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Hepiindn

Ye aut) ) Steif3n, napouctdlouye dVo SapopeTinéc ueréteg: Aentoucpnc Baduovéounon
(fine-tuning) twv Ytodepddv X0levine Yukawa xon Quartic oty Yrnepouppetpnr| Ocwpla

QCD xo Emavaxavovixornoinon Tekeotwv Teoodpwv Koudpx otn Ocwpia QCD.

To umepouUUPETEXE POVTEAN TOU EQuEUOloVTOL OE LoYURE OAANAETIOPMOVTA CUC THUTO
TEOCPEPOLY CUVOPTIIOTIXEC TEOOTTIXEC Yol TNV amoxdhudn véag @uoxic Tépa amd To
Kohepwpévo Tpotumo. To teheuvtalar ypodvia, ol aprduntixés UEAETEC UTERCUUHETOIXMDY
enextdocwy e QCD oto mhéypa xadiotavtor mo egxtéc.  Xe auth) TN SwTelBy,
TEPLYPAPOUNE TOAAS xivnTea YLt Var EUPodOVOUPE GTN UEAETY) UTEQOUUUETEIXMY VEMELOY
YENOWOTOLOVTUS TEYVIXEC TAEYHOTOS. 20TOC0, Bdpopa eumddi TEOXVOTTOUY OO TNV
mopaPlacn tne Trepouppetelag oto TAEYUA, OTwe 1 aralitnon hentouephc Boduovéunong
(fine-tuning) otnv anoyupvouévn (bare) Aayxpaviiovy tne Yewploc. H npocéyyior| pog
YLOU TNV QVTWUETWTLOT QUTGY TV {NTUETRY TEQLAUPBAVEL THY TATPT) ATOXUTAC TUCT) GAWY
TWV CUUUETPlWY TNS Spdong, ol onoleg moapafBidlovton oto TAEypa, xadhe TAnotdlouye
070 6plo Tou cuveyouc. llpoteivouye emlong pepixolc TpoTOUC Yol var uewiel o apriude
TV TopaéTewy ou yeetdlovton hentoueer| adpovounon (fine-tuning), npoxewévou va

XATUO TOLY EUXOAGTEROL oL aptiunTixol uToloyioUol 6TO TAEYUAL.

N v npdtn uerétn, OSepeuvolue T Aemtoucpr] Baduovounon (fine-tuning) tng
otadepde oUlevine Yukawa (ahknlemdpdoeic gluino-quark-squark) xou tne otodepdc
oUCeuéne quartic (a)\)\n)\smﬁpd@aq TECCUPWY squark) otV N =1 UTEROUUUETELXT)
Yewpla QCD, doxpitomoinuevn otov Euxieldeto ywpdypovo. Xernowonotolue 1 Yewpla
Olotaparywy o€ eminedo evog Ppodyou xon OTn yoUnAGTERN TAEN NG TASYMOTIXNS
otadepdc. Xpnowonotettar, eniong, To Modified Minimal Subtraction Scheme (M_S), To
omolo €€ oploo, amauTel SLaTaEoXTIX00C UTOAOYLIONOUS, GTO GUVEYECS xoa/v'] OTO TAEYUOL.
Y10 mAEYua, Yenowornowolue T dwxpitonoinon Wilson yio nedia yAouoviou, xoudox xo
yhoutvo. T media squark yernowonotolue naive daxpitonoinoy. ‘Oleg oL cuVaETHOELG
Green xau oL TUEAYOVTEG ETUVUXAVOVIXOTIOINOTG Vol aVOAUTIXEG EXPEUOELC UVAAOYES
ATEOGOLOPLOTWY  TUQUUETEWY:  TOU apuiuol Twv Ypwudtwy, Ng Tou opuod Twv
yevoewy, Ny xou tng mapouéteou Poduidog a.  H yvoon autov twv mopoydviony
emavaxavovixonolnong  ebvon  amopaltnTn TEOXEWEVOU Vo GUOYETIGTOOV  aErdunTIXd
amoTeEAEOUATA,  TOU  TEOEEYOVTOL  OmO  UN  OlTUEaXTIXEC  UEAETEG,  ME TG

ETOVOXOVOVIXOTIONUEVES, <OuUCIXéCs ouvapthoelc Green tne VYewploc.
b
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Ou duoxohieg autrg NG UEAETNG EYXEWVTUL OTO YEYOVOS OTL BLPORETIXE GUCTATIXG TWV
medlowv squark avoueryvioovtar Yetallh Toug oe ®PovTind eRImEDO Xou oL CUUUETPIEC TNG
opdong, OTWS 1 opoTYIA (parity) »ou N o0Ceuln TV CUUPETELOY @opTiou (charge
conjugation), emtpénouvy o mpdoetn otadepd olleuing Yukawa. uvemmg, yio TV
XATAAANAY TPOCOPUOYT TV 6pwv Yukawa, autéc ol Ueilelc mpémel var AauBdvovton unddn
OTIC OUVUTXES ETAVAXAVOVIXOTIOMNONG. LNUEWWOTE OTL EVE TOPEYOUUE T ATOTEAEGUOTA
TWV TUPAYOVIWY ETavaxavovixonoinone yio g otadepéc oUleuine Yukawa téco oe
OLIC TATIXT 000 X0 OE TAEYHOTIXY] OPUAOTONGT), TOEOUGCLICOUUE TO ATOTEAEOUOTA TWY
TOPAUYOVIWY  ETOvVAXOvVOVIXOTOiNoTG Yoo Tic oTtadepéc o0leving quartic uoévo oe
otaoTatiny| odaromoinom.  Ou umoloyiouol TOU APOPOLY TNV ETUVIXAVOVIXOTONGY) TKV

otadeprdv o0leuing quartic oto mAéypa Beloxovton ot eCEMEN.

oot Oedtepn  WeAETN,  EXTEAOUME  UTOAOYIOMOUG  YLOL VO MEAETOOUUE TNV
ETAVOUXAVOVIXOTIOINOT, TV  TEAECTOV TECOdpwY xoudpx oto midloto e QCD.
Xpnowonoolue 800  OYAUATA  ETUVIXAVOVIXOTOINONC: to Gauge Invariant
Renormalization Scheme (GIRS), to omolo éyel xdmoto nehovexthyata o alyxpLoT UE
GANoL Oy OO, EWOIXE OE 1) BLUTUEOXTIXES €pELVES 0TO TAEY A, ot To Modified Minimal
Subtraction Scheme (M_S) And Toug SlatapoxTolc UTOAOYIOUOUS oG eE4YOUUE Ta
TWVOXOOTOLYEI TV  TVOXWY  YETUTEOTAC METAE)  auTOY  TwV 000  OYNUATOV
enavaxavovixornoinong. Mia Suoxohior ot UEAETH TV TEAECTOV TEGOUPWY xOUdEX Elvor
TO YEYOVOG OTL TEAEOTEC WE OlopopeTixolg Tivaxeg Dirac avaperyviovton petald toug
xatd TNy emavoxavovixornoinor. Emmiéov, ol utohoyiopol oto GIRS, oc pia dedopévn
Té4En ot Vewpla Sotopay v, TEPUAUUBAVOUY BlaypdUUOTH UE TEQIOCOTEQO AT6 EVal
Bedyo. Enuewdvoupe 6Tt ecTIAlOVUE TOCO OE TEAEOTEC TEOOBPMY xoudpx Ye AF = 2

TOL BLTNEOLUY TNV opoTYia 660 xon O TEAEOTEG TToU TNV ToEoBtdlouy.

H e€aywyh Twv mvaxooToLyeinv TV Tvexwy UETATEOTHAS ATOLTEL TOV UTOAOYIOUS TWY
ouvapthoewy Green 800 onuciwy, ov omoleg mepthaufSdvouy d00 TEAECTEC TECTARLV
XOUdEX 1) £VOL TEAECTY TECGUPMY XOUAEX Xou €V TEAEGTY| PE OUO xadEx, xaddS Xt TKV
ocuvapthoewy Green TELOV oNuelwy Tou TEPLAAUBAVOUY Eva TEAEOTY| TEGOUPWY XOUAEX
xou 000 TeEAE0TEG pE 0U0 xoudpx. ‘Ohot o tedeotég oTig cuvaptrioelg Green Bploxovto
oe dlpltd ywpoypeovixd onuelo.  Emmhéov, emxevipmvouacTte TOC0 ot TEAEGTEG
TEGOUPWY XOLAEX TOU BLUTNEOVY TNV opoTid 660 xou 6€ TEAEOTEC Tou TNV ToRUBLalouy.
H onuocia twv anoteAeoudtwy yac €yxeital ot duVaTOTNTA TOUC Vol BEATIOC0LY TNV
xotovonot| pog Yo o gawvoueva e QCD, mpoogepovTag TOAITIIES YVWOELS Yid To
mwvaxootolyeto tou mivaxa Cabibbo-Kobayashi-Maskawa (CKM) xou plyvovtac ¢og

7 4 7 7 7 7
oTn un SLO(TO(pO(XTL%Y] ETAVANAVOVIXOTIOLNOY) Aol HLEY] TWV TEAECTWV TECOUQWY KOLUOK.



Abstract

In this thesis, we present two projects: Fine-Tuning of the Yukawa and Quartic
Couplings in Supersymmetric QCD and Gauge-invariant Renormalization of

Four-quark Operators in Lattice QCD.

Supersymmetric models applied to strongly interacting systems offer exciting
prospects for uncovering new physics beyond the Standard Model. In recent years,
numerical lattice studies of supersymmetric extensions of QCD have become more
attainable. In this thesis, we outline numerous motivations to delve into the study of
supersymmetric theories using lattice techniques. Nevertheless, various well-known
obstacles emerge from the breaking of supersymmetry in a lattice-regulated theory,
such as the requirement for fine-tuning of the theory’s bare Lagrangian. Our
approach to address these issues involves mandating that all symmetries of the
action, which are broken on the lattice, must be fully restored as the continuum limit
is approached. We also propose some ways to reduce the amount of the parameters

that need fine-tuning in order to render the numerical lattice calculations easier.

For the first project, we investigate the fine-tuning of the Yukawa
(gluino-quark-squark interactions) and quartic (four-squark interactions) couplings of
N = 1 supersymmetric QCD, discretized on a Euclidean lattice. We use perturbation
theory at one-loop level and to the lowest order in the lattice spacing. The Modified
Minimal Subtraction Scheme (MS) is employed; by its definition, this scheme requires
perturbative calculations, in the continuum and/or on the lattice. On the lattice, we
utilize the Wilson formulation for gluon, quark and gluino fields; for squark fields we
use naive discretization. All Green’s functions and renormalization factors are
analytic expressions depending on the number of colors, N., the number of flavors,
Ny, and the gauge parameter, «, which are left unspecified. Knowledge of these
renormalization factors is necessary in order to relate numerical results, coming from
nonperturbative studies, to the renormalized, “physical” Green’s functions of the

theory.

The sheer difficulties of this study lie in the fact that different components of squark
fields mix among themselves at the quantum level and the action’s symmetries, such
as parity and charge conjugation, allow an additional Yukawa coupling. Consequently,
for an appropriate fine-tuning of the Yukawa terms, these mixings must be taken into

account in the renormalization conditions. Note that while we provide the results of

v
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the renormalization factors for the Yukawa couplings in both dimensional and lattice
regularization, we present the outcomes of the renormalization factors for the quartic
couplings only in dimensional regularization. The computations regarding the

renormalization of the quartic couplings on the lattice are underway.

For the second project, we perform calculations to determine the renormalization of
the four-quark operators in the framework of QCD. We employ a Gauge Invariant
Renormalization Scheme (GIRS), which can be advantageous compared to other
schemes, especially in nonperturbative lattice investigations, and the Modified
Minimal Subtraction Scheme (MS). From our perturbative computations we extract
the elements of the conversion matrices between these two renormalization schemes at
the next leading order. A formidable issue in the study of the four-quark operators is
the fact that operators with different Dirac matrices mix among themselves upon
renormalization. Furthermore, computations in GIRS, at a given order in
perturbation theory, involve diagrams with more than one loop. Note that we focus

on both Parity Conserving and Parity Violating four-quark operators with AF = 2.

The extraction of the elements of the conversion matrices entails the calculation of
two-point Green’s functions, which involve products of two four-quark operators or one
four-quark operator and one bilinear operator, as well as three-point Green’s functions
which involve one four-quark and two bilinear operators; all operators are situated
at distinct spacetime points. Moreover, we concentrate on both Parity Conserving
and Parity Violating four-quark operators. The significance of our results lies in their
potential to refine our understanding of QCD phenomena, offering valuable insights into
the precision of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and shedding
light on the nonperturbative treatment of complex mixing patterns associated with

four-quark operators.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the fundamental theory that describes the
interactions of quarks, which are fermions, through the exchange of gluons, which are
gauge bosons. Quarks are the elementary constituents of nucleons and interact
through the strong nuclear force. There are six different flavors of quarks with
different masses: up, down, charm, strange, top, and bottom, and three different
types of color charges conventionally named: red, green, and blue. The QCD action
consists of two parts: the action of gluons and the action of quarks, and each action
remains invariant under local gauge transformations of the non-abelian SU(3) group.
The number three of this group refers to the three color charges of quarks and the
eight generators correspond to the eight types of gluons, each carrying a color charge.
This characteristic indicates that gluons can interact with themselves, distinguishing

them from photons, which do not exhibit self-interactions.

The dynamics of QCD involve complex phenomena such as the asymptotic freedom
which sets it apart from other theories. This phenomenon describes the behavior of
quarks and gluons at short distances where the strong force between them weakens
significantly. This makes the strong force different from the forces in everyday

experiences, where they typically become stronger at shorter distances.

An other complex feature of QCD is confinement; despite the freedom of quarks and

gluons to move independently, they are never observed as isolated particles. Instead,
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these elementary particles are confined within larger, color-neutral entities called
hadrons, which are separated to baryons and mesons. The exact mechanisms behind
confinement remain an active area of research, representing one of the outstanding
challenges in understanding the behavior of the strong force. Confinement is observed
in low-energy regions and thus, we cannot study it smoothly as the perturbation
theory breaks down in these regions. Therefore, it is important to introduce a
nonperturbative approach to the theory. Currently, the most effective method is the
discretization of the spacetime in the framework of QCD. This theory is called Lattice
QCD and it is the only way to study QCD nonperturbatively through numerical

simulations.

1.2 Quantum Chromodynamics on the Lattice

The first that established the lattice formulation of QCD was Kenneth Wilson, back
in 1974, who introduced lattice gauge theory as a way to regulate non-abelian gauge
theories [1]. Some years latter, a group of physicists, including Michael Creutz,
collaborated to apply lattice techniques specifically to QCD [2]. Over the years, the
lattice QCD methodology matured through the contributions of many researchers
while the computational techniques and algorithms have been improving. Therefore,
this theory paved the way for a comprehensive understanding of the non-perturbative
aspects of the strong force, providing valuable insights into the behavior of quarks

and gluons at both high and low energy scales.

The lattice formulation of QCD introduces a discretized spacetime lattice with lattice
spacing a to represent the continuous Euclidean spacetime of quantum field theory.
Lattice QCD, as a powerful numerical technique, can be applied so as to make QCD
finite in high-energy regimes with the finite lattice spacing a acting as an ultraviolet
regulator. The presence of the lattice spacing a induces a momentum cutoff,
constraining the integration domain to the finite interval of —7w/a < p, < 7/a (first
Brillouin zone) in cases where lattice calculations are conducted in momentum space.
At high energies, where quarks and gluons behave almost as free particles,
perturbative methods, such as Feynman diagram calculations, can also be applied.
However, at low energies, where phenomena such as confinement and the formation of

hadrons arise, the strong force becomes non-perturbative and only lattice QCD



Chapter 1. Introduction 3

provides a framework for investigating QCD. At low-energy regimes, the finite lattice

size L acts as an infrared regulator.

The continuum quantum field theory can be recovered by extrapolating lattice results
towards an infinitely large lattice size (L — oo) and approaching the limit of an
infinitesimally small lattice spacing (¢ — 0). As we fine-tune the Lagrangian bare
parameters and take the regulator to the continuum limit, the lattice calculations
converge to the predictions of the continuum quantum field theory. This
extrapolation process is fundamental for bridging the gap between the discretized
lattice world and the continuous behavior expected in the underlying quantum field

theory.

To derive nonperturbative physical results from numerical simulations on the lattice,
establishing an appropriate nonperturbative renormalization framework is essential.
Numerous non-perturbative techniques are available for computing renormalization
constants of composite operators in lattice field theory. These methods aim to reduce
systematic errors that arise when extracting physical predictions from lattice operator
matrix elements. A main non-perturbative renormalization scheme used in lattice field
theory to determine renormalization constants is the RI-MOM scheme. This scheme
relies on numerically evaluating correlation functions of operators between external
quark and/or gluon states in momentum space. Specifically, this involves computing
the amputated Green’s function, in the Landau gauge and at a specified large Euclidean
scale, p* = p?, with the condition that it matches its tree-level value in the chiral limit.
Several studies have successfully utilized RI-MOM scheme and highlight the efficacy
and applicability of this scheme in practical renormalization calculations within lattice
field theory [3-5].

Another nonperturbative renormalization approach, known as the Schrodinger
functional scheme [6-8], utilizes the finite size of lattices used in simulations to set the
renormalization scale. This method employs continuum perturbation theory to
convert results from the Schrodinger functional scheme to the MS scheme. While
theoretically elegant, its practical application demands substantial effort and must be
repeated for each new operator. In contrast, the RI-MOM method stands out for its
relatively straightforward implementation, allowing for the treatment of all desired
operators within a single simulation. However, the Schrodinger functional method is

explicitly gauge invariant, whereas the RI-MOM method necessitates gauge fixing.
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Gauge-invariant Renormalization Scheme (GIRS) is also an efficient non-perturbative
renormalization scheme, which was introduced in Ref. [9] and was inspired by the
coordinate space (X-space) renormalization approach [10]. GIRS represents a method
for renormalizing composite operators on the lattice, preserving gauge invariance and
independence from mass. In GIRS, one has to calculate correlation functions of gauge-
invariant composite operators at different spacetime points. In numerous scenarios,
the renormalization factors of operators within GIRS can be determined by analyzing
only two-point Green’s functions. However, when mixing is present, in many cases, the

investigation of three-point Green’s functions becomes necessary as well.

Lattice techniques are not limited to QCD alone. We can extend lattice QCD to
supersymmetric (SUSY) theories, where there is a symmetry between fermions and
bosons. SUSY is a theoretical framework which provides potential solutions to some
of the unresolved questions in particle physics, such as the hierarchy problem. The
use of lattice techniques in the context of SUSY have their origins in several studies
conducted in the late 1970s and in the 1980s [11, 12]. Extending lattice QCD
techniques to supersymmetric theories involves adapting numerical simulations to
accommodate the unique features of supersymmetry, such as the presence of
superpartners for each particle. However, supersymmetric lattice field theories present
additional challenges, but they offer a wunique opportunity to explore the
non-perturbative aspects of supersymmetry and the interplay between

supersymmetry and the strong force.

1.3 Perturbative Lattice QCD Calculations

Perturbative lattice QCD calculations constitute a powerful approach in theoretical
particle physics, particularly for providing a starting point to explore the
nonperturbative aspects of the strong force and for connecting lattice QCD with
physical values. Perturbative calculations are accurate when the coupling constant is
small. However, QCD is known for its strong coupling at low energies, making

perturbative methods challenging in such regimes.

To combine lattice results and experimental data, we have to renormalize lattice fields
and bare parameters of the Lagrangian, such as bare couplings and masses. We also

have to renormalize lattice operators. The easier way to perform the aforementioned
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renormalization is by using perturbation theory as a nonperturbative determination
through numerical simulations may be proven challenging or even impossible since a
possible mixing with other operators may arise. When nonperturbative calculation of
renormalization factors is possible, it allows comparisons with corresponding
perturbative outcomes at a specific renormalization scale. Hence, we can check the
reliability of both perturbative and nonperturbative methods. In addition, by
applying lattice techniques to perturbative QCD, we can explore the behavior of
quarks and gluons at intermediate energies, bridging the gap between the

perturbative and non-perturbative regimes.

Moreover, perturbative lattice calculations are much more accurate than
nonperturbative one except the calculations of mixing coefficients of operators of
lower dimensionality which contain inverse powers of the lattice spacing and thus
they diverge in the limit where the lattice spacing goes to zero. Furthermore, lattice
perturbation theory helps us to reduce lattice artifacts, which appear when we
extrapolate the lattice theory to the continuum limit, from measured quantities and
get accurate predictions from lattice results. Lattice perturbation theory is also
essential since by using it, we can recover the continuum symmetries, which are
broken by the lattice regularization (such as chiral symmetry), in the continuum limit

and investigate which of these symmetries are anomalous.

An other important implementation of perturbative lattice calculations is the
computation of the conversion factors between different renormalization schemes. For
instance, we can evaluate the conversion factor between a nonperturbative scheme on
the lattice (like the modified regularization-independent (RI’) scheme) and a
continuum scheme (like the MS scheme). Note that as continuum schemes are defined
perturbatively, the evaluation of these conversion factors can be determined only

perturbatively.

Lattice perturbation theory can also be extended to supersymmetric QCD (SQCD)
since supersymmetric models of strongly coupled theories are a very promising models
for new physics Beyond the Standard Model (SM). However, there are several well-
known obstacles arising from the breaking of SUSY in a regularized theory on the
lattice [13], including the necessity for fine-tuning of the theory’s bare Lagrangian [14—
16]. This extension is crucial because there is a lack of research on the nonperturbative
aspects of SQCD due to the extensive fine-tuning required for the numerous operators

involved in lattice simulations. However, nonperturbative calculations in the framework
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of the supersymmetric Yang-Mills (SYM) theory have been conducted, such as the
study of the mass spectrum and chiral properties by employing Wilson fermions for
gauge groups SU(2) [17] and SU(3) [18, 19]. A potential strategy to address this
challenge and guide the fine-tuning process involves employing lattice perturbation
theory. This method has shown success in studying two-dimensional supersymmetric
gauge theories [20, 21]. In the coming years, it is expected that simulations of SQCD

will become feasible.

In perturbative QCD, calculations are typically performed using Feynman diagrams,
which represent different orders of perturbation theory, and help us to systematically
organize and compute various contributions to physical observables. Comparing
lattice perturbation theory with continuum perturbation theory, we note that the
properties of the path integral, Wick’s theorem and the combinatorial rules on the
lattice are similar to the continuum. Nevertheless, the Feynman diagrams become
much more complicated on the lattice since the expressions of interaction vertices and
of the propagators are more complex. We also have an infinite number of interaction
vertices on the lattice (unlike the continuum) but we are restricted to use a finite
number of them at any given order in the coupling constant. However, there are still
more interaction vertices on the lattice and thus, there are more Feynman diagrams.
Therefore, most of the researchers are restricted to one-loop and to the lowest order
in lattice spacing calculations. Although, higher-loop calculations contain a huge
number of terms and they are time and labour consuming, a few studies perform
them in recent years, such as the studies of the O(a?) corrections to various fermionic

matrix elements [22-24].

While perturbative lattice QCD has made significant progress in understanding the
strong force in certain regimes, challenges persist, especially when dealing with
phenomena such as confinement and the formation of hadronic bound states.
Researchers continue to refine techniques; particularly, they try to reduce the
dependence of the results on the lattice spacing by improving the lattice actions.
Improved lattice actions contain discretized versions of the continuum Dirac operator
that respect key symmetries and desired properties. Some examples are: (1) Standard
Wilson fermions which introduce a term to the lattice Dirac operator to deal with the
fermion doubling problem, (2) Clover fermions that incorporate a clover term into the
lattice Dirac operator, which helps in reducing the lattice artifacts associated with
Wilson fermions, (3) Domain Wall fermions which introduce an extra dimension (the

fifth dimension) and localize fermionic fields on a four-dimensional boundary, (4)
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Overlap fermions that combine aspects of domain wall fermions and Ginsparg-Wilson

fermions, ensuring exact chiral symmetry on the lattice.

1.4 Current Trends of Lattice Field Theory

Recent advancements in lattice field theory have brought about significant progress in
various areas of particle physics research. One major focus lies in the investigation of
hadron structure, where lattice QCD calculations are utilized to study form factors
and gravitational form factors [25]. These studies have seen improvements in
controlling lattice artifacts and enhancing theoretical accuracy, paving the way for a
deeper understanding of the internal structure of hadrons. Moreover, there is a
growing interest in understanding the partonic structure of hadrons, particularly
through lattice calculations of x-dependent parton distributions [25]. Another recent
trend of the lattice field theory is the use of generative machine learning models in
order to overcome challenges in Monte Carlo sampling of lattice field theories, such as

critical slowing down and topological freezing [26].

Additionally, lattice QCD simulations contribute significantly to our understanding of
the phase diagram of strongly interacting matter, particularly focusing on the
chiral /deconfinement transition and its relation to heavy ion collision experiments
[27]. Furthermore, lattice QCD studies are extending to explore rare processes, such
as the invisible decay J/¢p — v, providing theoretical predictions to aid

experimental searches for phenomena beyond the Standard Model [28].

Quantum computing also plays a role in advancing lattice QCD simulations [29].
However, challenges remain in developing fault-tolerant quantum computers and
overcoming theoretical and algorithmic obstacles for simulating gauge theories on
quantum architectures. Precision calculations of nucleon form factors are also being
conducted using lattice QCD, contributing to our understanding of nucleon structure
[30]. Additionally, efforts in understanding hadron physics and quark flavor physics
through lattice QCD methods have been conducted [31-35].

Another essential current application of lattice field theory is the non-perturbative
lattice studies of strongly coupled gauge theories other than QCD for testing composite
models and providing theoretical inputs for experimental searches for new physics,

offering a window into physics beyond the standard model [36]. Lastly, lattice QCD
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calculations aim to provide precise predictions for the hadronic vacuum polarization
contribution to improve the precision of the Standard Model and enhance sensitivity
to physics beyond the Standard Model [37].

1.5 Thesis Overview

In this dissertation we present two projects: Fine-Tuning of the Yukawa and Quartic
Couplings in Supersymmetric QCD and Gauge-invariant Renormalization of
Four-quark Operators in Lattice QCD. Note that in these projects the bare
amputated Green’s functions are computed by using a symbolic package in

Mathematica that the lattice group of University of Cyprus has developed.

In Chapter 2, especially in subsections 2.1 - 2.5, we provide a well-established
background of supersymmetry. We include this for completeness and in order to lead
to our presentation of SQCD in the continuum in subsection 2.6. These topics are
closely related to the first project: Fine-Tuning of the Yukawa and Quartic Couplings
in Supersymmetric QCD.

In Chapter 3, we discuss the reasons behind exploring SUSY on the lattice, as well as
we outline the obstacles encountered in such investigations. A main obstacle arising
from the breaking of supersymmetry in a regularized theory on the lattice, including
the necessity for fine-tuning of the theory’s bare Lagrangian. Moreover, we delve into
N = 1 supersymmetric theory on the lattice in the Wess-Zumino gauge and its
associated symmetries. Understanding this chapter is crucial for comprehending the

content covered in Chapter 4.

In Chapter 4, we address the problem of fine-tuning of the N/ = 1 SQCD bare
Lagrangian via perturbative calculations so as to restore supersymmetry in the
continuum limit. Specifically, we study the renormalization of the Yukawa
(gluino-squark-quark interactions) and the quartic (four-squark interactions)
couplings.  To deduce the renormalization factors and the coefficients of the
counterterms we compute, perturbatively to one-loop and to the lowest order in the
lattice spacing, the relevant three-point and four-point Green’s functions using both
dimensional and lattice regularizations. All Green’s functions and renormalization
factors are analytic expressions depending on the number of colors, N,, the number of

flavors, Ny, and the gauge parameter, o, which are left unspecified. The quantities,
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which we calculate in this chapter, are important ingredients in extracting
nonperturbative information for supersymmetric theories through lattice simulations.
Furthermore, the renormalization factors are necessary ingredients in relating lattice
matrix elements to physical amplitudes. Noting that on the lattice, we utilize the
Wilson formulation for gluon, quark and gluino fields; for squark fields we use naive

discretization.

In Chapter 5 we discuss the second project: Gauge-invariant Renormalization of
Four-quark Operators in Lattice QCD. We concentrate only in four-quark operators
which involved in flavor-changing AF = 2 processes. The primary goal outlined in
this research is to examine the renormalization of four-quark operators using both
GIRS and MS schemes. Specifically, we aim to obtain the elements of the conversion
matrices between GIRS and MS. While these matrices depend on both scales, they
remain regularization-independent, allowing us to compute them using dimensional
regularization. This approach facilitates perturbative computations to higher-loop
orders. To determine the aforementioned elements of the conversion matrices, we
calculate the first quantum corrections for the two-point and three-point Green'’s
functions using coordinate space within dimensional regularization, where we regulate
the theory in D = 4 — 2¢ dimensions. By imposing renormalization conditions on
these bare one-loop Green’s functions, we derive perturbative renormalization
constants for a complete set of AF = 2 four-quark operators and also provide their
gauge-invariant mixing patterns. Furthermore, in this Chapter, we offer a
comprehensive analysis of the GIRS scheme, highlighting its benefits and its

drawbacks.

Lastly, in Chapter 6 we provide a summary and present the conclusions drawn from

our study.
In this thesis, there are also two appendices:

In Appendix A, we explore the path integral over the gluino field in order to clarify
its Majorana nature within the functional integral framework, and the way to properly

address it in the calculation of Feynman diagrams.

In Appendix B, for the sake of completeness, we depict diagrams that do not exist for
AF = 2 four-quark operators and they contribute to the Green’s functions involving
products of four-quark operators with AF < 2. Moreover, we present additional

Feynman diagrams that emerge specifically on the lattice.



Chapter 2

Supersymmetry

2.1 Introduction

In physics, a symmetry of a system is a physical or mathematical feature that is
preserved or remains unchanged under a transformation. The understanding of a
physical system relies heavily on knowledge of its symmetry structure. The most
important symmetry result is Noether’s theorem which states that when a system is
unchanged under a continuous symmetry, we can derive a conserved quantity.
Examples of it are the conservation of energy, momentum and angular momentum
due to time and space translations and rotation symmetry, respectively. Therefore,
we aim firstly to understand the symmetries of a system, and then we can investigate
the laws that are compatible with them. Note that subsections 2.1 - 2.5 are
well-established background; we include it for completeness, and in order to lead to

our presentation of SQCD in subsection 2.6.

The local SU(3)xSU(2)xU(1) gauge symmetry is an internal symmetry that essentially
defines the Standard Model (SM). The strong forces are based on the non-abelian SU(3)
group whilst the electroweak forces are based on the non-abelian SU(2)xU(1) gauge
group which is broken down spontaneously to the U(1) symmetry of the electromagnetic
interactions. Besides internal symmetries, we have also the global spacetime (Poincaré)

symmetry, as it is postulated for all relativistic quantum field theories [38].

The only symmetries that can exist, except spacetime and internal symmetries, are

“Supersymmetries”. It is commonly known that the formalism of symmetries is

10
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expressed by commutation relations.  For instance, in the case of continuous
symmetries, the formalism consists of groups that are called Lie groups with
generators that obey only commutation relations. Now, in order to construct a
supersymmetry, we need to take into account not only commutation relations but also
anticommutation relations. Supersymmetry is an extension of the Poincaré Lie

algebra; it is a graded Lie algebra.

A supersymmetric theory can be formulated using not only spacetime variables in the
Minkowski spacetime, but also anticommuting parameters, 6 and 6. This space is called
superspace where we can create superfields. Superfields are fields that can be expressed
as Taylor series in the powers of 6 and § and phenomenologically, their components
are used to describe particles. They are also used to construct supersymmetric gauge

theories.

In Quantum Field Theory there are two basic classes of particles: bosons, which have an
integer-valued spin and follow Bose—FEinstein statistics, and fermions, which have a half-
integer-valued spin and follow Fermi-Dirac statistics. In supersymmetry, each particle
from one class has an associated particle in the other, known as its superpartner, the
spin of which differs by a half-integer. Particles and their supersymmetric partners have
the same mass and the same quantum numbers under internal global symmetries. Note
that each fermion has two bosonic superpartners since the fermion has two degrees of

freedom due to its spin.

As supersymmetry is not supported by any experimental evidence, it breaks down
spontaneously. Thus, particles and their superpartners do not have the same mass.
However, there are important reasons that supersymmetry plays prominent roles in
modern theoretical physics and that the Minimal Supersymmetric Standard Model is
one of the best possible extensions of the SM. Over the past decades, supersymmetry
has been considered a prime candidate for resolving a number of open problems
related to the SM, such as the candidates to explain the nature of dark matter [39],
which arise from the lightest supersymmetric particles [40], and the unification of the
electromagnetic, weak and strong forces at the Planck scale (Mp = 10 GeV)
suggested by Grand Unified Theory (GUT) [41, 42]. Furthermore, supersymmetry
would resolve the hierarchy problem [41]; a problem that concerns the large
discrepancy between aspects of the weak force and gravity. Supersymmetry is also a
part of string theory [43], a theory of quantum gravity. Lastly, it can be used as a

tool to improve our understanding of quantum field theory.
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Introduction to the Supersymmetric Algebra

Firstly, before we introduce the algebra of supersymmetry, we should introduce the
Scattering Matrix S, a matrix that acts on the initial state of a system and gives a
final state. That is, S-matrix has elements which express the probability amplitude of
a physical system going from an initial state to a final state. The dimensions of this
matrix are infinite since the number of possible states of a system is also infinite. But
the matrix elements are not independent due to the fact that a physical theory could

obey some symmetries.

The Coleman-Mandula theorem enables us to find the symmetries of the S-matrix and
it starts with the following assumptions [44]:

e The S-matrix is based on a local, relativistic theory of quantum fields in four-
dimensional spacetime

e There are only a finite number of different particles associated with single-particle
states of a given mass

e There is an energy gap between the vacuum and the single-particle states

The corollary of this theorem is that the S-matrix has symmetries of space-time
translations, Lorentz transformations and a limited number of internal symmetries.
That is, the most general Lie algebra of the symmetries of the S-matrix contains:

e the space-time translation operators, P,,, which transform the four-vector position
of a state

e the operators of Lorentz transformations, M,,,

e finite number of Hermitian operators, B;, which are Lorentz scalar (internal
symmetries).

The latter operators, besides being invariant under Lorentz transformations, also

belong to the algebra of a compact Lie group.

We observed, based on the Coleman-Mandula theorem, that only those three kinds of
continuous symmetries of the S-matrix are allowed. However, this theorem takes into
account only generators that satisfy commutation relations, i.e. “even” objects. We
can generalize this algebra if, in addition to B;, P,, and M,,,, some other generators
are added, which we will call “odd”. Consequently, there will be both commutation

and anticommutation relations between the generators in our algebra. These relations
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take the following form:

{Q.Q}y=X
X, X' = X" (2.1)
Q,X]=0Q",

where @, Q' and Q" stand for the odd (anticommuting) elements of the algebra and

X, X" and X” for the even (commuting) elements.

The most general supersymmetric algebra is the following:

[P, Py =0
[P, Q%] = [P, Qar] = 0
[P, Bl = [Py, XM] = 0
{QF, Qanty = 20,5 Pud"yy
QL Q) = e X ™
{Qar, Qi } = eai)Xz/M
X5, Qax] = [X™, QK] = 0
[XEM | xEN) = [(xIM B =0

(2.2)

]
(B, Byn] = ic,” By,
[QF, B)] = S, Q)
[Qd[m Bl] == S*IL MQCLM

where S is a hermitian matrix. Operators () have a spinor index a and act to the left-
handed spinors, which are spinors that transform based on the M(%, 0) representation
of the Lorentz group. Operators @ have a spinor index ¢ and act to the right-handed
spinors, which are spinors that transform based on the M(O,%) representation of the

Lorentz group. Operator @ is the hermitian conjugate of the operator Q.

We can prove that the more @ and Q operators we have, the more supersymmetric
particles we have. The number of operators Q and () is shown by the indices L, M, K =
1,..,N. Furthermore, the indices a,b,a,l} = 1,2 of the above operators refer to the
Weyl spinors. The latin indices m,n,l =1, ...,4 denote the components of the Lorentz

vector. The objects X are called central charges because they commute with all the
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other generators. Also, all generators except () are commuted objects. Lastly, the

notation XM denotes that the objects X are antisymmetric with respect to L and M.

Note that in order to prove the equations (2.2), the Coleman-Mandula theorem and
the Jacobi identities are needed. The algebra of supersymmetry is called Graded Lie
Algebra and it is the only compatible with the symmetries of the S-matrix and with
the relativistic quantum field theory. Graded Lie Algebra also contains the operators
of Lorentz transformations M,,, but for brevity the commutation relations related

with them have not been included in equation (2.2).

Representations of the Supersymmetric Algebra

In this subsection, we will study irreducible supersymmetric representations of the N'=1
supersymmetric algebra. To achieve this, we will start from a single-particle state that
we call vacuum state, denoted by (2,, and we will act with the supersymmetric
operators on this state. Therefore, states that belong to the same representation will

be created and the superpartners of the vacuum state (2, will arise.

Below, we will prove that in every supersymmetric representation there is an equal
number of bosonic and fermionic states. Firstly, we introduce an operator (—)™* which

acts on fermionic and bosonic states as follows:

(_)NF (boson) = (bOSOn) (2.3>
(—)NF (fermion) = —(fermion).

Suppose we have a state |¢) and a new state |new) = Qa|t)). The state |[1)e,) will
be a fermion if the state |¢)) is a boson and vice versa due to the spin index of the

operator Q). Therefore, it follows:

(=)™ [) = £[4)

(2.4)
(_)NFQa‘w> = :FQa|w> :
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We can multiply the first relation by the operator @), from the left and equate the two

relations. Hence, we have:

(_)NFQa|w> = _Qa(_)NF’w> (25)
= {Qaa (_)NF} =0.

Now, we have:

tr{(—)"{Q2, Qsp}] = tr{(—)" Qi Qpp + Q3pQ0)] - (2.6)

If we use the cyclic property of the trace and the anticommutation relation in the

equation (2.5) we get the following result:
tr[(—)"{Q7, Qi) = tr[~Qa ()" Qyp + Q7 (=) Q] = 0. (2.7)
Also, considering the above relation and the anticommutation relation presented earlier:

{Qé‘? Qi)B} - ZO-ZEPm(;AB ) (28>
we conclude:

0= tr[(—)"{Q5, Qyp}] = 20, " 5tr[(—) V" Py (2.9)
= tr[(—)"] =0.

Given that [P, QY] = [P, Qar] = 0, the states appearing from the action of the

operator () on the vacuum (which is an eigenstate of P,,, with eigenvalue p,,), have the

same eigenvalue as the vacuum. Therefore, in the space of these states, the operator

P,, acts as a multiple of the unit operator. We know that we can define the trace as

shown below:

tr[(—)VF ] = Wl(=)N ). (2.10)

with the above sum spanning all states of a representation. Since the left hand side

of the above equation is zero, the states in the right hand side must be half bosonic
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and half fermionic so that the equality is satisfied. In this way we proved that in a

representation we have the same number of bosonic and fermionic states.

Let us focus on representations of the supersymmetric algebra corresponding to states
of a particle with mass m # 0. Therefore, the momentum operator will take the
form P? = —m?. Suppose we choose a frame of reference in which the particle we are
studying is at rest and thus, P,, = (—m,0,0,0). We know that acting in this state with
operators (), the supersymmetric partners of the vacuum state will arise. Consequently,
the new states will have the same rest mass as the vacuum states. In this frame of

reference the following anticommutation relations apply (compare with Eq. (2.2)):

{va QbB} = QméabéAB

A NBL_ (A A 1 (2.11)
{QaaQb } - {QaAa QbB} N 07

where the indices A and B run from 1 to A depending on which supersymmetric

algebra we study.

At this time, we can define the creation operators ()"

)= J%QM, (2.12)

and the annihilation operators a,4:

o, = \/%_mcgf. (2.13)

By using the definitions of the creation and annihilation operators, the relations (2.11)
take the following form:

{04 A (%B)T} = 5ab5AB

a

© At B (2.14)
{07 = {(a, ") (7)) = 0.

By definition, when the creation operators act on a vacuum state (1), the states of a

representation are created as follows:

Q(”)a;h . ”anAn = —(« Al)T o (a A")TQ, (2.15)
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where the indices a; run from 1 to 2 and the indices A; run from 1 to N. The vacuum

state (€2) is defined as follows:

o, 0 =0. (2.16)

A

At anticommutes, the state Q™ is antisymmetric under

Since the creation operators («
permutations of the indices a; or A;. So, in the above product of operators we cannot

have two operators with the same indices a; or A; because we would get zero.

Considering that each creation operator has 2N components, it follows that, for any

n
we get the dimensionality of our representation:

2N
dzz<2N>:22N. (2.17)

value of n, there are ) different states. Summing up all the values that n takes,

22/\/ 22N—1

Therefore, this representation contains states, of which are bosonic and

22N=1 are fermionic.

Now, for N'=1 the fundamental representation (i.e. the representation obtained starting

from a vacuum state with spin 0) consists of the following states:

Q

(0)'0 (2.18)
L(OQL)T(OQ,)TQ - _ 1 Eab(Oéc)T<OAC)TQ,

V2 22

The state €2 has zero spin, the state (a,)(2 has spin 1 and the state \%(aa)T(ab)TQ has

spin O.

However, there are cases where the vacuum state €2; has spin j greater than zero. The
table 2.1 shows the particles that exist in such cases as well as the particles that exist

in the fundamental representation.

Representations, for which the vacuum state has spin j greater than 3/2, contain
particles with spin greater than 2, and consequently do not find application in nature,
since quantization of particles with spin greater than 2 leads to violation of unitarity.

We can also find the supersymmetric representations for the cases N' > 1. Certainly,
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Spin | Q | ©

| —
I

NNIw k-~ O
OO DO
OO = N =
O = N = O
— N = O O

TABLE 2.1: Supersymmetric representations for N'=1 [44].

the N/ = 1 case is the one that has more application in the phenomenology of Physics
beyond the Standard Model (BSM), and can be studied in a more controlled way in
numerical simulations. The cases for N' > 4 are rejected as the fundamental

representation contains states with spin eigenvalue greater than 2.

2.2 Scalar Multiplet

In this section, we study the simplest theory of supersymmetry. This theory includes

a scalar field A, a spinor field ¥ and a scalar, auxiliary field F. The field F' is called

auxiliary as it can be expressed in terms of the other fields of the theory, i.e. in terms

of the fields A and . Of course, this theory cannot describe nature completely since
1

in this theory there are only fields with spin 3, such as the spinor field, and spin 0,

such as the fields A and F', whilst in nature there are particles with spin 1.

Firstly, we represent how the scalar field A transforms under a supersymmetric

transformation [44]:
Al = 9t 4 (2.19)

where ¢ and € are anticommuting, independent parameters with a spinor index and
thus, with two degrees of freedom. Note that the product £Q) has no spinor indices
since operators () have spinor indices, too. Below, we present commutation and
anticommutation relations with the parameters ¢ and £ and the operators @, @) and
P,

{66 = {&, Qu} = {€". &} = {€", Qv} = [P0, €] = 0. (2.20)

Similar relations are valid for £.
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Parameters ¢ and ¢ allow us to express the supersymmetric algebra in terms of

commutators:

£Q,€Q] = 260™EP,, (2.21)
£Q,£Q) = [€Q,€Q] = 0 (2.22)
[P™,£Q] = [P™,£Q) =0, (2.23)

where we follow the convention:

£Q = £Qa (2.24)
£Q = &Q". (2.25)

Now, we will find the dimensions of the operator ) and the parameter . Having in
mind that:

{Qa, Q;} =207 P, (2.26)

and the operator P,, has dimensions of energy, operator ) has dimensions [Energy]%.
Then, observing the Eq. (2.19), we conclude that the parameter ¢ has dimensions

[Energy] 2.

We can Taylor expand the exponential in the Eq. (2.19):

N=0 )

The infinitesimal supersymmetric transformation of the field A, which is the first, non-

trivial order of the above Taylor expansion, is:

JeA = (£Q +£Q) x A. (2.28)

Similarly,

0t = (Q +€Q) x ¢. (2.29)



Chapter 2. Supersymmetry 20

The transformation J, satisfies:

(5,06 — 0¢y) A = 2(no™E — £0™7) Pon A

) (2.30)
= —2i(no™§ — o™ N)0n A,

and

(60¢ — 0¢dy)tp = —2i(no™€ — £o™ )0, (2.31)
according to Eq. (2.21).

Starting with a scalar field A, we define the spinor field v as the field into which A

transforms:
S A = V264, (2.32)

Note that, if the field A has dimensions [Energy]!, then the field ¢ has dimensions
[Energy]”é. The field v has spinor indices, and thus two degrees of freedom.

Now, under a supersymmetric transformation, the new field 1) transforms into a tensor

field F' and into the derivative of A:
et = iV/20MED A + V2AF. (2.33)

Obviously, the new field F is scalar and has dimensions [Energy]'*!. The term with

the parameter £ in the above equation satisfies the Eq. (2.30).

By using the Eq. (2.31):

(60¢ — 0¢dy)t) = — 2i(no"¢ — £0™ )0t — 107G Dtp o™ € — £

(2.34)
+V2(E6,F — i F).

We conclude that the only way for both equations, (2.31) and (2.34), to be valid

simultaneously is if the field F' undergoes the following transformation:

0eF' = iV/2E5™0,1). (2.35)

It is noticeable that no other field appears in this theory; the field F' is the last field

that is introduced and has the higher dimensions. Furthermore, we notice that the
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transformations of the three fields are linear. The aforementioned fields and their
transformations are chosen in this way in order to construct a multiplet that consists
component fields that are transformed according to Eqgs.(2.30) and (2.31). Multiplets
are the irreducible representations of an algebra and the multiplet in this section is

called chiral or scalar multiplet.

At this moment, in order to create an action which is invariant under the infinitesimal
supersymmetric transformations, we introduce a Lagrangian density that transforms

as a total derivative. Below, we represent this Lagrangian density:
L= Lo+ mL,,, (2.36)
where m is an arbitrary parameter. The kinetic term is equal to:
Lo = i(0,0)6™ + A*OA + F*F | (2.37)

and the mass term:

L, =AF + A*F* — %W — —ynp. (2.38)

1
2

The equations of motion from this Lagrangian density are:

16" Ot +map =0 (2.39)
F+mA* =0 (2.40)
OA+mEF* =0, (2.41)

where [ is the d’Alembert operator. As we mentioned before, we notice that the
field F' (and F™*) is expressed in terms of the field A* (and A). Thus, the field F' is
called auxiliary field and this theory contains two instead of three independent fields.
Furthermore, when we substitute the Eq. (2.40) in the Eq. (2.41), it gives:

OA —m*A =0. (2.42)

Therefore, we construct a Lagrangian density that describes two free fields with the
same mass. It is worth mentioning that the number of bosonic degrees of freedom is
the same as the number of fermionic degrees of freedom as the field A is complex and
the field 1 is a spinor.
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2.3 Superfields and Superspace

Superspace is an extension of Minkowski space and consists not only the spacetime
variables z,, but it also consists anticommuting parameters 6 and 6. Superfields, which
are a useful extension of fields, are functions of superspace and they consist component
fields. Superfields also describe representations of the supersymmetric algebra with an

elegant way and construct interacting Lagrangians.

Firstly, we introduce the group element:

G(z,0,0) = ¢ Pnt0Q+0Q) (2.43)

and then, by using Baker-Campbell-Hausdorft’s formula and the commutation relations

of the Eqgs.(2.21)-(2.23), we can prove the following:

G(0,£,6)G(a™, 0, 0) = ¢/6Q+EQ) i(-a" Pn0Q+0Q)
— i(EQTEQ—aT Pr+0Q+0Q) — 5[EQ+EQ,—a™ P +0Q+0Q)]

= G(a™ —ilo™0 +i00™E E+ 0, +0). (2.44)

Note that, when the operator G(0, &, €) acts on a function of superspace, it changes the

variables of the function in the following way:

™ = 2™ 4 ifo™E — ifo™0
0—0+¢ (2.45)
0 —0+¢.
Considering an infinitesimal transformation of G(0,¢,€), we can understand that the

aforementioned change of variables can only be generated if the following expression is

valid:

7__ai_' mpa e a_'a m _ba
§Q+€Q_5(89“ 104 Q@m)+£a(8§d i0%0 ;" O). (2.46)
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Therefore, we obtain differential expressions that correspond to the operators () and

Q:

0= L om0,
5 (2.47)
Qd = _ﬁ -+ i@aaaa mam

We could have studied right multiplication instead of left multiplication in the product

of group elements. Then, we would have the following operators:

8 . mpa
Da = % + 10 40 0 8m
Di= -2 i mp,

0

(2.48)

which anticommute with the operators @ and Q. We can also prove the following

anticommutation relations:

{D,, Dy} = —2io,, "0 (2.49)
{D., Dy} =0 (2.50)
{D;,D;} = 0. (2.51)

Now, the most general superfield can be expressed in terms of its power series expansion
in 6 and 6:

F(x,0,0) = f(z) + 0¢(z) + 0x(x)
+ 00m(z) + 00n(z) + 0™ 0v,, () (2.52)
+ 000\ (x) + 000 () + 0000d(z).

Products with higher powers of § and 6 are zero due to the fact that § and 6 are

anticommuting parameters with spinor indices that run from 1 to 2.
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Having in mind that the linear infinitesimal supersymmetric transformation of a field is

defined in Eq. (2.28), the transformation law for a superfield can be defined as follows:

6cF(2.0,0) = (€Q + £Q) x F = (£Q + EQ)F
— (3ef(2)) + B(6c0(x)) + (59(( )
T 00(5em () + 00(0en(a)) + 00" 6(Sev, (1))
+ 990_(655\(:1:)) +0 (6@(1;)) + 6669(65d(x)).

(2.53)

When the operator (£Q + £Q) of the Eq. (2.46) acts on the superfield F(z, 6, 0) of the
Eq. (2.52), we take a result with different powers of # and #. By matching the
appropriate powers of 6 and # of this result with the powers of 6 and 4 of the
transformation 6:F(z,0,0) of Eq. (2.53), we can generate the transformation laws for
each component field. It is worth noticing that products or linear combination of

superfields are also superfields due to the linearity of the operators @ and Q.

In general, superfields form reducible representations of the supersymmetric algebra.
The number of the component fields of a general superfield is high. However, we
can reduce this number by imposing covariant constraints on superfields. In other
words, superfields can satisfy an equation which can relate some component fields
and thus, the number of independent component fields decreases. Examples of these
constraints are DF = 0 or F = F''. The former constraint characterize chiral or scalar
superfields whilst the latter characterize vector superfields. There are some rules for
the constraints of superfields. For instance, the supersymmetric transformed superfields
must satisfy the constraints, as well. Furthermore, constraints, which yield the trivial
value for superfield ® = a = constant, are not accepted. Note that we can construct all

renormalizable supersymmetric Lagrangians by using only scalar and vector superfields.

Imposing constraints on superfields is very useful especially for supersymmetric theories
with N/ > 1 as in these theories, there are N parameters of # and the number of
component fields increases significantly. Therefore, we impose constraints on superfields

so as to simplify these theories.
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2.4 Chiral Superfields

In the previous section, we presented superfields. In this section, we study a special

case of them, the chiral superfields that are characterized by the condition:
D;® =0. (2.54)

Matter fields can be described by chiral superfields, which consist a spinor field and a

scalar field like the scalar multiplet.

Note that, in this section, it is convenient to use the variables y™ = 2™ +io™0 , § and

0 instead of ™, # and 6. By using chain rule, we can express the partial derivative %
as:
0 ~ 0 0
— =i0"0— + —. 2.55
20 =" Yoy T 0 (2.55)

Likewise, we can express the partial derivatives 9/00 and 9/02™ in terms of the new

variables. Therefore, operators D, and D, take the following expressions:

o 9

Da = % + 220’ad0 8ym (256)
- 0

D) =——. 2.57

g (2:57)

Now, the most general superfield that satisfy the constraint of Eq. (2.54) is:

® = A(y) + V20u(y) + 06F (y)
— Ax) + i00™80,, Alx) + ieeéém(x) (2.58)

1

+V20¢(x) NG

000,10 (x)0™0 + 00F (z)

where we substitute y™ = 2™ +i00™6 and we use Taylor expansion. It is apparent that
the field ® contains two scalar fields A and F' and a spinor field ¢ (Weyl spinor). We
choose the names of these fields to coincide with the names of the fields of the scalar
multiplet since they transform by the same way under an infinitesimal supersymmetric

transformation.
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Now, the hermitian conjugate of a chiral superfield ®', which is a function of y™ =

2™ — i0o™0 and 0, can be expressed as:
o = A*(y") + V204 (y") + 60 F* (y1)
= A*(z) — i00™00,, A* (z) + i%éélﬂfl*(x) +V20¢(x) (2.59)

+ %ééeam () + 00F" ().

We can also express the operators D, and D, in terms of the parameters y™™, 6 and 0:

%)
D = _— 2.
‘00 (2.60)
D, = a—mmﬂla (2.61)

- 06° ad Gyfm

and we notice that D,®' = 0, which is the constraint that an antichiral superfield (&)
satisfies. The product of chiral superfields ®;P, - - - ®,, also satisfies the constraint of
Eq. (2.54) and thus, is a chiral superfield and likewise for the product of antichiral
superfields CIDICI% SO

We can prove that the 60 component of the products ®;®; and ®;®,;®; and the 0000
component of the product <I>I<I>j transform into a spacetime derivative under an
infinitesimal supersymmetric transformation. Consequently, we can use the
aforementioned components in order to construct a Lagrangian density as the

corresponding action would be invariant under these transformations.

The most general supersymmetric renormalizable Lagrangian density that consists only
chiral fields is:

1 1
where h.c. refers to the hermitian conjugate. Note that, the expression of the
Lagrangian density is the same for the two sets of variables 2™, 6,0 and y™, 6, 0. The
second term of the above Lagrangian density is a mass term and the third one is an

interacting term. The parameters g;;r and m,; are symmetric under the change of

their indices.
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At this point, we represent the Lagrangian density in terms of the component fields:

. 1
L = i0n ;0™ ; + A;DA; + F7 Fy + [my (A Fy — ~i;
(A = 5 9e0s) (2.63)
+ Gijk(AiA; Fie — Vi Ar) + NiFy + hee,

where we have dropped all the total derivatives. By computing the equations of motion,

we observe that the field F; is auxiliary:

aL * * * * XAk
OF; = Fp + A +mg A7 + g5 AT A7 =0
= Fi = —(\p + M AL + gl AT AY) (2.64)
oL .
8_Fk = I+ A+ myp A + gijk:AiAj =0
= Fy = — (A + maAi + ginAiAj). (2.65)

The expression of the Lagrangian density only in terms of the two independent fields

A; and ; is:

_ 1 1 -
L = i0,0;0™; + ATOA; — Qmik%wk - meﬂ/’z‘lpk

— Girbithj Ax — gl Ay — V(A5 AS),

(2.66)

where the potential takes the form V = FF}. Due to supersymmetry, this potential is
greater or equal to zero. Absolute minima of the potential are the points where Fj, = 0.
In order to find the mass of the component fields, we firstly have to eliminate the linear
terms of the fields by making a shift &; — ®; + a;. Masses of the fermionic field and

of the bosonic field have to be the same.

2.5 Vector Superfields

Vector superfields are superfields which satisfy the following condition:
V=V (2.67)

They describe gauge fields and they consist spinor fields, scalar fields and a vector field.

We can achieve a more comprehensive understanding of them by analyzing their power
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series expansions in # and 6.

V(x,0,0) = C(z) + i0x(z) —i0x(z) + %QQ[M([E) +iN(x)] — %HG[M(:B) —iN(z)]
— 0™ G () + i000[M(z) + %5’” ()] — BO0A () + %am ()]

+ %Heéé[D(x) + %DC(m)].
(2.68)

The fields C, D, M, N and v,, have to be real so as V(z,0,0) satisfy the constraint of
Eq. (2.67). The component fields C, D, M and N are scalar fields, the fields y and A

are Weyl spinors and the field v, is a vector field.

Note that, without loss of generality, the coefficients of the powers of # and # have
been chosen in this way so as to transform in a simple way under the following

transformation:

Vo V+0o+of (2.69)

where ® and ®' are chiral and antichiral superfields, respectively. From the definitions

of the previous section:

O+ of = A+ A* + V200 + 0) + 00F + 09 F*

-~ _AX L H~m

- 1
—000c™ ~00001(A + A*).
+ \@9990 ) + 49990 (A+ A7)

Therefore, under the transformation of Eq. (2.69) component fields transform as:

C—o>C+A+A

X = X —iV2¢

M+ iN — M +iN —2F
Um = Uy — 105 (A — A”)
A=A

D — D.

(2.71)

We observe that the transformation of the vector field v,, reminds a gauge

transformation as the quantity A — A* is imaginary. Thus, we call the transformation
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of Eq. (2.69) gauge transformation.

Now, we can choose a special gauge which is called Wess-Zumino gauge. In this gauge
the fields C, x, M and N are all zero whilst the vector field v,, transforms in the usual
gauge transformation v,, — v, + O, (where « is a scalar quantity) and the fields A

and D are invariant.

Below, we present powers of V' in this gauge:

V = —00™Gu(x) + 060 (x) — i000A(x) + %099_§D(x) (2.72)
VZ= —%Geéévmvm (2.73)
V3 =0. (2.74)

It is worth mentioning that to compute the terms V2 and V3, we zero terms with

products of three or more parameters of § or/and @ due to antisymetrization of them.

We use the variables 4™ = 2™ + io™0 and y'™ = 2™ — i6o™@ in order to simplify the
computation. Then, V takes the form:
V = —00"0v,,(y) + i000\(y) — 000\ (y)
1
+ 59909[D(y) — i0mv™ (y)]
_ __ _ (2.75)
= —00™ vy, (y') — 1000 (y") + 006X (y)
1
+ 59(%)9[1}@) + 0™ (yh)].
Note that the vector superfield V' can be considered as the supersymetric generalization
of the Yang-Mills potential. The next step is to find a quantity that would be the
supersymmetric generalization of the electromagnetic or gluon field strength. In this

section, we study the abelian case and the aforementioned quantities are the fields W,
and W, which are defined as:

W, = —-DDD,V (2.76)

Wy =—-DDD,V. (2.77)
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The above fields are chiral and antichiral superfields, respectively since they satisfy the

following conditions:

DWW, =0
_ (2.78)
Dde = O
The tensor W, is gauge invariant:
1 - -
W, — —ZDDDa(V + @ + o)
(2.79)

— W, — }lD{D, Du}® = W,

Likewise, we can prove that the tensor W, is also gauge invariant.
Now, using the Eqgs.(2.75), (2.76) and (2.77) and the definitions of the operators D,

and D,, we present:

Wa = ~iXa(y) + B, Dly) = 5070, Onva(y) = Buvin ()16

+000,5"0mA" (),

(2.80)

and

V_Vd = Z'j\d f + Gd'D f + 3.6[1@ 5,man é- 8mvn fy — &mm f éb
(y") [ pD (Y1) + 5eael )5 (Omun(y’) (y")] (2.81)
— €,;005™ 0 Mo (y1).

We observe that these superfields contain only the gauge invariant fields D, A, and

Upmn = OmUp — O Uy, Furthermore, they satisfy the additional constraint:
D*W, = D,;W*. (2.82)
The most general Lagrangian density for a free vector field, which is gauge invariant,
is:
1. . S
L= ZL(W Wa log +WeW* |5). (2.83)

The above Lagrangian density contains 6 components of chiral superfields and thus,
they transform into spacetime derivatives. Consequently, the corresponding action

is invariant under an infinitesimal supersymmetric transformation. Furthermore, the



Chapter 2. Supersymmetry 31

Lagrangian density of the Eq. (2.83) consists only scalar quantities so it is invariant
under Lorentz transformations. It is also invariant under gauge transformations as the

chiral superfields W, and W, are invariant under this transformation.

The Lagrangian density can be written in terms of the component fields as:

i - 1 - 1 1
L= —(0,\)0™\ = =X0" (0 ) + =D* — 0™ 0. 2.84
2( Yo A (OmA) + 5 20 (2.84)
The first two terms remind the terms that appear in Dirac equation and the last
term reminds the kinetic term of a photon or a gluon field. Computing the equations
of motion, we observe that the vector field v,, satisfies Maxwell equations, the field

D = 0 and the field \ satisfy the following equation:
OmAa™ = 0. (2.85)

5, which is the

superpartner of the gauge field and it is called gaugino. Gaugino has no mass as we

Therefore, in this theory there are a gauge field and a field with spin

expected and it is free since in the Lagrangian density there are no interaction terms.

2.6 Supersymmetric QCD in the Continuum

In this section, we study the Lagrangian density of Supersymmetric QCD (SQCD) in
the continuum. This Lagrangian density consists interaction terms between chiral and
vector superfields. Chiral and vector superfields correspond to matter and gauge fields,
respectively. In this theory, we have a spinor field ¢) and its superpartner, the field A
(both with mass m), which originate from the scalar multiplet. We have also a vector
field v,, which corresponds to the vector potential, and a spinor field A that is the

superpartner of v, [44-47].

In order to construct a renormalizable supersymmetric generalization of the
Lagrangian density of QCD, we have to multiply superfields so as the dimensionality
of their products be less or equal than 4. This Lagrangian density must also be

Lorentz invariant and invariant under the following supersymmetric gauge
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transformations [48]:

/ _ —iA
¢, = e Py
P = P_eh (2.86)
/ AT .
62gV — e tA €2gVezA’

where A;; = AT} is an arbitrary chiral superfield and 7 are the generators of the

non-abelian group. These generators obey the following equations:

Te(TT?) = k6*F [k > 0 (2.87)
[Ta, Tb] = Z..]Cabcjjc ) (288>

where f,,. are the structure constants of the algebra, which are completely
antisymmetric. Note that, the vector superfield can also be expressed in terms of

these generators V;; = V4T

The most general Lagrangian density, which is renormalizable, Lorentz invariant as

well as invariant under supersymmetric gauge transformations, is:

——Tr(WW, |gg +WW |55) + ®Le2V D |0p0
16kg? ( |66 |90) + + looaa (2.89)

+®_e 2Vl loogs +m(P_Dy |og +‘I’1(ﬂ l6a) »

Lsocp =

where the supersymmetric field strength is defined now as:
Los _agv 29V
W, = —ZDDG 9" Dye ", (2.90)
and it transforms covarianlty:

W, = e "\ W,e. (2.91)

a

It is worth mentioning that the Lagrangian density of Eq. (2.89) looks

non-renormalizable since it contains the term with 29"

that consists all the powers of
the vector superfield V. However, it can be evaluated in the Wess-Zumino gauge.

Consequently, the term can be expanded as:

2 2
eV =142gV + (QTV) : (2.92)
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as the higher powers of V are zero in this special gauge.

In the context of N' = 1 supersymmetry in 4 dimensions, the SQCD Lagrangian is
composed of several components for each flavor of matter fields. These components
include two complex scalar fields referred to as squarks, denoted as A, and A_, a
Dirac spinor representing quarks, denoted as ¢, _, and two auxiliary complex scalar
fields, F, and F_. Additionally, the Lagrangian incorporates a gauge field representing
gluons, denoted as u,, a Majorana spinor representing gluinos, denoted as A, and an
extra real auxiliary field, D. Beginning with Eq. (2.89) and extracting the relevant
components of the superfields (including appropriate powers of § and ), we derive the
continuum Lagrangian density for N' =1 SQCD in 4 dimensions in the framework of

the Wess-Zumino gauge:

Lsqcp = —iuiju’“’a - %DO‘D“ — INTGHD, A
~D,AYD'A, —D,ATDFA_ — i) 5" Dyiby — i) G"Dyab + FLF, + F_F!
+iV2g(AT N Ty — A TOAy + ANT ) — p_ AT A_)
+ g(AL DOTYA, — A_D°T*A")

+m(A_Fy +F AL — o ¢ + ALF 4+ FTAT — 9, 4),

(2.93)
where:
DAy = 0,A; +igu, T Ay
DAT = 9,A" +igul T A"
D,A- = 0,A_ —igA_T"u;
DAL = 0,A1 —ig AlTw
Dby = Outby +igu, Ty
Dy = O —igy-T"u,
DA = O\ +igluy, A
U = Outly — Oy, + 19 [y, u,). (2.94)

In this Lagrangian density, there is a gluonic tensor uy,, that consists the gluon field uj;.
Furthermore, there is a field A®, the gluino that has spin % and it is the superpartner

of gluon. The gluino field A*, the gluon field v} and the auxiliary field D%, which are
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the component fields of the vector superfield, carry color indices since they are in the
adjoint representation of the non-abelian group. Components of the chiral superfield,
which are the auxiliary field F', the quark field ) and the squark field A, are in the
fundamental representation of the non-abelian group. Note that the indices coming
from the color in fundamental representation and the Dirac indices are left implicit.
On contrary, the color in the adjoint representation is shown explicitly. For the SQCD
theory, this group is SU(3) and thus the indices « run from 1 to 8. In the Eq. (2.93),
the squark field A is a particle with 0 spin and it is the superpartner of quark .

Below, we represent the transformation of every component field that relates each

particle with its superpartner and preserves the SQCD action unchanged:

0eAr = V28,

A = V£,

Sethra = V20"ED, AL + V2EF,

S = —iV256" DA + V2F_¢*

0eFy = V25" D,ahy + 2igT*ALEN,

0eF. = —iV2D,p_oME — 2igA_T €N,

eusy = —iA*0"E +iEaMNY

SeA = oMEus, +if D*,

6:D* = —£0"D,\* — D\ oHE, (2.95)

where ¢ and € are Majorana spinor parameters. It is worth mentioning that these
transformations are not linear as we are in the Wess-Zumino gauge. In order to make
them linear, we have to reintroduce those field components which are absent in the WZ

gauge.

Eq. (2.93) can be represented in 4 dimensions using Dirac notation and in the Weyl

basis as shown below:

Lsqop = —%ugyuw + %D"‘DO‘ + 5287 Dk
— DALD'A, —D,A DAY 4 ippy P Dypp + FLF, + F_F!
— iV2g(ALNY T Pipp — p PG T Ay + A XY TP _tpp — p P AT AL)
+ g(ALDT“A, — A_D°TA")
+ m(A_F, + F_A, +¢pyp + ALFT + F1AT), (2.96)
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Aa a
where P = 558 35 = i7"y, Ay = ( 34 ) and ¢, = ( Qf;z )
We can remove the auxiliary fields by either using their equations of motion (in the
classical case) or by performing functional integration over them (in the quantum case).
In either scenario, the action of SQCD in Minkowski space assumes the following form:

4 1 o , pro i Yo «
SSQCD = d .T|: — Zuwu + 5/\M’7 Du/\M
— DALDFA, —D,A_DFA + iy P Dy
— iV2g(AL N TPiapp — Pp PG T Ay + AT Poapp — hp PG, TAL)

1 ,
— SPALTO AL — AT ALY 4wy — mAT AL —mA_AT )] . (2.97)

The above action remains invariant under the following supersymmetric

transformations:
SeAr = —V2EuPitp,
0eA. = —V2UpPitr,

0e(Prvp) = iV2(DuAy)Piyéy — VemPiéy Al
0e(Pipp) = iV2AD,A )P A6y —V2mAL P &y,

Seusy = —ilyy" Ay,
1 , . X
Sy = V716w - 2 (AL TA, — A_TAT).  (2.98)

The parts of the continuum and lattice SQCD actions that are associated with the
quark and the squark fields (Eqgs. (2.97) and (3.2), respectively) involve a summation
over flavor indices; these flavor indices are implicit within our expressions. A double
summation over flavors is also implicit in the 4-squark term of the action (last line of
Egs. (2.97) and (3.2)). Note that matter fields are in the fundamental representation
of the gauge group, as in ordinary QCD; also, in the interest of studying the simplest
manifestly renormalizable supersymmetric extension of QCD, we have not included any

additional superpotential terms in the SQCD Lagrangian.
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Following a Wick rotation, the derived expression for the Fuclidean action in Dirac

notation, denoted as S§,cp, is as follows:

Skhen = / d' [4uWuW + AM% D
+ D,ALD,A, + DA DAL +$py D,y
+ iV29(ALNY TPy — p PEXSTA, + AN, T PPy — hp PEAG,TAT)
L GPALTA, — A TANY? — m(dppop — mAL Ay —mA_AT )] : (2.99)

1+ 75 0

where PF = , VY = AEyEAPyF. Euclidean v matrices are defined as: vF = ~Y,

vE = —iv; and they satisfy: {v,, 7} = 26,..

As in the case with the quantization of ordinary gauge theories, additional infinities
will appear upon functionally integrating over gauge orbits. The standard remedy is to
introduce a gauge-fixing term in the Lagrangian, along with a compensating Faddeev-
Popov ghost term. The resulting Lagrangian, though no longer gauge invariant, is still
invariant under BRST transformations [49]. This procedure of gauge fixing guarantees
that Green’s functions of gauge invariant objects will be gauge independent to all orders

in perturbation theory.

The supersymmetric generalization of covariant gauge fixing term is shown below [50]:

SSUSY _é/d“x (D*V) (D*V') |gosg (2.100)
1

X 2% d'zTr(4MOM + 4NON + 4(D + 0C)? + 4(0,,u*)?
(0%

—8AOx — 8ALY — 8iAg I\ — 8iya"d,Ox).

We note that this gauge fixing term does not break supersymmetry due to the fact
that it is a 0060 term. Therefore, if we use a regulator which strives to preserve exact
supersymmetry at all intermediate steps of the calculation of renormalized Green’s
functions, it is a reasonable choice. However, having in mind that the renormalized
theory does not depend on the choice of the gauge fixing term, and that many
regularizations, especially the lattice regularization, violate supersymmetry at
intermediate steps, we choose the standard covariant gauge fixing term, proportional
o (9,u")?, which breaks supersymmetry as well. Actually, this simpler choice is most
often used also in continuum perturbative calculations of supersymmetric models. We

present this simpler gauge fixing term and the ghost contribution arising from the
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Faddeev-Popov gauge fixing procedure:
E 1 4 2
Sep=— [ d*2Tr (0"u,)”, (2.101)
o

where « is the gauge parameter (o = 1(0) corresponds to Feynman (Landau) gauge),

and
SEhost = —2 / d'zTr (0"D,c), Duc= uc—iglu,,cl, (2.102)

where the ghost field, ¢, is a Grassmann scalar which transforms in the adjoint
representation of the gauge group. We note that the term S is quadratic in terms
of u,, thereby contributing to the tree-level gluon propagator. In addition, SE,,.

involves an interaction between gluon and ghost fields.

The corresponding continuum action has the form:

Sl = SSEQCD + 88k + SEhost- (2.103)

Figure 2.1 illustrates all vertices of the action of SQCD of the Eq. (2.103) [48]. Four of

these vertices exist also in the non-supersymmetric case (1, 5, 10, 16). The algebraic

expression for each vertex, V; (i =1,...,16), has the following form:
Vilk, ko, ks) = ig(2m)*(ky — ko + k3)vu, Tk, (2.104)
Va(ky, ko, ks) = g(2m)*6(ky — ko + ks) (ko py + ks ) Tishs (2.105)
Va(ki, ko, ks) = —g(2m)*6(ky + ko — ks)(kopy + k)T, (2.106)
Vilky, ko, ks) = %g(%)‘*é(lﬁ — kg + k3)y,, fOrO28 (2.107)
Vs(ki, ko k3) = —ig(2m)*0(ky — ko + k3)kq, f1 @28 (2.108)
Va(k ko ks) = —iv2g(2m)*0(ky — ko + k3) ! _275T;;1as (2.109)
Vi(k, koo k) = —iv2g(210)*0(ky — ky + kg)#ﬁ”g@ (2.110)
Va(ky, ko ks) = ivV2g(2m)0(ky — ko + @)%Tg@ (2.111)
Vo(kr, ko ks) = iv2g(2m)* 6 (ky — ko + ks) ! _275%2 (2.112)
Vio(k1, ko, k3) = —%g(2ﬂ)45(k1 + kg 4 k3) £ 02038, (Ko s — k) (2.113)

1
‘/11“61, ]{32, k?3, l{?4) = §g2<271')45<k31 + k’g — k’3 — k’4)Ta Ta (2114)

alaz— azaq
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Vig(ki, ko, ks, ky) = %92(%)45(%1 ko — ks — k)T, 0, T o (2.115)
Vis(ki, ko, ks, ka) = —g°(2m) (k1 — ko + ks — k) TS 0, Tet o, (2.116)
Via(ky, ko, ka ka) = g*(2m)*6 (k1 + ko — k3 + k) (T T g 0401 1o (2.117)
Vis(ki, ko, ks, ka) = g2(2m) 0 (k1 + ko + k3 — k) (T T) 0y 056,11 1o (2.118)

1
Vig(k, ko, bs, ba) = 02 (2m) 0Ky + ke + ks o ha) [ 02 00 40,0
(2.119)

where k; denote momenta; «;(a;) are color indices in the adjoint(fundamental)
representation; i; are Lorentz indices. A factor of [ d'k/(27)*X (k) is understood for
each field X appearing in the vertex; saturation of the vertices’ indices (Dirac, color,
Lorentz) with those of the corresponding external fields is also implied. All these
vertices are intended to be symmetrized over identical fields before contraction among

the fields and creation of Feynman diagrams.
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FIGURE 2.1: Vertices of the supersymmetric QCD action SE, ;. A wavy (solid)
line represents gluons (quarks). A dotted (dashed) line corresponds to squarks
(gluinos). The “double dashed” line represents the ghost field. Squark lines are
further marked with a 4(—) sign, to denote an Ay (A_) field. An arrow entering

(exiting) a vertex denotes a A, ¢, Ay, AT (X,JJ,AT ,A_) field.
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Supersymmetry on the Lattice

3.1 Motivation and Challenges

Unbroken SUSY dictates equal fermionic and bosonic degrees of freedom within
supermultiplets. However, SUSY particles have remained elusive [51], necessitating
the nonperturbative study of the SUSY breaking mechanism [43, 52].
Supersymmetric models of strongly coupled theories are a very promising models for
new physics Beyond the SM and lattice investigations of supersymmetric extensions
of QCD are becoming within reach. However, there are several well-known obstacles
arising from the breaking of SUSY in a regularized theory on the lattice [13],
including the necessity for fine tuning of the theory’s bare Lagrangian [14-16].

The only way to obtain nonperturbative information for strong interacting systems is
the study of QCD on the lattice. In recent years nonperturbative information for
supersymmetric theories through lattice simulations is also extracted and there are
many motivations for this. We can obtain nonperturbative information by
supersymmetric lattice field theories that cannot be obtained by other means. From
Beyond Standard Model physics side, if we want to understand mechanisms for
supersymmetry breaking and why supersymmetry is not observed in low energy
scales, we should study supersymmetry on the lattice. Due to asymptotic freedom, we
have confinement in low energy scales so the gauge coupling of the supersymmetric
action is high and hence we cannot perform a perturbative study in these energy

regimes.

40
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In addition, it is possible for a theory, which is well-defined in the perturbation
theory, to arise a nonperturbative anomaly. Specifically, there is a nonperturbative,
supersymmetric anomaly which can be studied only on the lattice as it is referred to
[53]. Furthermore, Monte Carlo simulations on the lattice can be used as a tool to
study actions which consist nonholomorphic quantities that are related to
supersymmetry-breaking soft-terms that determine spectra and couplings in
supersymmetric extensions to the Standard Model [14]. Another motivation for
studying supersymmetry on the lattice is for better understand of dynamical
supersymmetry breaking. A good formalism of the supersymmetric Yang-Mills theory
(SYM) on the lattice would help us to understand the strong interactions which split
the superpartners from the observed Standard Model spectrum. Moreover, for specific
supersymmetric theories there are many quantities that are known precisely and thus,
when they are calculated again on the lattice, the lattice analytic methods and
simulations can be improved. For example, we can study the chiral symmetry
breaking for N' =2 SYM [54].

An additional significant incentive for delving into nonperturbative explorations of
supersymmetric theories stems from theoretical conjectures concerning confinement
mechanisms and their connections to Gauge/Gravity duality; in particular, to
string/M-theory.  These have their foundations in the enhanced symmetries of
supersymmetric gauge theories and it would be interesting to extend and relate them
to QCD or Yang-Mills theory.  This requires more general insights into the
nonperturbative regime of supersymmetric theories. Numerical lattice simulations
would be an ideal nonperturbative first-principles tool to investigate gauge theories
with SUSY. However, it is unavoidable to break SUSY in any non-trivial theory on
the lattice. In general, fine tuning is required to restore supersymmetry in the
continuum limit (see, e.g., Ref. [55]), which can be guided by signals provided by the
SUSY Ward identities [56, 57]. The analysis of SUSY Ward identities requires the
renormalization of the supercurrent [58], which can mix due to broken
supersymmetry with other operators of the same or lower dimension. Even though
lattice breaks AN/ = 1 supersymmetry explicitly [12], it is the best method at present
to obtain quantitative results. There are also other theories with extended
supersymmetry [59-61], which preserve some supercharges on the lattice; however in
this work we focus on A = 1 supersymmetric QCD (SQCD) which is more realistic in
the sense that it is directly related to extensions of the SM.
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As we referred, many notorious problems arise when formulating supersymmetric
models on the lattice. Unfortunately, the lattice discretization of spacetime breaks
supersymmetry for three main reasons [15]. At first, as we can observe from Eq. (2.2),
the supersymmetric algebra closes on the generator of infinitesimal spacetime

translations by the following anti-commutation relation:

{Qa, Qb} = QUZ;;Pm ) (3.1)

where ), and @Q; are the spinorial generators of supersymmetry transformations.
However, on the lattice there only discrete translations; there is an absent of

infinitesimal translations and thus, supersymmetry breaks.

The second main reason of the supersymmetry breaking on the lattice is the fact that
bosonic and fermionic fields are discretized on the lattice in different way. Specifically,
in the standard discretization gauginos, which are fermionic fields, are defined on the
lattice sites whilst gauge fields, which are bosonic fields, are defined on the links of the
lattice. A naive lattice formulation would produce too many fermions on the lattice and
a lattice formulation without fermion doubling and with continuous chiral symmetry
have been shown not to exist. Therefore, supersymmetry and chiral symmetry breaking

is inevitable.

Finally, knowing that a derivative operator that obeys Leibniz rule is required for
supersymmetry, we conclude that supersymmetry breaks on the lattice [11]. The reason
for this is the fact that the derivative operators in discrete spacetime are finite-difference
operators which do not obey Leibniz rule. Only non-local derivative and product
operators can obey Leibniz rule on the lattice and many recent researches make an

effort to construct formulations that balance locality and supersymmetry [62-64].

Using the lattice as a regulator requires not only breaking of supersymmetry but also
breaking of symmetries, including Lorentz/rotational symmetry and chiral symmetry.
However, our requirement is that all of these symmetries should only be recovered at the
continuum limit [12]. In the absence of anomalies, in order to achieve this, we introduce
the appropriate counterterms to the regularised Lagrangian so as to fine-tune the bare
parameters since these parameters receive divergent non-supersymmetric corrections
in the continuum limit. Nevertheless, some fine-tuning problems arise in theories with
scalar fields regarding the scalars’ mass terms. These problems are similar to that of the

Higgs boson in the Standard Model. Fermion masses, Yukawa and quartic couplings
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have to be fine-tuned as well and thus, they imply a high-dimensional parameter space
which makes numerical lattice calculations difficult. In addition, the aforementioned

counterterms can diverge with inverse powers of the lattice spacing.

However, there are some ways to reduce the amount of the parameters that need
fine-tuning and thus, supersymmetry on the lattice can be analyzed numerically much
easier. The first one is to consider lower-dimensional systems of supersymmetric
theories. In other words, we should study theories with fewer than four spacetime
dimensions by reviewing dimensional reduction. Now, in many cases, not only does
the system have smaller number of degrees of freedom but supersymmetry can be also

restored in the continuum limit only by a one-loop calculation.

Another way to make the numerical analysis easier is to consider the special case of
minimal (A = 1) SYM where there are no scalar fields. SYM action contains only
one gauge field and its superpartner gaugino, which is a massless Majorana fermion
in the adjoint representation of the gauge group. Therefore, only one parameter, the
gaugino mass, has to be fine-tuned in order to obtain the correct continuum limit. If
we use Ginsparg-Wilson (overlap or domain-wall) lattice fermions, we can even avoid
this single fine-tuning [65]. Nevertheless, the Ginsparg-Wilson lattice fermions are not
used due to high computational expense and thus, the current researches concentrate
on the fine-tuning of the gaugino mass so as to keep computational costs under control.
In general, we can exploit some symmetries of the action so as to reduce the number of
counterterms significantly. Furthermore, we can study another special case of maximal
(N = 4) SYM, for which a closed supersymmetry subalgebra can be preserved on the

lattice.

Therefore, we conclude that asymptotically free supersymmetric gauge theories can
be studied nonperturbatively on the lattice. Nevertheless, we must evoke both
perturbative and nonperturbative methods in order to achieve a reliable
renormalization of the theory. Firstly, we should start on very small lattices and
perform calculations perturbatively so as to get a good idea where to begin for weak
bare couplings. These calculations are important ingredients in extracting
nonperturbative information for supersymmetric theories through lattice simulations.
Consequently, after the perturbative calculations, we should perform nonperturbative

calculations by doing simulations into stronger coupling regimes.
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3.2 Supersymmetric QCD on the Lattice and its

Symmetries

In this section we concentrate on N’ = 1 supersymmetry on the lattice in the Wess-
Zumino (WZ) gauge. In this gauge, the SQCD Lagrangian contains the following fields:
the gluon together with the gluino and one real auxiliary scalar; in addition, for each
quark flavor, a Dirac fermion, two squarks and two complex auxiliary scalars. The
squark fields, which are the superpartners of quarks, are complex scalar bosons whilst
the gluino field, which is the superpartner of gluon, is a Majorana fermion. Note that,
supersymmetry requires that the renormalized masses for quark and squark fields have

to be the same.

From this point on, we switch to Euclidean space. In our lattice calculation, we extend
Wilson’s formulation of the QCD action, to encompass SUSY partner fields as well.
In this standard discretization quarks (v), squarks (Ay) and gluinos (\) live on the
lattice sites, and gluons (u,) live on the links of the lattice: U, (x) = e'9aT"uile+ar/2),
« is a color index in the adjoint representation of the gauge group. This formulation
leaves no SUSY generators intact, and it also breaks chiral symmetry; hence, the need
for fine-tuning will arise in numerical simulations of SQCD. For Wilson-type quarks

and gluinos, the Euclidean action Sfycp on the lattice becomes:

N, 1 _ r _
Skaep = a' ) [? > (1 -5 TrU,w) + 3T (M D,A) — agTr (ADA)
x iz

v

_ r —
+ > (PuALDAL + DA DAL + 07, D) - 0l VD

7
+ iV2g(ALNTP ) — P AT Ay + A_NTOP_ap — )P ATAL)
%f(ALTM+ — A TAN)? —m(pp —mALA, —mA_AT)|, (32)

where: Py = (1% 75)/2, Uy () = Uu(x)Uy(z + ap)U}(z + a0)Ul(z), a is the lattice
spacing, and a summation over flavors is understood in the last three lines of Eq. (3.2).
The 4-vector x is restricted to the values © = na, with n being an integer 4-vector.
Therefore, the integration of momentum, following a Fourier transformation, is confined
to the initial Brillouin zone (BZ) [—7/a, 7 /a]*, and considering the summation over x
ensures momentum conservation at every vertex. The terms proportional to the Wilson
parameter, r, eliminate the problem of fermion doubling, at the expense of breaking

chiral invariance. In the limit a — 0 the lattice action reproduces the continuum
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(Euclidean) one. As we will describe below, the bare coupling for the Yukawa terms
(third line of Eq. (3.2)) and the bare coupling for the four-squark interactions (fourth
line of Eq. (3.2)) need not coincide with the gauge coupling g; this requirement will be

imposed on the respective renormalized values.

The definitions of the covariant derivatives are as follows:

(3.4)
3.5)

DA\z) = % [Uu(x))\(x +ap)Ul(x) — Ul(z — af) Mz — ap))U,(z — aﬂ)} (3.3)
DA(z) = % S [Uu@A G + U (@) — 2(2) + Ul — ai Mz — a@)Up(x — af)
Dula) = o [Up(e)(e + o) — Ul — aiiji(z — o) (3.
D2(r) = 5 3 [Uue + a) — 20(2) + Ul — i)z — o) (36)
DuAu(r) = —[Uula)As(r + o) — A, (2)] (3.7
DAL) = - [AL(e+ ap)Ul(r) - AL (2)] (3.5)
DA (z) = % (A_(z + ap)Ul(x) — A_(2) (3.9)
DAl () = % U,(2) AL (e +ap) — AL ()| (3.10)

In Eqgs. (3.7)-(3.10) in order to avoid a “doubling” problem for squarks we do not use
the symmetric derivative; note, however, that the symmetries of the action are the

same for both types of derivatives.

A discrete version of a gauge-fixing term, together with the compensating ghost field
term, must be added to the action, in order to avoid divergences from the integration
over gauge orbits; these terms are the same as in the non-supersymmetric case. Below,

we present this appropriate gauge-fixing term:

Sk = 50 0 S Tr (w4 07t/2) — wyw — ai/2))° (3.11)

T
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and the compensating ghost field term:

Serose = 207 ) Tr{(@(e +ajp) — (@) (c(z + ajt) — c(x) (3.12)

Figlup (e + ajt/2), ()] + sigluale + afif2), e(x + af) — c(x)

— Pl + ai2), lunle + @i /2), (o + af) — )]} + O,

It is worth mentioning that in simulations there is no need for gauge fixing since
functional integration is performed over a finite number of degrees of freedom (d.o.f.),
each of which ranges within the compact domain of the group manifold. However, in
perturbation theory, where an infinite number of d.o.f. takes values over the
noncompact algebra, gauge fixing is necessary in order to avoid divergences from the

integration over gauge orbits.

Similarly, a standard “measure” term must be added to the action, in order to account

for the Jacobian in the change of integration variables: U, — u,, :

Sk — 91—]2\%2 SO T (o + aitf2)) + O(g). (3.13)

T

Therefore, the total lattice action of SQCD is:

St = 'SSLQCD + S&r + Sehost + Siir- (3.14)

Note that computations on the lattice are much more complicated than continuum
computations. One main reason for this is that there are more vertices stemming from
the discretized action and thus, they lead to more Feynman diagrams; what is harder,
the propagators and vertices, with which one builds the Feynman diagrams, are also
more complicated on the lattice than they are in the continuum, which can lead to

expressions containing a very large number of terms.

At this point, we present the tree-level propagators on the lattice as they have been

calculated in [48]:

1
i+ Z 5, s (ag,/2) —m

Quark Propagator :
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where:

Gluon Propagator :

=)

1 pdv
L (1 i)

1
Ghost Propagator : =
q

1
Squark Propagator :

ch—i—mQ

2

Gluino Propagator :

q= 2 > sin(aqy)

if + 2y, sin’(ag,/2)

Below, we also illustrate the algebraic expressions of the vertices of the lattice action

of SQCD of the Eq. (3.14) in momentum space [48]. The additional vertices on the

lattice are presented in Fig. 3.1. In these expressions we have rescaled all momenta k;

to the range [—m, 7] and omitted overall powers of a.

Vi(k1, k2, k3)
Vo(ki, k2, k3)
Vs (k1, ko, k3)

Va(ki, ko, ks3)

Vs (k1, k2, k3)
Ve (k1, k2, k3)
Vi (ki, ko, ks3)

Vs(k1, ko, ks3)

ig(2m)6(ky — ko + k3)T ot (’Ym cos ((kQJrkS)“1
2g(2m)*5(ky — ka + ka) TS, sin (W)
~29(2m) 8(ky — k2 + k3)T2,, sin (M)
%9(277)45%1 — kg + k) fo10203 (m cos (Ufﬁz’%)u

k
—2ig(2m)* (k1 — ko + k3) f212°% cos (

L=

—iV2g(2m) 0 (ks — k2 + ks)—— T,
1

—iv/2g(2m)*6(ky — ko — k3) —;% Toas
1

iV2g(2m) 8(—ky + ky — ka) —= 2T

2 azaz

o

)~ irsin (&

) = rsin

o

(3.16)

(3.17)

))

(3.18)
(3.19)
(3.20)
(3.21)

(3.22)
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Volkn, ko ks) = iv/2g(27)*0(—ky + ki + ks) 275 T (3.23)

Vio(ky kaoks) = ig(2m) 0 (ks + Kz + kg)d,, 1y f¥12% cos (’“y) sin (W) (3.24)
Vit(k, o, ks, by) = %gQ( ) Sk + e — ks — k)T T2 . (3.25)
Via(ky, ko, kg, ba) = % 2(2m) (ks + ky — ks — ka)T2 T2 (3.26)
Vis(ki, ko, ks, ka) = —g?(2m)*6(ky — ko + ks — ka) T 0, TS o, (3.27)
Via(ky koo ks ka) = g2(2n) 8 (ks + by — ks -+ ka)py o (T T ) gy o, cOS (W) (3.28)
Vis(k1, ko, ks ka) = g2 (2m) 6 (k1 + ko — k3 + k)0, o (T T2) 4, 0y cOS (W) (3.29)
Vie(k1, ko, ks ka) = —g>(2m)*0(k1 + ko + ks + kq) Tr(T T2 T3 T4) x

2 2 1
[6M1H2H3M4 (3 - g ZCOS (kl P) + 5 ZCOS (kl + k2)p>
P

01 papis <—§ sin ( 4M> sin (k42”4> + 2sin <k42”1) sin ((le ;k4)u4) + 2sin (k42m> sin ((2k3 —;]M)M))
+0,41 15O g | COS 7(]% + ka) 7(1@’ + Ka)us — 2cos 7“{3 L coS 7(]% + g

2 2 2 2
ko — k
cos <(224)“1)) ] (3.30)

+5#1 ©3 5#2#4 (COS ((kl2k3)

‘Q\_/\_/

Viz(ki, ko, ks, ke) = % 2(2m) 0 (k1 + ko — k3 + k1) Sy, 1o (T T) g0, X
(—iml sin <(k3 +2k4)’“ > + rcos ((k?’ +2k4)/“ )) (3.31)

Vig(ki, ko, k3, ks) = 392(2@45@1 + ko — k3 ky)0p, pp [P fOROY X
(—i’Ym sin <(k3 +2k4)“1 ) + rcos <(k3 +2k4)l“ )) (3.32)
Vig(ki, ko, ks, ky) = —%gQ(sm 1o (27) 0 (K + kg — kg + ky) fO1O3@ fO24% gin (ki”?"> sin (]'“42“) (3.33)
Vao(kt ko) = %Nc P80, (27) 5kt + ko) Te(T1 T%2). (3.34)

The Eq. (3.14) represents the most general lattice action for SQCD consistent with the
symmetries that the lattice preserve. The gauge group of the action depends on the
number of color of the theory, N., and hence the gauge group is SU(N,). The action
also depends on the number of flavors, Ny. We could write down an action with non
zero gluino mass for numerical stability and then extrapolate to chiral limit m, — 0.

Obviously, this chiral limit coincides with the supersymmetric limit.

As in the continuum, the matter fields, which are the quark and squark fields, are in
the fundamental representation of the gauge group whereas the gauge fields, which are

the gluon and gluino fields, are in adjoint representation of the gauge group. Although
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k,,a1, IJ1 kzlazl “2

Fi1GURE 3.1: Additional vertices of SQCD on the lattice. We have the same
notation as in Fig. 2.1. The solid box of the vertex 20 comes from the measure part
of the lattice action.

the action is not gauge invariant due to the gauge-fixing and ghost field terms, it is

invariant under the BRS transformations which are presented below [48, 49, 66]:

up, + (Ouc” + gcaga,c'BAZ) £
A+ gco‘/\*BffBO‘VT7 &
& — gfaﬂvcﬁcv g

e > ER

%

=
N A

¢ + Oyuy §

Y +igTc Y &€
)+ igPTee” €
AL —igc®T*AL €
Al 4igAl T ¢
A +igA T ¢

Al Al — g T Al ¢, (3.35)

where £ is an infinitesimal Grassmann variable.
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Parity (P) and charge conjugation (C) are symmetries of the continuum theory that

are preserved exactly in the lattice formulation. Their definitions are presented below:

;

Uo(x) = Us(zp),  Uplz) = Ul(zp —dk), k=1,2,3

Y(x) = Yo (zp)

b(x) = P(zp)r0

Pl A (x) = A (zp) (3.36)
A% () = A (zp)70

Ay (z) = AL (zp)

\ A ([E) (l’p)

where zp = (=X, xp).

Uulz) = Us(x), p=0,1,2,3
h(x) = —Cip(x)”
() = P(x)"CT
C:q Az)— CA(z)T (3.37)
Az) = =A(z)TCt
Ax(z) = Az (2)
[ Al(z) » AL(2)

where T means transpose (also in the SU(N,) generators implicit in the gluino fields).
The matrix C satisfies: (Cv,)" = Cv,, CT = —C and C'C = 1. In four dimensions, in
a standard basis for v matrices, in which g, v (71, 73) are symmetric (antisymmetric),
C = —ie.

Further symmetries of the continuum action, at the classical level, are R and y. The
U(1)r symmetry, R, rotates the quark and gluino fields in opposite direction:

([ W(x) = P y(x)

> Dla)e
P (2)
%

A@)e 0

U(
v) (3.38)

>~

()
(z)

X

>~
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R-symmetry does not commute with the SUSY transformation. The U(1)4 symmetry,

X, rotates the squark and the quark fields in the same direction as follows:

([ w(@) = e y(2)
» Y(z) — w(fc)e’e " (3.3
Ap(z) — ew'Ai(x)

Al (z) — e Al ()

However, the two terms with the Wilson parameter of the lattice action break these

two symmetries in order to remedy the fermion doubling problem.
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Fine-tuning of the Yukawa and
Quartic Couplings in SQCD

4.1 Introduction

As we mentioned in the previous chapter, there are several obstacles arising from the
breaking of supersymmetry in a regularized theory on the lattice, including the
necessity for fine-tuning of the theory’s bare Lagrangian. We address these problems
via perturbative calculations, to one loop and to the lowest order in the lattice
spacing so as to restore supersymmetry in the continuum limit. The quantities, which
we calculate in this chapter, are important ingredients in extracting nonperturbative
information for supersymmetric theories through lattice simulations. Furthermore,
the renormalization factors are necessary ingredients in relating lattice matrix

elements to physical amplitudes.

Note that the coupling constants appearing in the lattice action are not all identical.
The gauge invariance of the lattice SQCD action dictates that some of the action’s
interaction terms will share the same coupling constant, g (gauge coupling). This is
particularly applicable to the kinematic terms containing covariant derivatives,
resulting in gluons coupling with quarks, squarks, gluinos, and other gluons, all
governed by the same gauge coupling constant. The Yukawa interactions involving
quarks, squarks, and gluinos, as well as the four-squark interactions, have the
potential to feature distinct couplings, at the quantum level. Furthermore, new terms

may also emerge, necessitating careful fine-tuning on the lattice. By exploiting the

52
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symmetries of the Wilson lattice action, we can predict these potentially novel
interaction terms. Moreover, with the actual computation we can understand if they
will arise at the quantum level, and more importantly we can determine their
renormalizations to certain perturbative order. It is desirable to employ a lattice
discretization that preserves as many continuum symmetries as possible, thereby

reducing the number of relevant parameters requiring fine-tuning.

In this chapter, we investigate the fine-tuning of parameters in N = 1
Supersymmetric QCD, discretized on a Euclidean lattice with the gauge group
SU(N.) and Ny flavors in the fundamental representation. Specifically, we study the
renormalization of the Yukawa (gluino-squark-quark interactions) and the quartic
(four-squark interactions) couplings. To deduce the renormalization factors and the
coefficients of the counterterms we compute, perturbatively to one-loop and to the
lowest order in the lattice spacing, the relevant three-point and four-point Green’s

functions using both dimensional and lattice regularizations.

Note that in Refs. [48] and [66], the first lattice perturbative computations in the
context of SQCD were presented; apart from the Yukawa and the quartic couplings [67,
68], the renormalization of all parameters and fields appearing in Eq. (3.2) have been
extracted by using Wilson gluons and fermions. The results in Refs. [48] and [66] will

find further use in the present work.

4.2 Fine-Tuning of the Yukawa Couplings

4.2.1 Computational Setup

In some previous works [69-71], the mixing of certain composite operators upon
renormalization was studied. The symmetries of the action play a crucial role to
identify the candidate mixing operators. Similarly, in this work, we examine the
transformation properties of Yukawa-type operators (gauge-invariant operators of
dimension-four, composed of one gluino, one quark, and one squark field) under both
parity P and charge conjugation C, and we have determined which specific linear
combinations of them remain unchanged. All potential Yukawa terms and their
transformation properties are detailed in Table 4.1. Note that all operators that we

consider here are flavor singlets.



Chapter 4. Fine-Tuning of the Yukawa and Quartic Couplings in SQCD 54

Operators ‘ C ‘ P

AT APy — P AAT A_NP_y
VP )AL —A_\P_¢ PP AAT
A_NP_y —P_AA, APy
PP AAT — AP VP A,
ATAP_y) —pP_NAT A_NPy
VPAA, —A_NP1) YP_AAT
A_NP ¢ — P AAL APy
YP_N\AT —ALAP_4 VP NAL

TABLE 4.1: Gluino-squark-quark dimension-4 operators which are gauge invariant
and flavor singlet. All matter fields carry an implicit flavor index.

The transformation properties of the Yukawa terms, as shown in Table 4.1, allow two

distinct linear combinations of Yukawa-type operators:

Yy = ALAP — 9P NAL + A_NP_1p — )P NAT (4.1)
Yo = ALAP ) — QP AA, + A_XNPytp — pP_AAT (4.2)

The first combination aligns with the third line of Eq. (3.2). However, at the
quantum level, the second combination may emerge, having a potentially different
Yukawa coupling. All terms within each of the combinations in Egs. (4.1) and (4.2)
are multiplied by a Yukawa coupling, denoted as gy, and gy,, respectively. In the

classical continuum limit, gy, corresponds to g, while gy, vanishes.

Both Yukawa terms commute with R. However the quark mass terms do not. Thus, if
we insist on a theory with massive quarks, R is not a symmetry. x leaves invariant each
of the four constituents of the Yukawa term (Eq. (4.1)), but it changes the constituents

of the “mirror” Yukawa term (i.e. a term with all P, and P_ interchanged) by phases

. oint
6219 and e 21,9‘

Thus the continuum action is classically invariant separately under yx and R (for
massless quarks), or under y x R (where the phases in y and R are chosen to be
opposite, so that quarks are left unchanged) for massive quarks. The lattice action
with Ginsparg-Wilson (GW) gluinos, even in the presence of Wilson quarks and/or a

quark mass, will also be classically invariant under xy x R (with opposite phases:
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0 = —0'); it is interesting to study how this symmetry will develop an anomaly in the
quantum level. The structure of counterterms on the lattice becomes simpler if both
GW gluinos and GW quarks is employed: Even in such a case, terms proportional to
the tree-level Green’s functions of the mirror Yukawa will appear in lattice Green’s
functions, just as they do in the continuum Green’s functions, as a consequence of the
anomalous symmetries; however, these terms will coincide in the bare lattice and
continuum Green’s functions, and no further lattice counterterms [such as our
Eq. (4.43)] will be required. Another interesting feature of the SQCD action which
can be investigated on the lattice, making use of GW gluinos and massless GW
quarks, is the conservation of an anomaly-free combination of xy x R, taking into
account the values of the parameters N, and Ny [72] which enter the phases of x and
R.

In our investigation, we compute perturbatively the relevant three-point Green’s
functions with external gluino, quark and squark fields, using both the Dimensional
Regularization (DR) and the Lattice Regularization (LR). In DR the regulator, €, is
defined by D = 4 — 2¢; in the LR the lattice spacing, a, serves as regulator for the
UV divergences. Each Green’s function which contributes to the one-loop expression
of the Yukawa couplings, consists of three Feynman diagrams shown in Fig. 4.1. The
renormalizations of fundamental fields and the gauge coupling are a prerequisite for
the renormalization of the Yukawa coupling, since renormalization conditions in
3-point-vertex corrections (with external gluino, quark and squark fields) involve
these quantities. More specifically, combining the results for the bare Green’s
functions on the lattice with the renormalized Green’s functions (obtained in MS via
DR), and using the renormalization factors for the gluino, quark, squark fields as well
as the renormalization of the gauge coupling, we extract the renormalization and
counterterms of the Yukawa couplings appropriate to the lattice regularization and

the MS renormalization scheme.

Before we turn our attention to the calculation, notice that there exist several
prescriptions [73, 74] for defining 75 in D dimensions, such as the naive dimensional
regularization (NDR) [75], the t'Hooft-Veltman (HV) [76], the DRED [77] and the
DREZ prescriptions (see, e.g., Ref. [78]). These prescriptions are linked via finite
conversion relations [79]. In our calculation, we apply the NDR and HV prescriptions.
The latter does not violate Ward identities involving pseudoscalar and axial-vector

operators in D dimensions [75]. The Dirac matrices, 7,, are Hermitian in
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- — - & > - —« - -

FIGURE 4.1: One-loop Feynman diagrams leading to the fine-tuning of gy, and gy,.
A wavy (solid) line represents gluons (quarks). A dotted (dashed) line corresponds
to squarks (gluinos). In the above diagrams the directions of the external line
depend on the particular Green’s function under study. An arrow entering (exiting)
a vertex denotes a A, ¥, A, Al (A, 1, AL, A_) field. Squark lines could be further
marked with a 4+(—) sign, to denote an A, (A_) field.

D-dimensional Euclidean space and satisfy the following relations:

nuunp,l/ = Da {/Y,ua ’711} = 25MV]1‘ (43>

In NDR, the definition of 75 satisfies:

{7577}1} = 07 V/L, (44>

whereas in HV it satisfies:

{75} =0, n=1,2,34, (V5,7 = 0, p> 4. (4.5)

NDR is known to be an inconsistent regularization; in particular, a calculation of the
triangle diagram does not reproduce the axial anomaly, leading to the incorrect result
that the axial current is conserved. Thus, our use of NDR will serve only to highlight its
effect on Green’s functions such as Eqs. (4.14)-(4.19), pointing out how some opposite
chirality terms are absent in NDR. Our end results [see Eqgs. (4.42)-(4.43)] will employ
the HV prescription (cp, = 1).

4.2.2 Renormalization in Dimensional Regularization

At this point we will present our one-loop results for the bare three-point Green’s
functions and the renormalization factors of the Yukawa couplings in the MS scheme,
using both dimensional (DR) and lattice (LR) regularizations [80].  For the
renormalization of gy, and gy,, we impose renormalization conditions which result in

the cancellation of divergences of the corresponding bare three-point amputated
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Green’s functions with external gluino-squark-quark fields. The application of the
renormalization factors on the bare Green’s functions leads to the renormalized

Green’s functions, which are independent of the regulator (¢ in DR, a in LR).

Given that we are interested in the MS renormalization of the Yukawa couplings, and
that MS is a mass-independent renormalization scheme, we are free to treat all
particles (in particular, quarks and squarks) as massless. In the next section [81],
regarding the quartic (4-squark) couplings in SQCD, we choose instead to treat
quarks and squarks as massive, in order to avoid the emergence of spurious infrared
divergences. A mass-independent scheme allows us to make use of techniques for
evaluating Feynman diagrams which have been developed to very high perturbative
order (see, e.g., [82-87|).  Still perturbative calculations become exceedingly
complicated on the lattice, and consequently, calculations beyond two loops are

practically unfeasible.

The calculation of the amputated tree-level Green’s functions is straightforward and

their expressions are':

- ?

A () A (@)(@)™ = —5 0w 27)"0(q1 — @2 +s) (1 +95) T™/V2 (4.6)
(e AL @R @)™ = 2w 2000 — a2+ a5) (L= 95) T V3 (A7)
O (@) AL @)F@N™™ = —2 gn, (2801 — a2+ 45) (L= 95) T V3 (48)
(@A @A @)™ = Sov, 20)' 0 — a2+ a5) (1 + ) T /VE, (19

where our conventions for Fourier transformations are:

3 = [ e ia), (4.10)
Ai(q) = /d4x e Ay (1), (4.11)
u,(q) = /d4x ey, (z), (4.12)

Ag) = / diz et A (z). (4.13)

!Note that the indices coming from the color in fundamental representation and the Dirac indices
are left implicit. On the contrary, the color in the adjoint representation is shown explicitly.
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The procedure of calculating the renormalization in the MS scheme entails performing
first the perturbative calculations of the Green’s function in D R; this is unavoidable by
the very nature of the MS scheme. The comparison with the same Green’s functions

calculated in LR will lead to the lattice renormalizations in the MS scheme.

The calculations presented in this section could ideally be performed using generic
external momenta. However, for convenience of computation, we are free to make
appropriate choices of these momenta; the resulting renormalization factors will not
be affected at all. By inspection of the propagators and vertices in the diagrams of
Fig. 4.1, we conclude that no superficial infrared divergences will be generated, if any
one of the three external momenta is set to zero; in what follows, we calculate the
corresponding diagrams by setting to zero only one of these momenta. The choice of
the external momenta for Green’s functions will not affect their pole parts in DR or
their logarithmic dependence on the lattice spacing in LR. Therefore, the three choices

for each three-point Green’s function will provide a useful consistency check.

There are, in total, 4 different gluino-squark-quark Green’s functions, depending on
whether the external squark field is A, /A% JA_/AT. We present first the four Green’s
functions for the three choices of external momentum in DR. To avoid heavy notation
we have omitted Dirac/flavor/color indices? on the Green’s functions of Eqs. (4.14)-
(4.19).

2
(A" (0) A4 (q3)(q2)) TP = — (1(q2) A—(g3)A** (0)) TP = —i (27)"5(q2 — g3 )gylg2 L T“1 %

(4.1

2
(A% (q1) A+ (g3)9(0) PP = — (1 (0) A (g3) A (1)) PTo1O = —i (27) (a1 + 43) ’g oI T x

[ —3(1+75) + (1 4+ @) (1 +75) + 8y5n ) N2 + (1 +75) (—a + (3 + 2)N?) < +log <“2>> ]
43
4)
1

(44 )1+ 75) + 85 ) N2 + (1 +95)(—a + (3 + 20)N?) <1 + log ’a—2 ]
41

(4.15)

O () A O)Baa)) PRI = — () A- O ()P = i (2m) 60 — ) B

1
[—a(1+75)+((4+3a)(1+75)+8fy5chv)NC2—l—(1+’Ys)( o+ (34 2a)N?) < +log< ))]

(4.16)

2The color indices in the adjoint representation are shown explicitly.
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(6(02) AL (g X7 (0)) 190 = — (308 (0) AT (g5) ) P = i 2) (e — )20, T T
31—75)—((1+a)(1l—75) — 875chV)N (I =) (—a+ (3+ 2a)N2 ( + log ( 5 ) ]
2
17)
((0) AL (@A (1)) PP = — (3 () AT ()0 PP = i (20) 0+ g >g§g lefal :
(—(4+ a)(1 — 15)N? + 8y5em)NZ — (1 = 75)(—a + (3 + 20)N2) < T log <“>) ]
ql
(4.18)
(1h(g2) AL ()% (g1)) PR11ooP — — (3 (g;) AT (0)eh(ga)) PR 10P = —i (2m)45(qn — qz)ffgfj y f@NCT“ x
all =)+ (—(4 4+ 3a)(1 — ) + 875chv)N (1 =) (—a+ (3+ 204)]\702) (1 + log (Z;)) ] ,
(4.19)

where ¢, = 0(1) for the NDR (HV) prescription of 45. The pole parts do not depend
on ¢p,. Further, in the NDR prescription, all one-loop bare Green’s functions are
proportional to the tree-level ones. The above one-loop Green’s functions indeed
confirm that the pole parts are the same for different choices of the external momenta
and that they are proportional to the tree-level value. In HV, the fact that the first
quantum corrections (one-loop) of these Green’s functions have finite parts which are
not proportional to their tree-level counterparts [i.e., in addition to terms with
(1 & ~5), they contain also terms with (1 F 75)], is a consequence of the chiral
anomaly; the same finite parts will necessarily appear also in LR. The need for
introducing appropriate counterterms, which connect MS renormalized Green’s
functions to SUSY invariant Green’s functions, is indicated by the supersymmetric
Ward Identities [88]. The value of the coefficients multiplying these counterterms
requires a purely continuum calculation, including Eqs. (4.14)-(4.19); the same
coefficients can be applied to the renormalization functions extracted in LR. The
appearance of such counterterms, which are crucial to restore all SUSY relations
among couplings, was extensively discussed within the algebraic renormalization
approach to SUSY theories [89-91].

Note that the terms in Eqs. (4.14)-(4.19) involving multiplication by cpyy5 can be
equivalently expressed as: icy ((1+175) — (1 —75)). Terms with reversed chirality

account for the mirror Yukawa interactions; given that they are pole free, they will
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have no effect on a straightforward MS renormalization. However, if one opts for a
renormalization scheme in which these terms are absent, one must add a finite Y5

counterterm to the action of the form:
%=1 V2 gy,Ya, where : gy, = 29°N, cny /(167%) + O(¢°). (4.20)

This term, as well as Egs. (4.14)-(4.19), become relevant in our lattice calculations as

they contribute to finite fine-tuning terms in the lattice action.

The difference between the renormalized Green’s functions and the corresponding
Green’s functions regularized on the lattice allows us to deduce the one-loop lattice
renormalizations factors. The renormalization factors of the fields and the gauge
coupling constant can be found in Ref. [48]. For the sake of completeness we present

their definition here:

p=y® = 7,748, (4.21)
Uy, = uf = Z;71? uf, (4.22)
A=AE = Z'PAR (4.23)
c=cP = Z7V2CR, (4.24)
g=49" = Z; pg", (4.25)

where B stands for the bare and R for renormalized quantities and p is an arbitrary
scale with dimensions of inverse length. For one-loop calculations, the distinction
between g% and ¢? is inessential in many cases; we will simply use g in those cases.

The Yukawa coupling is renormalized as follows:
9vi = 9y, = 2y, 2, g™, (4.26)

where at the lowest perturbative order Z,Zy, = 1, and the renormalized Yukawa

coupling coincides with the gauge coupling.

In DR, we are interested in getting rid of the pole parts in bare continuum Green’s
functions; this requires not only the renormalization factors of the fields and of the
gauge coupling, Z,, but also a further factor Zy, for the bare Yukawa coupling. Note
also that the components of the squark fields may mix at the quantum level, via a 2 x 2

mixing matrix (Z4). We define the renormalization mixing matrix for the squark fields
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( ﬁ ) — (2)*) ( j}; > . (4.27)

In Ref. [48] we found that in the DR and MS scheme this 2 x 2 mixing matrix is diagonal.

as follows:

On the lattice, this matrix is non-diagonal, leading to a mixing of the components A
and A_ with A" and Al, respectively. Consequently, the renormalization conditions
on the lattice become more intricate. As we referred, we focus on the MS scheme, using
both DR and LR regularizations. Given that SUSY is broken by either regulator and
that SUSY-noninvariant gauge fixing is employed, it is anticipated that a nontrivial

fine-tuning for the Yukawa coupling will be necessary.

Taking as an example the Green’s function in DR with external squark field A, the

renormalization condition up to g? will be given by:

MS bare

Na)Ar(@)0(@)| =2, 2 (20 N a) A (@) (@) . (4.28)

All appearances of coupling constants in the right-hand side of Eq. (4.28) must be
expressed in terms of their renormalized values, via Eqgs. (4.25)-(4.26). The left-hand
side of Eq. (4.28) is just the MS (free of pole parts) renormalized Green’s function.
Similar to Eq. (4.28), the other renormalization conditions which involve the external
squark fields Ai, A_, A" are understood. The renormalization factors Z = 1 + O(g%)

ZX,Y

should more properly be denoted as , where X is the regularization and Y the

renormalization scheme.

For the sake of clarity and comprehensiveness, the updated expressions for the
renormalization factors of the fields and of the gauge coupling in DR which are
involved in the right-hand side of Eq. (4.28) are®:

_ 20 1
ZPRIS _ gl : - (+a) (4.29)
— QC 1
Zi)f’MS = 1+ 916 752 (—1+4 ) (4.30)
DR,MS 92 1
Z = 1+ 16w22(aNC+Nf) (4.31)
2
DRMS __ g 1/(3 1
Z, = 1+ 1672 (5]\@ —3 f> , (4.32)

3The expressions for Zy, Za, ,Zy and Z, (Egs. (4.29)-(4.32), Egs. (4.36)-(4.39)) appeared also in
Ref. [48]; however, a factor of 1/2 was missing in diagrams involving open internal gluino lines. For a
more detailed explanation, see Appendix A.
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where Cp = (N2 — 1)/(2 N,) is the quadratic Casimir operator in the fundamental
representation. The expressions in Eqs. (4.29)-(4.32) take carefully into account the
effect of the Majorana nature of gluinos in the functional integral. In Appendix A, we
provide a more comprehensive discussion and treatment of the gluino field; in particular,
we focus on the effect of Yukawa terms in SQCD, which are clearly absent in pure SUSY
Yang-Mills.

Substituting Eqs. (4.29)-(4.32) in Eq. (4.28), and by virtue of the fact that the
counterterm Eq. (4.20) contains no pole parts, we extract the value of ZQR’MS; this
value is the same for all gluino-squark-quark Green’s functions and for all choices of

the external momenta which we have considered:
ZPPMS — 1 4 0(gY). (4.33)

Eq. (4.33) means that, at the quantum-level, the renormalization of the Yukawa
coupling in DR is not affected by one-loop corrections. This observation has
important implications for our understanding of the renormalization scheme in
SQCD. It shows also that the corresponding renormalization on the lattice will be
finite. Although, the mirror Yukawa term does not appear in MS renormalization
using DR, a finite admixture of this term will arise in MS on the lattice. We expect
that the MS renormalization factors of gauge invariant quantities will turn out to be

gauge-independent also on the lattice, as was the case of ZQ RMS,

4.2.3 Renormalization in Lattice Regularization

We now turn to the lattice regularization. As emphasized earlier, even though the
renormalization of the squark fields in the MS scheme and in DR is diagonal, on the
lattice it is not; the mixing between the squark components (A, AT_) (and, similarly,
(AL, A_)) appears on the lattice through the 2 X 2 symmetric matrix Z,, whose
nondiagonal matrix elements are nonzero. The renormalization conditions are not as
simple as is shown in Eq. (4.28); instead, they involve the following pairs of Green’s

functions:

(1)) with ($(g2)A-(g3) A1) (4.34)
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The appearance of the mirror Yukawa coupling, gy,, is another feature of the use
of Wilson gluinos, which increases the degree of difficulty on the lattice. The y x
R symmetry is broken by using Wilson discretization and thus lattice bare Green’s
functions are not invariant under x x R at the quantum level. This difficulty may be
avoided with chirality preserving actions, but the implementation of these actions in

numerical simulations is very time consuming.

Thus, in the calculation of bare Green’s functions on the lattice, one-loop spurious

contributions will arise, which will need to be removed by introducing mirror Yukawa

counterterms in the action. The renormalization condition is the following:

Mo A4 (@)@ = 257227 (@) (Z3) 1+ A (a)+(Z3 ) 4 AT (g5))(a2)
(4.35)

It is understood that the bare couplings on the right-hand side of this equation must be

bare

converted into the corresponding renormalized ones, making use of Z, and Zy, ; a mirror
Yukawa term also contributes, with a coupling constant gy, which will be determined in
what follows. Eq. (4.35) consists of two types of contributions with opposite chiralities;
matching each of these to the MS expressions found in DR, Eqs. (4.14)-(4.16), amounts
to two separate conditions, which will be used to determine the two unknowns Zy, and
Jy,- Analogous equations hold for the other gluino-squark-quark Green’s functions and

may be calculated for consistency checks.

To offer a self-contained presentation, we revisit a collection of lattice results outlined
in Ref. [48]:
2

N e
ZERNS 5{6 P (~16.7235 + 3.79200 — (1 + ) log (a® %)), (4.36)
T

1/2 LR,MS . g Cp
<ZA ) = 1= 16 72

10
16.9216 — 3.7920a — (1 — a) log (a i°) ] (0 1)

()}
—0.1623 , (4.37)
10

ZLRMS 1g7r2 [NC (16.6444 — 3.7920c + 2 alog (a” f2%))

+N; (0.07907 + 2log (a® %)) ] : (4.38)
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92

16 72

A

1 3
—9.8696 1 + N, (12.8904 — 5 log (a” ;ﬂ))

C

— Ny (0.4811 — %log(aQ [f)) ] : (4.39)

The lattice three-point Green’s functions involve the same Feynman diagrams as in
Fig. 4.1. At first perturbative order, O(¢?), Eq. (4.35) and its counterparts involve
only the difference between the one-loop MS-renormalized and bare lattice Green’s
functions. Having checked that alternative choices of the external momenta give the
same results for these differences, we present them only for zero gluino momentum.
Additionally, we should mention that the errors on our lattice expressions are smaller
than the last shown digit and the Wilson parameter, r was set to its default value:

r=1.

(A (0) A (g3)8(q2)) MSHOP — (A1 (0) A (g3)9(g2)) P10
= —((a2) A- (@) A" ()M 4 (15(g2) A (g3) A (0)) 1 1ooP

2
. gvig- 1
=3 (27r)4(5(qQ - q3) 161772 SVIN,

T x | = 3.7920a(1 + 75) + (1 + 75) (@ — (3 + 2a) N2) log (a® %)

+(—3.6920 + 5.951075 4 7.58400x(1 + 75) — 8y5¢hy ) N2 |,

(4.40)
(1(@2) AL (g3) A" (0)) V5P — (1)(g2) AL (gs) A1 (0) Mo

= — (A1 (0) AT (g3)1b(q2))M3 10 4 (A21(0) AT (g3)1h(go)) o 110oP

g 1
1672 8v/2N,

=i (2m)10(q2 — q3) T x |3.79201a(1 — 75) + (1 — 75)(—a + (3 + 2a)N?) log (a*fi?)

+(3.6920 + 5.95105 — 7.5840a(1 — 35) — 8y5¢hy ) N2 | .

(4.41)

As expected, the above expressions are momentum-independent, and they are linear
combinations of the tree-level expressions stemming from the Yukawa vertex and its
mirror; also, all corresponding decimal coefficients between Eqs. (4.40) and (4.41)
coincide, and we have checked that they are the same for any other choice of external

LEMS and also

momenta, as they should. Thus, we are led to a unique result for Zy,
for gy,“®MS_ By combining the lattice expressions with the MS-renormalized Green’s

functions calculated in the continuum (see Eq. (4.35)), we find for the renormalization
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factors:
— 2 1.45833
Zy, LRNS ng 2( v —|—2.40768NC+0.520616Nf), (4.42)
7T c
== 3 —0.040580
, LRIS 1372< = +O.45134NC). (4.43)

We note that the above factors are gauge independent in the MS scheme, as expected
from the principles of renormalization and gauge invariance. Furthermore, the
multiplicative renormalization Z)L,lR’NTS and the coefficient gf/f’m of the mirror Yukawa
counterterm are finite as one can predict from the continuum calculation. These
findings shed light on the fine-tunings for the lattice SQCD action. They suggest that
while the renormalization process in MS is well-behaved on the lattice, it still exhibits

an intriguing connection with the mirror Yukawa term through géf’m.

4.3 Fine-Tuning and Counterterms for the Quartic

Couplings

4.3.1 Computational Setup

As previously mentioned the coupling constants appearing in the lattice action are
not all identical. In the previous section we study the fine-tuning of the Yukawa
interaction, an interaction between quarks, squarks and gluinos. In this section our
focus shifts to investigating the fine-tuning of the quartic couplings, which
characterize the four-squark interactions. Our methodology involves calculations of
Green’s functions with four external squarks, extending up to one loop and to the
lowest order in the lattice spacing. These Green’s functions are not only crucial for
understanding the perturbative aspects of the theory but also play a pivotal role in
unraveling nonperturbative insights into supersymmetric theories. For instance, they
are instrumental in studying phenomena such as the supersymmetric phase transition

through the analysis of the four-squark effective potential [50].

In this section, we present our one-loop calculations for the bare 4-point Green’s
functions and the renormalization factors of the quartic couplings in the MS scheme,
employing both dimensional regularization (DR) and lattice regularization (LR). To

renormalize the quartic couplings, we impose specific renormalization conditions,
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ensuring the cancellation of divergences in the corresponding bare 4-point amputated
Green’s functions with four external squark fields. Applying these renormalization
factors to the bare Green’s functions yields the renormalized Green’s functions, which

are independent of the regulator (¢ in DR, a in LR).

To identify the four external squark fields, we consider gauge symmetry constraints.
Consequently, we determine that two squark fields must belong to the fundamental
representation, while the other two must belong to the antifundamental representation;

ignoring flavor indices, there are ten possibilities for choosing the four external fields:

(ALAL)(ATAL),  (A_AT)(A_AD), (4.44)
(ALAL)(AZAD),  (ALAT)(ALAD),  (A_A)(A_AL), (A_AL)(ALAT),
(ALAL)(ALAT),  (ALA(AAL), (AAT)(ALAT), (A_AT)(A_AL).

Pairs of squark fields in parenthesis denote color-singlet combinations. Noting that the
Green’s function with the four external squark fields (A% A,)(A_A") yields identical
outcomes as the Green’s function with the four external squark fields (A_A,)(AL AT).
We also notice that only the four external squark fields of the first three terms from
Eq. (4.44) appear in the SQCD action.

By requiring that the above terms must be also invariant under symmetries of the
SQCD action; one must further take into account C and P to construct combinations

which are invariant under these symmetries. There are five combinations as shown in
Table 4.2.

Operators ‘
M(ALT* A, + AT AT)?)2
Mo[(ALAL)2 + (A AL
As(ALAL)(AAT)
M(ALAT)(A_AY)
M(ATAT + A_A ) (AT AL + A_AT)

H |+ ]
A+ [

TABLE 4.2: Dimension-4 operators which are gauge invariant and flavor singlets.
All operators appearing in this table are eigenstates of charge conjugation, C, and
parity, P, with eigenvalue 1. In the above operators, squark fields carry flavor
indices. The symbols A; are five quartic couplings.
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When applying the transformation y x R to the combinations listed in Table 4.2,
(AL AT)2 4+ (A_A, )% and (ATAT + A A, )(ALA, + A_AT) are not invariant; however,
due to the potential anomaly in x X R symmetry, they may appear in our one-loop

computations.

The first combination in Table 4.2 aligns with the first term of the fourth line of
Eq. (3.2). However, at the quantum level, the other combinations may emerge, having
a potentially different quartic couplings, denoted as A\y_5. In the classical continuum

limit, A\; corresponds to g, while A\s_5 vanishes.

4.3.2 Renormalization in Dimensional Regularization

Below, we present the amputated tree-level Green’s functions, whose Feynman

diagrams are shown in Fig. 4.2, with four external squarks:

[e5] (o) Qs o ree 1
<A1Li-f1 (ql)A:- fo (Q2) A—l-dfg <Q3)A+4f4 (Q4)>t = 2—]\70 g2 (—1 — 04) X

O 1yOpa 4 (—01495°2% 4 N, 52194529
+ 00y (— 0010672 4 N, 5103 59204)
(4.45)
oy o a3 oy ree 1
<AT_f1(Q1)AT_ fz(q2) A% f3<Q3>A— f4(Q4)>t - = 7 (—1—a)x
Of, £,0 ffu (=039 0M2 4 N, 54914392

+ 01101y (—0MNOWN 4 N 99391 5%4%2)

(4.46)
a1 () as (a7} ree 1 Q103 o402 Q1o SO0
(A (@) AL, (g2) AT, (g8) A%, (0)) " = 2—M92(1 — )0, ,0ppy (N GH126H12 — 91925719 |
(4.47)

where f; are the flavour indices of the external squark fields. The rest of the tree-level

Green’s functions with four external squarks are zero.

The tree-level values of quartic couplings which satisfy SUSY are:

)\1292, )\2:>\3:)\4:)\5:O. (448)
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FIGURE 4.2: Tree-level Feynman diagrams with four external squark fields. The
second diagram can have mirror variants. A wavy line represents gluons and a
dotted line corresponds to squarks. Squark lines could be further marked with a
+(—) sign, to denote an Ay (A_) field. The 4-squark vertex of the action has been
denoted by a solid rectangle, in order to indicate the squark-antisquark pairing; all
remaining vertices are denoted by a solid circle.

These couplings receive quantum corrections, coming from the Feynman diagrams
which are one-particle irreducible (1PI) and one-particle reducible (1PR) and are
shown in Figs. 4.3 and 4.4, respectively. Note that here we introduce a non-zero mass
for quarks and squarks in order to avoid IR divergences. It is worth mentioning that
the Majorana nature of gluinos manifests itself in some diagrams, in which A — X\ as

well as A — )\ propagators appear. The Majorana condition is the following:
(AT =\, (4.49)

and the tree-level propagators that relate A — X\ and A — X are:

conar 1
<)\a1 (ql))\az(q2>>tr00 = 2 §* 2§<q1 + q2>?CT (450)
1
I 0N ) 1
<)\a1 (ql)Aaz(q2)>tree = - 0501025((]1 + q2)— . (451)

¢

In order to obtain the renormalized quartic couplings, we impose renormalization
conditions which result in the cancellation of divergences in the corresponding bare
four-point Green’s functions with external squark fields and thus, the renormalization

factors are defined in such a way as to remove all divergences.

Note that in order to compute the four-point Green’s functions, we have to
symmetrize over identical external fields. As in the case of the Yukawa coupling [80],
for convenience of computation, we are free to make appropriate choices of the

external momenta. Having checked that no superficial IR divergences are generated,
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FIGURE 4.3: One-loop 1PI Feynman diagrams leading to the fine-tuning of the
quartic couplings. A wavy (solid) line represents gluons (quarks). A dotted
(dashed) line corresponds to squarks (gluinos). In the above diagrams the
directions of the external line depend on the particular Green’s function under
study. An arrow entering (exiting) a vertex denotes a A, ¢, A, AT (\, 2, AL, AL)
field. The 4-squark vertex of the action has been denoted by a solid rectangle, in
order to indicate the squark-antisquark pairing; all remaining vertices are denoted
by a solid circle. Squark lines could be further marked with a +(—) sign, to denote
an Ay (A_) field. All diagrams can have mirror variants. In diagrams 4 and 5,
there are additional variants in which two external outgoing (or incoming) lines
stem from a 4-squark vertex.

we compute the diagrams by setting the 2 external momenta of the squark fields in

the fundamental representation to zero.

The choice of the external momenta for Green’s functions does not affect their pole

parts in DR or their logarithmic dependence on the lattice spacing in LR. Since the
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FIGURE 4.4: One-loop 1PR Feynman diagrams leading to the fine-tuning of the
quartic couplings. Notation is identical to that of Figure 4.3. Note that the “double
dashed” line is the ghost field. All diagrams can have mirror variants. Unlike gluon
tadpoles which vanish in dimensional regularization, the massive squark tadpole

gives a nonzero contribution (diagram 21).

difference between the MS-renormalized and the corresponding bare Green’s function

enters in the extraction of the one-loop renormalization of the quartic couplings, we
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present below this difference:

(A5 (a0) AT, (a) A (00) AT, (00)) ™ — (AT (@) AT, () AT, () AT, (02)) P

g4

T 64mEN? €

(2+4N3 +a(—2a+3(1+a)N2) — 2N6Nf> X
<6f1f35f2f4(_5(%10[35042064 + N, 5a1a45a2a3)

+ (Sflfcl(sfsz,(_60[10[450{20{3 + N. 5a1a350¢20‘4))] (4.52)

(A (q1) AT (q2) A% (g3) A%, (qa) V5110 — (AT (1) AT2 (g0) A% (q3) A, (ga)) P F0oP

g4

T 64T2N2 €

(2+4N3 +a(—2a+3(1+a)N2) — QNCNf) X
<(5f1f35f2f4(_(5%&1 6044042 + Nc 5a4a15a3a2)

+ (5f1f4 (5f2f3 (—6a4a1 §esez o Nc Hesal 5&4&2))] (453)

(AT () A, (0m) AT, (0) A%, (02)) 51 — (AT, () AT (1) AT, (4) A

DR, 11
+f1 +f1 —f4( >> oop

4

1
:—64732]\;2g[(_2_4Nc2+04(4—Nf+a(—2+3Nf))+2NcNf)><

5f1f2§f3f4 (Nc joras jaaas 50{10125a4a3)> (454)

(Ap g (@) A= 1, (@2) A 1, (a5) Az £,(@)) M1 — (AL p, (@) A 1, (@2) Ay 1, (g3) A g, (qa)) PPo1P = 0
(4.55)

(AT (@)A1 () AT [ (g5) AL 1 (a0))M5 1P — (AT [ (a) AT 1, (0)AT [ (g5) AL 1, (a0) """ = 0
(4.56)
(As (@) AT (@) As 1y (g5) A 1 (@) 1P — (Ay f(01) AL (42) Ay gy (g8) A g (@a)) PP = 0
(4.57)
<A+f1(Q1)A (Q2)A 5(a )Aiﬁl( 1)) MO HooP — (A gy ((11)14 (q2)A .(q )Aiﬁl( y))PRMeor —
(4.58)
(AT (@)A1 (@) At g, (a3) A £, ()M — (AT | (@) A 1, (@2) Ay 1 (g3) A 1, (qa)) PP1P = 0
(4.59)

<AT_fl(q1)/L lga) AT (q3)A+f4(q4)>W,1loop (Al Ala)A £ (q2) AT fs(qg)A+f4(q4)>DR,1loop —0.
(4.60)
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Note that in the case of finite bare Green’s functions, the MS-renormalized Green’s

functions coincide with the bare ones in DR.

For the renormalization conditions, we recall the definitions of the renormalization
factor of the gauge coupling in Eq. (4.25) and of the renormalization mixing matrix
for the squark fields in Eq. (4.27). As noted earlier, this 2 x 2 renormalization matrix
is diagonal in the DR and MS scheme whereas it is non diagonal and the component
A, (A_) mixes with A" (A1) on the lattice.

We also revisit the renormalization factor of the gauge parameter Z,, which is defined

as follows:
oft=717,a", (4.61)

By calculating the gluon self energy, it is found to be transverse, reflecting the gauge
invariance of the theory. Since there is no longitudinal part for the gluon self energy,
Z,, receives no one-loop contribution. 7, is the renormalization factor of the gluon field

and its definition is shown in Eq. (4.22).

In DR, we are interested in getting rid of the pole parts in bare continuum Green’s
functions; this requires not only the renormalization factors of the fields, of the gauge
coupling, Z,, and of the gauge parameter, Z,, but requires a special treatment of the
bare quartic coupling multiplying also with Z,,. The quartic coupling is renormalized
as follows:

o= 21772 (g") (4.62)

At the lowest perturbative order, it holds that Z,Z), = 1, and consequently, the

renormalized quartic coupling aligns with the gauge coupling.

Considering the example of the Green’s function in DR with four external squark fields

A, and AL, the renormalization condition up to ¢? is expressed as follows:

(A ()AL (@) A (@) AL @) = (Z32) s (A (a) AT () A () AL ()

bare

(4.63)

As in the case of the Yukawa coupling renormalization, all appearances of coupling

constants, and the gauge parameter in the right-hand side of Eq. (4.63) must be
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expressed in terms of their renormalized values, via Eq. (4.25), Eq. (4.62), and
Eq. (4.61).

The renormalization factors in DR which appear in the right-hand side of the

renormalization condition are shown bellow [48]:

_ 20 1
gbRMS _ I MF2 g 4.64
Ay + 1672 € ( +a> ( )
— 2 1 /3 1
gPRMS _ o I (2N = 4
g +167T2€ 2 o (4.65)
—= 2 1 a 3
gPRMS _ o 9 (2 2\ N N 1.66
u Tl |\2 2 A (4.66)
ZPMNS = 14 0(gY), (4.67)

where Cr = (N2 — 1)/(2 N,) is the quadratic Casimir operator in the fundamental

representation.

Utilizing Eq. (4.63) for all bare Green’s functions that have pole parts (see Egs. (4.52)

- (4.54)), we obtain the same value for the renormalization factor of A}’ RS,

7, PEMS = 14 0(gY). (4.68)

It is noteworthy that we obtain the same value for the renormalization factor of
)\]IDR’MS by setting the momenta of the squark fields that lie to the antifundamental

representation to zero instead of those in the fundamental representation.

Eq. (4.68) implies that, at the quantum level, the renormalization of the quartic
coupling in DR remains unaffected by one-loop corrections. This observation carries
significant implications for our comprehension of the renormalization scheme in
SQCD. Furthermore, it indicates that the corresponding renormalization on the
lattice will be finite. While terms proportional to Ay - A5 do not manifest in the MS
renormalization using DR, a finite mixture of these terms may emerge in MS on the
lattice. ~ We anticipate that the MS renormalization factors of gauge-invariant

quantities will also be gauge-independent on the lattice, mirroring the behavior of
ZDR,W
A :
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4.3.3 Renormalization in Lattice Regularization

Shifting our focus to LR, it is crucial to note that despite the diagonal nature of
the renormalization matrix of the squark fields in the MS scheme and in DR, such
simplicity does not carry over to the lattice. On the lattice, the mixing between squark
components arises through the matrix Z,4, where the non-diagonal matrix elements
are nonzero. Therefore, the renormalization conditions are not as straightforward as
depicted in Eq. (4.63).

Taking into account the additional vertices on the lattice, we need to include
additional one-loop Feynman diagrams to accurately calculate the fine-tuning of the

quartic couplings on the lattice. These additional diagrams are illustrated in Fig. 4.5.

FIGURE 4.5: Additional one-loop Feynman diagrams leading to the fine-tuning of
the quartic couplings on the lattice. Notation is identical to that of Fig. 4.3. Note
that the “double dashed” line is the ghost field and the solid box in diagram 27
comes from the measure part of the lattice action.

Now, on the lattice the renormalization condition up to g? will be given by:

=(((Z3"?) s + (20 A (@)
(Z) e+ (2 ) Al (ge)
(Z5") s + (277 10) A (a3)

bare
((z

Z L+ (20 )A @) . (4.69)

(A (@) AL (@) A (g) AL @)
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As in the case of DR, all appearances of coupling constants, and of the gauge parameter
in the right-hand side of Eq. (4.69) must be expressed in terms of their renormalized
values. Analogous equations hold for the other Green’s functions which involve the

other matrix elements.

To provide a comprehensive overview, we revisit a collection of lattice results discussed

in Ref. [48]:

1/2 LRMS g2 Cr i Lo
(ZA/ ) = 1 - T3 (169216 ~ 3.79200 — (1 — a)log (a® )

0 1
0 1
—0.1623 :

- 2 1 3
ZgLR,MS = 14+ g [ — 9.8696N + N, <12.8904 3 log (a2 ﬂ2)>

16 72 .

1
- Ny (0.4811 = 2 log(a? ;ﬁ)) ] :

16 72

[

— 2 1 3
ZLRMS _ 14 9 [19‘7392F — N, (18.5638 — 1.3863c + (—5 + %) log (a®

+N; (0.9622 — log (a® 1)) ] :

ZERNS - — 1 4 O(gY).

The computation of all four-point Green’s functions on the lattice is currently in

progress [67, 68].

4.4 Possible Extensions

The perturbative renormalization of the Yukawa and quartic couplings completes the
one-loop fine-tuning of the SQCD action on the lattice, paving the way for numerical
simulations of SQCD. The results of this work will be particularly relevant for the setup
and the calibration of lattice numerical simulations of SQCD. In the coming years, it
is expected that simulations of supersymmetric theories will become ever more feasible
and precise. It would be highly interesting to apply these fine-tunings in Monte Carlo
simulations of the SQCD action.

(4.70)

(4.71)

/?F))

(4.72)

(4.73)
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A natural extension of this work would be the perturbative calulations of all fine-
tunings in SQCD on the lattice using chirally invariant actions. In particular, the
overlap action can be used for gluino and quark fields, in order to ensure correct chiral
properties. There is clear risk involved in simulating overlap fermions, since this is very
expensive in CPU time. On the other hand, the number of parameters which need fine-
tuning is minimized, and this is a significant advantage for these kind of calculations.
Nevertheless, fixing the correct values of these parameters still entails calculating a

plethora of Green’s functions.



Chapter 5

Gauge-invariant Renormalization of

Four-quark Operators in Lattice

QCD

The remarkable success of the SM in accurately describing electroweak and strong
interactions at the fundamental level lies in the fact that the SM Lagrangian
incorporates all pertinent operators with dimensions < 4. These operators are
constructed using the elementary particle fields that have already been observed and
adhere to the principles of Lorentz invariance and gauge symmetry. The potential
influence of higher-dimensional (D > 4) effective operators, not encompassed within
the SM Lagrangian, is anticipated to be inherently small. This is due to their
suppression by negative powers of the high-energy scale M, characterizing physics
beyond the SM, expressed as M*~P with allowances for logarithmic correction. In
this framework, operators with a dimension of D = 6, such as the four-quark

operators, assume a particular significance, as their impact is suppressed by M 2.

Furthermore by the high precision achieved in experimental CKM matrix element
measurements, the study of four-quark operators becomes even more pertinent in the
context of potential discoveries at the Large Hadron Collider (LHC), such as new
tetraquarks [92-95]. Thus it is important to explore their properties numerically on
the lattice; this calls for a detailed investigation of the corresponding four-quark

operators.

7
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Phenomenological bag parameters are other important lattice quantities associated
with four-quark operators [96]. For instance, the kaon bag parameter, By, is defined
as [97-103]:

S fi i) = (RYOIK?). (5.1)

where my is the kaon mass, fx is the decay constant, u is the renormalization scale

and the relevant four-quark operator, O, is:

0= &sv,u(]- - /75>wd 1/_137#(1 - 75)1/}d7 (52)

where s and d stand for strange and down quarks. By must be calculated
nonperturbatively, and this nonperturbative calculation requires the renormalization
of the four-quark operator within a continuum renormalization scheme, such as the
widely used MS scheme. This ensures compatibility with experimental data and
facilitates comparison with phenomenology. In the literature, determinations of By

are known to high precision [102, 103], and the results are all consistent.

Calculating matrix elements of four-quark operators in lattice QCD offers insights into
a wide range of phenomena, including weak decays of hadrons [104] and electroweak
interactions. Moreover, the renormalization of four-fermion operators find utility in
models of new physics beyond the SM. In these cases, the complete basis of 4-fermion
operators plays a role in determining neutral meson mixing amplitudes. This holds

true, for example, in SUSY models [105].

In this chapter, we focus on the renormalization of four-quark operators which
involved in flavor-changing AF = 2 processes. The main objective laid out in this
work is the study of four-quark operators under renormalization using both GIRS and
MS schemes. In particular, we provide the conversion matrices between GIRS and
MS. On one hand, the conversion matrices depend on both scales. On the other
hand, the conversion matrices are regularization-independent, and thus we can
compute them in dimensional regularization, where perturbative computation can be
performed more readily and to higher-loop order. For this purpose, we calculate the
first quantum corrections for the two-point and three-point Green’s functions using
coordinate space in DR, where we regularize the theory in D = 4 — 2¢ dimensions. By
imposing the renormalization conditions on these bare one-loop Green’s functions we
compute the perturbative renormalization constants for a complete basis of AF = 2

four-quark operators, and we determine their gauge invariant mixing patterns. In
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particular, the theoretical foundation of our study is based on the most general weak
effective Hamiltonian, describing parity-even and parity-odd four-quark operators.
The interplay of these operators during renormalization underline the complexity of

the investigation.

In the following sections, we detail GIRS scheme, discussing both its merits and its
drawbacks. We outline the formulation, presenting the definitions of the operators along
with their property symmetries, providing the necessary Green’s functions for studying
four-quark operator renormalization in GIRS, specifying the implied renormalization
conditions, and establishing the definition of the conversion matrices between GIRS
and MS. Afterwards, we describe our methodology for computing the two-point and
three-point GIRS Green’s functions using dimensional regularization. Subsequently, we
provide perturbative results for these Green’s functions, along with the mixing matrices
and the conversion matrices between GIRS and MS, in DR. Lastly, we summarize our

findings and outline potential calculations for future work.

5.1 Gauge Invariant Renormalization Scheme

(GIRS)

Gauge Invariant Renormalization Scheme (GIRS) was initially developed in Ref. [9]
as an extension of the coordinate space (X-space) renormalization approach
[10, 106-109]. Its purpose was to ensure applicability in both continuum and lattice
regularizations, thus enabling connections with continuum schemes. GIRS is a
gauge-invariant and mass-independent method for renormalizing composite operators
on the lattice. This approach focuses on Green’s functions of products of
gauge-invariant operators at different spacetime points in order to avoid potential
contact singularities. These Green’s functions can be calculated nonperturbatively in
numerical simulations without requiring to fix a specific gauge, allowing for a fully

nonperturbative renormalization process to this “intermediate” scheme.

As of now, the utilization of the X-space scheme on the lattice remains relatively
limited. Primarily, its application has focused on the multiplicative renormalization of
fermion bilinear operators. However, studies involving more complex operators, like

the four-fermion operators, have been explored in works such as [110].



Chapter 5. Gauge-invariant Renormalization of Four-quark Operators 80

In GIRS we examine two-point Green’s functions of the form:

(01(2)O2(y)),  (z #y), (5-3)

where O;(z) and Oy(y) denote gauge-invariant operators situated at distinct spacetime
points. Frequently, the renormalization factors of these operators in GIRS can be
determined solely by studying two-point Green’s functions. However, in some cases, as

in this work, the analysis of three-point Green’s functions becomes necessary.

GIRS scheme offers several advantages that simplify its implementation in lattice

simulations [9]:

e The Green’s functions in GIRS are gauge-invariant. Therefore, when mixing
occurs, the number of operators involved in the mixing is reduced as we exclude
gauge-variant operators, such as operators that are invariant under BRST
symmetry and operators that vanish by the equations of motion. These
gauge-variant operators include ghost fields and/or gauge-fixing terms which are
defined in perturbation theory and it can be challenging to study in a
nonperturbative context. Consequently, excluding the aforementioned operators
is advantageous when investigating the nonperturbative renormalization of

gauge-invariant operators through lattice simulations.

e By utilizing GIRS, no gauge fixing is required and thus, we can evade issues of
fixing a covariant gauge on the lattice [111, 112]. Furthermore, we can conduct
calculations perturbatively in a gauge where the momentum-loop integrals are
more straightforward, such as the Feynman gauge, since Green’s functions in

GIRS do not depend on the gauge-fixing parameter.

e When mixing does not occur, perturbative computations within the GIRS
framework can be carried out using Feynman diagrams with only one external
momentum. This approach, known as a massless renormalization scheme, allows
for the application of established techniques developed for evaluating such

diagrams to very high perturbative orders. (see, e.g., [82-87, 113]).

e In order to obtain the conversion factors from GIRS to MS, you can perform only
continuum perturbative calculations since GIRS renormalization functions can be
determined entirely non-perturbatively, without relying on lattice perturbation

theory.
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e In contrast to standard renormalization schemes in momentum space, in GIRS

contact terms are naturally excluded (z # y).
Certainly, GIRS has its drawbacks as well:

e The absence of contact terms in GIRS comes at the cost of introducing

exponentials in Feynman integrals, which can complicate their computation.

e (Calculations within GIRS, at a specific order in perturbation theory, necessitate

diagrams with an additional loop compared to other schemes.

e When mixing arises, it often requires the study of Green’s functions with more
than two external points. While this complexity is not unique to GIRS and exists

in other schemes as well, it still presents a challenge.

As previously stated GIRS is an intermediate scheme enabling the direct derivation of
renormalization functions through lattice simulations. The primary objective entails
acquiring renormalized Green’s functions within the MS scheme, widely used for
experimental data analysis. To achieve this objective, it is essential to calculate
suitable conversion factors between GIRS and MS schemes. These conversion factors

are finite and independent of regularization.

5.2 Formulation and Calculation Setup

In this section, we briefly introduce the formulation of our study, along with the
notation utilized throughout this project. We provide definitions of the four-quark
operators, as well as their transformation properties under parity, charge conjugation
and flavor exchange symmetries. These symmetries allow mixing between specific
groups of operators, which arise at the quantum level. Furthermore, we describe the
required Green’s functions for studying the renormalization of four-quark operators in
GIRS, the implied renormalization conditions, and we define the conversion matrices
between GIRS and MS. Note that there are multiple possibilities for defining GIRS,
each leading to different conversion matrices and we present one of them in Section
5.3.
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Our calculations are performed within the framework of QCD. The action of QCD in

Euclidean spacetime is given by:

SQCD = /d4flf

where 7, represents the gluon field strength tensor, ¢ denotes the quark field of flavor,

1 a auv I
TEwF™ 4 > s uDy+ my )y, | (5.4)

fi, and D, is the covariant derivative, which accounts the interaction of quarks with
the gluon (A4,) fields: D, = 0,9 + igA,. Index a is the color index in adjoint

representation of the gauge group.

Note that we use a mass-idependent scheme, and the masses my, are kept zero
throughout to preserve the chiral symmetry. In this way we will exclude complicated
renormalization patterns for the four-quark operators since this procedure does not
allow mixing among operators of different chirality and operators which are

multiplied by masses.

5.2.1 Definition of the Four-quark Operators and their

Symmetry Properties

We investigate four-quark composite operators of the form:

Ori(x) = g, ()T, (@) p, () Py, (), (5.5)

where I and T denote products of Dirac matrices:

1

Faf € {ﬂa 757 fy,ua '7#’}/57 Uul/a 750-,UV} = {S7 P> V>A7T7 T}> UMV = 5[7#771/]7 (56)

and f; represent the flavor indices on quark fields v; color and spinor indices are implied.
In our study, we focus on four-quark operators with I' = I and I' = I'ys, which are

scalar or pseudoscalar quantities under rotational symmetry.

One complication in the study of these operators is that mixing is allowed among four-
quark operators with different Dirac matrices, under renormalization, as dictated by
symmetries. In order to study the mixing of the four-quark operators at the quantum
level, it is convenient to construct operators with exchanged flavors of their quark fields,

which are related to the original operators through the Fierz—Pauli-Kofink identity (the
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superscript letter F' stands for Fierz) [22]:

Op = (T g (b D) = Zz(wﬁ )T, (@) (95,(2) T 05, (@), (5.7)

F
OFF

(6 T 5 ) (Bp, T toy,) = ZZ(wﬁ 2) T, (2)) (65, (2) T 5, (), (5.8)

where Dirac indices are implicit, and color indices are denoted by Latin letters a, c.

In order to study the renormalization of the four-quark operators, we considered the
symmetries of the QCD action, with 4 degenerate quarks: Parity P, Charge conjugation
C, Flavor exchange symmetry S=(¢s, <> ¢y, ), Flavor Switching symmetries S'=(¢y, +
Vi, Yy, > Yy,) and S"=(Yy, <> Yy, Yy, <> Py,) [114]. Operators which have the same
behavior under these symmetries can mix. The parity P and charge conjugation C
transformations on quarks and antiquarks are defined in the Eqs. (3.36) and (3.37),

respectively.

Referring to [114-116], we derive the complete basis of dimension-six, four-quark
operators that undergo mixing during renormalization. This derivation is based in
general symmetry principles, particularly those stemming from the flavor symmetries,
which are also preserved on the lattice. Note that, four-quark operators, which
involved in flavor-changing AF = 2 processes, can mix only with other dimension-six
operators with the same quantum numbers and not with lower dimensional operators

as they do not have the same four-flavor content.

In Table 5.1, we illustrate the transformations of the four-quark operators O under P,
CS',CS",CPS' and CPS”. It is worth mentioning that the Parity Violating operators,
which does not obey CS” symmetry, have been symmetrized or antisymmetrized to

generate eigenstates of CS”. For the Fierz four-quark operators QL. we must exchange

the columns CS" — CS” and CPS’ — CPS”.

N

The new basis of operators can be further decomposed into smaller independent bases
according to the discrete symmetries P, S, CPS" and CPS”. Following the notation of
Ref. [115], the 20 operators of Table 5.1 (including the Fierz operators) are classified

into 4 categories:

Parity C ing (P = +1 ithS = +1: QY= i =1,2,...,5),
a) Parity Conserving = +1) operators wit =+1: @ )

(b) Parity Conserving (P = +1) operators with S = -1: Q7= (1=1,2,...,5),
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| P | ¢S | ¢8| cPS | CPS"
Ovy - — - - -
O - —- + + -
Opp - - + + -
Oss - - - -+ -
Orr + + + + +
Owasav) | — - - + +
Owa—av) | — - + + -
Osp-prs) | — + — - +
Ospips) | — + + - -
Ori - + + - -3

TABLE 5.1: Transformations of the four-quark operators Opq under P, CS’, CS”,
CPS' and CPS" are noted. The operators Oz, and O are not explicitly shown in
the above matrix, as they coincide with O, and Orr, respectively. For the Fierz

four-quark operators O?ﬁv we must exchange the columns CS’ — CS” and
CPS — CPS" [115].

(¢) Parity Violating (P = -1) operators with S = +1: Q=1 (1=1,2,...

(d) Parity Violating (P = -1) operators with S = -1: Q9= (i=1,2,...

which are given, explicitly, below:

(5.10)
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Note that there is a summation over all independent Lorentz indices (if any), of the
Dirac matrices. The operators of Egs. (5.9) and (5.10) are grouped together according
to their mixing pattern. Therefore, the mixing matrices Z°=*! (Z5=*!)  which

renormalize the Parity Conserving (Violating) operators, take the following form:

S=+41
Zn Zi2 Ziz Zia  Zis Zun 0 0 0 0
Zy Loy Loz Zos  Zos Zoo Zoz 0 0
Z5=* = | Z3 Zsy Zs3s Zsu Zss , 29 = Z3g Z33 0 0

Zyn Zag  Zaz Zas  Zas
Zs1  Zsy  Zsz  Zss sy

0 0 24 Zus

0 0 Z54 Zs5
(5.11)

0
0
0
0

The renormalized Parity Conserving (Violating) operators, Q5=%! (Q5=%1), are defined
as follows:

Qf:il _ ZlSm::izl . CQiL::I:I7 Qf::tl — ZlSm::tl . QTSn::tl7 (512)

where [,m =1,...,5 and a sum over m is implied.

In principle, the four-quark operators can also mix with a number of possible lower
dimensional operators, which have the same symmetry properties. However, in this
work, we focus on operators which change flavor numbers by two units (AF = 2);
thus, f1 & {fs, f+} and fo & {fs, f4}, which forbid such additional mixing.

5.2.2 Green’s Functions and Feynman Diagrams

In this work, GIRS is employed for extracting the renormalization matrices Z°=*! and
Z9=*1 In the case of a multiplicatively renormalizable operator, O, a typical condition
in GIRS has the following form:

(Z5")*(O(2) O (), = (O(x) OF(y))"* - (5.13)
where Z is a nonzero renormalization 4-vector scale. To ensure that discretization
effects are manageable and that we can effectively connect with continuum perturbation
theory, the scale Z has to be within the range where the lattice spacing a is much smaller

than z, but z itself is much smaller than the inverse of the QCD scale Agcp.

Note that the Green’s function (O(z)O(y)") is gauge independent and thus, a

nonperturbative implementation of such a scheme on the lattice avoids gauge fixing

S=%£1
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altogether and the numerical simulation becomes more straightforward and
statistically robust without the issue of Gribov copies. When operator mixing occurs,
we need to consider a set of conditions involving more than one Green’s functions of
two or more gauge-invariant operators, each of which has a similar form to Eq. (5.13),
i.e., the renormalized Green’s functions are set to their tree-level values when the

operators’ space-time separations equal to specific reference scales.

In our study, the determination of the 5 x 5 mixing matrices of Eq. (5.11) requires the
calculation of (i) two-point Green’s functions with two four-quark operators and (ii)
three-point Green’s functions with one four-quark operator and two lower dimensional

operators, e.g., quark bilinear operators:

Or(z) = by, ()T, (). (5.14)

All operators are placed at different spacetime points, in a way as to avoid potential

contact singularities:

Goro (2) = (Opp(x) O;/f/<y)>7 r=r—y, TFY,

i Y

(5.15)

G 0iom(27) = (Ov(@) O (y)Orn(w)),  z=x—y, Z'=y—w, vAyFw#e

Two-point Green’s functions with one four-quark operator and one bilinear operator
are not considered since they vanish when AF = 2. In principle, the perturbative
calculation of the Green’s functions of Egs. (5.15) and (5.16) can be performed for
generic Dirac matrices T', T, I",I", I, which do not lead to vanishing result. However,
when we construct the renormalization conditions, we specify the Dirac matrices for

both four-quark (Q); and Q; combinations) and bilinear operators.

In order to determine a consistent and solvable set of nonperturbative renormalization
conditions, we need to examine multiple choices of three-point Green’s functions with
different bilinear operators. Also, since there is no unique way of selecting solvable
conditions in GIRS, a perturbative calculation of all possible Green’s functions will be
useful for determining conversion factors from different variants of GIRS to MS. To
this end, we calculate the Green’s functions of Egs. (5.15) and (5.16), up to one-loop
order, in DR.

(5.16)
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The Feynman diagrams contributing to the two-point Green’s functions with two AF =
2 four-quark operators, to order O(¢°) (diagram 1) and O(g?) (the remaining diagrams),

are shown in Fig. 5.1.

Jd g 09

FIGURE 5.1: Feynman diagrams contributing to (Op+ £ (y)) with two

AF = 2 four-quark operators, to order O(g") (dlagram 1) and O(g?) (the remaining
diagrams). Wavy (solid) lines represent gluons (quarks). A circled cross denotes
insertion of the four-quark operator. Diagrams 2 and 4 have also mirror variants.

The Feynman diagrams contributing to the three-point Green’s functions of the product
of one AF = 2 four-quark operator and two quark bilinear operators are shown in
Fig. 5.2.

SERSIu S
a0 OO

FIGURE 5.2: Feynman diagrams contrlbutlng to (O (x OF// ) with one
AF = 2 four-quark operator, to order O(g°) (diagram 1) and O( ) (the remaining
diagrams). Notation is identical to that of Figure 5.1. The solid squares denote the
quark bilinear operators. Diagrams 2-5 have also mirror variants.

In Appendix B, we depict diagrams that are absent for AF = 2 four-quark operators
but contribute to the Green’s functions involving products of four-quark operators with
AF < 2. Moreover, we provide additional Feynman diagrams that arise specifically

within lattice calculations.
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There are numerous possible variants of GIRS, depending on which Green’s functions
and which renormalization four-vectors are selected for imposing renormalization
conditions. A variant of choice, which is expected to result in reduced statistical noise
in lattice simulations, includes integration (summation on the lattice) over time slices
of the operator-insertion points in all Green’s functions. For instance, we integrate
the Eq. (5.13) over three out of the four components of the position vector (z — y),
with the fourth component set to a reference scale t. To clarify, for scalar and
pseudoscalar operators, the direction of the unintegrated component does not matter.
However, for other operators, there are two possible options depending on whether
this direction aligns with one of the indices carried by the operators or not. Given the
anisotropic nature of the lattice used in simulations, the temporal direction holds
special significance. Therefore, a natural choice for the component t is to be

temporal. The Green’s functions for this variant of GIRS can be expressed as follows:

~2pt
Gorf;or/f/ (24)

GE o onn(e1 ) = / 0% / P7 G o o () (F2), 2> 0, >0

(5.18)

T

/ d*7 G o (7 24), 2 >0, (5.17)

This method offers the advantage of reducing the four reference scales to just one.
The aforementioned variant of GIRS have been employed in a number of previous
studies, regarding the renormalization of fermion bilinear operators [9], the study of
mixing between the gluon and quark energy-momentum tensor operators [9], as well
as the renormalization of supersymmetric operators, such as gluino-glue [70] and

supercurrent [71, 117] in Super-Yang-Mills theory.

5.2.3 Renormalization Conditions and Conversion Matrices

In the case of the Parity Conserving operators (@;), the mixing matrix is 5 x 5 for both
S = +1 and S = —1. Therefore, for each case we need 25 conditions to obtain these
mixing coefficients. Computing the relevant two-point Green’s functions, we extract 15
conditions and we need another 10 conditions that will be extracted from the relevant

three-point Green’s functions. The 15 conditions in GIRS which include two-point
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Green’s functions are the following:

5

[ééist:il;c,gf:ﬂ(t)]ems = ’;I(ZSil)GIRS(ZSil)GIRS Gég g n(t) = [GQQI:;:il;Q?:il(t)]tree,
- (5.19)

where the indices ¢ and j run from 1 to 5 and ¢ < j; z4 := t is the GIRS renormalization

scale. We have a variety of options for selecting the remaining conditions involving

three-point Green’s functions:

5
(t,t )]GIRS GIRS 2 Z ZS:tl GIRS G3pt’QS " o ( ) [G3pt
k=1

[G?’pt (t, )],

mQS=E0p HQS=E0p

(5.20)
where the index ¢ runs from 1 to 5, I' € {1, 75, V4, VY5, O}, and z4 :=t, 2 == ¢’
are GIRS renormalization scales. In this case, the two bilinears must be the same in
order to obtain a nonzero Green’s function. ZG™S is the renormalization factor of the
bilinear operator Or calculated in Ref. [9]. To avoid having more than one
renormalization scales, a natural choice is to set ¢’ = ¢; in this way, the original set of
two four-vector renormalization scales (given by specific values of z and 2/, cf.
Egs. (5.15)-(5.16)), following integration over time slices and setting ¢ = ¢, is reduced
to just one real variable. Changing the values of ¢ and/or ¢ would obviously affect the
results for the nonperturbative Green’s functions in Egs. (5.19)-(5.20); nevertheless,
after multiplication by the appropriate conversion factors, one should arrive at the
same MS-renormalized Green’s functions, independently of ¢ and ' (assuming that
various standard sources of systematic error are under control). This then provides a

powerful consistency check for the renormalization of four-quark operators.

As we conclude, by doing the perturbative calculation, not all sets of conditions given
in Egs. (5.19)-(5.20) can lead to viable solutions. We will provide some feasible choices
in Section 5.3. In practice, one can choose the specific conditions that provide a more

stable signal in numerical simulations.

In the case of the Parity Violating operators (Q;), the 5 X 5 mixing matrix is block
diagonal for both S = +1 and S = —1, as dictated by symmetries. In particular,
there are three mixing subsets: {Q;}, {Q2, Q3} and {Q4, 95}, for each S. The first
subset includes only 1 operator, which is multiplicatively renormalizable; thus, only one
condition is needed and can be obtained from the two-point Green’s functions. The

second and third subsets include two operators and thus, 4 conditions are needed for
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each subset to obtain the mixing coefficients. Three of them will be extracted from the
two-point Green’s functions, while the remaining 1 condition requires the calculation
of three-point Green’s functions. In total, we need 9 conditions for each S: 7 will be
extracted from two-point Green’s functions, and 2 will be extracted from three-point
Green’s functions. The seven conditions that include two-point Green’s functions are

the following:

[égft':il;gf:il (t)]GIRS [(ZiSlil>GIRS]2 égft:il;glszil (t) _ [é2pt—i1.gf—i1 (Zf)}tree,

o= 07=
(5.21)
~2pt GIRS ° S+1\GIRS/ 7S+1\GIRS ~2pt
O O = 3 (EENOEEN G g0
= [éggzﬂ_gszﬂ(t>]“ee, (i,j =2,3), (5.22)
~2pt GIRS . S+1)GIRS ( ZSE1)GIRS ~2pt
Gt g 7 = 30 (2RI G g 1)
= [G Zp;:ﬂ;gszﬂ(t)]“ee, (i,j = 4,5). (5.23)

Note that in the above equations ¢ < j. The two conditions that include three-point

Green’s functions can be:

[é?;;gf:ﬂ;o% (t, )] = ZGIS 7z g{s Z (Z5+1)GIRS G:z;t’gs on, (t,#)
= [G"”’Pt o5=H100 (t,t’)]“ee, (i=2or 3), (5.24)

~3pt NGRS SGIRS ,GIRS SE1YGIRS (y8pt /

[GOF;Qfﬁl;O%(tﬂf)] = Zon Zopy, Z (Zi Gop,gf o (t, 1)
(G o (t, "], (i =4 or 5), (5.25)

S=+1
Or;Q; ;004

where I' € {1, v,, 0,,}. In this case, the two bilinears must differ by ~5 in order to
obtain a nonzero Green’s function. As in the Parity Conserving operators, we simplify
the conditions by setting ¢’ = t. It is not guaranteed that all possible choices can give
a solution to the system of conditions. We test all options and we provide the choices

that can work in Section 5.3.

To connect with phenomenological studies effectively, which mainly rely on operators

renormalized within the MS scheme of dimensional regularization, the conversion

matrices (CS=F)MSGIRS ap (CS=#1)MSGIRS hotween GIRS and MS schemes are
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necessary:

(ZS :I:l) (CS :I:l)MS GIRS(ZS :I:l)GIRS (ZS :I:l) (CS :tl)MS GIRS(ZS :I:l)GIRS

(5.26)
These can be computed only perturbatively due to the very nature of MS. Being
regularization independent, they are evaluated more easily in DR. The one-loop
expressions of the conversion matrices for different variants of GIRS are extracted
from our calculations and are given in Section 5.3 for a selected version of GIRS. The
conversion matrices along with the lattice mixing matrices in GIRS, calculated
nonperturbatively, allow the extraction of the lattice mixing matrices in the MS

scheme.

From the Green’s functions, which are computed by using coordinate space in DR,
we can extract directly the MS-renormalized Green’s functions; this can be done by
isolating the pole terms (negative powers of € in the Laurent series expansion) in the
bare two-point and three-point Green’s functions. We obtain the mixing coefficients for

the Parity Conserving operators in MS by solving the following system of conditions:

5
> (25N (25 ﬂ)MSG2S sgs-n(2)| = 0, neZ, (5.27)
k=1
5
S (G g ()] =0 meZt, (5:29)
k=1

where the indices ¢ and j run from 1 to 5, ¢ < j and I € {1, 75, V4, Yu V5, O }- Z(/I\JTFS
is the renormalization factor of the bilinear operator Or in MS calculated in Ref. [9].

For the Parity Violating operators the following conditions are valid:

[(ZSil) ] G2S 1, g5- il(z) = 0, ne Z+’ (529)
3
> (ZFEMS(ZpEMS Goisrgs—n(2)| = 0, n€Z% (i,j=2,3), (5.30)
k=2 ‘
5
> (ZE)MS (s Goisrgs—i(2)| = 0, neZ% (i,j=45). (531)

=z
Il

4



Chapter 5. Gauge-invariant Renormalization of Four-quark Operators 92

Note that in the above equations ¢ < j. For these operators the renormalization

conditions including three-point Green’s functions in MS are shown below:

3

Z(I\Q/IS Z(I\Q/IFSVE’» Z <Zﬁfi1)Ms G?;;Qf:ﬂ;(’)rm (2.2) I 0, neZ (i=2or3),
k=2
(5.32)
— [— 5 —
Zé\’)/[l“s Zgrs% Z (chil)MS G?;;;Qf:il;omg) (2,) en 0, neZ', (i=4orb),
k=4

(5.33)

where I' € {11, 7, 0., }. As we previously mentioned, the bilinear operators must be

chosen in such a way as to give nonzero Green’s functions.

5.2.4 Loop Integrals in Coordinate Space

At this point, we briefly describe the methodology that we follow for calculating the
two-point and three-point GIRS Green’s functions defined in the previous section using

dimensional regularization.

There are two types of prototype scalar Feynman integrals that enter the calculation

2pt

of the two-point Green’s functions GOFf(’) _(2) to the tree-level and one-loop,
? Il

respectively:

4P ip1-&1
ene (5.34)
(2m)"” (p?)

Py = [

de1 de2 dDPs
(27_‘_)3D

D _
12 (51;05170@7()3)0547&5) = /
eps-&1

D™ ((=p1 +p3)2) ((=p1 +p2)H)™ 03 (—p2 +13)?)

as )

(5.35)

where D = 4 — 2¢ is the number of spacetime dimensions and the vector &; satisfies:
&1 # 0. Tensor integrals with an arbitrary number of momentum-loop components p; ,,
P2, D3, n the numerator can be reduced to scalars through derivatives w.r.t. & of the

above scalar integrals or integration by parts (see Eq. (45) in Ref. [118]).
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Integral I[P is computed by introducing a  Schwinger  parameter:
1/(p2)™ = 1/T(cu) [;° DX A1~ 1e~ i, leading to the following resulting expression:

D(~a; + D/2) ()™ 7"
49 7012 T'(ay) '

IP(&;00) = (5.36)

Integral I? is calculated in two steps: first, the integration over p; and ps is performed,
which is independent of the phase factor of the numerator. This inner two-loop integral
is evaluated through the standard “diamond”-type recursive formula of Ref. [119]. The
resulting expression depends on the scalar quantity p2. Then, the remaining integral

over p3 takes the form of IP.

The calculation of the three-point Green’s functions G?g;,;o (z,2') involve the

i Orn
following prototype scalar Feynman integrals, in addition to I?:

I7 (&, €95, a9, i3)

dPp, dP ip1-§1 Lip2-§2
/ p1 d”pa e e _ (5.37)

2m)*” ()™ )™ ((—p1 + p2)?)
del dez de3
(27T>3D

17 (61,6 01, a0, 03,04, 05) = / (5.38)
eh2-€1 oip3-&2

)™ @3 ((=pr +p2)")" )™ ((—p1 +p3)")
where & # 0, & # 0, and (& + &) # 0. As in the case of the two-point Green’s

functions, tensor integrals can be reduced to scalars through derivatives w.r.t. &, & of

as )

the scalar integrals or integration by parts.

The two-loop integral I? can be reduced to one-loop integral J? by using Schwinger

parametrization:
I'(D/2 —
]3D(€17 52, aq, g, 043) = 4‘S7TD//—2F(SS)) (5%)8_0(3 (5;)8—041 ((§1+§2)2)S_a2 ‘]D(glv f?a ay, Qg, 0[3),
(5.39)
where s = a1 + as + az — D/2, and
D ) _ dPx 1
J (51752; an, g, 043) = / (27T)D ((—.ZC + 61)2)041 (1’2)0‘2((33 i 62)2)0‘3. (540)

The “triangle” integral J? is well-studied in Refs. [120, 121]. By using the recursive

relations of Ref. [120], the integrals of type J? appearing in our calculation can be
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expressed in terms of the following master integrals, calculated in Ref. [121] up to
O(e):

J4—26(€17§2; 17171) — M {CI)(I) (6_% g) +e \11(1) <€% g) + 0(62)},

(€31 & &8
(5.41)

-2 T DL+ & & e (&8
e v (5— 5—) +0<e2>} (5.42)

L ' B m2—e F(l + E) 1 2 52 52
Ji=2 (&1,62;1,e,1) = <§§)ze 2 (1 — 3e¢) {E a elg i <§_:1§> v (5_22)
2 2
2 622- & p (5_1 5_2)} —|—(’)(e2)},(5.43)
3

oS

where & = (& + &)? and SW(€2/63,62/¢2), WO (€2/€2),€3/€3) ave polylogarithmic
functions given in [121]. Note that by summing all Feynman diagrams, dM and ¥

functions are cancelled from the final expressions of the three-point Green’s functions.

Integral I} is simplified by applying integration by parts w.r.t. p;, thus, leading to the

following recursive relation, which can eliminate inverse powers of p?, or p3, or p3 [9]:

1
—20&1—@3—045+D.

[043 <If(§1a§2;041 — 1 ag,as + 1,04, 05)

15(51752;%,0427043,&47045) =

—IP(&, &5 01,00 — 1, a3 + 1,a4,a5)> -
as <I4D(f1752; a; — 1, a9, a3, 04,05 + 1)
— 17 (&1, &5 0, 09, 03,00 — 1,05 + 1))} (5.44)
In the case where oy, as, a4 are positive integers, which is true in the computation
at hand, an iterative implementation of Eq. (5.44) leads to terms with one propagator

less. One momentum can then be integrated using a well-known one-loop formula (see

Egs. (A.1) - (A.2) in Ref. [119]); the remaining integrals are of type I” or 2.
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5.3 Results

In this section, we present perturbative results for the two-point and three-point Green’s
functions, along with the mixing matrices and conversion matrices between GIRS and
MS, utilizing DR in D = 4 — 2¢ dimensions. Since there are various conditions that
lead to different solutions (within one-loop perturbation theory), we have chosen to

present one set.

5.3.1 Bare Green’s Functions

We present our results for the bare tree-level two-point Green’s function of two four-
quark operators with arbitrary Dirac matrices (X;, i = 1,2,3,4) and arbitrary flavors
(fi, f1,i=1,2,3,4) carried by the quark fields. The result is given to all orders in ¢,
and it depends, explicitly, on the d-vector z = y — =, which connects the positions of

the two operators:

(5, (2) Xty ()5 () Xt (2)) (1 0) Xt )i () X () = e L2 =)

16 8—4e (22)8—4e
{5f1f§5f2f4 [Ne 0p,,05agy tr(Xa2X17) tr(Xof Xof) — O, 07y tr(Xa7 Xof Xof X17))]

+05 410551 [Ne Opyp10 5,50 tr(X1#Xo7) tr(Xof X14) — 01105, 5 tr(Xlé‘fX{%/Xz%Xé#)]},
(5.45)

where N, is the number of colors.

The tree-level three-point Green’s function of one four-quark and two quark bilinear
operators for arbitrary Dirac matrices and flavors is given below to all orders in € and
in terms of the D-vectors z = x — y and 2/ = y — w, which connect the four-quark

operator with the left and right bilinear operators, respectively:

(W (@)X gy () (0 W) X1s ()0 (1) Xatp, (y) (Vg (W) X gy (w))) e =
N.T(2—¢€)?*
16 7w8—4e (Z2)4—26 (2/2)4_25
{5f3f{5f4f{’ [Ne 0p, 3072y tr(X'EX0E) tr(Xof X"Y') — 05y, gy 0( XXt X" X17)]
+04, 101310 [Ne OgapyOpu gy tr(X'FXod) tr(Xaf X"E) = Op, O papy tr( X4 X107 X ”#’Xz»%)]}-
(5.46)
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In order to extract the renormalization matrices to one-loop order, we require only the

above tree-level expressions up to O(e').

The corresponding one-loop expressions are more involved and more lengthy, and thus,
we do not provide the explicit expressions in the manuscript. In particular, the one-
loop three-point Green’s functions are difficult to be expressed in a closed form without
expanding over €. For the determination of the one-loop renormalization matrices, we

need only the O(e°) contributions of the bare one-loop Green’s functions.

5.3.2 Mixing matrices in the MS scheme

An outcome of our calculation is the one-loop coefficients of the mixing matrices
(ZS:ﬂ)l\TS and (ZS:ﬂ)NTS in the MS scheme. By isolating the pole terms (negative
powers of € in the Laurent series expansion) in the bare two-point and three-point
Green’s functions, we extract the mixing coefficients for the four-quark operators. It
is worth mentioning that even though we can construct multiple systems of conditions
for different I" matrices, all must give the same unique solution. We have confirmed
that indeed all Green’s functions calculated in this work give a consistent solution,

provided below:

2 2
S=+1MS _ Ivs _+ 4 S=+1 35 _ s 4 A
Zij =05+ 16m2¢ i + O(9515) zZ = 0ij + 162 i + O(g55), (5.47)

for Parity Conserving and for Parity Violating operators, respectively. The nonzero
coefficients 275, 75 of the Eq. (5.47) are shown in Table 5.2 (Cr = (N2 — 1)/(2N,)).

i %ij
We observe that the MS mixing matrices of Parity Conserving and Parity Violating
operators coincide for both S = 41 and S = —1, and they take the block diagonal form

of Z5=*1in Eq. (5.11). Our results agree with previous calculations in Refs [122, 123].

We note that in our calculation in this project, we have employed the t'Hooft-Veltman
prescription for defining 75 in D dimensions, which does not violate Ward identities
involving pseudoscalar and axial-vector operators. We also note that Lorentz indices
appearing in the definition of the four-quark operators and quark bilinear operators
are taken to lie in 4 instead of D dimensions in order to handle potential mixing with

evanescent operators in dimensional regularization.
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1 7 zi = 25
1 1 —3(1F N.)/N.
2 2 3/N,
2 3 +6
3 2 0
3 3 —6CFg
4 4 —3(2CFr F 1)
4 1 5 | —(2F N)/(2N,)
5 4 —6(2+ N.)/N,
5 ) 20 £3

+

TABLE 5.2: Numerical values of the coefficients z
nonvanishing blocks of Eq. (5.47).

i 2;5 appearing in the

5.3.3 MS-renormalized Green’s functions

By removing the pole parts (1/¢) in the bare Green’s function one defines the
MS-renormalized Green’s functions. As an example, we provide one two-point and
one three-point Green’s function renormalized in MS; they depend on the scales z
and/or z' corresponding to the separations between the operators that present in each
Green’s function, as well as on the MS renormalization scale fi appearing in the
renormalization of the coupling constant in D dimensions: gr = u~ 2 Ygs (9B (gR) is
the bare (renormalized) coupling constant, y = fi\/e7 /4r).
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2 MS 4N,
[Gngzil;Qf:il(z)] - 7T8(2’2)6 (5f1fi (5f2f§ + 5f1f§ 5f2fi> (5f3f§ 5f4f{ + 5f3f{ 5f4f§) x
gl%/TS Cr 5 5 .
+1+ N, +2 1672 +6+7N,F6 (ln(u 2%) 4+ 2vg — 2111(2)) + (’)(ng8) ,
(5.48)
3 MS N,
(G gs—s1y, (22 = PR (Os17 Oy 15 £ 05105 057 54) (g3 Oppn £ g Opypn) X
2 2
Ne£1 [1_2@_2»2/; 4(z.z/),2uzlg]i 9 CF [1_2(@—1—,2;)2}
2 22 ~'2 22,2 1671'2 (z + Z’)
2 / / /
s CF 2 z (z-2")z,2
4+ ZMS 7 [1_2_”_2_“ 4—““]
1672 22 2'2 * 2222
2.2 .2
(2 + 2')
(5.49)

where the flavor indices follow the conventions of Egs. (5.45), (5.46).

We also provide the MS-renormalized two-point and three-point Green’s functions
after integration over timeslices (see Eqgs. (5.17) - (5.18)), which are relevant for the
extraction of the conversion matrices. These are written in a compact form for all

four-quark and quark bilinear operators, as follows:
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- — N,
2pt MS c
[GQP;S':il;Q}S‘:iI(t)] = W (5f1fi 5f2f§, + 5f1f§, 5f2fi) (5f3fé 5f4f{ + (5f3f{ 5f4fé) X

G C _
{( z] 0 + aZ] IN ) I\fZﬂ_QF |: (sz; ;0 + bzy IN ) (1H</,L2t2) + 27E') (Ciij;O + Cz:’tj;lNc) i| + O(gi/[s)} )

(5.50)
[@Z"ist_ﬂ;gjs_ﬂ(t)]m = % (0513 Orasy = 05113 Opary) <5f3f£ Oragy £ (=18 5f4f§) X
~ ~ 92 Cr
{(aﬁ;;o +ag,Ne) + “fzﬂ [(bg‘;o + b, 1N> + (In(2%) + 2v8) (G0 + &5y )] + O(gf/ls)} ,
(5.51)
Gongi—+top, (* Nt = % (Osira Osyrss £ 05155 Os5a) (s Oy F 03 gy ) X

9 C i
{(dﬁ“;o + dﬁ—‘;lNC) + l\fzﬂ_QF |: (6?;;0 + eﬁ—‘;lNC) + (1n<ﬂ2t2) 4 27E) (fz%‘;(] + 1%;1]\70) i| + O(Q]%/[S)} )

(5.52)

~3pt MS NC dio+0;
) = —15 (Orisa Osyss + 0514051 52) <6f§fz Oy £ (1) g, 5f§’fz> X

2
9= C _
{(d;tmdm )+ (@t N + () + 29) (Firo + it )]+o<g;zs>},

(5.53)

+ 4 s+ G+ + e
where the coefficients % & bz’j;k’ Cijiks Qijikes bij;k’ ik sz k> ik zr k> sz k> Cirsk Jirik

are given in Tables 5.3 — 5.6.

For simplicity, we have presented algebraic results for the three-point Green’s functions
at t =t'. In Fig. 5.3, we examine the dependence of the three-point Green’s functions
on more general relative values of ¢ and ¢'. As an example, we provide plots for the
MS-renormalized three-point Green’s functions of the Parity Conserving operators for
S = +1 as a function of ¢/(t+t'), keeping t 4+t constant. All other three-point Green’s
functions (of Parity Conserving operators with S = —1, or Parity Violating operators
with § = +1) have similar behavior. We have employed certain values of the free
parameters used in lattice simulations: N, = 3, giTs =6/5, = 1788, i = 2 GeV,
(t+1t) = T/2 (T is the temporal lattice size), T" = 64a (a is the lattice spacing),
a = 0.07957 fm.

We observe in Fig. 5.3 that the three-point Green’s functions are symmetric over

t/(t+1t') = 0.5 (or equivallenty, t = t'), as expected. Green’s functions with ;. take
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FIGURE 5.3: Plots of three-point Green’s functions [G*F (t, t)]MS,

Or;Q; = h0r
i € [1,5], as a function of ¢t/(t +t). A common factor of

NC/(T('S (t —+ t/)G) X (6f{f4 5f{'f3 —+ 5f{f3 5f{'f4) (6féf2 5fé'f1 —+ 5féf1 6fé,f2) is excluded
from all graphs. Here, we set N, = 3, gI%TS =6/5, 0 =1.788, i =2 GeV,
(t+t)=T/2, T = 64a, a = 0.07957 fm.

larger absolute values when scalar (S) or pseudoscalar (P) operators are considered,
while for @1, the three-point Green’s functions with vector (V;) or axial-vector (A4;)
operators (where i is a spatial direction) give the highest values. Green’s functions
with tensor (7;;) operators have much smaller values compared to all other

three-point functions.

S 5 &8 8 O
5= 3 5 9 3
Il Il I Il Il
8> v ow
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1 J aiij;o aiij;1 biij;0 b;‘;-;l c;‘;-;o cfj;l

1 1 +7/32 7/32 +869/160 49/16 F21/8 0

1 2 0 0 F7/4 —7/4 0 0

1 3 0 0 +7/8 0 0 0

1 4 0 0 +7/8 0 0 0

1 ) 0 0 +21/4 0 0 0

2 2 0 7/32 +7/4 49/16 0 0

2 3 F7/64 0 F391/320 0 F21/16 0

2 4 0 0 +7/4 0 0 0

2 D 0 0 0 0 0 0

3 3 0 7/128 +7/16 251/640 0 21/32

3 4 0 0 +7/16 —7/8 0 0

3 5 0 0 F21/8 0 0 0

4 4 F7/256 | 7/128 | +87/1280 | 251/640 | F63/64 | 21/32

4 5 | £21/128 0 +1651/640 0 +21/32 0

5) 5 +21/64 | 21/32 | £3563/320 | 1709/160 | F147/16 | —21/8
TABLE 5.3: Numerical values of the coefficients agtj;o, a;';;l, b;';;o, b;';;l, CZ:-?;O, sz'tm

appearing in MS-renormalized two-point Green’s functions with Parity Conserving

operators (Eq. (5.50)).



Chapter 5. Gauge-invariant Renormalization of Four-quark Operators 102
N @350 Qg1 biso i1 Ciso Cijn
1 1 +7/32 7/32 +869/160 49/16 F21/8 0
1 2 0 0 0 0 0 0
1 3 0 0 0 0 0 0
1 4 0 0 0 0 0 0
1 5 0 0 0 0 0 0
2 2 0 —7/32 0 —49/16 0 0
2 3 +7/64 0 +391/320 0 +21/16 0
2 4 0 0 0 0 0 0
2 5 0 0 0 0 0 0
3 3 0 —7/128 0 —251/640 0 —21/32
3 4 0 0 0 0 0 0
3 5 0 0 0 0 0 0
4 4 F7/256 | 7/128 | £87/1280 | 251/640 | F63/64 | 21/32
4 5) +21/128 0 +1651/640 0 +21/32 0
5 5 +21/64 | 21/32 | £3563/320 | 1709/160 | F147/16 | —21/8

) . . ~+ -+ 7+ 7+ o+ ot
TABLE 5.4: Numerical values of the coefficients 47500 Gij1> bij;o, bij;l? Cii:00 Cijn

appearing in MS-renormalized two-point Green’s functions with Parity Violating
operators (Eq. (5.51)).
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i I dﬁ“;o dﬁ“;l ez'ir;o 62%;1 ijli;(] ;“;1
1 S 0 0 +1/2 0 0 0

2 S F1/16 0 0 0 F3/4 0

3 | S 0 1/32 +1/4 ~1/16 0 3/8
4 S F1/64 1/32 F3/8 (1/8 —1n(2)) —-1/16 | F3/8 3/8
5 S +3/32 0 F3/4 (1/8 —1n(2)) 0 +3/4 0

1 P 0 0 0 0 0 0

2 P +1/16 0 12 0 +3/4 0

3 P 0 —1/32 0 —15/16 0 —3/8

4 | P | F1/64 | 1/32 | ¥3/8(35/24—In(2)) | 15/16 | ¥3/8 | 3/8
5 P +3/32 0 +3/4 (93/24 + 1n(2)) 0 +3/4 0

1 V; | £1/72 1/72 +1/6 (41/48 + 1n(2)) 1/12 | F1/12 0

2 V; 0 1/72 0 1/12 0 0

3 |V, | F1/144] 0 | F1/12(23/48—-In(2)) | O F1/24 | 0

4 V; 0 0 +1/12 0 0 0

5 V; 0 0 +1/6 0 0 0

1 | A | £1/72 | 1/72 | £1/6 (35/16 +In(2)) | 11/36 | F1/12 | 0

2 A, 0 —1/72 F1/9 —11/36 0 0

3 | A | £1/144| 0 | £1/12(29/16 —In(2)) | O +1/24 | 0

4 A, 0 0 F1/36 0 0 0

5 A, 0 0 +1/6 0 0 0

1 T; 0 0 +1/36 0 0 0

2 T; 0 0 +11/192 0 0 0

3 T; 0 0 F1/72 0 0 0

4 T, | £1/576 0 +1/72 (15/8 — In(2)) 0 0 0

5 Ty, | £1/288 | 1/144 | £1/12 (89/72 +1n(2)) | 25/216 | F1/18 | —1/36

1 T; 0 0 +1/36 0 0 0

2 T; 0 0 F11/192 0 0 0

3 T; 0 0 F1/72 0 0 0

4 Tj4 | £1/576 0 +1/72 (15/8 — In(2)) 0 0 0

5 | Ty | £1/288 | 1/144 | £1/12 (89/72 +1n(2)) | 25/216 | F1/18 | —1/36

. . . . ot + + . .
TABLE 5.5: Numerical values of the coefficients diF;l’ e fiF;l appearing in

MS-renormalized three-point Green’s functions with Parity Conserving operators
(Eq. (5.52)).
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i r diir;o diiF;l éiir;o éiiI‘;l z'jﬁo z%;l
1 S 0 0 0 0 0 0
2 S +1/16 0 +1 0 +3/4 0
3 S 0 —1/32 0 —7/16 0 —3/8
4 | S | £1/64 | —1/32 | £3/8(19/24 —In(2)) | —7/16 | +3/8 | —3/8
5 S F3/32 0 F3/4(15/8 4+ In(2)) 0 F3/4 0
1 V; | £1/72 1/72 +1/6(73/48 4+ In(2)) 7/36 F1/12 0
2 Vj 0 —1/72 0 —7/36 0 0
3|V, | £1/144] 0 +1/12(55/48 — In(2)) 0 +1/24 | 0
4 Vj 0 0 0 0 0 0
5 V; 0 0 0 0 0 0
1 Tk 0 0 0 0 0 0
2 T 0 0 F11/192 0 0 0
3 T 0 0 0 0 0 0
4 Tj, | F1/576 0 F1/72 (15/8 — In(2)) 0 0 0
5 | Ty | F1/288 | —1/144 | F1/12 (89/72 +In(2)) | —25/216 | +1/18 | 1/36
1 Tja 0 0 0 0 0 0
2 Tja 0 0 +11/192 0 0 0
3 T; 0 0 0 0 0 0
4 Tjy | F1/576 0 F1/72 (15/8 — In(2)) 0 0 0
5 | Ty | F1/288 | —1/144 | F1/12 (89/72 +In(2)) | —25/216 | +1/18 | 1/36

) : . 7+ o+ Ft Lo
TABLE 5.6: Numerical values of the coefficients diI‘;l’ €;r.» fir, appearing in

MS-renormalized three-point Green’s functions with Parity Violating operators

(Eq. (5.53)).
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5.3.4 Conversion matrices

The one-loop conversion matrices between different variants of GIRS and the MS
scheme are extracted from our results by rewriting the GIRS conditions
(Egs. (5.19)-(5.25)) in terms of the conversion matrices, as defined in Eq. (5.26):

5

(OB g (] = [(CHE)SS(CR B G, o (),
k,l=1
(5.54)
[é?ci;):;czf:il;op (t,t)]NTS _ MS GIRS 2 25: () MS, GIRSHG?(:;)t 250 (t, )],
- (5.55)
[ézgi;:iI;QS:il(t)]m _ i C«S:I:l MS, GIRS][(OS:tl)MS GIRSHG2QpSt 1.5 il(t)]tree’
! k=1
(5.56)
[G3pt os=ion, (t,t)]m _ (C(IB/TFS,GIRS grswfms 25: CS:I:l NS, GIRS][G?(;pt oo (t, t)]tree
- (5.57)

where C’(I\Q/TFS’GIRS is the conversion factor of the quark bilinear operator Or calculated

to one loop in Ref. [9]:

CF’GIRS = 1+ 91\{1(8375 ( % 3n(i*t?) + 67E) O(gas), (5.58)
CMSGIRS 1 g“]fg:;F (? + 3In(@%t?) + 6ny> +0(gi), (5.59)
CYSCOIRS = 1 4 92“142—75’? g +O(gi), (5.60)
CASCIRS 4 gifz,?gF % Olgi), (5.61)
CMSGIRS 4 gifz?gF (% — In(p?t?) — 27E) + O(gar). (5.62)

Note that the conversion matrix (CoF)MS.GIRS Jhag the block diagonal form of Z5=%! in
Eq. (5.11). As we discussed in the previous section, there are a lot of different choices
of three-point Green’s functions that can be included in the renormalization conditions,
giving a different version of GIRS. In particular, for the Parity Conserving operators

(Qf =+ where 15 conditions are obtained from the two-point Green’s functions, there
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are 30! /(10! 20!) = 30,045, 015 choices for obtaining the remaining 10 conditions from
the three-point Green’s functions (see Table 5.5). However, some choices include linear
dependent or incompatible conditions leading to infinite or no solutions, respectively.
By examining all cases in one-loop perturbation theory, we conclude that there are

205,088 choices of conditions, which give a unique solution.

Even though, all solvable systems of conditions are acceptable, it is natural to set a
criterion in order to select options which have better behavior compared to others.
Such a criterion can be the size of the mixing contributions. To this end, we evaluate
the sum of squares of the off-diagonal coefficients in the conversion matrices for all the
accepted cases, and we choose the cases with the smallest values. We found that, in
general, the sums of squares among different choices are comparable. We also observed
that the mixing is less pronounced for the operators with S = —1, as compared to
S =+1.

From the options that give the smallest sum of squares of the off-diagonal coefficients,
we choose one to present below. We avoid to include tensor operators in the selected set
of conditions, which are typically more noisy in simulations. Also, we prefer to have
more scalar or pseudoscalar operators which are computationally cheaper compared
to other bilinear operators. The selected set of conditions include the following 10

renormalized three-point Green’s functions:

é?;)z?fzil;s(ta t)a é:;rthf=i1;P(t7 t)a G?/?;szil;w (ta t)v é:;i)ctgg:il;s(ta t)? éiﬁ‘z\??s:il;]g(ta t)a
=3 =3 =3 ~3 =3
G;:gg::tl;s(ta t)) G;;gg::tl;s(tv t)a GPI:Z%S::H;P({:) t)v GV?;;QS‘::EI;% (ta t)? GAIng::tl;Ai (ta t))

and the solution reads:

A B g2 +1
(CHMSOS =6 4+ 25 3 7 g+ (n(a*8) + 2yp) K] NE+ Olgygs). (5.63)
k=—1
where the coefficients gf;.;k, h,fj;k, are given in Table 5.7.

In the case of Parity Violating operators, the number of possible sets of conditions is
much smaller, since the 5 X 5 mixing matrices are decomposed into three blocks of
1 x 1, and two 2 x 2 sub-matrices, as explained in the previous section. For the 1 x 1
block, we consider the condition with the corresponding two-point Green’s function

and thus, there is no need to involve any three-point Green’s functions. For the 2 x 2
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U J 95;71 955‘;0 955;“ hgg;,l hi?;o hz‘ij;ﬂ
1 1 —869/140 +379/140 7/2 3 F3 0
1| 2 2 +(723/280 — 61n(2)) —2 0 0 0
1 3 —723/140 + 121n(2) 0 0 0 0 0
1 4 —4 +4 0 0 0 0
1 5 —2 +2 0 0 0 0
2 1 397/280 + 61n(2) +(163/280 — 61n(2)) -2 0 0 0
2 | 2 —9/2 +2 7/2 -3 0 0
2 3 4 F2 0 0 F6 0
2 4 4 +8 0 0 0 0
2 5 -2 0 0 0 0 0
3 1 —1 +1 0 0 0 0
3 2 1 +99/280 0 0 0 0
3 3 —38/35 +2 251/140 -3 0 3
3 4 4 +239/280 —321/140 0 0 0
3 5 0 F239/560 0 0 0 0
4 1 —1 +1 0 0 0 0
4 2 1 F239/280 0 0 0 0
4 3 4 +2 —799/140 0 0 0
4 4 —307/112 + 31n(2) +169/140 251/140 -3 F3 3
4 5 | —269/480 4 1/2 In(2) | £(869/1680 — In(2)) 0 1 F1/2 0
5 1 —6 +6 0 0 0 0
5 2 —6 0 0 0 0 0
5 3 0 F12 0 0 0 0
5 | 4 —269/40 + 61n(2) | F(29/140 — 121n(2)) 0 12 +6 0
5 5 —1229/240 -3 ln(2) :l:3()9/140 1709/420 1 F3 -1

TABLE 5.7: Numerical values of the coefficients gij;,k, hiE

ij;k

appearing in Eq. (5.63).

blocks, there are 8 choices (for each block) for obtaining 1 condition from the three-

point Green’s functions (see Table 5.6), in addition to the 3 conditions obtained from

the two-point Green’s functions. However, only two (three) options for the block that

involves {Qs, Qs} ({Q4, Q5}) give a unique solution. By applying the same criterion,

as in the Parity Conserving operators, for restricting the number of possible sets of

conditions, we conclude that the block of {Qs, Q3} has smaller mixing contributions

compared to the block of {Qy, Qs} for the Parity Violating operators with S = +1,

and vice versa for the operators with S = —1.

The option that gives the smallest sum of squares of the off-diagonal coefficients include

the following renormalized three-point Green’s functions:

ézi)tQQS:il;P(ty t)a

é?)pt

S;Q5S=i1;p<t7 t)a
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and the solution reads:

2 +1

- — Jire ~ B -
(CFVSOS =5, 4 = > [g;;k + (In(2%2) + 2vp) hj;;k] NE+O(gis), (5.64)
k=—1

where the coefficients g;‘;;k, h  , are given in Table 5.8.

ijsk)

U J gii;;—l 95;0 gijJ['Hrl h?;;—l h?;;o hiijﬂ-l
1 1 —869/140 +379/140 7/2 3 T3 0
1 2 0 0 0 0 0 0
1 3 0 0 0 0 0 0
1 4 0 0 0 0 0 0
1 ) 0 0 0 0 0 0
2 1 0 0 0 0 0 0
2 | 2 —9/2 0 7/2 -3 0 0
2 3 0 F2 0 0 F6 0
2 4 0 0 0 0 0 0
2 ) 0 0 0 0 0 0
3 1 0 0 0 0 0 0
3 2 0 +99/280 0 0 0 0
3 3 —38/35 0 251/140 -3 0 3
3 4 0 0 0 0 0 0
3 ) 0 0 0 0 0 0
4 1 0 0 0 0 0 0
4 2 0 0 0 0 0 0
4 3 0 0 0 0 0 0
4 | 4 | —=307/112+3In(2) +169/140 251,140 -3 T3 3
4 | 5 | —269/480 +1/2 In(2) | +(869/1680 — In(2)) 0 1 T1/2 0
) 1 0 0 0 0 0 0
) 2 0 0 0 0 0 0
) 3 0 0 0 0 0 0
5 4 —269/40 +6 ln(2) ZF(29/14O —12 ln(2)) 0 12 +6 0
5 | 5 | —1229/240 — 31In(2) +309/140 1709/420 1 T3 —1

TABLE 5.8: Numerical values of the coefficients giﬂ;,k, hi, appearing in Eq. (5.64).

ij;k

Other accepted options include the renormalized three-point Green’s functions of:

~3pt ~3pt ~3pt
RN () I T ci e () B C c ey (R0) B
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5.4 Possible Extensions

In this Chapter, we compute two-point and three-point Green’s functions within the
GIRS scheme. This computation allows us to establish the conversion matrices between
GIRS and MS. In this work, we concentrate only in renormalizing the four-quark
operators which involved in flavor-changing AF = 2 processes. In this case, these

operators mix only among themselves and the mixing with lower dimensional operators

is forbidden.

However, a natural extension of this project would be the study of the renormalization
of the four-quark operators related to processes that alter flavors with AF = 1 and
AF = 0 changes. The main obstacle in these investigations lies in the mixing between
the four-quark operators and lower-dimensional operators, such as the Chromomagnetic

operator.



Chapter 6

Summary and Conclusions

In this dissertation, we examine the perturbative renormalization within the framework
of lattice strong interaction physics. Specifically, we study the following two projects:
Fine-Tuning of the Yukawa and Quartic Couplings in Supersymmetric QCD and Gauge-
invariant Renormalization of Four-quark Operators in Lattice QCD. The main purpose
of these projects is to produce ingredients which will be utilized in numerical simulations
and in non-perturbative calculations on the lattice. In the second project, our results
can also be combined with nonperturbative data to facilitate the conversion of the

lattice results into renormalized quantities in continuum renormalization schemes.

For the fine-tuning of the Yukawa couplings, we calculate three-point Green’s functions
with external elementary fields of the SQCD action in the Wess-Zumino gauge. In
particular, we perform one-loop calculations for a complete set of three-point Green’s
functions with external gluino, quark and squark fields, employing Wilson fermions and
gluons. For the fine-tuning of the quartic couplings, we compute one-loop four-point
Green’s functions with external squark fields again of the SQCD action in the Wess-
Zumino gauge. To extract the fine-tunings of Yukawa and quartic couplings in the MS
scheme, we compute the relevant Green’s functions in two regularizations: dimensional
and lattice. The lattice calculations are the crux of this work; and the continuum
calculations serve as a necessary ingredient, allowing us to relate our lattice results to
the MS scheme.

Our findings indicate that the multiplicative renormalization of the Yukawa coupling
and the coefficient of the mirror Yukawa counterterm on the lattice are finite and

gauge independent, aligning with the principles of renormalization and gauge

110
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invariance. Additionally, we observe that, at the quantum level, the multiplicative
renormalization of the quartic coupling in dimensional regularization remains
unaffected by one-loop corrections. Consequently, we anticipate that the
corresponding renormalization on the lattice will be finite and a finite mixture of
terms with four squarks that obey the symmetries of the SQCD, potentially emerging
in the MS scheme on the lattice. Furthermore, we expect these renormalization
constants to be gauge independent. The computation regarding the renormalization

of the quartic couplings on the lattice is currently in progress.

With the perturbative renormalization of the Yukawa and the quartic couplings in
Supersymmetric QCD, all renormalizations (fields, masses, couplings) in the Wilson
formulation are completed [48, 66]. The outcomes of this study will hold significant
relevance for the setup and the calibration of lattice numerical simulations of SQCD.
In the coming years, it is expected that simulations of supersymmetric theories will

become ever more feasible and precise.

As previously mentioned, a follow up study of this work would be the perturbative
calulations of all fine-tunings in SQCD on the lattice using chirally invariant actions.
Specifically, we can utilize the overlap action for gluino and quark fields. Although this
approach may be computationally intensive, it minimizes the number of parameters

requiring fine-tuning, which is an important advantage for these types of calculations.

In the second project, we calculate two-point and three-point Green’s functions in the
GIRS scheme. This calculation enables us to derive the elements of the conversion
matrices connecting GIRS and MS. Operator mixing was addressed through a set of
conditions involving these Green’s functions, ensuring that renormalized values revert
to tree-level standards at specific reference scales. Proposed variants of GIRS, including
time-slice integration, successfully reduced statistical noise in lattice simulations. This
effect was particularly evident in the renormalization of fermion bilinear operators
and the examination of mixing between gluon and quark energy-momentum tensor

operators [9], as well as the supercurrent in supersymmetric QCD [71, 117].

A natural extension of this project will involve the study of four-quark operators with
AF =1 and AF = 0. The primary challenge of these investigations is the mixing
between the four-quark operators and lower-dimensional operators, including the

Chromomagnetic operator.



Appendix A

The Path Integral over the (zluino
Field

To elucidate the Majorana nature of the gluino field within the functional integral,
and the way to properly address it in the calculation of Feynman diagrams, we first
reformulate the action from Eq. (2.97) to express it in exclusively in terms of A, rather
than . We proceed in a way analogous to Ref. [124], but we now take into account
the additional complication brought about by the Yukawa terms. By applying the
Majorana condition ((A*)T = C\®), the part of the action which contains gluino fields

has the general form:
Setuine = ADX + AN+ AB = A" MA + (A+ B\, (A1)

where M = CD. The first term represents both the kinetic energy of the gluino and
the interaction with the gluon field. The subsequent terms correspond to the Yukawa

interactions:
A=iV2g(—pP.T*A, — P, TA"), B=ivV2g(ALT P )+ A_TP_y), (A.2)
where B’ = —BTC and B'" = CB. Therefore, the path integral reads:
Z[J] _ /DUother o~ Sother /D)\ ef/\TM/\f(AJrB/)/\fJA’ (A.3)

where J is an external source, Uypher Stands for all of the fields in the theory except

gluino fields, and Sener denotes the action part devoid of gluinos. In order to integrate
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out the gluino field, we implement the following standard change of variables:

, 1 .
)\TE>\T+§(J+A+B/)M. (A.4)

This leads to:
ZJ) = / DUty € 50" / DN N TMN =L (A+B+I) M (A+B/+J)T

_ /DUother efsother Pf[M] e*%(A+B’+J)M’1(A+B’+J)T : (A5)
where P f[M] is the Pfaffian of the antisymmetric matrix M. In the absence of Yukawa
terms, and in case one is interested only in Green’s functions without external gluinos
(so that one can set J = 0 from the start), the exponential in Eq. (A.5) becomes trivial
and the only remnant of gluinos is the Pfaffian; in those cases, the only effect of the
gluinos’ Majorana nature is the well-known factor of 1/2 for every closed gluino loop,

due to the fact that Pf[M] = det[M]'/2. Note that we do not assume that J, A and B

are Majorana spinors.

Let us examine the exponent appearing in Eq. (A.5):
1 - -
e —7(A+ B+ )M A+B +J)". (A.6)

When we compute Green’s functions without external gluinos, we can set J = 0 and

thus, S” can be written as:
1, - _
=Sy = =3 (A+ B)M (A + B)"
1, - - p - _
= —(AMTAT + BMTIBT + AMTICB - BTOM T AT)

- _;L(AM_IAT +BM'BT +2AD7'B). (A7)

Green’s functions with one external gluino field can be generated via functional
differentiation with respect to the gluino source J (cf. Egs. (A.3), (A.6)):

! d / ]_ - /
A(x) : e 5 ——— e ;o= = D;,C™'(A+ B} ™| 7=o. (A.8)

dJ, 2

The above expression gives rise to all 3 diagrams of Fig. 4.1; the diagrams are redrawn

in Fig. A.1 with a shaded area indicating the contribution of the “effective vertex”
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1/2D7'C~1 (A+ B')T appearing in Eq. (A.8) (note that D contains contributions with
zero or more gluons). We note also the factor of 1/2 present in Eq. (A.8); it is similar

to the factor accompanying closed gluino loops, even though it does not stem from the
Pfaffian.

In order to compute Green’s functions with two external gluinos, for example A(z)A(y),
we have to consider the following second derivative with respect to the external source

J:

sonm: e (=) (=77 ) o (A.9)

Gluon fields contained in the matrices M~ and D~! of Egs. (A7), (A8), can be
extracted via a series expansion in g; thus, one gluon field emerges by calculating the

quantity ga%(M_l) -

v -1 _ _ a2 -1
gﬁg(M )9=0 ) (939>M

where g%—]\; is the normal vertex with two gluino fields and one gluon field. Similarly,

, (A.10)

extraction of two gluon fields follows from:

1 2 1 M

- 28_2(M71) a __gQQ M*la_Mfl

27 g 9=0 27 0dg dg 9=0

— g2M’1 8_M M1 6_M M1 — 1g2M’1 02_M ML
dg dg 9=0 2 dg*
(A.11)
The term with Egg]\f appears only on the lattice.
¥ v \

FIGURE A.1: Redrawn one-loop Feynman diagrams with a shaded area indicating
the contribution of the “effective vertex” appearing in Eq. (A.8).



Appendix B

Additional Feynman Diagrams for

AF < 2 Four-quark Operators

In this appendix we illustrate diagrams that are absent for AF' = 2 four-quark operators
and they contribute to the Green’s functions with products of four-quark operators
with AF < 2. Furthermore, we present additional Feynman diagrams that arise on the

lattice.

For the Green’s functions with two AF < 2 four-quark operators, these diagrams are

illustrated in Fig. B.1.
5 6 7
8 iti’ ; \f% 9 %li? 10
FIGURE B.1: Feynman diagrams contributing to (Ops () of

. (y)) with two

four-quark operators with AF < 2, to order O(¢°) (diagram 5) and O(g?) (the
remaining diagrams). Notation is identical to that of Figure 5.1. Diagrams 6-10 can
have mirror variants.
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In Fig. B.2 and Fig. B.3, we show the disconnected Feynman diagrams and the
additional Feynman diagrams on the lattice contributing to the two-point Green’s
functions with two four-quark operators, respectively. Note that for Green’s functions

with AF = 2 four-quark operators there cannot be any disconnected diagrams.

000 OO
BOCO

FIGURE B.2: Disconnected Feynman diagrams contributing to (Opg(x )(’);T,( ))s

to order O(g°) (first diagram) and O(g?) (the remaining diagrams). Notation is
identical to that of Figure 5.1. These diagrams contribute to (Opp(7) O (y))
beyond one loop.

@ @00 OFC

000
o OCO OO0

OOOC

FIGURE B.3: Additional Feynman diagrams contributing to (Opq( F,F/(y)) on
the lattice. Notation is identical to that of Figure 5.1. The trlangle denotes
insertion of the critical mass counterterm.
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In the case that we study the renormalization of AF < 2 four-quark operators, we
have to consider additional two-point Green’s functions of the product of one four-
quark operator and one bilinear (Opp(z) Or(y)). Take into consideration that these

Green’s functions are zero when we investigate AF = 2 four-quark operators.

The Feynman diagrams contributing to the two-point Green’s functions of the product
of one four-quark operator and one bilinear, to order O(¢°) (diagram 1) and O(g?) (the
remaining diagrams), are shown in Fig. B.4. In Fig. B.5 and Fig. B.6, we illustrate the
disconnected Feynman diagrams and the lattice Feynman diagrams contributing to the

aforementioned two-point Green’s functions, respectively.
1 !ij ; ‘:’ ‘fl 2 3

FIGURE B.4: Feynman diagrams contributing to ( 7) Or/(y)), to order O(g°)
(diagram 1) and O(g?) (the remaining diagrams). Notatlon is 1dentlcal to that of
Figure 5.2. All of these are absent for AF = 2 operators and they contribute to
operators with AF' < 2. Diagrams 2-5 can have mirror variants.

00O 6@@
00 CO®

FIGURE B.5: Disconnected Feynman diagrams contributing to (Op(z) Or(y)), to
order O(g°) (first diagram) and O(g?) (the remaining diagrams). Notation is
identical to that of Figure 5.2. These diagrams contribute to (Opq(2) O (y))
beyond one loop.
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FIGURE B.6: Additional Feynman diagrams contributing to (Opn(x) Or(y)) on
the lattice. Notation is identical to that of Figure 5.2. The triangle denotes
insertion of the critical mass counterterm.

The Feynman diagrams contributing to the three-point Green’s functions of the product
of one four-quark operator and two quark bilinear operators that are absent for AF = 2

operators and contribute to operators with AF < 2 are shown in Fig. B.7.
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Row RiR
RE 2R

FIGURE B.7: Feynman diagrams contributing to (Ors(z) Op(0)Or«(y)) with a
AF < 2 four-quark operator, to order O(g°) (diagram 6) and O(g?) (the remaining
diagrams). Notation is identical to that of Figure 5.2. Diagrams 7-13 can have
mirror variants.
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