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Abstract

Over the past two decades, wireless communication networks have experienced

an exponential rise in mobile users (MUs), leading to the widespread deployment

of advanced technologies such as base stations (BSs), sensors, and various access

points to ensure uninterrupted data services and support extremely high data rates.

Despite these advancements, a significant challenge has emerged: the limited bat-

tery life of MUs, which substantially impacts network performance, highlighting the

urgent need for innovative power solutions. In this context, simultaneous wireless

information and power transfer (SWIPT) emerges as a pivotal technology, particu-

larly suited for the emerging era of sixth-generation (6G) wireless networks. 6G net-

works are anticipated to operate seamlessly across diverse scenarios, encompassing

both urban and remote areas, and are designed to cater to the needs of both static

and high-mobility users while integrating terrestrial and non-terrestrial infrastruc-

tures for comprehensive global coverage. The extensive range of applications and

environments in 6G underscores the crucial role of SWIPT, with its dual function-

ality in energy harvesting and data transmission. However, effectively integrating

SWIPT into 6G networks is challenging, necessitating innovative approaches to en-

hance its performance within the complex and diverse environment of 6G infras-

tructures. Towards this direction, this PhD dissertation introduces a groundbreak-

ing analytical framework based on stochastic geometry to comprehensively eval-

uate the performance of wireless information and power transfer in 6G networks.

This framework includes the development of novel techniques/schemes designed

to enhance the efficiency of SWIPT across diverse scenarios within the 6G network

environment.

Firstly, in Chapter 3, we investigate the small- and large-scale SWIPT-enabled

cellular networks. In specific, we develop a novel low-complexity threshold-based

pair switching (TbPS) technique and a traffic load-based sleeping (TLbS) technique
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for infinite- and finite-area network deployments, respectively, focusing on the inter-

ference management and illustrating the trade-off between information and power

transfer. Motivated by the interference correlation issue discussed in Chapter 3 and

aiming to further enhance the SWIPT performance, Chapter 4 delves into an investi-

gation of the performance of a linear minimum mean square error (MMSE) receiver

with the successive interference cancellation (SIC) technique within the context of

SWIPT-enabled cellular networks.

In Chapter 5, we focus on the SWIPT-enabled cellular networks with high-mobility

MUs. A novel coverage area-based CoMP (CA-CoMP) scheme is proposed to reduce

the handover rate and enhance the overall SWIPT performance of high-mobility

MUs. Further, in Chapter 6, we delve into the exploration of a SWIPT-assisted ve-

hicular network. Utilizing SWIPT technology, battery-operated road-side sensors

simultaneously receive control information and harvest energy from cellular BSs,

subsequently using the harvested energy to spread data to vehicles.

In Chapter 7 and Chapter 8, we expand our exploration into the domains of non-

terrestrial networks. In specific, Chapter 7 investigates the multi-tier low Earth orbit

(LEO) satellite networks in the context of three association schemes. In Chapter 8,

we study the feasibility of space-based solar power (SSP) system with LEO satellites.

Throughout this PhD dissertation, we employ tools from stochastic geometry

that enable the evaluation of fundamental network performance metrics, includ-

ing coverage probability, handover rate, data rate, and the amount of harvested

energy. The established analyal framework facilitates the derivation of closed-form

expressions, providing a quick and convenient methodology to assess system per-

formance, and offering valuable insights into the impact of key system parameters

on the performance of SWIPT-enabled 6G networks.
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Περίληψη

Κατά τις δύο τελευταίες δεκαετίες, τα ασύρματα δίκτυα επικοινωνίας έχουν βιώσει μια εκ-

θετική αύξηση στους κινητούς χρήστες (MUs), οδηγώντας στην εκτεταμένη ενσωμάτωση

προηγμένων τεχνολογιών όπως οι σταθμοί βάσεις (BSs), αισθητήρες και διάφορα σημε-

ία πρόσβασης υπεύθυνα για την αδιάλειπτη εξασφάλιση δεδομένων και την υποστήριξη

εξαιρετικά υψηλών ταχυτήτων. Παρά τις προόδους αυτές, έχει προκύψει ένα σημαντι-

κό πρόβλημα: η περιορισμένη διάρκεια ζωής της μπαταρίας των MUs, η οποία επηρεάζει

σημαντικά την απόδοση του δικτύου, τονίζοντας την επείγουσα ανάγκη για καινοτόμες

λύσεις ενέργειας. Σε αυτό το πλαίσιο, η ταυτόχρονη ασύρματη μετάδοση πληροφοριών

και ενέργειας (SWIPT) αναδεικνύεται ως μια καθοριστική τεχνολογία, ιδιαίτερα κατάλ-

ληλη για την επερχόμενη εποχή των δικτύων ασύρματης επικοινωνίας έκτης γενιάς (6G).

Τα δίκτυα 6G αναμένεται να λειτουργούν απρόσκοπτα σε διάφορα σενάρια, καλύπτοντας

τόσο αστικές όσο και απομακρυσμένες περιοχές, και είναι σχεδιασμένα για να ικανοποιο-

ύν τις ανάγκες τόσο των στατικών όσο και των χρηστών υψηλής κινητικότητας, ενώ

ενσωματώνουν επίγειες και μη επίγειες υποδομές για παγκόσμια κάλυψη. Η πληθώρα

εφαρμογών των 6G δικτύων υπογραμμίζει τον κρίσιμο ρόλο της τεχνολογίας SWIPT, με

τη διπλή λειτουργικότητα στη συλλογή ενέργειας και τη μετάδοση δεδομένων. Ωστόσο,

η αποτελεσματική ένταξη της τεχνολογίας SWIPT στα δίκτυα 6G αποτελεί πρόκληση,

απαιτώντας καινοτόμες προσεγγίσεις για την ενίσχυση της απόδοσής της εντός του πε-

ρίπλοκου και διαφορετικού περιβάλλοντος των υποδομών. Προς αυτή την κατεύθυνση,

αυτή η διδακτορική διατριβή παρουσιάζει ένα καινοτόμο αναλυτικό πλαίσιο βασισμένο στη

στοχαστική γεωμετρία για την ολοκληρωμένη αξιολόγηση της απόδοσης της ασύρματης

μετάδοσης πληροφοριών και ενέργειας στα δίκτυα 6G. Αυτό το πλαίσιο περιλαμβάνει την

ανάπτυξη νέων τεχνικών/σχημάτων σχεδιασμένων για την ενίσχυση της αποδοτικότητας

του SWIPT σε διάφορα σενάρια εντός του περιβάλλοντος δικτύου 6G.

Καταρχάς, στο Κεφάλαιο 3, διερευνούμε τα μικρής και μεγάλης κλίμακας δίκτυα κυψε-

λωτής επικοινωνίας που επιτρέπουν την τεχνολογία SWIPT. Συγκεκριμένα, αναπτύσσου-
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με μια νέα τεχνική εναλλαγής ζεύγους βασισμένη σε κατώφλι χαμηλής πολυπλοκότητας

(TbPS) και μια τεχνική ύπνου βασισμένη στο φορτίο κίνησης (TLbS) για την ανάπτυξη

δικτύων μη πεπερασμένης και πεπερασμένης περιοχής, αντίστοιχα, επικεντρώνοντας στη

διαχείριση της παρεμβολής και απεικονίζοντας τον συμβιβασμό μεταξύ της μεταφοράς πλη-

ροφοριών και ενέργειας. Με κίνητρο το ζήτημα της συσχέτισης παρεμβολής που συζητε-

ίται στο Κεφάλαιο 3 και με στόχο την περαιτέρω βελτίωση της απόδοσης της τεχνολογίας

SWIPT, το Κεφάλαιο 4 εμβαθύνει σε μια διερεύνηση της απόδοσης ενός γραμμικού δέκτη

ελάχιστου μέσου τετραγωνικού σφάλματος (MMSE) με την τεχνική διαδοχικής ακύρω-

σης παρεμβολής (SIC) στο πλαίσιο των κυψελωτών δικτύων επικοινωνίας που επιτρέπουν

την τεχνολογίαSWIPT.

Στο Κεφάλαιο 5, επικεντρωνόμαστε στα κυψελωτά δίκτυα επικοινωνίας που επιτρέπουν

την τεχνολογία SWIPT με χρήστες υψηλής κινητικότητας. Προτείνεται ένα νέο σχήμα

CA-CoMP για τη μείωση του ρυθμού ηανδοvερ και τη βελτίωση της συνολικής απόδοσης

της τεχνολογίας SWIPT για χρήστες υψηλής κινητικότητας. Επιπλέον, στο Κεφάλαιο

6, εμβαθύνουμε στην εξερεύνηση ενός δικτύου οχημάτων που υποστηρίζεται από την

τεχνολογία SWIPT. Χρησιμοποιώντας την τεχνολογία SWIPT, οι αισθητήρες που είναι

τοποθετημένη στη πλευρά του δρόμου και λειτουργούν με μπαταρία, λαμβάνουν ταυτόχρο-

να πληροφορίες ελέγχου και συλλέγουν ενέργεια από τους κυψελωτούς σταθμούς βάσης,

χρησιμοποιώντας στη συνέχεια την συλλεγμένη ενέργεια για τη διάδοση δεδομένων στα

οχήματα.

Στο Κεφάλαιο 7 και στο Κεφάλαιο 8, επεκτείνουμε την εξερεύνησή μας στους τομείς

των μη επίγειων δικτύων. Ειδικότερα, το Κεφάλαιο 7 διερευνά τα πολυεπίπεδα δίκτυα

δορυφόρων χαμηλής τροχιάς της Γης (LEO) στο πλαίσιο τριών σχημάτων συσχέτισης.

Στο Κεφάλαιο 8, μελετάμε την εφικτότητα του συστήματος ηλιακής ενέργειας διαστήματος

(SSP) με δορυφόρους LEO.

Σε όλη αυτή τη διδακτορική διατριβή, χρησιμοποιούμε εργαλεία από τη στοχαστική

γεωμετρία που επιτρέπουν την αξιολόγηση των θεμελιωδών μετρικών απόδοσης δικτύου,

συμπεριλαμβανομένων της πιθανότητας κάλυψης, του ρυθμού ηανδοvερ, της ταχύτητας

δεδομένων και της ποσότητας της συλλεγμένης ενέργειας. Το καθιερωμένο αναλυτικό

πλαίσιο διευκολύνει την παραγωγή εκφράσεων σε κλειστή μορφή, παρέχοντας μια γρήγο-

ρη και βολική μεθοδολογία για την αξιολόγηση της απόδοσης του συστήματος και προ-

σφέροντας πολύτιμες πληροφορίες σχετικά με τον αντίκτυπο των κύριων παραμέτρων του

συστήματος στην απόδοση των δικτύων 6G που επιτρέπουν την τεχνολογία SWIPT.
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Chapter 1

Introduction

Wireless communications has witnessed a remarkable evolution from the introduc-

tion of first-generation (1G) to the advent of fifth-generation (5G) networks. At the

inception of 1G in 1980s, analog cellular networks laid the foundation for mobile

telephony, enabling basic voice communication on a limited scale. The subsequent

arrival of second-generation (2G) networks brought about the digital revolution, al-

lowing for the transmission of not only voice but also short text messages. With

the third-generation (3G) networks, the world experienced a significant leap for-

ward as mobile internet access became a reality, enabling users to browse the web,

send emails, and enjoy multimedia content on their devices. The introduction of

fourth-generation (4G) networks marked a turning point in wireless communica-

tions, offering faster data transfer speeds, enhanced capacity, and improved net-

work reliability, which paved the way for the widespread adoption of video stream-

ing, online gaming, and other bandwidth-intensive applications. Now, with the

massive deployments of 5G networks, we are entering an era of unprecedented con-

nectivity and technological advancement. 5G achieves ultra-high speeds, extremely

low latency, and massive device connectivity, opening up new possibilities for au-

tonomous vehicles, smart cities, Internet-of-Things (IoT) devices, and virtual reality

experiences. Beyond data transmission, the wireless domain is now venturing into

the realm of energy transfer. From wireless charging of mobile devices to powering

remote or inaccessible devices such as implanted medical devices, wireless power

transfer (WPT) introduces an entirely new dimension to the wireless revolution. The

imminent arrival of sixth-generation (6G) networks is expected to integrate WPT as

a key feature, fueled by the need to sustain the countless interconnected devices in
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Figure 1.1: Mobile subscriptions (Source: Ericsson)

our increasingly digital world.

1.1 Motivation

Over the past two decades, cellular networks have experienced extraordinary growth

in the number of mobile subscribers. According to the latest Ericsson mobility re-

port [1], 5G subscriptions are forecast to reach 5 billion in 2028 (see Figure 1.1), while

the total number of connected wireless devices is expected to reach almost 30 bil-

lion. This remarkable surge is predominantly driven by the rapid expansion of IoT

devices, which are contributing significantly to the rise in global connectivity [2].

The proliferation of IoT devices offers numerous benefits, including enhanced effi-

ciency, productivity, and convenience in various sectors such as healthcare, agricul-

ture, manufacturing, and home automation. Additionally, the broad adoption of IoT

devices supports the development of smart cities and infrastructure, enabling real-

time monitoring, predictive maintenance, and data-driven decision making, signif-

icantly improving the quality of life and promoting sustainable development [3–5].

The unprecedented increase in IoT devices introduces substantial pressure on

network infrastructures due to the surge in data traffic, and this, in turn, poses sig-

nificant challenges in terms of ensuring adequate network capacity, data transfer

rates, and energy efficiency. Although 5G technology has made significant advance-

ments in accommodating the burgeoning IoT ecosystem, the anticipated volume of
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future connections, coupled with their sophisticated requirements, calls for the de-

velopment of a more advanced technological solution. This necessitates the incep-

tion of 6G of wireless communication technology. 6G promises to revolutionize the

way we connect, not just in urban centers but across varied landscapes and scenar-

ios [4–6]. In urban areas, 6G will enable dense networks to manage the increasing

data traffic efficiently, while in remote regions, it aims to bridge the digital divide

through enhanced connectivity options, including satellite integration [7]. More-

over, 6G will be instrumental in vehicular networks, supporting high-mobility sce-

narios crucial for the future of autonomous and connected vehicles [8,9]. Therefore,

a key distinguishing feature of 6G is its versatility in supporting highly diverse sce-

narios, making it a quintessential technology for an increasingly interconnected and

mobile world.

As we venture into the era of 6G, with its capability to support an unprecedented

range of scenarios, the issue of energy consumption and management comes to

the forefront [10]. The escalating data rates and the increasing number of mobile

devices in 6G networks inevitably lead to a substantial rise in energy consump-

tion [11]. Moreover, the operational lifetime of these battery-operated mobile de-

vices is a pivotal factor affecting network reliability and efficiency. Therefore, en-

suring sustainable energy supplies and utilizing energy-efficient communication

techniques is critical for maintaining uninterrupted operation and enhancing de-

vice longevity, which is essential in the varied environments 6G aims to serve [12].

Conventional methods like frequent battery replacement or energy extraction from

natural resources are often unpredictable, unstable, costly, and sometimes unfeasi-

ble, especially in less accessible or highly dynamic environments. In light of these

challenges, the integration of wireless power transfer technologies within 6G infras-

tructures emerges as a compelling solution. Specifically, the co-design of informa-

tion and energy signals via simultaneous wireless information and power transfer

(SWIPT) stands out. SWIPT uniquely combines the transmission of data and energy

in a single process, offering a solution to the growing energy demands of wireless

networks. It facilitates continuous operation of low-power devices, eliminates the

need for physical charging connections, and reduces maintenance and infrastruc-

ture costs. This approach is particularly synergistic with 6G’s vision of ubiquitous,

reliable, and efficient connectivity across a wide range of scenarios, from densely

populated urban centers to remote areas, and even in high-mobility contexts such

3
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Figure 1.2: System diagram

as vehicular networks [11–15]. Hence, the adoption of SWIPT in 6G networks marks

a crucial step towards achieving energy-efficient, uninterrupted wireless communi-

cation, essential for the diverse and demanding scenarios envisioned in the next

generation of mobile connectivity.

1.2 Thesis outline and contributions

This thesis provides insights into the implementation of wireless information and

power transfer techniques in 6G mobile networks, with the special focus on SWIPT

technology, where an overall system diagram is illustrated in Figure 1.2. Addition-

ally, multiple techniques are proposed to enhance the performance of both informa-

tion and power transfer, such as advanced signal processing, network optimization,

interference and mobility management, as well as user association techniques. The

primary focus lies in the system-level analysis of SWIPT-enabled 6G networks in

various scenarios, such as finite- and infinite-area networks, vehicular networks,

high-mobility environments, etc. By leveraging tools from stochastic geometry, we

establish analytical frameworks that incorporate key features of these cellular net-

works. Furthermore, we have conducted a thorough comparison of our proposed

techniques against the latest state-of-the-art schemes, showcasing the significant ad-
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vancements. The outline of this thesis, together with the publications supporting

our contributions, is as follows, where the research focus of each chapter is also

summarized in 1.1, and a road-map of the thesis is shown in Figure 1.3.

Table 1.1: Research focus in each chapter

Chapter 3 4 5 6 7 8

WPT X X X X - X

Mobility X - X X - -

System-level analysis X X X X X -

Non-terrestrial networks - - - - X X

In Chapter 2, we provide preliminaries so that the concepts of this thesis are

comprehensible. In particular, we introduce the concepts of SWIPT, focusing on the

fundamental principle of integrating SWIPT into cellular networks. Moreover, we

introduce state-of-the-art models for the analysis of the SWIPT-enabled mobile net-

works, while several technical designing challenges are discussed. The second part

of the chapter focuses on the analysis of these networks with the aid of stochas-

tic geometry, providing key results and important assumptions that are adopted

throughout this thesis.

Firstly, in Chapter 3 and Chapter 4, we mainly focus on the interference manage-

ment and mitigation techniques. In specific, in Chapter 3, we investigate SWIPT-

enabled next-generation cellular networks under two types of network typologies,

namely, the small- and large-scale cellular networks. We propose a low complex-

ity antenna pair switching technique for SWIPT in the context of large-scale cellular

networks, by taking into account the interference correlation between multiple re-

ceiver’s antennas. Additionally, in order to alleviate the inter-cell interference and

energy consumption, a novel cell sleeping technique is proposed in the context of

small-scale finite-area network. Furthermore, in Chapter 4, by aiming to further

enhance the SWIPT performance and to address the interference correlation issue

discussed in Chapter 3, we investigate the performance of a linear minimum mean

square error (MMSE) receiver with a successive interference cancellation (SIC) tech-

nique in the context of SWIPT-enabled cellular networks. Our results show that all

aforementioned techniques can effectively improve the SWIPT performance. The

content of these two chapters is based on the materials in:
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• Y. Guo, C. Skouroumounis and I. Krikidis, “A Linear MMSE Receiver for SWIPT-

enabled Wireless Networks,” in Proceedings of IEEE Vehicular Technology Confer-

ence, London, United Kingdom, Sep. 2022, pp. 1-6.

• Y. Guo, C. Skouroumounis and I. Krikidis, “Joint Information and Energy

Transfer of SWIPT-Enabled Mobile Users in Wireless Networks,” IEEE Trans-

actions on Green Communications and Networking, vol. 6, no. 2, pp. 1141-1156,

Jun. 2022.

• Y. Guo, C. Skouroumounis and I. Krikidis, “A Linear MMSE Receiver for Multi-

Antenna SWIPT-enabled Wireless Networks,” in Proceedings of IEEE Interna-

tional Conference on Communications, Seoul, Korea, May 2022, pp. 3166-3171.

• Y. Guo, C. Skouroumounis and I. Krikidis, “Threshold-Based Pair Switching

Scheme in SWIPT-Enabled Wireless Downlink System,” in Proceedings of IEEE

Vehicular Technology Conference, Helsinki, Finland, Apr. 2021, pp. 1-7.

Then, in Chapter 5 and Chapter 6, we study the mobility management schemes

and explore the performance of SWIPT-assisted vehicular networks. More specifi-

cally, in Chapter 5, we study the SWIPT technology with the employment of coor-

dinated multi-point (CoMP) transmission, in the context of a novel coverage area-

based base stations (BSs) selection scheme. The proposed technique aims at reduc-

ing the handover rate for high-mobility users and enhancing the SWIPT perfor-

mance. Our results show that the CA-CoMP scheme offers significant gains over

conventional CoMP schemes, in terms of SWIPT performance. Furthermore, in

Chapter 6, we investigate a SWIPT-enabled vehicular network. By utilizing SWIPT

technology, battery-operated road-side sensors simultaneously receive control in-

formation and harvest energy from cellular BSs, subsequently using the harvested

energy to spread data to vehicles. We demonstrate the optimal values of multiple

system parameters that offer the highest downlink performance. These chapters

include the materials in:

• Y. Guo, C. Skouroumounis and I. Krikidis, “A Coverage Area-Based CoMP

Technique for SWIPT-Enabled Mobile Networks,” IEEE Transactions on Green

Communications and Networking, vol. 7, no. 4, pp. 1807-1822, Dec. 2023

• Y. Guo, C. Skouroumounis and I. Krikidis, “A Coverage Area-Based Cooper-

ation Technique for SWIPT- Enabled Systems with Mobility,” in Proceedings of
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IEEE Global Communications Conference, Madrid, Spain, Dec. 2021, pp. 1-6.

• Y. Guo, E. Faddoul, C. Skouroumounis, and I. Krikidis, “Simultaneous wire-

less information and power transfer-assisted vehicular networks,” in progress.

Moreover, in Chapter 7 and Chapter 8, we investigate the wireless information

and power transfer (WIPT) performance of low Earth orbit (LEO) satellite-based

networks. Specifically, we take into account the heterogeneous nature of real-world

LEO satellite networks and propose three association schemes for the LEO satellite-

based cellular networks. Moreover, we explore the flexibility of LEO satellite-based

space solar power (SSP) system. These two chapters are based on the materials in:

• Y. Guo, C. Skouroumounis and I. Krikidis, “Large-scale Heterogeneous Ultra-

dense LEO Satellite-based Cellular Networks,” in Proceedings of IEEE Interna-

tional Conference on Communications, Rome, Italy, May 2023.

• Y. Guo, E. Faddoul, C. Skouroumounis and I. Krikidis, “LEO Satellite-based

Space Solar Power Systems,” in Proceedings of IEEE International Conference on

Acoustics, Speech, and Signal Processing Workshop, Rhodes Island, Greece, Jun.

2023.

• Y. Guo, C. Skouroumounis, S. Chatzinotas and I. Krikidis, “On User Associa-

tion in Large-Scale Heterogeneous LEO Satellite Network,” submitted in IEEE

Transactions on Aerospace and Electronic Systems.

Finally, in Chapter 9, we conclude the thesis with a summary of the main con-

tributions and a discussion on potential directions for future work, such as SWIPT-

assisted integrated sensing and communications (ISAC) systems for vehicular net-

works, as well as the integration of SWIPT into non-terrestrial networks.
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Figure 1.3: Road-map of the thesis.
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Chapter 2

Background

SWIPT appears as a promising and attractive technology for 6G wireless networks,

which are largely characterized by the massive connectivity of lower-power IoT de-

vices. SWIPT enables the dual use of radio frequency (RF) signals to simultaneous

convey information and energy to the end-users, acting as a sustainable solution to

the energy challenges of battery-powered IoT devices [11]. In this chapter, we delve

into an extensive overview of the fundamental principles of SWIPT. Moreover, we

highlight several challenges of integrating SWIPT in 6G networks along with the

potential solutions. Finally, we introduce the mathematical preliminaries for the

system-level analysis of SWIPT-enabled mobile networks, along with the baseline

system model for this thesis.

2.1 Wireless power transfer

In recent years, there has been a lot of interest in integrating WPT technologies into

conventional communication networks. On the one hand, the extensive deployment

of low-power, battery-operated IoT devices necessitates the implementation of in-

novative sustainable power supply methods. In this context, WPT emerges as an

ideal solution to address such energy challenges. On the other hand, the inherent

capability of WPT to utilize RF signals renders it naturally compatible with wireless

communication networks [11,13,14]. The fundamental principle of WPT is based on

the concept of electromagnetic fields, where electrical energy can be converted into

electromagnetic waves that propagate through space. By leveraging different tech-

niques, WPT enables devices to receive and harvest energy from dedicated sources
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or even ambient wireless transmitters in the environment [16–18]. Transferring elec-

tromagnetic power wirelessly encompasses a wide range of techniques, which can

be largely classified into three distinct cases [13]:

• Near field power transfer: by employing inductive, capacitive, or resonant

coupling, electromagnetic power is transferred wirelessly over short distances

of up to one meter (sub-wavelength). This technique has been widely utilized

for the practical applications, such as wireless charging pads for smartphones,

tablets, smartwatches, etc.

• Far field directive power beaming: by deploying directive antennas and/or

antenna arrays to generate highly-directional power beam, electromagnetic

power is conveyed at distances of up to several meters in indoor and outdoor

environments. With the massive deployments of multiple-antenna wireless

systems, such technique has attracted a lot of interest from both academia and

industry, while the initial prototypes and testing platforms have been created.

• Far field, low-power, ambient RF power collection: receivers harvest power

transmitted from random ambient transmitters, such as BSs, WiFi routers, mo-

bile devices, etc. It has several unique benefits such as the low cost of deploy-

ment and compatibility with existing communication systems.

It is clearly evident that each method unfolds its unique advantages and corre-

sponding challenges. In specific, near field power transfer, while notably efficient,

is fundamentally restricted by distance, limiting its potential for applications that

necessitate longer reach. Contrarily, far field directive power beaming widens its

coverage significantly, stretching to several meters. However, it is inherently lim-

ited by the requirement for a highly focused, directional power beam. These factors

spotlight the appeal of the third method: far field, low-power, ambient RF power col-

lection. By leveraging power from random public transmitters, this method offers

an ingenious solution that blends effortlessly with the existing wireless communi-

cation network. Therefore, we mainly focus on the far field, low-power, ambient RF

power collection scenario throughout this thesis.
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2.1.1 Simultaneous wireless information and power transfer

SWIPT takes the concept of WIPT one step further by allowing the concurrent trans-

mission of data and power over the same channel, which enables significant gains in

terms of spectral efficiency, time delay, energy consumption and interference man-

agement by superposing information and power transfer [13,14,19–23]. The SWIPT

technology is typically operated through three main schemes as illustrated in Figure

2.1, namely, time switching (TS), power splitting (PS) and antenna switching (AS),

of which the implementation procedures are summarized as following [13, 14, 19]

• TS scheme: the receiver switches in the time domain between information

decoding (ID) and energy harvesting (EH). In this case, signal splitting is per-

formed in the time domain. The TS technique allows for a simple hardware

implementation at the receiver but requires accurate time synchronization and

information/energy scheduling.

• PS scheme: PS scheme achieves SWIPT by splitting the received signal into

two streams of different power levels using a PS component; one signal stream

is converted to baseband for ID purpose, while the other one is directed to the

rectenna for EH. The PS scheme leads to higher receiver complexity compared

to TS due to the extra PS component; while it achieves instantaneous SWIPT,

as the signal received in one time slot is used for both ID and EH. It is more

suitable for applications with critical information/energy or delay constraints.

• AS scheme: AS scheme dynamically switches each antenna element between

decoding/rectifying to achieve SWIPT in the antenna domain. More specif-

ically, a receiver divides the receiving antennas into two groups where one

group is used for ID and the other group for EH [13,14]. Owing to the massive

deployments of multiple-antenna systems, AS becomes a promising technique

for enhancing both ID and EH performance of SWIPT-enabled communication

networks.

In order to achieve SWIPT, a typical receiver includes a receiver antenna or antenna

array, a matching network, a RF to direct current (RF-to-DC) converter or rectifier,

a power management unit, the energy storage unit, as well as a communication

module [13, 24]. Among these blocks/units, the RF-to-DC converter or rectifier is
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Figure 2.1: Illustrations for TS, PS, and AS schemes.

the most critical component, which poses significant challenges on both circuit de-

sign and theoretical modelling. The analytical model for the RF-to-DC converter is

introduced later in the chapter.

2.1.2 Design challenges for SWIPT-enabled 6G networks

Integrating SWIPT into upcoming 6G networks presents an immense potential to

meet the dual needs of information processing and energy conservation for the bur-

geoning population of low-power IoT devices. However, this integration introduces

a complex set of design challenges that must be thoroughly examined, understood,

and tactfully resolved to guarantee optimal system performance, seamless deploy-

ment, and long-term viability. By taking into account the unique features of 6G

networks, such as ultra-dense deployments, multiple-antenna devices and high-

mobility end-users, and satellite-based non-terrestrial networks, etc., we summarize

four main concerns of this thesis for deploying SWIPT technology, as follows

• Spatial modelling: as aforementioned, far field, low-power, ambient RF power

collection is regarded as the most promising solution for integrating SWIPT in

the modern wireless communication networks, owing to its unique benefits,

such as low-cost deployment and high-compatibility with existing commu-

nication systems. On the one hand, the ultra-dense deployments of wireless
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transmitters (e.g. BSs) and end-users (e.g. IoT devices) in 5G/6G networks,

produce rich RF signals in the environment, which boost the EH performance

of SWIPT-enabled devices. On the other hand, the densification of cellular

networks and users poses significant challenges on network spatial modelling

and analysis. To address such challenges, stochastic geometry is extensively

used for modelling the large-scale networks [19, 25–31], where the main idea

is modelling the locations of network nodes as Point Process (PP). Although

stochastic geometry tools have been utilized in large-scale cellular networks

for over three decades, their application in the context of SWIPT-enabled net-

works still lacks comprehensive development and in-depth analysis.

• Multiple-antenna system: with the widespread application of multi-antenna

technology, the field of communication networks has seen significant advance-

ments in terms of data rates, reliability, and coverage [3, 14, 32–37]. Despite

these benefits, integrating multiple-antenna systems into SWIPT-enabled net-

works presents a host of unique challenges. Among the most prominent issues

is the complexity involved in simultaneously managing the dual functions of

ID and EH in a multi-antenna context. The design and implementation of ro-

bust and efficient AS mechanisms become exponentially more challenging as

the number of antennas increases. These systems also require advanced sig-

nal processing techniques to handle the high dimensionality of multi-antenna

systems, which can significantly increase the computational burden and of-

ten leads to intractability for theoretical analysis. Hence, developing efficient

and low-complexity AS techniques to manage dual-functionality of SWIPT for

satisfying various ID and EH requirements of IoT devices, and establishing a

tractable framework for theoretical analysis, form an essential cornerstone of

current research efforts.

• Mobility: the ultra-densification of BSs, coupled with the rise in user mobil-

ity propelled by modern advancements in transportation systems, has led to

a significant increase in the user handover rates, making mobility issues ever

more critical. Furthermore, 5G and 6G networks rely heavily on beamforming

techniques to achieve network coverage, which amplifies the impact of mobil-

ity, i.e. high user mobility necessitates frequent beam switching, introducing

another layer of complexity to network management [27, 38–40]. Addressing
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these multifaceted challenges begins with developing precise mobility mod-

els. These models are instrumental in understanding the impact of increas-

ing mobility on SWIPT-enabled networks, thus laying a critical groundwork

for formulating effective management strategies. Moreover, the crafting of in-

novative mobility management solutions, complemented with advanced cell

association and handover schemes, is crucial for streamlining the signalling

costs, efficiently managing uneven traffic or user distribution, and ultimately

enhancing the performance of SWIPT-enabled networks.

• WIPT with satellite networks: as we transition from 5G to 6G, satellite com-

munication networks are anticipated to play a pivotal role in realizing the

vision of a fully connected and intelligent world. Satellite communications

can significantly contribute to achieving the goals of 6G by providing seam-

less global coverage and enhanced connectivity in remote, rural, and under-

served areas, as well as reinforcing the resilience of communication networks

in disaster-stricken regions [41–43]. Moreover, satellite-based energy trans-

mission platform, i.e. SSP system, is a potential candidate that addresses

the global energy challenges (e.g. high dependence on fossil fuels, climate

change, limited energy access, and infrastructure needs) [44–47]. Despite the

promising capabilities, designing a satellite-based system for WIPT is a com-

plex and challenging task, demanding significant technological breakthroughs

and careful harmonization of a wide range of intricate factors.

2.1.3 Related work

In this section, a comprehensive overview of SWIPT in the context of large-scale net-

works is presented. We introduce the state-of-the-art spatial modeling tools, high-

light the open questions of SWIPT-enabled multiple-antenna system, and give sev-

eral examples from the literature related to mobility and handover issues in 5G/6G

mobile networks. Further, we provide an overview of LEO satellite-based com-

munication networks and SSP system. For convenience, we summarize the main

state-of-the-art literature and our unique contributions of this dissertation in Figure

2.2.

The SWIPT technology in the context of large-scale networks has been widely-

investigated in the literature, which is typically categorised as system-level analy-
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Figure 2.2: State-of-the-art literature and chapter contributions overview

sis [11]. The authors in [61] proposed a stochastic geometry-based framework for

the analysis of SWIPT-enabled multiple-input multiple-output (MIMO) systems,

and the trade-off between the data rate and the harvested energy was illustrated.

In [19], the authors investigated the simultaneously joint ID and EH performance

under TS and PS schemes, and the optimal partitioning parameters to achieve max-

imum joint ID and EH performance were demonstrated. The authors in [20] exam-

ine the trade-off between information rate and energy harvested in SWIPT-enabled

networks, assessing the impact of obstacles and studying the stochastic behaviour

of signal attenuation and multi-user interference. In [21], application of SWIPT in

networks employing cooperative non-orthogonal multiple access (NOMA) is inves-

tigated with imperfect channel state information (CSI). Furthermore, the authors

in [22] study the SWIPT with the employment of cell-free massive technologies in

a network with randomly placed access points, by proposing a new energy storing

scheme and by exploring the trade-off between EH and data rate, while the results

suggest allocating more power to energy users can boost overall EH performance

without significantly affecting other users. The authors in [23] explore the use of

SIC technique in the context of SWIPT in a bipolar ad hoc network, and demonstrate

that SIC could lead to considerable energy gains and, under certain scenarios, the
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average harvested energy could reach its maximum limit. In [62], the idea of SWIPT

in intelligent reflecting surface (IRS)-assisted cellular networks was explored, high-

lighting that the IRSs can promote the compensation of high RF signal attenuation

over long distance and hence create efficient energy harvesting/charging zones in

their vicinity. Most of the above work focuses on SWIPT-enabled networks that are

based on protocols with either PS or TS schemes. Nevertheless, the strict synchro-

nization constraint for the TS approach and the demand of the adequate PS circuit

for the PS scheme, increase the complexity and cost of the required hardware [63].

AS scheme, on the other hand, is a promising low-complexity alternative approach

which is overlooked from the current literature. Furthermore, even though SWIPT

technology is well-investigated in the literature, most of the exiting works assume

a simplistic linear EH model [13, 14, 19]. Nevertheless, in practice, the conversion

process is a highly non-linear function and its impact on the network performance

is not well studied [64–66]. In particular, by taking into account the non-linear na-

ture of the rectification process, the authors in [64] propose a non-linear EH model

capturing the dynamics of the RF energy conversion process for different input

power levels, where the amount of the harvested energy is modelled based on a

parametric logistic function. Furthermore, an alternative non-linear EH model is

proposed in [65, 66], where the random noise in the detection and conversion of the

actual harvested energy is considered, offering tractability for system-level analysis

in wireless-powered networks.

The enormous amount of wireless connections that will host 6G mobile net-

works, leads to an unprecedented increase of inter-cell interference, which compro-

mises the ID performance of the end-users. For the SWIPT-enabled multi-antenna

receivers, the interference observed across different antenna elements is spatially

correlated [61] [67]. While it has been long recognized that the correlated fading re-

duces the performance gain of multi-antenna communication systems, the concept

of interference correlation has been overlooked until recently. Such spatial corre-

lation of interference power affects the diversity gain of the system, especially in

high path-loss environments [67]. In [68], the authors dealt with the interference

correlation issues of the multiple-antenna users and characterized the performance

of a maximum ratio combining (MRC) in the presence of spatially-correlated in-

terference across antennas. In [69], the authors characterized the spatiotemporal

interference correlation as well as the joint coverage probability at two spatial lo-
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cations in a cellular network and showed that the interference correlation and the

joint coverage probability decrease with the increase of the users’ speed. By taking

into consideration the interference impact, the linear MMSE receiver is indicated to

achieve a maximum output signal-to-interference-plus-noise ratio (SINR) [35, 36].

The authors in [36] derive the exact distribution for the output SINR of an ideal

linear MMSE receiver, where multiple interferers and Rayleigh fading channel are

considered. This work is further extended in [35], by considering a random num-

ber of interferers, illustrating the optimal network density that offers the highest

network spatial throughput. Although the performance of the MMSE receiver has

been extensively studied, the co-design of SWIPT and MMSE is overlooked from

the literature.

Mobility of wireless nodes is another key issue that has a fundamental impact

on the performance of 5G/6G wireless networks [4–6, 26–29, 38–40, 70]. In general,

mobility leads to the uneven traffic/users distribution under certain scenarios, in-

creases cell handover rate/signalling cost, and poses significant challenges on beam

management [26–28,38]. In order to efficiently manage mobility, it is crucial to have

a tractable and accurate theoretical mobility model that enables a comprehensive

understanding of the behavior exhibited by diverse mobile users. Since it is difficult

to obtain actual movement patterns, a common approach is to use synthetic mobil-

ity models which resemble the behaviour of actual mobile devices. Over the past

decade, several research efforts have been carried out on characterizing the per-

formance of a variety of wireless networks under several standard mobility mod-

els [71–73]. Due to its generality and tractability, the most commonly used mobility

model is the random waypoint (RWP) model [73–75]. A detailed analytical frame-

work of the spatial node distribution generated by the RWP model was first investi-

gated in the context of ad hoc networks in [73]. The authors in [74] investigated two

key parameters in the mobile networks, namely, handover rate and sojourn time,

based on the RWP model with infinite network area. Moreover, the RWP model

was utilised to characterize the performance for an infinite drone cellular network

in [75]. In the context of small cells, where the coverage area is finite due to the

high path-loss experienced by the RF signals [76], it has been noticed in [77, 78],

that the spatial distribution of the nodes that move according to the RWP model

is non-uniform. Nevertheless, the majority of existing analytical results assumes

uniform/homogeneous spatial deployments. Therefore, an analytical framework is
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required, which takes into account the occurred non-uniform deployment of net-

work nodes due to their mobility in finite areas. In [77], several geometries of finite

network areas, e.g. circular, square, hexagon areas, were investigated based on the

RWP model, while it has been proven that the employment of RWP-based mobility

model results in the concentration of the nodes around the center of the area. Sim-

ilarly, the authors in [78] demonstrated that in the finite area mobile networks, the

mean interference at the center under the RWP model was much higher than the

interference at the border of the network area.

As mentioned before in this chapter, mobility not only results in uneven traf-

fic distribution under certain scenarios, but also leads to increasing signalling cost

and complexity of handover. 5G/6G networks, with the ultra-dense nature, are

composed of a larger number of small cells. In such networks, handover execu-

tions occur more frequently since a user crosses more cells along it’s trajectory and

moves inside each cell for a limited time. In this case, the handover cost increases

significantly and becomes crucial for a mobile users’ performance in terms of the

average throughput. Furthermore, due to the immense deployment of IoT appli-

cations in 6G networks, the unprecedented increment of the interference becomes

a crucial factor, jeopardizing the ID performance of the end-users. Motivated by

this, the CoMP transmission technique is proposed to enhance the link reliability

of the mobile networks, by improving the intended received signal strength and

by mitigating the multi-user interference [28, 29, 79]. On the one hand, it has been

shown that the CoMP technique can effectively enhance the system performance.

In particular, the authors in [79] demonstrate the aforementioned behaviour by in-

vestigating the CoMP technique in a downlink heterogeneous cellular network and

revealing the significant gain achieved in terms of coverage probability. On the other

hand, the multi-connection of a user with multiple BSs generally leads to more fre-

quent handovers, alleviating the network performance due to the heavy signalling

cost [28,29]. Specifically, the authors in [28] study the CoMP technique in the context

of user-centric cooperation networks, where analytical expressions for the handover

rate are derived, revealing that the handover rate is greatly increased by the CoMP

operation. By aiming to decrease the handover rate, the authors in [29] propose a

movement-aware CoMP handover scheme that exploits the trajectory and the cell

dwell time of the users, to ensure a lower inter-cell handover rate. Nevertheless,

the severe signalling overhead required by the cooperative techniques makes such
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approaches impractical for users with scarce power resources, thus motivating the

investigation of energy-efficient low-complexity techniques. Furthermore, to un-

lock the full potential of 6G communication networks, multiple-antenna techniques

such as transmit beamforming, are essential solutions to enhance the link reliabil-

ity and improve the data rate. Despite their many advantages, these techniques

pose several new challenges for 6G mobile networks, such as heavy handover sig-

nalling cost [38]. Specifically, in addition to the inter-cell handover, another type of

handover, namely beam reselection or intra-cell handover should be taken into ac-

count [27,38]. More specifically, the authors in [27,38] study the beam management

based on stochastic geometry, where a closed-form expression for the beam rese-

lection rate is analytically derived and the optimal number of beams that ensures

maximum spectral efficiency is demonstrated. By taking into consideration both

the inter- and intra-cell handover, the authors in [70] propose an evolutionary game

theory-based approach to solve the problem of access model selection, aiming at

improving the spectral efficiency in sub-6 GHz/millimetre-wave cellular networks.

Moreover, the authors in [40] propose a velocity-based cell association technique in

the context of multi-tier cellular networks, aiming to reduce the beam reselection

overheads and improve the data rate, by associating users with different network

tiers according to their velocities. Recently, the authors in [39] study the beam man-

agement in the context of vehicular communication networks, providing analytical

expressions for the average number of beam switching and handover events.

Owing to the unique benefits of LEO satellites, such as minimal latency, supe-

rior spatial flexibility, and low-cost deployment, the employment of LEO satellites

has emerged as an attractive solution for 6G networks [80, 81]. Over the past few

years, approximately 4,700 LEO satellites have been successfully launched by vari-

ous companies, including SpaceX, Amazon, and OneWeb, with the goal of provid-

ing satellite-based cellular services [51,52]. However, the proliferation of LEO satel-

lites and mega constellations pose significant challenges on network modelling, de-

sign and analysis, necessitating the employment of sophisticated mathematical tools

that accurately capture the characteristics of large-scale LEO satellite networks. Re-

cently, tools from the field of stochastic geometry have been leveraged to analyze

the performance of large-scale LEO satellite-based communication systems, high-

lighting its effectiveness as a powerful and tractable mathematical tool for assessing

the impact of key parameters on network performance [51, 55, 57, 82, 83]. Specif-
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ically, the authors in [51] study the performance of large-scale LEO satellite com-

munication networks, illustrating the impact of satellites’ density and constellation

altitude on the coverage and communication latency. Moreover, the authors in [55]

investigate the coverage performance of LEO satellite networks, by assuming that

the satellite spatial deployment follows a homogeneous Poisson PP (PPP), where a

novel path-loss model is introduced for the satellite communication networks. This

work is further extended in [57], where the optimal satellite altitude for attaining

the highest coverage probability is numerically investigated. Furthermore, the au-

thors in [82] study the downlink performance of LEO satellite-based networks by

modelling the spatial deployments of LEO satellites according to a homogeneous

binomial point process (BPP) and by proposing an iterative algorithm to maximize

the transmission rate and system throughput. The authors in [83] employ stochas-

tic geometry to analyze uplink performance of large-scale LEO satellite networks,

demonstrating the optimal LEO satellite density for achieving the maximum ergodic

capacity. Additionally, the authors in [54] adopt a non-homogeneous PPP to model

a massive LEO network and demonstrate the optimum altitude of LEO satellites as

well as number of orthogonal frequency channels for achieving the highest network

throughput. Nevertheless, these studies highlight the capability of stochastic geom-

etry in modelling large-scale LEO satellite-based networks, under the assumption

that all LEO satellites are deployed at the same altitude, opposed to real-world LEO

satellite-based networks that exhibit significant heterogeneity [51, 52, 81].

2.2 Mathematical modeling

In this section, we will initially introduce some mathematical preliminaries from the

stochastic geometry theory that are widely used in the literature, mainly focusing

on the spatial modeling of the cellular networks. Moreover, we provide the baseline

system model for this thesis, such that extensions to this model are highlighted in

the following chapters as needed.

2.2.1 Introduction to point process

As previously discussed in this chapter, the stochastic geometry approach is a pow-

erful mathematical framework that recently gained momentum as the only available
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tool that provides a rigorous approach to model, analyze and design the current

cellular networks [25, 30, 31]. A wireless communication network can be viewed

as a collection of nodes located within a certain area, each capable of acting as ei-

ther a transmitter or receiver of signals. At any given moment, several nodes may

broadcast simultaneously, each transmits signals to their own specific receiver. As

a result, apart from its own intended signal, a receiver also receives signals from

the other active transmitters, i.e. interference. Hence, the SINR is a random vari-

able that strongly depends on the network geometry and significantly varies from

one receiver to another and from one time instant to another. Therefore, the spatial

configuration of the nodes is crucial to the network efficiency as it directly affect the

SINR at each receiver. To this end, stochastic geometry tools provide a natural way

to define and calculate the macroscopic properties of such networks by averaging

over all potential network topologies and weighting them by the probability of their

occurrence. More specifically, stochastic geometry involves treating such networks

as snapshots of a stationary random model in the entire Euclidean plane or space,

and analysing them in a probabilistic way. [30]. The most basic stationary random

models studied in the stochastic geometry are the multidimensional PPs, which can

be depicted as a random collection of points in the d-dimensional space, describ-

ing the deployment of the network’s nodes [25]. Probabilistic analysis of these PPs

provides a way to estimate spatial averages that tend to reflect key dependencies in

network performance characteristics (connectivity, stability, capacity, etc.) as a func-

tion of a relatively small number of parameters. Importantly, the empirical valida-

tion of our stochastic geometry-based model against actual network deployments

has underscored its accuracy and reliability in reflecting real-world conditions. This

validation not only reinforces the model’s utility in capturing the complex dynamics

of wireless communication networks but also highlights its crucial role in guiding

the strategic planning, development, and optimization of scalable, heterogeneous

networks, aligning closely with industry requirements and the practical challenges

of deploying next-generation wireless infrastructures.

A PP can be described in statistical terms by defining the space of possible out-

comes and then specifying the probabilities of different events. Let N be the set

of all point patterns in the d-dimensional Euclidean space Rd, such that any point

pattern Φ ∈ N is (i) finite, i.e. any bounded subset B ⊂ Rd contains only a finite

number of points, and (ii) simple, i.e. x , y for any x, y ∈ Φ. We use the nota-
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tion N(B), to denote the number of points of the pattern Φ in the subset B, which is

given by N(B) = ∑∞
i=1 1(xi ∈ B), where 1(X) is an indicator function that is equal

to 1(X) = 1 if X is true, otherwise 1(X) = 0. Finally, let N be the smallest sigma

algebra and (Ω,F , P) be a probability space, where Ω denotes the sample space,

F is the set of the events and P corresponds to the mapping, which assigns proba-

bilities to the events. Based on the aforementioned notation, we first give a formal

definition of a PP.

Definition 2.1 (Point Process). A PP Φ = {x1, x2, · · · } ⊂ Rd is a measurable mapping

from a probability space (Ω,F , P) to (N,N ), i.e.

Φ : Ω→ N. (2.1)

The average number of the random variables xi ∈ Φ included in a subset B ⊂ Rd,

represents the intensity measure of the PP, and is defined as follows.

Definition 2.2 (Intensity Measure). The intensity measure Λ of a PP Φ is defined as

Λ(B) = E [N(B)] , ∀B ⊂ Rd, (2.2)

and if Φ is stationary, the density of the PP Φ, is given by

λ =
E [N(B)]
|B| ,

where |B| represents the area of B ⊂ Rd, which contains only a finite number of points.

In the context of stochastic geometry, there are several basic yet important PPs,

however, the most well-studied and most widely used PP is the PPP. Its importance

mainly results from its convenient properties as a mathematical model as well as

being mathematically interesting [26–28, 30, 31]. In the following sections, we intro-

duce the formal definitions of the PPP, which is extensively used in this thesis.

Definition 2.3 (Poisson Point Process). A PPP Φ = {x1, x2, · · · } ⊂ Rd with intensity

measure Λ is a PP such that:

• ∀B ⊂ Rd, N(B) has a Poisson distribution with mean Λ(B). If Λ admits a density

λ, we may write

P(N(B) = k) = exp
(
−
∫

B
λ(x)dx

) (∫
B λ(x)dx

)k

k!
, (2.3)

where λ(x) denotes the density function of the PPP.
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• If B1, B2, · · · , Bm are disjoint bounded subregions of the underlying space, then the

number of the points in each bounded subregion, i.e. N(B1), N(B2), · · · , N(Bm),

will be completely independent to all the others. In other words, there is a lack of

interaction between the different regions and the points in general, which motivates

the PPP being sometimes called a “completely” random process.

Five commonly used properties for analyzing the achieved performance of the

cellular networks are provided as follows.

Definition 2.4 (Slivnyak theorem). A PPP Φ preserves its original distribution under

the reduced Palm distribution, which means

P!
x0
(E) = P(Φ ∈ E),

if the PP Φ is Poisson distributed.

An alternative view of the Slivnyak theorem is that the property observed by a

typical point x0 of the PPP Φ, is the same as that observed by x in Φ ∪ {x}, which

means

P(Φ ∈ E|x0 ∈ Φ) = P(Φ + δx ∈ E),

where δx is the Dirac measure at x.

Definition 2.5 (Campbell’s Theorem). A PPP Φ with density λ(x) and f (x) : Rd 7→ R.

Then,

E
[
∑x∈Φ f (x)

]
=
∫

Rd
λ(x) f (x)dx.

The Campbell’s theorem is useful for computing the average interference power

in large-scale cellular networks.

Definition 2.6 (Laplace Functional). For any non-negative function f (x) on Rd, the

Laplace functional of a PPP Φ with intensity measure Λ(x) is defined as

E

[
exp

(
−
∫

Rd
f (x)Φ(dx)

)]
= exp

(
−
∫

Rd
(1− exp (− f (x)))Λ(dx)

)
.

In the context of wireless communications, the non-negative measurable func-

tion f (x), represents the aggregate interference observed at a receiver. Laplace func-

tional is a key transformation in the wireless network modelling and analysis with

the stochastic geometry. This is because by using the Laplcae functional, the aggre-

gate interference distribution can be uniquely defined.
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Definition 2.7 (Probability Generating Functional (PGFL)). The PGFL of a PPP Φ with

intensity measure Λ(x), is equal to

Q[u] = exp
[
−
∫

Rd
(1− u(x))Λ(dx)

]
,

where u(x) : Rd → [0, ∞] is a real value function. If the PPP is stationary, then the PGFL,

can be re-written as

Q[u] = exp
[
−λ

∫
Rd

(1− u(x)) dx
]

.

It is particularly useful to evaluate the Laplace functional of the sum ∑x∈Φ f (x)

using the PGFL as

E

[
exp

(
− ∑

x∈Φ
f (x)

)]
= E

[
∏
x∈Φ

exp (− f (x))

]
= Q [exp(− f (x))] ,

which typically appears in the analysis of the aggregate interference.

Definition 2.8 (Thinning). Let g : Rd → [0, 1] be a thinning function and apply it to a

stationary PPP Φ by deleting each point x with probability 1− g(x), independently of all

the other points. This thinning procedure generates an inhomogeneous PPP Φ′ with density

that is equal to

λ′(x) = λg(x). (2.4)

The thinning transformation is the process of removing certain points from a PP,

usually according to a probabilistic rule g : Rd → [0, 1]. If the removal event is

independent for all points, the thinning transformation is called independent.

In the rest of this chapter, we introduce the baseline system model that is adopted

throughout the thesis, with slight modifications that are detailed in each chapter

according to the considered network setup.

2.2.2 Network model

The network is studied from a large-scale point of view using stochastic geometry.

For the terrestrial networks, we consider a single-tier bi-dimensional wireless cellu-

lar network, where all network’s nodes are confined on a circular region A with

radius R ∈ (0, ∞). The locations of the BSs are modelled as a homogeneous PPP,

ΦB = {xi ∈ A} with spatial density λb and unit transmit power, where xi denotes

the spatial coordinates of the i-th node. In addition, the locations of the mobile users

(MUs) follow an arbitrary independent point process Φu with spatial density λu,
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where λu � λb. For the satellite-based non-terrestrial networks, we consider a multi-

tier constellation setup, where LEO satellites are deployed at K different spherical

surfaces concentric with the Earth, of altitudes Hk above the mean sea level, with

Hk < Hk+1, 1 ≤ k ≤ K − 1. Within each tier constellation, the LEO satellites’ lo-

cations are assumed to be distributed according to the homogeneous PPP Φk with

intensity λk. In addition, we consider that each tier constellation consists of Nk LEO

satellites, and thus λk can be approximated as λk ≈ Nk
4π(R⊕+Hk)2 , where R⊕ is the

Earth radius; while Φi and Φj for i , j are assumed to be independent [55, 57, 82].

Furthermore, we assume that the locations of ground user equipments (gUEs) fol-

low a uniform distribution.

2.2.3 Channel model

All wireless signals are assumed to experience both large-scale path loss effects and

small-scale fading [67]. For the large-scale path loss between a receiver at X and

a transmitter at Y, we assume an unbounded singular path loss model, where the

path loss only depends on the spatial distance between X and Y, and is given by

L(X, Y) = ‖X−Y‖α, where α > 2 is the path loss exponent [30,31,67]. Regarding the

small-scale fading in the terrestrial networks, we adopt the Rayleigh fading model,

where different links are assumed to be independent and identically distributed

[19,58]. Hence, the channel power gain follows an exponential distribution with unit

mean, i.e. h ∼ exp(1). For the non-terrestrial networks, we adopt a practical and

well-known shadowed-Rician (SR) fading model for each link, which is typically a

Rician fading channel with fluctuating line-of-sight (LoS) components [82]. Let hi,j

denote the channel power gain of the link between the typical gUE and the i-th LEO

satellite that belongs in the j-th tier. Then, the probability density function (pdf) and

the cumulative distribution function (cdf) of the channel power gain are given by

fh(x) =
(

2bm
2bm + Ω

)m exp(− 1
2b x)

2b 1F1

(
m; 1;

Ω
2b (2bm + Ω)

x
)

, (2.5)

and

Fh(x) =
(

2bm
2bm + Ω

)m ∞

∑
z=0

(m)z

z!Γ(z + 1)

(
Ω

2bm + Ω

)z
γ

(
z + 1,

1
2b

x
)

, (2.6)

respectively, where Ω and 2b are the average power for the LoS and the multi-path

components, respectively, and m is the fading parameters based on the Nakagami-
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m fading channels [84]. Finally, all wireless links exhibit additive white Gaussian

noise.

2.2.4 Mobility model

The process representing the RWP-based movement of a MU within an areaA ∈ R2

can be described as follows. Initially, each MU is placed at the point P1 chosen from

the uniform distribution Φu ∈ A. Then, each MU uniformly chooses a destination

(also called waypoint) P2 in the region A and moves towards it with randomly se-

lected speed i.e., v ∈ [vmin, vmax], which remains constant during that movement.

A new direction and speed are chosen only after the MU reaches the destination.

For a long running time of the movement process, a stationary distribution, also

known as steady-state distribution, is achieved [73]. It is important to mention here

that, the uniform movement of MUs within an infinite-area network deployment

leads to a uniform MUs’ steady-state distribution, and hence, the performance of

infinite-area networks deployments does not affected by the users’ mobility pro-

cess. Contrary, in the finite-area network deployments, the MUs bounce back when

they reach the boundary, aiming the number of MUs in A to remain constant, i.e.

|λuA| [73]. Hence, an MU starting near the boundaries of the network area clearly

finds more destination waypoints in directions toward the center of the area than

toward the border. As time passes and the MUs perform a number of movement

periods, the spatial distribution of the MUs becomes more and more non-uniform.

2.2.5 SWIPT model

We take into account TS, PS and AS schemes for achieving the SWIPT capability.

More specifically, by employing TS, each available time duration/slot is split into

two parts, and a receiver allocates a fraction τ ∈ [0, 1] of the time for ID, while it

harvests energy for the remaining time. Additionally, PS scheme achieves SWIPT by

splitting the received signal into two streams of different power levels with a split-

ting ratio ρ ∈ [0, 1]; a fraction ρ of the received power is converted to baseband for

ID purpose, while the remaining power is directed to the rectenna for EH. Finally, by

using AS scheme, a receiver divides the receiving antennas into two groups where

one group is used for ID and the other group for EH.

Although the theoretical circuit analysis for the behaviours of RF-to-DC con-
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verter/rectifier is still an open question due to the implementation of non-linear

components (i.e. diode), in this thesis, we mainly focus on two types of models,

namely, the linear and non-linear EH models, which accurately capture the practi-

cal EH performance for most scenarios, and enables the tractability for the analytical

study [11,13,14,65,66]. Without loss of generality, consider that the power of incom-

ing signals that are directed to the RF-to-DC converter is PRF (dBW). The output DC

power is given by

PDC =

ηPRF, linear EH,

η ν
1+F PRF, non-linear EH,

(2.7)

where η is constant that represents of the RF-to-DC efficiency; F is an exponential

random variable with mean ζ, which is used to capture the random noise in the

detection and conversion of the actual harvested energy, ν = (ζeζ
∫ ∞
−ζ e−t/tdt)−1.
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Chapter 3

SWIPT-enabled mobile users in

infinite- and finite-area cellular

networks

In this chapter, we propose a low complexity threshold-based pair switching (TbPS)

technique for SWIPT in the context of large-scale cellular networks. Under the

TbPS technique, a subset of MU’s antennas is allocated for ID, only when their

post-combiner signal-to-interference ratio (SIR), exceeds a certain threshold, while

the remaining antennas are allocated for EH. Contrary to traditional approaches

which assume the existence of either uncorrelated or fully correlated interference,

our proposed technique takes into consideration the interference correlation be-

tween nearby antennas. In order to further alleviate the inter-cell interference and

energy consumption, we propose a traffic load-based sleeping (TLbS) technique in

the context of finite-area network deployments, where lightly-loaded cells switch

into sleep mode. By leveraging tools from stochastic geometry, we derive analytical

expressions for the ID, EH as well as joint ID and EH success probability of MUs

based on the proposed techniques.

3.1 Motivation and contributions

The performance of SWIPT-enabled MUs, that exhibit spatial interference correla-

tion, in the context of 6G mobile networks, is overlooked from the literature. Hence,

the aim of this work is to fill this gap by modelling and analyzing such networks
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Figure 3.1: Large-scale and small-scale mobile networks.

and by providing new analytical results for the network performance in a stochastic

geometry framework. Specifically, the main contributions of this paper are summa-

rized as follows:

• We develop a mathematical framework based on stochastic geometry, which

comprises the modelling of SWIPT-enabled MUs in the context of cellular net-

works. The developed framework takes into account the existence of spatially

correlated interference between the users’ antenna elements, and the ability

of users to move within the network area based on a RWP model. Moreover,

the performance of the considered system is assessed under two different net-

work topologies as shown in Fig. 3.1, i.e. large-scale and small-scale networks,

which cover an infinite and a finite area, respectively.

• In the infinite area scenario, i.e. large-scale outdoor environment, a novel an-

tenna pairs switching scheme is proposed for cellular networks, aiming at fa-

cilitating the MUs’ allocation either for ID or for EH. In particular, based on the

proposed scheme, the receiver antenna elements are divided into pairs, and

a subset of antenna pairs is allocated for ID, only when their post-combiner

SIR is beyond a certain threshold, while the remaining pairs are allocated for

EH. In addition, the interference power within each pair of antenna elements

are assumed to be fully-correlated and for the different pairs, interference ob-

served are assumed to be independent.
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• In the finite area scenario, i.e. the indoor environment or small cells, we

evaluate the performance of SWIPT-enabled MUs, in the context of a novel

sleeping mechanism. Specifically, our proposed approach switches off cells

in a probabilistic way based on their traffic load, which is non-uniform spa-

tially distributed due to the MUs’ mobility, aiming the joint optimization of

users’ throughput and EH performance. To guarantee the quality-of-service,

the users of sleeping BSs are offloaded to active neighbouring BSs.

• Analytical expressions for the success probability of ID and EH, as well as

for the joint success probability, i.e. ID and EH, are derived for the consid-

ered network deployments. Moreover, under specific practical assumptions,

closed-form expressions for the Laplace transform of the received interference

are derived. These closed-form expressions provide a quick and convenient

methodology of evaluating the system’s performance and obtaining insights

into how key parameters affect the performance. Moreover, the optimal de-

sign parameters related to our proposed two techniques are illustrated, that

maximise the joint ID and EH ability of MUs.

• Finally, our numerical and simulated results show that, by properly select-

ing the parameters, i.e. SIR and traffic load thresholds based on the network

deployment, the proposed two techniques outperform the conventional tech-

niques, e.g. traditional antenna switching and non-sleeping schemes, in the

context of ID and EH success probabilities of SWIPT-enabled MUs..

3.2 System model

Recall that, we consider a bi-dimensional cellular network according to a homoge-

neous PPP. We consider the case where all BSs are equipped with a single transmit

antenna [67]. The mobility of MUs are modelled by a RWP model. Moreover, we

assume that all BSs have a continuous power supply, while all MUs are battery-

operated. Specifically, we assume that each MU has SWIPT capabilities and thus

it can decode the information and also harvest energy from the received signal si-

multaneously. We consider that the EH process is accomplished by using either our

proposed TbPS technique (see Section 3.3.1) or the conventional PS receiver archi-

tecture (introduced in Section 2.2.5); while a linear EH model is considered.
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3.3 SWIPT with threshold-based pair switching tech-

nique

In this section, we propose a TbPS technique in the context of infinite-area cellular

networks, where the multi-antenna MUs employ a MRC technique in the presence

of spatial interference correlation. In particular, we evaluate the ability of a MU

to successfully decode the received signal and harvest sufficient energy. Based on

the proposed low-complexity TbPS technique, analytical expressions for the ID, EH,

and joint ID and EH success probability are derived by using tools from stochastic

geometry. Without loss of generality, based on the Slivnyak’s theorem, we perform

our analysis for the typical MU, which is located at the origin [25,30], but the results

hold for all users of the network.

3.3.1 Threshold-based pair switching scheme

Even though the channels between the BSs and each antenna element of a MU are

assumed to be independent with each other, the received interference across differ-

ent antenna elements is neither independent nor identical [61, 67]. More precisely,

the interference terms observed at the different antennas are partially correlated ran-

dom variables due to the common locations of the interfering BSs [67]. Therefore,

as shown in Fig. 3.2, motivated by the extremely narrow spacing between adjacent

antenna elements of a MU, we divide the set of antenna elements into η pairs of two

adjacent antenna elements, i.e. η = N/2, where N is the number of antennas of

a MU. Such approach could capture the interference correlation between adjacent

antenna elements and keep the tractability for the analytical framework. In partic-

ular, we assume that the observed interference between each antenna element of a

pair is fully-correlated, while the intended received signal and interference between

pairs are regarded uncorrelated. Then, based on the AS protocol [13], our proposed

scheme allocates a subset of paired antenna elements, i.e. ν pairs, for ID purpose

and the remaining (η − ν) pairs, for EH.

Let Sk and Ik denote the power of the intended signal and observed interference

at the k-th antenna element of a MU, respectively, where k = {1, · · · ,N}. Due

to the full-correlation of the interference within each antenna pair, the interference

across antennas in each pair is identical, i.e. Ik = Ik+1 = In where k = 2n− 1 and
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Figure 3.2: An N -antenna TbPS receiver with η pair of antennas, where ν pairs of

antennas are connected to decoding circuit and (η− ν) pairs of antennas to harvest-

ing circuit.

n = {1, · · · , η}. Thus, based on the MRC technique, the SIR of the n-th antenna pair

of the typical MU, is given by 1

Γn =
S2n−1 + S2n

In
=

(h2n−1,o + h2n,o) L−1(xo)

∑xi∈Φ\oB
hn,iL−1(xi)

. (3.1)

Regarding the selection of the number of antenna pairs, ν, we develop a threshold-

based approach based on the MRC [85]. Let Γν denote the post-combiner SIR for the

MRC at the receiver when ν pairs of antenna elements are selected, which is equal

to Γν = ∑ν
j=1 Ξn, where Ξn is given by the expression (3.1). Based on the TbPS

scheme, the number of antenna pairs, ν, is selected so that the post-combiner SIR at

the receiver exceeds a certain predefined threshold γth (dB). Starting from the single-

pair case, the TbPS scheme gradually raises the number of selected pairs aiming to

satisfy the aforementioned condition. The previous actions are repeated until Γν

is greater than the threshold γth. It should be noted that, in order to maintain the

minimum harvested energy power, at least one pair is allocated for EH, i.e. for the

case Γη−1 ≤ γth, η − 1 pairs are allocated for ID and the remaining one pair is al-

located for EH. It is worth mentioning that, the proposed TbPS is a low-complexity

antenna selection scheme, since the CSI is only required to be estimated at a frac-

tion of the antenna elements. More specifically, once the post-combiner SIR reaches

1Since the large-scale networks with infinite area are regarded as interference-limited due to the

high-level multi-cell interference power, the additive thermal noise is neglected [25, 67].
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the threshold γth, then no more CSI is needed for the remaining antenna elements,

where the number of antennas that require CSI, i.e. c, is bounded within the interval

2 ≤ c ≤ N − 4.

3.3.2 Information decoding success probability with TbPS scheme

Initially, we assess the conditional cdf of Ξn, i.e. P[Ξn < Υ|xo], where Υ is the

decoding threshold, which is useful for evaluating the ID, EH, and the joint ID and

EH success probability. The following lemma evaluates the conditional cdf of the

SIR at the n-th antenna pair of the typical MU.

Lemma 3.1. The conditional cdf for the SIR of the n-th antenna pair of the typical MU, i.e.

Ξn is given by

F(Υ|xo) = 1−LIn (s) + s
∂LIn (s)

∂s
,

where s = ΥL(xo), LIn(s) and ∂LIn (s) /∂s are the Laplace transform and the derivative of

the Laplace transform of the interference observed at the n-th antenna pair, which are given

by

LIn(s) = exp
(
−

2πλbsr2−α
o 2F1

(
1, α−2

α ; 2− 2
α ;−sr−α

o
)

α− 2

)
, (3.2)

and

∂LIn(s)
∂s

=

2LIn(s)πr2
oλb

(
2− α− 2(1 + sr−α

o ) 2F1
(
1, α−2

α ; 2− 2
α ;−sr−α

o
))

(rα
o + s)(α− 2)α

, (3.3)

ro is the distance from the typical MU to its serving BS, i.e. ro = ‖xo‖.

Proof. Based on the expression (3.1), the conditional cdf of SIRn, can be expressed as

F(Υ|xo) =P [Ξn ≤ Υ|xo] = P [h2n−1,o + h2n,o ≤ L(xo)InΥ] = E
[
γ (2, sIn)

]
, (3.4)

where s = ΥL(xo), and (3.4) follows from the fact that the sum of two exponential

random variables follows the Gamma distribution [68]. Then, based on the moment

generating function and γ(x, y) = Γ(x) − (x − 1)!e−y ∑
y−1
k=0

yk

k! , the final expression

can be derived, where

LIn(s) = E

[
exp

(
−∑xi∈Φ\0B

hn,is
L(xi)

)]
= exp

(
2πλb

∫ ∞

ro
(φ(x, s)− 1) xdx

)
,

(3.5)

where (3.5) is obtained from the PGFL of PPPs [25] and φ(x, s) is

φ(x, s) = Eh

[
exp

(
− hn,is

L(x)

)]
=

1
1 + sL−1(x)

.
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Therefore, by evaluating the integral and derivative, the expressions in Lemma 3.1

can be derived. �

The following Remark investigates a special case of Lemma 3.1, where α = 4,

which is a common practical value for path-loss exponent in outdoor urban en-

vironments, where the closed-form expressions of the Laplace transform and the

derivative of the Laplace transform of the interference are obtained.

Remark 3.1. For the special case α = 4, the Laplace transform and the derivative of the

Laplace transform of the interference observed at the n-th antenna pair can be simplified as

LIn(s) = exp
(
−π
√

sλb tan−1
(

r−2
o
√

s
))

,

and
∂LIn (s)

∂s
= −LIn(s)πλb

2

(
r2

o
r4

o + s
+

tan−1 (r−2
o
√

s
)

√
s

)
,

where tan−1(·) is the inverse of the tangent function.

Based on the adopted association scheme, i.e. each MU communicates with its

closest BS at xo, the complementary cumulative distribution function of the distance

ro between a MU and its serving BS, is given by P[ro > r] = exp(−πλbr2), and the

pdf of the distance ro, i.e. fr(r) = d
dr (1−P[ro > r]), is given by [67]

fr(r) = 2πλbr exp(−πλbr2). (3.6)

Then, we focus on the evaluation of the ID success probability in the context of

our proposed TbPS scheme, which can be formulated as

FID(χ, γth) =P [Γ1 ≥ χ & Γ1 ≥ γth] + ∑η−2
v=2 P [Γv ≥ χ & Γv−1 < γth < Γv]

+ P
[
Γη−1 ≥ χ & Γη−2 < γth

]
,

where χ (dB) is the decoding threshold.

It should be noted that, the proposed TbPS scheme is applicable for any MUs, of

which the number of antenna elements is not less than four, i.e. at least one antenna

pair is allocated for ID and one pair for EH. In addition, in order to achieve the

adaptive and dynamic allocation of antenna pairs based on the instantaneous signal

quality, i.e. SIR, the minimum number of antenna elements required at MUs is six.

Hence, in this work we consider the scenario whereN = 6, for the sake of simplicity.

The aforementioned scenario holds for practical wireless devices that are typically
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equipped with a small number of antenna elements, due to space limitations and

complexity constrains, e.g. smartphones, WiFi routers [30, 68]. For this special case,

the following proposition characterizes the resulting performance in terms of ID

success probability.

Proposition 3.1. For the special case where MUs are equipped with six antenna elements,

i.e. N = 6, the ID success probability, FID(χ, γth), is given by

FID(χ, γth) =
∫ ∞

0
JID(χ, γth, r) fr(r)dr,

where

JID(χ, γth, r) =1− H̄(χ− γth)
∫ χ

0
F(χ− y|r) f (y|r)dy

−H(χ− γth)

(
F(χ|r)−F(γth|r) +F(χ− γth|r)F(γth|r)

+
∫ χ

χ−γth

F(χ− y|r) f (y|r)dy
)

, (3.7)

F(Υ|xo) is the conditional cdf of Ξn, which is given in Lemma 3.1, f (Υ|xo) is the conditional

pdf of the Ξn and can be calculated as f (Υ|xo) = ∂F(Υ|xo)/∂Υ, and fr(r) is the pdf of the

distance from the typical MU to its serving BS, which is given by (3.6).

Proof. For the special case where N = 6, the ID success probability, can be formu-

lated as

FID(χ, γth) = 1−P[Ξ1 < χ, Ξ1 ≥ γth]−P[Ξ1 + Ξ2 < χ, Ξ1 < γth]. (3.8)

For the scenario where γth < χ, the above expression can be re-written as

FID(χ, γth) =1−P [γth ≤ Ξ1 < χ]−P [Ξ1 < χ − Ξ2|χ − Ξ2 ≤ γth]

−P [Ξ1 < γth|γth ≤ χ − Ξ2] , (3.9)

while for γth ≥ χ, is given by

FID(χ, γth) = 1−P [Ξ1 < χ − Ξ2 & Ξ1 ≤ γth] = 1−P [Ξ1 < χ − Ξ2] . (3.10)

Then, by using the cdf of Ξn, which is derived in Lemma 3.1, the final expression for

FID(χ, γth) can be derived. �
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3.3.3 Energy harvesting success probability with TbPS scheme

The success probability of EH accounts for the ability of a MU to effectively harvest

certain amount of RF energy, which is above a predefined reliability threshold Q

(dBm) based on the practical applications. Similar to [19], we consider a linear en-

ergy harvesting model for tractability purposes [86]. Such linear energy harvesting

model captures the linear regime of the rectenna, while approximating the other op-

eration regimes in a simple way. Therefore, the proposed mathematical framework

also serves as a useful guideline for more practical nonlinear EH models [87]. Specif-

ically, the harvested energy is defined as the aggregate received signal power multi-

plied with the conversion efficiency ζ of the energy harvester. In addition, in order

to derive compact and informative expressions for the EH success probability, the

aggregate interference power harvested by the energy harvester is approximated by

the mean interference power, denoted as Ī . The accuracy of the above-mentioned

approximation is illustrated in the numerical results in Section 3.5. Therefore, the

mean interference power is given by [25]

Ī , Eh,ΦB

[
∑xi∈Φ\oB

hk,iL(xi)
−1
]
=

2πλbr2−α
o

α− 2
.

Then, based on the number of selected pairs, ν, the EH success probability achieved

by the TbPS scheme, can be formulated as

FEH(Q, γth) =P[Γ1 ≥ γth]P
[
ζ
(
∑η

j=1 S2j−1 + S2j + 2Ī
)
≥Q

]
+ ∑η−2

v=2P[Γv−1 < γth<Γv]P
[
ζ
(
∑η

j=v+1 S2j−1 + S2j + 2Ī
)
≥ Q

]
+P

[
Γη−2 < γth

]
P
[
ζ
(
S2η−1 + S2η + 2Ī

)
≥ Q

]
,

where Q is the reliability threshold. For the special case where N = 6, the fol-

lowing proposition characterizes the resulting performance in terms of EH success

probability.

Proposition 3.2. For the special case where MUs are equipped with six antenna elements,

i.e. N = 6, the EH success probability, FEH(Q, γth), is given by

FEH(Q, γth) =
∫ ∞

0
JEH(Q, γth, r) fr(r)dr, (3.11)

where

JEH(Q, γth, ro) = F̄(γth|ro)H2(Q|ro) +F(γth|ro)H1(Q|ro),
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H1(Q|ro) = Γ (2, `(ro, 2))H
(
ro − γ(1)

)
+ H̄

(
ro − γ(1)

)
,

H2(Q|ro) =
Γ (4, `(ro, 4))

Γ(4)
H
(
ro − γ(2)

)
+ H̄

(
ro − γ(2)

)
,

F̄(·) = 1−F(·), `(x, y) = L(x)(Q̄ − yĪ), Q̄ = Q/ζ, γ(y) =
(

4yπλb
Q̄(α−2)

) 1
α−2 .

Proof. For the considered scenario, i.e. N = 6, the TbPS scheme either assigns a

single or two pairs of antenna elements for energy harvesting, based on the number

of antenna elements that is seleted for the ID part of the system. For the case where

the TbPS scheme assigns two antenna pairs for ID, i.e. ν = 2, then a single pair is

allocated for EH. In this case, the EH success probability can be calculated as

H1(Q|xo) = P[Sk + Sk+1 + 2Ī ≥ Q̄|xo],

where Q̄ = Q/ζ. Similar with the proof of Lemma 3.1, for the case where Ī < Q̄/2,

we have the condition that ‖xo‖ ≥
(
4πλb(α− 2)−1/Q̄

)1/(α−2) and hence,

H1(Q|xo) = P
[
Sk + Sk+1 ≥ Q̄ − 2Ī |xo

]
= Γ

(
2, L(xo)(Q̄ − 2Ī)

)
,

(3.12)

where (3.12) is from the same methodology of (a) in Lemma 3.1. Furthermore, for

the case, where 2Ī ≥ Q̄, we have ‖xo‖ ≤
(
4πλb(α− 2)−1/Q̄

)1/(α−2) andH1(Q|xo) =

1. Hence, the final expression of H1(Q|xo) is derived. For the case where two pairs

of antenna elements are used for EH, the EH success probability can be calculated

as

H2(Q|xo)=P
[
∑3

j=0 Sk+j + 4Ī ≥ Q̄
∣∣xo

]
.

The proof of H2(Q|xo) follows similar methodology, and hence it is ommitted due

to space limitations. Finally, by multiplying the probability of ν and following the

similar methodology used in proof of Proposition 3.1, the Proposition 3.2 is proven.

�

3.3.4 Joint information decoding and energy harvesting success prob-

ability with TbPS scheme

In this section, we address the trade-off between the ID and the EH in the context

of the TbPS scheme, by evaluating the joint ID and EH success probability [19]. In

particular, the joint ID and EH success probability, FID&EH(χ,Q, γth), refers to the
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capability of a MU to achieve both the ID and EH threshold simultaneously. Hence,

FID&EH(χ,Q, γth) can be evaluated as

FID&EH(χ,Q, γth) = P[Γ1 ≥ χ&Γ1 ≥ γth]P

[
∑η

j=1 S2j−1 + S2j + 2Ī ≥ Q̄
]

+ ∑η−2
v=2 P[Γν ≥ χ&Γv−1 < γth < Γv]×P

[
∑η

j=v+1 S2j−1 + S2j+2Ī ≥Q̄
]

+ P
[
Γη−1 ≥ χ&Γη−2 < γth

]
P
[
S2η−1 + S2η + 2Ī ≥ Q̄

]
. (3.13)

In the following proposition, we evaluate the joint ID and EH success probability

for the special case with N = 6 antennas.

Proposition 3.3. For the special case where MUs are equipped with six antenna elements,

i.e. N = 6, the joint ID and EH success probability is given by

FID&EH(χ,Q, γth) =
∫ ∞

0
JID&EH(χ,Q, γth, r) fr(r)dr,

where

JID&EH(χ,Q, γth, r)

=H(χ− γth)

(
H2(Q|r)F̄(χ|r) +H(Q|r)F(γth|r)×

∫ γth

0
F(χ− y|r) f (y|r)dy

)
+ H̄(χ− γth)

(
H2(Q|r)F̄(γth|r) +H1(Q|r)F(γth|r)

×
(
1−H1(Q|r)

) ∫ χ

0
F(χ− y|r) f (y|r)dy

)
, (3.14)

where F̄(·) = 1−F(·), H1(·) and H2(·) are derived in Proposition 3.2.

Proof. The proof follows the similar methodology with the Proposition 3.1 and Propo-

sition 3.2, and hence is omitted. �

3.4 Cell sleeping mechanism in SWIPT-enabled mobile

networks

In order to provide a general and universal insight on the SWIPT-enabled mobile

networks, we now focus our attention on another type of the wireless network,

i.e. the finite-area network deployment, such as small cells and indoor environ-

ment. In such scenario, the mobility of MUs based on RWP model results in a non-

uniform distribution of MUs, which subsequently leads to the significantly different
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network performance compared to the large-scale infinite area networks [78]. There-

fore, we now investigate the additional achieved gains on the network performance,

by exploiting the ability of BSs to perform an interference resource management ap-

proach, namely sleeping technique, based on its traffic load. More specifically, the

main idea of the TLbS mechanism is to switch off idle or lightly-loaded BSs in or-

der to reduce the aggregate interference and power consumption, triggering a non-

trivial trade-off between ID and EH success probability. On the one hand, the ob-

served interference is characterized as the main degradation factor in conventional

networks, while on the other hand, it can be viewed as a useful aggregate energy

signal that could be exploited for the harvesting purposes of IoT devices. Hence,

by exploiting our proposed technique, the overall balance of the counter-posed ef-

fects introduced by the aggregate interference on finite-area cellular networks can

be addressed.

3.4.1 Traffic load-based cell sleeping mechanism

The steady-state distribution of the MUs’ locations within a finite-area network, i.e.

|A| < ∞, is a non-uniform distribution. Specifically, the intensity function of the

steady-state distribution, is given by [73, 78]

λu(r) , λ∞
u (r) = 2λu

(
1− r2

R2

)
, (3.15)

where r represents the distance from a MU to the center of the considered region A

and λu is the initial density of MUs.

Since the steady-state distribution of the MUs’ locations is no longer uniform on

the considered circular disk area, i.e. MUs are more likely to be present around the

centre; in the meantime, the density of the MUs near the border areas has dropped

significantly. The TLbS mechanism dynamically determines the state of the BSs, i.e.

either active or in sleeping mode, based on traffic load-based policy. Specifically,

we consider a BS as active, if and only if, the number of MUs n in its coverage re-

gion is larger than N; otherwise, we consider that this particular BS is switched into

the sleeping mode. In order to guarantee the communications quality, the users of

sleeping BSs are offload to active neighbouring BSs. It should be noted that, the

TLbS mechanism is also of low-complexity for the MUs devices; more specifically,

the switching between active and sleeping modes is operated by the BSs, based on
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the number of MUs located within the coverage area of each BS. In the modern

wireless networks, the BSs can obtain the MUs’ location information through posi-

tioning reference signals [88]. Then, based on the proposed TLbS mechanism, the

distribution of the active BSs is characterized in the following lemma.

Lemma 3.2. Based on the proposed TLbS mechanism, the location of the active BSs follows

an non-homogeneous PPP Φ̃B with intensity function λ̃b(r), which is given by

λ̃b(r) = λbδ(r), (3.16)

where δ(r) represents the active probability of a BS at distance r and is given by

δ(r) = 1−
N−1

∑
k=0

λu(r)kΩKγ
[
K + k, π(R2λu(r) + Ω)

]
β(r)kk!γ[K, πΩ](R2β(r))K , (3.17)

where r is the distance from a network node to the center of the considered region A, Ω =

KR2λb, β(r) = λu(r) + Kλb, λu(r) is the intensity function of the MUs given in (3.15),

and K = 3.575 [89].

Proof. Based on the proposed TLbS mechanism, the active probability δ(r) of a BS,

of which coverage area is C, is the probability that there are at least N MUs within

its coverage region, which can be formulated as

δ(r) = P{n ≥ N}

= 1−P{n = 0} −P{n = 1} − · · · −P{n = N − 1}
(a)
= 1−EC

[
exp(−λu(r)C) + λu(r)C exp(−λu(r)C)

+ · · ·+ (λu(r)C)N−1

(N − 1)!
exp(−λu(r)C)

]
= EC

[
1−∑N−1

k=0
(λu(r)C)k

k!
exp (−λu(r)C)

]
,

where (a) is from the probability mass function of Poisson distribution, and C is a

random variable representing the coverage area of a Voronoi cell supported by the

considered BS at distance r and its pdf is given by [89]

fC(x) = λK
b

KK

Γ[K]− Γ[K, KπR2λb]
xK−1 exp(−Kλbx).

Hence, the expression for δ(r) can be obtained by solving the following integral,

δ(r) =
πR2∫
0

fC(x)

(
1−

N−1

∑
k=0

(λu(r)x)k

k!
exp (−λu(r)x)

)
dx.

Therefore, the resulting intensity function λ̃b(r) in Lemma 3.2 is derived. �
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3.4.2 Information decoding success probability with TLbS mecha-

nism

In this section, we investigate the ability of a MU to successfully decode the received

signal power, i.e. the ID success probability. In order to maintain the complexity at

a lower level, we assume that all MUs are equipped with single antenna element

and perform ID and EH based on a power splitting approach [13]. As previously

mentioned, the MUs’ movement and the TLbS technique, causing the existence of

non-uniform spatial distribution of the MU and the active BS, respectively. Without

loss of generality, we focus our analysis on a general MU with distance d from the

origin, where 0 ≤ d ≤ R. The scenarios where d = 0 and d = R refer to the case

where MUs are located at the center and the edge of the network area A, respec-

tively. Then, based on the power splitting approach, the ID success probability of a

general MU with distance d to the origin, is defined as [19, 58]

GID(χ, d) , P

[
S

I + σ2
N + σ2

C
≥ χ

]
, (3.18)

where σ2
N is the thermal noise power, σ2

C accounts for the noise introduced during

the conversion from radio frequency to baseband. Since, power splitting approach is

considered, σ2
C = σ2

cov/(1− ρ), ρ is the power splitting parameter; S is the intended

received signal power from the serving BS, I is the aggregate interference observed

at the MU, and χ (dB) is the ID threshold.

We first assess the conditional cdf of the aggregate interference observed at a

general MU, i.e. P[I ≤ X |ro], which is useful for evaluating the considered per-

formance metrics. The following lemma characterizes the conditional cdf of the

aggregate interference.

Lemma 3.3. The conditional cdf of the aggregate interference observed at a MU is given

by [19]

FI(X , ro) =
1
2
− 1

π

∫ ∞

0

Im{exp(−jtX )ψ(t, ro)}
t

dt, (3.19)

where j =
√
−1, Im{·} is imaginary operator and ψ(t, ro) is the characteristic function of

interference I , which is given by

ψ(t, ro) = exp

(
−2

∫ A
0

∫ d cos(θ)+
√

R2−d2 sin(θ)2

ro

(
1− 1

1− jtz−α

)
zλ̃b(z)dzdθ

)
(3.20)
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: Serving	BS

: Interfering	BS

: Sleeping	BS

:MUs	

Figure 3.3: Simplified topology of the TLbS mechanism. The figure illustrates both

the cases where the serving BS is close or far away from a MU, i.e. ro ≤ R− d (left)

and ro > R− d (right).

and

A =


π, ro ≤ R− d,

arccos
(

d2 + r2
o − R2

2dro

)
, ro ≥ R− d.

(3.21)

Proof. Based on the Gil-Pelaez inversion theorem, the conditional cdf of interference

I in (3.19) can be derived from its characteristic function [58]. The calculation of

characteristic function is just following the definition, i.e.

ψ(t, ro) = E

[
exp

(
jt ∑i∈Φ̃\0B

hir−α
i

)]
(a)
= exp

−2
A∫

0

Z∫
ro

(
1− 1

1− jtz−α

)
zλ̃b(z)dzdθ

 ,
(3.22)

where Z = d cos(θ) +
√

R2 − d2 sin(θ)2, and (a) is from the PGFL of PPPs [25].

In addition, the upper limits of the integral in (3.22), i.e. A can be evaluated by

considering two cases as shown in Fig. 3.3. For the case that ro ≤ R − d, where

the dash circle is inside the network area, the range of θ is from −π to π, and thus

A = π; while for the case that ro > R − d, θ ∈ [−θ2, θ2], where θ2 can be derived

based on Cosine rule, and A = arccos
(

d2+r2
o−R2

2dro

)
. �

Therefore, based on the proposed TLbS mechanism, the ID ability of a MU is

characterized by the following theorem in terms of ID success probability.

Theorem 3.1. Based on the proposed TLbS mechanism, the ID success probability of a

general MU, i.e. GID(χ, d) is given by

GID(χ, d) =
1
2
−
∫ R+d

0

∫ ∞

0

Im{Z(t, ro)ψ(t, ro)}
πt f−1

r (ro, d)
dtdro,
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where

Z(t, ro) =
exp(jt(σ2

N + σ2
C))χ

jr−α
o t + χ

,

j =
√
−1 and ψ(·) is the characteristic function of interference I and fr(ro, d) is the pdf of

the distance ro from a MU to its serving BS, which is given by

fr(ro, d) =


− d

dro
exp(−Λ1(ro, d)), ro ≤ R− d

− d
dro

exp(−Λ2(ro, d)), R− d < ro ≤ R + d,
(3.23)

where

Λ1(ro, d) =
∫ ro

0

∫ 2π

0
λ̃b

(√
ρ2 + d2 − 2ρd cos(θ)

)
ρdρdθ

Λ2(ro, d) = 2
∫ ro

0

∫ θ1

0
λ̃b

(√
ρ2 + d2 − 2ρd cos(θ)

)
ρdρdθ + 2

∫ ro

0

∫ θ2

0
λ̃b (ρ) ρdρdθ

− 2
∫ Y

0

∫ d+ y
tan(π−θ1)

y
tan(θ2)

λ̃b(
√

x2 + y2)dxdy

λ̃b(·) is the intensity function of the active BSs, which is given in Lemma 3.2;

θ1 = arccos
(

d2 + r2
o − R2

2dro

)
,

θ2 = arccos
(

R2 + d2 − r2
o

2Rd

)
,

and

Y =

√
(d + ro + R)(d− ro + R)(d + ro − R)(ro + R− d)

2d
.

Proof. The proof is basically based on the distribution of interference, i.e. the ID

success probability of a general MU defined in (3.18) can be rewritten as

GID(χ, d) =P

[
I ≤ hor−α

o
χ
− σ2

N − σ2
C

]
=Eho,ro

[
FI

(
hor−α

o
χ
− σ2

N − σ2
C

)]
,

where FI(·) is the conditional cdf of aggregate interference, derived in Lemma 3.3.

Then substitute the expression of FI(·) and evaluate the expectation over the chan-

nel power gain ho, i.e.

GID(χ, d) = E

[
1
2
−

∞∫
0

Im
{∫ ∞

0 exp(−jt( hor−α
o

χ −σ2
N−σ2

C))e
−hψ(t, ro)dh

}
πt

dt
]

.

43

Yua
n G

uo



Finally, by calculating the above integral as well as evaluating the expected value

over distance ro, the final expression in Theorem 3.1 is derived, where the pdf of ro

can be derived by calculating the derivative of its cdf, i.e.

Fr(ro) = 1−P[r ≥ ro] = 1− exp(−Λ(d, ro)),

where Λ(ro, d) represents the intensity measure function. As shown in Fig. 3.3,

Λ(ro, d) can be calculated based on the two cases, i.e. the serving BS is close or far

way from MUs. For both two cases, Λ(ro, d) is derived by integrating λ̃b(·) over the

intersection area of two circles using non-uniform measure. The angles θ1 and θ2

are used as integral limits in the calculation, which can be derived based on Cosine

rule. �

Moreover, the ID success probability of the MUs located at the center of the con-

sidered finite region A can be further simplified due to the symmetrical properties

of λ̃b(r), which is given in the following corollary.

Corollary 3.1. Based on the proposed TLbS mechanism, the ID success probability of the

MUs located at the origin, i.e. GID(χ, 0) is given by

GID(χ, 0) =
∫ R

0
fr(ro, 0) exp

(
−
∫ R

ro

2πvλ̃b(v)
1 + χ−1(v/ro)α

dv
)

exp
(
− χrα

o (σ
2
N + σ2

C)
)
dro,

where fr(·) is the pdf of the distance from the MU located at the origin to its serving BS,

which can be simplified as

fr(ro, 0) = 2πλ̃b(ro)ro exp
(
−2π

∫ ro

0
λ̃b(v)vdv

)
.

3.4.3 Energy harvesting success probability with TLbS mechanism

In this section, we evaluate the ability of a general MU to harvest sufficient energy,

i.e. the EH success probability, which is defined as

GEH(Q, d) = P[ζρ(S + I) ≥ Q], (3.24)

where ζ accounts for conversion efficiency of the energy harvester and ρ is the power

splitting factor. Therefore, by using the tools from stochastic geometry, the expres-

sion for the EH success probability of a MU is derived in the following theorem.

44

Yua
n G

uo



Theorem 3.2. Based on the proposed TLbS mechanism, the EH success probability of a

general MU, i.e. GEH(Q, d) is given by

GEH(Q, d) =
∫ R+d

0
fr(ro, d)

(1 + exp(−Q̄rα
o )

2
+
∫ ∞

0

Im {V(t, ro)ψ(t, ro)}
πt

dt
)

dro,

where

V(t, ro) =
exp(−Q̄rα

o )− exp(−jQ̄t)
jtr−α

o − 1
,

and Q̄ = Q/(ζρ), ψ(·) is the characteristic function given by (3.20) and fr(·) is the pdf of

the distance from a MU to its serving BS given by (3.23).

Proof. The proof of the EH success probability is also based on the distribution of

the interference I . More specifically, the EH success probability can be rewritten as

GEH(Q, d) =P[S ≥ Q̄] + P
[
I ≥ Q̄ − S|S ≤ Q̄

]
=F̄I(Q̄ − S) + P[S ≥ Q̄],

(3.25)

where Q̄ = Q/(ρζ) and F̄I(·) = 1− FI(·). Therefore, we have,

GEH(Q, d)

=Ero

[
exp(−Q̄rα

o ) +
∫ Q̄rα

o

0
F̄I(Q̄ − hr−α

o ) exp(−h)dh
]

=Ero

[
1 + exp(−Q̄rα

o )

2
+

∞∫
0

Im{
∫ Q̄rα

o
0 exp(−jt(Q̄ − hr−α

o )) exp(−h)dhφ(t, ro)}
πt

dt
]

,

where the integral over h can be computed in closed-form with the aid of the fol-

lowing notable results [19]:∫ x

0
exp

(
− jt(A− Bξ)

)
exp(−ξ)dξ =

exp(−Ajt)− exp(Bjtx− Ajt− x)
1− Bjt

.

Finally, by evaluating the expectation over ro, the final expression in Theorem 3.2 is

derived. �

Since the harvested energy of a MU is mainly associated to its serving BS, espe-

cially for the case with a large number of traffic load threshold N, the interference

power could be ignored for the simplification purpose. Hence, the EH success prob-

ability is approximated in the following corollary.

Corollary 3.2. The EH success probability of a general MU derived in Theorem 3.2 can be

approximated by ignoring the received interference power, and thus is given by

GEH(Q, d) ≈
∫ R+d

0
exp(−Q̄rα

o ) fr(ro, d)dro (3.26)
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3.4.4 Joint information decoding and energy harvesting success prob-

ability with TLbS mechanism

In this section, we focus the attention on the joint ID and EH performance of a gen-

eral MU in the context of the joint ID and EH success probability, i.e. GID&EH(χ,Q, d),

which refers to the ability of a MU to accomplish both ID and EH constraints simul-

taneously. Hence, similar as before, the joint probability of the ID and EH is defined

as

GID&EH(χ,Q, d) , P

[
S

I + σ2
N + σ2

C
≥ χ & ζρ(S + I) ≥ Q

]
, (3.27)

where χ and Q represent the ID and EH thresholds, respectively.

Therefore, by following the similar approaches used before, the analytical ex-

pression of the joint ID and EH success probability is derived in the following theo-

rem.

Theorem 3.3. Based on the TLbS mechanism, the joint ID and EH success probability of a

MU, i.e. GID&EH(χ,Q, d) is given by

GID&EH(χ,Q, d) =
∫ R+d

0

(
1
2

exp(−Q̄rα
o ) +

∫ ∞

0

Im{X (t, ro)ψ(t, ro)}
πt

dt
)

fr(ro, d)dro,

where

X (t, ro) =

exp(−Q̄rα
o )− exp

(
− rα

o (Q̄+σ2
N+σ2

C)+jt(Q̄χ−1−σ2
N−σ2

C)

χ−1+1

)
jtr−α

o − 1

−
exp

(
− rα

o (Q̄+σ2
N+σ2

C)+jt(Q̄χ−1−σ2
N−σ2

C)

χ−1+1

)
jtχ−1r−α

o + 1
.

(3.28)

Proof. The proof follows the similar method in [19]. First, we rewrite the joint ID

and EH success probability defined in (3.27) as

GID&EH(χ,Q, d) =P
[
max{0,Q/(ζρ)− S} ≤ I ≤ S/χ− σ2

N − σ2
C

]
(a)
=P

[
max{0, Q̄ − hor−α

o } ≤ I ≤ hor−α
o /χ− σ2

N − σ2
C

]
,

where Q̄ = Q/(ζρ), and (a) holds by introducing the inequality hor−α
o ≥ χ/(1 +

χ)(Q̄+ σ2
N + σ2

C). Hence, GID&EH(χ,Q, d) can be evaluated by utilising the distribu-

tion of interference I , and then by calculating the expected value over other random
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Figure 3.4: The conditional cdf of SIRn for different α ∈ {3, 4, 6}; ro = 30 m.

variables, i.e. ho and ro, final expression can be derived. More specifically,

G(χ,Q, d) =E

[
FI
(hor−α

o
χ
− σ2

N − σ2
C

)
− FI(max{0, Q̄ − hor−α

o })
]

=E

[ B(ro)∫
A(ro)

(
FI
(hr−α

o
χ
− σ2

N − σ2
C

)
− FI(Q̄ − hr−α

o )

)
e−hdh

+

∞∫
B(ro)

(
FI

(
hr−α

o
χ
− σ2

N − σ2
C

)
− FI(0)

)
e−hdh

]
,

where A(ro) = rα
o

χ
1+χ (Q̄ + σ2

N + σ2
C) is obtained from the inequality Q̄ − hor−α

o ≤

hor−α
o /χ− σ2

N − σ2
C, and B(ro) = Q̄rα

o is from Q̄ − hor−α
o ≥ 0.

Finally, by following the similar methodology in the Proof of Theorem 3.2, i.e.

substitute the expression of FI(·) and evaluate the above integrals, the final expres-

sion of joint ID and EH success probability is derived. �

3.5 Numerical results

In this section, we provide numerical and simulated results to validate the accu-

racy of our model and illustrate the performance of the proposed TbPS and TLbS

schemes. In order to demonstrate the achieved gains of the network performance

with our proposed techniques, the benchmark schemes are also numerically eval-

uated for the comparison purpose. Unless otherwise stated, in our results we con-
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sider the following parameters: for large-scale networks, which encompass an infi-

nite area, the radius of network area is considered infinite, λb = 1
1600π , λu = 5

1600π ,

path-loss exponent α = 3, PS parameter ρ = 0.5, RF-to-DC efficiency ζ = 0.7; for the

small-scale networks, R = 100, λb =
2

1600π , λu is the same as in large-scale networks,

the small-scale networks also share the same α, ρ, and ζ values as the large-scale net-

works, σ2
N − 85 dBm and σ2

cov = −35 dBm.

Fig. 3.4 demonstrates the conditional cdf of the SIRn for different path loss ex-

ponents. The solid lines represent the conditional cdf derived in Lemma 3.1 and the

markers depict the analytical results. In order to demonstrate the impact of the inter-

ference correlation on the performance achieved by the TbPS scheme and validate

the accuracy of the adopted assumptions, we numerically evaluate the scenario,

where the interference power observed within each antenna pair is correlated but

not equal (denoted as "Exact performance"), i.e. Ik , Ik+1, and the scenario where

interference received at different antenna elements is independent with each other

(denoted as "No correlation"). We can easily observe that the performance achieved

by using the adopted assumptions provides a tight upper bound for the exact per-

formance, with lower computational complexity. On the other hand, by ignoring

the existence of spatial correlation between interference, it leads to a large deviation

from the exact performance, especially, for higher path loss exponents. This was

expected since, in dense urban areas, i.e. high path loss exponents, the aggregate in-

terference is mainly composed by the interference caused by the closest interfering

BS. Hence, if an antenna fails to decode the received signal, then the rest antennas

will fail to decode the received signal with high probability, due to the existence of

interference correlation.

Fig. 3.5 illustrates the effect of the threshold γth on the ability of a MU to suc-

cessfully decode the received signal power. In particular, Fig. 3.5 plots the ID suc-

cess probability with respect to the threshold γth for different decoding thresholds

χ ∈ {0, 5, 10} dB. Both simulation and analytical results are presented in Fig. 3.5,

denoted as "TbPS simulation" and "TbPS analysis", respectively. In addition, the sce-

nario, where the interference power observed within each antenna pair is correlated

but not equal, denoted as "Exact performance", is also presented here to validate the

accuracy of the adopted assumption. It can be observed that there exists minimum

gap between our analytical results and the exact performance. Moreover, we can

easily observe that the ability of a MU to successfully decode the received signal
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Figure 3.5: ID success probability of MUs with TbPS scheme versus the threshold

γth for different χ ∈ {0, 5, 10} dB.

power increases with the increase of the predefined threshold γth. This was ex-

pected since, the increase of γth results in an increased number of antenna elements

that perform ID, and consequently, the ability to successfully decode the received

signal power is enhanced. However, beyond a critical value of γth, which is equal

to γth = χ, the ID success probability remains constant. This can be explained by

the fact that, for large values of γth, a MU is unable to assign an additional pair of

antennas for the ID due to the constrain of the existence of at least one pair of anten-

nas for EH, i.e. the performance could be further boosted for the receiver with more

pairs of antenna elements. Moreover, by increasing the decoding threshold χ, the

ID performance drops, which is from fact that greater decoding threshold requires

higher post-combiner SIR to achieve the same success probability.

Similarly, Fig. 3.6 illustrates the effect of γth on the EH success probability for

different EH reliability thresholds Q ∈ {−15,−10,−5} dBm and different density

of BSs λb ∈ { 1
1600π , 1

2500π}. Firstly it can be observed that denser BS deployments

can boost the EH success probability based on the proposed TbPS technique. This

is based on the fact that the increasing number of active BSs in the network results

in a higher aggregated received signal power at the MUs, which can be harvested.

Moreover, as expected, the harvested energy of MUs decreases as the predefined

threshold γth increases, since the number of antenna elements allocated for energy

harvesting reduces, and hence the EH success probability drops. Moreover, Fig. 3.6
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Figure 3.6: EH success probability of MUs with TbPS scheme versus the threshold

γth for different Q ∈ {−15,−10,−5} dBm.

also demonstrates the impact of the considered approximation regarding the ob-

served interference on the EH success probability. The small deviation from the

simulation results shows that the overall network interference can be effectively ap-

proximated by the mean interference power, without being significantly deficient in

accuracy. Moreover, we can conclude from Fig. 3.6 that, by changing network pa-

rameter (i.e.,density of BSs), a shifted EH performance is observed, while the curves’

shape maintains constant. These observation holds for all figures presented in our

results.

Fig. 3.7 shows the impact of the threshold γth on the ability of a MU to simulta-

neously satisfy the requirements for both ID and EH procedures. It is worth noting

that, by increasing the threshold γth, the ability of a user to simultaneously satisfy

the ID and EH constrains increases. This is because, as the value of the threshold γth

increases, the proposed TbPS scheme allocates a higher number of antenna elements

for the ID part. Hence, the ability of a MU to successfully decode the received sig-

nal is significantly improved, while its ability to harvest energy is slightly reduced.

However, beyond the critical point γth = χ, the ability of a user to simultaneously

satisfy the ID and EH constrains decreases. As indicated in Fig. 3.5 and Fig. 3.6,

the ability of a user to successfully decode the received signal beyond a threshold

equal to χ, remains constant, while the ability to harvest energy is reducing, and

hence the joint ID and EH success probability is decreasing. Finally, we numerically
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Figure 3.7: Joint ID and EH success probability versus the threshold γth for different

χ ∈ {−5, 0, 5} dB and Q ∈ {−15,−12.5,−10,−8.5} dBm.

evaluate the conventional AS scheme, where half number of antennas are used for

ID and half for EH [13]. It can be observed that, the performance achieved with

our proposed technique outperforms that of the conventional scheme in terms of

the optimal joint ID and EH success probability, where a maximum 5% gain over

the conventional AS scheme can be achieved based on the considered network pa-

rameters. Moreover, the proposed TbPS scheme is able to satisfy various ID and EH

requirements of practical applications, by adjusting the predefined threshold.

Fig. 3.8 shows the impact of our proposed TLbS mechanism on the ID perfor-

mance of the MUs at different locations, i.e. d = {0, 70, 100} m. We can firstly

observe that, for low values of traffic load threshold, N, the ID success probability

increases with the increase of the traffic load threshold. This was expected since,

by increasing the value of N, more and more BSs are switched to sleeping mode,

the inter-cell interference is reduced, and therefore, the ability of MUs to success-

fully decode the received signal is enhanced. However, beyond a critical value of

N, the ID success probability decreases. This was expected since, by further in-

creasing the traffic load threshold, the number of BSs that are in sleeping mode

increases, resulting in the distances between the MU and its closest active BS to be

greater, compromising the ability of a MU to successfully decode the received signal

power. Moreover, we can observe that the ID success probability of the MUs located

between the center and edge regions, i.e. d = 70 m, overcomes the performance
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Figure 3.8: ID success probability of MUs with TLbS mechanism versus the mini-

mum number of MUs constraint N for different d ∈ {0, 70, 100}m; λb = 2/(1600π),

R = 100 m, and χ = 0dB.

achieved by the MUs that are located at the center and edge regions. This can be ex-

plained by the fact that, the MUs which are located at the center experience severe

inter-cell interference, while the MUs at the edge receive a weak signal power from

their serving BSs due to the non-uniform distribution of BSs imposed by the pro-

posed TLbS technique. Finally, Fig. 3.8 also plots the achieved performance without

sleeping mechanism (dash lines) [90], i.e. all BSs are active. It can be observed that,

by appropriately selecting the values of N, our proposed TLbS mechanism enables a

higher ID success probability of MUs at different locations. This was expected since

that, the inter-cell interference power is significantly reduced with TLbS mechanism,

resulting in a higher SINR at MUs.

Fig. 3.9 demonstrates the impact of the traffic load threshold N on the EH success

probability of the MUs at different locations, i.e. d = {0, 70, 100} m. We can easily

observe that the EH success probability of the MUs, regardless of the location, de-

creases with the increase of the traffic load threshold. We can easily observe, that

the EH success probability of the MUs is reduced with the raise of the traffic load

threshold, regardless of the MUs’ locations. This is due to the fact that, by increasing

the traffic load threshold, more and more BSs become inactive within the network,

and consequently, the received RF ambient energy at the MUs’ rectenna reduces. In

addition, it can be easily observed that, the MUs located at center have the ability
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Figure 3.9: EH success probability of MUs with TLbS mechanism versus the mini-

mum number of MUs constraint N for different d ∈ {0, 70, 100}m; λb = 2/(1600π),

R = 100 m, and Q = −30dBm.

to harvest significantly higher RF ambient energy compared with the MUs located

elsewhere. This was expected, since the movement process of the MUs and the pro-

posed TLbS technique lead to a larger number of active BSs around the network’s

center, and hence, the observed RF energy is significantly higher at the center region

compared to that at the edge region of the network. Moreover, Fig. 3.9 demonstrates

the impact of interference on the network performance. The small deviation from

the theoretical curves at high traffic load thresholds indicates that, the aggregate in-

terference power is negligible compared to the signal power from the serving BS for

high values of N, providing a lower bound for the actual network performance.

Fig. 3.10 illustrates the impact of the traffic load threshold N on the ability of

MUs to simultaneously satisfy ID and EH threshold. It is interesting to note that at

low traffic load thresholds, the de-activation of BSs improves the network perfor-

mance. However, by increasing the traffic load threshold beyond a critical point,

the network performance decreases. As we previously mentioned, at low traffic

load thresholds, the ability of MUs to successfully decode the received signal sig-

nificantly increases with the increase of the traffic load threshold, while their ability

to harvest energy is slightly reduces. In contrast, for high traffic load thresholds,

both the ID and EH capabilities of the MUs are reduced, leading to a reduced joint

ID and EH probability. Fig. 3.10 also highlights, that an optimal operating point,
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Figure 3.10: Joint ID and EH success probability of MUs with TLbS mechanism

versus the minimum number of MUs constraint N for different d ∈ {0, 70, 100} m;

λb = 2/(1600π), R = 100 m, χ = 0dB and Q = −30dBm.

as a function of N, exists, where the joint ID and EH probability attains its optimal

value. The optimal value of N, in particular, decreases as the MU moves away from

the center of the network area, i.e. d increases. Moreover, Fig. 3.10 also plots the

conventional schemes where all BSs are active (dash lines) [90], i.e. the traffic load

threshold N = 0, for the comparison purpose. It can be observed that the TLbS

mechanism enables a higher joint ID and EH success probability of MUs at different

locations, with appropriate values of traffic load threshold N, where a maximum

20% gain over the conventional scheme can be achieved by the TLbS mechanism.

In addition, the TLbS mechanism enables the highest performance improvement for

the MUs at the center, compared with the case where all BSs are active. It can be

explained by the fact that, by properly selecting the traffic load threshold value N,

the inter-cell interference power is reduced due to the de-activation of interfering

BSs, while the MUs at center are still able to communicate with nearby serving BSs

to maintain the acceptable signal strength.

Finally, Fig. 3.11 shows the impact of the power splitting factor on the SWIPT

capabilities of the MUs located at the different locations. In particular, Fig. 3.11

plots the joint ID and EH success probabilities versus the power splitting factor, for

d ∈ {0, 70, 100} m . We can easily observe that, there exists an optimum power

splitting factor for all MUs, which achieves the maximum joint ID and EH success
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Figure 3.11: EH success probability of MUs with TLbS mechanism versus the power

splitting factor ρ for different d ∈ {0, 70, 100} m; λb = 2/(1600π), N = 5, χ = 0 dB

and Q = −30dBm.

probability. This was expected since, a trade-off exists between the ID and the EH

performance of the MUs. Hence, for attaining the maximum performance for both

MUs’ abilities, a carefull selection of the power splitting factor has to be performed.

Moreover, it is shown that, the MUs located at the center of the network area (i.e.,

d = 0 m) achieve the best SWIPT performance, while the edge MUs (i.e., d = 100 m)

have the worst performance. This is expected since, based on the TLbS mechanism,

the mobility of the MUs leads to a less number of active BSs around the network’s

edge area, and hence, the received RF signal power is much less at the edge region

compared to that at the center region of the network. Finally, we can easily observe

that, the power splitting factor can be adjusted based on the practical scenarios, to

satisfy the various requirements of the information decoding and energy harvesting

applications.

3.6 Summary

In this chapter, we investigated the SWIPT-enabled 6G mobile networks, where

users’ mobility is modelled based on RWP model. According to the areas of the con-

sidered networks, i.e. finite or infinite regions, we investigated the MUs’ ability of

ID and EH with two proposed novel techniques, i.e. TbPS scheme and TLbS mech-
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anism. In particular, TbPS scheme was proposed to enhance the ID and EH per-

formance for the SWIPT-enabled multi-antenna MUs in the infinite area networks,

where the existence of interference correlation between nearby antennas was con-

sidered. Moreover, TLbS mechanism was proposed to dynamically determine the

state of the BSs, i.e. either active or in sleeping mode, based on the traffic load,

aiming the joint optimization of users’ throughput and EH performance. By using

the tools from stochastic geometry, the analytical expressions of ID, EH as well as

joint ID and EH success probability were derived for MUs, based on TbPS or TLbS

techniques. Finally, the optimal design parameters (i.e. antenna selection and traffic

load threshold) of our proposed schemes were demonstrated, which could achieve

the maximum joint ID and EH performance of MUs.
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Chapter 4

SWIPT-enabled multi-antenna mobile

users with a linear MMSE receiver

In this chapter, we evaluate the performance of a linear MMSE receiver in the con-

text of SWIPT-enabled cellular networks. In contract to the existing works, where

a single-antenna SWIPT architecture is mainly considered, we focus on the SWIPT

performance of the multi-antenna receiver architecture, based on the AS and PS

techniques. Aiming to further boost the network performance, we investigate a

scenario where the receivers have the capability to employ a SIC scheme. By lever-

aging tools from stochastic geometry, we establish an analytical and tractable frame-

work to evaluate the ID and the EH success probabilities of the considered network

topologies.

4.1 Motivation and contribution

As we previously mentioned, for the SWIPT-enabled multi-antenna receivers, the

interference observed across different antenna elements is spatially correlated [61]

[67]. While it has been long recognized that the correlated fading reduces the per-

formance gain of multi-antenna communication systems, the concept of interference

correlation has been overlooked until recently. Due to the existence of interference

correlation between different antennas, the MRC results in a suboptimal perfor-

mance. Hence, in this chapter, we study the SWIPT performance for multi-antenna

MUs in the context of a linear MMSE receiver. In particular, the MUs employ either a

PS or an AS scheme to simultaneously extract information and harvest energy from
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the received RF signals, where a MMSE receiver is employed for ID purpose. In

order to further enhance the network performance, a SIC technique is investigated

to improve the ID performance of the MUs, via mitigating the strongest multi-user

interfering signals. By using stochastic geometry tools, we analytically derive the

ID and the EH success probabilities, where closed-form expressions are obtained

for the interference-limited scenarios. Our results show that the MMSE receiver

achieves higher ID and EH success probabilities, compared with the conventional

MRC. Moreover, it is demonstrated that, due to the MMSE receiver, the PS scheme

outperforms the AS scheme in terms of both the ID and the EH performance. Fi-

nally, a significant gain of SWIPT performance can be achieved, by employing the

SIC technique at the MUs.

4.2 System model

The network topology has been introduced in Section 2.2.2. In this chapter, we

consider a single-input-multiple-output (SIMO) setup, where all BSs transmit unit-

power signals with single omnidirectional antenna, while all MUs are equipped

with L antenna elements [35, 36]. We assume that all MUs can decode information

and harvest energy simultaneously by using the SWIPT technology, based on either

PS (see Section 2.2.5) or AS schemes. For the scenario where the MU employs the

AS scheme, ` antennas are used for ID, where 0 ≤ ` ≤ L, and the remaining L− `

antennas are used for EH [63]. A linear MMSE receiver is assumed to be equipped

at each MU, where an optimal weight vector is determined, such that the output

SINR is maximized [35, 36]. Hence, the output SINR can be expressed as

γ = ρr−α
0 ĥH

0 R−1ĥ0, (4.1)

with

R = ∑xi∈Φ\x0 ρrα
i ĥiĥH

i + σ2I`, (4.2)

where ĥi ⊆ hi is a ` dimensional vector representing the channel coefficients of the

links between the i-th BS and the MU’s antennas allocated for ID. Note that (4.1)

holds for both the PS and AS scheme, i.e. ` = L and 0 ≤ ρ ≤ 1 are adopted for the

PS scheme, while ρ = 1 and 0 ≤ ` ≤ L for the AS scheme. Regarding the energy

transfer model, we adopt a non-linear EH model, and thus the harvested energy of
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a MU is quantified as following [65]

ψ =
νρη

1 + F ∑xi∈Φ ∑L
j=`+1 hijr−α

i . (4.3)

4.3 SWIPT performance with a linear MMSE receiver

In this section, we investigate the ID and the EH performance for scenarios with

a MMSE receiver [35]. Firstly, we analytically derive the exact expressions for the

ID and the EH success probabilities, by using stochastic geometry tools. Moreover,

closed-form expressions of the ID and the EH success probabilities are derived for

the interference-limited regime.

4.3.1 Information decoding success probability

The ID success probability is defined as the probability that the output SINR of the

MMSE receiver is greater than the decoding threshold β, i.e. P[γ ≥ β]. The achieved

ID success probability of the typical MU that employs either the PS or the AS scheme

is characterized by the following theorem.

Theorem 4.1. By using a MMSE receiver, the ID success probability of the typical MU is

given by

ΠI(β) =
∫ ∞

0

Γ
(
`, σ2ρ−1βrα

0 + λδ(r0, β)
)

Γ
(
`
) f (r0)dr0, (4.4)

where δ(r0, β) =
2πr2

0β2F1(1, α−2
α ;2− 2

α ;−β)
α−2 , and f (r0) is the pdf of the distance from the typical

MU to its serving BS, which is given by (3.23).

Proof. Firstly, by conditioning on the distance between the typical MU to all BSs, the

conditional ID success probability could be formulated as [36]

P[γ ≥ β|r0, r1, . . . , rK] =
exp

(
−σ2βrα

0
)

∑`−1
i=0 ai(βr0)

i

∏K
j=1

(
1 + r−α

j βr0

) ,

where K is the number of BSs, and ai are the first ` coefficient of the Taylor expansion

of exp
(
−σ2βrα

0
)

∏N
j=1(1 + r−α

j βr0).

Then, by un-conditioning over the distance from the typical MU to interfering

BSs, i.e. r1, r2, · · · , rK, and following [35, Eq.(15)], the conditional ID success proba-
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bility, i.e. P[γ ≥ β|r0] can be expressed as

P[γ ≥ β|r0] = exp

(
−

σ2βrα
0

ρ

)
`−1

∑
j=0

j

∑
k=0

(σ2ρ−1βrα
0)

j−k

k!(j− k)!

(
2πλ

∫ ∞

r0

x1−αβrα
0

1 + x−αβrα
0

dx

)k

× exp

(
−2πλ

∫ ∞

r0

x1−αβrα
0

1 + x−αβrα
0

dx

)
.

The above integrals can be evaluated, by using the transformation u ← x2 and by

using the expression in [91, 3.24], such that we have

P[γ ≥ β|r0] = exp

(
−

σ2βrα
0

ρ

)
`−1

∑
j=0

j

∑
k=0

(σ2ρ−1βrα
0)

j−k

k!(j− k)!
(
λδ(r0, β))k exp

(
− λδ(r0, β)

)
,

where δ(r0, β) =
2πr2

0β2F1(1, α−2
α ;2− 2

α ;−β)
α−2 . Then, by using the binomial theorem [92],

the above expression can be further reconstructed as

P[γ ≥ β|r0] = exp

(
−

ρλδ(r0, β) + βrα
0σ2

ρ

)
×

`−1

∑
j=0

(σ2ρ−1βrα
0 + λδ(r0, β))j

j!

=
Γ
(
`, σ2ρ−1βrα

0 + λδ(r0, β)
)

Γ
(
`
) ,

where the final step is based on the expression in [93, Eq(8.69)]. Finally, by un-

conditioning with respect to r0, the result in Theorem 4.1 can be obtained. �

Even though the expression in Theorem 4.1 can be evaluated via numerical tools,

this task could be cumbersome due to the complexity of the involved integral. Aim-

ing to further simplify the analysis, we consider special cases with practical interests

in the following propositions.

Proposition 4.1. For the interference-limited scenario, where the noise is negligible in com-

parison to the multi-user interference, the ID success probability of the typical MU is given

by

ΠI(β) = 1−
(

α− 2
2β2F1

(
1, α−2

α ; 2− 2
α ;−β

) + 1

)−`
.

Proof. Based on the expression obtained in Theorem 4.1, the ID success probability

for the interference-limited scenaro, where the additive noise is neglected, can be

derived by utilizing the transformation x ← δ(r0, β), which yields

ΠI(β) =
∫ ∞

0

Γ (`, x)
Γ
(
`
) exp

(
−x(α− 2)

2βy

)
α− 2
2βy

dx,

where y = 2F1
(
1, α−2

α ; 2− 2
α ;−β

)
. Then, by using the resulting expression [91,

6.451], the desired expression can be obtained. �
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Based on the expression in Proposition 1, we can observe that, for the interference-

limited scenario, the density of the BSs, i.e. λ, has no effect on the ID success proba-

bility, when a MMSE receiver is employed. This can be indicated by the scale invari-

ance property of the PPP [25]. In addition, the ID success probability only depends

on the decoding threshold and the number of antennas that are assigned for ID,

i.e. β and `, respectively. For a certain decoding threshold β, as the number of an-

tennas becomes large, i.e. ` → ∞, the ID success probability approaches one, i.e.

lim`→∞ ΠI(β) = 1.

Proposition 4.2. For the interference-limited scenario with a propagation exponent α = 4,

the ID success probability of the typical MU can be further simplified as

ΠI(β) = 1−
((√

β tan−1(
√

β)
)−1

+ 1
)−`

,

where tan−1(·) is the inverse tangent function.

4.3.2 Energy harvesting success probability

We investigate the EH performance of the typical MU in the context of EH success

probability, which is defined as the probability that, the harvested energy of the

typical MU is higher than the EH threshold ε, i.e. P[ψ ≥ ε]. The following theorem

provides a closed-form expression for the EH success probability achieved by the

typical MU.

Theorem 4.2. The EH success probability of the typical MU is given by

ΠE(ε) = 1− exp

(
ζ + 2πλ

Γ
(
− 2

α

)
s2/αΓ

(
L− `+ 2

α

)
αΓ(L− `)

)
, (4.5)

where s = ρνηζ
ε .

Proof. The EH success probability can be re-written as

P[ψ ≥ ε] =P
[

F ≤ νηρ

ε ∑xi∈Φ ∑L
j=`+1 |hj,i|2r−α

i − 1
]

.

Since F is an exponential random variable with mean ζ, the above equation can be

expressed as

P[ψ ≥ ε] =1−E

[
∏xi∈Φ exp

(
−ρνηζci

εrα
i

)]
exp(ζ), (4.6)

61

Yua
n G

uo



where ci = ∑L
j=`+1 |hj,i|2. Since for the Rayleigh fading, the channel power gain

is an exponential random variable, i.e. |hj,i|2 ∼ exp(1), ci is a Gamma distributed

random variable with shape parameter L− ` and unit scale, i.e. ci ∼ G(L− `, 1) [68].

Therefore, the above expectations can be evaluated as following

E

[
∏xi∈Φ

∫ ∞

0
exp

(
−ρνηζc

εrα
i

)
exp(−c)cL−`−1

Γ(L− `)
dc

]
(a)
=E

[
∏xi∈Φ

(
εrα

i
ρνηζ + εrα

i

)L−`
]

(b)
= exp

(
−2πλ

∫ ∞

0

(
1−

(
εrα

ρνηζ + εrα

)L−`
)

rdr

)
, (4.7)

where (a) is derived based on the resulting expression [91, 3.351] and (b) follows

from the probability generating functional of a PPP [25]. Finally, by evaluating the

above integral and by substituting (4.7) into (4.6), the final result in Theorem 4.2 is

derived. �

From the expression in Theorem 4.2, we can observe that, if the number of anten-

nas used for EH purpose becomes large (i.e., L− `→ ∞), the EH success probability

approaches one, i.e. limL−`→∞ ΠE(ε) = 1. Furthermore, a denser deployment of the

BSs can improve EH performance. Specifically, in the ultra-dense networks with in-

finite BSs’ density, the EH success probability is equal to one, i.e. limλ→∞ ΠE(ε) = 1.

Proposition 4.3. For the special case with α = 4, the EH success probability of the typical

MU can be further simplified as

ΠE(ε) = 1− exp

(
ζ −

π2λ
√

s
(
2(L− `)

)
!

4L−`(L− `− 1)!(L− `)!

)
.

Proof. Based on the expression given in Theorem 4.2 and the resulting expression

Γ
(

1
2 + n

)
= (2n)!

4nn!
√

π, the simplified expression for the EH success probability can

be obtained. �

4.4 Successive interference cancellation

In this section, a SIC technique is investigated to improve the ID performance of

MUs, via mitigating the strongest interfering signals. The achieved additional gains

of the ID performance, release the number of antennas required for ID purpose,

which can be used to further enhance the EH performance. In particular, we assume
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that each MU has the ability to implement an ideal SIC in accordance to [94]. More

specifically, the SIC is utilized when the MU fails to decode the intended signal,

and tries to decode and subtract the strongest interfering signal from the received

signals. If it is successfully decoded, the received signals are re-combined by the

MMSE receiver and the MU re-attempts to decode the intended signal. If it still fails

to decode the intended signal, it proceeds to decode and subtract the next strongest

interfering signal. We consider that the above procedure repeats up to N times,

during which the MU will either successfully decode the intended signal or will be

in outage. In addition, the order statistics of the received signal power are assumed

to be determined by the distance. In what follows, the observed interference terms

from different BSs are assumed to be mutually independent [94].

We start by calculating the probability of the typical MU to successfully decode

and subtract the i-th strongest interfering signal, conditioned that the i− 1 strongest

interfering signal has been perfectly subtracted [94].

Lemma 4.1. By using a MMSE receiver, the probability of the typical MU to successfully

decode and subtract the i-th strongest interfering signal is given by

ΠD(β, i) =
∫ ∞

0

Γ
(
`, σ2ρ−1βrα

i + λδ(ri, β)
)

Γ
(
`
) f (ri)dri,

where δ(ri, β) =
2πr2

i β2F1(1, α−2
α ;2− 2

α ;−β)
α−2 and f (ri) is the pdf of the distance between the

typical MU and the i-th closest interfering BS, which is given by (3.23).

Proof. Since the i − 1 interfering signals are assumed to be already subtracted, the

remaining interferers set is Φ̂ = {xi+1, xi+2, · · · } and the i-th interfering signal is

now treated as the intended signal to be decoded. Hence, the output SINR of the

MMSE receiver is given by

γi = ρr−α
i ĥH

i R−1ĥi,

where R = ∑xj∈Φ̂ ρrα
i ĥjĥH

j + σ2I` denotes the covariance matrix of the interference

plus noise. First conditioning on ri and replacing the integral limits r0 with ri, then

evaluating the expectation over ri. �

Given that i strongest interfering signals have been successfully decoded and

subtracted, the ID success probability of the typical MU is characterized in the fol-

lowing Lemma.

63

Yua
n G

uo



Lemma 4.2. By using the MMSE receiver, the ID success probability of the typical MU,

which has successfully subtracted i interfering signals is given by

ΠC(β, i)=
∫ ∞

0

∫ ∞

r0

Γ
(
`, σ2ρ−1βrα

0+λδ(ri, β)
)

Γ
(
`
)

g−1(r0, ri)
dridr0,

where g(r0, ri) is the joint pdf of the distance from the typical MU to its serving BS and the

i-th closest interfering BS, which is given by [95]

g (r0, ri) =
4(πλ)i+1r0ri

(
r2

i − r2
0
)i−1

exp
(
πλr2

i
)
(i− 1)!

. (4.8)

Proof. Since i strongest interfering signals have been subtracted, the remaining input

of the MMSE receiver includes the intended received signal from serving BS at x0

and other interfering signals. Then by conditioning on the distance from the typical

MU to its serving BS and i-th interfering BS, i.e. r0 and ri, respectively, the condi-

tional ID success probability can be obtained by using the similar steps in Lemma

4.1. Finally, by evaluating the expectation over r0 and ri, where the joint distribution

is given by (4.8), the final result in Lemma 4.2 is derived. �

We now present the main theorem for the ID success probability of the typical

MU, by taking into account both the MMSE receiver and the SIC technique.

Theorem 4.3. By using a MMSE receiver, the ID success probability of the typical MU

which attempts to cancel up to N interfering signals is given by

ΠSIC(β, N) = ΠI(β) +
N

∑
j=1

(
j−1

∏
i=0

1−ΠC(β, i)

)(
j

∏
i=1

ΠD(β, i)

)
ΠC(β, i). (4.9)

Proof. For the sake of the analytical tractability, we assume that the interfering sig-

nals are independent. Therefore, the proof is directly given from the SIC proce-

dure. �

4.5 Numerical results

In this section, we provide both simulation and theoretical results to validate the

accuracy of our model, and to illustrate the performance and potential benefits of

the considered system model. Unless otherwise stated, in our results we use the

following parameters: λ = 1/3600, α = 4, L = 8, ζ = 0.01, η = 0.7, N = 1, β = 10

dB, ε = −30 dBm and σ2 = −60 dB.
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Figure 4.1: ID success probability versus the ID threshold (β), for the considered PS

and AS schemes, where ρ ∈ {0.5, 0.25} and ` ∈ {4, 2}.

Fig. 4.1 illustrates the effect of the AS and the PS schemes on the ID performance

of the typical MU with a MMSE receiver. In particular, Fig. 4.1 plots the ID suc-

cess probability (given in Theorem 4.1) with respect to the decoding threshold for

different AS and PS partitioning parameters, i.e. ` ∈ {2, 4} and ρ ∈ {0.25, 0.5},

respectively. Initially, the agreement between the theoretical results (markers) and

the simulation results (solid and dash curves) validates our mathematical analysis.

Firstly, it can be observed that a larger number of antennas or a larger power split-

ting ratio achieve a higher ID success probability. This was expected since, for the

AS scheme, by allocating more antennas for ID purpose, a greater output SINR is

achieved of the MMSE receiver. In addition, for the PS scheme, by allocating more

signal power for ID purpose, noise effects are suppressed accordingly, thereby im-

proving the ID performance of MUs. Another interesting observation is that, based

on either the AS or the PS scheme, by allocating half number of the total antennas

(` = 4) or half total received signal power (ρ = 0.5) for ID purpose, the PS scheme

outperforms the AS scheme in terms of ID success probability. This observation

is justified from the fact that the AS scheme randomly selects part of antennas for

ID, which may have a poor signal quality (i.e. low SINR); while PS scheme utilizes

all receiving antennas, which enables the best diversity branches to be combined,

thus resulting in a better ID performance. Finally, we can observe that, with denser

network deployments (λ = 0.001), the interference limited scenario (given in Propo-
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Figure 4.2: EH success probability versus the EH threshold for the considered PS

and AS schemes, where ρ ∈ {0.5, 0.25} and ` ∈ {4, 6}.

sition 4.1 & 4.2) provides a tight approximation with the exact ID success probability.

Fig. 4.2 depicts the impact of the AS and the PS schemes on the EH success prob-

ability (given in Theorem 4.2 and Proposition 3) for different densities of the BSs,

i.e. λ ∈ {1/3600, 1/1000}. Firstly, it can be observed that, a denser deployment

of BSs achieves a higher EH success probability. This was expected since, a denser

network provides more multi-user interference, which can be used for harvesting

energy by the MUs. We can also observe that, by allocating more antennas or more

signal power for EH purpose, the EH performance is improved. Finally, it is indi-

cated that, for the case where the half received power or half number of antennas

are allocated for EH based on the PS and AS scheme, respectively, the PS scheme

achieves a slightly higher EH success probability than the AS scheme.

Fig. 4.3 shows the achieved ID and EH success probability regions, with differ-

ent number of receiving antennas L ∈ {4, 8, 16} and with different techniques, i.e.

MRC receiver, MMSE receiver, and MMSE receiver with the SIC technique (denoted

as MMSE-SIC), where the AS scheme is employed and the noise power is ignored.

Firstly, a clear trade-off between the ID and the EH performance can be observed

for any number of receiving antennas. This was expected since, by allocating more

number of antennas for ID (or EH) purpose, the corresponding performance is im-

proved, while on the other hand, the EH (or ID) success probability is decreased

since less resources are allocated. Similarly, by increasing the total number of an-
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Figure 4.3: ID and EH success probability regions for the considered MMSE, MRC,

and MMSE-SIC techniques, where β = 10 dB and ε = −30 dBm.

tennas, both the ID and the EH performance is improved. Moreover, Fig. 4.3 plots

the performance achieved by the MRC technique for comparison purpose [68]. We

can observe that, the MMSE outperforms the MRC for any number of antennas.

This is based on the fact that the MMSE receiver is an optimal combining approach,

which yields a maximum output SINR, while the MRC receiver is a low-complexity

approach and achieves a worse performance when the interference signals are corre-

lated. Finally, an addition gain can be observed with the employment of the MMSE-

SIC technique. In this case, the strongest interfering signals are decoded and sub-

tracted, resulting in a higher SINR, thereby the ID success probability is increased.

4.6 Summary

In this chapter, we studied the SWIPT technology in the context of a linear MMSE

receiver. By leveraging tools from stochastic geometry, we established a tractable

mathematical framework to evaluate the SWIPT performance for multiple antennas

MUs. Based on PS or AS schemes, exact analytical expressions for both the ID and

the EH success probabilities were derived, while simple closed-form expressions

were obtained for the interference-limited case. Moreover, a SIC technique was in-

vestigated to further improve the SWIPT performance, via mitigating the strongest

interfering signals. Our results have shown that, the MMSE receiver outperforms
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the conventional MRC in terms of SWIPT performance. By using a MMSE receiver

and by allocating an equal fraction of resources for ID and EH, the PS scheme out-

performs the AS in the context of both the ID and the EH performance. Finally,

by employing the SIC technique, an additional gain on SWIPT performance was

demonstrated in terms of both the ID and the EH success probabilities performance.
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Chapter 5

SWIPT-enabled mobile networks with

a coverage area-based CoMP

technique

In this chapter, we propose a novel coverage area-based CoMP (CA-CoMP) scheme

for SWIPT-enabled mobile networks, aiming at reducing the handover rate and en-

hancing the SWIPT performance. In particular, by taking into consideration the het-

erogeneity of BSs’ footprints, the CA-CoMP scheme enables a MU to select and com-

municate with multiple BSs, whose coverage areas are greater than a pre-defined

threshold. By leveraging stochastic geometry tools, we study the CA-CoMP scheme

in terms of several key performance metrics, i.e. inter- and intra-cell handover rate,

success probabilities, average spectral efficiency, average harvested energy as well

as energy efficiency, of which the analytical expressions are derived.

5.1 Motivation and contributions

Although several CoMP techniques are developed for the mobile networks, which

induce a higher network management complexity due to the multi-tier network

topologies, low-complexity mobility management and energy-efficient CoMP tech-

niques are missing from the literature. Moreover, the intra-cell handover analysis

under a CoMP transmission scenario is overlooked from the current studies. Hence,

the aim of this work is to fill these gaps by providing a novel CoMP scheme for

SWIPT-enabled single-tier mobile networks, aiming at reducing the inter- and intra-
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cell handover rate and enhancing the SWIPT performance. Specifically, the main

contributions of this work are summarized as follows:

• We develop an analytical framework based on stochastic geometry, which

comprises the co-design of SWIPT and CoMP techniques, shedding light on

the analysis of SWIPT-enabled large-scale mobile networks. In particular, the

developed framework takes into account the ability of MUs to jointly com-

municate with multiple BSs in a non-coherent manner and perform non-linear

EH, where all MUs have arbitrary velocity and trajectory within the consid-

ered network area.

• We propose a novel low-complexity CoMP scheme, aiming to reduce the han-

dover rate of the high mobility MUs and to enhance their SWIPT performance.

More specifically, the CA-CoMP scheme enables the high mobility MUs to

jointly communicate with multiple serving BSs, whose coverage areas are greater

than a pre-defined threshold; thus frequent handovers associated with small-

coverage area BSs are avoided.

• By leveraging tools from stochastic geometry, we derive closed-form expres-

sions for both the inter- and intra-cell handover rate for the proposed CA-

CoMP scheme. Analytical expressions for the ID and EH success probabili-

ties, the average spectral efficiency, the harvested energy, as well as the en-

ergy efficiency are derived. Furthermore, under specific practical scenarios,

closed-form expressions for the aforementioned metrics are derived. These

closed-form expressions provide a quick and convenient method to evaluate

the network performance and obtain insights into how key parameters affect

the network.

• Our results reveal that with the employment of the proposed CA-CoMP scheme,

MUs experience significantly fewer inter- and intra-cell handover processes

compared to that observed with the employment of conventional CoMP schemes.

In addition, by properly selecting the area threshold parameter, the numerical

results exhibit considerable spectral efficiency increase by 41% compared to

that achieved with the conventional schemes; the optimal area threshold that

offers the highest SWIPT performance is also illustrated. Finally, we demon-

strate that a higher average harvested energy and energy efficiency can be
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Figure 5.1: The Voronoi tessellation of a single-tier cellular network, where the BSs

and the waypoints of a MU are represented by triangles and points, respectively.

The candidate BSs are represented by solid triangles. The solid and dash lines rep-

resent the cell and beam boundaries, respectively, while the trajectory of the typical

MU is illustrated by the dotted line.

achieved by the proposed CA-CoMP compared to conventional CoMP.

5.2 System model

We consider a single tier cellular network as illustrated in Fig. 5.1, and the spa-

tial distribution is introduced in Section 2.2.2, while MUs are randomly moving

within the network based on a RWP model. We assume that all BSs transmit sig-

nals with power Pt (dBm) and each BS serves only one MU at a time per resource

block [25,38]. In the context of the proposed CA-CoMP scheme (detailed description

in Section 5.3.1), each MU jointly communicates with N cooperating BSs in order to

enhance the received signal power and mitigate the inter-cell interference.Based on

the Slivnyak’s theorem and without loss of generality, we perform our analysis for

the typical MU, which is initially located at the origin, and our results are applicable

to all MUs within the network area [19, 25, 96]. Moreover, we assume that all BSs

are equipped with multiple antennas to generate directionality towards to the MUs,

while all MUs are equipped with a single omnidirectional antenna. We consider

that each BS has a codebook ofM beamforming vectors withM = 2m for m ∈ N,
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where the patterns of these beamforming vectors have non-overlapping main lobes

and cover the full angular range, i.e. [0, 2π) [38]. For simplicity, the beamwidth is

considered as the central angle of a sector, i.e. θ = 2π
M [19, 38]. Moreover, the main

lobe is assumed to be restricted to the beamwidth and thus, the main lobe and the

side lobe antenna gain are given by Gm = 2
(1−cos(Θ

2 ))+ξ(1+cos(Θ
2 ))

and Gs = ξGm,

respectively, where ξ ∈ (0, 1) is the loss coefficient of the antenna directivity [97].

This antenna model approximates the actual beam pattern with sufficient accuracy

and captures the directivity loss effect, while also providing tractability for the ana-

lytical process. Therefore, the antenna gain of the link between the typical MU and

the i-th closest interfering BS, denoted as GI ,i, is given by GI ,i = {Gm, Gs}, with

the corresponding probabilities pG = { θ
2π , 2π−θ

2π }; while the antenna gain of the link

between the typical MU and its i-th closest serving BS, denoted as GS ,i, is evaluated

in Section 5.3.1.

Regarding the downlink data transmission, we adopt a non-coherent joint trans-

mission policy. Specifically, the non-coherent joint transmission allows multiple co-

operative serving BSs transmit the same signal to their associated MU without prior

phase-alignment and tight synchronization to that MU, which is thus suitable for

the scenario where MUs exhibit high mobility [26, 28]. Then the MU combines the

signals from multiple BSs using non-coherent combining techniques. In addition,

a scheduling mechanism is employed in which each MU is scheduled for commu-

nicating with its serving BSs at different time-frequency resources. Therefore, no

intra-cell interference exists since intra-cell users are served within orthogonal time-

frequency resources, while only inter-cell interference is taken into consideration.

Hence, the SINR observed at the typical MU can be formulated as

SINR =

∣∣∑xi∈S P1/2
t G1/2

S ,i h1/2
i `1/2(ri)

∣∣2
∑xi∈Φ\Sb

PtGI ,ihi`(ri) + σ2
c + σ2

n
, (5.1)

where S represent the set of serving BSs (Detailed in Section 5.3.1 ), σ2
n is the thermal

noise, σ2
c = σ2

cov and σ2
c = σ2

cov/ρ for the TS and the PS scheme, respectively, σ2
cov is

a constant that accounts for the noise induced by the signal conversion from RF to

baseband [19].

Each MU is equipped with a rectifier circuit that is capable of converting a por-

tion of the received RF signals into DC power to either charge its battery or power its

circuits, while the RF signals may include the intended signal from the coordinated
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serving BSs, as well as interfering signals from other BSs. We adopt a non-linear EH

model, the amount of the instantaneous harvested energy of a MU is quantified as

Q =
ν(1− ρ)ηPt

1 + F

(
∑xi∈S

GS ,ihi`(ri) + ∑xi∈Φ\Sb
GI ,ihi`(ri)

)
. (5.2)

Note that (5.1) and (5.2) hold for both the TS and the PS scheme, i.e. ρ = 1 and

0 ≤ τ ≤ 1 are adopted for the TS scheme, while τ = 1 and 0 ≤ ρ ≤ 1 are adopted

for the PS scheme.

5.3 Coverage area-based CoMP scheme and handover

analysis

In this section, we introduce the proposed CA-CoMP technique in the context of

SWIPT-enabled cooperative cellular networks. Our technique exploits the cooper-

ation among randomly located BSs, that are selected according to their coverage

areas, aiming at both enhancing the network performance and reducing the han-

dover rate. In addition, we develop a tractable analytical framework to compute

the handover rate associated with the CA-CoMP scheme, while closed-form expres-

sions for the inter- and intra-cell handover rates and the misalignment probability

are derived, which will be useful for evaluating the achieved ID and EH perfor-

mance.

5.3.1 Coverage area-based CoMP scheme

The proposed CA-CoMP scheme is based on a two-stage procedure. In the first

stage, a set of candidate BSs is selected based on their coverage areas. More specif-

ically, due to the irregular shape of the cells, different BSs generally have various

coverage areas, while the MUs only communicate with the BSs that have relative

large coverage areas, named as candidate BSs. Hence, at the first stage the can-

didate BSs are determined, which consists of the BSs that their coverage areas are

greater than a pre-defined area threshold A (m2), i.e. Φ̃b = {xi|∀xi ∈ Φb,Ai > A},

where Ai is the coverage area of the i-th BS located at xi. In the second stage, the set

of serving BSs with which the MUs communicates, i.e. S , is selected among the set

of candidate BSs. In particular, in order to ensure high intended signal power, each
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MU communicates with its N closest BSs among the set of candidate BSs. Hence, the

final set of the serving BSs is formulated as, S = {x1, · · · , xN |ri ≤ ri+1, ∀xi ∈ Φ̃b}.

It is worth mentioning that, the proposed CA-CoMP scheme provides flexibility

for the design of large-scale SWIPT-enabled communication networks, since accord-

ing to the MUs’ mobility within the network, the area threshold can be appropriately

adjusted. Particularly, for high-velocity MUs, i.e. v → ∞, the handover overhead

is the dominant factor that jeopardizes the network performance. Therefore, a large

area threshold is beneficial to be adopted in order to reduce the MUs’ handover

rate. On the other hand, for MUs with low velocity or static, i.e. v → 0, the han-

dover overhead is negligible, and hence, a small area threshold ensures that the MUs

are associated with the N closest BSs in order to achieve the highest received signal

strength. Moreover, it is worth emphasising that, the proposed CA-CoMP has low-

complexity; more specifically, it only requires information about the coverage area of

each BS, which is initially deterministic for a given network deployment and could

be easily disseminated to MUs via the central network. In addition, compared to

some other techniques, e.g. heterogeneous networks-based CoMP schemes [28, 29],

that assign MUs with different network tiers based on their velocity for combating

high handover rates, the proposed CA-CoMP is operated on a single-tier network

topology with much lower complexity of the network structure and management.

5.3.2 Inter-cell handover analysis

We explore the inter-cell handover process of the typical MU, by considering that

the typical MU is moving with an arbitrary trajectory. Along this trajectory, connec-

tions between the typical MU and its serving BSs change according to its location,

such that the typical MU maintains the connectivity with the network. In addition,

since each MU jointly communicates with N serving BSs according to the CA-CoMP

scheme, the average inter-cell handover rate is defined as the total number of the

triggered handovers with respect to the N serving BSs per unit time. More specifi-

cally, since the serving BSs of the typical MU are the N closest BSs among the set of

candidate BSs, the inter-cell handover is triggered when the typical MU crosses the

boundaries of an N-th order Voronoi cell [26, 28]. The inter-cell handover rate expe-

rienced by a MU in the considered network topology is evaluated in the following

proposition.
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Proposition 5.1. Based on the CA-CoMP scheme, the inter-cell handover rate of the typical

MU moving with velocity v, is given by

µc =
8vλ̃

1
2
b Γ(1

2 + N)

π
3
2 Γ(N)

, (5.3)

where λ̃b =
Γ(K,AKλb)λb

Γ(K) and K = 3.5.

Proof. Since each MU only communicates and handovers with the BSs from the can-

didate BSs set, i.e. Φ̃b, we characterize the spatial distribution of Φ̃b. According

to [89, 98], the area of an arbitrary Voronoi cell created by a homogeneous PPP is

a random variable, of which the distribution could be accurately approximated by

the Gamma distribution with a shape and a scale parameter K and Kλb, respectively,

i.e. Ai ∼ G[K, Kλb] with K = 3.5. Let PA denote the probability that the coverage

area of a BS (i.e., Ai) is larger than the pre-defined threshold A. Hence, PA can be

derived as follows

PA =P[Ai ≥ A] =
∫ ∞

A

(Kλb)
K

Γ(K)
AK−1

i exp(−KλbAi)dAi =
Γ(K,AKλb)

Γ(K)
. (5.4)

Moreover, since the original spatial distribution of the BSs follows a homoge-

neous PPP, and based on the thinning property, the distribution of the candidate

BSs is still uniform, with a density λ̃b = λbPA [25]. Therefore, by associating a MU

with its N closest BSs from the set of the candidate BSs Φ̃b, the Euclidean plane R2 is

separated into regions, forming an N-th order Voronoi tessellation with PPP Φ̃b and

density λ̃b [28]. Then, by using the results in [28, Theorem 3], the inter-cell handover

rate under the proposed CA-CoMP scheme can be derived. �

Although (5.3) can be easily evaluated by using numerical tools, intuitions on

how key system parameters affect the inter-cell handover rate are difficult to de-

rive. In the following corollary, we simplify the analysis by considering an extreme

scenario, where the MUs are able to jointly communicate with a large number of

serving BSs, i.e. N � 0.

Corollary 5.1. For the special case with N � 0, the inter-cell handover rate, µc, is given

by

µc ∼
8v(λ̃bN)

1
2

π
3
2

. (5.5)

Proof. According to [99], for x � 0, we have Γ(x+a)
Γ(x+b) ∼ xa−b. By associating a = 1

2 ,

b = 0 and x = N, the above expression is derived. �
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From (5.5) we can easily observe that, for a certain density of candidate BSs, i.e.

λ̃b, when the number of cooperative serving BSs becomes large, i.e. N � 0, the

inter-cell handover rate significantly increases. This is expected since, MUs experi-

ence more frequent handovers with multiple serving BSs than the scenario with a

single serving BS. Moreover, we can observe that the inter-cell handover rate of the

MUs increases with their velocity. This is based on the fact that a MU with higher

velocity travels a longer distance along its trajectory, compared to a lower-velocity

MU, resulting in a higher probability of crossing a cell boundary. We can also ob-

serve that the CA-CoMP scheme with λ̃b ≤ λb, achieves a lower inter-cell handover

rate than the conventional CoMP scheme, corresponding to the special case of our

proposed CA-CoMP scheme with A = 0 [28]. The impact of the pre-defined area

threshold, i.e. A, on the inter-cell handover rate is evaluated in the following corol-

lary.

Corollary 5.2. By increasing the coverage area threshold of the CA-CoMP scheme, i.e. A →

∞, the inter-cell handover rate of the MUs reduces, i.e. µc → 0.

Proof. By using the expression in [91, 8.356.4], the first order derivative of µc with

respect to A can be derived, i.e.

dµc

dA = −ΩAK−1 exp(−AKλb), (5.6)

where Ω =
8vλK+1

b KK N
1
2 Γ( 1

2+N)

π
3
2 Γ(N)Γ(K)

> 0. Then, it is straightforward to conclude that,

dµc/dA < 0 for any A ≥ 0. �

It is worth mentioning that the CA-CoMP enables MUs to ignore some nearby

BSs, which have small coverage area, to mitigate the frequent handover; on the

other hand, these nearby BSs could provide strong signal due to short propagation

distances. Hence, we obtain a trade-off between the handover overhead and the

received signal quality; the optimal area threshold for achieving the best network

performance is discussed in Section 5.5.

5.3.3 Intra-cell handover analysis

We now focus our attention on the intra-cell handover process, where both geometry-

and measurement-based handover procedures are considered. In particular, a ge-

ometry based intra-cell handover is triggered when a MU crosses the beam bound-
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aries of the serving BSs, where a new beam is reselected for the downlink trans-

mission. Nevertheless, there are various types of intra-cell handover in modern

wireless communication systems, such as channel handover and sector handover;

in our work, we mainly focus on the intra-cell handover caused by the beam alter-

ation. [38]. Similarly to the inter-cell handover scenario, the geometry-based intra-

cell handover rate equals to the average number of beam reselections with respect

to the sum of N serving BSs per unit time. The following proposition evaluates the

geometry-based intra-cell handover rate experienced by the typical MU with respect

to its i-th closest serving BS, with 1 ≤ i ≤ N.

Proposition 5.2. Based on the CA-CoMP scheme, the geometry-based intra-cell handover

rate of the typical MU with respect to its i-th closest serving BS, i.e. µb,i, is given by

µb,i =
Mvλ̃

1
2
b Γ(i− 0.5)

π
3
2 Γ(i)

. (5.7)

Proof. The proof follows a similar approach as in [38]. Without loss of generality,

we consider the movement of a typical MU at the origin, with trajectory from (0, 0)

to (1, 0) along the x-axis. As shown in Fig. 5.2, the triangles denote the location of

i-th and (i− 1)-th closest serving BSs of the typical MU, i.e. BSi and BSi−1, the red

circle ωi denotes the location where the typical MU conducts the intra-cell handover

with respect to BSi, and θi is the angle of a beam boundary of BSi with respect to

the direction of the movement of the typical MU. Let Ψi denote the point process

of intra-cell handover with BSi. Hence, the average intra-cell handover rate with

respect to BSi is equivalent to the intensity of Ψi.

In order to compute the intensity of Ψi, we start considering the case where there

is at most one intra-cell handover corresponding to BSi, i.e. there are two beams of

the same size for a BS. Thus, the event of the intra-cell handover corresponding to

BSi occurs when the following two events occur simultaneously, i.e.

1. the point of the intra-cell handover lies in the N-th order Voronoi cell of the

N serving BSs, i.e. ωi ∈ V(N)

Φ̃b
, where BSi is the i-th closest serving BSs of the

typical MU.

2. the point of the intra-cell handover lies on the unit line connecting (0, 0) and

(1, 0), i.e. ωi ∈ [0, 1].

Firstly, conditioning on θi, the location of BSi should be located on the strip between

the two lines passing through the origin and the point (1, 0). Moreover, the distance
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Figure 5.2: Triangles: BSs’ location, red circles: intra-cell handover location, dashed

lines: beam boundaries, and shaded area: possible locations of BSk.

from the typical MU to the BSi should not be less than the distance to BSi−1, i.e.

ri ≥ ri−1, where ri =
|yi|
| sin θi|

. Hence, by conditioning on both θi and ri−1, the possible

locations of BSi are displayed as the shaded area in the Fig. 5.2, and the average

number of intra-cell handovers in [0, 1] can be formulated as

E(Ψi[0, 1]|θi, ri−1) =λ̃b

∫ −ri−1 sin θi

−∞
dyi

∫ 1− yi
tan θi

− yi
tan θi

exp

(
−λ̃bπ

(
y2

i

sin2 θi
− r2

i−1

))
dxi

+ λ̃b

∫ ∞

ri−1 sin θi

dyk

∫ 1− yi
tan θk

− yi
tan θi

exp

(
−λ̃bπ

(
y2

i

sin2 θi
− r2

i−1

))
dxi

= exp
(

πλ̃br2
i−1

) √
λ̃b

(√
csc2 θi sin2 θi − erf

(√
πλ̃bri−1

)
sin θi

)
,

where erf(z) = 2
π

∫ z
0 e−t2

dt is the Gauss error function. Then, by averaging over θi,

which is uniformly distributed in [0, π], we have

E(Ψi[0, 1]|ri−1) =
2 exp(−πr2

i−1λ̃b)
√

λ̃b
(
1− erf(

√
πλ̃bri−1)

)
π

. (5.8)

Subsequently, by averaging over ri−1, we can derive the linear intensity of Ψi for the

case of two beams as following

E(Ψi[0, 1]) =
∫ ∞

0
E(Ψk[0, 1]|ri−1) fk−1(ri−1)dri−1 =

2
√

λ̃bΓ
(

i− 1
2

)
π

3
2 Γ(i)

,

where

fi(ri) = 2(πλ̃b)
ir2i−1

i
exp(−πλ̃br2

i )

Γ(i)
, (5.9)
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is the PDF of distance from the typical MU to the i-th closest BS [89]. It should be

noted that the above expressions also holds for the case with i = 1, where the proof

is same as in [38] and hence is omitted. Then, for the case where each BS has M

beams, there are M2 lines passing each BS to formateM beams. The intensity of the

intersection points i.e. ωi, is the summation of the intensity with respect to M2 lines,

i.e. there are M2 possibilities of intra-cell handovers corresponding to the i-th closest

serving BS. Finally, by also multiplying the velocity of the MU, i.e. v, the result in

Proposition 5.2 is proven. �

From the expression in (5.7), we can easily observe that the intra-cell handover

rate of the typical MU with respect to its i-th closest serving BS, i.e. µb,i, is directly

proportional to the number of beams and the velocity of the typical MU, i.e.M and

v, respectively. Therefore, the downlink performance of high-velocity MUs is di-

minished by the frequent intra-cell handovers, especially for scenarios where large

number of beams are employed at the BSs, e.g. 6G cellular networks. Note that the

geometry-based intra-cell handover rate decreases with the increase of the distance

from the typical MU to its serving BSs. This result can be theoretically justified by

showing the ratio of µb,i with µb,i+1, i.e. µb,i+1
µb,i

< 1. In practice, a MU that is mov-

ing with a shorter distance to the serving BSs, is also close to the beam boundaries

of these BSs, thereby resulting in a higher probability of crossing beam boundaries.

Hence, although the closest serving BSs could provide the strongest intended signals

due to the shortest propagation distances, the most frequent intra-cell handover oc-

curs with the closest serving BSs, which jeopardizes the SWIPT performance of the

MUs.

Note that the beam misalignment of the link between serving BSs and the typical

MU may occur by taking into account the measurement-based intra-cell handover.

More specifically, according to [38,100], the measurement-based intra-cell handover

is operated based on measurements of the synchronization signal block (SSB) burst,

which is transmitted periodically with a period TSSB (ms). The beam misalignment

occurs when a MU moves inside the side lobe area of the serving BSs before receiv-

ing the SSB burst, which results in a weak signal quality at the end-user devices.

Hence, in the following proposition, we characterize the misalignment probability,

which is useful for evaluating the distribution of the antenna gain and the corre-

sponding ID and EH performance of the MUs.
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Proposition 5.3. The misalignment probability of the link between the typical MU and its

i-th closest serving BS is given by

P (i)
mis = 1− exp

(
− TSSBµb,i

)
. (5.10)

Proof. The beam misalignment occurs during the intra-cell handover process. Sim-

ilar to the Proof of Proposition 5.2, we consider that the MU is moving from the

original point (where a SSB burst is just received) to the point (vTSSB, 0) (where the

next SSB burst will be arrived). Although the beam misalignment could be avoided

when the intersection between the MUs’ trajectory and beam boundary (i.e. ωi)

is coincident with point (vTSSB, 0), the probability is mathematically equal to zero.

Moreover, during one period of SSB burst, the typical MU may cross more than

one beam boundaries, e.g. MU moving with high velocity or close to the serving

BSs, hence, we derive the probability of a non-misalignment. The linear intensity

of the intersections between the typical MU’s trajectory and the beam boundary of

its i-th closest serving BS is µb,i/v. By considering the process of intersections as a

one-dimensional Poisson point process, the void probability of the intersections, i.e.

non-misalignment probability, can be evaluated as [27]

P̄ (i)
ms =P[non-intersections within (0, 0) to (vτ, 0)] = exp(−TSSBµb,i).

Then, the misalignment is derived as P (i)
mis = 1− P̄ (i)

ms. �

Based on the above proposition, the misalignment probability depends on the

MUs’ velocity, the intra-cell handover rate as well as the period of the SSB burst,

where high velocity of MUs results in a high probability of misalignment. Note

that, for scenarios with extremely small or equal to zero period of the SSB burst, i.e.

TSSB → 0, we haveP (i)
mis → 0, which indicates that, the geometry- and measurement-

based intra-cell handovers are triggered at exact the same location, i.e. achieving

perfect beam alignment [19]. Hence, the antenna gain of the link between the typical

MU and its i-th closest serving BS can be modelled as a discrete random variable,

i.e.

GS ,i =

Gm w.p. 1−P (i)
mis,

Gs w.p. P (i)
mis.

(5.11)

Moreover, the joint probability mass function (PMF) of GS ,i is given by

G (GS ,1, , · · · , GS ,N) = PS ,1(GS ,1) · · · · · PS ,N(GS ,N), (5.12)
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where PS ,i(Gm) = 1−P (i)
mis and PS ,i(Gs) = P (i)

mis. Then, based on the above discus-

sion, the total intra-cell handover rate of the typical MU with respect to N serving

BSs per unit time is evaluated in the following theorem.

Theorem 5.1. The total average intra-cell handover rate of the typical MU, for the CA-

CoMP scheme is given by

µb =
2Mvλ̃

1
2
b Γ(1

2 + N)

π
3
2 Γ(N)

. (5.13)

Proof. Since each MU is jointly served by N serving BSs, where each BS has M

beams, the total average intra-cell handover rate of the typical MU is the summation

of the intra-cell handover rate with respect to N serving BSs, i.e.

µb =
N

∑
i=1

µb,i =
N

∑
i=1

Mv
√

λ̃bΓ(i− 0.5)
π3/2Γ(i)

. (5.14)

Let X =
Mv
√

λ̃b
π3/2 , we have

µb =X
N

∑
i=1

Γ(i− 1
2)

Γ(i)
= X

N−1

∑
i=0

Γ(i + 1
2)

Γ(i + 1)

(a)
=X
√

π
N−1

∑
i=0

 i− 1
2

i

 (b)
= X

√
π

 N − 1
2

N − 1


(c)
=2NX

√
π

 N − 1
2

N

 = X 2
Γ(N)

N!

 N − 1
2

N

 √π = 2X
Γ(N + 1

2)

Γ(N)
,

(5.15)

where (a) is based on the property of Gamma function, i.e.

Γ
(

1
2
+ i
)
=

 i− 1
2

i

 i!
√

π,

(b) follows the Hockey-stick identity [101]; (c) is based on the identity of the bino-

mial coefficients, and the final step follows the inverse process of step (a). Hence,

the final expression for the intra-cell handover rate in Theorem 5.1 is proven. �

From (5.13) we can observe that, as the number of beams increases, i.e.M→ ∞,

the intra-cell handover rate increases, i.e. µb → ∞. This is based on the fact that,

by increasing the number of beams, the spatial density of the beam boundaries in-

creases, thus resulting in a higher probability of beam boundary crosses by the MUs.

Moreover, since the density of the candidate BSs is smaller than the complete BSs

set, i.e. λ̃b ≤ λb, the CA-CoMP achieves a lower intra-cell handover rate compared
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to conventional CoMP schemes. Finally, it is easily to observe that the intra-cell

handover rate is generally greater than the inter-cell handover rate, and is directly

proportional to the inter-cell handover rate, i.e. µb =
M
4 µc.

5.4 SWIPT performance with CA-CoMP scheme

In this section, we study the information and energy transfer performance of the

SWIPT-enabled mobile cellular networks achieved by the proposed CA-CoMP scheme.

We start by evaluating the information transfer performance via computing the ID

success probability as well as the average spectral efficiency. Subsequently, we as-

sess the EH ability of the MUs in terms of the EH success probability and the average

harvested energy. Finally, the energy efficiency of the SWIPT-enabled MUs is eval-

uated for the CA-CoMP scheme. The analytical expressions for the aforementioned

performance metrics are presented.

5.4.1 Interference characterization

We first characterize the interference observed at the typical MU, by calculating the

Laplace transform, i.e. LI(s) = E{exp(−sI)}, where a closed-form expression is

derived in the following lemma.

Lemma 5.1. The Laplace transform of the received interference at the typical MU is given

by

LI(s) = ∏
G={Gm,Gs}

exp

(
sGpGPtπ

(
(λ̃b − λb)r2

N 2F1
[
1, 2

α ; α+2
α ; −rα

N
1+PtGs

]
1 + PtGs

−
2λbr2−α

N 2F1
[
1, α−2

α ; 2− 2
α ;−1+PtGs

rα
N

]
α− 2

))
.

(5.16)

Proof. The proof directly follows from the definition of the Laplace transform, i.e.

LI(s) =E

{
exp

(
∑xi∈Φ\Sb

−sPtGI ,ihi`(ri)

)}
=E

{
∏xi∈Φ\Sb

Eh {exp (−sPtGI ,ih`(ri))}
}

=E

{
exp

(
2π(λb − λ̃b)

∫ rN

0

(
1

1 + sPtGI ,i`(r)
− 1
)

rdr

+ 2πλb

∫ ∞

rN

(
1

1 + sPtGI ,i`(r)
− 1
)

rdr
)}

, (5.17)
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where the second step is based on the fact that the channel power gain hi is an

i.i.d. exponential random variable, and the last step follows from the PGFL of the

PPP and the moment generating function (MGF) of an exponential random variable.

Then by using [91, 3.194.5], the above integrals in could be solved. �

It can be observed from (5.16) that the Laplace transform of the interference con-

sists of two terms inside the exponential function. The first term is related to the

interference generated by the nearby interfering BSs, that their distance to the typ-

ical MU is less than rN (i.e. the distance from the N-th serving BS to the typical

MU). The second term refers to the interference from other distant interfering BSs.

For simplicity and due to the high directionality of the transmitter’s antennas, the

second term could be neglected [102].

5.4.2 Information transfer analysis

By applying the Laplace transform of the interference, we now evaluate the ID suc-

cess probability, which is defined as the probability that a MU is able to achieve a

certain SINR threshold β (dB), i.e. P ID(β) = P {SINR ≥ β}. The analytical expres-

sion for the ID success probability is provided in the following theorem.

Theorem 5.2. The ID success probability of the typical MU for the CA-CoMP scheme, i.e.

P ID(β) is given by

P ID(β) =
N

∑
i=1

∑
GS ,i

X (GS ,1, · · · , GS ,N) G (GS ,1, , · · · , GS ,N) , (5.18)

where

X (GS ,1, · · · , GS ,N) ,
∫

0≤r1≤···≤rN≤∞

LI (s) exp
(
−(σ2

c + σ2
n)s
)

fr(r1, · · · , rN)dr1 · · ·drN,

(5.19)

s = β
Pt(GS ,1`(r1)+···+GS ,N`(rN))

, and fr(r1, · · · , rN) is the joint probability density function

(PDF) of the distance from the typical MU to the serving BSs, which is given by [89]

fr(r1, · · · , rN) = (2λ̃bπ)N exp(−λ̃bπr2
N)

N

∏
i=1

ri. (5.20)
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Proof. The ID success probability can be re-written as

P ID(β) =P

{∣∣∣∣∑xi∈S
P

1
2

t G
1
2
S ,ih

1
2
i `

1
2 (ri)

∣∣∣∣2 ≥ β

(
∑xi∈Φ\Sb

PtGI ,ihi`(ri) + σ2
c + σ2

n

)}
(a)
=E

{
exp

(
−(I + σ2

c + σ2
n)

β

Pt(GS ,1`(r1) + · · ·+ GS ,N`(rN))

)}
=E

{
LI(s) exp

(
−(σ2

c + σ2
n)s
)}

, (5.21)

whereLI(s) is the Laplace transform given in Lemma 5.1, s = β
Pt(GS ,1`(r1)+···+GS ,N`(rN))

,

and (a) is based on the fact that for the Rayleigh fading, h
1
2
i ∼ CN (0, 1), thus∣∣∣∣∑xi∈S P

1
2

t G
1
2
S ,ih

1
2
i `

1
2 (ri)

∣∣∣∣2 is an exponential random variable with mean ∑xi∈S PtGS ,i`(ri).

Then, by evaluating the expectation over distance r1, ..., rN, we have

P ID(β)

=EGS ,1,...,GS ,N


∫

0≤r1≤···≤rN≤∞

LI(s) exp
(
− (σ2

c + σ2
n)s
)

fr(r1, · · · , rN)dr1 · · ·drN

 .

Finally, by evaluating the expectations over GS ,i for 1 ≤ i ≤ N, where the joint PMF

is given by (5.12), the final results are derived. �

Remark 5.1. In the interference-limited region, i.e. σn = σc = 0, the TS and the PS

schemes achieve the same ID success probability.

It should be noted that the ID success probability only provides the statistics of

the instantaneous SINR observed at the typical MU. Therefore, in order to show

the impact of the handover overhead on the information transfer performance, we

further investigate the average spectral efficiency, denoted as ηSE, achieved by the

proposed CA-CoMP scheme. In particular, the average spectral efficiency is defined

as the ergodic Shannon rate achieved by the typical MU per unit bandwidth, i.e.

ηSE = E{T ID
eff log(1 + SINR)}, which is evaluated in the following proposition.

Proposition 5.4. The average spectral efficiency achieved at the typical MU for the CA-

CoMP scheme, is given by

ηSE = T ID
eff (µc, µb)

∫ ∞

0

P ID(β)

β + 1
dβ, (5.22)

where T ID
eff (µc, µb) is the average effective time allocated for ID purpose per unit time with

T ID
eff (µc, µb) =

max {0, τ(1− Tbµb − Tcµc)} , TS scheme

max {0, 1− Tbµb − Tcµc} , PS scheme,
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and Tc and Tb are the signalling overhead delay of the inter- and intra-cell handovers, re-

spectively.

Proof. The proof is directly from the definition of the ergodic Shannon rate and the

average spectral efficiency [38]. �

Based on the expression derived in Proposition 5.4, we can observe that the han-

dover overhead degrades the average spectral efficiency. In particular, the effective

time of the information transfer depends on the handover rate, i.e. a higher han-

dover rate results in a shorter time interval for information transfer. Note that due

to the heavy signalling overhead, a large handover rate may result in an outage

for the information transfer, i.e. ηSE = 0, which is discussed in the following two

corollaries.

Corollary 5.3. An information transfer outage (i.e. ηSE = 0) occurs, when the velocity of a

MU exceeds v̂ = π
3
2 Γ(N)

2
√

λ̃bΓ(0.5+N)(MTb+4Tc)
, i.e. v ≥ v̂.

Proof. According to the definition of the information transfer outage, i.e. ηSE =

0, we have 1 − Tbµb − Tcµc = 0. Then by applying the result µb = M
4 µc and by

substituting the expression of µc given in Proposition 5.1, we have

4
TbM+ 4Tc

=
8v̂λ̃

1
2
b Γ(1

2 + N)

π
3
2 Γ(N)

. (5.23)

Finally, by solving the above equation in respect of v̂, the final result is derived. �

Note that, for the high mobility MUs, a relatively large coverage area threshold

should be selected to ensure the communication of the MUs. The minimum area

threshold for the CA-CoMP scheme to avoid the information transfer outage is de-

rived in the following corollary.

Corollary 5.4. In order to avoid an information transfer outage, when a MU is moving

with a velocity v, the minimum area threshold is given by

Amin = Q−1 (K, Z) (Kλb)
−1, (5.24)

where Q(a, b) = Γ(a,b)
Γ(a) is the regularized incomplete Gamma functions, b = Q−1

(
a, Γ(a,b)

Γ(a)

)
is the inverse regularized incomplete Gamma function and Z = π3

4λbv2

(
Γ(N)

(MTb+4Tc)Γ(0.5+N)

)2
.
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Proof. The proof follows a similar methodology with Corollary 5.3. By substituting

the expression of λ̃b, which is given in Proposition 5.1, and by solving equation

(5.23) in respect of A, the final expression is derived. �

The results provided in the above corollaries can be easily utilized for the net-

work designing under the CA-CoMP scheme, to avoid the potential information

transfer outage and provide stable downlink services for the MUs. In addition,

these results hold for the energy transfer process, which will be discussed in the

next subsection.

5.4.3 Energy transfer analysis

We now focus our attention on the achieved energy transfer performance of the

CA-CoMP scheme. We evaluate the EH success probability, which is defined as

the probability that the harvested energy of the typical MU is higher than the EH

threshold ε (dBm), i.e. P{Q ≥ ε}. The analytical expression for the EH success

probability is presented in the following theorem.

Theorem 5.3. The EH success probability of the typical MU for the CA-CoMP scheme is

given by

PEH(ε) ≈1−
N

∑
i=1

∑
GS ,i

Y(GS ,1, · · · , GS ,N)G (GS ,1, · · · , GS ,N) −
∫ ∞

0
fN(rN)LI

(
ψ
)
drN,

(5.25)

where

Y(GS ,1, · · · , GS ,N) ,
∫ ∞

0
· · ·

∫ r2

0

N

∏
i=1

1
1 + ψPtGS ,i`(ri)

fr(r1, · · · , rN)dr1 · · ·drN,

(5.26)

ψ = νη(1−ρ)ζ
ε and LI(·) is the Laplace transform of the interference, which is given in

Lemma 5.1.

Proof. Since F is an exponential random variable with mean ζ, i.e. F ∼ exp(ζ), the

EH success probability can be re-written as

PEH(ε) =P[Q ≥ ε]

=P

{
F ≤ νη(1− ρ)

ε

(
∑xi∈S

PtGS ,ihi`(ri) + ∑xi∈Φ\S PtGI ,ihi`(ri)
)
− 1
}

≈1−E

{
exp

(
− νη(1− ρ)ζ

ε
S
)}
−E

{
exp

(
− νη(1− ρ)ζ

ε
I
)}

, (5.27)
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where S and I are the intended and interfering signals, respectively; the last step

is derived based on the cdf of an exponential random variable and by ignoring the

term exp(ζ), which approaches to one for small ζ [65]. Note that the second expec-

tation in (5.27) includes the Laplace transform of the interference, i.e.,

E

{
exp

(
− νη(1− ρ)ζ

ε
I
)}

= ErN

{
LI

(
νη(1− ρ)ζ

ε

)}
. (5.28)

By averaging over the distance from the typical MU to its N-th closest serving BS,

i.e. rN, of which the PDF is given by (5.9), the expectation in (5.28) can be evaluated.

Then, let ψ = νη(1−ρ)ζ
ε , the first term of (5.27) can be solved as following

E

{
exp

(
− ψS

)}
=E

{
Ehi

{
∏

xi∈S
exp

(
− ψPtGS ,ihi`(ri)

)}}

=E

{
∏

xi∈S

1
1 + ψPtGS ,i`(ri)

}

=EGS ,i

{ ∫ ∞

0

∫ rN

0
· · ·

∫ r2

0

N

∏
i=1

1
1 + ψPtGS ,i`(ri)

fr(r1, · · · , rN)dr1, · · · , drN−1, drN

}
.

(5.29)

Then, by evaluating the expectations over GS ,i, of which the joint PMF is given by

(5.12), the final results in Theorem 5.3 are proven. �

From (5.25) we can observe that the expression of the EH success probability

consists of two main terms, i.e. the intended signal part and the interference signal

part. Motivated by the high directionality of the antennas, the interference power

can be ignored. Moreover, for the MUs moving with low-velocity, the misalign-

ment probability approaches zero, and thus a perfect beam alignment is achieved,

i.e. G(Gm, · · · , Gm) = 1. Therefore, based on the aforementioned observations, we

provide an approximated expression for the EH success probability in the following

remark.

Remark 5.2. By ignoring the interference power, the EH success probability of the low-

velocity MU is given by

PEH(ε) ≈ 1−
∫ ∞

0
· · ·

∫ r2

0

N

∏
i=1

1
1 + φ`(ri)

fr(r1, · · · , rN)dr1 · · ·drN, (5.30)

where φ = PtGmνη(1−ρ)ζ
ε .
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Note that, the EH success probability reveals the statistics of the instantaneous

harvested energy, while by taking into account the handover signalling cost, we can

assess the EH performance in terms of the average harvested energy. More specif-

ically, the average harvested energy is defined as the average amount of energy

harvested by the typical MU per unit time; the analytical expression is provided in

the following theorem.

Theorem 5.4. The average harvested energy per unit time of the typical MU for the CA-

CoMP scheme is given by

Q̄ = Q̄S + Q̄I, (5.31)

where Q̄S and Q̄I are given by

Q̄S =
N

∑
i=1

∑
GS ,i

∫ ∞

0
· · ·

∫ r2

0

(
GS ,1`(r1) + · · ·+ GS ,N`(rN)

)
BY (GS ,1, · · · , GS ,N)

× fr(r1, · · · , rN)dr1 · · · rN, (5.32)

and

Q̄I =
∫ ∞

0
∑
G

2πBGpG

(
(λb − λ̃b)r2

N2F1
[
1, 2

α , 2+α
α ,−r2

N
]

2

+
λbr2−α

N 2F1
[
1, α−2

α , 2α−2
α ,−r2

N
]

α− 2

)
fN(rN)drN, (5.33)

respectively; B = 2πηPt(1− ρ)T EH
eff and T EH

eff is the effective time for the EH procedure,

with

T EH
eff =

max {0, (1− τ)(1− Tbµb − Tcµc)} , TS scheme

max {0, 1− Tbµb − Tcµc} , PS scheme.
(5.34)

Proof. The average harvested energy per unit time can be calculated by averaging

the instantaneous harvested energy over the random channel, path loss components

and the antenna gains, i.e.

Q̄ =E

{T EH
eff ν(1− ρ)η

1 + F
(
S + I

)}
= E

{
ν

1 + F

}
︸          ︷︷          ︸

=1

E
{
T EH

eff (1− ρ)ηS + T EH
eff (1− ρ)ηI

}

=Q̄S + Q̄I, (5.35)

where Q̄S and Q̄I represent the average harvested energy from intended and inter-

fering signals, respectively. We evaluate Q̄S as

Q̄S =E

{
B∑xi∈S

hiGS ,i`(ri)

}
(a)
= E

{
B∑xi∈S

GS ,i`(ri)

}
, (5.36)
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where B = T EH
eff (1− ρ)ηPt, and (a) follows from the fact that the channel power

gain hi are i.i.d. exponential random variables with mean one. Then, the above

expectation can be evaluated by averaging over the antenna gains and distance from

the typical MU to the serving BSs, of which the joint PMF and the joint PDF are

given by (5.12) and (5.20), respectively. In addition, Q̄I can be calculated based on

the Campbell’s Theorem [25], i.e.

Q̄I = ∑
xi∈Φ\S

BhiGI ,i`(ri)

=ErN

{
2πB∑G GpG

( ∫ rN

0
(λb − λ̃b)

r
1− rα

dr +
∫ ∞

rN

λb
r

1− rα
dr
)}

, (5.37)

where the integrals can be easily evaluated based on the resulting expression [91,

3.194.5]. Finally, by evaluating the expectation over rN, of which the PDF is given

by (5.9), the results in Theorem 5.4 could be derived. �

The above theorem reveals the negative impact of the handover process on the

average harvested energy, i.e. a higher handover rate leads to less harvested en-

ergy per unit time. Moreover, for scenarios with high velocities, energy transfer

outage may occur, i.e. Q̄ → 0. In order to avoid such energy transfer outage, the

area threshold of the CA-CoMP scheme should be greater than Amin, which is pro-

vided in Corollary 5.4. Finally, by adjusting the PS or TS parameters, i.e. ρ or τ,

the proposed CA-CoMP scheme can satisfy different requirements for various mIoT

applications.

5.4.4 Energy efficiency analysis

In order to provide a comprehensive evaluation for the performance of CA-CoMP

scheme, we investigate another equally important metric, namely, the energy ef-

ficiency, which refers to the ability of a MU to receive and process data with the

minimum possible energy. Since a SWIPT-enabled MU is capable of converting part

of the received RF signal into DC power, which is then used to power its circuitry,

the total energy consumed by a MU is calculated by subtracting the amount of har-

vested energy from the total energy used for data receiving and processing. Hence,

the energy efficiency of a SWIPT-enabled MU is defined as the ratio of the average

downlink data rate to the amount of energy consumed at MU’s battery [103]. For the

sake of simplicity, we only consider communication-related energy consumption at
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the MUs. In particular, for a certain input data rate, i.e. R, the energy consumed at

the MU for processing the downlink input signal is given by [104]

ψ(R) = RKBBF0aGakBTenv ln 2 + Ccir, (5.38)

where R = BwηSE is the downlink rate, Bw is the bandwidth, KBB is the logic oper-

ations per bit in the baseband processor, F0 is the fanout, i.e., the number of loading

logic gates, a is the activity factor of transistors for the chip in MUs’ devices, kB is

the Boltzmann constant, and Tenv is the temperature of the environment, Ga ≈ 454.2

is the gap between the switch energy consumption for the transistor and the Lan-

dauer limit, and Ccir represents the constant power consumption of the baseband

processor. Then, based on the ID and EH performance metrics derived in the pre-

vious section, we provide the energy efficiency of the typical MU in the following

proposition.

Proposition 5.5. The energy efficiency of the typical MU with the CoMP scheme is given

by

E =
R

ψ(R)− Q̄
, (5.39)

where Q̄ is the average harvested energy by the typical MU.

5.5 Numerical results

In this section, we present analytical and simulation results to validate the accuracy

of our model and illustrate the performance of the proposed CA-CoMP scheme.

Unless otherwise stated, we consider the following parameters: the BS density is

λb = 1/3600, the number of cooperative BSs is N = 3, the transmitted power of BSs

is Pt = 43 dBm, the path-loss exponent is α = 3, thermal noise is σ2
n = −94 dBm,

conversion noise is σ2
c = −74 dBm, power splitting ratio is ρ = 0.5, time switching

ratio is τ = 0.5, the number of beams isM = 128, RF-to-DC conversion efficiency

is η = 0.7, SSB periodicity is TSSB = 20 ms, velocity of MUs is v = 25, 30, 40 m/s,

inter-cell handover delay is Tc = 43 ms, intra-cell handover delay is Tb = 23 ms,

bandwidth is Bw = 100 MHz, logic operations per bit is KBB = 108, fanout is F0 = 4,

activity factor of transistors is a = 0.2, environment temperature is Tenv = 303 K,

constant power consumption is Ccir = 1.5 W, loss coefficient of antenna directivity

is ξ = 0.1, and the parameter for random effect of EH is ζ = 0.01. It is worth
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(a) Inter-cell handover rate (µc) versus the

number of serving BSs (N).

(b) Intra-cell handover rate (µb) versus the

number of serving BSs (N).

Figure 5.3: Inter- and intra-cell handover rate for MUs with different velocities,

where λb =
1

3600 , A = 1
λb

, and v ∈ {5, 15, 30}m/s.

mentioning that, the proposed analytical framework is generic, and the selection for

these parameter values is for the purpose of illustration.

Fig. 5.3 demonstrates the impact of the number of serving BSs and the MUs’ ve-

locity on the handover rate achieved by the proposed CA-CoMP scheme. In partic-

ular, Fig. 5.3a plots the inter-cell handover rate, i.e. µc, versus the number of serving

BSs, i.e. N, for MUs that move with different velocities, i.e. v ∈ {5, 15, 30} m/s. For

comparison purposes, we also present the inter-cell handover rate obtained based

on the conventional CoMP scheme [28], where each MU jointly communicates with

N closest BSs, denoted as "CoMP". Firstly, we can observe that the proposed CA-

CoMP scheme achieves a much lower inter-cell handover rate compared to the con-

ventional CoMP. This was expected since, by employing the proposed CA-CoMP

scheme, the communication of MUs with small area cells that induce frequent han-

dover processes is avoided, thereby achieving a significantly lower inter-cell han-

dover rate. Hence, the proposed scheme alleviates the signalling overhead and thus

is promising for practical and low-complexity implementations. Moreover, we can

observe that, the inter-cell handover rate increases with the increase of the num-

ber of serving BSs as well as the velocity of the MUs. This can be justified by the

fact that, for the joint communication of a MU with multiple BSs as well as for the
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Figure 5.4: ID success probability
(
P ID) versus the decoding threshold (β), for dif-

ferent area threshold (A) and number of serving BSs (N), where λb =
1

3600 .

communication of a high-velocity MU, frequent handover operations are required

to ensure high QoS. Moreover, another interesting observation is that a higher gain

is achieved by the CA-CoMP scheme over the conventional CoMP, when the MU

is connecting with more serving BSs or moving with a higher velocity. This result

is in line with the expression in (5.3), where for a certain given area threshold, the

achieved gain by the CA-CoMP scheme is directly proportional to the number of

serving BSs and the velocity of the MUs.

Similar results can be observed in Fig. 5.3b, which plots the intra-cell han-

dover rate versus the number of serving BSs. Initially, the comparison of inter- and

intra-handover rates that are depicted in Fig. 1(a) and Fig1(b), respectively, reveals

that the intra-handover rate is the dominant limiting factor compared to the inter-

handover rate. This was expected since, each BS has multiple beams (hundreds of

beams in 6G networks), which could result in a much more frequent intra-cell han-

dover compared with the inter-cell handover. Finally, the agreement between the

theoretical curves (solid and dash lines) and the simulation result (markers) vali-

dates our theoretical analysis.

Fig. 5.4 illustrates the effect of the area threshold and the number of serving BSs

on the ID success probability. In particular, Fig. 5.4 plots the ID success probabil-

ity (Theorem 3.1) with respect to the SINR threshold for different area threshold,

i.e. A = {0, 1
λb
}, and different number of serving BSs, i.e. N = {1, 3}. Firstly, it
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Figure 5.5: Average spectral efficiency (ηSE) versus the area threshold (A), for differ-

ent velocities of MUs, where λb =
1

3600 ,M = 128, τ = 0.5 and ρ = 0.5.

can be easily observed that, for a fixed area threshold, the ID success probability

increases with the increase of the number of serving BSs. This could be explained

by the fact that the increased number of serving BSs leads to an improved power of

the intended received signal and to the reduction of the number of interfering BSs,

and thus the overall observed interference is reduced, which results in an enhanced

SINR. We can further observe that, by increasing the area threshold A, the success

probability drops. This is based on the fact that, the density of the BSs that satisfy

the coverage area condition (i.e. the candidate BSs) decreases with the increase of

the area threshold, resulting in a longer distance between the MU and its serving

BSs, thereby reducing the received signal strength. Note that, the interference expe-

rienced by a MU is significantly stronger compared to the noise power, and thus, the

ID success probability achieved with the employment of the PS scheme is approx-

imately identical to the performance achieved with the TS scheme. Hence, due to

space limitation, only the TS scheme is presented in Fig. 5.4. Finally, we can clearly

observe from Fig. 5.4 that the CA-CoMP scheme achieves a higher coverage proba-

bility than the MACH scheme [29] for any number of serving BSs. It was expected

since the employment of the MACH scheme associates the MU with multiple BSs

which are in the direction of MU’s movement, while several nearby BSs that do not

belong in the set of cooperative BSs cause severe inter-cell interference, compromis-

ing the performance of the MU.

93

Yua
n G

uo



Fig. 5.5 reveals the impact of the area threshold on the downlink spectral effi-

ciency for the proposed CA-CoMP scheme. In particular, Fig. 5.5 plots the spectral

efficiency, i.e. ηSE, versus the area threshold, i.e. A, where the MUs employ either

the PS or the TS scheme. We can observe from the figure that the network perfor-

mance is enhanced for low area threshold values by increasing the area threshold.

However, by increasing the area threshold beyond a critical point, i.e. the optimal

spectral efficiency, the spectral efficiency decreases. This observation is based on the

fact that at low area threshold constants, the MUs experience less intra- and inter-

cell handover operations, while the MUs are still able to communicate with their

serving BSs. In contrast, for large area threshold values, the distances between a

MU and its serving BSs increase, and thus the spectral efficiency significantly de-

creases. Furthermore, it can be observed that, the spectral efficiency achieved with

the employment of the PS scheme outperforms the TS scheme, independently of the

MUs’ velocity. This can be explained by the fact that, by employing the TS scheme,

the MUs assign a fraction of the time slot for ID, while the PS scheme enables the

MUs to allocate more effective time for ID, resulting in a higher achieved data rate.

Furthermore, as expected, for the MUs moving with a high velocity, the information

transfer outage occurs (i.e. ηSE = 0) due to severe handover overhead, which could

be avoided with the employment of the CA-CoMP scheme by increasing the area

threshold. Finally, the performance achieved with the conventional CoMP is also

illustrated in Fig. 5.5 for comparison purposes. Note that CoMP does not depend

on the area threshold, thus the achieved spectral efficiency remains constant. We

can easily observe that the CA-CoMP scheme outperforms the CoMP for both the

PS and TS schemes. In particular, by selecting the area threshold equal to A = 1
λb

,

a 41% gain is achieved by the CA-CoMP scheme over the conventional CoMP for a

velocity of v = 25 m/s.

Fig. 5.6 depicts the impact of the area threshold on the EH success probability

achieved by the employment of the proposed CA-CoMP scheme. More specifically,

Fig. 5.6 plots the achieved EH success probability (Theorem 5.3) versus the EH

threshold, for A ∈ {0, 1
λb

, 2
λb
}. It can be observed that, the EH success probabil-

ity increases with the decrease of the area threshold. This is based on the fact that,

a smaller area threshold enables the communication of the MUs with their closest

BSs, even if their coverage areas are small, enhancing the harvesting power, and

thus improving the EH success probability. Moreover, Fig. 5.6 presents the approxi-
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Figure 5.6: EH success probability
(
PEH) versus the decoding threshold (ε), for

different area threshold (A), where λb =
1

3600 .

mated EH success probability (provided in Remark 5.2), which is represented by the

dash lines. We can observe that, by ignoring the interfering signal power, i.e. only

the intended signals are harvested by the MUs, it achieves a tight lower bound for

the actual performance. This was expected since the BSs employ high gain direc-

tional antennas that can transmit strong signals to specific directions to enhance the

intended signal power at the MUs, while the observed interference signal power at

the MUs is much lower and thus it can be neglected.

Fig. 5.7 shows the effect of the area threshold on the MUs’ EH performance in

terms of the average harvested energy. In particular, Fig. 5.7 plots the average har-

vested energy of MUs versus the area threshold A, for different velocities of MUs,

i.e. v ∈ {25, 30, 40}m/s. In correspondence to the observations obtained in Fig. 5.5,

Fig. 5.7 illustrates that the amount of the average harvested energy initially increases

and then decreases by increasing the area threshold. Hence, for a MU moving with

a certain velocity, we can find an optimal area threshold to achieve the highest EH

performance for the CA-CoMP scheme. Moreover, it can be observed that the MUs

with a lower velocity are able to achieve a better energy harvesting performance,

since smaller handover rates provide more effective time for EH process. Finally,

we observe that our proposed CA-CoMP scheme enhances the EH performance of

MUs for different velocities, which achieves a better EH performance compared to

conventional CoMP scheme. This was expected since the CA-CoMP scheme reduces
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Figure 5.7: Average harvested energy (Q̄) versus area threshold (A) for MUs with

different velocity, where λb =
1

3600 andM = 128.

Figure 5.8: Energy efficiency (E ) versus the area threshold (A) for MUs with different

velocities.

the handover rate, and thus MUs can dedicate more time for EH.

Fig. 5.8 presents the achieved energy efficiency of the CA-CoMP scheme. We

can easily observe that the mobility has a negative impact on the energy efficiency,

i.e. MUs with lower velocity can achieve a higher energy efficiency. This is based

on the fact that, MUs moving with higher velocity need to allocate more time to

ensure connection with multiple BSs, which results in less effective time for data
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and energy transfer for the network. We can also observe that, by employing the

CA-CoMP scheme, there is an optimal area threshold to achieve the highest energy

efficiency. Moreover, it can be observed that the optimal area threshold increases

with the increase of MUs’ velocities. This was expected since, the frequent han-

dover becomes a dominant factor that reduces the ID and EH performance, and

thus the area threshold for the CA-CoMP scheme should be increased to mitigate

the handover rate. Finally, based on the results illustrated in Fig. 5.5, 5.7 and 5.8, we

can observe that the CA-CoMP scheme can satisfy different requirements of ID, EH

or energy efficiency for diverse applications at MUs by properly selecting the area

threshold.

5.6 Summary

In this chapter, we have studied a novel CA-CoMP scheme in the context of SWIPT-

enabled mobile networks. By exploring the different cell areas caused by the irreg-

ular network deployment, our proposed CA-CoMP scheme enables high-mobility

MUs to jointly communicate with multiple nearby serving BSs, whose coverage ar-

eas satisfy a pre-defined threshold. In order to provide a comprehensive interpreta-

tion of the mobility effect on the network performance, we have investigated both

the inter- and intra-cell handover operations, where the handover rates were de-

rived in closed form. Moreover, by using tools from stochastic geometry, we have

studied the ID and EH performance achieved with the employment of CA-CoMP

scheme and the performance metrics are derived in analytical expressions. Our re-

sults have shown that the proposed CA-CoMP can greatly reduce the handover rate,

and by properly selecting the area threshold, the CA-CoMP scheme can avoid the

information and power transfer outage for the high-velocity MUs. Furthermore, we

have shown that compared to conventional CoMP schemes, our proposed technique

offers a much better SWIPT performance in terms of the spectral efficiency and the

average harvested energy, while the optimal area threshold of the CA-CoMP scheme

to achieve the highest SWIPT performance has been numerically demonstrated. Fi-

nally, our results have revealed that the PS scheme outperforms the TS scheme in

terms of SWIPT performance for high-velocity MUs under the CoMP scenario.
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Chapter 6

SWIPT-assisted vehicular networks

In this chapter, we investigate a SWIPT-assisted vehicular network. Utilizing SWIPT

technology, battery-operated road-side sensors simultaneously receive control in-

formation and harvest energy from cellular BSs, subsequently using the harvested

energy to spread data to vehicles. By leveraging stochastic geometry tools, we es-

tablish a tractable framework, where the load of BSs and sensors are taken into ac-

count. The analytical expressions for the active probability and average harvested

energy of sensors, as well as the ID success probability of vehicles are derived. Our

results reveal the significant impact of system parameters, such as sensor density,

time splitting factor, and information threshold on vehicular network performance.

The optimal sensor density and time splitting factor that maximize ID success prob-

ability are illustrated. Additionally, the optimal sensor density within vehicular

networks dynamically adjusts in response to varying traffic congestion levels. Our

results offer invaluable insights for vehicular network design, highlighting the need

for adaptive strategies that seamlessly respond to evolving network conditions and

traffic patterns.

6.1 Motivation and contributions

Benefiting from the advancements in wireless network technologies, vehicular net-

works are emerging as a cornerstone of technological progress in transportation,

significantly enhancing road safety, improving traffic flow, and increasing overall

convenience for drivers [105]. To fully harness the potential benefits of vehicular

networks, an extensive deployment of road-side sensors for gathering and dissem-
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inating vital information, is of paramount importance [106]. However, the major-

ity of sensors are battery-operated, presenting a significant challenge in terms of

power sustainability. To this end, SWIPT technology becomes a promising solution,

offering a dual benefit: continuous power supply and seamless data communica-

tion [11, 13].

Recently, stochastic geometry tools have been leveraged for modeling and an-

alyzing the vehicular networks [105, 107, 108]. Specifically, the authors in [108]

presents an in-depth introduction to the Poisson line Cox process, which captures

the randomness of road layouts and vehicle positions, demonstrating its utility in

enhancing system-level performance analysis for modern vehicular networks. More-

over, by adopting the Poisson Line Cox Process model, the authors in [105] inves-

tigate the downlink coverage and rate of a cellular vehicle-to-everything network

and derive the coverage probability with the consideration of shadowing effects.

Although significant research has been conducted on vehicular communication net-

works, the incorporation of SWIPT technology offers both enhanced sustainability

and communication efficiency, which has been overlooked from the literature.

Motivated by above considerations, in this work, we investigate the advanced

capabilities of SWIPT-assisted vehicular networks. Specifically, we consider that

each unit time is divided into two parts: initially, road-side sensors employ SWIPT

technology to receive control information and harvest energy from cellular BSs, then

activate to transmit data to vehicles. By leveraging stochastic geometry tools, we es-

tablish a tractable analytical framework to assess the downlink performance. The

analytical expressions for the active probability, the average harvested energy of

sensors, and the ID success probability of vehicles are derived, by taking into ac-

count the number of sensors and vehicles associated with each BS and sensor, re-

spectively. Our results show that the ID performance of vehicles depends on mul-

tiple system parameters, such as the density of sensors and vehicles, as well as the

time-splitting factor, etc. The optimal density of sensors and the time-splitting fac-

tor that maximize the ID success probability of vehicles are illustrated. Finally, it

is shown that the these optimal system parameters dynamically shift according to

the varying traffic situations, and a higher density of vehicles results in a lower ID

success probability achieved by each vehicle.
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6.2 System model

We consider a large-scale downlink communications networks, consisting of tra-

ditional cellular BSs, road-side sensors and vehicles, which are randomly located.

In specific, cellular BSs are modeled according to a homogeneous PPP Φb with in-

tensity λb [19, 25]. Additionally, sensors and vehicles are distributed based on two

independent one-dimensional (1D) PPPs on each roadway, i.e. Φs and Φv with in-

tensity λs and λv, respectively. Further, the roadways are modeled by a homoge-

neous Poisson line process (PLP) Φl with line intensity µl [105, 107]. Regarding the

association policy, we consider that each sensor communicates with its closest BS,

and each vehicle receives information from its nearest sensor on the same roadway.

We assume that all wireless signals experience both small-scale fading and large-

scale path-loss effects. Specifically, the small-scale fading is modeled as Rayleigh

fading, where different links are assumed to be independent and identically dis-

tributed. We denote the channel power gain of the link between BSs and sensors

by h, and the channel power gain between sensors and vehicles by g. Therefore, h

and g are exponential random variables with unit mean [19]. Moreover, the large-

scale path-loss between a transmitter and a receiver with distance r is modeled by

an unbounded singular model, i.e.

`(r) =

r−αc , path-loss between BSs and sensors,

r−αv , path-loss between sensors and vehicles,

where αc & αv > 2 are the path-loss exponents.

Furthermore, we consider that sensors and vehicles have single omnidirectional

antennas, and all BSs are equipped with multiple antennas, of which the actual

antenna pattern is approximated by a widely-adopted sectorized model [19, 109].

More specifically, the antenna array gain of the link between a BS and a sensor is

modeled by two discrete values, i.e. G = {Gm, Gs} with corresponding probability

pG =
{

ω
2π , 2π−ω

2π

}
, where Gm and Gs are the main- and side-lobe gains, respectively,

and ω is the beamwidth of the main-lobe [97]. We assume a perfect beam-alignment

achieved between each sensor and its serving BS [110].

We assume that each unit time period is split into two parts with a time splitting

factor τ, as illustrated in Fig. 6.1. During the first fraction τ of time, cellular BSs

transmit central control information and power to sensors; while sensors send data
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Figure 6.1: System diagram of the SWIPT-assisted vehicular networks.

to vehicles during the rest (1− τ) of time. Additionally, we consider that the com-

munication between BSs and sensors occurs on distinct frequency bands from those

used for communication between sensors and vehicles. Furthermore, we assume a

time division multiple access scheme for the downlink networks, based on which,

each BS and sensor evenly divide the allocated transmission time into multiple time-

slots according to the number of associated sensors and vehicles, respectively. More

specifically, the transmission time dedicated to each sensor by a BS is precisely τ
N ,

where N is the number of sensors served by this BS; while the duration of each time-

slot allocated to a vehicle is 1−τ
M , where M is the number of vehicles associated with

a sensor.

Finally, we consider that all sensors are battery-operated and have SWIPT ca-

pability to decode information and harvest energy simultaneously by adopting a

PS scheme. In specific, a fraction ρ of the received signal power is allocated for ID

purpose, and the rest is directed to the EH circuit. If the decoded information by a

sensor during a time slot satisfies a pre-defined threshold, it transmits information

to the associated vehicles by using the harvested energy.

6.3 Performance analysis of the SWIPT-assisted vehic-

ular networks

In this section, we study the performance of the considered SWIPT-assisted vehic-

ular networks. We initially assess the ID and EH performance achieved by each

101

Yua
n G

uo



sensor, in terms of the active probability and the average harvested energy, recep-

tively. Further, the distribution of the number of sensors associated with each BS is

evaluated. Finally, we analyze the ID success probability for vehicles, by taking into

consideration of the number of vehicles served by each sensor.

6.3.1 SWIPT performance achieved by sensors

Considering that N sensors are associated with a BS, the conditional active proba-

bility of a sensor is defined as the probability that the decoded information during

a time-slot exceeds a pre-defined threshold, β bits, i.e.

A(β, N) , P
{ τ

N
Bc log2(1 + SINR) ≥ β | N

}
. (6.1)

The analytical expression of A(β, N) is presented in the following lemma.

Lemma 6.1. Conditioning on the case where N sensors are associated with a BS, the active

probability of the sensor served by this BS is given by

A(β, N) =
∫ ∞

0
L($) exp

(
− sσ2

c
ρ
− πλbr2

)
2πλbrdr, (6.2)

where

L($) = ∏
G∈{Gm,Gs}

exp

(
− 2π$λbPbr2−αc

αc − 2
GpG 2F1

[
1,

αc − 2
αc

;
2αc − 2

αc
;−GpGPb$

rαc

])
,

(6.3)

$ =

(
2

Nβ
Bcτ − 1

)
rαc

PbGm
and Pb is the transmit power of a BS.

Proof. The conditional active probability is computed as

A(β, N) =P

 ρPbGmr−αc
o ho

∑xi∈Φ\xo
b

ρPbGir
−αc
i hi + σ2

s
≥ 2

Nβ
Bcτ − 1


=P

{
ho ≥ s

(
∑xi∈Φ\xo

b
PbGir

−αc
i hi + σ2

s /ρ

)}
=E

{
exp

(
−s ∑xi∈Φ\xo

b
PbGir

−αc
i hi

)
exp

(
−σ2

s
ρ

)}
=E

{
L(s) exp

(
−σ2

s
ρ

)}
, (6.4)

where ro and ri represent the distance from a sensor to its serving BS and the i-th

interfering BS, respectively, L(s) is the Laplace transform of the interference and

s =

(
2

Nβ
Bcτ − 1

)
rαc

PbGm
. The rest of the proof follows the similar steps as the proof of

Theorem 5.2, and thus is omitted due to the limited space. �
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It can be easily observed from the expression in Lemma 6.1 that, the active prob-

ability of a sensor depends on the number of sensors associated with a BS, the PS

factor, and the density of cellular BSs. In specific, a greater number of sensors served

by the same BS results in a shorter transmission time-slot for each sensor and thus

decreases the active probability. Moreover, reducing the PS factor amplifies the im-

pact of noise on the signal, consequently causing a decrease in active probability.

Finally, the density of base stations presents a noteworthy trade-off. While higher

density can enhance the intended signal strength by reducing the distance between

a sensor and serving its BS, it also leads to increased interference from neighboring

BSs.

We now study the EH performance achieved by a sensor. By conditioning the

scenario where N sensors served by a BS, the average amount of harvested energy

by a sensor per unit time, is evaluated in the following lemma.

Lemma 6.2. Conditioning on the case where N sensors are associated with a BS, the average

harvested energy of a sensor served by this BS per unit time is given by

E(N) =
π

αc
2 τPbλ

αc
2

b Q(N)

(αc − 2)N
, (6.5)

where

Q(N)

=Gm

(
2pm(N − ρ)Γ

(
2− αc

2
, πr2

minλb

)
+ (αc − 2)(1− ρ)Γ

(
1− αc

2
, πr2

minλb

))
+Gs

(
2(N − ρ)psΓ

(
2− αc

2
, πr2

minλb

)
+ (αc − 2)(N − 1)Γ

(
1− αc

2
, πr2

minλb

)))
,

(6.6)

η is the efficiency of the EH circuit and rmin = 1 represents the minimum distance between

a BS and a sensor.

Proof. Note that the received signal power is split during one time slot, i.e. τ/N,

which is dedicated to downlink communication between a sensor and its serving

BS; while during the remaining time, it harvests energy from the interference, and

thus there is no need to perform power splitting. Therefore, the average harvested
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energy by a sensor per unit time is computed as

E(N) =E

{
τ(1− ρ)

N
η

(
PbGmr−αc

o + ∑
xi∈Φ\xo

b

PbGir
−αc
i

)
︸                                                    ︷︷                                                    ︸

power-splitting is applied

+
(N − 1)τ

N
η

(
PbGsr−αc

o + ∑
xi∈Φ\xo

b

PbGir
−αc
i

)
︸                                                     ︷︷                                                     ︸
all received power is dedicated for energy harvesting

}
,

(6.7)

where channel power gain is canceled due to the fact that E{h} = 1. Then, by

applying the Campbell’s theorem [25], we have

E

{
∑xi∈Φ\xo

b

PbGi

rαc
i

}
=
∫ ∞

ro
EGi{PbGir−αc}2πλbrdr =

2PbGm pmπλbr2−αc
o

αc − 2
+

2PbGs psπλbr2−αc
o

αc − 2
.

(6.8)

Then, by substituting (6.8) into (6.7) and by evaluating the expectation over ro, the

final results in Lemma 6.2 is derived. �

Based on the closed-form expressions obtained in Lemma 6.2, we can observe

that the EH performance of the sensors depends on multiple factors, such as the

density of BSs, and the number of sensors associated with single BS, etc. In specific,

the increase of BSs’ density leads to improved EH performance. This can be ex-

plained by the fact that the increased density of BSs offers a dual advantage. Firstly,

it provides more access points for energy harvesting, allowing sensors to maintain

stronger connections and harvest more energy from the signals they receive; while

secondly, it leads to the increase of interference which can be harvested by each

sensor.

Given that the number of sensors served by a BS, i.e. N, significantly impacts the

performance of the sensors, we delve into the distribution of N. The analytical ex-

pression for the probability mass function (PMF) of N is presented in the following

lemma.

Lemma 6.3. The PMF of the number of sensors served by a BS, i.e. N, is given by

P{N = n} ≈
∫ ∞

0

Γ(n + κ(z))λn
s

n!θ(z)κ(z)Γ(κ(z))

(
θ(z)

1 + λsθ(z)

)κ(z)+n

×
KKzK−1λK

b exp(−Kzλb)

Γ(K)
dz,

(6.9)

where n = 0, 1, 2, ..., κ(z) = 3π3/2µl
√

z
16 , θ(z) = 16

√
z

3π3/2 and K = 3.5.
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Proof. Without loss of generality, we focus on the PMF of the number of sensors

associated with the typical BS, which is located at the origin. Since all sensors are

deployed on roadways, the number of sensors served by the typical BS is directly

related to the total length of roadways within the typical cell, denoted by L. Al-

though the exact and approximated distributions of L were presented in [111], those

expressions lead to high-complexity analysis and low computationally efficient. In

what follows, we apply a moment-matching approach, offering a tight approxima-

tion that substantially lowers the computational complexity.

Note that the locations of cellular BSs are independent of the road networks.

Therefore, by conditioning on that the area of typical cell is Z, we initially evaluate

the conditional expectation and variance of L, i.e. E{L|Z} and V{L|Z}, respectively.

Since that µl represents the length of roads per unit area, it follows that E{L|Z} =

µlZ. Further, applying the Eve’s law [112], we obtain the following:

V{L|Z} = E
{

V{L|Z | N|Z}
}
+ V

{
E{L|Z | N|Z}

}
, (6.10)

where N|Z is the number of roads intersecting the typical cell. Let Li denote the

length of intersection for the i-th road. By replacing L|Z with L|Z = ∑
N|Z
i=1 Li, the

equation for variance transforms as follows:

V{L|Z} =E

V


N|Z

∑
i=1

Li | N|Z


︸                           ︷︷                           ︸

V1

+V

E


N|Z

∑
i=1

Li | N|Z


︸                           ︷︷                           ︸

V2

.
(6.11)

Note that this formulation segregates the variance into two parts: V1, the expected

variance of the sum of intersection lengths given the number of intersecting roads,

and V2, the variance of the expected sum of intersection lengths for a given number

of intersecting roads. Since Li and Lj for i , j are independent, we have

V1 = E
{

N|Z
}

V {Li} . (6.12)

Furthermore, E
{

∑
N|Z
i=1 Li | N|Z

}
is simply N|ZE {Li} and thus,

V2 = V
{

N|Z
}

E {Li}2 . (6.13)

Since N|Z follows the Poisson distribution for a given Z, this implies E{N|Z} =

V{N|Z} = 2µl

√
Z
π [25]. Then, by substituting V1 and V2 into (6.11), we have

V{L|Z} = 2µl

√
Z
π

(
V {Li}+ E {Li}2

)
= 2µl

√
Z
π

E
{

L2
i

}
, (6.14)
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Figure 6.2: The exact and approximated PMF for the number of sensors associated

with a BS.

where the second moment of Li is calculated as

E
{

L2
i

}
=
∫ √Z/π

0
4(Z/π − x2)

1√
Z/π

dx =
8Z
3π

. (6.15)

Then, utilizing the moment-matching technique, we approximate the distribution of

L|Z with a gamma distribution. The shape and scale parameters of this distribution

are given by

κ(Z) =
E{L|Z}2

V{L|Z}
, and θ(Z) =

V{L|Z}
E{L|Z}

. (6.16)

Further, given that the distribution of sensors on each roadway follows a 1D PPP,

the PMF of the number of sensors associated with the typical BS is computed as

P{N = n} = EZ

{∫ ∞

0
(λsL)n exp(−λsL)

n!
fL|Z(L)dL

}
, (6.17)

where

fL|Z(L) =
Lκ(Z)−1

θ(Z)κ(Z)Γ(κ(Z))
exp

(
− L

θ(Z)

)
. (6.18)

Finally, by evaluating the expectation over Z, of which the PDF is given by [89]

fZ(z) =
KKzK−1λK

b exp(−Kzλb)

Γ(K)
, (6.19)

the results in Lemma 6.3 is obtained. �

It is worth highlighting that the PMF of N presented in Lemma 6.3 offers signifi-

cantly lower computational complexity compared to the approach adopted in [111].
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This simplification, involving a single integral that can be easily evaluated using

numerical methods, enables the analytical tractability of sophisticated performance

metrics. The accuracy of the approximation is illustrated in Fig. 6.2, which achieves

a good match with exact PMF. Leveraging the results of Lemmas 6.3, two valuable

insights are provided in the following remarks.

Remark 6.1. The average number of sensors associated with a BS is given by E{N} =

λsµl/λb.

Remark 6.1 indicates that the average number of sensors is a function of three

system parameters, i.e. the density of sensors, roadways and the BSs. This can

be used for quickly estimating the average duration of the transmission time-slot,

which are crucial for overall performance achieved in the considered vehicular net-

works. In following remark, we evaluate the transmit power of a sensor.

Remark 6.2. Conditioning on the scenario where N sensors are associated with a BS, the

transmit power of the sensor is given by

Ps(N) =
E(N)

A(β, N)(1− τ)
. (6.20)

Proof. Given that each sensor utilizes harvested energy for signal transmission, the

transmitter power is adjusted such that the average energy transmitted equates to

the average harvested energy. Additionally, the active probability of a sensor is

given by A(β, N), and thus we have

E(N)− Ps(N)(1− τ)A(β, N) = 0. (6.21)

By solving above equation for Ps(N), the result in Remark 6.2 is obtained. �

6.3.2 Downlink performance achieved by vehicles

In order to assess the achievable performance of individual vehicles, we commence

by examining the distribution of the number of vehicles associated with each sensor,

i.e. M. Specifically, the closed-form expression for the PMF of M is provided in the

following lemma.

Lemma 6.4. The PMF of the number of vehicles associated with a sensor, i.e. M, is given

by

P{M = m} = 4λm
v λ2

s (m + 1)
(2λs + λv)m+2 , (6.22)

where m = 0, 1, 2, 3, ... .
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Proof. We initially assess the conditional probability that m vehicles are associated

with a sensor, given that the sensor’s coverage range is W. Since the locations of

vehicles follow an 1-D PPP, the probability of m vehicles located within the length

W is given by

P{M = m|W} = (Wλv)m exp(−Wλv)

m!
. (6.23)

Recall that each vehicle is associated with its closest sensor on the same road. There-

fore, the coverage area of a sensor can be defined as the mid-point between its ad-

jacent sensors. Specifically, the coverage length of a sensor is calculated as the sum

of the distances to its immediate left and right neighboring sensors, divided by two.

Hence, the CDF of W is computed as

FW(w) =P{W ≤ w} = 1−P{2W > 2w}

=1− exp(−2wλs)− 2wλs exp(−2wλs).
(6.24)

By taking the first-order derivative with respect to w, the PDF of W is obtained, i.e.

fW(w) = 4λ2
s w exp(−2λsw). (6.25)

Then, by taking the expectation of (6.23) over W, we have

P{M = m} =
∫ ∞

0

(Wλv)m exp(−Wλv)

m!
fW(W)dW. (6.26)

Finally, by solving the above integral with the assistance of the expression in [91,

3.326], the final result in Lemma 6.4 is derived. �

Based on (6.22), it can be observed that the probability of a sensor being associ-

ated with a large number of vehicles decreases with increasing vehicle density. The

expectation of M is provided in following remark.

Remark 6.3. The average number of vehicles associated with a sensor is given by E{M} =

λv/λs

We now state the main result of this work, namely, the ID success probability

achieved by a vehicle, which is defined as the probability that the decoded informa-

tion by a vehicle per unit time exceeds a pre-defined threshold, γ bits. The analytical

expression for the ID success probability is presented in the following theorem.

Theorem 6.1. The ID success probability achieved by a vehicle is given by

PID(γ) =
∞

∑
n=1

∞

∑
m=1

P{N = n− 1}P{M = m− 1}A(β, n)ϕ(n, m, γ), (6.27)
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Table 6.1: Simulation Parameters.

Parameters Values

Intensity of Φb λb = 1 km−2

Intensity of Φs λs = 2 km−1

Intensity of Φv λv = {10, 30, 50} km−1

Intensity of Φl µl = 5 km−1

Transmit power of BS Pb = 45 dB

Beamwidth of cellular BSs 45o

Main-lobe array gain of BS Gm = 13.217 dBm

Side-lobe array gain of BS Gs = −6.783 dB

Bandwidth of cellular networks Bc = 25 MHz

Bandwidth of the vehicular networks Bv = 15 kHZ

Power splitting parameter ρ = 0.5

Time splitting parameter τ = 0.8

Thermal noise power σ2
c = −70 dBm, σ2

v = −94 dBm

Energy harvesting efficiency η = 0.7

Path-loss exponent αc = 4, αv = 4

Threshold of control information β = 10 bits

where

ϕ(n, m, γ) =
∫ ∞

0
exp

(
−σ2

v rαv(2
mγ

Bv(1−τ) − 1)
Ps(n)

− 2rλs

)
2λsdr (6.28)

Bv is the communication bandwidth.

Proof. By conditioning on N, M, and the serving sensor is active, the ID success
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probability achieved by a vehicle is computed as

PID(γ | N = n & M = m & the nearest sensor is active)

=P

{
Bv(1− τ)

m
log2

(
1 +

Ps(n)gr−αv

σ2
v

)
≥ γ

}
=P

{
g ≥ σ2

v rαv

Ps(n)

(
2

mγ
Bv(1−τ) − 1

)}
=
∫ ∞

0
exp

(
− σ2

v rαv

Ps(n)

(
2

mγ
Bv(1−τ) − 1

))
2λs exp(−2rλs)dr.

(6.29)

Then, by multiplying the active probability of the sensor and by applying the law of

total probability, the final result in Theorem 6.1 is proven. �

From the results presented in Theorem 6.1, we can observe that several critical

system parameters effect the ID success probability achieved by a vehicle. It is sig-

nificant to carefully design and adjust the system parameters to achieve the high

performance, while the optimal sensors’ density and time-splitting factor that max-

imize the ID success probability is illustrated in Section

6.4 Numerical results

We present analytical and simulation results to illustrate the impact of system pa-

rameters on the key performance metrics, and to find the optimal values to max-

imize the performance of the considered vehicular networks. Unless otherwise

stated, we use the parameters given in Table 6.1. It is worth mentioning that, the

proposed analytical framework is generic, and the selection for these parameter val-

ues is for the purpose of illustration.

Fig. 6.3 illustrates the impact of the number of sensors and the time splitting

factor on the active probability achieved by the sensor. In specific, Fig. 6.3 plots

the active probability versus the number of sensors associated with a BS, for dif-

ferent information threshold, i.e. β, and under varying time splitting factors, i.e.

τ ∈ {0.2, 0.4, 0.8}. We can observe that the active probability increases with a higher

τ for a given N. This is because a larger proportion of time is allocated for informa-

tion transferring from the BS to sensors, thus enhancing the active probability. More-

over, it can be observed that as the number of sensors associated with a BS rises, the

active probability for each sensor diminishes, which is due to the increased compe-

tition for limited time resources. Further, we can also observe that this decrease in

110

Yua
n G

uo



Figure 6.3: Active probability versus the number of sensor served by a BS.

Figure 6.4: ID success probability versus the time splitting parameter, where γ = 1k

bits.

active probability with more sensors is mitigated by a higher τ. Finally, a higher

information threshold (β) corresponds to lower overall active probabilities, imply-

ing that more stringent data requirements exacerbate the challenges of maintaining

sensor activity.

Fig. 6.4 shows the impact of time splitting parameter on the network perfor-

mance, under various vehicle densities. Specifically, Fig. 6.4 plots the ID suc-

cess probability versus the time splitting parameter, with vehicles density λv ∈
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Figure 6.5: ID success probability versus the density of sensors, where γ = 1k bits.

{10, 30, 50} /km. We can easily observe that the ID success probability initially as-

cends with an increase in τ, and subsequently descends across all vehicle densities.

The ascent reflects the enhanced reception of power and control information by the

sensors from the BS during the first fraction of the time, thereby improving their

ability to communicate with vehicles. However, beyond the optimal τ, an exces-

sive allocation of time to the BSs leaves inadequate time for sensors to effectively

transmit data to vehicles. The shift of the optimal τ towards lower values as vehicle

density increases. This can be explained based on the fact that, in more congested

traffic conditions, it is more beneficial to allocate a greater portion of time for sensor-

to-vehicle communication to ensure that the increased number of vehicles can be

adequately served.

Fig. 6.5 illustrates the impact of sensors’ density on the ID performance achieved

by vehicles, with different traffic situations. In specific, Fig. 6.5 plots the ID suc-

cess probability versus the density of sensors, for different density of vehicles, i.e.

λv ∈ {10, 30, 50} /km. We can observe that as sensor density increases, the ID suc-

cess probability initially increases, reaches an optimal point, and then decreases, for

any density of vehicles. This can be explained by the fact that, a higher density

of sensors leads to shorter time-slot dedicated to each sensor, due to the increased

number of sensors served by each BS, limiting the efficiency of information and

power transfer from BSs to sensors. However, an increased density of sensors is ben-

eficial for the information transfer from each sensor to vehicles, i.e. vehicles is likely
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to be closer to a sensor, receiving stronger signals. Therefore, the initial increase

in ID success probability reflects the improved sensor-to-vehicle communication,

while the subsequent decline beyond the peak points to the constraints in the BS-to-

sensor communication phase, highlighting a critical trade-off in the network design.

Another interesting observation is that, in crowded traffic scenarios, as indicated by

higher vehicle densities, i.e. λv, the optimal sensor density shifts to a higher value,

which suggests that in more congested environments, the network benefits from a

greater number of sensors. This is because, with more vehicles present, having ad-

ditional sensors improves the probability of each vehicle being in closer proximity

to a sensor, thus enhancing the efficacy of sensor-to-vehicle communication.

6.5 Summary

In this chapter, we present a novel analytical framework for investigating the per-

formance of SWIPT-assisted vehicular networks. More specifically, by applying the

SWIPT technology, battery-operated sensors simultaneously receive control infor-

mation and harvest energy from the cellular networks, and then transmit data to

vehicles by using the harvested energy. By leveraging stochastic geometry tools,

we derive the analytical expressions for several key performance metrics, such as

the active probability and the average harvested energy of sensors, as well as the

ID coverage probability achieved by vehicles, etc. Our comprehensive analysis has

demonstrated the significant impact of system parameters such as the density of

sensors, the time splitting factor, and the information threshold in optimizing the

performance of vehicular networks. Moreover, the optimal density of sensors and

time splitting factor, that maximize ID success probability across various vehicle

densities have been illustrated. Notably, the optimal sensor density is found to

be dynamic, shifting in response to traffic congestion levels. These insights con-

tribute to the design of more efficient and reliable vehicular networks, ensuring

robust sensor-to-vehicle communication in increasingly complex and demanding

traffic scenarios.

The integration of SWIPT technology in vehicular networks not only enhances

the sustainability of roadside sensors by ensuring a continuous power supply but

also facilitates reliable data communication crucial for advanced vehicular appli-

cations. This system shows promise for a wide range of applications, from real-
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time traffic management and autonomous driving to emergency vehicle notifica-

tion systems and dynamic road condition monitoring. The ability to sustain sen-

sor operations without the need for frequent battery replacements or wired power

sources significantly increases the feasibility of deploying a dense network of sen-

sors, thereby supporting the high granularity of data required for these applica-

tions. Furthermore, the adaptability of sensor density and time splitting factors in

response to varying traffic conditions underscores the system’s capability to meet

the demands of dynamic vehicular environments, ensuring that the network re-

mains robust and efficient under different traffic scenarios. This adaptability, com-

bined with the demonstrated impact of system parameters on network performance,

highlights the practicality of implementing SWIPT-assisted vehicular networks in

real-world settings, paving the way for safer, more efficient, and intelligent trans-

portation systems.
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Chapter 7

LEO satellite-based non-terrestrial

heterogeneous networks

In this chapter, we investigate the large-scale heterogeneous LEO satellite networks

in the context of three association schemes. In contrast to existing studies, which

typically assume a single-tier LEO satellite-based network, the developed frame-

work captures the heterogeneous nature of real-world satellite network deploy-

ments. More specifically, we investigate a multi-tier LEO satellite-based network,

where different tiers of LEO satellites are modelled by multiple independent Pois-

son point processes, and each tier differs in density, transmit power and altitude. We

propose three association schemes for the considered network topology based on: 1)

the Euclidean distance, 2) the averaged received power, and 3) a random selection.

We establish a tractable framework for evaluating the performance of the considered

network deployments in the context of the proposed association schemes, in terms

of the association probability, downlink coverage probability and spectral efficiency.

7.1 Motivation and contributions

Recently, stochastic geometry has been leveraged to analyse the performance of

large-scale LEO satellite-based communication systems, highlighting its effective-

ness as a powerful and tractable mathematical tool for assessing the impact of key

parameters on network performance [51, 55, 57, 82, 83]. Nevertheless, these studies

highlight the potential of stochastic geometry in modelling large-scale LEO satellite-

based networks, which typically focus on the assumption that all LEO satellites are
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deployed at the same altitude. In contrast, real-world LEO satellite-based networks

exhibit significant heterogeneity, featuring satellites deployed at varying altitudes,

transmitting signals with different power levels, and possessing diverse spatial den-

sities [51, 52, 81]. In light of the heterogeneity present in large-scale LEO satellite-

based networks, the association scheme is of paramount importance, as it directly

influences key aspects of network performance, such as coverage probability and

data rate. Various association schemes for the conventional terrestrial networks

have been extensively explored in the literature, which typically focus on connect-

ing users to the most suitable BSs based on the contact distance, cell area, received

signal strength, or other quality of service metrics [58, 113]. However, the efficient

association schemes for the large-scale heterogeneous LEO satellite networks are

overlooked in the current literature, while the majority of works that investigate the

massive LEO satellite networks either ignore the heterogeneity or assume a simplis-

tic distance-based association scheme [54, 55, 57, 82, 83]. This is mainly due to the

challenges arising from varying altitudes of multi-tier LEO satellites [114]. More

specifically, unlike conventional terrestrial networks, where the height of BSs’ an-

tennas is typically ignored in the analysis, the altitude difference between multi-tier

LEO satellites is a critical factor that has to be considered, since the varying altitudes

directly impact the coverage area and signal strength. Such diverse altitudes of LEO

satellite networks lead to much higher complexity in designing association schemes

and analysing the corresponding network performance.

Motivated by the above discussion, in this chapter, we focus on modelling the

heterogeneity of LEO satellite-based networks. The main contributions are summa-

rized as follows:

• We develop an analytical framework based on stochastic geometry, which

sheds light on the modelling and analysing large-scale heterogeneous LEO

satellite networks. In particular, the developed framework takes into account

the heterogeneity of large-scale LEO satellite networks, which involves de-

ploying different tiers of satellites at various altitudes with varying transmit

power and density. Moreover, we adopt multiple independent random point

processes for modelling the spatial deployments of multi-tier LEO satellites

and study the performance of the considered networks from a macroscopic

point-of-view.
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• We propose two association schemes for the considered LEO satellite networks.

Specifically, the proposed schemes are designed based on the Euclidean dis-

tance and the average received power, respectively; while a random tier selection-

based association is also introduced as a benchmark scheme. The achieved

performance by each association scheme is evaluated in terms of association

probability, coverage probability and spectral efficiency.

• By leveraging tools from stochastic geometry, we derive the analytical expres-

sions for the association probability, coverage probability and spectral effi-

ciency, by taking into account the existence of inter-cell interference. Moreover,

in order to reveal the fading impact on the network performance, we further

assess the downlink performance in two distinct scenarios, namely, Rayleigh

fading and non-fading environments, while expressions for the corresponding

performance metrics are analytically derived.

• Our results show that the fading channel, the altitude, the number of satel-

lites, and the transmit power of LEO satellites significantly affect the coverage

probability and spectral efficiency. In specific, we demonstrate that the exis-

tence of multipath fading channels results in a degraded coverage probability

in low SINR regimes, while surpassing non-fading scenarios in high SINR sit-

uations. Moreover, the average power-based association scheme consistently

outperforms the distance- and random selection-based schemes across various

scenarios. Furthermore, as the number of LEO satellites increases, the random

selection-based scheme surpasses the distance-based scheme due to the effi-

cient utilization of LEO satellites from higher altitude tiers that typically have

larger transmit power. Finally, we demonstrate that greater path-loss results

in reduced spectral efficiency, and increasing transmit power initially elevates

spectral efficiency, but levels off due to the increased interference from neigh-

bouring satellites.

7.2 System model

We consider a multi-tier constellation setup described in Section 2.2.2. Let xi,k de-

note the location of the i-th LEO satellite that belongs to the k-th tier constellation,

and ri,k represent the Euclidean distance from this LEO satellite to the typical gUE.

117

Yua
n G

uo



Additionally, let x0,k with 1 ≤ k ≤ K depict the locations of the closest LEO satellites

to the typical gUE from each tier constellation. Since the communication between

the LEO satellites and the gUEs mainly refers to the LoS transmission, i.e. a gUE can

only receives signals from the LEO satellites above its local horizon, the maximum

distance between a gUE and a visible LEO satellite that belongs to the k-th tier con-

stellation is given by Rmaxk =
√

H2
k + 2HkR⊕. Regarding the antenna directionality

of LEO satellites and gUEs, we adopt a sectorized antenna model. This approach

provides a suitable approximation of the actual beam pattern while maintaining ad-

equate accuracy for analysis purposes. Specifically, the antenna array gain of the

LEO satellites that belongs in the k-th tier is given by GL
k = {GL

m,k, GL
s,k}, where GL

m,k

and GL
s,k represent the main- and the side-lobe gains of LEO satellites’ antenna, re-

spectively. Similarly, the antenna array gain of a gUE is characterized by the two

discrete values, i.e. the main-lobe gain GU
m and the side-lobe gain GU

s . Furthermore,

we assume that the receiving beam is perfectly aligned with the antenna boresight of

the serving satellite, while being misaligned with those of interfering satellites [115].

It is worth mentioning that, although interfering satellites may also be aligned with

the received antenna’s boresight with a small probability, the employment of such

assumption offers a tractable analysis for the considered large-scale LEO satellite

networks. Therefore, the antenna array gain of the intended link between the typ-

ical gUE and its serving LEO satellite is maximized to GL
m,kGU

m ; while the antenna

array gain for the interfering links can be expressed as GL
s,jG

U
s .

The altitudes of LEO satellites have a significant impact on the downlink net-

work performance, e.g. higher altitudes of LEO satellites typically result in longer

propagation distances of wireless signals, degrading the received signal quality at

the gUEs. Hence, a power adjusting mechanism is assumed to be employed by the

LEO satellites, such that the LEO satellites located at higher altitudes can achieve

a larger effective isotropic radiated power to compensate for the sever path-loss

effect [116]. More specifically, we assume that by properly adjusting the transmit

power of the LEO satellites according to their altitudes, the maximum achievable

received signal power at the typical gUE from each tier LEO satellites are identical,

i.e.
PkGL

m,k

Hα
k

=
PjGL

m,j

Hα
j

, ∀ 1 ≤ j, k ≤ K, (7.1)

where Pk is the transmit power of the k-th tier LEO satellites. It is worth mentioning
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that the adopted power adjusting mechanism not only captures the heterogeneity of

multi-tier LEO satellite networks but also facilitates the analytical tractability of the

developed framework for evaluating the performance of large-scale LEO satellite-

based networks.

7.3 Association schemes LEO satellite networks

The proposed association schemes for the considered large-scale heterogeneous LEO

satellite networks are executed through a two-stage process. The first stage is the

same for all association schemes. More specifically, in the first stage process, K LEO

satellites are selected into the set of candidate LEO satellites; while in the second

stage, the serving LEO satellite is selected from the set of candidate LEO satellites,

based on the Euclidean distance, the average received power, or the random selec-

tion. In what follows, we describe the detailed procedures of each proposed associ-

ation scheme.

7.3.1 The distance-based association (DbA) scheme

The first association scheme is designed based on the Euclidean distance between

the typical gUE and the LEO satellites. In specific, by aiming to minimize the path-

loss between a gUE and its serving LEO satellite, the proposed DbA scheme enables

each gUE to select and communicate with its nearest LEO satellite to maintain an

acceptable received signal quality. Therefore, in the first stage of the DbA scheme,

the nearest LEO satellites to the typical gUE from each tier are selected into the set

of candidate LEO satellites, i.e. C = {x0,1, · · · , x0,k, · · · , x0,K}. Then in the second

stage, the typical gUE selects the closest LEO satellite from the set of candidate LEO

satellites as the serving satellite, e.g. x0,k = arg minx0,j∈C ‖x0,j‖, that denotes the case

where the typical gUE is associated with the k-th tier LEO satellite. It is worth men-

tioning that the proposed DbA scheme is a low-complexity scheme, since the gUEs

only requires the information about the relative position of the LEO satellites in or-

der to make the selection, which can be easily obtained via the global positioning

system (GPS) [117].
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7.3.2 The power-based association (PbA) scheme

The second proposed association scheme, namely PbA scheme, takes into consider-

ation of the average received signal power at the gUEs. In specific, the PbA scheme

associates a gUE with the LEO satellite that provides the highest average signal

power observed at the gUE. Note that LEO satellites which belong in the same tier

have identical transmit power and antenna array gain, and thus the nearest one to

the gUE provides the strongest average signal received by the gUE. Hence, the can-

didate LEO satellites are same as that of the DbA scheme, i.e. C = {x0,1, · · · , x0,k, · · · , x0,K}.

Then, in the second stage, the serving LEO satellite is selected among the set of can-

didate LEO satellites, which provides the highest average received signal power

observed at the gUE, e.g. x0,k = arg maxx0,j∈C E
{

h0,jPjGL
m,jG

U
mr−α

0,j

}
, that denotes the

case where the typical gUE is associated with the k-th tier LEO satellite.

7.3.3 The random selection-based association (RbA) scheme

The third association scheme, namely RbA scheme, is based on a random tier selec-

tion. More specifically, the RbA scheme enables a gUE to randomly associate with

one tier network and to communicate with the closest LEO satellite that belongs to

this tier. In specific, the first stage process of the RbA scheme is same as that of

the DbA and PbA schemes, i.e. the set of candidate LEO satellites which contains

the closest LEO satellites to the typical gUE from each tier, are pre-selected from all

LEO satellites. In the second stage, the typical gUE randomly selects one serving

LEO satellite among the set of candidate LEO satellites. It should be noted that the

RbA scheme does not requires any operations of comparing the distance and/or

received power of the candidate LEO satellites, and thus corresponds to a low im-

plementation complexity. Therefore, it is appropriate for the various IoT devices

which typically have limited power/computation constraints.

7.4 Association probability analysis

In this section, we present a detailed analysis of the association probability for each

scheme introduced in Section 7.3. More specifically, the association probability de-

notes the probability of a gUE being associated with each tier of LEO satellites,
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which is essential for analysing the performance of large-scale heterogeneous LEO

satellite networks. By leveraging tools from stochastic geometry, the expressions of

the association probability for all proposed association schemes are analytically in

the following sections.

7.4.1 Association probability for the DbA scheme

We first evaluate the association probability of the DbA scheme. As the DbA scheme

relies on the Euclidean distance, we begin by analysing the statistical properties of

the distance between the typical gUE and the candidate LEO satellites. Specifically,

we assess the distribution of the distance between the typical gUE and its nearest

LEO satellite from each tier (i.e. candidate LEO satellites), while the pdf of r0,k for

1 ≤ k ≤ K, is evaluated in the following lemma.

Lemma 7.1. The pdf of the distance between the typical gUE and its k-th candidate LEO

satellite is given by

fD(r, λk, Hk) =
2πλkr(R⊕ + Hk)

R⊕
exp

(
−

πλk(R⊕ + Hk)(r2 − H2
k )

R⊕

)
, (7.2)

where Hk ≤ r < Rmaxk .

Proof. The proof follows a similar approach as [55]. We first compute the cdf of r0,k

based on the null probability of PPP [25], i.e.

FD(r, λk, Hk) = P{r0,k ≤ r} = 1−P{r0,k > r} = 1− exp (−λkR(r, Hk)) , (7.3)

where R(r, Hk) represents the area of the spherical dome as shown in Fig. 7.1, which

is given by

R(r, Hk) =
π(r2 − H2

k )(R⊕ + Hk)

R⊕
.

Finally, by taking the derivative of FD(r, λk, Hk) with respect to r, i.e. fD(r, λk, Hk) =

∂
∂r FD(r, λk, Hk), the final expression in Lemma 7.1 is derived. �

It is worth emphasizing that while several previous studies have focused on

deriving the Earth-centered zenith angle distribution for investigating single-tier

LEO satellite-based networks1, the distance distribution presented in Lemma 7.1 is

1For a single-tier LEO satellite network, the distance between a gUE and a LEO satellite can be

uniquely determined by the Earth-centered zenith angle [51, 52, 55, 57].
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Figure 7.1: The closest LEO satellite of the k-th tier constellation.

a more general result that can be applied for analysing both single- and multi-tier

LEO satellite networks. Then, based on the above results, we further examine the

availability of LEO satellites for the considered large-scale LEO satellite networks in

the following proposition.

Proposition 7.1. For the considered large-scale LEO satellite networks, the probability of

existing at least one k-th tier LEO satellite above the local horizon of the typical gUE is

approximately equal to one, i.e. P◦(Nk, Hk) ≈ 1.

Proof. The probability that at least one k-th tier LEO satellite above the local horizon

of the typical gUE is computed as

P◦(Nk, Hk) =
∫ Rmaxk

Hk

fD(r, λk, Hk)dr

=1− exp

(
−

πλk(R⊕ + Hk)(R2
maxk
− H2

k )

R⊕

)

=1− exp

− Nk

2
(

R⊕
Hk

+ 1
)
 . (7.4)

Note that R⊕ ≈ 6371 km, and the altitude of the LEO satellites, i.e. Hk, is typically

from 500 km to 2000 km. Moreover, for the considered large-scale LEO satellite

networks, each tier consists of several hundreds of LEO satellites, i.e. Nk � 100.

Hence, the exponential term approaches to zero, i.e. exp

(
− Nk

2
(

R⊕
Hk

+1
)
)
→ 0, and

P◦(Nk, Hk)→ 1; while an intuitive evaluation of availability is illustrated in Figure.

7.2. �

Based on the discussion in Proposition 7.1, we exclude the extreme scenario

where no LEO satellite exists above the local horizons of the gUEs throughout our

analysis [55]. The accuracy of the adopted assumption is validated by our numerical

and simulation results presented in Section 7.6. Then, by applying the result from
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Figure 7.2: The available probability of LEO satellites versus the number and the

altitudes of LEO satellites.

Lemma 7.1, we present the association probability for the DbA scheme, denoted as

AD,k in the following lemma.

Lemma 7.2. When the DbA scheme is employed, the probability that the typical gUE is

associated with the k-th tier is given by

AD,k =
K

∑
i=k

∫ Hi+1

Hi

2πλkr(R⊕ + Hk)

R⊕

i

∏
j=1

exp

(
−

πλj(R⊕ + Hj)(r2 − H2
j )

R⊕

)
dr, (7.5)

where HK+1 = rmaxK .

Proof. By employing the DbA scheme, the probability that the typical gUE is associ-

ated with the k-th tier LEO satellite can be expressed as

AD,k = P

{
r0,k < min

j,j,k
r0,j

}
. (7.6)

Note that for the considered heterogeneous LEO satellites networks, Hk � R⊕, and

thus it is easy to verify that H1 ≤ H2 ≤ · · · ≤ HK ≤ Rmax1 ≤ Rmax2 ≤ · · · ≤ RmaxK .

Hence, by applying the law of total probability and by denoting RmaxK by HK+1, we

can rewrite (7.6) as following

AD,k =
K

∑
i=k

P

{
min

1≤j≤K,j,k
r0,j > r0,k & Hi ≤ r0,k ≤ Hi+1

}
. (7.7)

Upon observing that r0,k ≤ min
1≤j≤K−i

r0,i+j is valid for Hi ≤ r0,k ≤ Hi+1, we can further

simplify (7.7) as

AD,k =
K

∑
i=k

P

{
min

1≤j≤i,j,k
r0,j > r0,k & Hi ≤ r0,k ≤ Hi+1

}
. (7.8)
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Then, by noticing that r0,j and r0,k, ∀ j , k are mutually independent, each term of

the probability within (7.8) can be evaluated as

P

{
min

1≤j≤i,j,k
r0,j > r0,k & Hi ≤ r0,k ≤ Hi+1

}

=
∫ Hi+1

Hi

∏i
j=1 exp

(
−

πλj(R⊕+Hj)(r2−H2
j )

R⊕

)
exp

(
−πλk(R⊕+Hk)(r2−H2

k )
R⊕

) fD(r, λk, Hk)dr

=
∫ Hi+1

Hi

i

∏
j=1

exp

(
−

πλj(R⊕ + Hj)(r2 − H2
j )

R⊕

)
2πλkr(R⊕ + Hk)

R⊕
dr,

(7.9)

where the last step is obtained by substituting the expression of fD(r, λk, Hk) and by

cancelling out the common factors of the numerator and denominator. Hence, by

substituting (7.9) into (7.8), the final result in Lemma 7.2 is derived. �

The results derived above provide valuable insights into the association prob-

ability of the DbA scheme and the complex interplay between various parameters

that affect the network performance. More specifically, based on the analytical ex-

pression presented in Lemma 7.2, the association probability can be immediately

determined for any given network parameters, including the number of tiers, the

height of each LEO satellite tier, and the density of LEO satellites, while the expo-

nential product term in (7.5) underscores the interdependence of each LEO satellite

tier.

7.4.2 Association probability for the PbA scheme

We now focus on the association probability for the PbA scheme. Since the PbA

scheme is a power-based scheme, our initial step is to evaluate the statistical prop-

erties of the average signal power received at the typical gUE from its nearest LEO

satellite that belongs in the k-th tier, i.e. the k-th candidate LEO satellite. Let ξ0,k

represent the average received signal power from the LEO satellite located at x0,k.

Note that ξ0,k is computed by taking the expectation over the channel power gain,

i.e. ξ0,k = h̄PkGL
m,kr−α

0,k GU
m , where h̄ is the first-order moment of the channel power

gain, i.e. h̄ = (2b + Ω) for the SR fading model [84]. In the following lemma, we

provide the pdf of ξ0,k, which is instrumental in assessing the association probability

for the PbA scheme.
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Lemma 7.3. The pdf of the average received signal power at the typical gUE from its k-th

candidate LEO satellite is given by

fP(ξ, λk, Hk)

=
2πλk(R⊕ + Hk)

ξαR⊕

(
$k
ξ

) 2
α

exp

(
−πλk(R⊕ + Hk)

R⊕

((
$k
ξ

) 2
α

− H2
k

))
, (7.10)

where $k = h̄PkGL
m,kGU

m , ξmink < ξ ≤ ξmaxk , ξmink = $kR−α
maxk

and ξmaxk = $kH−α
k .

Proof. To begin with, we evaluate the cdf of ξ0,k as following

FP(ξ, λk, Hk) =P{ξ0,k ≤ ξ} = P{h̄PkGL
m,kr−α

0,k GU
m ≤ ξ}

=1−P

r0,k <

(
h̄PkGL

m,kGU
m

ξ

) 1
α

 .
(7.11)

Then by applying the cdf of r0,k, which is given by (7.3), we have

FP(ξ, λk, Hk) = 1− exp

−πλk
R⊕ + Hk

R⊕

( h̄PkGL
m,kGU

m

ξ

) 2
α

− H2
k

 . (7.12)

Finally, the pdf of ξ0,k is obtained by taking the derivative of FP(ξ, λk, Hk) with re-

spect to ξ, i.e. fP(ξ, λk, Hk) =
∂

∂ξ FP(ξ, λk, Hk). �

It is worth emphasising that, while the distance distribution was utilized to an-

alyze the performance of the DbA scheme in Section 7.4.1, the power distribution

presented in Lemma 7.3 offers a more appropriate method for assessing the per-

formance achieved by the PbA scheme. In particular, the average received signal

power from candidate LEO satellites exhibits identical lower and upper bounds.

More specifically, the minimum value of the average received signal power from

any candidate LEO satellites approaches zero due to the extremely long communi-

cation distance, i.e., ξmink ≈ 0, ∀ 1 ≤ k ≤ K; whereas the maximum average received

signal power from all candidate LEO satellites is also identical, i.e., ξmaxk = ξmaxj ,

∀ 1 ≤ j, k ≤ K, owing to the power adjusting mechanism. As a result, by apply-

ing the aforementioned lemma, the association probability for the PbA scheme is

assessed in the subsequent lemma.

Lemma 7.4. When the PbA scheme is employed, the probability that the typical gUE is
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associated with the k-th tier is given by

AP,k =
2πλk$

2
α
k (R⊕ + Hk)

αR⊕
×

∫ ξmaxk

ξmink

(
1
ξ

) 2
α+1 K

∏
j=1

exp

(
−

πλj(R⊕ + Hj)

R⊕

((
$k
ξ

) 2
α

− H2
j

))
dξ.

(7.13)

Proof. According to the procedure of the PbA scheme, the probability that the typical

gUE is associated with the k-th tier LEO satellite is formulated as

AP,k = P

{
ξ0,k > max

1≤j≤K,j,k
ξ0,j

}
. (7.14)

The deployments of K tiers of LEO satellites follow K independent PPPs, which

indicates that ξ0,j for 1 ≤ j ≤ K are mutually independent between each other.

Hence, based on the order statistics [118], we can rewrite (7.14) as

AP,k =
K

∏
j=1,j,k

P
{

ξ0,k > ξ0,j
}

=Eξ0,k

{
K

∏
j=1,j,k

(
1− FP

(
ξ0,k, λj, Hj

) )}

=Eξ0,k

 K

∏
j=1,j,k

exp

−πλj
R⊕ + Hj

R⊕

( h̄PjGL
m,jG

U
m

ξ0,k

) 2
α

− H2
j

 . (7.15)

Finally, by evaluating the expectation over ξ0,k, the result in Lemma 7.4 is derived.

�

From the expression derived in above lemma, we can observe that the PbA

scheme considers one extra parameter compared to the DbA scheme, i.e. the re-

ceived signal power. Despite this, the analytical expression for the association prob-

ability of the PbA scheme has a more concise form than that of the DbA scheme, due

to the employment of the power adjusting mechanism.

7.4.3 Association probability for the RbA scheme

Recall that the RbA enables a gUE to randomly select one LEO satellite among K

candidate LEO satellites, following a uniform distribution. Hence, the probability

of a gUE being associated with each tier is equal, i.e.

AR,k = AR,j =
1
K

, ∀ 1 ≤ k, j ≤ K. (7.16)
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Till now we have evaluated the association probability for each proposed scheme.

As we move forward, our focus will shit to the downlink performance achieved by

employing these association schemes in next section.

7.5 Downlink performance of large-scale heterogeneous

LEO satellite networks

In this section, we investigate the downlink performance of the large-scale hetero-

geneous LEO satellite networks in the context of proposed association schemes.

Specifically, the downlink performance is initially evaluated in terms of the cover-

age probability, which indicates the probability that the instantaneous SINR exceeds

a predefined threshold, denoted as β (dB), i.e. P
{
S
I+σ2 ≥ β

}
, where S and I are the

intended and interfering signals, respectively. By leveraging tools from stochastic

geometry, we formulate a tractable mathematical framework, while analytical ex-

pressions for the coverage probability are derived for with the employment of each

association scheme. Furthermore, we discuss the performance of the proposed as-

sociation schemes under another two distinct extreme scenarios, namely, Rayleigh

fading and non-fading environments, which correspond to the most demanding and

idealized communication situations, respectively. Finally, we investigate the spec-

tral efficiency achieved at typical gUEs with the employment of each association

scheme, a critical metric for 6G networks that reflects how effectively bandwidth

is utilized to support efficient data transmission and meet diverse communication

demands.

7.5.1 Coverage probability for the DbA scheme

In order to facilitate the analysis of the coverage probability achieved by the DbA

scheme, we initially evaluate the distribution of the contact distance for the DbA

scheme, which is the distance between the typical gUE and its serving LEO satellite.

This distribution is crucial for evaluating the network performance, as it directly im-

pacts the received signal strength and interference levels at the typical gUE. To this

end, we present the pdf of the contact distance for the DbA scheme in the following

lemma, which considers the case where the typical gUE is associated with the k-th

tier network for 1 ≤ k ≤ K.
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Lemma 7.5. When the DbA scheme is employed, the pdf of the contact distance is given by

fD,k(r|AD,k) =
2πλk(R⊕ + Hk)

R⊕AD,k
×

K

∑
i=k

I(Hi ≤ r < Hi+1) exp

(
−

i

∑
j=1

πλj(R⊕ + Hj)(r2 − H2
j )

R⊕

)
r, (7.17)

where I(Hi ≤ r < Hi+1) is the indicator function that is given by

I(Hi ≤ r < Hi+1) =

1, Hi ≤ r < Hi+1,

0, otherwise.
(7.18)

Proof. Without loss of generality, we consider that the typical gUE is associated with

the k-th tier network for 1 ≤ k ≤ K. Then, the cdf of the contact distance is computed

as

FD,k(r|AD,k) =P

{
r0,k ≤ r

∣∣∣ r0,k < min
1≤j≤K,j,k

r0,j

}

=1−
P

{
r0,k > r & r0,k < min

1≤j≤K,j,k
r0,j

}
P

{
r0,k < min

1≤j≤K,j,k
r0,j

} .
(7.19)

Note that P

{
r0,k < min

1≤j≤K,j,k
r0,j

}
= AD,k. Then, for the case where Hi ≤ r < Hi+1,

the probability term in (7.19) is computed as

P

{
r < r0,k < min

1≤j≤K,j,k
r0,j & Hi ≤ r < Hi+1

}
=
∫ Hi+1

r

i

∏
j=1

exp

(
−

πλj(R⊕ + Hj)(r2 − H2
j )

R⊕

)
2πλkr(R⊕ + Hk)

R⊕
dr. (7.20)

By taking into account all possible ranges of r within Hk ≤ r ≤ Rmaxk and by substi-

tuting (7.20) into (7.19), we obtain the final expression of FD(r|AD,k), i.e.

FD,k(r|AD,k) = 1−

∑K
i=k I(Hi ≤ r < Hi+1)

∫ Hi+1
r ∏i

j=1 exp
(
−

πλj(R⊕+Hj)(r2−H2
j )

R⊕

)
2πλkr(R⊕+Hk)

R⊕ dr

AD,k
,

(7.21)

where I(Hi ≤ r < Hi+1) is the indicator function, which takes a value of 1 if the

condition Hi ≤ r < Hi+1 is met, and 0 otherwise. Finally, the pdf of the contact

distance, i.e. fD,k(r|Ak), can be derived by taking the derivative of FD,k(r|AD,k) with

respect to r, i.e. fD,k(r|Ak) =
∂
∂r FD,k(r|AD,k). �
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It is worth emphasising that the results presented in Lemma 7.5 are applicable

to a variety of LEO satellite network topologies and can be adapted to different

network parameters. For instance, by setting Hk = H, GL
m,k = GL

m, Pk = P and

λk = λ ∀ 1 ≤ k ≤ K, we can obtain the corresponding results for single-tier LEO

satellite networks as investigated in previous studies [55, 57, 82]. Additionally, by

setting Hk = H ∀ 1 ≤ k ≤ K, we can obtain the conventional topology of heteroge-

neous networks for the LEO satellite communication scenario [113]. These examples

demonstrate the versatility and adaptability of our derived results in analysing var-

ious LEO satellite network topologies and settings.

By applying the results obtained in the Lemma 7.1 and Lemma 7.2 and by ap-

proximating the power of the aggregate interference signals with its mean, we de-

rive the expression for the coverage probability achieved by the DbA scheme in the

following theorem.

Theorem 7.1. The coverage probability achieved by the DbA scheme is given by

PD(β) =
K

∑
k=1
AD,kPD,k(β), (7.22)

where

PD,k(β) ≈
∫ Rmaxk

Hk

(
1− Fh

(
βrα(ĨD(r) + σ2)

PkGL
m,kGU

m

))
fD,k(r|AD,k)dr, (7.23)

ĨD(r) =
K

∑
j=1

2πλjh̄PjGL
s,jG

U
s (R⊕ + Hj)

(
max

{
min{r2−α, H2−α

j } − R2−α
maxj

, 0
})

(α− 2)R⊕
.

(7.24)

Proof. By the law of the total probability and according to the definition of the cov-

erage probability, we have

PD(β) =
K

∑
k=1
PD,k(β)AD,k, (7.25)

where PD,k(β) represents the coverage probability when the typical gUE is associ-
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ated with the k-th tier, which is given by

PD,k(β) =P

 Pkh0,kGL
m,kGU

mr−α
0,k

∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjhi,jr−α
i,j GL

s,jG
U
s + σ2

≥ β


=Er0,k,hi,j

P

h0,k ≥
β
(

∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjhi,jr−α
i,j GL

s,jG
U
s + σ2)

PkGL
m,kGU

mr−α
0,k




≈Er0,k

{
P

{
h0,k ≥

β
(
ĨD(r0,k) + σ2)

PkGL
m,kGU

mr−α
0,k

}}

=Er0,k

{
1− Fh

(
β
(
ĨD(r0,k) + σ2)

PkGL
m,kGU

mr−α
0,k

)}
,

(7.26)

where Fh(·) is the cdf of channel power gain; ĨD(r0,k) is the mean of the aggregate

interference power, and is computed as following

ĨD(r0,k) =E

{
∑

xi,j∈∪K
j=1Φ

\x0,k
j

PjGL
s,jhi,jr−α

i,j GU
s

}

=E

{
∑

xi,j∈∪K
j=1Φ

\x0,k
j

∫ ∞

0
PjGL

s,jhr−α
i,j GU

s fh(r)dh

}

=E

{
∑

xi,j∈∪K
j=1Φ

\x0,k
j

h̄PjGL
s,jr
−α
i,j GU

s

}
(a)
=

K

∑
j=1

∫ 2π

0

∫
θ

h̄λjPjGL
s,jr
−α
i,j GU

s (R⊕ + Hj)
2 sin θdθdφ

=
K

∑
j=1

∫
θ

2πh̄λjPjGL
s,jr
−α
i,j GU

s (R⊕ + Hj)
2 sin θdθ,

(7.27)

where (a) follows from the Campbell’s Theorem of PPP with the spherical coordi-

nates [31, 55]. Then, by replacing θ with a function of r based on the law of cosines,

i.e. θ = arccos
(

R2
⊕+(R⊕+Hj)

2−r2

2R⊕(R⊕+Hj)

)
, we have

dθ =
r

R⊕(Hj + R⊕)

√
1− ((Hj+R⊕)2−r2+R2

⊕)
2

4R2
⊕(Hj+R⊕)2

dr,

sin θ =

√√√√1−
(
(Hj + R⊕)2 − r2 + R2

⊕
)2

4R2
⊕(Hj + R⊕)2

.

(7.28)

Hence, by substituting (7.28) into (7.27), we can further compute ĨD(r0,k) as follow-

ing

ĨD(r0,k) =
K

∑
j=1

∫ Rmaxj

max{r0,k,Hj}
2πh̄λj

R⊕ + Hj

R⊕
PjGL

s,jr
1−αGU

s dr. (7.29)
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Finally, by solving the above integral and by evaluating the expectation over r0,k, the

final results in Theorem 7.1 are derived. �

Note that the term ĨD(r) represents the conditional mean of the aggregate inter-

ference. By approximating the instantaneous interference power with its mean, we

facilitate the analytical framework and avoid the intractability that typically arises

when performing system-level analysis with the SR fading model. Moreover, the

closed-form expression of ĨD(r) provides a convenient approach for analysing the

average interference levels in the large-scale LEO satellite networks. In specific,

we can easily observe that the average interference received by the typical gUE is

directly proportional to the density and transmit power of LEO satellites, while a

greater path-loss exponent can mitigate the interference power.

7.5.2 Coverage probability for the PbA scheme

We initially evaluate the distribution of the average received signal power at the

typical gUE from its serving LEO satellite. In specific, upon conditioning for the

scenario in which the typical gUE is associated with the k-th tier, the conditional pdf

of ξ0,k is evaluated in the following lemma.

Lemma 7.6. When the PbA scheme is employed, the pdf of the average signal power received

by the typical gUE from its serving LEO satellite is given by

fP,k(ξ|AP,k)

=
2πλk$

2
α
k (R⊕ + Hk)

αR⊕AP,k

(
1
ξ

) 2
α+1 K

∏
j=1

exp

(
−

πλj(R⊕ + Hj)

R⊕

((
$k
ξ

) 2
α

− H2
j

))
. (7.30)

Proof. Consider that the typical gUE is associated with the k-th tier, the cdf of ξ0,k is

computed as

FP(ξ|AP,k) =P

{
ξ0,k ≤ ξ

∣∣∣ξ0,k > max
1≤j≤K,j,k

ξ0,j

}

=

P

{
max

1≤j≤K,j,k
ξ0,j < ξ0,k ≤ ξ

}
P

{
ξ0,k > max

1≤j≤K,j,k
ξ0,j

} . (7.31)

Note that the denominator of (7.31) is exactly the association probability presented

in Lemma 7.4, i.e. P

{
ξ0,k > max

1≤j≤K, j,k
ξ0,j

}
= AP,k; while the numerator can be
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further computed as

P

 max
1≤j≤K

j,k

ξ0,j < ξ0,k ≤ ξ


=
∫ ξ

ξmink

K

∏
j=1,j,k

P
{

ξ0,k > ξ0,j
}

fP(ξ0,k, λk, Hk)dξ0,k

=
∫ ξ

ξmink

K

∏
j=1,j,k

(
1− FP(ξ0,k, λj, Hj)

)
fP(ξ0,k, λk, Hk)dξ0,k (7.32)

=
∫ ξ

ξmink

K

∏
j=1,j,k

exp

−πλj
R⊕ + Hj

R⊕

( h̄PjGL
m,jG

U
m

ξ0,k

) 2
α

− H2
j

 fP(ξ0,k, λk, Hk)dξ0,k.

Then by substituting (7.32) into (7.31) and by taking the partial derivative of FP(ξ|AP,k)

with respect to ξ, the conditional pdf of ξ0,k is derived. �

Then, by utilizing the aforementioned results, we provide the analytical expres-

sion for the coverage probability achieved by the PbA scheme, in the following the-

orem.

Theorem 7.2. The coverage probability achieved by the PbA scheme is given by

PP(β) =
K

∑
k=1
AP,kPP,k(β), (7.33)

where

PP,k(β) ≈
∫ ξmaxk

ξmink

(
1− Fh

(
βh̄
(
ĨP(ξ0,k) + σ2)

ξ0,k

))
fP,k(ξ0,k|AP,k)dξ0,k, (7.34)

ĨP(ξ0,k) =
K

∑
j=1

2πλjPjGL
s,jG

U
s h̄(R⊕ + Hj)

(
min

{
( $k

ξ0,k
)

2−α
α , H2−α

j
}
− R2−α

maxj

)
(α− 2)R⊕

. (7.35)

Proof. Based on the definition of the PbA scheme and by the law of the total proba-

bility, the coverage probability is formulated as

PP(β) =
K

∑
k=1
PP,k(β)AP,k, (7.36)

where PP,k(β) is given by

PP,k(β) =P

 Pkh0,kGL
m,kGU

mr−α
0,k

∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjhi,jr−α
i,j GL

s,jG
U
s + σ2

≥ β


≈Eξ0,k

{
P

{
h0,k ≥

βh̄
(
ĨP(ξ0,k) + σ2)

ξ0,k

}}
,

(7.37)
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where ĨP(ξ0,k) is the mean of the aggregate interference signal power observed at

the gUE with the employment of the PbA scheme, which is computed as

ĨP(ξ0,k) =E

 ∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjhi,jr−α
i,j GL

s,jG
U
s

 = h̄E

 ∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjr−α
i,j GL

s,jG
U
s


=

K

∑
j=1

∫ 2π

0

∫
θ

h̄λjPjGL
s,jr
−α
i,j GU

s (R⊕ + Hj)
2 sin θdθdφ

=
K

∑
j=1

∫ Rmaxj

max
{
($k/ξ0,k)

1/α
,Hj

} 2πh̄λj
R⊕ + Hj

R⊕
PjGL

s,jr
1−αGU

s dr.

Finally, by applying the cdf of h0,k, and by evaluating the average over ξ0,k, the

results in Theorem 7.2 are proven. �

Note that the derivation of PP(β) follows a similar analytical framework as that

of the PD(β), i.e. the coverage probability achieved by the DbA scheme. As the pro-

cess of the PbA scheme incorporates a comparison of received signal power among

candidate LEO satellites, it results in an enhanced intended signal power received

by the typical gUE compared to the DbA scheme. Moreover, the interference level

experienced by the typical gUE using the PbA scheme is lower compared to the in-

terference level with the DbA scheme. This observation can be explained by the fact

that the PbA scheme prioritizes the selection of LEO satellites based on the received

signal power. As a result, the gUE is more likely to connect to a satellite with a

stronger signal, which in turn reduces the impact of interference from other LEO

satellites in the network.

7.5.3 Coverage probability for the RbA scheme

While the PbA scheme effectively enhances the coverage performance of the consid-

ered LEO satellite networks, it is important to explore other options to meet various

requirements in different network scenarios. As a result, the RbA scheme emerges

as a promising alternative, offering low-complexity association capabilities particu-

larly suited for heterogeneous LEO satellite-based networks with a large number of

tiers. A detailed coverage performance analysis of the RbA scheme is presented in

the this subsection, showcasing its potential in addressing the challenges faced by

these complex networks.
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The derivation of the coverage probability for the RbA scheme follows the sim-

ilar steps as that utilized for the DbA scheme. More specifically, we first evaluate

the distribution of the contact distance. By considering that the typical gUE is asso-

ciated with the k-th tier, the pdf of the contact distance with the employment of the

RbA scheme is presented in the following lemma.

Lemma 7.7. When the RbA scheme is employed, the pdf of contact distance is given by

fR,k(r|AR,k) =
2πλkr(R⊕ + Hk)

R⊕
exp

(
−

πλk(R⊕ + Hk)(r2 − H2
k )

R⊕

)
. (7.38)

Proof. The cdf of the contact distance by conditioning on the case that the typical

gUE is associated with the k-th tier LEO satellite is given by

FR,k(r|AR,k)

=1−P {r0,k ≥ r| the typical gUE is associated with the k-th tier} . (7.39)

Since the tier selection is based on a random operation, i.e. it is independent with

r0,k, thus we have FR,k(r|AR,k) = 1− P {r0,k ≥ r}. Then by directly following the

results presented in Lemma 7.1, the final expression of fR,k(r|AR,k) is derived. �

From the above results, it is evident that when the RbA scheme is employed,

the distribution of the contact distance depends solely on the deployment of the

selected tier LEO satellites due to its random tier selection. This is in contrast to the

PbA and DbA schemes, where these factors are influenced by the deployment of the

entire set of tiers. Then, based on the above discussion and result, we now evaluate

the coverage probability attained by the RbA scheme, with its analytical expression

provided in the following theorem.

Theorem 7.3. The coverage probability achieved by the RbA scheme is given by

PR(β) =
K

∑
k=1
AR,kPR,k(β), (7.40)

where

PR,k(β) ≈
∫ Rmaxk

Hk

(
1− Fh

(
βrα

0,k(ĨR(r0,k) + σ2)

PkGL
m,kGU

m

))
fR,k(r0,k|AR,k)dr0,k, (7.41)

ĨR(r0,k) =
1

(α− 2)R⊕

(
2πλkPkGL

s,kGU
s h̄(R⊕ + Hk)(r2−α

0,k − R2−α
maxk

)

+
K

∑
j=1,j,k

2πλjPjGL
s,jG

U
s h̄(R⊕ + Hj)(H2−α

j − R2−α
maxj

)

)
. (7.42)
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Proof. The proof follows the similar steps presented in Proof of Theorem 7.1, but

with the average interference power and association probability that correspond to

the RbA scheme. �

Some key insights can be obtained from the expression presented in the above

theorem. Although the RbA scheme has a low-complexity implementation, it results

in a higher level of interference experienced by the gUEs compared to the other two

schemes. Specifically, the random tier selection results in some nearby LEO satellites

from other tiers contributing significant interference to the typical gUE.

7.5.4 Coverage probability in Rayleigh fading and non-fading sce-

narios

Although the adopted SR model captures the fact that communication between

gUEs and LEO satellites typically involves a LoS connection [51], the Rayleigh fad-

ing model can still be used to provide a conservative lower bound for system per-

formance, especially when considering indoor communications, i.e. the receiver is

located indoors. In such scenarios, multipath effects from indoor structures can sig-

nificantly impact the signal. Therefore, by focusing on these multipath effects and

assuming a weak or obstructed LoS, we examine the scenario with Rayleigh fading,

i.e. h ∼ exp(1), in the following proposition, where the exact analytical expressions

for the coverage probability achieved by the each association scheme is obtained.

Proposition 7.2. In the Rayleigh fading scenario, the coverage probabilities achieved by the

DbA, PbA and RbA schemes are given by

P†
∆(β) =

K

∑
k=1
A∆,kP†

∆,k(β), (7.43)

where ∆ ∈ {D, P, R} stands for the DbA, PbA and RbA schemes, P†
∆,k(β) is given by

P†
∆,k(β) =



∫ Rmaxk
Hk

L†
ID
(κD) exp(−κDσ2) fD,k(r0,k|AD,k)dr0,k, DbA scheme,∫ ξmaxk

ξmink
L†
IP
(κP) exp(−κPσ2) fP,k(ξ0,k|AP,k)dξ0,k, PbA scheme,∫ Rmaxk

Hk
L†
IR
(κR) exp(−κRσ2) fR,k(r0,k|AR,k)dr0,k, RbA scheme,

(7.44)

L†
I∆
(κ∆) is the Laplace transform of the aggregate interference power with each association
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scheme, which is given by

L†
I∆
(κ∆) =



K
∏
j=1

exp

(
−

2πλjPjGL
s,jG

U
s κD(R⊕+Hj)

(
vj(max{r0,k,Hj},κD)−vj(Rmaxj ,κD)

)
R⊕(α−2)

)
,

for ∆ = D;

K
∏
j=1

exp

(
−

2πλjPjGL
s,jG

U
s κP(R⊕+Hj)

(
vj

(
max
{
($k/ξ0,k)

1/α
,Hj

}
,κP

)
−vj(Rmaxj ,κP)

)
R⊕(α−2)

)
,

for ∆ = P;

exp
(
−2πλkPkGL

s,kGU
s κR(R⊕+Hk)

(
vk(r0,k,κR)−vk(Rmaxk ,κR)

)
R⊕(α−2)

)
×

K
∏

j=1,j,k
exp

(
−

2πλjPjGL
s,jG

U
s κR(R⊕+Hj)

(
vj(Hj,κR)−vj(Rmaxj ,κR)

)
R⊕(α−2)

)
,

for ∆ = R.
(7.45)

vj(r,κ) is given by

vj(r,κ) = r2−α
2F1

[
1,

α− 2
α

; 2− 2
α

;−PjGL
s,jG

U
s r−ακ

]
;

κD = β

PkGL
m,kGU

m r−α
0,k

, κP = β
ξ0,k

, κR = κD.

Proof. We initially evaluate the coverage probability for DbA scheme under the

Rayleigh fading. Considering that the typical gUE is associated with the k-th tier,

then the coverage probability achieved by the DbA scheme is computed as

P†
D,k(β)

=E

P

h0,k ≥
β
(

∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjhi,jr−α
i,j GL

s,jG
U
s + σ2)

PkGL
m,kGU

mr−α
0,k




=E

exp

−β
(

∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjhi,jr−α
i,j GL

s,jG
U
s + σ2)

PkGL
m,kGU

mr−α
0,k




=Er0,k

E

exp

−κD ∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjhi,jr−α
i,j GL

s,jG
U
s


 exp(−κDσ2)


=
∫ Rmaxk

Hk

L†
ID
(κD) exp(−κDσ2) fD,k(r0,k|AD,k)dr0,k, (7.46)

where the first step is based on the fact that for the Rayleigh fading model, the

channel power gain is an exponential random variable with mean one, i.e. h ∼

exp(1); κD = β

PkGL
m,kGU

m r−α
0,k

and L†
ID
(z) is the Laplace transform of the interference,
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which is evaluated as following, i.e.

L†
ID
(κD)

=E

 ∏
xi,j∈∪K

j=1Φ
\x0,k
j

Ehi,j

{
exp

(
−κDPjhi,jr−α

i,j GL
s,jG

U
s

)}
=E

 ∏
xi,j∈∪K

j=1Φ
\x0,k
j

exp

(
1

1 +κDPjr−α
i,j GL

s,jG
U
s

) (7.47)

=E

{
K

∏
j=1

exp

(
−2πλj

R⊕ + Hj

R⊕

∫ Rmaxj

max{r0,k,Hj}

(
1− 1

1 +κDPjr−αGL
s,jG

U
s

)
rdr

)}
.

where the last step is obtained by using the probability generating function of the

PPP [31], where the above integral can be solved based on [91, 3.194.5]. Finally, by

applying the law of total probability, the coverage probability of DbA scheme in

the Rayleigh fading scenario is derived. Note that the proof of the coverage prob-

ability of PbA and RbA schemes in the Rayleigh fading scenario, follows a similar

methodology and thus is omitted. �

In contrast to the previous discussion with the Rayleigh fading channel, in the

following proposition, we investigate another extreme case, i.e. non-fading sce-

nario. More specifically, in this scenario, the effects of fading channels are absent,

and the channel remains constant, i.e. h = 1. This idealized situation provides a

useful benchmark for comparison to evaluate how significant the fading effect is on

the performance of LEO satellites networks.

Proposition 7.3. In the non-fading scenario, the coverage probabilities achieved by the

DbA, PbA and RbA schemes are given by

P‡
∆(β) =

K

∑
k=1
A∆,kP

‡
∆,k(β), (7.48)
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respectively, where P‡
∆,k(β) for ∆ ∈ {D, P, R} are given by

P‡
∆,k(β)

=



∫ Rmaxk
Hk

(
1
2 −

1
π

∫ ∞
0

=
{

exp
(

jt
(

βσ2−PkGL
m,kGU

m r−α
0,k

))
L‡
ID

(−jtβ)
}

t dt

)
fD,k(r0,k|AD,k)dr0,k,

for ∆ = D;∫ ξmaxk
ξmink

(
1
2 −

1
π

∫ ∞
0

=
{

exp
(

jt(βσ2−ξ0,k)
)
L‡
IP

(−jtβ)
}

t dt

)
fP,k(ξ0,k|AP,k)dξ0,k,

for ∆ = P;∫ Rmaxk
Hk

(
1
2 −

1
π

∫ ∞
0

=
{

exp
(

jt
(

βσ2−PkGL
m,kGU

m r−α
0,k

))
L‡
ID

(−jtβ)
}

t dt

)
fR,k(r0,k|AR,k)dr0,k,

for ∆ = R.
(7.49)

L‡
I∆
(z) is given by

L‡
I∆
(z) =



K
∏
j=1

exp

(
πλj(R⊕+Hj)

(
ϑj(max{r0,k,Hj},z)−ϑj(Rmaxj ,z)

)
R⊕α

)
, for ∆ = D;

K
∏
j=1

exp

(
πλj(R⊕+Hj)

(
ϑj

(
max
{
($k/ξ0,k)

1/α
,Hj

}
,z
)
−ϑj(Rmaxj ,z)

)
R⊕α

)
, for ∆ = P;

exp
(

πλk(R⊕+Hk)
(

ϑk(r0,k,z)−ϑk(Rmaxk ,z)
)

R⊕α

)
×

K
∏
j=1
j,k

exp

(
πλj(R⊕+Hj)

(
ϑj(Hj,z)−ϑj(Rmaxj ,z)

)
R⊕α

)
, for ∆ = R.

(7.50)

ϑj(r, z) is given by

ϑj(r, z) = PjGL
s,jG

U
s

(
r2
(

α− 2E
(

2 + α

α
, r−αz

))
+ 2z

2
α Γ
[
−2

α

])
,

={·} is the imaginary operator, and E(a, b) =
∫ ∞

1
e−bx

xa dx.

Proof. We provide the detailed proof of the coverage probability for the DbA scheme

in the non-fading scenario, while the similar approach can be easily applied to the

PbA and RbA scheme. Hence, considering that the DbA scheme is employed and

the typical gUE is associated with the k-th tier, the coverage probability is formu-
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lated as

P‡
D,k(β) =P

 PkGL
m,kGU

mr−α
0,k

∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjr−α
i,j GL

s,jG
U
s + σ2

≥ β


=P

PkGL
m,kGU

mr−α
0,k − β ∑

xi,j∈∪K
j=1Φ

\x0,k
j

Pjr−α
i,j GL

s,jG
U
s ≥ βσ2


=
∫ Rmaxk

Hk

P
{

χ(r0,k) ≥ βσ2
}

fD,k(r0,k|AD,k)dr0,k, (7.51)

where χ(r0,k) = S(r0,k)− βID(r0,k), S(r0,k) = PkGL
m,kGU

mr−α
0,k , and

ID(r0,k) = ∑
xi,j∈∪K

j=1Φ
\x0,k
j

Pjr−α
i,j GL

s,jG
U
s .

Then, by applying the Gil-Pelaez inversion theorem [119–121], the probability term

in (7.51) can be further computed as

P
{

χ(r0,k) ≥ βσ2
}
=

1
2
− 1

π

∫ ∞

0

=
{

ψχ(r0,k)
(t) exp(jtβσ2)

}
t

dt, (7.52)

where ={·} is the imaginary operator and ψχ(r0,k)
is the characteristic function of

χ(r0,k) which is given by

ψχ(r0,k)
(t) =E

{
exp

(
− jt

(
S(r0,k)− βID(r0,k)

))}
=e−jtS(r0,k)E

{
ejtβID(r0,k)

}
=e−jtS(r0,k)L‡

ID
(−jtβ), (7.53)

where L‡
ID
(z) = E

{
e−zID(r0,k)

}
is the Laplace transform of the interference, which

can be evaluated as following

L‡
ID
(z)

=E

 ∏
xi,j∈∪K

j=1Φ
\x0,k
j

exp
(
−zPjr−α

i,j GL
s,jG

U
s

) (7.54)

=E

{
K

∏
j=1

exp

(
−2πλj

R⊕ + Hj

R⊕

∫ Rmaxj

max{r0,k,Hj}

(
1− exp

(
−zPjr−αGL

s,jG
U
s

) )
rdr

)}
.

Hence, by solving the above integral and by substituting (7.52)-(7.54) into (7.51), the

final expression of P‡
D,k(β) is obtained. Finally, by the law of total probability, the

coverage probability of DbA scheme in the non-fading scenario is derived. �
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7.5.5 Spectral efficiency

We now assess the spectral efficiency of the considered large-scale heterogeneous

LEO satellite networks. In specific, the spectral efficiency is measured in terms of

the average ergodic rate per unit bandwidth [109, 113]. For simplicity, the average

ergodic rate is computed in unit of nats/s/Hz. By following the similar approach of

the derivation for the coverage probability, the average ergodic rate achieved at the

typical gUE is given by

R∆ =
K

∑
k=1
R∆,kA∆,k, (7.55)

where R∆,k denotes the average ergodic rate per unit bandwidth of a typical gUE

associated with the k-tier, and A∆,k is the association probability for each scheme

derived in Section 7.4. Consider that the typical gUE is associated with the k-th tier,

we provide the analytical expression forR∆,k in the following proposition.

Proposition 7.4. The average ergodic rate per unit bandwidth of the typical gUE associated

with the k-th tier is given by

R∆,k =
∫ ∞

0

P∆,k(β)

1 + β
dβ, (7.56)

where ∆ ∈ {D, P, R} and P∆,k(β) is given in Theorem 7.1, 7.2 & 7.3.

Proof. The proof directly follows from the definition of average ergodic rate and the

spectra efficiency [109, 113]. �

Hence, by combining (7.55) and (7.56), the spectral efficiency of the network un-

der each association scheme is obtained. Additionally, by replacing P∆,k(β) with

P†
∆,k(β) and P‡

∆,k(β) in (7.56), we can obtain the spectral efficiency of the network

under the Rayleigh fading and non-fading scenarios, respectively.

7.6 Numerical results

In this section, we present analytical and simulation results to validate the accuracy

of our model and illustrate the performance of the proposed association schemes.

Unless otherwise stated, the simulation parameters are set as follows: the network

consists of three tiers with K = 3, and the LEO satellites are placed at altitudes of

H1 = 500km, H2 = 600km, and H3 = 700km. The path-loss exponent, α, is set

140

Yua
n G

uo



(a) Coverage probability

for DbA scheme versus

the SINR threshold.

(b) Coverage probability

for PbA scheme versus the

SINR threshold.

(c) Coverage probability

for RbA scheme versus the

SINR threshold.

Figure 7.3: Coverage probability achieved by each association scheme, in the SR, the

Rayleigh and the non-fading scenarios.

to 3. The number of LEO satellites in each tier, N1, N2, and N3, are 500, 1000, and

1500, respectively. The Earth’s radius, R⊕, is considered to be 6371, km, while the

transmit power of LEO satellites in each tier, P1, P2, and P3, are 32W, 55.3W, and

87.8W. The thermal noise power, σ2, is set to −81.4, dBm, and the main-lobe gain

of LEO satellites and gUEs, are 47dBi and 10dBi, respectively. The side-lobe gain of

LEO satellites and gUEs, are 27dBi and 0dBi, respectively. Lastly, the parameters of

the SR fading model, b, Ω, and m, are set to 0.158, 19.4, and 1.59 [52].

Fig. 7.3 illustrates the impact of fading channels on the performance of LEO

satellite networks. In specific, Fig. 7.3 plots the coverage probability achieved by

the three association schemes (DbA, PbA, and RbA) in SR, Rayleigh and non-fading

scenarios. Initially, in low SINR thresholds region, the non-fading scenario results

in a higher coverage probability than other two fading scenarios, for all associa-

tion schemes. However, as the SINR threshold increases, the non-fading scenario

demonstrates the poorest performance, whereas the SR fading scenario consistently

outperforms the Rayleigh fading scenario across all SINR regions. This can be ex-

plained by the fact that, fading can lead to random attenuation of signals, including

interference, which can consequently enhance the SINR in certain scenarios. Tak-

ing this into account, the observed performance differences can be attributed to the
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Figure 7.4: Coverage probability achieved by each association scheme versus the

SINR threshold for different LEO satellites’ altitudes.

distinct characteristics of each fading scenario. More specifically, the non-fading

scenario excels at low SINR thresholds due to its stable signal strength; however,

at higher SINR thresholds, its performance suffers from the lack of signal diversity

arising from the absence of fading effects. In contrast, the SR fading, with its strong

LoS component, consistently delivers more stable and robust signal quality than the

Rayleigh fading scenario, which lacks such a component, across the entire range

of SINR thresholds. Finally, we can observe that for each association scheme, the

Rayleigh and non-fading scenarios demonstrate a perfect match between simula-

tion (denoted by “Sim.") and analysis (denoted by “Ana.") results; while there are

minor gaps between the simulation and analytical results for the SR fading scenario

at low SINR thresholds due to the approximations used in the analysis.

Fig. 7.4 depicts the effect of LEO satellites’ altitudes on the coverage perfor-

mance. Specifically, Fig. 7.4 plots the coverage probability versus the SINR thresh-

old for different association schemes and different altitudes. Initially, it can be ob-

served that the coverage probability decreases with the increase of the LEO satel-

lites’ altitudes. This was expected since higher altitudes of LEO satellites lead to a

longer propagation distance between the gUEs and its serving satellites, which re-

sults in a lower intended signal strength received by the gUEs that decreases the

SINR. Moreover, we observe that the PbA scheme surpasses both the DbA and RbA

schemes in terms of coverage probability. This can be explained by the fact that
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Figure 7.5: The coverage probability achieved by each association schemes versus

the number of LEO satellites, where β = 10 dB and N1 = N2 = N3 = N.

the PbA scheme associates the gUE with the LEO satellite that delivers the highest

average signal power, thereby boosting the SINR. In contrast, the DbA scheme as-

sociates the gUE with the nearest LEO satellite, while other candidate LEO satellites

with larger transmit power than the serving satellite generate strong interference,

leading to a degraded SINR at the gUE. Moreover, the RbA scheme randomly asso-

ciates the gUE with one of the candidate LEO satellites, which does not guarantee

an optimal selection for achieving the highest SINR, leading to the lowest coverage

probability. Finally, the difference in coverage probability between the DbA and

RbA schemes diminishes as the satellites’ altitude increases. This is due to the fact

that as the altitude of the satellites increases, the difference in path loss between the

nearest and other candidate LEO satellites becomes less significant, and thus the

advantage of associating the gUE with the nearest LEO satellite in the DbA scheme

diminishes.

Fig. 7.5 demonstrates the effect of the number of LEO satellites on the coverage

performance. For the sake of simplicity, we consider that each tier comprises an

equal number of LEO satellites, i.e. N1 = N2 = N3 = N. Accordingly, Fig. 7.5

plots the coverage probability versus the the number of LEO satellites within each

tier, i.e. N, for different association schemes, with the SINR threshold set to β = 10

dB. We can clearly observe that for all association schemes, namely DbA, PbA, and

RbA, there is an initial increase in coverage probability as the number of LEO satel-
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Figure 7.6: The spectral efficiency versus the transmit power of LEO satellites.

lites rises, followed by a decline after surpassing a particular threshold (denoted

as “Optimal number of LEO"). The observed enhancement in coverage probability

can be explained by the diminishing distance between the serving LEO satellite and

the gUE as more LEO satellites are added, which results in decreased path-loss and

subsequently leads to an elevated SINR at the gUE. However, when the number of

LEO satellites exceeds a certain limit, the coverage probability experiences a down-

ward trend. This decline is attributed to the increased presence of interfering satel-

lites, which significantly increase the interference and adversely affect the overall

SINR, ultimately reducing the coverage probability. Another notable observation is

that the PbA scheme consistently achieves the highest coverage probability among

the three association schemes. Additionally, the DbA scheme outperforms the RbA

scheme when the number of LEO satellites is relatively small, while as the number

of LEO satellites increases, the RbA scheme surpasses the DbA scheme in terms of

coverage probability. This observation can explained by the fact that, as the num-

ber of LEO satellites increases, the RbA scheme’s random association with satellites

across all tiers allows for better utilization of higher transmit power from higher

altitude tiers, resulting in improved performance compared to the distance-based

DbA scheme.

Finally, Fig. 7.6 shows the impact of LEO satellites’ transmit power and the large-

scale fading on the spectral efficiency of the considered networks. More specifi-

cally, Fig. 7.6 plots the spectral efficiency versus the transmit power of the first tier
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LEO satellites for different path-loss exponent. It should be noted that according to

the power adjusting mechanism, the corresponding transmit power of the second

and the third tier LEO satellites are given by P2 =
Hα

2 GL
m,1

Hα
1 GL

m,2
P1 and P3 =

Hα
3 GL

m,1
Hα

1 GL
m,3

P1, re-

spectively. Firstly, for all association schemes, i.e. the DbA, the PbA, and the RbA

schemes, a higher path-loss corresponds to a lower spectral efficiency, which can be

attributed to the reduced signal strength at the receiver. Secondly, the PbA scheme

consistently outperforms the DbA and RbA schemes, as it focuses on maximizing

the received signal power, a crucial aspect that directly influences the achievable

data rate. Finally, when the path-loss exponent is small (e.g., α = 2.5), increasing the

transmit power initially leads to a higher data rate. However, the gUE experiences

strong interference from neighbouring satellites as a result of the reduced signal at-

tenuation, which ultimately counterbalances the benefits of higher transmit power,

causing the data rate to plateau and remain constant at a saturation point.

7.7 Summary

In this chapter,we present a comprehensive analysis of large-scale heterogeneous

LEO satellite networks based on stochastic geometry. The proposed framework

captures the heterogeneity of real-world LEO satellite network deployments, fea-

turing various tiers of satellites with different altitudes, transmit powers, and den-

sities. We introduce three association schemes and evaluate their performance in

terms of association probability, coverage probability, and spectral efficiency, while

the analytical expressions are derived by leveraging tools from stochastic geome-

try. Moreover, by aiming to reveal the impact of fading channels on network per-

formance, we evaluate the coverage probability in different fading scenarios, i.e.

SR, Rayleigh and non-fading scenarios with the employment of each association

scheme. Our results highlight the critical impact of fading channels, altitude, the

number of satellites, and transmit power on the coverage probability and spectral

efficiency. Specifically, we demonstrate that multipath fading channels reduce cov-

erage probability in low SINR regimes, while outperforming non-fading scenarios

in high SINR situations. Additionally, the PbA scheme consistently outperforms

the other two schemes, while the RbA scheme surpasses the DbA scheme as the

number of satellites increases; and the optimal number of LEO satellites for achiev-

ing the highest coverage probability is numerically demonstrated. Furthermore,
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we show that higher path-loss results in reduced spectral efficiency, and increasing

transmit power initially enhances spectral efficiency and then remains constant due

to interference from neighbouring satellites. Our work offers valuable insights and

guidance for the design and optimization of future large-scale heterogeneous LEO

satellite networks.
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Chapter 8

LEO satellite-based space solar power

systems

In this chapter, we explore the feasibility of a LEO satellite-based SSP system, where

LEO satellites use large photovoltaic (PV) panels to collect solar power and then

transmits it to a ground receiver. We establish a theoretical framework to analyze

the performance of the considered LEO satellite-based SSP system. Specifically, by

taking into account the satellite’s rotation angle with respect to sunlight and the

mobility of the LEO satellites, we analytically evaluate the solar energy collection

through PV panels and quantify the amount of harvested energy by the ground

receiver. Our results demonstrate that increasing transmit power of LEO satellites

can boost the energy harvesting performance at the ground receiver. Furthermore,

by deploying around 100 LEO satellites, a LEO satellite-based SSP system achieves

comparable performance to that of a single geostationary orbit satellite-based SSP

system.

8.1 Motivation and contributions

The concept of SSP systems was first proposed in [122]. Inspired by this, several

SSP architectures have been proposed in the literature [45–47]. For instance, the Na-

tional Aeronautics and Space Administration (NASA) conducted a study involving

a large satellite deployed in geostationary orbit (GEO) equipped with PV panels for

collecting solar energy [45]. The satellite uses a radio-frequency (RF) microwave to

transmit many gigawatts of electricity, which is then collected by a large ground rec-
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tifying antenna. More recently, the SunTower was conceptually studied by NASA,

which employs an array of concentrator PV elements [46]. One of the key advan-

tages of this design is its flexibility in terms of deployment options. The proposed

SunTower satellite system can be deployed in middle Earth orbit, GEO altitudes,

or LEO in a sun-synchronous orbit, depending on the specific application require-

ments. Moreover, the SPS 2000 Japanese model was proposed by the Institute of

Space and Astronautical Science, which utilizes a LEO satellite equipped with large

solar panels to transmit megawatts of power to the ground [47].

LEO satellites are already widely used for a variety of purposes, including com-

munication, remote sensing, and Earth observation [123]. One of the main advan-

tages of using LEO satellites for SSP systems is their closer proximity to Earth com-

pared to other orbiting satellites, such as GEO satellites or lunar bases. This means

that the energy transmitted to Earth experiences less transmission loss, thereby mak-

ing the system more efficient [124]. Despite these advantages of LEO satellites, their

high mobility introduces additional challenges on the system implementation. Mo-

tivated by this, in this paper, we investigate the feasibility of an SSP system utilizing

LEO satellites. More specifically, the main contributions of this work are as fol-

lows. First, we analyze the satellite solar energy collection through the PV panels

by taking into account the satellite rotation angle with the sunlight. Then, the en-

ergy harvested by the ground receiver is quantified by considering the mobility of

LEO satellites. Our results indicate that increasing the transmit power of LEO satel-

lites can significantly improve the energy harvesting performance of the ground

receiver. Additionally, a LEO satellite-based SSP system can achieve comparable

performance to a GEO satellite-based SSP system by deploying around one hun-

dred LEO satellites.

8.2 System model

We consider a LEO satellite-based SSP system, which consists of N identical LEO

satellites evenly deployed on a sun-synchronous orbit as illustrated in Fig. 8.1. Par-

ticularly, the sun-synchronous orbit is characterized by the altitude of LEO satellites,

as well as the angle between the orbital plane of the satellite and the sunlight, which

are denoted by H and ϕ, respectively. Each LEO satellite is equipped with a large

PV cell array to collect solar energy, while the collected energy is stored in large-
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Figure 8.1: Illustration of the LEO satellite’s orbit.

Figure 8.2: Illustration of the WPT process.

capacity rechargeable batteries [125]. Moreover, we consider that multiple large

ground rectennas (gRAs) are deployed according to the ground track of LEO satel-

lites’ orbits, such that each LEO satellite pass over a gRA every orbit period. Once a

LEO satellite pass over a gRA, denoted as transmission window, it transmits the col-

lected energy to the gRA via microwave radiation, as illustrated in Fig. 8.2, which is

referred to as the wireless power transfer (WPT) process.

8.3 Satellite energy collection

In this section, we focus on modeling the output energy of the solar PV panels. We

note that the output power of the solar panels is not constant and is affected by

the area of the PV cell array, As, the efficiency of energy conversion, ηPV, and the

angle between the sunlight and the normal line of the solar panels. Typically, the
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satellite’s solar panels adopt single-axis solar tracking, which adjusts the angle of

the solar panels with the sun as the satellite orbits the Earth, thereby maximizing the

amount of solar energy that can be harvested [125]. More specifically, let θ denote

the satellite rotation angle from the midpoint of the shaded area, as depicted in

Fig. 8.1. Let β denote the angle between the sunlight and the normal of the solar

panels. By adopting the single-axis solar tracking, the minimum achievable β can

be expressed as [125, 126]

β(θ) = arccos
√

1− cos2 ϕ cos2 θ. (8.1)

Furthermore, during each orbit of a LEO satellite, its solar panels collect energy as

the satellite moves through areas of direct sunlight. We define G0 as the solar irra-

diance per unit area. In the following lemma, we evaluate the total energy collected

by each LEO satellite during one orbit period.

Lemma 8.1. The energy collected by the solar panels of a LEO satellite for one orbit period

is given by

ESolar =
∫ 2π−2θ0

ω

θ0
ω

G0ηPVAsβ(ωt)dt, (8.2)

where

θ0 =

 0, ϕ > arcsin R⊕
R⊕+H

arcsin
√

R2
⊕ cos2 ϕ−(2R⊕H+H2) sin2 ϕ

(R⊕+H) cos ϕ
,

(8.3)

represents the half-angle of the shaded area as shown in Fig. 8.1, ω =
√

GM
(R⊕+H)3 is the

angular velocity of the LEO satellite, G is the gravitational constant, and M is the mass of

Earth and R⊕ is the Earth radius.

Proof. We consider that the LEO satellite is initially located at the midpoint of the

shaded area. At time t, the satellite has passed an angle θ = ωt, where 0 < t < 2π
ω

and the output power of the PV solar panels can be formulated as

E(t) =



0, t ≤ θ0
ω

G0ηPVAsβ(ωt), θ0
ω ≤ t ≤ π

ω

G0ηPVAsβ(2π −ωt), π
ω ≤ t ≤ 2π−2θ0

ω

0, t ≥ 2π−2θ0
ω

(8.4)

Then, by noting that β(2π − ωt) = β(ωt) due to the periodicity of the cosine func-

tion, and by integrating the output power over one orbit period, the final expression

in Lemma 8.1 is derived. �
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8.4 Wireless power transfer

In this section, we analyze the WPT operation from the satellite to the gRA. Typ-

ically, the solar energy harvested by the PV panels is stored by the rechargeable

batteries and then passes through a direct current to RF (DC-to-RF) converter to

generate a microwave of suitable frequency, i.e. fRF. Then, the output power is

beamed down to the considered gRA, where it is converted into a usable form. Sub-

sequently, we discuss the RF link efficiency between the transmitting satellite and

the gRA, before analyzing the harvested energy by the gRA.

8.4.1 Microwave link efficiency

The size of the transmit and receive antenna apertures plays a crucial role in the

design of the microwave link efficiency. In general, microwave links are modeled

using the Friis transmission equation. However, for microwave power transmission

applications, a huge antenna system is required. As a result, the Friis transmission

equation is no longer valid [48]. In addition, the relationship between the antenna

apertures, wavelength, and distance has only been analyzed empirically [48, 127].

Therefore, based on these experimental results, we provide a closed-form expression

for the energy collection efficiency of the RF link from the satellite to the gRA, by

using curve fitting, as depicted in Fig. 8.3. More specifically, it is modeled as

ηRF(r) =
c1

c2 + exp(−c3τ(r))
, (8.5)

where τ(r) =
√
AtAr
λr represents the normalized antenna apertures,At andAr denote

the transmit and receive antenna apertures, respectively. Moreover, λ = c
fRF

is the

wavelength, c is the speed of the light, and r is the distance between the satellite and

the gRA. Finally, c1 = 0.04417, c2 = 0.0445, and c3 = 3.643 represent the constants

for the fitting function.

8.4.2 Energy harvesting analysis

We consider that each LEO satellite intends to transmit all the collected energy dur-

ing the transmission window. Each LEO satellite transmits energy with a constant

transmit power Pt. More specifically, the WPT process starts at the location with

the Earth-centered zenith angle −φ and terminates at the location with the zenith
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Figure 8.3: RF collection efficiency as function of τ.

Table 8.1: System parameters.

Parameter LEO [47] GEO [48]

Altitude (H) 500 km 36000 km

Solar panel size (As) 1000× 1000 m2 6700× 2500 m2

Satellite transmit antenna aperture (At) 132× 132 m2 7502π m2

RF collection efficiency (ηRF) (8.5) 75%

Orbit angle (ϕ) π/4 -

Solar irradiance (G0) 1370 W/m2

Gravitational constant (G) 6.67259× 10−11 m3kg−1s−2

Mass of Earth (M) 5.9736× 1024 kg

Radius of Earth (R⊕) 6371 km

Operating frequency ( fRF) 2.45 GHz

Ground antenna aperture (Ar) 25002π m2

PV energy conversion efficiency (ηPV) 30%

DC-to-RF conversion efficiency (ηDC−RF) 76%

RF-to-DC conversion efficiency (ηRF−DC) 70%

angle φ, which are denoted by the green and red points in Fig. 8.2, respectively. It is

worth mentioning that during the WPT process, the satellite’s solar panels continue

to capture and store energy that can be utilized for energy transmission during sub-
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sequent orbital period. Moreover, a LEO satellite can perform WPT only when it is

visible from the gRA’s position, i.e. the LEO satellite is located above the horizon

of the gRA. Hence, the zenith angle φ is upper-bounded, i.e. |φ| ≤ arccos
(

R⊕
R⊕+H

)
.

Therefore, the time for the WPT process of each LEO satellite for one orbit period is

given by

Ts = min
{

ηDC−RFESolar

Pt
,

2
ω

arccos
(

R⊕
R⊕ + H

)}
, (8.6)

where ηDC−RF denotes the overall efficiency of the DC-to-RF converter. Based on

the discussion above, we are now able to provide our main result, i.e. the amount of

harvested energy at the gRA during one orbit period, in the following proposition.

Proposition 8.1. The amount of harvested energy by the gRA during one orbit period is

given by

EgRA = 2N
∫ Ts

2

0
PtηRF

(
r(t)

)
ηRF−DCdt, (8.7)

where

r(t) =
√
(R⊕ + H)2 + R2

⊕ − 2(R⊕ + H)R⊕ cos (ωt),

and ηRF−DC is the RF-to-DC energy conversion efficiency of the gRA.

Proof. Consider that at time t = 0, the LEO satellite starts to transmit power to the

gRA. After a period of time ∆t (∆t ≤ Ts), the Euclidean distance between the LEO

satellite and the gRA can be calculated by using the Law of cosines, which is given

by

r(∆t) =


√
(R⊕ + H)2 + R2

⊕ − 2(R⊕ + H)R⊕ cos (φ−ω∆t), 0 ≤ t ≤ Ts
2√

(R⊕ + H)2 + R2
⊕ − 2(R⊕ + H)R⊕ cos (ω∆t− φ), Ts

2 ≤ t ≤ Ts.
(8.8)

Then, the instantaneous harvested power at the gRA is given by

PgRA(∆t) = PtηRF(r(∆t))ηRF−DC. (8.9)

Hence, the total harvested energy by the gRA from N LEO satellite during one orbit

period can be evaluated by integrating the received power PgRA(∆t) over the time

period t ∈ [0, Ts] and then multiplying by N, i.e.

EgRA = N
∫ Ts

0
PtηRF

(
r(∆t)

)
ηRF−DCd∆t. (8.10)

In addition, by noting that φ = ωTs
2 and cos(φ− ω∆t) = cos(ω∆t− φ), the integral

range of (8.10) can be adjusted to [0, Ts
2 ]. Ultimately, the final result in Proposition

8.1 is obtained. �
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Figure 8.4: Harvested energy by the gRA vs. the transmit power of LEO satellites.

8.5 Numerical results

We now present the numerical results of the considered LEO satellite-based SSP

system. The system parameters are summarized in Table 1. The effect of the transmit

power of LEO satellites on the harvested energy by the gRA is shown in Fig. 8.4.

Specifically, we plot the amount of the harvested energy by the gRA for one orbit

period, i.e. EgRA (J), versus the transmit power of LEO satellites, i.e. Pt (dBW),

for various number of LEO satellites, i.e. N ∈ {1, 10, 100}. We first notice that

the harvested energy by the gRA first increases with an increase in the transmit

power of the LEO satellites and then reaches a constant value. This is expected since

increasing the transmit power allows each LEO satellite to transmit all of its stored

energy to the gRA in a shorter amount of time. Therefore, the LEO satellite begins

transmitting when it is close to the gRA, resulting in a shorter distance between the

satellite and the gRA during the WPT process, thus a higher collection efficiency

can be achieved. In addition, for scenarios with extremely high transmit power, the

LEO satellite transmits all energy immediately, which leads to a constant harvested

energy by the gRA. Finally, we numerically evaluate the performance achieved by

the GEO-based SSP system [48] for the comparison purpose (denoted by dash lines).

It can be observed that increasing the number of LEO satellites can lead to a greater

amount of energy harvested by the gRA, resulting in comparable performance to

that of a single GEO satellite-based SSP system. This is due to the fact that by having
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multiple LEO satellites during one orbit period, the gRA can harvest energy from

each of them, resulting in a higher overall harvested energy.

8.6 Summary

In this chapter, we investigate a LEO satellite-based SSP system for harvesting solar

energy and wirelessly transmitting it to a gRA. We analyze the satellite solar energy

collection through PV panels and provide WPT analysis to quantify the performance

of the SSP system, where the expression for the harvested energy by the gRA during

one orbit period is analytically derived. Our results show that the transmit power of

LEO satellites has a significant effect on the harvested energy by the gRA. In specific,

increasing the transmit power of LEO satellites boosts the energy harvested by the

gRA. Finally, we conclude that deploying a larger number of LEO satellites achieves

comparable performance to that of a GEO satellite-based SSP system.
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Chapter 9

Conclusion and future work

In the upcoming era of 6G, SWIPT has a critical role to play in fostering highly re-

liable, ultra-dense, and energy-efficient networks. Unlike previous generations of

wireless technology, 6G envisions ubiquitous connectivity with a heavy emphasis

on IoT devices and AI-driven applications, demanding a seamless, high-rate, and

continuous supply of power. SWIPT, with its transformative capability to wirelessly

transmit both data and energy simultaneously, offers a robust solution to this chal-

lenge. By harnessing the dual functionality of electromagnetic waves, SWIPT can

empower a new generation of self-sustaining devices, alleviating concerns around

battery life, frequent recharging, and environmental impact, thus leading to a truly

connected and sustainable future.

In this thesis, we addressed some of the challenges brought by the integration

of SWIPT in cellular networks, by taking into account the unique features of next-

generation networks. We primarily focus on the system-level analysis of SWIPT-

enabled 6G cellular networks, by proposing novel advanced antenna selection, cell

sleeping, mobility management and user association techniques, etc. By employing

stochastic geometry tools, we established a tractable analytical frameworks to eval-

uate the achieved performance of the aforementioned techniques from a large-scale

point-of-view. Additionally, the performance of LEO satellite-based networks was

assessed, highlighting the potential of space-based information and energy trans-

fer systems. Tractable closed-form expressions for fundamental network perfor-

mance metrics, such as the coverage probability, association probability and han-

dover probability, etc., are derived. These closed-form expressions, provide valu-

able engineering insights to help network operators in the deployment of SWIPT-
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enabled networks, and how key system parameters affect the network performance.

Furthermore, the practical deployment of the models and techniques proposed

in this thesis necessitates a nuanced understanding of their real-world applicabil-

ity. The advanced antenna selection, cell sleeping, mobility management, and user

association techniques developed herein are not only theoretically robust but are

also designed with practical implementation scenarios in mind. For instance, the

proposed solutions are highly relevant for urban environments where the density

of IoT devices and the demand for AI-driven applications are rapidly increasing.

These environments, characterized by dynamic user mobility patterns and vary-

ing energy demands, stand to benefit significantly from the energy efficiency and

enhanced connectivity provided by SWIPT. Additionally, the exploration of LEO

satellite-based networks opens new avenues for extending connectivity to remote

and underserved areas, showcasing the feasibility of employing SWIPT in diverse

operational contexts. By facilitating a seamless integration of SWIPT into existing

and future cellular infrastructures, this research paves the way for network oper-

ators to harness the benefits of 6G technologies effectively. Pilot programs and

real-world trials will be instrumental in validating the efficacy of these proposed

models, offering a clear pathway for transitioning from theoretical insights to prac-

tical implementations. Such empirical validations are crucial for optimizing model

parameters in accordance with real-world complexities, thereby ensuring the scal-

ability and sustainability of SWIPT-enabled 6G networks. This thesis underscores

the importance of bridging the gap between theoretical research and practical appli-

cations, highlighting the critical role of SWIPT in achieving the ambitious goals of

next-generation wireless networks.

9.1 Future work

In advancing the exploration of next-generation wireless networks, future work will

integrate novel concepts poised to significantly enhance network functionalities and

efficiencies. This includes pioneering efforts to leverage base stations in sleep mode

for energy harvesting, which opens up new avenues for energy efficiency across net-

work infrastructures. Moreover, the exploration of hybrid antenna structures will be

pivotal in optimizing energy harvesting and communication capabilities simultane-

ously, marking a strategic evolution in network component design. Additionally,
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within the vehicular network dimension, the research focus will refine the criteria

for sensor deployment, prioritizing the ’best’ sensor selection based on performance

metrics rather than proximity alone, which promises to elevate the accuracy and

reliability of vehicular communications and sensing capabilities. These forward-

looking initiatives are designed to seamlessly integrate with my existing research

directions, enriching comprehensive strategy to advance wireless communication

networks’ performance, sustainability, and adaptability. Some other possible future

directions are summarized as the following:

1. SWIPT-assisted ISAC systems for vehicular networks: The integration of

sensing functionality is emerging as a key feature of the 6G networks, allow-

ing for the exploitation of dense cell infrastructures to construct a perceptive

network [128–131]. ISAC’s implementation in vehicular systems is critical for

enhancing road safety and traffic management. By leveraging the capabilities

of 6G networks for real-time environmental sensing and robust data commu-

nication, ISAC facilitates adaptive and intelligent interactions among vehicles,

infrastructure, and pedestrians [132, 133]. This adaptability is crucial in dy-

namic traffic conditions, where rapid responses to changing scenarios can pre-

vent accidents and improve traffic flow. The integration of SWIPT into ISAC

systems marks a trans-formative step in wireless technology. SWIPT addresses

a fundamental challenge in environments where a consistent power supply

and efficient communication are essential but difficult to maintain. This is

particularly pertinent in remote or autonomous sensors used in vehicular net-

works. By allowing these sensors to receive power and transmit data simulta-

neously, SWIPT significantly enhances the sustainability and reliability of ve-

hicular communication systems. Despite all the above advancements, several

challenges still arise when applying SWIPT-assisted ISAC systems to vehicular

networks, which as summarized as following:

• Accurate spatial model of vehicular networks: Developing a precise spa-

tial model for vehicular networks is crucial. This involves understand-

ing and accurately predicting the movement and distribution of vehicles

within a network. The model must account for dynamic factors such

as vehicle speed, density, and direction, as well as the urban landscape

which can include varying building densities and road layouts [108]. The
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model discussed in Chapter 6, while comprehensive, can benefit from fur-

ther refinement to encompass a broader range of environments. Extend-

ing it to accurately represent different settings, such as large-scale and

small-scale cities, urban centers, remote areas, typical roads, and high-

ways, will enhance its applicability and effectiveness. Such an expanded

model would be invaluable in optimizing the deployment and perfor-

mance of SWIPT-assisted ISAC systems in various vehicular scenarios.

By accounting for the diverse characteristics of these environments, the

model can facilitate more precise planning and implementation, ensuring

that the technological solutions are tailored to meet the specific demands

and challenges of each unique setting.

• Interference management: In SWIPT-assisted ISAC systems, managing

interference is a complex yet opportunistic task. The superimposition of

data transmission and power transfer signals often leads to interference,

which, in the context of ultra-dense mobile device deployments, can be

significantly magnified. This interference, however, presents an opportu-

nity for energy harvesting. Advanced signal processing is key, separating

data signals for clear communication while capturing energy from ambi-

ent interference. This requires innovative approaches in signal processing

that dynamically adapt to varying interference levels [11].

• Mobility management: Mobility management in SWIPT-assisted ISAC

systems within vehicular networks presents multifaceted challenges. In

vehicular networks, vehicles are constantly moving, which leads to fre-

quent changes in network topology [134–136]. Maintaining stable con-

nectivity and seamless communication in such a highly mobile environ-

ment is challenging. SWIPT-assisted ISAC systems must be capable of

dynamically adjusting to these changes to ensure continuous and reliable

communication. As vehicles move, they often need to switch between dif-

ferent network cells or access points. This process, known as handover,

must be managed efficiently to avoid communication disruptions. The

challenge is to minimize the latency and potential data loss during these

handovers, which is particularly crucial for time-sensitive applications

like autonomous driving.
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2. SWIPT-enabled satellite communication networks: Satellite communication

systems, particularly those based on LEO satellites, are increasingly recog-

nized for their potential to drive advanced applications such as high-speed

internet, ultra-low latency communication, and extensive IoT deployments.

These systems are integral in empowering diverse sectors like smart cities,

agriculture, and transportation. As the global communication infrastructure

evolves from 5G to 6G, the role of satellite communication networks becomes

even more crucial in achieving the vision of a fully connected and intelligent

world. The integration of SWIPT into these satellite networks represents an

exciting frontier. While LEO satellite-based communication and energy trans-

fer systems have been discussed in this thesis, the co-design of information

and power transfer in satellite networks through SWIPT remains a largely un-

explored area, which presents several design challenges:

• Energy efficiency and harvesting: In satellite networks, energy efficiency

is paramount. SWIPT technology must be designed to optimize power

transfer without compromising the efficiency of information transmis-

sion. The challenge lies in developing energy harvesting mechanisms

that can effectively capture and utilize solar and other forms of energy

in space, such as the LEO satellites-based SSP system.

• Signal propagation and attenuation: The vast distances and atmospheric

conditions in satellite communication result in significant signal attenua-

tion. Designing SWIPT systems that can effectively transmit power and

data over long distances while overcoming these losses is a major chal-

lenge.

• Cost and complexity: Finally, the cost and complexity of implementing

SWIPT in satellite networks are significant. Balancing the technological

advancements with practical, cost-effective solutions is crucial for the vi-

ability of these systems.
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