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[TEPIAHVH

H avEavépevn Sieioduon twv avavewouwy tnyoy evépyetag (AIIE) oto nhextpxd cvotrn-
Hol €lodyel TOAATAES TEOXAACELS OOQAAELNG, AZlOTIOTIONG X0l ATOBOTIXOTNTAS, XUPlWS
Aoyo tne aveéheyxtne mopaywyhc AIIE. To cuotiuata anodfxevonc evépyelac (XAE)
AmOTEAOLY Lol ovOBUOUEVT) TEYVOAOY(ol TOU UTopel var avTio TodUioEL Tor opvNTIXd. amoTe-
Mopota e topaynyne AIIE yéow tne BEATiotng Bloyelplong Tng EVERYELNC TOL Tapdye-
Ton a6 tic AlIE.

O xlploc 6Toy0¢ ALTHAC TN B TOPXAC BlaTEBNC aopd TNV eTtAucT TEOBANUATOY
Behtiotomoinong mou oyetilovton Ue T1) Loy elplon) XATAVEUNUEVWY TNY WV EVEQYELIS OF 1
Aextoind ouo ThaTa Ye PN dieioduon AIIE xar XAE. Tétolo npoBifuata etvor 560oxoko
vor AoV xodode amantody YerYopes xat BEATIoTES 1) LPNAAC ToLdTNTOC AUCELS Xou GU-
Y V& cuvdEovTon pe avaxp{Beleg poviehonolnong xon afeBatdTNTA GTNV TUEYWYT| EVEQYELIS
ond AIIE. Xe auté to mhoioto, éyouy yeretniel to axdhovdo npofifjuata: (o) nBertioto-
Tolnom YEVIX®OY TeoBANUdTLY Sloyelplong EVEQYELNG OE GUG TAUAT NAEXTEIXYC Lo VOE TTOU
nepthopBdvouy un-xuptd povtéha twv LAE, (B) n doyceipion evépyelac and potofotaixd
XOlL GUO TAUOTOL UTOTOELOY OE EVERYS BixTua Stavopnc, (Y) 1 Stayelpton evépyelag evog ou-
O TARATOG ATOVAXEUCTC UE GPOVOUAD Yol TNV UELWOT] TWY XOPUPMY PORTIOU OTU NAEXTEIXG
dixtua xou (8) N Behtiotonoinom e oTpaTNYIXc UTOBOAAC TEOCQORMOY 0md TUEAYwYOUS
AIIE oTic oryopéc NAEXTEIXAC EVEQYELNC YENOWOTOLWVTOS GUC THUNTA UTOTAURLOV.

To mp®To TEOPATU €YEl OXOTO VoL AVATTUZEL Lol YRTYORT) KO AMOTEAEOUATIXT| pedo-
doloyia yia T BeATio ToTolnon YEVIXGY TROBANUATLY dlayelptong eVERYELNS OE GUC THUNTA
NAEXTEWAC Loy Vog Tou TEpL oUPdvouy un-xuetd povtéia twv LAE. Yt BiBhoypapla o-
vantiooovtar towida povtéda YAE tou yenoylomoloby un-xuptols TERLopLouols Yio Vo
OVATUPACG THCOLY TIC AMOAEIES oY 00¢ Twv LAE, ue anotéheouo to TEOXITTOVTN TEO-
BrAuaro BeAtiotomoinong va elvon dvoxoro vo emthudolv. T var pewwdel 1 toAumho-
%601, ouvidwe avantiocovton poviédo LAE To omolo yahop®dvouy Toug un-xuptolc

TepLoplopoUs, oA mapdyouv un epixtéc hooelg otay mopaPBdleTton 1 axplBela Tng yo-
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Apwone. T vor avtipetwmotel autd 1o (Atnua, 1 Tapovoa dlatelr) avanticoet 500
emavohnmTXo0S ohyoplduoug Tou SnuloupYolY YERYOReS xou LYNAAC TOLOTNTAUC EQLXTES
Aooeig otav 1) mpoxumTouca Abon mopaPBdlel Ty axplBela g yoAdpwons. O mpdTog
oAy 6priuog avTiHETOTILEL YEVIXES CUVIPTACELS AMWAELS EVERYELNS TwV MAE, evd o Oe-
UTEPOC eCEdELPEVOC ahyopripog BeATIOVEL TNV amddocT Tou TEMTOL ahyopliuou dtay
YEYOWOTOLOUVTAL TUNUATIXG YOOUMIXES CUVIQTYOELS OTMAELNG EVEQYELNC. DUYXEXQUUEVA,
%o oL 500 ahybEIIUOL UELOVOLY O xGUE ETAVAANPN TNV EQIXTH TEQLOY T TWV YOAJPWUEVEY
uovtéhwv YAE, yenowonouwvtog gio TEploy ) EUTo Toouvng Y0pe omd TV TEox)TToucy
Aoor).

To deltepo mpoPAnua amooxonel otn dayelpon g Aettoupylog evog evepyol Ot-
%TUOU BLUVOUTG HE TOV EAEYYO TV CUCTNUNTWY QPOTOBOATOIXNG EVEQYELNG Xl UTAUTUOLDY
TRV Ty wY®V/xatovokotody. [ty enflvon autol tou mpofiiuatoc, avantiooetal
€Vol XUPTO UOVTERO BEATIOTOTOMNONG, YUAAPOVOVTOS TOUS UN-XUPTOUS TEQLOPLOUOUS POTG
oyvoc xau LAE. Emmiéov, npoteivovtar 800 ahydpriuot Mong mou (o) Sacgakilouy v
EPIXTOTNTOL TOL YOOPWUEVOU LOVTEROL X0t ((3) Tapéy oLV Lol BIXaLN XUTOVOUT TOU XOGTOUC
HETOED TV TUROYWYDV/XATAVIAWTOY Xat TOL BLUYELRLo TH AELTOURYING TOU GUGTAUTOC.

To tpito mpoPBAnua éyel oxond va e€aheidel Tic mapaPidoeic wyvog mou cuufaivouy
OTOUG YETAOYNUATIOTES Barvounc, Adyw tng udminc BIElcBUOTC TWV AVAVEDCWMY TNY OV
evépyelag xou g avénong tng {Rtnong goptiou. H enfhuon autol tou mpofBifuatog
TEUYUTOTOELTAL PE TNV YP1iOT EVOC GUCTAUNTOS AMOUNXEVCTC EVEQYELNS UE GPOVOUAO.
Mot Ty entiteuén auTol ToL GTOY OV, TUEAYOVTOL XURTES CUVAPTHCELS TTOU AVTLTPOCWTEVOLY
TIC ATWAELES oY 00G TOU GPOVOUAOU Xt TN HEYLOTN LOYY TOU XUl OTY) CUVEYELL EVOWHO-
TOVOVTAL O€ €va HovTéLo BehtioTonoinong Aelixoypapxhc Tadvounone. Emmiéov, topou-
otdleton Eva Lepopytxd TAXLGLO EAEYYOU BUO ETTESWY YLoL TNV AELTOUEY{0 TOL CUC TAUATOC
UETAOYNUATIOTH X0t 5QoVOUAOL To omolo avTiueTonilel T o@diuata TEOBAedYNS popTtiou
xou Ti¢ avaxpifelec povtehonoinong. X1o udhnAdtepo eninedo, avantiooeTal Evag TEOPAE-
TTIXOG EAEYXTAC ToL emAVEL TO YovTého BedTioTonoinong Aelixoypaugpixrc Tokvounong.
270 younhotepo eninedo, Evag 0euTEPELWY EASYXTHC BlopUnVEL Tor onuela pUdoNg toyvog
TOU TPOPBAETTIXOU EAEYATY), YPNOUOTOLOVTUG UETPNOELS O TROYUATIXG YEOVO.

To tétapto mEéPAnua amooxonel ot oTpaTNYLXY UTOBOAAC TEOGHPORKOY amd THEo-
ywyolc AIIE otic ayopéc nhextpinic EVERYELOC UE GTOYO TN UEYLOTOTOINCT TWV XEp-
0wV Toug amd TNV mwAnon evépyewg. o TV emlteudn autod Tou oTdyoUL, YENOYLO-
TOLUVTOL GUOTAUATO UTATapLedY ot hopfdvovton untédn BV Topdyovies, o) 1 AmOAEL

odpxetag Cwrg Tne umatapiog xou @) ToL OPLOL TOU BLXTUOL AOY® GUUPORENOTS HETABOOTNC
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oyvog. T'o v enthuon autod Tou TEOPAAUATOC, avamTOYUNXE EVOL GTOYACTIXG HOVTENOD
Behtiotomoinong Baotopévo oe cevdpta Yo T dloyelplon TNg ofeBatdTNToC OTNY THEOY K-
1 nhextpwrc evépyelog and AIIE xou otic Tiwée nhextpwrc evépyeoc. To otoyactind
HOVTEAO DLUTUTIMVETAL (G TROBANUOL YROUUULXOU TEOYRUUHATIONO0D, TO omolo umopel vo e-
mALdel yeryopa xar a&lOTIOTY, YENOWOTOLOVTUS EVH TROCEYYICTIXO HOVTENO Yid TNV
amAeLo Btdpxetac (whc TG uratoplag xan €va yohopwuévo povieho YAE.

Ol TpOCOUOWCELS XL TA TELRUUATIXG ATOTEAECUATO ETUBEBALDVOUY TNV ATOTEAECUITL-
XOTNTOL TV TPOTEWVOUEVWY UEVOOwY emlAvong Twv eZeTalduevemY TRoBANUAT®Y, Slaopa-
AMlovtag TV ooy, aflOTo TN XaL amodoTixy Acltoupyio TOU GUOTAUATOS NAEXTEXNS

EVEPYELNC.
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Abstract

The increasing penetration of renewable energy sources (RESs) into the power sys-
tem introduces several safety, reliability and efficiency challenges, mainly due to
the uncontrollability of RES. Energy storage systems (ESSs) constitute an emerging
technology that can compensate the negative effects of intermittent RES generation
by optimally managing the energy produced by RES.

The main aim of this PhD thesis regards the solution of optimization problems
associated with the management of distributed energy resources in power systems
with high RES and ESS penetration. Such problems are challenging because they
require fast and optimal or close-to-optimal solutions, and often involve modelling
inaccuracies and RES uncertainty. In this context, the following problems are con-
sidered: (i) optimization of general energy management problems in power systems
involving non-convex ESS models, (ii) energy management of photovoltaic and
battery storage systems in active distribution grids, (iii) energy management of a fly-
wheel storage system for peak shaving applications, and (iv) stochastic optimization
of the bidding strategy of RES producers in electricity markets considering battery
degradation.

The first problem aims to develop a fast and effective methodology for optimizing
general energy management problems in power systems involving non-convex ESS
models. Different ESS models are developed that utilize non-convex constraints
to represent the ESS power losses, resulting in challenging optimization problems.
To reduce the complexity, convex relaxation models are often derived but generate
infeasible solutions when the relaxation exactness is violated. To deal with this issue,
this thesis develops two successive convexification algorithms that generate fast and
high-quality feasible solutions when the derived solution is not exact. The first
algorithm handles general ESS loss functions, while the second algorithm enhances

performance when piecewise-linear loss functions are used. The general idea of
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the algorithms is to reduce the feasible region of the relaxed ESS models using a
tightening box trust region around the current solution in successive iterations.

The second problem aims to manage the operation of an active distribution
grid by controlling the photovoltaic and battery energy storage systems (BESSs) of
prosumers. To solve this problem, a convex multi-objective optimization model
is formulated by relaxing the non-convex power flow and BESS constraints. Two
solution algorithms are developed that (a) ensure feasibility of the relaxed model
and (b) provide a fair allocation of the costs between the prosumers and the system
operator.

The scope of the third problem is to eliminate the power violations occurring
in distribution transformers, due to the high RES penetration and load demand
growth, using a flywheel energy storage system. For the solution of this problem,
convex functions that represent the flywheel power losses and its maximum power
are derived and integrated in a lexicographic optimization scheme. A two-level
hierarchical control framework to operate the transformer-flywheel-system in a way
that handles prediction errors and modelling inaccuracies is also introduced. At the
higher level, a model predictive controller (MPC) is developed that solves the lexi-
cographic optimization scheme. At the lower-level, a secondary controller corrects
the power set-points of the MPC using real-time measurements.

The fourth problem aims to develop a bidding strategy for combined BESS-RES
plants to maximize the expected producer profits in day-ahead and balancing elec-
tricity markets, considering battery degradation and power exchange limitations
with the grid due to transmission congestion. Towards this direction, a two-stage
scenario-based stochastic optimization scheme is developed to deal with uncertain-
ties in RES power generation, day-ahead energy prices, and imbalance prices. The
considered stochastic scheme is formulated as a linear program, which can be fast
and reliably solved, by utilizing an approximate cycle-based degradation model and
a relaxed BESS model.

Simulation and/or experimental results validate the quality of the developed
solution approaches for the considered problems in ensuring the safe, reliable, and

efficient operation of the power system.
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Chapter 1

Introduction

1.1 Background and motivation

The increasing penetration of renewable energy sources (RESs) into the power sys-
tem supports the reduction of carbon dioxide emissions towards a climate neutral
economy. Figure 1.1 depicts the growth in renewable power capacity from 2010 to
2021, where the total power capacity worldwide has increased from 1150 to 2963
GW [1]. As can be observed in the figure, there is a fast growth in wind and solar
energy compared to other sources such as hydropower, bioenergy and geothermal
energy. Hence, wind power and photovoltaics (PVs) are the fastest-growing renew-
able energy technologies and this trend is expected to continue, as the European
Union has set a target to become climate-neutral by 2050 [2].

A large RES penetration into the power system, in particular from PVs and wind
power, can cause several challenges to Distribution System Operators (DSOs) and
Transmission System Operators (TSOs) for the safe, reliable and efficient operation
of the system mainly due to the uncontrollability of RES generation. Specifically, the
high renewable generation from PV and wind power plants can cause the following
problems at the distribution and transmission levels.

Distribution level: The intermittency of the renewable generation along with the
variation of the local load demand can cause the switching between direct and
reverse power flow in the distribution grid. A reverse power flow occurs when
the distributed generation exceeds the local load demand, resulting in a flow of

power back towards the substation. For example, Figure 1.2 shows 24 net-load'

!The net-load demand is defined as the system load demand minus the RES generation.
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Figure 1.2: Net-load curves of a real distribution grid that present high reverse (negative

values) and direct (positive values) power flows.

curves constructed from historical data of a real distribution grid, obtained from a
substation in Larnaca region, Cyprus, as provided by the Cyprus DSO. As shown
by the net-load curves, high reverse and direct power flows are present during the
noon and evening hours due to intense generation by RES and high load demand,
respectively. This phenomenon causes high voltage fluctuations or even voltage
violations, makes the power equipment to operate near its power limits, and creates
high energy losses, leading to stability and power quality issues, equipment failures,
and inefficient grid operation [3-5].

Transmission level: Having a high share of RES in the energy generation mix can
negatively affect the scheduling and operation of conventional generation. Figure 1.3
demonstrates the total load demand, as well as the conventional, wind and PV gen-
eration of the power system of Cyprus for two consecutive days, 10-11/03/2023 [6].

The conventional generation, or net load, is the result of the subtraction of the PV and
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Figure 1.3: Impact of renewable generation on the conventional generation: The case of the

power system of Cyprus for 10-11/03/2023.

wind generation from the load demand. The figure indicates that the RES generation
increases the difference and steepness between minimum and maximum power that
the conventional units must provide, compared to the smoothest and predictable
load demand curve. As a result, the non-smooth net-load curve leads to (a) more
frequent start-ups/shut-downs of the conventional units, (b) the provision of higher
operating reserves, and (c) the requirement for higher operational flexibility in order
to ensure the power balance between generation and demand. In addition, RES
curtailments from wind and PV plants are often necessary to ensure the minimum
stable generation level (>200 MW) of the conventional generation. Therefore, the
high RES penetration into the power system can (i) lead to an inefficient operation
of conventional generation, (ii) reduce the profit of RES producers when RES cur-
tailments are applied, and (iii) threaten the safe and reliable operation of the system,
increasing the risk of a possible blackout [7-9].

The negative effects of the high RES penetration can be compensated using en-
ergy storage systems (ESSs), which is an emerging technology that can be used
in both distribution and transmission level. In general, ESSs can provide several

functionalities in the electricity sector including [10-12]:

e Grid services: ESSs can provide services to the power grid, e.g., frequency
control, energy shifting, and peak shaving, in order to support the grid under an

increasing RES penetration. For example, ESSs can store the energy produced
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by RES and use it to avoid the overloading of a distribution transformer during

high load demand (peak shaving).

e Residential prosumers and large RES producers: The climate and energy
strategy for the growth of the RES capacity, mainly from PVs and wind power
plants, along with the evolution of electricity markets create new opportunities
for RES owners to manage the energy produced by RES in order to reduce their
electricity bills or increase their profits. Specifically, the RES owners can store
and use the energy produced by RES for their own needs (self-consumption
application), or can manage their energy consumption and generation with the
aim to absorb and inject power to the grid when the electricity prices are low

and high, respectively (time-of-use application).

e Off-grid applications: Approximately 940 million people worldwide do not
have access to electricity, especially in rural areas [13]. Moreover, remote farms
and mines are often not connected to the grid and rely on the use of diesel
generators to produce power; however, diesel generators are noisy, pollutant
and vulnerable to fluctuating diesel prices. The usage of PV-ESSs systems can
support the electricity needs of these areas, providing electricity autonomy and

avoiding the usage of diesel generators.

As depicted in Table 1.1, the main ESSs technology types are the pumped hydro
storage, thermal storage, electro-chemical batteries and electro-mechanical storage.
These technologies are further divided in sub-technology types; for example, the
lithium-ion battery energy storage systems (BESSs) and the flywheel energy stor-
age systems (FESSs) are subcategories of electro-chemical batteries and electro-
mechanical storage, respectively [10]. Different storage technologies are suitable
for specific applications, depending on their characteristics in relation to efficiency,
standby losses, charging/discharging power capabilities and expected lifetime. The
suitability of three main ESSs technologies, pumped hydro, lithium-ion battery and
flywheel, for different power system applications is illustrated in Table 1.2 [10,11].
Although the lithium-ion battery is applicable in a wide variety of applications com-
pared to other ESSs technologies, only the 5.5% (10.19 GW) of the total electricity
storage capacity (185.3 GW) was from electro-chemical batteries for the year 2020.
Specifically, the pumped hydro was the dominant ESSs technology with an installed
capacity of 92.3% (171 GW), while the flywheel capacity was 0.3% (0.55 GW) [10].

4



Table 1.1: The main electricity storage technologies

Technology type Sub-technology type
Electro-chemical Lithium-ion battery, lead-acid battery, flow battery, capacitor
Electro-mechanical Flywheel, compressed air storage

Pumped hydro storage | Closed-loop or open-loop pumped hydroelectricity storage

Thermal storage Molten salt thermal storage, chilled water thermal storage

Table 1.2: Possible applications for three main ESSs technologies

Energy
Frequency Frequency .
shifting Peak Self- Time- Off-
containment restoration )
and load gshav. cons. of-use grid

reserve reserve
levelling

Pumped

P v v
hydro
Lithium-ion
B v V. v VY VRV
battery
Flywheel v v

The total electricity storage capacity is expected to growth in order to enable an
increased and effective RES integration; however, the expansion of the pumped hy-
dro is limited due to environmental constraints. Therefore, the electricity storage
capacity from other ESSs technologies, especially from electro-chemical batteries, is
expected to rapidly grow. This is attributed to the steep cost reduction of lithium-
ion batteries from 1100 to 137 $/KWh over the period 2010-2021, as shown in Figure
1.4 [14,15].

The effective integration of different RESs and ESSs technologies, termed also
distributed energy resources (DER), into the power distribution or transmission sys-
tem requires the development of optimization schemes to enable their optimized
operation. The main aim of this PhD thesis regards the solution of optimization
problems associated with the management of distributed energy resources in power
systems with high RES and ESS penetration. Such problems are challenging be-

cause they require fast and optimal or close-to-optimal solutions, and often involve
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Figure 1.4: Average lithium-ion battery prices ($/kWh) for 2010-2021.

modelling inaccuracies and RES uncertainty. In this context, the following problems
are considered: (i) optimization of general energy management problems in power
systems involving non-convex ESS models, (ii) energy management of photovoltaic
and battery storage systems in active distribution grids, (iii) energy management of
a flywheel storage system for peak shaving applications, and (iv) stochastic opti-
mization of the bidding strategy of RES producers in electricity markets considering
battery degradation.

The common objective of the considered optimization problems is to minimize
the operating cost, or maximize profits, while ensuring the safe, reliable and efficient
operation of the power system. The examined problems have a number of common
challenging characteristics that should be addressed by any developed optimization

scheme:

e Real-Time Decision-Making: The best decisions regarding the operation and
control of the system should be made and executed repeatedly in a short time-
frame, in order to ensure the reliable system operation. These decisions can
be the ESSs or RES power coordination set-points. Therefore, any developed
optimization scheme should make the best possible decisions within a short
time-frame using all available input data, including real-time measurements,

as well as historical and predicted data.

e Hard Problems: The considered problems are non-convex optimization prob-



lems which are challenging to solve, especially for large scale systems. It is
almost sure that these problems cannot be optimally solved with polynomial
algorithms. The time needed to solve non-convex problems increases expo-
nentially as the problem size expands, while high-accuracy solutions are not
always guaranteed. Hence, the developed optimization schemes should be

solved fast and reliably, providing optimal or close-to-optimal solutions.

Modelling Inaccuracy: The simplifications and assumptions that are applied
to model the physical system, along with the uncertain parameters of the
derived models, introduce modelling errors that can affect the reliability and
cost-effectiveness of the system. For example, an inaccurate ESSmodel can lead
to a wrong estimation of the ESSs state-of-charge, leading to wrong decisions
during the operation of the power system. Therefore, modelling errors should
be considered by the developed optimization schemes to avoid any undesirable

operation of the system.

Uncertainty: Although forecasting techniques have been considerably im-
proved over the last decade, prediction of the PV or wind generation is far
from perfect. In addition, the prediction error increases significantly as the
prediction horizon increases. Similar to modelling errors, prediction errors
can lead to wrong and undesirable decisions during the system operation. As
aresult, the developed optimization schemes should handle well prediction er-
rors associated with the PV or wind generation, load consumption, and energy

market prices, generating reliable and cost-effective solutions.

Multiple Objectives: In many problems, there are multiple objectives that
should be simultaneously minimized or maximized. The objectives in the
considered problems are conflicting, which implies that an improvement in one
objective deteriorates the other objectives. Hence, the developed optimization
schemes should consider multiple objectives and provide the best trade-off

solution for the system operation.



1.2 Review of examined problems

In this thesis we will examine four different optimization problems for the manage-
ment of distributed energy resources in power systems, which are associated with

the aforementioned challenging characteristics.

e Optimization of general energy management problems in power systems involving

non-convex ESS models:

The increasing utilization of ESSs in power system applications necessitates
the use of mathematical models for their representation in power system op-
timization problems. Different ESS models have been proposed that utilize
non-convex constraints to represent the ESS power losses, e.g., using piecewise
linear and quadratic loss functions, resulting in non-convex optimization prob-
lems. To reduce the complexity, convex relaxation models are often derived but
generate infeasible solutions when the relaxation exactness is violated. This
problem aims to develop a fast and effective methodology for optimizing gen-

eral energy management problems in power systems involving non-convex

ESS models.

e Enerqy management of photovoltaic and battery storage systems in active distribution
grids: This problem considers the operation of an active distribution grid with
prosumers® by managing the PVs and BESSs, integrated in the buildings. The
objectives are to minimize (i) the prosumers electricity cost and (ii) the cost
of the grid energy losses, while guaranteeing safe and reliable grid operation
through the power flow constraints. This can be done by determining the
active and reactive power set-points of the PVs and BESSs. The power flow
constraints are non-linear, non-convex and along with the BESSs complemen-
tarity constraints make the problem hard to solve. The PV uncertainty and
BESSs modelling inacuracies challenge the efficient operation of the system,
while the two conflicting objectives impose the need of selecting an operating

point that provides a fair trade-off between the prosumers and the grid costs.

e Enerqy management of a flywheel storage system for peak shaving applications: Peak

shaving services provided by energy storage systems enhance the utilization

2Prosumers are users who consume and produce energy.



of existing grid infrastructure to accommodate the increased penetration of re-
newable energy sources and the load demand growth. This problem considers
the provision of peak shaving services from a flywheel energy storage system
installed in a transformer substation. The objectives are to (a) eliminate the
direct and reverse power flow violations of a distribution transformer using a
FESS and (b) minimize the FESS power losses for a cost-effective operation of
the distribution grid by optimizing the energy schedule of the FESS. The non-
linear, and non-convex nature of the FESS model challenges the solution of the
considered problem. In addition, the net-load uncertainty of the distribution
grid along with the FESS modelling inaccuracy can lead to power violations
of the transformer during the real operation, threatening the safety of the grid

infrastructure.

Stochastic optimization of the bidding strategy of RES producers in electricity markets
considering battery degradation: RES producers who participate in day-ahead
electricity markets are paid for their scheduled RES production profile sub-
mitted to the market for the next day based on variable day-ahead prices.
However, as the day-ahead prices are unknown, producers must make de-
cisions based on forecasted prices, which may reduce their profits in case of
high forecasting errors. In addition, forecasting errors in RES power genera-
tion create power imbalances in real operation that threaten the stability of the
power system. These imbalances can result in power deficits, which are pe-
nalized at higher costs compared to the day-ahead prices, or power excesses,
which are paid at lower prices. This incentivizes RES producers to submit
accurate scheduled production profiles to the day-ahead market to maximize
their profits. This problem considers the development of a bidding strategy for
RES-BESS producers to maximize their expected profits by buying and selling
power in electricity markets, considering battery degradation and power limits
of the grid due to transmission congestion. The main challenges of the con-
sidered problem are associated with the uncertainty in RES power generation,
day-ahead energy prices, and imbalance prices, which can deteriorate the pro-
ducer’s profits in case of high prediction errors. Furthermore, the non-convex

degradation and ESS models make the problem hard to solve.



1.3 Summary of contributions

Overall, this thesis makes several contributions to the field of power systems and
their optimization in ensuring safe, reliable, and efficient operation. In particu-
lar, the thesis formulates and solves four important problems, described in Section
1.2, related to the optimization and management of distributed energy resources in
power systems with high RES and ESS penetration. In addressing these problems,
this thesis develops multiple novel optimization methods that yield high-quality
and fast solutions in the presence of modelling inaccuracies and information uncer-

tainties. The specific contributions of this PhD thesis are summarized below.

e Development of a solution methodology that deals with violations of the re-
laxed ESS constraints in general energy management problems in power sys-
tems involving non-convex ESS models. Specifically, a general successive
convexification algorithm is developed that yields fast and high-quality fea-
sible solutions considering general ESS power loss functions, e.g., piecewise
linear and quadratic loss functions. Furthermore, a second specialized succes-
sive convexification algorithm is developed that enhances the solution qual-
ity and execution speed when piecewise-linear loss functions are used. The
performance of the proposed algorithms is investigated by considering two
optimization problems in power systems that incorporate ESSs: (a) the Unit

Commitment and (b) the Peak Shaving and Energy Arbitrage.

e Development of a centralized energy management and control scheme (CEMC)
for managing the PV-BESSs operation in active distribution grids. The CEMC
scheme minimizes both the prosumers electricity cost and the grid energy losses
cost, while ensuring reliable grid operation by incorporating power flow con-
straints and reactive power support. A convex multi-objective second-order
cone program (SOCP) to fast and reliably solve the considered optimization
problem by relaxing the non-convex constraints is formulated. The SOCP
model yields optimal solutions under most operating conditions; however,
non-exact solutions are generated under “extreme” operating conditions. To
deal with this issue, a solution algorithm that ensures feasibility of the relaxed
SOCP model under all operating conditions is developed. Furthermore, a sec-

ond algorithm that finds the operating point that provides fairness between

10



the prosumers and grid losses costs is proposed.

Development of an energy management scheme for providing peak shav-
ing services using a flywheel storage system. Towards this direction, FESS
power losses and maximum power functions are constructed to be dependent
on parameters that are readily available through commercial FESS interfaces
(charging/discharging power and SoC). Moreover, the derived FESS functions
are modelled with convex constraints that enable the formulation of convex
optimization problems. The derived FESS functions are used to develop a new
optimization formulation for the peak-shaving problem that minimizes the
transformer power limit violations and FESS power losses in a lexicographic
fashion. Furthermore, a two-level hierarchical control scheme is developed
to solve the peak-shaving problem fast and reliably, while handling predic-
tion errors and modelling inaccuracies. For the experimental evaluation of
the proposed control scheme, a software platform is developed for managing
smart grid configurations and utilized for the integration of a prototype FESS
system into a smart-grid testbed. In addition, model validation and parameter

identification is experimentally performed for the prototype FESS.

Development of an optimization scheme for the bidding strategy of RES-BESS
producers in electricity markets considering battery degradation and uncer-
tainty in RES generation and electricity prices. Specifically, the bidding strat-
egy is developed as a linear deterministic optimization formulation that deals
with the non-convexities arising from the degradation and power loss models
of the BESS by incorporating an approximate cycle-based degradation model
and a relaxed BESS model. In addition, the bidding strategy is developed as a
scenario-based stochastic optimization formulation that handles uncertainty in
RES power generation, day-ahead prices, and imbalance prices. The stochastic
scheme is formulated as a linear program, which can be fast and reliably solved
under a large number of scenarios. The proposed bidding strategy is investi-
gated in two different RES-BESS plants, a wind-BESS and PV-BESS plant, using

real data.
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1.4 Thesis outline

The remainder of this thesis is organised as follows. In Chapter 2 we introduce the
main optimization methods used in this thesis for the management of distributed
energy resources in power system operation. First, an introduction to optimiza-
tion problems is given by (a) stating mathematically an optimization problem, (b)
providing the properties of a convex optimization problem and (c) classifying the
optimization problems in different mathematical programming types. Second, an
introduction to multi-objective optimization problems is given by (a) stating mathe-
matically a multi-objective optimization problem, (b) elaborating on the conflicting
objectives and demonstrating the Pareto front, and (c) presenting different multi-
objective methods. Third, the model predictive control method that is often used
to control a system while in operation is described. Finally, the scenario-based
stochastic optimization approach that is used to make decisions under uncertainty
is presented.

Chapter 3 examines the optimization of general energy management problems in power
systems involving non-convex ESS models problem. In this chapter, we begin by dis-
cussing the motivation of using relaxed ESS models in optimization formulations
and elaborating on the issue of the ESS relaxation violation. Then, we present the
general mathematical model for ESS, followed by two optimization formulations
that incorporate the exact and relaxed ESS models, respectively. Next, we define
the exact and relaxed versions of the piecewise linear and quadratic ESS models.
To overcome the issue of ESS relaxation violation, we develop two convexification
algorithms that generate fast and high-quality feasible solutions. The first algorithm
handles general ESS loss functions, while the second specialized algorithm enhances
the algorithm performance when piecewise-linear loss functions are used. The two
algorithms are applied in two different optimization problems in power systems, the
Unit Commitment and Peak Shaving and Energy Arbitrage problems, to investigate their
performance considering piecewise-linear and quadratic ESS loss functions. Simu-
lation results demonstrate the impact of the ESSs relaxation violation on the actual
system operation and validate the algorithms efficacy to generate high-quality fea-
sible and even optimal solutions with significantly lower execution times compared
to problems utilizing exact ESS models.

In Chapter 4 we investigate the energy management of photovoltaic and battery stor-
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age systems in active distribution grids problem. We start with the introduction and the
literature review of the problem, followed by a description of the system architecture
and the mathematical formulation of the considered problem. In detail, a central-
ized multi-objective optimization model to minimize (i) the prosumers electricity
cost and (ii) the cost of the grid energy losses, while guaranteeing safe and reliable
grid operation is formulated. Then, in the solution methodology we (a) formulate a
convex multi-objective SOCP optimization model to solve fast and reliably the con-
sidered optimization problem by relaxing the non-convex constraints, (b) develop
an algorithm to ensure feasibility of the relaxed SOCP model under all operating
conditions and (c) propose a second algorithm to find the operating point that min-
imizes the absolute difference between the objective gain losses. Simulation results
demonstrate the superiority of the proposed optimization scheme in managing an
industrial distribution grid compared to a self-consumption approach.

Chapter 5 studies the energy management of a flywheel storage system for peak shav-
ing applications problem. First, we discuss the motivation for the solution of this
problem followed by a description of related research topics. Then we describe the
problem as a lexicographic optimization problem that aims to define the flywheel
power set-points by minimizing the transformer power limit violations and the fly-
wheel energy losses. Convex functions that represent the flywheel power losses
and its maximum power are derived and integrated in the proposed scheme. We
also introduce a two-level hierarchical control framework to operate the transformer-
flywheel-system in a way that handles prediction errors and modelling inaccuracies.
At the higher level, a model predictive controller is developed that solves the lex-
icographic optimization scheme using linear programming. At the lower-level, a
secondary controller corrects the power set-points of the model predictive controller
using real-time measurements. A software platform has been developed for inte-
grating the proposed controllers in an experimental setup to test their effectiveness
in a realistic testbed setting, and the flywheel system characteristics are experimen-
tally identified. Finally, simulation and experimental results validate and verify the
modelling, identification, control and operation of a real flywheel system for peak
shaving services.

Chapter 6 examines the stochastic optimization of the bidding strategy of RES pro-
ducers in electricity markets considering battery degradation problem. We start with the

introduction and the literature review of the problem, followed by the statement of

13



the considered problem. Specifically, we (a) describe the constraints of the RES-BESS
plant, (b) present the cycle-based degradation model, (c) introduce the framework
of the considered electicity markets, and (d) formulate the optimization problem
of the bidding strategy while considering the RES-BESS constraints, degradation
model, and electricity market structure. To address the non-convexities associated
with the BESS, a linear deterministic optimization scheme is developed that incor-
porates an approximate cycle-based degradation model and a relaxed BESS model.
To handle uncertainties in RES power generation, day-ahead energy prices, and im-
balance prices, a scenario-based linear stochastic optimization scheme is developed
that can be fast and reliably solved. Simulation results evaluate the effectiveness of
the stochastic scheme in improving the profits of wind-BESS and PV-BESS producers
compared to the corresponding deterministic scheme.

Chapter 7 provides a summary of the work conducted in this PhD thesis and
serves as the concluding chapter. Additionally, Chapter 8 proposes future research

directions.
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Chapter 2

Optimization methods

This chapter introduces the main optimization methods used in this thesis for the management
of distributed energy resources in power systems. The structure of the chapter is as follows.
Section 2.1 (a) states mathematically an optimization problem, (b) provides the properties
of a convex optimization problem, (c) explains the role of convex relaxation in non-convex
problems and (d) classifies the optimization problems in different mathematical programming
types. In Section 2.2, an introduction to multi-objective optimization problems is given
by (a) stating mathematically a multi-objective optimization problem, (b) elaborating on
the conflicting objectives and demonstrating the Pareto front, and (c) presenting different
methods for solving multi-objective optimization problems. Section 2.3 describes the model
predictive control method that is used to control a system during the operation process.
Finally, the scenario-based stochastic optimization approach that is used to make decisions

under uncertainty is presented in Section 2.4.
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2.1 Optimization problems

Optimization is the process of achieving the best outcome by taking decisions under
given circumstances. The goal of all such decisions is either to minimize effort, cost
or to maximize benefit, profit, etc. These objectives can be usually expressed as
a function of certain design variables; thus, optimization is the act of finding the
conditions that minimize or maximize the considered objective functions, satisfying
the design constraints. The design constraints may represent physical and operating

limitations of a system [16].

2.1.1 Statement of an optimization problem

An optimization, or mathematical programming problem can be stated as [16,17]

Find

x = (x', %%, ..., x") (2.1)
which minimizes
f() (2.2)
subject to the constraints
gix) <0, j=1,.,] (2.3)
lix)=0, i=1,..1 (2.4)

where vector x = (x!, 22, ..., x") is the design variable of the problem, f(x) is the objec-
tive function, ¢;(x) and /;(x) are the inequality and equality constraints, respectively.

Alternatively, the optimization problem (2.1) - (2.4) can be stated as

minimize  f(x) (2.5)

subjectto g¢i(x)<0, j=1,..]

L(x)=0, i=1,..,1L
A point x is feasible if it satisfies the constraints, gi(x) < 0,...,g;(x) < 0 and
li(x) =0, ..., l;(x) = 0, while Problem (2.5) is feasible if there exists at least one feasible

point, and infeasible otherwise. The set of all feasible points is called the feasible

region or feasible set. If x is feasible, then the jth inequality constraint is active or
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binding when ¢;(x) = 0 and inactive otherwise (g;(x) < 0), while equality constraints
are always active. A point x" is called optimal, or the solution of the optimization
problem (2.5), if it is feasible and has the smallest objective value among all points
that satisfy the constraints, such that for any z with g1(z) < 0, ..., gj(z) < 0 and
L(z) =0,...,1i(z) = 0, we have f(x") < f(z).

Optimization problems that aim to maximize a function f(x) can be stated in
the form of Problem (2.5) by minimizing the function —f(x). This is because if a
point X" corresponds to the minimum value of a function - f(x), then the same point
corresponds to the maximum value of the function f(x).

In general, there are families or classes of optimization problems, characterized
by particular forms of the objective and constraint functions as well as the types of
the quantitative variables, continuous and/or discrete. For example, optimization
problem (2.5) is a linear program when the variables are continuous and both ob-
jective and constraint functions are linear and a nonlinear program when at least
one function is not linear. For some classes of optimization problems there are ef-
fective methods for solving them even with hundreds of thousands variables and
constraints. However, this is not true for some other classes where the solution of
optimization problems with as few as ten variables can be extremely challenging,

while larger problems can be intractable [17].

2.1.2 Convex optimization problems

Convex optimization problems is a class of optimization problems where there are
very effective methods for solving them. Problem (2.5) is convexif it has the following

requirements [17]:

e The objective function f(x) is convex. An example of convex and non-convex

functions is demonstrated in Figure 2.1.
e The inequality constraint functions g;(x) are convex.

e The equality constraint functions /;(x) are affine.

Therefore, in a convex optimization problem, we minimize a convex objective func-
tion over a convex set, since its feasible set (feasible region) is convex. An example

of a convex and non-convex set is illustrated in Figure 2.2.

LA function J;(x) is affine if it is a sum of a linear function and a constant, i.e., [;(x) = ﬁl.Tx — b
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Figure 2.1: Convex and non-convex functions: Function f,(x) = x% + 2 is convex because
the chord joining any two points on the curve always falls entirely on or above the curve

between those two points, while function f,(x) = sin x is non-convex.

There are sub-classes of convex optimization problems based on the forms of
the objective and constraint functions; however, the three requirements for convex
optimization must be satisfied. For example, linear programs are convex since all
the objective and constraint functions are linear and hence convex, but for non-linear
programs this is not always true.

The challenge, and art, in using convex optimization is in recognizing convex
optimization problems, or those that can be transformed to convex optimization
problems, and formulating them. Once this formulation is done, solving the problem
is straightforward, even for large problems, using optimization solvers which ensure
a fast, reliable and optimal solution. In contrast, formulating a practical problem
as a general non-convex and non-linear optimization problem is relatively easy;
however, solving such a problem is challenging, since there are no effective methods

to solve it [17].

2.1.3 The role of convex relaxation in non-convex problems

Convex relaxations are used to replace non-convex constraints with convex con-
straints and therefore to transform non-convex optimization problems to convex.
This can be done by relaxing a non-convex constraint to a looser, but convex, con-
straint, increasing the feasible set of the original problem. For example, Figure 2.3

depicts the relaxed convex set, C,, of a non-convex set C, by taking the smallest
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(a) (b)

Figure 2.2: Convex and non-convex sets: The feasible set C; is convex because the line

segment between any two points in C; lies in Cy, while the set C is non-convex.
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Figure 2.3: Convex relaxation: The non-convex set C, is relaxed to the convex set C, by

taking the smallest convex set (convex hull) that contains C,.

convex set (convex hull) that contains C,, C, C C;. As a result, all possible solutions
of the original problem are still feasible for the relaxed problem. Thus, the optimal
value of the relaxed problem is (a) optimal for the original problem when the solu-
tion is contained in the non-convex set C,, (also called exact solution), and is (b) a
lower bound on the optimal value of the original problem when the solution is not

contained in the non-convex set (non-exact solution) [17].
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2.1.4 Classification of optimization problems

The classes of optimization problems that are used in this thesis, characterized by
particular forms of the objective and constraint functions as well as the types of the

variables, are the following:

Linear programming (LP)

Linear programming is the simplest class of optimization problems in which all
the objective and constraints functions are affine and all variables are continuous,

x = (x',22,...,x") € R" [17,18]:

minimize ¢ x (2.6)

subjectto a

where vectors ¢, ay, ..., aj, 41, ..., 4 € R" and scalars by, ..., by, by, .. by € R are problem
parameters that specify the objective, inequality and equality constraint functions.
LP programs are convex and can be solved efficiently and reliably using very effective
methods such as, Dantzig’s simplex method and more recent interior-point methods

[17].

Quadratic programming (QP)

Quadratic programming is a class of non-linear optimization problems in which the
objective function is quadratic, the constraints are affine, and all the variables are

continuous, x € R" [17]:

minimize (1/2)x'Px+ c¢'x+r (2.7)

subjectto aix<b;, j=1,..,]

where P is the Hessian matrix of the objective function, denoting the coefficients of
the quadratic term; vector ¢ € R" denotes the coefficients of the linear term and r € R
is a constant. QP programs are convex when the objective function is convex which
is true when P € S}, where S, is the set of symmetric positive semidefinite matrices.

When convex quadratic inequality constraints are presented along with the convex
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quadratic objective function, then the problem is called quadratically constrained

quadratic program (QCQP) [17]:

minimize (1/2)x'Pyx + cg X + 1 (2.8)
subject to afx <b, j=1,.,]

alx="b, i=1,..1L

1

(1/2x"Pix+ ¢, x+1. <0, k=1,.., M,
where Py € S}, cx e R, € R, k=0,1,..., M. Convex QP and QCQP programs can
be solved efficiently using interior-point methods [17].
Second-order cone programming (SOCP)

Second-order cone programming is a class of non-linear, but convex, optimization
problems which is a generalization of QP and deals with the following conic con-
straints [19]:

Quadpratic cone:

x> x?, x; >0,xeR" (2.9)

Rotated Quadratic Cone:

=

2x1Xp > sz., x1,% > 0,x € R" (2.10)
=3

An SOCP program has the following form [17]

minimize ¢'x (2.11)

subjectto a;x<b;, j=1,..,]

|Ax + bl < & x+dy, k=1,..K

where x € R", A, € R & e R, b, d, e R, k=1,..,K. When& =0,k =1,..,K, the
SOCP program is equivalent to a QCQP program. SOCP programs can be efficiently

solved via specialized interior-point methods.

Mixed-integer programming (MIP)

Mixed-integer programming is a class of non-convex optimization problems that

includes both continuous and integer variables:

21



minimize  f(x) (2.12)
subjectto g¢i(x)<0, j=1,..]

lix)=0, i=1,..1

xo €72, w=1,.., W

where W < n denotes the set of variables that are constrained to be integers. LP, QP,
and SOCP programs that include integer variables are called mixed-integer linear
programs (MILP), mixed-integer quadratic programs (MIQP), and mixed-integer
second-order cone programs (MISOCP), respectively. MIP programs can be used in

a wide set of practical applications [20]:

o Problems with discrete inputs and outputs. For example, integer variables may be

used to represent indivisible goods such as aeroplanes and cars.

e Problems with logical conditions. For example, if task A is assigned, then task C
must be assigned as well. Integer variables with extra constraints can be used

to represent logical conditions.

e Combinatorial problems. There are several practical problems that have the
characteristic of a very large number of feasible solutions arising from different
combinations of allocating items or people to different positions. For example,
the unit commitment problem aims to find the feasible set with the committed
generating units that minimize the total operational cost for the considered
time horizon. In this problem, binary (integer) variables are used to indicate if

a generating unit is committed or not.

e Non-linear and non-convex problems. For example, a non-linear and non-convex
function may be approximated using several linear segments (piece-wise linear
approximation) and integer variables. Thus, the original non-linear and non-

convex problem may be formulated as an MILP program.

MIP optimization problems can be solved optimally using the branch-and-bound
method; however, their execution time increases exponentially as the problem size

increases, while large problems may be intractable [20].
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2.2 Multi-objective optimization (MOO)

Optimization problems that involve more than one objectives to be optimized si-
multaneously are called multi-objective optimization problems. There are several
practical problems that have several objectives; for example, in automotive design
the objectives may be to maximize the performance and minimize the fuel consump-

tion of a vehicle.

221 Statement of an MOO problem

An MOO problem is expressed as [21]

minimize F(x) = [fi(x), f2(x), ..., fL(X)] (2.13)

subjectto g¢i(x) <0, j=1,..,]
L(x)=0, i=1,..1,

where fi(x), f2(x), ..., fu(x) are the considered objective functions.

In MOO problems the objectives are usually conflicting, thus there is not a single
solution point that minimizes all objectives simultaneously. On the contrary, there
are multiple Pareto optimal points, which are defined as the solution points where
it is not possible to move from that points and improve the value of one objective
function without deteriorating the value of another objective function. The set of all
Pareto optimal points is called the Pareto front (or Pareto frontier or Pareto set) [21].
Figure 2.4 demonstrates the Pareto front of two conflicting objective functions, f;(x)
and f,(x), that are minimized simultaneously. The figure indicates the Pareto optimal
points that denote a trade-off solution between the objectives. Usually, the trade-off
solution point is selected based on the preferences of a human decision maker, e.g.,
the vehicle manufacturer. However, the selection of a trade-off solution point is
challenging in real-time applications, where a point that provides a fair trade-off

solution should be always selected during the operation process of a system.

2.2.2 Methods

Weighted-sum

The most widely used method for solving MOO problems is the weighted-sum

method, where the optimization problem (2.13) with the multiple objectives is trans-
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Figure 2.4: The Pareto front of two conflicting objective functions, fi(x) and f»(x). Solution

points A and B are Pareto optimal, while C is feasible but not optimal.

formed into an aggregated single objective optimization problem [21]:

minimize F(w) = w; f1(x) + wa fa(X), ..., w fL(X) (2.14)
subjectto g¢i(x)<0, j=1,..]
Lx)=0, i=1,..1,

where w = [wy,wy, ..., w], Zlel w; = 1 are the weighting parameters that control
the trade-off between the objectives. Specifically, different Pareto optimal points are

obtained for different values of w.

Lexicographic optimization

The lexicographic method is used to solve multi-objective optimization problems
considering that the objective functions can be ranked according to their importance,
instead of assigning weights. Specifically, in lexicographic optimization L objective
functions, fi(x), =1, ..., L, are to be optimized on a feasible set x € X in a lexicographic
order such that f;(x) has higher priority than f.1(x) [22]. This means that low priority
objectives are optimized as far as they do not affect the optimization of higher priority

objectives. Let us denote the L-objective lexicographic optimization problem by

lexmin {f1(x), f2(x), ..., fL(X)} (2.15)

subjectto x € X,
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where the feasible set x € X is defined by the inequality and equality constraints
g1(x) £0,...,g/(x) <0and L1(x) =0, ..., [;(x) = 0. Optimizing problem (2.15) requires

the solution of L optimization subproblems with the /th one defined as

minimize  fi(x) (2.16)
subjectto  f,(x) < fu(x,,), m=1,.,I-1, (2.17)
x € X,

where x;, denotes the optimal solution of the m-th subproblem. Then, the optimal

solution to problem (2.15) is x7, which is also a Pareto optimal point.

2.3 Model predictive control

Model predictive control (MPC) is an advanced method of process control that
is used to control a process or plant [23,24]. As shown in Figure 2.5, the MPC
method utilizes a plant model to control the plant, defining the control set-points, by
predicting the plant output at future time instants over a specific time horizon. This
method uses as input data to the plant model the latest measurements of the plant as
well as predicted and historical data. The plant operation is optimized through the
solution of an optimization problem that minimizes an objective function subject to

the plant model and other physical constraints as follows

T
min Z fi(x:) (2.18)
t=1

st. giu(x) <0, j=1,.,JteT
li’t(Xt) = 0, i= ]., ...,I,t S T,

where 7 = {1, ..., T} denotes the considered time horizon and decision variables x;,
t € T, denote the control set-points for each time instant £.

MPC, also known as receding horizon control, solves repeatedly the optimization
problem of the plant model, using updated input data, and sends control set-points
to the plant. Specifically, the following steps are applied in every AT (time-slot
length) hours [24]:

1. The optimization problem (2.18) of the plant model is solved to define the
control set-points x;, Yt € T, by optimizing the plant operation over a moving

time horizon.
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Figure 2.5: Model predictive control framework.

2. The first control set-point x;-; is sent to the plant, while the next control set-
points are neglected, x;, Vt = {2,3, ..., T}. This is because in every iteration of the
MPC method new information is available, e.g., predicted data and real-time
measurements, thus the horizon is shifted towards the future and step 1 is

repeated using the updated input data.

The MPC method is widely used for industrial applications because it addresses
well prediction uncertainty and modelling inaccuracies through the use of the re-

ceding horizon concept [23,24].

2.4 Scenario-based stochastic optimization

Decision-making problems in the real world, e.g., in fields such as engineering,
economics, and finance, frequently involve uncertainty. However, decisions must
be made even with lack of perfect information. One way to address this issue is with
the use of scenario-based stochastic programming.

Scenario-based stochastic optimization is widely used in power systems to solve
optimization problems under different uncertainty sources, e.g., RES power gen-
eration. This approach uses representative scenarios to capture a wide range of
possible realizations of the underlying stochastic processes (e.g., day-ahead RES
generation) [25]. Let S = {1, ..., S} denotes the scenario set, u; the vector of values
associated with scenario curve s € S, and ¢; the associated weight of scenario curve
s, such that } . .gs¢s = 1. The goal of scenario-based stochastic formulations is to

optimize the expected value of the objective function. This value is computed as a
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weighted average across all scenarios [26], yielding the optimization formulation

minimize Z Qs f(x,us,Ys) (2.19)

seS

subjectto  gi(x,u,,y;) <0, j=1,.,] s=1,..,5§
lix,us,y:) =0, i=1,.,I, s=1,..,5

where vectors x and y,, s = 1,..., S, denote the scenario-independent and scenario-
dependent variables, respectively.

The effectiveness of the scenario-based stochastic optimization problem (2.19)
depends on the representative scenarios that characterize the stochastic processes.
To improve the accuracy of the optimization results, the scenarios should be diverse
enough to cover the range of all possible outcomes. However, selecting a large
number of scenarios increases the computational complexity of the resulting prob-
lem. A problem can even become computationally intractable when the considered
problem is non-convex. Therefore, a main challenge in scenario-based stochastic op-
timization is to find a good trade-off between computational efficiency and solution

quality by appropriately selecting representative scenarios [25,26].
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Chapter 3

Optimization of general energy
management problems in power
systems involving non-convex ESS

models

Energy storage systems (ESSs) are increasingly used in power system optimization. Dif-
ferent ESS mathematical models are developed that consider nonlinear functions for power
losses. However, these models require non-convex constraints to represent the ESS losses,
resulting in challenging optimization problems. To reduce the complexity, convex relaxation
models are often derived but generate infeasible solutions when the relaxation exactness is
violated. To deal with this issue, this work develops two successive convexification algorithms
that generate fast and high-quality feasible solutions when the derived solution is not exact.
The first algorithm handles general loss functions, while the second algorithm enhances per-
formance when piecewise-linear loss functions are used. Specifically, the algorithms reduce
the feasible region of the relaxed ESS models using a tightening box trust region around the
current solution in successive iterations. The proposed algorithms are applied to the Unit
Commitment and Peak Shaving and Energy Arbitrage problems to investigate their perfor-
mance considering piecewise-linear and quadratic ESS loss functions. Simulation results
demonstrate the impact of the ESSs relaxation violation on the actual system operation and
validate the algorithms efficacy to generate high-quality feasible and even optimal solutions

with significantly lower execution times compared to problems utilizing exact ESS models.
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3.1 Introduction

The increasing utilization of ESSs in power system applications necessitates the use
of mathematical models for their representation in power system optimization prob-
lems. Different ESS models have been proposed that utilize non-convex constraints
to represent the ESS power losses, e.g., using piecewise linear and quadratic loss
functions [27], resulting in non-convex optimization problems. To solve these chal-
lenging problems, relaxed ESS models are often derived by relaxing the non-convex
constraints. The relaxed ESS models reduce the problem complexity because they
are convex, making them suitable for real-time online energy management, e.g, us-
ing model predictive control. However, the relaxed models yield infeasible solutions
when the derived solutions are not exact.

The relaxed ESS models have been used in [28-33] to formulate convex optimiza-
tion problems, which can be fast and reliably solved. These optimization problems
manage the ESSs operation in active distribution grids [28-30], transmission net-
works [31] and microgrids [32]. Although the exactness of relaxed ESS models is
shown to hold in some optimization formulations [28, 30, 33], they can be non-exact
in other formulations [31].

The relaxed ESS models are also used in non-convex mixed-integer optimization
problems, which are hard to solve, to reduce their computational complexity by
decreasing the number of binary variables [34-38]. Specifically, the relaxed ESS
models are utilized in various unit commitment problems that consider electric
vehicles [34], stochasticity of RES [35], and contingencies [36], as well as in expansion
planning (EP) problems [37,38]. Although the relaxation exactness is shown to hold
under some conditions in [36] and [37], two examples where the relaxation exactness
is violated in the UC and EP problems are presented in [39].

There are two approaches for dealing with potential violation of the exactness
of the ESS relaxed constraints. The first approach is to prove their exactness un-
der all or specific conditions to guarantee feasibility of the considered problems.
The relaxation exactness is ensured for different formulations under some sufficient
conditions [30, 33, 34,40], but these conditions limit the applicability of the relaxed
ESS models. The second approach is to develop methodologies that find feasible
solutions when the derived solutions result in non-exact ESS constraints. In [31], a

penalty term is added in the optimization objective function to avoid simultaneous
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charging and discharging, generating feasible solutions. However, this approach
is applicable only to a specific piecewise-linear ESS model and requires a proper
tuning of the penalty parameter because small values may yield infeasible solutions,
while large values may lead to non-optimal solutions. In fact, tuning needs to be
performed separately for each problem instance, limiting the applicability of this
method.

This chapter develops two convexification algorithms that yield fast and high-
quality feasible solutions when the derived solution using relaxed ESS models is not
exact. The first algorithm considers various ESS models with different loss functions,
while the second specialized algorithm enhances the algorithm performance when
piecewise-linear ESS models are used. Specifically, both algorithms reduce the fea-
sible region of the relaxed ESS models in each iteration using a trust region around
the obtained solution. The performance of the proposed algorithms is investigated
by considering two optimization problems in power systems that incorporate ESSs:
(a) the Unit Commitment and (b) the Peak Shaving and Energy Arbitrage (PSEA). These
problems were appropriately selected to study the impact of the relaxation violation
on the actual system operation, because they can generate non-exact solutions when
the relaxed ESS models are used. Simulation results validate the effectiveness of
the proposed algorithms to yield high-quality feasible and even optimal solutions
with significantly lower execution times compared to problems utilizing exact ESS
models. To the best of our knowledge, this is the first work that develops convex-
ification algorithms that deal with potential violation of the exactness of the ESS
relaxed constraints considering general power loss functions.

The rest of the chapter is organized as follows. Section 3.2 states the examined
problem and Section 3.3 describes the considered ESSs models. The proposed algo-
rithms are presented in Section 3.4 and the UC and PSEA problems are formulated
in Section 3.5. Simulation results are shown in Section 3.6 and conclusions are given

in Section 3.7.
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3.2 Problem statement

3.2.1 Generic ESS model

The generic ESS model used in power system optimization problems is expressed in
discrete time and describes the evolution of the ESS state-of-charge (SoC') over time

based on the charging/discharging power and power losses, given by
Cis1x = Cox + AT(=P;, = Pyy), VteT ke K, (3.1)

where 7 = {1, ..., T} denotes the considered time horizon and AT the time-slot length
in hours; K = {1, ..., K} denotes the set of ESSs, and K the number of the considered
ESSs. Variables Cyy, P;, and Py, denote the ESS SoC, discharging (P}, > 0) or charging
(Pf,k < 0) power, and power losses, respectively. The ESS energy and power limits

are set as

Cox=I C,<Cix<Ci, VteT ke, (3.2a)
=S
Bf,k = Pts,k < Py, Vte T, keK, (3.2b)

— =5
where constants C, and C; denote the minimum and maximum SoC limits, P, and

Bﬁ . the discharging and charging power limits, and I; the initial SoC.

3.2.2 ESS power losses

Several ESS models have been proposed in the literature that consider different
functions to represent the ESS power losses in (3.1), depending on the ESS technology.
Lossless ESS Model. This is the simplest but most unrealistic model given by

Ptle:O, Vte T, keXK. (3.3)

Piecewise-linear ESS Model. This is the most widely used model that represents

electrochemical storage technologies [27]. It is defined as
Pi =elPl, VteT keXk, (3.4)

where ¢, is a positive power loss coefficient. The absolute value in (3.4) is used to

avoid negative losses when P?_ < 0; thus, the power losses are represented by two

1S0C refers to the ratio between the energy stored in an ESS and the ESS capacity given in %. This
work refers to the SoC as the energy stored in an ESS in Wh.
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piecewise-linear segments. Note that the model in (3.4) can be reformulated using
a constant charging/discharging efficiency and two separate variables for charging
and discharging [29,30,33]. A variation of the piecewise-linear model in (3.4), where

the power losses are proportional to [P?,| and C; [27], is defined as
Pl = elPS,| +¢Ci, Vte T, kek, (3.5)

where ¢, is the losses coefficient associated with the SoC.
Quadratic ESS Model. The quadratic model is also used for electrochemical storage
[27], given by

Py =€l(P}), VteT ke, (3.6)

where ¢! is a positive losses coefficient. Using (3.6), high charging/discharging power
rates are “penalized”, because increased power losses are generated.
General ESS Model. To represent various power loss functions using one ESS

model, we define the general model as
Py = 4P}, Cip), VteT ke, (3.7)

where g(PtS,k' Cix) denotes the power loss function. For example, g(ng, Cix) = ekIPf/kI

and §(P% , Cyy) = eZ(Pf, k)2 when the ESSmodels in (3.4) and (3.6) are used, respectively.

tk’

3.2.3 Optimization formulation

The general ESS model (3.1)-(3.2b), (3.7) can be used in an optimization problem
to allow the optimal energy scheduling of ESSs incorporated in a power system
application. Let P, PL, and C denote the vector forms of the variables Pf’k, PtL/k,
and Cy, Vt € 7,k € K, respectively. Let also vector y denote all the ESS variables,
y = {P5,PL,C}, and vector x denote the rest design variables of a problem under

consideration. Such an optimization problem, can be stated as

minimize f(x,y) (3.8a)
subjectto gi(x,y) <0, j=1,..,] (3.8b)
Ihix,y)=0, h=1,.,H, (3.8¢)
(3.1) — (3.2b), (3.7) (3.8d)

where f(x,y) is the objective function and g;(x, y) and I,;(x, y) are the inequality and

equality constraints associated with the considered problem, respectively. Problem
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(3.8) is convex, which can be fast and reliably solved, when (a) f(x,y) and gi(x,y) are

S

convex functions and (b) /,(x,y) and g(Ptlk,

Cix) are affine functions [17]. However,
constraint (3.7) is non-convex in the general case because function g(Pfk, Ciy) is
nonlinear; hence, Problem (3.8) is non-convex and hard to solve. To address this

issue, (3.7) can be relaxed to an inequality constraint, yielding the relaxed problem

minimize f(x,y) (3.9a)
subject to (3.1) — (3.2b), (3.8b) — (3.8¢), (3.9b)
Py 2 §(P;,, Cip), Vte T, keK. (3.9¢)

Constraint (3.9¢) is convex when function g(Pik, Cix) is convex, e.g., using the
power loss functions of the piecewise linear and quadratic ESS models. Therefore,
the relaxed problem deals with power losses using nonlinear convex constraints.
The relaxed problem generates the optimal solution of the exact problem (3.8) when
the relaxation exactness is satisfied, i.e., equality is attained in constraint (3.9c). Oth-
erwise, the solution is infeasible because increased ESS power losses are generated,
which means that more energy is wasted than prescribed by the power loss function.
In addition to generating fast and reliable solutions when the relaxed problem is con-
vex, a significant computational time reduction can also be achieved even when the
formulated relaxed problem is a mixed-integer program, i.e. when x includes integer
variables.

Obtaining equality in constraint (3.9c) when solving the relaxed problem (3.9)
implies relaxation exactness and hence optimality for problem (3.8). Nonetheless,
little attention has been given to cases where the relaxation is not exact. This work
aims to develop solution methodologies that yield fast and high-quality solutions
to (3.8) under different ESS models, even when the solution of (3.9) is infeasible for

(3.8).

3.3 Energy storage models

This section formulates the exact and relaxed versions of the piecewise-linear and

quadratic ESS models and presents the feasible region of their power losses.
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3.3.1 Piecewise-linear ESS models

Exact Model E;. The loss function in (3.4) is reformulated to define the discharging

and charging power losses

Pl =Py, Pri=(=¢)P;, VteT kek, (3.10)

tk” tk’

where ¢/ and ¢ denote the positive discharging and charging losses coefficients.

Note that Pth > 0and Pthc < 0when P}, > 0 (discharging), while Pth <0and PthC >0

when P?, < 0 (charging). Therefore, the power losses are defined as the maximum

between P and P}7, given by

Pl = max(Pi{, Plf), Vte T, kekK. (3.11)

Lk’ t,

Constraint (3.11) is non-convex and logical constraints with binary variables are
needed to represent it. An alternative way to handle constraint (3.11) is by replacing
Pik with separate variables for the charging and discharging power, P¢, > 0 and

tk =
P! >0, defined as

S _pd _ pc
Pt,k_Pt,k p

tk’

VteT , keXK. (3.12)
Using (3.12), the power losses in (3.10)-(3.11) are reformulated as

Py, =P} + &P, VteT kek, (3.13a)

ReAL P, Vie T, keK. (3.13b)

The non-convex complementarity constraint (3.13b) ensures non-simultaneous charg-

ing and discharging, such that P}, = ¢[P{, and P}, = e;P{, when P;, > 0 and P}, <0,

respectively. Replacing (3.12)-(3.13a) in (3.1) yields the widely-used model formula-
tion [29,30,33] given by

Criak = Cox + AT(=PL /nf + 0iP5)), Ve T, ke, (3.14a)
0<Pl <P, 0<P, <IP5), VteT kek, (3.14b)
Constraints (3.2a), (3.13b), (3.14¢)

where constants 7; = 1/(1 + ei) and 7, = 1 — ¢; denote the discharging and charging
efficiency coefficients. The complementarity constraints (3.13b) can be modelled

using type 1 special ordered set (SOS-1) constraints, as SOS—l(P‘Z P
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g

Charging/discharging power (P*)

Figure 3.1: Power losses of the exact and relaxed versions of the (a) piecewise linear and (b)
quadratic ESS models as a function of the charging/discharging power. The blue solid lines
have the dual role of (a) presenting the feasible region of the exact models, indicating the
actual losses, and (b) providing lower bounds on the power losses with respect to the relaxed
models. Similarly, the red dashed lines provide upper bounds on the power losses, such that
the shaded areas are the feasible regions of the relaxed models. For ease of representation

we omit indices ¢, k from the variables in the figure.

Relaxed Model R;. Deriving the convex hull of constraint (3.11) yields the relaxed

model as

Constraints (3.1) — (3.2b) (3.15a)
Py 2 elP}, Pz (-¢)P;,, VteT, ke, (3.15b)
Py < eflPy |+ a(P + |PLD), Vte T ke K, (3.15¢)

—s —s
where constant a;; = (eZPtrk - e,C(IBf, N/(P e + |g§k|). Affine constraints (3.15b) and
(3.15¢) provide lower and upper bounds on the power losses according to (3.11),

creating the feasible region shown in Figure 3.1(a).

3.3.2 Quadratic ESS models

Exact Model Ej. The exact quadratic ESS model is set as

Constraints (3.1) — (3.2b), (3.6). (3.16a)
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The non-convex quadratic constraint (3.6) can be modeled using bilinear constraints,
but solving problems with bilinear constraints optimally is computationally expen-
sive [41].

Approximate Model Ex. To reduce the computational complexity of Model E,
the non-convex quadratic constraint (3.6) is approximated using a piecewise-linear
function with N linear segments. Specifically, N + 1 points, N' = {1,..., N + 1}, on
the Cartesian plane with coordinates (£,, ), n € N are selected, where %, and 7,

correspond to the values of P° and Pt

Tk - Tespectively. Since two adjacent points can

be used as the endpoints that represent a linear segment, the approximate model is

given by

Constraints (3.1) — (3.2b) (3.17a)

PS= Y i, Vte T keXk, (3.17b)
neN

Pl = Z Dl iions Vte T kek, (3.17¢)
neN

Z Aign =1, Vte T keX, (3.17d)

neN

SOS-2: {At,k,ll /\t,k,Zr , At,k,N+l }, Yt e T,k € (](, (3176)

where A, , are positive continuous variables which correspond to one specific point.
The type 2 special ordered set (SOS-22) constraints (3.17e) ensure that the points lie
on the piecewise linear curve [20]. Although approximating the quadratic loss
function selecting a large number of linear segments reduces the approximation
error, the computational complexity increases. Figure 3.2 shows an example of the
piecewise-linear approximation with N = 4 and N = 20.

Relaxed Model R(,. Deriving the convex hull of the feasible set of constraint (3.6)

yields the following relaxed model

Constraints (3.1) — (3.2b) (3.18a)
Py, > el(P;)?, Vte T, ke K, (3.18b)
P <el(P)) + &Py + P, Ve T ke K, (3.18¢)

where constant &, = (eZ(ﬁtS/k)2 — eZ(Bf,k)z) / (ﬁf’k + IB;C: /). The convex quadratic and affine
constraints (3.18b) and (3.18c) provide lower and upper bounds on the power losses

according to (3.6), creating the feasible region of Figure 3.1(b).

2The SOS-2 constraint involves an ordered set of variables where at most two adjacent variables

in the set can take non-zero values (see [20], Section 9.3).
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Figure 3.2: ESSs power losses as a function of the charging/discharging power for Models
Eg and Ex: (a) N = 4 and (b) N = 20 linear segments are considered for the piecewise linear

approximation in Model Ex.

3.3.3 Relaxation exactness and tightness

The Relaxed Model R; provides the same solution with the Exact Model E; when
equality is attained in one of the two constraints in (3.15b), otherwise increased
power losses occur. Similarly, the Relaxed Model R, is exact when the equality is
attained in (3.18b). Figure 3.1 depicts the feasible region of the power losses for both
the exact and relaxed versions of the piecewise linear and quadratic ESS models. As
can be observed, Models R; and R are tight because the feasible region of these
models is the convex hull of the feasible region of the corresponding Exact Models

E; and Ey,.

3.4 Solution methodology

This section proposes a methodology to generate fast and high-quality feasible so-
lutions, using the relaxed problem (3.9), when the relaxed ESS constraint (3.9¢c) is
not exact. Specifically, two successive convexification algorithms for (a) general ESS
models (SCA-GN) and (b) piecewise-linear ESS models (SCA-PL) are developed.
Algorithm SCA-PL is a specialized version of SCA-GN to enhance the algorithm
performance when piecewise-linear loss functions are used. Thus, only Model R;,
and both Models R; and Rg can be used in Algorithms SCA-PL and SCA-GN, re-
spectively. Towards this direction, we define the optimization formulations P} and

]Pg that integrate Models R; and R, respectively, and are utilized by the proposed
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Figure 3.3: Examples of Algorithm SCA-GN using Model R (a)-(c) and Algorithm SCA-PL
using Model R;, (d)-(f) over iterations g = {0, 1, 2}.

algorithms as

minimize (3.8a)

PR .

"] subjectto (3.8b), (3.80), (3.15a) — (3.15¢).
R minimize (3.8a)

]PQ:

subject to  (3.8b), (3.8¢c), (3.18a) — (3.18c).
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3.4.1 Algorithm SCA-GN

The main idea of Algorithm SCA-GN is to reduce the relaxed feasible region of the
ESS power losses, depicted in Figures 3.1(a) and (b), in successive iterations using
a tightening box trust region around the current solution. Specifically, as shown in

Figures 3.3(a)-(c), the relaxed feasible region is reduced by adjusting the maximum

S@)

P based on a trust

5(
discharging and charging power limits in iteration g, P,, and P

region around the ESS power set-points, Ps(q

, obtained in the previous iteration
g — 1. Feasible solutions are obtained for Algorithm SCA-GN when the relaxation

exactness condition is satisfied Yt € 7, k € K, defined as

g‘(PtS](j)’ C(Li)) < PL(fi) < g(Pfg)’ C(fi)) +p, (319)

where parameter p > 0 denotes the maximum approximation error. Note that
feasible solutions are generated according to (3.7) when p = 0. However, similarly
with the Approximate Model Ex, an approximate solution can also be obtained when
p > 0. For example, an approximate solution for Algorithm SCA-GN is presented in
Figure 3.3(c) when p = 0.08.

Algorithm 1 summarizes the proposed procedure utilizing Problem IPX, i = {L, Q}.
Initially, Problem le is solved (Line 3) such that the obtained solution is feasible
when condition (3.19) is satisfied; otherwise, the iterative procedure is executed
(Lines 7-16). Algorithm SCA-GN considers a “trust region” length Liqk) that defines
the relative distance between the maximum charging and discharging bounds in
iteration ¢, P S(q) and Ptk , initialized as L(O) |P ks Pt ¢ (Line 7). The region length
Liqk) is reduced in each iteration g according to Line 10 of Algorithm 1, where the
coefficient 0 < 0 < 1 controls the “trust region” length. Next, the new bounds ﬁf}q)
and Bs(q) are calculated according to Lines 11-12 based on the L(q) and the ESS power

set-points, P2~V

P "9 and b, q) are within the ESS power limits ﬁf’k and Bf”k. Finally, Problem P} is

, obtained in the previous iteration 4 — 1. Lines 13-14 ensure that

solved using the new bounds P\ k " and Ps(q (Line 15). Algorithm 1 converges when
condition (3.19) is satisfied or when all Liqk) , YVt € T,Vk € K, become smaller than the
algorithm tolerance € (Line 8).

The solution quality and execution speed of Algorithm SCA-GN is dependent
on the coefficients p, € and 0. Small values of p are desirable because they reduce

the approximation error, but increase the number of iterations and hence the exe-

cution time of Algorithm SCA-GN. Note that the tolerance € is only used to ensure
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Algorithm 1: SCA-GN
1: Input: p, 0, €, 1.

2: Init. g = 0.

S@) (:(q)

L(q)
tk 7 tk’ )

3: Solve IPX to obtain x and y@ (P

4: if condition (3.19) is satisfied then

5 Return x = x@, y = y@.

6: else

Set L = WA+PMVM€TkeW

while (t max (L, q)) > ¢€) and ((3.19) is violated) do
9: Setg=q+1.

10: Set L\ = L""V(1-0), Vte T, keX.

11 Stg?_PW”+oa@ VieT, ke.

N

*

tk tk’
12: SaPW> P — 051, Ve T, keXK.

13: Set D, k = mm(Pt ks Pt;q)), VteT , ke K.

14: Set P\ = max(P},, P)Y), Vte T, keX.
15: Solve P to obtain x@ and y*

16:  Return X = x@, y = y®@.

convergence of Algorithm 1 when condition (3.19) cannot be satisfied, yielding ap-
proximate solutions; thus, € should be selected sufficiently small. Moreover, large
values of ¢ reduce the number of iterations but may generate sub-optimal or in-
feasible solutions for Problem ]Pf. In contrast, small values increase the number of

iterations but improve the solution quality.

3.4.2 Algorithm SCA-PL

Algorithm 2, which is an extension of Algorithm 1, utilizes only Problem ]Pf and

S(q) until one of the two parameters become negative or

varies the bounds P.. k  and r,
positive, respectively. Then, the corresponding parameter is set equal to zero and
the other parameter is set equal to its initial value (Lines 2-5) to consider the whole
charging or discharging segment, improving the algorithm performance in terms of
solution quality and execution speed. An example of Algorithm SCA-PL using the

Model R; is shown in Figures 3.3(d)-(f).
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Algorithm 2: SCA-PL

1: Lines 1-14 of Algorithm 1.
: ifﬁiﬁj) <0, Yte T, ke XK then
3 SetD,, =0, PV =p°.
4: ifBijj) >0, Vte€ T, ke K then
5 SetP'” =0, P, =P,
6: Lines 15-16 of Algorithm 1.

N

Remark

Algorithm SCA-GN can be used for any convex power loss function, g(Pf{ v Cix), and
Algorithm SCA-PL for any piecewise-linear loss function, e.g., see (3.5). This can
be achieved by (a) relaxing the non-convex ESS power losses constraint (3.7) to the
convex constraint (3.9c), and (b) introducing upper bounds on the power losses in

the formulation of the relaxed problem such that

P <3P, C), VteT ke (3.20)

S

Function g(P?,,

Cix) must be constructed in a way such that constraints (3.9c) and

(3.20) define the convex hull of the exact feasible region, defined by (3.7).

3.5 Power system optimization problems

The performance of the presented ESS models and the proposed algorithms is inves-
tigated by considering two different optimization problems in power systems, the

UC and PSEA.

3.5.1 Unit commitment

The UC problem schedules the generating resources to satisfy the load demand over
a time horizon by minimizing the total cost of operation. Based on the simplified UC
problem in [39], this problem schedules the conventional generating units and ESSs
to ensure the power balance between generation and demand, including ramping
constraints of the units. Let G = {1, ..., G} denotes the set with the generating units
and variables Pfg and z;, € {0,1} denote the generating power and on/off status of

the unit ¢ € G at time t € 7, respectively. The objective is to minimize the quadratic
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cost functions of units. The considered problem, denoted by U is given by
minimize ATZ Z(agzt,g + BgPE, + Po(PS)?) (3.21a)
teT” geG

subject to:

2i4PS < Pj < zi4P), VteT Vgeg, (3.21b)

—G
Py, =Py S AT(R{zi 1 + Re (205 — 2119)) + Po(1 = 2z4g), t€{2,..,T), Vg €G,

t-1,¢ —
(3.21c¢)
—G
Py o= Ply S AT(Rzig + ReP (21, = 20g)) + Py (1= 2zim1g), t€(2,..,TIVgEG,
(3.21d)
Z P, + Z PS, =D, VteT, (3.21e)
8€G keK
ESS Model, (3.21f)

where constants &, B ¢ and Y, denote the coefficients of the quadratic cost function
of unit ¢ € G. In objective (3.21a), the fixed cost &, is included in the objective only
when the unitison, i.e., z;, = 1. Constraint (3.21b) ensures that the power generation
of unit ¢ € G at time t € 7 is between its minimum and maximum limits (Bg, ﬁg)
when z;, = 1; otherwise, Pfg = 0 implying that the unit is off. Ramp-up constraints
in (3.21c) limit the power increment of unit ¢ € G between two consecutive time
intervals, where constants Rg and Rz;u denote the generation upward and start-up
ramp rates. Similarly, ramp-down constraints are set in (3.21d), where constants R}
and R;D denote the generation downward and shutdown ramp rates. Constraint
(3.21e) ensures the power balance between produced power from the units, ESSs
discharging/charging power, and load demand D;. Similar to [39], start-up and
shutdown costs, minimum up and down times, and reserves are neglected. The
following five optimization problems are derived by integrating the ESS models in

Problem U:

e U} and Uf;: Use the Exact Models E; and Eq.
e UX: Uses the Approximate Model E.

e Uf and Ug: Use the Relaxed Models R; and Ro.

When Model Ey is used, P?, is replaced by P{, —P; in (3.21e). Utilizing the Relaxed
Problems U} and UJ in Algorithms SCA-GN and SCA-PL yield three additional

problems:
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e U and Uj): Use U} and U in Algorithm SCA-GN.
e U:: Uses UR in Algorithm SCA-PL.

Problems UF, Ug, and UX are MIQPs with SOS-1, bilinear, and SOS-2 constraints,
respectively. Problems UF, U, and U2 with the relaxed ESS models are MIQPs,

while UR and U4! are mixed-integer quadratically constrained quadratic programs
0 0 ger q y q prog

(MIQCQPs).

3.5.2 Peak shaving and energy arbitrage

This problem considers the integration of a single ESS, K = {1}, in a high to medium
voltage (HV/MV) distribution substation for peak shaving and energy arbitrage pur-
poses. As shown in Figure 3.4, an ESS is utilized to absorb [provide] power from
the distribution grid to eliminate the reverse [direct] power limit violations of the
substation transformer, enabling an increased RES penetration and load demand
growth. Moreover, the ESS is used to maximize profits through energy arbitrage in
electricity markets by buying and storing energy when prices are low and selling
when prices are high [42]. Towards this direction, an optimization problem is for-
mulated to maximize the arbitrage profit and minimize the square of the violated

power, x;, YVt € 7. The considered problem, denoted by S is given by

minimize AT Z(—@Pf + Wxd) (3.22a)
teT

subject to: BF —x; < Pf < ﬁF +x;, YteT, (3.22b)

Pt+P; =Df, VteT, (3.22¢)

ESS Model, (3.22d)

where variables P! denote the transformer power. Constants ¢; denote the electricity
price for buying and selling power at time ¢, P", P the reverse and direct power
limits of the transformer, and D! the predicted net-load demand of the distribution
grid. Soft constraints (3.22b) restrain the transformer power within its limits, because
variables x; are penalized in the objective (3.22a) with a penalty coefficient W. To
protect the transformer, the value of W must be sufficiently large such that the
arbitrage profitis maximized as far as it does not create power violations. Constraints
(3.22¢) ensure the power flow balance between the distribution substation, the ESS

and the distribution grid. The following five optimization problems are derived by
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Figure 3.4: Peak shaving service to an HV/MV distribution substation.

incorporating the ESS models in Problem S:
e S} and S§;: Use the Exact Models E; and Eg.
e SX: Uses the Approximate Model Ex.
e S{and Sf: Use the Relaxed Models R; and Ry.

When Model E; is used, P; is replaced by P? — P¢ in (3.22a) and (3.22¢). Using the
Relaxed Problems Sf and Sg in Algorithms SCA-GN and SCA-PL yield problems:

e S and S7': Use S} and Sf in Algorithm SCA-GN.
e S#2: Uses SF in Algorithm SCA-PL.

Problems S, Sg, and SX are non-convex QPs with SOS-1, bilinear, and SOS-2
constraints, respectively. Problems SF, S#!, and S{ are convex QPs, while Sg and

Sgl are convex QCQPs.

3.6 Simulation results

This section evaluates the performance of the ESSs models and the proposed algo-
rithms applied in the UC and PSEA problems. All problems in Section 3.5 are coded
in Matlab and solved using optimization solver Gurobi [43] on a personal computer
with 16 GB RAM and an Intel Core-i7 2.11 GHz processor. The algorithm parameters
p and € are set to 0.001 and 0.0001, respectively. To examine the solution quality of
Problems UF, UM, U#?, SX, S*, and S?, i = {L,Q}, the optimality gap metric is

considered that defines the relative distance between their solution value and the
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Table 3.1: Coefficients of generation units.

—G R ~ R
Bg P, g P Vs Ri;[ = R? = Rgu = Rgu
Unitl: 24MW 50MW 05 3.0 0.02 15 MW
Unit2: 24MW 50MW 5.0 199 0.04 15 MW

optimal solution

Solut. Value — Optim. Value

Optim. Gap = x 100%, (3.23)

Optim. Value

where the optimal value is obtained by solving the corresponding problems with
the exact ESSs models. The following cases can be observed depending on the value

of the optimality gap:

1. Optimality gap = 0: The optimal solution is generated if the ESSs relaxation is

exact.
2. Optimality gap > 0: A feasible non-optimal solution is derived.

3. Optimality gap < 0: The ESSs relaxation is non-exact and hence an infeasible

solution is generated.

3.6.1 Unit commitment

Setup. The simulation setup is composed of 2 conventional units and 6 ESSs pre-
sented in Tables 3.1 and 3.2 as well as the 24-hour load demand shown in Table 3.3,
defined as Scenario S;. Note that the ESSs efficiencies ¢ and 1 and losses coefficients
¢!, presented in Table 3.2, are used in the piecewise linear and quadratic ESS models,
respectively. In Table 3.4 we consider Scenarios S; — S¢ with an increasing number
of units and ESSs by (a) duplicating the units and ESSs of S; and (b) multiplying
the load demand profile with the load magnitude of Table 3.4. The scenarios were
selected in a way to yield non-exact solutions to Problems UF and Ug.

ESSs relaxation violation. This case study examines the impact of the ESSs relax-
ation violation on the solution of the UC problem, considering only the piecewise-
linear ESS model. Towards this direction, we consider Scenario S; but use the load
demand given in Table 3.5 with a time horizon of 5 hours, instead of 24 hours, for bet-

ter visualization of the results. The optimal results obtained from solving Problem
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Table 3.2: ESSs Coefficients.
— —s
G, Ci I Py=IPyl ni=n; ¢
ESS1: 1.0MWh 4.0MWh 3.0MWh 5.0MW 0.89 0.030
ESS2: 3.0MWh 65MWh 55MWh 55MW 0.91 0.020
ESS3: 05 MWh 15MWh 1.0MWh 15MW 0.88 0.025
ESS4: 05 MWh 1.0MWh 05MWh 05MW 0.92 0.018
ESS5. 05MWh 0.7MWh 05MWh 05MW 0.89 0.040
ESS6: 05MWh 0.7MWh 05MWh 05MW 0.91 0.019
Table 3.3: Load Demand I.
t (h) 1 2 3 4 5 6 7 8 9 10 11 12
ﬁt MW) 10 36 28 38 14 461 39 34 38 43 36 28
t (h) 13 14 15 16 17 18 19 20 21 22 23 24
ﬁt (MW) 38 14 49 40 28 17 14 22 29 39 49 38
Table 3.4: Simulation Scenarios.
Scenarios S S, S3 Sy Ss Se
Total Units 2 12 18 24 30 36
Total ESSs 36 54 72 90 108
Load Magnitude x1 X6 x9 x12 x15 x18
Table 3.5: Load Demand II.
t (h) 1 2 3 4 5
D (MW) 10 28 38 14 46.1

UL are demonstrated in Figures 3.5(a)-3.5(d), while the results generated from solv-
ing Problem UR are shown in Figures 3.5(e)-3.5(h). The generating power of the two
units is illustrated in Figures 3.5(a) and 3.5(e), indicating that UE commits both units
at4 —5h while Ulf commits only Unit 1. The total ESSs discharging/charging power
is presented in Figures 3.5(b) and 3.5(f) and the total ESSs SoC is depicted in Figures
3.5(c) and 3.5(g). The total ESSs energy losses based on the discharging/charging

power decisions are shown in Figures 3.5(d) and 3.5(h). The ESSs relaxation vio-
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Figure 3.5: Optimization results obtained by solving Problems Uf (a)-(d) and UIE (e)-(h): (a)
and (e) generating power of the conventional units, (b) and (f) total ESSs discharging/charging

power, (c) and (g) total ESSs state-of-charge, and (d) and (h) total ESSs energy losses.

lation in UR is indicated in Figure 3.5(h), for the interval [3,4] h, where the energy
losses resulting from the optimization solution are higher than the actual losses®. As
a result, the commitment of the “expensive” Unit 2 is avoided, yielding an operating
cost of 484.26 € which is 7.65% (optimality gap = -7.65 %) lower than the optimal
value of 524.36 €.

To study the impact of the relaxation violation on the real system operation, we
calculate the actual ESSs power set-points* assuming that the charging/discharging
decisions (see Figure 3.5(f)) are applied in actual ESSs with embedded primary

controllers. Figure 3.6 shows a total power imbalance of —0.27 MW in the interval

3The actual losses are calculated by applying the discharging/charging power decisions of the

optimization solution in the power loss function (3.7).
*The actual ESSs power set-points are calculated by assuming that the charging/discharging de-

cisions of the optimization solution are applied in actual ESSs. Note that actual ESSs are embedded

with primary controllers that ensure their power and energy limits.
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Figure 3.6: Total power imbalances occurring from the ESSs relaxation violation. The total
power imbalances are defined as the scheduled ESSs discharging and charging power minus

the actual ESSs power.

Table 3.6: Optimality gap (%) of Algorithms SCA-GN (U‘Lql and Ugl) and SCA-PL (Ufz) for

different values of o.

o 0.1 0.3 0.5 0.7 0.9 0.999
U‘L‘” 0 0 0.01 0.02 0.02 Infeasible
Ufz 0 0 0 0 0 1.45
Ugl 0 0 0 0.02 Infeasible Infeasible

[3,4] h due to the relaxation violation, because the primary controllers reduce the
ESSs charging power by 0.27 MW to ensure the SoC upper limits. The power
imbalance leads to infeasibility because Unit 1 cannot reduce its generation under
23.54 MW and in the next interval to produce 38.54 MW due to its ramp-up limit of
15 MW/h. Power imbalances in real operation can be compensated by maintaining
reserves, which is undesirable because it threatens the safe operation of the system.
Solution quality. This case study examines the efficacy of Algorithms SCA-GN
and SCA-PL to generate high-quality feasible solutions when Problems U and Ug
yield infeasible solutions due to the ESSs relaxation violation. Towards this direction,
Scenario S; is considered for 20 random load demand instances. Table 3.6 depicts the
maximum optimality gap derived from solving Problems Uf!, Uf* and UJ' for the
20 new demand instances under different values of 0. Algorithm SCA-GN generates
feasible solutions with less than 0.02% maximum optimality gap using the piecewise
linear ESS model (U#') when ¢ < 0.9; infeasible solutions are obtained for ¢ = 0.999.
Algorithm SCA-PL (U#?) always generates feasible solutions and yields optimal
solutions for o < 0.9, indicating the superiority of Algorithm SCA-PL compared to
SCA-GN when the piecewise-linear ESS model is used. When the quadratic ESS
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Table 3.7: Maximum number of iterations () of Algorithms SCA-GN (U‘L‘11 and Ugl) and
SCA-PL (U‘L“z) for different values of o.

o 0.1 0.3 0.5 0.7 0.9 0.999
U‘L“1 13 4 2 2 1 Infeasible
U‘L“2 13 4 2 2 1 1
Ugl 32 10 5 3 Infeasible Infeasible
E 15F R AT |
g I:IUQ1 -Ugg( (0 =0.5)
~ 10/ UG e = 0.7) IEU* (N = 20) |
-g Quadratic ESS models
S o7 (a) 2.97 |
9 0.610.91 0.8 1.26 =88
LE 0 1025 261 o 2 .
So Ss Sy
g 3F — — |
= I:IUﬁ2 U,
= | EmUPe =07) |
g Piecewise-linear ESS models
-+~ 1 N i
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Figure 3.7: Average execution times of the problems with the relaxed and exact ESS models
as well as the proposed algorithms when the (a) quadratic and (b) piecewise linear ESS

models are considered.

model is utilized, Algorithm SCA-GN (U)') yields (a) feasible solutions for o < 0.7
and (b) optimal solutions for o < 0.5. Table 3.7 shows the decrement of the algorithms
iterations q as the value of o increases, indicating that optimal solutions with a small
number of iterations (q < 5) are obtained for 0.5 < 0 < 0.7 (see Table 3.6).

Algorithms performance. The execution times and solution quality of the proposed
algorithms are investigated for Scenarios S, — S, for five random demand instances.
Considering the quadratic ESS models, Figure 3.7(a) depicts the low average execu-
tion times of Problem Ug compared to the high execution times of UX for S, — Sy;
however, infeasible solutions are obtained by Ug due to the relaxation violation.
Note that Problem UX is used instead of Ug, because the execution times of Ug ex-

ceed the maximum time-limit set (60 minutes) for all scenarios. In Problem U%, we
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Table 3.8: Average objective values of the problems that consider the quadratic ESS models.

Scenario S, S3 Sy

Ug 17300.598 25950.530 34600.632
UX(N = 20) 17373.302 26051.868 34731.653
Ugl(a =0.7) 17372.570 26050.788 34730.156
Ugl (c =0.5) 17372.538 26050.715 34730.105

Table 3.9: Average objective values of the problems that consider the piecewise linear ESS

models.
Scenario Sy Ss Se
Uf 34854.181 43567.698 52281.164
Uf 34940.882 43675.605 52410.368
Ufz(a =0.7) 34940.891 43675.616 52410.380

selected N = 20 to yield solutions with a maximum approximation error of p = 0.001
according to (3.19). As shown in Figure 3.7(a), Algorithm SCA-GN for ¢ = 0.5 and
o = 0.7 yields significantly lower execution times compared to U%, achieving a total
time reduction of 56.9% and 70.9%. This significant time reduction is achieved de-
spite the fact that the relaxed problem remains an MIP. The figure also indicates that
increasing o results in faster solutions because the algorithm requires fewer itera-
tions. Table 3.8 shows the average objective values of the considered problems for
Sy — S4, indicating that Problem Ug generates solutions with lower objective values
compared to U and U{' due to the relaxation violation. Interestingly, Table 3.8 de-
picts that Algorithm SCA-GN for 0 = 0.5 and ¢ = 0.7 always yields better solutions
compared to U%, despite the fact that U* is almost optimal. This clearly indicate the
high quality of the obtained solutions. Considering the piecewise linear ESS models,
Algorithm SCA-PL for ¢ = 0.7 yields considerably lower execution times compared
to Problem UE, as shown in Figure 3.7(b) for S4 — S¢, achieving a total time reduction
of 49.85%. Table 3.9 shows the average objective values of the considered problems
for 54 — S¢, indicating that Problem Uf yields non-exact solutions with lower ob-
jective values compared to the optimal values obtained using U (optimality gap =
-0.24%). The table also indicates that Algorithm SCA-PL for o = 0.7 yields almost

optimal solutions with a maximum optimality gap of 0.00002%.
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Figure 3.8: Input data: (a) net-load curves of the distribution grid and (b) energy price in
€/MWh. The black load curve is used to study the ESS relaxation violation, while all curves

are used to examine the algorithms performance.

3.6.2 Peak shaving and energy arbitrage

Setup. The simulation setup is composed of an ESS with usable capacity of 1.2 MWh
and charging/discharging power of 2.4 MW, where the efficiencies 7° = n? = 0.96
(¢! = 0.0416, ¢° = 0.04) and the losses coefficient ¢! = 0.02 are used in the piecewise
linear and quadratic ESS models, respectively. Figure 3.8(a) illustrates 17 net-load
curves constructed from historical data of a real distribution grid, obtained from
a substation in Larnaca, Cyprus. As shown by the net-load curves, high reverse
and direct power flows are presented during the noon and evening hours due to
intense photovoltaic generation and high load demand, respectively. Since power
violations do not occur in the real distribution transformer due to its large size, we
consider a smaller transformer with power limits of P =1.55MW and Pf=-05
MW, respectively. Figure 3.8(b) depicts the electricity price for buying and selling
power. The horizon is set to one day with 3-minute time intervals, the solver time
limit is set to 15 minutes, and parameter W is set to 10000. Since Problems S¢'* and
Sgl are convex and can be solved fast, parameter p is set to 0.0001, instead of 0.001,
to improve the approximation error according to (3.19).

ESSs relaxation violation. This case study investigates the impact of the ESS re-
laxation violation on the solution of Problem PSEA, considering only the piecewise
linear ESS models. Towards this direction, we solve Problems SK and S} using the

black load curve shown in Figure 3.8(a). The optimal solution of Problem St and
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Figure 3.9: Optimization results obtained by solving Problems Sf and SIE (a)-(d) and actual
results of Problem Sf considering the ESSs operating limits (e)-(h): (a) and (e) transformer
power, (b) and (f) discharging/charging power, (c) and (g) ESS state-of-charge, and (d) and
(h) ESS energy losses.

the solution of Problem Slf, where the relaxation exactness is violated, are depicted
in Figures 3.9(a)-3.9(d). Figure 3.9(a) shows a reduced reverse power flow through
the transformer for Problem S{ compared to the optimal results, decreasing the
transformer power violations which are penalized in objective (3.22a). As shown
in Figure 3.9(b), the reduced power violations are achieved by increasing the ESS
charging power; however, both problems present the same SoC in Figure 3.9(c) be-
cause increased ESS losses are depicted in Figure 3.9(d) for Problem SF due to the
ESS relaxation violation. As a result, the objective value of Problem Sf is 2585 which
is 47.31% lower than the optimal value of 4906 obtained from Problem SF (optimality
gap = -47.31%).

Figures 3.9(e)-3.9(h) demonstrate the optimization results obtained from the so-
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lution of Problem S} and the actual results®, considering an actual ESS with an
integrated primary controller. As shown in Figures 3.9(e) and 3.9(f), the actual trans-
former power deviates from the scheduled power at time 14:00, presenting high
power violations, due to the reduction of the ESS charging power. As shown in Fig-
ures 3.9(g) and 3.9(h), the primary controller limits the ESS charging power because
the actual ESS SoC reached its maximum value before the scheduled SoC due to the
reduced actual losses. As a result, the ESS relaxation violation causes a mismatch be-
tween scheduled and actual operation of the real system, increasing the peak power
violations, from 0.34 MW to 0.75 MW, and reducing the actual arbitrage profit, from
15.54 € to 14.78 €, compared to the optimal solution. To protect the transformer,
high peak power violations can be reduced by applying RES power curtailments in
real operation, but this action is undesirable because it reduces the RES penetration
in the power systems.

Algorithms performance. This case study investigates the performance of the pro-
posed algorithms for the 17 net-load curves. Considering the piecewise-linear ESS
models, Table 3.10 demonstrates that Problems S{ and S{ yield small execution
times compared to the high times of the non-convex Problem Sf. However, Problem
SK yields infeasible solutions with an average optimality gap of -37.93% due to the
relaxation violation. The maximum time of St indicates that the considered time
limit of 60-minutes is exceeded for St in some scenarios, yielding sub-optimal solu-
tions. Therefore, Algorithm SCA-PL for o = 0.5 generated slightly better solutions
compared to SE. Table 3.10 also indicates that Algorithm SCA-PL generates solutions
with an average execution time of 0.039 minutes, achieving a speedup of 368 (368x)
times compared to the average time (14.35 minutes) of Problem Sf. Considering the
quadratic ESS models, Table 3.10 depicts the small execution times of the convex
Problems S and S compared to the high times of the non-convex Problem S¥;
however, Problem Sg generates non-exact solutions. As shown in Table 3.10, Algo-
rithm SCA-GN and Problem S* for N = 20 yield similar average objective values,
presenting a difference of 0.06%. Algorithm SCA-GN generates solutions with an
average execution time of 0.051 minutes, achieving a speedup of more than 1176

(1176x) times compared to the average time of Problem S*.

°The actual results are calculated by applying the charging/discharging decisions of the optimiza-
tion solution in an actual ESS with an integrated primary controller that ensures the ESS power and

energy limits.
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Table 3.10: Execution times and objective values of the problems that consider piecewise

linear and quadratic ESS models.

Max. time (min) Avg. time (min) Avg. obj. value

Sk 0.005 0.003 3568.042
St 60 14.35 5748.723
Si%(o = 0.5) 0.053 0.039 5748.514
Sg 0.017 0.007 3217.606
SX(N = 20) 60 60 6002.267
Sgl(a =0.5) 0.082 0.051 6006.194

3.7 Conclusions

This work developed two convexification algorithms that yield fast and high-quality
feasible solutions when the derived solution using relaxed ESS models is not exact.
The first algorithm handles general power loss functions, while the second spe-
cialized algorithm enhances performance when piecewise-linear loss functions are
used. The proposed algorithms are applied to the UC and PSEA problems consid-
ering piecewise-linear and quadratic loss functions. Simulation results indicate the
capability of the proposed algorithms to yield almost optimal, if not optimal, solu-
tions with significantly lower execution times compared to state-of-the-art solvers
that utilize exact ESS models. Specifically, the proposed algorithms reduce the aver-
age execution time by 50% for the UC problem, which remains nonconvex even upon
relaxation, and achieve a 2-3 orders of magnitude speedup for the PSEA problem,

which becomes convex upon relaxation.
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Chapter 4

Energy management of photovoltaic
and battery storage systems in active

distribution grids

The evolution of power distribution grids from passive to active systems creates reliability
and efficiency challenges to the distribution system operators. In this chapter, an energy
management and control scheme for managing the operation of an active distribution grid
with prosumers is proposed. A multi-objective optimization model to minimize (i) the
prosumers electricity cost and (ii) the cost of the grid enerqy losses, while guaranteeing
safe and reliable grid operation is formulated. This is done by determining the active and
reactive power set-points of the photovoltaic and storage systems integrated in the grid
buildings. The resulting optimization model is non-convex, thus a convex second-order cone
program is developed by appropriately relaxing the non-convex constraints which yields
optimal results in most operating conditions. The convexified model is further utilized
to develop an algorithm that yields feasible solutions to the non-convex problem under
any operating conditions. Moreover, a second novel algorithm to find the operating point
that provides fairness between the prosumers and the grid costs is proposed. Simulation
results demonstrate the effectiveness and superiority of the proposed scheme in managing an

industrial distribution grid compared to a self-consumption approach.
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41 Introduction

The integration of PV systems into the power system is expected to continue, with
the aim to achieve full decarbonization of Europe’s energy supply by 2050, according
to the climate and energy strategy of the European Commission [2]. However, in
cases in which massive PVs are integrated within a distribution grid, the stability
and power quality of the grid is threatened mainly due to the uncontrollability
of PV generation [44]. BESSs can be used along with PV systems to compensate
the negative effects of intermittent PV generation. BESSs constitute an emerging
technology that enables optimized management of the energy produced by the PVs
that can be utilized for peak shaving, load levelling, and reactive power support.
Moreover, BESSs create new energy market opportunities for prosumers (users who
consume, produce, store and sell energy), who are able to optimize their electricity
management according to the electricity market price information [45]. However,
since the prosumer actions can affect the safe operation of the LV distribution grid,
the DSO and prosumers should be coordinated. This chapter aims to develop an
energy management and control strategy to maximize the prosumers profits in active
distribution grids with massive integration of PVs-BESSs, while maintaining the
safe, reliable and cost-effective grid operation. In the proposed strategy, power flow
constraints are integrated to ensure operating conditions within regulation limits,
while reactive power support is provided by the PVs-BESSs.

Energy management and control strategies for voltage control in MV distribution
grids are presented in [46,47]. These strategies control the active and reactive
power of the distributed generation to guarantee a safe and reliable grid operation.
Similarly, strategies for voltage control in LV distribution grids determine the active
and reactive power set-points of PV inverters in residential systems [48,49]. In
addition to PV inverters, BESS inverters can also provide voltage control in LV
and MV distribution grids by controlling their active and reactive power set-points
[50-53]. These works do not consider the profit maximization of the prosumers
at the building level in energy market environments. Multi-objective optimization
schemes based on the weighted sum method for the system operation are presented
in [46—49]; however, none of these works demonstrates the Pareto front to examine
the trade-off of different objectives.

Energy management schemes at the building level to minimize the prosumer

56



electricity cost under a time-based pricing are proposed in [54,55]. These do not
consider reactive power support and the grid safety limits are ignored. Furthermore,
energy management schemes at the grid level are presented in [56-60], where works
in [56,57,60] optimize the electricity usage of the prosumers in LV distribution
grids, while [58, 59] minimize the operational cost of multiple microgrids which
are connected to the MV distribution grid. Note that reactive power support is
not provided by the PV-BESS systems in [56,57,59] and the safe and reliable grid
operation is not considered in [58, 60], since power flow constraints are ignored.

This chapter proposes a centralized energy management and control (CEMC)
scheme to minimize (i) the prosumers electricity cost and (ii) the cost of the grid
energy losses, while satisfying the safe and reliable grid operation. Towards this
direction, a multi-objective optimization model to determine the active and reactive
power set-points of the PV-BESS systems by minimizing the considered objectives
is formulated. The safe grid operation is maintained through the integration of
the power flow constraints in the optimization model, and reactive power support
provided by PV-BESS inverters has a vital role in achieving reduced power losses
and voltage regulation.

The resulting optimization model is non-convex, hence the underlying problem is
challenging to solve; thus, convexification is used to transform the non-convex model
to a convex SOCP. Specifically, a convex relaxation of the power flow constraints as
well as a convex relaxation of the BESS power losses are used. Also, complementarity
constraints that support different pricing schemes in the objective function are shown
to hold in the considered problem and are eliminated from the formulation. The
convex SOCP model allows computing optimal solutions under normal operating
conditions; it can yield, however, infeasible solutions under “extreme” operating
conditions. Therefore, an algorithm to provide a feasible solution when the relaxed
SOCP model is non-exact is developed. In addition, a second novel algorithm to
provide fairness between the prosumers and grid costs by minimizing the absolute
difference between the gain losses of the two objectives! is proposed.

The effectiveness of the proposed CEMC scheme is compared to a self-consumption

scheme, and simulation results validate the prosumers and grid cost-effective op-

!We define the gain loss of an objective as the difference between the value of the particular
objective, obtained when the two objectives are conflicting, and its minimum value, obtained when

the other objective is not present in the formulation.
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eration, as well as the grid reliability. Moreover, the performance of the proposed
convex BESS model is compared with other BESS models, presented in the literature,
in terms of energy losses and computational speed.

The rest of the chapter is organized as follows. Section 4.2 describes the system
architecture, while Section 4.3 formulates the considered problem. The proposed
solution methodology and the simulation results are presented in Sections 4.4 and

4.5, respectively. Conclusions are given in Section 4.6.

4.2 System architecture

We consider an industrial LV distribution grid that connects the industrial buildings
(the prosumers) to an LV feeder through the distribution lines, as shown in Figure 4.1.
The power grid under consideration is radial, hence its graph is represented by a tree.
Let the tree graph G = (N, &) denote the power grid, where N = {1, ..., N} denote the
set of grid buses and & = {1, ..., E} the set of grid lines that connect two buses. The LV
feeder bus is the root of the tree. Let 8 € N denote the set of buses that are connected
to the buildings; My € N thesetof all buses that are children of busk; 7~ = {1, ..., T} the
considered time horizon and AT the time-slot length in hours. For example, AT = 1/4
denotes 15-minute time intervals. The active and reactive power flows of the grid
line (i, k) € Eare given by P, and Qy i, t € 7, with positive/negative values denoting
direct/reverse power flows, respectively. Furthermore, the active and reactive power
exchange between the building at bus k € B and the grid are denoted by Pfk and
Ek’ with positive/negative values denoting power consumption/generation of the
buildings, respectively. The square of the voltage at each bus n € N is denoted by
(o
Three building models are considered in this chapter: (i) the PV-BESS prosumer
consisting of an AC-coupled PV-BESS system, and a load; (ii) the PV prosumer
comprising of a PV and a load; and (iii) the consumer which includes only a load.
Thus, Pfk and ka are set according to the building model. The PV-BESS prosumer
modelisillustrated in Figure 4.2. Note that Pfk and ka can be adjusted by controlling
the PV active and reactive power, Pf . and Qf .~ and the BESS active and reactive
power, P}, and Q7. The building load, P;, and Q},, must always be supplied by
the power grid and/or the PV-BESS system, as indicated by the arrows in Figure 4.2,

denoting the power flow directions. Note that Pf’k denotes discharging (charging
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Figure 4.1: Energy management and control of an industrial LV distribution grid.

resp.) power when P}, > 0 (P}, < 0), and Q;, and Q7 denote reactive power
production (consumption) when they are positive (negative). Moreover, the PV
prosumer and the consumer models are supported by setting Pfk = f,k = 0 and
PP = QJ, =P}, = Qy, = 0, respectively.

Under the proposed system structure, a grid-level controller (GC) is utilized to
realize the CEMC scheme in a centralized manner, as described in Sections 4.3 and 4.4.
As shown in Figure 4.1, the GC regulates the power flows through the distribution
grid, based on the predicted PV generation and load demand of prosumers, by setting
the grid-buildings power exchange through the scheduling of PVs-BESSs power set-
points. The prosumers execute the control signals sent by the GC regarding the
PVs-BESSs active and reactive power set-points through their inverters. Due to
the difference between predicted and actual PV generation, the PV inverters are
allowed to operate at their maximum power point based on the actual available PV
generation, except from the cases where PV power curtailments are applied by the
GC. In these cases, the PV generation is limited to the PV active power set-point
defined by the GC through the online reconfiguration of the inverter maximum
power. The proposed control architecture is applied in a model predictive control
(MPC) fashion, where at the end of every MPC control-step the GC defines the next
PVs-BESSs power set-points. To achieve this, in every MPC control-step the GC
uses the latest BESSs SoC measurements and updates the predicted PV and load
data using the latest actual PV generation and load demand measurements of the

buildings.
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Figure 4.2: The PV-BESS prosumer model.

4.3 Problem statement

This section contains the formulation of the optimization problem associated with
the proposed CEMC scheme according to the system architecture described in Sec-
tion 4.2. In addition, the objective function and the constraints of the problem are

presented.

4.3.1 Multi-objective function

The considered CEMC scheme is a multi-objective optimization problem with two
objective functions. The first objective describes the prosumers electricity cost in €

by incorporating the cost of buying and selling energy
F,(P’, P*) = Z Z(C?Pf,k — P AT, (4.1a)
teT keB

subject to the conditions

P}, P, >0, VtikeB, (4.1b)
P} 1P, VtkeSB, (4.1c)

where the variables P, and P, denote the buying and selling power of the building

at bus k at time t in kW, respectively, and the parameters ¢/ and ¢ denote the

b

corresponding cost coefficients in €/kWh such that ¢ > ¢. P’ and P* are the vector-

forms of the variables P? and P, for all k € B and t € T, respectively. Note also

that

Py =P} —P,, keBVteT. (4.2)
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The variables Pf, ¢ and P}, are used to support pricing schemes where the cost of
buying and selling power can be different, while satisfying constraint (4.2). The non-
convex complementarity constraint in (4.1c) restricts the ability to simultaneously
buy and sell power to the grid [61]. Section 4.4.1 indicates when the complementarity
constraint can be eliminated.

The second objective quantifies the cost of energy losses at the grid lines in € and
is given by

F(L) = Y ) (raiachAT, (4.3)

teT (ik)eE
where [, j denotes the square of the current flow in line (i, k) € € at time t € 7, and
ri denotes the line resistance. L is the vector-form of /; 4, for all t € 7" and (i, k) € &.
The two objectives of the proposed CEMC scheme are transformed into an ag-
gregated single objective by employing the widely used weighted sum method
[21,46-49]
F(w) = (1 — w)F1(P?, P°) + wF,(L), (4.4)

where w € [0, 1] is a weighting parameter that controls the tradeoff between the two
objectives. Note that the two objectives are conflicting because the buildings-grid
power exchange needs to be restrained in order to minimize the grid losses cost,
which negatively affects the prosumer profits.

More sophisticated multi-objective optimization methods can also be employed
for the considered biobjective problem, such as the adaptive weighted sum and nor-
mal boundary intersection (NBI) methods [62-64]. Using the NBI method a “knee”
solution, which presents a good sense of “compromise” between the objectives, can
be implicitly obtained without constructing the Pareto front [62]. In this chapter we
explicitly find the tradeoff by minimizing the absolute difference between the gain

losses of the two objectives.

4.3.2 Constraints
Power flow constraints

The power flow equations are conventionally formulated as sine and cosine functions
of the voltage and current angles resulting in non-convex optimization problems.

For radial grids, the branch-flow model [46, 65, 66] can equivalently be used; this
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eliminates the voltage and current angles, yielding the equations

Pyjx = riglyi + Py + Z Piim, V(i k) € E, (4.5a)
meMy,m#i

Quir = Xy + Qp + Z Qrim, Yt (i,k) €E, (4.5b)
meMy,m#i

Utk = Upi — 2(ricPrix + XieQix)
(4.5¢)

+(ry + X)), VL (i,k) € E,
liivr; = Pi At Qi o Ytk e&. (4.5d)
Eq. (4.5a) defines the active power flow through line (i, k) as the summation of the
line power losses, the power exchange P¢, at bus k, if k € B, and the power flows
through the connected lines. Similarly, the reactive power flow is defined in Eq.
(4.5b), where x;j is the line reactance. Egs. (4.5¢)-(4.5d) associate the power flows

with the bus voltages and line currents. Lower/upper limits of the square of the

voltage, v ; and v, are set as
U, S0 < 5]‘, Vt,] eN. (4.6)

For example, if the voltages must vary between -10% and +10% from their nominal
value, then v; = 0.9% and 7; = 1.1> p.u. Despite the elimination of the sine and
cosine functions, the branch-flow model is still non-convex due to the presence of

the constraint (4.5d).

Buildings active power management

The active power balance of a building, as illustrated in Figure 4.2, is given by

p B G _ plL
P+ P +Py =P,

Vt,ke B, (4.7)

where Pﬁk denotes the building predicted active load demand in kW. PV power cur-
tailments are applied when the PV power differs from the predicted PV generation,
ﬁfk, and are set as

0<P <P, VYikes. 4.8)

The BESS SoC in kWh, C? , is varied according to the discharging/charging power

tk’

and the BESS power losses, Pi?]fs, as expressed by

Chix = Cip + AT(=P, - PI¥), VtkeB. (4.9)
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The bounds of the BESS SoC, C; and E,]f, and the discharging/charging power limi-

—B
tations, P, and P}, are given by

cP<ch<C, C, =P VikeB, (4.10a)
PP < PP <P, Vtke8, (4.10b)

where IE denote the initial SoC value.

BESS power losses

loss,c

Two linear power losses models, P}

and P, are used to represent the BESS

charging and discharging power losses, respectively, and formulated as

P =Py, P = (—)Pf, ViLkeSB. (4.11)

tk’

These models are dependent on the BESS charging/discharging power and the as-
sociated positive losses coefficients, ¢¢ and ¢!, respectively. Note that el = 1/7f -1
and ¢ = 1 — 1, where 7¢ and 7/ are the charging/discharging (one-way) efficiency,
respectively. P/** provides positive (negative) power losses when P?, > 0 (Pf, < 0).
In contrast, P?ZS’C provides positive (negative) power losses when P}, < 0 (P}, > 0).
Thus, the BESS power losses are defined as the maximum of the two power losses

models, that is

Pf}?]fs b maX(Ploss,d Pio;s,C)’ Vt,k c B (412)

bk
Note that constraint (4.12) is non-convex, and logical constraints with binary vari-
ables are needed to represent it. Constraints (4.9)-(4.12) represent the exact version

of the piecewise linear ESS model presented in Section 3.3.
Buildings reactive power management
The reactive power balance in the building, as shown in Figure 4.2, is set as
tc,;k + QE}( + ka = QtL,k/ Vt/k € B/ (413)

where Q! denotes the building predicted reactive power demand in kVar. The
PV-BESS inverter reactive power, Qf , and ka in kVar, is restricted by the inverter

—P
operation in active power, Pi , and Pfk in kW, and its maximum apparent power, S;

and g,}j in kVA, according to the SOCP constraints:
(P +(Qp)* < G2 ke, (4.14a)
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Figure 4.3: The operating regions of (a) the PV and (b) the BESS inverters are given by the

shaded area.

(PR +(Q)? < (5., VikeB. (4.14b)

The inverter limits in reactive power are given by
BB B _ P/ B
S sin(gy) < Qy) < Sesin(gy), Vi ke B, (4.15a)

—P —P
=S sin(@y) < Qr < Sy sin(py), Vi ke B, (4.15b)

where the angle coefficients ¢} and ¢} are defined by the PV and BESS inverter
power factor limits. Figure 4.3 depicts the feasible operating regions of the inverters
in terms of active and reactive power.

The considered MPC optimization problem that is solved by the GC at the end

of every MPC control-step is summarized as

min Objective (4.4)
s.t.: Constraints (4.1b) — (4.1¢), (4.2), (4.5a) — (4.15b),

]P()(ZU) c

with decision variables the active and reactive powers, P%, P*,, s , PP, P% Q% , QF,

BVt € T, k € B, the BESS power losses and SoC, Pi%%, P!, P, CB,, Y t € T,
k € B, the power flows and the square of the line currents, Py, Qi Lo, V't € T,
(i,k) € &, as well as the square of the bus voltages, v,;, ¥t € 7,j € N. Note that
decision variables Pi y Pfk, f 1 fk denote the active and reactive power set-points
submitted to the PV-BESS inverters according to the system architecture of Section
4.2. Problem Po(w) considers a single-phase system and can be used for balanced
systems, using the single-phase equivalent [46]. Problem IPo(w) is non-convex, and
hence challenging to solve due to the presence of the non-convex constraints (4.1c),

(4.5d) and (4.12).
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4.4 Solution methodology

In this section the non-convex problem Po(w) is relaxed to a convex SOCP opti-
mization problem and an algorithm to obtain feasible solutions under any operating
condition is developed. Moreover, a second algorithm to define the best trade-off

between the two conflicting objectives is proposed.

4.4.1 Convexifying Problem Pp(w)
Relaxation of the power flow constraints

A convex SOCP relaxation of the non-convex constraint in (4.5d) is proposed in
[46,65,66], yielding
Livyi 2 Pry + Qb VE (i) € &, (4.16)

ik’
A sufficient condition for the relaxation exactness, where the equality is attained in
Eq. (4.16), requires to have a strictly increasing objective function in the line currents
(Iti) [66]. Although the second objective, F»(L), is strictly increasing in [, 4, the

presence of the first objective, F1(P?, P¥), in objective (4.4), might affect the relaxation

exactness.

Relaxation of the BESS power losses

The non-convex constraint in (4.12) is relaxed to the convex constraint:

Pi(/)]fs > maX(Ploss,d Pio;s,C)’ Vt,k c B, (417)

tk 7

which can be represented by the affine constraints:

Py > (P}, VikeB, (4.18a)

tk’

P > —ePy,  VtkeB. (4.18b)

k!
Upper bounds on the maximum power losses, defined by the BESS maximum charg-

ing/discharging power and losses coefficients, are set as

Pl < PP + a(PE, + PP), Vit ke B, (4.19)

t,

where constant oy = (eZﬁf — e,C(B,'f )/ (ﬁf + Bf ), Vk € B. Figure 4.4 shows the feasible
region of the power losses defined by Egs. (4.18a)-(4.19). Note that the minimization

of the function F;(P?, P¥) is an incentive to satisfy the relaxation exactness, because
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Figure 4.4: BESS power losses convex relaxation. The losses are given as function of the
charging/discharging power. The red solid lines show the losses when the relaxation is

exact, and the dashed line provides upper bounds.

higher power losses cause prosumers profit losses. Constraints (4.9)-(4.10b), (4.18a)-

(4.19) represent the relaxed version of the ESS model presented in Section 3.3.

Elimination of complementarity constraints

According to (4.1c), the variables Pf,k and P;, should be complementary to each
other. We now show that the structure of Problem IPo(w) automatically ensures that
buying and selling power at the same time does not occur, hence the non-convex
complementarity constraint (4.1c) can be eliminated.

Because ¢ < ¢ we can write that ¢! = ¢ + ¢ for ¢ > 0. It is also true that variables
P?,k and P}, appear as the difference Pfk = Pf/  —Pi inall constraints; they only appear
separately in the first objective (4.1a) in which we have that:

Y ) (P —GPIAT = ) ) (GPE, + cPAT.

teT keB teT keB

This implies that for a fixed positive or negative value of PtGk we aim to minimize
P!,. Hence, when PC, > 0 and P, < 0 the best objective is obtained for P¢, = P?,,

k= —Pi/k, Pf,k = 0, respectively. This argument shows that the
complementarity constraint is automatically satisfied for Problem Pp(w).

Taking all convexifications into account yields:

min Objective (4.4)
Pr(w) : ¢ s.t.: Constraints (4.1b), (4.2), (4.5a) — (4.5¢),
(4.6) — (4.10b), (4.13) — (4.15b), (4.16), (4.18a) — (4.19).

Problem Pr(w) is a relaxed version of Problem Po(w); hence, it provides a lower-

bound solution to the latter. Due to the presence of (4.14a), (4.14b) and (4.16) the
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Algorithm 3 : Feasible Solution to Problem Pp(w)
1: Input: w.

2: Solve IPr(w) to obtain x,.
3: if Pg(w) is feasible then
4:  Return x* = xy,.

5: else

6: Imit. w; = w, w, = 1.

7. while (w, — w;) > o do

8: Setw = (w, +w;)/2;
9: Solve Pr(w) to obtain x,,;
10: if Pr(w) is feasible then
11: Setw, =w, X=X, W ="uw.
12: else
13: Set w; = w.

14: Return X = x, and @

problem is a convex SOCP; hence, it can be fast and reliably solved for real-size

distribution grids. Hereafter, the solution of Problem IPz(w) will be denoted with x,,.

4.4.2 Obtaining feasible solutions to Problem Pp(w)

The solution of Problem IP(w) for a given w results in three cases with regards to the

exactness of the non-convex constraints (4.5d) and (4.12) that need to be examined.

1. If both constraints (4.16) and (4.17) are tight (exact relaxation), the solution of

Problem Pr(w) is optimal for Po(w).

2. If constraint (4.16) is tight but (4.17) is not, the solution of Problem Pr(w) is

feasible and provides an upper-bound for Po(w).

3. If constraint (4.16) is loose (non-exact relaxation), the solution of Problem Pg(w)

is infeasible for Po(w).

Algorithm 3 summarizes the proposed procedure to find a feasible solution for
Problem IPo(w) for a given w. Initially, Problem Pr(w) is solved (Line 2); the obtained
solution is the optimal solution for Problem Po(w) if it satisfies constraint (4.16)

(Lines 3-4). Otherwise, the bisection method is employed to find the smallest weight
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W > w for which the solution of IPr(w) is tight for constraint (4.16) (Lines 5-13). The
algorithm is based on the observation that higher values of w benefit the second
objective, F»(L), causing to have a strictly increasing objective function in the line
currents (I, ), which is a sufficient condition for the tightness of the relaxed power
flow constraint (4.16) [65,66]. The simulation results in Section 4.5 suggest that the
solution of Pr(w) is non-optimal only under “extreme” operating conditions with
high reverse-power flows in the grid. Even under these conditions, Algorithm 3
yields close-to-optimal results. In Algorithm 3, the bisection method is used to
provide fast convergence to the operating point @, providing a good quality feasible
solution, X, for weight w. This method halves the searching space (w, — w;) at
each iteration, converging to @ in log,((1 — w)/o) iterations, where ¢ is the bisection

tolerance.

4.4.3 Best objective trade-off solution

Algorithm 3 solves Problem IPp(w) when w is known. This section proposes a novel
algorithm, Algorithm 4, to provide a solution to Problem P, when w is undefined.
This is achieved by finding the operating point, w*, for which Problem Pr(w") is fea-
sible and the absolute difference of the gain losses of the two objectives is minimized.

Let P!, P, and L, denote the vectors P?, P* and L derived from the solution of
Pr(w), for w € [0,1]. Then, F, = Fl(Pg, P;) and F, = F»(L;) denote the minimum
values of the objectives in Eq. (4.4), Y w € [0, 1]. The prosumers gain loss, G¥, and grid

gain loss, G3, are defined as

G'(w) =F:(P}, P%) - F,, (4.20)
GS(w) =Fy(Ly) ~ F,. (4.21)

G? and G¢ indicate the prosumers electricity cost and grid losses cost increments com-
pared to the minimum values, respectively. Algorithm 4 aims to find the operating
point w* that minimizes |G*(w) — G$(w)|. Ideally, Algorithm 4 provides an operating
point that equalizes the gain losses of the two objectives, i.e., G*(w") = G$(w").

Note that G*(w) € [0,GF(1)] and G$(w) € [0,G8(0)], for w € [0,1]. In addition,
GP(w) is a monotonically increasing function and G¢(w) is a monotonically decreasing
function of w. Hence, it can be easily shown that |G’(w) — G8(w)| is a unimodal

function of w. For this reason, the bisection method is employed to find the minimal

68



Algorithm 4 : Trade-off Solution for Problem IPp
1: Init. w; =0, w, = 1.

2: Solve IPg(w;) to obtain F,.
3: Solve IPg(w,) to obtain F,.
4: while (w, —w; > 0) do

5. Setw = (w, + w)/2.

6:  Solve Pg(w) to obtain x,,, G*(w), GS(w).
7. if (GP(w) > G3(w)) and (IPg(w) is feasible) then
8: Setw, = w, X" =xy, W = w.
9: else
10: Set w; = w.

11: Return x*, w*, GP(w*) and G8(w").

value of |G*(w) — G3(w)| as shown in Algorithm 4. Note that if w* > @, where @
is the value returned by Algorithm 3, then GP(w*) = G&(w"), otherwise w* = @ and
GP(w*) > G8(w). The reason for this is that Problem IPg(w) is feasible for w € [¥, 1],

hence equalization of the gain losses occurs when w* > .

4.5 Simulation results

To evaluate the performance of the proposed CEMC scheme, we have modified an
industrial LV distribution grid of the Cyprus power system to consider a balanced
system with 6 PV-BESS prosumers, 4 PV prosumers and 5 consumers, as shown
in Figure 4.5. Towards this direction, we assume that (a) the load is uniformly
distributed among the three phases, and (b) the three phases are decoupled [65]. The
grid configuration and parameters have been provided by the Electricity Authority
of Cyprus (Cyprus DSO). The positive-sequence impedances of the considered grid,
where the line-to-line voltage is 400 volts, are given in Table 4.1. The voltage limits
are set to 0.9 and 1.1 p.u (v, = 0.9 and v; = 1.1% p.u), while the substation voltage is
fixed at 1 p.u (node 2 of Figure 4.5) [65].

The consumption building profiles have been synthesized considering the nor-
malized active power consumption of three industrial buildings, as shown in Figure
4.6a. The power factor value of each building is set to 0.97. Similarly, the generation

profile of the PV systems is synthesized based on two real-life normalized generation
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Figure 4.5: Industrial LV distribution grid.

Table 4.1: Line Impedances

Line R X
Q) Q)

Line R X
Q ()

Line R X
Q) Q)

2-3
3-4
2-5
5-6
5-7

0.0056 0.0294
0.0080 0.0051
0.0083 0.0435
0.0445 0.0283
0.0352 0.0224
5-8 0.0237 0.0588
8-9 0.0417 0.0266
8-10 0.0244 0.0607
10-11 0.0421 0.0268

10-12 0.0439 0.0280
10-13 0.0247 0.0104
10-14 0.0220 0.0545
14-15 0.0520 0.1291
15-16 0.0861 0.0548
15-17 0.0185 0.0460
17-18 0.0106 0.0263
18-19 0.0632 0.0403
17-20 0.0621 0.0395

2-21 0.0152 0.0801
21-22 0.0060 0.0060
21-23 0.0172 0.0906
23-24 0.0273 0.0678
24-25 0.0230 0.0146
23-26 0.0354 0.0225
23-27 0.0303 0.0193
23-28 0.0593 0.1472
28-29 0.0353 0.0225

profiles, PV, for a sunny day and PV, for a partially cloudy day (Figure 4.6b). The
day ahead electricity price is also presented in Figure 4.6c. Table 4.2 presents the
load, PV and storage characteristics of the 15 buildings. For example, building B,
uses load profile LP, with peak load demand, PV rated power, BESS capacity and
BESS charging-discharging power equal to 16 kW, 16 kW, 15 kWh and 7 kW, respec-
@; = 25.8°),
and the one-way efficiency of all BESSs is 96% (1) = 0.96, 1j¢ = 0.96). Thus, the losses
coefficients in Eq. (4.11) are set as ¢; = 0.04 and ez =0.0416 Yk € B.

The proposed CEMC scheme is coded in Matlab, while Problem Py is solved

tively. Note that the power factor of the PV/BESS inverters is 0.9 (p, =

using the optimization solver Gurobi [43] on a personal computer with 8GB RAM
and Intel Core-i5 3.2GHz. The horizon is set to one day with 15-minute time intervals,

and the derived solution is applied in a rolling-horizon fashion. In Algorithms 3 and
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Table 4.2: Buildings Data

Load PV  Storage Load PV  Storage
(Prof., kW) (kW) (kWh, kW) (Prof., kW) (kW) (kWh, kW)
B; LP, 35 0 0,0 By LP;, 20 20 20, 10
B, LP; 15 15 0,0 By LPy,22 22 25,15
B; LPy, 17 0 0,0 B1  LP, 30 0 0,0
By LP, 16 16 15,7 B, LPy, 21 21 0,0
Bs LPy, 20 20 0,0 Bi; LP3, 18 0 0,0
Bs LP, 15 0 0,0 B LP,20 20 0,0

B; LDP;, 18 18 20,10 Bys LPy, 25 25 25,15
Bg LP, 19 19 20, 10 - - - -
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Figure 4.6: (a) Load profiles. (b) PV profiles. (c) Day-ahead electricity pricing (Euro/kWh).

4, we set 0 = 0.001, resulting in a maximum of ten iterations.

The performance analysis and evaluation consider the trade-off between the ob-
jectives of the prosumers and the grid (Section 4.5.1), compare the proposed CEMC
scheme with a self-consumption scheme for a single operating scenario (Section
4.5.2), and provide aggregate results on the performance of the two schemes under
different normal operating conditions (Section 4.5.3). Sections 4.5.1 to 4.5.3 assume
perfect knowledge of PV generation and load demand, the predicted and actual
PV generation and load demand are the same, while Section 4.5.4 investigates the
performance of the proposed CEMC scheme considering PV uncertainty. Interest-

ingly, both the power flow and the BESS convex relaxations are always exact in
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Figure 4.7: Objectives trade-off: (a) Pareto front: Prosumers daily electricity cost and grid
losses cost (€), (b) Prosumers and grid gain losses (€), and (c) Prosumers and grid gain

losses as a function of w.

the aforementioned case studies; hence, further experimentation is undertaken un-
der “extreme” operating conditions to understand when the convex relaxations are

violated (Section 4.5.5).

4.5.1 Objectives trade-off

The trade-off between the two objectives in (4.4) is presented in Figure 4.7(a) by
solving Problem Pp(w) using Algorithm 3 for w € {0,0.005,0.01, ..., 1}, constructing
the Pareto front of the two objectives. The figure indicates the Pareto optimal
points, operating points, for each value of w where it is impossible to reduce the
prosumers electricity cost, F1(P?, P), without increasing the grid losses cost, F(L,),
and vice versa. Note that the solution of Problem Pr(w) (Step 2 of Algorithm 3)
has generated tight solutions in all cases implying optimal results for IPo(w). Figure

4.7(b) demonstrates the trade-off between the prosumers and grid gain losses, G/ (w)

and G#(w), while Figure 4.7(c) illustrates the values of the prosumers and grid gain
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losses as a function of w. Interestingly, both Figures 4.7(b) and 4.7(c) indicate that
the maximum G”(w), observed for w = 1, is several times higher than the maximum
G8(w), observed for w = 0. Note that the minimum values of the two gain losses
are observed for w = 0 and w = 1 (GF(0) = G8(1) = 0), where the corresponding
objectives are given full priority. Figures 4.7(b) and 4.7(c) also show that the best
operating point, obtained from Algorithm 4, is at w* = 0.495, where the prosumers
gainloss, GP(w), and grid gain loss, G8(w), are equal, i.e., GP(w) = G8(w). In this sense,
this point provides fairness between the prosumers and the grid operator since they
suffer from the same gain losses.

The execution time needed to derive all 201 operating points and hence construct
the Pareto front is 378.7 sec, resulting in an average time of 1.88 sec to solve Problem
Pr(w) for a single point. Nonetheless, in each MPC control-step of the CEMC scheme
the GC does not need to construct the Pareto front; it only needs to find the best
operating point according to Algorithm 4. The execution time of Algorithm 4 is 16.4
sec on average which is very small compared to the 15-minute control-step of the

MPC.

4.5.2 Performance evaluation

The performance of the proposed CEMC scheme is evaluated and compared with
a self-consumption (SC) scheme in a single operating scenario using PV, when w is
undefined. In the SC scheme, each PV-BESS prosumer operates in self-consumption
mode, in which the BESS is charged when the building net load? is negative, and
discharged otherwise; reactive power support is not provided.

The response of the grid operation based on the SC scheme and the proposed
CEMC scheme are presented in Figures 4.8 and 4.9, respectively. Figures 4.8(a) and
4.9(a) depict the buildings-grid active power exchange for the 6 PV-BESS prosumers.
As can be seen, the CEMC scheme maximizes the prosumers profits by (i) absorbing
power to charge the BESSs when electricity prices are low (periods2—4 am and 2 -4
pm), and (ii) injecting power to the grid by discharging the BESSs when electricity
prices are high (periods 9—10 am and 7 -9 pm). The reactive power exchange for the
6 PV-BESS prosumers is shown in Figures 4.8(b) and 4.9(b). In the SC scheme, the

prosumers import reactive power to satisfy their load demand, while in the CEMC

2The net load is defined as the difference between the load demand and the PV generation.
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Figure 4.8: Grid operation using the self-consumption (SC) scheme: (a) Active power ex-
change, (b) Reactive power exchange of the PV-BESS prosumers, (c) Voltages at five critical

grid buses, (d) Feeder imported power.

scheme they export reactive power to the grid through the PV-BESS inverters to
provide reactive power support. Figures 4.8(c) and 4.9(c) present the voltages of
five critical nodes of the grid. As can be seen, the SC scheme experiences multiple
voltage violations at buses 19 and 20, dropping below the safety limit of 0.9 p.u. In
contrast, the CEMC scheme maintains the voltages close to their nominal values (1
p.u.) at all buses. Figures 4.8(d) and 4.9(d) demonstrate the imported active and
reactive power from the LV feeder. As expected from the reactive power support, the
CEMC scheme dramatically reduces the reactive power compared to the SC scheme.
Specifically, the CEMC scheme achieves 67% peak reduction and 79.3% total energy
reduction. The peak active power is also reduced by 8.22%.

Table 4.3 presents the daily electricity cost of the six PV-BESS prosumers using
the two schemes. The proposed CEMC scheme reduces the total daily electricity
cost of the prosumers from €192.1 to €180.1 (6.2% reduction), the total grid losses
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Table 4.3: Prosumers Daily Electricity Cost (€)

Buildings B4 B7 Bg B9 BlO B15

SCscheme  32.87 23.03 39.03 25.59 33.51 38.08
CEMC scheme 3139 21.01 37.13 2375 31.30 3549

Cost reduction 4.5% 88% 49% 7.2% 6.6% 6.8%

from 19.64 kWh to 19.03 kWh (3.1% reduction), and the grid losses cost from €3.98
to €3.61 (9.3% reduction), on average.

4.5.3 Aggregate performance evaluation

The performance of the proposed CEMC scheme is evaluated and compared with

the SC scheme under different normal operating conditions when w is undefined.
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daily cost of the PV-BESS prosumers in €, (d) Cost of the grid losses in €.

Twelve scenarios are carried out that involve combinations between (i) low, medium
and high loads, (ii) sunny and cloudy days, and (iii) working and non-working
days. The load values of Table 4.2 are considered to represent medium loads. The
low (resp. high) loads are obtained by decreasing (resp. increasing) the medium
loads by 30%. The load profiles of the working days are indicated in Figure 4.6;
the base load of these profiles is considered as the load demand of the non-working
days.

The results using the two schemes are demonstrated in Figure 4.10, in box-

3. Figure 4.10(a) shows the minimum and maximum bus voltages of

plot form
the considered LV distribution grid. A 11.1% minimum voltage violation can be
observed for the SC scheme; no violations are observed for the CEMC scheme.
Figure 4.10(b) illustrates that the CEMC scheme achieves considerable reduction
of the maximum imported reactive power of the feeder. Specifically, the feeder

maximum and median reactive power values are reduced by 65.1% and 65.5%,

respectively.

3The bottom and top of each box indicate the first and third quartiles (25% and 75%) of a ranked
data set, while the horizontal line inside the box indicates the median value (second quartile). The
horizontal lines outside the box indicate the lowest/highest datum still within 1.5 inter-quartile
range of the lower/upper quartile; for normally distributed data this corresponds to approximately

0.35%/99.65%.
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20

Figure 4.11: PV curves used for performance evaluation under PV uncertainty. PV 41, PV 42,
PV 43 and PV 44 are the actual PV curves in four different cases, while PVp is the predicted

PV curve in all cases.

Figures 4.10(c) and 4.10(d) present the total electricity cost of the PV-BESS pro-
sumers and the grid losses cost, respectively. As can be observed, the CEMC scheme
achieves a 20.6% reduction of the median electricity cost compared to the SC scheme
(€56.83 compared to €71.58), in exchange for a small increase in the grid losses cost
(€2.55 compared to €1.81). This is because the SC scheme reduces the grid-buildings

power exchange leading to low grid losses.

4.54 Performance evaluation considering PV uncertainty

This section investigates the performance of the proposed CEMC scheme considering
PV uncertainty for the scenario of Section 4.5.2. Figure 4.11 depicts the predicted and
actual PV generation for four different cases. PV - PV 44 are real-life, normalized,
partially-clouded, PV generation curves that are used as the actual, but unknown,
PV generation profile of each considered case. Moreover, PVp indicates the predicted
PV generation (same with PV, in Figure 4.6), used in all cases. Under the proposed

control architecture, we examine the effectiveness of three CEMC variations:
e CEMCNU: considers PV with no updates.

e CEMCY: updates the PV, curve for the examined MPC control-step t such
that:
PVp(t +1) « 0.5(PV4(t) + PVp(t + 1)).

e CEMC?: assumes perfect information such that:

PVp(t) « PVa(t), Vt.
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€, (c) Cost of the grid losses in €.

The three schemes are compared against the SC scheme. Note that although the
CEMC? scheme is unrealizable as it assumes knowledge of future information, it is
used for comparison purposes as it provides the optimal performance.

Figure 4.12(a) depicts the minimum voltages of the SC, CEMCNY, CEMCY and
CEMC? schemes in box-plot form for the four PV generation cases. Interestingly,
voltage violations of the lower limit are presented in the SC scheme for all cases,
while the CEMCNY scheme generates significantly better results even with the large
error between the predicted and actual PV generation. However, the CEMCY scheme
increases the minimum voltages, eliminating almost all violations, because the up-
dating of the predicted PV generation in each MPC control-step corrects the reactive
power support. As expected, the best results are provided under perfect knowledge
of the PV generation (CEMC"), avoiding all voltage violations. As depicted in Figure
4.12(b), the CEMCNY, CEMCY and CEMC? schemes reduce the total daily cost of
the PV-BESS prosumers compared to the SC scheme, while the three CEMC schemes
result to similar costs. As shown in Figure 4.12(c), the CEMCNY yields slightly higher
grid losses costs compared to the SC scheme; however, the grid losses costs are re-
duced in the CEMCY and CEMC” schemes, where the latter generates the lowest grid
losses costs. It is interesting to observe that the CEMCY scheme handles well the PV
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generation uncertainty by avoiding almost all violations, despite using a very sim-
ple approach to update the predicted PV generation. Utilizing more sophisticated

prediction schemes can yield even better performance.

4.5.5 Exactness of convex relaxations

An interesting observation that has emerged from the simulation results of Sections
4.5.1 to 4.5.4 is that the considered relaxations are always exact. Hence, in this
section further experimentation is conducted to investigate the exactness of both
the power flow and the BESS relaxations under the following “extreme” operating
scenario: (i) PV generation: PVj; (ii) Load demand: medium non-working day
reduced by 80%; (iii) reduced upper limits of the voltages (1.1 — 1.01 p.u.); and (iv)
no reactive power support ( f . = Qf:k = 0, Vt,k). These scenario characteristics
aim to increase the reverse power flow through the grid, cause the binding of the
upper-bound voltage constraints, and apply PV curtailments, rather than reactive
power support, for voltage control, in an effort to produce loose relaxation solutions.

Perfect knowledge of PV generation and load demand is considered.

Exactness of the power flow relaxation

Table 4.4 presents (i) the operating point @, (ii) the operating point w*, (iii) the
prosumers and grid gain losses, and (iv) the applied PV power curtailments, for
different upper limit values of the voltage (V = ,[0;,¥j € N). As explained in
Section 4.4.3, the gain loss equalization, G*(w*) = G$(w"), is attained when w* > o,
which holds for V > 1.07 p-u in this case. Note also that G'(w*) > Gé(w"), when
w' = @, which is the case for V < 1.05 p.u. Interestingly, the difference between
GP(w*) and G8(w") increases considerably as V drops below 1.05 p.u., due to the BESS
set-points and the PV curtailments that are applied to maintain the voltages within
bounds. Algorithm 4 ensures the exactness of the power flow relaxation.

The solution quality of Po(w), obtained from Algorithm 3, is examined with
respect to the lower bounds obtained from the solution of the relaxed problem
Pr(w) for varying w. Figure 4.13 displays the prosumers electricity cost, F;(P%, P5)),
the grid losses cost, F»(L,), and the objective value, Eq. (4.4), derived from the
solution of Pp(w) and Pg(w) when V = 1.03. The graphs can be “separated” in two

different regions. For w > 0.84, an exact relaxation is obtained from the solution
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Table 4.4: “Extreme” Operating Conditions - Results

V(p.u) v w G'(w) G8(w*) PV curtailments

1.1 0.01 0.60 <€277 €277 0 kWh
1.07 035 060 €277 €277 0 kWh
1.05 055 055 €392 €2.60 0 kWh
1.03 084 0.84 €303 €1.39 88.2 kWh
1.01 091 091 <€89.1 €0.53 350 kWh
-~ 0 : ‘ ‘ ‘ 1
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Figure 4.13: Results for V =1.03: (a) prosumers electricity cost (€), (b) grid losses cost (€)

and (c) objective function value.

of Pr(w) which is also optimal for Po(w). As the solution of Pr(w) yields a non-
exact relaxation for w < 0.84, Algorithm 3 is employed to obtain a feasible solution
to Po(w). To examine the quality of the solution to Pp(w), the optimality gap is
considered

Fp,(w) — Fpg(w)
F]PR (w)

where Fp_ (w) and Fp,(w) denote the objectives values derived from the solution of

x 100%, (4.22)

Optimality Gap =

Problems IPo(w) and IPr(w). Interestingly, the maximum optimality gap is only 15.1%
for w = 0 and is reduced as w increases. The reason is that increasing w makes the
second objective of minimizing the grid losses cost more important, which causes the
reduction of the power flows in the grid. This is achieved by utilizing the BESSs and
applying PV power curtailments, also contributing to the reduction of the voltage
limits violation. The effect of these actions becomes more important as w increases,
causing the gradual reduction of the optimality gap and eventually leading to the

exactness of the power flow relaxation.
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Exactness of the BESS relaxation

The exactness of the relaxed version of the proposed BESS model, constraints (4.18a)
- (4.19), is examined and compared with two BESS models employed in [33,34,40],
presented in the Appendix. The first is the exact non-convex BESS model and the
second is the relaxed version of the first model, the relaxed convex BESS model. To
investigate the performance of these two BESS models in the CEMC scheme, we

define the following problems:

e Problem IPr(w) is obtained by replacing the proposed BESS model, constraints
(4.18a) - (4.19), with the exact non-convex BESS model, Eqs. (A.1) - (A4), in
Problem Pg(w). Problem Pr(w) is a non-convex SOCP with complementarity

constraints.

e Problem P-(w) is obtained by replacing the proposed BESS model, constraints
(4.18a) - (4.19), with the relaxed convex BESS model, Eqs. (A.1) - (A.3), in Problem
Pr(w). Problem Pc(w) is a convex SOCP.

Solutions to the two literature based BESS models are obtained by replacing Problem
Pr(w) with Pg(w) and Pc(w) in Algorithm 4, respectively. The complementarity
constraints (A.4) in Problem Pg(w) are handled by the optimization solver as SOS-
1 constraints, where at most one variable in the specified list is allowed to take a
non-zero value, indicated as SOS—l(Pf/k, lek), YVt k € B, [43].

Figure 4.14(a) presents the total BESS energy losses* in kWh obtained by solving
Problems Pr(w), Pg(w) and Pc(w), employing Algorithm 4, for different values of
the voltage upper limit (V). The results indicate that the two relaxed BESS models,
associated with Problems Pg(w) and Pc(w), are exact for V > 1.05 yielding the
same losses with Problem IPz(w), while are non-exact for V < 1.04. Interestingly,
the proposed relaxed BESS model generates lower losses for V < 1.04 compared
to the relaxed literature-based BESS model. As can be seen in Figure 4.14(b), the
non-exactness of the BESS relaxations occurs only when PV power curtailments are
applied. Note that power curtailments are presented for V < 1.04 to satisfy the

voltage upper limits. Consequently, extra BESS energy losses are introduced as

an alternative power curtailment form by violating the BESS relaxation exactness.

4The total BESS energy losses for Problems IPr(w) and Pc(w) are defined in the Appendix. For

Problem Pg(w), the total BESS energy losses are calculated as ). Zkeg(P’t”}fs)AT.
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Figure 4.14(c) demonstrates the execution time of Algorithm 4 in sec for Problems
Pr(w), Pe(w) and Pc(w). As expected, the execution time of the non-convex SOCP
problem (Problem Pr(w)) is considerably higher (10-16 times higher) compared to
the times of the convex SOCP problems (IPr(w) and Pc(w)), which have similar

execution times.

4.6 Conclusions

This chapter proposes an energy management and control scheme for managing
the operation of an active distribution grid with prosumers. A non-convex multi-
objective optimization model to minimize (i) the prosumers electricity cost and (ii)
the grid energy losses cost, while maintaining the safe and reliable operation of the
grid is formulated. The derived optimization problem is relaxed to a convex SOCP
model and an algorithm to ensure feasibility under any operating condition is de-
veloped. Simulation results suggest that the relaxed optimization problem yields

optimal solutions under normal operating conditions, while the associated algorithm

82



yields close-to-optimal results under “extreme” operating conditions, for which the
relaxations are not exact. Moreover, a novel algorithm to find an operating point that
provides fairness between the prosumers and the grid costs is proposed. Simulation
results indicate the effectiveness and superiority of the proposed scheme in com-
parison with a self-consumption approach, even under PV generation uncertainty.
Future work will explore energy management and control schemes for unbalanced

distribution grids.
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Chapter 5

Energy management of a flywheel
storage system for peak shaving

applications

Peak shaving applications provided by energy storage systems enhance the utilization of
existing grid infrastructure to accommodate the increased penetration of renewable energy
sources. This chapter investigates the provision of peak shaving services from a flywheel
energy storage system installed in a transformer substation. A lexicographic optimization
scheme is formulated to define the flywheel power set-points by minimizing the transformer
power limit violations and the flywheel energy losses. Convex functions that represent the
flywheel power losses and its maximum power are derived and integrated in the proposed
scheme. A two-level hierarchical control framework is introduced to operate the transformer-
flywheel-system in a way that handles prediction errors and modelling inaccuracies. At the
higher level, a model predictive controller is developed that solves the lexicographic optimiza-
tion scheme using linear programming. At the lower-level, a secondary controller corrects
the power set-points of the model predictive controller using real-time measurements. A
software platform has been developed for integrating the proposed controllers in an experi-
mental setup to test their effectiveness in a realistic testbed setting, and the flywheel system
characteristics are experimentally identified. Simulation and experimental results validate
and verify the modelling, identification, control and operation of a real flywheel system for

peak shaving services.
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5.1 Introduction

The increasing penetration of PV generation into the distribution grid along with
the load demand growth can cause reverse and direct power flow violations in
distribution transformers. As a result, the distribution grids can operate outside
of their safely limits, particularly in cases with extensive integration of PVs and
electric vehicle charging stations. Nevertheless, the safe and reliable operation of
distribution grids can be maintained by ESSs that provide peak shaving services [67].
ESSs enhance the capacity of existing distribution grids to accommodate the load and
PV generation growth in order to avoid any violations of the maximum power limit
of the distribution transformers [68]. Towards this direction, this chapter develops an
energy management and control scheme for a FESS to provide peak shaving services
to the distribution grid. Among the different types of ESSs, FESSs are suitable for
applications that require short-time power quality services and peak-load regulation,
since they are characterized by full depth discharge capability, 85-90% efficiency rate,
very long lifetime, environmental friendliness, lower maintenance cost and high
charging-discharging abilities compared to BESSs [69,70].

Peak shaving applications are investigated in [71,72] for planning purposes, to
examine the location, sizing and cost-benefit of the ESSs. In addition, peak shaving
services provided to distribution grids using BESSs are proposed in [73-77] for
operational purposes using optimization methods. These services are provided by
minimizing the daily peak power [73-76] or the square of the power drawn from
the feeder [77]. Also, in [75,76] predicted load uncertainties are addressed using
stochastic formulations. Note that weighted multi-objective functions are used in
[75-77] where a first objective is associated with peak shaving and a second objective
with the health and longevity of a BESS. In these formulations, an improvement in
the first objective can deteriorate the second objective; however, the optimal trade-
off between the conflicting objectives has not been considered. The BESS health
objective can be ignored when using a FESS, because FESSs have very high number
of cycles and high charging/discharging rate.

A peak shaving application using a FESS is presented in [78] to reduce the maxi-
mum power demand of shore-to-ship cranes. Power smoothing applications in wind
power plants using FESSs are presented in [79-81]. These are short-time applications

that smooth the power injected to the grid and compensate power disturbances. Note
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that FESSs are not suitable for long term energy storage because they suffer from
high standby losses, as the self-discharge can reach 20% per hour [69]. However,
hybrid wind-FESS energy management schemes are presented in [82,83] to com-
pensate the main drawback of the FESSs by formulating optimization schemes that
minimize the FESS standby losses. Specifically, a model predictive controller and
a secondary real-time controller are used in [83], to shift the surplus wind energy
and to compensate the wind-power prediction error. The aforementioned works
control a FESS using models that are dependent on technical characteristics such as
the angular speed and the stator current and voltage. Nevertheless, these charac-
teristics are not always available through commercial FESS interfaces. The available
measurements in commercial interfaces are the State-of-Charge (SoC) and the instant
charging/discharging rate, while users can command the FESS to maintain a con-
stant charging/discharging power or SoC. In addition, the associated FESS models
can lead to non-convex optimization problems which are challenging to solve [82].

This chapter aims to eliminate the power violations of a distribution transformer
using a FESS and minimize the FESS power losses for a cost-effective operation of
the distribution grid. A novel lexicographic optimization scheme is formulated that
derives the FESS power set-points to minimize the transformer power limit violations
and the FESS energy losses. Functions that represent the power losses and maximum
power of a FESS are derived and integrated in the proposed scheme. In detail, two
linear functions that model the FESS power losses based on the charging mode
are derived as a function of the charging/discharging power and the SoC. Also, a
nonlinear function is derived to associate the FESS maximum charging/discharging
power with the SoC due to the rated current limit imposed by the power electronics
converter.

A two-level hierarchical control scheme is proposed that minimizes the objectives
of the lexicographic optimization problem and deals with demand prediction errors
and modelling uncertainties. At the higher-level, a model predictive controller is
developed that handles the considered problem by sequentially solving four linear
optimization problems. Atthe lower-level, a secondary controller corrects the control
signals using real-time measurements at a shorter time-scale.

The proposed hierarchical control scheme is integrated and validated in an ex-
perimental setup. Towards this direction, a software platform based on FIWARE [84]

has been developed that enables the monitoring and control of a flywheel system
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in a smart grid environment. Model validation and parameter identification is ex-
perimentally performed for the prototype FESS, indicating the high accuracy of the
derived functions to estimate the FESS power losses and maximum power. In addi-
tion, simulation and experimental results validate the effectiveness of the proposed
energy management and control scheme to provide peak shaving services, enabling
the active management of smart distribution grids.

The remainder of this chapter is organized as follows. Section 5.2 states the
problem and Section 5.3 models the maximum power and power losses of a FESS.
The two-level hierarchical solution methodology is then described in Section 5.4. The
proposed solution methodology is evaluated both in simulation and experimentally
in Sections 5.5 and 5.6, respectively. The practical implementation considerations

are stated in Section 5.7. Finally, Section 5.8 concludes the paper.

5.2 Problem statement

This chapter considers the provision of peak shaving services to an MV/LV trans-
former substation. At the LV side, the substation bus with an installed FESS is con-
nected to an LV distribution grid with consumer and PV installations, as illustrated
in Figure 5.1. Peak shaving is achieved by managing the FESS power set-points to
minimize in a lexicographic fashion: (i) the transformer peak power violation, (ii) the
transformer energy violation, (iii) the SoC energy violations to sustain a minimum

desirable SoC in the FESS and (iv) the FESS power losses. The considered problem,

87



denoted by IP;kx, is given by

lexmin { £y (), frx), fu(w), fi(P)} (PLex) (5.1a)
st.PFox, <PF <P +x, VieT, (5.1b)
Cl+w, >CJ, VteT, (5.1¢)

Pf + P = Df, VteT, (5.1d)

Co =C,+AT(-P; —Pf), VteT, (5.1e)
CS=I0<C<C, VieT, (5.19)
PS<pPS<P, Vte T, (5.1g)

IP| < g(C), VteT, (5.1h)

Pt > h(CP, PY), VteT, (5.1i)

where 7 = {1,...,T/AT}, T is the time-horizon and AT is the time-step duration
considered.

In problem IP;rx, variable Pf denote the transformer power, Pf the FESS charging
(negative values) and discharging power (positive values), P- the FESS power losses,
x; the transformer maximum power violation, while C f and w; denote the SoC and the
SoC energy violation of the FESS at time ¢, respectively. P-, x and w are vector forms
of PtL, x; and w;, Yt € T, respectively; for example, x = [x, ..., x;, ..., xr]. Parameters
Pr [ﬁF] and BS [ﬁs] denote the minimum [maximum] transformer and FESS power,

—s
respectively, C the maximum SoC, while I° denotes the initial FESS state. Parameter

D4 is the actual net load demand of the LV grid defined as
DA=DF +¢&, VteT, (5.2)

where D} is the predicted net load of the LV grid and & is the prediction error at
time-step t. D! is generally unknown; hence, the predicted load is used in practical
applications.

The first objective of IP; px is to minimize a function fy(x) of transformer maximum
power violations, while the second objective, fr(x), is to minimize the transformer
energy violations. To achieve this, soft constraint (5.1b) is introduced to restrain the
transformer power within its limit; variables x; obtain non-zero values when trans-
former power limit violations are unavoidable. The third objective is to minimize
the SoC energy violations, fi;(w), to sustain a minimum desirable SoC in the FESS,

Qf, according to soft constraint (5.1c). This minimum SoC of the FESS is used in
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Section 5.4 to address the transformer power limit violations that are caused by the
load demand uncertainty. The fourth objective is to minimize the FESS power losses
f(PY). Note that low priority objectives are optimized as far as they do not affect
the optimal solution of higher priority objectives. In Section 5.4, the four objectives
are mathematically defined and the reasons for the selected lexicographic order are
explained.

In addition to constraints (5.1b) and (5.1c) which relate to the objectives of IP;rx,
the problem includes six more constraints. The power balance equation (5.1d) aims
to select the FESS charging/discharging power to compensate for load demand ex-
ceeding the transformer maximum power to avoid transformer power limit vio-
lations. The FESS SoC dynamic state equations are defined in (5.1e) - (5.1f) and
the charging/discharging power limits in (5.1g). Eq. (5.1e) takes into consideration
the FESS power losses defined in (5.1i). Finally, Eq. (5.1h) restricts the maximum
charging/discharging power as a function of the SoC.

Problem IP;gx is convex when functions fy(x), fe(x), fu(w), fL(PL) and h(CtS,Pf
are convex and function g(C?) is concave. Section 5.3 details the modelling and
derivation of standard-form convex expressions of the FESS functions ¢(C?) and
h(C?,P?) that appear in Eqs. (5.1h) and (5.1i), respectively. Then, Section 5.4 pro-
poses a two-level hierarchical control scheme to handle Problem IP; gx under demand

uncertainty.

5.3 FESS modelling

5.3.1 FESS power losses

A FESS is a kinetic energy storage technology composed of mechanical components,
an electrical machine and a power converter. The stored energy in kinetic form is

given by
C5(t) = 0.5]w?(t), VteT, = C°~da? (5.3)

where | is the moment of inertia and w, is the angular speed [69]. Notice that the
stored energy is analogous to w?. Power losses occur at all components depending
on the operational condition of a FESS. Specifically, windage and bearing friction

losses occur in the mechanical components; hysteresis losses, eddy currents and
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copper losses occur in the electrical machine; conduction and switching losses occur
in the power electronics converter [85]. The windage and eddy currents losses are
proportional to w?; while bearing and hysteresis losses are proportional to w, [85].
Therefore, the power losses in a FESS are usually described by polynomial functions
of w,, such as c;w? [86], and c;w? + c,w, [82,83,85], where ¢; and ¢, are constants.
A more accurate representation considers different FESS power losses functions for
the charging and discharging modes [87].

In this chapter, two linear functions are proposed to represent the FESS power
losses based on the charging mode. The power losses of each mode are described by
a linear function of the charging/discharging power and the SoC as shown in Table
5.1. In Egs. (5.4b) and (5.4¢), P? and P denote the power losses of the discharging and
charging mode, respectively, while b, &, & and ¢ are positive constants depended
on the FESS structure and characteristics. In the proposed representation, term C°
corresponds to w? according to (5.3); thus, the terms ¢/C; and ¢°C} represent the
polynomial term c;w?. Note that c;w? is the dominant power losses term of the
polynomial function ¢;w? + cow,, especially at high speeds and with reduced bearing
friction losses (since low-friction magnetic bearings are typically used in flywheel
applications) [85,88,89]. In addition, the terms @de and Bde consider the FESS
power losses for the charging and discharging modes. Logical constraints in (5.4a)
and (5.4d) are introduced to select the appropriate function based on the charging
mode. The power losses parameters in Egs. (5.4b) - (5.4c) can be experimentally
estimated for any real FESS system using the proposed methodology presented in
Section 5.6.2. Moreover, when the round-trip efficiency, ¢, and the standby losses
per hour, I, of a commercial FESS are given by the manufacturer datasheet, e.g,
e" = 85% and I° = 20% [69], then the FESS power losses can be represented using
Egs. (5.4b) - (5.4c) by setting b=b?=(100% — ¢’)/2 and &*=¢=P".

Incorporating Eqgs. (5.4a) - (5.4d) into Problem IP;gx leads to non-convex opti-
mization formulations due to the presence of binary variables. To avoid this issue,
notice that when P? > 0itis true that P? > P since be, b4, ¢¢, ¢ and C? are positive; con-
versely, when P? < 0 it is true that P > PY. These imply that h(C}, P¥) = max{P¢, P¢}.
Hence, constraint (5.1i) is convex and can be equivalently represented by affine con-
straints (5.5a) and (5.5b). Constraints (5.5a) and (5.5b) are binding when P? > 0 and
P? <0, respectively.

The derived functions of the FESS power losses enable:
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Table 5.1: FESS power losses and FESS maximum power limit

Derived Constraints Convex Affine Constraints

PL=6P!+(1-06)P¢ (5.4a) PL>bP5+¢'C), VteT  (5.5a)
P! = PS4+ ¢CS (5.4b) Pl > P +¢°C5, VteT (5.5b)
P = —b°P5 + &°CP (5.4c) PP <a;+BC5, VtVieN (550

1, PS>0 Py > —a; - B,C;, VtNVie N (5.5d)
S = ' (5.4d)
0, P’<0

IPY| < & + B4/CS (5.4e)

1. Accurate approximation of the FESS losses, capturing the dominant losses
term c;w? and the power losses from the charging/discharging modes. The
high accuracy of the approximated FESS losses is experimentally validated for

a real prototype FESS in Section 5.6.2.

2. Easy integration of commercial FESSs in practical applications because the
FESS power losses are dependent on the SoC and charging/discharging power,

independent of w, and |, which are readily available through a FESS interface.

3. Effective incorporation into mathematical programs as linear constraints that

can be efficiently handled by appropriate optimization tools.

5.3.2 FESS maximum power

Constraint (5.4e) aims to restrict the maximum charging/discharging power through
function ¢(C?). The dependence on C; is explained below. The maximum charg-
ing/discharging power of a FESS system depends on the rated current limit (I) of the
machine side power electronics converter. For given [, the rated converter power
Dis directly related to the stator voltage V of the FESS electrical machine [90], and

expressed as
P =3V, VteT, = P~V (5.6)

In permanent magnet synchronous machines (widely used in FESS applications),
the stator voltage is directly related to the angular speed, given a constant magnetic

flux, and given by
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V() = KOw,(t), YteT, = V~aw, (5.7)

where K is a machine constant and @ is the magnetic flux. Thus, V is directly related
to w, such that P ~ w, [91]. Since C° ~ a)f, according to Eq. (56.3), it can be concluded
that the maximum power is directly related to the square root of the SoC, i.e, P ~ VCS.
Hence, we consider that g(C?) = & + ﬁ\/as, where & and f3 are positive constants,
such that the maximum FESS power is constrained by (5.4e). The constants & and
f can be identified using linear regression either directly based on the maximum
power curve provided in the FESS datasheet, or indirectly through measurements
obtained from the FESS interface as presented in Section 5.6.2. Function g(C;) is
monotonically increasing and concave, such that Eq. (5.4e) is convex. To avoid
the introduction of general convex constraints in Problem IP;gx, a piecewise linear
approximation with N segments is constructed for ¢(C?). Let the i-th linear segment
be a; + ,Bin, Vie N ={1, .., N}. Then, the affine constraints (5.5c)-(5.5d) provide the

maximum values for |P?.

5.4 Solution methodology

This section presents the proposed methodology for the solution of the peak shaving

problem under demand prediction errors, described in Section 5.2.

5.4.1 Control architecture

To deal with demand prediction errors, a two-level hierarchical control architecture
is proposed, as shown in Figure 5.2. At the higher level, a model predictive controller
(tertiary level control) optimizes the FESS power set-points, P}, over a moving time
horizon, 7, based on the transformer predicted net load demand, Df , and the
measured FESS SoC, I°. At the lower level, a secondary controller compensates the
net load prediction error by revising the FESS set-points at a shorter time-scale. A
primary controller is embedded in the FESS (in the plant) that drives the power
converters to regulate FESS operation in real time.

The time sequence of events of the considered control architecture is depicted in
Figure 5.3. The MPC control step duration is set to Txipc. Measurements are collected
every T, time-units for system monitoring and used as input to the controllers. The

MPC controller solves Problem P;gx, using the latest SoC measurement, at the end
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Figure 5.3: Time sequence of events in each cycle of the MPC framework.

of every MPC control-step, aiming to define the next FESS power set-point. The
secondary controller updates the MPC-defined FESS set-point every Tsc time-units
using the latest load measurement.

In multi-level control architectures, the inner loop needs to be significantly faster
than the outer loop, Typc > Tsc, to decouple the dynamics between the two con-
trollers. In addition, the maximum execution time needed for the solution of the MPC
problem, T,,, should be smaller than the MPC control-step such that Txpc > T,y. For
monitoring both the dynamic and steady state operation of the FESS, measurements

with higher sampling rate are required, yielding T, < Tsc < Tmpc.

5.4.2 Model predictive controller

The MPC controller elaborates on the definition of Problem P;rx to define a convex
lexicographic optimization problem with four objectives. The first and second objec-
tives minimize the transformer maximum power and energy violations, respectively,
based on the predicted load. The third objective aims to sustain a minimum desir-
able SoC in the FESS that can be used by the secondary controller to compensate the

transformer power violations due to the load uncertainty. Therefore, the third objec-

93



tive minimizes the SoC energy violations. The fourth objective minimizes the FESS
energy losses. This lexicographic order gives first priority to the transformer safety;
thus, the first and second objectives minimize the “expected” violations. The third
objective aims to address “unexpected” violations. Last, the cost-effective operation
is achieved by minimizing the FESS losses. According to the general principles of
lexicographic optimization outlined in Section 2.2.2, the 4-objective Problem IP;gx
can be solved by sequentially solving four single-objective problems, Py, IPg, IP;; and
IP;, associated with objectives fy(x), fe(x), fu(w) and f;(PF), respectively.

Problem [Py aims to eliminate the transformer power limit violations by mini-
mizing the peak power violation of the transformer defined as fy(x) = maxs {x:}.

Towards this direction, Problem Py is defined as:

min fy(x) = max {x:} (IPy) (5.8a)
s.t.  Constraints (5.1b), (5.1e)-(5.1g), (5.5a)-(5.5d), (5.8b)
Pf+P; =D, VteT. (5.8¢c)

Eq. (5.8¢c) has been used instead of (5.1d) because the actual demand is unknown.
Problem Py can be converted into a linear program by transforming the objective
as: {minimizez, s.t. 0 <x; <z, Vte T}

Let x}/ denote the optimal values of x;, Vt € 7, derived from the solution of
Problem IPy. Then, Problem IPr aims to minimize the total energy violations of the

transformer yielding the formulation

min  fe(x) = Z AT (P¢) (5.9a)
teT”

s.t.  Constraints (5.1b), (5.1e)-(5.1g), (5.5a)-(5.5d), (5.8¢), (5.9b)

0 < x < max /), vteT. (5.9¢)

Note that there is no need to solve Problem Pr when max;csr {x}/} = 0 because
there are no transformer power limit violations. Simulation results in Section 4.5.2
indicate that the combination of the first and second objectives, fy(x) and fg(x), in
this lexicographic order provides better results compared to the case that only one
objective is used.

Problem IP;; aims to handle demand prediction uncertainty by minimizing the
SoC energy violations, w;, to sustain a minimum desirable SoC, Qf, according to Eq.

(5.1¢). Parameter gl is a function of the predicted demand, DY, that aims to maintain
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Figure 5.4: Minimum Desirable FESS SoC as a function of the predicted demand.

enough stored energy in the FESS when the transformer operates close to its maxi-
mum limit. This amount of stored energy can be utilized by the secondary controller
to prevent direct power flow violations due to demand prediction uncertainty. We

define Qf as

0, ifDP <P,
Cl=! £ _(DP—pP), ifnP <D’ <P (5.10)
=t = (1_”)#( t _77 )/ 1rn =L, = ’ .
U, otherwise.

Notice that Qf = 0 when the predicted demand is small, Df < UFF, to avoid un-
necessary FESS energy losses; further increase of the predicted demand increases
linearly Qf, until a maximum value y is reached. The specific definition of Qf creates
a desirable region of the FESS SoC, as shown in Figure 5.4. Hence, Problem Py
aims to manage demand prediction uncertainty by minimizing the total SoC energy

violations, yielding the formulation:

MnhM:ZmM (Py) (5.11a)
teT

s.t.  Constraints (5.1b)-(5.1c), (5.1e)-(5.1g), (5.11b)

(5.5a)-(5.5d), (5.8¢c), (5.11¢)

0 <x <af, VteT. (5.11d)

In Problem Py, xf denotes the optimal values of variables x;, Yt € 7 obtained from
the solution of Problem IPf.
Finally, Problem IP; aims to achieve economic efficiency for the FESS by minimiz-

ing its total energy losses while ensuring minimum transformer power violations
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Algorithm 5 : FESS power set-point correction every 30 s
1: Input: P%, Pf and DA.

if (DA — P%) > max(PF, ﬁF) then

3. Set PR = DA — max(PF, ﬁF);

4: else if (D* — P%) < min(PF, PF) then

5 Set PR = DA — min(PF, P");

N

6: else
7: Set PR = PS,'
8: Output: PR

and minimum total SoC energy violations:

min f(P") = Z PEAT (Py) (5.12a)
teT

s.t.  Constraints (5.1b)-(5.1¢c), (5.1e)-(5.1g), (5.12b)

(5.5a)-(5.5d), (5.8¢), (5.11d), (5.12¢)

O<w <w;, VteT. (5.12d)

In Problem IP;, w; denotes the optimal values of variables w;, ¥t € 7 obtained from
the solution of Problem ;.
In sum, every Typc the MPC controller sequentially solves Problems Py, IPg, Py,

and IP;. All four problems can be fast and reliably solved using linear programming.

5.4.3 Secondary controller

Algorithm 5 describes the operation of the secondary controller that compen-
sates the transformer power limit violations by handling the load uncertainty. This
controller takes as input the FESS power set point, P°, and transformer operating
power, P, predicted from the MPC controller for the current 3-minute time cycle, as
well as the latest measurement of the actual net load D*. The aim of the secondary
controller is to operate the transformer between the minimum and maximum per-
missible power points defined as min(Pf, P') and max(PF, ﬁF), respectively. Hence,
the secondary controller provides a revised FESS power set-point PR every Tsc s by

considering three cases:

1. The transformer is set to operate at the maximum permissible point if this point
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is violated considering the MPC-based set-points and the latest measured net

load (Lines 2-3).

2. The transformer is set to operate at the minimum permissible point if this point

is violated (Lines 4-5).
3. Otherwise, the FESS power set-point remains unaltered (Lines 6-7).

Note that the FESS power and energy limits are ensured by the embedded primary
controller in the real FESS. In the simulations, the power and energy limits are
ensured in the Plant by projecting' parameter PX to its feasible set defined by Egs.
(5.1e) - (5.1g) and (5.4e).

5.5 Simulation results

The simulation setup is comprised of a FESS installed in a transformer substation
with direct and reverse power flow limits of 500 kW and —200 kW, respectively. For

comparison purposes two FESSs are considered:

o The scaled-up prototype FESS is a 100-times scaled-up version of a real prototype
FESS?. The scaled-up prototype FESS has a rated capacity of 185 kWh and
600 kW charging/discharging power. Its power losses and maximum power
coefficients are b¢ = 0.106,& = 0.394, b* = 0.223,67 = 0.419, & = 0.172 and
B = 0.622. These coefficients correspond to the ones identified experimentally

for the real prototype FESS in Section 5.6.2.

e The commercial FESS has the same rated capacity and maximum charging/discharging
power with the scaled-up prototype FESS. Its power losses and maximum
power coefficients are b? = b¢ = 0.075, ¢ = & = 0.2, @ = 0.172 and f = 0.622.
These power losses coefficients correspond to 85% round-trip efficiency and

20% standby losses per hour [69].

Unless otherwise stated, N = 10 segments are used for the piecewise linear ap-
proximation of the FESS maximum power of both FESSs, according to Egs. (5.5¢) -
(5.5d).

IThe projection of point xy on a set C, is defined as the point xp € C that is closest to xy according

to some distance metric || o ||, i.e., xp = argmin{||x — x|l |x € C}. For example, the projection of x; on

the set [x, x] is simply xp = max(x, min(x, x1)) [17].
“The real prototype FESS is employed in Section 5.6 for experimental validation.
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Section 5.5.1 investigates the performance of the proposed methodology in two
6-hour scenarios, T = 6 hours, where Scenario 1 has no uncertainty, while Scenario 2
has model and net load demand uncertainty. Section 5.5.2 provides aggregate results
on the capability of the proposed controllers to provide peak shaving services under
net load demand uncertainty, using historical data from a real distribution grid. The
time-horizonis setto T = 24 hours. The timing parameters of the control architecture
for both sections are set to: AT = 3 min, Ty;pc = 3 min, Tsc = 30s, T,, =5 s, and
Tex = 10 s. The solution of Problem IP;rx takes place in the interval [165, 175] s of
each MPC control-step. The allowed 10-second interval for the solution of the MPC
Problem IP;gx is more than enough, as Problems Py, Pg, IP;;, and IP; are medium-
scale linear programs. These problems are solved using Gurobi [43]. Note that the
predicted demand is usually available for 15-minute time intervals [73]; however,
this chapter considers AT = Typc = 3 min to provide updated control actions in
shorter times, because the model uncertainty and the SC operation can affect the

FESS SoC.

5.5.1 Performance evaluation - Synthetic data
Scenario 1

This scenario investigates the capability of the proposed MPC controller to provide
peak shaving services to the distribution grid. Because there is no uncertainty, the
secondary controller is not utilized in this scenario. Therefore, the control actions
of the MPC controller are passed directly to the Plant, without revision by the
secondary controller (see Figure 5.2). Regarding the minimum desirable SoC, it is
set that u = 15% and 1 = 70%.

Figure 5.5(a) presents the net load demand and the transformer operation using
the two FESSs. To induce reverse and direct power violations, the net load is
selected to have excessive PV generation and low load demand during noon and
the opposite during afternoon hours. The results illustrate that the MPC controller
successfully shaves the power peaks to maintain operation within safety limits. In
detail, the reverse power violations, observed during [0.5 h, 1.25 h], are eliminated
by charging the two FESSs from the excess PV production, as can be seen in Figure
5.5(b). Notice in Figure 5.5(c) that the surplus energy stored and re-injected into the

grid is larger for the commercial FESS because it has lower standby losses compared
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Figure 5.5: Power scheduling using the scaled-up prototype and the commercial FESS: (a)
Predicted net load demand and transformer power using the two FESSs, (b) FESS power
set-points of the MPC controller, and (c) Stored energy in the prototype and commercial

FESS.

Table 5.2: Objectives effectiveness in minimizing power violations

Objectives |Peak power violation | Total energy violations

MinMax 41 kW 18.8 kWh
MinEnergy 85.1 kW 5.4 kWh
Lexicographic 41 kW 8.3 kWh

to the prototype FESS. Due to the standby losses, the stored energy during [0.5 h,
1.25 h] is not maintained to address direct power violations, observed during [4.75
h, 6 h]. However, direct power violations are eliminated by charging the two FESSs
from the grid prior to the violation period and reusing the stored energy to satisfy
the excess load demand. As expected, the SoC at T = 6 h is 15% due to the minimum
desirable SoC.

We further consider a case where the transformer maximum limit is reduced from
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500 to 470 kW such that the safety limits cannot be satisfied, considering only the
scaled-up prototype FESS. Table 5.2 presents the transformer peak violations and

total energy violations under three objectives:

1. MinMax minimizes the transformer peak power violation as defined in Eq

(5.8a).
2. MinEnergy minimizes the total energy violations as defined in Eq (5.9a).
3. Lexicographic combines the above two objectives and is defined as lexmin{ fv(x), fe(x)}.

From the results is it evident that the Lexicographic objective is the best as it achieves
the smallest possible peak violation (4.1 kW or 0.8% overloading) with only a small
increase in the transformer total energy violations (2.9 kWh).

The Lexicographic objective is also used to investigate the impact of the piecewise
linear approximation of Eq. (5.4e) on the total energy violations when the trans-
former maximum limit is 470 kW. As shown by the solid orange line of Figure 5.6,
there is no impact of N on the total energy violations under the FESS maximum
power is 600 kW (y = 100%). For this reason, we re-scale the FESS maximum power

limits in Egs. (5.1g) and (5.4e) by a scaling factor y, yielding the new constraints
S~ DS <P
yP> <P} <yP ,VteT,
P < y(& + pA/C), Ve T,

and examine the performance for y = {70%,50%,30%}. Interestingly, the energy
violations are considerably, moderately and marginally reduced when N increases
from 2 to 5, 5 to 10 and 10 to 20, respectively. Hereafter, it is considered in all

experiments that N = 10.

Scenario 2

Scenario 2 extends the simulation setup of Scenario 1 for the scaled-up prototype
FESS by considering model and net load demand uncertainty. As a result, both
controllers are utilized; the MPC controller computes the FESS power set points
using the predicted demand and estimated model, while the secondary controller
corrects the provided points based on real-time measurements. Modelling uncer-
tainty is introduced by increasing the FESS power losses by +5%. To introduce

demand uncertainty, the predicted demand is computed as the 15-minute piecewise
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Figure 5.7: Power scheduling using the scaled-up prototype FESS under uncertainty: (a)
Actual and predicted net load demand, (b) Actual (Plant) and predicted (MPC) transformer
power, (c) FESS power set-points of the MPC and secondary (SC) controllers, and (d) Stored
energy in the FESS.
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Figure 5.8: Actual and predicted net load curves constructed from historical data of a real

distribution grid.

constant approximation of the actual demand; the mean, standard deviation, mini-
mum and maximum demand prediction error is 1.5 kW, 38.6 kW, -91.7 kW and 115
kW, respectively.

Figure 5.7(a) illustrates the actual and predicted demand and Figure 5.7(b)
presents the actual and predicted transformer power, produced by the Plant and
the MPC controller. Despite the introduced uncertainty, the proposed controllers
can still handle well the reverse and direct power violations. This is also indicated in
Figure 5.7(c) by the revised FESS power set-points of the secondary controller which
correct the set-points of the MPC controller. The minimum desirable SoC is vital in
making these corrections; for example, the unpredicted extra demand experienced in
the period [5h, 6h] is compensated using the FESS minimum desirable SoC, resulting

in almost 0% SoC at the end of the 6-hour scenario.

5.5.2 Performance evaluation - Real data

This section examines the capability of the proposed controllers to provide peak
shaving services under net load demand uncertainty, using historical data from a
real distribution substation in Larnaca, Cyprus. Figure 5.8 demonstrates 31 actual
net load curves that are obtained from the distribution transformer for July 2019,
as provided by the Electricity Authority of Cyprus (Cyprus DSO). It also presents a
predicted net load curve constructed as the average of the actual net load curves of

July 2018. The distribution grid includes mainly residential loads of a rural area and
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Figure 5.9: Direct and reverse energy violations when (a) the proposed control scheme is not

utilized and (b) the MPC controller is used, but the secondary controller is deactivated.

there is intense penetration of large PV parks, causing high reverse and direct power
flows during the noon and evening hours, respectively, as can be seen in Figure
5.8. As power violations do not occur in the real distribution transformer, due to its
large size, we consider a smaller transformer with peak reverse and direct capability
of -200 kW and 500 kW. The performance of the proposed controllers is examined
for the commercial FESS using as input the actual and predicted net load curves of
Figure 5.8 for the Plant and the MPC, respectively, according to Figure 5.2.

Figures 5.9 (a) and (b) illustrate the energy violations of the 31 actual curves, in
box-plot form?, that are caused due to the direct and reverse power flow violations,
when no control and MPC control are used, respectively. Although MPC control
achieves better results compared to no control, it still suffers from high energy
violations because only the “expected” violations that are covered by the predicted
net load curve are addressed. Note that the values of i and 1 do not affect the energy
violations, because the secondary controller is deactivated.

When both the MPC and secondary controllers are utilized, the reverse energy
violations are completely eliminated because the secondary controller stores all the
“unexpected” violated energy in the FESS. Nevertheless, the “unexpected” violated
energy from the direct power flow is more challenging to be addressed, because
the FESS must be charged in advance to provide the violated energy. Figure 5.10

presents the direct energy violations of the actual curves for different values of

3The bottom and top of each box indicate the first and third quartiles (25% and 75%) of a ranked
data set, while the horizontal line inside the box indicates the median value (second quartile). The
horizontal lines outside the box indicate the lowest/highest datum still within 1.5 inter-quartile

range of the lower/upper quartile; for normally distributed data this corresponds to approximately

0.35%/99.65%.
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Figure 5.10: Direct energy violations, in box-plot form, for different y and n when both the
MPC and secondary controllers are utilized. The reverse energy violations are eliminated in

every case.

p and n (see Eq. (5.10)). As expected, the energy violations are reduced as the
value of u increases, because more energy is maintained in the FESS to address the
“unexpected” violations. In contrast, parameter 1 has negligible effect on the results;
nonetheless, higher values of 1 are more preferable to avoid unnecessary power
losses due to the FESS operation. As shown in Figure 5.10, the proposed controllers
compensate well for the “unexpected” energy violations of the considered days for
p = 40%. However, high energy violations are still present in one particular day
with total energy violations of 173.3 kWh (see the Direct flow in Figure 5.9 (a)). This
amount of energy cannot be compensated by the considered FESS with capacity 185
kWh, efficiency 85% and standby losses 20%. The main conclusions of this section

are summarized as:

1. In cases with high net load uncertainty, the utilization of both the MPC and sec-
ondary controllers is essential to address the “unexpected” power and energy

violations.

2. The violations are reduced by increasing parameter p; 1 has negligible effect

on the results.

3. The FESS capacity is an important factor that affects the performance of the
proposed controllers, since small values impose energy limitations that can

lead to transformer power limit violations.
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5.6 Experimental validation

In this section, the proposed controllers are evaluated in a realistic experimental setup
using a real prototype FESS. Prior to the performance evaluation, the experimental
setup is described and used to identify the parameters of the power losses and

maximum power FESS functions.

5.6.1 Experimental setup

As shown in Figure 5.11, the experimental setup is comprised of five main modules:
(M1) the Physical System, (M2) the Core Context Management, (M3) the Commu-
nication Context, (M4) the Processing Context, and (M5) the Visualization Context.
The Physical System represents the considered smart-grid configuration presented in
Figure 5.1. It is comprised of a prototype FESS with 6 kW total rated power and
a usable capacity of 1.85 kWh, a 4.05 kW load bank with nine equal controllable
switching steps and a 5 kW PV system, connected to the power grid and installed
in our power systems laboratory. The FESS is based on two 150 kg flywheels with
a rated speed of 14000 RPM and the PV system is based on a commercial Fronius
Symo 5.0 inverter associated with a Chroma 62150H PV emulator. Measurements
of the various system states (actual load, grid power) are obtained through smart
meters while the PV generation and the FESS charging/discharging power and SoC
are obtained through the inverter and FESS interfaces.

To enable the interaction between the controllers and the physical system, a
software platform based on FIWARE [84] has been developed (modules M2 - M5).
FIWARE is a framework of an open source platform modules which can be assem-
bled together to accelerate the development of smart solutions, such as the real-time
monitoring and control of a FESS in a smart grid environment. In the developed
FIWARE-based software platform, the Core Context Management module is respon-
sible for creating and managing context information elements through the Orion
Context Broker sub-module, as well as storing, querying and retrieving data using
QuantumLeap from the back-end database (CrateDB). The exchange of informa-
tion between the Core Context Management and the Physical System is achieved
through the Communication Context module where a Python script has been devel-
oped to transfer real-time measurements from the smart meters to the Core Context

Management. Measurements are submitted to the Processing Context module and

105



GUROBI

Visualization Context ‘

e
e
Core Context Management il
Communication
A
e L
- b - b
Orion a
Context  QuantumLeap CrateDB
Broker ‘ Physical System

Figure 5.11: Monitoring and control of the FESS for providing distribution grid services

using a software platform based on FIWARE.

are displayed graphically on the Visualization Context (developed using Grafana web
application) to monitor the system. The Processing Context module implements the
proposed controllers in Matlab/Gurobi and calculates the FESS commands which are
submitted for execution to the Physical System through a C# script. Measurement
and control data between the Physical System and the Core Context Management
are exchanged through the laboratory Local Area Network (LAN). Note that the
experimental setup operates according to the three different time scales presented in

Figure 5.3.

5.6.2 FESS model validation and parameter identification

This section validates the proposed model for the power losses, Egs. (5.5a)-(5.5b), and
maximum power, Egs. (5.5¢)-(5.5d), of the employed prototype FESS. To derive the
charging power losses, the FESS operation was regulated with a constant charging
power for varying SoC and maximum allowable power. The power losses were then
calculated at each operating condition pairs (S0C, charging power) as the difference
between the measured absorbed energy for charging and the measured stored energy
in the FESS. For example, the power losses at 50% SoC and 2 kW charging power
are derived by the difference between the energy drawn from the grid and the FESS
stored energy for a SoC increase from 45% to 55% using a constant charging power

of 2 kW. A similar approach was used for the discharging mode.
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Figure 5.12: The FESS power losses for varying SoC and charging/discharging power. The
two intersecting planes is the result from linear regression using the sample points and the

dots indicate sample points located above the planes.

Table 5.3: Regression Analysis - Parameter Identification

Charg. mode - Eq. (5.4¢) ‘ Disch. mode - Eq. (5.4b) ‘ Max. power - Eq. (5.4e)

~

b¢ = 0.106, ¢ = 0.394 b =0.223,¢% = 0.419 a=0.172,4 = 0.622
Adjusted R? = 0.973 Adjusted R? = 0.961 Adjusted R? = 0.996
RMSE = 0.046 RMSE = 0.103 RMSE = 0.081

The FESS power losses as a function of the charging/discharging power and the
SoC are illustrated in Figure 5.12. From the figure two important observations can
be made. First, the FESS power losses become higher as the charging/discharging
power and the SoC increase. Second, the maximum power depends on the SoC, as
shown in Figure 5.13, and thus the measurements on the power losses do not span
the entire SoC/maximum power region. Due to this limitation, the total number of
measurements were 166 instead of 225 when the SoC and maximum power vary in
the ranges {10, 20, ...,90%} and {-6,-5.5, ...,5.5,6 kW}, respectively. The maximum
charging/discharging power limitation is further verified according to experimental
measurements received from the FESS interface, as shown in Figure 5.13, which
indicates that the maximum power is a monotonically increasing concave function
of the SoC.

Linear regression was used to model the FESS power losses (kW) as a function of

the SoC (kWh) and the charging or discharging rate (kW). Table 5.3 presents the iden-
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Figure 5.13: The maximum charging/discharging power of the FESS as a function of the
SoC obtained from 100 experimental samples. The dashed line is the fitted response using
regression. The ten blue solid lines construct a piecewise linear approximation of the concave

function produced from the samples.

tified parameters of the two linear models for the charging and discharging modes,
according to Egs. (5.4b)-(5.4c) or Egs. (5.5a)-(5.5b), along with two coefficients to
determine the goodness of fit. The Adjusted Coefficient of Determination (Adjusted R?)
falls very close to 1 (Adjusted R? > 0.95) in both cases; this indicates that the derived
models explain more than 95% of the variance in the power losses. The goodness of
fit is also indicated by the small Root Mean Squared Error (RMSE) values which are
less than 0.105 kW in both cases.

The results of the linear regression are illustrated in Figure 5.12 by the two
intersecting planes representing the power losses for the charging and discharging
mode. As can be seen, the two intersecting planes define a convex function which
explains the selection of Egs. (5.5a)-(5.5b).

Similarly, the parameters of the maximum power model, Eq. (5.4e), are identified
using linear regression based on the measurements depicted in Figure 5.13. Table 5.3
shows an excellent goodness of fit having an Adjusted R? value larger than 0.99 and
a RMSE smaller than 0.01 kW. The fitted model and a 10-segment piecewise linear
appproximation of the model are shown in Figure 5.13. These linear segments are

used to derive convex constraints on the maximum power in (5.5¢)-(5.5d).

5.6.3 Experimental results

To experimentally evaluate the two proposed controllers, we consider a 3-hour sce-

nario, T = 3 hours, with power grid limits of 3.3 kW and -1 kW and the experimental
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Figure 5.14: Experimental validation using the prototype FESS: (a) Input data, (b) Actual
(Plant) and predicted (MPC) transformer operation, (c) FESS charging/discharging power
based on the MPC and secondary controllers (SC), and (d) SoC.

setup described in Section 5.6.1. The timing parameters used in Section 5.5 for
the control architecture remain the same. Figure 5.14(a) shows the PV generation
and load demand of the physical system, as well as actual and predicted net load
demand. Figure 5.14(b) illustrates that the controllers successfully shave the peaks
exceeding the power limits in almost all cases. Figure 5.14(c) presents the FESS power
set-points of the MPC and secondary controllers. As can be seen, major deviations
between the controllers output are experienced during the period [Oh, 1Th]; however,
the secondary controller manages to successful compensate the unpredicted extra
net load demand and maintain the power grid limits. Finally, the FESS SoC due to
the charging/discharging power is illustrated in Figure 5.14(d).
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5.7 Practical implementation considerations

The practical implementation of the proposed energy management and control
scheme for providing peak shaving services requires proper consideration of (a)
the transformer power limit violations, (b) the cost-effective operation of the system,
and (c) communication and cybersecurity issues.

The size (capacity) of the FESS is a key aspect that can lead to violations of the
transformer power limit. As presented in Section 5.5.2, a small FESS imposes energy
limits and violations can occur. Thus, before the investment, a planning study must
be carried out, considering the historical and future power profiles of the transformer,
to determine the adequate size of the FESS for each application. In addition, the
utilization of an accurate predicted curve for the transformer net load is required
to enhance the performance of the proposed scheme. This predicted curve can be
constructed using forecasting data and/or historical data, as indicated in Section 5.5.2.
In case the proposed scheme fails to eliminate all violations, PV curtailments and/or
load shedding must be applied to avoid overloading the distribution transformer.

The FESS efficiency and standby losses is an important factor that should be
considered for the cost-effective operation of the system in real applications. Low
efficiency and high standby losses result in significant total energy losses that affect
the sustainability of the investment. In addition, high energy losses affect the FESS
mission profile (charging/discharging power) resulting in higher power rates which
can affect the lifetime of the FESS power electronics, especially when the system
operates near to its rate limits [92]. Such a case was illustrated in Figure 5.5, where
the prototype FESS resulted in significantly higher charging power compared to the
more efficient commercial FESS.

Secure communication is also a major concern in smart grid applications. In
this chapter, measurement and control data between the Core Context Management
and the Physical System are exchanged through a LAN, since all modules of the ex-
perimental setup, presented in Figure 5.11, were located within the same building.
However, in real-world applications, the physical systems may be distributed far
away from the central Monitoring and Processing Contexts (server or cloud-based).
In this case, secure and reliable communication can be achieved over the Internet
using different methods. Two indicative approaches are the following. The first

approach is to use a Virtual Private Network (VPN) router at the physical system
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level to facilitate secure communication with a central processing server. The second
approach is to use a local controller with firewall protection to maintain communica-
tion between the components at the physical level through a LAN. In the latter case,
only the local controller can communicate over the Internet with the central Process-
ing Context in a bi-directional way using secure Internet of Things (IoT) protocols

such as the Message Queuing Telemetry Transport (MQTT) protocol.

5.8 Conclusions

In this chapter, an energy management and control scheme is proposed to provide
peak shaving services to the distribution grid using a FESS. Convex functions that
represent the FESS power losses and maximum power are derived and incorporated
in a novel lexicographic optimization that defines the FESS power set-points. A two-
level hierarchical control scheme is proposed for the solution of the lexicographic
optimization to deal with demand prediction errors and modelling uncertainty.
In this study the proposed FESS modelling is experimentally validated and the
FESS parameters are identified. Simulation and experimental results validate the
effectiveness of the proposed energy management and control scheme to provide
peak shaving services under realistic conditions. The proposed scheme enables the
active management of distribution grids and increases the hosting capacity for PV

installations and load demand growth in existing power grids.
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Chapter 6

Stochastic optimization of the bidding
strategy of RES producers in electricity
markets considering battery

degradation

Battery energy storage systems (BESSs) is an emerging technology that can enhance the
flexibility and controllability of wind and photovoltaic power plants. This work develops a
bidding strategy for combined BESS and renewable enerqy source (RES) plants to maximize
the expected profit of producers in day-ahead energy and balancing markets, considering
battery degradation and power exchange limitations with the grid due to transmission
congestion. The resulting problem is challenging to solve due to the non-convex degradation
and power loss models of the BESS, and the uncertainties arising from RES generation and
energy prices. To address the non-convexities associated with the BESS, a linear deterministic
optimization scheme is developed that incorporates an approximate cycle-based degradation
model and a relaxed BESS model. To handle uncertainties in RES power generation, day-
ahead energy prices, and imbalance prices, a scenario-based linear stochastic optimization
scheme is developed that can be fast and reliably solved. Simulation results, using real data
from a wind and PV plant, demonstrate the effectiveness of the proposed stochastic scheme
in enhancing the profit of producers compared to (a) the corresponding deterministic scheme
and (b) a base scenario where the RES forecasting generation profile is directly submitted to

the market.
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6.1 Introduction

The requirement for RES plants to participate in electricity markets presents op-
portunities to maximize profits by taking advantage of market operations. This
includes buying and storing energy when prices are low and selling when prices
are high. RES producers who participate in day-ahead energy markets are paid
based on their scheduled RES production profile submitted to the market for the
next day [93]. However, since day-ahead prices are unknown, producers must make
decisions based on forecasted prices, which may reduce their profits in case of high
forecasting errors. Additionally, forecasting errors in RES power generation create
power imbalances that threaten the stability of the power system. Power imbalances
can result in power deficits which are penalized at higher costs compared to day-
ahead prices, or power excesses which are paid at lower prices [94]. This incentivizes
RES producers to submit accurate scheduled production profiles to the day-ahead
market to maximize profits. This chapter aims to develop a bidding strategy for
RES-BESS producers to maximize profits by buying and selling power in electricity
markets, considering power exchange limits with the grid to ensure transmission
system restrictions.

The insufficiency of the power grid infrastructure to accommodate the variable
RES generation due to transmission constraints may lead to RES power curtailments,
which can deteriorate the profits of RES producers. When the total RES generation
cannot be injected into the power grid due to limitations related to the transmission
congestion, energy storage systems (ESSs) can store the surplus RES generation to
avoid RES curtailments. A real-time operation strategy of a wind-storage system to
maximize the producer profits by reducing the wind curtailment cost due to trans-
mission congestion is presented in [95]. Similarly, deterministic energy management
schemes for BESSs operating in photovoltaic (PV) power plants considering power
grid limits are developed in [96].

The consideration of battery degradation costs in bidding and operating strate-
gies in electricity markets is essential to ensure that the revenues obtained from the
BESSs operation will at least cover their true operation and maintenance costs [97,98].
The most critical degradation factor concerns the BESS cycle depth, as most elec-
trochemical batteries age nonlinearly to the cycle depth [98,99]. To count BESS

cycles and quantify the cumulative impact, the rainflow counting algorithm has
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been widely used for battery life assessment [98,100]. However, the rainflow count-
ing algorithm does not have an analytical mathematical expression and cannot be
incorporated into optimization formulations [98]. Towards this direction, an approx-
imate cycle-based degradation model that can be easily incorporated in optimization
formulations is proposed in [98]. In [97,98], bidding strategies of BESSs participating
in electricity markets are developed; however, these works do not consider the com-
bined RES-BESS system. An operating strategy for a wind-BESS system considering
battery degradation is presented in [101], but the bidding strategy in day-ahead
electricity markets is not considered.

Day-ahead offering strategies of wind power producers using stochastic pro-
gramming to consider RES generation, day-ahead price, and imbalance price un-
certainties are proposed in [94,102-104]; however, these works do not consider the
usage of ESSs. Day-ahead trading strategies of combined wind generation and
pumped-storage units are presented in [105,106], but the expansion of pumped-
storage units is limited due to environmental constraints. Offering and operating
strategies are proposed in [107], but the day-ahead offering strategy is developed
as a deterministic optimization problem; thus, the uncertainties in RES generation,
day-ahead and imbalance prices are ignored. Day-ahead bidding strategies that
handle the associated uncertainties are presented in [108,109]. However, none of the
aforementioned bidding strategies for RES-BESS producers considers the BESS cycle
degradation cost, which can reduce the producers’ profit. In addition, power grid
limits, due to transmission congestion, are not taken into account, which challenges
the optimal energy scheduling of the RES-BESS system.

This chapter develops a bidding strategy for RES-BESS producers (e.g., wind-
BESS and PV-BESS) to maximize their expected profits in electricity markets. The
proposed strategy considers uncertainty in RES generation, as well as day-ahead
and imbalance prices. BESS degradation and constraints on the allowable power
exchange with the grid are also considered. Considering the power grid limits,
the proposed scheme provides peak shaving services by making uncertainty-aware
BESS decisions which reduce the real-operation RES power curtailments. To ad-
dress the non-convexities associated with the BESS, a linear deterministic optimiza-
tion scheme is developed that incorporates an approximate cycle-based degradation
model and a relaxed BESS model. To handle uncertainties in RES power generation,

day-ahead energy prices, and imbalance prices, a scenario-based linear stochastic
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optimization scheme is developed that can be fast and reliably solved. Simulation
results demonstrate the effectiveness of the proposed stochastic scheme in improv-
ing producers’ profit compared to both the corresponding deterministic scheme and
the base scenario, where the RES generation forecasting profile is directly submitted
to the market.

The rest of this paper is organized as follows. Section 6.2 states the problem
and Section 6.3 formulates the deterministic bidding strategy as a linear program.
Section 6.4 formulates the two-stage scenario-based stochastic optimization scheme.
The scenario selection methodology is explained in Section 6.5 and simulation results

are presented in Section 6.6. Finally, conclusions are given in Section 6.7.

6.2 Problem statement

This section states the underlying problem by (a) describing the constraints of the
RES-BESS plant, (b) presenting the cycle-based degradation model, (c) introducing
the framework of the electricity markets under consideration, and (d) formulating the
optimization problem of the bidding strategy considering the RES-BESS constraints,

degradation model, and electicity market structure.

6.2.1 RES-BESS plant

We consider a BESS integrated in a RES plant (e.g., wind or PV plant), which is
connected to the power grid. The arrows in Figure 6.1 indicate the possible power

flow directions in a RES-BESS plant. Specifically, the power balance is defined as
P,+P{—P: =P, VteT, (6.1)

where 7 = {1, ..., T} denotes the considered time horizon. Variables P} > 0, P/ > 0,
P¢ > 0, and P{ denote the RES power generation, BESS discharging power, BESS
charging power, and buying (negative) or selling (positive) power into the power
grid at time-step t in MW.
To avoid transmission congestion, the power exchange with the grid is restricted
to
—pP <PP<pP, VteT, (6.2)
where constant P denotes the nominal capacity of the RES plantand p, 0 < p <1,

defines the power grid limits. To ensure the power grid limits, the BESS can be
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Figure 6.1: RES-BESS plant.

charged when the RES generation exceeds the grid limits; otherwise, RES power

curtailments, P}, must be applied, defined as
P! =P{—-P;, 0<P;<P] VteT, (6.3)

where constant P} denotes the available RES generation at time-step ¢; P{ is usually
replaced by the RES generation forecast. In (6.3), it is true that the RES generation
P} < P{ when RES curtailments are applied, implying that P} > 0.

Considering the widely-used piecewise linear power loss model presented in [27],

the energy stored in the BESS is defined as
Cis1 = Ci+ AT(=P}/n + n°P%), VteT, (6.4)

where AT is the time-step duration in hours, 7 and 7 the charging and discharging
efficiency coefficients, and C; the energy stored in the BESS at time-step t in MWh.
The charging and discharging power losses, I° and I? in %, are implicitly considered
in (6.4) using the efficiency coefficients, such that ¥ = 1/(1 + I) and ° = 1 — I*. The

BESS energy limits are set equal to
C<C<C, VteT, (6.5a)

Co=1, Cra>F, (6.5b)

where constants C and C denote the minimum and maximum energy limits, and
I and E/ the initial and final energy stored in the BESS over the considered time
horizon, such that C < I < C and C < E/ < C. The charging and discharging power
limits are given by

d

0<PI<P, 0<P°<DP, VteT, (6.6a)
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PIPi=0, VteT, (6.6b)

—d
where constants P’ and P’ denote the discharging and charging power limits. The

non-convex constraint in (6.6b) ensures non-simultaneous charging and discharging.

6.2.2 BESS degradation

The cycle depth is a critical stress factor for BESS degradation which presents a
nonlinear aging relationship with respect to the depth-of-discharge (DoD?) [99].
Specifically, cycles with higher DoD cause more severe damage to the battery. The

DoD is associated with the state-of-charge (50C) defined as
o =C/C, VteT, (6.7)

where variable C} denotes the SoC of the BESS at time-step ¢ and constant C > C
denotes the nominal BESS capacity in MWh. The rainflow cycle counting method is
widely used to identify the BESS cycles for a given SoC profile [98,100]. Specifically,
the main idea of the rainflow cycle method is to find the minimum and maximum
values of the SoC profile, identify the half and full cycles, and calculate their DoD.
For example, the SoC profile demonstrated in Figure 6.2 has one charging half cycle
of 60% DoD (61-0,), one full cycle of 40% DoD (6,-04), and one discharging half cycle
of 50% DoD (64-05). Let J = {1, ..., ]} denotes the set of cycles for a given SoC profile,
d; the DoD of cycle j € J in %, and k; = {0.5,1} the length of cycle j € J, where
ki = 0.5 and k; = 1 denote a half and full cycle, respectively. The rainflow algorithm

for cycle identification is defined as
[k, d] = Rainflow(C®), (6.8)

where d and k denote the vector forms of d; and k;, Vj € J, while C® the vector form
of C?, ¥t € 7. Empirical non-linear DoD stress models are used to determine the
degradation (also known as life loss) caused by one cycle of a BESS operating under
a specific DoD [98,99]. A widely-used model is represented by the polynomial DoD

stress function, ®(d;), given by

O(d)) = y1d]?, (6.9)

!The DoD is defined as the ratio of the amount of energy that has been extracted from the battery

in a cycle to its nominal capacity.
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Figure 6.2: Identifying the BESS cycle depths for a given SoC profile. The SoC profile has
one charging half cycle of 60% DoD (61-62), one full cycle of 40% DoD (62-04), and one
discharging half cycle of 50% DoD (64-65).
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Figure 6.3: BESS degradation in % as a function of the DoD. The convex degradation function

is approximated using N piece-wise linear segments.

where y; and y, denote the parameters of function ®(d;). For example, Figure 6.3
depicts the degradation using the polynomial DoD stress function, indicating that
cycles with higher DoD cause more severe BESS degradation. For example, a 20%
full cycle DoD causes 0.002% degradation, while a 60% full cycle DoD causes 0.019%
degradation.

The total degradation, L(C®), resulting from an SoC profile is calculated as the
sum of the degradation caused by all the half and full cycles, defined as

L(CS) = Z kO(d)). (6.10)
j€g

The total degradation cost, FP(C®), is usually calculated as the product of the total

degradation, L(C®), and the battery replacement cost R [98], as

FP(C®%) = L(C%)R. (6.11)

6.2.3 Electricity markets

The profits of RES-BESS producers can be maximized by trading energy in electricity
markets. This work considers both the day-ahead (DA) and balancing markets.
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Day-ahead market. The DA market concerns the entire day D and is cleared the day
before, i.e. D — 1. Figure 6.4(a) illustrates the hourly day-ahead prices, AP, obtained
from the Spanish electricity market for the day 01/02/2022 [110]. The figure indicates
that RES-BESS producers can benefit from energy arbitrage by buying and storing
power during low-price periods and selling power during high-price periods. Since
the actual DA prices are unknown when RES-BESS producers submit their bids to
the DA market, producers can maximize their expected profits by making energy
trading decisions based on predictions of the DA market prices and RES power
generation.

Balancing market. Having a perfect next-day forecast for the RES power generation
is unrealistic, due to the intermittent uncertain nature of these sources. As a result,
any mismatch between day-ahead scheduled and actual power generation of the
RES-BESS plant creates power imbalances during actual operation. These power
imbalances can either cause excess or deficit of power in case of overproduction
or underproduction of the RES-BESS plant, respectively. Considering the Spanish
electricity market, the producer will be paid (charged) for its excess (deficit) of
generation according to the imbalance prices of the balancing market. Figure 6.4(b)
depicts the imbalance prices for power excess, A/, and power deficit, A, for the day
01/02/2022. The figure indicates that A} < AP and A; > AP, ¥t € 7. Therefore, the
imbalance prices for excess and deficit of power can be linked with the day-ahead
prices [94] as

+

+

1, <1, r = >1, VteT, (6.12)

_ e 2

AD = 2D
where ] and r; denote the imbalance price ratio for excess and deficit of power,
respectively. According to (6.12), overproduction is paid at a lower price compared
to the DA price, while underproduction is charged at a higher price. This incentivizes

RES-BESS producers to reduce their power imbalances to maximize their profits.

6.2.4 Bidding strategy

The bidding strategy aims to maximize the expected profits of RES-BESS producers
by determining the power exchange with the grid through the day-ahead energy
scheduling of the RES-BESS plant. The outcome of the bidding strategy is the power
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Figure 6.4: Prices from the Spanish electricity market for 01/02/2022: (a) day-ahead electricity

prices and (b) imbalance prices of the balancing market.

exchange with the grid submitted to the DA market. This work considers price-taker?
producers.

Assuming perfect knowledge of the RES generation, P{, and day-ahead electricity
prices, /\?, any power imbalances are eliminated and the balancing market can be
ignored. Under this assumption, the bidding strategy is formulated as a determinis-
tic optimization problem that maximizes (minimizes) the revenues (costs) of selling
(buying) energy in the DA market and minimizes the BESS degradation cost, while
satisfying the dynamics and physical constraints of the RES-BESS plant, as

maximize AT Z APPS — FP(CS), (6.13a)
teT
subject to:  (6.1) — (6.8). (6.13b)

Problem (6.13) is challenging to solve for three reasons:

1. Non-convex BESS power loss model. The complementarity constraint (6.6b) of

the BESS power loss model is non-convex as it involves a product of variables.

2. Rainflow algorithm. Although the polynomial DoD stress model in (6.9) is con-
vex, the rainflow counting algorithm (6.8) does not have an analytical mathe-
matical expression and cannot be incorporated into an optimization formula-

tion [98].

2A price-taker producer has no capability of altering market-clearing prices and takes the prevail-

ing market prices (see [25], Section 7.3).
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3. Parametric Uncertainty. Assuming perfect knowledge of RES generation and
day-ahead electricity prices for the next day is unrealistic; thus, the actual
RES generation, P{, and DA prices, A?, are uncertain. Nonetheless, having
uncertainty in RES generation implies that the balancing market should also
be considered in the bidding strategy which implies that the imbalance ratios

r{ and r; should also be treated as uncertain.

In the next section, we develop a linear deterministic optimization formulation to
deal with the non-convexities arising from the first two challenges, while in Section
6.4 we develop a scenario-based stochastic optimization bidding strategy to handle

the aforementioned uncertainties.

6.3 Deterministic Bidding Strategy

This section formulates the deterministic bidding strategy as a linear program, which
can be fast and reliably solved, by incorporating an approximate BESS degradation

model and using a relaxed power loss model.

6.3.1 Relaxed Power Loss Model

Constraints (6.6a)-(6.6b) of the non-convex power loss model can be reformulated

using binary variables, yielding
0<Pl<(1-b)P, 0<P <bP, VteT, (6.14a)

by €{0,1}, VteT, (6.14b)

where binary variable b; is used in (6.14a) to ensure non-simultaneous charging and
discharging. The relaxed model is derived by relaxing b; to take continuous values,
ie.

bye[0,1], VteT. (6.15)
The relaxed model, i.e. constraints (6.4)-(6.5b), (6.14a), and (6.15), can be used
to formulate convex optimization problems. This model is exact, generating the
optimal solution, when charging and discharging do not simultaneously occur. In

the proposed bidding strategy, the maximization of the producer profitis an incentive

to satisfy the relaxation exactness, because increased BESS power losses that reduce
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the producer profit result from the optimization problem when the relaxation is not

exact.

6.3.2 Approximate BESS Degradation Model

To deal with the rainflow counting algorithm (6.8), which cannot be incorporated
in a convex mathematical program, we utilize the approximate degradation model
proposed in [98]. This model eliminates the rainflow counting algorithm by assum-
ing that degradation only occurs during the discharging period of the BESS, such
that one discharging half cycle is counted as one full cycle of the same DoD. Thus,
the charging half cycles are ignored. Considering the aforementioned assumption,
the approximate model may yield different solutions compared to the rainflow al-
gorithm when the initial SoC differs from the final SoC. For example, considering
the SoC profile shown in Figure 6.2, the total degradation using the approximate
model is equal to L(C®) = ®(40%) + ®(50%), while the total degradation calculated
using the rainflow algorithm is equal to L(C®) = ®(40%) + 0.5®(50%) + 0.5P(60%).
However, the approximate model can be integrated in convex optimization prob-
lems and yields high quality approximate solutions when we consider the daily
BESS operation in electricity markets [98]. Next, the formulation of the approximate
model is described.

Degradation Cost Function. The convex DoD stress function, ®(d;), is approx-
imated using a piecewise linear function with N' = {1, .., N} linear segments, as
shown in Figure 6.3 with N = 3. The degradation cost function of the approximate

model is defined as -
FA(P?4) = AT Z Z o (6.16)

t=1 n=1
where variable Pff > 0 denotes the BESS discharging power for time-step t € 7~ and
linear segment n € N, P44 the vector form of Pf/;f, Yt € 7,n € N, and constant ¢?
the degradation cost associated with DoD segment n € N. Constant c; is calculated
for each segment n € N using the degradation function ®(d;), replacement cost R,
discharging efficiency n, and BESS capacity C [98], as

= Enfl)- o)

Constraints. Considering the set of linear segments N, the approximate model
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reformulates constraint (6.4) as

CA

t+1n

= C}\, + AT(=P}2 [ + 1Py, VteT,neN, 6.18)

where variables P;’f >0, and C{,, > 0 denote the charging power and energy stored

in the BESS for each time interval t € 7~ and DoD segment n € N. The energy limit

of each DoD segment is set as

CA <Ch VteT,neN, (6.19)

tn —

Ct,=I, VneN, (6.19b)

—A

where constants C,, and I denote the maximum and initial energy stored in the

BESS in segment 7, respectively. Considering that all DoD segments have the same
—A 4

energy limits, then it is true that C, = C/N, Vn € N. The total discharging/charging

power and energy stored in the BESS at time t are equal to

pi=Y Pl pi=Y P, VteT, (6.20a)
neN neN

C = Z CA, C<GC<C VteT. (6.20b)
neN

The constraints presented in (6.5b), (6.14a)-(6.14b) are also included in the model.
Since the degradation cost function is convex monotonically increasing, it is true
that c; < ¢2,,. This implies that the BESS always discharges from the DoD segments

with the lower degradation cost to the segments with higher cost.

6.3.3 Mathematical Formulation

The deterministic optimization problem (6.13) is reformulated to consider the ap-
proximate BESS degradation model and relaxed power loss model. In addition, the
actual RES generation P? and day-ahead prices AP, which are unknown, are replaced
by their predicted values P? and AP, respectively, such that P? is used in (6.3) instead

of P{. The considered problem, defined as Problem PP is formulated as

maximize ATY (;\?Pf — FA(Pd'A))
subject to  (6.1) — (6.3), (6.5b), (6.14a), (6.15), (6.18) — (6.20b).

PP .

Problem P is a linear program.
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6.4 Stochastic Bidding Strategy

This section builds on the formulation of the deterministic bidding strategy of Section
6.3 to develop a two-stage scenario-based stochastic optimization scheme to deal
with uncertainties in RES generation, day-ahead prices, and imbalance ratio. This
work uses scenario curves to characterize each uncertainty source, where a scenario
curve represents one possible realization of the corresponding uncertainty source,
e.g., RES generation, for the next day. The proposed scenario-based stochastic
scheme involves two stages of decision-making. Specifically, decisions are made in
the day-ahead market (first stage) considering possible scenarios of the balancing
market (second stage). The first-stage decision variables are associated with the
power exchange with the grid, Ptg, VYt € 7, which is submitted to the day-ahead
market. The second-stage decision variables are related with the power imbalances,

which are defined by the scenarios.

6.4.1 Objective Function

We consider the set of scenarios S = {1, ...,S} with S = |S|; each scenario concerns
the RES power generation, day-ahead prices, and imbalance ratios of the considered

horizon 7". Let variables P}, > 0 and P, > 0 denote the imbalance power for excess

ts —

and deficit of power at time-step t of scenario s, respectively. The objective of the
stochastic optimization scheme is to maximize the producer profit by maximizing
the expected market profit, E[F(P$,P*,P7)], and minimizing the BESS degradation

cost, FA(P*4), yielding
maximize E[F(P¢,P*,P7)] — FA(PY), (6.21)

where P¢, P*, and P~ are the vector-forms of variables P‘f , PZS, and P, VteT,s¢€ S.

The expected market profit is defined as the weighted-average profit® of the producer
obtained from the day-ahead and balancing markets across all scenarios

E[F(PS,P*,P7)] = AT ) q)s( Y (ABP + 7 ADPY - f;sifspgs)), (6.22)
seS teT”

where constants AP, 7

v 115 and 7, denote the day-ahead prices and imbalance price

ratios for excess and deficit of power at time-step ¢ of scenario s, respectively; ¢; is

3The market profits are defined as the market revenues minus the costs.
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the weighting parameter of scenario s such that } .5 ¢s = 1. Note that the scenario

selection process is explained in Section 6.5.

6.4.2 Constraints

First-Stage Constraints. The constraints of the day-ahead stage, which are sce-
nario independent, are associated with the constraints of the deterministic bidding

strategy, given by
Constraints: (6.1), (6.5b), (6.14a), (6.15), (6.18) — (6.20b). (6.23)

The RES power generation, P}, is limited by the nominal capacity of the RES plant,
Fr, defined as

0<P <P, VteT. (6.24)

In the stochastic optimization scheme, the produced power P}, Vt € 7 is a first-stage
variable defined by the RES power production profiles of the selected scenarios.

Second-Stage Constraints. The constraints of the power grid limits in (6.2) are
reformulated to consider the power imbalances for power excess, P;js, and deficit,

P; ., in scenario s as

P{+ P}, < pﬁr, VteT ,s€S, (6.25a)

ts —

—pﬁ < P‘f - P,

YteT ,seS. (6.25b)

Constraints (6.25a) and (6.25b) ensure the direct and reverse power flow limits,
respectively. Any overproduction or underproduction of the RES power generation
needs to be compensated to ensure power balance. Let constant P} denote the
RES power generation at time t of scenario s. Then, the difference between the
RES generation of scenario s and the scheduled RES generation at time ¢, (15:,5 - P)),
denotes the RES overproduction (positive) or underproduction (negative). When
(15{,s — P}) > 0 the RES overproduction creates excess of power, PZS, that will be
paid, except of the cases where the grid power limits in (6.25a) are violated and RES
power curtailments, P , must be applied. Similarly, when (15;’S — P}) < 0 the RES

t,s’

t,s’

underproduction creates deficit of power, P;, that will be charged. These conditions
yield
(B,,—-P) =P}, —P;,+DP}, VteT,seS. (6.26)

t,s’/
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Note that the BESS power set-points are first-stage decisions that can adjust the
scheduled grid power, P$, through (6.1) to reduce the RES power curtailments,
13;‘,5, in (6.26). It is important to note that non-convex constraints that ensure non-
simultaneous excess and deficit of power can be avoided [94], because the expected
market profit in (6.22) is maximized when P, is minimized, implying that P} P; =0

when 7/ <7, Vt€ T ,s€S.

The optimization problem of the stochastic bidding strategy, defined as Problem

PS5, is summarized as

maximize (6.21)

subject to  (6.23) — (6.26).

Problem %% is a linear program that can be fast and reliably solved under a large

number of scenarios.

6.5 Scenario selection

This section explains the methodology used to select scenario curves for the RES
power generation (whether it is from PV or wind), day-ahead prices, and imbalance
ratios. This work selects the scenario curves for each uncertainty source based on
historical data, using two different methodologies.

Methodology 1. The first methodology assumes that forecasting data for the next
day are available for the considered uncertainty source, e.g., for the wind power
generation. This method selects a subset of the historical curves which are closest
to the day-ahead forecasted curve. Towards this direction, we utilize the Euclidean

distance between a historical and the forecasted curve, given by [111]

W, A0 = [N (Wi— Ay, kek, (627)
teT”

where W is the time series vector of the forecasted curve, Ay, Yk € K is the time series
vector of the kth historical actual curves, and K is the corresponding set. Then, the
set of selected curves G = {1, ..., G} is formed by the G — 1 curves with the smallest
Euclidean distance and the forecasted curve. The weights of the selected curves are
weighted according to an importance factor féf; € [0,1], Vg € G that aims to put more
importance on curves with small Euclidean distance. Factor fg” is defined as

v (W, Ay)

ymax
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where vy = maxiexc{yr(W, Ax)}. Note that the importance factor of the forecasted
curve W is equal to one because the corresponding Euclidean distance is equal to
zero. Normalizing the importance factors yields the weights of the selected curves

¢g, defined as

¢S =1S1) 15, g€G (6.29)
i€G

Methodology 2. The second methodology assumes that forecasting data for the
next day are unavailable for the considered uncertainty source. Thus, only historical
data of the previous days are used to form the scenarios. Let day D denote the
current day and D + 1 the day ahead where we aim to determine the scheduled grid
power, P§ YVt € T, submitted to the day-ahead market. We assume that the decisions
are made at the end of day D, enabling the use of the actual curve of this day. Then,
the set of selected curves G = {D — G + 1, ..., D} is formed by the historical curves of
the last G days. The importance factor f¢ = [1/G,2/G,...,G/G] is introduced, aiming
to assign an increasing importance on daily profiles closer to day D. Similarly with
the first methodology, the weights of the selected curves are defined using (6.29),

where f¢ is the g element of vector f©.
Using either the first or second methodology, depending on the availability of

forecasting data, we select
e V RES generation curves with weights ¢), v =1, ..., V.
e M day-ahead price curves with weights ¢M, m =1, ..., M.
e ( imbalance ratio curves with weights q)ﬁf, g=1,..,0Q.

There are various sophisticated methodologies available in the literature for gen-
erating scenarios, such us seasonal ARIMA and second-order autoregressive models
for generating price and wind generation scenarios [25,94]. However, the accurate
characterization of the considered uncertainties is out of the scope of this work.
Similarly with [94], any correlations among market prices and RES generation are
ignored in this work. Therefore, we deal with the three source of uncertainty by
building the symmetric scenario tree presented in Figure 6.5. Specifically, each sce-
nario s € S represents a combination of a single RES generation, day-ahead price,
and imbalance ratio curve with weight ¢ = ¢} - ¢} - qqu Thus, the total number of

scenariosis S =V -M- Q.

127



uncertainty
RES generation day-ahead price  imbalance ratio

SOLIBUIIS

D 5=V XMXO

Figure 6.5: The scenario tree considering the RES power generation, day-ahead price, and

imbalance ratio curves.

In the deterministic scheme, Problem $P, the prediction data used depends on
the availability of forecasting data for each uncertainty source. Specifically, either
the forecasted curve or the historical curve of the previous day D is used as the

predicted curve.

6.6 Simulation results

This section evaluates the performance of the proposed stochastic bidding strategy
considering both PV-BESS and wind-BESS producers. The performance of the de-
terministic and stochastic optimization schemes, Problems PP and #°, in terms of

actual producer profits* is compared with the solution of the following problems:

e Problem P The base case where the BESS is ignored and the predicted RES

power generation, 15?, Vt € T, is submitted to the day-ahead market.

e Problem #': The ideal case where the actual RES power generation, P, and
day-ahead prices, AP, are used in PP. Although Problem ' is unrealizable as it
assumes knowledge of future information, it is used for comparison purposes

as it provides the optimal performance.

4The actual producer profits are calculated using the optimization decisions of the RES-BESS
plant and the actual RES generation, day-ahead prices, and imbalance ratios. Specifically, the market
profits are calculated using the scheduled grid power, while the BESS degradation cost is calculated
by applying the BESS decisions in the Rainflow algorithm.

128



All problems are coded in Matlab and solved using optimization solver Gurobi
[43] on a personal computer with 16 GB RAM and an Intel Core-i72.11 GHz processor.
The horizon is set to one day with 30-minute time intervals. The scenarios in Problem
PS are constructed by selecting 15 curves for RES power generation (V = 15) and 10
curves for day-ahead price and imbalance ratio curves (M = 10 and Q = 10), yielding
S = 1500 scenarios. All the day-ahead and imbalance price curves are obtained from
the Spanish electricity market [110]. This work considers the polynomial DoD stress
function in (6.9), where y; = 5.24 x 107, , = 2.03 [98] and N = 50 piecewise linear
segments. The battery replacement cost is set equal to 100000 €/MWh, such that
R = 100000 x C €.

6.6.1 Wind-BESS producer

Setup. The performance of the proposed stochastic scheme is evaluated using real
data from a 10.8 MW (P’ = 10.8 MW) wind power plant located in Larnaca, Cyprus.
The proposed scheme is examined under power grid limits due to transmission
congestion, setting p = 0.875. We consider an integrated BESS with capacity of 10
MWh (C = 10 MWh), charging/discharging power of 10 MW (P = P =10 MW)
and one-way efficiency of 96% (1 = n° = 0.96). Moreover, minimum and maximum
energy limits of 1.5 and 9.5 MWh (C = 0.15C and C = 0.95C MWh) are set to protect
the BESS from over-discharge and over-charge. The initial and final energy stored
in the BESS is set to 2 MWh (I = E/ = 0.2C). Since forecasting data for the wind
generation are available and provided from the real wind plant, the corresponding
scenario curves are selected using Methodology 1 described in Section 6.5. The
scenario curves for the day-ahead energy prices and imbalance ratios are selected
according to Methodology 2 because forecasting data are unavailable.
Performance evaluation. The performance of the proposed stochastic scheme P° is
evaluated and compared with the deterministic scheme PP for the day 04/03/2022.
Fig. 6.6 depicts the real curves of the wind power generation, day-ahead prices, and
imbalance ratios used in the two schemes. Specifically, the predicted and scenario
curves are used as input in $°, while only the predicted curves are used in $P.
Moreover, the actual curves are used for evaluation.

Ignoring the BESS degradation model in Problems #° and P, Figures 6.7(a)-(d)
and 6.7(e)-(h) illustrate the scheduled day-ahead decisions of the wind-BESS plant
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Figure 6.6: The predicted, actual, and scenario curves used for the performance evaluation of
Problems P° and PP for 04/03/2022: (a) wind power generation (MW), (b) day-ahead prices

(€/MWh), (c) imbalance ratio for power deficit, and (d) imbalance ratio for power excess.

as well as the actual system operation using PP and P°, respectively. As expected,
Figure 6.7(a) shows that the scheduled wind power follows the predicted curve in
PP, while Figure 6.7(e) indicates that the scheduled wind power deviates from the
predicted curve due to the impact of the scenarios in P°. Figures 6.7(b) and 6.7(f)
demonstrate the scheduled grid power based on the scheduled wind power and the
decisions of the BESS power set-points presented in Figures 6.7(c) and 6.7(g). The
energy stored in the BESS based on the BESS power set-points is depicted in Figures
6.7(d) and 6.7(h). As shown in Figures 6.7(d) and 6.7(h), two full cycles of almost
80% DoD are presented in both Problems P and $° because the BESS degradation is
ignored. However, this BESS operation causes a severe BESS degradation, resulting
in 0.0646% and 0.0667% degradation and 646.4€ and 667.4€ degradation cost using
PP and P°, respectively. As expected, the uncertainty-aware decisions of Problem
PS5 increase the actual producer profit by 2.34% compared to PP, where the daily
profits using PP and P° are 35294.3€ and 36120.9€, respectively.

Considering the BESS degradation model, Figures 6.8(a)-(c) and 6.8(d)-(f) illus-
trate the scheduled and actual grid power, as well as the BESS power and energy
decisions using Problems PP and #°, respectively. To ensure the power grid limits

in actual operation of the wind-BESS plant, wind energy curtailments® of 6.08 MWh

>We consider that RES power curtailments are applied in real operation to maintain the actual
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Figure 6.7: The scheduled day-ahead decisions of the wind-BESS plant as well as the actual
system operation using Problems PP (a)-(d) and $° (e)-(h) when the BESS degradation is

ignored in both optimization problems.

and 2.92 MWh are applied in PP and P°, respectively. As expected, the uncertainty-
aware decisions of Problem #* reduce the wind curtailments by 51.97%. As shown
in Figures 6.8(c) and 6.8(f), both PP and #* avoid to fully charge the BESS, reducing
the degradation from 0.0646% and 0.0667% to 0.0193% and 0.0090% compared to the
BESS operation presented in Figures 6.7(d) and 6.7(h). Therefore, the degradation
cost in Problems PP and P° reduces from 646.4€ and 667.4€ to 193.3€ and 90€,
respectively. Reducing the degradation cost, the actual producer profit in PP and
PS5 increases from 35294.3€ and 36120.9€ to 35389.8€ and 36931.5€, respectively.
Considering BESS degradation, Problem $* increases the producer profit from 2.34%

grid power between its limits.
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Figure 6.8: The scheduled day-ahead decisions and actual operation of the wind-BESS plant
using Problems PP (a)-(c) and P° (d)-(f) when the BESS degradation is considered in both

optimization problems.

to 4.35% compared to PP.

The approximate degradation model yields degradation costs of 208.2€ and
88.1€ for PP and P5, respectively. These degradation costs are similar to the costs
calculated using the Rainflow algorithm (193.3€ and 90€), indicating that the ap-
proximate degradation model yields high quality approximate solutions for the
proposed bidding strategy:.

The execution times of PP and $° are 0.08 and 14.7 seconds when the BESS
degradation model is used, indicating the increased complexity of Problem $° com-
pared to PP. However, Problem $° presents a small execution time despite the
consideration of a large number of scenarios (S = 1500).

Aggregate performance evaluation. The proposed stochastic scheme, Problem #°,
is evaluated and compared with Problems $*, PP, and #' for each day of the period
01/02/2022-30/09/2022. Table 6.1 presents the total producer profits and wind power

curtailments for the entire period using the considered problems. Interestingly, the
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Table 6.1: Total actual producer profits and wind curtailments for the period 01/02/2022-
30/09/2022 using the different problems.

Problem Profit (€) Profit increment (%) wind curtailments (MWh)

PB 2,677,715 332.5
e 2,693,783 0.6 569.6
Ps 2,835,448 59 373.7
P 3,190,269 19.1 58.0

actual wind power curtailments using Problems $° and #° are higher compared to
PB, where the BESS is not utilized. This is because Problems PP and $° operate
the wind-BESS system closer to the power grid limits to maximize profits through
energy storage arbitrage. As a result, wind curtailments occur more frequently in
real operation to ensure the grid limits when high forecasting errors occur. Although
both Problems PP and P° increase wind curtailments, they also increase the total
profit by 0.6% and 5.9%, respectively, compared to PP. The Table also indicates the
superiority of Problem #° to achieve higher profits compared to PP, increasing the
total profit by 141,665 €. Note that by employing an operating strategy along with
the bidding strategy can lead to a significant reduction in actual wind curtailments,
resulting in further improvement in the producer profit. Although Problem #'
assumes perfect knowledge of the wind power generation, wind power curtailments
of 58 MWh are applied because the BESS capacity is insufficient to always ensure
the power grid limits. Problem %! increases the total profit by 19.1% as it provides
the optimal performance; however, Problem #! is unrealizable. Figures 6.6(a) and
6.6(c)-(d) indicate that the representative scenarios capture the actual curves well;
however, this is not the case for the day-ahead prices (see Figure 6.6(c)) because
by using the historical curves of the previous days as scenarios does not always
represent uncertainty well. Thus, by selecting the scenarios in a more sophisticated

way can further enhance the performance of Problem #°.

6.6.2 PV-BESS producer

Setup. To emulate the PV power plant, we use real data from a residential PV
system with an installed capacity of 5.58 KW and we upscale its power generation

to consider a 10.8 MW PV plant (FY = 10.8 MW). We set stricter power grid limits
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Figure 6.9: The scenario, predicted, and actual PV curves used for the performance evaluation

of Problems 5 and PP for 04/03/2022.

for the PV producer compared to the wind producer, reducing p from 0.875 to 0.6.
Morever, we consider an integrated BESS with capacity of 5 MWh (C = 5 MWh),
charging/discharging power of 5 MW @ = P =5 MW) and one-way efficiency
of 96% (n? = n° = 0.96). Similarly with the setup of the wind producer, we set
I=E =02C C=015C and C = 0.95C. Since forecasting data are unavailable,
the scenario curves for the PV generation, day-ahead energy prices and imbalance
ratios are selected using Methodology 2 described in Section 6.5.

Performance evaluation. The performance of Problem #° is evaluated and com-
pared with PP for the day 04/03/2022. Figures 6.9 and 6.6(b)-(d) depicts the real
curves of the PV power generation, day-ahead prices, and imbalance ratio used in
the two schemes. Note that the predicted and scenario curves are used in P° and PP,
while the actual curves are used for evaluation. Figures 6.10(a)-(d) and 6.10(e)-(h)
illustrate the scheduled day-ahead decisions of the PV-BESS plant as well as the
actual system operation using Problems PP and #°, respectively. Figures 6.10(a)
and 6.10(e) show the predicted, actual, and scheduled PV power, indicating the high
prediction error between predicted and actual generation. Figures 6.10(b) and 6.10(f)
depict the scheduled and actual grid power based on the PV generation and BESS
power decisions shown in Figures 6.10(c) and 6.10(g), respectively. As demonstrated
in Figures 6.10(g)-(h), Problem $° charges the BESS during the critical hours from
10:00 to 14:00, where the actual PV generation may exceed the power grid limits,
reducing the PV power curtailments from 4.24 MWh to 2.02 MWh compared to $°.
Problems PP and #° avoid to fully charge the BESS to reduce the degradation cost
(see Figures 6.10(d) and 6.10(h)), presenting a degradation of 0.0163% and 0.0271%
that corresponds to 81.35€ and 135.7€, respectively. The uncertainty-aware deci-
sions of Problem #° increase the daily producer profit from 16447.3€ to 17203.6€
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Figure 6.10: The scheduled day-ahead decisions of the PV-BESS plant as well as the actual
system operation using Problems PP (a)-(d) and P° (e)-(h) when the BESS degradation model

is used in both optimization problems.

compared to PP, achieving a profit increment of 4.59%.

The execution times of PP and #° are 0.1 and 7.1 seconds, indicating that the
formulated linear programs can be solved fast even when a large number of scenarios
is utilized in P°.

Aggregate performance evaluation. Table 6.2 presents the total producer prof-
its and PV power curtailments using Problems P?, PP, P°, and P! for the period
01/02/2022-30/09/2022. Problem PP reduces the PV curtailments from 551.4 MWh to
195.5 MWh and increases the profit by 3.7% compared to P?. Table 6.2 shows that
Problem %% reduces the PV curtailments to 71.4 MWh and increases the profit by
5.0%, highlighting the superiority of the proposed stochastic scheme compared to
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Table 6.2: Total actual producer profits and PV power curtailments for the period 01/02/2022-
30/09/2022 using the different problems.

Problem Profit (€) Profit increment (%) PV curtailments (MWh)

PB 1,936,181 551.4
PP 2,007,600 3.7 195.5
PS 2,032,480 5.0 71.4
P 2,106,399 8.8 21.5

PP. Problem P! presents total PV curtailments of 21.5 MWh, indicating that the BESS
capacity is insufficient to always ensure the power grid limits. Problem #’, which is
unrealizable, increases the profit by 8.8% compared to PP, indicating that Problem $°
can yield even higher profits, e.g., by selecting the scenarios in a more sophisticated
way and employing an operating strategy. Note that the BESS relaxation exactness
is always satisfied in the simulation results, obtaining the optimal solution, for both

the wind-BESS and PV-BESS producers.

6.7 Conclusions

This chapter developed a bidding strategy for RES-BESS producers to maximize their
expected profits in electricity markets considering BESS degradation and power grid
limits. To address the non-convexities associated with the BESS, a linear determinis-
tic optimization scheme is developed that incorporates an approximate cycle-based
degradation model and a relaxed BESS model. Moreover, a scenario-based linear
stochastic optimization scheme is developed to handle uncertainties in RES power
generation, day-ahead energy prices, and imbalance prices. Simulation results in-
dicate the capability of the proposed stochastic scheme to increase the profits of the
wind-BESS and PV-BESS producers by 5.9% and 5.0% compared to the base scenario,
where the RES forecasting generation profile is directly submitted to the market.
Moreover, the results indicate the capability of the stochastic scheme to yield con-
siderably higher profits compared to the corresponding deterministic scheme. The
stochastic scheme yields execution times of a few seconds, indicating that it can
be fast and reliably solved under a large number of scenarios. Future work will

develop more sophisticated scenario selection methodologies to yield even higher
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profits using the proposed stochastic scheme.
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Chapter 7

Conclusions

This thesis develops optimization schemes for the management of distributed energy
resources in power systems under a high RES penetration. The introduced schemes
generate fast and optimal or close-to-optimal solutions, while for operational pur-
poses handle well modelling inaccuracies and RES uncertainties. In particular, four
such problems were considered with the above characteristics: (i) optimization of
general energy management problems in power systems involving non-convex ESS
models, (ii) energy management of photovoltaic and battery storage systems in ac-
tive distribution grids, (iii) energy management of a flywheel storage system for
peak shaving applications, and (iv) stochastic optimization of the bidding strategy
of RES producers in electricity markets considering battery degradation. In the
remainder, we summarise the main contributions and conclusions associated with

each technical thesis chapter.

Optimization of general energy management problems in power systems involv-
ing non-convex ESS models: Chapter 3 addresses the issue of the ESS relaxation
violation by developing two successive convexification algorithms that generate fast
and high-quality feasible solutions when the derived solution is not exact. The first
algorithm handles general ESS loss functions, while the second specialized algo-
rithm enhances the algorithm performance when piecewise-linear loss functions are
used. The two algorithms are applied in two different optimization problems in
power systems, the Unit Commitment and Peak Shaving and Energy Arbitrage prob-
lems, to investigate their performance considering piecewise-linear and quadratic

ESS loss functions. Simulation results indicate the capability of the proposed al-
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gorithms to yield almost optimal, if not optimal, solutions with significantly lower
execution times compared to state-of-the-art solvers that utilize exact ESS models.
Specifically, the proposed algorithms reduce the average execution time by 50% for
the Unit Commitment problem, which remains nonconvex even upon relaxation,
and achieve a 2-3 orders of magnitude speedup for the Peak Shaving and Energy

Arbitrage problem, which becomes convex upon relaxation.

Energy management of photovoltaic and battery storage systems in active distri-
bution grids: Chapter 4 proposes a centralized energy management and control
scheme for managing the PVs-BESSs operation in smart distribution grids. The
proposed scheme minimizes both the prosumers electricity cost and the grid en-
ergy losses cost, while ensuring reliable grid operation by incorporating power flow
constraints and reactive power support. Because the resulting optimization model
is non-convex, we develop a convex second-order cone program by appropriately
relaxing the non-convex constraints which yields optimal results in most operating
conditions, especially under “normal” operating conditions. To ensure feasibility
under all operating conditions, we develop an algorithm that utilizes the convexified
model to yield feasible solutions under “extreme” operating conditions. In addition,
we propose a second algorithm to find the operating point that minimizes the ab-
solute difference between the objective gain losses, providing fairness between the
prosumers and the grid costs. Simulation results indicate the effectiveness and su-
periority of the proposed scheme in comparison with a self-consumption approach,
even under PV generation uncertainty. Specifically, the proposed scheme reduces
the prosumers daily electricity cost by 20.6% compared to the self-consumption
approach. In addition, the self-consumption approach presents voltage violations,

while the proposed scheme always satisfies the constraints of the power grid.

Energy management of a flywheel storage system for peak shaving applications:
Chapter 5 investigates the provision of peak shaving services from a FESS installed
in a transformer substation. FESS power losses and maximum power functions
are constructed to be dependent on parameters that are readily available through
commercial FESS interfaces (charging/discharging power and SoC). Moreover, the
derived FESS functions are modeled with convex constraints that enable the formula-

tion of convex optimization problems. Using the derived FESS functions we develop

139



a new optimization formulation for the peak-shaving problem that minimizes the
transformer power limit violations and FESS power losses in a lexicographic fashion.
In addition, we develop a two-level hierarchical control scheme to solve the peak-
shaving problem fast and reliably, while handling prediction errors and modelling
inaccuracies. The proposed hierarchical control scheme is integrated and validated
in an experimental setup. Specifically, we validate the proposed FESS modelling
and we identify the FESS parameters, indicating the high accuracy of the derived
functions to estimate the FESS power losses and maximum power. Moreover, we
validate the effectiveness of the proposed energy management and control scheme
to provide peak shaving services through simulation and experimental results. The
proposed scheme enables the active management of distribution grids and increases

the hosting capacity for PV installations and load demand growth in power grids.

Stochastic optimization of the bidding strategy of RES producers in electricity
markets considering battery degradation: Chapter 6 presents a bidding strategy
for combined BESS-RES plants to maximize expected producer profits in day-ahead
and balancing markets, while taking into account battery degradation and power
grid limits due to transmission congestion. To address uncertainty in RES power gen-
eration, day-ahead energy prices, and imbalance prices, a two-stage scenario-based
stochastic optimization scheme is developed. The scheme is formulated as a linear
program, which can be solved quickly and reliably, using an approximate cycle-based
degradation model and a relaxed BESS model. Simulation results demonstrate that
the proposed stochastic scheme can increase the profits of wind-BESS and PV-BESS
producers by 5.9% and 5.0%, respectively, compared to the base case scenario where
the RES forecasting generation profile is submitted to the market. Furthermore,
the results indicate that the proposed scheme can yield considerably higher profits
compared to the corresponding deterministic scheme. Despite the consideration of a
large number of scenarios, the proposed scheme yields execution times of the order

of a few seconds.
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Chapter 8

Future work

There are several interesting directions for future research based on the work un-
dertaken in this thesis. Next, we provide suggestions for further work for the two

problems presented in Chapters 4 and 6.

Energy management of photovoltaic and battery storage systems in active distri-
bution grids: Chapter 4 proposed a centralized energy management and control
scheme for managing the PVs-BESSs operation in smart distribution grids. Specif-
ically, the proposed scheme manages the power set-points of all PVs-BESSs in the
distribution grid to minimize both the prosumers electricity cost and the grid en-
ergy losses cost, while ensuring reliable grid operation by incorporating power flow
constraints.

The considered problem faces two main challenges. The first is the lack of
scalability of the centralized architecture. The second is the inherent uncertainty
in electricity prices, PV generation, and load demand for each prosumer that needs
explicit consideration. The proposed centralized scheme optimized the entire system
by taking into account system-level objectives and constraints. In this respect, this
scheme requires full knowledge of prosumer models and a central entity to collect
and process information from all prosumers. Although the resulting problem is
convex and can be solved fast, the execution time increases considerably when
larger distribution grids are considered. Furthermore, high prediction errors in PV
generation, load demand, and electricity prices may have a negative impact on the
prosumers’ profits, despite the fact that the developed MPC framework handles

modelling inaccuracy and PV generation uncertainty well.
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To address these issues, a promising direction is to develop distributed optimiza-
tion solution methods. One popular approach for distributed optimization is the
alternating direction method of multipliers (ADMM). With ADMM, the optimiza-
tion problem can be decomposed into a set of subproblems, each solved by a local
controller or agent. Each agent, such as a prosumer, only has access to its own local
information and solves its own subproblem, without necessarily having access to
the complete information of the system. The agents communicate and exchange
information with each other through a centralized coordinator, who oversees the
convergence of the algorithm. To address the uncertainty in electricity prices, PV
generation, and load demand, an interesting direction is to develop stochastic op-
timization schemes. Considering the ADMM method, each prosumer subproblem
can be formulated as a stochastic optimization problem, maximizing the expected

prosumer profit by making uncertainty-aware decisions for its PV-BESS system.

Stochastic optimization of the bidding strategy of RES producers in electricity
markets considering battery degradation: Chapter 6 presented a bidding strat-
egy for combined BESS-RES plants to maximize the expected producer profits in
day-ahead and balancing markets, while taking into account battery degradation
and power grid limits due to transmission congestion. To address uncertainty in
RES power generation, day-ahead energy prices, and imbalance prices, a two-stage
scenario-based stochastic optimization scheme was developed.

The main challenge of the developed scenario-based stochastic optimization
scheme is the selection of scenarios, as the effectiveness of the proposed scheme
depends on the representative scenarios that capture a wide range of possible out-
comes of the underlying stochastic processes. Selecting a small set of scenarios
may not fully represent uncertainty, while considering a large set of scenarios can
result in computational issues, when handling multiple sources of uncertainty. In
the proposed scheme, the scenario set is constructed by combining three sources
of uncertainty in relation to RES generation, day-ahead price, and imbalance price
curves. Therefore, selecting a large number of curves to represent each source of
uncertainty can result in a vast number of scenarios.

Aninteresting direction for future research is to explore scenario selection method-
ologies, including various scenario-generation techniques for building appropriate

sets of scenarios that represent stochastic processes. Furthermore, it would be worth-
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while to examine scenario-reduction techniques that can effectively reduce scenarios
to overcome computational challenges, while maintaining the important features of
the original scenario set.

Another promising direction is the development of operating strategies for the
energy management of RES-BESS plants during actual operations. The aim of such
strategies is to maximize the producer profits by making corrective decisions based
on real-time information about the RES generation and imbalance price. To achieve
this, a stochastic MPC controller can be developed to optimize the RES-BESS power
set-points in real operation, considering the scheduled RES-BESS production profile
submitted to the day-ahead market and uncertainty in RES generation and imbalance

prices.
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Appendix

Appendix A: Literature-based BESS models

The exact non-convex BESS model presented in [33,34,40] is expressed as

Clyx = Ch+ AT(- nd Pl +1iP)), VikeB, (A.1)
k

CP<ch <G, C, =P Vike, (A.2)

0<P <P, 0<P, <P, Vtke8, (A3)

Pl LP;, VtkeB, (A4)

where variables P, and P¢, denote the discharging and charging power, respec-
tively. The non-convex complementarity constraint (A.4) restricts the simultaneous
charging and discharging power.

The non-convex BESS model, Egs. (A.1) - (A.4), is relaxed to the convex BESS
model in [33,34,40] by removing the complementarity constraint (A.4). The relaxed
convex BESS model is exact when simultaneous charging and discharging power does
not occur. Moreover, when the two BESS models are used in Problem Pg(w) instead
of the proposed BESS model, then variables Pf, must be replaced by PB = Pd - P,
in the formulation. Under the two hterature-based BESS models, the power losses
are given

Pl =elPl + &P, VikeB. (A5)

The total BESS energy losses are calculated as ). )’ keg(f’f’k)AT
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