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Abstract 
This paper employs an optimization algorithm to approximate the creep-induced 

behavior of a concrete material as predicted by various well-established models 

of concrete that exist in the literature. The models in question are i) the B3 Model 

[1] ii) the CEB-FIB 2010 model code [2] and iii) the model in the current AASHTO 

LRFD specifications [3]. 

The topic of concrete creep is of utmost significance for the maintenance of 

infrastructure such as highway bridges, where the Dead Load is much larger than 

the live loads originating from traffic. Recent studies have shown that simplified, 

design-oriented equations may not always yield conservative predictions of long-

term deformations. The economic effects of this shortcoming are enormous, while 

in some cases the structural integrity of the structure may be compromised. 

The present study used a finite element analysis of a simple model through which 

the long-term deformation of a uniaxial element was analyzed based on the 

constitutive law provided by the above-mentioned model codes. The constitutive 

law used in the analyses consists of a solidifying viscoelastic chain, calibrated to 

match the creep curves generated by the three different models. 
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Introduction 
It is well established that concrete, the solid that forms at room temperature by 

combining Portland cement with water, sand and aggregates, exhibits long-time 

deformations under load, even if the load is constant. This phenomenon is called 

creep and has been a subject of scientific study since the early 20th century, 

resulting in a plethora of mathematical models, each with its own set of relevant 

parameters, to estimate the time-dependent deformations of concrete to varying 

degrees of success. 

In an ideal scenario there would be a minimal, consistent set of industry-standard 

models to predict long-term concrete behavior. This is currently an 

insurmountable task due to the large variety of concrete products that can be 

achieved as well as the inherent variability of the physicochemical processes that 

take place during the hydration process. The multi-phased nature of concrete and 

the reliance of the final product on the properties of its constituents is a source of 

significant uncertainty in the modelling process. Consequently, the topic of 

concrete creep must undergo a probabilistic treatment, with models calibrated to 

minimize the error between observations of long-term deformations and the 

predicted values. 

The matter is further complicated by the prevalence of modern admixtures (e.g. 

plasticizers) which result in material behavior that deviates from historical 

observations, limiting the usefulness of long-time deformation measurements of 

old structures which were constructed in the absence of such admixtures. This 

results in a demand for more advanced and all-encompassing models. In any 

case, the datasets needed to produce satisfactory values for each model’s 

parameters are enormous. 

In the present study, a selection of three models in the literature was used to 

generate the long-term (i.e. 50-year duration) deformation curve of a hypothetical 

box-girder bridge with known geometry and material properties (Figure 1). This 

stage was followed by setting up a simple model in a custom finite element 

analysis program with material parameters that were iteratively calibrated with 

respect to the deformation curve generated by each of the three model codes. 

This was achieved by using the Kelvin model of a viscoelastic chain as described 

in [1]. 

The remainder of this paper examines the model codes and the process of 

calibrating a viscoelastic chain so as to approximate the creep curves predicted 

by each. 
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Literature Review: Creep Models 
Compliance Function 

The mathematical description of creep begins at (1) which separates the concrete 

strain into two components: the instantaneous strain, which depends on the 

elastic modulus at the time of loading, and the creep strain, the calculation of 

which is based on the concept of the creep coefficient, φ(t, t0).  

The creep coefficient is a concept adopted by all major concrete models and is 

usually (although other, less used variants exist) defined as the ratio of the 

additional, monotonically increasing creep strain to the initial strain induced by 

the first application of load. Since it is a strain value, it involves the use of an 

elastic modulus which - by convention - is defined as the mean value of the 28-

day elastic modulus of concrete. This is a simple recognition of the well-known 

fact that the mechanical properties of concrete are time dependent. A direct 

implication of this fact is that creep is never fully reversible when the load is 

removed by which point the elastic properties of the material have changed. 

εc,total(t) = εci(t) + εcc(t, t0)  (1) 

εcc(t) =
σc(t0)

Eci
φ(t, t0)    (2) 

εcc(t) in (2) is the time-dependent creep strain of concrete. Bundling these two 

components into a singular expression and setting the induced stress σc(t0) =

1 F ∙ M−2, we obtain the compliance function J(t, t0), which describes the strain 

response of concrete per unit stress. Within the range of applicability of these 

models, stress is linearly related to the strain via the compliance function in the 

form of (4). It should be noted that all three of the model codes examined in this 

paper [1,2,3] agree that this proportionality limit (that is, where strain is linearly 

related to stress via the compliance function) is exceeded when the compressive 

stress in the concrete core exceeds ~40% of its ultimate value. 

εc,total(t) = εci(t) + εcc(t, t0)      (3) 

εc,total(t) = σ(t0) ∙ [
1

Eci(t0)
+

φ(t,t0)

Eci
] = σ(t0) ∙ J(t, t0)  (4) 

Furthermore, the creep coefficient is split up into two components: the basic creep 

coefficient φbc(t, t0), which is what is measured on sealed concrete specimens, 
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and the drying creep coefficient φdc(t, t0), which is the additional strain caused 

by the drying process [1]. This phenomenon of concrete creep increasing in the 

presence of drying (i.e. when exposed to environmental conditions, as is almost 

always the case) was first observed by G. Pickett in the tests [7] conducted on 

specimens loaded under different humidity conditions as is shown in Figure 1 

taken from [1], where, 

D: drying specimen, no load 

L: loaded specimen, no drying (sealed specimen – basic creep) 

LD: loaded specimen in the presence of drying 

LC: loaded specimen subjected to cycles of drying and re-wetting 

The specimens were plain concrete beams of square cross section (with side 

50.8 mm, span 813 mm, and midspan load 222 N) [7]. While the specimen series 

L, LD & LC were identically loaded, the two specimen-series which included 

drying (LD & LC) exhibited increased deflection because of the movement of the 

interlayer water within the concrete core [1, 7]. 

The additional creep strain accumulated when concrete is simultaneously drying 

necessitates the use of an additional creep component (“drying creep” as 

previously mentioned) whose mathematical description has been defined by all 

three model codes in the form of (5). 

 

Figure 1 
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φ(t, t0) = φbc(t, t0) + φdc(t, t0)    (5) 

 

 

CEB-FIB 2010 

The CEB-FIB 2010 Model Code was authored by the International Federation for 

Structural Concrete to serve as a basis for code-making committees for concrete 

structures and related structural materials. This section summarizes the concrete 

creep model provided therein and its relevant input parameters. 

The creep model provided by CEB-FIB2010 is applicable [2] to ordinary concrete 

(mean compressive strength in the range 20MPa – 130MPa) cured in moist 

conditions at normal temperatures and environmental humidity (5°C to 30°C). 

The model breaks down outside of this ranges. It is also assumed that the stress 

in the concrete is less than 40% of its ultimate strength; past this point, creep 

becomes non-linear, and its mathematical description is more involved. 

 

Symbol Depends on Reference 

s 

Strength class of cement 

[2] Table 5.1-9 32.5N 
32.5R, 

42.5N 
42.5R, 52.5N, 52.5R 

0.38 0.25 0.20 

𝑎𝐸 

Aggregate Type 

[2] Table 5.1-6 Basalt Quartzite 
Limeston

e 

Sandston

e 

1.2 1.0 0.9 0.7 

𝑓𝑐𝑘 Characteristic strength in MPa [2] Table 5.1-3 

𝐸𝑐𝑖 
Elastic Modulus at 28 days ([2] convention 

for creep coefficient) 
[2] Eq. 5.1-56 

𝐸𝑐0 
reference elastic modulus for quartzite 

aggregate: 21.5 ∗ 103𝑀𝑃𝑎 
[2] Eq. 5.1-60 

𝑡0 age at loading in days [2] Eq. 5.1-60 

RH Relative Humidity as a percentage [2] Eq. 5.1-56 

𝐴𝑐 Cross sectional area of Beam [2] Eq. 5.1-56 

𝑢 
Perimeter of cross section exposed to the 

atmosphere 
[2] Eq. 5.1-70 

Table 1 – Input Parameters 
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Symbol Depends on Reference 

𝝋(𝒕, 𝒕𝟎) Creep Coefficient [2] Eq. 5.1-56 

𝜷𝒄𝒄(𝒕) Concrete strength as a function of time [2] Eq. 5.1-51 

𝜷𝑬(𝒕) Elastic Modulus as a function of time [2] Eq. 5.1-56 

𝒉 Representative cross-sectional depth [2] Eq. 5.1-56 

Table 2 - Derived quantities 

 (Eq. 6) 

Eci = Ec0 ∙ aE ∙ (
fck + Δf

10
)

1
3
 

𝛥𝑓 = 8 𝑀𝑃𝑎 

Eci(t) = βE(t) ∙ Eci 

βE(t) = [βCC(t)]0.5  

βCC(t) = exp{s ∙ [1 − (
28

t
)

0.5

 ]} 

φbc(t, t0) = 𝛽(𝑓𝑐𝑚) ∙ 𝛽𝑏𝑐(𝑡, 𝑡0) 

φdc(t, t0) = 𝛽𝑑𝑐(𝑓𝑐𝑚) ∙ 𝛽(𝑅𝐻) ∙ 𝛽𝑑𝑐(𝑡0) ∙ 𝛽𝑑𝑐(𝑡, 𝑡0) 

Where,  

𝛽(𝑓𝑐𝑚) =
1.8

(𝑓𝑐𝑚)^0.7  
 𝛽𝑏𝑐(𝑡, 𝑡0) = ln ((

30

𝑡0
+ 0.035)

2

∙ (𝑡 − 𝑡0) + 1) 

𝛽𝑑𝑐(𝑓𝑐𝑚) =
412

𝑓𝑐𝑚
1.4

 
𝛽(𝑅𝐻) =

1 −
𝑅𝐻
100

√0.1 ∙
ℎ

100

3
 

  

𝛽𝑑𝑐(𝑡0) =
1

0.1 + 𝑡0
0.2 𝛽𝑑𝑐(𝑡, 𝑡0) = [

𝑡 − 𝑡0

𝛽ℎ + (𝑡 − 𝑡0)
]

𝛾(𝑡0) 

 

  

𝛽ℎ = min {1.5 ∙ ℎ

+ 250𝑎𝑓𝑐𝑚, 1500𝑎𝑓𝑐𝑚} 

𝑎𝑓𝑐𝑚 = (35/𝑓𝑐𝑚)0.5 

  

𝛾(𝑡0) =
1

2.3 + 3.5/√𝑡0

 ℎ = 2 ∙
𝐴𝑐

𝑢
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ACI 209 

The ACI 209 Report, published in May 2008 by the American Concrete Institute 

is appropriately named “Guide for Modeling and Calculating Shrinkage and Creep 

in Hardened Concrete” and is the model adopted by the current AASHTO LFRD 

specifications. It should be noted [3] that the presence of admixtures such as 

silica fume, fly ash and natural pozzolans completely invalidates the predictions 

of this model. 

Symbol Depends on Reference 

N/A Curing Conditions: Moist vs Steam [3] Eq. A-22,23 

𝑠 Concrete slump [3] Eq. A-28 

𝑓28 Conventional strength at 28 days [3] Eq. A-17 

𝐸𝑐,𝑡0 Elastic modulus at the time of loading, t0 [3] Eq. A-18 

𝜓 Fine aggregate percentage [3] Eq. A-29 

𝑡0 age at loading in days [3] 

ℎ Relative Humidity [3] Eq. A-24 

𝑉/𝑆 

Volume to exposed surface ratio: for a 

prismatic beam equivalent to the ratio 

𝐴𝑐/𝑢 

[3] Eq. A-24 

𝑢 
Perimeter of cross section exposed to the 

atmosphere 
[3] Eq. A-24 

𝛼 Air content as a percentage [3] Eq. A-30 

𝛾𝑐 
Unit weight of concrete (not to be confused 

with creep correction factor) 
[3] Eq. A-16 

Table 3 - Input Parameters 

 

Symbol Depends on Reference 

𝑓𝑐,𝑡0
 Concrete strength at the time of loading [3] Eq. A-17 

𝐸𝑐,𝑡0 Elastic modulus at the time of loading, t0 [3] Eq. A-16 

𝛾𝑐 Creep correction factors [3] Eq. A-16 

Table 4 – Derived quantities 

(Eq. 7) 

𝜑𝑢 = 2.35𝛾𝑐 

𝛾𝑐 = 𝛾𝑐,𝑡0  ∙ 𝛾𝑐,𝑅𝐻 ∙ 𝛾𝑐,𝑣𝑠 ∙ 𝛾𝑐,𝑠 ∙ 𝛾𝑐,𝜓 ∙ 𝛾𝑠ℎ,𝑎 
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𝛾𝑐,𝑡0 = 1.25𝑡0
−0.118 𝛾𝑐,𝑅𝐻 = 1.27 − 0.67 ∙ max {ℎ, 0.40} 

  

𝛾𝑐,𝑣𝑠 =
2

3
(1 + 1.13𝑒{−

0.54𝑉
𝑠

}) 
𝛾𝑐,𝑠 = 0.82 + 0.067𝑠 

  

𝛾𝑐,𝜓 = 0.88 + 0.0024𝜓 𝛾𝑠ℎ,𝑎 = 0,43 + 0,09𝛼 ≥ 1 

  

The value 𝟐. 𝟑𝟓 in (7) is the asymptotic limiting value of the creep coefficient, 

meaning that the value of the creep strain is 𝜑𝑢 = 2.35𝛾𝑐 times the value of the 

instantaneous (elastic strain). As expected, this value is affected by the 

composition of the concrete mix, as indicated by the correction factor 𝛾𝑐. Table 4 

shows the parameters that determine the correction factors (through its partial 

factors). 

At any point in time, the value of the creep coefficient is calculated by equation 

A-18 of the ACI 209 Report. 

𝜑(𝑡, 𝑡0) =
(𝑡−𝑡0)

𝑓+(𝑡−𝑡0)
∙ 𝜑𝑢    (8) 

where 𝑓 = 26.0𝑒^{0.36(𝑉/𝑆)}  (9) 

From (9) it is evident that the creep coefficient asymptotically approaches its 

ultimate value 𝜑𝑢 calculated in (7) according to the composition of the concrete 

mix and the element geometry. 

The stress response of the material is (similar to CEB-FIB2010) calculated 

through the compliance function. 

𝐽(𝑡, 𝑡0) =
1 + 𝜑(𝑡, 𝑡0)

𝐸𝑐,𝑡0
 

where is the instantaneous concrete elastic modulus at the time of loading, given 

by  

𝐸𝑐,𝑡0
= 33 ∙ 𝛾𝑐

1.5√𝑓𝑐𝑚,𝑡0
 

 

Bazant’s B3 Model 

The B3 Model is one of the most recent models in the literature and is the result 

of the collaboration between Zdeněk P. Bažant and Milan Jirásek as presented in 

their joint book [1]. The model is based upon Bazant’s solidification theory [1] and 

its form is summarized as such: 
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Symbol Depends on Reference 

𝑎2 

Curing Conditions 

[1] C.17 pg. 714 
Steam Normal 

Moist 

(submerged 

in water) 

0.75 1.2 1.0 

𝑎1 

Cement type 

[1] C.17 pg. 714 Type I Type II Type III 

1.0 0.85 1.1 

𝑘𝑠  

Shape Factor 

[1] pg. 44 Slab Cylinder 
Square 

Prism 

1.00 1.15 1.25 

𝑉/𝑆 

Volume to exposed surface ratio: for a 

prismatic beam equivalent to the ratio 

𝐴𝑐/𝑢 

[1] C.17 pg. 711 

𝑓𝑐 Mean compressive strength [1] C.17 pg. 711 

w Water content (mass) in concrete mix [1] C.17 pg. 711 

𝑐 Cement content (mass) in concrete mix [1] C.17 pg. 711 

𝑎 Aggregate content (mass) in concrete mix [1] C.17 pg. 711 

ℎ𝑒𝑛𝑣 Relative Humidity [1] C.17 pg. 711 

𝑡0 
Age of concrete at the time of loading, in 

days 
[1] C.17 pg. 711 

𝑡′ 
Age of concrete at the end of curing, in 

days 
[1] C.17 pg. 711 

Table 5 – Input Parameters 

 

The compliance function is given by 

𝐽(𝑡, 𝑡0) = q1 + q2𝑄(𝑡, 𝑡0) + q3 ln[1 + (𝑡 − 𝑡0)0.1] + q4 ln (
𝑡

𝑡0
) +

q5√𝑒−𝑔(𝑡−𝑡′) − 𝑒−𝑔(𝑡−𝑡0)   (10) 

The auxiliary functions are calculated as: 

 

(Eq. 11) 

𝑄(𝑡, 𝑡0) = 𝑄𝑓(𝑡0) [1 + (
𝑄𝑓(𝑡0)

𝑍(𝑡, 𝑡0)
)

𝑟(𝑡0)

]

−1/𝑟(𝑡0)

 

𝑟(𝑡0) = 1.7 ∙ (𝑡0)0.12 + 8 
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𝑍(𝑡, 𝑡0) = (𝑡0)−0.5ln [1 + (𝑡 − 𝑡0)0.1] 

𝑄𝑓(𝑡0) = [0.086(𝑡0)2/9 + 1.21(𝑡0)4/9 ]
−1

 

𝜀𝑠ℎ = −𝜀𝑠ℎ
∞ (1 − ℎ𝑒𝑛𝑣

3 ) ∙ 𝑆(𝑡 − 𝑡0) 

𝜀𝑠ℎ
∞ = 0.57514 ∙ 𝑎1 ∙ 𝑎2(0.019𝑤2.1𝑓𝑐

−0.28 + 270) ∙ √3 +
14

(𝑡0 + 𝑘𝑡(𝑘𝑠 ∙ 𝐷)^2 )
 

𝑔(𝛥𝑡) = 8 ∙ [1 − (1 − ℎ𝑒𝑛𝑣) ∙ 𝑆(𝛥𝑡)] 

𝑆(𝛥𝑡) = 𝑡𝑎𝑛ℎ√
𝛥𝑡

𝑘𝑡(𝑘𝑠 ∙ 𝐷)^2   
 

𝑘𝑡 = 0.085𝑡0
−0.08 ∙ 𝑓𝑐

−1/4
 

Where the value of 𝑘𝑠 is found in Table 6. 

The constant coefficients q1 through q5 [1] all have the units of 𝑀𝑃𝑎−1 and are 

given by:  

q1 = 126.77𝑓𝑐
−0.5 ∙ 10−6 

q2 = 185.4 ∙ 𝑐0.5 ∙ 10−6 

q3 = 0.29 (
𝑤

𝑐
)

4

 ∙ q2 

q4 = 20.3 ∙ (
𝑎

𝑐
)

−0.7

∙ 10−6 

q5 = 7.57 ∙ 𝑓𝑐
−1(𝜀𝑠ℎ

∞ )−0.6 ∙ 10−1 

 

Comparison between Models 

All models recognize the inverse correlation between the age at loading, and the 

developed creep strains as the most significant factor. To account for the drying 

component of creep, the relative humidity and the curing conditions (e.g. normal 

(“moist”) curing, steam curing) also affect the model equations. 

All three models exhibit a close dependence on the composition of the concrete 

mix – the ACI209 model requires a more thorough knowledge of the fresh mix’s 

properties such as its air content as well as the slump, and all three models are 

affected by the type (and quantity) of aggregate used. Recognizing that these 

values may not be entirely known to the designer at the time of modelling 

(whether it be an existing structure or a new one), the ACI209 Report is based on 
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typical values of these parameters; the designer may use the creep correction 

factors to account for each special case. 

Concurrently, all three models consider the size of the concrete specimen through 

its effective depth meaning the ratio of exposed volume to exposed specimen 

surface. 

 

Generation of Deformation Curves 
The input parameters and equations for each model were input into an Excel 

Spreadsheet to generate the total deformation of our specimen for the next 50 

years (18,250 days). The deformation curve generated in each case 

corresponded to unit stress, so essentially what was generated was a graph of 

the compliance function. As previously mentioned, concrete creep is linear with 

respect to stress until the stress reaches around 40% of its ultimate value [1]. 

The horizontal axis (time) was set to a logarithmic scale in order to accurately 

visualize the evolution of creep for the target time span, from the first application 

of load at 8 days, kept constant for the next 50 years. 

The parameters that concern the concrete composition (water, cement and 

aggregate content) were taken from a sample mix [5] and the element geometry 

(Figure 1) as well as the initial loading at the 8th day, were taken from [4]. 

 

Model Inputs 

 CEB2010 ACI209 B3 

Strength class 42.5R s = 0.20 N/A 
Type III 

Cement 
𝑎1 = 1.1 

Aggregate type Limestone 𝑎𝐸 = 0.9 N/A N/A 

Aggregate 

content 
N/A N/A 𝑎 = 1909

𝑘𝑔

𝑚3
 

Fine Aggregate 

% 
N/A 32.6% N/A 

Air content % N/A 6% N/A 

Slump N/A 69 mm N/A 

Relative 

humidity 
0.7 0.7 0.7 

Age at loading, 

𝑡0 
8 days 8 days 8 days 
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Representative 

depth, ℎ 
184mm 184mm 184mm 

Water content, 

𝑤 
N/A N/A 115.2 𝑘𝑔/𝑚3  

Cement 

content, 𝑐 
N/A N/A 288.3 𝑘𝑔/𝑚3 

Aggregate 

content, 𝑎 
N/A N/A 1758.4 𝑘𝑔/𝑚3 

Compressive 

strength 
4 ksi (28MPa) 4 ksi (28MPa) 4 ksi (28MPa) 

Table 6 – Model inputs 

 

 

 

Figure 2 
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For the model inputs in Table 6, the final values of the compliance functions 

(strains corresponding to unit stress) for each model (after 50 years of sustained 

loading) are as such: 

 

B3 CEB2010 ACI209 

10.8 ∙ 10−7 9.15 ∙ 10−7 7.09 ∙ 10−7 

Table 7 – Final Strain values 

 

The greatest creep deformation is predicted by the B3 Model, in which creep is 

assumed to not have a finite bound but instead increases indefinitely in a 

logarithmic manner. ACI209 was expected to yield the lowest value given that the 

model is set up in such a way as to approach a given asymptotic value. 

 

 

Figure 3 
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Figure 4 

 

 

Figure 5 
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Figure 6 

 

Particle Swarm Optimization 
As mentioned in [1], concrete is an aging material that belongs to the realm of 

linear viscoelasticity; in simple terms this means that concrete exhibits time-

dependent deformation. In the present paper, the fundamental material model 

selected to describe the long-term deformations of concrete is the Kelvin chain, 

as was done by Bazant in [1] Fig. 6) and whose compliance function is given by 

(12). The derivation of the compliance function can be found in [1]. 

𝛷(𝑡) = ∑
1 − 𝑒

−
𝑡

𝜏𝜇

𝛦𝜇
 

𝜇

1

       (12) 

Equation (12) is the sum of the compliances of the 𝜇 units that make up the chain; 

in the realm of viscoelasticity each unit has an elastic component and a viscous 

component working in parallel and respectively characterized by the elastic 

stiffness 𝛦𝜇 and viscosity 𝜂𝜇. The ratio of the latter to the former is defined [1] as 

the retardation time of the unit, 𝜏𝜇 = 𝜂𝜇/𝛦𝜇, and has the appropriate units of time. 

It is a measure of the time period within which the particular unit in the chain has 

an appreciable influence on the total sum as implied by the negative exponential 
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term in the numerator of the sum; for times 𝑡 beyond the retardation time 𝜏𝜇 the 

contribution of the unit vanishes rapidly. 

According to Bazant’s solidification model [1], the compliance function 𝛷(𝑡) of the 

Kelvin chain is influenced the solidification coefficient 𝜈(𝑡) via equation 13. The 

parameters 𝛼, 𝜆0, 𝑚 are empirical constants. 

A full exposition on the solidification theory and the derivation of its formulas can 

be found in [1]. 

1

𝑣(𝑡)
= 1 +

1

𝑎
(

𝜆0

𝑡
)

𝑚

         (13) 

 

Figure 7 

 

The goal is then to find the values of the parameters 𝛼, 𝜆0, 𝑚 as well as the values 

for 𝛦𝜇 , 𝜏𝜇 (corresponding to the 𝜇 units in the Kelvin chain) that best approximate 

the generated deformation (strain) values, leaving us with a total of 

2𝜇 (𝑖. 𝑒.  𝛦𝜇 & 𝜏𝜇 ) + 3(𝑖. 𝑒.  𝛼, 𝜆0, 𝑚 ) decision variables. In the present paper the 

number of units in the Kelvin chain was six, for a total of 15 decision variables. 

Following Bazant’s [1] recommendation of separating the retardation times by an 

order of magnitude to cover as large a time period as needed, and given that the 

values resulting from the calibration were subsequently applied to the box-girder 

bridge for a 50-year duration (18250 days), it follows that the number of units in 

the chain is six, with the following fixed retardation times, 

𝜏1 = 0.1, 𝜏2 = 1.0, 𝜏3 = 10.0, 𝜏4 = 100.0, 𝜏5 = 1000.0, 𝜏6 = 10000.0 𝑑𝑎𝑦𝑠 
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The PSO (Particle Swarm Optimization) [6] algorithm was used for the purpose 

of calibrating the viscoelastic chain’s response to match the generated creep 

compliance for the three model codes in the present study. 

 

Algorithm Description 

The Particle Swarm Optimization routine belongs to the class of meta-heuristic 

algorithms that iteratively improves a set of candidate solutions to a problem with 

respect to a given measure of quality. This family of algorithms also includes the 

well-known Genetic Algorithms which operate in a similar fashion. 

In this case, the goal was to minimize the SRSS (Square Root of Squared Sums) 

error between the strain values predicted by the three models and the material’s 

deformation response, as determined by the Finite Element analysis of a 

uniaxially loaded beam of unit cross-sectional area and length, so that 

deformations are equal to strains. The algorithm was appropriately named as 

such because it seeks to emulate the behavior of birds or fish (particles) that 

instinctively organize themselves in swarms in search of resources and whose 

individual movement is influenced (but not entirely determined) by the movement 

of the whole group. 

Each particle represents a possible solution to the problem (a specific set of 

values for the 2𝜇 + 3 decision variables) which is subsequently altered in each 

iteration if a superior set of values is found. To effectively exploit the computing 

power of the HPC supercomputer, a number of 400 particles and a number of 

200 total iterations were selected to carry out the optimization, although a smaller 

number of particles can be used if computing resources are limited. 

 

Algorithm Progression 

In the very first iteration of the algorithm run (initialization phase) it is necessary 

to supply all particles with their initial values and determine the best (see section 

Measure of Fitness) solution among them. Once this is done, the swarming phase 

of the algorithm can begin. 

In every subsequent iteration, the algorithm records the latest values of the 

decision variables for each particle 𝑖; this set of values is the particle’s position 

vector 𝑿𝒊 in the search space (𝐑𝟐𝛍+𝟑) which is subject to improvements in every 

iteration. Keeping up with the swarm analogy, it is then necessary to define the 

velocity vector 𝑽𝒊 (15) which will determine the particle’s next position in the 
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search space according to (14) and after doing so, evaluate each new solution’s 

fitness and record the most optimal vector of values achieved thus far as the 

particle’s new personal best (𝑝𝑏𝑒𝑠𝑡). Finally, the best solution among the particles 

is selected as the swarm’s global best 𝑔𝑏𝑒𝑠𝑡. 

In the following equations the superscript 𝑖 refers to the particle 𝑖 and the index 

variable 𝑛 refers to the current iteration of the algorithm; one can notice that the 

“global best” vector 𝑔𝑏𝑒𝑠𝑡 is not denoted by a superscript since it concerns the 

whole swarm rather than an individual particle. 

The application of the two random coefficients 𝑟1, 𝑟2 in (15) assists the algorithm 

in reaching new solutions and not remain trapped in local minima (valleys) of the 

cost function used to evaluate the fitness of each solution, as is the case with 

some popular deterministic algorithms (e.g. Gradient Descent). 

 

𝑿𝒊(𝒏 + 𝟏) = 𝑿𝒊(𝒏) + 𝑽𝒊(𝒏 + 𝟏) (14) 

𝑽𝒊(𝒏 + 𝟏) = 𝒘𝑽𝒊(𝒏) + 𝒄𝟏𝒓𝟏 (𝒑𝒃𝒆𝒔𝒕𝒊 − 𝑿𝒊(𝒏)) + 𝒄𝟐𝒓𝟐(𝒈𝒃𝒆𝒔𝒕 − 𝑿𝒊(𝒏)) (15) 

 

The various parameters appearing in (15) can be summarized as such: 

𝑤 ∈ [0,1]: 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

As implied by its name, the inertia constant affects how much the previous 

velocity vector influences the new one, determining the extent to which the 

particle will deviate from its previous path. 

𝑐1  ∈ [0,1]: 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 (exploration)𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 

which determines how much the particle will remain tethered to its own personal 

best. 

𝑐2  ∈ [0,1]: 𝑠𝑜𝑐𝑖𝑎𝑙 (exploitation)𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 

which determines how much the particle will move towards the swarm’s global 

best achieved thus far in the iteration. 

𝑟1  ∈ [0,1]: 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

𝑟2  ∈ [0,1]: 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

The selection of the values for the coefficients 𝑤, 𝑐1, 𝑐2 – especially the interplay 

between the individual (𝑐1) and social (𝑐2) components – is a whole subject of 

study and beyond the scope of this paper. As previously mentioned, the values 
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of 𝑟1 and  𝑟2 are randomly generated (from a uniform probability distribution in 

our). For the purposes of the calibration the following values were used: 

𝑤 = 0.8, 𝑐1 = 0.7, 𝑐2 = 0.5 

The inertial and individual components, 𝑤 and 𝑐1, are appropriately larger than 

the social component 𝑐2 to take advantage of the large number of particles in 

finding new, potentially superior, solution sets. 

 

Ranges of Values for the Decision Variables 

As mentioned above, the retardation times were fixed to their sequential values, 

starting from the value of 0.1 days, and increasing by an order of magnitude for 

each subsequent unit, as is recommended by Bazant in [1]. The elastic moduli 

were granted an enormous range of possible values - namely between 0.1 and 

1000 - since the number of particles itself was quite large; this would prevent 

the algorithm from remaining trapped in locally optimal solutions. 

The remaining three decision variables stemming from the solidification theory 

were allowed the following ranges of values: 

𝛼 ∈ [0.00001, 0.1], 𝜆0 ∈ [0.001, 10], 𝑚 ∈ [0.1, 2] 

While seemingly random, it must be noted that the upper and lower bounds for 

these variables were progressively modified throughout the various calibration 

runs to improve the output of the algorithm. They are empirical constants with 

no particular physical meaning. 

 

Measure of Fitness 

The goal of each iteration was to evaluate the quality of the newfound solutions, 

namely the set of values for the decision variables. For this task, it is necessary 

to define a target and a method of determining the “closeness” of the candidate 

solution to said target. In the present study, the target for each calibration run 

was the generated strain curve originating from the three model codes 

examined, and the measure of closeness of a candidate solution to the target 

was the error between the values predicted by the model curves and the actual 

material response (as determined by the Finite Element Analysis of the 

uniaxially loaded beam equipped with the Kelvin chain compliance function). 

Specifically, the Square Root of Squared Sums of the differences (errors) was 

used. This measure of closeness is referred to in the literature as the cost 
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function, objective function, etc., and the goal in this case was to select the 

vector of values that minimizes its value i.e. best approach the target curves. 

 

Python Source Code 

The Python code to perform the optimization was split up into five source files. 

Due to the memory and processing-intensive nature of the algorithm, it was 

executed in a multi-threaded environment using the university’s HPC 

supercomputer; the parameters determined at each iteration were fed through a 

Finite Element Analysis program, which applied a unit load and recorded the 

deformation history. To carry out the calibration algorithm and to produce the 

necessary visualizations of the various results, several well-known Python 

libraries were used e.g. numpy, pickle, matplotlib as well as several built-in 

libraries to handle the generated data files. The actual Python Source code is 

included in Appendix A. 

 

Calibration Results 

In each iteration the algorithm modifies the decision variables to gradually 

approach the target curve (dashed line in figures 8, 9, 10, 11 labeled ‘target’). 

Figures 8, 9, 10, 11 showcase some sample steps for each iteration and the 

progressive improvement of our Kelvin chain as it approaches the deformation 

curve generated by each model. Because of the long-duration nature of the 

analysis and the fact that concrete creep displays logarithmic growth [1, 2, 3, 7] 

it is necessary to plot the time axis (x-axis) in logarithmic scale to properly 

visualize the evolution of the compliance function. 

The final strain values (instantaneous + creep strain) for all three models are 

shown in Figures 12, 13, 14 where the calibration was performed for loading at 

ages 8 (green lines) and 600 days (red lines). In every case, there was a better 

approximation when the model was loaded at 600 days, by which point the 

concrete compliance functions “level off” due to the extensive maturing of the 

material. The material response taken from the analysis is represented by the 

continuous line, which in every case is accompanied by the target it attempts to 

approach, represented by the dashed line. 
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Figures 8-11 – Progressive Calibration of Kelvin Chain 
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Figures 12-14 – Final Calibration Results 
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Analysis of Prestressed Beam 
The final values of the chain parameters taken from the calibration were then 

used as the concrete constitutive law in the three-span prestressed beam model 

[4] and the relaxation of the tendons due to the creep deformation of the 

concrete beams was recorded. The longitudinal profile and cross section of the 

bridge are shown in Figure 15, and the evolution of the tendon stress for each 

model is shown in Figure 16. As predicted, the accumulation of deformation in 

the concrete induces relaxation of the pre-stressed tendons; the model 

calibrated according to the B3 Model exhibits the most tendon relaxation of all 

due to the increased creep strain. 

 

 

 

Figure 15 – Example bridge profile (PCI Manual) Ιω
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Figure 16 

 

Conclusions 
There seems to be a good agreement between the creep deformations predicted 

by the model codes and the final parameters of the Kelvin chain, which undergoes 

aging according to the viscoelastic model and Bazant’s solidification theory [1]. 

These models could thus be incorporated into a finite element analysis software 

package to predict the time-dependent deformations of creep-sensitive structures 

such as nuclear tanks and bridges, where it could furthermore be used to 

calculate the prestress losses of post-tensioning steel and so on. 
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Appendix A: Python Source Code 
import os 

import shutil 

import subprocess 

import numpy as np 

import sys 

import copy 

import random 

import math 

import time 

import pickle 

from generate_runs import run_multiphys  

import matplotlib.pyplot as plt 

import matplotlib 

curDir = os.getcwd() 

#********************** 

# LOAD INPUTS 

#********************** 

os.chdir(curDir) 

import task_inputs 

taskName = task_inputs.taskName 

numVariables = task_inputs.numVariables 

numParticles = task_inputs.numParticles 

vmax = task_inputs.vmax 

vmin = task_inputs.vmin 

wmax = task_inputs.wmax 

wmin = task_inputs.wmin 

kmax = task_inputs.kmax 

c1 = task_inputs.c1 

c2 = task_inputs.c2 

p1 = task_inputs.p1 

p2 = task_inputs.p2 

optOption = task_inputs.optOption 

numProcesses = task_inputs.numProcesses 

lt_1 = task_inputs.lt_1 

lt_2 = task_inputs.lt_2 

# infoNames = task_inputs.infoNames 

#********************** 

# MISC. SET UP 

#********************** 

 

n = 0 

k = 1 

DB = {} 

DB[k] = {} 

DB[k]['iter'] = k 

fname = [] 

fname2 = [] 

runNumber = 'Null' 
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try: 

    runNumber = sys.argv[1] 

except IndexError: 

    runNumber = '000' 

    for i in range(1,numParticles+1): 

    DB[k][i] = {} 

    DB[k][i]['par'] = i 

    DB[k][i]['V']=[] 

#   DB[k][i]['locx']=[] 

#   DB[k][i]['locz']=[] 

    for j in range(0,numVariables): 

        DB[k][i]['V'].append(copy.deepcopy(random.uniform(0.01, 1.)*vmax[j])) 

    fname.append('Par'+str(i).zfill(3)+'i') 

    fname2.append('Par'+str(i).zfill(3)+'a') 

#********************** 

# WRITE HEADERS TO .OUT FILES: 

#********************** 

 

Outfile = open('Run'+runNumber+'_'+taskName+'_rawC.txt','a') 

Outfile.write('iter,par,f,pBest,gBest,g,') 

for var in range(0, numVariables): 

    Outfile.write('X['+str(var)+'],') 

for var in range(0, numVariables): 

    Outfile.write('V['+str(var)+'],') 

# for item in infoNames: 

#   Outfile.write(str(item)+',') 

Outfile.write('\n') 

Outfile.close() 

#********************** 

# INITIALIZE PARTICLES 

#********************** 

for i in range(0, 1+int(math.floor(max(numParticles,numProcesses)/numProcesses))): 

    parRun = [] 

    for j in range(0, numProcesses): 

        parRun.append(int(i*numProcesses+j+1)) 

        if(parRun[j]<=numParticles): 

            execString = '' 

            execString = execString + 'pp' + str(parRun[j]).zfill(3) + ' = ' 

            execString = execString + 

"subprocess.Popen(['python','initializeParticle.py', fname[parRun[j]-1]])" 

            exec(execString) 

            time.sleep(0.01) 

    for j in range(0, numProcesses): 

        if(parRun[j]<=numParticles): 

            execString = '' 

            execString = execString + 'out'+str(parRun[j]).zfill(3)+' = ' 

            execString = execString + 'pp'+str(parRun[j]).zfill(3)+'.wait()' 

            exec(execString) 

#********************** 

# LOAD INITIALIZED PARTICLES FROM PICKLE FILES, 

# SET UP DB DICTIONARY 
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#********************* 

for i in range(1,numParticles+1): 

    with  open(curDir+"/"+fname[i-1]+"/"+fname[i-1]+'.pkl', 'rb') as handle: 

        DB[k][i]['f'] = pickle.load(handle) 

        DB[k][i]['X'] = pickle.load(handle) 

        m = pickle.load(handle) 

        DB[k][i]['data'] = pickle.load(handle) 

        n += m 

        handle.close() 

        DB[k][i]['pBest'] = DB[k][i]['f'] 

        DB[k][i]['XpBest'] = DB[k][i]['X'] 

#********************** 

# Identify global best position 

#********************** 

DB[k]['gBest'] = DB[k][1]['f'] 

DB[k]['XgBest'] = DB[k][1]['X'] 

DB[k]['dataBest'] = DB[k][1]['data'] 

for i in range(1,numParticles+1): 

    f = DB[k][i]['f'] 

    X = DB[k][i]['X'] 

    data = DB[k][i]['data'] 

    if (optOption.lower()=='minimize'): 

        if f < DB[k]['gBest']: 

            DB[k]['gBest'] = f 

            DB[k]['XgBest'] = X 

            DB[k]['dataBest'] = data 

    elif (optOption.lower()=='maximize'): 

        if f > DB[k]['gBest']: 

            DB[k]['gBest'] = f 

            DB[k]['XgBest'] = X 

            DB[k]['dataBest'] = data 

    else: 

        print ('ERROR! optOption is not properly defined') 

        exit() 

#********************** 

# Iteration loop: 

#********************** 

 

DB[k]['n'] = n 

done = False 

while not done: 

    g_vmax = -1. 

    for i in range(1,numParticles+1): 

        X = DB[k][i]['X'] 

        f = DB[k][i]['f'] 

        data = DB[k][i]['data'] 

        # g = DB[k][i]['g'] 

        if (optOption.lower()=='minimize'): 

            if f < DB[k][i]['pBest']: 

                DB[k][i]['pBest'] = f 

                DB[k][i]['XpBest'] = X 
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                DB[k][i]['dataBest'] = data 

            if f < DB[k]['gBest']: 

                DB[k]['gBest'] = f 

                DB[k]['XgBest'] = X 

                DB[k]['dataBest'] = data 

        elif (optOption.lower()=='maximize'): 

            if f > DB[k][i]['pBest']: 

                DB[k][i]['pBest'] = f 

                DB[k][i]['XpBest'] = X 

                DB[k][i]['dataBest'] = data 

            if f > DB[k]['gBest']: 

                DB[k]['gBest'] = f 

                DB[k]['XgBest'] = X 

                DB[k]['dataBest'] = data 

        else: 

            print ('ERROR! optOption is not properly defined') 

            exit() 

             

        p_vmax = max([abs(x) for x in DB[k][i]['V']]) 

        if p_vmax > g_vmax: 

            g_vmax = p_vmax  

         

    #if g_vmax < vmin: 

        #print 'g_vmax < vmin' 

        #done = True 

    if k > kmax: 

        print ('k >= kmax') 

        done = True 

    if not done: 

        DB[k+1] = {} 

        DB[k+1]['iter'] = k+1 

        w = wmax-(wmax-wmin)*k/kmax 

        DB[k]['w'] = w 

        for i in range(1,numParticles+1): 

            DB[k+1][i] = {} 

            DB[k+1][i]['par'] = i 

            DB[k+1][i]['pBest'] = DB[k][i]['pBest'] 

            DB[k+1][i]['XpBest'] = DB[k][i]['XpBest'] 

            with open(fname2[i-1]+str(k).zfill(3)+'.pkl', 'wb') as output: 

                pickle.dump(DB[k],output,protocol=pickle.HIGHEST_PROTOCOL) 

            output.close() 

        for i in range(0, 

1+int(math.floor(max(numParticles,numProcesses)/numProcesses))): 

            parRun = [] 

            for j in range(0, numProcesses): 

                parRun.append(int(i*numProcesses+j+1)) 

                if(parRun[j]<=numParticles): 

                    execString = '' 

                    execString = execString + 'pp'+str(parRun[j]).zfill(3)+' = ' 
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                    execString = execString + 

"subprocess.Popen(['python','updateParticle.py', fname2[parRun[j]-

1]+str(k).zfill(3)," 

                    execString = execString + "str(k), str("+str(parRun[j])+")])" 

                    exec(execString) 

                    time.sleep(0.01) 

            for j in range(0, numProcesses): 

                if(parRun[j]<=numParticles): 

                    execString = '' 

                    execString = execString + 'out'+str(parRun[j]).zfill(3)+' = ' 

                    execString = execString + 'pp'+str(parRun[j]).zfill(3)+'.wait()' 

                    exec(execString) 

                    time.sleep(0.01) 

        for i in range(1,numParticles+1): 

            with  open(curDir+"/"+fname2[i-1]+"/"+fname2[i-

1]+str(k).zfill(3)+'.pkl', 'rb') as handle: 

                DB[k+1][i]['f'] = pickle.load(handle) 

                DB[k+1][i]['X'] = pickle.load(handle) 

                DB[k+1][i]['V'] = pickle.load(handle) 

                m = pickle.load(handle) 

                DB[k+1][i]['data'] = pickle.load(handle) 

                n += m 

                handle.close() 

                DB[k+1][i]['pBest'] = DB[k][i]['pBest'] 

                DB[k+1][i]['XpBest'] = DB[k][i]['XpBest'] 

                os.remove(fname2[i-1]+str(k).zfill(3)+'.pkl') 

                pkl_there=False 

        DB[k+1]['gBest'] = DB[k]['gBest'] 

        DB[k+1]['XgBest'] = DB[k]['XgBest'] 

        DB[k+1]['dataBest'] = DB[k]['dataBest'] 

        DB[k+1]['n'] = n 

        # Plot the best solution 

        target=np.loadtxt('targeted_plot_ACI_1.txt')  

        #target[:,1]=target[:,1]-target[lt_1,1] 

         

        fig1,ax1=plt.subplots() 

        # ax1.plot(DB[k]['dataBest'][0],DB[k]['dataBest'][1], linestyle='-

',label='analysis') 

        ax1.plot(target[:,0],DB[k]['dataBest'][0][1], linestyle='-

',label='analysis')  

        ax1.plot(target[:,0],target[:,1], linestyle='--',label='target')  

        # ax1.set_ylabel('Base Shear (kN)') 

        # ax1.set_xlabel('Drift Ratio(%)') 

        # ax1.set_xlim([0,3 ]) 

        # ax1.set_ylim([0,400 ]) 

        ax1.legend() 

        ax1.set_xscale('log') 

         

        fig1.savefig(str(k)+'_1_.png') 

        plt.close(fig1) 
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        target=np.loadtxt('targeted_plot_ACI_2.txt')  

        #target[:,1]=target[:,1]-target[lt_2,1] 

         

        fig1,ax1=plt.subplots() 

        # ax1.plot(DB[k]['dataBest'][0],DB[k]['dataBest'][1], linestyle='-

',label='analysis') 

        ax1.plot(target[:,0],DB[k]['dataBest'][1][1], linestyle='-

',label='analysis')  

        ax1.plot(target[:,0],target[:,1], linestyle='--',label='target')  

        # ax1.set_ylabel('Base Shear (kN)') 

        # ax1.set_xlabel('Drift Ratio(%)') 

        # ax1.set_xlim([0,3 ]) 

        # ax1.set_ylim([0,400 ]) 

        ax1.legend() 

        ax1.set_xscale('log') 

        #plt.show() 

        fig1.savefig(str(k)+'_2_.png') 

        plt.close(fig1) 

         

        Outfile = open('Run'+runNumber+'_'+taskName+'_rawA.txt','a') 

        Outfile.write('iter = %i, n = %i, gBest = %g' % 

(DB[k]['iter'],DB[k]['n'],DB[k]['gBest'])) 

        for var in range(0, numVariables): 

                Outfile.write(', X['+str(var)+'] = ') 

                Outfile.write(str(DB[k]['XgBest'][var])) 

        Outfile.write('\n') 

        Outfile.close() 

         

        Outfile = open('Run'+runNumber+'_'+taskName+'_rawB.txt','a') 

        Outfile.write('iter = %g, gBest = %g\n' % (DB[k]['iter'], DB[k]['gBest'])) 

        for i in range(1,numParticles+1): 

            Outfile.write('par = ') 

            Outfile.write(str(DB[k][i]['par'])) 

            Outfile.write(', f = ') 

            Outfile.write(str(DB[k][i]['f'])) 

            Outfile.write(', pBest = ') 

            Outfile.write(str(DB[k][i]['pBest'])) 

            for var in range(0, numVariables): 

                Outfile.write(', X['+str(var)+'] = ') 

                Outfile.write(str(DB[k][i]['X'][var])) 

            for var in range(0, numVariables): 

                Outfile.write(', V['+str(var)+'] = ') 

                Outfile.write(str(DB[k][i]['V'][var])) 

            Outfile.write('\n') 

        Outfile.write('*****************************************************\n') 

        Outfile.close() 

         

        Outfile = open('Run'+runNumber+'_'+taskName+'_rawC.txt','a') 

        for i in range(1,numParticles+1): 

            Outfile.write(str(DB[k]['iter'])) 
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            Outfile.write(',') 

            Outfile.write(str(DB[k][i]['par'])) 

            Outfile.write(',') 

            Outfile.write(str(DB[k][i]['f'])) 

            Outfile.write(',') 

            Outfile.write(str(DB[k][i]['pBest'])) 

            Outfile.write(',') 

            Outfile.write(str(DB[k]['gBest'])) 

            Outfile.write(',') 

            for var in range(0, numVariables): 

                Outfile.write(str(DB[k][i]['X'][var])) 

                Outfile.write(',') 

            for var in range(0, numVariables): 

                Outfile.write(str(DB[k][i]['V'][var])) 

                Outfile.write(',') 

            Outfile.write('\n') 

        Outfile.close() 

         

        print('iteration='+str(k)) 

        k += 1 

 

 

import os 

import shutil 

import subprocess 

import time 

from lasso.dyna import D3plot, ArrayType as dt 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib 

 

def read_spc(name): 

    time=[] 

    data={} 

    nodes=[] 

    first=1 

    f = open(name+"/spcforc", "r") 

    for x in f: 

        if x[1:7]=="output": 

            time.append(float(x.split()[4])) 

            first=first-1 

        elif x[1:5]=="node" and x[25:31]=="forces" and first==0 : 

            nodes.append(int(x.split()[1])) 

            data[nodes[-1]]=[] 

    f.close() 

     

    return time 

 

def read_deplot_disp(d3plot): 

    #d3plot = D3plot(name+'/d3plot')     

    disp = d3plot.arrays["node_displacement"] 

    return disp 
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def drift(disp, node1,node2, direction,h): 

    re_disp_1=[x[node1-1][direction]-disp[0][node1-1][direction] for x in disp] 

    re_disp_2=[x[node2-1][direction]-disp[0][node2-1][direction] for x in disp] 

    re_disp=[x-y for x, y in zip(re_disp_1, re_disp_2)] 

    drift=[x/h for x in re_disp] 

    return drift 

 

def run_multiphys(X,filename,target,lt,f): 

    t1 = X[0] 

    t2 = X[1] 

    t3 = X[2] 

    t4 = X[3] 

    t5 = X[4] 

    t6 = X[5] 

    e1 = X[6] 

    e2 = X[7] 

    e3 = X[8] 

    e4 = X[9] 

    e5 = X[10] 

    e6 = X[11] 

    a  = X[12] 

    lam0  = X[13] 

    m  = X[14] 

 

    #Assemble swap array 

    swap = [] 

    swap.append(('{t1}',str(t1))) 

    swap.append(('{t2}',str(t2))) 

    swap.append(('{t3}',str(t3))) 

    swap.append(('{t4}',str(t4))) 

    swap.append(('{t5}',str(t5))) 

    swap.append(('{t6}',str(t6))) 

    swap.append(('{e1}',str(e1))) 

    swap.append(('{e2}',str(e2))) 

    swap.append(('{e3}',str(e3))) 

    swap.append(('{e4}',str(e4))) 

    swap.append(('{e5}',str(e5))) 

    swap.append(('{e6}',str(e6))) 

    swap.append(('{a}',str(a))) 

    swap.append(('{lt1}',str(lt))) 

    swap.append(('{lt2}',str(lt-1))) 

    swap.append(('{lt3}',str(50*365+1))) 

    swap.append(('{lam0}',str(lam0))) 

    swap.append(('{m}',str(m))) 

     

    curDir = os.getcwd() 

    newDir = os.path.join('.',str(filename)) 

    if not os.path.exists(newDir): 

        os.makedirs(newDir) 

     

    os.chdir(newDir) 

    print(newDir) 

    shutil.copy('../FE_MultiPhys_2023.01.11','./FE_MultiPhys_2023.01.11') 

    shutil.copy('../readinp.txt','./readinp.txt') 
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    shutil.copy('../libiomp5md.dll','./libiomp5md.dll') 

    shutil.copy('../slurm_script','./slurm_script') 

     

    template=open('../creep_template.txt','r') 

    runFile=open('creep_template.txt','w') 

   

    trl = template.readline() 

    while trl: 

        for i in range(len(swap)): 

            if str(swap[i][0]) in trl: 

                trl=trl.replace(swap[i][0], swap[i][1]) 

        runFile.write(trl) 

        trl = template.readline() 

    template.close() 

    runFile.close() 

     

    return_code = subprocess.Popen(['sbatch -W slurm_script'],shell=True) 

    return_code.wait() 

    time.sleep(0.01) 

     

    # d3plot = D3plot(curDir+'\\'+filename+'\\d3plot') 

     

    D3plot_there=True 

    time_sleep=0 

    while D3plot_there: 

        try: 

      

dr=D3plot(curDir+'/'+filename+'/d3plot',state_array_filter=['node_displacement']) 

            D3plot_there=False 

        except: 

            time_sleep=time_sleep+0.1 

            print('TIME SLEEP   ' +time_sleep) 

            time.sleep(0.1) 

    a = dr.arrays['node_displacement'] 

    b = a - a[0] 

    #disp = b[:, 1, 0]-b[lt, 1, 0] 

    disp = b[:, 1, 0] 

         

    index_t=[int(i) for i in target[:,0]] 

  

    data = [dr.n_timesteps, disp[index_t]] 

 

    data = np.array(data) 

 

    if lt<500: 

        f = f + (np.sum((data[1]-np.transpose(target)[1])**2)**0.5)*2 

    else: 

        f = f + np.sum((data[1]-np.transpose(target)[1])**2)**0.5 

    # f = np.sum((data[1]-target[1])**2)**0.5 

     

    # fig1,ax1=plt.subplots() 

    # ax1.plot(ana_time,disp, linestyle='-',label='analysis')  

    # ax1.plot(target[:,0],target[:,1], linestyle='--',label='target')  

    # # ax1.set_ylabel('Base Shear (kN)') 

    # # ax1.set_xlabel('Drift Ratio(%)') 
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    # # ax1.set_xlim([0,3 ]) 

    # # ax1.set_ylim([0,400 ]) 

    # ax1.legend() 

     

     

    # # f=1 

    return (f,X,data) 

 

import random 

import sys 

from math import sqrt, pi 

import subprocess 

import time 

import os 

import pickle as pickle 

from generate_runs import run_multiphys  

import numpy as np 

 

import task_inputs 

xMax = task_inputs.xMax 

xMin = task_inputs.xMin 

numVariables = task_inputs.numVariables 

lt_1 = task_inputs.lt_1 

lt_2 = task_inputs.lt_2 

rand = task_inputs.rand 

 

fileName = sys.argv[1] 

 

xInit = [0.0]*numVariables 

 

par=int(fileName[3:6]) 

 

if rand=='y': 

 

    for i in range(0,numVariables): 

        xInit[i] = xMin[i] + random.uniform(0.0, 1.0)*(xMax[i]-xMin[i]) 

else: 

    with open('Run000_creep_rawC_ss.txt', 'r') as f: 

        par_line = f.readlines()[-400+par-1] 

     

    ll=par_line.split(',') 

    for i in range(0,numVariables): 

        xInit[i]=float(ll[i+5]) 

 

X = xInit 

 

f=0 

data_all=[] 

target=np.loadtxt('targeted_plot_ACI_1.txt')  

#target[:,1]=target[:,1]-target[lt_1,1] 

f, X,data = run_multiphys (X,fileName,target,lt_1,f) 

 

data_all.append(data) 

os.chdir("..") 
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target=np.loadtxt('targeted_plot_ACI_2.txt')  

#target[:,1]=target[:,1]-target[lt_2,1] 

f, X,data = run_multiphys (X,fileName,target,lt_2,f) 

 

data_all.append(data) 

#print(data) 

 

m=1  

 

with open(fileName+'.pkl', 'wb') as output: 

    # pickle.dump(a, handle, protocol=pickle.HIGHEST_PROTOCOL) 

    pickle.dump(f,output,protocol=pickle.HIGHEST_PROTOCOL) 

    pickle.dump(X,output,protocol=pickle.HIGHEST_PROTOCOL) 

    pickle.dump(m,output,protocol=pickle.HIGHEST_PROTOCOL) 

     

    pickle.dump(data_all,output,protocol=pickle.HIGHEST_PROTOCOL) 

 

import random 

import sys 

from math import sqrt, pi 

import subprocess 

import time 

import os 

import pickle as pickle 

from generate_runs import run_multiphys  

import numpy as np 

 

import task_inputs 

xMax = task_inputs.xMax 

xMin = task_inputs.xMin 

numVariables = task_inputs.numVariables 

lt_1 = task_inputs.lt_1 

lt_2 = task_inputs.lt_2 

rand = task_inputs.rand 

 

fileName = sys.argv[1] 

 

xInit = [0.0]*numVariables 

 

par=int(fileName[3:6]) 

 

if rand=='y': 

 

    for i in range(0,numVariables): 

        xInit[i] = xMin[i] + random.uniform(0.0, 1.0)*(xMax[i]-xMin[i]) 

else: 

    with open('Run000_creep_rawC_ss.txt', 'r') as f: 

        par_line = f.readlines()[-400+par-1] 

     

    ll=par_line.split(',') 

    for i in range(0,numVariables): 

        xInit[i]=float(ll[i+5]) 

 

X = xInit 
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f=0 

data_all=[] 

target=np.loadtxt('targeted_plot_ACI_1.txt')  

#target[:,1]=target[:,1]-target[lt_1,1] 

f, X,data = run_multiphys (X,fileName,target,lt_1,f) 

 

data_all.append(data) 

os.chdir("..") 

target=np.loadtxt('targeted_plot_ACI_2.txt')  

#target[:,1]=target[:,1]-target[lt_2,1] 

f, X,data = run_multiphys (X,fileName,target,lt_2,f) 

 

data_all.append(data) 

#print(data) 

 

m=1  

 

with open(fileName+'.pkl', 'wb') as output: 

    # pickle.dump(a, handle, protocol=pickle.HIGHEST_PROTOCOL) 

    pickle.dump(f,output,protocol=pickle.HIGHEST_PROTOCOL) 

    pickle.dump(X,output,protocol=pickle.HIGHEST_PROTOCOL) 

    pickle.dump(m,output,protocol=pickle.HIGHEST_PROTOCOL) 

     

    pickle.dump(data_all,output,protocol=pickle.HIGHEST_PROTOCOL) 

 

#Task Name: 

taskName = 'creep' 

 

#Optimization Option ('maximize' or 'minimize') 

optOption ='minimize' 

 

#Number of Variables (Number of particle DOF) 

numVariables = 15 

 

#Max Number of Particles 

numParticles = 400 

#numParticles = 2 

 

#Max Number of Concurrent subProcesses 

numProcesses = 100 

#numProcesses = 1 

 

#Max Number of iterations 

kmax = 200 

#kmax = 3 

 

#loading time 

lt_1 = 8 

lt_2 = 600 

 

#Initialize xMax and xMin 

xMax=[1]*numVariables 

xMin=[0]*numVariables 
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# t1 

xMax[0] = 0.1 

xMin[0] = 0.1 

 

# t2 

xMax[1] = 1 

xMin[1] = 1 

 

# t3 

xMax[2] = 10 

xMin[2] = 10 

 

# t4 

xMax[3] = 100 

xMin[3] = 100 

 

# t5 

xMax[4] = 1000 

xMin[4] = 1000 

 

# t6 

xMax[5] = 18000 

xMin[5] = 10000 

 

# e1 

xMax[6] = 1000 

xMin[6] = 0.01 

 

# e2 

xMax[7] = 1000 

xMin[7] = 0.01 

 

# e3 

xMax[8] = 1400 

xMin[8] = 0.01 

 

# e4 

xMax[9] = 1000 

xMin[9] = 0.01 

 

# e5 

xMax[10] = 1000 

xMin[10] = 0.01 

 

# e6 

xMax[11] = 1000 

xMin[11] = 0.01 

 

# a 

xMax[12] = 0.1 

xMin[12] = 0.00001 

 

# lam0 

xMax[13] = 10 
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xMin[13] = 0.0001 

 

# m 

xMax[14] = 2 

xMin[14] = 0.1 

 

vmax = [0]*numVariables 

vmin = [0]*numVariables 

for i in range(0,numVariables): 

 vmax[i]=(xMax[i]-xMin[i])/5 

 vmin[i]=(xMax[i]-xMin[i])/1000 

wmax = 1.0 

wmin = 0.8 

c1 = 0.7 

c2 = 0.5 

p1 = 0.6 

p2 = 0.8 

 

import random 
import sys 
from math import sqrt, pi 
import subprocess 
import time 
import os 
import pickle 
from generate_runs import run_multiphys  
import numpy as np 
 
import task_inputs 
xMax = task_inputs.xMax 
xMin = task_inputs.xMin 
numVariables = task_inputs.numVariables 
numParticles = task_inputs.numParticles 
vmax = task_inputs.vmax 
vmin = task_inputs.vmin 
wmax = task_inputs.wmax 
wmin = task_inputs.wmin 
kmax = task_inputs.kmax 
c1 = task_inputs.c1 
c2 = task_inputs.c2 
p1 = task_inputs.p1 
p2 = task_inputs.p2 
optOption = task_inputs.optOption 
lt_1 = task_inputs.lt_1 
lt_2 = task_inputs.lt_2 
 
#********************** 
 
with  open(sys.argv[1]+'.pkl', 'rb') as handle: 
        DB = pickle.load(handle) 
 
 
k = int(sys.argv[2]) 
i = int(sys.argv[3]) 
 
w = DB['w'] 
 
XgBest = DB['XgBest'] 
 
XNext = []             
VNext = [] 
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X = DB[i]['X'] 
V = DB[i]['V'] 
XpBest = DB[i]['XpBest'] 
 
for j in range(numVariables): 
    
    # p = random.random() 
    r1 = random.uniform(0.0, 1.0) 
    r2 = random.uniform(0.0, 1.0) 
 
    # if p < p1: 
    #     alpha = random.random() 
    #     beta = 1. 
    #     gamma = 1. 
    # elif p > p2: 
    #     alpha = 0. 
    #     beta = 0. 
    #     gamma = 1. 
    # else: 
    #     alpha = 0. 
    #     beta = 1. 
    #     gamma = 1. 
 
    # VNext.append(max(-vmax[j],min(vmax[j],alpha*w*V[j] + beta*c1*r1*(XpBest[j]-
X[j]) + gamma*c2*r2*(XgBest[j]-X[j])))) 
    Vtemp=w*V[j]+c1*r1*(XpBest[j]-X[j])+c2*r2*(XgBest[j]-X[j]) 
    if abs(Vtemp)>vmax[j]: 
        VNext.append(np.sign(Vtemp)*vmax[j]) 
    elif abs(Vtemp)<vmin[j]: 
        VNext.append(np.sign(Vtemp)*vmin[j]) 
    else: 
        VNext.append(Vtemp) 
     
    Xtemp=X[j] + VNext[j] 
    if Xtemp>xMax[j]: 
        XNext.append(xMax[j]) 
    elif Xtemp<xMin[j]: 
        XNext.append(xMin[j]) 
    else: 
        XNext.append(Xtemp) 
    # XNext.append() 
     
f=0 
data_all=[] 
target=np.loadtxt('targeted_plot_ACI_1.txt')  
#target[:,1]=target[:,1]-target[lt_1,1] 
 
f, X, data = run_multiphys (XNext,sys.argv[1][:-3],target,lt_1,f) 
data_all.append(data) 
os.chdir("..") 
target=np.loadtxt('targeted_plot_ACI_2.txt')  
#target[:,1]=target[:,1]-target[lt_2,1] 
 
f, X, data = run_multiphys (XNext,sys.argv[1][:-3],target,lt_2,f) 
data_all.append(data) 
 
m=1 
 
with open(sys.argv[1]+'.pkl', 'wb') as output: 
    pickle.dump(f,output,protocol=pickle.HIGHEST_PROTOCOL) 
    pickle.dump(XNext,output,protocol=pickle.HIGHEST_PROTOCOL) 
    pickle.dump(VNext,output,protocol=pickle.HIGHEST_PROTOCOL) 
    pickle.dump(m,output,protocol=pickle.HIGHEST_PROTOCOL) 
    pickle.dump(data_all,output,protocol=pickle.HIGHEST_PROTOCOL) 
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