
DEPARTMENT OF COMPUTER SCIENCE

DepGraphRL: A Deep Reinforcement Learning-Driven,

Energy-Aware, Dependency Graph-Based Pruning

Framework for Edge-IoT Devices

Asfa Jamil

A dissertation submitted to the University of Cyprus

in partial fulfillment of the requirements

for the degree of Masters of Science in Artificial Intelligence

01, 2024

Asfa Jamil

© Asfa Jamil, 2024

Asfa Jamil

VALIDATION PAGE

Masters of Science Candidate: Asfa Jamil

Masters of Science Dissertation Title: DepGraphRL: A Deep Reinforcement

Learning-Driven, Energy-Aware, Dependency Graph-Based Pruning Framework for

Edge-IoT Devices

The present dissertation was submitted in partial fulfillment of the requirements for the De-

gree of Masters of Science in Artificial Intelligence at the Department of Computer Science

and was approved on 01 08, 2024 by the members of the Examination Committee.

Examination Committee:

Research Supervisor: Professor Elpida Keravnou-Papailiou

Committee Member: Associate Professor Vasos Vassiliou

Committee Member: Assistant Lecturer Nouman Ashraf

iii

Asfa Jamil

DECLARATION OF Masters of Science in Artificial

Intelligence CANDIDATE

The present dissertation was submitted in partial fulfillment of the requirements for the de-

gree of Masters of Science in Artificial Intelligence of the University of Cyprus. It is a product

of original work of my own, unless otherwise mentioned through references, notes, or any

other statements.

Asfa Jamil

iv

Asfa Jamil

Abstract

Recent technological advancements have revolutionized the role of the Internet of Things

(IoT) in various commercial and industrial sectors, including applications in smart city,

agriculture, healthcare, e-commerce, and industrial automation. Further, the landscape of

IoT innovation has steered toward automation and real-time adaptability with the fusion of

Artificial Intelligence knowledge in the domain of Deep Learning, Machine Learning and

Reinforcement Learning. However, due to the small size of IoT devices, they often face

computational capability and energy efficiency limitations. To overcome the computational

constraints of IoT devices, the integration of cloud computing has been rigorously explored

in different IoT applications. Though cloud computing provides powerful and robust com-

putation servers to the IoT devices and allows offloading of various application tasks, the

issue of high network and transmission latencies still persists. This necessitates the shift

of paradigm towards the edge computing, transitioning consumer IoTs towards Edge-IoT

devices. Though the Edge-IoT devices ensure the Quality of Services by leveraging compu-

tation near to IoT devices, the computation of complex tasks on battery constraint Edge-IoT

devices require efficient and intelligent energy management schemes, especially in the con-

text of operating Deep Neural Networks, such as Convolutional Neural Network (CNN), for

image classification.

A practical and renowned approach to reduce the energy consumption of Edge-IoT de-

vices for operating CNN models is to deploy efficient energy-aware, less structurally com-

plex neural network models on Edge-IoT devices using network pruning. However, this de-

ployment comes with various constraints. The first constraint revolves around the accurate

measurement of energy consumption in any baseline CNN model. The traditional methods

i

Asfa Jamil

of estimating energy consumption by using theoretical formulas often fall short consider-

ing practical scenarios where different natural factors also contribute in evaluation methods.

Thus, the evaluation of energy consumption requires empirical measurement methods along-

side the theoretical approaches. The second constraint is the limitations of existing pruning

methodologies, particularly the lack of generalizability across various neural network archi-

tectures and the complexities introduced by structural coupling in pruning processes. The

third and final constraint delves into the optimization challenges in pruning CNN models

for Edge-IoT devices, considering the multifaceted nature of variables within a dynamic

environment, such as layer count, energy consumption, and accuracy requirements. These

challenges necessitate a novel approach, combining empirical energy measurements with

advanced pruning techniques and optimization strategies.

To resolve these constraints, this thesis proposes a novel DepGraphRL framework to

optimise the CNN models on Edge-IoT devices. The proposed framework utilizes Deep

Reinforcement Learning (DRL) to provide an energy-aware, fully automated, and general-

izable layer-wise pruning technique for neural networks by employing DepGraph for struc-

tural pruning and empirical methods for energy consumption calculation of CNNs at edge

devices. The proposed framework considers the pruning of neural networks as a Markov De-

cision Problem. It utilizes an Advantage Actor-Critic algorithm for optimal policy training

to decide which layers to prune while balancing available energy and the required accuracy

tradeoff. A unique feature of the framework is the utilization of a dependency graph-based

structural pruning approach, i.e. DepGraph; this approach ensures generalizability of the

same pruning technique to the different neural networks in an automated fashion and also

handles issues of structural coupling while preserving the original model architecture and

Performance. The empirical methods used in calculating the energy consumption of neu-

ral networks on Edge-IoT devices support the applicability of the proposed framework in

ii

Asfa Jamil

real-world applications compared to theoretical methods.

Using different pruning ratios and feature importance ranking techniques, the proposed

framework has been extensively evaluated on different neural network architectures like

ResNet-18, VGG-19, and MobileNet. Compared to the baseline Depgraph pruning method,

the proposed DepgraphRL framework reduces overall energy consumption while obtaining

accuracy comparable to the baseline neural network models. This shows the effectiveness of

the proposed energy-aware framework in optimizing the performance of neural networks in

energy-constraint environments by providing energy-efficient pruned architectures of base-

line CNN models with comparable accuracy to the baseline.

iii

Asfa Jamil

Acknowledgments

In the name of Allah, the most Gracious, the most Merciful, I truly believe in his ultimate

power and that he is my ultimate strength. I want to extend my sincerest gratitude to Dr.

Eplida Keravnou for her constant support and guidance during my work on this thesis. I

am deeply thankful to my thesis co-supervisor, Dr. Nouman Ashraf, who helped me shape

and reform my thesis work. Words can’t express my gratitude to my husband, Abdullah

Bin Masood, for his mentorship and emotional support during the whole process. And my

parents, Dr. Jamil Ahmad and Sajida Rehman, I owe everything to them.

iv

Asfa Jamil

Contents

1 Introduction 1

1.1 Thesis Motivation . 2

1.2 Thesis Contributions . 4

1.3 Thesis Organization . 6

2 Background Knowledge and Literature Review 7

2.1 Energy Consumption in CNNs . 7

2.2 Network Pruning Techniques . 8

3 Proposed DepGraphRL Framework 10

3.1 Problem Formulation . 10

3.2 Energy Consumption Analysis: Theoretical vs Hardware Perspectives . . . 13

3.3 DepGraph: Group-Level Pruning in Neural Networks 17

3.3.1 Understanding Dependencies in Neural Networks 17

3.3.2 Dependency Graph . 18

3.4 DepGraphRL Framework: Proposed Scheme 22

3.4.1 Definition of State, Action, and Reward 23

3.4.2 Advantage Actor-Critic (A2C) Algorithm 25

4 Experiments And Performance Evaluation 28

4.1 Experimental Parameters And Setup . 28

4.1.1 Deep Neural Network (DNN) Models 29

4.1.2 Datasets: . 30

4.2 Performance Evaluation . 31

4.2.1 Comparison of Theoretical Energy with Hardware-Based Energy . 33

4.2.2 Impact of Number of Filters on Pruning Decisions 35

4.2.3 Energy-Accuracy Comparison . 36

5 Conclusion and Future Work 44

v

Asfa Jamil

Nomenclature

A2C Advantage Actor-Critic

AI Artificial Intelligence

CNN Convolutional Neural Networks

DepGraph Dependency Graph-based pruning technique

DepGraph Dependency Graph

DRL Deep Reinforcement Learning

Edge-IoT Edge computing in Internet of Things

FLOPs Floating Point Operations

IoT Internet of Things

MDP Markov Decision Problem

NVML NVIDIA Management Library

RA Reference Architecture

RL Reinforcement Learning

vi

Asfa Jamil

List of Algorithms

1 Empirical Energy Consumption Measurement for CNN Layers on GPUs . . 16

2 Dependency Graph [1] . 22

3 Grouping [1] . 22

vii

Asfa Jamil

List of Figures

3.1 Parameters grouped together with interdependencies, structured in various

formats. It’s essential to prune all the emphasized parameters at the same

time [1]. 18

3.2 Grouping of layers is accomplished through recursive propagation on the

Dependency Graph, beginning with the output of the fourth convolutional

layer, f +4 . In this scenario, the input f −4 and output f +4 of the convolutional

layer do not have an Intra-layer Dependency, owing to the differing pruning

strategies demonstrated earlier [1]. 20

3.3 Proposed model for energy-aware pruning of neural networks using a depen-

dency graph, enhanced by deep reinforcement learning within the DepGraph

framework, specifically designed for Edge-IoT devices. 23

4.1 A comparative analysis between the evaluation of the theoretical energy

(ETheoretical Energy) and hardware energy (EHardware Energy) for the “ResNet-18”

CNN model, employing an l1 − norm filter ranking, and taking into account

both the DepGraph and the proposed DepGraphRL framework. 34

4.2 A comparative analysis between the evaluation of the theoretical energy

(ETheoretical Energy) and hardware energy (EHardware Energy) for the “ResNet-18”

CNN model, employing “Random Pruning” filter ranking, and taking into

account both the DepGraph and the proposed DepGraphRL framework. . . 35

4.3 A comparative analysis between the evaluation of the theoretical energy

(ETheoretical Energy) and hardware energy (EHardware Energy) for the “ResNet-18”

CNN model, employing “Taylor Expansion” filter ranking, and taking into

account both the DepGraph and the proposed DepGraphRL framework. . . 36

4.4 A comparative analysis in the context of a number of filters between l1 −

norm, Random Pruning, and Taylor expansion for the pruning of “ResNet-

18” CNN model considering both the DepGraph and the proposed Dep-

GraphRL framework. 37

viii

Asfa Jamil

4.5 Tradeoff between energy (J) and accuracy (%) over ten pruning cycles at a

pruning ratio of 0.1 for the ResNet-18 convolutional neural network model

applied to the CIFAR-10 dataset. 38

4.6 Tradeoff between energy (J) and accuracy (%) across ten iterations of prun-

ing at a 0.3 ratio for the ResNet-18 CNN model applied to the CIFAR-10

dataset. 39

4.7 Tradeoff between energy (J) and accuracy (%) over ten iterations of pruning

at a ratio of 0.5 in the ResNet-18 CNN model, applied to the CIFAR-10

dataset. 40

4.8 Tradeoff between energy (J) and accuracy (%) over ten iterations of pruning

for MobileNet applied to the CIFAR-10 dataset. 42

4.9 Tradeoff between energy (J) and accuracy (%) over ten iterations of pruning

for VGG applied to the CIFAR-10 dataset. 43

ix

Asfa Jamil

Chapter 1
Introduction

The rapid evolution of information and communication technologies has catalyzed the emer-

gence of the Internet of Things (IoT) [2, 3]. This innovation is pivotal in various commer-

cial [4] and industrial sectors [5, 6], offering significant benefits such as real-time process

tracking [7] and advanced image processing [8]. Its applications span across diverse areas

including smart homes [9], smart grids [10], agriculture [11], e-commerce [12], and smart

cities [13], among others. The integration of Artificial Intelligence (AI) with IoT has further

transformed this landscape, steering towards automation and real-time adaptability, lever-

aging Machine Learning, Deep Learning, and Reinforcement Learning techniques [14–17].

Nonetheless, IoT devices often face limitations in computational capacity and energy effi-

ciency, largely due to their compact size [18, 19].

To mitigate these computational challenges, in literature, various state-of-the-art Refer-

ence Architectures (RA) have been proposed. Initially, these architectures depended heav-

ily on cloud computing servers to enhance the computational capabilities of IoT devices

and applications [20]. However, the significant transmission latencies associated with cloud

computing [21] have prompted a shift towards mobile-edge computing. This transition to

Edge-IoT architecture has brought computation closer to the IoT devices, significantly im-

proving the quality of service in computational and processing contexts [22].

Despite the significant progress made in tackling computational constraints, the efficient

management of energy in Edge-IoT devices continues to be a critical challenge. This thesis

aims to confront the prevalent energy management issues in these devices. Specifically, the

thesis research work focuses on the intelligent energy-aware fully automated and generaliz-

able deployment of neural networks, including Convolutional Neural Networks (CNN), on

Edge-IoT devices.

1

Asfa Jamil

1.1 Thesis Motivation

In the domain of Deep Neural Networks, CNNs are regarded as an important class, predom-

inantly used for processing data with a grid-like topology, such as images [23]. A CNN

typically consists of a series of layers, including convolutional layers, pooling layers, and

fully connected layers. The convolutional layers, the core building blocks, are particularly

effective in capturing spatial and temporal dependencies in an image through the application

of relevant filters [24]. This ability makes CNNs ideally suited for tasks such as image and

video recognition, image classification, and many other tasks that require processing visual

inputs [23] [25].

The computational depth and complexity of CNNs lead to substantial energy consump-

tion, a factor critically analyzed in various studies [26–31]. This high energy demand pri-

marily arises from several key factors. Firstly, the intricate architecture of CNNs, which

encompasses numerous layers and parameters, necessitates extensive computational opera-

tions that are inherently energy-intensive [26, 27, 32]. These operations require significant

processing power, contributing to the overall energy expenditure of deploying CNNs, par-

ticularly in resource-constrained environments such as Edge-IoT devices [33,34]. Secondly,

CNNs require frequent memory accesses for retrieving and storing weights and intermedi-

ate data. This process of memory access and management significantly adds to the energy

usage [35, 36]. Lastly, the energy consumption escalates further due to the substantial data

movement between the processor and memory, a factor that becomes particularly promi-

nent in distributed systems where data transfer can involve considerable energy consump-

tion [37, 38].

Based on above presented arguments, it is vital to understand the energy dynamics of

CNNs, especially when optimizing these networks for energy efficiency in scenarios such

as Edge-IoT devices where power resources are limited. Prior research in this area aims

to develop strategies and frameworks that can balance computational demands with energy

constraints, ensuring the sustainable deployment of CNNs in various applications [28, 29,

39]. A prominent strategy to mitigate the high energy consumption of CNN models, as

identified in the literature, is “network pruning”, a technique that reduces computational load

and energy requirements [40, 41]. Network pruning in CNNs involves reducing the network

size by selectively eliminating neurons or connections. This reduction in complexity aims to

maintain performance while enhancing energy efficiency [42, 43]. In the literature, multiple

techniques of network pruning have been presented such as weight pruning, unstructured

2

Asfa Jamil

pruning, structured pruning, layer-wise pruning, magnitude-base pruning, iterative pruning,

automated pruning, importance score, and lottery ticket hypothesis [29, 44–48]. However,

in this thesis, two network pruning techniques are focused, i.e., structured and unstructured

pruning, and an overview of these is presented before moving ahead.

Structured pruning involves removing entire units like neurons or layers, aligning well

with hardware architectures but at the risk of losing key network components, potentially re-

ducing accuracy [49,50]. Unstructured pruning, on the other hand, targets individual weights

or connections. While it preserves a larger portion of network functionality, it leads to sparse

matrice that present challenges to standard hardware which are generally optimized for dense

matrix operations [29,51]. The challenges with structured pruning mainly revolve around the

potential reduction in network performance due to the removal of significant network ele-

ments [1,52]. Unstructured pruning, while more flexible, results in sparse structures that can

complicate hardware implementation, potentially negating the benefits of a reduced network

size [53, 54].

Both pruning methods offer unique advantages and face distinct challenges. The choice

between them depends on the specific requirements of the application, including the balance

between accuracy and computational efficiency, and the hardware characteristics for CNN

deployment [55–57]. Current research is focused on optimizing these pruning techniques to

achieve the best trade-off between maintaining network performance and enhancing energy

efficiency in Edge-IoT devices.

In the ongoing evolution of pruning techniques for CNNs, the Dependency Graph (Dep-

Graph) based pruning method, introduced by Fang et al. in [1], marks a significant ad-

vancement. DepGraph pruning stands out for its innovative approach to structural pruning,

addressing the limitations inherent in traditional methods. It is specifically designed to ef-

ficiently reduce network complexity while maintaining performance, a critical aspect in the

optimization of neural networks. The core strength of the DepGraph method lies in its ability

to model the dependencies between layers in a neural network. This facilitates the selective

removal of redundant parameters without significantly impacting the network’s overall per-

formance. By focusing on the structural integrity of the network during pruning, DepGraph

ensures that the resultant network is not only simpler but also retains much of its original

accuracy and functionality.

In essence, the DepGraph pruning method is a major step forward in the field of network

pruning. It adeptly balances the need to reduce network complexity with the imperative to

maintain high levels of performance, making it a particularly promising solution for deploy-

3

Asfa Jamil

ing efficient CNNs in Edge-IoT devices [54, 57].

Another critical issue in ensuring an energy-aware scheme for Edge-IoT devices con-

cerning CNN models is related to the calculation of energy consumption for each layer in

the baseline CNN model [33, 34]. The prevalent method in existing research involves using

a theoretical formula set to estimate the FLOPs and memory metrics for each layer [32].

These metrics help calculate the baseline model’s total energy, which is then used for prun-

ing. However, this method has a significant limitation when it comes to practical real Edge-

IoT applications. With advancements in GPU metrics evaluation libraries, like NVML from

NVIDIA, new methods have emerged for empirically measuring energy consumption at each

layer. These empirical values often differ considerably from theoretical calculations, under-

scoring the importance of using empirical methods for energy measurement before pruning

a baseline model.

To effectively solve the problem of energy-efficient network pruning of CNN models

for Edge-IoT devices, various strategies and algorithms have been proposed in the literature.

However, these strategies are often required to manage extensive information about the CNN

model during the network pruning process, including the number of layers, energy consump-

tion at each layer, target energy consumption, baseline energy consumption, pruned model’s

accuracy, and target accuracy. Further, with the increasing number of Edge-IoT devices, the

problem complexity of energy-efficient network pruning of CNN models to solve for prior

proposed optimization strategies rises exponentially. Moreover, the dynamic nature of the

Edge-IoT devices’ environment over time adds to this problem’s complexity.

Given these aforementioned discussed challenges, it is crucial to develop a novel frame-

work that utilizes empirical methods for measuring energy consumption in the baseline

model and integrates the DepGraph approach for structural pruning. The proposed frame-

work should also be capable of handling the complexity of the problem and equipping Edge-

IoT devices with a dynamic, energy-aware, DepGraph-based group-level pruning scheme.

1.2 Thesis Contributions

In light of the above, Deep Reinforcement Learning (DRL) has emerged as a pivotal plat-

form in optimizing neural networks, particularly in the dynamic context of Edge-IoT de-

vices. DRL combines deep learning with reinforcement learning, enabling an agent to make

decisions by interacting with its environment. This combination is ideal for handling the

complex, high-dimensional state spaces typical in Edge-IoT applications [58, 59]. Tech-

4

Asfa Jamil

niques such as model-based reinforcement learning [60] and runtime neural pruning [61]

utilize DRL to dynamically adjust the network structure during training or even in real-time

operation. This dynamic adaptability is crucial for Edge-IoT devices, which operate under

varying computational demands and power constraints. DRL’s ability to make context-aware,

real-time decisions enables the optimization of the balance between computational load and

performance requirements [62, 63].

Therefore, in this thesis, a novel DepGraphRL framework is proposed that incorporates

all these features. The proposed DepGraphRL framework represents a novel integration

of DRL with the advanced DepGraph pruning method, specifically tailored for optimizing

CNN models in Edge-IoT devices. This framework is designed to address the unique chal-

lenges presented by the dynamic and resource-constrained nature of these devices, offering

a sophisticated solution that combines the strengths of DRL and DepGraph-based structural

pruning. At its core, the DepGraphRL framework leverages the DepGraph method for struc-

tural pruning, which efficiently models dependencies between network layers and ensures the

removal of redundant parameters with minimal impact on performance [1]. Integrated with

this is a DRL-based optimization process that dynamically adapts the network structure in

real time, making context-aware decisions to optimize computational load and performance

requirements based on empirical energy evaluation methods. The contribution of the thesis

are highlighted as follows:

• A novel energy-aware DepGraphRL framework, driven by DRL technology, is pro-

posed in this thesis to address the dynamic nature of Edge-IoT devices and their

energy-accuracy demands to operate CNN models for image classification.

• The framework also employs a DepGraph based structural pruning method that re-

moves the obstacle of structural coupling by explicitly modelling the dependency be-

tween layers and comprehensively grouping coupled parameters for pruning.

• The framework provides an energy-aware fully automatic and general pruning ap-

proach to energy-constraint Edge-IoT devices for incorporating any CNN model us-

ing Depgraph in comparison to traditional architecture-specific pruners, which offers

pruning schemes that need to be manually redesigned for different models making

these non-generalizable to new architectures.

• It also leverages the empirical energy evaluation criteria as compared to theoretical

evaluation methods to ensure the adaptability of the proposed framework in real-world

5

Asfa Jamil

scenarios.

• The thesis mathematically formulated the energy-aware structural pruning-based op-

timization problem for Edge-IoT devices and systematically refined it into a Markov

Decision Problem (MDP) by characterizing the state-space, action-space, and reward

function.

• To address the formulated optimization problem, the thesis incorporated an Advantage

Actor-Critic (A2C) based algorithm, a renowned DRL technique, which is used to train

the DepGraphRL agent to obtain the sub-optimal policy.

• Extensive performance evaluations considering different scenarios are conducted to

demonstrate the efficacy of the proposed DepGraphRL framework with other baseline

pruning schemes.

In summary, the DepGraphRL framework represents a significant advancement in neu-

ral network optimization for Edge-IoT devices. Its innovative approach, combining DRL

with structural pruning, paves the way for more efficient, adaptable, and powerful Edge-IoT

solutions [54, 64].

1.3 Thesis Organization

The thesis is organized as follows: Chapter 2 presents an in-depth background and literature

review of the state-of-the-art work. Chapter 3 presents a detailed overview of the Dep-

GraphRL framework while Chapter 4 demonstrates the efficacy of the proposed framework

through extensive simulations and experiments conducted under various scenarios. Finally,

Chapter 5 concludes the thesis work with future directions.

6

Asfa Jamil

Chapter 2
Background Knowledge and Literature Review

2.1 Energy Consumption in CNNs

The deployment of CNNs in different IoT applications leads to high energy consumption

due to their complex and deep structures. Prior research has contributed significantly in the

context of methods to evaluate the energy consumption of CNN models and offer various

approaches and optimization method to reduce the energy consumption.

For instance, Fontaine et al. [65] discuss the potential of deploying energy efficient neu-

ral networks with comprising performance on embedded devices. This study highlights the

benefits of processing data on the edge while utilizing energy efficient computationally less

expensive models on Edge-IoT devices. Further, the authors also provides insights in their

study to optimization techniques to facilitate the deployment of CNNs in energy-constrained

Edge-IoT devices. Another notable work by Ye et al. in [66] explore the challenges and

emerging technologies for low-power AI, focusing on IoT chips. They identify power ef-

ficiency, latency, and memory constraints as primary concerns and propose solutions like

event-driven architectures and nonuniform sampling techniques. Their research also empha-

sizes the role of energy harvesting in enhancing the lifespan of IoT devices, pointing towards

a synergy between hardware and software optimizations to achieve energy efficiency.

The work conducted by Alenazi et al. in [67] delves into neural network embedding in

IoT networks. In their work, they demonstrate that optimized neural networks can save up

to 86% of bandwidth. Further, their proposed framework, which utilizes Service Oriented

Architecture (SOA), showcases the significant energy savings achievable through strategic

network optimizations.

Similarly, Govindaraj and Nachimuthu [68] present a capsule neural network-based learn-

ing model for IoT networks. Their findings highlight effective network energy optimization,

7

Asfa Jamil

particularly in wireless personal communication systems, thereby contributing to the broader

discussion on energy-efficient AI models in IoT.

Zhang [69] focuses on real-time detection of energy consumption in IoT networks. The

paper presents a routing planning method that significantly reduces energy consumption,

demonstrating the potential of software-level optimizations in managing the energy demands

of IoT networks.

These studies collectively underscore the importance of both hardware and software opti-

mizations in reducing the energy consumption of CNNs deployed in IoT and edge computing

scenarios.

2.2 Network Pruning Techniques

To optimize neural networks for energy efficiency by reducing structural complexity, neural

network technique is often explored. Multiple techniques have been explored in the liter-

ature. In this section, an overview of recent advances in this direction has been discussed

particularly considering structual and nonstructural pruning.

Structured Pruning: In 2018, Crowley et al. [70] explored structured pruning for neu-

ral network compression, a pruning technique that focuses on eliminating whole neurons,

channels or layers. Lin et al. [71] in 2018 introduced innovative methodologies for opti-

mal structured CNN pruning via generative adversarial learning. Bragagnolo et al. In 2021,

structural pruning was further explored by [72] and Wang et al. [73] to remove structural

redundancy of neural networks for network compression. Recently, [1] proposed DepGraph,

a dependency graph-based structural pruning technique to overcome obstacles of structural

coupling and non-generalizability of pruning techniques. This pruning technique models

inter and intra-layer dependencies to overcome these obstacles.

Unstructured Pruning: Unstructured pruning removes individual weights or connec-

tions that can lead to irregular network structures. Molchanov et al. [74] have explored the

effectiveness of unstructured pruning in providing energy-efficient networks with better en-

ergy accuracy tradeoff in energy-constrained environments. Further, this technique has been

explored by [58, 75–79]

Other methods include magnitude-based pruning [80], weight pruning [81] automated

pruning [48].

Energy-Aware Pruning Algorithms Above mentioned pruning techniques, do not take

in account actual energy consumption by the neural networks. This aspect has also been

8

Asfa Jamil

explored to optimize the pruning technique. In their research, He et al. [82] explored the

combined impact of pruning redundant network components and also the approximation of

computations that can lead to a reduction in energy consumption without significant impact

on performance. Yang et al. [29] highlighted how the energy consumption of state-of-the-art

neural networks like AlexNet and GoogLeNet consider energy limitations o f IoT devices.

Montazeri et al. [83] and Ghazisaeedi et al. [84] have explored energy-aware strategies net-

working and computing, contributing to the optimization of energy management.

Reinforcement Learning-Based Pruning Techniques For automation of the dynamic

requirement of pruning, reinforcement learning (RL) has been explored in literature to en-

hance computational and energy efficiency considering pruning as an optimization problem.

this section explores, some of the recent works in this direction. Bencsik and Szemenyei [60]

proposed an RL-based automated neural network pruning technique considering the complex

trade-offs involved in pruning, achieving optimal network simplification while maintaining

performance. Malik et al. [62] utilized a constrained RL to find a balance between the prun-

ing process and learning objectives of the neural network.

Liu et al. [85] utilized meta-learning to automate the process of neural network prun-

ing. Lin et al. [61] explored RL for pruning during runtime by dynamically pruning network

structure based on runtime resources and constraints of energy. In recent development, Za-

wish et al. [86] focused on energy-aware DRL-driven model compression framework for

energy harvesting devices utilizing energy management scheme and theoretical energy con-

sumption.

9

Asfa Jamil

Chapter 3
Proposed DepGraphRL Framework

This chapter presents a novel DepGraphRL framework which is designed with the aim to

equip Edge-IoT devices with real-time, energy-efficient pruning of dependency graph-based

neural networks. Initially, the chapter presents the challenge of energy-aware pruning and

formulated optimization problem. It then delves into the comparison of theoretical vs hard-

ware based CNN energy consumption analysis and specifics of dependency graph based

pruning algorithm. The chapter subequently presents the system model, integrating the Dep-

GraphRL framework with Edge-IoT devices. It also define state, action, and reward space

that refine the optimization problem into a Markov Decision Process (MDP). To address the

formulated optimization problem, the chapter details the A2C algorithm, a DRL approach,

employed to train the agent within the DepGraphRL framework. This training aims to de-

velop a sub-optimal policy.

3.1 Problem Formulation

In this section, a formulation of an energy-aware problem is presented. The formulated

problem is related to Edge-IoT devices that require an energy-efficient strategy to perform

image classification tasks by deploying CNN models. In the considered scenario, the Edge-

IoT devices are constrained by their limited energy resources. Consider a baseline CNN

model, denoted as M, which is composed of K ∈ Zk layers. The energy consumption of

this baseline model is expressed as EBaseline(t), while its baseline accuracy level is denoted by

AccuracyBaseline(t). In this thesis, the ‘Cross Entropy Loss’ evaluation metric is considered

to calculate the model’s accuracy. To ensure the minimum energy consumption in Edge-IoT

device while operating a CNN model and have a long battery life, the aim here is to prune

10

Asfa Jamil

the high energy-consuming layers in a CNN model at the expense of reduction in model

accuracy.

Based on this, an EdgeIoT device can provide the agent (i.e., an optimization algorithm)

with its set priorities in terms of target accuracy, denoted as AccuracyTarget(t), of the pruned

CNN model so that energy consumption can be reduced. Using this, the optimization prob-

lem can be formulated as:

Minimize: Epruned(t)

Subject to: C1 : Emin(t) ≤ EPruned(t) ≤ ETarget(t),

C2 : EPruned(t) ≤ EBaseline(t),

C3 : Accuracypruned(t) ≥ AccuracyTarget(t),

(3.1)

The constraints in our optimization challenge are outlined as follows:

• Constraint C1: This ensures that the energy consumption of the modified, or ‘pruned’,

CNN model (EPruned(t)) at any given time (t) does not exceed the target energy con-

sumption specified by the Edge-IoT device. Also, it must be at least as much as the

minimum energy consumption (Emin(t)) of the original model. This minimum is de-

fined by the energy used by the least energy-consuming layer (k) in the original model.

• Constraint C2: This guarantees that the energy consumption of the pruned model at

any time is always less than or equal to the energy consumption of the original, or

baseline, model. It’s a way to ensure that the pruning process makes the model more

energy-efficient.

• Constraint C3: This condition requires that the accuracy of the pruned CNN model

(AccuracyPruned(t)) is always at least equal to the target accuracy level (AccuracyTarget(t))

set by the user.

The main goal of this optimization is to reduce the energy usage of the pruned model,

within the limits set by Emin and EBaseline(t), while also making sure that the model’s accuracy

does not drop below the set target level. In the literature, different approaches and framework

have been proposed that address this optimization problem. However, they fail to consider

three significant challenges that are associated with this problem in real-world scenarios.

The first issue concerns the calculation of energy consumption for each layer in the base-

line CNN model. The prevalent method in existing research involves using a theoretical

formula set to estimate the FLOPs and memory metrics for each layer. These metrics help

11

Asfa Jamil

calculate the baseline model’s total energy, which is then used for pruning. However, this

method has a significant limitation. With advancements in GPU evaluation libraries, like

NVML from NVIDIA, new methods have emerged for empirically measuring energy con-

sumption at each layer. These empirical values often differ considerably from theoretical

calculations, underscoring the importance of using empirical methods for energy measure-

ment before pruning a baseline model.

The second issue pertains to the method of pruning a baseline model, particularly with

respect to the structural pruning of neural networks. Structural pruning typically acceler-

ates models by removing grouped parameters, but the grouping patterns vary significantly

across different architectures like CNNs, Graph Neural Networks (GNNs), Recurrent Neu-

ral Networks (RNNs), and Transformers. This variation makes architecture-specific pruners,

which depend on manually designed grouping schemes, non-generalizable to new architec-

tures. A major hurdle in this context is structural coupling, which necessitates simultaneous

pruning across different layers and assumes that all removed parameters are consistently

non-essential, thereby preventing structural complications and significant performance loss

post-pruning. To address this, Fang et al. [1] recently introduced a general and fully auto-

mated method, the Dependency Graph (DepGraph), for modelling layer dependencies and

effectively grouping parameters for pruning. This innovation underscores the need to in-

tegrate the DepGraph method in Edge-IoT devices for a fully automated and generalizable

structural neural network pruning method.

Lastly, various strategies and algorithms have been proposed to solve this optimization

problem effectively, especially for pruning CNN models in Edge-IoT devices. These de-

vices might need to prune different baseline models, each with its own number of layers (K)

and varying energy consumption. Hence, any optimization method must manage extensive

information about the model, including the number of layers, energy consumption at each

layer, target energy consumption, baseline energy consumption, pruned model accuracy, and

target accuracy. The increasing number of Edge-IoT devices amplifies the complexity of this

problem exponentially. Moreover, the dynamic nature of the environment over time adds to

this complexity, rendering traditional optimization methods less effective and categorizing

this optimization problem as a Mixed Integer Non-Linear Programming (MINLP) problem,

which is generally challenging to solve optimally (NP-hard).

Given these three challenges, it is crucial to develop a novel framework that utilizes

empirical methods for measuring energy consumption in the baseline model, integrates the

DepGraph approach for structural pruning, and is driven by DRL techniques. These tech-

12

Asfa Jamil

niques should be capable of handling the complexity of the problem and equipping Edge-

IoT devices with a dynamic, energy-aware, DepGraph-based group-level pruning scheme.

Therefore, in this thesis, a novel DepGraphRL framework is proposed that incorporates all

these features. Before proceeding with an overview and discussion of DepGraphRL, the the-

sis will present a discussion on the empirical method for measuring energy consumption and

the details of the DepGraph approach in the subsequent sections.

3.2 Energy Consumption Analysis: Theoretical vs Hard-

ware Perspectives

A crucial aspect of the proposed DepGraphRL framework is the comprehensive analysis

of energy consumption for individual layers of the CNN. This analysis is essential as it

guides the DepGraphRL framework in understanding the energy impacts of various pruning

decisions.

The methodology for analyzing energy consumption encompasses two distinct approaches:

a theoretical model and an empirical measurement approach. The theoretical model, grounded

in FLOPs and memory requirements, provides a foundational estimate of the energy demands

of each CNN layer. This approach is vital for establishing a baseline understanding of energy

consumption. On the other hand, the empirical measurement approach, based on real-time

energy monitoring on edge devices, offers practical insights. This hardware-based perspec-

tive reveals the actual energy usage in real-world scenarios, complementing the theoretical

model. Together, these dual perspectives enable a more nuanced and accurate assessment

of energy consumption, crucial for optimizing the DepGraphRL model’s performance and

ensuring energy-efficient operations in Edge-IoT environments.

A standard CNN is composed of multiple convolutional and fully connected layers.

Among all layers of a CNN, convolutional layers perform the bulk of the computation, thus

requiring higher energy for execution on low-powered IoT devices. A convolution operation

is a basic element in a standard CNN whose kernels are defined by a 4-D tensor given as:

W ∈ RCin×X×Y×Cout (3.2)

where X and Y represent kernel’s spatial dimensions, while Cin and Cout are the number of

input and output channels, respectively.

If I ∈ RC×U×V are the input feature maps with a spatial dimensions of U and V, then the

13

Asfa Jamil

output feature map f with the spatial dimensions (x, y) can be calculated using:

T(f , x, y) =
C∑

c=1

X∑
x′=1

Y∑
y′=1

I(c, x − x
′

, y − y
′

) ·W(c, x
′

, y
′

, f) (3.3)

Theoretical-Based Energy Consumption

For a CNN model M with K convolutional layers, the FLOP in k ∈ K layer can be calculated

using:

Fk
FLOP = Ck

in × (Ωk)
2
× Ck

out × Sk
out (3.4)

and total FLOPs in the model M are calculated as:

FFLOPs =

K∑
k=1

[
Ck

in × (Ωk)
2
× Ck

out × Sk
out

]

FFLOPs =

K∑
k=1

Fk
FLOP

(3.5)

Similarly, the memory consumption of a layer k ∈ K in CNN model M with K convolu-

tional layers can be calculated using:

Mk
Memory = Ck

in × (Ωk)
2
× Ck

out × 4 (3.6)

while total memory consumption is given as:

Mk
Memory =

K∑
k=1

[
Ck

in × (Ωk)
2
× Ck

out × 4
]

MMemory =

K∑
k=1

Mk
Memory

(3.7)

However, the energy requirement of a CNN is not only reflected by memory and FLOPs.

In fact, the total energy consumption of a CNN is a sum of energy consumption in executing

arithmetic operations. The former is a product of energy required for DRAM access (referred

as Eaccess in a 45-nm CMOS, i.e., 640 pJ [87] and model memory, while the latter is a product

of energy required for a single FLOP (referred as EFLOP), i.e., 2.3 pJ [87] and model’s total

FLOPS. Thus, the theoretical energy consumption for a CNN model M and K convolutional

layers can calculated using:

ETheoretical Energy =

K∑
k=1

[(
MMemory × Eaccess

)
+
(
MFLOPs × EFLOPs

)]
(3.8)

ETheoretical Energy =

K∑
k=1

Ek
Theoretical Energy (3.9)

14

Asfa Jamil

where Cin and Cout are the number of input and output channels, respectively, while Ω2 and

Sout represent the size of filters and size of feature maps in the output layer, respectively.

Moreover, MFLOPs, MMemory, and ETheoretical Energy denote the model’s total FLOPs, memory,

and energy. The Mk
FLOPs, Mk

Memory, and Ek
Theoretical Energy denote the k-th layer’s FLOPs. mem-

ory, and energy, respectively.

Empirical/Hardware-Based Energy Consumption

In the “Empirical/Hardware-Based Energy Consumption” section, we move away from the-

oretical models and focus on measuring energy consumption in real-time on edge devices,

such as GPUs. Unlike theoretical models, this method uses tools like NVML1 to directly

measure the energy used by the devices. An important part of this process is the warm-up

phase. During this phase, the device’s GPU runs multiple times to reach a stable, consistent

operational state. This ensures that the GPU is performing at a regular power level before we

start measuring. This step is crucial because it helps avoid variations in power readings that

can happen when a GPU switches from being idle or in a low-power state to being actively

used.

1https://developer.nvidia.com/nvidia-management-library-nvml

15

Asfa Jamil

Algorithm 1: Empirical Energy Consumption Measurement for CNN Layers on

GPUs
Input: K, number of repetitions repeats

Output: Ek
Hardware Energy for each layer k ∈ K

1 Procedure MeasureEnergyConsumption(K, repeats):

2 Initialize NVML or a similar tool for GPU monitoring;

3 // Warm-up Phase:

4 foreach k ∈ K do

5 Run layer k multiple times to stabilize GPU;

6 end foreach

7 // Measurement Phase:

8 foreach k ∈ K do

9 Timeelapsed ← 0;

10 Ek
Hardware Energy ← 0;

11 for i← 1 to repeats do

12 Start timing;

13 Record PStarti;

14 Execute layer k;

15 Record PEndi;

16 Stop timing;

17 Timeelapsedi
← time elapsed;

18 Timeelapsed ← Timeelapsed + Timeelapsedi
;

19 Ek
Hardware Energyi

← (
PStarti+PEndi

2) × Timeelapsedi
;

20 Ek
Hardware Energy ← Ek

Hardware Energy + Ek
Hardware Energyi

;

21 end for

22 Output Ek
Hardware Energy for layer k;

23 end foreach

24 return Ek
Hardware Energy for each k ∈ K

To get accurate and reliable energy consumption data, the GPU layer is executed several

times. This repetition helps average out any irregularities or changes in power readings,

giving a more stable and representative measure of energy consumption. We also calculate

the time it takes for each layer to run using precise timing events. These events mark the

beginning and end of the layer’s operation and are synchronized with the GPU for accurate

timing. The total time taken is then divided by the number of runs to get an average execution

16

Asfa Jamil

time for each layer.

Considering both the warm-up phase and the repeated measurements, we recalculate the

energy consumption for each layer Ek
Hardware Energy using the following formula:

Ek
Hardware Energy =

1
repeats

repeats∑
i=1

(Powerstarti + Powerendi

2

)
× Timeelapsedi

(3.10)

In this formula, Powerstarti and Powerendi are the power readings at the beginning and end

of each run, respectively. Timeelapsedi
is the time it takes for each execution, and repeats is the

total number of measurements for averaging. From (3.10), the total energy EHardware Energy of

a CNN model M with K layers can be calculated as:

EHardware Energy =

K∑
k=1

Ek
Hardware Energy (3.11)

This hardware-based method provides a more empirical and accurate way to assess the

energy needs of each CNN layer, taking into account the unique characteristics of edge de-

vices. By including the warm-up phase, repeated measurements, and precise timing, this

approach gives essential insights into the energy efficiency of CNNs in real-world edge com-

puting scenarios. A detailed algorithm for measuring the hardware-based energy of each

layer in a CNN model is presented in Algorithm 1.

3.3 DepGraph: Group-Level Pruning in Neural Networks

This thesis introduces a method for structurally pruning neural networks, focusing on the

constraints of parameter dependency. The considered approach for this purpose is based on

DepGraph group-level pruning which is adapted from the work of Fang et al. [1].

3.3.1 Understanding Dependencies in Neural Networks

The concept of pruning is explored using fully-connected (FC) layers as a foundation. Con-

sider a basic linear neural network with three consecutive layers, as shown in Fig. 3.1a.

These layers are defined by 2-D weight matrices wl, wl+1, and wl+2. Structural pruning

streamlines the network by removing neurons, leading to dependencies between parameters,

such as wl ⇔ wl+1. This means that if wl is pruned, wl+1 must also be pruned. Specifically,

pruning the k-th neuron connected to wl implies the removal of the connecting bridge.

Previous studies have addressed layer dependencies in deep neural networks through

customized and model-specific strategies [46, 88]. However, dependencies, as depicted in

17

Asfa Jamil

wl wl+1 wl+2

(a) Basic dependency

wl wl+1 wl+2

Residual Connection

(b) Residual dependency

wl wl+1 wl+2

Concatenation

(c) Concatenation dependency

wl

∑

(d) Reduction dependency

Figure 3.1: Parameters grouped together with interdependencies, structured in various formats. It’s

essential to prune all the emphasized parameters at the same time [1].

Fig. 3.1b, 3.1c, and 3.1d, are varied and complex. Manually analyzing these dependencies

on a case-by-case basis is impractical, especially when simple dependencies can intertwine to

form more intricate patterns. The Dependency Graph offers a comprehensive and automated

solution to this challenge, effectively managing the dependency aspect in structural pruning.

3.3.2 Dependency Graph

Grouping for Structural Pruning

To facilitate structural pruning in neural networks, it’s crucial to group layers based on their

inter-dependencies. The aim is to create a grouping matrix G ∈ RL×L, where L represents the

number of layers in the network. Here, Gi j = 1 signifies a dependency between the i-th and

j-th layers. Lets define Diag(G) = 11×L to include self-dependency for simplicity. Using G,

it’s easy to identify all layers interconnected with the i-th layer, denoted as g(i):

g(i) = { j|Gi j = 1} (3.12)

However, determining these grouping patterns in complex neural networks, which may have

thousands of layers, is challenging. The dependencies indicated by Gi j depend not only on

18

Asfa Jamil

the i-th and j-th layers but also on intermediate layers. Since these relationships are often

non-local and implicit, they cannot be easily defined by simple rules. To address this, Dep-

Graph doesn’t directly estimate G but instead employs an alternative method for modelling

dependencies, from which G can be efficiently derived.

Constructing the Dependency Graph

Consider a group of weights g = {w1,w2,w3} with dependencies w1 ⇔ w2, w2 ⇔ w3, and

w1 ⇔ w3. Notably, some dependencies, like w1 ⇔ w3, can be inferred from others. Starting

with w1 and exploring its connections, such as w1 ⇔ w2, leads us to w2 ⇔ w3 through a

recursive process. This culminates in a transitive relation: w1 ⇔ w2 ⇔ w3.

In this context, the group’s relationships can be represented with just two dependencies.

Similarly, the previously mentioned grouping matrix G contains redundancies for depen-

dency modelling. Fang et al. [1] propose a Dependency Graph D, which efficiently repre-

sents local inter-dependencies between adjacent layers, as an alternative to G. D focuses

only on direct connections between adjacent layers, acting as a transitive reduction of G. It

contains the same vertices as G but minimizes the number of edges. For any Gi j = 1, there

is a path in D between vertices i and j, allowing for the inference of Gi j by examining paths

in D.

Decomposition of Network

Building a dependency graph at the layer level can be challenging in practical scenarios.

This difficulty arises because some fundamental layers, like fully connected layers, employ

different schemes such as w[k, :] and w[:, k]. These schemes alter the dimensions of the in-

puts and outputs differently, as we have discussed in Section 3.3.1. Additionally, networks

incorporate non-parameterized operations like skip connections, which influence the depen-

dencies among layers [81]. To address these complexities, Fang et al. introduced a novel

approach to break down a network, denoted as F (x; w), into more detailed and simpler ele-

ments, represented as F = { f1, f2, · · · , fL}. Here, each component f is either a parameterized

layer, such as a convolution layer, or a non-parameterized operation like adding residuals. In

contrast to focusing on the relationships at the layer level, DepGraph emphasizes the depen-

dencies between the inputs and outputs of the layers. More specifically, the input and output

of a component fi are defined as f −i and f +i , respectively. This designation simplifies the

process of modelling dependencies and enables the application of varied pruning schemes to

19

Asfa Jamil

the same layer.

Conv f1

BN f2

ReLU f3

Conv f4

BN f5

ReLU f6

Add f7

(a) CNN

0
1
2
3

f1
+

f2
-

f2
+

sch (f2-) = sch (f2+)

f3
-

f3
+ f4

- f4
+

0
1
2
3

0
1
2
3

0
1
2
3

0 1 2 3 0 1 2 3

sch (f4-) ≠ sch (f4+)

f5
+

f5
- 0

1
2
3

0
1
2
3

f6
+

f6
-

f7
+ f7

-f1
-

Perceeding
Layers

Succeeding
Layers

(b) Propagation on Dependency Graph

Figure 3.2: Grouping of layers is accomplished through recursive propagation on the Dependency

Graph, beginning with the output of the fourth convolutional layer, f+4 . In this scenario, the input

f−4 and output f+4 of the convolutional layer do not have an Intra-layer Dependency, owing to the

differing pruning strategies demonstrated earlier [1].

Dependency Modeling

Using the notation above introduced, let’s redraw the neural network as shown in (3.13). In

this model, two main types of dependencies are presented: interlayer and intralayer depen-

dencies. The equation below illustrates this:

(f −1 , f +1)↔ (f −2︸ ︷︷ ︸
Inter-layer Dep

, f +2) · · · ↔ (f −L , f +L)︸ ︷︷ ︸
Intra-layer Dep

(3.13)

In this representation, the symbol↔ shows the connection between two adjacent layers. By

examining these dependencies, some basic yet broad rules for modelling dependencies can

be established, which are as follows:

• Inter-layer Dependency: This type of dependency, f −i ⇔ f +j , occurs consistently in

layers that are connected, specifically where f −i ↔ f +j .

• Intra-layer Dependency: This occurs when the input and output of a layer, f −i and

f +i respectively, share the same pruning approach, indicated by sch(f −i) = sch(f +i).

20

Asfa Jamil

Firstly, inter-layer dependencies can be estimated by looking at the network’s structure.

For layers that are connected, a dependency always exists as their inputs and outputs cor-

respond to the same parts of the network. Next, consider intra-layer dependencies. This

type of dependency requires that both the input and output of a layer are pruned at the same

time. Many layers, such as batch normalization, meet this criterion because their inputs and

outputs are pruned in the same way, as denoted by sch(f −i) = sch(f +i).

However, layers like convolutions often have different pruning approaches for their inputs

and outputs, leading to no dependency between the two. This distinction is important in our

model. The formal approach to dependency modelling is as follows:

D(f −i , f +j) = I[f −i ↔ f +j]︸ ︷︷ ︸
Inter-layer Dep

∨ I[i = j ∧ sch(f −i) = sch(f +j)]︸ ︷︷ ︸
Intra-layer Dep

(3.14)

In this equation, ∨ and ∧ are the logical "OR" and "AND" operations, respectively, and I is

an indicator function that returns "True" if the specified condition is met. The first part of the

equation deals with inter-layer dependencies caused by connections in the network, while

the second part deals with intra-layer dependencies that arise from layers having the same

pruning scheme for their inputs and outputs.

It’s important to note that the DepGraph is a symmetric matrix, meaning that D(f −i , f +j) =

D(f +j , f −i). Therefore, all pairs of inputs and outputs can be analyzed to estimate the net-

work’s dependency graph. The DepGraph of a CNN block with residual connections is

shown in Fig. 3.2. Algorithms 2 and 3 summarize the procedures for dependency modelling

and grouping.

21

Asfa Jamil

Algorithm 2: Dependency Graph [1]
Input: A neural network F (x; w)

Output: DepGraph D(F ,E)

1 f − = { f −1 , f −2 , . . . , f −L } decomposed from the F ;

2 f + = { f +1 , f +2 , . . . , f +L } decomposed from F ;

3 Initialize DepGraph D = 02L×2L ;

4 for i = {0, 1, . . . ,L} do

5 for j = {0, 1, . . . ,L} do

6 D(f −i , f +j) = I[f −i ↔ f +j]︸ ︷︷ ︸
Inter-layer Dep

∨ I[i = j ∧ sch(f −i) = sch(f +j)]︸ ︷︷ ︸
Intra-layer Dep

7 end for

8 end for

9 return D

Algorithm 3: Grouping [1]
Input: DepGraph D(F ,E)

Output: Groups G

1 G = {};

2 for i ∈ {1, 2, . . . , 2 ∗ ∥F ∥} do

3 g = {i};

4 repeat

5 UNSEEN = {1, 2, . . . , 2 ∗ ∥F ∥} − g;

6 g′ = { j ∈ UNSEEN | ∃k ∈ g,Dkj = 1};

7 g = g ∪ g′ ;

8 until g′ = ∅;

9 G = G ∪ {g};

10 end for

11 return G

3.4 DepGraphRL Framework: Proposed Scheme

The system model of the DepGraphRL framework, which integrates an A2C-agent, Edge-

IoT devices, and a dependency graph-based neural network pruning, is depicted in Fig.

3.3. This model considers IoT devices equipped with edge computing capabilities. The

22

Asfa Jamil

Take action (at)

Input state (st)

reward (rt)

Conv f1

BN f2

ReLU f3

Conv f4

BN f5

ReLU f6

Add f7

Advantage

V π(st)

ⳝ(st)

ⳝ(st)

Critic

Actor

DepGraph
Pruning

A2C
Agent

EdgeIoT
Enviornment

EBaseline (t),
AccuracyTarget(t)

EPruned (t),
AccuracyPruned(t)

Figure 3.3: Proposed model for energy-aware pruning of neural networks using a dependency graph,

enhanced by deep reinforcement learning within the DepGraph framework, specifically designed for

Edge-IoT devices.

DepGraphRL framework features an energy-aware dependency graph-based neural network

pruning scheme, driven by a DRL-based A2C agent. It assesses the status of Edge-IoT de-

vices and subsequently provides a compressed CNN model for execution. Unlike traditional

compression schemes, the DepGraphRL framework prunes a pre-trained CNN in an energy-

aware fashion, pruning each CNN layer according to its contribution to the overall energy

complexity of the CNN.

Prior to deployment on the edge device, the DepGraphRL model requires pre-training

on a GPU or cloud server. Following this, any CNN model can be compressed using

DepGraphRL on the device itself. This approach contrasts with cloud offloading, which,

as reported in several studies, consumes significantly more energy than local inference on

energy-harvesting edge devices [87, 89]. Hence, the proposed scheme avoids computational

offloading to the cloud, reducing the associated energy expenditure. The subsequent section

presents a comparison of CNN energy consumption using theoretical and hardware-based

approaches, followed by a detailed discussion of the DepGraphRL-based scheme. The the-

sis will demonstrate the efficacy of the DepGraphRL scheme, defining its state, action, and

reward functions tailored for this specific task.

3.4.1 Definition of State, Action, and Reward

This part formulates the problem in (3.1) as an MDP and uses the DepGraphRL as an agent

while treating the Edge-IoT device as an environment. The related state space, action space

23

Asfa Jamil

and reward function are introduced below.

1. State Space (S): At each moment, denoted as time t, the proposed A2C-based Dep-

GraphRL agent receives a set of information, known as the state space st, from its

environment. This state space comprises detailed parameters about the environment at

that specific time. The state space is represented as follows:

st =

{[
Ik,Ck

in,C
k
out,E

k
Hardware Energy,Rk

]
,
[
Ik+1,Ck+1

in ,C
k+1
out ,E

k+1
Hardware Energy,Rk+1

]
,

. . . ,
[
IK,CK

in,C
K
out,E

K
Hardware Energy,RK

]}T

(3.15)

In this formulation, Ik, Ck
in, and Ck

out indicate the index, input channels, and output

channels of the kth layer in a CNN model with K layers, respectively. Ek
Hardware Energy

represents the current energy status of the hardware for layer k, and Rk shows the

proportion of energy used by this layer in the overall CNN structure. These details

about individual layers help the agent distinguish one convolutional layer from another,

enhancing its decision-making. Specifically, Ek
Hardware Energy and Rk are crucial for the

agent to identify layers based on their energy contribution to the overall complexity of

the model.

2. Action (A): Based on the given state space, the agent takes an action according to the

previously defined policy. In each iteration, the agent must decide whether to prune a

specific layer k or not. This decision is represented as ak
t , which can be either 0 (do not

prune) or 1 (prune). Given that a network might have K layers, there are 2K possible

pruning strategies, meaning the A2C actor neural network could have as many as 2K

output nodes. This causes the complexity of the A2C actor neural network to increase

exponentially with the number of layers in the CNN.

To manage this complexity, the thesis proposes modeling the actions in a scalar con-

tinuous action space, denoted as ãk
t , which ranges between 0 and 1. Subsequently, the

decision to prune a specific layer is quantized into a binary choice, either 0 or 1. This

approach simplifies the decision-making process and makes it more manageable, even

as the number of layers in the CNN increases.

3. Reward (R): The thesis introduces a reward function to assess the effectiveness of

the A2C compression policy. This function is inspired by the work referenced in [48].

The reward function from [48] is designed to encourage not only the maintenance

24

Asfa Jamil

of accuracy but also the reduction of EHardware Energy or the model size. On the other

hand, an alternative reward function, defined as “reward = -Error”, tends to compress

the model aggressively without focusing on reducing complexity. However, empiri-

cal observations suggest that accuracy is directly proportional to the hardware energy

consumption (EHardware Energy). Therefore, in the proposed model, the reward function is

crafted to incentivize both accuracy and energy efficiency. It is given by the following

equation:

rt = −Error · log(EHardware Energy) (3.16)

Here, the error is different between target accuracy and obtained accuracy after prun-

ing. This reward function takes into account not just the negative error (i.e., −Error),

but also the hardware energy consumption (EHardware Energy). As a result, the model

compression is executed with careful consideration of both dynamic accuracy and the

energy budget necessary for specific IoT applications. This approach ensures a bal-

anced optimization between model performance and resource efficiency.

3.4.2 Advantage Actor-Critic (A2C) Algorithm

The A2C algorithm is a reinforcement learning technique that falls under the policy-based

methods category within the domain of DRL. A2C combines the strengths of both policy-

based and value-based methods to efficiently learn and optimize policies for decision-making

tasks. In this subsection, we will delve into the working of the A2C algorithm, highlighting

its key components and how it balances policy and value aspects for reinforcement learning.

Key Components of A2C

1. Dual Neural Networks:

• Actor (Policy Network): This neural network is responsible for selecting actions

based on the current policy. The policy network approximates the policy πθ(a|s),

where θ represents the network parameters. It outputs a probability distribution

over possible actions given the current state.

• Critic (Value Network): The value network evaluates the quality of the actions

taken by the Actor within specific states. It approximates the state-value function

Vπ(s), which estimates the expected return from a particular state. Essentially,

25

Asfa Jamil

the Critic network approximates a function Qπ(s, a), quantifying the value at-

tributed to actions selected by the Actor within particular states.

2. Gradient Computation: The primary objective of A2C is to maximize the expected

rewards by optimizing the policy. This is achieved by computing the gradient of the

objective function J(θ) with respect to the policy parameters θ. The gradient is com-

puted as follows:

∇θJ(θ) = E[∇θ logπθ(at|st)Qπ(st, at)] (3.17)

3. Advantage Estimation: One crucial aspect of A2C is the introduction of the "ad-

vantage," denoted as Aπ(st, at). The advantage quantifies the relative advantage of

taking action at in state st compared to the average expected return. It can be estimated

through the Temporal Difference (TD) error as follows:

A
π(st, at) = Qπ(st, at) − Vπ(st) ≈ rt + γVπ(st+1) − Vπ(st) = δ(st) (3.18)

4. Policy Gradient Update: The policy gradient is updated by incorporating the advan-

tage (TD error) as follows:

∇θJ(θ) = E[∇θ logπθ(at|st) · δπ(st)] (3.19)

This updated gradient is then used to adjust the parameters of the policy network to

maximize expected rewards:

θat+1 ← θat + αA2C∇θJ(θ) (3.20)

5. Value Network Update: The value network is updated by minimizing the loss func-

tion, which is the square of the TD error:

L = δπ(st)2 = [rt + γVπ(st+1) − Vπ(st)]2 (3.21)

Synchronous Operation

A unique feature of A2C is its synchronous operation, where multiple agents learn simulta-

neously. This synchronous training ensures uniformity among agents, making A2C suitable

for scenarios that require decentralized operations.

26

Asfa Jamil

Advantages of A2C

• Balanced Approach: A2C effectively balances both policy-based and value-based

reinforcement learning aspects, leveraging the strengths of each approach.

• Advantage Function: The use of the advantage function helps in reducing the high

variance problem often encountered in pure policy-based methods like REINFORCE.

• Efficient Value Approximation: A2C efficiently approximates the state-value func-

tion, resulting in a more streamlined learning process.

• Synchronous Training: Synchronous training ensures uniformity among agents, mak-

ing it suitable for decentralized scenarios.

The A2C algorithm is particularly well-suited for complex environments with extensive

state and action spaces, making it a valuable tool in the realm of Deep Reinforcement Learn-

ing.

27

Asfa Jamil

Chapter 4
Experiments And Performance Evaluation

This chapter explores the experimental setup and examines the impact of the DepGraphRL

framework for energy aware pruning of neural networks such as ResNet-18, VGG-19 and

MobileNet. It first presents a theoretical and empirical energy comparison after pruning

baseline CNN using the baseline DepGraph pruning scheme and the proposed DepGraphRL

framework. Additionally, it delves into the influence of different filter ranking techniques

for convolutional layers considering different pruning ratios. It also evaluates the impact of a

number of filters of each layer of energy consumption in case of pruning actions being taken

by DepGraph and DepGraphRL framework. Further, the chapter presents the performance

of the proposed DepGraphRL model and DepGraph scheme, specifically looking at accu-

racy and energy trade-offs across various iterations and pruning ratios using three pruning

mechanisms: l1-norm, Taylor expansion, and random pruning. It concludes by comparing

the proposed model with leading pruning techniques across diverse datasets and models.

4.1 Experimental Parameters And Setup

In this thesis, an A2C based agent is trained with a learning rate αA2C of 2 × 10−4 over

5000 episodes with 20 steps in each episode. Both actor and critic neural networks in the

A2C agent comprised of a single fully connected hidden layer using sigmoid activation.

The input layer’s dimension corresponds to the number of input state dimensions, while the

output layer’s dimension matches the number of layers in the observed CNN. All experiments

and results are conducted using PyTorch version 1.7.0. with Python 3.8. The models were

pretrained on a GPU-integrated machine having the following specifications: 3.7 GHz Intel

Core i7-8700k CPUs, 32 GB of memory, and NVIDIA GeForce RTX 2080Ti, running on

Windows 10 operating system.

28

Asfa Jamil

Subsequent subsections provide details of benchmark CNN models and a dataset used

to assess the DepGraphRL framework. It is important to highlight here that the proposed

DepGraphRL approach can be extended to other CNN models and data sets.

4.1.1 Deep Neural Network (DNN) Models

The experimental evaluations include widely recognized CNNs like ResNet-18, MobileNet,

and VGG-19, pivotal in benchmarking model compression methods. For the experimentation

purposes in this thesis work, ResNet-18, MobileNet, and VGG-19 have been modified for

CIFAR-10 dataset as these models are originally trained on ImageNet dataset. The details

regarding architecture of the considered DNN models are briefly overviewed as follows:

• ResNet-18: [90] ResNet-18 is a streamlined variant of the Residual Network (ResNet)

architecture, featuring 18 layers designed for deep learning in computer vision. Central

to its design is 8 residual blocks, each comprising two layers with skip connections

that enable inputs to bypass some layers, effectively mitigating the vanishing gradient

problem in deep networks. The architecture begins with a 7x7 convolutional layer

followed by max pooling, progresses through these residual blocks, and concludes

with global average pooling and a fully connected layer for classification.

• MobileNet: [91] MobileNet, a deep learning architecture optimized for mobile de-

vices, comprises a unique configuration of layers emphasizing efficiency. It begins

with a single standard convolutional layer, followed by 13 depthwise separable con-

volutional blocks, each consisting of a depthwise convolution for spatial filtering and

a pointwise convolution for feature combination, totalling 26 layers in these blocks.

Each convolution is accompanied by batch normalization and ReLU activation, with

some blocks incorporating a stride of 2 for downsampling. The architecture culminates

with global average pooling and a final fully connected layer for classification. This

setup results in a total of 28 significant layers, including the initial and final layers.

• VGG-19: [92] VGG-19, a prominent model in the VGG series, is characterized by

its depth and simplicity, comprising 19 learnable layers that include 16 convolutional

layers and 3 fully connected layers. The architecture predominantly uses small 3x3

convolutional filters across all layers, a design choice enabling the capture of fine de-

tails within images. Each convolutional layer is accompanied by a ReLU (Rectified

Linear Unit) activation function, introducing non-linearity. The model also incorpo-

29

Asfa Jamil

rates 5 max-pooling layers, strategically placed to perform spatial downsampling, thus

reducing the dimensionality of the feature maps. The convolutional and pooling layers

are followed by three dense layers, with the first two having 4096 units each, and the

third designed for classification with 10 units, aligning with the number of classes in

datasets like Cifar-10. The network culminates with a softmax layer for output clas-

sification. VGG-19’s architecture is known for its uniformity, using only 3x3 filters,

which simplifies scaling and adaptation for various vision tasks, though it is com-

putationally intensive. This configuration makes VGG-19 highly effective for image

recognition and as a feature extractor in diverse applications.

4.1.2 Datasets:

CIFAR-10 is a widely used dataset in the field of machine learning and computer vision.

It’s an acronym for the Canadian Institute For Advanced Research, and the "10" in CIFAR-

10 refers to the fact that the dataset contains 10 classes of images. Key characteristics of

CIFAR-10 include:

• Dataset Size and Composition: CIFAR-10 consists of 60,000 32x32 colour images,

divided into 10 classes, with each class containing 6,000 images. The dataset is typi-

cally split into 50,000 training images and 10,000 test images.

• Classes: The 10 different classes represent everyday objects. These classes are aero-

plane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The variety in

classes helps in training models to recognize a wide range of objects.

• Image Resolution: The images in CIFAR-10 are 32x32 pixels, which is relatively

small. This low resolution makes the dataset manageable for training neural networks,

especially when computational resources are limited.

• Usage: CIFAR-10 is often used in academic settings and for benchmarking the perfor-

mance of new machine learning and computer vision algorithms, especially for tasks

like image classification, object recognition, and similar applications.

• Challenge: Despite its small image size, CIFAR-10 is considered challenging due to

the low resolution of the images and the high level of similarity between some classes

(like automobiles and trucks, or cats and dogs).

30

Asfa Jamil

CIFAR-10’s popularity stems from its suitability as a benchmark dataset. It provides a

balance between being manageable for training (due to the small image size and the mod-

erate size of the dataset) and challenging enough to test the effectiveness of various image

recognition algorithms.

4.2 Performance Evaluation

The purpose of the proposed DepGraphRL framework is to provide an energy-aware pruned

model of the baseline CNN model based on the dynamic energy requirements of Edge-IoT

devices. To validate the effectiveness and efficacy of the proposed framework, evaluation

is performed on three different CNN models that are ResNet-18, MobileNet, and VGG-19

on the CIFAR-10 dataset. The baseline CNN models are pruned iteratively for 10 iterations

via two experimental setups including a baseline DepGraph pruning framework for random

selection of group pruning decisions and the proposed DepGraphRL pruning framework

driven with an A2C-based agent for sub-optimal selection of group pruning decisions based

on theoretical and hardware layer-wise energy consumption.

During the experimentation evaluations, three distinct pruning ratios are considered i.e.,

Pr = {0.1, 0.3, 0.5}. In contrast to traditional pruning techniques where layers are pruned

based on the proportion of filters, the proposed DepGraphRL framework provides a gener-

alizable pruning technique for CNN models based on the energy consumption of each layer.

Furthermore, the proposed framework removes the obstacle of structural coupling by ex-

plicitly modelling the dependency between layers and comprehensively grouping coupled

parameters for pruning. Thus, DepGraphRL provides an energy-aware fully automatic and a

general pruning approach to energy-constraint Edge-IoT devices for incorporating any CNN

model. Further, to show the efficacy of the proposed framework in a real-world scenario,

the evaluation of DepGraphRL demonstrates hardware-based energy consumption of a CNN

model alongside theoretical energy consumption. This insight will support the applicabil-

ity of the proposed DepGraphRL framework in practical Edge-IoT devices based on their

empirical energy consumption evaluation as compared to theoretical energy consumption

evaluation methods.

The evaluation of the DepGraphRL framework also includes different filter importance

ranking techniques which demonstrate that the proposed framework can work with a wide

variety of filter ranking approaches including l1-norm, Random, and Taylor Expansion. The

details of these filter ranking approaches are briefly explained below:

31

Asfa Jamil

• l1-norm [46]: In this technique, the significance of a specific filter F within each layer

is determined by calculating the sum of the absolute values of its weights,
∑
|F|, which

is the l1-norm (||F||1). Subsequently, the filters are arranged based on their l1-norm

values. Then, a certain proportion of filters that have the lowest l1-norm values are

eliminated.

• Taylor Expansion [45]: The Taylor expansion method for pruning in CNNs frames

pruning as an optimization problem. The objective is to find a weight set W0 with a

bounded number of non-zero elements that minimizes the change in the cost function

|∆C(hi)| = |C(D |W0) − C(D |W)| (4.1)

This change approximates the impact on the loss function from removing a specific

parameter. Given a parameter i and its output hi, the cost function is assumed to depend

equally on the parameters and the outputs computed from these parameters:

C(D | hi) = C(D | (w, b)i) (4.2)

Assuming independence of parameters, the change in cost is given as:

|∆C(hi)| = C(D, hi = 0) − C(D, hi) (4.3)

where C(D, hi = 0) is the cost if output hi is pruned, while C(D, hi) is the cost if it is

not pruned.

To approximate ∆C(hi), the first-degree Taylor polynomial is employed. For a function

f (x), the Taylor expansion at point x = a is

f (x) =
P∑

p=0

f (p)(a)
p!

(x − a)p + Rp(x) (4.4)

where f (p)(a) is the p-th derivative of f evaluated at point a, and Rp(x) is the p-th order

remainder. Approximating C(D, hi = 0) with a first-order Taylor polynomial near

hi = 0, the equation is :

C(D, hi = 0) = C(D, hi) −
δC
δhi

hi + R1(hi = 0) (4.5)

The first-order remainder R1(hi = 0) can be neglected due to its significant computa-

tion and the influence of ReLU activation, which encourages a smaller second-order

term.

32

Asfa Jamil

By substituting into the cost change equation and ignoring the remainder, the Taylor

Expansion criterion ΘTE for pruning is defined. This criterion prunes parameters with

almost flat gradients of the cost function with respect to the feature map hi. It neces-

sitates accumulating the product of the activation and the gradient of the cost function

with respect to the activation. For a multi-variate output such as a feature map averaged

over a minibatch is given as:

ΘTE(z(k)
l) =

1
M

∑
m

δC

δz(k),m
l

z(k),m
l (4.6)

. This method, based on the Taylor expansion, offers a nuanced and computationally

informed approach to reducing the complexity of CNNs.

• Random Pruning [93]: This technique employs a random approach to prune a speci-

fied percentage of filters from any layer. It bypasses the need for pre-calculating filter

importance, providing a simple and unbiased method for network pruning.

4.2.1 Comparison of Theoretical Energy with Hardware-Based Energy

In this experimental evaluation, a comparative analysis between the evaluation of the theoret-

ical energy (ETheoretical Energy) and hardware energy (EHardware Energy) for each layer of “ResNet-

18” CNN model is performed for both the DepGraph (baseline pruning framework) and the

proposed DepGraphRL framework. Pruning of baseline CNN models is performed up to ten

iterations with pruning ratios Pr = {0.1, 0.3, 0.5}. Further, all the above-defined filter ranking

techniques, (i.e., l1-norm, Random, and Taylor Expansion) are also considered. The results

are illustrated via bar plot in Fig. 4.1, 4.2, 4.3.

In these results, it can be observed that the baseline pruning framework randomly se-

lects layers to prune irrespective of energy consumption. Though it leads to a reduction

in the overall energy consumption of the CNN model, however, it does not guarantee an

optimal trade-off with target accuracy as pruning decisions are randomly assigned. In the

case of the proposed framework, as shown in Fig. 4.1, 4.2, 4.3, as the DepGraphRL con-

siders energy consumption as well as its impact of layer on accuracy of a CNN model, it

can be observed that few layers with lower energy consumption are pruned instead of lay-

ers having higher energy consumption. This, subsequently also has an impact on target

accuracy (a scenario discussed in the next subsection). Furthermore, it is evident from ex-

periments that ETheoretical Energy is considerably lower than EHardware Energy. Also, the reduction

33

Asfa Jamil

in ETheoretical Energy of each layer not necessarily mean the same amount of energy reduction

for EHardware Energy.

From both evaluation matrices (i.e., ETheoretical Energy and EHardware Energy), it can also be

seen that the greater the pruning ratio, the more there is the reduction in energy consump-

tion. Also, based on evaluation results, it can be seen that the DepGraphRL framework

takes different pruning actions (selection of layers) for pruning considering different pruning

ratios.

When comparing different filter ranking techniques, it is evident that DepGraphRL un-

dertakes decisions which take into account different filter pruning techniques, showcasing its

ability to dynamically adjust its energy-aware pruning approach due to its DRL-based A2C

agent.

The overall impact on energy consumption and accuracy based on pruning decisions are

further mentioned in the next sections.

(a) DepGraph - ETheoretical Energy (b) DepGraph - EHardware Energy

(c) DepGraphRL - ETheoretical Energy (d) DepGraphRL - EHardware Energy

Figure 4.1: A comparative analysis between the evaluation of the theoretical energy (ETheoretical Energy)

and hardware energy (EHardware Energy) for the “ResNet-18” CNN model, employing an l1−norm filter

ranking, and taking into account both the DepGraph and the proposed DepGraphRL framework.

34

Asfa Jamil

(a) DepGraph - ETheoretical Energy (b) DepGraph - EHardware Energy

(c) DepGraphRL - ETheoretical Energy (d) DepGraphRL - EHardware Energy

Figure 4.2: A comparative analysis between the evaluation of the theoretical energy (ETheoretical Energy)

and hardware energy (EHardware Energy) for the “ResNet-18” CNN model, employing “Random Prun-

ing” filter ranking, and taking into account both the DepGraph and the proposed DepGraphRL frame-

work.

4.2.2 Impact of Number of Filters on Pruning Decisions

Fig. 4.4, it is evident for all pruning ratios and filter ranking techniques, the decisions taken

by the DepGraphRL framework to prune a layer based on energy doesn’t necessarily means

that the layer has more number of filters. Thus, it can be inferred from the results, that the

larger number of filters doesn’t reflect that layer contributes more towards the overall energy

consumption of the model and has a linear impact on the accuracy of the model.

From the presented results in this scenario, it can be seen that the number of filters pruned

for each pruning ratio can be different for the same layer owing to its overall contribution to

the energy and accuracy of the model. For different filter ranking techniques, the pruned fil-

ters are different which demonstrates that filter ranking techniques also contribute to energy

as well as the accuracy of the pruned model.

35

Asfa Jamil

(a) DepGraph - ETheoretical Energy (b) DepGraph - EHardware Energy

(c) DepGraphRL - ETheoretical Energy (d) DepGraphRL - EHardware Energy

Figure 4.3: A comparative analysis between the evaluation of the theoretical energy (ETheoretical Energy)

and hardware energy (EHardware Energy) for the “ResNet-18” CNN model, employing “Taylor Expan-

sion” filter ranking, and taking into account both the DepGraph and the proposed DepGraphRL

framework.

4.2.3 Energy-Accuracy Comparison

In these experiments, the CNN models "ResNet-18" and "MobileNet" were pruned for 10

iterations with pruning ratios of 0.1, 0.3, and 0.5, considering all filter ranking techniques

mentioned earlier.

ResNet-18 CNN Model [90]:

The results, depicted in Figs. 4.5, 4.6, and 4.7, show the accuracy and energy consump-

tion (i.e., ETheoretical Energy and EHardware Energy) for each iteration in ResNet-18 CNN model.

The accuracy of each pruned model was calculated after re-training for 1 epoch. The base-

line accuracy of the ResNet-18 CNN model, after training for 200 epochs, is 84.35%, with

ETheoretical Energy being 0.033J and EHardware Energy being 0.70J.

First, let’s discuss the results for pruning ratio 0.1 that are shown in Fig. 4.5. Here,

after 10 iterations using l1-norm filter ranking technique with DepGraphRL framework, the

pruned model achieved an accuracy of 92.46% with a drop in ETheoretical Energy of 11.7% from

36

Asfa Jamil

(a) DepGraph - l1 − norm (b) DepGraphRL - l1 − norm

(c) DepGraph - Random Pruning (d) DepGraphRL - Random Pruning

(e) DepGraph - Taylor Expansion (f) DepGraphRL - Taylor Expansion

Figure 4.4: A comparative analysis in the context of a number of filters between l1 − norm, Random

Pruning, and Taylor expansion for the pruning of “ResNet-18” CNN model considering both the

DepGraph and the proposed DepGraphRL framework.

the baseline theoretical energy and a drop in EHardware Energy of 55.71% from the baseline

hardware-based energy. In contrast, using the baseline pruning framework (DepGraph) with

the same pruning ratio and filter ranking technique, the pruned model reached an accuracy of

92.33%, with a reduction in ETheoretical Energy of approximately 10.84% from the baseline and

a reduction in EHardware Energy of 54.06% from the baseline.

Considering random filter ranking after 10 iterations with a pruning ratio of 0.1 using

the DepGraphRL framework, the pruned model attained an accuracy of 92.48%. This corre-

sponds to a decrease in ETheoretical Energy of 18.99% from the baseline theoretical energy and a

decrease in EHardware Energy of 58.67% from the baseline hardware-based energy. Conversely,

37

Asfa Jamil

(a) ETheoretical Energy in DepGraph with Pr = 0.1 (b) ETheoretical Energy in DepGraphRL with Pr = 0.1

(c) EHardware Energy in DepGraph with Pr = 0.1 (d) EHardware Energy in DepGraphRL with Pr = 0.1

Figure 4.5: Tradeoff between energy (J) and accuracy (%) over ten pruning cycles at a pruning ratio

of 0.1 for the ResNet-18 convolutional neural network model applied to the CIFAR-10 dataset.

using the baseline pruning framework (DepGraph) under the same conditions, the pruned

model achieved an accuracy of 92.54%, with a reduction in ETheoretical Energy of 10.095% from

the baseline and a reduction in EHardware Energy of 58.19% from the baseline.

For the Taylor Expansion ranking method after 10 iterations with a pruning ratio of 0.1

using the DepGraphRL framework, the pruned model reached an accuracy of 92.49%. This

reflects a decrease in ETheoretical Energy of 11.21% from the baseline theoretical energy and a de-

crease in EHardware Energy of 56.14% from the baseline hardware-based energy. In contrast, with

the same ranking method and using the baseline pruning framework (DepGraph), the pruned

model achieved an accuracy of 92.48%, with a decrease in ETheoretical Energy of approximately

20.42% from the baseline and a decrease in EHardware Energy of 55.43% from the baseline.

Overall in the above results with a pruning ratio of 0.1, the performance of the baseline

pruning scheme (DepGraph) is relatively comparable with the proposed framework, where

DepgraphRL shows slight better performance interms on accuracy as well energy. Taylor ex-

plansion performs the best in terms of accuracy-energy trade-off as a filter ranking technique

38

Asfa Jamil

(a) ETheoretical Energy in DepGraph with Pr = 0.3 (b) ETheoretical Energy in DepGraphRL with Pr = 0.3

(c) EHardware Energy in DepGraph with Pr = 0.3 (d) EHardware Energy in DepGraphRL with Pr = 0.3

Figure 4.6: Tradeoff between energy (J) and accuracy (%) across ten iterations of pruning at a 0.3

ratio for the ResNet-18 CNN model applied to the CIFAR-10 dataset.

for this pruning ratio. The reason for this behaviour is the fact that the pruning ratio of 0.1 is

very small. Therefore, the thesis also presents the result with a larger pruning ratio which is

discussed ahead.

In the case of a pruning ratio of 0.3, it is evident from the results that the combination

of random filtering technique with DepGraphRL achieves the highest accuracy and least

ETheoretical Energy energy consumption when compared with the baseline pruning scheme (Dep-

Graph) and all other filter pruning techniques. For the case of the EHardware Energy, the combina-

tion of the random filtering technique with DepGraphRL achieves higher accuracy, however,

the combination of random filter ranking technique with DepGraphRL has the most reduc-

tion in energy consumption as compared to other combinations of pruning frameworks.

Now shift towards the results with a pruning ratio 0.5 that are shown in Fig. 4.7. Here,

after 10 iterations using l1-norm filter ranking technique with DepGraphRL framework, the

pruned model achieved an accuracy of 90.87%. This represents a drop in ETheoretical Energy of

52.72% from the baseline theoretical energy and a drop in EHardware Energy of 61.36% from

39

Asfa Jamil

(a) ETheoretical Energy in DepGraph with Pr = 0.5 (b) ETheoretical Energy in DepGraphRL with Pr = 0.5

(c) EHardware Energy in DepGraph with Pr = 0.5 (d) EHardware Energy in DepGraphRL with Pr = 0.5

Figure 4.7: Tradeoff between energy (J) and accuracy (%) over ten iterations of pruning at a ratio of

0.5 in the ResNet-18 CNN model, applied to the CIFAR-10 dataset.

the baseline hardware-based energy. Considering random filter ranking after 10 iterations

with a pruning ratio of 0.5 using the DepGraphRL framework, the pruned model attained

an accuracy of 89.4%. This corresponds to a decrease in ETheoretical Energy of 53.085% from

the baseline theoretical energy and a decrease in EHardware Energy of 71.50% from the baseline

hardware-based energy. For the Taylor Expansion ranking method after 10 iterations with

a pruning ratio of 0.5 using the DepGraphRL framework, the pruned model reached an ac-

curacy of 85.96%. This reflects a decrease in ETheoretical Energy of 40.51% from the baseline

theoretical energy and a decrease in EHardware Energy of 73.67% from the baseline hardware-

based energy.

Considering the pruning ratio of 0.5 in the above results, it is evident from the re-

sults that the combination of l1-norm with DepGraphRL best energy accuracy tradeoff for

ETheoretical Energy when compared with the baseline pruning scheme (DepGraph) and all other

filter pruning techniques. For the case of the EHardware Energy, the combination of l1-norm

with DepGraphRL achieves better energy accuracy tradoff compared to others, however the

40

Asfa Jamil

combination of random filter ranking technique with DepGraphRL provides comparable re-

duction in energy consumption as compared to other combinations of pruning frameworks.

The summary of above presented results is that the random and l1 as compared to Taylor

expansion filter ranking method often provides a good balance between energy consumption

and accuracy across both theoretical and hardware types. Taylor’s method, while sometimes

achieving a better accuracy, often does so at the cost of higher loss of accuracy. In the

context of different pruning ratios, it is observed from results presented in Fig. 4.5, 4.6, and

4.7 that with increasing pruning ratio (starting from 0.1 till 0.5), the energy consumption

tends to decrease for the theoretical type as well as for the hardware type. Also, the accuracy

tends to decrease with higher pruning ratios for both energy types. Lastly, the DepGraphRL-

based energy-aware pruning performs significantly better than the baseline scheme in terms

of energy-accuracy tradeoff.

MobileNet [91]:

For the case of the MobileNet CNN model, the results are presented in Fig. 4.8 which are

generated while considering DepGraphRL as a pruning framework. Here, the results are

only illustrated for EHardware Energy. As can be observed from these plots, the highest achieved

accuracy of 88.24% with the combination of l1 filter ranking technique in DepGraphRL at

pruning ratio 0.1. Here, the energy drop is 7.27%. For pruning ratio 0.3, the best energy

accuracy tradeoff is achieved using l1 filter ranking technique with an accuracy of 88.17%

and an energy drop of 15.63%. For pruning ratio 0.5, the best energy accuracy tradeoff is

achieved using the l1 filter ranking technique with an accuracy of 85.26% and an energy drop

of 39.09%. Overall, the l1 filter ranking technique provides the best energy-accuracy tradeoff

across all pruning ratios.

VGG-19 [92]:

For the case of the VGG CNN model, the results are presented in Fig. 4.9 which are gen-

erated while considering DepGraphRL as a pruning framework. Here, the results are only

illustrated for EHardware Energy. As can be observed from these plots, the highest achieved ac-

curacy of 93.93% with an energy drop of 21.62% is obtained with the combination of taylor

expansion filter ranking technique in DepGraphRL at pruning ratio 0.1. In the case of prun-

ing ratio 0.3, the best accuracy energy trade-off is obtained with a taylor expansion ranking

technique where accuracy is 92.39% and energy drop of 23.27%. Further, for a pruning ra-

41

Asfa Jamil

(a) EHardware Energy in DepGraphRL with Pr = 0.1 (b) EHardware Energy in DepGraphRL with Pr = 0.3

(c) EHardware Energy in DepGraphRL with Pr = 0.5

Figure 4.8: Tradeoff between energy (J) and accuracy (%) over ten iterations of pruning for Mo-

bileNet applied to the CIFAR-10 dataset.

tio of 0.5, the best accuracy energy trade-off is obtained with the l1 filter ranking technique

where accuracy is 92.83% and energy drop of 45.86%.

42

Asfa Jamil

(a) EHardware Energy in DepGraphRL with Pr = 0.1 (b) EHardware Energy in DepGraphRL with Pr = 0.3

(c) EHardware Energy in DepGraphRL with Pr = 0.5

Figure 4.9: Tradeoff between energy (J) and accuracy (%) over ten iterations of pruning for VGG

applied to the CIFAR-10 dataset.

43

Asfa Jamil

Chapter 5
Conclusion and Future Work

In the era of IoT development, which extensively utilizes Deep Learning and Machine Learn-

ing techniques, two primary challenges are evident: computational power and energy effi-

ciency. The integration of cloud computing seemed a promising solution, addressing these

concerns, but it brought its own set of obstacles, notably latency and connectivity issues. A

promising direction is the shift towards Edge-IoT devices, however, they demand efficient

energy management to run computationally extensive neural networks on the edge.

One way to achieve this is to deploy efficient energy-aware, less structurally complex

neural network models on Edge-IoT devices through network pruning. Still, this deploy-

ment comes with various constraints, i.e. utilizing empirical measurements for an accurate

estimate of energy consumption in practical applications, the lack of generalizability across

various neural network architectures and the complexities introduced by structural coupling

in traditional pruning processes. Another constraint is the optimization challenges in pruning

CNN models for Edge-IoT devices, considering the multifaceted nature of variables within a

dynamic environment, such as layer count, energy consumption, and accuracy requirements.

To resolve these constraints, this thesis proposes a novel DepGraphRL framework to

optimise the CNN models on Edge-IoT devices. The proposed framework resolves these

constraints by utilizing DRL to provide an energy-aware, fully automated, and generaliz-

able layer-wise pruning technique for neural networks by employing DepGraph for structural

pruning and empirical methods for energy consumption calculation of CNNs at edge devices.

Based on the Proposed DepGraphRL framework for different pruning ratios and feature im-

portance ranking techniques on different neural network architectures like ResNet-18, VGG-

19, and MobileNet, it is evident that the proposed framework reduces overall energy con-

sumption while obtaining accuracy comparable to the baseline neural network models. This

44

Asfa Jamil

shows the effectiveness of the proposed energy-aware framework in optimizing the perfor-

mance of neural networks in energy-constraint environments by providing energy-efficient

pruned architectures of baseline CNN models with comparable accuracy to the baseline.

Future enhancements to this framework could be achieved by assessing its performance

on various hardware platforms, and using different methods for measuring energy consump-

tion. Additionally, applying the framework in real-world IoT environments would provide

valuable insights. This would involve deploying the optimized models in diverse IoT sce-

narios such as smart cities, healthcare monitoring, and industrial automation, to evaluate

practical challenges and performance in actual conditions.

Exploring the integration of DepGraphRL with other model compression techniques, like

quantization or knowledge distillation, may lead to more efficient models without compro-

mising performance. Improving the accuracy of empirical energy measurement methods, to

reflect a range of operational conditions, would enhance the framework’s practical applica-

tion. Finally, adapting the optimization process to meet specific user requirements, such as

particular accuracy or latency needs, could make the framework more versatile for various

applications.

45

Asfa Jamil

Bibliography

[1] G. Fang, X. Ma, M. Song, M. B. Mi, and X. Wang, “Depgraph: Towards any structural
pruning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 16 091–16 101.

[2] K. Rose, S. Eldridge, and L. Chapin, “The internet of things: An overview,” The inter-
net society (ISOC), vol. 80, pp. 1–50, 2015.

[3] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information systems
frontiers, vol. 17, pp. 243–259, 2015.

[4] R. M. Dijkman, B. Sprenkels, T. Peeters, and A. Janssen, “Business models for the
internet of things,” International Journal of Information Management, vol. 35, no. 6,
pp. 672–678, 2015.

[5] Z. Mahmood, The internet of things in the industrial sector. Springer, 2019.

[6] L. Georgios, S. Kerstin, and A. Theofylaktos, “Internet of things in the context of in-
dustry 4.0: An overview,” 2019.

[7] S. Fang, L. Da Xu, Y. Zhu, J. Ahati, H. Pei, J. Yan, and Z. Liu, “An integrated system
for regional environmental monitoring and management based on internet of things,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1596–1605, 2014.

[8] H. Li, S. Liu, Q. Duan, and W. Li, “Application of multi-sensor image fusion of internet
of things in image processing,” Ieee Access, vol. 6, pp. 50 776–50 787, 2018.

[9] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of internet of things for smart
home: Challenges and solutions,” Journal of cleaner production, vol. 140, pp. 1454–
1464, 2017.

[10] A. Ghasempour, “Internet of things in smart grid: Architecture, applications, services,
key technologies, and challenges,” Inventions, vol. 4, no. 1, p. 22, 2019.

[11] V. P. Kour and S. Arora, “Recent developments of the internet of things in agriculture:
a survey,” Ieee Access, vol. 8, pp. 129 924–129 957, 2020.

[12] S. Singh and N. Singh, “Internet of things (iot): Security challenges, business opportu-
nities & reference architecture for e-commerce,” in 2015 International conference on
green computing and internet of things (ICGCIoT). Ieee, 2015, pp. 1577–1581.

[13] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for
smart cities,” IEEE Internet of Things journal, vol. 1, no. 1, pp. 22–32, 2014.

[14] F. Shi, H. Ning, W. Huangfu, F. Zhang, D. Wei, T. Hong, and M. Daneshmand, “Recent
progress on the convergence of the internet of things and artificial intelligence,” IEEE
Network, vol. 34, no. 5, pp. 8–15, 2020.

[15] F. Firouzi, B. Farahani, and A. Marinšek, “The convergence and interplay of edge, fog,
and cloud in the ai-driven internet of things (iot),” Information Systems, vol. 107, p.
101840, 2022.

46

Asfa Jamil

[16] E. Mohamed, “The relation of artificial intelligence with internet of things: A survey,”
Journal of Cybersecurity and Information Management, vol. 1, no. 1, pp. 30–24, 2020.

[17] A. Ghosh, D. Chakraborty, and A. Law, “Artificial intelligence in internet of things,”
CAAI Transactions on Intelligence Technology, vol. 3, no. 4, pp. 208–218, 2018.

[18] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder, “Management of resource con-
strained devices in the internet of things,” IEEE Communications Magazine, vol. 50,
no. 12, pp. 144–149, 2012.

[19] W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, and M. Jo, “Efficient energy man-
agement for the internet of things in smart cities,” IEEE Communications magazine,
vol. 55, no. 1, pp. 84–91, 2017.

[20] M. M. Sadeeq, N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed, A. S. Sami, and
R. R. Zebari, “Iot and cloud computing issues, challenges and opportunities: A review,”
Qubahan Academic Journal, vol. 1, no. 2, pp. 1–7, 2021.

[21] M. Díaz, C. Martín, and B. Rubio, “State-of-the-art, challenges, and open issues in
the integration of internet of things and cloud computing,” Journal of Network and
Computer applications, vol. 67, pp. 99–117, 2016.

[22] F. S. Abkenar, P. Ramezani, S. Iranmanesh, S. Murali, D. Chulerttiyawong, X. Wan,
A. Jamalipour, and R. Raad, “A survey on mobility of edge computing networks in
iot: State-of-the-art, architectures, and challenges,” IEEE Communications Surveys &
Tutorials, 2022.

[23] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural net-
works: analysis, applications, and prospects,” IEEE transactions on neural networks
and learning systems, 2021.

[24] S. Sakib, N. Ahmed, A. J. Kabir, and H. Ahmed, “An overview of convolutional neural
network: Its architecture and applications,” 2019.

[25] T. Guo, J. Dong, H. Li, and Y. Gao, “Simple convolutional neural network on im-
age classification,” in 2017 IEEE 2nd International Conference on Big Data Analysis
(ICBDA). IEEE, 2017, pp. 721–724.

[26] A. V. Abraham, P. Sasidharan, S. S. Tejas, M. Manohara, R. Muthu, and R. C. Naidu,
“Predicting Energy Consumption Using LSTM and CNN Deep Learning Algorithm,”
in 2022 7th International Conference on Environment Friendly Energies and Applica-
tions (EFEA). IEEE, dec 14 2022.

[27] R. Xie, X. Jia, L. Wang, and K. Wu, “Energy Efficiency Enhancement for CNN-based
Deep Mobile Sensing,” IEEE Wireless Communications, vol. 26, no. 3, pp. 161–167, 6
2019.

[28] W. Jiang, H. Yu, J. Zhang, J. Wu, S. Luo, and Y. Ha, “Optimizing energy efficiency of
CNN-based object detection with dynamic voltage and frequency scaling,” Journal of
Semiconductors, vol. 41, no. 2, p. 022406, feb 1 2020.

[29] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient Convolutional Neu-
ral Networks Using Energy-Aware Pruning,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 7 2017.

47

Asfa Jamil

[30] Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin, and
Zhangyang Wang, “E2-Train: Training State-of-the-art CNNs with Over 80

[31] K. Gaur and S. Kumar Singh, “Cnn-Bi-LSTM Based Household Energy Consumption
Prediction,” in 2021 3rd International Conference on Signal Processing and Commu-
nication (ICPSC). IEEE, may 13 2021.

[32] M. Zawish, “Energy-aware ai-driven framework for edge-computing-based iot applica-
tions,” IEEE Internet of Things Journal, 2023.

[33] ——, “Complexity-driven cnn compression for resource-constrained edge ai,” arXiv
preprint, 2022.

[34] M. Zawish, N. Ashraf, R. I. Ansari, and S. Davy, “Energy-Aware AI-Driven Frame-
work for Edge-Computing-Based IoT Applications,” IEEE Internet of Things Journal,
vol. 10, no. 6, pp. 5013–5023, mar 15 2023.

[35] C. Yao, W. Liu, W. Tang, J. Guo, S. Hu, Y. Lu, and W. Jiang, “Evaluating and analyzing
the energy efficiency of CNN inference on highperformance GPU,” Concurrency and
Computation: Practice and Experience, vol. 33, no. 6, oct 21 2020.

[36] A. Abdelaziz, V. Santos, and M. S. Dias, “Convolutional Neural Network With Ge-
netic Algorithm for Predicting Energy Consumption in Public Buildings,” IEEE Access,
vol. 11, pp. 64 049–64 069, 2023.

[37] A. Sanchez-Flores, L. Alvarez, and B. Alorda-Ladaria, “A review of CNN accelerators
for embedded systems based on RISC-V,” in 2022 IEEE International Conference on
Omni-layer Intelligent Systems (COINS). IEEE, aug 1 2022.

[38] A. Yoosefi and M. Kargahi, “Improving Energy-Efficiency of CNNs via Prediction
of Reducible Convolutions for Energy-Constrained IoT Devices,” in 2020 CSI/CPSSI
International Symposium on Real-Time and Embedded Systems and Technologies
(RTEST). IEEE, 6 2020.

[39] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the Energy Efficiency of Deep
Convolutional Neural Networks on CPUs and GPUs,” in 2016 IEEE International
Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and Communications (SustainCom)
(BDCloud-SocialCom-SustainCom). IEEE, 10 2016.

[40] Boyu Zhang, A. Davoodi, and Y. Hu, “Efficient Inference of CNNs via Channel Prun-
ing,” ArXiv, 2019.

[41] N. Tian, Y. Liu, W. Wang, and D. Meng, “Energy-saving CNN with Clustering Channel
Pruning,” in 2021 International Joint Conference on Neural Networks (IJCNN). IEEE,
jul 18 2021.

[42] Hao Li, Asim Kadav, Igor Durdanovic, H. Samet, and H. Graf, “Pruning Filters for
Efficient ConvNets,” International Conference on Learning Representations, 2016.

[43] Gianlorenzo D’angelo, Mattia D’emidio, and D. Frigioni, “Pruning the Computation of
Distributed Shortest Paths in Power-law Networks,” Informatica, 2013.

[44] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

48

Asfa Jamil

[45] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional neural
networks for resource efficient inference,” arXiv preprint arXiv:1611.06440, 2016.

[46] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient
convnets,” arXiv preprint arXiv:1608.08710, 2016.

[47] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” in International Conference on Learning Representations, 2018.

[48] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model compres-
sion and acceleration on mobile devices,” in Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 784–800.

[49] H. Wang, Q. Zhang, Y. Wang, L. Yu, and H. Hu, “Structured Pruning for Efficient
ConvNets via Incremental Regularization,” in 2019 International Joint Conference on
Neural Networks (IJCNN). IEEE, 7 2019.

[50] G. Krishnan, Y. Ma, and Y. Cao, “Small-world-based Structural Pruning for Efficient
FPGA Inference of Deep Neural Networks,” in 2020 IEEE 15th International Confer-
ence on Solid-State & amp; Integrated Circuit Technology (ICSICT). IEEE, nov 3
2020.

[51] Z. Xu, J. Sun, Y. Liu, and G. Sun, “An Efficient Channel-level Pruning for CNNs with-
out Fine-tuning,” in 2021 International Joint Conference on Neural Networks (IJCNN).
IEEE, jul 18 2021.

[52] W. Wang and L. Zhu, “Channel Pruning for Efficient Convolution Neural Networks,”
Journal of Physics: Conference Series, vol. 1302, no. 2, p. 022073, aug 1 2019.

[53] T. Jeong, E. Ghasemi, J. Tuyls, E. Delaye, and A. Sirasao, “Neural network pruning and
hardware acceleration,” in 2020 IEEE/ACM 13th International Conference on Utility
and Cloud Computing (UCC). IEEE, 12 2020.

[54] Xuanyi Dong and Yi Yang, “Network Pruning via Transformable Architecture Search,”
Neural Information Processing Systems, 2019.

[55] S. Yu, A. Mazaheri, and A. Jannesari, “Auto Graph Encoder-Decoder for Neural
Network Pruning,” in 2021 IEEE/CVF International Conference on Computer Vision
(ICCV). IEEE, 10 2021.

[56] Y. Aflalo, Asaf Noy, Ming Lin, Itamar Friedman, and Lihi Zelnik-Manor, “Knapsack
Pruning with Inner Distillation,” arXiv.org, 2020.

[57] Dongsoo Lee, Se Jung Kwon, Byeongwook Kim, Parichay Kapoor, and Gu-Yeon Wei,
“Network Pruning for Low-Rank Binary Indexing,” arXiv.org, 2019.

[58] N. T. Siebel, J. Botel, and G. Sommer, “Efficient neural network pruning during neuro-
evolution,” in 2009 International Joint Conference on Neural Networks. IEEE, 6
2009.

[59] I. Partalas, G. Tsoumakas, and I. Vlahavas, “Pruning an ensemble of classifiers via
reinforcement learning,” Neurocomputing, vol. 72, no. 7-9, pp. 1900–1909, 3 2009.

[60] B. Bencsik and M. Szemenyei, “Efficient Neural Network Pruning Using Model-Based
Reinforcement Learning,” in 2022 International Symposium on Measurement and Con-
trol in Robotics (ISMCR). IEEE, sep 28 2022.

49

Asfa Jamil

[61] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou, “Runtime Neural Pruning,” Neural
Information Processing Systems, 2017.

[62] S. Malik, M. U. Haider, O. Iqbal, and M. Taj, “Neural Network Pruning Through Con-
strained Reinforcement Learning,” in 2022 26th International Conference on Pattern
Recognition (ICPR). IEEE, aug 21 2022.

[63] Z. Wang and C. Li, “Channel Pruning via Lookahead Search Guided Reinforcement
Learning,” in 2022 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV). IEEE, 1 2022.

[64] C. Omlin and C. Giles, “Pruning recurrent neural networks for improved generaliza-
tion performance,” in Proceedings of IEEE Workshop on Neural Networks for Signal
Processing. IEEE.

[65] J. Fontaine, A. Shahid, B. Van Herbruggen, and E. De Poorter, “Impact of Embedded
Deep Learning Optimizations for Inference in Wireless IoT Use Cases,” IEEE Internet
of Things Magazine, vol. 5, no. 4, pp. 86–91, 12 2022.

[66] L. Ye, Z. Wang, Y. Liu, P. Chen, H. Li, H. Zhang, M. Wu, W. He, L. Shen, Y. Zhang,
Z. Tan, Y. Wang, and R. Huang, “The Challenges and Emerging Technologies for Low-
Power Artificial Intelligence IoT Systems,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 68, no. 12, pp. 4821–4834, 12 2021.

[67] M. M. Alenazi, B. A. Yosuf, T. El-Gorashi, and J. M. H. Elmirghani, “Energy Effi-
cient Neural Network Embedding in IoT over Passive Optical Networks,” in 2020 22nd
International Conference on Transparent Optical Networks (ICTON). IEEE, 7 2020.

[68] S. Govindaraj and S. N. Deepa, “Network Energy Optimization of IOTs in Wireless
Sensor Networks Using Capsule Neural Network Learning Model,” Wireless Personal
Communications, vol. 115, no. 3, pp. 2415–2436, aug 5 2020.

[69] J. Zhang, “Real-time detection of energy consumption of IoT network nodes based on
artificial intelligence,” Computer Communications, vol. 153, pp. 188–195, 3 2020.

[70] Elliot J. Crowley, Jack Turner, A. Storkey, and M. O’Boyle, “A Closer Look at Struc-
tured Pruning for Neural Network Compression,” 2018.

[71] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann, “To-
wards Optimal Structured CNN Pruning via Generative Adversarial Learning,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
6 2019.

[72] A. Bragagnolo, E. Tartaglione, A. Fiandrotti, and M. Grangetto, “On the role of struc-
tured pruning for neural network compression,” in 2021 IEEE International Conference
on Image Processing (ICIP). IEEE, 2021, pp. 3527–3531.

[73] Z. Wang, C. Li, and X. Wang, “Convolutional Neural Network Pruning with Struc-
tural Redundancy Reduction,” in 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 6 2021.

[74] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and J. Kautz, “Pruning Con-
volutional Neural Networks for Resource Efficient Inference,” International Confer-
ence on Learning Representations, 2016.

50

Asfa Jamil

[75] L. Guerra and T. Drummond, “Automatic Pruning for Quantized Neural Networks,” in
2021 Digital Image Computing: Techniques and Applications (DICTA). IEEE, 11
2021.

[76] M. Augasta and T. Kathirvalavakumar, “Pruning algorithms of neural networks — a
comparative study,” Open Computer Science, vol. 3, no. 3, jan 1 2013.

[77] M. A. Costa, A. P. Braga, and B. R. de Menezes, “Constructive and pruning methods
for neural network design,” in VII Brazilian Symposium on Neural Networks, 2002.
SBRN 2002. Proceedings. IEEE, 2002, pp. 49–54.

[78] R. Setiono and A. Gaweda, “Neural network pruning for function approximation,” in
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Net-
works. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New
Millennium. IEEE, 2000.

[79] A. Sankar and R. J. Mammone, “Optimal pruning of neural tree networks for improved
generalization,” in IJCNN-91-Seattle International Joint Conference on Neural Net-
works, vol. 2. IEEE, 1991, pp. 219–224.

[80] M. H. Uddin and S. Baidya, “Optimizing neural network efficiency with hybrid
magnitude-based and node pruning for energy-efficient computing in iot,” ACM Trans-
actions, 2023.

[81] X. Ma, G. Yuan, S. Lin, Z. Li, H. Sun, and Y. Wang, “Resnet can be pruned 60×: Intro-
ducing network purification and unused path removal (p-rm) after weight pruning,” in
2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).
IEEE, 2019, pp. 1–2.

[82] X. He, W. Lu, K. Liu, G. Yan, and X. Zhang, “A quantitative exploration of collabora-
tive pruning and approximation computing towards energy efficient neural networks,”
IEEE Design & Test, vol. 37, no. 1, pp. 36–45, 2019.

[83] Z. Montazeri and T. Niknam, “Energy carriers management based on energy consump-
tion,” in 2017 IEEE 4th International Conference on Knowledge-Based Engineering
and Innovation (KBEI). IEEE, 12 2017.

[84] E. Ghazisaeedi and C. Huang, “Energy-aware node and link reconfiguration for virtu-
alized network environments,” Computer Networks, vol. 93, pp. 460–479, 12 2015.

[85] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun, “Metapruning:
Meta Learning for Automatic Neural Network Channel Pruning,” in 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). IEEE, 10 2019.

[86] M. Zawish, N. Ashraf, R. I. Ansari, and S. Davy, “Energy-aware ai-driven framework
for edge-computing-based iot applications,” IEEE Internet of Things Journal, vol. 10,
no. 6, pp. 5013–5023, 2022.

[87] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie: Effi-
cient inference engine on compressed deep neural network,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 243–254, 2016.

[88] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural net-
works,” in Proceedings of the IEEE international conference on computer vision, 2017,
pp. 1389–1397.

51

Asfa Jamil

[89] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge: Inference
on intermittent embedded systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, 2019, pp. 199–213.

[90] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[91] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision
applications,” arXiv preprint arXiv:1704.04861, 2017.

[92] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[93] D. Mittal, S. Bhardwaj, M. M. Khapra, and B. Ravindran, “Studying the plasticity
in deep convolutional neural networks using random pruning,” Machine Vision and
Applications, vol. 30, no. 2, pp. 203–216, 2019.

52

Asfa Jamil

