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Περίληψη

Η κατάτμηση τρισδιάστατων σχημάτων στα συστατικά τους μέρη αποτελεί ένα διαχρο-

νικό πρόβλημα στην Υπολογιστική ΄Οραση και τα Γραφικά Υπολογιστών. Πρόσφατες

επιτυχίες στην τρισδιάστατη Βαθιά Μάθηση οδήγησαν σε πληθώρα μεθόδων για την εκ-

μάθηση αποτελεσματικών αναπαραστάσεων, χρήσιμων για υψηλού επιπέδου προβλήματα

επεξεργασίας σχημάτων, συμπεριλαμβανομένης της κατάτμησης σχημάτων. Παρά αυτή τη

σημαντική πρόοδο, οι περισσότερες μέθοδοι βασίζονται στην επεξεργασία τοπικών γεω-

μετρικών γειτονιών και συχνά παραβλέπουν το ευρύτερο πλαίσιο, όπως η δομή, οι συμ-

μετρίες και οι αντιστοιχίες με άλλα σχήματα που συχνά είναι χρήσιμα για τον εντοπισμό

και την εξαγωγή τμημάτων από γεωμετρικά χαρακτηριστικά των σχημάτων. Επιπλέον, οι

τρισδιάστατες συλλογές δεδομένων που χρησιμοποιούνται ευρέως, περιλαμβάνουν κυρίως

τεχνητά αντικείμενα με απλή δομή και στερούνται μοντέλων μεγάλης κλίμακας με υψηλή

δομική πολυπλοκότητα.

Αυτή η διατριβή παρουσιάζει νευρωνικές μεθόδους βασισμένες σε γράφους, οι οποίες

μοντελοποιούν πολύπλοκες δομικές και χωρικές σχέσεις εντός του ίδιου τρισδιάστατου

σχήματος καθώς και μεταξύ των σχημάτων, τα οποία αναπαρίστανται ως γράφοι, με α-

ποτέλεσμα την κατάτμηση σχημάτων με μεγαλύτερη συνέπεια και ακρίβεια. Επιπλέον, η

διατριβή παρουσιάζει τη πρώτη συλλογή τρισδιάστατων δεδομένων μεγάλης κλίμακας που

αποτελείται από επισημασμένα μοντέλα τρισδιάστατων κτηρίων, και η οποία είναι διαθέσι-

μη στο ευρύ κοινό. Τα κτήρια έχουν μεγαλύτερη δομική πολυπλοκότητα σε σύγκριση

με αντικείμενα που προσφέρονται από κοινές συλλογές δεδομένων. Αυτό έχει ως απο-

τέλεσμα, η συγκεκριμένη συλλογή δεδομένων να αποτελεί ένα χρήσιμο σημείο αναφοράς

για τη συγκριτική αξιολόγηση αλγορίθμων κατάτμησης γεωμετρικών δεδομένων μεγάλης

v

Mari
os

 Lo
izo

u



κλίμακας, που παρουσιάζουν πολύπλοκη δομή.

Πιο συγκεκριμένα, η διατριβή προτείνει τις ακόλουθες τρεις αρχιτεκτονικές νευρωνι-

κών δικτύων βασισμένες σε γράφους, για τη κατάτμηση σχημάτων. Αρχικά, η διατριβή

παρουσιάζει τη μέθοδο PB-DGCNN, η οποία μπορεί να ανιχνεύσει τα σύνορα τμημάτων σε

3Δ σχήματα. Αυτή η μέθοδος αξιοποιεί ένα συνελικτικό νευρωνικό δίκτυο για γράφους,

που συλλαμβάνει ιεραρχικά τοπικές και μη-τοπικές αλληλεπιδράσεις ενός ζεύγους σημείων,

για να μάθει αναπαραστάσεις κατάλληλες για την εξαγωγή υποψηφίων συνόρων μεταξύ

τμημάτων. Ο συγκεκριμένος ανιχνευτής συνόρων είναι ανεξαρτήτου κατηγορίας. Μπορεί

να εκπαιδευτεί για τον εντοπισμό συνόρων είτε μεταξύ σημασιολογικών τμημάτων, είτε

μεταξύ γεωμετρικών πρωτοτύπων που χρησιμοποιούνται συνήθως στη 3Δ μοντελοποίηση.

Το PB-DGCNN εξάγει υποψήφια σύνορα σε νέφη σημείων (point clouds) που αναπα-

ρίστανται ως πιθανότητες ανά σημείο. Αυτές οι πιθανότητες συνόρων μπορούν εύκολα

να χρησιμοποιηθούν ως διμερής όρος σε μια προσέγγιση κοπής γράφων για την εξαγωγή

συνόρων που οριοθετούν τμήματα. Η μέθοδος αποδεικνύεται ότι βελτιώνει τη κατάτμηση

του σχήματος παράγοντας πιο καθαρά σύνορα τμημάτων.

Στη συνέχεια, η διατριβή παρουσιάζει το CrossShapeNet, ένα νευρωνικό δίκτυο βασι-

σμένο σε γράφους που μεταδίδει χαρακτηριστικά σημείων σε σχήματα εντός μιας συλλο-

γής, με σκοπό το συγχρονισμό τους και τη βελτίωση της συνοχή τους για τη κατάτμηση

3Δ σχημάτων. Ειδικότερα, η μέθοδος αυτή εισάγει ένα cross-shape attention μηχανισμό

για να επιτρέψει τις αλληλεπιδράσεις μεταξύ των χαρακτηριστικών σημείων ενός σχήματος

και εκείνων άλλων σχημάτων. Ο μηχανισμός αξιολογεί το βαθμό αλληλεπίδρασης μετα-

ξύ των σημείων και παράλληλα διευθετεί τη διάδοση των χαρακτηριστικών σε διάφορα

σχήματα, βελτιώνοντας την ακρίβεια και τη συνοχή των αποτελεσμάτων σε επίπεδο χαρα-

κτηριστικών σημείων, με σκοπό την κατάτμηση των σχημάτων. Επιπλέον, προτείνεται ένα

μέτρο ανάκτησης σχήματος, το οποίο επιλέγει κατάλληλα σχήματα για τη cross-shape
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attention λειτουργία, για κάθε δοκιμαστικό σχήμα. Σε σύγκριση με προηγούμενες με-

θόδους, το CrossShapeNet επιτυγχάνει την υψηλότερη απόδοση κατάτμησης σε όρους

μέσου Part IoU στο PartNet, ένα απαιτητικό σημείο αναφοράς για συγκριτική αξιολόγηση

στην κατάτμηση τεχνητών αντικειμένων.

Τέλος, η διατριβή παρουσιάζει το BuildingNet, τη πρώτη συλλογή δεδομένων με-

γάλης κλίμακας που είναι διαθέσιμη στο ευρύ κοινό και περιλαμβάνει επισημασμένα 3Δ

μοντέλα κτηρίων, των οποίων το εξωτερικό και ο περιβάλλων χώρος έχουν ετικεταριστεί

με συνέπεια. Αυτή η συλλογή δεδομένων παρέχει 513,000 ετικεταρισμένα γεωμετρικά

πρωτότυπα σε 2,000 μοντέλα κτηρίων και περιλαμβάνει δύο συγκριτικές αξιολογήσεις για

την κατάτμηση κτηρίων σε μορφή πλέγματος (mesh) και νέφους σημείων (point cloud).

Επιπλέον, παρουσιάζεται ένα νευρωνικό δίκτυο γράφων που ετικετοδοτεί κτήρια σε μορφή

πλέγματος, αναλύοντας τις χωρικές και δομικές σχέσεις των γεωμετρικών τους πρωτο-

τύπων. Αυτό το δίκτυο θεωρεί κάθε υποομάδα του πλέγματος (mesh subgroup) ως

έναν κόμβο του γράφου και επωφελείται από σχέσεις, όπως γειτνίαση, συμμετρία και συ-

γκράτηση, μεταξύ ζευγών υποομάδων. Η τελική ετικέτα του πλέγματος προκύπτει μέσω

της μετάδοσης νευρωνικών μηνυμάτων (neural message passing) στο γράφο.

Η διατριβή ολοκληρώνεται με μια συζήτηση για μελλοντικές κατευθύνσεις έρευνας

στην κατάτμηση σχήματος, όπως η αξιοποίηση αυτοεποπτευόμενων διαδικασιών προεκπα-

ίδευσης, μοντέλων ανοιχτού λεξιλογίου και μάθηση δομής χωρίς επίβλεψη για περαιτέρω

βελτίωση προσεγγίσεων, βασιζόμενες σε γράφους, για την κατάτμηση καθώς και την

κατανόηση 3Δ σχημάτων και 3Δ σκηνών γενικότερα.
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Abstract

The segmentation of 3D shapes into their constituent parts has been a long-standing

problem in Computer Vision and Graphics. Recent breakthroughs in 3D Deep

Learning led to numerous methods for learning effective representations useful for

high-level shape processing tasks, including shape segmentation. Despite these sig-

nificant advances, most methods rely on processing local geometric neighborhoods

and often disregard broader context, such as structure, symmetries, and correspon-

dences with other shapes that are often useful for discovering and extracting parts

in geometric shape representations. Moreover, commonly used 3D datasets com-

prise mainly man-made objects with simple structure and lack large-scale models

with high structural complexity.

This thesis presents graph-based neural methods that model complex structural

and spatial relations within the same shape as well as across shapes in their graph

representation to produce more consistent and accurate shape segmentations. Ad-

ditionally, the thesis introduces the first publicly available large-scale dataset of

annotated 3D building models. Buildings have more challenging structural com-

plexity compared to objects in common benchmarks, thus, the dataset serves as a

useful benchmark to evaluate segmentation algorithms on large-scale, structurally

complex geometric data.

More specifically, the thesis proposes the following three graph-based archi-

tectures for shape segmentation. First, the thesis presents PB-DGCNN, a method

capable of detecting part boundaries in 3D shapes. This method leverages a graph

convolutional network that hierarchically captures local and non-local pairwise
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point interactions to learn representations suitable for extracting candidate part

boundaries. This boundary detector is class-agnostic. It can be trained to localize

boundaries of either semantic parts or geometric primitives commonly used in 3D

modeling. PB-DGCNN outputs candidate boundaries on point clouds represented

as per-point probabilities; these boundary probabilities can be easily adopted as a

pairwise term in a graph cuts formulation to extract boundaries demarcating parts.

The method is demonstrated to improve shape segmentation by producing cleaner

part boundaries.

The thesis next presents CrossShapeNet, a graph-based network that propa-

gates point-wise feature representations across shapes within a collection to bet-

ter synchronize them and improve their consistency for 3D shape segmentation.

Specifically, the model introduces a cross-shape attention mechanism to enable in-

teractions between a shape’s point-wise features and those of other shapes. The

mechanism assesses both the degree of interaction between points and also medi-

ates feature propagation across shapes, improving the accuracy and consistency of

the resulting point-wise feature representations for shape segmentation. Moreover,

a shape retrieval measure is proposed, which selects suitable shapes for cross-

shape attention operations for each test shape. Compared with previous methods,

CrossShapeNet achieves the highest segmentation performance in terms of mean

Part IoU in PartNet, a challenging benchmark for fine-grained part segmentation

on man-made objects.

Finally, the thesis introduces BuildingNet, the first publicly available large-scale

dataset of annotated 3D building models whose exteriors and surroundings are

consistently labeled. The dataset provides 513K annotated mesh primitives across

2K building models and includes two evaluation benchmarks for mesh and point
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cloud segmentation. Moreover, a graph neural network is presented that labels

building meshes by analyzing spatial and structural relations of their geometric

primitives. This network treats each mesh subgroup as a graph node, and takes

advantage of relations, such as adjacency, symmetry, and containment, between

pairs of subgroups. The final mesh labelling is achieved through neural message

passing in the graph.

The thesis concludes with a discussion for future research directions in shape

segmentation, such as leveraging self-supervised pre-training procedures, open-

vocabulary models, and unsupervised structure learning for further improving

graph-based approaches for segmentation as well as 3D shape and scene under-

standing in general.
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Chapter 1
Introduction

1.1 Motivation

The importance of 3D shape segmentation lies in its core role in understanding

and interpreting complex 3D environments, crucial for advancements in computer

vision and graphics, robotics, and interactive technologies. Shape segmentation

deals with the decomposition of 3D models into labeled semantic parts or geome-

tric primitives. Accurate segmentation enables the analysis and manipulation of

3D shapes, facilitating applications in autonomous navigation [131, 260], medical

diagnosis [135, 253] augmented reality [233, 68], and architectural design [45, 147].

The need for understanding parts in geometric shape representations is greater

than ever. Due to the developments over the past decade of 3D acquisition te-

chnologies such as LiDAR sensors, 3D scanners and RGB-D cameras [67, 162, 185],

we are witnessing an explosion of real-world 3D point cloud datasets [37, 4, 216,

27, 203, 183, 69, 9, 212, 76]. Accurately segmenting the point clouds into objects

and parts is crucial for automatic recognition, shape and scene understanding in

general. At the same time, a largely increasing number of deep learning architec-

tures have been proposed to process point clouds for shape understanding [172,

173, 231, 265, 174, 247]. Finally, with respect to other common shape representa-

tions, such as polygon meshes, we are similarly witnessing an increasing number

of 3D mesh-based datasets, which are in turn useful as synthetic datasets to train

computer vision algorithms and for 3D modeling tasks in graphics [28, 250, 249,

158, 103].

A driving force for the development of deep neural networks for processing

3D geometric representations lies on the success of Convolutional Neural Net-
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works [57, 120] in computer vision tasks. Classic CNNs [109, 202, 72, 80, 143]

exploit several inductive biases that arise from the structure of their input do-

main [234]. In this case, images are represented as structured multi-channel 2D

grids, that exhibit fixed ordering and adjacency between their pixels. Methods that

operate on this type of data need to account for the translation invariance, as in

the case of object classification where the output prediction should be invariant of

any shift transformations of the input image. This is achieved with global symmet-

ric functions such as global pooling which is agnostic of such transformations. In

the case of image segmentation, since the output segmentation mask needs to be

shifted accordingly with the input, models need to capture geometric priors such

as translation equivariance. In CNNs this is achieved by leveraging shared weights

in the form of convolutional filters that respect the locality property of the image,

where adjacent pixels share similar characteristics. Moreover, after each convolu-

tion layer, local pooling is applied to adjacent regions of the image resulting in a

coarsened grid. This effectively increases the receptive field of each layer while it

enables convolution filters to capture fine and coarse details at different scales of

the image, by simultaneously retaining the number of parameters constant at each

scale.

Extending these mechanisms to other input domains, such as 3D point clouds,

is not trivial. In contrast to 2D images, point clouds are represented as unstru-

ctured and unordered sets [19]. Methods that operate on this type of data need

to be permutation invariant, i.e, their output prediction should remain unaffected

by any permutation of the ordering of the input point set. The first point-based

deep architectures [172, 258] showed that is possible to process such unordered

sets by first applying a learnable transformation (e.g., in the case of PointNet [172]

this trasformation is implemented by a shared Multi Layer Perceptron [182]) to

each element of the set independently, and then aggregating the learned repre-

sentations by global pooling, which imposes permutation equivariance over the

input. While these methods have revolutionized the field of geometric deep learn-

ing, they overlook spatial and geometric relationships among input elements due

to the absence of inherent connectivity within the data. Naturally, the spatial re-

lationships of a point cloud can be modeled by a graph, whose nodes represent

individual points and edges are formed between points capturing spatial and geo-

metric relationships between them. This urges the need to devise neural networks
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that can operate on graphs, which again features permutation invariance, not only

at level of nodes but at level of edges as well. Formally, this type of neural archi-

tectures are called Graph Neural Networks (GNNs) [19] which are currently the

cornerstone of geometric deep learning. By design these architectures exhibit the

same traits as CNNs, such as permutation equivariance and locality by employ-

ing shared learnable filters in local neighborhoods modeled by a nearest- neighbor

graph (nn-graph). In addition, they can explicitly capture long-range interactions

through edges connecting non-local neighborhoods, or alternatively through the

use of local pooling and coarsening of the input graph. Permutation invariance

can also be achieved through global pooling operations (a more comprehensive

design blueprint of Graph Neural Networks and geometric deep learning can be

found in [19]).

Despite the advances in the field geometric deep learning and more specifically

in the area of shape segmentation, there are several shortcomings that most ap-

proaches do not address. The first is that segmentation methods often predict part

labels to individual points. This widely adopted approach usually results in erro-

neous segmentations specifically near the boundaries of parts where the predicted

part probabilities are more unstable. For example, consider the back of the chair

and the vertical bars of the frame that connect the back with the rest of the chair

shape. These two distinct semantic parts lie in close spatial proximity and are usu-

ally co-planar. A neural network might be able, with high confidence, to assign the

correct label to points that lie further away from the boundaries of these two parts.

But this confidence diminishes for points that are near the boundaries, especially

in the case where each point in represented only by its 3D Euclidean coordinates

(see Figure 1.1 left). Even if the point normals are available, due to the co-planarity

between these parts, most methods will not be able to correctly distinguish points

that lie in these boundary areas. Thus, segmentation artifacts will appear since the

two parts will start to bleed into each other.

Another crucial factor for shape understanding is learning effective point-wise

representations in the first place. There has been a lot of research in developing

deep neural architectures to learn point-wise representations of shapes through

convolution and attention layers, useful for performing high-level tasks, such as

shape segmentation. The common denominator of these networks is that they

output a representation for each shape point by weighting and aggregating repre-
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Figure 1.1: The PB-DGCNN method predicts part boundaries in 3D point clouds

using a graph convolutional network which outputs a probability per point to lie

on a boundary between parts in a 3D shape. Left: The output probability per

point can be used in pairwise terms to improve graph-based semantic segmentation

methods by localizing boundaries between semantic parts. Right: It can also be

used in the geometric decomposition of point clouds into regions enclosed by sharp

boundaries detected by our method.

sentations and relations with other points within the same shape. This limitation

prevents them from fully exploiting relations between points and parts across dif-

ferent shapes and producing more synchronized feature representations for more

consistent segmentation results.

Lastly, most methods for shape segmentation are primarily designed for sim-

ple man-made objects with relatively simple structure. While they showcase good

segmentation performance on this type of data, they are less successful in more

complex, large-scale shapes such as 3D buildings. These methods struggle to ex-

plicitly analyze and leverage the structural relationships inherited in architectural

data, thus presenting a significant challenge for shape segmentation in this context.

Addressing these challenges necessitates a diverse approach rather than a singu-

lar methodology. The thesis develops various strategies to address these challenges

in the context of graph-based networks. Each strategy targets a specific limitation

within the segmentation process, by providing a targeted solution to each chal-

lenge.

1.2 Overview and Contribution

Each method introduced in this thesis represents a standalone approach to seg-

mentation with a distinct flavour, yet all of the methods share a key characteris-

tic: they all rely on a graph-based architecture either at the shape level, as in the
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Figure 1.2: Left: Given an input shape collection, our method constructs a graph

where each shape is represented as a node and edges indicate shape pairs that

are deemed compatible for cross-shape feature propagation. Middle: Our network

is designed to compute point-wise feature representations for a given shape (grey

shape) by enabling interactions between its own point-wise features and those of

other shapes using our cross-shape attention mechanism. Right: As a result, the

point-wise features of the shape become more synchronized with ones of other

relevant shapes leading to more accurate fine-grained segmentation.

case of detecting part boundaries or segmenting 3D buildings, or at the level of

an entire collection of shapes, enabling the propagation of point-wise embeddings

across different shapes. As already stated in the previous section, the very na-

ture of 3D shapes requires the development of neural architectures that operate on

graphs, since the latter can model spatial and structural relationships that are in-

herited in this type of data. Furthermore, transferring point representations across

shapes through a collection involves constructing a graph whose nodes represent

individual shapes, while its edges establish connections between shapes deemed

compatible for feature propagation.

First, in Chapter 3 a novel neural network is presented, called PB-DGCNN

(Probabilistic Boundary-Dynamic Graph Convolutional Neural Network), which is

specifically designed for identifying part boundaries within 3D shape point clouds.

This method utilizes a graph convolutional network to assign a probability to each

point, indicating its likelihood of being located at a boundary that separates two

or more parts in a 3D shape. This boundary detector is quite generic, as it can be

trained to localize boundaries of semantic parts or geometric primitives commonly
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Figure 1.3: Top: We introduce a dataset of 3D building meshes with annotated

exteriors. Bottom: We also present a graph neural network that processes building

meshes and labels them by encoding structural and spatial relations between mesh

components. Blue box: Our dataset also includes a point cloud track. Examples of

erroneous network outputs are in red text.

used in 3D modeling (see Figure 1.1). Experiments on geometric and semantic seg-

mentation datasets demonstrate that PB-DGCNN can extract more precise and ac-

curate boundaries that are closer to the ground truth ones, outperforming existing

alternatives. Additionally, an application of this method to fine-grained shape seg-

mentation is presented, where it demonstrates significant improvements in terms

of part labeling performance.

Next, Chapter 4 introduces a cross-shape attention mechanism that enables in-

teraction and propagation of point-wise feature representations across shapes of

an input collection. In this architecture, the representation of a point in a shape is

learned by combining representations originating from points in the same shape as

well as other shapes, as illustrated in Figure 1.2 (middle). The rationale for such

an approach is that if a point on one shape is related to a point on another shape

e.g., they lie on geometrically or semantically similar patches or parts, then cross-

shape attention can promote consistency in their resulting representations and part

label assignments. We leverage neural attention to determine and weigh pairs of

points on different shapes. We integrate these weights in our cross-shape attention

scheme to learn more consistent point representations for the purpose of semantic

shape segmentation.

Finally, Chapter 5 presents BuildingNet, the first publicly available large-scale

dataset of annotated 3D building models whose exteriors and surroundings are
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consistently labeled. The dataset provides 513,000 annotated mesh primitives across

2,000 building models (examples are depicted in Figure 1.3). We include a bench-

mark for mesh and point cloud labeling, and evaluate several mesh and point cloud

labeling networks. These methods were developed primarily for smaller single ob-

jects or interior scenes and are less successful on architectural data. In addition, we

introduce a graph neural network that labels building meshes by analyzing spa-

tial and structural relations of their geometric primitives. Our GNN treats each

subgroup as a node, and takes advantage of relations, such as adjacency and con-

tainment, between pairs of nodes. Neural message passing in the graph yields the

final mesh labeling. Our experiments show that this approach yields significantly

better results for 3D building data than prior methods.

Furthermore, this thesis in Chapter 2 provides a comprehensive overview of

3D point cloud and mesh processing methods that specifically target the prob-

lem of shape segmentation. It also includes an examination of feature curve and

edge detection approaches, along with a discussion on relevant 3D datasets for

single shapes, indoor scenes, and urban environments. The chapter also provides

an analysis of graph-based neural network architectures proposed in this thesis

by examining their alignment with the foundational principles of GNNs. Chap-

ter 6 concludes with a discussion on promising future research directions in shape

segmentation. It proposes leveraging self-supervised knowledge distillation for au-

tomatic extraction of coherent regions from 3D buildings, coupled with a pretext

task to learn dependencies between them using a point transformer architecture.

Additionally, it outlines a procedure for expanding Cross-ShapeNet to 3D scenes

by incorporating recent open-vocabulary approaches.
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Chapter 2
Related work

This chapter presents previous approaches related to shape segmentation. While

the methods presented in this thesis are predominantly deep learning-based, we

begin with an overview of early shape segmentation techniques to ensure com-

pleteness (Section 2.1). Subsequently, we present a comprehensive analysis of 3D

deep learning methods for processing point clouds (Section 2.2) and highlight key

differences with the PB-DGCNN and Cross-ShapeNet methods that are outlined

in Chapter 3 and Chapter 4, respectively. Furthermore, we explore previous tech-

niques focused on edge and feature curve detection in point clouds (Section 2.3),

which are related to PB-DGCNN.

Moreover, we survey neural networks specifically designed for 3D mesh com-

prehension and building segmentation tasks (Sections 2.4 and 2.5). Concurrently,

we catalog segmentation datasets featuring 3D shapes, indoor scenes, and urban

environments (Section 2.6) to underscore the importance of datasets such as Build-

ingNet, as detailed in Chapter 5. Lastly, we provide an analysis of the graph-based

architectures employed in the methods outlined in this thesis, placed side by side

with the design blueprint of Graph Neural Networks as introduced in [19] (Se-

ction 2.7). This examination aims to highlight the alignment and divergence of our

approaches with the foundational principles outlined in the literature.

2.1 Early shape segmentation methods

Early shape segmentation methods rely on classic clustering methods and hand-

crafted features. First, we begin with a brief overview of classic shape segmenta-

tion techniques designed for 3D point clouds, following the taxonomy of Nguyen
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and Le [162]. Region-based methods utilize neighborhood information to merge

adjacent points that share similar characteristics into isolated regions methods of

arbitrary shape. The seminal work by Besl and Jain [14] used variable-order sur-

face fitting and was validated on range images. An initial coarse segmentation is

extracted, using the surface curvature sign to assign a surface type label to each

pixel. Then, an iterative refinement step is conducted using a region growing

strategy with variable-order surface fitting. Koster and Spann [108] introduced a

bottom-up hierarchical region-growing approach, which utilizes the mutual inlier

ratio (MIR) of adjacent regions as a decisive merging factor. In Rusu et al. [187], the

authors explored extracting object maps from 3D indoor household environments

represented as point clouds. Initially, a geometrical mapping step is conducted to

obtain a uniformly sampled point set with extracted geometric features like surface

normals and curvature. Following this, a functional mapping procedure generates

3D object maps through a region-based segmentation process, guided by the pre-

viously extracted features.

Attribute-based methods, in contrast, employ clustering techniques that lever-

age point cloud attributes. For instance, methods such as [53, 54] utilized a cluster-

ing algorithm to segment airborne laser scanning data by incorporating attributes

like point coordinates, tangent planes, and height differences. Unlike previous ap-

proaches that focused on specific surface types, attribute-based methods demon-

strate the ability to capture more complex shapes.

Other methods utilize geometric primitive fitting for point cloud segmenta-

tion. Vosselman et al. [219] employ the Hough transform [49] to detect 3D planes

and a two-step process for extracting cylinders based on point normals. Schnabel

et al. [190] adopted the RANSAC algorithm [55] for estimating primitive shapes

like planes, spheres, cylinders, cones, and toruses with a localized sampling ap-

proach. Building upon this, Li et al. [127] introduce a method that learns structural

relations among locally fitted primitives, facilitating a global alignment procedure

for all primitives. Gelfand and Guibas [58] propose a unique approach focusing

on detecting slippable shapes, which possess rigid motions allowing transformed

versions to slide along the original shape without gaps.

Lastly, graph-based methods represent point clouds as graphs, with points as

nodes and edges connecting neighboring points. Golovinskiy and Funkhouser [61]

construct a nearest-neighbors graph and utilize a min-cut approach for foreground-
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background extraction. Strom et al. [207] adapt the work of Felzenszwalb and

Huttenlocher [52] for segmenting colored LIDAR scans. Additionally, several ap-

proaches leverage probabilistic graphical models such as Conditional Random Fields

[111] and Markov Networks [44], for labeling points [186] or segmenting point

clouds from urban environments [191].

Another popular approach in shape segmentation is based on mesh representa-

tion. The methods listed here were quantitatively compared in [32]. Initially, Shlaf-

man et al. [201] proposed a surface decomposition method utilizing the K-means

clustering algorithm. This involved selecting k representative faces, ensuring max-

imal spatial proximity, and assigning faces to each representative based on geo-

metric criteria to ensure coplanar faces in close proximity belonged to the same

segment.

Katz et al. [93] introduced a pose-invariant hierarchical mesh segmentation

method. They transformed the mesh using multi-dimensional scaling and de-

tected feature points to guide segmentation. The core component was extracted

using spherical mirroring, while the rest segments where obtained by subtracting

the core component from the mesh. Then, a cut refinement step was employed to

smooth out boundaries between segments. This hierarchical process continued un-

til termination conditions were met. Attene et al. [5] introduced another hierarchical

mesh segmentation algorithm that leverages primitive fitting. This method adopts

a bottom-up approach, initially assigning each face to a single cluster. Next, a bi-

nary tree of clusters is constructed, with adjacent clusters merged if they are better

approximated by a primitive compared to all other pairs. This merging process

continues until a user-defined number of segments is reached.

Lai et al. [113] proposes a two-phase procedure for mesh segmentation. Ini-

tially, faces are over- segmented based on the highest probability of reaching them

through a random walk on the mesh dual graph. Then, segments are hierarchically

merged using relative lengths of intersections and total perimeters until reaching a

user-defined segment count. Golovinskiy and Funkhouser [60] introduced two hi-

erarchical clustering algorithms. In the first, Normalized cuts, segments are merged

based on area-normalized cut cost, promoting small boundaries along concavities

while maintaining similar areas across segments. The second, Randomized cuts,

uses a randomized minimum cuts to guide segmentation boundary placement, ter-

minating when reaching the user-defined segment count.
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Shapira et al. [194] introduced a segmentation method based on the Shape Di-

ameter Function (SDF), measuring volume diameters around surface points. Ini-

tially, they used a Gaussian Mixture Model to assign each face a probability vector

for SDF cluster membership. Then, they refined segmentation using the alpha

expansion graph-cut algorithm [18], considering probabilistic vectors, boundary

smoothness, and concaveness.

A notable exception to previous works was presented by Kalogerakis et al. [89],

offering an approach for segmenting and labeling parts within 3D meshes. Inspired

by the joint image segmentation and recognition paradigm in computer vision,

they adopt a data-driven strategy leveraging a graphical probabilistic model [111]

to simultaneously segment and recognize semantic parts of meshes. Their method

constructs an objective function based on unary terms derived from local surface

descriptors, providing cues for face labeling, and pairwise terms that penalize mis-

classifications of neighboring faces to smooth out segment boundaries. This objec-

tive function is learned from a collection of human-annotated meshes, demonstrat-

ing that mesh segmentation algorithms can benefit significantly from data-driven

learned models.

2.2 3D deep learning for point clouds

Here, we provide an overview of the related work on 3D deep learning for point

clouds. Over the past few years, various types of neural networks have emerged

for processing point clouds. The pioneering works of Qi et al. [172] and Zaheer et

al. [258] introduced permutation-invariant learned transformations for directly pro-

cessing unordered point sets. Subsequently, numerous studies investigated more

sophisticated point aggregation mechanisms to better model spatial point distribu-

tions [173, 123, 205, 118, 196, 140, 43, 262, 146, 264, 174]. Alternatively, point clouds

can be processed through various projection-based approaches. One approach is to

convert point representations into volumetric grids [239, 154, 37, 177, 200, 141] and

processes them utilizing 3D convolutions. Instead of uniform grids, hierarchical

space partitioning structures, such as kd-trees, octrees, or lattices, can be utilized

to define regular convolutions [179, 101, 224, 225, 208, 226]. Another approach in-

volves projecting point clouds onto local views and treating them as regular grids

for processing with image-based convolutional networks. This method was intro-
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duced by Su et al. [209] and has been followed by subsequent methods for tasks

such as object classification [171], which fuse volumetric and multi-view represen-

tations, and shape segmentation [88, 81]. Additionally, networks can incorporate

point-wise convolution operators to directly process point clouds [126, 79, 241, 136,

64, 6, 73, 227, 245, 237, 107, 213]. On the other hand, shapes can be treated as

graphs by connecting each point to other points within neighborhoods in a feature

space. Graph convolution and pooling operations can then be performed either in

the spatial domain [231, 199, 137, 115, 220, 262, 116, 122, 86, 244, 223, 70], or spectral

domain [251, 16, 20, 17, 159]. Attention mechanisms have also been investigated

to modulate the importance of graph edges and point-wise convolutions [242, 244,

223, 256].

Most previous approaches primarily address the problem of semantic segmen-

tation. A number of methods have also been proposed to perform geometric de-

compositions of point clouds based on convexity analysis [87, 206, 42], primitive

fitting [124, 127, 268, 197], graph cuts [61, 99], and clustering [15, 263]. In both

semantic segmentation and geometric decomposition scenarios, part boundaries

often tend to become fuzzy and noisy (see Figure 1.1 - left). To improve the qual-

ity of segmentation and align boundaries with underlying surface feature curves,

such as creases, some methods employ simple geometric criteria, most commonly

normal differences [169, 92, 206], within pairwise terms modeling the probability

of boundaries between points. Similar pairwise terms have also been used in mesh

segmentation approaches [94, 60, 89, 87]. In contrast, the PB-DGCNN method

learns a pairwise term indicating the existence of part boundaries directly on 3D

point clouds. As we show in our experiments, our learned boundaries are more ac-

curate and are able to improve the quality of semantic segmentation and geometric

decomposition to a larger degree compared to other alternatives.

Finally, several recent works [265, 66, 51, 155, 255, 240, 166, 114, 247, 192, 30,

238] introduced a variety of transformer-inspired models for point cloud process-

ing tasks. Moreover, graph neural network approaches have been shown to model

non-local interactions between points within the same shape [231, 122, 244, 70].

None of the above approaches have investigated the possibility of extending at-

tention across shapes, in order to model point-wise interactions within a pair of

shapes. A notable exception are the methods by Wang et al. [223] and Cao et al. [22]

that propose cross-attention mechanisms across given pairs of point cloud instances
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representing different transformations of the same underlying shape for the spe-

cific task of rigid registration. Cross-ShapeNet instead introduces cross-attention

across shapes within a large collection without assuming any pre-specified shape

pairs. Our method aims to discover useful pairs for cross-shape attention and

learns representations by propagating them within the shape collection. Moreover,

it shows that the resulting features yield more consistent 3D shape segmentation

than several other existing point-based networks.

2.3 Feature curve and edge detection on 3D shapes

The PB-DGCNN approach is related to learning methods for detecting edges, or

feature curves on 3D shapes. This is because part boundaries often coincide with

surface feature curves, such as creases, ridges and valleys. Detecting such feature

curves relies on geometric features, such as curvature extrema or normal discon-

tinuities that can be detected on meshes, RGB-D data or point clouds [165, 10, 33,

23, 106, 90, 210, 82], however, their extraction often depends on hand-tuned pro-

cedures. Most similar to PB-DGCNN, EC-Net [254] attempts to learn edges on

point clouds using a deep architecture operating on isolated point cloud regions

(patches). Our method instead trains a neural network that operates directly on

the whole point cloud encoding both local and global structure without any patch

extraction or pre-processing. In our experiments, we show that our approach is

much more accurate for part boundary detection compared to EC-Net even when

the latter is trained on the same dataset as our method.

2.4 Deep nets for 3D mesh understanding

A few recent neural architectures have been proposed for processing meshes. Some

network directly operate on the mesh geometric or topological features [153, 71,

112, 192], spectral domain [17, 159, 251, 175], while others transfer representa-

tions learned by other networks operating, e.g., on mesh views or voxels [88, 229,

110]. BuildingNet is complementary to these approaches. It is specifically designed

to process meshes with pre-existing structure in the form of mesh components

(groups of triangles), which are particularly common in 3D building models. CRFs

and various grouping strategies with heuristic criteria have been proposed to ag-
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gregate such components into labeled parts [229]. Our method instead uses a GNN

to label components by encoding spatial and structural relations between them in

an end-to-end manner. From this aspect, our method is also related to approaches

that place objects in indoor scenes using GNNs operating on bounding box object

representations with simple spatial relations, [267, 222], and GNN approaches for

indoor scene parsing based on graphs defined over point clusters [117]. Our GNN

instead aims to label mesh components represented by rich geometric features, and

captures spatial and structural relations specific to building exteriors.

2.5 3D building mesh segmentation and labeling

There has been relatively little work in this area. Early approaches for semantic

segmentation of buildings relied on shallow pipelines with hand-engineered point

descriptors and rules [214, 152]. A combinatorial algorithm that groups faces into

non-labeled components spanning the mesh with high repetition was proposed

in [41]. A user-assisted segmentation algorithm was proposed in [40]. Symmetry

has been proposed as a useful cue to group architectural components [102, 157].

BuildingNet instead aims to label 3D building meshes with a learning-based ap-

proach based on modern deep backbones for extracting point descriptors. It also

incorporates repetitions as a cue for consistent labeling, along with several other

geometric and structural cues.

2.6 3D segmentation datasets

Here, we explore various 3D segmentation datasets with different levels of gran-

ularity, to highlight the necessity for datasets containing annotated 3D buildings,

such as BuildingNet.

2.6.1 3D shape semantic segmentation datasets

Existing datasets and benchmarks for 3D shape semantic segmentation are limited

to objects with relatively simple structure and small number of parts [32, 89, 77,

249, 158, 252]. The earliest such benchmark [32, 89] had 380 objects with few la-

beled parts per shape. More recently, Uy et al. [216] released a benchmark with 15K

14

Mari
os

 Lo
izo

u



scanned objects but focuses on object classification, with part-level segmentations

provided only for chairs. The most recent and largest semantic shape segmenta-

tion benchmark of PartNet, introduced by Yu et al. [252] contains 27K objects in 24

categories, such as furniture, tools, and household items. However, even with Part-

Net’s fine-grained segmentation, its categories still have a few tens of labeled parts

on average. BuildingNet introduces a dataset for part labeling of 3D buildings,

pushing semantic segmentation to much larger-scale objects with more challeng-

ing structure and several tens to hundreds of parts per shape.

2.6.2 3D indoor scene datasets

Another related line of work has introduced datasets with object-level annotations

in real-world or synthetic 3D indoor environments [78, 4, 163, 204, 27, 37, 125,

266, 56]. In contrast, BuildingNet focuses on building exteriors, a rather under-

investigated domain with its own challenges. While an indoor scene is made of

objects, which are often well-separated or have little contact with each other (ex-

cluding floors/walls), a building exterior is more like a coherent assembly of parts

(windows, doors, roofs) i.e., a single large shape with multiple connected parts,

including surroundings (e.g., landscape). Building exteriors share challenges of

single-shape segmentation (i.e., segment parts with clean boundaries along contact

areas) as well as scene segmentation (i.e., deal with the large-scale nature of 3D

data). Buildings also come in a variety of sizes, part geometry and style [145],

making this domain challenging for both shape analysis and synthesis.

2.6.3 3D urban datasets

With the explosion of autonomous driving applications, large-scale 3D point cloud

datasets capturing urban environments have appeared [161, 69, 183, 9, 212]. These

datasets include labels such as roads, vehicles, and sidewalks. Buildings are la-

beled as a single, whole object. The BuildingNet dataset contains annotations of

building parts, which has its own challenges. The RueMonge14 dataset contains

3D building frontal facades captured from a street in Paris with 8 labels related to

buildings [180]. Our buildings are instead complete 3D models with significantly

more challenging diversity in geometry, style, function, and with more fine-grained

part labels.
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2.7 Blueprint for graph neural networks

In the work Bronstein et al. [19], a unified design blueprint for geometric deep

learning is outlined. As discussed in Section 1.1, various geometric priors can

be combined to learn stable representations of high-dimensional data, achieved

through diverse transformations. One crucial aspect is the symmetry of an object,

defined as a transformation preserving a certain property. Here, we define an object

as a specific instance within an input domain, where a neural network operates.

For 2D images, symmetry entails translation invariance, while for point clouds

this translates to permutation invariance, due to their unordered nature. Although

such transformations are adequate for understanding global symmetries, they may

overlook local symmetries within objects. To capture these, geometrically stable trans-

formations are required to preserve properties across local neighborhoods. Thus,

transformations that respect translation or permutation equivariance are employed

for images or point clouds, respectively. While reinforcing the global symmetry

prior, these transformations operate independently across separate regions, lack-

ing exploitation of multiscale structure. Hence, by imposing transformations that

leverage scale separation, neural networks can capture long-range interactions across

various object scales.

These geometric priors establish the necessary conditions for learning high-

dimensional representations and guide the design choices for neural network ar-

chitectures. Firstly, a local equivariant map is crucial for preserving local symme-

tries, while a global invariant map consolidates local features into a unified global

representation. Additionally, a coarsening operator facilitates long-range correlations

across varying scales. These three fundamental building blocks offer essential in-

ductive biases for various geometric deep learning methods, tailored to their input

domains.

In our context, where we focus on neural networks operating on graphs, we em-

ploy local permutation-equivariant transformations, implemented through shared

MLPs across different regions of the input graph. We utilize local pooling layers,

such as sum, mean, or maximum operations, to aggregate representations of lo-

cal neighborhoods and downsample the graph, while also retaining permutation

invariance within the local neighborhood. Finally, a global permutation-invariant
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Figure 2.1: Geometric Deep Learning blueprint, exemplified on a graph. A

typical Graph Neural Network architecture may contain permutation equivari-

ant layers (computing node-wise features), local pooling (graph coarsening), and

a permutation-invariant global pooling layer (readout layer). This image is taken

from [19].

pooling operation combines all node representations to generate a global graph

representation. Figure 2.1 illustrates a generic design blueprint of a GNN incorpo-

rating these principles.

Building upon the previous graph operations, we can formulate a generic GNN

layer that computes a permutation-equivariant function. This is achieved through

the application of shared permutation-invariant functions, typically realized by

shared MLPs over local neighborhoods, followed by an aggregation function. Broadly,

GNN layers can be classified into three distinct “flavours”, based on the extent to

which the layer transforms the neighborhood features [19] (Figure 2.2 illustrates

the dataflow for the three flavours of GNN layers):

• Convolutional flavour: In this approach, features are directly aggregated

with fixed weights, specifying the significance of the sender node to the re-

ceiver node’s representation [39, 97, 236].

• Attentional flavour: Here, interactions among nodes are implicit, with a

self-attention mechanism computing importance weights based on node fea-

tures [218, 160, 261].

• Message-passing flavour: This approach computes vectors (or “messages”)
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Figure 2.2: A visualisation of the dataflow for the three flavours of GNN layers.

Left-to-right: convolutional, where sender node features are multiplied with a con-

stant; attentional, where this multiplier is implicitly computed via an attention

mechanism of the receiver over the sender; and message-passing, where vector-

based messages are computed based on both the sender and receiver. This image is

taken from [19].

across neighborhood edges, with learnable “message” functions determining

vectors between sender and receiver nodes. These vectors are then aggregated

to the receiver node via message passing throughout the graph [59, 8, 96].

Each method presented in this thesis aligns with one of the GNN flavours out-

lined previously. In Chapter 3, we employ DGCNN [231], featuring GNN layers

that adhere to the convolutional flavour. Here, each sender node is initially cen-

tered based on the centroid of its local neighborhood, and features are directly

aggregated using shared weights across the point cloud graph. For more insights,

refer to Section 3.1.

In Chapter 4, the Cross-ShapeNet method propagates features across shapes, by

following the attentional flavour paradigm. We utilize self-shape attention repre-

sentations of each shape to compute compatibility between pairs of shapes. This

scalar value moderates the influence of sender shape point-wise representations on

receiver shape features. For a detailed analysis of our approach, see Section 4.1.1.

Finally, in Chapter 5, we establish a graph over the building’s mesh subgroups,

representing the graph’s nodes. Edges are established between subgroups, captur-

ing various structural and spatial relationships. Edge representations are initially

updated by leveraging the features of their endpoints (sender and receiver nodes)

and are then aggregated to update the receiver node’s features, adhering to the

message-passing paradigm. Section 5.2 provides an in-depth analysis of our GNN

on 3D buildings.
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Chapter 3
Learning Part Boundaries from 3D Point

Clouds

This chapter presents a neural network approach that learns to detect part bound-

aries in point clouds of 3D shapes1. Although there has been significant amount of

research in detecting contours and object boundaries in natural images with neural

networks [11, 12, 13, 26, 74, 105, 119, 132, 138, 139, 149, 198, 232, 243], detecting

boundaries in 3D point clouds is largely an unexplored area. Despite the significant

advances in the area of 3D deep learning for processing unstructured point clouds,

most research has focused so far on assigning part tags to individual points. The

resulting segmentations often suffer from artifacts at areas that lie near the bound-

aries of parts, since the point assignments become highly uncertain at these areas

(see also Figure 1.1).

There is a number of technical challenges to overcome in developing an ap-

proach that addresses this problem. First, the notion of an object part is often

ambiguous and usually depends on the task. For example, in semantic segmen-

tation, parts follow label definitions (e.g., leg, back, seat for chairs), while for 3D

modeling tasks, shapes are often modeled as collections of geometric primitives

(e.g., spheres, cylinders, surfaces of extrusion, NURBS, and so on). We show that

an effective boundary detector can be trained from semantic segmentation datasets

to accurately localize boundaries of labeled parts, and also from shape datasets

with segmented geometric patches. Second, boundaries are usually sparse; only

1The work presented in this chapter is also published in Computer Graphics Forum, vol. 39, no.

5, 2020. Project page: https://marios2019.github.io/learning_part_boundaries. This is the author’s

version of the work. The definitive version of the article was published in Computer Graphics

Forum, vol. 39, no. 5, 2020, https://doi.org/10.1111/cgf.14078.
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a small percentage of points in a point cloud lie near boundaries. During train-

ing, we employ a sampling procedure to gather a sufficient amount of boundary

points for training, and use a classification loss function robust to the imbalance

of the number of boundary versus non-boundary points. Furthermore, in contrast

to semantic segmentation networks that often rely on points expressed in global

coordinate frames, we found that learning features from points expressed in local

frames aligned with surface normals are better suited for boundary extraction. The

output of our method is probabilistic: it assigns a probability for each point be-

longing to a part boundary or not. We demonstrate pairwise terms that can easily

adopt these probabilities within graph cuts formulations.

Our method draws inspiration from contour detection techniques used in object

segmentation within natural images. Early approaches to contour detection in nat-

ural images relied on local gradient estimates [181, 170, 150, 100, 21]. With the ap-

pearance of the first datasets with manual annotations of object segmentations [3],

machine learning approaches enhanced contour detection through learned classi-

fiers [151, 47, 104, 176, 129, 48]. Most recent approaches achieve state-of-the-art

performance on contour detection by training deep convolutional or recurrent neu-

ral networks [105, 11, 12, 13, 198, 139, 149, 26, 243, 232, 74, 138, 132, 119]. In

contrast to the regular 2D grid structure of images, point clouds are unorganized

and non-uniformly sampled. Our method adapts neural networks for point cloud

processing and is trained on datasets for 3D semantic or geometric segmentation

of shapes.

We conducted a number of experiments to validate our approach. First, we

compare our extracted boundaries with annotated ones in geometric and semantic

segmentation tasks. We found that the boundaries produced by our architecture

are much closer to ground-truth ones compared to alternatives. For example, we

observed that the error was reduced by 61.2% compared to the best alternative

edge detector we adapted for our task (EC-Net [254]), measured based on Chamfer

distance between detected and ground-truth boundaries in the ABC dataset [103].

We also show that our boundary detector, when combined with graph cuts, offers

a small, but noticeable boost in terms the semantic segmentation performance: an

increase of +2.6% in shape Intersection over Union (IoU), and +0.5% in part IoU

on average in PartNet [158] compared to using a neural network (DGCNN [231])

that assigns tags to points without explicitly considering boundaries.
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The contributions of the present chapter can be summarized as follows:

• a neural network module, called LocalEdgeConv (inspired by DGCNN), that

operates on point cloud neighborhoods expressed in local frames (in constrast

to global frames used in [231]). We found that this adaptation is more suitable

for the task of 3D part boundary detection.

• a network training procedure that robustly samples and weights boundary

data of either semantic parts or geometric primitives.

• a graph cuts formulation that uses our probabilistic boundary detector to

improve semantic shape segmentation, especially near part boundaries.

3.1 Method

The PB-DGCNN architecture takes as input a point cloud P = {pi,ni}N
i=1, where pi

are 3D point coordinates and ni are 3D normals, and outputs a scalar bi ∈ [0,1] for

each point. The output bi represents the probability for a part boundary to lie on

the point i. Our architecture is shown in Figure 3.1.

3.1.1 Architecture

Our architecture, follows the concept of graph edge convolution (EdgeConv) intro-

duced in the DGCNN network [231]. To implement edge convolution, a graph first

needs to be formed over the point cloud. In the first EdgeConv layer, each point i

is connected to its K neighbors in Euclidean space, where K is a hyper-parameter

of the network. In the original DGCNN formulation, the first EdgeConv layer pro-

cesses the input point coordinates pi of each point i along with the coordinates of

its neighbors {pj}j∈Ne(i), where Ne(i) is the Euclidean neighborhood of the point i.

The output representation for each point is computed as follows:

yi = max
j∈Ne(i)

MLP(pi,pj − pi) (3.1)

where MLP represents a learned Multi-Layer Perceptron operating on the above

input feature vector of point coordinates and differences (concatenated and flat-

tened). In this manner, each edge encodes the input coordinates at a point i along

with the coordinates of its neighbors expressed relative to it. The max operator
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Figure 3.1: Architecture of our network (PB-DGCNN) for probabilistic boundary

detection. It consists of three main blocks: the LocalEdgeConv layer, EdgeConv lay-

ers [231], and a Global Spatial Transformer. The LocalEdgeConv layer constructs

a K-NN graph for each input point i in Euclidean space and expresses the coor-

dinates of its K nearest neighbors in the local coordinate frame at point i. Then

a feature transformation is applied to the edge features of the graph through a 2-

layer MLP, and output representations are aggregated through max-pooling. These

representations are further processed by the two EdgeConv layers that operate on

the K-nn graphs constructed in the feature space of the previous layer. Finally, a

global descriptor is aggregated and concatenated with the point-wise descriptors

of the three previous layers, which are transformed through a 4-layer MLP, and

the boundary probability is produced by a sigmoid function. The Global Spatial

Transformer [85] operates on the Euclidean space of the input points and helps to

align the point cloud to a canonical space.

(max pooling) is used to aggregate all edge representations per point and guaran-

tees invariance to point and edge permutations.

3.1.2 LocalEdgeConv layer

The relative point coordinate differences (pj − pi) help capturing local neighbor-

hood structure in the original DGCNN. However, these differences are still ex-

pressed with respect to the global coordinate frame axes. As a result, if the local

neighborhood is rotated, the input edge features to the MLP will change. In turn,

the output of the MLP may also change. This effect might be desirable in the

case of semantic segmentation, since changing the orientation of a part in a shape

may change its functionality and its semantic label, especially for man-made ob-

jects (e.g. rotating a horizontal tailplane 90 degrees in an airplane would make

it look like a vertical stabilizer). However, the part boundaries are more likely to

remain unaffected by such local rotations e.g., one would still want to label points
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between the fuselage and the tailplane, or the stabilizer, as boundaries. Thus, in

our architecture, we make the following modification to the first edge convolution

layer:

yi = max
j∈Ne(i)

MLP
(
pi,RT

i (pj − pi)
)

(3.2)

where Ri is a rotation matrix responsible for expressing the relative point coordi-

nate differences in a local coordinate frame at point i (instead of a global one). Note

that the transpose of the rotation is used to perform the coordinate transformation.

The local frame is formed from the point normal ni and two tangent vectors u,v

randomly selected on the tangent plane of the point i: Ri = [ui vi ni]. Since the tan-

gent vectors are chosen randomly, rotational invariance is not guaranteed, however,

the use of the point normal decreases the variance of inputs that the network needs

to handle. We call the above edge convolution of Equation 3.2 as LocalEdgeConv.

Experimentally, we observed a significant improvement in boundary detection due

to LocalEdgeConv (see our evaluation in Section 3.4). We note that we also exper-

imented with using principal curvature directions as tangent directions, and also

treating their sign ambiguity through max pooling, yet the gain was still smaller

than LocalEdgeConv (see results section).

3.1.3 LocalEdgeConv layer with normals as features

Another variant of LocalEdgeConv we experimented with was to include point

normals as additional input features to this layer. Specifically, we horizontally

concatenate point positions and normals per point (xi = [pi,ni]), then transform

them through a MLP in a local coordinate system:

yi = max
j∈Ne(i)

MLP
(
xi,RT

i (xj − xi)
)

(3.3)

In this manner, the network also considers differences of normal coordinates in a

neighborhood around each point transformed in a local coordinate frame. We note

that we also experimented with processing points together with normals as input to

the original EdgeConv as first layer (instead of LocalEdgeConv). However, the gain

was smaller compared to using LocalEdgeConv with normals as input features.
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3.1.4 PB-DGCNN architecture

After using a LocalEdgeConv layer (with or without normals as additional fea-

tures), our architecture stacks two EdgeConv layers (Figure 3.1) that sequentially

process the representations extracted based on our local coordinate frames. At

each EdgeConv layer, each point is connected its K nearest neighbors dynamically

updated from the input feature space of the layer, as done in DGCNN [231]. The

point-wise representations extracted from the LocalEdgeConv and the two Edge-

Conv layers are concatenated, then processed through a max pooling layer, which

produces a global shape descriptor. The global descriptor is tiled and horizontally

concatenated with the point-wise representations (Figure 3.1), so that the resulting

point representations encode both local and global shape information. These are

passed into a MLP, followed by a sigmoid transformation that outputs a boundary

probability bi for each point i.

3.2 Datasets

To train our network, we make use of datasets that provide shape segmentations.

We made use of two datasets for training and evaluation: a geometric segmentation

dataset and a semantic segmentation one, described below. We train and test our

architecture on each dataset separately.

3.2.1 Geometric segmentation dataset

The ABC dataset [103] introduced a large repository of 3D geometric models, each

defined by parametric surfaces and ground truth information on their decomposi-

tion into individual patches. This dataset is a good source to learn segmentation

boundaries between geometric primitives and patches. Another advantage of this

dataset is that the patch boundaries are provided in parametric curve format, which

allows us to extract very accurate boundaries for training and evaluation.

Since our goal is to detect boundaries for input point clouds, we first convert

the geometric models into point-sampled surfaces for training. Specifically, we first

sample the surface of 3D models with 10K points based on Poisson-Disk sampling

[50], to create an initial point cloud. Since it is rather unlikely to sample points
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Figure 3.2: Marked (with red) boundaries on ABC point clouds for training.

Figure 3.3: Marked boundaries on PartNet point clouds for training.

lying exactly on boundary curves with this sampling procedure, we perform a sec-

ond pass where we randomly sample another 10K points along boundary curves,

specifically based on their underlying parametric representation. Concatenating

the surface point samples of the first pass with the boundary point samples of the

second pass tends to create higher point cloud density near the boundary regions.

To avoid this higher density bias during training, we perform a third pass where

for each boundary point, we remove any surface samples within a distance equal

to ϵ, which is computed by measuring the distance of each point sample of the first

pass to its nearest neighbor, then setting it to the maximum distance over the point

cloud. Finally, we observed that some ABC shapes sometimes contain adjacent

patches of same local geometry (e.g., two adjacent planes forming a flat boundary),

where the boundary between them can be ignored. We filtered out such bound-

aries. All shapes are centered in the origin and scaled so they lie inside the unit

sphere.
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The result of this procedure is the generation of a point cloud for each ABC

shape with surface points carrying a binary label: boundary or non-boundary

point. Figure 3.2 shows examples of such point clouds colored according to the

binary label. We created a training set of 16,291 labeled point clouds from ABC

based on the above procedure.

To monitor the training procedure, we also need a hold-out validation set. In

addition, for evaluation, we need a test set. We gathered an additional set of 2,327

shapes for hold-out validation and 4,655 shapes for testing i.e., in total we had

23,273 point clouds from ABC, and a 70%-10%-20% proportion for training, vali-

dation and testing respectively. It is also important to note that the hold-out val-

idation and testing point clouds are generated with Poisson point sampling from

the original surfaces without adding boundary points (i.e., without the second and

third pass used in training shapes). In this manner, we avoid biasing our testing

procedure with point samples that are exactly at the geometric boundaries, and

which may exhibit particular regular patterns due to their sampling from the un-

derlying parametric representation of boundary curves. As discussed in our results

section, the goal of our evaluation metrics is to detect boundaries up to a certain

distance tolerance i.e., find points whose distance to the ground-truth parametric

curve boundaries is up to distance equal to the maximum point sampling dis-

tance ϵ. Finally, to simulate noisy point clouds for validation and testing, we add

isotropic Gaussian noise to point coordinates with µ = 0 and σ = 0.005. Normals

are also perturbed from their original direction, by an angle sampled from a normal

distribution trimmed within an interval [−3,3] degrees.

3.2.2 Semantic segmentation dataset

To learn boundaries for semantic segmentation, we use the recent PartNet dataset

[158]. This dataset provides hierarchical segmentations of 26,671 shapes into la-

beled parts in 24 categories. The shapes are provided in the form of polygon

meshes split into parts according to their label. We use the segmentations from

the last hierarchy level in each category (i.e., the “fine-grained” segmentations). To

generate the training point clouds with boundaries, we follow the following proce-

dure. First, we sample 10K points based on Poisson-Disk sampling. PartNet does

not provide boundary curves. Furthermore, neighboring parts in PartNet meshes
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are topologically disconnected from each other in their mesh representation, of-

ten inter-penetrate each other, or even do not touch each other. We instead mark

as boundaries all points of triangles that have neighboring points labeled with a

different part label within a radius equal to ϵ set to the largest distance between

all-pairs of nearest neighboring point samples. We add the same noise profile in

the validation and test shapes, as in our ABC dataset. Figure 3.3 shows examples

of the resulting point clouds, colored according to the binary label. The bound-

aries are more fuzzy and spread compared to the ABC dataset, yet are still clearly

indicating zones separating semantic parts. PartNet provides training, hold-out

validation, and test splits, thus we follow the same splits in our case. For the val-

idation and test point clouds, we only perform the first pass to randomly sample

10K points. As in the case of ABC dataset, the goal of our evaluation is to detect

boundaries up to a certain distance tolerance.

3.3 Training procedure

To train our architecture, we use the marked boundary and non-boundary points

from either of the above training datasets as supervisory signal. We treat the prob-

lem as binary classification, and we use binary cross-entropy as our loss function.

However, since the number of boundary points is extremely small compared to the

number of non-boundary ones (i.e., they represent less than 1% of the total points

on average), we use a weighted cross entropy loss that emphasizes the error on

boundary points more:

L = ∑
s∈D

Ns

∑
i=1

wb · t̂i · log(bi) + (1− t̂i) · log(1− bi) (3.4)

where t̂i = 1 for marked boundary points and t̂i = 0 for non-boundary points,

and wb weights the cross-entropy terms for boundary points. Specifically, we set

the weight according to the ratio of the number of non-boundary points and the

number of boundary points: wb = (∑i [t̂i == 0])/(∑i [t̂i == 1]). In this manner, we

penalize more misclassifications of boundary points. During training, as a form of

data augmentation, and to also increase robustness, we add random noise in the

points and normals (same noise distributions used in the validation and test sets of

our datasets).

27

Mari
os

 Lo
izo

u



Implementation details. Training is done through the Adam optimizer [95] with

learning rate 0.001, beta coefficients set to (0.9,0.999), batch normalization with

momentum set to 0.5 and batch normalization decay set to 0.5 every 10 epochs.

The batch size is set to 8 point clouds. The PB-DGCNN method is implemented2

in TensorFlow [1].

3.4 Evaluation

We now discuss experimental evaluation of our method. First, we introduce evalu-

ation metrics for part boundary detection, and present results on the ABC dataset

for geometric boundary detection. Then we present an application of our method

to semantic segmentation, and present evaluation on the PartNet dataset.

3.4.1 Evaluation metrics

Our evaluation metrics are inspired by the literature on line drawing and segmen-

tation for 3D meshes. Cole et al. [35] introduced metrics that evaluate similarity of

human-annotated line drawings with computer-generated ones based on precision

and recall. Liu et al. [133] extended these metrics to include Intersection over Union

(IoU). Our part boundaries can be thought of as point-sampled lines in 3D, thus

we also use precision, recall, and IoU inspired by these works. Chen et al. [32] in-

troduced various metrics for evaluating segmentation for 3D meshes. In the case

of boundaries, they propose cut discrepancy that measures distances of annotated

and predicted boundaries on the surface. Following the above works, we introduce

the following metrics for the evaluation of boundaries:

Precision is defined as the fraction of predicted boundary points in a point cloud

that are “near” any annotated boundary. The proximity is computed by measur-

ing Euclidean distance of points to boundary curves in ABC dataset, or boundary

point samples in PartNet. The definition of “near” requires a distance threshold

indicating tolerance to small errors. We define this tolerance as the maximum point

sampling distance ϵ (largest distance between all-pairs of nearest neighboring point

samples per point cloud). We also examine performance under varying levels of

2The implementation is available at https://github.com/marios2019/learning_part_boundaries.
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tolerance (multiples of ϵ).

Recall is defined as the fraction of annotated boundary points that are “near”

any predicted boundary point. We follow the same definition of nearness as above.

In the ABC dataset, we densely sample the parametric boundary curves to evaluate

recall.

F1-score is the harmonic mean of precision and recall, often used to combine

them both in one metric.

Boundary IoU (bIoU) is the Intersection over Union that measures “overlap” be-

tween annotated boundaries and predicted ones. A boundary and predicted point

“overlap” if they are near to each other, based on the same definition of nearness

as above.

Chamfer distance (CD) measures Euclidean distance from annotated boundary

samples to nearest predicted boundary points, and vice versa (i.e., we use the

symmetric Chamfer distance).

It is important to note that in order to evaluate the above metrics, the proba-

bilistic boundaries must be binarized first. In the ABC dataset, we use thresholding

(i.e., a point becomes boundary if its probability is above a threshold). To select the

threshold, we perform dense grid search in our hold-out validation dataset, and

select the value that minimizes the Chamfer Distance. In the PartNet dataset, the

probabilistic boundaries are used in a pairwise term in graph cuts - the points

crossed by the cut are marked as boundaries. Finally, we note that the metrics are

computed for each test point cloud shape, then averaged over the test shapes.

3.4.2 Geometric part boundary detection

We now discuss evaluation for detection of part boundaries between geometric

primitives on ABC [103] based on the dataset described in Section 3.2. The prim-

itives in ABC include plane, cone, cylinder, sphere, torus, surface of revolution or

extrusion or NURBS patch. We compare our method with the edge detection net-

work called EC-Net from [254]. The method was introduced for detecting edges on

point clouds for 3D reconstruction. It upsamples the original point cloud, while we

also producing a value per point corresponding to its distance to the nearest edge.
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Model Input Features Metrics

position normal CD bIoU F1 P R

EC-Net
✓ 4.9 52.7 64.6 88.5 50.9

✓ ✓ 7.5 56.9 67.2 85.7 55.3

PB-DGCNN w/ EdgeConv
✓ 3.0 81.6 85.2 89.8 81.1

✓ ✓ 2.1 89.8 90.3 90.9 89.7

PB-DGCNN w/ LocalEdgeConv-curv
✓ 2.6 85.2 88.0 91.3 85.8

✓ ✓ 2.0 89.2 90.5 91.8 89.1

PB-DGCNN w/ LocalEdgeConv
✓ 2.4 90.0 89.7 89.2 90.1

✓ ✓ 1.9 92.0 91.9 91.8 92.1

Table 3.1: Boundary classification results on the ABC dataset (CD: Chamfer Dis-

tance - %, bIoU: Boundary IoU - %, F1: F1 score - %, P: Precision - %, R: Recall - %)

By thresholding the value, the method detects edges. We adapted their method for

our task. We trained their method on our dataset, tuned their hyper-parameters

(weights of losses) in our hold-out validation set, tuned the threshold for edge de-

tection using hold-out validation to optimize Chamfer distance, and used the same

augmentation as in our method. Since their method is based on sampling indi-

vidual patches from the point cloud, we experimentally verified that the sampled

patches fully cover the ABC shapes by setting their number to 50.

Table 3.1 reports our five evaluation metrics for EC-Net and our method. We

evaluated two version of EC-Net: one with points only as input features (EC-Net

w/o normals), and another with points and normals as input features (EC-Net

w/ normals). As indicated by all metrics, our method produces boundaries that

are much closer to the annotated ones compared to EC-Net. For example, the

EC-Net without normals has 2.04 times higher error than our method without nor-

mals (see PB-DGCNN w/ LocalEdgeConv w/o normals) in terms of Chamfer Dis-

tance, and 2.58 times higher error than our method with normals (see PB-DGCNN

w/ LocalEdgeConv w/ normals). The EC-Net with normals seems to have even

higher error in Chamfer Distance, yet better Recall and IoU profile than EC-net

without normals. It seems that the EC-Net with normals makes better predictions

near ground-truth boundaries, but also produces additional boundaries away from
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ground-truth ones, which results in higher Chamfer Distance. In any case, our PB-

DGCNN with LocalEdgeConv offers much better performance compared to both

versions of EC-Net according to all our evaluation metrics.

Figure 3.4 provides a visual demonstration for some example point clouds from

ABC. We find that the EC-Net boundaries are highly noisy and inconsistent, while

ours tend to agree with the ground-truth more.

Application to geometric decomposition. We found that our boundaries can be

used for segmentation of several ABC shapes using a simple flood-filling, water-

shed segmentation approach (Figures 1.1 and 3.5). We first construct a K-NN graph

(K = 4) over the point cloud, then we perform a BFS starting from a random seed

point and stopping at predicted boundary points. All visited points result in a

segment. Then we start the same procedure by using a random seed point from

the rest of the non-visited points. We note, however, that this simple flood-filling

approach can fail in cases where small gaps exist in boundaries (Figure 3.8).

3.4.3 Ablation study

In Table 3.1, we also report the performance of our method under the following

variants: (a) “PB-DGCNN w/ EdgeConv” where we use the original EdgeConv

layer of DGCNN [231] as first layer instead of LocalEdgeConv. We include the per-

formance of this variant with and without using normals as input features (b) “PB-

DGCNN w/ LocalEdgeConv-curv” where we use the principal curvature direc-

tions as tangent vectors ui and vi to define the local coordinate frame Ri per point

(we note that since the curvature directions are defined up to a sign, the max opera-

tor in Equation 3.3 is applied to MLPs that also include coordinate transformations

based on the opposite principal directions). Curvature is estimated based on the

method proposed in [91]. Finally, we include the performance of of our method

“PB-DGCNN w/LocalEdgeConv” with and without normals as input features.

Based on the numerical results, we observe that “PB-DGCNN w/LocalEdgeConv

w/ normals” has the best performance on average. Its achieved Chamfer Distance

is lowest compared to all variants, and the bIoU and F1 score are the highest. Using

principal directions did not seem to help the performance of LocalEdgeConv. The

LocalEdgeConv w/ normals has consistently better performance compared to us-
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Boundary 

Probabilities

PB-DGCNN

EC-Net
Ground Truth 

Boundaries

Predicted 

Boundaries

Figure 3.4: Visual comparison of the boundaries detected by our method PB-

DGCNN, and EC-Net on some example ABC point clouds. The first column on

the left shows the ground truth boundaries. The second column shows boundary

probabilities produced by PB-DGCNN, and the third column shows boundaries

predicted by PB-DGCNN after thresholding. The last column shows the bound-

aries predicted by EC-Net.
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Predicted Boundaries Decomposed Parts Predicted Boundaries Decomposed Parts

Figure 3.5: Examples of watershed (flood-filling) segmentation. In these cases well-

defined predicted boundaries between geometric parts, enable their decomposition

to individual segments through simple BFS-based flood-filling.
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Figure 3.6: Boundary detection evaluation wrt. precision and recall for different

tolerance levels.

ing EdgeConv w/ normals according to all metrics. Similarly LocalEdgeConv w/o

normals is better than using EdgeConv w/o normals on average. The precision of

EdgeConv w/o normals is a bit higher than LocalEdgeConv w/o normals, yet note

that its recall is much lower.

Figure 3.6 shows precision and recall for LocalEdgeConv, EdgeConv and EC-

Net (here, we use points and normals as input to all methods). Increasing the

tolerance results in increasing the precision for all methods, since more predicted

boundaries are classified as correct by increasing the boundary distance tolerance

threshold, as expected. Similarly, recall is also increased. Most importantly, our

method based on LocalEdgeConv has better behavior than the rest, since it demon-

strates both higher precision and recall for all tolerance levels we examined.
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Category Bag Bed Bott Bowl Chai Cloc Dish Disp Door Ear Fauc Hat Key Knif Lamp Lap Micr Mug Frid Scis Stor Tabl Tras Vase Avg

Shape IoU

Unary only 75.9 25.7 59.1 75.5 50.8 43.9 53.9 84.0 44.0 52.9 55.8 64.3 62.4 43.3 43.5 95.9 59.9 88.4 51.6 76.8 52.1 52.9 52.4 80.8 60.2

GC normal diff 76.1 25.9 60.6 81.3 55.0 44.1 54.1 85.2 45.4 53.0 58.0 65.2 62.4 45.6 47.2 96.0 60.7 89.5 52.9 76.9 55.2 55.7 54.0 82.5 61.8

GC PB-DGCNN 76.1 26.1 61.4 83.2 54.6 43.7 54.0 86.1 48.9 52.9 57.5 70.3 62.4 47.4 48.5 94.6 60.9 90.4 51.6 77.2 54.1 56.3 55.0 83.5 62.4

GC both 76.2 26.2 61.6 84.6 56.3 43.7 54.4 85.9 49.3 52.9 58.4 72.2 62.4 48.0 49.9 94.6 60.8 88.7 52.6 78.0 55.3 57.0 54.7 83.8 62.8

Part IoU

Unary only 49.9 26.8 39.9 64 40.6 24.6 46.2 84.3 32.2 42.4 46.1 62.7 61.1 39.5 24.1 95.6 54.4 81.5 37.7 76.5 43.1 33.4 45.5 55.9 50.3

GC normal diff 50.0 27.0 39.9 64.2 41.5 24.6 46.5 84.6 32.7 42.4 47.1 63.0 61.1 38.5 24.3 95.7 52.3 80.4 38.1 76.6 43.3 33.6 42.8 56.8 50.3

GC PB-DGCNN 50.2 27.0 44.3 66.7 41.2 24.0 46.7 84.6 32.6 42.4 46.7 63.6 61.1 39.7 24.4 93.8 53.9 82.7 37.7 76.8 43.2 33.4 43.8 56.6 50.7

GC both 50.2 27.0 45.0 69.4 41.6 24.0 47.0 84.4 33.1 42.4 47.3 65.7 61.1 38.4 24.4 93.9 52.2 80.2 38.1 77.6 43.2 33.4 42.0 56.7 50.8

Table 3.2: Point labeling evaluation of fine-grained semantic segmentation on the

PartNet dataset (Part IoU, Shape IoU - %). “Unary alone” represents using the per

point part probabilities produced by DGCNN, “GC normal diff” represents graph

cuts using normal angles as pairwise term, “GC PB-DGCNN” represents graph

cuts using our predicted boundary confidences as pairwise term, and “GC both“

represents graph cuts using the weighted combination of pairwise terms based on

both normal angles and PB-DGCNN.

3.4.4 Semantic shape segmentation

We now discuss evaluation on semantic shape segmentation based on the PartNet

dataset. Here, we train our network on the PartNet training split for each of its cat-

egories, as described in Section 3.2. To take advantage of semantic part labels, here

we first use a network that predicts a probability for each part per point. Specifi-

cally, we use the DGCNN network for this task [231], operating on 10K number of

point samples per shape. We then incorporate a graph cuts formulation, where the

above per-point part probability is used as a unary term, and the output boundary

probabilities from our method (“PB-DGCNN w/ LocalEdgeConv w/normals”) are

used as a pairwise term:

E(c) = ∑
i∈P

ψ(ci) + ∑
i∈P

∑
j∈N (i)

ϕ(ci, cj) (3.5)

where c = {ci} are the label assignments we wish to compute by minimizing the

above energy, P is the set of points in a test point cloud, and N (i) is the neighbor-

hood of each point i formed by its K = 4 nearest Euclidean neighbors. The unary

term is expressed as follows ψ(ci) = −logP(ci), where P(ci) is the probability dis-

tribution over part labels associated with the point i produced by the DGCNN

point labeling network. The pairwise term uses the maximum of our PB-DGCNN

boundary probabilities for the two points: ϕ(ci, cj) =−λ · log(max(bi,bj)) for ci , cj,
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Category Bag Bed Bott Bowl Chai Cloc Dish Disp Door Ear Fauc Hat Key Knif Lamp Lap Micr Mug Frid Scis Stor Tabl Tras Vase Avg

Chamfer Distance

Unary alone 6.3 3.1 6.9 38.8 4.0 5.4 6.6 7.8 37.3 9.9 6.0 4.1 2.3 9.4 7.2 1.0 3.3 3.6 3.9 9.4 1.5 3.2 3.8 10.9 8.2

GC both 6.4 3.1 7.1 37.0 3.7 5.4 6.2 7.7 36.4 9.9 5.4 3.1 2.3 7.3 5.9 1.3 3.5 3.2 3.9 8.7 1.3 2.7 5.9 11.0 7.9

Boundary IoU

Unary alone 61.5 72.3 48.0 56.0 67.0 59.0 64.0 73.5 54.4 49.1 54.4 77.3 76.5 38.7 57.1 90.5 79.1 66.7 69.1 44.7 88.4 75.9 77.6 73.4 65.6

GC both 60.9 73.0 48.4 60.7 70.2 63.9 66.0 74.9 57.9 49.0 63.2 82.1 76.1 47.0 67.0 90.9 76.4 75.3 69.7 50.4 90.0 79.2 74.8 75.4 68.4

Precision

Unary alone 74.3 70.5 52.3 58.7 65.3 57.8 67.1 72.1 56.9 56.6 51.8 78.4 81.8 34.8 56.2 91.2 81.4 75.0 76.4 46.2 88.6 78.0 78.4 72.8 67.6

GC both 77.6 73.7 60.4 68.0 80.2 73.9 75.7 81.4 65.7 57.6 71.2 89.2 82.1 54.7 81.9 93.8 81.7 87.3 80.3 54.8 94.4 90.1 89.6 78.8 76.8

Recall

Unary alone 57.9 79.5 48.9 62.8 74.7 68.0 68.0 79.1 56.1 47.8 61.8 78.9 75.9 51.6 72.5 91.0 78.0 65.1 66.9 45.3 90.0 81.1 79.9 79.9 69.2

GC both 55.9 76.8 44.8 62.1 67.1 63.4 63.2 72.7 55.9 46.8 60.2 78.0 75.3 46.2 63.9 90.0 73.3 70.6 65.4 48.9 87.5 76.2 68.9 76.4 66.2

F1-score

Unary alone 65.1 74.7 50.5 60.7 69.7 62.5 67.5 75.4 56.5 51.8 56.4 78.7 78.8 41.5 63.3 91.1 79.7 69.7 71.3 45.7 89.3 79.5 79.1 76.2 68.1

GC both 65.0 75.2 51.4 64.9 73.1 68.3 68.9 76.8 60.4 51.6 65.2 83.2 78.5 50.1 71.8 91.9 77.2 78.0 72.1 51.7 90.8 82.5 77.9 77.6 71.0

Table 3.3: Evaluation of fine-grained semantic segmentation boundaries (Chamfer

distance, Boundary IoU, Precision, Recall, F1 score - %) on the PartNet dataset.

“Unary alone” represents using the per point part probabilities produced by

DGCNN, “GC both” represents a weighted combination of pairwise terms based

on normal angles and PB-DGCNN.

and 0 otherwise. The weighting parameter λ is adjusted through grid search in the

hold-out validation set per shape category. To avoid infinite costs, we add a small

ϵ = 10−3 to the above log expressions.

We also experimented with another pairwise term variant as baseline that con-

siders angles between between point normals: ϕ′(ci, cj) =−λ′ · log(min(ωi,j/90o,1)),

for ci , cj, where ωi,j is the angle between the point normals. The term results in

zero cost for right angles between normals indicating a strong edge. The weight-

ing parameter λ′ is adjusted through grid search in the hold-out validation set per

shape category. We finally experimented with a combination of using both the

above pairwise terms in Eq. 3.5: ϕ(ci, cj) + ϕ′(ci, cj).

We first report point labeling performance in Table 3.2 based on the standard

part IoU and shape IoU metrics in PartNet [158]. In here y(·) and ŷ(·) are functions

that map the points of shape s, Ps, to their predicted and ground truth values

respectively. Also, Ls is the labels set of s that are either annotated or predicted

by the network and finally SC are all the shapes that belong to category C, of the

PartNet dataset. Thus, shape IoU (sIoU) measures the overlap of predicted and

ground truth labelled parts within a single shape, and is defined as:

sIoU(s) =
1
|Ls| ∑

l∈Ls

{y(Ps) == l} ∩ {ŷ(Ps) == l}
{y(Ps) == l} ∪ {ŷ(Ps) == l} (3.6)
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Figure 3.7: Visual comparison of semantic segmentation for example PartNet point

clouds, using DGCNN alone (unary), a graph-cut formulation with normal angles

in the pairwise term, and a graph-cut formulation with a combination of normal

angles and boundary probabilities produced by PB-DGCNN in the pairwise term.

Boundary confidence can help to diminish small semantic segments, which are

falsely predicted from the semantic segmentation model (unary). These are the

cases of Bag (top row, left) and Lamp (bottom row, right), where wrong annotated

parts are present even after applying the graph cuts method with normal angles as

a pairwise term. Moreover, it can further smooth out semantic parts as it is been

illustrated in the case of Chair (top row, right) and Knife (bottom row, left).

On the other hand, part IoU (pIoU), measures the overlap of a single predicted

and ground truth labelled part, across all shapes that belong to category C, and is

defined as:

pIoU(l) = ∑
s∈SC

{y(Ps) == l} ∩ {ŷ(Ps) == l}
{y(Ps) == l} ∪ {ŷ(Ps) == l} (3.7)

The average shape and part IOU for the whole dataset are calculated as:

avg{sIoU} = 1
|SC| ∑

s∈SC

sIoU(s) (3.8)

avg{pIoU} = 1
|LC| ∑

l∈LC

pIoU(l) (3.9)

where LC are all the labelled parts of category C.

We examine the performance of using DGCNN alone as unary term (“unary

alone”), then using graph cuts based on the normal angle baseline described above

(“GC normal diff”), graph cuts based on the predicted boundary probabilities of

PB-DGCNN (“GC PB-DGCNN”), and finally graph cuts using the summation of

pairwise terms from normal angles and PB-DGCNN (“GC both”). We observe
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Category Bag Bed Bott Bowl Chai Cloc Dish Disp Door Ear Fauc Hat Key Knif Lamp Lap Micr Mug Frid Scis Stor Tabl Tras Vase Avg

Chamfer Distance

Unary alone 6.3 3.1 6.9 38.8 4.0 5.4 6.6 7.8 37.3 9.9 6.0 4.1 2.3 9.4 7.2 1.0 3.3 3.6 3.9 9.4 1.5 3.2 3.8 10.9 8.2

GC both 6.4 3.1 7.1 37.0 3.7 5.4 6.2 7.7 36.4 9.9 5.4 3.1 2.3 7.3 5.9 1.3 3.5 3.2 3.9 8.7 1.3 2.7 5.9 11.0 7.9

Boundary IoU

Unary alone 61.5 72.3 48.0 56.0 67.0 59.0 64.0 73.5 54.4 49.1 54.4 77.3 76.5 38.7 57.1 90.5 79.1 66.7 69.1 44.7 88.4 75.9 77.6 73.4 65.6

GC both 60.9 73.0 48.4 60.7 70.2 63.9 66.0 74.9 57.9 49.0 63.2 82.1 76.1 47.0 67.0 90.9 76.4 75.3 69.7 50.4 90.0 79.2 74.8 75.4 68.4

Precision

Unary alone 74.3 70.5 52.3 58.7 65.3 57.8 67.1 72.1 56.9 56.6 51.8 78.4 81.8 34.8 56.2 91.2 81.4 75.0 76.4 46.2 88.6 78.0 78.4 72.8 67.6

GC both 77.6 73.7 60.4 68.0 80.2 73.9 75.7 81.4 65.7 57.6 71.2 89.2 82.1 54.7 81.9 93.8 81.7 87.3 80.3 54.8 94.4 90.1 89.6 78.8 76.8

Recall

Unary alone 57.9 79.5 48.9 62.8 74.7 68.0 68.0 79.1 56.1 47.8 61.8 78.9 75.9 51.6 72.5 91.0 78.0 65.1 66.9 45.3 90.0 81.1 79.9 79.9 69.2

GC both 55.9 76.8 44.8 62.1 67.1 63.4 63.2 72.7 55.9 46.8 60.2 78.0 75.3 46.2 63.9 90.0 73.3 70.6 65.4 48.9 87.5 76.2 68.9 76.4 66.2

F1-score

Unary alone 65.1 74.7 50.5 60.7 69.7 62.5 67.5 75.4 56.5 51.8 56.4 78.7 78.8 41.5 63.3 91.1 79.7 69.7 71.3 45.7 89.3 79.5 79.1 76.2 68.1

GC both 65.0 75.2 51.4 64.9 73.1 68.3 68.9 76.8 60.4 51.6 65.2 83.2 78.5 50.1 71.8 91.9 77.2 78.0 72.1 51.7 90.8 82.5 77.9 77.6 71.0

Table 3.4: Evaluation of fine-grained semantic segmentation boundaries (Chamfer

distance, Boundary IoU, Precision, Recall, F1 score - %) on the PartNet dataset.

“Unary alone” represents using the per point part probabilities produced by

DGCNN, “GC both” represents a weighted combination of pairwise terms based

on normal angles and PB-DGCNN.

small but noticeable average performance increases for both shape IoU and part

IoU when using all variants of graph cuts. The best performance is achieved on av-

erage (see last row, last column) when combining both pairwise terms. Specifically,

we observe an increase of average shape IoU by 2.6% and part IoU 0.5% compared

to using the unary term alone. We believe that using both pairwise terms offers the

best performance because our boundary probabilities are more fuzzy in PartNet -

we note that the training boundary data were also slightly fuzzy in PartNet (see

Figure 3.3) in the first place. Using normal angles further sharpens our probabilistic

boundaries. Nevertheless, the metrics seem improved with the use of our proba-

bilistic boundaries in the pairwise term alone. We note that graph cuts is executed

in a deterministic manner (i.e., there is no variance in the above increases given a

fixed unary term). The performance increase is not dramatic: this is not surprising,

since refining boundaries changes relatively few point labels near boundaries.

Table 3.4 reports our evaluation metrics in terms of boundary quality. We note

that compared to the ABC dataset, the evaluation of boundaries here is less reliable.

In contrast to ABC, where the ground-truth boundaries were parametric curves and

were highly accurate, the ground-truth boundaries in PartNet are marked approx-

imately using the heuristic search described in Section 3.2. We report the perfor-

mance of our best variant of graph cuts (using both terms), and also the unary
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Ground Truth Boundaries Decomposed Parts Predicted Boundaries Decomposed Parts

Figure 3.8: The figure on the left depicts part decomposition of the point cloud

from ground truth boundaries, with BFS flood-filling. It successfully segments the

point cloud into three parts. This is not the case on the right figure, where the

predicted boundaries fail to enclose points into separate segments, which results

to only one part after the watershed segmentation procedure.

Boundary 

Probabilities

PB-DGCNN

Ground Truth 

Boundaries

Predicted 

Boundaries

Figure 3.9: Predicted boundary confidences (middle column) is sometimes low

resulting in sparsely labeled boundary points (right column).

term alone. We observe that graph cuts result in boundaries that are more con-

sistent with ground-truth. In particular, we observe an improvement of 2.8% for

bIoU, and 2.9% for F1-score on average. We note that although the recall is lower,

the precision is significantly much higher. Figures 1.1 and 3.7 show semantic seg-

mentation results for a few examples from PartNet.

38

Mari
os

 Lo
izo

u



3.5 Discussion

In this chapter we presented a method for detecting probabilistic boundaries in

point clouds. It utilizes a neural module that performs graph edge convolutions

within point cloud neighborhoods, expressed in local frames. The proposed archi-

tecture is trained with a classification loss and sampling strategy, that are robust

to the class imbalance between boundary and non-boundary points. In addition, a

graph cuts formulation was used, that takes into account our predicted boundary

probabilities, to promote more coherent boundaries in segmentation tasks. Our

evaluation showed that our boundaries are closer to ground-truth in geometric de-

composition tasks, and also improve the quality of cuts in semantic segmentation

tasks.

Limitations. Our method also has limitations that could inspire future research.

First, our method currently extracts probabilities of part boundaries over points.

Sometimes these probabilities seem too low (Figure 3.9), resulting in sparsely la-

beled boundary points, which makes it harder to extract a continuous boundary

curve. It would be interesting to investigate robust fitting of parametric curves

or lines to probabilistic boundaries to localize them more accurately. This could

in turn be combined with neural patch fitting [197], and also result in geometric

decomposition of point clouds to primitives with more accurately trimmed bound-

aries. For semantic segmentation, jointly optimizing the unary and pairwise term

with the rest of the network in an end-to-end manner could further improve re-

sults. Finally, it would be interesting to extend our method to handle polygon

mesh segmentations based on our detected boundaries.
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Chapter 4
Cross-Shape Attention for Part Segmentation of

3D Point Clouds

In the present chapter, we propose a cross-shape attention mechanism that enables

interaction and propagation of point-wise feature representations across shapes of

an input collection1. Developing such a cross-shape attention mechanism is chal-

lenging. Performing cross-attention across all pairs of shapes becomes prohibitively

expensive for large input collections of shapes. Our method learns a measure that

allows us to select a small set of other shapes useful for such cross-attention op-

erations with a given input shape. For example, given an input office chair, it is

more useful to allow interactions of its points with points of another structurally

similar office chair rather than a stool. During training, we maintain a sparse graph

(Figure 1.2), whose nodes represent training shapes and edges specify which pairs

of shapes should interact for training our cross-shape attention mechanism. At

test time, the shape collection graph is augmented with additional nodes repre-

senting test shapes. New edges are added connecting them to training shapes for

propagating representations from relevant training shapes.

Our approach is inspired by recent cross-attention models proposed for video

classification, image classification, keypoint recognition, and image-text match-

ing. Wang et al. [230] introduced non-local networks that allow any image query po-

sition to perceive features of all the other positions within the same image or across

1The work presented in this chapter is also published in Computer Graphics Forum, vol. 42, no.

5, 2023. Project page: https://marios2019.github.io/CSN. This is the author’s version of the work.

The definitive version of the article was published in Computer Graphics Forum, vol. 42, no. 5,

2023, https://doi.org/10.1111/cgf.14909.
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frames in a video. To avoid huge attention maps, Huang et al. [83] proposes a “criss-

cross” attention module to maintain sparse connections for each position in image

feature maps. Cao et al. [24] simplifies non-local blocks with query-independent

attention maps. Lee et al. [121] propose cross-attention between text and images to

discover latent alignments between image regions and words in a sentence. Hou

et al. [75] models the semantic relevance between class and query feature maps in

images through cross-attention to localize more relevant image regions for classifi-

cation and generate more discriminative features. Sarlin et al. [188] learns keypoint

matching between two indoor images from different viewpoints by leveraging self-

attention and cross-attention to boost the receptive field of local descriptors and

allow cross-image communication. Chen et al. [29] propose cross-attention between

multiscape representations for image classification. Finally, Doersch et al. [46] in-

troduced a CrossTransformer model for few-shot learning on images. Give an un-

labeled query image, their model computes local cross-attention similarities with a

number of labeled images and then infers class membership. Our method instead

introduces attention mechanisms across 3D shapes. In contrast to cross-attention

approaches in the above domains, we do not assume any pre-existing paired data.

The usefulness of shape pairs is determined based on a learned shape compatibility

measure.

We tested our cross-shape attention mechanism on two different backbones to

extract the initial point-wise features per shape for the task of part segmentation: a

sparse tensor network based on MinkowskiNet [34] and the octree-based network

MID-FC [226]. For both backbones, we observed that our mechanism significantly

improves the point-wise features for segmentation. Compared to the Minkowsk-

iNet baseline, we found an improvement of 3.1% in mean part IoU in the PartNet

benchmark [158]. Compared to MID-FC, we found an improvement of +1.3% in

mean part IoU, achieving a new state-of-the-art result in PartNet (MID-FC: 60.8%

→ Ours: 62.1%).

In summary, the contributions of this2 chapter are:

• an attention-based mechanism that enables point-wise feature interaction and

propagation within and across shapes for more consistent segmentation.

• our experiments show state-of-the-art performance on the recent PartNet

dataset.
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Figure 4.1: Our cross-shape network architecture: given an input test shape (“query

shape”) represented as an input point set, we first extract initial point-wise features

through a backbone (our MinkowskiNet variant, called “MinkNetHRNet”, or al-

ternatively the MID-FC network [226]). Then our proposed cross-attention layer,

called CSA layer, propagates features extracted from another shape of the input

shape collection (“key shape”) to the query shape such that their semantic seg-

mentation becomes more synchronized. The output point-wise features of the CSA

layer are concatenated with the original features of the query shape, then they are

passed to a classification layer for semantic segmentation. Note that the illustrated

CSA layer in the inlet figure uses only one head (H = 1).

4.1 Method

Given an input collection of 3D shapes represented as point clouds, the goal of our

method is to extract and propagate point-based feature representations from one

shape to another, and use the resulting representations for 3D semantic segmen-

tation. To perform the feature propagation, we propose a Cross-Shape Attention

(CSA) mechanism. The mechanism first assesses the degree of interaction between

2Marios Loizou, Siddhant Garg and Dmitry Petrov contributed equally to this work.
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pairs of points on different shapes. Then it allows point-wise features on one shape

to influence the point-wise features of the other shape based on their assessed de-

gree of interaction. In addition, we provide a mechanism that automatically selects

shapes (“key shapes”) to pair with an input test shape (“query shape”) to execute

these cross-shape attention operations. In the following sections, we first discuss

the CSA layer at test time (Section 4.1.1). Then we discuss our retrieval mechanism

to find key shapes given a test shape (Section 4.1.2), our training (Section 4.1.3), test

stage (Section 4.1.4), and finally our network architecture details (Section 4.1.5).

4.1.1 Cross-shape attention for a shape pair

The input to our CSA layer is a pair of shapes represented as point clouds: Sm =

{pi}Pm
i=1 and Sn = {pj}Pn

j=1 where pi,pj ∈R3 represent 3D point positions and Pm, Pn

are the number of points for each shape respectively. Our first step is to extract

point-wise features for each shape.

In our implementation, we experimented with two backbones for point-wise

feature extraction: a sparse tensor network based on a modified version of Minkow-

skiNet [34], and an octree-based network, called MID-FC [226] (architecture details

for the two backbones are provided in Section 4.1.5 and Appendix A). The output

from the backbone is a per-point D-dimensional representation stacked into a ma-

trix for each of the two shapes respectively: Xm ∈RPm×D and Xn ∈RPn×D. The CSA

layer produces new D-dimensional point-wise representations for both shapes:

XXX′m = f
(
XXXm,XXXn;θθθ

)
, XXX′n = f

(
XXXn,XXXm;θθθ

)
(4.1)

where f is the cross-shape attention function with learned parameters θ described

in the next paragraphs.

Key and query intermediate representations. Inspired by Transformers [217],

we first transform the input point representations of the first shape in the pair

to intermediate representations, called “query” representations. The input point

representations of the second shape are transformed to intermediate “key” re-

presentations. The keys will be compared to queries to determine the degree of

influence of one point on another. Specifically, these transformations are expressed

as follows:

qqq(h)m,i =WWW(h)
q xxxm,i, kkk(h)n,j =WWW(h)

k xxxn,j (4.2)
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where xxxm,i and xxxn,j are point representations for the query shape Sm and key shape

Sn, WWW(h)
q and WWW(h)

k are D′ × D learned transformation matrices shared across all

points of the query and key shape respectively, and h is an index denoting each

different transformation (“head”). The dimensionality of the key and query repre-

sentations D′ is set to ⌊D/H⌋, where H is the number of heads. These intermediate

representations are stacked into the matrices QQQ(h)
m ∈RPm×D′ and KKK(h)

n ∈RPn×D′ . Fur-

thermore, the point representations of the key shape Sn are transformed to value

representations as:

vvv(h)n,j =WWW(h)
v xxxn,j (4.3)

where WWW(h)
v is a learned D′ × D transformation shared across the points of the key

shape. These are also stacked to a matrix VVV(h)
n ∈ RPn×D′ .

Pairwise point attention. The similarity of key and query representations is de-

termined through scaled dot product [217]. This provides a measure of how much

one shape point influences the point on the other shape. The similarity of key and

query representations is determined for each head as:

AAA(h)
m,n = so f tmax

(
QQQ(h)

m ·
(
KKK(h)

n
)⊤

√
D′

)
(4.4)

where AAA(h)
m,n ∈ RPm×Pn is a cross-attention matrix between the two shapes for each

head.

Feature representation updates. The cross-attention matrix is used to update the

point representations for the query shape Sm:

zzz(h)m,i =
Pn

∑
j=1

AAA(h)
m,n[i, j]WWW(h)

v xxxn,j (4.5)

The point-wise features are concatenated across all heads, then a linear transfor-

mation layer projects them back to D-dimensional space and they are added back

to the original point-wise features of the query shape:

xxx′m,i = xxxm,i + Wd · [zzz
(1)
m,i,zzz

(2)
m,i, ...,zzz

(H)
m,i ] (4.6)

where H is the number of heads and Wd is another linear transformation. The

features are stacked into a matrix XXX′m ∈RPm×D, followed by layer normalization [7].
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Self-shape attention. The pairwise attention of Equation 4.4 and update opera-

tion of Equation 4.5 can also be applied to a pair that consists of the shape and

itself. In this case, the CSA layer is equivalent to Self-Shape Attention (SSA), en-

abling long-range interactions between shape points within the same shape.

Cross-shape attention for multiple shapes. We can further generalize the cross-

shape operation in order to handle multiple shapes and also combine it with self-

shape attention. Given a selected set of key shapes, our CSA layer outputs point

representations for the query shape Sm as follows:

XXX′m = ∑
n∈{C(m),m}

c(m,n)AAAm,nVVVn (4.7)

where C(m) is a set of key shapes deemed compatible for cross-shape attention

with shape Sm and c(m,n) is a learned pairwise compatibility function between

the query shape Sm and each key shape Sn. The key idea of the above operation

is to update point representations of the query shape Sm as a weighted average of

attention-modulated representations computed by using other key shapes as well

as the shape itself. The compatibility function c(m,n) assesses these weights that

different shapes should have for cross-shape attention. It also implicitly provides

the weight of self-shape attention when Sm = Sn.

Compatibility function. To compute the compatibility function, we first extract a

global, D-dimensional vector representation yyym and yyyn for the query shape Sm and

each key shape Sn respectively through mean-pooling on their self-shape attention

representations:

yyy(SSA)
m = avgiXXX

′(SSA)
m,i = avgi

(
AAAm,mVVVm

)
(4.8)

yyy(SSA)
n = avgiXXX

′(SSA)
n,i = avgi

(
AAAn,nVVVn

)
(4.9)

In this manner, the self-attention representations of both shapes provide cues for

the compatibility between them expressed using their scaled dot product similar-

ity [217]:

uuum =UUUqyyy(SSA)
m

uuun =UUUkyyy
(SSA)
n

s(m,n) = û̂ûum · û̂ûu⊤n (4.10)
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where UUUq and UUUk are learned D× D transformations for the query and key shape

respectively, and û̂ûum = uuum/||uuum||, û̂ûun = uuun/||uuun||. The final compatibility function

c(m,n) is computed as a normalized measure using a softmax transformation of

compatibilities of the shape m with all other shapes in the set C(m), including the

self-compatibility:

c(m,n) =
exp
(
s(m,n)

)
∑n∈{C(m),m} exp

(
s(m,n)

) (4.11)

4.1.2 Key shape retrieval

To perform cross-shape attention, we need to retrieve one or more key shapes for

each query shape. One possibility is to use the measure of Equation 4.10 to evaluate

the compatibility of the query shape with each candidate key shape from an input

collection. However, we found that this compatibility is more appropriate for the

particular task of weighting the contribution of each selected key shape for cross-

shape attention, rather than retrieving key shapes themselves (see Appendix B for

additional discussion). We instead found that it is better to retrieve key shapes

whose point-wise representations are on average more similar to the ones of the

query shape. To achieve this, we perform the following steps:

(i) We compute the similarity between points of the query shape and the points

of candidate key shapes in terms of cosine similarity of their SSA representa-

tions:

SSSm,n = XXX′(SSA)
m · (XXX′(SSA)

n )⊤ (4.12)

where SSSm,n ∈ RPm×Pn .

(ii) Then for each query point, we find its best matching candidate key shape

point yielding the highest cosine similarity:

ri(m,n) = max
j

SSSm,n[i, j] (4.13)

(iii) Finally, we compute the average of these highest similarities across all query

points:

r(m,n) = avg
i

ri(m,n) (4.14)

The retrieval measure r(m,n) is used to compare the query shape Sn with candidate

key shapes from a collection.

46

Mari
os

 Lo
izo

u



4.1.3 Training

The input to our training procedure is a collection of point clouds with part an-

notations along with a smaller annotated collection used for hold-out validation.

We first train our backbone including a layer that implements self-shape attention

alone according to Equations 4.3-4.6 (i.e., Sm = Sn in this case). The resulting out-

put features are passed to a softmax layer for semantic segmentation. The network

is trained according to softmax loss. Based on the resulting SSA features, we con-

struct a graph (Figure 1.2), where each training shape is connected with K shapes,

deemed as “key” shapes, according to our retrieval measure of Equation 4.14. One

such graph is constructed for the training split, and another for the validation split.

We then fine-tune our backbone and train a layer that implements our full cross-

shape attention involving all K key shapes per training shape using the same loss.

During training, we measure the performance of the network on the validation

split, in terms of part IoU [158], and if it reaches a plateau state, we recalculate the

K-neighborhood of each shape based on the updated features. We further fine-tune

our backbone and CSA layer. This iteration of graph update and fine-tuning of our

network is performed two times in our implementation.

4.1.4 Inference

During inference, we create a graph connecting each test shape with K training

shapes retrieved by the measure of Equation 4.14. We then perform a feed-forward

pass through our backbone, CSA layer, and classification layer to assess the label

probabilities for each test shape.

4.1.5 Architecture

Here we describe the two backbones (MinkNetHRNet, MID-FC) we used to provide

point-wise features to our CSA layer (see Figure 4.1).

MinkNetHRNet. The first backbone is a variant of the sparse tensor network

based on MinkowskiNet [34]. We note that our variant performed better than

the original MinkowskiNet for 3D segmentation [34], as discussed in our experi-

ments. In a pre-processing step, we normalize the point clouds to a unit sphere
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and convert them to a sparse voxel grid (voxel size = 0.05). After two convolu-

tional layers, the network branches into three stages inspired by the HRNet [221],

a network that processes 2D images in a multi-resolution manner. In our case, the

first stage consists of three residual blocks processing the sparse voxel grid in its

original resolution. The second stage downsamples the voxel grid by a factor of 2

and processes it through two other residual blocks. The third stage further down-

samples the voxel grid by a factor of 2 and processes it through another residual

block. The multi-resolution features from the three stages are combined into one

feature map through upsampling following [221]. The resulting feature map is

further processed by a 1D convolutional block. The sparse voxel features are then

mapped back to points as done in the original MinkowskiNet [34]. Details about

the architecture of this backbone are provided in Section A.1 (Appendix A).

MID-FC. The second variant utilizes an octree-based architecture based on the

MID-FC network [226]. This network also incorporates a three-stage HRNet [221]

to effectively maintain and merge multi-scale resolution feature maps. To imple-

ment this architecture, each point cloud is first converted into an octree represen-

tation with a resolution of 643. To train this network, a self-supervised learning

approach is employed using a multi-resolution instance discrimination pretext task

with ShapeNetCore55 [189]. The training process involves two losses: a shape in-

stance discrimination loss to classify augmented copies of each shape instance and

a point instance discrimination loss to classify the same points on the augmented

copies of a shape instance. This joint learning approach enables the network to ac-

quire generic shape and point encodings that can be used for shape analysis tasks.

Finally, the pre-trained network is combined with two fully-connected layers and

our CSA layer. During training for our segmentation task, the HRNet is frozen,

while we train only the two fully-connected layers and CSA layer for efficiency rea-

sons. Details about the architecture of this backbone are provided in Section A.2

(Appendix A).

4.1.6 Implementation details

We train our Cross Shape Network for each object category of PartNet [158] se-

parately, using the standard cross entropy loss, for 200 epochs. We set the batch
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Variant avg part IoU

MinkResUNet 46.8

MinkHRNet 48.0

MinkHRNetCSN-SSA 48.7

MinkHRNetCSN-K1 49.9

MinkHRNetCSN-K2 49.7

MinkHRNetCSN-K3 47.2

MID-FC 60.8

MID-FC-SSA 61.8

MID-FC-CSN-K1 61.9

MID-FC-CSN-K2 61.9

MID-FC-CSN-K3 62.0

MID-FC-CSN-K4 62.1

MID-FC-CSN-K5 62.0

Table 4.1: Ablation study for all our variants in PartNet.

size equal to 8 for all variants (SSA, K=1,2,3). For optimization we use the SGD

optimizer [184] with a learning rate of 0.5 and momentum = 0.9. We scale learning

rate by a factor of 0.5, whenever the loss of the hold-out validation split saturates

(patience = 10 epochs, cooldown = 10 epochs). For updating the shape graph for

the training and validation split, we measure the performance of the validation

split in terms of Part IoU. If it reaches a saturation point (patience = 10 epochs,

cooldown = 5 epochs), we load the best model up to that moment, based on Part

IoU performance, and update the graph for both splits. The graph is updated twice

throughout our training procedure. For all layers we use batch normalization [84]

with momentum = 0.02, except for the CSA module, where the layer normaliza-

tion [7] is adopted. Our method is implemented3 in PyTorch [167].
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Category Bed Bott Chai Cloc Dish Disp Door Ear Fauc Knif Lamp Micr Frid Stor Tabl Tras Vase avg. #cat.

SpiderCNN [245] 36.2 32.2 30.0 24.8 50.0 80.1 30.5 37.2 44.1 22.2 19.6 43.9 39.1 44.6 20.1 42.4 32.4 37.0 0

PointNet++ [173] 30.3 41.4 39.2 41.6 50.1 80.7 32.6 38.4 52.4 34.1 25.3 48.5 36.4 40.5 33.9 46.7 49.8 42.5 0

ResGCN-28 [122] 35.9 49.3 41.1 33.8 56.2 81.0 31.1 45.8 52.8 44.5 23.1 51.8 34.9 47.2 33.6 50.8 54.2 45.1 0

PointCNN [126] 41.9 41.8 43.9 36.3 58.7 82.5 37.8 48.9 60.5 34.1 20.1 58.2 42.9 49.4 21.3 53.1 58.9 46.5 0

CloserLook3D [140] 49.5 49.4 48.3 49.0 65.6 84.2 56.8 53.8 62.4 39.3 24.7 61.3 55.5 54.6 44.8 56.9 58.2 53.8 0

MinkResUNet [34] 39.4 44.2 42.3 35.4 57.8 82.4 33.9 45.8 57.8 46.7 25.0 53.7 40.5 45.0 35.7 50.6 58.8 46.8 0

MinkHRNetCSN-K1 (ours) 42.1 54.0 42.5 42.9 58.2 83.2 43.5 51.5 59.4 47.8 27.9 57.4 43.7 46.2 36.8 51.5 60.0 49.9 0

MID-FC [226] 51.6 56.5 55.7 55.3 75.6 91.3 56.6 53.8 64.6 55.4 31.2 78.7 63.1 62.8 45.7 65.8 69.3 60.8 1

MID-FC-CSN-K4 (ours) 52.2 58.6 55.7 57.7 76.4 91.4 58.9 54.5 65.2 62.2 33.1 79.2 64.0 62.9 46.0 67.2 69.9 62.1 16

Table 4.2: Comparisons with other methods reporting performance in PartNet. The

column “avg.” reports the mean Part IoU (averaged over all 17 categories). The last

column “#cat” counts the number of categories that a method wins over others.

4.2 Results

We evaluated our method for fine-grained shape segmentation qualitatively and

quantitatively. In the next sections, we discuss the used dataset, evaluation metrics,

comparisons, and an analysis considering the computation time and size of our

CSA layer.

4.2.1 Dataset

We use the PartNet dataset [158] for training and evaluating our method according

to its provided training, validation, and testing splits. Our evaluation focuses on the

fine-grained level of semantic segmentation, which includes 17 out of the 24 object

categories present in the PartNet dataset. We trained our network and competing

variants separately for each object category.

4.2.2 Evaluation metrics

For evaluating the performance of our method and variants, we used the standard

Part IoU metric (see Section 3.4.4, Equations 3.7 and 3.9), as also proposed in the

PartNet benchmark [158]. The goal of our evaluation is to verify the hypothesis

that our self-attention and cross-shape attention mechanisms yield better features

for segmentation than the ones produced by any of the two original backbones on

the task of semantic shape segmentation.

3The implementation is available at https://github.com/marios2019/CSN.

50

Mari
os

 Lo
izo

u

https://github.com/marios2019/CSN


4.2.3 Ablation

Table 4.1 reports the mean part IoU performance averaged the PartNet’s part cate-

gories for the original backbones (“MinkHRNet”) and (”MID-FC”). We first observe

that our backbone variant “MinkHRNet” improves over the original “MinkRe-

sUNet” proposed in [34], yielding an improvement of 1.2% in mean Part IoU. Our

variant based on self-shape attention alone (“MinkHRNetCSN-SSA”) further im-

proves our backbone by 0.7% in Part IoU. We further examined the performance of

our cross-shape attention (CSA layer) tested in the variants “MinkHRNetCSN-K1”,

“MinkHRNetCSN-K2”, and “MinkHRNetCSN-K3”, where we use K = 1,2,3 key

shapes per query shape. Our CrossShapeNet with K = 1 (“MinkHRNetCSN-K1”)

offers the best performance on average by improving Part IoU by another 1.2%

with respect to using self-shape attention alone. When using K = 2 key shapes in

cross-shape attention, the performance drops slightly (−0.2% in Part IoU on av-

erage) compared to using K = 1, and drops even more when using K = 3. Thus,

for the MinkowskiNet variants, it appears that the optimal number of key shapes

is K = 1; we suspect that the performance drop for higher K is due to the issue

that the chance of retrieving shapes that are incompatible to the query shape is

increased with larger numbers of retrieved key shapes.

We also observe improvements using the MID-FC backbone. Note that this

backbone has higher performance than the MinkowskiNet variants due to its pre-

training and fine-tuning strategies [226]. Our variant based on self-shape attention

alone (“MID-FC-SSA”) further improves the original MID-FC backbone by 1.0%

in mean Part IoU. When using cross-shape attention, the optimal performance is

achieved when using K = 4 key shapes (“MID-FC-CSN-K4”), which improves Part

IoU by another 0.3% with respect to using self-shape attention alone. We note that

the above improvements are quite stable – by repeating all experiments 15 times,

the standard deviation of mean Part IoU is σ = 0.03%. This means that the above

differences are significant – even the improvement of 0.3% of “MID-FC-CSN-K4”

over “MID-FC-SSA” is of scale 10σ.
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4.2.4 Comparisons with other methods

Table 4.2 includes comparisons with other methods reporting their performance on

PartNet per category [245, 173, 122, 126, 140, 226] along with our best performing

variants (“MinkHRNetCSN-K1” and “MID-FC-CSN-K4”). Compared to the origi-

nal MinkowskiNet (“MinkResUNet”), our “MinkHRNetCSN-K1” variant achieves

an improvement of 3.1% in terms of mean Part IoU in PartNet. Compared to “MID-

FC”, our best variant (“MID- FC-CSN-K4”) also offers a noticeable improvement of

1.3% in mean Part IoU. To the best of our knowledge, the result of our best variant

represents the highest mean Part IoU performance achieved in the PartNet bench-

mark so far4. As it can been in the last column of Table 4.2, our method improves

performance for 16 out of 17 categories.

4.2.5 Qualitative Results

Figures 4.2 shows qualitative comparisons for MinkowskiNet-based variants – specif-

ically our best variant in this case using cross-shape attention with K = 1, self-

shape attention, our MinkHRNet backbone, and the original MinkowskiNet. Our

backbone often improves the labeling relative to the original MinkowskiNet (e.g.,

see bed mattress). Our cross-shape attention tends to further improve upon fine-

grained details in the segmentation e.g., see the top of the bottle, the armrests in

the chair, and the bottom of the faucet, pushing the segmentation to be more con-

sistent with the retrieved key shape shown in the inlet images. Figure 4.3 shows

comparisons for the MID-FC-based variants, including using cross-shape attention

with K = 4, self-shape attention, and the original MID-FC. We can drive similar

conclusions – our method improves the consistency of segmentation especially for

fine-grained details e.g., the lower bars of the table, the bottom of the lamp, the

handle of the sword, and the sides of the seat.
4As of March 20, 2024, according to the latest leaderboard for 3D Semantic Segmentation on Part-

Net, available on Papers with Code at the following link: https://paperswithcode.com/sota/3d-

semantic-segmentation-on-partnet?p=cross-shape-graph-convolutional-networks
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Ground Truth MinkResUNet MinkHRNet MinkHRNetCSN-SSA MinkHRNetCSN-K1

Figure 4.2: Qualitative comparisons for a few characteristic test shapes of PartNet

between the original MinkowskiNet for 3D shape segmentation (“MinkResUNet”),

our backbone (“MinkHRNet”), and CrossShapeNet (CSN) in case of using self-

shape attention alone (“MinkHRNetCSN-SSA”) and using cross-shape attention

with K = 1 key shape per query shape (“MinkHRNetCSN-K1”). The inlet images

(red dotted box) show this key shape retrieved for each of the test shapes.

4.2.6 Number of parameters

Our CSA layer adds a relatively small overhead in terms of number of parameters.

The MID-FC backbone has 1.8M parameters, the MinkHRNet has 24.8M parame-

ters, while the CSA layer adds 0.4M parameters.

4.2.7 Computation

The cross-shape operation (Equation 4.7) has linear time complexity wrt the num-

ber of used key shapes (K) and quadratic time complexity wrt the number of points

per shape during both training and testing. To accelerate computation, subsets of
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Ground Truth MID-FC MID-FC-CSN-SSA MID-FC-CSN-K4 Key shapes

𝟏𝟏𝒔𝒔𝒔𝒔 𝟐𝟐𝒏𝒏𝒏𝒏

𝟑𝟑𝒓𝒓𝒏𝒏 𝟒𝟒𝒔𝒔𝒕𝒕

𝟏𝟏𝒔𝒔𝒔𝒔 𝟐𝟐𝒏𝒏𝒏𝒏

𝟑𝟑𝒓𝒓𝒏𝒏 𝟒𝟒𝒔𝒔𝒕𝒕

𝟏𝟏𝒔𝒔𝒔𝒔 𝟐𝟐𝒏𝒏𝒏𝒏

𝟑𝟑𝒓𝒓𝒏𝒏 𝟒𝟒𝒔𝒔𝒕𝒕

𝟏𝟏𝒔𝒔𝒔𝒔 𝟐𝟐𝒏𝒏𝒏𝒏

𝟑𝟑𝒓𝒓𝒏𝒏 𝟒𝟒𝒔𝒔𝒕𝒕

Figure 4.3: Qualitative comparisons for a few characteristic test shapes of Part-

Net between the original MID-FC network for 3D shape segmentation (“MID-

FC”) [226], and CrossShapeNet (CSN) in case of using self-shape attention alone

(“MID-FC-CSN-SSA”) and using cross-shape attention with K = 4 key shape per

query shape (“MID-FC-CSN-K4”). The last column shows the key shapes and their

ordering, retrieved for each test shape.

points could be used as key points, as done in sparsified formulations of atten-

tion [257, 134]. The construction of the shape graph during training has quadratic

time complexity wrt the number of the training shapes in the input collection. This

is because the retrieval measure (Equation 4.14) must be evaluated for all pairs of

training shapes in our current implementation. For example, our CSA layer for

K = 1 requires approximately 105 hours on a NVidia V100 to train for the largest

PartNet category (3.5× more compared to training either backbone alone) due to

the iterative graph construction and fine-tuning discussed in Section 4.1.3. A more

efficient implementation could involve a more hierarchical approach e.g., perform

clustering to select only a subset of training shapes as candidate key shapes for
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the retrieval measure. During inference, the time required per test shape exhibits

linear complexity wrt the number of training shapes used for retrieval. In our ex-

periments, testing time ranges from 0.7 sec (“Dish” class with the smallest number

of shapes) to 7.8 sec (“Table” class with the largest number of shapes).

4.3 Discussion

This chapter presents a method that enables interaction of point-wise features

across different shapes in a collection. The interaction is mediated through a new

cross-shape attention mechanism, that assesses the degree of feature interaction

among shapes. In addition, a retrieval measure was introduced, that leverages self-

shape representations to retrieve key shapes, that are compatible for cross-shape

operations. Our experiments show improvements of this interaction in the case of

fine-grained shape segmentation.

Limitations. Our method has also limitation. The performance increase comes

with a higher computational cost at training and test time. It would be interest-

ing to explore if further performance gains can be achieved through self-supervised

pre-training [241, 226, 195] that could in turn guide our attention mechanism. Spar-

sifying the attention and accelerating the key shape retrieval mechanism would also

be important to decrease the time complexity. Another future research direction

is to explore how to generalize the cross-shape attention mechanism from single

shapes to entire scenes.
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Chapter 5
BuildingNet: Learning to Label 3D Buildings

Architecture is a significant application area of 3D vision. There is a rich body

of research on autonomous perception of buildings, led in large part by digital

map developers seeking rich annotations and 3D viewing capabilities for building

exteriors [62], as well as roboticists who design robots to operate in building inte-

riors (e.g. [193]). Recent advances in AR/VR also rely on computer-aided building

analysis [31]. Early work on digital techniques for architectural design, including

freeform design explorations as well as full-fledged constructions [63], led to the

current ubiquity of computational design tools in architectural studios. In addition,

computers can automate the processing of architectural data such as photographs,

satellite images and building plans, for archival and analytical purposes (e.g. [259,

148]).

Thus, there is significant incentive to apply modern data-driven geometry pro-

cessing to the analysis of buildings. However, while buildings are bona fide ge-

ometric objects with well-established design principles and clear ontologies, their

structural and stylistic complexity is typically greater than, or at least markedly

different from, those of shapes in common 3D datasets like ShapeNet [28] and Scan-

Net [37]. This makes them challenging for standard shape analysis pipelines, both

for discriminative tasks such as classification, segmentation and point correspon-

dences, as well as for generative tasks like synthesis and style transfer. Further,

data-driven methods demand data, and to the best of our knowledge there are no

large-scale, consistently-annotated, public datasets of 3D building models.

In this chapter, we present BuildingNet1, the first publicly available large-scale

dataset of annotated 3D building models whose exteriors and surroundings are

consistently labeled. The dataset provides 513K annotated mesh primitives across
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2K building models. We include a benchmark for mesh and point cloud labeling,

and evaluate several mesh and point cloud labeling networks. These methods

were developed primarily for smaller single objects or interior scenes and are less

successful on architectural data. This benchmark featured also as a workshop cha-

llenge in the Second Workshop on Structural and Compositional Learning on 3D

Data.

In addition, we introduce a graph neural network (GNN) that labels building

meshes by analyzing spatial and structural relations of their geometric primitives.

Our GNN treats each subgroup as a node, and takes advantage of relations, such

as adjacency and containment, between pairs of nodes. Neural message passing in

the graph yields the final mesh labeling. Our experiments show that this approach

yields significantly better results for 3D building data than prior methods. To

summarize, the contributions2 of this chapter are:

• The first large-scale, publicly available 3D building dataset with annotated

parts covering several common categories, in addition to a benchmark.

• A graph neural network that leverages pre-existing noisy subgroups in mesh

files to achieve state-of-the-art results in labeling building meshes.

5.1 Dataset and Benchmark

In contrast to 3D models of small and mid-scale objects, such as tools, furniture,

and vehicles encountered in existing 3D shape segmentation benchmarks, such

as ShapeNet [249, 250] and PartNet [158], buildings tend to contain much richer

structure, as indicated by their mesh metadata. For example, one common type

of metadata are groupings of polygon faces, commonly known as mesh subgroups

[158], which correspond to geometric primitives and modeling operations used by

modelers while designing shapes. These subgroups often correspond to “pieces”

of semantic parts e.g., a window is made of subgroups representing individual

1The work presented in this chapter is also published in the proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision (ICCV), 2021. Project page: https://buildingnet.org. This

is the authors’ version of the work.
2This research was carried out in collaboration with Pratheba Selvaraju, Ph.D. student at the

University of Massachusetts Amherst, who has made an equal contribution to this work.
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Category # build. # train. # val. # test

Residential 1266 1007 (62.9%) 133 (66.5%) 126 (63.0%)

Religious 469 386 (24.1%) 38 (19.0%) 45 (22.5%)

Commercial 131 104 (6.5%) 16 (8.0%) 11 (5.5%)

Military 73 58 (3.6%) 5 (2.5%) 10 (5.0%)

Public 61 45 (2.8%) 8 (4.0%) 8 (4.0%)

Total 2,000 1600 (80%) 200 (10%) 200 (10%)

Table 5.1: From left to right: number of models per basic building category, number

and percentage of training, hold-out validation and test buildings

horizontal and vertical frame pieces or glass parts. The average number of mesh

subgroups per object at the last level of group hierarchy in the largest shape seg-

mentation benchmark (PartNet [158]) is 24.4, and the median is 11. In our dataset,

the average number of mesh subgroups per building is 25.5x larger (623.6 sub-

groups), while the median is 44x larger (497.5 subgroups; see Table 5.2 for more

subgroup statistics per building category). We note that these numbers include

only building exteriors i.e., without considering building interiors (e.g, indoor fur-

niture).

5.1.1 BuildingNet dataset

To create our dataset, we mined building models from the 3D Warehouse reposi-

tory [215]. Mining was driven by various quality checks e.g., excluding low-poly,

incomplete, untextured meshes, and meshes with no or too few subgroups. We

also categorized them into basic building categories following the Wikipedia’s arti-

cle on “list of building types” [235] and an Amazon MTurk questionnaire. Table 5.1

provides statistics per basic building category in our dataset and its splits. Since

we aimed to gather annotations of building exteriors, during a pre-processing step

we removed interior structure from each building. This was done by performing

exhaustive ray casting originating from mesh faces of each subgroup and checking

if the rays were blocked. We also used ray casting to orient faces such that their

normals are pointing outwards [211].
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Category
num# avg# med# min# max# avg# un. med# un. min# un. max# un. avg# un. med# un. min# un. max# un.

models subgrps subgrps subgrps subgrps subgrps subgrps subgrps subgrps l.subgrps l.subgrps l.subgrps l.subgrps

Residential 1,424 678.7 547 83 1989 167.1 144 61 920 61.4 50.0 7 613

Religious 540 487.0 348 93 1981 139.9 129 65 667 47.2 45.0 7 139

Commercial 153 723.4 606 90 1981 159.8 139 70 907 49.4 44.0 3 223

Military 85 609.8 485 125 1786 193.0 166 76 590 38.6 37 2 92

Public 67 628.8 480 118 1822 144.4 123 75 618 43.0 43.0 8 106

Total 2,000 623.6 497.5 83 1989 160.5 140 61 920 55.9 47.0 2 613

Table 5.2: Statistics for each building category regarding mesh subgroups

From left to right: building category, total number of models, average/medi-

an/minimum/maximum number of mesh subgroups over the category’s mod-

els, average/median/minimum/maximum number of unique (non-duplicate) sub-

groups, average/median/minimum/maximum number of annotated unique mesh

subgroups.

Category
num# avg# med# min# max# avg# un. med# un. min# un. max# un.

models l.comp. l.comp. l.comp. l.comp. l.comp. l.comp. l.comp. l.comp.

Residential 1,424 321.8 243.0 13 1970 46.1 42.0 8 371

Religious 540 272.2 184.0 18 1469 37.7 35.0 6 135

Commercial 153 408.0 296.0 4 1680 44.6 39.0 3 247

Military 85 295.3 210.0 40 1200 30.5 28.0 2 107

Public 67 378.4 263.0 36 1667 39.3 33.0 7 252

Total 2,000 316.6 231.0 4 1970 43.2 39.0 2 371

Table 5.3: Statistics per building category regarding components (merged adja-

cent mesh subgroups). From left to right: building category, total number of mod-

els, average/median/minimum/maximum number of annotated components per

model, average/median/minimum/maximum number of annotated unique (non-

duplicate) components per model.

Part labels. To determine a set of common labels required to annotate building ex-

teriors, we launched an initial user study involving a small subset of 100 buildings

across all classes and 10 participants with domain expertise (graduate students in

civil engineering and architecture). We selected a list of 31 frequently entered tags

to define our label set (see Table 5.4).
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Figure 5.1: Distribution of buildings with

achieved labeling majority

Data gathering. We gathered annota-

tions for 2K buildings. Each building

was annotated by 5 different, qualified

MTurkers (10K annotations in total).

We accepted a label for each subgroup

if a majority of at least 3 MTurkers out

of 5 agreed on it. Figure 5.1 shows

a histogram displaying the distribution

of buildings (vertical axis) for different

bins of percentage of surface area la-

beled with achieved majority (horizon-

tal axis). All buildings in our dataset have labeled area more than 50%, and most

have > 80% area labeled. In terms of annotator consistency, i.e., the percentage of

times that the subgroup label selected by a qualified MTurker agreed with the ma-

jority, we found that it is 92.0%, indicating that the workers were highly consistent.

Our resulting 2K dataset has 513,087 annotated mesh subgroups, and 291,998 an-

notated components (after merging adjacent subgroups with the same label). The

number of unique annotated subgroups and components are 111,832 and 86,492

respectively. Table 5.2 reports statistics on the number of subgroups per building

category, unique subgroups (counting repeated subgroups with exactly the same

mesh geometry as one unique subgroup), and number of annotated subgroups.

We note that there were often subgroups that represented tiny, obscure pieces (e.g.,

subgroups with a few triangles covering a tiny area of a wall, beam, or frame),

and these were often not labeled by annotators. Moreover, Table 5.3 presents more

statistics on the labeled components (merged, adjacent subgroups with the same

label) of the 2K building dataset per each basic category. Table 5.4 shows labeled

component statistics per part label.

Splits. We split our dataset into 1600 buildings for training, 200 for validation,

200 for testing (80/10/10% proportion). We created the splits such that (a) the

distribution of building classes and parts is similar across the splits (Tables 5.1

and 5.4) and (b) test buildings have high majority-labeled area (> 85%) i.e., more

complete labelings for evaluation.
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Label
# labeled # in training # in validation # in test

comp. split (%) split (%) split (%)

Window 140,972 109,218 (47.8%) 15,740 (55.1%) 16,014 (46.0%)

Plant 26,735 20,974 (9.2%) 1,870 (6.5%) 3,891 (11.2%)

Wall 22,814 18,468 (8.1%) 2,270 (7.9%) 2,076 (6.0%)

Roof 12,881 10,342 (4.5%) 1,396 (4.9%) 1,143 (3.3%)

Banister 13,954 9,678 (4.2%) 1,467 (5.1%) 2,809 (8.1%)

Vehicle 8,491 7,421 (3.2%) 716 (2.5%) 354 (1.0%)

Door 9,417 7,363 (3.2%) 785 (2.7%) 1,269 (3.6%)

Fence 5,932 5,637 (2.5%) 88 (0.3%) 207 (0.6%)

Furniture 6,282 5,000 (2.2%) 575 (2.0%) 707 (2.0%)

Column 6,394 4,870 (2.1%) 623 (2.2%) 901 (2.6%)

Beam 6,391 4,814 (2.1%) 437 (1.5%) 1,140 (3.3%)

Tower 4,478 3,873 (1.7%) 286 (1.0%) 319 (0.9%)

Stairs 4,193 2,960 (1.3%) 472 (1.7%) 761 (2.2%)

Shutters 2,275 1,908 (0.8%) 77 (0.3%) 290 (0.8%)

Ground 2,057 1,572 (0.7%) 229 (0.8%) 256 (0.7%)

Garage 1,984 1,552 (0.7%) 182 (0.6%) 250 (0.7%)

Parapet 1,986 1,457 (0.6%) 153 (0.5%) 376 (1.1%)

Balcony 1,847 1,442 (0.6%) 199 (0.7%) 206 (0.6%)

Floor 1,670 1,257 (0.5%) 205 (0.7%) 208 (0.6%)

Buttress 1,590 1,230 (0.5%) 53 (0.2%) 307 (0.9%)

Dome 1,327 1,098 (0.5%) 114 (0.4%) 115 (0.3%)

Corridor 1,257 1,008 (0.4%) 113 (0.4%) 136 (0.4%)

Ceiling 1,193 903 (0.4%) 111 (0.4%) 179 (0.5%)

Chimney 1,090 800 (0.4%) 103 (0.4%) 187 (0.5%)

Gate 827 737 (0.3%) 65 (0.2%) 25 (0.1%)

Lighting 921 702 (0.3%) 51 (0.2%) 168 (0.5%)

Dormer 798 601 (0.3%) 48 (0.2%) 149 (0.4%)

Pool 742 544 (0.2%) 78 (0.3%) 120 (0.3%)

Road 590 444 (0.2%) 55 (0.2%) 91 (0.3%)

Arch 524 393 (0.2%) 11 (0.03%) 120 (0.3%)

Awning 386 295 (0.1%) 19 (0.1%) 72 (0.2%)

Total 291,998 228,561 28,591 34,846

Table 5.4: Number of labeled components per part label in our dataset, along with

their number and frequency in the training split, hold-out validation, and test split.
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5.1.2 BuildingNet benchmark

We provide two tracks in our benchmark. In the first track, called “BuildingNet-

Mesh”, algorithms can access the mesh data, including subgroups. In this aspect,

they can take advantage of any pre-existing mesh structure common in 3D building

models. The algorithms are evaluated in two conditions: when the RGB texture is

available, and when it is not. In the second condition, algorithms must label the

building using only geometric information. The second track, called “BuildingNet-

Points”, is designed for large-scale point- based processing algorithms that must

deal with unstructured point cloud data without access to mesh structure or sub-

groups, which is still challenging even in the noiseless setting. To this end, for each

mesh, we sample 100K points with Poisson disc sampling [50], to achieve a near-

uniform sampling similarly to PartNet [158]. The point normals originate from

triangles. There are also two evaluation conditions: with and without RGB color

for points.

5.2 BuildingGNN

We now describe a graph neural network3 for labeling 3D meshes by taking advan-

tage of pre-existing mesh structure in the form of subgroups. The main idea of the

network is to take into account spatial and structural relations between subgroups

to promote more coherent mesh labeling. The input to our network is a 3D build-

ing mesh with subgroups C = {ci}N
i=1, where N is the number of subgroups, and

the output is a label per subgroup. In the next section, we describe how the graph

representing a building is created, then we discuss our GNN architecture operating

on this graph.

5.2.1 Graph nodes

For each 3D building model, we create a node for each mesh subgroup. Nodes

carry an initial raw representation of the subgroup. Specifically, we first sam-

ple the mesh with 100K points (same point set used in the “BuildingNet-Points”

track), then process them through the 3D sparse convolutional architecture of

3The graph neural network was implemented by Pratheba Selvaraju with the help and feedback

from other authors, including the author of this thesis.
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Minkowski network (MinkowskiUNet34 variant [34]). We also experimented us-

ing PointNet++ [173]. We extract per-point features from the last layer of these

nets, then perform average pooling over the points originating from the faces of

the subgroup to extract an initial node representation. We concatenate this repre-

sentation with the 3D barycenter position of the subgroup, its mesh surface area,

and the coordinates of the opposite corners of its Oriented Bounding Box (OBB)

so that we capture its spatial dimensions explicitly. The combination of the above

features in the resulting 41D node representation ni yielded better performance in

our experiments.

5.2.2 Proximity edges

Driven by the observation that nearby subgroups tend to have the same label (e.g.,

adjacent pieces of glass or frame are labeled as “window”), or related labels (e.g.,

windows are often adjacent to walls), we create edges for pairs of subgroups that

capture their degree of proximity. To avoid creating an overly dense graph, which

would pose excessive memory overheads for the GNN, we created edges for pairs

of subgroups whose distance was up to 10% of the average of their OBB diagonals.

Relaxing this bound did not improve results. To avoid a hard dependency on

a single threshold, and to capture the degree of subgroup proximity at multiple

scales, we computed the percentage of point samples of each subgroup whose

distance to the other subgroup is less than 1%, 2.5%, 5%, and 10% of the average of

their OBB diagonals. Given a pair of subgroups (ci, cj), this results in a 4D edge raw

representation e(prox)
i,j , where each entry approximates the surface area percentage

of ci proximal to cj at a different scale. Similarly, we compute a 4D representation

e(prox)
j,i for the opposite edge direction.

5.2.3 Support edges

Certain arrangements of labels are often expected along the upright axis of the

building e.g., the roof is on top of walls. We create a “supporting” edge for each

subgroup found to support another subgroup, and “supported-by” edges of oppo-

site direction for each subgroup found to be supported by another subgroup. The

edges are created by examining OBB spatial relations. Specifically, as in the case

of proximity edges, we compute a multi-scale 4D edge raw representation e(ontop)
i,j
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measuring the area percentage of ci’s bottom OBB face lying above the cj’s top

OBB face for different distances 1%, 2.5%, 5%, 10% of the average of the two OBB’s

heights. We also compute a 4D edge raw representation e(below)
j,i corresponding to

the the surface area percentage of cj’s top OBB face lying beneath the ci’s bottom

OBB face.

5.2.4 Similarity edges

Subgroups placed under a symmetric arrangement often share the same label (e.g.,

repeated windows along a facade). We create an edge per pair of subgroups captur-

ing repetition. For each pair of subgroups, we compute the bidirectional Chamfer

distance between their sample points after rigid alignment. To promote robustness

to any minor misalignment, or small geometric differences between subgroups, we

create similarity edges if the Chamfer distance di,j is less than 10% of the aver-

age of their OBB diagonals. Increasing this bound did not improve results. We

normalize it within [0,1], where 1.0 corresponds to the above upper bound, and

use e(symm)
i,j = 1− di,j as raw similarity edge representation. We also use the same

representation for this opposite direction: e(symm)
j,i = e(symm)

i,j .

5.2.5 Containment edges

Driven by the observation that parts, such as doors or windows, are enclosed by,

or contained within other larger parts, such as walls, we create edges for pairs

of subgroups capturing their degree of containment. For each pair of subgroups,

we measure the amount of ci’s volume contained within the cj’s OBB and also their

volume Intersection over Union as a 2D edge representation e(contain)
i,j (and similarly

for the opposite edge direction).

5.2.6 Network architecture

The network updates node and edge representations at each layer inspired by neu-

ral message passing [96]. Figure 5.2 shows one such layer of message passing.

Below we explain our architecture at test time.
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Figure 5.2: Architecture of the message passing layer. The door representation

(blue node) is updated from a support edge (yellow edge) to a roof component

(red node) and a proximity edge (orange edge) to a window (purple node).

Initialization. Given a pair of subgroups ci and cj, we first concatenate their edge

representations across all types:

ei,j = {e
(prox)
i,j ,e(ontop)

i,j ,e(below)
i,j ,e(contain)

i,j ,e(sim)
i,j } (5.1)

We note that some of the edge types might not be present between two sub-

groups based on our graph construction. The entries of our edge representa-

tions indicate degree of proximity, support, containment, or similarity, and are

normalized between [0,1] by definition. Zero values for an edge representation

of a particular type indicate non-existence for this type. Each raw edge repre-

sentation ei,j is initially processed by a MLP to output a learned representation

h(0)
i,j = MLP

(
ei,j;w(0)), where w(0) are learned MLP parameters. The initial node

representation is h(0)
i = ni.

Node and edge updates. Each of the following layers process the node and edge

representations of the previous layer through MLPs and mean aggregation respec-

tively:

h(l+1)
i,j = MLP

(
h(l)

i ,h(l)
j ,h(l)

i,j ;w(l)) (5.2)

h(l+1)
i =

1
|N(i)| ∑

j∈N (i)
h(l+1)

i,j (5.3)
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where w(l) are learned MLP parameters. We use 3 layers of node/edge updates.

Finally, the last GNN layer processes the node representations of the third layer,

and decodes them to a probability per label using a MLP and softmax. Details

about the architecture are in Section C.1 (Appendix C).

Training loss. Since some parts are more rare than others, as shown in Table 5.4,

we use a weighted softmax loss to train our network, where weights are higher

for rarer parts to promote correct labeling for them (i.e., higher mean Part IoU).

For each building, the loss is L = −∑ci∈Lwl · q̂i logqi, where L is the set of all

annotated subgroups in the building, q̂i is the ground-truth one-hot label vector

for subgroup ci, qi is its predicted label probabilities, and wl is the weight for

the label empirically set to be the log of inverse label frequency (i.e., a smoothed

version of inverse frequency weights similarly to [156]). We use the same loss to

train the MinkowskiNet used in our node representation: the loss is simply applied

to points instead of subgroups. We experimented with other losses, such as the

focal loss [130] and the class-balanced loss [36], but we did not find significant

improvements in our dataset (see Section C.2, Appendix C).

Implementation details. Training of the BuildingGNN is done through the Adam

optimizer [95] with learning rate 0.0001, beta coefficients are (0.9,0.999) and weight

decay is set to 10−5. We pick the best model and hyper-parameters based on the

performance in the holdout validation split. Our method is implemented4 in Py-

Torch [167].

5.3 Results

We now discuss our evaluation protocol, then show qualitative and quantitative

results for our benchmark tracks.

5.3.1 Evaluation protocol

Since most part classes are commonly encountered across different building cat-

egories (e.g., walls, doors, windows), all evaluated methods are trained across all

4The implementation is available at https://github.com/buildingnet/buildingnet_dataset.
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MinkNet-GC MinkNet2Sub PointNet++2Sub BuildingGNN-PointNet++ BuildingGNN-MinkNet Human annotation

roof window

unlabeled

wall chimney

ground

floor door roadshutters

columnpath

garage

fencevehicle

path

gateplant/tree dormergarage

Figure 5.3: Comparisons with other methods. Despite a few errors (red text), the

BuildingGNN is closer to human annotations.

five building categories (i.e., no category-specific training). Methods must also deal

with the part class imbalance of our dataset. For evaluation in the point cloud track

(“BuildingNet-Points”), we use the metrics of mean shape IoU and part IoU (see

Equations 3.8 and 3.9), as in PartNet [158]. We also report the per-point classifi-

cation accuracy. For the mesh track (“BuildingNet-Mesh”), the same measures are

applied on triangles. However, since triangles may differ in area, we propose the

following IoU variations, where the contribution of each triangle is weighted by its

face area. Given all the annotated triangles across all buildings of the test dataset

TD, the part IoU for a label l is measured as:

IoU(l) =
∑t∈TD

at · ([yt == l] ∧ [ŷt == l])
∑t∈TD

at · ([yt == l] ∨ [ŷt == l])
(5.4)

where ŷt is the majority-annotated (ground-truth) label for a triangle t ∈ Td, yt is

the predicted label for it, and [·] evaluates the above binary expressions. The shape

IoU for a shape s with a set of annotated triangles Ts is measured as:

IoU(s) =
1
|Ls| ∑

l∈Ls

∑t∈Ts at · ([yt == l] ∧ [ŷt == l])
∑t∈Ts at · ([yt == l] ∨ [ŷt == l])

(5.5)

where Ls is the set of all labels present in the annotations or predictions for that

shape. We also report the per-triangle classification accuracy weighted by face

area [89].

5.3.2 “BuildingNet-Points” track

As an initial seed for the leaderboard of this track, we evaluated three popular

nets able to handle our 100K point sets: PointNet++ [173], MID-FC [226], and

MinkowskiUNet34 [34]. We also tried other point-based networks e.g., DGCNN [231],

but were unable to handle large point clouds due to excessive memory require-

ments (see Section D.2, Appendix D for more discussion). All networks were
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Method n? c? Part IoU Shape IoU Class acc.

PointNet++ ✓ × 8.8% 12.2% 52.7%

MID-FC(nopre) ✓ × 20.9% 19.0% 59.4%

MinkNet ✓ × 26.9% 22.2% 62.2%

PointNet++ ✓ ✓ 14.1% 16.7% 59.5%

MID-FC(nopre) ✓ ✓ 25.0% 22.3% 63.2%

MinkNet ✓ ✓ 29.9% 24.3% 65.5%

Table 5.5: “BuildingNet-Points” track results. The column ‘n?’ means whether

networks use point normals, and the column ‘c?’ means whether they use RGB

color as input.

trained under the same augmentation scheme (12 global rotations per building

and small random translations). For all networks, we experimented with SGD,

Adam [95], with and without warm restarts [144], and selected the best scheduler

and hyperparameters for each of them based on the validation split. We did not

use any form of pre-training. Table 5.5 reports the results. We observe that the

MinkowskiNet offers the best performance. We also observe that the inclusion of

color tends to improve performance e.g., we observe a 3% increase in Part IoU for

MinkowskiNet. Another observation is that compared to PartNet classes, where

the Part IoU ranges between ∼30− 70% for PointNet++, the performance in our

dataset is much lower: PointNet++ has 14.1% Part IoU. Even for the best perform-

ing method (MinkowskiNet), the part IoU is still relatively low (29.9%), indicating

that our building dataset is substantially more challenging.

5.3.3 “BuildingNet-Mesh” track

For our mesh track, we first include a number of baselines which rely on networks

trained on the point cloud track, then transferring their results to meshes. One

strategy for this transfer is to build correspondences between mesh faces and near-

est points. Specifically, for each point we find its nearest triangle. Since some trian-

gles might not be associated with any points, we also build the reverse mapping:

for each triangle, we find its closest point. In this manner, every triangle t has a set

of points Pt assigned to it with the above bi-directional mapping. Then we perform
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Method n? c? Part IoU Shape IoU Class acc.

PointNet++2Triangle ✓ × 8.8% 13.1% 54.7%

MidFC2Triangle ✓ × 23.1% 22.1% 42.9%

MinkNet2Triangle ✓ × 28.8% 26.7% 64.8%

PointNet++2Sub ✓ × 9.5% 16.0% 57.9%

MidFC2Sub ✓ × 26.4% 28.4% 46.2%

MinkNet2Sub ✓ × 33.1% 36.0% 69.9%

MinkNet-GC ✓ × 29.9% 28.3% 66.0%

BuildingGNN-PointNet++ ✓ × 29.0% 33.5% 67.9%

BuildingGNN-MinkNet ✓ × 40.0% 44.0% 74.5%

PointNet2Triangle ✓ ✓ 14.0% 18.0% 60.7%

MidFC2Triangle ✓ ✓ 27.3% 26.2% 45.6%

MinkNet2Triangle ✓ ✓ 32.8% 29.2% 68.1%

PointNet2Sub ✓ ✓ 16.1% 23.5% 64.8%

MidFC2Sub ✓ ✓ 30.3% 33.1% 48.6%

MinkNet2Sub ✓ ✓ 37.0% 39.1% 73.2%

MinkNet-GC ✓ ✓ 33.8% 31.1% 68.9%

BuildingGNN-PointNet++ ✓ ✓ 31.5% 35.9% 73.9%

BuildingGNN-MinkNet ✓ ✓ 42.6% 46.8% 77.8%

Table 5.6: “BuildingNet-Mesh” results. PointNet++2Triangle means triangle-

pooling with PointNet++ (similarly for others). PointNet2Sub means subgroup-

pooling. MinkNet-GC means graph cuts with MinkowskiUNet34 unary terms.

average pooling of the point probabilities per triangle: qt = ∑p∈Pt qp/|Pt| where qp

and qt are point and triangle probabilities respectively. We report results of these

baselines in Table 5.6. We note that we tried max pooling, yet average pooling had

better performance (see Section C.3, Appendix C). Another strategy is to aggregate

predictions based on mesh subgroups instead of triangles i.e., average probabilities

of points belonging to each subgroup. This strategy takes advantage of mesh struc-

ture and improves results. Another baseline is Graph Cuts (GC) on the mesh, which

has been used in mesh segmentation [89] (see Section C.4, Appendix C for the GC

energy). Finally, we report results from our GNN (“BuildingGNN”), using Point-
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Net++ or MinkowskiNet node features. The BuildingGNN significantly improves

the respective baselines e.g., with color as input, BuildingGNN with PointNet++

features improves Part IoU by 15.4% over the best PointNet++ variant, while Build-

ingGNN with MinkowskiNet features improves Part IoU by 5.6% over the best

MinkowskiNet variant. The BuildingGNN with MinkowskiNet features performs

the best with or without color. Section D.1, Appendix D includes an ablation study

showing that each edge type in the BuildingGNN improves performance over us-

ing node features alone, while the best model is the one with all edges.

5.3.4 Qualitative results

Figure 5.3 shows comparisons of BuildingGNN with other methods. We observe

that its predictions are closer to human annotations compared to others. Figure 1.3

presents more results from BuildingGNN.

5.4 The BuildingNet challenge

During the Second Workshop on Structural and Compositional Learning on 3D

Data5, held at the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition 20236, we organized the BuildingNet challenge7. The objective of this chal-

lenge was to advance the field of part segmentation in the context of 3D buildings,

represented either as 3D meshes or point clouds. Our aim was to promote the

development of robust and efficient algorithms, that can accurately segment dif-

ferent parts of 3D buildings. Through the BuildingNet challenge, participants had

the opportunity to benchmark their models against a carefully curated dataset and

contribute to the advancement of part segmentation techniques in the domain of

3D data analysis. To facilitate the BuildingNet challenge, we leveraged the power

of EvalAI [246], an open-source platform designed for evaluating and comparing

machine learning and artificial intelligence algorithms at scale. EvalAI provided

us with a robust infrastructure to host the challenge and streamline the evalua-

tion process. Using EvalAI, we were able to create multiple evaluation phases and

dataset splits, accommodating the diverse requirements of the challenge. This flex-

5The workshop’s page is available at https://struco3d.github.io/cvpr2023.
6The conference’s page is available at https://cvpr.thecvf.com/Conferences/2023.
7The challenge’s page is available at https://eval.ai/web/challenges/challenge-page/1938.
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Category # build. # train. # val. # test

Residential 1225 976 (65.9%) 129 (69.0%) 120 (66.3%)

Religious 445 366 (24.7%) 36 (19.3%) 43 (23.8%)

Commercial 123 96 (6.5%) 16 (8.6%) 11 (6.1%)

Public 56 43 (2.9%) 6 (3.2%) 7 (3.9%)

Total 1,849 1,481 (80.1%) 187 (10.1%) 181 (9.8%)

Table 5.7: BuildingNet v1 dataset - From left to right: number of models per basic

building category, number and percentage of training, hold-out validation and test

buildings

ibility allowed participants to train and fine-tune their models using the training

and validation splits, while keeping the test split concealed until the final evalua-

tion.

5.4.1 Challenge dataset

For the purpose of this challenge, we released a new version (v1) of the BuildingNet

dataset, so that participants do not benefit from any pre-existing models trained

on the existing data. The BuildingNet v1 dataset includes 1,849 building models

with more complete and improved labelings, as the number of annotated mesh

primitives and semantic part components (merged adjacent subgroups sharing the

same label) is increased to 554,095 and 304,650, respectively. The new version of

the dataset is split into 1,481 buildings for training, 187 for validation and 181

for testing (see Table 5.7). These splits maintain the 80/10/10% proportion, as

established in the previous iteration of the dataset. Furthermore, the distribution of

building classes and parts is preserved similar across the splits (Tables 5.7 and 5.8).

5.4.2 Challenge results

Here we first discuss the evaluation criteria of the challenge and then provide

several challenge statistics.
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Label
# labeled # in training # in validation # in test

comp. split (%) split (%) split (%)

Window 116,936 94,238 (39.3%) 14,331 (48.5%) 8,367 (23.6%)

Plant 55,773 40,696 (17.0%) 4,548 (15.4%) 10,529 (29.8%)

Banister 17,979 13,183 (5.5%) 1,728 (5.8%) 3,068 (8.7%)

Furniture 14,516 11,190 (4.7%) 1,073 (3.6%) 2,253 (6.4%)

Vehicle 13,376 11,104 (4.6%) 722 (2.4%) 1,550 (4.4%)

Wall 13,127 11,068 (4.6%) 1,245 (4.2%) 814 (2.3%)

Fence 12,441 11,210 (4.7%) 496 (1.7%) 735 (2.1%)

Roof 11,117 9,003 (3.8%) 1,396 (4.7%) 718 (2.0%)

Door 7,756 6,315 (2.6%) 567 (1.9%) 874 (2.5%)

Column 6,676 5,093 (2.1%) 645 (2.2%) 938 (2.7%)

Beam 5,703 3,668 (1.5%) 759 (2.6%) 1,276 (3.6%)

Shutters 4,740 3,961 (1.7%) 223 (0.8%) 556 (1.6%)

Tower 3,463 2,951 (1.2%) 143 (0.5%) 369 (1.0%)

Stairs 3,139 2,304 (1.0%) 273 (0.9%) 562 (1.6%)

Balcony 1,941 1,561 (0.7%) 153 (0.5%) 227 (0.6%)

Ground 1,762 1,357 (0.6%) 184 (0.6%) 221 (0.6%)

Garage 1,551 1,229 (0.5%) 166 (0.6%) 156 (0.4%)

Buttress 1,430 1,128 (0.5%) 22 (0.1%) 280 (0.8%)

Gate 1,369 915 (0.4%) 68 (0.2%) 386 (1.1%)

Parapet 1,352 920 (0.4%) 130 (0.4%) 302 (0.9%)

Dome 1,334 1,130 (0.5%) 105 (0.4%) 99 (0.3%)

Floor 1,068 839 (0.4%) 114 (0.4%) 115 (0.3%)

Corridor 1,010 815 (0.3%) 77 (0.3%) 118 (0.3%)

Ceiling 972 724 (0.3%) 90 (0.3%) 158 (0.4%)

Lighting 961 726 (0.3%) 22 (0.1%) 213 (0.6%)

Chimney 834 648 (0.3%) 83 (0.3%) 103 (0.3%)

Dormer 642 489 (0.2%) 45 (0.2%) 108 (0.3%)

Pool 542 403 (0.2%) 51 (0.2%) 88 (0.2%)

Road 427 327 (0.1%) 48 (0.2%) 52 (0.1%)

Arch 402 276 (0.1%) 24 (0.1%) 102 (0.3%)

Awning 311 241 (0.1%) 23 (0.1%) 47 (0.1%)

Total 304,650 239,712 29,554 35,384

Table 5.8: BuildingNet v1 dataset - Number of labeled components per part label

in our dataset, along with their number and frequency in the training split, hold-

out validation, and test split.
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Evaluation criteria. Following the BuildingNet benchmark, as described in Sec-

tion 5.1.2, this challenge offers two main evaluation phases:

• BuildingNet-Mesh: In this phase algorithms can access the mesh data, in-

cluding subgroups. In this aspect, they can take advantage of any pre-existing

mesh structure common in 3D building models.

• BuildingNet-Points: This phase is designed for large-scale point-based pro-

cessing algorithms that must deal with unstructured point cloud data without

access to mesh structure or subgroups. For each mesh, 100K points with Poi-

sson disc sampling [50] are obtained, to achieve a near-uniform sampling. For

each point cloud, point normals and RGB texture information, that originate

from triangles, are also available.

For both phases, participants can submit their predictions either on the validation

split (Dev phases) in order to familiarize with the online submission platform, or

upload their predictions on the test split (Main phases).

Moreover, this challenges uses the same evaluation protocol as in Section 5.3.1,

where for the evaluation of the “BuildingNet-Points” phase, the metrics of mean

shape and part IoU are used, along with the per-point classification accuracy. For

the “BuildingNet-Mesh” phase, a variation of the previous evaluation metrics is

applied on triangles, where the contribution of each triangle is weighted by its face

area. The winning team for each phase is selected based on their performance

according to the part IoU metric.

Challenge statistics. The challenge took place from March 15 to May 24 of 2023,

providing adequate time for participants to familiarize with the dataset and to

showcase their expertise in part segmentation of 3D buildings. We received partici-

pation from 10 teams, each bringing their unique approache to the challenge. In the

“BuildingNet-Points” evaluation phase, we received a total of 5 valid submissions

from the participating teams. Table 5.9 reports the best performing submission of

each participating team. The winning submission relies on the XL variant of the

PointNeXt [174] method. This approach introduces improved training and model

scaling strategies in order to boost the performance of the PointNet++ archite-

cture [173] to the state-of-the-art level.
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Participant team Part IoU Shape IoU Class acc.

Thea (PointGPT-S_10k [30]) 25.5% 20.2% 59.8%

FOO (Minkowski CNN [34]) 31.0% 23.2% 64.3%

Host_23798_Team (MinkRes16UNet34C [34]) 31.2% 24.1% 64.9%

Shicheng Xu (PointNeXt XL [174]) 31.3% 22.8% 65.2%

Table 5.9: “BuildingNet-Points” evaluation phase leaderboard8.

5.5 Discussion

In this chapter we presented BuildingNet, the first publicly available large-scale

dataset of annotated 3D building models whose exteriors and surroundings are

consistently labeled. Moreover, we introduces a graph neural network that utilizes

the buildings metadata in their mesh representation to improve labeling. We also

highlighted the significance of the dataset in advancing methods for part segmen-

tation of 3D buildings, through the BuildingNet Challenge.

Limitations. A future avenue of research is to automatically discover segments

in point clouds and embed them into a GNN like ours. Currently, edges between

mesh subgroups are extracted heuristically based on structural and spatial relation-

ships. Learning edges and features in an end-to-end manner may improve results.

Finally, mesh cutting and hierarchical labeling can lead to richer future dataset

versions.

8The leaderboard is publicly available at https://eval.ai/web/challenges/challenge-

page/1938/leaderboard/4590.
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Chapter 6
Conclusion

6.1 Summary

This thesis presents three neural approaches for 3D shape segmentation. Each

method employs a graph-based neural network to tackle challenges in segmenting

3D shapes, including enhancing segmentation accuracy around part boundaries,

learning more effective point representations for shape understanding, and lever-

aging relationships between structural parts of large-scale shapes, such as build-

ings, to further enhance segmentation accuracy. To address these challenges, each

method adopts a graph representation of the input, whether at the level of individ-

ual points or mesh subgroups within shapes, or at the scale of entire collections of

shapes.

First, the PB-DGCNN method is designed to detect part boundaries in 3D

shapes represented as point clouds. It achieves this by assigning a probability

to each point indicating its likelihood of lying on a boundary between parts within

the shape. This approach utilizes graph edge convolutions to integrate local neigh-

borhood information effectively. Additionally, the method expresses each point

neighborhood in the local coordinate frame of its centroid, enhancing its ability

to handle local variations under different orientations while ensuring that part

boundaries remain unaffected. To facilitate the training process of PB-DGCNN,

two datasets were preprocessed and annotated with part boundaries, tailored to

address two distinct segmentation tasks: geometric segmentation and semantic

segmentation. The extracted per-point boundary probabilities can be used in the

geometric decomposition of point clouds into regions enclosed by sharp bound-
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aries. Alternatively, they can be employed as pairwise terms in a graph-cuts for-

mulation, to enhance existing graph-based semantic segmentation techniques.

Second, the Cross-ShapeNet presents a novel cross-shape attention (CSA) mech-

anism, enhancing segmentation consistency across a collection of shapes repre-

sented as 3D point clouds. This mechanism evaluates the interaction between

points across different shapes, allowing features from one shape to influence those

of another based on their interaction degree. Moreover, a retrieval mechanism au-

tomatically selects shapes compatible for cross-shape feature propagation. This ap-

proach significantly enhances segmentation consistency, particularly in capturing

fine-grained details, leading to state-of-the-art performance on the PartNet [158]

benchmark.

Third, BuildingNet introduces the first large-scale, publicly available dataset of

annotated 3D building models whose exteriors and surroundings are consistently

labeled. Unlike common 3D datasets which primarily contain simple man-made

objects, this dataset provides shapes of higher structural complexity. It comprises

513K annotated mesh primitives across 2K building models spanning various com-

mon building categories. Additionally, a benchmark for mesh and point cloud

labeling is provided, that also featured as a workshop challenge in the Second

Workshop on Structural and Compositional Learning on 3D Data. Moreover, a

graph neural network that labels building meshes is presented. BuildingGNN uti-

lizes pre-existing mesh structure in the form of subgroups taking into account their

spatial and structural relationships, resulting in more coherent mesh labeling.

These methods address the problem of 3D shape segmentation, utilizing graph-

based neural networks, and provide solid foundations for future studies.

6.2 Future work

Although each method presented in this thesis excels within its own context, they

still exhibit individual limitations that could be the focal point for future research.

Starting with the analysis of buildings using a graph neural network, our cur-

rent approach leverages pre-existing mesh subgroups and establishes hand-crafted

dependencies based on various spatial and structural relationships like similarity,

proximity, support, and containment. While this strategy has improved segmen-

tation results, it relies on the assumption that the 3D representation of the input
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shape is already segmented into coherent regions, as seen with mesh primitives

common in 3D building models. Moreover, the extraction of graph edges is done

in a heuristic manner. A promising future direction would be to explore methods

that can automatically extract parts from the 3D shape and then learn edge con-

nections between them in an end-to-end manner, enhancing the robustness of the

segmentation process.

These challenges can be addressed through a two-stage procedure. First, a neu-

ral network processing a 3D point cloud of a building shape can learn to group

points into coherent parts by leveraging foundational image segmentation models

like the Segment Anything Model (SAM) [98]. Training this model could follow a

self-supervised knowledge distillation process similar to [25], where a point cloud

processing network acts as a student network updated based on the teacher net-

work (SAM), aligning the 3D segmentation masks extracted by the student with

the 2D part proposals from SAM. During inference, the 3D module will group the

building shape into meaningful parts without the need for rendering multi-view

images as in [248].

The second stage could involve a pretext task, such as auto-regressive gen-

eration similar to [30], allowing for the extraction of dependencies between pro-

posed parts in a learnable manner using architectures that adhere to the atten-

tional flavour of GNNs. The semantic labeling of parts can then be addressed as a

low-shot or fully supervised downstream task.

In Cross-ShapeNet we have addressed the propagation of point-wise features

between shapes by proposing a cross-shape attention mechanism, which assesses

the degree of interaction between them. Shapes compatible for cross-shape atten-

tion are retrieved from an input collection utilizing their self-shape attention repre-

sentations. This method was able to achieve state-of-the-art results in fine-grained

part segmentation, but with a high computational cost during training and at test

time. Additionally, the current approach is limited to single objects.

First, it would be interesting to investigate more recent attention implementa-

tions such as Flash Attention [38], FlatFormer [142] and Point Transformer V3 [238],

as they offer reduced computational and space complexity compared to traditional

attention layer architectures [217]. Moreover, the shape retrieval module can bene-

fit from recent findings [2] by leveraging deep vision transformer features through

a 2D-to-3D lifting process, to extract 3D semantic correspondences between the
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query shape and shapes from the input collection.

Recent developments have introduced open-vocabulary approaches that co-

embed deep features of 3D points with image and text CLIP features [168], guided

by 2D instance masks [164] for zero-shot segmentation of 3D scenes. Integrating

such methods could extend Cross-ShapeNet to handle 3D scenes by identifying

similar objects suitable for cross-shape attention operations. A more ambitious

goal would be to adopt zero-guidance methods [178], eliminating the need for text

prompts during test time.

Finally, PB-DGCNN is able to improve segmentation boundaries between se-

mantic parts and geometric primitives, by extracting per-point boundary proba-

bilities. Ideally, boundaries could be extracted in the form of continuous curves

instead, such as parametric curves. Following the ideas of PIE-Net [228] and Com-

plexGen [65], we can use PB-DGCNN as a part boundaries proposal network for

guiding the process of extracting parametric curves. In addition, since our bound-

ary detector can also extract boundaries between semantic parts, we can extend the

extraction of parametric curves to man-made objects as well, which can facilitate

the 3D shape assembly process [128].

These exciting research projects have the potential to push the boundaries and

advance the state-of-the-art in 3D shape and scene understanding. They could rev-

olutionize how we perceive and interact with 3D data, opening up new possibilities

and applications in various fields.

78

Mari
os

 Lo
izo

u



References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Mur-
ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng, TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems, Software available from tensorflow.org, 2015. [Online].
Available: https://www.tensorflow.org/ (cit. on p. 28).

[2] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel, “Deep ViT Fea-
tures as Dense Visual Descriptors”, in Proceedings of the European Conference
on Computer Vision Workshops (ECCV Workshops), 2022 (cit. on p. 77).

[3] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik, “Con-
tour Detection and Hierarchical Image Segmentation”, IEEE Transactions On
Pattern Analysis And Machine Intelligence, vol. 33, no. 5, 2011 (cit. on p. 20).

[4] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Mar-
tin Fischer, and Silvio Savarese, “3D Semantic Parsing of Large-Scale Indoor
Spaces”, in Proceedings of the IEEE/CVF Computer Vision and Pattern Recogni-
tion Conference (CVPR), 2016 (cit. on pp. 1, 15).

[5] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo, “Hierarchical mesh
segmentation based on fitting primitives”, The Visual Computer, vol. 22, 2006
(cit. on p. 10).

[6] Matan Atzmon, Haggai Maron, and Yaron Lipman, “Point Convolutional
Neural Networks by Extension Operators”, ACM Transactions on Graphics,
vol. 37, no. 4, 2018 (cit. on p. 12).

[7] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton, “Layer Normaliza-
tion”, arXiv preprint arXiv:1607.06450, 2016 (cit. on pp. 44, 49).

[8] Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, Caglar Gulcehrej, Francis Songj, Andy Bal-
lard, Justin Gilmer, George E Dahl, Ashish Vaswani, Kelsey Allen, Charles
Nash, Victoria Jayne Langston, Chris Dyerj, Nicolas Heess, Daan Wierstra,
Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-
canu, “Relational inductive biases, deep learning, and graph networks”,
arXiv preprint arXiv:1806.01261, 2018 (cit. on p. 18).

[9] Jensa Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke,
Cyrill Stachniss, and Juergen Gall, “SemanticKITTI: A Dataset for Semantic
Scene Understanding of LiDAR Sequences”, in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2019 (cit. on pp. 1, 15).

[10] Alexander Belyaev, Elena Anoshkina, Ralph Martin, Helmut Bez, and Mal-
colm Sabin, “Detection of Surface Creases in Range Data”, Mathematics of
Surfaces XI. Lecture Notes in Computer Science, vol. 3604, 2005 (cit. on p. 13).

79

Mari
os

 Lo
izo

u

https://www.tensorflow.org/


[11] Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani, “DeepEdge: A multi-
scale bifurcated deep network for top-down contour detection”, in Pro-
ceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference
(CVPR), 2015 (cit. on pp. 19, 20).

[12] Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani, “High-for-Low and
Low-for-High: Efficient Boundary Detection from Deep Object Features and
its Applications to High-Level Vision”, in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2015 (cit. on pp. 19, 20).

[13] Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani, “Semantic Segmenta-
tion with Boundary Neural Fields”, in Proceedings of the IEEE/CVF Computer
Vision and Pattern Recognition Conference (CVPR), 2016 (cit. on pp. 19, 20).

[14] Paul J. Besl and Ramesh C. Jain, “Segmentation through variable-order sur-
face fitting”, IEEE Transactions On Pattern Analysis And Machine Intelligence,
vol. 10, no. 2, 1988 (cit. on p. 9).

[15] Igor Bogoslavskyi and Cyrill Stachniss, “Fast Range Image-Based Segmen-
tation of Sparse 3D Laser Scans for Online Operation”, in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2016 (cit. on p. 12).

[16] Davide Boscaini, Jonathan Masci, Simone Melzi, Michael M Bronstein, Um-
berto Castellani, and Pierre Vandergheynst, “Learning class-specific descrip-
tors for deformable shapes using localized spectral convolutional networks”,
Computer Graphics Forum, vol. 34, no. 5, 2015 (cit. on p. 12).

[17] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein,
“Learning shape correspondence with anisotropic convolutional neural net-
works”, in Proceedings of the Annual Conference on Neural Information Process-
ing System (NeurIPS), 2016 (cit. on pp. 12, 13).

[18] Yuri Boykov, Olga Veksler, and Ramin Zabih, “Fast Approximate Energy
Minimization via Graph Cuts”, IEEE Transactions On Pattern Analysis And
Machine Intelligence, vol. 23, no. 11, 2001 (cit. on pp. 11, 111).

[19] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković, “Ge-
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Appendix A
Cross-shape network backbone architecture

details

A.1 MinkHRNetCSN architecture details

In Table A.1 we describe the overall Cross-Shape Network architecture for K = 1 key

shapes per query shape, based on the HRNet [221] backbone (“MinkHRNetCSN-

K1”). For K = 2,3 and SSA variants, we use the same architecture. First, for an input

query-key pair of shapes Sm ∈ RPm×3 and Sn ∈ RPn×3, point-wise features XXXm and

XXXn are extracted using the “Mink-HRNet” backbone (Layers 2 and 3). For each

set of point features their self-shape attention representations are calculated via the

Cross-Shape Attention layer (Layers 4 and 5). The query shape point self-shape atten-

tion representations are then aggregated into a global feature using mean-pooling

and undergo two separate linear transformations (Linear-Q and Linear-K in Layers

6 and 7, respectively). Leveraging these, the self-shape similarity is computed, us-

ing the scaled dot product (Layer 9). For the key shape point self-shape attention

representations, we use only the Linear-K transformation on the key shape’s global

feature (Layer 8), and calculate the query-key similarity (Layer 10). The compatibil-

ity for the cross-shape attention is computed as the softmax transformation of these

two similarity measures (Layer 11). The cross-shape point representations of the

query shape, propagating point features from the key shape, are extracted by our

CSA module in Layer 12. The self-shape (Layer 4) and cross-shape (Layer 12) point

representations are combined together, weighted by the pairwise compatibility, re-

sulting in the cross-shape attention representations XXX′m (Layer 13). Finally, part
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Cross-shape network architecture ← CSN(query Sm, key Sn, #classes K)

Index Layer Out

1 Input: Sm,Sn Pm × 3, Pn × 3

2 Mink-HRNet(Sm, 3, 256) Pm × 256 - query point repr.

3 Mink-HRNet(Sn, 3, 256) Pn × 256 - key point repr.

4 CSA(Out(2), Out(2), 256, 4) Pm × 256 - query SSA repr.

5 CSA(Out(3), Out(3), 256, 4) Pn × 256 - key SSA repr.

6 Linear-Q(avg-pool(Out(4)), 256,256) 1× 256 - query global repr.

7 Linear-K(avg-pool(Out(4)), 256,256) 1× 256 - query global repr.

8 Linear-K(avg-pool(Out(5)), 256,256) 1× 256 - key global repr.

9 ScaledDotProduct(Out(6), Out(7)) 1× 1 - query-query similarity

10 ScaledDotProduct(Out(6), Out(8)) 1× 1 - query-key similarity

11 Softmax(Out(9), Out(10)) 2× 1 - compatibility

12 CSA(Out(2), Out(3), 256, 4) Pm × 256 - query CSA repr.

13 Out(4) ∗ compatbility[0] + Out(12) ∗ compatbility[1] Pm × 256 - cross-shape attention

14 Softmax(Conv(ConCat(Out(2), Out(13)), 512, K)) Pm × K - per-point part label probabilities

Table A.1: Cross-shape network architecture for K = 1 key shapes per query shape.

label probabilities are extracted per point, through a 1× 1× 1 convolution and a

softmax transformation (Layer 14), based on the concatenation of the query shape’s

backbone representations XXXm and cross-shape attention representations XXX′m.

The architecture of our backbone network, “Mink-HRNet”, is described in Ta-

ble A.3. Based on an input shape, our backbone first extracts point representations

through two consecutive convolutions (Layers 2-5). Then, three multi-resolution

branches are deployed. The first branch, called High-ResNetBlock (Layers 6, 8 and

15), operates on the input shape’s resolution, while the other two, Mid-ResNetBlock

(Layers 9 and 16) and Low-ResNetBlock (Layer 17), downsample the shape’s reso-

lution by a factor of 2 and 4, respectively. In addition, feature representations are

exchanged between these branches, through downsampling and upsampling mod-

ules (Layers 7, 10-14). The point representations of the two low-resolution branches

are upsampled to the original resolution (Layers 18-20) and by concatenating them

with point features of the high-resolution branch, point representations are ex-

tracted for the input shape, through a full-connected layer (Layers 21 and 22).

The Cross-Shape Attention (CSA), Downsampling and Upsampling layers, along

with Residual Basic Block are described in more detail in Table A.4.
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MID-FC-Cross-shape network architecture ← MID-FC-CSN(query Sm, key Sn, #classes K)

Index Layer Out

1 Input: Sm,Sn Pm × 3, Pn × 3

2 MID-Net(Sm, 3, 256) Pm × 256 - query point repr.

3 MID-Net(Sn, 3, 256) Pn × 256 - key point repr.

4 CSA(Out(2), Out(2), 256, 8) Pm × 256 - query SSA repr.

5 CSA(Out(3), Out(3), 256, 8) Pn × 256 - key SSA repr.

6 Linear-Q(avg-pool(Out(4)), 256,256) 1× 256 - query global repr.

7 Linear-K(avg-pool(Out(4)), 256,256) 1× 256 - query global repr.

8 Linear-K(avg-pool(Out(5)), 256,256) 1× 256 - key global repr.

9 ScaledDotProduct(Out(6), Out(7)) 1× 1 - query-query similarity

10 ScaledDotProduct(Out(6), Out(8)) 1× 1 - query-key similarity

11 Softmax(Out(9), Out(10)) 2× 1 - compatibility

12 CSA(Out(2), Out(3), 256, 8) Pm × 256 - query CSA repr.

13 Out(4) ∗ compatbility[0] + Out(12) ∗ compatbility[1] Pm × 256 - cross-shape attention

14 Softmax(FC(Out(13), 256, K)) Pm × K - per-point part label probabilities

Table A.2: MID-FC-CSN architecture for K = 1 key shapes per query shape.

A.2 MID-FC-CSN architecture details

Similar to the MinkHRNetCSN, the MID-FC-CSN variant also follows a comparable

architecture (see Table A.2). To extract point features XXXm and XXXn for the input

query-key pair of shapes, the “MID-Net” backbone is utilized (Layers 2 and 3).

This backbone also adopts a three-stage HRNet architecture, which is built on an

octree-based CNN framework [224]. ResNet blocks with a bottleneck structure [72]

are used in all multi-resolution branches, and feature sharing is achieved using

downsample and upsample exchange blocks, implemented by max-pooling and tri-

linear up-sampling, respectively. The CSA module (Layers 4 and 12) is employed

to construct the self-shape and cross-shape attention features for the query shape.

These are then weighted by the learned pairwise compatibility (Layers 4-11) and

aggregated to generate the final cross-shape attention representations XXX′m (Layer

13). Part label probabilities are extracted per point using a fully-connected layer

and a softmax transformation based on the cross-shape attention representations

(Layer 14).
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Mink-HRNet backbone ← Mink-HRNet(shape repr. XXXm, in_feat Din, out_feat Dout)

Index Layer Out

1 Input: XXXm Pm × Din

2 Conv(XXXm, Din, 32) Pm × 32

3 ReLU(BatchNorm(Out(2))) Pm × 32

4 Conv(Out(3), 32, 64) Pm × 64

5 ReLU(BatchNorm(Out(4))) Pm × 64

6 High-ResNetBlock(3× BasicBlock(Out(5), 64)) Pm × 64

7 Downsampling(Out(6), 64, 128) Pm/2× 128

8 High-ResNetBlock(3× BasicBlock(Out(6), 64)) Pm × 64

9 Mid-ResNetBlock(3× BasicBlock(ReLU(Out(7)), 128)) Pm/2× 128

10 Downsampling(Out(8), 64, 128) Pm/2× 128

11 ReLU(Downsampling(Out(8), 64, 128)) Pm/2× 128

12 Downsampling(Out(11), 128, 256) Pm/4× 256

13 Upsampling(Out(9), 128, 64) Pm × 64

14 Downsampling(Out(9), 128, 256)) Pm/4× 256

15 High-ResNetBlock(3× BasicBlock(ReLU(Out(8)+Out(13)), 64)) Pm × 64

16 Mid-ResNetBlock(3× BasicBlock(ReLU(Out(9) + Out(10)), 128)) Pm/2× 128

17 Low-ResNetBlock(3× BasicBlock(ReLU(Out(12) + Out(14)), 256)) Pm/4× 256

18 ReLU(Upsampling(Out(16), 128, 128)) Pm × 128

19 ReLU(Upsampling(Out(17), 256, 256)) Pm/2× 256

20 ReLU(Upsampling(Out(19), 256, 256)) Pm × 256

21 Conv(ConCat(Out(3), Out(15), Out(18), Out(20)), 480, Dout) Pm × Dout

22 ReLU(BatchNorm(Out(21))) Pm × Dout

Table A.3: Mink-HRNet backbone architecture. High, mid and low-resolution

ResNet blocks consist of 3 consecutive residual basic blocks, each. Point represen-

tations are exchanged between multi-resolution branches via downsampling and

upsampling layers (see Table A.4 for a more detailed description of their architec-

ture). The convolution kernel of Layer 2 is of size 5× 5× 5, in order to increase its

receptive field, while for Layer 4 is of size 3× 3× 3. For Layer 21 we used a kernel

of 1× 1× 1, since this acts as a fully-connected layer.
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Cross-Shape Attention Layer ← CSA(query XXXm, key XXXn, #feats D, #heads H)

Index Layer Out

1 Input: XXXm,XXXn Pm × D, Pn × D

2 H× Linear-Q(XXXm, D,⌊D/H⌋) Pm × H × D′

3 H× Linear-K(XXXn, D,⌊D/H⌋) Pn × H × D′

4 H× Linear-V(XXXn, D,⌊D/H⌋) Pn × H × D′

5 Attention(Out(2), Out(3)) H × Pm × Pn

6 MatMul(Out(5), Out(4)) Pm × H × D′

7 Linear(ConCat(Out(6)), D, D) Pm × D

8 LayerNorm(XXXm+ Out(7)) Pm × D

Downsampling Layer ← Downsampling(shape repr. XXXm, in_feat Din, out_feat Dout)

1 Input: XXXm Pm × Din

2 Conv(XXXm, Din, Dout, stride = 2) Pm/2× Dout

3 BatchNorm(Out(2)) Pm/2× Dout

Upsampling Layer ← Upsampling(shape repr. XXXm, in_feat Din, out_feat Dout)

1 Input: XXXm Pm × Din

2 TrConv(XXXm, Din, Dout, stride = 2) 2 ∗ Pm × Dout

3 BatchNorm(Out(2)) 2 ∗ Pm × Dout

Residual Basic Block ← BasicBlock(shape repr. XXXm, #feats D)

1 Input: XXXm Pm × D

2 Conv(XXXm, D, D) Pm × D

3 ReLU(BatchNorm(Out(2))) Pm × D

4 Conv(Out(3), D, D) Pm × D

5 ReLU(XXXm + BatchNorm(Out(4))) Pm × D

Table A.4: Cross-shape network basic layers. All convolution kernels are of size

3× 3× 3.
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Appendix B
Key shape retrieval measure comparison

Category Bed Bott Chai Cloc Dish Disp Door Ear Fauc Knif Lamp Micr Frid Stor Tabl Tras Vase avg. #cat.

Part IoU

MinkHRNetCSN-K1 (Eq. 4.14) 42.1 54.0 42.5 42.9 58.2 83.2 43.5 51.5 59.4 47.8 27.9 57.4 43.7 46.2 36.8 51.5 60.0 49.9 16

MinkHRNetCSN-K1 (Eq. 4.10) 38.7 47.0 41.9 40.8 55.7 82.3 41.3 50.5 57.9 37.3 24.7 56.2 44.1 45.9 32.3 51.4 58.8 47.4 1

Table B.1: Comparison of shape retrieval measures based on point-wise (Equa-

tion 4.14) and global (Equation 4.10) representations of a query-key pair of shapes,

in terms of Part IoU and Shape IoU.

As an additional ablation, we evaluated the performance of our “MinkHRNetCSN-

K1” variant for two key shape retrieval measures (see Section 4.1.2 in Chapter 4).

The first relies on the point-wise representations between a query and a key shape

and retrieves key shapes that are on average more similar to their query counter-

parts (Equation 4.14). The second measure, takes into account only the global repre-

sentations of a query-key pair of shapes (Equation 4.10). In Table B.1 we report the

performance for both measures, in terms of Part IoU and Shape IoU. Our default

variant, “MinkHRNetCSN-K1 (Eq. 4.14)”, achieves better performance according

to Part IoU (+2.5%), and it outperforms the other variant (“MinkHRNetCSN-K1,

Eq. 4.10)” in 16 out 17 object categories. This is a strong indication that the key

shape retrieval measure based in Equation 4.14 is more effective in retrieving key

shapes for cross-shape attention.
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Appendix C
BuildingGNN architecture and experiments

details

C.1 BuildingGNN architecture details

We provide more details about the structure of the BuildingGNN network archi-

tecture in Table C.1. Table C.2 presents statistics on the number of edges per type

used in BuildingGNN for our training set.

C.2 Experiments with different losses

We experimented with different losses for our MinkowskiNet variants for the “Bui-

ldingNet-Points” and “BuildingNet-Mesh” tracks. Specifically, we experimented

with the Weighted Cross-Entropy Loss (WCE) described in Section 5.2.6 (Chapter

5), Cross-Entropy Loss (CE) without label weights, the Focal Loss (FL) [130], α-

balanced Focal Loss (α-FL) [130], and Class-Balanced Cross Entropy Loss (CB) [36].

Table C.3 and Table C.4 show results for the “BuildingNet-Points” and “BuildingNet-

Mesh” tracks respectively. We observe that (a) in the case that color is not available,

WCE is slightly better than alternatives according to all measures for both tracks (b)

when color is available, CB is a bit better in terms of Part IoU, but worse in terms

of Shape IoU than WCE in the case of the point cloud track. For the mesh track,

CB is slightly better according to all measures. In general, WCE and CB behave the

best on average, yet their difference is small. For the rest of our experiments, we

use WCE.
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Layers Output

Edge (MLP(11×41, layer=1))) 41

Node (6D(OBB)+1D(SA)+3D(C)+31D(MN) 41

Input (Nodei + Edgeij + Nodej) 41

Encoder

(MLP(Input×256, layer=1))) 64

GN(LeakyReLU(0.2))) 64

(MLP(64*3×128, layer=3))) 64

GN(LeakyReLU(0.2))) 64

(MLP(64*3×128, layer=5))) 64

GN(LeakyReLU(0.2))) 64

Decoder
(MLP(128×64, layer=1))) 31

softmax 31

Table C.1: BuildingGNN architecture: The Node representation combines the OBB

- (Object Oriented Bounding Box), SA - (Surface area), C - (centroid) and MN -

(MinkowskiNet pre-trained features) for each sub group. The GNN is composed

of (a) an encoder block made of three MLPs having 1, 3 and 5 hidden layers re-

spectively, and (b) a decoder block with one MLP having 1 hidden layer followed

by softmax.

Label
max # min # mean # # median

edges edges edges edges

Proximity 16317 81 778.0 489.0

Similarity 762156 5 26452.1 4875.5

Containment 26354 71 2,054.5 1,390.0

Support 7234 7 687.5 492.0

All 772878 259 29972.1 7818.0

Table C.2: Statistics for the number of BuildingGNN edges per type present in the

graphs of the training buildings.
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Method Loss n? c? Part IoU Shape IoU Class acc.

MinkNet

WCE ✓ × 26.9% 22.2% 62.2%

CE ✓ × 24.5% 21.2% 61.3%

FL ✓ × 26.1% 21.8% 61.2%

α-FL ✓ × 22.3% 19.8% 61.5%

CB ✓ × 26.4% 20.9% 61.4%

MinkNet

WCE ✓ ✓ 29.9% 24.3% 65.5%

CE ✓ ✓ 28.5% 24.5% 65.3%

FL ✓ ✓ 28.7% 24.9% 65.2%

α-FL ✓ ✓ 30.1% 25.3% 65.2%

CB ✓ ✓ 30.4% 24.0% 65.5%

Table C.3: “BuildingNet-Points” track results using the Weighted Cross-Entropy

Loss (WCE), Cross-Entropy Loss (CE), Focal Loss (FL), α-balanced Focal Loss (α-

FL) and finally Class-Balanced Cross Entropy Loss (CB). All these were used to

train the MinkowskiUNet34 architecture. For the FL and α-FL experiments the γ

hyper-parameter was set to 2.0 and for the α-FL the same weights were used as

the weighted cross entropy loss (see Section 5.2.6). For the CB experiments we set

β = 0.999999.

C.3 Average vs max pooling

As discussed in the experiments Section 5.3 of Chapter 5, one possibility to aggre-

gate probabilities of points associated per triangle or component is average pooling:

qt = ∑p∈Pt qp/|Pt| where qp and qt are point and triangle probabilities respectively.

An alternative is to use max pooling (i.e., replace sum with max above). We exper-

imented with average vs max pooling also per component. As shown in Table C.5,

average pooling works better for both triangle- and component-based pooling (we

experimented with MinkowskiNet per-point probabilities).
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Method Loss n? c? Part IoUShape IoUClass acc.

MinkNet2Sub

WCE ✓ × 33.1% 36.0% 69.9%

CE ✓ × 30.7% 32.7% 68.8%

FL ✓ × 31.0% 33.4% 67.9%

α-FL ✓ × 27.2% 28.3% 66.7%

CB ✓ × 32.9% 34.3% 69.1%

MinkNet2Sub

WCE ✓ ✓ 37.0% 39.1% 73.2%

CE ✓ ✓ 35.6% 39.2% 73.5%

FL ✓ ✓ 35.1% 38.4% 73.2%

α-FL ✓ ✓ 36.0% 38.2% 72.4%

CB ✓ ✓ 38.0% 39.7% 73.9%

Table C.4: “BuildingNet-Mesh” results using different loss functions

Method Pool. n? c? Part IoUShape IoUClass acc.

MinkNet2Triangle

Avg ✓ × 28.8% 26.7% 64.8%

Max ✓ × 28.6% 26.1% 64.4%

Avg ✓ ✓ 32.8% 29.2% 68.1%

Max ✓ ✓ 31.5% 28.1% 66.8%

MinkNet2Sub

Avg ✓ × 33.1% 36.0% 69.9%

Max ✓ × 30.4% 32.4% 65.6%

Avg ✓ ✓ 37.0% 39.1% 73.2%

Max ✓ ✓ 32.7% 34.8% 67.4%

Table C.5: “BuildingNet-Mesh” results using average and max pooling aggregation

over triangles and components (weighted cross-entropy loss was used for all these

experiments).

C.4 MinkNet-GC

As mentioned in the experiments Section 5.3 of Chapter 5, we implemented a sim-

ple graph-cuts variant, called MinkNet-GC, that incorporates label probabilities

from MinkowskiUNet34 as unary terms, and a pairwise term that depends on an-
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gles between triangles, inspired by [89]. Specifically, we use the following energy

that we minimize using [18]:

E(yyy) = ∑
i∈F

ψ(yi) + ∑
i∈F

∑
j∈N (i)

ϕ(yi,yj) (C.1)

where yyy = {yi} are the label assignments we wish to compute by minimizing the

above energy, F is the set of faces in a mesh, andN (i) are the adjacent faces of each

face i. The unary term is expressed as follows: ψ(yi) = − log f (yi), where f (yi) is

the probability distribution over part labels associated with the face i produced

through average pooling of probabilities computed from MinkowskiUNet34 on the

triangle’s associated points. The pairwise term uses angles between face normals,

ϕ′(yi,yj) = −λ′ · log(min(ωi,j/90o,1)), for yi , yj, where ωi,j is the angle between

the normals of faces i, j. The term results in zero cost for right angles between

normals indicating a strong edge. The parameter λ is adjusted with grid search in

the hold-out validation set.

C.5 Performance for each part label

Chapter 5 reports mean Part IoU performance in the experiments Section 5.3. Ta-

ble C.6 reports the BuildingGNN-PointNet++ and BuildingGNN-MinkNet part IoU

performance for each label. We also report the performance of MinkowskiNet and

PointNet++ for the point cloud track. We observe that networks do better for com-

mon part labels, such as window, wall, roof, plant, vehicle, while the performance

degrades for rare parts (e.g., awning, arch), or parts whose shape can easily be

confused with other more dominant parts (e.g., garage is often confused with door,

wall, or window).
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Label
BuildingGNN BuildingGNN MinkNet PointNet++ BuildingGNN BuildingGNN MinkNet PointNet++

MinkNet(n+c) PointNet++(n+c) (n+c) (n+c) MinkNet(n) PointNet++(n) (n) (n)

Window 70.5% 71.1% 44.1% 34.8% 70.4% 68.3% 35.6% 0.0%

Plant 81.0% 69.8% 79.6% 70.3% 79.8% 69.8% 79.7% 48.4%

Vehicle 83.7% 77.3% 77.1% 29.7% 82.7% 72.4% 75.8% 19.2%

Wall 78.1% 77.5% 64.5% 57.9% 76.0% 74.4% 63.2% 54.4%

Banister 50.0% 19.9% 44.9% 0.0% 56.5% 22.0% 45.6% 0.0%

Furniture 59.7% 37.0% 56.0% 0.0% 58.3% 43.5% 54.9% 0.0%

Fence 55.5% 34.7% 71.3% 16.5% 64.1% 19.7% 49.5% 9.6%

Roof 78.9% 72.1% 65.3% 58.2% 70.2% 69.0% 67.0% 56.4%

Door 41.7% 37.6% 21.7% 0.0% 39.2% 37.7% 23.8% 0.0%

Tower 53.4% 41.2% 46.5% 2.3% 50.8% 37.5% 43.4% 4.8%

Column 61.5% 27.6% 49.5% 0.6% 53.6% 34.7% 42.9% 1.1%

Beam 24.9% 22.4% 13.8% 0.02% 30.3% 21.5% 17.2% 0.0%

Stairs 38.6% 25.6% 26.9% 0.0% 41.0% 24.1% 27.8% 0.0%

Shutters 1.0% 1.3% 0.0% 0.0% 1.7% 0.0% 0.0% 0.0%

Garage 9.0% 10.6% 3.6% 0.0% 10.6% 8.4% 6.8% 0.0%

Parapet 24.9% 3.9% 11.6% 0.0% 28.6% 2.5% 21.0% 0.0%

Gate 14.0% 16.5% 6.4% 0.0% 7.9% 12.3% 7.9% 0.0%

Dome 53.8% 10.1% 48.0% 1.9% 54.3% 14.2% 54.5% 16.3%

Floor 51.5% 37.7% 47.8% 36.9% 51.2% 30.9% 46.8% 30.0%

Ground 75.0% 65.1% 77.4% 64.1% 61.8% 55.5% 60.8% 42.6%

Buttress 23.8% 9.6% 15.6% 0.0% 38.7% 12.3% 6.1% 0.0%

Balcony 19.6% 9.5% 15.0% 0.0% 15.5% 15.6% 17.3% 0.0%

Chimney 70.0% 50.9% 57.9% 0.0% 53.6% 49.5% 60.1% 0.0%

Lighting 6.4% 9.1% 16.8% 0.0% 24.9% 3.5% 23.3% 0.0%

Corridor 16.3% 10.5% 15.9% 4.2% 7.2% 4.1% 7.2% 0.0%

Ceiling 28.0% 23.8% 22.1% 4.6% 28.0% 20.5% 17.4% 4.6%

Pool 70.8% 53.0% 78.7% 77.8% 38.1% 33.0% 43.0% 0.0%

Dormer 27.3% 20.4% 9.6% 0.0% 22.1% 23.3% 6.8% 0.0%

Road 46.2% 24.1% 53.5% 40.0% 1.9% 16.3% 21.5% 0.0%

Arch 8.4% 5.2% 0.9% 0.0% 3.2% 2.9% 0.8% 0.0%

Awning 1.5% 0% 3.8% 0.0% 1.6% 0.0% 0.0% 0.0%

Table C.6: Part IoU performance for each label. BuildingGNN-MinkNet and

BuildingGNN-PointNet++ are tested on the mesh track, while MinkNet and Point-

Net++ are tested on the point cloud track. The left half of the table reports per-

formance when color is available (“n+c”), while the right half reports performance

when it is not available (“n”).
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Appendix D
BuildingGNN ablation study

D.1 Node features ablation

We conducted an ablation study involving different node features, and also ex-

perimenting with different types of edges in our BuildingGNN. Table D.1 present

the results for different experimental conditions of our BuildingGNN based on

PointNet++ as node features. We first experimented using no edges and process-

ing node features alone through our MLP structure. We experimented with us-

ing only OBB-based features (“Node-OBB”), using features from PointNet++ alone

(“Node-PointNet++”), and finally using both node features concatenated (“Node-

OBB+PointNet++”). We observe that using all combinations of node features yields

better performance compared to using either node feature type alone. Then we

started experimented with adding each type of edges individually to our network

(e.g., “w/ support edges” in Table D.1 means that we use node features with sup-

port edges only). Adding each type of edge individually further boosts perfor-

mance compared to using node features alone. Using all edges (“BuildingGNN-

PointNet”) yields a noticeable 7.1% Part IoU increase and 8.1% Shape IoU increase

compared to using node features alone. Table D.2 shows the same experiments

using MinkowskiNet-based features. We observe that combined node features per-

form better than using either node feature type alone. Adding each type of edges

helps, except for proximity edges that seem to have no improvement when used

alone. Using all edges still yields a noticeable 2.6% Part IoU increase and 6.2%

Shape IoU increase compared to using node features alone.
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Variant n? c? Part IoU Shape IoU Class acc.

Node-OBB ✓ ✓ 10.0% 17.1% 56.5%

Node-PointNet++ ✓ ✓ 14.0% 19.1% 52.2%

Node-OBB+PointNet++ ✓ ✓ 24.4% 27.8% 71.7%

w/ support edges ✓ ✓ 26.7% 29.2% 71.5%

w/ containment edges ✓ ✓ 27.9% 30.6% 72.6%

w/ proximity edges ✓ ✓ 26.4% 29.4% 71.4%

w/ similarity edges ✓ ✓ 23.1% 28.5% 69.8%

BuildingGNN-PointNet++ ✓ ✓ 31.5% 35.9% 73.9%

Table D.1: BuildingGNN ablation study based on PointNet++ node features.

Variant n? c? Part IoU Shape IoU Class acc.

Node-OBB ✓ ✓ 10.0% 17.1% 56.5%

Node-MinkNet ✓ ✓ 35.6% 35.9% 67.7%

Node-OBB+MinkNet ✓ ✓ 40.0% 40.6% 75.8%

w/ support edges ✓ ✓ 42.0% 43.5% 77.8%

w/ containment edges ✓ ✓ 41.1% 42.0% 76.8%

w/ proximity edges ✓ ✓ 39.9% 40.6% 75.6%

w/ similarity edges ✓ ✓ 41.2% 43.0% 75.8%

BuildingGNN-MinkNet ✓ ✓ 42.6% 46.8% 77.8%

Table D.2: BuildingGNN ablation study based on MinkowskiNet node features.

D.2 DGCNN experiments

We also experimented with DGCNN [231] as a backbone in our GNN for extracting

node features. Unfortunately, DGCNN could not directly handle our large points

clouds (100K points). It runs out of memory even with batch size 1 on a 48GB

GPU card. We tried to downsample the point clouds (10K points) to pass them to

DGCNN, then propagated the node features back to the 100K points using near-

est neighbor upsampling. The part IoU was 32.5% in the mesh track with color

input and using all edges (i.e., the performance is comparable to BuildingGNN-

PointNet++, but much lower than BuildingGNN-MinkNet). Still, since other meth-
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ods were able to handle the original resolution without downsampling, this com-

parison is not necessarily fair, thus we excluded it from the tables showing the

track results in Chapter 5, Section 5.3.
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