
1

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Calibration of Viscoelastic Chain using the PSO algorithm to match

various Creep Models

Ιωάννης Κυριάκου

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

2

CONTENTS

List of Tables ... 3

List of Figures ... 3

Abstract ... 4

Introduction ... 5

Literature Review .. 6

 Compliance Function .. 6

CEB2010 Model ... 8

ACI 209 Model .. 10

B3 Model .. 11

Comparison Between Models ... 13

Generation of Deformation Curves .. 14

Particle Swarm Optimization .. 18

Algorithm Description ... 20

Algorithm Progression .. 20

Ranges of Values for the Decision Variables .. 22

Measure of Fitness ... 22

Calibration Results ... 23

Analysis of Prestressed Beam ... 26

Conclusions ... 27

Appendix A: Python Source Code ... 28

References ... 43

 Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

3

List of Tables

Table 1, CEB2010 Input Parameters .. 7

Table 2, CEB2010 Derived Parameters .. 7

Table 3, ACI 209 Input Parameters ... 8

Table 4, ACI 209 Derived Parameters .. 8

Table 5, B3 Input Parameters ... 10

Table 6, Inputs for the 3 models ... 10

Table 7, Final strain values ... 12

List of Figures

Figure 1, Drying Creep – tests conducted by Pickett 7

Figure 2, Beam under consideration, cross section 15

Figure 3, Compliance Curve of B3 Model.. 16

Figure 4, Compliance Curve of CEB2010 Model .. 17

Figure 5, Compliance Curve of B3 ACI209 .. 17

Figure 6, All Compliance Curves ... 18

Figure 7, Kelvin Unit ... 19

Figure 8-11, Progressive model calibration .. 24

Figure 12-14, Final calibration results ... 25

Figure 15, Example Bridge Profile ... 26

Figure 16, Tendon Stress .. 27

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

4

Abstract
This paper employs an optimization algorithm to approximate the creep-induced

behavior of a concrete material as predicted by various well-established models

of concrete that exist in the literature. The models in question are i) the B3 Model

[1] ii) the CEB-FIB 2010 model code [2] and iii) the model in the current AASHTO

LRFD specifications [3].

The topic of concrete creep is of utmost significance for the maintenance of

infrastructure such as highway bridges, where the Dead Load is much larger than

the live loads originating from traffic. Recent studies have shown that simplified,

design-oriented equations may not always yield conservative predictions of long-

term deformations. The economic effects of this shortcoming are enormous, while

in some cases the structural integrity of the structure may be compromised.

The present study used a finite element analysis of a simple model through which

the long-term deformation of a uniaxial element was analyzed based on the

constitutive law provided by the above-mentioned model codes. The constitutive

law used in the analyses consists of a solidifying viscoelastic chain, calibrated to

match the creep curves generated by the three different models.

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

5

Introduction
It is well established that concrete, the solid that forms at room temperature by

combining Portland cement with water, sand and aggregates, exhibits long-time

deformations under load, even if the load is constant. This phenomenon is called

creep and has been a subject of scientific study since the early 20th century,

resulting in a plethora of mathematical models, each with its own set of relevant

parameters, to estimate the time-dependent deformations of concrete to varying

degrees of success.

In an ideal scenario there would be a minimal, consistent set of industry-standard

models to predict long-term concrete behavior. This is currently an

insurmountable task due to the large variety of concrete products that can be

achieved as well as the inherent variability of the physicochemical processes that

take place during the hydration process. The multi-phased nature of concrete and

the reliance of the final product on the properties of its constituents is a source of

significant uncertainty in the modelling process. Consequently, the topic of

concrete creep must undergo a probabilistic treatment, with models calibrated to

minimize the error between observations of long-term deformations and the

predicted values.

The matter is further complicated by the prevalence of modern admixtures (e.g.

plasticizers) which result in material behavior that deviates from historical

observations, limiting the usefulness of long-time deformation measurements of

old structures which were constructed in the absence of such admixtures. This

results in a demand for more advanced and all-encompassing models. In any

case, the datasets needed to produce satisfactory values for each model’s

parameters are enormous.

In the present study, a selection of three models in the literature was used to

generate the long-term (i.e. 50-year duration) deformation curve of a hypothetical

box-girder bridge with known geometry and material properties (Figure 1). This

stage was followed by setting up a simple model in a custom finite element

analysis program with material parameters that were iteratively calibrated with

respect to the deformation curve generated by each of the three model codes.

This was achieved by using the Kelvin model of a viscoelastic chain as described

in [1].

The remainder of this paper examines the model codes and the process of

calibrating a viscoelastic chain so as to approximate the creep curves predicted

by each.

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

6

Literature Review: Creep Models
Compliance Function

The mathematical description of creep begins at (1) which separates the concrete

strain into two components: the instantaneous strain, which depends on the

elastic modulus at the time of loading, and the creep strain, the calculation of

which is based on the concept of the creep coefficient, φ(t, t0).

The creep coefficient is a concept adopted by all major concrete models and is

usually (although other, less used variants exist) defined as the ratio of the

additional, monotonically increasing creep strain to the initial strain induced by

the first application of load. Since it is a strain value, it involves the use of an

elastic modulus which - by convention - is defined as the mean value of the 28-

day elastic modulus of concrete. This is a simple recognition of the well-known

fact that the mechanical properties of concrete are time dependent. A direct

implication of this fact is that creep is never fully reversible when the load is

removed by which point the elastic properties of the material have changed.

εc,total(t) = εci(t) + εcc(t, t0) (1)

εcc(t) =
σc(t0)

Eci
φ(t, t0) (2)

εcc(t) in (2) is the time-dependent creep strain of concrete. Bundling these two

components into a singular expression and setting the induced stress σc(t0) =

1 F ∙ M−2, we obtain the compliance function J(t, t0), which describes the strain

response of concrete per unit stress. Within the range of applicability of these

models, stress is linearly related to the strain via the compliance function in the

form of (4). It should be noted that all three of the model codes examined in this

paper [1,2,3] agree that this proportionality limit (that is, where strain is linearly

related to stress via the compliance function) is exceeded when the compressive

stress in the concrete core exceeds ~40% of its ultimate value.

εc,total(t) = εci(t) + εcc(t, t0) (3)

εc,total(t) = σ(t0) ∙ [
1

Eci(t0)
+

φ(t,t0)

Eci
] = σ(t0) ∙ J(t, t0) (4)

Furthermore, the creep coefficient is split up into two components: the basic creep

coefficient φbc(t, t0), which is what is measured on sealed concrete specimens,

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

7

and the drying creep coefficient φdc(t, t0), which is the additional strain caused

by the drying process [1]. This phenomenon of concrete creep increasing in the

presence of drying (i.e. when exposed to environmental conditions, as is almost

always the case) was first observed by G. Pickett in the tests [7] conducted on

specimens loaded under different humidity conditions as is shown in Figure 1

taken from [1], where,

D: drying specimen, no load

L: loaded specimen, no drying (sealed specimen – basic creep)

LD: loaded specimen in the presence of drying

LC: loaded specimen subjected to cycles of drying and re-wetting

The specimens were plain concrete beams of square cross section (with side

50.8 mm, span 813 mm, and midspan load 222 N) [7]. While the specimen series

L, LD & LC were identically loaded, the two specimen-series which included

drying (LD & LC) exhibited increased deflection because of the movement of the

interlayer water within the concrete core [1, 7].

The additional creep strain accumulated when concrete is simultaneously drying

necessitates the use of an additional creep component (“drying creep” as

previously mentioned) whose mathematical description has been defined by all

three model codes in the form of (5).

Figure 1

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

8

φ(t, t0) = φbc(t, t0) + φdc(t, t0) (5)

CEB-FIB 2010

The CEB-FIB 2010 Model Code was authored by the International Federation for

Structural Concrete to serve as a basis for code-making committees for concrete

structures and related structural materials. This section summarizes the concrete

creep model provided therein and its relevant input parameters.

The creep model provided by CEB-FIB2010 is applicable [2] to ordinary concrete

(mean compressive strength in the range 20MPa – 130MPa) cured in moist

conditions at normal temperatures and environmental humidity (5°C to 30°C).

The model breaks down outside of this ranges. It is also assumed that the stress

in the concrete is less than 40% of its ultimate strength; past this point, creep

becomes non-linear, and its mathematical description is more involved.

Symbol Depends on Reference

s

Strength class of cement

[2] Table 5.1-9 32.5N
32.5R,

42.5N
42.5R, 52.5N, 52.5R

0.38 0.25 0.20

𝑎𝐸

Aggregate Type

[2] Table 5.1-6 Basalt Quartzite
Limeston

e

Sandston

e

1.2 1.0 0.9 0.7

𝑓𝑐𝑘 Characteristic strength in MPa [2] Table 5.1-3

𝐸𝑐𝑖
Elastic Modulus at 28 days ([2] convention

for creep coefficient)
[2] Eq. 5.1-56

𝐸𝑐0
reference elastic modulus for quartzite

aggregate: 21.5 ∗ 103𝑀𝑃𝑎
[2] Eq. 5.1-60

𝑡0 age at loading in days [2] Eq. 5.1-60

RH Relative Humidity as a percentage [2] Eq. 5.1-56

𝐴𝑐 Cross sectional area of Beam [2] Eq. 5.1-56

𝑢
Perimeter of cross section exposed to the

atmosphere
[2] Eq. 5.1-70

Table 1 – Input Parameters

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

9

Symbol Depends on Reference

𝝋(𝒕, 𝒕𝟎) Creep Coefficient [2] Eq. 5.1-56

𝜷𝒄𝒄(𝒕) Concrete strength as a function of time [2] Eq. 5.1-51

𝜷𝑬(𝒕) Elastic Modulus as a function of time [2] Eq. 5.1-56

𝒉 Representative cross-sectional depth [2] Eq. 5.1-56

Table 2 - Derived quantities

 (Eq. 6)

Eci = Ec0 ∙ aE ∙ (
fck + Δf

10
)

1
3

𝛥𝑓 = 8 𝑀𝑃𝑎

Eci(t) = βE(t) ∙ Eci

βE(t) = [βCC(t)]0.5

βCC(t) = exp{s ∙ [1 − (
28

t
)

0.5

]}

φbc(t, t0) = 𝛽(𝑓𝑐𝑚) ∙ 𝛽𝑏𝑐(𝑡, 𝑡0)

φdc(t, t0) = 𝛽𝑑𝑐(𝑓𝑐𝑚) ∙ 𝛽(𝑅𝐻) ∙ 𝛽𝑑𝑐(𝑡0) ∙ 𝛽𝑑𝑐(𝑡, 𝑡0)

Where,

𝛽(𝑓𝑐𝑚) =
1.8

(𝑓𝑐𝑚)^0.7
 𝛽𝑏𝑐(𝑡, 𝑡0) = ln ((

30

𝑡0
+ 0.035)

2

∙ (𝑡 − 𝑡0) + 1)

𝛽𝑑𝑐(𝑓𝑐𝑚) =
412

𝑓𝑐𝑚
1.4

𝛽(𝑅𝐻) =

1 −
𝑅𝐻
100

√0.1 ∙
ℎ

100

3

𝛽𝑑𝑐(𝑡0) =
1

0.1 + 𝑡0
0.2 𝛽𝑑𝑐(𝑡, 𝑡0) = [

𝑡 − 𝑡0

𝛽ℎ + (𝑡 − 𝑡0)
]

𝛾(𝑡0)

𝛽ℎ = min {1.5 ∙ ℎ

+ 250𝑎𝑓𝑐𝑚, 1500𝑎𝑓𝑐𝑚}

𝑎𝑓𝑐𝑚 = (35/𝑓𝑐𝑚)0.5

𝛾(𝑡0) =
1

2.3 + 3.5/√𝑡0

 ℎ = 2 ∙
𝐴𝑐

𝑢

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

10

ACI 209

The ACI 209 Report, published in May 2008 by the American Concrete Institute

is appropriately named “Guide for Modeling and Calculating Shrinkage and Creep

in Hardened Concrete” and is the model adopted by the current AASHTO LFRD

specifications. It should be noted [3] that the presence of admixtures such as

silica fume, fly ash and natural pozzolans completely invalidates the predictions

of this model.

Symbol Depends on Reference

N/A Curing Conditions: Moist vs Steam [3] Eq. A-22,23

𝑠 Concrete slump [3] Eq. A-28

𝑓28 Conventional strength at 28 days [3] Eq. A-17

𝐸𝑐,𝑡0 Elastic modulus at the time of loading, t0 [3] Eq. A-18

𝜓 Fine aggregate percentage [3] Eq. A-29

𝑡0 age at loading in days [3]

ℎ Relative Humidity [3] Eq. A-24

𝑉/𝑆

Volume to exposed surface ratio: for a

prismatic beam equivalent to the ratio

𝐴𝑐/𝑢

[3] Eq. A-24

𝑢
Perimeter of cross section exposed to the

atmosphere
[3] Eq. A-24

𝛼 Air content as a percentage [3] Eq. A-30

𝛾𝑐
Unit weight of concrete (not to be confused

with creep correction factor)
[3] Eq. A-16

Table 3 - Input Parameters

Symbol Depends on Reference

𝑓𝑐,𝑡0
 Concrete strength at the time of loading [3] Eq. A-17

𝐸𝑐,𝑡0 Elastic modulus at the time of loading, t0 [3] Eq. A-16

𝛾𝑐 Creep correction factors [3] Eq. A-16

Table 4 – Derived quantities

(Eq. 7)

𝜑𝑢 = 2.35𝛾𝑐

𝛾𝑐 = 𝛾𝑐,𝑡0 ∙ 𝛾𝑐,𝑅𝐻 ∙ 𝛾𝑐,𝑣𝑠 ∙ 𝛾𝑐,𝑠 ∙ 𝛾𝑐,𝜓 ∙ 𝛾𝑠ℎ,𝑎

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

11

𝛾𝑐,𝑡0 = 1.25𝑡0
−0.118 𝛾𝑐,𝑅𝐻 = 1.27 − 0.67 ∙ max {ℎ, 0.40}

𝛾𝑐,𝑣𝑠 =
2

3
(1 + 1.13𝑒{−

0.54𝑉
𝑠

})
𝛾𝑐,𝑠 = 0.82 + 0.067𝑠

𝛾𝑐,𝜓 = 0.88 + 0.0024𝜓 𝛾𝑠ℎ,𝑎 = 0,43 + 0,09𝛼 ≥ 1

The value 𝟐. 𝟑𝟓 in (7) is the asymptotic limiting value of the creep coefficient,

meaning that the value of the creep strain is 𝜑𝑢 = 2.35𝛾𝑐 times the value of the

instantaneous (elastic strain). As expected, this value is affected by the

composition of the concrete mix, as indicated by the correction factor 𝛾𝑐. Table 4

shows the parameters that determine the correction factors (through its partial

factors).

At any point in time, the value of the creep coefficient is calculated by equation

A-18 of the ACI 209 Report.

𝜑(𝑡, 𝑡0) =
(𝑡−𝑡0)

𝑓+(𝑡−𝑡0)
∙ 𝜑𝑢 (8)

where 𝑓 = 26.0𝑒^{0.36(𝑉/𝑆)} (9)

From (9) it is evident that the creep coefficient asymptotically approaches its

ultimate value 𝜑𝑢 calculated in (7) according to the composition of the concrete

mix and the element geometry.

The stress response of the material is (similar to CEB-FIB2010) calculated

through the compliance function.

𝐽(𝑡, 𝑡0) =
1 + 𝜑(𝑡, 𝑡0)

𝐸𝑐,𝑡0

where is the instantaneous concrete elastic modulus at the time of loading, given

by

𝐸𝑐,𝑡0
= 33 ∙ 𝛾𝑐

1.5√𝑓𝑐𝑚,𝑡0

Bazant’s B3 Model

The B3 Model is one of the most recent models in the literature and is the result

of the collaboration between Zdeněk P. Bažant and Milan Jirásek as presented in

their joint book [1]. The model is based upon Bazant’s solidification theory [1] and

its form is summarized as such:

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

12

Symbol Depends on Reference

𝑎2

Curing Conditions

[1] C.17 pg. 714
Steam Normal

Moist

(submerged

in water)

0.75 1.2 1.0

𝑎1

Cement type

[1] C.17 pg. 714 Type I Type II Type III

1.0 0.85 1.1

𝑘𝑠

Shape Factor

[1] pg. 44 Slab Cylinder
Square

Prism

1.00 1.15 1.25

𝑉/𝑆

Volume to exposed surface ratio: for a

prismatic beam equivalent to the ratio

𝐴𝑐/𝑢

[1] C.17 pg. 711

𝑓𝑐 Mean compressive strength [1] C.17 pg. 711

w Water content (mass) in concrete mix [1] C.17 pg. 711

𝑐 Cement content (mass) in concrete mix [1] C.17 pg. 711

𝑎 Aggregate content (mass) in concrete mix [1] C.17 pg. 711

ℎ𝑒𝑛𝑣 Relative Humidity [1] C.17 pg. 711

𝑡0
Age of concrete at the time of loading, in

days
[1] C.17 pg. 711

𝑡′
Age of concrete at the end of curing, in

days
[1] C.17 pg. 711

Table 5 – Input Parameters

The compliance function is given by

𝐽(𝑡, 𝑡0) = q1 + q2𝑄(𝑡, 𝑡0) + q3 ln[1 + (𝑡 − 𝑡0)0.1] + q4 ln (
𝑡

𝑡0
) +

q5√𝑒−𝑔(𝑡−𝑡′) − 𝑒−𝑔(𝑡−𝑡0) (10)

The auxiliary functions are calculated as:

(Eq. 11)

𝑄(𝑡, 𝑡0) = 𝑄𝑓(𝑡0) [1 + (
𝑄𝑓(𝑡0)

𝑍(𝑡, 𝑡0)
)

𝑟(𝑡0)

]

−1/𝑟(𝑡0)

𝑟(𝑡0) = 1.7 ∙ (𝑡0)0.12 + 8

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

13

𝑍(𝑡, 𝑡0) = (𝑡0)−0.5ln [1 + (𝑡 − 𝑡0)0.1]

𝑄𝑓(𝑡0) = [0.086(𝑡0)2/9 + 1.21(𝑡0)4/9]
−1

𝜀𝑠ℎ = −𝜀𝑠ℎ
∞ (1 − ℎ𝑒𝑛𝑣

3) ∙ 𝑆(𝑡 − 𝑡0)

𝜀𝑠ℎ
∞ = 0.57514 ∙ 𝑎1 ∙ 𝑎2(0.019𝑤2.1𝑓𝑐

−0.28 + 270) ∙ √3 +
14

(𝑡0 + 𝑘𝑡(𝑘𝑠 ∙ 𝐷)^2)

𝑔(𝛥𝑡) = 8 ∙ [1 − (1 − ℎ𝑒𝑛𝑣) ∙ 𝑆(𝛥𝑡)]

𝑆(𝛥𝑡) = 𝑡𝑎𝑛ℎ√
𝛥𝑡

𝑘𝑡(𝑘𝑠 ∙ 𝐷)^2

𝑘𝑡 = 0.085𝑡0
−0.08 ∙ 𝑓𝑐

−1/4

Where the value of 𝑘𝑠 is found in Table 6.

The constant coefficients q1 through q5 [1] all have the units of 𝑀𝑃𝑎−1 and are

given by:

q1 = 126.77𝑓𝑐
−0.5 ∙ 10−6

q2 = 185.4 ∙ 𝑐0.5 ∙ 10−6

q3 = 0.29 (
𝑤

𝑐
)

4

 ∙ q2

q4 = 20.3 ∙ (
𝑎

𝑐
)

−0.7

∙ 10−6

q5 = 7.57 ∙ 𝑓𝑐
−1(𝜀𝑠ℎ

∞)−0.6 ∙ 10−1

Comparison between Models

All models recognize the inverse correlation between the age at loading, and the

developed creep strains as the most significant factor. To account for the drying

component of creep, the relative humidity and the curing conditions (e.g. normal

(“moist”) curing, steam curing) also affect the model equations.

All three models exhibit a close dependence on the composition of the concrete

mix – the ACI209 model requires a more thorough knowledge of the fresh mix’s

properties such as its air content as well as the slump, and all three models are

affected by the type (and quantity) of aggregate used. Recognizing that these

values may not be entirely known to the designer at the time of modelling

(whether it be an existing structure or a new one), the ACI209 Report is based on

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

14

typical values of these parameters; the designer may use the creep correction

factors to account for each special case.

Concurrently, all three models consider the size of the concrete specimen through

its effective depth meaning the ratio of exposed volume to exposed specimen

surface.

Generation of Deformation Curves
The input parameters and equations for each model were input into an Excel

Spreadsheet to generate the total deformation of our specimen for the next 50

years (18,250 days). The deformation curve generated in each case

corresponded to unit stress, so essentially what was generated was a graph of

the compliance function. As previously mentioned, concrete creep is linear with

respect to stress until the stress reaches around 40% of its ultimate value [1].

The horizontal axis (time) was set to a logarithmic scale in order to accurately

visualize the evolution of creep for the target time span, from the first application

of load at 8 days, kept constant for the next 50 years.

The parameters that concern the concrete composition (water, cement and

aggregate content) were taken from a sample mix [5] and the element geometry

(Figure 1) as well as the initial loading at the 8th day, were taken from [4].

Model Inputs

 CEB2010 ACI209 B3

Strength class 42.5R s = 0.20 N/A
Type III

Cement
𝑎1 = 1.1

Aggregate type Limestone 𝑎𝐸 = 0.9 N/A N/A

Aggregate

content
N/A N/A 𝑎 = 1909

𝑘𝑔

𝑚3

Fine Aggregate

%
N/A 32.6% N/A

Air content % N/A 6% N/A

Slump N/A 69 mm N/A

Relative

humidity
0.7 0.7 0.7

Age at loading,

𝑡0
8 days 8 days 8 days

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

15

Representative

depth, ℎ
184mm 184mm 184mm

Water content,

𝑤
N/A N/A 115.2 𝑘𝑔/𝑚3

Cement

content, 𝑐
N/A N/A 288.3 𝑘𝑔/𝑚3

Aggregate

content, 𝑎
N/A N/A 1758.4 𝑘𝑔/𝑚3

Compressive

strength
4 ksi (28MPa) 4 ksi (28MPa) 4 ksi (28MPa)

Table 6 – Model inputs

Figure 2

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

16

For the model inputs in Table 6, the final values of the compliance functions

(strains corresponding to unit stress) for each model (after 50 years of sustained

loading) are as such:

B3 CEB2010 ACI209

10.8 ∙ 10−7 9.15 ∙ 10−7 7.09 ∙ 10−7

Table 7 – Final Strain values

The greatest creep deformation is predicted by the B3 Model, in which creep is

assumed to not have a finite bound but instead increases indefinitely in a

logarithmic manner. ACI209 was expected to yield the lowest value given that the

model is set up in such a way as to approach a given asymptotic value.

Figure 3

 Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

17

Figure 4

Figure 5

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

18

Figure 6

Particle Swarm Optimization
As mentioned in [1], concrete is an aging material that belongs to the realm of

linear viscoelasticity; in simple terms this means that concrete exhibits time-

dependent deformation. In the present paper, the fundamental material model

selected to describe the long-term deformations of concrete is the Kelvin chain,

as was done by Bazant in [1] Fig. 6) and whose compliance function is given by

(12). The derivation of the compliance function can be found in [1].

𝛷(𝑡) = ∑
1 − 𝑒

−
𝑡

𝜏𝜇

𝛦𝜇

𝜇

1

 (12)

Equation (12) is the sum of the compliances of the 𝜇 units that make up the chain;

in the realm of viscoelasticity each unit has an elastic component and a viscous

component working in parallel and respectively characterized by the elastic

stiffness 𝛦𝜇 and viscosity 𝜂𝜇. The ratio of the latter to the former is defined [1] as

the retardation time of the unit, 𝜏𝜇 = 𝜂𝜇/𝛦𝜇, and has the appropriate units of time.

It is a measure of the time period within which the particular unit in the chain has

an appreciable influence on the total sum as implied by the negative exponential

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

19

term in the numerator of the sum; for times 𝑡 beyond the retardation time 𝜏𝜇 the

contribution of the unit vanishes rapidly.

According to Bazant’s solidification model [1], the compliance function 𝛷(𝑡) of the

Kelvin chain is influenced the solidification coefficient 𝜈(𝑡) via equation 13. The

parameters 𝛼, 𝜆0, 𝑚 are empirical constants.

A full exposition on the solidification theory and the derivation of its formulas can

be found in [1].

1

𝑣(𝑡)
= 1 +

1

𝑎
(

𝜆0

𝑡
)

𝑚

 (13)

Figure 7

The goal is then to find the values of the parameters 𝛼, 𝜆0, 𝑚 as well as the values

for 𝛦𝜇 , 𝜏𝜇 (corresponding to the 𝜇 units in the Kelvin chain) that best approximate

the generated deformation (strain) values, leaving us with a total of

2𝜇 (𝑖. 𝑒. 𝛦𝜇 & 𝜏𝜇) + 3(𝑖. 𝑒. 𝛼, 𝜆0, 𝑚) decision variables. In the present paper the

number of units in the Kelvin chain was six, for a total of 15 decision variables.

Following Bazant’s [1] recommendation of separating the retardation times by an

order of magnitude to cover as large a time period as needed, and given that the

values resulting from the calibration were subsequently applied to the box-girder

bridge for a 50-year duration (18250 days), it follows that the number of units in

the chain is six, with the following fixed retardation times,

𝜏1 = 0.1, 𝜏2 = 1.0, 𝜏3 = 10.0, 𝜏4 = 100.0, 𝜏5 = 1000.0, 𝜏6 = 10000.0 𝑑𝑎𝑦𝑠

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

20

The PSO (Particle Swarm Optimization) [6] algorithm was used for the purpose

of calibrating the viscoelastic chain’s response to match the generated creep

compliance for the three model codes in the present study.

Algorithm Description

The Particle Swarm Optimization routine belongs to the class of meta-heuristic

algorithms that iteratively improves a set of candidate solutions to a problem with

respect to a given measure of quality. This family of algorithms also includes the

well-known Genetic Algorithms which operate in a similar fashion.

In this case, the goal was to minimize the SRSS (Square Root of Squared Sums)

error between the strain values predicted by the three models and the material’s

deformation response, as determined by the Finite Element analysis of a

uniaxially loaded beam of unit cross-sectional area and length, so that

deformations are equal to strains. The algorithm was appropriately named as

such because it seeks to emulate the behavior of birds or fish (particles) that

instinctively organize themselves in swarms in search of resources and whose

individual movement is influenced (but not entirely determined) by the movement

of the whole group.

Each particle represents a possible solution to the problem (a specific set of

values for the 2𝜇 + 3 decision variables) which is subsequently altered in each

iteration if a superior set of values is found. To effectively exploit the computing

power of the HPC supercomputer, a number of 400 particles and a number of

200 total iterations were selected to carry out the optimization, although a smaller

number of particles can be used if computing resources are limited.

Algorithm Progression

In the very first iteration of the algorithm run (initialization phase) it is necessary

to supply all particles with their initial values and determine the best (see section

Measure of Fitness) solution among them. Once this is done, the swarming phase

of the algorithm can begin.

In every subsequent iteration, the algorithm records the latest values of the

decision variables for each particle 𝑖; this set of values is the particle’s position

vector 𝑿𝒊 in the search space (𝐑𝟐𝛍+𝟑) which is subject to improvements in every

iteration. Keeping up with the swarm analogy, it is then necessary to define the

velocity vector 𝑽𝒊 (15) which will determine the particle’s next position in the

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

21

search space according to (14) and after doing so, evaluate each new solution’s

fitness and record the most optimal vector of values achieved thus far as the

particle’s new personal best (𝑝𝑏𝑒𝑠𝑡). Finally, the best solution among the particles

is selected as the swarm’s global best 𝑔𝑏𝑒𝑠𝑡.

In the following equations the superscript 𝑖 refers to the particle 𝑖 and the index

variable 𝑛 refers to the current iteration of the algorithm; one can notice that the

“global best” vector 𝑔𝑏𝑒𝑠𝑡 is not denoted by a superscript since it concerns the

whole swarm rather than an individual particle.

The application of the two random coefficients 𝑟1, 𝑟2 in (15) assists the algorithm

in reaching new solutions and not remain trapped in local minima (valleys) of the

cost function used to evaluate the fitness of each solution, as is the case with

some popular deterministic algorithms (e.g. Gradient Descent).

𝑿𝒊(𝒏 + 𝟏) = 𝑿𝒊(𝒏) + 𝑽𝒊(𝒏 + 𝟏) (14)

𝑽𝒊(𝒏 + 𝟏) = 𝒘𝑽𝒊(𝒏) + 𝒄𝟏𝒓𝟏 (𝒑𝒃𝒆𝒔𝒕𝒊 − 𝑿𝒊(𝒏)) + 𝒄𝟐𝒓𝟐(𝒈𝒃𝒆𝒔𝒕 − 𝑿𝒊(𝒏)) (15)

The various parameters appearing in (15) can be summarized as such:

𝑤 ∈ [0,1]: 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

As implied by its name, the inertia constant affects how much the previous

velocity vector influences the new one, determining the extent to which the

particle will deviate from its previous path.

𝑐1 ∈ [0,1]: 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 (exploration)𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,

which determines how much the particle will remain tethered to its own personal

best.

𝑐2 ∈ [0,1]: 𝑠𝑜𝑐𝑖𝑎𝑙 (exploitation)𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,

which determines how much the particle will move towards the swarm’s global

best achieved thus far in the iteration.

𝑟1 ∈ [0,1]: 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑟2 ∈ [0,1]: 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

The selection of the values for the coefficients 𝑤, 𝑐1, 𝑐2 – especially the interplay

between the individual (𝑐1) and social (𝑐2) components – is a whole subject of

study and beyond the scope of this paper. As previously mentioned, the values

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

22

of 𝑟1 and 𝑟2 are randomly generated (from a uniform probability distribution in

our). For the purposes of the calibration the following values were used:

𝑤 = 0.8, 𝑐1 = 0.7, 𝑐2 = 0.5

The inertial and individual components, 𝑤 and 𝑐1, are appropriately larger than

the social component 𝑐2 to take advantage of the large number of particles in

finding new, potentially superior, solution sets.

Ranges of Values for the Decision Variables

As mentioned above, the retardation times were fixed to their sequential values,

starting from the value of 0.1 days, and increasing by an order of magnitude for

each subsequent unit, as is recommended by Bazant in [1]. The elastic moduli

were granted an enormous range of possible values - namely between 0.1 and

1000 - since the number of particles itself was quite large; this would prevent

the algorithm from remaining trapped in locally optimal solutions.

The remaining three decision variables stemming from the solidification theory

were allowed the following ranges of values:

𝛼 ∈ [0.00001, 0.1], 𝜆0 ∈ [0.001, 10], 𝑚 ∈ [0.1, 2]

While seemingly random, it must be noted that the upper and lower bounds for

these variables were progressively modified throughout the various calibration

runs to improve the output of the algorithm. They are empirical constants with

no particular physical meaning.

Measure of Fitness

The goal of each iteration was to evaluate the quality of the newfound solutions,

namely the set of values for the decision variables. For this task, it is necessary

to define a target and a method of determining the “closeness” of the candidate

solution to said target. In the present study, the target for each calibration run

was the generated strain curve originating from the three model codes

examined, and the measure of closeness of a candidate solution to the target

was the error between the values predicted by the model curves and the actual

material response (as determined by the Finite Element Analysis of the

uniaxially loaded beam equipped with the Kelvin chain compliance function).

Specifically, the Square Root of Squared Sums of the differences (errors) was

used. This measure of closeness is referred to in the literature as the cost

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

23

function, objective function, etc., and the goal in this case was to select the

vector of values that minimizes its value i.e. best approach the target curves.

Python Source Code

The Python code to perform the optimization was split up into five source files.

Due to the memory and processing-intensive nature of the algorithm, it was

executed in a multi-threaded environment using the university’s HPC

supercomputer; the parameters determined at each iteration were fed through a

Finite Element Analysis program, which applied a unit load and recorded the

deformation history. To carry out the calibration algorithm and to produce the

necessary visualizations of the various results, several well-known Python

libraries were used e.g. numpy, pickle, matplotlib as well as several built-in

libraries to handle the generated data files. The actual Python Source code is

included in Appendix A.

Calibration Results

In each iteration the algorithm modifies the decision variables to gradually

approach the target curve (dashed line in figures 8, 9, 10, 11 labeled ‘target’).

Figures 8, 9, 10, 11 showcase some sample steps for each iteration and the

progressive improvement of our Kelvin chain as it approaches the deformation

curve generated by each model. Because of the long-duration nature of the

analysis and the fact that concrete creep displays logarithmic growth [1, 2, 3, 7]

it is necessary to plot the time axis (x-axis) in logarithmic scale to properly

visualize the evolution of the compliance function.

The final strain values (instantaneous + creep strain) for all three models are

shown in Figures 12, 13, 14 where the calibration was performed for loading at

ages 8 (green lines) and 600 days (red lines). In every case, there was a better

approximation when the model was loaded at 600 days, by which point the

concrete compliance functions “level off” due to the extensive maturing of the

material. The material response taken from the analysis is represented by the

continuous line, which in every case is accompanied by the target it attempts to

approach, represented by the dashed line.

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

24

Figures 8-11 – Progressive Calibration of Kelvin Chain

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

25

Figures 12-14 – Final Calibration Results

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

26

Analysis of Prestressed Beam
The final values of the chain parameters taken from the calibration were then

used as the concrete constitutive law in the three-span prestressed beam model

[4] and the relaxation of the tendons due to the creep deformation of the

concrete beams was recorded. The longitudinal profile and cross section of the

bridge are shown in Figure 15, and the evolution of the tendon stress for each

model is shown in Figure 16. As predicted, the accumulation of deformation in

the concrete induces relaxation of the pre-stressed tendons; the model

calibrated according to the B3 Model exhibits the most tendon relaxation of all

due to the increased creep strain.

Figure 15 – Example bridge profile (PCI Manual) Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

27

Figure 16

Conclusions
There seems to be a good agreement between the creep deformations predicted

by the model codes and the final parameters of the Kelvin chain, which undergoes

aging according to the viscoelastic model and Bazant’s solidification theory [1].

These models could thus be incorporated into a finite element analysis software

package to predict the time-dependent deformations of creep-sensitive structures

such as nuclear tanks and bridges, where it could furthermore be used to

calculate the prestress losses of post-tensioning steel and so on.

 Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

28

Appendix A: Python Source Code
import os

import shutil

import subprocess

import numpy as np

import sys

import copy

import random

import math

import time

import pickle

from generate_runs import run_multiphys

import matplotlib.pyplot as plt

import matplotlib

curDir = os.getcwd()

#**********************

LOAD INPUTS

#**********************

os.chdir(curDir)

import task_inputs

taskName = task_inputs.taskName

numVariables = task_inputs.numVariables

numParticles = task_inputs.numParticles

vmax = task_inputs.vmax

vmin = task_inputs.vmin

wmax = task_inputs.wmax

wmin = task_inputs.wmin

kmax = task_inputs.kmax

c1 = task_inputs.c1

c2 = task_inputs.c2

p1 = task_inputs.p1

p2 = task_inputs.p2

optOption = task_inputs.optOption

numProcesses = task_inputs.numProcesses

lt_1 = task_inputs.lt_1

lt_2 = task_inputs.lt_2

infoNames = task_inputs.infoNames

#**********************

MISC. SET UP

#**********************

n = 0

k = 1

DB = {}

DB[k] = {}

DB[k]['iter'] = k

fname = []

fname2 = []

runNumber = 'Null'

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

29

try:

 runNumber = sys.argv[1]

except IndexError:

 runNumber = '000'

 for i in range(1,numParticles+1):

 DB[k][i] = {}

 DB[k][i]['par'] = i

 DB[k][i]['V']=[]

DB[k][i]['locx']=[]

DB[k][i]['locz']=[]

 for j in range(0,numVariables):

 DB[k][i]['V'].append(copy.deepcopy(random.uniform(0.01, 1.)*vmax[j]))

 fname.append('Par'+str(i).zfill(3)+'i')

 fname2.append('Par'+str(i).zfill(3)+'a')

#**********************

WRITE HEADERS TO .OUT FILES:

#**********************

Outfile = open('Run'+runNumber+'_'+taskName+'_rawC.txt','a')

Outfile.write('iter,par,f,pBest,gBest,g,')

for var in range(0, numVariables):

 Outfile.write('X['+str(var)+'],')

for var in range(0, numVariables):

 Outfile.write('V['+str(var)+'],')

for item in infoNames:

Outfile.write(str(item)+',')

Outfile.write('\n')

Outfile.close()

#**********************

INITIALIZE PARTICLES

#**********************

for i in range(0, 1+int(math.floor(max(numParticles,numProcesses)/numProcesses))):

 parRun = []

 for j in range(0, numProcesses):

 parRun.append(int(i*numProcesses+j+1))

 if(parRun[j]<=numParticles):

 execString = ''

 execString = execString + 'pp' + str(parRun[j]).zfill(3) + ' = '

 execString = execString +

"subprocess.Popen(['python','initializeParticle.py', fname[parRun[j]-1]])"

 exec(execString)

 time.sleep(0.01)

 for j in range(0, numProcesses):

 if(parRun[j]<=numParticles):

 execString = ''

 execString = execString + 'out'+str(parRun[j]).zfill(3)+' = '

 execString = execString + 'pp'+str(parRun[j]).zfill(3)+'.wait()'

 exec(execString)

#**********************

LOAD INITIALIZED PARTICLES FROM PICKLE FILES,

SET UP DB DICTIONARY

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

30

#*********************

for i in range(1,numParticles+1):

 with open(curDir+"/"+fname[i-1]+"/"+fname[i-1]+'.pkl', 'rb') as handle:

 DB[k][i]['f'] = pickle.load(handle)

 DB[k][i]['X'] = pickle.load(handle)

 m = pickle.load(handle)

 DB[k][i]['data'] = pickle.load(handle)

 n += m

 handle.close()

 DB[k][i]['pBest'] = DB[k][i]['f']

 DB[k][i]['XpBest'] = DB[k][i]['X']

#**********************

Identify global best position

#**********************

DB[k]['gBest'] = DB[k][1]['f']

DB[k]['XgBest'] = DB[k][1]['X']

DB[k]['dataBest'] = DB[k][1]['data']

for i in range(1,numParticles+1):

 f = DB[k][i]['f']

 X = DB[k][i]['X']

 data = DB[k][i]['data']

 if (optOption.lower()=='minimize'):

 if f < DB[k]['gBest']:

 DB[k]['gBest'] = f

 DB[k]['XgBest'] = X

 DB[k]['dataBest'] = data

 elif (optOption.lower()=='maximize'):

 if f > DB[k]['gBest']:

 DB[k]['gBest'] = f

 DB[k]['XgBest'] = X

 DB[k]['dataBest'] = data

 else:

 print ('ERROR! optOption is not properly defined')

 exit()

#**********************

Iteration loop:

#**********************

DB[k]['n'] = n

done = False

while not done:

 g_vmax = -1.

 for i in range(1,numParticles+1):

 X = DB[k][i]['X']

 f = DB[k][i]['f']

 data = DB[k][i]['data']

 # g = DB[k][i]['g']

 if (optOption.lower()=='minimize'):

 if f < DB[k][i]['pBest']:

 DB[k][i]['pBest'] = f

 DB[k][i]['XpBest'] = X

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

31

 DB[k][i]['dataBest'] = data

 if f < DB[k]['gBest']:

 DB[k]['gBest'] = f

 DB[k]['XgBest'] = X

 DB[k]['dataBest'] = data

 elif (optOption.lower()=='maximize'):

 if f > DB[k][i]['pBest']:

 DB[k][i]['pBest'] = f

 DB[k][i]['XpBest'] = X

 DB[k][i]['dataBest'] = data

 if f > DB[k]['gBest']:

 DB[k]['gBest'] = f

 DB[k]['XgBest'] = X

 DB[k]['dataBest'] = data

 else:

 print ('ERROR! optOption is not properly defined')

 exit()

 p_vmax = max([abs(x) for x in DB[k][i]['V']])

 if p_vmax > g_vmax:

 g_vmax = p_vmax

 #if g_vmax < vmin:

 #print 'g_vmax < vmin'

 #done = True

 if k > kmax:

 print ('k >= kmax')

 done = True

 if not done:

 DB[k+1] = {}

 DB[k+1]['iter'] = k+1

 w = wmax-(wmax-wmin)*k/kmax

 DB[k]['w'] = w

 for i in range(1,numParticles+1):

 DB[k+1][i] = {}

 DB[k+1][i]['par'] = i

 DB[k+1][i]['pBest'] = DB[k][i]['pBest']

 DB[k+1][i]['XpBest'] = DB[k][i]['XpBest']

 with open(fname2[i-1]+str(k).zfill(3)+'.pkl', 'wb') as output:

 pickle.dump(DB[k],output,protocol=pickle.HIGHEST_PROTOCOL)

 output.close()

 for i in range(0,

1+int(math.floor(max(numParticles,numProcesses)/numProcesses))):

 parRun = []

 for j in range(0, numProcesses):

 parRun.append(int(i*numProcesses+j+1))

 if(parRun[j]<=numParticles):

 execString = ''

 execString = execString + 'pp'+str(parRun[j]).zfill(3)+' = '

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

32

 execString = execString +

"subprocess.Popen(['python','updateParticle.py', fname2[parRun[j]-

1]+str(k).zfill(3),"

 execString = execString + "str(k), str("+str(parRun[j])+")])"

 exec(execString)

 time.sleep(0.01)

 for j in range(0, numProcesses):

 if(parRun[j]<=numParticles):

 execString = ''

 execString = execString + 'out'+str(parRun[j]).zfill(3)+' = '

 execString = execString + 'pp'+str(parRun[j]).zfill(3)+'.wait()'

 exec(execString)

 time.sleep(0.01)

 for i in range(1,numParticles+1):

 with open(curDir+"/"+fname2[i-1]+"/"+fname2[i-

1]+str(k).zfill(3)+'.pkl', 'rb') as handle:

 DB[k+1][i]['f'] = pickle.load(handle)

 DB[k+1][i]['X'] = pickle.load(handle)

 DB[k+1][i]['V'] = pickle.load(handle)

 m = pickle.load(handle)

 DB[k+1][i]['data'] = pickle.load(handle)

 n += m

 handle.close()

 DB[k+1][i]['pBest'] = DB[k][i]['pBest']

 DB[k+1][i]['XpBest'] = DB[k][i]['XpBest']

 os.remove(fname2[i-1]+str(k).zfill(3)+'.pkl')

 pkl_there=False

 DB[k+1]['gBest'] = DB[k]['gBest']

 DB[k+1]['XgBest'] = DB[k]['XgBest']

 DB[k+1]['dataBest'] = DB[k]['dataBest']

 DB[k+1]['n'] = n

 # Plot the best solution

 target=np.loadtxt('targeted_plot_ACI_1.txt')

 #target[:,1]=target[:,1]-target[lt_1,1]

 fig1,ax1=plt.subplots()

 # ax1.plot(DB[k]['dataBest'][0],DB[k]['dataBest'][1], linestyle='-

',label='analysis')

 ax1.plot(target[:,0],DB[k]['dataBest'][0][1], linestyle='-

',label='analysis')

 ax1.plot(target[:,0],target[:,1], linestyle='--',label='target')

 # ax1.set_ylabel('Base Shear (kN)')

 # ax1.set_xlabel('Drift Ratio(%)')

 # ax1.set_xlim([0,3])

 # ax1.set_ylim([0,400])

 ax1.legend()

 ax1.set_xscale('log')

 fig1.savefig(str(k)+'_1_.png')

 plt.close(fig1)

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

33

 target=np.loadtxt('targeted_plot_ACI_2.txt')

 #target[:,1]=target[:,1]-target[lt_2,1]

 fig1,ax1=plt.subplots()

 # ax1.plot(DB[k]['dataBest'][0],DB[k]['dataBest'][1], linestyle='-

',label='analysis')

 ax1.plot(target[:,0],DB[k]['dataBest'][1][1], linestyle='-

',label='analysis')

 ax1.plot(target[:,0],target[:,1], linestyle='--',label='target')

 # ax1.set_ylabel('Base Shear (kN)')

 # ax1.set_xlabel('Drift Ratio(%)')

 # ax1.set_xlim([0,3])

 # ax1.set_ylim([0,400])

 ax1.legend()

 ax1.set_xscale('log')

 #plt.show()

 fig1.savefig(str(k)+'_2_.png')

 plt.close(fig1)

 Outfile = open('Run'+runNumber+'_'+taskName+'_rawA.txt','a')

 Outfile.write('iter = %i, n = %i, gBest = %g' %

(DB[k]['iter'],DB[k]['n'],DB[k]['gBest']))

 for var in range(0, numVariables):

 Outfile.write(', X['+str(var)+'] = ')

 Outfile.write(str(DB[k]['XgBest'][var]))

 Outfile.write('\n')

 Outfile.close()

 Outfile = open('Run'+runNumber+'_'+taskName+'_rawB.txt','a')

 Outfile.write('iter = %g, gBest = %g\n' % (DB[k]['iter'], DB[k]['gBest']))

 for i in range(1,numParticles+1):

 Outfile.write('par = ')

 Outfile.write(str(DB[k][i]['par']))

 Outfile.write(', f = ')

 Outfile.write(str(DB[k][i]['f']))

 Outfile.write(', pBest = ')

 Outfile.write(str(DB[k][i]['pBest']))

 for var in range(0, numVariables):

 Outfile.write(', X['+str(var)+'] = ')

 Outfile.write(str(DB[k][i]['X'][var]))

 for var in range(0, numVariables):

 Outfile.write(', V['+str(var)+'] = ')

 Outfile.write(str(DB[k][i]['V'][var]))

 Outfile.write('\n')

 Outfile.write('***\n')

 Outfile.close()

 Outfile = open('Run'+runNumber+'_'+taskName+'_rawC.txt','a')

 for i in range(1,numParticles+1):

 Outfile.write(str(DB[k]['iter']))

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

34

 Outfile.write(',')

 Outfile.write(str(DB[k][i]['par']))

 Outfile.write(',')

 Outfile.write(str(DB[k][i]['f']))

 Outfile.write(',')

 Outfile.write(str(DB[k][i]['pBest']))

 Outfile.write(',')

 Outfile.write(str(DB[k]['gBest']))

 Outfile.write(',')

 for var in range(0, numVariables):

 Outfile.write(str(DB[k][i]['X'][var]))

 Outfile.write(',')

 for var in range(0, numVariables):

 Outfile.write(str(DB[k][i]['V'][var]))

 Outfile.write(',')

 Outfile.write('\n')

 Outfile.close()

 print('iteration='+str(k))

 k += 1

import os

import shutil

import subprocess

import time

from lasso.dyna import D3plot, ArrayType as dt

import numpy as np

import matplotlib.pyplot as plt

import matplotlib

def read_spc(name):

 time=[]

 data={}

 nodes=[]

 first=1

 f = open(name+"/spcforc", "r")

 for x in f:

 if x[1:7]=="output":

 time.append(float(x.split()[4]))

 first=first-1

 elif x[1:5]=="node" and x[25:31]=="forces" and first==0 :

 nodes.append(int(x.split()[1]))

 data[nodes[-1]]=[]

 f.close()

 return time

def read_deplot_disp(d3plot):

 #d3plot = D3plot(name+'/d3plot')

 disp = d3plot.arrays["node_displacement"]

 return disp

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

35

def drift(disp, node1,node2, direction,h):

 re_disp_1=[x[node1-1][direction]-disp[0][node1-1][direction] for x in disp]

 re_disp_2=[x[node2-1][direction]-disp[0][node2-1][direction] for x in disp]

 re_disp=[x-y for x, y in zip(re_disp_1, re_disp_2)]

 drift=[x/h for x in re_disp]

 return drift

def run_multiphys(X,filename,target,lt,f):

 t1 = X[0]

 t2 = X[1]

 t3 = X[2]

 t4 = X[3]

 t5 = X[4]

 t6 = X[5]

 e1 = X[6]

 e2 = X[7]

 e3 = X[8]

 e4 = X[9]

 e5 = X[10]

 e6 = X[11]

 a = X[12]

 lam0 = X[13]

 m = X[14]

 #Assemble swap array

 swap = []

 swap.append(('{t1}',str(t1)))

 swap.append(('{t2}',str(t2)))

 swap.append(('{t3}',str(t3)))

 swap.append(('{t4}',str(t4)))

 swap.append(('{t5}',str(t5)))

 swap.append(('{t6}',str(t6)))

 swap.append(('{e1}',str(e1)))

 swap.append(('{e2}',str(e2)))

 swap.append(('{e3}',str(e3)))

 swap.append(('{e4}',str(e4)))

 swap.append(('{e5}',str(e5)))

 swap.append(('{e6}',str(e6)))

 swap.append(('{a}',str(a)))

 swap.append(('{lt1}',str(lt)))

 swap.append(('{lt2}',str(lt-1)))

 swap.append(('{lt3}',str(50*365+1)))

 swap.append(('{lam0}',str(lam0)))

 swap.append(('{m}',str(m)))

 curDir = os.getcwd()

 newDir = os.path.join('.',str(filename))

 if not os.path.exists(newDir):

 os.makedirs(newDir)

 os.chdir(newDir)

 print(newDir)

 shutil.copy('../FE_MultiPhys_2023.01.11','./FE_MultiPhys_2023.01.11')

 shutil.copy('../readinp.txt','./readinp.txt')

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

36

 shutil.copy('../libiomp5md.dll','./libiomp5md.dll')

 shutil.copy('../slurm_script','./slurm_script')

 template=open('../creep_template.txt','r')

 runFile=open('creep_template.txt','w')

 trl = template.readline()

 while trl:

 for i in range(len(swap)):

 if str(swap[i][0]) in trl:

 trl=trl.replace(swap[i][0], swap[i][1])

 runFile.write(trl)

 trl = template.readline()

 template.close()

 runFile.close()

 return_code = subprocess.Popen(['sbatch -W slurm_script'],shell=True)

 return_code.wait()

 time.sleep(0.01)

 # d3plot = D3plot(curDir+'\\'+filename+'\\d3plot')

 D3plot_there=True

 time_sleep=0

 while D3plot_there:

 try:

dr=D3plot(curDir+'/'+filename+'/d3plot',state_array_filter=['node_displacement'])

 D3plot_there=False

 except:

 time_sleep=time_sleep+0.1

 print('TIME SLEEP ' +time_sleep)

 time.sleep(0.1)

 a = dr.arrays['node_displacement']

 b = a - a[0]

 #disp = b[:, 1, 0]-b[lt, 1, 0]

 disp = b[:, 1, 0]

 index_t=[int(i) for i in target[:,0]]

 data = [dr.n_timesteps, disp[index_t]]

 data = np.array(data)

 if lt<500:

 f = f + (np.sum((data[1]-np.transpose(target)[1])**2)**0.5)*2

 else:

 f = f + np.sum((data[1]-np.transpose(target)[1])**2)**0.5

 # f = np.sum((data[1]-target[1])**2)**0.5

 # fig1,ax1=plt.subplots()

 # ax1.plot(ana_time,disp, linestyle='-',label='analysis')

 # ax1.plot(target[:,0],target[:,1], linestyle='--',label='target')

 # # ax1.set_ylabel('Base Shear (kN)')

 # # ax1.set_xlabel('Drift Ratio(%)')

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

37

 # # ax1.set_xlim([0,3])

 # # ax1.set_ylim([0,400])

 # ax1.legend()

 # # f=1

 return (f,X,data)

import random

import sys

from math import sqrt, pi

import subprocess

import time

import os

import pickle as pickle

from generate_runs import run_multiphys

import numpy as np

import task_inputs

xMax = task_inputs.xMax

xMin = task_inputs.xMin

numVariables = task_inputs.numVariables

lt_1 = task_inputs.lt_1

lt_2 = task_inputs.lt_2

rand = task_inputs.rand

fileName = sys.argv[1]

xInit = [0.0]*numVariables

par=int(fileName[3:6])

if rand=='y':

 for i in range(0,numVariables):

 xInit[i] = xMin[i] + random.uniform(0.0, 1.0)*(xMax[i]-xMin[i])

else:

 with open('Run000_creep_rawC_ss.txt', 'r') as f:

 par_line = f.readlines()[-400+par-1]

 ll=par_line.split(',')

 for i in range(0,numVariables):

 xInit[i]=float(ll[i+5])

X = xInit

f=0

data_all=[]

target=np.loadtxt('targeted_plot_ACI_1.txt')

#target[:,1]=target[:,1]-target[lt_1,1]

f, X,data = run_multiphys (X,fileName,target,lt_1,f)

data_all.append(data)

os.chdir("..")

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

38

target=np.loadtxt('targeted_plot_ACI_2.txt')

#target[:,1]=target[:,1]-target[lt_2,1]

f, X,data = run_multiphys (X,fileName,target,lt_2,f)

data_all.append(data)

#print(data)

m=1

with open(fileName+'.pkl', 'wb') as output:

 # pickle.dump(a, handle, protocol=pickle.HIGHEST_PROTOCOL)

 pickle.dump(f,output,protocol=pickle.HIGHEST_PROTOCOL)

 pickle.dump(X,output,protocol=pickle.HIGHEST_PROTOCOL)

 pickle.dump(m,output,protocol=pickle.HIGHEST_PROTOCOL)

 pickle.dump(data_all,output,protocol=pickle.HIGHEST_PROTOCOL)

import random

import sys

from math import sqrt, pi

import subprocess

import time

import os

import pickle as pickle

from generate_runs import run_multiphys

import numpy as np

import task_inputs

xMax = task_inputs.xMax

xMin = task_inputs.xMin

numVariables = task_inputs.numVariables

lt_1 = task_inputs.lt_1

lt_2 = task_inputs.lt_2

rand = task_inputs.rand

fileName = sys.argv[1]

xInit = [0.0]*numVariables

par=int(fileName[3:6])

if rand=='y':

 for i in range(0,numVariables):

 xInit[i] = xMin[i] + random.uniform(0.0, 1.0)*(xMax[i]-xMin[i])

else:

 with open('Run000_creep_rawC_ss.txt', 'r') as f:

 par_line = f.readlines()[-400+par-1]

 ll=par_line.split(',')

 for i in range(0,numVariables):

 xInit[i]=float(ll[i+5])

X = xInit

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

39

f=0

data_all=[]

target=np.loadtxt('targeted_plot_ACI_1.txt')

#target[:,1]=target[:,1]-target[lt_1,1]

f, X,data = run_multiphys (X,fileName,target,lt_1,f)

data_all.append(data)

os.chdir("..")

target=np.loadtxt('targeted_plot_ACI_2.txt')

#target[:,1]=target[:,1]-target[lt_2,1]

f, X,data = run_multiphys (X,fileName,target,lt_2,f)

data_all.append(data)

#print(data)

m=1

with open(fileName+'.pkl', 'wb') as output:

 # pickle.dump(a, handle, protocol=pickle.HIGHEST_PROTOCOL)

 pickle.dump(f,output,protocol=pickle.HIGHEST_PROTOCOL)

 pickle.dump(X,output,protocol=pickle.HIGHEST_PROTOCOL)

 pickle.dump(m,output,protocol=pickle.HIGHEST_PROTOCOL)

 pickle.dump(data_all,output,protocol=pickle.HIGHEST_PROTOCOL)

#Task Name:

taskName = 'creep'

#Optimization Option ('maximize' or 'minimize')

optOption ='minimize'

#Number of Variables (Number of particle DOF)

numVariables = 15

#Max Number of Particles

numParticles = 400

#numParticles = 2

#Max Number of Concurrent subProcesses

numProcesses = 100

#numProcesses = 1

#Max Number of iterations

kmax = 200

#kmax = 3

#loading time

lt_1 = 8

lt_2 = 600

#Initialize xMax and xMin

xMax=[1]*numVariables

xMin=[0]*numVariables

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

40

t1

xMax[0] = 0.1

xMin[0] = 0.1

t2

xMax[1] = 1

xMin[1] = 1

t3

xMax[2] = 10

xMin[2] = 10

t4

xMax[3] = 100

xMin[3] = 100

t5

xMax[4] = 1000

xMin[4] = 1000

t6

xMax[5] = 18000

xMin[5] = 10000

e1

xMax[6] = 1000

xMin[6] = 0.01

e2

xMax[7] = 1000

xMin[7] = 0.01

e3

xMax[8] = 1400

xMin[8] = 0.01

e4

xMax[9] = 1000

xMin[9] = 0.01

e5

xMax[10] = 1000

xMin[10] = 0.01

e6

xMax[11] = 1000

xMin[11] = 0.01

a

xMax[12] = 0.1

xMin[12] = 0.00001

lam0

xMax[13] = 10

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

41

xMin[13] = 0.0001

m

xMax[14] = 2

xMin[14] = 0.1

vmax = [0]*numVariables

vmin = [0]*numVariables

for i in range(0,numVariables):

 vmax[i]=(xMax[i]-xMin[i])/5

 vmin[i]=(xMax[i]-xMin[i])/1000

wmax = 1.0

wmin = 0.8

c1 = 0.7

c2 = 0.5

p1 = 0.6

p2 = 0.8

import random
import sys
from math import sqrt, pi
import subprocess
import time
import os
import pickle
from generate_runs import run_multiphys
import numpy as np

import task_inputs
xMax = task_inputs.xMax
xMin = task_inputs.xMin
numVariables = task_inputs.numVariables
numParticles = task_inputs.numParticles
vmax = task_inputs.vmax
vmin = task_inputs.vmin
wmax = task_inputs.wmax
wmin = task_inputs.wmin
kmax = task_inputs.kmax
c1 = task_inputs.c1
c2 = task_inputs.c2
p1 = task_inputs.p1
p2 = task_inputs.p2
optOption = task_inputs.optOption
lt_1 = task_inputs.lt_1
lt_2 = task_inputs.lt_2

#**********************

with open(sys.argv[1]+'.pkl', 'rb') as handle:
 DB = pickle.load(handle)

k = int(sys.argv[2])
i = int(sys.argv[3])

w = DB['w']

XgBest = DB['XgBest']

XNext = []
VNext = []

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

42

X = DB[i]['X']
V = DB[i]['V']
XpBest = DB[i]['XpBest']

for j in range(numVariables):

 # p = random.random()
 r1 = random.uniform(0.0, 1.0)
 r2 = random.uniform(0.0, 1.0)

 # if p < p1:
 # alpha = random.random()
 # beta = 1.
 # gamma = 1.
 # elif p > p2:
 # alpha = 0.
 # beta = 0.
 # gamma = 1.
 # else:
 # alpha = 0.
 # beta = 1.
 # gamma = 1.

 # VNext.append(max(-vmax[j],min(vmax[j],alpha*w*V[j] + beta*c1*r1*(XpBest[j]-
X[j]) + gamma*c2*r2*(XgBest[j]-X[j]))))
 Vtemp=w*V[j]+c1*r1*(XpBest[j]-X[j])+c2*r2*(XgBest[j]-X[j])
 if abs(Vtemp)>vmax[j]:
 VNext.append(np.sign(Vtemp)*vmax[j])
 elif abs(Vtemp)<vmin[j]:
 VNext.append(np.sign(Vtemp)*vmin[j])
 else:
 VNext.append(Vtemp)

 Xtemp=X[j] + VNext[j]
 if Xtemp>xMax[j]:
 XNext.append(xMax[j])
 elif Xtemp<xMin[j]:
 XNext.append(xMin[j])
 else:
 XNext.append(Xtemp)
 # XNext.append()

f=0
data_all=[]
target=np.loadtxt('targeted_plot_ACI_1.txt')
#target[:,1]=target[:,1]-target[lt_1,1]

f, X, data = run_multiphys (XNext,sys.argv[1][:-3],target,lt_1,f)
data_all.append(data)
os.chdir("..")
target=np.loadtxt('targeted_plot_ACI_2.txt')
#target[:,1]=target[:,1]-target[lt_2,1]

f, X, data = run_multiphys (XNext,sys.argv[1][:-3],target,lt_2,f)
data_all.append(data)

m=1

with open(sys.argv[1]+'.pkl', 'wb') as output:
 pickle.dump(f,output,protocol=pickle.HIGHEST_PROTOCOL)
 pickle.dump(XNext,output,protocol=pickle.HIGHEST_PROTOCOL)
 pickle.dump(VNext,output,protocol=pickle.HIGHEST_PROTOCOL)
 pickle.dump(m,output,protocol=pickle.HIGHEST_PROTOCOL)
 pickle.dump(data_all,output,protocol=pickle.HIGHEST_PROTOCOL)

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

43

References

[1] Z. Bažant, Creep and Hygrothermal Effects in Concrete Structures, 2018

[2] International Federation for Structural Concrete (fib), Model Code for

Concrete Structures, 2010

[3] ACI Committee 209, Guide for Modeling Creep in Hardened Concrete,

2008

[4] Prestress Concrete Institute, Bridge Design Manual Example 9

[5] Mix Design , https://www.engineeringcivil.com/mix-design-m-50-

grade.html

[6] A Gentle Introduction to Particle Swarm Optimization

https://machinelearningmastery.com/a-gentle-introduction-to-particle-

swarm-optimization/

[7] Pickett, G. (1942), The effect of change in moisture content on the creep

of concrete under a sustained load, Journal of the American Concrete

Institute, 38, 333–355.

[8] Particle Swarm Optimization, Wikipedia,

https://en.wikipedia.org/wiki/Particle_swarm_optimization

Ιω
άν

νη
ς Κ

υρ
ιάκ

ου

