
DEPARTMENT OF PHYSICS

HADRON MASSES FROM FULL QCD+QEDC S IMULATIONS

madeleine evie beth dale

A dissertation submitted to the University of Cyprus in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

November 2023MADELE
IN

E EVIE BETT D
ALE



©Madeleine Evie Beth Dale, November 2023

ii

MADELE
IN

E EVIE BETT D
ALE



VALIDATION PAGE

Doctoral Candidate: Madeleine Evie Beth Dale
Doctoral Dissertation Title: Hadron masses from full QCD+QEDC simulations

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements for
the Degree of Doctor of Philosophy at the Department of Physics and was approved on the
……… by the members of the Examination Committee.

Examination Committee:

Research Supervisor: Prof. Haralambos Panagopoulos, University of Cyprus

Chairperson of evaluation committee: Prof. Constantia Alexandrou, University of Cyprus

Committee Member: Assoc. Professor Nicolaos Toumbas, University of Cyprus

Committee Member: Prof. Nazario Tantalo, University of Rome Tor Vergata

Committee Member: Prof. Karl Jansen, DESY

iii

MADELE
IN

E EVIE BETT D
ALE



DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original work
of my own, unless otherwise mentioned through references, notes, or any other statements.

Madeleine Evie Beth Dale

iv

MADELE
IN

E EVIE BETT D
ALE



ΠΕΡΙΛΗΨΗ

Η διαρκής αύξηση σε ισχύ και διαθεσιμότητα υπολογιστικών πόρων, παράλληλα με την
ανάπτυξη όλο και πιο προχωρημένων αλγοριθμικών τεχνικών, έχει επιτρέψει κατά τα
τελευταία έτη τον υπολογισμό ορισμένων μεγεθών της Κβαντικής Χρωμοδυναμικής στο
πλέγμα (LQCD), όπως σταθερές διάσπασης και μάζες ελαφρών αδρονίων, με στατιστικά
σφάλματα τα οποία είναι μικρότερα του 1%, δηλαδή είναι πλέον παρόμοιας τάξης
μεγέθους με το συστηματικό σφάλμα που οφείλεται στην παραμέληση συνεισφορών
της Κβαντικής Ηλεκτροδυναμικής (QED). Συνεπώς, η αύξηση της ακρίβειας στους
υπολογισμούς της LQCD, με ταυτόχρονη διατήρηση της ορθότητας, επιβάλλει τη συμπε-
ρίληψη των συνεισφορών QED.

Στην παρούσα διατριβή, που αποτελεί μέρος ενός συνολικού έργου της ομάδας
RC*, έχουν μετρηθεί μάζες αδρονίων, συμπεριλαμβανομένων των νουκλεονίων και του
βαρυονίου Ω-, στα πλαίσια πλήρως δυναμικών προσομοιώσεων των QCD+QED. Οι
μάζες των αδρονίων είναι σημαντικές όχι μόνο αφ'εαυτών, αλλά και για τη δυνατότητα
χρήσης τους στη βαθμονόμηση μετρήσεων της QCD. Η συμπερίληψη της QED αφ'ενός
αποφεύγει τη συστηματική μετατόπιση της θεμελιώδους ενέργειας που προκύπτει όταν
αμελείται η QED, και αφ'ετέρου επιτρέπει την εξερεύνηση των διεγερμένων καταστάσεων
που εμπλέκονται εξ αιτίας της συμπερίληψης των φωτονίων. Η διαφορά μάζας μεταξύ
πρωτονίου και νετρονίου αποτελεί σημαντικό παράδειγμα μιας ποσότητας η οποία είναι
πολύ ευαίσθητη τόσο στην παραβίαση του isospin που οφείλεται στην QED όσο και
στη διαφορά μάζας μεταξύ των κουώρκς up-down. Κατά συνέπεια, για τον υπολογισμό
αυτής της ποσότητας είναι σημαντική η προσομοίωση με μη-εκφυλισμένες μάζες των
κουώρκς.

Για την προσομοίωση των QCD+QED στο πλέγμα μπορούν να χρησιμοποιηθούν
διάφορες στρατηγικές/μέθοδοι και καταστρώσεις. Μια ομάδα μεθόδων βασίζεται στην
προσομοίωση της αμιγούς QCD, με δυνατές "εκ των υστέρων" τροποποιήσεις για συμπε-
ρίληψη της QED σε διαφορετικό βαθμό. Παραδείγματα αυτής της διαδικασίας είναι
η ανάκτηση διατάξεων της πλήρους QCD+QED, μέσω ανα-στάθμισης των διατάξεων
της QCD, και το διαταρακτικό ανάπτυγμα γύρω από την αμιγή QCD σε δυνάμεις της
σταθεράς λεπτής υφής. Η διαδεδομένη μέθοδος RM123 αναπτύσει το συναρτησιακό
ολοκλήρωμα γύρω από τη θεωρία με συμμετρία isospin σε δυνάμεις τόσο της σταθεράς
λεπτής υφής όσο και της διαφοράς μάζας των κουώρκς up-down. Μπορεί επίσης να
χρησιμοποιηθεί η μέθοδος "electroquenching", η οποία χρησιμοποιεί ηλεκτρικά ουδέτερα
κουώρκς στη "θάλασσα Fermi", και δυναμικά κουώρκς που είναι φορτισμένα. Αυτές οι
τεχνικές είναι σε αντιδιαστολή με την πλήρως δυναμική και μη-διαταρακτική προσομοίωση
των QCD+QED, η οποία αποφεύγει τους θεωρητικούς περιορισμούς της θεωρίας διαταρ-
αχών και δεν βασίζεται σε συνδυασμούς διαταρακτικών αποτελεσμάτων διαφορετικής
τάξης. Κατά συνέπεια έχουμε επιλέξει την εκτέλεση πλήρως δυναμικής και μη-διαταρα-
κτικής προσομοίωσης των QCD+QED.

Η σημαντικότερη πρόκληση στην ενσωμάτωση της QED στην LQCD προέρχεται
από τον νόμο του Gauss, σύμφωνα με τον οποίο, σ'ένα περιοδικό τοροειδές, μόνο
καταστάσεις με συνολικά μηδενικό ηλεκτρικό φορτίο μπορούν να αποτελέσουν μέρος
του χώρου Hilbert. Διάφορες καταστρώσεις μπορούν να επιλεγούν για να ικανοποιείται
ο νόμος του Gauss. Μια συνήθης επιλογή είναι η κατάστρωση QEDL , η οποία χειρίζεται
με μη-δυναμικό τρόπο τους χωροειδείς μηδενικούς ιδιορυθμούς του φωτονικού πεδίου,
επιβάλλοντας ένα μη-τοπικό περιορισμό. Αυτή η κατάστρωση είναι συνεπώς μη-τοπική,
και επομένως δεν πληρούνται αυτομάτως ορισμένες σημαντικές ιδιότητες της θεωρίας
κβαντικών πεδίων, όπως η δυνατότητα επανακανονικοποίησης. Αυτές οι ιδιότητες
πρέπει κατά συνέπεια να αποδεικνύονται ξεχωριστά για καθεμιά περίπτωση.
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Σε αντίθεση, η κατάστρωση QEDC βασίζεται στην προσάρτηση ενός "κατοπτρικού"
πλέγματος, με φορτία στις ίδιες θέσεις αλλά αντίθετα πρόσημα από αυτά του φυσικού
πλέγματος, εξαναγκάζοντας έτσι το σύστημα να είναι ηλεκτρικά ουδέτερο. Αυτή η
κατάστρωση είναι τοπική και επομένως αποφεύγει κάποιες από τις δυσκολίες της
κατάστρωσης QEDL που αναφέρθηκαν πιο πάνω. Ως επιπλέον πλεονέκτημα, η κατάστ-
ρωση QEDC επηρεάζεται λιγότερο από τον πεπερασμένο όγκο, συγκριτικά με την
QEDL . Βαρυονικές μάζες στην δυναμική QCD+QED έχουν μέχρι τώρα υπολογιστεί από
την ομάδα BMW, η οποία χρησιμοποιεί την κατάστρωση QEDL . Ο μακροπρόθεσμος
στόχος μας είναι η εκτέλεση ενός ανεξάρτητου υπολογισμού του βαρυονικού φάσματος
στην δυναμική QCD+QED, στο ίδιο επίπεδο ακρίβειας όπως η ομάδα BMW, με μη-
διαταρακτικό τρόπο και με πλήρη εξασφάλιση της συμμετρίας βαθμίδος. Ένα θεμελιώδες
βήμα προς τον στόχο αυτόν παρουσιάζεται στην παρούσα διατριβή, όπου μετρούνται
βαρυονικές μάζες σε πέντε συλλογές διατάξεων που δημιουργήθηκαν από την ομάδα
RC*.

Προσδιορίσαμε βαρυονικές μάζες με ακρίβεια 1-5%, καθώς και διαφορές μαζών που
είχαν μεγαλύτερη διακύμανση στην ακρίβεια απ'ότι οι μάζες. Βρήκαμε ότι οι μάζες
βαρυονίων Ω- έτειναν να δίνουν ένα ασθενές πλατώ. Μέσω μιας προκαταρκτικής
διερεύνησης, με χρήση μιας τροποποιημένης μεθόδου Backus-Gilbert, καταλήξαμε ότι
το φαινόμενο αυτό οφείλεται πιθανώς στην παρουσία μιας διεγερμένης κατάστασης με
ενέργεια παραπλήσια αυτής της θεμελιώδους κατάστασης του Ω- . Μια ανεπιθύμητη
παρενέργεια της κατάστρωσης QEDC είναι ένα φαινόμενο μίξης που παραβιάζει τη
συμμετρία γεύσης των κουώρκς. Εξερευνήσαμε τον βαθμό στον οποίο αναμένεται να
επηρεάζονται τα αποτελέσματά μας από τη μίξη αυτή. Διαπιστώσαμε ότι, μολονότι
η αναμενόμενη εκθετική εξασθένιση σε σωματίδια με μάζα τα οποία διασχίζουν το
πλέγμα δεν επαρκεί για να καταστεί αμελητέα η μίξη, τα μικρά μεγέθη πλέγματος στις
συλλογές μας έχουν ως αποτέλεσμα ότι ορισμένες καταστάσεις, οι οποίες υποχρεωτικά
θα εμφανίζονταν στο διάγραμμα μίξης, είναι έντονα κατεσταλμένες για ενεργειακούς
λόγους, και κατά συνέπεια η μίξη αναμένεται να είναι ιδιαίτερα υποβαθμισμένη.
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ABSTRACT

The continual increase in the power and availability of computing resources, alongside the
development of ever more sophisticated algorithmic techniques, has allowed the statistical
error of certain measured quantities in Lattice QCD (LQCD), such as decay constants and
the masses of light hadrons, to reach subpercent levels in recent years, thus reaching the same
order of magnitude as the systematic error due to neglecting QED effects. In order to increase
precision while maintaining accuracy, it therefore becomes necessary to include QED effects
in the LQCD calculation.

In this work, which forms part of a body of work by the RC* collaboration, hadron masses,
including the nucleons and the Ω− baryon, have been measured in fully dynamical QCD+QED
simulations. Hadron masses are not only important by themselves, but may also be used for the
calibration of QCD measurements. Including QED allows both evasion of the systematic shift
of the ground energy that would result from its exclusion, and exploration of the excited states
that enter due to inclusion of photons. The proton-neutron mass difference is an important
example of a quantity that is very sensitive to the combination of isospinbreaking effects due
to both QED inclusion and the up-down quark mass difference, rendering simulation with
non-mass-degenerate up and down quarks important for the calculation of this quantity.
Different strategies and formulations may be used to simulate QCD+QED on the lattice.

One group of strategies is based on the simulation of pure QCD, after which varying degrees
of QED inclusion may be allowed through ‘a posteriori’ adjustment. Examples of this are the
recovery of full QCD+QED configurations through the reweighting of QCD configurations,
and the perturbative expansion around pure QCD with respect to the fine-structure constant.
The popular RM123 method expands the path integral around the isospin-symmetric theory
in terms of the fine-structure constant and the up-down mass difference. Electroquenching,
keeping the sea quarks neutral while using electrically charged dynamical quarks, may also be
used. These techniques contrast with the fully dynamical and non-perturbative simulation of
QCD+QED, which avoids the theoretical constraints of the validity of perturbation theory
and doesn’t rely on the combination of results from different orders of perturbation theory. We
therefore choose to perform a fully dynamical and non-perturbative simulation of QCD+QED.
The central challenge in incorporating QED into LQCD is that posed by Gauss’s Law,

which states that, on a periodic torus, only states with net-zero electric charge may form part
of the Hilbert space. Different formulations may be chosen in order to satisfy Gauss’s Law.
The QEDL formulation is a common choice and involves the quenching of spatial zero-modes
of the photon field through the enforcement of a non-local constraint. This formulation is
therefore non-local, which causes certain important properties of the quantum field theory,
such as renormalisability, to not be automatically satisfied; these properties must then be
proven on a case-by-case basis.
The QEDC formulation is instead based upon appending a ‘mirror lattice’ of identically

placed but opposite charges to the physical lattice, forcing the system to be electrically
net-neutral. This formulation is local and thus escapes the some of the difficulties of the
QEDL formulation discussed above. As a bonus, this formulation also profits from smaller finite-
volume effects with respect to the QEDL formulation. Baryon masses in dynamical QCD+QED
have been calculated so far by the BMW Collaboration which uses the QEDL formulation. Our
long-term aim is to provide an independent calculation of the baryon spectrum in dynamical
QCD+QED to the same level of precision as the BMW Collaboration using the QEDC
formulation, in a non-perturbative manner and ensuring full gauge-invariance. A foundational
step towards this goal is presented in this thesis, as baryon masses are measured on five
ensembles generated by the RC* collaboration.
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We obtained baryon masses with a precision of between 1-5%, and mass differences that
had a greater variation in precision that those of the masses. We found that the Ω− baryon
masses tended to give a weak plateau. Through a preliminary investigation using a modified
Backus-Gilbert method, we found that this is likely due to the presence of an excited state
close in energy to the Ω− ground state. We also explored the extent to which we expect
flavour-violating mixing, which is an unwanted side-effect particular to the QEDC formulation,
to affect our results. We found that while the expected exponential suppression from the
traversal of the lattice by massive particles is not enough to render the mixing negligible, the
small lattice sizes of our ensembles cause certain states that would necessarily appear in the
mixing diagram to be strongly suppressed on energetic grounds, and therefore we expect this
mixing to be strongly suppressed.
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1
INTRODUCTION

In recent years, the increasing power and availability of computing resources, coupled with
the development of more sophisticated algorithmic techniques, has lead to the consistent
reduction in the statistical error of quantities measured in lattice QCD (LQCD).

The measurements of certain hadronic observables, such as decay constants and the masses
of light hadrons, are now associated with statistical errors reaching subpercent levels, therefore
arriving at the same order of magnitude as the systematic error due to neglecting QED
[1]. It has thus become pertinent to address this systematic error by including QED effects
into LQCD measurements, should we desire to further increase precision while maintaining
accuracy.

The subject of this work is the measurement of meson and baryon masses in full QCD+QED
simulations. Hadron masses are both important by themselves and are also useful for the
calibration of LQCD measurements. Alongside the shift in value of hadronic properties of
order O(αEM) due to the electrically-charged quarks coupling with photons, the inclusion of
QED also allows one to investigate a wider range of excited states in the spectrum due to the
additional presence of photons.

The incorporation of isospin-breaking into a lattice calculation has two possible sources, the
first being electromagnetic effects and the second being the difference in mass between the u
and d quarks. Taking the neutron-proton mass difference as a particularly relevant example,
the two effects are in competition with each other. The inclusion of electromagnetism shifts
the proton mass 1 MeV higher with respect to the neutron, while the effect due to the u− d
mass difference is to reduce the proton mass by 2.5 MeV [2]. Therefore, accurate calculation of
such a sensitive quantity requires non-mass-degenerate u and d quarks as well as the inclusion
of QED. In this work, both of these features are simulated in parallel.

While the basic principle of including QED in LQCD is the straightforward generalisation
of the SU(3) gauge field to a U(3) gauge field, and the addition of a photon gauge term to the
discretised lattice action, Gauss’s Law provides an obstacle to the formulation of QED on
the lattice, as it states that, on a periodic torus, only states with net-zero electric charge can
form part of the Hilbert space. This complication has spurred the development of different
strategies and formulations in order to make the measurement of net-charged objects feasible.

Some approaches to the inclusion of QED on the lattice are based on simulating pure QCD
and adjusting ’a posteriori’ to allow varying degrees of QED inclusion. These include the
reweighting of QCD configurations to recover full QCD+QED configurations [3–5], as well as
the perturbative expansion with respect to the fine-structure constant αEM around pure QCD.
The RM123 method, in short a path-integral expansion in powers of both the renormalised
d− u quark mass difference over the QCD scale, md,R−mu,R

ΛQCD
, and the renormalised fine-structure

constant, αR [6], is popular [6–8]. Recent examples of works that have used this technique have
featured the calculation of hadronic decay rates [9], HVP contributions to the muon magnetic
anomaly [10] and baryon masses [11]. It is also common to use ’electro-quenching’, in which
the dynamical quarks may be electrically charged but the sea quarks are neutral and therefore
the configurations take place in pure QCD. Ref. [12], a pioneering work that introduced
non-perturbative QED to the lattice, used this technique. These approaches are in contrast
to the fully dynamical and non-perturbative simulation of both QCD and QED on the lattice,
which allows one to work unconstrained with regard to the validity of perturbation theory in
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QED and doesn’t require the quantification of contributions from many different orders of
perturbation theory. In this thesis, we are using such a dynamical and non-perturbative QCD
+ QED setup.

Whether perturbative or full QED is included in the calculation, Gauss’s Law must be
adhered to; in order to comply with Gauss’s Law, a formulation of QED must be chosen.
A common choice is the QEDL formulation [12] [13], in which the spatial zero-modes of
the photon field are quenched at all times by enforcing a non-local constraint. Physically,
this is equivalent to introducing a background of uniform electric charge in order to give
the system net-zero electric charge. The non-locality of this formulation, however, leads to
certain properties of the quantum field theory not being satisfied automatically; these include
renormalisability, the independence of renormalisation constants on the lattice volume, and
the validity of the Symanzik improvement program and of the operator product expansion.
These properties therefore have to be proven for each case; however, it must be noted that
these have been proven for the spectrum.
Another formulation that merits attention here is the QEDM formulation [14], in which

a mass term is added to the photon. This formulation is local and has a well-understood
renormalisation. In finite volume, it allows a consistent QFT that may be defined order-
by-order in a perturbative expansion. The mass term, however, introduces a soft breaking
of gauge symmetry. Furthermore, both the limits of zero photon mass and infinite volume
must be taken, and these limits do not commute, therefore making the extrapolation to the
physical point challenging. Results in the calculation of hadron masses have nonetheless been
presented in Ref. [15].

Our choice, the QEDC formulation [16–20], is based instead upon appending to the physical
lattice a ’mirror lattice’ with identically-placed but opposite electric charges, thus making the
system electrically net-neutral. An advantage of this formulation is its locality, which means
that the above considered properties such as renormalisability are automatic. This formulation
also has benefits in terms of smaller finite-volume effects compared to the QEDL formulation.
The reference calculation for baryon masses including dynamical QED is that of the

BMW collaboration [2]. This effort was carried out using the QEDL formulation. The isospin-
splittings of baryon masses in dynamical QCD+QED have also been measured in Ref. [21]. Our
long-term goal in the RC* collaboration is to perform an independent calculation of the baryon
spectrum, of the same level of accuracy as [2], by using the QEDC formulation, ensuring full
gauge-invariance and without relying on perturbation theory. The work presented in this thesis
is a foundational step in this direction, presenting baryon masses in QCD+QEDC measured
on 5 ensembles generated by the RC* collaboration. Part of this work is expected to be
published soon as part of Ref. [22] by the RC* collaboration.

This thesis starts with a quick overview of the fundamentals of lattice gauge theories that
are relevant to this work in Chapter 2, which may be skipped by the experienced reader. This
chapter will take the reader from the transformation of the gauge theory from the continuum
on to the lattice, to the expression of the fermionic fields as Wick contractions leading to
correlation functions, to the systematic improvement of discretisation errors in the lattice
action, to the extrapolation of lattice results to the physical point. Some of the important
statistical properties of Markov chains that will inform the explanation of analytical techniques
used later on will also be introduced in this chapter.
Chapter 3 explains the challenges and peculiarities that are introduced when QCD is

combined with QED using the C∗ formulation, which have been developed in the recent years
and which may by now be considered established. Firstly, the construction of the formulation
itself is discussed. Then, the symmetries of the system, such as gauge transformations,
translations, parity and flavour symmetries, and how they pertain to the degrees of freedom
on the lattice, are discussed. Special attention is paid to the definition of electrically-charged
interpolating operators that are invariant under the local U(1) gauge transformations, as well
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as the possibility of flavour-violating mixing that arises due to the C∗ boundary conditions.
The complication that the inclusion of QED in the C∗ formulation introduces to the usual
sign problem is explained, with further implementation-specific details given in Chapter 4.
We then explore the finite-size effects that derive from the long-range interactions of QED,
and their magnitude in the QEDC formulation in comparison with the QEDL formulation.
Finally, the details of the C∗ formulation on the lattice are explained.

As this work forms part of a combined effort of the RC∗ Collaboration, of which the hadron
masses form a significant part, the context of the RC* renormalisation strategy and the
details of the simulation algorithm are explored in Chapter 4. The renormalisation strategy is
parametrised by trajectory observables that define lines of constant physics, with the quark
masses and the value of α being tuned in order to lie on these lines. This strategy is explained
alongside the results for the meson masses. Certain algorithmic details of the simulation,
including a novel method for the calculation of the sign of the fermionic Pfaffian developed by
the RC∗ Collaboration, are also discussed.
Chapter 5 provides a catalogue of the techniques used for the optimisation of the signal

for the calculation of baryon masses, as well as spectral decomposition techniques for the
isolation of the ground state energy. The decreased signal-to-noise ratios for baryons when
compared to those of mesons are discussed. The base interpolating operators used for the
baryon correlators are then presented, with a discussion of the smearing that is applied to these
operators following. The effective mass errors are compared for the Jackknife method and the
Gamma method, error analysis methods that are presented in App. E, and the integrated
autocorrelation time from the Gamma method is confirmed to be consistent with the errors
from the Jackknife method. The Generalised Eigenvalue Problem (GEVP), which is used
in order to optimise the isolation of the ground state and to explore the baryon spectra, is
explained. The different smearing levels are analysed in comparison to the ground state energy
from the GEVP, and an example of the spectrum obtained through the GEVP, including
excited states, is presented. A modified version of the Backus-Gilbert method [23][24] is also
presented. This is used later on to help analyse some of the baryon mass results in a very
preliminary way.
The results for the baryon masses, that are the focus of this thesis, are presented in

Chapter 6. The effective mass plots and final masses and mass differences are discussed in the
context of the renormalisation strategy. The modified Backus-Gilbert method is used in order
to shed light on the excited states of the Ω− baryon. The magnitude of the suppression of the
flavour mixing due to the C∗ boundaries is then estimated for the ensembles. The trends of
some masses and mass differences are then discussed with reference to their physical values.
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2
LATTICE GAUGE THEORIES

The Standard Model of Particle Physics (SM), and its predictions of the properties and
phenomenology of sub-atomic physics, may be understood in part by the separate study
of the individual gauge theories that are combined in the SM. For instance, the properties
of hadrons, subatomic particles that are composed of quarks and gluons, and the group of
particles to which nucleons belong, may be understood largely through the study of the SU(3)
gauge theory, with U(1) contributions giving a small correction to these properties.
The SU(3) gauge theory, QCD, is particular in that, whilst theories such as U(1) and

SU(2) have relatively weak coupling strengths and are therefore appropriate for study using
perturbative methods, the SU(3) coupling strength only becomes small at high energies, while
at energies that are not large the coupling strength is too large for a perturbative treatment to
be appropriate. It is this phenomenon that leads to the confinement of quarks within hadrons,
and this also renders necessary non-perturbative methods for the study of QCD.
Lattice gauge theory is a method of studying vector-like gauge field theories, a group

to which QCD belongs, in a non-perturbative manner. Firstly, using a Wick rotation, the
quantum field theory in Minkowskian space-time is transformed into a statistical mechanical
treatment in Euclidean space-time, through which the path integral defining the theory is
numerically calculated. The lattice acts to discretise this Euclidean space-time. On the sites
of the lattice are placed quark fields, whereas the links between the sites host the gauge fields.
In this way, the lattice acts as the ultra-violet regulator that is necessary to make the field
theory finite, and the physical results are recovered through taking the continuum limit of
vanishing lattice spacing, which, through the renormalisation group, is equivalent to taking
the limit of vanishing bare gauge coupling.
Through the use of LQCD, many physical predictions stemming from the SM have been

calculated. Of special importance are the values of the electroweak decay constants and form
factors necessary for the calculation of the CKM matrix elements, as well as the quark masses,
the value of the strong gauge coupling, and those contributions to the anomalous magnetic
moment of the muon, gµ − 2, that come from the hadronic interactions.

2.1 path integral representation

In Euclidean space-time in the continuum, the QCD action is given by

SQCD =
1

4g2

∫
d4x

8

∑
a=1

Ga
µνGa

µν + ∑
f

∫
d4xψ f (x)(iγµDµ −m f )ψ f (x), (2.1)

where the covariant derivative is denoted by Dµ = ∂µ − igBµ(x), and the field strength is
given by

Ga
µν = ∂µBa

ν − ∂νBa
µ − f abcBb

µBc
ν, (2.2)

where f abc are the SU(3) group structure constants. The quark fields each have 12 components,
formed of 3 colour

⊗
4 spinor components, and the quark flavours are labelled by the index f .

The Dirac matrices used above are Euclidean, {γµ, γν} = 2δµν. This is missing a gauge-fixing
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term that would be required in the continuum theory, as it is not necessary when moving to
the lattice.

According to Feynman’s path integral quantisation procedure, one may write the expectation
value of a physical observable O as

〈O〉 = 1
Z

∫
DBDψDψO(ψ, ψ, B)exp(−SQCD[ψ, ψ, B]). (2.3)

where the partition function is given by

Z =
∫
DBDψDψexp(−SQCD[ψ, ψ, B]). (2.4)

This has an obviously statistical mechanical form with a probability density given by
exp(−SQCD[ψ, ψ, B])/Z.

2.2 moving on to the lattice

The lattice formulation of QCD is designed in such a way that SU(3) gauge-invariance is
preserved. This is advantageous with respect to perturbative calculations, for which gauge
fixing is essential, as it significantly simplifies parts of the calculation. For instance, the pool
of operators that can mix under renormalisation is thinned due to requirements on their forms.
Upon moving to the lattice, the fermion fields have the same behaviour under gauge

transformations as in the continuum case, with the only distinction being that the space-time
points x must now take discrete values to lie on the lattice sites, x = a(n1, n2, n3, n4), with ni
being integer-valued. For a gauge transformation matrix Ω ∈ SU(3),

ψ(x)→ Ω(x)ψ(x), ψ(x)→ ψ(x)Ω(x)†. (2.5)

In order to construct quark bilinears, that link together different sites and form the basis of
correlation functions, the gluon field that sits on the links between sites must be introduced.
It is worth noting here that, unlike in the continuum where the gauge field Bcont.

µ takes
Lie-algebra values, the lattice gluon field takes as its values elements of the gauge group SU(3).
The quark bilinear is made gauge-invariant if, in conjunction with the transformation given in
Eq. (2.5), the gauge field obeys the transformation

Uµ(x)→ Ω(x)Uµ(x)Ω†(x + µ̂a). (2.6)

Hence, the quark bilinear provides one fundamental gauge-invariant operator from which more
complex gauge-invariant operators may be constructed. As an aside, the gluon field on the
lattice may be identified in continuum language with a Wilson line Pexp(i

∫ x=aµ̂
x dxµBµ(x))

that connects the two points x and x + µ̂a, where P denotes a path-ordered integral and B is
the gauge field.
The trace in a two-dimensional plane of the gauge links that gives the smallest possible

area is called the (elementary) plaquette, given by

Qµν(x) = Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x). (2.7)

We note that, from here on, a = 1 is taken for simplicity. It may be shown easily through
Eq. (2.6) that the plaquette is SU(3)-gauge-invariant. The Wilson gauge action is the simplest
possible gauge action, and is formed using the sum over all elementary plaquettes,

SG = β ∑
x,µ>ν

(
1− 1

Nc
Re TrQµν(x)

)
. (2.8)
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Here, the inverse gauge coupling β = 6/g2
lat, where glat is the bare gauge coupling on the

lattice (from here on, we will refer to this simply as g). Identifying Uµ(x) = exp(iaBµ(x)), if
the limit a→ 0 is taken, and the sum is replaced with an integral, then to leading order we
have

SG →
∫ 1

4g2
lat

d4x
8

∑
a=1

Ga
µνGa

µν. (2.9)

2.3 fermions on the lattice

2.3.1 Grassmann numbers and Wick’s theorem

The primary property of fermions is that they obey Fermi statistics, which may be expressed
mathematically through the requirement that the interchange of the quantum numbers
characterising two different fermion states is anti-symmetric. If we write the fermionic vacuum
expectation value of a product of fermion fields as〈

ψ f1(n1)α1a1
ψ f2(n2)α2a2

· · ·ψ fk(nk)αkak
ψ

g1(m1)β1
b1

ψ
g2(m2)β2

b2

〉
F

(2.10)

where
〈O〉F =

1
ZF[U]

∫
DψDψe−SF [ψ,ψ,U]O[ψ, ψ, U] (2.11)

and the fermionic partition function is given by

ZF[U] =
∫
DψDψe−SF [ψ,ψ,U], (2.12)

then, for two fermions ψ f1(n1)α1a1
and ψ f2(n2)α2a2

that carry the quantum numbers labelled f for
flavour, n for lattice site, α for Dirac index and a for colour index, Fermi statistics demand
that the vacuum expectation value given in Eq. (2.10) change sign under the interchange

f1 ↔ f2, n1 ↔ n2, α1 ↔ α2, a1 ↔ a2. (2.13)

As the state is fully described by these quantum numbers, this interchange is of course
equivalent to the commutation of the specified fermion fields themselves. Therefore, it is
required that the fermion fields anti-commute with each other. This is true for both ψ and ψ,
and ψ and ψ must also anti-commute with each other. All fermions in the theory must act as
anti-commuting numbers regardless of the combination of indices f , f ′, n, n′, α, α′, a, a′:

ψ f (n)α
a
ψ f ′(n′)α′

a′
= −ψ f ′(n′)α′

a′
ψ f (n)α

a
; (2.14a)

ψ
f
(n)α

a
ψ

f ′
(n′)α′

a′
= −ψ

f ′
(n′)α′

a′
ψ

f
(n)α

a
; (2.14b)

ψ f (n)α
a
ψ

f ′
(n′)α′

a′
= −ψ

f ′
(n′)α′

a′
ψ f (n)α

a
. (2.14c)

These anti-commuting numbers are referred to as Grassmann numbers. These have particular
properties with regard to differentiation and integration that will not be discussed here, but
that make possible the derivation of some important formulae.

The first formula of particular relevance is the Matthews-Salam formula, which is

∫
dηNdηN · · · dη1dη1exp

(
N

∑
i,j=1

ηi Mijηj

)
= det[M], (2.15)
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where M is a complex N × N matrix. When we set M = −D, we see that this describes
the fermionic partition function ZF, which takes the value of the determinant of the Dirac
operator, called the fermion determinant.

Another useful formula is that for the generating functional for fermions

W[j, j] =
∫ N

∏
i=1

dηidηiexp

(
N

∑
k,l=1

ηk Mklηl +
N

∑
k=1

jkηk +
N

∑
k=1

ηk jk

)
(2.16)

= det[M]exp

(
−

N

∑
n,m=1

jn

(
M−1

)
nm

jm

)
. (2.17)

In this expression, the 2N-dimensional Grassman algebra that is generated by ηi, ηi, i = 1, 2, · · · , N
is embedded within a 4N-dimensional algebra generated by ηi, ηi, ji, ji, where i = 1, 2, · · · , N.
The new Grassman numbers j, j, however, act as source terms and are not integrated over.

Finally, by noting that

〈ηi1 ηk1
· · · ηiN ηkN

〉F =
1

ZF

(
−∂

∂jk1

)
∂

∂ji1

· · ·
(
−∂

∂jkn

)
∂

∂jin

W[j, j]
∣∣

j,j=0 , (2.18)

and using the expression for the generating functional given in Eq. (2.16) and the rules for
derivatives of Grassmann numbers, Wick’s theorem may be derived:

〈ηi1 η j1 · · · ηiN η jN
〉F

=
1

ZF

∫ N

∏
k=1

dηkdηkηi1 η j1 · · · ηiN η jN
exp

(
N

∑
l,m=1

ηl Mlmηm

)
, (2.19a)

= (−1)n ∑
P(1,2,··· ,n)

sgn(P)
(

M−1
)

i1 jP1

(
M−1

)
i2 jP2

· · ·
(

M−1
)

in jPn

, (2.19b)

where all permutations P of the numbers 1, 2, · · · , n are included in the sum with their
associated sign, sgn(P), resulting from the anti-commutation of the Grassmann numbers in the
permutations. We see that the fermionic expectation value may thus be written as the sum of
the products of the matrices M−1 for all the possible pairings between η and η, multiplied by
the associated sign. Again taking M = −D, we see that the above formula may be written in
terms of the propagator S,

〈ηi1 η j1 · · · ηiN η jN
〉F = ∑

P(1,2,··· ,n)
sgn(P) (S)i1 jP1

(S)i2 jP2
· · · (S)in jPn

, (2.20)

where S(y, z), the propagator from y to z, may be determined through solving the linear
equation

∑
y

D(x, y)S(y, z) = δ(x− z). (2.21)

Because D is a very large sparse matrix, it is necessary to use an iterative linear solver to
obtain the propagator.

2.3.2 The fermionic action

The discretisation of the quark field action is more delicate than that of the gauge field,
as numerous problems may arise, and so to fix them, numerous different quark actions are
proposed. It is important to note that these are used to reduce the systematic error from
various sources, but the methods should all give consistent results in the continuum limit.

7

MADELE
IN

E EVIE BETT D
ALE



A naive way to discretise the fermion action is through a symmetric difference,

Dµψ(x)→ 1
2a

[
γµUµ(x)ψ(x + µ̂)− γµU†

µ(x− µ̂)ψ(x− µ̂)
]

. (2.22)

The inclusion of the gauge field allows the object Dµψ(x) to transform in the same way as
ψ(x) under a gauge transformation. The above discretisation, however, is problematic as it
introduces 2d equivalent fields when the continuum limit is taken, where d is the number of
dimensions in space-time. This is due to the Nielsen-Ninomiya theorem [25], which states
that ‘doublers’ are an unavoidable consequence of the formulation on the lattice of an exact
and continuum-like chiral symmetry.
In order to avoid these doublers, the Wilson term may be added,

ra
2

ψD2ψ,

=
r

2a
ψ
(

Uµ(x)ψ(x + µ̂) + U†
µ(x− µ̂)ψ(x− µ̂)− 2ψ(x)

)
.

(2.23)

Here, the parameter r is called the Wilson parameter. This term acts to force the decoupling
of the doublers in the continuum limit by giving them a mass of O(1/a). While this solves
the problem of the doublers, discretisation errors of order O(a) are introduced, as well as the
chiral symmetry being broken, which may make it unsuitable for use in the measurement of
certain physical observables.

If the quark field normalisation is redefined to be

ψ→
√

2κψ, κ =
1

2(m0 + 4r)
, (2.24)

where m0 is the bare mass of the quark in question, then the quark action may be defined
simply as

SW = ∑
x,y

ψ(x)D(x, y)ψ(y), (2.25)

where

D(x, y) = δx,y − κ ∑
µ

{
(r− γµ)Uµ(x)δx+µ̂,y

+(r + γµ)U†
µ(x− µ̂)δx−µ̂,y

}
.

(2.26)

This representation is known as the hopping representation, with κ being called the hopping
parameter. The most popular choice for the value of r is 1, which we shall use from now on.
This expansion allows us to visualise fermions as being composed of points connected to each
other by paths of link variables in space-time.

2.4 markov chain monte carlo

In order to discuss later on the statistical analysis techniques that are used to quantify as
accurately as possible the measurement errors, we must first explore some of the concepts
behind Markov Chain Monte Carlo (MCMC) simulations, the statistical properties of the
ensembles they generate, and the Hybrid Monte Carlo algorithm that is used in our simulation
and indeed in most large-scale LQCD simulations nowadays.
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2.4.1 Importance sampling

As explained in Section 2.3, the quark fields that appear within the functional integral for
QCD obey Fermi statistics and are described mathematically using Grassmann numbers. No
method has to this day been invented to directly simulate these Grassmann-valued quark
fields in a practicable way on standard computer architectures. For this reason, it is required
to integrate out the quark fields, leading to the partition function for the fermions taking the
value of a fermion determinant, ZF = −det[D] in the case of one flavour, and the fermionic
expectation value taking the form of a product of propagators through Wick contractions.
If we consider as an example a lattice QCD setup with Wilson quarks with two different

flavours that are mass-degenerate, the partition function can be written as

Z =
∫
D[U]{detD(U)}2e−SG(U), D[U] = ∏

x,µ
dU(x, µ). (2.27)

Here, the gauge action is denoted by SG(U), dU(x, µ) is the link variable integration measure
that is invariant under SU(3) gauge transformations, and D[U] is the massive Wilson-Dirac
operator that depends on the gauge field U. The quark determinant D may be shown to be
real through γ5-Hermiticity, thus {detD(U)}2 ≥ 0 and a valid normalised probability density,

p(U) =
1
Z
{detD(U)}2e−Sg(U), (2.28)

may be defined on the space on the gauge fields. This allows us to redefine the expectation
value for an observable O as that of a classical statistical system,

〈O〉 =
∫
D[U]p(U)O(U). (2.29)

Each possible configuration of the gauge-fields may be thought of as a state that has a certain
probability, and the observable is some function of the gauge-field configuration. Attention
must be paid in the setup of a simulation such that the product of the quark determinants be
negative, so that a probabilistic interpretation of the theory can be valid. This is discussed in
the context of our simulations in Sec. 4.8 and Apps. C and D.

In this probabilistic interpretation, due to the gauge action being an extensive quantity, the
factor of e−SG(U) for a great portion of the space of gauge fields will be very small, meaning
that these states contribute very little to the final value of the integral. It would be inefficient,
not to say impracticable, to attempt such an integration over all states for a reasonably-sized
system. Instead, the concept of approximation via importance sampling is used, in order to
generate an ensemble of fields that is representative of the space of fields. The idea of this is
to select samples from the space of fields according to their probability density; in this way, a
subspace with high probability density would be sampled more often than a subspace with
low probability density.

In order to obtain a representative ensemble {U1, · · · , UN}, the fields are selected at random
with probability D[U]p(U); the number of fields therefore in an open region R of the field
space is given by

number of fields in R =
∫
R
D[U]p(U) +O(N−1/2), (2.30)

where the term O(N−1/2) accounts for the statistical error stemming from the finite number
of samples N that one selects.
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Once one has ensured that the fields U form an approximately-representative sample of the
field space, the integral in Eq. (2.29) defining the expectation value of the observable O may
be approximated by a sum, through

〈O〉 = 1
N

N

∑
i=1

O(Ui) +O(N−1/2). (2.31)

While this approximation method is not valid for obtaining the expectation value of all
observables with high statistical precision, those quantities that are sensitive to large-distance
correlations being particularly problematic, this approximation method works very well for
many quantities.

2.4.2 Markov chains

The focus now turns to how a representative ensemble may be generated. This is generally
achieved through a Markov process, which refers to the sequential generation of states from
some initial state through a stochastic algorithm. Although the system on which this Markov
process acts may be rather general, there are some requirements that the system must satisfy:

a The system must have a finite number n of states s;

b The equilibrium distribution of such states P(s) must satisfy P(s) > 0 for all s and also
∑s P(s) = 1;

c The observables are functions O(s) of the states s and are real-valued.

The requirements then validate the calculation of the expectation value 〈O〉 of the observable
O(s) through the finite sum over states

〈O〉 = ∑
s

O(s)P(s). (2.32)

In a Markov process that creates a Markov chain of states s1, s2, s3, · · · , sN from some
system, the degrees of freedom in the creation of the chain are the initial state s1 and the
transition probability T(s→ sk) to take the system from state s to state sk. One then designs
the transition probability such that a representative ensemble may be obtained for large N
regardless of the initial state. In this way, the expectation value for an observable O(s) can
be calculated through

〈O〉 = 1
N

N

∑
k=1

O(sk) +O(N−1/2). (2.33)

Here, the error term O(N−1/2) will be dominated at large N by statistical error caused by
random fluctuations in the Markov chain.
In order to construct transition probabilities that do indeed lead to the Markov chain

becoming a representative ensemble of states, the following requirements must be met:

1. Valid probabilities: T(s→ s′) ≥ 0 for all s, s′ and ∑s′ T(s→ s′) = 1 for all s

2. Balance: ∑s P(s)T(s→ s′) = ∑s P(s′)T(s′ → s) = P(s′) for all s′

3. Aperiodicity: T(s→ s) > 0 for all s

4. Ergodicity: Two states s ∈ S and s′ /∈ S, where S is a non-empty proper subset of states,
exist such that T(s→ s′) > 0 is satisfied.
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Running through the properties, we see that Property 1 is simply the requirement that
T(s→ s′) act as a valid probability distribution in s′ for a given fixed s. Property 2 is more
interesting as it ensures that there are no sources or sinks in probability space when the system
is at equilibrium. This ensures that the update process maintains an equilibrium distribution
once the equilibrium has been reached. Although not strictly required to ensure that the
simulation is correct, the balance condition is conventionally enforced through requiring that
it is satisfied on a term-wise basis, a condition called detailed balance:

P(i)T(i→ j) = P(j)T(j→ i) for all i, j. (2.34)

Property 3, which precludes the trapping of the Markov process in a cycle, and Property 4,
which ensures that the Markov process doesn’t get trapped in a subset of states, force the
Markov chain to explore the entirety of the state space. Properties 1-4 together are sufficient
to ensure the correctness of the simulation through a Markov process.
Two lemmata are now presented that have important consequences but that shall not be

proven in this text. The derivations for these lemmata may be found in [26]. Firstly, we must
define some mathematical quantities. If we denote as H the linear space of all functions f (s)
on the set of all states s, then the complementary space of non-stationary functions is given by

H0 =

{
f ∈ H|∑

s
f (s) = 0

}
. (2.35)

It is also necessary to define the action of the transition probability T(s→ s′) through the
linear operator T in the space H as

(T f )(s′) = ∑
s

f (s)T(s→ s′), (2.36)

as well as the norms
‖ f ‖1 = ∑

s
| f (s)|, (2.37)

and
‖ f ‖ = ( f , f )1/2, (2.38)

where the scalar product is defined as

( f , g) = ∑
s

f (s)P(s)−1g(s), (2.39)

and where P(s) is the equilibrium distribution.
We may now present the lemmata:

lemma 1 The bound ‖T f ‖1 ≤ ‖ f ‖1 holds for all f ∈ H. Furthermore, if T f = f , there
exists c ∈ R such that, for all states s, f (s) = cP(s).

lemma 2 There exists 0 ≤ ρ < 1 such that ‖T f ‖ ≤ ρ‖ f ‖ for all f ∈ H0.

We turn now to a discussion of the statistical properties of the Markov chain. This dis-
cussion only makes sense when considering the average properties for a large number of
independent chains. As the randomness in the choosing (or proposition) of a new state comes
from a sequence of pseudo-random numbers, one considers the practical situation where many
simulations are run from the same initial state but with different sequences of random numbers
to manufacture the independence of the Markov chains.
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If we assume that we have an infinite number of simulations of length N that start from
the same initial state, have different sequences of random numbers, and have some transition
probability that obeys the conditions of Sec. 2.4.2, then the average of an observable O over
the generated states s1, s2, · · · , sN from a given simulation out of these is given by

O =
1
N

N

∑
k=1

O(sk). (2.40)

If we also consider a function φ(s1, s2, · · · , sN) of the states in sequence, then the average of
the function over an infinite number of parallel simulations is denoted by ⟪φ⟫.

probability distribution of the states If one considers many parallel and independent
simulations with an initial state s1, the state sk generated after k− 1 steps in computer time
will differ randomly between the simulations. One may show derive easily the form for the
probability Pk(s) = ⟪δssk⟫ for an identical sk and s as

Pk(s) = ∑
s2,s3,··· ,sk−1

T(s1 → s2)T(s2 → s3) · · · T(sk−1 → s)

= (Tk−1P0)(s), P0(s) = δss1 .
(2.41)

Considering that the initial probability distribution P0 = P + f , f ∈ H0 is formed from the
equilibrium distribution along with some non-stationary functions, from property 2, which
enforces that the equilibrium distribution is maintained by the transition probability T, and
Lemma 2, which ensures that the non-stationary functions will decrease in magnitude upon
application of T, ‖T f ‖ ≤ ρ‖ f ‖ where 0 ≤ ρ < 1, it is implied that

Pk(s) =
k→∞

P(s) +O(e−k/τexp). (2.42)

The characteristic time of the exponential decay τexp = −1/lnρ > 0 is known as the
exponential autocorrelation time of the Markov process. For a large number of steps k� τexp,
one may assume that the system has reached the equilibrium state, at which point, the system
is thermalised, as it may be said to have forgotten the initial state s1.

calculation of expectation values Because the observable O(s) is a function of
the states on which it is measured, as the states fluctuate according to their probability
distribution, so the value of O averaged over the sequence of states O of one simulation will
fluctuate around the mean value calculated over infinitely many parallel simulations

⟪O⟫ = 1
N

N

∑
k=1
⟪O(sk)⟫ = ∑

s
O(s)

1
N

N

∑
k=1

Pk(s). (2.43)

If one substitutes Eq. (2.42) into the above equation and discards the thermalisation phase,
dropping the first k� τexp measurements, to give only the measurement phase, then it is easy
to show that

⟪O⟫ = 〈O〉. (2.44)

Therefore, up to statistical fluctuations, the average of the measured values of an observable
over the measurement phase will coincide with the expectation value of the observable.
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autocorrelation functions As the states in a Markov chain are generated sequentially
and each depends on the previous state, there is inevitably some statistical dependence
between the states in a given chain. This is quantified through the autocorrelation function

Γ(t) = ⟪O(sk)O(sk+t)⟫− ⟪O(sk)⟫⟪O(sk+t)⟫, (2.45)

which will be non-zero for correlated states. For a non-negative separation in computing time
between two states t > 0, after the thermalisation phase, the autocorrelation function will not
be dependent on the index k� τexp of the state and will have the form

Γ(t) = ∑
sk ,sk+1,··· ,sk+t

P(sk)O(sk)T(sk → sk+1) · · · T(sk+t−1)O(sk+t)− 〈O〉2. (2.46)

If one notes that the value of an observable O for a system in equilibrium is given by the
expectation value plus some non-stationary functions, P(s)O(s) = P(s)〈O〉+ f (s), f ∈ H0,
then we expect from the above expression and Lemma 2 that, at large separations in computer
time t, Γ(t) ∝∼ e−t/τexp decays exponentially. One may therefore assume the independent
distribution of two measured values O(si) and O(sj) only if |i− j| � τexp.

statistical fluctuations The variance of the measured averages of an observable O on
the individual Markov chains around the expectation value 〈O〉 is given by

⟪(O− 〈O〉)2⟫ = 1
N2

N

∑
l,j=1

Γ(|l − j|) = Γ(0)
2τint,O

N
+O(N−2), (2.47)

where
τint,O =

1
2
+

∞

∑
t=1

Γ(t)
Γ(0)

(2.48)

gives the integrated autocorrelation time associated with O. From the variance we obtain the
standard deviation of O from the expectation value up to terms of order N−3/2,

σ = σ0

(
2τint,O

N

)1/2

, σ0 = 〈(O− 〈O〉)2〉1/2. (2.49)

Here, σ0 is the standard deviation for a single state, if one considers the average over infinitely
many parallel simulations. We see from these expressions that the statistical error decreases
as N−1/2 as the length of the Markov chain increases, and that the integrated autocorrelation
time τint,O decreases the efficiency of the simulation as it multiplies the variance by 2τint,O
where τint,O ≥ 1

2 . This has the same effect as if the number of configurations were reduced by a
factor of 1

2τint,O
, and indeed, one may either account for the autocorrelation through separating

measurements by discarding a regular number of measurements δt ∼ 2τint,O between those
that will be the final measurements, or by using all measurements but adjusting the variance
by the factor 2τint,O. Methods of measuring the autocorrelation time will be discussed later in
Sections E.2 and E.3.

2.4.3 Hybrid Monte Carlo

We will now explore the method for the update of the gauge field, in which the gauge fields are
proposed new values according to the transition probability. In the case of a theory that only
includes the gauge field, this update may be done on the links one-by-one. When fermions
are included in the picture, this becomes impractical as there is a non-local dependence of
the fermion determinants of the functional integral upon the gauge field. This would mean
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that, in order to update the gauge fields through a one-link update algorithm, one would
require a computational effort of order O(N2). Happily, there exist algorithms such as the
Hybrid Monte Carlo (HMC) algorithm, that update the links simultaneously while preserving
important qualities of the system. We note that in this section of the text, the action S(U) is
assumed to be differentiable and real, and refers to a general action that could be non-local.

The first step of the HMC algorithm is the molecular dynamics evolution. This is initiated
by the introduction of an su(3)-valued field that acts as the canonical momentum,

π(x, µ) = πa(x, µ)Ta, πa(x, µ) ∈ R. (2.50)

The Hamiltonian of the theory is then given by

H(π, U) =
1
2
(π, π) + S(U), (π, π) = ∑

x,µ
πa(x, µ)πa(x, µ). (2.51)

It is worth noting here that the canonical momenta are drawn at random from a Gaussian
probability distribution e−(π,π). The physics of the theory do not change with this introduction,
as the action and observable O still only depend upon the gauge links,∫

D[U]O(U)e−S(U) = constant×
∫
D[U]D[Π]O(U)e−H(π,U). (2.52)

However, this represents a change in the theory from Lagrangian to Hamiltonian mechanics,
in which the evolution of the system is determined by Hamilton’s equations, which for the
above-described system are given by

π̇(x, µ) = −F(x, µ), Fa(x, µ) =
∂S(eωU)

∂ωa(x, µ)

∣∣∣∣
ω=0

, (2.53a)

U̇(x, µ) = π(x, µ)U(x, µ). (2.53b)

Here, the time-derivative denoted by a dot above the differentiated quantity is specifically a
derivative with respect to computer time.
We may systematise the molecular dynamics step of the HMC algorithm by breaking it

down into substeps:

• Before each evolution, the conjugate momenta are sampled anew from a Gaussian
distribution.

• The evolution is carried out through the numerical integration of these equations from
t = 0 up to some predefined value of this computer time, τ, not to be confused with the
autocorrelation time discussed earlier. This evolution forms a trajectory in field space
that is uniquely dependent on the initial values of the fields.

• When the evolution is complete, the final value of the evolution of the gauge-field Uτ is
proposed as the new gauge-field value U′.

For a fixed τ, and assuming acceptance of the proposed gauge-field U′ = Uτ, this molecular
dynamics step corresponds to the transition probability

T(U → U′) =
1

Zπ

∫
D[π]e−(π,π)/2 ∏

x,µ
δ(U′(x, µ), Uτ(x, µ)). (2.54)

Here, the Dirac δ-function is that which corresponds to the integration measure for the gauge
fields, and the correct normalisation of the transition probability is ensured by the momentum
partition function Zπ.
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It may be proven, not only that the four conditions on the transition probabilities are
satisfied by Eq. (2.54), but that the above transition probability preserves important quantities
such as the Hamiltonian and the phase space integration measure. As the molecular dynamics
equations are invariant under time reversal, the transformation of the phase space that the
molecular dynamics evolution induces is also reversible. This is important for the fulfilment
of the detailed balance condition. The introduction of the Gaussian-distributed canonical
momenta also increases the rate at which the system may escape any particular subspace of
states.

In practice, the only possible integration of the molecular dynamics equations is numerical
integration. This is performed by the division of the time interval [0, τ] into N0 steps of length
ε. Some discrete integration rule is then used, provided that it gives the correct result as
ε→ 0.
The Taylor expansions of the molecular dynamics equations given in Eq. (2.53a) are given

by

πt+ε = πt − ε F|U=Ut
+O(ε2), (2.55)

Ut+ε = Ut + επtUt +O(ε2), (2.56)

for some small ε. These may be used to construct integration schemes

I0(ε) : π, U → π − εF, U; (2.57a)
IU(ε) : π, U → π, eεπU, (2.57b)

that, used in the combination known as the leapfrog integrator I0(
1
2 ε)IU(ε)I0(

1
2 ε), evolve

the system between t and t + ε up to errors of order ε3. From these incremental steps, the
full integration from t = 0 to t = τ consists of the application to the initial fields U, π of the
product

J0(ε, N0) =

{
I0

(
1
2

ε

)
IU(ε)I0

(
1
2

ε

)}N0

, ε =
τ

N0
. (2.58)

It is easy to show that this integrator is invertible

J0(−ε, N0)J0(ε, N0) = 1, (2.59)

and that it conserves the integration measure D[π]D[U], therefore preserving important
qualities of the HMC method.

This numerical integration, however, does not preserve the Hamiltonian due to the discrete-
ness of the integration path. Generally, for fixed ε,

∆H(π, U) = {H(πτ, Uτ)− H(π0, U0)}π0=π,U0=U (2.60)

is non-vanishing. This leads also to the breaking of the balance condition.
In order to rectify these problems, an additional step is added at the end, in order to

complete the HMC method. The proposed gauge-field value is accepted with the probability

Pacc(π, U) = min
{

1, e−∆H(π,U)
}

, (2.61)
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instead of the unconditional acceptance we had assumed earlier. If not accepted, the previous
gauge field is set as the current value in the Markov chain, U′ = U. This modification gives
the resulting transition probability density

T(U → U′) =
1

Zπ

∫
D[π]e(π,π)/2{Pacc(π, U)∏

x,µ
δ(U′(x, µ), Uτ(x, µ))−

(1− Pacc(π, U)∏
x,µ

δ(U′(x, µ), U(x, µ)))}.
(2.62)

As long as the integrator preserves the integration measure and is reversible in time, this
transition probability may be shown to possess the properties required of valid transition
probabilities. A compromise must be found between the number of steps N0 used to divide
each trajectory, which determines roughly linearly the computing time required for integration,
and the acceptance probability, which decreases with increased ε as the numerical integration
becomes less accurate, in order to improve the computational efficiency of the simulation.

2.5 reduction of discretisation effects through improvement

A fundamental step in obtaining physically relevant predictions from lattice gauge theory is the
extrapolation to the continuum limit. Unfortunately, a limiting factor in the approach to the
continuum limit is the increased computational resources required to simulate a lattice with a
smaller lattice spacing at a given volume. A large scaling violation arises from the combined
use of the Wilson fermion action and plaquette gauge action that can make the accurate and
precise determination of, for instance, continuum-limit hadron masses impracticable from
reasonably large lattices.
This problem may be alleviated through the addition of terms to the action or other

operators, while of course obeying the required symmetries of the action or operator they are
being added to, that reduce the scaling violation; this technique is called improvement. In
particular, the Symanzik improvement procedure follows the steps:

• The quantity that one wishes to improve is expressed as a discretised expression.

• Correction terms obeying the correct symmetries and dimension are selected, and are
expressed in continuum language.

• Discretised versions of the correction terms are developed and are added to the original
quantity with coefficients chosen such that discretisation errors up to a certain order
vanish.

In our project, improvement is used on both the quark action, by adding Sheikholeslami-
Wohlert terms, otherwise known as clover terms, which give O(a) improvement to the
Wilson-Dirac operator, as well as on the SU(3) gauge action, where the Luescher-Weisz action
is used to give tree-level improvement.

2.5.1 Gauge actions

While the improvement of both gauge actions is possible through the construction of the
openQ*D code, we will focus here only on the SU(3) gauge action, as we use the standard
U(1) plaquette gauge action given in Eq. (3.61b).

The SU(3) gauge action may be written quite generically as

SG,SU(3) =
ωC∗

g2

1

∑
k=0

cSU(3)
k ∑

C∈Sk

tr[1−U(C)], (2.63)
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where the SU(3) parallel transports on a lattice-defined path C are denoted by U(C). The
weight constant ωC∗ depends on the spatial boundary conditions, taking the value 1 in the
case of no C∗ boundary conditions and 1/2 if C∗ boundary conditions are used, in order to
account for the double counting introduced through summing the loops over both the physical
and mirror lattice. The set of all oriented plaquettes and the set of all oriented 1 × 2 planar
loops are given respectively by S0 and S1. The respective coefficients for these terms must
satisfy c0 + 8c1 = 1. In particular, the tree-level improved Symanzik action, otherwise known
as the Luescher-Weisz action, that we use in our simulations corresponds to c0 = 5

3 , while the
unimproved Wilson action corresponds to c0 = 1. Finally, the bare gauge couplings, g in the
case of SU(3) and e0 in the case of U(1), are related to the bare inverse SU(3) gauge coupling
β and the bare fine-structure constant α through

β =
6
g2 , α =

e2
0

4π
. (2.64)

2.5.2 Wilson-Dirac operator

The Wilson-Dirac operator in the openQ*D code is formed of the following components,

D = m + Dw + δDsw + δDb, (2.65)

where m is the bare quark mass, Dw is the unimproved Wilson-Dirac operator as defined
above, δDsw is the clover term and δDb is an O(a)-improvement term accounting for the
temporal boundaries. As we are using periodic temporal boundary conditions, δDb = 0 for
our simulations.

The Sheikholeslami-Wohlert improvement term for the Wilson-Dirac operator is given by

δDsw = cSU(3)
sw

3

∑
µ,ν=0

i
4

σµνĜµν + qcU(1)
sw

3

∑
µ,ν=0

i
4

σµν F̂µν, (2.66)

where q is the physical quark electric charge expressed in units of e; with this normalisation,
cU(1)

sw = 1 corresponds to tree-level. The U(1) field tensor used is given by

F̂µν(x) =
i

4qel
Im
{

zµν(x) + zµν(x− µ̂) + zµν(x− ν̂) (2.67a)

+ zµν(x− µ̂− ν̂)
}

,

zµν(x) = z(x, µ)z(x + µ̂, ν)z(x + ν̂, µ)†z(x, ν)†, (2.67b)

and is normalised such that, in the naive continuum limit, the canonically-normalised field
tensor is retrieved through taking −ie0F̂µν(x). Similarly, the SU(3) field tensor used in this
context is given by

Ĝµν(x) =
1
8
{

Qµν,cl(x) + Qνµ,cl(x)
}

, (2.68a)

Qµν,cl(x) = U(x, µ)U(x + µ̂, ν)U(x + ν̂, µ)−1U(x, µ)−1 (2.68b)
+ U(x, ν)U(x− µ̂ + ν̂, µ)−1U(x− µ̂, ν)−1U(x− µ̂, µ)

+ U(x− µ̂, µ)−1U(x− µ̂− ν̂, ν)−1U(x− µ̂− ν̂, µ)U(x− ν̂, ν)

+ U(x− ν̂, ν)−1U(x− ν̂, µ)U(x + µ̂− ν̂, ν)U(x, µ)−1.

As such, both field tensors are constructed in terms of the clover plaquette.
Values for the improvement coefficients chosen for our simulations are given in Sec. 4.1.

17

MADELE
IN

E EVIE BETT D
ALE



2.6 reaching the physical point

2.6.1 The running coupling and the continuum limit

The quantities that appear in the action integral, such as the gauge coupling g or the quark
mass m, are numbers that cannot be measured directly through physical observations. These
parameters are referred to as bare parameters, and their values in physical units may only be
found through the identification of physical observables, such as the hadron masses, in the
theory with their experimentally determined values.
Lattice actions may differ in many respects, such as the choice of the discretisation of the

derivative or the structure of the lattice. The observables calculated using these different
choices for the lattice action must all converge, however, to the physical values of the observable
when the physical point is reached, which involves taking the limit of the lattice spacing a→ 0,
the so-called continuum limit. At the physical point, therefore, the observable predicted from
theory should be independent of the value of a. This implies that generally the values of the
bare parameters will vary as functions of a, as g(a), m(a).

The mathematical formalism for dealing with the running of the bare parameters is called
the renormalisation group. Considering for simplicity the example of a pure gauge theory,
which has only one bare parameter, the gauge coupling g(a), the requirement that the physical
observable P(g(a), a) reach the constant value P0 at the physical point in the continuum limit
is expressed mathematically as

lim
a→0

P(g(a), a) = P0. (2.69)

This requirement was formulated as a differential equation by Callan and Symanzik, to give
the renormalisation group equation,

dP(g, a)
dlna

=

(
∂

∂lna
+

∂g
∂lna

∂

∂g

)
P(g, a) = O((a/ξ)2ln(a/ξ)). (2.70)

Here, the right hand side is an artifact of the lattice system, where ξ is the correlation length.
By convention, the coefficient of the second partial derivative term is called the β-function,
and is not to be confused with the inverse gauge coupling. It is defined as

β(g) ≡ − ∂g
∂lna

, (2.71)

and gives the relationship of g on a up to an integration constant. For the rest of this section,
β will refer to the inverse gauge coupling, whereas the above object will be referred to explicitly
as the β-function. Using perturbation theory for the determination of the coefficients, an
expansion of the β-function may be made in terms of powers of g around g = 0, the form
of which, given the rather general example of an SU(N) theory with n f massless quarks, is
given by

β(g) = −β0g3 − β1g5 +O(g7), (2.72)

β0 =
1

(4π)2

(
11
3

N − 2
3

n f

)
, (2.73)

β1 =
1

(4π)4

(
34
3

N2 − 10
3

Nn f −
N2 − 1

N
n f

)
. (2.74)
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The coefficients of β(g) generally depend upon the regularisation scheme, the exception being
β0 and β1 which are universal. Separation of variables may be used to solve the above
β-function differential to give a(g) in terms of g and the β−function coefficients,

a(g) =
1

ΛL
(β0g2)−β1/2β0exp

(
− 1

2β0g2

)
(1 +O(g2)). (2.75)

The inversion of this equation gives the running coupling, an expression of the gauge coupling
in terms of the lattice spacing,

g(a)−2 = β0ln(a−2Λ−2
L ) +

β1

β0
ln(ln(a−2Λ−2

L )) +O(1/ln(a2Λ2
L)). (2.76)

In order to obtain a constant value of a physical observable at the physical point, implying
independence from the procedure of scale-fixing, the value of the bare parameter g(a) must
change with respect to a according to the above equation. The choices of regularisation
scheme and lattice action affect the value of ΛL, however, a 1-loop perturbative calculation
may be used in order to relate the different ΛL values exactly through their ratios. In general,
Eq. (2.76) gives a gauge coupling that, in the limit of vanishing lattice spacing, also vanishes.
This is referred to as asymptotic freedom, and is a central characteristic of QCD.

The naive continuum limit involves simply taking a→ 0 whilst requiring that, when this
limit is taken, objects such as the discretised action on the lattice take on the same values
as their continuum equivalent. However, the evaluation of the path integral is necessary for
obtaining measurements from a fully quantised theory, and produces observables that vary
as functions of a, which complicates or makes impossible this approach. An alternative, and
the conventional method, is to drive the system into phase transition by pushing the gauge
couplings to their critical values. During this phase transition, the physical scales, including
length scales such as the proton size, become large with respect to the lattice units, which
effectively leads to ever-increasing lattice resolution.

We see from Eq. (2.76) that taking the limit a→ 0 corresponds to taking the limit g→ 0.
Given the definition of the inverse coupling, β = 6/g2, we can therefore define the true
continuum limit through taking the inverse coupling to infinity,

β→ ∞. (2.77)

This is easier said than done, though, as this limit shrinks the lattice to a vanishing physical
size, unless the numbers of lattice points is increased. This matter will be discussed in the
next subsection.

As a quick example, the hadron masses M are known to have corrections that are dependent
on the lattice spacing,

M(a) = Mphys(1 +O(aα)), (2.78)

where α is some real number that depends on the particular action used; for example, the
contribution from finite lattice spacing can be shown to be quadratic for the Wilson fermionic
action [27], whereas the dependence is weaker when improvement of the fermionic action is
used [28].
When moving from QCD to QCD+QED, the continuum limit does not strictly exist, at

least in the perturbation theory, as QED contains a Landau pole at vanishing length scales
that renders the theory trivial. In the perturbative regime of QED, however, which is relevant
at typical hadronic energies and is therefore the regime in which we perform our simulations,
the continuum limit exists and is universal at every fixed order in the fine-structure constant.
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2.6.2 Thermodynamic limit

The thermodynamic limit, or infinite volume limit, is defined as

NL → ∞, NT → ∞, (2.79)

where NL is the lattice length in terms of number of points in the spatial dimensions, and
NT is the length in terms of the number of points in the temporal dimension. In principle,
before taking the continuum limit described above, the above thermodynamic limit should
be taken. This is not practical, however, given the increased computational effort associated
with taking this limit.

Instead, the physical observables are calculated for a few different values of β, and therefore
for a few different values of a, while keeping the physical volume, usually LT × L3, constant,
where

L = aN, LT = aNT. (2.80)

A scaling analysis is then performed, in which the dependence of the physical observables
on a is analysed and the true continuum limit determined through extrapolation. Here, a
naive parametrisation may be used, for instance, in terms of 1/L, or this extrapolation may
be theory-based. This procedure is then carried out on different lattice sizes, after which,
extrapolation may be used to obtain the infinite physical volume (continuum) limit.
The convention in spectroscopy studies is to use lattices for which the temporal extent

is significantly larger than the spatial extent. This allows one to neglect effects due to the
finite time extent, so that leading finite size effects come from the limited spatial extent. A
source of finite volume effects, relevant in QCD for observables with a single stable hadron in
external states, comes from interactions involving particles travelling around the spatial torus.
This produces a contribution of magnitude O(exp(−αL)), where α is some real constant with
units of mass. Finite-volume effects will be more severe for excited states with larger spatial
extent, and for QCD+QED, as QED is a long-range interaction.

2.6.3 Physical quark masses

Often, quark masses are used that are much greater than the physical values, with the physical
point being approached through extrapolation to the physical quark masses. This is done in
order to make the simulations less expensive and to avoid somewhat the presence of exceptional
configurations that can cause the numerical inversion of the Dirac operator to break down.
For these reasons, greater than physical quark masses have been used in our simulations.
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3
QCD+QED IN THE C∗ FORMULATION

3.1 c* construction: general principles and technical details

In the following section, we will be considering a continuum but finite-sized formulation of
QEDC that exists on a torus with C∗ boundary conditions and physical length L in all spatial
directions and arbitrary boundary conditions in the temporal direction of dimension T. These
may include: open, periodic, Schrodinger Functional (SF), or open-SF.

In Appendix A, two approaches for the C∗ formulation on the lattice, the C-even construction
and the orbifold construction, are explored and related to each other. In our work we
have chosen to use the orbifold construction; however, understanding the two constructions
allows one to have an alternative way to check the formulation. In particular, when using
C∗ boundary conditions, as the momentum eigenstates are automatically eigenstates of the
charge conjugation operator, it is necessary for the projection to zero-momentum that the
correlators be C-even. It is in fact sufficient for the calculation of C-even correlators to take
the global sum over both the physical and mirror lattice at the sink; C-odd components in
the source field then vanish. This is demonstrated in the case of the meson and has been
checked for our implementation of the C∗ formulation in the case of a unit gauge field, however,
this logic holds generically. In our calculations, therefore, the sum over sink position in the
correlators has been taken to extend over both the physical and the mirror lattice.
In the QEDC formulation, the total action is given by

S[A, ψ] =
∫

L3T
d4x

{
1

4e2 FµνFµν +
N f

∑
f=1

ψ f (γµ

↔
D f

µ + m f )ψ f

}
, (3.1)

where the U(1) field strength tensor denoted by Fµν and the covariant derivative
↔
D f

µ are
given by

Fµν = ∂µ Aν(x)− ∂ν Aµ(x), (3.2a)
↔
D f

µ =
↔
∂ µ −iq f Aµ. (3.2b)

Here the operator ↔∂ µ=
1
2 (
→
∂ µ −

←
∂ µ) where the partial derivative →∂ acts to the right and ←∂

acts to the left.
C∗ boundary conditions are designed such that a translation of a period L̂i in a direction i

that has C∗ boundary conditions is equivalent to charge conjugation. This is expressed as

Aµ(x + L̂i) = ACµ(x) = −Aµ(x), (3.3a)

ψ f (x + L̂i) = ψCf (x) = C−1ψ
T
f (x), (3.3b)

ψ f (x + L̂i) = ψ
C
f (x) = −ψT

f (x)C, (3.3c)

The charge–conjugation matrix C used here must be invertible, have a determinant of unity,
and must obey

C−1γT
µ C = −γµ. (3.4)
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A four-by-matrix does exist with these properties that also satisfies

CT = −C, C† = C−1, (3.5)

regardless of the particular chosen gamma matrix representation. In this work, we choose the
representation C = iγ0γ2.
We note that the action density of QEDC is invariant under charge–conjugation, as its

formula given in Eq. (3.1) is identical to that of the infinite volume action density. We also
note that this means that it must be periodic in space as the spatial shift by a period is
equivalent to charge conjugation in this formulation.

3.2 gauge transformations

U(1) gauge transformations in QEDC are defined as

A[α]
µ (x) = Aµ(x) + ∂µα(x), (3.6a)

ψ
[α]
f (x) = eiq f α(x)ψ f (x), (3.6b)

ψ
[α]
f (x) = e−iq f α(x)ψ f (x). (3.6c)

By considering how a translation L̂i along a spatial direction by a period affects the
transformed fields, we can determine the form of the gauge transformation that obeys the
C∗ boundary conditions and is therefore permissible. Starting with the U(1) compact gauge
field Aµ, the transformed and translated field has the form

A[α]
µ (x + L̂i) = Aµ(x + L̂i) + δµα(x + L̂i) (3.7)

= −Aµ(x) + δµα(x + L̂i) = −A[α]
µ (x) + δµ[α(x + L̂i) + α(x)].

We require that the U(1) field be anti-periodic; we must therefore impose the condition on
the gauge transformation that

δµα(x + L̂i) = −δµα(x), (3.8)

which limits the form of the gauge transformation to α(x) = β(x) + γ, where β(x) = −β(x)
is some anti-symmetric function and γ is a generic constant.

This can be refined further if we consider the translation of a transformed fermion field in
the same manner,

ψ f (x + L̂i) = eiq f α(x+L̂i)ψ f (x + L̂i) (3.9)

= eiq f α(x+L̂i)C1ψ
T
f (x) = eiq f [α(x+L̂i)+α(x)]C1[ψ

α
]Tf (x).

Requiring that this field satisfy C∗ boundary conditions, we find that

α(x) = β(x) +
n f π

q f
. (3.10)

As we are concerned with quarks, whose charge can be expressed as integer multiples of the
fundamental unit of charge qel = e/3, the boundary conditions for all fields are respected iff
there exists an integer n that obeys

α(x) = β(x) +
nπ

qel
. (3.11)
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If we define for each space-time point a gauge transformation that has the form of a
transformation on the compact U(1) group, Λ(x) = eiqelα(x), then the matter field of flavour f
at that point transforms, according to an irreducible representation of the U(1) gauge group,
with Λ(x)q̂ f , where q f is the charge associated with the matter field and q̂ f = q f /qel, i.e.
expressed in terms of some fundamental unit of charge qel.

We can choose alternatively to view this in terms of operators; defining the operator for the
electric charge as Q, the global gauge transformation generator has the form Q̂ = Q

qel
, with

entirely integer-valued eigenvalues. The U(1) group of global gauge transformations is broken
by C∗ boundary conditions into Z2, as the sole global gauge transformations permitted under
the form Eq. (3.11) are Λ = ±1. This implies that, under C∗ boundary conditions, electric
charge Q is violated while the quantum number (−1)Q̂ is conserved.

We shall now define what is meant by certain terms in the context of C∗ boundary conditions
in this thesis. As it is evident that the group of gauge transformations is disconnected and
split into sectors characterised by the integer n, local gauge transformations are meant to
signify those transformations that are continuously connected to the identity, i.e. where n = 0
and α(x) = β(x) is therefore anti-symmetric. Large gauge transformations are defined as the
combination of a global and a local gauge transformation.

3.3 translations

Under C* boundary conditions, translational invariance and charge conjugation are preserved.
Momentum and charge conjugation are linked through the definition of C∗ boundary conditions
given in Eq. (3.3a), unlike for an infinite volume.
If we consider a generic field, we see that by definition of the C∗ boundary conditions

φ(x + L̂i) = C−1φ
T
(x) = φC(x), (3.12)

i.e. that translation of a field by a period in a spatial direction i is equivalent to its charge
conjugation. This allows us to define the C-even and C-odd components of the generic field
φ(x) as

φ± =
φ(x)± φC(x)√

2
. (3.13)

Substitution of Eq. (3.12) shows that φ(x)± is (anti-)periodic in space. This means that the
components necessarily have different representations in Fourier space. Expanding the fields
in the time-momentum Fourier representation allows one the freedom of arbitrary temporal
boundary conditions,

φ±(x) =
1
L3 ∑

p∈Π±

φ̃±(x0, p)eipx, (3.14)

where Π± is the set of (anti-)periodic momenta,

Π+ =

{
2π

L
n | n ∈ Z3

}
, (3.15a)

Π− =
{π

L
(2n + n) | n ∈ Z3, n = (1, 1, 1)

}
. (3.15b)

In this manner, the fermion fields ψ f ,±(x) can be expressed as

ψ f ,±(x) =
1
L3 ∑

p∈Π±

ψ̃ f ,±(x0, p)eipx, (3.16)
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the (anti-) Majorana condition being satisfied by the components ψ f ,± of the fermion fields,

ψ f ,±(x) = ±C−1[ψ f ,±](x). (3.17)

In contrast, however, the compact U(1) gauge field Aµ(x) has only the anti-periodic set of
momenta, and is therefore C-odd;

Aµ(x) =
1
L3 ∑

p∈Π−

Ãµ(x0, p)eipx. (3.18)

3.4 parity

With an appropriate choice of parity operator, we have the properties:

A0(x)→ A0(xP), (3.19a)
Ak(x)→ −Ak(xP), (3.19b)
φ f (x)→ ηPγ0φ f (xP), (3.19c)
φ f (x)→ η∗Pφ f (xP)γ0, (3.19d)

where xP = (x0,−x). Here, ηP, a generic complex phase in infinite space, can be chosen freely,
and each choice defines a distinct parity operator. We set aside the standard choice of ηP = 1,
as the parity operator P thus defined doesn’t commute with the charge conjugation operator
C with which the C∗ boundary conditions are defined. The choice of i, however, can be easily
seen to give a parity operator that commutes with our charge conjugation operator. Using
the fermion field ψ f (x) as an example,

ψ f (x) C−→ C−1ψ
T
f (x) P−→ −iC−1γT

0 ψ
T
f (xP), (3.20a)

ψ f (x) P−→ iγ0ψ f (xP)
C−→ iγ0C−1ψ

T
f (xP) = −iC−1γT

0 ψ
T
f (xP), (3.20b)

where we have used that C−1γT
0 C = −γ0. Similar checks can be carried out for the other

fields. This commutation shows that parity is conserved by C∗ boundary conditions.
One can also show that the action under C∗ boundary conditions is invariant under P ,

therefore in finite volume parity represents an exact symmetry. This knowledge facilitates the
construction of operators that describe definite-parity states.

3.5 flavour symmetries

Flavour, and thus charge conservation, are violated in C* boundary conditions by charged
particles that travel once around the torus, changing into their anti-particles. More precisely,
flavour is violated if the winding number ∑3

i=1 ni is odd, where ni is the number of times
the particle travels around the torus in direction i. Propagators constructed from a source
on the physical lattice and a sink on the mirror lattice, or vice versa, are the cause of the
charge-violating flavour violation due to their sensitivity to C* boundary conditions. Whilst
these terms vanish in infinite volume, they cause a charge violation of ∆Q = ±2. This means
that the electric charge is not conserved, although the quantum number (−1)Q̃ is. This leads
to a mixing with time between all valid states with odd electric charge, and a separate mixing
of all valid states with even electric charge.
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As the violation is caused by the motion of charged particles around the torus, these
violating effects are suppressed exponentially as

〈ψ(x)ψT(y)〉 ∼ 〈ψT
(x)ψ(y)〉 ∼

(
m
L

) 3
2

e−mL (3.21)

for L→ ∞. Moving to the case of N f flavours, the above argument is generalised with

Q =
N f

∑
f=1

q f Ff , (3.22)

where Ff is the generator of the f-th U(1). This implies a flavour violation of ∆Ff = 0 mod 2.

3.6 defining u(1)-gauge-invariant interpolating operators

This section concerns the construction of electrically charged states that can represent physical
observables. For this to be possible, they must be invariant under local gauge transformations.
An advantage of using a non-perturbative formulation of U(1) is the complete avoidance of the
necessity of gauge-fixing, which would otherwise be required for the intermediate quantities
from which physical observables are measured; we do, however, note that gauge-fixing in QED
is problem-free.
In order to build states that represent electrically charged physical observables, we must

first consider how a naive electrically charged state will transform under a local gauge
transformation. For our interpolating operators to be U(1)-gauge-invariant, it is necessary to
multiply them by a gauge factor. If we consider the naked matter field to be ψ(x), we can
apply a quite generic dressing factor,

ΨJ(x) = eiq
∫

d4yAµ(y)Jµ(y−x)ψ(x), (3.23)

where we define J to be some function or distribution that satisfies the condition

∂µ Jµ(x) = δ4(x), Jµ(x + L̂i) = −Jµ(x). (3.24)

If we choose the temporal boundary conditions to be periodic, we must require that Jµ be
periodic in time also.

If we perform a global transformation on this expression, we find that ψ(x)→ eiqαψ(x), so
that ΨJ(x)→ eiqαΨJ(x). If we were to take the infinite volume limit, this would imply that the
electric charge of the operator would be equal to q. However, in finite volume, α is restricted
to the values 0 and π/q, implying that the quantum number Q̂ of ΨJ is given by (−1)Q̂ = −1 .

Defining the non-local factor as

Θ(x) = eiq
∫

d4yAµ(y)Jµ(y−x), (3.25)

we can apply a spatially anti-periodic local gauge transformation to give

Θ(x)→ Θ(x)eiq
∫

d4y∂µα(y)Jµ(y−x) = Θ(x)eiq
∫

d4yα(y)∂µ Jµ(y−x),

= Θ(x)e−iqα(x).
(3.26)

One may note that, due to the periodicity of α(y)Jµ(y− x) with respect to y, and the periodic
temporal boundary conditions, integration by parts results in no boundary terms. We therefore
see a cancellation of the factors produced between the non-local factor Θ(x)→ e−iqα(x)Θ(x)
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and the naked matter field ψ(x)→ ψ(x)eiqα(x) when a local gauge transformation is applied.
Therefore, the multiplication of ψ(x) with a gauge-dressing factor Θ(x) renders ΨJ(x) invariant
under local gauge transformations.

We thus are able to construct an electrically-charged interpolating operator with quantum
number (−1)Q̂ = −1 that is nonetheless invariant under local gauge transformations. The
application of the gauge-dressing factor conserves the boundary conditions, so that one can
use the C-even and C-odd ΨJ components to construct gauge-invariant operators with definite
momentum.
It is practical to use a definition of ΨJ that is proportional to a delta function δ(x0)

in time centered at time x0. This locality in time makes the mapping of the operator
ΨJ(x) onto the Hilbert space natural; if we act on this operator onto the vacuum |0〉 we
obtain the state ΨJ(x)|0〉, a state which, like the operator ΨJ(x), is invariant under local
gauge-transformations and has the quantum number (−1)Q̂ = −1. The gauge-invariant
Hamiltonian spectrum can then be extracted through the decomposition of the two-point
Euclidean correlator 〈ΨJ(x)ΨJ(0)〉 in terms of exponential decays. The spectrum depends
upon the Hamiltonian of the system described, rather than any temporally-local interpolating
operator chosen to probe the system. For this reason, the energy levels are by construction
gauge-invariant and independent of the choice of the function Jµ that parametrises the gauge
dressing factor. This thesis, when defining the (finite-volume) mass of the charged particle,
more specifically refers to the energy of the lightest state that propagates within the Euclidean
two-point function. This is taken to become the mass of the charged particle when the
infinite-volume limit is taken.

In the case of periodic boundary conditions in all spatial directions, no solutions exist that
satisfy the requirements Eq. (3.24), owing to the constraints imposed by Gauss’s Law. There
are, however, many possible choices of gauge factor that satisfy these requirements in the case
of C∗ boundary conditions. These are represented by different choices of J.

We consider first the Coulomb gauge, which is defined by the conditions

Coulomb gauge:
J0(x) = 0, (3.27a)

Jk(x) = δ(x0)∂kΦ(x), (3.27b)
∂k∂kΦ(x) = δ3(x). (3.27c)

Here x = (x0, x) and Ψ(x) is anti-periodic. If we choose to represent Φ(x) in terms of the
heat-kernel, then the operator ΨJ = Ψc has the form

Φ(x) = − 1
L3

∫ ∞

0
du ∑

p∈Π−

e−up2+ipx; (3.28a)

Ψc(x) = e−iq
∫

d3y∂k Ak(x0,y)Φ(y−x)ψ(x). (3.28b)

We note that, in the Coulomb gauge, ∂k Ak = 0 for k = 1, 2, 3, so we have that Φc(x) = ψ(x).
This means that, in Coulomb gauge, 〈Ψc(x)Ψc(y)〉 = 〈ψ(x)ψ(y)〉, and that the gauge-
invariance of the mass using an operator defined in the Coulomb gauge is self-evident.
The second choice here presented is the string gauge, which creates a string that wraps

around the torus along a direction k with C∗ boundary conditions. Visualising the lattice with
C∗ boundary conditions as a box, this allows the electric flux to escape the box in a symmetric
way that satisfies Gauss’s Law through the effective placement of two image charges at x + L̂k
and x− L̂k on the mirror lattice, both with charges that are half the magnitude and opposite
to that of the original charge. A graphical representation of this effect is given in Fig. 3.1.
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String gauge:

Jµ(x) =
1
2

δµ,ksgn(xk) ∏
ν 6=k

δ(xν); (3.29a)

Ψs = e−
iq
2

∫ 0
−xk

dsAk(x+sk̂)
ψ(x)e

iq
2

∫ L−xk
0 dsAk(x+sk̂). (3.29b)

Figure 3.1: Representation of the interpolating operator Ψs from Eq. (3.29), constructed such that the
electric flux escapes the physical lattice (black) in a symmetric way due to the presence of
oppositely and half-charged mirror charges (empty circles).

A third choice is the Landau gauge:

Landau gauge:
Jµ(x) = ∂µΦ(x), (3.30a)

∂µ∂µΦ(x) = δ4(x), (3.30b)

Ψ`(x) = e−iq
∫

d4y∂ρ Aρ(y)Φ(y−x)ψ(x). (3.30c)

Φ(x) is spatially anti-periodic, as it also is for the Coulomb gauge. Similarly to the case of
the Coulomb gauge, when we use the Landau gauge, we find that Ψ`(x) = ψ(x), meaning
that in the Landau gauge the only admissible gauge-invariant extension to ψ(x) is Φ(x).
Despite the usefulness of the explicitly O(4)-covariant Landau gauge in perturbative cal-

culations, using this gauge factor to define a gauge-invariant operator presents difficulties
as it introduces non-localities of the field in time, essentially inducing a time-dependent
Hamiltonian. Although it can be shown that this contribution will disappear at large time
separations, letting us end up with the same final mass, the convergence to the final mass
may be very slow and therefore this choice will not optimally exploit the signal. It is on the
whole preferable therefore to use a gauge dressing factor that gives a gauge-invariant operator
that is fully local in time, such as either of the Coulomb or string dressing factors.

3.7 qcd + qedC : flavour symmetry

Considering the coupling of QED with QED, we define the combined action density in the
conventional way,

S[A, ψ] =
∫

L3T
d4x
{ 1

4e2 FµνFµν +
1

2g2 trGµνGµν

+
N f

∑
i= f

ψ f (γµ
↔
D

f
µ +m f )ψ f

}
,

(3.31)
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where Gµν is the SU(3) field strength tensor,

Gµν = ∂µBν(x)− ∂νBµ(x)− i[Bµ(x), Bν(x)], (3.32)

the covariant derivative
↔
D f

µ is defined by

↔
D f

µ =
↔
∂ µ −iq f Aµ − iBµ, (3.33)

and where Bµ(x) represents the colour field and is represented by a 3× 3 Hermitian traceless
matrix. As the fermion fields obey C∗ boundary conditions, in order to preserve the periodicity
of the action density we must require that the colour field also obey the boundary condition

Bρ(x + L̂i) = −Bρ(x)∗. (3.34)

Returning now to the question of flavour violation due to the C∗ boundary conditions, the
situation changes somewhat with the inclusion of QCD. If we express the violation in terms
of an elementary unit of charge ec, we expect from our prior discussion that ∆Q = ±2ec. The
elementary unit of charge for quarks is 1/3; therefore we would expect the charge violation
to be quantised as ∆Q = 2/3. This however overlooks that, for a large enough box, the
quarks will be confined within hadron objects that are net colourless and cannot transverse
the boundaries of the box. We therefore set the elementary unit of charge in this case to be
unity, so that charge violation can only occur as ∆Q = ±2.

As the traversal of the boundary of the box charge-conjugates a hadron, its baryon number
at the same time changes sign. This, in implying that baryon number is thus violated in units
of 2, ∆B = 0 mod 2, may lead to complications arising due to unintended mixing of a baryon
with a lighter state, confounding the measurement of the ground state energy of the baryon,
which we want to obtain from analysing the behaviour at long-distance of two-point functions.

Using the nucleons as an example, the proton will not mix with lighter states with a zero
baryon number, due to the restraint upon baryon number violation. Due to the constraint on
electric charge violation, it will not mix with a neutron state, but may mix with an anti-proton
state. There is not, therefore, a lighter state with which it can mix and thus the ground state
energy can be calculated without problems. Similarly, the pseudovector mesons can and will
mix at the boundary with states that satisfy the above conditions; however, these states are
heavier and therefore will not obstruct the calculation of the ground state energy.

Refining further the discussion to express these ’total’ quantum numbers in terms of flavour
numbers, the quantum numbers of individual quark flavours Ff ,

Q = ∑
f

q f Ff , B =
1
3 ∑

f
Ff (3.35)

where q f is the electric charge associated with flavour f in units of the charge of the positron
e.
Since the C∗ boundary conditions violate flavour-number conservation in the case of each

flavour, one might assume that the hadrons with the same charge but different flavour content
could mix arbitrarily, taking for example the mixing between a pion and a kaon. This is
prevented, however, by the condition that

∆Ff = 0 mod 2. (3.36)

Requiring as above that ∆B = 0 mod 2 means that the total-flavour number F = ∑ f Ff can
only be violated in units of six,

∆F = 0 mod 6. (3.37)
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Due to the allowed mixing with lighter states, some states, including the Ω− baryon, are not
able to be extracted on a finite lattice from the long-distance behaviour of a two-point function.
In these cases, one must take the infinite-volume limit first, and then extract long-distance
behaviour.

Flavour-violating effects in QCD+QEDC require the movement of massive particles around
the torus, and are therefore exponentially suppressed as exp(−µL), with an exponent pro-
portional to the lattice size and a characteristic mass µ that depends upon the masses of
the particles involved in the mixing mechanism. This suppression factor is calculated for the
dominant mixing diagrams relevant to our calculations in Sec. 6.2. We show in this section
that we expect the effect to be suppressed through the combined effect of both the exponential
suppression and due to energetic considerations due to the relatively large minimum photon
and kaon energy that comes from using small lattices.

3.8 finite-volume effects

Reference [20] shows that the finite-volume effects on the mass of a stable charged hadron
scale far better in QEDC than QEDL. This finite-volume calculation has been quantified and
may be helpful concerning extrapolation to larger volumes.
For a stable hadron of non-zero electric charge q, the finite-volume corrections can be

quantified through the following formula, which is valid to first order in e2 and up to
corrections in the box-size L that fall off faster than any power:

∆m(L)
m

=
e2

4π

{
q2ξ(1)
2mL

+
q2ξ(2)

π(mL)2 −
1

4πmL4

∞

∑
`=1

(−1)`(2`)!
`!L2(`−1)

T`ξ(2 + 2`)

}
+ . . . (3.38)

This therefore allows one to find the mass in infinite volume, m, through the equation
m(L) = m+∆m(L). In practice, m in Eq. (3.38) can be approximated using m(L) to facilitate
the computation of ∆m(L); we have chosen to use this approximation throughout our work.
Stable hadrons for which this formula is valid include the nucleons, and mesons such as the D
and B mesons, charged pions and charged kaons.
In this formula, using the notation T` we denote the `-th derivative with respect to k2 of

the k→ 0 limit of the infinite-volume forward Compton amplitude of a photon of energy |k|,
on the charged hadron at rest.

Our boundary conditions are only of relevance in the generalised zeta function ξ(s),

ξ(s) = ∑
n 6=0

(−1)〈n〉

|n|s (3.39)

where n is defined as above as a vector of winding numbers. Here, the cases
s > 3 are real, and analytic continuation is used to obtain the values for s =

1 and 2. Equation (B.34) of [20] gives an explicit representation of these coeffi-
cients. From this representation, for three C∗ dimensions the coefficients values are
ξ(1) = −1.7475645946, ξ(2) = −2.5193561521, ξ(4) = −3.8631638072.
The first two terms of Eq. (3.38), i.e. the terms proportional to 1

L and 1
L2 , depend only

upon the electric charge and mass of the hadron; we therefore call these terms ’universal’. In
the third term, the coefficients T` encode dependence upon the spin and internal structure of
the hadron. This dependence is suppressed with respect to the first two terms by the greater
inverse power of L in the third term.

A similar expression for the finite volume corrections necessary in QEDL has been calculated
in Refs. [2, 29, 30]. This expression has a structure close to that of Eq. (3.38), with two
universal terms contributing at powers 1

L and 1
L2 respectively. However, the expression for
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QEDL has spin- and structure-dependent terms starting to contribute at 1
L3 , as opposed to

QEDC where they contribute at 1
L4 . We see here one of the benefits of the locality of the

QEDC formulation, which is especially beneficial for smaller lattice sizes, like the lattice sizes
that we are using for this exploratory work.
In addition, the universal terms that appear in the expression for QEDC are significantly

smaller than those in the QEDL expression, as can be seen in the comparison of the magnitude
of only these universal terms for both QEDC and QEDL , as given in Fig. 4 of [20].

3.9 lattice formulation

The non-compact formulation of QED on the lattice involves the representation of the U(1)
dynamical gauge variable in terms of the field Aµ, rather than the gauge link eiq f Aµ(x). To
achieve this, either leading order electromagnetic contributions may be extracted as in Ref. [6],
or a dynamical simulation of QED may be carried out, as in [2, 4–6, 31, 32]. The choice of the
non-compact formulation necessitates however some dampening of the Aµ longitudinal modes,
of which gauge fixing is the most common method. Using instead the compact formulation of
QED allows us to maintain gauge-invariance.
The formulation of U(1) on the lattice consists of placing the gauge field U(x, µ), that

belongs to the U(1) gauge group, on the links between lattice sites. Using C∗ boundary
conditions, these links satisfy

U(x + L̂k, ρ) = U(x, ρ)∗ (3.40)

along spatial direction k, with arbitrary temporal boundary conditions. In this section, we
will simplify the argument somewhat by considering a single fermion field with unit electric
charge, which will be generalised later on.
A naive formulation of compact U(1) would lead to problems in the discretisation of the

interpolating operators that use the string dressing factor. The compact formulation of QED
identifies U(x, µ) = eiAµ(x); it is through the expansion of this field in terms of Aµ that a
perturbative series can be reached. The string dressing factor would therefore require us to
take the square root of the gauge link, an operation which is not gauge-invariant. This issue
can be avoided through the use of a somewhat unconventional action that we will describe
now.

We consider the following action, which describes a single matter field using compact QED,

S = Sγ + Sm, (3.41a)

Sγ =
2
e2 ∑

x
∑
µν

[1− P(x, µ, ν)], (3.41b)

Sm = ∑
x

ψ(x)D[U2]ψ(x). (3.41c)

Here, the coupling of the Wilson-Dirac operator to the U(1)-gauge field is particular and
described by

D[U2] = m +
1
2

3

∑
µ=0

{
γµ(∆∗µ[U

2] + ∆µ[U2])− ∆∗µ[U
2]∆µ[U2]

}
, (3.42a)

∆µ[U2]ψ(x) = U(x, µ)2ψ(x + µ̂)− ψ(x), (3.42b)
∆∗µ[U

2]ψ(x) = ψ(x)U(x− µ̂, µ)−2ψ(x− µ̂). (3.42c)

30

MADELE
IN

E EVIE BETT D
ALE



This discretisation of the Dirac operator is not uniquely valid; any other discretisation that
preserves charge conjugation may be used in its stead. The plaquette is defined as per
convention;

P(x, µ, ν) = U(x, µ)U(x + µ̂, ν)U(x + ν̂, µ)−1U(x, ν)−1. (3.43)

If a local gauge transformation Λ(x) ∈ U(1) is defined by

U(x, µ)→ Λ(x)U(x, µ)Λ(x + µ̂)−1, (3.44a)
ψ(x)→ Λ(x)2ψ(x), (3.44b)
ψ(x)→ ψ(x)Λ(x)−2, (3.44c)

the action described in Eq. (3.41a) will be invariant under this transformation, provided that
the gauge transformation obeys the boundary conditions

Λ(x + L̂k) = Λ(x)∗. (3.45)

Inspecting the action further, one can observe that the action is invariant when the signs
of all those link variables with direction µ that lie on the three-dimensional slice defined by
xµ = 0 are flipped. This is true for all µ, and we can therefore say that the action has a Z4

2
centre symmetry.

We shall now present a proof that the action is equivalent perturbatively to the conventional
QED action when the continuum limit is taken. The first step in expanding the action
perturbatively is to find at order O(e0) the minima of the action. When we define the
direction 3̂ to have C∗ boundary conditions, it is shown in Appendix B that a discrete set of
minima exist that are in-equivalent with each other within a local gauge transformation, and
that these belong to the set

Ω =
{
(z0, z1, z2, 1) | z2

0 = z2
1 = z2

2 = 1
}

. (3.46)

Taking these minima into account, one can always find a vector z ∈ Ω so that such a minimum
is equivalent within a local gauge transformation to the gauge field

Uz(x, µ) =

zµ if xµ = Lµ − 1,

1 otherwise
. (3.47)

The specification of the direction 3̂ as a C∗ direction in the construction of the problem is the
reason that, despite the Z4

2 centre symmetry, there is not a minimum at z3 = −1, as every
minimum with z3 = −1 has an associated minimum with z3 = 1 which is equivalent within a
local gauge transformation.

Once the minima have been identified, the expectation values of observables can be pertur-
batively expanded. We start with the expansion of the gauge field U(x, µ) about the minimum
Uz(x, µ) with a fluctuation Aµ,

U(x, µ) = Uz(x, µ)e
i
2 Aµ(x). (3.48)

A gauge-fixing term Sgf = Sgf(Aµ), that depends only on the fluctuation and not the classical
minimum Uz(x, µ), is added to the action. Representing some observable that we wish to
measure by a generic functional F [U, ψ, ψ] of the gauge and fermion fields, we obtain an
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expression for the expectation value of such an observable, perturbatively expanded to some
order O(en),

〈F [U, ψ, ψ]〉

=
1
Z ∑

z∈Ω

∫
DADψDψF [Uze

i
2 A, ψ, ψ]e−S[e

i
2 A,ψ,ψ]−Sgf[A] +O(en).

(3.49)

Here, we note that, through its centre symmetry, the action is not dependent on the minima
Uz(x, µ) after the substitution in Eq. (3.48) has been made. This expectation value is
normalised by the factor

Z = 8
∫
DADψDψe−S[e

i
2 A,ψ,ψ]−Sgf[A]{1 +O(en)}, (3.50)

with the coefficient of 8 accounting for the eight gauge-invariant minima.
Similarly to the result of the integration of an odd function over a symmetric window

around the origin, we can see that the expectation value will be zero for an observable F
that is charged under center symmetry. Conversely, an observable that is center-invariant
simplifies matters in that it is easily mapped onto an adjacent observable in the non-compact
formulation. In this case, it is inconsequential which minimum the expansion is taken around;
the expression loses its dependence on z and U = 1 may be substituted,

〈F [U, ψ, ψ]〉

=
8
Z

∫
DADψDψF [e i

2 A, ψ, ψ]e−S[e
i
2 A,ψ,ψ]−Sgf[A] +O(en).

(3.51)

We note that here S[e
i
2 A, ψ, ψ] denotes, up to any arbitrary and irrelevant operators, the

standard action in QED.
If one substitutes Eq. (3.48) into the action, it can be expanded perturbatively around the

minima in terms of powers of the fields. The unconventional normalisation of the gauge action
then accounts for the factor of 1

2 in the exponent of the definition of the gauge links, restoring
the canonical gauge field normalisation:

P(x, µ, ν) = 1 +
i
2

Fµν(x)− 1
8

F2
µν(x) + . . . , (3.52)

Sγ =
2
e2 ∑

x
∑
µν

[1− P(x, µ, ν)] =
1

4e2 ∑
x

∑
µν

F2
µν(x) (3.53)

+ irrelevant operators.

This factor of 1
2 also accounts for the factors of U2 in the Dirac operator in the matter action

such that the electron correctly couples to the U(1) gauge field like

U(x, µ)2 = 1 + iAµ(x) + . . . , (3.54)

Sm = ∑
x

ψ(x)
{

γµ

[
∂µ + ∂∗µ

2
+ iAµ(x)

]
+ m

}
ψ(x) (3.55)

+ irrelevant operators,

where ∂∗ ≡ − ←∂ where ←∂ is a partial derivative acting to the left. The charge in compact
QED being quantised, we see that through the construction of the gauge link, the interaction
between the elementary charge and the gauge-field has strength 1

2 . This is accounted for by
the electric charge of the dynamical fermion, which is double the elementary charge. This
ensures a coupling of strength 1 of the dynamical fermion to the gauge field as required.
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These factors of 2 used in the construction of the formulation also appear in the local gauge
transformations in Eq. (3.44a).

Returning to the question of the discretisation of the interpolating operator with the string
dressing factor, we see that the setup of the gauge link Eq. (3.48) allows one to write the
interpolating operator as

Ψs(x) =
−1

∏
s=−xk

U(x + sk̂, k)−1ψ(x)
L−xk−1

∏
s=0

U(x + sk̂, k). (3.56)

This evidently avoids the problem of taking the square root of the link that would have arisen
had we used the naive formulation. Although Ψs(x) is charged under centre symmetry, we
note that the product Ψs(x)Ψs(y) is invariant under centre symmetry, and it is only this
product that is physically relevant. Due to the C∗ boundary conditions, to dress a quark field
in this way makes it invariant under local U(1) gauge transformations.
If we take a moment to consider the discretisation of the interpolating operator for the

fermion field with the Coulomb dressing factor, it is useful to introduce the field

Ac
µ(x) = ∆−1∂∗k F̂kµ(x) (3.57)

where ∆ = ∂k∂∗k denotes the discrete Laplace operator defined for three dimensions with
anti-periodic boundary conditions, while F̂ρσ(x) is an arbitrary field tensor discretisation, such
as the clover plaquette. This field is equal to the gauge field in the Coulomb gauge when the
continuum limit is taken. It can also be shown that the discrete Coulomb gauge constraint
∂∗k Ac

k(x) = 0 is satisfied by the above definition. The interpolating operator, Eq. (3.56), may
be discretised through applying the Coulomb dressing factor like

Ψc(x) = Ψs(x)e−
i
2 ∑L

s=0 Ac
k(x+sk̂). (3.58)

When evaluated in both the continuum theory and the Coulomb gauge, and by taking
Aµ(x) = Ac

µ(x) and Ψc(x) = ψ(x), one finds that Eq. (3.58) and Eq. (3.56) are equivalent
expressions.
We will now discuss how the above formulation of QEDC on the lattice may be extended

to include also QCD, and the effect that this has on the quantisation of electric charge. To
start with, colour field link variables V(x, µ) ∈ SU(3) are introduced. As above, these obey
the C∗ boundary conditions

V(x + L̂k, ρ) = V(x, ρ)∗. (3.59)

The plaquette is defined as per convention,

Q(x, µ, ν) = V(x, µ)V(x + µ̂, ν)V(x + ν̂, µ)−1V(x, ν)−1. (3.60)

Selecting the Wilson action Sg for the SU(3) gauge field, we add another component to our
action, and rescale the photon action Sγ to account for the elementary charge of 1

3 of the
quarks:

S = Sg + Sγ + Sm, (3.61a)

Sg =
1
g2 ∑

x
∑
µν

tr[1−Q(x, µ, ν)], (3.61b)

Sγ =
18
e2 ∑

x
∑
µν

[1− P(x, µ, ν)], (3.61c)

Sm = ∑
f

∑
x

ψ f (x)D f [U, V]ψ f (x). (3.61d)
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The Dirac equation is adjusted to include the SU(3) gauge field V, and to implement
appropriate couplings to the electromagnetic field for the up and down quarks, q f = 2/3 and
1/3 respectively,

D f [U, V] = m f +
1
2

3

∑
µ=0

{
γµ(∆∗µ[U

6q f V] + ∆µ[U6q f V])

−∆∗µ[U
6q f V]∆µ[U6q f V]

}
.

(3.62)

As explored in Appendix C, the use of non-degenerate Wilson-Dirac quarks in QCD comes
inevitably with a mild sign problem, where the fermionic determinant has the possibility of
becoming negative due to lattice artifacts, despite being positive in the continuum limit. This
situation persists also when QED is added, however, it may be shown that this problem is
not exacerbated by C∗ boundary conditions. Section 4.8 presents the results for the sign of
the Pfaffian measured on our ensembles, as well as a novel approach that was developed to
significantly reduce the computational effort of this measurement.
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4
RC* STRATEGY AND MESON RESULTS

4.1 strategy

The QCD+QED simulations on which we have measured baryon masses take place in a theory
that includes the four lightest quark flavours: u, d, s and c. In order to extrapolate to the
physical point, six parameters, the four quark hopping parameters κ f , the SU(3) inverse
coupling strength β and the fine-structure constant α, must be matched with their physical
values. The strategy of this project is to perform this matching for every chosen value of the
inverse coupling β at which a simulation is carried out, and then to perform the extrapolation
to the continuum limit β→ ∞ as for pure QCD. There is flexibility in the choice of parameters,
or renormalisation scheme, with which to carry this out. Our nonperturbative scheme is
defined by six parameters, principally the standard scale (8t0)1/2 obtained through a Wilson
gradient flow, the fine-structure constant αR obtained at the scale t0 through the same gradient
flow, and the dimensionless trajectory observables

φ0 = 8t0(M2
K± −M2

π±); (4.1a)
φ1 = 8t0(M2

π± + M2
K± + M2

K0); (4.1b)
φ2 = 8t0(M2

K0 −M2
K±)α

−1
R ; (4.1c)

φ3 =
√

8t0(MDs + MD± + MD0). (4.1d)

These trajectory observables are kept constant while β and α are varied, thus defining surfaces
of constant physics. Here, MX is the mass corresponding to the meson labelled X. A relative
advantage of the choice of these observables is that they may all be calculated very accurately
and precisely on the lattice. In this work, the central value of the CLS determination [33] is
used in order to obtain values in physical units,

(8t0)
1/2 = 0.415 fm. (4.2)

As t0 may not be determined experimentally, the scheme described above is not able to locate
the physical point at the sub-percent level. The value of t0 also contains an ambiguity of
order O(α). Although αR also may not be determined experimentally, we are only aiming up
to O(α2

R) in the matching to the real hadronic universe. Matching αR with the PDG value
is therefore justified as the value of αR is independent of the renormalisation scheme at this
precision. The aim is eventually to set the scale through the hadronic scheme, meaning a
replacement of t0 with the Ω− baryon mass.

Maximal sensitivity to the masses of the light quarks is included by design in the definitions
of the observables φ0, φ1, φ2. It may be shown in QED-coupled SU(3) chiral perturbation
theory [34, 35] that, to leading order,

φ0 = A(ms,R −md,R), (4.3a)
φ1 = 2A(mu,R + md,R + ms,R) + 2BαR, (4.3b)
φ2 = Aα−1

R (md,R −mu,R)− B. (4.3c)
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Here, A and B denote low-energy constants. Observable φ0 is directly proportional to the
down-strange quark mass difference, and, in fact, φ0 = 0 if and only if d and s are mass-
degenerate, at which point the theory is called U-spin symmetric as it is invariant under an
SU(2) flavour symmetry rotating the d and s quarks. The observable φ1, for a fixed αR value,
determines the average value of the u, d and s quarks, and has already been applied in other
contexts [36, 37]. Observable φ2 serves to keep constant the ratio between so-called strong
isospin-breaking effects of order O(md,R −mu,R), due to the mass-difference between the u
and d quarks, and the effects due to electromagnetic isospin-breaking, which are of order
O(αR). Lastly, the mass of the c quark is fixed by observable φ3, which has already seen use
in, for example, [38].

If one substitutes the above reference value for t0 along with the physical meson masses in
Eq. (4.1a), the values

φphys
0 ' 0.992, φphys

1 ' 2.26, φphys
2 ' 2.37, φphys

3 ' 12.0, (4.4)

are obtained. The unphysical surface of constant physics defined by

φ0 = 0, φ1 = 2.13, φ2 = 2.37, φ3 = 12.1, (4.5)

will be targeted in our simulations, with φ0 = 0 achieved precisely through the use of mass-
degenerate d and s quarks, md = ms, known as U-spin symmetry. As we are only using a
singular fixed value of β = 3.24 so far, corresponding to an approximate lattice spacing of
a ' 0.054 fm, we will henceforth refer to lines of constant physics in the parameter space of α

and the quark masses. Interestingly, the line of constant physics meets the SU(3) f -symmetric
point in QCD, where mu,R = md,R = ms,R = 1

3 (mu,R + md,R + ms,R) at α = 0. At this point,
φ1 = 2.174(12) and φ3 = 12.059(20), as calculated in [38]. The target φ1 has been chosen
close to its physical value so that the three mass-degenerate light quarks at the QCD SU(3)F-
symmetric point have masses approximately equal to the average mass of the three physical
light quarks. The target values of φ1 and φ3 are close but not equal to the the values given in
Eq. (4.1a), as they have been matched to the ones calculated on our gauge configurations with
αR = 0. This is not a problem because the physical values of Eq. (4.1a) have an ambiguity
that comes from an uncertainty in t0.
The simulations take place at unphysical values of the parameters, as is usual in LQCD.

We expect that direct calculation at physical αR will not be sufficient on its own to resolve
isospin-breaking effects. Isospin-breaking effects are therefore amplified through the use of
various different values of α, including the pure QCD case of α = 0, after which interpolation
may be used to find the values of the observables at the physical fine-structure constant,
αphys,R. The quark masses used in the simulations are much heavier than their physical values
for reasons of computational efficiency, and, as these results are somewhat exploratory, it is
advantageous to start at higher masses and be able to assess the setup stability, the efficacy
of the tuning strategy, and the trends of the observables, whilst using comparatively fewer
computing resources. The approach to physical quark masses will be covered by future studies.

4.2 lattice action

The lattice on which all simulations have been performed and measured has the dimensions
LT × L3, with periodic temporal boundary conditions, and C∗ boundary conditions in all three
spatial dimensions. Whilst the Lüscher-Weisz action is used for the SU(3) gauge action, the
U(1) gauge action used is a Wilson action,

SG,U(1)(z) =
1

8πq2
elα

∑
x

∑
µ 6=ν

[
1− PU(1)

µν (x)
]

. (4.6)
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Here, PU(1)
µν (x) denotes the plaquette constructed by the compact U(1) field z(x, µ) that starts

at site x and extends in the directions µ and ν. The unconventional normalisation of this
action is due to the requirement that electric charge be quantised in the compact formulation
of QED; the fundamental unit of electric charge qel may be chosen arbitrarily. We are using
qel = 1/6. This choice allows the construction of the interpolating operators corresponding to
charged hadrons that are invariant under local U(1) gauge transformations.
Four flavours of O(a)-improved Wilson fermions are simulated in the unphysical case in

which md = ms. Therefore, the simulations can be described as N f = 1 + 2 + 1. Two
Sheikholeslami-Wohlert (SW) terms are used in the definition of the improved Wilson-Dirac
operator in the case of QCD+QED, one each for the two gauge fields. The first term, with
coefficient cSU(3)

sw , depends on the field tensor for SU(3), and similarly the second term, with
coefficient cU(1)

sw , depends on the U(1) field tensor. In the case of pure QCD, only the first
term was used. The value of this was determined in a non-perturbative manner in [39], and
is correct up to terms of order O(α). In the case of the QCD+QED ensembles, the same
value of the coefficient cSU(3)

sw is used for the first SW term, while a tree-level improvement is
produced in the U(1) sector through setting cU(1)

sw = 1.
In the case of periodic boundary conditions, a mild sign problem is introduced through the

inclusion of Wilson fermions with individual flavours; the determinant inside the path integral
is real but not definitely positive after the fermions have been integrated out, the probability
of a negative sign of the determinant vanishing in the continuum limit. The situation is
similar in the case of C∗ boundary conditions, as already discussed in Sec. 3.9 and App. C, in
which there is a mild sign problem in the fermionic Pfaffian. This sign has been calculated
systematically on our ensembles and the results are presented later in Sec. 4.8.

4.3 gauge ensembles

Three different values of α were chosen, α = 0, ∼ αphys and α = 0.0050 � αphys (chosen to
over-emphasise isospin-breaking effects), at which seven ensembles in total were generated. Of
these, baryon masses were measured on five, due to finite computing resources. The ensembles
are labelled first according to the lattice size, i.e. A = 64× 323, B = 80× 483, C = 96× 483,
then with the approximate charged pion mass, the value of α through the label a followed
by the two digits given by x in α = 0.00xx, and finally the value of β following the letter b.
Table 4.1 gives the parameters of the action for the generated ensembles, whilst a number of
observables for the verification of the validity of the ensembles is given in Table 4.2.

For context, the largest integrated autocorrelation time measured over all observables was
found to be consistently associated with the t0/a2, with a value of approximately 100 MDU on
the lattices with 64× 323 volume. Increasing the lattice size seemed to decrease the integrated
autocorrelation time for t0/a2, although this phenomenon could be due to an underestimation
stemming from a reduction in statistics.
The topological charge Q, an important observable relating to the gauge fields, was also

monitored for all ensembles, and topological freezing, a phenomenon in which the topological
charge becomes stuck at a certain value, was not observed, as is demonstrated in Fig. 4.1.
This absence of topological freezing is a requirement for the ergodicity of the simulation and
is not automatically satisfied if periodic boundary conditions in time are used [40].
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ensemble lattice β α κu κd = κs κc

A400a00b324 64× 323 3.24 0 0.13440733 0.13440733 0.12784
B400a00b324 80× 483 3.24 0 0.13440733 0.13440733 0.12784
A450a07b324 64× 323 3.24 0.007299 0.13454999 0.13441323 0.12798662
A380a07b324 64× 323 3.24 0.007299 0.13459164 0.13444333 0.12806355
A500a50b324 64× 323 3.24 0.05 0.135479 0.134524 0.12965
A360a50b324 64× 323 3.24 0.05 0.135560 0.134617 0.129583
C380a50b324 96× 483 3.24 0.05 0.1355368 0.134596 0.12959326

Table 4.1: Action parameters for the generated ensembles, which all have periodic temporal boundary conditions
and C∗ boundary conditions in all three spatial dimensions. The SW improvement terms have the
coefficients cSU(3)

sw = 2.18859 for the SU(3) term and cU(1)
sw = 1 for the U(1) term.

ensemble n. cnfg acc. rate 〈e−∆H〉 τint(t0) τint(Q2) τint(αR)

A400a00b324 2000 95% 0.9979(55) 51(18) 6.4(2.3) —
B400a00b324 1082 98% 0.9950(25) 31(10) 8.0(2.8) —
A450a07b324 1000 94% 0.9978(46) 44(19) 6.5(3.0) 2.3(1.6)
A380a07b324 2000 92% 1.0017(46) 46(15) 10.3(3.5) 2.7(1.5)
A500a50b324 1993 97% 0.9961(21) 21.4(5.5) 11.6(2.6) 1.40(55)
A360a50b324 2001 95% 0.9956(45) 47(16) 8.5(2.6) 1.1(1.0)
C380a50b324 600 98% 1.004(12) 12.5(3.9) 10.6(4.1) 3.0(1.2)

Table 4.2: Diagnostic observables for the ensembles. From left to right, these are, for each ensemble: the number
of configurations in the ensemble, coinciding with the number of molecular dynamics trajectories where
one trajectory is equal to τ = 2 MD units, the Monte Carlo acceptance rate, the diagnostic observable
〈e−∆H〉 with the target of 1, and the integrated autocorrelation times corresponding respectively to
the following observables: the scale t0/a2, the squared topological charge Q2, and the renormalised
fine-structure constant αR.MADELE
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Figure 4.1: Topological charge history for ensembles A380a07b324 and A360a50b324.

reweighting ensemble κu κd = κs κc

RW1 A380a07b324 0.13457969 0.13443525 0.12806355
RW2 A360a50b324 0.1355368 0.134596 0.12959326

Table 4.3: The targeted values of the quark hopping parameters for the mass reweighting factors on
the reweighted ensembles.

A complexity arises with the use of compact QED, as it is known to possess two phases in
bare parameter space, a weak-coupling Coulomb phase and a strong-coupling confining phase,
traversed by a first-order phase transition [41–43]. The value of the average plaquette of U(1)
gauge links PU(1) in pure gauge theory jumps between ∼ 1 in the Coulomb phase and a small
value in the confining phase, and it has been suggested through the use of conventional strong-
and weak- coupling analysis that both regimes persist after the introduction of fermions. It is
therefore a valid question in which regime we find ourselves, as we are using a compact QED
action and values of α > αphys. The largest value of α at which we carry out our simulations,
α = 0.05, can be expressed as an inverse coupling strength following the conventions in [43],
to give the value

βU(1) =
1

4πq2
elα
' 57, (4.7)

a value much greater than the pure gauge theory critical value β
U(1)
crit ' 1.01. Measured for

example on the ensemble A360a50b324, the average U(1) plaquette deviates from one by
1− PU(1) = 4.19405(21)× 10−3. This clearly shows that this ensemble, and therefore all of
our ensembles as this is at the largest value of α used, are situated well into the weak-coupling
Coulomb phase.

4.4 tuning strategy

A combination of different techniques has been used in order to tune the quark masses to lie
on the line of constant physics defined in Sec. 4.1, primarily mass reweighting of the quarks,
which allows one to correct some small mistunings. The implementation used in this work for
the mass reweighting is explained in [44], and has the peculiar feature that the determinant
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of the rational approximation of some generic power of D†D must be reweighted. The mass
reweighting factors used in this work are labelled by RWi where i is an integer, and presented
in Table 4.3, along with their associated target quark hopping parameters.
As mentioned above, the discretised lattice theory has six dimensionless bare parameters:

the quark hopping parameters κ f , the bare fine-structure constant α and the bare inverse
strong coupling β. These parameters are treated in different ways; as it is not important for
us to simulate at precise values of α and β, because these will be interpolated or extrapolated
towards their physical values or limits, we choose values of α and β to simulate at. As varying
β varies the lattice spacing, the continuum limit may be reached through taking β → ∞.
We therefore choose β in a range that gives a fine yet affordable lattice spacing. Similarly,
while the matching of the renormalised α to its physical value would require the tuning of the
bare α, it is sufficient to choose α in a reasonable range and then calculate the corresponding
αR. Conversely, we tune the hopping parameters κ f such that the trajectory parameters φ

match our targeted values. As we are choosing a U-spin-symmetric trajectory, κd = κs is set
automatically, and so really only three κ f need to be tuned.
The following strategy was used in order to realise the tuning of the masses:

1. Some small-statistics ensembles (∼200 thermalised configurations) were generated, and
the quark masses m̂(0) = (m(0)

u , m(0)
ds , m(0)

c ) were estimated using these ensembles.

2. An ensemble with larger statistics (> 1000 thermalised configurations) was generated at
the determined quark masses m̂(0), and the φ observables φ(0) = (φ

(0)
1 , φ

(0)
2 , φ

(0)
3 ) were

calculated on this ensemble.

3. Three new quark-mass sets m̂(i), where i = 1, 2, 3, were chosen to be reasonably close the
previous value, m̂(0). Through mass reweighting, the associated φ(i) observable values
were calculated. Linear interpolation, i.e. assuming the linear relation φ = Am̂ + b, A
being some 3× 3 matrix and b some 3-vector, was then used in order to find the tuned
quark mass values m̂(t). This was attempted a few times in order to find m̂(i) values
that both did not suffer from an overlap problem and from which only interpolation or
mild extrapolation was necessary to read the tuned mass values.

4. A full ensemble of ∼2000 thermalised configurations was then generated with quark
masses equal to the tuned values m̂(t), and the corresponding φ observables φ(t) were
measured on this ensemble.

5. Problems in the tuning process were addressed at this point. Using this strategy, two
problems may occur: firstly, the extrapolation in step 2 may be too long, causing the
target values for the φ observables to be missed. In this case, repetition of the entire
strategy from step 2 is necessary, while setting m̂(0) ← m̂(t). The second potential
problem is that the linear approximation may create some small residual mistuning. In
this case, one can repeat step 2 using m̂(0) ← m̂(t), after which the correctly-tuned φ

observables may be calculated using mass reweighting, without the requirement for the
generation of a new ensemble.

The results presented in this thesis are those of the ensembles with full statistics; those results
associated with the intermediate mass reweighting factors are not presented.
Although in principle the tuning in step 2 may be carried out through alteration of the

valence quark masses without the use of a mass reweighting factor, in practice this strategy
was found to be impracticable as it led to an overshooting problem. This method may however
be a cost-effective way to move closer to the desired region of parameter space provided that
one starts at a value of m̂(0) sufficiently far from the target value.
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4.5 meson masses and trajectory parameters

In order to construct U(1)-gauge-invariant interpolating operators, one may dress the interpo-
lating operators with a dressing factor,

Ψ f (x) = D f (x)ψ f (x) , Ψ f (x) = ψ f (x)D∗f (x) , (4.8)

and then build the quark bilinears as normal. Expressing the string dressing factor from
Eq. (3.56) more precisely in the compact QED formulation gives

D f (x) =
1
3

3

∑
k=1

L/a

∏
s=0

zq̂ f /2(x + ask̂, k). (4.9)

This is, technically speaking, the (q̂ f /2)-th power of the spatial U(1) Polyakov loops starting
from x, averaged over the three spatial directions, where q̂ f is the charge of the quark field in
units of the gauge-action parameter qel, for which we have chosen qel = 1/6. For both possible
electric charges of the quarks, (q̂ f /2) is an integer. In this way, due to the C∗ boundary
conditions, the dressed quark field will be invariant under local U(1) gauge transformations.
This dressing factor is also invariant under π/2 rotations around x.

Although the above dressing factor makes the hadron interpolating operators non-local in
space, they are still local in time and therefore one may extract the Hamiltonian eigenstates
from the exponential decay of the spectral representation of the zero-momentum two-point
function at large times as per convention.
C-even correlation functions are necessary for the projection to zero momentum, due to

the eigenstates of the momentum operator being automatically charge conjugation operator
eigenstates under C∗ boundary conditions. The correlators for mesons with quark content
f , g where f 6= g are calculated through the C-even two-point functions,

C f g(x0) = 〈Pf g(x0)Pf g(0)〉, (4.10)

where
Pf g(x0) = ∑

x
{Φ f γ5Φg(x0, x) + Φgγ5Φ f (x0, x)}, (4.11)

which may be derived by applying Eq. (A.3) to the naive interpolating operators

O(x0) f g = ∑
x
{Φ f γ5Φg(x0, x)}, (4.12a)

O(x0) f g = ∑
x
{Φgγ5Φ f (x0, x)}, (4.12b)

and the two-point function
C f g(x0) = 〈O f g(x0)O f g(0)〉. (4.13)

The meson effective masses M(x0) are then calculated through solving the following equation
numerically,

C(x0 + a)
C(x0)

=
cosh

[(
x0 + a− T

2

)
M(x0)

]
cosh

[(
x0 − T

2

)
M(x0)

] . (4.14)

Universal finite-volume corrections are then applied to the effective mass curves for mesons
with non-zero charge q as detailed in Sec. 3.8,

Mc(x0) = M(x0)− αRq2
{

ζ(1)
2L

+
ζ(2)

πM(x0)L2

}
, (4.15)
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Figure 4.2: Meson masses at different values of αR compared with their target values. From left to
right in the plot, the ensemble A400a00b324 lies at αR = 0, ensemble A380a07b324+RW1 at
αR ' 1/137, and ensemble A360a50b324+RW2 at αR ' 0.04, the latter two ensembles having
been reweighted. The target values for the meson masses are presented as functions of αR,
with the purple line giving the target K0 mass, the green line giving the target K± mass, and
the black line giving the average mass of the D mesons, MDave = 1

3 (MD±s
+ MD0 + MD±),

with the reference value (8t0)
1/2 = 0.415 fm determining the values in MeV.

where ζ(1) = −1.7475645946 and ζ(2) = −2.5193561521. The final mass is then obtained
through taking a plateau weighted by the inverse variance of the timepoint and checking the
stability of the result with respect to variation of the plateau boundaries.
The effective φ observables were calculated using the effective meson masses through

Eq. (4.1a), and the plateau was taken as described above for the case of the mesons.
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ensemble(+rw) t0/a2 a [fm] αR π
√

3L−1 [MeV]

A400a00b324 7.402(66) 0.05393(24) 0 —
B400a00b324 7.383(40) 0.05400(14) 0 —
A450a07b324 7.198(84) 0.05469(32) 0.007076(24) 613.5(3.6)
A380a07b324 7.599(79) 0.05323(28) 0.007081(19) 630.4(3.3)
A380a07b324+RW1 7.525(77) 0.05349(27) 0.007080(22) 627.3(3.2)
A500a50b324 7.789(42) 0.05257(14) 0.040772(85) 638.2(1.7)
A360a50b324 8.427(89) 0.05054(27) 0.040633(80) 663.9(3.5)
A360a50b324+RW2 8.285(79) 0.05098(24) 0.04069(26) 658.2(3.2)
C380a50b324 8.400(26) 0.050625(79) 0.04073(11) 441.86(69)

Table 4.4: Important observables for the different ensembles. From left to right for a given ensem-
ble: reference observable t0/a2, lattice spacing a corresponding to the reference value
(8t0)

1/2 = 0.415 fm and the value of the observable t0/a2 measured on the given ensemble,
the renormalised fine-structure constant αR, and the energy gap of the photon at tree-level
π
√

3/L. As above, the reference value (8t0)
1/2 = 0.415 fm determines the conversion of

values to MeV.
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ensemble(+rw) Mπ± = MK± MK0 MK0 −MK± MD± = MD±s
MD0 MD± −MD0

[MeV] [MeV] [MeV] [MeV] [MeV] [MeV]

A400a00b324 398.5(4.7) 398.5(4.7) 0 1912.7(5.7) 1912.7(5.7) 0
B400a00b324 401.9(1.4) 401.9(1.4) 0 1908.5(4.5) 1908.5(4.5) 0
A450a07b324 451.2(4.3) 451.6(4.7) 0.8(1.1) 1919.8(7.3) 1916.0(8.0) 3.6(1.2)
A380a07b324 383.6(4.4) 390.7(3.7) 7.01(26) 1926.4(7.8) 1921.1(7.6) 5.03(46)
A380a07b324+RW1 398.8(3.7) 403.1(3.8) 4.26(31) 1925.2(7.1) 1919.3(7.6) 5.8(1.1)
A500a50b324 495.0(2.8) 519.1(2.5) 24.0(1.0) 1901.1(4.1) 1870.1(4.4) 31.6(1.6)
A360a50b324 358.6(3.7) 388.8(3.5) 29.5(2.4) 1937.8(6.8) 1912.0(7.7) 26.0(2.8)
A360a50b324+RW2 398.9(3.4) 425.1(4.1) 26.1(1.3) 1926(10) 1898.8(5.8) 26.9(2.2)
C380a50b324 386.5(2.4) 414.5(2.0) 26.89(49) 1932.0(3.9) 1894.3(6.9) 34.5(5.6)

Table 4.5: Meson masses and charged-neutral meson mass differences for each ensemble, including mass reweighted
ensembles where applicable. Some meson masses are degenerate due to the d− s mass degeneracy of our
simulations. Values are converted to MeV through the use of the reference value (8t0)

1/2 = 0.415 fm.

ensemble(+rw) φ1 φ2 φ3

A400a00b324 2.107(50) — 12.068(36)
B400a00b324 2.143(15) — 12.042(28)
A450a07b324 2.703(53) 4.4(6.0) 12.097(51)
A380a07b324 1.977(37) 3.39(14) 12.132(48)
A380a07b324+RW1 2.126(39) 2.13(17) 12.122(47)
A500a50b324 3.357(37) 2.60(11) 11.864(28)
A360a50b324 1.806(35) 2.41(19) 12.114(41)
A360a50b324+RW2 2.208(38) 2.348(97) 12.040(58)
C380a50b324 2.088(22) 2.350(44) 12.020(29)

target 2.13 2.37 12.1

Table 4.6: Measured values for the φ parameters on each ensemble, including mass-reweighted ensembles where
applicable, with the target values that define the lines of constant physics for comparison.MADELE
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Table 4.4 presents some important observables measured on the different ensembles, such
as the lattice spacing a and the renormalised fine-structure constant αR. The meson masses
measured on the generated ensembles, consisting of π±, K0, K±, D0, D± and D±s , and the
associated charged-neutral mass differences, are presented in Table 4.5, where it is encouraging
that, even at the physical αR-value, the K0/K± is clearly distinguishable from zero. The φ

observables, which are used in the tuning of the meson masses, are measured on each ensemble,
and are given in Table 4.6, with the target values that define the lines of constant physics
alongside for reference. Relative precisions of roughly 3%, 5-10% and 0.5% were achieved
for φ1, φ2 and φ3 respectively, with the increased relative error of φ2 in comparison being
no surprise, due to its definition as a ratio of different isospin-breaking corrections, which is
particularly challenging as smaller values of αR are reached. The meson masses associated
with some tuned ensembles are plotted in Figure 4.2.

4.6 finite volume effects

While the majority of ensembles presented in this thesis, and in fact all of the ensembles on
which baryon masses were measured, take place on a 64× 323 lattice, two lattices of larger
size, B400a00b324 with α = 0 and C380a50b324 with α = 0.05, were generated in order to
give some indication of the magnitude of finite volume effects in both QCD and QED.
Looking first at the finite volume effects in pure QCD, one may compare the pion mass

obtained at different volumes with C∗ boundary conditions with those calculated at different
volumes with periodic boundary conditions at the same values of action parameters. In
Fig. 4.3, the pion mass is compared between two of our QCD ensembles with C∗ boundary
conditions, A400a00b324 and B400a00b324, with spatial volumes corresponding to Mπ L u 3.5
and Mπ L u 5.2 respectively, and the A1 and A2 ensembles of the ALPHA collaboration [38].
We see that, in the case of periodic boundary conditions, the pion mass tends to increase due
to finite-volume corrections, whereas for C∗ boundary conditions it tends to decrease due to
finite-volume corrections. Denoting P as corresponding to periodic boundary conditions, and
C as corresponding to C∗ boundary conditions, this is consistent with chiral perturbation
theory at leading order:

MP(L) = M +
ξ

3 ∑
n∈Z3\{0}

2
nL

K1(nML), (4.16)

while
MC(L) = M− ξ

3 ∑
n∈Z3\{0}

1− 3(−1)∑k nk

nL
K1(nML), (4.17)

where K1 is a modified second-kind Bessel function and ξ = M2/(4πF)2. These predictions
are also plotted in Fig. 4.3 as indetermination bands. We find that, for large volumes, finite-
volume effects do not seem to exceed 1%, whereas, although higher statistics are required for
a definite conclusion on this matter, the finite-volume effects on the pion are reasonably large
for the smaller volume.
As Mπ L is reasonably small for the A400a00b324 ensemble with lattice size 64× 323, we

expect QCD finite-volume effects due to interactions from moving particles moving around
the spatial torus to be non-negligible, as discussed in Sec. 2.6.2.
The finite-volume corrections due to QED with C∗ boundary conditions are given in

Eq. (3.38) as a power-law in which the correction terms decrease as inverse powers of the
volume. In the following discussion, and indeed the amendment of the masses, we shall consider
only the universal structure-independent terms, which are proportional to 1/L and 1/L2

respectively. The comparative magnitudes of these corrections for the mesons are given for
two ensembles in Table. 4.7. We find that, for our largest volume, the structure-independent
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Mπ± = MK± [MeV] MD± = MD±s
[MeV]

ensemble(+rw) no-FV LO-FV NLO-FV no-FV LO-FV NLO-FV

A360a50b324+RW2 393.4(3.4) 397.7(3.4) 398.9(3.4) 1922(10) 1926(10) 1926(10)
C380a50b324 383.1(2.4) 386.0(2.4) 386.5(2.4) 1929.0(3.9) 1931.9(3.9) 1932.0(3.9)

Table 4.7: Magnitude of finite-volume corrections for π± and D± masses on two different ensembles at
αR ' 0.04 and with tuned masses. Masses calculated without subtraction of finite-volume
corrections are labelled no-FV, with subtraction of only the 1/L term as LO-FV, and with
subtraction of both the universal terms 1/L and 1/L2 as NLO-FV. The subtraction of the
1/L2 correction term induces a 0.1% shift in the π± mass on the larger volume and a 0.3%
shift on the smaller volume. The reference value (8t0)

1/2 = 0.415 fm is used to give masses
in MeV.
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Figure 4.3: Comparison of pion masses in QCD at finite volume, using C?-boundary-condition ensembles
A400a00b324 and B400a00b324, and with periodic-boundary-condition ensembles A1 and
A2 from [38]. The reference value (8t0)

1/2 = 0.415 fm has been used to give masses in
MeV in both cases. A combined fit to the LO χPT formulae gives the curves, given as
indetermination bands.

Mp = MΣ+ [MeV] MΩ− = M∆− [MeV]
ensemble(+rw) no-FV LO-FV NLO-FV no-FV LO-FV NLO-FV

A500a50b324 1275(15) 1279(15) 1280(15) 1609(23) 1613(23) 1614(23)

Table 4.8: Magnitude of finite-volume corrections for p and Ω− masses on ensemble A500a50b324 at
αR ' 0.04. All baryon masses given in this thesis were measured on ensembles with volume
323× 64(a4). Masses calculated without subtraction of finite-volume corrections are labelled
no-FV, with subtraction of only the 1/L term as LO-FV, and with subtraction of both the
universal terms 1/L and 1/L2 as NLO-FV. The subtraction of the 1/L2 correction term
induces a shift of order 10−1% in both the proton mass and Ω− mass. The reference value
(8t0)

1/2 = 0.415 fm is used to give masses in MeV.
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terms give a shift of magnitude ∼0.9% to the π±, and that most of this effect is due to
the 1/L term. Similarly, the magnitude of finite-volume corrections on the baryons for the
ensemble A500a50b324 with L ∼ 1.7fm are displayed in Tab. 4.8. The baryon masses were
only measured on one lattice size and, as we can see, the corrections are not negligible but
are small. The structure-independent terms together give a 1.1% correction for the proton
and a 0.3% correction for the Ω−, with most of the contribution coming from the 1/L term.
One may therefore reason that, at the largest volume, the finite-volume effects due to QED
are under control.

4.7 flow observables

Both the auxiliary observable t0, used to set the scale, and the renormalised fine-structure
constant αR, are defined through the Wilson gradient flow, which was also used above on the
spatial dimensions in the gauge smearing of the baryon interpolating operators.

The SU(3) gauge field Ut is acted upon by the Wilson-flow discretisation [45] of the SU(3)
flow equation at positive flow time,

a2∂tUt(x, µ) = −g2
{

∂x,µSW
SU(3)(Ut)

}
Ut(x, µ). (4.18)

Here, SW
SU(3)(U) denotes the standard Wilson action for SU(3) fields. The above equation

may be modified in order to instead give the expression for the Wilson-flow of the compact
U(1) gauge field zt at positive flow time,

a2∂tzt(x, µ) = −4πα
{

∂x,µSG,U(1)(zt)
}

zt(x, µ), (4.19)

with the U(1) Wilson gauge action SG,U(1)(z) given by Eq. (4.6). Given the positive-flow-time
clover discretisations Ĝt,µν and F̂t,µν of the SU(3) and U(1) field tensors given respectively by
Eq. (2.68) and (2.67), the associated clover action densities may be defined as

ESU(3)(t) =
1
2 ∑

µν

〈trĜ2
t,µν〉, EU(1)(t) =

1
4q2

el
∑
µν

〈F̂2
t,µν〉. (4.20)

These quantities then permit the usual definition of the auxiliary observable t0,

t2
0ESU(3)(t0) = 0.3, (4.21)

as well as the definition of the renormalised fine-structure constant as a function of the scale
t0,

αR = N t2
0EU(1)(t0). (4.22)

The normalisation N [46], given by

N−1 =
2πt2

0
TL3 ∑

p

∑µν p̊2
µc2

ν −∑µ p̊2
µc2

µ

∑µ p̂2
µ

e−2t0 ∑µ p̂2
µ , (4.23)

ensures that the value of αR is the same as that of α at tree level when a perturbative expansion
is carried out. Here, all momenta permitted by the boundary conditions enter into the sum,

p0 ∈
2πa

T

{
0, 1, 2, . . . ,

T
a
− 1
}

, pk ∈
πa
L

{
1, 3, 5, . . . ,

2L
a
− 1
}

, (4.24)
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where we have used the following definitions:

p̂µ =
2
a

sin
apµ

2
, p̊µ = sin(apµ) , cµ = cos

apµ

2
. (4.25)

4.8 sign of the pfaffian

Choosing the charge-conjugation matrix C to be iγ0γ2 in the Euclidean chiral basis, the
antiquark field corresponding to a given quark field φ may be represented as φC = C−1φ

T.
The translation of a field by L in a spatial direction k̂, by the definition of the C∗ boundary
conditions, performs a charge-conjugation on said field. In the case of the fermion fields,
therefore, the C∗ boundary conditions may be written as(

ψ(x + Lk̂)

ψC(x + Lk̂)

)
=

(
ψC(x)

ψ(x)

)
≡ K

(
ψ(x)

ψC(x)

)
. (4.26)

Instead of the normal fermion determinant, a Pfaffian Pf(CKD), CKD being an anti-symmetric
matrix as shown in Prop. 1, is produced when the quark fields are integrated out of the path
integral. This is due to the non-diagonal nature of the Dirac operator acting on the quark-
antiquark doublet under C∗ boundary conditions, therefore taking the form of a 24V × 24V
matrix.
The Pfaffian’s absolute value obeys the relation

|Pf(CKD)| = |det D|1/2 , (4.27)

allowing us to simulate the absolute value following the standard Rational HMC algorithm as
for the Dirac operator, and incorporate the sign as a reweighting factor in order to reconstruct
the Pfaffian value configuration-by-configuration.
The Hermitian Dirac operator Q ≡ γ5D is particularly relevant to the calculation of the

sign of the Pfaffian. We denote the list of eigenvalues of Q as λn=1,··· ,12V ∈ R, with each
eigenvalue in the list occurring twice in the spectrum of Q, as Q has a doubly-degenerate
spectrum as shown in Prop. 2.

It may be shown through Prop. 3 that the Pfaffian may be expressed using these eigenvalues
as

Pf(CKD) =
12V

∏
n=1

λn . (4.28)

This gives a simple rule for the sign of the Pfaffian, that an even (odd) number of negative
eigenvalues λn will give the Pfaffian a positive (negative) sign.
As the eigenvalues of Q(m) may be labelled and treated as continuous functions of the

quark mass m, the sign of the Pfaffian may be calculated through observation of the flows
of eigenvalues through the variation of m. A change in sign therefore corresponds to the
crossing of zero by a degenerate pair of Q eigenvalues. The sign may therefore be expressed as
the factorisation of the product into the signs from the composite regions of the mass space.
For instance, we see that the sign of the Pfaffian at two masses may be related through the
equation

sgn Pf|CKD(m)| = (−1)c(m,M) sgn Pf|CKD(M)|, (4.29)

where c(m, M) is the number of times degenerate pairs of Q(m) eigenvalues cross zero through
varying the mass from m to M.

Taking M to be very large allows the approximation Q(M) ≈ Mγ5, which gives an even
number of negative eigenvalues at 6V, rendering Pf(CKD(M)) positive. The Pfaffian of
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CKD(m) is therefore given by the number of crossings of zero by pairs of eigenvalues of Q(m)

up to some large mass M.
We notice that we have different Dirac operators for different electric charges; the Dirac

operator can then be labelled by its associated charge and be simply a function of the quark
mass m. For example, for the quarks with electric charge +2/3, the appropriate Dirac function
is the same for both, the D+2/3(m). The Dirac operators for the u and c quarks are then
given by this function at the respective quark masses, Du = D+2/3(mu) and Dc = D+2/3(mc).
The contribution factor to the sign-reweighting factors from the u and c quarks is then given
by

sgn Pf(CKDu) sgn Pf(CKDc) = (−1)c+2/3(mu,mc). (4.30)

Here, c+2/3 denotes the number of level crossings of degenerate eigenvalue pairs of the Hermitian
Dirac operator Q for a quark of electric charge +2/3. There is also the identification here
with the charm quark as the very large mass mc = M.

Likewise, the expression for the contribution from the d and s quarks is

sgn Pf(CKDd) sgn Pf(CKDs) = (−1)c−1/3(md,ms); (4.31)

therefore, the reweighting factor due to the sign contributions from all four quarks is given by

Wsgn = ∏
f=u,d,s,c

sgn Pf(CKD f ) = (−1)c+2/3(mu,mc)(−1)c−1/3(md,ms) (4.32)

We are simulating at the unphysical U-spin-symmetric point at which md = ms, which means
that c−1/3(md, ms) = 0 trivially, meaning that it is necessary only to count the eigenvalue
crossings of the up-type quarks between the masses of the u and c quarks.

In this work, the calculation of c(m, M) is formed of two stages:

1. An interval I ⊂ [m, M] is found in the specified range of bare masses such that, in the
complement of I, no sign flip exists. This is achieved using a fast algorithm that finds
I that are typically much smaller than the specified range [m, M] and are empty for
the majority of configurations. This method is novel to the calculation of the sign of
the Pfaffian and speeds up the calculation considerably. It could also be applied to, for
example, the calculation in pure LQCD of the sign of the fermionic determinant, or
the fermionic Pfaffian sign calculation in the case of gauge theories containing adjoint
fermions.

2. In the case that I is not empty, the flow of those eigenvalues existing inside I that are
closest to zero is tracked using the methods outlined in [47, 48], allowing a determination
of the factor of the sign that the region I contributes. This requires a reasonably accurate
knowledge of the eigenvectors of Q, over the region of masses which itself needs a fine
resolution, rendering this stage far more expensive computationally than the previous
stage. This is, of course, the motivation for the previous stage, which restricts the
necessity for the calculation to a small number of configurations, and then, over small
intervals of the masses.

In order to explain the first step, and the restriction of the range considered for the second
step in the case that the selected region I is not empty, we must first take into account the
theoretical observation, given that µ(m) is the smallest eigenvalue of |Q(m)|,

µ(m) = min
n
|λn(m)| , (4.33)

that, for the interval defined by |m−m| < µ ≡ µ(m), no eigenvalue λn(m) changes sign as
long as µ > 0.
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Proof. For a normalised vector v, and using the identity Q(m) = Q(m) + δmγ5 where
m = m + δm, one may derive the following relation:

‖Q(m)v‖ ≥ ‖Q(m)v‖ − |δm| ‖γ5v‖ = ‖Q(m)v‖ − |δm| ≥ µ− |δm| . (4.34)

Here, the triangle inequality is used to give the first inequality, and the unitarity of γ5 is used
between the second and third expressions. The final expression uses the definition of µ as the
smallest eigenvalue of |Q(m)|. Taking the more restrictive case of v being an eigenvector of
Q(m), we obtain the inequality

|λn(m)| ≥ µ− |δm| . (4.35)

Provided that m−m = |δm| < µ, |λn(m)| > 0 is satisfied. As a continuous function of m,
λn(m) must therefore be either entirely positive or entirely negative inside the interval defined
by m−m < µ,.

The following algorithm restricts the original interval I = [m, M] by considering overlapping
subintervals I′ = [m′, M] passing from smaller to larger masses, applying the above observation
to discount the complements of these intervals I′ that by definition of the interval must not
have sign flips, and stopping either when the considered range is exhausted or if the successive
subinterval becomes sufficiently small. Specifically:

1. The variables m0 = m and n = 0 are set.

2. Defining a safe lower bound for µ(mn) to be µn ≥ 0, calculate the lowest eigenvalue of
|Q(mn)|, µn. This may be achieved through the application to Q(mn)−2 of a standard
power method.

3. No sign flip happens between [mn, mn + µn), therefore this region is excluded through
setting mn+1 = mn + (1− ε)µn. We set the small parameter ε > 0 to be 0.1.

4. If the considered region is exhausted, mn+1 > M, or the selected subinterval is sufficiently
small, mn+1 −mn < ηmn, where 0 < η < 1 is a tunable parameter that we choose as
1/4, the parameter m′ is set to be equal to mn+1 and the algorithm is stopped. If this is
not the case, the algorithm repeats from step 2.

This method is demonstrated graphically in Fig. 4.4. The above algorithm moves from lower
to higher masses, providing a lower bound on the subinterval I′ = [m′, M] for which the
complement is guaranteed to contain no sign flips. The following similar algorithm is applied
after the above algorithm if the interval I′ = [m′, M] is not empty, and acts to restrict the
interval from above, to give a new subinterval with a minimised range I′′ = [m′, M′]. This is
achieved through the following:

1. The variables M0 = m and n = 0 are set.

2. Defining a safe lower bound for µ(Mn) to be µn ≥ 0, calculate the lowest eigenvalue of
|Q(Mn)|, µn. This may be achieved through the application to Q(Mn)−2 of a standard
power method.

3. No sign flip happens between (Mn − µn, Mn], therefore this region is excluded through
setting Mn+1 = Mn − (1− ε)µn. We set the small parameter ε > 0 to be 0.1.

4. If the considered region is exhausted, Mn+1 < m′, or the selected subinterval is sufficiently
small, Mn −Mn+1 < ηMn, where 0 < η < 1 is a tunable parameter that we choose as
1/4, the parameter M′ is set to be equal to Mn+1 and the algorithm is stopped. If this
is not the case, the algorithm repeats from step 2.
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Figure 4.4: Demonstration of the determination of the Pfaffian sign through the exclusion of the
possibility of the change of sign for successive ranges of valence quark masses. Minimum
|Q| eigenvalue is plotted against valence quark masses, and the grey region indicates that
no eigenvalues cross the zero line in that region. We see that the region between the
up-quark valence mass (left dashed line) and the charm-quark valence mass (right dashed
line), a difference of two orders of magnitude, can be traversed in only five steps using our
method.

In the case that the selected small interval I′′ = [m′, M′] is not empty, the eigenvalues and
eigenvectors inside the interval are tracked as functions of the quark mass using the somewhat
costly methods presented in [47, 48]. Thus the sign of the fermionic Pfaffian may be determined
and applied as a reweighting factor to the Pfaffian magnitude determined through RHMC.

4.9 algorithmic parameters

This section details some of the algorithmic details and parameters used in the generation of
the ensembles presented in this thesis, particularly with regard to the rational approximations,
the pseudofermion action and the integration of the HMC molecular dynamics equations.

4.9.1 Rational approximations

Due to the peculiarities of the C∗ boundary conditions, the fermionic determinant is defined
as

det(D̂†
uD̂u)

1/4 det(D̂†
dsD̂ds)

1/2 det(D̂†
c D̂c)

1/4 (4.36)

for the QCD+QED ensembles, where α 6= 0 and only the d and s quarks are mass-degenerate,
with D̂ representing the Dirac operator with even-odd pre-conditioning. More simply, we have

det(D̂†
udsD̂uds)

3/4 det(D̂†
c D̂c)

1/4, (4.37)

for the QCD ensembles, where α = 0 and mu = md = ms. One may approximate the inverse
operators (D̂†D̂)−γ, where γ = 1/4, 1/2, 3/4, through a rational function in terms of D̂†D̂.

In our work, the rational function R(x) of order (N,N) is constructed such that the relative
precision is minimised. This is equivalent to finding the maximum of |1− xγR(x)| for some
interval x ∈ [r2

a , r2
b] chosen to be inclusive for the majority of the eigenvalues of D̂†D̂.

The rational approximation is, of course, an approximation and therefore has an error
associated with it. This has been corrected for in our work through the use of a reweighting
factor. This follows the strategy of the openQCD code, but uses the generalisation of the
reweighting factor for a generic γ presented in [49]. Table 4.9 presents the parameters involved
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ensemble flavours γ [ra, rb] N [prec.] N1 N2

A400a00b324 uds 3/4 [0.00132,8.0] 18 [4.02e-08] 6 10
c 1/4 [0.25500,8.0] 8 [7.97e-08] 0 0

B400a00b324 uds 3/4 [0.00132,8.0] 18 [4.02e-08] 6 10
c 1/4 [0.25500,8.0] 8 [7.97e-08] 0 0

A450a07b324 u 1/4 [0.0004,10.0] 15 [4.73e-06] 5 8
ds 1/2 [0.0010,10.0] 14 [5.46e-06] 4 7
c 1/4 [0.2000,10.0] 7 [2.36e-06] 0 0

A380a07b324 u 1/4 [0.0020,10.0] 13 [4.00e-06] 3 6
ds 1/2 [0.0010,10.0] 13 [1.38e-05] 3 6
c 1/4 [0.2000,10.0] 7 [2.36e-06] 0 0

A500a50b324 u 1/4 [0.00070,9.0] 15 [2.09e-06] 5 8
ds 1/2 [0.00132,9.0] 15 [1.25e-06] 5 8
c 1/4 [0.20000,8.0] 9 [1.84e-08] 0 0

A360a50b324 u 1/4 [0.0004,10.0] 15 [4.73e-06] 5 8
ds 1/2 [0.0010,10.0] 14 [5.46e-06] 4 7
c 1/4 [0.2000,10.0] 7 [2.36e-06] 0 0

C380a50b324 u 1/4 [0.0004,10.0] 15 [4.73e-06] 5 8
ds 1/2 [0.0010,10.0] 14 [5.46e-06] 4 3
c 1/4 [0.2000,10.0] 7 [2.36e-06] 0 0

Table 4.9: Integration scheme and pseudofermion action parameters. From left to right are presented: 1)
the ensemble label, 2) the number of integration steps at the levels (innermost, intermediate,
outermost) of the three-level integration scheme, 3) the quark flavours in groups of mass-
degeneracy, each group with its own rational approximation of the operator (D̂†D̂)−γ, 4)
the exponent of this operator, 5) the spectral range [ra, rb] of said operator, 6) the rational
approximation order (N, N) and associated relative uniform precision, 7) the number of
factors of the fermion forces integrated in the outermost level, and 8) the number of
independent pseudofermion actions chosen.
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in the definition of the rational approximations used, which have been chosen such that the
errors associated with the considered observables do not show a detectable increase due to
the reweighting factor.

The pseudofermion action is used to express the fermion determinant as a Gaussian integral
over bosonic variables. When the Dirac operator enters into this action when using the rational
approximation, it always exist as part of the combination D̂†D̂ + µ2, where µ > 0. This, in
effect, removes the infinitely-high potential barrier that prevents either the Pfaffian or the
fermionic determinant from changing sign [48], in a similar fashion to that of the twisted-mass
reweighting in Ref. [50]. This effect can, however, be undermined through a too-large ratio
rb/ra or a too-precise rational approximation, in which case µ, the smallest twisted mass,
becomes too small and the ergodicity and stability of the algorithm may be compromised. In
order to avoid this occurring, the precision of the rational approximation used in our work
was reduced progressively down to an acceptable compromise at O(10−6).

4.9.2 Pseudofermion actions and solvers

Using the above-described rational approximation, the fermionic determinant for a given
quark flavour may therefore be approximated as det R−1 through a sum of pseudofermion
actions. Assuming the orderings ν1 < ν2 < · · · < νN and µ1 < µ2 < · · · < µN, the rational
function is given by

R = A
N

∏
k=1

D̂†D̂ + ν2
k

D̂†D̂ + µ2
k

. (4.38)

For each factor k = 1, . . . , N2 up to a chosen limit N2, a pseudofermion action Sk is then
introduced, with the remaining factors accounted for by a single pseudofermion action SN2+1,

Sk = φ†
k

D̂†D̂ + ν2
k

D̂†D̂ + µ2
k

φk , for k = 1, . . . , N2 , (4.39a)

SN2+1 = φ†
N2+1

(
N

∏
k=N2+1

D̂†D̂ + ν2
k

D̂†D̂ + µ2
k

)
φN2+1 . (4.39b)

The values of N2 that we have chosen in our work are given in Table 4.9. As outlined in [51], the
method of partial fraction decomposition may be used to rewrite these pseudofermion actions.
Inversions of different operators are required for the simulation of pseudofermions, the inversion
of (D̂ + iµk) in the case of pseudofermionic actions and forces, and the inversion of (D̂ + iνk)

for the generation of pseudofermionic fields. The calculation of the pseudofermionic action
SN2+1 uses the multishift conjugate gradient method, whereas for all other pseudofermion
actions, the Schwarz-Alternating Procedure-preconditioned deflated generalised conjugate
gradient method is used. Residues of 10−8, for the calculation of the source, and 10−10 for
the pseudofermionic field generation and calculation of the action, were used for all solvers.
QCD+QED simulation are again particular in their requirement that there exist different

deflation subspaces for each value of the electric charge, which for the quark may take the
values q̂ = 2, 4. In the simulation, a total of 20 deflation vectors were used, with values of
mu = 0.001 for the lattice size 64× 323 and mu = 0.005 for the other lattice sizes, and the
number of Krylov vectors nkv ≥ 24, where we are using the openQ*D input file notation [51].
Up to the simulation code constraints and the local lattice size, we have chosen the largest
possible size for the deflation blocks.

53

MADELE
IN

E EVIE BETT D
ALE



4.9.3 HMC parameters and integration of Molecular Dynamics

Regarding the particular details of the update algorithm, the Hybrid Monte Carlo algorithm
is used alongside Fourier acceleration for the U(1) field [52, 53] in order to simulate the sum
of the gauge and pseudofermion actions. In order to solve the molecular dynamics equations,
a symplectic multilevel integrator [54], using a three-level scheme which is flexible at each
level with regards to the number of integration steps, the integrator type, and the forces to be
integrated, is used; the trajectory length is set to τ = 2.
Concerning the three-level scheme, the Omelyan-Mryglod-Folk (OMF) second order inte-

grator is used to integrate the fermion forces associated with the pseudofermionic actions
Sk where k = 1, . . . , N1 and where N1 ≤ N2, whereas, in the intermediate level, the OMF
fourth-order integrator [55] was used to integrate all other fermionic forces. Lastly, at the
innermost level, the OMF fourth-order integrator is used to integrate the gauge forces.
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5
METHOD AND PRELIMINARY RESULTS FOR OPTIMISATION

5.1 signal-to-noise ratio: a comparison

The signal-to-noise ratio associated with baryons is known to be much worse than that of
mesons. For all hadrons heavier than the pion, the signal-to-noise ratio decreases exponentially
with increasing time separation between the source and sink t.

5.1.1 Pion

As the interpolating operator for pions is given by ψγ5ψ, the pion mass may be extracted
from the correlation function

〈Cπ(t)〉 =
1

L3/2 ∑→x
tr
[
S(x; 0)γ5S†(0; x)γ5

]
, (5.1)

by measuring the its exponential decay coefficient

〈Cπ(t)〉 → constant× e−mπ t. (5.2)

The propagator S is computed through inversion of the Dirac operator. Statistical error enters
the picture due to the limited number of gauge configurations for which the Dirac operator is
inverted. The magnitude of statistical fluctuations on the mean measured correlator Cπ(t) is
given by the formula

Nσ2
π(t) ≈ 〈tr

(
S(x; 0)γ5S†(0; x)γ5

)2
〉 − 〈Cπ(t)〉2, (5.3)

where σπ(t) is the standard deviation per configuration.
The second term on the right hand side of this expression obviously decreases as exp(−2mπt).

In fact, the first right-hand-side term decreases with the same time dependence, as it involves
four quark propagators spanning from time 0 to t. Its behaviour is therefore dependent on the
lightest state onto which it may project, which is two pions. The two terms therefore decay
with the same behaviour, and the equation

σπ(t) ∼
〈Cπ(t)〉√

N
, (5.4)

is satisfied up to some constant factors. This means that for the pion, the signal-to-noise ratio
is approximately constant with t at large times:

C(t)/σπ(t) ∼ constant ×
√

N. (5.5)

The pion is therefore the easiest hadron to measure in terms of the signal-to-noise ratio.
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5.1.2 Proton

Simplifying the argument by keeping the colour and Dirac structure implicit, the proton mass
may be extracted through a correlation function of the form

〈Cp(t)〉 = 〈S(t; 0)S(t; 0)S(t; 0)〉, (5.6)

as the proton is a bound state consisting of three quarks. The statistical error on the mean
measured value of the above correlator is then given by

Nσ2
p(t) ≈ 〈S3S†3〉 − 〈Cp(t)〉2. (5.7)

The lowest energy state to which the first term on the right hand side may project consists of
three quarks and three anti-quarks, to form a three pion state. The standard deviation per
configuration therefore diminishes according to

σp(t) ∼ e−(3mπ/2)t, (5.8)

up to some constants. The signal-to-noise ratio for a correlation function measured on N
configurations is therefore given by

C(t)/σp(t) ∼
√

Ne(mp−3mπ/2)t. (5.9)

This diminishes rather rapidly as the proton is much heavier than the pion; indeed, baryons
tend to have much worse signal-to-noise ratios than mesons. Techniques to enhance the ground
state signal such that the effective mass plateau starts before the statistical noise becomes
dominant, such as smearing techniques in combination with spectral analysis techniques, are
therefore essential for studying the baryon masses.

5.2 interpolating operators

In this section, we give the interpolating operators that we have used to select the desired
baryon states, disregarding until later any smearing that is applied to the operators to
improve the ground state signals. The operators that we have selected are those that not only
correspond firstly to the correct quantum numbers of the state that we wish to measure, but
that also are known from the literature to give the good signals for the desired physical states.
Firstly, it must be noted that in the following discussion, each quark that appears (in

uppercase) in the following operators and indeed throughout the measurements has been
made U(1)–gauge–invariant by means of the application of the ‘string’ dressing factor given
in Eq. (3.29). This was performed in practice by the appropriate application of this factor
at the source and sink indices. U, D and S are thus defined as the U(1)–gauge–invariant
quark operators corresponding to the up, down and strange quarks respectively. The objects
formed through the combination of these quark objects and the appropriate dirac matrices
will therefore also be U(1)–gauge–invariant. The U(1) gauge invariance of the propagators
and the entire meson and baryon objects has been checked for our code.

In our exposition of the different interpolating operators, we must first distinguish between
the spin- 1

2 baryons, which form an octet when only the quarks u, d, s are considered, and the
spin-3

2 baryons, which form a decuplet when only the u, d, s quarks are considered and which
require an additional projection operator to project to the pure spin-3

2 state.
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5.2.1 Spin-1
2 baryons

the proton p, neutron n and the cascade Ξ− This baryon sink interpolating operator
is given by the expression

O±a (x) = P±abεABC

[
QA

c (x) (Cγ5)cd RB
d (x)

]
QC

b (x), (5.10)

where we have denoted Dirac indices with lowercase letters and colour indices with uppercase,
and C denotes the charge-conjugation matrix. The quarks Q and R are placeholders that
denote quarks of different flavour; we have, in particular, Q ≡ U, R ≡ D in the case of p,
Q ≡ D, R ≡ U for n, and Q ≡ S, R ≡ D for Ξ−. The operator P± = 1

2 (1± γ0) acts to project
the operator to a definite parity state, of either positive or negative parity. The anti-symmetric
tensor, denoted by ε, renders the interpolating operator SU(3)–gauge-invariant.
The corresponding operator for this baryon source, which is the formal conjugate of the

above baryon sink operator, is given by

O±a (x) = −P±abεABC

[
QA

c (x) (Cγ5)cd RB
d (x)

]
QC

b (x), (5.11)

where Q ≡ Q†γ0. The time-ordered correlator T〈O±a (0)O±a (t)〉, ignoring any smearing for
now, forms the primary observable that will be measured on the lattice.

the Σ0 baryon The interpolating operator for the Σ0 baryon sink is given by

1√
2

P±abεABC

[ (
UA

c (x) (Cγ5)cd SB
d (x)

)
DC

b (x)

+
(

DA
c (x) (Cγ5)cd SB

d (x)
)

UC
b (x)

]
.

(5.12)

The structure of the combination of the different projectors and matrices with the propagators
is as described above.
The corresponding source operator, derived through the formal conjugation of the sink

operator, is given by

− 1√
2

P±abεABC

[ (
UA

c (x) (Cγ5)cd SB
d (x)

)
DC

b (x)

+
(

DA
c (x) (Cγ5)cd SB

d (x)
)

UC
b (x)

]
.

(5.13)

the Λ0 baryon The interpolating operator for the Λ0 baryon sink is given by

1√
6

P±abεABC

[
2
[
UA

c (Cγ5)cd DB
d

]
SC

b +
[
UA

c (Cγ5)cd SB
d

]
DC

b

−
[

DA
c (Cγ5)cd SB

d

]
UC

b

]
.

(5.14)

The combination with the different projectors and matrices is as described above for the other
octet baryons.

The corresponding source operator is given by

− 1√
6

P±abεABC

[
2
[
UA

c (Cγ5)cd DB
d

]
SC

b +
[
UA

c (Cγ5)cd SB
d

]
DC

b

−
[

DA
c (Cγ5)cd SB

d

]
UC

b

]
.

(5.15)
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5.2.2 Ω− baryon

In order to measure the Ω− baryon, we use the interpolating operator for the baryon sink

Oi
a(x) = εABC

[
SA

b (x)
(
Cγi
)

bc
SB

c (x)
]

SC
a (x), (5.16)

where i = 1, 2, 3 is a spatial Lorentz index.
The corresponding interpolating operator for the baryon source, derived by formally conju-

gating the sink operator, is given by

Oi
a(x) = εABC

[
SA

b (x)
(

γiC
)

bc
SB

c (x)
]

SC
a (x). (5.17)

The combination of these operators, neglecting for now any smearing we may wish to apply,
gives the correlator Cij

ab(t) = T〈0|Oi
a(t)O

j
b(0)|0〉, which must then be projected onto a definite

spin state. Taking as the more relevant choice the spin-3
2 state, one applies the projection

C
3
2
ab =

3

∑
i,j=1

(
CijP ji

3
2

)
ab

; P ij
3
2
= δij − 1

3
γiγj. (5.18)

Here, both i and j are spatial Lorentz indices. The correlator is then projected onto a definite
parity state as for the octet baryons,

C
3
2 ,± = Tr[C

3
2 P±]. (5.19)

Lastly, all baryons, octet and decuplet, have been folded according to
C(t) = C+(t) − C−(T − t) in order to reduce statistical fluctuations on a given time-
slice. The above interpolating operators are given, without any smearing, spin-projection or
folding for simplicity, in Tab. 5.1.

Due to the renormalisation strategy of the set of ensembles from the RC* collaboration, for
all ensembles one may exploit a mass-degeneracy between the down and strange quarks. This
renders some of the hadron masses degenerate. In the baryon sector of our results, we have
that Ξ− is degenerate with Σ−, n is degenerate with Ξ0, p is degenerate with Σ+ and Ω− is
degenerate with ∆−. It must be noted, however, that this degeneracy should be used, and has
been in the case of our calculations, only once the necessary Wick contractions have been
performed, in order to not confuse fermions of different flavours and to use the Grassman
algebra correctly.

As a preliminary check performed with small statistics, the correlators corresponding to the
interpolating operators for the ∆+ and ∆0 baryons, whose quark contents are uud and udd
respectively, were calculated and then projected to spin- 1

2 using the projector I−P 3
2
. The

masses were found to be consistent with the proton and neutron masses as required.

5.2.3 C-even interpolating operators

As explained in Sec. 3.1 and App. A, the requirement that the correlation functions be
C-even comes from the conditions for projecting to zero-momentum when using C∗ boundary
conditions. Through taking the sum over both the physical and mirror lattice using the
interpolating operators given above, we obtain a correlator equivalent to the C-even correlator
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(1/2)+ Baryon Non-zero components of Ff gh

p Fuud = 1
n Fddu = 1

Λ0 Fsud = 2, Fdus = 1, Fuds = −1
Σ+ Fuus = 1
Σ− Fdds = 1
Ξ0 Fssu = 1
Ξ− Fssd = 1

Table 5.2: Flavour tensor Ff gh defining the interpolating operators for spin-1/2 baryons. Flavour
indices may take the values u, d, s.

on the physical lattice. The interpolating operators for the octet sink and source that are
given above may be written more succinctly as respectively

O(x0) = ∑
x

∑
ABC

∑
f gh

εABCΨA
(s) f (Ψ

B)T
(s)gCγ5ΨA

(s) f (x0, x), (5.20a)

O(x0) = −∑
x

∑
ABC

∑
f gh

εABC(Ψ
A
(s) f )

TΨB
(s)gCγ5(ΨA

(s) f )
T(x0, x), (5.20b)

where the spin-indices (s) are implicit or contracted, and where the particular baryon is
defined through the flavour tensor Ff gh for flavour indices f , g, h with non-zero elements given
in Table 5.2. The two-point function is then given by

C(x0) =

〈
O(0)

1 + γ0

2
O(x0)

〉
. (5.21)

Using Eq. (A.3), the corresponding C-even interpolating operators for the octet baryons are
given by,

B(x0) = ∑
~x

∑
ABC

∑
f gh

εABCFf gh
{

ΨA
(s) f (Ψ

B
(s)g)

TCγ5ΨC
(s)h(x0,~x)

− C(ΨA
)T

(s) f ΨB
(s)gCγ5(Ψ

C
)T

(s)h(x0,~x)
}

,
(5.22)

along with the two-point function

C(x0) =

〈
Bt(0)C

1 + γ0

2
B(x0)

〉
. (5.23)

Similarly, the C-even interpolating operators for the Ω− may be written as

Ωj(x0) = ∑
~x

∑
ABC

∑
k

εABC

(
δjk −

1
3

γjγk

){
S(s)A(SB

(s))
TCγkSC

(s)(x0,~x)

− C(SA
)T

(s)S
B
(s)γkC(SC

)T
(s)(x0,~x)

}
,

(5.24)

with the corresponding two-point function having the value

C(x0) = ∑
j

〈
Ωt

j(0)C
1 + γ0

2
Ωj(x0)

〉
. (5.25)
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As discussed above, these C-even baryon correlators are calculated automatically through the
double sum over the sink using the naive interpolating operators and projection described in
Secs. 5.2.1 and 5.2.2.

5.3 smearing of interpolating operators

Whilst any interpolating operators with the correct quantum numbers will contribute by some
amount to the physical state, certain operators contribute more than others. If we wish to
isolate the ground state, we may wish to optimise the interpolating operator through smearing
the fermions, either with pure fermion smearing or first smearing the gauge fields as an input
to the fermion smearing. This should provide a more realistic wave function than a point
source would, thereby hopefully increasing the overlap of the operator with the desired ground
state. During analysis, this should show up as a mass-curve plateau that starts earlier, as
a consequence of reduced contamination from excited states. Fermion smearing is known
however to increase statistical noise, and so an optimisation must be performed in order
to settle upon smearing parameters that extend the plateau whilst keeping the statistical
noise at acceptable levels. In this vein, the combination of gauge smearing with fermion
smearing can be useful, as gauge smearing can act to reduce gauge field fluctuations in a
gauge-invariant way, counteracting the tendency of fermion smearing to enhance the statistical
noise. The measurement of different interpolating operators, using either different levels of
smearing or indeed different interpolating Dirac matrices, or both, may also be used to form
the Generalised Eigenvalue Problem, which allows one to optimise the ground state overlap
and to explore excited states. This is particularly valuable in the context of QCD+QED, as
possible coupling with photons may be explored in the spectrum through this method, and
indeed we have explored this in this work, as we shall discuss later.

5.3.1 Gauge smearing

As alluded to above, gauge smearing allows one to extend the source in another fashion in
order to better approximate the spatial wavefunction of the state we wish to replicate, as well
as having the effect of reducing statistical noise between configurations in a gauge-invariant
way. We have chosen to use the gradient-flow smearing in this endeavour, in place of more
conventional techniques such as APE smearing [56], for reasons of practicality; the gradient-
flow gauge smearing procedure has the technical advantage of gauge-link unitarity being
exactly preserved at all stages, whilst it is roughly equivalent to APE smearing when the
plaquette is matched, as has been checked for our code through computation of the plaquette
in terms of smeared gauge links and matching for the different procedures. At this point, it is
important to note that, as the smearing is applied only in spatial directions, and as the gauge
smearing is used only as an input for the fermion smearing and does not affect the Dirac
operator, the renormalisation is not affected by this procedure. The gradient-flow smearing
procedure [45] is defined by the application of the gradient-flow specified as

V̇t(x, k) = −g2{δx,kSW, spatial(V)}Vt(x, k); V0(x, k) = V(x, k);

δx,k f (V) = Taδa
x,k f (V); δa

x,k f (V) =
d
ds

f (esXV)|s=0;

X(y, i) =

{
Ta if (y, i) = (x, k)

0 otherwise
;

(5.26)

to the SU(3) gauge fields V(x, µ), in order to produce the smeared gauge links Vt(x, k) for
k = 1, 2, 3. The SU(3) Lie algebra generators are denoted by Ta, while SW, spatial(V) denotes
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the spatial part of the Wilson gauge action SW(V), meaning the spatial plaquette sum in the
absence of a prefactor.

5.3.2 Fermion smearing

The above gauge-smeared links Vt are used as input for the Gaussian fermion smearing [57],
through the course of which the U(1)–gauge–invariant fermion operator Ψ is transformed into
the smeared operator Ψsmeared, through

Ψsmeared(x) =
(

1 + κgH(x, y)
1 + 6κ

)N

Ψ(y); (5.27)

Ht(x, y) =
3

∑
j=1

{
Vt(x, j)δ(x + ĵ, y) + Vt(x− ĵ, j)†δ(x− ĵ, y)

}
. (5.28)

.
In our results, we used for the gauge-smearing an evolution time of t = 180ε where the

resolution ε = 0.02. For the fermion smearing, we used a strength of κg = 0.5 and a collection
of different smearing levels of 0, 200 and 400 smearing steps, applied on the source, the sink,
or both the source and the sink. We found that results were optimised, in terms of plateau
length and statistical error per time-slice, when 400 smearing steps on the source, and no
smearing steps on the sink, were used. That the correlator that is smeared on the source and
local on the sink should be optimal is also supported by the literature, as smearing on the
sink is known to be more vulnerable to statistical noise.

5.4 quantifying Σ0 − Λ0 mixing

Another complication to the calculation of the masses with isospin breaking is the possibility
of mixing between the Σ0 and Λ0 octet baryons. While the two baryons share the same
quark flavour content, uds, Σ0 is a triplet under the SU(2)I isospin symmetry, whereas Λ0 is
a singlet under the isospin symmetry. As both SU(2)I and SU(3)F are not exact symmetries,
mixing between the two states is possible. The result of this mixing of isospin singlet and
triplet states is the physical baryon states, while the ratio of the energy scales of SU(2)I- and
SU(3)F-breaking gives an estimate of the mixing angle.

We therefore give an important note regarding the interpretation of what we call the naive
masses that we calculate in the same way as the other baryons that do not experience isospin
mixing, from the interpolating operators as defined in Sec. 5.2. While in the case of unbroken
isospin symmetry, the interpolating operator given in this section would be appropriate for
the calculation of the Σ0 mass, in our case it is not, due to the mixing described above. This
mixing causes the lowest energy state projected by the Σ0 interpolating operator to be the Λ0

state.
Denoting the interpolating operators for Λ0 and Σ0 as Λ̂ and Σ̂ respectively, and where

the baryon states are physical, we may write the correlators using the given interpolating
operators as

CΛΛ = |〈0|Λ̂|Λ0〉|2e−mΛ0 t + |〈0|Λ̂|Σ0〉|2e−mΣ0 t (5.29)
CΣΣ = |〈0|Σ̂|Λ0〉|2e−mΛ0 t + |〈0|Σ̂|Σ0〉|2e−mΣ0 t (5.30)

where CXX denotes that the interpolating operators used for the source and sink are those
corresponding to the same baryon. As the Λ0 baryon is the lighter of the two baryons, we
expect the effective mass curves for both of the correlators above to be dominated by the Λ0

state at large times, unless the contribution from 〈0|Σ̂|Λ0〉 is extremely small. The mass of
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the Σ0 baryon is only recoverable in the case of isospin-breaking through spectral analysis
techniques, and we do not attempt this in this thesis. This may also require increased statistics
and an enlarged set of interpolating operators.

Through the derivation of some standard mass formulae, however, we can give an estimation
of the values of the ‘unmixed’ masses. Denoting the unmixed state of the baryon B as B

′ , the
matrix representations of the octet baryons may be written in terms of SU(3)F as

(Bn)
i
j =


1√
6
Λ0′ + 1√

2
Σ0′ Σ+ p

Σ− 1√
6
Λ0′ − 1√

2
Σ0′ n

Ξ− Ξ0 −
√

2
3 Λ0′

 . (5.31)

Thus, a proton would then have the matrix representation (p)i
j = δi1δj3 and the state

(p)i
j|

j
i〉 = |31〉. According to the Standard Model, both quark masses and the electromagnetic

interaction break the SU(3)F symmetry. These may be represented through the matrices M
for the quark masses and Q for the quark electric charges, which belong to the SU(3)F octet
and have the forms

M =

mu 0 0

0 md 0

0 0 ms

− 1
3
(mu + md + ms); (5.32a)

Q =
1
3

2 0 0

0 −1 0

0 0 −1

 . (5.32b)

The baryon mass operator H must therefore be a function of M and Q, so that the mass of
octet baryon B with state |B〉 is given by

MB = 〈B|H(M, Q)|B〉. (5.33)

This mass operator may be expanded in terms of nth-order approximations, where n = 0, 1, 2,
and where m and q label the SU(3)F-breaking terms by the sources of said breaking:

H(M, Q) = H0 + H1
m(M) + H1

q (Q) +O(H2). (5.34)

Such an expansion, however, does not provide an intuitive hierarchy due to the possibility
that the large s quark mass renders the second-order quark mass correction to be of a similar
magnitude as the first-order correction from the u and d quark masses.
An expansion may instead performed with respect to symmetry properties of the SU(3)F-

breaking effects as opposed to the sources of these breaking effects. This requires the
decomposition of matrices M and Q in terms of matrices T8 and T3, where T8 is isospin-
invariant while T3 is not:

M = msT8 + mqT3 and Q =
1
6

T8 +
1
2

T3, (5.35)

where ms = −(2ms −mu −md)/6 and mq = (mu −md)/2, and where

T8 =

1 0 0

0 1 0

0 0 −2

 , T3 =

1 0 0

0 −1 0

0 0 0

 . (5.36)
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Mass differences SU(3)F parameters
MΣ− −MΣ+ 2I1 − 2I2

MΣ− −MΣ0 I1 − I2

Mn −Mp −2I2

MΞ− −MΞ0 2I1

Table 5.3: SU(3)F parametrisations of different octet mass differences

Using the linearity of the matrix representation, the baryon mass operator H may therefore
be rewritten as

H(M, Q) =H0 + H1
m(msT8 + mqT3) (5.37a)

+ H1
q

(
1
6

T8 +
1
2

T3

)
+O(H2),

=H0 +

(
H1

m(msT8) + H1
q

(
1
6

T8

))
(5.37b)

+

(
H1

m(mqT3) + H1
q

(
1
2

T3

))
+O(H2),

≡H0 + H1
S(T8) + H1

I (T3) +O(H2), (5.37c)

where the same representation is shared by operators in the same set of outer parentheses.
The hierarchy of terms is given by

H0 � H1
S � H1

I ∼ O(H2), (5.38)

as H1
S contains the first-order correction from ms and O(H2) contains the second-order

correction from ms. Care must therefore be taken to consider only those physical quantities
that are not affected by the ms correction when discarding O(H2) in the calculation of H1

I .
While the eigenstates of H0 + H1

S define the baryon wave functions of Eq. (5.31) with the
properties

〈B′ |H0 + H1
s |B〉 = 〈B

′ |B〉 = 0 if B
′ 6= B, (5.39)

the physical baryon states BP are the eigenstates of the entire baryon mass operator H, having
the property

〈B′P|H|BP〉 = 0 if B
′
P 6= BP. (5.40)

Applying the Wigner-Eckart theorem in order to parametrise the matrix element from
Eq. (5.33) in terms of the SU(3)F parameters M0, Si and Ii gives

〈B′ |H0 + H1
S|B〉 = M0 + S1Tr(B′nT8Bn) + S2Tr(B′nBnT8), (5.41a)

〈B′ |H1
I +O(H2)|B〉 = I1Tr(B′nT3Bn) + I2Tr(B′nBnT3) +O(H2), (5.41b)

where Bn ≡ B†
n. The above SU(3)F parameters should be related to physics through experiment.

The famous GMO and CG mass formulae may be derived from Eqs. (5.41a) and (5.41b)
respectively. Consistency of the equations requires that M0, S1 and S2 be determined through
the mean masses of isospin subgroups, while I1 and I2 should be determined through differences
in mass between baryons that are isospin-related.
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From Table 5.3, as well as the famous CG mass formula, which is satisfied trivially under
U-spin symmetry due to mass degeneracies, we obtain the formula

MΣ0′ =
1
2
(MΣ+ + MΣ−). (5.42)

from which we may predict the unmixed Σ0 mass. Through instead taking the average masses
of the isospin subgroups and using Eq. (5.41a), the famous GMO formula may be derived:

MΛ0 ≈ MΛ0′ =
1
3
[(MΞ− + MΞ0) + (Mp + Mn)− (MΣ++Σ−)/2], (5.43)

through which the unmixed Λ0 may be predicted. It should be noted, however, that the above
derivation relies on a linear expansion around the SU(3)F-symmetric theory that may not be
entirely appropriate for our ensembles, particularly those that have larger than physical α.

Given that the Σ0 and Λ0 states mix according to

|Λ0〉 = cos θΣ0−Λ0 |Λ0′〉 − sin θΣ0−Λ0 |Σ0′〉, (5.44a)

|Σ0〉 = cos θΣ0−Λ0 |Σ0′〉 − sin θΣ0−Λ0 |Λ0′〉, (5.44b)

the Σ0 −Λ0 mixing angle is known to be given by [58][59]

tan θΣ0−Λ0 = 〈Σ0′ |H1
I |Λ0′〉/(MΣ0 −MΛ0), (5.45)

where the mixing mass matrix element is given in terms of the isospin-breaking mass differences
for the octet baryons,

〈Σ0′ |H1
I |Λ0′〉 = 1√

3
(I1 + I2), (5.46)

where we would use I1 + I2 = (MΣ0 − MΣ+) − (Mn − Mp), given the knowledge of the
necessary baryon masses.

5.5 comparison of error estimation between jackknife and gamma
methods

Figure 5.1 shows a comparison between the error on the effective mass curve carried out using
the Jackknife method of error analysis vs. the Gamma method, which takes into account
the autocorrelation of the data series. These methods are described in App. E. Later, we
show GEVP results that were produced using the Jackknife method; the final baryon mass
results presented are, however, produced using the Gamma method. We see that the values of
the effective mass at each timepoint are identical, while there is a difference in the error per
timepoint calculated with the two methods. As expected, the Gamma method gives a larger
error. Keeping in mind Eq. (2.49), we can perform an approximate check of the consistency of
the difference in errors with the value of τint = 1.72± 0.59. This value was measured on the
effective mass curve for the plateau between [22, 28] which is weighted by the inverse variance
of the timepoints, using the Gamma method. If we therefore take for each timepoint

τint =
1
2

(
σΓ

σJK

)2

, (5.47)

and take a naive mean over the range [22, 28], we obtain the rough estimate τint = 1.3± 0.3,
where the error is estimated through simply taking the standard deviation of the timepoints.
We see that this rough estimate of τint is consistent within error with the value calculated
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Figure 5.1: Comparison of error on individual timepoints of p effective mass plot (without reweighting
or finite-volume corrections and in lattice units) using both the Jackknife method and the
Gamma method.

through the Gamma method, and therefore that the magnitude of errors calculated through
the Jackknife method and through the Gamma method is consistent with our expectations.

5.6 gevp

5.6.1 Method

We will here outline a method of spectral decomposition, the Generalised Eigenvalue Problem
(GEVP). In this method, we consider a matrix formed of correlators, where the two axes
represent operators along the source and sink respectively. These operators may include
different levels of smearing applied on either the source or sink, or indeed different choices of
unsmeared interpolating operator. For simplicity, we will be considering the case in which
the matrix of correlators is square, meaning that there are the same number of operators
considered at the source and the sink, and in which the operators for the source and the sink
are the same. A discussion of the case in which either of these conditions is not true can be
found in [60].
At large Euclidean times t, and by neglecting finite-temperature effects, we find that a

hadronic correlation function behaves like

C(t) = Ze−mt + · · · . (5.48)

Here, the hadronic ground state mass is given by m. Excited energy states, which are
suppressed at large times, are given by the additional terms hinted at above. In fact, the
energy gap between the ground state and the first excited state determines to what extent
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the excited states are suppressed. This suppression allows one to extract the ground state
mass through taking the logarithm and finding the plateau at large times. This is made more
difficult, however, by the exponential decay of the signal-to-noise ratio with increasing t. One
is therefore motivated to try another strategy that provides a separation of the contributions
from the ground state and the excited states, and thus an extension of the ground state
plateau to smaller times, as well as some quantification of the excited states of the hadron’s
spectrum.

Although the following analysis is valid for non-Hermitian correlator matrices, in our analysis
we enforced Hermiticity by redefining C → C + C† in order to remove any non-Hermiticity
introduced in the calculation and to guarantee real eigenvalues.
Constructing the non-symmetric matrix Cij of correlator functions from correlators using

the operators Oi(t) on the sink and Õj(t) on the source, we can write

Cij(t) = 〈Oi(t)Õ†
j (0)〉 = 〈0|Oie−ĤtÕ†

j |0〉, (5.49)

where the Hamiltonian is given by Ĥ. Defining the eigenstates |n〉 of the Hamiltonian to
satisfy

Ĥ|n〉 = En|n〉, Zn
i = 〈0|Oi|n〉, Z̃n∗

j = 〈n|Õ†
j |0〉, (5.50)

we can decompose the correlator matrix in terms of energy eigenstates;

Cij(t) =
∞

∑
n=1

Zn
i Z̃n∗

j e−Ent. (5.51)

This may also be written in matrix form as

C(t) = ZΛZ̃†, (5.52)

where

Λ = diag(e−E1t, e−E2t, . . . ) ≡ diag(λ1(t), λ2(t), . . . );

λi(t) ≡ e−Eit.

Assuming that the system has N non-degenerate energy levels that are ordered as

E1 < E2 < E3 · · · , (5.53)

and that we have a set of N source interpolating operators ÕA and N sink interpolating
operators OA, the energy levels may be determined through the correlator matrix CAB. We
may start by constructing the matrices

Q† = (Z)−1, Q̃ = (Z̃†)−1, (5.54)

which, as Z and Z̃ are square matrices and det(Z) 6= 0, det(Z̃) 6= 0, is always possible. The
non-vanishing determinants are guaranteed by the linear independence of the operators OA
and ÕA. Expressing the correlator thereby as

Q†C(t)Q̃ = Λ(t) (5.55)

allows one to extract the energies. This expression may be rewritten using the factorisation
Λ(t) = Λ(t0)Λ(t− t0) as

C(t)Q̃ = Q†Λ(t) = ZΛ(t0)Λ(t− t0)

= ZΛ(t0)Z̃†Q̃Λ(t− t0) = C(t0)Q̃Λ(t− t0),
(5.56)
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through which we see that Q̃ is a solution to the generalised eigenvalue problem; this may
be written equivalently for each column q̃i of matrix Q̃, with q̃i being a generalised right
eigenvector satisfying the equation

C(t)q̃i = C(t0)q̃iλi(t− t0). (5.57)

A similar equation may be used to obtain the solution Q to the left generalised eigenvalue
problem. The eigenvalues Λ obtained through this method may then be used to obtain the
energy levels in the usual way

Ei =
1
a
log
(

λi(t− t0)

λi(t + a− t0)

)
. (5.58)

One may show that the GEVP behaves similarly to the case of a symmetric correlator matrix
when there is the non-ideal case in which the basis of interpolating fields has a different
dimension to that of the space on which the Hamiltonian acts. This allows one to choose a
somewhat arbitrary number of interpolating operators as the basis of the correlator matrix.

5.6.2 Results

The N2 different smearing levels at which we measured the correlators can be represented
as an N × N matrix that enters the GEVP, with rows corresponding to the source smearing
level and columns corresponding to the sink smearing level as described in Sec. 5.3, and the
elements may accordingly be labelled from 0 to N2− 1 with the sink smearing level varying the
fastest. For clarity, the results presented in this section are not calculated using reweighting
factors, unlike the final mass results given in Sec. 6.1 using the Gamma method. The errors
on the masses are calculated using the Jackknife method throughout.

Taking the proton as an example, results from the different smearing levels for the proton
mass for ensemble A500a50b324 are given in Table 5.4. These have been calculated each
with an individually chosen plateau range. We see that the different levels of smearing agree
with each other within error, and with the ground state energy found through the GEVP.
We found that results with a consistently small error in comparison with the other smearing
levels, and similar to the error found using the GEVP, were found for the state that was most
smeared at the source and local at the sink, in line with the literature. As this was seen to
be the case for ensembles A500a50b324 and A360a50b324+RW2, which were measured using
three different levels each on the source and the sink, we restricted the measurements on the
ensembles measured afterwards to skip the intermediate level of smearing and measure only
for both 0 and 400 smearing steps on the source and the sink, which still allows a two-state
GEVP analysis. This was done in order to most efficiently exploit computing resources, as the
computing time saved in computing four smearing levels instead of nine could then be used to
double the number of random hits per configuration for the ensembles with close-to-physical
α.

The GEVP and the comparison of it with the individual smearing levels then informed our
choice to analyse a single smearing level, with 400 steps at the source and 0 at the sink, using
the Gamma method, as there was little difference in the errors between the GEVP ground
state and the results from this smearing level.

As an example, the GEVP spectrum for the proton is given by Fig. 5.2. The three energy
levels that may be distinguished through the GEVP method are given in Fig. 5.2a, where the
plateau of the ground state is shown by the horizontal line. The plateau error is not shown
here. If we take a weighted plateau between [11,13] for the second lowest energy level, we
find an energy of 2137± 52 MeV, using the final measured value of the lattice spacing for the
ensemble A500a50b324 and neglecting its comparatively small error in the error propagation.
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(a) GEVP spectrum. The plateau value and range is given by the horizontal line, whereas the plateau
error is not shown.
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(b) GEVP ground state with plateau value and error.

Figure 5.2: GEVP for proton from ensemble A500a50b324 using Jackknife error analysis. Effective
masses given in lattice units. 69
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0) 0.3465± 0.0085 1) 0.3431± 0.0045 2) 0.3457± 0.0032

3) 0.3417± 0.0022 4) 0.3421± 0.0028 5) 0.3392± 0.0025

6) 0.3408± 0.0023 7) 0.3401± 0.0022 8) 0.3384± 0.0030

Table 5.4: Proton mass results from different smearing levels labelled 0. . . 8 on ensemble A500a50b324,
using Jackknife analysis program and given in lattice units. Smearing levels take values
of 0,200,400 steps, increasing on the sink from left to right and increasing on the source
from top to bottom. The unsmeared level is therefore labelled 0. The plateaux were chosen
individually for each smearing level, and the GEVP gave a ground state energy of 0.3415 ±
0.0015 in lattice units.

Compared with the energy of a combined (proton + photon) state in ensemble A500a50b324,√
M2

p + (π
√

3
L )2 + π

√
3

L = 2068(13), we see that the two results have slightly more than a 1σ

difference between them. This state may still be a combined (proton + photon) state, as it
seems that the second excited state may not have reached its plateau before statistical noise
takes over the signal.

We note as an aside that the consistency of the lowest energy levels of the GEVP spectrum
has been checked for different numbers of smearing levels and for different normalisation times
(t0 in Eq. (5.56)).

The GEVP ground state of the proton from ensemble A500a50b324 is shown in Fig. 5.2b,
with the plateau average and range shown by the horizontal red line and the plateau error
shown in blue. We see a plateau that starts rather early at t = 15 and starts to diminish in
quality around t ∼ 20.

5.7 extraction of spectral densities

An alternative approach to the exploration of the spectrum is the extraction of spectral
densities from correlators. In our work, this is used in a very preliminary way to give a more
complete picture of the spectrum, particularly for hadrons for which a well-defined plateau
may be less obvious.

While, in this work the spectral densities extracted are used to explore the baryon spectrum,
this technique may also be used to investigate, for example, the differential cross section of
the process e+e− → hadrons, as well as the non-leptonic flavour-changing decay rates of both
kaons and heavy flavoured mesons, thermodynamic quantities that arise through the study
of the quark-gluon plasma and in finite-temperature QCD, and the deep inelastic scattering
cross-section.

The problem of predicting theoretically the hadronic spectral densities in a non-perturbative
and model-independent setup, while being in theory approachable from first-principles in
lattice QCD, is made significantly more difficult due to the non-trivial theoretical and numerical
problems that arise when trying to extract spectral densities from results calculated on the
lattice. This is due to the systematic and statistical errors that inevitably affect lattice results,
specifically the Euclidean time-ordered correlators calculated on a finite volume with spatial
linear extent L and spatial volume V = L3 and at discrete space-time coordinates x, which
can be represented as

C(t) =
1
L3 ∑

x
T〈0|O(x)O(0)|0〉L, (5.59)

where O and O are generic hadronic operators. These correlators make up the primary
observables that result from the lattice calculation. The following explanation does not
attempt to make discussion of any cutoff effects that lead to a dependence upon the lattice

70

MADELE
IN

E EVIE BETT D
ALE



spacing for different quantities, but only considers that we know the correlator values only at
discrete values of space-time.

Assuming for simplicity an infinite temporal extent of the lattice, one may write the above
correlator as

C(t) =
∫ ∞

0
dEρL(E)e−tE, (5.60)

for positive Euclidean times t > 0. Here, the associated spectral density ρL(E) is given by

ρL(E) =
1
L3 ∑

x
〈0|O(0, x)δ(E− HL)O(0)|0〉L. (5.61)

The above expressions set the stage for a discussion on some of the problems that occur when
trying to extract spectral densities from lattice results.
The first problem we encounter is caused by the ever-present statistical fluctuations that

affect the correlator, which, apart from some very specific cases, increase exponentially with
time relative to the signal and are therefore particularly problematic at large time separations.
If we were to try to extract ρL(E) numerically from the measured correlator C(t), an inverse
Laplace-transform would be required, which becomes an ill-posed problem when statistical
fluctuations are included.
We find another problem caused by the discreteness of the Hamiltonian spectrum of a

finite-volume system. In this case, the finite-volume spectral density has support only at the
eigenvalues En(L) of HL, and is therefore represented as a sum of delta functions rather than
an integral,

ρL(E) = ∑
n

wn(L)δ(E− En(L)). (5.62)

The consequence of this is that we cannot directly associate the finite-volume spectral density
with any physical observable, even if it were computed exactly.

A solution to these problems has been found [61, 62] in which the spectral densities are
smeared in order to increase the information that can be extracted from correlators with
statistical noise. This idea forms the basis of the Backus-Gilbert method. The smeared
spectral density is defined as

ρ̂L(σ, E∗) =
∫ ∞

0
dE∆σ(E∗, E)ρL(E), (5.63)

where ∆σ(E∗, E) are smearing functions with support coming from a region centred around
E∗ with width σ. Naturally, a condition on these smearing functions is that they become
Dirac delta functions when the limit σ → 0 is taken. The advantage of using the smeared
spectral densities is that, at fixed smearing function, the study of their infinite-volume limit is
well-posed, and that they are smooth functions of the energy. This simultaneously alleviates
both of the problems discussed above. The infinite-volume spectral density may therefore be
obtained through taking the strictly-ordered double limit

ρ(E∗) = lim
σ→0

lim
L→∞

ρ̂L(σ, E∗), (5.64)

provided that over different volumes, the smearing function used is kept constant. However, it
should be kept in mind that for the purpose of comparing experimental results with theoretical
expectations, it may not be necessary to take fully the limit of vanishing σ.

The Backus-Gilbert method, despite managing to efficiently control the effect of statistical
fluctuation on the estimation of smeared spectral densities, has a particular problem that
complicates its use in Lattice QCD. In this method, the shape of the smearing function is
the procedure’s output, and is optimised in order to best represent the data, taking into
account the number of observations, which for us means the temporal extent of C(t), and
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the statistical errors embedded within C(t). In lattice QCD, these values change between
calculations carried out at different lattice volumes. This means that, using the Backus-Gilbert
method, we would obtain different smearing functions at different volumes, rendering taking
the infinite-volume limit either impossible or at least extremely complicated.
The method presented below [23] is based on the Backus-Gilbert approach [61] (see also

[63]), in that statistical errors are controlled through the same smearing mechanism. However,
as the smearing function is here an input of the procedure, it is designed with the ease of
taking the infinite-volume and continuum limits in mind. An expense of this modification is
that the target smearing function is open to distortion from the finite number of observables
and from the statistical errors present in the correlator. This method nonetheless provides
a quantification of the systematic error this creates. Of course, when the magnitude of the
statistical error is taken to be vanishing, and when the number of temporal points in C(t) is
taken to infinity, any distortion vanishes and an exact reconstruction of the smeared spectral
density, using the smearing functions provided as input, is recovered.

5.7.1 Method

The philosophy of the method presented here is to input a target smearing function, an
optimal approximation of which is then aimed for through a summation over basis functions.
The accuracy that can be attained, as described above, is limited by the number of temporal
lattice points in the correlator and by the inevitable statistical fluctuations present in the
measured correlators.

An obvious choice for a smearing function that tends to a Dirac delta function in the limit
of vanishing width is a Gaussian function. The smearing function

∆σ(E∗, E) =
e− (E−E∗)2

2σ2√
2πσ

(5.65)

is a Gaussian function centred around E∗ with width σ.
An optimal approximation of the above smearing function in terms of basis functions bT is

given by

∆σ(E∗, E) =
tmax

∑
t=0

gt(λ, E∗)bT(t + 1, E). (5.66)

Here tmax < T/2. For baryons measured with periodic boundary conditions in time, we use
the basis functions given by

bT(t, E) = e−tE. (5.67)

The smeared spectral densities may be computed using the correlator and the coefficients gt

for discrete values of E∗,

ρ̂L(σ, E∗) =
tmax

∑
t=0

gt(E∗)C(t + 1). (5.68)

The coefficients gt in the above approximation are determined through the minimisation of a
functional W[λ, g] consisting of a deterministic part that contains the functional A[g], and a
functional representing the error, that contains the functional B[g],

W[λ, g] = (1− λ)A[g] + λ
B[g]

C(0)2 . (5.69)
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In this method, the deterministic functional quantifies the discrepancy between the target
smearing function and its approximation,

A[g] =
∫ ∞

E0

dEeαE|∆σ(E∗, E)− ∆σ(E∗, E)|2, (5.70)

where α < 2 is some real constant that we have chosen to be α = 1.99. One must chose the
lower integration limit E0 such that the finite volume spectral density ρL(E0) = 0. As a mass
gap appears in both the case of connected correlators in QCD and of the charged sectors of
QCD+QED, this is always possible.

The minisation procedure is solved through

g(λ, E∗) = W−1(λ)f(λ, E∗) (5.71)

where vector f(E∗) has the entries

ft(λ, E∗) = (1− λ)
∫ ∞

E0

dEbT(t + 1, E)∆σ(E∗, E)eαE. (5.72)

The elements of the matrix W are given by

Wtr(λ) = (1− λ)Atr + λ
Covtr

C(0)2 , (5.73)

where
Atr =

∫ ∞

E0

dEbT(t + 1, E)bT(r + 1, E)eαE. (5.74)

The optimisation of the choice of λ = λ∗, at which the minimisation is carried out, uses the
method discussed in Sec. V.A. of [24], which selects the value of λ for which the systematic
error is comparatively small such that the system is in the statistics-limited regime.
Simplifying for now our discussion by ignoring statistical errors, in essence the aim is to

approximate best the smeared target function using the basis functions b(t, E), constrained
by the functional A[g] defining the norm. Under the assumptions that the target function
is analytic within the limits [E0, ∞) and that it is faster to decay than any power of E
approaching infinity, one can see that, by enlarging the space that the basis functions span, i.e.
by increasing tmax, the error of the approximation can be reduced to an arbitrary size. This
is made more evident when the deterministic functional is rewritten using the basis functions
bT(t) = e−Et, and using the change of integration variables x = e−E:

A[g] =
∫ e−E0

0
dx x1−α

∣∣∣∣∣tmax,t=0

∑ gtxt − ∆σ(E∗,−log(x))
x

∣∣∣∣∣
2

. (5.75)
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6
BARYON RESULTS

6.1 baryon mass results

In the following, we will refer to the number of point sources placed at random time-slices of
the lattice as hits. We shall refer to the region over which the average is calculated, weighted
by the inverse variance of the individual time-points, as the plateau. Though some plateaux
may have the same chosen range in t, the selection of plateau range was decided for each
object individually.

The baryon interpolating operators that we used are described in Sec. 5.2. These are made
U(1)-gauge-invariant through the dressing factors described in Sec. 4.5. The baryon effective
masses M(x0) were calculated using the formula

M(x0) =
1
a
log C(x0)

C(x0 + a)
. (6.1)

The plateau was chosen as described for the mesons in Sec. 4.5, with the plateau range chosen
through a visual inspection of the variation of the value of the plateau with respect to its
starting timepoint.

The baryon mass values calculated on different ensembles are given in Table 6.1, whilst the
mass differences for the baryons can be found in Table 6.2. Plots of the baryon effective mass
curves for each ensemble are found in Figs. 6.1-6.5, whereas the plots for the effective mass
curves for the mass differences may be found in Figs. 6.6-6.10.

We obtained baryon masses with a precision between 1-5%, with a higher precision on those
ensembles with heavier pions, while the precision on the mass differences varied more between
ensembles. While we may expect to get close to the physical values for some of the mass
differences, as we have some ensembles with αR and mu −md close to their physical values, we
do not expect to be able to approach in this work the physical values for the baryon masses,
as we simulating in a U-spin-symmetric setup and at large pion masses. The approach to the
physical point is left for future work.

6.1.0.1 A450a07b324

The ensemble A450a07b324 has a large pion mass Mπ± = 451.2(4.3) with respect to all
ensembles apart from A500a50b324 and an αR = 0.007076(24) value close to the physical
value and the other ensembles with the same bare α. This ensemble consists of only 1000
configurations as opposed to ∼2000 for all of the other ensembles on which the baryons were
measured. Eight hits were used for the measurement of this ensemble.
With these values and run parameters in mind, if we inspect the effective mass plots for

ensemble A450a07b324, shown in Fig. 6.1, we see that they are generally well-behaved in the
case of the spin- 1

2 baryons, with a level portion of the curve suggesting clearly the plateau
region, and with relatively low statistical noise until the region of t ∼ 28 to the middle of the
lattice. Even so, in this end region the errors are still reasonably small. The plateau was
chosen to be t ∈ [21, 28] for all masses. For this ensemble, there is little variation between the
results for the spin- 1

2 baryons: their values, errors and indeed their plots. The Ω− baryon
has a weaker signal-to-noise ratio than the other objects and deteriorates into fluctuations at
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t ∼ 24 with an increasing error on each time-point. This leads to a relatively large error on
the Ω− mass for this ensemble.

We see from the mass difference plots for ensemble A450a07b324 in Fig. 6.6 that the signals
for the mass differences are comparatively very well-behaved, with a long level region, inside
which the plateau range t ∈ [7, 18] has been chosen for all mass differences. At t ∼ 20, the
noise per time-point increases, while fluctuations start to appear in the signal. Nonetheless,
the errors on the mass differences for this ensemble are among the smallest for the ensembles
measured. Although we obtain the correct sign for the MΞ0 −MΞ− and MΣ+ −MΣ− mass
differences, we get an incorrect sign for the proton-neutron mass difference. This mass
difference is known to be highly sensitive to both the pion mass and the αR value, so is
expected to fluctuate somewhat between different ensembles as these parameters change. We
also note that the φ2 observable associated with this ensemble is far from the target values,
as discussed later on.

6.1.0.2 A380a07b324

In comparison with the other ensembles on which baryon masses were measured, the ensemble
A380a07b324 has the smallest pion mass at Mπ± = 383.6(4.4) and a close-to-physical value of
αR. This ensemble is formed of 2000 configurations and eight hits were used per configuration
to measure the baryon masses on this ensemble.

When we inspect the effective mass curves, shown in Fig. 6.2, for the ensemble A380a07b324,
we find that the spin- 1

2 baryons are reasonably well-behaving. The forms of the effective
mass curves for the different spin- 1

2 baryons are very similar to each other, and indeed all
of the spin- 1

2 baryons have been given the same plateau range, t ∈ [21, 28]. For all spin- 1
2

baryons, we see a sharp increase in the statistical noise at around t = 28. The associated
errors on the spin- 1

2 baryons are reasonably large compared to other ensembles apart from
A360a50b324+RW2. This is perhaps to be expected as the pion mass is relatively small.

The form of the effective mass plot for the Ω− baryon is different from those of the spin- 1
2

baryons, as it has a shorter and slightly earlier plateau given by t ∈ [19, 24], before it descends
into statistical noise from t = 24 onwards (see the discussion on spectral decomposition below).
This shorter plateau gives the Ω− baryon mass a larger error than for the other baryon masses.

Regarding the effective mass plots for the mass differences on the A380a07b324 ensemble,
shown in Fig. 6.7, we see that the signal is reasonably stable for a long period in time. We
have chosen the quite long plateau range t ∈ [9, 20] for all mass differences of this ensemble.
Around t = 22, we see the statistical noise start to take over as the centre of the lattice
is approached. Regarding the values, we find that all the mass differences measured have
the correct sign and are reasonably close to their physical values, and we also find that the
neutron-proton mass difference is consistent with the physical value within error, which is
encouraging. The errors on these values are larger than those of the ensemble A450a07b324,
which is to be expected as the pion mass here is smaller.

6.1.0.3 A380a07b324+RW1

This ensemble is the above ensemble (A380a07b324) with mass reweighting. Therefore, the
number of configurations is the same, at 2000. Again, eight hits were used per configuration.
This reweighted ensemble has an almost unchanged αR value of 0.007080(22), but has a
significant shift in pion mass, at Mπ± = 398.8(3.7), which is still small compared to that of
A450a07b324.

The effective mass plots for the baryon masses calculated on the A380a07b324+RW1 ensemble,
shown in Fig. 6.3, show a long quasi-linear region, with the exception of the Ω− baryon.
The region over which the average is taken is chosen to be t ∈ [21, 28] for all spin- 1

2 mass
baryon masses, while the Ω− baryon plateau is chosen to be t ∈ [19, 24], which is relatively
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short. For the spin- 1
2 baryons, we see that the signal-to-noise ratio diminishes noticeably from

t = 26 onwards, whereas the diminution starts earlier for the Ω− baryon, at around t = 24,
after which we see a large fluctuation towards the middle of the lattice. The effect of the
mass reweighting of the ensemble A380a07b324 is to make the pion mass heavier, which is
reflected in the increase in masses for the spin- 1

2 baryons for the A380a07b324+RW1 ensemble
with respect to the A380a07b324 ensemble. This ensemble has, however, the smallest Ω−

baryon mass of all of the ensembles on which the baryons were measured. Despite the shorter
plateaux in the case of the spin-1

2 baryons, we see that the errors on the baryons masses
for this ensemble are smaller than for the A380a07b324 ensemble. This is a reflection of the
flatter spin- 1

2 effective mass curves over the plateau region and the reduced statistical error
per time-point in the plateau region in the case of the Ω− baryon.
Looking at the effective mass plots for the baryon mass differences, shown in Fig. 6.8,

they have reduced fluctuations and statistical error per time-point with respect to ensemble
A380a07b324. In light of this, the plateau range has been chosen to encompass t ∈ [11, 26],
a comparatively long plateau, for all mass differences. We see that the signals seem to be
very flat for the first half of the plots, with the signal-to-noise ratio diminishing at around
t = 24. After this point we see significant fluctuations in Mp −Mn and MΣ+ −MΣ− . The
resulting errors for the mass differences are smaller than those for A380a07b324 and among
the smallest for the ensembles on which baryon masses were measured. The value of the
proton-neutron mass difference agrees within error with the physical value, and the values of
the other mass differences agree within two standard deviations.

6.1.0.4 A500a50b324

The ensemble A500a50b324 has both the largest pion mass of the ensembles, at
Mπ± = 495.0(2.8), and, alongside ensemble A360a50b324+RW2, a relatively large αR with
respect to the other ensembles, at αR = 0.040772(85). This ensemble was measured using
four hits per configuration, and consists of 1993 configurations.

With these facts in mind, we find that the baryon masses we measure are larger than those
measured on the other ensembles. This is to be expected due to the large pion mass associated
with A500a50b324. The errors on the baryon masses are reasonably small compared to those
measured on other ensembles. The plateaux for the baryon masses are each taken according
to the interval t = [22, 28], and, in fact, all of the plateaux chosen seem to select well regions
of the effective mass curves that are reasonably level apart from some statistical noise between
points, as shown in Fig. 6.4. Furthermore, the effective mass curves for the spin- 1

2 baryons
show strong signals and are well-behaved in terms of their forms.

In terms of the final results, we found that, of the spin- 1
2 baryons, the Ξ− baryon mass has

the smallest error, whilst the proton has the largest error, which seems to be caused by an
increased statistical noise time-point-to-time-point inside the plateau region and a diminishing
signal-to-noise ratio near the middle of the lattice. In the case of the Ω− baryon, the error on
each time-point grows dramatically as the centre of the lattice is approached. The increased
error associated with this object with respect to the other objects seems to be due both to
the less stable values of the time-points in the plateau region, and also to the increasing
noise towards the end of the plateau region that effectively reduces the length of the plateau,
weighted as it is by the inverse variance of the time-points, compared to the other objects. In
fact, we found that for all of the ensembles, the error on the Ω− baryon was greater than
that for other objects.

The baryon mass differences we measured on the A500a50b324 ensemble were large compared
with their physical values. We expect the charged-neutral mass differences for this ensemble
to be large due to the value of αR associated with this ensemble which is much greater than
the physical value, and, in fact, we see that the results are close to those calculated on the
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other ensemble at this αR value, A360a50b324+RW2, although with smaller associated errors.
This may be due to the larger pion mass associated with this ensemble when compared to
A360a50b324+RW2. Looking at the baryon mass difference plots, shown in Fig. 6.9, we see
that all of the plots seem to suffer from some sloping up to t ∼ 20, before the signal-to-noise
ratio diminishes to varying degrees depending on the mass difference in question, which makes
it more difficult to select a plateau range. The plateaux for these plots were taken using
the range t ∈ [11− 20]. The increased error in the mass difference values of the objects
MΣ+ −MΣ− and MΞ0 −MΞ− seems to be due to a greater slope in the region in which the
plateaux are taken compared with that of Mp −Mn. All mass differences calculated on this
ensemble have the correct sign when compared with their physical values.

6.1.0.5 A360a50b324+RW2

Ensemble A360a50b324+RW2 is formed of 2001 configurations. In the measurement of
baryon masses on this ensemble, four hits were used per configuration. The pion mass,
at Mπ± = 398.9(3.4), is the smallest of the ensembles with larger αR on which we measured
baryon masses. The value of αR associated with this ensemble is close to that of A500a50b324,
at 0.04069(26).
In comparison with the results from the other ensembles, we see that the mass curves for

the A360a50b324+RW2 ensemble, shown in Fig. 6.5, have a much larger error per time-point
than for the other ensembles. The magnitudes of errors per time-point are similar between
the curves for the different spin- 1

2 objects. We can, however, observe a slight increase in the
fluctuations of the signal in the MΞ− curve. Around t = 18, the signal-to-noise ratio worsens
for all the objects in the approach to the centre of the lattice. Of the mass curves, the signals
of the MΣ0 and MΛ0 curves seem marginally better than for the other objects. As for the
Ω−, the signal-to-noise ratio starts to deteriorate earlier than for the other objects, at around
t = 15, after which the deterioration is rapid. This leads to MΩ− on this ensemble having the
largest error of all of the baryon mass measurements.
The significantly increased error on the individual time-points for this ensemble may be

due to a number of factors, such as only using four hits per configuration, and the pion mass
being significantly lighter than the other ensemble we have measured on with higher αR value,
A500a05b324. It could also be due to a large effect from the reweighting factors. As we have
seen, the length of the plateaux has not changed significantly between ensembles up to now,
with most plateaux used being ∼7 points long. However, ensemble A360a50b324+RW2 has
longer plateaux than the other ensembles, at t ∈ [11, 25] for all masses, which may be a result
of the increased uncertainty on each time-point making it difficult to ascertain with precision
the underlying form of the effective mass function. In the end, the increased plateau length,
along with the presence of some time-points with smaller errors that dominate when the
plateau value is calculated through an average weighted by the inverse variance, compensates
for the increased error on each time-point to give errors on the baryon masses that are on
the larger side for the ensembles on which we measured baryon masses, but not significantly
larger apart from the Ω− baryon. The plots for the mass differences for the A360a50b324+RW2
ensemble, shown in Fig. 6.10, are much more chaotic than for the other ensembles, owing
to the increased error per time-point. This error has already been discussed above for the
individual masses; the effect of this is magnified by taking the difference between the masses.
We see that at t ∼ 16, the noise increases significantly for all mass differences. The values
seem roughly constant within error until to signal-to-noise ratio diminishes at t ∼ 16. The
resulting errors for the mass differences calculated on this ensemble are large in comparison
with the other ensembles. However, the values calculated are similar as expected to those
given by the other ensemble at this value of αR, A500a05b324, and the signs of the mass
differences are the same as those of the physical values.
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6.1.1 Spectral decomposition

In the results above, we see a consistently weak plateau for the Ω− baryon, which makes it
difficult to select an appropriate plateau range. In order to ascertain whether the plateau
we have chosen for Ω− is suitable, we carried out a spectral analysis using the modified
Backus-Gilbert method. We demonstrate this for one of the ensembles with the worst plateau
for the Ω− effective mass curve, A500a50b324. The method described in Sec. 5.7 is applied to
the Ω− correlator, the effective mass plot of which is given in Fig. 6.11a. The plateau value
calculated from this effective mass plot is given by denoted Ep.
The selection of the value of λ∗ is shown for the point E∗/Ep = 1 in Fig. 6.11b, with the

selected value corresponding to the value of ρ̂L(E∗) at A[g]/A[0] ≈ 0.03. For A[g]/A[0]
values below this value, there is no significant change of ρ̂L(E∗) within error, so we may infer
that the systematic errors are negligible with respect to the statistical errors. More details
on this procedure may be found in [24]. We then obtain the coefficients gt using Eq. (5.71),
which may then be combined with the correlators as in Eq. (5.68) to give the smeared spectral
density at energy E∗. The procedure detailed in this paragraph is then repeated for different
E∗, with errors calculated through jackknife bootstrapping over all of the configurations of
the ensemble. This gives the discrete points with error bars that are shown in Fig. 6.11c.
A fit of these discrete points is then carried out using the convolution of two different

Gaussians of pre-set width σ = 0.2Ep, for which the coefficients of each Gaussian and the
energies at which they are centered are the degrees of freedom. The x-axis of this plot is
E/Ep; we therefore see that there is no detectable contribution from states with energies less
than the already-calculated plateau, which justifies our choice of plateau. We also see that
there is a nearby excited state at E/Ep = 1.35, which would not have been resolved at this
level of statistics without a two-Gaussian fit. This method is especially advantageous in this
application because the error is smallest at low energies, which is the opposite situation to an
effective mass plot where low energy states are isolated in the noisy large-t region. The two
methods therefore act to complement each other.

6.2 the extent of expected flavour-violating mixing

As explained in Ref. [20], C∗ boundary conditions open the possibility for flavour mixing due
to disconnected diagrams. These describe colourless particles that travel around the torus,
changing flavour content in the process. This mixing causes a change the baryon number of
the state by ∆B = 0 mod 2. This effect is therefore harmless in the cases of pseudo-scalar
mesons as presented above, as they do not mix with lighter states, and of nucleons, which are
the lightest B = 1 states and cannot mix with B = 0. This means that, in reality, the only
objects that we are interested in, and for which this occurs, are the Ω− and Ξ baryons.
This section regards the extent to which we expect flavour-violating baryon mixing to

be significant for our measurements of baryon masses on C∗ ensembles. Examples of the
mechanisms by which these mixings may occur for the relevant baryons are given in Fig. 6.12;
these are, however, not exhaustive and other diagrams will be possible, including contributions
from photons and kaons, and decays of included spin- 3

2 particles into spin- 1
2 , provided that

these diagrams preserve energy, momentum, and the quantum numbers of the initial baryon
state. Whilst the objects that we measure that may experience mixing are Ω− and Ξ−, there
is also the possibility for the Ξ0 to mix with the n; however, as in our setup in which d and s
are mass-degenerate, these two baryons have exactly the same mass in our calculations. The
intermediate baryon Λ0 in this diagram is also of equal mass or heavier than the Ξ0 for all of
our ensembles, so we do not need to quantify the expected suppression of this mixing effect.
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ensemble(+rw) exp(−2µΞ−L) exp(−2µΩ−L)

A450a07b324 0.00038 0.0027
A380a07b324 0.0015 0.030
A380a07b324+RW1 0.0011 0.012
A500a50b324 0.00030 0.0036
A360a50b324+RW2 0.0017 0.077

Table 6.3: Mixing-magnitude factors exp(−2µL) using masses and L from each ensemble.

6.2.1 Mixing-magnitude factors

Following the logic of [20], the factor by which we can expect these disconnected contributions,
that are due to the effect of massive particles travelling around the torus, to contribute, may
be calculated using the hadron masses. The characteristic decay factor µ of the suppression
of the flavour-violating mixing for the Ξ− baryon is given by

µ(MΞ−) =



MK± if 0 < MΞ− ≤ Mp;(
M2

K± −
(

MΞ−−Mp
2

)2
)1/2

if Mp ≤ MΞ− ≤
M2

Λ0−M2
K±

Mp
;(

M2
K± −

(
M2

Ξ−−M2
Λ0+M2

K±
2MΞ−

)2
)1/2

if
M2

Λ0−M2
K±

Mp
≤ MΞ− .

(6.2)

Through substitution of the relevant baryons, the corresponding factor may also be calculated
for the Ω− baryon,

µ(MΩ−) =



MK± if 0 < MΩ− ≤ MΣ+ ;(
M2

K± −
(

MΩ−−MΣ+
2

)2
)1/2

if MΣ+ ≤ MΩ− ≤
M2

Ξ0−M2
K±

MΣ+
;(

M2
K± −

(
M2

Ω−−M2
Ξ0+M2

K±
2MΩ−

)2
)1/2

if
M2

Ξ0−M2
K±

MΣ+
≤ MΩ− .

(6.3)

Whilst we have calculated the baryon masses required for the calculation of the mixing-
magnitude factor of the Ξ− baryon, we lack the Σ∗+ baryon mass that would appear in the
formula above for the calculation of the mixing-magnitude factor for the Ω− baryon. However,
when we take into account the possible decays of the Σ∗+ baryon, we see that the lightest
final baryon state is given by the Σ+ baryon that features in the decay Σ∗+ → Σ+ + γ,
as this is, out of a few possible decay paths, the decay that gives the lowest energy state
for our particular ensembles whilst preserving Q. We therefore use Σ+ as the lowest final
baryon state both for the calculation of the mixing-magnitude factor and for the validation
of energetic conditions. For the two relevant mixing diagrams, the mixing-magnitude factor
is calculated using the baryon masses we have calculated on each ensemble. The µ are then
multiplied by the spatial extent of the lattice L of each of our ensembles in the calculation of
the mixing-magnitude factor exp(−2µL).

Table 6.3 gives the estimated mixing-magnitude factors for flavour-violating mixing of the
Ξ− and Ω− baryons calculated for each ensemble. As we are only using this as a guide for the
order of magnitude of the effect, the error is omitted. We see that, while the mixing-magnitude
factors are small, they are not negligible.
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6.2.2 Energetic conditions

A particular energetic condition that we can look at is whether it is energetically possible
for a photon to be produced as a intermediate state or final product of the mixing. In
the continuum limit, there would exist a continuum of possible states between the lighter
(undesired) state and the heavier (desired) state, due to the possible presence in the mixing
diagram of any number of photons of any energy up to the maximum energy with regards
to energy conservation. Due to the quantisation of space-time imposed by the lattice, the
photon is constrained to have a minimum momentum which has the value

√
3π/L due to

the anti-symmetry of the photon field in all spatial dimensions. For small lattice sizes, the
minimum momentum may therefore become large with respect to the energy gap between
baryon states, leading to a vanishing number of allowed states within the gap.

We therefore assess whether either the minimum allowed energy for the photon, combined
with the lightest possible final baryon state in the mixing, is less than or equal to the original
state i.e. Ξ− or Ω−. In the case of Ξ−, we know that the proton is the lightest baryon, so
this is the state we use for the comparison. As discussed above, the lightest possible final
state in the case of the Ω− is Σ+.

We may also compare whether the combined energy in the middle of the diagram is larger
than the energy of the initial baryon object. While it is entirely possible for a kaon to have
zero-momentum on the lattice, the mixing B1 ↔ B2 + P of an initial stationary baryon B1

with a combined baryon and pseudoscalar meson state ( B2 + P ) is forbidden on the grounds
of violation of parity if the products are both stationary, as the baryon states have positive
intrinsic parity and the pseudoscalar mesons have negative intrinsic parity. This may be
resolved by B2 and P having equal and opposite momenta. The minimum momentum for a
hadron on the lattice is given by π/L, therefore the minimum combined energy of the state is
given by EB2,P =

√
M2

B2
+ (π/L)2 +

√
M2

P + (π/L)2.
The adherence to these conditions is shown in Table 6.4. Errors are calculated from

error propagation starting from the final mass values and errors. We see that for both
objects, the conditions are broken very strongly for all ensembles, as a consequence of the
small physical size of the lattices associated with the ensembles. Although the exponential
mixing-magnitude factors calculated for the different ensembles are not negligibly small, the
energetic unfavourability of the mixing with respect to the existence of intermediate states
and additional photons should therefore preclude flavour mixing that would otherwise arise
due to the C∗ boundary conditions for our measurements.

6.3 Σ0 − Λ0 mixing results

In the following discussion and results, we call the masses calculated naively from the
interpolating operators given in Sec. 5.2 the naive masses, which are denoted in the same way
as for the baryons that do not experience any isospin mixing.

The expected values of the unmixed baryons can be calculated through formulae that may
be derived through the SU(3)F parameters of the octet baryon mass differences [64], and we
denote these baryons through B

′ . We expect the corrections to the baryon masses due to this
isospin-mixing to be small. We calculate the expected values of the unmixed masses of Σ0 and
Λ0 through the Eqs. (5.42) and (5.43), and label them Σ0′ and Λ0′ respectively. The effective
mass curves for the required baryons were combined according to these equations to give the
effective mass curves in Figs. 6.13a and 6.13b respectively.

In comparison with the naive effective masses given in Figs.6.1-6.5, the effective mass plot
for Λ0′ has an almost identical form to that of the both the naive Λ0 and naive Σ0 effective
mass curves, as expected. The form of the Σ0′ plot is distinct from that of the naive Σ0 plot.
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ensemble(+rw) MΛ0 MΣ0 MΛ0′ MΣ0′

A450a07b324 1215(15) 1215(14) 1216(15) 1217(14)
A380a07b324 1151(19) 1151(18) 1152(19) 1153(19)
A380a07b324+RW1 1167(13) 1169(14) 1168(14) 1169(14)
A500a50b324 1296(13) 1313(13) 1295(13) 1309(12)
A360a50b324+RW2 1227(24) 1230(22) 1229(24) 1233(25)

Table 6.5: Naive and unmixed Σ0 and Λ0 baryon masses calculated on the different ensembles. Here
the naive ‘Σ0 mass’ means the mass calculated using the Σ0 interpolating operator given
in Sec. 5.2. In fact, we expect this object to give the same final mass as the naive Λ0

interpolating operator.

We find in Table 6.5 that the naive Σ0 and Λ0 masses are always consistent within error with
each other as expected, even at physical α. From this table, we also see that the expected
unmixed mass of the Λ0 agrees with the naive masses within error.
We therefore conclude that there is expected to be a negligible effect on the masses of Λ0

due to mixing induced by isospin-breaking for ensembles, but that one must remember that
the naive mass that we have labelled as Σ0 is really another measurement of the Λ0 mass
due to Λ0 being the lower energy state that is allowed to mix with the Σ0 baryon through
isospin-breaking.
The mixing matrix parametrised by θΣ0−Λ0 rotates the unmixed baryon states as given in

Eq. (5.44). A spectral analysis, using for example the GEVP, could seperate the contributions
to the mixed states from the physical Λ0 and Σ0 states in order to obtain the unmixed masses,
from which it would be possible to determine the mixing angle. This could be the basis of
future work.

6.4 trends towards the physical point

In this section, we explore the relation of our results to our expectations and to the physical
point. It is worth emphasising that our renormalisation trajectories are unphysical as we are
always in the unphysical U-spin-symmetric regime where md = ms, which makes it harder
to compare with the experimental results at the physical point. Another facet of this is the
subsequent mass degeneracy of the baryons due to simulation in the U-spin-symmetric setup.
There will be therefore multiple physical masses that will correspond to a single measured
baryon mass, which complicates further the discussion of reaching the physical point. Another
complication is the fact that we have only simulated at one value of β. We have not, therefore,
performed an extrapolation to the continuum limit, nor have we taken into account finite
volume effects apart from those due to QED effects. We may therefore check, for instance,
that the hierarchy of masses is roughly upheld by our measurements, and that the values
of our masses and mass-differences are reasonable given our trajectories, but a detailed and
systematic study of our masses with reference to the physical values is not attempted here.
For reference, our simulations were carried out at SU(3) inverse coupling value β = 3.24,

with the target trajectory parameters (φ0 = 0, φ1 = 2.13, φ2 = 2.37, φ3 = 12.1). In particular,
the target value of parameter φ2 is approximately its physical value. As this parameter keeps
the ratio between isospin-breaking effects due to the u− d mass difference and isospin-breaking
effects due to nonzero α constant, and its scale is set by the reference value (8t0)1/2 = 0.415
fm, the central value of the CLS determination [33], the ratio of effects should be close to
its physical value. The value α = 0 corresponds to the QCD SU(3)-symmetric point for our
chosen line of constant physics. Therefore, for our simulations that are at physical α, the
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u− d mass difference should be close to its physical value. As we expect isospin-breaking
effects to be small at these values, and we are operating in U-spin-symmetric trajectories,
we expect that, for our ensembles that have a value of α close to the physical value, we are
operating close to the QCD SU(3)-symmetric point.

As the trajectory parameter φ3 fixes the charm quark mass, which does not appear in any
of the baryons whose masses we have measured, and the φ2 parameter simply serves to keep
the ratio of isospin-breaking effects from the u− d mass difference to the isospin-breaking
effects from QED contributions constant between ensembles, provided that the φ2 target value
is hit, it is not worthwhile to consider the trends in the masses and mass-differences with
respect to these parameters. In the following section, we therefore focus on the trends in
masses and mass differences with respect to φ1, which is approximately proportional to the
combined renormalised mass of the light quarks, and also with respect to the fine-structure
constant α. We expect the value of φ1 to have a greater effect on the masses, whereas we
expect the α-value, and the proportional u− d mass difference, to have a greater effect on
the mass-differences. It is worth emphasising again that φ0 is set to an unphysical zero-value
which we expect to drastically affect the values of the masses. We exclude the ensemble
A380a07b324, as the same ensemble with mass reweighting, A380a07b324+RW1, is given.

We first inspect the degenerate mass Mp = MΣ+ for different ensembles, given in Fig. 6.14.
We see that the results of all ensembles are closer to the physical mass of Σ+ than to the
physical proton mass. From Figs. 6.14a and 6.14b, we see that both the difference in average
quark mass (φ1) and in α have effects of a similar magnitude.

Concerning the values of the degenerate mass MΩ− = M∆− for the different ensembles given
in Fig. 6.15a, we obtain a mass approximately halfway between the physical masses of Ω−

and ∆−. Comparing Figs. 6.15a and 6.15b, we see that the value of α has a large effect on the
masses in comparison with the effect from varying φ1.

For those ensembles at physical α, A380a07b324+RW1 and A450a07b324, we expect the mass
differences to be small, as we are close to the QED SU(3)-symmetric point at which all octet
baryons have an equal mass; the same is true for all decuplet baryons at this point. Therefore,
we expect to observe that the mass difference is small at physical α, and increases for an
increased α, with the u− d mass difference increasing directly proportionally to it. If the
parameters φ0 and φ1 were then varied along trajectories to their physical values for a few
values of β at physical α, and the finite volume and continuum limit taken, we would then
expect the mass differences to increase and the masses to ’fan out’ into the hierarchies of
physical masses given in Figs. 6.14c and 6.15c.
The measured values of the proton-neutron mass difference for different ensembles are

plotted against the α value associated with the ensemble. As expected, we observe that
the above expectation is met, with smaller mass differences at physical α and larger mass
differences at larger than physical α. At first, the positive value measured on the ensemble
A450a07b324 is puzzling; we expect the primary factors in the mass difference to be α and
the u− d mass difference. The ratio of these parameters is supposed to be held constant by
a constant φ2 value. In Fig. 6.16, we see that the ensemble A450a07b324 has a value of φ2

far away from the target value and considerably smaller. This corresponds to the value of α

being proportionally larger than the u− d mass difference compared to the target value of
φ2. As, for the proton-neutron mass difference there is known to be a positive effect from the
QED contribution and a negative effect from the u− d mass difference, the positive value for
the ensemble A450a07b324 makes sense, although it should probably be discounted in any
future extrapolation for the proton-neutron mass difference.

The existence of mass degeneracies mixes up the hierarchy of measured masses somewhat.
In general, we found that the hierarchies of baryon masses shown in Figs. 6.14c and 6.15c are
preserved by the measured mass differences given in Table 6.2. While the mass degeneracies
of the U-spin-symmetric setup mean that, for example, what we have labelled Mn −Mp can
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equally be labelled as the difference between either Mp or MΣ+ on one side and either Mn or
MΞ0 , in practice we find that our mass differences are small, especially at the close-to-physical
value of α, and are therefore closest in value to the differences of masses that are nearby in
the hierarchy at the physical point.
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Figure 6.13: Plots related to Σ0 − Λ0 mixing for the ensemble A500a50b324. Effective mass plots
for the unmixed Λ0 and Σ0 baryons, calculated through Eq. (5.42) for Σ0′ and through
Eq. (5.43) for Λ0′ .
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Figure 6.14: Trends for masses of octet baryons p and Σ+.
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7
CONCLUSION

In order to further reduce the error associated with quantities such as baryon masses, for
which the statistical error of simulations has reduced to the same order of magnitude as the
systematic error that arises from the neglect of QED in LQCD calculations, it is now more
necessary than ever to include isospin-breaking effects in LQCD simulations. This is usually
acheived through either a perturbative QED expansion around pure QCD, the reweighting of
QED configurations, or, in the case of full QCD+QED simulations, the QEDL formulation,
in which a non-local constraint enforces the quenching of photon zero-modes at all times;
the non-locality of this formulation causes complications for the automatic satisfaction of
certain properties of the quantum field theory such as renormalisability, which must then
be proven on a case-by-case basis. We use instead the QEDC formulation, which is local
meaning that these properties are satisfied automatically, and that also tends to have smaller
finite-volume effects. Our QCD+QEDC formulation does not rely on perturbation theory and
is fully gauge-invariant, and as such it does not depend upon gauge-fixing. This work is novel
in the application of the QEDC formulation to the problem of baryon masses.
In Chapter 2, some fundamental theory of the implementation of gauge theories on the

lattice was presented, including the simulation of fermions. The statistical properties of
the Markov chain were then briefly explored, and the extrapolation of lattice results to the
physical point was discussed.
The implementation of QCD+QED in the QEDC formulation was explained in detail in

Chapter 3. The equivalence of the C-even symmetry of interpolating operators with the sum
of the sink over both the physical and mirror lattice was briefly mentioned in Sec. 3.1 and
in more detail in App. A. The symmetries of the formulation under transformations such as
translation and parity were described. The details of flavour mixing that were introduced
through the C∗ boundary conditions, as well as the suppression of the effect from the mass of
particles that wrap around the torus. We then presented a number of dressing factors that
allow electrically-charged fermion interpolating operators to be invariant under local U(1)
gauge transformations. In Sec. 3.8, the QED finite-volume corrections that were necessarily
applied to our measurements of electrically-charged hadrons were given. Lastly, the details of
the implementation of QEDC on the lattice, and its combination with QCD, were presented
in Sec. 3.9.
The details of the simulations carried out were given in Chapter 4, including a discussion

on the U-spin-symmetric renormalisation strategy, the lattice action, and the particularities
of the gauge ensembles. The strategy for tuning the meson masses in order to give the
desired trajectory parameters was described, along with the method of calculation of the
meson masses and trajectory parameters. A discussion of the magnitude of finite-volume
effects on meson masses measured on the different ensembles was given, and the theory of the
Wilson gradient flow that defines the energy scale and renormalised α value was presented.
Finally, we have discussed the calculation of the sign of the pfaffian, presenting a novel method
developed by the RC∗ collaboration for the optimisation of the calculation of the sign of the
Pfaffian, that has then been used as a reweighting factor for the ultimate calculation of the
fermionic Pfaffian, and we have also given some technical details of the HMC method and
other algorithmic features such as the rational approximation of the fermionic determinant.
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The method for the optimised measurement of the baryon correlators and their analysis was
given in Chapter 5. Firstly, we explained the typically poor signal-to-noise ratio for the baryon
masses in comparison with meson masses, and the interpolating operators were presented
along with their smearing, which can help to optimise the correlation signal. A rough check
was performed of the relative magnitude of the errors from the two methods of error analysis
that we used, the Jackknife bootstrapping method and the Gamma method, that are both
explained in App. E, compared with the value of the integrated autocorrelation time measured
using the Gamma method. The Generalised Eigenvalue Problem was explained and results
using this method were used in the optimisation of our baryon correlators. The mass plateau
value and error for the different smearing levels were compared, using the example of the
proton in this thesis, with the value and error calculated from the GEVP, and this was used
to inform the optimal choice of smearing level that was used later in the Gamma method of
error analysis. The energy of the proton first excited state was calculated from the GEVP
and found to have a value slightly higher than that of the (proton + photon) excited state,
although it seems likely that this is due to us not being able to reach the plateau before the
excited state signal quality diminishes. A modified version of the Backus-Gilbert method was
then presented.
Our results for the baryon masses and mass differences were given in Chapter 6. We

obtained baryon masses with a precision of between 1-5%, with the ensembles with heavier
pions tending to give a higher precision, as expected. The precision associated with the mass
differences tended to vary more between ensembles than the masses did. We found that the
greatest error for both the masses and mass differences was associated with the ensemble
A360a50b324+RW2, which may be due to a few different factors, such as the pion mass, the
smaller number of stochastic sources, and possibly the reweighting factors. The Ω− baryon
masses were then investigated through the modified version of the Backus-Gilbert method.
This baryon was chosen in particular because of the weak definition of the plateau that we
found for multiple ensembles. We found that this is most probably due to at least one excited
state that is close in energy to the ground state. The ground state energy recovered from this
method was consistent with that obtained through our choice of plateau.
Comparison at this stage of the measured values of the baryon masses and their mass

differences with their physical values is difficult, not least due to the unphysical U-spin-
symmetric setup that renders some of the baryons mass-degenerate with each other, even
those that have very different masses at the physical point. We have reasoned that those
ensembles at physical α lie close to the QCD SU(3)-symmetric point, at which all octet baryons
take on the same mass, as do the decuplet baryons. We therefore expect the mass differences
at this point to be small, as we observe. We see that the mass-differences calculated on the
ensemble with the physical αR and with the smallest pion mass of all the ensembles on which
we measured baryon masses, A380a07b324+RW1, are close to the physical values of the mass
differences labelled as in Table 6.2. Apart from on ensemble A450a07b324, for which the
measured trajectory parameter φ2, that controls the ratio between the u− d mass difference
and the value of αR, was far away from its target value, all mass differences had signs in
agreement with their physical values.

We also gave an estimate of the magnitude of the exponential suppression of flavour mixing
for the two baryons for which we expect this mixing to occur, Ξ− and Ω−, as we are in fact
only calculating fermion-connected contributions in our baryon mass measurements. The
estimated contribution due to flavour mixing was small but not negligible, which seems to
be a consequence of the small lattice sizes for which we are performing our simulations. We
expect, however, that these small lattice sizes also act to suppress the flavour mixing through
the quantisation of the momenta of the intermediate photons and kaons.

The inclusion of isospin-breaking also allows mixing between the Σ0 and Λ0 baryons, which
means that through using interpolating operators that in isospin-symmetric QCD would select
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the Σ0 and Λ0 baryons respectively, it is not possible to measure both masses in QCD+QED
through only studying the ground state. Therefore, although we have used two different
interpolating operators, we have measured the mass of only the lightest of the two baryons,
the Λ0. We found that the masses from the correlators using the two different interpolating
operators were consistent within error as expected. It is known in the literature that the
aforementioned mixing has a negligible effect on the Λ0 mass. In order to estimate the
corresponding unmixed masses we would expect for these ensembles, two formulae known
in the literature [64][59][58], including the famous GMO formula, are used to calculate the
expected values of the unmixed Σ0 and Λ0 baryon masses in terms of the other baryon masses.
The unmixed Λ0 mass calculated was consistent with the masses calculated naively from their
interpolating operators.

In future work, we expect to complete the calculation of the hadron masses through moving
to the physical point, which would involve simulations on larger lattices, simulations at
different values of the inverse coupling β, and smaller pion masses. In order to reach the
physical point, a new trajectory that is not U-spin-symmetric may be necessary. It would also
be interesting to try to obtain the Σ0 baryon mass through the GEVP, although this may
require increased statistics. A quantification of the separate effects due to QCD and QED
for our QCD+QED results and the comparison of our results with a parallel RM123 method
would also be rewarding, especially in the case of observables such as the neutron-proton
mass difference for which the QCD and QED isospin-breaking effects work against each other.
In order to measure accurately the contribution from flavour-mixing, that is represented
by a fermion-disconnected diagram, it is necessary for reasons of computational practicality
to use stochastic sources. Some progress on this front has already been made, such as the
construction of gauge-invariant propagators with a source in the physical lattice and a sink
in the mirror lattice, as well as a study of the convergence of calculations using stochastic
sources with various methods of dilution, but has not been included in this thesis.
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A
C-EVEN CORRELATORS

In this section, we explain how our desired correlators can be expressed in two different bases,
in the orbifold construction and in the periodic/anti-periodic basis, and to show that the
global sum of the correlator in the orbifold construction is equivalent to taking the sum over
only C-even correlators in the periodic/anti-periodic basis.

a.1 conventions

In this calculation, we are using the representation of the charge conjugation matrix C given
by

C = iγ0γ2; (A.1a)
C = C−1 = C† = −CT, (A.1b)

where γµ are the Euclidean Dirac matrices.
A fermion field ψ with a period of 2L can be decomposed into L-periodic and L-anti-periodic

components, ψP(x) = ψP(x + L) and ψA(x) = −ψA(x + L) respectively. These components
have the following properties:

ψP(x) = Cψ
T
P(x); (A.2a)

ψA(x) = −Cψ
T
A(x); (A.2b)

ψP(x) = −ψT
P(x)C; (A.2c)

ψA(x) = ψT
A(x)C. (A.2d)

Fermions transform under charge conjugation as:

ψ→ ψC(x) = Cψ
T
(x); (A.3a)

ψ→ ψ
C
(x) = −ψT(x)C. (A.3b)

a.2 correlator expression in terms of c∗ propagators

Under C∗ boundary conditions, momentum eigenstates are automatically eigenstates of
the charge conjugation operator. Hence, C-even fields are periodic and C-odd fields are
anti-periodic. This makes equivalent two descriptions of the C∗ boundary conditions:

• Periodic/anti-periodic basis: The lattice is entirely ’physical’ with dimensions
LT × L × L × L. The fermion ψ and its Dirac adjoint ψ are independent variables
and thus it is valid to describe the correlator in terms of these. The fermion and
its adjoint can then be split into L-periodic and L-anti-periodic components and the
correlator may be written in terms of periodic and anti-periodic propagators.

• Orbifold construction: The extended lattice of dimensions LT × 2L× L× L is formed
from the usual physical lattice and its mirror image. The orbifold constraints describing
the C* boundary conditions between the physical and the mirror lattice mean that the
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Dirac adjoint of the fermion is dependent on the fermion, and the correlator must be
treated in a different fashion. When referring to the different sections of the lattice,
we will denote the extended lattice of dimensions LT × 2L× L× L as Λ, the physical
sublattice as Λ̃ and the mirror sublattice as Λ/Λ̃. In the following calculation, when
operating within the orbifold construction we will assume that there are C* boundary
conditions in at least one spatial direction, with any remaining spatial directions subject
to periodic boundary conditions. The direction corresponding to the unit vector 1̂ is the
direction that always has C∗ boundary conditions and which corresponds to direction 1
in Fig. 2 of [49]. The choice of temporal boundary conditions is arbitrary.

In the rest of the section, we relate the global sum over correlators in the orbifold construction
to correlators expressed in terms of the C-symmetry properties of the interpolating operators
from which they are formed. In this way the equivalence of the two methods for obtaining
C-even correlators is shown. This is followed later by another derivation of the same correlators
starting from the generating functional in the periodic-anti-periodic basis, which is then used
to check our C-even correlators in our implementation of the C∗ formulation.

Let x denote a position in the lattice. In the orbifold construction, if x lies on the physical
lattice, then the position of its corresponding adjoint fermion on the mirror lattice is given by
x = x + 1̂L. We define a translation operator T by its operation on a fermion: Tψ(x) ≡ ψ(x),
i.e. T translates a fermion from position x to its corresponding position x on the mirror lattice.
This operator acts in an equivalent way to that of matrix K defined in Sec. 4.8, but is defined
here as acting only on one fermion at a time.
The right hand side of Eq. (A.3) is the same as the action of the translation of fermions

due to the C∗ boundary conditions given in Eq. (3.3a), meaning that ψC(x) = ψ(x).
Taking x to lie in the physical lattice, x ∈ Λ̃, we can provide a relation between fermions Ψ

on the ordinary physical lattice of the periodic/anti-periodic basis and the fermions ψ of the
orbifold construction:

Ψ(x) = ψ(x);

Ψ(x) = ψ
C
(x) = −ψT(x)C = −ψ(x)TCT. (A.4)

The free action of the fermion is given by

SF = ∑
x∈Λ̃

Ψ(x)DψΨ(x) = −1
2 ∑

x∈Λ
ψ(x)TCTDψψ(x), (A.5)

where the factor of 1
2 comes from double counting due to summing over the extended lattice,

and Dψ is the Dirac operator for the fermion ψ.

a.2.1 Physical lattice

Still taking x ∈ Λ̃, we can relate the correlator of the physical basis to that of the orbifold
construction:

C(t, x) = 〈U(0)ΓV(0)V(x)ΓU(x)〉, (A.6)
= Tr [u(0)Γv(0)v(x)Γu(x)] , (A.7)
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where the source is positioned at 0 on the physical lattice and where Γ is some interpolating
operator formed from one or more Dirac matrices. Using the Grassmann algebra of the
fermions we get the standard expression for the a meson correlator:

C(t, x) = Tr [u(0)Γv(0)v(x)Γu(x)] , (A.8)
= Tr [Γ〈v(x)v(0)〉Γ〈u(0)u(x)〉] ,

= Tr
[
ΓD−1

v (x, 0)ΓD−1
u (0, x)

]
. (A.9)

a.2.2 Mirror lattice

If the correlator between the source at position 0 on the physical lattice with the sink at
position x on the physical lattice (x ∈ Λ̃) is given by C(t, x) = 〈U(0)ΓV(0)V(x)ΓU(x)〉, then
the correlator between the source at position 0 on the physical lattice with the sink at position
x on the mirror lattice is given by C(t, x) = 〈U(0)ΓV(0)v(x)Γu(x)〉. Here the fermions on
the mirror lattice have been expressed in the orbifold basis in order to be valid for x ∈ Λ/Λ̃.
Note that the representation of the source is unchanged as its position is unchanged and it
remains on the physical lattice.
Using the definition of the C∗ boundary conditions, we infer that ψC(x) = ψ(x), and

similarly ψ
C
(x) = ψ(x), giving

C(t, x) = 〈O(0)v(x)Γu(x))〉,
= 〈O(0)vC(x)ΓuC(x))〉,
= 〈O(0)OC(x)〉. (A.10)

We therefore find that

C(t, x) + C(t, x) = 〈O(0)O(x)〉+ 〈O(0)OC(x)〉. (A.11)

From the definition of the C∗ formulation, it may be seen that taking the spatial sum over
both the physical and mirror lattices on one end of the correlator corresponds to making the
corresponding interpolating operator C-even. It is in fact only necessary to make one of the
interpolating operators of the correlator C-even, as the C-odd components of the remaining
interpolating operator will vanish in combination with the C-even interpolating operator due
to the nature of the C∗ boundary conditions.
As for the case above, we derive an explicit expression for the correlator with the sink on

the mirror lattice:

C(t, x) = 〈U(0)ΓV(0)v(x)Γu(x)〉, (A.12)
= 〈u(0)Γv(0)v(x)Γu(x)〉,
= 〈u(0)Γv(0)T(x → x)v(x)ΓT(x → x)u(x)〉,
= Tr [u(x)u(0)Γv(0)v(x)Γ] T(x → x)T(x → x),

= Tr [〈u(0)u(x)〉Γ〈v(x)v(0)〉Γ] T(x → x)T(x → x),

= Tr
[

D−1
u (0, x)ΓD−1

v (x, 0)Γ
]

T(x → x)T(x → x),

= Tr
[

D−1
u (0, x)ΓD−1

v (x, 0)Γ
]

, (A.13)

where we have taken the trace in Dirac space. We therefore see that, in the orbifold construction,
we can treat the correlators the same irrespective of whether the sink lies on the physical or
mirror lattice. The logic presented above also applies to the baryons.
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a.3 c-even correlator construction

C-even interpolating operators are necessary for the construction of zero-momentum fields
in the C∗ formulation. A correlator C(t) can be constructed as the trace of the product
of an interpolating operator Oeven and its Dirac adjoint Oeven. In order to construct a
C-even correlator, we require these interpolating operators to be either both C-even or both
C-odd. For now, we will consider the case where they are both C-even. This is because we
are considering the effective mass, so C-odd components are selected against by taking the
momenta to be zero. These C-even operators can be formed by taking the sum of the usual
interpolating operator with its charge-conjugate:

C(t) =
〈
OevenOeven

〉
,

=

〈
1
2

(
O +OC

) 1
2

(
O +OC

)〉
,

=
1
4

(〈
OO

〉
+
〈
OCO

〉
+
〈
OOC

〉
+
〈
OCOC

〉)
. (A.14)

We therefore see that the C-even or, indeed, the C-odd correlator can be found by evaluating
four different correlation functions and taking the appropriate sum.
Charge-conjugated interpolating operators OC and OC can be constructed by applying

the charge conjugation operation given in Eqns. (A.3) to each fermion field in O and O
respectively.
Defining our meson interpolating operators as

O(x) = d(x)αΓαβu(x)β; (A.15a)
O(x) = u(x)αΓαβd(x)β, (A.15b)

leads to the charge-conjugated interpolating operators

OC(x) = −d(x)ωCωαΓαβCβκu(x)κ; (A.16a)

OC
(x) = −u(x)ωCωαΓαβCβκd(x)κ. (A.16b)

A final expression for the meson C-even correlator is given in Sec. 4.5, while the baryon C-even
interpolating operators and correlators are given in Sec. 5.2.3.

c-even correlator from the generating functional

Starting from the generating functional in the periodic/anti-periodic basis, we hereby derive
the expression for the C-even meson correlator on a purely physical lattice. This is intended
both as a demonstration and to be used later in this appendix as a check on our calculation
of the correlators inside our implementation of the C∗ formulation.

The generating functional W for two flavours of fermion u and d can be written in terms of
the action S as

W[S] =
∫
DuDuDdDde−S (A.17)

or, treating the periodic and anti-periodic components of the fermions independently, as

W[S] =
∫
DuPDuADdPDdAe−S. (A.18)
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When Eqs. (A.2) are applied to the fermion fields, the free action may be written

Sfree =
∫

L3T
d4x
(

uP(x)DuP(x, x′)uP(x′) + uA(x)DuA(x, x′)uA(x′)

+ dP(x)DdP(x, x′)dP(x′) + dA(x)DdA(x, x′)uA(x′)
)

,

=
∫

L3T
d4x
(
− uT

P(x)CDuP(x, x′)uP(x′) + uT
A(x)CDuA(x, x′)uA(x′)

− dT
P(x)CDdP(x, x′)dP(x′) + dT

A(x)CDdA(x, x′)dA(x′)
)

, (A.19)

where Dψ(x, x′) is the Dirac operator for the fermion ψ. The label on the Dirac operator does
not imply any symmetry properties of the Dirac operator.

Introducing arbitrary source fields for each fermion field component gives us the generating
functional

W [juP , juA , jdP , jdA ] (A.20)

= B1

∫
DuDuDdDd

· exp
(
− Sfree +

∫
L3T

d4x
[
jT
uP

uP + jT
uA

uA + jT
dP

dP + jT
dA

dA
]
(x)
)

,

where B1 is some constant.
Using the standard integral ∫ ∞

∞
d~pe−

1
2~p·A·~p+~j~p = B2e

1
2
~j·A−1·~j, (A.21)

where B2 is a constant, the generating functional can be written

W[j] = exp
(1

4
(−juPα(x′)(SuP C)(x′, x′′)αβ juPβ(x′′)

+ juAα(x′)(SuA C)(x′, x′′)αβ juA β(x′′)

− jdPα(x′)(SdP C)(x′, x′′)αβ jdPβ(x′′)

+ jdAα(x′)(SdA C)(x′, x′′)αβ jdA β(x′′)
)

, (A.22)

where we have neglected a constant which cancels later.

Correlator
〈
O(x)O(y)

〉
It is simple to show that the correlator〈

O(x)O(y)
〉
=
〈

d(x)αΓαβu(x)βu(y)γΓγσd(y)σ

〉
(A.23)

can be expressed in the form

1
W[0]

ΓαβΓγσCεαCωγ

(
− δ

δjdPε(x)
+

δ

δjdAε(x)

)(
δ

δjuPβ(x)
+

δ

δjuAβ(x)

)
(
− δ

δjuPω(y)
+

δ

δjuAω(y)

)(
δ

δjdPσ(y)
+

δ

δjdAσ(y)

)
W[j]

∣∣∣
j=0

. (A.24)
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We can therefore express the correlator in terms of the periodic and anti-periodic propagators
as 〈

O(x)O(y)
〉
=
〈

d(x)αΓαβu(x)βu(y)γΓγσd(y)σ

〉
,

=
1

W[0]

(
ΓαβΓγσCεαCωγ

(
− δ

δjdPε(x)
+

δ

δjdAε(x)

)(
δ

δjuPβ(x)
+

δ

δjuA β(x)

)
(
− δ

δjuPω(y)
+

δ

δjuAω(y)

)(
δ

δjdPσ(y)
+

δ

δjdAσ(y)

)
exp
(

1
4

(
− juPκ(x′)(SuP C)(x′, x′′)κζ juPζ(x′′)

+ juAκ(x′)(SuA C)(x′, x′′)κζ juAζ(x′′)

− jdPκ(x′)(SdP C)(x′, x′′)κζ jdPζ(x′′)

+ jdAκ(x′)(SdA C)(x′, x′′)κζ jdAζ(x′′)
)))∣∣∣∣∣

j=0

. (A.25)

Performing the first pair of derivatives gives

f1[j, S] :=
(

δ

δjdPσ(y)
+

δ

δjdAσ(y)

)
W[j],

=
1
2
(
− (SdP C)(y, x′′)σζ jdPζ(x′′)

+ (SdA C)(y, x′′)σζ jdAζ(x′′)
)
W[j], (A.26)

where the skew-symmetry of SC has been used. Performing the remaining pairs of derivatives,
and neglecting terms which will evaluate to zero when j = 0 is assigned, gives

f2[j, S] :=
(
− δ

δjuPω(y)
+

δ

δjuAω(y)

)
f1[j, S],

=
1
2
(
− (SdP C)(y, x1)σζ jdPζ(x1)

+ (SdA C)(y, x1)σζ jdAζ(x1)
)(

− δ

δjuPω(y)
+

δ

δjuAω(y)

)
W[j],

=
1
4
(
− (SdP C)(y, x1)σζ jdPζ(x1)

+ (SdA C)(y, x1)σζ jdAζ(x1)
)(

(SuP C)(y, x2)ωξ juPξ(x2)

+ (SuA C)(y, x2)ωξ juAξ(x2)
)
W[j];

(A.27)
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f3[j, S] :=
(

δ

δjuPβ(x)
+

δ

δjuAβ(x)

)
f2[j, S],

=
1
4
(
− (SdP C)(y, x1)σζ jdPζ(x1)

+ (SdA C)(y, x1)σζ jdAζ(x1)
)(

δ

δjuPβ(x)
+

δ

δjuA β(x)

)
(
(SuP C)(y, x2)ωξ juPξ(x2)

+ (SuA C)(y, x2)ωξ juAξ(x2)
)
W[j],

=
1
4
(
− (SdP C)(y, x1)σζ jdPζ(x1)

+ (SdA C)(y, x1)σζ jdAζ(x1)
)(

(SuP C)(y, x)ωβ

+ (SuA C)(y, x)ωβ

)
W[j];

(A.28)

f4[j, S] :=
(
− δ

δjdPε(x)
+

δ

δjdAε(x)

)
f3[j, S],

=
1
4
(
(SuP C)(y, x)ωβ + (SuA C)(y, x)ωβ

)
(
− δ

δjdPε(x)
+

δ

δjdAε(x)

)
(
− (SdP C)(y, x1)σζ jdPζ(x1)

+ (SdA C)(y, x1)σζ jdAζ(x1)
)
W[j],

=
1
4
(
(SdP C)(y, x)σε + (SdA C)(y, x)σε

)
((SuP C)(y, x)ωβ + (SuA C)(y, x)ωβ)W[j],

=
1
4

CνεCτβ

(
SdP(y, x)σν + SdA(y, x)σν

)
(
SuP(y, x)ωτ + SuA(y, x)ωτ

)
W[j].

(A.29)

Gathering together the Γ and C matrices and applying Eqns. (A.1) lets us simplifies the
expression to

(CνεCεαΓαβCτβ)(CωγΓγσ) = (δναΓαβCτβ)(CωγΓγσ)

= (−ΓνβCβτ)(CωγΓγσ) = −(ΓC)ντ(CΓ)ωσ.

The correlator can therefore be expressed as〈
O(x)O(y)

〉
= −1

4
( 1

W[0]
(ΓC)ντ(CΓ)ωσ(SdP + SdA)(y, x)σν

(SuP + SuA)(y, x)ωτW[j]
)∣∣∣

j=0
,

= −(CΓ)ωσ(ΓC)ντSd(y, x)σνSu(y, x)ωτ, (A.30)

where Sψ(x, y) := 1
2 (SψP(x, y) + SψA(x, y)).

Following the same procedure in the cases
〈
O(x)OC

(y)
〉
,
〈
OC(x)O(y)

〉
and〈

OC(x)OC
(y)
〉
gives:
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• 〈
OC(x)O(y)

〉
= −

〈
d(x)α[CΓC]αβu(x)βu(y)γΓγσd(y)σ

〉
= −1

4
( 1

W[0]
(CΓ)ωσ(ΓC)ντ(−SdP + SdA)(y, x)σν

(−SuP + SuA)(y, x)ωτW[j]
)∣∣∣

j=0
,

= −1
4
(CΓ)ωσ(ΓC)ντ(−SdP + SdA)(y, x)σν

(−SuP + SuA)(y, x)ωτ. (A.31)

• 〈
O(x)O(y)C〉

= −
〈

d(x)αΓαβu(x)βu(y)γ[CΓC]γσd(y)σ

〉
= −1

4
( 1

W[0]
(ΓC)ντ(CΓ)γω(−SdP + SdA)(y, x)ων

(−SuP + SuA)(y, x)γτW[j]
)∣∣∣

j=0
,

= −1
4
(ΓC)ντ(CΓ)γω(−SdP + SdA)(y, x)ων

(−SuP + SuA)(y, x)γτ,

= −1
4
(CΓ)ωσ(ΓC)ντ(−SdP + SdA)(y, x)σν

(−SuP + SuA)(y, x)ωτ,

=
〈
OC(x)O(y)

〉
. (A.32)

• 〈
OC(x)OC(y)

〉
=
〈

d(x)α[CΓC]αβu(x)βu(y)γ[CΓC]γσd(y)σ

〉
= −1

4
( 1

W[0]
(ΓC)ντ(CΓ)γω(SdP + SdA)(y, x)ων

(SuP + SuA)(y, x)γτW[j]
)∣∣∣

j=0
,

= −1
4
(ΓC)ντ(CΓ)γω(SdP + SdA)(y, x)ων

(SuP + SuA)(y, x)γτ,

= −(ΓC)ντ(CΓ)γωSd(y, x)ωνSu(y, x)γτ,

= −(CΓ)ωσ(ΓC)ντSd(y, x)σνSu(y, x)ωτ,

=
〈
O(x)O(y)

〉
(A.33)

As the correlators
〈
OO

〉
and

〈
OCOC

〉
give the same expression as each other, as do

〈
OOC

〉
and

〈
OCO

〉
, we find that the sum of these correlators is consistent with Eq. (A.11), the

global sum over correlators in the orbifold construction, up to a constant factor.
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C-even correlator

We see that the C-even correlator can finally be evaluated as

C(t) =
〈
OevenOeven

〉
,

=
1
4

(〈
OO

〉
+
〈
OCO

〉
+
〈
OOC

〉
+
〈
OCOC

〉)
,

= −1
4

1
4
((ΓC)ντ(CΓ)ωσ)

((SdP(y, x)σν + SdA(y, x)σν)(SuP(y, x)ωτ + SuA(y, x)ωτ)

+ (−SdP(y, x)σν + SdA(y, x)σν)(−SuP(y, x)ωτ + SuA(y, x)ωτ)

+ (−SdP(y, x)σν + SdA(y, x)σν)(−SuP(y, x)ωτ + SuA(y, x)ωτ)

+ (SdP(y, x)σν + SdA(y, x)σν)(SuP(y, x)ωτ + SuA(y, x)ωτ),

= −1
4

1
4
((ΓC)ντ(CΓ)ωσ)

(SdP(y, x)σνSuP(y, x)ωτ + SdP(y, x)σνSuA(y, x)ωτ

+ SdA(y, x)σνSuP(y, x)ωτ + SdA(y, x)σνSuA(y, x)ωτ

+ SdP(y, x)σνSuP(y, x)ωτ − SdP(y, x)σνSuA(y, x)ωτ

− SdA(y, x)σνSuP(y, x)ωτ + SdA(y, x)σνSuA(y, x)ωτ

+ SdP(y, x)σνSuP(y, x)ωτ − SdP(y, x)σνSuA(y, x)ωτ

− SdA(y, x)σνSuP(y, x)ωτ + SdA(y, x)σνSuA(y, x)ωτ

+ SdP(y, x)σνSuP(y, x)ωτ + SdP(y, x)σνSuA(y, x)ωτ

+ SdA(y, x)σνSuP(y, x)ωτ + SdA(y, x)σνSuA(y, x)ωτ),

= −1
4
((ΓC)ντ(CΓ)ωσ) (SdP(y, x)σνSuP(y, x)ωτ

+ SdA(y, x)σνSuA(y, x)ωτ). (A.34)

The expression above gives the C-even propagator defined in terms of the spatially periodic
and spatially anti-periodic propagators on the entirely physical lattice construction. We
carried out a check to ensure that the result of the meson correlator in our implementation
of the orbifold construction, summed over both the physical and mirror lattice at the sink,
was consistent with the above expression calculated on a physical lattice of length 2L in
one spatial dimension and length L in the other spatial dimensions, which passed. This is a
demonstration that our implementation of the orbifold construction may be used to give the
C-even correlators necessary for the calculation of masses using C∗ boundary conditions.
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B
CLASS ICAL VACUA OF COMPACT QEDC

This appendix proves the below proposition that is used in the discussion of minima of the
Wilson action in Section 3.9.

proposition B.1. Let U(x, µ) be some configuration of gauge fields that minimises the
Wilson action.

1. A vector z exists such that it satisfies the conditions

z3 = 1; z2
µ = 1, (B.1)

and that, under a gauge transformation U(x, µ) is equivalent to the gauge configuration

Uz(x, µ) =

zµ if xµ = Lµ − 1

1 otherwise
. (B.2)

2. The above vector z is unique.

Regarding the proof of the first part of the proposition, if we define the set C to contain the
directions µ along which C∗ boundary conditions are implemented on a lattice, an Abelian
gauge field will obey the following conditions

U(x + L̂µ, ρ) =

U(x, ρ), if µ 6∈ C

U(x, ρ)∗, if µ ∈ C,
(B.3)

where the lattice has discrete integer-valued coordinates

0 ≤ xµ ≤ Lµ − 1. (B.4)

The following working assumes that there is at least one C∗-periodic boundary, with direction
µ = 3 being C∗-periodic, and at least one periodic direction, with µ = 0.
In order to explore the classical vacua of compact QEDC , we must explore the properties

of all gauge-field configurations for which the Wilson action is minimised. This minimisation
condition may be written simply in terms of the plaquette

P(x, µ, ν) ≡ U(x, µ)U(x + µ̂, ν)U(x + ν̂, µ)−1U(x, ν)−1 (B.5)

as
P(x, µ, ν) = 1. (B.6)

If one were to transform the gauge links into axial gauge in a particular direction, this would
be equivalent to setting all gauge-links to unity apart from those that lie on the hyperplane
πµ defined as

πµ : xµ = Lµ − 1. (B.7)
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Those non-unity links on the hyperplanes will in this appendix henceforth be referred to as
active gauge links. In fact, this is always possible along any given direction, and it may be
shown through Eq. B.6 that a simultaneous gauge-transformation to axial gauge along all
directions is possible.
Through imposing the above conditions on the gauge links that lie on the hyperplanes,

further conditions on these gauge links may be deduced. Whereas a plaquette at an intersection
between two hyperplanes will have four active-gauge links, a plaquette that exists on only
one hyperplane will only have two active links, adjacent to each other. The necessity that
this plaquette be equal to unity, along with noting that the boundary conditions leave unity
values unchanged, leads to the conclusion that the two active links of the plaquette must be
equal-valued:

U(x, µ) = U(x + ν̂, µ), for any x ∈ πµ, ν 6= µ. (B.8)

When this relation is used recursively, it becomes evident that all active links along a given
direction µ must be equal-valued.

For simplicity in the following discussion, we denote a hyperplane link as

Wµ = U(x, µ), for any x ∈ πµ. (B.9)

We now turn our focus to those plaquettes that lie at the intersection between two distinct
hyperplanes. Considering first the plaquette that sits at a site x in the hyperplane x ∈ πµ ∩π3

for those directions µ that are periodic

1 = P(x, µ, 3) = WµW3WµW−1
3 . (B.10)

This necessarily implies that
Wµ = ±1, if µ 6∈ C. (B.11)

Conversely, taking µ 6= 3 to be a direction with C∗ boundary conditions gives

1 = P(x, µ, 3) = WµW−1
3 WµW−1

3 , (B.12)

from which we get
Wµ = ±W3 if µ ∈ C. (B.13)

The final step to prove the first part of the proposition is to show that, with a gauge
transformation, W3 may be set to unity. If one defines w to be a complex number such that a
hyperplane link may be written as W3, and the gauge transformation to be

Λ(x) = w for 0 ≤ xµ ≤ Lµ − 1, (B.14)

to which the following boundary conditions are applied to extend the domain above,

Λ(x + L̂µ) =

Λ(x) if µ 6∈ C;

Λ(x)∗ if µ ∈ C,
(B.15)

one may notice that both the axial gauge and the gauge-field boundary conditions are
preserved under this gauge transformation. In fact, the above gauge transformation also
leaves unchanged the values of all active links along periodic directions. In the case of the C∗

directions µ ∈ C, the gauge transformation acts on active link variables oriented along µ as

Wµ → wWµw = W−1
3 Wµ = ±1. (B.16)
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In particular, if µ = 3, then

W3 → wW3w = W−1
3 W3 = 1. (B.17)

Hence, one sees that the first part of the above proposition is proven, as to summarise: all
links outside of the above-defined hyperplanes are set to unity by the axial gauge, W3 can be
set to unity whilst preserving the axial gauge and gauge-field boundary conditions, and in all
other hyperplanes Wµ = ±1.
In order to prove the second part of the proposition, that being that z is unique, we may

carry on the above argument, adding the introduction of the Wilson lines

W(µ) =
Lµ−1

∏
s=0

U(sµ̂, µ), (B.18)

to notice that the original gauge configuration U(x, µ) determines the vector z uniquely to be

zµ =

W(µ) if µ 6∈ C;

W(µ)W(3)−1 if µ ∈ C.
(B.19)

That W(µ) must be gauge invariant iff µ is a periodic direction, whilst the parallel transport
W(µ)W−1

3 is gauge-invariant iff µ is a C∗ direction, may be shown easily through expansion
of the products. Thus the second part of the proposition is proven.
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C
ANATOMY OF THE SIGN PROBLEM

In order to discuss whether there is potentially a sign problem, for reasons somewhat analogous
to the case of usual periodic spatial setup, we must rewrite the fermionic path integral in
terms of linear algebra.
In the case of periodic boundary conditions in space, integrating the fermion fields in the

path integral gives one the Dirac operator determinant. This is not possible in the case of
C∗ boundary conditions, as ψ(x) and ψ are not independent of each other. Instead, a change
of variables may be employed,

ψ±(x) =
ψ(x)± C−1ψ

T
(x)√

2
, (C.1)

and a new field defined:

η(x) =

(
ψ+(x)

−iψ−(x)

)
. (C.2)

When this change of variables is employed, the condition for C∗ boundary conditions can be
expressed as

η(x + L̂k) = Kη(x), K =

(
1 0

0 −1

)
, (C.3)

with matrix K acting on the two-component η. These will henceforth be referred to as K
boundary conditions in this appendix.

The condition
C−1D[V]TC = D[V∗], (C.4)

an identity of the Wilson-Dirac operator valid for an arbitrary non-Abelian gauge theory, may
be used in order to rewrite the fermionic action as

SF = ψD[V]ψ = −1
2

ηTCD[J (V)]η, (C.5)

taking DJ ≡ D[J (V)] to be the Wilson-Dirac operator where the gauge field J(V) is used as
an input, J(V) being

J (V) = 12 ⊗ReV + J ⊗ ImV, J =

(
0 −1

1 0

)
. (C.6)

As with the K matrix above, 12 and J are 2-by-2 matrices that act upon the two components
of η. The gauge group representation J(V) is equivalent within a unitary transformation to
the representation V.

Substituting C.5 into the fermionic action and integrating gives∫
C∗ b.cś

DψDψe−ψD[V]ψ =
∫

K b.cś
Dηe

1
2 ηTCDJ η = PfKCDJ . (C.7)

Here, CDJ is a complex and antisymmetric matrix, and the fact that the derivative that
appears in the Dirac operator is defined on the space of those fields that satisfy K boundary
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conditions is denoted by the subscript K. The Pfaffian of CDJ is represented as PfKCDJ and
can be related to determinant of DJ through the use of algebraic identities and using the fact
that Det(C) = 1, giving

(PfKCDJ )2 = DetKCDJ = DetKDJ . (C.8)

Now that the fermionic path integral has been expressed in such a form, the matter of
whether a sign problem exists in this setup may be addressed. The fact that the squared
Pfaffian is real may be deduced through substitution using the γ5-Hermiticity of the Dirac
operator, γ5Dγ5 = D†, into Eq. (C.8). In order to instead demonstrate that the Pfaffian is
real by itself, we may introduce an auxiliary operator C(DJ − s) where s is some complex
number, expressed as a polynomial in s and the distinct roots λα:

PfKC(DJ − s) = ∏
α

(s− λα)
mα . (C.9)

The Pfaffian value as the limit of s is taken to infinity determines the normalisation of this
expression. Using the above equation and Eq. (C.8), we may write an expression for the
determinant DetK(DJ − s) using the characteristic polynomial of DJ

DetK(DJ − s) = [PfKC(DJ − s)]2 = ∏
α

(s− λα)
2mα . (C.10)

We see that, as λα are the roots of the characteristic polynomial for DJ , they may be identified
as the eigenvalues of DJ . We may declare that all of these eigenvalues are either real or appear
only in pairs of complex conjugates, as a consequence of the γ5-Hermiticity of DJ . As the
algebraic multiplicity of λα is 2mα, we see that, if one requires that s be real, DetK(DJ − s)
is necessarily positive, and therefore the Pfaffian is real. To return to the original problem,
s = 0 may be enforced. In this case, we get

PfKCDJ = ∏
α|Imλα=0

λmα
α ∏

α|Imλα>0
|λmα

α |2. (C.11)

We therefore see that the fermionic Pfaffian is real is the case of C∗ boundary conditions.
Finally, a note must be made about a mild sign problem at finite lattice spacing in the

case of C∗ boundary conditions, that is totally analogous to the case of periodic boundary
conditions with a single flavour; the possibility for Wilson fermions to be negative allows the
Pfaffian to be negative, as shown by Eq. (C.11). This possibility however disappears when
the continuum limit is taken, as the eigenvalues of the Dirac operator tend towards m > 0.
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D
PROPERTIES OF THE PFAFFIAN

In the following discussion of the properties of the Dirac operator and of its Pfaffian, we
hereby set a = 1.

The quark-antiquark doublet, on which the Dirac operator acts, may be written as

χ =

(
ψ

ψC

)
=

(
ψ

C−1ψ
t

)
. (D.1)

The Dirac operator itself is formed of a sum of terms,

D = m + Dw + δDsw, (D.2)

where Dw is the Wilson-Dirac operator and δDsw is the Sheikholeslami-Wohlert (SW) term,
a term used in the Symanzik improvement program to correct for O(a) systematic error due
to the lattice discretisation.

The Wilson-Dirac operator can be written as

Dw =
1
2 ∑

µ

{
γµ(∇µ −∇†

µ)−∇†
µ∇µ

}
. (D.3)

In our implementation, however, attention has been paid in order to ensure that the forward
covariant derivative ∇µ be constructed such that the quark and antiquark fields transform
respectively under representations of the gauge group that are complex conjugates of each
other,

∇µχ(x) =

(
zq̂(x, µ)U(x, µ) 0

0 z−q̂(x, µ)U∗(x, µ)

)
χ(x + µ̂)− χ(x). (D.4)

Here the SU(3) gauge link variable is denoted as U(x, µ) while the U(1) gauge link variable is
denoted as z(x, µ), while the electric charge of the given quark flavour is given by q̂qel as in
Eq. (3.62), which, for our choice qel = 1/6, gives the up-type quarks q̂ = 4 and the down-type
quarks q̂ = −2. The following temporal and spatial boundary conditions are applied to the
quark-antiquark doublet,

χ(x + T
a 0̂) = χ(x), (D.5a)

χ(x + L
a k̂) = Kχ(x), (D.5b)

for spatial directions labelled k = 1, 2, 3, where K is a matrix that exchanges the quark and anti-
quark, thus enforcing the C∗ boundary conditions that characterise the QCD+QEDC formalism,
and whose explicit form is given by

K =

(
0 1

1 0

)
. (D.6)
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The SW term is given by

δDsw = −1
4 ∑

µ,ν
σµν

{
cSU(3)

sw

(
Ĝµν 0

0 −Ĝ∗µν

)
+ q̂ cU(1)

sw

(
F̂µν 0

0 −F̂∗µν

)}
, (D.7)

where σµν = i
2 [γµ, γν], and, as for the Wilson-Dirac term, the SW term is constructed taking

into account the different gauge group representations under which the SU(3) and U(1) fields
transform respectively. In the above expression, the Hermitian SU(3) and U(1) field tensors
have the respective clover discretisations Ĝµν and F̂µν.

With these properties in mind, three propositions will now be presented that are used in
Sec. 4.8 in order to explain the strategy by which the sign of the Pfaffian is calculated.

Proposition 1. The matrix CKD is antisymmetric.

Proof. For reference, we work in the chiral basis of Euclidean Dirac matrices, where γ5

is diagonal, γ0,2 ∈ R and γ1,3 ∈ I. We operate using the chosen representation for the
charge-conjugation matrix of

C = iγ0γ2, (D.8)

which satisfies the properties of antisymmetry, being its own inverse C2 = 1 and being
imaginary. The Euclidean Dirac algebra and properties of the gamma matrices give the
identities

γ5CγµCγ5 = γ∗µ , (D.9a)

γ5CσµνCγ5 = −σ∗µν , (D.9b)

while we have the following identities for the K matrix,

K

(
zq̂U 0

0 z−q̂U∗

)
K =

(
zq̂U 0

0 z−q̂U∗

)
K =

(
zq̂U 0

0 z−q̂U∗

)∗
, (D.10a)

K

(
Ĝµν 0

0 −Ĝ∗µν

)
K = −

(
Ĝµν 0

0 −Ĝ∗µν

)∗
, (D.10b)

K

(
F̂µν 0

0 −F̂∗µν

)
K = −

(
F̂µν 0

0 −F̂∗µν

)∗
. (D.10c)

Using these two sets of identities, one may prove

γ5CKDKCγ5 = D∗ . (D.11)

This is equivalent to
CKD = γ5D∗γ5CK = DtCK = −(CKD)t, (D.12)

where the γ5-Hermiticity of the Dirac operator has been used, as well as the transposition
properties of the C and K matrices, Ct = −C and Kt = K.

Proposition 2. The operator Q = γ5D has a doubly degenerate spectrum.

Proof. If we define the matrix U = CKγ5, it can be shown easily to have the following
properties:

U = U† = U−1 = −Ut = U∗ . (D.13)
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Using the property of anti-symmetry of the matrix CKD, we have that

UQ∗ = CKD∗ = −(CKD)∗ = (CKD)† = γ5Dγ5CK = QU . (D.14)

This result may be used to derive the following properties:

1. Given that Q has an eigenvector v with eigenvalue λ, Uv∗ is also an eigenvector of Q
with the same eigenvector λ:

QUv∗ = UQ∗v∗ = U(λv)∗ = λUv∗ . (D.15)

2. Uv∗ is orthogonal to v:

(Uv∗, v) = vtU†v = vtUv = 0 . (D.16)

3. If w is orthogonal to both v and Uv∗, then it follows that Uw∗ is also orthogonal to v
and Uv∗:

(Uw∗, v) = wtUv = −vtUw

= −(v∗, Uw) = −(Uv∗, w) = 0; (D.17a)
(Uw∗, Uv∗) = wtU2v∗ = v†w = (v, w) = 0. (D.17b)

These properties allow one to use a modified form of the Gram-Schmidt algorithm, alternating
between an orthogonalisation step and the construction of eigenvectors Uv∗i , to prove the even
degeneracy d of any eigenvector. As v and Uv∗ share the same eigenvalue but are orthogonal,
an orthonormal basis for the eigenspace can be chosen as

v1, Uv∗1 , v2, Uv∗2 , . . . , vd/2, Uv∗d/2 , (D.18)

where the corresponding eigenvectors will be repeated once each.

Proposition 3. If we denote the list of eigenvalues of Q as λn=1,...,12V ∈ R, with each
eigenvalue appearing d/2 times, where d is the eigenvalue’s degeneracy, then the following
equation holds:

Pf (CKD) =
12V

∏
n=1

λn . (D.19)

Proof. Considering that the Pfaffian of a matrix is a polynomial of its entries, then we define

f (m) = Pf [CTD(m)] (D.20)

to be a polynomial function in the bare mass m, as the Dirac operator D depends linearly on
m. The eigenvalues λn of the Hermitian Dirac operator Q, that also depends linearly on m,
are analytic functions of m even at points where they cross zero [65]. We may therefore define
a function

g(m) =
12V

∏
n=1

λn(m), (D.21)

where m ∈ R.
If we take the limit m → +∞, we see that the approximation D ' mI24V may be made.

This implies

lim
m→+∞

f (m) = lim
m→+∞

m12VPf(C⊗ K⊗ I3V) = lim
m→+∞

m12V = +∞ . (D.22)
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Applying the same limit m → +∞ to the Q matrix, we may approximate Q ' mI6V ⊗ γ5.
This limit sends half of the eigenvalues asymptotically to +m and the other half asymptotically
towards −m, giving

lim
m→+∞

g(m) = lim
m→+∞

12V

∏
n=1

λn = lim
m→+∞

m6V(−m)6V = +∞ . (D.23)

Therefore, both f (m) and g(m) must be positive for every m > M for some value M. One
may show that, through the properties of the determinant and of the Pfaffian,

f (m)2 = Pf [CTD(m)]2 = det [D(m)]

= det [Q(m)] =
12V

∏
n=1

λ2
n(m) = g(m)2,

(D.24)

for every m. As elucidated above, both f (m) and g(m) are positive for m > M, therefore
Eq. (D.24) implies that f (m) and g(m) are equal. As they are equal for every m > M, and
they are analytic functions of m, they must therefore be equal everywhere, as otherwise there
would be a discontinuity in the determinant of either of the two functions.
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E
ERROR ANALYSIS

In this appendix, we discuss the two different methods of error analysis that we have used in
this work, jackknife bootstrapping, which was used in the optimisation phase and is therefore
used in the GEVP results, and the Gamma method, which, unlike the Jackknife method, gives
an accurate quantification of the autocorrelation of the data series, and is therefore used in
the analysis of our final mass results.

e.1 preliminaries

The non-linear methods of analysis, through which we obtain physical observables from the
results of simulation, lead to difficulties in accurate error estimation of the final observables.
Myriad different approaches exist, including bootstrapping techniques in which samples are
created from a statistical ensemble and are independently operated on, with errors calculated
at the end through assessing the spread of the samples around the mean of the samples,
and techniques such as the Gamma method, in which a more thorough analysis of MC
autocorrelation is carried out, with errors that account for autocorrelation being calculated
through piecemeal error propagation. The aim of this section is to develop a mathematical
vocabulary for later discussing the properties of different techniques for error analysis.

e.1.1 Configuration series and correlation functions

The primary observables calculated in Lattice QCD are n-point correlation functions. From
the expectation values of these, physical quantities are derived. For example, masses are
obtained from two-point correlation functions with the momentum set to zero. If we denote by
Ar a real-valued primary observable, then we may write the n-point correlation functions of
these primary observables as 〈Ar1 . . . Arn〉, where 〈O〉 is the expectation value of the observable
O. The fermion-connected parts of these correlators, 〈Ar1 . . . Arn〉c, may be defined in the
conventional way and thereby satisfy the properties

〈Ar〉c = 〈Ar〉, (E.1a)
〈Ar As〉c = 〈Ar As〉 − 〈Ar, 〉〈As〉. (E.1b)

The measurement of primary observable Ar on a representative series, or ensemble, of N
gauge configurations that are each statistically independent of each other gives a series which
may be said to be the observable measured on the ensemble,

ar,1, ar,2, . . . , ar,N . (E.2)

A stochastic estimate ar of the expectation value 〈Ar〉 is then obtained by averaging over the
series:

ar =
1
N

N

∑
i=1

ar,i. (E.3)

This logic may be extended to the case of n-point correlators where n > 1, by considering that
the data series of the product of two observables Ar and As calculated on an ensemble with
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configurations numbered i = 1, · · · , N is ar,ias,i. Therefore, this product may be viewed as
simply another primary observable, and the expectation value 〈Ar As〉 of this product is the
average of 〈ar,ias,i〉 over the ensemble. Through induction this may be extended to arbitrarily
long correlation functions.

e.1.2 Validity of simulation statistics

In order to quantify statistically the accuracy of the measured estimate ar against the
expectation value 〈Ar〉, in principle many estimates must be taken, meaning that one must
repeat the simulation numerous times. Denoting the average of a function ψ of measured
primary observables over an infinite number of such simulations as ⟪ψ⟫, the standard deviation
between ar and 〈Ar〉 is given by ⟪(ar − 〈Ar〉)2⟫1/2.

Two conditions must be satisfied in order for the use of simulation statistics to be valid in
the estimation of physical observables, the first being that the measured primary observables
are unbiased relative to the expectation values, i.e.

⟪ar,i⟫ = 〈Ar〉 (E.4)

for any primary observable Ar and all i. The second condition that should be satisfied is the
statistical independence of the generated fields. This may be expressed as

⟪ar,ias,j⟫ = ⟪ar,i⟫⟪as,j⟫ if i 6= j, (E.5)

meaning that in the limit of infinite statistics there are no correlations between either fields
at non-zero separations. This may be expressed more generally as requiring a factorisation of
the correlation function ⟪ar1,i1 · · · arn,in⟫ into a product of separate averages for each distinct
value of the ”configuration time” i.

Enforcing that the fields in the generated representative ensembles have vanishing auto-
correlation is sufficient to satisfy the two above conditions, as discussed in Sec. 2.4.2. This
is made difficult by the abundance of configurations that is require to accurately determine
the autocorrelation functions and associated autocorrelation time, due to the statistical
fluctuations inherent in the measurements. One way of assessing this is through the Gamma
method [66], which we touch upon later.

e.1.3 Mean value distribution

The fact that all mean values ar, as of the primary observables calculated on a given represen-
tative ensemble indeed share the same underlying ensemble inevitably leads to correlations
between the mean values that can be written as

⟪ar1 . . . ark⟫ =
1

Nk

N

∑
i1=1
· · ·

N

∑
ik=1
⟪ar1,i1 . . . ark ,ik⟫. (E.6)

We may seek to rewrite these in terms of the correlation functions measured 〈Ar1 · · · Arn〉; if
we consider, for example, two point correlators, we may use Eq. (E.4) and (E.5) to obtain the
expression

⟪aras⟫ = 1
N2

N

∑
i,j=1
⟪ar,ias,j⟫ = 〈Ar〉〈As〉+

1
N
〈Ar As〉c. (E.7)
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Provided that k ≥ 1, Eq. (E.6) may be rewritten in terms of the measured correlation functions
as

⟪ar1 . . . ark⟫ =
k

∑
l=1

1
Nk−l l! ∑

P∈Pk,l

〈AP1〉c . . . 〈APl 〉c, (E.8)

where set Pk,l is the set of all possible partitions P = (P1, . . . , Pl) into l non-empty subsets of
the set {1, . . . , k}, where P1, . . . , Pl are ordered. In addition,

APi = ∏
j∈Pi

Arj . (E.9)

Taking the limit of large N gives the behaviour

⟪ar1 . . . ark⟫ = 〈Ar1〉 . . . 〈Ark〉+O(N−1), (E.10)

as proven in [26].
We may now turn our attention to the deviations of the mean values from the expectation

values,
δar = ar − 〈Ar〉, (E.11)

and the statistical properties thereof. If we recall Eq. (E.7), we see that we can rewrite it as

⟪δarδas⟫ = 1
N
〈Ar As〉c. (E.12)

This shows that the deviations of the mean values from the expectation value, of the two-point
correlator at least, are proportional to 1√

N
. Similarly, for an n-point correlator in general, the

expression

⟪δar1 . . . δark⟫ =
k

∑
l=1

1
Nk−l l! ∑

P∈P̃k,l

〈AP1〉c . . . 〈APl 〉c (E.13)

may be derived [26], however this is far more involved. Here P̃k,l ⊂ Pk,l represents the set of
partitions of 1, . . . , k into l subsets with at least two elements. This may be split into the two
cases, of even and odd k. In the case of even k,

⟪δar1 . . . δark⟫ =
1

Nk/2

{
〈Ar1 Ar2〉c . . . 〈Ark−1 Ark〉c + permutations

}
. (E.14)

In the case of odd k, however, deviations are more heavily suppressed, with a factor of
N−(k+1)/2 at the leading order. This is due to all possible ways in which the set may be
partitioned containing at least one subset with at least three elements. If we combine this
discussion with the expression for the correlation of the mean values in terms of the expectation
values, Eq. (E.10), we see, scaling the deviations by

√
N, that we have a joint probability

distribution of
√

Nδar, with a Gaussian form to leading order in 1/N that has a zero mean
and a variance 〈Ar As〉.

e.1.4 Physical quantities from measured observables

It must be noted that in the following discussion, a physical quantity is taken to mean any
function of expectation values that is well-defined. This may be arbitrarily complex and need
not have any real-world physical significance. The prime example that we will use is the mass
of a hadron for the sake of relevance to this work; however, for example, any well-defined
ratio of expectation values or the limit thereof would also be admissible in this discussion.
Through the averaging of primary observables measured on the lattice, correlation functions
may be attained that are combined in the appropriate way to calculate physical quantities.
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Using the example of the mass of a hadron, the primary observables measured are two-point
correlation functions Oπ(x0, y) measured at all lattice times x0 and with, for the sake of
simplicity, a single source at point y. The effective mass of the chosen hadron may be extracted
through the function

meff(x0) = −a−1lnOπ(x0 + a, y)
Oπ(x0, y)

, (E.15)

which should produce a curve that leads into a plateau with increasing t < T/2 as the
contribution from excited states diminishes. The signal of this plateau then typically degrades
due to the statistical noise that increases with time separation for almost all hadrons. Assuming
that in the body of the plateau the statistical errors are significantly larger in magnitude
than the contribution from excited states, the fit of the plateau to a constant value may
be taken as a stochastic estimate of the mass for that particular lattice. The results from
different lattices and at different values of physical parameters are then extrapolated and/or
interpolated towards the physical point to give an estimate of the theoretical value of the
physical observable.

Turning now to another rather abstract concept, we call a stochastic estimator any function
φ of the measured primary observables Ar and number of data points N that estimates a
given physical quantity Q such that

Q = lim
N→∞

φ with probability 1. (E.16)

While this defines the stochastic estimator, we demand in the following discussion a more
strict requirement, namely that the asymptotic expansion

φ ∼
N→∞

∞

∑
k=0

N−kφk(ar1 , ar2 , . . . ) (E.17)

is followed. Here, the expansion coefficients φ(k) are smooth functions of their arguments, the
number of which must be finite regardless of the k-value. An example of a stochastic estimator
that we have already visited is that of the effective mass function given in Eq. (E.15), which
stochastically estimates the effective mass associated with the exact hadronic propagator
g(x0 − y0).
Whilst the leading term in the expansion, which is independent of N, is a function only

of the averages ar of the measured primary observables and is therefore a valid stochastic
estimator, it is necessary to define the stochastic estimator as an expansion in N as the leading
term may in fact be inaccessible at large N. An example of where this may occur is when
taking a fit of the averages. In this case, as we will see in the case of the Jackknife error
estimation procedure, an expansion in terms of N is required.

Following on from our discussion of the requirements for the validity of simulation statistics,
let us explore the statistical quantities of the bias and the covariance matrix and how they
relate to the expansion of the stochastic estimators discussed above. In the following, Qα

denotes some physical quantity with index α, and φα corresponds to a stochastic estimator of
this physical quantity. We denote the bias of the stochastic estimator as

Bα = ⟪δφα⟫, δφα = φα −Qα; (E.18)

this measures the deviation of the estimate relative to the true value of the physical quantity.
Similarly, the magnitude of the statistical fluctuations of the observables measured on the
lattice, which are expected to be markedly larger than the bias of the estimator, is given by
the covariance matrix

Cαβ = ⟪δφαδφβ⟫. (E.19)
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Our task is to express the bias and covariance matrix as expansions in terms of 1/N, the
coefficients of these series being functions of the correlation functions 〈Ar1 · · · Arn〉 of the
primary observables. We first express the average of the measured value as

ar = 〈Ar〉+ δar, (E.20)

remembering that δar = O(N−1/2). Taylor-expanding the expression in Eq. (E.17) in terms
of the deviations δar, and ordering by inverse powers of N, gives

φα = φ̂
(0)
α + ∑

r
δrφ̂

(0)
α δar

+
1
N

φ̂
(1)
α +

1
2 ∑

r,s
δrδsφ̂

(0)
α δarδas +O(N−3/2)

(E.21)

with coefficients φ̂
(k)
α and derivatives δr denoting

φ̂
(k)
α = φ

(k)
α (〈Ar1〉, 〈Ar2〉, . . . ), δr =

δ

δ〈Ar〉
. (E.22)

We identify the physical observable Qα with the leading term φ̂
(0)
α , which means that the

remaining right-hand side terms of Eq. (E.21) together give the deviation δφα.
Using Eq. (E.12), and recognising that the deviations δar are the sole stochastic variables

in the expansion, one may average the above expansions over many simulations to receive the
expressions

Bα =
1
N

{
φ̂
(1)
α +

1
2 ∑

r,s
δrδsφ̂

(0)
α 〈Ar As〉c

}
+O(N−2), (E.23)

Cαβ =
1
N ∑

r,s
δrφ̂

(0)
α δsφ̂

(0)
β 〈Ar As〉c +O(N−2). (E.24)

We see here that the statistical fluctuations appear at order O(N−1/2), while the bias appears
at order O(N−1).

e.2 jackknife bootstrapping

Following the reasoning presented above, we see that one may estimate the bias and covariance
matrices using simulation statistics, through the calculation of expectation values and two-
point correlation functions from measured primary observables. This would require the explicit
knowledge of the coefficient functions φ(0) and φ(1), which may be complicated by, for example,
fit procedures, or even inaccessible.
Jackknife resampling is a simple and effective method for error analysis, through which

certain statistical properties of the observables may be determined at any stage of the
calculation. As the large-N limits of NBα and NCαβ are functions of the primary observable
expectation values, they are, in this discussion, physical quantities. The Jackknife method is
able to construct, at any point of the calculation, stochastic estimators for these statistical
quantities.
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e.2.1 Jackknife samples

In order to construct the jackknife samples from a set of N measured values ar,1, . . . , ar,N of
primary observable Ar, for each measured value ai out of the set, this same value is removed
to give the collection

ar,1, . . . , ar,i−1, ar,i+1, . . . , ar,N , (E.25)

and the average of the set is taken,

aJ
r,i ≡

1
N − 1

N

∑
k 6=i

ar,k. (E.26)

We note that the removed value ai is reintroduced after the corresponding average is taken.
In this way we end up with N distinct jackknife samples.
If we want an expression for the stochastic estimator of the jackknife samples, we may

assume that the stochastic estimator φ takes the value φJ
i if one discards the i’th measurement

and here treats the jackknife samples as a series with length N − 1. Using Eq. (E.17) as a
template, it may then be inferred that

φJ
i ∼N→∞

∞

∑
k=0

(N − 1)−kφ(k)(aJ
r1,i, aJ

r2,i, . . . ), (E.27)

with the same expansion coefficients φ(k) as before the resampling.
As for the bias and covariance matrices in terms of the jackknife samples, one may derive

the formulae

BJ
α =

N

∑
i=1

(φJ
α,i − φα), (E.28a)

C J
αβ =

N

∑
i=1

(φJ
α,i − φα)(φ

J
β,i − φβ). (E.28b)

Composed as they are themselves of stochastic estimators that by definition tend to the value
of the physical quantity as N → ∞, the expressions NBJ

α and NC J
αβ act as scaled stochastic

estimators of the following physical quantities respectively:

lim
N→∞

NBα = φ̂
(1)
α +

1
2 ∑

r,s
δrδsφ̂

(0)
α 〈Ar As〉c, (E.29a)

lim
N→∞

NCαβ = ∑
r,s

δrφ̂
(0)
α δsφ̂

(0)
β 〈Ar As〉c. (E.29b)

If one compares BJ and C J with the physical B and C with regards to the orders of N at
which the terms contribute, one sees that the approximation is valid to order N−3/2, at which
statistical fluctuations contribute.

Through substituting the definition of a jackknife sample,

aJ
r,i = ar +

1
N − 1

(ar − ar,i), (E.30)

into the expressions for the jackknife estimators of the bias and correlation matrices, Eq. (E.28a)
and (E.28b) respectively, and expanding in terms of N−1, one may arrive at the expansions
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of the jackknife estimators for N → ∞. For instance, one arrives at the expression for the
correlation matrix,

C J
αβ =

1
N ∑

r,s
δrφ

(0)
α (ar1 , . . . )δsφ

(0)
β (ar1 , . . . )(ars − aras) +O(N−2) (E.31)

where

ars =
1
N

N

∑
i=1

ar,ias,i, δr =
δ

δar
. (E.32)

We see that the structure of Eq. (E.31) follows that of the physical quantity that it estimates,
shown in Eq. (E.29b), the higher order terms of Eq. (E.31) being of the same structure as the
first term apart from the products of the measured primary observables ar,i growing in length.
It is important to note here that, in the calculation of the estimators for the statistical

properties such as the bias and the correlation matrix, the derivatives of the coefficient
function φ(0) does not require explicit calculation; the jackknife procedure performs numerical
differentiation of φ(0) through the use of the jackknife samples running through the calculation.
As the jackknife samples deviate relative to the average of the measured primary observables
ar on the scale of O(N−1), the estimators are also assumed to vary smoothly on this scale.

e.2.2 Propagating errors

An important property of the jackknife method is, for a function Φ of stochastic estimators
ψ1, · · · , ψm, that φJ

i = φ(ψJ
1, · · · , ψJ

m). This allows one to pass jackknife samples through an
arbitrarily long sequence of operations that produce a valid stochastic estimator at each stage,
with nothing more needed than the jackknife samples of the measured primary observables
and the evaluation of said stochastic estimators.

Focusing on the relevant case of hadron masses, the jackknife procedure for the extraction
of the mass starts with the jackknife averages O(x0, y)J

i of the primary observables O(x0, y)J,
which are the correlation functions with interpolating operators chosen to select the appropriate
state, calculated on each gauge-field configuration, with appropriate projection operators and
folding applied. As before, the operator has a source at time x0 and is measured at lattice
time y. The jackknife effective mass is given by the formula

mJ
eff(x0)i = −a−1ln

O(x0 + a, y)J
i

O(x0, y)J
i

, (E.33)

while the covariance matrix is given by

C J
x0x′0

=
N

∑
i=1
{mJ

eff(x0)i −meff(x0)}{mJ
eff(x′0)i −meff(x′0)}, (E.34)

where meff(x0) may be calculated from the average of the jackknife samples themselves. One
may extract the statistical error of meff(x0) at this point from (C J

x0x0)
1/2.

In order to perform a fit to extract a final value for the mass, the χ2-statistic

χ2 =
t1

∑
x0=t0

t1

∑
x′0=t0

{mh −meff(x0)}[(C J)−1]x0x′0
{mh −meff(x′0)}, (E.35)
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is minimised over the range of effective mass values that form the plateau, falling in the range
[t0, t1],

mh =
∑

t1
x0,x′0=t0

[(C J)−1]x0x′0
meff(x′0)

∑
t1
x0,x′0=t0

[(C J)−1]x0x′0

. (E.36)

Note that the jackknife estimator of the correlation matrix weights the contributions at each
time-point; this gives precedence to the time-points with smaller errors. As the mass is a
function of stochastic estimators, its statistical error may also be computed through the
jackknife method, through the calculation of the plateau for each jackknife sample, from which
the standard deviation is calculated.
As the above-described method requires the correlation matrix to be calculated for each

jackknife sample, this would require the jackknife samples of jackknife samples to be calculated.
This turns the problem into an O(N2) problem, which may be impractical for large data sets.
A simpler procedure is therefore often used, in which the error of the correlation matrix is
disregarded and the correlation matrix is calculated for the whole sample space, the value
remaining constant during the plateau fit and the associated jackknife error propagation. In
our jackknife analysis, we chose to use this simplification. Strictly speaking, the correctness of
this simplification requires that the statistical error is much larger in magnitude than any
systematic slope in the effective mass with time; also, asymptotically large values of N are
required to show the correctness. Lastly, the formula for the bias given by Eq. (E.28a) is no
longer valid when the simplication is used.
In order to perform a naive exploration of the autocorrelation length, one may separate

the original data into bins, that are averaged within themselves and form the new data set.
The jackknife procedure may then carry on as normal. Autocorrelation is then assessed by
checking at which bin-size the results start to diverge from the results at larger bin-sizes. The
autocorrelation length should be roughly equal to this bin-size. This binning procedure, it
must be said, is not as efficient with regards to controlling autocorrelation as other techniques
such as the Gamma method discussed later in this thesis, and is limited steeply by the size of
the ensemble.

e.3 gamma method for error estimation

When resampling methods such as the jackknife or bootstrap methods are used, the autocor-
relation may be naively quantified and adjusted for through the use of binning, in which the
data series is split into bins of equal size, which are each averaged and then replace the old
data as the new primary observables. These may then be resampled according to the chosen
method and the rest of the analysis may proceed as usual, although with a reduced number
of primary observables with respect to the un-binned calculation.

This binning is supposed to reduce the autocorrelation between sequential primary observ-
ables, and indeed it does. There is however a flaw in the capacity of the binning technique
to quantify the autocorrelation; when a data series is split into bins, there will always be
adjacent values that are separated into different bins, regardless of the chosen size of the bins.
These values enter into the mean of the bins, causing some amount of residual autocorrelation
between the bins. The integrated autocorrelation time for binned data is shown in [66] to
behave at the leading order as O(1/NB) for a large bin size NB. This means that these values
that are close in MC time become problematic when binning, as they force a power law in
the autocorrelation function measured through binning, when the autocorrelation function
is expected from theory to take the form of an exponential decay. This is disadvantageous
because it is difficult to reduce the effect of autocorrelation to the desired level, as data sets
are limited in length and it may be impossible to have bins with a size much larger than the
exponential autocorrelation time. This means that errors will be underestimated significantly
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in this regime far from the region of asymptotic O(1/NB) scaling of the autocorrelation
function.
In the Gamma method of error analysis, the explicit form of the autocorrelation function

is calculated, as opposed to the jackknife method where the autocorrelation is estimated
indirectly. This leads us to two benefits of the Gamma method with respect to binning
techniques, the first being that the Gamma method has truncation errors that are exponential
rather than power-like. Secondly, the Gamma method is able to offer an improved method of
estimation when the data series is not much longer than the exponential autocorrelation time,
through including an estimate of the slowest decaying modes of the autocorrelation function
in its form; no equivalent method is available for the binning methods.

e.3.1 Method

In our analysis, our objective is to best exploit the finite number Nα of measurements on an
ensemble α for a given primary observable Aα

i ,

aα
i (t), t = 1, · · · , Nα, (E.37)

in order to reduce the error on the estimation of the observable to the greatest possible extent
whilst remaining accurate within that error. In the above, t gives the computer time i.e. the
index of the configuration that the primary observable is being measured upon. It is assumed
that each observable is measured successfully on each of the configurations of the ensemble.
The average of the observable over the thermalised ensemble then gives an estimate for the
expectation value 〈Aα

i 〉 of the observable at values of the physical parameters at which the
ensemble is generated,

aα
i =

1
Nα

Nα

∑
t=1

aα
i (t). (E.38)

The fluctuations of the values of the primary observable with respect to the mean may then
be written as

δα
i (t) = aα

i (t)− aα
i . (E.39)

This is calculated for each observable and on each ensemble.
Defining a derived observable as some function of the measured primary observables,

F ≡ f (〈Aα
i 〉), (E.40)

the estimate of this derived observable is given as before using a mean of the function values
over the ensemble,

F = f (aα
i ). (E.41)

Linear error propagation may be used to investigate the error associated with this function.
Consider a Taylor expansion of f around 〈Aα

i 〉,

f (〈Aα
i 〉+ εα

i ) = F + f α
i εα

i + (ε2
i ), (E.42)

where the shorthands
f α
i = ∂α

i f |〈Aα
i 〉
= f

∂ f
∂〈Aα

i 〉

∣∣∣∣
〈Aα

i 〉
(E.43)

have been used. In reality, one does not have access to the expectation values of Aα
i , so the

mean values aα
i are used:

f
α

i = ∂α
i f |aα

i
. (E.44)
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Recalling Eq. (2.45), in order to help us express the error associated with the function f ,
we may define the autocorrelation function projected onto f as

Γα
F(t) + ∑

ij
f

α

i f
α

j Γαα
ij (t). (E.45)

This may then be used to define both the variance and the integrated autocorrelation time
specific to derived observable F and ensemble α,

(σα
F)

2 = Γα
F(0), τα

int(F) =
1
2
+

∞

∑
t=1

Γα
F(t)

Γα
F(0)

. (E.46)

Given that there may be different ensembles with the same physical parameters but with
different algorithmic parameters or initial seed values, that are at the same time statistically
uncorrelated with each other, the total error on observable F in this case may be calculated
through the summation in quadrature of the σα

F from all ensembles calculated,

(δF)2 = ∑
α

(σα
F)

2

Nα
2τα

int(F). (E.47)

The fraction that each ensemble in this scenario would contribute is given by

Rα(F) =
(σα

F)
22τα

int(F)
Nα(δF)2

, (E.48)

where we note that this is possible through the Gamma method because each ensemble is
analysed independently.
A distinguishing feature of the Gamma method is the estimation of the integrated auto-

correlation time through the truncation of the infinite sum with an upper limit Wα
F that is

chosen for each observable of each ensemble using an automatised procedure,

τα
int(F) =

1
2
+

Wα
F

∑
t=1

Γα
F(t)

Γα
F(0)

. (E.49)

If we neglect for a moment the issue of statistical error, it would be preferable to have a
Wα

F that is significantly larger than the characteristic decay time of the slowest mode of the
Markov operator, the exponential autocorrelation time τα

exp. If this condition is satisfied, then
the autocorrelation function is well-represented by a single exponential and the systematic
error due to truncation is given by O(e−Wα/τα

exp).
However, when statistical error is brought into consideration, it is evident that a Wα

F that is
too large will cause the signal-to-noise ratio to diminish. This is because the signal from Γα

F(t)
exponentially decays with time, whereas the statistical error of Γα

F(t) is roughly constant in
time. Increasing unduly the length of the summation window therefore decreases the quality
of the signal without much gain in estimation accuracy. In practice, this is mitigated against
by minimising the combined error, which is a sum of the statistical error and the systematic
error due to the truncation. This relies on the assumption that τα

exp ≈ Sττα
int, where Sτ is

optimised through inspection of the characteristics of the ensemble(s), and usually has values
in the range 2 - 5. In our analysis, the value Sτ = 1 was used.
Although the above assumption is made in order to define the size of the summation

window, in many LQCD contexts one finds that the values of τα
int and τα

exp differ by a large
factor, as noted in [67]. This may lead to the underestimation of the error, as, due to the
above-mentioned statistical errors, it is unsatisfactory to take the summation window to be
much greater than τα

exp.
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Fortunately, this is simple to address, through the addition to the formula for τα
int of another

term. Through ensuring that the summation window size Wα
F is large but that ρα

F(W
α
F ) is

distinguishable statistically from zero, the remaining section of τα
int in the region t > Wα

F is
assumed to be well-described by the exponential tail that is given by the slowest mode of the
Markov operator, ρα

F ∼ exp(−|t|/τα
exp), where ρα

F =
Γα

F(t)
Γα

F(0)
. When this term is integrated and

added on to the sum, the expression for τα
int becomes

τα
int(F) =

1
2
+

Wα
F

∑
t=1

ρα
F(t) + τα

expρα
F(W

α
F + 1). (E.50)

With the addition of this third term in mind, there are two common approaches to choosing
where to add the tail to the function, or equivalently how to select Wα

F . The first is the original
proposed in [66], in which the tail is added to the autocorrelation function starting at the point
where ρF(t) is different from zero by three standard deviations. In this procedure, Eq. (E.50)
becomes the error upper bound. The second approach, used by the ALPHA collaboration [67],
is to attach the tail at the point where one is about to lose the signal in ρF(t), which should
be approximately 1-2 standard deviations away from zero. Using this treatment, Eq. (E.50)
is treated as simply the estimate of the error. The ALPHA approach for the incorporation
of the integrated autocorrelation time into the error of observables is used for all ensembles
on which we have measured baryon masses, with the tail being added when ρF(t) is different
from zero by two standard deviations. This point is found through checking the condition
iteratively along the data series.
Finally, we shall end with a note about the implementation of the Gamma method with

respect to the construction of derived observables through the sequential application of
different functions. This will lead on to the discussion below of automatic differentiation.
When using the Gamma method, it is pragmatic to store for each derived observable both the
mean and the projected fluctuations per ensemble,

F ≡ f (aα
i ), δα

F(t) = ∑
i

f
α

i δα
i (t). (E.51)

If we define the successive function G as

G = g( f (〈Aα
i 〉)), (E.52)

that being a function of the function f (〈Aα
i 〉), then, if we first compute the values given in

Eq. (E.51), the error associated with G only requires the further calculation of the derivative
gF = ∂F g|F,

G = g(F) = g( f (aα
i )), (E.53a)

δα
G(t) = gFδα

F(t) = ∑
i

gF f
α

i δα
i (t) = ∑

i
gα

i δα
i (t), (E.53b)

where gα
i = ∂α

i g|aα
i
. Thus, the only objects that require passing through the calculation in

order to be able to calculate the error propagation are the mean and the fluctuations. It is
also self-evident that any primary observable may also be treated in the same fashion, if one
identifies the function with the identity.

e.3.2 Automatic differentiation

Various approaches exists for the analysis of errors of a derived observable. For example, the
jackknife method computes the error of a derived observable through calculating the function
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value for each jackknife sample and then measuring the standard deviation of the collection
of such function values. Aside from the above-mentioned problems with the treatment of
autocorrelation, there may exist with the jackknife method the problem that fits over some
samples do not converge. Linear error propagation may also be used to derive analytically
the expression for the error of a derived function; this, however, becomes more difficult as
the function becomes more complex. For a method as complicated as the Gamma method,
analytical linear error propagation is unfeasible. Finite difference methods, also known as
numerical differentiation, are usually used instead inside the Gamma method. This numerical
differentiation has the drawback that all finite difference formulae are ill-conditioned, and
care must also be taken to determine the optimal step size to use for the differentiation.
Auto-differentiation is an approach in which the derivative of an arbitrarily complicated

function is determined exactly, at least to machine precision. This is achieved through
the overloading of simple functions, inside which the function derivative is hard-coded and
calculated using the input data provided through the function call, to automatically calculate
the error of a derived observable at the same time as the function value is calculated. Through
the use of the chain rule, a complicated function may be split into its smallest operations,
reducing the analytical complexity and thereby the chance of a miscalculation of the error
propagation, whilst preserving the exactness of the differentiation which would be lost were
numerical differentiation used. Not only does auto-differentiation provide a remedy to the
problems discussed in the above paragraph, but it also allows one to assess the error of
a function of MC observables with potentially different run parameters or from different
ensembles. This could be useful in the context of a fit during the interpolation/extrapolation
to the physical point.

e.3.3 Application example: fit parameters

A fitting procedure is an example of a procedure that is often used in LQCD and whose error
would be very difficult to express through analytical error propagation. When we perform a
least-squares fit, we are in fact calculating for the parameter values pi(i = 1, · · · , Nparm) at
which the function

χ2(pi; da), pi(i = 1, · · · , Nparm), da(a = 1, · · · , Ndata) (E.54)

is minimised when the data da are fitted. Generally, χ2 may be expressed as

χ2 =
Ndata

∑
a=1

(
f (xa; pi)− da

σ(da)

)2

, (E.55)

where f (xa; pi) is a function of the parameters pi that is constrained to have a given form
a priori. The fitting procedure returns a set of parameters pi that minimise the function
χ2(pi; da) when the fixed data set da is provided.

In order to ascertain the error associated with the fitting procedure, we must consider how
a small shift in the input data affects the parameters returned. When shifting the data as
da → da + δda, to leading order the χ2 function will change as

χ2(pi; da + δda) = χ2(pi; da) + ∂a χ2∣∣
(pi ;da)

δda, (∂a ≡ ∂/∂da). (E.56)

This shift in χ2 will then cause a shift by δpi in the parameter values at which χ2 is minimised.
The above equation is differentiated with respect to pi and then set to zero, in order to find
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the new minimum. Expanding the resulting expression at pi = pi gives at leading order the
condition

∂j∂i χ2∣∣
(pi ;da)

δpj + ∂i∂a χ2∣∣
(pi ;da)

δda = 0, (∂i ≡ ∂/∂pi). (E.57)

For convenience, we define the χ2 Hessian

Hij = ∂j∂i χ2∣∣
(pi ;da)

(E.58)

evaluated at the minimum of χ2, and therefore arrive at the expression for the derivative with
respect to the input data of the fit parameters

δpi

δda
= −

Nparm

∑
j=1

(H−1)ij∂j∂a χ2∣∣
(pi ;da)

, (E.59)

which of course can enter as discussed above into the successive process of error analysis
through the chain rule. Here, only one pass of the data through the iterative process is
required, as only the fit parameter central values pi; da and the χ2 derivatives evaluated at
those central values are needed for the error analysis.
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