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ABSTRACT

As the usage of Artificial Intelligence (Al) is growing exponentially, it has been incorporated
in medical diagnosis as well as other domains. Although Machine Learning (ML) models have
been widespread adopted, many of them remain mostly black-boxes, meaning that their reasoning
and/or their results are not understandable by the users. In addition, the appearance of some
inaccurate or unfair results of these systems, in combination with legal regulations, led to the need
of explainable Al. Moreover, there are separate disciplines of Al, each having their advantages
and disadvantages. On the one hand, modern ML and Deep Learning are characterised by high
performance, but also limited interpretability. On the other hand, early symbolic Al approaches
seem more interpretable, but also more costly, as rules are created through human intervention.
Modernizing symbolic reasoning by incorporating ML may help the improvement of

explainability in Al outcomes in medicine.

Chara Theocharous — University of Cyprus, 2023
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Chapter 1

Introduction

1.1 Motivation

The usage of Artificial Intelligence (Al) is growing exponentially, with the global
Al market size to be expected to rise 37% every year from 2023 to 2030. Al - and
Machine Learning (ML) specifically - seems to has the most substantial impact in data-
intensive and highly regulated sectors, including banking, financial services, insurance,
and healthcare sectors. The use of Al in medical informatics is highly appreciated, as
providing healthcare is overwhelming. The reasons include the incomplete medical
knowledge, the need for clinicians to learn from experience, deal with new cases, and
manually examine a huge volume of medical data which is time-consuming and relies
on the prolonged attention of the doctor, and the communication problems between
patients and clinicians.

Although ML models have been widespread adopted, many of them remain mostly
black boxes, meaning that their reasoning and/or their results are not understandable by
the users. Modern ML and especially Deep Learning (DL) models turn input features

into predictions, typically involving millions of non-trivial operations.



In addition, the appearance of some inaccurate or unfair results of these systems, in
combination with legal regulations, including the general data protection regulation
(GDPR) but also similar regulations outside of Europe that highlight the need of
trustworthy Al systems, led to the need of eXplainable Al (XAI). For example, a
healthcare Al algorithm favored white patients over black patients with the same health
burden, as the recommendations for necessary medical treatment to black patients was
more rare [1]. This study highlights the potentially life-threatening consequences of
biased healthcare Al applications, reminding the importance of explaining the
algorithm’s results.

Unfortunately, explainabilty is a complicated and multifaceted issue, which still
needs some more effort to have a precise characterization from the terminological point
of view [2]. Moreover, there are separate disciplines of Al, each having their advantages
and disadvantages. On the one hand, modern ML and DL are characterised by high
performance, but also limited interpretability. On the other hand, symbolic Al
approaches seem more interpretable, but also more costly, as rules are created through
human intervention. Combining symbolic reasoning with deep neural networks may
help the improvement of explainability in Al outcomes, as proposed in European

Commission’s White Paper on Artificial Intelligence [3], too.



1.2 Related Work

Numerous XAl techniques have been proposed, which can be distinguished based on

different aspects. The first division is between model-specific and model-agnostic techniques.

1. Model-specific XAl refers to XAl techniques tailored for working only on specific
models.

2. Model-agnostic XAl refers to XAl techniques working across a variety of models and,

often, types of models and domains.

The second division is between global-level and local-level techniques.

1. Global-level techniques aim at understanding the algorithm’s behavior at a
high/dataset/populational level, something that is typically done by researchers and

designers of the algorithm.

2. Local-level techniques aim at understanding the algorithm’s behavior at a

low/subset/individual level, typically those being targeted by an algorithm

Thirdly, XAl can be categorized in pre-hoc (a.k.a. pre-model) XAl, ante-hoc XAl (a.k.a. XAl
by design, or explainable modelling), and post-hoc (a.k.a. post-model) XAl, based on the

step of the Machine Learning (ML) development life cycle that explainability is applied.

1. Pre-hoc XAI aim to perform an analysis of the data distribution in order to
understand the data before building the model (pre-model XAI). This
comprehension of the data may contribute to having a higher confidence with the

decisions that the model provides.

2. Ante-hoc XAI approaches are related to systems that are inherently explainable
(XAI by design), meaning that they incorporate interpretability directly into their

structure, allowing one to directly understand their mechanisms in providing a



result such as a conclusion (e.g., a diagnosis) or a recommendation (e.g., a
treatment option). The predictions of these models

are explained in terms of their input features. Decision trees, rule-based models,
additive modes, sparse linear models, linear regression, fuzzy systems and
Bayesian models are, for example, commonly considered to be implicitly
explainable. These models can provide both global and local explanations; global
explanations because of the transparent nature, and local by utilizing information
of the model’s parameters and structure (e.g. a path in a decision tree, a single

rule, or the weight of a specific feature in a linear model).

. Post-hoc approaches perform posterior analysis of the model predictions (post-
model XAI). They try to provide some explanation to the results reached by
models, such as deep neural networks, random forests, support vector machines,

and many others.



Chapter 2

The need for explainability

In this section we will discuss about some questions around explainability and examine

some issues that need to be addressed in order to attain explainability in Al

2.1 Definition of explanation/explainability

Based on social sciences, a common definition is that explanation is an answer to a
question. Tim Miller [2] proposes a model for explanatory questions, where these
questions are divided into three classes; what-questions (such as ‘What event
happened?’), how-questions (such as ‘How did this event happen?’), and why-
questions (such as ‘Why did this event happen?’).

Combi et al. [4] define explainability for artificial intelligence in medicine as the
intersection of interpretability, understandability, usability, and usefulness.
Interpretability is the degree to which a user may infer the reasoning behind a choice
and thus their ability to predict a system’s results [S]. Understandability is the degree
to which a user is able to determine how the system functions, leading to user
confidence in the system’s output. Usability is the ease with which a user can learn to
use a system, including system’s input preparation and results interpretation. Usefulness

is referring to the practical value or applicability of a system. Although the definition



refers to medicine applications, these four characteristics are needed for any
information system, statistical model, or software application, so the above definition
can be extended for Al applications in general.

Explainability is a complex concept based on this definition, due to the
intersectionality of the four characteristics explainability consists of (see Figure 2.1).
Firstly, usability and usefulness are highly related, as if a system is not usable, it is
unlikely to be useful. Secondly, usability is enhanced via understandability, as an Al
application that is understandable provides user confidence that its outcome was
correct, making the application more likely to be usable. Interpretability and usefulness
are complementary as well, as a user of an Al application is more likely to find it useful,

if the application’s decision is interpretable.

Interpretability

B =

|
Usefulness | Understandability

Explainability

Usability

Figure 2.1: The Venn diagram of explainability. Explainability is defined as the

intersection of usability, usefulness, interpretability, and understandability. [4]

A simpler definition, as it is stated in [6], defines Explainable Al (XAI) as AI/ML
in which predictions/results are accompanied by explanations, presented in a way that
humans can understand and formulate a line of reasoning that explains/justifies the

decision-making process of the model.



2.2 Stakeholders and desiderata of explanation

The General Data Protection Regulation (GDPR), a European Union data privacy and
protection law, has implications for the development and deployment of Al systems, as Al often
relies on the collection and processing of large amounts of personal data. To ensure fair and
transparent processing in automated decision-making, data subjects are according to GDPR
entitled to relevant information about the reasoning behind the decision. Specifically, as written
in Articles 13 (2) ), 14 (2) g) and 15 (1) h) of the regulation, the controller shall inform the data
subject about the existence of automated decision-making, meaningful information about the
logic involved, as well as the significance and the envisaged consequences of such processing
for the data subject [7]. Explainability represents an important component in the framework
proposed in the Ethics Guidelines for trustworthy Al too, published by the EU; “Whenever an
Al system has a significant impact on people’s lives, it should be possible to demand a suitable
explanation of the Al system’s decision-making process. Such explanation should be timely and
adapted to the expertise of the stakeholder concerned (e.g. layperson, regulator or researcher)”
[8]. Association for Computing Machinery US Public Policy Council (USACM) makes direct
references to the need for explanation as well, in the Statement on Algorithmic Transparency
and Accountability. Explanation is one of the seven principles for algorithmic transparency and
accountability, and is stated that “Systems and institutions that use algorithmic decision-making
are encouraged to produce explanations regarding both the procedures followed by the
algorithm and the specific decisions that are made. This is particularly important in public

policy contexts.” [9].



The various classes of stakeholders in the context of XAI were discussed in the related
bibliography. For instance, Preece et al. [10] distinguish between four stakeholder communities:
developers, theorists, ethicists, and users. Arrieta et al. [11] distinct stakeholders into domain
experts, users of the model affected by decisions, managers/executive board members, regulatory
entities/agencies, data scientists, developers, and product owners. A similar categorization is done
by Lange et al. [12], with the five classes of stakeholders being users, developers, affected parties,
deployers, and regulators. However, each of these categories of stakeholders can be further
clustered to finer categories, depending also in the field of use of the Al system. For instance, in
the medical and healthcare field, among the possible users of the system are considered the
clinicians, technicians, nurses, general practitioners, administrative staff, different kinds of
students, and patients. The background knowledge of such stakeholders usually deeply differs and
requires different user-centric solutions for a successful explanation.

Apart from the different type of stakeholders, the requirements of each stakeholder should be
considered. The desiderata arising from the different classes of stakeholders are diverse. Lange et
al. [12] propose a list of 29 possible desiderata holding by XAI stakeholders, including
acceptance, accountability, confidence, education, fairness, legal compliance, morality/ethics,
transparency, usability, and usefulness. The whole list of desiderata and their corresponding
stakeholders is shown in Table 2.1. Such desiderata are not completely disjoint and may co-exist
in a single XAl-system [12]. Hence, stakeholders in combination with their background and their

desiderata is the main reason for the rising popularity of XAl, and guide explanation process.



Desideratum

Tentative description

Stakeholder

Acceptance
Accountability
Accuracy
Autonomy
Confidence

Controllability
Debugability

Education
Effectiveness

Efficiency
Fairness
Informed Consent

Legal Compliance

Morality(Ethics
Performance

Privacy
Responsibility

Robustness

Safety
Satisfaction
Science

Security
Transferability
Transparency

Trust

Trustworthiness
Usability
Usefulness
Verification

Improve acceptance of systems

Provide appropriate means to determine who is accountable
Assess and increase a system's predictive accuracy

Enable humans to retain their autonomy when interacting
with a system

Make humans confident when using a system

Retain (complete) human control concerning a system
Identify and fix errors and bugs

Learn how to use a system and system's peculiarities

Assess and increase a system's effectiveness; work effectively
with a system

Assess and increase a system's efficiency; work efficiently
with a system

Assess and increase a system’s (actual) fairness

Enable humans to give their informed consent concerning a
system’s decisions
Assess and increase the legal compliance of a system

Assess and increase a system’'s compliance with moral and
ethical standards
Assess and increase the performance of a system

Assess and increase a system's privacy practices

Provide appropriate means to let humans remain responsible
or to increase perceived responsibility

Assess and increase a system’s robustness (e.g., against
adversarial manipulation)

Assess and increase a system's safery

Have satisfying systems

Gain scientific insights from the system

Assess and increase a system's security
Make a system’s learned model transferable to other contexts
Have transparent systems

Calibrate appropriate trust in the system

Assess and increase the system’s trustworthiness

Have usable systems

Have useful systems

Be able to evaluate whether the systemn does what it is
supposed to do

Deployer, Regulator
Regulator
Developer

User

User

User
Developer

User
Developer, User

Developer, User
Affected, Regulator
Affected, Regulator

Deplayer

Affected, Regulator
Developer

User
Regulator

Developer

Deployer, User
User
User

All
Developer
Regulator

User, Deployer

Regulator
User
User
Developer

Table 2.1: An exemplary list of XAI desiderata and stakeholders holding these desiderata. [12]
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23 Representation of explanation

Previous research has discussed different kinds of explanation. A first distinction, as proposed
by Tjoa et al. [13], is between perceptive and mathematical structured explanations (see Figure
2.2). Perceptive interpretability refers to methods that generate items that are usually immediately
interpretable, meaning that they are interpretations that can be humanly perceived through the
visual highlighting of important input features with respect to a given output (saliency), through
the observation of the stimulation of neurons (signal interpretability), or through the composition
of logical statements or sentences (verbal interpretability) [13]. Interpretability via mathematical
structure, refers to methods that, using mathematical models or data-oriented approaches,

generate outputs that require cognitive processing before reaching the interpretability [13].

Category Mechanism

_____,,___________] = Sensitivity
®®_ Y ETIC: -
- @ ey / Decomposition

PR Signal
1)
S| ‘ ; Verbal

"= Optimization

< .
~~ Inversion

Pre-defined

" Models
—___ Feature

\\ extraction
\A Others

Figure 2.2: Overview of categorization of perceptive and mathematical interpretability. Orange
box: interpretability interface to separate between interpretable information and the cognitive
process required to understand them. Gray box: algorithm output/product that is proposed to
provide interpretability. Black arrow: computing or comprehension process. The eyes and ear

icons represent human senses interacting with items generated for interpretability. [13]



11

Another way to differentiate is between explanations generated by model-agnostic (or post-
hoc) approaches and model-specific (or anti-hoc) approaches. While the first approaches attempt
to provide explanatory information only by observing input/output associations, model-specific
approaches consider also specific features of the model under explanation [12]. Model-agnostic
approaches have the advantage of working regardless of the type of model, while model-specific
approaches on the other hand are usually more efficient, accurate, and explanatory powerful, as
the explanatory information’s level of detail is higher with regard to individual phenomena [12].

A last aspect to consider for distinguishing explanations is their scope. Local scope
explanations focus on single predictions/classifications of the supported system, offering
visualized prototype outcome examples [12]. Global scope explanations are designed to explain
the overall reasoning mechanism of the model, by approximating complex models with simpler

ones that are inherently explainable [12].
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2.4 Evaluation of explanation

While many approaches to XAl have been proposed, it is crucial to assess the quality of the
explanation. In the survey conducted by Miller [2] a list of important characteristics of

explanations in human-like interactions is provided. Major findings include:

1. Explanations are contrastive: People usually don’t only ask why a certain prediction was

made but rather why this prediction was made instead of another prediction.

2. Explanations are selected: People rarely expect any explanation covering all aspects of
reasoning. Influenced by certain cognitive biases, they rather focus on one or two possible

causes from a sometimes infinite number of causes to be the explanation.

3. Probabilities don’t matter: People consider causal explanations more relevant than
probabilities or statistical relationships in explanation, despite the fact that truth and

likelihood are important in explanation.

4. Explanations are social: Explanations are considered as transfer of knowledge in the social
interaction between the explainer and the explainee, involving their beliefs as well.
A list of properties is defined in [ 14] too, that can be used to evaluate the quality of explanation

methods. Some of these properties are:

1. Accuracy: the ability that explanation of a given decision generalises to unseen instances.

2. Fidelity: how well the explanation approximates the prediction of a model.

3. Consistency: how similar the explanations are for similar instances, generated from

different models.
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4. Stability: how similar the explanations are for similar instances, generated from the same

model.

5. Comprehensibility: readability and size of explanations.

6. Certainty: whether the explanations reflecting the certainty a model has about its predic-

tions.

7. Degree of Importance: how well the explanation reflects the importance of returned items

(e.g., features, rules).

8. Novelty: whether explanations would reflect the fact that the explained instance is not

contained or well represented in the training set.

9. Representativeness: it describes how many parts of the model are covered by the model

explanation.

However, the required characteristics of the explanations may get in conflict. According to
Leilani et al. [15], explanations should be interpretable and complete, and answer ‘why’ questions,
but the most accurate explanations are difficult for people to interpret, and conversely, the most
interpretable descriptions frequently lack predictive power. So, there is a challenge for XAl to
generate explanations that are both interpretable and complete.

Given these, in a review [6] on XAl applications in Medical Domain, explainability systems

are evaluated based on:

1. accuracy vs interpretability,

2. quality human-friendly explanations based on some of Miller’s criteria,

3. domain experts’ active role in the design and evaluation of the system,
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4. overall assessment and trustworthiness, including whether the performance is acceptable,

and the explanation is helpful for the user.



Chapter 3

Artificial Intelligence and Explainability in Medicine

3.1  Achronology of Al in Medicine

The integration of Al systems in patient-care systems has started decades ago. In the late
seventies and early eighties, medical expert systems emerged, aiming to support diagnostic
decisions in specialized medical domains [16]. Figure 3.1. illustrates an expert system schema of
early eighties. The answer of a medical expert system is derived by a knowledge base (KB) formed

by medical experts, and an inference engine.

inference _
engine \
user
; user
interface
expert knowledge
P base

Figure 3.1: An expert system schema of early '80s. [16]

Rules were proposed as a prime formalism for expressing knowledge in symbolic way,
because of their advantage of simplicity, uniformity, transparency, and ease of inference.
However, acquiring knowledge directly from experts to form rules has high cost, and includes the
risk of capturing the biases of one expert. Also, the integration of the rules can reveal

inconsistencies and gaps, when there is lack of a global hierarchical organization of rules.

15
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These limitations in combination with the increased availability of databases of example cases
led to the need of learning the rules from such data, which seemed a more efficient, less biased,
and more cost-effective. Hence, in the late eighties and early nineties early machine learning
algorithms developed, with the C4.5 system [17] being the most popular. Although experts were
not needed anymore to explicitly construct the rules, they are still actively involved in the
development of the systems, as they provide the example cases, and validate the resulting rules

[16].

infer ence -
engine “H\\\
= user ey
///7 interface T —
knowledge | " intranet
A base

expert

\;""'V'"'"""""""IEE,'K"D'
i data : ‘

mining i i
temporal

abstraction |~ 1y

7, . WS _ A .~ S, 1
\ /

protocols, electronic patient records
guidelines, - textual data
etc. - images

hill

data collection
(internet/intranet)

Figure 3.2: A decision support system schema of late '90s. [16]

Other Intelligent Data Analysis (IDA) methods were also developed in nineties to bridge the
gap between the massive storage of data and the understanding of the data by discovering
principles encoded within the data. IDA methods are categorized in Data Abstraction methods for
intelligent interpretation of data, and Data Mining (DM) methods for the discovery of medical
knowledge [16]. DM could be performed through symbolic classification methods (rule induction,
regression trees, inductive logic programming, constructive induction, and case-based reasoning)

and through sub-symbolic classification methods (instance-based learning, neural networks,
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Bayesian classifier). Figure 3.2 illustrates a decision support system schema of late nineteenth-
century that uses the method of IDA.

Case-based Reasoning (CBR) is a problem-solving methodology that reuses previously
solved and memorized problem situations, called cases. CBR is suitable for any kind of problem,
but it has found a fruitful application in health sciences, where cases are readily available in form
of patients [18]. Given a new case, the process to determine a diagnosis or therapy for the patient
consists of five stages (see Figure 3.3); interpretation, retrieve, reuse, revise, and retain, explained

as follows:

1. Interpretation: The description of the new case is given, and the system interprets it in its
knowledge representation language, through abstraction and in particular often time
abstraction.

2. Retrieve: The most similar cases to the new case are found, searching the case base or a
subset of cases in the base, by applying a similarity measure. The resulting set of cases,
named retrieved cases, is ranked in descending order.

3. Reuse: The top case(s) from the list of retrieved cases is reused, after adaptation or
interpretation depending on the task. This creates the solved case that constitutes the

proposed solution to the new case.

4. Revise: The solved case is tested in the real-world environment, or evaluated by an expert,
a simulation, or a known solution from a test set. After repairing the solved case, it becomes

the tested case (or repaired case).

5. Retain: The tested case is added in the memory as a complete solution of the target case.

The use of CBR in medicine includes some important challenges, such as the choice of an

appropriate similarity measurement, the management of different treatment actions performed by
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different physicians, and the auditing of old cases, as medical knowledge is continuously changing

[16].

Input Problem

mterpretahon

NEW CASE

> Retrieve
7
RETRIEVED
CASE(S)

/
/
I
REPAIRED CASE NEW CASE
@ /

Conﬁrmed \
Solution \\ ,'

ha SO SOL\IED CASE

Suggested
Solution

Figure 3.3: The classical CBR reasoning cycle. [18]

Nowadays, Machine Learning (ML) and especially Deep Learning (DL) take the lead from
the rest of Al methods used in medicine, as well as in many other domains where Al is used. ML
is the study of algorithms that learn from examples and experience instead of relying on hard-
coded rules, and can make predictions on new data. DL is a subfield of ML focusing on learning
data representations as successive layers of increasingly meaningful representations.

A Neural Network (NN) or Artificial Neural Network (ANN) is the general form of a DL
model. Its name and structure are inspired by the human brain, because it is mimicking the way
that biological neurons signal to one another. Figure 3.4 illustrates the structure of a NN. It
consists of layers that usually have a state, encoded as weights, and has input data (x) and output

data or targets (y). Between the input and the output, there can be one or more hidden layers of
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connected nodes. The architecture of the model can be simple to complex, depending on the
number of hidden layers, the number of nodes per layer and connections between nodes. A loss
function is calculated as the difference between the predicted and the actual target, which is used
as a feedback signal. Lastly, the network has an optimizer, which determines how the network’s
weights will be updated based on the loss function. As Deep Neural Network (DNN) can be
characterized any NN with more than one hidden layers.

Input X

'

- Layer
Weights (data transformation)

Layer
@ (data transformation)

!

'

Weight
update

Prediclions
v

True targels

Oplimizer

LOSS score

Figure 3.4: Structure of a Neural Network. [51]

Convolutional Neural Networks (CNNs) are NN that are used for processing data that has a
grid-like topology (e.g. time-series data, image data, video data). Hence, CNNs are very popular
in the medical domain as pictures is an important source of medical data (radiographs,
photographs, MRI, X-ray, and other images).

Medical data include also narratives recorded by clinicians, and other results reported as text.
These textual data can be analyzed with Natural Language Processing (NLP) methods. NLP
makes use of ML for building models that can learn patterns from data in the form of text.
However, DL has gained significant prominence in NLP in recent years. Neural networks

including Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs),
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and more recently, Transformer models, such as BERT and GPT, have shown state-of-the-art

performance in various NLP tasks.
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3.2 XAI in Medicine

As previously stated, the provision of explanations for Al systems in general is significant. In
a critical domain such as medicine, the significance of explaining the Al generated decision is
even bigger. There is need for interpretable decision systems, that allow the understanding of their

logic to facilitate debugging and the understanding of the recommended outcome.

3.2.1  Explainability in First Generation Expert Systems

Explainability in first generation expert systems (rule-based expert systems) is an easy task,
as the explanation of a decision can be produced by revealing the chain of rules in the derived
inference trees. An example of such system is MYCIN [19], which aims at diagnosis of blood
infections. MYCIN applies deductive reasoning, implemented through backwards chaining,
allowing in this way the justification of the system’s recommendations. Moreover, TEIRESIAS
system [20] is a KB system with syntactic and semantic knowledge on MYCIN’s knowledge,
acting as an intelligent debugger, and GUIDON system [21] as an intelligent tutor, aiming at
tutoring medical students.

Despite their groundbreaking importance, issues quickly emerged with rule-based
explanations, rendering them largely insufficient. These explanations are not meaningful as they

are just rule ‘playbacks’.

3.2.2  Explainability in Second Generation Expert Systems

Second-generation expert systems (deep knowledge-based expert systems), offered new,
promising avenues towards more adequate symbolic explanations. For instance, NEOMYCIN [22]
supports knowledge in the form of a causal model, aiming to act as an alternative means to solving

problems, as well as to augment rule-based explanations with a more detailed and deep justification.
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GUIDON?2 [23] was also designed as a new version of GUIDON to provide more successful
tutoring.

However, the explainability in these systems is still weak, as the rational basis of strategies is
not explained. The explanations are not tailored to the user, and there is no ability for handling

and justifying possible exceptions.

3.2.3  Explainability for Case-Based Reasoning

The hierarchical data organization in CBR knowledge base allows additional explanation
mechanisms, named explainable case-based reasoning (XCBR) approaches. Schoenborn et al.
[24] propose a taxonomy for CBR explanations (see Figure 3.5), divided into four categories:
definition, model agnostic, model-based, and visualization.

Definition explanations are further divided based on their goal, which can be explained by using

the questions on the kinds of explanations, including

e justification: why the decision has been reached

e transparency: how the decision has been reached

e relevance: which information were relevant for the decision making process

e contextual: further information on the current situation

e learning: teaching the user.

The model-agnostic nearest neighbor explanations approaches are categorized into:

e probabilistic approach: use machine learning methods to define the similarity measure and
the prediction error of retrieving wrong cases
¢ counterfactuals: convert nearest neighbors into nearest unlike neighbors, used as contrastive

explanations
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e explanations using examples: do not need domain knowledge, as the explanation is formed

by the similar cases

Graph structures are used for explanations:

e patterns: combines textual explanation and graph structure of the case (based on its at-

tributes), the query, and their similarity

» workflows: the workflow event trace is presented and compared to other, similar workflows,

and the parts of the workflow contributing to the similarity calculation can be displayed

* routing: navigation routes stored as cases with additional context information

Model-based explanations are based on the application domain, hence they are more precise and

targeted. There are:

e probabilistic and analogical approaches, requiring knowledge-intensive models, Bayesian

Networks, or ontologies

¢ recommendation systems, that tend to focus on the domain model, or the user’s behavior

Visualization explanations are divided into textual and graphical. Textual approaches include:

¢ explanation patterns and templates: explaining by identifying categories and extending cases

¢ free text explanations: reusing past cases and using both justifications and counterfactuals

e interactive approach: justify recommendations that have missing attributes based on user’s
preferences
Graphical explanations include graph structures, plots and boxes (scatter plots, rainbow boxes with

elements representing cases).
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Figure 3.5: Taxonomy of explanation in XCBR. [24]

Lamy et al. [25] propose a CBR method for breast cancer that uses graphic visualization for
explainability. It can be executed automatically as an algorithm and presented visually in a user
interface as well, for providing visual explanations or for visual reasoning. It combines two visual
interfaces, a quantitative and a qualitative (see Figure 3.6), enabling the user to easily classify a
query through explainable visual reasoning.

The quantitative is visualized by a scatter plot based on multidimensional scaling in polar
coordinates, preserving distances involving the query. While q represents the query, similar cases
are scattered around g, where smaller distance to q represents more similarity. Different shapes
and colors are used to represent cases of different classes. The qualitative is visualized using
rainbow boxes with elements representing cases, that are ordered in columns based on their
similarity to q. The boxes including cases’ attributes and their values have width that spans over
the cases with this attribute-value pair, and height proportional to the global similarity of the given
attribute. In addition, boxes’ colors are uniquely associated with each solution class when there
are not conflicting classes among the cases which correspond to this box. Otherwise, the colors

are mixed proportionally to the occurrence of the attribute in a given solution class.
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After it was tested in three public data sets, the qualitative method showed accuracy similar
to k-nearest neighbors algorithm, but better explainability. For a real data set which is related to
breast cancer, the visual approach was found interesting by medical experts, as it explains why

cases are similar through the visualization of similar patient characteristics.
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Figure 3.6: Quantitative (scatter plot) and qualitative (rainbow boxes) visualizations for a CBR

result. /25]

3.24  Explainability in modern Machine/Deep Learning models

To make modern machine/deep learning approaches explainable, post-hoc explainability

methods are utilized. Figure 3.7 depicts an overview of the explainability process. These methods
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Figure 3.7: A step by step overview of a post-hoc XAI system. [52]
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can be distinguished between model agnostic methods and explaining DL methods [6]. Model
agnostic techniques try to provide an understanding of the knowledge of a trained black-box

model, and can be further categorized as:

1. Example based techniques: select particular instances of the data set to explain the predictions
of a model (e.g. explainable case-based reasoning techniques). These techniques may be

insufficient because there are fewer tools for obtaining influential cases and prototypes [52].

2. Feature relevance (or importance or contribution) techniques: assign a score to each feature

that indicates its relative importance to the prediction function of the model.

One example of these techniques is perturbation feature importance, where the premise is
that important features are detected by studying the effects of their perturbation on the
model’s prediction. A feature is considered important if the prediction error is increased
when changing its values. Crabbe et al. [26] propose dynamic masks (Dynamask) for time
series data, which produces instance-wise importance scores for each feature at each time
step by fitting a perturbation mask to the input sequence. This mask is learned by
backpropagating the error, which we get by comparing the original output and the perturbed

output of the model (see Figure 3.8).

Time—,.

(_Feature -

Loss

Figure 3.8: Diagram for Dynamask. Time series input matrix X is fed to a black-box to
produce a prediction Y. To give a saliency score for each component of X, stored in a

mask M (of same shape as the input X), the mask produces a perturbed version of X via a
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perturbation operator I1. The perturbed X is fed to the black-box to produce a perturbed
prediction Y(M). The perturbed prediction is compared to the original prediction and the

error is backpropagated to adapt the saliency scores contained in the mask. [26]

Partial dependence plots (PDPs) show the dependence between one or two input features

and the target variable, marginalizing all other features.

SHapley Additive exPlanations (SHAP) [27] is a game theoretic approach to explain the
output of any machine learning model. Shapley values are used to assign each feature an
importance value representing its contribution to the model’s output by averaging the
marginal contributions of each feature across all potential permutations of features. SHAP
can be used for both local and global explanations. In a global SHAP explanation, the
importance of each indicator that has a positive or negative impact on the target variable
are determined. For local interpretability, SHAP values are determined for each instance,

increasing transparency and aiding in explaining case prediction.

. Model induction techniques: observe the behavior of the black-box trained model to infer a

second model that can be used to explain the predictions of the first.

One technique is the creation of surrogate models. They are usually trained on the inputs
and predictions of the opaque model to build an interpretable model. There are two
categories of surrogate models: global, which approximate the predictions of the black-box
model as a whole, and local that explain individual predictions of a black-box model, e.g.
LIME (Local Interpretable Model-Agnostic Explanations) [28]. The idea behind LIME is
that, even if the overall decision boundary of a function is complex, in the neighborhood of
a single decision the boundary is simple (see Figure 3.9). So, a single decision can be

explained by learning an interpretable model locally around the given instance.
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Figure 3.9: Toy example to present intuition for LIME. The black-box model’s complex decision
function f, that cannot be approximated well by a linear model, is represented by the blue/pink
background. The bold red cross is the instance being explained. LIME samples instances, gets
predictions using f, and weighs them by the proximity to the instance being explained
(represented here by size). The learned explanation is the dashed line, which is locally (but not

globally) faithful. [28]

Rule extraction is another model induction technique. It reveals the hidden knowledge of
opaque models such as deep neural networks (DNNs), support vector machines (SVMs),
and ensemble models. For instance, ANCHORS [29] explains the behavior of complex
models with high-precision rules called anchors, representing local, sufficient conditions
for predictions. A rule “anchors” a prediction locally if changes to the rest of the feature
values do not affect the prediction.

In deep learning (DL), a model/deep neural network (DNN) learns representations from raw
data, discovers patterns, and creates mappings from representations to output (prediction). The
representations captured by the neurons in the intermediate layers of DNNs are usually not human
interpretable, especially in the deeper layers of the network. Thus, many explanation techniques
focus on understanding the learned representations. Montavon et al. [30] distinguish between
DNNe-interpretation and DNN-explanation, where the former is defined as the mapping of an

abstract concept (e.g. a predicted class) into a domain that humans can make sense of, and the
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latter as the collection of features of the interpretable domain, that have contributed for a given
example to produce a decision (e.g. classification or regression). Based on [6] and other proposed
taxonomies, techniques for explaining DL methods can be generally classified in non-attribution
and attribution-based or visualization (similar or identical methods are classified as visualization

or attribution methods in the literature).

1. Visualization or Attribution methods: According to Ras et al. [31], visualization methods
explain by highlighting characteristics of an input that strongly influence the output,
through a scientific visualization. Attribution-based methods perform post-model analysis
on a neural network, aiming to decide the contribution of an input feature to the target
neuron (usually the output neuron of the correct class in a classification problem) and
visualize the network [32]. These methods can be further classified as backpropagation-

based and perturbation-based.

Backpropagation-based methods visualize features of relevance based on the volume of
gradient passed through the layers of the network during its training. The attribution of the
input features is computed with a single forward and backward pass through the network
[6]. Activation Maximization [33], Gradients [32], Saliency Maps [34], LRP (Layer-Wise
Relevance Propagation) [35], CAM and Grad-CAM [36], Deep SHAP [37] and DeepLIFT

[38] are some examples of backpropagation-based algorithms.

Perturbation-based methods are considered the simplest way to examine the effect of
changing the input features on the output of the neural network. They visualize feature
relevance by comparing network output between the original input and a modified copy of
it [32]. Some examples are the occlusion sensitivity method [31] and shapley value

sampling [39].

2. Non-attribution methods: develop a specific methodology to provide explainability and

validate it on a given problem, instead of performing a separate analysis using pre-existing
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methods. These include post-model methods, that may require specific changes to the
model structure, and intrinsic methods that improve the interpretability of internal
representations within methods that are part of the deep learning architecture [6]. These
methods include attention-based mechanisms [40], concept vectors [41], joint training

techniques [31], and other extended architectures.

Kary Framling proposed an alternative explanation approach for NNs results, named
Contextual Importance and Utility (CIU) [42]. The CIU method consists of two important
evaluation methods: Contextual Importance (CI), which approximates the overall
importance of a feature in the current context, and Contextual Utility (CU), which provides
an estimation of how favorable or unfavorable the current feature value is for a given output
class. Both CI and CU for an input are continuous numerical values, that are easily
computed using Monte-Carlo simulation or other methods. To produce explanations, CI
and CU can further be transformed into symbolic values, by defining value ranges for

‘good’, ‘bad’, ‘important’, ‘little important’, etc., or by using fuzzy sets.

In another review on explainable Al for healthcare [52], XAl methods are divided into

example-based, attribution-based, and model-based explanations, and their interpretability

(characterized by simplicity and clarity) and fidelity (characterized by soundness and

completeness) are evaluated for both local and global scope of explanation (see Table 3.1).

Method Explanation | Scope Fidelity Interpretability
type Soundness Completeness | Parsimony Clarity
Post-hoc Attribution Local General quantitative metric | Unavailable Satisfied if an instance or | General quantitative metric
explanation matrices feature is human-intelligible.
Attribution Global Gieneral quantitative metric | Unavailable Satisfied if an instance or | Satisfied
matrices feature is human-intelligible.
Model Local General quantitative metric | Satisfied General quantitative metric Unavailable matrices
Muodel Global General quantitative metric | Satisfied General quantitative metric If the model is incapable of
providing various rationales,
the model is satisfied.
Example Local Unavailable matrices Unavailable Satisfied if an instance or | Unavailable matrices
matrices feature is human-intelligible.
Example Global Unavailable matrices Unavailable Satisfied if an instance or | Satisfied
matrices feature is human-intelligible.

Table 3.1: Quality evaluation for post-hoc explainability methods. [52]
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Knapic et al. [43] approach XAI for human decision-support in medical image analysis, by
utilizing three explainability methods: LIME, SHAP, and CIU. Their aim was to improve
understandability of the decisions provided by a convolutional neural network (CNN) that predicts
lesions on in-vivo gastral images (assigns them as bleeding or normal/non-bleeding) and increase
health professional trust. A few of the LIME’s explanations are shown in Figure 3.10. The
explanation is provided by drawing yellow lines around significant features of the photos that
affected the black-box model’s judgment. The area that positively contributes to the bleeding class
is marked in the case of a bleeding image, and the area contributing to the non-bleeding class is
marked in the case of a non-bleeding image. Figure 3.11 depicts SHAP explanations provided for
some examples, each illustrating contributions to both bleeding and non-bleeding classes.
Important features of the images are marked in green color to represent a support for the class,
and in red color to represent contradiction to the class. The CIU explanations, shown in Figure
3.12, are similar to those of LIME, marking the important image area that contributes to the given
class, either bleeding or non-bleeding. User studies were performed with users from different non-
medical backgrounds to evaluate the comprehensibility of the given explanations. The reason that
normal people were invited is that explanations should be made as simple as possible in order to
make them easily understandable even to non-medical people. The results showed that CIU
explanations were more transparent and understandable to users. Between LIME and SHAP users
that were provided SHAP explanations reported higher satisfaction with the explanations.
According to the time needed to generate the explanations, the best performing method was CIU,

followed by SHAP, and then LIME.
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Figure 3.10: A few examples of LIME explanations for lesion prediction. [43]
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Figure 3.11: A few examples of SHAP explanations for lesion prediction. [43]
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Figure 3.12: A few examples of CIU explanations for lesion prediction. [43]

3.2.5 Hybrid methods

Hybrid methods aim at integrating machine learning with symbolic reasoning to build an
explainable Al model.
Prentzas et al. [44] propose applying argumentation on top of Machine Learning (ML) to build

an explainable Al system for stroke prediction. Specifically, the ML model used is Random Forest
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[45], and after it is fitted on the training data, IF-THEN rules are extracted from the trained model
using inTrees [46]. Then an argumentation theory is developed in Gorgias framework [47], using
the created rules. The resulting application supports queries to find which options (e.g. stroke,
asymptomatic) are supported by the argumentation theory for a given set of input (patient data).
The arguments (rules) which support the options are also provided, forming in this way the
explanation of the predicted result.

Ren et al. [48] propose MulNet framework (see Figure 3.13) to predict pneumonia, combining
an opaque and an explainable model. The former is a CNN that predicts pneumonia from chest
X-rays as input, and the latter is a Bayesian Network with medical knowledge (see Figure 3.14).
The final classification is performed by the Bayesian Network, that takes as input the CNN result
and the presence or absence of the seven symptoms/indicators for pneumonia diagnosis (cough,
hemoptysis, chest pain, fever, dyspnea, wet rales, dry rales). These seven features are extracted
from textual reports of community acquired pneumonia cases. The experiment shows that this
hybrid approach improves the performance by using multi-source data and providing explanations

for the diagnosis results.
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Figure 3.13: An overview of the MulNet framework. [48]
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Chapter 4

Conclusions

4.1 Remaining Challenges

The analysis of participants’ feedback statements regarding the explanations provided by

systems in different user studies [49, 43] have shown that users would like:
* more precise explanations
¢ explanations to be provided in various forms (both visual-based and linguistic explanations)
e to be able to interact with the explainable method in order to gain more in-depth
information.
Applying XAl methods in the medical field include various challenges.

¢ ML models must be embedded in systems that are usable and acceptable to clinicians,

motivated by their needs and the healthcare processes and environmental constraints

e As accuracy comes at the cost of interpretability and transparency, there is need for

achieving a balance between them

¢ There are privacy issues of sharing personal medical data through multiple devices

35
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e Intelligent exploitation of medical data because of their huge volume

e Data quality (i.e. incomplete/inaccurate/non-structured data, without documentation,

understanding clinical narrative text)

¢ Data annotation is time-consuming and expensive process

e Difficulty of aggregation of medical data and use them for machine learning due to various

data forms

¢ Maintenance of data used in the Al system, given the rapid developments in medical
domain
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4.2 Comparison of XAI methods in Medicine

As noted in previous chapters, the use of symbolic reasoning such as rule-based systems as
an XAI method in medicine is a solid solution, as it provides explainability by design.
Nevertheless, this approach has drawbacks, including the high maintenance cost and low
performance.

Historically, there has been a trade-off between interpretability and the performance of the
prediction models. Interpretable models, like decision trees, often perform less well on prediction
tasks compared to less interpretable or opaque models like deep learning and machine learning
(ML).

ML methods have the advantage of learning from the training data, and the ability to
generalize, which may sometimes have negative impact in case of over-generalization. Moreover,
the most popular explainability methods for ML approximate the black-box system with a local
surrogate linear model, providing in this way only local fidelity, and losing faithfulness to the
original model. However, there are other explainability methods that generate the explanation
based on the contributing features of the data set.

Case-based Reasoning (CBR) provide the ability of adjusting on the most specific instance in
the training set, in contrast with most other Al problem solvers such as Bayesian networks,
artificial neuron networks, and decision trees, that have a known tendency to overgeneralize [50].
In addition, decisions made by experts often rely on their experience, yet most ML approaches
cannot provide explanations based on specific experiences, as they don’t retain them. In contrast,
explainable case-based reasoning (XCBR) approaches can provide such explanations, because
CBR is a realistic model that imitates human behavior, as humans also think about similar
situations when encountering novel situations, which may be solved by adapting a retrieved case’s
solution. However, maintaining domain knowledge and appropriately populating its knowledge

containers are essential for a working CBR system.



38

Taking everything into account, it seems like the best solution to make Al in medicine
explainable is to combine the approaches above, in order to combine their advantages and
eliminate their disadvantages. A medical system that provides predictions based on both
traditional symbolic reasoning and modern machine learning approaches would increase the trust
of the user (both the patient and the physician), apart from providing explainability. Hence, more
study is needed to incorporate knowledge, rules, and learning in an efficient way for the medical

domain.
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