is represented by 

𝑝̃𝑘+1~𝒩[𝑝̃𝑘+1, ∑𝑘+1
𝑝̃
],, where ∑𝑘+1

𝑝̃
 is the covariance matrix representing the uncertainty 

associated with the refined location estimate. 

3.3.4 Attack Detection Phase 

The basic idea behind detecting GPS location spoofing attempts is to use a distance metric to 

compare the estimated position of the CAV, 𝑝̃𝑘+1, with the GPS reading, p𝑘+1
𝐺 , and see if the 

divergence exceeds a predetermined threshold. This approach is carried out in four steps, the 

first of which is undertaken offline in attack-free settings to identify a suitable threshold value. 

Steps 1-3 are carried out live while the attack detection solution is running within a moving 

CAV under unknown conditions, as shown in Algorithm. 

The detection technique entails continually analyzing the difference between the estimated and 

GPS positions, and if this difference exceeds a certain threshold, an alert is raised to signal the 

presence of a GPS location spoofing assault. Step 0's threshold selection achieves a balance 

between detecting legitimate threats and reducing false alarms. Steps 1-3 are carried out in real-

time while the CAV is in motion, allowing for rapid identification and reaction to possible 

threats. 

Threshold Selection Phase: 

A data-driven technique is used to establish the threshold value T𝑑. In the beginning, an attack-

free time is considered, during which a CAV equipped with the proposed solution collects a 

series of  N GPS position measurements, p𝑛
𝐺, and corresponding estimated locations, 𝑝̃𝑛, using 

the EKF method. In Step 1, the pairwise distances between each location pair, d𝑛, are calculated 

using two candidate distance metrics. In Step 2, a filtering technique is used to eliminate noise 

in the distance measurements, resulting in the filtered distance values, d̅𝑛. Finally, based on the 

filtered distances, d̅𝑛, the Empirical Cumulative Distribution Function (ECDF) is created. The 

threshold value T𝑑 is determined by calculating the ECDF curve's γ𝑡ℎ percentile using the 

parameter γ ∈ [0 1] which spans from 0 to 1. Based on the distribution of distance values, this 

empirical technique enables the selection of a suitable threshold. 
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The parameter selection introduces a trade-off in the detection system's performance, especially 

in terms of proper detection and false alarm rates when attacks are present. A low number 

corresponds to a low T𝑑, which increases the chance of detecting possible attacks. However, 

this increases the number of false alarms, making the method less effective. Choosing a high 

number, such as γ = 1, on the other hand, assists in reducing the issue of false alarms, but at 

the expense of potentially missing certain attack detections, increasing the rate of missed 

detections. As a result, selecting entails balancing the trade-off between properly identifying 

threats and limiting false alarms. 

Location Distance Computation: 

In this work, we investigate distance metrics, namely the Euclidean distance 𝑑𝑘+1
𝐸 , to calculate 

the difference between the predicted CAV position [𝑝̃𝑘+1, ∑𝑘+1
𝑝̃
], and the GPS location 

[p𝑘+1
𝐺 , ∑𝑘+1

𝐺 ] . It is possible to use it, as mentioned in line 4 of Algorithm, although alternative 

distance metrics can also be used. We have removed the time index k to simplify the notation. 

The straight-line distance between two places is computed using the Euclidean distance. 

Euclidian Distance is given as: 

𝑑𝐸(𝑝̃, 𝑝𝐺) =  ‖𝑝̃ − 𝑝𝐺‖ 

Location Distance Filtration: 

Due to inherent noise impacting both the GPS and estimated locations, the distance value  

𝑑𝑘+1
𝐸  obtained in Step 1 might fluctuate dramatically throughout the CAV's travel, even for 

neighboring places. Environmental variables (for example, cloud cover and humidity) add to 

noise in GPS data. GPS noise may be stronger in urban locations with tall structures than in 

suburban or rural regions with better satellite view. Furthermore, because of the restricted radio 

signals available for localization in places with scant infrastructure, the estimated positions 

p𝑘+1
𝐿  from the LA may have greater noise. As a result, these uncertainties permeate the 

estimated distance value, raising the possibility of erroneous attack detection.  

Using covariance matrices ∑𝑝̃ and ∑𝑘+1
𝐺 , the uncertainty in 𝑑𝑘+1

𝐸  may be evaluated and 

quantified. However, it is critical to reduce noise in 𝑑𝑘+1
𝐸  for a more robust detection method. 

A filtering approach is used to do this, as demonstrated in line 5 of Algorithm. A sliding window 

averaging filter 𝛼 is employed specifically, with a window of size 𝜔 processing the previous 

distance data to compute the filtered distance. This filtering helps to smooth out noise 

fluctuations and improves the accuracy of the distance measurement. Filtered distance is 

calculated as below: 

𝑑𝑘+1
𝐸 = 

∑𝑖=𝑘−𝜔+2
𝑘+1 𝑑𝑖

𝐸

𝜔
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Decision for Detection (Attack/No Attack): 

The last step in identifying a GPS location spoofing attempt is to compare the filtered distance 

value, 𝑑̅𝑘+1
𝐸 , acquired in Step 2 with the threshold value, 𝑇𝑑

𝑒, determined in Step 0. If the filtered 

distance value exceeds the threshold, it indicates that a GPS location spoofing attack has been 

detected. Lines 6-7 of Algorithm depict this choice. 

3.4 Sensor Calibration and testing 

In this section we will discuss calibration of three sensors that we used for the process of 

prediction and estimation of location of the CAV. The Figure 3 shows the CAV and different  

sensors. 

 

Figure 3. CAV at KIOS Lab mounted with different sensors 

3.4.1 IMU Sensor Calibration: 

IMU  measures and tracks an object's orientation, velocity, and acceleration in three dimensions. 

It is normally made up of three major components: an accelerometer, a gyroscope, and, in 

certain cases, a magnetometer. The accelerometer detects changes in velocity and location by 

measuring linear acceleration. The gyroscope monitors angular velocity and provides 

information about the rotation of an item. When present, the magnetometer monitors the 

intensity and direction of the magnetic field to help determine the object's orientation relative 

to the Earth's magnetic field. IMU sensors are widely employed in a wide range of applications, 

including robots, virtual reality, navigation systems, and motion tracking.  To calibrate this 

sensor please check Appendix A. The output after testing IMU are shown in Figure 4 below. 
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Figure 4. IMU sensor configured results. 

3.4.2 VESC Sensor Calibration: 

An odometry sensor, also known as wheel encoders or wheel odometry, is a sensor that 

measures the rotation of a robot's or vehicle's wheels to determine its velocity. It gives 

information regarding the vehicle's distance traveled, direction, and velocity. The sensor is 

normally made up of one or more encoders that are installed on the vehicle's wheels. The 

encoders emit pulses when the wheels revolve, which are counted and utilized to compute the 

vehicle's movement. The odometry sensor can assess the location and orientation of the vehicle 

relative to its starting point by integrating these readings over time. Odometry sensors are 

widely utilized in robots, self-driving cars, and navigation systems.  

Configuration of the VESC motor: 

If you have problems with the motor, such as "crack noises at low speeds," you may need to 

configure the PID (Proportional-Integral-Derivative) parameters. This may be accomplished by 

changing the PID parameters in the VESC Tool to maximize motor performance. 

To check if the calibrated sensor is working find a couple of tests were conducted. The CAV 

was set to move in a circular trajectory for  some time and data from the VESC was gathered 

like time, speed, steering angle, x ( in meters) and y (in meters). The center of circle was not 

defined at (0,0) so we reconstructed the path and by calculating the path of the circle 

theoretically we concluded. The theocratically constructed path was same as the one constructed 
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based on the original values from the VESC as shown in Figure 5 and results are shown in 

Figure 6. 

 

Figure 5. Experimental Odometry and Theoretical Trajectory comparison. 

 

Figure 6. VESC sensor test results. 

3.4.3 GNSS sensor calibration 

A GNSS sensor is a device that collects signals from numerous satellite constellations in order 

to calculate precise location, navigation, and time. It provides position data for many 

applications like as navigation systems, mapping, and surveying by using signals from systems 

such as GPS, GLONASS, Galileo, and BeiDou. The u-blox C94-M8P is a high-precision GNSS 
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sensor used for accurate location on CAVs (Connected Autonomous Vehicles). It uses RTK 

technology, which allows for centimeter-level positional precision.  

 

Figure 7. GNSS calibration process. 

The calibration process include calibration the reference station of GNSS is placed in the open 

air and calibrated there as it is supposed to provide the exact location as shown in Figure 7. It 

is a reference for Mobile receiver mounted on the CAV. We calibrated the sensor based on the 

documentation on the link provided in reference [42]. 

3.5 Attack Generation 

A thorough analysis was carried out in the thesis research to investigate the vulnerabilities of 

GPS systems to jamming and spoofing attacks. To replicate those attacks, RF signals were 

generated and sent using a HackRF device as shown in Figure 8, an SDR platform. The gadget 

was used to create deliberate interference signals in order to impair GPS signals, resulting in 

jamming effects. Spoofed GPS signals were also made to mimic the behavior of authentic GPS 

satellites. The goal of these attacks was to test GPS receiver durability and efficacy, as well as 

the effects of such attacks on navigation systems.  
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Figure 8. HackRF device used to generate the GPS Spoofing attack 

It is critical to collect the necessary data, especially GPS readings, in order to produce GPS 

attacks. This is possible by obtaining Earth data from credible sources such as the NASA 

website [43]. The "GNSS Status" app may be used to ensure the availability of a suitable number 

of satellites for GPS data collecting. Using Figure 9, it is feasible to evaluate whether a sufficient 

number of satellites are in range to acquire GPS data. Registration on the respective website is 

required to obtain the most recent dataset. 

These early efforts are critical because they provide the groundwork for next rounds of study to 

generate accurate and reliable GPS attacks. The NASA website data provides a credible and 

comprehensive source of Earth data, allowing the construction of realistic attack scenarios. The 

possibility of gathering GPS data is determined by validating the number of satellites using the 

"GNSS Status" app. By registering on the website, you have access to the most recent data set, 

which is essential for performing complete and up-to-date research on GPS attack generation. 
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Figure 9. Connected Satellites are shown by using GNSS Status app. 

 

After the initial stages were completed, a jamming attack was created to interrupt incoming 

GPS signals from satellites during the first 100 seconds. Following that, a GPS spoofing attack 

was conducted, as seen in Figures 10 and 11. 

 

Figure 10. GPS Jamming attack launched 
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Figure 11. GPS Spoofing attack launched after Jamming attack. 

 

The attack was generated on the remote controller of a drone at first. The remote was placed in 

the KIOS lab at the time of attack generation but the coordinates shown by the remote after 

attack was generated lied in the Makario Stadium in Nicosia Cyprus as shown in Figure 12. 

 

Figure 12. Location of the remote after attack generation. 

3.6 Performance Validation 

We used the CARLA simulator version 0.9.8, which is built on the Unreal Engine 4 platform, 

to evaluate the system's performance. CARLA is a powerful tool for developing, training, and 

validating autonomous driving systems. The simulations were done on a workstation PC 

running Linux (Ubuntu 18.04 Bionic ) with 8 GB of RAM and a Vulkan-capable GPU. In 

addition, a Python 3.8 environment was used. All the data was published and Subscribed by 

using ROS environment (ROS Melodic 1.14.12),  This setup guaranteed that the simulations 
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went smoothly and offered an ideal setting for achieving exact and dependable performance 

results throughout the system evaluation. The flow of information using ROS is illustrated in 

Figure 13. 

 

Figure 13. ROS framework data flow diagram. 

3.6.1 Performance metrics 

A confusion matrix, also known as a contingency table, is used to evaluate the detection results 

of the suggested solution. The outcomes are classified as True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN) in this matrix. The performance of the attack 

detection method is evaluated using multiple metrics based on these areas F1 Score and G mean. 

Precision (P) precisely gauges the algorithm's accuracy in identifying attacks. It reflects the 

percentage of real attacks identified to the overall number of detected attacks, including false 

positives, in our application scenario given by: 

𝑃 = 
number of true attack detected

𝑛𝑢𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑓𝑎𝑙𝑠𝑒 𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
=

T𝑝
T𝑝 + F𝑝

 

Similarly, Recall (R) is the ratio of true attacks identified to all genuine attacks, including 

missed detections (false negatives). 

𝑅 = 
number of true attack detected

𝑛𝑢𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒  𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
=

T𝑝
T𝑝 + F𝑁

 

Finally, the F1 score is the weighted average of P and R and is used to assess data set accuracy. 

𝐹1 =  2 (
P × R

𝑃 + 𝑅
) 
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3.6.2 Process pipeline 

Figure 14 depicts the simulation method, including the processes involved. Initially, the vehicle 

operates normally to set a threshold. The attack is then created using the HackRF device, and 

the attack detection system, which has previously been calibrated using the threshold 

calculation, detects it. Figure 15 depicts the approach that would be followed in real-world 

settings. However, due to GNSS sensor limitations and the high error rate of GPS 

measurements, the entire procedure could not be completed.  

 

Figure 14. Pipeline for attack detection. 

 

Figure 15. Real-world settings. 
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3.7 Experimental results 

3.7.1 Effect of using sliding window generated by one dataset on other 

In this section we performed a test to check how the attack detection algorithm works if we use 

one threshold form one data set to on the other data set and vice versa. The results are shown in 

the Figures 16, 17, 18 and 19.Specification of data set 𝐷1 used: 

length of data = 13479 

Threshold Value Euclidian Distance Not Applying Sliding Window:4.6008 

Threshold Value Euclidian Distance After Applying Sliding Window:3.5537 

Specification of data set 𝐷2 used: 

Length of data = 10311  

Threshold Value Euclidian Distance Not Applying Sliding Window:4.6617 

Threshold Value Euclidian Distance After Applying Sliding Window:3.7838 

 

 

Figure 16. Result-I by using Dataset 𝐷1 and threshold 𝐷1
𝑡ℎ=3.55  

 

Figure 17. Result-I by using threshold 𝐷1
𝑡ℎ on 𝐷2 
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Figure 18. Result-I by using Dataset 𝐷2 and threshold 𝐷2
𝑡ℎ=3.78 

 

Figure 19. Result-I by using threshold 𝐷2
𝑡ℎ on 𝐷1 

By doing this analysis not a big difference is observed as the two-threshold obtained are not of 

big difference. Figure 16 shows results obtained  by using dataset 𝐷1 and threshold 𝐷1
𝑡ℎ=3.55. 

We tested the threshold obtained from trajectory to another. Figure 17 shows the results 

obtained by testing the above scenario. Like wise Figure 18 and Figure 19 depicts the scenario 

from second trajectory tested in the same manner. 

3.7.2 Effect of different sliding window on the same dataset 

Using a trajectory from a Carla simulator and gathering sensor data following analysis is being 

conducted the Figure 20(a) and (b) below shows the path followed by the CAV in simulator as 

Result-I for sliding window 𝜔 = 3 . 
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Figure 20. Result-I by using 𝜔 = 3 (a) GPS ground Truth and estimated location (b) GPS 

Ground Truth with noise 

By conducting analysis using confusion matrix as show in in Figure 21, Figure 22 and Figure 

23 confusion matrix classifies the results into True Positive (TP ), True Negative (TN), False 

Positive (FP ), and False Negative (FN). 

 

Figure 21. Confusing matrix for Result-II 

 

Figure 22. Result- II by using 𝜔 = 5 (a) and 𝜔 = 10 (b)  
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Figure 23. Result-II by using 𝜔 = 15 (a)  and 𝜔 = 20 (b) 

3.7.3 Testing Solution on Different Trajectories 

In this section, different maps on CARLA Simulator were used to test the detection algorithm. 

Trajectory 1: 

Different parameter assigned before conducting the experiment are mentioned in TABLE 1. 

 

Table 1. Parameter assignment for Map 1 

 Parameter Value 

1  Length of data  11776  

2  Attack bias  9  

3  Sliding window  5  

4  Standard Deviation of Signals of Opportunity  10  

5  Standard Deviation of Signals of Opportunity Orientation  20  

6  Standard Deviation of the Noise in the GPS  3  

7  Sampling Interval in seconds  0.05  

8  Percentile for threshold  95.0  

9 Town name (From Carla) Town 10 
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Figure 24. The above graphs show (a) GPS ground Truth, (b) the working of LA, (c) 

Estimated path, and  (d) spoofed path for Map 10 

 

  

Figure 25. (a) shows the threshold on 95th percentile approx. equal to 3.8 and (b) shows the 

confusion matrix analysis 

 

Trajectory 2: 

Table 1. Parameter assignment for Map 2 

 Parameter Value 

1  Length of data  5588  

2  Attack bias  5  
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3  Sliding window  5  

4  Standard Deviation of Signals of Opportunity  10  

5  Standard Deviation of Signals of Opportunity Orientation  20  

6  Standard Deviation of the Noise in the GPS  3  

7  Sampling Interval in seconds  0.05  

8  Percentile for threshold  95.0  

9 Town name (From Carla) Town 10 

 

Graphs: 

 

 

Figure 26. The above graphs show (a) GPS ground Truth, (b) the working of LA, (c) 

Estimated path, and  (d) spoofed path for Map 10 
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Figure 27. (a) shows the threshold on 95th percentile approx. equal to 3.6 and (b) shows the 

confusion matrix analysis 

 

Trajectory 3: 

Table 2. Parameter assignment for Map 3 

 Parameter Value 

1  Length of data  4239  

2  Attack bias  81  

3  Sliding window  5  

4  Standard Deviation of Signals of Opportunity  10  

5  Standard Deviation of Signals of Opportunity Orientation  20  

6  Standard Deviation of the Noise in the GPS  3  

7  Sampling Interval in seconds  0.05  

8  Percentile for threshold  95.0  

9 Town name (From Carla) Town 2 

 

Graphs: 
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Figure 28. The above graphs show (a) GPS ground Truth, (b) the working of LA, (c) 

Estimated path, and  (d) spoofed path for Map 10 

 

  

Figure 29. (a) shows the threshold on 95th percentile approx. equal to 6.7 and (b) shows the 

confusion matrix analysis 

 

Trajectory 4: 

Table 3. Parameter assignment for Map 4 

 Parameter Value 

1  Length of data  9175  

2  Attack bias  81  

3  Sliding window  5  

4  Standard Deviation of Signals of Opportunity  10  

5  Standard Deviation of Signals of Opportunity Orientation  20  

6  Standard Deviation of the Noise in the GPS  3  

7  Sampling Interval in seconds  0.05  

8  Percentile for threshold  95.0  

9 Town name (From Carla) Town 3 
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Graphs: 

 

 

Figure 30. The above graphs show (a) GPS ground Truth, (b) the working of LA, (c) 

Estimated path, and  (d) spoofed path for Map 10 

 

  

Figure 31. (a) shows the threshold on 95th percentile approx. equal to 2.6 and (b) shows the 

confusion matrix analysis 

All these data sets, and test results were later used in chapter 5 to conduct intensive research 

and comparison by using ML algorithm for anomaly detection. 

3.8 Robust Cooperative Sparse Representation Solutions for Detecting and 

Mitigating Spoofing Attacks in Autonomous Vehicles  

In collaboration with the University of Patras team, we have combined our solutions and 

developed a robust approach for detecting spoofing attacks on the GPS of CAVs. Our specific 

contribution to the developed solution is discussed in this section. CAVs have the capability to 
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determine their own location using various sources of information. In addition to data collected 

from neighboring vehicles, they can utilize absolute location data obtained from wireless 

network infrastructure and relative location data based on previous estimations and in-vehicle 

inertial sensors. By incorporating a device equipped with SDR technology, the CAV can receive 

signals from the surrounding wireless infrastructure, such as cellular, Wi-Fi, or DVB-T, and 

extract essential information such as timing, angle, or signal strength from the corresponding 

transmitters. This allows the CAV to independently estimate its current position, bypassing the 

need for GPS measurements, through the utilization of known transmitter locations and a LA. 

The estimated position of the CAV is output by the device as a Gaussian random variable with 

a covariance matrix that incorporates the uncertainty in the predicted locations. These absolute 

positions can be refined using Bayesian filtering techniques such as the Extended Kalman Filter 

(EKF) and in-vehicle multi-source data fusion. During the Prediction phase, the CAV's location 

is projected forward in time using the prior location, inertial sensor measurements, and a 

mobility model. A Gaussian distribution governs the expected position at time instance. The 

EKF technique combines the projected location with the absolute position calculated by the LA 

during the Update phase, resulting in a revised location estimate presumed to be derived from 

a Gaussian distribution. The covariance matrix captures the revised location's uncertainty by 

using EKF algorithm mentioned in section 3.3.1. It is a part of the research “Robust Cooperative 

Sparse Representation Solutions for Detecting and Mitigating Spoofing Attacks in Autonomous 

Vehicles” accepted in MED 2023 Conference in Limassol, Cyprus as mentioned in the 

publication section. The Figure 32 below highlights (in orange color block) our contribution in 

the research. 

 

Figure 32. Conceptual architecture of robust cooperative sparse coding. 
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Chapter 4 - A Machine Learning Approach for Detecting GPS 

Location Spoofing Attacks in Autonomous Vehicles 

4.1 Introduction 

The text emphasizes the need of precise position data in the functioning of CAV. These location 

data are sent into the CAV's Advanced Driver Assistance System (ADAS) and perception 

engine, allowing it to perceive and interpret its surroundings. As a result, autonomous driving 

and navigation operations are supported, while accidents with neighboring cars and Vulnerable 

Road Users (VRUs) such as pedestrians and bicycles are avoided. Location awareness is also 

required for the deployment of VANET and the implementation of Vehicle-to-

Vehicle/Infrastructure (V2V/V2I) standards, all of which are critical components of Intelligent 

Transportation Systems (ITS). Having accurate location information for CAVs is critical for 

improving ITS safety. Recent improvements, however, have focused attention on security risks 

to autonomous driving, raising worries about the dependability of location data and the steps 

required to assure its integrity. Addressing these challenges becomes critical in order to keep 

CAVs safe and reliable in ITS contexts [37-38]. 

As previously noted, attacks are classified into two types: signal processing techniques and data-

driven tactics. Signal processing techniques examine GPS data and detect abnormalities that 

suggest a spoofing attack using specialized signal processing algorithms. For signal analysis, 

these approaches frequently necessitate the use of extra hardware and advanced algorithms. 

While they can be beneficial, they may not be practicable in many situations due to the increased 

resources required. Data-driven methods, on the other hand, make use of machine learning 

techniques to identify GPS spoofing attacks. These techniques examine GPS data for 

abnormalities that indicate spoofing. They learn from data rather than explicit knowledge of 

attack features or extra hardware. The demand for tagged data, which implies having GPS data 

that is precisely labeled as either normal or symptomatic of an attack, is one problem with data-

driven techniques. In real-world circumstances, acquiring such labeled data, particularly attack 

data, might be problematic. Attacks may be difficult to replicate in controlled contexts for 

research, making it difficult to gather enough labeled data for training ML models. A data-

driven strategy based on ML is suggested in this chapter for identifying spoofing attacks. The 

goal is to create a system that can detect spoofing attacks without the need of attack data or 

extra hardware. This technique provides a viable and effective solution for identifying GPS 

spoofing attempts by employing ML algorithms and assessing the features of GPS data [18][19]. 
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4.2 Methodology 

4.2.1 Problem Formulation 

In this Chapter, we take an anomaly detection method to the problem of GPS location faking in 

autonomous vehicles. We denote the estimated location of the autonomous vehicle as p𝑘
𝐿 =

[x𝑘
𝐿 , y𝑘

𝐿]𝑇 and the GPS location at time step k as p𝑘
𝐺 = [x𝑘

𝐺 , y𝑘
𝐺]𝑇. The positional difference 

between the two sites is represented by the differential feature dk R2, which we calculate to 

create features for analysis: 

𝑑𝑘 = p𝑘
𝐺 − p𝑘

𝐿 = [x𝑘
𝑑 , y𝑘

𝑑] 

where x𝑘
𝑑 = x𝑘

𝐺 − x𝑘
𝐿   and y𝑘

𝑑 = y𝑘
𝐺 − y𝑘

𝐿. 

We use a learning model (anomaly detector) termed 𝑓: R2⟶ {0,1} to locate spoof locations. 

The model takes the input 𝑑𝑘 ∈  R
2 and predicts its label 𝐿𝑘 ∈  {0,1}, denoted as 𝐿𝑘 = 𝑓(𝑑𝑘), 

at each time step k. An attack-free site has a label value of 0, while a faked location has a value 

of 1. We present a sliding window strategy to capture the temporal characteristics of the data 

and allow for spoofing attempts that may have happened in earlier time steps. By taking into 

account the series of differentials such that 𝐿𝑘 = 𝑓(𝑑𝑘 , 𝑑𝑘+1, . . . , 𝑑𝑘−𝑊), this sliding window of 

size 𝑊 helps with the prediction task. 

4.2.2 Attack detection Pipeline 

As shown in Figure 34, the suggested method for identifying GPS position spoofing attacks 

follows a certain pipeline. There are three separate stages in the pipeline: training, validation, 

and testing. 

An anomaly detector dubbed 𝑓 is trained to recognize the typical behavior of the data during 

the Training stage. A training dataset, abbreviated as 𝐷𝑡𝑟, is used to accomplish this. Attack-

free areas, or situations without spoofing attacks, are only found in 𝐷𝑡𝑟 = {𝑑𝑘}𝑘=1
|𝐷𝑡𝑟|. 

Choosing the best learning model and its accompanying hyper-parameters is a step in the 

training process. A different dataset named 𝐷𝑣𝑎𝑙 is used to do this. 𝐷𝑣𝑎𝑙 is marked by the 

notation |𝐷𝑣𝑎𝑙| ≪ |𝐷𝑡𝑟, | because it is much smaller than the training set. In this dataset, attack-

free locations and a smaller subset of attacked locations are represented as 𝐷𝑣𝑎𝑙 =

{(𝑑𝑘 , 𝐿𝑘)}𝑘=1
|𝐷𝑣𝑎𝑙|. 

On a separate test dataset, known as 𝐷𝑡, the testing stage is conducted. This dataset contains 

cases that the model hasn't seen in the training or validation sets, making it different from those 

sets. It can be described as 𝐷𝑡 = {(𝑑𝑘, 𝐿𝑘)}𝑘=1
|𝐷𝑡|  and contains both attack-free and attacked 
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places. This stage's goal is to examine the trained model's performance on unobserved data, 

evaluating its propensity to correctly identify both attack-free and faked locations. 

4.2.3 Learning Algorithm Pipeline 

A total of seven datasets were used for training, validation, and testing. The initial step was to 

normalize the GPS data to a 0 to 1 scale. Following that, the training phase began, during which 

particular parameters were assigned to the model. Fitting these parameters to the training dataset 

and assessing their performance on the validation dataset were used to determine their 

trustworthiness. This iterative method was repeated until satisfactory results were obtained. 

 

After fine-tuning the parameters with the validation dataset, they were applied to the testing 

dataset to acquire the final findings. This method was used for the learning algorithms, and the 

results were documented. Figure 33 shows a flow diagram describing this technique. 

 

Figure 33. Flow diagram for Learning Algorithms. 

4.3 Performance Evaluation 

4.3.1 Experimental Setup 

Same system specification is used as mentioned earlier in chapter 3  section 6.  

We created a moving vehicle within the simulation environment during the Training stage, 

simulating typical driving conditions free of any threats. While including user-selected noise 

profiles for both the simulated GPS data and GPS-free estimated vehicle locations, which were 

produced based on cellular networks, the car followed a predetermined course. The untrained 
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Python Anomaly Detector was provided with the sensor data acquired during this phase utilizing 

ROS and a publish-subscribe mechanism. As shown in Figure 34, this procedure attempted to 

train the underlying ML model. 

 

Figure 34. Experimental Setup. 

 

During the testing phase, we created a moving vehicle that could travel in a variety of directions 

both normally and during an attack. We used noise profiles for the simulated GPS data and 

GPS-free estimated vehicle locations, similar to the Training stage. The CARLA simulator was 

then contacted to confirm the attack prediction labels, designated as 𝐿𝑘. A straightforward 

interface within CARLA was developed to depict two lights in the vehicle's cockpit, making 

visual verification easier. The right light, which remained off in normal circumstances and 

turned yellow when an attack was underway, served as the primary indicator of the attack status. 

When no attacks were found, the left light displayed green information; when attacks were 

found, it displayed red information. Even while simulation data and attack prediction labels 

may be gathered for offline study, the CARLA interface made it simple to compare the real-

time effectiveness of different attack detection techniques. 

4.3.2 Simulation Parameters and datasets 

By inserting various attack biases 𝑏 into the GPS measurements throughout our simulation, we 

looked into several test situations. These attack biases changed depending on the vehicle's 

trajectory. Nevertheless, a few variables remained the same in every test instance. These 

variables were 𝜎𝐿 = 10𝑚 (which represented the standard deviation of predicted vehicle 

locations calculated without the use of a GPS receiver), 𝜎𝐺 = 10𝑚 (which represented the 

standard deviation of GPS measurements), and a sample interval of Δ𝑡 = 0.05𝑠. 
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We produced a total of seven trajectories, represented by the letters 𝑇𝑖, where i is a number 

between 1 and 7. The accompanying datasets are compiled in TABLE 4. Notably, the attack 

bias was particularly modelled for trajectories 𝑇6 and 𝑇7 with different values. 

Table 4. Number of total, normal, and attacked data points in each trajectory. 

No Total Normal Attacked 
Attack Bias 

[m] 

𝑇1 6,020 3,303 2,718 5 

𝑇2 13,433 13,433 0 0 

𝑇3 10,265 10,265 0 0 

𝑇4 11,730 11,730 0 0 

𝑇5 4,542 2,272 2,270 5 

𝑇6 4,193 2,097 2,096 5,6,9 

𝑇7 9,129 4,566 4,563 5,9 

 

The train set, the validation set, and the test set were created from the acquired data. There were 

no faked or attacked datasets in the train set, which consisted of three normal datasets reflecting 

the trajectories 𝑇2, 𝑇3 and 𝑇4. The learning model was trained exclusively using regular data, 

without any GPS spoofing attacks, because the problem was defined as an anomaly detection 

task. 

Two "spoof" datasets representing the trajectories 𝑇1 and 𝑇5 made up the validation set, which 

had an attack bias of 𝑏 = 5. The test set, however, was made up of five "faked" datasets that 

represented the trajectories  𝑇6 and 𝑇7. The biases experienced by each model during training 

(𝑏 = 5) which was done indirectly through the validation set—were not the same as the attack 

biases in the test set. 

4.3.3 Simulation Results 

First, taken into consideration sliding window (𝑤 = 10)  we investigate how the machine 

learning (ML)-based anomaly detection approaches that have been put to the test performs. 

Performance is noticeably worse when no prior data is taken into consideration (𝑤 = 0)  than 

when different window sizes are examined. The results show that performance improves up to 

a certain degree when the window size grows. After that, the performance starts to deteriorate. 

This happens as a result of short-term temporal correlations between successive data points 

being considered, which helps prevent inaccurate oscillations between 'attack' and 'normal' 
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detection. However, when the ground truth alternates between "normal" and "attack," 

considering a large number of prior data points loses some of its effectiveness. The iForest, 

LOF, OC-SVM, AE, VAE, and DBN models ideal window sizes are discovered to be 5, 10, 10, 

20, 10, and 10 respectively. The outcomes for the iForest and AE models are averaged across 

50 iterations in order to address the stochastic character of the methods. 

4.3.4 Role of Learning Models 

In this section, we examine the effectiveness of several ML-based outlier identification 

techniques while considering a window size of 10, which showed the best performance in the 

section before this one. 

With a Gm (Geometric mean) score of 97.85% and an F1 score of 97.84%, the LOF (Local 

Outlier Factor) model had the best performance among the ML-based models tested. The Gm 

and F1 scores for the AE algorithm were 94.34% and 93.96%, respectively, making it the 

algorithm with the poorest performance. The Gm and F1 scores for the OC-SVM model were 

97.36% and 97.33%, respectively, while the Gm and F1 scores for the iForest model were 

97.60% and 97.63%, respectively.  We chose the top-performing ML-based method, LOF, to 

compare with the data-driven TAD (Threshold Anomaly Detection) method for identifying 

location spoofing attacks. To guarantee an equal amount of data for testing, we altered the TAD 

data by eliminating the first 10 data points.  

Table 5. Comparative analysis of different Learning Models 

Model Gm F1 

𝑂𝐶 − 𝑆𝑉𝑀 97.36 97.33 

𝑖𝐹𝑜𝑟𝑒𝑠𝑡 97.60 97.63 

𝐿𝑂𝐹 97.85 97.84 

𝐴𝐸 95.64 95.39 

𝑉𝐴𝐸 96.95 96.91 

𝐷𝐵𝑁 96.70 96.66 

𝑇𝐴𝐷 83.49 83.92 
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Figure 35. Radar map for G-Mean 

 

Figure 36. Radar map for F1 score 

The findings, show that LOF performs better than TAD in all performance criteria. On the test 

set, specifically, LOF received a Gm score of 98.43% and an F1 score of 98.45%, which is 

specifically 15% higher than TAD's Gm score of 83.49% and F1 score of 83.92%. Figure and 

Figure 35 and 36 shows the radar map plot of G-mean and F1 score whereas Figure 37 shows 

the heat map. Sye
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Figure 37. Heat map of the results 
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Chapter 5 - Conclusion and Future Works 

Finally, the GPS spoofing detection method created in this thesis performed well throughout 

simulation testing. In chapter 4, we discuss the problem of GPS position spoofing attacks when 

autonomous vehicles are in motion in this work and suggest an ML-based anomaly detection 

approach to spot such attempts. Our method stands out because it delivers outstanding 

classification accuracy with F1-scores and G-means ranging from 95% to 98% depending on 

the ML model employed, and it does so without requiring attack data during the training stage. 

Notably, among the ML-based strategies examined, our solution based on the LOF model 

outperformed another state-of-the-art non-ML-based solution by 15% in terms of detection 

accuracy. For Future work I would suggest the following research: 

1. As part of our ongoing research and as future works at the KIOS Centre of Excellence, 

University of Cyprus, we intend to deploy the suggested solution in Chapter 3 on one 

of our connected autonomous vehicles (CAVs) and implement it on an embedded 

computer device Nvidia Jetson Nano. This will allow us to test the approach in actual 

situations where the vehicle is moving and GPS location spoofing attacks are carried 

out using open-source spoofing software and commercial off-the-shelf (COTS) SDR 

gear.  

2. Additionally, we want to look into online ML-based algorithms that can change in 

response to changing circumstances, such the fact that open-sky rural places have lower 

GPS location uncertainty than cities. Even under different environmental conditions, 

we want to make sure that detection accuracy is good and false positives are kept to a 

minimum. Both of aforementioned algorithms are expected to  be tested in real 

environment because  right now we are dealing with specific noise profiles and in 

reality, the scenario is different.  

3. The GPS spoofing detection solution's performance was assessed in several scenarios 

to determine its resilience and flexibility. There were three separate habitats considered: 

rural, suburban, and urban as shown in Figure 38. The system proved its capacity to 

identify GPS spoofing with relatively low noise levels in the rural setting, where there 

are normally less barriers and less interference. Moving the system to a suburban area 

with modest barriers and interference, it was evaluated to guarantee its efficiency in 

detecting spoofing attacks while compensating for increased noise in GPS readings. 

The system was evaluated in an urban environment with high-rise buildings and 

extensive infrastructure for its ability to identify GPS spoofing despite severe signal 

obstacles and greater levels of noise in GPS reading. By assessing the solution's 

performance in these many contexts, a full knowledge of its flexibility and efficacy in 
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various real-world circumstances may be achieved. The results for this problem are 

shown in Figure 38. 

 

 

 

Figure 38. (a)estimated state and ground truth of vehicle (b) different noise profiles, (c) 

confusion matrix, (d) heat map. 

 

From the Figure 38 we can clearly see how the Attack Detection solution discussed in Chapter 

3 works. Different noise profile magnitude can be observed in Figure 38(b) where as from 

confusion matrix in Figure 38(c)  it clearly shows that some work needs to be done.
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Appendix 

Appendix A: IMU Sensor 

To calibrate [40] the IMU, perform the following steps: 

1. Get the Arduino IDE, an integrated development environment (IDE) for programming 

Arduino boards. 

2. Follow these instructions to install the SparkFun Board Add-on in the Arduino IDE: 

a. Launch the Arduino IDE, then navigate to File > Preferences. 

b.  Locate the "Additional Board Manager URLs" field in the Preferences window 

and click the icon next to it. 

c.  Enter the following URL for the SparkFun Board Add-on: 

"https://raw.githubusercontent.com/sparkfun/Arduino_Boards/main/IDE_Boa

rd_Manager/package_sparkfun_index.json$ catkin_make" 

3. Install the SparkFun Apollo3 Boards in the Arduino IDE by navigating to Tools > 

Board > Board Manager and searching for "SparkFun Apollo3 Boards." When the 

board package appears in the list, install it. 

4. In the Arduino IDE, choose the SparkFun RedBoard Artemis ATP as the board type. 

5. In the Arduino IDE, open the file "src/Razor_AHRS/Razor_AHRS". 

6. Import the SparkFun Library for the IMU by doing the following steps: 

a. In the Arduino IDE, navigate to the library manager by selecting "Sketch" > 

"Include Library" > "Manage Libraries." 

b.  In the Library Manager, search for "SparkFun_ICM_20948_IMU" and install 

the library by clicking the "Install" butt. 

Appendix B: VESC Sensor 

To calibrate [41] the VESC, perform the following steps: 

1. Begin by making sure the VESC board has the correct firmware file 

("VESC_60_MkV_5.02_SERVO_OUT.bin"). This file may be found in the main 

directory. Important: Connect a fully charged battery to the VESC driver before 

beginning. 

2.  Connect the battery to the VESC driver and wait for the blue LED to stabilize. 

3.  Connect your VESC board to your computer via the USB cable. 

4.  Launch the VESC Tool, which is software for configuring the VESC's firmware. 

5.  To connect to the VESC board, click the "Autoconnect" button in the program. 

6.  Navigate to the "Firmware" area on the left side of the program interface. 
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7.  Navigate to the "Custom File" tab inside the "Firmware" section. 

8. Click on the folder icon to get to the VESC_TOOL folder, which includes the firmware 

binary file for your specific VESC board.  

9. After you've chosen the firmware binary file, press the "Upload" button in the bottom-

right corner of the program interface.  

10. Wait at least 10 seconds after the firmware upload is complete before reconnecting to 

the VESC board to specify further parameters.  

 

 

 

 

 

 

Sye
da

 Zilla
y N

ain
 Zuk

hra
f 


