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ABSTRACT 

 

Η παρούσα διατριβή χρησιμοποιεί το εργαλείο της μαθηματικής μοντελοποίησης για την 

ανάλυση περίπλοκων βιολογικών συστημάτων με σκοπό την έρευνα στην περιοχή της 

ανάπτυξης και της θεραπείας καρκινικών όγκων. Η διατριβή ξεκινά με ένα εισαγωγικό 

Κεφάλαιο (Κεφάλαιο 1) σχετιζόμενο με τις μεθόδους μαθηματικής μοντελοποίησης για τον 

καρκίνο. Στο Κεφάλαιο 2 παρουσιάζεται το πρώτο μαθηματικό μοντέλο που αναπτύχθηκε 

στο πλαίσιο της διατριβής, το οποίο βασίζεται στην ενσωμάτωση μη επεμβατικών τεχνικών 

απεικόνισης δημιουργώντας ένα μαθηματικό μοντέλο εξειδικευμένο για τον ασθενή. 

Συγκεκτιμμένα το μοντέλο αυτό είναι το πρώτο που χρησιμοποιεί την απεικονιστική μέθοδο 

Magnetic Resonance Elastography (MRE) από ασθενείς με καρκίνο του εγκεφάλου για να 

προσομοιώσει την επίδραση των μηχανικών ιδιοτήτων των όγκων στην ανισότροπη 

ανάπτυξη του όγκου, την ανομοιογένεια των λειτουργικών αγγείων και την μεταφορά της 

χημειοθεραπείας. Τα αποτελέσματα δείχνουν ότι η ενσωμάτωση της μεθόδου MRE οδηγεί 

σε πιο ακριβή υπολογισμό των μηχανικών τάσεων και επιτρέπει μια καλύτερη πρόβλεψη 

της ετερογενής ανάπτυξη του αγγειακού δικτύου οδηγώντας σε διαφορές μεταξύ των 

ασθενών στην αιμάτωση και την μεταφορά των φαρμάκων. Η έρευνα αυτού του κεφαλαίου 

δημοσιεύτηκε στο περιοδικό Cancers. 2022;14: 884. 

https://doi.org/10.3390/cancers14040884 

Στο Κεφάλαιο 3 το μοντέλο ανάπτυξης του όγκου επεκτάθηκε για την εξέταση της 

απόκρισης του ανοσοποιητικού συστήματος μετά την χορήγηση ανοσοθεραπείας. 

Συγκεκριμένα, το μοντέλο προσδιορίζει την αποτελεσματικότητα των ενέσιμων 

συζευγμένων κυτοκινών εντός του όγκου, λαμβάνοντας υπόψη τις ιδιότητες του 

μικροπεριβάλλοντος του όγκου και των κυτοκινών. Οι προσομοιώσεις του μοντέλου 

δείχνουν πώς οι ιδιότητες του όγκου και των κυτοκινών καθορίζουν τα αποτελέσματα της 

θεραπείας. Η έρευνα αυτή δημοσιεύτηκε στο περιοδικό PLOS Computational Biology. 

2023;19: e1011740. https://doi.org/10.1371/journal.pcbi.1011740 

Στο Κεφάλαιο 4, το πλαίσιο μοντελοποίησης που αναπτύχθηκε στο Κεφαλαίου 3, 

συνδυάστηκε με την Φαρμακοκινητική-Φαρμακοδυναμική μοντελοποίηση για να 

συμπεριλάβει τους λεμφαδένες, όπου λαμβάνουν χώρα σημαντικές λειτουργίες του CONSTANTIN
OS H

ARKOS 
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ανοσοποιητικού συστήματος, όπως η παρουσίαση του αντιγόνου και η ανάπτυξη διαφόρων 

κυττάρων του ανοσοποιητικού. Αυτό το μοντέλο επιπρόσθετα ενσωματώνει την θεραπεία 

ανοσοθεραπείας με αναστολείς σημείων ελέγχου του ανοσοποιητικού (immune checkpoint 

blockers (ICBs). Τα αποτελέσματα της ανάλυσης κατέδειξαν ότι ο συνδυασμός της 

θεραπείας ICB και των θεραπειών που στοχεύουν στη βελτίωση της αιμάτωσης του όγκου, 

μειώνει την πίεση του ενδιάμεσου υγρού στο όγκο και αυξάνει τη συγκέντρωση των 

ανοσοκυττάρων στο κέντρο του όγκου αντί για την περιφέρεια. Η ανάλυση βρήκε επίσης 

ότι ο αριθμός των λειτουργικών αγγείων μέσα στην περιοχή του όγκου και η δόση ICB που 

χορηγείται έχουν την μεγαλύτερη συνεισφορά στα αποτελέσματα της θεραπείας. Η έρευνα 

αυτή έχει δημοσιευτεί στο περιοδικό Journal of Theoretical Biology. 2024; 111768. 

https://doi.org/10.1016/j.jtbi.2024.111768 

Στο Κεφάλαιο 5 έχει συνδυαστεί το μοντέλο ανάπτυξης του όγκου και της απόκρισης του 

ανοσοποιητικού συστήματος με στατιστική ανάλυση για να διερευνήσει τον ρόλο του 

εντερικού μικροβιώματος, το οποίο έχει αναδειχθεί ως ένας ρυθμιστής της ανοσοθεραπείας. 

Αυτό το πλαίσιο μοντελοποίησης συνδυάζει i) δεδομένα εντερικού μικροβιώματος που 

προέρχονται από ποντίκια με μελάνωμα μετά από μεταμόσχευση κοπράνων, ii) 

μοντελοποίηση της απόκρισης του ανοσοποιητικού συστήματος, και iii) ανάλυση 

συσχέτισης των προφίλ μικροβιωμάτων ποντικών και ανθρώπων με τα προβλεπόμενα από 

το μοντέλο ανοσοποιητικά προφίλ. Τα αποτελέσματα του μοντέλου δείχνουν ότι το 

μικροβίωμα επηρεάζει την ενεργοποίηση και τον ρυθμό που σκοτώνουν τα ανοσοκύτταρα 

και προβλέπουν συσχετίσεις μεταξύ συγκεκριμένων βακτηρίων και ανοσοκυττάρων. Η 

έρευνα αυτή βρίσκεται υπό κρίση στο περιοδικό Nature Computational Sciences. 

https://doi.org/10.21203/rs.3.rs-3647386/v1 

Η διατριβή καταλήγει με μια σύνοψη τω κυριότερων ευρημάτων και με εισηγήσεις για 

μελλοντική έρευνα (Κεφάλαιο 6). Μελλοντική έρευνα έχει ως στόχο να συνδυάσει αυτές τις 

διάφορες προσεγγίσεις μοντελοποίσης σε ένα γενικό μοντέλο για την διερεύνηση διαφόρων 

παραγόντων στην ανάπτυξη και θεραπεία του όγκου το οποίο μπορεί να οδηγήσει σε 

ψηφιακές κλινικές δοκιμές και στην αναγνώριση βιοδεικτών. 
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ABSTRACT 

 

This thesis uses the valuable tool of mathematical modelling to model and analyse complex 

biological systems (Systems Biology) to investigate tumor progression and treatment. It 

applies a tumor growth model to different applications incorporating various modelling 

approaches. The thesis begins with an introductory chapter (Chapter 1) providing a 

framework of the mathematical analysis for cancer, then in Chapter 2 it integrates non-

invasive imaging techniques creating a patient specific mathematical model. The model is 

the first one to our knowledge that uses patients’ Magnetic Resonance Elastography (MRE) 

images to simulate the effect of tumor-specific biomechanical properties and their effects on 

tumor anisotropic growth, vascular density heterogeneity and chemotherapy delivery. The 

results show that incorporating MRE data provide a more accurate calculation of 

intratumoral mechanical stresses and enables a better mathematical description of 

subsequent events, such as the heterogeneous development of the tumor vasculature and 

intrapatient variations in tumor perfusion and delivery of drugs. This work was published in 

the journal Cancers. 2022;14: 884. https://doi.org/10.3390/cancers14040884 

In Chapter 3 the tumor growth model is extended to investigate the immune response after 

administration of immunotherapy. Specifically, it determines the efficacy of intratumorally-

injected conjugated-cytokines accounting for properties of the tumor microenvironment and 

the conjugated-cytokines. Model simulations show how the properties of the tumor and of 

the conjugated-cytokines determine treatment outcomes and how selection of proper 

parameters can optimize therapy. This work has been published in PLOS Computational 

Biology. 2023;19: e1011740. https://doi.org/10.1371/journal.pcbi.1011740 

In Chapter 4, the modeling framework of Chapter 3 was combined with Pharmacokinetic-

Pharmacodynamic modeling to incorporate the tumor draining lymph nodes were important 

functions of the immune system take place like the antigen presentation and the development 

of cytotoxic immune cells. This model incorporates immune checkpoint blockade (ICB) 

therapy which is another type of immunotherapy. The results show that combination of ICB 

therapy and normalization treatments, that aim to improve tumor perfusion, decreases 

interstitial fluid pressure and increases the concentration of immune cells at the tumor center CONSTANTIN
OS H

ARKOS 
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rather than the periphery. The analysis also found that the number of functional vessels inside 

the tumor region and the ICB dose administered have the largest impact on treatment 

outcomes. This research has been published in the Journal of Theoretical Biology. 2024; 

111768. https://doi.org/10.1016/j.jtbi.2024.111768 

Chapter 5 merges the tumor growth, immune response with statistical approaches to 

investigate the role of the gut microbiome which has emerged as a key regulator of 

immunotherapy. This modeling framework combines i) gut microbiome data derived from 

preclinical studies on melanomas after fecal microbiota transplant, ii) mechanistic modeling 

of antitumor immune response, and iii) robust association analysis of murine and human 

microbiome profiles with model-predicted immune profiles. Model results show that the 

microbiome affects the activation and killing rate of immune cells. Furthermore, 

combination of mechanistic modeling with association analysis identifies associations 

between specific bacterial taxonomies and immune cells. This research is in revision in 

Nature Computational Sciences. https://doi.org/10.21203/rs.3.rs-3647386/v1 

The thesis concludes with a summary of key findings and suggestions for future research 

(Chapter 6). Future work aims to merge those modeling approaches in a global modeling 

framework for investigating various aspects of tumor progression and treatment, which can 

lead to in silico trials and biomarkers identification. 
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Chapter 1: Introduction 

A solid tumor is characterized by an accumulation of cancer cells mixed with a variety of 

host cells, all embedded within an extracellular matrix. This formation is nourished by blood 

vessels, also the lymphatic vessels assist in the removal of fluids [1]. The main function of 

these blood vessels is to transport blood, vital nutrients, and therapeutic agents to the tumor 

site. In contrast to normal blood vessels, the blood vessels developed in the tumor region 

possess larger pores on their walls, which allows blood to escape into the adjacent space. 

This adjacent space is known as the interstitial space. Besides the vascular network, the 

lymphatic system also plays an integral part. The lymphatic vessels are responsible for 

absorbing excess plasma and additional fluids that seep into the interstitial space through the 

pores of the blood vessels. This process effectively removes fluid from the interstitial space, 

thereby regulating hydrostatic pressure in normal regions. 

The proliferation of cancer cells within the confined space of the host tissue along with the 

accumulation of stromal cells and extracellular matrix components (e.g., collagen and 

hyaluronan) induces stiffening of the tumor and compression of intratumoral blood vessels 

[2–4]. Thus solid stresses are exerted by stroma and cancer cells and the tumor extracellular 

matrix [5–8]. There are also fluid stresses associated with the interstitial and vascular fluid 

pressure [9,10]. Due to the abnormal nature of the intratumoral vasculature, the larger pores 

and the increased leakiness the interstitial fluid pressure (IFP) is elevated. This reduces the 

pressure gradient among the interstitial pressure and the vascular pressure reducing the 

pressure gradient that induces the transport of nutrients and drugs with convection inside the 

tumor[11–14].  

Additionally, vessel compression makes the vessels dysfunctional reducing their ability to 

transport nutrients or drugs by either diffusion or convection. A significant result of the 

reduced nutrients-oxygen in the region is that the cancer cells become invasive in an effort 

to find nutrients [15]. Furthermore, reduced blood flow impairs the transport of immune cells 

to the tumor location as well. The hypoxic conditions in the tumor microenvironment (TME) 

create an immunosuppressive environment, reducing the effectiveness of immune effector 

cells in destroying cancer cells and thus reducing the outcome of immunotherapy [16,17]. CONSTANTIN
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One approach of enhancing the efficacy of chemotherapy and immunotherapy is the use of 

agents that reprogram the TME (mechanotherapeutics). These agents aim to restore the 

mechanical properties of the tissue as well as the blood vessels’ functionality inside the 

tumor. A less compressed TME with more functional vessels increases the delivered 

chemotherapeutic agents, the delivery of immunotherapeutic agents and the delivery of 

immune cells[1,18].  

More specifically, chemotherapy is a type of treatment that directly attacks cancer cells. On 

the other hand, immunotherapy works by boosting the host immune system to destroy tumor 

cells [19]. This method of aiding the host immune cells in combating cancer without relying 

on cytotoxic drugs presents a hopeful strategy, necessitating a deeper comprehension of the 

immune system and its reaction to immunotherapy. Although, there are various types of 

immunotherapies in this thesis two types are investigated: i) Immune checkpoint blockade 

(ICB) therapy that uses immune checkpoint inhibitors (ICIs) [19] and ii) the injection of 

cytokines [20–22]. Immune checkpoint blockers (ICBs) or ICIs block the checkpoint 

proteins from binding with their counterparts. When the checkpoint proteins bind, they stop 

the immune system from attacking cancer cells. Thus, blocking the binding with immune 

checkpoint blockers enhances the immune system on recognizing and killing cancer cells. 

Common examples of checkpoint inhibitors are the cytotoxic T-lymphocyte associated 

protein 4 (CTLA4), programmed cell death protein 1 (PD1) and programmed cell death 

ligand 1 (PDL1) inhibitors. 

The other type of immunotherapy investigated in this thesis uses cytokines that are small 

proteins that control the activity of the immune system. The pro-inflammatory cytokines are 

produced by the immune cells in an effort to enhance the immune response against the tumor. 

Injecting pro-inflamatory cytokines like interleukin 2 (IL2) and interleukin 12 (IL12) 

enhances the host immune system to kill tumor cells [20–22]. 

Despite the potential of immunotherapy, less than 20% of patients currently experience 

benefits [23] with many of those encountering immune-related adverse effects [24]. This led 

the research community to investigate ways to enhance the effect of immunotherapy. The 

last few years the gut microbiome has emerged as regulator of immunotherapy [25–27]. The 

microbiome is a collection of bacteria, viruses and microbes that leave mainly inside the gut. 

Those microorganisms play a crucial role in various functions of the human body like CONSTANTIN
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digestion, metabolism and immune function. Recent experimental trials have demonstrated 

how fecal microbiota transplants (FMT) can benefit immunotherapy [25,28–33]. FMT is the 

transplantation of faces from a donor to another subject. Usually, the donor has previously 

responded to immunotherapy and thus the microbiome of the donor’s intestine consists of 

microbes that benefit immunotherapy. The beneficial microbiome is transplanted to another 

subject in an effort to adjust the receiver’s microbiome to a set of microbes that are beneficial 

for a follow up injection of immunotherapeutic agents [29,30,34]. 

Mathematical modeling can be proven very useful in capturing these complex, dynamic and 

heterogeneous events that take place within a growing tumor and make predictions for 

optimal designing of therapeutic agents, diagnostic tools and treatment strategies [1]. 

Furthermore, due to the variation of the treatment outcome in many patients, patient specific 

mathematical modeling can have multiple clinical uses, including predictions making, 

treatment planning and expert diagnostic assistance [35]. Additionally, given that treating 

and investigating cancer treatments requires high costs [36] , this makes mathematical 

modeling a valuable and low-cost tool for predicting treatment outcomes and best 

combinations of therapeutic approaches with minimal adverse effects [37]. 

Various types of modeling approaches were followed over the years. One of those 

approaches is Pharmacokinetic (PK) – Pharmacodynamic (PD) modeling. PK is the study of 

how the body processes a drug and can define the dose schedule, whereas PD is how a drug 

affects the body to produce its therapeutic effects. PK-PD modeling is especially useful in 

preclinical trials for drug discovery and determination of the optimal dose of the drug [38]. 

The majority of PK-PD models describe the time evolution of a tumor to a given therapeutic 

using a set of ordinary differential equations (ODEs) [39].  

Furthermore, another modeling approach is the distributed parameter modeling that 

integrates continuum mechanics which is the study of the mechanical behavior of matter has 

been proven a valuable tool for generating models that simulate tumor growth, stress 

progression, transport of drugs and nutrients [40]. Continuum mechanics can be used in 

finding the optimal dosage of a treatment and examining/developing new treatment 

strategies [41,42].  

Another modeling approach are the discrete and stochastic models that treat the cells or the 

vasculature as discrete entities are quite useful in examining proliferation, migration, death, CONSTANTIN
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angiogenesis or any other processes. Continuum and discrete approaches can be combined 

in generating hybrid models to investigate multiple factors that contribute to tumor 

progression or treatment at different length scales [43].  

Due to that the treatment outcome varies from patient to patient and thus, Imaging fused with 

mathematical modeling makes the development of patient specific models possible [44,45]. 

This can have multiple clinical uses, including predictions making, treatment planning and 

expert diagnostic assistance [35]. 

Finally, the vast heterogeneity of tumors and variability in responses makes the use of 

advanced statistical analysis and machine learning methods a valuable tool to understand 

underlying the mechanisms, identify the most crucial biological programs and develop 

biomarkers predictive of response [46–49].  

In this thesis a modeling framework of tumor growth was used in various applications. 

Firstly, Chapter 2 integrates non-invasive imaging techniques to the continuous tumor 

growth model creating a patient specific mathematical model (Figure 1). It also applies a set 

of equations for the drug delivery in this case to model transport of chemotherapy by also 

considering properties of the TME. The model is the first one to our knowledge that uses 

patients’ Magnetic resonance elastography (MRE) to simulate the effect of tumor-specific 

biomechanical properties and their effect on tumor anisotropic growth, vascular density 

heterogeneity and chemotherapy delivery.  
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Figure 1: Framework of mathematical modelling of solid tumors. The schematic shows how different 

modelling approaches can be combined for modelling the dynamic and complex aspects of tumor 

progression and treatment. 

 

Secondly, Chapter 3 illustrates a mathematical model that uses the continuous tumor growth 

model in combination with the equations of the drug delivery and a set of equations for the CONSTANTIN
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immune response (Figure 1). This model investigates the intratumorally-injected 

conjugated-cytokines, accounting for properties of the TME and the conjugated-cytokines.  

Thirdly, Chapter 4 extends the modeling framework presented in Chapter 3. This model not 

only includes the continuous tumor growth model combined with the transport equations and 

the equations of the immune response but also incorporates PK-PD modeling (Figure 1) by 

considering the tumor draining lymph nodes (TDLNs). In the TDLNs important functions 

of the immune system take place like the antigen presentation and the development of 

cytotoxic immune cells. This model incorporates ICB therapy by also investigating the effect 

of normalizations treatments that aim to improve tumor perfusion.  

Finally, Chapter 5 merges the tumor growth model, the immune response equations and 

statistical approaches (Figure 1) to investigate the role of the gut microbiome which has 

emerged as a key regulator of response to cancer immunotherapy. More specifically, this 

modeling framework combines i) gut microbiome data derived from preclinical studies on 

melanomas after fecal microbiota transplant, ii) mechanistic modeling of antitumor immune 

response, and iii) robust association analysis of murine and human microbiome profiles with 

model-predicted immune profiles.  

The thesis concludes with a summary of key findings and suggestions for future research 

(Chapter 6). Future work aims to merge those modeling approaches in a global modeling 

framework for investigating various aspects of tumor progression and treatment, which can 

lead to in silico trials and biomarkers identification. 
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Chapter 2: Inducing biomechanical heterogeneity in brain 

tumor modeling by MR Elastography: effects on tumor 

growth, vascular density and delivery of therapeutics 

This study has been published in the journal Cancers: Harkos C, Svensson SF, Emblem KE, 

Stylianopoulos T. Inducing biomechanical heterogeneity in brain tumor modeling by MR 

Elastography: effects on tumor growth, vascular density and delivery of therapeutics. 

Cancers. 2022;14: 884. https://doi.org/10.3390/cancers14040884 

Summary 

The purpose of this chapter is to develop a methodology that incorporates a more accurate 

assessment of tissue mechanical properties compared to current mathematical modeling by 

use of biomechanical data from magnetic resonance elastography. The elastography data 

were derived from five glioblastoma patients and a healthy subject and used in a model that 

simulates tumor growth, vascular changes due to mechanical stresses and delivery of 

therapeutic agents. The model investigates the effect of tumor-specific biomechanical 

properties on tumor anisotropic growth, vascular density heterogeneity and chemotherapy 

delivery. The results showed that including elastography data provides a more realistic 

distribution of the mechanical stresses in the tumor and induces anisotropic tumor growth. 

Solid stress distribution differs among patients, which, in turn, induces a distinct functional 

vascular density distribution—owing to the compression of tumor vessels—and intratumoral 

drug distribution for each patient. In conclusion, incorporating elastography data results in a 

more accurate calculation of intratumoral mechanical stresses and enables a better 

mathematical description of subsequent events, such as the heterogeneous development of 

the tumor vasculature and intrapatient variations in tumor perfusion and delivery of drugs. 

Introduction 

Glioblastoma multiforme (GBM) is one of the most common primary brain tumors [50,51]. 

Despite the different treatments developed, it remains a devastating disease with a poor 

prognosis and an overall survival of 14 to 15 months [52,53]. The response to treatment 

varies from patient to patient. Thus, the development of patient-specific mathematical CONSTANTIN
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models not only enables further understanding of glioblastoma development but also allows 

the optimization of a patient’s treatment [54]. 

Mathematical models can be divided into two categories based on the scale at which the 

tumor is represented. The models can be discrete/stochastic, with an emphasis on the 

microscopic scale and the interactions at the cellular level, or continuum models, which 

focus on events taking place at the macroscopic scale [55,56]. Hybrid-multiscale models 

have also been developed that combine elements of both microscopic and macroscopic 

models [57]. GBM models most often combine the human brain geometry derived from 

magnetic resonance imaging (MRI) or computer tomography (CT) with equations 

accounting for cancer cells’ proliferation and diffusion [58–60]. This modeling strategy 

allows for the prediction of patterns of submicroscopic tumor invasion not detectable by 

MRI images [58–60]. Some models even consider anisotropic diffusion based on data 

derived from diffusion tensor imaging (DTI MRI), which allows for patient-specific 

predictions of the shape and evolution of the tumor [44,61,62]. A probabilistic diffusion 

coefficients scheme in the diffusion reaction equation has also been employed instead of 

fixed diffusion parameters to improve predictions [63,64]. Furthermore, some studies focus 

on simulating treatments, such as radiotherapy [65–68], while others simulate chemotherapy 

based on the patient’s imaging data [69,70]. 

The realization that not only biological and brain physiological factors but also 

biomechanical forces drive brain tumor progression has led to the development of 

mathematical models that account for tissue biomechanical properties [71,72]. The effect of 

the biomechanical properties is crucial because tumor progression is associated with the 

onset and accumulation of mechanical stresses [18,73–75]. A source of mechanical stress is 

solid stress exerted by stromal and cancer cells and the tumor extracellular matrix as a 

consequence of a growing tumor, which deforms the surrounding tissues [5–8]. There are 

also fluid stresses associated with the interstitial and vascular fluid pressure [9,10]. Glioma 

in silico models consider the effect of stresses with either continuous or discrete approaches 

[76–79]. Solid stresses can directly affect glioma cell proliferation and migration [80,81]. 

They can also induce blood vessel compression and dysfunction, limiting perfusion rates 

and, thus, oxygen and chemotherapeutic agents’ transport into the tumor [74,82]. Oxygen 

levels, in turn, affect cancer cell proliferation, tumor growth and invasion as proliferative CONSTANTIN
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cells can become invasive under hypoxic conditions [15,71,76,81,83–86]. Thus, the 

normalization of brain tumor blood vessels to restore vessels’ hyper-permeability and 

compression can lead to improved perfusion and therapeutic efficacy [87,88]. The 

incorporation of tissue mechanics on tumor growth models improves predictions on 

preclinical models and also helps distinguishing radiation necrosis from tumor progression 

in patients [89,90]. 

For a better understanding of the biomechanical tumor microenvironment, a detailed 

quantification of the mechanical properties of the normal and tumor brain is required. 

Magnetic resonance elastography (MRE) is a promising imaging technique, which allows 

for noninvasive quantification of the mechanical properties of tissues by applying external 

vibrations [91]. Biomechanical properties provide information about tissue stiffness, which 

is related to the magnitude of mechanical stresses developed in the tumor. Even though MRE 

has been used for studying brain cancer in patients and animal models [92,93], it has not 

been used in simulations of brain tumor development, omitting the importance of 

biomechanical properties in tumor progression. 

To this end, we present a mathematical model that incorporates not only conventional 

anatomical and DTI MRI data but also considers MRE data for a more realistic 

representation of the biomechanical properties and mechanical stresses in healthy and 

malignant brain tissues. The model combines the elastography data of a healthy subject’s 

brain with those of five patients with GBM. Our model simulates tumor progression by 

assuming that the non-uniform distribution of mechanical stresses promotes proliferation 

towards low-stress regions [94–98]. This allows for predictions of patient-specific 

anisotropic tumor growth, non-uniform vessel compression and heterogeneous distribution 

of functional tumor vessels. Heterogeneous vascular density, in turn, determines 

chemotherapeutic agents’ transport, posing limits to effective drug delivery [82]. The model 

highlights the important relationship of elastography data with tumor anisotropic growth, 

vascular density and chemotherapy delivery and can be a valuable tool for optimizing cancer 

treatment by using patient-specific noninvasive medical imaging. 
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Materials and methods 

Application of MR Imaging data in the model 

MR imaging was performed on a 3T clinical MRI scanner (Ingenia, Philips Medical 

Systems, Best, The Netherlands) using a 32-channel head coil. Anatomical T1-weighted, 

T2-weighted and fluid attenuated inversion recovery (FLAIR) images, as well as DTI MRIs 

and MRE data, were acquired for five patients, using imaging parameters as in [99], also 

shown in  

Table 9. The MRE was performed using a gravitational transducer [100] attached on the side 

of the head, inducing shear waves of 50 Hz into the brain. The MRE acquisition lasted 5.5 

min, with further details about acquisition and processing listed in reference [101]. Patients 

were between 53 and 75 years (median 60 years), with two female patients and three male 

patients. All patients had IDH-wildtype glioblastomas, and tumor sizes ranged from 41 cm3 

to 110 cm3 (median 60 cm3). Imaging was performed before any treatment. For a healthy 

subject (a 34-year-old woman), the MRE imaging was extended to cover the entire brain. 

Storage and loss modulus values were derived from the MRE data using a localized 

divergence-free finite element reconstruction [101,102]. The storage modulus relates to the 

material’s ability to store energy and the loss modulus describes the material’s ability to 

dissipate stress through heat. The MRE data for both the patients and the healthy subject 

were converted from a digital imaging and communications in medicine (DICOM) format 

to Matlab format. Diffusion tensors were derived from the DTI MRI scan of the healthy 

subject. This was performed using the Diffusion Toolkit (Massachusetts General Hospital, 

Boston, MA, USA) following a similar procedure as in a previous study [44]. Diffusion 

tensors were converted to Matlab matrix format too. 

A brain geometry employed in a previous study [72] was used here. This geometry instead 

of the patients’ geometry was used to include the hole brain domain. This was done because 

only the tumour region of the patients was available and not the hole brain. To reduce 

computational demands, only the gray matter and white matter regions were included. 

Generation of the 3D geometry was performed using ScanIP (Simpleware Ltd., Mountain 

View, CA, USA [72]. The geometry was then imported in COMSOL Multiphysics 

(COMSOL, Inc, Burlington, MA, USA). Inside the brain geometry, a small spherical tumor, CONSTANTIN
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with a radius of 5 mm, acting as the initial tumor seed, was added in the same position for 

all cases to avoid host tissue mechanical heterogeneities. 

A mesh was generated in COMSOL Muliphysics (COMSOL, Inc, Burlington, MA, USA) 

as shown in Figure 2. A finer mesh was used inside and around the tumor domain compared 

to the rest of the brain in order to improve accuracy and reduce computational cost. The 

mesh included two types of elements: 1008 prisms that form boundary layers at the tumor 

boundary and 34,468 tetrahedra for the rest of the geometry. 

 

 

Figure 2: The mesh used for the solution of model equations with the finite element method. The mesh 

includes two types of elements: 1008 prisms that form boundary layers at the tumor boundary and 

34,468 tetrahedra for the rest of the geometry. The boundary layers enabled the capturing of steep 

changes at the tumor periphery. 

 

The storage, loss modulus and diffusion tensors matrices derived from the healthy subject 

were applied on the brain domain in COMSOL Multiphysics. This was done using 

interpolation. Specifically, a MATLAB’s built-in interpolation function was used 

(scatteredInterpoland with the method set to natural interpolation). This enabled the CONSTANTIN
OS H

ARKOS 



12 

 

 

interpolation the data existing in the MATLAB matrices to the nodes of the finite elements 

in COMSOL Multiphysics. The same interpolation was used for the patient’s data to the 

initial tumor seed. This required a deformation of the patient’s data prior to the interpolation, 

as shown in Figure 3. 

 

 

Figure 3: The figure presents how the DTI and MRE data from the tumors of the patients were applied 

to the initial tumor seed of the model. This was done by deformation and interpolation of the patient’s 

data to the initial tumor seeds’ mesh elements: (a) T1c MRE space used to locate the tumor region of 

each patient, (b) tumor data of each patient, (c) deforming the data into becoming a cube, (d) 

interpolating the data of the cube to each initial tumor seed, (e) initial tumor seed with data. 

 

For each patient dataset, a rectangular parallelepiped containing the tumor data was 

extracted. For each patient’s data, the rectangular parallelepiped had the smallest possible 

dimensions that fitted inside the tumor domain. The parallelepiped was deformed into a cube 

and then interpolated to the initial tumor seed. For each simulation performed, the tumor 

seed was subjected to each patient’s elastography data and to the same surrounding 

elastography data of the normal tissue (derived from the healthy subject). This was done to 

examine the effect of different tumor elastography properties on the tumor growth. 

Figure 4 and Figure 5 depict the shear modulus values, G, which are used for the constitutive 

equation of the normal and brain tumor material model. 
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Figure 4: Healthy subject’s shear modulus, G, of the brain derived by MRE. The value for the constant 

shear modulus is the average of the healthy subject’s data. The constant case was used to compare tumor 

development in the case of incorporating the MRE data and in the case of not incorporating the MRE 

data (constant case)  

 

 

Figure 5: Patients’ tumor shear modulus, G, derived from MRE as it was fitted on the initial tumor seed 

of the model. The value for the constant shear modulus case is the average value of patient’s 1. 

 

The complex shear modulus G∗(ω)  can be written as G*(ω) = G’(ω) + G’’(ω) 𝒊, where G’ 

and G’’ are the storage and loss modulus calculated by MRE and given by 

G’(ω) = G
(ωτm)2

1 + (ωτm)2
 (1) 
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G’’(ω) = G
ωτm

1 + (ωτm)2
 (2) 

where ω is the radial frequency, τm is the characteristic decay time and G is the shear 

modulus [103]. In the model, we only considered elastic effects as transient effects due to 

tissue viscoelastic properties associated with the characteristic decay time were assumed 

negligible due to the relatively slow growth/deformation rates. 

Kinematics of tumor growth 

Tumor growth is based on principles of continuum mechanics. The deformation gradient 

tensor, 𝐅, was decomposed into two components [104,105]. 

F = Fe∙Fg, (3) 

where Fe is the elastic (reversible) component of F that is related to the stress response of 

the material. Fg is the inelastic (growth, irreversible) component of F. The diagonal 

components of Fg correspond to the growth stretch ratios in the x,y,z direction (λgx, λgy,λgz) 

Fg = [

λgx 0 0

0 λgy 0

0 0 λgz

]. (4) 

The elastic component of the deformation gradient tensor is calculated as, 

Fe = F∙Fg
-1

 (5) 

and the growth stretch ratios are calculated as [94,106], 

1

λga

dλga

dt
 = Γarg ,  a = x,y,z, (6) 

where λga is the growth stretch ratio in each direction (α = x,y,z) and rg is the mass growth 

per unit of the current mass. The anisotropic growth multiplier, Γa, defines the distribution 

of the growth term, rg, among the three directions (x,y,z) and is written as, 
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Γa = ΓΣ
-1 exp(A σaa

s /k) ,  a = x,y,z,  (7) 

ΓΣ = exp(A σxx
s /k)  + exp(A σyy

s /k)  + exp(A σzz
s /k) (8) 

σs is the Cauchy stress, k is the bulk modulus of the tumor and ΓΣ is defined in a way that 

∑ Γaa = 1 is satisfied. A is a parameter describing the degree of anisotropy [106]. When A = 

0, the Equation (6) becomes 

3

λg

dλg

dt
 = rg (9) 

the growth stretch ratios, λga, become the same and the model accounts for isotropic tumor 

growth [107]. For A > 0, the larger the value of A, the higher the degree of anisotropy, and 

growth occurs mostly at the directions of lower stress magnitude [95–98]. 

The growth term, rg, depends on the oxygen concentration in the tissue, cox, and the cancer 

cell density, Tcel [44], 

rg = 
k1 cox

k2 + cox
Tcel (10) 

where k1, k2 are growth rate parameters. 

Stress balance 

According to the biphasic theory for soft tissues [108], the total stress tensor, σtot, can be 

expressed as the summation of the solid phase stress tensor, σs, and the stress tensor, piI, due 

to the effect of the interstitial fluid pressure pi, 

∇⋅σtot= 0 ⇒ ∇⋅(σs-piI) = 0 (11) 

The Cauchy stress tensor, 𝛔s, is expressed as [109], 

σs = Je
-1Fe

∂W

∂Fe
T

, (12) 

where Je = detFe and W is the strain energy density function of the tissue [110]. CONSTANTIN
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W = 
G

2
(I1-3) + 

k

2
(Je-1)2 (13) 

where G is the shear modulus calculated from the elastography data and I1 is the first 

invariant of the elastic Green–Cauchy deformation tensor. 

Cancer cell density 

Cancer cell density, Tcel, was normalized by division with a reference initial value of 

10
7
cells/cm3 [111]. Thus, the initial value was set to 1 for the tumor region and to 0 for the 

host tissue. Tcel is given by the diffusion–reaction equation, 

∂Tcel

∂t
 + ∇∙(-DT(x)∇Tcel) = R (14) 

Rtumor = rg=
k1 cox

k2 + cox
Tcel (15) 

Rhost = ρcellTcel (16) 

where DT(x) is the inhomogeneous and anisotropic diffusion tensor acquired from the DTI 

MRI [44,64,112]. In the tumor region, cancer cell proliferation is associated with oxygen 

supply. The cancer cells that escape the tumor domain due to diffusion were assumed to have 

a constant proliferation rate, ρcell. 

Interstitial pressure-fluid velocity 

Normal and tumor tissues have properties similar to those of a porous medium. According 

to Darcy’s law, the interstitial fluid velocity is given by 

vf = -kth ∇pi (17) 

where kth is the hydraulic conductivity of the interstitial space [113]. The mass balance gives 

[114,115], 

∇∙(vf) = L𝑝Sv (pv-pi)-Lpl Svl (pi-pvl) (18) 
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The first term of the right-hand side of Equation (18) describes the fluid flux entering from 

the blood vessels and the second term the flux exiting through the lymphatic system. Lp is 

the blood vessels’ hydraulic conductivity, and p
v
 is the vascular pressure. Lpl, Svl and pvl are 

the corresponding parameters for the lymphatic vessels [116]. 

Oxygen transport 

The rate of change of oxygen concentration in the tissue was modeled with a convection 

diffusion equation that includes a source and a sink term [117,118]. The source term is due 

to oxygen supply from the blood vessels and the sink term describes oxygen consumption 

by cancer cells: 

∂cox

∂t
 + ∇∙(coxvf) = Dox ∇2cox-

Aox cox

cox + kox
Tcel + Perox Sv (ciox-cox) (19) 

where Sv is the vascular density, Dox the oxygen diffusion coefficient, Aox and kox are oxygen 

uptake parameters, ciox is the oxygen concentration in the vessels, vf is the fluid velocity and 

Perox is the vascular permeability of oxygen defined as the oxygen diffusion coefficient 

divided by the length of the vessel wall. 

Vascular density 

Cancer cell infiltration was studied in our previews work [44]. Thus, in this study, we 

emphasize the anisotropic tumor growth governed by the effect of elastography data and 

how that affects stresses and the vasculature. The vascular density was considered as the 

vascular surface area, S, per unit volume, 

S = πdLvwN (20) 

where d and Lvw are the diameter and length of the vessel and N is the number of vessels. 

By the assumption that the solid stresses do not affect the length or the number of vessels 

but only the diameter due to compression [82], and by dividing the vascular density with a 

reference vascular density 
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Sv

 SV0
 = 

πdLvwN

πdoLvwN
=

d

do
 (21) 

The functional vascular density can be expressed as [82], 

Sv = (d/do) SV0 (22) 

where SV0 is the vascular density of the host tissue and d/do is the degree of vessel 

compression assumed to be affected only by the solid stress levels, as described in [82]. The 

compression is assumed to be affected by the average bulk stress. The average bulk stress is 

expressed as the trace of the solid Cauchy stress. Initially, the vascular density was assumed 

to have the value of  SV0 in both the tumor and host tissue. In the tumor region, due to the 

development of stresses, the degree of vessel compression d/do changes as the tumor grows 

and, thus Sv decreases in a stress-dependent manner. 

Drug transport 

Drug transport in the tumor interstitial space 

The therapeutic agent can exist in three states: it can travel freely through the interstitial 

space (cf) of the tumor, bind to cancer cells (cb) and get internalized by the cells (cint). The 

equations describing the three states are [119]. 

∂cf

∂t
 + ∇⋅(cfv

f) = Df∇
2cf + Qsta-

koncecf

Φ
 + koffcb (23) 

dcb

dt
 = 

koncecf

Φ
-koffcb-kintcb (24) 

dcint

dt
 = kintcb. (25) 

The free drug that travels in the tumor interstitial space, cf, can be transferred due to 

convection and diffusion, where Df is the diffusion coefficient of the drug in the interstitial 

space and vf is the fluid velocity. Moreover, the free drug is transferred across the tumor 

vessel wall (Qsta). The remaining terms describe the binding, unbinding and internalization 

of the drug; ce is the concentration of cell surface receptors and kon, koff and kint are the CONSTANTIN
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binding, unbinding and internalization rate constants, respectively; Φ is the volume fraction 

of cells accessible to the drug. 

Drug transport across the tumor vessel wall: Starling’s approximation 

Starling’s approximation was employed for the transport of drugs across the vessel walls 

Qsta = PerSV(Civ-cf) + LpSV(PV-pi)(1-σf)Civ (26) 

where Per is the vascular permeability of the drug, σf the reflection coefficient and Civ is the 

vascular concentration of the drug expressed as a bolus injection: 

Civ = exp(–(t–t0)/kd) (27) 

where t0 is the time of drug injection and kd the blood circulation decay. The parameters Lp, 

Per and σf are expressed as a function of the vessel wall pores and the size of the drug 

[82,120]: 

Lp = 
γr0

2

8ηLvw
 (28) 

Per = 
γHD0

Lvw
 (29) 

σf = 1–W (30) 

where γ is the fraction of the vessel wall surface area occupied by pores, r0 the pore radius, 

η the viscosity of blood plasma and Lvw the thickness of the vessel wall. H and W describe 

the steric and hydrodynamic interactions of the drug with the pores of the vessel wall that 

hinder diffusive and convective transport, respectively, and D0 is the diffusion coefficient of 

a particle in free solution given by the Stokes–Einstein equation. By ignoring electrostatic 

interactions, H and W become [120], 

H = 
6πF

Kt

 (31) 
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W = 
F(2-F)Ks

2Kt

 (32) 

where F is the partition coefficient expressed as, 

F = (1-λ)
2
 (33) 

where λ is the ratio of the drug size to the vessel wall pore size and Kt and Ks are expressed 

as [120] 

(
Kt

Ks
)  = 

9

4
π2√2(1-λ)-5/2 [1 + ∑ (

an

bn
) (1-λ)n

2

n = 1

]  + ∑ (
an + 3

bn + 3
) λn

4

n = 0

 (34) 

Solution of model equations 

At all internal boundaries/interfaces of the computational domains, COMSOL automatically 

assigned continuity. For the calculation of the displacement fields and stresses, the external 

surfaces of the brain were considered to have a fixed boundary (u = 0). For the transport 

equations, a no flux boundary condition was assumed at the external surface of the brain. 

The values of the model parameters are summarized in Table 10. 

Results 

Elastography data affect mechanical stress distribution and induce 

anisotropic tumor growth 

We first set out to examine how the incorporation of elastography data by the model affects 

the magnitude and distribution of intratumoral mechanical stresses and the growth pattern of 

the tumor. Figure 6 illustrates the comparison of a tumor with a constant averaged shear 

modulus and a tumor based on the elastography data for isotropic growth, as well as the 

effect of anisotropic growth. 
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Figure 6: Mechanical stress, vascular density and drug concentration taken up by cancer cells for 

elastography data of patient 1. A cut plane at the center of the tumor is displayed to visualize the interior 

of the tumor. Results are presented at day 43 of the simulation. Comparison among isotropic and 

anisotropic tumor growth by varying the degree of anisotropy (A) is shown. For the constant elasticity 

case, the average value of the shear modulus was used in the tumor region and the average value of the 

normal brain for the rest of the brain. A drug of 2 nm in diameter was used to simulate small therapeutic 

molecules, whereas the tumor vessel wall pore size was set to 200 nm. The bulk mechanical stress is 

displayed (i.e., the trace of the stress tensor), and the negative sign denotes compression. 

 

The incorporation of elastography data into the model results in a non-uniform distribution 

of mechanical stresses, which, in turn, affects the functional vascular density (due to vessel 

compression, Equation (22) and, thus, the distribution of the drug taken up by cancer cells. 

The non-uniform spatial distribution of the vasculature can be observed in Table 1 when 

comparing the standard deviation of the vasculature of the constant modulus case to that of 

the cases where MRE data were used. The constant case has a 2.6–2.7 times smaller standard 

deviation and, thus, a narrower variation in the vascular density values and a more uniform 

distribution. The standard deviation of the drug’s spatial distribution in the constant modulus CONSTANTIN
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case is higher compared to the MRE cases due to the lack of vessel compression at the 

periphery, where the highest drug transport is observed. 

 

Table 1: Mean and standard deviation values of the spatial distribution of the vascular density and drug 

concentration in the tumor for the 4 cases considered in Figure 6. 

 Constant-

Isotropic (A 

= 0) 

MRE-

Isotropic (A 

= 0) 

MRE-

Anisotropic 

(A = 25) 

MRE-

Anisotropic 

(A = 50) 

Vascular 

Density (1/cm) 

Mean 50.263 47.560 46.933 45.524 

Standard 

Deviation 

7.014 18.942 18.267 19.261 

Drug 

Concentration 

Mean 18.954 17.726 18.471 18.282 

Standard 

Deviation 

6.292 5.970 4.436 4.723 

 

Incorporation of anisotropic growth (i.e., A > 0) allows for the development of more realistic, 

non-spherical tumor shapes and growth towards the region of lower stresses. Interestingly, 

an increase in the anisotropic parameter, A, does not have a large effect on the shape of the 

tumor. The overlap of the tumor shapes is displayed in Figure 7. By evaluating the similarity 

with the Sorensen–Dice coefficient of the two anisotropic cases, we get a value of 0.9748. 

Therefore, it seems that the effect of elastography data on the model predictions is dominant 

compared to the effect of the degree of anisotropy. 
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Figure 7: Overlap of the tumor shapes displayed in Figure 6 for the isotropic (A = 0) case and anisotropic 

(A = 25 and A = 50) cases. 

 

Subsequently, we repeated the simulations using the MRE data of the other four patients 

(Figure 8), with each inducing a different stress distribution in the tumor, which, in turn, 

caused a different anisotropic tumor growth and, thus, different non-spherical tumor shapes. 

 

 

Figure 8: Distribution of intratumor mechanical stress at day 43 of the simulation for anisotropic tumor 

growth (A = 25). For the tumor region, the corresponding patient’s elastography data were used, and 

elastography data for a healthy subject were used for the rest of the brain. The bulk stress (trace of the 

stress tensor) is presented, and the negative sign denotes tissue compression. 
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Elastography data reveal distinct functional vascular density distribution 

among patients 

Vessel compression owing to mechanical stresses causes a reduction in the vessel diameter 

that limits the area of the lumen available for blood flow. This can have a detrimental effect 

on tumor perfusion and the functionality of the vessels as the higher the magnitude of stresses 

the more compressed the vessels become. Figure 9 shows the variation in the magnitude and 

distribution of the vascular density for the five different patient elastography datasets as a 

result of the differences in the intratumoral distribution of mechanical stresses (Figure 8). 

The mean and standard deviation values of the vascular density inside the tumor for the five 

patients can be found in Table 2. 

 

 

Figure 9: Vascular density at day 43 of the simulation for anisotropic tumor growth (A = 25) when 

incorporating the elastography data of the five patients. 
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Table 2: Mean values and standard deviation vascular density and drug concentration inside the tumor 

domain of the 5 patients at day 43 of the simulation. 

  Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

Vascular 

Density (1/cm) 

Mean 46.933 40.110 29.515 32.882 38.723 

Standard 

Deviation 

18.267 16.336 11.619 12.976 18.025 

Drug 

Concentration 

Mean 18.471 16.159 13.352 14.291 16.265 

Standard 

Deviation 

4.436 4.080 4.361 3.229 4.932 

 

Elastography data affect intratumoral drug distribution 

Abnormal development of vessels during tumor-induced angiogenesis results in vessel 

hyper-permeability and openings in the tumor vessels wall that can be hundreds of 

nanometers large [121]. For larger vessel wall pores, the tumor interstitial fluid pressure is 

uniformly elevated and equals the vascular pressure owing to fluid communication between 

the vascular and extravascular space of the tumor (Figure 10) [18]. As a result, there is no 

pressure gradient across the tumor vessel wall nor inside the tumor. Furthermore, there is a 

steep pressure gradient at the periphery of the tumor as the fluid pressure drops from high 

values in the tumor interior to normal levels at the interface with the host tissue. For smaller 

pores in the vessel wall, the distribution of the interstitial fluid pressure is smoother and does 

not reach the value of the vascular pressure. These observations are well documented in the 

literature and are typical for the pathophysiology of solid tumors [9,10]. Our data suggest 

that the incorporation of MRE data does not change the magnitude and elevation of the 

interstitial fluid pressure. 
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Figure 10: Interstitial fluid pressure for various vessel wall pore sizes. A comparison among the 

isotropic-constant elastic properties case and the anisotropic-elastography case (for patient 1) is shown. 

 

For larger pores, the lack of pressure gradients eliminates drug transport through convection 

inside the tumor, and, thus, diffusion becomes the dominant transport mechanism 

(Equation(26)). Thus, the drug accumulates at the tumor periphery, where both convection 

and diffusion are prominent, and is washed out from the tumor to the host tissue (Figure 11). 
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Figure 11: Drug concentration taken up by cancer cells for various wall pore sizes of the tumor vessels. 

A comparison between the isotropic-constant elastic properties case and the anisotropic-elastography 

case (patient 1) is shown. All results are displayed at day 43 of the simulation following a drug injection 

at day 41. The size of the drug is 2 nm. 

 

In Table 3, we observe a decrease in the mean values and the standard deviation as we 

decrease the vessel wall pore size inside the tumor. That means that the establishment of a 

smooth pressure gradient for smaller vessel wall pore sizes resulted in a more uniform 

distribution of the drug inside the tumor. 
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Table 3: Mean and standard deviation values of the spatial distribution of drug concentration in the 

tumor for the 6 cases considered in Figure 11. 

 Vessel Wall 

Pore Size in 

Tumor (nm) 

100 200 300 

Constant 

Elasticity Drug 

Concentration 

Mean 10.185 18.954 24.223 

Standard 

Deviation 

0.919 6.292 14.162 

MRE Drug 

Concentration 

Mean 9.361 18.282 23.736 

Standard 

Deviation 

2.656 4.723 8.886 

 

Importantly, incorporation of MRE data can affect model predictions of drug distribution 

independently of the size of the vessel walls (Figure 11). This is further observed by the 

mean and standard deviation of the spatial distribution of the drug in the constant versus the 

MRE cases (Table 3). The use of MRE data in the model leads to predictions of 

heterogeneous mechanical stress and vascular density distribution. Regions of lower 

functional vascular density exhibit reduced drug delivery, which results in a heterogenic 

distribution of the drug. 

Next, we repeated the simulations for the delivery of drugs of different sizes: 2 nm, 70 nm 

and 150 nm, accounting for small molecules and for nanoparticles (Figure 12). 
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Figure 12: Drug concentration taken up by cancer cells for various drug sizes. A comparison among the 

isotropic-constant elastic properties case and the anisotropic-elastography case (patient 1) is shown. All 

results are displayed at day 43 of the simulation following a drug injection at day 41. The vessel wall 

pore size was set to 200 nm. 

 

For the constant elastic properties scenario, the drug distribution is symmetric in the radial 

direction. This is not the case when the MRE data are included, in which regions of lower 

functional vascular density exhibit reduced drug delivery. The reduced drug delivery in the 

MRE cases can be further observed by the decrease in the standard deviation when 

comparing them with the corresponding constant elasticity values (Table 4). Moreover, 

smaller drugs can be transferred faster through the pores of the vessels and delivered in larger 

amounts to cancer cells. Alternative versions of Figure 11 and Figure 12 using the same 

colorbar for all the drug sizes can be found in Figure 13 and Figure 14. 
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Table 4: Mean and standard deviation values of the drug concentration inside the tumor domain of the 

6 cases of Figure 12. 

 Drug Size (nm) 2 70 150 

Constant 

Elasticity Drug 

Concentration 

Mean 18.954 9.221 1.201 

Standard 

Deviation 

6.292 4.413 0.575 

MRE Drug 

Concentration 

Mean 18.282 8.957 1.185 

Standard 

Deviation 

4.723 3.114 0.413 

 

 

Figure 13: Second version of Figure 11 where the same colorbar was used for all figures. 

 

CONSTANTIN
OS H

ARKOS 



31 

 

 

 

Figure 14: Second version of Figure 12 where the same colorbar was used for all figures. 

 

Finally, we employed the elastography data of all the patients to investigate the different 

patterns of drug delivery within patients (Figure 15). 
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Figure 15: Drug concentration taken up by cancer cells at day 43 of the simulation for anisotropic tumor 

growth (A = 25). All results are displayed at day 43 of the simulations following a drug administration 

at day 41. The size of the drug is 2 nm, and the vessel wall pore size was set to 200 nm. 

 

The results show that the incorporation of patient-specific elastography data can affect the 

delivery and intratumoral distribution of the drugs. Regions of lower functional vascular 

density vary among patients, and this results in a distinct drug distribution for each patient. 

To compare these five cases, we evaluated the fraction of the tumor that receives a drug 

concentration greater than a specific value (Table 5). This fraction varies by more than 10-

fold among the patients. The analysis was also repeated for the cases displayed in Figure 11 

and Figure 12 and can be found in Table 6 and Table 7, respectively. These results further 

support that tumor elastic properties can affect drug delivery. 
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Table 5: Fraction of the tumorthat receives a drug concentration greater than 20 (dimensionless units) 

for the 5 patients at day 43 of the simulation. 

 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

Volume Fraction  

(Drug Concentration 

> 20) 

0.375 0.173 0.027 0.038 0.206 

 

Table 6: Fraction of the tumor that receives drug concentration greater than 20 for the 6 cases of Figure 

11. 

 Vessel Wall 

Pore Size in 

Tumor (nm) 

100 200 300 

Volume 

Fraction (Drug 

Concentration 

> 20) 

Constant 

Elasticity 

0 0.464 0.560 

MRE 0 0.373 0.666 

 

Table 7: Fraction of the tumor that receives drug concentration greater than 20 for the 6 cases of Figure 

12. 

 Drug Size (nm) 2 70 150 

Volume 

Fraction (Drug 

Concentration 

> 20) 

Constant 

Elasticity 

0.464 0.001 0 

MRE  0.373 0.002 0 
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Discussion 

The important role of mechanical forces in tumor progression and therapy is well established 

[5–8,18,74,75,82]. Yet, the incorporation of tissue mechanics in mathematical models of 

brain tumors is not thoroughly studied. Here, we developed a methodology for more accurate 

calculation of brain tumor mechanics and highlighted its importance for vascular changes 

and the delivery of therapeutic agents. We included MRE data for a more realistic 

incorporation of the mechanical properties of both the tumor and host tissue, which led to a 

more accurate calculation of the intratumoral distribution of mechanical stresses. In addition, 

to further improve the accuracy of our calculations, we applied a methodology for 

anisotropic tumor growth, allowing the tumor to grow in non-spherical shapes. We 

considered that mechanical stresses induce vessel compression and modeled the delivery of 

drugs of various sizes. 

The incorporation of elastography data resulted in a non-uniform distribution of mechanical 

stresses. The incorporation of anisotropic growth allowed the development of a more 

realistic non-spherical tumor shape and growth towards the regions of lower stresses. The 

non-uniform mechanical stresses induced a non-uniform distribution of vascular density due 

to vessel compression. This resulted in a non-symmetric distribution of drugs where regions 

of lower functional vascular density exhibited reduced drug delivery. Stress distribution, 

vascular density distribution and drug delivery are unique for each patient’s MRE data, and, 

thus, the inclusion of MRE data allows patient-specific predictions. 

Smaller pores of the vessel wall induced a smoother distribution of interstitial fluid pressure. 

The incorporation of MRE data did not change the magnitude and elevation of interstitial 

fluid pressure. Smoother pressure gradients caused a more uniform distribution of drug 

inside the tumor. In addition, our results suggest that smaller drugs can be transferred faster 

through the pores of the vessels and delivered in larger amounts to the cells compared to 

larger drugs. Overall, our findings can be used to improve treatment response assessment 

and evaluation of pharmacological strategies as MRE is a noninvasive imaging technique 

that can be added to patients’ MR examination. MRE is an emerging imaging technique that 

has been used in several studies of patients with brain tumors [122]. Currently, there is no 

commercial system available for brain MRE, limiting its potential as a routine part of brain 

cancer imaging. The patients in our study were all imaged prior to any treatment, but using CONSTANTIN
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MRE on patients after surgical tumor resection is clinically feasible and currently ongoing 

at our institution as part of a clinical trial and with minimal implications (NCT03951142). 

Several simplifying assumptions were made in this study. For the host tissue, elastography 

data of a healthy subject were used because the clinical patient scans did not cover the entire 

brain, only 4.65 cm, covering the tumor. Because the patients differ from healthy subjects in 

terms of MRE values [99], more accurate results would have been obtained if the specific 

patient’s elastography of the host tissue was used. In addition, patients’ MRE values were 

obtained at one time point during tumor development and, thus, in the model, the elastic 

properties were assumed constant during tumor progression. That is not usually the case. 

Due to changes in the cellular and extracellular matrix components, the compression of the 

tumor and the host tissue changes during tumor progression. These effects can result in 

changes in the stiffness of the tumor [8,74,123,124]. The incorporation of temporal 

variations in the elastic properties would be expected to change our results quantitatively. 

However, the main conclusions of our study concerning the role of mechanical forces in 

tumor vasculature and drug delivery are not expected to be altered by this. Moreover, the 

timepoint of the injection of chemotherapy was also an assumption. The same timepoint of 

injection was used for all the cases to enable direct comparison among different simulations. 

Additionally, although a larger number of patients could have improved our model 

predictions, with the use of 5 patents we were able to identify interpatient variations in model 

predictions due to the different material properties from each patient. Finally, the isotopic 

neo-Hookean constitutive equation might not be sufficient to fully describe the mechanical 

response of brain tumors because of the heterogenous structure of the GBM. However, 

studies have shown that the state of stress of the tumor is largely determined by the properties 

of the host and tumor tissue and not from the selection of the constitutive equation being 

used [6]. 

In conclusion, the presented methodology and results led to the conclusion that incorporating 

the tissue elastic properties assessed by MRE and anisotropic growth into mathematical 

models can result in more accurate predictions of the distribution of mechanical stresses in 

tumors. This produces an improved mathematical description of subsequent events that are 

closely related to the development of mechanical stresses, including the heterogeneity in the CONSTANTIN
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functional vasculature of the tumor and intrapatient variations in tumor perfusion and 

delivery of drugs.  
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Chapter 3: Mathematical modeling of intratumoral 

immunotherapy yields strategies to improve the treatment 

outcomes 

This study has been published in the journal PLOS Computational Biology: Harkos C, 

Stylianopoulos T, Jain RK. Mathematical modeling of intratumoral immunotherapy yields 

strategies to improve the treatment outcomes. PLOS Computational Biology. 2023;19: 

e1011740. https://doi.org/10.1371/journal.pcbi.1011740 

Summary 

Intratumoral injection of immunotherapy aims to maximize its activity within the tumor. 

However, cytokines are cleared via tumor vessels and escape from the tumor periphery into 

the host-tissue, reducing efficacy and causing toxicity. Thus, understanding the determinants 

of the tumor and immune response to intratumoral immunotherapy should lead to better 

treatment outcomes. In this chapter, we developed a mechanistic mathematical model to 

determine the efficacy of intratumorally-injected conjugated-cytokines, accounting for 

properties of the tumor microenvironment and the conjugated-cytokines. The model 

explicitly incorporates i) the tumor vascular density and permeability and the tumor 

hydraulic conductivity, ii) conjugated-cytokines size and binding affinity as well as their 

clearance via the blood vessels and the surrounding tissue, and iii) immune cells - cancer 

cells interactions. Model simulations show how the properties of the tumor and of the 

conjugated-cytokines determine treatment outcomes and how selection of proper parameters 

can optimize therapy. A high tumor tissue hydraulic permeability allows for the uniform 

distribution of the cytokines into the tumor, whereas uniform tumor perfusion is required for 

sufficient access and activation of immune cells. The permeability of the tumor vessels 

affects the blood clearance of the cytokines and optimal values depend on the size of the 

conjugates. A size >5 nm in radius was found to be optimal, whereas the binding of 

conjugates should be high enough to prevent clearance from the tumor into the surrounding 

tissue. In conclusion, development of strategies to improve vessel perfusion and tissue 

hydraulic conductivity by reprogramming the microenvironment along with optimal design 

of conjugated-cytokines can enhance intratumoral immunotherapy. CONSTANTIN
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Introduction 

ICIs have transformed the treatment of cancer. To date 8 different ICIs have been approved 

alone or in combination with other therapies for ~80 indications [19]. However, less than 

20% of patients currently benefit from these treatments [23]. Moreover, many patients 

develop immune-related adverse events, some of which can be fatal [24]. The abnormal and 

immunosuppressive TME not only hinders the delivery of ICIs, but also renders them 

ineffective once they accrue in tumors [125]. One approach to overcome these challenges is 

to normalize the tumor vasculature and microenvironment using anti-angiogenic agents 

[126]. Indeed 7 different combinations of ICIs and anti-angiogenic agents have been 

approved by the US FDA recently and multiple trials are currently testing this approach 

[127,128]. Another approach to improve the outcome of immunotherapies is the direct 

injection of immunostimulatory agents, tethered to a polymer or another substrate, into the 

tumor [129–131]. Agents being evaluated for this purpose include pro-inflammatory 

cytokines, such as, IL2 and IL12 [132–134]. 

The goal of intratumoral injection of pro-inflammatory cytokines is to maximize their 

activity within the tumor while minimizing systemic exposure. After the cytokines are 

administered intratumorally, they can be cleared via the tumor-associated vasculature and 

the lymphatic system as well as escape from the tumor margin into the surrounding host 

tissue, resulting in potentially toxic levels in the circulation and the host organ [135–137]. A 

promising approach to increase tumor exposure and reduce adverse effects to normal tissues, 

is controlled release of cytokines from a polymer-conjugate injected into a tumor. One 

example of this approach is to fuse cytokines to collagen binding proteins, so that they are 

bound to collagen fibers within the tumor and do not clear rapidly from the tumor margin or 

by the vasculature. This strategy has been successful in enhancing treatment efficacy in 

preclinical studies [21,22,138]. Apart from the binding properties of the cytokine agent, its 

local exposure depends also on properties of the TME [1,2,139–141]. Specifically, the 

uniformly elevated IFP within the tumors (resulting from vascular hyperpermeability and 

dysfunctional lymphatics) decreases to normal values at the tumor-host tissue margin, 

causing steep pressure gradients at the tumor periphery and resulting in fluid flux from the 

tumor into the surrounding tissue. This can wash out the injected cytokines and reduce their 

concentration in the tumor region [1,2,139–141]. In addition, the hyper-permeability of CONSTANTIN
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tumor vessels might lead to the intravasation of the conjugated-cytokines into the vessels 

and their clearance via the circulation, a process that depends not only on the pore size of 

the vessel walls but also on the size, charge, configuration, and binding characteristics of the 

conjugated-cytokines [142–144]. Despite their importance in the effectiveness of 

intratumoral injection of cytokines, the role of these tumor parameters (i.e., vessel 

permeability, hydraulic conductivity, vessel density) and properties of the conjugated-

cytokines (i.e., binding affinity, size) and their effects on the efficacy of intratumor injection 

of cytokines remain unexplored.  

We have previously developed mathematical models of fluid and solute transport in tumors 

to investigate the role of vascular permeability, diffusion coefficient and hydraulic 

conductivity, binding and metabolism, interstitial fluid pressure, solid stresses as well as 

lymphatics [1,11–13,42,45]. Other in silico studies have examined the interactions of 

immune cells with cancer [145,146]. In addition, a recent intratumoral injection model 

examined the optimal cytokine design that increases intratumoral activity [22]. Although this 

model incorporated the binding-affinity of the conjugated-cytokines to their target, their 

transport into the blood circulation accounting for the conjugated-cytokines size and affinity, 

as well as temporal changes in model variables, they did not account for pathophysiological 

features and the spatial heterogeneity of the TME and the surrounding host tissue. To this 

end, building on our previous work, here we developed a mathematical model for 

intratumoral injection of conjugated-cytokines that accounts for i) spatiotemporal variations 

in model parameters, ii) the vascular and lymphatic function, iii) the hydraulic conductivity 

of the tumor and host tissue, iv) the interstitial fluid pressure, v) convection and diffusion 

within the tumor, from the tumor interstitial space to the blood vessels and the surrounding 

tissue, accounting explicitly for the size of the conjugated-cytokines, their binding affinity 

and vascular permeability, and vi) immune cells and cancer cells interactions. Two 

conjugated-cytokines cases were modeled: i) cytokines fused with mouse serum albumin 

(MSA) conjugated to the collagen binding protein, lumican [21], and ii) cytokines bound to 

aluminium hydroxide (alum) via ligand exchange between hydroxyls on the surface of alum 

and phosphoserine residues tagged to the cytokine by an alum-binding peptide [20]. We first 

assessed the robustness of our model by comparing model predictions with tumor growth 

data from these two independent studies [20,21]. Subsequently, we used the model to 

investigate the effect of the conjugated-cytokines size and binding affinity in conjunction CONSTANTIN
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with properties of the TME, on the efficacy of intratumorally injected conjugated-cytokines 

in reducing tumor growth. We further analyzed spatiotemporal changes in the concentration 

of the conjugated-cytokines and immune cells for a better understanding of the underlying 

mechanisms. 

Materials and methods 

The modeling framework consists of two steps. We first model the short time period 

immediately after the injection of the conjugated-cytokines from the needle into the tumor. 

Then, after the removal of the injection needle, we model the transport of the conjugated-

cytokines into the tumor, its clearance through the blood vessels and tumor margin, as well 

as the growth of the tumor over a long time period. The first model simulates the injection 

of conjugated-cytokines inside a spherical tumor surrounded by host tissue (Figure 16 and 

Figure 17). The conjugated-cytokine concentration profiles developed after the injection 

from the needle are used as initial conditions for the second model. The second model 

simulates cancer cell proliferation, the immune response and tumor growth for melanoma 

and fibrosarcoma tumors (Figure 16 and Figure 18). The model also accounts for transport 

of fluid and cytokines within the tumor, between the tumor and the host tissue as well as 

across the tumor vessel walls (Figure 16a). The model was developed and solved in 

COMSOL Multiphysics (COMSOL, Inc., Burlington, MA, USA) using the finite element 

method. 
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Figure 16: Model methodology. (a) Shcematic of various transport mechanisms considered in the model. 

The conjugated-cytokines are injected in the tumor region and can be transported via convection and 

diffusion to the host tissue and across the tumor vessel walls. Hyperpermeability of the tumor blood 

vessels and the lack of functional lymphatic vessels elevates interstitial fluid pressuse, inducing pressure 

gradients at the tumor periphery that drive transport of the conjugated-cytokines from the tumor to the 

host tissue via convection. The injected conjugated-cytokines can bind and unbind to the target (e.g., 

collagen fibers) in both tumor and host tissue. Cytokines produced by the immune cells can disperse via 

convection and difusion as well. Also immune cells can migrate (i.e., diffuse) from the tumor tissue to the 

host tissue and the reverse depending on the concentration gradients. (b) Model components of the 

immune system: IN represents the innate immune cells that induce cytolysis and produce antigen, e.g., 

Natural Killer cells. Immature APCs are the immature antigen presenting cells that can become antigen 

presenting cells (APCs). CD4 and CD8 represent effector CD4+ and CD8+ T cells. Production and CONSTANTIN
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activation of immune cells are affected by cytokines. The immune cells also produce cytokines. Oxygen 

supply increases cancer cells’ proliferation and tumor growth and decreases the apoptosis rate of the 

immune cells. Created with BioRender.com 

 

 

 

Figure 17: Computational domain with axial symmetry. The domain includes the tumor region and the 

host tissue. The needle reaches the center of a spherical tumor. 
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Figure 18: Computational domain with spherical symmetry. The interval includes the tumor region and 

the host tissue. The 1D tumor interval forms a 3D spherical tumor. The tumor grows as a sphere and 

deforms the host tissue. 

 

Cytokine transport 

The conjugated-cytokines can be in a free state or bound to the target (bound state). Both 

convection and diffusion are considered for the transport of the free conjugated-cytokines 

within the tumor and the host region. The diffusion coefficient of the conjugated-cytokines 

are determined by experimental data based on the conjugate size [147]. Also, the conjugated-

cytokines that are not bound can intravasate into the vessels through diffusion and 

convection based on Starling’s approximation for mass transfer [11,45,148]. The transport 

properties of the conjugated-cytokines across the tumor vessel wall (i.e., vascular 

permeability and reflection coefficient) are determined explicitly by the relative ratio of the 

conjugate size to the size of the pores of the vessel wall, so that we can account for tumors 

with low, moderately, and highly permeable vessels as well as for conjugated-cytokines of 

varying size. For each conjugated-cytokine case, cytokines fused with mouse serum albumin 

conjugated to lumican and cytokines bound to aluminium hydroxide, the molecular weight 

were taken from the respective study [20,21] to determine their diffusion coefficient and CONSTANTIN
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transport properties across the tumor vessel walls. The rate of clearance from blood was also 

determined by the conjugate size based on previous work [149]. Furthermore, due to the 

different conjugate design and the different nature of target (collagen vs alum) for each 

conjugated-cytokine case, the respective binding affinity was used. In addition to cancer 

cells, the model includes innate and adaptive immune cells. These cells produce pro-

inflammatory cytokines in addition to the injected cytokine, so that the total population of 

pro-inflammatory cytokines includes the cytokines produced by the immune system, the 

injected conjugated-cytokines that are free to move and the injected conjugated-cytokines 

that are bound. The total pro-inflammatory cytokines can enhance the immune system’s 

response to kill cancer cells and reduce tumor growth. The types of immune cells and 

immune cell – cancer cell interactions considered in our model are shown in Figure 16b and 

described below. 

Immune response 

The simulation starts with a highly immunosuppressed TME by assuming initially no antigen 

presenting cells (APCs) or activated effector cells (e.g., effector CD4+ and CD8+ T cells), 

and predicts how the function of immune cells with positive effect on killing cancer cells 

impacts tumor growth. Due to the complex nature of the immune system and the immune 

cells - cancer cells interactions, we considered the immune cells in certain categories for 

simplicity. These include innate and adaptive immune cells. The innate cells are divided into 

two categories: cells that can induce cytolysis, such as Natural Killer (NK) cells, this 

category of cells can kill cancer cells and produce antigen, and the immature antigen 

presenting cells (IAPCs) that includes the dendritic cells and a sub-set of macrophages. 

When IAPCs interact with cancer cells or antigens they become APCs. The higher the 

number of APCs the more CD4+ and CD8+ T cells will reach the tumor and host tissue. In 

addition, and for simplicity, we did not include an explicit model of lymph nodes for the 

activation of T cells. Instead, we assumed that T cell activation takes place external to the 

tumor in lymph nodes where the T cells encounter APCs, but the activated T cells return to 

the same location in the tumor from which the APCs depart. Effector CD8+ T cells kill 

cancer cells and further increase the concentration of antigens in the region. Both CD4+ and 

CD8+ T cells produce pro-inflammatory cytokines to further increase the immune response 

(Figure 16b). CONSTANTIN
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Interstitial fluid flow 

Fluid flow within the tumor and host tissue is governed by Darcy’s law, taking into account 

the displacement of both the tumor and the surrounding normal tissue due to the growth of 

the tumor. Continuity of fluid velocity and fluid flux is applied at the tumor/host tissue 

interface [11]. The model also accounts for fluid flux across the tumor vessel walls based on 

Starling’s approximation [2,11,41,150]. The hydraulic conductivity of the tumor vessel wall 

is calculated based on the vessel walls pore size, following our previous research [41,45]. 

Oxygen transport 

The model considers oxygen transport from the vessels into the tumor and host tissue and 

transport within the tissue. Overall tumor growth depends on cancer cell number 

(concentration), which is determined by cancer cell proliferation (as a function of tissue 

oxygenation) and cancer cell killing by immune cells [151,152]. Details about the model 

variables as well as the baseline and initial values of the model parameters are given in  

Table 11 and Table 12. 

Modeling of intratumoral injection 

The model equations are solved using COMSOL Multiphysics (COMSOL, Inc. Burlington, 

MA, USA). At the tumor center, the initial cancer cell density was assumed to have its peak 

value and then it decreases alongside the straight line due to a step function. The domain 

above a threshold cancer cell density is assumed as the tumor region and below that, the host 

tissue. 

The parameters change from their abnormal-tumor value to their normal value as a function 

of the cancer cell density. The values change at the threshold cancer cell density using a step 

function. The step functions are used to certify continuity of the model variables. 

A 2D geometry with axial symmetry was modeled. The geometry includes the tumor, the 

host tissue and a 28 gauge needle reaching the tumor center. Conjugated-cytokines are 

injected from the needle outlet. Flux source was assumed for the needle outlet and no flux 

for the needle periphery. 
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Interstitial pressure-fluid velocity 

Normal and tumor tissues have properties similar to those of a porous medium. Brinkman’s 

equation describes the flow in porous medium in cases where the velocity gradients are non-

negligible and reads:  

ρ

ϵp

∂𝐯𝐟

∂t
= −𝛁pi + 𝛁 ⋅ [

μ

ϵp
(𝛁𝐯𝐟 + (𝛁𝐯𝐟)

τ
) −

2

3

μ

ϵp
( ∇⋅𝐯𝐟)𝐈] − (

1

kth
+

Qm

ϵp
2

) 𝐯𝐟 (35) 

Where μ is the dynamic viscosity, ρ is the density, pi is the interstitial pressure, vf is the 

fluid velocity and kth is the hydraulic conductivity of the interstitial space [113]. 

For incompressible fluid flow the conservation of mass reads: 

ρ𝛁 ⋅ 𝐯𝐟 = Qm (36) 

Qm = ρ (LpSv(pv − pi) − LplSvl(pi − pvl)) (37) 

Where the first term of Qm describes the fluid flux entering from the blood vessels and the 

second term the flux exiting through the lymphatic system. Lp is the blood vessels’ hydraulic 

conductivity, and pv is the vascular pressure. Lpl, Svl and pvl are the corresponding 

parameters for the lymphatic vessels [116]. 

Intratumorally injected conjugated-cytokines 

∂Icf

∂t
+ 𝛁 ⋅ (−DIcf

𝛁𝐈𝐜𝐟 + 𝐯𝐟Icf) = −
konceIcf

Φ
+ koffIcb + QIc (38) 

dIcb

∂t
=

konceIcf

Φ
− koffIcb (39) 

The free conjugated-cytokines that travel in the tumor interstitial space, Icf, can be 

transferred due to convection and diffusion, where DIcf
 is the diffusion coefficient of the 

drug in the interstitial space and vf is the fluid velocity. Moreover, the free conjugated-

cytokines are transferred across the tumor blood vessel and lymphatic vessel wall (QIc). The 

remaining terms describe the binding and unbinding of the conjugated-cytokines: ce is the 
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concentration of collagen, kon, koff are the binding and unbinding rate constants, 

respectively and Φ is the volume fraction [153]. 

Conjugated-cytokines in the blood compartment 

The injected conjugated-cytokines concentration in the blood is described as, 

dIcblood

dt
=

∭ −
V

QIcdVdom

Vblood
− δclearIcblood (40) 

Where ∭ −
V

QIcdVdom is the total rate of mass of the agonist that can be transported from 

the tumor and host tissue to the blood. QIc is the mass rate at each point of the tumor and 

host tissue domain and is integrated for the calculation of the total mass rate leaving from 

the tumor and host tissue. Vblood is the volume of blood and δclear the rate of clearance from 

blood. 

Transport from tumor and host tissue to blood 

Transport across the vessel and lymphatic vessel wall based on Starling’s approximation: 

QIc = PerSv(Icblood − Icf) + LpSv(pv − pi)(1 − σf)Icblood − δIcf
Icf (41) 

where Per is the vascular permeability of the conjugated-cytokines, σf the reflection 

coefficient and δIcf
 the rate constant that describes the rate in which the conjugated-cytokines 

exit through the lymphatic vessels.The parameters Lp, Per and σf are expressed as a function 

of the vessel wall pores and the size of the conjugated-cytokines [82,120] : 

Lp =
γr0

2

8μLvw
 (42) 

Per =
γHD0

Lvw
 (43) 

σf = 1 − W (44) 

where γ is the fraction of the vessel wall surface area occupied by pores, r0 the pore radius, 

μ the viscosity and Lvw the thickness of the vessel wall. H and W describe the steric and 

hydrodynamic interactions of the conjugated-cytokines with the pores of the vessel wall that CONSTANTIN
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hinder diffusive and convective transport respectively and D0 is the diffusion coefficient of 

a particle in free solution given by the Stokes-Einstein equation. By ignoring electrostatic 

interactions H and W become [120]: 

H =
6πF

Kt
 (45) 

W =
F(2 − F)Ks

2Kt
 (46) 

where F is the partition coefficient expressed as: 

F = (1 − λ)2 (47) 

where λ is the ratio of the conjugated-cytokines size to the vessel wall pore size and Kt and 

Ks are expressed as [120]: 

(
Kt

Ks
)  = 

9

4
π2√2(1-λ)-5/2 [1 + ∑ (

an

bn
) (1-λ)n

2

n = 1

]  + ∑ (
an + 3

bn + 3
) λ

n.

4

n = 0

 (48) 

Molecular radius of agonist 

The radius of the injected agonist is expressed as [154]: 

log10R = −0.31 + 0.43log10Mw (49) 

where Mw is the molecular weight of agonist. 

Needle outlet boundary conditions 

−𝐧 ⋅ (−DIcf
𝛁𝐈𝐜𝐟 + 𝐯𝐟Icf) = IcfIn

⋅ Vin (50) 

𝐯𝐟 = −Vin𝐧 (51) 

Where Vin is the inflow velocity, IcfIn
 is the initial concentration of injected cytokines. 
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Needle periphery boundary conditions 

−𝐧 ⋅ (−DIcf
𝛁𝐈𝐜𝐟 + 𝐯𝐟Icf) = 0 (52) 

𝐯𝐟 = 0 (53) 

External surface boundary conditions 

Icf = 0 (54) 

pi = 0 (55) 

Modeling of immune response and tumor growth 

The model equations are solved using COMSOL Multiphysics (COMSOL, Inc. Burlington, 

MA, USA). At the tumor center, the initial cancer cell density was assumed to have its peak 

value and then it decreases alongside the straight line due to a step function. The domain 

above a threshold cancer cell density is assumed as the tumor region and below that, the host 

tissue. 

The parameters change from their abnormal-tumor value to their normal value as a function 

of the cancer cell density. The values change at the threshold cancer cell density using a step 

function. The step functions are used to certify continuity of the model variables. 

Equations were solved at a 1D geometry with spherical symmetry. At the left side of the 1D 

interval is the tumor center. As we move away from the tumor center we move towards the 

host tissue. Furthermore, previously used Equations (40) - (49) are also applied on the 

immune response and tumor growth model. 

Kinematics of tumor growth 

The growth stretch ratio is calculated as [44]: 

3
1

λg

dλg

dt
=

RT

T0

 (56) 

Where λg is the growth stretch ratio RT the rate of change of the concentration of cancer 

cells and T0 the initial concentration of cancer cells. CONSTANTIN
OS H

ARKOS 



50 

 

 

The tumor growth is implemented using deformation of the spatial frame mesh relative to 

the material frame mesh with a prescribed mesh displacement of 

𝐝𝐱 = 𝐱 − 𝐗 = λg𝐗 − 𝐗 (57) 

Where x the spatial frame coordinates and X the material frame coordinates. 

The solid velocity is calculated as: 

𝐯𝐬 =
d𝐱

dt
 

Where t is the time. 

Interstitial pressure-fluid velocity 

Normal and tumor tissues have properties similar to those of a porous medium. According 

to Darcy’s law and the mesh movement due to solid velocity, the interstitial fluid velocity is 

given by: 

𝐯𝐟 = −kth𝛁𝐩𝐢 + 𝐯𝐬 (58) 

where kth is the hydraulic conductivity of the interstitial space [116]. The mass balance gives 

[115,155]: 

𝛁 ⋅ vf = LpSv(pv − pi) − LplSvl(pi − pvl) (59) 

The first term of the right-hand side of the equation describes the fluid flux entering from 

the blood vessels and the second term the flux exiting through the lymphatic system. Lp is 

the blood vessels’ hydraulic conductivity, and pv is the vascular pressure. Lpl, Svl and pvl 

are the corresponding parameters for the lymphatic vessels [116]. 

Intratumorally injected conjugated-cytokines 

∂Icf

∂t
+ 𝛁 ⋅ (−DIcf

𝛁𝐈𝐜𝐟 + 𝐯𝐟Icf) = −
konceIcf

Φ
+ koffIcb + QIc (60) 

∂Icb

∂t
+ 𝛁 ⋅ (𝐯𝐬Icb) =

konceIcf

Φ
− koffIcb (61) 
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The free conjugated-cytokines that travel in the tumor interstitial space, Icf, can be 

transferred due to convection and diffusion, where DIcf
 is the diffusion coefficient of the 

conjugated-cytokines in the interstitial space and 𝐯𝐟 is the fluid velocity. Moreover, the free 

conjugated-cytokines are transferred across the tumor blood vessel and lymphatic vessel wall 

(QIc). The remaining terms describe the binding and unbinding of the conjugated-cytokines: 

ce is the concentration of collagen, kon, koff are the binding and unbinding rate constants, 

respectively and Φ is the volume fraction [153]. 

Pro-inflammatory cytokines from immune cells 

The pro inflammatory cytokines produced by the immune cells can be transported by 

convection and diffusion: 

∂cc

∂t
+ 𝛁 ⋅ (−Dcc

𝛁𝐜𝐜 + 𝐯𝐟cc) = kInIn + kTETE + kThEThE + kAPCAPC − δcc
cc (62) 

Where the right-hand side terms describe the production of pro inflammatory cytokines by 

innate immune cells, effector CD8+ and CD4+ Tcells and antigen presenting cells. The last 

term describes the degradation of cytokines. 

Total pro-inflammatory cytokines 

The total pro-inflammatory cytokines are a combination of the injected cytokines, the 

injected cytokines bound to collagen and the pro-inflammatory cytokines produced by the 

immune cells. 

c = MwIcf + MwIcb + cc (63) 

The cytokines related to the injected agonist are solved in 
mol

m3  and the cytokines by the 

immune cells in 
kg

m3 thus the molecular wight Mw converts the units to enable the summation. 

Trafficking of immune cells 

Normalization of the tumor micro-environment increases trafficking of immune cells when 

combined with immunotherapy. When the vascular density doubles from 50cm−1 to 

100cm−1 the source of immune cells increases by 1.367. By assuming that the function is CONSTANTIN
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1 for the host tissue value of (70cm−1). The trafficking functions reads pro-inflammatory 

cytokines produced by the immune cells [156]. 

Tf = 0.0273Sv − 0.9138 (64) 

where Sv represents the functional vascular density measured in cm−1. 

Immature antigen presenting cells 

The immature antigen presenting cells are expressed as: 

∂IAPC

∂t
+ 𝛁 ⋅ (−DIAPC𝛁𝐈𝐀𝐏𝐂 + 𝐯𝐬IAPC) = λIAPCTf (

c

KcAPC + c
) − δIAPCIAPC

−χAPC (
c

KcAPC + c
) (nInIAPCT + nAg

IAPCAg)
 (65) 

Where the first right-hand term describes the source of immature antigen presenting cells, 

the second term the degradation and the last term the reduction due to activation. The 

activation to antigen presenting cells depends on the pro-inflammatory cytokines and the 

interaction of immature antigen presenting cells with the tumor cells and antigen. 

Antigen presenting cells 

The antigen presenting cells are expressed as: 

∂APC

∂t
+ 𝛁 ⋅ (−DAPC𝛁𝐀𝐏𝐂 + vsAPC) =

χAPC (
c

KcAPC + c
) (nInIAPCT + nAg

IAPCAg) − δAPCAPC
 (66) 

Where the first right-hand term describes the increase of antigen presenting cells due to the 

activation from immature antigen presenting cells and the last term is a degradation term. 

Effector CD4+ T cells 

The effector CD4+ T cells are expressed as: 

∂ThE

∂t
+ 𝛁 ⋅ (−DThE𝛁𝐓𝐡𝐄 + vsThE) = mAPCTfAPC − δThEThE (67) 
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Where the first term describes the source of effector CD4+ T cells which is assumed to be 

analog to the concentration of antigen presenting cells responsible for the activation of CD4+ 

T cells in the lymph nodes. The last term is the degradation of CD4+ T cells. 

Effector CD8+ T cells 

The effector CD8+ T cells are expressed as: 

∂TE

∂t
+ 𝛁 ⋅ (−DTE𝛁𝐓𝐄 + 𝐯𝐬TE) = mAPCTfAPC − δTETE (68) 

Where the first term describes the source of effector CD8+ T cells which is assumed to be 

analog to the concentration of antigen presenting cells responsible for the activation of CD8+ 

T cells in the lymph nodes. The last term is the degradation of CD8+ T cells. 

Innate cells 

The innate immune cells that induce cytolysis are expressed as: 

∂In

∂t
+ 𝛁 ⋅ (−DIn𝛁𝐈𝐧 + 𝐯𝐬In) = λInTf (

c

KcAPC + c
) − δInIn (69) 

Where the first term describes production of innate cells which depends on the concentration 

of pro-inflammatory cytokines. 

Cancer cells 

The concentration of cancer cells is expressed as: 

∂T

∂t
+ 𝛁 ⋅ (−DT𝛁𝐓 + 𝐯𝐬T) = RT =

k1 (
cox

K2 + cox
) T − (nInIn + nInIAPC + nadTE)T

 (70) 

Where the first right-hand side term describes the proliferation of cancer cells due to oxygen 

and the last term describes the killing of cancer cells by innate cells, immature antigen 

presenting cells and effector CD8+ T cells. 

Antigen 

The concentration of cancer cells is expressed as: CONSTANTIN
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∂Ag

∂t
+ 𝛁 ⋅ (−DAg

𝛁𝐀𝐠 + 𝐯𝐟Ag) = (nInIn + nadTE)T − nAg
IAPCAg (71) 

Where the first right-hand side term describes the production of antigen induced by the 

cytolytic effect of innate cells and effector CD8+ T cells. The last term describes the antigen 

uptake by the immature antigen presenting cells. 

Oxygen transport 

The rate of change of oxygen concentration in the tissue was modeled with a convection 

diffusion equation that includes a source and a sink term [117,118], . The source term is due 

to oxygen supply from the blood vessels and the sink term describes oxygen consumption 

by cancer cells: 

∂cox

∂t
+ 𝛁 ⋅ (−Dcox

𝛁𝐜𝐨𝐱 + 𝐯𝐟cox) = −
Aoxcox

cox + kox

T

T0

+ PeroxSv(ciox − cox) (72) 

where Sv is the vascular density, Dox the oxygen diffusion coefficient, Aox and kox are 

oxygen uptake parameters, ciox is the oxygen concentration in the vessels, vf is the fluid 

velocity and Perox is the vascular permeability of oxygen defined as the oxygen diffusion 

coefficient divided by the length of the vessel wall. 

Immune cell death rate 

According to experimental data [157], a 40 times decrease in oxygen concentration (from 

20% to 0.5%) doubled the apoptotic rate of immune cells. Thus the degradation rates are 

expressed as:  

δIAPC = δIAPC0
+ 1.025 ⋅ (1 −

cox

ciox
) ⋅ δIAPC0

 (73) 

δAPC = δAPC0
+ 1.025 ⋅ (1 −

cox

ciox
) ⋅ δAPC0

 (74) 

δThE = δTh0
E + 1.025 ⋅ (1 −

cox

ciox
) ⋅ δTh0

E (75) 
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δTE = δT0
E + 1.025 ⋅ (1 −

cox

ciox
) ⋅ δT0

E (76) 

δIn = δIn0
+ 1.025 ⋅ (1 −

cox

ciox
) ⋅ δIn0

 (77) 

Tumor center boundary conditions 

Due to the symmetry at the tumor center of the 1D geometry with spherical symmetry no 

flux boundary conditions were used thus no diffusive or convective transport. No flux 

boundary conditions were applied to all partial differential equations. 

−Dcox
𝛁𝐜𝐨𝐱 + 𝐯𝐟cox = 0 (78) 

−kth𝛁𝐩𝐢 + 𝐯𝐬 = 0 (79) 

−DIn𝛁𝐈𝐧 + 𝐯𝐬In = 0 (80) 

−DIAPC𝛁𝐈𝐀𝐏𝐂 + 𝐯𝐬IAPC = 0 (81) 

−Dcc
𝛁𝐜𝐜 + 𝐯𝐬cc = 0 (82) 

−DTE𝛁𝐓𝐄 + 𝐯𝐬TE = 0 (83) 

−DThE𝛁𝐓𝐡𝐄 + 𝐯𝐬ThE = 0 (84) 

−DAPC𝛁𝐀𝐏𝐂 + 𝐯𝐬APC = 0 (85) 

−DT𝛁𝐓 + 𝐯𝐬T = 0 (86) 

−DAg
𝛁𝐀𝐠 + 𝐯𝐬Ag = 0 (87) 

−DIcf
𝛁𝐈𝐜𝐟 + 𝐯𝐬Icf = 0 (88) 

𝐯𝐬Icb = 0 (89) 
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External surface boundary conditions 

For the external surface boundary condition. Oxygen was assumed to have a constant value 

of the normal tissue. 

cox = ciox (90) 

No flux boundary condition was applied for the solution of the fluid pressure, according to 

the Darcy law and the domain deformation by the solid velocity. 

−kth𝛁𝐩𝐢 + 𝐯𝐬 = 0 (91) 

No flux boundary conditions were applied for the innate immune cells and the cytokines 

produced by the immune cells. This was done because it was assumed that there is not a 

mass flux of these concentrations at the external surface. 

−DIn𝛁𝐈𝐧 + 𝐯𝐬In = 0 (92) 

−DIAPC𝛁𝐈𝐀𝐏𝐂 + 𝐯𝐬IAPC = 0 (93) 

−Dcc
𝛁𝐜𝐜 + 𝐯𝐬cc = 0 (94) 

The external surface is away from the tumor region and it is not reached by the cancer cells. 

Thus, the cancer cells density was assumed 0 as well as all the effector cells and the antigen 

that depend on the existence of tumor cells. 

TE = 0 (95) 

ThE = 0 (96) 

APC = 0 (97) 

T = 0 (98) 

Ag = 0 (99) 
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The external surface is away from the tumor region and thus it is not reached by the injected 

cytokines. Thus, the injected cytokines and the cytokines that bound to target were assumed 

0. 

Icf = 0 (100) 

Icb = 0 (101) 

Fitting of the model to experimental data 

For each fitting we calculated the sum of the squared difference of the values between the 

measured Vexp and simulated Vcalc tumor volumes divided by the number of experimental 

values N, 

Er =
∑ [Vexp,i − Vcalc,i]

2
i

N
 (102) 

We repeated this calculation for all fittings in order to calculate Ertot. 

Ertot = Erexp1,control + Erexp2,control + Erexp1,drug + Erexp2,drug (103) 

When Ertot becomes zero, the simulated volume curves match exactly with the experimental 

points. Thus, we minimize this value using the COMSOL with MATLAB interface 

(LiveLink for MATLAB) in order for Matlab to find the optimum parameters that can be 

used in the COMSOL model. Specifically, prior to the optimization, manual adjustments of 

the estimation parameters were made so that the experimental values were close to the 

numerical values. Then a Nelder-Mead optimization was used with MATLAB’s fminsearch 

function to calculate the optimum parameters by reducing total error. 

Results 

Model calibration and determination of model parameters values 

The values of the model parameters that could not be obtained from previous studies (Table 

12) were determined by fitting the model to tumor growth data from two published studies 

[20,21]. These studies included a control group that did not receive any treatment (control) CONSTANTIN
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and a group that received intratumoral injection of conjugated-cytokines as a drug. For the 

control groups, the variables related to the injected conjugated-cytokines become zero so 

that the pro-inflammatory cytokines in the tissue are produced only by the immune cells 

(Equation (63)). We did not consider any other variation of model parameters between the 

control and injected cytokines group. All tumor growth curves were fitted simultaneously to 

optimize the global fit. An optimization algorithm in MATLAB (The Mathworks, Inc., 

Natick, MA, United States) using the COMSOL with MATLAB interface was employed for 

the fitting.. As shown in Figure 19 the model can reproduce tumor growth data with a good 

accuracy (R2 ~ 1). 

 

 

Figure 19: Experimental data (circles) of tumor growth and model predictions (solid line) for control 

tumors (blue) and tumors treated with intratumoral injection of conjugated-cytokines (red) by Momin 

et al. (B16F10 tumor cells)  [21] and Agarwal et al. (Ag104A tumor cells) [20]. 

 

Due to the complexity of the model that includes various interactions and mechanisms, the 

behavior of the model variables is not intuitive. Thus, we generated plots to further 

investigate the changes in the model variables that led to the reduction of the tumor growth 

after the injection of therapy. Model predictions for the spatial distribution of cytokines are 

presented in Figure 20, whereas predictions for IFP, antigen concentration, CD8+ T cells 

and NK cells are presented in Figure 21 for both studies. Day 0 corresponds to the time of 

the intratumoral injection of the conjugated-cytokines. The concentration of the total 

cytokines decreased after the injection as expected.  
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Figure 20: Results for the total amount of cytokines and the bound conjugated-cytokines for various 

time points for each study. The plots represent the distribution in the radial direction. The value 0 in the 

x axis corresponds to the tumor center. As we move along the x axis, we move away from the tumor 

center towards the host tissue. Plots include both the tumor region and host tissue that surrounds the 

tumor. The vertical dashed lines show the tumor boundary at the given time points. 
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Figure 21: Results at various time points for each optimization case. The plots represent the distribution 

in the radial direction. The value 0 in the x axis corresponds to the tumor center. As we move along the 

x axis, we move away from the tumor center towards the host tissue. Plots include both the tumor region 

and host tissue that surrounds the tumor. The vertical dashed lines represent the tumor boundary. 
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The IFP was elevated within the tumor, reaching the levels of microvascular fluid pressure 

at the tumor center and droped to normal values at the tumor margin (Figure 21, control). 

This spatial distribution of IFP created a fluid flux at the tumor margin towards the host 

tissue, resulting in increased concentration of antigen, effector CD8+ T cells and NK cells 

at the interface of the tumor with the host tissue compared to the tumor interior (control 

group). Intratumoral injection of cytokines can reduce the IFP levels, which is more evident 

in the case of Momin et al. [21] where the efficacy of the treatment is more pronounced and 

induced considerably higher amounts of innate and adaptive immune cells compared to the 

respective control cases. In the treatment case, the spatial distribution of immune cells 

changed compared to the control and most immune cells can be found at the center of the 

tumor where the concentration of cytokines and antigens is the highest. 

Dependence of treatment efficacy on conjugated-cytokines properties 

Subsequently, we aimed to investigate how changing the properties of the conjugated-

cytokines can affect the efficacy of treatment. Specifically, we varied the size and binding 

affinity of the drug and the model predictions are presented in Figure 22 for varying the 

conjugated-cytokines radius, rs, from 1 to 8 nm and when the binding rate constant, kon, is 

increased/decreased by an order of magnitude. 
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Figure 22: The impact of various model components to tumor growth by varying a single parameter. 

Figure presents the tumor growth through time and the number of innate cells that induce cytolysis (NK 

cells), antigen presenting cells and effector CD8+ T cells when varying: the injected conjugate radius, 

the conjugate binding rate constant, the vascular density inside the tumor region, the vessel wall pore 

radius inside tumor, and the hydraulic conductivity inside the tumor region. The baseline values of the 

parameters for these simulations are: rs=3.85[nm], kon=100 [m3/mol/s], Sv=50[1/cm], r0=100 [nm], 

kh=4.13e-8 [cm2/mmHg/s]. 

 

Changes in both the size of conjugated-cytokines from 1 to 8 nm in radius and the binding 

rate constant from 2 to 200 m3/mol/s altered the tumor growth rate and induced significant 

changes in the number of immune cells. Cytokine conjugates of small size were cleared fast 

from the tumor owing to increased diffusion within the tumor and intravasation into blood 

vessels and thus, cannot induce a significant anti-tumor immune response. Increasing the CONSTANTIN
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size of the drug to 4-8 nm in radius dramatically reduced tumor volume and even eliminated 

tumor. Increases in binding rate constant hindered the clearance of the cytokines and thus, 

improved anti-tumor immune responses, by increasing the number of intratumoral CD8+ T 

cells soon after intratumoral administration of cytokines. 

Role of the tumor microenvironment in treatment efficacy 

Next, we set out to study how varying the physical and physiological properties of the TME 

can improve the efficacy of injected conjugated-cytokines. Specifically, we varied the 

vascular density and tumor vessel wall permeability (i.e., the size of the pores in the tumor 

vessel walls) as well as the hydraulic conductivity of the tumor. The tumor functional 

vascular density was varied from 50 to 100 cm-1 [158], the radius of the pores of the tumor 

vessel walls from 20 nm to 120 nm [159,160], and the tumor hydraulic conductivity from 

5x10-9 to 5x10-5 cm2/mmHg-s [160]. As shown in Figure 22, a 50% increase in the functional 

vascular density and thus, tumor perfusion, was sufficient to potentiate anti-tumor immunity. 

In the model and in agreement with the literature, increase in perfusion increased the number 

of immune cells in the tumor at early times after cytokines injection (Figure 22), which led 

to complete tumor elimination. Subsequently the immune cells left the tumor and their 

numbers go down to zero. Elimination of tumor is also predicted when the hydraulic 

conductivity of the tumor was increased. The increase in the tumor hydraulic conductivity 

increased the interstitial velocity and thus, allowed for better penetration of the conjugated 

cytokines in all regions of the tumor. This resulted in a robust anti-tumor immune response 

and a dramatic reduction in tumor volume. 

Finally, the vessel wall pore size determined the transport of the conjugates across the tumor 

vessel wall. Tumors hinder the transport of nano-sized drugs across the tumor vessels [144]. 

Model predictions agree with previous findings in that tumors with more permeable vessels 

allowed the transvascular transport of nano-sized therapeutics and in our case allowed the 

clearance of the conjugated cytokines, which reduced treatment efficacy (Figure 22). 

Interestingly, the model predicted that even though the tumor responded to therapy at early 

times after cytokines administration and thus, the tumor volume decreased, at longer times 

the tumor regrew, which implies the need for repeated intratumoral administration of 

cytokines. Interestingly, vascular normalization strategies aim to reduce vessel permeability CONSTANTIN
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to large molecule/nanoparticles, whereas stroma normalization strategies improve tumor 

hydraulic conductivity, in both cases improving perfusion [161]. 

To further investigate the effect of the properties of the TME and the injected conjugated-

cytokines, we varied two parameters simultaneously to generate tumor volume diagrams as 

shown in Figure 23. From these diagrams, firstly, we conclude that increasing the tumor 

hydraulic conductivity enhanced the efficacy of conjugated cytokines even of small size and 

low binding affinity (Figure 23a and Figure 23b). Furthermore, increasing the size of the 

drug and thus, decreasing both the diffusion of the conjugated-cytokines within the tumor 

tissue and their extravasation into the blood vessels results in reduced tumor volumes for 

various values of the hydraulic conductivity. Interestingly, increasing the drug size for a 

tumor with low hydraulic conductivity can induce a similar effect with a smaller drug in a 

tumor environment with high hydraulic conductivity (Figure 23b). Additionally, reduced 

tumor volumes can be achieved for lower binding capabilities of the conjugated-cytokines 

by decreasing the vessel wall pores. Also, increasing the binding rate constant to more than 

50 m3/mol/s can reduce tumor volume independent of the vessel wall pore size (Figure 23c). 

By also increasing the drug size we can achieve improved therapeutic efficacy independently 

from the vessel wall pore size as well (Figure 23d). Finally, increasing vascular density, 

while also increasing either the binding affinity or the size of the conjugated cytokines can 

enhance the efficacy of the treatment (Figure 23e and Figure 23f). From all the analysis, can 

be inferred that conjugated-cytokines larger than 5 nm in radius with binding rate constant 

above 50 m3/mol/s can induce better therapeutic outcomes. 
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Figure 23: Diagrams of the efficacy of conjugated-cytokines injection as a function of tumor 

physiological properties and conjugate radius and binding affinity. Each point in the diagrams 

represents the tumor volume of a different simulation. The tumor volume is measured either at the end 

of the simulations (day 10) or at the time point where at least one of the simulations reached complete 

cure (i.e., tumor volume becomes zero). For each simulation only the parameters shown in the two axes 

were varied. (a) The hydraulic conductivity in the tumor region was varied relative to the binding of the 

injected conjugate (day 7.5) and (b) the conjugate radius (day 5.2). (c) The tumor vessel wall pore radius 

was varied relative to the binding of the injected conjugate (day 10) and (d) the conjugate radius (day CONSTANTIN
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6.0). (e) The tumor vascular density was varied relative to the binding of the injected conjugate (day 3.2) 

and (f) the conjugate radius (day 2.9). 

 

Discussion 

Our model simulations support the hypothesis that intratumoral injection of tethered 

cytokines is a promising strategy to control tumor growth. Previous mathematical models 

showed that by increasing molecular size and/or matrix-targeting affinity of the injected 

cytokines improves therapeutic efficacy [22]. Our study agrees with these findings, 

predicting that by increasing the molecular size, the effective diffusion of the injected 

conjugated-cytokines decreases and thus, they remain within the tumor at higher 

concentrations. Also, the exposure within the tumor region increases when increasing the 

binding affinity and thus, making it more difficult for the cytokines to escape from the tumor. 

Therefore, both molecular weight and binding will lower the effective diffusion rate of the 

injected drug and only convection can distribute the drug uniformly from the injection site 

to throughout the tumor. Additionally, our study extends the modeling framework by adding 

spatiotemporal variations in model parameters, pathophysiological properties of the TME, 

IFP gradients, convection-diffusion within the tumor and host tissue and across the vessel 

walls, and cancer-immune cells interactions. Our results suggest that these additional 

considerations shed further light on the outcome of the treatment. For example, incorporation 

of the immune system revealed that the injected conjugated-cytokines boost the activation 

of the adaptive immune cells and also support innate immune cells to further activate the 

adaptive immune system. 

Our results also highlight the fact that normalizing pathophysiological features of the TME 

can improve therapeutic effects. Abnormal blood vessels is a hallmark of solid tumors [162]. 

Blood vessel abnormalities include hyperpermeability of the tumor vessel wall, as a result 

of increased levels of proangiogenic factors released under tumor hypoxic conditions, and/or 

vessel compression/collapse due to the accumulation of mechanical forces in the tumor 

[1,163]. In both cases, tumor vessel perfusion is reduced. Tumor hydraulic conductivity is 

often low in fibrotic, desmoplastic tumors, such as triple-negative breast cancer, pancreatic 

cancer and sarcomas. The excessive collagen matrix and hyaluronan in these tumors hinder 

the transport of fluid within the tumor interstitial space and thus, decrease the hydraulic CONSTANTIN
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conductivity. Stroma normalization strategies aim to target these components of the 

extracellular matrix either directly or by reprogramming cancer-associated fibroblasts. 

Therefore, stroma normalization can decompress vessels, improving functional vascular 

density and increasing the hydraulic conductivity of the tumor [1,163]. Increase in the 

hydraulic conductivity also enhances convective transport and makes the distribution of the 

conjugated-cytokines in the tumor more uniform. Our model simulations show that 

modulation of the TME to reduce vascular permeability, improves perfusion and increases 

hydraulic conductivity. These strategies should be considered to improve therapeutic 

outcomes of intratumorally injected cytokines. The strategy to normalize the TME should 

be tailored to its specific pathophysiological characteristics: abundant hyperpermeable 

vessels or abundant extracellular matrix or both. Our model simulations also agree with 

published data, highlighting that the conjugate size and binding capability have a large 

impact on the outcome of therapy. This is promising because by designing the optimal 

conjugate, the treatment could be improved. Furthermore, combination with a TME-

normalizing strategy would further add to the efficacy of the treatment.  

Although the model predicted reduced tumor growth due to the administration of 

conjugated-cytokines, at longer times the tumor recovered. Repeating intratumoral 

administration might further maintain therapeutic effects and increase efficacy. However, 

multiple injections might increase systemic accumulation of the conjugated-cytokines, 

leading to toxic effects [164]. Modulation of the TME and designing conjugated-cytokines 

with increased molecular size and/or matrix-targeting affinity reduces toxic accumulation 

and might increase the number of the permiting injections without causing toxic effects. In 

general, there might be a minimum time of exposure of a certain concentration of the 

conjugated-cytokines inside the tumor, for the therapy to be effective. This threshold could 

be akin to the Allee effect [165–167], where below a certain exposure time of this minimum 

concentration, the treatment is not effective enough to trigger a sufficient immune response 

to combat the cancer cells. There might be also a minimum exposure time of a certain 

concentration of the cytokines in the blood that causes toxicity. Thus, when considering 

intratumoral injection of conjugated-cytokines this level should not be exceeded. Both these 

thresholds may vary from patient to patient, which makes the development of a personalized 

adaptive therapy framework that includes the monitoring of the individual’s tumor and 

immune response a promising approach to optimize therapeutic effects. CONSTANTIN
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Our model also has some limitations as we made several assumptions to keep the model 

simple. The tumor was assumed to grow as a sphere, which is not usually the case. In 

addition, the model did not account for the drug-conjugate surface charge and configuration, 

which along with the conjugate size, can affect its transport properties [163,168,169]. 

Furthermore, the vessel wall pore radius was assumed uniform, while there must be a 

distribution. Transport properties, such as the interstitial diffusivity of the conjugates, 

depend not only on their size but also on the density (i.e., porosity) of the tumor interstitial 

space that varies among tumor types [147]. In this study we did not consider changes in the 

diffusion coefficient of the conjugates due to variations among tumor types. We also 

assumed very few intratumor immune cells and none of them activated at the beginning of 

the simulation. This may not be the case for many tumors. Also, our model did not account 

for the fact that immune cells can secrete immunosuppressive cytokines. Furthermore, our 

model does not explicitly incorporate the draining lymph node and effector T cell priming 

or the cancer cells leaving the tumor via the blood vessels and peri-tumoral lymphatics. In 

principle, we can relax these assumptions by incorporating additional parameters into our 

model. However, this is likely to change the results only quantitatively, whereas the 

conclusions reached in this study related to the parameters that affect the efficacy of 

intratumoral injection of conjugated-cytokines would remain unchanged. 
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Chapter 4: Investigating the synergistic effects of 

immunotherapy and normalization treatment in modulating 

tumor microenvironment and enhancing treatment efficacy 

This study has been published in the Journal of Theoretical Biology: Harkos C, 

Stylianopoulos T. Investigating the synergistic effects of immunotherapy and normalization 

treatment in modulating tumor microenvironment and enhancing treatment efficacy. Journal 

of Theoretical Biology. 2024; 111768. https://doi.org/10.1016/j.jtbi.2024.111768 

Summary 

We developed a comprehensive mathematical model of cancer immunotherapy that takes 

into account: i) Immune checkpoint blockers (ICBs) and the interactions between cancer 

cells and the immune system, ii) characteristics of the tumor microenvironment, such as the 

tumor hydraulic conductivity, interstitial fluid pressure, and vascular permeability, iii) 

spatial and temporal variations of the modeled components within the tumor and the 

surrounding host tissue, iv) the transport of modeled components through the vasculature 

and between the tumor-host tissue with convection and diffusion, and v) modeling of the 

tumor draining lymph nodes were the antigen presentation and the development of cytotoxic 

immune cells take place. Our model successfully reproduced experimental data from various 

murine tumor types and predicted immune system profiling, which is challenging to achieve 

experimentally. It showed that combination of ICB therapy and normalization treatments, 

that aim to improve tumor perfusion, decreases interstitial fluid pressure and increases the 

concentration of both innate and adaptive immune cells at the tumor center rather than the 

periphery. Furthermore, using the model, we investigated the impact of modeled components 

on treatment outcomes. The analysis found that the number of functional vessels inside the 

tumor region and the ICB dose administered have the largest impact on treatment outcomes.  

Introduction 

In solid tumors, the rapid proliferation of cancer cells within the confined space of the host 

tissue along with the accumulation of stromal cells and extracellular matrix components 

(e.g., collagen and hyaluronan) can result in stiffening of the tumor and compression of CONSTANTIN
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intratumoral blood vessels [2–4,170,171]. Furthermore, the structure of the tumor 

vasculature exhibits abnormalities, such as the increased spacing between endothelial cells, 

the loss or loosening of the basement membrane and the absence of perivascular cells, which 

lead to the hyper-permeability of the vessel walls. The compression and the hyper-

permeability of the vessels can reduce significantly the amount of blood vessels, resulting in 

hypo-perfusion [1,172]. Also, a consequence of the hyper-permeability of the tumor blood 

vessels is the uniform elevation of the IFP in the tumor interior that reaches the values of the 

microvascular pressure [2,140]. Due to the elevation of IFP, the pressure gradients across 

the vessel wall are decreased, that hinders the transvascular transport of macromolecules and 

nano-sized drugs to the tumor, making it a significant obstacle to drug delivery [11–

13,139,144,158,168].  

Among other drugs, the abnormal microenvironment in the tumor region hinders the delivery 

of ICBs [163]. In contrast to chemotherapy that targets cancer cells to eliminate their 

proliferation, immunotherapy enhances the ability of the host immune system to kill more 

effectively tumor cells [19]. ICBs that target the immune checkpoints: CTLA4, PD1 and 

PDL1 demonstrated robust efficacy in many types of cancer, especially in melanoma and 

non-small cell lung cancer (NSCLC) [173]. Nonetheless, fewer than 20% of patients 

presently experience advantages from these therapies [23]. Furthermore, a significant 

number of patients encounter immune-related adverse effects, including potentially fatal 

ones [24]. Improving the delivery of ICBs by restoring the abnormalities of the tumor 

microenvironment has shown promise in improving ICB efficacy in the preclinical setting 

[174–177] and pertinent clinical trials have been initiated (clinicaltrials.gov identifier: 

NCT03563248). Addressing these difficulties involves a strategy of normalizing the tumor 

vasculature and microenvironment to increase vessels functionality [126]. To achieve this, 

agents that reprogram cancer-associated fibroblasts to reduce the production of collagen and 

hyaluronan have been employed successfully [163,178,179]. As a result, some of the tumor 

blood vessels are decompressed, perfusion is enhanced and therapy is improved [180]. Such 

agents that have been used in preclinical tumor models to improve the efficacy of ICB 

treatment includes clinically approved drugs, such as the antihypertensives bosentan and 

losartan [177,181] and the antihistamines tranilast and ketotifen [175,176,182–184].  
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Mathematical modeling can be employed to provide mechanistic insights of the effects of 

tumor normalization on the efficacy of ICBs. In silico studies have modeled ICBs by 

examining the interactions and temporal changes of immune cells and cancer cells using 

ODEs [185]. Other studies, in addition to temporal changes considered spatial changes inside 

the tumor domain to investigate the role of exosomes and combination therapy of ICBs with 

cancer vaccines [145,146]. These studies, however, do not model the tumor draining lymph 

nodes, which are the primary sites of the development of anti-tumor immunity [186]. Studies 

that model the tumor draining lymph nodes focus on the pharmacokinetics and 

pharmacodynamics of antibodies [187,188]. We and co-workers have previously developed 

mathematical models to investigate the role of vascular permeability, diffusion coefficient 

and hydraulic conductivity, binding and metabolism, interstitial fluid pressure as well as 

lymphatics in the delivery of nano-sized drugs, including antibodies [1,11–13,42,45,189]. 

Based on our previous modeling work, here we developed a model that considers: i) the 

delivery of ICBs and the interactions of cancer cells with immune cells ii) properties of the 

tumor microenvironment, including the functional tumor vessels, the hydraulic conductivity, 

the interstitial fluid pressure and the permeability of the vessels, iii) spatial and temporal 

variations of the modeled components inside the tumor and the surrounding host tissue, iv) 

transport of modeled components through the vasculature and between the tumor-host tissue 

with convection and diffusion and v) modeling of the tumor draining lymph nodes were the 

antigen presentation and the development of cytotoxic immune cells (specific on targeting 

the cancer cells) takes place. We used the model to derive insights of the role of parameters 

of the tumor microenvironment that are involved in normalization strategies to enhance ICB 

therapy. 

Materials and methods 

Modeled compartments and implementation 

At this study, we introduced a novel approach where the mathematical model consisted of 

three compartments: the central blood compartment, the tumor draining lymph nodes and 

the tumor - host tissue compartment (Figure 24 and Figure 25). The blood and tumor draining 

lymph nodes compartments were assumed to have homogeneous concentrations of the 

modeled variables. Thus, for those two compartments a set of ODEs was solved. For the CONSTANTIN
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tumor – host tissue compartment, we introduced a set of partial differential equations solved 

with the finite element method by considered not only temporal but also spatial variations of 

the modeled variables. The model equations for all compartments were solved using 

COMSOL Multiphysics (COMSOL, Inc. Burlington, MA, USA).  

 

Figure 24: Schematic representation of the model. Transport of immune cells, cytokines and anti-PDL1 

antibodies from the blood compartment to the tumor and host tissue through the vasculature and from 

the tumor and host tissue to the tumor draining lymph nodes through the lymphatic vessels. Modeling 

of the interstitial fluid pressure (IFP) which is elevated inside the tumor and also consideration of 

convective and diffusive transport across the vessels and between the tumor and host tissue. The model 

considers both adaptive and innate immune cells, antigen uptake and antigen presentation in the lymph 

nodes. Created with BioRender.com CONSTANTIN
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Figure 25: Schematic of the modeled compartments. In the blood and tumor draining lymph nodes a 

uniform distribution of modeled variables was assumed. Thus, ordinary differential equations were 

solved in contrast to the tumor and host tissue compartment where partial differential equations were 

applied. For the tumor - host tissue compartment spherical symmetry was assumed and thus it was 

solved in 1-dimension where the tumor grows as a sphere at the expense of the host tissue. 

 

The tumor and host tissue domain were modeled as an 1D geometry with spherical symmetry 

(Figure 25). The left boundary of the 1D interval is the tumor center. Moving along the line 

and away from the tumor center, the tumor reaches the host tissue domain. At the center of 

the tumor, it was assumed that the density of cancer cells is at its maximum, subsequently CONSTANTIN
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diminishing as we reach the host tissue through a step function. The area where the density 

of cancer cells surpasses a certain threshold (Table 13) is defined as the tumor region, while 

the region below this threshold belongs to the host tissue. Within this framework, the 

parameters transition from their aberrant tumor values to their normal values in correlation 

with the density of cancer cells, with the shift occurring at the threshold cancer cell density 

through the utilization of a step function with a transition zone. These step functions serve 

to ensure the continuity of the model variables. The tumor region expands or shrinks due to 

the deformation of the spatial frame mesh caused by changes in the concentration of the 

cancer cells. 

Modeling of the immune system  

We developed model equations to incorporate the most important functions of the immune 

cells. Due to the complexity of the immune system, we grouped the immune cells into certain 

groups and solved for a single variable for each group, as shown in Figure 24. One group are 

the innate cells that induce cytolysis. This category includes the cells of the innate immunity, 

such as the natural killer (NK) cells that can induce cytolysis to tumor cells. After the 

cytolysis of a tumor cell, antigen is produced. Antigen is transported to the tumor draining 

lymph nodes through the lymphatic vessels. Another category is the immature antigen 

presenting cells (IAPC) that includes cells like Dendritic cells and Macrophages, which can 

uptake tumor antigen and become antigen presenting cells (APC). APCs interact with the 

naïve CD8+ Tcells in tumor draining lymph nodes and become effector CD8+ Tcells. The 

effector CD8+ Tcells are cells of the adaptive immunity that in our case are activated 

specifically for targeting the tumor cells. The effector CD8+ Tcells are transported from the 

lymph nodes to the blood and then back to the tumor-host tissue domain through the blood 

vessels where they can kill cancer cells and produce more antigen. 

Implementation of therapy 

The model also considered intravascular injection of anti-PDL1 antibodies. Those antibodies 

are transported from the blood to the tumor - host tissue region and target the PDL1 receptor 

on the tumor cells. The PD-L1 on the surface of the tumor cells interacts with the PD-1 on 

the immune cells and suppresses their activity. Anti-PDL1 inhibits the association of PD-L1 

with the PD-1, enhancing tumor cells killing by the immune cells. In the model, we CONSTANTIN
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considered separately the concentration of the cancer cells which have anti-PDL1 bound on 

their receptors. These cancer cells with anti-PDL1 are more easily recognized and killed by 

the immune cells compared to the rest of the cancer cells.  

As mentioned earlier anti-fibrotic medications, such as tranilast, enhances drug delivery by 

decompressing blood vessels and thus, improving perfusion. In the model, we assumed that 

anti-fibrotic medication induces an increase in the functional vascular density. The 

functional vascular density Sv is a continuous function that models the amount of the 

vascular surface area of the functional vessels per unit volume. The functional vessels 

transfer therapeutics in the tumor region as well as the immune cells and enhance antitumor 

immunity. 

Optimization and reproduction of experimental data 

To reproduce the experimental tumor growth data [184] shown in Figure 26, we employed 

an optimization algorithm using LiveLink for Matlab (The Mathworks, Inc., Natick, MA, 

United States). The optimization algorithm was used to derive parameters not found in 

literature, following a similar approach as previously [189]. In the experimental study, the 

normalization agent, tranilast, was employed for the treatment of breast (4T1, E0771), 

melanoma (B16F10) and fibrosarcoma (MCA205) tumors to enhance anti-PDL1 

immunotherapy. The dataset includes the four different cancer cell lines. For each cell line 

(Figure 26), there is a control group that did not receive therapy (blue), a group that received 

anti-PDL1 treatment (red) and a group that received tranilast in combination with anti-PDL1 

treatment (black).  
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Figure 26: Experimental data used for model calibration/ parameter estimation from [184]. The data 

include murine breast (4T1, E0771), melanoma (B16F10) and fibrosarcoma (MCA205) tumors. For each 

cell line we use data from three different groups. A control group, a group that received anti-PDL1 

treatment and another group that received combinational therapy of tranilast with anti-PDL1. The y 

axis represents the tumor volume in mm3 and the x axis the time in days.  

 

Parameters whose values could not be found in literature, were derived with the use of the 

optimization algorithm by fitting the model to the experimental data (Table 13). Assuming 

that various types of immune cells share the same values of the model parameters that they 

have in common, the number of parameters whose value has to be determined (Table 13) 

reduces drastically from tens of parameters to just a few. Furthermore, it was assumed that 

the immune system follows the same behavior in the four cell lines shown in Figure 26 and 

thus, the values of the model parameters were kept the same. Therefore, the optimization 

was applied to fit the experimental data of the four cell lines (Figure 26) simultaneously. 

This was done to calibrate the model parameters across many datasets rather than generating 

a set of parameters for each experiment with the use of fewer datapoints. 
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Blood compartment 

Pro-inflammatory cytokines 

The pro inflammatory cytokines inside the blood compartment are expressed as:  

Vb

dcb

dt
= − ∭ Qmc

Vt

dVt + Ql→bcl

+(kInInb + kCD8CD8b − δccb)Vb

 (104) 

where the first right-hand side term describes the transport between the blood and the tumor 

compartment. Qmc describes the transport of cytokines across the vessel wall (in the tumor 

and host tissue compartment) and Vt is the volume of tumor and host tissue compartment. 

The second term describes the transport of cytokines from the lymphatic compartment to the 

blood. Ql→b is the volumetric flow rate from lymph nodes to blood and cl is the concentration 

of pro-inflammatory cytokines inside the tumor draining lymph nodes. The following terms 

describe the production of pro inflammatory cytokines by Innate immune cells and effector 

CD8+ Tcells. Where kIn and kCD8 are the production rates of pro-inflammatory cytokines 

by innate immune cells and effector CD8+ Tcells. Inb and CD8b are the concentrations of 

these cells inside the blood compartment. The last term describes the degradation of 

cytokines. Vb is the blood volume. 

Innate cells 

The innate immune cells that induce cytolysis inside the blood compartment are expressed 

as: 

Vb

dInb

dt
= λIn (

cb

KcIn + cb
) Vb − ∭ zIn

b→t

Vt

TfIn
bdVt + Ql→bInl

−δInInbVb

 (105) 

where the first right-hand side term describes the production of innate cells, which depends 

on the concentration of pro-inflammatory cytokines inside the blood cb. λIn is a parameter 

describing the production of innate immune cells and KcIn is the half saturation 

concentration. The second term describes the extravasation of innate cells from the blood to 

the tumor compartment. Where Tf trafficking function, zIn
b→tis the extravasation rate constant. CONSTANTIN
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The following term describes the transport of innate cells from the lymphatic compartment 

to the blood. The last term describes the degradation of the innate cells inside the blood 

where δIn is the degradation rate constant. 

Immature antigen presenting cells 

The immature antigen presenting cells in the blood compartment are expressed as: 

Vb

dIAPCb

dt
= λIAPC (

cb

KcAPC + cb
) Vb − ∭ zIAPC

b→t

Vt

TfIAPCbdVt

+Ql→bIAPCl − δIAPCIAPCbVb

 (106) 

where the first right-hand side term describes production of immature antigen precenting 

cells. ΛIAPC is a parameter describing the production of those cells and KcAPC is the half 

saturation concentration. The second term describes the extravasation of immature antigen 

presenting cells from the blood to the tumor compartment. zIAPC
b→t  is the extravasation rate 

constant. The following term describes the transport of immature antigen presenting cells 

from the lymphatic compartment to the blood. The last term describes the degradation where 

δIAPC is the degradation rate constant. 

Effector CD8+ Tcells 

The effector CD8+ T cells inside the blood compartment are expressed as: 

Vb

dCD8b

dt
= − ∭ zCD8

b→t

Vt

TfCD8bdVt + Ql→bCD8l − δCD8CD8bVb (107) 

This equation follows the same approach with the equations of innate immune cells and 

immature antigen precenting cells except for the term of the production inside the blood due 

to that the effector CD8+ T cells are produced inside the lymph nodes due to antigen 

presentation.  

Anti-PD-L1 

The concentration of anti-PDL1 in the blood compartment is expressed as: 
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Vb

aPDL1b

dt
=

𝑔aPDL1Vb − ∭ Qma
Vt

dVt + Ql→baPDL1l − δaPDL1aPDL1bVb

 (108) 

where the first right-hand side term describes the source of anti-PDL1. Where gaPDL1is a 

source parameter. The second term is the transport of anti-PDL1 from the blood to the tumor. 

More specifically Qma describes the transport of anti-PDL1 across the vessel wall. In the 

same manner as the previous equations, the following term describes the transport from the 

tumor to the tumor draining lymph nodes to the blood and the last term describes the 

degradation of anti-PDL1 in the blood. 

Tumor draining lymph nodes compartment 

Pro-inflammatory cytokines 

The pro inflammatory cytokines inside the tumor draining lymph nodes compartment system 

are expressed as: 

Vl

dcl

dt
= ∭ zc

t→l

Vt

ctdVt − Ql→bcl

+(kInInl + kCD8CD8l + kAPCAPCl)Vl

 (109) 

where the first right-hand side term describes the transport between the tumor and the tumor 

draining lymph nodes. zc
t→l is the rate constant of lymphatic drainage of pro-inflammatory 

cytokines inside tumor and host tissue compartment ct. The following term describes the 

transport of cytokines from the lymphatic compartment to the blood. Ql→b is the volumetric 

flow rate from the lymph nodes to the blood. The last terms describe the production of pro 

inflammatory cytokines by innate immune cells Inl, effector CD8+ Tcells CD8l and antigen 

presenting cells APCl in the lymph nodes. The k parameters describe the rate of production 

of pro-inflammatory cytokines from each immune cell. Vl is the volume of the tumor draining 

lymph nodes. 

Innate cells 

The innate immune cells that induce cytolysis in the tumor draining lymph nodes are 

expressed as: CONSTANTIN
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Vl

dInl

dt
= ∭ zIn

t→l

Vt

IntdVt − Ql→bInl (110) 

where the first term describes the transport of innate cells from the tumor compartment to 

the tumor draining lymph nodes. zIn
t→l is the rate constant of lymphatic drainage of innate 

cells in the tumor and host tissue compartment Int. The last term describes the transport of 

innate cells from the tumor draining lymph nodes to the blood compartment. 

Immature antigen presenting cells 

The immature antigen presenting cells in the tumor draining lymph nodes are expressed as: 

Vl

dIAPCl

dt
= ∭ zIAPC

t→l

Vt

IAPCtdVt − Ql→bIAPCl

−χAPC (
cl

KcAPC + cl
) nAg

IAPClAg
l Vl

 (111) 

where the first term describes the transport of immature antigen presenting cells from the 

tumor compartment to the tumor draining lymph nodes. zIAPC
t→l  is the rate constant of 

lymphatic drainage of immature antigen presenting cells inside tumor and host tissue 

compartment IAPCt. The following term describes the transport of immature antigen 

presenting cells from the lymphatic system to the blood. The last term describes the reduction 

of immature antigen presenting cells due to activation. The activation of antigen presenting 

cells depends on the pro-inflammatory cytokines cl and the interaction of immature antigen 

presenting cells IAPCl with antigen Ag
l  inside the lymph nodes. NAg

 is the antigen uptake 

rate and χAPC a parameter adjusting the activation of antigen precenting cells. 

Antigen presenting cells 

The antigen presenting cells in the tumor draining lymph nodes are expressed as: 

Vl

dAPCl

dt
= ∭ zAPC

t→l

Vt

APCtdVt − δAPCAPClVl

+χAPC (
cl

KcAPC + cl
) nAg

IAPClAg
l Vl

 (112) 
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where the first term describes the transport of antigen presenting cells from the tumor 

compartment to the tumor draining lymph nodes. zAPC
t→l  is the rate constant of lymphatic 

drainage of antigen presenting cells inside the tumor and host tissue compartment APCt. The 

last terms describe the degradation (δAPC the degradation rate constant) and 

source/production due to activation. The activation term of antigen presenting cells is the 

same as in Equation (111) with a plus sign. Because the activation decreases the immature 

antigen presenting cells and increases the antigen presenting cells 

Antigen 

The concentration of antigen in the tumor draining lymph nodes is expressed as: 

Vl

dAg
l

dt
= ∭ zAg

t→l

Vt

AgtdVt − δAg
Ag

l Vl − nAg
IAPCAg

l Vl (113) 

where the first right-hand side term describes the transport between the tumor and the tumor 

draining lymph nodes. zAg
t→l is the rate constant of lymphatic drainage of antigen inside tumor 

and host tissue compartment Agt. The last terms describe the degradation (δAg
the 

degradation rate constant) and uptake by the immature antigen presenting cells. 

Effector CD8+ Tcells 

The effector CD8+ Tcells in the tumor draining lymph nodes are expressed as: 

Vl

dCD8l

dt
= ∭ zCD8

t→l

Vt

CD8tdVt − Ql→bCD8l + hCD8APClCD8nVl (114) 

where the first term describes the transport of effector CD8+ Tcells from the tumor 

compartment to the tumor draining lymph nodes. The following term describes the transport 

of effector CD8+ Tcells from the lymphatic system to the blood. The last term describes the 

source of effector CD8+ Tcells due to the antigen presentation by the antigen presenting 

cells to the I CD8+ Tcells CD8n. hCD8 is the activation rate constant of effector Tcells. 

Anti-PD-L1 

The concentration of anti-PDL1 in the tumor draining lymph nodes is expressed as: 
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Vl

daPDL1l

dt
= ∭ zaPDL1

t→l

Vt

aPDL1tdVt − Ql→baPDL1l (115) 

where the first term describes the transport of anti-PDL1 from the tumor compartment to the 

tumor draining lymph nodes. The second term describes the transport of anti-PDL1 from the 

lymphatic system to the blood. 

Tumor and host tissue compartment 

Pro-inflammatory cytokines 

The pro inflammatory cytokines produced by the immune cells can be transported by 

convection and diffusion: 

∂ct

∂t
+ 𝛁 ⋅ (−Dct𝛁𝐜𝐭 + 𝐯𝐟ct) = Qmc − zc

t→lct

+kInInt + kCD8CD8t + kAPCAPCt

 (116) 

where the first and second right-hand side terms describe the transport between the blood 

and the tumor and between the tumor draining lymph nodes and the tumor, respectively. The 

last terms describe the production of pro inflammatory cytokines by innate immune cells Int, 

effector CD8+ Tcells CD8t and antigen presenting cells APCt in the tumor and host tissue 

compartment. 

Transport of cytokines across the vessel wall 

Transport across the vessel wall is based on Starling’s Approximation: 

Qmc = PercSv(cb − ct) + LpcSv(pv − pi)(1 − σfc)cb (117) 

where Perc, Sv, Lpc, pv, pi, σfc are the vascular permeability of the cytokines, the vascular 

density, the hydraulic conductivity, the vascular pressure, the interstitial pressure and the 

reflection coefficient respectively. cband ct are the concentrations of pro-inflammatory 

cytokines inside the blood and the tumor compartment respectively. The parameters Lpc, Perc 

and σfc are expressed as a function of the vessel wall pores and the size of cytokines [41,190] 
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Lp =
γr0

2

8μLvw
 (118) 

Perc =
γHcD0c

Lvw
 (119) 

σfc = 1 − Wc (120) 

where γ is the fraction of the vessel wall surface area occupied by pores, r0 the pore radius, 

μ the viscosity and Lvw the thickness of the vessel wall. Hc and Wc describe the steric and 

hydrodynamic interactions of cytokines with the pores of the vessel wall that hinder diffusive 

and convective transport respectively and D0c is the diffusion coefficient of a particle in free 

solution given by the Stokes-Einstein equation. By ignoring electrostatic interactions Hc and 

Wc become [190]: 

Hc =
6πF

Ktc
 (121) 

Wc =
Fc(2 − Fc)Ksc

2Ktc
 (122) 

where Fc is the partition coefficient expressed as: 

Fc = (1 − λc)2 (123) 

where λc is the ratio of the cytokines size to the vessel wall pore size and Ktc and Ksc are 

expressed as [190] 

(
Ktc

Ksc
)  = 

9

4
π2√2(1-λc)-5/2 [1 + ∑ (

an

bn
) (1-λc)n

2

n = 1

]  + ∑ (
an + 3

bn + 3
) λc

n

4

n = 0

 (124) 

Innate cells 

The innate immune cells that induce cytolysis in the tumor and host tissue are expressed as: 

∂Int

∂t
+ 𝛁 ⋅ (−DInt𝛁𝐈𝐧𝐭 + 𝐯𝐬Int) = zIn

b→tTfIn
b − zIn

t→lInt (125) CONSTANTIN
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where the first term describes the transport of innate cells from the blood compartment. The 

second term describes the transport to the tumor draining lymph nodes. 

Immature antigen presenting cells 

The immature antigen presenting cells in the tumor and host tissue are expressed as: 

∂IAPCt

∂t
+ 𝛁 ⋅ (−DIAPCt𝛁𝐈𝐀𝐏𝐂𝐭 + 𝐯𝐬IAPCt) = zIAPC

b→t TfIAPCb − zIAPC
t→l IAPCt

−χAPC (
ct

Kc + ct
) (nIAPCIAPCtT + wanIAPCIAPCtTL + nAg

IAPCtAg
t )

 (126) 

where the first right-hand side term describes the transport of immature antigen presenting 

cells from the blood compartment and the second term describes the transport to the tumor 

draining lymph nodes. The last term describes the reduction of immature antigen presenting 

cells due to activation. The activation to antigen presenting cells depends on the pro-

inflammatory cytokines ctand the interaction of immature antigen presenting cells IAPCt 

with the tumor cells T, tumor cells with anti-PDL1 TLand antigen Ag
t . nIAPC and nAg

are the 

killing rate constant of tumor cells by immature antigen presenting cells and the antigen 

uptake parameter. wa is the effectiveness of the killing of cancer cells bound by anti-PDL1 

compared to cancer cells with free PDL1 receptors. 

Antigen presenting cells 

The antigen presenting cells in the tumor and host tissue are expressed as: 

∂APC

∂t
+ 𝛁 ⋅ (−DAPC𝛁𝐀𝐏𝐂 + 𝐯𝐬APC) = −zAPC

t→l APCt

+χAPC (
ct

Kc + ct
) (nIAPCIAPCtT + wanIAPCIAPCtTL + nAg

IAPCtAg
t )

 (127) 

where the first right-hand side term describes the transport of antigen presenting cells to the 

tumor draining lymph nodes. The following term is a source term for the production of 

antigen presenting cells. The activation to antigen presenting cells is the same as the term of 

Equation (126) but with a positive sign. 

Cancer cells 

The concentration of cancer cells in the tumor and host tissue is expressed as: CONSTANTIN
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∂T

∂t
+ 𝛁 ⋅ (−DT𝛁𝐓 + 𝐯𝐬T) = RT =

k1 (
cox

k2 + cox
) (T + TL) − (nInInt + nIAPCIAPCt + nCD8CD8t)T

−konTaPDL1t + koffTL

 (128) 

where the first right-hand side term describes the proliferation of the total cancer cells due 

to oxygen cOx. k1 and k2 are growth rate parameters. TL are the cancer cells bound with anti-

PDL1. The following term describes the killing of cancer cells by innate cells Int, immature 

antigen presenting cells IAPCt and effector CD8+ Tcells CD8t. With n we denote the killing 

rate parameter for each type of immune cell. The following term describes the binding of 

anti-PDL1 to the PDL1 receptors on the tumor cells and the last term describes the 

unbinding. Where kon and koff are the binding and unbinding rate constants and aPDL1t the 

concentration of anti-PDL1 in the tumor and host tissue compartment. 

Cancer cells with anti-PDL1 

The concentration of cancer cells with anti-PDL1 in the tumor and host tissue is expressed 

as: 

∂TL

∂t
+ 𝛁 ⋅ (−DT𝛁𝐓𝐋 + 𝐯𝐬TL) = RTL

= konTaPDL1t − koffTL

−wa(nInInt + nIAPCIAPCt + nCD8CD8t)TL

 (129) 

where the first right-hand side term describes the increase in cancer cells with anti-PDL1 

due to the binding of anti-PDL1 to the available tumor cells. The following term describes 

the decrease due to unbinding. The last term describes the killing of cancer cells with anti-

PDL1 by innate cells Int, immature antigen presenting cells IAPCt and effector CD8+ Tcells 

CD8t. wa is a parameter describing how much more effective is the killing of cancer cells 

bound by anti-PDL1 compared to cancer cells with free PDL1 receptors. 

Anti-PD-L1 

The concentration of anti-PDL1 in the tumor and host tissue is expressed as: 
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∂aPDL1t

∂t
+ 𝛁 ⋅ (−DaPDL1t𝛁𝐚𝐏𝐃𝐋𝟏𝐭 + 𝐯𝐟aPDL1t) =

Qma − zaPDL1
t→l aPDL1t − konTaPDL1t + koffTL

 (130) 

where the first right-hand side term describes the transport of anti-PDL1 from the blood to 

the tumor and the last term the transport from the tumor to the tumor draining lymph nodes. 

The last two terms describe the decrease in anti-PDL1 due to the binding of anti-PDL1 to 

the available tumor cells and the decrease due to the unbinding. 

Transport of anti-PDL1 across the vessel wall 

Transport of anti-PDL1 across the vessel wall is given by the same set of equations as 

Equations (117)-(124) for the transport of cytokines. 

Antigen 

The concentration of antigen in the tumor and host tissue is expressed as: 

∂Ag
t

∂t
+ 𝛁 ⋅ (−DAg

t 𝛁𝐀𝐠
𝐭 + 𝐯𝐟Ag

t ) = −zAg
t→lAgt

+(nInInt + nCD8CD8t)T + wa(nInInt + nCD8CD8t)TL − nAg
IAPCtAg

t

 (131) 

Where the first and second right-hand side terms describe the transport between the tumor 

draining lymph nodes and the tumor. The following two terms describe the production of 

antigen induced by the cytolytic effect of innate cells Int and effector CD8+ T cells CD8t to 

the tumor cells T and tumor cells with anti-PDL1 TL. The last term describes the antigen 

uptake by the immature antigen presenting cells. 

Effector CD8+ Tcells 

The effector CD8+ Tcells in the tumor and host tissue are expressed as: 

∂CD8t

∂t
+ 𝛁 ⋅ (−DCD8t𝛁𝐂𝐃𝟖𝐭 + 𝐯𝐬CD8t) = zCD8

b→tTfCD8b

−zCD8
t→l CD8t

 (132) 

where the first term of the right hand side describes the transport of effector CD8+ Tcells 

from the blood compartment. The second term describes the transport to the tumor draining 

lymph nodes. CONSTANTIN
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Oxygen transport 

The rate of change of oxygen concentration in the tissue was modeled with a convection 

diffusion equation that includes a source and a sink term [118,151], . The source term is due 

to oxygen supply from the blood vessels and the sink term describes oxygen consumption 

by cancer cells: 

∂cox

∂t
+ 𝛁 ⋅ (−Dox𝛁𝐜𝐨𝐱 + 𝐯𝐟cox) = −

Aoxcox

cox + kox

T

T0

+ PeroxSv(ciox − cox) (133) 

where Aox and kox are oxygen uptake parameters, ciox is the oxygen concentration in the 

vessels, T0 is the initial concentration of cancer cells and Perox is the vascular permeability 

of oxygen defined as the oxygen diffusion coefficient divided by the length of the vessel 

wall. 

Kinematics of tumor growth 

The growth stretch ratio is calculated as [191] 

3
1

λg

dλg

dt
=

RTL
+ RT

T0

 (134) 

where λg is the growth stretch ratio RT the rate of change of the concentration of cancer cells 

and RTL
 the rate of change of the concentration of cancer cells with anti-PDL1. T0 is the 

initial concentration of cancer cells. The tumor growth is implemented using deformation of 

the spatial frame mesh relative to the material frame mesh with a prescribed mesh 

displacement of [189] 

𝐝𝐱 = 𝐱 − 𝐗 = λg𝐗 − 𝐗 (135) 

where 𝐱 the spatial frame coordinates and 𝐗 the material frame coordinates. 

The solid velocity is calculated as: 

𝐯𝐬 =
d𝐱

dt
 (136) 

where t is the time. CONSTANTIN
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Interstitial pressure-fluid velocity 

Normal and tumor tissues have properties like those of a porous medium. According to 

Darcy’s law and the mesh movement due to solid velocity, the interstitial fluid velocity is 

given by [189]: 

𝐯𝐟 = −kth𝛁𝐩𝐢 + 𝐯𝐬 (137) 

where kth is the hydraulic conductivity of the interstitial space [192]. The mass balance gives 

[11,155] 

𝛁 ⋅ 𝐯𝐟 = LpSv(pv − pi) − LplSvl(pi − pvl) (138) 

The first term on the right-hand side of the equation describes the fluid flux entering from 

the blood vessels and the second term the flux exiting through the lymphatic system. Lp is 

the blood vessels’ hydraulic conductivity, Sv the vascular density and pv is the vascular 

pressure. Lpl, Svl and pvl are the corresponding parameters for the lymphatic vessels [143]. 

Trafficking of immune cells 

Normalization of the tumor micro-environment increases trafficking of immune cells when 

combined with immunotherapy. When the vascular density doubles from 50cm−1 to 

100cm−1 the source of immune cells increases by 1.367 [156]. By assuming that the 

function is 1 for the host tissue value of (70cm−1). The trafficking function reads [156]: 

Tf = 0.0273Sv − 0.9138 (139) 

where Sv represents the functional vascular density measured in cm−1. 

Molecular radius of agonist 

The radius R of transported agonist is expressed as [154]: 

log10R = −0.31 + 0.43log10Mw (140) 

where Mw is the molecular weight of agonist. 
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Boundary Conditions 

Tumor center boundary conditions 

Due to the symmetry at the tumor center of the 1D geometry with spherical symmetry no 

flux boundary conditions were used thus no diffusive or convective transport. No flux 

boundary conditions were applied to all partial differential equations. 

−Dcox
𝛁𝐜𝐨𝐱 + 𝐯𝐟cox = 0 (141) 

−kth𝛁𝐩𝐢 + 𝐯𝐬 = 0 (142) 

−DIn𝛁𝐈𝐧𝐭 + 𝐯𝐬Int = 0 (143) 

−DIAPC𝛁𝐈𝐀𝐏𝐂𝐭 + 𝐯𝐬IAPCt = 0 (144) 

−Dc𝛁𝐜𝐭 + 𝐯𝐟ct = 0 (145) 

−DCD8𝛁𝐂𝐃𝟖𝐭 + 𝐯𝐬CD8t = 0 (146) 

−DAPC𝛁𝐀𝐏𝐂𝐭 + 𝐯𝐬APCt = 0 (147) 

−DT𝛁𝐓 + 𝐯𝐬T = 0 (148) 

−DTL
𝛁𝐓𝐋 + 𝐯𝐬TL = 0 (149) 

−DAg
𝛁𝐀𝐠

𝐭 + 𝐯𝐟Ag
t = 0 (150) 

External surface boundary conditions 

For the external surface of the host tissue the boundary condition of oxygen was assumed to 

have the constant value of the normal tissue. 

cox = ciox (151) 

No flux boundary condition was also applied for the fluid pressure, according to Darcy’s law 

and the domain deformation by the solid velocity, 𝐯𝐬. 
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−kth𝛁𝐩𝐢 + 𝐯𝐬 = 0 (152) 

No flux boundary conditions were applied for the cytokines, the innate immune cells that 

induce cytolysis Int, the immature antigen presenting cells IAPCt, the effector CD8+ Tcells 

CD8t and the cytokines ct. This was done because it was assumed that there is no mass flux 

of these concentrations at the external surface. 

−DIn𝛁𝐈𝐧𝐭 + 𝐯𝐬Int = 0 (153) 

−DIAPC𝛁𝐈𝐀𝐏𝐂𝐭 + 𝐯𝐬IAPCt = 0 (154) 

−DIAPC𝛁𝐂𝐃𝟖𝐭 + 𝐯𝐬CD8t = 0 (155) 

−Dc𝛁𝐜𝐭 + 𝐯𝐟ct = 0 (156) 

The external surface is not reached by the cancer cells. Thus, the cancer cells density was 

assumed to be equal to zero as well as all the antigen and antigen precenting cells that depend 

on the existence of tumor cells. 

APCt = 0 (157) 

T = 0 (158) 

TL = 0 (159) 

Ag
t = 0 (160) 

Results 

Model calibration 

To calibrate our model, we used the optimization algorithm to reproduce the set of 

experimental tumor growth data shown in Figure 26 [184]. The reproduction of experimental 

data with the model is shown in Figure 27. Using the optimization algorithm, we generated 

a set of parameters that reproduce these data with good accuracy (Table 13). Due to the 

different growth rates among cell lines, we used a different value for the growth rate CONSTANTIN
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parameter of each cell line. For the groups that received anti-PDL1 treatment, we switched 

on the equations related to anti-PDL1. For the groups that also received tranilast, we 

increased the value of the functional vascular density for each cell line. Our algorithm 

predicts an increase in the functional vascular density of 3-5 times (Table 13). This is 

validated with experimental measurements of tumor perfusion where the administration of 

tranilast increased perfusion by the same factor [184]. Administration of only 

immunotherapy, not accompanied by the normalization agent (tranilast) did not have a 

significant impact on tumor growth. However, when ICB was combined with tranilast, a 

significant decrease in tumor growth was observed. The model predicted well the 

experimental tumor growth curves for all tumor types and conditions.  

 

 

Figure 27: Model calibration with tumor growth curves of 4 different cell lines. The continuous lines 

represent the model predictions and the bullets the experimental results [184]. With blue color is the 

control group that did not receive therapy. With red color is a group thar received anti-PDL1 treatment 

and with black the group that received combinational therapy of tranilast and anti-PDL1. The model 

reproduces the results with an accuracy of Root mean square error (RMSE)=91, 88, and 113 for the 

control, anti-PDL1, anti-PDL1 + tranilast groups for the B16F10 tumors. With an accuracy of CONSTANTIN
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RMSE=39, 91, 83 for the respective groups of 4T1 tumors, RMSE=73, 52, and 87 for E0771 and 

RMSE=66, 57, and 93 for MCA205. 

 

Immune system response 

As shown in Figure 28, due to the hyper-permeability of the tumor blood vessels the IFP is 

elevated in the tumor interior[2,140]. IFP reaches the value of the vascular pressure inside 

the tumor and decreases at the tumor margin. We observe at the control and anti-PDL1 cases 

that the region with IFP values the same as the vascular pressure (2 kPa) increases through 

time. In the case of tranilast and anti-PDL1 treatment at day 10, we observe a decrease in the 

region of elevated IFP. Due to the significant decrease in tumor volume in this group and 

boundary effects of the host tissue, where IFP is zero, the IFP in the tumor does not reach 

the levels of the vascular pressure.  
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Figure 28: Distributions of the interstitial fluid pressure (IFP) and the concentrations of innate cells that 

induce cytolysis, Antigen presenting cells (APC) and Effector CD8+ Tcells for various time points. The 

x axis represents the distance from the tumor center with 0 being the tumor center. As we move along 

the axis, we reach the host tissue. The dashed lines show the tumor margin. The figure represents the 

results of the case of E0771 cell line which is the case with the highest fitting accuracy. The figure shows 

all 3 modeled groups: control group, the group thar received anti-PDL1 and the group which received 

combinational therapy (tranilast and anti-PDL1) 

 

Furthermore, in contrast to the control and anti-PDL1 cases, the combined therapy increases 

the concentration of innate immune cells that induce cytolysis, such as NK cells on the left 

of the domain, at the tumor center. This can also be observed for the APCs. Additionally, 

there is an increase in the concentration of effector CD8+ Tcells inside the tumor region in 

the combinational therapy in contrast to the other groups where we observe larger amounts 

of CD8+ Tcells in the host tissue rather than the tumor region. 

Impact of modeled components to treatment outcomes 

Next, we investigated how model parameters related to properties of the tumor 

microenvironment and the binding affinity of the ICB antibodies affect treatment outcomes. 

We kept our baseline parameters (Table 13) and vary a single parameter at a time to generate 

the results of Figure 29 to Figure 32. The baseline values used are the values from the fitting 

of the model to the data for the E0771 tumors for the combinational therapy case. We used 

this cell line because the model reproduced the experimental data with the highest accuracy 

compared to the other cell lines. In Figure 29, we observe that increases in the functional 

vascular density can lead even to complete cure (Sv=200[1/cm]) where the tumor volume 

reaches zero. In this case the mass of the immune cells inside the tumor initially increases 

causing a robust anti-tumor immune response and then due to the reduction of the tumor 

domain, the mass of the immune cells reduces. The increase in the size of the pores of the 

tumor vessels from a radius of 10nm to 100nm and 200nm [144] , causes a slight decrease 

in the tumor volume because on one hand the increase in pore size allow for a larger amount 

of anti-PDL1 antibodies to pass through the larger pores but on the other hand the increase 

in pore-size would increase IFP, which hinders convective transport across the vessel wall 
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pores (Figure 30). This induces an increase in the mass of APCs and effector CD8+ Tcells 

inside the tumor. 

 

 

Figure 29: Parametric analysis the functional vascular density inside the tumor region (Sv),. The baseline 

values are the values from the fitting of the model to the data for the E0771 tumors and for the 

combinational therapy case. The figure represents the tumor volume and the mass inside the tumor of 

innate immune cells that induce cytolysis, APCs and effector CD8+Tcells. 

 

 

Figure 30: Parametric analysis for the vessel wall pore radius (r0). The baseline values are the values 

from the fitting of the model to the data for the E0771 tumors and for the combinational therapy case. 

The figure represents the tumor volume and the mass inside the tumor of innate immune cells that induce 

cytolysis, APCs and effector CD8+Tcells. 
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Next, we varied the ability of the anti-PDL1 drug to bind on the PDL1 ligand of the tumor 

cells from 1 to 1x106[m3/mol/s] [145]. We observe a slight decrease in tumor growth when 

the binding is increased. Interestingly increasing the binding to more than 1 x103[m3/mol/s] 

does not seem to have an impact to tumor growth (Figure 31). In addition, increasing the 

amount of anti-PDL1 antibodies administered can lead to complete elimination of the tumor 

(Figure 32). In the case of complete treatment, the mass of the immune cells increases and 

then goes to zero due to the reduction of the tumor domain in a similar fashion as the case 

of increased functional vascular density. 

 

 

Figure 31: Parametric analysis for the binding rate constant of anti-PDL1 to the PDL1 of the tumor 

cells. The baseline values are the values from the fitting of the model to the data for the E0771 tumors 

and for the combinational therapy case. The figure represents the tumor volume and the mass inside the 

tumor of innate immune cells that induce cytolysis, APCs and effector CD8+Tcells.  
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Figure 32: Parametric analysis the amount of anti-PDL1 administered (gaPDL1). The baseline values 

are the values from the fitting of the model to the data for the E0771 tumors and for the combinational 

therapy case. The figure represents the tumor volume and the mass inside the tumor of innate immune 

cells that induce cytolysis, APCs and effector CD8+Tcells. 

 

Discussion 

In this study, we modeled the interactions of immune cells and cancer cells by considering 

the tumor draining lymph nodes. The model was able to reproduce experimental data of four 

different tumor models that included a group that didn’t received therapy a group that 

received ICB therapy and a group that received combinational therapy of ICB and 

normalization treatment. Our model predictions agree with experimental observations where 

the combinational therapy increased perfusion by 3-5 times [184]. It also agrees with 

previous studies that show a decrease in IFP due to the combinational therapy[177]. 

Furthermore, the model predicts the immune system profiling, which is hard to measure 

experimentally. It shows that combinational therapy increases the amount of innate and 

adaptive immune cells in the tumor center in contrast with the case of immunotherapy alone 

where the immune cells reach the tumor periphery rather than the tumor center. The number 

of functional vessels inside the tumor is also a crucial factor. The model predicts a reduction 

in tumor growth and even tumor elimination in tumors where more functional vessels exist. 

The size of the vessels’ pores also affects treatment outcomes, with larger pores leading to 

larger amounts of APCs and CD8+ Tcells inside the tumor. Also developing drugs with CONSTANTIN
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higher binding ability to cancer cells can increase the efficacy of the treatment although the 

model suggests that there is a limit where increasing the binding does not further improve 

treatment. Furthermore, increasing the amount of anti-PDL1 administered increases the 

intratumoral levels of anti-PDL1 and thus, which decreases further tumor volume. 

Although our model provides valuable insights, it also has its limitations. We assumed that 

the tumor grows as a sphere and solved for spherical symmetry. The vessel wall pore radius 

was assumed to be uniform, which may not always be true because there is typically a 

distribution of pore sizes. Additionally, we did not consider variations in the diffusion 

coefficient of the ICBs based on tumor type. We also assumed no activated immune cells at 

the beginning of the simulation, which might not be the case. We also did not consider the 

impact of immune cells releasing immunosuppressive cytokines and avoided the 

consideration of more types of immune cells because that would introduce more unknown 

parameters. In addition, to reduce the amount of unknown parameters and to increase the 

number of datasets used for the parameters estimation, we assumed that the different types 

of immune cells share the same values of the parameters that they have in common, and that 

these values are the same among the four cell lines that were used for the calibration of the 

model. This assumption, however, might not always be the case. Additionally, if 

experimental data of the immune system derived as concentrations of cells in the tumor and 

host tissue volume existed, that could have enabled further validation of our model 

predictions. In conclusion, although we could make modifications to our model to account 

for some of these factors, doing so would likely only result in quantitative changes to our 

findings, leaving the overall conclusions of our study unaffected. 
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Chapter 5: Dissecting the impact of the gut microbiome on 

cancer immunotherapy 

This study is in revision in the journal Nature Computational Science: Hadjigeorgiou GA*, 

Harkos C*, Mishra AK, Morad G, Johnson SB, Ajami NJ, Wargo JA, Munn LL, 

Stylianopoulos T and Jain RK. Dissecting the impact of the gut microbiome on cancer 

immunotherapy. Nature Computational Science. * Equal contribution. 

https://doi.org/10.21203/rs.3.rs-3647386/v1 

Summary 

The gut microbiome has emerged as a key regulator of response to cancer immunotherapy. 

However, there is a gap in our understanding of the underlying mechanisms by which the 

microbiome influences immunotherapy. To this end, we developed a mathematical model 

based on i) gut microbiome data derived from preclinical studies on melanomas after fecal 

microbiota transplant, ii) mechanistic modeling of antitumor immune response, and iii) 

robust association analysis of murine and human microbiome profiles with model-predicted 

immune profiles. Using our model, we could distill the complexity of these murine and 

human studies on microbiome modulation in terms of just two model parameters: the 

activation and killing rate constants of immune cells. We further investigated associations 

between specific bacterial taxonomies and antitumor immunity and immunotherapy 

efficacy. This model can guide the design of studies to refine mechanistic links between the 

microbiome and immune system. 

Introduction 

ICBs have transformed cancer treatment. To date eight different ICBs have been approved 

alone or in combination with other therapies for ~80 indications [19]. However, less than 

20% of patients currently benefit from these treatments [23]. Moreover, many patients 

develop immune-related adverse events, some of which can be fatal [24]. The abnormal and 

immunosuppressive TME not only hinders the delivery of ICBs, but also renders them 

ineffective once they accrue in tumors [163]. An emerging approach to overcome this 

challenge is to reprogram the host microbiome [193,194].  CONSTANTIN
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The impact of the gut microbiome on immunotherapy outcome has been studied across 

several types of cancers [26,27,195–198], and an increasing number of clinical and 

preclinical studies have shown that the diversity, composition, and structure of the gut 

microbiome is associated with response and resistance to ICB [27,28]. Furthermore, recent 

experimental trials have demonstrated how FMTs can overcome resistance to ICBs [25,28–

33]. Despite the strong evidence for the effects of the microbiome on the immune cells and 

the efficacy of ICBs, little is known about the underlying mechanisms [197]. Limited 

information and lack of consistency among studies about the positive or negative effects of 

specific bacteria on ICB efficacy highlight the need to understand how gut microbes affect 

ICB response. 

Mathematical models have enhanced our understanding of not only tumor biology, but also 

that of other diseases [42,150,199,200]. For instance, mathematical models have been 

developed for the investigation of interactions among populations of microbes, determining 

which populations can prevail over others [201–203]. There are also models focusing on 

interactions among a small number of bacteria and specific populations of immune cells 

[204,205] or the interactions of the immune system with tumors [42]. Other models have 

investigated how interactions between cancer cells and immune cells influence the efficacy 

of immunotherapy for cancer as well as for cancer patients who have contracted COVID 

[145,199]. However, to our knowledge, none of the existing modeling frameworks have 

analyzed the effect of the microbiome on cancer immunotherapy. Elucidating the role of the 

microbiome on cancer immunotherapy requires an in-depth investigation of i) the 

mechanisms by which the microbiome affects activation of cells of both the innate and 

adaptive immune systems and ii) the positive or negative effects of the various bacterial taxa 

on immune effector cell function. A fundamental understanding of these processes has the 

potential to inform new therapeutic strategies. This task is challenging though, as it requires 

a detailed mathematical framework based on robust experimental data.  

Here we developed a mathematical model of immune checkpoint blockade therapy to 

investigate the possible mechanisms by which the microbiome influences the immune 

system. The model accounts explicitly for interactions among cancer cells, adaptive 

immunity (i.e., CD4+, CD8+ T cells, regulatory T cells, and B cells), innate immunity (i.e., CONSTANTIN
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immature dendritic cells, neutrophils, natural killer cells, and macrophages) and cytokines 

[145,199,206–208] (see  

Table 14 for a list of the model variables). We hypothesize that the gut microbiome affects 

the immune cells through two distinct processes: their activation and killing efficiency. 

These processes are incorporated through an activation rate, Arc and a killing rate, Krc (Figure 

33). The values of most model parameters were taken from the literature ( 

Table 15). For unknown parameters related to the growth of the tumor and the effects of 

immunotherapy, the baseline values (Table 16) were determined by an optimization 

procedure to reproduce the average experimental tumor growth curves from relevant mouse 

studies [25,28,31]. We then used the model to simulate data from a FMT clinical trial in 

melanoma patients who progressed on immunotherapy prior to FMT [30] and murine models 

developed to evaluate the impact of responder and non-responder FMT on antitumor 

response [31] for which complete microbiome profiles were available. These simulations 

yield mechanistic insights about immune cell dynamics in individual subjects. Finally, we 

performed an association analysis between the immune profiles predicted by our model and 

the microbiome profile data to discover potential positive and negative dependencies among 

specific microbial populations and components of the immune system (Figure 33). 
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Figure 33: Description of the approach followed in this study to relate immune profiling with 

microbiome data and schematic of mathematical model components. Our approach involves the 

reproduction of tumor growth curves with the deterministic mathematical model to calibrate model 

parameters. The tumor growth data as well as the microbiome profiling data are derived from clinical 

and preclinical studies on melanomas after fecal microbiota transplant and administration of 

immunotherapy. The deterministic model generates the immune profile data for each tumor and the 

predicted immune profile is associated with the experimentally derived microbiome profiling data. 

Schematic of mathematical model’s components. The arrows represent the interactions among model 

components. The intensity of each interaction is associated with the value of a model parameter. Some 

arrows represent the killing rate constant (Krc) and activation rate constant (Arc). The model includes 

the cytolytic effect of CD8+ T cells and Natural killer cells that induce the tumor cells to become antigen. 

M1 macrophages and immature dendritic cells interact with tumor cells and become antigen-presenting 

cells (APCs). APCs and Neutrophils interact with tumor cells and antigen inducing phagocytosis. APCs 

also activate naïve CD4+ and naïve CD8+ T cells to become effector CD4+ and CD8+ T cells, respectively. 

CD4+ T cells help the activation of Naïve B cells in becoming Plasma and Memory B cells. Plasma cells 

produce antibodies, which bind to tumor cells. Phagocytosis/apoptosis arrows represent the killing rate 

constant (Krc). The wider the stroke the higher the value of the Krc parameter. Also, some interactions 

are affected negatively by the binding of PD-1 to anti-PD-L1. Anti-PD-L1and anti-PD-1 reduce the 

binding of PD1 to PDL1, increasing the intensity of the interaction. In addition, the model incorporates 

the effects of pro- and anti-inflammatory cytokines and the regulatory effects of M2 macrophages and 

regulatory T cells (Tregs). Created with BioRender.com 

 

Materials and methods 

Mathematical model description 

The mathematical model consists of a set of ordinary differential and algebraic equations 

that are solved in MATLAB. Each model variable represents a model component. The 

components are: immune cells, tumor cells, cytokines and antibodies, including anti-PD-L1 

and anti-PD-1 antibodies (Figure 33). The model considers the effect of pro- and anti-

inflammatory cytokines on immune cell functions, the activation of naïve immune cells, and 

the killing of cancer cells by immune cells. The model also includes cancer cells in three 

different states: alive cancer cells, dead cancer cells that released free tumor antigen, and 

cancer cells targeted with antibodies. In addition, we account for the binding of PD1 to PDL1 

on the immune cell surface, which reduces their killing or activating potential. Injection of CONSTANTIN
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anti-PD-L1 or anti-PD-1 immunotherapy blocks PD-L1 or PD-1, respectively, on the cells 

enhancing the killing efficacy and activation efficacy of the adaptive immune system. The 

killing rate constant (Krc) represents the effectiveness of the tumor cells’ killing by the 

immune cells. As the killing potential of cells of the adaptive immune system is considered 

more robust compared to that of the innate system, a higher value of Krc is assigned to the 

cells of the adaptive immune system. The two Krc values are related with a proportionality 

constant. This is done to account for the more efficient killing of tumor cells by CD8 effector 

T cells, as shown in Figure 33. The activation rate constant (Arc) represents how easily a 

naïve cell can be converted into an effector cell. We assumed that the microbiome affects 

the immune response through these two parameters, Krc and Arc. 

The growing tumor was simulated by assuming that all interactions take place inside the 

tumor region. Furthermore, a uniform spatial distribution was assumed initially for the 

values of the model variables. The density of the tumor region that includes the immune cells 

and tumor cells was assumed constant through time and equal to the initial cancer cell 

density. Based on these assumptions and by calculating the reaction rates of all model 

components, the rate of change of tumor volume was evaluated. The mass balance for each 

component of the model was solved and the tumor volume was calculated from the total 

mass of cells that comprise the tumor. 

The values of many model parameters were taken from the literature ( 

Table 15). To determine the values of the remaining parameters, we employed an 

optimization procedure to reproduce experimental tumor growth curves from published 

studies [25,28,31,209] by varying these parameters. The optimization function was the 

minimization of the sum of the squared difference of the logarithmic values between the 

measured (Vexp.) and simulated (Vcalc.) tumor volumes (min (∑ [ln(Vexp,i) − ln(Vcalc,i)]
2

i )) 

. Only positive values of model parameters were accepted by the optimization algorithm to 

have a physical meaning. This was performed by introducing a penalty into the optimization 

function for negative parameters. The Nelder–Mead simplex algorithm [210,211] was used 

to find the minimum of the optimization function. The baseline model parameters that 

depend on tumor cell type and immunotherapy type (anti-PD-L1 and anti-PD-1) are defined 

with the optimization algorithm by using the average experimental volume from Matson et CONSTANTIN
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al. [28], Gopalakrishnan et al. [25] and Spencer et al. [31] for B16, BP and HCmel1274 

melanoma cells. The baseline parameters for each combination of tumor cell/immunotherapy 

type were kept the same for the reproduction of tumor growth curves for each individual 

subject with the same tumor cell and immunotherapy type, and only the parameters Krc and 

Arc were varied to reproduce the other experimental datasets. The aforementioned process 

assessed the predictive capabilities of the model by varying only two parameters that affect 

crucial mechanisms of the immune system. 

Using the observed tumor volume data, we trained our mathematical model to obtain an 

optimal estimate of Krc and Arc. We used the forward model parameters estimate to learn the 

state of the immune system in terms of the concentration of the various types of immune 

cells and cytokines. Recent advances in immunotherapy have shown that the microbiome 

mediates through the immune system to affect tumor growth in cancer patients [25,28–

33,198]. We have accessed the overall significance of some of the observed confounders, 

such as experiment type (E1, E2, and E3) and treatment (pre/post-PD-L1), with 

PERMANOVA. Accordingly, we compute the association between the microbiome and the 

predicted immune components with Spearman's Rank correlation analysis. 

Interactions between the immune system and tumor cells 

Figure 34 represents the interactions between the immune components and the tumor cells 

as well as the interactions of the PD-1 and PD-L1 receptors considered in our mathematical 

model. Each component of the model corresponds to a variable. These variables are 

presented in  

Table 14 along with their description. These variables are included in ordinary differential 

equations or algebraic equations. Then, these equations are solved simultaneously by a 

MATLAB source code. 
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Figure 34: Schematic of mathematical model and its components. The arrows represent the interactions 

among model components. Some arrows represent the killing rate constant (Krc) and activation rate 

constant (Arc). The model includes the cytolytic effect of CD8+ T cells and NK cells that induce the 

tumor cells to make antigen(s). M1 macrophages and dendritic cells interact with tumor cells and become 

antigen-presenting cells (APCs). APCs and Neutrophils can phagocytose tumor cells and the free tumor CONSTANTIN
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antigen. APCs also activate naïve CD4+ and naïve CD8+ T cells to turn them into effector CD4+ and 

CD8+ T cells, respectively. CD4+ T cells help the activation of Naïve B cells in becoming Plasma and 

Memory B cells. Plasma cells produce antibodies, which bind to tumor cells. Phagocytosis/apoptosis 

arrows represent the killing rate constant (Krc). Also, the killing of cancer cells by immune cells as well 

as the activation of naive immune are affected negatively by the binding of PD-1 to PD-L1. Anti-PD-L1 

and anti-PD-1 reduce the binding of PD-1 to PD-L1, increasing the intensity of these interactions. In 

addition, the model incorporates the effects of pro-inflammatory and immunosuppressive cytokines and 

the adverse effects of M2 macrophages and regulatory T cells (Tregs). Created with BioRender.com 

 

Pro-inflammatory cytokines: 

Pro-inflammatory cytokines are produced by natural killer cells (NK), effector CD8+ T cells 

(TE), antigen-presenting cells (APC), effector CD4+ T cells (ThΕ), neutrophils (N), type 1 

macrophages (M1) and plasma cells (P). The rate of change of the concentration of the pro-

inflammatory (c) cytokines (e.g., Il2, IFNγ, TNF-α) is described by the following equation: 

dc

dt
= Rc = kcNKNK + kcTETE+kcAPCAPC + kcThΕThΕ + kcNN + kcM1M1

+ kcPP − δc c 

(161) 

Where the first 7 terms describe the production rates of c by the natural killer (NK), effector 

CD8+ T (TE), antigen-presenting cells (APC), effector CD4+ T cells (ThΕ), neutrophils (N), 

macrophages type 1 (M1) and plasma B cells (P) respectively, and the last term is the 

degradation rate of c. 

Immunosuppressive cytokines 

Immunosuppressive cytokines (e.g., IL10, TGF-β) are produced by regulatory T cells (Treg) 

and type 2 macrophages (M2). The rate of change of the concentration of the 

immunosuppressive (α) cytokines (e.g., IL10, TGF-β) is described by the following 

equation: 

dα

dt
= Ra = kant−Treg

Treg + kant−M2M2 − δaa (162) 
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Where the first two terms describe the production of immunosuppressive cytokines by 

regulatory T cells (Treg), type 2 macrophages (M2). The last term is the degradation rate of 

immunosuppressive cytokines. 

Interactions between PD-L1, PD-1, anti-PD-1, and anti-PD-L1 

PD-1 exists on natural killer cells, effector CD8+ T cells, antigen-presenting cells, effector 

CD4+ T cells, neutrophils, macrophages type 1 and 2, naïve CD8+ and CD4+ T cells. PD-L1 

exists on tumor cells, antigen-presenting cells, macrophages type 1 and 2, dendritic cells, 

naïve B cells, memory cells and plasma cells. PD-1 on any cell can bind to PD-L1 on other 

cells or to anti-PD-1 antibody. Similarly, PD-L1 on any cell can bind to PD-1 on other cells 

or to anti-PD-L1 antibody. 

The concentration of the available PD-L1 for binding [212,213] depends on the amount of 

the available PD-L1 on the cells and is described by the following equation: 

[PDL1] = βT̂T̂ + βAPCAPC + βDCDC + βM1M1 + βM2M2 + βΒNΒN + βPP

− [PD1 − PDL1] − [PDL1 − antiPDL1] 
(163) 

where the constants β describe the amount of PD-L1 on each type of cell. The first terms 

describe the amount of PD-L1 on tumor cells, APCs (APC), dendritic cells (DC), 

macrophages type 1 and 2 (M1 and M2), naïve B cells (ΒN) and plasma B cells (P). The last 

two terms describe the amount of PD-L1 which has been already bound to PD-1 and anti-

PD-L1 respectively. 

The concentration of the available PD-1 for binding [212,213] depends on the amount of the 

available PD-1 on the cells and is described by the following equation : 

[PD1] = aTETE + aThΕThΕ + aTN
TN + aThN

ThN + aNN + aNKNK + aM1
M1

+ aM2
M2 + aAPCAPC + aDCDC + aTreg

Treg − [PD1 − PDL1]

− [PD1 − antiPD1] 

(164) 

where the parameters α represent the amount of PD-1 on each type of cell. The terms except 

for the last two describe the amount of PD-1 ligand on the following immune cells TE, ThΕ, CONSTANTIN
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TN,   ThN, N , NK, M1, M2, APC, DC and Treg. The last two terms describe the amount of 

PD-1 which is already bound to PD-L1 and anti-PD-1 respectively. 

The rate of change in the concentration of the PD-1 – PD-L1 complex is described by the 

following equation: 

 

d[PD1 − PDL1]

dt
= aPL[PD1][PDL1] − dQ[PD1 − PDL1] (165) 

where the first term is the binding of PD-1 to the PD-L1 and the last term is their unbinding. 

The rate of change in the concentration of the anti-PD-1 - PD-1 complex is: 

d[PD1 − antiPD1]

dt

= μPD1−aPD1[PD1][anti − PD1]

− dPD1−aPD1 [PD1 − antiPD1] 

(166) 

where the first term is the binding of PD-1 to the anti-PD-1 and the last term is their 

unbinding. 

The rate of change in the concentration of the anti-PD-1 is: 

d[anti − PD1]

dt
= γanti−PD1 − μPD1−aPD1[PD1][anti − PD1]

+ dPD1−aPD1 [PD1 − antiPD1] − danti−PD1[anti − PD1] 

(167) 

where the first term represents the source term of the anti-PD-1, the second term is the 

binding of the anti-PD-1 to PD-1, the following term is their unbinding, and the last term is 

the degradation of anti-PD-1. 

The rate of change in the concentration of the anti-PD-L1 - PD-L1 complex is given by the 

following equation: 
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d[PDL1 − antiPDL1]

dt

= μPDL1−aPDL1[PDL1][anti − PDL1]

− dPDL1−aPDL1 [PDL1 − antiPDL1] 

(168) 

where the first term describes the binding of PD-L1 to the anti-PD-L1 and the last term is 

their unbinding. 

The rate of change in the concentration of the anti-PD-L1 is 

d[anti − PDL1]

dt

= γanti−PDL1 − μPDL1−aPDL1[PDL1][anti − PDL1]

+ dPDL1−aPDL1 [PDL1 − antiPDL1]

− danti−PDL1[anti − PDL1] 

(169) 

where the first term represents the source term of the anti-PD-L1, the second term is the 

binding of the anti-PD-L1 to PD-L1, the following term describes their unbinding, and the 

last term is the degradation of the anti-PD-L1. 

Φx−y is the fraction of the total PD-1-PD-L1 complex, referring to the binding of PD-1 

receptor on x-cell to PD-L1 receptor on y-cell. 

Φx−y =
axx

∑ axxx

βyy

∑ βyyy
 (170) 

Where x can be any of the following cell types: 

TE, ThΕ, TN, ThN, N, NK, M1, M2, APC, DC, Treg 

and y can be any of the following: 

T̂, APC, DC, M1, M2, BN, P, MB 

The reduction of PD-1, PD-L1 and PD-1-PD-L1 complex is assumed to be equally 

distributed among the receptors on the different cell types. 
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Cancer Cells 

The rate of increase in the number of cancer cells (T̑) is equal to their rate of proliferation 

minus their death rate. The death of cancer cells (T̑) is induced by CD8+ T cells (TE) and 

natural killer cells (Nk). T̑ can be phagocytosed by neutrophils (N), type one macrophages 

(M1), dendritic cells (DC), and/or antigen presenting cells (APC). The interaction between 

the tumor cells and either CD8+ T cells (TE) or natural killer cells (Nk) or type one 

macrophages (M1) or neutrophils (N) or dendritic cells (DC), or antigen presenting cells 

(APC) is inhibited by the binding of PD-1 of the immune cells to PD-L1 of the tumor cells. 

The antibodies can bind to receptors on the tumor cells and neutralize them. 

The rate of change in the concentration of the cancer cells is given by: 

dT̑

dt
= RT̑ = kT̑T̑ − dAAT̑

− (KrcTE

KT

KT + ΦTT
Ε−T̑ [PD1 − PDL1]

TE

+ KrcNk

KT

KT + ΦNk−T̑ [PD1 − PDL1]
Nk

+ KrcM1

KT

KT + ΦM1−T̑ [PD1 − PDL1]
M1

+ KrcN

KT

KT + ΦN−T̑ [PD1 − PDL1]
N

+ KrcDC

KT

KT + ΦDC−T̑ [PD1 − PDL1]
DC

+ KrcAPC

KT

KT + ΦDCT
∗ −T̑ [PD1 − PDL1]

APC) T̑ 

(171) 

Where the first term is the proliferation rate of the tumor cells. The second term describes 

the neutralization of tumor cells by the binding of antibodies. The remaining terms are the 

death rates which depend on the tumor cell density and the immune cells (effector CD8+, 

natural killer, type 1 macrophage, neutrophils, dendritic cells and antigen presenting cells) 

[214]. 
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Dead Cancer Cells or free tumor antigen 

The dead cancer cells or free tumor antigen (T̑D) are produced when an immune cell induces 

cytolysis of a tumor cell. T̑D is phagocytosed by N, M1, DC or APC. The phagocytosis of 

dead cancer cells does not depend on PD-1-PD-L1 binding. 

The rate of change in the concentration of the dead tumor cells or free tumor antigen is: 

dT̑D

dt
= RT̑D

= dTcT̑

+ T̑ (KrcTE

KT

KT + ΦTE−T̑ [PD1 − PDL1]
TE

+ KrcNk

KT

KT + ΦNk−T̑ [PD1 − PDL1]
Nk)

+ (KrcTETE + KrcNkNk)T̑A

− (KrcM1
M1 + KrcNN + KrcDCDC + KrcAPCAPC)T̑D 

(172) 

The first term is the rate of apoptosis of tumor cells which increases the number of T̑D. The 

following six terms describe the increase in T̑D when TEand Nk induce cytolysis ofT̑ or tumor 

cell with antibody (T̑A). The remaining terms represent the phagocytosis of T̑D by N, M1, DC 

or APC 

Cancer Cells with Antibody 

The cancer cells with antibodies T̑A bound to their membrane are produced when an antibody 

binds to a cancer cell. Cancer cells with antibodies are easily recognized and killed by the 

immune cells. T̑A can be consumed by the following immune cells TE, Nk, M1, N DC or APC.  

The rate of change in the concentration of cancer cells with antibodies bound to their 

membrane is: 

dT̑A

dt
= RT̑A

= dAAT̑

− (KrcTETE + KrcNkNk + KrcM1
M1 + KrcNN + KrcDCDC

+ KrcAPCAPC)T̑A 

(173) 
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where the first term is the production of T̑A by the binding of antibodies on tumor cells. The 

remaining terms are the elimination of T̑A by the following immune cells TE, Nk, M1, N DC 

or  APC. 

Neutrophils 

The recruitment of neutrophils depends on the pro-inflammatory cytokines.  

The rate of change in the concentration of the neutrophils is: 

dN

dt
= RN =

λN c

KN + c
− δNN (174) 

where the first term describes the recruitment of the neutrophils and its dependence on pro-

inflammatory cytokines and the last term describes their death rate. 

Macrophage, dendritic, and antigen presenting cells 

Macrophages recruitment depends on concentration of pro- and anti- inflammatory 

cytokines. The concentration of pro-inflammatory cytokines relative to the total cytokines 

increases the concentration of type 1 macrophages. The concentration of immunosuppressive 

cytokines relative to the total cytokines increases the concentration of type 2 macrophages. 

Type 1 macrophages can also become antigen presenting cells in the same manner as 

dendritic cells. APCs production depends on the killing of tumor cells, dead tumor cells (or 

free tumor antigen) and tumor cells with antibody, killed by dendritic cells or type 1 

macrophages. Their activation depends on pro-inflammatory and immunosuppressive 

cytokines. 

Macrophages 

The rate of change in the concentration of type 1 and type 2 macrophages is given by: 
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dM1

dt
= RM1

= λM1

c

α + c

−
χM1 c

KAPC + α

KaAPC

KaAPC + α
  M1 [KrcM1

(
KTT̑

KT + ΦM1−T̑ [PD1 − PDL1]
+ T̑D

+ T̑A)] − δΜ1M1 

(175) 

dM2

dt
= RM2 = λM2

α

c + α
− δΜ2M2 (176) 

where type 1 macrophages production depends on the ratio of pro-inflammatory to total 

cytokines. The second term describes their transformation to antigen-presenting cells by 

phagocytosis of T̑, T̑D, or T̑A. Type 2 macrophages production depends on the ratio of 

immunosuppressive to total cytokines. Both equations include a death rate term [212,215]. 

Dendritic cells (DC) 

The rate of change in the concentration of the dendritic cells is: 

dDC

dt
= RDC

= SDC − δDCDC

− χDC

 c

KcAPC + c

KaAPC

KaAPC + α
 DC [KrcDC (

KTT̑

KT + ΦDC−T̑ [PD1 − PDL1]
+ T̑D

+ T̑A)] 

(177) 

where the first term describes the source term of DCs, and the next term is the death rate of 

DCs. The next term describes the conversion of dendritic cells to antigen-presenting cells 

which depends on the tumor cells (T̑), dead tumor cells (T̑D) and tumor cells bearing 

antibodies on their membrane (T̑A).  

Antigen-presenting cells APCs (APC) 

The rate of change in the concentration of the APCs is: CONSTANTIN
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dAPC

dt
= RDC∗

=
 c

KcAPC + c

KaAPC

KaAPC + α
 [χDCKrcDCDC (

KTT̑

KT + ΦDC−T̑ [PD1 − PDL1]
+ T̑D

+ T̑A) + χM1KrcM1
M1 (

KTT̑

KT + ΦM1−T̑ [PD1 − PDL1]
+ T̑D + T̑A)]

− δAPCAPC 

(178) 

where the first term describes the conversion rates of dendritic cells and type 1 macrophages 

to APCs (APC) and the next term describes the death rate of APCs. 

CD4+ T cells 

Naïve CD4+ T cells can become effector CD4+ T cells. Activation of effector CD4+ T cells 

depends on pro-inflammatory cytokines and the PD-1-PD-L1 complex especially on the 

binding of naïve CD+4 T cell PD-1 to the APC PD-L1. 

Naïve CD4+ T cells (ThN) 

The rate of change in the concentration of the Naive CD4+ T cells (ThN) is: 

dThN

dt
= RThN = SThN

− ThN (
c

KTh + c
) (ArcTh

KT

KT + ΦTN−DC∗[PD1 − PDL1]
APC)

− δThN  ThN 

(179) 

where the first term describes the source term of Naïve CD4+ T cells, and the second term 

describes the activation rate of naive CD4+ T cells by APCs (APC). The last term describes 

the death rate of naïve CD4+ T cells. 

Effector CD4+ T cells (ThE) 

The rate of change in the concentration of the effector CD4+ T cells is: 
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dThΕ

dt
= RThΕ

= ArcThThN (
c

KTh + c
) ( 

KT

KT + ΦThN−DC∗[PD1 − PDL1]
APC) − δThΕThΕ 

(180) 

where the first term describes the activation of naïve CD4+ T cells by APC and the second 

term describes their death. 

Regulatory T cells (Treg) 

Regulatory T cells can be supplied from thymus and regulate the immune system by 

producing immunosuppressive cytokines. 

The rate of change in the concentration of the regulatory T cells is: 

dTreg

dt
= RTreg

= STreg − δTregTreg (181) 

where the first term describes their production rate from the thymus. The last term describes 

their death rate [216]. 

CD8+ T cells 

Naïve CD8+ T cells can become effector CD8+ T cells. Activation of effector CD8+ T cells 

in general depends on cytokines and the PD-1-PD-L1 complex. 

Naïve CD8+ T cells (TN) 

The rate of change in the concentration of the naïve CD8+ T cells is: 

dTN

dt
= RTN

= STN − TN (
c

KTN + c
) (ArcTN

KT

KT + ΦTN−DCT
∗ [PD1 − PDL1]

APC  )

− δTN  TN 

(182) 

where the first term represents the source term of Naïve CD8+ T cells, and the second term 

describes the activation rate of naïve CD8+ T cells by APC. The last term describes the death 

rate of naïve CD8+ T cells. CONSTANTIN
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Effector CD8+ T cells (TE) 

The rate of change in the concentration of the effector CD8+ T cells (TE) is: 

dTE

dt
= RTE = ArcTNTN (

c

KTN + c
) ( 

KT

KT + ΦTN−DCT
∗ [PD1 − PDL1]

APC )

− δTΕTE 

(183) 

where the first term describes the activation rate of the naïve CD8+ T cells by APC and the 

second term describes their death. 

Natural killer cells 

The production of natural killer cells depends on the ratio of pro- to immunosuppressive 

cytokines.  

The rate of change in the concentration of the natural killer cells is: 

dNK

dt
= RNK =

λNΚ c

KNΚ + c
− δNKNK (184) 

The first term is the production of natural killer cells depending on the pro-inflammatory 

cytokines. The second term is their death rate. 

B cells  

Naïve B cells can become Plasma cells and Memory cells. Pro-inflammatory cytokines and 

effector CD4+ T cells help the Naïve B cells to become memory B cells and plasma cells. 

Naıve Β cells (ΒN) 

dΒN

dt
= RΒN = SΒ −  [(ArcBNM + ArcBNP)ThΕ]BN (

c

KB + c
) − δBBN 

(185) 

where the first term describes the source of naïve B cells. The second term describes the 

conversion of naïve B cells to plasma and memory cells and the last term describes the death 

of naïve B cells. 

CONSTANTIN
OS H

ARKOS 



118 

 

 

Memory Β cells (Β) 

dMB

dt
= RMB = ArcBNMBNThΕ (

c

KB + c
) − δMBMB 

(186) 

where the first term describes the production rate of memory B cells from naïve B cells 

which depends on effector CD4+ cells and pro-inflammatory cytokines. The second term 

describes the death of memory B cells. 

Plasma cells  

dP

dt
= RP = ArcBNPBNThΕ (

c

KB + c
) − δPP 

(187) 

where the first term describes the production of plasma cells from naïve B cells which 

depends on effector CD4+ and pro-inflammatory cytokines. The second term describes the 

death of plasma cells. 

Antibodies 

Antibodies are produced by plasma cells and can bind to tumor cells. 

dA

dt
= RA = kAP − dAAT̑ 

(188) 

where the first term describes the production of antibodies by plasma cells. The last term 

describes the binding of antibodies to tumor cells.  

Calculation of the tumor volume 

To calculate the tumor volume, the initial density (or concentration) of the tumor (including 

the cancer cells and immune cells) was assumed equal to the initial cancer cell density T̂0, 

because the initial concentrations of the immune cells was negligible. The density of the 

tumor (whole system) was assumed to remain constant through time (equal to T̂0). These 

assumptions allow to calculate the rate of change of the volume with the total rate of change 

of the mass: 
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Where Ri is the rate of change in concentration (reaction rates) of ith cell. The reaction rates 

of the following cells were considered: 

TE, ThΕ, TN, ThN, N, NK, M1, M2, APC, DC, Treg, T̂, BN, P, MB, T̑A  

The volume of the tumor is calculated at the same time with the mass balances of all 

components. 

Calculation of the mass balance of each component 

The rates of change of concentrations are functions of the concentrations (equations 1,2, 5-

9 and 11-28). They have the following form, and they are calculated first. 

dq

dt
= Rq (190) 

Where q =(c, α, TE, ThΕ, TN, ThN, N, NK, M1, M2, APC, DC, Treg, T̂, BN, P, 

MB, T̑D, T̑A , A, [PD1 − PDL1], [PD1 − antiPD1], 

                                     [anti − PD1], [PDL1 − antiPDL1], [anti − PDL1]) 

Then they are introduced in the mass balance of each component as follows: 

d(mq)

dt
=

d(Vq)

dt
= VRq (191) 

Where mq, q and Rq are the mass, concentration, and rate of change in concentration 

(reaction rate) of the q component respectively and V is the current volume. 

The concentrations are calculated by dividing each mass with the total volume 

q =
mq

V
 (192) 

dV

dt
=

1

T̑0

V ∑ Ri

i

 (189) 
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Description of murine and human studies used for calibration of the model 

Murine studies 

The experimental design for these studies has been previously described in full detail [31]. 

The studies were conducted at the MD Anderson Cancer Center under the approval of the 

Institutional Animal Care and Use Committee (IACUC). B6 germ-free mice were colonized 

by a complete responder microbiota through FMT. One week was allowed for engraftment, 

following which, mice received subcutaneous injection of BP melanoma cells. Once tumors 

reached a size range of 250-500 mm3, mice were treated with 3 doses of intraperitoneal anti-

PD-L1 and tumor size was measured using a caliper.  

Human studies 

For further calibration of our model, we incorporated data from a phase 1 clinical trial 

conducted by Baruch et al. [30] that evaluated the safety of FMT in patients with PD-1-

refractory melanoma. Ten patients were enrolled in this study and received a broad-spectrum 

antibiotic treatment to deplete the native microbiota, followed by FMT with stool samples 

from complete responders (2 donors). FMT was conducted via colonoscopy and continued 

via oral capsules at day 1 and day 12 post-colonoscopy. Subsequently, patients received anti-

PD-1 treatment with additional FMT (oral capsules) administered every 14 days. Response 

to tumor treatment was measured using the iRECIST criteria.  

Statistical analysis 

We used statistical methods to study the connection between the microbiome and the 

immune system in experiments 3 4 and 5 [31]. These experiments involved changing the 

microbiome only through FMT. We used a beta-diversity analysis to compare diversity 

between samples and represented each sample using the top three principal components of 

principal coordinate analysis. We also analyzed the significance of observed confounders 

and ICB treatment on microbiome using PERMANOVA analyses. This helped us identify 

confounders that had a significant impact on the diversity of the microbiome. After 

controlling these confounders, we measured the association using Spearman's Rank 

correlation. We used the R statistical software and MATLAB for all analyses and visual 

representations. CONSTANTIN
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Results  

Gut microbiome affects the activation and killing potential of immune cells 

We set out to define potential mechanisms by which the gut microbiome affects anti-tumor 

immune responses. To do so, we first established the values of the model parameters that are 

involved in the growth of the tumor and the efficacy of immunotherapy (Table 16) by fitting 

the model to experimental data from B16, BP, and HCmel1274 murine melanoma tumors 

using an optimization procedure [25,28,31]. In the B16 and BP melanoma studies, the gut 

microbiome was modulated in the case of specific pathogen-free mice or seeded in the case 

of germ-free mice with a FMT from a responder or a non-responder patient. Subsequently, 

the mice were treated with anti-PDL1 antibodies (Figure 35a). The experimental data and 

model predictions are shown in Figure 35b-c and Figure 36. For each experiment, we 

generated a set of values for the model parameters. Among groups of each experiment only 

the parameter related to the immune cell activation (Arc) and the parameter related to the 

efficiency of cancer cell killing (Krc) were varied. Those two parameters describe the 

hypothesized roles of the microbiome. 
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(A) 

Experiment Cell line Treatment 
Microbiome 

modulation 

Matson et al. [28] B16 
Anti-PD-L1 (day 

4) 
FMT 

Gopalakrishnan et al. 

[25] 
BP 

Anti-PD-L1 (day 

14) 
FMT 

 

(B) (C) 

Matson et al. [28] Gopalakrishnan et al. [25] 

  

Figure 35: Comparison of experimental tumor growth curves with model prediction to define baseline 

values of model parameters. (a) Experimental details for each experiment. (b) and (c) Bullet points 

represent the experimental data and the continuous curves represent the model predictions. Day 0 is the 

initiation of the simulation, (b) day 3, (c) day 7 of the experiment. The vertical dashed black line 

represents the initiation of immunotherapy (anti-PD-L1). (b) experimental data from Matson et al. [28] 

(B16 melanoma cells) and (c) Gopalakrishnan et al. [25] (BP melanoma cells. In (b) and (c), the control 

groups are germ-free mice and the rest of the groups received FMT from either a responder or a non-

responder patient to immunotherapy. 
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Figure 36: Comparison of experimental tumor growth curves with model prediction to define baseline 

values of model parameters. The bullet points represent the experimental data, and the continuous 

curves represent the model predictions. Day 0 is the initiation of the simulation and day 1.5 of the 

experiment. The vertical dashed black line represents the initiation of immunotherapy (anti-PD1). The 

experimental data are from Spencer et al. (HCmel1274 melanoma cells) [31]. The mice were kept in 

specific pathogen-free conditions and fed with low- or high-fiber diet. 

 

Next, we employed data from a clinical study of patients with melanoma who progressed on 

ICB and were subsequently treated with FMT followed by ICB in an attempt to overcome 

initial ICB resistance (Baruch et al.[30]). Here, we assigned the same baseline parameter 

values obtained from the HCmel1274 murine melanoma study (Spencer et al. [31] Figure 

36) because these studies used the same anti-PD1 treatment; we then simulated treatment of 

the human melanoma tumors (Figure 37a-c). To reproduce these data, we only varied the 

parameters related to the immune cell activation (Arc) and efficiency of cancer cell killing 

(Krc) which we assumed are affected by microbiome (as shown in Figure 37a). The model 

was able to reproduce the clinical tumor growth data with good accuracy (Pearson's rho, 

r=0.7 with a p-value 0.0001) as well as validated with data for CD8+ T cells (Figure 38).  
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(A) 

  

(B) (C) 

Experiment Cell line Treatment 

Experiment 

2-5, Spencer 

et al. [31] 

BP Anti-PD-L1 

FMT 

(unpublished) 
BP Anti-PD-L1 

Baruch et al. 

[30] 
Melanoma Anti-PD-1 

 

 

(D) (E) 

  

Figure 37: Model calibration with preclinical and clinical data. Microbiome modulation was assumed to 

affect only the parameters Krc and Arc. Comparison of model predictions with measured. (a) Schematic 

of followed procedure (Created with BioRender.com) (b) Experimental details for each experiment (c) 

clinical data that include 9 patients (Baruch et al. [30]) and (d) preclinical tumor volume data that 

include 62 mice which received only FMT modulation of microbiome (Spencer et al. [31] and an 

unpublished FMT data set). (e) Range of Krc and Arc parameters employed for the results in figure 3D, 

blue and red points correspond to responders and non-responders, respectively. CONSTANTIN
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Figure 38: Comparison of simulated CD8 T with available experimental data from the human clinical 

trial after treatment[34] 

 

After defining baseline values of the model parameters, we then used the model to probe 

new sets of pertinent experimental data for which complete sets of microbiome profiles were 

available. To reproduce these data, we only varied the parameters Arc and Krc. Specifically, 

we used data from 62 mice (Figure 37d) where: i) 35 received FMT from a responder, a non-

responder melanoma patient, or a healthy person (FMT, unpublished data) and ii) 27 

received FMT from a responder patient (experiments 2-5 from Spencer et al. [31]). For 

experiments 2-5 and FMT, the baseline parameters were kept the same as for Gopalakrishnan 

et al. [25] (Figure 35c and Table 16) because both of these experiments involved the same 

cell line (BP melanoma) and the same treatment (anti-PD-L1).  

This process resulted in fits for the killing rate constant (parameter Krc) and the activation of 

the adaptive immune system (parameter Arc) for each mouse. Figure 37d presents the 

comparison of the experimental and the predicted tumor volume by the model at all available 

time points. The diagonal dashed line depicts the best-fitting case scenario. Points close to 

the diagonal line have the best agreement between the simulated and experimental values. 

By only varying Krc and Arc and keeping the rest of the parameters at their baseline values, 

the model was able to reproduce the measured tumor volume for all 62 mice with good 

accuracy (R2=0.78; Pearson's rho, r=0.94 with a p-value less than 0.0001). This supports our 

hypothesis that the primary effects of the microbiome are through modulation of the killing CONSTANTIN
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of tumor cells by immune cells and the activation of the adaptive immune system. Figure 

37e shows the range of values of Krc and Arc that correspond to responders and non-

responders (blue and red points respectively). A tumor was assumed to be a responder if its 

simulated volume decreased below a threshold value (10 mm3) and never surpassed a size 

of 1500 mm3 until day 100. 

Modeling framework suggests antitumor immune responses 

The advantage of mathematical modeling is the ability to estimate mechanistic parameters 

that are difficult to determine experimentally. From the analysis in Figure 37d, our model 

predicted the immune profile of the 62 cases for which the microbiome profile was available. 

Predictions of model variables for the antitumor immune response are shown in Figure 39. 

The figure presents the time evolution of model variables, and the plots are divided into two 

categories representing the tumor response – responders and non-responders. A tumor was 

assumed to be a responder if its simulated volume decreased below a threshold value (10 

mm3) and never surpassed a size of 1500 mm3 until day 100. The non-responder 

concentrations (red curves) of pro-inflammatory cytokines, natural killer cells, and antigen-

presenting cells have lower values than the corresponding concentrations for the responders 

(blue curves), and they reach a plateau. The activation of the adaptive immune system is also 

insignificant in the non-responders and thus, the non-responder concentrations of the effector 

CD8+ and CD4+ T cells, memory, and plasma B cells are near zero, which results in a low 

amount of tumor antigen and tumor cells with antibodies. On the other hand, the responders’ 

concentrations of the pro-inflammatory cytokines, natural killer cells, and antigen-presenting 

cells are continuously increasing. There is also a significant activation of the adaptive 

immune system in responders, which results in high concentrations of effector CD8+ and 

CD4+ T cells, memory, and plasma B cells. Overall, the simulations predict that the 

responder mice have strong innate and adaptive immune responses, which results in 

decreased tumor cell density and tumor eradication. 
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Figure 39: The time evolution of indicative model variables. The blue curves represent the variables for 

the responder group and the red curves for the non-responders respectively. 

 

Association analysis suggests correlations of specific gut bacteria with 

immune cell responses  

Next, we examined the relationships between specific microbes and components of the 

immune system. To this end, we performed a robust association analysis between the model 

predictions of the immune system with the microbiome profiling (Figure 40a and Figure 

40b) from the murine studies (experiment 3 4 and 5 in Figure 37) [31] of mice that received 

microbiome modulation only with FMT. To identify associations of the microbiome families 

with components of the immune system, we evaluated the association of microbiome profiles 

reported in the experimental studies with the immune profiles generated by our model. For 

the association analysis (Figure 40c), the microbiome profiling data (Figure 40a) were not 

separated to pre- and post-ICB treatment because the underlying microbiome profiles are not 

significantly different as seen in Figure 40b for the p-value of pre-/post-treatment. The three 

different experiments involve studies with three different FMT responder donors. The 

different FMT donors induce different microbiomes, as evidenced by the microbiome 

profiles in Figure 40a and Figure 40b (p-value of the experiment 3,4, and 5 is 0). The 

association analysis is presented in Figure 40c and summarized in Table 8. We have suitably 

adjusted for the three experiments by only considering the microbiome families that have 

non-zero relative abundance for their associations. In this way, we have the largest possible 

data set that allowed us to extract the strongest signal from all experiments.  CONSTANTIN
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Figure 40: Microbial abundance profiles obtained by 16Sv4 RNA gene profiling of murine fecal samples. 

(a) Fecal microbiome profiles are represented by compositional plots showing the relative abundance of CONSTANTIN
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the bacteria at the family level. the three experimental groups (E1, E2, and E3) received only FMT 

microbiome modulation and treated with a-PD-L1 (b) Principal components analysis of the microbiome 

data and the p-value of PERMANOVA for pre or post treatment groups and the experimental groups. 

(c) The association between microbiome at the family level and immune profile by adjusting for the three 

experiments (only values with p<0.05 are presented) 

 

Table 8: Summary of the association of microbiome at the family level with immune profile for Figure 

40c. Table shows the association between microbiome and adaptive-innate immunity before and after 

treatment. 

 Post-treatment 

 Adaptive Innate 

Acidaminococcaceae ↓ - 

Clostridia unknown ↓ - 

Lachnospiraceae - ↑ 

Others - ↓ 

Prevotellaceae ↓ ↑ 

Ruminococcaceae ↓ ↓ 

 

Positive association 
↑ 

Negative 

association 
↓ 

No indication 
− 

 

Our model identified certain bacterial taxa that have been the subject of previous studies, 

such as Lachnospiraceae, Prevotellaceae and Ruminococcaceae [217–220]. The analysis 

Figure 40c suggests that there are direct associations between the immune cell killing and 

activation efficiencies (Krc and Arc respectively in Figure 40c) and the bacterial taxa. These 

associations are consistent with our initial hypothesis that the microbiome affects the 

immune system primarily by enhancing immune cell activation and killing efficiency. The 

results also show that Lachnospiraceae is correlated positively with the killing effectiveness 

of the innate immune cells (natural killer, neutrophils and APCs) and negatively with the 

number of tumor cells. On the other hand, the Acidaminococcaceae and "Other" families 

(families that had a very small relative abundance) are correlated negatively with the killing CONSTANTIN
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effectiveness of the innate immune cells and positively with tumor cells. The 

Ruminococcaceae family is correlated negatively with the killing effectiveness of the innate 

immune cells and activation effectiveness of the adaptive immune cells, which results in a 

positive correlation with tumor cells. Interestingly, the Prevotellaceae family seems to have 

a dual role: it is correlated positively with the killing effectiveness of the innate immune cells 

and negatively with the activation effectiveness of the adaptive immune cells. 

Discussion 

In this chapter, we developed a systems approach to elucidate the role of the microbiome in 

controlling immune responses and determining the efficacy of immunotherapy. Our 

approach is based on (a) microbiome profiles obtained from preclinical and clinical studies, 

(b) a mechanistic mathematical model specifically developed for the simulation of the 

immune profile during anti-tumor response and (c) an advanced statistical analysis to 

correlate the experimental data with the model predictions. Through comparison of model 

predictions with experimental observation of tumor response, we identified the immune 

activation rate, Arc, and the killing rate, Krc, as key determinants of microbiome-mediated 

anti-tumor immunity. Provocatively, using our mathematical model, we were able to distill 

the complexity of each experiment and microbiome modulation with just two model 

parameters: the killing rate constant (Krc) and the activation rate constant (Arc) (Figure 37). 

Furthermore, by evaluating the association of different bacterial taxa with the immune 

profiles predicted by our model, we identified patterns of association that provide additional 

information about the involvement of the microbiome in the response and resistance to ICB. 

These results can inform future pre-clinical and clinical studies. Interestingly, the 

microbiome association analysis indicates direct connections between the microbiome and 

killing and activation efficiency of the adaptive immune cells. Our results can also help guide 

experimental investigations of these two crucial mechanisms and how they are affected by 

specific microbiome families. Of note, our model and methodology can be used as a tool to 

test and refine new mechanisms as soon as new experiments become available. 

Regarding the association analysis of the microbiome families and the immune components, 

the Lachnospiraceae family is correlated positively with increased immune responses, which 

is in agreement with the literature [217,218]. The Ruminococcaceae family seems to induce 

immunosuppression according to our results which is consistent with literature reports that CONSTANTIN
OS H

ARKOS 



132 

 

 

this family has anti-inflammation effects on the colon and causes less adverse effects during 

immunotherapy [219–221]. In patients with melanoma, the Ruminococcaceae family was 

mostly found in responders to immunotherapy [25]. This discrepancy indicates that the 

microbiome has a collective effect on the response to immunotherapy and a balance between 

immunostimulation to cause anti-tumor effects and immunosuppression to limit adverse 

effects is needed to induce response to immunotherapy. 

It should be noted that the analyses based on our model do not imply causal relationships 

between bacteria and the tumor immune profile. Nevertheless, the identified associations 

with immune components could help determine the focus and design of future mechanistic 

biological studies. In addition, as with any mathematical model, our modeling framework is 

subject to certain assumptions and limitations. The most obvious limitations are that we 

focused on the gut microbiome and did not consider the local tumor microenvironment. Also, 

we assumed that the contribution of the microbiome to the activation and killing rates are 

the same for all cells of the innate and adaptive immune systems. Furthermore we did not 

consider in the deterministic model the role of PD-L2 ligand [222]. Due to the complexity 

of the immune system, it would be intractable for all individual components to be 

incorporated into a model with parameters that can be estimated independently. These 

limitations not withstanding, our systems approach combining state-of-the-art murine and 

human studies with advanced mathematical modeling and statistical analysis paves the way 

for the elucidation of the role of microbiome modulation in improving cancer 

immunotherapy. 
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Chapter 6: Conclusions 

Mathematical modelling in cancer can be proven a valuable tool for the investigation of 

various events during tumor progression and treatment. It can shed light on various 

mechanisms taking place as well as improving the design of therapeutic agents for various 

treatments. The thesis uses a mathematical framework of tumor growth as a basis. 

Incorporating variations of this model allows the examination of different applications and 

treatment strategies.  

The analysis showed that non-invasive imaging techniques like MRI, DTI MRI and MRE 

can be valuable in capturing various properties of the patient’s tumor state and integrate them 

in an in silico model. More specifically integration of biomechanical properties from MRE 

allows predictions for anisotropic tumor growth, anisotropic compression of vascular density 

that results in vessel’s heterogenic distribution which affects the delivery of therapeutics.  

Integration of various cells of the immune system allows the examination of the effect of 

immunotherapies. When modelling immunotherapy, the consideration of properties of the 

tumor microenvironment as the analysis showed is crucial. The efficacy of intratumoral 

injection of cytokines which is one type of immunotherapy is affected by properties of the 

tumor microenvironment as well as those of the design of the cytokines. Furthermore, the 

efficacy of the ICB immunotherapy is also affected by properties of the tumor 

microenvironment as well as of properties of the drug. For those two properties stand out, 

the effect of the administered dose of the drug as well as the number of functional vessels. 

Thus, normalization treatment improves perfusion and increases the concentration of 

immune cells at the tumor center.  

Although the tumor microenvironment plays a crucial role in the outcome of treatment there 

are various other factors affecting the efficacy of immunotherapy. One of those factors that 

emerged the last few years is the gut microbiome. Both the microbiome and the immune 

system are complex systems that consist of various cells with multiple functions and effects. 

Although modelling the whole immune system would be impossible, the feasible approach 

is the creation of a mechanistic model of the immune system response that focuses on key 

immune cells and functions. On the other hand, little is known about the individual microbes 

that stand out on assisting immunotherapy making it hard to develop a mechanistic model CONSTANTIN
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for all those microbes. Thus, the developed mechanistic model of tumor growth and immune 

response can be combined with other approaches like an association analysis to shed light 

on mechanisms hiding behind larger datasets.  

Future work aims to combine the different variations-applications of the model in a unified 

mathematical modelling framework as presented in Figure 1. The unified mathematical 

framework can enable predictions on the outcome of various therapies for an individual 

patient. This can be used as a tool for the planning of the optimal treatment strategy for each 

individual. An optimal personalised treatment strategy includes administration of the drug 

or combination of drugs at the optimal dosage. This can be done by simulating various drug 

designs and treatment protocols. The optimal treatment strategy can also include adjustment 

of other factors affecting the treatment outcome like altering the gut microbiome of the 

patient prior to treatment. With this approach the patients will avoid undergoing non-

beneficial treatment procedures and also maximize the benefit of less beneficial strategies.  
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Appendix 1: Scan and model parameters for chapter 2 

 

Table 9: Scan parameters for the derivation of Diffusion Tensor Imaging and MR Elastography for 

patients and healthy subject. 

Sequence Repetition 

time (ms) 

Echo 

time 

(ms) 

Acquisition 

matrix 

Resolution 

(mm3) 

Additional 

information 

Diffusion 

Tensor 

Imaging 

9800 60 94 × 94 × 

50 

2.5 × 2.5 

× 2.5 

Spin echo, single-

shot, echo-planar 

imaging readout, 

sensitivity 

encoding 2, 15 

gradient directions,  

b-values 0 s/mm2 

and 800 s/mm2 

MR 

Elastography 

295 12 72 × 70 × 

15 

3.1 × 3.1 

× 3.1 

Motion-encoding 

gradient strength 

13.2 mT/m, 

sensitivity 

encoding 2 

 

Table 10: Values of model parameters for chapter 2 

Parameter Description Value Reference 

kth hydraulic conductivity of tumor 3.8 × 10−12 

m2∙Pa−1∙s−1 

[223] 
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Parameter Description Value Reference 

ciox oxygen concentration in the 

vessels 

0.2 mol∙m−3 [118,224] 

Dox oxygen diffusion coefficient 1.55 × 10−4 m2∙day−1 [118] 

Aox oxygen uptake parameter 2200 mol∙m−3∙day−1 [118,225] 

kox oxygen uptake parameter 0.00464 mol∙m−3 [118,225] 

k1 growth rate parameter 0.032 day–1 [44] 

k2 growth rate parameter 0.0083 mol∙m–3 [225] 

νTumor Poisson’s ratio (tumor)  0.25 [116] 

νNormal Poisson’s ratio (host) 0.2 [116] 

ω radial frequency 100π rad∙s–1 -- 

ρcell constant proliferation rate 0.012 day–1 [85] 

pv_tumor vascular pressure in tumor 1 kPa [115] 

pv_Normal vascular pressure in host tissue 2 kPa [115] 

pvl lymphatic pressure 0 [116] 

SV0 vascular density of host tissue 70 cm–1 [115] 

Lpl Svl permeability of lymphatics 0.05 (mmHg∙s)–1 [115] 

ce receptor concentration 0.01 mol∙m−3 [153,226] 

Φ volume fraction of tumor 

accessible to drug 

0.3 [153,226] 
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Parameter Description Value Reference 

kon binding rate constant 1.296 × 106 

m3∙mol−1∙day−1 

[82,119] 

koff dissociation rate constant 691.2 day−1 [82,119] 

kint internalization rate constant 3.7 day−1 [82,119] 

t0 time of drug injection 41 day -- 

Df_rs=1nm drug diffusion coefficient (1nm) 1 × 10−6 cm2∙s−1 [227] 

Df_rs=35nm drug diffusion coefficient 

(35nm) 

0.5 × 10−8cm2∙s−1 [227] 

Df_rs=75nm drug diffusion coefficient 

(75nm) 

0.5 × 10−9 cm2∙s−1 [227] 

kd blood circulation decay 0.417 day−1 [228] 

Lvw vessel wall thickness 5 × 10−6 m [116] 

η plasma viscosity at 310K 1.3 × 10−3 Pa∙s [229] 

γtumor fraction of vessel wall surface 

area occupied by pores (tumor) 

1 × 10−3 [228] 

γNormal fraction of vessel wall surface 

area occupied by pores (host) 

1 × 10−4 [228] 

r0_host vessel wall pore radius (host)  3.5 nm [121] 

r0_tumor vessel wall pore radius (tumor)  50–150 nm [121] 
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Appendix 2: Model parameters and variables for chapter 3 

 

Table 11: Table of model variables for chapter 3 

Description Variable 

Interstitial fluid pressure pi 

Fluid velocity vf 

Solid velocity vb 

Free conjugated-cytokines Icf 

Conjugated-cytokines bound Icb 

Conjugated-cytokines in the blood Icblood 

Growth stretch ratio λg 

Pro-inflammatory cytokines produced from immune cells cc 

Total pro-inflammatory cytokines c 

Antigen presenting cells APC 

Effector CD4+ T cells ThE 

Effector CD8+ T cells TE 

Innate cells In 

Cancer cells T 

Antigen Ag 

Oxygen cox 
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Table 12: Table of model parameters for chapter 3 

Description Parameter Value Reference 

Hydraulic conductivity 

(tumor) 

kthT 4.13 ⋅ 10−8 cm2 ⋅ mmHg−1

⋅ s−1 

[11] 

Hydraulic conductivity 

(host) 

kthH 8.53 ⋅ 10−9 cm2 ⋅ mmHg−1

⋅ s−1 

[11] 

Oxygen concentration in 

the vessels 

ciox 0.2 mol ⋅ m−3 [118,224] 

Oxygen diffusion 

coefficient 

Dox 1.55 ⋅ 10−4 m2 ⋅ day−1 [118] 

Oxygen uptake parameter 

A 

Aox 2200 mol ⋅ m−3 ⋅ day−1 [118,225] 

Oxygen uptake parameter 

k 

kox 0.00464 mol ⋅ m−3 [118,225] 

Growth rate parameter k2 0.0083 mol ⋅ m−3 [225] 

Vascular pressure pv 15.6 mmHg [11] 

Lymphatic pressure pvl 0 [116] 

Vascular density (host) SvH 70 cm−1 [6] 

Vascular density (tumor) SvT 50 cm−1 [6] 

Permeability of lymphatics LplSvl 0.05 mmHg−1 ⋅ s−1 [11] 

Vessel wall thickness Lvw 5 ⋅ 10−6 m [116] 

Water viscosity at 310K vis 7 ⋅ 10−4 Pa ⋅ s [116] 

Fraction of vessel wall 

surface area occupied by 

pores (tumor) 

γT 10−3 [228] 
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Description Parameter Value Reference 

Fraction of vessel wall 

surface area occupied by 

pores (host) 

γH 10−4 [228] 

Vessel wall pore radius 

(host) 

r0H 3.5 nm [121] 

Vessel wall pore radius 

(tumor) 

r0T 100 nm [121] 

Production of 

proinflammatory 

cytokines by innate 

immune cells 

kIn 3 ⋅ 10−8 day−1 [146] 

Production of 

proinflammatory 

cytokines by effector CD8+ 

Tcells 

kTE  3 ⋅ 10−8 day−1 [146] 

Production of 

proinflammatory 

cytokines by effector CD4+ 

Tcells 

kThE  3 ⋅ 10−8 day−1 [146] 

Production of 

proinflammatory 

cytokines by antigen 

presenting cells 

kAPC 3⋅ 10−8 day−1 [146] 

Initial degradation of 

antigen presenting cells 

δAPC0
 0.1 day−1 [146] 
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Description Parameter Value Reference 

Initial degradation of 

immature antigen 

presenting cells 

δIAPC0
 0.1 day−1 [146] 

Initial degradation of 

effector CD4+ Tcells 

δTh0
E  0.197 day−1 [146] 

Initial degradation of 

effector CD8+ Tcells 

δT0
E  0.18 day−1 [146] 

Initial degradation of 

Innate immune cells 

δIn0
 0.18 day−1 [146] 

Degradation of cytokines 

produced by immune cells 

δcc
 1.38 day−1 [146] 

The rate in which the drug 

exits through the 

lymphatic vessels (host) 

δIcflH
 1.38 day−1 [146] 

The rate in which the drug 

exits through the 

lymphatic vessels (tumor) 

δIcflT
 0 [82] 

Production of APCs χAPC 0.5 cm3 ⋅ g−1 This study 

Growth rate parameter 

(Agarwal et. al.) 

k1A 0.19409 day−1 Optimization 

Growth rate parameter 

(Momin et. al.) 

k1M 0.3446 day−1 Optimization 

Source of effector CD4+ 

and source of effector 

CD8+ (Momin et. al.) 

mAPCM 2.36 ⋅ 10−6 s−1 Optimization 
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Description Parameter Value Reference 

Production of NK (Momin 

et. al.) 

λInM 0.025 g ⋅ cm−3 ⋅ day−1 Optimization 

Production of IAPC 

(Momin et. al.) 

λIAPCM 0.025 g ⋅ cm−3 ⋅ day−1 Optimization 

Half saturation 

concentration Innate cells 

(Momin et. al.) 

KcInM 9.1346 ⋅ 10−4 g ⋅ cm−3 Optimization 

Half saturation antigen 

presenting cells (Momin 

et. al.) 

KcAPCM 9.1346 ⋅ 10−4 g ⋅ cm−3 Optimization 

Killing rate constants of 

tumor cells by innate 

immune cells (Momin et. 

al.) 

nInM 54.1857 cm3 ⋅ g−1 ⋅ day−1 Optimization 

killing rate constants of 

tumor cells by adaptive 

immune cells (Momin et. 

al.) 

nadM 108.3713 cm3 ⋅ g−1 ⋅ day−1 Optimization 

Antigen uptake rate 

(Momin et. al.) 

nAgM 108.3713 cm3 ⋅ g−1 ⋅ day−1 Optimization 

Source of effector CD4+ 

and source of effector 

CD8+ (Agarwal et. al.) 

mAPCA 2.1395 ⋅ 10−6 s−1 Optimization 

Production of NK (Agarwal 

et. al.) 

λInA 0.0253 g ⋅ cm−3 ⋅ day−1 Optimization 
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Description Parameter Value Reference 

Production of IAPC 

(Agarwal et. al.) 

λIAPCA 0.0253 g ⋅ cm−3 ⋅ day−1 Optimization 

Half saturation 

concentration Innate cells 

(Agarwal et. al.) 

KcInA 7.0143 ⋅ 10−4 g ⋅ cm−3 Optimization 

Half saturation antigen 

presenting cells (Agarwal 

et. al.) 

KcAPCA 7.0143 ⋅ 10−4 g ⋅ cm−3 Optimization 

Killing rate constants of 

tumor cells by innate 

immune cells (Agarwal et. 

al.) 

nInA 44.0016 cm3 ⋅ g−1 ⋅ day−1 Optimization 

Killing rate constants of 

tumor cells by adaptive 

immune cells (Agarwal et. 

al.) 

nadA 88.0032 cm3 ⋅ g−1 ⋅ day−1 Optimization 

Antigen uptake rate 

(Agarwal et. al.) 

nAgA 88.0032 cm3 ⋅ g−1 ⋅ day−1 Optimization 

Diffusion coefficient IAPC DIAPC 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion coefficient APC DAPC 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion coefficient CD4 DThE  4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion coefficient CD8 DTE  4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion coefficient 

Innate immune cells 

DIn 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion cancer cells DT 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] CONSTANTIN
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Description Parameter Value Reference 

Diffusion coefficient pro-

inflamatory cytokines by 

immune cells 

Dcc
 6.0472 ⋅ 10−2 cm2 ⋅ day−1 [145] 

Diffusion coefficient 

Antigen 

DAg
 6.0472 ⋅ 10−2 cm2 ⋅ day−1 [145] 

Volume of blood Vblood 2 mL [22] 

Volume fraction of tumor 

accessible to drug 

Φ 0.3 [153,226] 

Initial concentration of pro 

inflammatory cytokines 

produced by immune cells 

ccin 3 ⋅ 10−11 g ⋅ cm−3 [146] 

Initial concentration of 

Innate immune cells 

InIn 9 ⋅ 10−4 g ⋅ cm−3 [146] 

Initial concentration of 

Immature antigen 

presenting cells 

IAPCIn 5 ⋅ 10−5 g ⋅ cm−3 [146] 

Initial concentration of 

tumor cells 

T0 0.4 g ⋅ cm−3 [146] 

Tumor region threshold 

concentration 

Thld 0.2 g ⋅ cm−3 This study 

Concentration of surface 

receptors 

ce 2 ⋅ 10−4 mol ⋅ m−3 [22] 

Binding rate constant kon 1 ⋅ 102 m3 ⋅ mol−1 ⋅ s−1 [22] 

Dissociation rate constant koff 1 ⋅ 10−3 s−1 [22] 

Density ρ 1000 kg ⋅ m−3 [231] CONSTANTIN
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Description Parameter Value Reference 

Inflow velocity Vin 0.075215 m ⋅ s−1 This study 

Porosity ϵp 0.3 [232] 

Initial concentration of 

injected cytokines (Momin 

et. al.) 

IcfInM
 0.082645 mol ⋅ m−3 [22] 

Initial concentration of 

injected cytokines 

(Agarwal et. al.) 

IcfInA
 0.01 mol ⋅ m−3 [20] 

Molecular weight of 

agonist (Momin et. al.) 

MwM 121kDa [21] 

Diffusion coefficient 

injected pro-inflamatory 

cytokines free (Momin et. 

al.) 

DIcfM 0.5 ⋅ 10−6 cm2 ⋅ s−1 [227] 

Rate of clearance of 

agonist (Momin et. al.) 

δclearM 0.4 hr−1 [226] 

Initial tumor radius 

(Momin et. al.) 

TumorXM 2.3489 mm [21] 

Molecular weight of 

agonist (Agarwal et. al.) 

MwA 65kDa [20] 

Diffusion coefficient 

injected pro-inflamatory 

cytokines free (Agarwal et. 

al.) 

DIcfA 0.75 ⋅ 10−6 cm2 ⋅ s−1 [227] 
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Description Parameter Value Reference 

Rate of clearance of 

agonist (Agarwal et. al.) 

δclearA 1.5 hr−1 [226] 

Initial tumor radius 

(Agarwal et. al.) 

TumorXA 2.8338 mm [20] 
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Appendix 3: Model parameters for chapter 4 

 

Table 13: Table of model parameters for chapter 4 

Description Parameter Value Reference 

Hydraulic 

conductivity 

(tumor) 

kthT 4.13 ⋅ 10−8 cm2 ⋅ mmHg−1 ⋅ s−1 [11] 

Hydraulic 

conductivity 

(host) 

kthH 8.53 ⋅ 10−9 cm2 ⋅ mmHg−1 ⋅ s−1 [11] 

Oxygen 

concentration in 

the vessels 

ciox 0.2 mol ⋅ m−3 [118,224] 

Oxygen diffusion 

coefficient 
Dox 1.55 ⋅ 10−4 m2 ⋅ day−1 [118] 

Oxygen uptake 

parameter A 
Aox 2200 mol ⋅ m−3 ⋅ day−1 [118,225] 

Oxygen uptake 

parameter k 
kox 0.00464 mol ⋅ m−3 [118,225] 

Growth rate 

parameter 
k2 0.0083 mol ⋅ m−3 [225] 

Vascular pressure pv 15.6 mmHg [11] 

Lymphatic 

pressure 
pvl 0 [143] 

CONSTANTIN
OS H

ARKOS 



175 

 

 

Description Parameter Value Reference 

Vascular density 

(host) 
SvH 70 cm−1 [148] 

Vascular density 

(tumor) 
SvT 50 cm−1 [148] 

Permeability of 

lymphatics 
LplSvl 0.05 mmHg−1 ⋅ s−1 [11] 

Vessel wall 

thickness 
Lvw 5 ⋅ 10−6 m [143] 

Lymphatic vessel 

wall thickness 
Lvwl 5 ⋅ 10−6 m [143] 

Production of 

proinflammatory 

cytokines by 

innate immune 

cells 

kIn 3 ⋅ 10−8 day−1 [146] 

Production rate of 

pro-inflammatory 

cytokines by 

effector CD8+ 

Tcells 

kCD8 3 ⋅ 10−8 day−1 [146] 

Production rate of 

pro-inflammatory 

cytokines by 

antigen presenting 

cells 

kAPC 3⋅ 10−8 day−1 [146] 
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Description Parameter Value Reference 

Degradation of 

antigen presenting 

cells 

δAPC 0.1 day−1 [146] 

Degradation of 

immature antigen 

presenting cells 

δIAPC 0.1 day−1 [146] 

Degradation of 

effector CD8+ 

Tcells 

δCD8 0.18 day−1 [146] 

Degradation of 

Innate immune 

cells 

δIn 0.18 day−1 [146] 

Degradation of 

cytokines 
δc 1.38 day−1 [146] 

Degradation of 

anti-PDL1 
δaPDL1 1.38 day−1 [146] 

Production of 

APCs 
χAPC 0.5 cm3 ⋅ g−1 [189] 

Killing rate 

constant of tumor 

cells by innate 

immune cells 

nIn 61.88 cm3 ⋅ g−1 ⋅ day−1 [189] 

Diffusion 

coefficient IAPC 
DIAPC 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 
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Description Parameter Value Reference 

Diffusion 

coefficient APC 
DAPC 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion 

coefficient CD4 
DThE 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion 

coefficient CD8 
DCD8 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion 

coefficient Innate 

immune cells 

DIn 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion 

coefficient of anti-

PDL1 

DaPDL1 7.85 ⋅ 10−2 cm2 ⋅ day−1 [145] 

Diffusion 

coefficient of 

cancer cells 

DT 4.4150 ⋅ 10−4 cm2 ⋅ day−1 [230] 

Diffusion 

coefficient pro-

inflamatory 

cytokines by 

immune cells 

Dc 6.0472 ⋅ 10−2 cm2 ⋅ day−1 [145] 

Diffusion 

coefficient 

Antigen 

DAg
 6.0472 ⋅ 10−2 cm2 ⋅ day−1 [145] 

Volume of blood Vb 8.5 mL [233] CONSTANTIN
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Description Parameter Value Reference 

Volume of tumor 

draining lymph 

nodes 

Vl  1.6mL/22 [233,234] 

Initial 

concentration of 

pro inflammatory 

cytokines 

produced by 

immune cells 

cin 3 ⋅ 10−11 g ⋅ cm−3 [146] 

Initial 

concentration of 

innate immune 

cells 

InIn 9 ⋅ 10−4 g ⋅ cm−3 [146] 

Initial 

concentration of 

Immature antigen 

presenting cells 

IAPCIn 5 ⋅ 10−5 g ⋅ cm−3 [146] 

Initial 

concentration of 

tumor cells 

T0 0.4 g ⋅ cm−3 [146] 

Tumor region 

threshold 

concentration 

Thld 0.2 g ⋅ cm−3 [189] 

Volumetric flow 

rate from lymph 

nodes to blood 

Ql→b  (0.2830/22)ml ⋅ h−1 [233,234] CONSTANTIN
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Description Parameter Value Reference 

Water viscosity at 

310K 
vis 7 ⋅ 10−4 Pa ⋅ s [143] 

Fraction of vessel 

wall surface area 

occupied by pores 

(tumor) 

γT 10−3 [228] 

Fraction of vessel 

wall surface area 

occupied by pores 

(host) 

γH 10−4 [228] 

Vessel wall pore 

radius (host) 
r0H 3.5 nm [121] 

Vessel wall pore 

radius (tumor) 
r0T 100 nm [121] 

Molecular weight 

of anti-PDL1 
MwaPDL1 33 kDa [235] 

Molecular weight 

of cytokines 
Mwc 33 kDa [236] 

Blocking rate of 

PDL1 by anti-

PDL1 

kon 6.87 ⋅ 106 cm3 ⋅ day−1 ⋅ g−1 [145] 

Unbinding rate of 

PDL1 by anti-

PDL1 

koff 0.0462 day−1 [145] 
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Description Parameter Value Reference 

Production of NK λIn 1 ⋅ 10−3 g ⋅ cm−3 ⋅ day−1 

O
p
ti

m
iz

at
io

n
 

Production of 

IAPC 
λIAPC 1 ⋅ 10−3 g ⋅ cm−3 ⋅ day−1 

Half saturation 

concentration of 

innate cells and 

antigen presenting 

cells 

KcIn, KcAPC 2.81 ⋅ 10−6 g ⋅ cm−3 

Killing rate 

constant of tumor 

cells by innate 

immune cells 

nIAPC 61.88 cm3 ⋅ g−1 ⋅ day−1 

Killing rate 

constant of tumor 

cells by CD8+ 

Tcells cells and 

antigen uptake 

rate 

nCD8, nAg
 123.76 cm3 ⋅ g−1 ⋅ day−1 

Activation rate 

constant of CD8+ 

Tcells 

hCD8 17.06 cm3 ⋅ g−1 ⋅ day−1 

Extravasation rate 

constant for innate 

immune cells, 

immature antigen 

zIn
b→t, zIAPC

b→t , zCD8
b→t 0.28 s−1 
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Description Parameter Value Reference 

presenting cells, 

CD8+ Tcells 

Rate constant of 

lymphatic 

drainage of pro-

inflammatory 

cytokines, anti-

PDL1, innate 

immune cells, 

immature antigen 

presenting cells, 

antigen presenting 

cells, CD8+ Tcells 

z𝑐
t→l, z𝑎𝑃𝐷𝐿1

t→l , zIn
t→l, 

zIAPC
t→l , zAPC

t→l , zCD8
t→l  

0.17 s−1 

Effectiveness of 

the killing of 

cancer cells bound 

by anti-PDL1 

compared to 

cancer cells with 

free PDL1 

receptors 

wa 1.62 

Source of anti-

PDL1 
𝑔aPDL1 2.67 ⋅ 10−4 g ⋅ cm−3 ⋅ day−1 

Growth rate 

parameter B16F10 
k1B16F10 0.236 day−1 CONSTANTIN

OS H
ARKOS 



182 

 

 

Description Parameter Value Reference 

Growth rate 

parameter 4T1 
k14T1 0.176 day−1 

Growth rate 

parameter E0771 
k1E0771 0.201 day−1 

Growth rate 

parameter 

MCA205 

k1MCA205 0.203 day−1 

Vascular density 

of B16F10 

(tumor) for 

combination 

therapy 

SvTB16F10 230 cm−1 

Vascular density 

of 4T1 (tumor) for 

combination 

therapy 

SvT4T1 120 cm−1 

Vascular density 

of E0771 (tumor) 

for combination 

therapy 

SvTE0771 145 cm−1 

Vascular density 

of MCA205 

(tumor) for 

combination 

therapy 

SvTMCA205 140 cm−1 
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Appendix 4: Model parameters and variables for chapter 5 

 

Table 14: The variables of that are calculated by our mathematical model. Each variable corresponds 

to a model component shown in Figure 34 

Description Variable 

Pro-Inflammatory cytokines c 

Immunosuppressive cytokines α 

Natural killer cells NK 

Naïve CD8+ T cells TN 

Effector CD8+ Tcells TE 

Dendritic cells DC 

Antigen-presenting cells APC 

Naive CD4+ T cells ThN 

Effector CD4+ T cells ThΕ 

Neutrophils N 

Type 1 Macrophages M1 

Type 2 Macrophages M2 

Naïve B cells ΒN 

Plasma B cells P CONSTANTIN
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Description Variable 

Memory B cells MB 

joijijo  

Regulatory T cells Treg 

Antibodies against tumor antigen A 

Cancer cells T̑ 

Dead cancer cells or free tumor 

antigen 

T̑D 

Cancer cells carrying antibodies T̑A 

Amount of available PD-L1 on the 

cells 

[PDL1] 

Amount of the available PD-1 on 

the cells 

[PD1] 

The concentration of PD-1 – PD-

L1 complex 

[PD1 − PDL1] 

Concentration of anti-PD-1 [anti − PD1] 

The concentration of anti-PD-1 - 

PD-1 complex 

[PD1 − antiPD1] 

Concentration of anti-PD-L1 [anti − PDL1] 

The concentration of anti-PD-L1 - 

PD-1 complex 

[PDL1 − antiPDL1] 
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Table 15: Values of model parameters for chapter 5 

Name Symbol Value Reference 

Production of 

proinflammatory 

cytokines by the 

immune cells 

kcNK, kcTE , kcAPC,

kcThΕ , kcN, kcM1, kcP 
0.02 day-1 Estimated 

Production of 

immunosuppressive 

cytokines by the 

immune cells 

Kant−Treg
,

Kant−M2 
1.78 × 10-15 day-1 Estimated 

Amount of PD-L1 

on the immune cells 

βDC∗ , βDC, βM2,

βM1, βΒN , βP 
5.22 × 10-7 [237] 

Amount of PD-1 on 

the immune cells 

aTE , aTN
, aThN

, aN,

aNK, aM1
, aM2

,

aAPC, aDC, aTreg
 

2.49 × 10-7 [237] 

Binding of PD-1 to 

the PD-L1 
aPL 44.58 [cm3/g/day] [238] 

Unbinding of PD-1 

to the PD-L1 
dQ 4.34 [1/d] [238] 

Unbinding of PD-1 

to the anti-PD-1 and 

PD-L1 to the anti-

PD-L1 

dPD1−aPD1,

dPDL1−aPDL1 
0.1 day-1 [238] 
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Name Symbol Value Reference 

Death rate of Tumor 

cells 
dTc 0 Estimated 

Binding of 

antibodies to Tumor 

cells 

dA 2.65x10-4 [cm3/g/day] Estimated 

Source of Immune 

cells 

SDC, STN, SΒ, SThN 1.128 x 10-4 [g/ cm3/d] 

Estimated 

STreg 1.128 x 10-7 [g/ cm3/d] 

Degradation of 

Immune cells 

δDC, δAPC, δThN ,

δThΕ , δTN , δTΕ ,

δΜ1, δΜ2, δN,

δNK, δB, δMB, δP 

0.23 day-1 

[239] 

δTreg 0.08 day-1 

Degradation of 

cytokines 
δc, δa 6.5 day-1 [239] 

Production of 

Antibodies 
kA 0.1 day-1 [240] 

Effectiveness of DC 

to APCs 
χDC 0.54 Estimated 

Effectiveness of M1 

to APCs 
χDC 0.37 Estimated 

Production of 

immune cells 

λNΚ, λM1,  

λM2, λN 
1.0x 10-4 [g/ cm3/d] Estimated 
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Name Symbol Value Reference 

Half saturation 

Concentration 

Neutrophils 

KN 2.37x10-11 [g/cm3] [239] 

Half saturation 

Concentration 

Natural killer cells 

KNΚ 2.37x10-11 [g/cm3] [239] 

Half saturation 

Concentration B 

cells 

KB 2.37x10-11 [g/cm3] [239] 

Half saturation 

Concentration of pro 

inflammatory 

cytokines for 

Dendritic cells’ 

activation 

KcDC 1.18x10-8 [g/cm3] Estimated 

Half saturation 

Concentration of anti 

inflammatory 

cytokines for APC’s 

activation 

KaAPC 1.20x10-12 [g/cm3] Estimated 

Half saturation 

Concentration for 

CD4+ activation 

KTh 2.37x10-11 [g/cm3] [239] 

Half saturation 

Concentration for 

CD8+ activation 

KTN 2.37x10-11 [g/cm3] [239] CONSTANTIN
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Name Symbol Value Reference 

Half saturation 

Concentration for B 

cells activation 

KB 2.37x10-11 [g/cm3] [239] 

Killing rate 

constants 

KrcTE , KrcNk, KrcM1
,

KrcN, KrcDC, KrcDC∗ 

Varying parameters for 

fitting experimental 

data 

Optimization 

Activation rate 

constants 

ArcTh, ArcTN ,

ArcBNM, ArcBNP 

Varying parameters for 

fitting experimental 

data - 

Optimization 

 

Table 16: The values of model parameter of chapter 5 that were determined by an optimization 

procedure 

Name Symbol 

Value of each study 

Matson et. al 
Gopalakrishnan 

et. al 

Spencer et. 

al 

Proliferation rate of 

tumor cells 
kT̑ 0.16 [1/day] 0.25 [1/day] 0.18 [1/day] 

Half saturation 

Concentration of 

PD-1 PD-L1 

complex 

KT 
1.87x10-23 

[g/cm3] 
3.87x10-22 [g/cm3] - 

Amount of PD-L1 

on the tumor cells 
βT̂ 1.70x10-13 5.3x10-13 8.77x10-15 
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Name Symbol 

Value of each study 

Matson et. al 
Gopalakrishnan 

et. al 

Spencer et. 

al 

Unbinding of PD-1 

to the PD-L1 
dQ 48.31 [1/d] 4.34 [1/d] - 

Source term of the 

anti-PD-L1 
γanti−PDL1 

4.34 [g/(cm3 

day)] 
4.34 [g/(cm3 day)] - 

Binding of PD-L1 

to the anti-PD-L1 
μPDL1−aPDL1 

180.62 [day-1 

cm3/g] 

180.62[day-1 

cm3/g] 
- 

Degradation of 

antiPD-L1 
danti−PDL1 

2.21x10-10 

[1/d] 
2.40x10-10 [1/d] - 

Source term of the 

anti-PD-1 
γanti−PD1 - - 

84.19 

[g/(cm3 day)] 

Binding of PD-1 to 

the anti-PD-1 
μPD1−aPD1 - - 

102.91 [day-1 

cm3/g] 

Degradation of 

antiPD-1 
danti−PD1   25.21 [1/d] 

Amount of PD-1 on 

the immune cells 

aTE, aThΕ, 

aN, aNK, 

aM1
, aM2

, 

aAPC, aTreg
 

- - 1.48x10-4 

Amount of PD-1 on 

the immune cells 

aTN
, aThN

, 

aDC 
- - 3.08x10-8 
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