

1

Event-Based Monitoring of Digital Infrastructures

Andreas Menelaou

Submitted to the University of Cyprus in partial fulfillment of the requirements

of the Master in Science (MSc) degree in “Intelligent Critical Infrastructure Systems”

Department of Electrical and Computer Engineering

University of Cyprus

December 2023

And
rea

s M
en

ela
ou

 2

Event-Based Monitoring of Digital Infrastructures

Andreas Menelaou

Thesis Examination Committee

• Prof. Georgios Ellinas (Supervisor)
• Assistant Professor Panayiotis Kolios (co-Supervisor)
• Associate Professor Theocharis Theocharides

 And
rea

s M
en

ela
ou

 3

Abstract

In life, decision-making often involves weighing options against each other. Ideally, we

swiftly discern the best choice among them, simplifying our selection process.

Unfortunately, though, most of the time, in a complex IT environment of a Critical

Infrastructure System that’s not the case. Instead, we are facing complex problems,

with a large amount of data and multiple and often conflicting criteria. Thus, we end up

with a dilemma, as we cannot decide which choice is the right one for the case under

consideration. As a result, the need to analyse all possible choices is created, so that

we can be sure that we will make the best possible decision to solve the problem at

hand.

To cope with the Critical Infrastructure Systems requirements, we had to find ways to

efficiently collect and process data in short times (to be able to make comparisons and

estimations between different data sets) and interpret them in useful ways, to reach

intuitive and substantial conclusions and take appropriate actions.

Monitoring of digital infrastructures stands as a cornerstone in enterprise information

technology strategy, overseeing data centers and their components. Administrators

continuously track metrics, ensuring that the organization maintains required

production levels. Utilizing trends, they validate infrastructure changes long before

applications and services face disruptions. Further, real- time alerts empower

administrators to promptly address issues that could disrupt business processes.

The aim of the thesis is to enhance the existing Ticketing System for the Cyprus Police,

enabling automated ticket creation based on performance monitoring events from

software applications within the Central Police Computerization System—a critical part

of Cyprus' Digital Infrastructure Systems. This enhancement will empower Cyprus

Police information technology operators and first-level supporters to establish

monitoring agents for diverse performance indicators. Additionally, it will generate

accessible application programming interfaces in the Ticketing System, enabling the

system’s operators to engage in predictive maintenance activities.
 And
rea

s M
en

ela
ou

 4

Acknowledgments

I would like to thank the following people, without whom I would not have been able to

complete this research, and without whom I would not have made it through my

master’s degree!

First and foremost, I owe an immense debt of gratitude to the KIOS team at UCY,

especially to my supervisor Prof. Maria K. Michael, Dr. Georgios Ellinas and Dr

Panayiotis Kolios whose insight and knowledge into the subject matter steered me

through this research. And special thanks to Lilia Georgiou, whose support as part of

Administrative-Kios, went above and beyond, enabling my studies to reach new

heights. I am genuinely sorry for any additional workload that might have arisen due to

my pursuits. A significant debt of thanks goes to Dr. Philippos Isaia and my brother Dr.

Charalambos Menelaou of the KIOS Research and Innovation Center of Excellence

for all the inputs and invaluable contributions that made my journey through this

research and my master’s degree not only possible but also immensely rewarding.

The utmost gratitude is reserved for my family, whose unwavering support sustained

me throughout these two years of learning. To my children, I apologize for any added

moments of grumpiness during the thesis writing process. And to my wife, Demetra,

your unwavering support was the pillar that kept me going. Without you, I might have

abandoned these studies long ago. Your incredible support means everything to me,

and I promise to clear the kitchen table of all papers as I've promised countless times.

Each one of you has played an integral role in this accomplishment, and I am truly

grateful for your support, guidance, and understanding throughout this journey.

Finally, I want to express my gratitude to The Cyprus Police HQ IT Department and all

my colleagues who took a leap of faith, allowing me to deploy our work to the

Production environment of the infrastructure. The dedication of my fellow Operators of

the System truly anchored the application and made this achievement possible.

And
rea

s M
en

ela
ou

 5

Table of Contents

Motivation

Flow Chart

Motivation ... 7

Chapter 1 - Introduction .. 10
1.1 Cyprus Police IT operators Monitoring .. 10
1.2 KIOS Ticketing System .. 11
1.3 Ticketing System Architecture ... 12
1.4 Central Police Computerized System ... 14

Chapter 2 - Literature Review ... 15
2.1 Introduction to Server Monitoring .. 15
2.2 Evolution of Server Monitoring Tools and Methodologies 15
2.3 Significance of Server Monitoring ... 16
2.4 Key Metrics in Server Monitoring ... 17
2.5 Automated Monitoring Systems ... 18
2.6 Challenges in Server Monitoring .. 19

Chapter 3 - Ticketing and Monitoring Systems ... 21
3.1 Services ... 21

Chapter 4 - Analysis ... 41
4.1 Counters .. 41

4.2 Gauge .. 41

4.3 Histogram ... 42

4.4 Summary ... 42

4.5 Common Prometheus Use Cases and Associated Metrics 42

4.6 Deep Analysis ... 43

Conclusion ... 50

References .. 51

Appendix A – Server Installation Manual .. 54
 And

rea
s M

en
ela

ou

 6

List of Figures

Figure 1 Motivation
8

Figure 1 Motivation .. 87

Figure 2 KIOS Ticketing Platform Dashboard ... 113

Figure 3 KIOS Ticketing Platform Login ... 14

Figure 4 Police CPCS System .. 16

Figure 5 Platform High-Level Architecture ... 23

Figure 6 - Django Dashboard ... 32

Figure 7 Prometheus - Grafana Dashboard .. 37

Figure 8 Prometheus - Grafana Dashboard .. 38

Figure 9 Node Exporter .. 40

Figure 10 Alerting Dashboard .. 42

Figure 11 CPU and Memory Stack Grafana Dashboard .. 47

Figure 12 Network Traffic & Disk Used Grafana Dashboard .. 47

Figure 13 Memory Active and Commited .. 48

Figure 14 Disk IOps Completed & Disk R/W Data ... 48

Figure 15 Processes Status Grafana Dashboard ... 48

And
rea

s M
en

ela
ou

 7

Motivation

Police Computer Systems continues to grow with a new system deployed nearly every month.

In 2020, the Cyprus Police infrastructure was designated as a Critical Infrastructure of the

island. Monitoring this infrastructure primarily relies on Oracle Cloud Manager, utilizing

embedded scripts to oversee databases performance and execute essential management tasks.

However, questions arise regarding the oversight of Application Servers, Networking,

Communication Servers, and hang TCP connections between Application Servers and

databases. What about load balancing infrastructure. Whenever an application server

encounters stack threats or databases face hanging connections—without a clear understanding

of the underlying cause—the current approach involves executing a script to restart all server

services, including the admin console.

This context sets the stage for the Thesis Project.

Figure 1 Motivation

And
rea

s M
en

ela
ou

 8

Flow Chart

1. Assess Requirements
• Gather necessary information and prerequisites for

deployment.
2. Prepare Environment

• Check compatibility and readiness of the IT
environment.

• Set up required servers, databases (PostgreSQL 14)
and dependencies.

• Prepare networking (access and ports)
• Set up Docker and HAProxy
• Setup “Nginx”
• Setup Celery and Celery-Beat
• Setup and Deploy Django
• Setup a Python Web Server Gateway Interface-

Gunicorn
• Setup Docker Compose
• Setup and configure Prometheus.
• Setup Allert Manager
• Setup Node Exporter
• Setup and deploy all python scripts to collect data

metrics from infrastructure.
• Analyze all metrics according to infrastructure with

exception rules.
• Setup Alerts according to metrics

3. Configure Application
• Customize application settings
• Adjust configurations for database connections,

security.
• Configure and setup the APIS
• programming interfaces in the Ticketing System
• Setup monitoring agents for diverse performance

indicators
4. Build Deployment Package

• Compile the Ticket Desk application for deployment.
5. Deploy Application

• Transfer the deployment package to the target
server(s).

• Initiate deployment process.
6. Install Dependencies

• Install any additional software or libraries required
by the application.

7. Configure Database
• Set up the database schema.
• Populate initial data

8. Test Deployment
• Conduct initial tests to ensure the application works

in the new environment.
9. Perform Integration

• Integrate the application with other systems
10. Finalize Deployment

And
rea

s M
en

ela
ou

 9

• Double-check configurations and settings.
• Ensure security measures are in place.

11. User Acceptance Testing (UAT)
• Have designated users perform UAT.

12. Deploy to Production
• Once UAT successful, proceed with deployment to

the production environment.
13. Post-Deployment Checks

• Verify application functionality post-deployment.
• Monitor for any issues or errors.

14. Documentation and Training
• Update documentation for the deployed application.
• Provide necessary training to users/administrators.

This flowchart outlines the sequential steps involved in deploying the Ticket Desk application
into Police IT environment.

And
rea

s M
en

ela
ou

 10

Chapter 1 - Introduction

1.1 Cyprus Police IT operators Monitoring

"If you don't know where you're going, any road will take you there." George Harrison.

That very same lack of insight has plagued IT organizations since the earliest days of

computing, leading to inefficiency and wasted capital, nagging performance problems

and perplexing availability issues that can be costly and time-consuming to resolve.

Ticketing System uses software-based instrumentation, such as APIs and agents, to

gather operational information about hardware and software across the IT

infrastructure. Such information can include basic device or application and device

health checks, as well as far more detailed metrics that track resource availability and

utilization, system and network response times, error rates and alarms, and other data.

IT monitoring employs three fundamental layers. The foundation layer gathers data

from the IT environment, often using combinations of agents, logs, APIs or other

standardized communication protocols to access data from hardware and software.

The raw data is then processed and analyzed through monitoring software. From this,

the tools establish trends and generate alarms. The interface layer displays the

analyzed data in graphs or charts through a GUI dashboard.

And
rea

s M
en

ela
ou

 11

Figure 2 KIOS Ticketing Platform Dashboard

1.2 KIOS Ticketing System

The Kios Ticketing System (Figure , Figure) is designed to efficiently address technical

issues and promptly attend to the immediate needs of end users. It primarily operates

as a reactive ticket desk, which can be integrated with a service desk operation.

Key functions of the Ticketing System include:

1. Automating Ticket creation, routing, tracking and email notifications. The

system streamlines the process of creating tickets, assigning them to the

appropriate personnel group, tracking their progress, and notifying relevant

parties via email.

2. Acting as a single point of contact for the IT support team. The Kios

Ticketing System serves as a centralized hub for Police IT support, allowing

users to submit their issues and requests through a single channel.

3. Managing basic service and incident management helps in managing and

resolving service-related incidents efficiently. It provides a structures

approach to handle incidents, ensuring that they are addressed in timely

manner.

4. Displaying self-service options to end-users, enabling them to find solutions

to common issues or access relevant information without the need for direct

assistance. This empowers users to resolve simple problems on their own,

reducing the workload on the support team.

5. Overall, the Kios Ticketing System aims to enhance the efficiency of IT

support by automating ticket management, providing a central point of

And
rea

s M
en

ela
ou

 12

contact, facilitating incident management, and offering self-service options

for end-users.

Figure 3 KIOS Ticketing Platform Login

1.3 Ticketing System Architecture

1.3.1 Scaling System resources

Selecting the appropriate hardware equipment for running the application was quite

challenge, since the requirements of operational efficiency, experience, and simplify

should be in the same line. The equipment requires to operate confidently, tailored to

the ICT operator’s needs, fast and reliable and furthermore to ensure optimal

performance. The hardware architecture of the system setup is based on

requirements and scale of the system including the following components:

1.3.2 Application Server resources

The system requires two servers (redundancy) to host the Kios Ticketing

application and handle the processing and storage of data. A server with

adequate resources ensures excellent performance and user experience. The factors

I have considered for estimating the size and type of server, includes the hardware

resources such as the processor, memory, and storage as well as other factors like

bandwidth, backups, security, uptime and logic to handle peak demands to run

efficiently. The load of server is based on the operating system, server functions,

software, applications, type and number of files and database. Other factors include

the number of users, frequency of access and security tools.

And
rea

s M
en

ela
ou

 13

. The CPU handles all processing, calculations, and logic. For reliable and

efficient performance, the server requires, fast and powerful processors with the ability

to handle and perform several tasks simultaneously. This enables it to perform many

computing tasks with high speed and efficiency.

. Memory (RAM) provides a temporary storage for the data that the CPU is

processing, and has a better and faster read/write performance than a hard drive.

Adequate memory reduces the need for the server to frequently access the slow hard

disk memory. A higher amount than the actual requirements have been applied so as

to cater for peak demand.

1.3.3 Bandwidth resources

The bandwidth refers to the total amount of data that can transfer to and from Ticketing

System. Its size depends on the server use, as well as the frequency and size of clients’

requests and the responses they receive.

1.3.4 Network resources

Network Infrastructure is in place to ensure smooth communication between different

components. This includes routers, firewalls switches and network cables.

1.3.5 Database Server

The Kios Ticketing System relies on a database Server to store and manage ticket

data, user information and other relevant data. For the implementation of this project

PostgreSQL is used sitting on SSDs drives to achieve maximum access speed and

reliability.

1.3.6 ICT Operators access

End-users access the ticketing system through client devices such as desktop

computers or laptops, through the Police closed network. The devices have

compatible web browsers to interact with the ticketing system. Also peripheral

devices are required, such as printers for generating physical tickets or barcode

scanners for ticket validation.

1.3.7 Backup and Redundancy

To ensure data integrity and system availability, backup mechanisms and redundancy

measures are be in place. This involves regular backups of the database and

redundant hardware components to minimize the risk of data loss or system downtime.

And
rea

s M
en

ela
ou

 14

1.4 Central Police Computerized System

The existing system of the Cyprus Police through which the majority of its services are

managed is the CPCS (Figure). It was created by a private company and it is managed

by in-house servers. CPCS is based on a multi-layered architecture, with a modular

design, allowing the addition of new and the extension of existing functions, in a flexible

and efficient manner. Specifically, during the operation of CPCS, more than 100

modules have been implemented to serve both operational and administrative needs,

and new applications are constantly being added as needed. The CPCS primarily

utilizes Java technologies on Oracle WebLogic Server servers for the implementation

of business logic of applications, while Oracle Database management software is used

for data management. It is fully web-based, and the system's web interfaces are based

on Java Server Pages (JSPs), JavaScript, and HTML/CSS.

Figure 4 Police CPCS System

And
rea

s M
en

ela
ou

 15

Chapter 2 - Literature Review

2.1 Introduction to Server Monitoring

Server monitoring[1] forms a crucial part of IT infrastructure management, ensuring the

seamless functioning of servers that are the backbone of modern digital operations. In

its essence, server monitoring involves tracking and analyzing server resources to

ensure optimal performance and quick responsiveness to any potential issues[2]. The

primary goal of server monitoring is to proactively detect and resolve server-related

problems, minimizing downtime and ensuring consistent service availability.

In the realm of IT infrastructure, servers play a pivotal role in hosting applications,

managing databases, and facilitating communication and data exchange. As such,

their health and performance directly impact the overall efficiency and effectiveness of

business operations. Server monitoring encompasses a wide range of activities

including, but not limited to, tracking server health metrics like CPU usage, memory

utilization, disk space, network performance, and application processes. Efficient

server monitoring strategies employ various tools and techniques to continuously

observe these metrics and generate alerts or reports based on predefined thresholds

or detected anomalies. The implications of server monitoring are profound in the

context of IT infrastructure. It allows IT administrators and engineers to make informed

decisions about resource allocation, load balancing, and system scalability. In cases

of server failure or performance degradation, monitoring tools provide critical insights

that guide quick and effective troubleshooting. This proactive approach to managing

server health not only optimizes resource utilization but also significantly reduces the

risk of unplanned outages and service disruptions, which can have dire consequences

on business continuity and reputation.

2.2 Evolution of Server Monitoring Tools and Methodologies

The evolution of server monitoring tools and methodologies has been a journey marked

by technological advancements and changing industry needs. Initially, server

monitoring was a predominantly manual process, involving periodic checks and basic

scripting to track system health. This approach was time-consuming, error-prone, and

inefficient, especially as IT infrastructures began to grow in complexity and scale.

The advent of automated monitoring tools marked a significant shift in server

monitoring practices. These tools allowed for continuous monitoring of server metrics,

And
rea

s M
en

ela
ou

 16

generating real-time alerts and detailed reports. As enterprises expanded and the

demand for high availability escalated, the need for more sophisticated monitoring

solutions became apparent. This period saw the introduction of centralized monitoring

solutions that could oversee multiple servers across different locations, offering a

comprehensive view of the entire IT infrastructure. The proliferation of cloud computing

and virtualization technologies further revolutionized server monitoring. Monitoring

tools evolved to accommodate dynamic and distributed environments, where servers

could be virtual, cloud-based, or a mix of both. Modern server monitoring tools are

equipped with advanced capabilities like predictive analytics, machine learning

algorithms, and integrations with other IT management systems. These tools not only

track traditional metrics but also analyze patterns, predict potential issues, and

automate responses to certain types of incidents.

Current trends in server monitoring emphasize flexibility, scalability, and integration.

Tools are now more adaptable, capable of monitoring a vast array of environments and

providing integrations with a variety of platforms. The focus has also shifted towards

holistic monitoring, where server health is viewed in the context of the entire IT

ecosystem, including applications, databases, and network infrastructure.

2.3 Significance of Server Monitoring

Server monitoring is pivotal in maintaining the health and performance of IT systems.

In today's digital landscape, where businesses rely heavily on technology for

operations, the stability and efficiency of servers are non-negotiable aspects. Effective

server monitoring enables organizations to detect and address issues before they

escalate into critical problems, thus maintaining high availability and performance

standards. The significance of server monitoring extends beyond just problem

detection and resolution. It plays a key role in capacity planning and resource

optimization. By analyzing trends and usage patterns, organizations can make data-

driven decisions about server upgrades, resource allocation, and infrastructure

expansion. This proactive planning is essential for maintaining optimal performance

levels and ensuring that the IT infrastructure can adequately support business growth

and evolving technology demands.

Furthermore, server monitoring contributes to enhanced security. By continuously

tracking server activity and system logs, monitoring tools can help identify security

threats, unauthorized access attempts, and potential breaches. In an era where

cybersecurity threats are rampant and constantly evolving, server monitoring serves

as a first line of defense in protecting sensitive data and IT assets. In summary, server

And
rea

s M
en

ela
ou

 17

monitoring is a vital component in the management of IT infrastructure. Its evolution

from basic manual tracking to advanced, automated solutions reflects the growing

complexity and criticality of servers in organizational operations. Effective server

monitoring ensures not just the smooth functioning of servers but also supports overall

business continuity, security, and growth. As technology continues to advance and IT

environments become more intricate, the role of server monitoring in maintaining

system health and performance will only become more integral to organizational

success.

2.4 Key Metrics in Server Monitoring

Server monitoring encompasses various metrics, each offering insights into the health

and performance of server systems. Understanding and effectively utilizing these

metrics is essential for maintaining optimal server functionality, ensuring high

availability, and preemptively addressing potential issues that may disrupt IT

operations.

2.4.1 CPU Usage

One of the primary metrics in server monitoring is CPU usage[3], which indicates the

percentage of the processor's capacity currently being used. High CPU usage can lead

to slower performance and, in severe cases, can cause the server to crash. Monitoring

CPU usage helps in identifying processes that consume excessive resources. It also

aids in load balancing decisions and in scaling resources appropriately. For example,

consistently high CPU usage may signal the need for additional processing power or

optimization of existing processes.

2.4.2 Memory Utilization

Memory utilization[4] is another critical metric, indicating the amount of RAM in use

versus the total available. Memory bottlenecks can significantly degrade the

performance of applications running on the server. Monitoring memory usage is crucial

for identifying memory leaks or applications that are consuming more memory than

anticipated. This metric is also vital for capacity planning, ensuring that sufficient

memory is available to handle peak loads.

2.4.3 Disk I/O Operations

Disk Input/Output (I/O) operations reflect the read and write operations to the server's

storage system. Monitoring these operations is essential as high disk I/O can indicate

inefficient application performance or insufficient disk resources. High disk I/O wait can

And
rea

s M
en

ela
ou

 18

lead to increased response times for applications, affecting the user experience.

Optimizing disk usage, such as through load balancing or upgrading to faster storage

solutions, can be guided effectively by this metric.

2.4.4 Network Activity

Network activity metrics, including bandwidth usage, error rates, and throughput,

provide insights into the volume of data being transferred to and from the server.

Monitoring network activity is crucial in detecting bottlenecks, potential DDoS attacks,

and ensuring the network's capacity is adequate for the server's needs. It also helps in

bandwidth allocation and in optimizing network configurations for improved data

transfer efficiency.

2.4.5 System Uptime

System uptime, a straightforward yet vital metric, measures the time duration for which

the server has been running without interruption. Frequent downtimes can be indicative

of underlying hardware issues, inefficient resource allocation, or software errors.

Monitoring uptime is essential for ensuring high availability and reliability of server-

based services.

2.4.6 Load Average

Load average is a unique metric that provides an average of the system load over a

period. Unlike CPU usage, which is instantaneous, load average gives a more

smoothed overview of system performance over time. It is particularly useful for Unix-

based systems and helps in identifying trends in system load, guiding scaling, and

resource allocation decisions.

2.5 Automated Monitoring Systems

It's evident that the landscape of IT infrastructure management has significantly

evolved. Central to this evolution is the development of automated monitoring systems.

These systems are pivotal in managing the complexity and scale of modern IT

infrastructures, ensuring high availability, performance, and security. This thesis

explores the intricacies of automated monitoring systems, their components,

functionalities, and the impact they have on IT operations.

In the early stages of computer science, monitoring was predominantly manual,

involving periodic checks and basic alerting mechanisms. However, the advent of

complex, distributed systems necessitated a more sophisticated approach. Automated

monitoring systems emerged as a solution, capable of continuously tracking a

And
rea

s M
en

ela
ou

 19

multitude of metrics across various components of IT infrastructure. These systems

are not just a convenience but a necessity in today’s fast-paced, data-driven

environment where downtime or performance degradation can have severe

implications.

An automated monitoring system typically consists of several key components:

a. Data Collection Agents: These are programs or agents installed on servers

and devices to collect performance data.

b. Central Repository: A database or storage system where collected data is

aggregated and stored for analysis.

c. Analysis Engine: The core of the system, which processes and analyzes the

data, often using sophisticated algorithms to detect patterns or anomalies.

d. Alerting Mechanism: A system that notifies administrators or stakeholders

when predefined thresholds are breached or anomalies are detected.

e. Dashboard and Reporting Tools: User interfaces that provide real-time and

historical data insights through various forms of visualization.

2.6 Challenges in Server Monitoring

Server monitoring is critical in ensuring the smooth operation of IT infrastructure, yet it

is fraught with challenges that can impede effectiveness. This thesis delves into these

challenges, exploring their nuances and offering insights into potential mitigation

strategies[5][6][7].

2.6.1 Complexity of Modern IT Environments

The diversity and complexity of contemporary IT environments present a significant

challenge in server monitoring. With the advent of cloud computing, virtualization, and

distributed architectures, monitoring systems must now track a multitude of dynamic

components. The heterogeneity of these environments, often comprising a mix of on-

premises, cloud-based, and hybrid systems, adds layers of complexity in data

collection and analysis. This diversity demands a monitoring solution that is not only

robust but also highly adaptable to varying technologies and architectures.

2.6.2 Data Volume and Management

Server monitoring systems often grapple with the sheer volume of data generated by

modern servers. This data deluge, while rich in information, can lead to difficulties in

data management and analysis. Sifting through this vast amount of data to extract

meaningful insights requires advanced data processing capabilities and can be

And
rea

s M
en

ela
ou

 20

resource-intensive. Furthermore, the storage and archival of this data pose additional

challenges, particularly in terms of cost and compliance with data retention policies.

2.6.3 Real-Time Analysis and Response

The need for real-time analysis and rapid response is paramount in server monitoring.

In high-traffic environments, even minor issues can escalate rapidly, leading to

significant service disruptions. The challenge lies in developing monitoring systems

that are not only capable of real-time data analysis but also equipped to automate

immediate responses to potential threats or performance bottlenecks. Achieving this

level of responsiveness requires sophisticated algorithms and integration with

automated management tools.

2.6.4 Integration and Compatibility Issues

Integrating monitoring tools with existing IT infrastructure can be a daunting task,

especially in environments with legacy systems or diverse technology stacks.

Compatibility issues can arise, hindering the seamless operation of monitoring

solutions. This challenge is compounded by the continuous evolution of IT

technologies, requiring monitoring systems to be regularly updated or replaced to

maintain compatibility.

2.6.5 Alert Fatigue and False Positives

Alert fatigue, driven by the overabundance of notifications and false positives, is a

significant issue in server monitoring. Excessive alerts can desensitize IT staff, leading

to delayed responses to actual critical incidents. The challenge lies in fine-tuning alert

mechanisms to ensure that notifications are both accurate and actionable. This

requires intelligent threshold setting, anomaly detection, and perhaps the incorporation

of AI and machine learning techniques to reduce false positives.

And
rea

s M
en

ela
ou

 21

Chapter 3 - Ticketing and Monitoring Systems

The Ticketing System architecture consists of various services including a database, a

reverse proxy, a Web server, an in-memory data structure store, an asynchronous task

runner as well as several Python Web Server Gateway Interface Hypertext Transfer

Protocol (WSGI HTTP) servers.

3.1 Services

As show in Figure 5, the incoming traffic will pass through CY Police Infrastructure

before it reaches the server hosting the Ticketing backend.

As soon as the requests reach the Ticketing server, they will be load balanced by

HAProxy to the Ticketing Cluster. To store any information, the Ticketing Docker

Cluster uses the PostgreSQL 14 database.

Figure 5 Platform High-Level Architecture

And
rea

s M
en

ela
ou

 22

3.1.1 Docker

Docker[8], a prominent tool in software development, is renowned for revolutionizing

containerization technology. This technology has been a game-changer in the field,

enabling developers to package applications and their dependencies into virtual

containers. These containers efficiently run across various computing environments,

ensuring consistent application performance irrespective of the operating system and

underlying infrastructure differences[9]. The fundamental concept behind Docker is its

container-based approach, where containers are lightweight, standalone, executable

packages comprising all necessary components to run a piece of software. This

includes the code, runtime, system tools, libraries, and settings. This approach is

distinct from traditional virtualization methods. Unlike virtual machines that require an

entire operating system per instance, Docker containers share the host system's

kernel, enhancing resource efficiency and significantly reducing server and IT

costs[10].

Docker containers are derived from Docker images, which are essentially container

snapshots. These images, stored in Docker registries such as Docker Hub, act as

blueprints for creating containers. This concept of Docker images and registries has

revolutionized software deployment, simplifying version control, application sharing,

and updates. The Dockerfile, a crucial component for building Docker images,

facilitates automated and consistent application deployment processes, benefiting

continuous integration and continuous delivery (CI/CD) pipelines. A key contribution of

Docker is addressing the "it works on my machine" problem. By providing a consistent

environment from development to production, Docker ensures uniform software

operation across different environments. This consistency is especially beneficial in

complex systems requiring varied environments for different components. Docker also

excels in networking, offering a powerful and flexible framework to facilitate

communication between containers, either on the same host or across different hosts.

This capability is essential for microservices architectures, where individual

components are independently developed, deployed, and scaled. Docker significantly

aids in scalability and orchestration, vital for managing large-scale applications and

microservices. Tools like Docker Swarm and Kubernetes handle multiple Docker

containers, managing tasks such as load balancing, scaling, and maintaining high

availability. These features are crucial in sustaining application performance and

reliability under diverse load conditions. In terms of security[11], Docker provides

robust isolation, critical in multi-tenant environments, but also introduces challenges in

And
rea

s M
en

ela
ou

 23

securing containers and the applications within. Docker continually evolves,

introducing new features and best practices for securing containerized environments.

Docker's impact extends beyond typical development workflows and IT operations. It

fosters a more agile development process with quicker deployment cycles and

enhanced team collaboration. In DevOps practices, Docker promotes a culture of rapid

feedback loops and efficient problem-solving. Its application in academia and research

transcends traditional software development, providing tools for creating reproducible

research environments. This reproducibility is crucial in scientific computing, where

environmental consistency significantly influences experimental outcomes. Docker's

utility in machine learning and data science workflows is notable, offering solutions for

packaging and distributing data science applications, maintaining complex

dependencies, and ensuring consistency in library and tool versions.

In summary, Docker's multifaceted contribution to the software development world

includes simplifying application deployment, ensuring environmental consistency,

aiding in microservices architecture, enhancing security, and supporting scalable

solutions. Its widespread impact reshapes how developers, researchers, and IT

professionals approach software development and deployment. With its growing

community and evolving ecosystem, Docker continues to adapt, introducing new tools

and features to meet the dynamic demands of technology and development practices.

3.1.2 HAProxy

HAProxy[12], also known as High Availability Proxy, has become an essential

component in contemporary IT infrastructure, especially notable for its effectiveness in

load balancing and functioning as a proxy server for TCP and HTTP-based

applications. The sophisticated functionality and pivotal role of HAProxy in ensuring

high availability, reliability, and performance of web services is particularly pertinent.

Designed to manage high traffic volumes and provide unwavering availability, HAProxy

is a favored solution for businesses where downtime is not an option. It functions by

evenly distributing client requests across multiple servers, preventing any single server

from becoming a bottleneck[13]. This load balancing is crucial for both maintaining

consistent uptime and enhancing user experience as traffic increases. HAProxy is

distinguished by its dual capability of performing both layer 4 (transport layer) and layer

7 (application layer) load balancing. Layer 4 balancing is based on network and

transport layer data like IP addresses and TCP ports, whereas layer 7 balancing utilizes

application layer content, including HTTP headers and SSL session IDs. This dual-

layer balancing enables HAProxy to support a diverse array of applications and

services, making it adaptable to various environments.

And
rea

s M
en

ela
ou

 24

A standout feature of HAProxy is its proficiency in managing thousands of

simultaneous connections, a critical attribute in high-traffic scenarios. This, combined

with efficient resource utilization, makes HAProxy a cost-effective option for scaling

web infrastructures. Additionally, HAProxy enhances the security and reliability of web

applications through features like SSL termination, which offloads SSL processing from

application servers to improve performance. HAProxy also includes mechanisms for

detecting and mitigating several attack types, including DDoS attacks, positioning it as

a vital component in a comprehensive web application security strategy. HAProxy's

health check functionality is highly acclaimed, as it continuously monitors the status of

backend servers, ensuring traffic is directed only to operational servers. This proactive

monitoring helps in averting potential downtimes and service disruptions. The logging

and monitoring capabilities of HAProxy are also significant, providing detailed insights

into traffic patterns, server health, and potential issues, enabling proactive

infrastructure management and optimization. The customizability of HAProxy is

another key strength. It offers an extensive range of configuration options, making it

possible to tailor its performance to meet the specific needs of different applications

and environments. This flexibility extends to its integration with other tools and

services, enhancing its utility in various scenarios. In cloud computing environments,

the role of HAProxy becomes increasingly vital. It is adept at balancing loads across

multiple cloud instances, capitalizing on the scalability and redundancy benefits of

cloud technology. Its compatibility with containerized environments further adds to its

versatility, facilitating efficient traffic management in microservices architectures.

Beyond its core load balancing and web traffic management functions, HAProxy plays

a significant role in continuous delivery and deployment within DevOps practices. It

enables reliable traffic distribution across multiple servers and environments,

supporting various deployment strategies crucial for agile software development,

including blue-green deployments and canary releases. For large-scale, distributed

systems, HAProxy's session persistence feature, or 'sticky sessions', is essential for

maintaining client sessions with specific backend servers, a necessity for applications

requiring stateful sessions. This capability, coupled with its proficiency in managing

WebSocket traffic, makes HAProxy an excellent choice for real-time applications and

services.

3.1.3 PostgreSQL

PostgreSQL[14], commonly known as Postgres, is a highly respected open-source,

advanced object-relational database management system (ORDBMS), celebrated for

its reliability, robustness, and performance capabilities, particularly in managing

And
rea

s M
en

ela
ou

 25

complex data types and large volumes of data[15]. It stands out in the database

technology sphere for blending the traditional relational database model with advanced

object-oriented database functionalities, making it versatile for a wide spectrum of

applications, ranging from small single-machine applications to large Internet-facing

applications with numerous concurrent users. At its foundation, PostgreSQL is known

for its commitment to standards compliance, being ACID-compliant and largely

implementing the SQL:2011 standard. This compliance is vital for ensuring consistent

and reliable data handling, crucial for applications demanding high data integrity.

PostgreSQL supports various replication techniques, such as synchronous,

asynchronous, and logical replication, offering robust solutions for high availability and

disaster recovery scenarios. A key feature of PostgreSQL is its support for complex

data types like JSON, XML, arrays, and user-defined types, which is particularly

beneficial for modern web applications needing diverse data format handling. The

JSON support has been a transformative feature, allowing developers to efficiently

store JSON documents and conduct complex queries, aligning with NoSQL-like

application needs while providing relational database benefits.

PostgreSQL's extensibility is a notable aspect of its design. It permits developers to

create custom data types, functions, and write code in various programming languages

within the database. This flexibility is invaluable in specialized domains that require

customized procedures and operations. The PostGIS extension, supporting

geographic objects, further positions PostgreSQL as a preferred choice for geographic

information systems (GIS) and location-based services. The database excels in

concurrency control and transaction management through its implementation of Multi-

Version Concurrency Control (MVCC). This feature gives each user a database

"snapshot," enabling concurrent transaction processing without locking conflicts,

enhancing performance and scalability, particularly in high-concurrency environments.

PostgreSQL's querying capabilities are enhanced by a powerful query

planner/optimizer, sophisticated indexing techniques, and a robust query execution

engine, making it suitable for data analysis and business intelligence applications.

Advanced SQL features like window functions, common table expressions (CTEs), and

foreign data wrappers enable data integration from varied sources.

Security is a strong focus for PostgreSQL, supporting numerous authentication

methods and robust access control mechanisms to manage data access precisely.

Known for its high performance across diverse workloads, PostgreSQL has an efficient

query execution engine and features like table partitioning and parallel query execution,

enhancing its performance capabilities. The database also allows the creation and use

And
rea

s M
en

ela
ou

 26

of indexes on functions and expressions, contributing to quicker data retrieval for

complex queries. For developers and database administrators, PostgreSQL offers

various tools for database maintenance, including vacuuming and a robust set of

backup and recovery tools, ensuring the long-term health and performance of the

database. PostgreSQL's vibrant community significantly contributes to its continuous

development and improvement, providing extensive documentation, third-party tools,

and active forums for support and discussion. This community-driven model ensures

PostgreSQL stays at the forefront of evolving user needs. In practical applications,

PostgreSQL is used in numerous fields, from web services and e-commerce to

financial services and scientific research. Its reliability, advanced feature set, and

flexibility make it a suitable choice for organizations seeking a robust, scalable, and

feature-rich database management system. Overall, PostgreSQL represents a mature,

feature-rich, and highly capable database management system, well-suited for a wide

range of applications. Its blend of advanced features, extensibility, robust performance,

and strong community support makes it an excellent choice for organizations seeking

a reliable, scalable, and flexible database solution.

3.1.4 Nginx

Nginx[16], pronounced as "Engine-X," is a high-performance web server renowned for

its stability, rich feature set, simple configuration, and low resource consumption. It was

initially designed by Igor Sysoev in 2002 to address the C10K problem, which involves

efficiently handling a large number of concurrent connections. Since its first public

release in 2004, Nginx has evolved significantly, offering versatile capabilities that

make it a favorite in modern web architectures due to its efficiency and speed. Central

to Nginx's architecture is its event-driven, asynchronous nature, which allows it to

handle concurrent connections with minimal hardware resources[17]. This approach

contrasts sharply with the traditional thread-per-connection model used by many web

servers, which often becomes inefficient under heavy loads. Nginx's architecture

enables it to use memory more efficiently and scalably, particularly beneficial for

managing high-traffic websites and resource-intensive back-end applications. As a

web server, Nginx excels in serving static content, managing thousands of concurrent

connections with low memory overhead. Its role as a reverse proxy allows it to manage

and direct incoming traffic to other servers, functioning as a load balancer and

enhancing the performance, scalability, and reliability of web applications. This feature

is particularly useful in microservices architectures, where Nginx optimizes resource

use by balancing traffic across various microservices.

And
rea

s M
en

ela
ou

 27

Nginx's functionality extends to performing tasks like SSL termination, offloading the

decryption of SSL/TLS traffic from application servers to the Nginx server, which

improves overall performance. Its content caching capability further reduces the load

on application servers and speeds up response times, with a highly configurable

caching mechanism that allows for precise control over cached content. The

configurability and flexibility of Nginx are notable. Its straightforward and easy-to-

understand configuration files make it suitable for both simple projects and complex

enterprise applications. In terms of security, Nginx offers robust features, supporting

the latest SSL/TLS protocols and providing mechanisms to limit access to resources

and protect against common web vulnerabilities like DDoS attacks. Nginx's design

efficiently utilizes system resources, making it well-suited for environments with high

demand and large numbers of concurrent users. Its versatility is evident in advanced

deployments, where it can serve as a front-end proxy to web application servers like

Apache or Tomcat, handling static content and redirecting dynamic content requests.

Moreover, Nginx seamlessly integrates into containerized environments managed by

Docker or Kubernetes, enhancing its appeal in modern DevOps practices. This

integration allows Nginx to route or balance traffic between different containers,

adapting to dynamic environments for optimal resource utilization. Nginx's logging and

monitoring capabilities are also crucial, providing detailed access and error logs for

troubleshooting and performance tuning. When used with monitoring tools, Nginx

offers a clear view of a system's health and performance. For developers and system

administrators, Nginx presents a balance of power and usability. Its modular

architecture supports the extension of capabilities through third-party modules, and its

active community and comprehensive documentation make it accessible for users of

various skill levels.

3.1.5 Celery

Celery[18] is a prominent open-source, distributed task queue system, highly regarded

in the software development industry for its capability to efficiently handle

asynchronous tasks and scheduling. This system is especially critical in modern web

development for environments where real-time processing is essential. For an

experienced computer scientist in ICT and software development, Celery's intricate

architecture and wide application scope are of significant professional interest.

Fundamentally, Celery operates asynchronously, managing tasks outside the main

program flow, which optimizes resource usage and enhances user experience by

allocating long-running tasks to separate processes or machines. It's frequently utilized

in web applications for executing background tasks like sending emails, processing

And
rea

s M
en

ela
ou

 28

data, or conducting computationally intensive tasks, which, if run synchronously, could

hinder application performance. Celery's architecture, characterized by its simplicity

and power, employs a distributed messaging system for sending tasks to worker nodes

for execution. This scalable and flexible architecture enables Celery to manage a

diverse range of tasks, from straightforward functions to complex workflows. Task

communication is facilitated by a message broker, with RabbitMQ and Redis being

popular choices, ensuring reliable and efficient message delivery to workers.

Scalability is a cornerstone of Celery's design, allowing it to concurrently handle

numerous tasks, making it suitable for high-load systems. This scalability is achieved

by distributing tasks across multiple workers and machines, catering to fluctuating

workloads without necessitating significant infrastructural changes. Additionally,

Celery's robust support for scheduling enables tasks to be executed at specific times

or intervals, akin to cron but with the benefits of distributed execution and dynamic

runtime scheduling. Fault tolerance in Celery is paramount, featuring mechanisms to

prevent task loss in case of worker failures. This aspect is crucial for applications reliant

on timely and precise task processing. Celery supports task retries for re-execution in

case of failures and acknowledgments to ensure tasks are only removed from the

queue after successful execution. Performance-wise, Celery is designed to be efficient

and lightweight, capable of handling a high volume of tasks with minimal overhead,

thus suitable for high-performance, low-latency applications. This efficiency is achieved

through event-driven concurrency, enabling concurrent handling of numerous tasks

without the need for extensive threading or processes.

Monitoring is another critical feature of Celery, with tools like Flower providing real-time

insights into task progress, worker status, and other vital metrics. This monitoring is

essential for diagnosing issues, optimizing performance, and understanding the

behavior of distributed tasks. Celery's customizability offers a broad spectrum of

configuration options, allowing it to be tailored to specific application needs, whether in

task routing, defining retry policies, or configuring the message broker. In practical use,

Celery is employed across various sectors, from e-commerce and social media to

financial services and scientific computing, demonstrating its suitability for a wide range

of applications, including real-time data processing and batch processing. Its seamless

integration with popular web frameworks like Django and Flask enhances its appeal to

Python developers, though its functionality is not limited to Python alone, as it can

interact with other languages and platforms through message protocols.

And
rea

s M
en

ela
ou

 29

3.1.6 Celery-Beat

Celery-Beat[19], an essential component of the Celery task queue system, serves as

a sophisticated scheduler that enhances Celery's capabilities by introducing the

functionality of timed job processing. This feature is particularly valuable for automating

and managing time-based tasks within complex systems. Celery-Beat operates by

scheduling tasks that Celery workers then execute, playing a crucial role in managing

periodic and scheduled tasks. This system helps streamline routine tasks such as data

backups, report generation, or maintenance jobs by automating them according to a

predefined schedule. The use of 'clocked' tasks, which are set to run at specific

intervals or times, marks Celery-Beat as an invaluable tool for these operations. At the

core of Celery-Beat’s functionality is its seamless integration with the Celery

framework. While Celery focuses on task execution, Celery-Beat serves as the

scheduler, ensuring tasks are triggered as per the schedule. This separation allows for

a more scalable and maintainable system. Celery-Beat can run either as a standalone

service or alongside a Celery worker, offering flexible deployment options based on the

architecture and requirements of the application.

One of the most powerful features of Celery-Beat is its support for various scheduling

strategies. It accommodates fixed-time scheduling for executing tasks at specific

moments, interval-based scheduling for regular task execution, and crontab-like

scheduling for more complex, recurring patterns. This versatility makes it suitable for a

broad range of applications. Celery-Beat's integration with Django, a widely-used

Python web framework, extends its capabilities to managing web operation-related

tasks, such as database maintenance and cache invalidation. This integration

leverages Django's ORM and admin interface, facilitating task management and

reducing the learning curve for developers. Scalability is a key aspect of Celery-Beat,

capable of handling an increasing volume of scheduled tasks. Its distributed nature

works in tandem with multiple Celery workers across different nodes, ensuring system

performance and reliability even under high task volumes. In terms of fault tolerance,

Celery-Beat is designed to manage failures gracefully, preserving scheduled tasks in

the event of a system crash or network issue through persistent scheduling. This

robustness is vital in production environments where continuous operation is

paramount.

Monitoring and management capabilities are also significant in Celery-Beat. With

integration with tools like Flower, it provides oversight into task scheduling and

execution, offering administrators the ability to monitor task queues, view executed

task histories, and manage schedules directly via a web interface. Celery-Beat is not

And
rea

s M
en

ela
ou

 30

only customizable but also extensible. Developers can define custom scheduling

strategies or add new schedulers, enhancing its adaptability to specific application

needs. In practical applications, Celery-Beat is utilized across various industries, from

e-commerce to finance and healthcare, proving its suitability for a wide array of

applications that require precise timing, like transaction processing or real-time

analytics.

Figure 6 Django Dashboard

3.1.7 Redis

Redis[20], standing for Remote Dictionary Server, is a renowned open-source, in-

memory data structure store, widely used as a database, cache, and message broker.

Its exceptional speed and efficiency make it a favored choice among developers,

particularly for applications requiring rapid data read/write access, such as gaming,

high-speed transactional systems, or real-time analytics. Redis's primary feature is its

in-memory data storage, enabling significantly faster data access compared to disk-

based storage systems. This capability is essential for applications that process large

volumes of requests per second. Unlike traditional databases, Redis's in-memory

nature allows for extraordinarily quick read and write operations. Despite being

primarily an in-memory store, Redis ensures data durability and persistence through

mechanisms like snapshotting and append-only files (AOF), which enable it to recover

its state after restarts or failures. Redis supports a broad range of data structures,

including strings, lists, sets, sorted sets, hashes, bitmaps, hyperloglogs, and geospatial

And
rea

s M
en

ela
ou

 31

indexes. This versatility allows for varied use cases, such as using lists for queues,

sets for managing unique elements, and sorted sets for ordered data. Redis's

popularity is partly due to its support for these complex data structures, enabling

developers to employ it for a wide array of applications beyond simple key-value

storage.

A notable feature of Redis is its support for atomic operations, crucial for maintaining

data integrity, especially in high-concurrency environments. These operations ensure

that tasks like incrementing a key's value or adding an element to a list are isolated

from other operations. Redis is commonly used as a caching solution, storing

frequently accessed data in volatile memory to drastically reduce data retrieval times

compared to database querying. This caching mechanism is instrumental in enhancing

web application performance by significantly lowering response times and reducing

backend database load. Besides serving as a database and cache, Redis functions as

a message broker, supporting various messaging patterns like publish/subscribe. This

system is vital for developing scalable, distributed applications and implementing

event-driven architectures. Redis excels in scalability and high availability, offering

features like Redis Sentinel for high availability and Redis Cluster for automatic

partitioning. These features enable fault-tolerant, scalable clustered configurations to

handle growing data and traffic. Redis's simplicity and ease of use, combined with its

minimalistic design and simple command set, make it accessible for integration into

various applications. Its single-threaded event-loop architecture is particularly effective

in scenarios that demand rapid data access, handling millions of requests per second

with minimal latency.

Security features in Redis, including client-side authentication and SSL encryption

support, ensure secure connections, vital for applications dealing with sensitive data.

Redis's flexibility is further demonstrated by its support for multiple programming

languages, making it easily integrable into diverse application stacks. In real-world

applications, Redis is utilized across various domains, including e-commerce platforms

for session caching and real-time analytics, gaming applications for leaderboards and

session storage, and financial services for high-speed transactions and fraud

detection. Its versatility in handling diverse data structures and performing rapid

operations makes it a powerful tool for addressing complex software development

challenges.

And
rea

s M
en

ela
ou

 32

3.1.8 Gunicorn

Gunicorn[21], short for 'Green Unicorn,' is a prominent Python Web Server Gateway

Interface (WSGI) HTTP server known for its robustness, efficiency, and high

configurability. It is particularly favored for deploying Python web applications.

Gunicorn serves as a server that translates HTTP requests into Python calls in

accordance with the WSGI specification, making it compatible with numerous Python

web frameworks such as Django, Flask, and Pyramid. The key strength of Gunicorn

lies in its simplicity and ease of use. It is designed for straightforward implementation

with sensible default configurations suitable for most Python web applications.

However, Gunicorn also caters to more complex requirements through extensive

customization options, allowing fine-tuning of parameters like worker processes,

worker class, timeout settings, and logging. This balance of simplicity and

configurability positions Gunicorn as an apt choice for both basic and intricate

deployments. Gunicorn operates on a pre-fork worker model, forking several worker

processes that handle requests. This model is particularly efficient for CPU-bound and

I/O-bound applications, with the parallel running workers enhancing the server's

capacity to manage multiple requests simultaneously, making it well-suited for high

concurrency environments. Notably, Gunicorn supports different types of worker

classes. While synchronous workers are the default, it also offers support for

asynchronous workers through gevent or eventlet for applications requiring real-time

interactions like long-polling or WebSockets.

In terms of performance, Gunicorn provides a balance between speed, resource

efficiency, and usability. It can handle a high volume of requests with relatively low

latency, an essential attribute for modern web applications. Often, Gunicorn is used

alongside other web servers like Nginx or Apache, where it complements their

strengths in managing static content and connections, with its own ability to serve

dynamic Python applications. Security within Gunicorn is a considered aspect,

especially since it's expected to run behind a reverse proxy in production. It supports

secure HTTP headers and SSL for encrypted connections between the reverse proxy

and Gunicorn, ensuring the security of data in transit. For monitoring and management,

Gunicorn offers detailed error logs and integration with application performance

monitoring tools, crucial for diagnosing issues, understanding application performance,

and ensuring smooth operations in production environments. Gunicorn's design

philosophy, which emphasizes simplicity and pragmatism, aligns well with the Python

community's values of readability and simplicity, making it an appealing tool for

developers and system administrators.

And
rea

s M
en

ela
ou

 33

In practical applications, Gunicorn is widely utilized in small to medium-sized

deployments and can be scaled for larger applications with appropriate configuration

and resource allocation. Its compatibility with various web frameworks and ease of

integration into Python projects make it a preferred choice for Python developers

seeking a reliable and efficient WSGI server.

3.1.9 Docker-Compose

Docker-Compose[22] is a pivotal tool within the Docker ecosystem, streamlining the

management of multi-container Docker applications. Its role is especially significant in

complex application environments, where it simplifies and optimizes container

orchestration. At the heart of Docker-Compose is the ability to define a multi-container

application in a single file, typically named `docker-compose.yml`. This YAML-

formatted file outlines the application's infrastructure, including services, networks, and

volumes. This arrangement provides a straightforward and clear approach to deploying

applications, with the ability to start up the entire application using just the `docker-

compose up` command. A key feature of Docker-Compose is its service definition

capabilities. Within the `docker-compose.yml` file, each service corresponds to a

container that runs a specific part of the application, like a web server, database, or

caching server. Docker-Compose enables the definition of these services, their

configurations, interdependencies, and the sequence of their initiation. This

orchestration is essential for ensuring coordinated launching and scaling of application

components[23].

Networking between containers is efficiently handled by Docker-Compose, which sets

up a unified network for the application. Containers join this network, allowing inter-

container communication through service names. This simplification is crucial for most

multi-container applications, facilitating container linking and communication. Volume

management is another significant utility of Docker-Compose. It allows the definition

and mounting of volumes to ensure data persistence, even if containers are destroyed.

This feature is especially vital for stateful applications, such as databases, where data

persistence is key. Docker-Compose also excels in environment management. It

enables the specification of environment variables directly in the ̀ docker-compose.yml`

file or in external files, ensuring consistent environmental settings across development,

testing, and production stages. This consistency reduces the chances of encountering

the “it works on my machine” syndrome.

In terms of scalability, Docker-Compose offers features that allow for the easy scaling

of services up or down with a single command. This scalability is particularly beneficial

And
rea

s M
en

ela
ou

 34

in development and testing environments, where configurations may need to be rapidly

adjusted. Seamless integration with Docker Swarm is another advantage of Docker-

Compose, facilitating a smooth transition from single-node setups to multi-node setups

in production environments. For debugging and logging, Docker-Compose provides

comprehensive logging features that aggregate logs from all containers, offering a

centralized view for monitoring and troubleshooting. The strength of Docker-Compose

also lies in its robust community and ecosystem. As an open-source project, it benefits

from a vast user and contributor base. The community-generated content, including

various docker-compose files for common application stacks, provides a rich resource

for developers. In practical applications, Docker-Compose is extensively used in

microservices architectures and is a popular choice in development environments for

running multi-container applications on local machines.

3.1.10 Prometheus

Prometheus[24], an open-source systems monitoring and alerting toolkit, has become

a key player in IT infrastructure management, known for its robustness, scalability, and

adept handling of time-series data[25]. At its core, Prometheus excels in collecting and

storing metrics as time-series data, comprising timestamped values and key-value pair

labels. It employs a pull model over HTTP, scraping metrics from services at defined

intervals, a method that stands apart from traditional push-based monitoring systems

and is particularly effective in dynamic environments, such as those using container

orchestration platforms like Kubernetes. Prometheus's data model and query language

(PromQL) are central to its functionality. PromQL facilitates complex queries for real-

time monitoring, alerting, and historical analysis, making Prometheus versatile for

various use cases, from simple metric aggregation to intricate monitoring scenarios

involving multiple data sources.

A critical aspect of Prometheus is its alerting functionality. It evaluates rules on time-

series data to identify issues, triggering alerts managed by Alertmanager, a key

component of the Prometheus ecosystem. Alertmanager oversees alert routing,

grouping, and silencing, and integrates with various notification channels to ensure

efficient and timely alerts. Prometheus is designed for scalability, handling high-

dimensional data from thousands of services and systems without sacrificing

performance. This scalability makes it suitable for both small and large-scale

monitoring needs. Its decentralized architecture allows for the deployment of multiple

independent Prometheus servers, each monitoring specific targets, enhancing

scalability and fault tolerance. Integration capabilities are another strong suit of

Prometheus. It seamlessly integrates with a wide array of services and systems,

And
rea

s M
en

ela
ou

 35

including various service discovery mechanisms. In Kubernetes environments,

Prometheus can automatically discover and monitor new pods or services, making it

well-suited for modern, dynamic environments.

Visualization is a crucial component of monitoring, and Prometheus integrates

effortlessly with tools like Grafana. This integration enables the creation of detailed

dashboards that offer visual insights into collected metrics, aiding in the identification

of trends, patterns, and potential issues. Reliability is also a key design element of

Prometheus. Its local storage is fault-tolerant, handling crashes and disk failures. While

it doesn't provide a clustered storage solution natively, Prometheus supports

integration with remote storage options for long-term storage and enhanced

availability. The Prometheus community is a significant strength, contributing actively

to its development, documentation, and support. This vibrant community ensures the

continuous evolution of Prometheus, with regular additions of new features and

improvements. In practical applications, Prometheus is widely used across various

industries for diverse monitoring purposes. It is particularly popular in cloud-native

environments due to its service discovery and dynamic monitoring capabilities.

Prometheus is also extensively used in traditional server environments, application

monitoring, and IoT scenarios, showcasing its adaptability and versatility.

Figure 7 Prometheus - Grafana Dashboard

And
rea

s M
en

ela
ou

 36

Figure 8 Prometheus servers- Grafana Dashboard

3.1.11 Node Exporter

Node Exporter[26], a vital part of the Prometheus monitoring ecosystem, is designed

to collect and display an extensive range of hardware and operating system metrics on

Unix/Linux systems. As a server, Node Exporter is lightweight yet powerful, efficiently

gathering system-level metrics and exposing them via HTTP for Prometheus to scrape.

Its implementation in Go ensures both efficiency and ease of deployment, typically as

a single static binary. The primary function of Node Exporter is to gather a broad

spectrum of system metrics, including CPU usage (divided by mode), memory

utilization, disk space, I/O statistics, network bandwidth, and error statistics. This

And
rea

s M
en

ela
ou

 37

comprehensive coverage is invaluable for system administrators and developers,

providing deep insights into system performance and health.

Node Exporter's simplicity and ease of use are key aspects of its design. It requires

minimal configuration and can be deployed quickly, making it an ideal tool for a variety

of environments, including those undergoing rapid scaling or experiencing dynamic

infrastructure changes. Once operational, it starts collecting metrics automatically,

streamlining the setup process and enhancing usability in complex environments. A

significant strength of Node Exporter lies in its ability to present detailed system metrics

in a format easily processed by Prometheus. This capability allows Prometheus to

aggregate, store, and analyze the data, enabling the creation of comprehensive

monitoring dashboards, alert setups, and long-term trend analysis. Together, Node

Exporter and Prometheus form a robust platform for monitoring server health and

performance. In terms of scalability, Node Exporter is designed to be both lightweight

and efficient, suitable for running on a wide range of systems from small single-board

computers to large servers without significantly impacting performance. This scalability

ensures its applicability across both small-scale applications and large, distributed

systems.

Node Exporter also provides extensibility through various collectors, which can be

enabled or disabled to tailor the metrics to specific needs. This feature allows for

customization in monitoring, from basic system metrics to detailed performance

analysis, including specific hardware monitoring like temperature sensors or detailed

network metrics. Reliability is another critical aspect of Node Exporter, designed to run

as a daemon and consistently collect and expose metrics. This continuous operation

is crucial for effective monitoring, ensuring consistent data availability for Prometheus.

Seamless integration with Prometheus is achieved through service discovery or static

configuration, enabling Prometheus to adapt to infrastructure changes, such as adding

or removing servers. The vibrant community and ecosystem surrounding Node

Exporter, being open-source, benefit from contributions that continually enhance its

capabilities, introduce new features, and offer support. This active community

participation ensures Node Exporter remains current with technological trends and

monitoring needs. And
rea

s M
en

ela
ou

 38

Figure 9 Node Exporter

3.1.12 Alertmanager

Alertmanager[27], a crucial component of the Prometheus monitoring toolkit, is tailored

to manage alerts generated by client applications like the Prometheus server. Its

function in sophisticated alert handling mechanisms is vital for maintaining high

availability and performance in systems. Alertmanager enhances Prometheus's

monitoring capabilities by specializing in the processing of generated alerts, efficiently

handling data collection and alert processing separately. One of the defining features

of Alertmanager is its ability to deduplicate alerts. In dynamic, distributed environments,

it's common for multiple Prometheus instances to send similar alerts regarding the

same issue. Alertmanager effectively deduplicates these alerts, ensuring that

operators receive a single notification for each issue, thus reducing noise and

preventing alert fatigue. Additionally, Alertmanager groups similar alerts, consolidating

them into a single notification based on customizable criteria. This grouping makes

alerts more manageable and helps in understanding the overall context of a problem.

Alert routing in Alertmanager is highly flexible, allowing the routing of different types of

alerts to various receivers based on severity, affected systems, or other defined criteria.

This flexibility ensures that critical alerts are sent to the appropriate personnel or

systems, enabling quick and effective responses. For example, critical alerts can be

directed to an on-call engineer via PagerDuty, while less critical alerts might be sent to

And
rea

s M
en

ela
ou

 39

a Slack channel or an email list. Alertmanager also excels in alert management during

maintenance periods or in the presence of known issues. Users can silence alerts

based on specific criteria, avoiding notifications for non-actionable alerts. The inhibition

feature suppresses notifications for certain alerts when more critical alerts are firing,

preventing an overflow of notifications due to a primary issue causing secondary

problems. Integration with various notification channels is a significant aspect of

Alertmanager's functionality. It supports a wide range of integrations, including email,

Slack, PagerDuty, OpsGenie, and more. This extensive support enables Alertmanager

to fit into different organizational workflows and communication practices,

accommodating teams of various sizes and structures.

In terms of reliability, Alertmanager is designed for high availability. It supports running

multiple instances in a clustered setup, ensuring resilience and continuous alert

processing, even if one instance fails. The configurability of Alertmanager is both

flexible and powerful, allowing the definition of complex routing rules, grouping

parameters, and receiver configurations to tailor Alertmanager to the specific needs

and workflows of different organizations.

3.1.13 Django

Django[28], a high-level Python web framework, is highly esteemed for its facilitation

of rapid development and clean, pragmatic design. As a free and open-source tool, it

simplifies the creation of complex, data-driven websites. Django's functionality is

anchored in its Model-View-Template (MVT) architecture, a variation of the Model-

View-Controller (MVC) architecture. This architecture distinctly separates data

handling (Model), user interface (Template), and business logic (View), fostering a

modular and scalable design that is conducive to changes and maintenance. The

Model layer abstracts the database schema, allowing interaction without direct SQL

queries, while the View layer manages business logic and HTTP interactions. The

Template layer, meanwhile, handles the generation of user-facing elements.

The framework's Object-Relational Mapping (ORM) is another acclaimed feature,

offering a powerful database abstraction API for creating, retrieving, updating, and

deleting objects. This ORM significantly reduces the need for boilerplate database

code, allowing for more Pythonic interaction with the database. Django's "batteries-

included" philosophy means it comes equipped with a suite of built-in features for

common web development needs, including an authentication system, URL routing, a

template engine, ORM, and database schema migrations. These integrated

components streamline the development process. Furthermore, Django's admin

And
rea

s M
en

ela
ou

 40

interface, known for its automatic generation and customizability, provides a user-

friendly interface for site content management. Security is a paramount concern in

Django, which offers built-in protections against various threats such as XSS, CSRF,

SQL Injection, and Clickjacking, alongside a secure system for managing user

accounts and passwords.

In terms of scalability, Django excels at handling high traffic and large-scale

applications. It can be scaled up or out to meet increasing demands, supporting

enterprise-level applications and sites with heavy traffic. The framework is also highly

extensible and customizable, thanks to its support for class-based views and an array

of middleware, allowing developers to enhance or add new functionalities as needed.

Django promotes rapid development due to its many out-of-the-box solutions and

clean, model-based approach, significantly shortening development cycles. Its vibrant

community and comprehensive documentation, stemming from its open-source nature,

provide invaluable support and contribute to its continual evolution with the latest web

development trends.

The Django REST framework, essential for building Web APIs, especially for Single

Page Applications (SPAs) and mobile apps, offers flexibility and a set of tools for

creating web-browsable APIs, greatly aiding in API testing and debugging.

Figure 10 Prometheus alerting setup- Grafana Dashboard

Alertrules file

And
rea

s M
en

ela
ou

 41

Chapter 4 - Analysis

The Prometheus client libraries offer four core metric types. These are
currently only differentiated in the client libraries (to enable APIs tailored to the
usage of the specific types) and in the wire protocol.

Use cases for counters include request count, tasks completed, and error count.

4.1 Counters

Have to be processed – No repetition and no statistical value in that. Use e.g derivative function

to convert a counter to gauge equivalent

This cumulative metric is suitable for tracking the number of requests, errors or

completed tasks. It cannot decrease, and must either go up or be reset to zero.

Counters should be used for:

• Recording a value that only increases

• Assessing the rate of increase (later queries can show how fast the value

rises)

4.2 Gauge

This point-in-time metric can go both up and down. It is suitable for measuring current

memory use and concurrent requests.

Gauges should be used for:

• Recording a value that may go up or down

• Cases where you don’t need to query the rate of the value

Use cases for gauges include queue size, memory usage, and the number of requests

in progress.

And
rea

s M
en

ela
ou

 42

4.3 Histogram

This metric is suitable for aggregated measures, including request durations, response

sizes that measure application performance. Histograms sample observations and

categorize data into buckets that you can customize.

Histograms should be used for:

• Multiple measurements of a single value, allowing for the calculation of

averages or percentiles

• Values that can be approximate

• A range of values that you determine in advance, by using default definitions

in a histogram bucket, or your custom values

Use cases for histograms include request duration and response size.

4.4 Summary

This metric is suitable for accurate quartiles. A summary samples observations and

provides a total count of observations, as well as a sum of observed values, and

calculates quartiles.

Summaries should be used for:Multiple measurements of a single value, allowing for

the calculation of averages or percentiles Values that can be approximate

A range of values that you cannot determine upfront, so histograms are not appropriate

Use cases for summaries include request duration and response size.

4.5 Common Prometheus Use Cases and Associated Metrics

Here are a few common use cases of Prometheus, and the metrics most appropriate

to use in each case.

CPU Usage

And
rea

s M
en

ela
ou

 43

The metric used here is “node_cpu_seconds_total”. This is a counter metric that counts
the number of seconds the CPU has been running in a particular mode. The CPU has

several modes such as iowait, idle, user, and system. Because the objective is to count

usage, use a query that excludes idle time:

sum by (cpu)(node_cpu_seconds_total{mode!="idle"})

The sum function is used to combine all CPU modes. The result shows how many

seconds the CPU has run from the start. To tell if the CPU has been busy or idle

recently, use the rate function to calculate the growth rate of the counter:

(sum by (cpu)(rate(node_cpu_seconds_total{mode!="idle"}[5m]))*100

The above query produces the rate of increase over the last five minutes, which lets

you see how much computing power the CPU is using. To get the result as a

percentage, multiply the query by 100.

Memory Usage

The following query calculates the total percentage of used memory:

node_memory_Active_bytes/node_memory_MemTotal_bytes*100

To obtain the percentage of memory use, divide used memory by the sum and multiply

by 100.

Free Disk

You need to know your free disk usage to understand when there needs to be more

space on the infrastructure nodes. Again, the same memory usage method is used

here, but with different metric names.

node_filesystem_avail_bytes/node_filesystem_size_bytes*100

4.6 Deep Analysis

What is already available.

. We have collected from the exporter data. Numerical data.

. We can apply mathematical functions on it and create alerts and rule model

And
rea

s M
en

ela
ou

 44

. Chart Histogram with Grafana.

What data to export?

. Raw metrics data, no functions applied on it

. As much as possible

Two ways to get data out of promertheous

. HTTP API(Poll) – Exploratory data analysis

. Remote API (Push) – Streaming analysis

Easiest way to export is Grafana and Python (robust perception blog entry)

CSV file is large so to reduce data I use domain knowledge to select relevant data

subset

{__name__=~”.+”}

Use alerts as initial set of training labels

File: hostMonitoring.rules

Y= ALERTS{name=”high_latency”} tidy up, verify true positives, annotate manually to

create training and matrix data

And
rea

s M
en

ela
ou

 45

File: hostMonitoring.rules

File: ServerData.csv and andreas.py

Figure 11 Prometheus CPU & Memory Stack- Grafana Dashboard

Figure 12 Prometheus Network Traffic & Disk Space Used- Grafana Dashboard

 And
rea

s M
en

ela
ou

 46

Figure 13 Prometheus Memory Active & Committed- Grafana Dashboard

Figure 14 Disk IOps Completed & Disk R/W Data - Grafana Dashboard

Figure 15 Prometheus Processes Status- Grafana Dashboard

And
rea

s M
en

ela
ou

 47

groups:

- name: Applications Servers

 rules:

 - alert: Host Out Of Memory

 expr: node_memory_MemFree_bytes / node_memory_MemTotal_bytes * 100 < 10

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: Application Server1 out of memory

 description: "Node memory is filling up. If for 5 minutes the percentage of memory left is less than

10%"

 Application Server1 Application Server 2

And
rea

s M
en

ela
ou

 48

groups:

- name: Applications Servers

- alert: Host Out Of Disk Space

 expr: (node_filesystem_avail_bytes * 100) / node_filesystem_size_bytes < 10

 for: 2m

 labels:

 severity: warning

 annotations:

 summary: Host out of disk space

 description "Disk is almost full"

Application Server1 Application Server 2

And
rea

s M
en

ela
ou

 49

groups:

- name: Applications Servers

alert: HostSwapIsFillingUp

 expr: (1 - (node_memory_SwapFree_bytes / node_memory_SwapTotal_bytes)) * 100 > 80

 for: 2m

 labels:

 severity: warning

 annotations:

 summary: Host swap is filling up

 description: "Swap is filling up (>80%)"

And
rea

s M
en

ela
ou

50

Conclusion

Deploying the Ticket Desk application into the Police IT environment involves a

systematic process of preparation, configuration, deployment, testing, and integration.

Successful deployment requires meticulous attention to detail, ensuring compatibility,

proper configurations, and thorough testing to guarantee a seamless transition into the

production environment. Post-deployment, it's crucial to maintain documentation,

provide training, and establish a support system for ongoing maintenance. By following

these steps diligently, the Kios Ticket Desk application can be seamlessly integrated

into the IT environment, enhancing operational efficiency and support capabilities.

Considering future improvements or integration tasks after the initial deployment is

crucial. This involves adding features or modules for improved functionality.

Furthermore, scaling and performance Optimization scalability as infrastructure

demand increases. This will optimize performance by fine-tuning application

components and infrastructure. Conduct regular security audits and updates to

safeguard against potential threats and implement additional security measures as per

evolving industry standards. Gather ICT operators feedback to enhance the application

‘s usability and interface. Implement UX enhancements to streamline user interactions,

testing processes and efficient updates. Another important feature aspect is Analytics

and reporting. By integrating analytics tools to gather insights and generate reports for

informed decision-making. Future work also includes ongoing training sessions and

support to users for maximizing the application’s potential. Stay updated with industry

regulations and ensure the application complies with evolving standards. Finally

implement robust backup systems and disaster recovery plans to mitigate data loss

risks.

And
rea

s M
en

ela
ou

 51

References

[1] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring: A survey,”

Computer Networks, vol. 57, no. 9, pp. 2093–2115, Jun. 2013, doi:

10.1016/J.COMNET.2013.04.001.

[2] A. Iyengar, E. MacNair, and T. Nguyen, “Analysis of web server performance,”

Conference Record / IEEE Global Telecommunications Conference, vol. 3, pp. 1943–

1947, 1997, doi: 10.1109/GLOCOM.1997.644616.

[3] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “CPU demand for web serving:

Measurement analysis and dynamic estimation,” Performance Evaluation, vol. 65, no.

6–7, pp. 531–553, Jun. 2008, doi: 10.1016/J.PEVA.2007.12.001.

[4] H. Liu, “A measurement study of server utilization in public clouds,” Proceedings -

IEEE 9th International Conference on Dependable, Autonomic and Secure Computing,

DASC 2011, pp. 435–442, 2011, doi: 10.1109/DASC.2011.87.

[5] “Infrastructure Monitoring Challenges and How to Tackle Them - VirtualMetric -

Infrastructure Monitoring Blog.” Accessed: Dec. 20, 2023. [Online]. Available:

https://www.virtualmetric.com/blog/infrastructure-monitoring-challenges

[6] “Server Monitoring: Benefits and Challenges - Alvaka.” Accessed: Dec. 20, 2023.

[Online]. Available: https://www.alvaka.net/server-monitoring-benefits-and-

challenges/

[7] “Server Monitoring: Top Five Issues | FrameFlow.” Accessed: Dec. 20, 2023. [Online].

Available: https://www.frameflow.com/blog/top-five-issues-detected-by-server-and-it-

systems-monitoring-software/

[8] “Docker: Accelerated Container Application Development.” Accessed: Dec. 20, 2023.

[Online]. Available: https://www.docker.com/

[9] C. Boettiger, “An introduction to Docker for reproducible research,” ACM SIGOPS

Operating Systems Review, vol. 49, no. 1, pp. 71–79, Jan. 2015, doi:

10.1145/2723872.2723882.

[10] “(PDF) An Introduction to Docker and Analysis of its Performance.” Accessed: Dec.

20, 2023. [Online]. Available:

https://www.researchgate.net/publication/318816158_An_Introduction_to_Docker_an

d_Analysis_of_its_Performance

[11] T. Bui, “Analysis of Docker Security,” Jan. 2015, Accessed: Dec. 20, 2023. [Online].

Available: https://arxiv.org/abs/1501.02967v1

And
rea

s M
en

ela
ou

 52

[12] “HAProxy - The Reliable, High Perf. TCP/HTTP Load Balancer.” Accessed: Dec. 20,

2023. [Online]. Available: https://www.haproxy.org/

[13] J. E. C. De La Cruz and I. C. A. R. Goyzueta, “Design of a high availability system with

HAProxy and domain name service for web services,” Proceedings of the 2017 IEEE

24th International Congress on Electronics, Electrical Engineering and Computing,

INTERCON 2017, Oct. 2017, doi: 10.1109/INTERCON.2017.8079712.

[14] “PostgreSQL: The world’s most advanced open source database.” Accessed: Dec. 20,

2023. [Online]. Available: https://www.postgresql.org/

[15] M. Stonebraker and L. A. Rowe, “The design of POSTGRES,” ACM SIGMOD Record,

vol. 15, no. 2, pp. 340–355, Jun. 1986, doi: 10.1145/16856.16888.

[16] “Nginx: the High-Performance Web Server and Reverse Proxy.” Accessed: Dec. 20,

2023. [Online]. Available: https://dl.acm.org/doi/fullHtml/10.5555/1412202.1412204

[17] “Advanced Load Balancer, Web Server, & Reverse Proxy - NGINX.” Accessed: Dec.

20, 2023. [Online]. Available: https://www.nginx.com/

[18] “Celery - Distributed Task Queue — Celery 5.3.6 documentation.” Accessed: Dec. 20,

2023. [Online]. Available: https://docs.celeryq.dev/en/stable/

[19] “Periodic Tasks — Celery 5.3.6 documentation.” Accessed: Dec. 20, 2023. [Online].

Available: https://docs.celeryq.dev/en/stable/userguide/periodic-tasks.html

[20] “Redis.” Accessed: Dec. 20, 2023. [Online]. Available: https://redis.io/

[21] “Gunicorn - Python WSGI HTTP Server for UNIX.” Accessed: Dec. 20, 2023. [Online].

Available: https://gunicorn.org/

[22] D. Reis, B. Piedade, F. F. Correia, J. P. Dias, and A. Aguiar, “Developing Docker and

Docker-Compose Specifications: A Developers’ Survey,” IEEE Access, vol. 10, 2022,

doi: 10.1109/ACCESS.2021.3137671.

[23] M. H. Ibrahim, M. Sayagh, and A. E. Hassan, “A study of how Docker Compose is used

to compose multi-component systems,” Empir Softw Eng, vol. 26, no. 6, pp. 1–27, Nov.

2021, doi: 10.1007/S10664-021-10025-1/FIGURES/19.

[24] “Prometheus - Monitoring system & time series database.” Accessed: Dec. 20, 2023.

[Online]. Available: https://prometheus.io/

[25] B. Rabenstein and J. Volz, “Prometheus: A {Next-Generation} Monitoring System

(Talk).” 2015.

And
rea

s M
en

ela
ou

 53

[26] “prometheus/node_exporter: Exporter for machine metrics.” Accessed: Dec. 20, 2023.

[Online]. Available: https://github.com/prometheus/node_exporter

[27] “Alertmanager | Prometheus.” Accessed: Dec. 20, 2023. [Online]. Available:

https://prometheus.io/docs/alerting/latest/alertmanager/

[28] “The web framework for perfectionists with deadlines | Django.” Accessed: Dec. 20,

2023. [Online]. Available: https://www.djangoproject.com/

And
rea

s M
en

ela
ou

 54

Appendix A – Server Installation Manual

Step 1: Network Check

Check if network is connected by running the command:

nmcli device status

If the network is not connected then run the command:

nmtui

Check the connection settings and perform the appropriate changes, exit nmtui and

run:

systemctl restart NetworkManager

Step 2: Update Rocky Linux

Run the command:

sudo yum update

Step 3: Installation of Docker CE

Run the following commands:

sudo dnf config-manager --add-
repo=https://download.docker.com/linux/centos/docker-ce.repo

sudo dnf makecache

sudo dnf install -y docker-ce

sudo systemctl start docker.service

sudo systemctl status docker.service

sudo systemctl enable --now docker.service

sudo docker version

Step 4: Test Docker CE Installation

Run the following commands:

create docker to test

docker search alpine --filter is-official=true

docker pull alpine

docker images

docker run -it --rm alpine /bin/sh

And
rea

s M
en

ela
ou

 55

Step 5: Docker Compose Installation

Run the following commands:

sudo curl -L
https://github.com/docker/compose/releases/download/v2.15.1/doc
ker-compose-linux-x86_64 -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-
compose

docker-compose version

Step 6: PostgreSQL 14 Installation Using RPM

Run the following commands:

sudo dnf install -y
https://download.postgresql.org/pub/repos/yum/reporpms/EL-8-
x86_64/pgdg-redhat-repo-latest.noarch.rpm

sudo dnf -qy module disable postgresql

sudo dnf install -y postgresql14-server

sudo /usr/pgsql-14/bin/postgresql-14-setup initdb

sudo systemctl start postgresql-14

sudo systemctl status postgresql-14

sudo systemctl enable postgresql-14

Step 7: Test PostgreSQL Installation

Run the following commands to check if PostgreSQL has been installed correctly:

sudo -i -u postgres

psql

\q

Step 8: Create Ticketing Database

Run the following commands: (make sure to change <USERNAME> and

<PASSWORD> with the relevant credentials)

sudo -i -u postgres

psql

CREATE DATABASE ticketingdb;

CREATE USER <USERNAME> WITH ENCRYPTED PASSWORD '<PASSWORD>';

GRANT ALL PRIVILEGES ON DATABASE ticketingdb TO <USERNAME>;

And
rea

s M
en

ela
ou

 56

Step 9: Edit PostgreSQL Config

Run the following command and add the following text in the configuration file

pg_hba.conf

sudo -i -u postgres

nano /var/lib/pgsql/14/data/pg_hba.conf

Add the following lines

host all all 127.0.0.1/32 md5

host ticketingdb <USERNAME> 192.168.250.0/25 trust

Save and exit and restart PostgreSQL

Step 10: HAProxy Installation

Run the following commands

sudo dnf install gcc pcre-devel tar make openssl-devel
readline-devel systemd-devel wget vim

wget https://www.lua.org/ftp/lua-5.3.5.tar.gz

tar xzf lua-5.3.5.tar.gz

cd lua-5.3.5 && sudo make linux install

sudo useradd -M -d /var/lib/haproxy -s /sbin/nologin -r haproxy

cd ..

wget http://www.haproxy.org/download/2.6/src/haproxy-
2.6.5.tar.gz

tar xzf haproxy-2.6.5.tar.gz

cd haproxy-2.6.5

make -j $(nproc) TARGET=linux-glibc USE_OPENSSL=1 USE_LUA=1
USE_PCRE=1 USE_SYSTEMD=1 USE_PROMEX=1

sudo make install

mkdir /etc/haproxy/

cd /etc/haproxy/

vi haproxy.cfg

Then allow HAProxy through the firewall using the following commands:

sudo firewall-cmd --add-port=8404/tcp --permanent

sudo firewall-cmd --reload

mkdir /var/lib/haproxy/

haproxy -c -f /etc/haproxy/haproxy.cfg

sudo firewall-cmd --add-port=80/tcp --permanent

And
rea

s M
en

ela
ou

http://www.haproxy.org/download/2.6/src/haproxy-2.6.5.tar.gz
http://www.haproxy.org/download/2.6/src/haproxy-2.6.5.tar.gz

 57

sudo firewall-cmd --add-port=443/tcp --permanent

sudo firewall-cmd –reload

Create HAProxy systemd Configuration file

sudo nano /etc/systemd/system/haproxy.service

Write the following content

[Unit]

Description=HAProxy Load Balancer

After=network-online.target

Wants=network-online.target

[Service]

Environment="CONFIG=/etc/haproxy/haproxy.cfg"
"PIDFILE=/run/haproxy.pid"

EnvironmentFile=/etc/sysconfig/haproxy

ExecStartPre=/usr/local/sbin/haproxy -f $CONFIG -c -q $OPTIONS

ExecStart=/usr/local/sbin/haproxy -Ws -f $CONFIG -p $PIDFILE
$OPTIONS

ExecReload=/usr/local/sbin/haproxy -f $CONFIG -c -q $OPTIONS

ExecReload=/bin/kill -USR2 $MAINPID

SuccessExitStatus=143

KillMode=mixed

Type=notify

[Install]

WantedBy=multi-user.target

Save and close the file and run the following commands. (Please note that HAProxy
will fail to start at command “sudo systemctl start haproxy” due to not having a correct
haproxy.cfg file. The haproxy.cfg will be provided with the RESPOnse platform with
detailed explanation for each of the configurations enclosed in the file.)

echo 'OPTIONS="-Ws"' > /etc/sysconfig/haproxy

sudo systemctl daemon-reload

sudo systemctl start haproxy

And
rea

s M
en

ela
ou

 58

sudo systemctl status haproxy

sudo systemctl enable haproxy

And
rea

s M
en

ela
ou

