
Department of Physics

B AY E S I A N O P T I M I Z AT I O N O F VA R I AT I O N A L
Q UA N T U M E I G E N S O LV E R S

giovanni iannelli

A dissertation submitted to the University of Cyprus in partial fulfillment
of the requirements for the degree of Doctor of Philosophy

May 2023GIO
VANNI IA

NNELL
I

© Giovanni Iannelli, 2023

GIO
VANNI IA

NNELL
I

VA L I D AT I O N PA G E

Doctoral candidate: Giovanni Iannelli

Dissertation Title: Bayesian optimization of Variational Quantum Eigensolvers

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at the Department of Physics and was approved on the first of June
2023 by the members of the Examination Committee:

• Professor Constantia Alexandrou, University of Cyprus – Research Supervisor

• Professor Haralambos Panagopoulos, University of Cyprus – Chairman

• Assoc. Professor Nicolaos Toumbas, University of Cyprus

• Professor Agostino Patella, Humboldt University of Berlin

• Professor Luca Biferale, University of Rome “Tor Vergata”

GIO
VANNI IA

NNELL
I

D E C L A R AT I O N O F D O C T O R A L C A N D I D AT E

The present doctoral dissertation was submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy of the University of Cyprus. It is a product of
original work of my own, unless otherwise mentioned throught references, notes, or any
other statements.

Giovanni Iannelli

GIO
VANNI IA

NNELL
I

ΠΕΡ ΙΛΗΨΗ

Ο μεταβλητός κβαντικός ιδιολύτης (ΜΚΙ) είναι ένας υβριδικός κβαντικός-κλασικός αλγόριθμος
που χρησιμοποιείται για την εύρεση της θεμελιώδους κατάστασης μιας Χαμιλτονιανής χρησι-

μοποιώντας μεθόδους μεταβολής. ΄Εχει ένα ευρύ φάσμα πιθανών εφαρμογών, από την κβαντική
χημεία έως τις θεωρίες βαθμίδας στο πλέγμα στο φορμαλισμό της Χαμιλτονιανής. Ο αλγόριθμος
ΜΚΙ χρησιμοποιεί κβαντικούς υπολογιστές για να υπολογίσει την ενέργεια του συστήματος με

τις παραμέτρους του κυκλώματος και ελαχιστοποιεί αυτήν την παραμετροποιημένη ενέργεια με μια

κλασική ρουτίνα βελτιστοποίησης. Αυτή η διατριβή περιγράφει έναν αλγόριθμο βελτιστοποίησης
Bayes (BB) ειδικά σχεδιασμένο για να ελαχιστοποιεί την παραμετροποιημένη ενέργεια που λαμ-
βάνεται με έναν κβαντικό υπολογιστή. Ο αλγόριθμος BB, που βασίζεται στην παλινδρόμηση
διαδικασίας Gauss (ΠΔG), είναι ένας αλγόριθμος για την εύρεση του καθολικού ελάχιστου μιας
γενικής συνάρτησης απόκλισης από την στοχευμένη τιμή, π.χ. την ενέργεια, με πολύ μικρό αρι-
θμό επαναλήψεων ακόμη και όταν χρησιμοποιούνται δεδομένα που επηρεάζονται από στατιστικό

θόρυβο.
Επιπλέον, η διαδικασία ΠΔG που αναπτύχθηκε στα πλαίσια αυτής της διατριβής, αποδείχθηκε
πολύ ευέλικτη καθώς τη χρησιμοποιήσαμε επίσης για τον υπολογισμό διακριτών μετασχημα-

τισμών ολοκλήρωσης δεδομένων με στατιστικά σφάλματα. Συγκεκριμένα, αυτή η διαδικασία
χρησιμοποιήθηκε για την ανακατασκευή συναρτήσεων κατανομής parton από δεδομένα της ΚΧΔ
πλέγματος.

v

GIO
VANNI IA

NNELL
I

A B S T R A C T

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm used to
find the ground state of a Hamiltonian using variational methods. It has a wide range of
potential applications, from quantum chemistry to lattice gauge theories in the Hamiltonian
formulation. VQE relies on quantum computers to evaluate the energy of the system in terms
of circuit parameters, and it minimizes this parametrized energy with a classical optimization
routine. This work describes a Bayesian optimization (BO) algorithm specifically designed
to minimize the parametrized energy obtained with a quantum computer. BO based on
Gaussian process regression (GPR) is an algorithm for finding the global minimum of a
black-box cost function, e.g. the energy, with a very low number of iterations even when
using data affected by statistical noise.

Furthermore, the GPR procedure developed for this work proved to be very versatile as
we also used it to compute discrete integral transforms of noisy data. In particular, this
procedure was used to reconstruct parton distribution functions from lattice QCD data.

vi

GIO
VANNI IA

NNELL
I

C O N T E N T S

Περίληψη v

Abstract vi

List of Figures ix

Introduction 1

1 Variational quantum eigensolver 4
1.1 Introduction to quantum computing . 4
1.2 Quantum expectation estimation . 9
1.3 Variational quantum eigensolver . 13

2 Introduction to Gaussian processes 21
2.1 Gaussian process . 21
2.2 Sampling from a Gaussian process . 22
2.3 Geometry of Gaussian processes . 23
2.4 Conditional Gaussian processes . 29

3 Introduction to Bayesian inference 31
3.1 Bayes theorem . 31
3.2 Bayesian predictions . 33
3.3 Bayesian decision theory . 33
3.4 Bayesian model selection . 34

4 Gaussian process regression 38
4.1 Bayesian inference using quantum measurements 38
4.2 Bayesian prediction of quantum measurements 39
4.3 Inference and prediction: noiseless case . 40
4.4 Inference and prediction: heteroscedastic Gaussian noise 42
4.5 Efficient implementation of GPR . 43

5 Bayesian model selection in GPR 47
5.1 Changing the hyperparameters . 47
5.2 Maximum likelihood estimation of type II for GPR 49
5.3 Maximum a posteriori and regularization . 52

6 Bayes-Gauss integral transforms 57
6.1 Estimating a generic integral transform . 58
6.2 Fourier transforms of discrete data . 62
6.3 Bayes-Gauss-Fourier transforms . 66

7 Acquisition functions 75
7.1 Expected improvement . 75
7.2 Noisy expected improvement . 82

8 Testing the Bayesian VQE 88
8.1 Summary of the Bayesian VQE . 88
8.2 Testing on two qubits . 90
8.3 Possible extensions to high-dimensional spaces 94

vii

GIO
VANNI IA

NNELL
I

contents

9 Conclusions and outlooks 97

Bibliography 100

a Appendix 107
a.1 Multivariate Gaussian distribution . 107
a.2 (Quasi-)Monte Carlo integration . 108
a.3 Multistart optimization . 110

viii

GIO
VANNI IA

NNELL
I

L I S T O F F I G U R E S

Figure 2.1 Example of GP using µ(θ) = sin(θ) and k(θ, θ′) = cos(θ) cos(θ′)
4 ·

exp
(
− (θ−θ′)2

2

)
. The colored lines represent 3 random samples of

the GP. 22
Figure 2.2 Three GP samples drawn using different covariance functions. They

share the same mean function represented with a dashed black line
and the same standard deviation shown as a grey interval. However,
different choices of covariance functions impose different levels of
smoothness. 25

Figure 2.3 Three GP samples drawn using different values of the sample stan-
dard deviation. When σ is doubled, also the typical amplitude of
oscillations is doubled. 25

Figure 2.4 Three GP samples drawn using different values of the characteristic
length-scale. When ℓ is increased, oscillations with wave-length
shorter than ℓ are suppressed. 26

Figure 2.5 A two-dimensional GP sample drawn using different length-scale
parametrizations. With M1 the sample has isotropic oscillations, with
M2 it oscillates more frequently along one axis and with M3 along
an arbitrary direction. 27

Figure 2.6 Three GP samples drawn using RBF and periodic kernels. If periodic
kernel is used, all GP samples are periodic. 29

Figure 2.7 The three samples drawn from the conditional GP interpolate the
points marked with black circles. 30

Figure 3.1 Three possible models for explaining the data x marked with a
dashed line. The model with the highest marginal likelihood is the
one of intermediate complexity. 36

Figure 4.1 GPR of noiseless data using the periodic kernel, µ = 0, σ2 = 1 and
ℓ = 1. 41

Figure 4.2 GPR of noisy data using the periodic kernel, µ = 0, σ2 = 1 and ℓ = 1. 44
Figure 5.1 Noisy GPR using different values of the prior mean. The periodic

kernel was used with σ = ℓ = 1. 47
Figure 5.2 Noisy GPR using different values of the sample variance. The periodic

kernel was used with µ = 0 and ℓ = 1. 48
Figure 5.3 Noisy GPR using different values of the characteristic length-scale.

The periodic kernel was used with µ = 0 and σ = 1. 49
Figure 5.4 Noisy GPR performed with the hyperparameters µ ≈ −0.059, σ ≈

1.2, ℓ ≈ 0.9 that were found using MLE. 51
Figure 5.5 GPR of noisy data that is spread apart using the hyperparameters

µ ≈ 0.063, σ ≈ 1, ℓ ≈ 0.3. MLE selected an overfitting ℓ. 52

ix

GIO
VANNI IA

NNELL
I

list of figures

Figure 5.6 Some examples of gamma distributions obtained varying the shape
α and the rate β. 54

Figure 5.7 In the left panel is shown the gamma distribution used as the hy-
perprior on the characteristic length-scale, while in the right panel
is plotted the Nakagami distribution used as the hyperprior on the
sample standard deviation. 55

Figure 5.8 GPR performed on noisy data that is spread apart with the hyperpa-
rameters µ ≈ 0.05, σ ≈ 2.6, ℓ ≈ 2 that were found using MAP. The
regression is succesful in this problematic case. 56

Figure 6.1 Sinc interpolation and DTFT of the noiseless testing data. 64
Figure 6.2 Sinc interpolation and DTFT of the noisy testing data. 66
Figure 6.3 Hyperpriors used for the GPR of the testing data. 70
Figure 6.4 GPR and BGFT of the testing data. The hyperparameters found with

MAP are µ ≈ 0.64, σ ≈ 0.073, ℓ ≈ 1.2 . The approximating grid used
for the BGFT is ts

i = −4,−3.5, ..., 3.5, 4. 70
Figure 6.5 Credible intervals of the exact GPR (dashed) and of two approximate

GPRs (colored) obtained with grid distances ∆ts = 0.5, 4. In the right
panel, the posterior mean is subtracted from the results for a better
visualization. 72

Figure 6.6 Credible intervals of the exact GPR (dashed) and of two approximate
GPRs (colored) obtained with grid cutoffs ts

max = 2, 4, and grid
distance ∆ts = 0.5. In the right panel, the posterior mean is subtracted
from the results for a better visualization. 73

Figure 6.7 Credible intervals of three approximate BGFTs obtained with grid
cutoffs ts

max = 2, 4, 8, and grid distance ∆ts = 0.5. 74
Figure 7.1 Four iterations of a Bayesian optimization using the EI. With noiseless

measurements, the global minimum is found quickly. 81
Figure 7.2 Four iterations of a Bayesian optimization using the EI. With noisy

measurements, the algorithm is stuck around a local minimum. . . . 82
Figure 7.3 Four iterations of a Bayesian optimization using the NEI. With noisy

measurements, the algorithm quickly finds the global minimum,
without suffering from the same problems of the EI. 87

Figure 8.1 Optimization comparison between two BOs using different kernels,
the NFT and the SPSA optimizers. Here the BOs are not using the
automatic relevance determination. 93

Figure 8.2 Optimization comparison between two BOs using different kernels,
the NFT and the SPSA optimizers. Here the BOs are using the
automatic relevance determination. 94

x

GIO
VANNI IA

NNELL
I

I N T R O D U C T I O N

Quantum computing is an alternative type of computation based on the principles of
quantum mechanics. Its fast-paced development in the recent years drew the attention of an
interdisciplinary scientific community, since quantum algorithms have the potential to be
exponentially quicker than classical alternatives in many noteworthy scientific applications
[1]. Some examples are the simulation of quantum systems [2] and quantum machine
learning [3].

Unfortunately, many of these algorithms are not yet implementable on current noisy
intermediate-scale quantum (NISQ) computers [4] and need to wait until noise sources can
be suppressed down to a threshold that enables quantum error correction [5], which can
even lead us to the development of fault-tolerant quantum computers [6].

However, many interesting problems can already be studied on NISQ devices, especially
the simulation of quantum systems, since their description in terms of quantum bits is
more natural compared to that of classical systems. Indeed, some quantum algorithms are
currently employed, for example, in quantum chemistry [7] and in lattice gauge theories [8].

In particular, the variational quantum eigensolver (VQE) [9] is a hybrid quantum-classical
algorithm widely used on NISQ devices as it is particularly robust to quantum computing
noise. It uses a quantum algorithm called quantum expected estimation (QEE) to estimate the
expectation value of a given Hamiltonian in a given ansatz quantum state. This expectation
value, i.e. the system energy, is then minimized across a family of ansatz states using a
classical optimization algorithm, leading to an approximation of the ground state, which is
of fundamental importance, for example, to study quantum systems at low temperatures.

Even though the VQE cannot unleash the full power of the pure quantum algorithms
that are not yet implementable, it offers an alternative path to classical computation for the
simulation of quantum systems. This is particularly valuable when used for systems whose
phase space is not fully accessible through standard methods. For instance, the path integral
formulation of quantum systems have traditionally been used to map them to equivalent
statistical-mechanical systems, which can be analyzed using Markov chain Monte Carlo
algorithms. However, in some cases such as, for example, fermionic systems, this mapping
leads to negative or, in general, complex weighting factors that are not interpretable as
probabilities. This sign problem [10] severely affects Monte Carlo simulations, preventing
them, in some circumstances, from obtaining any reliable result.

On the other hand, the simulation of quantum systems on quantum computers doesn’t
require them to be mapped to classical systems as it relies, instead, on their Hamiltonian
formulation, which means that their simulation doesn’t suffer from the sign problem [11,
12].

The work of this thesis is focused on the VQE algorithm. In particular, on the classical
optimization of the energy measurements performed with a quantum computer. This is
a rather complicated optimization problem as the target function has many possible local

1

GIO
VANNI IA

NNELL
I

introduction

minima in a potentially high-dimensional space and, on top of this, the energy measurements
are subject to statistical noise and quantum hardware noise.

Furthermore, each single energy measurement requires the run of the QEE quantum
algorithm, which takes a significant amount of time using the quantum hardware available
today. Therefore, it is desirable to perform the energy optimization with the fewest possible
measurements in order to extract the maximum value from the allocated quantum computing
time.

For this purpose, we decided to minimize energy measurements using Bayesian optimiza-
tion (BO) [13], which is a framework particularly suitable to optimize expensive black-box
functions. Given its flexibility, it can be adapted to perform efficiently in a wide range of
problems. Indeed, we will explain in this thesis that BO has possible answers to each of the
difficulties present in this optimization problem.

In particular, we implemented an algorithm [14] that allows us to incorporate both the
energy measurements and their Gaussian errors into a probabilistic model of the target
energy function, which can then be optimized using a procedure called noisy expected
improvement [15].

BO is usually based on Gaussian process regression (GPR) [16], which is a machine
learning algorithm that interpolates data using Bayesian inference. The very same GPR
algorithm that we used for the VQE turned out to be useful to estimate integral transforms
of functions using limited and noisy sets of data. In particular, the algorithm that we
developed was used to estimate parton distribution functions using lattice QCD data [17],
which are formally equivalent to Fourier transforms. This algorithm is further developed in
this thesis and extended to compute generic integral transforms and their estimation error.

Structure of the thesis

Here we give a short description of the topics discussed in the following chapters:

chapter 1 : After a short introduction to quantum computing, we describe the quantum
expected estimation (QEE) and the variational quantum eigensolver (VQE) algorithms.
We then discuss the difficulties of the energy optimization required by the VQE, and
we describe the optimizers commonly used to tackle this problem. Finally, we explain
the motivations that led us to choose Bayesian optimization.

chapter 2 : Here we introduce the formalism of Gaussian processes, which will be later
used to define a probabilistic model for the target energy function. In particular, we
explain in this chapter how to impose to a Gaussian process certain properties and
symmetries that can be useful to model the target energy.

chapter 3 : We give here an introduction to Bayesian inference, which is an alternative
approach to statistics that found wide usage in machine learning techniques. In this
chapter, we discuss about Bayesian prediction, Bayesian decision theory and Bayesian
model selection, which all find usage in Gaussian process regression and Bayesian
optimization.

2

GIO
VANNI IA

NNELL
I

introduction

chapter 4 : Here we introduce Gaussian process regression, focusing on how noisy mea-
surements can be used to obtain Bayesian predictions of the target energy function.
Finally, we discuss the potential numerical problems that might arise using this
algorithm, and possible solutions that may be adopted to solve them.

chapter 5 : The predictions obtained with Gaussian process regression depend on the
choice of a set of hyperparameters. In this chapter, we discuss the meaning of these
hyperparameters and how to efficiently choose them (without overfitting the data)
using maximum likelihood estimation or maximum a posteriori estimation.

chapter 6 : Here we describe how the Gaussian process regression procedure developed
in the previous chapters can be used to estimate integral transforms using a limited
amount of noisy data. We test this algorithm for the evaluation of Fourier transforms,
comparing the results with those obtained using discrete-time Fourier transforms.

chapter 7 : We introduce here the concept of acquisition function maximization, which
is the procedure adopted by Bayesian optimizers to choose the domain point of the
next measurement. In particular, we describe the expected improvement acquisition
function and its roots in Bayesian decision theory. Then, we explain why it doesn’t
perform well in presence of statistical noise, and how this problem can be solved with
the noisy expected improvement, which is its generalization.

chapter 8 : After all the steps of Bayesian optimization have been explained, we specify
here all the settings that we chose for the VQE optimization. Then, we test this
algorithm using the Hamiltonian of the transverse-field Ising model, and we compare
the results with other alternatives commonly used for this task.

chapter 9 : Finally, we draw here our conclusions and we discuss the possible future
directions that this work might have.

3

GIO
VANNI IA

NNELL
I

1
VA R I AT I O N A L Q UA N T U M E I G E N S O LV E R

1.1 introduction to quantum computing

Quantum computing is an alternative to digital computation that leverages on the principles
of quantum mechanics. Instead of digital bits, the most basic unit of information in a
quantum computer is a qubit, which is a two-level quantum-mechanical system. Therefore,
the state |q⟩ of a qubit is not just either zero |0⟩ or one |1⟩, but rather a linear superposition
of them:

|q⟩ = c0 |0⟩+ c1 |1⟩

where c0, c1 ∈ C with |c0|2 + |c1|2 = 1 and the definition of a quantum state is equivalent up
to a global complex phase exp(iδ).

The observation of a qubit state follows the laws of quantum mechanics: a quantum
computer can measure the state |q⟩, delivering either zero or one with probability |c0|2 or
|c1|2. After the measurement, the quantum state collapses into |0⟩ or |1⟩, therefore losing
information about c0 and c1 as further measurements would result in the same value all the
times.

Multi-qubit states

Having at its disposal N qubits, a quantum computer can construct multi-qubit states and
maintain their coherence for a certain time.

Given N qubits in the states |q1⟩ , ..., |qN⟩, a composite state |q1 · · · qN⟩ ≡ |q1⟩ ⊗ · · · ⊗ |qN⟩
is an N-qubits state in which the i-th qubit has the value qi, ∀i. In general, an N-qubit state
|q(N)⟩ is a linear superposition of composite states. If it is possible to express |q(N)⟩ as a
composite state |q1 · · · qN⟩, then |q(N)⟩ is called a separable state, otherwise it is an entangled
state.

In a separable state, the qubits are independent, which means that measuring the value of a
qubit doesn’t influence the state of other qubits. The contrary happens for entangled states.

A simultaneous measurement of the N qubits results in one element of the computational
basis |0 · · · 0⟩ , |0 · · · 01⟩ , |0 · · · 10⟩ , ..., |1 · · · 1⟩. For notational simplicity, the elements of the
computational basis are usually denoted using the base-2 representation of numbers, which
means that the basis vector can be written as |0⟩ , ..., |2N − 1⟩. Using this notation, a generic
N-qubit state has the following form:

|q(N)⟩ = c0 |0⟩+ ... + c2N−1 |2N − 1⟩

4

GIO
VANNI IA

NNELL
I

1.1 introduction to quantum computing

where c0, ..., c2N−1 ∈ C with |c0|2 + . . . + |c2N−1|2 = 1.
A simultaneous measurement of all the qubits will therefore result in |n⟩ with proba-

bility |cn|2, for n = 0, ..., 2N − 1. On the other hand, the measurement of a subset of the
qubits causes a collapse of the state into a lower dimensional space, since the observation
removes the superposition of the measured qubit. At the same time, it is also removed the
entanglement between the measured qubit and the others. For example, if the measure-
ment of the first qubit yields zero, then the resulting N-qubit state will be expressible as
|q(N)⟩ = |0⟩ ⊗ |q(N−1)⟩.

It is already possible from here to have an insight of the potential of quantum computing.
An N-qubit state is a vector in a 2N dimensional complex space, and, to represent such a
vector, it is necessary to specify 2N+1 − 2 real numbers, where the −2 factor is due to the
norm constraint and the overall phase invariance. Considering, for example, a system of
100 qubits, which is approximately the amount present nowadays in the most advanced
quantum computers, it would need around 1019 terabytes of memory just to store the
quantum state in a classical memory using single precision floating point numbers.

Models of quantum computation

There are different possible models of quantum computation and each of them exploits
specific hardware properties. For the work presented in this thesis, we only used the unitary
circuit model of quantum computation, which is the first developed and the most widely
known. Other alternative models are the measurement-based [18] and the adiabatic evolution
[19] quantum computations.

The unitary circuit model has analogies with the classical digital computation: quantum
algorithms start with a separable basis state, usually the zero state |0 · · · 0⟩, and use it
as an input to a quantum circuit, which is a sequence of quantum logic gates ending with
one or more qubit measurements. The quantum gates are unitary transformations that
involve one or more qubits, and they are responsible for constructing the desired entangled
states. Quantum computer hardware physically implement, for each qubit, a complete set
of quantum gates, which can be used to construct any possible unitary transformation of
the N-qubit state.

The measurement-based model has a different approach. The quantum algorithm starts
from an entangled source state, and then, instead of quantum gates, the computation is
performed by executing a sequence of single-qubit measurements. The achievable results are
equivalent to those obtained with the unitary circuit model, indeed, it is available a complete
set of instructions [20] for translating a quantum algorithm from one computational model
to the other.

Even though the development of measurement-based quantum computers is, at the
moment, way behind that of circuit-based devices, its implementation might become more
scalable in the future, since the only operation needed on single qubits is their measurement,
instead of a complete set of quantum gates.

Finally, the adiabatic evolution model is based on the adiabatic theorem of quantum me-
chanics, according to which, a physical system remains in a correspondent non-degenerate

5

GIO
VANNI IA

NNELL
I

1.1 introduction to quantum computing

eigenstate if the Hamiltonian is smoothly modified slowly enough. This means that, if we
can construct the ground state of a certain Hamiltonian, we could evolve it to the unknown
ground state of a target Hamiltonian.

The physical realization of adiabatic quantum computers is simpler than that of a complete
quantum computer, since it doesn’t need full control on each single qubit. Adiabatic
evolution can, in principle, approximate any quantum algorithm without aggravating the
computational complexity by more than polynomial terms [21].

Determining the exact time threshold for satisfying the adiabatic approximation can
be very complicated, especially in presence of oscillatory terms in the Hamiltonian [22].
Therefore, the feasibility of a certain adiabatic evolution might need experimental testing.
However, it is possible to give estimates of the required time in terms of the energy gap of
the interpolating Hamiltonian.

Quantum gates

A generic transformation from a N-qubit state to another always preserves the norm, which
means that all quantum gates must be unitary transformations. This is the only restriction
and a universal quantum computer could, in principle, construct any unitary transformation.

Similarly to digital computers, a generic unitary transformation can be obtained using a
very limited set of universal quantum gates. Considering first the transformations acting on
single-qubit states, using {|0⟩ , |1⟩} as the basis, a generic unitary transformation is a matrix
of the following form:

U3(θ, ϕ, λ) ≡

 cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) ei(ϕ+λ) cos(θ/2)

where θ, ϕ, λ are any set of angles. This generic transformation is called U3 gate, and it can
be defined up to any global phase shift exp(iδ) as it doesn’t modify the quantum state.

The U3 gate can be decomposed using the more elementary SU(2) rotations, which are
defined as:

Rα(θ) ≡ exp
(
−i

θ

2
σα

)

where θ is a real angle and the σα are the Pauli matrices:

σx ≡

0 1

1 0

 σy ≡

0 −i

i 0

 σz ≡

1 0

0 −1

6

GIO
VANNI IA

NNELL
I

1.1 introduction to quantum computing

Therefore, the explicit form of the qubit rotations around the axes are:

Rx(θ) ≡

 cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

Ry(θ) ≡

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

Rz(θ) ≡

exp(−iθ/2) 0

0 exp(iθ/2)

(1.1)

Using these rotations, we can construct the generic U3 gate:

U3(θ, ϕ, λ) = exp
(

i
ϕ + λ

2

)
Rz(ϕ)Ry(θ)Rz(λ)

which means that any single-qubit transformation can be generated using only Ry and Rz

gates as the global phase exp
(

i ϕ+λ
2

)
is irrelevant.

Regarding two-qubit transformations, a gate that is commonly used is the controlled NOT
(CNOT), which, using the computational basis, assumes the following form:

Cx ≡

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

(1.2)

The reason of its name is explained considering the first qubit as a control that activates a
NOT operation on the second qubit. Indeed, for example, considering the basis states, the
Cx transforms |10⟩ to |11⟩ as the first qubit is one, but leaves unaltered |00⟩ as the control
qubit is zero.

The CNOT gate is able to create entanglement if applied on separable states. For example,
if the control qubit is in superposition, we can obtain a Bell state:

Cx

(|0⟩+ |1⟩
2

⊗ |0⟩
)
=
|00⟩+ |11⟩

2

which is maximally entangled, since, before any measurement, each qubit has equal chances
to be observed in zero or one, while, after one of them is measured, the other is equal to it
with certainty.

It can be proven [23] that, using sequences of just Ry(θ), Rz(θ) and Cx gates acting on
different qubits, it is possible to generate any possible N-qubit unitary transformation. A
set of gates with this property is called a universal set.

Physical realizations of quantum computers might implement a different universal set
of gates depending on the specific hardware. However, it is common to have a set of
single-qubit gates and an entangling two-qubit gate. See, for example [24, 25].

7

GIO
VANNI IA

NNELL
I

1.1 introduction to quantum computing

Quantum computing noise

Several sources of noise can potentially hinder the execution of quantum algorithms. Nowa-
days, in fact, only a small subset of quantum algorithm can be successfully run on noisy
intermediate-scale quantum (NISQ) computers [4].

The multi-qubit state is a very sensitive form of memory storage and its interaction with
the surrounding environment is a possible source of quantum decoherence. This means that
the system is no longer describable as a pure multi-qubit state |ψ⟩, but rather as a statistical
ensemble of possible states representable by a density matrix:

ρ = ∑
s

ps |ψs⟩ ⟨ψs|

where ps is the probability for the system to be in the state |ψs⟩.
In order to keep the magnitude of environmental decoherence noise as small as possible,

quantum computers are usually kept at ultra-cold temperatures lower than one Kelvin.
Furthermore, any possible element of a quantum circuit is a potentially error-prone. Indeed,
the operations of actively running quantum computers are constantly monitored, and the
average magnitude of the main error components is available at any time. Typically, quantum
computing providers present to the users the magnitude of current average CNOT and
qubit-measurement errors, as well as the characteristic time of environmental decoherence.
When these values surpass certain guaranteed thresholds, the quantum computers undergo
a calibration process.

Clearly, the amount of noise and its complexity significantly increase with the number of
qubits. Therefore, in order to make quantum computing scalable, we need to adopt error
correction techniques that reduce the effective error to an arbitrary small rate. For classical
digital computers, error correction could be simply achieved by keeping multiple copies
of the same information. This specific solution, unfortunately, is not possible for quantum
states because of the no-cloning theorem [26].

However, the no-cloning theorem could be bypassed by spreading the information of one
logical qubit into an entangled state of several physical qubits [5]. This scheme could, in
principle, suppress any source of noise up to a desired level and, eventually, lead us to
obtain fault-tolerant quantum computation [6].

These error correction techniques require the physical noise to be below certain thresholds,
which, unfortunately, are beyond the reach of current technology. Therefore, for now, we
have to limit ourselves to use only quantum algorithm that are intrinsically noise-resilient.
This doesn’t mean that the algorithms implementable now will become obsolete when
error correction will be available. Indeed, the transition is likely to be very smooth as
noise suppression will be appliable only up to certain levels in order to prevent very high
computation times. This means that the noise-resilient algorithms usable nowadays will
have a performance advantage when quantum error correction will be available.

8

GIO
VANNI IA

NNELL
I

1.2 quantum expectation estimation

Parametrized quantum circuits

As we mentioned earlier, the unitary circuit model of quantum computation consists in
applying a sequence of quantum gates to a starting separable state, and then performing
qubit measurements at the end.

This scheme can be represented as a quantum circuit and, if we use N parametric gates
such as SU(2) rotations, the quantum circuit depend on a set of parameters θ1, ..., θN . We
will make usage of parametrized quantum circuits to construct families of multi-qubit states.
For example, let us consider a circuit acting on two qubits:

|0⟩ Ry(θ1) • Ry(θ3) Rz(θ5)

|0⟩ Ry(θ2) Ry(θ4) Rz(θ6)

The meaning of this circuit is the following. The two qubits, which both start from the |0⟩
state, are first subject to a rotation around the y axis, each of them with a different angle:
θ1 and θ2. Then, a CNOT gate is applied on the two qubits, with the first one used as the
control. After this entangling gate, each of the qubits undergoes two rotations around the
y and the z axes. Each of these four rotations has a different angle, which brings to six
the total number of parameters. At the end, both of the qubits are measured, and their
outcomes are stored in a classical memory.

It is possible to prove, for example, using the method described in [27], that this particular
parametrized circuit, given an appropriate set of parameters θ1, ..., θ6, is capable to generate
any possible two-qubit state, up to an irrelevant global phase.

In general, fully representing an N-qubit state as a parametrized quantum circuit doesn’t
suppress the exponential growth of the required number of parameters. Indeed, we saw that
an N-qubit state requires 2N+1− 2 real parameters to be fully specified and we cannot expect
a better scaling for the number of parameters required to represent it with a parametrized
quantum circuit. It is possible, though, to approximate such a space using a lower number
of circuit parameters, and the error of the approximation could be estimated, for example,
using the procedure described in [28].

However, in many applications, we don’t need to cover the full space of the N-qubit states.
Indeed, if a certain problem exhibits a symmetry, we might only want to consider unique
representative states and exclude all the other states that are symmetric to them. This is
the same principle used to exclude states that are equivalent under multiplication by a
global phase. Such symmetries could be incorporated into parametric quantum circuit, for
example, using the procedure explained in [27].

1.2 quantum expectation estimation

The quantum expectation estimation (QEE) [9] is a quantum algorithm for approximating
expectation values ⟨ψ|H|ψ⟩ of an observable (Hermitian) operator H acting on a N-qubit
state ψ.

9

GIO
VANNI IA

NNELL
I

1.2 quantum expectation estimation

Any Hermitian operator can be written as a polynomial of sigma matrices:

H = h0 + ∑
iγ

hi
γσi

γ + ∑
ijγδ

hij
γδσi

γσ
j
δ + . . . (1.3)

where the h terms are real coefficients, the Latin indices i, j = 1, ..., N indicate the qubit
on which the sigma matrices are acting and the Greek indices γ, δ = x, y, z specify the
coordinate of the sigma matrices.

The degree of the polynomial cannot, by definition, be higher than N, and terms of
degree n correspond to each possible linear n-qubit interactions. In many cases, a potentially
complicated Hamiltonian can be truncated to a lower degree polynomial if the system is
dominated by local interactions.

Pauli matrices basis

The reason why the formulation (1.3) is always possible could be shown rewriting it in the
following form:

H =
T

∑
t=1

htPt (1.4)

Where the Pt are tensor product elements of {1, σx, σy, σz}⊗N , therefore T cannot be greater
than 4N , but it is usually far lower. Indeed, if only interactions up to n bodies are considered,
then T is O(Nn).

The tensor product elements Pt constitute a basis of the real vector space of the 2N × 2N

Hermitian matrices, which is the space of all possible observable operators H acting on an
N-qubit space. This means that any observable can be written in the form of equations
(1.4) and (1.3). Moreover, the Pt are orthonormal under the Hilbert–Schmidt inner product
⟨Pt, Pu⟩HS ≡ Tr(PtP⊤u) = Nδtu, which means that, given H, the coefficients ht in equation
(1.4) can be obtained in the following way:

ht =
1
N

Tr(PtH) (1.5)

Most of the times, however, the real difficulty is to map a continuous physical system
into an N-qubit system without using an excessive number of qubits and elements Pt in
the Hamiltonian (1.4). Despite the difficulties of this task, systems as complicated as lattice
gauge theories have been mapped into qubit spaces [29].

Measurement of Pauli operators

Assuming that we can construct an N-qubit state |ψ⟩ = U |0⟩ by applying a sequence of
quantum gates U to the zero state |0⟩, we can use a quantum computer to estimate the
expectation value ⟨ψ|H|ψ⟩ of an operator H. Indeed, if we rearrange H as in equation (1.4),
we can decompose the expectation value of H in a sum of expectation values of sigma
matrix tensor products:

⟨ψ|H|ψ⟩ = ∑
t

ht ⟨ψ|Pt|ψ⟩

10

GIO
VANNI IA

NNELL
I

1.2 quantum expectation estimation

The expectation values ⟨ψ|Pt|ψ⟩ can be estimated using the qubit states prepared by the
quantum computer. To see how, let us first consider the case in which Pt is an operator Pz

t

only formed by a tensor product of σz and identities. The vectors of the computational basis
would be eigenstates simultaneously of Pt and the qubit measurement operators. Indeed,
the qubits with value one or zero are respectively eigenvectors of σz with eigenvalue one or
negative one. Therefore, a measurement of the operator Pz

t could be obtained in the following
way:

• Prepare the state |ψ⟩ = U |0⟩ by applying a sequence of quantum gates on |0⟩.

• Measure the values of the qubits on which the σzs present in Pz
t are acting.

• Replace the zeroes of this sequence with negative ones and multiply all the numbers
of the sequence.

Clearly, being a quantum measurement, the obtained result is a stochastic variable and
the estimation of ⟨ψ|Pz

t |ψ⟩ would require the repeating the measurement several times and
averaging over the results.

The measurement of a generic Pt could be transformed into a measurement of Pz
t using

the rotation matrices (1.1). Indeed, the operators σz could be transformed respectively into
σx or σy with a rotation of π/2 around ŷ or a rotation of −π/2 around x̂. This means that
expectation values of σx and σy can be transformed in the following way:

⟨ψ|σx|ψ⟩ = ⟨ψ|Ry

(π

2

)
σzR−1

y

(π

2

)
|ψ⟩ = ⟨ψ′|σz|ψ′⟩

⟨ψ|σy|ψ⟩ = ⟨ψ|Rx

(
−π

2

)
σzR−1

x

(
−π

2

)
|ψ⟩ = ⟨ψ′′|σz|ψ′′⟩

where |ψ′⟩ ≡ Ry(−π/2) |ψ⟩ and |ψ′′⟩ ≡ Rx(π/2) |ψ⟩ can be constructed by adding one
rotation gate to the quantum circuit.

This procedure can be used simultaneously on each qubit in which σx and σy are measured,
since the rotations are single-qubit gates. Therefore, a stochastic measurement of the operator
Pt can be performed constructing a single quantum circuit.

Measurement of the target operator

Coming back to equation (1.4), we can measure the target operator summing the measure-
ments of each single Pt, which requires, in general, to execute T quantum circuits. The
measurement of H obtained in this way should be repeated S times and averaged in order
to estimate the expectation value ⟨ψ|H|ψ⟩. In jargon, these S repetitions are also called shots.

To summarize, the expectation value of the operator H in (1.3) evaluated in the state
|ψ⟩ = U |0⟩ can be estimated in the following way:

• Split H into T tensor products Pt of sigma matrices and consider each of them
singularly.

• For each Pt, prepare the quantum state |ψ⟩ = U |0⟩ and add rotations Ry(−π/2) and
Rx(π/2) for each σx or σy present in Pt in order to transform them in σz.

11

GIO
VANNI IA

NNELL
I

1.2 quantum expectation estimation

• Measure the qubit values of the T states, replace the zeroes with negative ones and
multiply them to obtain observations of each Pt, and finally sum the Pt to obtain a
measurement of H.

• Repeat the procedure S times to obtain H1, ..., HS measurements of H. An estimation
of ⟨ψ|H|ψ⟩ and its error are given by:

H ≡ 1
S ∑

i
Hi ∆H ≡

√
∑i(Hi − H)2

S(S− 1)
(1.6)

Quantum noise vs statistical noise

Since the average H is constructed using i.i.d. random variables with finite variance,
the central limit theorem guarantees that the distribution of H converges to a Gaussian
distribution in the limit of S→ ∞, and the standard deviation of this Gaussian is estimated
by ∆H.

We will therefore refer to ∆H as the statistical noise of the H measurement. This should
not be confused with what we will generically call quantum noise, which is the bias of H
induced by imperfections of the quantum computer.

Indeed, phenomena such as quantum decoherence, measurement and gate errors afflict
the estimation in equation (1.6). In particular, if these errors don’t average out, they induce
a bias into the estimator H. When quantum error correction will be available, this bias could
be reduced up to a desired level, but this option is not yet available with NISQ devices.

However, we could already significantly reduce this bias using instead error mitigation
techniques. A review of commonly used methods can be found in section 5.1 of [30].

Operators grouping

The procedure presented here requires the preparation of T independent quantum states for
each single shot, where T is the number of Pauli terms Pt in the target operator. In some
cases, for performance reasons, we might want to reduce the number of state preparations
T.

This reduction could be achieved, for example, grouping together Pauli operators that
commute with each others [31], since this allows us to symultaneously measure more
operators using their common set of eigenstates.

However, different measurements on the same quantum states have a non-zero covariance,
which in turn modifies the variance of each single shot Hi. While this fact shouldn’t afflict
the Gaussianity of H, it might, though, have the undesired effect of increasing the statistical
noise ∆H. The final effect might therefore be the opposite of what we wanted to achieve,
since a higher statistical noise requires an increased number of shots for reaching the same
precision, which means a higher number of state preparations.

On the other hand, this potential problem might be turned in our advantage if we group
together measurements with a negative mutual correlation, since this actually reduces the
final statistical noise.

12

GIO
VANNI IA

NNELL
I

1.3 variational quantum eigensolver

The difficulty, however, is to define a procedure for selecting the optimal grouping of
Pauli operators. A possible strategy is explained in [32].

Comparison with QPE based algorithms

The quantum phase estimation (QPE) [33] is a widely known quantum algorithm for the
estimation of the eigenvalue corresponding to an eigenvector of a unitary operator. It
requires O(1/ε) quantum gates to achieve a precision of ε, and is a building block of many
noteworthy algorithms such as Shor’s factorization algorithm [34].

The QPE can also be used [35] to find eigenvalues and eigenvectors of an operator H,
and, in particular, also to evaluate expectation values of H. It requires, in general, O(1/ε2)

quantum gates to reach a precision of ε [31].
While requiring, in principle, only one state preparation and usually a lower number of

quantum gates overall, QPE based algorithms are not suitable for NISQ devices as they are
quite susceptible to quantum noise. Indeed, since they use a single long chain of quantum
gates, all the gate errors and decoherence noise accumulate, destroying the final result.

The QEE, on the other hand, split the computation in a high number of short computations
that are achievable on noisy devices. Furthermore, QEE leaves freedom in the way the
state |ψ⟩ is prepared. Therefore, we have the possibility to choose the set of gates that are
more convenient for the specific hardware at our disposal. This feature further reduces
the number of gates required for each short computation, and hence the susceptibility on
quantum noise.

Moreover, the QEE remains well-defined even in presence of a small quantum noise.
Indeed, if the error sources transform the pure state |ψ⟩ into a mixed state ρ, the QEE
correctly estimates the expectation value of H in ρ, which is defined as:

⟨H⟩ρ ≡ Tr(ρH) = ∑
s

ps ⟨ψs|H|ψs⟩

where ps is the probability for the system to be in the pure state |ψs⟩. Since the QEE
performs the estimation by averaging single shot measurements in each possible |ψs⟩, it
correctly estimates the expectation value of H in ρ. In other words, the reason why the
QEE is particularly robust to quantum noise is that it emulates a hypothetical physical
measurement of the observable H. The only effect on the algorithm is the introduction of a
residual bias that is not averaged out in the process caused by the difference between ρ and
|ψ⟩.

1.3 variational quantum eigensolver

The variational quantum eigensolver (VQE) [9] is a hybrid quantum-classical algorithm to
compute the lowest eigenvalue (and its eigenvector) of a Hermitian operator H using the
variational principle. The computation of the lowest eigenvalue is of crucial interest both
in optimization and in physics. Indeed, in optimization problems, the lowest eigenvalue
encodes the optimal solution, while, in statistical physics, the ground state of a Hamiltonian

13

GIO
VANNI IA

NNELL
I

1.3 variational quantum eigensolver

plays a dominant role at modest temperatures. Anyway, using techniques such as variational
quantum deflation [36, 37], the VQE can be extended to find the k lowest eigenvalues of H
and their eigenspace.

In our work, we focus our attention on the computation of the ground state of Hamiltoni-
ans. We will therefore, from now on, refer to H as the target Hamiltonian.

Ansatz states

We saw at the end of section 1.1 that we can construct a family of multi-qubit states
using a parametrized quantum circuit. Indeed, calling U(θα) a sequence of quantum gates
depending on D parameters θα, we can construct the following states:

|ψ(θα)⟩ ≡ U(θα) |0⟩ (1.7)

Among all these states, which are usually called ansatz states, we want to find the ground
state that minimizes the system energy, which can be measured using the QEE algorithm.

Indeed, after choosing a set of D parameters θα, we can prepare the ansatz state |ψ(θα)⟩ ≡
U(θα) |0⟩ with a quantum computer and use the QEE to estimate the parametrized energy,
which is the expectation value of H in |ψ(θα)⟩:

E(θα) ≡ ⟨ψ(θα)|H|ψ(θα)⟩ (1.8)

In practice, we saw in equation (1.6) that, choosing a number of shots S, the QEE performs
a measurement of E(θ) with a statistical error ∆E(θ) that decreases as O(1/

√
S).

The choice of the ansatz states is of fundamental importance for the success of the
algorithm. Indeed, their space should be large enough to include the ground state, or at
least a good approximation of it, while, on the other hand, it should be using the lowest
possible number of parameters in order to facilitate the search of the ground state.

The choice of the required parameters θα should therefore exclude the redundant ones,
without which the space of reachable states is not reduced. It is also advisable to further
restrict the ansatz space by excluding the states that are equivalent under the symmetries of
the Hamiltonian. A general procedure for constructing such ansatz spaces and quantifying
the approximation error is explained in [27] and in [28].

Energy optimization

Considering the family of ansatz states (1.7) and the parametrized energy (1.8) measured on
them, the ground state |ψ0⟩ and the ground state energy E0 of the Hamiltonian H can be
approximated using the variational principle:

min
θα

E(θα) ≡ E(θ0
α) ≥ E0 (1.9)

If the ground state |ψ0⟩ is obtainable with the parametrized quantum circuit |ψ(θ)⟩, then
E(θ0

α) is exactly the ground state energy E0 and |ψ(θ0
α)⟩ is the ground state |ψ0⟩. Otherwise,

14

GIO
VANNI IA

NNELL
I

1.3 variational quantum eigensolver

E(θ0
α) is an upper bound estimation of the ground state and |ψ(θ0

α)⟩ is an approximation of
the ground state.

The VQE is considered a hybrid quantum-classical algorithm because it requires a quan-
tum computer to measure the energy using the QEE, but also a classical computer to perform
the optimization (1.9).

Robustness to quantum noise

The main feature of VQE is its robustness to quantum noise as it makes it runnable on NISQ
devices. Most of it comes from the usage of QEE, which, as we explained earlier, reduces the
effect of noise using only short quantum computations and averages out the uncorrelated
sources of noise.

Moreover, the VQE minimization remains well-defined even when the quantum noise
mildly affects the pure parametrized state |ψ(θα)⟩ transforming it to a mixed state repre-
sented by a density matrix ρ(θα). Indeed, the parametrized energy E(θα) = Tr(ρ(θα)) is still
approximated by the QEE and the minimization (1.9) becomes:

min
θα

E(θα) = min
θα

Tr(ρ(θα)) ≡ Tr(ρ(θ0
α)) ≥ E0

which means that θ0
α is still the optimal choice of circuit parameters to approximate the

ground state.

Properties of the parametrized energy

Before discussing possible efficient algorithms to perform the optimization (1.9), it is
advisable to study the target function, which is the parametrized energy E(θα).

In order to have a general idea of the target function, Let us focus, for now, on the case of
perfect measurements, without either statistical noise or quantum noise.

The parametrized energy depends, of course, on the specific gates chosen to prepare
the ansatz states. However, let us restrict the choice, for now, to rotation gates (1.1) and
non-parametric gates, such as, for example the CNOT (1.2). Even though this set of universal
gates can generate any possible unitary transformation on the multi-qubit space, it is not
guaranteed that this is done efficiently.

Indeed, if we want to reduce the number of circuit parameters θα as much as possible,
it might be necessary to use different types of quantum circuit, especially if we want to
impose the symmetries of the Hamiltonian in the ansatz states [27].

However, analyzing this subset of quantum circuits can be very valuable as the analysis
leads to an analytical formula that can be used for the design and the benchmark of
optimization algorithms. It is possible, in fact, to prove [38] by induction that, if the only
parametrized gates are D rotations (1.1) depending on θ1, ..., θD, then the parametrized
energy E(θα) assumes the following form:

E(θα) =
3D

∑
m=1

cm

(
D⊗

α=1

(
1

sin(θα)
cos(θα)

))

m

(1.10)

15

GIO
VANNI IA

NNELL
I

1.3 variational quantum eigensolver

where cm are real coefficients and each term is a possible product of ones, sines and cosines
depending on different θα.

On its own, the formula (1.10) is not very helpful as the number of its terms grows
exponentially with the number of dimensions D. However, an interesting feature of equation
(1.10) is that it holds for in any D′-dimensional subspace.

For example, keeping fixed all the parameters apart from the one with index α′, equation
(1.10) reduces to:

E(θα′ |θα ̸=α′) = c1 + c2 sin(θα′) + c3 cos(θα′) (1.11)

which is a shifted sinusoidal with a generic phase.
Even though the formula (1.10) is not valid for a generic parametrized quantum circuit,

some of its properties remain even if we use a different set of gates. Indeed, most of the
commonly used parametrized gates are expressed in terms of one or more angle parameters.
Therefore, in most cases, we expect E(θα) to be 2π-periodic in each angle parameter θα.
Moreover, parametrized gates are usually expressed in terms of smooth C∞ functions,
which means that E(θα) is in C∞ as well. All these properties could be very useful for the
optimization of E(θα).

Difficulties of the optimization

Even in the cases in which the analytical formula (1.10) is valid, the optimization (1.9) of the
parametrized energy is a very difficult task. Indeed, several difficulties hinder a successful
convergence to the ground state.

Firstly, E(θα) has potentially many local minima, which means that the optimization
cannot just be a local gradient descent algorithm as it would remain stuck in suboptimal
solutions. Therefore, we need a global optimizer that is capable to perform a global search
across the domain, or, at least, it should be able to escape from local minima. This difficulty
is aggravated by the fact that the ansatz states might have a high number of parameters.
Indeed, as long as new quantum computers with better performances are developed, we
might want to study problems that require a higher number of qubits and of parametrized
gates acting on them.

Secondly, the measurements of E(θα) obtained with (1.6) have a statistical error. This
means that we need a so-called noisy optimizer that remains well-defined when the target
function evaluations are imprecise. Ideally, the optimizer should also use the measurement
error in (1.6) to exploit all of the information obtained with the QEE.

Alongside the statistical noise, there is also the quantum noise that affects the measure-
ments obtained with the QEE. As we have already discussed, the VQE is, on its own, already
quite robust to quantum noise and techniques such as error mitigation are very helpful
for reducing the estimation bias. It might be desirable to include noise models inside the
optimization procedure in order to further reduce the effects of quantum noise. However, it
is reasonable, for now, to use an optimizer that is robust to small measurement biases, and
to rely on error mitigation techniques to make sure that this bias is as small as possible.

On top of these complications, there is, perhaps, the most difficult to overcome, since it
makes all the others more problematic. The usage of quantum computers is, at the moment,

16

GIO
VANNI IA

NNELL
I

1.3 variational quantum eigensolver

very expensive both in time and budget. Therefore, we would like to reach the ground state
using as few energy measurements as possible. This means that we cannot find the global
minimum with brute force approaches, and we cannot suppress the statistical error, which
decreases as O(1/

√
S), simply by using an extremely high number of shots S. Moreover,

the resources required for energy measurements are even higher if we need to perform the
calibrations required by error mitigation techniques.

The main task of this thesis work is to analyze these problems in order to design and test
an optimization algorithm that fares well in all these difficulties.

Optimizers commonly used for VQE

Several optimization algorithms have been proposed to perform the classical optimization
(1.9). In the paper that introduced the VQE [9], the authors use the Nelder-Mead optimiza-
tion method [39], which is a local optimizer that creates a simple heuristic model of the
slope direction by evaluating the D-dimensional target function at the vertices of a D + 1
polytope, which is also called a simplex. At each iteration, one vertex of the simplex is
moved along the estimated slope direction such that the volume of the simplex is expanded
when moving down the slope or shrunk when the target function gets flatter. The algorithm
terminates when the target function is approximately constant at each simplex vertex.

Compared to basic gradient-based methods, the Nelder-Mead algorithm is generally less
likely to get stuck in local minima and is quite robust to statistical noise. However, in many
circumstances, this comes at the price of a slower convergence rate.

While being a viable solution for extremely simple toy-models, the Nelder-Mead algorithm
usually doesn’t fare well with more realistic high-dimensional VQEs. In particular, its main
problem is not the rather slow convergence rate, but its tendency to remain stuck in local
minima.

An algorithm that is generally more suitable for optimizing E(θα) is the simultaneous
perturbation stochastic approximation (SPSA) [40], which is a gradient-descent method
that uses a stochastic estimation of the gradient. At each iteration, the current estimated
minimum point is perturbed along a random direction that is not aligned to an axis,
and the target function is evaluated at these two points. Given these two (noisy) energy
measurements and the perturbation vector, we can construct an unbiased finite-difference
estimator of the gradient, which is used to descend to the point that is used in the following
iteration of the algorithm. The main feature of SPSA is that this gradient estimation requires
only two measurements, regardless of the number of dimensions.

Even though the SPSA is a gradient-based method, it is capable of jumping out of local
minima thanks to the stochastic nature of its gradient estimation. Furthermore, the usage of
noisy measurements is actually helpful for not getting stuck in local minima.

In order to converge to the global minimum, it is important to carefully choose the
hyperparameters of the SPSA. Indeed, both the magnitude of the descent along the gradient
and the magnitude of the random perturbations need to be sequences of positive numbers
asymptotically tending to zero as the iteration number grows. In particular, the authors of

17

GIO
VANNI IA

NNELL
I

1.3 variational quantum eigensolver

SPSA give a precise list of sufficient conditions on the algorithm parameters such that the
algorithm converges in probability to the global minimum.

The SPSA is applicable with any possible parametrized quantum circuit and it is very
accessible as it is part of IBM’s Qiskit library [41] with the specifications explained in [25].
However, the downside of SPSA is that it doesn’t usually have a great convergence rate,
which can be problematic if we have only a limited number of measurements at our disposal.

Finally, the Nakanishi-Fujii-Todo (NFT) [38] algorithm is a very effective optimizer built
on top of the analytic formula (1.10), which means that it is only applicable to ansatz states
constructed using exclusively rotation gates and non-parametric gates. The NFT avoids the
exponential complexity of the formula (1.10) by sequentially optimizing one parameter at
a time. Indeed, in a one-dimensional subspace, the analytic formula (1.10) reduces to the
sinusoidal (1.11), which is fully determined with just three measurements, and one of them
can be taken from the expected minimum of the previous iteration. Therefore, with noiseless
measurements, the NFT would require only two energy measurements for optimizing a
one-dimensional subspace. However, in presence of statistical noise, after some iterations,
it is necessary to perform each of the three measurements to avoid the accumulation of
statistical errors that might ruin the optimization accuracy.

Even though the NFT updates only one parameter at a time, empirical tests show a
tendency to quickly escape from local minima, since, unlike most local optimizers, even
when the gradient is zero, the parameters are allowed to jump at distant locations.

Since it uses an exact formula, the NFT has very fast convergence rates, especially in low-
dimensional spaces. However, since it updates only one parameter at a time, its convergence
rate in very high-dimensional setups. The algorithm could be easily extended to minimize
d-dimensional subspaces, but the number of required measurements increases exponentially
with d.

Even though the NFT assumes zero statistical and quantum noise, it performs surprisingly
well in their presence. Indeed, since only one parameter is modified at each iteration, the
algorithm suppresses the chances of big steps in wrong directions induced by measurement
imprecision. Furthermore, independent sources of noise tend to average out across many
iterations. This leads to a steady convergence in the long run.

The NFT is way simpler to implement than its main alternatives, and its authors provide
the source code at [42]. Its main limitation is the inapplicability when using parametrized
gates that are not simple qubit rotations. This is particularly relevant for ansatz states
designed to incorporate Hamiltonian symmetries, such as those described in [27].

Why Bayesian optimization?

The optimization procedure that we studied in this thesis is known as Bayesian (global)
optimization (BO). Its earlier applications date back in the 60s [43], while its modern
implementations are based on a more recent work [13].

The main feature of BO is that it requires a very low number of target function evaluations
in order to converge to the global minimum. On the other hand, to achieve this result, BO
requires a complicated probabilistic modelling of the target function, which comes at a high

18

GIO
VANNI IA

NNELL
I

1.3 variational quantum eigensolver

(classical) computational cost. Therefore, BO is mostly used for those tasks in which the
evaluation of the target function is the bottleneck of the computation. Indeed, in these cases,
it is convenient to put more effort in minimizing the number of required iterations rather
than using a simpler algorithm that relies on measuring the target function several times.

For example, BO is widely used for finding the optimal set of neural network hyperpa-
rameters [44]. Assessing the effectiveness of a set of hyperparameters requires training
the neural network from scratch every time. Therefore, we are willing to pay the cost of a
computationally intensive algorithm if this means the avoidance of the training of neural
networks more times than strictly necessary.

In our case, the bottleneck are the energy measurements with the QEE, mostly because
of the limited availability of quantum hardware compared to classical CPU time. Indeed,
running quantum algorithms, at the moment, usually requires spending time in waiting list,
while, on the other hand, we can easily reduce the time for classical computation through
parallelization.

This situation will slowly change in the future. However, even in this case, BO might
still have an important role as it is a very customizable algorithm that can be significantly
simplified if shorter CPU times are required.

There are indeed many degrees of freedom in implementing BO and many different
variants of it have been published in order to tackle different issues. We have indeed at our
disposal possible answers to each of the optimization difficulties explained earlier.

We will see through the next chapters that BO has an elegant end effective way to include
Gaussian statistical noise in its analysis. In particular, we [14] implemented a strategy that
uses noisy measurements and their errors to predict the values of the parametrized energy
E(θα), which is then optimized using the recently published noisy expected improvement
acquisition function [15]. The results showed a fast convergence rate in low-dimensional
spaces, providing a precise solution in very noisy setups. In this thesis work, we give a
detailed explanation of each step of this algorithm, since this information can be very useful
to adapt this procedure to a wide range of different problems.

BO is generally used to globally optimize black-box functions, about which we only have
information regarding its smoothness level and its symmetries. The parametrized energy,
given its complexity, can be effectively treated as a non-convex black-box function. Even
in the cases in which its analytical formula (1.10) is available, its exponential number of
terms makes it unusable in practical applications, unless we restrict the formula to small
subspaces by keeping fixed the other circuit parameters. Furthermore, possible biases
caused by quantum noise might cause a discrepancy between the measured energy and its
exact formula.

Nevertheless, we recognize that, in most practical applications, E(θα) is a C∞ function
with 2π-periodicity in each parameter. We will see in the next chapters that both of these
properties can easily be incorporated into BO.

A big challenge of BO, however, is its usage in high-dimensional spaces. Indeed, using
the most common Bayesian optimizers, the CPU and memory requirements might become
unbearable if we want to simultaneously optimize D ≳ 40 parameters. For this reason,
many efforts have been put in the recent years in order to solve this problem and possible

19

GIO
VANNI IA

NNELL
I

1.3 variational quantum eigensolver

strategies such as [45–47] allows us to implement BO in high dimensional spaces while still
keeping a performance advantage compared to common alternative solutions.

In particular, it was published very recently [48] an algorithm that combines the scalability
of stochastic gradient-based methods with the global search performance of BO in order to
efficiently optimize VQE’s parametrized energy in high-dimensional setups. This is done by
performing an unbiased estimation of the gradient using 2D single shot measurements, and
using BO in the one-dimensional subspace spanned by the gradient.

This algorithm showed a very good convergence rate when used for the VQE in high-
dimensional spaces, and was able to reach the ground state with a higher precision compared
to the alternatives. These promising results indicate that BO is definitely a good choice for
variational quantum simulations.

20

GIO
VANNI IA

NNELL
I

2
I N T R O D U C T I O N T O G AU S S I A N P R O C E S S E S

Considering a set of N points in a D dimensional space, we will denote with a Greek
lowercase letter the coordinate index and with a Latin lowercase letter the index of the
element in the set. If the indices are not used in any operation as, for example, in ∑i or ∏α,
then they will indicate sets, vectors or matrices. For example:

θiα ≡

(θ11,..., θ1D)

...

(θN1,..., θND)

Kij ≡

K11 · · · K1N
...

. . .
...

KN1 · · · KNN

Here θiα represents a set of N D-dimensional vectors and KNN a N × N matrix.
A stochastic process f defined on a D-dimensional domain is a map that, for any integer

number N, associates an ordered set of N domain points θiα to an equally sized ordered set
of stochastic variables fi distributed according to a joint probability distribution p(fi):

θiα
f−→ fi

distributed−−−−−→
as

p(fi)

2.1 gaussian process

A Gaussian process (GP) is a stochastic process f in which the image stochastic variables fi

are distributed according to a multivariate Gaussian distribution:

p(fi) = det(2πK)−
1
2 e−

1
2 ∑ij(fi−µi)(K−1)ij(f j−µj) (2.1)

where µi is the mean vector and Kij is the covariance matrix. Their components are
respectively constructed with a mean function µ(θα) and a covariance function k(θα, θ′α) in
the following way:

µi ≡ µ(θiα) Kij ≡ k(θiα, θjα) (2.2)

Comparing the definition (2.2) with the multivariate Gaussian (2.1), it is clear the relationship
between µ(θα), k(θα, θ′α) and the expected value and the covariance of f (θα) according to
(2.1):

µ(θiα) = E[f (θα)] k(θiα, θjα) = Cov[f (θα), f (θ′α)] (2.3)

21

GIO
VANNI IA

NNELL
I

2.2 sampling from a gaussian process

Once µ(θα) and k(θα, θ′α) are specified, the GP in unequivocally determined. To be a valid
covariance function, k(θα, θ′α) needs to be defined such that K is positive definite ∀θα, θ′α.
Functions with this property are called positive-definite kernels.

A stochastic process can be seen as an extension to functions of the concept of random
variables. Indeed, a stochastic process can have many possible sample (or outcome) functions
in the same way as a random variable has many possible sample values.

In Fig 2.1 is shown a one-dimensional example of GP with three colored sample functions
drawn from it. The black dashed line is the mean function µ(θ) which is the expectation
values of the samples at each value of θ. The grey interval around µ(θ) represents the
standard deviations

√
k(θ, θ) of the samples at each value of θ. Indeed, at θ = π

2 , 3π
2 , the

standard deviation is zero and all samples touch µ(θ) in these points. The bigger is the
standard deviation, the wider are the average deviations of the sample from µ(θ).

0 π/2 π 3π/2 2π

θ

−1

0

1

f

GP example with 3 samples

µ(θ) µ(θ)±
√

k(θ, θ)

Figure 2.1: Example of GP using µ(θ) = sin(θ) and k(θ, θ′) = cos(θ) cos(θ′)
4 · exp

(
− (θ−θ′)2

2

)
. The

colored lines represent 3 random samples of the GP.

In the next section is shown an algorithm to draw discretized sample functions from a
given GP.

2.2 sampling from a gaussian process

Given a Gaussian process with mean function µ(θα) and covariance function k(θα, θ′α), the
N values fi of a sample function evaluated respectively in the D-dimensional points θiα

can be found sampling their joint Gaussian probability density function (2.1), which is a
well-known procedure (see the discussion in section A.2 of the appendix for more details).
Here is summarized a method for obtaining such a sample:

1. Generate N independent random real numbers xi from a Gaussian distribution with
zero mean and one standard deviation.

22

GIO
VANNI IA

NNELL
I

2.3 geometry of gaussian processes

2. Use the mean function µ(θα) and the covariance function k(θα, θ′α) to construct the
mean vector µi = µ(θiα) and the covariance matrix Kij = k(θiα, θjα).

3. Find a matrix A such that K = AA⊤.

4. The wanted sample set is given by fi = ∑j Aijxj + µi.

The matrix A in point 3 could be found with Cholesky decomposition, which, given a
Hermitian positive definite matrix K, finds a lower triangular matrix L such that K = LL⊤.

If fi have strong correlations, Cholesky decomposition might fail because the matrix K
might have zero or negative eigenvalues due to rounding errors [49]. In order to prevent it,
it might be helpful to add a small positive number to the diagonal elements of K [50]. If this
is not enough, a more stable approach is to use the eigendecomposition K = QΛQ⊤ to find
A ≡ QΛ1/2, which also implies K = AA⊤.

When a sample is evaluated in a large number N of points, this procedure might be slow
as the computational cost of Cholesky decomposition and eigendecomposition is O(N3). In
these cases, it might be helpful to sample the multivariate Gaussian using iterative methods
[51] that avoid operations with O(N3) complexity.

Fortunately, in many circumstances it is not necessary to sample a high number of
variables fi as many properties and results can be obtained directly from µ(θα) and k(θα, θ′α),
which are usually specified in closed form.

2.3 geometry of gaussian processes

The mean and the covariance functions determine the properties of sample functions drawn
from a Gaussian process. The mean function is the function around which the sampled
functions oscillate, and the covariance function determines the magnitude and the correlation
of typical deviations from the mean function. In particular, the covariance function imposes
different geometries on sample functions. Therefore, the choice of k(θα, θ′α) is of great
importance for modelling a phenomenon with a GP.

We mentioned in section 1.3 that the parametrized energy E(θα) is usually C∞ and 2π-
periodic in each parameter. Since we want to model the parametrized energy with a GP, we
want to impose these properties to the GP samples as they constitute the probability space
of our guesses about the real form of E(θα).

In the next few paragraphs, we will review some sample properties that can be fixed with
an appropriate choice of the covariance function, keeping in mind what we know about the
target function.

Smoothness of samples

It is proven [52, 53] that the smoothness level of the samples is determined by the smoothness
level of the mean and covariance functions. If µ(θα) ∈ Ck and k(θα, θ′α) ∈ C2k, then the
functions sampled from the Gaussian process are ∈ Ck.

23

GIO
VANNI IA

NNELL
I

2.3 geometry of gaussian processes

Below are listed covariance functions commonly chosen [16] to impose certain levels of
smoothness. The meaning of the positive parameters σ and ℓ is explained later in the next
paragraphs.

• The radial basis function (RBF) (or squared exponential) kernel:

kRBF(θα, θ′α) ≡ σ2e−∑α
(θα−θ′α)2

2ℓ2 (2.4)

kRBF(θα, θ′α) ∈ C∞, therefore the GP samples are in C∞.

• The exponential kernel:

kexp(θα, θ′α) ≡ σ2e−∑α
|θα−θ′α |

ℓ (2.5)

kexp(θα, θ′α) ∈ C0, therefore the GP samples are in C0.

• The Matérn class [54] of kernels, parametrized by ν > 0:

kM
ν (θα, θ′α) ≡ σ2 21−ν

Γ(ν)

(√
2ν

d(θα, θ′α)
ℓ

)ν

Kν

(√
2ν

d(θα, θ′α)
ℓ

)
(2.6)

Where Kν are the modified Bessel functions of second kind [55], Γ is the gamma
function and d is the Euclidean distance. kM

ν (θα, θ′α) ∈ C2⌈ν−1⌉, therefore the GP
samples are in C⌈ν−1⌉. The Matérn class is a generalization of RBF and exponential
kernels because kM

1/2 = kexp and kM
ν

ν→∞−−−→ kRBF.

In figure 2.2 are illustrated three samples obtained from three GPs with different covari-
ance functions: RBF, exponential and Matérn with ν = 3/2. In each case σ = ℓ = 1 is used.
The three GPs share the same mean function µ(θ) = sin(θ) and the same sample variance
k(θ, θ) = 1, but their different covariance functions impose different level of smoothness to
the samples: C∞ with RBF, C0 with exponential and C1 with Matérn when ν is set to 3/2.

Since the parametrized energy in equation (1.8) is a C∞ function, the RBF kernel in
equation (2.4) is an appropriate choice to model it with a GP.

Sample variance and characteristic length-scale

The parameters σ2 and ℓ of the kernels (2.4), (2.5) and (2.6) are called, respectively, sample
variance and characteristic length-scale. Since the sample variance is the diagonal term
of the covariance functions, it is straightforward to verify that k(θα, θα) = σ2 for the three
kernels (2.4), (2.5) and (2.6). An example of the effect on random samples obtained by
varying σ2 is shown in figure 2.3. The deviations of the samples from the mean are, on
average, two times wider when the value of σ doubles.

The characteristic length-scale ℓ determines the decay rate of the positive correlation
between two points of a sample function. The sample functions are not likely to vary much
along lines shorter than ℓ in the θ space as their values have a high positive correlation.
Therefore, fixing ℓ to a certain value has the effect of suppressing sample oscillations with
wave-lengths smaller than ℓ. An example of this effect is shown in figure 2.4. Three samples
are drawn from a GP using different values of ℓ. In the case of ℓ = π/8 are present short
wave-length oscillations that are absent in the case of ℓ = π/2.

24

GIO
VANNI IA

NNELL
I

2.3 geometry of gaussian processes

0 π/2 π 3π/2 2π

θ

−2

0

2

f

Sample smoothness with different kernels

kRBF kExp kM
3/2

Figure 2.2: Three GP samples drawn using different covariance functions. They share the same mean
function represented with a dashed black line and the same standard deviation shown as
a grey interval. However, different choices of covariance functions impose different levels
of smoothness.

0 π/2 π 3π/2 2π

θ

−5.0

−2.5

0.0

2.5

f

σ = 1, ℓ = 1

0 π/2 π 3π/2 2π

θ

σ = 2, ℓ = 1

Sample standard deviation comparison

Figure 2.3: Three GP samples drawn using different values of the sample standard deviation. When
σ is doubled, also the typical amplitude of oscillations is doubled.

Generalizations of characteristic length-scale

We have considered so far only covariance functions with a unique isotropic characteristic
length-scale under which the GP samples vary with the same frequency in all θ space
directions. However, in many situations, it is necessary to model phenomena that are more
susceptible to some parameters than to others. In these cases, it is possible to use the kernels
(2.4), (2.5) and (2.6) using a different ℓα for each single coordinate α. Their usage in the
context of Bayesian inference is called automatic relevance determination (ARD) [56]. The
meaning of this name will be clear in chapter 5, where Bayesian model selection will be
described.

25

GIO
VANNI IA

NNELL
I

2.3 geometry of gaussian processes

0 π/2 π 3π/2 2π

θ

−2

0

2

f

σ = 1, ℓ = π/2

0 π/2 π 3π/2 2π

θ

σ = 1, ℓ = π/8

Sample characteristic length-scale comparison

Figure 2.4: Three GP samples drawn using different values of the characteristic length-scale. When ℓ
is increased, oscillations with wave-length shorter than ℓ are suppressed.

The ARD version of the RBF kernel (2.4) is the following:

kRBF
ARD(θα, θ′α) ≡ σ2 ∏

α

e
− (θα−θ′α)2

2ℓ2
α (2.7)

where ℓα is the vector containing the different characteristic length-scales corresponding to
each parameter in θα.

The generalization of ℓ can be further expanded rewriting the RBF kernel (2.4) in the
following way:

kRBF(θα, θ′α) ≡ σ2 exp

(
−1

2 ∑
αβ

(θα − θ′α)Mαβ(θβ − θ′β)

)

where the d× d matrix M can be parametrized in different ways:

M1
αβ = ℓ−2δαβ M2

αβ = ℓ−2
α δαβ M3

αβ = (ΛΛ⊤)αβ + ℓ−2
α δαβ (2.8)

here Λ is an arbitrary D× L matrix with L < D. The parametrization M1 corresponds to
the isotropic case (2.4), M2 to the ARD kernel (2.7) and M3 is a generalization called factor
analysis distance [16]. In addition to the single parameter directions of M2, M3 gives the
possibility of tuning the length-scale along k arbitrary directions in the D-dimensional space.
In particular, the L columns of Λ define L directions, along which the samples vary with
higher frequency.

In figure 2.5 are shown three two-dimensional samples drawn with µ(θα) = 0, σ = 1 and
RBF kernel with the parametrizations (2.8). The M1 matrix is here constructed with ℓ = π/2.
Since it is isotropic, the oscillations of the samples have the same characteristic length-scales
in each direction. For M2 it was used ℓ = (π/8, π), therefore the samples will oscillate
far more rapidly in the θ1 direction than in the θ2 direction. Indeed, the sample profile

26

GIO
VANNI IA

NNELL
I

2.3 geometry of gaussian processes

appears stretched in the θ2 direction. Finally, M3 was constructed with Λ = (8/π,−8/π),
ℓ = (2π, 2π). Thus, the direction along which the samples vary more rapidly is θ̂1 − θ̂2.

π/2 3π/2
θ1

π/2

3π/2
θ 2

M1

π/2 3π/2
θ1

M2

π/2 3π/2
θ1

M3

−1.0 −0.5 0.0 0.5 1.0
f

Anisotropic characteristic length-scale

Figure 2.5: A two-dimensional GP sample drawn using different length-scale parametrizations. With
M1 the sample has isotropic oscillations, with M2 it oscillates more frequently along one
axis and with M3 along an arbitrary direction.

Further generalizations of ℓ have been studied, in particular it is possible to break the
stationarity of the covariance function using a characteristic length-scale ℓ(θα) that is not
constant for each θα. For details about constructing kernels with this property, see [57, 58].

Kernel warping and periodic RBF

In many applications it is advised to create new kernels starting from widely known ones.
There are several known procedures for modifying or combining kernels, preserving their
positive definiteness [16].

A very useful procedure is known as kernel warping. It can be used to model complex
patterns, such as in [59], or to impose periodic boundary conditions to the RBF kernel [60].

Given a covariance function k(θα, θ′α) and an arbitrary nonlinear mapping u(θα), it is
possible to define a new covariance function:

ku(θα, θ′α) = k(u(θα), u(θ′α))

The positive definiteness of ku follows directly from that of k. There is a lot of freedom in
the choice of u as it doesn’t need to be invertible. Furthermore, domain and codomain don’t
need to share the same dimensionality if the kernel k is well-defined in the corresponding
space.

Periodicity of samples could be achieved mapping each parameter to the points of a
circumference whose length corresponds to the period P. Each single parameter is therefore

27

GIO
VANNI IA

NNELL
I

2.3 geometry of gaussian processes

mapped to a point in a two-dimensional space. The covariance function is then evaluated in
this 2D-dimensional space. Thus, the wanted warping function is:

u : θα ≡

θ1
...

θd

 7→ u(θα) ≡

r sin(φ1)

r cos(φ1)
...

r sin(φd)

r cos(φd)

Where r ≡ P/2π is the radius of the circumference and φα ≡ 2πθ/P are the angular
coordinates in the two-dimensional space.

Applying this warping to the RBF kernel (2.4):

kRBF
u = σ2 exp

(
− r2

2ℓ2 ∑
α

(sin(φα)− sin(φ′α))
2 + (cos(φα)− cos(φ′α))

2

)

Using the following trigonometric identities:

sin(φ) sin(φ′) + cos(φ) cos(φ′) = cos(φ− φ′)

cos(φ− φ′) = 1− 2 sin2
(φ

2

)

kRBF
u can be simplified since:

(sin(φ)− sin(φ′))2 + (cos(φ)− cos(φ′))2

= 2(1− cos(φ− φ′))

= 4 sin2
(

φ− φ′

2

)

Thus, reintroducing θα and P, the periodic RBF kernel with period P is:

kP(θα, θ′α) ≡ σ2 exp

(
− P2

2π2ℓ2 ∑
α

sin2
(π

P
(θα − θ′α)

))
(2.9)

The multiplicative factors inside the exponential could be absorbed redefining ℓ, but we
prefer to keep them explicit in order to maintain the correspondence with the RBF in the
limit θα → θ′α.

In figure 2.6 it is shown a one-dimensional comparison between samples drawn with RBF
and periodic kernels. It is clear from the figure that the samples drawn with the periodic
kernel have periodic boundary conditions, while those obtained with RBF are not periodic,
even though the mean function is periodic.

Finally, the ARD extension of the periodic kernel is straightforward:

kP
ARD(θα, θ′α) ≡ σ2 exp

(
− P2

2π2 ∑
α

sin2 (π
P (θα − θ′α)

)

ℓ2
α

)
(2.10)

28

GIO
VANNI IA

NNELL
I

2.4 conditional gaussian processes

0 π/2 π 3π/2 2π

θ

−2

0

2
f

RBF

0 π/2 π 3π/2 2π

θ

Periodic

Samples from RBF and periodic kernels

Figure 2.6: Three GP samples drawn using RBF and periodic kernels. If periodic kernel is used, all
GP samples are periodic.

2.4 conditional gaussian processes

In many applications, it is useful to consider only the GP samples that have certain values
at specific domain points. This is the case, for example, when it is necessary to model a
function that has few known values after previous measurements. Restricting the samples
of a stochastic process to only those which pass through certain points might be in general
computationally intensive, however this is not the case for GPs as the conditional probability
of a multivariate Gaussian is available in closed form.

Given a GP f , we want to express p(f ∗m| fi), which is the conditional distribution of its
sample values f ∗m evaluated at θ∗mα given the fixed sample values fi at θiα. It can be proven
[61] that the conditional distribution of a multivariate Gaussian is another multivariate
Gaussian whose mean and covariance are:

E[f ∗m| fi] = µ(θ∗mα) + ∑
ij

k(θ∗mα, θiα)
(

K−1
)

ij
(f j − µ(θjα))

Cov[f ∗m, f ∗n | fi] = k(θ∗mα, θ∗nα)−∑
ij

k(θ∗mα, θiα)
(

K−1
)

ij
k(θjα, θ∗nα)

(2.11)

where µ(θα) and k(θα, θ′α) are the mean and covariance function of the GP f , Kij ≡ k(θiα, θjα)

and Kij ≡ k(θiα, θjα). Comparing this result with equations (2.1), (2.2) and (2.3), it is clear
that the conditional GP is a new GP whose mean and covariance functions are:

µ(θα| fi) = µ(θα) + ∑
ij

k(θα, θiα)
(

K−1
)

ij
(f j − µ(θjα))

k(θα, θ′α| fi) = k(θα, θ′α)−∑
ij

k(θα, θiα)
(

K−1
)

ij
k(θjα, θ′α)

In Fig. 2.7 is shown an example of conditional GP. In the left panel are shown three
samples from a GP with constant zero mean and RBF covariance function. In the right panel
are shown three samples from the conditional GP obtained using the fixed values fi marked

29

GIO
VANNI IA

NNELL
I

2.4 conditional gaussian processes

with black circles. We can notice that the sample standard deviation converges to zero at
the fixed values. Indeed, all the samples of the conditional GP are required to pass through
fi. Therefore, the samples of the conditional GP can be seen as possible interpolations of the
fixed values fi.

0 2π/3 4π/3 2π

θ

−2

−1

0

1

2

f

f (θ)

0 2π/3 4π/3 2π

θ

f (θ| f ∗i)
Samples from a conditional GP

Figure 2.7: The three samples drawn from the conditional GP interpolate the points marked with
black circles.

We will explain in Chapter 4 how this result is of crucial importance for GP regression.
In particular, it will be shown that this result coincides with the GP regression of noiseless
measurements.

30

GIO
VANNI IA

NNELL
I

3
I N T R O D U C T I O N T O B AY E S I A N I N F E R E N C E

Bayesian probability is an interpretation of the concept of probability that is alternative to
the widely known frequentist probability. Whereas frequentist probability is defined as
the relative frequency of an event, Bayesian probability is rather interpreted as reasonable
expectation [62] or personal belief [63]. Its name was given in the 1950s for the pioneering
work of Thomas Bayes, a Presbyterian minister and mathematician of the eighteenth century
[64]. These ideas were known before under the name of inverse probability.

Even though frequentist statistics is the most followed approach in experimental sciences,
Bayesian methods have found many applications, especially in the context of machine
learning [65], since they offer many strategies to deal with model uncertainty and to include
prior beliefs in the analysis.

3.1 bayes theorem

The starting point of any Bayesian analysis is a hypothesis about the generative probabilistic
process giving rise to observable data x. This generative model is the sampling distribution
p(x|ϕ, ξ), which is expressed in terms of a set of parameters ϕ and hyperparameters ξ. The
subject of statistical inference is to determine the parameters ϕ. In some cases, the parameters
ϕ themselves are considered subject to another generative process p(ϕ|ξ) expressed in terms
of hyperparameters ξ.

The sampling distribution is also called likelihood function, since, after gathering the data x
from measurements, the value of p(x|ϕ, ξ) indicates the likelihood of the parameters ϕ given
the measured value x. Indeed, the values of the parameters ϕ that are compatible with the
data x are considered to be more probable than those that are not compatible with x.

In order to perform Bayesian inference, it is necessary to specify a prior distribution p(ϕ|ξ)
that describes the beliefs and uncertainties about the true values of the parameters ϕ before
any measurement is taken. Here is where prior knowledge about the problem should be
used. The prior distribution could be determined using physical properties, symmetries, or
even subjective beliefs. It is important that p(ϕ|ξ) > 0 for any plausible value of ϕ, since
a zero prior probability excludes a value with certainty. This precaution is also known as
Cromwell’s rule [66] to refer to a famous quotation:

I beseech you, in the bowels of Christ, think it possible that you may be mistaken.

— General Oliver Cromwell, letter to the General Assembly of the Kirk of Scotland, 1650

31

GIO
VANNI IA

NNELL
I

3.1 bayes theorem

The main step of Bayesian inference is to find the posterior distribution p(ϕ|x, ξ) of the
parameters ϕ after having observed x. This is done updating the prior using Bayes’ theorem:

p(ϕ|x, ξ) =
p(x|ϕ, ξ)p(ϕ|ξ)

p(x|ξ) (3.1)

where p(x|ξ) =
∫

p(x|ϕ, ξ)p(ϕ|ξ)dϕ is the marginal likelihood (or evidence). Bayes’ theorem
follows directly from the definition of conditional probability. It can be interpreted as a
reweighting of the prior in which the prior beliefs about ϕ are rescaled according to their
compatibility with the measured data x.

To summarize, in order to perform Bayesian inference of some parameters ϕ, two elements
are required: the prior distribution of ϕ and the likelihood function of the parameters ϕ

given the measured data x. These two choices might be immediate or tricky depending
on the specific problem. While the choice of the likelihood should always have objective
motivations dictated by the considered problem, the prior can be set to be very generic
as long as Cromwell’s rule is satisfied. In many practical situations, the prior is chosen to
be a conjugate prior for a specific likelihood, which means that the posterior p(ϕ|x, ξ) will
be in the same distribution family as the prior p(ϕ|ξ) after applying Bayes’ theorem (3.1).
This choice is an algebraic convenience in order to have a closed-form expression for the
posterior.

In some cases, it is not possible to use conjugate priors and the integration of the likelihood
might be problematic. Fortunately, it is possible to sample the posterior distribution
p(ϕ|x, ξ) without having to evaluate the marginal likelihood at all. Indeed, since p(ϕ|x, ξ) ∝
p(x|ϕ, ξ)p(ϕ|ξ), it is possible to use Markov Chain Monte Carlo (MCMC) techniques (e.g.
Gibbs sampling [67] or slice sampling [68]) to sample the posterior as they usually don’t
require evaluating the normalizing constant.

The choice of the prior distribution is the most peculiar and controversial aspect of
Bayesian analysis because there isn’t a general rule to determine it and the final result
depends on this choice. However, as it will be explained in the rest of the chapter, Bayesian
inference offers several advantages over frequentist approaches in prediction, decision-
making and model selection. The arbitrariness of the prior is not a problem when enough
data is collected such that the final result becomes almost independent of the prior choice.
In some cases this freedom of choice might even be an advantage, for example when
the availability of reliable data is very limited and the analysis has to rely on subjective
information that could be included into the prior. This is the situation, for example, in the
search and recovery of lost objects at sea. The famous recovery of a nuclear bomb lost by the
United States Air Force off the coast of Spain in 1966 was achieved using the information
given by local fishermen and Bayesian search theory [69].

32

GIO
VANNI IA

NNELL
I

3.2 bayesian predictions

3.2 bayesian predictions

In the context of machine learning, the interest of the analysis is not concerning ϕ itself, but
rather the prediction of another unobserved random variable y dependent on ϕ and ξ under
a probabilistic model p(y|ϕ, ξ) using the information gathered measuring x.

Once the posterior distribution p(ϕ|x, ξ) is obtained with Bayes’ theorem (3.1), the posterior
predictive distribution is found by marginalizing the parameters ϕ:

p(y|x, ξ) =
∫

p(y|ϕ, ξ)p(ϕ|x, ξ)dϕ (3.2)

Often it is useful to produce analogous predictions using the prior distribution instead of
the posterior in order to observe the impact of measurements on the predictions. The prior
predictive distribution is then:

p(y|ξ) =
∫

p(y|ϕ, ξ)p(ϕ|ξ)dϕ (3.3)

Here is possible to appreciate an advantage of Bayesian statistics. While (3.2) estimates
the whole distribution of y, predictions with frequentist approaches are usually performed
after a point or interval estimate of ϕ, which means that only limited information about the
distribution of ϕ would be used for the prediction of y. In some cases, the distribution of y
could still be obtained using specific distribution properties, for example using the central
limit theorem and Student’s t-distribution. In other cases, a frequentist analysis might have
to rely on resampling methods [70] to get more information about the distribution of y.

On the other hand, the Bayesian posterior predictive distribution (3.2) is available in
closed form if conjugate priors are used, and, in the general case, it could be approximated
with arbitrary precision using MCMC. This could be very useful if further analysis needs to
be performed using the predictive values of y, for example in decision theory, as will be
explained in the next section.

3.3 bayesian decision theory

Bayesian analysis usually requires deducing further statements after finding the posterior
distribution p(ϕ|x, ξ) or the posterior predictive distribution p(y|x, ξ). These statements
might regard ϕ or y themselves (e.g. their expected value) or other variables dependent on
them. A wide class of such problems may be tackled by Bayesian decision theory. The point
estimate of ϕ, for example, falls into this category.

A decision problem involves defining a loss function L(z, y) or L(z, ϕ) in terms of a
decision variable z, the prediction variable y or the parameters ϕ. The loss function is then
integrated over the posterior predictive distribution (or the posterior distribution) in order
to obtain the expected loss. The optimal Bayesian decision is then defined as the minimum
of the expected loss among the possible values of the decision variable z. In some cases
it is more natural to define a utility function rather than a loss function, and the optimal

33

GIO
VANNI IA

NNELL
I

3.4 bayesian model selection

Bayesian decision will then be the maximum point of the expected utility. Instances of utility
function maximization are the acquisition functions covered in Chapter 7.

Let us illustrate the most common example of Bayesian decision theory, which is the point
estimation of ϕ. Calling ϕ′ a candidate to be the point estimate of the true value of ϕ, the
loss function L(ϕ, ϕ′) measures the discrepancy between ϕ and ϕ′. Here ϕ′ has the role of
the decision variable z of the definition above, therefore the function to minimize is the
expected loss defined as:

EL(ϕ′|x, ξ) ≡
∫

L(ϕ̂, ϕ)p(ϕ|x, ξ)dϕ (3.4)

where p(ϕ|x, ξ) is the posterior distribution (3.1). The optimal Bayesian decision about the
estimation of ϕ is then:

ϕ̂ ≡ arg min
ϕ′

EL(ϕ′|x, ξ)

The final result depends on the definition of the loss function: if L(ϕ, ϕ′) = (ϕ− ϕ′)2, then
ϕ̂ is the mean value of the posterior; if L(ϕ, ϕ′) = |ϕ − ϕ′|, then ϕ̂ is the median of the
posterior; if L(ϕ, ϕ′) = δ(ϕ− ϕ′), then ϕ̂ is the mode of the posterior.

This last example is also called maximum a posteriori (MAP) and it is of particular interest
as it can be computed without evaluating the marginal likelihood and without using MCMC
techniques. Indeed, the maximum point of the posterior (3.1) is the same regardless of
the multiplicative constant, so the MAP estimate can simply be found with the following
optimization:

ϕ̂MAP ≡ max
ϕ

p(ϕ|x, ξ) = max
ϕ

p(x|ϕ, ξ)p(ϕ|ξ)

since p(ϕ|x, ξ) ∝ p(x|ϕ, ξ)p(ϕ|ξ) from (3.1).

3.4 bayesian model selection

The missing piece of our analysis is the choice of the hyperparameters ξ that identify the
generative process of the parameters ϕ. We will describe three different approaches. Each of
them is a generalization of the previous one.

Maximum likelihood estimation

The likelihood of the hyperparameters ξ given the measured data x is p(x|ξ). Keeping the
measured data x fixed, its maximum point over the possible hyperparameters ξ represents
the values of ξ that are most compatible with the data x. Recalling the steps of the Bayesian
inference described so far, we can notice that p(x|ξ) already appeared in equation (3.1).
Indeed, it is the marginal likelihood of the hyperparameters, in which the dependence on
the parameters ϕ has been marginalized away:

p(x|ξ) =
∫

p(x|ϕ, ξ)p(ϕ|ξ)dϕ (3.5)

34

GIO
VANNI IA

NNELL
I

3.4 bayesian model selection

Therefore, the maximum likelihood estimation (MLE) of ξ is performed as:

ξMLE ≡ arg max
ξ

p(x|ξ) (3.6)

In many cases (3.5) can be evaluated in closed form, so that the optimization (3.6) can be
performed efficiently.

At first sight, it may seem that (3.6) overfits the data as it just selects the model with the
highest data compatibility. However, at closer look, it is clear that this is not the case [71].
Overfitting means fitting the data with a model that is too complex and generic, so that it
adapts very well to a wide variety of different possible measurements. This usually means
having a weak predictive power on points that are distant to those used for the inference.
For example, this happens when a high degree polynomial is used to fit a noisy dataset
generated with a power law with lower degree. The fitted function will track very well the
training dataset, but it will totally miss predictions of new data taken further from the rest
as the higher degree components of the polynomial dominate asymptotically.

The reason why overfitting shouldn’t happen for the MLE (3.6) is that p(x|ξ) is always
normalized to one in the x space, for each value of ξ. Complex models that could fit a
high variety of datasets x correspond to wide distributions p(x|ξ) as they are compatible
with wide intervals of x. However, the distribution p(x|ξ) of complex models is low valued
because it has to be normalized to one. On the other hand, very simple models tend to have
a distribution peaked in small intervals of x and close to zero in the rest of the domain. This
means that their probability density function is far higher close to the peaks than any values
found in wider distributions.

An example of this behaviour is illustrated in Fig. 3.1. The three curves represent three
Gaussians centered at the same point but with different sigmas. The one with the highest
variance represents a complex model, the one with the lowest variance a simple model and the
one in between an intermediate model. The complex model is compatible with the highest
amount of possible data because its wider probability density function keeps high values
for a larger interval of possible measurements x. However, considering the measurement
x depicted as a dashed line, even though its value is at half sigma from the mean of the
complex model, the likelihood is higher for the intermediate model, even though it is at one
sigma from its mean. On the other hand, the likelihood of the simple model is already too
low as the marked point is at two sigmas from the mean.

Model selection through MLE, therefore, implements a trade-off between model fit and
model complexity, or, rephrasing this in other terms, it selects the simplest model among
those that are compatible with the data. This is an instance of Occam’s razor, named after
William of Ockham, a Franciscan friar and philosopher that frequently applied this principle
in his works:

Frustra fit per plura quod potest fieri per pauciora.

— William of Ockham, Summa Logicae, 1323

35

GIO
VANNI IA

NNELL
I

3.4 bayesian model selection

x

p(
x|

ξ
)

Occam’s razor

Simple Intermediate Complex

Figure 3.1: Three possible models for explaining the data x marked with a dashed line. The model
with the highest marginal likelihood is the one of intermediate complexity.

The procedure of fixing the hyperparameters with MLE is usually referred as maximum
likelihood estimation of type II (MLE-II) because MLE is used to fix the hyperparameters,
which are a second level of parameters.

Maximum a posteriori

In some cases, especially when there is not much available data or when there are many
hyperparameters to fix, it might happen that MLE estimates unreasonable values for ξ. For
example, it might select extremely simple or extremely complex models. In these cases, it
is advised to rely on regularization techniques, which, in the context of Bayesian analysis,
usually involve introducing a new prior distribution on the hyperparameters [71, 72].

We will call hyperprior p(ξ) this prior distribution of the hyperparameters. Its main
purpose it is to avoid results clearly outside the range of plausibility, but it can also be used
to incorporate some prior knowledge about ξ or to strengthen the Occam’s razor.

The hyperposterior is then found applying Bayes’ theorem:

p(ξ|x) = p(x|ξ)p(ξ)
p(x)

(3.7)

where p(x|ξ) is the marginal likelihood (3.5), in which only ϕ has been marginalized out,
while in p(x) =

∫
p(x|ξ)p(xi)dξ also the hyperparameters are marginalized out using the

hyperprior. The MAP estimation of ξ is then:

ξMAP ≡ arg max
ξ

p(ξ|x)

From its definition, it is clear that MAP is a generalization of MLE as they yield the same
result if a constant hyperprior is used.

36

GIO
VANNI IA

NNELL
I

3.4 bayesian model selection

Usually p(x) is not available in closed form and its evaluation might be not trivial.
Fortunately, as explained in Sec. 3.3, evaluating p(x) is not necessary for computing the
MAP as the multiplicative constant is irrelevant for the optimization.

At first sight, fixing the hyperparameters ξ with MLE or MAP might seem to violate
the rules of Bayesian inference as the empirical data x is used to fix ξ, which defines the
prior p(ϕ|ξ) that should be specified before any measurement. The prior is then not only
expressing prior beliefs, but it is also the result of a data fit. However, it is the hyperprior
p(ξ) that is chosen before any data is taken. The hyperprior could therefore be seen as the
real prior that defines the ensemble of all possible priors p(ϕ|ξ).

Fully Bayesian

The introduction of the hyperprior p(ξ) opens different possibilities for the estimation
of ξ. For example, all the point estimation methods introduced in section 3.3 could be
used. However, in order to exploit all the potential of Bayesian inference, we could use
all the information of the hyperposterior p(ξ|x) considering all the possible values of the
hyperparameters ξ weighted according to the hyperposterior. This might sound unrealistic,
but can in fact be done efficiently with MCMC, or, in some cases, even in closed form [56].

Let us consider the posterior prediction distribution p(y|x, ξ) in equation (3.2). The
predictions can take into account the contribution of all possible ξ if we integrate p(y|x, ξ)

over ξ:
p(y|x) =

∫
p(y|ϕ, ξ)p(ϕ|x, ξ)p(ξ|x)dϕdξ

Which means that the hyperparameters are marginalized out of the predictions, adding a
second layer to the Bayesian inference. The predictions obtained in this way are also known
as fully Bayesian predictions. The same integration could be done to get the fully Bayesian
posterior p(ϕ|x) or fully Bayesian expected loss EL(z|x).

In same cases, there are further levels of hyperparameters ξ1, ξ2, ..., where the prior
p(ξn|xn+1, ...) of each set of hyperparameters ξn is determined by those present in all
deeper levels. The fully Bayesian procedure can then be applied up to any arbitrary level,
marginalizing out all the hyperparameters ξn. If it is impossible to obtain closed-form
fully Bayesian formulae, it might become very resource demanding to approximate them
with MCMC if many layers of hyperparameters are present. Indeed, the complexity of the
approximation increases exponentially with the number of layers.

37

GIO
VANNI IA

NNELL
I

4
G AU S S I A N P R O C E S S R E G R E S S I O N

Gaussian process regression (GPR) is a procedure that interpolates spacial data with a GP
using Bayesian inference. It was first introduced in geostatistics in the 1960s with the name
of Kriging [73], but nowadays is used in many fields, most notably in machine learning [16]
and Bayesian optimization [13].

GPR falls into the category of non-parametric regression procedures as the resulting func-
tion is not expressed in a parametric form, but rather in terms of the training data. Indeed,
GPR could in principle interpolate any set of data without changing its hyperparameters,
since it is an interpolation method. However, as will be explained later, GPR offers methods
to infer functions from noisy data, which is an uncommon feature among interpolation
methods.

Our interest lies in using GPR to interpolate a set of noisy energy measumeremts per-
formed with a quantum computer. In this chapter, we will show how GPR accomplishes this
task using the concepts introduced in Chapters 2 and 3. It uses a GP as a prior distribution,
and uses the empirical data to model the unknown parametrized energy with Bayesian
prediction theory. We will discuss both GPR in case of noiseless data and in case of data
afflicted by Gaussian noise. Finally, we will discuss how the operations required by GPR
can be efficiently implemented.

4.1 bayesian inference using quantum measurements

Let us consider a set of N energy measurements Ei±∆Ei, each of them obtained respectively
using a D-dimensional circuit parameter vector θiα.

In order to perform Bayesian inference, we need first to specify a probabilistic generative
model of the data in terms of a set of parameters fi and hyperparameters ξ. In our model,
the parameters fi are the estimators of the unknown target energy function E(θiα) evaluated
in a set θiα of circuit parameters. The parameters fi have here the role of the parameters ϕ

in chapter 3. Since the N energy measurements are taken independently, the probability
p(Ei| fi) of obtaining the measurements Ei given certain values of the parameters fi is a
product of Gaussians centered in fi with sigmas equal to ∆Ei.

Once it is specified how to evaluate the likelihood p(Ei| fi), the next step is placing a
prior distribution on the parameters fi. The exact unknown energy function can be seen
as a possible sample of a GP f , so we can treat fi as the values assumed by this specific
GP sample when evaluated at θiα. Therefore, the prior distribution of the parameters fi

38

GIO
VANNI IA

NNELL
I

4.2 bayesian prediction of quantum measurements

is determined by the GP f . Indeed, it is the multivariate Gaussian (2.1). Since the GP f
generates the prior distribution of fi, we will call it prior GP.

As was explained in Chapter 2, in order to fully specify the GP f , it is sufficient to define
a mean and a covariance function. The mean function of the prior GP is often chosen to be a
constant function as this choice expresses prior neutrality about the possible measurements.
In cases where prior knowledge about the values of the target function is available, it is
possible to define a mean function that reflects this knowledge. In our tests we used a
constant prior mean function:

µ(θα) = µ

For the covariance function, it is possible to use any of the kernels introduced in chapter 2. In
any case, they will depend on the sample variance σ2 and on the characteristic length-scale
ℓ, which could be just a scalar or a more complex form as explained in Sec. 2.3. The values
of µ, σ2 and ℓ can be treated as hyperparameters of the prior distribution. As such, we will
call them ξ in analogy with the discussion of chapter 3, and their value will be fixed with
Bayesian model selection in chapter 5.

Finally, the posterior distribution of the parameters fi is evaluated using Bayes’ theorem
(3.1):

p(fi|Ei, ξ) =
p(Ei| fi)p(fi|ξ)

p(Ei|ξ)
(4.1)

where the marginal likelihood is given by p(Ei|ξ) =
∫

p(Ei| fi, ξ)p(fi|ξ)d fi.
An advantage of using a GP prior is that the posterior (4.1) is available in closed form if

the likelihood is a Gaussian. Indeed, a multivariate Gaussian distribution is a conjugate prior
for a multivariate Gaussian likelihood. This is a great computational advantage, especially
when the posterior is used to perform predictions and take decisions.

In the next section, we will explain how to perform predictions of the target energy
function, which will be used in chapter 7 to estimate the global minimum of the energy
using Bayesian decision theory.

4.2 bayesian prediction of quantum measurements

In our formalism, the unknown energy function E(θα) is a possible sample of the prior
GP f . In section 2.4 we saw how to restrict the space of the samples of a GP to those that
pass through certain fixed values, and the remaining samples constitute another conditional
GP. Since the parameters fi are our estimators of E(θiα), we are interested in conditioning
the prior GP f on the values fi at θiα. The resulting conditional GP allows us to assign
a predictive probability density function p(f ∗m| fi, ξ) to any set of energy estimators f ∗m
evaluated at θ∗mα. We also know that the mean and the covariance of their multivariate
Gaussian distribution p(f ∗m| fi, ξ) are given by equation (2.11).

As was explained in section 3.2, rather than fixing particular values for the parameters
fi, Bayesian predictions are usually made considering the whole possible outcomes of fi,
according to their posterior distribution. This is done marginalizing out the parameters fi

39

GIO
VANNI IA

NNELL
I

4.3 inference and prediction : noiseless case

(see equation (3.2)). Thus, the posterior predictive distribution of the energy estimators f ∗m
is:

p(f ∗m|Ei, ξ) =
∫

p(f ∗m| fi, ξ)p(fi|Ei, ξ)d fi (4.2)

while their prior predictive distribution p(f ∗m|ξ) is simply given by the prior GP f .
Another advantage of using GPs is that also the posterior predictive distribution p(f ∗m|Ei, ξ)

is a multivariate Gaussian. Therefore, equation (4.2) defines a posterior predictive GP, whose
mean and covariance functions define our energy estimator for any value of the circuit
parameters θα. Indeed, denoting them as µ(θα|Ei) and k(θα, θ′α|Ei), the parametrized energy
E(θα) is estimated as:

µ(θα|Ei)±
√

k(θα, θα|Ei)
estimates−−−−−→ E(θα) (4.3)

The one-sigma prediction intervals defined by (4.3) are called credible intervals in Bayesian
inference. They are analogous to confidence intervals found in frequentist statistics.

Apart from giving energy predictions with errors, the posterior predictive GP can generate
samples of possible energy functions, which means not only generating independent energy
estimations for single value of θα, but also generating independent noiseless sample energy
functions defined for all θα. These samples can be useful in decision theory. Indeed, they will
be used in section 7.2 for evaluating the noisy expected improvement acquisition function.

In the next two sections, we will evaluate the posterior predictions (4.2) both in the case
of noiseless measurements and in the case of measurements affected by Gaussian noise.

4.3 inference and prediction : noiseless case

In absence of statistical noise, the measurements Ei will always correspond to the exact
values of the energy function, which in our formalism are estimated by the parameters fi.
Therefore, the sampling distribution of Ei is simply a Dirac delta function centered in fi:

p(Ei| fi) = δ(Ei − fi)

which means that the marginal likelihood is:

p(Ei|ξ) =
∫

p(Ei| fi)p(fi|ξ)d fi = p(fi = Ei|ξ)

and, using Bayes’ theorem (4.1), the posterior is:

p(fi|Ei, ξ) =
δ(fi − Ei)p(fi|ξ)

p(fi = Ei|ξ)

This result can be plugged in equation (4.2) to perform posterior energy predictions f ∗m:

p(f ∗m|Ei, ξ) = p(f ∗m| fi = Ei, ξ) (4.4)

40

GIO
VANNI IA

NNELL
I

4.3 inference and prediction : noiseless case

which means that the posterior predictive distribution of the energy estimators f ∗m is the
multivariate Gaussian obtained conditioning the prior GP f on having fi = Ei at θiα. Thus,
the mean and covariance of (4.4) are found substituting fi with Ei in equation (2.11):

E[f ∗m|Ei] = µ(θ∗mα) + ∑
ij

k(θ∗mα, θiα)
(

K−1
)

ij
(Ej − µ(θjα))

Cov[f ∗m, f ∗n |Ei] = k(θ∗mα, θ∗nα)−∑
ij

k(θ∗mα, θiα)
(

K−1
)

kl
k(θjα, θ∗nα)

(4.5)

They define a posterior predictive GP whose mean and covariance functions are:

µ(θα|Ei) = µ(θα) + ∑
ij

k(θα, θiα)
(

K−1
)

ij
(Ej − µ(θjα))

k(θα, θ′α|Ei) = k(θα, θ′α)−∑
ij

k(θα, θiα)
(

K−1
)

ij
k(θjα, θ′α)

(4.6)

This posterior GP allows us to predict the energy E(θα) for any value of the circuit parameters
θα as shown in equation (4.3).

An example of this inference procedure is depicted in Fig. 4.1. The data marked in orange
is measured in the points θ = 2π/3, 4π/3 from the sine function drawn as a black dashed
line. The prior GP has a zero valued mean function and its covariance function is the
periodic kernel (2.9) with σ = ℓ = 1. The prior and posterior predictions are depicted
as blue lines while their one-sigma credible intervals are drawn in light blue. The prior
predictions and their errors are given by the prior mean and the sample variance, which in
this case are uniformly zero and one. The posterior predictions are given by equations (4.6)
and (4.3).

0 2π/3 4π/3 2π

θ

−2

−1

0

1

2

f

Prior

0 2π/3 4π/3 2π

θ

Posterior

Noiseless Gaussian process regression

Target function Data Prediction

Figure 4.1: GPR of noiseless data using the periodic kernel, µ = 0, σ2 = 1 and ℓ = 1.

41

GIO
VANNI IA

NNELL
I

4.4 inference and prediction : heteroscedastic gaussian noise

4.4 inference and prediction : heteroscedastic gaussian noise

In this case, the measurements Ei have independent Gaussian noise with standard deviations
∆Ei. The sigmas of the Gaussian noise are different for each measurement. In statistics, this
property is called heteroscedasticity.

Assuming that the parameters fi represent the correct values of the energy function, the
sampling distribution p(Ei| fi, ξ) of the measurements Ei is a multivariate Gaussian centered
in fi with a diagonal covariance matrix whose elements are ∆E2

i .
We will use the notation N (x|a, B) to indicate the multivariate Gaussian distribution of

a variable x with mean a and covariance matrix B. Thus, the sampling distribution of the
energy measurements can be written as:

p(Ei| fi) = N (Ei| fi, Sij) (4.7)

where Sij ≡ ∆E2
i δij. Similarly, the prior distribution of the parameters fi is:

p(fi|ξ) = N (fi|µi, Kij) (4.8)

where µi ≡ µ(θiα) and Kij ≡ k(θiα, θjα) are constructed using the mean and the covariance
functions of the prior GP f .

Using the equation (A.2) of the appendix, it is possible to rearrange the product between
(4.7) and (4.8):

N (Ei| fi, Sij)N (fi|µi, Kij) = N (Ei|µi, (K + S)ij)N (fi|mi, Cij)

where m ≡ C(K−1µ + S−1 f) and C ≡ (K−1 + S−1)−1.
This result can be used to compute the marginal likelihood and the posterior (4.1). Indeed,

the marginal likelihood is:

p(Ei|ξ) =
∫

p(Ei| fi)p(fi|ξ)d fi = N (Ei|µi, (K + S)ij) (4.9)

and the posterior:

p(fi|Ei, ξ) =
p(Ei| fi)p(fi|ξ)

p(Ei|ξ)
= N (fi|mi, Cij) (4.10)

At this point, there are a few observations worth mentioning. The posterior distribution
is a multivariate Gaussian along with the likelihood and the prior. Indeed, the multivariate
Gaussian distribution is a conjugate prior for a multivariate Gaussian likelihood. Fur-
thermore, the measurement errors ∆Ei have been used for the inference of the posterior
distribution as they constitute the covariance matrix S. The only necessary assumption
concerning the measurement errors is that they are Gaussian, which is approximately true
in many applications thanks to the central limit theorem. For example, in our case, single
measurements from the quantum computer are not necessarily Gaussian [25], but their
average across many shots is approximately Gaussian for the central limit theorem.

42

GIO
VANNI IA

NNELL
I

4.5 efficient implementation of gpr

The posterior (4.10) can be plugged in the integral (4.2) in order to find the posterior
predictive distribution p(f ∗m|Ei, ξ) of the energy estimators f ∗m at θ∗mα:

p(f ∗m|Ei, ξ) =
∫
N (f ∗m|µ∗i , K∗ij)N (fi|mi, Cij)d fi

where µ∗i ≡ E[f ∗m| fi] and K∗ij ≡ Cov[f ∗m, f ∗n | fi] are defined using equation (2.11). The product
N (f ∗m|µ∗i , K∗ij)N (fi|mi, Cij) can be rearranged using using the equation (A.3) of the appendix
in order to isolate the integrating variable fi.

After performing the integration, the posterior prediction distribution p(f ∗m|Ei, ξ) is again
a multivariate Gaussian whose mean and covariance are:

E[f ∗m|Ei] = µ(θ∗mα) + ∑
ij

k(θ∗mα, θiα)
(

K̃−1
)

ij
(Ej − µ(θjα))

Cov[f ∗m, f ∗n |Ei] = k(θ∗mα, θ∗nα)−∑
ij

k(θ∗mα, θiα)
(

K̃−1
)

ij
k(θjα, θ∗nα)

(4.11)

where µ and k are the mean and covariance functions of the prior GP f , and K̃ij ≡ k(θiα, θjα)+

∆E2
i δij. We can notice that the only difference between the noisy posterior predictions (4.11)

and the noiseless ones (4.4) is the addition of the noise variances to the diagonal of K.
Since the posterior prediction distribution is a multivariate Gaussian for any set of domain

point θ∗mα, it defines a posterior GP whose mean and covariance functions are:

µ(θα|Ei) = µ(θα) + ∑
ij

k(θα, θiα)
(

K̃−1
)

ij
(Ej − µ(θjα))

k(θα, θ′α|Ei) = k(θα, θ′α)−∑
ij

k(θα, θiα)
(

K̃−1
)

ij
k(θjα, θ′α)

(4.12)

An example of noisy GPR is shown in figure (4.2). The result is the noisy equivalent of
figure (4.1). In this case, the data is smeared with heteroscedastic Gaussian noise. We can
see that the posterior predictions in the right panel fit the data taking into account the error
intervals instead of just interpolating their mean values.

4.5 efficient implementation of gpr

The evaluation of posterior predictions (4.6) and (4.12) requires the inversion of the co-
variance matrix K, or K̃ when noise is present. In the following discussion, we will refer
generically to the matrix K, but the same statements hold for K̃.

The size of K is N × N, where N is the number of measurements. When N is large,
this operation might become expensive both in terms of CPU time and memory, especially
because model selection (chapter 5) and acquisition function optimization (chapter 7) require
evaluating K−1 several times. In this section, we will discuss some common strategy to
efficiently implement this matrix inversion.

43

GIO
VANNI IA

NNELL
I

4.5 efficient implementation of gpr

0 2π/3 4π/3 2π

θ

−2

−1

0

1

2

f

Prior

0 2π/3 4π/3 2π

θ

Posterior

Noisy Gaussian process regression

Target function Data Prediction

Figure 4.2: GPR of noisy data using the periodic kernel, µ = 0, σ2 = 1 and ℓ = 1.

Direct methods

The matrix K is Hermitian positive-definite. The most straightforward approach is to directly
invert K with any exact inversion algorithm such as Gauss-Jordan elimination, Cholesky
decomposition or eigendecomposition. These methods have O(N3) complexity, but an
advantage is that once K−1 is known, it takes only O(N) flops to perform predictions
evaluating µ(θ|Ei, ξ). Evaluating the covariance function k(θ, θ′), however, needs O(N2)

flops.
Apart from the long evaluation time, the inversion of K might run into numerical problems

as K is prone to be an ill-conditioned matrix [57]. A high condition number might imply that
the evaluation of equations (4.6) and (4.12) requires summing numbers of very different
orders of magnitude, which is likely to cause numerical inaccuracies.

A possible regularization method to avoid numerical instabilities is to use the truncated
eigendecomposition inversion method [74], which is slower than other methods, but more
stable in critical situations.

After decomposing K = QΛQ⊤, the inverse matrix is computed as K−1 = QΛ−1Q⊤.
Some eigenvalues in the diagonal matrix Λ might be very small, if not slightly negative
due to rounding errors. Therefore, K−1 might have very high eigenvalues, which are
the main source of instability. The truncated eigendecomposition procedure removes this
instability setting these problematic eigenvalues to zero, effectively removing the problematic
eigenspaces. This is done by selecting a small threshold ε: if any element of Λ is smaller
than ε, then the corresponding element of Λ−1 is set to zero. It might seem odd setting to
zero values that otherwise would be very big. However, due to rounding errors, these very
big values would actually badly reduce the numerical accuracy of the computation, so just
excluding them produces a better result.

44

GIO
VANNI IA

NNELL
I

4.5 efficient implementation of gpr

Indirect methods

Indirect methods avoid the explicit computation of K−1 by reformulating equation (4.12).
Indeed, explicit inversion can be replaced by finding solution of linear systems, which still
have O(N3) computational cost, but they are usually numerically more stable.

Since K is Hermitian and positive definite, Cholesky decomposition is usually the recom-
mended method to solve the system. However, in some cases it might fail because rounding
errors might make K losing its positive definiteness.

A common simple solution to alleviate this problem is to add a small positive jitter to the
diagonal of K before inversion [50]. This, not only might prevent the failure of Cholesky
decomposition, but it also reduces the condition number, improving the overall numerical
stability accuracy or the result, at the cost of slightly modifying the problem. In the case
of noisy measurements, this might not be necessary as the Gaussian noise variances are
already added to the diagonal, while in the case of noiseless measurements it is strongly
recommended. If adding the jitter is not enough and Cholesky decomposition still fails, it is
possible to use the more general LU decomposition.

Defining yi ≡ Ei − µ, κi ≡ k(θiα, θα) and κ′i ≡ k(θiα), equation (4.12) can be rewritten as:

{
µ(θα|Ei) = µ(θα) + κ⊤K−1y

k(θα, θ′α|Ei) = k(θα, θ′α)− κ⊤K−1κ′
(4.13)

The indirect method requires the Cholesky decomposition K = LL⊤ or the LU decomposition
K = LU, where L indicate a lower triangular matrix and U a upper triangular matrix.

After performing LU decomposition, equation (4.13) can be rewritten in terms of L and U
as follows: {

µ(θα|Ei) = µ(θα) + κ⊤U−1L−1y

k(θα, θ′α|Ei) = k(θα, θ′α)− κ⊤U−1L−1yκ′
(4.14)

Analogous equations are valid if Cholesky decomposition used. The only difference is the
replacement of U with L⊤.

Denoting as A\b the solution x of a linear system Ax = b, matrix-vector multiplications
involving A−1 could be written as:

A−1b = A\b

b⊤A−1 =

((
A⊤
)−1

b
)⊤

=
(

A⊤\b
)⊤ (4.15)

Using identities (4.15), the scalar products in equations (4.14) could be evaluated with
two different ordering. If the multiplication is always going from right to left:

{
µ(θα|Ei) = µ(θα) + κ⊤(U\(L\y))
k(θα, θ′α|Ei) = k(θα, θ′α)− κ⊤(U\(L\κ′))

(4.16)

45

GIO
VANNI IA

NNELL
I

4.5 efficient implementation of gpr

Otherwise, it could be performed both from left and right:

µ(θα|Ei) = µ(θα) +
(

U⊤\κ
)⊤

(L\y)

k(θα, θ′α|Ei) = k(θα, θ′α)−
(

U⊤\κ
)⊤

(L\κ′)
(4.17)

The advantage of the ordering 4.16 is that K−1y = U\(L\y) could be reused for any other
set of predictions. On the other hand, it was shown in [57] that the ordering 4.17 is more
stable.

Approximate methods

When the number of measurements N becomes very large, an inversion method, direct or
indirect, whose computational cost scales as O(N3) might become too expensive. In these
cases, it is possible to use approximate methods to evaluate functions of the inverse matrix
K̃−1 with a computational cost that scales better than O(N3).

Many of these approximate methods are based on conjugate gradient [75] and Lanczos
algorithm [76]. These methods avoid O(N3) operations using instead T iterations of O(N2)

operations. Thus, the computational cost of conjugate gradient iterative methods scales as
O(TN2) Excluding rounding errors, there is the guarantee of finding the exact solution in
T = N iterations. However, when N is big enough, an approximate solution can be found
with T ≪ N.

Gibbs and MacKay [57] developed a conjugate gradient iterative method specifically for
GPR based on the ideas of Skilling [77]. Their study shows that this approximate method
starts outperforming direct and indirect methods when N is O(100). Thus, iterative methods
should be considered for the regression of hundreds of data or for Bayesian optimization
with hundreds of iterations.

46

GIO
VANNI IA

NNELL
I

5
B AY E S I A N M O D E L S E L E C T I O N I N G P R

The only missing piece of GPR is the choice of the hyperparameters ξ, which, in our case,
are the prior mean µ, the sample variance σ2 and the characteristic length-scale ℓ. This
choice is of crucial importance as it determines the quality of the predictions obtained with
GPR. In section 2.3, we saw the impact of the hyperparameters on the prior GP, and we can
now discuss their impact on the predictive posterior GP.

5.1 changing the hyperparameters

Prior mean

The prior mean is the value where the predictions converge in absence of other information,
i.e. at points whose distance from the measured data is far more than ℓ in the θα space. This
happens because, at these distances, the values of the energy are considered uncorrelated,
therefore the prediction cannot benefit from data information.

In figure 5.1, it is shown an example of noisy GPR using different values of the prior
mean µ keeping fixed σ = ℓ = 1. We can see that, with extreme values of µ, the predictions
tend to shift from the data to get closer to µ.

0 π 2π

θ

−2

0

2

f

µ = −10

0 π 2π

θ

µ = 0

0 π 2π

θ

µ = 10

Prior mean: best fit

Target function Prediction Data

Figure 5.1: Noisy GPR using different values of the prior mean. The periodic kernel was used with
σ = ℓ = 1.

47

GIO
VANNI IA

NNELL
I

5.1 changing the hyperparameters

Sample variance

The sample variance σ2 determines the wideness of the expected energy oscillations. A
value of σ that is far lower than the distance between µ and the data assigns a very low prior
probability to samples that move away from the prior mean to fit the data. Therefore, GPR
would underfit the data producing predictions flattened around the prior mean µ. On the
other hand, high values of σ are more permissive and don’t penalize samples that overfit
the data. The predictions would then perfectly interpolate the data mean values without
filtering out the noise or possible outliers.

An example of this behaviour is shown in figure 5.2. The hyperparameters µ = 0 and
ℓ = 1 are kept fixed and noisy GPR is performed with three different values of σ. With
σ = 0.1 the data is too far from the prior mean compared to the credible interval radius σ,
therefore, the narrow prior distribution flattens the predictions around itself, underfitting
the data. The opposite happens with σ = 10: the wide prior distribution allows the samples
to overfit the data without filtering out the noise. The case of σ = 1 seems instead to produce
predictions that are balanced between data fitting and noise filtering.

0 π 2π

θ

−2

0

2

f

σ = 0.1

0 π 2π

θ

σ = 1

0 π 2π

θ

σ = 10

Sample variance: underfitting and overfitting

Target function Prediction Data

Figure 5.2: Noisy GPR using different values of the sample variance. The periodic kernel was used
with µ = 0 and ℓ = 1.

Characteristic length-scale

A very similar situation arises varying the characteristic length-scale ℓ. Setting a certain
value of ℓ penalizes samples whose oscillations have a length-scale lower than ℓ. If ℓ is set
correctly, the samples that change more quickly than the target function are then filtered
out. Samples that pass exactly through all the data are unlikely according to the prior as
they would require to have quick variations in order to pass through all the mean values.

However, if ℓ is too large, the samples that vary with the correct rate are filtered out and
GPR underfits the data, selecting only the samples that are equidistant to the data points,
without explaining them. The opposite happens when ℓ is too small. The samples that vary
quickly are not penalized, so GPR selects the samples that overfit the data points passing
through all of them, without regressing the actual shape of the underlying function.

48

GIO
VANNI IA

NNELL
I

5.2 maximum likelihood estimation of type ii for gpr

An example of these three circumstances is shown in figure 5.3. The hyperparameters
µ = 0 and σ = 1 are kept fixed and noisy GPR is performed with three different values
of ℓ. With ℓ = 10 the effect is similar to what we obtained with σ = 0.1: the predictions
are flattened around the prior because samples that pass through the data are strongly
penalized. With ℓ = 0.1 the situation is really pathological: not only the predictions overfit
the data passing though all the data, but also quickly converge to the prior mean in the
space separating the data points. This happens because the predictions became uncorrelated
at a very short range because ℓ is small and the information acquired from the data is
already lost in a small O(ℓ) radius. The case of ℓ = 1 is instead producing predictions close
to the target function.

0 π 2π

θ

−2

0

2

f

ℓ = 10

0 π 2π

θ

ℓ = 1

0 π 2π

θ

ℓ = 0.1

Characteristic length-scale: underfitting and overfitting

Target function Prediction Data

Figure 5.3: Noisy GPR using different values of the characteristic length-scale. The periodic kernel
was used with µ = 0 and σ = 1.

5.2 maximum likelihood estimation of type ii for gpr

The objective of model selection procedures is to automate the hyperparameters selection
that we manually performed in the previous section. As we saw in section 3.4, a simple,
but not ineffective, model selection procedure is to select the values of ξ that maximize
the marginal likelihood p(Ei|ξ). For computational simplicity, rather than the marginal
likelihood, it is usually maximized the marginal log-likelihood:

ξMLE ≡ arg max
ξ

L(ξ) ≡ arg max
ξ

log p(Ei|ξ) (5.1)

In presence of Gaussian noise, we have shown that the marginal likelihood is the multivariate
Gaussian (4.9). Thus:

L(ξ) = −1
2

(
y⊤K̃−1y + log det K̃ + d log 2π

)
(5.2)

where yi ≡ Ei − µ(θiα|ξ) and K̃ij ≡ k(θiα, θjα|ξ) + ∆E2
i δij. It is important to notice that the

constant depending on K̃ should be included in the optimization as it depends on σ and ℓ.

49

GIO
VANNI IA

NNELL
I

5.2 maximum likelihood estimation of type ii for gpr

The marginal likelihood may have more than one local maximum. However, practical
experience [16] with simple covariance functions seems to indicate that local maxima are not
very problematic as they usually correspond to reasonable sets of hyperparameters. Thus,
local optimizers could also be used to evaluate equation (5.1) if global optimization requires
too much computing time.

Some optimizers may improve their performance if they are provided with the analytical
formula of the gradient. Using the equations (A.4) and (A.5) of the appendix, the gradient
of the marginal log-likelihood is:

∂ξL =
1
2

(
y⊤K̃−1(∂ξ K̃)K̃−1y− tr(K̃−1∂ξ K̃)

)
(5.3)

where ∂ξK is the matrix formed by the partial derivatives of the elements of K.
Let us analyze the examples illustrated in figures 5.1, 5.2 and 5.3. The prior mean shown

in figure 5.1 is the easiest hyperparameter to fit as it shouldn’t change model complexity.
Indeed, it only determines a translation of the GP prior, without changing the normalization
constant of sample distributions. MLE usually fixes µ without problems as there is not a
tradeoff between good data fit and low model complexity.

In terms of MLE, the cases of figures 5.2 and 5.3 are quite similar. The marginal likelihood
p(Ei|ξ) is obtained integrating the product between the likelihood p(Ei| fi) and the prior
p(fi|ξ). When underfitting hyperparameters like σ = 0.1 or ℓ = 10 are used, if the likelihood
p(Ei| fi) is high valued, then the prior p(fi|ξ) is low valued, and vice-versa. This happens
because values of fi close to Ei have a small prior probability and those close to µ have a small
likelihood. Since the marginal likelihood is found integrating over fi the product between
the marginal likelihood and the prior distribution, MLE excludes these hyperparameters as
the marginal likelihood is suboptimal.

On the other hand, when overfitting hyperparameters like σ = 10 or ℓ = 0.1 are used, the
prior has a very large normalization constant because it is compatible with a great variety
of possible fi values. Therefore the marginal likelihood is suboptimal even if the likelihood
is very high, and MLE excludes these overfitting hyperparameters.

In figure 5.4 is shown the GPR performed with the hyperparameters obtained with MLE
using the same data of figures 5.1, 5.2 and 5.3. The values found by MLE are µ ≈ −0.059,
σ ≈ 1.2, ℓ ≈ 0.9, which are similar to what we found heuristically in figures 5.1, 5.2 and 5.3.
Using these hyperparameters, overfitting and underfitting were avoided and the resulting
predictions are similar to the target sine function.

We would like now to come back to a topic left unresolved in section 2.3. The kernels
introduced in chapter 2 could have a different characteristic length-scale ℓα for each coor-
dinate direction. In many circumstances, target functions have some parameters that are
more relevant than others, which means that changing some parameters makes the target
function vary more then when changing less relevant ones.

A model selection technique such as MLE could then adapt each single ℓα to the target
function. Therefore, the resulting ℓα identify the coordinates that are more or less relevant.
In particular, the values of α corresponding to the lower valued ℓα represent the more

50

GIO
VANNI IA

NNELL
I

5.2 maximum likelihood estimation of type ii for gpr

0 2π/3 4π/3 2π

θ

−2

−1

0

1

2

f

Prior

0 2π/3 4π/3 2π

θ

Posterior

MLE of hyperparameters: Occam’s razor

Target function Data Prediction

Figure 5.4: Noisy GPR performed with the hyperparameters µ ≈ −0.059, σ ≈ 1.2, ℓ ≈ 0.9 that were
found using MLE.

relevant coordinates. This is the reason why it is said that such kernels implement automatic
relevance determination (ARD), or, for simplicity, these kernels are called ARD kernels.

Efficient implementation of MLE-II

In order to implement MLE-II, it is sufficient to maximize the marginal log-likelihood (5.2),
possibly using its gradient (5.3). It is not necessary to perform predictions using equations
(4.12). However, computing the marginal log-likelihood has difficulties similar to those
found in computing predictions. Indeed, it also involves inverting the N × N matrix K̃,
where N is the number of measurements.

We reviewed in section 4.5 some direct, indirect and approximate methods to evaluate the
product between K̃−1 and a vector. The same considerations hold for the terms involving
the product K̃−1y in equations (5.2) and (5.3).

The term log det K̃ present in the marginal likelihood could be easily computed if K̃ has
already been decomposed for evaluating K̃−1y. Indeed, once it is known the Cholesky
decomposition K̃ = LL⊤ or the eigendecomposition K̃ = QΛQ⊤, the determinant is given
by:

log det K̃ = 2 ∑
i

log Lii = ∑
i

log Λii

The trace term tr(K̃−1∂ξ K̃) in the log-likelihood gradient (5.3), requires the evaluation of
the explicit inverse matrix K̃−1. However, it is not necessary to compute the full matrix-
matrix product between K̃−1 and ∂ξ K̃ because:

tr(K̃−1∂ξ K̃) = ∑
ij

(
K̃−1

)
ij

∂ξ K̃ij ≡∑
ij

(
K̃−1 ◦ ∂ξ K̃

)
ij

51

GIO
VANNI IA

NNELL
I

5.3 maximum a posteriori and regularization

Where the symbol ◦ indicates the Hadamard product, which is simply the element-wise
product of the two operand matrices.

If the number of measurements N is O(100) or greater, it might be more convenient to
use approximate methods to compute the marginal log-likelihood and its gradient. Indeed,
with iterative procedures it is possible to avoid operations whose computational cost scales
as O(N3).

We already mentioned in section 4.5 that conjugate gradient iterative methods can be used
to solve linear systems with a computational cost that scales as O(TN2), where T < N is
the number of iterations. These methods can then be used to evaluate K̃−1y, which appears
both in the marginal log-likelihood and in its gradient.

There are still two terms with O(N3) complexity: the trace in (5.3) and the determinant
in (5.2). In [77] and [57] are discussed Monte Carlo methods to evaluate these determinant
and trace without using operations with O(N3) complexity.

5.3 maximum a posteriori and regularization

Unfortunately, we noticed that in some cases MLE selects overfitting values of ℓ. This
happens when the data is spread apart at distances higher than the correct ℓ, which is a
common circumstance with a low number of data points or in a high number of dimensions.

An example of this behaviour is shown in figure 5.5. With only two distant data points,
MLE selects the hyperparameters µ ≈ 0.063, σ ≈ 1, ℓ ≈ 0.3. Such a small value of ℓ leads to
overfitting predictions similar to those shown in figure 5.3.

0 2π/3 4π/3 2π

θ

−2

0

2

f

Prior

0 2π/3 4π/3 2π

θ

Posterior

MLE of hyperparameters: overfitting

Target function Data Prediction

Figure 5.5: GPR of noisy data that is spread apart using the hyperparameters µ ≈ 0.063, σ ≈ 1,
ℓ ≈ 0.3. MLE selected an overfitting ℓ.

The reason why it happens is quite subtle. If ℓ is smaller than the point distances in
the θα space, then the parameters fi are effectively uncorrelated according to their prior
distribution. Indeed, using the covariance functions introduced in chapter 2, the diagonal

52

GIO
VANNI IA

NNELL
I

5.3 maximum a posteriori and regularization

terms of the covariance matrix decay to zero with exponential law or faster. The prior
distribution of fi is then approximately the same for all values of ℓ significantly smaller than
the points distance. This implies that the normalizing constant of the prior is not increasing
enough to flatten the prior associated with more complex models. Thus, the Occam’s razor
effect illustrated in figure 3.1 is not observed in this circumstance.

Selecting values of ℓ that are too small has very problematic implications. Not only the
predictions might become meaningless as in the right panel of figure 5.3, but also the whole
computation of GPR becomes numerically unstable as it implies sums between numbers of
very different order of magnitude. This in particular might be problematic for evaluating
the inverse matrices present in (4.12) and (5.2).

In machine learning is called regularization the practice of adding information in order to
avoid ill-posed problems and overfitting. Avoiding numerical instability caused by extreme
values of the hyperparameters could be easily solved imposing boundaries on them during
the optimization procedure (5.1). This however doesn’t prevent overfitting.

Fortunately, Bayesian inference offers an elegant way to regularize hyperparameters,
which is fixing them with a maximum a posteriori (MAP) procedure after the definition of a
hyperprior distribution p(ξ). This has been shown to be a very effective and flexible way to
facilitate the hyperparameters to have reasonable properties based on prior beliefs [72].

The MAP estimation of the hyperparameters ξ given the hyperprior p(ξ) is obtained with
the following optimization:

ξMAP ≡ arg max p(Ei|ξ)p(ξ) (5.4)

where p(Ei|ξ) is the marginal likelihood (4.9).
We used the regularization implemented in the BoTorch library [78], which proven to

be reliable during Bayesian optimization tests performed by BoTorch developers. It is
composed of two stages: the data is first rescaled and normalized, and then some generic,
empirically determined hyperpriors are placed on ξ. It is desirable to have a hyperprior
that is the most generic possible, so that it could be applied to a wide range of different
circumstances. In order to achieve this, a common practice is to define a procedure to map
the data points into a standardized space, so that the hyperparameters have similar order of
magnitudes in many different problems.

The regularization procedure we used rescales the θiα parameters from [0, 2π)d to [0, 1)
and normalizes the measured energies Ei using their mean and standard deviation:

θiα 7→ θiα/2π

Ei 7→ (Ei −mean(Ei))/std(Ei)

∆Ei 7→ ∆Ei/std(Ei)

The hyperpriors used in BoTorch are expressed in terms of the gamma distribution, which
is a continuous probability distribution Γ(x|k, θ) identified by its shape α and its rate β:

Γ(x|α, β) =
βα

Γ(α)
xα−1e−βx

53

GIO
VANNI IA

NNELL
I

5.3 maximum a posteriori and regularization

where Γ(α) ≡
∫ ∞

0 tα−1e−tdt is the gamma function. As an alternative, it is possible to define
the hyperpriors in terms of the inverse gamma distribution [50].

Some examples of gamma distribution probability density functions are shown in figure
5.6. It is a common choice for priors of positive variables as it is easily customizable to
many phenomena tuning α and β. Furthermore, gamma distributions satisfy Cromwell’s
rule as they are non-zero for all positive domain points and they are conjugate priors to
many likelihoods as, for example, the Poisson and exponential distributions. The gamma
distribution also generalizes the χ2(ν) distribution with ν degrees of freedom. Indeed
χ2(ν) = Γ(ν/2, 2). The expected value and the variance of the gamma distribution are easily
expressed in terms of its shape and rate:

E[x] =
α

β

Var[x] =
α

β2

(5.5)

0.0 0.5 1.0 1.5 2.0
x

0

1

2

Γ(
x|

α
,β
)

Examples of Γ distributions

α = 1, β = 1 α = 3, β = 6 α = 10, β = 20

Figure 5.6: Some examples of gamma distributions obtained varying the shape α and the rate β.

The prior mean µ is usually not problematic to fix, therefore placing a hyperprior on
it is not necessary if the MLE optimization starts from a reasonable value of µ. The
characteristic length-scale ℓ is the most delicate hyperparameter as it cause severe overfitting
and instability when is too low, but also underfitting when is too high. Since each circuit
parameter θα has been constrained in the interval [0, 1), we want to avoid very small values
ℓ ≲ 10−3 as well as high values ℓ ≳ 2. Thus, a possible choice for the rescaled characteristic
length-scale hyperprior is:

p(ℓ) = Γ(ℓ|3, 6) (5.6)

Indeed, its mean value is 3/6 = 1/2, its standard deviation is
√

3/6 ≈ 0.29 and it quickly
converges at 0 for ℓ→ 0 as shown in the left panel of figure 5.7.

The value of the sample variance σ2 is not as problematic as ℓ, but it is still useful to
regularize it in order to make the optimization more stable. Furthermore, in the context

54

GIO
VANNI IA

NNELL
I

5.3 maximum a posteriori and regularization

0 1 2 3
ℓ

0.0

0.5

1.0

1.5

p(
ℓ)

Length-scale

0 2 4 6 8
σ

0.0

0.1

0.2

0.3

p(
σ
)

Sample st.dev

Hyperpriors

Figure 5.7: In the left panel is shown the gamma distribution used as the hyperprior on the charac-
teristic length-scale, while in the right panel is plotted the Nakagami distribution used as
the hyperprior on the sample standard deviation.

of Bayesian optimization, we will see in chapter 7 that σ2 has a significant impact on the
degree of exploration of the global optimization procedure.

The chosen hyperprior for the normalized sample variance is:

p(σ2) = Γ(σ2|2, 0.15) (5.7)

Placing a prior on σ2 rather than of σ has a small computational advantage. However, in
order to get an intuition about the properties of this hyperprior, it is useful to observe the
probability density function of the σs obtained evaluating the square root of the variances
σ2 sampled from the hyperprior. The sample standard deviation σ obtained in this way
follows the Nakagami distribution shown in the right panel of figure 5.7. Its mean is ≈ 3.4
and its standard deviation is ≈ 1.25. Since it is applied on the normalized data, a value
of σ = 3.4 is quite high. The purpose of this choice is to have a large credible interval in
areas of the domain that are far from the measured points. We will see in chapter 7 that this
larger credible interval translates to a more explorative optimization algorithm.

Finally, we can test this MAP procedure on the data in figure 5.5 that where overfitted by
MLE. In figure 5.8 are shown the results obtained with the MAP hyperparameters µ ≈ 0.05,
σ ≈ 2.6, ℓ ≈ 2 and the hyperpriors (5.6), (5.7) used with the rescaled and normalized data.
In this case, the predictions are very close to the underlying function, the data is not overfit
and the predictive model assigns cautious credible interval in unknown regions of the
domain.

55

GIO
VANNI IA

NNELL
I

5.3 maximum a posteriori and regularization

0 2π/3 4π/3 2π

θ

−4

−2

0

2

4

f

Prior

0 2π/3 4π/3 2π

θ

Posterior

MAP hyperparameters: regularization

Target function Data Prediction

Figure 5.8: GPR performed on noisy data that is spread apart with the hyperparameters µ ≈ 0.05,
σ ≈ 2.6, ℓ ≈ 2 that were found using MAP. The regression is succesful in this problematic
case.

56

GIO
VANNI IA

NNELL
I

6
B AY E S - G AU S S I N T E G R A L T R A N S F O R M S

There is a wide range of possible applications for the modelling of an unknown function
with GPR. We have shown that a key property of GPR is its capability of using noisy data to
infer unknown functions with a required level of smoothness.

Once the underlying function generating the observable data is inferred, most appli-
cations involve computing other quantities using the inferred function. For example, in
Bayesian optimization, the inferred surrogate model is used to find the position of the next
measurement using Bayesian decision theory, as will be explained in chapter 7.

An interesting algorithm based on GPR is the Bayes-Hermite quadrature [79], which
defines a procedure to evaluate definite integrals of unknown functions inferred with GPR.
The properties of GPs are used to define quadrature rules in analogy with the Gauss-Hermite
quadrature rules [55].

Another similar usage of GPR involves the evaluation of integral transforms of the
underlying function. We call this procedure Bayes-Gauss integral transform (BGIT). This
family of problems is not relevant for VQE, but is recurrent in scientific and engineering
applications [80]. The most common usage of integral transforms is for the solution of
differential equations, which are often easier to solve in the image space of the integral
transform rather than in the original space of the observable function.

As in the case of Bayesian optimization, methods that are based on GPR become convenient
over other approaches when the shape of the function is unknown and the available data is
limited and affected by statistical errors. Indeed, in these circumstances, it is problematic
to fit the target function in terms of known functions, or to rely on a high number of
measurements to reconstruct the target function profile.

Furthermore, due to the fact that GPR produces results in a simple closed form, many
further manipulations of the inference results can be performed analytically. This is very
helpful to improve the speed and stability of the algorithm.

A common example of integral transforms is the Fourier transform, and the estimation
of them using BGIT has been called Bayes-Gauss-Fourier transforms (BGFT) [17, 81]. In
particular, in [17], this method was used to evaluate quasi parton distribution functions using
lattice quantum chromodynamics data, obtaining results that are more stable and precise
compared to those achieved using methods based on discrete-time Fourier transforms.

In this chapter, after deriving the generic formulae for evaluating BGITs, we will describe
an example problem, in which the Fourier transform of an even function needs to be
reconstructed from noisy data. In this context, we will introduce the method that is
commonly used for these cases, which makes usage of discrete-time Fourier transform

57

GIO
VANNI IA

NNELL
I

6.1 estimating a generic integral transform

(DTFT). The same problem is then tackled using BGFT and the results are compared with
those obtained with DTFT.

6.1 estimating a generic integral transform

A generic integral transform T can be written as:

T [x(t)](u) =
∫ tb

ta

x(t)A(t, u)dt

where x(t) is the function that needs to be transformed and A(t, u) is the kernel (or nucleus).
An integral transform is identified by the kernel and the integration interval (ta, tb). For
example, the Fourier transform of L2 functions has A = e−2πiut, ta = −∞ and tb = +∞.

Inference of x(t)

If we can access the function x(t) only through noisy measurements, we first select a set of
domain points t1, ..., tN in which we can measure the values x(ti) obtaining xi ± ∆xi, where
the errors ∆xi are assumed to be Gaussian.

In section 4.4 we have shown that applying GPR to noisy data yields a posterior GP,
whose mean and covariance are given by (4.12). In this case, they are given by:

µ(t|xi) = µ(t) + ∑
ij

k(t, ti)
(

K̃−1
)

ij
(xj − µ(tj))

k(t, t′|xi) = k(t, t′)−∑
ij

k(t, ti)
(

K̃−1
)

ij
k(tj, t′)

(6.1)

where µ(t) is the prior mean, k(t, t′) the prior covariance and K̃ij ≡ k(ti, tj) + ∆x2
i δij.

Integral transform estimator

As we explained in chapter 2, we can sample functions from a GP. Since the posterior GP is
our surrogate target function, we can interpret the sample functions as possible profiles of
the target function. Our objective is to evaluate an integral transform of the target function.
Therefore, our estimation can be built generating samples from the posterior GP, applying
the integral transform on them, and then taking the mean value of the transformed samples
as our estimator.

In section 2.2 we saw a procedure for evaluating samples in a finite set of domain points.
Calling ts

i a set of S values of the variable t that constitute a grid of the domain, samples
xs(t) of the posterior GP can be evaluated in these S points in the following way:

xs(ts
i) = µ(ts

i |xi) + ∑
j

Ls
ijnj (6.2)

where Ls is the Cholesky decomposition of Ks
ij ≡ k(ts

i , ts
j |xi) and nj is a set of S samples of

the unit Gaussian distribution.

58

GIO
VANNI IA

NNELL
I

6.1 estimating a generic integral transform

The integral transform of the samples could be approximated using discretized version
of the integral transform (e.g. discrete Fourier transform) on the finite set (6.2). However,
if possible, it is advisable to evaluate sample integral transforms analytically in order to
have a more stable and precise algorithm. This requires a closed form expression of the
samples xs(ts

i) defined in all the integration interval t ∈ (ta, tb). Unfortunately, the extension
of equation (6.2) for a continuous real variable t is not trivial as the second term involves a
discrete matrix vector multiplication.

Approximation: samples interpolation

A possible solution of this problem is achieved using the very same idea of this whole
procedure, which is to use GPR to interpolate a set of data and using the outcome to evaluate
the integral transform. Indeed, the discrete samples xs

i obtained from the GP posterior can
be interpolated with another GPR, and the resulting new posterior mean can be used to
evaluate the integral transform.

The key difference between the original and this second GPR is that here the input data
xs

i is noiseless and available at any desired density just increasing the number of points in
the grid ts

i . Furthermore, as will be shown later, the GPRs of the samples don’t actually
need to be performed in practice as the distribution of their outcome will be encapsulated
in the final formula. Therefore, this passage should be just considered as an approximation
of the final integral transform on the grid ts

i : in the limit of an infinite grid that covers the
whole domain, the posterior mean of the second GPR would be identical to the continuous
samples, and it could be used to evaluate their exact integral transform.

Let us show, in practice, how this approximation works. Before proceeding with the
GPR of the discrete sample xs

i , we need to specify the prior mean and covariance. It is
reasonable to use the posterior mean and covariance of the first GPR (6.1) as the prior mean
and covariance of this second GPR. This means that, in areas far from the grid points ts

i , the
interpolated samples will converge to the posterior mean µ(t|xi), which is reasonable as the
samples themselves are coming from the posterior distribution. Another advantage of the
choice of this prior is that it doesn’t require fixing the hyperparameters a second time as
they were fixed in the first GPR.

Calling xs
int(t) the sample interpolations that approximate x(t), their values are given by

the posterior mean of the second GPRs, which is, using (4.6):

xs(t) ≃ xs
int(t) = µ(t|xi) + ∑

jk
k(t, ts

j |xi)
(
(Ks)−1

)
jk
(xs(ts

k)− µ(ts
k|xi))

where Ks
ij ≡ k(ts

i , ts
j |xi). This equation can be simplified using (6.2):

xs
int(t) = µ(t|xi) + ∑

jkl
k(t, ts

j |xi)
(
(Ks)−1

)
jk

Ls
klnl

59

GIO
VANNI IA

NNELL
I

6.1 estimating a generic integral transform

and finally, using Ks = Ls(Ls)⊤, we have:

xs
int(t) = µ(t|xi) + ∑

jk
k(t, ts

j |xi)
(
(Ls)⊤

−1
)

ij
nj (6.3)

Integral transform of the interpolated samples

Observing (6.3), we notice that the interpolated samples are a linear combination of the
functions µ(t|xi) and k(t, ts

i |xi). Thus, the linearity of the integral transforms leads us to a
simple formula for the transform of the interpolated samples:

T [xs
int(t)](u) = T [µ(t|xi)](u) + ∑

jk
T [k(t, ts

j |xi)](u)
(
(Ls)⊤

−1
)

jk
nk (6.4)

In order to better understand the distribution of the transformed interpolated samples
(6.4), let us consider a set u∗i of M values of the transformed variable u. Then, using equation
(6.4), we can evaluate the transformed interpolated samples in those points:

T [xs
int(t)](u

∗
i) = T [µ(t|xi)](u∗i) +

(
kT
)⊤

(Ls)⊤
−1

n (6.5)

where kTij ≡ T [k(t, ts
i |xk)](u∗j) is a K×M matrix. We can see that equation (6.5) is just an

affine transformation of the unit Gaussian vector ni. Therefore, using the equation (A.1) of
the appendix, the values of the interpolated samples (6.5) are distributed as the following
multivariate Gaussian:

T [xs
int(t)](u

∗
i)

distributed−−−−−→
as

N
(
T [µ(t|xi)](u∗i), kT

⊤
(Ls)−1⊤(Ls)−1kT

)

= N
(
T [µ(t|xi)](u∗i), kT

⊤
(Ks)−1kT

) (6.6)

In most cases, we are just interested in the prediction errors rather than in the full covariance
matrix. The errors are the square roots of the covariance matrix diagonal elements, and
they can be obtained without having to compute the covariance matrix kT ⊤(Ks)−1kT . For
this purpose, we can use the following: given a matrix A, the matrix product diagonal
(A⊤A)ii can be simplified to ∑j A2

ji, which is constructed with the columns of the matrix A.
Applying this property to the first line of equation (6.6), we find that the prediction variance
is given by:

Var[T [xs
int(t)](u

∗
i)] = ∑

jk

((
(Ls)−1

)
jk

kTki

)2

which is easy to evaluate after having performed the Cholesky decomposition Ks = Ls(Ls)⊤.
Indeed, (Ls)−1kT can be found solving the lower triangular linear system Lsx = kT .

60

GIO
VANNI IA

NNELL
I

6.1 estimating a generic integral transform

Integral transform posterior predictive GP

Since equation (6.6) holds for any possible set u∗i , the transformed interpolated samples
constitute a new GP whose mean and covariance functions are:

µTs (u|xi) = T [µ(t|xi)](u)

kTs (u, u′|xi) = ∑
jk
T [k(t, ts

j |xi)](u)
(
(Ks)−1

)
jk
T [k(t, ts

k|xi)](u′)
(6.7)

The GP defined by equation (6.7) represents our posterior predictions about the target
integral transform. In particular, its mean function µTs (u|xi) estimates T [x(t)](u) and√

kTs (u, u|xi) the prediction errors. Equation (6.7) is therefore the final formula for the
Bayes-Gauss integral transform.

In order to evaluate equation (6.7), we need to specify how to compute T [µ(t|xi)](u) and
T [k(t, t′|xi)](u), which are the transforms of the posterior mean and covariance1. Using
the linearity in t of equation (6.1), the transformed posterior can be written in terms of the
transforms of the prior mean and covariance:

T [µ(t|xi)](u) = T [µ(t)](u) + ∑
ij
T [k(t, ti)](u)

(
K̃−1

)
ij
(xj − µ(tj))

T [k(t, t′|xi)](u) = T [k(t, t′)](u)−∑
ij
T [k(t, ti)](u)

(
K̃−1

)
ij

k(tj, t′)
(6.8)

If the prior mean and covariance are chosen such that their integral transform is available in
closed form, then also the transformed posterior (6.7) will be.

The result (6.7) becomes an exact transformation of the posterior GP (6.1) when the
discretization ts

i is infinitely dense and covers the whole integration interval. In section 6.3
we will discuss how to choose the approximating grid ts

i in the case of Fourier transforms.

Limit of infinite grid and approximate GPR

In some circumstances, the covariance kTs (u, u′|xi) in equation (6.7) can be simplified, and the
limit of xs

i covering the whole domain can be evaluated in closed form. For example, in the
case of the identity transform T = id, which means that no transformation is performed at
all, we should be able to recover the exact starting formula (6.1) for the posterior predictions.

In order to show this, we first write down the transformed covariance function in equation
(6.7) for the case T = id:

kid
s (t, t′|xi) = ∑

jk
k(t, ts

j |xi)
(
(Ks)−1

)
jk

k(ts
k, t′|xi) (6.9)

In case t is in the set ts
j , then the vector k(t, ts

j |xi) is a row of Ks. Therefore, if j′ is a
number such that t = ts

j′ , the product ∑j k(t, ts
j |xi)

(
(Ks)−1)

jk becomes the Kronecker delta
δj′k. If ts

j is an infinite grid, then such a j′ must exist, and the above formula reduces to
kid

s (t, t′|xi) = k(t, t′|xi), which is the expected exact result.

1 In our notation, only the variable t, and not t′, is transformed by T .

61

GIO
VANNI IA

NNELL
I

6.2 fourier transforms of discrete data

In most cases, it is not possible to obtain the limit of infinite grid in closed form. However,
in many applications, it might even be advantageous to transform the grid interpolation of
the samples rather than the exact samples. For example, the exact samples might not be
integrable, while their grid interpolation will be.

This is the case for the example shown in section 6.3, where using the approximate
posterior covariance (6.9) instead of the exact one ensures that the samples are L2 integrable,
which is required to obtain their Fourier transform.

The integrability of the samples could also be ensured by choosing a different prior
covariance function. However, if an approximation is required anyway, it could also be used
to make the samples integrable without the need to modify the prior covariance.

6.2 fourier transforms of discrete data

After having discussed the general case of an integral transform T , we want to test our
algorithm evaluating the Fourier Transform F [x(t)] of a function x(t) accessible only
through a set of measurements x(t1), ..., x(tN).

We will use the following definition of Fourier transforms:

F [x(t)](ω) =
∫ +∞

−∞
x(t)e−iωtdt

F−1[X(ω)](t) =
1

2π

∫ +∞

−∞
X(ω)eiωtdω

(6.10)

The choice of testing the GPR based algorithm to compute Fourier transform is justified by
its simplicity, but also by the possibility of comparing its results with well-known procedures
such as the discrete-time Fourier transform (DTFT) algorithm.

In this section, we are going to describe the DTFT and the sinc interpolation techniques
and apply them to a test problem. Then, in section 6.3, we are going to apply the GPR based
algorithm on the same problem, so that the results can be compared.

Discrete-time Fourier transform (DTFT)

Letting t1, ..., tN to be a set of consecutive integer multiples of an interval ∆t and assuming
the target function to be zero outside the sampling interval, the Fourier transform (6.10) can
be trivially approximated with the midpoint rule:

F [x(t)](ω) ≈ ∆t ∑
i

xie−iωti (6.11)

Observing this result, we notice that (6.11) is always 2π/∆t-periodic in the frequency
domain. Indeed e−iti(ω+2π/∆t) = e−itiωe−2πiti/∆t = e−itiω, since ti/∆t is an integer number.

This result is not surprising as, according to Nyquist-Shannon theorem [82], only fre-
quencies between −π/∆t and +π/∆t can be fully determined with a sampling rate of
∆t. Since the results outside this interval don’t provide any additional information, the
approximate transform (6.11) can be set to zero outside [−π/∆t, π/∆t]. The resulting
truncated approximate transform is also known as discrete-time Fourier transform (DTFT).

62

GIO
VANNI IA

NNELL
I

6.2 fourier transforms of discrete data

The restriction is usually achieved with the rectangular function, which is defined as:

rect(ω) ≡
{

1, if |ω| < 1/2

0, otherwise

Therefore, we define the DTFT as:

DTFT[xi](ω) = ∆t rect
(

ω∆t
2π

)
∑

i
xie−iωti (6.12)

Sinc interpolation

To better understand the DTFT approximation, it is useful to perform an inverse Fourier
transform of equation (6.12) so that we can reconstruct the signal whose exact transform is
equation (6.12). Since the DTFT restricts the ω spectrum within ±π/∆t, this reconstruction
can be seen as a rectangular low-pass filter of xi.

Applying the inverse transform in (6.10) to the DTFT in (6.12):

F−1[DTFT[xi](w)](t) =
∆t
2π

∫ π/∆t

−π/∆t
∑

i
xieiω(t−ti)dω

= ∑
i

xi∆t
2πi(t− ti)

[
eπi(t−ti)/∆t − e−πi(t−ti)/∆t

]

= ∑
i

xi
sin(π(t− ti)/∆t)

π(t− ti)/∆t

= ∑
i

xi sinc
(

t− ti

∆t

)
≡ SINC[xi](t)

(6.13)

where sinc(t) ≡ sin(πt)/πt is the normalized sinc function. SINC[xi](t) is called sinc
interpolation or Whittaker-Shannon interpolation [82] of the data xi. It is indeed an interploation
procedure as SINC[xi](t) passes through all xi. This property holds because sinc((ti −
tj)/∆t) = δij.

Sinc interpolation is particularly useful if the bandwidth of sampled signal is limited by
the Nyquist frequency π/∆t as it leads to perfect reconstruction. If this condition is not met,
as we mentioned before, sinc interpolation is equivalent to a brick-wall low-pass filter.

The case of even functions

We are going to test our algorithm in the case of real even functions x(t) as the Fourier
transform of such functions is guaranteed to be real valued and even. This property makes
it easier to visualize and compare the results. The procedure can anyway be extended to the
case of generic complex functions, for example by decomposing the complex function into
two real functions as explained in [17].

Sampling an even x(t) requires fewer measurements since the symmetry can be used to
mirror them on the other side of the t = 0 axis. We will then consider only measurements at
t ≥ 0. In particular, the values of t0, t1, ..., tN will correspond to tn = n∆t.

63

GIO
VANNI IA

NNELL
I

6.2 fourier transforms of discrete data

Using these definitions and properties, the formulae for sinc interpolation (6.13) and
DTFT (6.12) can be rewritten and restricted to the case of even functions. For instance, the
sinc interpolation becomes:

SINC[xi](t) = x0 sinc
(

t
∆t

)
+

N

∑
i=1

xi

(
sinc

(
t− ti

∆t

)
+ sinc

(
t + ti

∆t

))
(6.14)

and the DTFT:

DTFT[xi](ω) = ∆t rect
(

ω∆t
2π

)(
x0 + 2

N

∑
i=1

xi cos(ωti)

)
(6.15)

Testing example

Let us define the following testing target function:

x(t) = e−|t| cos(t) (6.16)

Which is an even function whose Fourier transform is available in closed form:

F [x(t)](ω) = 2(w2 + 2)/(w4 + 4)

The example target function (6.16) is sampled from t = 0 to t = 4 at a time interval of
∆t = 0.5. The frequency cutoff induced by the DTFT is therefore |ω| < π/∆t = 2π. The
samples xi obtained at times ti can then be used to evaluate the sinc interpolation (6.14) and
the DTFT (6.15). The results are shown in figure 6.1.

−5 0 5
t

0.00

0.25

0.50

0.75

1.00

x

Signal

−2π 0 2π
w

0.0

0.5

1.0

X

Fourier transform

Noiseless data: sinc interpolation and DTFT

Exact Data sinc DTFT

Figure 6.1: Sinc interpolation and DTFT of the noiseless testing data.

The reconstructions of the target function and of its Fourier transform look fairly accurate.
The only noticeable discrepancy resides in the small oscillations at |t| > 1 in the sinc
interpolation, which induce a deviation of the DTFT from the exact transform for values
of |ω| approaching to the limit of 2π. This problem is arising because sinc interpolation

64

GIO
VANNI IA

NNELL
I

6.2 fourier transforms of discrete data

doesn’t have a control on the level of smoothness of the interpolation, which could be
tuned with GPR using a characteristic length-scale ℓ higher than the length of the unwanted
oscillations.

Noisy sinc interpolation and DTFT

In many real world applications, measurements come with a statistical error, and, therefore,
this procedure should be extended to take account of it. Let us introduce independent
Gaussian errors with standard deviations ∆xi that afflict the measurements xi. The sinc
interpolation (6.14) and the DTFT (6.15) can be generalized considering the space of possible
outcomes xs

i drawn from N (xi|∆x2
i δij). Each possible xs

i can be plugged into (6.14) or (6.15),
and the estimators of the noisy sinc interpolation and DTFT can then be defined as the mean
value of SINC[xs

i](t) and DTFT[xs
i](ω) among each possible xs

i .
Due to the linearity in xi of equations (6.14) and (6.15), we can use the equation (A.1) of

the appendix to find the exact multivariate Gaussian of these estimators in terms of xi and
∆xi. In particular, we are interested in their expectation values and variances. For instance,
for the sinc interpolation we find:

E[SINC[xs
i](t)] = x0 sinc

(t
∆t

)
+ ∑N

i=1 xi

(
sinc

(
t−ti
∆t

)
+ sinc

(
t+ti
∆t

))

Var[SINC[xs
i](t)] = ∆x2

0 sinc2 (t
∆t

)
+ ∑N

i=1 ∆x2
i

(
sinc

(
t−ti
∆t

)
+ sinc

(
t+ti
∆t

)) (6.17)

Here we notice that, due to the linearity, the expected value of the possible sinc interpolation
is equal to the sinc interpolation of the mean values xi. We can similarly find equivalent
formulae for the DTFT:

E[DTFT[xs
i](ω)] = ∆t rect

(
ω∆t
2π

) (
x0 + 2 ∑N

i=1 xi cos(ωti)
)

Var[DTFT[xs
i](ω)] = ∆t2 rect

(
ω∆t
2π

) (
∆x2

0 + 4 ∑N
i=1 ∆x2

i cos2(ωti)
) (6.18)

We tested formulae (6.17) and (6.18) on the same example function introduced in the
previous section. In addition, a Gaussian smearing with standard deviation of ∆xi = 0.04 is
applied to the measurements xi. The results are shown in figure 6.2. We can see that here,
when noise is present, the main weakness of the noiseless case shown in 6.1 is magnified.
The noisy sinc interpolation oscillates even more at |t| > 1 as it interpolates all the noisy
mean values xi. This fact leads to a greater discrepancy between the noisy DTFT and the
exact transform when |w| approaches 2π.

What this procedure is most in need of is a way to infer the real values of the underlying
function, rather than overfitting the data interpolating the noisy measurements. This
problem can also be mitigated with GPR, since it finds a compromise between data fit and
the geometrical properties of the prior.

Another defect of the sinc interpolation implemented here is the absence of an estimation
of the modeling error. The error shown in figure 6.2 corresponds to the statistical error
induced by the noisy measurements. Indeed, the noiseless case shown in 6.1 shows zero
error even though a modeling error is clearly present.

65

GIO
VANNI IA

NNELL
I

6.3 bayes-gauss-fourier transforms

−5 0 5
t

0.0

0.5

1.0

x

Signal

−2π 0 2π
w

0.0

0.5

1.0

X

Fourier transform

Noisy data: sinc interpolation and DTFT

Exact sinc Data DTFT

Figure 6.2: Sinc interpolation and DTFT of the noisy testing data.

There are however possible ways to estimate the modeling error of discrete Fourier
transforms, see for example [83]. Regarding the BGIT, the modeling error of the interpolation
is given by the credible interval of the GPR. Therefore, there is no need of an additional
analysis to give such an estimate as it already comes with the interpolation itself.

6.3 bayes-gauss-fourier transforms

The Bayes-Gauss-Fourier transform (BGFT) is the BGIT algorithm introduced in section 6.1
applied to estimate Fourier transforms. The BGFT will be tested here on the same example
introduced in the previous section for testing the noisy DTFT.

A first evident advantage of BGFT over DTFT is that it doesn’t require to perform
measurements at a constant time rate ∆t, since GPR works with any set of domain points.
However, in order to perform a fair comparison, we have tested the BGFT algorithm on the
very same setup used before. Thus, the measurements xi ± ∆xi of the even function (6.16)
are taken at ti = 0, 0.5, ..., 4.

Outline of BGFT algorithm

The most important step of the whole procedure is the first GPR of the target function (6.1),
since the choice of the prior mean µ(t), the prior covariance k(t, t′) and their hyperparame-
ters determines the quality of the probabilistic model of the target function.

In analogy with the procedure introduced in the previous section, the posterior GP
obtained with GPR is the replacement for the sinc interpolation, and the transformed

66

GIO
VANNI IA

NNELL
I

6.3 bayes-gauss-fourier transforms

posterior GP, obtained with (6.7), replaces the DTFT. In this case, (6.7) can be rewritten in
the following way:

µFs (ω|xi) = F [µ(t|xi)](ω)

kFs (ω, ω′|xi) = ∑
jk
F [k(t, ts

j |xi)](ω)
(
(Ks)−1

)
jk
F [k(t, ts

k|xi)](ω
′) (6.19)

where µFs (ω|xi) and kFs (ω, ω′|xi) are the mean and covariance functions of the posterior
transformed GP that gives us the Fourier transform estimation and its error. As we explained
in section 6.1, evaluating this covariance function requires defining a time grid ts

i , which is
needed to compute the matrix Ks ≡ k(ts

i , ts
j |xi). The choice of ts

i , as will be explained later,
should take in consideration the results of the GPR.

The Fourier transforms of the posterior mean and covariance used in equation (6.19) can
be obtained with (6.8), which, in this case, becomes:

F [µ(t|xi)](ω) = F [µ(t)](ω) + ∑
ij
F [k(t, ti)](ω)

(
K̃−1

)
ij
(xj − µ(tj))

F [k(t, t′|xi)](ω) = F [k(t, t′)](ω)−∑
ij
F [k(t, ti)](ω)

(
K̃−1

)
ij

k(tj, t′)
(6.20)

where the inverse of K̃ij ≡ k(ti, tj) + ∆x2
i δij is evaluated in the GPR (6.1).

Tuning the GPR

We saw in chapters 4 and 5 that the choice of the prior (and the hyperprior) has a decisive
role in selecting the geometrical properties of the GPR posterior.

In order to identify these properties, let us have a look at the available data shown in the
left panel of figure 6.2. The first evident property of the data is the reflection symmetry
across the t = 0 axis. Indeed, the data is actually only measured at t ≥ 0. The measurements
at t < 0 are just a copy of the corresponding ones at t > 0.

A possible way to implement this symmetry is by performing a GPR in the t ≥ 0 half
plane, and then copying the same result to the t < 0 half plane. An equivalent and more
elegant way of achieving the same result is to incorporate this symmetry into the covariance
function through the warping method introduced in chapter 2. Considering, for example,
the RBF covariance function:

k(t, t′) = σ2 exp
(
− (t− t′)2

2ℓ2

)
(6.21)

The even symmetry can be enforced using the warping function ϕ(t) = |t|:

keven(t, t′) = σ2 exp
(
− (|t| − |t′|)2

2ℓ2

)
(6.22)

Observing the GPR in equation (6.1), we can see that the usage of the even kernel (6.22) is
equivalent to mirroring the result obtained at t ≥ 0 with the RBF kernel (6.21) to the t < 0
half plane. Indeed, for t ≥ 0, the posterior mean and covariance in equation (6.1) are the

67

GIO
VANNI IA

NNELL
I

6.3 bayes-gauss-fourier transforms

same regardless of whether kernel (6.21) or kernel (6.22) is used. Furthermore, assuming
that the prior mean µ(t) is an even function, the only other variable dependent on t in the
posterior is k(t, ti), which is an even function if the kernel (6.22) is used. Therefore, using
an even µ(t), we have the guarantee of obtaining the wanted even result.

In general, all the samples drawn using the even kernel show this symmetry. To see why
it happens, let us consider the values that a sample might have at a positive t = a and at
its negative t = −a. Using the even kernel (6.22), the covariance between these two sample
points is σ2, which means that their correlation is 1. This full correlation produces equal
values at t = ±a. In other words, the even kernel uses a modified distance function that
considers symmetric points to be at zero distance. Since the kernel imposes continuity of
the samples, zero distance implies equal sample values.

In case of a non-even, generic prior mean µ(t), the samples are not necessarily even
functions, but their oscillations around the mean are symmetric across the t = 0 axis.
Because of this property, the even kernel introduced here might be useful to model certain
phenomena that are a superposition between a generic function and an even function.

Coming back to our example, after choosing the even covariance function, we need to
specify an even prior mean µ(t). Looking at the data in the left panel of figure 6.2, we notice
that the measurements have a value around x ≈ 1 at t→ 0, and decays at a rate similar to
that of an exponential decay.

At |t| > 1, the data oscillates with a magnitude compatible with their statistical noise.
Thus, we can assume that the underlying function is way smoother, and the oscillations are
mostly due to the noise.

A possible choice for the prior mean is the constant function µ(t) = µ used in chapter 4.
However, since we want to apply the Fourier transform to the signal x(t), the target function
needs to converge to zero as it required to be L2 integrable. Using the even covariance (6.22),
the behaviour of the posterior mean at t = ±∞ is fully determined by the prior mean as
the measured data is too far to influence it. This means that the prior mean must be square
integrable and the only acceptable constant prior mean is µ(t) = 0.

This choice is viable but not optimal as it doesn’t incorporate the insights that we have
observed about the decay of x(t). When the information given by the data is limited and
noisy as in our example, it is advisable to put in the prior all the available knowledge about
the underlying function.

Another possibility is to use the exponential prior:

µ(t) = exp
(
−|t|

µ

)
(6.23)

where µ is a hyperparameter that needs fixing. This prior mean satisfies the properties
discussed above as it is an even function that decays exponentially and is L2 integrable.
Furthermore, its Fourier transform is available in closed form:

F [µ(t)](ω) =
2µ

µ2ω2 + 1
(6.24)

68

GIO
VANNI IA

NNELL
I

6.3 bayes-gauss-fourier transforms

This last property comes useful in evaluating the BGFT transform as (6.24) can be used in
equation (6.20).

The only missing step needed to perform the GPR is the determination of the hyperpa-
rameters µ, σ and ℓ in the prior mean (6.23) and covariance (6.22). We saw in section 5.3
that the maximum a posteriori (MAP) model selection is useful for selecting the hyperpa-
rameters avoiding extreme unwanted values (regularization) and enforcing the Occam’s
razor principle explained in section 3.4.

In section 5.3 we saw that the hyperparameter for which regularization is most important
is the characteristic length-scale ℓ. Indeed, a small value of ℓ can lead to severe overfitting.
In this case, ℓ represents the time length-scale of typical oscillations that the target function
realizes around the exponential prior mean. Looking at the data in the left panel of figure
6.2, we expect that fictitious oscillations induced by the statistical noise have wavelength
around ℓ ∼ ∆t = 0.5, which is the sampling rate. On the other hand, we expect the target
function to be fairly smooth across the sampling window t ∈ [−4, 4]. Therefore, we expect
oscillations around the exponential prior mean to be around ℓ ∼ 4.

MAP model selection can be tuned such that values of ℓ ∼ 4 have more priority than
ℓ ∼ 0.5. By doing so, the danger of overfitting is less likely, and, at the same time, we
incorporate in the regression procedure our requirement of having a function that doesn’t
oscillate much in the sampling window t ∈ [−4, 4].

In section 5.3, we saw how the gamma distribution can be very useful to define hyperpriors
of positive hyperparameters that need to be fixed with MAP model selection. Indeed, we can
define a gamma distribution hyperprior p(ℓ) that incorporates our heuristic considerations
about ℓ, which are ℓ ∼ 4, with a low probability of having ℓ ≲ 0.5. In our example, we have
therefore used the following hyperprior for ℓ:

p(ℓ) = Γ(ℓ|3, 3/4) (6.25)

which means that, using equation (5.5), the mean value and the standard deviation of the ℓ

hyperprior are:

E[ℓ] = 4
√

Var[ℓ] = 4/
√

3 ≈ 2.3

The plot of p(ℓ) is shown in the left panel of figure 6.3.
The hyperparameter µ of the prior mean (6.23) is not very problematic to fix for the

reasons explained in 5.3. Therefore, it is not necessary to place a hyperprior on µ, which can
be fixed with maximum likelihood estimation. On the other hand, it is advisable to define a
hyperprior on the sample standard deviation σ to avoid underfitting and overfitting. Since
we expect the exponential prior mean to fit the data quite well, the typical sample deviation
from the prior mean are expected to be much greater than the statistical noise ∆xi = 0.04.
Thus, we expect the sample standard deviation to be in the order of magnitude σ ∼ 0.1.

A gamma distribution can be used again as a hyperprior for the positive value of σ. The
distribution of our choice is the following:

p(σ) = Γ(σ|3, 30) (6.26)

69

GIO
VANNI IA

NNELL
I

6.3 bayes-gauss-fourier transforms

0 5 10
ℓ

0.00

0.05

0.10

0.15

0.20

p(
ℓ)

Characteristic length-scale

0.0 0.2 0.4
σ

0

2

4

6

8

p(
σ
)

Standard deviation

BGFT hyperpriors

Figure 6.3: Hyperpriors used for the GPR of the testing data.

whose mean and variance are:

E[σ] = 0.1
√

Var[σ] = 1/10
√

3 ≈ 0.058

The plot of p(σ) is shown in the right panel of figure 6.3.
After using the hyperpriors (6.25) and (6.26) to fix the hyperparameters with the MAP

estimation (5.4), we can use the prior mean (6.23) and the prior covariance (6.22) to perform
the GPR in equation (6.1).

The results are shown in the left panel of figure 6.4. The MAP model selection found
µ ≈ 0.64, σ ≈ 0.073, ℓ ≈ 1.2 and the GPR posterior mean is compatible with the exact target
function. When |t| < 1, the posterior is compatible with the exponential prior (6.23), while,
for |t| > 1, the posterior deviates from the prior mean and infers the noisy data.

−5 0 5
t

0.0

0.5

1.0

x

Signal

−2π 0 2π
w

0.0

0.5

1.0

X

Fourier transform

Noisy data: GPR and BGFT

Exact
Prior

GPR
Data

F [Prior]
BGFT

Figure 6.4: GPR and BGFT of the testing data. The hyperparameters found with MAP are µ ≈ 0.64,
σ ≈ 0.073, ℓ ≈ 1.2 . The approximating grid used for the BGFT is ts

i = −4,−3.5, ..., 3.5, 4.

70

GIO
VANNI IA

NNELL
I

6.3 bayes-gauss-fourier transforms

This GPR is then used to evaluate the approximate BGFT with equation (6.7). The results
are shown in the right panel of figure 6.4. The transform posterior mean is quite close to
the exact target Fourier transform as it has the same shape. Comparing the results to those
shown in figure 6.2, both reconstructions are accurate in the regions |t| < 2 and |ω| < π,
while the predictions of the GPR and the BGFT are far better in the rest of the domains. This
improvement is due to the fact that the GPR does a better job in inferring the real value of
noisy data at |t| > 2, which, in the case of DTFT, induce fictitious high frequency deviations.

The small differences of the BGFT from the exact transform at |ω| < π/2 are well within
the credible interval, while the tails at |ω| → 2π have a small offset as they are almost equal
to the transform of the prior mean. Anyway, this small discrepancy is even smaller than the
one obtained in the noiseless DTFT shown in figure 6.1. The error of the BGFT tails seems
slightly underestimated because of the few data in the interval |t| < 2. Indeed, the model
selection procedure manages to find an exponential that overfit the data in this interval. This
translates to a Fourier transform that strictly follows the tails of the prior mean transform.
This small underestimation of the error could be solved by choosing a covariance function
that doesn’t have a homogeneous sample variance σ2. Such a covariance function could be
used to increase the modeling error in the region |t| < 2 so that the modeling error of the
BGFT could be more realistic.

The evaluation of the approximate BGFT (6.7) needs the choice of the S time points
of the approximating grid ts

i . The results shown in figure 6.4 were obtained using ts
i =

−4,−3.5, ..., 3.5, 4. The choice of the grid ts
i has an impact on the posterior credible intervals

and we will discuss it in the next subsection.

Choosing the approximating grid ts
i

In order to fully understand the implications of this choice of ts
i , it is helpful to first visualize

the effects of this approximation on the GPR using equation (6.9). Indeed, studying the
approximate GPR will give us some insights about the BGFT that is its Fourier transform.

The discretization ts
i of the time space could be done in any possible way, however, to

keep it simple, we impose ts
i to be equally spaced at ∆ts distance with a cutoff ts

max ≥ |ts
i | ∀i.

In the left panel of figure 6.5 is shown a comparison of two approximate GPRs obtained
with equation (6.9) using a cutoff ts

max = 4 and the grid distances ∆ts = 4, 0.5. A grid with
such a high spacing was chosen to better visualize the impact of approximation errors. The
credible intervals of the two approximate GPRs are represented by two colored intervals,
while the credible intervals of the exact GPR are delimited by two dashed lines. Since the
differences of the various approximations are quite small compared to the variations of
the posterior mean function, in the right panel of figure 6.5 are shown the error intervals
without the mean values in order to make the results more distinguishable.

Observing these results, we can see that, with a grid distance of ∆ts = 0.5, the approximate
credible intervals are overlapping with those of the exact GPR. On the other hand, with
a grid distance of ∆ts = 4, the credible intervals are equal to the exact ones only in the
surrounding of the grid points, which are t = 0 and t = ±4. However, when t gets further
from the grid points, the approximate GPR underestimate the errors, and this discrepancy

71

GIO
VANNI IA

NNELL
I

6.3 bayes-gauss-fourier transforms

−5 0 5
t

0.0

0.5

1.0

x

Posterior mean ± error

−5 0 5
t

−0.050

−0.025

0.000

0.025

0.050

± error

Approximate GPR: ∆ts comparison with ts
max = 4

Exact ∆ts = 0.5 ∆ts = 4

Figure 6.5: Credible intervals of the exact GPR (dashed) and of two approximate GPRs (colored)
obtained with grid distances ∆ts = 0.5, 4. In the right panel, the posterior mean is
subtracted from the results for a better visualization.

gets enhanced at a rate that is in the order of magnitude of the characteristic wave-length
ℓ ≈ 1.2.

This behaviour becomes clear if we review the reasoning that brought us to the approxi-
mate formula (6.9). Indeed, the posterior GP (6.1) is sampled at the grid points ts

i , and these
sample values are interpolated with a second GPR that uses the posterior mean (6.1) as its
prior mean. This means that, in the proximity of ts

i , the interpolated samples behave as
the real continuous samples, and their distribution is therefore the exact one, which is the
posterior mean in (6.1). This is why the credible intervals of the approximate GPRs in figure
6.5 are equal to those of the exact GPR in proximity of ts

i .
On the other hand, at time values with a distance from ts

i that is higher than ℓ ≈ 1.2,
all the interpolated samples tend to converge to the posterior mean µ(t|xi), since, in these
regions, the x values are considered uncorrelated to the values sampled at ts

i . This is why, in
figure 6.5, the standard deviation of the interpolated samples obtained with the sparse grid
ts
i = 0, 4 is lower than the exact one.

From these observations, we can find a sufficient condition to suppress the discrepancies
induced by a finite grid distance. Indeed, if the distance between the grid points and a
value t is far smaller than the characteristic length-scale ℓ, then the discrepancy between the
approximate credible intervals and the exact ones is negligible. Using a grid distance ∆ts,
the maximum distance between values of t ∈ [−ts

max, ts
max] and grid points is ∆ts/2. In the

example shown in figure 6.5, ∆ts/2 = 0.25, which is approximately five times lower than
ℓ ≈ 1.2 and this is sufficient to suppress approximation errors. Indeed, the correlation at
such distance, using the covariance (6.22), is suppressed by a factor exp(−52/2) ∼ 10−6.

Now that we have seen how to set the grid distance ∆ts, we should discuss the choice
of the cutoff ts

max, which involves some additional complications. The even covariance
function (6.22) sets σ2 to be the sample variance at all points that are far from the input
data xi. This means that the samples of the exact posterior GP are not L2 integrable as

72

GIO
VANNI IA

NNELL
I

6.3 bayes-gauss-fourier transforms

they keep oscillating at t → ±∞. However, with a grid cutoff ts
max, the samples converge

to the posterior mean at t → ±∞. This means that the credible interval starts shrinking
at |t| > ts

max and becomes zero at t → ±∞. The samples are therefore L2 integrable if the
posterior mean is L2 integrable, which is guaranteed using the exponential prior mean
(6.23).

The cutoff ts
max has then the purpose of suppressing sample oscillations for |t| > ts

max.
This behaviour can be observed in the approximate GPRs shown in figure 6.6. The grid
distance used is ∆ts = 0.5 and the cutoffs are ts

max = 2, 4. After the cutoffs, as expected, the
credible intervals start shrinking to the posterior mean. Hence, the samples have then less
freedom to oscillate after the cutoff.

−5 0 5
t

0.00

0.25

0.50

0.75

1.00

x

Posterior mean ± error

−5 0 5
t

−0.05

0.00

0.05

± error

Approximate GPR: ts
max comparison with ∆ts = 0.5

Exact GPR ts
max = 4 ts

max = 2

Figure 6.6: Credible intervals of the exact GPR (dashed) and of two approximate GPRs (colored)
obtained with grid cutoffs ts

max = 2, 4, and grid distance ∆ts = 0.5. In the right panel, the
posterior mean is subtracted from the results for a better visualization.

This is particularly relevant when evaluating their Fourier transforms. Indeed, oscillations
with long wave-length have an impact on the transform at small frequencies. This effect can
be seen in the approximate BGFT shown in figure 6.7, which are obtained using the cutoffs
ts
max = 2, 4, 8. As expected, if the credible intervals of the GPRs have wide tails, samples

have more freedom to have long wave-length oscillations that are not suppressed by setting
the hyperparameter ℓ. Thus, having a larger cutoff ts

max means having a wider credible
interval of the transform, especially at small |ω|.

The decision on where to place the cutoff is problem dependent, and it should take into
consideration the prior knowledge about the underlying function. In our testing example,
we are confident that the main features of the target function are shown in the sampling
interval t ∈ [−4, 4], and that, outside of it, the target function just converges to zero. We can
then conclude that placing the approximating grid is not just a numerical necessity, but it
can also be useful to build a better probabilistic model of the target function, without having
to suffer from finite grid effects, as shown in figure 6.5. In general, similar cutoffs could be
achieved using different, non homogenous, covariance functions. However, since the grid

73

GIO
VANNI IA

NNELL
I

6.3 bayes-gauss-fourier transforms

−2π −π 0 π 2π
ω

0.0

0.5

1.0

1.5

X

Approximate BGFT: ts
max comparison with ∆ts = 0.5

F [x(t)]
ts
max = 8

ts
max = 4

ts
max = 2

Figure 6.7: Credible intervals of three approximate BGFTs obtained with grid cutoffs ts
max = 2, 4, 8,

and grid distance ∆ts = 0.5.

approximation is necessary for evaluating the BGFT, it could be exploited to improve the
probabilistic model, without having to rely on more complicated covariance functions.

74

GIO
VANNI IA

NNELL
I

7
A C Q U I S I T I O N F U N C T I O N S

As explained in chapter 3, it is possible to use Bayesian inference for making decisions using
Bayesian decision theory. This is done by maximizing a utility function or minimizing a
loss function defined using the inferred predicting model. In particular, this is the main
component of Bayesian optimization (BO).

After having performed N (noisy) measurements of the target function in N different
domain points, we have to decide the next domain point at which the new measurement is
performed. In BO, our aim is to find the global minimum of the target function. For this,
we have to decide which is the domain point that is most likely to be the global minimum.

This choice should be a compromise between exploitation and exploration: we want to
observe the target function at the point with a low predicted value (exploitation), while
we also want to explore the areas of the domain about which our information is limited
as we don’t have enough knowledge about the target function to exclude that the global
minimum might be there. Exploring new areas of the domain is a crucial property of a
global optimizer as it prevents it from getting stuck into local minima.

The compromise between exploration and exploration is set by choosing a specific ac-
quisition function, which uses the predictive model to assign a score to each domain point
in terms of how much they could contribute to the exploitation and the exploration of
the target function. The next measurement of the target function is then performed at the
maximum point of the acquisition function.

Bayesian optimizers could, in principle, be built on top of any probabilistic model of the
target function. However, GPR is the most common choice as many acquisition functions
can be efficiently evaluated in closed form.

In this chapter, we will describe the expected improvement (EI) [13], which is a very
commonly used acquisition function for noiseless BO, and the noisy expected improvement
(NEI) [15] which is a generalization of the EI to the case of noisy measurements.

Finally, the functioning of BO will be illustrated finding the global minimum of an
example one-dimensional function using EI and NEI.

7.1 expected improvement

Global optimization using the EI follows the typical steps of Bayesian decision theory.
Previous target function measurements are used to construct a predictive model that
associates a posterior probability to the possible values that the target function might
assume.

75

GIO
VANNI IA

NNELL
I

7.1 expected improvement

These hypothetical possible values are then used to define a utility function that quantifies
how beneficial would it be to actually measure such a hypothetical value. The utility
function is then integrated over all possible hypothetical values according to our predictive
model. By doing so, we obtain the EI, which assigns an expected utility value to each
domain point.

The final step of the procedure is looking for the global maximum of the EI across all
domain points. This maximum point represents the most promising domain point to be the
global minimum of the target function, at least according to our predictive model and the
utility function that we have chosen. The domain point identified by EI optimization can
then be used for the next target function measurement.

GPR predictions

Coming back to the case of our interest, the target function is the parametrized energy
measured using a quantum computer and the domain points are quantum circuit parameters.

Let us assume that the target energy function is being observed at N D-dimensional
parameter values θ1α, ..., θNα delivering the energy measurements E1 ± ∆E1, ..., EN ± ∆EN .
Then, using equation (4.12), we can perform a GPR to obtain the posterior mean function
µ(θα|Ei) and the posterior covariance function k(θα, θ′α|Ei).

We know from equation (4.11), that we can use the posterior GP to perform Bayesian
predictions f ∗ of the values that the target energy would assume with the circuit parameters
θ∗α . Indeed, the posterior predictions f ∗ are distributed according to a Gaussian distribution:

p(f ∗|Ei) = N (f ∗|µ∗, σ∗2) (7.1)

where the mean µ∗ is given by the posterior mean function and the variance σ∗2 is the
diagonal term of the posterior covariance function:

µ∗ ≡ µ(θ∗α |Ei) = µ(θ∗α) + ∑
jk

k(θ∗α , θjα)
(

K̃−1
)

jk
(Ek − µ(θkα))

σ∗2 ≡ k(θ∗α , θ∗α)−∑
jk

k(θ∗α , θjα)
(

K̃−1
)

jk
k(θkα, θ∗α)

(7.2)

Here µ(θα) and k(θα, θ′α) are the prior mean and covariance functions, and K̃ij ≡ k(θiα, θjα) +

∆E2
i δij.

Improvement utility function

The energy predictions f ∗ can now be used to define the following utility function:

uEI(θ
∗
α | f ∗) ≡

{
0 if f ∗ ≥ Emin

Emin − f ∗ if f ∗ < Emin
(7.3)

where Emin is the minimum of all the previous target energy measurements. This utility
function is called improvement, since, given a hypothetical energy outcome f ∗ obtained
at θ∗α , it assigns to θ∗α a score that corresponds to the improvement over the current best

76

GIO
VANNI IA

NNELL
I

7.1 expected improvement

solution if the energy measurement EN+1 = f ∗ is actually obtained. Indeed, before having
measured EN+1 = f ∗, the best solution is min{Ei} and, if f ∗ < min{Ei}, the best solution
becomes f ∗, which is min Ei − f ∗ lower than the previous minimum. On the other hand, if
f ∗ > min{Ei}, the best solution remains the same after having measured EN+1 = f ∗, hence
the improvement is zero.

At first sight, this utility function seems to be purely exploitative as it doesn’t explicitly
give a higher score to points with high uncertainty. However, when the uncertainty is
high, it is also more likely to observe values far lower than the expected mean. Since the
utility function is going to be integrated among all possible values of f ∗, points with high
uncertainty will benefit from the contribution of small outliers.

In the considered case, the energy measurements Ei are subject to statistical noise, therefore
Emin is not a good estimator of the current best solution as its value is susceptible to low
outliers. A simple fix for this problem is to replace Emin with mini{µ(θiα|Ei)}, which are the
expected values of the previous measurements according to our predictive model. We will
discuss in section 7.2 that this solution is not satisfactory in most cases, and that EI needs
more substantial modification to optimize noisy target functions.

Expected improvement

In order to remove the dependency of the utility function uEI(θα| f ∗) on specific values of f ∗,
we can marginalize out this variable integrating the utility function over all the possible f ∗

according to their posterior distrubution p(f ∗|Ei). By doing so, we define the EI acquisition
function:

aEI(θ
∗
α) ≡

∫ +∞

−∞
uEI(θ

∗
α | f ∗)p(f ∗|Ei)d f ∗ (7.4)

We saw in (7.1) that the distribution of the posterior predictions is a Gaussian, whose
mean and variance are given by (7.2). Using the properties of the Gaussian distribution, we
can evaluate this integral in closed form. To keep the calculations compact, we denote with
φ(t) the unit Gaussian and with Φ(t) the cumulative unit Gaussian:

φ(t) ≡ 1√
2π

exp
(
− t2

2

)

Φ(t) ≡ 1√
2π

∫ t

−∞
exp

(
− t′2

2

)
dt′

Plugging the improvement utility function (7.3) and the posterior prediction distribution
(7.1) into the EI definition (7.4), we obtain:

aEI(θα) =
∫ Emin

−∞
(Emin − f ∗)N (f ∗|µ∗, σ∗2)d f ∗

=
∫ tmin

−∞
σ∗(tmin − t)

φ(t)
σ∗

σ∗dt

= σ∗
(

tminΦ(tmin)−
∫ tmin

−∞
tφ(t)dt

)

77

GIO
VANNI IA

NNELL
I

7.1 expected improvement

where we have defined t ≡ (f ∗ − µ∗)/σ∗, tmin ≡ (Emin − µ∗)/σ∗. Finally, using φ′(t) =

−tφ(t), we find the analytical formula for the EI:

aEI(θ
∗
α) = σ∗(tminΦ(tmin) + φ(tmin))

= (Emin − µ∗)Φ
(

Emin − µ∗

σ∗

)
+ σ∗φ

(
Emin − µ∗

σ∗

) (7.5)

The properties of this formula are not immediate to see. For this reason, it is helpful to
compare it to other widely used acquisition functions.

Alternatives to the expected improvement

The most commonly used acquisition functions, together with the EI, are the probability of
improvement (PI) [43] and the lower confidence bound (LCB) [84].

The PI, as the name suggests, assigns to the domain points a score equal to the probability
of improving the current best measurement. It can be defined using the following utility
function:

uPI(θ
∗
α | f ∗) ≡

{
0 if f ∗ ≥ Emin

1 if f ∗ < Emin

comparing it to the utility function in (7.3), we notice that the positive score here is the same
regardless of the amount of improvement. As a consequence, the PI is less exploitative and
more explorative than EI.

By integrating (7.1), we obtain the PI acquisition function:

aPI(θ
∗
α | f ∗) ≡

∫
uPI(θ

∗
α | f ∗)d f ∗ = Φ

(
Emin − µ∗

σ∗

)

As we can see, the PI is simply the cumulative of the Gaussian predictions evaluated at
Emin, that is the probability of observing a f ∗ lower than the current best Emin. We can
clearly see how the PI sets the compromise between exploitation and exploration: domain
points with lower values of the expected energy µ∗ and higher values of its uncertainty σ∗

correspond to higher values of the PI. Seeking for low µ∗ is exploitative as it means finding
the minimum according to the current model, while seeking for high σ∗ is explorative as
unexplored regions have a higher prediction variance.

The formula of the EI (7.5) contains the PI in its first term, but it is multiplied by Emin− µ∗,
which means prioritizing points where the expected energy is low and penalizing those in
which the expected energy is high. This term is therefore way more exploitative than the PI.
On the other hand, the second term of the EI (7.5) is mostly explorative as it is proportional
to the prediction uncertainty σ∗.

Overall, by definition, the EI is meant to be more exploitative than PI. Indeed, it jumps out
of a local minimum only when the uncertainty around it is quite low. Generally, this leads
to a faster convergence as the algorithm will reach local minima earlier and immediately
start looking for a lower minimum in other areas.

78

GIO
VANNI IA

NNELL
I

7.1 expected improvement

A negative aspect of the EI is that it not very clear, from its formula, how the compromise
between exploration and exploitation is set. In case we wanted to change it to favor either
one or the other, the EI, in its original form, doesn’t provide a way to do it.

However, in our setup, we can prioritize/penalize exploration by increasing/decreasing
the sample variance hyperparameter of GPR. This could be done by choosing an appropriate
hyperprior on σ2 as we explained in section 5.3. Indeed, as we saw in chapter 5, this
hyperparameter mostly affects the uncertainty of predictions that are far from the already
measured data.

In cases where hyperpriors are not used, or, in general, if we want a direct and explicit
control over the level of exploration and exploitation, we could instead use the LCB acqui-
sition function. Its definition is straightforward and is not obtained integrating a utility
function:

aLCB(θ
∗
α |λ) ≡ λσ∗ − µ∗

With LCB, the points are ranked according to how low is the energy value at λ sigmas
lower than the mean. The locus of these points is also called lower confidence bound. The
higher is λ, the more the exploration is prioritized, since the lower confidence bound gets
lower with a higher multiplicative factor where the uncertainty σ∗ is higher.

The LCB shows us that it is not necessary for an acquisition function to be obtained
through the integration of a utility function. Indeed, many times, procedures based on
heuristic considerations could be helpful to avoid certain problems.

A defect of LCB, however, is that it needs the choice of a value for the parameter λ, which
should be fixed accordingly, depending on the specific problem. Since we can already
change the balance between exploration and exploitation by modifying the sample variance
hyperprior, in our case it would be redundant to introduce another hyperparameter that
needs fixing.

Gradient of the expected improvement

Another advantage of having the EI in closed form is that we can easily compute its gradient.
This comes useful as we need to optimize the EI to find the set of parameters θ∗α of the next
measurement. Having the possibility to evaluate the gradient in closed form can reduce
the number of iterations required to find the maximum of the EI as well as improving the
stability and the precision of the procedure. A possible strategy for maximizing the EI is the
multistart optimization described in section A.3 of the appendix.

The computation of EI gradient becomes easier if we express it in terms of the partial
derivatives in µ∗ and σ∗:

∂aEI

∂θα
=

∂aEI

∂µ∗
∂µ∗

∂θα
+

∂aEI

∂σ∗
∂σ∗

∂θα

These partial derivatives can be easily obtained from equation (7.5):

∂aEI

∂µ∗
= −Emin φ

σ∗
−Φ +

µ∗φ
σ∗

+
Emin − µ∗

σ∗
ϕ = Φ

∂aEI

∂σ∗
= −

(
Emin − µ∗

σ∗

)2

φ + φ−
(

Emin − µ∗

σ∗2

)2

φ = φ

(7.6)

79

GIO
VANNI IA

NNELL
I

7.1 expected improvement

The derivatives of µ∗ and σ∗ can be obtained from equation (7.2) in terms of the derivatives
of the chosen prior mean and covariance functions.

Computing explicitly this long chain of partial derivatives and implementing it in a
computer program can be lengthy and error-prone. Furthermore, if we want to test different
prior covariance or acquisition functions, we would need to also specify the gradient for
each of them.

For this purpose, it can be helpful to rely on automatic differentiation techniques [85], which
evaluate all the partial derivatives together with the function, and then the gradient is
obtained using the chain rule. Automatic differentiation software as, for example, PyTorch
[86] have implemented the analytic formulae for the derivatives of common functions.
Hence, there is no need to explicitly write the derivatives of the acquisition function or of
the prior mean and covariance, since all the formulae that we used are expressed in terms
of standard functions whose exact derivatives are available in automatic differentiation
libraries.

Testing the expected improvement with noiseless measurements

Let us now test the EI on the following one-dimensional example target energy:

E(θ) = cos(2θ) +
1
4

sin
(

θ − π

4

)
(7.7)

This function is shown as a dashed black line in figure 7.1.
Three starting parameter values θ1, θ2, θ3 are selected randomly, and the energy (7.7) is

measured at these points. Assuming, for now, that the measurements are noiseless, the
resulting energies are the three orange points in the top-left panel of figure 7.1.

These three measurements are used to perform the noiseless GPR (4.6), and the resulting
posterior mean and covariance functions, which are shown in blue, are used to evaluate the
EI (7.5), which is plotted in green. For visual convenience, the EI is shown in arbitrary units
and with a vertical offset. The real values of the EI are always greater than or equal to zero.

The green acquisition function is then optimized, and the resulting maximum point
(indicated with a vertical green line) is used as the parameter for the fourth measurement,
which is shown in the top-right panel. From here, the algorithm iterates the same procedure:
the four measurements are used to define a new acquisition function and to select the
following value of θ.

Observing the four iterations shown in figure 7.1, we notice that the EI first selects a
point close to a local minimum. However, in the next iteration, instead of remaining in the
surrounding of the local minimum, the EI selects a point in a region with high uncertainty,
since it cannot exclude that the global minimum might be located there. This hypothesis
resulted to be correct, and that the global minimum was actually located in the unexplored
region. The sixth and the seventh measurements were then chosen to be in the surrounding
of this new minimum as there weren’t new regions with an uncertainty high enough to
make the EI decide to check them. Indeed, we can see that, after six measurements, the
predictive model looks very similar to the target function and that the uncertainty is low
across the whole domain.

80

GIO
VANNI IA

NNELL
I

7.1 expected improvement

−1

0

1

2
E

N = 3 N = 4

0 π/2 π 3π/2 2π

θ

−1

0

1

2

E

N = 5

0 π/2 π 3π/2 2π

θ

N = 6

Noiseless measurements with expected improvement

Prediction Exact Acq. Function Data

Figure 7.1: Four iterations of a Bayesian optimization using the EI. With noiseless measurements, the
global minimum is found quickly.

Testing the expected improvement with noisy measurements

As we anticipated earlier in this chapter, the EI doesn’t perform very well if the measure-
ments are afflicted by statistical noise. Let us assume that the energy measurements are
subject to a Gaussian noise with σ = 1/2. Similarly to what happens with a quantum
computer, each energy measurement is repeated for a number of S = 20 shots, so that our
energy estimations Ei ± ∆Ei are obtained evaluating the average and the standard error of
the shots.

Starting from the same three parameter values θ1, θ2, θ3 of the previous example, the
new measurements and their errors are shown in orange in the top-left panel of figure
7.2. The result of the first iteration is quite similar to what was obtained with noiseless
measurements, since the selected parameter is close to the local minimum. However, in
the following iterations, the profile of the EI differs from the noiseless case. Here, instead
of exploring the unknown region, the EI keeps selecting measurements around the local
minimum without actually improving the predictive model.

The reason of this problem resides in the fact that noisy measurements taken at a certain
θ do not nullify the uncertainty of the predictive model at θ. Repeating M times the same
measurements can just suppress the uncertainty at the slow rate of O(1/

√
M). Therefore,

81

GIO
VANNI IA

NNELL
I

7.2 noisy expected improvement

−1

0

1

2
E

N = 3 N = 4

0 π/2 π 3π/2 2π

θ

−1

0

1

2

E

N = 5

0 π/2 π 3π/2 2π

θ

N = 6

Noisy measurements with expected improvement

Prediction Exact Acq. Function Data

Figure 7.2: Four iterations of a Bayesian optimization using the EI. With noisy measurements, the
algorithm is stuck around a local minimum.

if the credible interval at θ doesn’t significantly reduce after a measurement at θ, the EI
is likely to reselect a very similar value of θ as the setup is similar to what we had in the
previous iteration. This doesn’t happen in the noiseless setting as the credible interval is
zero by definition around noiseless measurements.

We can see this behaviour in the iterations N = 4, 5, 6 shown in figure 7.2: the uncertainty
around the local minimum is shrinking very slowly, hence the peak of the EI around the
local minimum remains high valued. This prevents the EI from jumping out of the local
minimum, selecting the second peak located in the unexplored region, thus wasting many
iterations without significantly improving the predictive model.

In the next section, we will review different possible ways of extending the EI in order to
solve this problem.

7.2 noisy expected improvement

Several extensions of the EI have been proposed to make it perform well in the presence of
noise. A comparison of different approaches [87] showed that, among the tested acquisition

82

GIO
VANNI IA

NNELL
I

7.2 noisy expected improvement

functions, the best performing were the augmented expected improvement (AEI) [88] and the
knowledge gradient (KG) [89].

The AEI implements heuristic modifications to the EI function in order to mitigate its
problems in the noisy setup. In particular, the acquisition function is rescaled with a
multiplier that gives priority to points with a higher predictive variance.

However, even if measurement repetitions are discouraged, AEI doesn’t exclude them
with certainty. Furthermore, the AEI assumes the noise of all the measurements to be
identically distributed. Even though this last limitation could be overtaken introducing
some further assumptions based on heuristic considerations, this kind of solutions are
problem dependent and they are not justified by a rigorous theoretical analysis.

On the other hand, the advantage of AEI with respect to other extensions of EI is
its simplicity of calculation. It is available in closed form and is therefore suitable for
optimization problems that need a high number of iterations.

The opposite considerations are valid for the KG, which has solid theoretical foundations
and it doesn’t suffer from the same problems as the EI in the noisy setup. Furthermore, the
design of the KG seeks to improve the minimum of the whole predictive model rather than
just trying to find an improvement over the previous measurements. The disadvantage of
this approach is its computational cost, especially for a high number of parameters, even
though this cost can be mitigated using stochastic optimization [90].

Other possible acquisition functions similar to KG are the entropy search (ES) [91] and the
predictive entropy search (PES) [92]. They also have great performance and solid theoretical
foundations, but their computational cost is even higher than KG.

Since VQE could potentially have many parameters to optimize, the computational
cost of optimizing the acquisition function should be taken into consideration. For this
reason, instead of using KG, ES or PES, we decided to use the recently published noisy
expected improvement (NEI) [15], which solves the problems of EI and AEI without being as
computationally expensive as the aforementioned methods.

Hypothetical noiseless energy measurements

As we observed earlier in this chapter, there is a conceptual fault in the EI procedure in
presence of noisy measurements. Indeed, the utility function uEI(θ

∗
α | f ∗) defined in (7.3)

assumes Emin to be a given constant, while, in the noisy setup, it is a stochastic variable.
Under the hypothesis that the posterior GP obtained with noisy GPR models the target

energy, the sample functions of this GP are possible profiles of the target energy. In particular,
from the posterior GP, not only we can sample single energy predictions f ∗ at a single θ∗α ,
but we can also, at the same time, sample possible energies fi at θiα. Such values of fi are
hypothetical noiseless energy measurements that, under the assumption that our surrogate
model is correct, correspond to the real target energy function evaluated at θiα.

The energy prediction f ∗ and the hypothetical noiseless measurements fi are sampled
from a N + 1-dimensional multivariate Gaussian p(f ∗, fi|Ei), whose mean and covariance
are given by (4.11) if we redefine there the predictions vector f ∗m as (f ∗, fi).

83

GIO
VANNI IA

NNELL
I

7.2 noisy expected improvement

Noisy improvement utility function

After having specified the joint probability distribution of the predictions f ∗ and the
hypothetical noiseless measurements fi, we can now define the utility function in terms of
them:

uNEI(θ
∗
α | f ∗, fi) ≡

{
0 if f ∗ ≥ f min

f min − f ∗ if f ∗ < f min
(7.8)

where f min ≡ min{ fi} is the minimum of the hypothetical noiseless measurements.
We can see that this is the same improvement utility function defined in (7.3), but, instead

of being the improvement of the prediction f ∗ over the minimum of the previous noisy
measurements Emin, it is the improvement over the minimum of the hypothetical noiseless
energy measurements. This means that the utility function is no longer evaluated using
a constant estimator of the current best solution, but it is rather expressed in terms of N
additional stochastic variables fi.

Noisy expected improvement

Once the utility function (7.8) is defined, the NEI acquisition function is obtained by
integrating it among all the possible values of its random variables, according to their
probability distributions.

The difference from the EI is that the random variables that need to be integrated out are
f ∗ and fi, not just f ∗. Therefore, the NEI is defined as:

aNEI(θ
∗
α) ≡

∫∫
uNEI(θ

∗
α | f ∗, fi)p(f ∗, fi|Ei)d f ∗d fi (7.9)

Unfortunately, this integral is not available in closed form. However, we can rearrange it so
that we can integrate out the posterior predictions f ∗. For doing so, we split the integration
isolating the conditional probability of f ∗ using p(f ∗, fi|Ei) = p(f ∗| fi, Ei)p(fi|Ei):

aNEI(θ
∗
α) =

∫ (∫
uNEI(θ

∗
α | f ∗, fi)p(f ∗| fi, Ei)d f ∗

)
p(fi|Ei)d fi (7.10)

From the discussion in section 2.4, we know how to compute the conditional probability of
the GP sample value f ∗ given the fixed sample values fi. Indeed, fixing a subset of the GP
sample values creates a new conditional GP. Therefore, the remaining random variable f ∗ is
distributed according to a Gaussian, whose mean and variance are given by (2.11).

Furthermore, in section 4.3, we saw that a conditional GP is equivalent to a GP obtained
performing a GPR on noiseless measurements. This means that p(f ∗| fi, Ei) could be obtained
performing a GPR on the hypothetical noiseless measurements fi.

Having in mind this observation and the EI definition (7.4), we notice that the inner
integral in equation (7.10) is an EI aEI(θ

∗
α | fi) constructed with the hypothetical noiseless

energy measurements fi:

aNEI(θ
∗
α) =

∫
aEI(θ

∗
α | fi)p(fi|Ei)d fi (7.11)

84

GIO
VANNI IA

NNELL
I

7.2 noisy expected improvement

We have therefore integrated out the random variable f ∗ using the closed form formula
(7.5).

With equation (7.11), we have a better understanding of the NEI. Indeed, it can be seen
as the expected value of the EI across all the possible hypothetical noiseless measurements
generated according to our predictive model. From this formula, it is also clear to see how
the NEI is a generalization of the EI: if the measurements Ei are noiseless, then we have
p(fi|Ei) = δ(fi = Ei), which reduces equation (7.11) to the EI aEI(θ

∗
α |Ei).

Being a superposition of noiseless EIs, the NEI is well-defined in the noisy setup: its
value is always zero at domain points that have already been measured, since this is true,
by definition, for the noiseless EIs. This makes it impossible for the NEI to select the same
parameters multiple times.

(Quasi-)Monte Carlo approximation of the noisy expected improvement

As we said earlier, the NEI is not available in closed form. However, it is possible to
approximate it using the Monte Carlo method1. The simplest way to do it comes directly
from the definition (7.9). Indeed, we can generate K independent samples of the variables
f ∗ and fi from the posterior GP (4.12) using the procedure described in section 2.2. Calling
f ∗k and fik such samples, the NEI is approximated by:

aNEI(θ
∗
α) ≈

1
K ∑

k
uNEI(θ

∗
α | f ∗k , fik) (7.12)

According to the central limit theorem, the error of this approximation is O(1/
√

K).
This method is very straightforward, but it could become very computational intensive

when aNEI(θ
∗
α) needs to be evaluated for a high number of different θ∗. Indeed, we know

from section 2.2 that sampling f ∗k and fik has complexity O(K(N + 1)3), where N is the
number of previous measurements. For each new value of θ∗α , we need to sample a new
set of f ∗k and fik, and this might be problematic as aNEI(θ

∗
α) needs to be globally optimized,

which usually requires several evaluations of aNEI.
The computational effort could be reduced if we approximate the NEI using a procedure

suggested by the alternative formula (7.11). Indeed, we saw that the NEI is the expected
value of the EIs obtained using all the possible fi. Therefore, as we did before, from
the posterior GP we generate fik, which are K samples of the N hypothetical noiseless
measurements fi. In this case, there is no need to generate also f ∗ because it was integrated
away. The fik are then used to perform the K noiseless GPRs required to compute K different
EIs aEI(θ

∗
α | fik) using the closed form formula (7.5). The NEI is finally approximated by the

average of these EIs:

aNEI(θ
∗
α) ≈

1
K ∑

k
aEI(θ

∗
α | fik) (7.13)

At first sight, the approximation (7.13) doesn’t seem a great improvement over the
approximation (7.12). Indeed, in order to evaluate aNEI(θ

∗
α), not only we need to generate

1 More details about the Monte Carlo and the quasi-Monte Carlo methods are covered in section A.2 of the
appendix.

85

GIO
VANNI IA

NNELL
I

7.2 noisy expected improvement

all the fik, which has complexity of O(KN3), but also to perform K GPRs, which also has a
total complexity of O(KN3).

However, the advantage of the approximation (7.13) is that it doesn’t need to resample
new fik if we change θ∗α , since the only random variable dependent on θ∗α is f ∗, but it was
integrated out using the analytical formula of the EI. Therefore, the same K EIs aEI(θ

∗
α | fik)

can be used through the whole optimization of aNEI(θ
∗
α). Equation (7.13) is, in fact, an

average of K independent EIs, whose values are available in the whole θ∗α domain thanks to
the closed form formula (7.5).

Another advantage of using the approximation (7.11) is that we can easily compute its
gradient using the analytical formula (7.6). Indeed, since the NEI is approximated as an
average of EIs, its gradient is approximated as an average of EI gradients, and, also in this
case, we don’t need to resample fik when we evaluate the gradient at a different value of θ∗α .

Being just a superposition of EIs, the NEI could be maximized in the same way of the EI,
for example, using the multistart optimizazion procedure described in section A.3.

Finally, in order to reduce the number of required samples K, instead of generating
stochastic samples from the posterior GP, it is possible to compute them using quasi-random
numbers as, for example, the Sobol sequence [93]. Once the fki are obtained in this way, the
rest of the procedure is unchanged.

The integration error of the quasi-Monte Carlo method has, in general, the improved
scaling of O(K−1 (log K)N) [94], and it performs better than this in many applications [95].
This error is not Gaussian as in the case of classic Monte Carlo integration, but this is not a
concern in our case as we are not interested in performing further statistical analysis with it.
For further discussions about the quasi-Monte Carlo integration, we refer to the section A.2
of the appendix.

Testing the noisy expected improvement

A good way of testing the NEI is to try it in the same setup in which the EI performed poorly.
Let us then consider again the problem shown in figure 7.2. The same starting parameter
values θ1, θ2, θ3 are chosen and the same energy measurements with the same errors are
obtained in these points as we used the same seed in the random number generator.

Having used the same data, also the noisy GPR, which is plotted in blue in the top-left
panel of figure 7.3, resulted to be the same of figure 7.2. The NEI acquisition function
obtained in the first iteration (N = 3) looks also very similar to the EI, and the chosen
fourth parameter value is therefore similar in both cases. The NEI was approximated using
K = 512 quasi-random samples.

After the fourth measurement is performed, delivering almost the same value as before,
and after a similar posterior GP is obtained at the iteration N = 4, here is where the two
algorithms start behaving very differently. The EI remained stuck around the local minimum
as the acquisition function remained high valued even at parameters θ that have already
been measured. The situation remains almost unchanged through the next few iterations.

On the other hand, the NEI is, by definition, zero at values of θ that have already been
measured. This property breaks the peak of the NEI around the local minimum, and the

86

GIO
VANNI IA

NNELL
I

7.2 noisy expected improvement

−1

0

1

2
E

N = 3 N = 4

0 π/2 π 3π/2 2π

θ

−1

0

1

2

E

N = 5

0 π/2 π 3π/2 2π

θ

N = 6

Noisy measurements with noisy expected improvement

Prediction Exact Acq. Function Data

Figure 7.3: Four iterations of a Bayesian optimization using the NEI. With noisy measurements, the
algorithm quickly finds the global minimum, without suffering from the same problems
of the EI.

algorithm immediately jumps out of it. If, instead, we compare the NEI results in figure
(7.3) with those of figure (7.1), which were obtained using EI and noiseless measurements,
we notice that the NEI and the EI look very similar in each iteration. This is a good sign as
the NEI is supposed to be an extension of the EI to the case of noisy measurements. Being
able to obtain results almost identical with those of the noiseless case is exactly the desired
behaviour.

We have now explained all the steps required to perform Bayesian optimization. In the
next chapter, we will apply it to the variational quantum eigensolver.

87

GIO
VANNI IA

NNELL
I

8
T E S T I N G T H E B AY E S I A N V Q E

8.1 summary of the bayesian vqe

Now that all the components of Bayesian optimization have been explained in the previous
chapters, we summarize here all the steps of the algorithm, explaining also the specific
settings that we chose in our tests. We try to add all the details that are necessary to
reproduce the results shown in this chapter.

The Hamiltonian H in the form of equation (1.3) and the ansatz states (1.7) are problem
dependent. Therefore, for now, we just assume that we have defined a routine that estimates
a target parametrized energy E(θα) dependent on D angle parameters θα. In particular,
using the quantum expected estimation (QEE) algorithm described in section 1.3, we have
only access, using equation (1.6), to stochastic measurement of E(θα) and to an estimator of
their Gaussian error:

E(θα)
measurement−−−−−−−→ Eθα

± ∆Eθα
(8.1)

Once we have defined the measurement routine (8.1) that makes usage of a quantum
computer, the rest of the algorithm runs entirely on a classical computer. Our implementation
of Bayesian optimization is built on top of the libraries Ax [96], BoTorch [78] and GPyTorch
[97]. The algorithm is then formed by the following steps:

1. Generate N (quasi-)random D-dimensional domain points θ1α, ..., θNα and use (8.1) to
measure their corresponding energies E1, ..., EN and their errors ∆E1, ..., ∆EN .

These N points constitute the starting points required for constructing the first sur-
rogate model of the target function E(θα). All the subsequent measurement points
will be determined by Bayesian optimization. In order to quickly understand the
shape of the target function, the first steps of the optimization algorithm should be
mostly exploratory. Therefore, we would like to start from θiα equally distributed
across the domain. These points could be sampled randomly with the risk of obtaining
points close to each other. A more effective way of choosing them is by using a
quasi-random number generator (see section A.2 in the appendix), whose output
points are guaranteed to be distant from each other. In our tests, we sampled N = 3
points using the Sobol sequence [93]. Three points is the minimum amount required
for a meaningful Gaussian process regression (GPR) and we didn’t notice significant
performance difference with higher values of N, since Bayesian optimization is defined
anyway to be exploratory when the information about the target energy is low.

88

GIO
VANNI IA

NNELL
I

8.1 summary of the bayesian vqe

2. Given a prior mean function µ(θα) and a prior covariance function k(θα, θ′α), use the
data Ei ± ∆Ei at θiα to fix their hyperparameters with the maximum a posterior (MAP)
estimation (5.4).

In our tests, we followed the procedure described in section 5.3, where we used a
constant prior mean µ(θα|µ) = µ dependent on µ and a prior covariance function
k(θα, θ′α|σ, ℓ) dependent on σ and ℓ. We wanted to compare the results obtained with
the RBF covariance function (2.4) and with its periodic version (2.9) in order to check
whether the periodic boundaries significantly improved the optimization convergence
rate. Furthermore, we compared these covariance functions with their ARD versions
(2.7) and (2.10), which depend on D length-scales ℓα rather than on just a scalar ℓ.

We fixed the hyperparameters µ, σ, ℓα using the hyperpriors defined in 5.3 and the
hyperposterior optimization (5.4) was performed using the multistart algorithm ex-
plained in section A.3 of the appendix, where the number of scans S was set to 40P
and the number of local search L to 2P, where P is the number of hyperparameters
that need fixing. The gradient of the hyperposterior used for this optimization was
evaluated using the automatic differentiation tools available in PyTorch.

3. Compute the posterior mean µ(θα|Ei) and the posterior covariance k(θα, θ′α|Ei) using
equation (4.12). For doing this, we need the energy measurements Ei, their Gaussian
errors ∆Ei and the hyperparameters fixed at point 2. Then, use this posterior to
estimate the current minimum point θ

(N)
α after N iterations across the θiα already

measured:
θ
(N)
α ≡ argminθiα

µ(θiα|Ei) (8.2)

Accordingly, the current estimator of the ground state energy is:

E(N) ≡ µ(θ
(N)
α |Ei) (8.3)

with a credible interval of:

∆E(N) ≡
√

k(θ(N)
α , θ

(N)
α |Ei) (8.4)

The algorithm is interrupted here if E(N) remains constant within a tolerance ε for k
iterations, or simply if we run out of quantum computing time necessary to evaluate
again the parametrized energy E(θ) in a new θN+1,α.

In principle, the current minimum point (8.2) could be searched across each possible
θα, and not just across the already measured θiα. However, this would require an
additional D-dimensional global optimization of µ(θα|Ei) and the result is likely to
have a higher uncertainty (8.4). Furthermore, this estimation would suffer from a
larger modelling error as it might select a point far from where we have actually
measured the target energy.

4. Use the procedure described in section 2.2 and the posterior found at point 3 to sample
K sets of N hypothetical noiseless energy measurements f1i, ..., fKi, where each set

89

GIO
VANNI IA

NNELL
I

8.2 testing on two qubits

fk1, ..., fkN is sampled at the N measured points θ1α, ...θNα. Then, use these K sets and
the hyperparameters found at point 2 to perform K noiseless GPRs with equation
(4.6). The resulting K posterior GPs can now be used to construct K noiseless EI
acquisition functions (7.5), which can finally be used to approximate the NEI aNEI(θα)

using equation (7.12).

In order to obtain a more accurate approximation of the NEI (7.12), we sampled
the hypothetical noiseless energy measurements fki using the Sobol quasi-random
generator as explained in section A.2 of the appendix. In our tests, we used K = 512,
which allowed us to have a fairly consistent profile of the approximated NEI when
changing the seed of the quasi-random sequence. However, the algorithm would still
work with lower K, the only risk is a higher chance of selecting a suboptimal point for
the next iteration.

5. Perform a D-dimensional global optimization of the NEI aNEI(θα) to find its maximum
point θNEI

α and measure the target parametrized energy in this point obtaining EθNEI
α
±

∆EθNEI
α

. Then, add the NEI maximum point to the list of other N measured points
θN+1,α ← [θNEI

α and the measurement performed in it to the list of energy measurements
EN+1 ± ∆EN+1 ← [EθNEI

α
± ∆EθNEI

α
. Finally, iterate the algorithm from point 2 using

N ← [N + 1.

We performed the D-dimensional global optimization of aNEI(θα) using the multistart
algorithm defined in section A.3 of the appendix, where the number of scans S was set
to 200D and the number of local search L to 5D. Letting the number of local search to
scale linearly with the number of dimensions allows the algorithm to be scalable. This
doesn’t guarantee a successful location of the global maximum, but even a suboptimal
point can still be useful. The gradient of the hyperposterior used for this optimization
was evaluated using the automatic differentiation tools available in PyTorch.

8.2 testing on two qubits

Definition of the problem

We tested the algorithm described in section 8.1 on the following two-qubit transverse-field
Ising Hamiltonian:

H = −σ1
x ⊗ σ2

x − σ1
z − σ2

z (8.5)

The exact ground state |ψmin⟩ and ground state energy Emin of the Hamiltonian (8.5) are:

Emin = −
√

5 |ψmin⟩ = (2 +
√

5) |00⟩+ |11⟩√
10 + 4

√
5

(8.6)

which is a highly entangled state that we want to find using the VQE.

90

GIO
VANNI IA

NNELL
I

8.2 testing on two qubits

For this problem, we constructed the two-qubit ansatz states using the following quantum
circuit dependent on six parameters:

|0⟩ Ry(θ1) • Ry(θ3) Rz(θ5)

|0⟩ Ry(θ2) Ry(θ4) Rz(θ6)

(8.7)

it is possible to prove, for example, using the procedure described in [27], that this
parametrized quantum circuit can generate any possible two-qubit quantum state up to an
irrelevant global phase.

The parametrized energy E(θα) was evaluated with the quantum simulator of the Qiskit
library [41] using the quantum noise model of the IBMQ Santiago device. Each single energy
measurement was obtained using a fixed number S of shots and its outcome E± ∆E was
evaluated using equation (1.6).

In our tests, each measurement was obtained using S = 32 shots, which is high enough
to justify the usage of the central limit theorem. We could have clearly used a higher S to
obtain more precise results, but this is not the point of this benchmark. We want to simulate
a realistic case in which we have a limited amount of allocated quantum computing time
and we try to find the minimum using the least possible number of cumulative shots, which
are S× N, where N is the total number of energy measurements. Furthermore, the amount
of statistical noise is higher when using more complex Hamiltonians, therefore, lowering
the number of shots when testing on toy models is a good way to simulate the level of noise
expected in more complex models.

Anyway, if we want a precise final result, we could run few iterations of a local optimizer
starting from the solution of the Bayesian optimizer. For these refinement iterations, we
could use a high number of shots to obtain the desired precision.

Therefore, the idea is to find an approximate location of the global minima using the least
possible amount of cumulative shots and then increase the number of shots per measurement
to refine this solution with a local gradient-based optimizer as, for example, the L-BFGS-B
[98].

This is, in general, a recommended procedure in global optimization as global optimizers
are designed to quickly locate the global minima, while gradient-based local optimizer are
designed to efficiently compute the closest local minimum with an arbitrary precision.

Assessing the performance

The performance of the Bayesian VQE was compared against two other algorithms commonly
used for this specific problem: the SPSA [25, 40] and the NFT [38] optimizers. We gave a short
description of these algorithms at the end of chapter 1. We used the SPSA implementation
included in Qiskit with its default settings and the NFT implementation released by its
authors [42] setting the variable reset_interval=4, which means that an additional energy
measurement is performed every four iterations in order to mitigate the errors induced by
the statistical noise.

91

GIO
VANNI IA

NNELL
I

8.2 testing on two qubits

In order to assess the performance of the optimizers, at each iteration, we stored the
current energy minimum as predicted by the optimization algorithm. For the Bayesian VQE,
the current minimum estimator E(N) is given by equation (8.3). While the NFT algorithm
can estimate the current minimum using the one-dimensional exact formula (1.11), the SPSA
is designed to seek the minimum at each iteration, therefore, for the SPSA, we consider the
last measured energy as the current minimum estimator.

However, since the energy measurements are affected by statistical noise, we haven’t
a direct correspondence between the parameters θα and the energy E(θα) measured in
them. Therefore, it would be desirable to assess the performances using the minimum point
estimator θN

α rather than the noisy minimum energy estimator E(N).
In order to do this, we have to define an appropriate distance to quantify how close is θN

α

to the correct solution, which is the exact ground state |ψmin⟩ in equation (8.6). Since the
exact solution is a quantum state vector and our reference point is a real vector θN

α , we first
need to map these two entities into the same space.

This can be done using the quantum circuit (8.7). Indeed, by definition, we have
U(θmin

α) |0⟩, where θmin
α is the parameter vector that minimizes the parametrized energy

E(θα). Therefore, given a certain θN
α , we can use a state-vector simulator to construct

|ψ(N)⟩ ≡ U(θ
(N)
α) |0⟩ by applying the exact parametrized quantum gates to |0⟩.

Then, the compatibility between the current minimum state |ψ(N)⟩ and the exact ground
state |ψmin⟩ can be measured with the state fidelity, which, in case of pure states, is their
squared overlap:

F(N) ≡ | ⟨ψ(N)|ψmin⟩ |2 (8.8)

which is one if we reach the ground state and lower than one otherwise.
Clearly, this exact fidelity can be computed only in toy models that we can simulate

on a classical computer. In more complex cases, we can just rely on the estimated energy.
However, the fidelity is still useful to perform accurate benchmarks on toy models in order
to select the most promising algorithm that can eventually be used in more complicated
systems.

Numerical results

For each different setup, we performed 20 independent optimizations starting with different
initial conditions, generated with different seeds. For each configuration, the estimated
sequences of estimated minumum energies E(N) and fidelities F(N) were obtained averaging
over these 20 results, while their uncertainty was estimated using standard error of their
mean. All the optimizers ran for N = 100 iterations, which means that the parametrized
energy was measured 100 times using S = 32 shots per measurement.

In figure 8.1 we show the results obtained with the RBF (2.4) and the periodic (2.9)
covariance functions in their simplest form, in which we use a unique characteristic length-
scale ℓ for each direction. These results are compared with those obtained with the NFT
and the SPSA algorithm.

The two BOs have a similar performance. This means that, in this problem, there isn’t
a significant advantage in using the periodic boundaries. Anyway, their implementation

92

GIO
VANNI IA

NNELL
I

8.2 testing on two qubits

0 50 100
Iterations

−2

−1

0

En
er

gy

0 50 100
Iterations

0.2

0.4

0.6

0.8

1.0

Fi
de

lit
y

Optimization comparison without ARD

RBF Periodic NFT SPSA

Figure 8.1: Optimization comparison between two BOs using different kernels, the NFT and the
SPSA optimizers. Here the BOs are not using the automatic relevance determination.

doesn’t increase neither the algorithm complexity, nor the required CPU time. Therefore,
we still recommend their usage because in certain cases they might be advantageous, for
example, when the solution is close to a boundary. A possible explanation of the lack of
improvement with periodic boundaries is that, in six dimensions, the target function is quite
complicated and, therefore, we can make accurate prediction only at points close to our
measurements, and, at short distances, the two kernels have similar properties as they both
impose C∞ smoothness.

Comparing these results with the SPSA, we notice that the BOs have a significant perfor-
mance advantage over the SPSA. Indeed, after 100 energy measurements the BOs are very
close to the exact solution, while the SPSA has a state fidelity that is still quite distant from
one.

On the other hand, the NFT has a small advantage over the BOs, even though their
performance is very similar. However, we want to emphasize that the NFT uses an exact
formula that is not appliable for a generic parametrized quantum circuit. Therefore, if we
want to optimize a non-standard quantum circuit that used parametrized gates that are not
qubit rotations, then the NFT wouldn’t be appliable and BO generally offers a much more
measure-efficient solution than SPSA.

In figure 8.2, we produced a similar plot but using the automatic relevance determination
(ARD) versions of the RBF (2.7) and the periodic (2.10) covariance functions. This means
that the GPR is allowed to use a different characteristic length-scale ℓα in each direction α.
The more relevant directions α should obtain smaller ℓα in the model selection procedure.

However, these result don’t show any significant advantage in using ARD compared to
what was obtained in figure 8.1. The ARD kernels, however, come with a significantly higher
computational cost as all the ℓα need to be simultaneously fixed with a hyperparameter
global optimization, whose complexity increases with the number of hyperparameters that
need fixing.

93

GIO
VANNI IA

NNELL
I

8.3 possible extensions to high-dimensional spaces

0 50 100
Iterations

−2

−1

0

En
er

gy

0 50 100
Iterations

0.2

0.4

0.6

0.8

1.0

Fi
de

lit
y

Optimization comparison with ARD

RBF Periodic NFT SPSA

Figure 8.2: Optimization comparison between two BOs using different kernels, the NFT and the
SPSA optimizers. Here the BOs are using the automatic relevance determination.

Even though the ARD gives us a much more flexible modelling tool, this flexibility might
have some drawbacks other than the higher computational cost. Indeed, a more flexible
model is more susceptible to overfitting, especially if the number of hyperparameters is not
far lower than the number of data points. The hyperposteriors defined in section 5.3 are
very helpful to avoid overfitting, but we cannot exclude it with certainty. Furthermore, since
the global optimization of many hyperparameters can be very complex, we are likely to end
up finding only suboptimal hyperparameters that don’t allow us to fit the data in the best
possible way.

Therefore, the usage of ARD is only recommended when we have a good reason to
believe that the target function varies with very different length-scales in different axes
directions. This might be the case, for example, in optimization problems where groups
of hyperparameters have a very different meaning, and some of them might be almost
irrelevant. In our case, we know that our circuit is dimensionally efficient, therefore, we don’t
have strong reasons to believe that the ARD could identify axes that are far more relevant
than others. There are symmetries of the Hamiltonian that haven’t been removed from
the quantum circuit, but these symmetries don’t trivially correspond to single parameters
identifiable with ARD.

8.3 possible extensions to high-dimensional spaces

We saw in section 8.2 and in chapter 7 that the BO algorithm summarized in section 8.1 is
very efficient at optimizing low-dimensional black-box functions, even in presence of high
statistical noise. Indeed, it showed performances that are only slightly inferior to the NFT
algorithm, which uses a closed-form formula not appliable everywhere, and outperforms
the SPSA, which is another black-box noisy optimizer frequently used for VQE.

94

GIO
VANNI IA

NNELL
I

8.3 possible extensions to high-dimensional spaces

However, the BO implementation summarized in 8.1 becomes very CPU-intensive in high-
dimensional spaces. In particular, the point number 5 of this algorithm requires, at each
iteration, a global optimization of a D-dimensional acquisition function. This might become
very difficult for D ≳ 20 since the acquisition function usually has many local minima. Even
though selecting a suboptimal point could still be beneficial for the optimization, this is
likely to significantly decrease the convergence rate.

Possible solutions of this particular problem are the dropout [46] and the lineBO [47]
algorithms. They are based on the same principle, which is to restrict the domain of the
acquisition function optimization. In particular, the dropout algorithm consists in randomly
selecting a subset of D′ < D parameters and optimize the acquisition function in the
subspace spanned by them. The global convergence is still obtained as the D′ parameters
are randomly sampled at each iteration. Therefore, the full domain is covered in the long-
run. On the other hand, the lineBO selects a random straight line across the domain and
optimizes the acquisition function along this one-dimensional line. These two algorithms
were tested in D ∼ 40 dimensions outperforming common alternative algorithms [46, 47].

Unfortunately, another potential problem might arise in high dimensional spaces. Indeed,
when the number of dimensions is D ≳ 40, it is very likely that the optimization would
require a total number of iterations N that is O(103) or greater. As we saw in section
4.5, GPR requires the inversion of a N × N matrix, which is generally a O(N3) operation.
Therefore, this might become both CPU and memory intensive, especially if we use the
NEI that requires performing GPR several times in each iteration of the algorithm. We
explained in section 4.5 that the complexity of the inversion can be reduced to O(TN2)

using T iterations of an approximate method. This can be very useful when N is O(103),
but it might not be enough for N in O(104), which might occur when D ≳ 50.

A possible naive solution to this problem could be to forget old measurements, which
means defining a threshold Nmax and performing the GPR using only the last Nmax mea-
surements. However, this solution showed poor performances in our tests as the algorithm
ended up re-exploring the areas that were forgotten. In order to properly work, this solution
would also require to progressively reduce the domain around the current best minimum,
at the cost of increasing the chances of getting stuck in a local minimum.

Another possibility is to reduce the dimensionality of the target function domain. Since
we are capable of optimizing well a black-box function in a lower number of dimensions,
a possible solution is to embed the target function into a lower dimensional space and
optimize it in there.

A popular algorithm that implements this idea in BO is the REMBO [45] algorithm,
which uses the properties of random matrices to find an approprate embedding. However,
this algorithm relies on the assumption that the effective dimensionality of the function is
lower than D. In our case, this means assuming that our parametrized quantum circuit is
not dimensionally efficient, which is not true if we constructed it, for example, using the
procedure described in [27, 28]. Indeed, we have already reduced the number of parameters
to the minimum and the REMBO, in our case, would just find a suboptimal solution.

Another possible approach would be to follow the same idea used in the NFT algorithm,
which is to sequentially optimize the target function in different subspaces. Instead of fixing

95

GIO
VANNI IA

NNELL
I

8.3 possible extensions to high-dimensional spaces

just one parameter at a time, we could use the BO to sequentially optimize random subsets
of parameters. This is similar to the idea used in the dropout algorithm, but it is different
here, since we start a new optimization from scratch in each new subspace, therefore without
having to invert N × N matrices, but only N′ × N′, where N′ is the number of iterations
carried out in the current subspace.

However, this algorithm showed poor performance in our tests when using subspaces
of D ∼ 10 parameters. Indeed, it had problems refining the solution since each subspace
optimization takes many iterations while giving a very small improvement to the current
best solution. On the other hand, by optimizing only one parameter at a time, as in the NFT
algorithm, we can give small refinement with very few iterations, and, overall, obtaining
better performances.

Using BO to optimize sequentially one parameter at a time would be a viable solution in
high-dimensional spaces in which the formula used in the NFT algorithm is not appliable.
However, a better alternative called stochastic gradient line Bayesian optimization (SGLBO)
[48] was recently published specifically for the VQE optimization. The SGLBO uses BO to
minimize the target function along a generic one-dimensional straight line, not necessary
aligned with an axis.

This line is chosen in the direction of the current gradient, which is estimated using a
sequence of single-shot measurements in each axis direction. This gradient estimator is
clearly stochastic, but this property could also be helpful to jump out of local minima as it
happens in the SPSA. Furthermore, being able to modify simultaneously many parameters
in the gradient direction, the SGLBO is more efficient in refining the solution compared
to the NFT. Indeed, the tests performed by its authors converged to a solution that was
more precise than the one obtained with the NFT algorithm, without having to rely on an
additional final local optimization.

The idea of the SGLBO could also be applied to the algorithm developed in this thesis.
Indeed, both the noisy GPR that we defined in section 4.4 and the NEI that we explained in
7.2 can be applied for the gradient line optimization.

The advancements in quantum hardware are giving us the opportunity to use quantum
circuits with increasingly more parameters that need to be defined efficiently exploiting all
the possible symmetries. For doing this, we will need to use a wider variety of quantum
gates or even to define mutable circuits that have different gates for different with different
parameter values. All these complex circuits cannot be optimized with the closed formula
used by the NFT algorithm, and, in light of these promising results, we think that BO will
be a fundamental tool to optimize them in the near future. Therefore, we hope that this
thesis could be helpful for the multidisciplinary community of scientists that will try to use
the VQE in their field.

96

GIO
VANNI IA

NNELL
I

9
C O N C L U S I O N S A N D O U T L O O K S

conclusions

In this thesis, we developed two algorithms for two different tasks: the approximation
of integral transforms and the minimization of parametrized energies measured using
quantum computers. Both of these algorithms are based on the same Gaussian process
regression (GPR) procedure defined in chapter 4, which uses a set of measurements and
their statistical errors to build predictive models of black-box functions.

In particular, in chapter 6, we developed a novel method called Bayes-Gauss integral
transform (BGIT) for estimating integral transforms of black-box functions using limited
sets of noisy data. The estimation obtained with this method is available in closed form and
we deduced a formula for approximating the uncertainty of the integral transform at, in
principle, arbitrary precision.

In section 6.3, we tested the BGIT for the estimation of a Fourier transform obtaining
better results and more realistic error estimations compared to what we achieved using an
algorithm based on discrete-time Fourier transforms. Furthermore, we used this method to
estimate parton distribution functions using lattice QCD data [17].

Nevertheless, the main focus of the thesis is the variational quantum eigensolver (VQE)
algorithm introduced in section 1.3. In particular, we developed a strategy to globally
optimize the parametrized energy, which is evaluated using a quantum computer. This
procedure can then be used to find the ground state of a given Hamiltonian.

In this work, we proposed the use of Bayesian optimization (BO) that is a method
particularly suitable for optimization problems in which we need to minimize a black-box
function that is expensive to evaluate. The classical optimization step of VQE falls into this
category as the measurements of the parametrized energy function are the computational
bottleneck of the procedure. Indeed, they require the execution of a high number of quantum
circuits using quantum computers, the availability of which, at the moment, is much more
limited than that of high-performance classical computers. Therefore, we are willing to
perform the CPU-intensive operations required for BO if this allows us to reduce the number
of energy measurements that are required to minimize the energy function.

Our implementation of BO relies on GPR to construct a surrogate model of the target
parametrized energy and uses the noisy expected improvement (chapter 7) to choose the
point for the next iteration. A distinctive feature of our algorithm is that it uses both
the energy measurements and their errors, incorporating them into a single probabilistic
model. Most of the optimizers commonly used for this task makes don’t make usage of the

97

GIO
VANNI IA

NNELL
I

conclusions and outlooks

information provided by the measurement errors. This feature allows our algorithm to be
particularly robust to statistical noise, obtaining stable and precise results even when using
very few repetitions (or shots) per measurement.

In principle, the measurement errors could be suppressed by using a high number of shots.
However, this requires performing a higher number of expensive energy measurements that
are not strictly necessary to find an approximate location of the global minimum. Indeed,
by using an optimization algorithm that is robust to statistical noise, we can reduce the
cumulative number of shots necessary to get close to the global minimum, and then, only at
this point, increase the number of shots per measurement in order to refine the final result.

The performance of our BO algorithm, which is summarized in section 8.1, is compared
to those obtained with two other optimizers, the SPSA and the NFT, that have been used,
with success, for the VQE optimization in many scientific works. While the BO and the
SPSA are black-box function optimizers applicable to any parametrized quantum circuit,
the NFT uses an analytical formula that is valid if the only used parametrized quantum
gates are qubit rotations. In this work, we chose a testing circuit that falls into this category
in order to compare the convergence rates of the three algorithms on the same problem,
keeping in mind that the NFT is not applicable to the general case. In the results shown in
section 8.2, the BO clearly outperformed the other black-box function optimizer, the SPSA,
and performed almost as well as the NFT.

In this test, we also compared different possible variants of the BO that seek to incorporate
different properties into the surrogate model using the kernels defined in chapter 2. We
tested the RBF and the periodic kernels, which both assume the target function to be C∞,
but the periodic kernel also assumes it to be 2π-periodic in each parameter.

However, even though we know that the target function is both C∞ and periodic, we
didn’t observe significant differences in using these kernels. Our interpretation of this result
is that, in high-dimensional spaces, the target function becomes very complicated, and the
construction of the surrogate model becomes more data-driven: generic assumptions about
points of the domain that are far from our current location become irrelevant, since, with
such a complicated target function, we can get accurate predictions only in the surrounding
of the measured points. Then, their behaviour is similar because each of the tested kernels
has a similar behaviour at short distances, since they all assume that the target function has
C∞ smoothness.

We also tested the automatic relevance determination (ARD) versions of these kernels,
which can adaptively identify whether some parameters are more relevant than others
during their optimization. However, also in this case, we didn’t notice any significant
advantage in using ARD in our testing example.

In conclusion, without significant performance differences, we recommend choosing the
kernel with the lowest computational cost. Since the RBF and the periodic kernels have
a similar cost, we recommend the periodic kernel as it might have an advantage if the
solution is close to a boundary. On the other hand, the ARD kernels have a much higher
computational cost as they require fixing a higher number of hyperparameters. Therefore,
we advise against using them unless there is a good reason to do so, for example, if the
quantum circuit is not dimensional-efficient and some parameters might be irrelevant.

98

GIO
VANNI IA

NNELL
I

conclusions and outlooks

We also discussed, in section 8.3, possible strategies to extend our algorithm into a high-
dimensional space, since, in its standard implementation, BO struggles to work in more
than D ∼ 30 dimensions because of the high CPU and memory requirement. Among the
discussed methods, the most promising is the recently published gradient line Bayesian
optimization (SGLBO) [48], which sequentially optimizes the target function along the
direction of a stochastic estimator of its gradient. This technique is applicable to the
algorithm developed in this thesis and offers a natural extension to it.

outlooks

These final considerations outline a clear path for the continuation of this work. We would
like to implement SGLBO to our algorithm or, maybe, to design a different criterion to
identify the subspace to optimize. This would allow us to optimize high-dimensional ansatz
circuits, which is definitely what we plan to do, given the current fast-paced development
of quantum devices.

Indeed, our goal is to use the VQE to simulate lattice gauge theories and we are particularly
interested in situations where the simulation with Markov-chain Monte algorithm is very
problematic, as, for example, in presence of a chemical potential or of a topological θ term.

This task requires the development of each of the components of the VQE: a better
quantum hardware with more qubits and with lower levels of noise, better noise mitigation
techniques, a better quantum circuit design and, finally, better optimization algorithms. In
this regard, we hope that this thesis gave a useful contribution.

99

GIO
VANNI IA

NNELL
I

B I B L I O G R A P H Y

[1] Ashley Montanaro. “Quantum algorithms: an overview.” In: npj Quantum Information
2 (2015), p. 15023.

[2] Iulia M Georgescu, Sahel Ashhab, and Franco Nori. “Quantum simulation.” In:
Reviews of Modern Physics 86.1 (2014), p. 153.

[3] Jacob D. Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe,
and Seth Lloyd. “Quantum machine learning.” In: Nature 549 (2017), pp. 195–202.

[4] John Preskill. “Quantum Computing in the NISQ era and beyond.” In: Quantum
(2018).

[5] Shor. “Scheme for reducing decoherence in quantum computer memory.” In: Physical
review. A, Atomic, molecular, and optical physics 52 4 (1995), R2493–R2496.

[6] Peter W. Shor. “Fault-tolerant quantum computation.” In: Proceedings of 37th Confer-
ence on Foundations of Computer Science (1996), pp. 56–65.

[7] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan.
“Quantum computational chemistry.” In: Reviews of Modern Physics (2020).

[8] Marí Carmen Bañuls et al. “Simulating lattice gauge theories within quantum tech-
nologies.” In: The European Physical Journal D (2020).

[9] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. “A variational eigenvalue
solver on a photonic quantum processor.” In: Nature communications 5 (2014), p. 4213.

[10] Matthias Troyer and U. Wiese. “Computational complexity and fundamental limita-
tions to fermionic quantum Monte Carlo simulations.” In: Physical review letters 94 17
(2005), p. 170201.

[11] Giuseppe Magnifico, Timo Felser, Pietro Silvi, and Simone Montangero. “Lattice quan-
tum electrodynamics in (3+1)-dimensions at finite density with tensor networks.” In:
Nature Communications 12 (2021).

[12] Angus Kan, Lena Funcke, Stefan Kühn, Luca Dellantonio, Jinglei Zhang, Jan F. Haase,
Christine A. Muschik, and Karl Jansen. “Investigating a (3+1)D topological θ-term
in the Hamiltonian formulation of lattice gauge theories for quantum and classical
simulations.” In: Physical Review D (2021).

[13] Donald R. Jones, Matthias Schonlau, and William J. Welch. “Efficient Global Op-
timization of Expensive Black-Box Functions.” In: Journal of Global Optimization 13
(1998), pp. 455–492.

[14] Giovanni Iannelli and Karl Jansen. “Noisy Bayesian optimization for variational
quantum eigensolvers.” In: Proceedings of The 38th International Symposium on Lattice
Field Theory — PoS(LATTICE2021) (2022).

100

GIO
VANNI IA

NNELL
I

bibliography

[15] Benjamin Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy, et al. “Constrained
Bayesian optimization with noisy experiments.” In: Bayesian Analysis 14.2 (2019),
pp. 495–519.

[16] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine
learning. Vol. 2. MIT press Cambridge, MA, 2006.

[17] Constantia Alexandrou, Giovanni Iannelli, Karl Jansen, and Floriano Manigrasso.
“Parton distribution functions from lattice QCD using Bayes-Gauss-Fourier trans-
forms.” In: Physical Review D 102.9 (2020), p. 094508.

[18] Robert Raussendorf and Hans J Briegel. “A one-way quantum computer.” In: Physical
Review Letters 86.22 (2001), p. 5188.

[19] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. “Quantum
computation by adiabatic evolution.” In: arXiv preprint quant-ph/0001106 (2000).

[20] Vincent Danos, Elham Kashefi, and P. Panangaden. “The measurement calculus.” In:
J. ACM 54 (2007), p. 8.

[21] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded
Regev. “Adiabatic quantum computation is equivalent to standard quantum com-
putation.” In: 45th Annual IEEE Symposium on Foundations of Computer Science (2004),
pp. 42–51.

[22] Daniel Comparat. “General conditions for quantum adiabatic evolution.” In: Physical
Review A 80 (2006), p. 012106.

[23] Barenco, Bennett, Cleve, DiVincenzo, Margolus, Shor, Sleator, Smolin, and Weinfurter.
“Elementary gates for quantum computation.” In: Physical review. A, Atomic, molecular,
and optical physics 52 5 (1995), pp. 3457–3467.

[24] Rami Barends et al. “Logic gates at the surface code threshold: Superconducting
qubits poised for fault-tolerant quantum computing.” In: Nature (2014).

[25] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink,
Jerry M Chow, and Jay M Gambetta. “Hardware-efficient variational quantum eigen-
solver for small molecules and quantum magnets.” In: Nature 549.7671 (2017), pp. 242–
246.

[26] Michael A Nielsen and Isaac L Chuang. “Quantum Computation and Quantum
Information.” In: (2010).

[27] Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, and Paolo Stornati. “Dimen-
sional Expressivity Analysis of Parametric Quantum Circuits.” In: Quantum 5 (2021),
p. 422.

[28] Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Manuel Schneider, and
Paolo Stornati. “Best-approximation error for parametric quantum circuits.” In: 2021
IEEE International Conference on Web Services (ICWS) (2021), pp. 693–702.

[29] Jan F. Haase, Luca Dellantonio, Alessio Celi, Danny Paulson, Angus Kan, Karl Jansen,
and Christine A. Muschik. “A resource efficient approach for quantum and classical
simulations of gauge theories in particle physics.” In: Quantum 5 (2021), p. 393.

101

GIO
VANNI IA

NNELL
I

bibliography

[30] Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Paolo Stornati, and Xiaoyang
Wang. “Measurement error mitigation in quantum computers through classical bit-
flip correction.” In: Physical Review A (2022).

[31] Jarrod R. McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. “The
theory of variational hybrid quantum-classical algorithms.” In: New Journal of Physics
18 (2015).

[32] O Crawford, Barnaby van Straaten, Daochen Wang, Thomas Parks, Earl T. Campbell,
and Stephen Brierley. “Efficient quantum measurement of Pauli operators in the
presence of finite sampling error.” In: Quantum 5 (2021), p. 385.

[33] Alexei Y. Kitaev. “Quantum measurements and the Abelian Stabilizer Problem.” In:
Electron. Colloquium Comput. Complex. 3 (1996).

[34] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer.” In: SIAM J. Comput. 26 (1999), pp. 1484–1509.

[35] Daniel S. Abrams and Seth Lloyd. “Quantum Algorithm Providing Exponential
Speed Increase for Finding Eigenvalues and Eigenvectors.” In: Physical Review Letters
83 (1999), pp. 5162–5165.

[36] Suguru Endo, Tyson Jones, Sam McArdle, Xiao Yuan, and Simon C. Benjamin.
“Variational quantum algorithms for discovering Hamiltonian spectra.” In: Physical
Review A (2019).

[37] Oscar Higgott, Daochen Wang, and Stephen Brierley. “Variational Quantum Compu-
tation of Excited States.” In: Quantum (2019).

[38] Ken M Nakanishi, Keisuke Fujii, and Synge Todo. “Sequential minimal optimization
for quantum-classical hybrid algorithms.” In: Physical Review Research 2.4 (2020),
p. 043158.

[39] John A. Nelder and Roger Mead. “A Simplex Method for Function Minimization.”
In: Comput. J. 7 (1965), pp. 308–313.

[40] James C Spall et al. “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation.” In: IEEE transactions on automatic control 37.3
(1992), pp. 332–341.

[41] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael
Ben-Haim, D Bucher, FJ Cabrera-Hernández, J Carballo-Franquis, A Chen, CF Chen,
et al. “Qiskit: An open-source framework for quantum computing.” In: Accessed on:
Mar 16 (2019).

[42] Ken M Nakanishi, Keisuke Fujii, and Synge Todo. Nakanishi-Fujii-Todo method for
scipy.optimize. 2019. url: https://github.com/ken-nakanishi/nftopt.

[43] Harold J. Kushner. “A New Method of Locating the Maximum Point of an Arbitrary
Multipeak Curve in the Presence of Noise.” In: Journal of Basic Engineering 86 (1963),
pp. 97–106.

[44] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms for
Hyper-Parameter Optimization.” In: NIPS. 2011.

102

GIO
VANNI IA

NNELL
I

https://github.com/ken-nakanishi/nftopt

bibliography

[45] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas.
“Bayesian optimization in a billion dimensions via random embeddings.” In: Journal
of Artificial Intelligence Research 55 (2016), pp. 361–387.

[46] Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, and Alistair
Shilton. “High dimensional Bayesian optimization using dropout.” In: Proceedings of
the 26th International Joint Conference on Artificial Intelligence. 2017, pp. 2096–2102.

[47] Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, and Andreas
Krause. “Adaptive and safe Bayesian optimization in high dimensions via one-
dimensional subspaces.” In: International Conference on Machine Learning. PMLR. 2019,
pp. 3429–3438.

[48] Shiro Tamiya and Hayata Yamasaki. “Stochastic gradient line Bayesian optimization
for efficient noise-robust optimization of parameterized quantum circuits.” In: npj
Quantum Information 8.1 (2022), pp. 1–13.

[49] Ondřej Straka, Jindřich Duník, Miroslav Šimandl, and Jindřich Havlík. “Aspects and
comparison of matrix decompositions in unscented Kalman filter.” In: 2013 American
Control Conference. IEEE. 2013, pp. 3075–3080.

[50] Radford M Neal. “Monte Carlo implementation of Gaussian process models for
Bayesian regression and classification.” In: arXiv preprint physics/9701026 (1997).

[51] Erlend Aune, Jo Eidsvik, and Yvo Pokern. “Iterative numerical methods for sampling
from high dimensional Gaussian distributions.” In: Statistics and Computing 23.4
(2013), pp. 501–521.

[52] RJ Adler. “The Geometry of Random Fields.” In: The Geometry of Random Fields,
Chichester: Wiley, 1981 (1981).

[53] Petter Abrahamsen. A review of Gaussian random fields and correlation functions. 1997.

[54] Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science &
Business Media, 1999.

[55] NIST Digital Library of Mathematical Functions. F. W. J. Olver, A. B. Olde Daalhuis,
D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders,
H. S. Cohl, and M. A. McClain, eds. url: http://dlmf.nist.gov/.

[56] Radford M Neal. Bayesian learning for neural networks. Vol. 118. Springer Science &
Business Media, 2012.

[57] Mark N Gibbs. “Bayesian Gaussian processes for regression and classification.”
PhD thesis. University of Cambridge, 1998.

[58] Christopher J Paciorek and Mark J Schervish. “Nonstationary covariance functions
for Gaussian process regression.” In: Proceedings of the 16th International Conference on
Neural Information Processing Systems. 2003, pp. 273–280.

[59] Paul D Sampson and Peter Guttorp. “Nonparametric estimation of nonstationary
spatial covariance structure.” In: Journal of the American Statistical Association 87.417
(1992), pp. 108–119.

103

GIO
VANNI IA

NNELL
I

http://dlmf.nist.gov/

bibliography

[60] David JC MacKay. “Introduction to Gaussian process.” In: Neural Networks and
Machine Learning (1998).

[61] Morris L Eaton. Multivariate statistics: a vector space approach. John Wiley & Sons, Inc.,
1983.

[62] Edwin T Jaynes. Probability theory: The logic of science. Cambridge university press,
2003.

[63] Bruno De Finetti. Theory of probability: A critical introductory treatment. Vol. 6. John
Wiley & Sons, 2017.

[64] Stephen E Fienberg. “When did Bayesian inference become" Bayesian"?” In: Bayesian
analysis 1.1 (2006), pp. 1–40.

[65] David Barber. Bayesian reasoning and machine learning. Cambridge University Press,
2012.

[66] Dennis V Lindley. Understanding uncertainty. John Wiley & Sons, 2013.

[67] Stuart Geman and Donald Geman. “Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images.” In: IEEE Transactions on pattern analysis and
machine intelligence 6 (1984), pp. 721–741.

[68] Radford M Neal. “Slice sampling.” In: The annals of statistics 31.3 (2003), pp. 705–767.

[69] John Pina Craven. The Silent War: The Cold War Battle Beneath the Sea. Simon and
Schuster, 2002.

[70] Bradley Efron. The jackknife, the bootstrap and other resampling plans. SIAM, 1982.

[71] David JC MacKay. “Bayesian interpolation.” In: Neural Computation 4.3 (1992), pp. 415–
447.

[72] Stephen F Gull. “Developments in maximum entropy data analysis.” In: Maximum
entropy and Bayesian methods. Springer, 1989, pp. 53–71.

[73] Georges Matheron. Traité de géostatistique appliquée. 14. Editions Technip, 1962.

[74] Per Christian Hansen. “The truncatedsvd as a method for regularization.” In: BIT
Numerical Mathematics 27.4 (1987), pp. 534–553.

[75] Magnus Rudolph Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for
solving linear systems. Vol. 49. 1. NBS Washington, DC, 1952.

[76] Cornelius Lanczos. “An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators.” In: (1950).

[77] John Skilling. “Bayesian numerical analysis.” In: Physics and Probability 1 (1993),
pp. 203–221.

[78] Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton, Benjamin
Letham, Andrew Gordon Wilson, and Eytan Bakshy. “BoTorch: Programmable
Bayesian Optimization in PyTorch.” In: arXiv preprint arXiv:1910.06403 (2019).

[79] Anthony O’Hagan. “Bayes–hermite quadrature.” In: Journal of statistical planning and
inference 29.3 (1991), pp. 245–260.

104

GIO
VANNI IA

NNELL
I

bibliography

[80] Lokenath Debnath and Dambaru Bhatta. Integral transforms and their applications.
Chapman and Hall/CRC, 2016.

[81] Luca Ambrogioni and Eric Maris. “Integral Transforms from Finite Data: An Applica-
tion of Gaussian Process Regression to Fourier Analysis.” In: International Conference
on Artificial Intelligence and Statistics. PMLR. 2018, pp. 217–225.

[82] Claude Elwood Shannon. “Communication in the presence of noise.” In: Proceedings
of the IRE 37.1 (1949), pp. 10–21.

[83] Ronald I Becker and Norman Morrison. “The errors in FFT estimation of the Fourier
transform.” In: IEEE transactions on signal processing 44.8 (1996), pp. 2073–2077.

[84] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger.
“Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental
Design.” In: ICML. 2010.

[85] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey
Mark Siskind. “Automatic differentiation in machine learning: a survey.” In: Journal
of Marchine Learning Research 18 (2018), pp. 1–43.

[86] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “PyTorch:
An imperative style, high-performance deep learning library.” In: Advances in Neural
Information Processing Systems. 2019, pp. 8024–8035.

[87] Victor Picheny, Tobias Wagner, and David Ginsbourger. “A benchmark of kriging-
based infill criteria for noisy optimization.” In: Structural and multidisciplinary opti-
mization 48.3 (2013), pp. 607–626.

[88] Deng Huang, Theodore T Allen, William I Notz, and Ning Zeng. “Global optimization
of stochastic black-box systems via sequential kriging meta-models.” In: Journal of
global optimization 34.3 (2006), pp. 441–466.

[89] Warren Scott, Peter Frazier, and Warren Powell. “The correlated knowledge gradi-
ent for simulation optimization of continuous parameters using gaussian process
regression.” In: SIAM Journal on Optimization 21.3 (2011), pp. 996–1026.

[90] Jian Wu and Peter Frazier. “The parallel knowledge gradient method for batch
bayesian optimization.” In: Advances in Neural Information Processing Systems. 2016,
pp. 3126–3134.

[91] Philipp Hennig and Christian J Schuler. “Entropy Search for Information-Efficient
Global Optimization.” In: Journal of Machine Learning Research 13.6 (2012).

[92] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani.
“Predictive entropy search for efficient global optimization of black-box functions.”
In: Advances in neural information processing systems 27 (2014).

[93] IM Sobol. “On the distribution of points in a cube and the approximate evaluation
of integrals.” In: USSR Computational Mathematics and Mathematical Physics (English
translation) 7.4 (1967), pp. 86–112.

105

GIO
VANNI IA

NNELL
I

bibliography

[94] Russel E Caflisch. “Monte carlo and quasi-monte carlo methods.” In: Acta numerica 7
(1998), pp. 1–49.

[95] Josef Dick, Frances Y Kuo, and Ian H Sloan. “High-dimensional integration: the
quasi-Monte Carlo way.” In: Acta Numerica 22 (2013), pp. 133–288.

[96] Eytan Bakshy, Lili Dworkin, Brian Karrer, Konstantin Kashin, Benjamin Letham,
Ashwin Murthy, and Shaun Singh. AE: A domain-agnostic platform for adaptive experi-
mentation.

[97] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G
Wilson. “Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu
acceleration.” In: Advances in Neural Information Processing Systems. 2018, pp. 7576–
7586.

[98] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. “A limited memory al-
gorithm for bound constrained optimization.” In: SIAM Journal on scientific computing
16.5 (1995), pp. 1190–1208.

[99] Malte Kuss. “Gaussian process models for robust regression, classification, and
reinforcement learning.” PhD thesis. echnische Universität Darmstadt Darmstadt,
Germany, 2006.

[100] Makoto Matsumoto and Takuji Nishimura. “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator.” In: ACM Transactions
on Modeling and Computer Simulation (TOMACS) 8.1 (1998), pp. 3–30.

[101] Melissa E O’Neill. “PCG: A family of simple fast space-efficient statistically good
algorithms for random number generation.” In: ACM Transactions on Mathematical
Software (2014).

[102] Michael J Wichura. “Algorithm AS 241: The percentage points of the normal distribu-
tion.” In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 37.3 (1988),
pp. 477–484.

[103] William J Morokoff and Russel E Caflisch. “Quasi-monte carlo integration.” In: Journal
of computational physics 122.2 (1995), pp. 218–230.

[104] John H Halton. “On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals.” In: Numerische Mathematik 2.1 (1960), pp. 84–
90.

[105] Henri Faure. “Discrépance de suites associées à un système de numération (en
dimension s).” In: Acta arithmetica 41.4 (1982), pp. 337–351.

[106] George Marsaglia and Thomas A Bray. “A convenient method for generating normal
variables.” In: SIAM review 6.3 (1964), pp. 260–264.

[107] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. “Optimization by simulated
annealing.” In: science 220.4598 (1983), pp. 671–680.

106

GIO
VANNI IA

NNELL
I

A
A P P E N D I X

a.1 multivariate gaussian distribution

We give here a list of properties of the multivariate Gaussian distribution that are useful for
the calculations carried out in this thesis.

We will indicate as N (µ, K) a multivariate Gaussian with mean vector µ and covariance
matrix K. Its probability density function is:

N (x|µ, K) = det(2πK)−
1
2 e−

1
2 (x−µ)⊤K−1(x−µ)

Linear transformation of a Gaussian random variable

Let a be an N-dimensional vector, A an N × N (semi-)positive definite matrix and x a
random variable distributed as the multivariate Gaussian N (a, A). Let us also define the
affine transformation y = b + Bx determined by the M dimensional vector b and by the
M× N matrix B. Then, we have:

y ≡ b + Bx distributed as−−−−−−−→ N (y|b + Ba, BAB⊤) (A.1)

A proof of this proposition can be found, for example, in [61].

Product of Gaussians

Let a, x, y be N-dimensional vector, and A, B be N × N (semi-)positive definite matrices.
Then, the products between the two multivariate Gaussians N(x|a, A) and N(y|x, B) can be
rearranged as follows:

N (x|a, A)N (y|x, B) = N (x|c, C)N (y|a, A + B) (A.2)

where c ≡ C(A−1a + B−1y) and C = (A−1 + B−1)−1. A procedure for deriving this identity
can be found, for example, in [16].

Introducing another N × N matrix D, we have a similar identity [99]:

N (x|a, A)N (y|Dx, B) ∝ N (x|c, C) (A.3)

where c ≡ C(A−1a + D⊺B−1y) and C = (A−1 + D⊺B−1D)−1.

107

GIO
VANNI IA

NNELL
I

A.2 (quasi-)monte carlo integration

Matrix derivatives

Given an invertible matrix K, the elementwise partial derivatives of its inverse can be
rearranged in the following way [16]:

∂iK−1 = −K−1(∂iK)K−1 (A.4)

While the partial derivatives of log determinant of K are equal to [16]:

∂i log |K| = tr(K−1∂iK) (A.5)

a.2 (quasi-)monte carlo integration

Traditionally, Monte Carlo integration relies on pseudo-random number generators (PRNG)
such as the Mersenne Twister [100] or the PCG [101], which are deterministic algorithms
that generate sequences of integer numbers whose properties approximate those of random
numbers.

Rescaling the output of a PRNG, it is possible to restrain the sequence to rational numbers
between zero and one. For most applications, these rescaled sequences could be assumed
to be uniformly distributed in [0, 1). This comes very useful to sample other non-uniform
distributions.

Inverse transformation method

For instance, given a sequence u1, ..., uK of samples from a uniform distribution between
zero and one, the inverse transformation method is a commonly used procedure to generate a
sequence x1, ..., xK of samples distributed according to a a generic one-dimensional p(x).

Calling F(x) the cumulative distribution function of p(x):

F(x) ≡ p(x′ < x) =
∫ x

−∞
p(x′)dx′

samples x of the target distribution p(x) can be obtained by applying the inverse function
F−1(u) to the uniform samples u:

x ≡ F−1(u) distributed as−−−−−−−→ p(x) (A.6)

To check the correctness of this procedure, we need to verify that the random variable
x = F−1(u) is actually distributed according to p(x). This is equivalent to verify that
p(u < u0) = p(x′ < F−1(u0)), which can be obtained with the following change of
variables:

p(u < u0) =
∫ u0

0
du =

∫ F−1(u0)

−∞

du
dx

dx

=
∫ F−1(u0)

−∞
p(x)dx = p(x < F−1(u0))

108

GIO
VANNI IA

NNELL
I

A.2 (quasi-)monte carlo integration

Sampling a unit Gaussian

Considering, for example, the case of the unit Gaussian φ(t) ≡ N (t|0, 1), we can use the
inverse transformation method to obtain samples of φ(u) using the inverse of its cumulative
distribution function Φ(t). Indeed, if u is a random variable uniformly distributed between
zero and one, then:

t ≡ Φ−1(u) distributed as−−−−−−−→ φ(t) (A.7)

The inverse cumulative of the unit Gaussian Φ−1(u), also called probit function, can be
efficiently approximated in many ways, for example using [102].

Sampling a multivariate Gaussian

The procedure for sampling φ(t) can also be useful to sample a generic multivariate Gaussian
N (x|µ, K). Indeed, calling ti a vector of independent samples of the unit Gaussian φ(t) and
A a matrix such that K = AA⊤, we know from equation (A.1) that:

xi ≡ µi + ∑
ij

Aijtj
distributed as−−−−−−−→ N (x|µ, K) (A.8)

Monte Carlo integration

Let us consider a multidimensional integral of the following form:

I ≡
∫

f (xi)p(xi)dxi (A.9)

where f (xi) is a RN → R function, and p(xi) is the multivariate probability density function
of the N-dimensional xi.

Pseudo-random numbers are commonly used to approximate integrals in the form of
equation (A.9). Indeed, if we can generate K samples x1i, ..., xKi of the N-dimensional xi

from its distribution p(xi), then the integral (A.9) can be approximated as:

I ≈ A ≡ 1
K ∑

k
f (xki)

This directly follows from the central limit theorem, which states that, if the random variable
f (xi) has a finite variance, then, as K → ∞, A converges to a Gaussian variable whose mean
and variance are:

E[A] = E[f (xi)] ≡ I

Var[A] = 1
K

Var[f (xi)] ≡
1
K

(∫
f 2(xi)p(xi)di − I2

)

The error of Monte Carlo integration is therefore O(K−1/2), and its advantage over
standard numerical quadrature techniques arises in high dimensional spaces. Indeed,
quadrature rules have a convergence rate that becomes slower as the number of dimension

109

GIO
VANNI IA

NNELL
I

A.3 multistart optimization

increases. For example, the error of integrals approximated with the midpoint rule is
O(K−1/N), where K is the number of grid points and N the number of dimensions.

Quasi-Monte Carlo integration

An even better convergence of high-dimensional integrals could be achieved using quasi-
random numbers, which are deterministic sequences that, instead of imitating the behaviour
of random numbers, they are designed to uniformly occupy the space.

Sequences of random numbers inevitably tend to form clumps of higher density in some
regions of the space, and this is suboptimal if we want to converge to the correct solution
as quick as possible. Indeed, a point that is very close to another provides little additional
information about a smooth integrand function.

On the other hand, an quasi-random sequence x1i, ..., xKi of N-dimensional points is
defined such that, for any value of K, any region of the space should have roughly the same
ratio between number of points and volume. This property is also called low discrepancy and
a formal definition of it can be found in [94].

Quasi-random sequences are therefore meant to cover the integration domain more
quickly so that the integration could converge with a faster rate. Indeed, while the error of a
standard Monte Carlo integration is O(K−1/2), using quasi-random numbers the error is
generally O(K−1(log K)N), or much lower in many applications [95].

Many different quasi-random sequences are available. A comparison [103] between
the Halton [104], Sobol [93] and Faure [105] sequences showed that the Halton sequence
achieved the best integral approximations in N ≲ 6 dimensions, while the Sobol sequence
outperformed the others when the number of dimensions was higher.

These quasi-random generators produce sequences of points u in the unit hypercube
[0, 1]N , which, in most cases, can be simply used as a replacement for pseudo-random
numbers sampled from a uniform distribution. Indeed, the inverse transformation method
(A.6) can be used to generate quasi-random samples x that distribute themselves as p(x)
more quickly than pseudo-random samples would do.

There are some drawbacks of the quasi-Monte Carlo method that should be taken into
consideration. For instance, the integration error, which can be estimated using the Koksma-
Hlawka inequality [94], is not Gaussian as it is for the classical Monte Carlo integration.
This can be disadvantageous if we intend to use the results for further statistical analysis.

Another disadvantage is that some sampling method based on accept/reject procedures
cannot be used with quasi-random numbers, since removing a subset of the sequence makes
it lose its property. For example, the Marsaglia polar method [106], which is commonly
used to generate Gaussian samples, cannot be used with quasi-random numbers.

a.3 multistart optimization

Bayesian global optimization requires itself to use a global optimizer in order to work.
Indeed, we need to find the global maximum of the hyperposterior (5.4) and of the NEI
acquisition function (7.13) at each iteration of the algorithm.

110

GIO
VANNI IA

NNELL
I

A.3 multistart optimization

The difference between these optimizations and the original problem of optimizing a
parametrized quantum circuit is that they don’t require the usage of a quantum computer.
Indeed, they are way easier to optimize as the target functions that need optimizing can be
evaluated cheaply many times, and without measurement noise.

Both the hyperposterior (5.4) and the NEI acquisition function (7.13) usually have several
local minima separated by large and almost flat areas. See, for example, the NEI acquisition
functions in figure 7.3. This is problematic for many global optimizers such as, for example,
those based on simulated annealing [107], since tunneling between local maxima might take
a very high number of iterations.

On the other hand, the availability of the gradient of the target functions makes it easy,
given a starting point, to ascend to a local maximum using a gradient-based local optimizer.
The L-BFGS-B algorithm [98] is a good choice for this task given its good performance
in high dimensions with the presence of boundaries. Furthermore, it requires the target
function and its gradient to be always be evaluated together, which is convenient if we use
automatic differentiation techniques [85], since they evaluate the target function and its
gradient at the same time.

The multistart procedure that we used is composed by two steps. At first, the target
function is evaluated on a uniform grid generated using the Sobol sequence (see section A.2).
Then, among all the scanned points, we select a subset of those with the highest function
values, and we run the L-BFGS-B starting from them. By doing so, we obtain a list of local
maxima, and we select the highest.

The reason for the first scan is to concentrate the local search only around the highest
local maxima, avoiding then the lower local maxima and the flat areas of the target function
that wouldn’t be worth it to explore.

The algorithm can be summarized as follows:

• Given a target real function f (x) defined in an N-dimensional bounded domain, we
specify a number of local searches L and a number of scans S > L.

• An N-dimensional grid of S domain points xi is generated using the Sobol sequence.

• The target function is evaluated on the grid points and, among them, are selected the
L points xi1 , ..., xiL in which f (xi) had the highest values.

• The points xi1 , ..., xiL are used to initiate L instances of the L-BFGS-B local optimizer,
which end at L local maxima xmax

1 , ..., xmax
L .

• The algorithm returns the maximum point among the local maximum points: maxxmax
i
{ f (xmax

i)}.
The values of L and S should be selected depending on the problem using some heuristic
considerations. Indeed, a high value of S is recommended if the target function is mostly
flat in a significant part of the domain, while a high value of L should be used if we believe
that there are many local maxima.

The convergence to the global maximum is not guaranteed using this procedure. However,
this is not a big problem for the Bayesian optimizer as suboptimal values of the hyperpos-
terior and the acquisition function are still useful for the algorithm as they correspond to
plausible solutions.

111

GIO
VANNI IA

NNELL
I

	Validation
	Declaration
	Περίληψη

	 Περίληψη
	Abstract

	 Abstract
	Contents
	List of Figures

	 List of Figures
	Introduction

	 Introduction
	1 Variational quantum eigensolver
	1.1 Introduction to quantum computing
	1.2 Quantum expectation estimation
	1.3 Variational quantum eigensolver

	2 Introduction to Gaussian processes
	2.1 Gaussian process
	2.2 Sampling from a Gaussian process
	2.3 Geometry of Gaussian processes
	2.4 Conditional Gaussian processes

	3 Introduction to Bayesian inference
	3.1 Bayes theorem
	3.2 Bayesian predictions
	3.3 Bayesian decision theory
	3.4 Bayesian model selection

	4 Gaussian process regression
	4.1 Bayesian inference using quantum measurements
	4.2 Bayesian prediction of quantum measurements
	4.3 Inference and prediction: noiseless case
	4.4 Inference and prediction: heteroscedastic Gaussian noise
	4.5 Efficient implementation of GPR

	5 Bayesian model selection in GPR
	5.1 Changing the hyperparameters
	5.2 Maximum likelihood estimation of type II for GPR
	5.3 Maximum a posteriori and regularization

	6 Bayes-Gauss integral transforms
	6.1 Estimating a generic integral transform
	6.2 Fourier transforms of discrete data
	6.3 Bayes-Gauss-Fourier transforms

	7 Acquisition functions
	7.1 Expected improvement
	7.2 Noisy expected improvement

	8 Testing the Bayesian VQE
	8.1 Summary of the Bayesian VQE
	8.2 Testing on two qubits
	8.3 Possible extensions to high-dimensional spaces

	9 Conclusions and outlooks
	 Bibliography
	A Appendix
	A.1 Multivariate Gaussian distribution
	A.2 (Quasi-)Monte Carlo integration
	A.3 Multistart optimization

