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Περίληψη

Στην παρούσα διατριβή, γενικεύουμε το σύνολο των πολλαπλοτήτων για τις οποίες το

Lp
-φάσμα της Λαπλασιανής σε k-μορφές εξαρτάται απο το p. Στο πρώτο μέρος, θεωρούμε

γινόμενα πολλαπλότητες των οποίων η μετρική είναι στρεβλωμένο γινόμενο στο άπειρο και

αποδεικνύουμε ότι το Lp
-φάσμα της Λαπλασιανής σε k-μορφές περιέχει ένα παραβολικό

χωρίο το οποίο εξαρτάται από τα k, p και την οριακή καμπυλότητα a0 στο άπειρο.

Στο δεύτερο μέρος, θεωρούμε πηλίκα του υπερβολικού χώρουM με την ομάδα πηλίκο

να είναι γεωμετρικά πεπερασμένη έτσι ώστε η M να έχει άπειρο όγκο και να μην έχει

ακίδες. Αποδεικνύουμε οτι το Lp
-φάσμα της Λαπλαισιανής σε k-μορφές είναι ακριβώς

ένα παραβολικό χωρίο μαζί με ένα σύνολο από μεμονωμένες ιδιοτιμές της πραγματικής

ευθείας.
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Abstract

In this thesis, we generalize the set of manifolds over which the Lp-spectrum of the

Laplacian on k-forms depends on p. In the first part, we consider warped products

at infinity, and we prove that the Lp-spectrum of the Laplacian on k-forms contains a

parabolic region which depends on k, p and the limiting curvature a0 at infinity.

In the second part, we consider manifolds M which are quotients of the hyperbolic

space with a geometrically finite group, and such that M has infinite volume and no

cusps. We prove that the Lp-spectrum of the Laplacian on k-forms over M is exactly

a parabolic region together with a set of isolated eigenvalues on the real line.
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Chapter 1

Introduction

In this thesis, we study the Lp spectral theory for the Laplacian on forms on

Riemannian manifolds. In particular, in the first part, we study the Lp-spectrum of

the Laplacian on forms on manifolds which are warped products at infinity. In the

second part, we compute the Lp-spectrum of the Laplacian on forms on a class of

Kleinian groups.

The study of the Lp-spectrum of the Laplace-Beltrami operator on Riemannian

manifolds is an active research area in the last decades. As the following historical

references show, the Lp-spectrum of the Laplace-Beltrami operator on Riemannian

manifolds may depend on p and this dependence can reflect the geometric structure

and properties of the manifold. It is for example connected to the volume growth of

the manifold.

In the case of operators on functions we have two guiding examples. We know that

the spectrum of the Laplace-Beltrami operator on Euclidean space is p-independent,

whereas the spectrum on the Hyperbolic space depends on p. Hempel and Voigt [HV86]

studied the Lp-spectrum on Schrodinger operators on Euclidean spaces and found suf-

ficient conditions on the potential so that the spectrum is independent of p. Sturm

[Stu93] studied the Lp-spectrum for a class of uniformly elliptic operators on functions

over open manifolds and showed the Lp-independence of the spectrum on such spaces,

whenever the volume of the manifold has uniformly sub-exponentially volume growth

and Ricci curvature bounded below. In the case of negatively curved manifolds, Davies,

Simon and Taylor [DST88] examine the Lp-spectrum on quotients of the Hyperbolic

space HN+1/Γ and showed the Lp-dependence of the spectrum. Specifically, under the

assumptions that HN+1/Γ is of finite volume or has no cusps, they completely deter-

1
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mined the HN+1/Γ-spectrum being a parabolic region of the Complex plane for p ̸= 2

together with a finite set of isolated eigenvalues and this reduced to a closed subset of

R, for p = 2 which is an interval with a finite set of eigenvalues.

Other examples of negatively curved manifolds where the Lp-spectrum of the Lapla-

cian on functions depends on p can be found in the work of Taylor [Tay89] and Weber

[Web07]. They studied the Lp-spectrum of the Laplace-Beltrami operator for quotients

of symmetric spaces. These spaces are called locally symmetric spaces. More recently,

Charalambous and Rowlett [CR24] studied the Lp-spectrum on conformally compact

manifolds.

The Lp-spectrum has also been studied for the Laplacian on forms on Riemannian

manifolds. Donnelly in [Don81] computed the L2-spectrum of the Laplacian on forms

of Hyperbolic space. Mazzeo in [Maz88] computed the L2 essential spectrum of the

Laplacian on forms of a conformally compact metric. Antoci also computed in [Ant04]

the L2 essential spectrum of the Laplacian on forms, for a class of warped product

metrics.

At the same time, Charalambous [Cha05] proved the Lp-independence of the spec-

trum of the Laplacian on forms on non-compact manifolds, for 1 ≤ p ≤ ∞. More

specifically, she showed that under the assumptions that the Ricci curvature is bounded

below, the volume growth is uniformly subexponential and the Weitzenbock tensor is

bounded below the Lp-spectrum of the Laplacian on forms is independent of p for

1 ≤ p ≤ ∞. More recently, Charalambous and Lu [CL24] computed the Lp-spectrum

of the Laplacian on forms of Hyperbolic space, for 1 ≤ p ≤ ∞, and proved that the

form spectrum is p-dependent on this negatively curved space.

In this thesis our main goal is to generalize the set of manifolds over which the

spectrum of the Laplacian on forms depends on p. We will consider the case of man-

ifolds that are warped products at infinity and certain quotients of Hyperbolic space.

The Laplacian on k-forms has a strong connection to the geometry and topology of a

manifold, and hence is is usually more difficult to obtain results for the spectrum on

forms in comparison to the spectrum on functions. This is the main reason why we

initially concentrate on manifolds with a more rigid structure.

This thesis is organized as follows: In Chapter 2, we present some of the background

results and definitions that will be used in the thesis, for notational and reference

reasons. In Chapter 3, we decompose the Laplacian on forms over warped product

metrics following [Ant04]. These are product manifolds M = R×N with the warped

2
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product metric g = dr2 + f 2(r)gN . We will use the decomposition of the Laplacian on

certain classes of k-forms over these manifolds which will be useful in the computation

of their spectrum.

In Chapter 4, we focus our study on warped products at infinity. These are man-

ifolds such that outside a compact set K, M \ K is of the form (c0,∞) × N with

metric

g = dr2 + f 2(r)gN ,

where f ∈ C∞(c0,∞) is the warping function and N is an (n−1)-dimensional compact

manifold. We consider the class of warped product metrics with warping function f in

the following class:

B = {f ∈ C2(a,∞) :
f ′′

f
= a0 + o(1),(

f ′

f

)2

= a0 + o(1), as r → ∞,with a0 > 0

and f → ∞, as r → ∞}.

In Theorem 4.1.2 and Proposition 4.2.3 we prove that over such M the Lp-spectrum

of the Laplacian on k-forms contains a parabolic region which depends on k, p and a0,

and is at the same time contained in a parabolic region that also depends on the bottom

of the L2-spectrum. In the particular case that f(r) ∼ ce
√
a0r and the Laplacian on

k-forms has no isolated eigenvalues of finite multiplicity, we prove that the Lp-spectrum

is a parabolic region.

In the last Chapter, we study the Lp-spectrum of the Laplacian on forms on quo-

tients of Hyperbolic spaceM = HN+1/Γ. In [DST88] Davies, Simon and Taylor studied

the Lp-spectrum of the Laplace-Beltrami operator ∆Γ over functions on non-compact

quotients M = HN+1/Γ, where Γ is a geometrically finite group. Specifically, if M is

either of finite volume or cusp-free, they determine explicitly the Lp-spectrum of ∆Γ

for 1 ≤ p ≤ ∞, proving that it is a parabolic region together with a finite set of isolated

eigenvalues.

In this chapter, we generalize their theorem to the Laplacian on forms ∆⃗Γ in the

case when M has no cusps. In order to do this we generalize many of the results from

[DST88] concerning properties of the heat semigroup, the heat kernel and the resolvent

operator for the Laplacian on functions to those corresponding to the Laplacian on

forms.

3
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In Theorem 5.2.2 we prove that over M = HN+1/Γ with Γ a geometric finite group

such that M has infinite volume and no cusps, the Lp-spectrum of the Laplacian on

k-forms is a exactly a parabolic region together with a set of isolated eigenvalues on the

real line. For technical reasons we must assume that the corresponding L2-spectrum

has no eigenvalues that accumulate to the infimum of the essential spectrum, but we

expect that this should always be the case.

4
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Chapter 2

Preliminaries and Background

In this chapter we present some of the background results and definitions that will

be used in the thesis, for notational and reference reasons. Since we are interested in

the spectral properties of the Laplacian on Riemannian manifolds we first begin with

some spectral theory and then move on to present analytic geometric aspects of the

Laplacian operator.

2.1 Spectral Theory

We start with some background on spectral theory. Let X be a normed space. By a

linear operator in X, we shall mean a linear map T whose domain D(T ) is a linear

subspace of X and whose range R(T ) is in X. When D(T ) is dense in X we will say

that T is a densely defined linear operator in X.

Definition 2.1.1. Let T be a linear operator in a normed space X. The resolvent set

of T , denoted by ρ(T ), is defined to be the set of all points λ ∈ C such that the operator

T − λI is a bijection from D(T ) onto X, which has bounded inverse. The analytic

operator valued function

R(λ)(T ) = (T − λI)−1,

where λ ∈ ρ(T ) is called the resolvent of T . The set C \ ρ(T ) is called the spectrum of

T , denoted by σ(T ).

Remark 2.1.1. If T is a closed linear operator in a Banach space, then λ ∈ ρ(T ) is

equivalent to T − λI being a bijection.

In the case that R(λ)(T ) fails to be injective, then the value λ is called an eigenvalue

for the operator T .

5
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Definition 2.1.2 ([Rud91], 12.17 Definition). Let Σ be a σ-algebra in a set Ω, and let

H be a Hilbert space. In this setting, a resolution of the identity is a map

E : Σ → B(H),

where B(H) denotes the Banach algebra of all bounded linear operators on H, with the

following properties:

(i) E(∅) = 0, E(Ω) = I.

(ii) Each E(ω) is an orthogonal projection.

(iii) E(ω′ ∩ ω′′) = E(ω′)E(ω′′).

(iv) If ω′ ∩ ω′′ = ∅, then E(ω′ ∪ ω′′) = E(ω′) + E(ω′′).

(v) For every x ∈ H and y ∈ H, the set function Ex,y defined by

Ex,y(ω) = (E(ω)x, y)

is a complex measure on Σ.

Remark 2.1.2. Resolutions of the identity are also called spectral measures or projection-

valued measures [[RS81] p.263] in the bibliography.

Theorem 2.1.3 ([Rud91], 13.23 Lemma, 13.24 Theorem). Let E be a resolution of the

identity, on a set Ω. To every measurable f : Ω → C corresponds a densely defined

closed operator Ψ(f) in H, with domain

D(Ψ(f)) = {x ∈ H :

∫
Ω

|f |2dEx,x < ∞},

which is characterized by

(Ψ(f)x, y) =

∫
Ω

fdEx,y, x ∈ D(Ψ(f)), y ∈ H

and which satisfies

||Ψ(f)x||2 =
∫
Ω

|f |2dEx,x, x ∈ D(Ψ(f)).

6
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Also, for every measurable f : Ω → C

Ψ(f)∗ = Ψ(f̄).

Definition 2.1.3. Let A be a densely defined linear operator on a Hilbert space H. A

is called self-adjoint if-f A = A∗. Here A∗ is the adjoint operator of A with respect to

the Hilbert space pairing.

The following Theorem is knowing as Spectral Theorem.

Theorem 2.1.4 ([Rud91], 13.30 Theorem). To every self-adjoint operator A in H

corresponds a unique resolution of the identity E, on the Borel subsets of the real line,

such that

(Ax, y) =

∫
R
λ dEx,y(λ), x ∈ D(A), y ∈ H.

This E will be called the spectral decomposition of A.

The spectral decomposition Theorem allows us to prove various boundedness prop-

erties for operators related to a self-adjoint operator A using Theorem 2.1.3. We will

prove the following Lemma which will apply in Chapter 5 to the Laplacian.

Lemma 2.1.5. Let A be a self-adjoint operator with its spectrum σ(A) in [0,∞). Then

(A+ z2)−1 is bounded for all z with Re(z) > 0. Replacing z with iz and z with −z we

get that (A− z2)−1 is bounded for all z with |Im(z)| > 0.

Proof. Let E be the spectral decomposition of A (see Theorem 2.1.4). Now, Theorem

2.1.3 with f(λ) = 1
λ+z2

gives

||(A+ z2)−1x||2 =
∫ ∞

0

|f(λ)|2dEx,x(λ).

Since dEx,x([0,∞)) = ||x||2, we compute

∫ ∞

0

|f(λ)|2dEx,x(λ) ≤ sup
λ∈[0,∞)

∣∣∣∣ 1

z2 + λ

∣∣∣∣2 dEx,x([0,∞))

≤ sup
λ∈[0,∞)

∣∣∣∣ 1

z2 + λ

∣∣∣∣2 ||x||2.
Let ϵ > 0, and λ ∈ [0,∞). We write z = a + ib, and thus Re(z) > ϵ is equivalent to

a > ϵ. Now, to estimate 1
|z2+λ|2 we take two cases. The one is b = 0 and the other is

7
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b ̸= 0. In both cases we easily find an upper bound for 1
|z2+λ|2 . Thus, we conclude that

for every ϵ > 0

||(∆ + z2)−1x|| ≤ c(z, ϵ)||x||,

where c(z, ϵ) is a constant that dependes on z, ϵ, and the Lemma follows.

Definition 2.1.4 ([RS81] p.236,253). Let A be a self-adjoint operator in a Hilbert space

H and EA be its spectral decomposition defined above. We say λ ∈ σess, the essential

spectrum of A, if-f EA(λ− ϵ, λ+ ϵ)) is infinite dimensional for all ϵ > 0. If λ ∈ σ(A),

and EA(λ − ϵ, λ + ϵ)) is finite dimensional for some ϵ > 0, we say λ ∈ σdisc(A), the

discrete isolated spectrum of A. Here the dimension of EA means the dimension of the

range R(EA).

Remark 2.1.6. Let us note that from the definition of the essential and discrete iso-

lated spectrum that they form a disjoint union of the spectrum.

We also have the following equivalent definitions about the discrete isolated, and

essential spectrum.

Theorem 2.1.7. [RS81] p.236]Let A be a self-adjoint operator on a Hilbert space,

λ ∈ σdisc(A) if and only if both the following hold:

(a) λ is an isolated point of σ(A), that is, for some ϵ > 0 ,(λ−ϵ, λ+ϵ)∩σ(A) = {λ}.

(b) λ is an eigenvalue of finite multiplicity, i.e., the corresponding eigenspace is finite

dimensional.

Moreover, σess(A) is a closed set, and, λ ∈ σess(A) if and only if one or more of the

following holds:

(a) λ is a limit point of the set of all eigenvalues.

(b) λ is an eigenvalue of infinite multiplicity, i.e., the corresponding eigenspace is

infinite dimensional.

(c) λ belongs to the continuous spectrum (see p. 231 [RS81] for definition).

For an operator on a Banach space, one usually does not make a distinction between

the essential spectrum and the discrete isolated spectrum.

8
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2.2 Semigroup Theory

Definition 2.2.1 ([EBN+99] p.36). A family (T (t))t≥0 of bounded linear operators on a

Banach spaces X is called a strongly continuous one-parameter semigroup if it satisfies

the following:

(i) T (t+ s) = T (t)T (s) for all t, s ≥ 0.

(ii) T (0) = I

(iii) the map t → T (t) is strongly continuous (with respect to the strong operator

topology).

Two important constructions of semigroups that we will need in Chapter 5 are

Definition 2.2.2 ([EBN+99] p.43). If Y is a closed subspace of X such that T (t)Y ⊂ Y

for all t ≥ 0 i.e., if Y is (T (t))t≥0-invariant, then the restrictions

T (t)↾ = T (t)↾Y

form a strongly continuous semigroup (T (t)↾)t≥0, called the subspace semigroup, on the

Banach space Y .

Definition 2.2.3 ([EBN+99] p.43). For a closed (T (t))t≥0-invariant subspace Y of X,

we consider the quotient space X/ = X/Y with the canonical quotient map q : X → X/.

The quotient operators T (t)/ given by

T (t)/q(x) = q(T (t)x), x ∈ X, t ≥ 0,

are well-defined and form a strongly continuous semigroup, called the quotient semi-

group (T (t)/)t≥0 on the Banach Space X/.

Definition 2.2.4 ([EBN+99] p.49). The generator A : D(A) ⊂ X → X of a strongly

continuous semigroup (T (t))t≥0 on a Banach space X is the operator

Ax = − lim
h→0+

1

h
(T (h)x− x)

defined for every x in its domain

D(A) = {x ∈ X : lim
h→0+

1

h
(T (h)x− x)exists}.

9
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Proposition 2.2.1 ([EBN+99] p.61). Let Y be a (T (t))t≥0-invariant closed subspace

of X, and suppose that A is the generator of T (t). Then,

(i) the generator of (T (t)↾)t≥0 is

A↾y = Ay

with domain

D(A↾) = D(A) ∩ Y.

(ii) the generator (A/, D(A/)) of the quotient semigroup (T (t)/Y )t≥0 on the quotient

space X/ = X/Y is given by

A/q(x) = q(Ax)

with domain

D(A/) = q(D(A)).

10
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2.3 The Laplacian and heat kernel on a Riemannian

manifold

Let (M, g) be a smooth non compact Riemannian manifold of dimension n, where g

is the Riemannian metric. We assume that M is complete with empty boundary. We

will denote by L2(M) the set of square integrable functions on M . Note that L2(M),

is a Hilbert Space with respect to the inner product

(f, g) =

∫
M

fg dVg,

where dVg denotes the volume element with respect to the Riemannian metric g. Now,

we define the Laplace operator ∆ on (M, g). On smooth functions the Laplacian is

given by the second order operator ∆ = −div ◦∇, where div and ∇ are the divergence

and the gradient respectively. Note that here we consider the analyst’s Laplacian so

that we end up with a non-negative operator. By Green’s formulas the Laplacian

is symmetric on the space of smooth functions with compact support C∞
0 (M), since

(∆u, v) = (u,∆v) for every u, v ∈ C∞
0 (M). Since C∞

0 (M) is dense in L2(M), ∆ is a

densely defined operator in L2(M). It is well known that this operator is symmetric

but it is not a self adjoint operator on C∞
0 (M). By considering the quadratic form

Q(f) = (∆f, f) ≥ 0 corresponding to the Laplacian for all f ∈ C∞
0 (M), we take the

Friedrichs extension of ∆ on L2(M) which is given by the self adjoint operator which

corresponds the closure of Q on L2(M) (see Theorem 1.2.8 [Dav89]). We will refer to

this Laplacian as the Laplacian on L2(M). On complete manifolds this extension is

unique.

Let E be the spectral decomposition of a self-adjoint operator A in a Hilbert space

H. Then by Theorem 2.1.3 with f(λ) = e−tλ and t ≥ 0 some fixed number we get the

self-adjoint operator

Ψ(f) =

∫
R
e−tλdE(λ).

It is common to denote Ψ(f) by e−tA and thus we write

e−tA =

∫
R
e−tλdE(λ).

The above definition give us a one-parameter family of self-adjoint operators. This

family is actually a strongly continuous semigroup of linear operators on H with A its

11
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generator (see [Gri09] Theorem 4.9). Since the Laplacian on L2(M), is a self adjoint

operator its semigroup is well defined and we denote it by e−t∆. By definition, for any

f ∈ L2(M), e−t∆f is also an element of L2(M). It can in fact be shown that e−t∆f will

be smooth, by the smoothing properties of the heat operator (see Theorem 7.6 [Gri09]).

The action of the semigroup on L2(M) can be described by an integral operator, which

in turns corresponds to what is known as its integral kernel.

Definition 2.3.1. Let T be an operator on L2(M). If there exists a function T (x, y)

such that

Tf(x) =

∫
M

T (x, y)f(y)dy,

for all f ∈ L2(M), then T (x, y) is called the integral kernel of T. Here for simplicity

we denote dVg by dy.

The existence of the kernel for the heat semigroup on complete smooth manifolds

is well known.

Theorem 2.3.1 (Theorem 7.7[Gri09]). Let (M, g) be a complete smooth Riemannian

manifold. For any x ∈ M and for any t > 0, there exists a unique function pt,x ∈ L2(M)

such that, for all f ∈ L2(M),

e−t∆f(x) =

∫
M

pt,x(y)f(y)dy.

As noted in Remark 7.8 [Gri09] the function pt,x(y) is in general defined for all

t > 0, x ∈ M but for almost all y ∈ M . This is not a problem because after a some

work it can be regularized to obtain a smooth function of all three variables t, x, y (see

Theorem 7.20 [Gri09]). Now, we can define the heat kernel.

Definition 2.3.2. For any t > 0 and all x, y ∈ M set

p(t, x, y) = (pt/2,x, pt/2,y)L2 .

The function p(t, x, y) is called the heat kernel of M .

The main properties of p(t, x, y) are stated in the following Theorem.

Theorem 2.3.2. (Theorem 7.13[Gri09]) On a smooth complete Riemannian manifold

(M, g) the heat kernel satisfies the following properties

12
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(i) Symmetry: p(t, x, y) = p(t, y, x) for all x, y ∈ M and t > 0.

(ii) For any f ∈ L2, and for all x ∈ M and t > 0,

e−t∆f(x) =

∫
M

p(t, x, y)f(y)dy.

(iii) p(t, x, y) ≥ 0 for all x, y ∈ M and t > 0, and

∫
M

p(t, x, y)dy ≤ 1,

for all x ∈ M and t > 0.

(iv) The semigroup identity: for all x, y ∈ M and t, s > 0,

p(t+ s, x, y) =

∫
M

p(t, x, z)p(s, z, y)dz.

(v) For any y ∈ M , the function u(t, x) = p(t, x, y) is C∞ smooth in (0,∞)×M and

satisfies the heat equation
∂u

∂t
+∆u = 0.

(vi) For any function f ∈ C∞
0 (M),

∫
M

p(t, x, y)f(y)dy → f(x) as t → 0,

where the convergence is in C∞(M).

The heat kernel has several symmetric properties reflecting the symmetries of the

underlying space. For example, p(t, x, y) is invariant under the isometry group I(M)

of the manifold. This property becomes particularly useful when we consider the heat

operator on symmetric spaces such as the Hyperbolic space. Finally let us note that

one can define the heat kernel on (M, g) as a fundamental solution to the heat equation.

Definition 2.3.3. ([Cha84] p. 135) A fundamental solution of the heat equation on

M is a continuous function p = p(t, x, y) defined on (0,∞)×M ×M , which is C2 with

respect to x, C1 with respect to t, and which satisfies

(∂t +∆x)p = 0 and lim
t→0+

= p(t, ·, y) = δy,
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where δy is the Dirac delta function, that is, for all bounded continuous functions f on

M we have, for every y ∈ M ,

lim
t→0+

∫
M

p(t, x, y)f(x)dx = f(y).

These two definitions of the heat kernel are equivalent (see Theorem 9.5 [Gri09]).
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2.4 The Heat Semigroup on Lp spaces

Our aim is to define the Laplacian ∆ as an operator on Lp(M), and consider its

spectrum in this more general setting. Until now, we have defined ∆ on L2(M) and

through its spectral resolution-decomposition we define the heat semigroup on L2(M)

with ∆ its generator.

Now, we proceed in the opposite direction. We will first define the Heat semigroup

on Lp(M) and then the Laplacian will be defined as the generator of this semigroup.

This is the classical construction through which the Laplacian on Lp(M) is defined on

a complete manifold.

Definition 2.4.1 ([Dav89] p.22). Let Ω be a set with a countably generated σ-field and

a σ-finite measure dx. If A ≥ 0 is a real self-adjoint operator on L2(Ω) satisfying

(a) e−At is positivity-preserving for all t ≥ 0 .

(b) e−At is a contraction on L∞ for all t ≥ 0.

Then A is called a Dirichlet form and e−At is called a symmetric Markov semigroup.

One can check that e−t∆ on L2(M) is a symmetric Markov semigroup and as a

result we have the following.

Theorem 2.4.1 ([Dav89] Theorem 1.4.1). The set L1(M)∩L∞(M) is invariant under

the semigroup e−t∆ on L2(M), and e−t∆ may be extended from L1(M) ∩ L∞(M) to

a positive one-parameter contraction semigroup Tp(t) on Lp(M) for all 1 ≤ p < ∞.

These semigroups are strongly continuous if 1 ≤ p < ∞, and are consistent in the

sense that

Tp(t)f = Tq(t)f, f ∈ Lp(M) ∩ Lq(M).

Definition 2.4.2. The Laplacian ∆p on Lp(M), 1 ≤ p < ∞ is defined as the generator

of the semigroup Tp(t) on Lp(M) and for p = ∞ it is the adjoint of ∆1, with L∞ defined

as (L1)∗.

We denote the spectrum of the Laplacian on Lp-integrable functions by σ(p, 0,∆).

Observe that σ(p, 0,∆) = σ(p′, 0,∆) for 1/p + 1/p′ = 1, since the adjoint operator of

∆p is ∆p′ .
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2.5 The Laplacian and heat kernel on forms

In this section we further assume that (M, g) is orientable. We consider the space of

k-forms on M , denoted by Λk(M), which are smooth sections of the bundle Λk(T ∗M).

The Riemannian metric induces a pointwise inner product on Λk(M) as follows. If

we fix a point p ∈ M , this inner product is defined firstly on elements of the form

a1 ∧ · · · ∧ ak by

< a1 ∧ · · · ∧ ak, b1 ∧ · · · ∧ bk >= det(< ai, bj >),

where a1, . . . , ak, b1, . . . , bk ∈ T ∗
p (M) and <,> is the induced inner product on T ∗

p (M)

from the Riemannian metric g. Then by linearity we can extend it to the whole space

Λk(T ∗
pM). Now we can define a global inner product on Λk(M) using this pointwise

inner product by

(a, b) =

∫
M

< a, b > dVg.

In consequence, one can also define L2(Λk(M)) as the k-forms with finite L2-norm.

Definition 2.5.1. Let n be the dimension of M . The Hodge star operator ∗ is defined

as

∗ : Λk(M) → Λn−k(M)

a 7→ ∗a

where ∗a is the unique element of Λn−k(M) s.t. a ∧ b =< ∗a, b > dVg for every

b ∈ Λn−k(M).

Let us note that the pointwise inner product on Λk(M) is related to the Hodge star

operator by < a, b > dVg = a ∧ ∗b.

We have the following operators on k-forms. dk : Λk(M) → Λk+1(M) is the exterior

differentiation and δk+1 : Λk+1(M) → Λk(M) is the co-differential operator defined by

δk+1 = (−1)nk+1 ∗ d ∗, with ∗ the Hodge star operator and n = dimM . Note that

d is independent of the metric, but δ does depend on the metric since ∗ does. The

Laplacian on k-forms on (M, g) is defined as follows:

Definition 2.5.2. ([Ros97] p. 33) The Laplacian on smooth k-forms on a (M, g) is

given by ∆k = δk+1 ◦ dk + dk−1 ◦ δk. For simplicity, we will often write ∆ instead of

∆k.
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Remark 2.5.1. The Laplacian on 0-forms is the Laplacian on functions and ∆0 = δd.

The Laplacian is a symmetric operator on C∞
0 (Λk(M)) since using integration by

parts we have

∫
M

< ∆a, b >=

∫
M

< da, db > + < δa, δb >=

∫
M

< a,∆b > .

Note that δ is the adjoint operator to d with respect to the inner product
∫
M

<

a, b >. Again we define ∆ on L2(Λk(M)) via the Friedrichs extension theorem using

this quadratic form. This is closed, self-adjoint operator which is nonnegative on

L2(Λk(M)). The heat semigroup is defined for the Laplacian on L2(Λk(M)) in a similar

manner through its spectral resolution.

To define the heat kernel on forms we use the equivalent way that we described

before as a fundamental solution of the heat equation. Now, the heat equation will be

on forms.

Definition 2.5.3. ([Ros97] p.34) A double form p⃗(t, x, y) is a smooth section of (0,∞)×

Λk(M)⊗ Λk(M) and it is called the heat kernel for the Laplacian on k-forms if

(i) (∂t +∆k
x)p⃗(t, x, y) = 0 and

(ii) limt→0+
∫
M

< p⃗(t, x, y), ω(y) >y dy = ω(x) for every smooth with compact support

k-form ω.

Locally, if we have a chart {x1, . . . , xn} on (M, g), then {dxi1 ∧ · · · ∧ dxik : 1 ≤ i1 <

· · · < ik ≤ n} is a basis for Λk(M). For simplicity, we will use the multi-index notation

I = (i1, . . . , ik) to express dxi1 ∧ · · · ∧ dxik as dxI . Thus, the heat kernel takes the form

p⃗(t, x, y) =
∑
I,J

fI,J(t, x, y)dx
I ⊗ dyJ , (2.5.1)

locally, where I, J run over a local basis of k-forms for some fI,J . Thus, to determine

the heat kernel on forms locally it is enough to determine the fI,J for a pointwise basis

of k-forms . Let us note that fI,J form a rectangular matrix of dimension equal to
(
n
k

)
for the case of k-forms. So, for the special case of1-forms we have that the fI,J form an

n× n - matrix. Finally, using (2.5.1) we have the following expression for the integral
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in (ii)

∫
M

< p⃗(t, x, y), ω(y) >y dy =

∑
I

[∫
M

<
∑
J

fI,J(t, x, y)dy
J ,
∑
K

ωK(y)dy
K > dy

]
dxI . (2.5.2)

As an example of a heat kernel on forms we will compute it for the case of 1-forms

over the Euclidean space (Rn, g0). Let {x1, . . . , xn} be the Cartesian coordinates of Rn

and {dx1, . . . , dxn} be the corresponding co-frame. The heat kernel with respect to

this co-frame is written as

p⃗(t, x, y) =
∑
i,k

ei,k(t, x, y)dx
i ⊗ dyk.

We will show that ei,k = 0 for i ̸= k and ei,i are all equal with the heat kernel on

functions. Any 1-form ω can be written as ω =
∑

i fidx
i Since ∆1

Rn(fdxi) = (∆Rnf)dxi

we have that the heat equation (∂t +∆1
Rn)ω(t, x) = 0

ω(x, 0) = ω0

where

ω(t, x) =
∑
i

fi(t, x)dx
i, ω0(x) =

∑
i

f 0
i (x)dx

i

is equivalent to  (∂t +∆Rn)fi(t, x) = 0

fi(x, 0) = f 0
i (x),

, i = 1, . . . , n,

From the above it is clear that the initial condition

ω0(x) = f 0
1 (x)dx

1 + 0 · dx2 + · · ·+ 0 · dxn

has solution

ω(t, x) = f1(t, x)dx
1 + 0 · dx2 + · · ·+ 0 · dxn.
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At the same time (2.5.2) gives

ω(t, x) =
n∑

i=1

[
n∑

k=1

∫
Rn

ei,k(t, x, y)f
0
k (y)dy]dx

i =
n∑

i=1

[

∫
Rn

ei,1(t, x, y)f
0
1 (y)dy]dx

i.

Thus, if we set

ai =

∫
Rn

ei,1(t, x, y)f
0
1 (y)dy,

we have that a2 = 0, . . . , an = 0. Since f 0
1 (x) ̸= 0 was arbitrary we get that ei,1(t, x, y) =

0 for i = 2, . . . , n. Similarly, one can prove ei,2(t, x, y) = 0 for i = 1, 3, . . . , n and for

the remaining cases. Finally, from

f1(t, x) =

∫
Rn

e1,1(t, x, y)f
0
1 (y)dy,

we have that e1,1(t, x, y) is equal to the heat kernel on functions. The same holds for

every ei,i(t, x, y).

Thus, for the case of 1-forms the heat kernel with respect to the standard basis on

Rn it is a diagonal matrix where each diagonal element is the heat kernel on functions.

Similarly, one can show that the heat kernel on k-forms on Rn, can be described as a

rectangular matrix of dimension
(
n
k

)
, with its entries being the heat kernel on functions.

So in Euclidean spaces, the heat kernel on forms is the ”same” as the heat kernel on

functions.

Now we will define the Weitzenbock tensor, a curvature tensor which will give us a

way to find upper bounds for the heat kernel on k-forms.

Definition 2.5.4 (Definition 1 [Cha05]). Let (M, g) be an oriented Riemannian man-

ifold and Vi be a locally frame field and ωi be its dual coframe field. We denote the

tensor W k = −
∑

i,j ω
i ∧ i(Vj)RViVj

acting on k-forms, as the Weitzenbock tensor on

k-forms, where RXY = DXDY −DYDX −D[X,Y ] is the curvature tensor and i(Z)θ is

the interior multiplication by the vector field Z of the k-form θ.

For 1-forms W 1 coincides with Ricci curvature, this is not true for higher order k.

Proposition 2.5.1. [[Cha05] Theorem 4, [HSU77]] Let M be a complete manifold

with Ricci curvature bounded below and Weitzenbock tensor on k forms bounded bellow

W k ≥ −K2. Then, the heat kernel on k forms p⃗(t, x, y) has the following pointwise

bound

|p⃗(t, x, y)| ≤ eK2tp(t, x, y),
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where p(t,x,y) is the heat kernel of the Laplacian on functions.

Corollary 2.5.1. Let M non-compact, complete, with Ricci curvature bounded from

below and Weitzenbock tensor on k forms bounded from below. Then,

ω(x, t) =

∫
M

p⃗(t, x, y) ∧ ∗ω0(y)dy

is the unique solution to the heat equation on forms,

 (∂t +∆k)ω = 0

ω(·, 0) = ω0

Let us note that the same holds for compact manifolds without any further assump-

tion (see [Cha84] p.338).

Finally, we write the following Propositions that we will need in Chapter 5. The

first one is a generalization of the invariance of the integral under the isometry group,

that is, if J is an isometry, then

∫
M

f(J)dVg =

∫
M

fdVg

(see [Gri09] Lemma 3.27).

Proposition 2.5.2. Let ω1, ω2 be k-forms and J be an isometry. Then

∫
M

< ω1(Jx), ω2(Jx) > dx =

∫
M

< ω1(x), ω2(x) > dx.

The second one is the invariance of the heat kernel on k-forms under the isometry

group, whose proof follows from the previous proposition, and Corollary 2.5.1. For the

case of heat kernel on functions this is a standard fact, see for example [Gri09] Theorem

9.12) .

Proposition 2.5.3. Let J be an isometry. Then the heat kernel on forms satisfies

p⃗(t, x, y) = p⃗(t, Jx, Jy).
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2.6 Spectrum on forms

Analogously to Section 2.4, in this section we will define the Laplacian on Lp(Λk(M))

as the infinitesimal generator of a certain semigroup in order to consider its spectrum.

As we saw, for any t ≥ 0, the heat operator e−t∆ is a bounded operator on

L2(Λk(M)). Moreover, when the Weitzenbock tensor is bounded bellow, i.e., W k ≥

−K2 it can be proved that the L2 to L2 bound of e−t∆ is at most etK2 . Even though it

might no longer be a Markov semigroup, it can be extended similarly to Theorem 2.4.1

for ∆0 to a semigroup of operators on Lp(Λk(M)) for any 1 ≤ p ≤ ∞ (see for example

[CL24]).

Definition 2.6.1. The Laplacian ∆p on Lp(Λk(M)), 1 ≤ p < ∞ is defined as the

generator of the semigroup e−t∆ on Lp(Λk(M)) and for p = ∞ as the adjoint operator

to ∆1, with L∞ = (L1)∗.

We denote the spectrum of the Laplacian on Lp integrable k-forms by σ(p, k,∆).

Again we have that σ(p, k,∆) = σ(p∗, k,∆) for 1/p + 1/p∗ = 1, since the adjoint

operator of ∆p is ∆p∗ . Moreover, because ∗∆ = ∆∗ and | ∗ ω| = |ω| pointwise we get

that σ(p, k,∆) = σ(p, n− k,∆). This is called Poincare duality.

The following result will be useful for the computation of the Lp-spectrum.

Proposition 2.6.1. [CL24] A complex number λ is in the spectrum of ∆ = ∆p, if-f

one of the following holds

(i) For any ϵ > 0, there is a k-form ω ∈ Dom(∆p) such that

∥∆ω − λω∥Lp ≤ ϵ ∥ω∥Lp

or,

(ii) For any ϵ > 0, there is a k-form ω ∈ Dom(∆p∗) such that

∥∆ω − λω∥Lp∗ ≤ ϵ ∥ω∥Lp∗

where p∗ satisfies 1/p+ 1/p∗ = 1.

As a result, to show that λ ∈ σ(p, k,∆), it suffices to find a sequence of approximate
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eigenforms i.e. for every ϵ > 0 there exists ωϵ such that

∥∆ωϵ − λωϵ∥Lp ≤ ϵ ∥ωϵ∥Lp .

Moreover, as we will see, there is a relationship between the Lp-spectrum of the Lapla-

cian depending on p. The Stein Interpolation result as stated in [Dav89]] Section 1.1.6,

will be important in illustrating this. We state it below.

Lemma 2.6.1. [The Stein Interpolation Theorem] [ [Dav89] p.3 ] Let 1 ≤ p0, p1 ≤ ∞

and S = {0 ≤ Rez ≤ 1}. Suppose that for all z ∈ S, T (z) is a linear operator from

Lp0(Λk(M)) ∩ Lp1(Λk(M)) to Lp0(Λk(M)) + Lp1(Λk(M)). Furthermore, assume that

(a) < T (z)ω, η > is uniformly bounded and continuous on S and analytic in the

interior of S whenever ω ∈ Lp0(Λk(M)) ∩ Lp1(Λk(M)) and η ∈ Lp∗0(Λk(M)) ∩

Lp∗1(Λk(M)).

(b) For all y ∈ R

||T (iy)ω||p0 ≤ M0||ω||p0 ,

for all ω ∈ Lp0(Λk(M)) ∩ Lp1(Λk(M)).

(c) For all y ∈ R

||T (1 + iy)ω||p0 ≤ M1||ω||p0 ,

for all ω ∈ Lp0(Λk(M)) ∩ Lp1(Λk(M)).

Then for each t ∈ (0, 1) and ω ∈ Lp0(Λk(M)) ∩ Lp1(Λk(M))

||T (t)ω||pt ≤ M1−t
0 M t

1||ω||pt

where 1
pt

= t
p1
+ (1−t)

p0
. Hence, T (t) can be extended to a bounded operator on Lpt(Λk(M))

with norm at most M1−t
0 M t

1.
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2.7 Riemannian Geometry

2.7.1 Curvatures in warped products

In this section we will describe the curvature of the manifold M when it is of the

form M = R×N , where (N, gN) is an (n− 1) dimensional compact, complete smooth

manifold and M is endowed with the warped product metric

gM = dr2 + f 2(r)gN .

Here f(r) is a smooth function in r, called the warping function.

One expects that the curvatures of M will depend on the warping function f(r) as

well the curvature of N . This can be established and we provide the exact formulas.

Note that we will also be considering warped products in a slightly more general

form of the type (a, b) × N with (a, b) ⊂ R, but the curvature formulas will be the

same.

Before we consider the general case, let as describe an example of such a manifold.

We will look at the special case of the Hyperbolic space, since it will play an important

part in this thesis.

There are four classical ways that one can define the Hyperbolic Space Hn, the

half-space model, the Poincare ball model, The Beltrami-Klein model and the Hyper-

boloid model. Actually these four models are equivalent since they are isometric as

Riemannian manifolds (see [Lee18] Theorem 3.7).

We start with the Hyperboloid model for Hn, n ≥ 2 and define polar coordinates

on it, following [Gri09]. The Hyperboloid H is given by the equation (xn+1)2 − x̃2 = 1,

where x̃ = (x1, . . . , xn) ∈ Rn and xn+1 > 0, is a submanifold of Rn+1. We define the

Riemannian metric gH on H obtained as the restriction of the Minkowski pseudometric

on Rn+1

gMink = (dx1)2 + · · ·+ (dxn)2 − (dxn+1)2.

The HyperboloidH with gH is the Hyperboloid model ofHn. We take p = (0, . . . , 0, 1) ∈

Hn and take polar coordinates on Hn such that

cosh r = xn+1, θ =
x̃

|x̃|
, x ∈ Hn \ {p}, r > 0, θ ∈ Sn−1.
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One can prove that with respect to these coordinates gH takes the form

gHn = dr2 + sinh2 rgSn−1 ,

where gSn−1 denotes the Riemannian metric of the unit sphere Sn−1. Thus, Hn can

be equivalently defined as the manifold M = [0,∞) × Sn−1 with the warped product

metric gHn above. Note that the smoothness properties of f at r = 0 allow us to show

that M is a complete smooth manifold.

We now go back to the general case of (R×N, dr2+f 2(r)gN). In ([Li12], Appendix

A) Li computes the sectional curvatures of M using Cartan’s structural equations (for

these equations see for example [Boo86] p.380). Let e1 =
∂
∂r

and ẽa, for a ∈ (2, . . . , n)

be an orthonormal frame on N . Then setting ea =
1
f
ẽa for a ∈ (2, . . . , n) we have that

ea for a ∈ (1, . . . , n) is an orthonormal frame on M . Then, the sectional curvature of

the planes π1,α spanned by e1 and eα is given by

sec(π1,α) = −
(
(logf)′′ + ((logf)′)2

)
= −f ′′

f
, (2.7.1)

and the sectional curvature of the planes πα,β spanned by eα and eβ is given by

sec(πα,β) =
s̃ec(πα,β)

f 2
− ((logf)′)2 =

s̃ec(πα,β)− (f ′)2

f 2
, (2.7.2)

where s̃ec(πα,β) denote the sectional curvature of the corresponding plane in N .

Now, we will show that all sectional curvatures of M take values between

−f ′′

f
,

s̃ec(πα,β)− (f ′)2

f 2
.

Let us recall that the curvature operator

R : Λ2(TM) → Λ2(TM),

is the self-adjoint operator uniquely defined by the relation

gM(R(W ∧X, Y ∧ Z) = −R(W,X, Y, Z).

We have

Proposition 2.7.1 ([Pet06], Prop. 4.1.1). Let ei be an orthonormal basis for TpM . If
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ei ∧ ej diagonalize the curvature operator

R(ei ∧ ej) = λijei ∧ ej,

then for any plane π in TpM we have sec(π) ∈ [minλij,maxλij].

So, since (2.7.1), (2.7.2) tell us that

R(e1 ∧ eα) = −f ′′

f
e1 ∧ eα,

R(eα ∧ eβ) =
s̃ec(πα,β)− (f ′)2

f 2
eα ∧ eβ,

we have the following

Proposition 2.7.2. Let M = R×N be the product manifold endowed with the warped

product metric gM = dr2 + f 2(r)gN , where gN is a metric on N . Then all sectional

curvatures of M are between

−f ′′

f
,

s̃ec(πα,β)− (f ′)2

f 2
.

Corollary 2.7.1. If we take N = Sn−1, then since s̃ec(πα,β) = 1 we get that all

sectional curvatures of M are between

−f ′′

f
,

1− (f ′)2

f 2
.

Remark 2.7.1. Let us note that in [Section 4.2 [Pet06]] the same result is obtained

by another approach, but only for the special case of N = Sn−1. The technique there

uses the Hessian operator of the radial distance function.

2.7.2 Comparison Theorems

Let (M, g) be a complete Riemannian manifold of dimension n. Let p ∈ M , then the

volume element in geodesic polar coordinates at p, can be expressed as

J(r, θ)dr ∧ dθ,

where dθ is the area element of the unit (n − 1) - sphere. An explicit expression of

J(r, θ) can be found by the Jacobian of the exponential mapping, see [[Sak96] p.154],
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[[SY94] p.8-9].

Let snK(r) be the solution to

u′′(r) +Ku(r) = 0,

with the initial conditions u(0) = 0, u′(0) = 1. An explicit calculation gives

snK(r) =


1√
K
sin

√
Kr if K > 0

r if K = 0

1√
|K|

sinh
√
|K|r if K < 0

. (2.7.3)

The above function is related to the space forms as follows: Let us denote by Mn
K

the complete simply connected space of constant curvature K. Then the corresponding

volume element of Mn
K is

JK(r, θ)dr ∧ dθ = snn−1
K dr ∧ dθ. (2.7.4)

Now, we state the Bishop Volume Comparison Theorem.

Theorem 2.7.2. [[Li12] p.14] Let M be an n-dimensional complete Riemannian man-

ifold with Ricci curvature bounded below by a constant (n− 1)K. Let Ap(r) be the area

of the geodesic sphere ∂Bp(r) centered at p ∈ M of radius r and Ā(r) be the area of

the geodesic sphere ∂B̄K(r) of radius r in Mn
K. Then, for 0 ≤ r1 ≤ r2 < ∞ we have

Ap(r2)Ā(r1) ≤ Ap(r1)Ā(r2)

and

Vp(r2)V̄ (r1) ≤ Vp(r1)V̄ (r2),

where Vp(r) and V̄ (r) are the volumes of Bp(r) and B̄(r), respectively.

The theorem essentially follows by the comparison properties of the Riccati equation

which J satisfies. Let us recall that

Ap(r) =

∫
Sn−1

J(r, θ)dθ
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and

Vp(r) =

∫ r

0

Ap(r
′)dr′.
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Chapter 3

The Hodge Laplacian on warped

products metrics

Let M = R×N be the product manifold, with the warped product metric

g = dr2 + f 2(r)gN ,

as in the previous section. For the manifold N , the following two theorems are well

known.

Theorem 3.0.1 (Hodge decomposition Theorem, Theorem 1.37 [Ros97]). Suppose that

N is compact complete and oriented smooth manifold. Then we have

Λk(N) = dC∞(Λk−1(N))⊕ δC∞(Λk+1(N))⊕Hk(N),

where

dC∞(Λk−1(N)) = {ω ∈ Λk(N) : ω = dη1, for some η1 ∈ Λk−1(N)},

δC∞(Λk+1(N)) = {ω ∈ Λk(N) : ω = δη2, for some η2 ∈ Λk+1(N)},

Hk(N) = {ω ∈ Λk(N) : ∆ω = 0}.

Theorem 3.0.2 (Hodge Theorem for forms, Theorem 1.30 [Ros97] ). Let N as in

Theorem 3.0.1. Then there exists an orthonormal basis of L2(Λk(N)) consisting of

eigenforms of the Laplacian on k-forms.

As Antoci illustrates in [Ant04], the above theorems can be used to also provide
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the full decomposition of the Laplacian on L2- integrable forms.

In our study of the Lp-spectrum in the next chapter we will need a large class

of approximate eigenforms for the Laplacian. It turns out that certain types of k-

forms that stem from this decomposition will be useful. So, we will write in detail the

action of the Laplacian in these cases only, without providing the full decomposition

of L2(Λk(M)), since it is not required for our results.

Firstly, we write the action of the Hodge star ∗ operator on k-forms on M of the

type ω = ω1 + ω2 ∧ dr, where ω1 and ω2 are respectively a k-form and a (k − 1)-form

on N but which might also depend on r.

Lemma 3.0.3 ( (3.3) in Section 3 from [Ant04]). Let ω1 = h1(r)η1and ω2 = h2(r)η2,

where η1 is a k-form on N , and η2 is a (k − 1)-form on N , and h1, h2 are smooth

functions of r. Then, the k-form ω = ω1 + ω2 ∧ dr on M , satisfies

∗ω = (−1)n−kh1f
n−2k+1(∗Nη2) + h2f

n−2k−1(∗Nη1) ∧ dr,

where ∗N is the star operator on (N, gN).

In the sequel, we write the action of the operators d, δ on k-forms on M of the form

ω = ω1 + ω2 ∧ dr.

Lemma 3.0.4 ( (3.4) and (3.5) in Section 3 from [Ant04]). Let ω1 = h1(r)η1, ω2 =

h2(r)η2, where η1 is a k-form on N and η2 is a (k − 1)-form on N , and h1, h2 are

smooth functions of r. Then, the k-form ω = ω1 + ω2 ∧ dr on M , satisfies

dω = h1dNη1 + [(−1)kh′
1η1 + h2dNη2)] ∧ dr,

δω = h1f
−2δNη1 + (−1)k(h2f

n−2k+1)′f−n+2k−1η2 + h2f
−2(δNη2) ∧ dr.

So, now we are in position to completely determine the action of ∆ on k-forms on

M of the form ω = ω1 + ω2 ∧ dr, where again ω1 and ω2 are respectively a k-form and

a (k − 1)-form on N depending on r.

Proposition 3.0.1. Let ω1 = h1(r)η1, ω2 = h2(r)η2, where η1 is a k-form on N and

η2 is a (k − 1)-form on N , and h1, h2 are smooth functions of r. Then, the k-form
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ω = ω1 + ω2 ∧ dr on M , satisfies

∆ω = h1f
−2∆Nη1 + h2f

−2(∆Nη2) ∧ dr + (−1)k2h1f
′f−3(δNη1) ∧ dr

+ (−1)k2h2f
′f−1dNη2 − [h′′

1 + (n− 2k − 1)h′
1f

′f−1]η1

− [h′′
2 + (n− 2k + 1)(h2f

′f−1)′]η2 ∧ dr.

As we already mention, in our study in the next chapter we will need a large class

of k-forms on M for which will need to know the action of ∆ on them. The following

Corollary summarizes the action of the Laplacian on the specific forms we will use.

Corollary 3.0.1. (a) Let η be a co-closed k-eigenform over N with ∆Nη = λη.

Then, the k-form ω = h1(r)η over M satisfies

∆(h1(r)η) = ∆1(h1(r))η,

where

∆1(h1(r)) = −
[
h′′
1(r) + (n− 2k − 1)h′

1(r)
f ′(r)

f(r)

]
+ λ

h1(r)

f 2(r)
.

(b) Let η be a closed (k − 1)-eigenform over N with ∆Nη = λ0η. Then, the k-form

ω = h2(r)η ∧ dr over M satisfies

∆(h2(r) η ∧ dr) = ∆2(h2(r)) η ∧ dr,

where

∆2(h2(r)) = −
[
h′′
2(r) + (n− 2k + 1)

(
h2(r)

f ′(r)

f(r)

)′]
+ λ0

h2(r)

f 2(r)
. (3.0.1)

Proof. We consider the k-form ω = h1(r)η in M where η is a k-eigenform of ∆N with

∆Nη = λη and it is coclosed. In the decomposition

ω = ω1 + ω2 ∧ dr,

this corresponds to the case ω = ω1 and ω2 = 0. Therefore, Proposition 3.0.1 with
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ω1 = h1(r)η and η2 = 0 and δNη1 = 0 gives

∆(ω) = ∆(h1(r)η) =h1f
−2λη − [h′′

1 + (n− 2k − 1)h′
1f

′f−1]η

=[h1f
−2λ− [h′′

1 + (n− 2k − 1)h′
1f

′f−1]]η

=∆1(h1)η.

Similarly, we consider the k-form ω = h2(r)η ∧ dr in M where η is a (k− 1)-eigenform

of ∆N with ∆Nη = λ0η which is closed. Taking ω1 = 0 and ω2 = h2(r)η in Proposition

3.0.1 we get

∆(ω) = ∆(h2(r)η ∧ dr) = + h2f
−2λ0η ∧ dr − [h′′

2 + (n− 2k + 1)(h2f
′f−1)′]η ∧ dr

=[h2f
−2λ0 − [h′′

2 + (n− 2k + 1)(h2f
′f−1)′]]η ∧ dr

=∆2(h2)η ∧ dr.

As we will see in the next chapter, the approximate eigenforms for the Laplacian,

will be of the form (ϕfµ)η∧ dr, with ϕ a function of r and f the warping function. So,

for future reference we compute the following.

By (3.0.1) we have

∆2f
µ = fµ

[
−(µ+ n− 2k + 1)

f ′′

f
− (µ− 1)(µ+ n− 2k + 1)

(
f ′

f

)2

+
λ0

f 2

]
(3.0.2)

and

∆2(ϕf
µ) =ϕ∆2(f

µ)−
[
ϕ′′fµ + 2ϕ′(fµ)′ + (n− 2k + 1)ϕ′fµ−1f ′]

=− fµ

[
(µ+ n− 2k + 1)ϕ

f ′′

f
+ (µ− 1)(µ+ n− 2k + 1)ϕ

(
f ′

f

)2

+ ϕ′′ + (2µ+ n− 2k + 1)ϕ′f
′

f
− λ0

ϕ

f 2

]
.

(3.0.3)
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Chapter 4

The Lp-spectrum for a class of

warped product metrics

In this chapter, the space M will be a generalization of warped product manifolds.

More specifically we will study manifolds which are warped products at infinity. Let

us be more precise.

Definition 4.0.1. We say that M is a warped product at infinity, if outside a compact

set K, M \K is of the form (c0,∞)×N with metric

g = dr2 + f 2(r)gN ,

where f ∈ C∞(c0,∞) is the warping function and N is an (n−1)-dimensional compact

manifold.

The type of warping function f determines the geometry of the manifold at infinity,

and hence its spectrum. For example if c0 > 0, f = r with N = Sn−1, then M is

Euclidean at infinity and if f = sinhr with N = Sn−1 as well it is hyperbolic. We

will provide a large class of functions f for which the Lp-spectrum contains a parabolic

region. We will consider the set of functions:

B = {f ∈ C2(a,∞) :
f ′′

f
= a0 + o(1),(

f ′

f

)2

= a0 + o(1), as r → ∞,with a0 > 0

and f → ∞, as r → ∞}.

A prototype example of such f are f = e
√
a0r and f = sinh(

√
a0r), which give us a
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manifold which is hyperbolic with Ricci curvature in the radial direction −(n − 1)a0.

In other words, we consider manifolds which are asymptotically hyperbolic and with

infinity volume since f → ∞.

4.1 The Lp-spectrum for a class of warped product

metrics part I

Let Pp,k be the curve in the complex plane,

Pp,k =

{
−a0

[
n− 1

p
− k + is

] [
(n− 1)

(
1

p
− 1

)
+ k + is

]
, s ∈ R

}

with a0 > 0. Denote the parabolic region to the right of the curve Pp,k by Qp,k. In this

section we construct approximate eigenforms in order to prove that the Lp-spectrum

of the Hodge Laplacian on k-forms contains the parabolic region Qp,k whenever M is

a warped product at infinity with warping function f .

In the following Lemma we find an equivalent expression for Qp,k.

Lemma 4.1.1. The parabolic region Qp,k can be expressed as,

Qp,k = {a0
(
n− 1

2
− k

)2

+ z2 : |Im(z)| ≤
√
a0(n− 1)

∣∣∣∣1p − 1

2

∣∣∣∣}.
Proof. We rewrite the parametric equation for the parabola as

−a0

[
n− 1

p
− k

] [
(n− 1)

(
1

p
− 1

)
+ k

]
+ a0s

2 − 2a0(n− 1)

(
1

p
− 1

2

)
is,

for any s ∈ R, which is equal to

−a0

[(
n− 1

p

)2

− (n− 1)2

p
+ k(n− 1)− k2

]
+ a0s

2 − 2a0(n− 1)

(
1

p
− 1

2

)
is,

for any s ∈ R. Since

(
n− 1

p

)2

− (n− 1)2

p
+ k(n− 1)− k2 = −

(
n− 1

2
− k

)2

+ (n− 1)2
(
1

p
− 1

2

)2

,

setting

y = −2a0(n− 1)

(
1

p
− 1

2

)
s,
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we get that

Pp,k =

{
x+ iy : x = a0

(
n− 1

2
− k

)2

− a0(n− 1)2
(
1

p
− 1

2

)2

+
y2

a0

[
2(n− 1)(1

p
− 1

2
)
]2
 .

Note that for z = a+ ib and µ, λ any constants, we have

{z2 + µ : b = λ} = {x+ iy : x = µ+
y2

(2λ)2
− λ2}.

Taking λ =
√
a0(n − 1)(1

p
− 1

2
) and µ = a0

(
n−1
2

− k
)2

we see that ∂Qp,k = Pp,k.

The conclusion follows by noting that the region to the right of Pp,k corresponds to

{z2 + µ : b < λ} = {z2 + µ : |b| < λ}

Theorem 4.1.2. Let M be a warped product at infinity where the warping function

f ∈ B. For any 0 ≤ k ≤ n
2
and 1 ≤ p ≤ 2, the Lp-spectrum of the Laplacian,

σ(p, k,∆) contains Qp,k. The remaining cases for p and k are given by duality as

σ(p, k,∆) = σ(p, n − k,∆) for n/2 ≤ k ≤ n and σ(p, k,∆) = σ(p∗, k,∆) whenever

1
p
+ 1

p∗
= 1.

Proof. Let us note that by our assumption f → ∞. Let µ be a complex number. Note

that in the particular case

f ′′

f
= a0,

(
f ′

f

)2

= a0,

using (3.0.2) we compute,

∆2f
µ = −fµ[a0µ(µ+ n− 2k + 1)] +

λ0f
µ

f 2
.

If f → ∞, the last term is of lower order. Hence, the candidate points for the spectrum

are

λ = −a0µ(µ+ n− 2k+1) = −a0(µ+ n− 2k+1)− a0(µ− 1)(µ+ n− 2k+1). (4.1.1)

We will show that any λ such as the one above belongs to σ(p, k,∆). To achieve this we

need to show that for every ϵ > 0 there exists a k-form ω such that ||(∆−λ)ω||p ≤ ϵ||ω||p
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by Proposition 2.6.1. We consider approximate eigenforms of the type ω = ϕfµη ∧ dr

where ϕ = ϕ(r) has compact support in (c0,∞), µ ∈ C and η is a smooth closed

k − 1 eigenform on N with eigenvalue λ0. Set λ as in (4.1.1). By Corollary 3.0.1

∆(ω) = ∆2(ϕf
µ) η ∧ dr. Using (3.0.3) and the triangle inequality we get

∥∆pω − λω∥pp = ∥∆2(ϕf
µ)η ∧ dr − λϕfµη ∧ dr∥pp

=

∥∥∥∥∥fµη ∧ dr

[
−(µ− 1)(µ+ n− 2k + 1)ϕ

(
f ′

f

)2

− (µ+ n− 2k + 1)ϕ
f ′′

f

]

− fµη ∧ dr

[
ϕ′′ + (2µ+ n− 2k + 1)ϕ′f

′

f
− λ0

ϕ

f 2

]
+a0(µ+ n− 2k + 1)ϕfµη ∧ dr + a0(µ− 1)(µ+ n− 2k + 1)ϕfµη ∧ dr∥pp

=

∥∥∥∥∥−(µ− 1)(µ+ n− 2k + 1)ϕ

[(
f ′

f

)2

− a0

]
fµη ∧ dr

− (µ+ n− 2k + 1)ϕ

(
f ′′

f
− a0

)
fµη ∧ dr

−fµϕ′′η ∧ dr − fµη ∧ dr(2µ+ n− 2k + 1)ϕ′f
′

f
+ fµη ∧ drλ0

ϕ

f 2

∥∥∥∥p

p

≤ |(µ− 1)(µ+ n− 2k + 1)|

∥∥∥∥∥ϕ
[(

f ′

f

)2

− a0

]
fµη ∧ dr

∥∥∥∥∥
p

p

+ |µ+ n− 2k + 1|
∥∥∥∥ϕ(f ′′

f
− a0

)
fµη ∧ dr

∥∥∥∥p

p

+ ∥ϕ′′fµη ∧ dr∥pp + |2µ+ n− 2k + 1|∥ϕ′f
′

f
fµη ∧ dr∥pp+∥λ0

ϕ

f 2
fµη ∧ dr∥pp

= I + II + III + IV + V.

(4.1.2)

We set µ = −n−1
p

+ (k − 1) + is, for s ∈ R. Note that

|η ∧ dr|M = |η|Nf−(k−1),

hence

|ω|M = fRe(µ)−k−1|ϕ||η|N = f−n−1
p |ϕ||η|N , (4.1.3)

for our µ. Fix ϵ > 0. Let Aϵ ,Bϵ such that Bϵ > Aϵ > C+1.We will take cut-off functions

ϕϵ : R → R such that ϕϵ ∈ C∞(R), sptϕϵ ⊂ [Aϵ − 1, Bϵ] ⊂ (c0,∞), ϕϵ = 1 on [Aϵ, Bϵ]
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and |ϕ′
ϵ|, |ϕ′′

ϵ | ≤ C for every ϵ > 0. Observe that,

∫ ∞

0

|ϕ′
ϵ|pdr ≤

∫ Aϵ

Aϵ−1

|ϕ′
ϵ|pdr +

∫ Bϵ+1

Bϵ

|ϕ′
ϵ|pdr ≤ C

and ∫ ∞

0

|ϕ′′
ϵ |pdr ≤

∫ Aϵ

Aϵ−1

|ϕ′′
ϵ |pdr +

∫ Bϵ+1

Bϵ

|ϕ′′
ϵ |pdr ≤ C,

where C are uniform constants independent of ϵ. From now on C will denote a uniform

constant which does not depend on ϵ, and might differ from one line to the next. Note

that the volume element on M \K is dVg = fn−1drdσ where dσ is the volume element

on N . Using (4.1.3) we compute

∥ωϵ∥pp =
∫
M

|ϕϵ|pfp(Reµ)|η ∧ dr|pdVg =

∫ Bϵ+1

Aϵ−1

∫
N

fp(Reµ)|ϕϵ|p|η ∧ dr|pfn−1drdσ

=

∫ Bϵ+1

Aϵ−1

C|ϕϵ|pdr >
∫ Bϵ

Aϵ

Cdr = (Bϵ − Aϵ)C.

(4.1.4)

We will show that each one of the five terms in (4.1.2) is uniformly bounded for our ω.

First we get

IV ≤ C

∫
M

|ϕ′
ϵ|p

(
f ′

f

)p

fp(Reµ) |η ∧ dr|pdVg =

∫
sptϕ′

ϵ

C|ϕ′
ϵ|p

(
f ′

f

)p

dr

≤ C

∫
[Aϵ−1,Aϵ]

⋃
[Bϵ,Bϵ+1]

|ϕ′
ϵ|pdr ≤ C,

(4.1.5)

where we have used that
(

f ′

f

)p

is bounded at infinity and hence it is uniformly bounded

on (c0,∞). Similarly, |ϕ′′
ϵ | is bounded and supported on a set of length 2, hence

III ≤ C.

Now we estimate (I).

I = C

∥∥∥∥∥ϕϵ

[(
f ′

f

)2

− a0

]
fµη ∧ dr

∥∥∥∥∥
p

p

= C

∫
M

ϕp
ϵ

∣∣∣∣∣
(
f ′

f

)2

− a0

∣∣∣∣∣
p

fp(Reµ)|η ∧ dr|pdVg

≤ C sup
[Aϵ−1,Bϵ+1]

∣∣∣∣∣
(
f ′

f

)2

− a0

∣∣∣∣∣
p ∫

M

ϕp
ϵf

p(Reµ)|η ∧ dr|pdVg

= C sup
[Aϵ−1,Bϵ+1]

∣∣∣∣∣
(
f ′

f

)2

− a0

∣∣∣∣∣
p

∥ωϵ∥pp.

(4.1.6)
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Similarly,

II ≤ C sup
[Aϵ−1,Bϵ+1]

∣∣∣∣f ′′

f
− a0

∣∣∣∣p ∥ωϵ∥pp,

and

V ≤ C sup
[Aϵ−1,Bϵ+1]

(
1

f 2p

)
∥ωϵ∥pp.

By our assumptions f ′′

f
→ a0,

(
f ′

f

)1/2

→ a0 and f → ∞, hence we can find Aϵ large

enough such that

sup
[Aϵ−1,Bϵ+1]

∣∣∣∣∣
(
f ′

f

)2

− a0

∣∣∣∣∣
p

, sup
[Aϵ−1,Bϵ+1]

∣∣∣∣f ′′

f
− a0

∣∣∣∣p , sup
[Aϵ−1,Bϵ+1]

(
1

f 2p

)
≤ ϵ.

As a result

I + II + V ≤ C ϵ∥ωϵ∥pp,

with C independent of ϵ. In addition, for any Aϵ we can chose Bϵ large enough such

that

Bϵ − Aϵ >
1

ϵ
.

Hence, by (4.1.4) and (4.1.5)

III + IV ≤ C = C ϵ
1

ϵ
≤ C ϵ∥ωϵ∥pp.

Since, ϵ was arbitrary we conclude that

I + II + III + IV + V ≤ ϵ∥ωϵ∥pp.

So, by Proposition 2.6.1 we have shown that the points

λ = −a0

(
−n− 1

p
+ (k − 1) + is

)(
−n− 1

p
+ (n− k) + is

)
, s ∈ R

belong to σ(p, k,∆). Setting k = n−m, for 0 ≤ m ≤ n/2, in the above equation and

changing sign in both brackets we get

λ = −a0

[
(n− 1)

(
1

p
− 1

)
+m− is

] [
n− 1

p
−m− is

]
, s ∈ R,

which are exactly the points of Pp,m. Thus, for 0 ≤ m ≤ n/2 we have shown that

Pp,m ⊂ σ(p, n−m,∆) = σ(p,m,∆), where the equality follows by Poincare duality.
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Observe that
⋃

p≤q≤2 Pq,m = Qp,m. Moreover, by σ(q,m,∆) ⊂ σ(p,m,∆) for all

1 ≤ p ≤ q ≤ 2 we get Qp,m ⊂ σ(p,m,∆) for any 1 ≤ p ≤ 2 and 0 ≤ m ≤ n
2
. For a

proof of σ(q,m,∆) ⊂ σ(p,m,∆), see the first part in Lemma 5.2.6.
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4.2 The Lp-spectrum for a class of warped product

metrics part II

In this section, we show that the Lp-spectrum is contained within a parabolic region.

This is a result that depends on the rate of the volume growth of the manifold at

infinity, which is defined as follows.

Definition 4.2.1. The exponential rate of volume growth of M , denoted by γ, is the

infimum of all real numbers β satisfying the property: for any ϵ > 0, there is a constant

C, depending only on ϵ and the dimension of M , such that for any p ∈ M and any

R ≥ 1, we have

(Vp(R)) ≤ C(Vp(1))e
(β+ϵ)R,

where Vp(R) denotes the volume of the ball of radius R at p.

Our main analytic tool is the following recent result, obtained in [CL24], which says

that for a complete manifold M over which the Ricci curvature and the Weitzenbock

tensor on k-forms are bounded below, the resolvent set of (∆ − (λ1 + z2))−1 is the

region to the left of the parabola |Im(z)| = γ|1
p
− 1

2
| in the complex plane, where γ is

the exponential rate of volume growth of M and λ1 is the bottom of the L2 spectrum

of the Laplacian on k-forms. More precisely we have:

Theorem 4.2.1. [CL24] Let M be a complete manifold over which the Ricci curvature

and the Weitzenbock tensor on k-forms are bounded below. Denote by γ the exponential

rate of volume growth of M and λ1 the infimum of the spectrum of the Laplacian on

L2 integrable k-forms. Let 1 ≤ p ≤ ∞, and z be a complex number such that

|Im(z)| > γ|1
p
− 1

2
|.

Then

(∆− (λ1 + z2))−1

is a bounded operator on Lp(Λk(M)).

Now let us return to the set of the manifolds M that we study in this Chapter, that

is, warped products at infinity with warping function f ∈ B. In order to apply the

previous Theorem in our case, we have to show first that for M the Ricci curvature and

the Weitzenbock tensor on k-forms are bounded below and in the sequel to compute γ.
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In the following Proposition we prove that the Ricci curvature of M is bounded below.

We compute also an upper bound for γ.

Proposition 4.2.1. Let M be a warped product at infinity where the warping function

f ∈ B. Then the Ricci curvature of M is bounded below, and the exponential of volume

growth of M is at most (n− 1)
√
a0.

Proof. The technique that we use is based on the proof of Proposition 1 in [Stu93].

Here, we follow the proof in [CR24] to show that the technique can be generalized

to the case when the Ricci curvature is asymptotically bounded below by a negative

constant, whereas Sturm only considers asymptotically nonnegative Ricci curvature.

By Proposition 2.7.2 we have that all sectional curvatures of M lie between

−f ′′

f
,

C̄ − (f ′)2

f 2
,

where C̄ reflects the sectional curvatures of N . As a result, on M \ K the sectional

curvatures tend to −a0 as r → ∞. This implies that, for any ϵ > 0, there is a compact

set Kϵ ⊂ M with smooth boundary, such that the sectional curvatures on M \ Kϵ

are bounded below by −(a0 + ϵ). Therefore, the Ricci curvature is bounded below by

−(n− 1)(a0 + ϵ) on M \Kϵ. Let R = Rϵ be the diameter of Kϵ.

For a point x ∈ M , let s = sϵ(x) = d(x,Kϵ) and t = tϵ(x) = s+ Rϵ. By definition,

t − s does not depend on x ∈ M . Now, by the compactness of Kϵ, since the Ricci

curvature is uniformly bounded from below on M \ Kϵ, we get that it is uniformly

bounded from below on all of M . Thus, there exists a K > 0 such that the Ricci

Curvature is bounded from below by −(n− 1)K2 on all of M . Clearly, K ≥
√
a0 + ϵ.

We introduce the Sturm-Liouville equation,

u′′(r) + q(r)u(r) = 0, (4.2.1)

with initial conditions u(0) = 0, u′(0) = 1, where q is defined by

q(r) =


−(a0 + ϵ) for r ∈ [0, s)

−K2 for r ∈ [s, t)

−(a0 + ϵ) for r ∈ [t,∞)

. (4.2.2)

Denote by Mn
q the complete simply connected space with piecewise constant cur-
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vature as defined by q. Following the notation in Section 2.7.2, the volume element

Jq(r, θ)dr ∧ dθ of Mn
q will be u(r)n−1dr ∧ dθ, where u(r) is the solution of (4.2.1).

From Theorem 2.7.2 we have

Vx(r)

Vx(1)
≤ V̄ (r)

V̄ (1)

where V, V̄ are the volumes of the geodesic ball of M and Mn
q respectively. We compute

Ā(r′) =

∫
Sn−1

Jq(r
′, θ)dθ =

∫
Sn−1

u(r′)n−1dθ = u(r′)n−1

∫
Sn−1

dθ

and

V̄ (r) =

∫
Sn−1

dθ

∫ r

0

u(r′)n−1dr′.

Therefore,

Vx(r) ≤ Vx(1)

∫ r

0
u(r′)n−1dr′∫ 1

0
u(r′)n−1dr′

. (4.2.3)

The estimate of the above fraction will give us the upper volume estimate of Vx(r).

By solving (4.2.1) with q as in (4.2.2) and the properties of the Sturm-Liouville’s

equation we get that

u(r) ≥ 1√
a0 + ϵ

sinh(r
√
a0 + ϵ),

on (0,∞), uniformly on M . Thus,

∫ 1

0

u(r′)n−1dr′ ≥
∫ 1

0

(
1√

a0 + ϵ
sinh(r′

√
a0 + ϵ)

)n−1

dr′ = Cϵ.

Combining with (4.2.3) we find

Vx(r) ≤ Vx(1)C
′
ϵ

∫ r

0

u(r′)n−1dr′.

Thus it remains to estimate

∫ r

0

u(r′)n−1dr′.

By solving the Sturm-Liouville’s equation iteratively on each interval, we have
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u(r) ≤


1√
a0+ϵ

er
√
a0+ϵ if r ∈ [0, s)

1√
a0+ϵ

es
√
a0+ϵeK(r−s) if r ∈ [s, t)

K
a0+ϵ

es
√
a0+ϵeK(t−s)e(r−t)

√
a0+ϵ if r ∈ [t,∞)

. (4.2.4)

Note that

es
√
a0+ϵeK(t−s)+(r−t)

√
a0+ϵ = e(K−

√
a0+ϵ)(t−s)er

√
a0+ϵ

= e(K−
√
a0+ϵ)Rϵer

√
a0+ϵ

for r ∈ [t,∞). Moreover,

es
√
a0+ϵeK(r−s) ≤ er

√
a0+ϵeKRϵ ,

for r ∈ [s, t). As a result

u(r) ≤ Cϵe
r
√
a0+ϵ,

for all r ∈ [0,∞), since Rϵ is independent of x. We can now estimate

∫ r

0

u(r′)n−1dr′ ≤ Cϵ

∫ r

0

(
er

′√a0+ϵ
)n−1

dr′ = Cϵe
(n−1)r

√
a0+ϵ.

Combining the above, we get that the fraction in (4.2.3) is uniformly bounded above

in M by Cϵe
(n−1)r

√
a0+ϵ. Thus, since ϵ > 0 was arbitrary, we get that the exponential

rate of volume growth, γ satisfies γ ≤ (n− 1)
√
a0.

The above Proposition combined with our computation of the Lp-spectrum will give

us the exact value of the exponential rate of volume growth γ of M . More precisely

we have.

Proposition 4.2.2. Let M be a warped product at infinity where the warping function

f ∈ B. Then γ = (n− 1)
√
a0.

Proof. We proceed as in [CR24]. By Proposition 4.2.1, the Ricci curvature of M is

bounded below, and by Proposition 2.7.1 the curvature operator on M is bounded

below. Hence by Corollary 2.6 in [GM75] the Weitzenbock tensor on k-forms is also

bounded below. By Theorem 4.2.1 we find that the resolvent set of the Hodge Laplacian
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acting on Lp k-forms contains the set

A = {λ1 + z2 : |Im(z)| > |1
p
− 1

2
|γ}, (4.2.5)

where λ1 is the bottom of the L2 spectrum of the Laplacian on k-forms. Thus, we have

σ(p, k,∆) ⊂ C \ A = A∁ = {λ1 + z2 : |Im(z)| ≤ |1
p
− 1

2
|γ}. (4.2.6)

From Theorem 4.1.2 we have,

Qp,k ⊂ σ(p, k,∆). (4.2.7)

We proceed by contradiction. Assuming γ < (n− 1)
√
a0 we will show that this forces

certain points of Qp,k and hence σ(p, k,∆) to lie outside C \ A giving the desired

contradiction. For simplicity we take p = 1. In this case, we have,

A∁ = {λ1 + z2 : |Im(z)| ≤ γ

2
}.

Setting z = t+ is this set can be expressed as

A∁ = {λ1 + t2 − s2 + 2its : s2 ≤ γ2

4
, t ∈ R}

and setting y = 2ts we get

A∁ = {λ1 +
y2

4s2
− s2 + iy : s2 ≤ γ2

4
, y ∈ R}

= {x+ iy : x ≥ λ1 −
γ2

4
+

y2

γ2
, y ∈ R}.

(4.2.8)

On the other hand, by Lemma 4.1.1,

Q1,k = {a0
(
n− 1

2
− k

)2

+ z2 : |Imz| ≤
√
a0(n− 1)

2
}

which can similarly be expressed as

Q1,k = {x+ iy : x ≥ a0

(
n− 1

2
− k

)2

− a0(n− 1)2

4
+

y2

a0(n− 1)2
, y ∈ R}.

In other words both A∁ and Q1,k are parabolic regions to the right of parabolas of the
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type x = x0 + by2. For A∁, the constant b is b1 =
1
γ2 , and for Q1,k it is b2 =

1
a0(n−1)2

. If

γ < (n− 1)
√
a0 then b1 > b2 and hence the parabola of A∁ is strictly contained in Q1,k

when x+ iy has x large enough. This gives us the contradiction. As a result we must

have γ = (n− 1)
√
a0.

Now that we have found the exponential rate of volume growth γ of M , we are

in position to determine the Lp-spectrum of the Laplacian on k-forms, if we make

the assumption that the bottom of the L2 spectrum of the Laplacian on k-forms is

λ1 = a0(
n−1
2

− k)2.

Proposition 4.2.3. Let M be a warped product at infinity where the warping function

f ∈ B. Assume that the bottom of the L2 spectrum of the Laplacian on k-forms is

λ1 = a0(
n− 1

2
− k)2,

then σ(p, k,∆) = Qp,k.

Proof. Let A as in (4.2.5). For γ = (n− 1)
√
a0 and λ1 = a0(

n−1
2

− k)2 we observe that

A∁ = Qp,k.

By Theorem 4.2.1 and the proof of Proposition 4.2.2 we have

σ(p, k,∆) ⊂ A∁.

At the same time, by Theorem 4.1.2 we have

Qp,k ⊂ σ(p, k,∆) ⊂ A∁ = Qp,k,

which give us that σ(p, k,∆) = Qp,k.

One may ask if there exists any space satisfying the assumptions of Proposition

4.2.3. We will see that there exist various manifolds where this is the case, and the key

factor so that the assumption on λ1 holds, is the isolated discrete spectrum of ∆.

We begin by looking at a particular class of warped product at infinity which are

conformally compact. Lets recall the definition of a conformally compact manifold.

Definition 4.2.2. [Bor01] Let X be a smooth manifold with boundary ∂X, equipped

with an arbitrary smooth metric ḡ. A boundary-defining function on X is a function
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x ≥ 0 such that ∂X = {x = 0} and dx ̸= 0 on ∂X. A conformally compact metric on

the interior of X is a metric of the form

g =
ḡ

x2
.

Borthwick proves the following structure theorem for conformally compact mani-

folds.

Proposition 4.2.4 (Proposition 3.1 [Bor01]). Let X be a compact manifold with g a

conformally compact metric. Then, there exists a product decomposition (x, y) near

∂X such that

g =
dx2

a(y)2x2
+

h(x, y, dy)

x2
+O(x∞) (4.2.9)

Here −a(y)2 is the limiting curvature at infinity.

In the above Proposition we denote by O(x∞) any tensor A(x) such that for any

n ∈ N, there exists a constant Cn for which |A(x)| ≤ Cnx
n, in a neighborhood of 0.

Lemma 4.2.2. Let M be a warped product at infinity where the warping function

f ∈ B is restricted to satisfy f(r) ∼ ce
√
a0r, for some a0 > 0, as r → ∞. Then the

metric g = dr2 + f 2(r)gN , on M \K = (c0,∞)×N is a conformally compact metric,

with limiting curvature −a0 at infinity.

Proof. By Proposition 4.2.4 it suffices to show that the metric g can be expressed as

g =
dx2

a0x2
+

h(x, y, dy)

x2
+O(x∞).

Setting

r = − lnx
√
a0

⇔ x = e−
√
a0r

we get dr2 = 1
a0x2dx

2. Therefore, the metric g can be rewritten as:

g = dr2 + f(r)2gN

=
1

x2a0
dx2 +

[f(−lnx√
a0
)x]2

x2
gN
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Since f(r) ∼ ce
√
a0r, as r → ∞ we have

c = lim
r→∞

f(r)e−
√
a0r

= lim
x→0

f

(
−lnx
√
a0

)
x

Thus, if we set

h = f 2

(
−lnx
√
a0

)
x2gN

we get

h → c gN as x → 0

which tells us that M is a conformally compact manifold with boundary ∂X = N at

infinity.

Theorem 4.2.3 ((1.3) Theorem [Maz88]). For the conformally compact metric g in

(4.2.9), if −a0 is the maximum limiting curvature at infinity for some a0 > 0, then

the essential spectrum of ∆ the Laplacian on L2-integrable k-forms is [a0
(n−2k−1)2

4
,∞),

{0} ∪ [a0
4
,∞), [a0

(n−2k+1)2

4
,∞) for k < n

2
, k = n

2
, k > n

2
respectively.

By this Theorem and Lemma 4.2.2 we have an immediate result for the bottom of

the essential spectrum of M (in our case −a0 is the maximum limiting curvature at

infinity).

Proposition 4.2.5. Let M be a warped product at infinity where the warping function

f ∈ B is restricted to satisfy f(r) ∼ ce
√
a0r, as r → ∞. Then, the L2 essential

spectrum of the Laplacian on forms on M is [a0
(n−2k−1)2

4
,∞) for k < n

2
, {0} ∪ [a0

4
,∞),

[a0
(n−2k+1)2

4
,∞) for k < n

2
, k = n

2
, k > n

2
respectively.

In other words, the L2 spectrum of the Laplacian on k-forms over such a manifold,

consists of isolated eigenvalues in the interval [0, a0
(n−2k−1)2

4
) together with the interval

[a0
(n−2k−1)2

4
,∞). The bottom of the essential spectrum λ1 = [a0

(n−2k−1)2

4
] coincides

with the vertex of the parabola Qp,k in Lemma 4.1.1.

Interpreting the above warped products as conformally compact manifolds, allowed

us to obtain a simple proof for what their essential spectrum should be. Compare for

example with the more intricate arguments in [Ant04].

By the above Proposition, if we have a warped product at infinity M with warping

function f ∈ B such that f(r) ∼ ce
√
a0r, as r → ∞, and we assume that the spectrum
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of the Laplacian on L2-integrable k-forms does not have isolated eigenvalues, we have

that σ(2, k,∆) = [a0
(n−2k+1)2

4
,∞). Thus, M satisfies the assumption of Proposition

4.2.3 and we immediately get the following result.

Theorem 4.2.4. Let M be a warped product at infinity where the warping function

f ∈ B is restricted to satisfy f(r) ∼ ce
√
a0r, for some a0 > 0, as r → ∞. Let k ̸= n

2

and assume that the L2 spectrum of the Laplacian on k-forms over M has no isolated

eigenvalues of finite multiplicity. Then the Lp-spectrum of the Laplacian on forms on

M is Qp,k.

In the particular case when M is in addition an Einstein manifold we have a more

precise result about its Lp-spectrum.

Corollary 4.2.1. Suppose that M is a warped product of negative curvature, which is

in addition an Einstein manifold, and such that the Yamabe invariant of N is non-

negative. Then the Lp-spectrum of the Laplacian on functions σ(p, 0,∆) is precisely

Qp,0, with −a0 the curvature of the warped product at infinity.

Proof. Let us note the following two results, that will give us the proof of the corollary.

In [Lee94] Lee, show that the L2 spectrum of the Laplacian on M as in our assumptions

has no isolated eigenvalues if M is Einstein. From [Bes07] 9.109, 9.110 we have that

M is Einstein with negative curvature if and only if the warping function f(r) is equal

to the one of the following three functions: cosh(
√
a0r), e

√
a0r, sinh(

√
a0r), for some

a0 > 0. Since all three of these functions belong to B, the corollary follows from

Theorem 4.2.4.

Finally, for the case when there are isolated eigenvalues we have proved the follow-

ing.

Theorem 4.2.5. Let M be a warped product at infinity where the warping function

f ∈ B is restricted to satisfy f(r) ∼ ce
√
a0r, for some a0 > 0, as r → ∞. Assume that

there are isolated eigenvalues λm < a0
(n−2k−1)2

4
, for k < n

2
and λm < a0

(n−2k+1)2

4
, for

k > n
2
. Then, the Lp-spectrum of the Laplacian on forms on M contains the set Qp,k,

and the Lp-spectrum of the Laplacian on forms on M is contained in the set

{x+ iy : x < λ1 +
y2

γ2
− γ2

4
, y ∈ R}.
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Proof. The first inclusion follows from Theorem 4.1.2 . The second inclusion follows

from (4.2.6) and (4.2.8).
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4.3 Examples

A subset of the set B can be characterized by the asymptotic solutions of a certain

Riccati differential equation. We have

Lemma 4.3.1. Let q : (a,∞) → R be monotonic and

∫ ∞

T0

|q(s)|ds < ∞,

for some T0 > a. Let f ∈ C2(a,∞) be a solution of the differential equation f ′′− (a0+

q)f = 0 with a0 > 0. Then,

f ′′

f
= a0 + o(1),

(
f ′

f

)2

= a0 + o(1), as t → ∞.

Let us note that the assumption
∫∞
T0

|q(s)|ds < ∞ together with that q is monotonic

implies that as q → 0 as t → ∞. An example of a function satisfying the assumptions

of Lemma 4.3.1 is f(r) = csinh(
√
a0r), a0 > 0, c ∈ R with q = 0.

The proof of Lemma 4.3.1 is based on the following.

Proposition 4.3.1 (Exercise 9.9 (a) [Har02]). Let λ > 0 and q(t) be a continuous

complex-valued function for large t such that

Qλ(t) =

∫ ∞

t

q(s)e−2λsds exists, (4.3.1)

∫ ∞
Qλ(t)e

2λtdt exists, (4.3.2)

and ∫ ∞
|Qλ(t)|2e4λtdt exists. (4.3.3)

Then u′′ − (λ2 + q(t))u = 0 has a pair of solutions satisfying,

u ∼ e±λt,
u′

u
= ±λ+ e2λtQλ(t) + o(1), as t → ∞.

Proof of Lemma 4.3.1

By the above Proposition it suffices to show that the function q : (a,∞) → R

satisfies the assumptions (4.3.1), (4.3.2), (4.3.3) and e2λtQλ(t) → 0 as t → ∞. By the
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monotonicity of q we have

|Qλ(t)| ≤
∫ ∞

t

|q(s)|e−2λsds ≤|q(t)|
∫ ∞

t

e−2λsds

=|q(t)| 1
2λ

e−2λt < ∞,

(4.3.4)

for every t. Now (4.3.4) gives

∫ ∞

t0

|Qλ(t)|e2λtdt ≤ c

∫ ∞

t0

|q(t)|dt < ∞ (4.3.5)

and ∫ ∞

t0

|Qλ(t)|2e4λtdt ≤
∫ ∞

t0

|q(t)|2e−4λte4λtdt

≤
∫ ∞

t0

c|q(t)|2dt ≤ c+

∫ ∞

T0

|q(t)|dt.

The last inequality follows, since in a neighborhood of ∞ we have |q| < 1, which gives

|q|2 ≤ |q|. Furthermore, (4.3.4) also gives Qλ(t)e
2λt → 0 as t → ∞, since it implies

|e2λtQλ(t)| ≤ c|q(t)|,

for every t and by our assumption q → 0 as t → ∞.
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Chapter 5

The Lp-spectrum over Kleinian

Groups

In [DST88] Davies, Simon and Taylor studied the Lp-spectrum of the Laplace-Beltrami

operator ∆Γ on non compact quotients M = HN+1/Γ, where Γ is a geometrically finite

group. Under the additional assumptions that M is either of finite volume or cusp-free,

they determine explicitly the Lp-spectrum of ∆Γ for 1 ≤ p ≤ ∞. More precisely they

proved.

Theorem 5.0.1 ([DST88] Theorem 8,9). Let {E0, . . . , Em} be a finite set of eigenvalues

of ∆Γ,2 such that Ej <
N2

4
. Then, if M has no cusps or has finite volume then

σ(p, 0,∆Γ) = {E0, . . . , Em} ∪Qp,

where Qp is a parabolic region in the complex plane.

In this chapter our main goal is to generalize the above Theorem for the Laplacian

on forms ∆⃗Γ in the case where M has no cusps. In order to do this we define and

study the Laplacian on forms ∆⃗Γ on quotient spaces M = HN+1/Γ. Let us note that

for simplicity, throughout this chapter where it is clear from the context, we denote

the Laplacian on forms ∆⃗Γ by ∆Γ also. The main idea of the proof and which is based

on the argument in [DST88], is to split the Laplacian on forms into two operators,

one corresponding to the span of eigenforms with eigenvalues in the discrete isolated

spectrum, and the second one acting on the quotient. The result we prove is the

following:

Theorem. Let M = HN+1/Γ , where Γ be a geometrically finite group and M be of
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infinite volume with no cusps. In addition, assume that the set of isolated eigenvalues

in the spectrum of Laplacian on L2-integrable k-forms is finite, and consists of the

points {E0, . . . , Em} for any k ̸= N+1
2

. Then, for 1 ≤ p < ∞ and k < N+1
2

σ(p, k,∆Γ) = {E0, . . . , Em} ∪Q′
p,k

and for k > N+1
2

σ(p, k,∆Γ) = σ(p, n− k,∆Γ).

Let us note that in this chapter where it is clear from the context we use Lp to

denote Lp(Λk(M)). Also, in this chapter, we will use n = N + 1 for the dimension of

hyperbolic space to coincide with other literature.

We start by introducing the Laplacian and heat semigroup on M in Section 5.1

together with some basic properties, and then proceed to the technical parts for the

proof of theorem in Section 5.2.

5.1 Γ-invariant forms

In the case of submanifolds and products of Riemannian manifolds the induced Rie-

mannian metric is defined with respect to the original metrics. This is not the case for

quotients of Riemannian manifolds. In order to establish a Riemannian metric on the

quotient space we have to impose extra conditions. We have the following.

Theorem 5.1.1 ( [Lee18] Proposition 2.32). Suppose (M, g) is a Riemannian manifold,

and Γ is a discrete Lie group acting smoothly, freely, properly and isometrically on M .

Then M/Γ has a unique Riemannian metric such that the quotient map q : M → M/Γ

is a normal Riemannian covering.

Now we will define the spaces that we will study in this chapter. Let HN+1 and

Γ be a discrete group of Isom(HN+1) such that Γ acts freely and properly on HN+1.

Then by Theorem 5.1.1 the orbit space M = HN+1/Γ is a Riemannian manifold such

that the quotient map q : HN+1 → HN+1/Γ is a Riemannian covering map. Recall that

a Riemannian covering map is a smooth covering which is also a local isometry.

Our aim in this section is to define Γ-invariant k-forms on HN+1/Γ. For the conve-

nience to the reader we proceed firstly with 0-forms.
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Let f : HN+1 → C, f is called Γ-invariant if f(γx) = f(x) for all γ ∈ Γ and

x ∈ HN+1. For any Γ-invariant function f on HN+1 we define the induced function

f̃ : HN+1/Γ → C

by

f̃(Γx) = f(x),

where Γx is the orbit of x. If we set

FΓ(HN+1) = {all Γ-invariant functions f : HN+1 → C}

this induces the map

T : FΓ(HN+1) −→ F(HN+1/Γ)

f 7−→ f̃ .

Let us note the following relation of T and q : HN+1 → HN+1/Γ holds

T (f)(q(x)) = f̃(Γx) = f(x).

Denote by ∆ the Laplacian on HN+1 and by ∆Γ the Laplacian on HN+1/Γ. The Lapla-

cian ∆Γ is well defined due to the Γ-invariance of the Laplacian under the isometries,

∆γ∗ = γ∗∆, γ ∈ Isom(HN+1), here γ∗f = f ◦ γ is the pull back.

Now we see how the above extends to k-forms. A k-form ω is Γ-invariant if γ∗ω = ω.

Here the pull back on forms is defined by

γ∗ :Λk(M) → Λk(M)

(γ∗(ω))x = ωγ(x) ◦ (dγx × · · · × dγx),

(see [Tu11]). Also we denote by ∆ the Laplacian on forms on HN+1 and by ∆Γ the

Laplacian on forms on HN+1/Γ. Similarly, ∆Γ is well-defined due to the Γ-invariance

of ∆ under isometries, ∆γ∗ = γ∗∆, γ ∈ Isom(HN+1) (see [CPR01] Proposition 2.11).
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For any Γ-invariant form ω on HN+1 we define the induced form

ω̃ : HN+1/Γ → C

by

ω̃(Γx) = ω(x),

where Γx is the orbit of x. If we set

AΓ(HN+1) = {all Γ-invariant forms ω on HN+1}

this induces the map

T : AΓ(HN+1) −→ A(HN+1/Γ)

ω 7−→ ω̃.

Note that the following relation between T and q : HN+1 → HN+1/Γ holds

T (ω)(q(x)) = ω̃(Γx) = ω(x).

It is well-known that the relationship

e−t∆Γ(Tf) = T (e−t∆f),

holds for the heat semigroups corresponding to ∆ and ∆Γ on Γ-invariant functions f

over HN+1 (see Corollary 3 in [DM88], Lemma 2.14 in [Web07]). A similar relationship

also holds for Γ-invariant forms.

Proposition 5.1.1. Let ω be a continuous Γ-invariant k-form on HN+1 such that the

restriction of ω to a fundamental domain F ⊂ HN+1 for Γ has compact support, then

e−t∆Γ(Tω) = T (e−t∆ω).

Proof. The proposition is based on the uniqueness, of solutions as stated in Corollary

2.5.1 of the heat equation on forms. Let ω be a continuous Γ-invariant k-form on HN+1

such that the restriction of ω to a fundamental domain F ⊂ HN+1 for Γ has compact
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support. We define ωt(x), ηt(x) to be solutions of the Cauchy problems

 (∂t +∆)ωt(x) = 0

ω0(x) = ω(x)

(5.1.1)

on HN+1, and  (∂t +∆Γ)ηt(x̃) = 0

η0(x̃) = Tω(x̃)

(5.1.2)

respectively on HN+1/Γ. The solutions are given by

ωt(x) = (e−t∆ω)(x) (5.1.3)

and

ηt(x̃) = (e−t∆ΓTω)(x̃). (5.1.4)

So, if ωt(x) were Γ-invariant, then, by applying T on both sides of (5.1.3) would have

ωt(x) = (Tωt) ◦ q(x) = T (e−t∆ω) ◦ q(x). (5.1.5)

Moreover, if

ωt(x) = ηt ◦ q(x) (5.1.6)

holds, in other words if ηt ◦ q(x) solves (5.1.1), then by the uniqueness of solutions

ηt ◦ q(x) = (e−t∆ΓTω)(q(x)) = ωt(x) = T (e−t∆ω) ◦ q(x). (5.1.7)

In other words, we get the desired equality

e−t∆Γ(Tω) = T (e−t∆ω).

So it is enough to prove that the solution ωt(x) is Γ-invariant and ωt(x) = ηt ◦ q(x).

Let us begin by showing that ωt(x) is Γ-invariant. By the definition of the heat kernel

ωt(x) =

∫
HN+1

< p⃗(t, x, y), ω(y) > dy,
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where p⃗(t, x, y) is the heat kernel on forms on HN+1. We compute

γ∗ωt(x) = ωt(γx) =

∫
HN+1

< p⃗(t, γx, y), ω(y) > dy

=

∫
HN+1

< p⃗(t, x, γ−1y), ω(y) > dy

=

∫
HN+1

< p⃗(t, x, y), ω(γy) > dy

=

∫
HN+1

< p⃗(t, x, y), ω(y) > dy

where in the second equality we have used Proposition 2.5.3, in the third equality we

have used Proposition 2.5.2 and the last equality follows by the Γ-invariance of ω.

Finally, by the Γ-invariance of ∆ and that q is a Riemannian covering we get

∆(ηt ◦ q(x)) = (∆Γ ηt) ◦ q(x).

Combining this with (5.1.2) we get

−∆(ηt ◦ q(x)) = ∂t(ηt ◦ q(x))

Thus, ηt ◦ q(x) is a solution to the heat equation on HN+1. Here we use the fact that

since ω is Γ-invariant it satisfies the initial condition also. The proposition follows by

the uniqueness of (5.1.2).

For the heat kernel of the Laplacian on functions over quotients spaces, it is well-

known that

pΓ(t, q(x), q(y)) =
∑
γ∈Γ

p(t, x, γy),

(see Corollary 3 in [DM88], Theorem 2.13 in [Web07]). We show that a similar result

also holds for the heat kernel on forms.

Proposition 5.1.2. Let p⃗(t, x, y) be the heat kernel on forms for the Laplacian on

HN+1 and p⃗Γ(t, x, y) be the heat kernel on forms on M = HN+1/Γ. Then,

p⃗Γ(t, q(x), q(y)) =
∑
γ∈Γ

p⃗(t, x, γy),

where q : HN+1 → HN+1/Γ is the covering map.
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Proof. Let ω be a continuous Γ-invariant k-form on HN+1 with compact support in a

Fundamental domain F on HN+1. We compute

T (e−t∆ω)(q(x)) =e−t∆ω(x) =

∫
HN+1

< p⃗(t, x, y), ω(y) > dy

=
∑
γ∈Γ

∫
γF

< p⃗(t, x, y), ω(y) > dy

=
∑
γ∈Γ

∫
F

< p⃗(t, x, γy), ω(γy) > dy

=

∫
F

<
∑
γ∈Γ

p⃗(t, x, γy), ω(y) > dy.

since ω is Γ-invariant. By definition

e−t∆Γ(Tω)(q(x)) =

∫
F

< p⃗Γ(t, q(x), q(y)), ω(y) > dy.

The above two equalities together with Proposition 5.1.1 give

∫
F

<
∑
γ∈Γ

p⃗(t, x, γy), ω(y) > dy =

∫
F

< p⃗Γ(t, q(x), q(y)), ω(y) > dy

Now, the Proposition follows if we show that
∑

γ∈Γ p⃗(t, x, γy) is continuous on

(0,∞) ⊗ Λk(HN+1)⊗ Λk(HN+1). For this, it suffices to show that
∑

γ∈Γ |p⃗(t, x, γy)| is

continuous on (0,∞)×HN+1 ×HN+1.

The procedure is the same as in the proof of Theorem 2.13 [Web07]. In order to

show that
∑

γ∈Γ |p⃗(t, x, γy)| is continuous we have to show that the series converges

uniformly on any [a, b]× B × B, with [a, b] ⊂ R and B be a compact set in HN+1. As

observed in [Web07] the set

Γ(B,R) = {γ ∈ Γ : d(B, γB) ≤ R}

is finite for any R > 0. So, equivalently we have to show that
∑

γ∈Γ |p⃗(t, x, γy)|

converges uniformly on [a, b] × B × B to zero as R → ∞. Using Proposition 2.5.1

we have

|p⃗(t, x, y)| ≤ eK2tp(t, x, y).

57

PETROS SIASOS



Thus on [a, b] we get

|p⃗(t, x, y)| ≤ eK2bp(t, x, y). (5.1.8)

Weber proves that

∑
γ∈Γ\Γ(B,R)

p(t, x, γy) ≤ ca−
n
2

∞∑
m=1

e(n−1)
√
−kRe

(
−m2R2

2Db

)

on [a, b] for some D > 2 where c depends only on D and on k (see Lemma 2.15 in

[Web07]). As a result the last series is uniformly convergent with respect to R > 1,

independently of (t, x, y), and converges to zero as R → ∞. Thus using (5.1.8) and

the last argument we have finally that

∑
γ∈Γ\Γ(B,R)

|p⃗(t, x, γy)|

converges uniformly on [a, b]×B ×B to zero as R → ∞.
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5.2 The Lp-spectrum on a class of Kleinian Groups

In this section the spaces under consideration will be the orbit space M = HN+1/Γ,

where Γ is a geometrically finite group and M is of infinite volume with no cusps. For

the sake of completeness we give the following definitions.

In order to define the concept of the geometrically finite group we will use the open

unit model BN+1 of the hyperbolic space HN+1. Recall that the isometry group of the

hyperbolic space HN+1 and the group M(BN+1) of Mobius transformations of BN+1

are isomorphic (see Corollary 1 p.130 in [RAR94]).

Definition 5.2.1 ([RAR94] p.603). A convex polyhedron P in BN+1 is geometrically

finite if and only if for each point x of P̄ ∩ SN there is an open neighborhood N of x

in the Euclidean space EN+1 that meets only the sides of P incident with x.

Definition 5.2.2 ([RAR94] p.612). A discrete subgroup Γ of M(BN+1) is geometrically

finite if and only if Γ has a geometrically finite, exact, convex, fundamental polyhedron.

As noted in [RAR94] on p.612, in dimensions 1, 2, 3 one can define Γ to be geo-

metrically finite if the polyhedra are finite-sided instead of geometrically finite. But in

dimensions 4 and above, there are examples of polyhedra with an infinite number of

sides (see Example 5 in [RAR94] p. 618). As shown in [RAR94] in dimensions 1, 2, 3

the two definitions coincide. Finally, we recall that a Kleinian group Γ is defined to be

a (countable) discrete subgroup of the isometry group of the hyperbolic space.

On Lp integrable k-forms ∆Γ,p is defined via its semigroup as in the previous section.

For p = 2 we will use the notation ∆Γ for simplicity. Keeping similar notation with

the previous Chapter we will denote by P ′
p,k the parabolic curve

P ′
p,k = {−(

N

p
− k + is)[N(

1

p
− 1) + k + is], s ∈ R},

and the parabolic region to the right of the curve P ′
p,k by

Q′
p,k = {

(
N

2
− k

)2

+ z2 : |Imz| ≤ N |1
p
− 1

2
|}. (5.2.1)

These are the parabolas from the previous Chapter which corresponds to a manifold

of dimension n = N + 1 and with limiting curvature at infinity −a0 = −1, as is the

case of HN+1.
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Mazzeo and Phillips [MP90] computed the L2 spectrum of Laplacian ∆Γ for quo-

tients M = HN+1/Γ, where Γ is a geometrically finite group, proving the following

result.

Theorem 5.2.1 ([MP90] Theorem 1.11). When M is not compact the essential spec-

trum consists of the entire interval [(N/2 − k)2,∞), when k ≤ N+1
2

and [(N/2 − k +

1)2,∞), when k ≥ N+1
2

. The only exception is when k = N+1
2

and M has infinite vol-

ume. In that case in addition to the above, 0 is an eigenvalue of infinite multiplicity.

By definition every point outside the essential spectrum in an isolated eigenvalue of

finite multiplicity. Lax and Phillips [LP82] showed that for the Laplacian on functions

for quotients M = HN+1/Γ, where Γ is a geometrically finite group, σ(2, 0,∆Γ) \

σess(2, 0,∆Γ) must be a finite set of eigenvalues of finite multiplicity. We expect that a

similar result must hold for the Laplacian on forms, but this is still an open problem.

We will see that if we make this additional assumption on the set of isolated eigenvalues

of finite multiplicity for the manifold we can precisely compute the Lp-spectrum of the

Laplacian on k-forms.

In this section we compute the Lp-spectrum of the Laplacian on k-forms. We will

prove the following result.

Theorem 5.2.2. Let M = HN+1/Γ , where Γ is a geometrically finite group and M has

infinite volume and no cusps. In addition, assume that the set of isolated eigenvalues in

the spectrum of Laplacian on L2-integrable k-forms is finite, and consists of the points

{E0, . . . , Em} for any k ̸= N+1
2

. Then, for 1 ≤ p < ∞ and k < N+1
2

σ(p, k,∆Γ) = {E0, . . . , Em} ∪Q′
p,k

and for k > N+1
2

σ(p, k,∆Γ) = σ(p, n− k,∆Γ).

Our proof extends the method defined in [DST88], and relies on various properties

of the resolvent operator and the heat kernel which we develop below. We will prove

the result for 0 ≤ k ≤ N
2
, and for k > N+1

2
it will follow by Poincare duality.

Here we will be a little bit more precise and keep the sub index ∆p for the Laplacian

on Lp(Λk(HN+1)) and write ∆Γ,p for the Laplacian on Lp(Λk(M)).

Lemma 5.2.3. Let 0 ≤ k ≤ N/2. Whenever |Imz| > N/2, the resolvent operator on

forms (∆1 − (N/2− k)2 − z2)−1 is bounded on L1(Λk(HN+1)).
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Proof. This is obtained immediately from Theorem 4.2.1 as shown in [CL24], since the

Hyperbolic space HN+1 has constant negative curvature −1 and rate of volume growth

γ = N . Thus |Imz| > γ|1/p− 1/2| reduces to |Imz| > N/2.

Proposition 5.2.1. Let 0 ≤ k ≤ N/2. Whenever |Imz| > N/2, the resolvent operator

(∆Γ,1 − (N/2− k)2 − z2)−1 is bounded on L1(Λk(M)).

Proof. The map T : L1(HN+1) → L1(M) has an adjoint which is an one to one map

from L∞(M) → L∞(HN+1). As a result, T is an onto map from L1(HN+1) to L1(M).

For any λ /∈ σ(k, 1,∆Γ,1) we have the functional analytic formula

(∆Γ,1 − λ)−1 =

∫ ∞

0

e−t∆Γ,1eλtdt,

and a similar formula for (∆1 − λ)−1 for any λ /∈ σ(k, 1,∆). By Proposition 5.1.1 after

restricting the heat kernel on L1, we get

(∆Γ,1 − λ)−1Tω = T (∆1 − λ)−1ω

for any λ /∈ σ(k, 1,∆). Using the fact that

||(∆Γ,1 − λ)−1Tω||L1(M) ≤ ||(∆Γ,1 − λ)−1||{L1→L1} ||Tω||L1(M)

we have

||(∆Γ,1 − λ)−1||{L1→L1} ≤ ||(∆1 − λ)−1||{L1→L1}

for all λ /∈ σ(k, 1,∆). The proposition follows by combining this with Lemma 5.2.3.

We will now prove that the heat operator corresponding to ∆Γ is bounded from L2

to L∞, it is in other words ultracontractive.

Proposition 5.2.2. There exists c(t) = c > 0 such that

||e−∆Γtω||∞ ≤ c||ω||2, for every ω ∈ L2(Λk(M)).

Proof. The proof is similar to Proposition 4 in [DST88]. Firstly, we will show that

e−t∆Γ : L1(Λk(M)) → L∞(Λk(M)) is bounded. Let us note that

||e−∆Γtω||∞ ≤
∥∥∥∥∫

M

|p⃗Γ(t, z, w)| |ω(w)|dw
∥∥∥∥
∞
, (5.2.2)
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hence it suffices to show that |p⃗Γ(t, z, w)| is uniformly bounded with respect to z, w.

Since on HN+1/Γ the Weitzenbock tensor on k-forms is bounded below by a negative

constant −K2, by Proposition 2.5.1 we have

|p⃗Γ(t, z, w)| ≤ etK2|pΓ(t, z, w)|, (5.2.3)

where pΓ is the heat kernel on functions over HN+1/Γ. So it suffices to estimate the

heat kernel on functions pΓ(t, z, w). This computed in Proposition 4 in [DST88]. For

the sake of completeness we work out the details. If 0 < t ≤ 1, then the heat kernel on

functions for HN+1 satisfies the estimate

0 < p(t, z, w) ≤ c0t
−N+1

2 e−
Nρ
2 e−

ρ2

4t (1 + ρ)
N
2

as shown in [DM88], where ρ is the hyperbolic distance from z to w. Thus,

0 < pΓ(t, z, z) ≤ c1t
−N+1

2

∑
γ∈Γ

e−
ρ(z,γz)2

4t .

Since M has no cusps and has constant curvature, it has bounded geometry (injectivity

radius uniformly bounded below), therefore, the sum is bounded independently of z by

[DM88], [Pat76]. So, the above with the well-known property of the heat kernel

p(t, z, w) ≤
√
p(t, z, z)p(t, w, w),

(see Exercise 7.21 in [Gri09]) gives

0 < pΓ(t, z, w) ≤ ct−
N+1

2 .

Now, we show

e−t∆Γ : L∞(Λk(M)) → L∞(Λk(M))

is bounded. From (5.2.2) it suffices to show

sup
z

∫
M

|p⃗Γ(t, z, w)|dw ≤ c(t),
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where c(t) is a uniform constant depending on t. By (5.2.3) and

sup
z

∫
M

|pΓ(t, z, w)|dw ≤ 1,

we get

sup
z

∫
M

|p⃗Γ(t, z, w)|dw ≤ sup
z

∫
M

eK2t|pΓ(t, z, w)|dw ≤ c(t),

where c(t) is any constant depending on t. Since e−t∆Γ is bounded from L1(Λk(M))

to L∞(Λk(M)) and from L∞(Λk(M)) to L∞(Λk(M)), using interpolation (see Lemma

2.6.1 ) we get that

e−t∆Γ : L2(Λk(M)) → L∞(Λk(M))

is also bounded.

Remark 5.2.4. Proposition 5.2.2 can be obtained alternatively by using Proposition

5.1.2 in combination with the same estimates for pΓ(t, z, w) as proved in Proposition 4

[DST88].

Corollary 5.2.1. If ω is an L2 k-eigenform for the Laplacian on HN+1/Γ, then ω ∈

L∞(Λk(M)).

Proof. Suppose that ω ∈ L2 be an eigenform of ∆Γ with eigenvalue E. Then ω satisfies

e−t∆Γω = e−tEω for every t > 0. For t = 1, and using Proposition 5.2.2 we have

||e−Eω||∞ = ||e−∆Γω||∞ ≤ c||ω||2.

Hence

||ω||∞ ≤ eEc||ω||2,

which gives the corollary.

Let us note that if HN+1/Γ has cusps but it is of infinite volume, then as noted

in [DST88], Fourier analysis shows that ϕ0 the L2 eigenfunction corresponding to the

first eigenvalue, diverges to ∞ in each cusp. Although this is not known, it is expected

that this would also happen for eigenforms. Our assumption that HN+1/Γ is cusp-free,

seems to therefore be necessary to conclude that every L2- eigenform must also belong

to Lp for all p ∈ [2,∞]. We will now move to address the case p ∈ [1, 2].

In the following Lemma we will compute one inclusion which the spectrum of ∆Γ

on Lp(Λk(M)) satisfies.
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Lemma 5.2.5. If 1 ≤ p ≤ 2, then

σ(k, p,∆Γ) ⊂ {E0, . . . , Em} ∪Q′
p,k.

Proof. Denote by ϕr the L
2-eigenform corresponding to the eigenvalue Er. By Corollary

5.2.1 ϕr ∈ L∞. Thus, using interpolation we also have that ϕr ∈ Lq for all q ≥ 2.

Let 1 ≤ p ≤ 2. Since ϕr ∈ Lq for every q ≥ 2, we also have that ϕr ∈ Lp∗ for

1
p
+ 1

p∗
= 1. So for any ω ∈ Lp the Lp − Lp∗ pairing

(ω, ϕr) =

∫
< ω, ϕr > dVg

is well defined and gives an operator ϕ̃r ∈ Lp∗ such that ϕ̃r(ω) = (ω, ϕr). Define the

subspace Lp
1 of Lp by

Lp
1(Λ

k(M)) = {ω ∈ Lp(Λk(M)) :

∫
< ω, ϕr > dVg = 0, for all r ∈ {0, . . . ,m}}.

Since Lp
1 is a closed subspace of Lp, we have that L2

1 is a Hilbert space. We will show

that Lp
1 is invariant under e−t∆Γ . Let ω ∈ Lp

1. Then e−t∆Γω ∈ Lp since the heat

operator is bounded on Lp. Since ϕ̃r ∈ Lp∗ ,

(ϕ̃r, e
−t∆Γω) =

∫
< ϕr, e

−t∆Γω > dVg

=

∫
< e−t∆Γϕr, ω > dVg

=

∫
e−tEr < ϕr, ω > dVg = 0.

for all r, where we have used that the heat operator on Lp∗ is the adjoint of the heat

operator on Lp. Therefore e−t∆Γω ∈ Lp
1. By the previous claim we have that, e−∆Γt ↾

is the subspace semigroup on Lp
1 (see Definition 2.2.2), and we define ∆p,1 to be its

generator. By Proposition 2.2.1 ∆p,1 is the restriction of ∆Γ,p ↾Lp
1
with domain the

intersection of the domain of ∆Γ,p with Lp
1. For p = 1 we have ∆1,1 = ∆Γ,1 ↾L1

1
. As

a result, the bound of ∆Γ,1 from Proposition 5.2.1 holds on D(∆Γ,1) ∩ L1
1. This gives

that

(∆1,1 − (N/2− k)2 − z2)−1
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is bounded on L1
1 for |Im(z)| > N/2. By replacing z with iz we get that

(∆1,1 − (N/2− k)2 + z2)−1

is bounded for Rez > N/2.

Now for the quotient Lp
2 = Lp(Λk(M))/Lp

1, we define the quotient semigroup e−t∆Γ
/

(see Definition 2.2.3) and denote its generator by ∆p,2. Let us note that dim(Lp
2) =

m+ 1. This follows easily, if we set

T : Lp −→ Rm+1

ω 7−→ (ϕ̃0(ω), · · · , ϕ̃m(ω))

and notice that KerT = Lp
1 and dim(ImT ) = m+ 1. As a result

σ(p, k,∆p,2) = {E0, . . . , Em}.

We will now demonstrate that the spectra of ∆Γ,p, ∆p,1 ∆p,2 are related in the

following way

σ(p, k,∆Γ,p) = σ(p, k,∆p,1) ∪ σ(p, k,∆p,2). (5.2.4)

To show this, first observe that since Lp
2 is finite dimensional, there exists an isomor-

phism Lp(Λk(M)) = Lp
1 ⊕ Lp

2. Define

R0 : L
p(Λk(M)) → Lp(Λk(M))

by

R0 = (∆Γ,1 + 1)−1,

and observe that R0 leaves Lp
1 invariant, just as the heat operator does. Now define

R1 to be the restriction of R0 to Lp
1 and R2 to be the induced operator on the quotient

space Lp
2. The isomorphism Lp(Λk(M)) = Lp

1 ⊕ Lp
2 implies that

σ(R0) = σ(R1) ∪ σ(R2). (5.2.5)

Then using the spectral mapping theorem for generators of one-parameter contraction
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semigroups [DST88] we get that (5.2.5) implies (5.2.4)

To complete the proof of the lemma it remains to compute σ(p, k,∆p,1). Theorem

5.2.1 and the definition of ∆2,1 give

σ(2, k,∆2,1) = [(N/2− k)2,∞).

By Lemma 2.1.5, sinceH = ∆2,1−(N
2
−k)2 is non-negative self-adjoint and its spectrum

is contained in [0,∞) we get that

(∆2,1 − (N/2− k)2 + z2)−1

is bounded on L2
1 whenever Rez > 0. As we have shown above,

(∆1,1 − (N/2− k)2 + z2)−1

is bounded on L1
1 for Rez > N

2
. We are now ready to show

σ(p, k,∆p,1) = Q′
p,k, for p ∈ [1, 2]

This is a standard interpolation argument which we include for the sake of completion.

By the above we have

(
∆p,1 − (

N

2
− k)2 + (x+ iy)2

)−1

(5.2.6)

is bounded on L2
1 for x > 0 and y ∈ R and

(
∆p,1 − (

N

2
− k)2 + (x+ iy)2

)−1

(5.2.7)

is bounded on L1
1 for x > N

2
and y ∈ R. We fix ϵ > 0 and α ∈ R and define the

operator

T (x+ iy) =

(
∆p,1 − (

N

2
− k)2 +

N2

4
(x+ ϵ+ iy + iα)2

)−1

. (5.2.8)

For y ∈ R since N
2
ϵ > 0 and N

2
(y + α) ∈ R, (5.2.6) gives that T (iy) is bounded on L2

1

for every y ∈ R. Also, for y ∈ R since N
2
+ ϵ > N

2
and N

2
(y + α) ∈ R, (5.2.7) gives that

T (1 + iy) is bounded on L1
1 for every y ∈ R. Now, we fix any p ∈ (1, 2) and define the
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unique t ∈ (0, 1) such that
1

p
= t+

1

2
(1− t). (5.2.9)

The Stein Interpolation Theorem (see Lemma 2.6.1) with p0 = 2, p1 = 1, and setting

x = t and y = 0 in (5.2.8) gives that

T (t) =

(
∆p,1 − (

N

2
− k)2 +

N2

4
(t+ ϵ+ iα)2

)−1

is bounded on Lp
1, 1 < p < 2 . Since ϵ > 0 and α ∈ R were arbitrary, we have that

(
∆p,1 − (

N

2
− k)2 + z2

)−1

is bounded in Lp
1, for 1 < p < 2 whenever Rez > N

2
t. Since t = 2

p
− 1 we have that

(
∆p,1 − (

N

2
− k)2 + z2

)−1

is bounded in Lp
1, for 1 < p < 2, whenever Rez > (2

p
− 1)N

2
= (1

p
− 1

2
)N . Replacing z

with iz and z with −z we get that

σ(p, k,∆p,1) ⊂

{(
N

2
− k

)2

+ z2 : |Imz| ≤
(
1

p
− 1

2

)
N

}
= Q′

p,k.

Now in order to get the reverse inclusion from the one given in the above Lemma,

we need the following result.

Lemma 5.2.6. If 1 ≤ p ≤ q ≤ 2, then the curve P ′
p,k which is the boundary of Q′

p,k is

contained in σ(p, k,∆Γ,p).

Proof. As we saw in the proof of Proposition 5.2.2 e−∆Γt : Lp → Lq is bounded for

every 1 ≤ p ≤ q ≤ ∞. Following the same analytical argument as in Proposition 3.1

in [HV86] we can show that for any 1 ≤ p ≤ q ≤ 2

ρ(∆Γ,q) ⊃ ρ(∆Γ,p).

As a result we have

σ(q, k,∆Γ,q) ⊂ σ(p, k,∆Γ,p),
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for any 1 ≤ p ≤ q ≤ 2. As in the proof of Theorem 4.1.2, it again suffices to prove

P ′
q,k ⊂ σ(q, k,∆Γ,q).

In other words, for any λ ∈ P ′
q,k and ϵ > 0 we have to construct approximate eigenforms

ω ∈ Λk(HN+1/Γ) such that

||∆Γ − λ)ω||q ≤ ϵ||ω||q.

We let HN+1 = [0,∞)×SN with metric g = dr2+(sinhr)2dσ2. Since Γ is geometrically

finite, and has infinite volume, there is a region Ω ⊂ SN and b > 0 such that (b,∞) is

contained in a fundamental domain of HN+1/Γ.

On this region we consider approximate eigenforms of the type

ω = ϕfµ(χ(θ)η0) ∧ dr,

with f(r) = sinhr, χ(θ) ∈ C∞
0 (Ω), ϕ = ϕ(r) ∈ C∞

0 ((b,∞)), µ ∈ C and η0 = closed (k−

1)− eigenform on SN with ∆Sη0 = λ0η0, where ∆S is the Laplacian on SN .

The procedure is the same as in Theorem 4.1.2. Firstly, we have to compute the

action of ∆ on ω = ϕfµ(χ(θ)η0) ∧ dr. Let η2 = χ(θ)η0, and h(r) = ϕfµ. Since η2 is no

longer a closed (k − 1)-eigenform of ∆S, we not can use Corollary 3.0.1. However, by

Proposition 3.0.1 with ω1 = 0 and ω2 = h(r)η2 we have

∆ω =+ hf−2(∆S η2) ∧ dr + (−1)k2hf ′f−1dSη2

− [h′′ + (N − 2k + 2)(hf ′f−1)′]η2 ∧ dr

Now using the formula

∆S(χ(θ)η0) = (∆Sχ(θ))− 2∇∇χ(θ)η0 + χ(θ)(∆Sη0)

and the fact dS(χ(θ)η0) = (dSχ(θ)) ∧ η0 we get

∆ω =hf−2(∆Sχ(θ))η0 ∧ dr + hf−2(−2∇∇χ(θ)η0) ∧ dr

+hf−2χ(θ)λ0η0 ∧ dr + (−1)k2hf−1f ′dS(χ(θ)) ∧ η0

−[h′′ + (N − 2k + 2)(hf ′f−1)′]χ(θ)η0 ∧ dr.
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In other words,

∆ω =∆2(ϕf
µ)χ(θ)η0 ∧ dr

+ϕfµ−2(∆Sχ(θ))η0 ∧ dr − 2ϕfµ−2(∇∇χ(θ)η0) ∧ dr

+(−1)kϕfµ(f−1f ′)dS(χ(θ)) ∧ η0

=∆2(ϕf
µ)χ(θ)η0 ∧ dr

+A1 + A2 + A3.

(5.2.10)

We will choose ϕϵ as in the proof of Theorem 4.1.2, but χ(θ) will be the same for

every ϵ > 0. Here µ, λ we take the values µ = −N
p
+ (k − 1) + is for s ∈ R and

λ = −µ(µ+N − 2k + 2). As a result

||∆ω − λω||qq ≤||(∆2(ϕf
µ)η0 ∧ dr − λϕfµη0 ∧ dr)χ(θ)||qq

+||A1||qq + ||A2||qq + ||A3||qq.

Since χ(θ) is a bounded function on SN with

C2 ≤
∫
SN

|η0|SNχ(θ) ≤ C1

the first term is estimated exactly as in the proof of Theorem 4.1.2 by finding the

appropriate Aϵ, Bϵ for the domain of ϕϵ. So, it remains to bound the last three terms.

Now by ∫
SN

|(∆Sχ(θ))η0 ∧ dr|M = C

∫
SN

|η0|Sf−(k−1),∫
SN

|(∇∇χ(θ)η0) ∧ dr|M = C

∫
SN

|η0|Sf−(k−1),

and due to the additional factor of fµ−2 in front of them in (5.2.10), the estimates for

A1, A2 are of the same type as V in Theorem 4.1.2. To estimate A3 we observe

∫
SN

|dS(χ(θ)) ∧ η0|M = C|η0|Sf−k.

As a result A3 is also similar with V but with an additional factor of fµ−1 instead of

fµ−2 in (5.2.10), which still allows us to make it as small as we want by taking the

support of ϕϵ as large as we want.
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So, by Proposition 2.6.1 we have shown that the points

λ = −
(
−N

p
+ (k − 1) + is

)(
−N

p
+ (N + 1− k) + is

)
, s ∈ R

belong to σ(p, k,∆). Setting k = N + 1 − m, for 0 ≤ m ≤ (N + 1)/2, in the above

equation and changing sign in both brackets we get

λ = −
[
N

(
1

p
− 1

)
+m− is

] [
N

p
−m− is

]
, s ∈ R,

which are exactly the points of Pp,m. Thus, for 0 ≤ m ≤ (N + 1)/2 we have shown

that Pp,m ⊂ σ(p,N + 1 −m,∆) = σ(p,m,∆), where the equality follows by Poincare

duality.

Finally, we are ready to give the proof of Theorem 5.2.2.

Proof of Theorem 5.2.2. If 1 ≤ p ≤ 2, then Lemma 5.2.5 gives

σ(k, p,∆Γ,p) ⊂ {E0, . . . , Em} ∪Q′
p,k.

and

{E0, . . . , Em} ⊂ σ(k, p,∆Γ,p).

Now Lemma 5.2.6 gives

Q′
p,k ⊂ σ(k, p,∆Γ,p)

and the proof of Theorem 5.2.2 follows.
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Conclusions

In the present thesis we studied the Lp-spectrum of the Laplacian on k-forms over

Riemannian manifolds. More precisely, we computed the Lp-spectrum of the Laplacian

on k-forms over certain Riemannian manifolds and as a consequence we have shown

that the Lp-spectrum of the Laplacian on k-forms over these spaces is dependent on p.

In the first part, we dealt with the case where the Riemannian manifolds were

warped products at infinity, and we proved that the Lp-spectrum of the Laplacian on

k-forms contains a parabolic region which depends on k, p and the limiting curvature

a0 at infinity.

In the second part, we considered Riemannian manifolds M which were quotients

of the hyperbolic space with a geometrically finite group, and such that M had infinite

volume and no cusps. We have shown that the Lp-spectrum of the Laplacian on k-

forms over M is exactly a parabolic region together with a set of isolated eigenvalues

on the real line.

By the above results, we have extended the class of Riemannian manifolds, over

which the Lp-spectrum of the Laplacian on k-forms depends on p. Since, the above

Riemannian manifolds were negatively curved, we expect that the same phenomenon

may occur in other similar negatively curved spaces.
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