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Marios Hadjiaros – University of Cyprus, 2024 

 

Abstract 

Electroencephalography (EEG) records the electrical activity of the brain, which can be 

decoded and processed to understand the physical and psychological state of individuals to 

improve the quality of life in both healthy and clinical populations. EEG signals are used to 

detect abnormalities of the brain in routine clinical practice, as well as for neurofeedback, or 

to control external devices or applications, such as controlling an exoskeleton, as is the case in 

Brain-Computer Interface (BCI) systems.   

Extensive research has been conducted in the field of BCI, with a notable focus on Motor 

Imagery (MI) in recent years. Despite significant advancements in algorithmic development, 

the accuracy rates of these systems persistently lag expectations. This discrepancy underscores 

a notable gap in the literature, wherein insufficient attention has been directed toward 

elucidating the cognitive mechanisms that underpin effective mental imagery. Hence, there is 

a clear need for further studies aimed at discerning the cognitive processes associated with 

enhanced MI performance, thereby addressing this critical shortfall in current research. 

To address the aforementioned challenges, the first part of the dissertation explores the 

most popular approaches and best practices for designing and implementing cognitive gaming 

interventions that combine BCI systems with Virtual Reality (VR). It focuses on interventions 

that target cognitive skills related to perception, visuospatial attention, and visuospatial 

memory. To this purpose, the techniques and algorithms that are commonly used for data pre-

processing, feature extraction, and classification in such interventions were reviewed. Issues 

related to BCI-VR Cognitive Gaming were discussed, including the BCI paradigms, the action 

tasks and environments, user characteristics, algorithms, channels, accuracy, and the most 
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prominent findings. Furthermore, the current challenges, limitations, future research 

directions, and potential commercial applications of BCI-VR in cognitive gaming were 

investigated. The second part of the dissertation introduces a novel BCI framework combined 

with VR gaming having the potential to advance human-computer interaction by providing 

immersive and intuitive control mechanisms. This part of the study aimed to evaluate the 

performance of BCI-VR in a goalkeeper gaming task and explore the influence of cognitive 

abilities on BCI performance using Motor Imagery. Forty-four healthy volunteers participated 

in the study who carried out a BCI-VR Goalkeeper task and underwent a left-hand versus 

right-hand movement imagery task while wearing a VR headset. Twenty-two participants 

carried out the Flanker task and the Spatial Cueing task and another twenty-two participants 

carried out the Mental Body Rotation (MBRT) and Spatial Orientation (SOT) tasks. Six 

classification algorithms were employed for offline and real-time analysis. The Random 

Forest algorithm exhibited the highest accuracy rates both offline (Mean accuracy rate = 

82.4%) and in real-time (Mean accuracy rate = 71.6%). Results from the Flanker task revealed 

a significant positive correlation between the mean accuracy for the congruent trials of the 

Flanker task and the mean offline RF classification accuracy in the BCI-VR Goalkeeper task, 

(r(22) = .46, p = .03). Additionally, High Achievers in the BCI-VR Goalkeeper task had 

higher benefits from attentional cues in service of perception than from attentional cues in 

service of visual working memory (VWM), (F(1,20) = 9.09, p = .007, n2 = .07). These 

findings suggest the impact of cognitive abilities on BCI-VR performance and emphasize the 

need to consider cognitive mechanisms and develop cognitive training interventions to 

enhance humans to produce appropriate EEG patterns while improving BCI accuracy. Further 

research should explore other cognitive factors and strive to improve the usability and 

effectiveness of BCI-VR systems for real-world applications. Overall, the current findings 

contribute to advancing BCI technology and its potential for neurorehabilitation, assistive 

technologies, and gaming entertainment. 

 

Marios Hadjiaros – University of Cyprus, 2024  
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INTERFACING AND THE ROLE OF COGNITIVE SKILLS 

 

Μάριος Χάτζιαρος – Πανεπιστήμιο Κύπρου, 2024 

 

Περίληψη 

Η ηλεκτροεγκεφαλογραφία (EEG) καταγράφει την ηλεκτρική δραστηριότητα του 

εγκεφάλου, η οποία μπορεί να αποκωδικοποιηθεί και να υποβληθεί σε επεξεργασία για να 

κατανοηθεί η φυσική και ψυχολογική κατάσταση των ατόμων για τη βελτίωση της ποιότητας 

ζωής τόσο σε υγιείς όσο και σε κλινικούς πληθυσμούς. Τα σήματα EEG χρησιμοποιούνται 

για την ανίχνευση ανωμαλιών του εγκεφάλου στη συνήθη κλινική πρακτική, καθώς και για 

νευροανάδραση ή για τον έλεγχο εξωτερικών συσκευών ή εφαρμογών, όπως ο έλεγχος ενός 

εξωσκελετού, όπως συμβαίνει στα συστήματα Διεπαφής Εγκεφάλου-Υπολογιστή (Brain 

Computer Interfacing (BCI)). 

Τα τελευταία χρόνια έχει διεξαχθεί εκτενής έρευνα στον τομέα του BCI, με αξιοσημείωτη 

εστίαση στις Κινητικές Εικόνες (Motor Imagery (MI)). Παρά τις σημαντικές προόδους στην 

αλγοριθμική ανάπτυξη, τα ποσοστά ακρίβειας αυτών των συστημάτων υστερούν σημαντικά  

στις προσδοκίες μας. Υπάρχει ένα αξιοσημείωτο κενό στη βιβλιογραφία, όπου δεν έχει δοθεί 

επαρκής προσοχή στην μελέτη της αποσαφήνισης των γνωστικών μηχανισμών που στηρίζουν 

την αποτελεσματική νοερή κίνηση. Ως εκ τούτου, υπάρχει σαφής ανάγκη για περαιτέρω 

μελέτη των γνωστικών διεργασιών που σχετίζονται με την βελτιωμένη απόδοση για MI, 

αντιμετωπίζοντας έτσι αυτό το κρίσιμο θέμα στην τρέχουσα έρευνα. 

Για την αντιμετώπιση των προαναφερθεισών προκλήσεων, το πρώτο μέρος της διατριβής 

διερευνά τις πιο δημοφιλείς προσεγγίσεις και τις βέλτιστες πρακτικές για το σχεδιασμό και 

την εφαρμογή γνωστικών παρεμβάσεων με τη χρήση παιχνιδιών (gaming) που συνδυάζουν 

συστήματα BCI με Εικονική Πραγματικότητα (VR). Το μέρος αυτό επικεντρώνεται σε 

παρεμβάσεις που στοχεύουν σε γνωστικές δεξιότητες που σχετίζονται με την αντίληψη, την 
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οπτικοχωρική προσοχή και την οπτικοχωρική μνήμη. Για το σκοπό αυτό, αναθεωρήθηκαν οι 

τεχνικές και οι αλγόριθμοι που χρησιμοποιούνται συνήθως για την προεπεξεργασία 

δεδομένων, την εξαγωγή χαρακτηριστικών και την ταξινόμηση σε τέτοιες παρεμβάσεις. 

Συζητήθηκαν ζητήματα που σχετίζονται με το Γνωστικό Παιχνίδι BCI-VR, 

συμπεριλαμβανομένων των παραδειγμάτων BCI, των εργασιών και των περιβαλλόντων 

δράσης, των χαρακτηριστικών των χρηστών, των αλγορίθμων, των καναλιών, της ακρίβειας 

BCI και των πιο σημαντικών ευρημάτων. Επιπλέον, διερευνήθηκαν οι τρέχουσες προκλήσεις, 

οι περιορισμοί, οι μελλοντικές ερευνητικές κατευθύνσεις και οι πιθανές εμπορικές εφαρμογές 

του BCI-VR για γνωστικά παιχνίδια gaming.  

Στο δεύτερο μέρος της διατριβής εισάγεται ένα νέο πλαίσιο BCI σε συνδυασμό με 

παιχνίδια VR που έχουν τη δυνατότητα να προωθήσουν την αλληλεπίδραση ανθρώπου-

υπολογιστή παρέχοντας εμβυθιστικούς και διαισθητικούς μηχανισμούς ελέγχου. Αυτό το 

μέρος της μελέτης είχε ως στόχο να αξιολογήσει την απόδοση του BCI-VR σε μια 

δραστηριότητα παιχνιδιού τερματοφύλακα και να διερευνήσει την επιρροή των γνωστικών 

ικανοτήτων στην απόδοση BCI χρησιμοποιώντας MI. Σαράντα τέσσερις υγιείς εθελοντές 

συμμετείχαν στα πειράματα BCI-VR Goalkeeper και υποβλήθηκαν σε μια δραστηριότητα  

νοερής κίνησης αριστερού έναντι δεξιού χεριού. Είκοσι δύο συμμετέχοντες πραγματοποίησαν 

την εργασία Flanker και την εργασία Spatial Cueing και άλλοι είκοσι δύο συμμετέχοντες 

πραγματοποίησαν τις εργασίες Mental Body Rotation (MBRT) και Spatial Orientation (SOT). 

Έξι αλγόριθμοι ταξινόμησης χρησιμοποιήθηκαν για ανάλυση σε μη πραγματικό (offline) και 

σε πραγματικό χρόνο (real-time). Ο αλγόριθμος Random Forest παρουσίασε τα υψηλότερα 

ποσοστά ακρίβειας τόσο σε μη πραγματικό χρόνο (Mέση ακρίβεια = 82.4%)  όσο και σε 

πραγματικό χρόνο (Mέση ακρίβεια = 71.6%). Τα αποτελέσματα από την εργασία Flanker 

αποκάλυψαν μια θετική συσχέτιση μεταξύ της μέσης ακρίβειας για τις αντίστοιχες δοκιμές 

της εργασίας Flanker και της μέσης ακρίβειας ταξινόμησης της εργασίας τερματοφύλακα 

BCI-VR, σε μη πραγματικό χρόνο, (r(22) = .46, p = .03). Επιπρόσθετα, τα άτομα με τη 

μεγαλύτερη απόδοση (High Achievers) στην εργασία τερματοφύλακα BCI-VR είχαν 

μεγαλύτερα οφέλη από τα σημάδια προσοχής που σχετίζονται με την αντίληψη έναντι των 
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συνθημάτων προσοχής που σχετίζονται με την οπτική μνήμη εργασίας (VWM), (F(1,20) = 

9.09, p = .007, n2 = .07). Αυτά τα ευρήματα υποδεικνύουν τον αντίκτυπο των γνωστικών 

ικανοτήτων στην απόδοση BCI-VR και τονίζουν την ανάγκη να ληφθούν υπόψη γνωστικοί 

μηχανισμοί και να αναπτυχθούν παρεμβάσεις γνωστικής εκπαίδευσης για να ενισχύσουν τους 

συμμετέχοντες να παράγουν κατάλληλα μοτίβα EEG βελτιώνοντας παράλληλα την ακρίβεια 

BCI. Περαιτέρω έρευνα θα πρέπει να διερευνήσει άλλους γνωστικούς παράγοντες με σκοπό 

να βελτιώσει τη χρηστικότητα και την αποτελεσματικότητα των συστημάτων BCI-VR για 

εφαρμογές πραγματικού κόσμου. Συνοψίζοντας, τα τρέχοντα ευρήματα συμβάλλουν στην 

προώθηση της τεχνολογίας BCI και των δυνατοτήτων της για νευροαποκατάσταση, 

υποστηρικτικές τεχνολογίες και ψυχαγωγία με τη χρήση παιχνιδιών. 

 

Μάριος Χάτζιαρος – Πανεπιστήμιο Κύπρου, 2024 

Mari
os

 H
ad

jia
ros

 



 ii 

VALIDATION PAGE 

Doctoral Candidate: Marios Hadjiaros 

Doctoral Thesis Title: VIRTUAL REALITY GAMING BASED ON BRAIN-

COMPUTER INTERFACING AND THE ROLE OF COGNITIVE SKILLS 

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements for 

the Degree of Doctor of Philosophy at the Department of Computer Science and was 

approved on the May 24th, 2024 by the members of the Examination Committee. 

 

Examination Committee: 

 

Research Supervisor       

      Costantinos S. Pattichis 

 

Research Co-Supervisor 

      Marios N. Avraamides 

 

Research Co-Supervisor 

      Kleanthis Neokleous 

 

Committee Member 

      Christakis Christodoulou 

 

Committee Member 

      Panagiotis Bamidis 

 

Committee Member 

      Andreas Demosthenous 

 

Committee Member 

      Andreas Aristidou 

Mari
os

 H
ad

jia
ros

 



 iii 

DECLARATION OF DOCTORAL CANDIDATE 

 

The present doctoral dissertation was submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original 

work of my own unless otherwise mentioned through references, notes, or any other 

statements. 

 

 

Marios Hadjiaros

Mari
os

 H
ad

jia
ros

 



 iv 

ACKNOWLEDGEMENTS 

At the culmination of this journey, a profound sense of gratitude fills me, directed 

particularly towards those whose support and guidance have been instrumental in reaching 

this milestone. 

First, I would to express my sincere thanks to CYENS – CENTER OF EXCELLENCE for 

the scholarship awarded fully covering my PhD studies. This project has received funding 

from the European Union's Horizon 2020 Research and Innovation Program under Grant 

Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy 

Ministry of Research, Innovation and Digital Policy.  

 Likewise, I express my deepest appreciation to my supervisor, Prof. Constantinos 

Pattichis, whose unwavering assistance, invaluable advice, and steadfast guidance have been 

pivotal in shaping this thesis. His expertise and mentorship have been indispensable 

throughout this endeavor. I am also indebted to Prof. Marios Avraamides and Dr. Andria 

Shimi of the Department of Psychology at the University of Cyprus, as well as Dr. Kleanthis 

Neokleous, the leader of the ITICA team at CYENS-Centre of Excellence. Their tireless 

contributions and scholarly insights have significantly enriched the research presented in this 

thesis. 

Lastly, I am profoundly grateful to my wife, Georgia, whose unwavering support and love 

have sustained me through the challenges of this academic journey. Her encouragement and 

belief in me have been a constant source of strength. 

To each of you, I extend my heartfelt gratitude. This thesis stands as a testament to our 

collective efforts and unwavering commitment. Thank you, from the depths of my heart. Mari
os

 H
ad

jia
ros

 



 v 

DEDICATION 

I dedicate this dissertation to my beloved mother, Photoula Mandritou Hadjiarou, who 

always fought hard for us to study. Her boundless love, encouragement, and sacrifices have 

been the guiding light in my academic journey. This work stands as a tribute to her enduring 

legacy and profound impact on my life.  

Mari
os

 H
ad

jia
ros

 



 vi 

TABLE OF CONTENTS 

Chapter 1   Introduction ..................................................................................................................... 3 

1.1 Problem Statement .................................................................................................................... 3 

1.2 Contribution ............................................................................................................................... 6 

1.3 Publications ................................................................................................................................ 8 

1.4 Structure of the dissertation ...................................................................................................... 9 

Chapter 2   BCI Enabling Concepts .................................................................................................... 10 

2.1 Brain anatomy .......................................................................................................................... 10 
2.1.1  Cerebral Cortex ............................................................................................................... 10 
2.1.2 Frontal lobe .................................................................................................................... 13 
2.1.3 Parietal lobe .................................................................................................................... 14 
2.1.4 Temporal lobe................................................................................................................. 14 
2.1.5 Occipital Lobe ................................................................................................................. 14 
2.1.6 Sensory and Motor (Sensorimotor) Cortex .................................................................... 14 

2.2 EEG Principles ........................................................................................................................... 15 
2.2.1 EEG Acquisition ............................................................................................................... 15 
2.2.2 EEG frequency bands ...................................................................................................... 16 

2.2.2.1 Delta (0.5-4 Hz) ..................................................................................................... 16 
2.2.2.2 Theta (4-8 HZ) ....................................................................................................... 17 
2.2.2.3 Alpha (8-12 HZ) ..................................................................................................... 17 
2.2.3.4 Sensorimotor rhythm (12-15 or 12-16 Hz) ............................................................ 17 
2.2.2.5 Beta (12-30 Hz) ...................................................................................................... 18 
2.2.2.6 Gamma (>30 Hz).................................................................................................... 18 

2.3 BCI Principles ............................................................................................................................ 20 
2.3.1 Categories of BCI Technologies ...................................................................................... 20 

2.3.1.1 Active BCIs ............................................................................................................. 20 
2.3.1.2 Reactive BCIs ......................................................................................................... 20 
2.3.1.3 Passive BCIs ........................................................................................................... 21 

2.3.2 Types of BCI in VR Gaming .............................................................................................. 21 
2.3.3 EEG Control signal paradigms ......................................................................................... 22 

2.3.3.1 Motor Imagery (MI) .............................................................................................. 22 
2.3.3.2 Positive 300 (P300) ............................................................................................... 24 
2.3.3.3 Steady-State Visual Evoked Potentials (SSVEP) ..................................................... 25 

2.4 BCI Techniques and Algorithms ................................................................................................ 27 
2.4.1 Pre-processing strategies ............................................................................................... 27 
2.4.2 Feature extraction .......................................................................................................... 28 
2.4.3 Classification ................................................................................................................... 30 

2.4.3.1 Conventional Machine Learning ........................................................................... 30 
2.4.3.2 Deep Learning ....................................................................................................... 31 

Chapter 3   BCI Applications ............................................................................................................. 34 

3.1 Methodology ............................................................................................................................ 34 

3.2 BCI-VR Gaming ......................................................................................................................... 36 

3.3 BCI for Attention, Memory, and Visuospatial skills .................................................................. 42 

3.4 BCI-VR Gaming and cognitive tasks ......................................................................................... 44 

3.5 Challenges and Directions ........................................................................................................ 46 
3.5.1 Technological Challenges ................................................................................................ 47 
3.5.2 Psychological and Neurological Challenges .................................................................... 49 

Mari
os

 H
ad

jia
ros

 



 vii 

3.5.3 Gaming Challenges ......................................................................................................... 50 

Chapter 4   Experimental Methodology ............................................................................................ 52 

4.1 Material and preparatory setup ............................................................................................... 52 

4.2 BCI-VR Goalkeeper Gaming Task .............................................................................................. 53 
4.2.1 Task Description ............................................................................................................. 53 
4.2.2 Experimental Setup ........................................................................................................ 55 

4.3 Flanker Gaming Task ................................................................................................................ 57 
4.3.1 Task Description ............................................................................................................. 57 
4.3.2 Experimental setup ......................................................................................................... 57 

4.4 Spatial Cueing Gaming Task ..................................................................................................... 58 
4.4.1 Task Description ............................................................................................................. 58 
4.4.2 Experimental Setup ........................................................................................................ 59 

4.5 Mental Body Rotation Task ...................................................................................................... 60 
4.5.1 Task Description ............................................................................................................. 60 
4.5.2 Experimental Setup ........................................................................................................ 61 

4.6 Spatial Orientation Task ........................................................................................................... 62 
4.6.1 Task Description ............................................................................................................. 62 
4.6.2 Experimental Setup ........................................................................................................ 63 

Chapter 5   BCI-VR Data Analysis ...................................................................................................... 64 

5.1 Pre-Processing: Common Spatial Pattern (CSP) Algorithm ...................................................... 64 

5.2 Machine Learning Algorithms .................................................................................................. 65 
5.2.1 Decision Tree (DT) ................................................................................................................ 65 
5.2.2 Random Forest (RF) ............................................................................................................. 66 
5.2.3 Linear Discriminant Analysis (LDA)....................................................................................... 67 
5.2.4 Support Vector Machines (SVM) .......................................................................................... 68 
5.2.5 Multilayer Perceptron (MLP) ............................................................................................... 70 
5.2.6 Black Hole (BH) ..................................................................................................................... 70 

5.3 BCI-VR Goalkeeper Data Analysis Framework using Motor Imagery ....................................... 71 

Chapter 6   Experimental Results ...................................................................................................... 78 

6.1 BCI VR Goalkeeper Results ....................................................................................................... 78 

6.2 Flanker Gaming Task Results ................................................................................................... 81 

6.3 Spatial Cueing Gaming Task Results ........................................................................................ 83 

6.4 Spatial Orientation Task Results............................................................................................... 86 

6.5 Mental Body Rotation Task Results .......................................................................................... 87 

Chapter 7   Discussion ...................................................................................................................... 89 

7.1 BCI VR Goalkeeper Task ........................................................................................................... 89 

7.2 Mental Body Rotation .............................................................................................................. 92 

7.3 Spatial Orientation ................................................................................................................... 92 

7.4 Flanker Task ............................................................................................................................. 93 

7.5 Spatial Cueing........................................................................................................................... 94 

7.6 Study Limitations ...................................................................................................................... 96 

Chapter 8   Concluding Remarks and Future Work ........................................................................... 98 

Mari
os

 H
ad

jia
ros

 



 viii 

8.1 Concluding Remarks ................................................................................................................. 98 

8.2 Future work .............................................................................................................................. 99 
8.2.1 Pre-Processing and Feature extraction ................................................................................ 99 
8.2.2 Classification ...................................................................................................................... 100 
8.2.3 Virtual Reality ..................................................................................................................... 102 
8.2.4 Cognitive tasks ................................................................................................................... 103 

References ..................................................................................................................................... 105 

 

Mari
os

 H
ad

jia
ros

 



 ix 

LIST OF TABLES 

  

  
TABLE 1: BCI SYSTEMS CATEGORIES. 

TABLE 2: EEG FREQUENCY BANDS. 

TABLE 3: SUMMARY OF FEATURES OF DIFFERENT NEURAL MECHANISMS. 

TABLE 4: SUMMARY OF EEG-BASED BCI-VR GAMING STUDIES. 

TABLE 5: SUMMARY OF EEG BASED BCI WITH COGNITIVE TASKS STUDIES. 

TABLE 6: SUMMARY OF TECHNOLOGICAL, GAMING, PSYCHOPHYSIOLOGICAL 

AND NEUROLOGICAL CHALLENGES. 

TABLE 7: PERFORMANCE METRICS CALCULATED OVER THE OFFLINE SESSION. 

TABLE 8: PERFORMANCE METRICS CALCULATED OVER THE REAL-TIME 

SESSION. 

TABLE 9: STUDIES RELATED TO THE BCI VR GAMING TASK. 

TABLE 10: THE MAJOR STUDY LIMITATIONS. 
 

 

 

  

 

Mari
os

 H
ad

jia
ros

 



 x 

LIST OF FIGURES 

Fig. 1. Main components of a BCI-VR Gaming system. (1) raw EEG signal acquisition, (2) 

pre-processing of EEG signal for background noise cleaning, (3) extraction of specific 

application features from the clean data and selection of more discriminative features, (4) 

classification of the selected features, (5) decision making linked with device and command, 

and (6) application execution and feedback to the user. 

Fig. 2. Major structures of the Cerebral Cortex. The cerebral cortex, an intricate web of neural 

tissue that envelops the brain's surface, serves as the epicenter for higher cognitive functions 

and complex behaviors. Comprising four distinct lobes—frontal, parietal, temporal, and 

occipital—the cortex orchestrates a symphony of neural activity, intricately weaving sensory, 

motor, and cognitive processes into the fabric of consciousness. 

Fig. 3. Cerebral Cortex functions simplified. The left hemisphere serves as the neural hub for 

speech, analysis, logic, reading, writing and computations. In contrast, the right hemisphere, 

often relegated to a supporting role, excels in visuospatial processing, emotional perception, 

creativity, rhythm, imagination, daydreaming, and holistic thinking. 

Fig. 4. The international 10-20 system labels the electrodes based on positions over the 

frontal, parietal, temporal, and occipital lobes, indicated by the letters F, P, T, and O 

respectively. 

Fig. 5. The 5 main types of brainwave frequencies. Delta are the slowest, highest amplitude 

brain waves and is associated with deep sleep and is therefore highly localized in infants. 

Theta waves usually have a sinusoidal or a square top rhythm and may be rhythmic or 

arrhythmic. Alpha waves are slower and larger, and they have a sinusoidal rhythm. Beta 

waves are small but faster brainwaves. Gamma waves are the fastest and most subtle 

brainwaves and modulate perception and consciousness. 

Fig. 6. An example of an MI-based BCI system. The left column shows the movements that 

the users imagine, without any physical movement or muscle activation to send a command to 

the VR Goalkeeper avatar, to move his corresponding hand. The right column shows the 
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identify which side of the figure is marked, from the figure’s point of view. 

Fig. 15. A sample item (trial) with the exact correct answer in the Spatial Orientation Test. 

Fig. 16. EEG signals spatially filtered with the common spatial patterns (CSPs) algorithm. 

CSP1, CSP2, and CSP3 maximize the variance of the signals in the “imagined movement of 

the left hand” class (in red) while minimizing those of the “imagined movement of the right 

hand” class (in green). CSP4, CSP5, and CSP6 do the opposite, they maximize the variance of 

the “imagined movement of the right hand” class, while minimizing the variance of the 

“imagined movement of the left hand” class. 
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Fig. 17. The random forest classifier divides this dataset into subsets and given to every 

decision tree. Each decision tree produces its specific output. For example, the prediction for 

trees 1, 3 and 4 is left hand and the 2nd tree has predicted right hand as the outcome. The 

majority of the decision trees have chosen a left hand as their prediction. This makes the 

classifier choose left hand as the final prediction. 

Fig. 18. On the left side of the image, the data depicting left-hand versus right-hand 

classification before Linear Discriminant Analysis (LDA) is presented. On the right side of 

the image, the data illustrating left versus right hand classification after applying LDA. Here, 

LDA maximizes the distance between the means of the classes while minimizing the 

interclass variance. In the center is the dividing line between the 2 classes 

Fig. 19. Maximum-margin hyperplane and margins for an SVM trained with samples from 

two classes (Left and Right hand movement). Samples on the margin are called the support 

vectors. Support Vectors are data points closest to the hyperplane called support vectors. 

These points will define the separating line better by calculating margins and are more 

relevant to the construction of the classifier. 

Fig. 20. BCI-VR Goalkeeper Data Analysis Framework using Motor Imagery. 

Fig. 21. The variance of the mean feature vectors of the filtered EEG signal, which is 

maximum for one class and minimum for the other class (Left vs Right MI) as presented in 

the BCI-VR Goalkeeper framework step D.2 in Fig. 20. The mean is denoted by the circle, 

and the confidence interval 95% error bars are depicted by the lines. 

Fig. 22. The scatter plot of example data points of an EEG segment for left-hand and right-

hand motor imagery before CSP spatial filtering as presented in the BCI-VR Goalkeeper 

framework of step B.2 and B.3 in Fig. 20. 

Fig. 23. The scatter plot of example data points of an EEG segment for left-hand and right-

hand motor imagery after CSP spatial filtering as presented in the BCI-VR Goalkeeper 

framework of step B.4 in Fig. 20.  

Fig. 24. The mean accuracy of the offline BCI-VR Goalkeeper Gaming task is denoted by the 

circle, and the confidence interval 95% error bars are depicted by the lines. The Random 

Forest (RF) algorithm demonstrated a higher mean accuracy of 82.4% across all 44 

participants. 

Fig. 25. The mean accuracy of the real-time BCI-VR Goalkeeper Gaming task is denoted by 

the circle, and the confidence interval 95% error bars are depicted by the lines. The Random 
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Forest (RF) algorithm demonstrated a higher mean accuracy of 71.6% across all 44 

participants. 

Fig. 26. The mean accuracy for congruent and incongruent trials in the Flanker Gaming task is 

denoted by the circle, and the confidence interval 95% error bars are depicted by the lines. 

Fig. 27. The mean Reaction Time (RT) for congruent and incongruent trials in the Flanker 

Gaming task is denoted by the circle, and the confidence interval 95% error bars are depicted 

by the lines. 

Fig. 28. Scatter plot and a significant positive correlation (r(22) = .46, p = .03) between 

accuracy with the congruent trials of the flanker task and BCI-VR Goalkeeper task accuracy, 

across the 22 participants who executed both tasks. Participants demonstrating higher 

accuracy with the congruent trials also exhibited increased accuracy in the BCI-VR 

Goalkeeper task. 

Fig. 29. The mean d' for pre-cue, retro-cue, and neutral trials in the spatial cueing task is 

denoted by the circle, and the confidence interval 95% error bars are depicted by the lines. 

Fig. 30. The mean RT for pre-cue, retro-cue, and neutral trials in the spatial cueing task is 

denoted by the circle, and the confidence interval 95% error bars are depicted by the lines. 

Fig. 31. The pre-cue benefit is larger than the retro-cue benefit and is denoted by the circle. 

The interaction was caused by the presence of a larger pre-cue than retro-cue benefit for High 

Achievers. No difference was observed in Low Achievers. The confidence interval 95% error 

bars are depicted by the lines. 

Fig. 32. Participants' mean angular error per angle is denoted by the circle, and the confidence 

interval 95% error bars are depicted by the lines. 

Fig. 33. Participants' mean RT per angle is denoted by the circle, and the confidence interval 

95% error bars are depicted by the lines. 

Fig. 34. Comparison of accuracy and number of participants with studies related to the BCI 

VR Gaming task.
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Chapter 1 

 

Introduction 

1.1 Problem Statement 

Electroencephalography (EEG) records the electrical activity of the brain, which can be 

decoded and processed to understand the physical and psychological state of individuals to 

improve the quality of life in both healthy and clinical populations. EEG signals are used to 

detect abnormalities of the brain in routine clinical practice, as well as for neurofeedback, or 

to control external devices or applications, such as controlling an exoskeleton [1], as is the 

case in Brain-Computer Interface (BCI) systems. This sensing and control interaction using 

brain signals, known as Brain-Computer Interface (BCI), is relevant to critical healthcare 

applications such as rehabilitation after stroke [2].   

A typical BCI system is composed of six basic processing components as shown in Fig. 1: 

(1) raw EEG signal acquisition, (2) pre-processing of EEG signal for background noise 

cleaning, (3) extraction of specific application features from the clean data and selection of 

more discriminative features, (4) classification of the selected features, (5) decision making 

linked with device and command, and (6) application execution and feedback to the user Fig. 

1. These processing components are present in all categories of BCI systems, namely, Active, 

Reactive, and Passive systems (see TABLE 1).   

EEG-based Motor Imagery (MI) signals have been used in various healthcare 

applications, such as neurological rehabilitation [3], [4] restoration of lost or reduced limb 

function by controlling an exoskeleton [5], [6] replacement of robotic wheelchair gait function 

for people who cannot walk [7], [8], [9] and cursor control [10], [11]. MI-EEG signals, 

however, are complex and have high-dimensional structures. Thus, advanced machine 
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learning algorithms are required to process and decode them. This study aimed to investigate 

the performance of MI BCI combined with a virtual reality (VR) gaming task. 

 
Fig. 1. Main components of a BCI-VR Gaming system. (1) raw EEG signal acquisition, (2) 

pre-processing of EEG signal for background noise cleaning, (3) extraction of specific 

application features from the clean data and selection of more discriminative features, (4) 

classification of the selected features, (5) decision making linked with device and command, 

and (6) application execution and feedback to the user. 

 

Typical machine learning approaches have been widely used to classify MI-EEG data. 

These methods usually process the MI-EEG signal in 3 phases: pre-processing, feature 

extraction, and feature classification. In the pre-processing phase, selected channels related to 

ΜΙ are filtered in the frequency range of interest, and the noise is removed. In feature 

extraction, various techniques have been proposed to extract task-related MI features from 

high-dimensional EEG signals. MI features fall into three categories, depending on the 

domain in which the data are processed: temporal features, spatial features, and spectral 

features. Temporal features are extracted in the time domain at different time points or during 

different time blocks, such as mean, variance, etc. [12]. Spatial features aim to identify 
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features from specific electrode locations on the scalp, such as common spatial patterns 

(CSPs) [13]. CSP and its derivatives (Sparse CSP [14], Stationary CSP [15], divergence CSP 

[16], probabilistic CSP [17], and filter bank CSP (FBCSP) [18]) are the most common feature 

extraction methods for MI-EEG data [18], [19], [20], [21], [22]. Spectral features include 

either frequency domain features or time-frequency features. In the classification phase, 

several classifiers were used to classify the generated MI features into separate MI tasks [23], 

such as Support Vector Machine (SVM) [24], Linear Discriminant Analysis (LDA) [22], and 

the Bayesian classifier [18]. Although there has been significant improvement in conventional 

MI-EEG signal classification methods, these methods are still plagued by major difficulties. 

First, EEG signals are easily affected by many noise sources (e.g., computers, sounds, 

lighting, electricity, internet, etc.). These artifacts, combined with channel correlation, subject 

dependence, and high dimensionality of EEG signals make the interpretation and 

classification of brain signals extremely difficult [25]. Therefore, it is critical to develop a 

more stable and holistic MI-EEG BCI framework that can operate in various scenarios and 

automatically extract distinct features from challenging MI-EEG data. Additionally, feature 

extraction relies heavily on human experience in a particular area. For example, basic 

biological expertise is necessary to analyze the state of MI tasks via EEG signals. Although 

human experience can help in some respects, in more general cases, it is insufficient. 

Therefore, an automated approach to feature extraction is required. In recent years, Neural 

Network methods [2], [6], [67], have been used to address the difficulties associated with 

EEG classification for MI. Unlike conventional Machine Learning approaches, Neural 

Networks can automatically learn complex high-level and latent features from raw MI-EEG 

and eliminate the need for pre-processing and time-consuming feature extraction.  

Nevertheless, it seems that the focus on improving the algorithms is not satisfactory. 

There appears to be a further need to investigate the human characteristics that must govern a 

person to operate a BCI system with satisfactory accuracy. Moreover, it is no coincidence that 

one of the many problems preventing BCIs from practical and, by extension, commercial 
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adoption is the variation in performance between the population and the closely related BCI-

illiteracy phenomenon, which shows that around 15-30% of the population cannot develop the 

ability to control BCI systems based on Motor Imagery or Event-Related Potentials, such as 

the P300 wave [26]. On the other hand, there is evidence against BCI illiteracy, at least in 

Steady-State Visual Evoked Potentials (SSVEPs), which operate more robustly even after 

very short training [27]. Most research in the field of BCIs has focused on advances in signal 

processing, feature extraction, and classification [28]. However, a trend in recent BCI research 

highlights the importance of the human-facing side of the BCI [29], [30], [31], [32], [33]. 

 
TABLE 1 

BCI SYSTEMS CATEGORIES [37] 

BCI 

Category 

Description 

Active Controlled by the user through a specific mental task performance. 

Reactive Brain activity is modulated in reaction to an external stimulus given by the BCI 

system. 

Passive Simply monitor brain activity of the user, without requiring the user to perform any 

mental task or to achieve a certain goal. 

 

1.2 Contribution 

The first contribution of the dissertation explores the most popular approaches and best 

practices for designing and implementing cognitive gaming interventions that combine BCI 

systems with VR. It focuses on interventions that target cognitive skills related to perception, 

visuospatial attention, and visuospatial memory. To this purpose, the techniques and 

algorithms that are commonly used for data pre-processing, feature extraction, and 

classification in such interventions were reviewed. Issues related to BCI-VR Cognitive 

Gaming were discussed, including the BCI paradigms, the action tasks and environments, user 

characteristics, algorithms, channels, accuracy, and the most prominent findings. Furthermore, 

the current challenges, limitations, future research directions, and potential commercial 

applications of BCI-VR in cognitive gaming were investigated. 

Mari
os

 H
ad

jia
ros

 



 

 

 

 

 

 

7 

The second contribution of the dissertation introduces a novel BCI framework combined 

with VR gaming having the potential to advance human-computer interaction by providing 

immersive and intuitive control mechanisms. Furthermore, the role of cognitive skills in BCI-

VR Gaming was investigated aimed to evaluate how it affects BCI-VR performance and 

explore the influence of cognitive abilities on BCI using Motor Imagery. Forty-four healthy 

volunteers participated in the study who carried out a BCI-VR Goalkeeper task and underwent 

a left-hand versus right-hand movement imagery task while wearing a VR headset. Twenty-

two participants carried out the Flanker task and the Spatial Cueing task and another twenty-

two participants carried out the Mental Body Rotation (MBRT) and Spatial Orientation (SOT) 

tasks to investigate the impact of cognitive abilities in a BCI-VR control application. Six 

classification algorithms were employed for offline and real-time analysis. Six classification 

algorithms were employed for offline and real-time analysis. The Random Forest algorithm 

exhibited the highest accuracy rates both offline and in real-time. Results from the Flanker 

task revealed a positive correlation between the mean accuracy for the congruent trials of the 

Flanker task and the mean offline classification accuracy in the BCI-VR Goalkeeper task. 

Additionally, High Achievers in the BCI-VR Goalkeeper task had larger benefits from 

attentional cues in service of perception than from attentional cues in service of visual 

working memory (VWM). These findings suggest the impact of cognitive abilities on BCI-VR 

performance and emphasize the need to consider cognitive mechanisms and develop cognitive 

training interventions to enhance humans to produce appropriate EEG patterns while 

improving BCI accuracy. Further research should explore other cognitive factors and strive to 

improve the usability and effectiveness of BCI-VR systems for real-world applications. 

Overall, the current findings contribute to advancing BCI technology and its potential for 

neurorehabilitation, assistive technologies, and gaming entertainment. 
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1.3 Publications 

The research work carried out in this dissertation has been published as follows: 

Journal Papers 

1. M. Hadjiaros, K. Neokleous, A. Shimi, M. N. Avraamides, and C. S. Pattichis, 

“Virtual reality cognitive gaming based on brain computer interfacing: A narrative 

review,” IEEE Access, vol. 11, pp. 18399–18416, 2023.  

DOI: https://doi.org/10.1109/ACCESS.2023.3247133  

2. A. Shimi, V. Tsestou, M. Hadjiaros, K. Neokleous, and M. Avraamides, “Attentional 

skills in soccer: Evaluating the involvement of attention in executing a goalkeeping 

task in virtual reality,” Appl. Sci. (Basel), vol. 11, no. 19, p. 9341, 17 pages, 2021. 

DOI: https://doi.org/10.3390/app11199341  

M. Hadjiaros, A. Shimi, M. N. Avraamides, K. Neokleous, and C. S. Pattichis, 

“Virtual Reality Brain-Computer Interfacing and the role of cognitive skills,” IEEE 

Access, submitted March 2024. 

Conference Papers 

1. M. Hadjiaros, K. Neokleous, E. Schiza, M. Matsangidou, M. N. Avraamides, and C. 

S. Pattichis, “A game-based cognitive assessment for visuospatial tasks: Evaluation in 

healthy adults,” in 2021 IEEE 21st International Conference on Bioinformatics and 

Bioengineering (BIBE), pp. 1–5, 2021. 

DOI:  https://doi.org/10.1109/BIBE52308.2021.9635507  

Abstracts 

1. M. Hadjiaros, S. Sarri, K. Neokleous, A. Shimi, M. N. Avraamides, and C. S. 

Pattichis, “Preliminary findings on the Virtual Reality Cognitive Gaming based on 

Brain Computer Interfacing,” in 2022 Society of Applied Neurosciences (SAN2022), 

pp. 109–110, 2022.  

2. M. Hadjiaros, S. Sarri, K. Neokleous, A. Shimi, M. N. Avraamides, and C. S. 

Pattichis, “Preliminary findings on the Virtual Reality Brain Computer Interfacing 

based on Motor Imagery,” in 14th Cyprus Workshop on Signal Processing and 

Informatics (CWSPI), 2022.  

Additional publications related to this work have been published as follows: 

1. M. Matsangidou, F. Frangoudes, M. Hadjiaros, E. C. Schiza, K. Neokleous, “Bring 

me sunshine, bring me (physical) strength’: The case of dementia. Designing and 

implementing a virtual reality system for physical training during the COVID-19 

pandemic,” Int. J. Hum. Comput. Stud., vol. 165, no. 102840, p. 102840, 17 pages, 

2022. 

DOI: https://doi.org/10.1016/j.ijhcs.2022.102840  

2. F. Frangoudes, M. Hadjiaros, E. C. Schiza, M. Matsangidou, O. Tsivitanidou, K. 

Neokleous, E.Papayianni, M. Avraamides, and C. S. Pattichis , “An overview of the 

use of chatbots in medical and healthcare education,” in Learning and Collaboration 
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Technologies: Games and Virtual Environments for Learning, Cham: Springer 

International Publishing, pp. 170–184, 2021. 

DOI: https://doi.org/10.1007/978-3-030-77943-6_11  

3. M. Matsangidou, E. C. Schiza, M. Hadjiaros, K. Neokleous, M. Avraamides, 

E.Papayianni, F. Frangoudes, and C. S. Pattichis, “Dementia: I am physically fading. 

Can Virtual Reality help? Physical training for People with dementia in confined 

mental health units,” in Lecture Notes in Computer Science, Cham: Springer 

International Publishing, pp. 366–382, 2020 

DOI: https://doi.org/10.1007/978-3-030-49282-3_26  

4. E. C. Schiza, M. Hadjiaros, M. Matsangidou, F. Frangoudes, K. Neokleous, E. 

Gkougkoudi, S. Konstantinidis, and C. S. Pattichis, “Co-creation of Virtual Reality 

Re-usable Learning objectives of 360° video scenarios for a Clinical Skills course,” in 

2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), 2020. 

DOI: https://doi.org/10.1109/MELECON48756.2020.9140530  

 

1.4 Structure of the dissertation 

In Chapter 2, an introduction of the brain anatomy, the main BCI principles, and the state-

of the-art techniques and algorithms that are most widely used in BCI-VR systems are 

presented. Then, in Chapter 3, we review popular EEG-based BCI applications related to BCI-

VR Gaming and Cognition, and we summarize the various challenges and discuss future 

directions related to BCI and VR. In Chapter 4, we delineate the methodology and procedural 

framework utilized throughout the experimental procedures with participants. Additionally, 

we elucidate the five tasks administered to the participants. In Chapter 5, we undertake an 

analysis of the BCI framework based on MI, which was deployed to manage the BCI-VR 

Goalkeeper task. Furthermore, we evaluate both the merits and drawbacks of the classification 

algorithms employed in this context. Chapter 6 presents the results of the BCI-VR 

experimental procedures. Chapter 7 covers the discussion of the results and comparing them 

with findings from equivalent studies for comprehensive analysis and contextualization. In the 

final chapter, we summarize the concluding remarks of this study and outline potential future 

directions. 
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Chapter 2 

 

BCI Enabling Concepts  

2.1 Brain anatomy  

2.1.1  Cerebral Cortex 

The cerebral cortex, the outer layer of the brain, is a highly intricate structure comprised 

of four lobes (see Fig. 2) and divided into two hemispheres, as illustrated in Fig. 3. Each lobe 

is teeming with millions of connections that intricately shape various functions, making the 

cortex a remarkably complex entity. The two hemispheres of the brain, while sharing certain 

activities, predominantly govern activities of the opposite side of the body [35], [36]. 

In the majority of individuals, the left hemisphere (LH) holds dominance, orchestrating 

activities on the right side of the body. This phenomenon largely accounts for the prevalence 

of right-handedness. The LH excels in practical domains, displaying prowess in logic, 

mathematics, and analytical reasoning. Moreover, it spearheads fundamental cognitive 

processes such as reading, writing, and arithmetic, often referred to as the 3 "R"s. 

Additionally, the LH plays a pivotal role in linguistic tasks, overseeing spelling, grammar, and 

verbal memory storage [35] (see Fig. 3). 

Conversely, the right hemisphere (RH) showcases its expertise in creativity, perception, 

and visual-spatial processing. It demonstrates proficiency in tasks requiring non-verbal 

communication and the recognition of familiar landscapes. Due to the LH's dominance in 

most individuals, the RH typically assumes the role of the non-dominant hemisphere and 

tends to govern artistic endeavors [35], [36]. Emotions and musical comprehension 

predominantly reside within the domain of the LH, while the RH facilitates intuitive insights. 

However, it is essential to note that logical reasoning primarily pertains to the LH [36]. 
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In instances where the distinction between the dominant LH and non-dominant RH is less 

clear, certain challenges may arise. Two notable disorders that can manifest under such 

circumstances are dyslexia and stuttering [35] (see Fig. 3). 

Disruptions to the delicate balance of cortical function can have profound clinical 

ramifications, giving rise to a myriad of neurological disorders. Dysfunctions within the 

frontal lobe may precipitate deficits in impulse control, emotional regulation, and attentional 

processing, culminating in conditions such as attention-deficit hyperactivity disorder (ADHD) 

or frontal lobe epilepsy [35], [36]. Similarly, lesions affecting the temporal lobe can lead to 

impairments in memory consolidation, language comprehension, and facial recognition, 

hallmark features of temporal lobe epilepsy and Alzheimer's disease [35], [36]. Understanding 

the intricate interplay between cortical regions is paramount for elucidating the 

pathophysiology of these disorders and devising targeted therapeutic interventions [35], [36]. 

In summary, the cerebral cortex stands as a testament to the brain's remarkable 

adaptability and complexity. Through its intricate network of specialized regions and 

hemispheric interactions, the cortex serves as the nexus of human cognition, mediating our 

perceptions, thoughts, and actions in the ever-unfolding tapestry of consciousness.  
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Fig. 2. Major structures of the Cerebral Cortex. The cerebral cortex, an intricate web of neural 

tissue that envelops the brain's surface, serves as the epicenter for higher cognitive functions 

and complex behaviors. Comprising four distinct lobes—frontal, parietal, temporal, and 

occipital—the cortex orchestrates a symphony of neural activity, intricately weaving sensory, 

motor, and cognitive processes into the fabric of consciousness. 

Available on: https://qbi.uq.edu.au/files/33952/Brain-lobes-traditional-QBI-sm.jpg  
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Fig. 3. Cerebral Cortex functions simplified. The left hemisphere serves as the neural hub for 

speech, analysis, logic, reading, writing and computations. In contrast, the right hemisphere, 

often relegated to a supporting role, excels in visuospatial processing, emotional perception, 

creativity, rhythm, imagination, daydreaming, and holistic thinking. 

Available on: https://www.centurymedicaldental.com/wp-content/uploads/2022/01/Left-and-

Right-Hemisphere-of-the-Brain.jpg.webp  

 

2.1.2 Frontal lobe 

The frontal lobe is responsible for immediate and sustained attention, emotional and 

behavioral control, working memory, social awareness, empathy, time management, 

organizing, character, executive planning, and motivation [35], [36]. It identifies problems and 

may send them to other brain regions for a solution [35], [36]. The EEG placement locations 

of the frontal lobe are the frontal poles – Fp1, Fp2, Fpz, and the frontal – Fz, F3, F4, F7, F8 

[35]. 
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2.1.3 Parietal lobe 

When the frontal lobe detects a problem, it is likely to send it to the parietal lobe for a 

solution. Complex grammar, sentence construction, the naming of objects, and mathematical 

processing can be traced to the left parietal lobe [35]. Spatial recognition, map orientation, 

and recognition between left and right are all functions of the right parietal lobe. The right 

parietal lobe is also responsible for analyzing the surroundings and it is involved in attention, 

body scheme, body image, the physical act of dressing, face recognition, and music [35], [36]. 

The parietal lobe plays a role in the attentional system and in feeling and displaying emotion. 

Generally, the parietal lobe is the area of sensory perception and is responsible for spatial 

processing and for solving mathematical and geometrical problems [35], [36]. The EEG 

placement locations of the parietal lobe are Pz, P3, P4 [35]. 

2.1.4 Temporal lobe 

The temporal lobe encapsulates the auditory cortex near the amygdala which involves 

emotions and the hippocampus which involves the memory, as such it’s very crucial to the 

memory-making process, especially verbal memories [35], [36]. Moreover, the left temporal 

lobe is associated with word recognition, memory, learning, and a positive mood. The right 

temporal lobe is associated with facial recognition, stress, and sense of direction, and music. 

The EEG placement locations of the temporal lobe are T3, T4, T5, and T6 [35]. 

2.1.5 Occipital Lobe 

The occipital lobe is directly connected to the visual cortex and helps to locate objects in 

the environment. Moreover, it is responsible for the visual field, identification of the objects, 

and color recognition [35], [36]. It’s also associated with reading, writing, and spelling but the 

amygdala is necessary as well, to which some connections extend. The EEG placement 

locations of the occipital lobe are Oz, O1, and O2 [35]. 

2.1.6 Sensory and Motor (Sensorimotor) Cortex 

The sensorimotor cortex is located between the parietal and frontal lobes [36]. The motor 

cortex is in front of the somatosensory cortex and within the frontal lobe. The somatosensory 
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cortex is behind the motor cortex and within the parietal lobe [35]. The sensory and motor 

cortex extend deep down to the left and right temporal lobes in the lateral sulcus. It divides the 

frontal and parietal lobes and coordinates sensory-driven movement [35]. Our character can 

be translated by the movements of our hands and feet, but also by the wider movement of our 

body. From the Greek root soma, for the body, the somatosensory system is responsible for 

the external sensations of touch, pain, temperature, and the internal sensations of joint position 

[35]. Motor cortex functions have been associated with skilled movements and smooth 

repetitive operations such as typing, playing musical instruments, writing, fluent speech, and 

operating complex machinery [35], [36]. It’s the connecting node between the voluntary 

muscles of the brain and the body. The brain wave, sensorimotor rhythm (SMR), is named 

after this cortex. Additionally, the sensorimotor cortex helps the cerebral cortex to encode 

both physical and cognitive tasks. The EEG placement locations of the somatosensory motor 

cortex lobe are C3, C4, and Cz [35].  

 

2.2 EEG Principles 

2.2.1 EEG Acquisition 

Electrode placement on the scalp is guided by our knowledge of the functions of the four 

lobes of the cerebral cortex [36]. Most commonly, electrode placement is performed 

according to the international 10-20 system that labels the electrodes based on positions over 

the frontal, parietal, temporal, and occipital lobes, indicated by the letters F, P, T, and O 

respectively (see Fig. 4) [35], [36]. According to the international 10-20 system, each point on 

the cerebral cortex is assigned a letter and a number. Thus, electrodes with odd numbers 

represent the positions of the left side of the brain and electrodes with even numbers represent 

the positions of the right side of the brain [36]. The positions in the midline are indicated by z 

(zero) instead of a number. 
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Fig. 4. The international 10-20 system labels the electrodes based on positions over the 

frontal, parietal, temporal, and occipital lobes, indicated by the letters F, P, T, and O 

respectively. 

Available on: https://info.tmsi.com/hs-fs/hubfs/Blogs/0.1%20The%2010-20%20System/the-

10-10-system-new.webp?width=911&height=462&name=the-10-10-system-new.webp  

2.2.2 EEG frequency bands 

EEG records the electrical brain activity produced from the different structures of the 

brain. More specifically, it measures voltage fluctuations coming from the ionic flows into the 

brain neurons [35], [36]. EEG signals recorded from the brain are divided into specific ranges 

that are more prominent in certain states of the brain [35]. EEG frequency bands are 

associated with specific brain activity as depicted in TABLE 2. 

2.2.2.1 Delta (0.5-4 Hz) 

Delta are the slowest, highest amplitude brain waves and are associated with deep sleep 

and are therefore highly localized in infants [35], [36]. Delta waves are strong brain waves but 

low frequency waves (see Fig. 5). They are produced during meditation and dreamless sleep. 

Delta waves are associated with external awareness and are the source of empathy. This deep 

sleep is necessary for the body to heal and regenerate [35]. 
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2.2.2.2 Theta (4-8 HZ) 

Theta waves usually have a sinusoidal or a square top rhythm and may be rhythmic or 

arrhythmic (see Fig. 5). Theta waves occur most often when we sleep and especially when we 

are dreaming [35], [36]. Theta is associated with creativity and spontaneity, and also with 

distractibility inattention, and daydreaming [36]. Theta may reflect depression, anxiety, and 

other emotional disorders.  In theta, the senses are isolated from the external world and 

focused on signals originating from inner consciousness [35]. 

2.2.2.3 Alpha (8-12 HZ) 

Alpha waves are slower and larger, and they have a sinusoidal rhythm (see Fig. 5). Alpha 

waves normally range from 9-12 Hz during wakefulness and drop to 8Hz or less, during 

drowsiness [35]. Sometimes activity between 9-11 Hz is not alpha activity, but it is called 

"mu" rhythm. It got its name because the waves look like a Greek 'μ' [35]. Alpha rhythm is 

associated with the inaction of the optical system, increases with closed eyes, and decreases 

with open eyes. This phenomenon is known as alpha blocking. Alpha blocking refers to the 

sharp decrease in alpha when the eyes are open [35], [36]. If the amplitude of alpha waves 

decreases with closed eyes, indicates "drowsiness" of the individual. On the other hand, "mu" 

waves do not change when eyes are open and can be found only in the sensorimotor cortex or 

rarely in the parietal lobe [35], [36]. Alpha is prominent in the parietal, temporal and occipital 

lobes and is associated with meditation and calmness [35].  

2.2.3.4 Sensorimotor rhythm (12-15 or 12-16 Hz) 

Sensorimotor rhythm (SMR) also called “low beta”, dominates only in the sensorimotor 

cortex (sensorimotor strip), C3, Cz, or C4 and may reflect a state of being internally oriented 

[35], [36]. When the brain is in a resting state and the body is not moving SMR increases. In 

contrast, when the body is moving the amplitude of SMR decreases [35]. During sleep, the 

EEG becomes more irregular and SMR appears at 12-14 Hz, as a result, the stimulation is 

more difficult [35]. 
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2.2.2.5 Beta (12-30 Hz) 

Beta waves are small but faster brainwaves and are divided into low beta and high beta. 

Low Beta 12-18 Hz is associated with problem solving, decision making, attention, judgment, 

analytics, and active thinking [35], [36].  High Beta 18-30 Hz is associated with alertness, 

mental activity, and agitation [35]. Beta frequency band is higher in adults than in children 

and increases during drowsiness [35], [36]. However, it does not respond when the eyes are 

open or closed [35]. Beta bandwidths are defined in several different ranges. For example, 

some researchers define beta as 13-30 Hz. Others define beta as 12-38 Hz, or 13-21 Hz. 

Therefore, when referring to beta waves it is important to document the frequency range. 

2.2.2.6 Gamma (>30 Hz) 

Gamma waves are the fastest and most subtle brainwaves and modulate perception and 

consciousness [35], [36]. Synchronous bursts of 40 Hz activity have been found in people 

during problem solving tasks [35]. The 40 Hz rhythm is all over the scalp and not in a specific 

location [35], [36]. It helps in learning and organizing the brain. It is activated when the brain 

needs to carry out some tasks and remains dormant when there is no specialized task to carry 

out [35], [36]. Gamma works during cognitive mechanisms in the individual. Gamma 

synchronization is related to cognitive processing and appears to be an important coding 

mechanism in various processes related to brain organization [35]. Additionally, High Gamma 

is associated with cognitive tasks such as reading, speaking, listening, and memory [35], [36].  
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Fig. 5. The 5 main types of brainwave frequencies. Delta are the slowest, highest amplitude 

brain waves and is associated with deep sleep and is therefore highly localized in infants. 

Theta waves usually have a sinusoidal or a square top rhythm and may be rhythmic or 

arrhythmic. Alpha waves are slower and larger, and they have a sinusoidal rhythm. Beta 

waves are small but faster brainwaves. Gamma waves are the fastest and most subtle 

brainwaves and modulate perception and consciousness. 

Available on: https://debugai.io/assets/img/research/bci2.jpg  
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TABLE 2 

EEG FREQUENCY BANDS [35], [36] 

 Band Frequency 

(Hz) 

Activity 

Delta 0.5 - 4 Hz Deep sleep, no focus, unconscious. 

Theta 4 - 8 Hz 

 

Deep relaxation, internal focus, meditation, intuition 

access to the unconscious. Material such as imaging, 

fantasy, dreaming. 

Low Alpha 8 - 10 Hz 

 

Wakeful relaxation, consciousness, awareness without 

attention or concentration, good mood, calmness. 

High Alpha 10 - 12 Hz Increased self-awareness and focus, learning of new 

information. 

Low Beta 12 - 18 Hz 

 

Active thinking, active attention, focus towards problem 

solving, judgment and decision making. 

High Beta 18 - 30 Hz Engagement in mental activity, alertness and agitation. 

Low Gamma 30 - 50 Hz 

 

Cognitive processing, senses, intelligence, compassion, 

self-control.  

High Gamma 50 – 70 Hz Cognitive tasks: memory, hearing, reading and speaking. 

 

2.3 BCI Principles 

2.3.1 Categories of BCI Technologies 

2.3.1.1 Active BCIs 

In active BCIs, the individual voluntarily performs a specific mental task that produces a 

specific pattern of electrical activity in the brain that can be detected and classified by the 

system to send a command to an external device [37]. One of the most common mental tasks 

is hands motor imagery. The person imagines that he is moving his upper body without any 

physical movement or muscle activation. Imagining the movement of the left versus right 

hand corresponds to different activations of primary somatosensory and motor cortical areas 

so that they can be detected and categorized for controlling an application or device. 

2.3.1.2 Reactive BCIs 

In a reactive BCI, the individual’s brain activity is modulated in response to an external 

stimulus presented to the user [37]. A widely used paradigm of reactive BCI is steady state 

visual evoked potentials (SSVEP) where external LED light stimuli are flickering at different 

frequencies [48]. Each external stimulus corresponds to a different command. The users must 
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direct their attention to the stimulus of their choice and the BCI system detects the flickering 

frequency reflected in the EEG giving the corresponding command. 

It is important to note that the distinction between reactive and active BCI in the literature 

is misleading in that the term “reactive” implies a passive user [35], [37]. In reactive BCIs the 

user is quite active, for example directing or maintaining attention to the stimuli. 

2.3.1.3 Passive BCIs 

Passive BCIs are one of the most promising systems in recent years. A passive BCI 

monitors the user’s brain activity without requiring the user to perform any task [36], [37]. 

Among the most recent developments in the field of passive BCIs are emotional BCIs that 

detect emotional states [35], [36]. The innovation in these systems is in the support and 

assistance to the individual in his/her daily life. For example, the system can adjust the room 

temperature depending on the user’s discomfort. Also, such systems can recommend specific 

movies based on the user’s emotions such as a comedy when the person is sad or a telling of a 

joke. It could also lower the difficulty level in a game when it detects that the user is frustrated 

or bored and introduces more engaging elements. 

2.3.2 Types of BCI in VR Gaming 

Depending on the recording method, BCI can be categorized into invasive or non-invasive 

systems. Invasive BCI requires implanting microelectrode arrays to the brain to record the 

activity of neurons directly. In contrast, non-invasive BCI records electrical activity with 

electrodes placed on the scalp. Non-invasive BCI is used more often to detect a variety of 

control signals, including Slow Cortical Potentials (SCP), Steady-State Evoked Potentials 

(SSEP), Motor Imagery (MI), Error Potentials (ErrP), and the P300 Evoked-Related Potential 

(ERP)[38]. In the BCI-VR, the most commonly used control signals are the P300, the MI, and 

the SSVEP [39]. 

There are 2 types of BCI systems, dependent and independent. Dependent BCI systems 

need some form of motor control by the subject. MI-based BCI is a good example of a 

dependent BCI system that has been used extensively. In contrast, independent BCI systems 
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do not need any form of motor control, which is ideal to use with stroke patients and other 

patients with severe motor deficits. For example, an SSVEP-based independent BCI system 

allows the user to produce binary responses (e.g., yes vs. no) without a motor response [40].  

Finally, a BCI system can be synchronous or asynchronous. In synchronous BCI, the user 

is prompted by the system to perform an interaction within a certain time span. Conversely, in 

the case of asynchronous BCI, the user sends commands through mental thinking throughout 

the experience to interact with the system. Synchronous BCI is not as user-friendly as 

asynchronous BCI, but it can be designed more easily [23], [41]. 

2.3.3 EEG Control signal paradigms 

The most widely used EEG-based BCI-VR systems are classified into four basic 

paradigms according to the procedure the brain waves are extracted. These are: (a) Motor 

Imagery (MI), (b) Positive 300 (P300), (c) Steady-State Visual Evoked Potentials (SSVEP) 

and (d) Hybrid signals [23] (see also TABLE 3). 

2.3.3.1 Motor Imagery (MI) 

In the MI paradigm the user sends a command to an external device by imagining moving 

a limb without performing any physical activity. This is made possible by detecting EEG 

activity in the somatosensory motor cortex and generating discriminant patterns in the brain 

signals. The most detectable activities in the somatosensory motor cortex that are 

distinguishable in the EEG signal correspond to the left vs. right hand movement, foot 

movement, and tongue movement [42]. Both the physical and the imagined limb movement 

generate a unique pattern in the alpha and beta bands, more specifically in the “mu” and 

“SMR” signals [43], [44]. SMR signals are encapsulated in the alpha (mu) (9 - 11 Hz), beta 

(13 - 30 Hz), and gamma (> 30 Hz) frequency bands [43], [44]. These patterns are reflected 

with a power decrease termed “event-related desynchronization” (ERD) that correlates with 

the preparation of movement [45], or with a power increase termed “event-related 

synchronization” (ERS) that indexes a resting state [46]. Notably, research has shown that MI 

generates the same pattern in the motor cortex during the execution and the imagination of the 
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movement [47]. ERD / ERS models are localized because of the somatotopic arrangement that 

exists in the motor cortex. For example, the representation in the upper limb area is on the 

mantle of the motor cortex and followed by lateralization [48], which makes spatial 

discrimination easy among left-hand and right-hand EEG patterns.  

The most important electrodes that can detect distinct patterns in the somatosensory motor 

cortex are C3, C4, and Cz. In the upper limbs, there is an evident contralateral dominance for 

left-right limb recognition [49], [50]. The presence of contralateral and ipsilateral variations in 

mu activity are used as distinct signatures in BCI to discriminate left-hand and right-hand 

movements (see Fig. 6) [51]. In contrast, left and right foot MI discrimination does not rapidly 

evolve because the locations of the areas of the somatosensory cortex that correspond to the 

left and right foot are very close to each other. Furthermore, the foot motor area is located 

deep in the sensorimotor cortex, making it difficult to differentiate the nearly identical EEG 

activity from the left and the right foot. [48]. Therefore, although studies have used MI-based 

BCI using feet, they generally did so without discriminating across the left and right sides 

[52], [53] (see also Fig. 6). 
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Fig. 6. An example of an MI-based BCI system. The left column shows the movements that 

the users imagine, without any physical movement or muscle activation to send a command to 

the VR Goalkeeper avatar, to move his corresponding hand. The right column shows the 

commands given for the hand movement of the VR Goalkeeper in the game. 

2.3.3.2 Positive 300 (P300) 

The visual P300 is one of the most popular examples of EEG-based BCI systems, 

especially in the most modern implementations of BCI-VR gaming. BCI systems with P300 

are based on sequential flashing stimuli, such as symbols, letters, or objects. In 1988, Farwell 

and Donchin pioneered the use of the visual P300-BCI [54] creating what is today known as 

the P300 Speller. The P300 is obtained by analyzing event-related potentials (ERP). An ERP 

is generated by averaging the EEG signal, locked to a particular event such as a visual 

stimulus presented on a screen. The P300 is produced as a response to infrequently presented 

stimuli that are recognized by the user. It is a positive peak in the EEG ranging from 5 to 10 
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microvolts in size that appears around 300ms after the onset of the event [55] (see Fig. 7). The 

most common locations of the recording electrodes for measuring the P300 are in midline 

electrodes Pz, Cz, and Fz. The most important advantage of using P300-based BCI systems is 

that most users can generate the P300 with high accuracy and with almost no training. 

Therefore, the participant can rapidly and easily use the system to handle an application. The 

disadvantage of P300-based BCI systems is that the tasks they rely on are attentionally 

demanding and thus elicit fatigue to the users [55]. In addition, given the visual nature of the 

tasks, users with vision impairments often have difficulties using the system and produce 

rather poor results [56]. 

 

Fig. 7. An example of a 6x6 symbol P300 matrix based BCI system. The user wants to write 

the letter "O" by focusing on the letter. The system recognizes the correct letter because of the 

positive peak generated in the EEG signal 300ms after the flash [55]. 

 

2.3.3.3 Steady-State Visual Evoked Potentials (SSVEP) 

The SSVEP is another popular visual paradigm in BCI [57]. In SSVEP, users direct their 

gaze to flickering stimulations, a task that requires good attention control as shown in Fig. 8. 

The most important locations for the recording electrodes are in the occipital lobe and 

particularly locations O1, O2, and Oz. Focusing on the flickering stimulus generates an EEG 

pattern whose frequency correlates with that of the stimulus. To produce the stimulus, light-

emitting diodes (LED) are often used. Typically, multiple flickering stimuli with distinct 

flickering frequencies that represent different commands are presented to the user. The 

stimulus that matches the pattern of EEG activity is then selected and the command associated 
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with it is executed. The SSVEP has many advantages. One notable advantage is that because 

the stimuli are exogenous, it can be used without user training. Stimuli can flash at many 

different frequencies, allowing the user to give different commands to the external device. In 

addition, the SSVEP frequencies can be more reliably classified than the ERP. However, as 

with the P300, this paradigm causes fatigue to users, especially when using stimuli with low 

flickering frequencies [58]. This paradigm is also not suitable for the visually impaired as it 

entails gaze movement. That said, Min et al. [59] have recently proposed a new SSVEP 

paradigm that uses a grid-shaped line array that is gaze-independent.  

Finally, it should be noted that, along with the SSVEP, several similar approaches can be 

found in the Steady State Evoked Potential (SSEP) family: steady-state somatosensory evoked 

potentials (SSSEP), steady-state auditory evoked potentials (SSAEP) [60], and hybrid SSSEP-

P300 applications [61]. 

 

Fig. 8. SSVEP paradigm: The user moves the game character by focusing on the 

corresponding flickering lights. By focusing on the left flickering light, the EEG signal 

reflects the 14Hz stimuli and the system triggering a movement to the left [58]. 
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TABLE 3 

SUMMARY OF FEATURES OF DIFFERENT NEURAL MECHANISMS 

EEG Paradigm MI P300 

 

SSVEP 

 

Nature ERD/ERS 

 

ERPs 

 

SSEP 

 

Advantages Does not require any 

external stimulation.  

Free will operation 

Almost no training 

needed 

 

Almost no training needed 

 

Disadvantages Requires training 

 

Requires external 

stimulation. Could 

provoke tiredness in 

users. 

Requires external 

stimulation. Could 

provoke tiredness in users. 

 

Accuracy 65 -70% 6X6 symbol matrix 90% 

 

90% 

 

Training Time 

 

10-30 mins 

 

5 mins 5 mins 

 

 

2.4 BCI Techniques and Algorithms  

2.4.1 Pre-processing strategies 

One of the biggest challenges in EEG-based BCI applications is that background noise 

must be eliminated before performing the analysis. Noise can be caused by both exogenous 

and endogenous factors. Exogenous factors include televisions, mobile phones, computers, 

lighting fixtures, etc. Endogenous factors include movement, respiration, skin resistance 

fluctuations, or other bioelectrical potentials, such as electromyographic (EMG) activity, 

electrocardiographic (ECG) activity, electrooculographic (EOG) activity, etc. [62]. Therefore, 

one needs to clean the raw EEG to better suit the requirements. To achieve this, a variety of 

pre-processing methods can be applied [63], [64], [65], [66], [67], including: 

• Notch filtering at 50 or 60Hz (depending on geographic location) to remove power line 

noise.  

• High pass filtering with a low cut-off frequency to erase the drift of the baseline.  

• Band pass filtering to pick the appropriate bands.  
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• Epoching the continuous data to extract segments, time-locked to an event, in specific 

time-windows. 

• EEG amplitude clipping to force the EEG signal into a specific range.  

• Cancelling bad trial samples from the EEG.  

• Normalizing the data to zero mean and unit variance using z-scores to accelerate 

convergence and not get stuck in local minimums.  

• Down-sampling to accelerate the calculations and reduce the memory.  

• Selecting key electrode positions according to the goal of the application.  

• Rejecting artifacts using thresholding techniques such as Independent Component 

Analysis (ICA) [192] or Principal Component Analysis (PCA) [193]. 

2.4.2 Feature extraction 

After the pre-processing that cleans up the signal, the most important features in the EEG 

signal must be extracted. The most commonly used EEG feature types in BCI systems are 

statistical, manually-selected, and data-driven adaptive features [68]. The selection of a toolset 

for dealing with features is a very critical process because of the high complexity and 

dynamical structure of the EEG signal [69]. There are various ways to achieve feature 

extraction in the time domain, frequency domain, time-frequency domain, and spatial domain. 

Extracting features that depend on temporal information only, results in rejecting spectral 

information. On the other hand, extracting features in the frequency domain only, results in 

rejecting temporal information.  

Two effective techniques for feature extraction are the Discrete Wavelet Transform 

(DWT) [194] and the Wavelet Packet Decomposition (WPD) [194]. These methods can 

decompose the EEG signals at multiresolution and multiscale, which is useful as important 

information in the EEG signal is conveyed in different frequency bands. Moreover, they can 

extract dynamic features, which is very important given the non-stationary and non-linear 

nature of the features [70], [71].  
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Furthermore, time-frequency based methods are highly beneficial when analyzing EEG 

signals, as they are extremely dynamic. Spatial domain methods and frequency domain 

methods can be blended to extract more distinct features leading to increased classification 

accuracy. For better feature extraction, the selection of the most efficient electrode positions, 

is very important. This can be achieved by setting weights using spatial domain methods [67], 

[72]. Commonly, high-dimensional features are extracted from the EEG signal. Because of 

this, statistical transformation methods like PCA and ICA are used for feature selection and 

dimensionality reduction. However, these methods are computationally expensive and can 

reduce classification accuracy [67], [73].  

To address the problem of high dimensionality, Evolutionary Algorithm (EA) 

optimization techniques for feature selection from large feature sets are used [74]. Using filter 

bank approaches, such as the Common Spatial Pattern (CSP), has had a major impact on 

feature treatment in EEG data [75] and is considered to be one of the most powerful feature 

extraction techniques widely used in BCI [76]. This method uses a spatial filter that changes 

the brain signals in a single space where the variation of a feature set is maximized, while 

lower variation is observed in the rest of the feature set. The CSP approach may not 

accomplish adequate performance because of the optimal frequency band for each individual. 

Therefore, selecting an optimized filter band can improve performance. However, selecting 

the optimal sub-band through pure CSP may take much time [77]. Also, the CSP algorithm 

has many different variants that are characterized by enhanced performance in BCI systems 

such as the Adaptive Composite Common Spatial Pattern (ACCSP) and the Self Adaptive 

Common Spatial Pattern (SACSP) algorithms [78].  

Feature extraction methods that are based on Neural Networks (NN) utilize a framework 

that combines all three phases of feature extraction, selection, and classification in a single 

pipeline. Despite the long training phase in NN, new invisible data can be analyzed as soon as 

the network parameters are defined [79]. This results in more effective computations, which in 

turn extract better features leading to higher classification accuracy.  
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Finally, it is worth noting that although many researchers skip the feature selection phase, 

systems using the selection phase seem to achieve greater accuracy [35]. 

2.4.3 Classification 

2.4.3.1 Conventional Machine Learning 

The k-Nearest Neighbors (k-NN) algorithm [195] is a well-known non-parametric 

classification method. In k-NN, the input data corresponding to the different classes create 

unique groups in the feature space. Adjacent groups are classified together and are defined as 

neighbors. A distance metric is then used as a measure of similarity of feature vector test 

among the features of all the classes [79]. The main factors governing the k-NN algorithm are 

the set of neighbors and the type of distance measurements. k-NN algorithms are not so 

widespread in the community of BCI because they are very sensitive to the dimensionality of 

the feature vector [80]. However, when used in low-dimensional feature vectors systems, k-

NN can be of great value. Notably, k-NN generates strong outcomes when blended with 

effective feature selection or feature reduction algorithms.  

The Linear Discriminant Analysis (LDA) [98] is another approach that relies on finding 

the linear patterns of feature vectors that express the corresponding features of the signal. The 

LDA algorithm separates the classes representing different objects by using hyperplanes. The 

isolating hyperplane is achieved by searching for the projection that maximizes the distance 

among the means of the classes and minimizes the interclass variance [81]. The LDA has very 

low computational requirements and is therefore commonly used. Indeed, it has been applied 

successfully in many BCI systems that rely on MI, P300, and either multiclass or 

asynchronous BCI. Nevertheless, while providing good results because of its immunity to 

non-static issues, due to its extremely linear nature, it downgrades performance in cases of too 

much non-linear data [82].  

Finally, another approach that can be used is the Support-Vector Machine (SVM) [97]. 

The SVM classification algorithm is a machine learning classification algorithm based on 

statistical learning theory. The SVM improves generalization, minimizes experience risk and 
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confidence range, solving the problems of overlearning, model selection, dimensionality 

reduction and nonlinearity in algorithm of pattern recognition under small sample conditions. 

The algorithm estimates the optimal classification plane that maximizes the classification 

interval between the two classes [83].  

The SVM is a classifier that creates a set of hyperplanes for separating the feature vectors 

in several classes. SVM picks the hyperplanes that maximize the margins, that is, the distance 

among the hyperplanes and the nearest training samples [84]. In general, the SVM has been 

widely accepted by the researchers as one of the simplest algorithms used in the area of BCI. 

It also proves to be robust with high-dimensional datasets, which means even with high-

dimensional feature vectors, a large set of training data is not necessary for a high outcome 

[85]. Notably, there is no tradeoff with regards to execution speed in real-time BCI 

integrations. In conclusion, conventional machine learning classification algorithms offer 

unique advantages and considerations in the field of BCI systems and the selection of an 

appropriate classification algorithm in BCI design hinges upon the specific requirements of 

the application. 

2.4.3.2 Deep Learning 

Deep learning methodologies are increasingly popular in BCI due to their ability to 

process and analyze complicated patterns in brain signals. In particular, deep learning greatly 

simplifies the processing of EEG signals as the multiple layers in the network represent and 

solve a smaller problem, helping the decision-making phase to solve the wider problem by 

using pre-processing techniques, feature representations, etc. [73]. In addition, there seems to 

be great success in representing complex patterns with the development of deep learning. 

Deep learning algorithms learn hierarchical representations of input data with non-linear 

transformations techniques [67], [73]. In deep learning, the stacked layers insert a linear 

transformation to the network and then trigger it through the activation function. The variables 

of the stacked layers are learned by default with the help of an objective function. Different 
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deep learning architectures have been used, including Convolutional Neural Networks (CNN) 

[2], [176], [177], Recurrent Neural Networks (RNN) [2], and more.  

As their name implies, CNN operate using a linear function called convolution. CNN are 

widely used for image, video, and EEG analysis. The CNN contain an input layer, where 

learning data are fed, several hidden layers that process and analyze the input data to create a 

trained model, and an output layer that predicts the answer to a problem. In the process of 

network learning, the higher-level features are simplified to lower-level features [67], [86]. 

The convolution is completed by convolving the signals with multiple 2D filters in order to 

extract useful complementary features. The connecting weights are changed during the 

training process to reduce the classification error [87]. Excessive increase in network levels 

dramatically increases the ability of the neural network to generalize, resulting in overfitting 

and recognition only in the data it has been trained with. Nevertheless, there are multiple 

techniques for tackling the problem of overfitting. An effective technique is to use a pooling 

layer that works as a down-sampling strategy that applies various types of pooling such as 

max, sum, and average. Pooling layers and convolution layers can decrease the complexity 

and the feature maps sizes [67].  

RNNs include embedded memory cells that store previous network states for later use. 

The output of these networks results from both the current input and the previous output, and 

that is why they are referred to as recurrent. By nature, this type of networks is suitable for 

solving time series related problems such as EEG signal analyses. The memory cells included 

in the network contain input, output, and forget ports, to determine the output of the cell. The 

most widely used types of RNNs are the Long Short-Term Networks (LSTM) [2], [68], the 

Gated Recurrent Units (GRU) [2], and the peephole connection LSTM. By their very nature, 

these networks have the ability to remember and process complex previous values over a long 

period of time by subdividing the trials into multiple parts and by extracting temporal-related 

features as opposed to CNN that process individual trial items to extract spatial features [67].  
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Finally, the Restricted Boltzmann Machine (RBM) [2],[73] is sometimes used for feature 

classification. It is a multiplicative unsupervised learning model that contains an input layer, a 

hidden layer, and two-way connections among the two layers. Each node of the input layer is 

connected to all the other nodes in the hidden layer. The input data are composed of latent 

features that are used to reconstruct the data from the input in a backward procedure to create 

new data points in the hidden layer and vice versa [67], [88]. A Deep Belief Network (DBN) 

[2], [193] is the total of various layers of RBM. During the learning procedure, the 1st layer in 

the DBN is the visible and the 2nd layer is the hidden layer. Then, the 2nd layer becomes the 

visible layer and the 3rd layer the hidden one. The procedure continues in the same pattern 

until all layers in the network are learned [67]. 

In conclusion, deep learning techniques, including CNN, RNN, and RBM, offer powerful 

models for processing and analyzing complex patterns in EEG signals. These methodologies 

provide efficient means of extracting hierarchical representations and temporal dependencies 

from brain signals, facilitating advancements in BCI research and applications. By leveraging 

deep learning architectures, researchers can unlock new insights into brain function and 

develop innovative solutions for neurorehabilitation, assistive technologies, and cognitive 

enhancement. 
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Chapter 3 

 

BCI Applications 

3.1 Methodology 

The review was conducted in 5 phases based on Bargas-Avila and Hornbaek (2011) and 

the Cochrane methodology [89]-[91]. 

PHASE 1: DETAILED PUBLICATIONS EVALUATION 

We searched 9 electronic databases, covering a balanced range of disciplines, such as 

computer science, computer engineering, neuroscience, medical research, and 

multidisciplinary sources. The databases included in the review were as follows: 1. ACM 

Digital Library (ACM), 2. Google Scholar, 3. IEEE Xplore (IEEE), 4. MEDLINE, 5. 

PubMed, 6. Sage, 7. ScienceDirect (SD), 8. Scopus, 9. Web of Science. 

Search terms: We applied three queries to each database since we aimed to study the 

“BCI-VR Gaming technology with Cognitive tasks” fields: 

A. BCI-VR Gaming 

B. BCI AND Cognitive tasks 

C. BCI-VR Gaming AND Cognitive tasks 

Search procedure: The search term was used to retrieve the publication's title, abstract 

and/or keywords. 

Search results: The search results and analysis are summarized in Fig. 9. 

PHASE 2: PUBLICATIONS RETRIEVED FOR DETAILED EVALUATION 

First exclusion: We removed 368 wrong timeframe entries because they included the 

wrong year. As a result, 1512 articles remain. 

Second exclusion: Duplicate studies in the databases (e.g., various terms producing 

similar result into the same database) and among databases (e.g., different databases 
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producing similar result) were excluded. We excluded 284 duplicate studies. This narrowed 

down our findings to 1228 different articles. 

Third exclusion: We limited the publications to the documents written in English only. 

We excluded articles that we did not have access to and articles that were not official articles 

but derived instead to speeches, posters, magazines and in general grey literature without 

official review. Therefore, we removed 651 articles. The 577 articles that remained include 

journal articles, conference papers, and book chapters. 

PHASE 3: PUBLICATIONS INCLUDED IN THE ANALYSIS  

Final exclusion: Since the purpose of this review is to investigate the fields of BCI-VR 

Gaming and cognitive tasks for Attention, Memory, and Visuospatial skills, we removed 

publications that used different approaches. We also excluded all studies that used invasive or 

semi-invasive techniques as well as studies in which BCI was not based on EEG. We also 

excluded studies that did not use MI, P300, or SSVEP. Finally, we excluded studies that did 

not mention the methodology or the algorithms they used for pre-processing, feature 

extraction, classification, and performance, or for which the findings were not clear. Based on 

these criteria, we removed 513 publications. As a result, we concluded with 32 significant 

articles (22 studies of BCI-VR Gaming, 8 studies of BCI with Cognitive tasks, and 2 studies 

that involved both BCI-VR Gaming and cognitive tasks), as presented in Fig. 9. Finally, all 

articles were grouped to be analyzed. 

PHASE 4: DATA GATHERING 

In this phase, we extracted all the important information from all the publications to 

analyze them. We extracted data from all the studies: the BCI paradigm, VR action scene, 

number of participants, feature extraction algorithm, classification algorithm, EEG electrodes 

used, and key findings. 

PHASE 5: DATA ANALYSIS 

We used thematic analysis to classify the selected articles based on the characteristics. 

The characteristics we used are the BCI paradigms, the BCI pre-processing strategies, feature 
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extraction algorithms, classification algorithms, the BCI-VR challenges, and the BCI-VR 

gaming future directions. 

Fig. 9. Summary of search results and analysis for the identification and selection of related 

studies. 

3.2 BCI-VR Gaming 

Research on BCI-VR Gaming systems has attracted significant interest for both healthy 

people and people with motor impairments. VR is a computer technology that uses computer 

graphics to simulate real environments. Instead of viewing a screen, users are immersed in 

realistic 3D virtual environments and can interact with the objects as if they were real [92]. 

This can result in diminished training time and increased efficiency. Also, VR technology 

makes the training interesting and engaging for the user. Applied in rehabilitation medicine, 

VR has had documented success, when used for stroke patients with hemiplegia after 

Mari
os

 H
ad

jia
ros

 



 

 

 

 

 

 

37 

rehabilitation training [93], Parkinson’s Disease rehabilitation [94], upper-limb prosthetics 

[95], and wheelchair control [96].  

The most widely used methods by researchers for BCI-VR Gaming are MI, P300, and 

SSVEP. TABLE 4 summarizes the most significant BCI-VR games from March 2011 to 

March 2021.  

In one of the studies we reviewed, Xu et al. [97] developed a simulation of a robotic arm 

in a VR game designed to compare the performance of low-cost devices (OpenBCI) to 

medical grade BCIs (Neuroscan). The virtual robotic arm was operated using the MI 

technique and the findings showed that low cost BCIs can produce really good outcomes. The 

best result of classification accuracy of the robotic arm control was 76.3% with the low-cost 

device and 79% with the medical quality device [97].  

In another study, Vourvopoulos et al. [98] developed the Neu-Row, a novel BCI system 

that provides multimodal vibrotactile feedback in the VR experience with the use of head-

mounted display (HMD) to achieve more distinct activations in the motor cortex areas. The 

NeuRow system is a holistic BCI approach combining MI, immersive VR environments, and 

sensory stimulation. During the experimental training, the virtual hands were controlled using 

only the MI-BCI paradigm in the system. Healthy users were asked to perform a rowing 

motion with virtual hands using MI. To enhance realism, vibration and tactile feedback were 

provided. Results showed that the average left-right hand movement accuracy was 70.7%.  

In a follow-up study, Vourvopoulos et al. in 2019 [99] used NeuRow with a 60-year-old 

patient with left hemiparesis caused by a stroke in the right temporal lobe 10 months before. 

The patient imagined moving his left and right hands to paddle a boat in a virtual environment 

across 10 sessions carried out over a period of 3 weeks. Electrophysiological data showed 

increased brain activation, similar to that of healthy individuals. Results showed an 

improvement in motor function as a result of VR feedback and MI training. This result was 

also documented in imaging data collected. Overall, the findings of this study extend previous 

research by showing neuroplastic changes in specific targeted areas of the brain and the 
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effectiveness of BCIs using MI for motor rehabilitation. They also suggest that the systematic 

training with similar systems that control applications through imagined movement can 

improve the physical motor ability of individual patients with motor impairments.  

Skola et al. [187] investigated how the avatar embodiment in VR influences training for 

the operation of MI-BCI. This study examined the relationship between BCI performance and 

subjective levels of embodiment. Online performance from the BCI experiments on the sense 

of ownership and sense of agency towards the virtual avatar was studied. Using gamification, 

further increased the performance in the training session. Embodiment in VR mediated by 

synchrony between mental commands and visual stimulation in VR arose under different 

conditions than embodiment based on visuo-motor synchrony. Consistency between the 

perceived sense of ownership and agency played a more important role than the ability to 

issue MI-BCI commands correctly.  The mean accuracy was 70.8%. 

Vourvopoulos et al. [188] investigated the role of embodied feedback and how it can help 

elderly adults increase their BCI performance during MI-BCI training in VR. The elderly 

population was selected to age-match with the typical stroke age-range demographic, 

accounting for age-related confounds. Participants received MI-BCI training in two 

conditions, abstract and embodied feedback. Results showed differences between the two 

conditions in terms of Event-Related Desynchronization (ERD), lateralization of ERD, and 

classifier performance in terms of arm discriminability. The mean accuracy with the abstract 

and embodied feedback was 52.5% and 65% respectively. 

Vagaja et al. [189] aimed to examine whether the virtual sense of embodiment (SoE) 

when induced, as priming of avatar embodiment, and assessed before MI training, could 

enhance MI-induced EEG patterns. They divided 26 healthy participants into two groups: the 

embodied group, which experienced SoE with an avatar before undergoing VR-based MI 

training, and the non-embodied group, which underwent the same MI training without a prior 

embodiment phase, serving as a control. Although the embodiment phase effectively induced 

SoE in the embodied group, both groups exhibited similar MI-induced ERD patterns and BCI 
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classification accuracy. This suggests that the induction of SoE prior to MI training may not 

significantly influence the training outcomes. The mean accuracy of the embodied group and 

the non-embodied group was 77.4% and 75.2% respectively 

In another study, Xu et al. [190] proposed a narrow filter bank CSP (NFBCSP) algorithm, 

which automatically determined the optimal narrow band for MI by band search tree. The 

optimal narrow band was combined with the CSP algorithm to extract the dynamic features in 

the EEG signals. After extracting the features, a Deep Convolutional Neural Network 

(DCNN) was used for the fusion of band features and classification of multi-class motor 

imagery. They verified their method using two different motor imagery datasets, the BCI-VR 

dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four 

classes of motor imagery in an offline analysis. The experimental results showed that the 

proposed method achieved an average classification accuracy of 86.43% for the two-class MI 

task, and 76.87% for the four-class MI task. 

Lakshminarayanan et al. [191] integrated a framework that combined VR-based action 

observation and kinesthetic motor imagery (KMI), achieving an accuracy of 61.9%. 

To explore if P300-BCI VR headsets can achieve similar classification accuracy as 2D 

monitors, Käthner et al. [100] conducted an experiment in which 18 participants used three 

different display methods to perform a typical task with a BCI speller. The first display was a 

5 X 5 matrix turning the BCI speller into a typical wide screen. The second was an identical 5 

X 5 display that was however viewed in immersive VR. The third display was the same as the 

second one with the exception that only a single letter at a time appeared in the 5 X 5 BCI 

speller. Results revealed similar spelling accuracy across the three display conditions (96%, 

96%, and 94%, respectively), suggesting that VR headsets can accomplish similar accuracy as 

2D monitors and that fast P300-BCI communication can be achieved in VR experiences.  

In another study, Zeng et al. [101] developed an interface between the brain and a lower 

robotic limb using the SSVEP paradigm in a virtual environment to help people with ankle 
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movement problems to perform robotic-based rehabilitation tasks. The lowest limb control 

accuracy was 80% and the highest 100%, documenting the effectiveness of this approach.  

In an earlier study, Zhang et al. [102] presented a BCI-based lower-limb rehabilitation 

training system that merged BCI, VR, and robotics. In the system, a robot and an avatar 

performed similar movements at the same time while the user could perform various 

commands such as rotation to the left and to the right, forward movement, etc. Results showed 

an 85.6% classification accuracy for three participants. 

In conclusion, BCI-VR gaming systems offer promising avenues for both healthy 

individuals and those with motor impairments, leveraging immersive virtual environments to 

enhance engagement and efficiency in rehabilitation. 
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TABLE 4 
SUMMARY OF EEG-BASED BCI-VR GAMING STUDIES 

Author BCI 

paradigm 

VR action task No. of 

subj. 

Feature 

extraction 

Classification 

algorithm  

Channels Accuracy  

J. Xu et al. (2020) 

[97] 

MI Simulation of robotic  

virtual arm 

2 FBCSP SVM  2 channels: (C3, C4) 

“mu” and “beta” waves 

76.2% 

Vourvopoulos et 
al. (2016) [98] 

MI Virtual rowing with hand 
movements 

13 CSP LDA 8 channels: (FC5, FC6, C1, C2, C3, 
C4, CP5, CP6) 

70.7% 

Vourvopoulos et 

al. (2019) [99] 

MI Virtual rowing with hand 

movements 

1 CSP LDA 8 channels: (FC5, FC6, C1, C2, C3, 

C4, CP5, CP6) 

60% 

A. Kreilinger et 

al. (2016) [103] 

ΜΙ Car game 10 DP LDA 32 channels: 

Important Used: (C3, Cz, C4) 

70% 

Achanccaray et 
al. (2017) [104] 

MI Virtual hand control 8 CSP,  
Log trans. 

Adaptive 
neurofuzzy 

inference 

system 

16-channels (AF3, AF4, FC3, FCz, 
FC4, C3, Cz, C4, T7, T8, CP3, CPz, 

CP4, Pz, PO3, PO4) 

 
References: (FZ, A1) 

89% 

Lupu et al. (2018) 

[105]  

MI Limb movement control 3 CSP LDA 12-channels: (FC1, FC2, FC5, FC6, 

C3, C4, C5, C6, CP1, CP2, CP5, 

CP6) 

85% 

Vourvopoulos et 
al. (2015) [106] 

MI Virtual left and right hand 
control 

9 CSP LDA 8 channels: (FC3, FC4, C3, C4, C5, 
C6, CP3, CP4) 

  

65.6% 

Munoz et 
al.(2014) [109] 

MI Virtual left and right hand 
control 

8 CSP LDA, SVM  8 channels: (F3, F4, FC5, FC6, AF3, 
AF4, F7 andF8) 

96.7% 

Badia et al. 

(2013) [110] 

MI Controlling a virtual arm 9 Bipolar filter 

(FC3-FC4 

and  
CP3-CP4) 

2 dimensional 

linear classifier 

9 channels: F3, C3, P3, T3 ,F4, C4, 

P4, T4, Cz 

  
Ground: FPz  

Reference: A2  

85% 

Zheng et al. 

(2013) [111] 

MI Virtual navigation 1 CSP LDA 5 channels around the motor cortex 67.5% 

Skola et al. 
(2022) [187] 

MI Virtual left and right hand 
control  

30 CSP LDA N/A 70.8% 

Vourvopoulos et 

al. (2022) [188] 

MI Virtual rowing with hand 

movements 

5 CSP LDA 32 EEG channels 65% 

Vagaja et al. 
(2024) [189] 

MI Virtual left and right hand 
control 

26 CSP LDA 32 EEG channels 75.2% 

Xu et al. (2022) 
[190] 

 Virtual hand control  12 FBCSP, CSP Deep CNN 22 channels: FZ, FC3, FC1, FCz, 
FC2, FC4, C1, C2, C3, Cz C4, C5, 

C6, CP3, CP1, CPz, CP2, CP4, P1, 
Pz, P2, POz 

76.9% 

Lakshminarayana

n et al. (2023) 

[191] 

MI drinking from a cup, 

extension of the hand, and 

grabbing a cup 

15 N/A MLP 20 channels: FP1, FPz, FP2, F7, F3, 

Fz, F4, F8, T3, C3, Cz, C4, T4, T5, 

P3, Pz, P4, T6, O1, O2 

62% 

Amaral et al. 
(2017) [107] 

P300 Virtual objects flickering 17 Max-SNR 
 

Naive Bayesian 8 channels: (C3, Cz, C4, CPz, P3, Pz, 
P4, POz) 

80% 

Tidoni et al. 

(2017) [108] 

P300 Virtual character control 21 N/A LDA 8 channels: (Fz, Cz, P3, Pz, P4, PO7, 

Oz, PO8) 

89% 

Käthner et 

al.(2015) [100] 

P300 Spelling in virtual scene 18 N/A Stepwise linear 

discriminant 

analysis 

(SWLDA) 

8 channels: (Fz, Cz, P3, P4, PO7, 

POz, PO8, Oz)   

80.5% 

Tarnanas et al. 

(2012) [112] 

P300 Virtual navigation in a 

museum 

50 N/A kNN N/A  87% 

Zeng et al. (2017) 

[101]  

SSVEP Whack a Mole 5 FFT N/A 41 channels 90% 

Zhang et al. 

(2015) [102]  

SSVEP Virtual character control 3 N/A Canonical 

correlation 

analysis (CCA) 

3 channels: (Oz, O1, O2)  

 

81.4% 

Legeny (2011) 
[113] 

SSVEP Virtual navigation 1 N/A  LDA 3 channels: (CPz, POz, O1, Oz, O2, 
and Iz) 

91% 
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3.3 BCI for Attention, Memory, and Visuospatial skills 

BCI neurofeedback training involves stimulating brain areas with repetitive reward and 

feedback training, e.g., when the user tries to move a robotic arm through mental imaging 

strategies [114], [115], [116]. TABLE 5 presents EEG-based BCI studies targeting the 

cognitive mechanisms of perception, visuospatial attention, and visuospatial memory.  

In [117], a BCI neurofeedback game based on MI paradigm was developed to help 

children with ADHD. The band power results showed that the children improved their 

attention while playing the game. At the same time, they had fun and were generally in a 

relaxed state. This is aligned with the result of other studies showing that new approaches that 

use either 2D or 3D games in combination with BCIs, can implement effective interventions 

for patients with ADHD, mainly by employing mindfulness training. Techniques such as 

mindfulness training facilitate brain maturation, improve visual processing, and enhance 

cognitive skills, by increasing the ability to retain the attention of the user for extensive period 

of time [86], [87], [118].  

In an example study, Qian et al. (2018) [86] showed that a BCI intervention can 

significantly reduce inattention after 8 weeks of training. Notably, inattention was reduced 

more in an ADHD intervention group than a control group that included participants without 

attention difficulties [86]. Of course, additional research may be needed to assess the effects 

on ADHD patients who have been treated with BCI for extended periods of time, and to 

develop adaptive systems that can profile and use the users’ characteristics to adapt the system 

[118]. 

Promsorn et al., in 2017 [119] measured EEG activity while participants performed a 

spatial ability task. Electrical activity was processed offline and the following frequency 

bands were analysed: delta (0 - 3 Hz), theta (4 - 7 Hz), alpha (8 - 12 Hz), beta (13 - 30 Hz) and 

gamma (31 - 47 Hz). The alpha, beta and gamma frequency bands of the participants 

increased significantly during the execution of the spatial task compared to baseline. BCI 

studies on video game applications have shown that BCI can offer many advantages when 
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combined with cognitive and gamification techniques. The influence of neurofeedback in 

classic video games based on BCI is very promising for enhancing the level of attention and 

cognitive function in both healthy and motor-impaired users [87]. EEG video game control is 

better suited for BCI because of the portability, affordability, safety, high temporal resolution, 

and non-invasive access it provides to users with motor impairments, in contrast to other BCI 

applications such as environmental control, cursor control, robotic arm control, wheelchair 

control, etc. [120]. BCI neurofeedback gaming has been shown to improve the level of 

attention and memory, of the users [117].  

Mental training and concentration seem to also benefit visuospatial memory and 

perception in many professional areas, like medical surgery, sports, and music. Thus, BCI 

applications may help people improve their cognitive skills by using EEG patterns and 

visualization methods to restore movement and communication [121], [122], [123]. Hammer 

et al., (2012) [131] conducted an experiment where participants underwent a psychological 

test-battery before performing an MI task. The psychological test-battery included 

performance tests, personality tests, clinical tests, and the vividness of movement imagery 

questionnaire. In the BCI-MI session, participants were instructed to imagine the movement 

of the left hand, the right hand, and the right foot. Results showed that system recognition 

accuracy across the three imaginary movements was 74%. In another study carried out by 

Promsorn et al. [119] participants performed a spatial test with four main common types of 

spatial abilities which are spatial perception, spatial visualization, mental folding, and mental 

rotation. Participants demonstrated significantly mean improvement in speed, memory, 

attention, flexibility, and problem-solving skills when executing an EEG-based spatial task 

[119].  

It should be noted that the operation of BCI devices is based on procedural learning, i.e., 

learning that mediates the automatic execution of tasks, e.g., learning to ride a bike. An 

efficient training technique and distinct EEG patterns provide the user with feedback 

indicating whether she is achieving high BCI control performance and therefore continue with 
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the same strategy or whether she should make more effort to improve performance. This 

feedback reinforces the procedural training process. There also seems to be a growing number 

of BCI studies showing movement control generated by the EEG signals using evolutionary 

algorithms adapted to the user's case to handle BCI systems without moving limbs or muscles 

[88]. A BCI system that uses a variety of brain mechanisms, like alphabetic ordering, 

arithmetic, letter synthesis, etc., can train people how to generate the appropriate EEG patterns 

to rehabilitate their kinetic operations. For example, in one study, participants improved their 

level of attention by observing signal characteristics generated by more realistic images 

compared to less realistic images [117].  

Despite its promise for improving cognitive skills (a topic we discuss further in the next 

section), BCI has to overcome a number of challenges. The biggest one is to maintain the 

user's interest and motivation to engage with the task while using tasks that are difficult 

enough for each user in order to increase the adaptability of the brain [124]. In addition, some 

issues still need to be explored, e.g., how EEG-based neurofeedback that improves perception, 

visuospatial attention and visuospatial memory in healthy individuals could be used with 

patients, and how such patients can benefit more from the training [116]. 

3.4 BCI-VR Gaming and cognitive tasks 

The application of BCI in games and in education not only leads to fun ways of 

interaction, improving thus involvement and entertainment, but it can also lead to the 

improvement of cognitive skills [126]. The P300 BCI is one of the most accurate BCIs 

available and is associated with a higher level of gaming-specific attention processes. It can 

also be an index of mental workload and cognitive training [126].  

Bulat et al. [126] investigated whether cognitive functions of healthy adults can be 

improved by playing a P300-BCI-VR based game. A total of 45 healthy participants (25 

females and 20 males) between 18 and 37 years old were recruited for the study. Participants 

were randomly assigned to three groups: the experimental group (P300+VR), the active 

control group (VR game), and the passive control group (VR movie). The experiment 

Mari
os

 H
ad

jia
ros

 



 

 

 

 

 

 

45 

consisted of 5 sessions across a period of 2 weeks. At the beginning, all participants 

performed a series of cognitive tests, which were then repeated after the 1st, 3rd, and 5th 

training sessions. Significant changes in cognitive performance were shown after 5 

experimental sessions for the experimental group in comparison to both other groups in tasks 

associated with inhibition and visuospatial attention. Specifically, it was found that the 

experimental group achieved shorter reaction times than the active control group and the 

passive control group in a flanker task that requires responding to a stimulus while ignoring 

distractors and in a visual search task.  

In another study, Dey et al. [127] created an adaptive visual search task in VR based on 

real-time interpretation of the user’s EEG. The system adapted to the cognitive load difficulty 

in real-time based on the effort made by the user. To enable the visual search task adaption 

participants performed two blocks of n-back trials, first a block with 1-back trials and then a 

block of 2-back trials, while task load was measured. The n-back task shows a sequence of 

numbers and asks participants to recall the number that is n positions back from the current 

number. For example, a 2-back task asked people to recall the 2nd number before the current 

number was shown. The use of 1-back and 2-back tasks allowed the researchers to obtain an 

index of the participants’ brain activity in relation to an easy and a difficult working memory 

task respectively, and thereby to calibrate the task difficulty parameters. This was 

accomplished by taking the mean alpha power induced by these two n-back blocks to 

calculate a baseline for each user and to use this baseline value to adapt the visual search to 

their task load. When the task load was above the mean level of the two calibration tasks, the 

researchers decreased a level and increased it when task load was lower. This process ensured 

that the adaptation was customized to each individual’s cognitive state. This way, the 

researchers succeeded in creating a system that adjusted the level of difficulty according to the 

cognitive load [127]. Overall, the results from the studies reviewed indicate that BCI gaming 

combined with VR can be used for improving cognitive functioning in healthy participants, 

producing effects that are over and above those achieved by cognitive training. 
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TABLE 5 
SUMMARY OF EEG BASED BCI WITH COGNITIVE TASKS STUDIES 

Author BCI 

paradigm 

Action No. of 

subj. 

Feature 

Extraction 

Classification 

algorithm  

Channels Key Findings / Accuracy  

BCI-based Attention and Spatial studies 

Yang et al., 

(2018) [117] 

MI Brain controlled 

game 

10 CSP LDA 27 channels: (F7, FT7, T3, 

TP7, T5, F3, FC3, C3, CP3, 

P3, O1, FZ, FCz, Cz, CPz, Pz, 
O2, P4, CP4, C4, FC4, F4, F8, 

FT8, T4, TP8, T6) 

The analysis of band-power 

outcomes showed that participants' 

attention level increased 
throughout the experiment 

performing MI tasks. 

Promsorn et 

al., (2017) 
[119] 

MI Spatial ability test 9 N/A  FFT 1 channel: (FP1) Participants have shown 

significantly mean improvement in 
speed, memory, attention, 

flexibility and problem solving, 

respectively. 

Jeunet et al., 
(2015) [125] 

MI Left-hand MI,  
Mental Rotation, 

Mental Subtraction 

18 CSP sLDA 30 channels: (F3, Fz, F4, FT7, 
FC5, FC3, FCz, FC4, FC6, 

FT8, C5, C3, C1, Cz, C2, C4, 

C6, CP3, CPz, CP4, P5, P3, 

P1, Pz, P2, P4, P6, PO7, PO8)  

Users' profiles can influence their 
MI-BCI control levels. 

BCI-based Attention and Memory studies 

Qian et al., 
(2018) [86] 

N/A BCI-based 
attention training 

game 

66 N/A N/A 2 channels: (FP1, FP2) The BCI sessions improving the 
behavioral skills of ADHD 

children. 

Lim et al., 

(2012) [129] 

N/A BCI-based 

attention training 

game. 
 

20 N/A N/A N/A Inattentive  and hyperactive-

impulsive symptoms improvement 

in ADHD children. 

Nan et al., 

(2012) [130] 

N/A Short term 

memory tests 

32 total 

 
16 

NFT 

 
16 

cont. 

group 

N/A N/A 1 channel: Cz Significantly higher forward and 

backward digit span in the 
neurofeedback training (NFT) 

group than the control group. 

BCI-based Spatial and Visuospatial studies 

Hammer et 

al., (2012) 

[131] 

MI Performance, 

personality and 

clinical tests and 

the vividness of 
movement imagery 

questionnaire. 

83 CSP LDA 128 channels cap Predicted accuracy between the 

classes: 74%  

(left hand, right hand, right foot). 

Hammer et 
al., (2014) 

[132] 

MI Performance, 
personality and 

clinical tests. 

33 N/A N/A 16 channels: (FP1, FP2, F3, 
Fz, F4, T7, C3, Cz, C4, T8, 

CP3, CP4, P3, Pz, P4, Oz) 

Predicted accuracy between the 
classes: 79% 

(right hand, left hand, both feet). 

BCI-based VR Gaming with Cognitive tasks studies 

Bulat et al. 
(2020) [126] 

P300 Controlling 
machines that 

shoot monsters. 

45 CSP LDA 16 channels: 
(Fp1, C3, C1, Cz, C2, C4, 

CP3, CP1, CP2, CP4, P1, Pz, 

P2, O1, Oz, O2)  
References: (A1, A2) 

The mean accuracy across all the 
subjects and all the sessions was 

69.3% 

Dey et al. 

(2019) [127] 

- Visual search 

scene. 

14 TFR 

 

Monte Carlo 

cluster 

6 channels: (Oz, O1, O2, Pz, 

P3, P4) 
Alpha wave recording 

System that adjusts the degree of 

difficulty according to the 
performance of the cognitive load 

of the brain. 

 

3.5 Challenges and Directions 

Although BCI has been widely used in the scientific community, it still faces many 

challenges in attracting commercial interest and being adopted by the general population (see 
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TABLE 6). These challenges must be addressed by the community of BCI in order to achieve 

more improvements. 

3.5.1 Technological Challenges 

Operating an MI-BCI system usually requires a large number of training trials, thus 

making the training phase required to create a realistic model time consuming. However, 

when users are taught properly, MI strategies often deliver remarkable results. Thus, efforts 

should be concentrated on reducing calibration time and promoting effective training. Clever 

gamification techniques that will keep the user's interest high during the training sessions may 

help to this purpose. Also, because EEG signals are non-linear, non-stationary, and artifact-

prone, the accuracy of multiclass BCI, especially with MI is very low, around 65-70% [75]. 

Therefore, one may think about using different BCI paradigms like the P300 or the SSVEP.  

The P300 has higher average Information Transfer Rates (ITR) and does not require a 

special training process. However, depending on the severity of the impairment, the P300 may 

be affected. A large number of studies have found that even people with Amyotrophic Lateral 

Sclerosis and Locked-In-Syndrome are capable of handling BCI-based P300 for long periods 

of time. But generally, healthy individuals exhibit higher ITR [128]. Notably, with both 

healthy users and patients, the experimental procedure requires the assistance of trained 

personnel. In addition, the need for elaborate instructions in a BCI system using the P300 

paradigm lengthens the time of the intervention, which results to reduced total performance. 

Pairing general models with real-time training can be a good approach to decrease the 

calibration period and boost P300 accuracy along with user entertainment [133]. 

Unfortunately, the P300 paradigm requires flashing external stimuli, making it difficult to use 

in realistic scenarios that mimic everyday life. Furthermore, even after relatively short periods 

of use, users experience eye strain while people with vision impairments exhibit very low 

performance.  

The SSVEP approach requires almost no training or calibration. Hence, although this BCI 

paradigm is faster than P300-based systems, due to the inherent flickering, it has the same 
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drawbacks as the P300. That is, it is difficult to use in everyday life, causes eye strain, as well 

as low performance in people with vision problems. Moreover, some participants produce 

very poor SSVEP responses.  

BCI games are slower and less accurate than conventional interfaces. Therefore, it seems 

some important issues must be resolved before the general population accepts BCI games. A 

popular challenge is the use of the most appropriate BCI paradigm depending on the case of 

the application. Among MI, P300, and SSVEP paradigms, the P300 seems to be preferred by 

the research community for BCI games. Although the P300 modality is often employed in 

puzzle games, it needs to be upgraded so that it can be used extensively for other game types 

too, such as action games with locomotion. The accuracy of real-time BCI systems with 

moving users seems to be low. When the users are walking, the P300 peak is generated, but 

the overall system performance decreases dramatically [134], [135]. Therefore, in games 

where there is movement of a character, controlling the games with MI might be preferable.  

In addition, one of the biggest challenges to be faced is BCI illiteracy. In the MI-BCI 

research, it is widely recognized that there are substantial individual differences in the 

capability to perform a given MI task. Specifically, individual differences refer to the natural 

variation in personality traits, cognitive abilities, motivation, and other innate characteristics 

among individuals [196]. These individual differences can influence MI-BCI performance and 

level of success in performing MI tasks. For instance, individuals who have low levels of 

motivation or who have difficulty maintaining attention may struggle with MI-BCI training 

and may not achieve the desired performance [39], [196]. In the context of MI-BCI research, 

these aforementioned individuals are considered to have BCI illiteracy, which refers to the 

lack of knowledge and proficiency in using a BCI system within a standard training period, 

and around 15–30% of BCI users fail to produce the desired EEG patterns to control a BCI 

device accurately [196]. 

Also, physiological factors such as the heart rate can significantly affect the EEG features. 

In real world, a plethora of sensory stimuli in the environment (e.g., noise, distractions, 
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communication wave flows, etc.), as well as movement, can affect the quality of brain waves. 

Therefore, when designing a BCI system, developers should take into account the specific 

environment in which the proposed application will be used. Therefore, at the system design 

phase, it is important to investigate in depth the nature of the users, basic system criteria, and 

environmental aspects. 

3.5.2 Psychological and Neurological Challenges 

Different brain-related factors such as brain anatomy and neuron activity that are 

associated with mental processes, brain physiology and emotion, also known as 

neurophysiological factors, have a critical role in BCI performance and cause important 

variability between individuals [136]. Also, further psychological aspects like memory, 

attention, cognitive load, tiredness, as well as key individual characteristics such as gender, 

age and lifestyle, affect the moment-to-moment dynamics of the brain [135], [137]. People 

with lower empathy for example, are less emotionally involved in a P300 paradigm and may 

generate better EEG patterns than individuals with higher empathic engagement [138], [139]. 

In addition, physiological parameters of the resting state (e.g., heart rate and resting state 

frequency characteristics) affect the performance of BCIs [140]. Furthermore, complexity and 

variety in the brain, create a highly unstable neural connection over time and variability 

among participants [141]. An effective BCI system must be robust to such possible 

physiological oscillations to allow more generalized use [136], [135].  

Sensorimotor-based BCI is based on spectral power density and spectral entropy, resulting 

from resting state EEG recordings that also affect BCI accuracy [142]. Psychological 

prognostic factors, like motivation, concentration, and attention, are also related with 

somatosensory motor based BCI performance [131]. About 15-30% of people cannot generate 

strong brain signals to control a BCI [39], [143].  

Examination of neurophysiological factors could decrease BCI illiteracy. The existence of 

BCI illiteracy is not based solely on the user's ability to generate signals. Sometimes technical 

constraints may prevent the estimation of key features for a successful BCI operation. For 
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example, scalp EEG measurements may not present distinct patterns in the EEG signals due to 

the cortex folding, the distance from the scalp to the cortex or bad electrode contacts [135], 

[144]. Thus, additional case studies are needed for monitoring neurophysiological variants 

that could contribute to BCI improvement.  

Finally, targeted BCI design is required to tackle specific brain lesions such as those 

found in stroke, where for each specific case, residual brain function for rehabilitative 

interventions should also be taken into account [145], [146]. 

3.5.3 Gaming Challenges 

Gaming integration into BCI systems is a promising way to increase engagement and 

promote training with BCI systems. However, various issues still need to be resolved. 

Although BCI-gaming strongly motivates people to get engaged, nevertheless users have very 

poor performance and speed compared to classic systems. Also, when the users walk or move 

their limbs, the overall performance drops dramatically [96], [147]. Since we are interested in 

games that will motivate and excite users to get more involved, the need for a case-specific 

BCI game design based on the personal interests of each user becomes imperative.  

Cognitive games have been shown to improve certain cognitive functions, not only in 

healthy individuals but also in many other cases, especially those related to attention, 

memory, executive control, and generally visuospatial skills [136], [135]. However, it is a 

great challenge to turn a cognitive task into a serious game while keeping its underlying 

function intact. VR seems to be a promising approach for cognitive gaming as it allows 

adapting laboratory tasks as fun and entertaining games. 
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TABLE 6 
SUMMARY OF TECHNOLOGICAL, GAMING, PSYCHOPHYSIOLOGICAL AND NEUROLOGICAL CHALLENGES 

Technological Challenges 

Motor Imagery P300 SSVEP 

Calibration period reduction. The performance over time may be 

affected. 

Flickering external stimuli making it 

difficult to use in realistic scenarios. 

Effective training strategies. Healthy individuals attribute higher ITR. After relatively short periods, individual 

feel pain and fatigue in the eyes. 

Clever gamification techniques. Flashing external stimuli making it 

difficult to use in realistic scenarios. 

People who have vision problems have 

very low performance results. 

Keep the user's interest during training 

sessions. 

After relatively short periods, individual 

feel pain and fatigue in the eyes. 

 

Very low accuracy especially in 

multiclass BCI. 

People who have vision problems have 

very low performance results. 

 

Gaming Challenges 

The accuracy and speed of the games is very low compared to conventional interfaces. 

When the users are walking or moving, the overall performance drops. 

Α case-specific BCI design. 

Motivation to engage taking advantage of the gaming. 

To keep the interest while performing the cognitive tasks. 

Take advantage of virtual reality. 

It's difficult to convert a cognitive task into a serious game and keep the nature of the task. 

Psychophysiological and Neurological Challenges 

Psychological factors such as Attention and Memory Load influence instantaneous brain dynamics. 

Fatigue and competing cognitive processes cause EEG signal noise. 

Elimination of BCI illiteracy. 

Factors such as different levels of cortisol in the body and heart rate variability can significantly affect the features of EEG 

signals. 

Various sensory stimuli exist in the environment outside the laboratory, which can affect the quality of brain waves. 

BCI performance may be affected by the features of the frequency domain in resting state and variability of the heart rate. 

The Psychological predictors of attention and motivation, are associated with the performane of BCI sensorimotor rhythm. 
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Chapter 4 

 

Experimental Methodology 

4.1 Material and preparatory setup 

Forty-four volunteers (20 Men, 24 Women) participated in the study. All participants 

were between 20 and 43 years of age, with an average of 24.68 years of age, had a normal or 

corrected-to-normal vision, and reported no health-related issues. Three additional volunteers 

were excluded after they appeared to have not properly followed the instructions of the 

experiment. Participants were recruited from introductory undergraduate courses in Computer 

Science and Psychology as well as from the research and management departments of the 

CYENS – Centre of Excellence. 

All participants carried out the BCI-VR Goalkeeper task, twenty-two participants carried 

out the computerised Flanker task and the Spatial Cueing task and another twenty-two 

participants carried out the computerised Mental Body Rotation (MBRT) and Spatial 

Orientation (SOT) tasks. In the BCI-VR Goalkeeper task, the participant controlled a virtual 

goalkeeper and repelled the shoots by mental thinking. In the Flanker task, the participants 

indicated the direction of the target object by pressing the left or the right keyboard arrow. In 

the Spatial Cueing task, the participants indicated whether a target object was present or 

absent from a previously presented memory array of 4 objects by pressing the left or the right 

keyboard arrow accordingly. In the MBRT task, the participants answered whether the target 

(i.e., a multicolored circle) was on the left-hand or the right-hand of the avatar by pressing the 

left or the right keyboard arrow. Finally, in the SOT task, the participants indicated the angle 

between themselves, an object facing them, and a target object in the surroundings, by 

pressing the left mouse button. The accuracy of the BCI-VR Goalkeeper task, the reaction 

time (RT) and accuracy of the Flanker task, the RT and d' of the Spatial cueing task, the 
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accuracy and the RT of the MBRT, and the Angular Error of the SOT were used in four 

separate mixed-design ANOVAs. In all ANOVAs, the “Group” variable (Low Achievers and 

High Achievers in the BCI-VR Goalkeeper task) was used as the between-subject variable. In 

the Flanker task, “congruency” (congruent vs incongruent) was the within-subject variable. In 

the Spatial Cueing task, “cue type” (pre-cue, retro-cue, neutral) was the within-subject 

variable. In the MBRT, “angle” was the within-subject variable. Finally, in the SOT, “angle” 

was the within-subject variable. We expected the scores from the four tasks to correlate with 

performance in the BCI-VR Goalkeeper task. All other variables were included as exploratory 

variables in the analyses. Before completing the tasks, participants read a short description of 

the study. Then, the experimenter explained the procedure to be followed in the experiment 

and clarified any ambiguities. Before each task, participants performed practice trials to 

familiarize themselves with the tasks and the setup. Participants were tested individually in a 

quiet lab at the CYENS-Centre of Excellence premises. Upon arrival at the laboratory, each 

participant read and signed an informative consent form. 

4.2 BCI-VR Goalkeeper Gaming Task 

4.2.1 Task Description 

In MI the user tries to imagine limb movement (i.e. left hand vs. right hand) in order to 

give a command in an external device or application. This is made possible by detecting EEG 

activity in the somatosensory motor cortex and generating discriminant patterns of the brain 

signals. The Goalkeeper task was chosen because in this study we wanted to investigate 

attention and spatial perception abilities, that by definition professional goalkeepers must 

possess in order to be able to successfully respond to their duties. 

The main objective of this task was to initially train a classifier that will predict the 

movement of the left hand or right hand through the EEG activity produced by the participant 

(calibration phase), and then repel as many shoots as possible by controlling the virtual 

goalkeeper through Motor Imagery (real-time scenario). The task consisted of two scenarios, 
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firstly, the calibration scenario for the training of the algorithms and secondly, the real-time 

trial scenario. 

The user was immersed in the virtual stadium behind the virtual goalkeeper avatar. The 

calibration phase, illustrated in Fig. 10, consisted of the following steps: (a) each trial began 

with the flag onset (3000 msec), signaling the start of a new trial, (b) followed by a random 

hand highlight that remained visible for 1250 msec, signaling that when the highlight 

disappeared, the participant should start imagining the corresponding hand movement, 

without any physical movement or muscle activation; (c) as soon as the hand highlight 

disappeared, and only while the flag remained visible, the participant imagined the hand 

movement for 3750 msec; (d) the trial ended with the flag offset and the participant rested for 

1500-3500msec until the next trial began. The following process was repeated 40 times (20 

trials for the left hand and 20 trials for the right hand) and the EEG signals were recorded and 

saved for classification training. 

The real-time phase, illustrated in Fig. 11, consisted of the following steps: (a) each trial 

began with the flag onset (3000 msec), signaling the start of a new trial, (b) followed by a 

random hand highlight that remained visible for 1250 msec, signaling that when the highlight 

disappeared, the participant should start imagining the corresponding hand movement, 

without any physical movement or muscle activation; (c) as soon as the hand highlight 

disappeared, an avatar of a player across the field shot the ball in the indicated direction (same 

direction as the goalkeeper’s avatar hand highlight from the previous step b) and the 

participant started imagining the corresponding hand movement, without any physical 

movement or muscle activation. In case the participant produced the appropriate EEG pattern 

from the hand imagination, then the VR goalkeeper avatar was controlled accurately (through 

the prediction of the BCI-VR goalkeeper framework) and repelled the ball. If the participant 

failed to produce the appropriate EEG pattern from the hand imagination, then the VR 

goalkeeper avatar failed to repel the ball (3750 msec); d) the trial ended with the flag offset 

and the participant rested for 1500-3500msec until the next trial began. The following process 
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was repeated 40 times (20 trials for the left hand and 20 trials for the right hand) and the EEG 

signals were recorded and saved for further analysis. 

This framework could be applied to any BCI application with two classes. First, 

calibration is necessary to create a model that distinguishes between the two imagined 

movement classes (left hand and right hand). Once this calibration is complete, these 

movements can then be translated into any desired commands, such as 'turn left' or 'turn right 

of a robotic limb or a wheelchair. The user's effort to issue commands would once again 

involve imagining left or right-hand movements and the mapping of commands can be 

customized to suit specific needs. 

4.2.2 Experimental Setup 

For the BCI-VR Goalkeeper task, participants wore an OpenBCI EEG cap of 16 wet 

electrodes (C3, C4, Cz, O1, O2, P3, P4, Pz, T3, T4, F3, F4, F7, F8, T5, and T6 according to 

the 10-20 system) and an electro gel was placed on each electrode. They also wore a Valve 

Index HMD that immersed them in a virtual football stadium. No HMD controllers were used 

in this task. The OpenBCI Cyton + Daisy Biosensing Board 16-channel device was used in 

participant sessions. The aforementioned board has a sampling rate = 125 Hz and the sample 

count per sent block is 32 blocks.  

In the calibration phase, 40 trials were performed, of which in 20 trials, the participant 

imagined moving their left hand, and in 20 trials the participant imagined moving their right 

hand, in a randomized order. Depending on the displayed cue (hand highlight), the user 

imagined movement of the corresponding hand without any physical movement or muscle 

activation to train a classifier with the electrical brain activity (see Fig. 10). In the real-time 

phase, 40 trials were similarly performed, of which 20 trials for the imagination of left-hand 

movement and 20 trials for the imagination of right-hand movement in random order. The 

difference in this phase, was the extra feedback given by the virtual goalkeeper, who moved 

the hand that the participant imagined moving, to repel as many shoots as possible (see Fig. 

11). In both phases, calibration and real-time, the participants performed 10 practice trials 
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before the start of the experimental session. At the end of the BCI-VR Goalkeeper session, all 

the equipment was carefully removed to continue with the next tasks. 

 
Fig. 10. Schematic illustration of the calibration of BCI-VR Goalkeeper task: a. The flag onset 

signaled the start of a new trial; b. the highlighted hand onset alerted (state of alertness) the 

participant that when prompted (by the hand highlight offset) they will need to start imagining 

the corresponding hand movement (here left-hand imagery); c. with the highlighted hand 

offset, the participant began imagining the corresponding hand movement; d. the trial ended 

with the flag onset. 

 

Fig. 11. Schematic illustration of the real-time BCI-VR Goalkeeper task: a. The flag onset 

signaled the start of a new trial; b. the highlighted hand onset alerted (state of alertness) the 

participant that when prompted (by the hand highlight offset) they will need to start imagining 

the corresponding hand movement (here left-hand imagery); c. with the highlighted hand 

offset, the participant began imagining the corresponding hand movement and received real-

time feedback from the goalkeeper; d. the trial ended with the flag offset. 
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4.3 Flanker Gaming Task 

4.3.1 Task Description 

In cognitive psychology, the Eriksen flanker task [148] is designed to tap into cognitive 

processes related to executive functions, such as inhibitory/executive control and the ability to 

manage conflicting information. In this task, the participants were required to indicate as fast 

as possible the direction of a central target, by pressing the left or right arrow key on the 

keyboard, while ignoring “congruent” (i.e., same facing direction) or “incongruent” (i.e., 

opposite facing direction) flanker stimuli. The interference caused by the conflicting 

information from the “incongruent” flankers measures the individual's inability to inhibit 

irrelevant information and maintain focus on the target stimulus.   

Typically, participants exhibit faster RTs and higher accuracy on congruent trials, 

compared to incongruent trials, because there is no conflicting information in this condition. 

On the other hand, in incongruent trials, participants often show slower RTs and decreased 

accuracy due to the interference caused by the conflicting flanker information. The difference 

in performance between congruent and incongruent trials is known as the "flanker effect." A 

larger flanker effect, reflected in increased RTs and reduced accuracy on incongruent trials, 

suggests greater difficulty in inhibiting irrelevant information and maintaining focus on the 

target [148], [149]. This effect is caused by the fact that the flanker stimuli, though task-

irrelevant, often receive a considerable amount of processing even up to the level of the 

primary motor cortex [150], resulting in a processing conflict on incongruent trials [149].  

To arouse the interest and increase the motivation of the participants, instead of arrows 

that are typically used in computerized flanker tasks, we used different animals (e.g., cats, 

ducks, penguins, etc.) to make the task more enjoyable and gamified (see Fig. 12.). 

4.3.2 Experimental setup 

For the Flanker task, a computer and keyboard were used, without the use of an HMD or 

EEG cap. In this task (Fig. 12.), participants saw an array of 5 items on the screen and were 

asked to indicate the direction of the central target item by pressing the left and right arrows 
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on the keyboard for left-facing and right-facing targets, respectively. The 5 items were colored 

drawings of identical animals in each trial. Each participant performed 100 trials, 50 of which 

were congruent (i.e., the direction of the target matched the direction of the other 4 items) and 

50 were incongruent (i.e., the target faced the opposite direction to the other 4 items). Before 

the experimental task, participants were shown the 4 different types of animals (cats, ducks, 

penguins, sheep) and were given instructions on how to respond.  

 
Fig. 12. Schematic illustration of the Flanker task: a. In the congruent trials, the target 

direction was the same as with all the other items; b. In the incongruent trials, the target 

direction was the opposite to all the other items. 

 

4.4 Spatial Cueing Gaming Task 

4.4.1 Task Description 

This task measures the effects of visuospatial selective attention in service of visual 

working memory (VWM) and it was programmed after Shimi et al., 2014a [151] and Shimi et 

al., 2014b [152]. In this task, participants were required to memorize a memory array of 4 

items (e.g., cats, ducks, penguins, etc.), and subsequently indicate whether a probe item was 

one of the 4 previously presented memory items, by pressing the mouse buttons. Before and 

after the memory array, attentional cues were presented to examine the effects of attention in 

encoding and/or maintaining information in VWM. Specifically, there were three different 

types of trials: in pre-cue trials, we used arrows as informative spatial cues that were presented 

before the memory array and guided participants’ attention to one of the four to-be encoded 

items in VWM (measuring encoding). In retro-cue trials, we used arrows as informative 
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spatial cues that were presented after the memory array and guided participants’ attention to 

one of the already encoded items in VWM (measuring maintenance). In neutral trials, we used 

filled squares as uninformative spatial cues that were presented before and after the memory 

array and required participants to encode and maintain in VWM all 4 items until the probe 

test. Fig. 13. illustrates the sequence of the types of trials along with the stimulus timings. 

Typically, this task yields a pre-cue and a retro-cue benefit, in which participants 

demonstrate higher accuracy and faster RTs in pre-cue compared to neutral trials, and higher 

accuracy and faster RTs in retro-cue compared to neutral trials, respectively [151], [152], 

[153], [154]. 

4.4.2 Experimental Setup 

For the Spatial Cueing task, a computer and mouse were used, without the use of an HMD 

or EEG cap. In this task (Fig. 13), participants saw an array of 4 items, followed by a probe 

item and were asked to answer if the probe was present or absent in the memory array. Pre-

cues, retro-cues, and/or neutral cues were presented before and after the memory array, 

depending on the type of trial. Each participant performed 144 trials, 96 of which were present 

and 48 were absent. Of the 96 present trials, 24 trials were pre-cue, 24 trials were retro-cue 

and 48 trials were neutral. Of the 48 absent trials, 12 trials were pre-cue, 12 trials were retro-

cue and 24 trials were neutral. Before the experimental task, participants were shown the 5 

different animals (targets), were informed about the 3 different types of trials (pre-cue, retro-

cue, neutral) and received instructions on how to respond. 

 

Mari
os

 H
ad

jia
ros

 



 

 

 

 

 

 

60 

 
Fig. 13. Schematic illustration of the Spatial cueing task: The 3 different types of trials (pre-

cue, retro-cue, neutral), and the duration of each successive symbol that has been used are 

presented. 

 

4.5 Mental Body Rotation Task 

4.5.1 Task Description 

In this task, three types of transformations can be distinguished based on an 

environmental reference frame, an egocentric reference frame, and an object-based reference 

frame. The environmental reference frame is defined relative to a fixed point of the 

environment, locating things relative to axes concerning a fixed space.  In contrast, the 

egocentric reference frame is defined relative to the self. Humans use this egocentric reference 

frame with the axes up-down, front-back, and left-right. The object-based reference frame is 

the third type of spatial reference frame, which is defined relative to external objects. The 

object-based reference frame can be used either for characterizing the relationship between the 

parts of an object independent of the object’s location in the environment or to locate an 

object relative to another object. 

Here, a human male figure was posed in 12 different ways by varying the position of his 

shoulders, elbows, waist, knees, and ankles (see Fig. 14). Human figures were marked on the 

left or right hand by superimposing a multi-colored circle onto the picture. Each human figure 
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spanned approximately 8° of visual angle and was presented on a light grey background. 

Rotated versions of each unique stimulus were created by rotating the original picture in the 

picture plane in 30° increments. Horizontally mirrored versions of each rotated stimulus were 

then created by flipping each image along the vertical axis. The human male figures used in 

this task are from [155]. Each participant performed 296 trials. At the beginning of each trial, 

a fixation cross was presented for 500 ms, and then replaced with a pseudo-randomly selected 

stimulus item. Participants judged whether the left or right hand (relative to the figure’s 

egocentric perspective) of a centrally presented stimulus figure was marked with a circle. 

Participants responded by pressing the left arrow button on the keyboard if the colorful circle 

was on the figure’s left hand, and the right arrow button if the colorful circle was on the 

figure’s right hand. 

4.5.2 Experimental Setup 

For the Mental Body Rotation task (MBRT) [155], a computer and keyboard were used, 

without the use of an HMD or EEG cap. Before the experimental task, participants were 

shown example images (see Fig. 14) and were instructed to press the left arrow on the 

keyboard on the occasions when the colorful circle was present on the left hand of the avatar 

or to press the right arrow on the keyboard on the occasions when the colorful circle was 

present on the right hand of the avatar. The stimuli were taken from [155]. 
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Fig. 14. Examples of stimuli used in the Mental Body Rotation task. Participants are asked to 

identify which side of the figure is marked, from the figure’s point of view. 

 

4.6 Spatial Orientation Task 

4.6.1 Task Description 

In each trial of the SOT, a series of objects was displayed with the following instruction: 

"Imagine you are standing at object A (traffic light) and facing object B (tree). Point to object 

C (barrel)"(see Fig. 15). Therefore, participants had to imagine being located at the first 

object, while facing the second object (the orienting cue) and indicate the direction of the third 

object (the target object), by drawing a line from the center of the circle in the direction 

believed to be correct.  
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4.6.2 Experimental Setup 

For the Spatial Orientation task (SOT) [156], a computer and a mouse were used, without 

the use of an HMD or EEG cap. Participants had 5 minutes to execute 12 different trials as 

described in the description above, and the performance measure was the angular error. 

Before the experimental task, participants were shown example images and were instructed 

how to point the angle (see Fig. 15). The task was taken from [156]. 

 
Fig. 15. A sample item (trial) with the exact correct answer in the Spatial Orientation Test. 
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Chapter 5 

 

BCI-VR Data Analysis 

5.1 Pre-Processing: Common Spatial Pattern (CSP) Algorithm 

In the pre-processing phase, the Common Spatial Pattern (CSP) algorithm plays a crucial 

role in our study, particularly in the context of MI tasks for left-hand versus right-hand 

movement imagination in BCI using EEG signals. The CSP algorithm is instrumental in 

optimizing spatial filters to enhance the discriminative power of EEG signals between left-

hand and right-hand motor imagery tasks. By maximizing the variance of the filtered EEG 

signal for one class (e.g., left-hand MI) and minimizing it for another class (e.g., right-hand 

MI), CSP facilitates the extraction of band power features that are highly discriminant 

between the two classes [76], [77]. This feature is particularly beneficial for BCIs relying on 

oscillatory activity, such as MI tasks, where band power features are essential for accurate 

classification [76], [77]. Typically, in our study, EEG signals are filtered within the 8–30 Hz 

band (μ and β rhythms) before undergoing spatial filtering by CSP. The resultant CSP features 

represent the band power of the signal spatially filtered with CSP filters [77]. Three pairs of 

CSP filters are used (6 in total), which correspond to the three largest and three smallest 

eigenvalues (see Fig. 16). The utilization of CSP in our study offers several advantages. 

Firstly, it enables relatively high classification performance for distinguishing between left-

hand and right-hand MI tasks. Additionally, CSP is a flexible algorithm suitable for various 

BCI paradigms utilizing MI tasks [76], [77]. Moreover, it is computationally efficient and 

straightforward to implement, making it a popular choice for designing BCIs based on 

oscillatory activity. Overall, the integration of the CSP algorithm in our pre-processing 

pipeline enhances the robustness and efficacy of our BCI system, enabling accurate and 

efficient control of the virtual goalkeeper through MI tasks. 
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Fig. 16. EEG signals spatially filtered with the common spatial patterns (CSPs) algorithm. 

CSP1, CSP2, and CSP3 maximize the variance of the signals in the “imagined movement of 

the left hand” class (in red) while minimizing those of the “imagined movement of the right 

hand” class (in green). CSP4, CSP5, and CSP6 do the opposite, they maximize the variance of 

the “imagined movement of the right hand” class, while minimizing the variance of the 

“imagined movement of the left hand” class. 

 

5.2 Machine Learning Algorithms 

5.2.1 Decision Tree (DT) 

Decision Tree (DT) is a widely used algorithm in machine learning, particularly suitable 

for classification and regression tasks [160]. It operates by partitioning the dataset into subsets 

based on the values of input features, creating a tree-like structure where each internal node 

represents a feature, each branch represents a decision based on that feature, and each leaf 

node represents a class label or a numerical value [160]. Decision trees are constructed 

through a recursive process where, at each node, the algorithm selects the feature that best 

splits the data into homogenous subsets, typically aiming to maximize information gain or 

minimize impurity [160]. This process continues until a stopping criterion is met, such as 
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reaching a maximum tree depth, having a minimum number of samples in a node, or when no 

further improvement in purity can be achieved. 

In the context of EEG Motor Imagery, where the objective is to classify left versus right 

hand movements, Decision Trees offer an intuitive and interpretable approach. By examining 

the decision path from the root to a leaf node, it's possible to understand the reasoning behind 

the classification, which can be beneficial for gaining insights into the underlying EEG 

patterns associated with different motor imagery tasks. However, Decision Trees are prone to 

overfitting, especially when the dataset is complex or noisy. Therefore, techniques like 

pruning or using ensemble methods, such as Random Forests, can be employed to enhance the 

generalization ability of Decision Trees in EEG Motor Imagery classification tasks. Despite 

this limitation, Decision Trees remains a valuable tool for initial exploration and 

understanding of the data, providing a foundation for more sophisticated machine learning 

approaches in BCI applications. 

 

5.2.2 Random Forest (RF) 

Random Forest (RF) is a widely recognized and powerful machine learning technique. It 

belongs to the supervised learning category and can be applied to both Classification and 

Regression problems in the field of machine learning. The strength of Random Forest lies in 

its utilization of ensemble learning, which involves combining multiple classifiers to tackle 

complex problems and enhance the model's performance [161]. Random Forest functions by 

employing several decision trees, each operating on different subsets of the provided dataset 

[161]. By averaging the predictions of these individual trees, the algorithm improves the 

overall predictive accuracy [161]. Unlike relying solely on a single decision tree, Random 

Forest considers the majority votes from each tree to determine the final output (see Fig. 17). 

This approach results in higher accuracy and mitigates the risk of overfitting, particularly 

advantageous for dynamic data such as EEG signals. Therefore, Random Forest proves to be 

an ideal algorithm for BCI applications. Considering the context of EEG Motor Imagery, 

where the objective is to accurately classify left versus right hand movements, Random Forest 
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emerges as an effective solution. The algorithm's ability to generate multiple decision trees 

using random subsets of training data and features enables it to maximize the difference 

between the classes during the splitting process. The construction of decision trees continues 

recursively until specific stopping criteria are met, such as reaching a maximum tree depth or 

a minimum number of samples in a leaf node. 

In the specific context of EEG Motor Imagery, where the discrimination of left versus 

right hand movements is of interest, Random Forest proves to be a powerful tool. By 

leveraging ensemble learning and the construction of multiple decision trees, this algorithm 

demonstrates its capability to effectively process dynamic EEG data, providing accurate 

classification results. 

 

Fig. 17. The Random Forest classifier divides the dataset into subsets that are used to train the 

corresponding decision trees. Each decision tree produces its specific output. For example, the 

prediction for trees 1, 3, and 4 is left hand, whereas the prediction of the 2nd tree is right hand. 

The majority of the decision trees voted for left hand, which is the classifier final prediction. 

5.2.3 Linear Discriminant Analysis (LDA) 

LDA is a Bayesian approach that assumes that the positive (and negative) datapoints 

follow normal distributions. Also relies on finding the linear patterns of feature vectors that 
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express the corresponding features of the signal and separates the classes representing 

different objects, by using hyperplanes [81]. The isolating hyperplane is achieved by 

searching for the projection that maximizes the distance among the means of the classes and 

minimizes the interclass variance (see Fig. 18) [81]. 

 

Fig. 18. On the left side of the image, the data depicting left-hand versus right-hand 

classification before LDA is presented. On the right side of the image, the data illustrating left 

versus right hand classification after applying LDA. Here, LDA maximizes the distance 

between the means of the classes while minimizing the interclass variance. In the center is the 

dividing line between the 2 classes. 

5.2.4 Support Vector Machines (SVM) 

Support Vector Machine (SVM) is one of the most popular Supervised Learning 

algorithms, which is used for Classification as well as for Regression problems [83]. 

However, primarily, it is used for Classification problems in Machine Learning. The goal of 

the SVM algorithm is to create the best line or decision boundary that can segregate n-

dimensional space into classes so that we can easily put the new data points in the correct 

class in the future [83]. This best decision boundary is called a hyperplane. SVM chooses the 

extreme points/vectors that help in creating the hyperplane. These extreme cases are called 

support vectors, and hence the algorithm is termed as Support Vector Machine (see Fig. 19) 

SVM stands out due to its ability to effectively handle complex classification problems by 

constructing optimal decision boundaries. It accomplishes this by transforming the original 
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input data into a higher-dimensional feature space, where a hyperplane is created to separate 

different classes [83]. This hyperplane aims to maximize the margin or the distance between 

the closest data points of different classes, allowing for better generalization and improved 

predictive accuracy [83]. In SVM, the selected hyperplane is defined by support vectors, 

which are a subset of training data points that lie closest to the decision boundary. These 

support vectors play a crucial role in determining the optimal separation between classes and 

classifying new, unseen data points [83]. SVM also employs a kernel function that enables 

nonlinear transformations of the input data, allowing for the effective handling of complex 

and nonlinear relationships between features. Moreover, SVM is known for its ability to 

prevent overfitting by finding the best decision boundary that generalizes well to unseen data. 

By optimizing the margin and effectively separating classes, SVM minimizes the risk of 

misclassifying new instances. 

In the EEG Motor Imagery area, where the objective is to accurately classify left versus 

right hand movements, SVM can be a valuable tool. By utilizing the distinctive features 

extracted from EEG signals and creating an optimal decision boundary, SVM demonstrates its 

capability to discriminate between imagined left versus right hand movement classes with 

high accuracy. The algorithm's ability to handle nonlinear relationships and prevent 

overfitting makes it well-suited for analyzing dynamic EEG data. Overall, SVM is a versatile 

algorithm that excels in complex classification tasks. In the context of EEG Motor Imagery, 

SVM offers a robust solution for accurately discriminating between left versus right hand 

movements by leveraging optimal decision boundaries and support vectors derived from EEG 

signals. Mari
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Fig. 19. Maximum-margin hyperplane and margins for an SVM trained with samples from 

two classes (left versus right hand movement). Samples on the margin are called the support 

vectors that are data points closest to the hyperplane. These points define the separating line 

better by calculating margins that are more relevant to the construction of the classifier. 

5.2.5 Multilayer Perceptron (MLP) 

A multilayer perceptron (MLP) is a fully connected class of feedforward artificial neural 

network. An MLP consists of at least three layers of nodes: an input layer, a hidden layer, and 

an output layer [162]. Except for the input nodes, each node is a neuron that uses a nonlinear 

activation function. MLP utilizes a supervised learning technique called backpropagation for 

training. Its multiple layers and non-linear activation distinguish MLP from a linear 

perceptron and can distinguish data that is not linearly separable [162]. 

5.2.6 Black Hole (BH) 

The Black Hole algorithm is a meta-heuristic algorithm based on Newton's laws of gravity 

[163]. This algorithm can find an optimal solution to a search problem in an n dimensional 

space. The main idea is to create several solutions (known as stars) that approach the optimal 

solution through the laws of motion. During the iterations of the algorithm, various solutions 

approach the solution that gives the best result (known as a black hole). This algorithm has 
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been used in various problems [163] and has even been used for feature selection in EEG 

problems [164]. The Black Hole algorithm is based on three main concepts: the stars, which 

are possible solutions to the problem and are uniformly distributed throughout the search 

space, the Black Hole, which is the star with the best fitness value (a possible solution) and 

the motion of the stars, which is the equation that expresses the updating of the solutions as 

the algorithm is repeated. The basic idea is that the space near a black hole is a space where 

the best solutions can be found. So, once we have a black hole, it creates a gravitational field 

that pulls the various stars towards the nearest space. As the stars move, the solutions are 

resolved in the search space, but a star can fall into the black hole. This star then disappears, 

and a new star is created at a random location within the search space. This prevents the 

algorithm from falling into a local minimum or local maximum and the full search space can 

be explored [165]. The Black Hole Algorithm is randomly generated by generating an initial 

population of n stars, each representing a possible solution to the problem within the search 

space. Once the stars are created, the fitness value of each star is calculated and the star with 

the best fitness value is the one assigned as the black hole. After the fitness is calculated and 

the black hole is assigned, we update the star positions. A star that falls into the event horizon 

of the black hole disappears and a new star is randomly created. The algorithm is repeated 

until an optimal solution is found or a certain number of iterations are completed [165]. 

5.3 BCI-VR Goalkeeper Data Analysis Framework using Motor Imagery 

Fig. 20 summarizes the feature extraction and classification steps followed. The protocol 

used for the BCI-VR Goalkeeper task was designed based on the Graz-BCI protocol [157]. 

The session for each participant lasted 430592 secs. The sampling frequency of the OpenBCI 

EEG cap used in this study was 125 Hz with 32 sample count per block. 

A. EEG acquisition: A total of 1280 samples per trial of raw EEG data for each channel 

were recorded (10.24 secs * 125Hz = 1280 samples) which consist of 40 epochs (1280 

samples /32 blocks = 40 epochs), (see Fig. 20).  
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The raw EEG data were recorded throughout the training session of the BCI-VR 

Goalkeeper task from 16 scalp locations (C3, C4, Cz, O1, O2, P3, P4, Pz, T3, T4, F3, F4, F7, 

F8, T5, T6, Ref: CPz, Gnd: AFz). The participant had to perform mental imagery of the 

corresponding hand, based on the presented stimuli. The calibration phase was configured to 

acquire data in 20 trials (epochs) per class (left-hand vs right-hand) in a randomized order. 

B. Pre-processing: Raw EEG data were filtered offline with a 5-order band pass 

Butterworth filter between 8-30 Hz, to extract only the alpha and beta frequency bands which 

are reactive in MI [98]. More specifically, the alpha frequency band is usually more reactive 

[98]. The purpose was to compare the resting state (trial onset) segment with the motor action 

segment for alpha and beta frequency bands. The reason for the comparison arises from the 

knowledge we have of the literature [157] of ERD/ERS where the power of alpha and beta 

frequency bands falls during MI imagination in relation to the resting state. Subsequently, 

stimulation-based epoching was performed for left-hand or right-hand stimulus. The EEG 

signals were split into 4 sec segments during movement imagination. So, the epoch duration 

was 4 sec with an epoch offset of 0.5 sec. This gives us 500 new samples for each trial (4sec * 

125Hz = 500), 10000 samples/channel for the left-hand trials, and 10000 samples/channel for 

the right-hand trials (500 samples * 20 trials).  

Then, we used the Common Spatial Pattern (CSP) filter to reduce the EEG signal 

dimensions from 16 channels to 6 CSPs, where each output channel is a linear combination of 

the input channels (see Fig. 20). The CSP algorithm optimizes spatial filters such that the 

variance of the filtered EEG signal is maximum for one class and minimal for another class. 

Since the variance of a filtered signal is equal to the power of the signal, this means that CSP 

optimizes the spatial filters to obtain the band power features that are optimally discriminant 

because their value is maximally different between the two classes. CSP is commonly used for 

BCI applications. Three pairs of CSP filters were used (6 in total), which correspond to the 

three largest and three smallest eigenvalues (see Fig. 21).  
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Fig. 22 illustrates the data before applying the CSP filter whereas Fig. 23 illustrates the 

data after applying the CSP filter. 

C. Feature Extraction: Re-epoching of the left- and the right-hand signals was 

performed (see Fig. 20).  The signal was split into sliding segments of 1 second (125 samples) 

every 0.056 sec (0.056 sec * 53 segments + 1st segment = 4 sec → 54 segments per trial). 

Following that, the logarithm of average power was computed per segment. The input to the 

classifier was 54 feature vectors per trial (20 trials per class) for each of the six dimensions. 

This procedure is based on the Graz protocol [158]. 

D. Classification: The input feature vectors that include the band power for the left hand 

or the right hand were used as input to the classifier (see Fig. 20). 

Six different classification algorithms from the scikit-learn library [159] were used to 

predict the imagination of left-hand versus right-hand movement based on EEG. The 

classifiers employed were the Linear Discriminant Analysis (LDA), Black Hole (BH), 

Multilayer Perceptron (MLP), Support Vector Machine (SVM), Decision Tree (DT), and 

Random Forest (RF). 

For parameter tuning, we conducted an extensive search using the RandomizedSearchCV 

function from the scikit-learn library [159]. This approach allowed us to efficiently explore a 

wide range of hyperparameter combinations and identify the settings that yielded optimal 

performance for each classifier. For LDA [159], the optimized parameter settings were 

determined as follows: a learning decay of 0.9, solver set to "eigen," and the number of topics 

set to 10. The BH [159] classifier, inspired by gravitational force, utilized the following 

optimized parameters: a maximum of 10 layers, 15 iterations, and 8 stars. In the case of MLP 

[159], the optimized parameter values were determined as follows: an activation function of 

ReLU, an alpha value of 0.0001, a single hidden layer with 20 neurons, a constant learning 

rate, and the Adam solver. For SVM [159], the optimized parameters consisted of a 

regularization parameter (C) of 10, a gamma value of 0.0001, and a radial basis function 

(RBF) kernel. The DT classifier [159] employed the following optimized parameters: entropy 
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as the criterion, a maximum depth of 7, a minimum of 20 samples per leaf, and a minimum of 

8 samples per split. Lastly, the RF classifier [159] utilized the following optimized 

parameters: bootstrap set to True, a maximum depth of 80, a maximum of 6 features 

considered for splitting at each node, a minimum of 5 samples per leaf, a minimum of 12 

samples per split, and a total of 100 estimators. 

E. Device Command and BCI Application: To give correct feedback, the VR 

Goalkeeper system expects a negative value for one class and a positive value for the other 

class and according to this value the VR Goalkeeper avatar moves the corresponding hand 

(see Fig. 20). 

 

Mari
os

 H
ad

jia
ros

 



 

 

 

 

 

 

75 

 
Fig. 20. BCI-VR Goalkeeper Data Analysis Framework using Motor Imagery. 
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Fig. 21. The variance of the mean feature vectors of the filtered EEG signal, which is 

maximum for one class and minimum for the other class (Left vs Right MI) as presented in 

the BCI-VR Goalkeeper framework step D.2 in Fig. 20. The mean is denoted by the circle, 

and the confidence interval 95% error bars are depicted by the lines. 
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Fig. 22. The scatter plot of example data points of an EEG segment for left-hand and right-

hand motor imagery before CSP spatial filtering as presented in the BCI-VR Goalkeeper 

framework of step B.2 and B.3 in Fig. 20. 

 

 

 
Fig. 23. The scatter plot of example data points of an EEG segment for left-hand and right-

hand motor imagery after CSP spatial filtering as presented in the BCI-VR Goalkeeper 

framework of step B.4 in Fig. 20.  
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Chapter 6 

 

Experimental Results 

6.1 BCI VR Goalkeeper Results  

In this section, we present the performance metrics results of six different classification 

algorithms (LDA, BH, MLP, SVM, DT, RF) used to detect left-hand versus right-hand 

movement imagery in 44 healthy participants. The models developed were trained offline and 

tested in real time. The Offline Mean Accuracy of the 6 algorithms were LDA (M = 78.5%), 

BH (M = 78.6%), MLP (M = 74.0%), SVM (M = 77.1%), DT (M = 77.2%), and RF (M = 

82.4%) as depicted in TABLE 7 and Fig. 24. The Online Mean Accuracy of the 6 algorithms 

were LDA (M = 68.5%), BH (M = 69.5%), MLP (M = 66.9%), SVM (M = 68.0%), DT (M = 

68.1%), and RF (M = 71.6%), as shown in TABLE 8 and Fig. 25. Notably, the Random Forest 

(RF) algorithm demonstrated higher accuracy both offline and in real-time compared to the 

other algorithms. The mean accuracy for offline RF was 82.4% whereas the mean accuracy 

for real-time RF was 71.6%. 

To analyze the accuracy results, we conducted two repeated-measures ANOVAs 

comparing the performance of the six algorithms in offline and real-time scenarios separately. 

The dependent variables in both ANOVAs were the accuracy of the six algorithms. The 

analyses revealed statistically significant main effects for offline classification accuracy 

(F(5,215) = 17.5, p < .001, n2 = .08) and real-time classification accuracy (F(5,215) = 7.12, p 

= .001, n2 = .02). This indicates a consistent discrimination between left-hand and right-hand 

movement imagination across all algorithms. Notably, the highest-performing participant 

achieved the highest accuracy across all six algorithms, while the lowest-performing 

participant exhibited the lowest accuracy among the same set of algorithms. This uniformity 

suggests that all algorithms effectively differentiated between participants in a similar manner. 
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TABLE 7 
PERFORMANCE METRICS CALCULATED OVER THE OFFLINE SESSION 

Offline 

Algorithms in 

Offline  

Accuracy Sensitivity Specificity Precision - 

Positive 

predictive 

value (PPV) 

Negative 

predictive 

value (NPV) 

 

LDA 78.5 % 78.3 % 78.8% 78.7 % 78.4 % 

BH 78.6 % 78 .4% 78.6 % 78.8 % 78.8 % 

MLP 74.0 % 73.2 % 73.7 % 73.3 % 73.8 % 

SVM 77.1 % 76.1 % 75.9 % 76.2 % 75.3 % 

DT 77.2 % 76.1 % 76.9 % 76.8 % 76.9 % 

RF 82.4 % 82.2 % 82.7 % 83.0 % 82.5 % 

 

 

 

 
Fig. 24. The mean accuracy of the offline BCI-VR Goalkeeper Gaming task is denoted by the 

circle, and the confidence interval 95% error bars are depicted by the lines. The Random 

Forest (RF) algorithm demonstrated a higher mean accuracy of 82.4% across all 44 

participants. 
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TABLE 8 

PERFORMANCE METRICS CALCULATED OVER THE REAL-TIME SESSION 

Real-time 

Algorithms in 

Real-time  

Accuracy Sensitivity Specificity Precision - 

Positive 

predictive 

value (PPV) 

Negative 

predictive 

value (NPV) 

 

LDA 68.5 % 67.8 % 68.8 % 68.9 % 68.2 % 

BH 69.5 % 69 1% 69.1 % 67.8 % 67.9 % 

MLP 66.9 % 66.1 % 65.5 % 65.4 % 65.3 % 

SVM 68.0 % 67.9 % 69.1 % 67.9 % 68.3 % 

DT 68.1 % 68.1 % 67.5 % 67.2 % 66.4 % 

RF 71.6 % 71.3 % 71.9 % 72.1 % 71.8 % 

 

 

 
 

 
Fig. 25. The mean accuracy of the real-time BCI-VR Goalkeeper Gaming task is denoted by 

the circle, and the confidence interval 95% error bars are depicted by the lines. The Random 

Forest (RF) algorithm demonstrated a higher mean accuracy of 71.6% across all 44 

participants. 
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6.2 Flanker Gaming Task Results 

Due to the modification of the Flanker task to make it more gamified, we first examined 

whether our task yielded the expected pattern of results similar to the traditional Flanker task. 

As shown in Fig. 26, there was a statistically significant difference between congruent and 

incongruent accuracy, t(25) = 4.45, p <.001, with participants having higher accuracy in 

congruent than incongruent trials. Also as shown in Fig. 27, there was a statistically 

significant difference between congruent and incongruent Mean RT, t(25) = -6.14, p <.001, 

with participants responding faster in congruent than incongruent trials. These results are 

consistent with previous findings, suggesting that the gamified versions of the task 

successfully replicated the expected performance levels, as reported in the existing literature 

[149], [150]. 

To explore a potential relation between inhibitory/executive control and BCI-VR 

performance, we computed a flanker interference variable for both accuracy and RT in the 

Flanker gaming task. For accuracy, we subtracted the accuracy for incongruent trials from that 

of congruent trials. For RT, we subtracted the RT for congruent trials from the RT for 

incongruent trials. We also computed a group variable on the RF algorithm accuracy by 

performing a median split to the BCI-VR Goalkeeper accuracy data (11 Low Achievers, 11 

High Achievers). We then carried out separate One-Way ANOVAs for flanker interference on 

accuracy and on RT with Group as the independent variable. No significant effects of Group 

were found in either analysis, F(1,19.8) = .10, p = .75 for accuracy and F(1,14) = 1.84, p = .20 

for RT.  However, a significant positive correlation was found between the mean accuracy for 

the congruent trials of the Flanker task and the mean offline classification accuracy in the 

BCI-VR Goalkeeper task, r(22) = .46, p = .03 (see Fig. 28). No significant correlation was 

found between the accuracy for incongruent trials and the offline classification accuracy in the 

BCI-VR Goalkeeper task. The positive correlation between congruent trial accuracy and 

offline classification accuracy suggests a potential relationship between inhibitory/executive 

control and BCI-VR performance. 
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Fig. 26. The mean accuracy for congruent and incongruent trials in the Flanker Gaming task is 

denoted by the circle, and the confidence interval 95% error bars are depicted by the lines. 

 

 
Fig. 27. The mean Reaction Time (RT) for congruent and incongruent trials in the Flanker 

Gaming task is denoted by the circle, and the confidence interval 95% error bars are depicted 

by the lines. 
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Fig. 28. Scatter plot and a significant positive correlation (r(22) = .46, p = .03) between 

accuracy with the congruent trials of the flanker task and BCI-VR Goalkeeper task accuracy, 

across the 22 participants who executed both tasks. Participants demonstrating higher 

accuracy with the congruent trials also exhibited increased accuracy in the BCI-VR 

Goalkeeper task. 

 

6.3 Spatial Cueing Gaming Task Results 

Due to the modification of the Spatial cueing task to make it more gamified, we need to 

demonstrate first that it exhibits the correct patterns with the traditional Spatial cueing task. A 

repeated-measures ANOVA on d' revealed a statistically significant main effect for the cue 

type (neutral, pre-cue, retro-cue) F(2,48) = 38.4, p < .001, n2 = .47. The d' is a sensitive 

discrimination measure that reflects the degree to which participants accurately report the 

presence or absence of the probe in the preceding memory array. The d' was calculated using 

the formula: d' = z (hit rate) − z (false alarm rate).   
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As shown in Fig. 29, participants had higher d' in pre-cue trials than in retro-cue and 

neutral trials, and higher d' in retro-cue trials than in neutral trials indicating attentional cueing 

benefits in service of encoding information into VWM and in service of maintenance in 

VWM. A repeated-measures ANOVA on mean RT revealed a statistically significant main 

effect for the cue type (neutral, pre-cue, retro-cue) F(2,48) = 29.3, p < .001, n2 = .25. The 

analysis of simple main effects revealed that participants exhibited faster RT in pre-cue and 

retro-cue trials compared to neutral trials (see Fig. 30) indicating attentional cueing benefits in 

service of VWM in terms of speed. Additionally, there was no statistically significant 

difference in RT between pre-cue and retro-cue trials. These results are consistent with 

previous findings, suggesting that the gamified versions of the task successfully replicated the 

expected performance levels, as reported in the existing literature involving adult participants 

[151]. By aligning with the established effects, our study further supports the validity and 

effectiveness of the gamified approach.  

To examine whether the RF algorithm accuracy mediated performance in the Spatial 

Cueing task, we first computed benefit scores for pre-cues and retro-cues. For the pre-cue 

benefit score, we subtracted the d' for neutral trials from the d' for pre-cues. Similarly, to 

compute the retro-cue benefit, we subtracted the d' for neutral trials from the d' for retro-cues.  

We then carried out a mixed-design ANOVA with the cue benefit (pre-cue, retro-cue) as the 

within-subject variable and the Group (High Achievers vs Low Achievers in the BCI-VR 

Goalkeeper task) as the between-subject variable. The benefit score was the dependent 

variable. The analysis revealed a statistically significant main effect for cue benefit, with the 

pre-cue benefit being larger than the retro-cue benefit, F(1,20) = 15.58, p < .001, n2 = .01. 

More importantly, a significant interaction between Group and cue benefit was found, F(1,20) 

= 9.09, p = .007, n2 = .07. The interaction was caused by the presence of a larger pre-cue than 

retro-cue benefit for High Achievers, p<.001 (see Fig. 31). No difference was observed in 

Low Achievers (see Fig. 31). 
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Fig. 29. The mean d' for pre-cue, retro-cue, and neutral trials in the spatial cueing task is 

denoted by the circle, and the confidence interval 95% error bars are depicted by the lines. 

 

 

Fig. 30. The mean RT for pre-cue, retro-cue, and neutral trials in the spatial cueing task is 

denoted by the circle, and the confidence interval 95% error bars are depicted by the lines. 
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Fig. 31. The pre-cue benefit is larger than the retro-cue benefit and is denoted by the circle. 

The interaction was caused by the presence of a larger pre-cue than retro-cue benefit for High 

Achievers (11 participants). No difference was observed in Low Achievers (11 participants). 

The confidence interval 95% error bars are depicted by the lines. 

 

6.4 Spatial Orientation Task Results 

A repeated-measures ANOVA on Angular error revealed a statistically significant main 

effect for the angles (25°, 41°, 93°, 143°, 151°, 165°, 249°, 250°, 266°, 268°, 318°, 333°) 

F(11, 220)=3.56, p<.001, n2 = .11. In Fig. 32, it is evident that obtuse angles, occurring in 

both the left and right sectors (angles 93°, 143°, 249°, 250°, 266°), i.e., those situated in the 

2nd and 3rd quadrants, exhibited a noticeably higher angular error compared to acute angles. 

Additionally, for angles nearing 180 degrees, the angular error remained minimal due to their 

alignment along a nearly straight line. Also, the overall angular error was 30.35. This result is 

consistent with previous findings where the overall angular error was 33.73, suggesting that 

the task we used successfully reproduced the expected performance levels as reported in the 

existing literature [156]. 
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To test whether the angular error in the Spatial Orientation Task could be differentiated 

between High Achievers and Low Achievers in the BCI-VR Goalkeeper task, we carried out 

an independent samples t-test. Results revealed no difference, t(20) = 1.36, p = .19. 

 
Fig. 32. Participants' mean angular error per angle is denoted by the circle, and the confidence 

interval 95% error bars are depicted by the lines. 

 

 

 

6.5 Mental Body Rotation Task Results 

A repeated-measures Analysis of Variance (ANOVA) revealed no statistically significant 

main effect in RT for angles F(11, 231) = 1.12, p = .35, n2 = .02 (see Fig. 33). To test whether 

RT in the Mental Body Rotation task could be differentiated between High Achievers and 

Low Achievers in the BCI-VR Goalkeeper task, we carried out an independent samples t-test. 

Results revealed no difference, t(20) = 0.94, p = .36. Upon closer examination, it became 
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evident that the cognitive differences between the two tasks played a more prominent role in 

the lack of correlation. 

 
Fig. 33. Participants' mean RT per angle is denoted by the circle, and the confidence interval 

95% error bars are depicted by the lines. 
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Chapter 7 

 

Discussion 

7.1 BCI VR Goalkeeper Task 

The BCI-VR Goalkeeper gaming framework presented in this study demonstrated 

promising results in terms of detecting left-hand versus right-hand movement imagery using 

brain-computer interface technology combined with VR. The findings shed light on important 

aspects of Motor Imagery BCI-VR algorithms, i.e., performance and the corresponding BCI-

VR cognitive abilities. 

The objective of this study was twofold: firstly, to assess and compare the accuracy of 

Motor Imagery based on Brain-Computer Interface tasks utilizing VR across six distinct 

algorithms, aiming to draw insightful conclusions regarding their performance. Secondly, the 

study aimed to establish the cognitive abilities that significantly influence MI-BCI 

performance in novice users, by exploring inhibitory/executive and attentional control, spatial 

orientation, and mental body rotation. The BCI-VR Goalkeeper task, developed in the context 

of this study, performed best using the RF algorithm among 44 participants, achieving a mean 

accuracy of 82.4% offline and 71.6% in real-time. The results obtained from all six algorithms 

used in the BCI-VR Goalkeeper gaming yielded accuracies that are comparable to those 

reported in the literature [166], [168], [169], [170], [98], [171] (see TABLE 9). These findings 

are consistent with prior research that has demonstrated the effectiveness of RF in various 

BCI applications [172], [173]. 

A previous study by Skola et al. [166] developed a similar BCI-VR system to increase 

engagement, attention, and motivation using gamification and VR. Like our BCI-VR 

Goalkeeper task, users were trying to pull a left lever versus a right lever to destroy asteroids 

using MI. The average classification accuracy of all 19 participants was 72.8%. 
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In another study, Choi et al. [168] investigated the difference between MI-BCI tasks when 

run in an immersive VR headset and a monitor display. From 18 healthy participants 

experimented, the average accuracy in the session with the monitor was 58% and the average 

accuracy in the session with the VR headset was 68%. In both of the aforementioned studies 

that were similar to our BCI-VR Goalkeeper task, the accuracy performance of the BCI-VR 

Goalkeeper was very close or better (see TABLE 9). 

Furthermore, Lupu et al. [169] developed a therapy system for stroke rehabilitation based 

on VR and BCI, and functional electrical stimulators. The system immersed the participant 

into a virtual scenario where a virtual therapist coordinated the exercises aimed at restoring 

brain function. The electrical stimulator helped the participant to perform rehabilitation 

exercises and the BCI system and an EEG device were used to determine if the exercises were 

executed properly. The average accuracy of the three participants in 7 sessions was 85%. In 

that study, three main differences could justify the high accuracy of the system over our BCI-

VR Goalkeeper. Firstly, the sample of three participants was very small and therefore not 

representative at all. In our work, extensive experimentation was done with forty-four 

participants performing the task without any prior knowledge. Also, an electrical stimulator 

helped the participant to perform the exercises, something that could significantly improve the 

performance of the participants compared to others who had no help. Finally, the same 

participants performed 7 sessions which gave them prior knowledge, which clearly could 

increase the performance significantly. 

In another study, H. Ziadeh et al. [170] developed a BCI-VR application using the MI 

paradigm. This study aimed to understand whether the embodiment of a hand depicted in VR 

can enhance performance accuracy. Twenty-two healthy participants participated in a within-

subject study where their accuracy was compared in two different embodiment experiences: 1) 

avatar hand (with the body), or 2) abstract blocks. The accuracy of both conditions was 

similar with the avatar hand accuracy 53% and abstract blocks accuracy 54%. 
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Finally, Vourvopoulos et al. [98] developed a novel BCI-VR system that provided 

auditory, haptic, and visual feedback in the VR experience with the use of head-mounted 

display (HMD), integrated with a BCI MI training task for left-hand and right-hand MI to 

achieve more distinct activations in the motor cortex areas and enhance realism. More 

specifically, they integrated a holistic BCI approach combining MI, immersive VR 

environments, and sensory stimulation. During the experimental training, the virtual hands 

were controlled using only the MI-BCI paradigm in the system. Healthy users were asked to 

perform a rowing motion in a boat with virtual hands using MI. Results showed that the 

average left-right hand movement accuracy of 13 healthy participants was 70.7%. Both in the 

study by Ziadeh et al. [170] as well as in the study by Vourvopoulos et al. [98] the BCI-VR 

Goalkeeper task had better results even when haptic feedback was used. 

Although we have found that in our study the RF algorithm had the best results, it is 

important to note that the effectiveness of the RF algorithm in BCI applications may vary 

depending on factors like the specific dataset, the preprocessing methods used, and the feature 

engineering techniques applied. The outcome confirms that the RF algorithm can be effective 

in BCI applications for several reasons. RF is an ensemble learning method that combines 

multiple decision trees to make predictions. In the context of EEG-based BCI, this ensemble 

approach can help reduce the risk of overfitting and improve generalization to unseen data. 

EEG data can be noisy and affected by various artifacts, and the ensemble nature of RF can 

help moderate these issues [172], [173]. EEG data can be noisy due to various factors, such as 

eye movement, breathing, and environmental interference. RF is known for its robustness to 

noisy data. RF can handle noisy features and still provide accurate predictions, making them 

suitable for EEG data, where noise is a common challenge. 

Also, Fig. 34 illustrates that our study's RF algorithm achieved the fourth highest average 

accuracy among seven studies, surpassing the overall average. Moreover, as depicted in the 

same figure, it is noteworthy that all other studies included a significantly smaller number of 
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participants compared to our study, which may potentially skew the presented results, 

particularly for studies with fewer than 10 participants.  

7.2 Mental Body Rotation 

Beyond the performance accuracy investigation, we explored the influence of cognitive 

abilities on MI-BCI performance. In the MBRT, we did not observe a statistically significant 

correlation, which was somewhat unexpected considering the seeming similarities with the 

BCI-VR Goalkeeper task. However, upon closer examination, it became evident that the 

cognitive differences between the two tasks played a more prominent role in the lack of 

correlation. The MBRT measures mental rotation that is not required for the successful 

execution of the VR task, which instead relies on attentionally selecting the highlighted hand 

of the goalkeeper avatar and then imagining a movement on the selected lateral side. In the 

MBRT, the human figure appeared in various postures and rotations, with participants 

viewing its front side. In contrast, in the BCI-VR Goalkeeper task, the avatar remained static 

without rotating. Additionally, participants could only view the avatar's backside, eliminating 

the need for mental rotation to distinguish left-hand from right-hand cues. We believe these 

fundamental cognitive differences significantly contributed to the absence of a correlation 

between these two tasks. Similarly in a previous study, Leeuwis et al. [171] investigated the 

impact of spatial abilities and visuospatial memory on MI-BCI performance. Fifty-four novice 

users participated in an MI-BCI task and carried out two cognitive tests namely the Mental 

Rotation Test (MRT) and the Design Organization Test (DOT). The impact of spatial abilities 

and visuospatial memory on BCI task error rate in three feedback sessions was measured. 

Their results showed that spatial abilities, as assessed by the Mental Rotation Test, were not 

related to MI-BCI performance. 

7.3 Spatial Orientation 

As with the MBRT, we did not observe a statistically significant correlation between the 

SOT and the BCI-VR Goalkeeper task either. The SOT utilizes egocentric perspective-taking 

Mari
os

 H
ad

jia
ros

 



 

 

 

 

 

 

93 

as a context for mental rotation and these abilities do not seem to be employed in a similar 

cognitive fashion in the BCI-VR Goalkeeper task. Regarding the SOT behavioral results 

alone, the mean angular error for all 22 participants was 28.85°, which is similar to the mean 

angular error of 35.35° found by Friedman et al. [156]. Furthermore, in our SOT task, 

participants exhibited a greater angular error when the angle under consideration was larger, 

whether on the left or right side. Conversely, as the angle decreased in size, the error rate 

reduced accordingly. Moreover, the error rate was notably reduced in cases where the angle 

approached 180°, essentially representing an almost straight line. These findings underscore 

the fact that larger angles have a more pronounced impact on human accuracy in calculations 

compared to smaller angles, except when the angles approach a size resembling a straight line.  

7.4 Flanker Task 

Our proposal of differential cognitive abilities between these two tasks (the MBRT and 

the SOT) and the BCI-VR Goalkeeper task is further supported by the significant correlation 

we observed between the flanker task and the BCI-VR Goalkeeper task. Executive/inhibitory 

control is thought to underlie the flanker task and a recent study using a similar VR 

goalkeeping task to the one we used here, demonstrated that the ability to orient attention and 

resolve the conflict amongst competing stimuli predicted performance in the VR goalkeeping 

task [174].   

Furthermore, our study's behavioral results regarding the Flanker Gaming task align with 

previous literature, particularly with the findings from McDermott et al. [167]. We observed a 

statistically significant main effect of congruency on RT, where incongruent trials elicited 

slower responses compared to congruent trials, consistent with the typical outcomes of this 

task. In McDermott et al.'s study, which involved 20 adult participants, the RT differences 

between congruent and incongruent conditions were statistically significant. Similarly, in our 

Flanker Gaming task with 22 participants, we also found statistically significant RT 

differences between congruent and incongruent trials. Importantly, we found statistically 

significant positive correlations between congruent accuracy in the Flanker task and the 
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offline classification accuracy in the BCI-VR Goalkeeper task, highlighting the importance of 

individual differences in understanding BCI classification. Overall, our current results suggest 

a relation between executive/inhibitory control and BCI-VR performance. Individuals with 

better executive/inhibitory control abilities exhibit higher accuracy in controlling the virtual 

goalkeeper using motor imagery. 

7.5 Spatial Cueing 

Similarly, when dividing participants based on performance in the BCI-VR Goalkeeper 

task, we found that High Achievers had larger pre-cue than retro-cue benefits in the Spatial 

Cueing Gaming Task, demonstrating that those participants that scored the highest in the BCI-

VR Goalkeeper task benefited more from attentional cues in service of perception (i.e., 

external attention) than from attentional cues in service of VWM (i.e., internal attention). 

Given that in the BCI-VR Goalkeeper task participants must orient their attention spatially to 

the side highlighted by the hand of the goalkeeper avatar, in order to imagine a movement on 

the selected lateral side, our findings suggest that external attentional orienting (rather than 

internal attentional orienting) is implicated in efficient performance in the BCI-VR 

Goalkeeper task. In contrast, we observed no difference between pre-cue and retro-cue 

benefits in Low Achievers in the BCI-VR Goalkeeper task, corroborating that a poorer ability 

to employ external attention before movement imagination results in lower accuracy in 

controlling the virtual goalkeeper using motor imagery. 

In the Spatial Cueing Gaming task, pre-cues measure the ability to orient attention to 

perceptual stimuli while retro-cues measure the ability to orient attention to stimuli held in 

memory. Our behavioral results for the Spatial Cueing Gaming task align with the findings of 

Shimi et al. [151], [152], [153] and Nobre et al. [154]. An analysis of variance (ANOVA) 

revealed a statistically significant main effect (d') for the cue type (neutral, pre-cue, retro-cue). 

These findings affirm that our task yielded similar outcomes to their traditional counterparts, 

thus demonstrating their appropriateness.  
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Fig. 34. Comparison of accuracy and number of participants with studies related to the BCI 

VR Gaming task. 

 

TABLE 9 
STUDIES RELATED TO THE BCI VR GAMING TASK 

 

Author BCI 

paradigm 

VR action task No. of 

subj. 

Feature 

extraction 

Classification 

algorithm  

Channels Classification 

Accuracy  

Skola et al. 

(2019) [166] 

MI pulling left and right levers 19 CSP LDA 10 channels: C1, C2, C3, C4, C5, 

C6,  CP3, CP4, FC3, FC4 

72.8% 

Choi et al. (2020) 

[168] 

MI Virtual left and right hand 

movement 

20 CSP LDA 20 channels:  FC5, C5, CP5, FC3, 

C3, CP3, FC1, C1, CP1, Cz, 

CPz, FC2, C2, CP2, FC4, C4, CP4, 
FC6, C6, CP6 

68% 

Lupu et al. (2018) 

[169]  

MI Limb movement control 3 CSP LDA 12-channels: (FC1, FC2, FC5, FC6, 

C3, C4, C5, C6, CP1, CP2, CP5, 
CP6) 

85% 

H. Ziadeh et al. 

(2021) [170] 

MI pop balloons with left and 

right hand 

22 CSP LDA 7 channels: F3, F4, C3, Cz, C4, P3, 

P4 

 
Reference: CPz, Ground: AFz 

53% 

Vourvopoulos et 

al. (2016) [98] 

MI Virtual rowing with hand 

movements 

13 CSP LDA 8 channels: (FC5, FC6, C1, C2, C3, 

C4, CP5, CP6) 

70.7% 

Leeuwis et al. 

(2020) [171] 

MI Feedback bar showing the 

direction of the participant's 
performance. 

 

54 CSP LDA 16 electrodes: (F3, Fz, F4, FC1, 

FC5, FC2, FC6, C3, Cz, C4, CP1, 
CP5, CP2, CP6, T7, T8) 

 

Ground AFz 

72% 

Proposed work 

(Random Forest) 
MI Virtual goalkeeper hand 

control 
44 CSP RF 16-channels  (C3, C4, Cz, FP1, FP2, 

P3, P4, Pz, T3, T4, F3, F4, F7, F8, 

T5, T6) 

 
Reference: CPz, Ground: AFz 

71.6% 
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7.6 Study Limitations 

Despite the promising potential of BCI technology, several limitations inherent in the 

experimental sessions must be acknowledged (see TABLE 10). These limitations encompass 

both technical constraints and challenges in participant engagement and performance. 

    The device used to record EEG signals, specifically the OpenBCI EEG cap, poses 

challenges due to its limited electrode coverage, particularly over areas proximal to the motor 

cortex (CP3, C1, C5, CP4, C2, C6). This inadequate spatial resolution can impede the 

accurate classification of left-hand versus right-hand motor imagery tasks. Moreover, the 

OpenBCI device's classification as a non-medical device raises some concerns about the 

quality of the recorded signals which may have led to reduced performance. 

    Conducting experimental sessions in non-specifically configured laboratories 

introduces the risk of environmental noise pollution from sources such as electrical 

interference, ambient light, screens, and computers. These extraneous stimuli can interfere 

with high quality EEG signal acquisition, compromising the quality and reliability of recorded 

data. 

    Furthermore, communicating instructions to participants on how to perform motor 

imagery tasks, particularly the visualization of upper limb movements without physical 

execution or muscle activation, presents inherent difficulties. The abstract nature of motor 

imagery makes it challenging for participants to grasp and execute accurately, leading to 

variability in task performance across individuals. 

    The experimenter faces challenges in gauging the level of participant engagement and 

effort during experimental sessions. Without real-time feedback on participant performance or 

subjective measures of effort, it is difficult to ascertain whether participants are genuinely 

exerting effort or simply waiting for the session to conclude, potentially skewing experimental 

outcomes. 

    Hemispheric dominance, particularly the left hemisphere's superiority in right-handed 

individuals, poses challenges in generating precise motor imagery for non-dominant hand 
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movements [35]. This asymmetry in motor control may contribute to discrepancies in BCI 

performance between left-hand and right-hand motor imagery tasks. 

    Inter-individual variability in the neural mechanisms underlying motor imagery 

introduces further complexity to BCI experiments. Variations in cortical excitability, 

interhemispheric connectivity, and the organization of motor-related brain regions can 

influence the ease and accuracy of generating motor imagery for each hand, contributing to 

inconsistencies in BCI performance across participants [35]. 

    Motor imagery abilities vary among individuals, with some participants finding it more 

challenging to generate vivid and accurate mental representations of movements for one hand 

compared to the other. These individual differences can manifest as discrepancies in BCI 

performance between left versus right hand motor imagery tasks, complicating data 

interpretation and generalization [35].  

Addressing these limitations necessitates innovative methodological approaches. By 

addressing these challenges, researchers can enhance the robustness and reliability of BCI 

experimental sessions, paving the way for advancements in BCI neurotechnology and clinical 

applications. 

 

TABLE 10 
THE MAJOR STUDY LIMITATIONS 

# Limitations 

1 Limited electrode coverage by the OpenBCI device, in the motor cortex (CP3, C1, C5, CP4, C2, 

C6). 

2 Conducting experimental sessions in non-specifically configured laboratories introduces the risk 

of environmental noise pollution. 

3 Communicating instructions to participants on how to perform motor imagery tasks, without 

physical execution or muscle activation, presents inherent difficulties. 

4 Hemispheric dominance, poses challenges in generating precise motor imagery for non-dominant 

hand movements. 

5 Inter-individual variability in the neural mechanisms underlying motor imagery introduces 

further complexity to BCI experiments. 
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Chapter 8 

 

Concluding Remarks and Future Work 

8.1 Concluding Remarks 

In conclusion, this study demonstrated the feasibility and effectiveness of the BCI-VR 

Goalkeeper gaming task for detecting left-hand versus right-hand movement imagery. The 

findings contribute to the field of brain-computer interfaces and virtual reality gaming by 

showcasing the potential for immersive and interactive experiences. 

The RF algorithm emerged as the top-performing classifier, exhibiting high accuracy both 

offline and in real-time scenarios. This reinforces the suitability of RF for accurate movement 

imagery detection in BCI-VR applications. The statistically significant interaction between 

high achievers and pre-cues and the positive correlations observed between response 

inhibition accuracy and offline classification accuracy further emphasize the impact of 

cognitive abilities on BCI-VR performance and shows that external attention has an important 

role in BCI performance. Our findings suggest that external attentional orienting is implicated 

in efficient performance of tasks using MI. Moving forward, it is important to continue 

exploring additional cognitive mechanisms and incorporating cognitive training interventions 

to enhance BCI performance. By advancing both algorithm development and cognitive 

training, we can work towards improving the accuracy, reliability, and practicality of MI-

based BCI systems for various applications, including neurorehabilitation, assistive 

technologies, and gaming entertainment. 

Overall, this study provides valuable insights into the potential of BCI-VR systems and 

lays the foundation for further research in the field. Continued efforts in algorithm refinement 

and cognitive training interventions will pave the way for the development of more robust and 

effective BCI-VR technologies that can significantly benefit individuals in their daily lives. 
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8.2 Future work 

Although significant progress has been made in enhancing classification algorithms and 

employing effective feature extraction strategies, the accuracy of MI-based BCI systems still 

falls short of practical and commercial viability in people's daily lives. This emphasizes the 

ongoing need for research and development in both algorithmic improvements and cognitive 

training interventions. By addressing these aspects, we can strive to enhance the usability and 

effectiveness of BCI-VR systems for real-world applications.  

Furthermore, the results of this study highlight the importance of considering cognitive 

factors when designing BCI-VR systems and cognitive training intervention development to 

enhance BCI performance. While the current study focused only on executive/inhibitory 

control, visuospatial selective attention, mental body rotation, and spatial orientation, it is 

crucial to explore other cognitive mechanisms that could potentially improve humans to 

produce appropriate EEG patterns while improving BCI performance. Incorporating training 

in these cognitive mechanisms could potentially lead to further improvements in the control of 

BCI-VR systems. 

8.2.1 Pre-Processing and Feature extraction  

 

In this study, we utilized CSP filtering and the variance of the logarithm of the average 

power of the EEG signal segments as features for the classification. However, alternative 

approaches exist that could potentially enhance our understanding and classification accuracy 

in motor imagery tasks. For instance, T. Shi et al. [175] proposed the calculation of 

autoregressive coefficients from EEG signals, which capture temporal dependencies and offer 

valuable insights for motor imagery classification. Furthermore, T. Shi et al. [175] introduced 

a novel EEG feature extraction algorithm incorporating CSP and adaptive autoregressive 

(AAR) techniques. Their work highlights the feasibility of utilizing band energy, sample 

entropy, and order accumulation as distinguishing characteristics for motor imagery 
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classification. Another promising alternative, proposed by B. Xu et al. [176], involves a 

wavelet transform-based approach. By combining time-frequency features from specific EEG 

channels (C3, Cz, and C4), this method aims to extract informative features from motor 

imagery EEG signals. 

Moreover, to tackle challenges such as suboptimal feature extraction and limited cross-

subject performance in MI classification tasks, the adoption of a Multi-Scale Adaptive 

Transformer Network (MSATNet) [197] presents a promising solution. The MSATNet 

framework integrates innovative components designed to enhance feature extraction, capture 

temporal dependencies adaptively, and facilitate efficient transfer learning. MSATNet 

framework facilitates efficient transfer learning by leveraging the Subject Adapter module 

where the model can fine-tune target subject data while preserving the knowledge learned 

from source domains. This enables seamless adaptation to individual subject characteristics, 

thereby enhancing classification performance and generalization across diverse user 

populations. This study uses the BCI Competition IV 2a and 2b dataset in an offline analysis 

to evaluate the validity of the MSATNet model. The MSATNet has a similar accuracy of 

81.75% to our RF accuracy of 82.4% in the BCI Competition IV 2a and outperforms our 

accuracy in the BCI Competition IV 2b with 89.34% accuracy. Therefore, this alternative 

methodology offers a promising avenue for improving the accuracy of BCI systems. 

These alternative methodologies offer promising avenues for improving the accuracy of 

BCI systems. Further investigation and comparative analysis are needed to assess their 

effectiveness and potential contributions to MI classification tasks. 

8.2.2 Classification 

 

Liu et al. [177] in 2023 proposed an end-to-end Filter-Bank Multiscale Convolutional 

Neural Network (FBMSNet) for MI classification. A filter bank was first used to extract a 

multi-faceted spectral representation of the EEG data. A mixed depth convolution was then 

applied to extract temporal features at multiple scales, followed by spatial filtering to mitigate 

volume conductivity. Finally, with the joint supervision of cross-entropy and center loss, 
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FBMSNet obtained features that maximize the dispersion between classes and compact 

interclass. They compared FBMSNet with several state-of-the-art EEG decoding methods on 

two MI datasets: the BCI Competition IV 2a dataset and the OpenBMI dataset, in offline 

analysis. FBMSNet showed the highest classification accuracy of 79.17%. Although 

FBMSNet had the highest performance it has not surpassed the accuracy of the RF algorithm 

in our study, which showed 82.4% in offline analysis. 

In this research we have not used deep learning for the BCI-VR Goalkeeper MI 

classification, taking into account that our dataset was quite small comprised of only 42 

subjects with 20 left-hand trials and 20 right-hand trials only. However, this is something that 

needs to be further investigated. 

Recently, Explainable Artificial Intelligence (XAI) has gained significant attention, 

focusing on developing methods that can explain and interpret machine learning models 

[178].  In this context, our research group has proposed two different methodologies for rule 

extraction based on machine learning and argumentation theory [179] – [183]. The derived 

BCI-VR Random Forest classification models can be used to extract rules using the TE2rules 

algorithm [184] that converts a tree ensemble (TE) to a rule list (RL). Then, rule selection 

could be performed selecting the models with high training accuracy and a minimum sample 

of rules. Then, argumentation-based reasoning can be applied using Gorgias' theory [185], 

[186], which involves constructing arguments using a basic argument scheme, connecting a 

set of premises to the claim of the argument. The extracted rules can be modified as object-

level arguments that can support contradictory claims, leading to arguments attacking one 

another. Moreover, the use of priority on object-level arguments can express a local 

preference between arguments and establish relative strength, tightening the attack relation 

between them. It is expected that the rules will demonstrate the CSP EEG channel segments 

contributing to the discrimination between left-hand versus right-hand motor imagery.  This 

explainability rule set concept might be used as feedback to the user to generate more 

discriminatory patterns. 
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Furthermore, in conventional BCI classification, the models are trained and evaluated on 

data from the same subject. Deep Neural Networks, while powerful, often entail a large 

number of trainable parameters compared to classical models. Such complexity demands 

substantial amounts of data and time for training. Although various publicly available BCI 

datasets exist [202], [203], individual subject data remains limited in quantity. Furthermore, 

extensive data collection for a new subject is time-consuming and may induce mental fatigue 

during prolonged recording sessions, potentially compromising data quality. To overcome the 

scarcity of subject-specific data, transfer-based approaches utilizing pre-existing data from 

other subjects have been explored as conducted by Zhang et al. [198]. In this study [198], 54 

participants performed binary class MI task and the average classification accuracy for 

subject-specific was 63.54%, and for the subject-independent was 84.19%. These strategies 

are crucial for advancing the efficacy and applicability of BCI systems in diverse user 

populations. 

8.2.3 Virtual Reality 

 
In this study, we chose not to use embodiment techniques at all because it is a very 

demanding process to convince a person that a foreign virtual body is their own body, 

especially without the use of special haptic equipment. However, it is a process that, if 

performed with utmost care, may improve the performance of the participants since there will 

be an increase in motivation and engagement. Vourvopoulos et al. [98] developed a BCI-VR 

system that provided auditory, haptic, and visual feedback in the VR experience, integrated 

with a MI-BCI training task for left-hand or right-hand MI to achieve more distinct activations 

in the motor cortex areas and enhance realism. They integrated a holistic BCI approach 

combining MI, immersive VR environments, and sensory stimulation. During the 

experimental training, the virtual hands were controlled using only the MI-BCI paradigm in 

the system. Healthy users were asked to perform a rowing motion in a boat with virtual hands 

using MI. Results showed that the average accuracy of the LDA algorithm of the 13 healthy 

participants was 70.7% in real time.  
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Nevertheless, we believe that haptic technologies, more realistic graphics, and generally 

more realistic experiences can help increase the performance of BCI systems. Similarly, Škola 

et al. [166] developed a gamified immersive VR MI-BCI system. The aim of the proposed 

system was to increase engagement, attention, and motivation in co-adaptive event-driven MI-

BCI training. This was achieved using gamification, progressive increase of the training pace, 

and VR design reinforcing body ownership transfer (embodiment) into the avatar. After 

repeated training, the average accuracy in real time was 72.8%. 

It should be noted that the results of both Vourvopoulos et al. [98] and Škola et al. [166] 

are very close to the average accuracy of our experiments of 71.6% derived with the RF 

classification algorithm. 

8.2.4 Cognitive tasks 

 
Our investigation into the relationship between cognitive abilities, as assessed by tasks 

such as the Flanker Task and the Spatial Cueing Task, and performance in the BCI-VR 

Goalkeeper task has provided valuable insights into the potential impact of executive 

functions and attentional processes on BCI accuracy. The observed significant correlations 

between performance in these cognitive tasks and offline classification accuracy in the BCI-

VR Goalkeeper task suggest that individual differences in cognitive skills may influence one's 

ability to control virtual avatars through MI. 

To further explore this relationship, future research could consider conducting 

longitudinal studies to evaluate whether participants who undergo cognitive skills training 

demonstrate subsequent improvements in BCI accuracy. By implementing targeted 

interventions aimed at enhancing executive functions, inhibitory control, and attentional 

processes, researchers can investigate whether enhancements in these cognitive domains 

translate into improved performance in BCI tasks. Moreover, exploring the neural 

mechanisms underlying such improvements, such as through EEG analysis, can provide 

valuable insights into the neural plasticity associated with cognitive skill acquisition and its 

impact on BCI performance. 
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Furthermore, future studies could investigate the influence of variables such as 

occupational status, hobbies, and educational background on BCI performance accuracy. 

Understanding how individual characteristics shape the cognitive mechanisms underlying BCI 

control can inform the development of personalized BCI training protocols tailored to 

individual needs. 

In addition, professionals such as goalkeepers, formula drivers, etc. can investigat e 

similar strategies that might improve their cognitive abilities related to their professional 

orientation. 

In conclusion, future research endeavors should aim to elucidate the causal relationship 

between cognitive skills and BCI accuracy through longitudinal interventions and training. By 

unraveling the intricate interplay between cognition and BCI performance, we can pave the 

way for more effective and personalized BCI interventions, ultimately advancing the field of 

BCI towards its full potential. 
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